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Preface

The concept of intuitionistic fuzzy set (IFS) was originally introduced by Atanassov
(1983) to extend the concept of the traditional fuzzy set. Each element in an IFS is
expressed by an ordered pair which is called an intuitionistic fuzzy value (IFV) (or
intuitionistic fuzzy number (IFN)), and each IFV is characterized by a membership
degree, a nonmembership degree, and a hesitancy degree. The sum of the mem-
bership degree, the nonmembership degree, and the hesitancy degree of each IFV is
equal to one. IFVs can describe the fuzzy characters of things comprehensively, and
thus are a powerful and effective tool in expressing uncertain or fuzzy information
in actual applications. Recently, a lot of research work has been done on the
aggregation and cluster analysis. Since 2006, my research group has been focusing
on the investigation of these interesting and important topics, and achieved fruitful
research results which have been published in some well-known peer-reviewed
professional journals.

This book offers a systematic introduction to the latest research work of my
group on information aggregation and cluster analysis under intuitionistic fuzzy
environments, including the various algorithms for clustering intuitionistic fuzzy
information and the intuitionistic fuzzy aggregation techniques, and their appli-
cations in multi-attribute decision making, such as supply chain management,
military system performance evaluation, project management, venture capital,
information system selection, building materials classification, and operational
plan assessment, and so on. We organized this book as below:

Chapter 1 introduces the intuitionistic fuzzy aggregation techniques. We first
give a survey of the existing methods for ranking IFVs, and then introduce various
operational laws of IFVs. On the basis of these ranking methods and operational
laws, we present varieties of the intuitionistic fuzzy power aggregation operators,
the intuitionistic fuzzy geometric Bonferroni means, the intuitionistic fuzzy
aggregation operators based on Archimedean t-conorm and t-norm, the generalized
intuitionistic fuzzy aggregation operators based on Hamacher t-conorm and t-
norm, the generalized intuitionistic fuzzy point aggregation operators, and their
generalizations in interval-valued intuitionistic fuzzy environments and the
applications in multi-attribute decision making.
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Chapter 2 introduces the clustering algorithms of IFSs. The chapter first defines
the concept of intuitionistic fuzzy similarity degree, and constructs the intuition-
istic fuzzy similarity matrix and the intuitionistic fuzzy equivalence matrix. Then,
the chapter defines the compound operational law of intuitionistic fuzzy similarity
matrix, and gives an approach to transforming the intuitionistic fuzzy similarity
matrices into the intuitionistic fuzzy equivalence matrices. After that, the chapter
defines the k-cutting matrices of the intuitionistic fuzzy similarity matrix and the
intuitionistic fuzzy equivalence matrix, based on which an approach is presented
for clustering IFSs. Moreover, the chapter defines the concept of association and
equivalent association matrix, and introduces some methods for calculating the
association coefficients of IFSs. Then, based on the association matrix, the chapter
introduces a clustering algorithm for IFSs, and extends the algorithm to cluster
interval-valued IFSs. Additionally, some other clustering algorithms, such as the
intuitionistic fuzzy hierarchical clustering algorithms, the intuitionistic fuzzy
orthogonal clustering algorithm, the intuitionistic fuzzy C-means clustering
algorithms, the intuitionistic fuzzy minimum spanning tree (MST) clustering
algorithm, the intuitionistic fuzzy clustering algorithm based on Boole matrix and
association measure, the intuitionistic fuzzy netting clustering method, and the
direct cluster analysis based on intuitionistic fuzzy implication are also introduced.

This book can be used as a reference for researchers and practitioners working in
the fields of fuzzy mathematics, operations research, information science, man-
agement science and engineering, and so on. It can also be used as a textbook for
postgraduate and senior undergraduate students.

This work was supported by the National Natural Science Foundation of China
under Grant 71071161.

Nanjing, April 2012 Zeshui Xu
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Chapter 1
Intuitionistic Fuzzy Aggregation
Techniques

Intuitionistic fuzzy set (IFS), introduced by Atanassov (1983, 1986), is the gener-
alization of Zadeh’s fuzzy set (Zadeh 1965). IFS is characterized by a membership
function and a non-membership function, and thus can depict the fuzzy character of
data more comprehensively than Zadeh’s fuzzy set which is only characterized by a
membership function. For example, if a girl wants to find a boyfriend, and evaluates
the boy from five aspects, she may feel satisfied with three aspects, unsatisfied with
one aspect and uncertain with one aspect of the boy. In such a case, fuzzy sets can only
reflect the satisfied aspect, which loses some uncertain information, while IFSs can
describe all the satisfied, unsatisfied and uncertain information. In a variety of voting
events, in addition to the support and the objection, there is usually the abstention
which indicates the hesitation or the indeterminacy of the voter to the object. IFSs are
more suitable to deal with these cases than fuzzy sets. The core of an IFS is intuition-
istic fuzzy values (IFVs) (Xu and Yager 2006; Xu 2007), each of which is composed
of a membership degree, a non-membership degree, and a hesitancy degree. IFVs
are a powerful tool to depict uncertain or fuzzy information. In many fields, such as
decision making, cluster analysis, and information retrieval, etc., information aggre-
gation is an essential process. Therefore, how to aggregate IFVs is an interesting and
important research topic, which has received great attention from researchers and a
lot of intuitionistic fuzzy aggregation techniques have been developed (Xu and Yager
2006, 2009, 2011; Xu 2007, 2010; Xu and Chen 2007b; Boran et al. 2009; Tan and
Chen 2010; Xu and Cai 2010a, b; Zhao et al. 2010; Beliakov et al. 2011; Xu and
Xia 2011). Xu and Cai (2010b, 2012) provided a survey of these intuitionistic fuzzy
aggregation techniques, and their applications in various fields. Recently, Xia and Xu
(2010) developed various generalized intuitionistic fuzzy point aggregation opera-
tors, which can control the certainty degrees of the aggregated arguments with some
parameters. Xu (2011) gave a series of intuitionistic fuzzy power aggregation opera-
tors, whose weighting vectors depend upon the input arguments and allow the values
being aggregated to support and reinforce each other. Xia et al. (2012a, b) proposed
a geometric Bonferroni mean, based on which they defined the intuitionistic fuzzy
geometric Bonferroni means and their generalized versions. Based on Archimedean

Z. Xu, Intuitionistic Fuzzy Aggregation and Clustering, Studies in Fuzziness 1
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2 1 Intuitionistic Fuzzy Aggregation Techniques

t-conorm and t-norm, Xia and Xu (2011), and Xia et al. (2012c) presented some
intuitionistic fuzzy aggregation operators and their generalizations. In this chapter,
we shall introduce these newly developed aggregation operators for IFVs, and their
applications in decision making.

1.1 Rankings of Intuitionistic Fuzzy Values

1.1.1 Intuitionistic Fuzzy Values

Atanassov (1986) introduced the concept of intuitionistic fuzzy set (IFS):

Definition 1.1 (Atanassov 1986) Let X be a fixed set, then

A = {〈x, μA(x), vA(x)〉|x ∈ X} (1.1)

is called an intuitionistic fuzzy set (IFS), which assigns to each element x a
membership degree μA(x) and a non-membership degree vA(x), with the condi-
tions μA(x), vA(x) ≥ 0 and 0 ≤ μA(x) + vA(x) ≤ 1,∀x ∈ X . Furthermore,
πA(x) = 1−μA(x)− vA(x) (∀x ∈ X) is called a hesitancy degree or an intuitionis-
tic index of x to A. Ac = {〈x, vA(x), μA(x)〉|x ∈ X} is called the complement of A.

In the special case πA(x) = 0, i.e., μA(x) + vA(x) = 1, the IFS A reduces to a
fuzzy set (Zadeh 1965).

Xu and Yager (2006) called each triple (μA(x), vA(x), πA(x)) an intuitionistic
fuzzy value (IFV) (or an intuitionistic fuzzy number (IFN)), and for convenience,
denoted an IFV by α = (μα, vα, πα), where

μα, vα ≥ 0, μα + vα ≤ 1, πα = 1 − μα − vα (1.2)

Each IFV has a physical interpretation, for example, if α = (0.6, 0.3, 0.1), then
μα = 0.6, vα = 0.3 and πα = 0.1, which can be interpreted as “the vote for
resolution is 6 in favor, 3 against, and 1 abstention”.

1.1.2 Methods for Ranking IFVs

In the process of applying IFVs to practical problems, one key step is to rank
IFVs. Clearly, there are two basic principles we should follow in ranking IFVs:
the first is that the IFV which has the larger membership degree and the smaller non-
membership degree should be given priority; the second is that the IFV which has a
smaller hesitancy degree should be ranked first. When we use these two principles
to rank IFVs, the first one is top-priority. If it is not applicable individually, then
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we shall consider the two principles synthetically (Zhang and Xu 2012). According
to the first principle we can easily get that α∗ = (1, 0, 0) is the largest IFV and
α∗ = (0, 1, 0) is the smallest one.

Let αi = (μαi , vαi , παi ) (i = 1, 2) be any two IFVs, then we also have the
following conclusions:

(1) If μα1 ≥ μα2 and vα1 < vα2 , then α1 > α2.
(2) If μα1 < μα2 and vα1 ≥ vα2 , then α1 < α2.
(3) If μα1 = μα2 and vα1 = vα2 , then α1 = α2.

However, besides the comparisons (1)–(3) above, there are also other situations
left, for example, if μα1 < μα2 and vα1 < vα2 , then the IFVs do not satisfy the first
principle, which IFV should be ranked first? Zhang and Xu (2012) gave a survey of
the existing results related to this issue.

1.1.2.1 The Method for Ranking IFVs by Using the Score Function

Chen and Tan (1994) introduced the concept of the score function S. Let
α = (μα, vα, πα) be an IFV, then the score function of α is defined as:

S(α) = μα − vα (1.3)

Now we give an example to illustrate the results derived by using the score
function:

Example 1.1 (Zhang and Xu 2012) Let α1 = (0.4, 0.3, 0.3), α2 = (0.3, 0.1, 0.6)

and α3 = (0.3, 0.2, 0.5) be three IFVs, the score values derived by Eq. (1.3) are as
follows, respectively:

S(α1) = 0.4 − 0.3 = 0.1, S(α2) = 0.3 − 0.1 = 0.2, S(α3) = 0.3 − 0.2 = 0.1

and then S(α1) = S(α3) < S(α2).

According to Chen and Tan (1994)’s method, we can infer that α1 = α3 < α2.

The result is counterintuitive because that α1 and α3 are not the same. So only the
score function is not enough in ranking IFVs as they have the same score value.

For this reason, Hong and Choi (2000) proposed the accuracy function H :

H(α) = μα + vα (1.4)

and Li and Rao (2001) defined another score function S′:

S′(α) = 1 − vα (1.5)
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By using Eqs. (1.3) and (1.4), Xu and Yager (2006), and Xu (2007) gave the
following method for ranking IFVs:

(1) If S(αi ) > S(α j ), then αi is larger than α j .
(2) If S(αi ) = S(α j ), then

(a) If H(αi ) = H(α j ), then αi = α j ;
(b) If H(αi ) > H(α j ), then αi > α j .

Instead of the method above, Li and Rao (2001) gave another ranking technique
by replacing the accuracy function (1.4) with the score function (1.5).

Then let’s redo Example 1.1, we calculate the accuracy values and the score values,
respectively:

H(α1) = 0.4 + 0.3 = 0.7, H(α3) = 0.3 + 0.2 = 0.5

S′(α1) = 1 − 0.3 = 0.7, S′(α3) = 1 − 0.2 = 0.8

then H(α1) > H(α3) and S′(α1) < S′(α3).
We find that the two methods have different results. Hong and Choi (2000)’s

method emphasizes the amount of information that an IFV contains, but Li and Rao
(2001)’s method is inclined to choose the IFV which has the smaller non-membership
degree.

Although the methods above can be used to rank all IFVs, sometimes it cannot
satisfy our requirements. Let’s see an example:

Example 1.2 (Zhang and Xu 2012) Suppose that there are two major state-funded
projects y1 and y2, and a decision maker wants to select one of them by voting. The
results of the voting are expressed by IFVs, the membership degree represents the
proportion of the voters who agree to a project, the non-membership degree means
the proportion of the voters who against the project, and the hesitation degree denotes
the proportion of the abstainers. The results are listed as below:

(1) y1: (0.6, 0.15, 0.25)—60 % in favor, 15 % against, and 25 % abstain.
(2) y2: (0.5, 0, 0.5)—50 % in favor, 0 % against, and 50 % abstain.

In real situations, a decision maker may choose the first project because there are
more people who support and believe that the project can be carried out better. But if
we use the ranking methods based on the score function, it will produce the opposite
result.

1.1.2.2 The Method for Ranking IFVs by Using the Positive Ideal
Point

Bustince and Burillo (1995) introduced the distance between two IFSs
Ai = {〈x, μAi (x), vAi (x)〉|x ∈ X} (i = 1, 2) as follows:
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d1(A1, A2) = 1

2n

n∑

j = 1

(|μA1(x j ) − μA2(x j )| + |vA1(x j ) − vA2(x j )|) (1.6)

Szmidt and Kacprzyk (2000) extended Eq. (1.6) by adding the hesitancy degrees:

d2(A1, A2) = 1

2n

n∑

j = 1

(|μA1(x j ) − μA2(x j )| + |vA1(x j ) − vA2(x j )|

+ |πA1(x j ) − πA2(x j )|) (1.7)

Motivated by Eqs. (1.6) and (1.7), respectively, we can calculate the distances
between the IFV α and the positive ideal point (i.e., the largest IFV) α∗ (Xu and
Yager 2008):

d1(α, α∗) = 1

2
(|μα − 1| + |vα − 0|)

= 1

2
(1 − μα + vα)

= 1

2
(1 − (μα − vα))

= 1

2
(1 − S(α)) (1.8)

d2(α, α∗) = 1

2
(|μα − 1| + |vα − 0| + |πα − 0|)

= 1

2
(1 − μα + vα + πα)

= 1

2
(1 − μα + vα + 1 − μα − vα)

= 1 − μα (1.9)

We can infer from Eq. (1.8) that it has the similar result with Chen and Tan (1994)’s
method, which may produce the same score values even if the two IFVs are different;
while we can infer from Eq. (1.9) that the result only relies on the value of μα , so
it produces the loss of information and cannot distinguish the IFVs which have the
same membership degrees and the different non-membership degrees.

Later, Szmidt and Kacprzyk (2009a, b, 2010) further improved the distance mea-
sure Eq. (1.9) by considering the hesitancy degrees simultaneously:

L(α) = 1

2
(1 + πα) d2(α, α∗)

= 1

2
(1 + πα) (1 − μα) (1.10)
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Obviously, the distance measure (1.9) takes into account all three parameters of
IFVs. Szmidt and Kacprzyk (2000) showed that the third parameter cannot be omitted
when calculating distance between two IFVs. From Eq. (1.10), we can know that the
IFV which has the smaller membership degree and the larger hesitancy degree has
the larger value of L(α). In general, the lower L(α), the better α in the sense of
the amount and reliability of information (Szmidit and Kacprzyk 2009a, b, 2010).
Especially, from Eq. (1.10), we can see that if L(α) = 0, then we get the largest IFV
α∗ = (1, 0, 0); if L(α) = 1, then we get the “smallest” IFV α′∗ = (0,0,1) in the sense
of the reliability of the information (we have no information at all, which means the
situation with 100 % lack of knowledge, clearly, this result is very different from the
smallest IFVs α∗ = (0,1,0) derived by the other ranking methods), and the “quality”
measured by the distance from α∗ = (1,0,0) (here, the distance is the biggest).

In addition, in some situations, the formula Eq. (1.10) is also not enough in ranking
IFVs. Let’s see an example below:

Example 1.3 (Zhang and Xu 2012) Let α1 = (0.2,0.3,0.5) and α2 = (0,0.8,0.2) be
two IFVs. Obviously, the IFVs α1 and α2 are intuitively different. But by Eq. (1.10),
we have

L(α1) = 1

2
(1 + 0.5) × 0.8 = 0.6, L(α2) = 1

2
(1 + 0.2) × 1 = 0.6

then L(α1) = L(α2), and thus, in this case the formula (1.10) cannot distinguish the
IFVs α1 and α2.

1.1.2.3 The Method for Ranking IFVs by Using the Intuitionistic
Fuzzy Point Operators

Liu and Wang (2007) proposed a new score function by using the intuitionistic fuzzy
point operators (Atanassov 1999; Burillo and Bustince 1996):

Jn(α) = μα + σπα + σ(1 − σ − θ)πα + · · · + σ(1 − σ − θ)n−1πα, n = 1, 2, . . .

(1.11)

J∞(α) = μα + σ

σ + θ
πα (1.12)

where σ, θ ∈ [0, 1] and σ + θ ≤ 1. In this way, the larger the value of Jn(α),
the more priority should be given in ranking. From Eqs. (1.11) and (1.12), we can
infer that the hesitancy degree of the IFV α is divided into three parts: σπα , θπα

and (1 − σ − θ)πα , where σπα matches μα, θπα matches vα , and (1 − σ − θ)πα

is uncertain. In particular, if σ + θ = 1, then the IFV α reduces to a fuzzy value
μα + σπα . In practical applications, the decision maker can choose the suitable
parameters σ and θ according to the actual demands.
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1.1.2.4 The Method for Ranking IFVs by Using the Similarity
Measure and the Accuracy Degree

Szmidt and Kacprzyk (2004) proposed a similarity measure of IFSs:

ϑ1(A1, A2) = d(A1, A2)

d(A1, Ac
2)

(1.13)

where the distances d(A1, A2) and d(A1, Ac
2) can be calculated by using Eq. (1.6)

or Eq. (1.7).
Eq. (1.13) not only considers the distance between two IFSs but also reflects if

the compared IFSs are more similar or more dissimilar to each other. However, in
practical applications, it is generally expected that the degree of similarity would
describe to what extent the IFSs are similar, so the most similar IFSs should have the
largest degree of similarity (Hwang and Yoon 1981), which cannot be reflected by
Eq. (1.13). To solve this issue, Xu and Yager (2009) improved Szmidt and Kacprzyk
(2004)’s result according to Hwang and Yoon (1981)’s idea of technique for order
preference by similarity to ideal solution (TOPSIS) and developed the following
similarity measure:

ϑ2(A1, A2) = 1 − d(A1, A2)

d(A1, A2) + d(A1, Ac
2)

= d(A1, Ac
2)

d(A1, A2) + d(A1, Ac
2)

(1.14)

The similarity measure (1.14) can not only overcome the disadvantages of
Eq. (1.13), but also examine if the compared values are more similar or more dissim-
ilar to each other so as to avoid drawing conclusions about strong similarity between
two IFSs on the basis of the small distances between these sets (Xu and Yager 2009).

Motivated by Eq. (1.14) and the idea of positive ideal point, Zhang and Xu (2012)
proposed a new method for ranking IFVs. First we give the definition of similarity
function ϑ :

Definition 1.2 (Zhang and Xu 2012) Let α = (μα, vα, πα) be an IFV, then the
similarity function ϑ about this IFV is defined as:

ϑ(α) = 1 − d2(α, (1,0,0))

d2(α, (1,0,0)) + d2(α, (0,1,0))

= 1 −
1

2
(|μα − 1| + |vα − 0| + |πα − 0|)

1

2
(|μα − 1| + |vα − 0| + |πα − 0|) + 1

2
(|μα − 0| + |vα − 1| + |πα − 0|)

= 1 − 1 − μα + vα + πα

2 + 2πα

= 1 + πα + μα − vα

2 + 2πα
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= 1 − vα

1 + πα

= 1 − 1 − μα

1 + πα

(1.15)

where 0 ≤ ϑ(α) ≤ 1. We call ϑ(α) the ϑ value of the IFV. When α = α∗ = (1,0,0),
it gets the maximum ϑ value: ϑ(α) = 1; and when α = α∗ = (0,1,0), it gets the
minimum ϑ value: ϑ(α) = 0.

From Eq. (1.15), we can easily conclude that (Zhang and Xu 2012):

(1) If two IFVs have the same hesitancy degree, then the IFV which has the smaller
non-membership degree or the larger membership degree should be ranked first.

(2) If two IFVs have the same non-membership degree, then the IFV which has the
smaller hesitancy degree should be ranked first.

(3) If two IFVs have the same membership degree, then the IFV which has the larger
hesitancy degree should be ranked first.

When we use Eq. (1.15) to rank IFVs, the derived result is in accordance with the
first principle introduced at the beginning of Sect. 1.1.2, i.e., the IFV which has the
larger membership degree and the smaller non-membership degree should be given
priority. Let’s prove it below:

Proof Let α1 = (μα1 , vα1 , πα1) and α2 = (μα2 , vα2 , πα2) be two IFVs, and suppose
that μα1 > μα2 and vα1 < vα2 , then by Eq. (1.15), we get

ϑ(α1) = 1 − vα1

2 − μα1 − vα1

, ϑ(α2) = 1 − vα2

2 − μα2 − vα2

Let μα1 − μα2 = �1 and vα2 − vα1 = �2, then we have

ϑ(α1) = 1 − vα1

2 − μα1 − vα1

>
1 − vα1

2 − (μα1 − �1) − vα1

= 1 − vα1

2 − μα2 − vα1

⇒ ϑ(α1) >
1 − vα1

2 − μα2 − vα1

and similarly,

ϑ(α2) = 1 − vα2

2 − μα2 − vα2

= 1 − 1 − μα2

2 − μα2 − vα2

< 1 − 1 − μα2

2 − μα2 − (vα2 − �2)

= 1 − 1 − μα2

2 − μα2 − vα1

= 1 − vα1

2 − μα2 − vα1

⇒ ϑ(α2) <
1 − vα1

2 − μα2 − vα1

Thus, we can obtain

ϑ(α2) <
1 − vα1

2 − μα2 − vα1

< ϑ(α1) ⇒ ϑ(α1) > ϑ(α2)
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(  )

Fig. 1.1 The results derived by Eq. (1.15) and their contours

But sometimes we will face the situations where the considered two IFVs have
the same value derived by Eq. (1.15), which can be shown in Fig. 1.1 (Zhang and Xu
2012).

In the bottom of Fig. 1.1, we have given the contours of the results derived by
Eq. (1.15), from which we can get the following conclusions:

Theorem 1.1 (Zhang and Xu 2012)

(1) If the membership degree of an IFV is the same as the non-membership degree,

then the ϑ value is
1

2
.

(2) If the membership degree of an IFV is larger than the non-membership degree,

then the ϑ value is larger than
1

2
.

(3) If the membership degree of an IFV is smaller than the non-membership degree,

then the ϑ value is smaller than
1

2
.

Proof Let α = (μα, vα, πα) be an IFV, then we calculate the ϑ value of α:

ϑ(α) = 1 − vα

1 + πα

= 1 − vα

1 + (1 − μα − vα)
= 1 − vα

(1 − μα) + (1 − vα)

which should be discussed in three cases:

Case 1 μα = vα

⇒ 1 − vα

(1 − μα) + (1 − vα)
= 1 − vα

(1 − vα) + (1 − vα)
= 1

2

⇒ ϑ(α) = 1

2
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Case 2 μα > vα

⇒ 1 − vα

(1 − μα) + (1 − vα)
>

1 − vα

(1 − vα) + (1 − vα)
= 1

2

⇒ ϑ(α) >
1

2

Case 3 μα < vα

⇒ 1 − vα

(1 − μα) + (1 − vα)
<

1 − vα

(1 − vα) + (1 − vα)
= 1

2

⇒ ϑ(α) <
1

2

In fact, for each value derived by Eq. (1.15), its membership degree μα and non-
membership degree vα change in specific ranges, which we can see from the contours.
In the following, we shall demonstrate it:

Let α = (μα, vα, πα) be an IFV, then

(1) If ϑ(α) ≤ 0.5, then

(a) When πα = 0, μα and vα get the maximums, i.e.,

πα = 0 ⇒ μα + vα = 1

and

ϑ(α) = 1 − vα

1 + πα

= 1 − vα ⇒ vα = 1 − ϑ(α) ⇒ μα = ϑ(α)

(b) When μα = 0, vα gets the minimum, i.e.,

ϑ(α) = 1 − vα

1 + πα

= 1 − vα

1 + 1 − μα − vα

= 1 − vα

2 − vα

⇒ vα = 1 − 2ϑ(α)

1 − ϑ(α)

then the ranges of μα and vα are as follows, respectively:

0 ≤ μα ≤ ϑ(α),
1 − 2ϑ(α)

1 − ϑ(α)
≤ vα ≤ 1 − ϑ(α)

(2) If 0.5 < ϑ(α) ≤ 1, then

(a) When πα = 0, μα and vα get the maximums, i.e., μα = ϑ(α) and
vα = 1 − ϑ(α);

(b) When vα = 0, μα gets the minimum, i.e.,

ϑ(α) = 1 − vα

1 + πα

= 1 − vα

1 + 1 − μα − vα

= 1

2 − μα

⇒ μα = 2ϑ(α) − 1

ϑ(α)
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then the ranges of μα and vα are as follows, respectively:

2ϑ(α) − 1

ϑ(α)
≤ μα ≤ ϑ(α), 0 ≤ vα ≤ 1 − ϑ(α)

Based on the analysis above, in what follows, we introduce a new method for
ranking IFVs (Zhang and Xu 2012):

Let αi = (μαi , vαi , παi ) (i = 1, 2, . . . , n) be a collection of IFVs, then we rank
these IFVs according to the following steps:

Step 1 Calculate the ϑ values of the IFVs αi (i = 1, 2, . . . , n) using Eq. (1.15).
Step 2 Rank the IFVs αi (i = 1, 2, . . . , n) according to the order of the ϑ values,

and the IFV with the larger ϑ value should be ranked first. If there exist some IFVs
with the same ϑ value, then go to Step 3.

Step 3 Calculate the accuracy degrees of these IFVs using Eq. (1.4), and then rank
the IFVs according to the following principles:

(1) If ϑ(αi ) > ϑ(α j ), then αi > α j .
(2) If ϑ(αi ) = ϑ(α j ), then

(a) If H(αi ) > H(α j ), then αi > α j ;
(b) If H(αi ) < H(α j ), then αi < α j ;
(c) If H(αi ) = H(α j ), then αi = α j , (1.16)

which are in accordance with the basic principles introduced at the beginning of
Sect. 1.1.2.

In the following, we give an example to illustrate the method above and compare
it with all the existing ones:

Example 1.4 (Zhang and Xu 2012) Let α1 = (0.6,0.1,0.3), α2 = (0.6,0.15,0.25),

α3 = (0.5,0,0.5), α4 = (0.2,0.3,0.5), and α5 = (0,0.8,0.2) be five IFVs. Here, we
rank them using all the methods discussed previously. The derived results are listed
in Table 1.1 (Zhang and Xu 2012).

According to the data in Table 1.1, we can get the following ranking results:

(i) By the formulas (1.3) and (1.4), we get α1 > α3 > α2 > α4 > α5.

Table 1.1 The results derived by the existing methods

αi S(αi ) H(αi ) S′(αi ) d1(αi , α
∗) d2(αi , α

∗) L(αi ) J (αi ) ϑ(αi )

(0.6,0.1,0.3) 0.5 0.7 0.9 0.25 0.4 0.26 6/7 9/13
(0.6,0.15,0.25) 0.45 0.75 0.85 0.275 0.4 0.25 0.8 17/25
(0.5,0,0.5) 0.5 0.5 1 0.25 0.5 0.375 1 2/3
(0.2,0.3,0.5) −0.1 0.5 0.7 0.55 0.8 0.6 0.4 7/15
(0,0.8,0.2) −0.8 0.8 0.2 0.9 1 0.6 0 1/6

Note 1. In the process of calculating J (αi ), we choose σ = μα

μα + vα

and θ = vα

μα + vα
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(ii) By the formulas (1.3) and (1.5), we get α3 > α1 > α2 > α4 > α5.
(iii) By the formula (1.8), we get α3 = α1 > α2 > α4 > α5.
(iv) By the formula (1.9), we get α1 = α2 > α3 > α4 > α5.
(v) By the formula (1.10), we get α2 > α1 > α3 > α4 = α5.

(vi) By the formula (1.11), we get α3 > α1 > α2 > α4 > α5.
(vii) By the formula (1.16), we get α1 > α2 > α3 > α4 > α5.

From the results above, we can see that the derived rankings in both (ii) and (vi)
are the same, but all the other methods get different rankings. However, if we choose
other values of σ and θ , then the results in (ii) and (vi) may be different. Now let’s
give a detailed analysis on the results in (i)–(vii). The rankings in (iii), (iv) and (v)
are mainly based on the distance measures of IFVs, the used methods sometimes
cannot distinguish IFVs. The used methods in (i) and (ii) focus on the differences
between the membership degrees and the non-membership degrees, and consider
these differences as a main factor in ranking IFVs. The used method in (vi) tries
to decrease the uncertainty of an IFV by dividing its hesitancy degree into three
parts, and uses the method of limit to turn an IFV into a fuzzy value. The different
divisions may lead to different ranking results, in actual applications, the decision
maker sometimes cannot give a precise division of the hesitancy degree because of
the complexity and uncertainty of objective thing and the fuzziness of human thought.
Zhang and Xu (2012)’s method in (vii) focuses on the similarity measure between an
IFV and the positive ideal point, by using this method, we can solve lots of problems
such as described in Example 1.2. In short, different methods may produce different
results, and thus, we should choose appropriate ones in accordance with the actual
demands.

1.1.3 The Application of Ranking IFVs Using the Similarity
Measure and the Accuracy Degree in Multi-Attribute
Decision Making

In the above subsection, we have introduced Zhang and Xu (2012)’s method for
ranking IFVs. In what follows, we shall demonstrate how to use the method to solve
a multi-attribute decision making problem through an illustrative example (Zhang
and Xu 2012).

In modern warfare, the status of communication command is very important, and
it plays a key role in campaign’s success and failure. So in order to improve the
capacity of communication jamming, a military unit decides to equip with a commu-
nication jamming system. According to the consultations with different suppliers,
there are four possible systems (alternatives) y j ( j = 1, 2, 3, 4) to choose from.
Then the leaders of the military unit invite three experts ek (k = 1, 2, 3) to evaluate
these systems so as to choose the most reasonable one. Based on the expertise and
experiences of these experts, the leaders give the weight vector of these experts as
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η = (0.4,0.3,0.3)T . For a comprehensive assessment, the experts ek (k = 1, 2, 3)

decide to evaluate the systems y j ( j = 1, 2, 3, 4) from four layers:

(1) G1: Reconnaissance capability. It is very useful for a communication jamming
system, because when we want to jam enemy’s communication system, we
should first find them. This capability can be reflected in four aspects:

G11: Search capability;
G12: Intercept capability;
G13: Parameter measurements capability;
G14: Recognition capability.

(2) G2: Command and control capability. This capability is a bridge of connecting
the system and the user, from which we can operate the system. It contains three
factors:

G21: Information processing capability;
G22: Situation display capability;
G23: Reaction time.

(3) G3: Jamming capability. This capability is very important, due to that if a com-
munication jamming system doesn’t have powerful jamming capability, it cannot
destroy enemy’s communication system. There also have three factors about this
capability:

G31: Jamming power;
G32: The capability of frequency-aiming;
G33: The coverage of frequency domain.

(4) G4: Survival capability. It reflects the resistance against enemy’s destroy. It can
be shown in four aspects:

G41: Mobility;
G42: Hidden performance;
G43: Invulnerability;
G44: Reliability and maintainability.

The experts ek (k = 1, 2, 3) evaluate the systems y j ( j = 1, 2, 3, 4) through
the above factors (attributes). Each evaluation value given by the kth expert over
the jth system under i th attribute of the lth layer is represented by an IFV r (k, j)

l,i =
(μ

r (k, j)
l,i

, v
r (k, j)
l,i

, π
r (k, j)
l,i

), and all the IFVs given by kth expert about the jth system are

contained in the intuitionistic fuzzy matrix R(k, j), shown as follows (Zhang and Xu
2012):

R(1,1) =

⎛

⎜⎜⎝

(0.6,0.3,0.1) (0.7,0.2,0.1) (0.7,0.1,0.2) (0.7,0.1,0.2)

(0.7,0.2,0.1) (0.6,0.2,0.2) (0.8,0.1,0.1) --
(0.8,0.2,0) (0.8,0.1,0.1) (0.7,0.1,0.2) --
(0.6,0.1,0.3) (0.7,0.1,0.2) (0.6,0.2,0.2) (0.7,0.2,0.1)

⎞

⎟⎟⎠
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R(1,2) =

⎛

⎜⎜⎝

(0.6,0.3,0.1) (0.6,0.2,0.2) (0.6,0.1,0.3) (0.7,0.1,0.2)

(0.7,0.2,0.1) (0.6,0.2,0.2) (0.6,0.1,0.3) --
(0.7,0.3,0) (0.7,0.1,0.2) (0.7,0.2,0.1) --
(0.5,0.2,0.3) (0.6,0.1,0.3) (0.6, 0.2, 0.2) (0.7,0.2,0.1)

⎞

⎟⎟⎠

R(1,3) =

⎛

⎜⎜⎝

(0.6,0.3,0.1) (0.6,0.2,0.2) (0.6,0.1,0.3) (0.7,0.1,0.2)

(0.8,0.2,0) (0.7,0.2,0.1) (0.8,0.1,0.1) --
(0.7,0.3,0) (0.6,0.1,0.3) (0.6,0.2,0.2) --
(0.6,0.2,0.2) (0.6,0.1,0.3) (0.6,0.1,0.3) (0.6,0.2,0.2)

⎞

⎟⎟⎠

R(1,4) =

⎛

⎜⎜⎝

(0.6,0.3,0.1) (0.6,0.2,0.2) (0.6,0.1,0.3) (0.7,0.1,0.2)

(0.6,0.2,0.2) (0.7,0.2,0.1) (0.6,0.1,0.3) --
(0.7,0.3,0) (0.6,0.1,0.3) (0.6,0.2,0.2) --
(0.7,0.2,0.1) (0.8,0.1,0.1) (0.8,0.1,0.1) (0.7,0.2,0.1)

⎞

⎟⎟⎠

R(2,1) =

⎛

⎜⎜⎝

(0.5,0.2,0.3) (0.7,0.2,0.1) (0.7,0.1,0.2) (0.7,0.1,0.2)

(0.7,0.2,0.1) (0.6,0.2,0.2) (0.8,0.1,0.1) --
(0.9,0.1,0) (0.8,0.1,0.1) (0.7,0.1,0.2) --
(0.6,0.1,0.3) (0.7,0.1,0.2) (0.6,0.2,0.2) (0.6,0.2,0.2)

⎞

⎟⎟⎠

R(2,2) =

⎛

⎜⎜⎝

(0.5,0.2,0.3) (0.6,0.3,0.1) (0.7,0.2,0.1) (0.6,0.1,0.3)

(0.6,0.2,0.2) (0.5,0.1,0.4) (0.6,0.1,0.3) --
(0.6,0.4,0) (0.6,0.1,0.3) (0.7,0.2,0.1) --
(0.6,0.2,0.2) (0.6,0.2,0.2) (0.6,0.2,0.2) (0.6,0.2,0.2)

⎞

⎟⎟⎠

R(2,3) =

⎛

⎜⎜⎝

(0.6,0.3,0.1) (0.7,0.2,0.1) (0.6,0.1,0.3) (0.6,0.1,0.3)

(0.8,0.1,0.1) (0.8,0.2,0) (0.8,0.2,0) --
(0.6,0.4,0) (0.6,0.1,0.3) (0.6,0.2,0.2) --
(0.5,0.1,0.4) (0.6,0.2,0.2) (0.6,0.1,0.3) (0.6,0.2,0.2)

⎞

⎟⎟⎠

R(2,4) =

⎛

⎜⎜⎝

(0.6,0.3,0.1) (0.6,0.2,0.2) (0.6,0.1,0.3) (0.7,0.1,0.2)

(0.6,0.2,0.2) (0.7,0.2,0.1) (0.6,0.1,0.3) --
(0.7,0.3,0) (0.6,0.1,0.3) (0.6,0.2,0.2) --
(0.8,0.1,0.1) (0.7,0.1,0.2) (0.8,0.1,0.1) (0.8,0.1,0.1)

⎞

⎟⎟⎠

R(3,1) =

⎛

⎜⎜⎝

(0.6,0.3,0.1) (0.6,0.1,0.3) (0.7,0.1,0.2) (0.7,0.2,0.1)

(0.6,0.3,0.1) (0.7,0.2,0.1) (0.8,0.1,0.2) --
(0.8,0.2,0) (0.8,0.1,0.1) (0.7,0.1,0.2) --
(0.6,0.1,0.3) (0.7,0.1,0.2) (0.6,0.2,0.2) (0.7,0.2,0.1)

⎞

⎟⎟⎠

R(3,2) =

⎛

⎜⎜⎝

(0.6,0.3,0.1) (0.6,0.2,0.2) (0.6,0.1,0.3) (0.7,0.1,0.2)

(0.7,0.2,0.1) (0.6,0.2,0.2) (0.6,0.1,0.3) --
(0.6,0.4,0) (0.7,0.1,0.2) (0.7,0.2,0.1) --
(0.5,0.2,0.3) (0.6,0.1,0.3) (0.6,0.2,0.2) (0.7,0.2,0.1)

⎞

⎟⎟⎠

R(3,3) =

⎛

⎜⎜⎝

(0.6,0.3,0.1) (0.6,0.2,0.2) (0.6,0.1,0.3) (0.7,0.1,0.2)

(0.8,0.1,0.1) (0.8,0.1,0.1) (0.8,0.1,0.1) --
(0.7,0.3,0) (0.6,0.1,0.3) (0.7,0.2,0.1) --
(0.6,0.2,0.2) (0.6,0.2,0.2) (0.7,0.2,0.1) (0.6,0.2,0.2)

⎞

⎟⎟⎠



1.1 Rankings of Intuitionistic Fuzzy Values 15

R(3,4) =

⎛

⎜⎜⎝

(0.5,0.1,0.4) (0.6,0.2,0.2) (0.8,0.1,0.1) (0.5,0.4,0.1)

(0.6,0.3,0.1) (0.6,0.2,0.2) (0.7,0.2,0.1) --
(0.6,0.4,0) (0.7,0.1,0.2) (0.6,0.1,0.3) --
(0.8,0.1,0.1) (0.7,0.1,0.2) (0.7,0.2,0.1) (0.7,0.1,0.2)

⎞

⎟⎟⎠

where “--” means that there are no elements for the second and the third layers each
of which has only three attributes.

Below we shall use Zhang and Xu (2012)’s method to aggregate the given infor-
mation: We first analyze the importance of the considered attributes. Here we adopt
the method introduced by Xu (2006) to construct the reciprocal judgment matrix
Jl corresponding to the attributes in the lth layer, l = 1, 2, 3, 4, and then construct
the reciprocal judgment matrix J of the layers in this system. After that, we use Xu
(2006)’s model to get the weight vectors wl (l = 1, 2, 3, 4) of the attributes in the
lth layer and the weight vector w of the layers as follows, respectively:

w = (0.2,0.3,0.4,0.1)T , w1 = (0.3,0.3,0.2,0.2)T , w2 = (0.5,0.2,0.3)T

w3 = (0.4,0.4,0.2)T , w4 = (0.4,0.2,0.2,0.2)T

Then we aggregate the information on the attributes in each layer by calculating the
membership degree μ

(k)
l (y j ), the non-membership degree v(k)

l (y j ) and the hesitancy

degree π
(k)
l (y j ) corresponding to the lth layer of the system y j and the expert ek :

μ
(1)
1 (y1) =

4∑

j = 1

μ
r (1,1)

1, j
w1, j = 0.6 × 0.3 + 0.7 × 0.3 + 0.7 × 0.2 + 0.7 × 0.2 = 0.67

v(1)
1 (y1) =

4∑

j = 1

v
r (1,1)

1, j
w1, j = 0.3 × 0.3 + 0.2 × 0.3 + 0.1 × 0.2 + 0.1 × 0.2 = 0.19

π
(1)
1 (y1) = 1 − μ

(1)
1 (y1) − v(1)

1 (y1) = 1 − 0.67 − 0.19 = 0.14

Similarly, we can get the membership degrees, the non-membership degrees and
the hesitancy degrees of the other layers, and all the aggregated results corresponding
to the expert ek are contained in the intuitionistic fuzzy matrix R(k), listed as follows
(Zhang and Xu 2012):

R(1) =

⎛

⎜⎜⎝

(0.67,0.19,0.14) (0.71,0.17,0.12) (0.78,0.14,0.08) (0.64,0.14,0.22)

(0.62,0.19,0.19) (0.65,0.17,0.18) (0.70,0.20,0.10) (0.58,0.18,0.24)

(0.62,0.19,0.19) (0.78,0.17,0.05) (0.64,0.20,0.16) (0.60,0.16,0.24)

(0.62,0.19,0.19) (0.62,0.17,0.21) (0.64,0.20,0.16) (0.74,0.16,0.10)

⎞

⎟⎟⎠



16 1 Intuitionistic Fuzzy Aggregation Techniques

R(2) =

⎛

⎜⎜⎝

(0.64,0.16,0.20) (0.71,0.17,0.12) (0.82,0.10,0.08) (0.62,0.14,0.24)

(0.59,0.21,0.20) (0.58,0.15,0.27) (0.62,0.24,0.14) (0.60,0.20,0.20)

(0.63,0.19,0.18) (0.80,0.15,0.05) (0.60,0.24,0.16) (0.56,0.14,0.30)

(0.62,0.19,0.19) (0.62,0.17,0.21) (0.64,0.20,0.16) (0.78,0.10,0.12)

⎞

⎟⎟⎠

R(3) =

⎛

⎜⎜⎝

(0.64,0.19,0.17) (0.68,0.10,0.22) (0.78,0.20,0.02) (0.64,0.20,0.16)

(0.62,0.19,0.19) (0.65,0.17,0.18) (0.66,0.24,0.10) (0.58,0.18,0.24)

(0.62,0.19,0.19) (0.80,0.10,0.10) (0.66,0.20,0.14) (0.62,0.20,0.18)

(0.59,0.19,0.22) (0.63,0.25,0.12) (0.64,0.22,0.14) (0.74,0.12,0.14)

⎞

⎟⎟⎠

Also we aggregate the information of the four layers and get the membership
degree μ(k)(y j ), the non-membership degree v(k)(y j ) and the hesitancy degree
π(k)(y j ) of the system y j with respect to the expert ek :

μ(1)(y1) =
4∑

i = 1

μ
(1)
i (y1)wi = 0.67 × 0.2 + 0.71 × 0.3 + 0.78 × 0.4 + 0.64 × 0.1 = 0.7230

v(1)(y1) =
4∑

i = 1

v(1)
i (y1)wi = 0.19 × 0.2 + 0.17 × 0.3 + 0.14 × 0.4 + 0.14 × 0.1 = 0.1590

π
(1)
1 (y1) = 1 − μ

(1)
1 (y1) − v(1)

1 (y1) = 1 − 0.7230 − 0.1590 = 0.1180

In a similar way, we can calculate the values of the rest systems, which are all
represented in the intuitionistic fuzzy matrices F (k) (k = 1, 2, 3) (Zhang and Xu
2012):

F (1) =

⎛

⎜⎜⎝

(0.7230,0.1590,0.1180)

(0.6570,0.1870,0.1560)

(0.6740,0.1850,0.1410)

(0.6400,0.1850,0.1750)

⎞

⎟⎟⎠ , F (2) =

⎛

⎜⎜⎝

(0.7310,0.1370,0.1320)

(0.6000,0.2030,0.1970)

(0.6620,0.1930,0.1450)

(0.6440,0.1790,0.1770)

⎞

⎟⎟⎠

F (3) =

⎛

⎜⎜⎝

(0.7080,0.1680,0.1240)

(0.6410,0.2030,0.1560)

(0.6900,0.1680,0.1420)

(0.6370,0.2130,0.1500)

⎞

⎟⎟⎠

and then calculate the total membership degree μ(y j ), the total non-membership
degree v(y j ) and the total hesitancy degree of the system y j according to the weights
of the experts:

μ(y1) =
3∑

k = 1

μ(k)(y1)ηk = 0.723 × 0.4 + 0.731 × 0.3 + 0.708 × 0.3 = 0.7209

v(y1) =
3∑

k = 1

v(k)(y1)ηk = 0.159 × 0.4 + 0.137 × 0.3 + 0.168 × 0.3 = 0.1551
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π(y1) = 1 − μ(y1) − v(y1) = 1 − 0.7209 − 0.1551 = 0.1240

After that, we get the comprehensive evaluation value z(y j ) of the system y j :

z(y1) = (0.7209,0.1551,0.1240), z(y2) = (0.6351,0.1966,0.1683)

z(y3) = (0.6752,0.1823,0.1425), z(y4) = (0.6403,0.1916,0.1681)

Using Eq. (1.15), we can calculate ϑ(z(y j )) ( j = 1, 2, 3, 4) as:

ϑ(z(y1)) = 0.7517, ϑ(z(y2)) = 0.6877

ϑ(z(y3)) = 0.7157, ϑ(z(y4)) = 0.6921

and thus,
ϑ(z(y1)) > ϑ(z(y3)) > ϑ(z(y4)) > ϑ(z(y2))

by which we get the ranking of the systems yl (l = 1, 2, 3, 4):

y1 � y3 � y4 � y2

where “�” denotes “be superior to”. Therefore, the most desirable systems is y1.
From the results above, we can see that the first system has the higher Jamming

capability which is the most important capability of a jamming system, and its other
capabilities are not bad. As a result, the comprehensive evaluation value of this system
is the largest one; while the second system doesn’t have particular capability, and all
of its capabilities are rather mediocre, so its comprehensive evaluation result is very
bad, and thus ranks the last. This ranking of the systems is basically in accordance
with our intuition.

1.2 Intuitionistic Fuzzy Power Aggregation Operators

1.2.1 Power Aggregation Operators

Information aggregation is a process that fuses data from various resources by using
a proper aggregation technique. In order to develop a tool to aid and provide more
versatility in the data aggregation process, Yager (2001) introduced a power average
(PA) operator to aggregate a collection of negative real numbers ai (i = 1, 2, . . . , n),
defined as follows:

PA(a1, a2, . . . , an) =
∑n

i = 1 (1 + T (ai ))ai∑n
i = 1 (1 + T (ai ))

(1.17)
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where T (ai ) = ∑n
j = 1
j 
= i

Sup(ai , a j ), and Sup(ai , a j ) is the support for ai from a j ,

which satisfies the following properties:

(1) Sup(ai , a j ) ∈ [0, 1].
(2) Sup(ai , a j ) = Sup(a j , ai ).
(3) Sup(ai , a j ) ≥ Sup(as, at ), if |ai − a j | < |as − at |.

Based on the PA operator and the geometric mean, Xu and Yager (2010) further
defined a power geometric (PG) operator:

PG(a1, a2, . . . , an) =
n∏

i = 1

a

1+T (ai )∑n
i = 1 (1+T (ai ))

i (1.18)

Obviously, the PA and PG operators are a nonlinear weighted aggregation tool,
whose weighting vectors depend upon the input data and allow the values being
aggregated to support and reinforce each other, that is, the closer two values ai and
a j , the more similar they are, and the more they support each other.

1.2.2 Some Operational Laws of IFVs

Xu and Yager (2006), and Xu (2007) introduced some operational laws of IFVs as
follows:

Definition 1.3 (Xu and Yager 2006; Xu 2007) Let αi = (μαi , vαi , παi ) (i = 1, 2)

be any two IFVs, then

(1) α1 ⊕ α2 = (μα1 + μα2 − μα1μα2 , vα1 vα2 , (1 − μα1)(1 − μα2) − vα1 vα2).
(2) α1 ⊗ α2 = (μα1μα2 , vα1 + vα2 − vα1 vα2 , (1 − vα1)(1 − vα2) − μα1μα2).
(3) λα1 = (1 − (1 − μα1)

λ, vλ
α1

, (1 − μα1)
λ − vλ

α1
), λ > 0.

(4) αλ
1 = (μλ

α1
, 1 − (1 − vα1)

λ, (1 − vα1)
λ − μλ

α1
), λ > 0.

All the results of the above operations are also IFVs and the following are all
right.

Theorem 1.2 (Xu 2011)

(1) If λ1 > λ2, then λ1α ≥ λ2α, α1−λ1 ≥ α1−λ2 , 0 < λ1, λ2 ≤ 1.
(2) If μα1 ≥ μα2 , vα1 ≤ vα2 , then λα1 ≥ λα2, α

λ
1 ≥ αλ

2 , 0 < λ ≤ 1.
(3) If μα1 ≥ μα3 , μα2 ≥ μα4 , vα1 ≤ vα3 , vα2 ≤ vα4 , then α1 ⊕ α3 ≥ α2 ⊕ α4, α1 ⊗

α3 ≥ α2 ⊗ α4.

Proof (1) If λ1 > λ2, then

1 − (1 − μα)λ1 ≥ 1 − (1 − μα)λ2 , vλ1
α ≤ vλ2

α (1.19)
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therefore,
1 − (1 − μα)λ1 − vλ1

α ≥ 1 − (1 − μα)λ2 − vλ2
α (1.20)

which implies λ1α ≥ λ2α, similarly, we can prove that α1−λ1 ≥ α1−λ2 , with the
condition 0 < λ1, λ2 ≤ 1.

(2) If μα1 ≥ μα2 , vα1 ≤ vα2 , then

1 − (1 − μα1)
λ − vλ

α1
≥ 1 − (1 − μα2)

λ − vλ
α2

(1.21)

and
μλ

α1
− (1 − (1 − vα1)

λ) ≥ μλ
α2

− (1 − (1 − vα2)
λ) (1.22)

thus λα1 ≥ λα2 and αλ
1 ≥ αλ

2 .

(3) If μα1 ≥ μα3 , μα2 ≥ μα4 , vα1 ≤ vα3 and vα2 ≤ vα4 , then

μα1 + μα2 − μα1μα2 − vα1 vα2 = 1 − (1 − μα1) (1 − μα2) − vα1 vα2

≥ 1 − (1 − μα3) (1 − μα4) − vα3 vα4

= μα3 + μα4 − μα3μα4 − vα3 vα4 (1.23)

and

μα1μα2 − (vα1 + vα2 − vα1 vα2) = μα1μα2 − 1 + (1 − vα1) (1 − vα2)

≥ μα3μα4 − 1 + (1 − vα3) (1 − vα4)

= μα1μα2 − (vα3 + vα4 − vα3 vα4) (1.24)

thus, α1 ⊕ α3 ≥ α2 ⊕ α4 and α1 ⊗ α3 ≥ α2 ⊗ α4.

Moreover, the relations of the operational laws above are given as below:

Theorem 1.3 (Xu and Yager 2006; Xu 2007)

(1) α1 ⊕ α2 = α2 ⊕ α1.
(2) α1 ⊗ α2 = α2 ⊗ α1.
(3) λ(α1 ⊕ α2) = λα1 ⊕ λα2, λ > 0.
(4) (α1 ⊗ α2)

λ = αλ
1 ⊗ αλ

2 , λ > 0.
(5) λ1α ⊕ λ2α = (λ1 + λ2)α, λ > 0.
(6) αλ1 ⊗ αλ2 = αλ1+λ2 , λ > 0.

Based on the ranking method given by Xu and Yager (2006), and Definition 1.3,
Xu (2011) developed a series of intuitionistic fuzzy power aggregation operators,
which allow the input data values to support each other in the aggregation process.
In what follows, we shall give a detailed introduction to them.
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1.2.3 Power Aggregation Operators for IFVs

Let αi = (μαi , vαi , παi ) (i = 1, 2, . . . , n) be a collection of IFVs, and
w = (w1, w2, . . . , wn)T the weight vector of αi (i = 1, 2, . . . , n), where wi ≥
0, i = 1, 2, . . . , n, and

∑n
i = 1 wi = 1, then Xu (2011) defined an intuitionistic fuzzy

power weighted average (IFPWA) operator as follows:

IFPWA(α1, α2, . . . , αn)

= (w1(1 + T (α1))α1) ⊕ (w2(1 + T (α2))α2) ⊕ · · · ⊕ (wn(1 + T (αn))αn)∑n
i = 1 wi (1 + T (αi ))

(1.25)

By Definition 1.3, Eq. (1.25) can be transformed into the following form by using
mathematical induction on n:

IFPWA(α1, α2, . . . , αn)

=
⎛

⎝1 −
n∏

j = 1

(1 − μα j )

w j (1+T (α j ))∑n
i = 1 wi (1+T (αi )) ,

n∏

j = 1

(vα j )

w j (1+T (α j ))∑n
i = 1 wi (1+T (αi )) ,

n∏

j = 1

(1 − μα j )

w j (1+T (α j ))∑n
i = 1 wi (1+T (αi )) −

n∏

j = 1

(vα j )

w j (1+T (α j ))∑n
i = 1 wi (1+T (αi ))

⎞

⎠ (1.26)

where

T (αi ) =
n∑

j = 1
j 
= i

w j Sup(αi , α j ) (1.27)

and Sup(αi , α j ) is the support for αi from α j , with the following conditions:

(1) Sup(αi , α j ) ∈ [0, 1].
(2) Sup(αi , α j ) = Sup(α j , αi ).
(3) Sup(αi , α j ) ≥ Sup(αs, αt ), if d(αi , α j ) < d(αs, αt ), where d is a distance

measure, such as the normalized Hamming distance or the normalized Euclidean
distance (Szmidt and Kacprzyk 2000; Narukawa and Torra 2006; Xu and Yager
2008), where

(a) The normalized Hamming distance for IFVs:

dH (αi , α j ) = 1

2

(∣∣μαi − μα j

∣∣+ ∣∣vαi − vα j

∣∣+ ∣∣παi − πα j

∣∣) (1.28)

(b) The normalized Euclidean distance for IFVs:

dE (αi , α j ) =
√

1

2

(
(μαi − μα j )

2 + (vαi − vα j )
2 + (παi − πα j )

2
)

(1.29)
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Especially, if w = (1/n, 1/n, . . . , 1/n)T , then the IFPWA operator (1.25) reduces
to an intuitionistic fuzzy power average (IFPA) operator:

IFPA(α1, α2, . . . , αn)

= ((1 + T (α1))α1) ⊕ ((1 + T (α2))α2) ⊕ · · · ⊕ ((1 + T (αn))αn)∑n
i = 1 (1 + T (αi ))

=
⎛

⎝1 −
n∏

j = 1

(1 − μα j )

(1+T (α j ))∑n
i = 1 (1+T (αi )) ,

n∏

j = 1

(vα j )

(1+T (α j ))∑n
i = 1 (1+T (αi )) ,

n∏

j = 1

(1 − μα j )

(1+T (α j ))∑n
i = 1 (1+T (αi )) −

n∏

j = 1

(vα j )

(1+T (α j ))∑n
i = 1 (1+T (αi ))

⎞

⎠ (1.30)

where

T (αi ) = 1

n

n∑

j = 1
j 
=i

Sup(αi , α j ) (1.31)

Let (α1, α2, . . . , αn) be a vector of n IFVs, then it can be easily proven that the
IFPWA operator has the following desirable properties (Xu 2011):

Theorem 1.4 (Commutativity) Let (α′
1, α

′
2, . . . , α

′
n) be any permutation of

(α1, α2, . . . , αn), then

IFPWA(α1, α2, . . . , αn) = IFPWA(α′
1, α

′
2, . . . , α

′
n) (1.32)

Theorem 1.5 (Idempotency) If α j = α, for all j , then

IFPWA(α1, α2, . . . , αn) = α (1.33)

Theorem 1.6 (Boundedness)

α− ≤ IFPWA(α1, α2, . . . , αn) ≤ α+ (1.34)

where

α− =
(

min
j

{μα j }, max
j

{vα j }, 1 − min
j

{μα j } − max
j

{vα j }
)

(1.35)

α+ =
(

max
j

{μα j }, min
j

{vα j }, 1 − max
j

{μα j } − min
j

{vα j }
)

(1.36)

Based on the IFPWA operator (1.25) and the geometric mean, Xu (2011)
defined an intuitionistic fuzzy power weighted geometric (IFPWG) operator:
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IFPWG(α1, α2, . . . , αn)

= (α1)

1
n−1

(
1− w1(1+T (α1))∑n

i = 1 wi (1+T (αi ))

)

⊗ (α2)

1
n−1

(
1− w2(1+T (α2))∑n

i = 1 wi (1+T (αi ))

)

⊗ · · ·
⊗ (αn)

1
n−1

(
1− wn (1+T (αn ))∑n

i = 1 wi (1+T (αi ))

)

(1.37)

which can be transformed into the following form by using mathematical induction
on n:

IFPWG(α1, α2, . . . , αn)

=
⎛

⎝
n∏

j = 1

(μα j )

1
n−1

(
1− w j (1+T (α j ))∑n

i = 1 wi (1+T (αi ))

)

, 1 −
n∏

j = 1

(1 − vα j )

1
n−1

(
1− w j (1+T (α j ))∑n

i = 1 wi (1+T (αi ))

)

,

n∏

j = 1

(1 − vα j )

1
n−1

(
1− w j (1+T (α j ))∑n

i = 1 wi (1+T (αi ))

)

−
n∏

j = 1

(μα j )

1
n−1

(
1− w j (1+T (α j ))∑n

i = 1 wi (1+T (αi ))

)⎞

⎠

(1.38)

with the condition (1.27).
Especially, if w = (1/n, 1/n, . . . , 1/n)T , then the IFPWG operator (1.37) reduces

to an intuitionistic fuzzy power geometric (IFPG) operator:

IFPG(α1, α2, . . . , αn)

= (α1)

1
n−1

(
1− 1+T (α1)∑n

i = 1 (1+T (αi ))

)

⊗ (α2)

1
n−1

(
1− 1+T (α2)∑n

i = 1 (1+T (αi ))

)

⊗ · · ·

⊗ (αn)

1
n−1

(
1− 1+T (αn )∑n

i = 1 (1+T (αi ))

)

=
⎛

⎝
n∏

j = 1

(μα j )

1
n−1

(
1− 1+T (α j )∑n

i = 1 (1+T (αi ))

)

,

1 −
n∏

j = 1

(1 − vα j )

1
n−1

(
1− 1+T (α j )∑n

i = 1 (1+T (αi ))

)

,

n∏

j = 1

(1 − vα j )

1
n−1

(
1− 1+T (α j )∑n

i = 1 (1+T (αi ))

)

−
n∏

j = 1

(μα j )

1
n−1

(
1− 1+T (α j )∑n

i = 1 (1+T (αi ))

)⎞

⎠ (1.39)

with the condition (1.31).
Similar to the IFPWA operator, the IFPWG operator has the following three prop-

erties (Xu 2011):

Theorem 1.7 (Commutativity) Let (α′
1, α

′
2, . . . , α

′
n) be any permutation of (α1, α2,

. . . , αn), then

IFPWG(α1, α2, . . . , αn) = IFPWG(α′
1, α

′
2, . . . , α

′
n) (1.40)
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Theorem 1.8 (Idempotency) If α j = α, for all j , then

IFPWG(α1, α2, . . . , αn) = α (1.41)

Theorem 1.9 (Boundedness) Let α− and α+ be given by Eqs. (1.35) and (1.36),
then

α− ≤ IFPWG(α1, α2, . . . , αn) ≤ α+ (1.42)

The fundamental characteristic of both the IFPWA and IFPWG operators is that
they weight all the given IFVs themselves, and the weighting vectors depend upon
the input arguments and allow the values being aggregated to support and reinforce
each other. However, in many group decision making problems, such as person-
nel evaluation, diving games, etc., we need to rearrange all the given arguments in
descending (or ascending) order, and then weight the ordered positions of the input
arguments so as to relieve the influence of unfair arguments on the decision result by
assigning low weights to those “false” or “biased” ones. As a result, motivated by
the idea of Yager (1988, 2001)’s ordered weighted average, Xu (2011) introduced an
intuitionistic fuzzy power ordered weighted average (IFPOWA) operator:

IFPOWA(α1, α2, . . . , αn) = ω1αindex(1) ⊕ ω2αindex(2) ⊕ · · · ⊕ ωnαindex(n) (1.43)

which can be further expressed as:

IFPOWA(α1, α2, . . . , αn)

=
⎛

⎝1 −
n∏

j = 1

(1 − μαindex( j) )
ω j ,

n∏

j = 1

(vαindex( j) )
ω j ,

n∏

j = 1

(1 − μαindex( j) )
ω j

−
n∏

j = 1

(vαindex( j) )
ω j

⎞

⎠ (1.44)

where index is an indexing function such that index(i) is the index of the i th largest of
the IFVs α j = (μα j , vα j , πα j ) ( j = 1, 2 . . . , n), and thus, αindex(i) is the i th largest
of the IFVs α j ( j = 1, 2, . . . , n). ωi (i = 1, 2, . . . , n) are a collection of weights
such that

ωi = g

(
Di

T V

)
− g

(
Di−1

T V

)
, Di =

i∑

j = 1

Vindex( j) T V =
n∑

i = 1

Vindex(i)

Vindex( j) = 1 + T (αindex( j)) (1.45)

and T (αindex( j)) denotes the support of the j th largest IFV αindex( j) by all the other
IFVs, i.e.,
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T (αindex( j)) =
n∑

i = 1
i 
= j

Sup
(
αindex( j), αindex(i)

)
(1.46)

where Sup
(
αindex( j), αindex(i)

)
indicates the support of ith largest IFV αindex(i) for

the j th largest IFV αindex( j), and g:[0, 1] → [0, 1] is a basic unit-interval monotonic
(BUM) function, having the properties:

(1) g(0) = 0.
(2) g(1) = 1.
(3) g(x) ≥ g(y), if x > y.

Especially, if g(x) = x , then the IFPOWA operator (1.43) reduces to the IFPA
operator (1.30).

Furthermore, based on the IFPOWA operator (1.44) and the geometric mean,
Xu (2011) defined an intuitionistic fuzzy power ordered weighted geometric
(IFPOWG) operator:

IFPOWG(α1, α2, . . . , αn)

= (αindex(1))
1−ω1
n−1 ⊗ (αindex(2))

1−ω2
n−1 ⊗ · · · ⊗ (αindex(n))

1−ωn
n−1 (1.47)

which can be further expressed as:

IFPOWG(α1, α2, . . . , αn) =
⎛

⎝
n∏

j = 1

(μαindex( j) )
1−ω j
n−1 , 1 −

n∏

j = 1

(1 − vαindex( j) )
1−ω j
n−1 ,

n∏

j = 1

(1 − vαindex( j) )
1−ω j
n−1 −

n∏

j = 1

(μαindex( j) )
1−ω j
n−1

⎞

⎠

(1.48)

where ωi (i = 1, 2, . . . , n) are a collection of weights satisfying the conditions
(1.45) and (1.46). Especially, if g(x) = x , then the IFPOWG operator (1.47) reduces
to the IFPG operator (1.39).

Clearly, the weighting vectors of both the IFPWA and IFPWG operators not only
depend upon the input arguments and allow the values being aggregated to support
and reinforce each other, but also emphasize the ordered positions of all the given
arguments. Furthermore, the IFPWA and IFPWG operators have also the properties:
commutativity, idempotency and boundedness.
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1.2.4 Approaches to Multi-Attribute Group Decision Making
with Intuitionistic Fuzzy Information

Xu (2011) utilized the intuitionistic fuzzy power aggregation operators to multi-
attribute group decision making with intuitionistic fuzzy information:

For a multi-attribute group decision making problem with intuitionistic fuzzy
information, let Y = {y1, y2, . . . , yn}be a set of n alternatives, G={G1, G2, . . . , Gm}
a set of m attributes, whose weight vector is w = (w1, w2, . . . , wm)T , with
wi ≥ 0, i = 1, 2, . . . , m, and

∑m
i = 1 wi = 1, and let E = {e1, e2, . . . , es} be a set of s

experts, whose weight vector is η = (η1, η2, . . . , ηs)
T , with ηk ≥ 0, k = 1, 2, . . . , s,

and
∑s

k = 1 ηk = 1. Let B(k) = (b(k)
ij )m×n be an intuitionistic fuzzy decision matrix,

where b(k)
ij = (t (k)

ij , f (k)
ij , π

(k)
ij ) is an attribute value provided by the expert ek , denoted

by an IFV, where t (k)
ij indicates the degree that the alternative y j satisfies the attribute

Gi , while f (k)
ij indicates the degree that the alternative y j does not satisfy the attribute

Gi , and π
(k)
ij indicates the uncertainty degree of the alternative y j to the attribute Gi ,

such that

t (k)
ij ∈ [0, 1], f (k)

ij ∈ [0, 1], t (k)
ij + f (k)

ij ≤ 1, π
(k)
ij = 1 − t (k)

ij − f (k)
ij ,

i = 1, 2, . . . , m; j = 1, 2, . . . , n (1.49)

If all the attributes Gi (i = 1, 2, . . . , m) are of the same type, then the attribute
values do not need normalization. Whereas, there are generally benefit attributes
(i.e., the bigger the attribute values the better) and cost attributes (i.e., the smaller
the attribute values the better) in multi-attribute decision making. In such cases, we
may transform the attribute values of cost type into the attribute values of benefit
type, then B(k) = (b(k)

ij )m×n can be transformed into the intuitionistic fuzzy decision

matrix R(k) = (r (k)
ij )m×n , where

r (k)
ij = (μ

(k)
ij , v(k)

ij , π
(k)
ij )=

⎧
⎨

⎩

b(k)
ij , for benefit attribute Gi
(

b(k)
ij

)c
, for cost attribute Gi

, j = 1, 2, . . . , n

(1.50)

where
(

b(k)
ij

)c
is the complement of b(k)

ij , such that
(

b(k)
ij

)c = ( f (k)
ij , t (k)

ij , π
(k)
ij ),

clearly, π
(k)
ij = 1 − t (k)

ij − f (k)
ij = 1 − μ

(k)
ij − v(k)

ij .

Then, we can utilize the IFPWA (or IFPWG) operator to develop an approach to
multi-attribute group decision making with intuitionistic fuzzy information, which
involves the following steps (Xu 2011):

Approach 1.1

Step 1 Calculate the supports:
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Sup
(

r (k)
ij , r (l)

ij

)
= 1 − d(r (k)

ij , r (l)
ij ), k, l = 1, 2, . . . , s (1.51)

which satisfy the support conditions (1)–(3) in Sect. 1.2.3. Here, without loss of
generality, we calculate d(r (k)

ij , r (l)
ij ) with the normalized Hamming distance (1.28):

d(r (k)
ij , r (l)

ij )= 1

2

(∣∣∣μ(k)
ij −μ

(l)
ij

∣∣∣+
∣∣∣v(k)

ij − v(l)
ij

∣∣∣ +
∣∣∣π(k)

ij − π
(l)
ij

∣∣∣
)

, k, l = 1, 2, . . . , s

(1.52)
Step 2 Utilize the weights ηk (k = 1, 2, . . . , s) of the experts ek (k = 1, 2, . . . , s)

to calculate the weighted support T (r (k)
ij ) of the IFV r (k)

ij by the other IFVs r (l)
ij

(l = 1, 2, . . . , s, and l 
= k):

T (r (k)
ij ) =

s∑

l = 1
l 
= k

ηlSup
(

r (k)
ij , r (l)

ij

)
(1.53)

and calculate the weights ξ
(k)
ij (k = 1, 2, . . . , s) associated with the IFVs r (k)

ij
(k = 1, 2, . . . , s):

ξ
(k)
ij =

ηk

(
1 + T (r (k)

ij )
)

∑s
k = 1 ηk

(
1 + T (r (k)

ij )
) , k = 1, 2, . . . , s (1.54)

where ξ
(k)
ij ≥ 0, k = 1, 2, . . . , s, and

∑s
k = 1 ξ

(k)
ij = 1.

Step 3 Utilize the IFPWA operator (1.26):

rij = IFPWA(r (1)
ij , r (2)

ij , . . . , r (s)
ij )

=
⎛

⎜⎝1 −
s∏

k = 1

(1 − μ
(k)
ij )

ηk (1+T (r(k)
ij ))

∑s
k = 1 ηk (1+T (r(k)

ij ))
,

s∏

j = 1

(v(k)
ij )

ηk (1+T (r(k)
ij ))

∑s
k = 1 ηk (1+T (r(k)

ij ))
,

s∏

k = 1

(1 − μ
(k)
ij )

ηk (1+T (r(k)
ij ))

∑s
k = 1 ηk (1+T (r(k)

ij )) −
s∏

k = 1

(v(k)
ij )

ηk (1+T (r(k)
ij ))

∑s
k = 1 ηk (1+T (r(k)

ij ))

⎞

⎟⎠ (1.55)

or the IFPWG operator (1.38):



1.2 Intuitionistic Fuzzy Power Aggregation Operators 27

rij = IFPWG(r (1)
ij , r (2)

ij , . . . , r (s)
ij )

=
⎛

⎜⎝
s∏

k = 1

(μ
(k)
ij )

1
s−1

(
1 − ηk (1 + T (r(k)

ij ))

∑s
k = 1 ηk (1 + T (r(k)

ij ))

)

, 1−
s∏

j = 1

(1 − v(k)
ij )

1
s−1

(
1− ηk (1 + T (r(k)

ij ))

∑s
k = 1 ηk (1 + T (r(k)

ij ))

)

,

s∏

k = 1

(1 − v(k)
ij )

1
s−1

(
1− ηk (1+T (r(k)

ij ))

∑s
k = 1 ηk (1+T (r(k)

ij ))

)

−
s∏

k = 1

(μ
(k)
ij )

1
s−1

(
1− ηk (1+T (r(k)

ij ))

∑s
k = 1 ηk (1+T (r(k)

ij ))

)⎞

⎟⎠

(1.56)

to aggregate all the individual intuitionistic fuzzy decision matrices R(k) = (r (k)
ij )m×n

(k = 1, 2, . . . , s) into the collective intuitionistic fuzzy decision matrix
R = (rij)m×n , where rij = (μij, vij, πij), i = 1, 2, . . . , m; j = 1, 2, . . . , n.

Step 4 To get the overall preference value r j corresponding to the alternative y j ,
we aggregate all the preference values rij (i = 1, 2, . . . , m) in the jth column of R
by using the intuitionistic fuzzy weighted average (IFWA) operator (Xu 2007):

r j = IFWA(r1 j , r2 j , . . . , rmj ),

=
(

1 −
m∏

i = 1

(1 − μij)
wi ,

m∏

i = 1

(vij)
wi ,

m∏

i = 1

(1 − μij)
wi −

m∏

i = 1

(vij)
wi

)
,

j = 1, 2, . . . , n (1.57)

or the following aggregation operator:

r j = IFWG(r1 j , r2 j , . . . , rmj )

=
(

m∏

i = 1

(μij)
1−wi
m−1 , 1 −

m∏

i = 1

(1 − vij)
1−wi
m−1 ,

m∏

i = 1

(1 − vij)
1−wi
m−1 −

m∏

i = 1

(μij)
1−wi
m−1

)
,

j = 1, 2, . . . , n (1.58)

which is defined based on the intuitionistic fuzzy weighted geometric (IFWG) oper-
ator (Xu and Yager 2006).

Step 5 Rank r j ( j = 1, 2, . . . , n) in descending order by using the ranking
method described in Sect. 1.1.2.

Step 6 Rank all the alternatives y j ( j = 1, 2, . . . , n) and select the best one in
accordance with the ranking of r j ( j = 1, 2, . . . , n).

If the information about the weights of experts is unknown, then we utilize the
IFPOWA (or IFPWG) operator to develop an approach to multi-attribute group deci-
sion making with intuitionistic fuzzy information, which can be described as follows
(Xu 2011):
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Approach 1.2
Step 1 Calculate

Sup
(

r index(k)
ij , r index(l)

ij

)
= 1 − d

(
r index(k)

ij , r index(l)
ij

)

= 1 − 1

2

(∣∣∣μindex(k)
ij − μ

index(l)
ij

∣∣∣+
∣∣∣vindex(k)

ij − vindex(l)
ij

∣∣∣
+
∣∣∣π index(k)

ij − π
index(l)
ij

∣∣∣
)

(1.59)

which indicates the support of the lth largest IFV r index(l)
ij for the kth largest IFV

r index(k)
ij of r (t)

ij (t = 1, 2, . . . , s).

Step 2 Calculate the support T
(

r index(k)
ij

)
of the kth largest IFV r index(k)

ij by the

other IFVs r (l)
ij (l = 1, 2, . . . , s, and l 
= k):

T
(

r index(k)
ij

)
=

s∑

l = 1
l 
= k

Sup
(

r index(k)
ij , r index(l)

ij

)
(1.60)

and utilize Eq. (1.45) to calculate the weight ω
(k)
ij associated with the kth largest IFV

r index(k)
ij , where

ω
(k)
ij = g

(
D(k)

ij

T Vij

)
− g

(
D(k−1)

ij

T Vij

)
D(k)

ij =
k∑

l=1

V index(l)
ij

T Vij =
s∑

l=1

V index(l)
ij , V index(l)

ij = 1 + T
(

r index(l)
ij

)
(1.61)

where ω
(k)
ij ≥ 0, k = 1, 2, . . . , s, and

∑s
k = 1 ω

(k)
ij = 1.

Step 3 Utilize the IFPOWA operator (1.44):

IFPOWA(r (1)
ij , r (2)

ij , . . . , r (s)
ij )

=
(

1 −
s∏

k = 1

(1 − μ
index(k)
ij )

ω
(k)
ij ,

s∏

k = 1

(vindex(k)
ij )

ω
(k)
ij ,

s∏

k = 1

(1 − μ
index(k)
ij )

ω
(k)
ij

−
s∏

k = 1

(vindex(k)
ij )

ω
(k)
ij

)
(1.62)

or the IFPOWG operator (1.48):
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IFPOWG(r (1)
ij , r (2)

ij , . . . , r (s)
ij )

=
(

s∏

k = 1

(μ
index(k)
ij )

1−ω
(k)
ij

s−1 , 1 −
s∏

k = 1

(1 − vindex(k)
ij )

1−ω
(k)
ij

s−1 ,

s∏

k = 1

(1 − vindex(k)
ij )

1−ω
(k)
ij

s−1 −
s∏

k = 1

(μ
index(k)
ij )

1−ω
(k)
ij

s−1

)
(1.63)

to aggregate all the individual intuitionistic fuzzy decision matrices R(k) = (r (k)
ij )m×n

(k = 1, 2, . . . , s) into the collective intuitionistic fuzzy decision matrix
R = (rij)m×n , where rij = (μij, vij, πij), i = 1, 2, . . . , m; j = 1, 2, . . . , n.

Step 4 See Approach 1.1.

Step 5 See Approach 1.1.

We have introduced two approaches to dealing with multi-attribute group decision
making problems under two different intuitionistic fuzzy situations (i.e., (1) the
weights of experts are known; and (2) the information about the weights of experts
are completely unknown). Both the approaches can take into account sufficiently the
information about the relationships among the arguments being aggregated, and can
reduce the influence of outlier arguments on the decision result by assigning lower
weights to those outliers and thus can make the decision result more reflective of the
total collection of arguments.

1.2.5 Practical Example

Xu (2011) considered a software selection problem in which the alternatives are
the software packages to be selected and the criteria are those attributes under con-
sideration (adapted from Wang and Lee 2009). A computer center in a university
desires to select a new information system in order to improve work productivity.
After preliminary screening, four alternatives y j ( j = 1, 2, 3, 4) have remained in
the candidate list. There are three experts ek (k = 1, 2, 3) from a committee, whose
weight vector is η = (0.4,0.3,0.3)T . There are four attributes to be considered:
(1) Costs of hardware/software investment (G1); (2) Contribution to organization
performance (G2); (3) Effort to transform from current systems (G3); and (4) Out-
sourcing software developer reliability (G4). The weight vector of the attributes
Gi (i = 1, 2, 3, 4) is w = (0.30,0.25,0.25,0.2)T . The experts ek (k = 1, 2, 3)

evaluate the software packages y j ( j = 1, 2, 3, 4) with respect to the attributes
Gi (i = 1, 2, 3, 4), and construct the following three intuitionistic fuzzy decision
matrices B(k) = (b(k)

ij )4×4 (k = 1, 2, 3) (see Tables 1.2, 1.3, 1.4) (Xu 2011).
Among the considered attributes, G1 is of cost type, and Gi (i = 2, 3, 4) are of

benefit type, i.e., the attributes have two different types, and thus, we need to transform
the attribute values of cost type into the attribute values of benefit type by using
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Table 1.2 Intuitionistic
fuzzy decision matrix B(1) y1 y2 y3 y4

G1 (0.5,0.4,0.1) (0.4,0.5,0.1) (0.8,0.2,0.0) (0.5,0.3,0.2)
G2 (0.5,0.5,0.0) (0.6,0.4,0.0) (0.7,0.3,0.0) (0.6,0.2,0.2)
G3 (0.7,0.3,0.0) (0.2,0.5,0.3) (0.4,0.6,0.0) (0.5,0.1,0.4)
G4 (0.3,0.6,0.1) (0.5,0.3,0.2) (0.5,0.2,0.3) (0.8,0.1,0.1)

Table 1.3 Intuitionistic
fuzzy decision matrix B(2) y1 y2 y3 y4

G1 (0.6,0.3,0.1) (0.3,0.4,0.3) (0.9,0.1,0.0) (0.6,0.2,0.2)
G2 (0.3,0.5,0.2) (0.5,0.3,0.2) (0.5,0.2,0.3) (0.7,0.3,0.0)
G3 (0.5,0.2,0.3) (0.2,0.6,0.2) (0.4,0.4,0.2) (0.4,0.2,0.4)
G4 (0.4,0.5,0.1) (0.6,0.4,0.0) (0.4,0.6,0.0) (0.7,0.1,0.2)

Table 1.4 Intuitionistic
fuzzy decision matrix B(3) y1 y2 y3 y4

G1 (0.4,0.5,0.1) (0.4,0.6,0.0) (0.7,0.3,0.0) (0.7,0.2,0.1)
G2 (0.5,0.4,0.1) (0.7,0.3,0.0) (0.6,0.4,0.0) (0.5,0.3,0.2)
G3 (0.6,0.2,0.2) (0.3,0.5,0.2) (0.3,0.5,0.2) (0.9,0.1,0.0)
G4 (0.3,0.5,0.2) (0.5,0.5,0.0) (0.6,0.2,0.2) (0.6,0.4,0.0)

Table 1.5 Intuitionistic
fuzzy decision matrix R(1) y1 y2 y3 y4

G1 (0.4,0.5,0.1) (0.5,0.4,0.1) (0.2,0.8,0.0) (0.3,0.5,0.2)
G2 (0.5,0.5,0.0) (0.6,0.4,0.0) (0.7,0.3,0.0) (0.6,0.2,0.2)
G3 (0.7,0.3,0.0) (0.2,0.5,0.3) (0.4,0.6,0.0) (0.5,0.1,0.4)
G4 (0.3,0.6,0.1) (0.5,0.3,0.2) (0.5,0.2,0.3) (0.8,0.1,0.1)

Eq. (1.50), then B(k) = (b(k)
ij )4×4 (k = 1, 2, 3) are transformed into R(k) = (r (k)

ij )4×4
(k = 1, 2, 3) (see Tables 1.5, 1.6, 1.7) (Xu 2011).

Considering that the weights of the experts are known, here, we utilize Approach
1.1 to select the software packages:

Step 1 Utilize Eqs. (1.51)–(1.54) to calculate the weights ξ
(k)
ij (i, j = 1, 2, 3, 4;

k = 1, 2, 3) associated with the attribute values r (k)
ij (i, j = 1, 2, 3, 4; k = 1, 2, 3),

which are contained in the matrices �k = (ξ
(k)
ij )4×4 (k = 1, 2, 3) respectively:

Table 1.6 Intuitionistic
fuzzy decision matrix R(2) y1 y2 y3 y4

G1 (0.3,0.6,0.1) (0.4,0.3,0.3) (0.1,0.9,0.0) (0.2,0.6,0.2)
G2 (0.3,0.5,0.2) (0.5,0.3,0.2) (0.5,0.2,0.3) (0.7,0.3,0.0)
G3 (0.5,0.2,0.3) (0.2,0.6,0.2) (0.4,0.4,0.2) (0.4,0.2,0.4)
G4 (0.4,0.5,0.1) (0.6,0.4,0.0) (0.4,0.3,0.3) (0.7,0.1,0.2)
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Table 1.7 Intuitionistic
fuzzy decision matrix R(3) y1 y2 y3 y4

G1 (0.5,0.4,0.1) (0.6,0.4,0.0) (0.3,0.7,0.0) (0.2,0.7,0.1)
G2 (0.5,0.4,0.1) (0.7,0.3,0.0) (0.6,0.4,0.0) (0.5,0.3,0.2)
G3 (0.6,0.2,0.2) (0.3,0.5,0.2) (0.3,0.5,0.2) (0.9,0.1,0.0)
G4 (0.3,0.5,0.2) (0.5,0.5,0.0) (0.6,0.2,0.2) (0.6,0.4,0.0)

�1 =

⎛

⎜⎜⎝

0.3909 0.3937 0.3909 0.3847
0.3892 0.3892 0.3921 0.3892
0.3811 0.3864 0.3829 0.4000
0.3864 0.3829 0.3909 0.3921

⎞

⎟⎟⎠

�2 =

⎛

⎜⎜⎝

0.3046 0.2992 0.3046 0.3115
0.3015 0.3015 0.2960 0.3015
0.3055 0.3068 0.3085 0.3124
0.3068 0.3085 0.3046 0.3119

⎞

⎟⎟⎠

�3 =

⎛

⎜⎜⎝

0.3046 0.3070 0.3046 0.3038
0.3093 0.3093 0.3119 0.3093
0.3134 0.3068 0.3085 0.2876
0.3068 0.3085 0.3046 0.2960

⎞

⎟⎟⎠

Step 2 Utilize the IFPWA operator (1.26) to aggregate all the individual intu-
itionistic fuzzy decision matrices R(k) = (r (k)

ij )4×4 (k = 1, 2, 3) into the collective
intuitionistic fuzzy decision matrix R = (rij)4×4:

R =

⎛

⎜⎜⎝

(0.4052,0.4938,0.1010) (0.5069,0.3670,0.1261) (0.2038,0.7962,0.0000)

(0.4466,0.4667,0.0867) (0.6086,0.3355,0.0559) (0.6183,0.2910,0.0907)

(0.6162,0.2334,0.1504) (0.2321,0.5288,0.2391) (0.3707,0.5005,0.1288)

(0.3323,0.5365,0.1312) (0.5332,0.3838,0.0830) (0.5062,0.2263,0.2675)

(0.2401,0.5862,0.1737)

(0.6070,0.2562,0.1368)

(0.6668,0.1242,0.2090)

(0.7214,0.1507,0.1279)

⎞

⎟⎟⎠

Step 3 Aggregate all the preference values rij ( j = 1, 2, 3, 4) in the jth column
of R by using the IFWA operator (1.57), and get the overall preference value r j

corresponding to the alternative y j :

r1 = (0.4642,0.4105,0.1253), r2 = (0.4857,0.3967,0.1176)

r3 = (0.4322,0.4286,0.1392), r4 = (0.5710,0.2464,0.1826)

Step 4 By Eq. (1.3), we calculate the scores of r j ( j = 1, 2, 3, 4) respectively:
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Table 1.8 Fuzzy decision
matrix F (1) y1 y2 y3 y4

G1 0.4 0.5 0.2 0.3
G2 0.5 0.6 0.7 0.6
G3 0.7 0.2 0.4 0.5
G4 0.3 0.5 0.5 0.8

Table 1.9 Fuzzy decision
matrix F (2) y1 y2 y3 y4

G1 0.3 0.4 0.1 0.2
G2 0.3 0.5 0.5 0.7
G3 0.5 0.2 0.4 0.4
G4 0.4 0.6 0.4 0.7

Table 1.10 Fuzzy decision
matrix F (3) y1 y2 y3 y4

G1 0.5 0.6 0.3 0.2
G2 0.5 0.7 0.6 0.5
G3 0.6 0.3 0.3 0.9
G4 0.3 0.5 0.6 0.6

S(r1) = 0.4642 − 0.4105 = 0.0537, S(r2) = 0.4857 − 0.3967 = 0.0890

S(r3) = 0.4322 − 0.4286 = 0.0036, S(r4) = 0.5710 − 0.2464 = 0.3246

Since S(r4) > S(r2) > S(r1) > S(r3), then by Xu and Yager (2006)’s ranking
method, we have r4 > r2 > r1 > r3, and thus, y4 � y2 � y1 � y3. Therefore, y4 is
the best software package.

In the illustrative example, if we use fuzzy sets, each of which is characterized only
by a membership information, to express the experts’ evaluations, then Tables 1.5,
1.6 and 1.7 can be written as Tables 1.8, 1.9 and 1.10 (Xu 2011).

To get the optimal alternative, the following steps are involved (Xu 2011):

Step 1 Utilize Eqs. (1.51)–(1.54) to calculate the weights ξ
(k)
ij (i, j = 1, 2, 3, 4;

k = 1, 2, 3) associated with the attribute values r (k)
ij (i, j = 1, 2, 3, 4; k = 1, 2, 3),

which are contained in the matrices �k = (ξ
(k)
ij )4×4 (k = 1, 2, 3) respectively (here

we assume that all the non-membership degrees and the hesitancy degrees are zero):

�1 =

⎛

⎜⎜⎝

0.3911 0.3911 0.3911 0.4046
0.3911 0.3911 0.4000 0.3911
0.4000 0.3954 0.3954 0.3802
0.3954 0.3954 0.3911 0.4000

⎞

⎟⎟⎠
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�2 =

⎛

⎜⎜⎝

0.3044 0.3044 0.3044 0.2977
0.3155 0.3044 0.3055 0.3044
0.3055 0.2965 0.2965 0.2950
0.3081 0.3081 0.3044 0.2950

⎞

⎟⎟⎠

�3 =

⎛

⎜⎜⎝

0.3044 0.3044 0.3044 0.2977
0.2934 0.3044 0.2945 0.3044
0.2945 0.3081 0.3081 0.3248
0.2965 0.2965 0.3044 0.3055

⎞

⎟⎟⎠

Step 2 Utilize the PA operator (1.17) to aggregate all the individual fuzzy decision
matrices F (k) = (F (k)

ij )4×4 (k = 1, 2, 3) into the collective fuzzy decision matrix
F = (Fij)4×4:

F =

⎛

⎜⎜⎝

0.4000 0.5000 0.2000 0.2405
0.4369 0.6000 0.6094 0.6000
0.6094 0.2308 0.3692 0.6004
0.3308 0.5308 0.5000 0.7094

⎞

⎟⎟⎠

Step 3 Aggregate all the preference values Fij ( j = 1, 2, 3, 4) in the jth column
of F by using the well-known weighted averaging (WA) operator (Harsanyi 1955),
and get the overall preference value Fj corresponding to the alternative y j :

F1 = 0.3431, F2 = 0.5534, F3 = 0.4529, F4 = 0.4988

Since F4 > F2 > F1 > F3, and thus, y2 � y4 � y3 � y1.
It is noted that the rankings of the alternatives are very different in such two

cases, this is because that all the non-membership information and the hesitancy
information are lost in the second case, and thus, the final results obtained in the
second case are obviously less reasonable than those when the experts’ evaluations
are expressed in IFVs comprehensively.

In the next section, we shall extend the aggregation operators and the decision
making approaches introduced in this section to interval-valued intuitionistic fuzzy
environments.

1.3 Interval-Valued Intuitionistic Fuzzy Power Aggregation
Operators

1.3.1 Interval-Valued Intuitionistic Fuzzy Values

Atanassov and Gargov (1989) extended IFS to interval-valued intuitionistic fuzzy
environments, and defined an interval-valued intuitionistic fuzzy set (IVIFS),
shown as:

Ã = {〈x, μ̃ Ã(x), ṽ Ã(x)〉|x ∈ X} (1.64)
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where μ̃ Ã(x) = [μ−
Ã
(x), μ+

Ã
(x)] and ṽ Ã(x) = [v−

Ã
(x), v+

Ã
(x)] are interval ranges,

and each triple (μ̃ Ã(x), ṽ Ã(x), π̃ Ã(x)) in Ã is called an interval-valued intuitionistic
fuzzy value (IVIFV) or called an interval-valued intuitionistic fuzzy number (IVIFN)
(Xu and Chen 2007b), where π̃ Ã(x) = [π−

Ã
(x), π+

Ã
(x)], π−

Ã
(x) = 1−μ+

Ã
(x)−v+

Ã
(x)

and π+
Ã

(x) = 1−μ−
Ã
(x)−v−

Ã
(x), for all x ∈ X . For convenience, we denote an IVIFV

by α̃ = (μ̃α̃, ṽα̃, π̃α̃), where μ̃α̃, ṽα̃ and π̃α̃ are the membership degree range, the
non-membership degree range and the hesitancy degree (or the uncertainty degree)
range respectively, and satisfy

μ̃α̃ = [μ−
α̃
, μ+

α̃
] ⊂ [0, 1], ṽα̃ = [v−

α̃
, v+

α̃
] ⊂ [0, 1], μ+

α̃
+ v+

α̃
≤ 1,

π̃α̃ = [π−
α̃

, π+
α̃

] ⊂ [0, 1], π−
α̃

= 1 − μ+
α̃

− v+
α̃
, π+

α̃
= 1 − μ−

α̃
− v−

α̃
(1.65)

Similar to the comparison method of IFVs, Xu and Chen (2007b) defined the
score function and the accuracy degree of IVIFS α̃ as follows:

S(α̃) = 1

2
(μ−

α̃
− v−

α̃
+ μ+

α̃
− v+

α̃
) (1.66)

H(α̃i ) = 1

2
(μ−

α̃
+ v−

α̃
+ μ+

α̃
+ v+

α̃
) (1.67)

and they gave the following definition to compare two IVIFVs:

Definition 1.4 (Xu and Chen 2007b) Let α̃i = (μ̃α̃i , ṽα̃i , π̃α̃i ) (i = 1, 2) be any two
IVIFVs, S(α̃i ) (i = 1, 2) and H(α̃i ) (i = 1, 2) the scores and accuracy degrees of
α̃i (i = 1, 2) respectively, then

(1) If S(α̃1) > S(α̃2), then α̃1 is larger than α̃2, denoted by α̃1 > α̃2.
(2) If S(α̃1) = S(α̃2), then

(a) If H(α̃1) = H(α̃2), then there is no difference between α̃1 and α̃2, denoted
by α̃1 ∼ α̃2.

(b) If H(α̃1) > H(α̃2), then α̃1 is larger than α̃2, denoted by α̃1 > α̃2.

Later, Wang et al. (2009) gave another two indices called the membership uncer-
tainty index:

g1(α̃) = μ+
α̃

+ v−
α̃

− μ−
α̃

− v+
α̃

(1.68)

and the hesitation uncertainty index:

g2(α̃) = μ+
α̃

+ v+
α̃

− μ−
α̃

− v−
α̃

(1.69)

respectively to supplement the ranking procedure in Definition 1.4. In the case where
S(α̃1) = S(α̃2) and H(α̃1) = H(α̃2), one can further consider these two indices:

(1) If g1(α̃1) < g1(α̃2), then α̃1 is larger than α̃2, denoted by α̃1 > α̃2.
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(2) If g1(α̃1) = g2(α̃2), then

(a) If g2(α̃1) < g2(α̃2), then α̃1 is larger than α̃2, denoted by α̃1 > α̃2;
(b) If g2(α̃1) = g2(α̃2), then α̃1 is equal to α̃2, denoted by α̃1 = α̃2.

Xu (2011) extended Definition 1.3 to interval-valued intuitionistic fuzzy environ-
ments:

Definition 1.5 (Xu 2011) Let α̃i = (μ̃α̃i , ṽα̃i , π̃α̃i )= ([μ−
α̃i

, μ+
α̃i

], [v−
α̃i

, v+
α̃i

], [π−
α̃i

,

π+
α̃i

]) (i = 1, 2) be two IVIFVs, then

(1) α̃1 ⊕ α̃2 = ([μ−
α̃1

+ μ−
α̃2

− μ−
α̃1

μ−
α̃2

, μ+
α̃1

+ μ+
α̃2

− μ+
α̃1

μ+
α̃2

], [v−
α̃1

v−
α̃2

, v+
α̃1

v+
α̃2

],

[(1 − μ+
α̃1

)(1 − μ+
α̃2

) − v+
α̃1

v+
α̃2

, (1 − μ−
α̃1

)(1 − μ−
α̃2

) − v−
α̃1

v−
α̃2

]).

(2) α̃1 ⊗ α̃2 = ([μ−
α̃1

μ−
α̃2

, μ+
α̃1

μ+
α̃2

], [v−
α̃1

+ v−
α̃2

− v−
α̃1

v−
α̃2

, v+
α̃1

+ v+
α̃2

− v+
α̃1

v+
α̃2

],

[(1 − v+
α̃1

)(1 − v+
α̃2

) − μ+
α̃1

μ+
α̃2

, (1 − v−
α̃1

)(1 − v−
α̃2

) − μ−
α̃1

μ−
α̃2

].

(3) λα̃1 = ([1 − (1 − μ−
α̃1

)λ, 1 − (1 − μ+
α̃1

)λ], [(v−
α̃1

)λ, (v+
α̃1

)λ],

[(1 − μ+
α̃1

)λ − (v+
α̃1

)λ, (1 − μ−
α̃1

)λ − (v−
α̃1

)λ]), λ > 0.

(4) α̃λ
1 = ([(μ−

α̃1
)λ, (μ+

α̃1
)λ], [1 − (1 − v−

α̃1
)λ, 1 − (1 − v+

α̃1
)λ],

[(1 − v+
α̃1

)λ − (μ+
α̃1

)λ, (1 − v−
α̃1

)λ − (μ−
α̃1

)λ]), λ > 0.

All the results of the above operations are also IVIFVs, and similar to Theorem 1.2,
the following are all right:

Theorem 1.10 (Xu 2011)

(1) If λ1 > λ2, then λ1α̃ ≥ λ2α̃, α̃1−λ1 ≥ α̃1−λ2 , 0 < λ1, λ2 ≤ 1.
(2) If μα̃1 ≥ μα̃2 , vα̃1 ≤ vα̃2 , then λα̃1 ≥ λα̃2, α̃

λ
1 ≥ α̃λ

2 , 0 < λ ≤ 1.
(3) If μα̃1 ≥ μα̃3 , μα̃2 ≥ μα̃4 , vα̃1 ≤ vα̃3 , vα̃2 ≤ vα̃4 , then α̃1 ⊕ α̃3 ≥ α̃2 ⊕ α̃4, α̃1 ⊗

α̃3 ≥ α̃2 ⊗ α̃4.

1.3.2 Power Aggregation Operators for IVIFVs

On the basis of Definitions 1.4 and 1.5, Xu (2011) extended all the operators devel-
oped in Sect. 1.2.3 to aggregate interval-valued intuitionistic fuzzy information.
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Let α̃i = (μ̃α̃i , ṽα̃i , π̃α̃i ) (i = 1, 2, . . . , n) be a collection of IVIFVs, and
w = (w1, w2, . . . , wn)T the weight vector of α̃i (i = 1, 2, . . . , n), where wi ≥ 0,

i = 1, 2, . . . , n, and
∑n

i = 1 wi = 1, then Xu (2011) defined an interval-valued
intuitionistic fuzzy power weighted average (IVIFPWA) operator:

I V IFPWA(α̃1, α̃2, . . . , α̃n)

= (w1(1 + T (α̃1))α̃1) ⊕ (w2(1 + T (α̃2))α̃2) ⊕ · · · ⊕ (wn(1 + T (α̃n))α̃n)∑n
i = 1 wi (1 + T (α̃i ))

(1.70)

which can be transformed into the following form:

IVIFPWA(α̃1, α̃2, . . . , α̃n)

=
⎛

⎝

⎡

⎣1 −
n∏

j = 1

(1 − μ−
α̃ j

)

w j (1+T (α̃ j ))∑n
i = 1 wi (1+T (α̃i )) , 1 −

n∏

j = 1

(1 − μ+
α̃ j

)

w j (1+T (α̃ j ))∑n
i = 1 wi (1+T (α̃i ))

⎤

⎦ ,

⎡

⎣
n∏

j = 1

(v−
α̃ j

)

w j (1+T (α̃ j ))∑n
i = 1 wi (1+T (α̃i )) ,

n∏

j = 1

(v+
α̃ j

)

w j (1+T (α̃ j ))∑n
i = 1 wi (1+T (α̃i ))

⎤

⎦ ,

⎡

⎣
n∏

j = 1

(1 − μ+
α̃ j

)

w j (1+T (α̃ j ))∑n
i = 1 wi (1+T (α̃i )) −

n∏

j = 1

(v+
α̃ j

)

w j (1+T (α̃ j ))∑n
i = 1 wi (1+T (α̃i )) ,

n∏

j = 1

(1 − μ−
α̃ j

)

w j (1+T (α̃ j ))∑n
i = 1 wi (1+T (α̃i )) −

n∏

j = 1

(v−
α̃ j

)

w j (1+T (α̃ j ))∑n
i = 1 wi (1+T (α̃i ))

⎤

⎦

⎞

⎠ (1.71)

where

T (α̃i ) =
n∑

j = 1
j 
= i

w j Sup(α̃i , α̃ j ) (1.72)

and Sup(α̃i , α̃ j ) is the support for α̃i from α̃ j , with the following conditions:

(1) Sup(α̃i , α̃ j ) ∈ [0, 1].
(2) Sup(α̃i , α̃ j ) = Sup(α̃ j , α̃i ).

(3) Sup(α̃i , α̃ j ) ≥ Sup(α̃s, α̃t ), if d(α̃i , α̃ j ) < d(α̃s, α̃t ), where d is a distance
measure, such as the normalized Hamming distance or the normalized Euclidean
distance, where
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(a) The normalized Hamming distance for IVIFVs:

dH (α̃i , α̃ j ) = 1

4

(∣∣∣μ−
αi

− μ−
α j

∣∣∣+
∣∣∣μ+

αi
− μ+

α j

∣∣∣+
∣∣∣v−

αi
− v−

α j

∣∣∣+
∣∣∣v+

αi
− v+

α j

∣∣∣

+
∣∣∣π−

αi
− π−

α j

∣∣∣+
∣∣∣π+

αi
− π+

α j

∣∣∣
)

(1.73)

(b) The normalized Euclidean distance for IVIFVs:

dE (α̃i , α̃ j )

=
√

1

4

(
(μ−

αi − μ−
α j )

2 + (μ+
αi − μ+

α j )
2 + (v−

αi − v−
α j )

2 + (v+
αi − v+

α j )
2 + (π−

αi − π−
α j )

2 + (π+
αi − π+

α j )
2
)

(1.74)

Especially, if w = (1/n, 1/n, . . . , 1/n)T , then the IVIFPWA operator (1.71)
reduces to an interval-valued intuitionistic fuzzy power average (IVIFPA) operator:

IVIFPA(α̃1, α̃2, . . . , α̃n)

=
(
(1 + T (α̃1))α̃1

)⊕((1 + T (α̃2))α̃2
)⊕ · · · ⊕ ((1 + T (α̃n))α̃n

)
∑n

i = 1 (1 + T (α̃i ))

=

⎛

⎜⎜⎝

⎡

⎢⎢⎣1 −
n∏

j = 1

(1 − μ−
α̃ j

)

(1+T (α̃ j ))
n∑

i = 1
(1+T (α̃i ))

, 1 −
n∏

j = 1

(1 − μ+
α̃ j

)

(1+T (α̃ j ))∑n
i = 1 (1+T (α̃i ))

⎤

⎥⎥⎦ ,

⎡

⎣
n∏

j = 1

(v−
α̃ j

)

(1+T (α̃ j ))∑n
i = 1 (1+T (α̃i )) ,

n∏

j = 1

(v+
α̃ j

)

(1+T (α̃ j ))∑n
i = 1 (1+T (α̃i ))

⎤

⎦ ,

⎡

⎣
n∏

j = 1

(1 − μ+
α̃ j

)

(1+T (α̃ j ))∑n
i = 1 (1+T (α̃i )) −

n∏

j = 1

(v+
α̃ j

)

(1+T (α̃ j ))∑n
i = 1 (1+T (α̃i )) ,

n∏

j = 1

(1 − μ−
α̃ j

)

(1+T (α̃ j ))∑n
i = 1 (1+T (α̃i )) −

n∏

j = 1

(v−
α̃ j

)

(1+T (α̃ j ))∑n
i = 1 (1+T (α̃i ))

⎤

⎦

⎞

⎠ (1.75)

where

T (α̃i ) = 1

n

n∑

j = 1
j 
= i

Sup(α̃i , α̃ j ) (1.76)

Based on the IVIFPWA operator (1.71) and the geometric mean, Xu (2011) intro-
duced an interval-valued intuitionistic fuzzy power weighted geometric (IVIFPWG)
operator:
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IVIFPWG(α̃1, α̃2, . . . , α̃n)

= (α̃1)

1
n−1

(
1− w1(1+T (α̃1))∑n

i = 1 wi (1+T (α̃i ))

)

⊗ (α̃2)

1
n−1

(
1− w2(1+T (α̃2))∑n

i = 1 wi (1+T (α̃i ))

)

⊗ · · · ⊗ (α̃n)

1
n−1

(
1− wn (1+T (α̃n ))∑n

i = 1 wi (1+T (α̃i ))

)

(1.77)

which can be transformed into Eq. (1.78) by using mathematical induction on n:

IVIFPWG(α̃1, α̃2, . . . , α̃n)

=
⎛

⎝

⎡

⎣
n∏

j = 1

(μ−
α̃ j

)

1
n−1

(
1− w j (1+T (α̃ j ))∑n

i = 1 wi (1+T (α̃i ))

)

,

n∏

j = 1

(μ+
α̃ j

)

1
n−1

(
1− w j (1+T (α̃ j ))∑n

i = 1 wi (1+T (α̃i ))

)⎤

⎦ ,

⎡

⎣1 −
n∏

j = 1

(1 − v−
α̃ j

)

1
n−1

(
1− w j (1+T (α̃ j ))∑n

i = 1 wi (1+T (α̃i ))

)

,

1 −
n∏

j = 1

(1 − v+
α̃ j

)

1
n−1

(
1− w j (1+T (α̃ j ))∑n

i = 1 wi (1+T (α̃i ))

)⎤

⎦ ,

⎡

⎣
n∏

j = 1

(1 − v+
α̃ j

)

1
n−1

(
1− w j (1+T (α̃ j ))∑n

i = 1 wi (1+T (α̃i ))

)

−
n∏

j = 1

(μ+
α̃ j

)

1
n−1

(
1− w j (1+T (α̃ j ))∑n

i = 1 wi (1+T (α̃i ))

)

,

n∏

j = 1

(1 − v−
α̃ j

)

1
n−1

(
1− w j (1+T (α̃ j ))∑n

i = 1 wi (1+T (α̃i ))

)

−
n∏

j = 1

(μ−
α̃ j

)

1
n−1

(
1− w j (1+T (α̃ j ))∑n

i = 1 wi (1+T (α̃i ))

)⎤

⎦

⎞

⎠

(1.78)

with the condition (1.72).
Especially, if w = (1/n, 1/n, . . . , 1/n)T , then the IVIFPWG operator (1.78)

reduces to an interval-valued intuitionistic fuzzy power geometric (IVIFPG) operator:

IVIFPG(α̃1, α̃2, . . . , α̃n)

= (α̃1)

1
n−1

(
1− 1+T (α̃1)∑n

i = 1 (1+T (α̃i ))

)

⊗ (α̃2)

1
n−1

(
1− 1+T (α̃2)∑n

i = 1 (1+T (α̃i ))

)

⊗ · · · ⊗ (α̃n)

1
n−1

(
1− 1+T (α̃n )∑n

i = 1 (1+T (α̃i ))

)

=
⎛

⎝

⎡

⎣
n∏

j = 1

(μ−
α̃ j

)

1
n−1

(
1− (1+T (α̃ j ))∑n

i = 1 (1+T (α̃i ))

)

,

n∏

j = 1

(μ+
α̃ j

)

1
n−1

(
1− (1+T (α̃ j ))∑n

i = 1 (1+T (α̃i ))

)⎤

⎦ ,

⎡

⎣1 −
n∏

j = 1

(1 − v−
α̃ j

)

1
n−1

(
1− (1+T (α̃ j ))∑n

i = 1 (1+T (α̃i ))

)

,



1.3 Interval-Valued Intuitionistic Fuzzy Power Aggregation Operators 39

1 −
n∏

j = 1

(1 − v+
α̃ j

)

1
n−1

(
1− (1+T (α̃ j ))∑n

i = 1 (1+T (α̃i ))

)⎤

⎦ ,

⎡

⎣
n∏

j = 1

(1 − v+
α̃ j

)

1
n−1

(
1− (1+T (α̃ j ))∑n

i = 1 (1+T (α̃i ))

)

−
n∏

j = 1

(μ+
α̃ j

)

1
n−1

(
1− (1+T (α̃ j ))∑n

i = 1 (1+T (α̃i ))

)

,

n∏

j = 1

(1 − v−
α̃ j

)

1
n−1

(
1− (1+T (α̃ j ))∑n

i = 1 (1+T (α̃i ))

)

−
n∏

j = 1

(μ−
α̃ j

)

1
n−1

(
1− (1+T (α̃ j ))∑n

i = 1 (1+T (α̃i ))

)⎤

⎦

⎞

⎠

(1.79)

with the condition (1.76).
Similar to the IFPOWA operator (1.43), Xu (2011) defined an interval-valued

intuitionistic fuzzy power ordered weighted average (IVIFPOWA) operator as fol-
lows:

IVIFPOWA(α̃1, α̃2, . . . , α̃n) = ω1α̃index(1) ⊕ω2α̃index(2) ⊕· · ·⊕ωnα̃index(n) (1.80)

which can be further expressed as:

IVIFPOWA(α̃1, α̃2, . . . , α̃n)

=
⎛

⎝

⎡

⎣1 −
n∏

j = 1

(1 − μ−
α̃index( j)

)ω j , 1 −
n∏

j = 1

(1 − μ+
α̃index( j)

)ω j

⎤

⎦ ,

⎡

⎣
n∏

j = 1

(v−
α̃index( j)

)ω j ,

n∏

j = 1

(v+
α̃index( j)

)ω j

⎤

⎦

⎞

⎠ (1.81)

where α̃ j = (μ̃α̃ j , ṽα̃ j , π̃α̃ j ) ( j = 1, 2 . . . , n) are a collection of IVIFVs, and α̃index(i)

is the i th largest of the IVIFVs α̃ j ( j = 1, 2, . . . , n). ωi (i = 1, 2, . . . , n) are a
collection of weights such that

ωi = g

(
Di

T V

)
− g

(
Di−1

T V

)
, Di =

i∑

j = 1

Vindex( j), T V =
n∑

i = 1

Vindex(i)

Vindex( j) = 1 + T (α̃index( j)) (1.82)

and T (α̃index( j)) denotes the support of the j th largest IVIFV α̃index( j) by all the other
IVIFVs, i.e.,

T (α̃index( j)) =
n∑

i=1
i 
= j

Sup
(
α̃index( j), α̃index(i)

)
(1.83)
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where Sup
(
α̃index( j), α̃index(i)

)
indicates the support of ith largest IVIFV α̃index(i) for

the j th largest IVIFV α̃index( j), and g : [0, 1] → [0, 1] is a BUM function.
Especially, ifg(x) = x , then the IVIFPOWA operator (1.80) reduces to the IVIFPA

operator (1.75).
Then based on the IVIFPOWA operator (1.80) and the geometric mean, Xu (2011)

defined an interval-valued intuitionistic fuzzy power ordered weighted geometric
(IVIFPOWG) operator:

IVIFPOWG(α̃1, α̃2, . . . , α̃n)

= (α̃index(1))
1−ω1
n−1 ⊗ (α̃index(2))

1−ω2
n−1 ⊗ · · · ⊗ (α̃index(n))

1−ωn
n−1 (1.84)

which can be further expressed as:

IVIFPOWG(α̃1, α̃2, . . . , α̃n)

=
⎛

⎝

⎡

⎣
n∏

j = 1

(μ−
α̃index( j)

)
1−ω j
n−1 ,

n∏

j = 1

(μ+
α̃index( j)

)
1−ω j
n−1

⎤

⎦ ,

⎡

⎣1 −
n∏

j = 1

(1 − v−
α̃index( j)

)
1−ω j
n−1 , 1 −

n∏

j = 1

(1 − v+
α̃index( j)

)
1−ω j
n−1

⎤

⎦ ,

⎡

⎣
n∏

j = 1

(1 − v+
α̃index( j)

)
1−ω j
n−1 −

n∏

j = 1

(μ+
α̃index( j)

)
1−ω j
n−1 ,

n∏

j = 1

(1 − v−
α̃index( j)

)
1−ω j
n−1

−
n∏

j = 1

(μ−
α̃index( j)

)
1−ω j
n−1

⎤

⎦

⎞

⎠ (1.85)

where ωi (i = 1, 2, . . . , n) are a collection of weights satisfying the conditions (1.82)
and (1.83). Especially, if g(x) = x , then the IVIFPOWG operator (1.84) reduces to
the IVIFPG operator (1.79).

Let (α̃1, α̃2, . . . , α̃n) be a vector of n IVIFVs, then all the IVIFPWA, IVIFPWG,
IVIFPOWA and IVIFPOWG operators have the following properties (Xu 2011):

Theorem 1.11 (Commutativity) Assume that (α̃′
1, α̃

′
2, . . . , α̃

′
n) is any permutation

of (α̃1, α̃2, . . . , α̃n), then

IVIFPWA(α̃1, α̃2, . . . , α̃n) = IVIFPWA(α̃′
1, α̃

′
2, . . . , α̃

′
n) (1.86)

IVIFPWG(α̃1, α̃2, . . . , α̃n) = IVIFPWG(α̃′
1, α̃

′
2, . . . , α̃

′
n) (1.87)

IVIFPOWA(α̃1, α̃2, . . . , α̃n) = IVIFPOWA(α̃′
1, α̃

′
2, . . . , α̃

′
n) (1.88)

IVIFPOWG(α̃1, α̃2, . . . , α̃n) = IVIFPOWG(α̃′
1, α̃

′
2, . . . , α̃

′
n) (1.89)
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Theorem 1.12 (Boundedness) Let α̃ j ( j = 1, 2 . . . , n) be a collection of IVIFVs,
then

α̃− ≤ IVIFPWA(α̃1, α̃2, . . . , α̃n) ≤ α̃+ (1.90)

α̃− ≤ IVIFPWG(α̃1, α̃2, . . . , α̃n) ≤ α̃+ (1.91)

α̃− ≤ IVIFPOWA(α̃1, α̃2, . . . , α̃n) ≤ α̃+ (1.92)

α̃− ≤ IVIFPOWG(α̃1, α̃2, . . . , α̃n) ≤ α̃+ (1.93)

where

α̃− =
(

[min
j

{μ−
α̃ j

}, min
j

{μ+
α̃ j

}], [max
j

{v−
α̃ j

}, max
j

{v+
α̃ j

}], [1 − min
j

{μ+
α̃ j

} − max
j

{v+
α̃ j

}],

[1 − min
j

{μ−
α̃ j

} − max
j

{v−
α̃ j

}]
)

(1.94)

α̃+ =
(

[max
j

{μ−
α̃ j

}, max
j

{μ+
α̃ j

}], [min
j

{v−
α̃ j

}, min
j

{v+
α̃ j

}],

[1 − max
j

{μ+
α̃ j

} − min
j

{v+
α̃ j

}], [1 − max
j

{μ−
α̃ j

} − min
j

{v−
α̃ j

}]
)

(1.95)

1.3.3 Approaches to Multi-Attribute Group Decision Making with
Interval-Valued Intuitionistic Fuzzy Information

In the following, we investigate the application of the interval-valued intuitionistic
fuzzy power aggregation operators to multi-attribute group decision making with
interval-valued intuitionistic fuzzy information:

For a multi-attribute group decision making problem with interval-valued intu-
itionistic fuzzy information, suppose that Y , G and E are defined as in Sect. 1.2.4. Let
B̃(k) = (b̃(k)

ij )m×n be an interval-valued intuitionistic fuzzy decision matrix, where

b̃(k)
ij = (t̃ (k)

ij , f̃ (k)
ij , π̃

(k)
ij ) is an attribute value provided by the expert ek , denoted by

an IVIFV, where t̃ (k)
ij = [t−(k)

ij , t+(k)
ij ] indicates the degree range that the alternative

y j satisfies the attribute Gi , while f̃ (k)
ij = [ f −(k)

ij , f +(k)
ij ] indicates the degree range

that the alternative y j does not satisfy the attribute Gi , and π̃
(k)
ij = [π−(k)

ij , π
+(k)
ij ]

indicates the degree range of uncertainty of the alternative y j to the attribute Gi ,
such that
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t̃(k)
ij = [t−(k)

ij , t+(k)
ij ] ⊆ [0, 1], f̃ (k)

ij = [ f −(k)
ij , f +(k)

ij ] ⊆ [0, 1], t+(k)
ij + f +(k)

ij ≤ 1,

π
−(k)
ij = 1 − t+(k)

ij − f +(k)
ij , π

+(k)
ij = 1 − t−(k)

ij − f −(k)
ij ,

i = 1, 2, . . . , m; j = 1, 2, . . . , n (1.96)

In general, there are benefit attributes and cost attributes in multi-attribute decision
making, and all the attribute values need to be transformed into the same type.
Without loss of generality, here, we transform the attribute values of cost type into
the attribute values of benefit type, i.e., transform B̃(k) = (b̃(k)

ij )m×n into the interval-

valued intuitionistic fuzzy decision matrix R̃(k) = (r̃ (k)
ij )m×n , where

r̃ (k)
ij = (μ̃

(k)
ij , ṽ(k)

ij , π̃
(k)
ij ) =

⎧
⎨

⎩
b̃(k)

ij , for benefit attribute Gi(
b̃(k)

ij

)c
, for cost attribute Gi

, j = 1, 2, . . . , n

(1.97)

where
(

b̃(k)
ij

)c
is the complement of b̃(k)

ij , such that
(

b̃(k)
ij

)c = ( f̃ (k)
ij , t̃ (k)

ij , π̃
(k)
ij ),

where

π̃
(k)
ij = [π−(k)

ij , π
+(k)
ij ], π

−(k)
ij = 1 − t+(k)

ij − f +(k)
ij = 1 − μ

+(k)
ij − v+(k)

ij ,

π
+(k)
ij = 1 − t−(k)

ij − f −(k)
ij = 1 − μ

−(k)
ij − v−(k)

ij (1.98)

Then, we can utilize the IVIFPWA (or IVIFPWG) operator to develop an approach
to multi-attribute group decision making with interval-valued intuitionistic fuzzy
information, which involves the following steps (Xu 2011):

Approach 1.3
Step 1 Calculate the supports:

Sup
(

r̃ (k)
ij , r̃ (l)

ij

)
= 1 − d

(
r̃ (k)

ij , r̃ (l)
ij

)
, l = 1, 2, . . . , s (1.99)

which satisfy the support conditions (1)–(3) in Sect. 1.3.2. Without loss of generality,
here we let

d
(

r̃ (k)
ij , r̃ (l)

ij

)
= 1

4

(∣∣∣μ−(k)
ij − μ

−(l)
ij

∣∣∣+
∣∣∣μ+(k)

ij − μ
+(l)
ij

∣∣∣+
∣∣∣v−(k)

ij − v−(l)
ij

∣∣∣

+
∣∣∣v+(k)

ij − v+(l)
ij

∣∣∣+
∣∣∣π−(k)

ij − π
−(l)
ij

∣∣∣+
∣∣∣π+(k)

ij − π
+(l)
ij

∣∣∣
)

,

l = 1, 2, . . . , s (1.100)

Step 2 Utilize the weights ηk (k = 1, 2, . . . , s) of the experts ek (k = 1, 2, . . . , q)

to calculate the weighted support T (r̃ (k)
ij ) of the IVIFV r̃ (k)

ij by the other IVIFVs

r̃ (l)
ij (l = 1, 2, . . . , s and l 
= k):
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T (r̃ (k)
ij ) =

s∑

l=1
l 
=k

ηlSup
(

r̃ (k)
ij , r̃ (l)

ij

)
(1.101)

and calculate the weights ξ
(k)
ij (k = 1, 2, . . . , s) associated with the IVIFVs r̃ (k)

ij
(k = 1, 2, . . . , s):

ξ
(k)
ij =

ηk

(
1 + T (r̃ (k)

ij )
)

∑s
k = 1 ηk

(
1 + T (r̃ (k)

ij )
) , k = 1, 2, . . . , s (1.102)

where ξ
(k)
ij ≥ 0, k = 1, 2, . . . , s, and

∑s
k = 1 ξ

(k)
ij = 1.

Step 3 Utilize the IVIFPWA operator (1.71):

r̃ij = IVIFPWA(r̃ (1)
ij , r̃ (2)

ij , . . . , r̃ (s)
ij )

=
([

1 −
s∏

k = 1

(1 − μ
−(k)
ij )

ξ
(k)
ij , 1 −

s∏

k = 1

(1 − μ
+(k)
ij )

ξ
(k)
ij

]
,

[
s∏

k = 1

(v−(k)
ij )

ξ
(k)
ij ,

s∏

k = 1

(v+(k)
ij )

ξ
(k)
ij

]
,

[
s∏

k = 1

(1 − μ
+(k)
ij )

ξ
(k)
ij −

s∏

k = 1

(v+(k)
ij )

ξ
(k)
ij ,

s∏

k = 1

(1 − μ
−(k)
ij )

ξ
(k)
ij −

s∏

k = 1

(v−(k)
ij )

ξ
(k)
ij

])

=
⎛

⎜⎝

⎡

⎢⎣1 −
s∏

k = 1

(1 − μ
−(k)
ij )

ηk (1+T (r̃(k)
ij ))

∑s
k = 1 ηk (1+T (r̃(k)

ij ))
, 1 −

s∏

k = 1

(1 − μ
+(k)
ij )

ηk (1+T (r̃(k)
ij ))

∑s
k = 1 ηk (1+T (r̃(k)

ij ))

⎤

⎥⎦ ,

⎡

⎢⎣
s∏

k = 1

(v−(k)
ij )

ηk (1+T (r̃(k)
ij ))

∑s
k = 1 ηk (1+T (r̃(k)

ij ))
,

s∏

j = 1

(v+(k)
ij )

ηk (1+T (r̃(k)
ij ))

∑s
i = 1 ηi (1+T (r̃(k)

ij ))

⎤

⎥⎦ ,

⎡

⎢⎣
s∏

k = 1

(1 − μ
+(k)
ij )

ηk (1+T (r̃(k)
ij ))

∑s
i = 1 ηi (1+T (r̃(k)

ij )) −
s∏

k = 1

(v+(k)
ij )

ηk (1+T (r̃(k)
ij ))

∑s
k = 1 ηk (1+T (r̃(k)

ij ))
,

s∏

k = 1

(1 − μ
−(k)
ij )

ηk (1+T (r̃(k)
ij ))

∑s
k = 1 ηk (1+T (r̃(k)

ij )) −
s∏

k = 1

(v−(k)
ij )

ηk (1+T (r̃(k)
ij ))

∑s
k = 1 ηk (1+T (r̃(k)

ij ))

⎤

⎥⎦

⎞

⎟⎠ (1.103)

or the IVIFPWG operator (1.78):
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r̃ij = IVIFPWG(r̃ (1)
ij , r̃ (2)

ij , . . . , r̃ (s)
ij )

=
([

s∏

k = 1

(μ
−(k)
ij )

1−ξ
(k)
ij

s−1 ,

s∏

k = 1

(μ
+(k)
ij )

1−ξ
(k)
ij

s−1

]
,

[
1 −

s∏

k = 1

(1 − v−(k)
ij )

1−ξ
(k)
ij

s−1 , 1 −
s∏

k = 1

(1 − v+(k)
ij )

1−ξ
(k)
ij

s−1

]
,

[
s∏

k = 1

(1 − v+(k)
ij )

1−ξ
(k)
ij

s−1 −
s∏

k = 1

(μ
+(k)
ij )

1−ξ
(k)
ij

s−1 ,

s∏

k = 1

(1 − v−(k)
ij )

1−ξ
(k)
ij

s−1 −
s∏

k = 1

(μ
−(k)
ij )

1−ξ
(k)
ij

s−1

])

=
⎛

⎜⎝

⎡

⎢⎣
s∏

k = 1

(μ
−(k)
ij )

1
s−1

(
1− ηk (1+T (r̃(k)

ij ))

∑s
k = 1 ηk (1+T (r̃(k)

ij ))

)

,

s∏

k = 1

(μ
+(k)
ij )

1
s−1

(
1− ηk (1+T (r̃(k)

ij ))

∑s
k = 1 ηk (1+T (r̃(k)

ij ))

)⎤

⎥⎦ ,

⎡

⎢⎣1 −
s∏

k = 1

(1 − v−(k)
ij )

1
s−1

(
1− ηk (1+T (r̃(k)

ij ))

∑s
k = 1 ηk (1+T (r̃(k)

ij ))

)

,

1 −
s∏

k = 1

(1 − v+(k)
ij )

1
s−1

(
1− ηk (1+T (r̃(k)

ij ))

∑s
k = 1 ηk (1+T (r̃(k)

ij ))

)⎤

⎥⎦ ,

⎡

⎢⎣
s∏

k = 1

(1 − v+(k)
ij )

1
s−1

(
1− ηk (1+T (r̃(k)

ij ))

∑s
k = 1 ηk (1+T (r̃(k)

ij ))

)

−
s∏

k = 1

(μ
+(k)
ij )

1
s−1

(
1− ηk (1+T (r̃(k)

ij ))

∑s
k = 1 ηk (1+T (r̃(k)

ij ))

)

,

s∏

k = 1

(1 − v−(k)
ij )

1
s−1

(
1− ηk (1+T (r̃(k)

ij ))

∑s
k = 1 ηk (1+T (r̃(k)

ij ))

)

−
s∏

k = 1

(μ
−(k)
ij )

1
s−1

(
1− ηk (1+T (r̃(k)

ij ))

∑s
k = 1 ηk (1+T (r̃(k)

ij ))

)⎤

⎥⎦

⎞

⎟⎠

(1.104)

to aggregate all the individual interval-valued intuitionistic fuzzy decision matrices
R̃(k) = (r̃ (k)

ij )m×n (k = 1, 2, . . . , s) into the collective interval-valued intuitionistic

fuzzy decision matrix R̃ = (r̃ij)m×n , where

r̃ij = (μ̃ij, ṽij) = ([μ−
ij , μ

+
ij ], [v−

ij , v+
ij ], [π−

ij , π+
ij ]),

i = 1, 2, . . . , m; j = 1, 2, . . . , n (1.105)

Step 4 To get the overall preference value r̃ j corresponding to the alternative y j ,
we aggregate all the preference values r̃ij ( j = 1, 2, . . . , n) in the jth column of R̃ by
using the interval-valued intuitionistic fuzzy weighted average (IVIFWA) operator
(Xu and Cai 2009):
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r̃ j = IVIFWA(r̃1 j , r̃2 j , . . . , r̃m j )

=
([

1 −
m∏

i = 1

(1 − μ−
ij )

wi , 1 −
m∏

i = 1

(1 − μ+
ij )

wi

]
,

[
m∏

i = 1

(v−
ij )

wi ,

m∏

i = 1

(v+
ij )

wi

]
,

[
m∏

i = 1

(1 − μ+
ij )

wi −
m∏

i = 1

(v+
ij )

wi ,

m∏

i = 1

(1 − μ−
ij )

wi −
m∏

i = 1

(v−
ij )

wi

])
,

j = 1, 2, . . . , n (1.106)

or the interval-valued intuitionistic fuzzy weighted geometric (IVIFWG) operator
(Xu and Cai 2009):

r̃ j = IVIFWG(r̃1 j , r̃2 j , . . . , r̃m j )

=
([

m∏

i = 1

(μ−
ij )

1−wi
m−1 ,

m∏

i = 1

(μ+
ij )

1−wi
m−1

]
,

[
1 −

m∏

i = 1

(1 − v−
ij )

1−wi
m−1 , 1 −

m∏

i = 1

(1 − v+
ij )

1−wi
m−1

]
,

[
m∏

i = 1

(1 − v+
ij )

1−wi
m−1 −

m∏

i = 1

(μ+
ij )

1−wi
m−1 ,

m∏

i = 1

(1 − v−
ij )

1−wi
m−1 −

m∏

i = 1

(μ−
ij )

1−wi
m−1

])
,

j = 1, 2, . . . , n (1.107)

Step 5 Rank r̃ j ( j = 1, 2, . . . , n) in descending order by using the ranking
method described in Definition 1.4.

Step 6 Rank all the alternatives y j ( j = 1, 2, . . . , n) and select the best one in
accordance with the ranking of r̃ j ( j = 1, 2, . . . , n).

In the case where the information about the weights of experts is unknown, we
can utilize the IVIFPOWA (or IVIFPWG) operator to develop an approach to multi-
attribute group decision making with interval-valued intuitionistic fuzzy information,
which can be described as follows (Xu 2011):

Approach 1.4
Step 1 Calculate

Sup
(

r̃ index(k)
ij , r̃ index(l)

ij

)

= 1 − d
(

r̃ index(k)
ij , r̃ index(l)

ij

)

= 1 − 1

4

(∣∣∣μ−(index(k))
ij − μ

−(index(l))
ij

∣∣∣+
∣∣∣μ+(index(k))

ij − μ
+(index(l))
ij

∣∣∣

+
∣∣∣v−(index(k))

ij − v−(index(l))
ij

∣∣∣+
∣∣∣v+(index(k))

ij − v+(index(l))
ij

∣∣∣

+
∣∣∣π−(index(k))

ij − π
−(index(l))
ij

∣∣∣+
∣∣∣π+(index(k))

ij − π
+(index(l))
ij

∣∣∣
)

(1.108)

which indicates the support of the lth largest IVIFV r̃ index(l)
ij for the kth largest IVIFV

r̃ index(k)
ij of r̃ (t)

ij (t = 1, 2, . . . , s).
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Step 2 Calculate the support T
(

r̃ index(k)
ij

)
of the kth largest IVIFV r̃ index(k)

ij by

the other IVIFVs r̃ (l)
ij (l = 1, 2, . . . , s, and l 
= k):

T
(

r̃ index(k)
ij

)
=

s∑

l=1
l 
=k

Sup
(

r̃ index(k)
ij , r̃ index(l)

ij

)
(1.109)

and utilize Eq. (1.82) to calculate the weight ω
(k)
ij associated with the kth largest

IVIFV r̃ index(k)
ij , where

ω
(k)
ij = g

(
D(k)

ij

T Vij

)
− g

(
D(k−1)

ij

T Vij

)
, D(k)

ij =
k∑

l=1

V index(l)
ij , T Vij =

s∑

l=1

V index(l)
ij

V index(l)
ij = 1 + T

(
r̃ index(l)

ij

)
(1.110)

where ω
(k)
ij ≥ 0, k = 1, 2, . . . , s, and

∑s
k = 1 ω

(k)
ij = 1.

Step 3 Utilize the IVIFPOWA operator (1.81):

IVIFPOWA(r̃ (1)
ij , r̃ (2)

ij , . . . , r̃ (s)
ij )

=
([

1 −
s∏

k = 1

(1 − μ
−(index(k))
ij )

ω
(k)
ij , 1 −

s∏

k = 1

(1 − μ
+(index(k))
ij )

ω
(k)
ij

]
,

[
s∏

k = 1

(v−(index(k))
ij )

ω
(k)
ij ,

s∏

k = 1

(v+(index(k))
ij )

ω
(k)
ij

]
,

[
s∏

k = 1

(1 − μ
+(index(k))
ij )

ω
(k)
ij −

s∏

k = 1

(v+(index(k))
ij )

ω
(k)
ij ,

s∏

k = 1

(1 − μ
−(index(k))
ij )

ω
(k)
ij −

s∏

k = 1

(v−(index(k))
ij )

ω
(k)
ij

])
(1.111)

or the IVIFPOWG operator (1.85):

IVIFPOWG(r̃ (1)
ij , r̃ (2)

ij , . . . , r̃ (s)
ij )

=
([

s∏

k = 1

(μ
−(index(k))
ij )

1−ω
(k)
ij

s−1 ,

s∏

k = 1

(μ
+(index(k))
ij )

1−ω
(k)
ij

s−1

]
,

[
1 −

s∏

k = 1

(1 − v−(index(k))
ij )

1−ω
(k)
ij

s−1 , 1 −
s∏

k = 1

(1 − v+(index(k))
ij )

1−ω
(k)
ij

s−1

]
,
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[
s∏

k = 1

(1 − v+(index(k))
ij )

1−ω
(k)
ij

s−1 −
s∏

k = 1

(μ
+(index(k))
ij )

1−ω
(k)
ij

s−1 ,

s∏

k = 1

(1 − v−(index(k))
ij )

1−ω
(k)
ij

s−1 −
s∏

k = 1

(μ
−(index(k))
ij )

1−ω
(k)
ij

s−1

])
(1.112)

to aggregate all the individual interval-valued intuitionistic fuzzy decision matrices
R̃(k) = (r̃ (k)

ij )m×n (k = 1, 2, . . . , s) into the collective interval-valued intuitionistic

fuzzy decision matrix R̃ = (r̃ij)m×n .

Step 4 See Approach 1.3.
Step 5 See Approach 1.3.
Clearly, Approaches 1.3 and 1.4 are the extensions of Approaches 1.1 and 1.2 in

interval-valued intuitionistic fuzzy environments, and thus, they have similar char-
acteristics.

In the case where the evaluation values given by the experts are expressed with
IVIFVs in the example of Sect. 1.2.5, we can utilize Approach 1.3 to solve the
problem, here omitted for brevity.

1.4 Intuitionistic Fuzzy Geometric Bonferroni Means

The Bonferroni mean was originally introduced by Bonferroni (1950) and then gen-
eralized by Yager (2009). The desirable characteristic of the Bonferroni mean is its
capability to capture the interrelationship between input arguments. Xu and Yager
(2011) further applied the Bonferroni mean to intuitionstic fuzzy environments and
introduced the intuitionistic fuzzy Bonferroni mean and the weighted Bonferroni
mean. Xia et al. (2012a) developed a geometric Bonferroni mean based on the Bon-
ferroni mean and the geometric mean and further extended it to intuitionistic fuzzy
environments.

1.4.1 Geometric Bonferroni Mean

The Bonferroni mean, introduced by Bonferroni (1950), can be defined as follows:

Definition 1.6 (Bonferroni 1950) Let ai (i = 1, 2, . . . , n) be a collection of crisp
data, where ai ≥ 0, for all i , and p, q ≥ 0, then

B M p,q(a1, a2, . . . , an) =

⎛

⎜⎜⎝
1

n(n − 1)

n∑

i, j=1
i 
= j

a p
i aq

j

⎞

⎟⎟⎠

1
p + q

(1.113)

is called a Bonferroni mean.
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Especially, if q = 0, then by Eq. (1.113), the Bonferroni mean reduces to the
generalized mean operator (Dyckhoff and Pedrycz 1984) as follows:

B M p,0(a1, a2, . . . , an) =

⎛

⎜⎜⎝
1

n

n∑

i = 1

a p
i

⎛

⎜⎜⎝
1

(n − 1)

n∑

j=1
j 
=i

a0
j

⎞

⎟⎟⎠

⎞

⎟⎟⎠

1
p + 0

=
(

1

n

n∑

i = 1

a p
i

) 1
p

(1.114)
If p = 1 and q = 0, then Eq. (1.113) reduces to the well-known arithmetic

average:

B M1,0(a1, a2, . . . , an) = 1

n

n∑

i = 1

ai (1.115)

Based on the usual geometric mean and the Bonferroni mean, Xia et al. (2012a)
proposed a geometric Bonferroni mean as follows:

Definition 1.7 (Xia et al. 2012a) Let p, q > 0, and ai (i = 1, 2, . . . , n) be a
collection of non-negative numbers. If

GBM p,q(a1, a2, . . . , an) = 1

p + q

n∏

i, j=1
i 
= j

(pai + qa j )
1

n(n−1) (1.116)

then we call GBM p,q a geometric Bonferroni mean (GBM).

Obviously, the GBM has the following properties (Xia et al. 2012a):

(1) GBM p,q(0, 0, . . . , 0) = 0.
(2) GBM p,q(a, a, . . . , a) = a, if ai = a, for all i .
(3) GBM p,q(a1, a2, . . . , an) ≥ GBM p,q(b1, b2, . . . , bn), i.e., GBM p,q is mono-

tonic, if ai ≥ bi , for all i .
(4) min

i
{ai } ≤ GBM p,q(a1, a2, . . . , an) ≤ max

i
{ai }.

Furthermore, if q = 0, then by Eq. (1.116), the GBM reduces to the geometric
mean:

GBM p,0(a1, a2, . . . , an) = 1

p

n∏

i, j=1
i 
= j

(pai )
1

n(n − 1) =
n∏

i = 1

(ai )
1
n (1.117)

1.4.2 Intuitionistic Fuzzy Geometric Bonferroni Mean

Let αi = (μαi , vαi , παi ) (i = 1, 2, . . . , n) be a collection of IFVs, based on
Eq. (1.116), Xia et al. (2012a) defined a geometric Bonferroni mean for IFVs:
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Definition 1.8 (Xia et al. 2012a) For any p, q > 0, if

IFGBM p,q(α1, α2, . . . , αn) = 1

p + q

⎛

⎜⎝
n⊗

i, j=1
i 
= j

(
pαi ⊕ qα j

) 1
n(n − 1)

⎞

⎟⎠ (1.118)

then IFGBM p,q is called an intuitionistic fuzzy geometric Bonferroni mean (IFGBM).

By using the operations and the relations of IFVs given in Sect. 1.2.2, we can
derive the following theorem:

Theorem 1.13 (Xia et al. 2012a) Let p, q > 0, then the aggregated value by using
the IFGBM is also an IFV, and

IFGBM p,q (α1, α2, . . . , αn)

=

⎛

⎜⎜⎜⎝1 −

⎛

⎜⎜⎝1 −
n∏

i, j=1
i 
= j

(
1 − (1 − μαi )

p(1 − μα j )
q) 1

n(n − 1)

⎞

⎟⎟⎠

1
p + q

,

⎛

⎜⎜⎝1 −
n∏

i, j=1
i 
= j

(
1 − vp

αi
vq
α j

) 1
n(n − 1)

⎞

⎟⎟⎠

1
p + q

,

⎛

⎜⎜⎝1 −
n∏

i, j=1
i 
= j

(
1 − (1 − μαi )

p(1 − μα j )
q) 1

n(n − 1)

⎞

⎟⎟⎠

1
p + q

−

⎛

⎜⎜⎝1 −
n∏

i, j=1
i 
= j

(
1 − vp

αi
vq
α j

) 1
n(n − 1)

⎞

⎟⎟⎠

1
p + q
⎞

⎟⎟⎟⎠ (1.119)

Proof By the operational laws (1) and (3) described in Definition 1.3, we have

pαi = (1 − (1 − μαi )
p, vp

αi
, (1 − μαi )

p − vp
αi

) (1.120)

qα j = (1 − (1 − μα j )
q , vq

α j
, (1 − μα j )

q − vq
α j

) (1.121)

and then

pαi ⊕ qα j = (1 − (1 − μαi )
p(1 − μα j )

q , vp
αi

vq
α j

, (1 − μαi )
p(1 − μα j )

q − vp
αi

vq
α j

)

(1.122)
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Let

βij = (μβij , vβij , πβij ) = pαi ⊕ qα j

=
(

1 − (1 − μαi )
p(1 − μα j )

q , vp
αi

vq
α j

, (1 − μαi )
p(1 − μα j )

q − vp
αi

vq
α j

)

(1.123)

then

IFGBM p,q(α1, α2, . . . , αn)

= 1

p + q

⎛

⎜⎝
n⊗

i, j = 1
i 
= j

(
pαi ⊕ qα j

) 1
n(n − 1)

⎞

⎟⎠ = 1

p + q

⎛

⎜⎝
n⊗

i, j = 1
i 
= j

β
1

n(n − 1)

ij

⎞

⎟⎠ (1.124)

Since

n⊗
i, j = 1
i 
= j

β
1

n(n − 1)

ij =

⎛

⎜⎜⎝
n∏

i, j = 1
i 
= j

μ
1

n(n − 1)

βij
, 1 −

n∏

i, j = 1
i 
= j

(1 − vβij )
1

n(n − 1) ,

n∏

i, j = 1
i 
= j

(1 − vβij )
1

n(n − 1) −
n∏

i, j = 1
i 
= j

μ
1

n(n − 1)

βij

⎞

⎟⎟⎠ (1.125)

which has been proven by Xu and Yager (2006). Then by replacing βij, μβij , vβij

and πβij in Eq. (1.125) with pαi ⊕ qα j , 1 − (1 − μαi )
p(1 − μα j )

q , vp
αi v

q
α j and

(1 − μαi )
p(1 − μα j )

q − vp
αi v

q
α j , respectively, we have

n⊗
i, j = 1
i 
= j

(
pαi ⊕ qα j

) 1
n(n − 1)

=

⎛

⎜⎜⎝
n∏

i, j = 1
i 
= j

(
1 − (1 − μαi )

p(1 − μα j )
q) 1

n(n − 1) , 1 −
n∏

i, j = 1
i 
= j

(
1 − vp

αi
vq
α j

) 1
n(n − 1)

,

n∏

i, j = 1
i 
= j

(
1 − vp

αi
vq
α j

) 1
n(n − 1) −

n∏

i, j = 1
i 
= j

(
1 − (1 − μαi )

p(1 − μα j )
q) 1

n(n − 1)

(1.126)
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Then by Eq. (1.126) and the operational law (3) in Definition 1.3, it yields

IFGBM p,q(α1, α2, . . . , αn)

= 1

p + q

n⊗
i, j = 1
i 
= j

(
pαi ⊕ qα j

) 1
n(n − 1)

=

⎛

⎜⎜⎜⎝1 −

⎛

⎜⎜⎝1 −
n∏

i, j = 1
i 
= j

(
1 − (1 − μαi )

p(1 − μα j )
q) 1

n(n − 1)

⎞

⎟⎟⎠

1
p + q

,

⎛

⎜⎜⎝1 −
n∏

i, j = 1
i 
= j

(
1 − vp

αi
vq
α j

) 1
n(n − 1)

⎞

⎟⎟⎠

1
p + q

,

⎛

⎜⎜⎝1 −
n∏

i, j = 1
i 
= j

(
1 − (1 − μαi )

p(1 − μα j )
q) 1

n(n − 1)

⎞

⎟⎟⎠

1
p + q

−

⎛

⎜⎜⎝1 −
n∏

i, j = 1
i 
= j

(
1 − vp

αi
vq
α j

) 1
n(n − 1)

⎞

⎟⎟⎠

1
p + q
⎞

⎟⎟⎟⎠ (1.127)

i.e., Eq. (1.119) holds. In addition, since

0 ≤ 1 −

⎛

⎜⎜⎝1 −
n∏

i, j = 1
i 
= j

(
1 − (1 − μαi )

p(1 − μα j )
q) 1

n(n − 1)

⎞

⎟⎟⎠

1
p + q

≤ 1 (1.128)

0 ≤

⎛

⎜⎜⎝1 −
n∏

i, j = 1
i 
= j

(
1 − vp

αi
vq
α j

) 1
n(n − 1)

⎞

⎟⎟⎠

1
p + q

≤ 1 (1.129)

then

1 −

⎛

⎜⎜⎝1 −
n∏

i, j = 1
i 
= j

(
1 − (1 − μαi )

p(1 − μα j )
q) 1

n(n − 1)

⎞

⎟⎟⎠

1
p + q
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+

⎛

⎜⎜⎝1 −
n∏

i, j = 1
i 
= j

(
1 − vp

αi
vq
α j

) 1
n(n − 1)

⎞

⎟⎟⎠

1
p + q

≤ 1 −

⎛

⎜⎜⎝1 −
n∏

i, j = 1
i 
= j

(
1 − (1 − μαi )

p(1 − μα j )
q) 1

n(n − 1)

⎞

⎟⎟⎠

1
p + q

+

⎛

⎜⎜⎝1 −
n∏

i, j = 1
i 
= j

(
1 − (1 − μαi )

p(1 − μα j )
q) 1

n(n − 1)

⎞

⎟⎟⎠

1
p + q

= 1 (1.130)

which completes the proof of Theorem 1.13.
Then, in what follows, we introduce some desirable properties of the IFGBM (Xia

et al. 2012a):

(1) (Idempotency) If all αi (i = 1, 2, . . . , n) are equal, i.e., αi = α = (μα, vα, πα),
for all i , then

IFGBM p,q(α1, α2, . . . , αn)

= I FG B p,q(α, α, . . . , α)

= 1

p + q

⎛

⎜⎝
n⊗

i, j = 1
i 
= j

(pα ⊕ qα)
1

n(n − 1)

⎞

⎟⎠ = 1

p + q

⎛

⎜⎝
n⊗

i, j = 1
i 
= j

((p + q)α)
1

n(n − 1)

⎞

⎟⎠

= 1

p + q
((p + q)α)

n(n−1)
n(n−1) = α (1.131)

(2) (Commutativity)

IFGBM p,q(α1, α2, . . . , αn) = IFGBM p,q(α̇1, α̇2, . . . , α̇n) (1.132)

where (α̇1, α̇2, . . . , α̇n) is any permutation of (α1, α2, . . . , αn).

Proof Since (α̇1, α̇2, . . . , α̇n) is any permutation of (α1, α2, . . . , αn), then



1.4 Intuitionistic Fuzzy Geometric Bonferroni Means 53

IFGBM p,q(α1, α2, . . . , αn) = 1

p + q

⎛

⎜⎝
n⊗

i, j = 1
i 
= j

(
pαi ⊕ qα j

) 1
n(n − 1)

⎞

⎟⎠

= 1

p + q

⎛

⎜⎝
n⊗

i, j = 1
i 
= j

(
pα̇i ⊕ qα̇ j

) 1
n(n − 1)

⎞

⎟⎠

= IFBp,q(α̇1, α̇2, . . . , α̇n) (1.133)

(3) (Monotonicity) Let βi = (μβi , vβi , πβi ) (i = 1, 2, . . . , n) be a collection of
IFVs, if μαi ≤ μβi and vαi ≥ vβi , for all i , then

IFGBM p,q(α1, α2, . . . , αn) ≤ IFGBM p,q(β1, β2, . . . , βn) (1.134)

Proof Since μαi ≤ μβi and vαi ≥ vβi , for all i , then

⎧
⎨

⎩

(1 − μαi )
p(1 − μα j )

q ≥ (1 − μβi )
p(1 − μβ j )

q

vp
αi v

q
α j ≥ vp

βi
vq
β j

⇒

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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⎟⎠

1
p + q

≥
⎛

⎜⎝1 −
n∏

i, j = 1
i 
= j

(
1 − (1 − μβi )

p(1 − μβ j )
q
) 1
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q
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β j

) 1
n(n − 1)
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⇒

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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⎞

⎟⎠
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⎛
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n(n − 1)

⎞

⎟⎠
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⎛
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⎞

⎟⎠
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⎛
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n(n − 1)

⎞

⎟⎠
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⎛
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(
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⎞

⎟⎟⎠

1
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−

⎛
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n∏
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⎞

⎟⎟⎠

1
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⎛
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(
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p(1 − μβ j )
q) 1
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⎞

⎟⎟⎠

1
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−

⎛

⎜⎜⎝1 −
n∏
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(
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βi
vq
β j

) 1
n(n − 1)

⎞

⎟⎟⎠

1
p + q

(1.135)

which completes the proof.

(4) (Boundedness) Let α− and α+ be given by Eqs. (1.35) and (1.36), then

α− ≤ IFGBM p,q(α1, α2, . . . , αn) ≤ α+ (1.136)

which can be obtained easily by the monotonicity.

If the values of the parameters p and q change in the IFBGM, then some special
cases can be obtained as follows (Xia et al. 2012a):

Case 1 If q → 0, then by Eq. (1.119), we have
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IFGBM p,q(α1, α2, . . . , αn)

= 1

p + q

⎛

⎜⎝
n⊗

i, j = 1
i 
= j

(
pαi ⊕ qα j

) 1
n(n − 1)

⎞

⎟⎠ = 1

p

(
n⊗

i = 1
(pαi )

1
n

)

=
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⎝1 −
(

1 −
n∏

i = 1

(
1 − (1 − μαi )

p) 1
n

) 1
p

,

(
1 −

n∏

i = 1

(
1 − vp

αi

) 1
n

) 1
p

,

(
1 −

n∏

i = 1

(
1 − (1 − μαi )

p) 1
n

) 1
p

−
(

1 −
n∏

i = 1

(
1 − vp

αi

) 1
n

) 1
p
⎞

⎠

= IFGBM p,0(α1, α2, . . . , αn) (1.137)

which is called a generalized intuitionistic fuzzy geometric mean (GIFGM).
Case 2 If p = 2 and q → 0, then Eq. (1.119) is transformed as:

IFGBM2,0(α1, α2, . . . , αn) = 1

2

(
n⊗

i = 1
(2αi )

1
n

)

=
⎛

⎝1 −
(

1 −
n∏

i = 1

(
1 − (1 − μαi )

2
) 1

n

) 1
2

,

(
1 −

n∏

i = 1

(
1 − v2

αi

) 1
n

) 1
2

,

(
1 −

n∏

i = 1

(
1 − (1 − μαi )

2
) 1

n

) 1
2

−
(

1 −
n∏

i = 1

(
1 − v2

αi

) 1
n

) 1
2
⎞

⎠ (1.138)

which is called an intuitionistic fuzzy square geometric mean (IFSGM).
Case 3 If p = 1 and q → 0, then Eq. (1.119) reduces to the intuitionistic fuzzy

geometric mean (IFGM) (Xu and Yager 2006):

IFGBM1,0(α1, α2, . . . , αn)

= n⊗
i = 1

α
1
n
i

=
(

n∏

i = 1

(
μαi

) 1
n , 1 −

n∏

i = 1

(
1 − vαi

) 1
n ,

n∏

i = 1

(
1 − vαi

) 1
n −

n∏

i = 1

(
μαi

) 1
n

)
(1.139)

Case 4 If p = q = 1, then Eq. (1.119) reduces to the following:

IFGBM1,1(α1, α2, . . . , αn)

= 1

2

⎛

⎜⎝
n⊗

i, j = 1
i 
= j

(
αi ⊕ α j

) 1
n(n − 1)

⎞

⎟⎠
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=

⎛
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−
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(
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) 1
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⎞

⎟⎟⎠
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2
⎞

⎟⎟⎟⎠ (1.140)

which is called an intuitionistic fuzzy interrelated square geometric mean
(IFISGM).

1.4.3 The Weighted Intuitionistic Fuzzy Geometric Bonferroni
Mean and Its Application in Multi-Attribute Decision Making

For a multi-attribute decision making problem. Let Y , G and w be defined as in
Sect. 1.2.4. The performance of the alternative yi with respect to the attribute G j is
measured by an IFV bij = (μij, vij, πij), such that μij ∈ [0, 1], vij ∈ [0, 1], μij +vij +
πij = 1. All bij (i = 1, 2, . . . , n; j = 1, 2, . . . , m) are contained in an intuitionistic
fuzzy decision matrix B = (bij)n×m .

To get the priority of the alternatives, we should aggregate the performance of
each alternative, however, it is noted that the IFGBM doesn’t consider the importance
of the aggregated arguments, but in many practical problems, especially in multi-
attribute decision making, the weight vector of the attributes is an important part
in the aggregation, to avoid this issue, Xia et al. (2012a) introduced the following
definition:

Definition 1.9 (Xia et al. 2012a) Let w = (w1, w2, . . . , wn)T be the weight vector
of the IFVs αi (i = 1, 2, . . . , n), where wi indicates the importance degree of αi ,
satisfying wi > 0 (i = 1, 2, . . . , n),

∑n
i = 1 wi = 1. If
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I FG B M p,q
w (α1, α2, . . . , αn) = 1

p + q

⎛

⎜⎝
n⊗

i, j = 1
i 
= j

(
pα

wi
i ⊕ qα

w j
j

) 1
n(n − 1)

⎞

⎟⎠ , p, q > 0

(1.141)
then I FG B M p,q

w is called a weighted intuitionistic fuzzy geometric Bonferroni mean
(WIFGBM).

Similar to Theorem 1.13, we have

Theorem 1.14 (Xia et al. 2012a) The aggregated value by using the WIFGBM is
also an IFV, and

I FG B M p,q
w (α1, α2, . . . , αn)

=

⎛
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(1.142)

Based on Definition 1.9 and Theorem 1.14, Xia et al. (2012a) developed an
approach for multi-attribute decision making under intuitionistic fuzzy environments,
which involves the following steps:

Step 1 Transform the intuitionistic fuzzy decision matrix B = (bij)n×m into the
normalized intuitionistic fuzzy decision matrix R = (rij)n×m by the method given
by Xu and Hu (2010), where
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rij = (tij, fij, πij)

=
{

bij, for benefit attribute G j

bc
ij, for cost attribute G j

, i = 1, 2, . . . , n; j = 1, 2, . . . , m

(1.143)

where bc
ij is the complement of bij, such that bc

ij = (vij, μij, πij).

Step 2 Aggregate all the performance values rij( j = 1, 2, . . . , m) of the i th line,
and get the overall performance value ri corresponding to the alternative yi by the
WIFGBM:

ri = (ti , fi , πi ) = I FG B M p,q
w (ri1, ri2, . . . , rim)

=

⎛
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1
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= k

(
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)q) 1
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⎞
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1
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−
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m∏

j,k = 1
j 
= k

(
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w j
)p (1 − (1 − vik)
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)q) 1
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⎞

⎟⎟⎠

1
p + q

(1.144)

where p, q > 0.
Step 3 Rank the overall performance values ri (i = 1, 2, . . . , n) according to

Xu and Yager (2006)’s ranking method, and obtain the priority of the alternatives
yi (i = 1, 2, . . . , n) according to ri (i = 1, 2, . . . , n).

Next, we give an example to illustrate the proposed method:

Example 1.5 (Xia et al. 2012a) A city is planning to build a municipal library. One
of the problems facing the city development commissioner is to determine what
kind of air-conditioning system should be installed in the library (adapted from
Yoon (1989)). The contractor offers five feasible alternatives yi (i = 1, 2, 3, 4, 5),
which might be adapted to the physical structure of the library. Suppose that three
attributes: (1) G1: economic; (2) G2: functional; and (3) G3: operational, are taken
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Table 1.11 Intuitionistic
fuzzy decision matrix B

G1 G2 G3

y1 (0.3,0.4,0.3) (0.7,0.2,0.1) (0.5,0.3,0.2)
y2 (0.5,0.2,0.3) (0.4,0.1,0.5) (0.7,0.1,0.2)
y3 (0.4,0.5,0.1) (0.7,0.2,0.1) (0.4,0.4,0.2)
y4 (0.2,0.6,0.2) (0.8,0.1,0.1) (0.8,0.2,0.0)
y5 (0.9,0.1,0.0) (0.6,0.3,0.1) (0.2,0.5,0.3)

into consideration in the installation problem, the weight vector of the attributes
G j ( j = 1, 2, 3) is w = (0.3,0.5,0.2)T . Assume that the characteristics of the
alternatives yi (i = 1, 2, 3, 4, 5) with respect to the attributes G j ( j = 1, 2, 3) are
represented by the IFVs bij = (μij, vij, πij), and all bij (i = 1, 2, 3, 4, 5; j = 1, 2, 3)

are contained in the intuitionistic fuzzy decision matrix B = (bij)5×3 (see Table 1.11)
(Xia et al. 2012a).

Step 1 Considering all the attributes G j ( j = 1, 2, 3) are the benefit attributes,
the performance values of the alternatives yi (i = 1, 2, 3, 4, 5) do not need
normalization.

Step 2 Utilize the WIFGBM (here we take p = q = 1) to aggregate all the
performance values bij( j = 1, 2, 3) of the i th line, and get the overall performance
value bi corresponding to the alternative yi :

b1 = (0.8084, 0.1034, 0.0882), b2 = (0.8101, 0.0438, 0.1461)

b3 = (0.8112, 0.1269, 0.0619), b4 = (0.8561, 0.0915, 0.0524)

b5 = (0.8381, 0.1006, 0.0613)

Step 3 Calculate the scores of all the alternatives:

S(b1) = 0.7050, S(b2) = 0.7664, S(b3) = 0.6843

S(b4) = 0.7647, S(b5) = 0.7375

Since
S(b2) > S(b4) > S(b5) > S(b1) > S(b3)

then the ranking of the alternatives yi (i = 1, 2, 3, 4, 5) is

y2 � y4 � y5 � y1 � y3

If we take p = q = 2, then by bi = (μi , vi , πi )= I FG B M2,2
w (bi1, bi2, bi3),

we get

b1 = (0.8039, 0.1056, 0.0905), b2 = (0.7924, 0.0465, 0.1611)

b3 = (0.8100, 0.1290, 0.0610), b4 = (0.8406, 0.0971, 0.0623)

b5 = (0.8092, 0.1130, 0.0778)
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Then we calculate the scores of all the alternatives:

S(b1) = 0.6982, S(b2) = 0.7459, S(b3) = 0.6810

S(b4) = 0.7435, S(b5) = 0.6962

Since
S(b2) > S(b4) > S(b1) > S(b5) > S(b3)

then
y2 � y4 � y1 � y5 � y3

It can be seen that as the values of the parameters p and q change according
to the experts’ subjective preferences, the rankings of the alternatives are slightly
different, which can reflect the experts’ risk preferences. If we use the weighted
intuitionistic fuzzy Bonferroni mean (WIFBM) given by Xu and Yager (2011) to
aggregate the alternative performances, different results can be obtained. To give a
detail comparison, we express the scores of alternatives by Figs. 1.2, 1.3, 1.4, 1.5,
1.6, 1.7, 1.8, 1.9, 1.10 and 1.11 (Xia et al. 2012a) as the parameters p and q change
between 0 and 10.

Figures 1.2, 1.3, 1.4, 1.5 and 1.6 describe the scores of alternatives obtained by
Xia et al. (2012a)’s method, and Figs. 1.7, 1.8, 1.9, 1.10 and 1.11 describe the scores
obtained by Xu and Yager (2011)’s method. It is noted that most of the scores obtained
by Xia et al. (2012a)’s method are bigger than 0 and most of the ones obtained by Xu

The scores for the alternative y1 obtained by the WlFGBM 

Fig. 1.2 The scores for the alternative y1 obtained by the WIFGBM
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The scores for the alternative y2 obtained by the WlFGBM 

Fig. 1.3 The scores for the alternative y2 obtained by the WIFGBM

The scores for the alternative y3 obtained by the WlFGBM 

Fig. 1.4 The scores for the alternative y3 obtained by the WIFGBM
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The scores for the alternative y4 obtained by the WlFGBM 

Fig. 1.5 The scores for the alternative y4 obtained by the WIFGBM

The scores for the alternative y5 obtained by the WlFGBM 

Fig. 1.6 The scores for the alternative y5 obtained by the WIFGBM
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The scores for the alternative y1 obtained by the WlFBM 

Fig. 1.7 The scores for the alternative y1 obtained by the WIFBM

The scores for the alternative y2 obtained by the WlFBM 

Fig. 1.8 The scores for the alternative y2 obtained by the WIFBM
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The scores for the alternative y3 obtained by the WlFBM 

Fig. 1.9 The scores for the alternative y3 obtained by the WIFBM

The scores for the alternative y4 obtained by the WlFBM 

Fig. 1.10 The scores for the alternative y4 obtained by the WIFBM
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The scores for the alternative y5 obtained by the WlFBM 

Fig. 1.11 The scores for the alternative y5 obtained by the WIFBM

and Yager (2011)’s method are smaller than 0, which could indicate that Xia et al.
(2012a)’s method is more optimistic, while the one given by Xu and Yager (2011)
is more pessimistic. Thus, we can choose the right one according to the practical
problem and the experts’ risk preferences.

1.5 Generalized Intuitionistic Fuzzy Bonferroni Means

1.5.1 Generalized Bonferroni Means

Let p, q, r ≥ 0, and ai (i = 1, 2, . . . , n) be a collection of nonnegative numbers.
Beliakov et al. (2010) further extended the Bonferroni means by considering the
correlations of any three aggregated arguments instead of any two:

Definition 1.10 (Beliakov et al. 2010) If

GBM p,q,r (a1, a2, . . . , an) =

⎛

⎜⎜⎝
1

n(n − 1)(n − 2)

n∑

i, j,k = 1
i 
= j 
= k

a p
i aq

j ar
k

⎞

⎟⎟⎠

1
p + q + r

(1.145)
then GBM p,q,r is called a generalized Bonferroni mean (GBM).
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Especially, if r = 0, then the GBM reduces to the Bonferroni mean. However, it
is noted that both the Bonferroni mean and the GBM do not consider the situation
that i = j or j = k or i = k, and the weight vector of the aggregated arguments
is not also considered. To overcome this drawback, Xia et al. (2012b) defined the
weighted version of the GBM:

Definition 1.11 (Xia et al. 2012b) Let w = (w1, w2, . . . , wn)T be the weight vector
of ai (i = 1, 2, . . . , n) such that wi > 0, i = 1, 2, . . . , n and

∑n
i = 1 wi = 1. If

GWBM p,q,r (a1, a2, . . . , an) =
⎛

⎝
n∑

i, j,k = 1

wi w j wka p
i aq

j ar
k

⎞

⎠

1
p + q + r

(1.146)

then GWBM p,q,r is called a generalized weighed Bonferroni mean (GWBM).
Especially, if w = (1/n, 1/n, . . . , 1/n)T , then the GWBM reduces to the follow-

ing:

RBM p,q,r (a1, a2, . . . , an) =
⎛

⎝ 1

n3

n∑

i, j,k = 1

a p
i aq

j ar
k

⎞

⎠

1
p + q + r

(1.147)

which is called the revised Bonferroni mean (RBM).
Moreover, the GWBM has the following properties:

Theorem 1.15 (Xia et al. 2012b)

(1) GWBM p,q,r (0, 0, . . . , 0) = 0.
(2) GWBM p,q,r (a, a, . . . , a) = a, if ai = a, for all i .
(3) GWBM p,q,r (a1, a2, . . . , an) ≥ GWBM p,q,r (b1, b2, . . . , bn), i.e., GWBM p,q,r

is monotonic, if ai ≥ bi , for all i .
(4) min{ai } ≤ GWBM p,q,r (a1, a2, . . . , an) ≤ max{ai }.

Some special cases can be obtained as the change of the parameters (Xia et al.
2012b):

(1) If r = 0, then the GWBM reduces to the following:

GWBM p,q,0 (a1, a2, . . . , an) =
⎛

⎝
n∑

i, j,k = 1

wi w j wka p
i aq

j

⎞

⎠

1
p + q

=
⎛

⎝
n∑

i, j = 1

wi w j a p
i aq

j

n∑

k = 1

wk

⎞

⎠

1
p + q

=
⎛

⎝
n∑

i, j = 1

wi w j a p
i aq

j

⎞

⎠

1
p + q

(1.148)

which we call a weighted Bonferroni mean (WBM).
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(2) If q = 0 and r = 0, then

GWBM p,0,0 (a1, a2, . . . , an) =
⎛

⎝
n∑

i, j,k = 1

wi w j wka p
i

⎞

⎠

1
p

=
⎛

⎝
n∑

i = 1

wi a
p
i

n∑

j = 1

w j

n∑

k = 1

wk

⎞

⎠

1
p

=
(

n∑

i = 1

wi a
p
i

) 1
p

(1.149)

which is the generalized weighted averaging operator (Yager 2004).
The above aggregation techniques can only deal with the situations where the

arguments are represented by exact nonnegative numbers, but are invalid if the aggre-
gation information is given in other forms, such as the IFSs (Atanassov 1983, 1986),
which is a widely used tool to deal with uncertainty and fuzziness.

1.5.2 Generalized Intuitionistic Fuzzy Weighted Bonferroni Mean

Let αi = (μαi , vαi , παi ) (i = 1, 2, . . . , n) be a collection of IFVs. To aggregate the
intuitionistic fuzzy correlated information, Xu and Yager (2011) extended the Bon-
ferroni mean to intuitionistic fuzzy environment and gave the following definition:

Definition 1.12 (Xu and Yager 2011) For any p, q > 0, if

IFBM p,q(α1, α2, . . . , αn) =
⎛

⎜⎝
1

n(n − 1)

⎛

⎜⎝
n⊕

i, j = 1
i 
= j

(
α

p
i ⊗ α

q
j

)
⎞

⎟⎠

⎞

⎟⎠

1
p + q

(1.150)

then IFBM p,q is called an intuitionistic fuzzy Bonferroni mean (IFBM).

Considering the weight vector of the aggregated arguments, the weighted form is
also proposed:

Definition 1.13 (Xu and Yager 2011) Let w = (w1, w2, . . . , wn)T be the weight
vector of αi (i = 1, 2, . . . , n), where wi indicates the importance degree of αi ,
satisfying wi > 0, i = 1, 2, . . . , n and

∑n
i = 1 wi = 1. If

IFWBM p,q(α1, α2, . . . , αn) =
⎛

⎜⎝
1

n(n − 1)

⎛

⎜⎝
n⊕

i, j = 1
i 
= j

(
(wiαi )

p ⊗ (w jα j )
q)
⎞

⎟⎠

⎞

⎟⎠

1
p + q

(1.151)
where p, q > 0, then I FW B M p,q is called an intuitionistic fuzzy weighted Bon-
ferroni mean (IFWBM).
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However, it is noted that if w = (1/n, 1/n, . . . , 1/n)T in Definition 1.13, then
the IFWBM cannot reduce to the IFBM given in Definition 1.12. Moreover, both the
IFBM and the IFWBM can only deal with the situations where there are correlations
between any two aggregated arguments, but not the situations where there exist con-
nections among any three aggregated arguments. To solve this issue, and motivated
by Definition 1.11, we define the following:

Definition 1.14 (Xia et al. 2012b) For any p, q, r > 0, if

GIFWBM p,q,r (α1, α2, . . . , αn) =
(

n⊕
i, j,k = 1

wi w j wk

(
α

p
i ⊗ α

q
j ⊗ αr

k

)) 1
p + q + r

(1.152)
then GIFWBM p,q,r is called a generalized intuitionistic fuzzy weighted Bonferroni
mean (GIFWBM).

Especially, if r → 0, then the GIFWBM reduces to:

lim
r→0

GIFWBM p,q,r (α1, α2, . . . , αn)

=
(

n⊕
i, j,k = 1

wi w j wk(α
p
i ⊗ α

q
j )

) 1
p + q

=
((

n∑

k = 1

wk

)
n⊕

i, j = 1
wi w j (α

p
i ⊗ α

q
j )

) 1
p + q

=
(

n⊕
i, j = 1

wi w j (α
p
i ⊗ α

q
j )

) 1
p + q

(1.153)

which is called an intuitionistic fuzzy weighted Bonferroni mean (IFWBM).
Especially, if q → 0 and r → 0, then the GIFWBM reduces to:

lim
r→0
q→0

GIFWBM p,q,r (α1, α2, . . . , αn)

=
(

n⊕
i, j,k = 1

wi w j wkα
p
i

) 1
p

=
⎛

⎝
n∑

j = 1

w j

n∑

k = 1

wk
n⊕

i = 1
wiα

p
i

⎞

⎠

1
p

=
(

n⊕
i = 1

wiα
p
i

) 1
p

(1.154)

which is the generalized intuitionistic fuzzy weighted mean (GIFWM) (Zhao et al.
2010).

Based on the operational laws of IFVs, we can derive the following theorem:

Theorem 1.16 (Xia et al. 2012b) Let p, q, r > 0, then the aggregated value by
using the GIFWBM is also an IFV, and
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GIFWBM p,q,r (α1, α2, . . . , αn)

=
⎛

⎜⎝

⎛

⎝1 −
n∏

i, j,k = 1

(
1 − μp

αi
μq

α j
μr

αk

)wi w j wk

⎞

⎠

1
p + q + r

,

1 −

⎛

⎜⎜⎝1 −
n∏

i, j,k = 1
i 
= j 
= k

(
1 − (1 − vαi )

p(1 − vα j )
q(1 − vαk )

r )wi w j wk

⎞

⎟⎟⎠

1
p + q + r

,

⎛

⎜⎜⎝1 −
n∏

i, j,k = 1
i 
= j 
= k

(
1 − (1 − vαi )

p(1 − vα j )
q(1 − vαk )

r )wi w j wk

⎞

⎟⎟⎠

1
p + q + r

−
⎛

⎝1 −
n∏

i, j,k = 1

(
1 − μp

αi
μq

α j
μr

αk

)wi w j wk

⎞

⎠

1
p + q + r

⎞

⎟⎠ (1.155)

Proof By the operational laws for IFVs, we have

α
p
i = (μp

αi
, 1 − (1 − vαi )

p, (1 − vαi )
p − μp

αi
) (1.156)

α
q
j = (μq

α j
, 1 − (1 − vα j )

q , (1 − vα j )
q − μq

α j
) (1.157)

αr
k = (μr

αk
, 1 − (1 − vαk )

r , (1 − vαk )
r − μr

αk
) (1.158)

and

α
p
i ⊗ α

q
j ⊗ αr

k =
(
μp

αi
μq

α j
μr

αk
, 1 − (1 − vαi )

p(1 − vα j )
q(1 − vαk )

r ,

(1 − vαi )
p(1 − vα j )

q(1 − vαk )
r − μp

αi
μq

α j
μr

αk

)
(1.159)

then

n⊕
i, j,k = 1

wi w j wk

(
α

p
i ⊗ α

q
j ⊗ αr

k

)

=
⎛

⎝1 −
n∏

i, j,k = 1

(
1 − μp

αi
μq

α j
μr

αk

)wi w j wk
,
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n∏

i, j,k = 1

(
1 − (1 − vαi )

p(1 − vα j )
q (1 − vαk )

r )wi w j wk ,

n∏

i, j,k = 1

(
1 − μp

αi
μq

α j
μr

αk

)wi w j wk −
n∏

i, j,k = 1

(
1 − (1 − vαi )

p(1 − vα j )
q (1 − vαk )

r )wi w j wk

⎞

⎠

(1.160)

Therefore,

GIFWBM p,q,r (α1, α2, . . . , αn)

=
(

n⊕
i, j,k = 1

wi w j wk(α
p
i ⊗ α

q
j ⊗ αr

k)

) 1
p + q + r

=
⎛

⎜⎝

⎛

⎝1 −
n∏

i, j,k = 1

(
1 − μp

αi
μq

α j
μr

αk

)wi w j wk

⎞

⎠

1
p + q + r

,

1 −
⎛

⎝1 −
n∏

i, j,k = 1

(
1 − (1 − vαi )

p(1 − vα j )
q(1 − vαk )

r )wi w j wk

⎞

⎠

1
p + q + r

,

⎛

⎝1 −
n∏

i, j,k = 1

(
1 − (1 − vαi )

p(1 − vα j )
q(1 − vαk )

r )wi w j wk

⎞

⎠

1
p + q + r

−
⎛

⎝1 −
n∏

i, j,k = 1

(
1 − μp

αi
μq

α j
μr

αk

)wi w j wk

⎞

⎠

1
p + q + r

(1.161)

In addition, since

0 ≤
⎛

⎝1 −
n∏

i, j,k = 1

(
1 − μp

αi
μq

α j
μr

αk

)wi w j wk

⎞

⎠

1
p + q + r

≤ 1 (1.162)

and

0 ≤ 1 −
⎛

⎝1 −
n∏

i, j,k = 1

(
1 − (1 − vαi )

p(1 − vα j )
q(1 − vαk )

r )wi w j wk

⎞

⎠

1
p + q + r

≤ 1

(1.163)
then we have
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⎛

⎝1 −
n∏

i, j,k = 1

(
1 − μp

αi
μq

α j
μr

αk

)wi w j wk

⎞

⎠

1
p + q + r

+ 1 −
⎛

⎝1 −
n∏

i, j,k = 1
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r )wi w j wk

⎞

⎠

1
p + q + r

≤ 1 +
⎛

⎝1 −
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(
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q(1 − vαk )

r )wi w j wk

⎞

⎠

1
p + q + r

−
⎛

⎝1 −
n∏

i, j,k = 1

(
1 − (1 − vαi )

p(1 − vα j )
q(1 − vαk )

r )wi w j wk

⎞

⎠

1
p + q + r

= 1

(1.164)

which completes the proof of the theorem.
Moreover, the GIFWBM also has the following properties (Xia et al. 2012b):

Theorem 1.17 If all αi (i = 1, 2, . . . , n) are equal, i.e., αi = α, for all i , then

GIFWBM p,q,r (α1, α2, . . . , αn) = GIFWBM p,q,r (α, α, . . . , α) = α (1.165)

Theorem 1.18 Let βi = (μβi , vβi , πβi ) (i = 1, 2, . . . , n) be a collection of IFVs,
if μαi ≤ μβi and vαi ≥ vβi , for all i , then

GIFWBM p,q,r (α1, α2, . . . , αn) ≤ GIFWBM p,q,r (β1, β2, . . . , βn) (1.166)

Proof Since μαi ≤ μβi and vαi ≥ vβi , for all i , then

μp
αi

μq
α j

μr
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⇒
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p
βi

μ
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β j

μr
βk
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(
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α j
μr

αk
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(
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p
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μ
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β j
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⇒
⎛
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μ
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⎞

⎠

1
p + q + r

(1.167)
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and

(1 − vαi )
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(1.168)

Therefore,
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(1.169)
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Let α = GIFWBM p,q,r (α1, α2, . . . , αn) and β = GIFWBM p,q,r (β1, β2,

. . . , βn), and let S(α) and S(β) be the scores of α and β, then Eq. (1.169) is equal to
S(α) ≤ S(β). Now we discuss the following cases:

Case 1 If S(α) < S(β), then by Xu and Yager (2006)’s ranking method, it can be
obtained that

GIFWBM p,q(α1, α2, . . . , αn) < GIFWBM p,q(β1, β2, . . . , βn) (1.170)

Case 2 If S(α) = S(β), then
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−
⎛

⎜⎝1 −
⎛

⎝1 −
n∏

i, j,k = 1

(
1 − (1 − vαi )

p(1 − vα j )
q(1 − vαk )

r )wi w j wk

⎞

⎠

1
p + q + r

⎞

⎟⎠

=
⎛

⎝1 −
n∏

i, j,k = 1

(
1 − μ

p
βi

μ
q
β j

μr
βk

)wi w j wk

⎞

⎠

1
p + q + r

−
⎛

⎜⎝1 −
⎛

⎝1 −
n∏

i, j,k = 1

(
1 − (1 − vβi )

p(1 − vβ j )
q(1 − vβk )

r )wi w j wk

⎞

⎠

1
p + q + r

⎞

⎟⎠

(1.171)

Since μαi ≤ μβi and vαi ≥ vβi , for all i , we have

⎛

⎝1 −
n∏

i, j,k = 1

(
1 − μp

αi
μq

α j
μr

αk

)wi w j wk

⎞

⎠

1
p + q + r

=
⎛

⎝1 −
n∏

i, j,k = 1

(
1 − μ

p
βi

μ
q
β j

μr
βk

)wi w j wk

⎞

⎠

1
p + q + r

(1.172)

and

1 −
⎛

⎝1 −
n∏

i, j,k = 1

(
1 − (1 − vαi )

p(1 − vα j )
q(1 − vαk )

r )wi w j wk

⎞

⎠

1
p + q + r
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= 1 −
⎛

⎝1 −
n∏

i, j,k = 1

(
1 − (1 − vβi )

p(1 − vβ j )
q(1 − vβk )

r )wi w j wk

⎞

⎠

1
p + q + r

(1.173)

and thus,

hα =
⎛

⎝1 −
n∏

i, j,k = 1

(
1 − μ

p
αi μ

q
α j μ

r
αk

)wi w j wk

⎞

⎠

1
p + q + r

+
⎛

⎜⎝1 −
⎛

⎝1 −
n∏

i, j,k = 1

(
1 − (1 − vαi )

p(1 − vα j )
q (1 − vαk )

r
)wi w j wk

⎞

⎠

1
p + q + r

⎞

⎟⎠

=
⎛

⎝1 −
n∏

i, j,k = 1

(
1 − μ

p
βi

μ
q
β j

μr
βk

)wi w j wk

⎞

⎠

1
p + q + r

+
⎛

⎜⎝1 −
⎛

⎝1 −
n∏

i, j,k = 1

(
1 − (1 − vβi )

p(1 − vβ j )
q (1 − vβk )

r
)wi w j wk

⎞

⎠

1
p + q + r

⎞

⎟⎠

= hβ (1.174)

Then by Xu and Yager (2006)’s ranking method, we get

GIFWBM p,q,r (α1, α2, . . . , αn) = GIFWBM p,q,r (β1, β2, . . . , βn) (1.175)

which completes the proof.

Theorem 1.19 Let (α̇1, α̇2, . . . , α̇n) be any permutation of (α1, α2, . . . , αn), then

GIFWBM p,q,r (α1, α2, . . . , αn) = GIFWBM p,q,r (α̇1, α̇2, . . . , α̇n) (1.176)

Theorem 1.20 Let α− and α+ be given by Eqs. (1.35) and (1.36), then

α− ≤ GIFWBM p,q(α1, α2, . . . , αn) ≤ α+ (1.177)

1.5.3 Generalized Intuitionistic Fuzzy Weighted Bonferroni
Geometric Mean

Apparently, the aggregation operators proposed in Sects. 1.5.1 and 1.5.2 are all based
on the arithmetic average, which is one of the basic aggregation techniques and
focuses on the group opinion, and another fundamental one is the geometric mean,
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which gives more importance to the individual opinions. In this subsection, we first
introduce the generalized weighted Bonferroni geometric mean, based on which, the
generalized intuitionistic fuzzy weighted Bonferroni geometric mean is given.

Let p, q, r ≥ 0, and ai (i = 1, 2, . . . , n) be a collection of nonnegative numbers,
then

Definition 1.15 (Xia et al. 2012b) Let w = (w1, w2, . . . , wn)T be the weight vector
of ai (i = 1, 2, . . . , n) such that wi > 0, i = 1, 2, . . . , n and

∑n
i = 1 wi = 1. If

GWBGM p,q,r (a1, a2, . . . , an) = 1

p + q + r

n∏

i, j,k = 1

(pai + qa j + rak)
wi w j wk

(1.178)
then GWBGM p,q,r is called a generalized weighted Bonferroni geometric mean
(GWBGM), which has the following properties:

Theorem 1.21 (Xia et al. 2012b)

(1) GWBGM p,q,r (0, 0, . . . , 0) = 0.
(2) GWBGM p,q,r (a, a, . . . , a) = a, if ai = a, for all i .
(3) GWBGM p,q,r (a1,a2, . . . ,an)≥ GWBGM p,q,r (b1, b2, . . . , bn), i.e., GWBGM p,q,r

is monotonic, if ai ≥ bi , for all i .
(4) min{ai } ≤ GWBGM p,q,r (a1, a2, . . . , an) ≤ max{ai }.

In addition, some special cases can be obtained as the change of the parameters:

(1) If r = 0, then the GWBGM reduces to:

GWBGM p,q,0(a1, a2, . . . , an) = 1

p + q

n∏

i, j,k = 1

(pai + qa j )
wi w j wk

= 1

p + q

n∏

i, j = 1

(pai + qa j )
wi w j (1.179)

which is called a weighted Bonferroni geometric mean (WBGM).

(2) If q = 0 and r = 0, then

GWBGM p,0,0(a1, a2, . . . , an) = 1

p

n∏

i, j,k = 1

(pai )
wi w j wk =

n∏

i = 1

awi
i (1.180)

which is the usual geometric mean.
Let p, q, r > 0 and αi = (μαi , vαi , παi ) (i = 1, 2, . . . , n) be a collection of

IFVs.
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To aggregate the intuitionistic fuzzy information, we further introduce the
following:

Definition 1.16 (Xia et al. 2012b) Let w = (w1, w2, . . . , wn)T be the weight vector
of αi (i = 1, 2, . . . , n) such that wi > 0, i = 1, 2, . . . , n and

∑n
i = 1 wi = 1. If

GIFWBGM p,q,r (α1, α2, . . . , αn)

= 1

p + q + r

(
n⊗

i, j,k = 1

(
pαi ⊕ qα j ⊕ rαk

)wi w j wk

)
(1.181)

then GIFWBGM p,q,r is called a generalized intuitionistic fuzzy weighted Bonferroni
geometric mean (GIFWBGM).

Based on the operational laws of the IFVs, and similar to Theorem 1.16, we can
derive the following theorem:

Theorem 1.22 (Xia et al. 2012b) The aggregated value by using the GIFWBGM is
also an IFV, and

GIFWBGM p,q,r (α1, α2, . . . , αn)

=
⎛

⎜⎝1 −
⎛

⎝1 −
n∏

i, j,k = 1

(
1 − (1 − μαi )

p(1 − μα j )
q(1 − μαk )

r )wi w j wk

⎞

⎠

1
p + q + r

,

⎛

⎝1 −
n∏

i, j,k = 1

(
1 − vp

αi
vq
α j

vr
αk

)wi w j wk

⎞

⎠

1
p + q + r

⎞

⎟⎠ (1.182)

Now let us discuss some desirable properties of the GIFGBM (Xia et al. 2012b):

Theorem 1.23 If all αi (i = 1, 2, . . . , n) are equal, i.e., αi = α = (μα, vα, πα),
for all i , then

GIFWBGM p,q(α1, α2, . . . , αn) = α (1.183)

Theorem 1.24 Let βi = (μβi , vβi , πβi ) (i = 1, 2, . . . , n) be a collection of IFVs,
if μαi ≤ μβi and vαi ≥ vβi , for all i , then

GIFWBGM p,q(α1, α2, . . . , αn) ≤ GIFWBGM p,q(β1, β2, . . . , βn) (1.184)

Theorem 1.25 Let (α̇1, α̇2, . . . , α̇n) be any permutation of (α1, α2, . . . , αn), then

GIFWBGM p,q(α1, α2, . . . , αn) = GIFWBGM p,q(α̇1, α̇2, . . . , α̇n) (1.185)



1.5 Generalized Intuitionistic Fuzzy Bonferroni Means 77

Theorem 1.26 Let α− and α+ be given by Eqs. (1.35) and (1.36), then

α− ≤ GIFWBGM p,q(α1, α2, . . . , αn) ≤ α+ (1.186)

In what follows, we apply the aggregation operators proposed in Sects. 1.5.2 and
1.5.3 to multi-attribute decision making with intuitionistic fuzzy information:

For a multi-attribute decision making problem, let Y , G and w be defined as
in Sect. 1.2.4. The performance of the alternative yi with respect to the attribute
G j is measured by an IFV bij = (tij, fij, πij), and all bij(i = 1, 2, . . . , n;
j = 1, 2, . . . , m) are contained in the intuitionistic fuzzy decision matrix
B = (bij)n×m . Then an approach is given for multi-criteria decision making under
intuitionistic fuzzy environments (Xia et al. 2012b):

Step 1 Transform the matrix B = (bij)m×n into the normalized intuitionistic fuzzy
decision matrix R = (rij)n×m by Xu and Hu (2010)’s method, where

rij = (μij, vij, πij) =
{

bij, for benefit attribute G j

bc
ij, for cost attribute G j

,

i = 1, 2, . . . , m; j = 1, 2, . . . , n (1.187)

where bc
ij is the complement of bij, such that bc

ij = ( fij, tij, πij).
Step 2 Aggregate all the performance values rij ( j = 1, 2, . . . , n) of the i th line,

and get the overall performance value ri corresponding to the alternative yi by the
GIFWBM or the GIFWBGM:

ri = (μi , vi , πi ) = GIFWBM p,q,r
w (ri1, ri2, . . . , rin)

=
(

n⊕
j,k,l=1

w j wkwl

(
r p

ij ⊗ rq
ik ⊗ rr

il

)) 1
p + q + r

(1.188)

or

ri = (μi , vi , πi ) = GIFWBGM p,q,r
w (ri1, ri2, . . . , rin)

= 1

p + q + r

(
n⊗

j,k,l=1

(
prij ⊕ qrik ⊕ rril

)w j wk wl

)
(1.189)

where p, q, r > 0.
Step 3 Rank the overall performance values ri (i = 1, 2, . . . , m) according to

Xu and Yager (2006)’s ranking method and obtain the priority of the alternatives
yi (i = 1, 2, . . . , m) according to ri (i = 1, 2, . . . , m).

Next, we give an example to illustrate the proposed approach:

Example 1.6 (Wu and Chen 2011) We know that human resource management is
very important during the recruiting and hiring stages of employment. Suppose that
the committee of a company intends to choose a project manager from a group of
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Table 1.12 Intuitionistic fuzzy decision matrix B

G1 G2 G3 G4

y1 (0.33, 0.33, 0.34) (0.22, 0.34, 0.44) (0.23, 0.49, 0.28) (0.15, 0.57, 0.28)

y2 (0.24, 0.34, 0.42) (0.26, 0.40, 0.34) (0.21, 0.28, 0.51) (0.44, 0.39, 0.17)

y3 (0.11, 0.16, 0.73) (0.19, 0.47, 0.34) (0.23, 0.31, 0.46) (0.35, 0.46, 0.19)

y4 (0.19, 0.38, 0.43) (0.31, 0.29, 0.40) (0.44, 0.24, 0.32) (0.21, 0.25, 0.54)

y5 (0.37, 0.48, 0.15) (0.29, 0.39, 0.32) (0.32, 0.35, 0.33) (0.34, 0.25, 0.41)

y6 (0.25, 0.34, 0.41) (0.24, 0.35, 0.41) (0.30, 0.28, 0.42) (0.45, 0.28, 0.27)

candidates. Project management is the application of knowledge, skills, tools, and
techniques to the implementation of project activities for the purpose of meeting
project requirements. The requirements of a project manager are not only morale,
but also proficiency in project management. Suppose that four attributes: (1) G1 (self-
confidence); (2) G2 (personality); (3) G3 (past experience); and (4) G4 (proficiency
in project management), are taken into consideration in the selection problem and
there exist six candidates yi (i = 1, 2, . . . , 6). Assume that the performance of
the alternative yi with respect to the attribute G j is measured by an IFV bij =
(μij, vij, πij), and then we construct the intuitionistic fuzzy decision matrix B =
(bij)6×4 (see Table 1.12) (Xia et al. 2012b).

To get the optimal alternative(s), the following steps are given (Xia et al. 2012b):

Step 1 Considering all the attributes G j ( j = 1, 2, 3, 4) are the benefit attributes,
the performance values of the alternatives yi (i = 1, 2, . . . , 6) do not need normal-
ization.

Step 2 Aggregate all the performance values rij (i = 1, 2, 3, 4; j = 1, 2, . . . , 6)

of the i th line, and get the overall performance value ri corresponding to the alter-
native yi by the GIFWBM (without of generalization, let p = q = r = 1):

r1 = (0.2061, 0.4744, 0.3195), r2 = (0.3156, 0.3532, 0.3312)

r3 = (0.2583, 0.3841, 0.3576), r4 = (0.2975, 0.2673, 0.4352)

r5 = (0.3270, 0.3291, 0.3439), r6 = (0.3435, 0.2997, 0.3568)

Step 3 Calculate the scores of all the alternatives:

S(r1) = −0.2683, S(r2) = −0.0376, S(r3) = −0.1259

S(r4) = 0.0303, S(r5) = −0.0021, S(r6) = 0.0439

Since
S(r6) > S(r4) > S(r5) > S(r2) > S(r3) > S(r1)

then by Xu and Yager (2006)’s ranking method, we get the ranking of the IFVs:

r6 > r4 > r5 > r2 > r3 > r1
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by which we obtain
y6 � y4 � y5 � y2 � y3 � y1

In Step 2, if we let p = q = r = 2, then we have

r1 = (0.2132, 0.4666, 0.3202), r2 = (0.3316, 0.3516, 0.3168)

r3 = (0.2708, 0.3771, 0.3521), r4 = (0.3140, 0.2664, 0.4196)

r5 = (0.3278, 0.3259, 0.3463), r5 = (0.3547, 0.2992, 0.3461)

Then we calculate the scores of all the alternatives:

S(r1) = −0.2534, S(r2) = −0.0200, S(r3) = −0.1064

S(r4) = 0.0475, S(r5) = 0.0019, S(r6) = 0.0555

and thus,
y6 � y4 � y5 � y2 � y3 � y1

In Step 2, if we use the GIFWBGM to aggregate the performances of the alterna-
tives (here, we let p = q = r = 1), then

r1 = (0.2401, 0.4773, 0.2826), r2 = (0.3111, 0.3542, 0.3347)

r3 = (0.2546, 0.3879, 0.3575), r4 = (0.2929, 0.2681, 0.4390)

r5 = (0.3268, 0.3313, 0.3419), r6 = (0.3404, 0.3000, 0.3596)

from which we calculate the scores of all the alternatives:

S(r1) = −0.2732, S(r2) = −0.0431, S(r3) = −0.1333

S(r4) = 0.0248, S(r5) = −0.0045, S(r6) = 0.0404

and thus,
y6 � y4 � y5 � y2 � y3 � y1

If we let p = q = r = 2, then

r1 = (0.2029, 0.4861, 0.3110), r2 = (0.3052, 0.3577, 0.3371)

r3 = (0.2514, 0.4004, 0.3482), r4 = (0.2875, 0.2712, 0.4413)

r5 = (0.3265, 0.3395, 0.3340), r5 = (0.3357, 0.3016, 0.3627)

and the scores of all the alternatives are:

S(r1) = −0.2832, S(r2) = −0.0525, S(r3) = −0.1490

S(r4) = 0.0163, S(r5) = −0.0129, S(r6) = 0.0341
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Therefore,
y6 � y4 � y5 � y2 � y3 � y1

From the above analysis, the results obtained by Xia et al. (2012b)’s approach are
very similar to the ones obtained by Wu and Chen (2011)’s approach, but the former
is much simpler. In addition, Xia et al. (2012b)’s approach is more flexible than Wu
and Chen (2011)’s one, because it can provide the decision makers (or experts) more
choices as the parameters are assigned different values.

1.6 Intuitionistic Fuzzy Aggregation Operators Based
on Archimedean t-conorm and t-norm

1.6.1 Intuitionistic Fuzzy Operational Laws Based on t-conorm
and t-norm

Definition 1.17 (Klir and Yuan 1995) A function τ : [0, 1]×[0, 1] → [0, 1] is called
a t-norm if it satisfies the following four conditions:

(1) τ(1, x) = x , for all x .
(2) τ(x, y) = τ(y, x), for all x and y.
(3) τ(x, τ (y, z)) = τ(τ (x, y), z), for all x , y and z.
(4) If x ≤ x ′ and y ≤ y′, then τ(x, y) ≤ τ(x ′, y′).

Definition 1.18 (Klir and Yuan 1995) A function ṡ: [0, 1]×[0, 1] → [0, 1] is called
a t-conorm if it satisfies the following four conditions:

(1) ṡ(0, x) = x , for all x .
(2) ṡ(x, y) = ṡ(y, x), for all x and y.
(3) ṡ(x, ṡ(y, z)) = ṡ(ṡ(x, y), z), for all x , y and z.
(4) If x ≤ x ′ and y ≤ y′, then ṡ(x, y) ≤ ṡ(x ′, y′).

Definition 1.19 (Klir and Yuan 1995) A t-norm function τ(x, y) is called
Archimedean t-norm if it is continuous and τ(x, x) < x for all x ∈ (0, 1). An
Archimedean t-norm is called strict Archimedean t-norm if it is strictly increasing
in each variable for x, y ∈ (0, 1).

Definition 1.20 (Klir and Yuan 1995) A t-conorm function ṡ(x, y) is called
Archimedean t-conorm if it is continuous and ṡ(x, x) > x for all x ∈ (0, 1). An
Archimedean t-conorm is called strict Archimedean t-conorm if it is strictly increas-
ing in each variable for x, y ∈ (0, 1).

It is well known (Klement and Mesiar 2005) that a strict Archimedean t-norm is
expressed via its additive generator h as ṡ(x, y) = h−1(h(x) + h(y)), and similarly,
applied to its dual t-conorm T (x, y) = g−1(g(x) + g(y)) with h(t) = g(1 − t).
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We notice that an additive generator of a continuous Archimedean t-norm is a strictly
decreasing function g: [0, 1] → 0, 1] such that g(1) = 0. If we assign specific forms
to the function g, then some well-known t-cornorms and t-norms can be obtained
(Xia et al. 2012b):

(1) Let g(t) = − log t , then h(t) = − log(1− t), g−1(t) = e−t , h−1(t) = 1−e−t ,
and Algebraic t-conorm and t-norm (Beliakov et al. 2007) are obtained as follows:

ṡA(x, y) = x + y − xy, τA(x, y) = xy (1.190)

(2) Let g(t) = log
( 2−t

t

)
, then

h(t) = log

(
2 − (1 − t)

1 − t

)
, g−1(t) = 2

et + 1
, h−1(t) = 1 − 2

et + 1
(1.191)

and we can get Einstein t-conorm and t-norm (Beliakov et al. 2007):

ṡE (x, y) = x + y

1 + xy
, τE (x, y) = xy

1 + (1 − x)(1 − y)
(1.192)

(3) Let g(t) = log
(

γ+(1−γ )t
t

)
, γ ∈ (0,+∞), then we have

h(t) = log

(
γ + (1 − γ )1 − t)

1 − t

)
, g−1(t) = γ

et + γ − 1
, h−1(t) = 1 − γ

et + γ − 1
(1.193)

and Hamacher t-conorm and t-norm (Beliakov et al. 2007) are obtained as follows:

ṡH (x, y) = x + y − xy − (1 − γ )xy

1 − (1 − γ )xy
, γ ∈ (0,+∞) (1.194)

τH (x, y) = xy

γ + (1 − γ )(x + y − xy)
, γ ∈ (0,+∞) (1.195)

Especially, if γ = 1, then Hamacher t-conorm and t-norm reduce to Algebraic
t-conorm and t-norm, respectively; if γ = 2, then Hamacher t-conorm and t-norm
reduce to Einstein t-conorm and t-norm, respectively.

(4) Let g(t) = log
(

γ−1
γ t −1

)
, γ ∈ (1,+∞), then

g(t) = log

(
γ

(1 − γ )t − 1

)
, g−1(t) = γ − 1 + eγ

eγ
,

h−1(t) = 1 − γ

et + γ − 1
(1.196)
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and get Frank t-conorm and t-norm (Beliakov et al. 2007):

ṡF (x, y) = 1 − logγ

(
1 + (γ 1−x − 1)(γ 1−y − 1)

γ − 1

)
, γ ∈ (1,+∞) (1.197)

τF (x, y) = logγ

(
1 + (γ x − 1)(γ y − 1)

γ − 1

)
, γ ∈ (1,+∞) (1.198)

Especially, if γ → 1, then

lim
γ→1

g(t) = lim
γ→1

log

(
γ − 1

γ t − 1

)
= lim

γ→1
log

(
1

tγ t−1 − 1

)
= − log t (1.199)

which indicates that lim
γ→1

ṡF (x, y) = ṡA(x, y) and lim
γ→1

τF (x, y) = τA(x, y).

Considering the relationships among all the three components:παi = 1−μαi −vαi ,
we usually denote an IFV α = (μα, vα, πα) only by its two former components
α = (μα, vα) for brevity. Based on Archimedean t-norm and t-conorm (Klir and
Yuan 1995), Beliakov et al. (2011) defined the sum operation on two IFVs αi =
(μαi , vαi ) (i = 1, 2):

α1 ⊕ α2 = (ṡ(μα1 , μα2), τ (vα1 , vα2)
)

(1.200)

which can be expressed by the following:

α1 ⊕ α2 = (ṡ(μα1 , μα2), τ (vα1 , vα2)
)

=
(

h−1(h(μα1) + h(μα2)), g
−1(g(vα1) + g(vα2))

)
(1.201)

Beliakov et al. (2011) also mentioned that for an IFV α = (μα, vα), let λα =
(μλα, vλα), then g(vλα) = λg(vα) and h(μλα) = λh(μα).

Let αi = (μαi , vαi ) (i = 1, 2) and α = (μα, vα) be three IFVs, then with the
above analysis, the operations about these IFVs based on Archimedean t-norm and
Archimedean t-conorm (Klir and Yuan 1995) can be also expressed as below:

Definition 1.21 (Xia et al. 2012b)

(1) α1 ⊕ α2 = (ṡ(μα1 , μα2), τ (vα1 , vα2)
)

=
(

h−1(h(μα1) + h(μα2)), g
−1(g(vα1) + g(vα2))

)
.

(2) α1 ⊗ α2 = (τ(μα1 , μα2), ṡ(vα1 , vα2)
)

=
(
g−1(g(μα1) + g(μα2)), h−1(h(vα1) + h(vα2))

)
.
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(3) λα =
(

h−1(λh(μα)), g−1(λg(vα))
)

, λ > 0.

(4) αλ =
(
g−1(λg(μα)), h−1(λh(vα))

)
, λ > 0.

Especially, if g(t) = − log(t), then the operational laws (1)–(4) can be trans-
formed into the corresponding operational laws (1)–(4) of Definition 1.3, which are
the ones based on Algebraic t-conorm and t-norm.

If g(t) = log
( 2−t

t

)
, then

(5) α1 ⊕ α2 =
(

μα1 + μα2

1 + μα1μα2

,
vα1 vα2

1 + (1 − vα1)(1 − vα2)

)
.

(6) α1 ⊗ α2 =
(

μα1μα2

1 + (1 − μα1)(1 − μα2)
,

vα1 + vα2

1 + vα1 vα2

)
.

(7) λα =
(

(1 + μα)λ − (1 − μα)λ

(1 + μα)λ + (1 − μα)λ
,

2vλ
α

(2 − vα))λ + vλ
α

)
, λ > 0.

(8) αλ =
(

2μλ
α

(2 − μα)λ + μλ
α

,
(1 + vα)λ − (1 − vα)λ

(1 + vα)λ + (1 − vα)λ

)
, λ > 0,

where the operational laws (5) and (6) are the ones defined by Wang and Liu (2011)
based on Einstein t-conorm and t-norm.

If g(t) = log
(

γ+(1−γ )t
t

)
, γ ∈ (0,+∞), then

(9) α1 ⊕ α2 =
(

μα1 + μα2 − μα1μα2 − (1 − γ )μα1μα2

1 − (1 − γ )μα1μα2

,

vα1 vα2

γ + (1 − γ )(vα1 + vα2 − vα1 vα2)

)
.

(10) α1 ⊗ α2 =
(

μα1μα2

γ + (1 − γ )(μα1 + μα2 − μα1μα2)
,

vα1 + vα2 − vα1 vα2 − (1 − γ )vα1 vα2

1 − (1 − γ )vα1 vα2

)
.

(11) λα =
(

(1 + (γ − 1)μα)λ − (1 − μα)λ

(1 + (γ − 1)μα)λ + (γ − 1)(1 − μα)λ
,

γ vλ
α

(1 + (γ − 1)(1 − vα))λ + (γ − 1)vλ
α

)
, λ > 0.

(12) αλ =
(

γμλ
α

(1 + (γ − 1)(1 − μα))λ + (γ − 1)μλ
α

,

(1 + (γ − 1)vα)λ − (1 − vα)λ

(1 + (γ − 1)vα)λ + (γ − 1)(1 − vα)λ

)
, λ > 0,

which are the ones defined based on Hammer t-conorm and t-norm.
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Especially, if γ = 1, then the operational laws (9)–(12) reduce to the correspond-
ing operational laws (1)–(4) of Definition 1.3; if γ = 2, then the operational laws
(9)–(12) above reduce to the operational laws (5)–(8).

If g(t) = log
(

γ−1
γ t −1

)
, γ ∈ (1,+∞), then

(13) α1 ⊕ α2 =
(

1 − logγ

(
1 + (γ 1−μα1 − 1) (γ 1−μα2 − 1)

γ − 1

)
,

logγ

(
1 + (γ vα1 − 1) (γ vα2 − 1)

γ − 1

))
, γ > 1.

(14) α1 ⊗ α2 =
(

logγ

(
1 + (γ μα1 − 1)(γ μα2 − 1)

γ − 1

)
,

1 − logγ

(
1 + (γ 1−vα1 − 1)(γ 1−vα2 − 1)

γ − 1

))
, γ > 1.

(15) λα =
(

1 − logγ

(
1 + (γ 1−μα − 1)λ

(γ − 1)λ−1

)
, logγ

(
1 + (γ vα − 1)λ

(γ − 1)λ−1

))
, λ > 0, γ > 1.

(16) αλ =
(

logγ

(
1 + (γ μα − 1)λ

(γ − 1)λ−1

)
, 1 − logγ

(
1 + (γ 1−vα − 1)λ

(γ − 1)λ−1

))
, λ > 0, γ > 1,

which are the ones defined based on Frank t-conorm and t-norm. Especially, if γ = 1,
then the operational laws (13)–(16) reduce to the corresponding operational laws (1)–
(4) of Definition 1.3.

Moreover, in what follows, we discuss some relationships of the above operational
laws of the IFVs:

Theorem 1.27 (Xia et al. 2012c)

(1) α1 ⊕ α2 = α2 ⊕ α1.

(2) α1 ⊗ α2 = α2 ⊗ α1.

(3) λ(α1 ⊕ α2) = λα1 ⊕ λα2.

(4) (α1 ⊗ α2)
λ = αλ

1 ⊗ αλ
2 .

(5) λ1α ⊕ λ2α = (λ1 + λ2)α.

(6) αλ1 ⊗ αλ2 = αλ1+λ2 .
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Proof (1) and (2) are obvious, we prove the others:

(3) λ(α1 ⊕ α2)

= λ(h−1(h(μα1) + h(μα2)), g
−1(g(vα1) + g(vα2)))

=
(

h−1
(
λh
(

h−1(h(μα1) + h(μα2))
))

, g−1
(
λg
(
g−1(g(vα1) + g(vα2))

)))

=
(

h−1 (λ
(
h(μα1) + h(μα2)

))
, g−1 (λ

(
g(vα1) + g(vα2)

)))

λα1 ⊕ λα2 = (h−1 (λh(μα1)
)
, g−1 (λg(vα1)

))⊕ (h−1 (λh(μα2)
)
, g−1 (λg(vα2)

))

= (h−1 (h
(
h−1 (λh(μα1)

))+ h
(
h−1 (λh(μα2)

)))
,

g−1 (g
(
g−1 (λg(vα1)

))+ g
(
g−1 (λg(vα2)

))))

= (h−1 (λh(μα1) + λh(μα2)
)
, g−1 (λg(vα1) + λg(vα2)

))

= λ(α1 ⊕ α2).

(5) λ1α ⊕ λ2α =
(

h−1 (λ1h(μα)) , g−1 (λ1g(vα))
)

⊕
(

h−1 (λ2h(μα)) , g−1 (λ2g(vα))
)

=
(

h−1
(

h
(

h−1 (λ1h(μα))
)

+ h
(

h−1 (λ2h(μα))
))

,

g−1
(
g
(
g−1 (λ1g(vα))

)
+ g

(
g−1 (λ2g(vα))

)))

=
(

h−1 (λ1h(μα) + λ2h(μα)) , g−1 (λ1g(vα) + λ2g(vα))
)

= (λ1 + λ2)α.

Similarly, (4) and (6) can be proven which completes the proof of the theorem.

Theorem 1.28 (Xia et al. 2012c)

(1) (αc)λ = (λα)c, λ > 0.

(2) λ(αc) = (αλ)c, λ > 0.

(3) αc
1 ⊕ αc

2 = (α1 ⊗ α2)
c.

(4) αc
1 ⊗ αc

2 = (α1 ⊕ α2)
c,

where αc = (vα, μα) denotes the complement of the IFV α.

Proof Based on the operations defined in Definition 1.21, we have

(1) (αc)λ = (g−1 (λg(vα)) , h−1 (λh(μα))
) = (λα)c.

(2) λ(αc) = (h−1 (λh(vα)) , g−1 (λg(vα))
) = (αλ)c.

(3) αc
1 ⊕ αc

2 = (h−1
(
h(vα1) + h(vα2)

)
, g−1

(
g(μα1) + g(μα2)

)) = (α1 ⊗ α2)
c.

(4) αc
1 ⊗ αc

2 = (g−1
(
g(vα1) + g(vα2)

)
, h−1

(
h(μα1) + g(μα2)

)) = (α1 ⊕ α2)
c,

which completes the proof.
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1.6.2 Intuitionistic Fuzzy Aggregation Operators Based
on Archimedean t-conorm and t-norm

The operational laws defined in Sect. 1.6.1 can be used to aggregate the intuitionistic
fuzzy information, which is the focus of this subsection.

Definition 1.22 (Xia et al. 2012c) Let w = (w1, w2, . . . , wn)T be the weight vector
of the IFVs αi = (μαi , vαi ) (i = 1, 2, . . . , n), where wi indicates the importance
degree of αi , satisfying wi > 0 (i = 1, 2, . . . , n) and

∑n
i = 1 wi = 1, if

ATS − IFWA(α1, α2, . . . , αn) = n⊕
i = 1

(wiαi ) (1.202)

then ATS-IFWA is called an Archimedean t-conorm and t-norm based intuitionistic
fuzzy weighted averaging (ATS-IFWA) operator.

Theorem 1.29 (Xia et al. 2012c) The aggregated value by using the ATS-IFWA
operator is also an IFV, and

ATS − IFWA(α1, α2, . . . , αn) = n⊕
i = 1

wiαi

=
(

h−1

(
n∑

i = 1

wi h(μαi )

)
, g−1

(
n∑

i = 1

wig(vαi )

))

(1.203)

which has been investigated by Beliakov et al. (2011), Xu and Yager (2009), Xu and
Cai (2010a), and next we give a further study:

Proof By using mathematical induction on n: For n = 2, we have

ATS − IFWA(α1, α2)

= 2⊕
i = 1

wiαi = w1α1 ⊕ w2α2

=
(

h−1
(

h(h−1(w1h(μα1))) + h(h−1(w2h(μα2)))
)

,

g−1
(
g(g−1(w1g(vα1))) + g(g−1(w2g(vα2)))

))

=
(
g−1 (w1g(μα1) + w2g(μα2)

)
, h−1 (w1h(vα1) + w2h(vα2)

))
(1.204)

Suppose that Eq. (1.203) holds for n = k, that is,
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ATS − IFWA(α1, α2, . . . , αk) = k⊕
i = 1

wiαi = w1α1 ⊕ w2α2 ⊕ . . . ⊕ wkαk

=
(

h−1

(
k∑

i = 1

wi h(μαi )

)
, g−1

(
k∑

i = 1

wig(vαi )

))

(1.205)

then

ATS − IFWA(α1, α2, . . . , αk, αk + 1)

= k⊕
i = 1

wiαi ⊕ wk + 1αk + 1

=
(

h−1

(
k∑

i = 1

wi h(μαi )

)
, g−1

(
k∑

i = 1

wig(vαi )

))

⊕ (h−1 (wk + 1h(μαk + 1)
)
, g−1 (wk + 1g(vαk + 1)

))

=
(

h−1

(
h

(
h−1

(
k∑

i = 1

wi h(μαi )

))
+ h

(
h−1 (wk + 1h(μαk + 1)

))
)

,

g−1

(
g

(
g−1

(
k∑

i = 1

wig(vαi )

))
+ g

(
g−1 (wk + 1g(vαk + 1)

))
))

=
(

h−1

(
k∑

i = 1

wi h(μαi ) + wk + 1h(μαk + 1)

)
, g−1

(
k∑

i = 1

wig(vαi ) + wk + 1g(vαk + 1)

))

=
(

h−1

(
k + 1∑

i = 1

wi h(μαi )

)
, g−1

(
k + 1∑

i = 1

wig(vαi )

))
(1.206)

i.e., Eq. (1.203) holds for n = k + 1. Thus Eq. (1.203) holds for all n.
In addition, we have known that h(t) = g(1− t), and g: [0, 1] → 0, 1] is a strictly

decreasing function, then h(t) is a strictly increasing function which indicates that

0 ≤ h−1

(
n∑

i = 1

wi h(μαi )

)
, g−1

(
n∑

i = 1

wig(vαi )

)
≤ 1 (1.207)

and

h−1

(
n∑

i = 1

wi h(μαi )

)
+ g−1

(
n∑

i = 1

wig(vαi )

)

≤ h−1

(
n∑

i = 1

wi h(μαi )

)
+ g−1

(
n∑

i = 1

wig(1 − μαi )

)
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= h−1

(
n∑

i = 1

wi h(μαi )

)
+ 1 − h−1

(
n∑

i = 1

wi h(μαi )

)
= 1 (1.208)

which completes the proof of Theorem 1.29.

Then we can investigate some desirable properties of the ATS-IFWA operator:

Theorem 1.30 (Xia et al. 2012c) If all αi (i = 1, 2, . . . , n) are equal, i.e., αi =
α = (μα, vα), for all i , then

ATS − IFWA(α1, α2, . . . , αn) = α (1.209)

Proof Let αi = α = (μα, vα), we have

ATS − IFWA(α1, α2, . . . , αn) = ATS − IFWA(α, α, . . . , α) = n⊕
i = 1

wiα

=
(

h−1

(
n∑

i = 1

wi h(μα)

)
, g−1

(
n∑

i = 1

wig(vα)

))

=
(

h−1 (h(μα)) , g−1 (g(vα))
)

= α (1.210)

Theorem 1.31 (Xia et al. 2012c) Let βi = (μβi , vβi ) (i = 1, 2, . . . , n) be a collec-
tion of IFVs, if μαi ≤ μβi and vαi ≥ vβi , for all i , then

ATS − IFWA(α1, α2, . . . , αn) ≤ ATS − IFWA(β1, β2, . . . , βn) (1.211)

Proof We have known that h(t) = g(1 − t), and g: [0, 1] → 0, 1] is a strictly
decreasing function, then h(t) is a strictly increasing function. Since μαi ≤ μβi and
vαi ≥ vβi , then we have

h−1

(
n∑

i = 1

wi h(μαi )

)
≤ h−1

(
n∑

i = 1

wi h(μβi )

)
(1.212)

g−1

(
n∑

i = 1

wig(vαi )

)
≥ g−1

(
n∑

i = 1

wig(vβi )

)
(1.213)

and thus,

S(ATS-IFWA(α1, α2, . . . , αn)) ≤ S(ATS-IFWA(β1, β2, . . . , βn)) (1.214)

which completes the proof.
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Based on Theorem 1.31, the following property can be obtained:

Theorem 1.32 (Xia et al. 2012c) Let α− and α+ be given by Eqs. (1.179) and
(1.180), then

α− ≤ ATS − IFWA(α1, α2, . . . , αn) ≤ α+ (1.215)

Theorem 1.33 (Xia et al. 2012c) Let w = (w1, w2, . . . , wn)T be the weight vector
of the IFVs αi (i = 1, 2, . . . , n), such that

∑n
i = 1 wi = 1. If β = (μβ, vβ) is an IFV,

then

ATS − IFWA(α1 ⊕ β, α2 ⊕ β, . . . , αn ⊕ β) = ATS − IFWA(α1, α2, . . . , αn) ⊕ β

(1.216)

Proof Since

α j ⊕ β =
(

h−1(h(μαi ) + h(μβ)), g−1(g(vαi ) + g(vβ))
)

(1.217)

then

ATS − IFWA(α1 ⊕ β, α2 ⊕ β, . . . , αn ⊕ β)

=
⎛

⎝h−1

⎛

⎝
n∑

i = 1

wi h(h−1(h(μαi ) + h(μβ)))

⎞

⎠ , g−1

⎛

⎝
n∑

i = 1

wi g(g−1(g(vαi ) + g(vβ)))

⎞

⎠

⎞

⎠

=
⎛

⎝h−1

⎛

⎝
n∑

i = 1

wi (h(μαi ) + h(μβ))

⎞

⎠ , g−1

⎛

⎝
n∑

i = 1

wi (g(vαi ) + g(vβ))

⎞

⎠

⎞

⎠ (1.218)

and

ATS − IFWA(α1, α1, . . . , αn) ⊕ β

=
(

h−1

(
n∑

i = 1

wi h(μαi )

)
, g−1

(
n∑

i = 1

wig(vαi )

))
⊕ (μβ, vβ)

=
(

h−1

(
h

(
h−1

(
n∑

i = 1

wi h(μαi )

))
+ h(μβ)

)
,

g−1

(
g

(
g−1

(
n∑

i = 1

wig(vαi )

))
+ g(vβ)

))

=
(

h−1

(
n∑

i = 1

wi h(μαi ) + h(μβ)

)
, g−1

(
n∑

i = 1

wig(vαi ) + g(vβ)

))

=
(

h−1

(
n∑

i = 1

wi (h(μαi ) + h(μβ))

)
, g−1

(
n∑

i = 1

wi (g(vαi ) + g(vβ))

))
(1.219)

which completes the proof.
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Theorem 1.34 (Xia et al. 2012c) If r > 0, then

ATS − IFWA(rα1, rα2, . . . , rαn) = rATS − IFWA(α1, α2, . . . , αn) (1.220)

Proof According to Definition 1.21, we have

rα =
(

h−1(rh(μαi )), g
−1(rg(vαi ))

)
(1.221)

then

ATS − IFWA(rα1, rα2, . . . , rαn)

=
(

h−1

(
k+1∑

i = 1

wi h(h−1(rh(μαi )))

)
, g−1

(
k+1∑

i = 1

wig(g−1(rg(vαi )))

))

=
(

h−1

(
k+1∑

i = 1

wi (rh(μαi ))

)
, g−1

(
k+1∑

i = 1

wi (rg(vαi ))

))
(1.222)

and

rATS − IFWA(α1, α2, . . . , αn)

=
(

h−1

(
rh

(
h−1

(
n∑

i = 1

wi h(μαi )

)))
, g−1

(
rg

(
g−1

(
n∑

i = 1

wig(vαi )

))))

=
(

h−1

(
r

n∑

i = 1

wi h(μαi )

)
, g−1

(
r

n∑

i = 1

wig(vαi )

))
(1.223)

According to Theorems 1.33 and 1.34, we can get the following result easily:

Theorem 1.35 (Xia et al. 2012c) If r > 0, and β = (μβ, vβ) is an IFV, then

ATS − IFWA(rα1 ⊕ β, rα2 ⊕ β, . . . , rαn ⊕ β) = rATS − IFWA(α1, α2, . . . , αn) ⊕ β

(1.224)

Theorem 1.36 (Xia et al. 2012c) Let βi = (μβi , vβi ) (i = 1, 2, . . . , n) be a
collection of IFVs, and w = (w1, w2, . . . , wn)T their weight vector, such that∑n

i = 1 wi = 1, then

ATS − IFWA(α1 ⊕ β1, α2 ⊕ β2, . . . , αn ⊕ βn)

= ATS − IFWA(α1, α2, . . . , αn) ⊕ ATS − IFWA(β1, β2, . . . , βn) (1.225)

Proof According to Definition 1.21, we have

αi ⊕ βi =
(

h−1(h(μαi ) + h(μβi )), g
−1(g(vαi ) + g(vβi ))

)
(1.226)
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then

ATS − IFWA(α1 ⊕ β1, α2 ⊕ β2, . . . , αn ⊕ βn)

=
(

h−1

(
n∑

i = 1

wi h(h−1(h(μαi ) + h(μβi )))

)
, g−1

(
n∑

i = 1

wi g(g−1(g(vαi ) + g(vβi )))

))

=
(

h−1

(
n∑

i = 1

wi (h(μαi ) + h(μβi ))

)
, g−1

(
n∑

i = 1

wi (g(vαi ) + g(vβi ))

))
(1.227)

and

ATS − IFWA(α1, α2, . . . , αn) ⊕ ATS − IFWA(β1, β2, . . . , βn)

=
(

h−1

(
n∑

i = 1

wi h(μαi )

)
, g−1

(
n∑

i = 1

wig(vαi )

))

⊕
(

h−1

(
n∑

i = 1

wi h(μβi )

)
, g−1

(
n∑

i = 1

wig(vβi )

))

=
(

h−1

(
h

(
h−1

(
n∑

i = 1

wi h(μαi )

))
+ h

(
h−1

(
n∑

i = 1

wi h(μβi )

)))
,

g−1

(
g

(
g−1

(
n∑

i = 1

wig(vαi )

))
+ g

(
g−1

(
n∑

i = 1

wig(vβi )

))))

=
(

h−1

(
n∑

i = 1

wi h(μαi ) +
n∑

i = 1

wi h(μβi )

)
, g−1

(
n∑

i = 1

wig(vαi ) +
n∑

i = 1

wig(vβi )

))

(1.228)

which completes the proof.

If the additive generator g is assigned different forms, then some specific intu-
itionistic fuzzy aggregation operators can be obtained (Xia et al. 2012c):

Case 1 If g(t) = − log(t), then the ATS-IFWA operator reduces to the following:

I FW A(α1, α2, . . . , αn) =
(

1 −
n∏

i = 1

(1 − μαi )
wi ,

n∏

i = 1

vwi
αi

)
(1.229)

which is the IFWA operator defined by Xu (2007).
Case 2 If g(t) = log

( 2−t
t

)
, then the ATS-IFWA operator reduces to the following:

EIFWA(α1, α2, . . . , αn)

=
(∏n

i = 1 (1 + μαi )
wi −∏n

i = 1 (1 − μαi )
wi

∏n
i = 1 (1 + μαi )

wi +∏n
i = 1 (1 − μαi )

wi
,

2
∏n

i = 1 vwi
αi∏n

i = 1 (2 − vαi )
wi +∏n

i = 1 vwi
αi

)

(1.230)

which is called an Einstein intuitionistic fuzzy weighted averaging (EIFWA) operator.
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Case 3 If g(t) = log
(

γ+(1−γ )t
t

)
, γ ∈ (0,+∞), then the ATS-IFWA operator

reduces to the following:

HIFWA(α1, α2, . . . , αn) =
( ∏n

i = 1 (1 + (γ − 1)μαi )
wi −∏n

i = 1 (1 − μαi )
wi

∏n
i = 1 (1 + (γ − 1)μαi )

wi + (γ − 1)
∏n

i = 1 (1 − μαi )
wi

,

γ
∏n

i = 1 vwi
αi∏n

i = 1 (1 + (γ − 1)(1 − vαi ))
wi + (γ − 1)

∏n
i = 1 vwi

αi

)

(1.231)

which is called a Hammer intuitionistic fuzzy weighted averaging (HIFWA) operator.
Especially, if γ = 1, then the HIFWA operator reduces to the IFWA operator; if
γ = 2, then the HIFWA operator reduces to the EIFWA operator.

Case 4 If g(t) = log
(

γ−1
γ t −1

)
, t ∈ (1,+∞), then the ATS-IFWA operator reduces

to the following:

FIFWA(α1, α1, . . . , αn)

=
(

1 − logγ

(
1 +

∏n
i = 1 (γ 1−μαi − 1)wi

γ − 1

)
, logγ

(
1 +

∏n
i = 1 (γ vαi − 1)wi

γ − 1

))

(1.232)

which is called a Frank intuitionistic fuzzy weighted averaging (FIFWA) operator.
Especially, if γ → 1, then the FIFWA operator reduces to the IFWA operator.

Motivated by the geometric mean, the following definition is given:

Definition 1.23 (Xia et al. 2012c) If

ATS − IFWG(α1, α2, . . . , αn) = n⊗
i = 1

α
wi
i (1.233)

then ATS-IFWG is called an Archimedean t-cornorm and t-norm based intuitionistic
fuzzy geometric (ATS-IFWG) operator.

Based on the operational laws of the IFVs given in Definition 1.21, we can derive
the following theorem:

Theorem 1.37 (Xia et al. 2012c) The aggregated value by using the ATS-IFWG
operator is also an IFV, and

ATS − IFWG(α1, α2, . . . , αn) = n⊗
i = 1

wiαi

=
(

g−1

(
n∑

i = 1

wig(μαi )

)
, h−1

(
n∑

i = 1

wi h(vαi )

))

(1.234)
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Similarly, we can prove the ATS-IFWG operator also satisfies the properties that
the ATS-IFWA operator has, here we will not repeat them. Moreover, if the addi-
tive generator g is assigned different forms, then the following intuitionistic fuzzy
aggregation operators can be obtained (Xia et al. 2012c):

Case 1 If g(t) = − log(t), then the ATS-IFWG operator reduces to:

IFWG(α1, α2, . . . , αn) =
(

n∏

i = 1

μwi
αi

, 1 −
n∏

i = 1

(1 − vαi )
wi

)
(1.235)

which is the IFWG operator defined by Xu and Yager (2006).
Case 2 If g(t) = log

( 2−t
t

)
, then the ATS-IFWG operator reduces to:

EIFWG(α1, α2, . . . , αn)

=
(

2
∏n

i = 1 μ
wi
αi∏n

i = 1 (2 − μαi )
wi +∏n

i = 1 μ
wi
αi

,

∏n
i = 1 (1 + vαi )

wi −∏n
i = 1 (1 − vαi )

wi

∏n
i = 1 (1 + vαi )

wi +∏n
i = 1 (1 − vαi )

wi

)

(1.236)

which is the Einstein intuitionistic fuzzy weighted geometric (EIFWG) operator
defined by Wang and Liu (2011).

Case 3 If g(t) = log
(

γ+(1−γ )t
t

)
, γ ∈ (0,+∞), then the ATS-IFWG operator

reduces to:

HIFWG(α1, α2, . . . , αn) =
(

γ
∏n

i = 1 μ
wi
αi∏n

i = 1 (1 + (γ − 1)(1 − μαi ))
wi + (γ − 1)

∏n
i = 1 μ

wi
αi

,

∏n
i = 1 (1 + (γ − 1)vαi )

wi −∏n
i = 1 (1 − vαi )

wi

∏n
i = 1 (1 + (γ − 1)vαi )

wi + (γ − 1)
∏n

i = 1 (1 − vαi )
wi

)

(1.237)

which is called a Hammer intuitionistic fuzzy weighted geometric (HIFWG) opera-
tor. Especially, if γ = 1, then the HIFWG operator reduces to the IFWA operator; if
γ = 2, then the HIFWG operator reduces to the EIFWG operator.

Case 4 If g(t) = log
(

γ−1
γ t −1

)
, t ∈ (1,+∞), then the ATS-IFWG operator

reduces to:

FIFWG(α1, α1, . . . , αn)

=
(

logγ

(
1 +

∏n
i = 1 (γ μαi − 1)wi

γ − 1

)
, 1 − logγ

(
1 +

∏n
i = 1 (γ 1−vαi − 1)wi

γ − 1

))

(1.238)

which is called a Frank intuitionistic fuzzy weighted geometric (FIFWG) operator.
Especially, if γ → 1, then the FIFWG operator reduces to the IFWG operator.
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1.6.3 An Approach to Intuitionistic Fuzzy Multi-Attribute
Decision Making

For a multi-attribute decision making under intuitionistic fuzzy environment, let Y
and G be defined as in Sect. 1.2.4. To evaluate the performance of the alternative yi

under the attribute G j , the expert is required to provide not only the information that
the alternative yi satisfies the attribute G j , but also the information that the alternative
yi doesn’t satisfy the attribute G j . These two part information can be expressed by
μij and vij which denote the degrees that the alternative yi satisfies the attribute G j

and doesn’t satisfy the attribute G j , then the performance of the alternative yi under
the attribute G j can be expressed by an IFV αij = (μij, vij) with the condition that
0 ≤ μij, vij ≤ 1 and μij + vij ≤ 1. When all the performances of the alternatives are
provided, the intuitionistic fuzzy decision matrix B = (bij)m×n = (

(μij, vij)
)

m×n
can be constructed. To obtain the ranking of the alternatives, the following steps can
be given (Xia et al. 2012c):

Step 1 Transform the intuitionistic fuzzy decision matrix B = (bij)n×n into the
normalized intuitionistic fuzzy decision matrix R = (rij)n×n , where

rij =
{

bij, for benefit attribute Gi

bc
ij, for cost attribute Gi

, i = 1, 2, . . . , m, j = 1, 2, . . . , n

(1.239)
Step 2 Aggregate the intuitionistic fuzzy values ri (i = 1, 2, . . . , m) of the

alternatives yi (i = 1, 2, . . . , m) by the HIFWA operator:

ri = ATS − IFWA(ri1, ri2, . . . , rin) = n⊕
j = 1

w jrij, i = 1, 2, . . . , m (1.240)

or the HIFWG operator:

ri = ATS − IFWG(ri1, ri2, . . . , rin) = n⊗
j = 1

r
w j
ij , i = 1, 2, . . . , m (1.241)

Step 3 Calculate the scores S(bi ) of bi by using Xu and Yager (2006)’s ranking
method, and obtain the priority of the alternatives according to the ranking of ri

(i = 1, 2, . . . , m), the bigger the ri , the better the alternative yi .
To illustrate the proposed method, we give an example adapted from Chen (2011)

as follows:

Example 1.7 The purchasing manager in a small enterprise considers various cri-
teria (or attributes) involving: (1) G1: financial factors (e.g., economic performance,
financial stability); (2) G2: performance (e.g., delivery, quality, price); (3) G3: tech-
nology (e.g., manufacturing capability, design capability, ability to cope with tech-
nology changes); and (4) G4: organizational culture and strategy (e.g., feeling of
trust, internal and external integration of suppliers, compatibility across levels and
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Table 1.13 Intuitionistic
fuzzy decision matrix B

G1 G2 G3 G4

y1 (0.60, 0.18) (0.24, 0.44) (0.10, 0.54) (0.45, 0.23)

y2 (0.41, 0.25) (0.49, 0.09) (0.10, 0.39) (0.52, 0.45)

y3 (0.62, 0.18) (0.67, 0.28) (0.36, 0.42) (0.12, 0.67)

y4 (0.21, 0.58) (0.76, 0.22) (0.48, 0.34) (0.15, 0.53)

y5 (0.38, 0.19) (0.65, 0.32) (0.06, 0.29) (0.24, 0.39)

y6 (0.56, 0.12) (0.50, 0.41) (0.21, 0.07) (0.06, 0.28)

functions of the buyer and the supplier). The set of evaluative criteria is denoted by
G = {G1, G2, G3, G4}, whose weight vector is w = (0.34, 0.23, 0.22, 0.21)T .
There are six suppliers available, and the set of all alternatives is denoted by
Y = {y1, y2, . . . , y6}. The characteristics of the suppliers yi (i = 1, 2, . . . , 6) in
terms of the criteria in G are expressed by the intuitionistic fuzzy decision matrix B
(see Table 1.13) (Xia et al. 2012c).

To obtain the alternative(s), the following steps are given (Xia et al. 2012c):

Step 1 Considering all the criteria G j ( j = 1, 2, 3, 4) are the benefit criteria, the
performance values of the alternatives yi (i = 1, 2, . . . , 6) do not need normaliza-
tion.

Step 2 Aggregate the intuitionistic fuzzy values bi of the alternative yi by the
HIFWA operator (without loss of generality, let γ = 1):

b1 = (0.4075,0.2964), b2 = (0.4005,0.2466), b3 = (0.5079,0.3163)

b4 = (0.4437,0.4049), b5 = (0.3783,0.2734), b2 = (0.3955, 0.1689)

Step 3 Calculate the scores S(bi ) of bi by using Xu and Yager (2006)’s ranking
method:

S(b1) = 0.1111, S(bi ) = 0.1539, S(b3) = 0.1915

S(b4) = 0.0388, S(b5) = 0.1049, S(b6) = 0.2266

Since
S(b6) > S(b3) > S(b2) > S(b1) > S(b5) > S(b4)

then we can obtain the priority of the alternatives yi (i = 1, 2, . . . , 6):

y6 � y3 � y2 � y1 � y5 � y4

To investigate the variation trends of the scores and the rankings of the alternatives
with the change of the values of the parameter γ , we use the figures to illustrate these
issues (Xia et al. 2012c).

Figure 1.12 gives the scores of the alternatives obtained by the HIFWA operator as
γ is assigned different values, we can find that the scores for the alternatives decrease
as the values of the parameter γ increase from 0 to 10. Figure 1.13 shows the scores
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The scores for alternatives obtained by the HIFWA operator

Fig. 1.12 The scores for alternatives obtained by the HIFWA operator

of the alternatives obtained by the HIFWG operator, and as the values of γ increase
from 0 to 10, we can find that the scores for the alternatives increase. Figure 1.14
illustrates the deviation values between the scores obtained by the HIFWA operator
and the ones obtained by the HIFWG operator. It is noted that the scores obtained by
the HIFWA operator are bigger than the ones obtained by the HIFWG operator, and
as the values of γ increase, the deviations decrease. Moreover, if γ = 1, then the
scores and the ranking of the alternatives obtained in Fig. 1.12 are the ones obtained
by the IFWA operator (Xu 2007), and the results obtained in Fig. 1.13 are just the
ones obtained by the IFWG operator (Xu and Yager 2006).

If we use the FIFWA or FIFWG operator instead of the HIFWA or HIFWG
operator to aggregate the attribute values for the alternatives, then scores for each
alternative can be found in Figs. 1.15 and 1.16 (Xia et al. 2012c), respectively.

Figure 1.15 gives the scores of the alternatives obtained by the FIFWA operator
as γ is assigned different values, we can find that the scores for the alternatives
decrease as the values of the parameter γ increase from 0 to 100. Figure 1.16 shows
the scores of the alternatives obtained by the FIFWG operator, and as the values of
γ increase from 0 to 100, we can find that the scores for the alternatives increase.
Figure 1.17 (Xia et al. 2012c) illustrates the deviation values between the scores
obtained by the FIFWA operator and the ones obtained by the FIFWG operator. It
is noted that the scores obtained by the HIFWA operator are bigger than the ones
obtained by the HIFWG operator as the values of γ increase.

From the above analysis, we can find that the parameter γ can be considered
as a reflection of the decision makers’ preferences, as the parameter γ is assigned
different values, the scores of the alternatives are different, and the rankings of the
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The scores for alternatives obtained by the HIFWG operator

Fig. 1.13 The scores for alternatives obtained by the HIFWG operator

The deviation values between the HIFWA and HIFWG operators

Fig. 1.14 The deviation values for alternatives between the HIFWA and HIFWG operators
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The scores for alternatives obtained by the FIFWA operator

Fig. 1.15 The scores for alternatives obtained by the FIFWA operator

The scores for alternatives obtained by the FIFWG operator

Fig. 1.16 The scores for alternatives obtained by the FIFWG operator

alternatives are also different. Therefore, the proposed aggregation operators with
parameters can provide the decision makers more choices and thus are more flexible
than the existing ones, because we can choose different values of the parameters
according to the different situations. This is an interesting topic and is worthy to be
further studied in the future.
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The deviation values  between the FIFWA and FIFWG operators

Fig. 1.17 The deviation values for alternatives between the FIFWA and FIFWG operators

1.7 Generalized Intuitionistic Fuzzy Aggregation Operators
Based on Hamacher t-conorm and t-norm

Yager (2004) proposed the generalized ordered weighted aggregation operators,
which give the aggregated arguments a function and a corresponding reverse function
to the arguments after being aggregated, and as the function changes, a family of
aggregation operators can be obtained. Based on this useful idea and using the basic
operations given in Definition 1.21, in this section, we shall introduce the generalized
intuitionistic fuzzy aggregations based on Hamacher t-conorm and t-norm.

Let αi = (μαi , vαi ) (i = 1, 2, . . . , n) be a collection of IFVs and w =
(w1, w2, . . . , wn)T the weight vector of αi (i = 1, 2, . . . , n), where wi indicates
the importance degree of αi , satisfying wi > 0 (i = 1, 2, . . . , n) and

∑n
i = 1 wi = 1.

Then based on Eqs. (1.194), (1.195), and Definition 1.21, we define the following:

Definition 1.24 (Xia and Xu 2011) If

GHIFWA(α1, α2, . . . , αn) =
(

n⊕
i = 1

wiα
λ
i

) 1
λ

(1.242)

then GHIFWA is called a generalized Hamacher intuitionistic fuzzy averaging
(GHIFWA) operator.
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Theorem 1.38 (Xia and Xu 2011) The aggregated value by using the GHIFWA
operator is also an IFV, and

GHIFWA(α1, α2, . . . , αn) =

⎛

⎜⎜⎝
γ
(
μl

1,n − μr
1,n

) 1
λ

(
μl

1,n + (γ 2 − 1)μr
1,n

) 1
λ + (γ − 1)

(
μl

1,n − μr
1,n

) 1
λ

,

(
vl

1,n + (γ 2 − 1)vr
1,n

) 1
λ −

(
vl

1,n − vl
1,n

) 1
λ

(
vl

1,n + (γ 2 − 1)vl
1,n

) 1
λ + (γ − 1)

(
vl

1,n − vl
1,n

) 1
λ

⎞

⎟⎟⎠

(1.243)

where

μl
1,n =

n∏

i = 1

(
(1 + (γ − 1)(1 − μαi ))

λ + (γ 2 − 1)μλ
αi

)wi
(1.244)

μr
1,n =

n∏

i = 1

(
(1 + (γ − 1)(1 − μαi ))

λ − μλ
αi

)wi (1.245)

vl
1,n =

n∏

i = 1

(
(1 + (γ − 1)(1 − vαi ))

λ + (γ 2 − 1)vλ
αi

)wi
(1.246)

vr
1,n =

n∏

i = 1

(
(1 + (γ − 1)(1 − vαi ))

λ − vλ
αi

)wi (1.247)

Proof Let βi = wiα
λ
i , then Eq. (1.242) can be written as:

GHIFWA(α1, α2, . . . , αn) =
(

n⊕
i = 1

wiα
λ
i

) 1
λ =

(
n⊕

i = 1
βi

) 1
λ

(1.248)

and we first prove the following equation by using mathematical induction on n:

n⊕
i = 1

βi =
( ∏n

i = 1 (1 + (γ − 1)μβi ) −∏n
i = 1 (1 − μβi )∏n

i = 1 (1 + (γ − 1)μβi ) + (γ − 1)
∏n

i = 1 (1 − μβi )
,

γ
∏n

i = 1 vβi∏n
i = 1 (1 + (γ − 1)(1 − vβi )) + (γ − 1)

∏n
i = 1 vβi

)
(1.249)

For n = 2, Eq. (1.249) holds obviously. Suppose that Eq. (1.249) holds for n = k,
that is,



1.7 Generalized Intuitionistic Fuzzy Aggregation Operators 101

k⊕
i = 1

βi =
(

μ k⊕
i = 1

βi

, v k⊕
i = 1

βi

)

=
( ∏k

i = 1 (1 + (γ − 1)μβi ) −∏k
i = 1 (1 − μβi )∏k

i = 1 (1 + (γ − 1)μβi ) + (γ − 1)
∏k

i = 1 (1 − μβi )
,

γ
∏k

i = 1 vβi∏k
i = 1 (1 + (γ − 1)(1 − vβi )) + (γ − 1)

∏k
i = 1 vβi

)
(1.250)

Then we prove that Eq. (1.249) holds for n = k + 1, that is,

(
k⊕

i = 1
βi

)
⊕ βk + 1

=

⎛

⎜⎜⎜⎜⎜⎝

(
1 + (γ − 1)μ k⊕

i = 1
βi

)
(
1 + (γ − 1)μβk + 1

)−
(

1 − μ k⊕
i = 1

βi

)
(
1 − μβk + 1

)

(
1 + (γ − 1)μ k⊕

i = 1
βi

)
(
1 + (γ − 1)μβk + 1

)+ (γ − 1)

(
1 − μ k⊕

i = 1
βi

)
(
1 − μβk + 1

)
,

γ v k⊕
i = 1

βi

vβk + 1

(
1 + (γ − 1)

(
1 − v k⊕

i = 1
βi

))
(
1 + (γ − 1)

(
1 − vβk + 1

))+ (γ − 1)v k⊕
i = 1

βi

vβk + 1

⎞

⎟⎟⎟⎟⎟⎠

(1.251)

By the operational laws for IFVs, we have

⎛

⎝1 + (γ − 1)μ k⊕
i = 1

βi

⎞

⎠(1 + (γ − 1)μβk + 1

)

=
(

1 + (γ − 1)

∏k
i = 1 (1 + (γ − 1)μβi ) −∏k

i = 1 (1 − μβi )∏k
i = 1 (1 + (γ − 1)μβi ) + (γ − 1)

∏k
i = 1 (1 − μβi )

)
(
1 + (γ − 1)μβk + 1

)

−
(

1 −
∏k

i = 1 (1 + (γ − 1)μβi ) −∏k
i = 1 (1 − μβi )∏k

i = 1 (1 + (γ − 1)μβi ) + (γ − 1)
∏k

i = 1 (1 − μβi )

)
(
1 − μβk + 1

)

= γ
∏k

i = 1 (1 + (γ − 1)μβi )
(
1 + (γ − 1)μβk + 1

)− γ
∏k

i = 1 (1 − μβi )
(
1 − μβk + 1

)
∏k

i = 1 (1 + (γ − 1)μβi ) + (γ − 1)
∏k

i = 1 (1 − μβi )

= γ
∏k+1

i = 1 (1 + (γ − 1)μβi ) − γ
∏k+1

i = 1 (1 − μβi )∏k
i = 1 (1 + (γ − 1)μβi ) + (γ − 1)

∏k
i = 1 (1 − μβi )

(1.252)
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(
1 − μ k⊕

i = 1
βi

)
(
1 − μβk + 1

)

=
(

1 −
∏k

i = 1 (1 + (γ − 1)μβi ) −∏k
i = 1 (1 − μβi )∏k

i = 1 (1 + (γ − 1)μβi ) + (γ − 1)
∏k

i = 1 (1 − μβi )

)
(
1 − μβk + 1

)

= γ
∏k

i = 1 (1 − μβi )
(
1 − μβk + 1

)
∏k

i = 1 (1 + (γ − 1)μβi ) + (γ − 1)
∏k

i = 1 (1 − μβi )

= γ
∏k+1

i = 1 (1 − μβi )∏k
i = 1 (1 + (γ − 1)μβi ) + (γ − 1)

∏k
i = 1 (1 − μβi )

(1.253)

v k⊕
i = 1

βi

vβk + 1 = γ
∏k

i = 1 vβi∏k
i = 1 (1 + (γ − 1)(1 − vβi )) + (γ − 1)

∏k
i = 1 vβi

vβk + 1

= γ
∏k+1

i = 1 vβi∏k
i = 1 (1 + (γ − 1)(1 − vβi )) + (γ − 1)

∏k
i = 1 vβi

(1.254)

and
(

1 + (γ − 1)

(
1 − v k⊕

i = 1
βi

))
(
1 + (γ − 1)

(
1 − vβk + 1

))

= γ
∏k

i = 1 (1 + (γ − 1)(1 − vβi ))
(
1 + (γ − 1)

(
1 − vβk + 1

))
∏k

i = 1 (1 + (γ − 1)(1 − vβi )) + (γ − 1)
∏k

i = 1 vβi

= γ
∏k+1

i = 1 (1 + (γ − 1)(1 − vβi ))∏k
i = 1 (1 + (γ − 1)(1 − vβi )) + (γ − 1)

∏k
i = 1 vβi

(1.255)

Therefore,

(
k⊕

i = 1
βi

)
⊕ βk + 1

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛

⎜⎝1 + (γ − 1)μ k⊕
i = 1

βi

⎞

⎟⎠
(

1 + (γ − 1)μβk + 1

)
−
⎛

⎜⎝1 − μ k⊕
i = 1

βi

⎞

⎟⎠
(

1 − μβk + 1

)

⎛

⎜⎝1 + (γ − 1)μ k⊕
i = 1

βi

⎞

⎟⎠
(

1 + (γ − 1)μβk + 1

)
+ (γ − 1)

⎛

⎜⎝1 − μ k⊕
i = 1

βi

⎞

⎟⎠
(

1 − μβk + 1

)
,

γ v k⊕
i = 1

βi

vβk + 1

⎛

⎜⎝1 + (γ − 1)

⎛

⎜⎝1 − v k⊕
i = 1

βi

⎞

⎟⎠

⎞

⎟⎠
(

1 + (γ − 1)
(

1 − vβk + 1

))
+ (γ − 1)v k⊕

i = 1
βi

vβk + 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠
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=
⎛

⎝
γ
∏k

i = 1 (1+(γ−1)μβi )(1+(γ−1)μβk + 1 )−γ
∏k

i = 1 (1−μβi )(1−μβk + 1 )

γ
∏k

i = 1 (1+(γ−1)μβi )(1+(γ−1)μβk + 1 )(1+(γ−1)μβk + 1 )+(γ−1)γ
∏k

i = 1 (1−μβi )(1−μβk + 1 )
,

γ 2∏k
i = 1 vβi vβk + 1

γ
∏k

i = 1 (1 + (γ − 1)(1 − vβi ))
(

1 + (γ − 1)
(

1 − vβk + 1

))
+ γ (γ − 1)

∏k
i = 1 vβi vβk + 1

⎞

⎠

=
⎛

⎝
∏k+1

i = 1 (1+(γ−1)μβi )−∏k+1
i = 1 (1−μβi )

∏k+1
i = 1 (1+(γ−1)μβi )+(γ−1)

∏k+1
i = 1 (1−μβi )

,
γ
∏k+1

i = 1 vβi∏k+1
i = 1 (1+(γ−1)(1−vβi ))+(γ−1)

∏k+1
i = 1 vβi

⎞

⎠ (1.256)

which indicates that Eq. (1.251) holds for n = k + 1. Thus Eq. (1.249) holds for all
n. Since

βi = (μβi , vβi ) = wi α
λ
i

=
⎛

⎜⎝

(
1+(γ−1)

γμλ
α

(1+(γ−1)(1−μα))λ+(γ−1)μλ
α

)wi −
(

1− γμλ
α

(1+(γ−1)(1−μα))λ+(γ−1)μλ
α

)wi

(
1+(γ−1)

γμλ
α

(1+(γ−1)(1−μα))λ+(γ−1)μλ
α

)wi +(γ−1)
(

1− γμλ
α

(1+(γ−1)(1−μα))λ+(γ−1)μλ
α

)wi
,

γ
(

(1+(γ−1)vα)λ−(1−vα)λ

(1+(γ−1)vα)λ+(γ−1)(1−vα)λ

)wi

(
1+(γ−1)

(
1− (1+(γ−1)vα)λ−(1−vα)λ

(1+(γ−1)vα)λ+(γ−1)(1−vα)λ

))wi +(γ−1)
(

(1+(γ−1)vα)λ−(1−vα)λ

(1+(γ−1)vα)λ+(γ−1)(1−vα)λ

)wi

⎞

⎟⎠

=
( (

(1+(γ−1)(1−μα))λ+(γ 2−1)μλ
α

)wi − ((1+(γ−1)(1−μα))λ−μλ
α

)wi

(
(1+(γ−1)(1−μα))λ+(γ 2−1)μλ

α

)wi +(γ−1)
(
(1+(γ−1)(1−μα))λ−μλ

α

)wi
,

γ
(
(1+(γ−1)vα)λ−(1−vα)λ

)wi

(
(1+(γ−1)vα)λ+(γ 2−1)(1−vα)λ

)wi +(γ−1)
(
(1+(γ−1)vα)λ−(1−vα)λ

)wi

)

(1.257)

then we have

n∏

i = 1

(1+(γ−1)μβi )−
n∏

i = 1

(1−μβi )

=
n∏

i = 1

(
1+(γ−1)

(
(1+(γ−1)(1−μαi ))

λ+(γ 2−1)μλ
αi

)wi − ((1+(γ−1)(1−μαi ))
λ−μλ

αi

)wi

(
(1+(γ−1)(1−μαi ))

λ+(γ 2−1)μλ
αi

)wi +(γ−1)
(
(1+(γ−1)(1−μαi ))

λ−μλ
αi

)wi

)

−
n∏

i = 1

(
1−

(
(1+(γ−1)(1−μαi ))

λ+(γ 2−1)μλ
αi

)wi − ((1+(γ−1)(1−μαi ))
λ−μλ

αi

)wi

(
(1+(γ−1)(1−μαi ))

λ+(γ 2−1)μλ
αi

)wi +(γ−1)
(
(1+(γ−1)(1−μαi ))

λ−μλ
αi

)wi

)

=
γ
∏n

i = 1

(
(1+(γ−1)(1−μαi ))

λ+(γ 2−1)μλ
αi

)wi −γ
n∏

i = 1

(
(1+(γ−1)(1−μαi ))

λ−μλ
αi

)wi

∏n
i = 1

((
(1+(γ−1)(1−μαi ))

λ+(γ 2−1)μλ
αi

)wi +(γ−1)
(
(1+(γ−1)(1−μαi ))

λ−μλ
αi

)wi
)

(1.258)

k∏

i = 1

(1+(γ−1)μβi )+(γ−1)

k∏

i = 1

(1−μβi )

=
n∏

i = 1

(
1+(γ−1)

(
(1+(γ−1)(1−μαi ))

λ+(γ 2−1)μλ
αi

)wi − ((1+(γ−1)(1−μαi ))
λ−μλ

αi

)wi

(
(1+(γ−1)(1−μαi ))

λ+(γ 2−1)μλ
αi

)wi +(γ−1)
(
(1+(γ−1)(1−μαi ))

λ−μλ
αi

)wi

)
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+(γ−1)

n∏

i = 1

(
1−

(
(1+(γ−1)(1−μαi ))

λ+(γ 2−1)μλ
αi

)wi − ((1+(γ−1)(1−μαi ))
λ−μλ

αi

)wi

(
(1+(γ−1)(1−μαi ))

λ+(γ 2−1)μλ
αi

)wi +(γ−1)
(
(1+(γ−1)(1−μαi ))

λ−μλ
αi

)wi

)

=
γ

n∏
i = 1

(
(1+(γ−1)(1−μαi ))

λ+(γ 2−1)μλ
αi

)wi +γ (γ−1)
n∏

i = 1

(
(1+(γ−1)(1−μαi ))

λ−μλ
αi

)wi

∏n
i = 1

((
(1+(γ−1)(1−μαi ))

λ+(γ 2−1)μλ
αi

)wi +(γ−1)
(
(1+(γ−1)(1−μαi ))

λ−μλ
αi

)wi
)

(1.259)

γ

n∏

i = 1

vβi

=
γ 2

n∏
i = 1

(
(1 + (γ − 1)vαi )

λ − (1 − vαi )
λ
)wi

∏n
i = 1

((
(1 + (γ − 1)vαi )

λ + (γ 2 − 1)(1 − vαi )
λ
)wi + (γ − 1)

(
(1 + (γ − 1)vαi )

λ − (1 − vαi )
λ
)wi
)

(1.260)

and

k∏

i = 1

(1+(γ−1)(1−vβi ))+(γ−1)

k∏

i = 1

vβi

=
k∏

i = 1

(
1+(γ−1)

(
1− γ

(
(1+(γ−1)vαi )

λ−(1−vαi )
λ
)wi

(
(1+(γ−1)vαi )

λ+(γ 2−1)(1−vαi )
λ
)wi +(γ−1)

(
(1+(γ−1)vαi )

λ−(1−vαi )
λ
)wi

))

+(γ−1)

k∏

i = 1

γ
(
(1+(γ−1)vαi )

λ−(1−vαi )
λ
)wi

(
(1+(γ−1)vαi )

λ+(γ 2−1)(1−vαi )
λ
)wi +(γ−1)

(
(1+(γ−1)vαi )

λ−(1−vαi )
λ
)wi

= γ
∏n

i = 1

(
(1+(γ−1)vαi )

λ+(γ 2−1)(1−vαi )
λ
)wi +γ (γ−1)

∏n
i = 1

(
(1+(γ−1)vαi )

λ−(1−vαi )
λ
)wi

∏n
i = 1

((
(1+(γ−1)vαi )

λ+(γ 2−1)(1−vαi )
λ
)wi +(γ−1)

(
(1+(γ−1)vαi )

λ−(1−vαi )
λ
)wi
)

(1.261)

Thus,

n⊕
i = 1

βi =
⎛

⎜⎝

∏n
i = 1

(
(1+(γ−1)(1−μαi ))λ+(γ 2−1)μλ

αi

)wi −∏n
i = 1

(
(1+(γ−1)(1−μαi ))λ−μλ

αi

)wi

∏n
i = 1

(
(1+(γ−1)(1−μαi ))λ+(γ 2−1)μλ

αi

)wi +(γ−1)
∏n

i = 1

(
(1+(γ−1)(1−μαi ))λ−μλ

αi

)wi
,

γ
∏n

i = 1

(
(1+(γ−1)vαi )λ−(1−vαi )λ

)wi

∏n
i = 1

(
(1+(γ−1)vαi )λ+(γ 2−1)(1−vαi )λ

)wi +(γ−1)
∏n

i = 1

(
(1+(γ−1)vαi )λ−(1−vαi )λ

)wi

⎞

⎟⎠

(1.262)

Let

μl
1,n =

n∏

i = 1

(
(1 + (γ − 1)(1 − μαi ))

λ + (γ 2 − 1)μλ
αi

)wi
(1.263)

μr
1,n =

n∏

i = 1

(
(1 + (γ − 1)(1 − μαi ))

λ − μλ
αi

)wi (1.264)
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vl
1,n =

n∏

i = 1

(
(1 + (γ − 1)(1 − vαi ))

λ + (γ 2 − 1)vλ
αi

)wi
(1.265)

vr
1,n =

n∏

i = 1

(
(1 + (γ − 1)(1 − vαi ))

λ − vλ
αi

)wi (1.266)

then
k⊕

i = 1
βi =

(
μl

1,n − μr
1,n

μl
1,n + (γ − 1)μr

1,n

,
γ vr

1,n

vl
1,n + (γ − 1)vr

1,n

)
(1.267)

and

(
k⊕

i = 1
βi

) 1
λ

=

⎛

⎜⎜⎜⎜⎝

γ

(
μl

1,n−μr
1,n

μl
1,n+(γ−1)μr

1,n

) 1
λ

(
1 + (γ − 1)

(
1 − μl

1,n−μr
1,n

μl
1,n+(γ−1)μr

1,n

)) 1
λ + (γ − 1)

(
μl

1,n−μr
1,n

μl
1,n+(γ−1)μr

1,n

) 1
λ

,

(
1 + (γ − 1)

γ vr
1,n

vl
1,n+(γ−1)vr

1,n

) 1
λ −

(
1 − γ vr

1,n

vl
1,n+(γ−1)vr

1,n

) 1
λ

(
1 + (γ − 1)

γ vr
1,n

vl
1,n+(γ−1)vr

1,n

) 1
λ + (γ − 1)

(
1 − γ vr

1,n

vl
1,n+(γ−1)vr

1,n

) 1
λ

⎞

⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎝
γ
(
μl

1,n − μr
1,n

) 1
λ

(
μl

1,n + (γ 2 − 1)μr
1,n

) 1
λ + (γ − 1)

(
μl

1,n − μr
1,n

) 1
λ

,

(
vl

1,n + (γ 2 − 1)vr
1,n

) 1
λ −

(
vl

1,n − vl
1,n

) 1
λ

(
vl

1,n + (γ 2 − 1)vl
1,n

) 1
λ + (γ − 1)

(
vl

1,n − vl
1,n

) 1
λ

⎞

⎟⎟⎠ (1.268)

which completes the proof.

Then in what follows, we introduce some desirable properties of the GHIFWA
operator (Xia and Xu 2011):

Theorem 1.39 If all αi (i = 1, 2, . . . , n) are equal, i.e., αi = α = (μα, vα), for all
i , then
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GHIFWA(α1, α2, . . . , αn) = GHIFWA(α, α, . . . , α) =
(

n⊕
i = 1

wiα
λ

) 1
λ = α

(1.269)

which is called of idempotency.

Theorem 1.40 Let βi = (μβi , vβi ) (i = 1, 2, . . . , n) be a collection of IFVs, if
μαi ≤ μβi and vαi ≥ vβi , for all i , then

GHIFWA(α1, α2, . . . , αn) ≤ GHIFWA(β1, β2, . . . , βn) (1.270)

which is called of monotonicity.

Proof Let f (x, y) = x+y−xy−(1−γ )xy
1−(1−γ )xy , then

f (x, y)′x = (1−(2−γ )y)(1−(1−γ )xy)+(x+y−(2−γ )xy)(1−γ )y

(1−(1−γ )xy)2

= 1−(2−γ )y−(1−γ )xy+(2−γ )(1−γ )xy2+(1−γ )xy+(1−γ )y2−(2−γ )(1−γ )xy2

(1−(1−γ )xy)2

= 1−(2−γ )y+(1−γ )y2

(1−(1−γ )xy)2 = ((1−γ )y−1)(y−1)

(1−(1−γ )xy)2 (1.271)

Since 0 < x, y < 1 and γ > 0, then f (x, y)′x = ((1−γ )y−1)(y−1)

(1−(1−γ )xy)2 > 0, which
indicates that f (x, y) is an increasing function of x . Similarly, we can prove that
f (x, y) is also an increasing function of y.

Let g(x, y) = xy
γ+(1−γ )(x+y−xy)

, then

g(x, y)′x = y(γ + (1 − γ )(x + y − xy)) − xy(γ + (1 − γ )(1 − y))

γ + (1 − γ )(x + y − xy)

= γ y + (1 − γ )xy + (1 − γ )y2 − (1 − γ )xy2 − (1 − γ )xy + (1 − γ )xy2

γ + (1 − γ )(x + y − xy)

= γ y + (1 − γ )y2

γ + (1 − γ )(x + y − xy)
= y(γ (1 − y) + y)

γ + (1 − γ )(x + y − xy)
> 0 (1.272)

which indicates that g(x, y) is an increasing function of x . Similarly, we can prove
that g(x, y) is also an increasing function of y.

Let h(x) = (1+(γ−1)x)λ−(1−x)λ

(1+(γ−1)x)λ+(γ−1)(1−x)λ
and r(x) = γ xλ

(1+(γ−1)x)λ+(γ−1)xλ ,

then



1.7 Generalized Intuitionistic Fuzzy Aggregation Operators 107

h(x)′ =
(
λ(γ−1)(1+(γ−1)x)λ−1+λ(1−x)λ−1

) (
(1+(γ−1)x)λ−(γ−1)(1−x)λ

)
(
(1+(γ−1)x)λ+(γ−1)(1−x)λ

)2

−
(
(1+(γ−1)x)λ−(1−x)λ

) (
λ(γ−1)(1+(γ−1)x)λ−1−λ(γ−1)(1−x)λ−1

)
(
(1+(γ−1)x)λ+(γ−1)(1−x)λ

)2

= λ(1−x)λ−1(1+(γ−1)x)λ+λ(γ−1)2(1−x)λ(1+(γ−1)x)λ−1

(
(1+(γ−1)x)λ+(γ−1)(1−x)λ

)2

+λ(γ−1)(1−x)λ(1+(γ−1)x)λ−1+λ(γ−1)(1−x)λ−1(1+(γ−1)x)λ

(
(1+(γ−1)x)λ+(γ−1)(1−x)λ

)2

= λγ 2(1−x)λ−1(1+(γ−1)x)λ−1

(
(1+(γ−1)x)λ−(γ−1)(1−x)λ

)2 > 0 (1.273)

and

r(x)′

=
λγ xλ−1

(
(1+(γ−1)x)λ+(γ−1)xλ

)
−γ xλ

(
λ(γ−1)(1+(γ−1)x)λ−1−λ(γ−1)xλ−1

)

(
(1+(γ−1)x)λ+(γ−1)xλ

)2

= λγ 2xλ−1(1+(γ−1)x)λ−1

(
(1+(γ−1)x)λ+(γ−1)xλ

)2 > 0 (1.274)

Therefore, both h(x) and r(x) are the increasing functions of x .
Based on the above analysis, for two collections of IFVs αi = (μαi , vαi ) (i =

1, 2, . . . , n) and βi = (μβi , vβi ) (i = 1, 2, . . . , n), if μαi ≤ μβi and vαi ≥ vβi , for
all i , we have

S(GHIFWA(α1, α2, . . . , αn)) ≤ S(GHIFWA(β1, β2, . . . , βn)) (1.275)

which completes the proof.

Based on the monotonicity, the following property can be obtained:

Theorem 1.41 (Xia and Xu 2011) Let α− and α+ be given by Eqs. (1.35)
and (1.36), then

α− ≤ GHIFWA(α1, α2, . . . , αn) ≤ α+ (1.276)

which is called of boundedness.

As the values of the parameters change, some special cases can be obtained (Xia
and Xu 2011):

Case 1 If λ = 1, then Eq. (1.243) is transformed as:
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HIFWA(α1, α2, . . . , αn)

=
( ∏n

i = 1 (1 + (γ − 1)μαi )
wi −∏n

i = 1 (1 − μαi )
wi

∏n
i = 1 (1 + (γ − 1)μαi )

wi + (γ − 1)
∏n

i = 1 (1 − μαi )
wi

,

γ
∏n

i = 1 vwi
αi∏n

i = 1 (1 + (γ − 1)(1 − vαi ))
wi + (γ − 1)

∏n
i = 1 vwi

αi

)
(1.277)

which is the Hamacher intuitionistic fuzzy averaging (HIFWA) operator (Xia et al.
2012c).

Case 2 If λ = 1 and γ = 1, then Eq. (1.243) becomes the IFWA operator (Xu
2007):

I FW A(α1, α2, . . . , αn) =
(

1 −
n∏

i = 1

(
(1 − μαi

)wi ,

n∏

i = 1

vwi
αi

)
(1.278)

Case 3 If γ = 1, then Eq. (1.243) becomes the generalized intuitionistic fuzzy
weighted averaging (GIFWA) operator (Zhao et al. 2010):

G I FW A(α1, α2, . . . , αn)

=
⎛

⎝
(

1 −
n∏

i = 1

(
(1 − μλ

αi

)wi

) 1
λ

, 1 −
(

1 −
n∏

i = 1

(
(1 − (1 − vαi )

λ
)wi

) 1
λ

⎞

⎠

(1.279)

Case 4 If γ = 2, then Eq. (1.243) is written as:

GEIFWA(α1, α2, . . . , αn)

=

⎛

⎜⎜⎝
2
(
μl

1,n − μr
1,n

) 1
λ

(
μl

1,n + 3μr
1,n

) 1
λ +

(
μl

1,n − μr
1,n

) 1
λ

,

(
vl

1,n + 3vr
1,n

) 1
λ −

(
vl

1,n − vr
1,n

) 1
λ

(
vl

1,n + 3vl
1,n

) 1
λ +

(
vl

1,n − vr
1,n

) 1
λ

⎞

⎟⎟⎠

(1.280)

where

μl
1,n =

n∏

i = 1

(
(1 + (1 − μαi ))

λ + 3μλ
αi

)wi
, μr

1,n =
n∏

i = 1

(
(1 + (1 − μαi ))

λ − μλ
αi

)wi

(1.281)

vl
1,n =

n∏

i = 1

(
(1 + (1 − vαi ))

λ + 3vλ
αi

)wi
, vr

1,n =
n∏

i = 1

(
(1 + (1 − vαi ))

λ − vλ
αi

)wi

(1.282)
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which is called a generalized Einstein intuitionistic fuzzy weighted averaging
(GEIFWA) operator.

Case 5 If γ = 2 and λ = 1, then Eq. (1.243) is transformed as:

EIFWA(α1, α2, . . . , αn)

=
(∏n

i = 1 (1 + μαi )
wi −∏n

i = 1 (1 − μαi )
wi

∏n
i = 1 (1 + μαi )

wi +∏n
i = 1 (1 − μαi )

wi
,

2
∏n

i = 1 vwi
αi∏n

i = 1 (2 − vαi ))
wi +∏n

i = 1 vwi
αi

)

(1.283)

which is the EIFWA operator (Xia et al. 2012c).
Combining the GHIFWA operator and the geometric mean, then we introduce the

following:

Definition 1.25 (Xia and Xu 2011) Let w = (w1, w2, . . . , wn)T be the weight
vector of the IFVs αi (i = 1, 2, . . . , n), where wi indicates the importance degree
of αi , satisfying wi > 0 (i = 1, 2, . . . , n) and

∑n
i = 1 wi = 1, if

G AI FW G(α1, α2, . . . , αn) = 1

λ

(
n⊗

i = 1
λα

wi
i

)
(1.284)

then G AI FW G is called a generalized Archimedean intuitionistic fuzzy geometric
(GHIFWG) operator.

Similarly, the following theorem can be obtained:

Theorem 1.42 (Xia and Xu 2011) The aggregated value by using the GHIFWG
operator is also an IFV, and

GHIFWG(α1, α2, . . . , αn) =

⎛

⎜⎜⎝

(
μl

1,n + (γ 2 − 1)μr
1,n

) 1
λ −

(
μl

1,n − μl
1,n

) 1
λ

(
μl

1,n + (γ 2 − 1)μl
1,n

) 1
λ + (γ − 1)

(
μl

1,n − μl
1,n

) 1
λ

,

γ
(

vl
1,n − vr

1,n

) 1
λ

(
vl

1,n + (γ 2 − 1)vr
1,n

) 1
λ + (γ − 1)

(
vl

1,n − vr
1,n

) 1
λ

⎞

⎟⎟⎠

(1.285)

where

μl
1,n =

n∏

i = 1

(
(1 + (γ − 1)(1 − μαi ))

λ + (γ 2 − 1)μλ
αi

)wi
(1.286)

μr
1,n =

n∏

i = 1

(
(1 + (γ − 1)(1 − μαi ))

λ − μλ
αi

)wi (1.287)
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vl
1,n =

n∏

i = 1

(
(1 + (γ − 1)(1 − vαi ))

λ + (γ 2 − 1)vλ
αi

)wi
(1.288)

vr
1,n =

n∏

i = 1

(
(1 + (γ − 1)(1 − vαi ))

λ − vλ
αi

)wi (1.289)

In the same way, we can prove that the GHIFWG operator also satisfies idem-
potency, monotonicity and boundedness, and some special cases of the GHIFWG
operator can be discussed as below (Xia and Xu 2011):

Case 1 If λ = 1, then Eq. (1.285) reduces to:

HIFWG(α1, α2, . . . , αn)

=
(

γ
∏n

i = 1 μ
wi
αi∏n

i = 1 (1 + (γ − 1)(1 − μαi ))
wi + (γ − 1)

∏n
i = 1 μ

wi
αi

,

∏n
i = 1 (1 + (γ − 1)vαi )

wi −∏n
i = 1 (1 − vαi )

wi

∏n
i = 1 (1 + (γ − 1)vαi )

wi + (γ − 1)
∏n

i = 1 (1 − vαi )
wi

)
(1.290)

which is the Hamacher intuitionistic fuzzy geometric (HIFWG) operator (Xia et al.
2012c).

Case 2 If γ = 1 and λ = 1, then Eq. (1.285) is transformed as:

I FW G(α1, α2, . . . , αn) =
(

n∏

i = 1

μwi
αi

, 1 −
n∏

i = 1

(
(1 − vαi

)wi

)
(1.291)

which is the IFWG operator (Xu and Yager 2006).
Case 3 If γ = 1, then by Eq. (1.285), we have

GHIFWG(α1, α2, . . . , αn)

=
⎛

⎝1 −
(

1 −
n∏

i = 1

(
(1 − (1 − μαi )

λ
)wi

) 1
λ

,

(
1 −

n∏

i = 1

(
(1 − vλ

αi

)wi

) 1
λ

⎞

⎠

(1.292)

which is the generalized intuitionistic fuzzy weighted geometric (GIFWG) operator.
Case 4 If γ = 2, then Eq. (1.285) is transformed as:

GEIFWG(α1, α2, . . . , αn)

=

⎛

⎜⎜⎝

(
μl

1,n + 3μr
1,n

) 1
λ −

(
μl

1,n − μr
1,n

) 1
λ

(
μl

1,n + 3μl
1,n

) 1
λ +

(
μl

1,n − μr
1,n

) 1
λ

,
2
(

vl
1,n − vr

1,n

) 1
λ

(
vl

1,n + 3vr
1,n

) 1
λ +

(
vl

1,n − vr
1,n

) 1
λ

⎞

⎟⎟⎠

(1.293)
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where

μl
1,n =

n∏

i = 1

(
(1 + (1 − μαi ))

λ + 3μλ
αi

)wi
, μr

1,n =
n∏

i = 1

(
(1 + (1 − μαi ))

λ − μλ
αi

)wi

(1.294)

vl
1,n =

n∏

i = 1

(
(1 + (1 − vαi ))

λ + 3vλ
αi

)wi
, vr

1,n =
n∏

i = 1

(
(1 + (1 − vαi ))

λ − vλ
αi

)wi

(1.295)

which is a generalized Einstein intuitionistic fuzzy weighted geometric (GEIFWG)
operator.

Case 5 If γ = 2 and λ = 1, then Eq. (1.285) is transformed as:

EIFWG(α1, α2, . . . , αn)

=
(

2
∏n

i = 1 μ
wi
αi∏n

i = 1 (2 − μαi ))
wi +∏n

i = 1 μ
wi
αi

,

∏n
i = 1 (1 + vαi )

wi −∏n
i = 1 (1 − vαi )

wi

∏n
i = 1 (1 + vαi )

wi +∏n
i = 1 (1 − vαi )

wi

)

(1.296)

which is the EIFWG operator (Xia et al. 2012c).
In what follows, we apply the GHIFWA and GHIFWG operators to decision

making (Xia and Xu 2011):
For a multi-attribute decision making problem, let Y , G and w be as defined pre-

viously. The expert provides the performance of the alternative yi under the attribute
G j denoted by the IFVs αij = (μij, vij) (i = 1, 2, . . . , m; j = 1, 2, . . . , n). All
the IFVs αij (i = 1, 2, . . . , m; j = 1, 2, . . . , n) construct the intuitionistic fuzzy
decision matrix B = (bij)n×n .

To obtain the alternative(s), the following steps are given (Xia and Xu 2011):

Step 1 Transform the intuitionistic fuzzy decision matrix B = (bij)n×n into the
normalized intuitionistic fuzzy decision matrix R = (rij)n×n , where

rij =
{

bij, f or bene f i t attr ibute Gi

bc
ij, f or cost attribute Gi

, i = 1, 2, . . . , m; j = 1, 2, . . . , n

(1.297)
Step 2 Aggregate the intuitionistic fuzzy values ri of the alternative yi by the

GAIFWA or GHIFWG operator:

ri = GHIFWA(ri1, ri2, . . . , rin) =
(

n⊕
j = 1

w jr
λ
ij

) 1
λ

(1.298)

or

ri = GHIFWG(ri1, ri2, . . . , rin) = 1

λ

(
n⊗

j = 1
λr

w j
ij

)
(1.299)
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Step 3 Calculate the scores S(ri ) of ri by using Xu and Yager (2006)’s ranking
method, and obtain the priority of the alternatives according to the ranking of ri

(i = 1, 2, . . . , m), the bigger the value ri , the better the alternative yi .
Now we utilize Example 1.7 to illustrate the proposed method. To obtain the most

preferred supplier(s), the following steps are given:

Step 1 Aggregate the intuitionistic fuzzy values ri of the supplier yi by the
GHIFWA operator (without loss of generality, let γ = 2 and λ = 2):

r1 = (0.4439, 0.2936), r2 = (0.4231, 0.2475), r3 = (0.5348, 0.3099)

r4 = (0.4904, 0.3971), r5 = (0.4226, 0.2733), r6 = (0.4351, 0.1708)

Step 2 Calculate the scores S(ri ) of ri by using Xu and Yager (2006)’s ranking
method:

S(r1) = 0.1502, S(r2) = 0.1756, S(r3) = 0.2248

S(r4) = 0.0933, S(r5) = 0.1493, S(r6) = 0.2643

Since
S(r6) > S(r3) > S(r2) > S(r1) > S(r5) > S(r4)

we can obtain the priority of the suppliers yi (i = 1, 2, . . . , 6):

y6 � y3 � y2 � y1 � y5 � y4

As the parameters λ and γ are assigned different values, the scores of the suppliers
obtained are different, and the rankings of the suppliers are also different, some cases
can be found in Tables 1.14 and 1.15 (Xia and Xu 2011), when the GHIFWA and
GHIFWG operators are used, respectively.

To investigate the variation trends of the scores and the rankings of the suppliers
with the change of the values of the parameters λ and γ , we use figures to illustrate
these issues. Figures 1.18, 1.19, 1.20, 1.21, 1.22 and 1.23 (Xia and Xu 2011) give
the scores of suppliers obtained by the GHIFWA operator as λ and γ are assigned
values between 0 and 10.

It is noted that the scores increase as λ increases, but not suitable for γ .
Figures 1.24, 1.25, 1.26, 1.27, 1.28, 1.29, 1.30, 1.31, 1.32, 1.33, 1.34 and 1.35 (Xia
and Xu 2011) give the scores of suppliers obtained by the GHIFWG operator as λ

and γ are assigned values between 0 and 10. It is noted that the scores decrease as
λ increases, but not suitable for γ . Therefore, the proposed aggregation operators
with parameters can provide the decision makers (or experts) more choices and thus
are more flexible than the existing ones, because we can choose different values
according to the practical problems, which is worthy to be further studied in the
future.
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Table 1.14 Scores and rankings for the alternatives based on the GHIFWA operator

y1 y2 y3 y4 y5 y6 Rankings

γ = 0.7
λ = 0.3

−0.0881 0.1377 0.1685 0.0077 0.0801 0.2018 y6 � y2 � y5 � y3 � y1 � y4

γ = 1
λ = 1

0.1111 0.1539 0.1915 0.0388 0.1049 0.2266 y6 � y3 � y2 � y1 � y5 � y4

γ = 1
λ = 10

0.3012 0.2839 0.3621 0.3453 0.3116 0.3773 y6 � y3 � y4 � y5 � y1 � y4

γ = 2
λ = 1

0.0910 0.1401 0.1689 0.0083 0.0867 0.2080 y6 � y3 � y2 � y1 � y5 � y4

γ = 3
λ = 4

0.2537 0.2341 0.3218 0.2725 0.2584 0.3341 y6 � y3 � y4 � y5 � y1 � y4

γ = 4
λ = 3

0.2193 0.2094 0.2900 0.2121 0.2221 0.3100 y6 � y3 � y5 � y1 � y4 � y2

γ = 5
λ = 5

0.3017 0.2762 0.3677 0.3611 0.3124 0.3667 y3 � y6 � y4 � y5 � y1 � y2

γ = 10
λ = 1

0.0528 0.1128 0.1274 −0.0407 0.0479 0.1669 y6 � y3 � y2 � y1 � y5 � y4

γ = 10
λ = 10

0.3679 0.3702 0.4325 0.4688 0.3960 0.4374 y4 � y6 � y3 � y5 � y2 � y1

Table 1.15 Scores and rankings for the alternatives based on the GHIFWG operator

y1 y2 y3 y4 y5 y6 Rankings

γ = 0.7
λ = 0.3

−0.0178 0.0506 0.0363 −0.1168 −0.0145 0.0800 y6 � y2 � y5 � y3 � y1 � y4

γ = 1
λ = 1

−0.0388 0.0312 0.0058 −0.1368 −0.0278 0.0541 y6 � y2 � y3 � y1 � y5 � y4

γ = 1
λ = 10

−0.2678 −0.1815 −0.3392 −0.3065 0.0087 −0.1916 y5 � y2 � y6 � y1 � y4 � y3

γ = 2
λ = 1

−0.0175 0.0483 0.0374 −0.1153 −0.0126 0.0761 y6 � y2 � y3 � y5 � y1 � y4

γ = 3
λ = 4

−0.1937 −0.1013 −0.2432 −0.2631 −0.1068 −0.1025 y2 � y6 � y5 � y1 � y3 � y4

γ = 4
λ = 3

−0.1485 −0.0563 −0.1729 −0.2307 −0.0748 −0.0549 y6 � y2 � y5 � y1 � y3 � y4

γ = 5
λ = 5

−0.2584 −0.1717 −0.3442 −0.3072 −0.1555 −0.1635 y5 � y6 � y2 � y1 � y4 � y3

γ = 10
λ = 1

0.0155 0.0771 0.0846 −0.0795 0.0087 0.1131 y6 � y3 � y2 � y1 � y5 � y4

γ = 10
λ = 10

−0.3714 −0.2840 −0.4779 −0.3723 −0.2666 −0.2855 y5 � y2 � y6 � y1 � y4 � y3
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The scores for y1 obtained by the GHIFWA operator

Fig. 1.18 The scores for the supplier y1 obtained by the GHIFWA operator

The scores for y2 obtained by the GHIFWA operator

Fig. 1.19 The scores for the supplier y2 obtained by the GHIFWA operator
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The scores for y3 obtained by the GHIFWA operator

Fig. 1.20 The scores for the supplier y3 obtained by the GHIFWA operator

The scores for y4 obtained by the GHIFWA operator

Fig. 1.21 The scores for the supplier y4 obtained by the GHIFWA operator
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The scores for y5 obtained by the GHIFWA operator

Fig. 1.22 The scores for the supplier y5 obtained by the GHIFWA operator

The scores for y6 obtained by the GHIFWA operator

Fig. 1.23 The scores for the supplier y6 obtained by the GHIFWA operator
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The scores for y1 obtained by the GHIFWA operator

Fig. 1.24 The scores for the supplier y1 obtained by the GHIFWG operator

The scores for y2 obtained by the GHIFWG operator

Fig. 1.25 The scores for the supplier y2 obtained by the GHIFWG operator
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The scores for y3 obtained by the GHIFWG operator

Fig. 1.26 The scores for the supplier y3 obtained by the GHIFWG operator

The scores for y4 obtained by the GHIFWG operator

Fig. 1.27 The scores for the supplier y4 obtained by the GHIFWG operator
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The scores for y5 obtained by the GHIFWG operator

Fig. 1.28 The scores for the supplier y5 obtained by the GHIFWG operator

The scores for y6 obtained by the GHIFWG operator

Fig. 1.29 The scores for the supplier y6 obtained by the GHIFWG operator
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The deviation values for y1 between the GHIFWA and GHIFWG operators

Fig. 1.30 The deviation values for y1 between the GHIFWA and GHIFWG operators

The deviation values for y2 between the GHIFWA and GHIFWG operators

Fig. 1.31 The deviation values for y2 between the GHIFWA and GHIFWG operators
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The deviation values for y3 between the GHIFWA and GHIFWG operators

Fig. 1.32 The deviation values for y3 between the GHIFWA and GHIFWG operators

The deviation values for y4 between the GHIFWA and GHIFWG operators

Fig. 1.33 The deviation values for y4 between the GHIFWA and GHIFWG operators
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The deviation values for y5 between the GHIFWA and GHIFWG operators

Fig. 1.34 The deviation values for y5 between the GHIFWA and GHIFWG operators

The deviation values for y6 between the GHIFWA and GHIFWG operators

Fig. 1.35 The deviation values for y6 between the GHIFWA and GHIFWG operators
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1.8 Point Operators for Aggregating IFVs

For an IFS A = {〈x, μA(x), vA(x)〉|x ∈ X}, let κ, λ ∈ [0, 1], Atanassov (1995) gave
the following operators:

(1) Dκ (A) = {x, 〈μA (x) + κπA (x) , vA (x) + (1 − κ) πA (x)〉| x ∈ X} .

(2) Fκ,λ (A) = { x, 〈μA (x) + κπA (x) , vA (x) + λπA (x)〉| x ∈ X} , where κ + λ ≤ 1.

(3) Gκ,λ (A) = {x, 〈κμA (x) , λvA (x)〉| x ∈ X} .

(4) Hκ,λ (A) = { x, 〈κμA (x) , vA (x) + λπA (x)〉| x ∈ X} .

(5) H∗
κ,λ (A) = { x, 〈κμA (x) , vA (x) + λ (1 − κμA (x) − vA (x))〉| x ∈ X} .

(6) Jκ,λ (A) = { x, 〈μA (x) + κπA (x) , λvA (x)〉| x ∈ X} .

(7) J ∗
κ,λ (A) = { x, 〈μA (x) + κ (1 − μA (x) − λvA (x)) , λvA (x)〉| x ∈ X} .

(8) Pκ,λ (A) = {x, 〈max (κ, μA (x)) , min (λ, vA (x))〉| x ∈ X} , where κ + λ ≤ 1.

(9) Qκ,λ (A) = { x, 〈min (κ, μA (x)) , max (λ, vA (x))〉| x ∈ X} , where κ + λ ≤ 1.

Let IFS(X) be the set of all IFSs on X . For A ∈ IFS (X), Burillo and Bustince
(1996) defined an operator Dκx (A) for each point x ∈ X :

Dκx (A) = {x, 〈μA (x) + κxπA (x) , vA (x) + (1 − κx ) πA (x)〉| x ∈ X} (1.300)

where κx ∈ [0, 1].
Then, Liu and Wang (2007) defined an intuitionistic fuzzy point operator for IFSs:

Definition 1.26 (Liu and Wang 2007) Let A ∈ IFS(X), for each point x ∈ X ,
taking κx , λx ∈ [0, 1] and κx + λx ≤ 1, then an intuitionistic fuzzy point operator
Fκx ,λx (A): IFS(X) → IFS(X) is as follows:

Fκx ,λx (A) = { x, 〈μA (x) + κxπA (x) , vA (x) + λxπA (x)〉| x ∈ X} (1.301)

and if let F0
κx ,λx

(A) = A, then

Fn
κx ,λx

(A) =
{

x,

〈
μA (x) + κxπA (x)

1 − (1 − κx − λx )
n

κx + λx
,

vA (x) + λxπA (x)
1 − (1 − κx − λx )

n

κx + λx

〉∣∣∣∣ x ∈ X

}
(1.302)

Xia and Xu (2010) defined a series of point operators for aggregating IFVs:

Definition 1.27 (Xia and Xu 2010) For an IFV α = (μα, vα), let κα, λα ∈ [0, 1],
we define some point operators as follows:

(1) Dκα,λα (α) = (μα + καπα, vα + (1 − κα) πα).
(2) Fκα,λα (α) = (μα + καπα, vα + λαπα), where κα + λα ≤ 1.



124 1 Intuitionistic Fuzzy Aggregation Techniques

(3) Gκα,λα (α) = (καμα, λαvα).
(4) Hκα,λα (α) = (καμα, vα + λαπα).
(5) H∗

κα,λα
(α) = (καμα, vα + λα (1 − καμα − vα)).

(6) Jκα,λα (α) = (μα + καπα, λαvα).
(7) J ∗

κα,λα
(α) = (μα + κα (1 − μα − λαvα) , λαvα).

(8) Pκα,λα (α) = (max (κα, μα) , min (λα, vα)), where κα + λα ≤ 1.
(9) Qκα,λα (α) = (min (κα, μα) , max (λα, vα)), where κα + λα ≤ 1.

Based on Definition 1.27, let

F0
κx ,λx

(A) = D0
κx ,λx

(A) = G0
κx ,λx

(A) = H0
κx ,λx

(A) = H∗,0
κx ,λx

(A)

= J 0
κx ,λx

(A) = J ∗,0
κx ,λx

(A) = P0
κx ,λx

(A) = Q0
κx ,λx

(A) = A (1.303)

then we have the following theorem:

Theorem 1.43 (Xia and Xu 2010) Let α = (μα, vα) be an IFV, and n a positive
integer, taking κα, λα ∈ [0, 1], then

(1) Dn
κα

(α) = (μα + καπα, vα + (1 − κα) πα) .

(2) Fn
κα,λα

(α) =
(

μα + καπα

1 − (1 − κα − λα)n

κα + λα

, vα

+ λαπα

1 − (1 − κα − λα)n

κα + λα

)
, where κα + λα ≤ 1.

(3) Gn
κα,λα

(α) = (κn
αμα, λn

αvα

)
.

(4) Hn
κα,λα

(α) =
(

κn
αμα, vα + (1 − vα)(1 − (1 − λα)n)

−μαλα

(
n−1∑

t=0

κn−1−t
α (1 − λα)t

))
.

(5) H∗,n
κ,λ (α) =

(
κn
αμα, vα + (1 − vα)

(
1 − (1 − λα)n)

−μακαλα

(
n−1∑

t = 0

κn−1−t
α (1 − λα)t

))
.

(6) Jκα,λα (α) =
(

μα + (1 − μα)
(
1 − (1 − κα)n)

− vακα

(
n−1∑

t = 0

(1 − κα)t λn−1−t
α

)
, λn

αvα

)
.
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(7) J ∗
κα,λα

(α) =
(

μα + (1 − μα)
(
1 − (1 − κα)n)

− vακαλα

(
n−1∑

t = 0

(1 − κα)t λn−1−t
α

)
, λn

αvα

)
.

(8) Pn
κα,λα

(α) = (max (κα, μα) , min (λα, vα)) , where κα + λα ≤ 1.

(9) Qκα,λα (α) = (min (κα, μα) , max (λα, vα)) , where κα + λα ≤ 1,

which translate one IFV to another IFV.

Proof (1), (3), (8) and (9) are obvious. By the idea of Liu and Wang (2007), we can
also easily prove (2). Next, motivated also by the idea of Liu and Wang (2007), we
prove (4), (5), (6) and (7) using mathematical induction on n:
(4) For n = 1, we have

H1
κα,λα

(α) =
(
μH1

κα,λα
(α), vH1

κα,λα
(α)

)
= (καμα, vα + λαπα)

=
(

κ1
αμα, vα + (1 − να)

(
1 − (1 − λα)1

)

−μαλα

(
1−1∑

t = 0

κ1−1−t
α (1 − λα)t

))
(1.304)

For n = 2, we have

μH2
κα,λα

(α)
= κ2

αμα (1.305)

vH2
κα,λα

(α)
= vα + λαπα + λα (1 − καμα − vα − λαπα)

= vα + (1 − vα) (λα + λα (1 − λα)) − μαλα (1 − λα + κα)

= vα + (1 − vα)
(

1 − (1 − λα)2
)

− μαλα

⎛

⎝
2−1∑

t = 0

κ2−1−t
α (1 − λα)t

⎞

⎠ (1.306)

Suppose that it is true for n = p, that is,

μH p
κ,λ(α)

= κ
p
α μα (1.307)

vH p
κ,λ(α)

= vα + (1 − vα)
(
1 − (1 − λα)p)− μαλα

⎛

⎝
p − 1∑

t = 0

κ
p−1−t
α (1 − λα)t

⎞

⎠ (1.308)

then, when n = p + 1, we have

μ
H p+1

κα,λα
(α)

= κκ p
α μα = κ p+1

α μα
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v
H p+1

κα,λα
(α)

= vα + (1 − vα)
(
1 − (1 − λα)p)− μαλα

⎛

⎝
p − 1∑

t = 0

κ p−1−t
α (1 − λα)t

⎞

⎠

+ λα

⎛

⎝1 − κ p
α μα − vα − (1 − vα)

(
1 − (1 − λα)p)

+μαλα

⎛

⎝
p − 1∑

t = 0

κ p−1−t
α (1 − λα)t

⎞

⎠

⎞

⎠

= vα + (1 − vα)
(
1 − (1 − λα)p + λα − λα

(
1 − (1 − λα)p))

− μαλα

⎛

⎝

⎛

⎝
p − 1∑

t = 0

κ p−1−t
α (1 − λα)t+1

⎞

⎠+ κ p
α

⎞

⎠

= vα + (1 − vα)
(

1 − (1 − λα)p+1
)

− μαλα

( p∑

t = 0

κ p−t
α (1 − λα)t

)

(1.309)

and thus, (4) holds for n = p + 1. Therefore, (4) holds for all n.

(5) For n = 1, we have

H∗,1
κα,λα

(α) =
(
μH∗,1

κα,λα
(α)

, vH∗,1
κα,λα

(α)

)
= (καμα, vα + λα (1 − καμα − vα))

=
(

κ1
αμα, vα + (1 − να)

(
1 − (1 − λα)1

)

−μακαλα

(
1−1∑

t = 0

κ1−1−t
α (1 − λα)t

))
(1.310)

For n = 2, we have

μH∗,2
κα,λα

(α)
= κ2

αμα (1.311)

vH∗,2
κα,λα

(α)
= vα + λα (1 − καμα − vα)

+ λα

(
1 − κ2

αμα − vα − λα (1 − καμα − vα)
)

= vα + (1 − vα) (λα + λα (1 − λα)) − μακαλα (1 + κα − λα)

= vα + (1 − vα)
(

1 − (1 − λα)2
)

− μακαλα

(
2−1∑

t = 0

κ2−1−t
α (1 − λα)t

)

(1.312)

Suppose it is true for n = p, that is,
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μH∗,p
κα,λα

(α) = κ p
α μα (1.313)

vH∗,p
κα,λα

(α) = vα + (1 − vα)
(
1 − (1 − λα)p)− μακαλα

⎛

⎝
p − 1∑

t = 0

κ p−1−t
α (1 − λα)t

⎞

⎠

(1.314)

then, when n = p + 1, we have

μ
H∗,p+1

κα,λα
(α)

= κκ p
α μα = κ p+1

α μα (1.315)

v
H∗,p+1

κα,λα
(α)

= vα + (1 − vα)
(
1 − (1 − λα)p)− μακαλα

⎛

⎝
p − 1∑

t = 0

κ p−1−t
α (1 − λα)t

⎞

⎠

+ λα

⎛

⎝1 − κ p+1
α μα − vα − (1 − vα)

(
1 − (1 − λα)p)

+μακαλα

⎛

⎝
p − 1∑

t = 0

κ p−1−t
α (1 − λα)t

⎞

⎠

⎞

⎠

= vα + (1 − vα)
(
1 − ((1 − λα)p − λα (1 − λα)p))

− μακαλα

⎛

⎝

⎛

⎝
p − 1∑

t = 0

κ p−1−t
α (1 − λα)t+1

⎞

⎠+ κ p
α

⎞

⎠

= vα + (1 − vα)
(

1 − (1 − λα)p+1
)

− μακαλα

( p∑

t = 0

κ p−t
α (1 − λα)t

)

(1.316)

and thus, (5) holds for n = p + 1. Therefore, (5) holds for all n.

(6) For k = 1, we have

J 1
κα,λα

(α) = (μα + καπα, λαvα)

=
(

μα + (1 − μα)
(

1 − (1 − κα)1
)

− vακα

(
1−1∑

t = 0

λ1−1−t
α (1 − κα)t

)
, λ1

αvα

)
(1.317)
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For k = 2, we have

μJ 2
κα,λα

(α) = μα + καπα + κα (1 − λαvα − μα − καπα)

= μα + (1 − μα) (κα + κα (1 − κα)) − vακα (1 − κα + λα)

= μα + (1 − μα)
(

1 − (1 − κα)2
)

− vακα

(
2−1∑

t = 0

λ2−1−t
α (1 − κα)t

)

(1.318)

vJ 2
κα,λα

(α) = λ2
αvα (1.319)

Suppose it is true for n = p, that is,

μJ p
κα,λα

(α) = μα + (1 − μα)
(
1 − (1 − κα)p)− vακα

⎛

⎝
p − 1∑

t = 0

λp−1−t
α (1 − κα)t

⎞

⎠

(1.320)

vJ p
κα,λα

(α) = λp
αvα (1.321)

then, when n = p + 1, we have

μ
J p+1
κα,λα

(α)
= μα + (1 − μα)

(
1 − (1 − κα)p)− vακα

⎛

⎝
p − 1∑

t = 0

λp−1−t
α (1 − κα)t

⎞

⎠

+ κα

⎛

⎝1 − λp
αvα − μα − (1 − μα)

(
1 − (1 − κα)p)

+ vακα

⎛

⎝
p − 1∑

t = 0

λp−1−t
α (1 − κα)t

⎞

⎠

⎞

⎠

= μα + (1 − μα)
(
1 − (1 − κα)p + κα − κα

(
1 − (1 − κα)p))

− vακα

⎛

⎝

⎛

⎝
p − 1∑

t = 0

λp−1−t
α (1 − κα)t+1

⎞

⎠+ λp
α

⎞

⎠

= μα + (1 − μα)
(

1 − (1 − κα)p+1
)

− vακα

( p∑

t = 0

λp−t
α (1 − κα)t

)

(1.322)

v
J p+1
κα,λα

(α)
= λλp

αvα = λp+1
α vα (1.323)

and hence, (6) holds for n = p + 1. Therefore, (6) holds for all n.
(7) For n = 1, we have
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J ∗,1
κα,λα

(α) = (λαvα, μα + κα (1 − λαvα − μα))

=
(

λ1
αvα, μα + (1 − μα)

(
1 − (1 − κα)1

)

− vακαλα

(
1−1∑

t = 0

λ1−1−t
α (1 − κα)t

))
(1.324)

For n = 2, we have

μJ∗,n
κα,λα

(α) = μα + κα (1 − λαvα − μα)

+ κα

(
1 − λ2

αvα − μα − κα (1 − λαvα − μα)
)

= μα + (1 − μα) (κα + κα (1 − κα)) − vακαλα (1 + λα − κα)

= μα + (1 − μα)
(

1 − (1 − κα)2
)

− vακαλα

(
2−1∑

t = 0

λ2−1−t
α (1 − κα)t

)

(1.325)

vJ∗,2
κα,λα

(α)
= λ2

αvα (1.326)

Suppose it is true for n = p, that is,

μJ∗,p
κα,λα

(α) = μα + (1 − μα)
(
1 − (1 − κα)p)− vακαλα

⎛

⎝
p − 1∑

t = 0

λp−1−t
α (1 − κα)t

⎞

⎠

(1.327)

vJ∗,p
κα,λα

(α) = λp
αvα (1.328)

then, when n = p + 1, we have

μ
J∗,p+1
κα,λα

(α)
= μα + (1 − μα)

(
1 − (1 − κα)p)− vακαλα

⎛

⎝
p − 1∑

t = 0

λp−1−t
α (1 − κα)t

⎞

⎠

+ κα

⎛

⎝1 − λp+1
α vα − μα − (1 − μα)

(
1 − (1 − κα)p)

+ vακαλα

⎛

⎝
p − 1∑

t = 0

λp−1−t
α (1 − κα)t

⎞

⎠

⎞

⎠
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= μα + (1 − μα)
(
1 − ((1 − κα)p − κα (1 − κα)p))

− vακαλα

⎛

⎝

⎛

⎝
p − 1∑

t = 0

λp−1−t
α (1 − κα)t+1

⎞

⎠+ λp
α

⎞

⎠

= μα + (1 − μα)
(

1 − (1 − κα)p+1
)

− vακαλα

( p∑

t = 0

λp−t
α (1 − κα)t

)

(1.329)

v
J∗,p+1
κα,λα

(α)
= κκ p

α vα = λp+1
α vα (1.330)

and hence, (7) holds for n = p + 1. Therefore, (7) holds for all n.
In addition, by Definition 1.27, we can easily get that intuitionistic fuzzy point

operators translate one IFV to another IFV. In the following subsection, we introduce
some generalized intuitionistic fuzzy point averaging operators (Xia and Xu 2010)
combining the developed point operators with Zhao et al. (2010)’s operators.

1.9 Generalized Point Operators for Aggregating IFVs

Definition 1.28 (Xia and Xu 2010) Let V be the set of all IFVs,α j = (μα j , vα j ) ( j =
1, 2, . . . , m) a collection of IFVs, and n a positive integer, taking κα j , λα j ∈ [0, 1],
j = 1, 2, . . . , m, ρ > 0, and let GIFPWA: V m → V , if

(1) GIFPWADn
w(α1, α2, . . . , αm)

=
(

w1

(
Dn

κα1 ,λα1
(α1)

)ρ ⊕ w2

(
Dn

κα2 ,λα2
(α2)

)ρ ⊕ · · ·⊕ wm

(
Dn

καm ,λαm
(αm)

)ρ ) 1
ρ
.

(2) GIFPWAFn
w(α1, α2, . . . , αm)

=
(

w1

(
Fn

κα1 ,λα1
(α1)

)ρ ⊕ w2

(
Fn

κα2 ,λα2
(α2)

)ρ ⊕ · · ·⊕ wm

(
Fn

καm ,λαm
(αm)

)ρ ) 1
ρ

where κα j + λα j ≤ 1, j = 1, 2, . . . , m.

(3) GIFPWAGn
w(α1, α2, . . . , αm)

=
(

w1

(
Gn

κα1 ,λα1
(α1)

)ρ ⊕ w2

(
Gn

κα2 ,λα2
(α2)

)ρ ⊕ · · · ⊕ wm

(
Gn

καm ,λαm
(αm)

)ρ) 1
ρ

.

(4) GIFPWAHn
w(α1, α2, . . . , αm)

=
(

w1

(
Hn

κα1 ,λα1
(α1)

)ρ ⊕ w2

(
Hn

κα2 ,λα2
(α2)

)ρ ⊕ · · · ⊕ wm

(
Hn

καm ,λαm
(αm)

)ρ ) 1
ρ
.

(5) GIFPWAH∗,n
w (α1, α2, . . . , αm)

=
(

w1

(
H∗,n

κα1 ,λα1
(α1)

)ρ ⊕ w2

(
H∗,n

κα2 ,λα2
(α2)

)ρ ⊕ · · · ⊕ wm

(
H∗,n

καm ,λαm
(αm)

)ρ ) 1
ρ
.
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(6) GIFPWAJn
w(α1, α2, . . . , αn)

=
(

w1

(
J n
κα1 ,λα1

(α1)
)ρ ⊕ w2

(
J n
κα2 ,λα2

(α2)
)ρ ⊕ · · · ⊕ wm

(
J n
καm ,λαm

(αm)
)ρ ) 1

ρ
.

(7) GIFPWAJ∗,n
w (α1, α2, . . . , αn)

=
(

w1

(
J ∗,n
κα1 ,λα1

(α1)
)ρ ⊕ w2

(
J ∗,n
κα2 ,λα2

(α2)
)ρ ⊕ · · · ⊕ wm

(
J ∗,n
καm ,λαm

(αm)
)ρ ) 1

ρ
.

(8) GIFPWAPn
w(α1, α2, . . . , αn)

=
(

w1

(
Pn

κα1 ,λα1
(α1)

)ρ ⊕ w2

(
Pn

κα2 ,λα2
(α2)

)ρ ⊕ · · · ⊕ wm

(
Pn

καm ,λαm
(αm)

)ρ ) 1
ρ

where κα j + λα j ≤ 1, j = 1, 2, . . . , m.

(9) GIFPWAQn
w(α1, α2, . . . , αn)

=
(

w1

(
Qn

κα1 ,λα1
(α1)

)ρ ⊕ w2

(
Qn

κα2 ,λα2
(α2)

)ρ ⊕ · · · ⊕ wm

(
Qn

καm ,λαm
(αm)

)ρ ) 1
ρ

where κα j + λα j ≤ 1, j = 1, 2, . . . , m.

Then, the functions GIFPWADn
w, GIFPWAFn

w, GIFPWAGn
w, GIFPWAHn

w,
GIFPWAH∗,n

w , GIFPWAJn
w, GIFPWAJ∗,n

w , GIFPWAPn
w and GIFPWAQn

w are called
the generalized intuitionistic fuzzy point weighted averaging (GIFPWA) operators,
where ρ > 0, w = (w1, w2, . . . , wn)T is a weight vector associated with the GIFPWA
operators, with w j ≥ 0, j = 1, 2, . . . , n, and

∑n
j = 1 w j = 1.

Theorem 1.44 (Xia and Xu 2010) The aggregated values by using the GIFPWA
operators are also IFVs, and

(1) GIFPWADn
w(α1,α2, . . . , αm) =

⎛

⎜⎝

⎛

⎝1 −
m∏

j = 1

(
1 − (μα j + κα j πα j

)ρ)w j

⎞

⎠
1/ρ

,

1 −
⎛

⎝1 −
m∏

j = 1

(
1 − (1 − vα j − (1 − κα j

)
πα j

)ρ)w j

⎞

⎠
1/ρ
⎞

⎟⎠ .

(2) GIFPWAFn
w(α1, α2, . . . , αm) =

⎛

⎜⎝

⎛

⎝1 −
m∏

j = 1

(
1 − μ

ρ

Fn
κα j ,λα j

(α)

)w j

⎞

⎠
1/ρ

,

1 −
⎛

⎝1 −
m∏

j = 1

(
1 −

(
1 − vFn

κα j ,λα j
(α j)

)ρ)w j

⎞

⎠
1/ρ
⎞

⎟⎠
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where κα j + λα j ≤ 1, j = 1, 2, . . . , m, and

μFn
κα j ,λα j

(α j) = μα j + κα j πα j

1 − (1 − κα j − λα j

)n

κα j + λα j

(1.331)

vFn
κα j ,λα j

(α j) = vα j + λα j πα j

1 − (1 − κα j − λα j

)n

κα j + λα j

(1.332)

(3) GIFPWAGn
w(α1, α2, . . . , αm) =

⎛

⎜⎝

⎛

⎝1 −
m∏

j = 1

(
1 −

(
κn
α j

μα j

)ρ)w j

⎞

⎠

1
ρ

,

1 −
⎛

⎝1 −
m∏

j = 1

(
1 −

(
1 − λn

α j
vα j

)ρ)w j

⎞

⎠

1
ρ

⎞

⎟⎠ .

(4) GIFPWAHn
w(α1, α2, . . . , αm) =

⎛

⎜⎝

⎛

⎝1 −
m∏

j = 1

(
1 −

(
κn
α j

μα j

)ρ)w j

⎞

⎠

1
ρ

,

1 −
⎛

⎝1 −
m∏

j = 1

(
1 −

(
1 − vHn

κα j ,λα j
(α j)

)ρ)w j

⎞

⎠

1
ρ

⎞

⎟⎠ .

where

vHn
κα j ,λα j

(
α j
) = vα j +

(
1 − vα j

) (
1 −

(
1 − λα j

)n)−μα j λα j

⎛

⎝
n−1∑

t = 0

κn−1−t
α j

(
1 − λα j

)t

⎞

⎠

(1.333)

(5) GIFPWAH∗,n
w (α1, α2, . . . , αm) =

⎛

⎜⎝

⎛

⎝1 −
m∏

j = 1

(
1 −

(
κn
α j

μα j

)ρ)w j

⎞

⎠

1
ρ

,

1 −
⎛

⎝1 −
m∏

j = 1

(
1 −

(
1 − vH∗,n

κα j ,λα j
(α j)

)ρ)w j

⎞

⎠

1
ρ

⎞

⎟⎠
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where

vH∗,n
κα j ,λα j

(α j) = vα j + (1 − vα j
) (

1 − (1 − λα j

)n)

− μα j κα j λα j

(
n−1∑

t = 0

κn−1−t
α j

(
1 − λα j

)t
)

(1.334)

(6) GIFPWAJn
w(α1, α2, . . . , αm) =

⎛

⎜⎝

⎛

⎝1 −
m∏

j = 1

(
1 − μ

ρ

J n
κα j ,λα j

(α j)

)w j
⎞

⎠

1
ρ

,

1 −
⎛

⎝1 −
m∏

j = 1

(
1 −

(
1 − λn

α j
vα j

)ρ)w j

⎞

⎠

1
ρ

⎞

⎟⎠

where

μJ n
κα j ,λα j

(α j) = μα j + (1 − μα j

) (
1 − (1 − κα j

)n)

− vα j κα j

(
n−1∑

t = 0

λn−1−t
α j

(
1 − μα j

)t
)

(1.335)

(7) GIFPWAJ∗,n
w (α1, α2, . . . , αm) =

⎛

⎜⎝

⎛

⎝1 −
m∏

j = 1

(
1 − μ

ρ

J∗,n
κα j ,λα j

(α j)

)w j
⎞

⎠

1
ρ

,

1 −
⎛

⎝1 −
m∏

j = 1

(
1 −

(
1 − λn

α j
vα j

)ρ)w j

⎞

⎠

1
ρ

⎞

⎟⎠

where

μJ∗,n
κα j ,λα j

(α j) = μα j + (1 − μα j

) (
1 − (1 − κα j

)n)

− vα j κα j λα j

(
n−1∑

t = 0

λn−1−t
α j

(
1 − μα j

)t
)

(1.336)
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(8) GIFPWAPn
w(α1, α2, . . . , αm) =

⎛

⎜⎝

⎛

⎝1 −
m∏

j = 1

(
1 − (max

(
κα j , μα j

))ρ)w j

⎞

⎠

1
ρ

,

1 −
⎛

⎝1 −
m∏

j = 1

(
1 − (1 − min

(
λα j , vα j

))ρ)w j

⎞

⎠

1
ρ

⎞

⎟⎠

where κα j + λα j ≤ 1, j = 1, 2, . . . , m.

(9) GIFPWAQn
w(α1, α2, . . . , αm) =

⎛

⎜⎝

⎛

⎝1 −
m∏

j = 1

(
1 − (min

(
κα j , μα j

))ρ)w j

⎞

⎠

1
ρ

,

1 −
⎛

⎝1 −
m∏

j = 1

(
1 − (1 − max

(
λα j , vα j

))ρ)w j

⎞

⎠

1
ρ

⎞

⎟⎠

where κα j + λα j ≤ 1, j = 1, 2, . . . , m.

Proof Now we prove (2) (the others can be proven similarly). We first prove the
following equation by using mathematical induction on m:

w1

(
Fn

κα1 ,λα1
(α1)

)ρ ⊕ w2

(
Fn

κα2 ,λα2
(α2)

)ρ ⊕ · · · ⊕ wm

(
Fn

καm ,λαm
(αm)

)ρ

=
⎛

⎜⎝

⎛

⎝1 −
m∏

j = 1

(
1 − μ

ρ

Fn
κα j ,λα j

(α j)

)w j
⎞

⎠

1
ρ

,

1 −
⎛

⎝1 −
m∏

j = 1

(
1 −

(
1 − μFn

κα j ,λα j
(α j)

)ρ)w j

⎞

⎠

1
ρ

⎞

⎟⎠ (1.337)

where

μFn
κα j ,λα j

(α j) = μα j + κα j πα j

1 − (1 − κα j − λα j

)n

κα j + λα j

(1.338)

vFn
κα j ,λα j

(α j) = vα j + λα j πα j

1 − (1 − κα j − λα j

)n

κα j + λα j

(1.339)
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(1) For m = 2: Since

(
Fn

κα1 ,λα1
(α1)

)ρ =
(

μ
ρ

Fn
κα1 ,λα1

(α1)
, 1 −

(
1 − vFn

κα1 ,λα1
(α1)

)ρ
)

(1.340)

(
Fn

κα2 ,λα2
(α1)

)ρ =
(

μ
ρ

Fn
κα2 ,λα2

(α2)
, 1 −

(
1 − vFn

κα2 ,λα2
(α2)

)ρ
)

(1.341)

then

w1

(
Fn

κα1 ,λα1
(α1)

)ρ ⊕ w2

(
Fn

κα2 ,λα2
(α2)

)ρ

=
⎛

⎝1 −
2∏

j = 1

(
1 − μ

ρ

Fn
κα1 ,λα1

(α1)

)w j

,

2∏

j = 1

(
1 −

(
1 − vFn

κα1 ,λα1
(α1)

)ρ)w j

⎞

⎠

(1.342)

(2) If Eq. (1.332) holds for m = p, that is,

w1

(
Fn

κα1 ,λα1
(α1)

)ρ ⊕ w2

(
Fn

κα2 ,λα2
(α2)

)ρ ⊕ · · · ⊕ wp

(
Fn

καp ,λαp

(
αp
))ρ

=
⎛

⎜⎝

⎛

⎝1 −
p∏

j = 1

(
1 − μ

ρ

Fn
κα j ,λα j

(α j)

)w j
⎞

⎠

1
ρ

,

1 −
⎛

⎝1 −
p∏

j = 1

(
1 −

(
1 − vFn

κα j ,λα j
(α j)

)ρ)w j

⎞

⎠

1
ρ

⎞

⎟⎠ (1.343)

then, when m = p + 1, by the operational laws given in Sect. 1.8, we have

w1

(
Fn
κα1 ,λα1

(α1)
)ρ ⊕ w2

(
Fn
κα2 ,λα2

(α2)
)ρ ⊕ · · · ⊕ wp+1

(
Fn
καp+1 ,λαp+1

(
αp+1

))ρ

=
⎛

⎝1 −
p∏

j = 1

(
1 − μ

ρ

Fn
κα j ,λα j

(
α j
)

)w j

,

p∏

j = 1

(
1 −

(
1 − vFn

κα j ,λα j

(
α j
)
)ρ)w j

⎞

⎠

⊕
(

1 −
(

1 − μ
ρ

Fn
καp+1 ,λαp+1

(αp+1)

)wp+1

,

(
1 −

(
1 − vFn

καp+1 ,λαp+1
(αp+1)

)ρ)wp+1
)

=
⎛

⎝1 −
p+1∏

j = 1

(
1 − μ

ρ

Fn
κα j ,λα j

(
α j
)

)w j

,

p+1∏

j = 1

(
1 −

(
1 − vFn

κα j ,λα j

(
α j
)
)ρ)w j

⎞

⎠ (1.344)

i.e. Eq. (1.337) holds for m = p + 1. Thus, Eq. (1.337) holds for all m. Therefore,
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GIFPWAFn
w(α1, α2, . . . , αm)

=
⎛

⎝1 −
m∏

j = 1

(
1 − μ

ρ

Fn
κα j ,λα j

(α j)

)w j

,

m∏

j = 1

(
1 −

(
1 − vFn

κα j ,λα j
(α j)

)ρ)w j

⎞

⎠

1
ρ

=
⎛

⎜⎝

⎛

⎝1 −
m∏

j = 1

(
1 − μ

ρ

Fn
κα j ,λα j

(α j)

)w j
⎞

⎠

1
ρ

,

1 −
⎛

⎝1 −
m∏

j = 1

(
1 − (1 − vFn

κα j ,λα j
(α j))

ρ

)w j

⎞

⎠

1
ρ

⎞

⎟⎠ (1.345)

Moreover, from Definition 1.28 and the operational laws given in Sect. 1.8, we
can easily prove that the aggregated values by using the GIFPWA operators are also
IFVs.

Theorem 1.45 (Xia and Xu 2010) If all the IFVs α j = (μα j , vα j ) ( j = 1, 2, . . . , m)

are equal, i.e. α j = α, for all j , then
(1) GIFPWADn

w(α1, α2, . . . , αm) = Dn
κα,λα

(α).

(2) GIFPWAn
w(α1, α2, . . . , αm) = Fn

κα,λα
(α), where κα j + λα j ≤ 1,

j = 1, 2, . . . , m.

(3) GIFPWAGn
w(α1, α2, . . . , αm) = Gn

κα,λα
(α).

(4) GIFPWAHn
w(α1, α2, . . . , αm) = Hn

κα,λα
(α).

(5) GIFPWAH∗,n
w (α1, α2, . . . , αm) = H∗,n

κα,λα
(α).

(6) GIFPWAJn
w(α1, α2, . . . , αm) = J n

κα,λα
(α).

(7) GIFPWAJ∗,n
w (α1, α2, . . . , αm) = J ∗,n

κα,λα
(α).

(8) GIFPWAPn
w(α1, α2, . . . , αm) = Pn

κα,λα
(α), where κα j + λα j ≤ 1,

j = 1, 2, . . . , m.

(9) GIFPWAQn
w(α1, α2, . . . , αm) = Qn

κα,λα
(α), where κα j + λα j ≤ 1,

j = 1, 2, . . . , m.

Proof We first prove (2), by (2) in Theorem 1.44, we have

GIFPWAFn
w(α1, α2, . . . , αm)

=
(

w1

(
Fn

κα1 ,λα1
(α1)

)ρ ⊕ w2

(
Fn

κα2 ,λα2
(α2)

)ρ ⊕ · · · ⊕ wm

(
Fn

καm ,λαm
(αm)

)ρ) 1
ρ

= (w1
(
Fn

κα,λα
(α)
)ρ ⊕ w2

(
Fn

κα,λα
(α)
)ρ ⊕ · · · ⊕ wm

(
Fn

κα,λα
(α)
)ρ) 1

ρ
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= ((w1 + w2 + · · · + wn)
(
Fn

κα,λα
(α)
)ρ) 1

ρ

= ((Fn
κα,λα

(α)
)ρ) 1

ρ = Fn
κα,λα

(α) .

Similarly, we can prove the others.

Theorem 1.46 (Xia and Xu 2010)

(1) α−
Dn

≤ GIFPWADn
w(α1, α2, . . . , αm) ≤ α+

Dn
.

(2) α−
Fn

≤ GIFPWAFn
w(α1, α2, . . . , αm) ≤ α+

Fn
, where κα j + λα j ≤ 1,

j = 1, 2, . . . , m.

(3) α−
Gn

≤ GIFPWAGn
w(α1, α2, . . . , αm) ≤ α+

Gn
.

(4) α−
Hn

≤ GIFPWAHn
w(α1, α2, . . . , αm) ≤ α+

Hn
.

(5) α−
H∗

n
≤ GIFPWAH∗,n

w (α1, α2, . . . , αm) ≤ α+
H∗

n
.

(6) α−
Jn

≤ GIFPWAJn
w(α1, α2, . . . , αm) ≤ α+

Jn
.

(7) α−
J∗

n
≤ GIFPWAJ∗,n

w (α1, α2, . . . , αm) ≤ α+
J∗

n
.

(8) α−
Pn

≤ GIFPWAPn
w(α1, α2, . . . , αm) ≤ α+

Pn
, where κα j + λα j ≤ 1,

j = 1, 2, . . . , m.

(9) α−
Qn

≤ GIFPWAQn
w(α1, α2, . . . , αm) ≤ α+

Qn
, where κα j + λα j ≤ 1,

j = 1, 2, . . . , m, and

α−
Dn

=
(

min
j

(μDn
κα j ,λα j

(α j )
), max

j
(vDn

κα j ,λα j
(α j )

)

)

α+
Dn

=
(

max
j

(μDn
κα j ,λα j

(α j )
), min

j
(vDn

κα j ,λα j
(α j )

)

)

α−
Fn

=
(

min
j

(μFn
κα j ,λα j

(α j )
), max

j
(vFn

κα j ,λα j
(α j )

)

)

α+
Fn

=
(

max
j

(μFn
κα j ,λα j

(α j )
), min

j
(vFn

κα j ,λα j
(α j )

)

)

α−
Gn

=
(

min
j

(μGn
κα j ,λα j

(α j )
), max

j
(vGn

κα j ,λα j
(α j )

)

)

α+
Gn

=
(

max
j

(μGn
κα j ,λα j

(α j )
), min

j
(vGn

κα j ,λα j
(α j )

)

)

α−
Hn

=
(

min
j

(μHn
κα j ,λα j

(α j )
), max

j
(vHn

κα j ,λα j
(α j )

)

)

α+
Hn

=
(

max
j

(μHn
κα j ,λα j

(α j )
), min

j
(vHn

κα j ,λα j
(α j )

)

)

α−
H∗

n
=
(

min
j

(μH∗,n
κα j ,λα j

(α j )
), max

j
(vH∗,n

κα j ,λα j
(α j )

)

)
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α+
H∗

n
=
(

max
j

(μH∗,n
κα j ,λα j

(α j )
), min

j
(vH∗,n

κα j ,λα j
(α j )

)

)

α−
Jn

=
(

min
j

(μJ n
κα j ,λα j

(α j )
), max

j
(vJ n

κα j ,λα j
(α j )

)

)

α+
J∗

n
=
(

max
j

(μJ n
κα j ,λα j

(α j )
), min

j
(vJ n

κα j ,λα j
(α j )

)

)

α−
J∗

n
=
(

min
j

(μJ∗,n
κα j ,λα j

(α j )
), max

j
(vJ∗,n

κα j ,λα j
(α j )

)

)

α+
J∗

n
=
(

max
j

(μJ∗,n
κα j ,λα j

(α j )
), min

j
(vJ∗,n

κα j ,λα j
(α j )

)

)

α−
Pn

=
(

min
j

(μPn
κα j ,λα j

(α j )
), max

j
(vPn

κα j ,λα j
(α j )

)

)

α+
Pn

=
(

max
j

(μPn
κα j ,λα j

(α j )
), min

j
(vPn

κα j ,λα j
(α j )

)

)

α−
Qn

=
(

min
j

(μQn
κα j ,λα j

(α j )
), max

j
(vQn

κα j ,λα j
(α j )

)

)

α+
Qn

=
(

max
j

(μQn
κα j ,λα j

(α j )
), min

j
(vQn

κα j ,λα j
(α j )

)

)

Proof We first prove (2), since

min
j

(
μFn

κα j ,λα j
(α j)

)
≤ μFn

κα j ,λα j
(α j) ≤ max

j

(
μFn

κα j ,λα j
(α j)

)
(1.346)

and

min
j

(
vFn

κα j ,λα j
(α j)

)
≤ vFn

κα j ,λα j
(α j) ≤ max

j

(
vFn

κα j ,λα j
(α j)

)
(1.347)

for all j , then

m∏

j = 1

(
1 − μ

ρ

Fn
κα j ,λα j

(α j)

)w j

≥
m∏

j = 1

(
1 −

(
max

j

(
μFn

κα j ,λα j
(α j)

))ρ)w j

= 1 −
(

max
j

(
μFn

κα j ,λα j
(α j)

))ρ

(1.348)

and then

⎛

⎝1 −
m∏

j = 1

(
1 − μ

ρ

Fn
κα j ,λα j

(α j)

)w j
⎞

⎠

1
ρ

≤ max
j

(
μFn

κα j ,λα j
(α j)

)
(1.349)

Similarly, we have
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⎛

⎝1 −
m∏

j = 1

(
1 − μ

ρ

Fn
κα j ,λα j

(α j)

)w j
⎞

⎠

1
ρ

≥ min
j

(
μFn

κα j ,λα j
(α j)

)
(1.350)

m∏

j = 1

(
1 −

(
1 − vFn

κα j ,λα j
(α j)

)ρ)w j

≤
m∏

j = 1

(
1 −

(
1 − max

j

(
vFn

κα j ,λα j
(α j)

))ρ)w j

= 1 −
(

1 − max
j

(
vFn

κα j ,λα j
(α j)

))ρ

(1.351)

1 −
m∏

j = 1

(
1 − (1 − vFn

κα j ,λα j
(α j))

ρ

)w j

≥
(

1 − max
j

(
vFn

κα j ,λα j
(α j)

))ρ

(1.352)
⎛

⎝1 −
m∏

j = 1

(
1 −

(
1 − vFn

κα j ,λα j
(α j)

)ρ)w j

⎞

⎠

1
ρ

≥ 1 − max
j

(
vFn

κα j ,λα j
(α j)

)

(1.353)

1 −
⎛

⎝1 −
m∏

j = 1

(
1 −

(
1 − vFn

κα j ,λα j
(α j)

)η)w j

⎞

⎠

1
ρ

≤ max
j

(
vFn

κα j ,λα j
(α j)

)

(1.354)

Similarly, we have

1 −
⎛

⎝1 −
m∏

j = 1

(
1 −

(
1 − vFn

κα j ,λα j
(α j)

)ρ)w j

⎞

⎠

1
ρ

≥ min
j

(
vFn

κα j ,λα j
(α j)

)
(1.355)

Let
GIFPWAFn

w(α1, α2, . . . , αn) = αFn = (μαFn
, vαFn

)

then

S
(
αFn

) = μαFn
− vαFn

≤ max
j

(
μFn

κα j ,λα j
(α j)

)
− min

j

(
vFn

κα j ,λα j
(α j)

)
= S

(
α+

Fn

)

(1.356)

S
(
αFn

) = μαFn
− vαFn

≥ min
j

(
μFn

κα j ,λα j
(α j)

)
− max

j

(
vFn

κα j ,λα j
(α j)

)
= S

(
α−

Fn

)

(1.357)
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If S
(
αFn

)
< S

(
α+

Fn

)
and S

(
αFn

)
> S

(
α−

Fn

)
, then by using Xu and Yager

(2006)’s ranking method, we have

α−
Fn

< GIFPWAFn
w(α1, α2, . . . , αn) < α+

Fn
(1.358)

If S
(
αFn

) = S
(
α+

Fn

)
, i.e.,

μαFn
− vαFn

= max
j

(
μFn

κα j ,λα j
(α j)

)
− min

j

(
vFn

κα j ,λα j
(α j)

)
(1.359)

then by Eqs. (1.349) and (1.355), we have

μαFn
= max

j

(
μFn

κα j ,λα j
(α j)

)
, ναFn

= min
j

(
vFn

κα j ,λα j
(α j)

)
(1.360)

then

H
(
αFn

) = μαFn
+ vαFn

= max
j

(
μFn

κα j ,λα j
(α j)

)
+ min

j

(
vFn

κα j ,λα j
(α j)

)
= h

(
α+

Fn

)

So we have
GIFPWAFn

w(α1, α2, . . . , αm) = α+
Fn

(1.361)

If S
(
αFn

) = S
(
α−

Fn

)
, i.e.,

μαFn
− vαFn

= min
j

(
μFn

κα j ,λα j
(α j)

)
− max

j

(
vFn

κα j ,λα j
(α j)

)
(1.362)

then by Eqs. (1.350) and (1.354), we have

μαFn
= min

j

(
μFn

κα j ,λα j
(α j )

)
, vαFn

= max
j

(
vFn

κα j ,λα j
(α j )

)
(1.363)

hence

H
(
αFn

) = μαFn
+ vαFn

= min
j

(
μFn

κα j ,λα j
(α j )

)
+ max

j

(
vFn

κα j ,λα j
(α j )

)
= h

(
α−

Fn

)

(1.364)
Thus, it follows that

GIFPWAFn
w(α1, α2, . . . , αn) = α−

Fn
(1.365)

and then from Eqs. (1.358), (1.361) and (1.365), we know that (2) always holds.
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Theorem 1.47 (Xia and Xu 2010)

(1) If μDn
κα j ,λα j

(α j ) ≤ μDn
κ
α∗

j
,λ

α∗
j

(α∗
j )

and vDn
κα j ,λα j

(α j ) ≥ vDn
κ
α∗

j
,λ

α∗
j

(α∗
j )

, for all j , then

GIFPWADn
w(α1, α2, . . . , αm) ≤ GIFPWADn

w(α∗
1 , α∗

2 , . . . , α∗
m) (1.366)

(2) If μFn
κα j ,λα j

(α j ) ≤ μFn
κ
α∗

j
,λ

α∗
j

(α∗
j )

and vFn
κα j ,λα j

(α j ) ≥ vFn
κ
α∗

j
,λ

α∗
j

(α∗
j )

, for all j , then

GIFPWAFn
w(α1, α2, . . . , αm) ≤ GIFPWAFn

w(α∗
1 , α∗

2 , . . . , α∗
n) (1.367)

where κα j + λα j ≤ 1 , j = 1, 2, . . . , m.

(3) If μGn
κα j ,λα j

(α j ) ≤ μGn
κ
α∗

j
,λ

α∗
j

(α∗
j )

and vGn
κα j ,λα j

(α j ) ≥ vGn
κ
α∗

j
,λ

α∗
j

(α∗
j )

, for all j , then

GIFPWAGn
w(α1, α2, . . . , αm) ≤ GIFPWAGn

w(α∗
1 , α∗

2 , . . . , α∗
m) (1.368)

(4) If μHn
κα j ,λα j

(α j ) ≤ μHn
κ
α∗

j
,λ

α∗
j

(α∗
j )

and vHn
κα j ,λα j

(α j ) ≥ vHn
κ
α∗

j
,λ

α∗
j

(α∗
j )

, for all j , then

GIFPWAHn
w(α1, α2, . . . , αm) ≤ GIFPWAHn

w(α∗
1 , α∗

2 , . . . , α∗
m) (1.369)

(5) If μH∗,n
κα j ,λα j

(α j )
≤ μH∗,n

κ
α∗

j
,λ

α∗
j

(α∗
j )

and vH∗,n
κα j ,λα j

(α j )
≥ vH∗,n

κ
α∗

j
,λ

α∗
j

(α∗
j )

, for all j , then

GIFPWAH∗,n
w (α1, α2, . . . , αm) ≤ GIFPWAH∗,n

w (α∗
1 , α∗

2 , . . . , α∗
m) (1.370)

(6) If μJ n
κα j ,λα j

(α j ) ≤ μJ n
κ
α∗

j
,λ

α∗
j

(α∗
j )

and vJ n
κα j ,λα j

(α j ) ≥ vJ n
κ
α∗

j
,λ

α∗
j

(α∗
j )

, for all j , then

GIFPWAJn
w(α1, α2, . . . , αm) ≤ GIFPWAJn

w(α∗
1 , α∗

2 , . . . , α∗
m) (1.371)

(7) If μJ∗,n
κα j ,λα j

(α j )
≤ μJ∗,n

κ
α∗

j
,λ

α∗
j

(α∗
j )

and vJ∗,n
κα j ,λα j

(α j )
≥ vJ∗,n

κ
α∗

j
,λ

α∗
j

(α∗
j )

, for all j , then

GIFPWAJ∗,n
w (α1, α2, . . . , αm) ≤ GIFPWAJ∗,n

w (α∗
1 , α∗

2 , . . . , α∗
m) (1.372)

(8) If μPn
κα j ,λα j

(α j ) ≤ μPn
κ
α∗

j
,λ

α∗
j

(α∗
j )

and vPn
κα j ,λα j

(α j ) ≥ vPn
κ
α∗

j
,λ

α∗
j

(α∗
j )

, for all j , then

GIFPWAPn
w(α1, α2, . . . , αm) ≤ GIFPWAPn

w(α∗
1 , α∗

2 , . . . , α∗
m) (1.373)

where κα j + λα j ≤ 1, j = 1, 2, . . . , m.
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(9) If μQn
κα j ,λα j

(α j ) ≤ μQn
κ
α∗

j
,λ

α∗
j

(α∗
j )

and vQn
κα j ,λα j

(α j ) ≥ vQn
κ
α∗

j
,λ

α∗
j

(α∗
j )

, for all j , then

GIFPWAQn
w(α1, α2, . . . , αm) ≤ GIFPWAQn

w(α∗
1 , α∗

2 , . . . , α∗
m) (1.374)

where κα j + λα j ≤ 1, j = 1, 2, . . . , m.

Proof Here, we prove (2), since μFn
κα j ,λα j

(α j ) ≤ μFn
κ
α∗

j
,λ

α∗
j

(α∗
j )

and vFn
κα j ,λα j

(α j ) ≥
vFn

κ
α∗

j
,λ

α∗
j

(α∗
j )

for all j , then

m∏

j = 1

(
1 − μ

ρ

Fn
κα j ,λα j

(α j )

)w j

≥
m∏

j = 1

(
1 − μ

ρ

Fn
κ
α∗

j
,λ

α∗
j

(α∗
j )

)w j

(1.375)

1 −
n∏

j = 1

(
1 − μ

ρ

Fn
κα j ,λα j

(α j )

)w j

≤ 1 −
n∏

j = 1

(
1 − μ

ρ

Fn
κ
α∗

j
,λ

α∗
j

(α∗
j )

)w j

(1.376)

⎛

⎝1 −
n∏

j = 1

(
1 − μ

ρ

Fn
κα j ,λα j

(α j )

)w j

⎞

⎠

1
ρ

≤
⎛

⎝1 −
m∏

j = 1

(
1 − μ

ρ

Fn
κ
α∗

j
,λ

α∗
j

(α∗
j )

)w j
⎞

⎠

1
ρ

(1.377)
n∏

j = 1

(
1 − (1 − vFn

κα j ,λα j
(α j ))

ρ

)w j

≥
m∏

j = 1

(
1 − (1 − vFn

κ
α∗

j
,λ

α∗
j

(α∗
j )
)ρ

)w j

(1.378)

1 −
m∏

j = 1

(
1 − (1 − vFn

κα j ,λα j
(α j ))

ρ

)w j

≤ 1 −
m∏

j = 1

(
1 − (1 − vFn

κ
α∗

j
,λ

α∗
j

(α∗
j )
)ρ

)w j

(1.379)
⎛

⎝1 −
m∏

j = 1

(
1 − (1 − vFn

κα j ,λα j
(α j ))

ρ

)w j

⎞

⎠

1
ρ

≤
⎛

⎝1 −
m∏

j = 1

(
1 − (1 − vFn

κ
α∗

j
,λ

α∗
j

(α∗
j )
)ρ

)w j
⎞

⎠

1
ρ

(1.380)

1−
⎛

⎝1 −
m∏

j = 1

(
1 − (1 − vFn

κα j ,λα j
(α j ))

ρ

)w j

⎞

⎠

1
ρ

≥1−
⎛

⎝1 −
m∏

j = 1

(
1 − (1 − vFn

κ
α∗

j
,λ

α∗
j

(α∗
j )
)ρ

)w j
⎞

⎠

1
ρ

(1.381)
⎛

⎝1 −
m∏

j = 1

(
1 − μ

ρ

Fn
κα j ,λα j

(α j )

)w j

⎞

⎠

1
ρ

−
⎛

⎜⎝1 −
⎛

⎝1 −
m∏

j = 1

(
1 − (1 − vFn

κα j ,λα j
(α j ))

ρ

)w j

⎞

⎠

1
ρ

⎞

⎟⎠
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≤
⎛

⎝1 −
m∏

j = 1

(
1 − μ

ρ

Fn
κ
α∗

j
,λ

α∗
j

(α∗
j )

)w j
⎞

⎠

1
ρ

−
⎛

⎜⎝1 −
⎛

⎝1 −
m∏

j = 1

(
1 − (1 − vFn

κ
α∗

j
,λ

α∗
j

(α∗
j )
)ρ

)w j
⎞

⎠

1
ρ

⎞

⎟⎠

(1.382)

Let α = GIFPWAFn
w(α1, α2, . . . , αm) and α∗ = GIFPWAFn

w(α∗
1 , α∗

2 , . . . , α∗
m),

then by Eq. (1.382), we have
S(αFn ) ≤ S(α∗

Fn
) (1.383)

If S(αFn ) < S(α∗
Fn

), then by using Xu and Yager (2006)’s ranking method, we
have

GIFPWAFn
w(α1, α2, . . . , αm) < GIFPWAFn

w(α∗
1 , α∗

2 , . . . , α∗
m) (1.384)

If S(αFn ) = S(α∗
Fn

), then

⎛

⎝1−
m∏

j = 1

(
1−μ

ρ

Fn
κα j ,λα j

(α j )

)w j

⎞

⎠

1
ρ

−
⎛

⎜⎝1−
⎛

⎝1−
m∏

j = 1

(
1−(1−vFn

κα j ,λα j
(α j ))

ρ

)w j

⎞

⎠

1
ρ

⎞

⎟⎠

=
⎛

⎝1−
m∏

j = 1

(
1−μ

ρ

Fn
κ
α∗

j
,λ

α∗
j

(α∗
j )

)w j
⎞

⎠

1
ρ

−
⎛

⎜⎝1−
⎛

⎝1−
m∏

j = 1

(
1−(1−vFn

κ
α∗

j
,λ

α∗
j

(α∗
j )
)ρ

)w j
⎞

⎠

1
ρ

⎞

⎟⎠

(1.385)

Since μFn
κα j ,λα j

(α j ) ≤ μFn
κ
α∗

j
,λ

α∗
j

(α∗
j )

and vFn
κα j ,λα j

(α j ) ≥ vFn
κ
α∗

j
,λ

α∗
j

(α∗
j )

, for all j , then

⎛

⎝1 −
m∏

j = 1

(
1 − μ

ρ

Fn
κα j ,λα j

(α j )

)w j

⎞

⎠

1
ρ

=
⎛

⎝1 −
m∏

j = 1

(
1 − μ

ρ

Fn
κ
α∗

j
,λ

α∗
j

(α∗
j )

)w j
⎞

⎠

1
ρ

(1.386)

1 −
⎛

⎝1 −
m∏

j = 1

(
1 − (1 − vFn

κα j ,λα j
(α j ))

ρ

)w j

⎞

⎠

1
ρ

= 1 −
⎛

⎝1 −
m∏

j = 1

(
1 − (1 − vFn

κ
α∗

j
,λ

α∗
j

(α∗
j )
)ρ

)w j
⎞

⎠

1
ρ

(1.387)
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Hence

H(αFn )

=
⎛

⎝1−
m∏

j = 1

(
1−μ

ρ

Fn
κα j ,λα j

(α j )

)w j

⎞

⎠

1
ρ

+
⎛

⎜⎝1−
⎛

⎝1−
m∏

j = 1

(
1−(1−vFn

κα j ,λα j
(α j ))

ρ

)w j

⎞

⎠

1
ρ

⎞

⎟⎠

=
⎛

⎝1−
m∏

j = 1

(
1−μ

ρ

Fn
κ
α∗

j
,λ

α∗
j

(α∗
j )

)w j
⎞

⎠

1
ρ

+
⎛

⎜⎝1−
⎛

⎝1−
m∏

j = 1

(
1−(1−vFn

κ
α∗

j
,λ

α∗
j

(α∗
j )
)ρ

)w j
⎞

⎠

1
ρ

⎞

⎟⎠

= h(α∗
Fn

) (1.388)

thus, we have

GIFPWAFn
w(α1, α2, . . . , αm) = GIFPWAFn

w(α∗
1 , α∗

2 , . . . , α∗
m) (1.389)

From Eqs. (1.384) and (1.389), we know that (2) always holds. Similar to the
proof of (2), we can prove the others.

We now look at some special cases obtained by using different choices of the
parameters n, w and η:

Theorem 1.48 (Xia and Xu 2010)

(1) If n = 0, then the GIFPWA operators reduce to the following:

GIFWAw(α1, α2, . . . , αm) = (w1α
ρ
1 ⊕ w2α

ρ
2 ⊕ · · · ⊕ wmαρ

m

) 1
ρ (1.390)

which is the GIFWA operator (Zhao et al. 2010).

(2) If ρ = 1 and n = 0, then the GIFPWA operators reduce to the following:

IFWAw(α1, α2, . . . , αm) = w1ασ(1) ⊕ w2ασ(2) ⊕ · · · ⊕ wmασ(m) (1.391)

which is the IFWA operator (Xu 2007).

(3) If ρ → 0 and n = 0, then the GIFPWA operators reduce to the following:

IFWGw(α1, α2, . . . , αm) = α
w1
σ(1) ⊗ α

w1
σ(2) ⊗ · · · ⊗ α

w1
σ(m) (1.392)

which is the IFWG operator (Xu and Yager 2006).

(4) If ρ → +∞ and n = 0, then the GIFPWA operators reduce to the following:

IFMAXw(α1, α2, . . . , αm) = max
j

(α j ) (1.393)

which is called an intuitionistic fuzzy maximum operator (Chen and Tan 1994).
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(5) If w = (1/m, 1/m, . . . , 1/m)T , n = 0 and ρ = 1, then the GIFPWA operators
reduce to the following:

IFAw(α1, α2, . . . , αm) = 1

n
(α1 ⊕ α2 ⊕ · · · ⊕ αm) (1.394)

which is called an intuitionistic fuzzy average operator (Xu 2007).

(6) If w = (1/m, 1/m, . . . , 1/m)T , n = 0 and ρ → 0, then the GIFPWA operators
reduces to the following:

IFGMw(α1, α2, . . . , αm) = (α1 ⊗ α2 ⊗ · · · ⊗ αm)
1
n (1.395)

which is the IFGM (Xu and Yager 2006).

Definition 1.29 (Xia and Xu 2010) If
(1) GIFPOWADn

w(α1, α2, . . . , αm)

=
(

w1

(
Dn

κασ(1)
,λασ(1)

(
ασ(1)

))ρ ⊕ w2

(
Dn

κασ(2)
,λασ(2)

(
ασ(2)

))ρ ⊕ · · ·

⊕wm

(
Dn

κασ(m)
,λασ(m)

(
ασ(m)

))ρ) 1
ρ

where Dn
κασ( j) ,λασ( j)

(
ασ( j)

)
is the jth largest of Dn

καi ,λαi
(αi ) (i = 1, 2, . . . , m).

(2) GIFPOWAFn
w(α1, α2, . . . , αm)

=
(

w1

(
Fn

κασ(1)
,λασ(1)

(
ασ(1)

))ρ ⊕ w2

(
Fn

κασ(2)
,λασ(2)

(
ασ(2)

))ρ ⊕ · · ·

⊕wm

(
Fn

κασ(m)
,λασ(m)

(
ασ(m)

))ρ) 1
ρ

where κασ( j) + λασ( j) ≤ 1, j = 1, 2, . . . , m, Fn
κασ( j) ,λασ( j)

(
ασ( j)

)
is the jth largest of

Fn
καi ,λαi

(αi ) (i = 1, 2, . . . , m).

(3) GIFPOWAGn
w(α1, α2, . . . , αm)

=
(

w1

(
Gn

κασ(1)
,λασ(1)

(
ασ(1)

))ρ ⊕ w2

(
Gn

κ
σ(2)

,λσ(2)

(
ασ(2)

))ρ ⊕ · · ·

⊕wm

(
Gn

κασ(m)
,λασ(m)

(
ασ(m)

))ρ) 1
ρ

where Gn
κασ( j) ,λασ( j)

(
ασ( j)

)
is the jth largest of Gn

καi ,λαi
(αi ) (i = 1, 2, . . . , m).
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(4) GIFPOWAHn
w(α1, α2, . . . , αm)

=
(

w1

(
Hn

κσ(1),λσ(1)

(
ασ(1)

))ρ ⊕ w2

(
Hn

κσ(2),λσ(2)

(
ασ(2)

))ρ ⊕ · · ·

⊕wm

(
Hn

κασ(m)
,λασ(m)

(αm)
)ρ) 1

ρ

where Hn
κασ( j) ,λασ( j)

(
ασ( j)

)
is the jth largest of Hn

καi ,λαi
(αi ) (i = 1, 2, . . . , m).

(5) GIFPOWAH∗,n
w (α1, α2, . . . , αm)

=
(

w1

(
H∗,n

κασ(1)
,λασ(1)

(
ασ(1)

))ρ ⊕ w2

(
H∗,n

κασ(2)
,λασ(2)

(
ασ(2)

))ρ ⊕ · · ·

⊕wm

(
H∗,n

κασ(m)
,λασ(m)

(
ασ(m)

))ρ) 1
ρ

where H∗,n
κασ( j) ,λασ( j)

(
ασ( j)

)
is the jth largest of H∗,n

καi ,λαi
(αi ) (i = 1, 2, . . . , m).

(6) GIFPOWAJn
w(α1, α2, . . . , αm)

=
(

w1

(
J n
κασ(1)

,λασ(1)

(
ασ(1)

))ρ ⊕ w2

(
J n
κασ(2)

,λασ(2)

(
ασ(2)

))ρ ⊕ · · ·

⊕wm

(
J n
κασ(m)

,λασ(m)

(
ασ(m)

))ρ) 1
ρ

where J n
κασ( j) ,λασ( j)

(
ασ( j)

)
is the jth largest of J n

καi ,λαi
(αi ) (i = 1, 2, . . . , m).

(7) GIFPOWAJ∗,n
w (α1, α2, . . . , αm)

=
(

w1

(
J ∗,n
κασ(1)

,λασ(1)

(
ασ(1)

))ρ ⊕ w2

(
J ∗,n
κασ(2)

,λασ(2)

(
ασ(2)

))ρ ⊕ · · ·

⊕wm

(
J ∗,n
κασ(m)

,λασ(m)

(
ασ(m)

))ρ) 1
ρ

where J ∗,n
κασ( j) ,λασ( j)

(
ασ( j)

)
is the jth largest of J ∗,n

καi ,λαi
(αi ) (i = 1, 2, . . . , m).

(8) GIFPOWAPn
w(α1, α2, . . . , αm)

=
(

w1

(
Pn

κασ(1)
,λασ(1)

(
ασ(1)

))ρ ⊕ w2

(
Pn

κασ(2)
,λασ(2)

(
ασ(2)

))ρ ⊕ · · ·

⊕wm

(
Pn

κασ(m)
,λασ(m)

(
ασ(m)

))ρ) 1
ρ

where κασ( j) + λασ( j) ≤ 1, j = 1, 2, . . . , m, Pn
κασ( j) ,λασ( j)

(
ασ( j)

)
is the jth largest of

Pn
καi ,λαi

(αi ) (i = 1, 2, . . . , m).
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(9) GIFPOWAQn
w(α1, α2, . . . , αm)

=
(

w1

(
Qn

κασ(1)
,λασ(1)

(
ασ(1)

))ρ ⊕ w2

(
Qn

κασ(2)
,λασ(2)

(
ασ(2)

))ρ ⊕ · · ·

⊕wm

(
Qn

κασ(m)
,λασ(m)

(
ασ(m)

))ρ) 1
ρ

where κασ( j) + λασ( j) ≤ 1, j = 1, 2, . . . , m, Qn
κασ( j) ,λασ( j)

(
ασ( j)

)
is the jth largest

of Qn
καi ,λαi

(αi ) (i = 1, 2, . . . , m).

Then the functions GIFPOWADn
w, GIFPOWAFn

w, GIFPOWAGn
w, GIFPOWAHn

w,
GIFPOWAH∗,n

w , GIFPOWAJn
w, GIFPOWAJ∗,n

w , GIFPOWAPn
w and GIFPOWAQn

w are
called the GIFPOWA operators.

The GIFPOWA operators have some properties similar to those of the GIFPWA
operators.

Theorem 1.49 (Xia and Xu 2010) The aggregated value by using the GIFPOWA
operators are also IFVs, and

(1) GIFPOWADn
w(α1, α2, . . . , αm)

=
⎛

⎜⎝

⎛

⎝1 −
m∏

j = 1

(
1 − (μασ( j) + κασ( j)πασ( j)

)ρ)w j

⎞

⎠

1
ρ

,

1 −
⎛

⎝1 −
m∏

j = 1

(
1 − (1 − vασ( j) − (1 − κασ( j)

)
πασ( j)

)ρ)w j

⎞

⎠

1
ρ

⎞

⎟⎠

(2) GIFPOWAFn
w(α1, α2, . . . , αm)

=
⎛

⎜⎝

⎛

⎝1 −
m∏

j = 1

(
1 − μ

ρ

Fn
κασ( j) ,λασ( j)

(ασ( j))

)w j
⎞

⎠

1
ρ

,

1 −
⎛

⎝1 −
m∏

j = 1

(
1 −

(
1 − vFn

κασ( j) ,λασ( j)
(ασ( j))

)ρ)w j

⎞

⎠

1
ρ

⎞

⎟⎠

where κασ( j) + λασ( j) ≤ 1, j = 1, 2, . . . , m, and
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μFn
κασ( j) ,λασ( j)

(ασ( j)) = μασ( j) + κασ( j)πασ( j)

1 − (1 − κασ( j) − λασ( j)

)n

κασ( j) + λασ( j)

(1.396)

vFn
κασ( j) ,λασ( j)

(ασ( j)) = vασ( j) + λασ( j)πασ( j)

1 − (1 − κασ( j) − λασ( j)

)n

κασ( j) + λασ( j)

(1.397)

(3) GIFPOWAGn
w(α1, α2, . . . , αn)

=
⎛

⎜⎝

⎛

⎝1 −
m∏

j = 1

(
1 −

(
κn
ασ( j)

μασ( j)

)ρ)w j

⎞

⎠

1
ρ

,

1 −
⎛

⎝1 −
m∏

j = 1

(
1 −

(
1 − λn

ασ( j)
vασ( j)

)ρ)w j

⎞

⎠

1
ρ

⎞

⎟⎠

(4) GIFPOWAHn
w(α1, α2, . . . , αn)

=
⎛

⎜⎝

⎛

⎝1 −
m∏

j = 1

(
1 −

(
κn
ασ( j)

μασ( j)

)ρ)w j

⎞

⎠

1
ρ

,

1 −
⎛

⎝1 −
m∏

j = 1

(
1 −

(
1 − vHn

κασ( j) ,λασ( j)
(ασ( j))

)ρ)w j

⎞

⎠

1
ρ

⎞

⎟⎠

where

vHn
κασ( j) ,λασ( j)

(ασ( j)) = vασ( j) + (1 − vασ( j)

) (
1 − (1 − λασ( j)

)n)

− μασ( j)λασ( j)

(
n−1∑

t = 0

κn−1−t
ασ( j)

(
1 − λασ( j)

)n
)

(1.398)

(5) GIFPOWAH∗,n
w (α1, α2, . . . , αn)

=
⎛

⎜⎝

⎛

⎝1 −
m∏

j = 1

(
1 −

(
κn
ασ( j)

μασ( j)

)ρ)w j

⎞

⎠

1
ρ

,

1 −
⎛

⎝1 −
m∏

j = 1

(
1 −

(
1 − vH∗,n

κασ( j) ,λασ( j)
(ασ( j))

)ρ)w j

⎞

⎠

1
ρ

⎞

⎟⎠
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where

vH∗,n
κασ( j) ,λασ( j)

(ασ( j)) = vασ( j) + (1 − vασ( j)

) (
1 − (1 − λασ( j)

)n) (1.399)

− μασ( j)κασ( j)λασ( j)

(
n−1∑

t = 0

κn−1−t
ασ( j)

(
1 − λασ( j)

)n
)

(6) GIFPOWAJn
w(α1, α2, . . . , αn)

=
⎛

⎜⎝

⎛

⎝1 −
m∏

j = 1

(
1 − μ

ρ

J n
κασ( j) ,λασ( j)

(ασ( j))

)w j
⎞

⎠

1
ρ

,

1 −
⎛

⎝1 −
m∏

j = 1

(
1 −

(
1 − λn

ασ( j)
vασ( j)

)ρ)w j

⎞

⎠

1
ρ

⎞

⎟⎠

where

μJ n
κασ( j) ,λασ( j)

(ασ( j)) = μασ( j) + (1 − μασ( j)

) (
1 − (1 − κασ( j)

)n)

− vασ( j)κασ( j)

(
n−1∑

t = 0

λn−1−t
ασ( j)

(
1 − κασ( j)

)n
)

(1.400)

(7) GIFPOWAJ∗,n
w (α1, α2, . . . , αn)

=
⎛

⎜⎝

⎛

⎝1 −
m∏

j = 1

(
1 − μ

η

J∗,n
κασ( j) ,λασ( j)

(ασ( j))

)w j
⎞

⎠

1
ρ

,

1 −
⎛

⎝1 −
m∏

j = 1

(
1 −

(
1 − λn

ασ( j)
vασ( j)

)ρ)w j

⎞

⎠

1
ρ

⎞

⎟⎠

where

μJ∗,n
κασ( j) ,λασ( j)

(ασ( j)) =μασ( j) + (1 − μασ( j)

) (
1 − (1 − κασ( j)

)n)

− vασ( j)κασ( j)λασ( j)

(
n−1∑

t = 0

λn−1−t
ασ( j)

(
1 − κασ( j)

)n
)

(1.401)
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(8) GIFPOWAPn
w(α1, α2, . . . , αn)

=
⎛

⎜⎝

⎛

⎝1 −
m∏

j = 1

(
1 − (max

(
κασ( j) , μασ( j)

))ρ)w j

⎞

⎠

1
ρ

,

1 −
⎛

⎝1 −
m∏

j = 1

(
1 − (1 − min

(
λασ( j) , vασ( j)

))ρ)w j

⎞

⎠

1
ρ

⎞

⎟⎠

where κασ( j) + λασ( j) ≤ 1, j = 1, 2, . . . , m.
(9) GIFPOWAQn

w(α1, α2, . . . , αn)

=
⎛

⎜⎝

⎛

⎝1 −
m∏

j = 1

(
1 − (min

(
κασ( j) , μασ( j)

))ρ)w j

⎞

⎠

1
ρ

,

1 −
⎛

⎝1 −
m∏

j = 1

(
1 − (1 − max

(
λασ( j) , vασ( j)

))ρ)w j

⎞

⎠

1
ρ

⎞

⎟⎠

where κασ( j) + λασ( j) ≤ 1, j = 1, 2, . . . , m.

Theorem 1.50 (Xia and Xu 2010) If all α j ( j = 1, 2, . . . , m) are equal, i.e. α j = α,
for all j , then

(1) GIFPOWADn
w(α1, α2, . . . , αm) = Dn

κα,λα
(α).

(2) GIFPOWAFn
w(α1, α2, . . . , αm) = Fn

κα,λα
(α), where κα j + λα j ≤ 1,

j = 1, 2, . . . , m.

(3) GIFPOWAGn
w(α1, α2, . . . , αm) = Gn

κα,λα
(α).

(4) GIFPOWAHn
w(α1, α2, . . . , αm) = Hn

κα,λα
(α).

(5) GIFPOWAHn
w(α1, α2, . . . , αm) = H∗,n

κα,λα
(α).

(6) GIFPOWAJn
w(α1, α2, . . . , αm) = J n

κα,λα
(α).

(7) GIFPOWAJn
w(α1, α2, . . . , αm) = J ∗,n

κα,λα
(α).

(8) GIFPOWAPn
w(α1, α2, . . . , αm) = j Pn

κα,λα
(α), where κα j + λα j ≤ 1,

j = 1, 2, . . . , m.

(9) GIFPOWAQn
w(α1, α2, . . . , αm) = Qn

κα,λα
(α), where κα j + λα j ≤ 1,

j = 1, 2, . . . , m.
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Theorem 1.51 (Xia and Xu 2010)

(1) α−
Dn

≤ GIFPOWADn
w(α1, α2, . . . , αm) ≤ α+

Dn
.

(2) α−
Fn

≤ GIFPOWAFn
w(α1, α2, . . . , αm) ≤ α+

Fn
, where κα j + λα j ≤ 1,

j = 1, 2, . . . , m.

(3) α−
Gn

≤ GIFPOWAGn
w(α1, α2, . . . , αm) ≤ α+

Gn
.

(4) α−
Hn

≤ GIFPOWAHn
w(α1, α2, . . . , αm) ≤ α+

Hn
.

(5) α−
H∗

n
≤ GIFPOWAHn

w(α1, α2, . . . , αm) ≤ α+
H∗

n
.

(6) α−
Jn

≤ GIFPOWAJn
w(α1, α2, . . . , αm) ≤ α+

Jn
.

(7) α−
J∗

n
≤ GIFPOWAJn

w(α1, α2, . . . , αm) ≤ α+
J∗

n
.

(8) α−
Pn

≤ GIFPOWAPn
w(α1, α2, . . . , αm) ≤ α+

Pn
, where κα j + λα j ≤ 1,

j = 1, 2, . . . , m.

(9) α−
Qn

≤ GIFPOWAQn
w(α1, α2, . . . , αm) ≤ α+

Qn
, where κα j + λα j ≤ 1,

j = 1, 2, . . . , m.

Theorem 1.52 (Xia and Xu 2010) Let α∗
j = (μα∗

j
, vα∗

j
) ( j = 1, 2, . . . , m) be a

collection of IFVs, then

(1) If μDn
κα j ,λα j

(α j ) ≤ μDn
κ
α∗

j
,λ

α∗
j

(α∗
j )

and vDn
κα j ,λα j

(α j ) ≥ vDn
κ
α∗

j
,λ

α∗
j

(α∗
j )

, for all j , then

GIFPOWADn
w(α1, α2, . . . , αm) ≤ GIFPOWADn

w(α∗
1 , α∗

2 , . . . , α∗
m) (1.402)

(2) If μFn
κα j ,λα j

(α j ) ≤ μFn
κ
α∗

j
,λ

α∗
j

(α∗
j )

and vFn
κα j ,λα j

(α j ) ≥ vFn
κ
α∗

j
,λ

α∗
j

(α∗
j )

, for all j , then

GIFPOWAFn
w(α1, α2, . . . , αm) ≤ GIFPOWAFn

w(α∗
1 , α∗

2 , . . . , α∗
n) (1.403)

where κα j + λα j ≤ 1, j = 1, 2, . . . , m.
(3) If μGn

κα j ,λα j
(α j ) ≤ μGn

κ
α∗

j
,λ

α∗
j

(α∗
j )

and vGn
κα j ,λα j

(α j ) ≥ vGn
κ
α∗

j
,λ

α∗
j

(α∗
j )

, for all j , then

GIFPOWAGn
w(α1, α2, . . . , αm) ≤ GIFPOWAGn

w(α∗
1 , α∗

2 , . . . , α∗
m) (1.404)

(4) If μHn
κα j ,λα j

(α j ) ≤ μHn
κ
α∗

j
,λ

α∗
j

(α∗
j )

and vHn
κα j ,λα j

(α j ) ≥ vHn
κ
α∗

j
,λ

α∗
j

(α∗
j )

, for all j , then

GIFPOWAHn
w(α1, α2, . . . , αm) ≤ GIFPOWAHn

w(α∗
1 , α∗

2 , . . . , α∗
m) (1.405)

(5) If μH∗,n
κα j ,λα j

(α j )
≤ μH∗,n

κ
α∗

j
,λ

α∗
j

(α∗
j )

and vH∗,n
κα j ,λα j

(α j )
≥ vH∗,n

κ
α∗

j
,λ

α∗
j

(α∗
j )

, for all j , then
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GIFPOWAH∗,n
w (α1, α2, . . . , αm) ≤ GIFPOWAH∗,n

w (α∗
1 , α∗

2 , . . . , α∗
m) (1.406)

(6) If μJ n
κα j ,λα j

(α j ) ≤ μJ n
κ
α∗

j
,λ

α∗
j

(α∗
j )

and vJ n
κα j ,λα j

(α j ) ≥ vJ n
κ
α∗

j
,λ

α∗
j

(α∗
j )

, for all j , then

GIFPOWAJn
w(α1, α2, . . . , αm) ≤ GIFPOWAJn

w(α∗
1 , α∗

2 , . . . , α∗
m) (1.407)

(7) If μJ∗,n
κα j ,λα j

(α j )
≤ μJ∗,n

κ
α∗

j
,λ

α∗
j

(α∗
j )

and vJ∗,n
κα j ,λα j

(α j )
≥ vJ∗,n

κ
α∗

j
,λ

α∗
j

(α∗
j )

, for all j , then

GIFPOWAJ∗,n
w (α1, α2, . . . , αm) ≤ GIFPOWAJ∗,n

w (α∗
1 , α∗

2 , . . . , α∗
m) (1.408)

(8) If μPn
κα j ,λα j

(α j ) ≤ μPn
κ
α∗

j
,λ

α∗
j

(α∗
j )

and vPn
κα j ,λα j

(α j ) ≥ vPn
κ
α∗

j
,λ

α∗
j

(α∗
j )

, for all j , then

GIFPOWAPn
w(α1, α2, . . . , αm) ≤ GIFPOWAPn

w(α∗
1 , α∗

2 , . . . , α∗
m) (1.409)

where κα j + λα j ≤ 1, j = 1, 2, . . . , m.
(9) If μQn

κα j ,λα j
(α j ) ≤ μQn

κ
α∗

j
,λ

α∗
j

(α∗
j )

and vQn
κα j ,λα j

(α j ) ≥ vQn
κ
α∗

j
,λ

α∗
j

(α∗
j )

, for all j , then

GIFPOWAQn
w(α1, α2, . . . , αm) ≤ GIFPOWAQn

w(α∗
1 , α∗

2 , . . . , α∗
m) (1.410)

where κα j + λα j ≤ 1, j = 1, 2, . . . , m.

Theorem 1.53 (Xia and Xu 2010) Let (α′
1, α

′
2 . . . , α′

m)T be any permutation of
(α1, α2 . . . , αm)T , then

(1) GIFPOWADn
w(α1, α2 . . . , αm) = GIFPOWADn

w(α′
1, α

′
2 . . . , α′

m).

(2) GIFPOWAFn
w(α1, α2 . . . , αm) = GIFPOWAFn

w(α′
1, α

′
2 . . . , α′

m), where κα j +
λα j ≤ 1, j = 1, 2, . . . , m.

(3) GIFPOWAGn
w(α1, α2 . . . , αm) = GIFPOWAGn

w(α′
1, α

′
2 . . . , α′

m).

(4) GIFPOWAHn
w(α1, α2 . . . , αm) = GIFPOWAHn

w(α′
1, α

′
2 . . . , α′

m).

(5) GIFPOWAH∗,n
w (α1, α2 . . . , αm) = GIFPOWAD∗,n

w (α′
1, α

′
2 . . . , α′

m).

(6) GIFPOWAJn
w(α1, α2 . . . , αm) = GIFPOWAJn

w(α′
1, α

′
2 . . . , α′

m).

(7) GIFPOWAJ∗,n
w (α1, α2 . . . , αm) = GIFPOWAJ∗,n

w (α′
1, α

′
2 . . . , α′

m).

(8) GIFPOWAPn
w(α1, α2 . . . , αm) = GIFPOWAPn

w(α′
1, α

′
2 . . . , α′

m), where κα j +
λα j ≤ 1, j = 1, 2, . . . , m.

(9) GIFPOWAQn
w(α1, α2 . . . , αn) = GIFPOWAQn

w(α′
1, α

′
2 . . . , α′

m), where κα j +
λα j ≤ 1, j = 1, 2, . . . , m.

We now look at some special cases obtained by using different choices of the
parameters n, w and ρ:
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Theorem 1.54 (Xia and Xu 2010)

(1) If n = 0, then the GIFPOWA operators reduce to the generalized intuitionistic
fuzzy ordered weighted average operator (Zhao et al. 2010).

(2) If ρ = 1 and n = 0, then the GIFPOWA operators reduce to the intuitionistic
fuzzy ordered weighted average operator (Xu 2007).

(3) If ρ → 0 and n = 0, then the GIFPOWA operators reduce to the intuitionistic
fuzzy ordered weighted geometric operator (Xu and Yager 2006).

(4) If ρ → +∞ and n = 0, then the GIFPOWA operators reduce to the intuitionistic
fuzzy maximum operator (Chen and Tan 1994).

(5) If w = (1/m, 1/m, . . . , 1/m)T , n = 0, and ρ = 1, then the GIFPOWA operators
reduce to the intuitionistic fuzzy average operator (Xu 2007).

(6) If w = (1/m, 1/m, . . . , 1/m)T , n = 0, and ρ → 0, then the GIFPOWA opera-
tors reduce to the IFGM (Xu and Yager 2006).

(7) If w = (1, 0, . . . , 0)T and n = 0, then the GIFPOWA operators reduce to the
intuitionistic fuzzy maximum operator (Chen and Tan 1994).

(8) If w = (0, 0, . . . , 1)T and n = 0, then the GIFPOWA operators reduce to the
intuitionistic fuzzy minimum operator (Chen and Tan 1994).

The GIFPWA operators weight only the IFVs, while the GIFPOWA operators
weight only the ordered positions of the IFVs instead of weighting the IFVs them-
selves. To overcome this limitation, motivated by the idea of combining the weighted
averaging operator and the OWA operators (Torra 1997; Xu and Da 2003), Xia and
Xu (2010) developed a generalized intuitionistic fuzzy point hybrid aggregation
(GIFPHA) operator, which weights each given IFV and its ordered positions.

Theorem 1.55 (Xia and Xu 2010) The GIFPHA operators of dimension m is a map-
ping GIFPHA: V m → V , which has an associated vector w = (w1, w2, . . . , wm)T ,
with w j ≥ 0, j = 1, 2, . . . , m,

∑m
j = 1 w j = 1, such that

(1) GIFPHADn
w,ω(α1, α2, . . . , αm)

=
(

w1

(
Dn

κα̇σ(1)
,λα̇σ (1)

(
α̇σ (1)

))ρ ⊕ w2

(
Dn

κα̇σ(2)
,λα̇σ (2)

(
α̇σ (2)

))ρ

⊕ · · · ⊕ wm

(
Dn

κα̇σ(m)
,λα̇σ (m)

(
α̇σ (m)

))ρ ) 1
ρ

where Dn
κα̇σ( j) ,λασ( j)

(
α̇σ ( j)

)
is the jth largest of mωi Dn

καi ,λαi
(αi ) (i = 1, 2, . . . , m).

(2) GIFPHAFn
w,ω(α1, α2, . . . , αm)

=
(

w1

(
Fn

κα̇σ(1)
,λα̇σ (1)

(
α̇σ (1)

))ρ ⊕ w2

(
Fn

κα̇σ(2)
,λα̇σ (2)

(
α̇σ (2)

))ρ

⊕ · · · ⊕ wm

(
Fn

κα̇σ(m)
,λα̇σ (m)

(
α̇σ (m)

))ρ ) 1
ρ
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where κα̇σ( j) + λα̇σ( j) ≤ 1, j = 1, 2, . . . , m, Fn
κα̇σ( j) ,λασ( j)

(
α̇σ ( j)

)
is the jth largest of

mωi Fn
καi ,λαi

(αi ) (i = 1, 2, . . . , m).

(3) GIFPHAGn
w,ω(α1, α2, . . . , αm)

=
(

w1

(
Gn

κα̇σ(1)
,λα̇σ (1)

(
α̇σ (1)

))ρ

σ(1)
⊕ w2

(
Gn

κ
α̇σ(2)

,λα̇σ (2)

(
α̇σ (2)

))ρ

⊕ · · · ⊕ wm

(
Gn

κα̇σ(m)
,λα̇σ (m)

(
α̇σ (m)

))ρ ) 1
ρ

where Gn
κα̇σ( j) ,λασ( j)

(
α̇σ ( j)

)
is the jth largest of mωi Gn

καi ,λαi
(αi ) (i = 1, 2, . . . , m).

(4) GIFPHAHn
w,ω(α1, α2, . . . , αm)

(
w1

(
Hn

κσ(1),λσ(1)

(
ασ(1)

))ρ ⊕ w2

(
Hn

κσ(2),λσ(2)

(
ασ(2)

))ρ

⊕ · · · ⊕ wm

(
Hn

κασ(m)
,λασ(m)

(αm)
)ρ ) 1

ρ

where Hn
κα̇σ( j) ,λασ( j)

(
α̇σ ( j)

)
is the jth largest of mωi Hn

καi ,λαi
(αi ) (i = 1, 2, . . . , m).

(5) GIFPHAH∗,n
w,ω(α1, α2, . . . , αm)

=
(

w1

(
H∗,n

κα̇σ(1)
,λα̇σ (1)

(
α̇σ (1)

))ρ ⊕ w2

(
H∗,n

κα̇σ(2)
,λα̇σ (2)

(
α̇σ (2)

))ρ

⊕ · · · ⊕ wm

(
H∗,n

κα̇σ(m)
,λα̇σ (m)

(
α̇σ (m)

))ρ ) 1
ρ

where H∗,n
κα̇σ( j) ,λασ( j)

(
α̇σ ( j)

)
is the jth largest of mωi H∗,n

καi ,λαi
(αi ) (i = 1, 2, . . . , m).

(6) GIFPHAJn
w,ω(α1, α2, . . . , αm)

=
(

w1

(
J n
κα̇σ(1)

,λα̇σ (1)

(
α̇σ (1)

))ρ ⊕ w2

(
J n
κα̇σ(2)

,λα̇σ (2)

(
α̇σ (2)

))ρ

⊕ · · · ⊕ wm

(
J n
κα̇σ(m)

,λα̇σ (m)

(
α̇σ (m)

))ρ ) 1
ρ

where J n
κα̇σ( j) ,λασ( j)

(
α̇σ ( j)

)
is the jth largest of mωi J n

καi ,λαi
(αi ) (i = 1, 2, . . . , m).

(7) GIFPHAJ∗,n
w,ω(α1, α2, . . . , αm)

=
(

w1

(
J ∗,n
κα̇σ(1)

,λα̇σ (1)

(
α̇σ (1)

))ρ ⊕ w2

(
J ∗,n
κα̇σ(2)

,λα̇σ (2)

(
α̇σ (2)

))ρ

⊕ · · · ⊕ wm

(
J ∗,n
κα̇σ(m)

,λα̇σ (m)

(
α̇σ (m)

))ρ ) 1
ρ
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where J ∗,n
κα̇σ( j) ,λασ( j)

(
α̇σ ( j)

)
is the jth largest of mωi J ∗,n

καi ,λαi
(αi ) (i = 1, 2, . . . , m).

(8) GIFPHAPn
w,ω(α1, α2, . . . , αm)

=
(

w1

(
Pn

κα̇σ(1)
,λα̇σ (1)

(
α̇σ (1)

))ρ ⊕ w2

(
Pn

κα̇σ(2)
,λα̇σ (2)

(
α̇σ (2)

))ρ

⊕ · · · ⊕ wm

(
Pn

κα̇σ(m)
,λα̇σ (m)

(
α̇σ (m)

))ρ ) 1
ρ

where κα̇σ( j) + λα̇σ( j) ≤ 1, j = 1, 2, . . . , m, Pn
κα̇σ( j) ,λασ( j)

(
α̇σ ( j)

)
is the jth largest of

mωi Pn
καi ,λαi

(αi ) (i = 1, 2, . . . , m).

(9) GIFPHAQn
w,ω(α1, α2, . . . , αm)

=
(

w1

(
Qn

κα̇σ(1)
,λα̇σ (1)

(
α̇σ (1)

))ρ ⊕ w2

(
Qn

κα̇σ(2)
,λα̇σ (2)

(
α̇σ (2)

))ρ

⊕ · · · ⊕ wm

(
Qn

κα̇σ(m)
,λα̇σ (m)

(
α̇σ (m)

))ρ ) 1
ρ

where κα̇σ( j) + λα̇σ( j) ≤ 1, j = 1, 2, . . . , m, Qn
κα̇σ( j) ,λασ( j)

(
α̇σ ( j)

)
is the jth largest

of mωi Qn
καi ,λαi

(αi ) (i = 1, 2, . . . , m).

Let α̇σ ( j) = (μα̇σ( j) , vα̇σ ( j) ), j = 1, 2, . . . , m, then, similar to Theorem 1.45, we
have

Theorem 1.56 (Xia and Xu 2010)

(1) GIFPHADn
w,ω(α1, α2, . . . , αm)

=
⎛

⎜⎝

⎛

⎝1 −
m∏

j = 1

(
1 − (μα̇σ( j) + κα̇σ( j)πα̇σ( j)

)ρ)w j

⎞

⎠

1
ρ

,

1 −
⎛

⎝1 −
m∏

j = 1

(
1 − (1 − vα̇σ ( j) − (1 − κα̇σ( j)

)
πα̇σ( j)

)ρ)w j

⎞

⎠

1
ρ

⎞

⎟⎠

(2) GIFPHAFn
w,ω(α1, α2, . . . , αm)

=
⎛

⎜⎝

⎛

⎝1 −
m∏

j = 1

(
1 − μ

ρ

Fn
κα̇σ ( j)

,λα̇σ ( j)
(α̇σ ( j))

)w j
⎞

⎠

1
ρ

,

1 −
⎛

⎝1 −
m∏

j = 1

(
1 −

(
1 − vFn

κα̇σ ( j)
,λα̇σ ( j)

(α̇σ ( j))

)ρ)w j

⎞

⎠

1
ρ

⎞

⎟⎠
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where κα̇σ( j) + λα̇σ( j) ≤ 1, j = 1, 2, . . . , m, and

μFn
κα̇σ ( j)

,λα̇σ ( j)
(α̇σ ( j)) = μα̇σ( j) + κα̇σ( j)πα̇σ( j)

1−
(

1−κα̇σ( j)−λα̇σ( j)

)n

κα̇σ( j)+λα̇σ( j)
(1.411)

vFn
κα̇σ ( j)

,λα̇σ ( j)
(α̇σ ( j)) = vα̇σ ( j) + λα̇σ( j)πα̇σ( j)

1−
(

1−κα̇σ( j)−λα̇σ( j)

)n

κα̇σ( j)+λα̇σ( j)
(1.412)

(3) GIFPHAGn
w,ω(α1, α2, . . . , αm)

=
⎛

⎜⎝

⎛

⎝1 −
m∏

j = 1

(
1 −

(
κn
α̇σ ( j)

μα̇σ( j)

)ρ)w j

⎞

⎠

1
ρ

,

1 −
⎛

⎝1 −
m∏

j = 1

(
1 −

(
1 − λn

α̇σ ( j)
vα̇σ ( j)

)ρ)w j

⎞

⎠

1
ρ

⎞

⎟⎠

(4) GIFPHAHn
w,ω(α1, α2, . . . , αm)

=
⎛

⎜⎝

⎛

⎝1 −
m∏

j = 1

(
1 −

(
κn
α̇σ ( j)

μα̇σ( j)

)ρ)w j

⎞

⎠

1
ρ

,

1 −
⎛

⎝1 −
m∏

j = 1

(
1 −

(
1 − vHn

κα̇ j ,
λα̇ j

(α̇σ( j))

)ρ)w j

⎞

⎠

1
ρ

⎞

⎟⎠

where

vHn
κα̇ j ,

λα̇ j
(α̇σ( j)) = να̇σ( j) + (1 − vα̇σ ( j)

) (
1 − (1 − λα̇σ( j)

)n)

−μα̇σ( j)λα̇σ( j)

(
n−1∑

t = 0

κn−1−t
α̇σ ( j)

(
1 − λα̇σ( j)

)t
)

(1.413)

(5) GIFPHAH∗,n
w,ω(α1, α2, . . . , αm)

=
⎛

⎜⎝

⎛

⎝1 −
m∏

j = 1

(
1 −

(
κn
α̇σ ( j)

μα̇σ( j)

)ρ)w j

⎞

⎠

1
ρ

,

1 −
⎛

⎝1 −
m∏

j = 1

(
1 − vρ

H∗,n
κα̇ j ,

λα̇ j
(α̇σ( j))

)w j
⎞

⎠

1
ρ

⎞

⎟⎠
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where

vH∗,n
κα̇ j ,

λα̇ j
(α̇σ( j)) = vα̇σ ( j) + (1 − vα̇σ ( j)

) (
1 − (1 − λα̇σ( j)

)n)

−μα̇σ( j)κα̇σ( j)λα̇σ( j)

(
n−1∑

t = 0

κn−1−t
α̇σ ( j)

(
1 − λα̇σ( j)

)t
)

(1.414)

(6) GIFPHAJn
w,ω(α1, α2, . . . , αm)

=
⎛

⎜⎝

⎛

⎝1 −
m∏

j = 1

(
1 − μ

ρ

Hn
κα̇ j ,

λα̇ j
(α̇σ( j))

)w j
⎞

⎠

1
ρ

,

1 −
⎛

⎝1 −
m∏

j = 1

(
1 −

(
λn

α̇σ ( j)
vα̇σ ( j)

)ρ)w j

⎞

⎠

1
ρ

⎞

⎟⎠

where

μHn
κα̇ j ,

λα̇ j
(α̇σ( j)) = μα̇σ( j) + (1 − μα̇σ( j)

) (
1 − (1 − κα̇σ( j)

)n)

− vα̇σ ( j)κα̇σ( j)

(
n−1∑

t = 0

(
1 − κα̇σ( j)

)t
λn−1−t

α̇σ ( j)

)
(1.415)

(7) GIFPHAJ∗,n
w,ω(α1, α2, . . . , αm)

=
⎛

⎜⎝

⎛

⎝1 −
m∏

j = 1

(
1 − μ

ρ

H∗,n
κα̇ j ,

λα̇ j
(α̇σ( j))

)w j
⎞

⎠

1
ρ

,

1 −
⎛

⎝1 −
m∏

j = 1

(
1 −

(
λn

α̇σ ( j)
vα̇σ ( j)

)ρ)w j

⎞

⎠

1
ρ

⎞

⎟⎠

where

μH∗,n
κα̇ j ,

λα̇ j
(α̇σ( j)) = μα̇σ( j) + (1 − μα̇σ( j)

) (
1 − (1 − κα̇σ( j)

)n)

− vα̇σ ( j)κα̇σ( j)λα̇σ( j)

(
n−1∑

t = 0

(
1 − κα̇σ( j)

)t
λn−1−t

α̇σ ( j)

)
(1.416)
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(8) GIFPHAPn
w,ω(α1, α2, . . . , αm)

=
⎛

⎜⎝

⎛

⎝1 −
m∏

j = 1

(
1 − (max

(
κα̇σ( j) , μα̇σ( j)

))ρ)w j

⎞

⎠

1
ρ

,

1 −
⎛

⎝1 −
m∏

j = 1

(
1 − (1 − min

(
λα̇σ( j) , vα̇σ ( j)

))ρ)w j

⎞

⎠

1
ρ

⎞

⎟⎠

where κα̇σ( j) + λα̇σ( j) ≤ 1, j = 1, 2, . . . , m.

(9) GIFPHAQn
w,ω(α1, α2, . . . , αm)

=
⎛

⎜⎝

⎛

⎝1 −
m∏

j = 1

(
1 − (min

(
κα̇σ( j) , μα̇σ( j)

))ρ)w j

⎞

⎠

1
ρ

,

1 −
⎛

⎝1 −
m∏

j = 1

(
1 − (1 − max

(
λα̇σ( j) , vα̇σ ( j)

))ρ)w j

⎞

⎠

1
ρ

⎞

⎟⎠

where κα̇σ( j) + λα̇σ( j) ≤ 1, j = 1, 2, . . . , m.

Theorem 1.57 (Xia and Xu 2010)

(1) If w = (1/n, 1/n, . . . , 1/n)T and n = 0, then the GIFPHA operators reduce to
the GIFWA operators (Zhao et al. 2010).

(2) If ω = (1/n, 1/n, . . . , 1/n)T and n = 0, then the GIFPHA operators reduce to
the GIFOWA operator (Zhao et al. 2010).

(3) If η = 1 and n = 0, then the GIFPHA operators reduce to the following:

I F H Aw,ω(α1, α2, . . . , αm) =
⎛

⎝1 −
m∏

j = 1

(1 − μα̇σ( j) )
w j ,

m∏

j = 1

v
w j
α̇σ ( j)

⎞

⎠ (1.417)

which is called an intuitionistic fuzzy hybrid averaging operator (Xu 2007).



Chapter 2
Intuitionistic Fuzzy Clustering Algorithms

Since the fuzzy set theory was introduced (Zadeh 1965), many scholars have
investigated the issue how to cluster the fuzzy sets, and a lot of clustering algo-
rithms have been developed for fuzzy sets, such as the fuzzy c-means clustering
algorithm (Fan et al. 2004), the maximum tree clustering algorithm (Christopher and
Burges 1998), and the net-making clustering method (Wang 1983), etc. However,
the studies on clustering problems with intuitionistic fuzzy information are still at an
initial stage (Wang et al. 2011, 2012; Xu 2009; Xu and Cai 2012; Xu and Wu 2010;
Xu et al. 2008, 2011; Zhang et al. 2007; Zhao et al. 2012a, b). Zhang et al. (2007)
first defined the concept of the intuitionistic fuzzy similarity degree and constructed
an intuitionistic fuzzy similarity matrix, and then proposed a procedure for deriving
an intuitionistic fuzzy equivalence matrix by using the transitive closure of the intu-
itionistic fuzzy similarity matrix. After that, they presented a clustering technique
of IFSs on the basis of the λ-cutting matrix of the interval-valued matrix. Xu et al.
(2008) defined the concepts of the association matrix and the equivalent association
matrix, they introduced some methods for calculating the association coefficients of
IFSs, and used the derived association coefficients to construct an association matrix,
from which they derived an equivalent association matrix. Based on the equivalent
association matrix, a clustering algorithm for IFSs was developed and extended to
cluster interval-valued intuitionistic fuzzy sets (IVIFSs). Xu (2009) introduced an
intuitionistic fuzzy hierarchical algorithm for clustering IFSs, which is based on
the traditional hierarchical clustering procedure, the intuitionistic fuzzy aggregation
operator, and some basic distance measures, such as the Hamming distance, the nor-
malized Hamming distance, the Euclidean distance, and the normalized Euclidean
distance, etc. Xu and Wu (2010) developed an intuitionistic fuzzy C-means algorithm
to cluster IFSs, which is based on the well-known fuzzy C-means clustering method
(Bezdek 1981) and the basic distance measures between IFSs. Then, they extended
the algorithm for clustering IVIFSs. Xu et al. (2011) extended the fuzzy closeness
degree (Wang 1983) to the intuitionistic fuzzy closeness degree, and defined an intu-
itionistic fuzzy vector, the inner and outer products of intuitionistic fuzzy vectors.
Based on the intuitionistic fuzzy closeness degree, they put forward a new method of
constructing intuitionistic fuzzy similarity matrix. Zhao et al. (2012a) developed an

Z. Xu, Intuitionistic Fuzzy Aggregation and Clustering, Studies in Fuzziness 159
and Soft Computing 279, DOI: 10.1007/978-3-642-28406-9_2,
© Springer-Verlag Berlin Heidelberg 2012
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intuitionistic fuzzy minimum spanning tree (MST) clustering algorithm to deal with
intuitionistic fuzzy information. Zhao et al. (2012b) gave a measure for calculating
the association coefficient between IFVs, and presented an algorithm for clustering
IFVs. Moreover, they extended the algorithm to cluster IVIFVs. Wang et al. (2011)
proposed a formula to derive the intuitionistic fuzzy similarity degree between two
IFSs and developed an approach to constructing an intuitionistic fuzzy similarity
matrix. Then, they presented a netting method to make cluster analysis of IFSs via
intuitionistic fuzzy similarity matrix. Wang et al. (2012) developed an intuitionistic
fuzzy implication operator and extended the Lukasiewicz implication operator to
intuitionistic fuzzy environments, and then defined an intuitionistic fuzzy triangle
product and an intuitionistic fuzzy square product. Furthermore, they used the intu-
itionistic fuzzy square product to construct an intuitionistic fuzzy similarity matrix,
based on which a direct method for intuitionistic fuzzy cluster analysis was given.

Considering their wide range of application prospects of the intuitionistic fuzzy
clustering techniques in the fields of medical diagnosis, pattern recognition, etc. (Xu
and Cai 2012), in this chapter, we shall give a detailed introduction of the above
intuitionistic fuzzy clustering algorithms.

2.1 Clustering Algorithms Based on Intuitionistic Fuzzy
Similarity Matrices

Let α = (μα, vα), α1 = (μα1 , vα1), and α2 = (μα2 , vα2) be three IFVs, Zhang et al.
(2007) defined some basic operational laws as below:

(1) αc = (vα, μα);
(2) α1 ∧ α2 = (min{μα1 , μα2}, max{vα1 , vα2});
(3) α1 ∨ α2 = (max{μα1 , μα2}, min{vα1 , vα2});

Based on the operational laws above, Zhang et al. (2007) derived the following
conclusions:

Theorem 2.1 (Zhang et al. 2007) Let αi = (μα1 , vα1) (i = 1, 2, 3) be the IFVs,
then

(1) (α1 ∨ α2) ∧ α3 = (α1 ∧ α3) ∨ (α2 ∧ α3).
(2) (α1 ∧ α2) ∨ α3 = (α1 ∨ α3) ∧ (α2 ∨ α3).
(3) (α1 ∨ α2) ∨ α3 = α1 ∨ (α2 ∨ α3).
(4) (α1 ∧ α2) ∧ α3 = α1 ∧ (α2 ∧ α3).

Proof

(1) (α1 ∨ α2) ∧ α3 = (min{max{μα1 , μα2}, μα3}, max{min{vα1 , vα2}, vα3})
= (max{min{μα1 , μα3}, min{μα2,μα3}},

min{max{vα1 , vα3}, max{vα2 , vα3}})
= (α1 ∨ α3) ∧ (α2 ∨ α3)
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(2) (α1 ∧ α2) ∨ α3 = (max{min{μα1 , μα2}, μα3}, min{max{vα1 , vα2}, vα3})
= (min{max{μα1 , μα3}, max{μα2 , μα3}},

max{min{vα1 , vα3}, min{vα2 , vα3}})
= (α1 ∨ α3) ∧ (α2 ∨ α3)

(3) (α1 ∨ α2) ∨ α3 = (max{max{μα1 , μα2}, μα3}, min{min{vα1 , vα2}, vα3})
= (max{μα1 , μα2 , μα3}, min{vα1 , vα2 , vα3})
= (max{μα1 , max{μα2 , μα3}, min{vα1 , min{vα2 , vα3})
= α1 ∨ (α2 ∨ α3)

(4) (α1 ∧ α2) ∧ α3 = (min{min{μα1 , μα2}, μα3}, max{max{vα1 , vα2}, vα3})
= (min{μα1 , μα2 , μα3}, max{vα1 , vα2 , vα3})
= (min{μα1 , min{μα2 , μα3}, max{vα1 , max{vα2 , vα3})
= α1 ∧ (α2 ∧ α3)

which completes the proof.

Let X = {x1, x2, . . . , xn} be a finite universe of discourse, A1 = {〈xi, μA1(xi), vA1

(xi)〉|xi ∈ X} and A2 = {〈xi, μA2(xi), vA2(xi)〉|xi ∈ X} be two IFSs. Atanassov (1983,
1986) suggested the inclusion relations between the IFSs as follows:

(1) A1 ⊆ A2 if and only if μA1(xi) ≤ μA2(xi) and vA1(xi) ≥ vA2(xi), for any xi ∈ X;
(2) A1 = A2 if and only if A1 ⊆ A2 and A1 ⊇ A2, i.e., μA1(xi) = μA2(xi) and

vA1(xi) = vA2(xi), for any xi ∈ X.

In fuzzy mathematics, the similarity matrix with reflexivity and symmetry is a
common matrix. Zhang et al. (2007) introduced the similarity matrix to the IFS
theory, and defined the concept of intuitionistic fuzzy similarity degree:

Definition 2.1 (Zhang et al. 2007) Let ϑ̂ : (IFS(X))2 → IFS(X), where IFS(X)

indicates the set of all IFSs, and let Ai ∈ IFS(X) (i = 1, 2, 3). If ϑ̂(A1, A2) satisfies
the following properties:

(1) ϑ̂(A1, A2) is an IFV.
(2) ϑ̂(A1, A2) = (1, 0) if and only if A1 = A2.
(3) ϑ̂(A1, A2) = ϑ̂(A2, A1).

Then ϑ̂(A1, A2) is called an intuitionistic fuzzy similarity degree of A1 and A2.

Liu (2005) gave a formula for calculating the similarity degree between A1
and A2:

ϑ̂(A1, A2) = 1 −
[

n∑

i=1

wi
(
β1|μA1(xi) − μA2(xi)|λ + β2|vA1(xi) − vA2(xi)|λ

+ β3|πA1(xi) − πA2(xi)|λ
)
] 1

λ

(2.1)
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where λ ≥ 1, w = (w1, w2, . . . , wn)
T , wi ∈ [0, 1], xi ∈ X, i = 1, 2, . . . , n, and∑n

i = 1 wi = 1.
Eq. (2.1) can weight not only the deviation of each IFV, but also the deviations of

the corresponding membership degree, the non-membership degree and the hesitancy
(indeterminancy) degree. It is more general than the similarity measure:

ϑ ′(A1, A2)

= 1 −
√√√√ 1

2n

n∑

j = 1

((μA1 (xj)− μA2 (xj))2 + (vA1 (xj)− vA2 (xj))2 + (πA1 (xj)− πA2 (xj))2

(2.2)

and thus, Eq. (2.1) is of high flexibility. If we take ϑ(A1, A2) as the function of w,
then it is a bounded function. Let

d(w) =
n∑

i = 1

wi|μA1(xi) − μA2(xi)|λ + β2|vA1(xi) − vA2(xi)|λ + β3|πA1(xi)

− πA2(xi)|λ), λ ≥ 1 (2.3)

then we need to solve the maximum and minimum problem of Eq. (2.1), which can
be transformed to solve the maximum and minimum problem of d(w). Since

d(w) =
n∑

i = 1

wi(β1|μA1(xi) − μA2(xi)|λ + β2|vA1(xi) − vA2(xi)|λ

+ β3|πA1(xi) − πA2(xi)|λ)
≤ max

i
{β1|μA1(xi) − μA2(xi)|λ + β2|vA1(xi) − vA2(xi)|λ

+ β3|πA1(xi) − πA2(xi)|λ}, λ ≥ 1 (2.4)

There must exist a positive integer k such that

max
i

{β1|μA1(xi)− μA2(xi)|λ + β2|vA1(xi)− vA2(xi)|λ + β3|πA1(xi) − πA2(xi)|λ}
= β1|μA1(xk) − μA2(xk)|λ + β2|vA1(xk) − vA2(xk)|λ + β3|πA1(xk)

− πA2(xk)|λ}, λ ≥ 1 (2.5)

Hence, when wk = 1 and wi = 0, i 
= k, the equality holds. Also since

d(w) =
n∑

i = 1

wi(β1|μA1(xi) − μA2(xi)|λ + β2|vA1(xi) − vA2(xi)|λ

+ β3|πA1(xi) − πA2(xi)|λ)
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≥ min
i

{β1|μA1(xi) − μA2(xi)|λ + β2|vA1(xi)

− vA2(xi)|λ + β3|πA1(xi) − πA2(xi)|λ}, λ ≥ 1 (2.6)

There must exist a positive integer s such that

min
i

{β1|μA1(xi)− μA2(xi)|λ + β2|vA1(xi)− vA2(xi)|λ + β3|πA1(xi) − πA2(xi)|λ}
= β1|μA1(xs) − μA2(xs)|λ + β2|vA1(xs) − vA2(xs)|λ + β3|πA1(xs)

− πA2(xs)|λ}, λ ≥ 1 (2.7)

As a result, when ws = 1 and wi = 0, i 
= s, the equality holds. Let

d∗(A1, A2) = min
i

{β1|μA1(xi) − μA2(xi)|λ + β2|vA1(xi) − vA2(xi)|λ

+ β3|πA1(xi) − πA2(xi)|λ}, λ ≥ 1 (2.8)

d∗(A1, A2) = max
i

{β1|μA1(xi) − μA2(xi)|λ + β2|vA1(xi) − vA2(xi)|λ

+ β3|πA1(xi) − πA2(xi)|λ}, λ ≥ 1 (2.9)

Thus
1 − λ

√
d∗(A1, A2) ≤ ϑ ′(A1, A2) ≤ 1 − λ

√
d∗(A1, A2), λ ≥ 1 (2.10)

Based on Eqs. (2.8) and (2.9), Zhang et al. (2007) gave a formula for calculating
the similarity degree between two IFSs:

Theorem 2.2 (Zhang et al. 2007) Let A1 and A2 be two IFSs. Then

ϑ̂(A1, A2) =
(

1 − λ
√

d∗(A1, A2),
λ
√

d∗(A1, A2)
)
, λ ≥ 1 (2.11)

is called the similarity degree between A1 and A2.

Proof (1) We first prove that ϑ̂(A1, A2) is an IFV. Since

0 ≤ β1|μA1(xi) − μA2(xi)|λ + β2|vA1(xi) − vA2(xi)|λ + β3|πA1(xi) − πA2(xi)|λ
≤ (β1 + β2 + β3) max{|μA1(xi) − μA2(xi)|λ, |vA1(xi) − vA2(xi)|λ,

|πA1(xi) − πA2(xi)|λ}
= max{|μA1(xi) − μA2(xi)|λ, |vA1(xi) − vA2(xi)|λ, |πA1(xi) − πA2(xi)|λ} ≤ 1,

λ ≥ 1

then
0 ≤ 1 − λ

√
d∗(A1, A2) ≤ 1, 0 ≤ λ

√
d∗(A1, A2) ≤ 1, λ ≥ 1 (2.12)
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Also since
0 ≤ d∗(A1, A2) ≤ d∗(A1, A2) ≤ 1 (2.13)

then
0 ≤ λ

√
d∗(A1, A2) − λ

√
d∗(A1, A2) ≤ 1, λ ≥ 1 (2.14)

i.e.,

0 ≤ 1 − λ
√

d∗(A1, A2) + λ
√

d∗(A1, A2)

= 1 −
(

λ
√

d∗(A1, A2) − λ
√

d∗(A1, A2)
)

≤ 1, λ ≥ 1 (2.15)

Thus ϑ̂(A1, A2) is an IFV.

(2) If ϑ̂(A1, A2) = (1, 0), then

1 − λ
√

d∗(A1, A2) = 1,
λ
√

d∗(A1, A2) = 0, λ ≥ 1 (2.16)

Also since

1 = 1 − λ
√

d∗(A1, A2) ≤ ϑ(A1, A2) ≤ 1 − λ
√

d∗(A1, A2), λ ≥ 1 (2.17)

i.e., ϑ(A1, A2) = 1, by Eq. (2.1), we get A1 = A2; otherwise, if A1 = A2, then by
Eqs. (2.8) and (2.9), we have ϑ̂(A1, A2) = (1, 0).

(3) Obviously, we have ϑ̂(A1, A2) = ϑ̂(A2, A1). This completes the proof of the
theorem.

Definition 2.2 (Zhang et al. 2007) Let Z = (zij)n×n be a matrix, if all of its elements
zij (i, j = 1, 2, . . . , n) are IFVs, then Z is called an intuitionistic fuzzy matrix.

Definition 2.3 (Zhang et al. 2007) Let Z1 = (z(1)
ij )n×n and Z2 = (z(2)

ij )n×n be two
intuitionistic fuzzy matrices. If Z = Z1 ◦ Z2, then Z is called the composition matrix
of Z1 and Z2, where

zij = n∨
k = 1

(z(1)
ik ∧ z(2)

kj ) = (max
k

{min{μ
z(1)
ik

, μ
z(2)
kj

}, min
k

{max{v
z(1)
ik

, v
z(2)
kj

}}),
i, j = 1, 2, . . . n (2.18)

Theorem 2.3 (Zhang et al. 2007) The composition matrix Z of the intuitionistic
fuzzy matrix Z1 and Z2 is also an intuitionistic fuzzy matrix.

Proof Let Z1 = (z(1)
ij )n×n, Z2 = (z(2)

ij )n×n and Z = (zij)n×n. Then by Eq. (2.18), we
have
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zij = n∨
k = 1

(z(1)
ik ∧ z(2)

kj ) = (max
k

{min{μ
z(1)
ik

, μ
z(2)
kj

}, min
k

{max{v
z(1)
ik

, v
z(2)
kj

}})
= (max{min{μ

z(1)
i1

, μ
z(2)
1j

}, . . . , min{μ
z(1)
in

, μ
z(2)
nj

}},
min{max{v

z(1)
i1

, v
z(2)
1j

}, . . . , max{v
z(1)
in

, v
z(2)
nj

}}) (2.19)

Since
0 ≤ max{min{μ

z(1)
i1

, μ
z(2)
1j

}, . . . , min{μ
z(1)
in

, μ
z(2)
nj

}} ≤ 1 (2.20)

0 ≤ min{max{v
z(1)
i1

, v
z(2)
1j

}, . . . , max{v
z(1)
in

, v
z(2)
nj

}}) ≤ 1 (2.21)

There must exist two positive integers k1 and k2 such that

max{min{μ
z(1)
i1

, μ
z(2)
1j

}, . . . , min{μ
z(1)
in

, μ
z(2)
nj

}} = min{μ
z(1)
ik1

, μ
z(2)
k1 j

} (2.22)

min{max{v
z(1)
i1

, v
z(2)
1j

}, . . . , max{v
z(1)
in

, v
z(2)
nj

}}) = max{v
z(1)
ik2

, v
z(2)
k2 j

} (2.23)

Accordingly, we have

max{min{μ
z(1)
i1

, μ
z(2)
1j

}, . . . , min{μ
z(1)
in

, μ
z(2)
nj

}} + min{max{v
z(1)
i1

, v
z(2)
1j

}, . . . ,
max{v

z(1)
in

, v
z(2)
nj

}}) = min{μ
z(1)
ik1

, μ
z(2)
k1 j

} + max{v
z(1)
ik2

, v
z(2)
k2 j

} (2.24)

In the case of k1 = k2, we get

min{μ
z(1)
ik1

, μ
z(2)
k1 j

} + max{v
z(1)
ik1

, v
z(2)
k2 j

} = min{μ
z(1)
ik1

, μ
z(2)
k1 j

} + max{v
z(1)
ik1

, v
z(2)
k1 j

} ≤ 1

(2.25)
Also when k1 
= k2, it yields

min{μ
z(1)
ik1

, μ
z(2)
k1 j

} + max{v
z(1)
ik2

, v
z(2)
k2 j

} ≤ min{μ
z(1)
ik2

, μ
z(2)
k2j

} + max{v
z(1)
ik2

, v
z(2)
k2 j

} ≤ 1

(2.26)
Hence

max{min{μ
z(1)
i1

, μ
z(2)
1j

}, . . . , min{μ
z(1)
in

, μ
z(2)
nj

}}
+ min{max{v

z(1)
i1

, v
z(2)
1j

}, . . . , max{v
z(1)
in

, v
z(2)
nj

}}) ≤ 1 (2.27)

Consequently, the composition matrix of two intuitionistic fuzzy matrices is also an
intuitionistic fuzzy matrix. This completes the proof.

Definition 2.4 (Zhang et al. 2007) If the intuitionistic fuzzy matrix Z = (zij)n×n

satisfies the following condition:
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(1) Reflexivity: zii = (1, 0), i = 1, 2, . . . , n.
(2) Symmetry: zij = zji, i.e., μzij = μzji , vzij = vzji , i, j = 1, 2, . . . , n.

Then Z is called an intuitionistic fuzzy similarity matrix.

Based on Theorem 2.3 and Definition 2.4, we have

Corollary 2.1 (Zhang et al. 2007) The composition matrix of two intuitionistic
fuzzy similarity matrices is an intuitionistic fuzzy matrix. However, the composition
matrix of two intuitionistic fuzzy similarity matrices may not be an intuitionistic
fuzzy similarity matrix. For example, let

Z1 =
⎡

⎣
(1, 0) (0.2, 0.3) (0.5, 0.2)

(0.2, 0.3) (1, 0) (0.1, 0.7)

(0.5, 0.2) (0.1, 0.7) (1, 0)

⎤

⎦

Z2 =
⎡

⎣
(1, 0) (0.4, 0.4) (0.9, 0.1)

(0.4, 0.4) (1, 0) (0.3, 0.3)

(0.9, 0.1) (0.3, 0.3) (1, 0)

⎤

⎦

Obviously, both Z1 and Z2 are intuitionistic fuzzy similarity matrices, but the
composition matrix of Z1 and Z2 is as follows:

Z = Z1 ◦ Z2 =
⎡

⎣
(1, 0) (0.4, 0.3) (0.9, 0.1)

(0.4, 0.3) (1, 0) (0.3, 0.3)

(0.9, 0.1) (0.4, 0.3) (1, 0)

⎤

⎦

where z23 
= z32, i.e., Z does not satisfy symmetry property. Thus, Z is not an intu-
itionistic fuzzy similarity matrix. But when the composition matrix of an intuitionistic
fuzzy similarity matrix and itself is an intuitionistic fuzzy similarity matrix:

Theorem 2.4 (Zhang et al. 2007) Let Z1 = (z(1)
ij )n×n be an intuitionistic fuzzy

similarity matrix. Then the composition matrix Z = Z1 ◦ Z1 = (zij)n×n is also an
intuitionistic fuzzy similarity matrix.

Proof (1) Since Z1 is an intuitionistic fuzzy similarity matrix, by Corollary 2.1, the
composition matrix Z of Z1 and itself is an intuitionistic fuzzy matrix.

(2) Since

zii = n∨
k = 1

(z(1)
ik ∧ z(1)

ki ) = (max
k

{min{μ
z(1)
ik

, μ
z(1)
ki

}}, min
k

{max{v
z(1)
ik

, v
z(1)
ki

}}) (2.28)

then when k = i, we have

z(1)
ii ∧ z(1)

ii ) = (1, 0) ∧ (1, 0)} = (1, 0) (2.29)

So
zii = n∨

k = 1
(z(1)

ik ∧ z(1)
ki ) = (1, 0) (2.30)
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(3) Since Z1 is an intuitionistic fuzzy similarity matrix, then we have z(1)
ik = z(1)

ki .
Thereby

zji = n∨
k = 1

(z(1)
jk ∧ z(1)

ki ) = (max
k

{min{μ
z(1)
jk

, μ
z(1)
ki

}, min
k

{max{v
z(1)
jk

, v
z(1)
ki

}})
= (max

k
{min{μ

z(1)
jk

, μ
z(1)
ik

}, min
k

{max{v
z(1)
jk

, v
z(1)
ik

}})
= (max

k
{min{μ

z(1)
ik

, μ
z(1)
jk

}, min
k

{max{v
z(1)
ik

, v
z(1)
jk

}})
= n∨

k=1
(z(1)

ik ∧ z(1)
kj )

= zij (2.31)

Theorem 2.5 (Zhang et al. 2007) Let Z1 = (z(1)
ij )n×n, Z2 = (z(2)

ij )n×n and Z3 =
(z(3)

ij )n×n be three intuitionistic fuzzy similarity matrices. Then their composition
operation satisfies the associative law:

(Z1 ◦ Z2) ◦ Z3 = Z1 ◦ (Z2 ◦ Z3) (2.32)

Proof Let (Z1 ◦Z2)◦Z3 = (zit)n×n and Z1 ◦ (Z2 ◦Z3) = (z′
it)n×n. Then by Theorem

2.1, we have

zit = n∨
k = 1

{(
n∨

j = 1
(z(1)

ij ∧ z(2)
jk )

)
∧ z(3)

kt )

}
= n∨

k = 1

{
n∨

j = 1
((z(1)

ij ∧ z(2)
jk ) ∧ z(3)

kt )

}

= n∨
k = 1

n∨
j = 1

(z(1)
ij ∧ (z(2)

jk ∧ z(3)
kt )) = n∨

j = 1

n∨
k = 1

(z(1)
ij ∧ (z(2)

jk ∧ z(3)
kt ))

= n∨
j = 1

{
z(1)

ij ∧
(

n∨
k = 1

(z(2)
jk ∧ z(3)

kt )

)}

= z′
it, i, t = 1, 2, . . . , n

Hence, Eq. (2.32) holds, which completes the proof.

Corollary 2.2 (Zhang et al. 2007) Let Z be an intuitionistic fuzzy similarity matrix.
Then for any positive integers m1 and m2, we have

Zm1+m2 = Zm1 ◦ Zm2

where Zm1 and Zm2 are the m1 and m2 compositions of Z , respectively. Furthermore,
Zm1 , Zm2 and their composition matrix Zm1+m2 are the intuitionistic fuzzy similarity
matrix.

Definition 2.5 (Zhang et al. 2007) If the intuitionistic fuzzy matrix Z = (zij)n×n

satisfies the following condition:

(1) Reflexivity: zii = (1, 0), i = 1, 2, . . . , n.
(2) Symmetry: zij = zji, i.e., μzij = μzji , vzij = vzji , i, j = 1, 2, . . . , n.
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(3) Transitivity: Z2 ⊆ Z , i.e.,
n∨

k = 1
(zik ∧ zkj) ≤ zij, i, j = 1, 2, . . . , n.

Then Z is called an intuitionistic fuzzy equivalence matrix.

In order to save computation, motivated by the idea of Wang (1983), we have the
following conclusion:

Theorem 2.6 (Zhang et al. 2007) Let Z be an intuitionistic fuzzy similarity matrix.
Then after the finite times of compositions:

Z → Z2 → Z4 → · · · → Z2k → · · ·

There must exist a positive integer k such that Z2k = Z2(k+1)
, and Z2k

is an intuition-
istic fuzzy equivalence matrix.

Definition 2.6 (Zhang et al. 2007) Let Z = (zij)n×n be an intuitionistic fuzzy simi-
larity matrix, where zij = (μzij , vzij ), i, j = 1, 2, . . . , n. Then Zλ = (λzij)n×n is called
the λ-cutting matrix of Z , where

λzij =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, if λ > 1 − vzij ,

1

2
, if μzij < λ ≤ 1 − vzij ,

1, if μzij ≥ λ.

(2.33)

Definition 2.7 (Wang 1983) If the matrix Ż = (żij)n×n satisfies the following con-
ditions:

(1) Reflexivity: żii = 1, i = 1, 2, . . . , n, and for any żij ∈ [0, 1], i, j = 1, 2, . . . , n.
(2) Symmetry: żij = żji.
(3) Transitivity: max

k
{min{żik, żkj}} ≤ żij, for all i, j = 1, 2, . . . , n.

Then Ż is called a fuzzy equivalence matrix.

Theorem 2.7 (Zhang et al. 2007) Z = (zij)n×n is an intuitionistic fuzzy equivalence
matrix if and only if its λ-cutting matrix Zλ = (λzij)n×n is a fuzzy equivalence matrix,
where zij = (μzij , vzij ), i, j = 1, 2, . . . , n.

Proof (Necessity)

(1) (Reflexivity) Since zii = (1, 0), λ ∈ [0, 1], then λ ≤ μzii = 1, λzii = 1.
(2) (Symmetry) Since zij = zji, i.e., μzij = μzji , vzij = vzji , thus λzij = λzji.
(3) (Transitivity) Since Z = (zij)n×n is an intuitionistic fuzzy equivalence matrix,

we have
max

k
{min{μzik , μzkj }} ≤ μzij (2.34)

min
k

{max{vzik , vzkj }} ≤ vzij (2.35)
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Also since the intuitionistic fuzzy equivalence matrix Z = (zij)n×n and the compo-
sition matrix of itself is an intuitionistic fuzzy matrix, it yields

max
k

{min{μzik , μzkj }} ≥ min
k

{max{vzik , vzkj }} (2.36)

(a) When λ ≤ μzij and λzij = 1, also since

max
k

{min{λzik, λzkj}} ∈ [0, 1] (2.37)

then
max

k
{min{λzik, λzkj}} ≤ λzij = 1 (2.38)

(b) When 1 − vzij < λ and λzij = 0, also since

min
k

{max{vzik , vzkj }} ≥ vzij > 1 − λ (2.39)

then, for any k, we have max{vzik , vzkj } > 1−λ, i.e., for any k, it can be obtained that

min{λzik, λzkj} = 0 (2.40)

Then
max

k
{min{λzik, λzkj} = 0 (2.41)

Thus
max

k
{min{λzik, λzkj} ≤ λzij (2.42)

(c) When μzij < λ ≤ 1 − vzij , we have λzij = 1/2. In this case, if

min
k

{max{vzik , vzkj }} ≥ vzij > 1 − λ (2.43)

then by (b), we get
max

k
{min{λzik, λzkj}} = 0 (2.44)

Therefore
max

k
{min{λzik, λzkj}} ≤ λzij (2.45)

If
max

k
{min{μzik , μzkj }} ≤ λ ≤ 1 − min

k
{max{vzik , vzkj }} (2.46)

then

max
k

{min{λzik, λzkj}} = 1

2
, max

k
{min{λzik, λzkj}} = λzij (2.47)
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From the known condition, it follows that

max
k

{min{μzik , μzkj }} ≤ μzij < λ (2.48)

which indicates that the case

λ ≤ max
k

{min{μzik , μzkj }} (2.49)

does not exist. Therefore, when μzij < λ ≤ 1 − vzij , we have

max
k

{min{λzik, λzkj}} ≤ λzij (2.50)

Hence, Zλ = (λzij)n×n satisfies the transitivity property.
(Sufficiency)

(1) (Reflexivity) Since λzii = 1, then for any λ ∈ [0, 1], λ ≤ μzii , and then let
λ = 1. Then zii = (1, 0).

(2) (Symmetry) Since for any i, k, λzik = λzki, if there exists zik 
= zki, i.e.,
μzik 
= μzki or vzij 
= vzji , without loss of generality, suppose that μzij < μzji , and let
λ = (μzij + μzji)/2, then μzij < λ < μzji , λzik = 0 or 1/2, and λzki = 1, λzik 
= λzki,
which contradicts the known condition. Therefore, Z = (zij)n×n is symmetry.

(3) (Transitivity) Since for any i, j, we have

max
k

{min{λzik, λzkj}} ≤ λzij (2.51)

and each element in Zλ takes its value from {0, 1/2, 1}. Then

(a) When λzij = 1, for any λ ∈ [0, 1], we have μzij ≥ λ, taking λ = 1, it can be
obtained that μzij = 1 and vzij = 0. Consequently,

max
k

{min{μzik , μzkj }} ≤ μzij , min
k

{max{vzik , vzkj }} ≥ vzij (2.52)

(b) When λzij = 1/2, for any λ ∈ [0, 1], we have μzij < λ ≤ 1 − vzij . Also since

max
k

{min{λzik, λzkj}} ≤ 1

2
(2.53)

then

max
k

{min{λzik, λzkj}} = 0 or
1

2
(2.54)

Thus, for any k, we get
min{λzik, λzkj} = 0 (2.55)
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or there exists a positive integer s, such that

min{λzis, λzsj} = 1

2
(2.56)

Case 1 If for any k, we have

min{λzik, λzkj} = 0 (2.57)

Then for any λ ∈ [0, 1], it yields

max{vzik , vzkj } > 1 − λ (2.58)

hence
min

k
{max{vzik , vzkj }} ≥ vzij > 1 − λ (2.59)

Considering the arbitrary of λ, when λ tends to be infinitely small, we get

max
k

{min{μzik , μzkj }} ≤ 1 − min
k

{max{vzik , vzkj }} = 0 (2.60)

As a result,
max

k
{min{μzik , μzkj }} ≤ μzij (2.61)

Case 2 If there exists a positive integer k1, such that

min{λzik1, λzk1j} = 1

2
(2.62)

and for any k = k1, let
min{λzik, λzkj} = 0 (2.63)

Then according to Case 1, we have

min
k 
=k1

{max{vzik , vzkj }} ≥ vzij (2.64)

max
k 
=k1

{min{μzik , μzkj }} ≤ μzij (2.65)

and when k = k1, suppose that

min{μzik1
, μzk1 j } = μzik1

, μzik1
> μzij (2.66)

Then let λ = (μzij + μzik1
)/2, and thus, μzij ≤ λ ≤ μzik1

. Accordingly,

λzik1 = λzk1j = 1, min{λzik1, λzk1j} = 1 (2.67)
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max
k

{λzik, λzkj} = 1 > λzij (2.68)

which contradicts the known condition. Therefore,

max
k 
=k1

{min{μzik , μzkj }} ≤ μzij (2.69)

Similarly, we get
min

k
{max{vzik , vzkj }} ≥ vzij (2.70)

(c) When λzij = 0, i.e., for any λ ∈ [0, 1], we have 1 − vzij < λ. Then by

max
k

{min{λzik, λzkj}} ≤ λzij = 0 (2.71)

It can be seen that for any k, we get

min{λzik, λzkj} = 0 (2.72)

max{vzik , vzkj } > 1 − λ (2.73)

Considering the arbitrary of λ, it yields μzij = 1 − vzij = 0, and

max
k

{min{μzik , μzkj }} ≤ 1 − min
k

{max{vzik , vzkj }} = 0 (2.74)

Thus Z satisfies the transitivity property.
From the above analysis, the sufficiency of Theorem 2.7 holds. The proof is

completed.

Definition 2.8 (Zhang et al. 2007) Let Ai(i = 1, 2, . . . , n) be a collection of IFSs,
Z = (zij)n×n is the intuitionistic fuzzy similarity matrix derived by Eq. (2.11), Z∗ =
(z∗

ij)n×n is the intuitionistic fuzzy equivalence matrix of Z , and λZ∗ = (λz∗
ij)n×n is the

λ-cutting matrix of Z∗. If the corresponding elements in both the ith line (column)
and the jth line (column) of λZ∗ are equal, then Ai and Aj are classified into one type.

Note: Since λ-cutting matrix λZ∗ has the transitivity property, then if Ai and Ak
are of the same type, while Ak and Aj are of the same type, then Ai and Aj are of the
same type.

On the basis of the above theory, Zhang et al. (2007) introduced a clustering
algorithm for IFSs, which involves the following steps:

Algorithm 2.1

Step 1 For a multi-attribute decision making problem, let Y = {y1, y2, . . . , yn} be
a finite set of alternatives, and G = {G1, G2, . . . , Gm} the set of attributes. Suppose
that the characteristic information on the alternative yi is expressed in IFSs:
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yi = {〈Gj, μyi(Gj), vyi(Gj)〉| Gj ∈ G}, j = 1, 2, . . . , m (2.75)

where μyi(Gj) indicates the degree that the alternative yi satisfies the attribute
Gj, vyi(Gj) indicates the degree that the alternative yi does not satisfy the attribute
Gj, πyi(Gj) = 1−μyi(Gj)−vyi(Gj) indicates the uncertainty degree that the alterna-
tive yi to the attribute Gj. By the intuitionistic fuzzy similarity degree formula (2.11),
we establish the intuitionistic fuzzy similarity matrix Z = (zij)n×n, where

zij = ϑ̂(yi, yj) =
(

1 − λ

√
d∗(yi, yj),

λ

√
d∗(yi, yj)

)
, i, j = 1, 2, . . . , n (2.76)

d∗(yi, yj) = min
k

{
β1|μyi(Gk) − μyj (Gk)|λ + β2|vyi(Gk) − vyj (Gk)|λ

+ β3|πyi(Gk) − πyj (Gk)|λ
}

(2.77)

d∗(yi, yj) = min
k

{
β1|μyi(Gk) − μyj (Gk)|λ + β2|vyi(Gk) − vyj (Gk)|λ

+ β3|πyi(Gk) − πyj (Gk)|λ
}

(2.78)

d∗(yi, yj) = max
k

{
β1|μyi(Gk) − μyj (Gk)|λ + β2|vyi(Gk) − vyj (Gk)|λ

+ β3|πyi(Gk) − πyj (Gk)|λ
}

(2.79)

and λ, β1, β2, β3 are the predefined parameter, λ ≥ 1, βi ∈ [0, 1], i = 1, 2, 3, and∑3
i = 1 βi = 1.
Step 2 Check whether the intuitionistic fuzzy matrix Z is the intuitionistic fuzzy

equivalence matrix or not (i.e., check Z2 ⊆ Z or not); otherwise, do the composition
operation: Z → Z2 → Z4 → · · · → Z2k → · · · , until Z2l = Z2l+1

. Then Z2l
is the

derived intuitionistic fuzzy equivalence matrix. For the sake of convenience, without
loss of generality, let Z∗ = (z∗

ij)n×n be the derived intuitionistic fuzzy equivalence
matrix, where z∗

ij = (μz∗
ij
, vz∗

ij
), i, j = 1, 2, . . . , n.

Step 3 For the given confidence level λ, by Eq. (2.33), we calculate the λ-cutting
matrix λZ∗ = (λz∗

ij)n×n of the intuitionistic fuzzy equivalence matrix Z∗.
Step 4 According to the λ-cutting matrix λZ∗ and Definition 2.8, we cluster the

given alternatives.

Example 2.1 (Zhang et al. 2007) Consider a car classification problem. There are
five new cars yi(i = 1, 2, . . . , 5) to be classified in the Guangzhou car market in
Guangdong, China, and six attributes: (1) G1: Fuel economy; (2) G2: Aerod. Degree;
(3) G3: Price; (4) G4: Comfort; (5) G5: Design; and (6) G6: Safety, are taken into
consideration in the classification problem. The characteristics of the ten new cars
yi(i = 1, 2, . . . , 5) under the six attributes Gj(j = 1, 2, . . . , 6) are represented by
the IFSs, shown in Table 2.1 (Zhang et al. 2007).
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Table 2.1 The characteristics of the ten new cars

G1 G2 G3 G4 G5 G6

y1 (0.3,0.5) (0.6,0.1) (0.4,0.3) (0.8,0.1) (0.1,0.6) (0.5,0.4)
y2 (0.6,0.3) (0.5,0.2) (0.6,0.1) (0.7,0.1) (0.3,0.6) (0.4,0.3)
y3 (0.4,0.4) (0.8,0.1) (0.5,0.1) (0.6,0.2) (0.4,0.5) (0.3,0.2)
y4 (0.2,0.4) (0.4,0.1) (0.9,0) (0.8,0.1) (0.2,0.5) (0.7,0.1)
y5 (0.5,0.2) (0.3,0.6) (0.6,0.3) (0.7,0.1) (0.6,0.2) (0.5,0.3)

Step 1 By Eq. (2.11), we construct the intuitionistic fuzzy similarity matrix (with-
out loss of generality, let λ = 2, β1 = β2 = β3 = 1/3):

We first calculate

1 − λ
√

d∗(y1, y2) = 1 − 1√
3
[max{|0.3 − 0.6|2 + |0.5 − 0.3|2 + |0.2 − 0.1|2,

|0.6 − 0.5|2 + |0.1 − 0.2|2 + |0.3 − 0.3|2, |0.4 − 0.6|2 + |0.3 − 0.1|2 + |0.3 − 0.3|2,
|0.8 − 0.7|2 + |0.1 − 0.1|2 + |0.1 − 0.2|2, |0.1 − 0.3|2 + |0.6 − 0.6|2 + |0.3 − 0.1|2,
|0.5 − 0.4|2 + |0.4 − 0.3|2 + |0.1 − 0.3|2}] 1

2 = 0.78

λ
√

d∗(y1, y2) = 1√
3
[min{|0.3 − 0.6|2 + |0.5 − 0.3|2 + |0.2 − 0.1|2,

|0.6 − 0.5|2 + |0.1 − 0.2|2 + |0.3 − 0.3|2, |0.4 − 0.6|2 + |0.3 − 0.1|2 + |0.3 − 0.3|2,
|0.8 − 0.7|2 + |0.1 − 0.1|2 + |0.1 − 0.2|2, |0.1 − 0.3|2 + |0.6 − 0.6|2 + |0.3 − 0.1|2,
|0.5 − 0.4|2 + |0.4 − 0.3|2 + |0.1 − 0.3|2}] 1

2 = 0.08

Thus, z12 = (0.78, 0.08), similarly, we can calculate the other intuitionistic fuzzy
similarity degrees, and then get the intuitionistic fuzzy similarity matrix:

Z =

⎛

⎜⎜⎜⎜⎝

(1, 0) (0.78, 0.02) (0.72,0.02) (0.64,0) (0.63,0.08)

(0.78,0.02) (1, 0) (0.78,0.08) (0.71,0.08) (0.71,0)

(0.72,0.08) (0.78,0.08) (1, 0) (0.67,0.14) (0.59,0.08)

(0.64,0) (0.71,0.08) (0.67,0.14) (1, 0) (0.63,0.08)

(0.63,0.08) (0.71,0) (0.59,0.08) (0.63,0.08) (1, 0)

⎞

⎟⎟⎟⎟⎠

Step 2 Calculate

Z2 = Z ◦ Z =

⎛

⎜⎜⎜⎜⎝

(1, 0) [0.78, 0.92] (0.78,0.08) (0.71,0) (0.71,0.08)

(0.78,0.08) (1, 0) (0.78,0.08) (0.71,0.08) (0.71,0)

(0.78,0.08) (0.78,0.08) (1, 0) (0.71,0.08) (0.71,0.08)

(0.71,0) (0.71,0.08) (0.71,0.08) (1, 0) (0.71,0.08)

(0.71,0.08) (0.71,0) (0.71,0.08) (0.71,0.08) (1, 0)

⎞

⎟⎟⎟⎟⎠
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Since Z2 
= Z , then Z is not an intuitionistic fuzzy equivalence matrix. Thus we need
to calculate

Z4 = Z2 ◦ Z2

=

⎛

⎜⎜⎜⎜⎜⎜⎝

(1, 0) (0.78,0.08) (0.78,0.08) (0.71,0) (0.71,0.08)

(0.78,0.08) (1, 0) (0.78,0.08) (0.71,0.08) (0.71,0)

(0.78,0.08) (0.78,0.08) (1, 0) (0.71,0.08) (0.71,0.08)

(0.71,0) (0.71,0.08) (0.71,0.08) (1, 0) (0.71,0.08)

(0.71,0.08) (0.71,0) (0.71,0.08) (0.71,0.08) (1, 0)

⎞

⎟⎟⎟⎟⎟⎟⎠
= Z2

Therefore, Z2 is an intuitionistic fuzzy equivalence matrix.
Step 3 By Eq. (2.33), we can see that the value of confidence level λ is only related

to the membership degree μz∗
ij

and the non-membership degree vz∗
ij

of the elements

z∗
ij = (μz∗

ij
, vz∗

ij
) in the intuitionistic fuzzy equivalence matrix Z∗ = Z2 = (z∗

ij)5×5. In
general, we can make a detailed discussion by taking μz∗

ij
and 1 − vz∗

ij
corresponding

to each element of Z∗ as the bounded values of the confidence level λ of the λ-cutting
matrix λZ∗:

(1) When λ ≤ 0.71, we have

λZ∗ =

⎛

⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

⎞

⎟⎟⎟⎟⎟⎟⎠

(2) When 0.71 < λ ≤ 0.78, we have

λZ∗ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1
1

2

1

2

1 1 1
1

2

1

2

1 1 1
1

2

1

2
1

2

1

2

1

2
1

1

2
1

2

1

2

1

2

1

2
1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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(3) When 0.78 < λ ≤ 0.92, we have

λZ∗ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1

2

1

2

1

2

1

2
1

2
1

1

2

1

2

1

2
1

2

1

2
1

1

2

1

2
1

2

1

2

1

2
1

1

2
1

2

1

2

1

2

1

2
1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4) When 0.92 < λ ≤ 1, we have

λZ∗ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
1

2
0

0 1 0 0
1

2
0 0 1 0 0
1

2
0 0 1 0

0
1

2
0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Step 4 According to λZ∗ and Definition 2.8, we make the following discussions:

(1) If 0 ≤ λ ≤ 0.71, then the cars yi (i = 1, 2, . . . , 5) are classified into one type:

{y1, y2, y3, y4, y5}

(2) If 0.71 < λ ≤ 0.78, then the cars yi (i = 1, 2, . . . , 5) are classified into three
types:

{y1, y2, y3}, {y4}, {y5}

(3) If 0.78 < λ ≤ 1, then the cars yi (i = 1, 2, . . . , 5) are classified into five
types:

{y1}, {y2}, {y3}, {y4}, {y5}

From the above analysis, it can be seen that the clustering of the alternatives
(or IFSs) is closely related to the predefined confidence level λ. How to select the
confidence level λ is an interesting issue. We suggest the interested readers should
refer to the literature (Wang 1983).
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2.2 Clustering Algorithms Based on Association Matrices

In the above section, we have introduced an intuitionistic fuzzy clustering algorithm,
which is on the basis of the intuitionistic fuzzy similarity matrix. In this clustering
technique, all the given intuitionistic fuzzy information is first transformed into the
interval-valued fuzzy information. The intuitionistic fuzzy similarity degrees derived
by using distance measures are interval numbers, and both the intuitionistic fuzzy
similarity matrix and the intuitionistic fuzzy equivalence matrix are also interval-
valued matrices. As a result, this clustering technique requires much computational
effort and cannot be extended to cluster IVIFSs, and more importantly, it produces
the loss of too much information in the process of calculating intuitionistic fuzzy
similarity degrees, which implies a lack of precision in the final results. To overcome
this drawback, Xu et al. (2008) proposed a straightforward and practical clustering
algorithm for IFSs, and extended the algorithm to cluster IVIFSs.

Xu and Chen (2008) gave an overview of the existing association measures for
IFSs (or IVIFSs). Based on the association measures, in the following, we introduce
the concept of association matrix:

Definition 2.9 (Xu et al. 2008) Let Aj (j = 1, 2, . . . , m) be m IFSs. Then
C = (cij)m×m is called an association matrix, where cij = c(Ai, Aj) is the asso-
ciation coefficient of Ai and Aj (which can be derived by one of the intuitionistic
fuzzy association measures introduced by Xu and Chen (2008)), and has the follow-
ing properties:

(1) 0 ≤ cij ≤ 1, i, j = 1, 2, . . . , m.
(2) cij = 1 if and only if Ai = Aj.
(3) cij = cji, i, j = 1, 2, . . . , m.

Definition 2.10 (Xu et al. 2008) Let C = (cij)m×m be an association matrix. If
C2 = C ◦ C = (cij)m×m, then C2 is called the composition matrix of C, where

cij = max
k

{min{cik, ckj}}, i, j = 1, 2, . . . , m (2.80)

According to Definition 2.9, we have

Theorem 2.8 (Xu et al. 2008) Let C = (cij)m×m be an association matrix. Then the
composition matrix C2 is also an association matrix.

Proof (1) Since C is an association matrix, then for any i, j = 1, 2, . . . , m, we have
0 ≤ cij ≤ 1. Thus

0 ≤ cij = max
k

{min{cik, ckj}} ≤ 1, i, j = 1, 2, . . . , m (2.81)
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(2) Since cij = 1 if and only if Ai = Aj, i, j = 1, 2, . . . , m, it yields

cij = max
k

{min{cik, ckj}} = 1 if and only if Ai = Ak = Aj, k = 1, 2, . . . , m (2.82)

(3) Since cij = cji, i, j = 1, 2, . . . , m, we get

cij = max
k

{min{cik, ckj}} = max
k

{min{cki, cjk}}
= max

k
{min{cjk, cki}} = cji, i, j = 1, 2, . . . , m (2.83)

which completes the proof of the theorem.

According to Theorem 2.8, we can derive the following conclusion:

Theorem 2.9 (Xu et al. 2008) Let C = (cij)m×m be an association matrix. Then for
any positive integer k, we have

C2k+1 = C2k ◦ C2k
(2.84)

where the composition matrix C2k+1
is also an association matrix.

Definition 2.11 (Xu et al. 2008) Let C = (cij)m×m be an association matrix. If
C2 ⊆ C, i.e., for any i, j = 1, 2, . . . , m, the following inequality holds:

max
k

{min{cik, ckj}} ≤ cij (2.85)

Thus, C is called an equivalent association matrix.
By the transitivity principle of equivalent matrix (Wang 1983), we can easily

prove the following theorem:

Theorem 2.10 (Xu et al. 2008) Let C = (cij)m×m be an association matrix. Then
after the finite times of compositions:

C → C2 → C4 → · · · → C2k → · · · (2.86)

there must exist a positive integer k, such that C2k = C2(k+1)
, and C2k

is also an
equivalent association matrix.

Based on the equivalent association matrix, we give the following useful concept:

Definition 2.12 (Xu et al. 2008) Let C = (cij)m×m be an equivalent association
matrix. Then Cλ = (λcij)m×m is called the λ-cutting matrix of C, where

λcij =
{

0, cij < λ,

1, cij ≥ λ,
, i, j = 1, 2, . . . , m (2.87)

and λ is the confidence level with λ ∈ [0, 1].
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From the above theoretical analysis, we introduce an algorithm for clustering IFSs
as follows (Xu et al. 2008):

Algorithm 2.2

Step 1 Let X = {x1, x2, . . . , xn} be a discrete universe of discourse, and let
w = (w1, w2, . . . , wn)

T be the weight vector of the elements xi (i = 1, 2, . . . , n),
with wi ∈ [0, 1], i = 1, 2, . . . , n, and

∑n
i = 1 wi = 1. Consider a collection of m IFSs

Aj (j = 1, 2, . . . , m), where

Aj = {〈x, μAj (xi), vAj (xi)〉|xi ∈ X} (2.88)

with πAj (xi) = 1 − μAj (xi) − vAj (xi), j = 1, 2, . . . , m.
Step 2 Select an intuitionistic fuzzy association measure, such as

c(Ai, Aj)

=
∑n

k = 1 wk(μAi (xk) · μAj (xk) + vAi (xk) · vAj (xk) + πAi (xk) · πAj (xk))

max
(∑n

k = 1 wk(μ
2
Ai

(xk) + v2
Ai

(xk) + π2
Ai

(xk)),
∑n

k = 1 wk(μ
2
Aj

(xk) + v2
Aj

(xk) + π2
Aj

(xk))
)

(2.89)

to calculate the association coefficients of the IFSs Ai and Aj (i, j = 1, 2, . . . , m).
Then construct an association matrix C = (cij)m×m, where cij = c(Ai, Aj),

i, j = 1, 2, . . . , m.
Step 3 If the association matrix C = (cij)n×n is an equivalent association

matrix, then we construct a λ-cutting matrix Cλ = (λcij)m×m of C by using
Eq. (2.87); otherwise, we compose the association matrix C by using Eq. (2.86) to
derive an equivalent association matrix C. Then we construct a λ-cutting matrix
Cλ = (λcij)m×m of C by using Eq. (2.87).

Step 4 If all elements of the ith line (column) in Cλ (or Cλ) are the same as
the corresponding elements of the jth line (column) in Cλ (or Cλ), then the IFSs
Ai and Aj are of the same type. By this principle, we can classify all these m IFSs
Aj (j = 1, 2, . . . , m).

By using the cutting matrix of the equivalent association matrix, Algorithm-IFSC
classifies the IFSs under the given confidence levels. Considering that the confidence
levels have a close relationship with the elements of equivalent association matrices,
in practical applications, people can properly specify the confidence levels according
to the elements of the equivalent association matrices and the actual situations, and
thus, the algorithm has desirable flexibility and practicability. However, in some
cases, people may expect that the algorithm can automatically generate the “optimal”
clustering without any interaction with them. In other words, the algorithm should
have the ability to set the optimal λ according to cluster structure. To fulfill this
requirement, here we use the Separation Index (SI), one of the relative measures for
cluster validity, which was introduced by Nasibov and Ulutagay (2007).
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For two clusters Ci and Cj, let ϑ(Ci, Cj) (i 
= j) be the inter-cluster similarity
degree of Ci and Cj, and let ϑ ′(Ci) be the intra-cluster similarity degree of Ci. Then
the similarity-based SI can be defined as:

SIsim =
max
i 
=j

ϑ(Ci, Cj)

min
i

ϑ ′(Ci)
(2.90)

where
ϑ(Ci, Cj) = max

A∈Ci,B∈Cj
ϑ(A, B) (2.91)

ϑ ′(Ci) = min
A,B∈Ci

ϑ(A, B) (2.92)

As a relative measure, SI does not depend on the cluster number, but on the structure
of clusters. Therefore, the optimal λ can be selected as:

λ = arg min
λ

SIsim(λ) (2.93)

where SIsim(λ) is the SI of the resultant clusters with λ being the confidence level of
the equivalent association matrix.

In the following, we shall extend the algorithm for clustering IVIFSs. Before
doing so, we first introduce the basic concepts related to IVIFSs:

Atanassov and Gargov (1989) defined the concept of IVIFS:

Definition 2.13 (Atanassov and Gargov 1989) Let X be a fixed set. Then

Ã = {〈x, μ̃Ã(x), ṽÃ(x)〉|x ∈ X } (2.94)

is called an interval-valued intuitionistic fuzzy set (IVIFS), where μ̃Ã(x) ⊂ [0, 1]
and ṽÃ(x) ⊂ [0, 1], x ∈ X, with the condition:

sup μ̃Ã(x) + sup ṽÃ(x) ≤ 1, x ∈ X (2.95)

Clearly, if inf μ̃Ã(x) = sup μ̃Ã(x) and inf ṽÃ(x) = sup ṽÃ(x), then the IVIFS Ã
reduces to a traditional IFS.

Atanassov and Gargov (1989) further gave some basic operational laws of IVIFSs:

Definition 2.14 (Atanassov and Gargov 1989) Let Ã = {〈x, μ̃Ã(x), ṽÃ(x)〉|x
∈ X}, Ã1 = {〈x, μ̃Ã1

(x), ṽÃ1
(x)〉|x ∈ X} and Ã2 = {〈x, μ̃Ã2

(x), ṽÃ2
(x)〉|x ∈ X}

be three IVIFSs. Then
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(1) Ã = {〈x, ṽÃ(x), μ̃Ã(x)|x ∈ X}.
(2) Ã1 ∩ Ã2 = {〈x, [min{inf μ̃Ã1

(x), inf μ̃Ã2
(x)}, min{sup μ̃Ã1

(x), sup μ̃Ã2
(x)}],

[max{inf ν̃Ã1
(x), inf ṽÃ2

(x)}, max{sup ṽÃ1
(x), sup ṽÃ2

(x)}]〉|x ∈ X}.
(3) Ã1 ∪ Ã2 = {〈x, [max{inf μ̃Ã1

(x), inf μ̃Ã2
(x)}, max{sup μ̃Ã1

(x), sup μ̃Ã2
(x)}],

[min{inf ṽÃ1
(x), inf ṽÃ2

(x)}, min{sup ṽÃ1
(x)), sup ṽÃ2

(x)]}〉|x ∈ X}.
(4) Ã1 + Ã2 = {〈x, [inf μ̃Ã1

(x) + inf μ̃Ã2
(x) − inf μ̃Ã1

(x) · inf μ̃Ã2
(x),

sup μ̃Ã1
(x) + sup μ̃Ã2

(x) − sup μ̃Ã1
(x) · sup μ̃Ã2

(x)],
[ inf ṽÃ1

(x) · inf ṽÃ2
(x), sup ṽÃ1

(x) · sup ṽÃ2
(x)]〉|x ∈ X}.

(5) Ã1 · Ã2 = {〈x, [inf μ̃Ã1
(x) · inf μ̃Ã2

(x), sup μ̃Ã1
(x) · sup μ̃Ã2

(x)],
[ inf ṽÃ1

(x) + inf ṽÃ2
(x) − inf ṽÃ1

(x). inf ṽÃ2
(x),

sup ṽÃ1
(x) + sup ṽÃ2

(x) − sup ṽÃ1
(x) · sup ṽÃ2

(x)]〉|x ∈ X}.

Taking into account the needs of the application, Xu and Chen (2007a) further intro-
duced another two operational laws:

(6) λÃ = {〈x, [1 − (1 − inf μ̃Ã(x))λ, 1 − (1 − sup μ̃Ã(x))λ],
[(inf ṽÃ(x))λ, (sup ṽÃ(x))λ]〉|x ∈ X}, λ > 0.

(7) Ãλ = {〈x, [(inf μ̃Ã(x))λ, (sup μ̃Ã(x))λ],
[1 − (1 − inf ṽÃ(x))λ, 1 − (1 − sup ṽÃ(x))λ]〉|x ∈ X}, λ > 0.

Let X = {x1, x2, . . . , xn} be a discrete universe of discourse, Ã1 = {〈xi, μ̃Ã1
(xi),

ṽÃ1
(xi)〉|xi ∈ X} and Ã2 = {〈xi, μ̃Ã2

(xi), ṽÃ2
(xi)〉|xi ∈ X} two IVIFSs, where

μ̃Ã1
(xi) = [μ−

Ã1
(xi), μ

+
Ã1

(xi)], μ̃Ã2
(xi) = [μ−

Ã2
(xi), μ

+
Ã2

(xi)] (2.96)

ṽÃ1
(xi) = [v−

Ã1
(xi), v+

Ã1
(xi)], ṽÃ2

(xi) = [v−
Ã2

(xi), v+
Ã2

(xi)] (2.97)

Atanassov and Gargov (1989) defined the inclusion relation between two IVIFSs:

(1) Ã1 ⊆ Ã2 if and only if μ+
Ã1

(xi) ≤ μ+
Ã2

(xi), μ−
Ã1

(xi) ≤ μ−
Ã2

(xi), v+
Ã1

(xi) ≥ v+
Ã2

(xi)

and v−
Ã1

(xi) ≥ v−
Ã2

(xi), xi ∈ X.

(2) Ã1 = Ã2 if and only if Ã1 ⊆ Ã2 Ã1 ⊇ Ã2.

Similar to Definition 2.9, we have

Definition 2.15 (Xu et al. 2008) Let Ãj (j = 1, 2, . . . , m) be m IVIFSs. Then
Ċ = (ċij)m×m is called an association matrix, where ċij = c(Ãi, Ãj) is the asso-
ciation coefficient of Ãi and Ãj (which can be derived by one of the interval-valued
intuitionistic fuzzy association measures introduced by Xu and Chen (2008)), and
has the following properties:
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(1) 0 ≤ ċij ≤ 1, i, j = 1, 2, . . . , m.
(2) ċij = 1 if and only if Ãi = Ãj.
(3) ċij = ċji, i, j = 1, 2, . . . , m.

Based on the association matrix of the IVIFSs, in what follows, we introduce an
algorithm for clustering IVIFSs (Xu et al. 2008):

Algorithm 2.3

Step 1 Let X = {x1, x2, . . . , xn} be a discrete universe of discourse,
w = (w1, w2, . . . , wn)

T the weight vector of the elements xi (i = 1, 2, . . . , n),
with wi ∈ [0, 1], i = 1, 2, . . . , n, and

∑n
i = 1 wi = 1, and let Ãj (j = 1, 2, . . . , m) be

a collection of IVIFSs:

Ãj = {〈xi, μ̃Ãj
(xi), ṽÃj

(xi)〉|xi ∈ X} (2.98)

where

μ̃Ãj
(xi) = [μ−

Ãj
(xi), μ

+
Ãj

(xi)] ⊂ [0, 1], ṽÃj
(xi) = [v−

Ãj
(xi), v+

Ãj
(xi)] ⊂ [0, 1],

μ+
Ãj

(xi) + v+
Ãj

(xi) ≤ 1, xi ∈ X (2.99)

Additionally, π̃Ãj
(xi) = [π−

Ãj
(xi), π

+
Ãj

(xi)] ⊂ [0, 1], π−
Ãj

(xi) = 1 − μ+
Ãj

(xi) − 1 −
v+

Ãj
(xi), π

+
Ãj

(xi) = 1 − μ−
Ãj

(xi) − 1 − v−
Ãj

(xi).

Step 2 Utilize the interval-valued intuitionistic fuzzy association measures:

c(Ãi, Ãj) =

∑n
k = 1 wk

(
μ−

Ãi
(xk) · μ−

Ãj
(xk) + μ+

Ãi
(xk) · μ+

Ãj
(xk)

+v−
Ãi

(xk) · v−
Ãj

(xk) + v+
Ãi

(xk) · v+
Ãj

(xk)

+ π−
Ãi

(xk) · π−
Ãj

(xk) + π+
Ãi

(xk) · π+
Ãj

(xk)
)

max
(∑n

k = 1 wk

((
μ−

Ãi
(xk)

)2 +
(
μ+

Ãi
(xk)

)2 +
(

v−
Ãi

(xk)
)2

+
(

v+
Ãi

(xk)
)2 +

(
π−

Ãi
(xk)

)2 +
(
π+

Ãi
(xk)

)2)
,

∑n
k = 1 wk

((
μ−

Ãj
(xk)

)2 +
(
μ+

Ãj
(xk)

)2 +
(

v−
Ãj

(xk)
)2

+
(

v+
Ãj

(xk)
)2 +

(
π−

Ãj
(xk)

)2 +
(
π+

Ãj
(xk)

)2))

(2.100)

to calculate the association coefficients of the IVIFSs Ãi and Ãj (i, j = 1, 2, . . . , m),
and then construct an association Ċ = (ċij)m×m, where ċij = ċ(Ãi, Ãj),

i, j = 1, 2, . . . , m.
Step 3 If the association matrix Ċ = (ċij)m×m is an equivalent association

matrix, then we construct a λ-cutting matrix Ċλ = (λcij)m×m of Ċ by using
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Eq. (2.87); otherwise, we compose the association matrix Ċ by using Eq. (2.86) to

derive an equivalent association matrix Ċ, and then construct a λ-cutting matrix

Ċλ = (λcij)m×m of Ċ by using Eq. (2.87).

Step 4 If all elements of the ith line (column) in Ċλ (or Ċλ) are the same as the

corresponding elements of the jth line (column) in Ċλ (or Ċλ), then the IVIFSs Ãi

and Ãj are of the same type. By this principle, we can classify all these m IVIFSs
Ãj (j = 1, 2, . . . , m).

Example 2.2 (Xu et al. 2008) We conduct experiments on both the real-world and
simulated data sets in order to demonstrate the effectiveness of the proposed cluster-
ing algorithm for IVIFSs.

Below we first introduce the experimental tool and the experimental data set,
respectively:

(1) Experimental tool. In the experiments, we use Algorithm 2.2 as a tool imple-
mented by ourselves in MATLAB. Note that if we let π(x) = 0, for any x ∈ X,
then Algorithm 2.2 reduces to the traditional algorithm for clustering fuzzy sets
(denoted by Algorithm-FSC). Therefore, we can use Algorithm 2.2 to compare the
performance of both Algorithm 2.2 and Algorithm-FSC.

(2) Experimental data set. We use two kinds of data in our experiments. The car
data set contains the information of ten new cars to be classified in the Guangzhou
car market in Guangdong, China. Let yi (i = 1, 2, . . . , 10) be the cars, each of which
is described by six attributes: (1) G1: Fuel economy; (2) G2: Aerod degree; (3) G3:
Price; (4) G4: Comfort; (5) G5: Design; and (6) G6: Safety. The weight vector of
these attributes is w = (0.15, 0.10, 0.30, 0.20, 0.15, 0.10)T . The characteristics of
the ten new cars under the six attributes are represented by the IFSs, as shown in
Table 2.2 (Xu et al. 2008).

We also use the simulated data set for the purpose of comparison, and assume
that there are three classes in the simulated data set, denoted by Ci(i = 1, 2, 3). The
number of IFSs in each class is exactly the same: 300. The differences of the IFSs
in different classes lie in the following aspects: (1) The IFSs in C1 have relatively
high and positive scores; (2) the IFSs in C2 have relatively high and negative scores;
and (3) the IFSs in C3 have relatively high and uncertain scores. Along this line, we
generate the simulated data set as follows: (1) μ(x) ∼ U(0.7,1) and v(x) + π(x) ∼
U(0,1−μ(x)), for any x ∈ C1; (2) v(x) ∼ U(0.7,1) andμ(x)+π(x) ∼ U(0,1−v(x)),
for any x ∈ C2; and (3) π(x) ∼ U(0.7,1), μ(x) + v(x) ∼ U(0,1 − π(x)), for any
x ∈ C3, where U(a, b) means the uniform distribution on the interval [a, b]. By doing
so, we generate a simulated data set which consists of 900 IFSs from 3 classes.

Now we utilize Algorithm 2.2 to cluster the ten new cars yi (i = 1, 2, . . . , 10),
which involves the following steps (Xu et al. 2008):
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Table 2.2 The car data set

G1 G2 G3 G4 G5 G6

μyi vyi μyi vyi μyi vyi μyi vyi μyi vyi μyi vyi
(G1) (G1) (G2) (G2) (G3) (G3) (G4) (G4) (G5) (G5) (G6) (G6)

y1 0.30 0.40 0.20 0.70 0.40 0.50 0.80 0.10 0.40 0.50 0.20 0.70

y2 0.40 0.30 0.50 0.10 0.60 0.20 0.20 0.70 0.30 0.60 0.70 0.20

y3 0.40 0.20 0.60 0.10 0.80 0.10 0.20 0.60 0.30 0.70 0.50 0.20

y4 0.30 0.40 0.90 0.00 0.80 0.10 0.70 0.10 0.10 0.80 0.20 0.80

y5 0.80 0.10 0.70 0.20 0.70 0.00 0.40 0.10 0.80 0.20 0.40 0.60

y6 0.40 0.30 0.30 0.50 0.20 0.60 0.70 0.10 0.50 0.40 0.30 0.60

y7 0.60 0.40 0.40 0.20 0.70 0.20 0.30 0.60 0.30 0.70 0.60 0.10

y8 0.90 0.10 0.70 0.20 0.70 0.10 0.40 0.50 0.40 0.50 0.80 0.00

y9 0.40 0.40 1.00 0.00 0.90 0.10 0.60 0.20 0.20 0.70 0.10 0.80

y10 0.90 0.10 0.80 0.00 0.60 0.30 0.50 0.20 0.80 0.10 0.60 0.40

Step 1 Utilize

c(yi, yj)

=
∑n

k = 1 wk
(
μyi (Gk) · μyj (Gk) + vyi (Gk) · vyj (Gk) + πyi (Gk) · πyj (Gk)

)

max
(∑n

k = 1 wk

(
μ2

yi
(Gk) + v2

yi
(Gk) + π2

yi
(Gk)

)
,
∑n

k = 1 wk

(
μ2

yj
(Gk) + v2

yj
(Gk) + π2

yj
(Gk)

) )

(2.101)

to calculate the association coefficients of yi (i = 1, 2, . . . , 10), and then construct
an association matrix:

C =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.000 0.667 0.645 0.709 0.633 0.919 0.696 0.609 0.666 0.611
0.667 1.000 0.909 0.661 0.666 0.665 0.913 0.820 0.665 0.640

0.645 0.909 1.000 0.768 0.740 0.576 0.937 0.862 0.771 0.670

0.709 0.661 0.768 1.000 0.755 0.610 0.717 0.728 0.968 0.711

0.633 0.666 0.740 0.755 1.000 0.623 0.713 0.476 0.764 0.861

0.919 0.665 0.576 0.610 0.623 1.000 0.634 0.579 0.566 0.622

0.696 0.913 0.937 0.717 0.713 0.634 1.000 0.889 0.722 0.692

0.609 0.820 0.862 0.728 0.476 0.579 0.889 1.000 0.740 0.811

0.666 0.665 0.771 0.968 0.764 0.566 0.722 0.740 1.000 0.732

0.611 0.640 0.670 0.711 0.861 0.622 0.692 0.811 0.732 1.000

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Step 2 Calculate

C2 = C ◦ C

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.000 0.696 0.709 0.709 0.709 0.919 0.709 0.709 0.709 0.709
0.696 1.000 0.913 0.768 0.740 0.667 0.913 0.889 0.771 0.811
0.709 0.913 1.000 0.771 0.764 0.665 0.937 0.889 0.771 0.811
0.709 0.768 0.771 1.000 0.764 0.709 0.768 0.768 0.968 0.755
0.709 0.740 0.764 0.764 1.000 0.665 0.740 0.811 0.764 0.861
0.919 0.667 0.665 0.709 0.665 1.000 0.696 0.665 0.666 0.640
0.709 0.913 0.937 0.768 0.740 0.696 1.000 0.889 0.771 0.811
0.709 0.889 0.889 0.768 0.811 0.665 0.889 1.000 0.771 0.811
0.709 0.771 0.771 0.968 0.764 0.666 0.771 0.771 1.000 0.740
0.709 0.811 0.811 0.755 0.861 0.640 0.811 0.811 0.740 1.000

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

then C2 ⊆ C does not hold, i.e., the association matrix C is not an equivalent
association matrix. Thus, by Eq. (2.86), we further calculate

C4 = C2 ◦ C2

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.000 0.709 0.709 0.709 0.709 0.919 0.709 0.709 0.709 0.709
0.709 1.000 0.913 0.771 0.811 0.709 0.913 0.889 0.771 0.811
0.709 0.913 1.000 0.771 0.811 0.709 0.937 0.889 0.771 0.811
0.709 0.771 0.771 1.000 0.768 0.709 0.771 0.771 0.968 0.771
0.709 0.811 0.811 0.768 1.000 0.709 0.811 0.811 0.771 0.861
0.919 0.709 0.709 0.709 0.709 1.000 0.709 0.709 0.709 0.709
0.709 0.913 0.937 0.771 0.811 0.709 1.000 0.889 0.771 0.811
0.709 0.889 0.889 0.771 0.811 0.709 0.889 1.000 0.771 0.811
0.709 0.771 0.771 0.968 0.771 0.709 0.771 0.771 1.000 0.771
0.709 0.811 0.811 0.771 0.861 0.709 0.811 0.811 0.771 1.000

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

C8 = C4 ◦ C4

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.000 0.709 0.709 0.709 0.709 0.919 0.709 0.709 0.709 0.709
0.709 1.000 0.913 0.771 0.811 0.709 0.913 0.771 0.771 0.811
0.709 0.913 1.000 0.771 0.811 0.709 0.937 0.889 0.771 0.811
0.709 0.771 0.771 1.000 0.771 0.709 0.771 0.771 0.968 0.771
0.709 0.811 0.811 0.771 1.000 0.709 0.811 0.811 0.771 0.861
0.919 0.709 0.709 0.709 0.709 1.000 0.709 0.709 0.709 0.709
0.709 0.913 0.937 0.771 0.811 0.709 1.000 0.889 0.771 0.811
0.709 0.771 0.889 0.771 0.811 0.709 0.889 1.000 0.771 0.811
0.709 0.771 0.771 0.968 0.771 0.709 0.771 0.771 1.000 0.771
0.709 0.811 0.811 0.771 0.861 0.709 0.811 0.811 0.771 1.000

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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C16 = C8 ◦ C8

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.000 0.709 0.709 0.709 0.709 0.919 0.709 0.709 0.709 0.709
0.709 1.000 0.913 0.771 0.811 0.709 0.913 0.771 0.771 0.811
0.709 0.913 1.000 0.771 0.811 0.709 0.937 0.889 0.771 0.811
0.709 0.771 0.771 1.000 0.771 0.709 0.771 0.771 0.968 0.771
0.709 0.811 0.811 0.771 1.000 0.709 0.811 0.811 0.771 0.861
0.919 0.709 0.709 0.709 0.709 1.000 0.709 0.709 0.709 0.709
0.709 0.913 0.937 0.771 0.811 0.709 1.000 0.889 0.771 0.811
0.709 0.771 0.889 0.771 0.811 0.709 0.889 1.000 0.771 0.811
0.709 0.771 0.771 0.968 0.771 0.709 0.771 0.771 1.000 0.771
0.709 0.811 0.811 0.771 0.861 0.709 0.811 0.811 0.771 1.000

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

hence, C16 = C8, i.e., C8 is an equivalent association matrix.
Step 3 Since the confidence level λ has a close relationship with the elements of

the equivalent association matrix C8, in the following, we give a detailed sensitivity
analysis with respect to the confidence level λ, and by Eq. (2.87), we get all the
possible classifications of the ten new cars yi (i = 1, 2, . . . , 10):

(1) If 0 ≤ λ ≤ 0.709, then yi (i = 1, 2, . . . , 10) are of the same type:

{y1, y2, y3, y4, y5, y6, y7, y8, y9, y10}

(2) If 0.709 < λ ≤ 0.771, then yi (i = 1, 2, . . . , 10) are classified into the follow-
ing two types:

{y1, y6}, {y2, y3, y4, y5, y7, y8, y9, y10}

(3) If 0.771 < λ ≤ 0.811, then yi (i = 1, 2, . . . , 10) are classified into the follow-
ing five types:

{y1, y6}, {y2}, {y3, y5, y7, y10}, {y8}, {y4, y9}

(4) If 0.811 < λ ≤ 0.861, then yi (i = 1, 2, . . . , 10) are classified into the follow-
ing six types:

{y1, y6}, {y2}, {y3, y7}, {y8}, {y4, y9}, {y5, y10}

(5) If 0.861 < λ ≤ 0.889, then yi (i = 1, 2, . . . , 10) are classified into the follow-
ing seven types:

{y1, y6}, {y2}, {y3, y7}, {y4, y9}, {y5}, {y8}, {y10}

(6) If 0.889 < λ ≤ 0.913, then yi (i = 1, 2, . . . , 10) are classified into the follow-
ing six types:

{y1, y6}, {y2, y3, y7}, {y4, y9}, {y5}, {y8}, {y10}

(7) If 0.913 < λ ≤ 0.919, then yi (i = 1, 2, . . . , 10) are classified the following
into seven types:

{y1, y6}, {y2}, {y3, y7}, {y4, y9}, {y5}, {y8}, {y10}
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(8) If 0.919 < λ ≤ 0.937, then yi (i = 1, 2, . . . , 10) are classified into the follow-
ing eight types:

{y1}, {y2}, {y5}, {y6}, {y3, y7}, {y4, y9}, {y8}, {y10}

(9) If 0.937 < λ ≤ 0.968, then yi (i = 1, 2, . . . , 10) are classified into the follow-
ing nine types:

{y1}, {y2}, {y3}, {y5}, {y6}, {y7}, {y8}, {y4, y9}, {y10}

(10) If 0.968 < λ ≤ 1, then yi (i = 1, 2, . . . , 10) are classified into the following
ten types:

{y1}, {y2}, {y3}, {y4}, {y5}, {y6}, {y7}, {y8}, {y9}, {y10}

If we utilize Algorithm 2.1 to cluster the ten new cars yi (i = 1, 2, . . . , 10), then
we first need to transform all the given IFSs (see Table 2.2) into the interval-valued
fuzzy sets, listed in Table 2.3 (Xu et al. 2008).

After that, we utilize Eq. (2.11) (without loss of generality, here we let λ = 2,

β1 = β2 = β3 = 1/3) to calculate the intuitionistic fuzzy similarity degrees of
yi (i = 1, 2, . . . , 10), and then construct the intuitionistic fuzzy similarity matrix
R̃ = (r̃ij)10×10:

Table 2.3 The transformed car data set

G1 G2 G3 G4 G5 G6

[μyi (G1), [μyi (G2), [μyi (G3), [μyi (G4), [μyi (G5), [μyi (G6),

1 − vyi (G1)] 1 − vyi (G2)] 1 − vyi (G3)] 1 − vyi (G4)] 1 − vyi (G5)] 1 − vyi (G6)]
y1 [0.30, 0.60] [0.20, 0.30] [0.40, 0.50] [0.80, 0.90] [0.40, 0.50] [0.20, 0.30]
y2 [0.40, 0.70] [0.50, 0.90] [0.60, 0.80] [0.20, 0.30] [0.30, 0.40] [0.70, 0.80]
y3 [0.40, 0.80] [0.60, 0.90] [0.80, 0.90] [0.20, 0.40] [0.30, 0.30] [0.50, 0.80]
y4 [0.30, 0.60] [0.90, 1.00] [0.80, 0.90] [0.70, 0.90] [0.10, 0.20] [0.20, 0.20]
y5 [0.80, 0.90] [0.70, 0.80] [0.70, 1.00] [0.40, 0.90] [0.80, 0.80] [0.40, 0.40]
y6 [0.40, 0.70] [0.30, 0.50] [0.20, 0.40] [0.70, 0.90] [0.50, 0.60] [0.30, 0.40]
y7 [0.60, 0.60] [0.40, 0.80] [0.70, 0.80] [0.30, 0.40] [0.30, 0.30] [0.60, 0.90]
y8 [0.90, 0.90] [0.70, 0.80] [0.70, 0.90] [0.40, 0.50] [0.40, 0.50] [0.80, 1.00]
y9 [0.40, 0.60] [1.00, 1.00] [0.90, 0.90] [0.60, 0.80] [0.20, 0.30] [0.10, 0.20]
y10 [0.90, 0.90] [0.80, 1.00] [0.60, 0.70] [0.50, 0.80] [0.80, 0.90] [0.60, 0.60]
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R̃ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[1, 1] [0.507, 0.918] [0.545, 0.859] [0.428, 1.000] [0.592, 0.859]
[0.507, 0.918] [1, 1] [0.837, 0.918] [0.545, 0.918] [0.568, 0.859]
[0.545, 0.859] [0.837, 0.918] [1, 1] [0.576, 1.000] [0.592, 0.859]
[0.428, 1.000] [0.545, 0.918] [0.576, 1.000] [1, 1] [0.465, 0.859]
[0.592, 0.859] [0.568, 0.859] [0.592, 0.859] [0.465, 0.859] [1, 1]
[0.859, 0.918] [0.545, 1.000] [0.545, 0.918] [0.545, 1.000] [0.545, 0.918]
[0.568, 0.859] [0.784, 0.918] [0.717, 1.000] [0.503, 0.918] [0.592, 0.837]
[0.465, 1.000] [0.644, 0.918] [0.626, 0.918] [0.411, 0.918] [0.568, 1.000]
[0.384, 0.918] [0.510, 0.918] [0.568, 0.918] [0.918, 0.918] [0.545, 0.784]
[0.465, 0.837] [0.592, 0.918] [0.545, 0.859] [0.428, 0.918] [0.784, 0.918]

[0.859, 0.918] [0.568, 0.859] [0.465, 1.000] [0.384, 0.918] [0.465, 0.837]
[0.545, 1.000] [0.784, 0.918] [0.644, 0.918] [0.510, 0.918] [0.592, 0.918]
[0.545, 0.918] [0.717, 1.000] [0.626, 0.918] [0.568, 0.918] [0.545, 0.859]
[0.545, 1.000] [0.503, 0.918] [0.411, 0.918] [0.918, 0.918] [0.428, 0.918]
[0.545, 0.918] [0.592, 0.837] [0.568, 1.000] [0.545, 0.784] [0.784, 0.918]

[1, 1] [0.626, 0.784] [0.545, 0.918] [0.490, 0.918] [0.592, 0.859]
[0.626, 0.784] [1, 1] [0.755, 0.918] [0.490, 0.918] [0.545, 0.918]
[0.545, 0.918] [0.755, 0.918] [1, 1] [0.384, 0.837] [0.673, 1.000]
[0.490, 0.918] [0.490, 0.918] [0.384, 0.837] [1, 1] [0.510, 0.918]
[0.592, 0.859] [0.545, 0.918] [0.673, 1.000] [0.510, 0.918] [1, 1]

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

By the composition operation of interval-valued matrices, we have

R̃2 = R̃ ◦ R̃ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[1, 1] [0.568, 0.918] [0.592, 1.000] [0.545, 1.000] [0.592, 1.000]
[0.568, 0.918] [1, 1] [0.837, 0.918] [0.576, 0.918] [0.592, 0.918]
[0.592, 1.000] [0.837, 0.918] [1, 1] [0.576, 1.000] [0.592, 1.000]
[0.545, 1.000] [0.576, 0.918] [0.576, 1.000] [1, 1] [0.576, 0.918]
[0.592, 1.000] [0.592, 0.918] [0.592, 1.000] [0.576, 0.918] [1, 1]
[0.859, 1.000] [0.626, 1.000] [0.626, 1.000] [0.545, 1.000] [0.592, 0.918]
[0.592, 0.918] [0.784, 0.918] [0.784, 1.000] [0.576, 1.000] [0.592, 0.918]
[0.568, 1.000] [0.755, 0.918] [0.717, 0.918] [0.576, 1.000] [0.592, 1.000]
[0.545, 0.918] [0.568, 0.918] [0.576, 0.918] [0.918, 0.918] [0.568, 0.918]
[0.592, 1.000] [0.592, 0.918] [0.626, 0.918] [0.545, 0.918] [0.784, 1.000]
[0.859, 1.000] [0.592, 0.918] [0.568, 1.000] [0.545, 0.918] [0.592, 1.000]
[0.626, 1.000] [0.784, 0.918] [0.755, 0.918] [0.568, 0.918] [0.592, 0.918]
[0.626, 1.000] [0.784, 1.000] [0.717, 0.918] [0.576, 0.918] [0.626, 0.918]
[0.545, 1.000] [0.576, 1.000] [0.576, 1.000] [0.918, 0.918] [0.545, 0.918]
[0.592, 0.918] [0.592, 0.918] [0.592, 1.000] [0.568, 0.918] [0.784, 1.000]

[1, 1] [0.626, 0.918] [0.626, 0.918] [0.545, 0.918] [0.592, 0.918]
[0.626, 0.918] [1, 1] [0.755, 0.918] [0.568, 0.918] [0.673, 0.918]
[0.626, 0.918] [0.755, 0.918] [1, 1] [0.568, 0.918] [0.673, 1.000]
[0.545, 0.918] [0.568, 0.918] [0.568, 0.918] [1, 1] [0.545, 0.918]
[0.592, 0.918] [0.673, 0.918] [0.673, 1.000] [0.545, 0.918] [1, 1]

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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R̃4 = R̃2 ◦ R̃2 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[1, 1] [0.626, 0.918] [0.626, 1.000] [0.576, 1.000] [0.592, 1.000]
[0.626, 0.918] [1, 1] [0.837, 1.000] [0.576, 1.000] [0.592, 0.918]
[0.626, 1.000] [0.837, 1.000] [1, 1] [0.576, 1.000] [0.626, 1.000]
[0.576, 1.000] [0.576, 1.000] [0.576, 1.000] [1, 1] [0.576, 1.000]
[0.592, 1.000] [0.592, 0.918] [0.626, 1.000] [0.576, 1.000] [1, 1]
[0.859, 1.000] [0.626, 1.000] [0.626, 1.000] [0.576, 1.000] [0.592, 1.000]
[0.626, 1.000] [0.784, 0.918] [0.784, 1.000] [0.576, 1.000] [0.673, 1.000]
[0.626, 1.000] [0.755, 0.918] [0.755, 1.000] [0.576, 1.000] [0.673, 1.000]
[0.576, 0.918] [0.576, 0.918] [0.576, 0.918] [0.918, 0.918] [0.576, 0.918]
[0.592, 1.000] [0.673, 0.918] [0.673, 1.000] [0.576, 1.000] [0.784, 1.000]

[0.859, 1.000] [0.626, 1.000] [0.626, 1.000] [0.576, 0.918] [0.592, 1.000]
[0.626, 1.000] [0.784, 0.918] [0.755, 0.918] [0.576, 0.918] [0.673, 0.918]
[0.626, 1.000] [0.784, 1.000] [0.755, 1.000] [0.576, 0.918] [0.673, 1.000]
[0.576, 1.000] [0.576, 1.000] [0.576, 1.000] [0.918, 0.918] [0.576, 1.000]
[0.592, 1.000] [0.673, 1.000] [0.673, 1.000] [0.576, 0.918] [0.784, 1.000]

[1, 1] [0.626, 1.000] [0.626, 1.000] [0.576, 0.918] [0.626, 1.000]
[0.626, 1.000] [1, 1] [0.755, 1.000] [0.568, 0.918] [0.673, 0.918]
[0.626, 1.000] [0.755, 1.000] [1, 1] [0.576, 0.918] [0.673, 1.000]
[0.576, 0.918] [0.568, 0.918] [0.576, 0.918] [1, 1] [0.576, 0.918]
[0.626, 1.000] [0.673, 0.918] [0.673, 1.000] [0.576, 0.918] [1, 1]

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

R̃8 = R̃4 ◦ R̃4 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[1, 1] [0.626, 1.000] [0.626, 1.000] [0.576, 1.000] [0.626, 1.000]
[0.626, 1.000] [1, 1] [0.837, 1.000] [0.576, 1.000] [0.673, 1.000]
[0.626, 1.000] [0.837, 1.000] [1, 1] [0.576, 1.000] [0.673, 1.000]
[0.576, 1.000] [0.576, 1.000] [0.576, 1.000] [1, 1] [0.576, 1.000]
[0.626, 1.000] [0.673, 1.000] [0.673, 1.000] [0.576, 1.000] [1, 1]
[0.859, 1.000] [0.626, 1.000] [0.626, 1.000] [0.576, 1.000] [0.626, 1.000]
[0.626, 1.000] [0.784, 1.000] [0.784, 1.000] [0.576, 1.000] [0.673, 1.000]
[0.626, 1.000] [0.755, 1.000] [0.755, 1.000] [0.576, 1.000] [0.673, 1.000]
[0.576, 0.918] [0.576, 0.918] [0.576, 0.918] [0.918, 0.918] [0.576, 0.918]
[0.626, 1.000] [0.673, 1.000] [0.673, 1.000] [0.576, 1.000] [0.784, 1.000]

[0.859, 1.000] [0.626, 1.000] [0.626, 1.000] [0.576, 0.918] [0.626, 1.000]
[0.626, 1.000] [0.784, 1.000] [0.755, 1.000] [0.576, 0.918] [0.673, 1.000]
[0.626, 1.000] [0.784, 1.000] [0.755, 1.000] [0.576, 0.918] [0.673, 1.000]
[0.576, 1.000] [0.576, 1.000] [0.576, 1.000] [0.918, 0.918] [0.576, 1.000]
[0.626, 1.000] [0.673, 1.000] [0.673, 1.000] [0.576, 0.918] [0.784, 1.000]

[1, 1] [0.626, 1.000] [0.626, 1.000] [0.576, 0.918] [0.626, 1.000]
[0.626, 1.000] [1, 1] [0.755, 1.000] [0.576, 0.918] [0.673, 0.918]
[0.626, 1.000] [0.755, 1.000] [1, 1] [0.576, 0.918] [0.673, 1.000]
[0.576, 0.918] [0.576, 0.918] [0.576, 0.918] [1, 1] [0.576, 0.918]
[0.626, 1.000] [0.673, 0.918] [0.673, 1.000] [0.576, 0.918] [1, 1]

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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R̃16 = R̃8 ◦ R̃8 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[1, 1] [0.626, 1.000] [0.626, 1.000] [0.576, 1.000] [0.626, 1.000]
[0.626, 1.000] [1, 1] [0.837, 1.000] [0.576, 1.000] [0.673, 1.000]
[0.626, 1.000] [0.837, 1.000] [1, 1] [0.576, 1.000] [0.673, 1.000]
[0.576, 1.000] [0.576, 1.000] [0.576, 1.000] [1, 1] [0.576, 1.000]
[0.626, 1.000] [0.673, 1.000] [0.673, 1.000] [0.576, 1.000] [1, 1]
[0.859, 1.000] [0.626, 1.000] [0.626, 1.000] [0.576, 1.000] [0.626, 1.000]
[0.626, 1.000] [0.784, 1.000] [0.784, 1.000] [0.576, 1.000] [0.673, 1.000]
[0.626, 1.000] [0.755, 1.000] [0.755, 1.000] [0.576, 1.000] [0.673, 1.000]
[0.576, 0.918] [0.576, 0.918] [0.576, 0.918] [0.918, 0.918] [0.576, 0.918]
[0.626, 1.000] [0.673, 1.000] [0.673, 1.000] [0.576, 1.000] [0.784, 1.000]

[0.859, 1.000] [0.626, 1.000] [0.626, 1.000] [0.576, 0.918] [0.626, 1.000]
[0.626, 1.000] [0.784, 1.000] [0.755, 1.000] [0.576, 0.918] [0.673, 1.000]
[0.626, 1.000] [0.784, 1.000] [0.755, 1.000] [0.576, 0.918] [0.673, 1.000]
[0.576, 1.000] [0.576, 1.000] [0.576, 1.000] [0.918, 0.918] [0.576, 1.000]
[0.626, 1.000] [0.673, 1.000] [0.673, 1.000] [0.576, 0.918] [0.784, 1.000]

[1, 1] [0.626, 1.000] [0.626, 1.000] [0.576, 0.918] [0.626, 1.000]
[0.626, 1.000] [1, 1] [0.755, 1.000] [0.576, 0.918] [0.673, 0.918]
[0.626, 1.000] [0.755, 1.000] [1, 1] [0.576, 0.918] [0.673, 1.000]
[0.576, 0.918] [0.576, 0.918] [0.576, 0.918] [1, 1] [0.576, 0.918]
[0.626, 1.000] [0.673, 0.918] [0.673, 1.000] [0.576, 0.918] [1, 1]

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Thus, R̃16 = R̃8. Let R̃8 = R̃∗ = (r̃∗
ij)10×10, where r̃∗

ij = [μ∗
ij, 1 − v∗

ij], i, j =
1, 2, . . . , 10, then the λ-cutting matrix of R̃∗ can be constructed as R̃∗

λ = (λr̃∗
ij)10×10,

where

λr̃∗
ij =

⎧
⎪⎪⎨

⎪⎪⎩

0, if 1 − v∗
ij < λ,

1

2
, if μ∗

ij < λ ≤ 1 − v∗
ij,

1, if μ∗
ij ≥ λ.

i, j = 1, 2, . . . , 10, λ ∈ [0, 1] (2.102)

Considering that the confidence level λ is directly related to the lower and upper
limits of each r̃∗

ij in the interval-valued matrix R̃∗, we get, based on R̃∗
λ, all the possible

classifications of the ten new cars yi (i = 1, 2, . . . , 10):

(1) If 0 ≤ λ ≤ 0.576, then

{y1, y2, y3, y4, y5, y6, y7, y8, y9, y10}

(2) If 0.576 < λ ≤ 0.626, then

{y1, y2, y3, y5, y6, y7, y8, y10}, {y4, y9}

(3) If 0.626 < λ ≤ 0.673, then

{y1, y6}, {y2, y3, y5, y7, y8, y10}, {y4, y9}
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(4) If 0.673 < λ ≤ 0.755, then

{y1, y6}, {y2, y3, y7, y8}, {y4, y9}, {y5, y10}

(5) If 0.755 < λ ≤ 0.784, then

{y1, y6}, {y2, y3, y7}, {y8}, {y4, y9}, {y5, y10}

(6) If 0.784 < λ ≤ 0.837, then

{y1, y6}, {y2, y3}, {y5}, {y7}, {y8}, {y10}, {y4, y9}

(7) If 0.837 < λ ≤ 0.859, then

{y1, y6}, {y2}, {y3}, {y5}, {y7}, {y8}, {y10}, {y4, y9}

(8) If 0.859 < λ ≤ 0.918, then

{y1}, {y2}, {y3}, {y5}, {y6}, {y7}, {y8}, {y10}, {y4, y9}

(9) If 0.918 < λ ≤ 1, then

{y1}, {y2}, {y3}, {y4}, {y5}, {y6}, {y7}, {y8}, {y9}, {y10}

From the above numerical analysis, we know that Algorithm 2.1 only takes into
account the maximal and minimal deviation information, and ignores all the other
deviation information, more importantly, it cannot take into account any information
on attribute weights, and thus produces the loss of too much information, while
Algorithm 2.2 can not only avoid losing the given information, but also require less
computational effort and is more convenient in practical applications.

Now we further compare Algorithm 2.2 with Algorithm-FSC on the simulated
data set:

We first exploit Algorithm 2.2 on the simulated data set. In the experiment, we
set a series of λ values ranging from 0.6 to 1.0, and compute the values of the SI
measure for each clustering result. The results can be found in Table 2.4 (Xu et al.
2008):

Table 2.4 The results derived by Algorithm 2.2 with different λ levels on the simulated data set

λ 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
SI 0.437 0.437 0.437 0.437 0.437 0.437 0.437 0.437 0.995
K 3 3 3 3 3 3 3 3 900

Note: (1) K is the number of clusters found by Algorithm 2.2.
(2) Since C27 = C26

, we get the equivalent associate matrix C26
after six iterations.
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Table 2.5 The results derived by Algorithm-FSC with different λ levels on the modified data sets

Modified data set I

λ 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
SI 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.999
K 2 2 2 2 2 2 2 2 2
Modified data set II
λ 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
SI 0.474 0.474 0.474 0.474 0.474 0.474 0.474 0.474 0.999
K 2 2 2 2 2 2 2 2 2

As can be seen from Table 2.4, for most of the λ levels, Algorithm 2.2 produces
three clusters, and the smallest SI values are exactly the same as 0.437. In fact, if
we take a closer look at the assigned cluster label of each IFS, then we can find
that Algorithm 2.2 recognizes the cluster structure perfectly under these λ levels.
Clearly, by incorporating the uncertainty degree into the correlation computation
of IFSs, Algorithm 2.2 has the ability to identify all the three classes. However,
this is not the case for traditional clustering algorithms for fuzzy sets. To illustrate
this, we also exploit Algorithm-FSC on the simulated data set. As mentioned above,
Algorithm-FSC does not take into account the uncertain information. Therefore, to
make sure μ(x) + v(x) = 1 for any x in the simulated data set, we should modify
the data set by adding π(x) to either v(x) or μ(x). We produce the two modified data
sets and then exploit Algorithm-FSC on them. The results can be found in Table 2.5
(Xu et al. 2008).

As can be seen in Table 2.5, the clustering results of Algorithm-FSC on the two
modified data sets are poor, since it cannot identify all the three classes precisely.
This further justifies the importance of the uncertain information in IFSs.

In summary, by comparing the performance of Algorithm-IFSC with that of
Algorithm-FSC on the simulated data set, we know that (1) Algorithm-IFSC is capa-
ble to cluster large scale IFSs; and (2) the uncertain information captured by IFSs is
crucial for the success of some clustering tasks.

2.3 Intuitionistic Fuzzy Hierarchical Clustering Algorithms

Xu (2009) introduced an intuitionistic fuzzy hierarchical algorithm for clustering
IFSs, which is based on the traditional hierarchical clustering procedure, the intuition-
istic fuzzy aggregation operator, and the basic distance measures between IFSs. Then,
the algorithm was extended for clustering IVIFSs. The algorithm and its extended
form were applied to the classifications of building materials and enterprises respec-
tively. In this section, we shall give a detailed introduction to the intuitionistic fuzzy
hierarchical algorithms.
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We first introduce some basic operations and distance measures for IFSs and
IVIFSs:

Let X = {x1, x2, . . . , xn} be a discrete universe of discourse, Aj = {〈xi, μAj (xi),

vAj (xi)〉|xi ∈ X} (j = 1, 2, . . . , m) a collection of m IFSs. Then based on the opera-
tions of IFSs, Xu (2009) defined the average of m IFSs Aj (j = 1, 2, . . . , m) as:

f (A1, A2, . . . , Am) = 1

m
(A1 ⊕ A2 ⊕ · · · ⊕ Am) (2.103)

which can be further transformed into the following:

f (A1, A2, . . . , Am) =
⎧
⎨

⎩〈xi, 1 −
m∏

j = 1

(1 − μAj (xi))
1
m ,

m∏

j = 1

(vAj (xi))
1
m 〉|xi ∈ X

⎫
⎬

⎭
(2.104)

Xu (2009) defined the weighted Hamming distance, the normalized Hamming
distance, the weighted Euclidean distance, and the normalized Euclidean distance
for measuring IVIFSs:

Let Ãj = {〈xi, μ̃Ãj
(xi), ṽÃj

(xi)〉|xi ∈ X }(j = 1, 2) be two IVIFSs in X, where

μ̃Ãj
(xi) = [μ−

Ãj
(xi), μ

+
Ãj

(xi)] ⊂ [0, 1] and ṽÃj
(xi) = [v−

Ãj
(xi), v+

Ãj
(xi)] ⊂ [0, 1]

(j = 1, 2). Then

(1) The weighted Hamming distance:

dwH(Ã1, Ã2)

= 1

4

n∑

i = 1

wi(|μ−
Ã1

(xi) − μ−
Ã2

(xi)| + |μ+
Ã1

(xi) − μ+
Ã2

(xi)| + |v−
Ã1

(xi) − v−
Ã2

(xi)|

+ |v+
Ã1

(xi) − v+
Ã2

(xi)| + |π−
Ã1

(xi) − π−
Ã2

(xi)| + |π+
Ã1

(xi) − π+
Ã2

(xi)|) (2.105)

Especially, if w = (1/n, 1/n, . . . , 1/n)T , then Eq. (2.105) reduces to the normalized
Hamming distance:

dNH(Ã1, Ã2)

= 1

4n

n∑

i = 1

(|μ−
Ã1

(xi) − μ−
Ã2

(xi)| + |μ+
Ã1

(xi) − μ+
Ã2

(xi)| + |v−
Ã1

(xi) − v−
Ã2

(xi)|

+ |v+
Ã1

(xi) − v+
Ã2

(xi)| + |π−
Ã1

(xi) − π−
Ã2

(xi)| + |π+
Ã1

(xi) − π+
Ã2

(xi)|) (2.106)
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(2) The weighted Euclidean distance:

dwE(Ã1, Ã2)

=
(

1

4

n∑

i = 1

wi((μ
−
Ã1

(xi) − μ−
Ã2

(xi))
2 + (μ+

Ã1
(xi) − μ+

Ã2
(xi))

2 + (v−
Ã1

(xi) − v−
Ã2

(xi))
2

+ (v+
Ã1

(xi) − v+
Ã2

(xi))
2 + (π−

Ã1
(xi) − π−

Ã2
(xi))

2 + (π+
Ã1

(xi) − π+
Ã2

(xi))
2)

) 1
2

(2.107)

Especially, if w = (1/n, 1/n, . . . , 1/n)T , then Eq. (2.107) reduces to the normalized
Euclidean distance:

dNE(Ã1, Ã2)

=
(

1

4n

n∑

i = 1

((μ−
Ã1

(xi) − μ−
Ã2

(xi))
2 + (μ+

Ã1
(xi) − μ+

Ã2
(xi))

2 + (v−
Ã1

(xi) − v−
Ã2

(xi))
2

+ (v+
Ã1

(xi) − v+
Ã2

(xi))
2 + (π−

Ã1
(xi) − π−

Ã2
(xi))

2 + (π+
Ã1

(xi) − π+
Ã2

(xi))
2)

) 1
2

(2.108)

Moreover, let Ãj = {〈xi, μ̃Ãj
(xi), ṽÃj

(xi)〉|xi ∈ X }, where μ̃Ãj
(xi) = [μ−

Ãj
(xi),

μ+
Ãj

(xi)] ⊂ [0, 1] and ṽÃj
(xi) = [v−

Ãj
(xi), v+

Ãj
(xi)] ⊂ [0, 1] (j = 1, 2, . . . , m). Then,

based on the operations of IVIFSs, Xu (2009) defined the average of a collection of
m IVIFSs Ãj (j = 1, 2, . . . , m) as:

f (Ã1, Ã2, . . . , Ãm) = 1

m
(Ã1 ⊕ Ã2 ⊕ · · · ⊕ Ãm) (2.109)

which can be further transformed into the following:

f (Ã1, Ã2, . . . , Ãm)

=
⎧
⎨

⎩〈xi,

⎡

⎣1 −
m∏

j = 1

(1 − μ−
Ãj

(xi))
1
m , 1 −

m∏

j = 1

(1 − μ+
Ãj

(xi))
1
m

⎤

⎦ ,

⎡

⎣
m∏

j = 1

(v−
Ãj

(xi))
1
m ,

m∏

j = 1

(v+
Ãj

(xi))
1
m

⎤

⎦〉|xi ∈ X

⎫
⎬

⎭ (2.110)

The traditional hierarchical clustering algorithm (Anderberg 1972) is generally
used to cluster numerical information. However, in many fields including medical
informatics, information retrieval and bio-informatics, where the data information
sometimes may be imprecise or uncertain, and is suitable to be expressed in IFSs or
IVIFSs, the traditional hierarchical clustering algorithm fails in dealing with these
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situations. Based on the distance measures (2.105) and (2.106), and the intuitionistic
fuzzy aggregation operator (2.103), Xu (2009) extended the traditional hierarchical
clustering algorithm to the IFS theory:

Algorithm 2.4

Given a collection of m IFSs Aj (j = 1, 2, . . . , m), in the first stage each of
the m IFSs Aj (j = 1, 2, . . . , m) is considered as a unique cluster. The IFSs Aj

(j = 1, 2, . . . , m) are then compared among themselves by using the weighted
Hamming distance:

dwH(A1, A2)

= 1

2

n∑

i = 1

wi(|μAi(xi) − μAj (xi)| + |vAi(xi) − vAj (xi)| + |πAi(xi) − πAj (xi)|)
(2.111)

or the weighted Euclidean distance:

dwE(A1, A2)

=
(

1

2

n∑

i = 1

wi((μAi (xi) − μAj (xi))
2 + (vAi (xi) − vAj (xi))

2 + (πAi (xi) − πAj (xi))
2)

)1/2

(2.112)

The two clusters with smaller distance are jointed. The procedure is then repeated
time after time until the desirable number of clusters is achieved. Only two clusters
can be jointed in each stage and they cannot be separated after they are jointed. In
each stage the center of each cluster is recalculated by using the average (derived
from Eq. (2.103)) of the IFSs assigned to the cluster, and the distance between two
clusters is defined as the distance between the centers of each clusters.

If the collected data information is expressed as IVIFSs, then based on the distance
measures (2.105) and (2.107), and the interval-valued intuitionistic fuzzy aggregation
operator (2.110), Xu (2009) gave an interval-valued intuitionistic fuzzy hierarchical
algorithm for clustering IVIFSs:

Algorithm 2.5

Given a collection of m IVIFSs Ãj (j = 1, 2, . . . , m), in the first stage each of
the m IVIFSs Ãj (j = 1, 2, . . . , m) is considered as a unique cluster. The IVIFSs
Ãj(j = 1, 2, . . . , m) are then compared among themselves by using the weighted
Hamming distance (2.105) or the weighted Euclidean distance (2.107). The two
clusters with smaller distance are jointed. The procedure is then repeated time after
time until the desirable number of clusters is achieved. Only two clusters can be
jointed in each stage and they cannot be separated after they are jointed. In each
stage the center of each cluster is recalculated by using the average (derived by
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the interval-valued intuitionistic fuzzy aggregation operator (2.110)) of the IVIFSs
assigned to the cluster, and the distance between two clusters is defined as the distance
between the centers of each clusters.

Example 2.3 (Xu 2009) Given five building materials: sealant, floor varnish, wall
paint, carpet, and polyvinyl chloride flooring, which are represented by the IFSs
Aj (j = 1, 2, 3, 4, 5) in the feature space X = {x1, x2, . . . , x8}. w = (0.15, 0.10,

0.12, 0.15, 0.10, 0.13, 0.14, 0.11)T is the weight vector of xi (i = 1, 2, . . . , 8), and
the given data are listed as follows:

A1 ={〈x1, 0.20, 0.50〉, 〈x2, 0.10, 0.80〉, 〈x3, 0.50, 0.30〉, 〈x4, 0.90, 0.00〉,
〈x5, 0.40, 0.35〉, 〈x6, 0.10, 0.90〉, 〈x7, 0.30, 0.50〉, 〈x8, 1.00, 0.00〉}

A2 ={〈x1, 0.50, 0.40〉, 〈x2, 0.60, 0.15〉, 〈x3, 1.00, 0.00〉, 〈x4, 0.15, 0.65〉,
〈x5, 0.00, 0.80〉, 〈x6, 0.70, 0.15〉, 〈x7, 0.50, 0.30〉, 〈x8, 0.65, 0.20〉}

A3 ={〈x1, 0.45, 0.35〉, 〈x2, 0.60, 0.30〉, 〈x3, 0.90, 0.00〉, 〈x4, 0.10, 0.80〉,
〈x5, 0.20, 0.70〉, 〈x6, 0.60, 0.20〉, 〈x7, 0.15, 0.80〉, 〈x8, 0.20, 0.65〉}

A4 ={〈x1, 1.00, 0.00〉, 〈x2, 1.00, 0.00〉, 〈x3, 0.85, 0.10〉, 〈x4, 0.75, 0.15〉,
〈x5, 0.20, 0.80〉, 〈x6, 0.15, 0.85〉, 〈x7, 0.10, 0.70〉, 〈x8, 0.30, 0.70〉}

A5 ={〈x1, 0.90, 0.00〉, 〈x2, 0.90, 0.10〉, 〈x3, 0.80, 0.10〉, 〈x4, 0.70, 0.20〉,
〈x5, 0.50, 0.15〉, 〈x6, 0.30, 0.65〉, 〈x7, 0.15, 0.75〉, 〈x8, 0.40, 0.30〉}

Now we utilize Algorithm 2.3 to classify the building materials Aj

(j = 1, 2, 3, 4, 5):

Step 1 In the first stage, each of the IFSs Aj (j = 1, 2, 3, 4, 5) is considered as a
unique cluster:

{A1}, {A2}, {A3}, {A4}, {A5}

Step 2 Compare each IFS Ai with all the other four IFSs by using the weighted
Hamming distance (2.110):

dwH(A1, A2) = dwH(A2, A1) = 0.4915, dwH(A1, A3) = dwH(A3, A1) = 0.5115

dwH(A1, A4) = dwH(A4, A1) = 0.4310, dwH(A1, A5) = dwH(A5, A1) = 0.4045

dwH(A2, A3) = dwH(A3, A2) = 0.2170, dwH(A2, A4) = dwH(A4, A2) = 0.4515

dwH(A2, A5) = dwH(A5, A2) = 0.4545, dwH(A3, A4) = dwH(A4, A3) = 0.4480

dwH(A3, A5) = d7(A5, A3) = 0.3735, dwH(A4, A5) = dwH(A5, A4) = 0.1875

Since

dwH (A1, A5) = min{dwH (A1, A2), dwH (A1, A3), dwH (A1, A4), dwH (A1, A5)} = 0.4045

dwH (A2, A3) = min{dwH (A2, A1), dwH (A2, A3), dwH (A2, A4), dwH (A2, A5)} = 0.2170

dwH (A4, A5) = min{dwH (A4, A1), dwH (A4, A2), dwH (A4, A3), dwH (A4, A5)} = 0.1875
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and considering only two clusters can be jointed in each stage, the IFSs Aj

(j = 1, 2, 3, 4, 5) can be clustered into the following three clusters at the second
stage:

{A1}, {A2, A3}, {A4, A5}

Step 3 Calculate the center of each cluster by using Eq. (2.103):

c{A1} = A1

c{A2, A3} = f (A2, A3)

= {〈x1, 0.48, 0.37〉, 〈x2, 0.60, 0.21〉, 〈x3, 1.00, 0.00〉, 〈x4, 0.13, 0.72〉,
〈x5, 0.11, 0.75〉, 〈x6, 0.65, 0.17〉, 〈x7, 0.35, 0.49〉, 〈x8, 0.47, 0.36〉}

c{A4, A5} = f (A4, A5)

= {〈x1, 1.00, 0.00〉, 〈x2, 1.00, 0.00〉, 〈x3, 0.83, 0.10〉, 〈x4, 0.73, 0.17〉,
〈x5, 0.37, 0.35〉, 〈x6, 0.23, 0.74〉, 〈x7, 0.13, 0.72〉, 〈x8, 0.35, 0.46〉}

and then compare each cluster with all the other two clusters by using the weighted
Hamming distance (2.111):

dwH(c{A1}, c{A2, A3}) = dwH(c{A2, A3}, c{A1}) = 0.4921

dwH(c{A1}, c{A4, A5}) = dwH(c{A4, A5}, c{A1}) = 0.4007

dwH(c{A2, A3}, c{A4, A5}) = dwH(c{A4, A5}, c{A2, A3}) = 0.3879

Hence, the IFSs Aj (j = 1, 2, 3, 4, 5) can be clustered into the following two
clusters at the third stage:

{A1}, {A2, A3, A4, A5}

Finally, the above two clusters can be further clustered into a unique cluster:

{A1, A2, A3, A4, A5}

All the above processes can be shown as in Fig. 2.1 (Xu 2009).
In the process of clustering, the number of clusters can be determined according

to practical applications.

Example 2.4 (Xu 2009) Given four enterprises, represented by the IVIFSs Ãj

(j = 1, 2, 3, 4) in the attribute set X = {x1, x2, . . . , x6}, where (1) x1: The
ability of sale; (2) x2: The ability of management; (3) x3: The ability of pro-
duction; (4) x4: The ability of technology; (5) x5: The ability of financing; and
(6) x6: The ability of risk bearing (the weight vector of xi (i = 1, 2, . . . , 6) is
w = (0.25, 0.20, 0.15, 0.10, 0.15, 0.15)T . The given data are listed as follows:
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Fig. 2.1 Classification of the building materials Aj (j = 1, 2, 3, 4, 5)

Ã1 ={〈x1, [0.70, 0.75], [0.10, 0.15]〉, 〈x2, [0.00, 0.10], [0.80, 0.90]〉,
〈x3, [0.15, 0.20], [0.60, 0.65]〉, 〈x4, [0.50, 0.55], [0.30, 0.35]〉,
〈x5, [0.10, 0.15], [0.50, 0.60]〉, 〈x6, [0.70, 0.75], [0.10, 0.15]〉}

Ã2 ={〈x1, [0.40, 0.45], [0.30, 0.35]〉, 〈x2, [0.60, 0.65], [0.20, 0.30]〉,
〈x3, [0.80, 1.00], [0.00, 0.00]〉, 〈x4, [0.70, 0.90], [0.00, 0.10]〉,
〈x5, [0.70, 0.75], [0.10, 0.20]〉, 〈x6, [0.90, 1.00], [0.00, 0.00]〉}

Ã3 ={〈x1, [0.20, 0.30], [0.40, 0.45]〉, 〈x2, [0.80, 0.90], [0.00, 0.10]〉,
〈x3, [0.10, 0.20], [0.70, 0.80]〉, 〈x4, [0.15, 0.20], [0.70, 0.75]〉,
〈x5, [0.00, 0.10], [0.80, 0.90]〉, 〈x6, [0.60, 0.70], [0.20, 0.30]〉}

Ã4 ={〈x1, [0.60, 0.65], [0.30, 0.35]〉, 〈x2, [0.45, 0.50], [0.30, 0.40]〉,
〈x3, [0.20, 0.25], [0.65, 0.70]〉, 〈x4, [0.20, 0.30], [0.50, 0.60]〉,
〈x5, [0.00, 0.10], [0.75, 0.80]〉, 〈x6, [0.50, 0.60], [0.20, 0.25]〉}

Here we can use Algorithm 2.4 to classify the enterprises Ãj (j = 1, 2, 3, 4):

Step 1 In the first stage, each of the IVIFSs Ãj (j = 1, 2, 3, 4) is considered as a
unique cluster:

{Ã1}, {Ã2}, {Ã3}, {Ã4}

Step 2 Compare each IVIFS Ai with all the other three IVIFSs by using the
weighted Hamming distance (2.111):

dwH(Ã1, Ã2) = dwH(Ã2, Ã1) = 0.4600, dwH(Ã1, Ã3) = dwH(Ã3, Ã1) = 0.4012

dwH(Ã1, Ã4) = dwH(Ã4, Ã1) = 0.2525, dwH(Ã2, Ã3) = dwH(Ã3, Ã2) = 0.4237
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dwH(Ã2, Ã4) = dwH(Ã4, Ã2) = 0.4237, dwH(Ã3, Ã4) = dwH(Ã4, Ã3) = 0.2288

then the IVIFSs Ãj (j = 1, 2, 3, 4) can be clustered into the following three clusters
at the second stage:

{Ã1}, {Ã2}, {Ã3, Ã4}

Step 3 Calculate the center of each cluster by using Eq. (2.109):

c{Ã1} = A1, c{Ã2} = Ã2

c{Ã3, Ã4} = f (Ã3, Ã4)

= {〈x1, [0.43, 0.51], [0.35, 0.40]〉, 〈x2, [0.67, 0.78], [0.00, 0.20]〉,
〈x3, [0.15, 0.23], [0.67, 0.75]〉, 〈x4, [0.18, 0.25], [0.59, 0.67]〉,
〈x5, [0.00, 0.10], [0.77, 0.85]〉, 〈x6, [0.55, 0.65], [0.20, 0.27]〉}

and then compare each cluster with all the other two clusters by using the weighted
Hamming distance (2.111):

dwH(c{Ã1}, c{Ã2}) = dwH(c{Ã2}, c{Ã1}) = 0.4600

dwH(c{Ã1}, c{Ã3, Ã4}) = dwH(c{Ã3, Ã4}, c{Ã1}) = 0.3211

dwH(c{Ã2}, c{Ã3, Ã4}) = dwH(c{Ã3, Ã4}, c{Ã2}) = 0.3871

As a result, the IVIFSs Ãj (j = 1, 2, 3, 4) can be clustered into the following two
clusters at the third stage:

{Ã2}, {Ã1, Ã3, Ã4}

In the final stage, the above clusters can be further clustered into a unique cluster:

{Ã1, Ã2, Ã3, Ã4}

All the above processes can be shown as in Fig. 2.2 (Xu 2009).

2.4 Intuitionistic Fuzzy Orthogonal Clustering Algorithm

We first introduce some basic concepts:

Definition 2.16 (Bustince 2000) Let X and Y be two non-empty sets. Then

R = {〈(x, y), μR(x, y), vR(x, y)〉|x ∈ X, y ∈ Y} (2.113)

is called an intuitionistic fuzzy relation, where
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Fig. 2.2 Classification of the enterprises Ãj (j = 1, 2, 3, 4)

μR: X × Y → [0, 1], vR : X × Y → [0, 1] (2.114)

and
0 ≤ μR(x, y) + vR(x, y) ≤ 1, for any (x, y) ∈ X × Y (2.115)

Definition 2.17 (Bustince 2000) Let R be an intuitionistic fuzzy relation. If

(1) (Reflexivity). μR(x, x) = 1, vR(x, x) = 0, for any x ∈ X.
(2) (Symmetry). μR(x, y) = μR(y, x), vR(x, y) = vR(y, x), for any (x, y) ∈ X × Y ,

then R is called an intuitionistic fuzzy similarity relation.

Definition 2.18 (Xu et al. 2011) Let α = (α1, α2, . . . , αn) be a vector. If all αi =
(μαi , vαi) (i = 1, 2, . . . , n) are IFVs, then we call α an intuitionistic fuzzy vector,
and denote αT as the transpose of α, where αT is a n-dimensional column vector.

Definition 2.19 (Xu et al. 2011) Let α, β ∈ X1×n, where X1×n denotes the set of
intuitionistic fuzzy vectors. Then

α · β = (max{min{μαi , μβi }}, min{max{vαi , vβj }})
= (

n∨
i = 1

(μαi ∧ μβi),
n∧

i = 1
(vαi ∨ vβj )) (2.116)

is called the inner product of α and β, where ∨ and ∧ denote the max and min
operations respectively.

Definition 2.20 (Xu et al. 2011) Let α, β ∈ X1×n, if α · β = (0, 1) or (0, 0). Then
we call that α is orthogonal to β.
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Definition 2.21 (Xu et al. 2011) Let α, β ∈ X1×n. Then

α ◦ β = (min{max{μαi , μβi }}, max{min{vαi , vβj }})
= (

n∧
i = 1

(μαi ∨ μβi),
n∨

i = 1
(vαi ∧ vβj )) (2.117)

is called the outer product of α and β.

Theorem 2.11 (Xu et al. 2011) Let α, β ∈ X1×n. Then

(α · β)c = αc ◦ βc, (α ◦ β)c = αc · βc (2.118)

where αc = (αc
1, α

c
2, . . . , α

c
n) and βc = (βc

1, βc
2, . . . , βc

n), αc
i = (vαi , μαi) and

βc
i = (vβi , μβi), i = 1, 2, . . . , n.

Proof By Definitions 2.19 and 2.21, we have

(α · β)c = (
n∧

i = 1
(vαi ∨ vβj ),

n∨
i = 1

(μαi ∧ μβi)) = ac ◦ βc (2.119)

(α ◦ β)c = (
n∨

i = 1
(vαi ∧ vβj ),

n∧
i = 1

(μαi ∨ μβi)) = αc · βc (2.120)

Similarly, we can easily prove the following properties:

Theorem 2.12 (Xu et al. 2011) Let α, β ∈ X1×n. Then

α · β = β · α, α ◦ β = β ◦ α (2.121)

Theorem 2.13 (Xu et al. 2011) Let α, β, γ ∈ X1×n. Then

α · (β · γ ) = (α · β) · γ, α ◦ (β ◦ γ ) = (α ◦ β) ◦ γ (2.122)

Theorem 2.14 (Xu et al. 2011) Let α, β ∈ X1×n. Then α ·β and α ◦β are also IFVs.

Definition 2.22 (Xu et al. 2011) Let A and B be two IFSs on X. Then

A · B = {x, 〈∨
X
(μA(x) ∧ μB(x)),∧

X
(vA(x) ∨ vB(x))〉, x ∈ X} (2.123)

A ◦ B = {x, 〈∧
X
(μA(x) ∨ μB(x)),∨

X
(vA(x) ∧ vB(x))〉, x ∈ X} (2.124)

are called the inner and outer products of A and B respectively.

Definition 2.23 (Xu et al. 2011) Let A and B be two IFSs on X, R(A, B) is a binary
relation on X × X. If
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R(A, B) =
{

(1, 0), A = B,

(A · B) ∩ (A ◦ B)c, A 
= B,
(2.125)

then R(A, B) is called the closeness degree of A and B.

By Eq. (2.125), we have

Theorem 2.15 (Xu et al. 2011) The closeness degree R(A, B) of A and B is an
intuitionistic fuzzy similarity relation.

Proof (1) We first prove that R(A, B) is an IFV, since A and B are two IFSs on X,
we have

(a) If A = B, then R(A, B) = (1, 0);
(b) If A 
= B, then

0 ≤ μA(x), vA(x) ≤ 1, 0 ≤ μA(x) + vA(x) ≤ 1 (2.126)

0 ≤ μB(x), vB(x) ≤ 1, 0 ≤ μB(x) + vB(x) ≤ 1 (2.127)

(A ◦ B)c = {∨
X
(vA(x) ∧ vB(x)),∧

X
(μA(x) ∨ μB(x))} (2.128)

R(A, B) = (min{∧
X
(μA(x) ∨ μB(x)),∨

X
(vA(x) ∧ vB(x))},

min{∧
X
(vA(x) ∨ vB(x)),∧

X
(μA(x) ∨ μB(x))}) (2.129)

Thus, R(A, B) is an IFV.
(2) Since R(A, A) = (1, 0), then R is reflexive.
(3) Since R(A, B) = (A · B) ∧ (A ◦ B)c = (B · A) ∧ (B ◦ A)c = R(B, A), then R is

symmetrical. Thus, R(A, B) is an intuitionistic fuzzy similarity relation.

Definition 2.24 (Xu et al. 2011) Let R = (rij)n×n be an intuitionistic fuzzy similarity
matrix, where rij = (μij, vij), i, j = 1, 2, . . . , n. Then (λ,δ)R = ((λ,δ)rij)n×n =
(λμij, δvij)n×n is called a (λ, δ)-cutting matrix of R, where (λ, δ) is the confidence
level, 0 ≤ λ, δ ≤ 1, 0 ≤ λ + δ ≤ 1, and

(λ,δ)rij = (λμij, δvij) =
{

(1,0), if μij ≥ λ, vij ≤ δ,

(0,1), if μij < λ, vij > δ.
(2.130)

Theorem 2.16 (Xu et al. 2011) R = (rij)n×n is an intuitionistic fuzzy similarity
matrix if and only if its (λ, δ)-cutting matrix (λ,δ)R = ((λ,δ)rij)n×n is an intuitionistic
fuzzy similarity matrix.

Proof (Necessity) If R = (rij)n×n is an intuitionistic fuzzy similarity matrix, then

(1) (Reflexivity) Since rii = (1,0), 0 ≤ λ, δ ≤ 1, 0 ≤ λ + δ ≤ 1, then
(λ,δ)rij = (1,0).
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(2) (Symmetry) Since rij = rji, i.e., μij = μji, vij = vji, from Eq. (2.130), it
follows that (λ,δ)rij = (λ,δ)rji.

(Sufficiency) If (λ,δ)R = ((λ,δ)rij)n×n is an intuitionistic fuzzy similarity matrix,
then

(1) (Reflexivity) Since (λ,δ)rii = (1, 0), for any 0 ≤ λ, δ ≤ 1, 0 ≤ λ + δ ≤ 1,
μii ≥ λ, vii ≤ δ, we have μii = 1, vii = 0, i.e., rii = (1, 0).

(2) (Symmetry) If there exists rij 
= rji, i.e., μij 
= μji or vij 
= vji, in this case,
without loss of generality, suppose that μij < μji, and let λ = (μij + μji)/2. Then
μij < λ < μji, λμij = 0, λμji = 1, and thus, (λ,δ)rij 
= (λ,δ)rji, which contradicts the
condition that (λ,δ)rij = (λ,δ)rji, for any i, j. Therefore, R = (rij)n×n is symmetrical.

In what follows, we introduce the orthogonal principle of intuitionistic fuzzy
cluster analysis:

Let Y = {y1, y2, . . . , yn} be a collection of n objects, and G = {G1, G2, . . . , Gm}
the set of attributes related to the considered objects. Assume that the characteristics
of the objects yi(i = 1, 2, . . . , n) with respect to the attributes Gj (j = 1, 2, . . . , m)

are represented by the IFSs, shown as follows:

yi = {〈Gj, μyi(Gj), vyi(Gj)〉|Gj ∈ G
}
, i = 1, 2, . . . , n; j = 1, 2, . . . , m (2.131)

where μyi(Gj) denotes the degree that the object yi should satisfy the attribute Gj,
vyi(Gj) indicates the degree that the object yi should not satisfy the attribute Gj,
πyi(Gj) = 1 − μyi(Gj) − vyi(Gj) indicates the indeterminacy degree of the object
yi to the attribute Gj. By Eqs. (2.125) and (2.131), we construct the intuitionistic
fuzzy similarity matrix R = (rij)n×n, where rij is an IFV, and rij = (uij, vij) =
R(yi, yj), i = 1, 2, . . . , n; j = 1, 2, . . . , m. After that, the (λ, δ)-cutting matrix
(λ,δ)R = ((λ,δ)rij)n×n can be determined under the confidence level (λ, δ). If we

denote (λ,δ)
⇀
rj = ((λ,δ)r1j, (λ,δ)r2j, . . . , (λ,δ)rnj)

T as the vector of the jth column of

(λ,δ)R, then (λ,δ)R = ((λ,δ)
⇀
r1, (λ,δ)

⇀
r2, . . . , (λ,δ)

⇀
rn).

The orthogonal principle of intuitionistic fuzzy cluster analysis is to determine the

orthogonality of the column vectors of (λ, δ)-cutting matrix (λ,δ)R. Let (λ,δ)
⇀
rk, (λ,δ)

⇀
rt

and (λ,δ)
⇀
rj (k, t, j = 1, 2, . . . , n) denote the kth, tth and jth column vectors of (λ,δ)R

respectively. Then the orthogonal principles for clustering intuitionistic fuzzy infor-
mation can be classified into the following three categories:

(1) (Direct clustering principle) If

(λ,δ)
⇀
rk · (λ,δ)

⇀
rj =

{
(1, 1);
(1, 0),

(2.132)

then (λ,δ)
⇀
rk and (λ,δ)

⇀
rj are non-orthogonal. In this case, yk and yj are clustered into

one class.
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(2) (Indirect clustering principle) If (λ,δ)
⇀
rk and (λ,δ)

⇀
rj are non-orthogonal, (λ,δ)

⇀
rt

and (λ,δ)
⇀
rj are non-orthogonal, then (λ,δ)

⇀
rk and (λ,δ)

⇀
rj are non-orthogonal. In this

case, yk and yj are clustered into one class.
(3) (Heterogeneous principle) If

(λ,δ)
⇀
rk · (λ,δ)

⇀
rj =

{
(0, 1);
(0, 0),

(2.133)

then (λ,δ)
⇀
rk is orthogonal to (λ,δ)

⇀
rj. In this case, yk and yj do not belong to one class.

Theorem 2.17 (Xu et al. 2011) (Dynamic clustering theorem) If the objects yk and
yj are clustered into one class by the orthogonal principle under the confidence level
(λ1, δ1), then when λ2 < λ1, δ2 > δ1, yk and yj are still clustered into one class
under the confidence level (λ2, δ2).

Proof Since the objects yk and yj are clustered into one class by the orthogonal

principle under the confidence level (λ1, δ1), then two column vectors (λ1,δ1)
⇀
rk and

(λ1,δ1)
⇀
rj of (λ1, δ1)-cutting matrix (λ,δ)R are non-orthogonal, i.e., the inner product

of (λ1,δ1)
⇀
rk and (λ1,δ1)

⇀
rj is equal to (1, 0) or (1, 1). Suppose that in the ith line, there

exist μik > λ1 and μij > λ1. Then λ1μik = 1 and λ1μij = 1, and if λ2 < λ1, δ2 >

δ1, μik > λ2 and μij > λ2, then λ2μik = 1 and λ2μij = 1 under the confidence level

(λ2, δ2). Thus, two column vectors (λ2,δ2)
⇀
rk and (λ2,δ2)

⇀
rj are also non-orthogonal,

i.e., yk and yj are clustered into one class.

Based on the orthogonal principle, Xu et al. (2011) presented an orthogonal algo-
rithm for clustering intuitionistic fuzzy information:

Algorithm 2.6

Step 1 Let Y = {y1, y2, . . . , yn} and G = {G1, G2, . . . , Gm} be defined as in
Sect. 2.1, and assume that the characteristics of the objects yi (i = 1, 2, . . . , n) with
respect to the attributes Gj(j = 1, 2, . . . , m) are represented as in Eq. (2.131).

Step 2 Construct the intuitionistic fuzzy similarity matrix R = (rij)n×n by using
Eqs. (2.125) and (2.131), where rij is an IFV, and rij = (uij, vij) = R(yi, yj),
i = 1, 2, . . . , n; j = 1, 2, . . . , m.

Step 3 Determine the (λ, δ)-cutting matrix (λ,δ)R = ((λ,δ)rij)n×n of R = (rij)n×n

by using Eq. (2.130) under the confidence level (λ, δ).
Step 4 Calculate the inner products of the column vectors of the (λ, δ)-cutting

matrix (λ,δ)R, and then check whether each pair of the column vectors are orthogonal
or not.

Step 5 Cluster the objects yi(i = 1, 2, . . . , n) by the orthogonal principles.

Example 2.5 (Xu et al. 2011) In the supply chain management, supplier strategies
are to formulate the different levels of strategies considering the relationships among
the suppliers. From the procurement point of view, the supplier classification is to
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Table 2.6 The characteristics of the suppliers

G1 G2 G3 G4 G5 G6

y1 (0.61,0.32) (0.24,0.53) (0.14,0.76) (0.77,0.18) (0.36,0.62) (0.54,0.42)
y2 (0.18,0.65) (0.81,0.17) (0.12,0.84) (0.62,0.24) (0.21,0.68) (0.43,0.37)
y3 (0.62,0.11) (0.26,0.62) (0.33,0.25) (0.91,0.08) (0.22,0.75) (0.12,0.86)
y4 (0.45,0.35) (0.62,0.24) (0.74,0.15) (0.41,0.52) (0.18,0.81) (0.32,0.65)
y5 (0.13,0.76) (0.26,0.75) (0.24,0.68) (0.81,0.12) (0.74,0.13) (0.55,0.36)
y6 (0.32,0.45) (0.45,0.25) (0.73,0.24) (0.62,0.36) (0.12,0.82) (0.22,0.75)
y7 (0.55,0.35) (0.24,0.75) (0.03,0.84) (0.39,0.61) (0.49,0.28) (0.85,0.14)
y8 (0.65,0.25) (0.38,0.45) (0.92,0.06) (0.24,0.57) (0.82,0.17) (0.04,0.92)

divide the suppliers into several groups in the supply markets, which is based on a
variety of different factors. It aims at implementing the different supplier strategies
according to the different types of suppliers.

A purchasing company wants to classify its eight suppliers yi (i = 1, 2, . . . , 8),
The six factors which are considered here in assessing the suppliers are: (1) G1:
Prices; (2) G2: Product quality; (3) G3: The degree of market impacting; (4) G4:
After-sales service; (5) G5: Current assets efficiency; and (6) G6: Deliveries. Assume
that the characteristics of the suppliers yi (i = 1, 2, . . . , 8) with respect to the factors
Gj (j = 1, 2, . . . , 6) are represented by the IFSs, shown as in Table 2.6 (Xu et al.
2011).

In what follows, we utilize the intuitionistic fuzzy orthogonal clustering algorithm
to classify the eight suppliers, which involves the following steps (Xu et al. 2011):

Step 1 By Eqs. (2.125) and (2.131), we first calculate y1 · y2 = (0.62, 0.24), (y1 ◦
y2)

c = (0.75, 0.14), R(y1, y2) = (0.62, 0.24), and then calculate the others in a
similar way. Consequently, we get the intuitionistic fuzzy similarity matrix:

R =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(1,0) (0.62,0.24) (0.62,0.26) (0.45,0.36) (0.68,0.24) (0.62,0.36) (0.55,0.35) (0.45,0.38)

(0.62,0.24) (1,0) (0.62,0.24) (0.62,0.24) (0.62,0.24) (0.62,0.25) (0.43,0.37) (0.37,0.45)

(0.62,0.26) (0.62,0.24) (1,0) (0.45,0.25) (0.62,0.26) (0.62,0.25) (0.55,0.35) (0.62,0.25)

(0.45,0.36) (0.62,0.24) (0.45,0.25) (1,0) (0.36,0.52) (0.73,0.24) (0.45,0.41) (0.65,0.32)

(0.68,0.24) (0.62,0.24) (0.62,0.26) (0.36,0.52) (1,0) (0.45,0.36) (0.55,0.28) (0.45,0.38)

(0.62,0.36) (0.62,0.25) (0.62,0.25) (0.73,0.24) (0.45,0.36) (1,0) (0.39,0.45) (0.73,0.24)

(0.55,0.35) (0.43,0.37) (0.55,0.35) (0.45,0.41) (0.55,0.28) (0.39,0.45) (1,0) (0.55,0.38)

(0.45,0.38) (0.37,0.45) (0.62,0.25) (0.65,0.32) (0.45,0.38) (0.73,0.24) (0.55,0.38) (1,0)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Step 2 Take the different values of the confidence level (λ, δ) from the elements
of R, and determine the (λ, δ)-cutting matrix (λ,δ)R = ((λ,δ)rij)8×8 of R by using
Eq. (2.130) under the different values of the confidence level (λ, δ).

Then we classify the suppliers yi (i = 1, 2, . . . , 8) by the orthogonal principles.
Concretely, we have



206 2 Intuitionistic Fuzzy Clustering Algorithms

(1) If (λ, δ) = (1, 0), then each pair of the column vectors of the (1, 0)-cutting
matrix (1,0)R are orthogonal. Thus the suppliers yi (i = 1, 2, . . . , 8) are clustered
into eight classes: {y1} , {y2} , {y3} , {y4} , {y5} , {y6} , {y7} , {y8}.

(2) If (λ, δ) = (0.73, 0.24), then we get the (0.73, 0.24)-cutting matrix:

(0.73,0.24)R =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(1,0) (0,0) (0,1) (0,1) (0,0) (0,1) (0,1) (0,1)

(0,0) (1,0) (0,0) (0,0) (0,0) (0,1) (0,1) (0,1)

(0,1) (0,0) (1,0) (0,1) (0,1) (0,1) (0,1) (0,1)

(0,1) (0,0) (0,1) (1,0) (0,1) (1,0) (0,1) (0,1)

(0,0) (0,0) (0,1) (0,1) (1,0) (0,1) (0,1) (0,1)

(0,1) (0,1) (0,1) (1,0) (0,1) (1,0) (0,1) (1,0)

(0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (1,0) (0,1)

(0,1) (0,1) (0,1) (0,1) (0,1) (1.0) (0,1) (1,0)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Calculating the inner products of all pairs of the column vectors of (0.73,0.24)R,

we know that (0.73,0.24)
⇀
r1, (0.73,0.24)

⇀
r2, (0.73,0.24)

⇀
r3, (0.73,0.24)

⇀
r5 and (0.73,0.24)

⇀
r7

are orthogonal to each other column of (0.65,0.32)R; (0.73,0.24)
⇀
r4, (0.73,0.24)

⇀
r6 and

(0.73,0.24)
⇀
r8 are non-orthogonal. Then the suppliers yi (i = 1, 2, . . . , 8) are clus-

tered into six classes: {y1} , {y2} , {y3} , {y5} , {y7} , {y4, y6, y8}.
(3) If (λ, δ) = (0.68, 0.24), then we get the (0.68, 0.24)-cutting matrix:

(0.68,0.24)R =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(1,0) (0,0) (0,1) (0,1) (1,0) (0,1) (0,1) (0,1)

(0,0) (1,0) (0,0) (0,0) (0,0) (0,1) (0,1) (0,1)

(0,1) (0,0) (1,0) (0,1) (0,1) (0,1) (0,1) (0,1)

(0,1) (0,0) (0,1) (1,0) (0,1) (1,0) (0,1) (0,1)

(1,0) (0,0) (0,1) (0,1) (1,0) (0,1) (0,1) (0,1)

(0,1) (0,0) (0,1) (1,0) (0,1) (1,0) (0,1) (1.0)

(0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (1,0) (0,1)

(0,1) (0,1) (0,1) (0,1) (0,1) (1,0) (0,1) (1,0)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Calculating the inner products of all pairs of the column vectors of (0.68,0.24)R,

we can see that (0.68,0.24)
⇀
r1 is non-orthogonal to both (0.68,0.24)

⇀
r3 and (0.68,0.24)

⇀
r5;

(0.68,0.24)
⇀
r4 is non-orthogonal to both (0.68,0.24)

⇀
r6 and (0.68,0.24)

⇀
r8; (0.68,0.24)

⇀
r3,

(0.68,0.24)
⇀
r2 and (0.68,0.24)

⇀
r7 are orthogonal to each other column of (0.68,0.24)R. Then

the suppliers yi (i = 1, 2, . . . , 8) are clustered into four classes:

{y1, y5} , {y2} , {y3} , {y7} , {y4, y6, y8}

For the case where (λ, δ) = (0.65, 0.32), we can also get the above clustering
result.
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(4) If (λ, δ) = (0.62, 0.36), then we get the (0.62, 0.36)-cutting matrix:

(0.62,0.36)R =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(1,0) (1,0) (1,1) (0,1) (1,0) (1,1) (0,1) (0,1)

(1,0) (1,0) (1,0) (1,0) (1,0) (1,1) (0,1) (0,1)

(1,0) (1,0) (1,0) (0,1) (1,1) (1,1) (0,1) (1,1)

(0,1) (1,0) (0,1) (1,0) (0,1) (1,0) (0,1) (1,1)

(1,0) (1,0) (1,1) (0,1) (1,0) (0,1) (0,1) (0,1)

(1,1) (1,1) (1,1) (1,0) (0,1) (1,0) (0,1) (1,0)

(0,1) (0,1) (0,0) (0,1) (0,1) (0,1) (1,0) (0,1)

(0,1) (0,1) (1,1) (1,0) (0,1) (1,0) (0,1) (1,0)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Since (0.62,0.36)
⇀
r1 is non-orthogonal to (0.62,0.36)

⇀
r2, (0.62,0.36)

⇀
r3, (0.62,0.36)

⇀
r4,

(0.62,0.36)
⇀
r5, (0.62,0.36)

⇀
r6, (0.62,0.36)

⇀
r8, and (0.62,0.36)

⇀
r1 is orthogonal to (0.62,0.36)

⇀
r7,

then the suppliers yi (i = 1, 2, . . . , 8) are clustered into two classes: {y1, y2, y3, y4,

y5, y6, y8}, {y7}.
For the cases where (λ, δ) = (0.62, 0.26), (0.62, 0.24), we can get the same

clustering result as above.
(5) If (λ, δ) = (0.55, 0.38), then we get the (0.55, 0.38)-cutting matrix:

(0.55,0.38)R =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(1,0) (1,0) (1,0) (0,0) (1,0) (1,0) (1,0) (0,0)

(1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (0,0) (0,1)

(1,0) (1,0) (1,0) (0,0) (1,0) (1,0) (1,0) (1,0)

(0,0) (1,0) (0,0) (1,0) (0,1) (1,0) (0,1) (1,0)

(1,0) (1,0) (1,0) (0,1) (1,0) (0,0) (1,0) (0,0)

(1,0) (1,0) (1,0) (1,0) (0,0) (1,0) (0,1) (1,0)

(1,0) (0,0) (1,0) (0,1) (1,0) (0,1) (1,0) (1,0)

(0,0) (0,1) (1,0) (1,0) (0,0) (1,0) (1,0) (1,0)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Since the inner products of all pairs of the column vectors of (0.55,0.38)R are (1, 0),
i.e., all pairs of the column vectors of (0.55,0.38)R are non-orthogonal, the suppliers
yi (i = 1, 2, . . . , 8) are clustered into one class: {y1, y2, y3, y4, y5, y6, y7, y8}.

In the other cases where (λ, δ)=(0.55, 0.35), (0.55,0.28), (0.45,0.41), (0.45,0.38),
(0.45,0.36), (0.43,0.37), (0.39,0.45), (0.37,0.45) or (0.36,0.52) or (0.36,0.52), all the
suppliers yi (i = 1, 2, . . . , 8) are also clustered into one class.

If we use the transitive closure clustering algorithm (Algorithm 2.1) to classify
the suppliers, then we first derive the intuitionistic fuzzy equivalence matrix R∗ after
the finite times of compositions of R:

R∗ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(1,0) (0.62,0.24) (0.62,0.24) (0.62,0.24) (0.68,0.24) (0.62,0.24) (0.55,0.28) (0.62,0.24)

(1,0) (0.62,0,24) (0.62,0.24) (0.62,0.24) (0.62,0.24) (0.55,0.28) (0.62,0.24)

(1,0) (0.62,0.24) (0.62,0.24) (0.62,0.24) (0.55,0.28) (0.62,0.24)

(1,0) (0.62,0.24) (0.73,0.24) (0.55,0.28) (0.73,0.24)

(1,0) (0.62,0.24) (0.55,0.28) (0.62,0.24)

(1,0) (0.55,0.28) (0.73,0.24)

(1,0) (0.55,0.28)

(1,0)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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and then take the different values of the confidence level λ from the elements of R∗,
by which we classify the suppliers yi (i = 1, 2, . . . , 8). Concretely, we have

(1) If 0.73 < λ ≤ 1, then the suppliers yi(i = 1, 2, . . . , 8) are clustered into
eight classes:

{y1} , {y2} , {y3} , {y4} , {y5} , {y6} , {y7} , {y8}

(2) If 0.68 < λ ≤ 0.73, then the suppliers yi (i = 1, 2, . . . , 8) are clustered into
six classes:

{y1} , {y2} , {y3} , {y5} , {y7} , {y4, y6, y8}

(3) If 0.62 < λ ≤ 0.68, then the suppliers yi(i = 1, 2, . . . , 8) are clustered into
four classes:

{y1, y5} , {y2} , {y3} , {y7} , {y4, y6, y8}

(4) If 0.55 < λ ≤ 0.62, then the suppliers yi(i = 1, 2, . . . , 8) are clustered into
two classes:

{y1, y2, y3, y4, y5, y6, y8} , {y7}

(5) If 0 ≤ λ ≤ 0.55, then the suppliers yi(i = 1, 2, . . . , 8) are of the same class:

{y1, y2, y3, y4, y5, y6, y7, y8}

From the above numerical analysis, we can see that the intuitionistic fuzzy orthog-
onal clustering algorithm and the transitive closure clustering algorithm derive the
same clustering results under the different confidence levels. Since the intuitionistic
fuzzy similarity matrix generally does not has the transitivity property, and thus, the
transitive closure clustering algorithm needs to derive the intuitionistic fuzzy equiva-
lence matrix after the finite times of compositions of the intuitionistic fuzzy similarity
matrix, and then get the λ-cutting matrix under the confidence level λ, by which the
considered objects are clustered. However, the composition process of the transitive
closure clustering algorithm is somewhat cumbersome, and is not easy to calculate;
while the intuitionistic fuzzy orthogonal clustering algorithm only needs to derive
the (λ, δ)-cutting matrix of the intuitionistic fuzzy similarity matrix according to the
confidence level (λ, δ), and then directly clusters the considered objects by judging
the orthogonality of the column vectors of the cutting matrix. The intuitionistic fuzzy
orthogonal clustering algorithm does not need to take time to derive the intuitionistic
fuzzy equivalence matrix, and is very easy to be implemented on a computer, and
thus, it is more straightforward and convenient than the transitive closure clustering
algorithm in practical applications.
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2.5 Intuitionistic Fuzzy C-Means Clustering Algorithms

The algorithms presented previously are straightforward, but cannot provide the
information about membership degrees of the objects to each cluster. To overcome
this drawback, Xu and Wu (2010) developed an intuitionistic fuzzy C-means algo-
rithm to cluster IFSs, which is based on the well-known fuzzy C-means clustering
method (Bezdek 1981) and the basic distance measures between IFSs. Then, they
extended the algorithm for clustering IVIFSs.

Here, we first introduce the intuitionistic fuzzy C-means (IFCM) algorithm for
IFSs. We take the normalized Euclidean distance between the IFSs Zi and Zj:

dNE(Zi, Zj)

=
√√√√ 1

2n

n∑

j = 1

((μZi (xj) − μZj (xj))
2 + (vZi (xj) − vZj (xj))

2 + (πZi (xj) − πZj (xj))
2

(2.134)

as the proximity function of the IFCM algorithm. Then the objective function of the
IFCM algorithm can be formulated as follows:

min Jm(U, V) =
p∑

j = 1

c∑

i = 1

um
ij d2

NE(Aj, Vi) (2.135)

Subject to

c∑

i = 1

uij = 1, 1 ≤ j ≤ p

uij ≥ 0, 1 ≤ i ≤ c, 1 ≤ j ≤ p
p∑

j = 1

uij > 0, 1 ≤ i ≤ c

where A = {A1, A2, . . . , Ap} are p IFSs each with n elements, c is the number of
clusters (1 ≤ c ≤ p), and V = {V1, V2, . . . , Vc} are the prototypical IFSs, i.e., the
centroids, of the clusters. The parameter m is the fuzzy factor (m > 1), uij is the
membership degree of the jth sample Aj to the ith cluster, U = (uij)c×p is a matrix
of c × p.

To solve the optimization problem in Eq. (2.135), we employ the Lagrange mul-
tiplier method (Ito and Kunisch 2008). Let

L =
p∑

j = 1

c∑

i = 1

um
ij d2

NE(Aj, Vi) −
p∑

j = 1

ςj(

c∑

i = 1

uij − 1) (2.136)
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where

d2
NE(Aj, Vi)

= 1

2n

n∑

l=1

((μAj (xl) − μVi(xl))
2 + (vAj (xl) − vVi(xl))

2 + (πAj (xl) − πVi(xl))
2)

(2.137)

Furthermore, let ⎧
⎪⎪⎨

⎪⎪⎩

∂L

∂uij
= 0, 1 ≤ i ≤ c, 1 ≤ j ≤ p

∂L

∂ςj
= 0, 1 ≤ j ≤ p

we have

uij = 1

∑c
r=1

(
dNE(Aj,Vi)

dNE(Aj,Vr)

) 2
m−1

, 1 ≤ i ≤ c, 1 ≤ j ≤ p (2.138)

Next we compute V , the prototypical IFSs. Let

∂L

∂μVi(xl)
= ∂L

∂vVi(xl)
= ∂L

∂πVi(xl)
= 0, 1 ≤ i ≤ c, 1 ≤ l ≤ n

We get

μVi(xl) =
∑p

j = 1 um
ij μAj (xl)

∑p
j = 1 um

ij

, 1 ≤ i ≤ c, 1 ≤ l ≤ n (2.139)

vVi(xl) =
∑p

j = 1 um
ij vAj (xl)

∑p
j = 1 um

ij

, 1 ≤ i ≤ c, 1 ≤ l ≤ n (2.140)

πVi(xl) =
∑p

j = 1 um
ij πAj (xl)

∑p
j = 1 um

ij

, 1 ≤ i ≤ c, 1 ≤ l ≤ n (2.141)

For simplicity, we define a weighted average operator for IFSs as follows: Let
w = (w1, w2, . . . , wp)

T be a set of weights for the IFSs Aj (j = 1, 2, . . . , p),
respectively, with wj ∈ [0, 1], j = 1, 2, . . . , n, and

∑p
j = 1 wj = 1. Then the weighted

average operator f is defined as:

f (A, w) =
⎧
⎨

⎩ 〈xl,

p∑

j = 1

wjμAj (xl),

p∑

j = 1

wjvAj (xl)〉
∣∣∣∣∣∣
1 ≤ l ≤ n

⎫
⎬

⎭ (2.142)
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According to Eqs. (2.139)–(2.142), if we let

w(i) =
{

ui1∑p
j = 1 uij

,
ui2∑p

j = 1 uij
, . . . ,

uip∑p
j = 1 uij

}
, 1 ≤ i ≤ c (2.143)

then the prototypical IFSs V = {V1, V2, . . . , Vc} of the IFCM algorithm can be
computed as:

Vi = f (A, w(i))

=
⎧
⎨

⎩

〈
xs,

p∑

j = 1

w(i)
j μAj (xs),

p∑

j = 1

w(i)
j vAj (xs)

〉∣∣∣∣∣∣
1 ≤ s ≤ n

⎫
⎬

⎭ , 1 ≤ i ≤ c (2.144)

Since Eqs. (2.138) and (2.144) are computationally interdependent, we exploit an
iterative procedure similar to the fuzzy C-means to solve these equations. The steps
are as follows:

Algorithm 2.7 (IFCM algorithm)

Step 1 Initialize the seed V(0), let k = 0, and set ε > 0.
Step 2 Calculate U(k) = (uij(k))c×p, where

(1) If for all j, r, d1(Aj, Vr(k)) > 0, then

uij(k) = 1

∑c
r=1

(
dNE(Aj,Vi(k))

dNE(Aj,Vr(k))

) 2
m−1

, 1 ≤ i ≤ c, 1 ≤ j ≤ p (2.145)

(2) If there exist j and r such that dNE(Aj, Vr(k)) = 0, then let urj(k) = 1
and uij(k) = 0, for all i 
= r.

Step 3 Calculate V(k + 1) = {V1(k + 1), V2(k + 1), . . . , Vc(k + 1)}, where

Vi(k + 1) = f (A, w(i)(k + 1)), 1 ≤ i ≤ c (2.146)

where

w(i)(k + 1) =
{

ui1(k)
∑p

j = 1 uij(k)
,

ui2(k)
∑p

j = 1 uij(k)
, . . . ,

uip(k)
∑p

j = 1 uij(k)

}
, 1 ≤ i ≤ c

(2.147)
Step 4 If

∑c
i = 1

d1(Vi(k),Vi(k+1))
c < ε, then end the algorithm; otherwise, let k :=

k + 1, and return to Step 2.

For cases where the collected data are expressed as IVIFSs, Xu and Wu (2010)
extended Algorithm 2.7 to the interval-valued intuitionistic fuzzy C-means (IIFCM)
algorithm. We take the basic distance measure (2.134) as the proximity function of
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the IIFCM algorithm, then the objective function of the IIFCM algorithm can be
formulated as follows:

min Jm(U, Ṽ) =
p∑

j = 1

c∑

i = 1

um
ij d2

NE(Ãj, Ṽi) (2.148)

Subject to

c∑

i = 1

uij = 1, 1 ≤ j ≤ p

uij ≥ 0, 1 ≤ i ≤ c, 1 ≤ j ≤ p
p∑

j = 1

uij > 0, 1 ≤ i ≤ c

where Ãj (j = 1, 2, . . . , p) are p IVIFSs each with n elements, c is the number of
clusters (1 < c < p), and Ṽi (i = 1, 2, . . . , c) are the prototypical IVIFSs of the
clusters. The parameter m is the fuzzy factor (m > 1), uij is the membership degree
of the jth sample Ãj to the ith cluster, U = (uij)c×p is a matrix of c × p.

To solve the optimization problem in Eq. (2.148), we also employ the Lagrange
multiplier method. Let

L =
p∑

j = 1

c∑

i = 1

um
ij d2

wE(Ãj, Ṽi) −
p∑

j = 1

ςj(

c∑

i = 1

uij − 1) (2.149)

where

d2
wE(Ãj, Ṽi)

= 1

4

n∑

l=1

wl

(
((μ−

Ãj
(xl)) − μ−

Ṽi
(xl))

2 + (μ+
Ãj

(xl) − μ+
Ṽi

(xl))
2 + (v−

Ãj
(xl) − v−

Ṽi
(xl))

2

+ (v+
Ãj

(xl) − v+
Ṽi

(xl))
2 + (π−

Ãj
(xl) − π−

Ṽi
(xl))

2 + (π+
Ãj

(xl) − π+
Ṽi

(xl))
2
)

(2.150)

Similar to Algorithm 2.7, we can establish the system of partial differential func-
tions of L as follows:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂L

∂uij
= 0, 1 ≤ i ≤ c, 1 ≤ j ≤ p

∂L

∂λj
= 0, 1 ≤ j ≤ p

∂L

∂μ−
Ṽi

(xl)
= ∂L

∂v−
Ṽi

(xl)
= ∂L

∂π−
Ṽi

(xl)
= 0, 1 ≤ i ≤ c, 1 ≤ l ≤ n

∂L

∂μ+
Ṽi

(xl)
= ∂L

∂v+
Ṽi

(xl)
= ∂L

∂π+
Ṽi

(xl)
= 0, 1 ≤ i ≤ c, 1 ≤ l ≤ n

The solution for the above equation system is:

uij = 1

∑c
r=1

(
dwE(Ãj, Ṽi)

dwE(Ãj, Ṽr)

) 2
m−1

(2.151)

Ṽi = f̃ (Ã, w(i)) =
⎧
⎨

⎩

〈
xk,

⎡

⎣
p∑

j = 1

w(i)
j μ−

Ãj
(xl),

p∑

j = 1

w(i)
j μ+

Ãj
(xl)

⎤

⎦ ,

⎡

⎣
p∑

j = 1

w(i)
j v−

Ãj
(xl),

p∑

j = 1

w(i)
j v+

Ãj
(xl)

⎤

⎦
〉∣∣∣∣∣∣

1 ≤ l ≤ n

⎫
⎬

⎭ , 1 ≤ i ≤ c

(2.152)

where

w(i) =
{

ui1∑p
j = 1 uij

,
ui2∑p

j = 1 uij
, . . . ,

uip∑p
j = 1 uij

}
, 1 ≤ i ≤ c (2.153)

Because Eqs. (2.152) and (2.153) are computationally interdependent, we also
exploit an iteration procedure as follows:

Algorithm 2.8 (IIFCM algorithm)

Step 1 Initialize the seed Ṽ(0), let k = 0, and set ε > 0.
Step 2 Calculate U(k) = (uij(k))c×p, where

(1) If for all j, r, dwE(Ãj, Ṽr(k)) > 0, then

uij(k) = 1

∑c
r=1

(
dwE(Ãj,Ṽi(k))

dwE(Ãj,Ṽr(k))

) 2
m−1

, 1 ≤ i ≤ c, 1 ≤ j ≤ p (2.154)
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(2) If there exist j and r such that dwE(Ãj, Ṽr(k)) = 0, then let urj(k) = 1 and
uij(k) = 0 for i 
= r.

Step 3 Calculate Ṽ(k + 1) =
{

Ṽ1(k + 1), Ṽ2(k + 1), . . . , Ṽc(k + 1)
}

, where

Ṽi(k + 1) = f̃ (Ã, w(i)(k + 1)), 1 ≤ i ≤ c (2.155)

w(i)(k + 1) =
{

ui1(k)
∑p

j = 1 uij(k)
,

ui2(k)
∑p

j = 1 uij(k)
, . . . ,

uip(k)
∑p

j = 1 uij(k)

}
, 1 ≤ i ≤ c

(2.156)

Step 4 If
∑c

i = 1

dwE

(
Ṽi(k),Ṽi(k+1)

)

c < ε, then end the algorithm; otherwise, let
k := k + 1, and return to Step 2.

Example 2.6 (Xu and Wu 2010) We conduct experiments on both the real-world
and simulated data sets (Xu et al. 2008) in order to demonstrate the effectiveness of
Algorithm 2.7 for IFSs.

Below we first introduce the experimental tool, the experimental data sets, and
the cluster validity measures, respectively:

(1) Experimental tool. In the experiments, we use Algorithm 2.7 implemented by
ourselves in C language. The parameters that can be set in Algorithm 2.7 are shown
in Table 2.7 (Xu and Wu 2010).

Note that if we let π(x) = 0 for any x ∈ X, then Algorithm 2.7 reduces to the
traditional fuzzy C-means (FCM) algorithm. Therefore, we can use the IFCM tool
to compare the performance of both Algorithm 2.7 and the FCM algorithm.

(2) Experimental data sets. We use two kinds of data in our experiments. The car
data set contains the information of ten new cars to be classified in the Guangzhou
car market in Guangdong, China. We also use the simulated data set for the purpose
of comparison. All these data are shown as in Example 2.2 (Table 2.2).

(3) Cluster validity measure. One of the unavoidable problems for Algorithm 2.7 is
the setting of the parameter c, i.e., the number of the clusters. To meet this challenge,
here we use two relative measures for fuzzy cluster validity given by Nasibov and
Ulutagay (2007): Partition Coefficient (PC) and Classification Entropy (CE). The
descriptions of these two measures are shown in Table 2.8 (Xu and Wu 2010).

Now we utilize Algorithm 2.7 to cluster the ten new cars yi (i = 1, 2, . . . , 10),
which involves the following steps (Xu and Wu 2010):

Step 1 Let c = 3 and ε = 0.005. Randomly select the initial centroid V(0) from
the data set, say for instance,

V(0) =
⎡

⎣
y9
y10
y8

⎤

⎦
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Table 2.7 IFCM parameters

Parameters Explanation

f The input file name
c The number of clusters, the default value is 3
m The fuzzy factor, the default value is 2
w The type of the sample weights, 0-equal (default), 1-user specified
s The type of the initial centroids, 0-random (default), 1-user specified
i The maximal number of iterations until convergence, the default value is 100
t The threshold for stopping the iterations, the default value is 0.001

Table 2.8 Descriptions of two cluster validity criteria

Validity criteria Functional description Optimal cluster number

Partition coefficient VPC = 1
p

c∑
i = 1

p∑
j = 1

u2
ij arg maxc(VPC, U, c)

Classification entropy VCE = − 1
p

c∑
i = 1

p∑
j = 1

uij log uij arg minc(VCE, U, c)

where p is the number of samples in the data set, and c is the number of clusters

Step 2 Calculate the membership degrees and the centroids iteratively. First,
according to Eq. (2.154), we have

U(0) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.401 0.317 0.281
0.215 0.252 0.533
0.289 0.231 0.480
0.896 0.054 0.051
0.166 0.631 0.203
0.319 0.390 0.291
0.179 0.213 0.607
0.000 0.000 1.000
1.000 0.000 0.000
0.000 1.000 0.000

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Step 3 According to Eq. (2.155), update the centroids as follows:

V(1) =
⎡

⎣
〈0.365, 0.382〉 〈0.838, 0.084〉 〈0.782, 0.153〉
〈0.762, 0.151〉 〈0.677, 0.136〉 〈0.586, 0.258〉
〈0.678, 0.211〉 〈0.574, 0.206〉 〈0.666, 0.165〉
〈0.625, 0.182〉 〈0.207, 0.700〉 〈0.190, 0.737〉
〈0.488, 0.203〉 〈0.707, 0.221〉 〈0.509, 0.457〉
〈0.361, 0.516〉 〈0.369, 0.561〉 〈0.667, 0.130〉

⎤

⎦
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Step 4 Check whether we should stop the iterations:

3∑

i = 1

dwE (Vi(0), Vi(1))/3 = 0.088 > 0.005

Since this value is not small enough, we continue the iterations as follows:
K = 1:

U(1) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.399 0.326 0.275
0.138 0.169 0.693
0.202 0.176 0.622
0.919 0.042 0.039
0.128 0.724 0.148
0.309 0.410 0.280
0.101 0.127 0.772
0.071 0.164 0.766
0.899 0.054 0.048
0.057 0.840 0.102

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

V(2) =
⎡

⎣
〈0.356, 0.387〉 〈0.841, 0.086〉 〈0.776, 0.157〉
〈0.753, 0.150〉 〈0.661, 0.172〉 〈0.585, 0.236〉
〈0.587, 0.258〉 〈0.530, 0.187〉 〈0.668, 0.179〉
〈0.647, 0.160〉 〈0.198, 0.705〉 〈0.181, 0.757〉
〈0.494, 0.176〉 〈0.710, 0.225〉 〈0.479, 0.490〉
〈0.321, 0.553〉 〈0.344, 0.601〉 〈0.630, 0.158〉

⎤

⎦

3∑

i = 1

dwE (Vi(1), Vi(2))

3
= 0.024 > 0.005

K = 2:

U(2) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.388 0.335 0.277
0.086 0.105 0.809
0.140 0.127 0.733
0.932 0.035 0.034
0.104 0.785 0.111
0.298 0.422 0.280
0.064 0.082 0.854
0.110 0.245 0.645
0.894 0.056 0.050
0.074 0.813 0.113

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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V(3) =
⎡

⎣
〈0.355, 0.389〉 〈0.852, 0.080〉 〈0.780, 0.154〉
〈0.759, 0.146〉 〈0.661, 0.184〉 〈0.587, 0.224〉
〈0.542, 0.276〉 〈0.513, 0.176〉 〈0.670, 0.183〉
〈0.655, 0.152〉 〈0.193, 0.709〉 〈0.176, 0.766〉
〈0.496, 0.165〉 〈0.715, 0.224〉 〈0.473, 0.498〉
〈0.299, 0.574〉 〈0.331, 0.620〉 〈0.614, 0.170〉

⎤

⎦

3∑

i = 1

dwE (Vi(2), Vi(3))

3
= 0.011 > 0.005

K = 3:

U(3) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.383 0.337 0.280
0.0645 0.079 0.856
0.114 0.105 0.782
0.939 0.030 0.030
0.094 0.811 0.095
0.295 0.423 0.282
0.058 0.073 0.869
0.127 0.283 0.590
0.901 0.052 0.047
0.077 0.813 0.110

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

V(4) =
⎡

⎣
〈0.356, 0.389〉 〈0.856, 0.077〉 〈0.783, 0.152〉
〈0.763, 0.144〉 〈0.662, 0.186〉 〈0.590, 0.218〉
〈0.524, 0.280〉 〈0.509, 0.172〉 〈0.671, 0.184〉
〈0.657, 0.150〉 〈0.190, 0.711〉 〈0.174, 0.769〉
〈0.494, 0.164〉 〈0.716, 0.223〉 〈0.474, 0.497〉
〈0.291, 0.581〉 〈0.326, 0.626〉 〈0.609, 0.175〉

⎤

⎦

3∑

i = 1

dwE (Vi(3), Vi(4))

3
= 0.004 < 0.005

So we stop the iterations, and finally have
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Table 2.9 The clustering
result of the car data set by
IFCM

Instance Cluster ID

y4, y9 1
y5, y10 2
y2, y3, y7 3
y1, y6, y8 No significant membership

of any cluster

K = 4:

U(4) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.381 0.336 0.283
0.085 0.071 0.871
0.105 0.097 0.798
0.942 0.029 0.029
0.090 0.819 0.090
0.294 0.422 0.284
0.059 0.075 0.867
0.132 0.298 0.569
0.905 0.050 0.045
0.077 0.817 0.106

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

According to U(4), we get the cluster validation measures VPC and VCE :

VPC = 1

3

3∑

i = 1

10∑

j = 1

u2
ij = 0.638, VCE = − 1

10

3∑

i = 1

10∑

j = 1

uij log uij = 0.947

If we further assume that uij ≥ 0.75 ⇒ Aj ∈ Ci (1 ≤ j ≤ 10, 1 ≤ i ≤ 3), where
Ci denotes Cluster i, then we have the clusters as follows (see Table 2.9) (Xu and Wu
2010).

Next, we pay special attention to the convergence of Algorithm 2.7 on the car data
set. Figure 2.3 (Xu and Wu 2010) shows the movements of the objective function
values Jm(U, V) along the iterations:

As can be seen in Fig. 2.3, Algorithm 2.7 indeed can decrease the objective
function value continuously by iterating the two phases—updating the membership
degrees in Eq. (2.154) and updating the prototypical IFSs in Eq. (2.156).

If we utilize Algorithm 2.2 to cluster this car data set, the results are shown in
Table 2.10 (Xu and Wu 2010).

By comparing the above result by Algorithm 2.2 with the result by Algorithm
2.7, we know that Algorithm 2.2 can only produce “crisp” clusters. That is, each
instance of the car data set can only be assigned to one cluster if Algorithm-IFSC
is used. For Algorithm 2.7, however, things are different. By using the membership
degree matrix U, Algorithm 2.7 can produce “overlapped” clusters in which the
instances have different membership degrees. This is noteworthy, since in many real-
world applications, it makes sense that one instance shares some common grounds of



2.5 Intuitionistic Fuzzy C-Means Clustering Algorithms 219

Table 2.10 The clustering results of the car data set by Algorithm-IFSC in different λ levels

λ level Clustering results

0 ≤ λ ≤ 0.709 {y1, y2, y3, y4, y5, y6, y7, y8, y9, y10}
0.709 < λ ≤ 0.771 {y1, y6}, {y2, y3, y4, y5, y7, y8, y9, y10}
0.771 < λ ≤ 0.811 {y1, y6}, {y2}, {y3, y5, y7, y10}, {y8}, {y4, y9}
0.811 < λ ≤ 0.861 {y1, y6}, {y2}, {y3, y7}, {y8}, {y4, y9}, {y5, y10}
0.861 < λ ≤ 0.889 {y1, y6}, {y2}, {y3, y7}, {y4, y9}, {y5}, {y8}, {y10}
0.889 < λ ≤ 0.913 {y1, y6}, {y2, y3, y7}, {y4, y9}, {y5}, {y8}, {y10}
0.913 < λ ≤ 0.919 {y1, y6}, {y2}, {y3, y7}, {y4, y9}, {y5}, {y8}, {y10}
0.919 < λ ≤ 0.937 {y1}, {y2}, {y5}, {y6}, {y3, y7}, {y4, y9}, {y8}, {y10}
0.937 < λ ≤ 0.968 {y1}, {y2}, {y3}, {y5}, {y6}, {y7}, {y8}, {y4, y9}, {y10}
0.968 < λ ≤ 1 {y1}, {y2}, {y3}, {y4}, {y5}, {y6}, {y7}, {y8}, {y9}, {y10}
Note: (1) λ is used to cut the association matrix of Algorithm 2.2 to produce the clusters

several clusters. For instance, a VOLVO car is often famous for its safety equipment.
On the other hand, it is also a luxury car with a relatively high price. So a VOLVO
car can naturally be grouped into the safe car cluster and the luxury car cluster
simultaneously. Viewing from this angle, Algorithm 2.7 indeed can generate more
valuable information than Algorithm 2.2.

Furthermore, compared with Algorithm 2.2, Algorithm 2.7 has lower compu-
tational complexity. Roughly speaking, the storage required by Algorithm 2.7 is
O (p(n + c) + cn), where p is the number of samples in the data, n is the number of
IFSs in a sample, and c is the number of clusters. The time requirement for Algorithm
2.7 is O (İcpn), where İ is the maximum number of iterations preset for the optimal
value searching process. Since in most cases n and c are much smaller than p, we
can view Algorithm 2.7 as a linear algorithm in the sample size p. As to Algorithm-
IFSC, it must compute and store the association matrix for each pair of samples, so
the computational complexity of Algorithm-IFSC is roughly O (p2). Therefore, for

Fig. 2.3 Illustration of the convergence of IFCM on the car data set
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Table 2.11 The results derived by Algorithm 2.7 with different cluster numbers on the simulated
data set

c 2 3 4 5 6 7 8 9 10

Obj 76.760 7.087 5.853 5.389 3.543 3.138 2.743 2.536 2.161
VPC 0.744 0.949 0.779 0.710 0.475 0.420 0.367 0.338 0.289
VCE 0.582 0.198 0.563 0.809 1.198 1.404 1.598 1.749 1.927

Note: (1) “Obj” is the objective function value after the convergence of Algorithm 2.7
(2) The optimal values of the measures are highlighted in bold and italic fonts

Fig. 2.4 Comparison of Obj and VPC given different c values

a data set with a large sample size, say, 1,000,000, Algorithm-IFSC may encounter
some computational troubles.

In summary, while Algorithm 2.2 has some unique merits such as simplicity
and flexibility, it cannot provide the information about the membership degree of
the samples to all the clusters, and has a relatively high computational complexity,
which indeed motivates Algorithm 2.7.

In this part, we compare the performances of Algorithm 2.7 with the traditional
FCM algorithm. We first exploit Algorithm 2.7 on the simulated data set. In this
experiment, we set a series of c values in the range of 2 to 10, and compute the VPC

and VCE measures for each clustering result. The results can be found in Table 2.11
(Xu and Wu 2010).

As can be seen in Table 2.11, when c = 3, VPC reaches its optimal (maximum)
value 0.949, and VCE also reaches its optimal (minimum) value 0.198. This implies
that both VPC and VCE are capable of finding the optimal number of clusters, i.e.,
c. The objective function value, however, is not the case. Let us look at Fig. 2.4 (Xu
and Wu 2010).

As the increase of the number of clusters, Obj decreases continuously and finally
reaches 2.161 when c = 10. This just illustrates why we employ VPC and VCE to
evaluate the clustering results produced by Algorithm 2.7.



2.5 Intuitionistic Fuzzy C-Means Clustering Algorithms 221

Table 2.12 The results derived by Algorithm 2.7 with different cluster numbers on the simulated
data set

Modified data set I

c 2 3 4 5 6 7 8 9 10
VPC 0.982 0.648 0.531 0.469 0.324 0.289 0.239 0.216 0.196
VCE 0.073 0.750 1.163 1.465 1.750 1.975 2.153 2.335 2.395
Modified data set II
c 2 3 4 5 6 7 8 9 10
VPC 0.982 0.648 0.531 0.381 0.324 0.289 0.266 0.248 0.235
VCE 0.072 0.750 1.164 1.465 1.750 1.976 2.163 2.325 2.463

Note: (1) The optimal values of the measures are highlighted in bold and italic fonts

Next, we exploit the traditional FCM algorithm on the simulated data set for the
comparison purpose. As mentioned above, the FCM algorithm does not take into
account the uncertain information. Therefore, to make sure μ(x) + v(x) = 1 for any
x in the simulated data set, we should modify the data set by adding π(x) to either
μ(x) or v(x). We produce the two modified data sets and then exploit Algorithm 2.7
on them. The results can be found in Table 2.12 (Xu and Wu 2010).

As indicated by the VPC and VCE measures in Table 2.12, Algorithm 2.7 prefers
to cluster the modified simulated data sets into two clusters, which is actually away
from the three “true” clusters in the data. In other words, the FCM algorithm cannot
identify all the three classes precisely. This further justifies the importance of the
uncertain information in IFSs.

2.6 Intuitionistic Fuzzy MST Clustering Algorithm

Zhao et al. (2012a) developed an intuitionistic fuzzy minimum spanning tree (MST)
clustering algorithm to deal with intuitionistic fuzzy information. To do so, they first
introduced some concepts related to the graph theory.

A graph is composed of a set of points called nodes and a set of node pairs called
edges, which can be denoted by (V̇ , E), where V̇ is the set of nodes and E is the set of
edges. In fact, the set E in a normal graph is a crisp relation over V̇ × V̇ . That is to say,
if there exists an edge between x and y, then the membership degree μE (x, y) = 1;
otherwise μE (x, y) = 0, where (x, y) ∈ (V̇ × V̇

)
. If we define a fuzzy relation R

over V̇ × V̇ , then the membership function μR (x, y) takes various values from 0 to
1, and such a graph is called a fuzzy graph.

Definition 2.25 (Chen et al. 2007) Let V̇ = {
V̇1, V̇2, . . . , V̇n

}
be a collection of n

nodes, and R = (rij)n×n a fuzzy relation over the set V̇ . Then
(
V̇ , R

)
is called a

fuzzy graph. If E = {Ek = V̇iV̇j|∀V̇i, V̇j ∈ V̇
}
, then

(
V̇ , E

)
is called a basic graph of(

V̇ , R
)
.
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Definition 2.26 (Zhao et al. 2012a) Let V̇ = {V̇1, V̇2, . . . , V̇n
}

be a collection of n
nodes, and R = (rij)n×n an intuitionistic fuzzy relation over V̇ ×V̇ . Then G = (V̇ , R

)

is called an intuitionistic fuzzy graph. If E = {Ek = V̇iV̇j|∀V̇i, V̇j ∈ V̇
}
, then

(
V̇ , E

)

is called a basic graph of
(
V̇ , R

)
.

A path in a graph is a sequence of edges joining two nodes as (ABCD). A circuit
is a closed path as (ABCA). A connected graph has paths between any pair of nodes.
A tree is a connected graph with no circuits and a spanning tree of a connected graph
is a tree in graph

(
V̇ , R

)
which contains all nodes of

(
V̇ , R

)
(Zahn 1971).

If we add every edge a weight and define the weight of a tree to be the sum of the
weights of its constituent edges, then

Definition 2.27 (Zahn 1971) A minimum (maximum) spanning tree of a graph(
V̇ , R

)
is a spanning tree whose weight is minimum (maximum) among all span-

ning trees of the graph
(
V̇ , R

)
.

We usually compute the minimum (maximum) spanning tree of a graph
(
V̇ , R

)

by Kruskal method (Kruskal 1956) or Prim method (Prim 1957). Because of the
complexity of the objective world and the fuzziness of the human perception, the data
information needed to be clustered is often imprecise or uncertain and sometimes
is given by IFSs. In such situations, some effective and convenient intuitionistic
clustering algorithms are needed. The MST (minimum spanning tree) clustering
algorithm was first proposed by Zahn (1971), whose basic idea is that: a multi-
attribute sample point can be considered as a point of a multi-dimensional space.
If the density of the sample points in some regions in the multi-dimensional space
is high, while in other regions is low or even blank, then the high-density regions
can be separated from the blank or the low-density regions naturally, so that we get
the clustering structure of the sample points which best embodies the distribution of
the sample points. Based on the idea of Zahn (1971), Zhao et al. (2012a) introduced
an intuitionistic fuzzy clustering method called intuitionistic fuzzy MST clustering
algorithm based on the graph theoretic techniques and the intuitionistic fuzzy distance
measure to cluster intuitionistic fuzzy information. In the following, we first introduce
the concepts of intuitionistic fuzzy distance measure and intuitionistic fuzzy distance
matrix:

Definition 2.28 (Zhao et al. 2012a) Let Aj (j = 1, 2, . . . , n) be n IFSs. Then D =(
dij
)

n×n is called an intuitionistic fuzzy distance matrix, where dij = d
(
Ai, Aj

) =
1 − ϑ̂(A1, A2) is the intuitionistic fuzzy distance between Ai and Aj, which has the
following properties:

(1) dij(i, j = 1, 2, . . . , n) are IFVs.
(2) dij = (0, 1) if and only if Ai = Aj.
(3) dij = dji, for all i, j = 1, 2, . . . , n,

where ϑ̂(A1, A2) is defined in Theorem 2.2.
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Based on the idea of the traditional MST clustering algorithm and the intuitionistic
fuzzy distance matrix above, Zhao et al. (2012a) proposed an intuitionistic fuzzy MST
clustering algorithm:

Algorithm 2.9

Step 1 Construct the intuitionistic fuzzy distance matrix and the intuitionistic
fuzzy graph:

(1) Calculate the distance dij = d
(
Ai, Aj

)
, then we get the intuitionistic fuzzy

distance matrix D = (dij
)

n×n.

(2) Construct the intuitionistic fuzzy graph
(
V̇ , D

)
with n nodes associated to the

samples Ai(i = 1, 2, . . . , n) to be clustered which are expressed by IFSs and every
edge between Ai and Aj having the weight dij, which is an element (expressed by IFV)
of the intuitionistic fuzzy distance matrix D = (dij)n×n and denotes the dissimilarity
degree between the samples Ai and Aj.

Step 2 Compute the MST of the intuitionistic fuzzy graph (V , D) by Kruskal
method (Kruskal 1956) or Prim method (Prim 1957):

(1) Arrange the edges of
(
V̇ , D

)
in order from the smallest weight to the largest

one. Because the weight of each edge is an IFV, we can firstly compute the score
and the accuracy degree of each IFV, and then we use Definition 2.27 to sort all the
intuitionistic fuzzy weights.

(2) Select the edge with the smallest weight.
(3) Select the edge with the smallest weight from the rest edges which do not form

a circuit with those already chosen.
(4) Repeat the process (3) until (n − 1) edges have been selected where n is the

number of the nodes in
(
V̇ , D

)
. Thus we get the MST of the intuitionistic fuzzy graph(

V̇ , D
)
.

Step 3 Group the nodes (sample points) into clusters by cutting down all the edges
of the MST with weights greater than a threshold λ (where λ is an IFV), we can get a
certain number of sub-trees (clusters) automatically. The clustering results induced
by the sub-trees do not depend on some particular MST (Gaertler 2002).

Moreover, Zhao et al. (2012a) improved Algorithm 2.9 by changing the intuitionis-
tic fuzzy distance measure by Eq. (2.111) or (2.112) so as to lessen the computational
effort. They first defined another intuitionistic fuzzy distance matrix:

Definition 2.29 (Zhao et al. 2012a) Let Aj (j = 1, 2, . . . , n) be n IFSs. Then D =(
dij
)

n×n is called an intuitionistic fuzzy distance matrix, where dij = d
(
Ai, Aj

)
is

the distance between Ai and Aj, which has the following properties:

(1) 0 ≤ dij ≤ 1, for all i, j = 1, 2, . . . , n.
(2) dij = 0 if and only if Ai = Aj.
(3) dij = dji, for all i, j = 1, 2, . . . , n.

Based on Definition 2.29, Zhao et al. (2012a) developed another intuitionistic
fuzzy MST clustering algorithm:
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Algorithm 2.10

Step 1 Compute the intuitionistic fuzzy distance matrix and draw the fuzzy graph:

(1) Calculate the distance dij = d
(
Ai, Aj

)
by Eq. (2.111) or (2.112) and get the

intuitionistic fuzzy distance matrix D = (dij
)

n×n which is actually a fuzzy similarity
relation.

(2) Draw the fuzzy graph
(
V̇ , D

)
. Although the n nodes associated to the samples

Ai(i = 1, 2, . . . , n) to be clustered are still expressed by IFSs, the weight dij of every
edge between Ai and Aj changes into a real number which comes from the second
kind of intuitionistic fuzzy distance matrix D = (dij)n×n (the graph here is really a
fuzzy graph and is quite different from the one in Algorithm 2.9).

Step 2 Compute the minimum spanning tree (MST) of the fuzzy graph
(
V̇ , D

)
,

which is similar to Step 2 of Algorithm 2.9.
Step 3 See Step 3 of Algorithm 2.9.
In the following, we use an example to illustrate Algorithms 2.9 and 2.10:

Example 2.7 In an operational mission (adapted from Zhang et al. (2007), there are
six operational plans yi (i = 1, 2, . . . , 6). In order to group these operational plans
with respect to their comprehensive functions, a military committee has been set up
to provide assessment information on the operational plans. The attributes which are
considered here in assessment of yi (i = 1, 2, . . . , 6) are: (1) G1: The effectiveness of
operational organization; and (2) G2: The effectiveness of operational command. The
military committee evaluates the performance of all the operational plans according
to the attributes Gj (j = 1, 2), and gives the data as follows:

y1 = {〈G1, 0.70, 0.15〉, 〈G2, 0.60, 0.20〉}
y2 = {〈G1, 0.40, 0.35〉, 〈G2, 0.80, 0.10〉}
y3 = {〈G1, 0.55, 0.25〉, 〈G2, 0.70, 0.15〉}
y4 = {〈G1, 0.44, 0.35〉, 〈G2, 0.60, 0.20〉}
y5 = {〈G1, 0.50, 0.35〉, 〈G2, 0.75, 0.20〉}
y6 = {〈G1, 0.55, 0.25〉, 〈G2, 0.57, 0.15〉}

Let the weight vector of the attributes Gj (j = 1, 2) be w = (0.45, 0.55)T . We
first utilize Algorithm 2.9 to group these operational plans yj (j = 1, 2, . . . , 6):

Step 1 Construct the intuitionistic fuzzy distance matrix and the intuitionistic
fuzzy graph:

(1) Calculate the distance dij = d
(
yi, yj

)
(see Definition 2.28), and let λ = 2,

α = β = γ = 1/3. Then
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d(y1, y2) = d(y2, y1) = (0.141, 0.784), d(y1, y3) = d(y3, y1) = (0.059, 0.892)

d1(y1, y4) = d1(y4, y1) = (0, 0.808), d(y1, y5) = d(y5, y1) = (0.123, 0.837)

d(y1, y6) = d(y6, y1) = (0.057, 0.892), d(y2, y3) = d(y3, y2) = (0.059, 0.892)

d(y2, y4) = d(y4, y2) = (0.033, 0.859), d(y2, y5) = d(y5, y2) = (0.071, 0.918)

d(y2, y6) = d(y6, y2) = (0.108, 0.829), d(y3, y4) = d(y4, y3) = (0.071, 0.914)

d(y3, y5) = d(y5, y3) = (0.071, 0.929), d(y3, y6) = d(y6, y3) = (0, 0.894)

d(y4, y5) = d1(y5, y4) = (0.049, 0.878), d(y4, y6) = d(y6, y4) = (0.057, 0.914)

d(y5, y6) = d(y6, y5) = (0.071, 0.829)

Accordingly, we get the intuitionistic fuzzy distance matrix as follows:

D =

⎛

⎜⎜⎜⎜⎜⎜⎝

(0,1) (0.141,0.784) (0.059,0.892) (0,0.808) (0.123,0.837) (0.057,0.892)

(0.141,0.784) (0,1) (0.059,0.892) (0.033,0.859) (0.071,0.918) (0.108,0.829)

(0.059,0.892) (0.059.0.892) (0,1) (0.071,0.914) (0.071,0.929) (0,0.894)

(0,0.808) (0.033,0.859) (0.071,0.914) (0,1) (0.049,0.878) (0.057,0.914)

(0.123,0.837) (0.071,0.918) (0.071,0.929) (0.049,0.878) (0,1) (0.071,0.829)

(0.057,0.892) (0.108,0.829) (0,0.894) (0.057,0.914) (0.071,0.829) (0,1)

⎞

⎟⎟⎟⎟⎟⎟⎠

(2) Draw the intuitionistic fuzzy graph (V̇ , D) with 6 nodes associated to the
samples yi (i = 1, 2, ..., 6) to be clustered and every edge Eij between yi and yj

having the weight dij, which is an element of the intuitionistic fuzzy distance matrix
D = (dij)6×6 and denotes the dissimilarity degree between the samples yi and yj (see
Fig. 2.5) (Zhao et al. 2012a).

Step 2 Compute the intuitionistic fuzzy MST of the intuitionistic fuzzy graph by
Kruskal method (Kruskal 1956):

(1) Arrange the edges of (V̇ , D) in order from the smallest weight to the largest
one. Because the weight of each edge is an IFV, we can first use the scores and the
accuracy degrees of each IFV in the intuitionistic fuzzy distance matrix to sort all
the intuitionistic fuzzy weights (based on Definition 2.28) as follows:

S(d12) = 0.141 − 0.784 = −0.643, S(d13) = 0.059 − 0.892 = −0.833
S(d14) = 0 − 0.808 = −0.808, S(d15) = 0.123 − 0.837 = −0.714
S(d16) = 0.057 − 0.892 = −0.835, S(d23) = 0.059 − 0.892 = −0.833
S(d24) = 0.033 − 0.859 = −0.826, S(d25) = 0.071 − 0.918 = −0.847
S(d26) = 0.108 − 0.829 = −0.721, S(d34) = 0.071 − 0.914 = −0.843
S(d35) = 0.071 − 0.929 = −0.858, S(d36) = 0 − 0.894 = −0.894
S(d36) = 0.049 − 0.878 = −0.829, S(d46) = 0.057 − 0.914 = −0.857
S(d56) = 0.071 − 0.829 = −0.758

Thus

d36 < d35 < d46 < d25 < d34 < d16 < d13

= d23 < d45 < d24 < d14 < d56 < d26 < d15 < d12
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Fig. 2.5 The intuitionistic
fuzzy graph

Fig. 2.6 The MST of the
intuitionistic fuzzy graph

and then we sort all the intuitionistic fuzzy weights as follows:
(2) Select the edge with the smallest weight, that is the edge E36 between y3

and y6.
(3) Select the edge with the smallest weight from the rest edges, that is the edge

E35 between y3 and y5.
(4) Select the edge with the smallest from the rest edges which do not form a circuit

with those already chosen (we can choose the edge E46 between y4 and y6). Repeat
(4) until five edges have been selected. Thus we get the MST of the intuitionistic
fuzzy graph

(
V̇ , D

)
(see Fig. 2.6) (Zhao et al. 2012a).

Step 3 Group the nodes (sample points) into clusters: by choosing a threshold λ

and cutting down all the edges of the MST with the weights greater than λ, we can
get a certain number of sub-trees (clusters).

(1) If λ = d16 = (0.057, 0.892), then we get {y1, y2, y3, y4, y5, y6}.
(2) If λ = d25 = (0.071, 0.918), then we get {y1} , {y2, y3, y4, y5, y6}.
(3) If λ = d46 = (0.057, 0.914), then we get {y1} , {y2} , {y3, y4, y5, y6}.
(4) If λ = d35 = (0.071, 0.929), then we get {y1} , {y2} , {y4} , {y3, y5, y6}.
(5) If λ = d36 = (0, 0.894), then we get {y1} , {y2} , {y4} , {y5} , {y3, y6}.
(6) If λ = (0, 1), then we get {y1} , {y2} , {y3} , {y4} , {y5} , {y6}.

Furthermore, we use Algorithm 2.10 to cluster these battle projects yj (j =
1, 2, . . . , 6) as follows:
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Step 1 Construct the intuitionistic fuzzy distance matrix and the fuzzy graph
where each node is associated to a sample to be clustered which is expressed by IFS:

(1) Calculate the distances dij = d
(
yi, yj

)
(i, j = 1, 2, . . . , 6) by Eq. (2.111):

d(y1, y3) = d(y3, y1) = 0.1225, d(y1, y4) = d(y4, y1) = 0.117
d(y1, y5) = d(y5, y1) = 0.1725, d(y1, y6) = d(y6, y1) = 0.1115
d(y2, y3) = d(y3, y2) = 0.1225, d(y2, y4) = d(y4, y2) = 0.128
d(y2, y5) = d7(y5, y2) = 0.1, d(y2, y6) = d7(y6, y2) = 0.194
d(y3, y4) = d(y4, y3) = 0.1045, d(y3, y5) = d(y5, y3) = 0.1
d(y3, y6) = d(y6, y3) = 0.0715, d(y4, y5) = d(y5, y4) = 0.1095
d(y4, y6) = d(y6, y4) = 0.088, d(y5, y6) = d(y6, y5) = 0.1715

then we get the intuitionistic fuzzy distance matrix as follows:

D =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 0.245 0.1225 0.117 0.1725 0.1115
0.245 0 0.1225 0.128 0.1 0.194
0.1225 0.1225 0 0.1045 0.1 0.0715
0.117 0.128 0.1045 0 0.1095 0.088
0.1725 0.1 0.1 0.1095 0 0.1715
0.1115 0.194 0.0715 0.088 0.1715 0

⎞

⎟⎟⎟⎟⎟⎟⎠

(2) Draw the fuzzy graph G = (
V̇ , D

)
with 6 nodes associated to the samples

yi (i = 1, 2, . . . , 6) to be clustered and every edge between yi and yj having the weight
dij, which is an element of the intuitionistic fuzzy distance matrix D = (dij)6×6 and
denotes the dissimilarity degree between the samples yi and yj (see Fig. 2.7) (Zhao
et al. 2012a).

Step 2 Compute the MST of the fuzzy graph G = (
V̇ , D

)
by Kruskal method

(Kruskal 1956):

(1) Arrange the edges of G in order from the smallest weight to the largest one:

d36 < d46 < d35

= d25 < d34 < d45 < d16 < d14 < d13 = d23 < d24 < d56 < d15 < d26 < d52

(2) Select the edge with the smallest weight, that is the edge E36 between y3
and y6.

(3) Select the edge with the smallest weight from the rest edges, that is the edge
E46 between y4 and y6.

(4) Select the edge with the smallest weight from the rest edges which do not form
a circuit with those already chosen, we can choose the edge E35 between y3 and y5.

(5) Repeat the process (4) until five edges have been selected. Thus we get the
MST of the fuzzy graph G = (V̇ , D

)
(see Fig. 2.8) (Zhao et al. 2012a).
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Fig. 2.7 The fuzzy graph

Fig. 2.8 The MST of the
fuzzy graph

Step 3 Choose a threshold λ and cut down all the edges of the MST with weights
greater than λ so that we could arrive at a certain number of sub-trees (clusters)
automatically.

(1) If λ = d16 = 0.1115, then we get {y1, y2, y3, y4, y5, y6}.
(2) If λ = d25 = d35 = 0.1, then we get {y1} , {y2, y3, y4, y5, y6}.
(3) If λ = d46 = 0.088, then we get {y1} , {y2} , {y5} , {y3, y4, y6}.
(4) If λ = d36 = 0.0715, then we get {y1} , {y2} , {y4} , {y5} , {y3, y6}.
(5) If λ = 0, then we get {y1} , {y2} , {y3} , {y4} , {y5} , {y6}.

From the results of Algorithms 2.9 and 2.10, we have found that they coincide
with each other on the whole.

Sometimes, it is not suitable to assume that the membership degrees and the non-
membership degrees for certain elements are exactly real numbers, but fuzzy ranges
can be given. As a result, Zhao et al. (2012a) defined the concept of interval-valued
intuitionistic fuzzy distance matrix:

Definition 2.30 (Zhao et al. 2012a) Let yj (j = 1, 2, . . . , n) be m IVIFSs. Then
D = (dij

)
n×n is called an interval-valued intuitionistic fuzzy distance matrix, where

dij = d
(
yi, yj

)
is the distance between yi and yj, which has the following properties:

(1) 0 ≤ dij ≤ 1, for all i, j = 1, 2, . . . , n.
(2) dij = 0 if and only if yi = yj.
(3) dij = dji, for all i, j = 1, 2, . . . , n.
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Drawing support from the interval-valued intuitionistic fuzzy distance matrix, we
can extend Algorithm 2.10 to the interval-valued intuitionistic fuzzy environment
and raise the interval-valued intuitionistic fuzzy MST clustering algorithm:

Algorithm 2.11

Step 1 Construct the interval-valued intuitionistic fuzzy distance matrix and the
fuzzy graph:

In this step, we first calculate the distance dij = d
(
yi, yj

)
by Eq. (2.105) or

(2.107) to get the interval-valued intuitionistic fuzzy distance matrix D = (
dij
)

n×n,

and then draw the fuzzy graph
(
V̇ , D

)
with n nodes associated to the samples yi

(i = 1, 2, . . . , n) which are expressed by IVIFSs and every edge between yi and
yj having the weight dij, which is a real number coming from the interval-valued
intuitionistic fuzzy distance matrix D = (dij)n×n.

Step 2 Compute the minimum spanning tree (MST) of the fuzzy graph
(
V̇ , D

)
by

Kruskal method (Kruskal 1956) or Prim method (Prim 1957).
Step 3 Cluster through the minimum spanning tree (see to Step 3 of Algorithm

2.10).
Example 2.9 can also be used to illustrate Algorithm 2.11 when the evaluation

information is expressed in IVIFSs (here omitted for brevity).

2.7 Intuitionistic Fuzzy Clustering Algorithm Based on Boole
Matrix and Association Measure

2.7.1 Intuitionistic Fuzzy Association Measures

Since clustering is the grouping of similar objects, we usually need to find some sort
of measure that can determine the degree of the relationship between two objects.

Generally, there are three main types of measures which can estimate this relation:
distance measures, similarity measures and association measures. The choice of a
good measure will directly influence the clustering effect. Next we shall seek for
some association measures to be prepared for cluster analysis.

An association measure is an important tool for determining the degree of the rela-
tionship between two objects. Many scholars have given various association measures
(see Xu and Chen 2008 for a review). For example, Xu et al. (2008) introduced the
associate measures (2.89) and (2.100). Gerstenkorn and Mafiko (1991) proposed a
method to calculate the association coefficient of IFSs, which was formulated in the
following way:

c1(A, B) =
∑n

j = 1 μA(xj) · μB(xj) + vA(xj) · vB(xj)√∑n
j = 1

(
μ2

A(xj) + v2
A(xj)

) ·∑n
j = 1

(
μ2

B(xj) + v2
B(xj)

) (2.157)
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Hong and Hwang (1995) further considered the case where the set X is infinite
and defined another association coefficient of A-IFSs as follows:

c2(A, B) =
∫

X (μA(x) · μB(x) + vA(x) · vB(x)) dx
√∫

X

(
μ2

A(x) + v2
A(x)

)
dx · ∫X

(
μ2

B(x) + v2
B(x)

)
dx

(2.158)

where c1(A, B) and c2(A, B) satisfy the three conditions: (1) 0 ≤ c(A, B) ≤ 1;
(2) c(A, B) = 1 if A = B; and (3) c(A, B) = c(B, A). But they cannot guarantee the
necessity in the condition (2). Hong and Hwang (1995) and Mitchell (2004) pointed
out that if association coefficients don’t guarantee the necessity in the condition (2),
then some situations where the obtained results are counter-intuitive will appear,
although in most cases the association coefficient may give reasonable result. For
this reason, Xu et al. (2008) proposed an axiomatic definition for the association
measure of IFSs, which is an improved version of Gerstenkorn and Mafiko (1991)
and Hong and Hwang (1995):

Definition 2.31 (Xu et al. 2008) Let c be a mapping c: (IFS(X))2 → [0, 1], then the
association coefficient between two IFSs A and B is defined as c(A, B), which has
the following properties: (1) 0 ≤ c(A, B) ≤ 1; (2) c(A, B) = 1 if and only if A = B;
and (3) c(A, B) = c(B, A).

Furthermore, Szmidt and Kacprzyk (2000) pointed out that omitting any one of
the three parameters may lead to incorrect results, and therefore, we should take the
three parameters into account when computing the association coefficients between
IFSs.

Based on the two ideas above when constructing an association coefficient
between IFSs, Zhao et al. (2012b) improved Eq. (2.155) to a new form, satisfy-
ing all the conditions proposed by Hong and Hwang (1995), Mitchell (2004) and
Szmidt and Kacprzyk (2000):

c3(A, B)

=
∑n

j = 1

(
μA(xj) · μB(xj) + vA(xj) · vB(xj) + πA(xj) · πB(xj)

)
√∑n

j = 1

(
μ2

A(xj) + v2
A(xj) + π2

A(xj)
) ·∑n

j = 1

(
μ2

B(xj) + v2
B(xj) + π2

B(xj)
)

(2.159)

It is clear that c3(A, B) takes the third parameter of an IFS (the hesitancy degree)
into consideration, moreover, we will prove that it also satisfies all the three conditions
of Definition 2.31:

Proof Because A, B ∈ IFS(X), then from the concept of IFS and Eq. (2.159), we
know that c3(A, B) ≥ 0. To prove the inequality c3(A, B) ≤ 1, we can use the famous
Cauchy-Schwarz inequality:
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n∑

i = 1

aibi ≤
√√√√
(

n∑

i = 1

a2
i

)(
n∑

i = 1

b2
i

)
(2.160)

with equality if and only if the two vectors a = (a1, a2, . . . , an)
T and b =

(b1, b2, . . . , bn)
T are linearly dependent, that is, there is a nonzero real number

λ such that a = λb. From Eq. (2.160), we know that c3(A, B) ≤ 1 with equality if
and only if there is a nonzero real number λ such that

μA(xi) = λμB(xi), vA(xi) = λvB(xi), πA(xi) = λπB(xi),

for all xi ∈ X (2.161)

while because

πA(xi) = 1 − μA(xi) − vA(xi), πB(xi) = 1 − μB(xi) − vB(xi),

for all xi ∈ X (2.162)

then by Eq. (2.161), we know that λ = 1, and thus, c3(A, B) = 1 if and only if A = B.
Hence we complete the proof of the conditions (1) and (2) in Definition 2.31.

In addition, by Eq. (2.159) we know that

c3(A, B)

=
∑n

j = 1

(
μA(xj) · μB(xj) + vA(xj) · vB(xj) + πA(xj) · πB(xj)

)
√∑n

j = 1

(
μ2

A(xj) + v2
A(xj) + π2

A(xj)
) ·∑n

j = 1

(
μ2

B(xj) + v2
B(xj) + π2

B(xj)
)

=
∑n

j = 1

(
μB(xj) · μA(xj) + vB(xj) · vA(xj) + πB(xj) · πA(xj)

)
√∑n

j = 1

(
μ2

B(xj) + v2
B(xj) + π2

B(xj)
) ·∑n

j = 1

(
μ2

A(xj) + v2
A(xj) + π2

A(xj)
)

= c3(B, A) (2.163)

Thus, the condition (3) in Definition 2.31 also holds.
It’s very interesting that when we add the third parameter, i.e., the indeterminacy

degree of IFSs, to c1(A, B), we get a good association coefficient c3(A, B), which
not only takes the third parameter of IFS (the hesitancy degree) into consideration,
but also satisfies all the three conditions of Definition 2.31.

In many cases, for instance, in cluster analysis, the weights of the attributes are
always different, so we should take them into account, and thus extend c3(A, B) to
the following form:
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c4(A, B)

=
∑n

j = 1 wj
(
μA(xj) · μB(xj) + vA(xj) · vB(xj) + πA(xj) · πB(xj)

)
√
∑n

j = 1 wj

(
μ2

A(xj) + v2
A(xj) + π2

A(xj)
)

·∑n
j = 1 wj

(
μ2

B(xj) + v2
B(xj) + π2

B(xj)
)

(2.164)

where w = (w1, w2, . . . , wn)
T is the weight vector of xj (j = 1, 2, . . . , n) with

wj ≥ 0, j = 1, 2, . . . , n and
∑n

j = 1 wj = 1. Similar to Eq. (2.159), Eq. (2.164) also
satisfies all the conditions of Definition 2.31.

If the universe of discourse, X, is continuous and the weight of the element x ∈ X =
[a, b] is w(x), where w(x) ≥ 0 and

∫ b
a w(x)dx = 1, then Eq. (2.164) is transformed

into the following form:

c5(A, B)

=
∫ b

a w(x) (μA(x)μB(x) + vA(x)vB(x) + πA(x)πB(x)) dx
√∫ b

a w(x)
(
μ2

A(x) + v2
A(x) + π2

A(x)
)

dx · ∫ b
a w(x)

(
μ2

B(x) + v2
B(x) + π2

B(x)
)

dx

(2.165)

If all the elements have the same importance, i.e., w(x) = 1
b−a ∈ [0, 1] (in this

case, (b − a) ≥ 1), for any x ∈ [a, b], then Eq. (2.165) is replaced by

c6(A, B) =
∫ b

a (μA(x)μB(x) + vA(x)vB(x) + πA(x)πB(x)) dx
√∫ b

a

(
μ2

A(x) + v2
A(x) + π2

A(x)
)

dx · ∫ b
a

(
μ2

B(x) + v2
B(x) + π2

B(x)
)

dx
(2.166)

2.7.2 Intuitionistic Fuzzy Clustering Algorithm

Let C = (cij)m×m be an association matrix, where cij = c(Ai, Aj) is the association
coefficient of Ai and Aj, which is derived by one of the intuitionistic fuzzy association
measures (2.157) and (2.162)–(2.164). Then by Definition 2.12, we can directly
derive the following result:

Theorem 2.18 (Zhao et al. 2012b) Let Cλ = (λcij
)

m×m be a λ-cutting matrix of the
association matrix C = (cij)m×m. Then C is an equivalent association matrix if and
only if Cλ is an equivalent Boole matrix, for all λ ∈ [0, 1], that is,

(1) C is reflexive, i.e., I ⊆ C if and only if Iλ ⊆ Cλ, i.e., I ⊆ Cλ.
(2) C is symmetric, i.e., CT = C if and only if

(
CT
)
λ

= Cλ, i.e., (Cλ)
T = Cλ.

(3) C is transitive, i.e., C2 ⊆ C if and only if Cλ ◦ Cλ ⊆ Cλ.
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From Theorem 2.18, we can see that if the association matrix is equivalent, then
its λ-cutting matrix is an equivalent Boole matrix, and then we can use the equivalent
Boole matrix to do clustering directly. But if the association matrix doesn’t satisfy the
transitivity, then we know that the λ-cutting matrix of C is just only a similar Boole
matrix, and thus, we cannot do clustering. In this situation, we can transform the
similar Boole matrix into an equivalent matrix for clustering. Let’s see the following
theorem:

Theorem 2.19 (Lei 1979) Let Bo be a similar Boole matrix over a discrete universe
of discourse X = {x1, x2, . . . , xn}, then Bo is transitive if and only if Bo has not the
following special sub-matrices:

(
1 1
1 0

)
,

(
1 1
0 1

)
,

(
1 0
1 1

)
,

(
0 1
1 1

)
(2.167)

no matter how the matrix Bo is arranged.
We can judge from Theorem 2.19 whether or not a similar Boole matrix is an

equivalent one.
Based on Theorems 2.18 and 2.19, Zhao et al. (2012b) developed an intuitionistic

fuzzy clustering algorithm based on Boole matrix and association measure as follows:

Algorithm 2.12

Step 1 Use Eq. (2.159) or (2.164) (if the weights of the attributes are the same,
we use Eq. (2.159); otherwise, we use Eq. (2.164)) to compute the association coef-
ficients of the IFSs Aj (j = 1, 2, . . . , m), and then construct an association matrix
C = (cij)m×m, where cij = c3(Ai, Aj) or cij = c4(Ai, Aj), i, j = 1, 2, . . . , m.

Step 2 Construct a λ-cutting matrix Cλ = (λcij
)

m×m of C by using Eq. (2.87).
Step 3 If Cλ is an equivalent Boole matrix, then we can cluster the m samples

as follows: If all the elements of the ith column are the same as the corresponding
elements of the jth column in Cλ, then the IFSs Ai and Aj are in the same cluster. By
this principle, we can cluster all these m samples Aj (j = 1, 2, . . . , m).

If Cλ is not an equivalent Boole matrix, then by Theorem 2.19, we know that
no matter how the matrix Cλ is arranged, it must have some of the special sub-
matrixes in Eq. (2.167). In such cases, we can transform the elements 0 into 1 in such
special sub-matrices until Cλ has not any special sub-matrix, and thus, we get a new
equivalent matrix C∗

λ .
Step 4 Employ the equivalent matrix C∗

λ to classify all the given IFSs Aj

(j = 1, 2, . . . , m) by the procedure in Step 3.
Step 5 End.

The principal of choosing λ: Based on the idea of constructing the association
matrix whose elements are association coefficients between every two alternatives
(samples) in this paper, we balance the similarity degree between two alternatives
mainly through the association coefficient (that is, the confidence level) of them. We
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choose the confidence level λ from the biggest one to the smallest one in the associ-
ation matrix. After that, in terms of the chosen confidence level λ, we construct the
corresponding λ-cutting matrix. With this principle, the clustering results come into
being, the smaller the confidence level λ is, the more detailed the clustering will be.

2.7.3 Numerical Example

Example 2.8 (Zhao et al. 2012b) A military equipment development team needs to
cluster five combat aircrafts according to their operational effectiveness. In order to
group these combat aircrafts yi (i = 1, 2, . . . , 5) with respect to their comprehensive
functions, a team of military experts have been set up to provide their assessment
information on yi (i = 1, 2, . . . , 5). The attributes which are considered here in
assessment of yi (i = 1, 2, . . . , 5) are: (1) G1 is the aircraft power; (2) G2 is the
fire power (a military capability to direct force at an enemy); (3) G3 is the capacity
for target detection; (4) G4 is the controlling ability; (5) G5 is the survivability; (6)
G6 is the range of voyage; and (7) G7 is the electronic countermeasure effect. The
military experts evaluate the performances of the combat aircrafts yi (i = 1, 2, . . . , 5)

according to the attributes Gj (j = 1, 2, . . . , 7), and gives the data as follows:

y1 = {〈G1, 0.5, 0.3〉, 〈G2, 0.6, 0.3〉, 〈G3, 0.4, 0.3〉,
〈G4, 0.8, 0.1〉, 〈G5, 0.7, 0.2〉, 〈G6, 0.5, 0.2〉, 〈G7, 0.4, 0.3〉}

y2 = {〈G1, 0.6, 0.2〉, 〈G2, 0.5, 0.3〉, 〈G3, 0.5, 0.2〉,
〈G4, 0.6, 0.2〉, 〈G5, 0.6, 0.3〉, 〈G6, 0.6, 0.3〉, 〈G7, 0.5, 0.2〉}

y3 = {〈G1, 0.7, 0.1〉, 〈G2, 0.6, 0.3〉, 〈G3, 0.7, 0.2〉,
〈G4, 0.5, 0.3〉, 〈G5, 0.5, 0.2〉, 〈G6, 0.5, 0.2〉, 〈G7, 0.6, 0.3〉}

y4 = {〈G1, 0.4, 0.3〉, 〈G2, 0.7, 0.2〉, 〈G3, 0.5, 0.3〉,
〈G4, 0.6, 0.2〉, 〈G5, 0.7, 0.1〉, 〈G6, 0.4, 0.3〉, 〈G7, 0.7, 0.2〉}

y5 = {〈G1, 0.6, 0.2〉, 〈G2, 0.6, 0.3〉, 〈G3, 0.6, 0.2〉,
〈G4, 0.5, 0.3〉, 〈G5, 0.8, 0.1〉, 〈G6, 0.6, 0.1〉, 〈G7, 0.6, 0.1〉}

Suppose that the weights of the attributes Gj (j = 1, 2, . . . , 7) are equal, now we
utilize Algorithm 2.12 to group these combat aircrafts yi (i = 1, 2, . . . , 5):

Step 1 Use Eq. (2.160) to compute the association coefficients of the IFSs yi

(i = 1, 2, . . . , 5), and then construct an association matrix C = (cij)5×5, where
cij = c3(yi, yj), i, j = 1, 2, . . . , 5:

C =

⎛

⎜⎜⎜⎜⎝

1.000 0.964 0.917 0.952 0.947
0.964 1.000 0.948 0.941 0.963
0.917 0.948 1.000 0.946 0.957
0.952 0.941 0.946 1.000 0.957
0.947 0.963 0.957 0.957 1.000

⎞

⎟⎟⎟⎟⎠
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Step 2 By Eq. (2.87), we give a detailed analysis with respect to the threshold λ,
and then we get all the possible clusters of the combat aircrafts yi (i = 1, 2, . . . , 5):

(1) If λ = 1, then yi (i = 1, 2, . . . , 5) are grouped into the following nine types:

{y1} , {y2} , {y3} , {y4} , {y5}

(2) If λ = 0.964, then by Eq. (2.87), the λ-cutting matrix Cλ = (λcij
)

5×5 of C is:

Cλ =

⎛

⎜⎜⎜⎜⎝

1 1 0 0 0
1 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞

⎟⎟⎟⎟⎠

According to Theorem 2.19, we know that Cλ is an equivalent Boole matrix, we
can use Cλ to cluster the combat aircrafts yi (i = 1, 2, . . . , 5) directly, and then
yi (i = 1, 2, . . . , 5) are grouped into the following four types:

{y1, y2} , {y3} , {y4} , {y5}

(3) If λ = 0.963, then the λ-cutting matrix Cλ = (λcij
)

5×5 of C is:

Cλ =

⎛

⎜⎜⎜⎜⎝

1 1 0 0 0
1 1 0 0 1
0 0 1 0 0
0 0 0 1 0
0 1 0 0 1

⎞

⎟⎟⎟⎟⎠

From Theorem 2.19, we know that Cλ is not an equivalent Boole matrix, we
should first transform Cλ into an equivalent Boole matrix by changing the element
“0” in the special sub-matrices into “1” and get

C∗
λ =

⎛

⎜⎜⎜⎜⎝

1 1 0 0 1
1 1 0 0 1
0 0 1 0 0
0 0 0 1 0
1 1 0 0 1

⎞

⎟⎟⎟⎟⎠

and thus, yi (i = 1, 2, . . . , 5) are grouped into the following three types:

{y1, y2, y5}, {y3}, {y4}
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Table 2.13 Comparisons of the derived results

Types The results derived by Zhao
et al. (2012b)’s method

The results developed by Xu
et al. (2008)’s method

The results developed by
Pelekis et al. (2008)’s
method

5 {y1}, {y2}, {y3}, {y4}, {y5} {y1}, {y2}, {y3}, {y4}, {y5} {y1}, {y2}, {y3}, {y4}, {y5}
4 {y1, y2}, {y3}, {y4}, {y5} {y1, y2}, {y3}, {y4}, {y5} {y2, y5}, {y1}, {y3}, {y4}
3 {y1, y2, y5}, {y3}, {y4} {y1, y2, y5}, {y3}, {y4} {y2, y4, y5}, {y1}, {y3}
2 {y1, y2}, {y3, y4, y5}
1 {y1, y2, y3, y4, y5} {y1, y2, y3, y4, y5} {y1, y2, y3, y4, y5}

(4) If λ = 0.957, then the λ-cutting matrix Cλ = (λcij
)

5×5 of C is:

Cλ =

⎛

⎜⎜⎜⎜⎝

1 1 0 0 0
1 1 0 0 1
0 0 1 0 1
0 0 0 1 1
0 1 1 1 1

⎞

⎟⎟⎟⎟⎠

Similarly, Cλ is not an equivalent Boole matrix, we should first transform Cλ into
an equivalent Boole matrix by changing the element “0” in the special sub-matrices
into “1” and get

C∗
λ =

⎛

⎜⎜⎜⎜⎝

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

⎞

⎟⎟⎟⎟⎠

and thus, yi (i = 1, 2, . . . , 5) are grouped into the following one type:

{y1, y2, y3, y4, y5} .

In the following, some simple comparisons are made among Zhao et al. (2012b)’s
method, Xu et al. (2008)’s method which may be regarded as a generalization of
Yang and Shih (2001)’s method and Pelekis et al. (2008)’s method in Table 2.13
(Zhao et al. 2012b).

Through Table 2.13, we know that Zhao et al. (2012b)’s method has the same
clustering results with those of Xu et al. (2008)’s method, and Pelekis et al. (2008)’s
method can make more detailed clustering results.

In order to demonstrate the effectiveness of the intuitionistic fuzzy Boole cluster-
ing method, we further conduct an experiment with more samples to compare these
methods:
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Example 2.9 (Zhao et al. 2012b) Below we first introduce the experimental data
sets, and then make a comparison among these methods:

Experimental data sets: Suppose that the military experts evaluate the perfor-
mance of another group of combat aircrafts yi (i = 1, 2, . . . , 10) according to the
attributes Gj (j = 1, 2, . . . , 7), and give the data as:

y1 = {〈G1, 0.5, 0.3〉, 〈G2, 0.6, 0.3〉, 〈G3, 0.4, 0.3〉,
〈G4, 0.8, 0.1〉, 〈G5, 0.7, 0.2〉, 〈G6, 0.5, 0.2〉, 〈G7, 0.4, 0.3〉}

y2 = {〈G1, 0.6, 0.2〉, 〈G2, 0.5, 0.3〉, 〈G3, 0.5, 0.2〉,
〈G4, 0.6, 0.2〉, 〈G5, 0.6, 0.3〉, 〈G6, 0.6, 0.3〉, 〈G7, 0.5, 0.2〉}

y3 = {〈G1, 0.7, 0.1〉, 〈G2, 0.6, 0.3〉, 〈G3, 0.7, 0.2〉,
〈G4, 0.5, 0.3〉, 〈G5, 0.5, 0.2〉, 〈G, 0.5, 0.2〉, 〈G7, 0.6, 0.3〉 }

y4 = {〈G1, 0.4, 0.3〉, 〈G2, 0.7, 0.2〉, 〈G3, 0.5, 0.3〉,
〈G4, 0.6, 0.2〉, 〈G5, 0.7, 0.1〉, 〈G6, 0.4, 0.3〉, 〈G7, 0.7, 0.2〉}

y5 = {〈G1, 0.6, 0.2〉, 〈G2, 0.6, 0.3〉, 〈G3, 0.6, 0.2〉,
〈G4, 0.5, 0.3〉, 〈G5, 0.8, 0.1〉, 〈G6, 0.6, 0.1〉, 〈G7, 0.6, 0.1〉}

y6 = {〈G1, 0.8, 0.1〉, 〈G2, 0.5, 0.2〉, 〈G3, 0.7, 0.1〉,
〈G4, 0.7, 0.1〉, 〈G5, 0.7, 0.2〉, 〈G6, 0.8, 0.1〉, 〈G7, 0.7, 0.2〉}

y7 = {〈G1, 0.7, 0.2〉, 〈G2, 0.6, 0.3〉, 〈G3, 0.8, 0.1〉,
〈G4, 0.8, 0.1〉, 〈G5, 0.6, 0.3〉, 〈G6, 0.5, 0.4〉, 〈G7, 0.8, 0.1〉}

y8 = {〈G1, 0.5, 0.2〉, 〈G2, 0.7, 0.2〉, 〈G3, 0.7, 0.2〉,
〈G4, 0.6, 0.2〉, 〈G5, 0.5, 0.3〉, 〈G6, 0.7, 0.1〉, 〈G7, 0.6, 0.2〉}

y9 = {〈G1, 0.6, 0.2〉, 〈G2, 0.5, 0.3〉, 〈G3, 0.6, 0.3〉,
〈G4, 0.5, 0.2〉, 〈G5, 0.8, 0.1〉, 〈G6, 0.8, 0.1〉, 〈G7, 0.5, 0.2〉}

y10 = {〈G1, 0.9, 0.0〉, 〈G2, 0.9, 0.1〉, 〈G3, 0.8, 0.1〉,
〈G4, 0.7, 0.2〉, 〈G5, 0.5, 0.15〉, 〈G6, 0.3, 0.65〉, 〈G7, 0.15, 0.75〉}

Comparison results among these methods are listed in Table 2.14 (Zhao et al. 2012b).
Again we can see from Table 2.14 that Zhao et al. (2012b)’s method has the

same clustering results with those of Xu et al. (2008)’s method, and Pelekis et al.
(2008)’s method can make more detailed clustering results. It is worthy of pointing
out that the clustering results of Zhao et al. (2012b)’s method are exactly the same
with those of Xu et al. (2008)’s method, but Zhao et al. (2012b)’s method does not
need to use the transitive closure technique to calculate the equivalent matrix of the
association matrix, and thus requires much less computational effort than Xu et al.
(2008)’s method. Let’s examine into the computing process of the two methods:
whether in Xu et al. (2008)’s method or Zhao et al. (2012b)’s method, the clustering
processes are all based on λ-cutting matrix. Before getting the λ-cutting matrix,
Xu et al. (2008) first transformed the intuitionistic fuzzy association matrix into
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an intuitionistic fuzzy equivalent association matrix by transitive closure technique,
which needs lots of computational effort. In Zhao et al. (2012b)’s method, we get
the λ-cutting matrix directly from the intuitionistic fuzzy association matrix.

Furthermore, Let m and n represent the amount of alternatives and attributes
respectively. Then the computational complexity of our method is O (nm2), Xu
et al. (2008)’s method is O ((1 + k)nm2) where k (usually, k ≥ 2) represents the
transfer times until we get the equivalent matrix, and Pelekis et al. (2008)’s method
is O (nm2 + jcm) where c is the number of the clusters, j is the times of judgment if∥∥Uj+1 − Uj

∥∥
F > ε is valid.

In summary, Xu et al. (2008)’s method and Pelekis et al. (2008)’s method have
relatively high computational complexity, which indeed motivates the intuitionistic
fuzzy Boole clustering method given by Zhao et al. (2012b).

Furthermore, from Examples 2.8 and 2.9, we can see that the clustering results
have much to do with the threshold λ, the smaller the confidence level λ is, the more
detailed the clustering will be.

Either in Example 2.8 or in Example 2.9, we all use the association coefficient
Eq. (2.159) but not Eq. (2.157), the reason is that Eq. (2.157) cannot guarantee the
necessity in the condition (2) of Definition 2.31 and omits the hesitation degree,
which may lead to the incorrect results. The following example shows these ideas:

Example 2.10 (Zhao et al. 2012b) Suppose that the military experts evaluate the
performance of another group of combat aircrafts yi (i = 1, 2, . . . , 9) according to
the attributes Gj (j = 1, 2, . . . , 7), and give the data as:

y1 = {〈G1, 0.5, 0.3〉, 〈G2, 0.6, 0.3〉, 〈G3, 0.4, 0.3〉,
〈G4, 0.8, 0.1〉, 〈G5, 0.7, 0.2〉, 〈G6, 0.5, 0.2〉, 〈G7, 0.4, 0.3〉}

y2 = {〈G1, 0.6, 0.2〉, 〈G2, 0.5, 0.3〉, 〈G3, 0.5, 0.2〉,
〈G4, 0.6, 0.2〉, 〈G5, 0.6, 0.3〉, 〈G6, 0.6, 0.3〉, 〈G7, 0.5, 0.2〉}

y3 = {〈G1, 0.7, 0.1〉, 〈G2, 0.6, 0.3〉, 〈G3, 0.7, 0.2〉,
〈G4, 0.5, 0.3〉, 〈G5, 0.5, 0.2〉, 〈G6, 0.5, 0.2〉, 〈G7, 0.6, 0.3〉 }

y4 = {〈G1, 0.4, 0.3〉, 〈G2, 0.7, 0.2〉, 〈G3, 0.5, 0.3〉,
〈G4, 0.6, 0.2〉, 〈G5, 0.7, 0.1〉, 〈G6, 0.4, 0.3〉, 〈G7, 0.7, 0.2〉}

y5 = {〈G1, 0.6, 0.2〉, 〈G2, 0.6, 0.3〉, 〈G3, 0.6, 0.2〉,
〈G4, 0.5, 0.3〉, 〈G5, 0.8, 0.1〉, 〈G6, 0.6, 0.1〉, 〈G7, 0.6, 0.1〉}

y6 = {〈G1, 0.8, 0.1〉, 〈G2, 0.5, 0.2〉, 〈G3, 0.7, 0.1〉,
〈G4, 0.7, 0.1〉, 〈G5, 0.7, 0.2〉, 〈G6, 0.8, 0.1〉, 〈G7, 0.7, 0.2〉}

y7 = {〈G1, 0.7, 0.2〉, 〈G2, 0.6, 0.3〉, 〈G3, 0.8, 0.1〉,
〈G4, 0.8, 0.1〉, 〈G5, 0.6, 0.3〉, 〈G6, 0.5, 0.4〉, 〈G7, 0.8, 0.1〉}

y8 = {〈G1, 0.5, 0.2〉, 〈G2, 0.7, 0.2〉, 〈G3, 0.7, 0.2〉,
〈G4, 0.6, 0.2〉, 〈G5, 0.5, 0.3〉, 〈G6, 0.7, 0.1〉, 〈G7, 0.6, 0.2〉}

y9 = {〈G1, 0.6, 0.2〉, 〈G2, 0.5, 0.3〉, 〈G3, 0.6, 0.3〉,
〈G4, 0.5, 0.2〉, 〈G5, 0.8, 0.1〉, 〈G6, 0.8, 0.1〉, 〈G7, 0.5, 0.2〉}
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If we use Eq. (2.157) to compute the association coefficients of the IFSs yi

(i = 1, 2, . . . , 9), then the association matrix C = (cij)6×6, where cij = c1(yi, yj),
i, j = 1, 2, . . . , 9 will be:

C =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.000 0.971 0.931 0.960 0.945 0.933 0.934 0.943 0.948
0.971 1.000 0.973 0.956 0.970 0.970 0.971 0.972 0.970
0.931 0.973 1.000 0.945 0.968 0.964 0.965 0.973 0.953
0.960 0.956 0.945 1.000 0.962 0.923 0.952 0.950 0.938
0.945 0.970 0.968 0.962 1.000 0.967 0.946 0.965 0.985
0.933 0.970 0.964 0.923 0.967 1.000 0.963 0.969 0.971
0.934 0.971 0.965 0.952 0.946 0.963 1.000 0.960 0.923
0.943 0.972 0.973 0.950 0.965 0.969 0.960 1.000 0.960
0.948 0.970 0.953 0.938 0.985 0.971 0.923 0.960 1.000

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

If we use Eq. (2.159) to compute the association coefficients of the IFSs yi

(i = 1, 2, . . . , 9), then the association matrix C = (cij)m×m, where cij = c3(yi, yj),
i, j = 1, 2, . . . , 9 will be:

C =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.000 0.964 0.917 0.952 0.947 0.914 0.914 0.934 0.933
0.964 1.000 0.948 0.941 0.963 0.959 0.950 0.959 0.964
0.917 0.948 1.000 0.946 0.957 0.945 0.948 0.969 0.936
0.952 0.941 0.946 1.000 0.957 0.908 0.934 0.950 0.923
0.947 0.963 0.957 0.957 1.000 0.950 0.930 0.960 0.976
0.914 0.959 0.945 0.908 0.950 1.000 0.956 0.953 0.961
0.914 0.950 0.948 0.934 0.930 0.956 1.000 0.947 0.911
0.934 0.959 0.969 0.950 0.960 0.953 0.947 1.000 0.955
0.933 0.964 0.936 0.923 0.976 0.961 0.911 0.955 1.000

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Based on the above two association matrices, using the intuitionistic fuzzy Boole
clustering method, we can make comparisons between the clustering results of the
two association coefficients (See Table 2.15) (Zhao et al. 2012b).

We can see from Table 2.15 that Eq. (2.159) can derive more detailed clustering
results than Eq. (2.157). Since Eq. (2.157) cannot guarantee the necessity in the con-
dition (2) of Definition 2.31, and omits the hesitation degree, some information may
be missing. Namely, Eq. (2.157) cannot reflect all the information that the intuition-
istic fuzzy data contains. Considering the stated reasons above, it is not hard for us
to comprehend why Eq. (2.159) can get more detailed types than Eq. (2.157). There-
fore, Compared to Eq. (2.157), Eq. (2.159) has much more potential for practical
applications.
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Table 2.15 Comparisons of the clustering results of Eqs. (2.157) and (2.159)

Types The clustering result using Eq. (2.157) The clustering result using Eq. (2.159)

9 {y1}, {y2}, {y3}, {y4}, {y5}, {y6}, {y7},
{y8}, {y9}

{y1}, {y2}, {y3}, {y4}, {y5}, {y6}, {y7},
{y8}, {y9}

8 {y5, y9}, {y1}, {y2}, {y3}, {y4}, {y6}, {y7},
{y8}

{y5, y9}, {y1}, {y2}, {y3}, {y4}, {y6}, {y7},
{y8}

7 {y3,y8}, {y5, y9}, {y1}, {y2}, {y4}, {y6},
{y7}

6 {y1}, {y2, y3, y8}, {y5, y9}, {y4}, {y6}, {y7}
5 {y1, y2, y5, y9}, {y3, y8} , {y4}, {y6}, {y7}
4 {y1, y2, y5, y6, y9}, {y3, y8}, {y4}, {y7}
3 {y1, y2, y3, y7, y8}, {y5, y6, y9}, {y4} {y1, y2, y3, y5, y6, y8, y9}, {y4}, {y7}
2 {y1, y2, y3, y5, y6, y7, y8, y9}, {y4} {y1, y2, y3, y4, y5, y6, y8, y9}, {y7}
1 {y1, y2, y3, y4, y5, y6, y7, y8, y9} {y1, y2, y3, y4, y5, y6, y7, y8, y9}

2.7.4 Interval-Valued Intuitionistic Fuzzy Clustering Algorithm

Let IVIFS(X) be the set of all IVIFSs over X, Xu et al. (2008) defined the concept
of association coefficient between two IVIFS as follows:

Definition 2.32 (Xu et al. 2008) Let ċ be a mapping ċ: (IVIFS(X))2 → [0, 1], then
the association coefficient between two IVIFSs Ã and B̃ is defined as ċ(Ã, B̃), which
satisfies the following conditions: (1) 0 ≤ ċ(Ã, B̃) ≤ 1; (2) ċ(Ã, B̃) = 1 if and only
if Ã = B̃; and (3) ċ(Ã, B̃) = ċ(B̃, Ã).

In the case where X = {x1, x2, . . . , xn} is a discrete universe of discourse, we
extend c3(A, B) to IVIFSs to calculate the association coefficient between two IVIFSs
Ã and B̃ as below:

ċ7(Ã, B̃) =
∑n

j = 1 fÃ,B̃

(
xj
)

√∑n
j = 1 gÃ

(
xj
) ·∑n

j = 1 gB̃

(
xj
) (2.168)

where

gÃ

(
xj
) =

(
μ−

Ã

(
xj
))2 +

(
v−

Ã

(
xj
))2 +

(
π−

Ã

(
xj
))2 +

(
μ+

Ã

(
xj
))2

+
(

v+
Ã

(
xj
))2 +

(
π+

Ã

(
xj
))2

(2.169)
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gB̃

(
xj
) =

(
μ−

B̃

(
xj
))2 +

(
v−

B̃

(
xj
))2 +

(
π−

B̃

(
xj
))2 +

(
μ+

B̃

(
xj
))2

+
(

v+
B̃

(
xj
))2 +

(
π+

B̃

(
xj
))2

(2.170)

fÃ,B̃

(
xj
) = μ−

Ã

(
xj
)
μ−

B̃

(
xj
)+ v−

Ã

(
xj
)

v−
B̃

(
xj
)

+ π−
Ã

(
xj
)
π−

B̃

(
xj
)+ μ+

Ã

(
xj
)
μ+

B̃

(
xj
)

+ v+
Ã

(
xj
)

v+
B̃

(
xj
)+ π+

Ã

(
xj
)
π+

B̃

(
xj
)

(2.171)

If we need to consider the weights of the element xi ∈ X, then Eq. (2.166) can be
extended to its weighted counterpart:

ċ8(Ã, B̃) =
∑n

j = 1 wjfÃ,B̃

(
xj
)

√∑n
j = 1 wjgÃ

(
xj
) ·∑n

j = 1 wjgB̃

(
xj
) (2.172)

where w = (w1, w2, . . . , wn)
T is the weight vector of xi (i = 1, 2, . . . , n), with

wj ≥ 0, i = 1, 2, . . . , n and
∑n

j = 1 wj = 1. If w1 = w2 = · · · = wn = 1/n, then
Eq. (2.172) reduces to Eq. (2.168).

In the following, we prove that Eq. (2.172) satisfies all the conditions of Definition
2.32:

Proof Since Ã, B̃ ∈ IVIFS(X), then

0 ≤ μ−
Ã
(xj) ≤ μ+

Ã
(xj) ≤ 1, 0 ≤ v−

Ã
(xj) ≤ v+

Ã
(xj) ≤ 1, 0 ≤ π−

Ã
(xj) ≤ π+

Ã
(xj) ≤ 1,

for all xj ∈ X (2.173)

0 ≤ μ−
B̃
(xj) ≤ μ+

B̃
(xj) ≤ 1, 0 ≤ v−

B̃
(xj) ≤ v+

B̃
(xj) ≤ 1, 0 ≤ π−

B̃
(xj) ≤ π+

B̃
(xj) ≤ 1,

for all xj ∈ X (2.174)

and thus, by Eq. (2.172), we get ċ8(Ã, B̃) ≥ 0. According to the famous Cauchy-
Schwarz inequality Eq. (2.160), we have

n∑

j = 1

wjfÃ,B̃ ≤

√√√√√

⎛

⎝
n∑

j = 1

wjgÃ

(
xj
)
⎞

⎠

⎛

⎝
n∑

j = 1

wjgB̃

(
xj
)
⎞

⎠ (2.175)

and thus, ċ8(Ã, B̃) ≤ 1 with equality if and only if there exists a nonzero real number
λ, such that
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μ−
Ã
(xj) = λμ−

B̃
(xj), μ

+
Ã
(xj) = λμ+

B̃
(xj), v−

Ã
(xj) = λv−

B̃
(xj)

v+
Ã
(xj) = λv+

B̃
(xj), π

−
Ã

(xj) = λπ−
B̃

(xj), π+
Ã

(xj) = λπ+
B̃

(xj)

for all xj ∈ X (2.176)

while because

π−
Ã

(xj) = 1 − μ+
Ã
(xj) − v+

Ã
(xj), π

+
Ã

(xj) = 1 − μ−
Ã
(xj) − v−

Ã
(xj), for all xj ∈ X

(2.177)
π−

B̃
(xj) = 1 − μ+

B̃
(xj) − v+

B̃
(xj), π

+
B̃

(xj) = 1 − μ−
B̃
(xj) − v−

B̃
(xj), for all xj ∈ X

(2.178)
Then by Eq. (2.178), we have λ = 1, i.e., Ã = B̃, which completes the proofs of

the conditions (1) and (2) in Definition 2.32. Furthermore, by Eq. (2.172), we have

ċ8(Ã, B̃) =
∑n

j = 1 wjfÃ,B̃

(
xj
)

√∑n
j = 1 wjgÃ

(
xj
) ·∑n

j = 1 wjgB̃

(
xj
)

=
∑n

j = 1 wjfB̃,Ã

(
xj
)

√∑n
j = 1 wjgB̃

(
xj
) ·∑n

j = 1 wjgÃ

(
xj
) = ċ8(B̃, Ã) (2.179)

Thus, we can prove that ċ8(Ã, B̃) also satisfies the condition (3) of Definition 2.32.
If the universe of discourse, X, is continuous and the weight of the element x ∈

X = [a, b] is w(x), where w(x) ≥ 0 and
∫ b

a w(x)dx = 1, then we get the continuous
form of Eq. (2.172):

ċ9(Ã, B̃) =
∫ b

a w(x)fÃ,B̃ (x) dx
√∫ b

a w(x)gÃ (x) dx · ∫ b
a w(x)gB̃ (x) dx

(2.180)

where

gÃ (x) =
(
μ−

Ã
(x)
)2+

(
v−

Ã
(x)
)2+

(
π−

Ã
(x)
)2+

(
μ+

Ã
(x)
)2+

(
v+

Ã
(x)
)2+

(
π+

Ã
(x)
)2

(2.181)

gB̃ (x) =
(
μ−

B̃
(x)
)2+

(
v−

B̃
(x)
)2+

(
π−

B̃
(x)
)2+

(
μ+

B̃
(x)
)2+

(
v+

B̃
(x)
)2+

(
π+

B̃
(x)
)2

(2.182)

fÃ,B̃

(
xj
) = μ−

Ã
(x) μ−

B̃
(x) + v−

Ã
(x) v−

B̃
(x) + π−

Ã
(x) π−

B̃
(x) + μ+

Ã
(x) μ+

B̃
(x)

+ v+
A (x) v+

B̃
(x) + π+

Ã
(x) π+

B̃
(x) (2.183)

If all the elements have the same importance, then Eq. (2.181) reduces to
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ċ10(Ã, B̃) =
∫ b

a fÃ,B̃ (x) dx
√∫ b

a gÃ (x) dx · ∫ b
a gB̃ (x) dx

(2.184)

For convenience, we introduce the concept of interval-valued intuitionistic fuzzy
association matrix:

Definition 2.33 (Xu et al. 2008) Let Ãj (j = 1, 2, . . . , m) be m IVIFSs, then
Ċ = (ċij)m×m is called an association matrix, where ċij = ċ(Ãi, Ãj) is the interval-
valued intuitionistic fuzzy association coefficient of Ãi and Ãj, which has the follow-
ing properties: (1) 0 ≤ ċij ≤ 1 for all i, j = 1, 2, . . . , m; (2) ċij = 1 if and only if
Ãi = Ãj; and (3) ċij = ċji, for all i, j = 1, 2, . . . , m.

Based on the definition above, in what follows, we introduce an algorithm for
clustering IVIFSs (Zhao et al. 2012b):

Algorithm 2.13

Step 1 Use Eqs. (2.168) or (2.172) (if the weights of the attributes are the same,
we use Eq. (2.168); otherwise, we use Eq. (2.172)) to calculate the association coef-
ficients of the IVIFSs Ãj (j = 1, 2, . . . , m), and then construct an association matrix
Ċ = (ċij)m×m, where ċij = ċ7(Ãi, Ãj) or ċij = ċ8(Ãi, Ãj), i, j = 1, 2, . . . , m.

Step 2 Construct a λ-cutting matrix Ċλ = (λċij
)

m×m of Ċ by using Eq. (2.87).
Step 3 See Algorithm 2.12.
Step 4 See Algorithm 2.12.
Step 5 End.

Example 2.11 (Zhao et al. 2012b) Suppose that there are six samples
yi (i = 1, 2, . . . , 6) to be classified. According to the attributes Gi (i = 1, 2),
their attribute values are expressed by IVIFSs as follows:

y1 = {〈G1, [0.60, 0.80] , [0.10, 0.20]〉, 〈G2, [0.50, 0.70] , [0.10, 0.30]〉}
y2 = {〈G1, [0.30, 0.50] , [0.25, 0.45]〉, 〈G2, [0.70, 0.85] , [0.00, 0.15]〉}
y3 = {〈G1, [0.45, 0.65] , [0.15, 0.35]〉, 〈G2, [0.60, 0.80] , [0.05, 0.20]〉}
y4 = {〈G1, [0.34, 0.54] , [0.25, 0.45]〉, 〈G2, [0.50, 0.70] , [0.10, 0.30]〉}
y5 = {〈G1, [0.40, 0.60] , [0.25, 0.40]〉, 〈G2, [0.65, 0.80] , [0.10, 0.20]〉}
y6 = {〈G1, [0.45, 0.65] , [0.15, 0.35]〉, 〈G2, [0.47, 0.67] , [0.05, 0.25]〉}

Suppose that the weights of the attributes Gj (j = 1, 2) are equal, now we utilize
Algorithm 2.13 to group these samples yi (i = 1, 2, . . . , 6):

Step 1 Use Eq. (2.168) to compute the association coefficients of the IFSs
yi (i = 1, 2, . . . , 6), and then construct an association matrix C = (cij)6×6, where
cij = ċ7(yi, yj), i, j = 1, 2, . . . , 6:
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C =

⎛

⎜⎜⎜⎜⎜⎜⎝

1.000 0.908 0.973 0.944 0.950 0.977
0.908 1.000 0.979 0.975 0.987 0.950
0.973 0.979 1.000 0.982 0.992 0.986
0.944 0.975 0.982 1.000 0.981 0.983
0.950 0.987 0.992 0.981 1.000 0.967
0.977 0.950 0.986 0.983 0.967 1.000

⎞

⎟⎟⎟⎟⎟⎟⎠

Step 2 By Eq. (2.87) we give a detailed analysis with respect to the threshold λ,
and then we get all the possible clusters of the samples yi (i = 1, 2, . . . , 6):

(1) If λ = 1, then yi (i = 1, 2, . . . , 6) are grouped into the following six types:

{y1} , {y2} , {y3} , {y4} , {y5} , {y6}

(2) If λ = 0.992, then by Eq. (2.87), the λ-cutting matrix Cλ = (λcij
)

m×m of C is:

Cλ =

⎛

⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 1 0
0 0 0 1 0 0
0 0 1 0 1 0
0 0 0 0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎠

According to Theorem 2.19, we know that Cλ is an equivalent Boole matrix,
we can use Cλ to cluster the samples yi (i = 1, 2, . . . , 6) directly, and then yi

(i = 1, 2, . . . , 6) are grouped into the following five types:

{y1} , {y2} , {y3, y5} , {y4} , {y6}

(3) If λ = 0.987, then the λ-cutting matrix Cλ = (λcij
)

m×m of C is:

Cλ =

⎛

⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 0 0 1 0
0 0 1 0 1 0
0 0 0 1 0 0
0 1 1 0 1 0
0 0 0 0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎠

Similar to (2), yi (i = 1, 2, . . . , 6) are grouped into the following four types:

{y1} , {y2, y3, y5} , {y4} , {y6}
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(4) If λ = 0.986, then the λ-cutting matrix Cλ = (λcij
)

m×m of C is:

Cλ =

⎛

⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 0 0 1 0
0 0 1 0 1 1
0 0 0 1 0 0
0 1 1 0 1 0
0 0 1 0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎠

By Theorem 2.19, we know that Cλ is not an equivalent Boole matrix, to transform
Cλ into an equivalent Boole matrix, we should change the element “0” in the special
sub-matrices into “1” and then we get

C∗
λ =

⎛

⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 1 0 1 1
0 1 1 0 1 1
0 0 0 1 0 0
0 1 1 0 1 1
0 1 1 0 1 1

⎞

⎟⎟⎟⎟⎟⎟⎠

Obviously, C∗
λ is an equivalent Boole matrix, by which we can group yi

(i = 1, 2, . . . , 6) into the following three types:

{y1} , {y2, y3, y5, y6} , {y4}

(5) If λ = 0.982, then the λ-cutting matrix Cλ = (λcij
)

6×6 of C is:

Cλ =

⎛

⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 0 0 1 1
0 0 1 1 1 1
0 0 1 1 0 0
0 1 1 0 1 0
0 1 1 0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎠

Similar to (4), yi (i = 1, 2, . . . , 6) are grouped into the following two types:

{y1} , {y2, y3, y4, y5, y6}
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(6) If λ = 0.977, then the λ-cutting matrix Cλ = (λcij
)

6×6 of C is:

Cλ =

⎛

⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 1
0 1 1 1 1 1
0 1 1 1 1 1
0 1 1 1 1 1
0 1 1 1 1 1
1 1 1 1 1 1

⎞

⎟⎟⎟⎟⎟⎟⎠

Similar to (4), yi (i = 1, 2, . . . , 6) are grouped into the following one types:

{y1, y2, y3, y4, y5, y6}

2.8 A Netting Method for Clustering Intuitionistic
Fuzzy Information

2.8.1 An Approach to Constructing Intuitionistic Fuzzy
Similarity Matrix

Now we consider a multi-attribute decision making problem, let Y and G be as
defined previously. The characteristic of each alternative yi under all the attributes
Gj (j = 1, 2, . . . , n) is represented as an IFS:

yi = {〈Gj, μyi(Gj), vyi(Gj)〉|Gj ∈ G}, i = 1, 2, . . . , m; j = 1, 2, . . . , n (2.185)

where μyi(Gj) denotes the membership degree of yi to Gj, and vyi(Gj) denotes the
non-membership degree of yi to Gj. Obviously, πyi(Gj) = 1 − μyi(Gj) − vyi(Gj)

is the uncertainty (or hesitation) degree of yi to Gj. If let rij = (μij, vij) =
(μyi(Gj), vyi(Gj)), which is an IFV, then based on these IFVs rij (i = 1, 2, . . . , m;
j = 1, 2, . . . , n), we can construct an m ×n intuitionistic fuzzy matrix R = (rij)m×n.

Next, we shall introduce an approach to constructing an intuitionistic fuzzy sim-
ilarity matrix based on the intuitionistic fuzzy matrix R = (rij)m×n.

For any two alternatives yi and yk , we first use the normalized Hamming distance
to get the average value of the absolute deviations of the non-membership degrees
vij and vkj, for all j = 1, 2, . . . , n:

ḋNH(yi, yk) = 1

n

n∑

j = 1

|vij − vkj|, i, k = 1, 2, . . . , m (2.186)

Analogously, we get the average value of the absolute deviations of the member-
ship degrees μij and μkj, for all j = 1, 2, . . . , n:
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dNH(yi, yk) = 1

n

n∑

j = 1

|μij − μkj|, i, k = 1, 2, . . . , m (2.187)

Obviously, the distances (2.186) and (2.187) show the closeness degrees of the
characteristics of each two alternatives yi and yk . The smaller the values of ḋNH(yi, yk)

and dNH(yi, yk) are, the more similar the two alternatives yi and yk .
In an intuitionistic fuzzy similarity matrix, each of its elements is an IFV. To get

an intuitionistic fuzzy closeness degrees of yi and yk , we may consider the value of
ḋNH(yi, yk) as a non-membership degree v̇ik , and then it may be hopeful to define

μ̇ik = 1 − 1

n

n∑

j = 1

|μij − μkj|, i, k = 1, 2, . . . , m (2.188)

as a membership degree. Now we need to check whether 0 ≤ μ̇ik + v̇ik ≤ 1 holds or
not. However,

μ̇ik + v̇ik = 1 − 1

n

n∑

j = 1

|μij − μkj| + 1

n

n∑

j = 1

|vij − vkj| ≥ 0 (2.189)

μ̇ik + v̇ik = 1 − 1

n

n∑

j = 1

|μij − μkj| + 1

n

n∑

j = 1

|vij − vkj|

= 1 − 1

n

n∑

j = 1

|(1 − μij) − (1 − μkj)| + 1

n

n∑

j = 1

|vij − vkj| (2.190)

= 1 − 1

n

n∑

j = 1

|(vij + πij) − (vkj + πkj)| + 1

n

n∑

j = 1

|vij − vkj|

= 1 − 1

n

n∑

j = 1

|(vij − vkj) + (πij − πkj)| + 1

n

n∑

j = 1

|vij − vkj|

≥ 1 − 1

n

n∑

j = 1

|vij − vkj| − 1

n

n∑

j = 1

|πij − πkj| + 1

n

n∑

j = 1

|vij − vkj|

= 1 − 1

n

n∑

j = 1

|πij − πkj|, i, k = 1, 2, . . . , m (2.191)

where π̇ij = 1 − μ̇ij − v̇ij. Thus, 0 ≤ μ̇ik + v̇ik ≤ 1 cannot be guaranteed.
In the numerical analysis above, we can see that in an IFV, the membership degree

is closely related to both the non-membership and the uncertainty degree. Motivated
by this idea, we may modify Eq. (2.188) as:
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μ̇ik = 1 − 1

n

n∑

j = 1

|vij − vkj| − 1

n

n∑

j = 1

|πij − πkj|, i, k = 1, 2, . . . , m (2.192)

with μik = 1 if and only v̇ij = v̇kj and π̇ij = π̇kj, for all j = 1, 2, . . . , n.
Based on Eqs. (2.186) and (2.192), we have the following concept:

Definition 2.34 (Wang et al. 2011) Let yi and yk be two IFSs on X, and Z(yi, yk) a
binary relation on X × X, if

Z(yi, yk) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(1, 0), yi = yk,(
1 − 1

n

n∑
j = 1

∣∣vij − vkj
∣∣− 1

n

n∑
j = 1

∣∣πij − πkj
∣∣, 1

n

n∑
j = 1

∣∣vij − vkj
∣∣
)

,

yi 
= yk,

(2.193)
then Z(yi, yk) is called a closeness degree of yi and yk .

By Eq. (2.193), we have

Theorem 2.20 (Wang et al. 2011) The closeness degree Z(yi, yk) of yi and yk is an
intuitionistic fuzzy similarity relation.

Proof (1) Let’s first prove that Z(yi, yk) is an IFV:

(a) If yi = yk , then Z(yi, yk) = (1, 0);
(b) If yi 
= yk , then

μ̇ik = 1 − 1

n

n∑

j = 1

|vij − vkj| − 1

n

n∑

j = 1

|πij − πkj|

≤ 1 − 1

n

n∑

j = 1

|vij − vkj + πij − πkj|

= 1 − 1

n

n∑

j = 1

|μij − μkj| (2.194)

Obviously, we have 0 ≤ μ̇ik ≤ 1, with μ̇ik = 1 if and only if μij = μkj, for
all j = 1, 2, . . . , n, and with μ̇ik = 0 if and only if μij = 1 and μkj = 0, for all
j = 1, 2, . . . , n, or μij = 0 and μkj = 1, for all j = 1, 2, . . . , n.

Similarly, we have 0 ≤ v̇ik =∑n
j = 1 |vij − vkj|/n ≤ 1, with v̇ik = 1 if and only if

vij = vkj, for all j = 1, 2, . . . , n, and with v̇ik = 0 if and only if vij = 1 and vkj = 0,
for all j = 1, 2, . . . , n, or vij = 0 and vkj = 1, for all j = 1, 2, . . . , n.

Also since
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μ̇ik + v̇ik = 1 − 1

n

n∑

j = 1

|vij − vkj| − 1

n

n∑

j = 1

|πij − πkj| + 1

n

n∑

j = 1

|vij − vkj|

= 1 − 1

n

n∑

j = 1

|πij − πkj| ≤ 1 (2.195)

then we have 0 ≤ μ̇ij + v̇kj ≤ 1, with μ̇ik + v̇ik = 1 if and only if πij = πkj, for
all j = 1, 2, . . . , n, and μ̇ik + v̇ik = 0, if and only if πij = 1 and πkj = 0, for all
j = 1, 2, . . . , n, or πij = 0 and πkj = 1, for all j = 1, 2, . . . , n.

(2) Since Z(yi, yi) = (1, 0), then Z is reflexive.
(3) Since |vij − vkj| = |vkj − vij| and |πij − πkj| = |πkj − πij|, then Z(yi, yk) =

Z(yk, yi), i.e., Z is symmetrical. Thus, Z(A, B) is an intuitionistic fuzzy similarity
relation.

From Eq. (2.193), we can see that if all the differences of the non-membership
degrees and the differences of the uncertainty degrees of two alternatives yi and yk
with respect to the attributes Gj (j = 1, 2, . . . , n)get smaller, then the two alternatives
are more similar to each other.

In the following section, we shall use Eq. (2.193) to introduce a clustering method.

2.8.2 A Netting Clustering Method

The so called netting means a simple process: Firstly, for an intuitionistic fuzzy
similarity matrix Z , we should choose a confidence level λ ∈ [0, 1], and then get a
λ-cutting matrix Zλ and change the elements on the diagonal of Zλ with the symbol of
the alternatives. Under the diagonal, we replace ‘1’ with the nodal point ‘*’ and ignore
all the ‘0’ in Zλ. From the node ‘*’, we draw the vertical line and the horizontal line
to the diagonal and the corresponding alternatives on the diagonal will be clustered
into one type (He 1983).

Netting method was first used to cluster data in the field of fuzzy mathematics (He
1983). With this method, we can get the clustering results by ‘netting’ the elements of
similarity matrix directly. Wang et al. (2011) proposed a netting method for clustering
the objects with intuitionistic fuzzy information:

Step 1 For a multi-attribute decision making problem, Let Y = {y1, y2, . . . , ym}
and G = {G1, G2, . . . , Gn} be defined previously, and assume that the charac-
teristics of the alternatives yi (i = 1, 2, . . . , m) with respect to the attributes
Gj (j = 1, 2, . . . , n) are represented as in Eq. (2.185).

Step 2 Construct the intuitionistic fuzzy similarity matrix Z = (zij)m×m by using
Eq. (2.193), where zij is an IFV, and zij = (μij, vij) = Z(yi, yj), i, j = 1, 2, . . . , m.

Step 3 Delete all the elements above the diagonal and replace the elements on the
diagonal with the symbol of the alternatives.
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Table 2.16 The characteristics information of the cars

G1 G2 G3 G4 G5 G6

y1 (0.3,0.5) (0.6,0.1) (0.4,0.3) (0.8,0.1) (0.1,0.6) (0.5,0.4)
y2 (0.6,0.3) (0.5,0.2) (0.6,0.1) (0.7,0.1) (0.3,0.6) (0.4,0.3)
y3 (0.4,0.4) (0.8,0.1) (0.5,0.1) (0.6,0.2) (0.4,0.5) (0.3,0.2)
y4 (0.2,0.4) (0.4,0.1) (0.9,0.0) (0.8,0.1) (0.2.0.5) (0.7,0.1)
y5 (0.5,0.2) (0.3,0.6) (0.6.0.3) (0.7,0.1) (0.6,0.2) (0.5,0.3)

Step 4 Choose the confidence level λ and construct the corresponding λ-cutting
matrix. Replace ‘1’ with ‘*’ and delete all the ‘0’ in the matrix before drawing
the vertical and horizontal line to the symbol of alternatives on the diagonal from
‘*’. Corresponding to each ‘*’, we have a type which contains two elements. Unit
the types together which have the common elements, and then we get the types
corresponding to the selected λ. Update the values of λ before all the alternatives are
clustered into one type.

The principal to choose λ: Based on the idea of constructing the similarity
degree matrix, we balance the similarity degree of two alternatives mainly through
the membership degree of the corresponding IFV. We choose the confidence level λ

from the biggest one to the smallest one. When we encounter that two membership
degrees are equal, we firstly choose the one with the smaller non-membership degree.
If both of them are equal, they are clustered into the same type. After that, in terms of
the chosen λ, we construct the corresponding λ-cutting matrix. With this principle,
the clustering results will be more detailed.

2.8.3 Illustrative Examples

Example 2.12 (Wang et al. 2011) An auto market wants to classify five different
cars yi (i = 1, 2, 3, 4, 5) into several kinds (Liang and Shi 2003). Each car has six
evaluation factors: (1) G1: Oil consumption; (2) G2: Coefficient of friction; (3) G3:
Price; (4) G4: Comfortable degree; (5) G5: Design; (6) G6: Safety coefficient. The
evaluation results of each car with respect to the factors Gj (j = 1, 2, . . . , 6) are
represented by the IFSs, shown as in Table 2.16 (Wang et al. 2011).

In the following, we utilize the intuitionistic fuzzy netting method to classify the
five cars, which involves the following steps (Wang et al. 2011):

Step 1 By Eq. (2.192), we calculate

μ̇12 = 1 − 1

6

6∑

j = 1

|v1j − v2j| − 1

6

6∑

j = 1

|π1j − π2j|
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= 1 − 1

6
(0.2 + 0.1 + 0.2 + 0.0 + 0.0 + 0.1)

− 1

6
(0.1 + 0.0 + 0.0 + 0.1 + 0.2 + 0.2)

= 0.8

v̇12 = 1

6
(0.2 + 0.1 + 0.2 + 0.0 + 0.0 + 0.1) = 0.1

and then calculate the others in a similar way. Consequently, we get the intuitionistic
fuzzy similarity matrix:

Z=

⎛

⎜⎜⎜⎜⎝

(1,0) (0.8,0.1) (0.72,0.12) (0.75,0.13) (0.65,0.22)

(0.8,0.1) (1,0) (0.82,0.08) (0.72,0.1) (0.68,0.18)

(0.72,0.12) (0.82,0.08) (1,0) (0.7,0.05) (0.63,0.23)

(0.75,0.13) (0.72,0.1) (0.7,0.05) (1,0) (0.63,0.25)

(0.65,0.22) (0.68,0.18) (0.63,0.23) (0.63,0.25) (1,0)

⎞

⎟⎟⎟⎟⎠

Step 2 Delete all the elements above the diagonal and replace the elements on the
diagonal in Z with the symbol of the alternatives yi (i = 1, 2, 3, 4, 5):

Z ′ =

⎛

⎜⎜⎜⎜⎝

y1
(0.8,0.1) y2

(0.72,0.12) (0.82,0.08) y3
(0.75,0.13) (0.72,0.1) (0.7,0.05) y4
(0.65,0.22) (0.68,0.18) (0.63,0.23) (0.63,0.25) y5

⎞

⎟⎟⎟⎟⎠

Step 3 Choose the confidence level λ properly, and get the corresponding clus-
tering results with intuitionistic fuzzy netting method:

(1) When 0.82 < λ ≤ 1.0, we have

Z ′′ =

⎛

⎜⎜⎜⎜⎝

y1
y2

y3
y4

y5

⎞

⎟⎟⎟⎟⎠

and then each car is clustered into a type: {y1}, {y2}, {y3}, {y4}, {y5}.
(2) When 0.8 < λ ≤ 0.82, we have

1

2

3

4

5

*

y

y

y

y

y

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟⎝ ⎠

Z
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and then the cars yi (i = 1, 2, 3, 4, 5) are clustered into following four types:
{y1}, {y2, y3}, {y4}, {y5}.

(3) When 0.75 < λ ≤ 0.8, we have

1

2

3

4

5

*

*

y

y

y

y

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟⎝ ⎠

Z y

and then the cars yi (i = 1, 2, 3, 4, 5) are clustered into three types: {y1, y2, y3},
{y4}, {y5}.

(4) When 0.72 < λ ≤ 0.75, we have

1

2

3

4

5

*

*

*

y

y

Z y

y

y

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟⎝ ⎠

then the cars yi (i = 1, 2, 3, 4, 5) are clustered into two types: {y1, y2, y3, y4}, {y5}.
(5) When 0.68 < λ ≤ 0.72, we have the following two cases:

(a)

1

2

3

4

5

*
y

y

Z y

y

y

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟⎝ ⎠

*
* *

In this case, the cars yi (i = 1, 2, 3, 4, 5) are clustered into two types: {y1, y2,

y3, y4}, {y5};
(b)

1

2

3

4

5

*
* *

y

y

Z y

y

y

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟⎝ ⎠

* *
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Table 2.17 Comparisons of the derived results

Types The result derived by intuitionistic
fuzzy netting method

The result developed by Zhang
et al.’s method (2007)

5 {y1}, {y2}, {y3}, {y4}, {y5} {y1}, {y2}, {y3}, {y4}, {y5}
4 {y1}, {y2, y3}, {y4}, {y5}
3 {y1, y2, y3}, {y4}, {y5} {y1, y2, y3}, {y4}, {y5}
2 {y1, y2, y3, y4}, {y5}
1 {y1, y2, y3, y4, y5} {y1, y2, y3, y4, y5}

In this case, the cars yi (i = 1, 2, 3, 4, 5) are also clustered into two types: {y1, y2,

y3, y4}, {y5}.
(6) When 0.65 < λ ≤ 0.68, we have

1

2

3

4

5

*

* *

* *

*

y

y

Z y

y

y

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟⎝ ⎠

and then the cars yi (i = 1, 2, 3, 4, 5) are clustered into one type: {y1, y2, y3, y4, y5}.
In the following, let’s make simple comparisons between the intuitionistic fuzzy

netting method and Zhang et al.’s method (2007) in Table 2.17 (Wang et al. 2011).
Through Table 2.17, we know that the intuitionistic fuzzy netting method has

some desirable advantages over Zhang et al.’s method (2007): (1) It does not need to
calculate the equivalent matrix, and thus requires much less computational efforts;
(2) It can derive more detailed clustering results. Therefore, Compared to Zhang
et al. (2007)’s method, the intuitionistic fuzzy netting method has more prospects for
practical applications.

Why the intuitionistic fuzzy netting method has these characteristics? For one
thing, the proposed netting method can rely on similarity relation instead of equivalent
relation as in fuzzy environment. For another, whether in Zhang et al. (2007) method
or in Wang et al. (2011)’s work, the type stander are all based on λ-cutting matrix,
so λ is an important parameter to decide the type scalar. Before getting the λ-cutting
matrix, Zhang et al. (2007) first transformed the intuitionistic fuzzy matrix into an
intuitionistic fuzzy similarity matrix, and then calculated its equivalent matrix which
needs lots of computational efforts. Wang et al. (2011) not only got the λ-cutting
matrix directly from the intuitionistic fuzzy similarity matrix, but also improved the
principle of choosing λ. Since Zhang et al. (2007)’s work needs to transform the
intuitionistic fuzzy similarity matrix into an intuitionistic fuzzy equivalent matrix,
and some information may be missing during this process. Namely, the intuitionistic
fuzzy equivalent matrix cannot reflect all the information that the intuitionistic fuzzy
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Table 2.18 The characteristics of the cars

G1 G2 G3 G4 G5 G6

y1 (0.8,0.1) (0.4,0.1) (0.6,0.1) (0.7,0.3) (0.6,0.2) (0.5,0.0)
y2 (0.0,0.3) (0.1,0.3) (0.0,0.6) (0.0,0.5) (0.5,0.3) (0.4,0.2)
y3 (0.2,0.0) (0.9,0.1) (0.0,0.7) (0.0,0.1) (0.3,0.2) (0.8,0.2)
y4 (0.0,0.5) (0.3,0.0) (0.7,0.1) (0.6,0.1) (0.0.0.7) (0.7,0.2)
y5 (0.4,0.6) (0.2,0.4) (0.9.0.1) (0.6,0.1) (0.7,0.2) (0.7,0.3)
y6 (0.0,0.2) (0.0,0.0) (0.5.0.4) (0.5,0.4) (0.3,0.6) (0.0,0.0)
y7 (0.8,0.1) (0.2,0.1) (0.1.0.0) (0.7,0.0) (0.6,0.4) (0.0,0.6)
y8 (0.1,0.7) (0.0,0.5) (0.8.0.1) (0.7,0.1) (0.7,0.1) (0.0,0.0)
y9 (0.0,0.1) (0.5,0.1) (0.3.0.1) (0.7,0.3) (0.1,0.3) (0.7,0.2)
y10 (0.3,0.2) (0.7,0.1) (0.2.0.2) (0.2,0.0) (0.1,0.9) (0.9,0.1)

similarity matrix contains. Considering the stated reasons above, it is not hard for
us to comprehend why the intuitionistic fuzzy netting method can get more detailed
types than Zhang et al. (2007).

Here we only make a comparison with that of Zhang et al. (2007), because that the
method in Zhang et al. (2007) is a representation of solving this class of problems,
some closely-related results can be found in Xu et al. (2008) and Cai et al. (2009).

In order to demonstrate the effectiveness of the proposed clustering algorithm, we
further conduct experiments with the simulated data through comparing these two
methods:

Example 2.13 (Wang et al. 2011) As we have explained above, the computational
complexity is mainly related with the computations of intuitionistic fuzzy similarity
matrix and intuitionistic fuzzy equivalent matrix. Next, we shall illustrate this with
simulated experiments. Below we first introduce the experimental tool, the exper-
imental data sets, and then make a comparison with other method (Zhang et al.
2007):

(1) Experimental tool. In the experiments, we use the netting algorithm imple-
mented by MATLAB. Note that if we let π(x) = 0 for any x ∈ X, then the netting
algorithm reduces to the traditional fuzzy netting algorithm. Therefore, we can use
this process to compare the performances of both the netting algorithm under intu-
itionistic fuzzy environment and the netting algorithm under fuzzy environment.

(2) Experimental data sets. The car data set contains the information of ten new
cars to be classified in an auto market. Let yi (i = 1, 2, . . . , 10) be the cars, each of
which is described by six attributes: (1) G1: Oil consumption; (2) G2: Coefficient
of friction; (3) G3: Price; (4) G4: Comfortable degree; (5) G5: Design; and (6) G6:
Safety coefficient, as in Example 2.12 (For convenience, here we do not consider
the weights of these attributes). The characteristics of the ten new cars under the six
attributes, generated at random by MATLAB, are represented by the IFSs, as shown
in Table 2.18 (Wang et al. 2011).

In order to express the validity of the netting method, we shall make a comparison
with Zhang et al. (2007)’s method:
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With the netting method, we have the following clustering results (Wang et al.
2011):

Using Zhang et al. (2007)’s method, we first construct the intuitionistic fuzzy
similarity matrix based on the data in Table 2.18.

Z =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(1,0) (0.41,0.08) (0.33,0.24) (0.43,0.08) (0.63,0.08)

(0.41,0.08) (1,0) (0.41,0.08) (0.49,0.16) (0.36,0.14)

(0.33,0.24) (0.41,0.08) (1,0) (0.46,0.08) (0.35,0.08)

(0.43,0.08) (0.49,0.16) (0.46,0.08) (1,0) (0.49,0.00)

(0.63,0.08) (0.36,0.14) (0.35,0.08) (0.49,0.00) (1,0)

(0.38,0.14) (0.57,0.08) (0.22,0.16) (0.33,0.22) (0.27,0.22)

(0.55,0.0) (0.41,0.14) (0.43,0.36) (0.43,0.08) (0.30,0.08)

(0.46,0.08) (0.43,0.14) (0.25,0.29) (0.33,0.08) (0.27,0.08)

(0.35,0.0) (0.49,0.16) (0.33,0.08) (0.67,0.00) (0.36,0.08)

(0.43,0.24) (0.57,0.22) (0.49,0.08) (0.63,0.14) (0.46,0.16)

(0.38,0.14) (0.55,0.00) (0.46,0.08) (0.35,0.00) (0.43,0.24)

(0.57,0.08) (0.41,0.14) (0.43,0.14) (0.49,0.16) (0.57,0.22)

(0.22,0.16) (0.43,0.36) (0.25,0.29) (0.33,0.08) (0.49,0.08)

(0.33,0.22) (0.43,0.08) (0.33,0.08) (0.67,0.00) (0.63,0.14)

(0.27,0.22) (0.30,0.08) (0.27,0.08) (0.36,0.08) (0.46,0.16)

(1,0) (0.38,0.22) (0.55,0.00) (0.33,0.08) (0.22,0.22)

(0.38,0.22) (1,0) (0.38,0.08) (0.34,0.21) (0.36,0.22)

(0.55,0.00) (0.38,0.08) (1,0) (0.33,0.16) (0.22,0.36)

(0.33,0.08) (0.35,0.22) (0.33,0.16) (1,0) (0.43,0.08)

(0.22,0.22) (0.36,0.22) (0.22,0.36) (0.43,0.08) (1,0)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

In order to get the clustering result with Zhang et al. (2007)’s method, we should
get the equivalent matrix. By the composition operations of similarity matrices, we
have

Z2 = Z ◦ Z =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(1,0) (0.43,0.08) (0.43,0.08) (0.49,0.00) (0.63,0.08)

(0.43,0.08) (1,0) (0.49,0.08) (0.57,0.08) (0.49,0.08)

(0.43,0.08) (0.49,0.08) (1,0) (0.49,0.08) (0.46,0.08)

(0.49,0.00) (0.57,0.08) (0.49,0.08) (1,0) (0.49,0.00)

(0.63,0.08) (0.49,0.08) (0.46,0.08) (0.49,0.00) (1,0)

(0.46,0.08) (0.57,0.08) (0.41,0.08) (0.49,0.08) (0.38,0.08)

(0.55,0.0) (0.43,0.08) (0.43,0.08) (0.43,0.08) (0.55,0.08)

(0.46,0.08) (0.55,0.08) (0.41,0.08) (0.43,0.08) (0.46,0.08)

(0.43,0.0) (0.49,0.08) (0.46,0.08) (0.67,0.00) (0.49,0.00)

(0.46,0.08) (0.57,0.08) (0.49,0.08) (0.63,0.08) (0.49,0.08)
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(0.46,0.08) (0.55,0.00) (0.46,0.08) (0.43,0.00) (0.46,0.08)

(0.57,0.08) (0.43,0.08) (0.55,0.08) (0.49,0.08) (0.57,0.08)

(0.41,0.08) (0.43,0.08) (0.41,0.08) (0.46,0.08) (0.49,0.08)

(0.49,0.08) (0.43,0.08) (0.43,0.08) (0.67,0.00) (0.63,0.08)

(0.38,0.08) (0.55,0.08) (0.46,0.08) (0.49,0.00) (0.49,0.08)

(1,0) (0.41,0.08) (0.55,0.00) (0.49,0.08) (0.57,0.08)

(0.41,0.08) (1,0) (0.46,0.08) (0.43,0.00) (0.43,0.14)

(0.55,0.00) (0.46,0.08) (1,0) (0.43,0.08) (0.43,0.14)

(0.49,0.08) (0.43,0.00) (0.43,0.08) (1,0) (0.63,0.08)

(0.57,0.08) (0.43,0.14) (0.43,0.14) (0.63,0.08) (1,0)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Z4 = Z2 ◦ Z2 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(1,0) (0.49,0.08) (0.49,0.08) (0.49,0.00) (0.63,0.00)

(0.49,0.08) (1,0) (0.49,0.08) (0.57,0.08) (0.49,0.08)

(0.49,0.08) (0.49,0.08) (1,0) (0.49,0.08) (0.49,0.08)

(0.49,0.00) (0.57,0.08) (0.49,0.08) (1,0) (0.49,0.00)

(0.63,0.00) (0.49,0.08) (0.49,0.08) (0.49,0.00) (1,0)

(0.49,0.08) (0.57,0.08) (0.49,0.08) (0.57,0.08) (0.49,0.08)

(0.55,0.00) (0.49,0.08) (0.46,0.08) (0.49,0.00) (0.55,0.00)

(0.46,0.08) (0.55,0.08) (0.49,0.08) (0.55,0.08) (0.49,0.08)

(0.49,0.0) (0.57,0.08) (0.49,0.08) (0.67,0.00) (0.49,0.00)

(0.49,0.08) (0.57,0.08) (0.49,0.08) (0.63,0.08) (0.49,0.08)

(0.49,0.08) (0.55,0.00) (0.46,0.08) (0.49,0.00) (0.49,0.08)

(0.57,0.08) (0.49,0.08) (0.55,0.08) (0.57,0.08) (0.57,0.08)

(0.49,0.08) (0.46,0.08) (0.49,0.08) (0.49,0.08) (0.49,0.08)

(0.57,0.08) (0.49,0.00) (0.55,0.08) (0.67,0.00) (0.63,0.08)

(0.49,0.08) (0.55,0.00) (0.49,0.08) (0.49,0.00) (0.49,0.08)

(1,0) (0.46,0.08) (0.55,0.00) (0.57,0.08) (0.57,0.08)

(0.46,0.08) (1,0) (0.46,0.08) (0.49,0.00) (0.49,0.08)

(0.55,0.00) (0.46,0.08) (1,0) (0.49,0.08) (0.55,0.08)

(0.57,0.08) (0.49,0.00) (0.49,0.08) (1,0) (0.63,0.08)

(0.57,0.08) (0.49,0.08) (0.55,0.08) (0.63,0.08) (1,0)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

After computation, we have Z8 = Z4, thus we can make cluster analysis with
Zhang et al. (2007)’s method. The clustering results are shown in Table 2.20 (Wang
et al. 2011).

We can see from Tables 2.19 and 2.20 that the netting method can make more
detailed clustering results than Zhang et al. (2007)’s method.

In order to illustrate the computation complexity, we generate an amount of IFVs
at random by MATLAB. Then we measure the computation time before we get the
corresponding matrix that can make cluster analysis for the two methods respectively.
The results are shown in Table 2.21 (Wang et al. 2011).
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Table 2.19 The clustering results with the netting method

λlevel Clustering results

0.67 < λ ≤ 1 {y1}, {y2}, {y3}, {y4}, {y5}, {y6}, {y7}, {y8}, {y9}, {y10}
0.63 < λ ≤ 0.67 {y4, y9}, {y1}, {y2}, {y3}, {y5}, {y6}, {y7}, {y8}, {y10}
(0.63,0.14) < λ ≤ (0.63,0.08) {y1, y5}, {y4, y9}, {y2}, {y3}, {y6}, {y7}, {y8}, {y10}
0.57 < λ ≤ 0.63 {y1, y5}, {y4, y9, y10}, {y2}, {y3}, {y6}, {y7}, {y8}
(0.57,0.22) < λ ≤ (0.57,0.08) {y1, y5}, {y4, y9, y10}, {y2, y6}, {y3}, {y7}, {y8}
0.55 < λ ≤ 0.57 {y1, y5}, {y2, y4, y6, y9, y10}, {y3}, {y7}, {y8}
0.49 < λ ≤ 0.55 {y1, y5, y7}, { y2, y4, y6, y8, y9, y10}, {y3}
(0.49,0.16) < λ ≤ (0.49,0.08) {y1, y5, y7}, {y2, y3, y4, y6, y8, y9, y10}
0 < λ ≤ 0.49 {y1, y2, y3, y4, y5, y6, y7, y8, y9, y10}

Table 2.20 The clustering results with Zhang et al. (2007)’s method

λlevel Clustering results

0.67 < λ ≤ 1 {y1}, {y2}, {y3}, {y4}, {y5}, {y6}, {y7}, {y8}, {y9}, {y10}
0.63 < λ ≤ 0.67 {y4,y9}, {y1}, {y2}, {y3}, {y5}, {y6}, {y7}, {y8}, {y10}
0.57 < λ ≤ 0.63 {y1,y5}, {y4, y9,y10}, {y2}, {y3}, {y6}, {y7}, {y8}
0.55 < λ ≤ 0.57 {y1, y5}, {y2, y4, y6, y9, y10}, {y3}, {y7}, {y8}
0.49 < λ ≤ 0.55 {y1, y5, y7}, {y2, y3, y4, y6, y8, y9, y10}
0 < λ ≤ 0.49 { y1, y2, y3, y4, y5, y6, y7, y8, y9, y10}

Table 2.21 Elapsed time for each method

Alternatives 10 50 100 500 1000 2000
Time(Seconds)
Methods

Netting method 0.000174 0.004637 0.013933 1.585204 11.721117 102.472592
Zhang et al. 0.002361 0.035407 0.167295 10.636214 78.620455 691.554396
(2007)’s method

Let n and m represent the amount of alternatives and attributes, respectively. Then
the computational complexities of our method and Zhang et al. (2007)’s method are
O(mn + 12n2) and O(mn + 12n2 + kn2) respectively, where k(k ≥ 2) represents
the transfer times until we get the equivalent matrix. The elapsed time may become
closed as n increases. Considering the practical application, we think the netting
method can save much more time and computational efforts.
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2.9 Direct Cluster Analysis Based on Intuitionistic
Fuzzy Implication

2.9.1 The Intuitionistic Fuzzy Implication Operator
and Intuitionistic Fuzzy Products

Definition 2.35 (Kohout and Bandler 1980, 1984) Let Ui(i = 1, 2) be two ordinary
subsets, and L ⊂ U1×U2 an ordinary relation. Then for any a, b ∈ U2, Lb = {a|aLb}
and aL = {b|aLb} are respectively called a former set and a latter set.

Definition 2.36 (Kohout and Bandler 1980, 1984) Let Ui(i = 1, 2, 3) be ordinary
subsets, L1 ⊂ U1×U2 and L2 ⊂ U2×U3, then a triangle product L1 � L2 ⊂ U1×U3
of L1 and L2 can be defined as:

aL1 � L2c ⇔ aL1 ⊂ L2c, for any (a, c) ∈ U1 × U2 (2.196)

Similarly, a square product L1 � L2 is defined as:

aL1 � L2c ⇔ aL1 = L2c, for any (a, c) ∈ U × W (2.197)

where aL1 = L2c if and only if aL1 ⊂ L2c and aL1 ⊃ L2c.

Wang and Liu (1999) introduced a fuzzy implication operator as follows:

Definition 2.37 (Wang and Liu 1999) Let I1 be a binary operation on [0, 1], if

I1(0, 0) = I1(0, 1) = I1(1, 1) = 1 and I(1, 0) = 0 (2.198)

then I1 is called a fuzzy implication operator.

For any a, b ∈ [0, 1], I1(a, b) is a fuzzy implication operator, which can also be
denoted as a → b. Especially, the well-known Lukasiewicz implication operator is
given as ϕ(a, b) = min(1 − a + b, 1), which means that the result of “a imply b” is
min(1 − a + b, 1).

Motivated by the idea of Definition 2.37, Wang et al. (2012) defined the concept
of intuitionistic fuzzy implication operator:

Definition 2.38 (Wang et al. 2012) Let I1 be a binary operation on the set of all
IFVs, V , if

I1((0, 1), (0, 1)) = I1((0, 1), (1, 0)) = I1((1, 0), (1, 0))

= (1, 0), I1((1, 0), (0, 1)) = (0, 1)

then I1 is called an intuitionistic fuzzy implication operator.
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Now we extend Lukasiewicz implication operator to intuitionistic fuzzy environ-
ment. For any two IFVs α = (μα, vα) and β = (μβ, vβ), if we only consider the
membership degrees μα and μβ of α and β, then min{1−μα +μβ, 1} cannot reflect
the superiority of IFVs, so we should consider the non-memberships vα and vβ as
well. Then based on the components of IFVs and the form of Lukasiewicz implica-
tion operator, Wang et al. (2012) defined an intuitionistic fuzzy Lukasiewicz impli-
cation operator ϕ(α, β), whose membership degree and non-membership degree are
expressed as:

min{1, min{1 − μα + μβ, 1 − vβ + vα}} = min{1, 1 − μα + μβ, 1 − vβ + vα}

and

max{0, min{1−(1−μα+μβ), 1−(1−vβ +vα)}} = max{0, min{μα−μβ, vβ −vα}}

respectively, i.e.,

ϕ(α, β) = (min{1, 1 − μα + μβ, 1 − vβ + vα}, max{0, min{μα − μβ, vβ − vα}})
(2.199)

Clearly, we need to prove that the value of ϕ(α, β) should satisfy all the conditions
of an IFV. In fact, from Eq. (2.199), we have

min{1, 1−μα+μβ, 1−vβ +vα} ≥ 0, max{0, min{μα−μβ, vβ −vα}} ≥ 0 (2.200)

and since

max{0, min{μα − μβ, vβ − vα}} = 1 − min{1, max{1 − μα + μβ, 1 − vβ + vα}}
(2.201)

min{1, max{1−μα+μβ, 1−vβ +vα}} ≥ min{1, 1−μα+μβ, 1−vβ +vα} (2.202)

then

1−min{1, max{1−μα +μβ, 1−vβ +vα}}+min{1, 1−μα +μβ, 1−vβ +vα} ≤ 1

which indicates that the value of ϕ(α, β) derived by Eq. (2.201) is an IFV.

Example 2.14 (Wang et al. 2012) Letα = (0, 1) andβ = (1, 0), then by Eq. (2.198),
we have

ϕ(α, α) = (min{1, 1 − 0 + 0, 1 − 1 + 1}, max{0, min{0 − 0, 1 − 1}}) = (1, 0)

ϕ(β, β) = (min{1, 1 − 1 + 1, 1 − 0 + 0}, max{0, min{1 − 1, 0 − 0}}) = (1, 0)

ϕ(α, β) = (min{1, 1 − 0 + 1, 1 − 0 + 1}, max{0, min{0 − 1, 0 − 1}}) = (1, 0)
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ϕ(β, α) = (min{1, 1 − 1 + 0, 1 − 1 + 0}, max{0, min{1 − 0, 1 − 0}}) = (0, 1)

With the intuitionistic fuzzy Lukasiewicz implication, the traditional triangle
product and the square product (Kohout and Bandler 1980), below we further intro-
duce an intuitionistic fuzzy triangle product and an intuitionistic fuzzy square product
respectively:

Definition 2.39 (Wang et al. 2012) Let α = {α1, α2, . . . , αl}, γ = {γ1, γ2, . . . , γm}
and β = {β1, β2, . . . , βn} be three sets of IFVs, Z1 ∈ F(α×γ ) and Z2 ∈ F(γ ×β) two
intuitionistic fuzzy relations, then an intuitionistic fuzzy triangle product Z1 � Z2 ∈
F(α × β) of Z1 and Z2 can be defined as:

(Z1 � Z2) (αi, βj) =
(

1

m

m∑

k = 1

μZ1(αi,γk)→Z2(γk ,βj),
1

m

m∑

k = 1

vZ1(αi,γk)→Z2(γk ,βj)

)
,

for any (αi, βj) ∈ (α, β), i = 1, 2, . . . , l; j = 1, 2, . . . , n
(2.203)

where “→” represents the intuitionistic fuzzy Lukasiewicz implication.

Similarly, Wang et al. (2012) defined an intuitionistic fuzzy square product
Z1 � Z2 ∈ F(α × β) of Z1 and Z2 as:

(Z1 � Z2) (αi, βj) = min
1≤k≤m

(
μmin(Z1(αi,γk)→Z2(γk ,βj),Z2(γk ,βj)→Z1(αi,γk)),

vmin(Z1(αi,γk)→Z2(γk ,βj),Z2(γk ,βj)→Z1(αi,γk))

)

for any (αi, βj) ∈ (α, β), i = 1, 2, . . . , l; j = 1, 2, . . . , n
(2.204)

For convenience, we denote zik as Z(αi, γk) for short, and the same with others.
As a result, Eqs. (2.203) and (2.204) can be respectively simplified as:

(Z1 � Z2) (αi, βj) =
⎛

⎝ 1

m

m∑

j = 1

μzik→zkj ,
1

m

m∑

j = 1

vzik→zkj

⎞

⎠ (2.205)

(Z1 � Z2) (αi, βj) = min
1≤k≤m

(
μmin(zik→zkj,zkj→zik), vmin(zik→zkj,zkj→zik)

)
(2.206)

Indeed, the intuitionistic fuzzy triangle product and the intuitionistic fuzzy square
product are very closely-related with each other. That is, the former is the basis of
the latter, due to that (Z1 � Z2)(αi, βj) is directly derived from (Z1 � Z2)(αi, βj) and
(Z2 � Z1)(αi, βj).
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2.9.2 The Applications of Two Intuitionistic Fuzzy Products

In this subsection, we shall apply the intuitionistic fuzzy triangle product to com-
pare any two alternatives in multi-attribute decision making with intuitionistic fuzzy
information, and then use the intuitionistic fuzzy square product to construct an intu-
itionistic fuzzy similarity matrix which is used as a basis for further investigating
intuitionistic fuzzy clustering technique.

Consider a multi-attribute decision making problem, let Y and G be as defined
previously. The characteristic (or called attribute value) of each alternative yi under
all the attributes Gj(j = 1, 2, . . . , m) is represented as an IFS:

yi = {〈Gj, μyi(Gj), vyi(Gj)〉|Gj ∈ G}, i = 1, 2, . . . , n; j = 1, 2, . . . , m (2.207)

where μyi(Gj) denotes the membership degree of yi to Gj and vyi(Gj) denotes
the non-membership degree of yi to Gj. Obviously, πyi(Gj) = 1 − μyi(Gj) −
vyi(Gj) is the uncertainty (or hesitation) degree of yi to Gj. If we let zij =
(μij, vij) = (μyi(Gj), vyi(Gj)), which is an IFV, then based on these IFVs zij (i =
1, 2, . . . , n; j = 1, 2, . . . , m), we can construct an n×m intuitionistic fuzzy decision
matrix Z = (zij)n×m.

2.9.3 The Application of the Intuitionistic Fuzzy Triangle Product

For the above problem, the characteristic vectors of any two alternatives yi and yj are
expressed as Zi = (zi1, zi2, . . . , zim) and Zj = (zj1, zj2, . . . , zjm) respectively. The
implication degree of the alternatives yi and yj can be calculated with the following
intuitionistic fuzzy triangle product:

(Zi � Z−1
j )ij =

(
1

m

m∑

k = 1

μzik→zjk ,
1

m

m∑

k = 1

vzik→zjk

)
(2.208)

which shows the degree that how much the alternative yj is preferred to the alternative
yi, where Z−1

j denotes the inverse of Zj, which is defined as (Z−1
j )kj = (Zj)jk =

zjk, μzik→zjk and vzik→zjk are respectively as shown in Eq. (2.199) for any k.
Similarly, we can calculate

(Zj � Z−1
i )ji =

(
1

m

m∑

k = 1

μzjk→zik ,
1

m

m∑

k = 1

vzjk→zik

)
(2.209)

which shows the degree that how much the alternative yi is preferred to the alterna-
tive yj.
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From Eqs. (2.208), (2.209) and Xu and Yager (2006)’s ranking method, we can
get an ordering of the alternatives yi and yj. Concretely speaking, (1) if (Zi �Z−1

j )ij >

(Zj�Z−1
i )ji, then the alternative yj is preferred to the alternative yi; (2) if (Zi�Z−1

j )ij =
(Zj � Z−1

i )ji, then there is no difference between the alternatives yi and yj; and (3) if
(Zi � Z−1

j )ij < (Zj � Z−1
i )ji, then the alternative yi is preferred to the alternative yj.

Example 2.15 (Wang et al. 2012) We express the evaluation results of the cars
yi (i = 1, 2, 3, 4, 5) in Table 2.16 as the vectors Zi = (zi1, zi2, . . . , zi6) (i =
1, 2, 3, 4, 5), respectively, where zij = (μij, vij) (i = 1, 2, 3, 4, 5; j = 1, 2, 3,

4, 5, 6):

Z1 = ((0.3,0.5),(0.6,0.1), (0.4,0.3),(0.8,0.1),(0.1,0.6),(0.5,0.4))

Z2 = ((0.5,0.3),(0.5,0.2), (0.6,0.1),(0.7,0.1),(0.3,0.6),(0.4,0.3))

Z3 = ((0.4,0.4),(0.8,0.1), (0.5,0.1),(0.6,0.2),(0.4,0.5),(0.3,0.2))

Z4 = ((0.2,0.4),(0.4,0.1), (0.9,0.0),(0.8,0.1),(0.2,0.5),(0.7,0.1))

Z5 = ((0.5,0.2),(0.3,0.6), (0.6.0.3),(0.7,0.1),(0.6,0.2),(0.5,0.3))

Then we utilize the intuitionistic fuzzy triangle products Eqs. (2.208) and (2.209)
to calculate the implication degrees (Zi � Z−1

j )ij and (Zj � Z−1
i )ji (i = 1, 2, 3, 4, 5;

j = 1, 2, . . . , 6) respectively:

(Z1 � Z−1
2 )12 =

(
1

6

6∑

k = 1

μz1k→z2k ,
1

6

6∑

k = 1

vz1k→z2k)

)

=
(

1

6

6∑

k = 1

min{1, 1 − μ1k + μ2k, 1 − v2k + v1k},

1

6

6∑

k = 1

max{0, min{μ1k − μ2k, v2k − v1k}}
)

= (0.9500, 0.0167)

(Z2 � Z−1
1 )21 =

(
1

6

6∑

k = 1

μz2k→z1k ,
1

6

6∑

k = 1

vz2k→z1k)

)

=
(

1

6

6∑

k = 1

min{1, 1 − μ2k + μ1k, 1 − v1k + v2k},

1

6

6∑

k = 1

max{0, min{μ2k − μ1k, v1k − v2k}}
)

= (0.8833, 0.0667)
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Similarly, we have

(Z1 � Z−1
3 )13 = (0.9333, 0.0167), (Z3 � Z−1

1 )31 = (0.8333, 0.0500)

(Z1 � Z−1
4 )14 = (0.9500, 0.000), (Z4 � Z−1

1 )41 = (0.8333, 0.1000)

(Z1 � Z−1
5 )15 = (0.9000, 0.0500), (Z5 � Z−1

1 )51 = (0.8167, 0.1000)

(Z2 � Z−1
3 )23 = (0.9333, 0.0333), (Z3 � Z−1

2 )32 = (0.9167, 0.0333)

(Z2 � Z−1
4 )24 = (0.9167, 0.0167), (Z4 � Z−1

2 )42 = (0.8833, 0.0500)

(Z2 � Z−1
5 )25 = (0.9000, 0.0333), (Z5 � Z−1

2 )52 = (0.9000, 0.0500)

(Z3 � Z−1
4 )34 = (0.8667, 0.0000), (Z4 � Z−1

3 )43 = (0.8333, 0.0500)

(Z3 � Z−1
5 )35 = (0.8667, 0.0833), (Z5 � Z−1

3 )53 = (0.8500, 0.0667)

(Z4 � Z−1
5 )45 = (0.8167, 0.1000), (Z5 � Z−1

4 )54 = (0.8833, 0.0833)

According to Xu and Yager (2006)’s ranking method, we know that

(Z1 � Z−1
2 )12 > (Z2 � Z−1

1 )21, (Z1 � Z−1
3 )13 > (Z3 � Z−1

1 )31

(Z1 � Z−1
4 )14 > (Z4 � Z−1

1 )41, (Z1 � Z−1
5 )15 > (Z5 � Z−1

1 )51

(Z2 � Z−1
3 )23 > (Z3 � Z−1

2 )32, (Z2 � Z−1
4 )24 > (Z4 � Z−1

2 )42

(Z2 � Z−1
5 )25 > (Z5 � Z−1

2 )52, (Z3 � Z−1
4 )34 > (Z4 � Z−1

3 )43

(Z3 � Z−1
5 )35 > (Z5 � Z−1

3 )53, (Z4 � Z−1
5 )45 < (Z5 � Z−1

4 )54

from which we get y4 � y5 � y3 � y2 � y1.
From the above process, we can see that the intuitionistic fuzzy triangle product

can be used to compare the alternatives in multi-attribute decision making with
intuitionistic fuzzy information, but the computational complexity increases rapidly
as the numbers of the alternatives and attributes increase.

2.9.4 The Application of the Intuitionistic Fuzzy Square Product

From Eq. (2.204), we know that the intuitionistic fuzzy square product (Z1 � Z2)ij

can be interpreted as: it measures the similarity degree of the ith row of an intu-
itionistic fuzzy matrix Z1 and the jth row of an intuitionistic fuzzy matrix R2 mathe-
matically. Therefore, considering the problem stated at the beginning of Sect. 2.9.2,
(Zi � Z−1

j )ij reflects the similarity of the alternatives yi and yj. We can use the follow-
ing formula to construct an intuitionistic fuzzy similarity matrix for the alternatives
yi (i = 1, 2, . . . , n):
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sim(yi, yj) = (Zi � Z−1
j )ij = min

1≤k≤n

(
μmin(zik→zjk ,zjk→zik), vmin(zik→zjk ,zjk→zik)

)

(2.210)
Equation (2.210) has the following desirable properties (Wang et al. 2012):

(1) sim(yi, yj) is an IFV.
(2) sim(yi, yi) = (1, 0) (i = 1, 2, . . . , n).
(3) sim(yi, yj) = sim(yj, yi) (i, j = 1, 2, . . . , n).

Proof (1) Let’s prove that sim(yi, yj) is an IFV:
Since the results of zik → zjk and zjk → zik are all IFVs as proven previously,

then
(
μmin(zik→zjk ,zjk→zik), vmin(zik→zjk ,zjk→zik)

)
is an IFV, for any k.

(2) Since

sim(yi, yi) = (Zi � Z−1
i )ii = min

1≤k≤n

(
μmin(zik→zik ,zik→zik), vmin(zik→zik ,zik→zik)

)

and with Definition 2.4, we can easily know that sim(yi, yi) = (1, 0).
(3) Since

sim(yi, yj) = (Zi � Z−1
j )ij = min

1≤k≤n

(
μmin(zik→zjk ,zjk→zik), vmin(zik→zjk ,zjk→zik)

)

= min
1≤k≤n

(
μmin(zjk→zik ,zik→zjk), vmin(zjk→zik ,zik→zjk)

)

= (Zj � Z−1
i )ji = sim(yj, yi)

then sim(yi, yj) = sim(yj, yi) (i, j = 1, 2, . . . , n).

From the analysis above, we can know that Eq. (2.210) satisfies the conditions
of intuitionistic fuzzy similarity relation, and thus, we can use it to construct an
intuitionistic fuzzy similarity matrix.

2.9.5 A Direct Intuitionistic Fuzzy Cluster Analysis Method

After we have gotten an intuitionistic fuzzy similarity matrix R, with this method,
there is no need to seek for its equivalent matrix before doing cluster analysis. Starting
with an intuitionistic fuzzy similarity matrix, we may get the wanted cluster analysis
results as with an intuitionistic fuzzy equivalent matrix, which has been proven
strictly (Luo 1989). Luo (1989) introduced a direct method for clustering fuzzy sets
which can only consider the membership degrees of fuzzy sets. In this section, we
shall introduce a direct intuitionistic fuzzy cluster analysis method, which can take
into account both the membership degrees and the non-membership degrees of IFVs
under intuitionistic fuzzy environments. The method involves the following steps
(Wang et al. 2012):
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Step 1 Let Z = (zij)n×n be an intuitionistic fuzzy similarity matrix, where zij =
(μij, vij) (i, j = 1, 2, . . . , n) are IFVs, then we select one of the elements of Z to
determine the confidence level λ1, which obeys the following principles:

(1) Rank the membership degrees of rij (i, j = 1, 2, . . . , n) in descending order,
and then take λ1 = (μλ1 , vλ1) = (μi1j1 , vi1j1), where μi1j1 = max

i,j
{μij}.

(2) If there exist two IFVs (μi1j1 , vi1j1) and (μi1j1, vi1j1) in (1), such that vi1j1 
= vi1j1
(without loss of generality, let vi1j1 < vi1j1), then we choose the first one as λ1, i.e.,
λ1 = (μi1j1 , vi1j1).

Then, for each alternative yi, we let

[yi](1)
Z = {yj|zij = λ1} (2.211)

In this case, yi and all of the alternatives in [yi](1)
Z are clustered into one type, and

each of the other alternatives is clustered into one type.
Step 2 Choose the confidence level λ2 such that λ2 = (μλ2 , vλ2) = (μi2j2 , vi2j2),

with μi2j2 = max
(i,j) 
=(i1,j1)

{μij} (in particular, if there exist two or more IFVs whose

membership degrees have the same value μi2j2 , then we can follow the policy in (2)

of Step 1. Then, we let [yi](2)
Z = {yj|zij = λ2}, in this case, yi and all of alternatives in

[yi](2)
Z are clustered into one type, and each of the other alternatives is clustered into

one type. Merging [yi](1)
Z and [yi](2)

Z , we get [yi](1,2)
Z = {yj|zij ∈ {λ1, λ2}}, and thus,

yi and all of the alternatives in [yi](1,2)
Z are clustered into one type, and the types of

the other alternatives keep unchanged.
Step 3 Take the other confidence levels and do cluster analysis following the

procedure of Step 2 until all the alternatives are clustered into one type.
From the above processes, we can see that the direct method can realize the cluster

analysis just based on the subscripts of alternatives, and there is even no need to get
the λ-cutting matrix, which is a notable advantage of the direct method. In practical
applications, after choosing some proper confidence levels, we just need to confirm
their locations in the intuitionistic fuzzy similarity matrix, and then we can get the
types of the considered objects on the basis of their location subscripts.

Example 2.16 (Wang et al. 2012) We use the same example as Example 2.15, and
utilize the direct method developed above to classify the five cars, which involves
the following steps:

Step 1 By Eq. (2.208), we calculate

sim(y1, y2) = (Z1 � Z−1
2 )12 = min

1≤k≤6

(
μmin(z1k→z2k ,z2k→z1k), vmin(z1k→z2k ,z2k→z1k)

)

and get sim(y1, y2) = (0.7,0.2).

Then we calculate the others in a similar way. Consequently, we get the intuition-
istic fuzzy similarity matrix:
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Z =

⎛

⎜⎜⎜⎜⎝

(1,0) (0.7,0.2) (0.7,0.1) (0.5,0.3) (0.5,0.4)

(0.7,0.2) (1,0) (0.7,0.1) (0.6,0.1) (0.6,0.3)

(0.7,0.1) (0.7,0.1) (1,0) (0.6,0.1) (0.5,0.5)

(0.5,0.3) (0.6,0.1) (0.6,0.1) (1,0) (0.6,0.3)

(0.5,0.4) (0.6,0.3) (0.5,0.5) (0.6,0.3) (1,0)

⎞

⎟⎟⎟⎟⎠

Step 2 Choose the confidence levels properly, and get the corresponding clustering
results with the direct method:

(1) When 0.7 < μλ1 ≤ 1.0, by Eq. (2.210), we know that there is no value zij

in R such that zij = λ1, i.e., [yi](1)
Z = φ. Thus, each car is clustered into one type:

{y1}, {y2}, {y3}, {y4} and {y5}.
(2) When 0.6 < μλ2 ≤ 0.7, we have the following two cases:

(i) z13 = z23 = (0.7,0.1): In this case, by Eq. (2.209), we know that y1, y2 and
y3 can be clustered into one type: {y1, y2, y3}. Then, by Step 2 of the clustering
method, we get that the cars yi (i = 1, 2, 3, 4, 5) are clustered into three types:
{y1, y2, y3}, {y4} and {y5}.

(ii) z12 = (0.7,0.2): In this case, y1 and y2 can be clustered into one type. Thus,
by Step 2 of the clustering method, we know that the cars yi (i = 1, 2, 3, 4, 5) are
also clustered into three types: {y1, y2, y3}, {y4} and {y5}.

(3) When 0.5 < μλ3 ≤ 0.6, we have the following two cases:

(i) z24 = z34 = (0.6,0.1): In this case, y2, y3 and y4 can be clustered into one
type. Then, merging the clustering results of (1) and (2), we can see that the cars
yi(i = 1, 2, 3, 4, 5) are clustered into two types: {y1, y2, y3, y4} and {y5}.

(ii) z25 = (0.6,0.3): In this case, y2 and y5 can be clustered into one type.
Then, merging the clustering results above, it can be obtained that the cars yi (i =
1, 2, 3, 4, 5) are clustered into one type: {y1, y2, y3, y4, y5}.

Compared with Zhang et al. (2007)’s method, we can know that the direct method
with less calculation amount can have better clustering results.
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Index

A
Absolute deviation, 247
Accuracy function, 3
Archimedean t-conorm, 80
Archimedean t-cornorm and t-norm based in-

tuitionistic fuzzy geometric operator,
92

Archimedean t-conorm and t-norm based in-
tuitionistic fuzzy weighted averaging
operator, 86

Archimedean t-norm, 80
Arithmetic average, 48
Association coefficient, 179
Association matrix, 180
Associative law, 167

B
Basic graph, 222
Basic unit-interval monotonic function, 24
Benefit attribute, 42
Binary relation on, 201
Bonferroni mean, 47
Boundedness, 21

C
Cauchy–Schwarz inequality, 230
Closeness degree, 202
Clustering algorithm, 172
Collective interval-valued intuitionistic fuzzy

decision matrix, 44
Collective intuitionistic fuzzy decision matrix,

27
Commutativity, 21

Composition matrix, 116
Confidence level, 173
Cost attribute, 42
Crisp relation, 221
Cutting matrix, 168

D
Descending order, 27
Direct clustering principle, 203
Direct intuitionistic fuzzy cluster analysis

method, 265
Dual t-conorm, 80
Dynamic clustering theorem, 204

E
Einstein intuitionistic fuzzy weighted averag-

ing operator, 91
Einstein intuitionistic fuzzy weighted geo-

metric operator, 93
Einstein t-conorm, 81
Einstein t-norm, 81
Equation system, 213
Equivalent association matrix, 178
Equivalent Boole matrix, 235
Equivalent matrix, 178

F
Frank intuitionistic fuzzy weighted averaging

operator, 92
Frank intuitionistic fuzzy weighted geometric

operator, 93
Frank t-conorm, 82
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F (cont.)
Frank t-norm, 82
Fuzzy equivalence matrix, 168
Fuzzy graph, 224
Fuzzy implication operator, 259
Fuzzy set, 2

G
Generalized Archimedean intuitionistic fuzzy

geometric operator, 109
Generalized Einstein intuitionistic fuzzy

weighted averaging operator, 109
Generalized Einstein intuitionistic fuzzy

weighted geometric operator, 111
Generalized Hamacher intuitionistic fuzzy

averaging operator, 100
Generalized intuitionistic fuzzy geometric

mean, 55
Generalized intuitionistic fuzzy ordered

weighted average operator, 153
Generalized intuitionistic fuzzy point weighted

averaging operator, 131
Generalized intuitionistic fuzzy weighted

averaging operator, 108
Generalized intuitionistic fuzzy weighted

geometric operator, 110
Generalized intuitionistic fuzzy weighted

Bonferroni geometric mean, 74
Generalized intuitionistic fuzzy weighted

Bonferroni mean, 67
Generalized intuitionistic fuzzy weighted

mean, 68
Generalized mean operator, 48
Generalized weighted averaging operator, 67
Generalized weighted Bonferroni geometric

mean, 75
Generalized weighed Bonferroni mean, 66
Geometric Bonferroni mean, 47
Geometric mean, 18

H
Hamacher t-conorm, 81
Hamacher t-norm, 81
Hamacher intuitionistic fuzzy averaging oper-

ator, 108
Hamacher intuitionistic fuzzy geometric

operator, 110
Hammer intuitionistic fuzzy weighted averag-

ing operator, 92
Hammer intuitionistic fuzzy weighted geo-

metric operator, 93
Hesitancy degree, 2

Hesitation uncertainty index, 34
Heterogeneous principle, 204

I
Idempotency, 21
Implication degree, 263
Inclusion relation, 181
Indexing function, 23
Indirect clustering principle, 204
Individual interval-valued intuitionistic fuzzy

decision matrix, 44
Individual intuitionistic fuzzy decision matrix,

27
Information aggregation, 17
Inner product, 201
Inter-cluster similarity degree, 180
Interval range, 34
Interval-valued intuitionistic fuzzy association

matrix, 244
Interval-valued intuitionistic fuzzy association

measure, 181
Interval-valued intuitionistic fuzzy C-means

algorithm, 211
Interval-valued intuitionistic fuzzy decision

matrix, 42
Interval-valued intuitionistic fuzzy hierarchi-

cal algorithm, 195
Interval-valued intuitionistic fuzzy number, 34
Interval-valued intuitionistic fuzzy power

aggregation operator, 41
Interval-valued intuitionistic fuzzy power

average operator, 37
Interval-valued intuitionistic fuzzy power

geometric operator, 37
Interval-valued intuitionistic fuzzy power

ordered weighted average operator, 39
Interval-valued intuitionistic fuzzy power

ordered weighted geometric operator,
41

Interval-valued intuitionistic fuzzy power
weighted geometric operator, 37

Interval-valued intuitionistic fuzzy power
weighted average operator, 36

Interval-valued intuitionistic fuzzy set, 33
Interval-valued intuitionistic fuzzy value, 33
Interval-valued intuitionistic fuzzy weighted

average operator, 44
Interval-valued intuitionistic fuzzy weighted

geometric operator, 45
Intra-cluster similarity degree, 180
Intuitionistic fuzzy association measure, 179
Intuitionistic fuzzy average operator, 145
Intuitionistic fuzzy Bonferroni mean, 48
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Intuitionistic fuzzy C-means algorithm, 211
Intuitionistic fuzzy decision matrix, 27
Intuitionistic fuzzy distance, 224
Intuitionistic fuzzy distance matrix, 224
Intuitionistic fuzzy equivalence matrix, 168
Intuitionistic fuzzy geometric Bonferroni

mean, 47
Intuitionistic fuzzy geometric mean, 55
Intuitionistic fuzzy graph, 225
Intuitionistic fuzzy hierarchical algorithm, 192
Intuitionistic fuzzy hybrid averaging operator,

158
Intuitionistic fuzzy implication operator, 259
Intuitionistic fuzzy interrelated square geo-

metric mean, 56
Intuitionistic fuzzy Lukasiewicz implication

operator, 261
Intuitionistic fuzzy matrix, 166
Intuitionistic fuzzy maximum operator, 144
Intuitionistic fuzzy minimum operator, 153
Intuitionistic fuzzy minimum spanning tree

clustering algorithm, 221
Intuitionistic fuzzy number, 2
Intuitionistic fuzzy ordered weighted average

operator, 153
Intuitionistic fuzzy ordered weighted geomet-

ric operator, 153
Intuitionistic fuzzy orthogonal clustering

algorithm, 205
Intuitionistic fuzzy point operator, 6
Intuitionistic fuzzy power aggregation opera-

tor, 17
Intuitionistic fuzzy power average operator, 21
Intuitionistic fuzzy power geometric (IFPG)

operator, 22
Intuitionistic fuzzy power ordered weighted

geometric operator, 24
Intuitionistic fuzzy power weighted geometric

operator, 21
Intuitionistic fuzzy relation, 199
Intuitionistic fuzzy set, 1
Intuitionistic fuzzy similarity degree, 161
Intuitionistic fuzzy similarity matrix, 168
Intuitionistic fuzzy similarity relation, 202
Intuitionistic fuzzy square geometric mean, 55
Intuitionistic fuzzy square product, 264
Intuitionistic fuzzy triangle product, 262
Intuitionistic fuzzy vector, 200
Intuitionistic fuzzy weighted average operator,

27
Intuitionistic fuzzy weighted Bonferroni mean,

67

Intuitionistic fuzzy weighted geometric oper-
ator, 27

Intuitionistic fuzzy value, 2

L
Lagrange multiplier method, 209
Lukasiewicz implication operator, 260

M
Mathematical induction, 20
Max operation, 200
Membership degree, 2
Membership uncertainty index, 34
Min operation, 200
Minimum (maximum) spanning tree, 222
Multi-attribute decision making, 12
Multi-attribute group decision making, 25

N
Netting clustering method, 250
Nonlinear weighted aggregation, 18
Non-membership degree, 2
Normalized Euclidean distance, 20
Normalized Hamming distance, 20

O
Objective function, 209
Operational law, 18
Ordered position, 23
Ordinary subset, 259
Orthogonal principle, 203
Outer product, 201
Overall preference value, 27

P
Partial differential function, 212
Positive ideal point, 7
Power average operator, 18
Power geometric operator, 18
Preference value, 27
Proximity function, 209

R
Reflexivity, 170
Relative measure, 180
Revised Bonferroni mean, 66
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S
Score function, 3
Separation Index, 179
Similarity function, 7
Similarity matrix, 161
Similarity measure, 7
Square product, 262
Strict Archimedean t-conorm, 80
Strict Archimedean t-norm, 80
Support condition, 26
Symmetry, 170

T
t-conorm, 80
t-norm, 80
Transitivity, 170
Transitivity principle, 178
Triangle product, 262

U
Uncertainty degree, 25

W
Weighted average operator, 210
Weighted Bonferroni geometric mean, 74
Weighted Bonferroni mean, 47
Weighted Euclidean distance, 195
Weighted Hamming distance, 195
Weighted intuitionistic fuzzy geometric Bon-

ferroni mean, 56–57
Weighted support, 26
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