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Supervisor’s Foreword

In free space, light beams can pass through one another without interacting. Inside
an optical medium there is a small interaction that is typically only observable
using high intensity laser light. This interaction gives rise to the field of nonlinear
optics which lies at the core of current information and communication technol-
ogies. However, the future technological process is dependent on our ability to
control light at lower intensity, ideally at the quantum level of single photons.
Single photon non-optics is the key that could open the door to fully deterministic
quantum computing using light, and begin a new era of highly efficient informa-
tion processing. However, single photon nonlinear optics has remained stubbornly
outside the range of practical realization.

This thesis presents pioneering work aimed at developing a new approach to
single photon nonlinear optics. The idea is to convert photons into excitations that
are strongly interacting. This is achieved using an additional laser that couples an
incoming photon into a highly excited atomic state known as a Rydberg state. An
atom in a Rydberg state interacts strongly with neighboring Rydberg atoms.
Consequently, the medium produces strong effective photon–photon interactions
by mapping photons into Rydberg excitations and then back into photons. The
dipole–dipole interactions between Rydberg atoms are larger than a single
Rydberg excitation and hence a single photon can switch the optical response of
many nearby atoms—a process known as dipole blockade. This cooperative
response of many atoms acts like an amplifier, greatly enhancing the effect of each
individual photon. This cooperative enhancement of the single photon nonlinearity
means that strong photon–photon interactions are now accessible potentially
providing the means to realize a fully deterministic all-optical quantum information
processor.

The thesis describes the theoretical foundations of the cooperative nonlinearity
beginning with the physics of Rydberg atoms, then atom–light interactions
including dipole–dipole interactions, and cooperative phenomena. Subsequently,
the experimental demonstration of the cooperative nonlinearity is described and
finally the extension to the quantum regime is discussed. The work reported here
has stimulated enormous interest worldwide and there are now many impressive
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new developments both theoretical and experimental appearing in the scientific
literature. We are now entering an interesting time in the history of optics where
strongly interacting photons become accessible.

Durham, UK, March 2012 Prof. Charles Adams

viii Supervisor’s Foreword
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Chapter 1
Introduction

1.1 Introduction

The ability to manipulate the properties of light propagating through a medium was
first discovered by Faraday [1] in 1846, who rotated the polarisation of light in lead
glass using an external magnetic field. Similar observations were made by Kerr in
1875 [2] using a static electric field. However, with the advent of lasers in 1960 [3],
the high optical intensities made it possible to modify the optical properties using
the electric field of the light itself.

As light passes through a medium it is both attenuated and phase-shifted, pro-
viding control over the amplitude and polarisation. This optical response can be
characterised in terms of the susceptibility χ, which is related to the refractive index
of the medium by n = √

1 + χ. The susceptibility is a complex parameter, with the
real part creating a dispersive phase shift and the the complex component leading to
absorption of the light passing through the medium.

The non-linear response of the atom-light interaction is expressed in terms of a
power expansion of the electric field E as [4]

χ = χ(1) + χ(2)E + χ(3)E2 + ···, (1.1)

where χ(1) represents the linear optical response and the higher-order terms describe
non-linear optical processes, for example the Kerr effect corresponds to a χ(3)

process. One of the challenges in developing non-linear media relates to finding
processes for which the attenuation associated with the linear susceptibility χ(1)

does not dominate over the higher-order effects.

J. D. Pritchard, Cooperative Optical Non-Linearity in a Blockaded Rydberg Ensemble, 1
Springer Theses, DOI: 10.1007/978-3-642-29712-0_1,
© Springer-Verlag Berlin Heidelberg 2012



2 1 Introduction

1.1.1 Single-Photon Non-Linearities

Recently, attention has been focused on the development of non-linearities at
the single-photon level for applications in quantum information processing (QIP)
[5–7], where information is stored in a two-level quantum mechanical system known
as a qubit [8]. QIP has the advantage of being able to use superposition states and
entanglement between qubits to enable significant enhancement in the computation
of classically ‘hard’ algorithms which rely on a brute force approach, such as search-
ing through data [9] and prime number factorisation [10]. More important though
is that as the information is represented by a quantum system, such a device could
be used to directly simulate complex quantum many-body systems that cannot be
modelled using digital computers.

Photons are ideal carriers of quantum information as they are robust against deco-
herence due to the incredibly weak interaction with the environment, and can be trans-
mitted over long distances either in free-space or using optical fibres. Implementation
of single qubit gates is trivially achieved using linear optics such as beam-splitters
and polarisation optics, meaning photons fulfil most of the criteria for quantum com-
puters laid out by D. DiVincenzo [11]. The key requirement for computation is the
ability to perform deterministic two qubit gates to establish entanglement, such as a
C-NOT or phase gate [8]. However, the downside of the weak interaction with the
environment is that optical non-linearities at the single photon level are typically
very weak [12, 13], making the implementation of two-photon gates challenging.

One solution proposed by Knill, Laflamme and Milburn (KLM) [14] is to use
linear optics combined with ancillary photons to perform two-qubit gates proba-
bilistically. This scheme has been implemented to perform a C-NOT gate [15–17],
a π-phase gate [18] and a simple quantum circuit [19], however this approach has
a number of drawbacks. The requirement for additional qubits, combined with the
finite probability for success, makes the prospect of scaling this to performing com-
putation unfavourable. The enhanced speed of the quantum algorithms is also negated
by the need for many repetitions.

A more promising path to developing gates for quantum information is to exploit
systems with a large single-photon non-linearity. Promising candidates include cavity
QED [20, 21] or atom-light interactions in free space using electromagnetically
induced transparency (EIT).

1.1.2 Electromagnetically Induced Transparency

EIT is the coherent phenomena arising from a three-level system coupled by a weak
probe field and a strong coupling field. On resonance, this changes the medium from
being optically thick to transparent for the probe transition [22]. This process can
be understood from the formation of a dark state, which is a coherent superposition
of the atomic levels of the system that no longer resonantly couples to the probe
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(a) (c)(b)

Fig. 1.1 Cooperative optical non-linearity. a A single atom has suscpeptibility χ1. b For a pair of
independent atoms, the susceptibility is χ = 2χ1, and scales linearly for increasing atom number.
c Dipole-dipole interactions modify the response of a pair of atoms such that χ �= 2χ1, and instead
the susceptibility is a function of the separation between the atoms. This is a cooperative effect that
cannot be solved using a single-atom picture

field [13] (i.e. χ(1) → 0). This creates a narrow transmission window in the probe-
only absorption feature, as first observed in a strontium vapour [23], resulting in a
resonantly enhanced third-order non-linearity (χ(3)) [22].

Associated with this change in transmission is a concomitant modification of the
dispersive properties of the medium, dramatically reducing the group velocity on
resonance. This causes pulses to be slowed in the medium, as demonstrated using a
sodium Bose–Einstein condensate (BEC) to obtain vg = 17 ms−1 [24], which is the
largest measured Kerr non-linearity in an atomic system. Slow light is also possible
in a room temperature vapour, enabling propagation at speeds of vg = 8 ms−1 [25].

In addition to slowing light, pulses can be halted and stored for up to 1 ms [26, 27]
by turning off the coupling laser whilst the pulse is propagating through the medium.
The ability to coherently convert photons into excitations in the medium [28] has
lead to significant progress in development of quantum memories for photonic qubits
[7, 29]. EIT has since been used to both generate, and store, single photon pulses to
perform quantum communication between two remote quantum memories [30, 31].

The large non-linearity associated with EIT can be further enhanced using a four-
level system with an additional laser field. This results in a giant Kerr non-linearity
[5] capable of performing cross-phase modulation with a pair of photons, which was
originally suggested as a non-linearity suitable for performing a conditional phase
gate. However, subsequent work has shown that Kerr-type non-linearities cannot be
used to obtain high-fidelity quantum gates due to distortion of the photons [32, 33].

The quest to achieve quantum gates therefore requires a novel non-linear optical
process. A recent proposal suggests use of a spin-wave interaction in a BEC [34].
Below the effects of dipole–dipole interactions are considered.

1.1.3 Cooperative Effects Due to Dipole–Dipole Interactions

Typically, non-linear media can be understood as isolated, non-interacting quantum
systems which are driven by optical fields [4], such as an atom. From the proper-
ties of a single atom, the optical properties of the medium can be understood from
linearly scaling the system proportional to the number of atoms. However, if dipole–
dipole interactions between the atoms are introduced, the properties of each atom
now depend on the presence of the neighbouring atoms, resulting in cooperative
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phenomena, illustrated in Fig. 1.1. This is fundamentally different from the ordi-
nary non-linear mechanisms detailed above, as the susceptibility is now a non-linear
function of density as well as electric field.

The best example of cooperative behaviour due to dipole–dipole interactions is
superradiance [35]. For an ensemble of N -atoms initially in an excited state, the
interaction of each atom with the dipole-field of all the surrounding atoms causes
their dipoles to become phased. This leads to rapid decay on timescales much faster
than the natural lifetime of the excited state, emitting an intense pulse of radiation
[36].

Dipole–dipole interactions are only observable for samples with an interatomic
separation R < λ, where λ is the wavelength of the transition. This corresponds to
densities of order 1015 cm−3 for optical transitions, at which densities the collisional
dephasing in thermal samples precludes observation of superradiance without use of a
BEC [37]. Consequently, a cooperative optical non-linearity has only been previously
observed in an up-conversion process, requiring very high optical intensity [38].

1.1.4 Rydberg Atoms

The difficulty in achieving R < λ can be overcome by using states coupled by
microwave transitions, such as a Rydberg state [39]. Rydberg atoms represent highly
excited states of the valence electron, which are relatively long-lived states with large
orbital radii. Their large radius gives the Rydberg states a very large dipole moment,
resulting in very strong long-range dipole–dipole interactions between atoms that
shift the energy of the multiply excited Rydberg states [39]. When the energy shift
exceeds the linewidth of the excitation laser, only a single atom can be excited to
the Rydberg state, an effect known as dipole blockade [40]. This enables determin-
istic creation of a single excitation for atoms confined within around 5µm, making
Rydberg atoms ideally suited to studies of quantum many-body physics and quantum
information processing.

The controllable interactions of the Rydberg states have been studied in a variety
of regimes, demonstrating resonant energy transfer [41–44] and mechanical effects
of dipole–dipole interactions, namely ionisation due to the attractive or repulsive
potentials [45, 46]. Important steps towards exploiting the strong interactions for
quantum information were the observation of coherent excitation of the Rydberg
states [47–49] and the demonstration of dipole blockade [50–59].

A number of theoretical proposals exist to realise quantum gates [40, 60–62]
and quantum simulators [63] using dipole blockade of the Rydberg states. Recently,
the conditional entanglement [64] and a C-NOT gate [65] have been demonstrated
for a pair of atoms separated by around 3µm. Other interesting applications of
the dipolar interactions include the creation of strongly correlated atomic states by
weakly dressing ground-state atoms with Rydberg character [66, 67], or novel phase
transitions from resonant coupling of the Rydberg states [68, 69].
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As well as creating correlated atomic states, blockade can be used to create single
photons through four-wave mixing [70], or collective emission of the shared exci-
tation [71]. Generation of more complex quantum states of light is possible using a
multi-level atomic system [72], or through photon subtraction [73].

1.1.5 Rydberg EIT

The properties of the Rydberg states can be mapped onto optical transitions using
EIT. The original proposal by Friedler et al. to realise a photonic phase gate using
Rydberg atoms relied on using EIT to create weakly interacting dark states that
counter-propagate through an atomic vapour [74]. This treated the photons as being
1D, leading to an updated proposal of entanglement by applying this scheme in a
hollow core fibre filled with an atomic sample [75]. One of the challenges with this
approach is to overcome the strong interaction between the Rydberg atoms and the
surface of the fibre [76].

Pioneering studies of Rydberg EIT were performed in a thermal vapour [77] to
demonstrate EIT as a coherent, non-destructive probe of the Rydberg energy levels in
contrast to detection using ionisation [39]. This also demonstrated EIT as a method
of performing spectroscopy of the Rydberg states, which was also used in an atomic
beam to measure isotope shifts in Sr [78]. Combining EIT with the techniques of FM
spectroscopy, an error signal suitable for stabilising the frequency of the Rydberg
excitation laser can be generated [79]. This work was of fundamental importance to
the results in this thesis, as the ability to actively stabilise the frequency of the two-
photon resonance enabled high resolution spectroscopy to be performed, achieving
narrow sub-MHz resonances in a single measurement [80].

The Rydberg character of the EIT dark state has been exploited to control the
propagation of a probe beam through the cell using external electric fields, demon-
strating optical switching [81] and a giant electro-optic effect 106 times larger than
for typical Kerr media due to the large polarisability of the Rydberg states. It has also
been used for applications in electrometry [82, 83]. However, for thermal samples the
effect of dipole–dipole interactions have yet to be observed due Doppler broadening
reducing the size of the blockade [76].

Studies of dipole–dipole interaction effects in EIT of a cold atomic gas form the
basis of this thesis, with initial experiments on low principal quantum number states
displaying cooperative behaviour consistent with superradiance [80]. Complemen-
tary work revealed dipole–dipole interactions create a dephasing of the EIT [84],
however it will be shown that for highly excited Rydberg states the dipole block-
ade mechanism can be used to obtain a cooperative optical non-linearity [85, 86].
This thesis describes the characterisation of the non-linearity, and progress towards
realising this effect at the single photon level using a single blockade volume.
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1.2 Thesis Layout

The document is separated into four parts—part I explores the properties of the
Rydberg states and how the strong interactions can be mapped onto an optical field
to obtain a novel optical non-linearity. Part II details the experimental setup and
observation of cooperative effects through EIT spectroscopy of an ultra-cold atom
cloud. Part III extends these ideas to consider the non-linearity at the single-photon
level. Finally, part IV draws these results together to consider future areas of study.
The chapter breakdown is as follows;

Part I: Rydberg Atom-Light Interactions

• Chapter 2 describes the properties of Rydberg atoms, detailing the calculation of
dipole matrix elements and their application in computing Stark maps and static
polarisabilities of each state.

• Chapter 3 contains the theory of dipole–dipole interactions between pairs of
Rydberg atoms, discussing the long- and short-range regimes and their effect on
motional dynamics. The ability to tune the sign and strength of the interaction
using an external field is also considered.

• Chapter 4 outlines the theory of atom-light interactions required to calculate the
optical properties of a single atom and to understand electromagnetically induced
transparency (EIT).

• Chapter 5 considers the cooperative phenomena arising due to dipole–dipole inter-
actions, namely superradiance and dipole-blockade. Blockade is discussed in the
context of EIT, and a few-atom model used to illustrate the resulting cooperative
non-linearity.

Part II: Observations of Cooperativity

• Chapter 6 gives an account of the experimental setup used to perform EIT on a
cold, dense atomic ensemble, including details of the data analysis procedure.

• Chapter 7 presents the results of these experiments, demonstrating a superradiant
loss for low-n states, and characterising the cooperative optical non-linearity due
to both attractive and repulsive interactions for states around n ∼ 60.

Part III: Rydberg Atom Quantum Optics

• Chapter 8 discusses the blockade mechanism in the context of quantum optics.
A model is developed to show that a single, optically thick blockaded ensemble
can be used to create a train of highly correlated single photons from a coherent
input state.

• Chapter 9 describes the design and construction of a new apparatus to trap atoms
in a single blockade volume, enabling studies of the optical non-linearity at the
single photon level.

Part IV: Conclusion

• Finally, chapter 10 summarises the important results and discusses future directions
for this research.
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Chapter 2
Rydberg Atoms

The Rydberg series was originally identified in the spectral lines of atomic hydrogen,
where the binding energy W was found empirically to be related to the formula [1]

W = −Ry

n2 , (2.1)

where Ry was a constant and n an integer. The theoretical underpinning for this
scaling arrived with the Bohr model of the atom in 1913 [2], from which the Rydberg
constant Ry could be derived in terms of fundamental constants

Ry = Z2e4me

16π2ε2
0�2

, (2.2)

and n understood as the principal quantum number. From the Bohr model it was
also possible to derive scaling laws for the atomic properties in terms of n, which
were later verified from the full quantum mechanical treatment of Schrödinger in
1926 [3]. Table 2.1 summarises the scalings of the atomic properties for the low-
� Rydberg states. The most important property of the Rydberg states is the large
orbital radius, and hence dipole moment, ∝ n2. The consequence of the incredibly
large dipole moment is an exaggerated response to external fields and the ability to
observe dipole-dipole interactions between atoms on the µm scale. Combining this
with the relatively long lifetimes, Rydberg atoms are well suited to applications in
coherent quantum gates [4].

2.1 Alkali Metal Atom Rydberg States

Alkali metal atoms are similar to hydrogen, with a single valence electron orbiting
a positively charged core which gives a −1/r Coulomb potential at long range.
However, the nucleus is surrounded by closed electron shells which screen the nuclear

J. D. Pritchard, Cooperative Optical Non-Linearity in a Blockaded Rydberg Ensemble, 15
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Table 2.1 Scaling laws for
properties of the Rydberg
states [5]

Property n-scaling

Binding energy W n−2

Orbital radius n2

Energy difference of adjacent n states � n−3

Radiative lifetime τ n−3

charge, giving the core a finite size. For the low orbital angular momentum states with
� ≤ 3, the electron orbit is extremely elliptic and can penetrate the closed electron
shells. This exposes the valence electron to the unscreened nuclear charge, causing
the core potential to deviate from the Coulombic potential at short range. The inner
electrons can also be polarised by the valence electron. These two interactions with
the core combine to increase the binding energy of the low-� Rydberg states relative to
the equivalent hydrogenic states. This difference in binding energy is parameterised
using the quantum defects δn�j

W = − Ry

(n − δn�j )2 , (2.3)

where for rubidium the Rydberg constant is Ry = 109736.605 cm−1 [6]. The proper-
ties of the alkali metal Rydberg states are thus determined from the effective principal
quantum number n∗ = n − δn�j .

The value of the quantum defects depends on the quantum numbers for the
Rydberg state of interest, where the S states have the largest defects as they have a
significant core penetration. The quantum defects are determined empirically from
spectroscopic measurements and can be calculated using

δn�j = δ0 + δ2

(n − δ0)2 + δ4

(n − δ0)4 + . . . , (2.4)

where δ0, δ2 . . . are dependent upon � and j . For rubidium, these have been measured
on a cloud of cold atoms by the group of T. F. Gallagher and can be found in
Ref. [7] for the S, P and D states and Ref. [8] for the F states. For � > 3 the
quantum defects are zero, and the core potential is purely Coulombic. These are
referred to as the hydrogenic states, which are degenerate for a given n.

2.2 Rydberg Atom Wavefunctions

The wavefunction for the valence electron is described by the Schrödinger equation,
given in atomic units (a.u.) as
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[
− 1

2μ
∇2 + V (r)

]
ψ(r, θ,φ) = Wψ(r, θ,φ), (2.5)

where μ is the reduced mass of the electron, r is the radial coordinate and V (r) is
the core potential. Since V (r) has no angular dependence, the wavefunction is sepa-
rable, giving ψ(r, θ,φ) = R(r)Y m�

� (θ,φ), where Y m�

� (θ,φ) is a spherical harmonic
dependent upon the orbital angular momentum � of the Rydberg state. Inserting this
into Eq. 2.5 gives the equation for the radial wavefunction of the electron

[
− 1

2μ

(
d2

dr2 + 2

r

d

dr

)
+ �(� + 1)

2μr2 + V (r)

]
R(r) = W R(r). (2.6)

Model Potential VC(r)

To calculate the radial wavefunctions of the alkali metal atoms, it is necessary to use
an �-dependent core potential VC(r) to include the effects of core penetration and
polarisation. This is done using a model potential given by [9]

VC(r) = − Zn�(r)

r
− αc

2r4 (1 − e−(r/rc)
6
). (2.7)

The first term describes the Coulomb potential for a radial charge Zn�(r) to account
for core penetration, where radial charge is defined as

Zn�(r) = 1 + (Z − 1)e−a1r − r(a3 + a4r)e−a2r . (2.8)

The second term in Eq. 2.7 describes the long range potential of the induced core
polarisation on the valence electron. The strength of this effect is determined by the
core polarisability αc, which increases with the number of electrons in the core.

Values for the parameters a1−4, rc and αc are taken from Marinescu et al. [9],
where the authors fit this model for the core potential to the measured energies of
the Rydberg states for each �-series of the alkali metals.

In addition to the core potential, the spin-orbit potential VSO(r) which causes the
fine-structure splitting must also be included as [10]

VSO(r) = α2

2r3 L · S, (2.9)

where α is the fine-structure constant and

L · S = j ( j + 1) − �(� + 1) − s(s + 1)

2
. (2.10)

The total potential is thus V (r) = Vc(r) + VSO(r).
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(b)

(a)

Fig. 2.1 Rydberg atom radial wavefunctions. a 50S1/2 radial wavefunction for rubdium and
hydrogen. b Radial probability density for nD5/2 states, illustrating the scaling of the radial wave-
function with n∗2

Numerical Integration

Using this model potential, the radial wavefunctions can be calculated by
numerically integrating the radial Schrödinger equation of Eq. 2.6. This is simpli-
fied by performing a transformation to integrate the function X (r) = R(r)r3/4 in
terms of the scaled co-ordinate x = √

r [11]. This transformation converts Eq. 2.6
to a form solved efficiently using the Numerov algorithm [12, 13], whilst using the
coordinate x gives an approximately constant number of points across each period
of oscillation in the wavefunction. It is necessary to truncate the range of integration
as at short range the model becomes unphysical and diverges, whilst at long range
the wavefunction decays to zero. Following Ref. [14], the limits of integration are
set to use an inner radius of ri = 3

√
αc, and an outer radius of ro = 2n(n +15) which

is much larger than the classical turning point of the wavefunction. To minimise
errors introduced by the approximate model potential at short range, the integration
is performed inwards, starting at ro.

Figure 2.1a shows the calculated wavefunctions of the 50S1/2 states for hydrogen
and rubidium as a function of the scaled coordinate. Comparing the two wavefunc-
tions, the rubidium wavefunction is shifted to shorter radius relative to the hydrogen
wavefunction due to the increased binding energy from the interaction with the core.
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In (b) the electron probability density is plotted for the nD5/2 states, illustrating the
large orbital radii of the Rydberg states.

2.3 Dipole Matrix Elements

Transitions between atomic states primarily occur due to coupling with the electric
dipole moment µ = er of the valence electron, which is a factor of (α/2)2 stronger
than the magnetic dipole coupling [15]. The strength of the coupling between states
|n�m�〉 and |n′�′m′

�〉 is given by the dipole matrix element 〈n�m�|μ|n′�′m′
�〉, which

is dependent upon the overlap of the wavefunctions with the electric dipole moment.
From knowledge of the dipole matrix elements, it is possible to calculate transition
probabilities, radiative lifetimes and many other properties of the atomic states [10].

The dipole operator is μ = er · ê, where ê is the electric field polarisation unit
vector. Transforming into the spherical basis, the dipole operator can be decom-
posed into the operators μq , with q = {−1, 0,+1} corresponding to {σ+,π,σ−}
transitions, given by

μ−1 = 1√
2
(μx − iμy), (2.11a)

μ0 = μz, (2.11b)

μ+1 = 1√
2
(μx + iμy). (2.11c)

These operators are related to the spherical harmonics by μq = er
√

4π/3Y q
1

(θ,φ), which form a set of rank-1 irreducible tensors. As a result the Wigner–Eckart
theorem can be used to separate dipole matrix element into an angular coupling
and a reduced matrix element 〈�||er ||�′〉 which depends only on � and the radial
wavefunctions [16]

〈n�m�|μq |n′�′m′
�〉 = (−1)�−m�

(
� 1 �′

− m� q m′
�

)
〈�||μ||�′〉, (2.12)

where the brackets denote the Wigner-3 j symbol. Using the properties of the Wigner-
3 j symbol, the selection rules of the electric dipole can be derived as �� = ±1 and
�m� = 0,±1 corresponding to π,σ± transitions.

The reduced matrix element is defined as [17]

〈�||μ||�′〉 = (−1)�
√

(2� + 1)(2�′ + 1)

(
� 1 �′
0 0 0

)
〈n�|er |n′�′〉, (2.13)

where the radial matrix elements 〈n�|er |n′�′〉 represent the overlap integral between
the radial wavefunctions and the dipole moment
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〈n�|er |n′�′〉 =
ro∫

ri

Rn,�(r)er Rn,�′(r)r2 dr, (2.14)

This can be evaluated by numerical integration over the wavefunctions calculated
using the method described above.

2.3.1 Fine Structure Basis

The fine structure interaction VSO breaks the degeneracy of the � states, which split
according to j = � + s. As the electric field only couples to the orbital angular
momentum (�) of the electron, it is therefore necessary to transform from the fine-
structure basis into the uncoupled basis to evaluate the dipole matrix elements. Using
the Wigner–Eckart theorem (Eq. 2.12), the matrix element can be expressed in terms
of the reduced matrix element 〈 j ||μ|| j ′〉. This is related to 〈�||μ||�′〉 by [16]

〈 j ||μ|| j ′〉 = (−1)�+s+ j ′+1δs,s′
√

(2 j + 1)(2 j ′ + 1)

{
j 1 j ′
�′ s �

}
〈�||μ||�′〉, (2.15)

where the braces denote a Wigner-6 j symbol. Combining these equations, the dipole
matrix element in the fine-structure basis is

〈n�jm j |μq |n′�′ j ′m′
j 〉 = (−1) j−m j +s+ j ′+1

√
(2 j + 1)(2 j ′ + 1)(2� + 1)(2�′ + 1)

×
{

j 1 j ′
�′ s �

} (
j 1 j ′

− m j q m′
j

)(
� 1 �′
0 0 0

)
〈n�j ′|er |n′�′ j ′〉.

(2.16)

2.3.2 Hyperfine Structure Basis

The hyperfine interaction couples the angular momentum of the electron ( j) and the
nucleus (I ), further lifting the degeneracy of the states which are split according
to the total angular momentum F = j + I . As with the fine-structure splitting, the
Wigner–Eckart theorem can be used to find the matrix elements in the hyperfine basis
in terms of the reduced matrix element 〈F ||μ||F ′〉, which can similarly be reduced
to 〈 j ||μ|| j ′〉.

For the Rydberg states the hyperfine splitting is typically small compared to
the interaction with external fields e.g. νhfs 
 200 kHz at n = 60S1/2 [7]. The
hyperfine splitting can therefore be neglected, treating Rydberg atoms in the fine-
structure basis.
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Fig. 2.2 Radial matrix elements for 5P3/2 to nS1/2 or nD5/2 transitions. The matrix elements scale
as n∗−3/2

2.3.3 Rydberg Excitation Transition Strengths

In the experiments presented in this thesis, Rydberg states are excited by a two-photon
transition in rubidium, using a laser at 780 nm to excite from the 5S1/2 ground-state
to the 5P3/2 excited state, and a second laser at 480 nm to couple from 5P3/2 to
either nS1/2 or nD5/2,3/2 Rydberg states. The coupling strength can be expressed
in terms of the Rabi frequency � = −µ · E/�, which scales linearly with the
dipole matrix element. For experiments where the coupling Rabi frequency is to
be kept constant over a range of n, it is necessary to calculate the dipole matrix
elements for the transition. Using the core potential and the energy of the 5P3/2
state,1 an approximate 5P3/2 wavefunction can be calculated to find the radial dipole
matrix elements 〈5P3/2|er |n�j〉 for the allowed transitions. The results are plotted
in Fig. 2.2, showing a stronger coupling to the nD5/2 state. The matrix elements are
around five orders of magnitude weaker than the coupling to the nearest Rydberg
states (∼1000 ea0 at n = 40), and are fitted using the scaling C�n�−3/2 to obtain
the coefficients CS = 4.502 ea0 and CD = 8.457 ea0, in good agreement with
Deiglmayr et al. [18].

The total matrix element is obtained by multiplying the radial part by the angular
component. For transition between the stretched states with j = � + 1/2, |m j | = j ,
the angular coupling of Eq. 2.16 reduces to

1 Below n ∼ 20 the quantum defects give poor agreement as the electron has a strong interaction
with the core.
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〈P3/2, m j = 3/2|μq |�′ j ′m′
j 〉 =

√
�max

(2�max + 1)
, (2.17)

giving
√

1/3 for transitions to nS1/2, m j = 1/2 and
√

2/5 to nD5/2, m j = 5/2,
further enhancing the coupling to nD5/2 relative to nS1/2.

2.4 Stark Shift

Applying a static electric field E along the z-axis causes the states to mix, shifting
the energy levels relative to the bare atom, known as the Stark shift. To calculate the
atomic energy states in the presence of an electric field, it is necessary to find the
eigenvalues of the Stark Hamiltonian [14]

HStark = Hatom + Eẑ. (2.18)

The electric field term Eẑ creates off-diagonal couplings between states, with the
selection rule �m j = 0 such that |m j | states are coupled together. The new energy
levels are found by diagonalising HStark as a function of E for all states with a given
|m j | to create an energy diagram known as a Stark map.

Figure 2.3 shows Stark maps calculated at n = 40 for the |m j | = 1/2 and 5/2
manifolds. The angular momentum states are truncated at � = 20 as this is sufficient
for convergence of the energy levels of the states for � ≤ 3. From (a), the effect of the
quantum defects in shifting the energy levels is clear, as the closest S1/2 state to the
n = 40 hydrogenic manifold is 43S1/2. The high-� hydrogenic states are degenerate,
leading to a first-order linear Stark shift. In the |m j | = 1/2 states, all of the levels
are coupled leading to avoided crossings between the states with closest �. In (b), the
|m j | = 5/2 hydrogenic states separate into |m�| = 2, 3 states. This is the relevant
quantum number as the electric field couples to �, leading to a mixture of real and
avoided crossings observable between adjacent n states.

2.4.1 Scalar Polarisability

At low fields, the Stark effect acts as a second-order perturbation on the states with
� ≤ 3 to give a quadratic shift of the form

�W = −1

2
α0 E2, (2.19)

where α0 is the static polarisability, which for state |n, �, j, m j 〉 is given by
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Fig. 2.3 n = 40 Stark maps for Rb. a |m j | = 1/2 manifold shows avoided crossings between states
with �� = ±1. b |m j | = 5/2. Hydrogenic states are split into |m�| = 2, 3 manifolds, resulting in
a mixture of avoided and real crossings between adjacent n states.

Table 2.2 Parameters for calculating static polarisability α0 = β1n∗6 + β2n∗7 in units of
MHz/(V/cm)2

State |m j | β1 (×10−9) β2 (×10−11) State |m j | β1 (×10−9) β2 (×10−8)

S1/2 1/2 2.188 5.486 F1/2 1/2 −1.655 1.612
P1/2 1/2 2.039 51.456 F1/2 3/2 −1.308 1.350
P3/2 1/2 2.449 62.011 F1/2 5/2 −0.634 0.826
P3/2 3/2 1.611 52.948 F1/2 1/2 −1.624 1.623
D3/2 1/2 2.694 −6.159 F1/2 3/2 −1.457 1.478
D3/2 3/2 1.725 22.259 F1/2 5/2 −1.077 1.188
D5/2 1/2 2.770 −12.223 F1/2 7/2 −0.530 0.753
D5/2 3/2 2.352 1.772
D5/2 5/2 1.513 29.763

α0 =
∑

n′,�′, j ′ �=n,�, j

|〈n, �, j, m j |μ0|n′, �′, j ′, m j 〉|2
Wn′�′ j ′ − Wn�j

. (2.20)

The polarisability α0 
 μ2/�, where � ∝ n∗−3 is the energy of the nearest state
and μ ∝ n∗2, giving α0 ∝ n∗7. Consequently Rydberg states are incredibly sensitive
to electric fields, allowing precise control over the Rydberg energy levels and making
them suitable for applications in electrometry [19–21].

The static polarisabilities can be obtained experimentally by fitting the low-field
dependence of the energy-levels for each state. To test the accuracy of the code,
the polarisabilities calculated from Eq. 2.20 for the nS1/2 states are compared to the
measurements of O’Sulivan et al. [22]. The results are plotted in Fig. 2.4a, showing
excellent agreement between theory and experiment. In [22] the authors fit the data
to an empirical scaling of the form
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Fig. 2.4 Scalar polarisability. a Comparison of calculated nS1/2 static polarisabilities α0 to exper-
imental data from Ref. [22]. b The static polarisability for the D5/2,3/2 |m j | = 1/2 states changes
sign, resulting in a blue-shift at low fields

α0 = β1n∗6 + β2n∗7, (2.21)

where α0 is in units of MHz/(V/cm)2, obtaining β1 = 2.202 × 10−9 and β2 =
5.53 × 10−11 for the measured data. Table 2.2 shows the results obtained from least-
square fitting this scaling to the calculated polarisabilities over the range n = 20−100
for all states with � ≤ 3, which are consistent these empirical values for the nS1/2
states. For |m j | = 1/2 in the D states, the static polarisability is initially positive
at low n and changes sign to become negative for the higher excited states, shown
in Fig. 2.4b. This gives a positive Stark shift at low field for states above 24D5/2.
However, as the electric field increases, the D-states have an avoided crossing with
the F-states and the energy shift becomes negative again. This can be seen from the
Stark map in Fig. 2.3a.

2.5 Summary

The Rydberg series describes a set of states with simple scaling laws for fundamental
properties such as transition frequencies, radiative lifetime or static polarisability in
terms of the principal quantum number, which can be derived from the analytic solu-
tions for the wavefunctions of hydrogen. For the alkali metal atoms, the interaction
with the core creates a perturbation to the hydrogenic states that is characterised by
the quantum defects. Using a model potential, the wavefunctions can be obtained
numerically, enabling calculation of the transition dipole matrix elements between
the states. From these matrix elements a wide range of properties can be calculated,
such as the electric field sensitivity as described above. The most important property
of the Rydberg states is the large dipole moment for transitions to adjacent Rydberg
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states ∝ n∗2. As will be shown in the following chapter, this leads to very strong
interactions between a pair of atoms excited to the Rydberg state.
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Chapter 3
Rydberg Atom Interactions

As discussed in the introduction, the strong dipole–dipole interactions of the Rydberg
states make them ideal for studying quantum many body physics, and applications in
quantum information [1]. One of the main advantages of Rydberg atoms over other
dipolar systems, such as polar molecules [2, 3], is the ability to control the strength,
sign and spatial dependence through choice of state, in addition to be being able to
turn the interactions off by returning population to the ground state. This chapter
outlines the principle behind dipole interactions of the Rydberg states, detailing the
properties of the S1/2 and D5/2 states of rubidium.

3.1 Dipole–dipole Interactions

Consider a pair of atoms initially in state |r〉 = |n, �, j, m j 〉 separated by distance R,
shown schematically in Fig. 3.1a. The dipole–dipole interaction energy for this sys-
tem can be written in atomic units as

V (R) = µ1 · µ2

R3 − 3(µ1 · R)(µ2 · R)

R5
, (3.1)

where µ1,2 are the dipole moments associated for the transitions from |r〉 to |r ′〉
and|r ′′〉 respectively. Taking R along the z-axis (θ = 0), the dipole–dipole interaction
reduces to

V (R) = μ1−μ2+ + μ1+μ2− − 2μ1zμ2z

R3 , (3.2)

whereμiq denotes the dipole operator of atom i = {1, 2} and subscript q = {−, z,+}
corresponds to a {σ+,π,σ−} transition. In this geometry the selection rules for the
dipole–dipole interactions preserve the total angular momentum M = m j1 + m j2 of
the initial pair states.

J. D. Pritchard, Cooperative Optical Non-Linearity in a Blockaded Rydberg Ensemble, 27
Springer Theses, DOI: 10.1007/978-3-642-29712-0_3,
© Springer-Verlag Berlin Heidelberg 2012
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(a) (b)

Fig. 3.1 a Dipole–dipole interactions between two atoms with interatomic separation R at an angle
θ to the z-axis. b Transformation from atomic to pair state basis reveals near-resonant states with
an energy defect � that are coupled by the dipole–dipole interaction

To calculate the energy shift due to the dipole–dipole interaction, it is necessary
to transform from an atomic basis to a pair basis, as illustrated in Fig. 3.1b. The initial
pair state |rr〉 is coupled by V (R) to a state |r ′r ′′〉 which has an energy defect �

given by
� = W|r ′〉 + W|r ′′〉 − 2W|r〉, (3.3)

which represents the energy difference of the pair states at infinite separation. The
Hamiltonian describing the dipole–dipole interaction for the basis states |rr〉, |r ′r ′′〉
is

H =
(

0 V (R)

V (R) �

)
. (3.4)

The eigenvalues of this Hamiltonian are

λ± = � ± √
�2 + 4V (R)2

2
, (3.5)

such that the energy of the pair states is now dependent upon the separation of the
two atoms.

The form of the spatial dependence can be derived in two distinct limits:

(i) Long range (V (R) � �)

�W = − V (R)2

�
= −C6

R6 . (3.6)

This is the van der Waals (vdW) regime where the sign of the interaction is
determined by �. In this limit, the strength of the interaction is characterized by
parameter C6 which scales proportional to n∗11 as V (R) ∝ μ2 ∝ n∗4 and the
energy defect � ∝ n∗−3.
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(a) (b)

Fig. 3.2 Many-body interactions. a For the case of many-body interactions, in the van der Waals
regime V ∝ 1/R6 interactions are dominated by nearest-neighbour allowing consideration of
isotropic pair-wise interactions. b For the resonant dipole regime V ∝ 1/R3 however, all of the
surrounding atoms are equally important and it is now necessary to consider the full many-body
system

(ii) Short range (V (R) � �)

�W = ±V (R) = ±C3

R3 . (3.7)

This is the resonant dipole–dipole regime as it has a 1/R3 dependence associated
with a pair of static dipoles, scaling as C3 ∝ n∗4.

The transition between the 1/R3 and 1/R6 regimes occurs at the van der Waals
radius when V (RvdW) = �, where RvdW = 6

√|C6/�| ∝ n∗7/3.
An important difference between these two regimes is the contribution of the

nearest-neighbour to the total interaction when considering a many-body atomic
ensemble, as shown in Fig. 3.2. For a uniform density ρ, the average interatomic
spacing is given by Ravg = (5/9)ρ−1/3 [4]. Assuming the nearest neighbour is at
this radius, the pair-wise interaction with this atom is Vpair = V (Ravg), whilst the
interaction energy contributed by all other atoms in the system can be evaluated from,

Vs =
∞∫

Ravg

4πR2ρV (R) dR. (3.8)

In the van der Waals regime, this reduces to Vs 
 0.7Vpair, showing interactions are
dominated by the nearest neighbour, allowing the many-body system to be treated
as an ensemble of interacting pairs. For the resonant dipole interaction however, the
integral diverges as the 1/R3 interaction cancels with the R3 scaling of the number
of atoms at radius R. This means the contribution from the surrounding atoms is
significantly larger than the closest atom, and the effect of all atoms must be included.
A thorough discussion of this relative contribution of the surrounding atoms is given
in [5, 6].
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Fig. 3.3 Rubidium pair-state energy defects in zero field. a nS1/2nS1/2 pair states have � < 0
for all n′ Pn′′ P states, leading to repulsive interactions. b nD5/2nD5/2 pair states have the smallest
energy defect for the (n + 2)P(n − 2)F states, which gives attractive long-range interactions for
n > 43

3.2 Interaction Strengths

In the long range van der Waals regime, the interaction strength is dominated by the
pair state with the smallest energy defect, which determines the sign of the interaction.
However, to calculate the magnitude of the interaction it is necessary to consider not
only the near-resonant pair state, but all combinations of states which are dipole
coupled to the initial pair state. Figure 3.3 shows the energy defects as a function of n
for (a) nS1/2nS1/2 and (b) nD5/2nD5/2 states in Rb. For the S1/2 states, the smallest
energy defect is given by the coupling to the n P3/2(n − 1)P3/2, which is negative
for all n. Thus C6 < 0, corresponding to repulsive interactions for the S1/2 states.

In the D5/2 states, there are a range of near-resonant dipole-coupled channels,
all with energy defects much smaller than the equivalent S states. The dominant
coupling is to (n + 2)P3/2(n − 2)F , which changes sign at n > 43, changing from
repulsive to attractive interactions. In addition to smaller �, the matrix elements of
the D5/2 → P, F are larger than the S1/2 → P , leading to stronger interactions
with a larger RvdW [7]. For example, the 60D5/260D5/2 M = 5 pair state has
C6 = 210 GHzµm6, compared to −140 GHzµm6 for the 60S1/260S1/2 M = 1 pair
state.

Figure 3.4a shows the calculated pair potential for the 60S1/260S1/2 state obtained
by diagonalisation of Eq. 3.4 for all pair states with |�| < 25 GHz, showing the effec-
tive splitting of the near-resonant 60P3/259P3/2 state. The coefficients C3 and C6 are
determined by fitting the potential curve either side of RvdW = 2.1 µm. This gives
C3 = −14.3 GHzµm3 and C6 = −140 GHzµm6, in excellent agreement with [8]
which calculates C6 using second-order perturbation theory in the uncoupled basis.
In (b) the interaction potentials for a range of n are plotted, illustrating both the
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(a) (b)

Fig. 3.4 nS1/2nS1/2 interaction potentials a 60S1/260S1/2 pair state energy calculated including
all pair states with � < 25 GHz. The interaction is dominated by the 60P3/259P3/2 state which is
repelled by the coupling. b Comparison of interaction curves as a function of n, showing shift of
the van-der-Waals radius RvdW to larger R as n increases, with the 1/R3 resonant dipole interaction
becoming relevant at densities of 1010 cm−3 for n � 80

increased interaction strength with n and also the transition from 1/R6 to 1/R3 at
short range. For a typical experiment density of 1010 cm−3, the average pair separa-
tion Ravg = 2.5 µm. This corresponds to interactions in the van der Waals regime for
n � 60, which is the largest n state used in work presented in this thesis. Therefore
all interactions can be modelled as V (R) = C6/R6 in later sections.

3.3 Angular Dependence

In the discussion above it was assumed the dipoles were aligned with θ = 0. More
generally, the dipole–dipole coupling is a function of both θ and R given by [9]

V (R, θ) = μ1−μ2+ + μ1+μ2− + (1 − 3 cos2 θ)μ1zμ2z

R3

+ 3/2 sin2 θ(μ1+μ2+ + μ1+μ2− + μ1−μ2+ + μ1−μ2−)

R3 (3.9)

+ 3/
√

2 sin θ cos θ(μ1zμ2+ + μ1zμ2− + μ1+μ2z + μ1−μ2z)

R3 ,

where for θ �= 0 the total angular momentum M of the initial pair state is no longer
conserved, allowing states of different M to be coupled together. Figure 3.5 shows
the van der Waals interaction strength for pairs of atoms in the (a) 60S1/260S1/2
and (b) 60D5/260D5/2 states as a function of θ. From (a) it is obvious the S1/2 state
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(a) (b)

Fig. 3.5 Angular dependence of C6 on θ for a 60S1/260S1/2 and b 60D5/260D5/2 for pairs of atoms
in state m j . This shows the S1/2-states are almost isotropic whilst D5/2-states have >50 % variation
with θ. The interaction is larger for m j = 1/2 as it allows coupling to the (n + 2)P1/2(n − 2)F5/2
channel which has a smaller energy defect at n=60 (see Fig. 3.3b)

interactions are almost perfectly isotropic. This occurs because the dipole–dipole
interaction couples to the orbital angular momentum, �, which is zero for the S state
pair and has a spherically symmetric distribution. The slight perturbation occurs from
the fine-structure splitting of the P states. For the D5/2 states however, the orbital
angular momentum of the initial pair state is four, giving a significantly anisotropic
interaction which is reduced by more than 50 % at θ = π/2 from the value aligned
along z (θ = 0).

3.4 Tuning Interactions with External Fields

The strength and sign of the dipole–dipole interaction can be controlled by choice
of the n� state of the initial Rydberg pair states, however there will always be a
transition from the 1/R3 to 1/R6 regime. Choosing a very high principal quantum
number can extend the transition radius RvdW to large R, however at the cost of a
weaker coupling to the intermediate state which scales as ∝ n∗−3/2 (Fig. 2.2). An
alternative approach is to tune the interaction by applying an external field to the
system.

3.4.1 Static Electric Field

A static electric field causes a Stark shift of the Rydberg states as shown in Sect. 2.4
which can be used to tune the sign and magnitude of the energy defect, for example
from attractive to repulsive interactions. A Förster resonance occurs when � = 0,

http://dx.doi.org/10.1007/978-3-642-29712-0_2
http://dx.doi.org/10.1007/978-3-642-29712-0_2
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Fig. 3.6 Energy defect for states coupled to the 44D5/244D5/2 pair state as a function of static
field, revealing Förster resonances around 0.2 V/cm for the near-resonant 46P3/242F states and
around 1.1 V/cm for 45P3/243F pair states. This figure shows interactions for all possible M states,
with the hydrogenic manifold plotted to illustrated the states causing the shift

leading to 1/R3 resonant dipole–dipole interactions for all R [10, 11]. An example
is shown in Fig. 3.6 for the 44D5/244D5/2 pair state, where two Förster resonances
are visible, occurring at 0.2 V/cm for the 46P3/242F state and at 1.1 V/cm for the
45P3/243F state. The shape of the pair potentials is dominated by the linear shift of
the hydrogen-like states with � > 3 which are plotted to illustrate the origin of the
linear shift of F pair states at high field.

Calculation of the interaction potentials in an applied field reveals the presence of
long-range (∼9µm) molecular bound states known as macrodimers [12], which have
been observed experimentally in Cs [13]. If the applied field is increased further, the
Rydberg atoms will have a permanent rather than induced dipole moment, where the
permanent dipole moment is given by the gradient μ = − dW (E)/ dE .

3.4.2 Microwave Dressing

The energy separation between close-lying Rydberg states typically corresponds to
microwave frequencies, e.g. 46S1/2 → 45P3/2 ∼ 40 GHz. Consider a microwave
field with detuning �μ = ωμ −ω0 tuned close to resonance with the transition from
states |r〉 to |r ′〉, with Rabi frequency �μ (see Sect. 4.1). As the microwave field
couples the single-atom states, whilst the dipole–dipole interaction couples the pair
states, all four pair states must be considered, as shown in Fig. 3.7a. The Hamiltonian
for the interacting system in the basis {|rr〉, |rr ′〉, |r ′r〉, |r ′r ′〉} is

http://dx.doi.org/10.1007/978-3-642-29712-0_4
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(a) (b)

Fig. 3.7 Microwave-dressing of dipole–dipole interaction. a Applying a near-resonant microwave
coupling between |r〉 and |r ′〉 dresses the pair states giving a new pair basis separated by �μ � �.
b Interaction potential for 46S1/246S1/2 pair-state with a resonant (�μ = 0) microwave coupling
of �μ/2π = 500 kHz to the 45P1/2 state. The result is a 1/R3 behaviour for all R (green line),
contrasting with the case for no microwave field (blue line). Dashed line shows energy of microwave
splitting

Hdd = �

⎛
⎜⎜⎝

−�μ �μ/2 �μ/2 V (R)

�μ/2 0 V (R) �μ/2
�μ/2 V (R) 0 �μ/2
V (R) �μ/2 �μ/2 �μ

⎞
⎟⎟⎠ , (3.10)

where the system has be transformed into the frame rotating at ωμ. In this frame,
the energy defect � has been replaced by the microwave detuning �μ. Therefore
the microwave field now chooses which Rydberg state (|r ′〉) should contribute to
the the dipole–dipole interactions. On resonance (�μ = 0) the eigenvalues of Hdd
are λ = −V (R), V (R) ± �μ, corresponding to an Autler–Townes [14] splitting
from the microwave dressing. The interaction is a resonant dipole–dipole ∝ 1/R3

for all R, shown in Fig. 3.7b for the 46S1/2 state, calculated for a resonant coupling
to the 45P1/2 state with a dipole matrix element of μs→p = √

2/9 × 1924 ea0
and �μ/2π = 500 kHz. Plotted on the same graph is the interaction curve for the
undressed van der Waals interactions. This clearly shows that for R > 2 μm the
microwave dressing enhances the strength of the dipole interaction, although it only
exceeds the microwave splitting of �μ for R < 15 µm.

The advantage of the microwave dressing over applying a weak electric field is
two-fold. Firstly, any pair state can be tuned into resonance rather than just the close
lying states. Secondly, stabilising the microwave frequency to <1 Hz is much easier
than controlling weak electric fields due to the stray electric field of around 50 mV/cm
typical for cold atom experiments [6].
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3.5 Dynamic Effects of Dipole–dipole Interactions

For an ensemble of Rydberg atoms, the dipole–dipole interactions play an important
role in determining the dynamics of the system. The focus in this work is the blockade
effect that suppresses excitation (see Sect. 5.3), however it is important to consider
other effects of interactions. The most important process is ionisation of the Rydberg
states due to collisions, resulting in Penning ionisation of the form

Rb∗ + Rb∗ → Rb∗∗ + Rb+ + e− (3.11)

where the remaining atom is transferred into a different Rydberg state with n′ �
n/

√
2 from energy conservation [15]. For D-states, the attractive interactions cause

atoms to be accelerated towards each other, leading to very rapid ionisation on
timescales of a few µs [16, 17]. This rapid ionisation can trigger plasma forma-
tion as electrons become trapped in the attractive potential of the slow moving ions,
leading to avalanche ionisation [18, 19]. To overcome this rapid ionisation, the repul-
sive S1/2 states can be used. However ionisation still occurs due to collisions or from
�-changing due to absorption of a black-body photon, transferring the pair state onto
an attractive potential [20], although at a lower rate than for the D state. Interest-
ingly, the frequency of the excitation laser plays an important role in determining
the ionisation dynamics—if the laser has the opposite detuning to the sign of the
interaction, only long-range pairs are excited which take a long time to collide. For
a laser detuning equal to the interaction shift, it is now the short-range pairs that are
excited leading to rapid ionisation [17, 19]. Thus it is possible to control the initial
separation of the Rydberg pair states in the system by choice of excitation frequency.
This effect has been used to map out the nearest-neighbour distribution for a cold
atom cloud [21].

3.6 Summary

The large matrix elements of the Rydberg states leads to strong dipole–dipole inter-
actions between atoms. The interactions can be expressed in two regimes; at long
range (V (R) � �) this is the van der Waals regime with �W = −C6/R6, whilst
at short range (V (R) � �) the atoms experience resonant dipole–dipole interac-
tions �W = C3/R3. For a typical experiment density, the average atomic separation
Ravg > RvdW, corresponding to van der Waals interactions for n � 60. Interactions
play an important role in the dynamics of the system, with attractive interactions
resulting in enhanced ionisation compared to the repulsive S-states. The scaling with
n allows a great degree of control over the magnitude and sign of the interaction,
which can be additionally tuned using external fields to create long range resonant
dipole–dipole interactions. In Chap. 5, the cooperative nature of these interactions
will be explored.

http://dx.doi.org/10.1007/978-3-642-29712-0_5
http://dx.doi.org/10.1007/978-3-642-29712-0_5
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Chapter 4
Atom-Light Interactions

The simplest case in which to consider the interaction between atoms and light is
that of a two-level atom driven by a coherent optical field. This system has been
exhaustively studied e.g. [1, 2], revealing a range of coherent effects such as Rabi
oscillations [3] and trapping due to the optical dipole force [4, 5]. Typically, the
excited state in the two-level system has a finite lifetime due to spontaneous emission
back to the ground state. On one hand this decay is advantageous, as it allows atoms
to be cooled by radiation pressure [6–8]. On the other hand, the susceptibility is
therefore dominated by a large, absorptive χ(1) component [9]. The driven two-level
system is thus poorly suited to applications in non-linear optics at the single-photon
level.

However, the addition of a third level and a second optical field gives rise to a
range of coherent phenomena including electromagnetically induced transparency
(EIT) [10, 11] which suppresses the resonant absorption. The result is a very large
dispersive optical non-linearity which can be used to control the propagation of light
through the medium.

4.1 Three Level Atom

Consider a three-level atom with ground |g〉, excited |e〉 and Rydberg |r〉 states
separated by energy �ωeg and �ωre respectively, as shown in Fig. 4.1 for a cascade,
or ladder, configuration. The atom is driven by two laser fields; a probe laser field at
frequencyωp which drives the transition from |g〉 to |e〉 with detuning �p = ωp−ωeg ,
and a coupling laser field at frequency ωc detuned by �c = ωc −ωre from the |e〉 to
|r〉 transition. The lasers are assumed to be classical monochromatic electric fields
Ep,c(t) = Ep,c cos(ωp,ct) which couple to the electric dipole moment of the atom d

d = deg(π̂
+ + π̂−) + dre(�̂

+ + �̂−), (4.1)

J. D. Pritchard, Cooperative Optical Non-Linearity in a Blockaded Rydberg Ensemble, 37
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Fig. 4.1 Three-level cascade
system with ground |g〉,
excited |e〉 and Rydberg
|r〉 states. A probe laser
at frequency ωp drives the
|g〉 → |e〉 transition whilst a
coupling laser at frequency ωc
couples levels |e〉 and |r〉

where dij = 〈i | − er| j〉 is the dipole matrix element for the transition from |i〉 to | j〉
and the dipole operators π̂±, �̂± are the raising and lowering operators of the atomic
dipole for the two transitions, defined as

π̂+ = |e〉〈g|, π̂− = |g〉〈e|,
�̂+ = |r〉〈e|, �̂− = |e〉〈r |. (4.2)

Applying the dipole-approximation1 the coupling between the electric field and
the atom is V = −d·(Ep+Ec), where the magnitude of the coupling can be expressed
in terms of the Rabi frequencies �p = −Ep · deg/� and �c = −Ec · der/� to give

V = � �p

2
(π̂− + π̂+) + � �c

2
(�̂− + �̂+), (4.3)

where the rotating-wave approximation has been used to remove the non-resonant
terms corresponding to emission of a photon with an excitation of the atom and
absorption of a photon with de-excitation of the atom (see §A.11 of Ref. [2]). The
Hamiltonian for the coupled system is H = HA + V , where HA is the energy of
the bare atom

H = −� �pπ̂
+π̂− − �(�p + �c)�̂

+�̂−, (4.4)

which acts on a wavefunction of the form |ψ〉 = ag|g〉 + ae|e〉 + ar |r〉. The states
|g〉, |e〉 and |r〉 can be expressed as orthogonal normalised column vectors

|g〉 =
⎛
⎝ 1

0
0

⎞
⎠ , |e〉 =

⎛
⎝ 0

1
0

⎞
⎠ , |r〉 =

⎛
⎝ 0

0
1

⎞
⎠ , (4.5)

from which the total Hamiltonian H is given in matrix form in this basis as

1 Valid providing the electric field doesn’t change rapidly over the length scale of the atom.



4.1 Three Level Atom 39

H = �

⎛
⎝ 0 �p/2 0

�p/2 −�p �c/2
0 �c/2 −�p − �c

⎞
⎠ . (4.6)

Using the Hamiltonian it is possible to calculate the dynamics in the absence of
decoherence using the Schrödinger equation

i�
d

dt
|ψ〉 = H |ψ〉. (4.7)

For a real atomic system however, the excited states have a finite lifetime τe,r and
it is necessary to treat the spontaneous emission of photons at rate �e,r = 1/τe,r .
Spontaneous emission is a dissipative process and cannot be included in this Hamil-
tonian as a unitary process. Therefore the time evolution of the density matrix σ is
used, instead of the wavefunction |ψ〉, to derive a master equation for the atom in
which spontaneous decay can be included whilst preserving the normalisation.2 The
density operator for a pure state is defined as σ̂ = |ψ〉〈ψ|, resulting in the density
matrix given by

σ =
⎛
⎝ |ag|2 aga∗

e aga∗
r

aea∗
g |ae|2 aea∗

r
ar a∗

g ar a∗
e |ar |2

⎞
⎠ =

⎛
⎝σgg σge σgr

σeg σee σer

σrg σre σrr

⎞
⎠ . (4.8)

To include the effect of spontaneous emission, the atom can be considered to
couple to a reservoir initially in the vacuum state into which it can emit a pho-
ton, causing a relaxation of the atomic excitation. The coupling to the reservoir is
described by the Lindblad superoperator L(σ) [13]

L(σ) = −1

2

∑
m

(C†
mCmσ + σC†

mCm) +
∑

m

CmσC†
m, (4.9)

where the sum is over all decay modes m. For a given decay channel from |i〉 to
| j〉, the first summation describes loss of population from state |i〉 due to emission
of a photon, and the corresponding decay in the coherence terms σ j i,i j , whilst the
final term shows population being restored into state | j〉, ensuring Tr{σ} = 1 for all
times [14].

For the three-level atom there are two decay modes, one from |e〉 at rate �e and
another from |r〉 at rate �r , which are described by the operators

Ce = √
�e|g〉〈e|, (4.10a)

Cr = √
�r |e〉〈r |. (4.10b)

2 Alternatively a stochastic approach can be used to solve the Schrödinger equation for the wave-
function with dissipation [12].
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Inserting these into Eq. 4.9, the Lindblad operator for the three-level atoms is

L(σ) =
⎛
⎝ �eσee − 1

2 �eσge − 1
2 �rσgr

− 1
2 �eσeg −�eσee + �rσrr − 1

2 ( �e + �r )σer

− 1
2 �rσrg − 1

2 ( �e + �r )σre −�rσrr

⎞
⎠ . (4.11)

The time evolution of the density matrix is calculated using the Liouville equa-
tion, which is the equivalent of the Schrödinger equation for the density matrix,
where now the Lindblad operator can be included to account for spontaneous decay.
The resulting equation, known as the master equation, or optical Bloch equation
(OBE), is

σ̇ = i

�
[σ,H ] + L(σ). (4.12)

4.1.1 Finite Laser Linewidth

A nominally monochromatic source, such as a laser, does not emit at a single fre-
quency, but instead has fluctuations in the emission frequency. Typically, the fre-
quency spectrum of the fluctuations is assumed to be Lorentzian [15, 16]. The laser
linewidth is therefore defined by the Lorentzian half-width at half maximum of the
emission spectrum. The effect of this finite linewidth is to increase the dephasing rate
of the off-diagonal coherence terms for the states coupled to the laser field, whilst
leaving the diagonal populations unchanged.3 Expressing the off-diagonal dephasing
terms of the Lindblad operator in Eq. 4.11 as L(σ) j i = −γ j iσ j i , the effect of finite
laser linewidth can be included by modifying the dephasing rates as follows [16, 17]

γeg → γeg + γp, (4.13a)

γrg → γrg + γrel, (4.13b)

γre → γre + γc, (4.13c)

were γp,c are the linewidth of the probe and coupling lasers respectively and γrel is the
linewidth of the two-photon resonance. For two independent lasers γrel = γp + γc,
which arises from the fact that the convolution of two Lorentzians of width γ1,2 is
equal to a Lorentzian whose width is γ1 + γ2. In the experiments presented in this
thesis, the coupling laser is stabilized to the two-photon resonance in a thermal cell
[18]. The fluctuations of the two lasers are thus correlated, and consequently the
relative linewidth of the two-photon transition can be smaller than the linewidth of
the individual lasers.

3 This treatment of laser linewidth is valid providing γ � ωp,c and γ � �e, �r .
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The laser-induced dephasing cannot be expressed in the general Lindblad form of
Eq. 4.9 as the population terms are unaffected. Instead, a phenomenological operator
Ld(σ) is introduced to account for the additional dephasing terms

Ld(σ) =
⎛
⎝ 0 −γpσge −γrelσgr

−γpσeg 0 −γcσer

−γrelσrg −γcσre 0

⎞
⎠ . (4.14)

The OBE equation is then modified as follows

σ̇ = i

�
[σ,H ] + L(σ) + Ld(σ). (4.15)

4.1.2 Steady-State Solution

Probe-Only ( �c = 0)

Without the coupling laser, the system reduces to a driven two-level atom. In the
absence of spontaneous emission, the population oscillates between states |g〉 and

|e〉 at a frequency � =
√

�2
p + �2

p, known as Rabi oscillations [3, 19]. The effect

of decay from the excited state at rate �e is to damp these Rabi oscillations, causing
the system to reach a steady-state on timescales t � τe.

It is simple to calculate the steady-state of the system by setting the left hand side
of Eq. 4.15 to zero and using the normalisation condition Tr{σ} = 1. This gives the
following results for the steady-state populations and coherence terms

σss
ee = (1 − σss

gg) = 1

2

�2
pγeg

γeg �2
p + �e(γ2

eg + �2
p)

, (4.16a)

σss
eg = (σss

ge)
∗ = �p

2

�p − iγeg

�2
p/2 + γ2

eg + �2
p
, (4.16b)

where γeg = �e/2 + γp.

Weak-Probe ( �p � �c, �e)

For the full three-level system it is not possible to solve the coupled-equations analyti-
cally. Instead, for the case �p � �e, �c, the population can be assumed to remain
in the ground-state for all times σss

gg = 1. Using this assumption, the steady-state
coherence for the probe transition is
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σss
eg = − i �p/2

γge − i �p + �2
c/4

γgr − i(�p + �c)

, (4.17)

where γgr = �r/2 + γrel.

4.1.3 Complex Susceptibility

The susceptibility at the probe laser frequency ωp for a uniform atomic density of ρ
atoms per unit volume is related to the density matrix by [17]

χ(ωp) = − 2ρd2
eg

ε0� �p
Tr{σπ̂−} (4.18)

= − 2ρd2
eg

ε0� �p
σeg.

χ is typically a complex parameter, and can be resolved into the real and imaginary
components, χ = χR + iχI. These components are related by the Kramers-Kronig
relations [9]

χR = 1

π
P

∫ ∞

−∞
χI(ω

′)dω′

ω′ − ω
, (4.19a)

χI = − 1

π
P

∫ ∞

−∞
χR(ω′)dω′

ω′ − ω
, (4.19b)

where P denotes the principle value of the integral. These relations mean that the
real part of the susceptibility can be calculated using measurements of the imaginary
susceptibility, providing the frequency dependence is known; and vice-versa.

From the steady-state solution of Eq. 4.17, the susceptibility of the three-level
system in the weak-probe limit is

χ(�p) = iρd2
eg/ε0�

γge − i �p + �2
c/4

γgr − i(�p + �c)

. (4.20)

4.1.4 Optical Response

In an experiment it is not the complex susceptibility that is measured, but the back-
action on the probe field propagating through the medium. The optical properties are
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related to the susceptibility through the refractive index n by

n = √
1 + χ 
 1 + χR + iχI

2
, (4.21)

where the approximation is valid providing |χ| � 1, valid for the experiments
presented in Part II for which |χ| � 10−4.

For a probe field propagating a distance � through the medium, the output electric
field is

E = E0e i(kn�−ωt) = E0e−kχI�/2e i(kχR�/2−ωt), (4.22)

where k = 2π/λ is the wavevector. The medium can therefore attenuate the field
proportional to the imaginary part of the susceptibility, and change the relative phase
proportional to the real part of the susceptibility. The resulting phase shift and inten-
sity transmission are given by

T = I

I0
= exp(−kχI�), (4.23a)

�φ = kχR�/2. (4.23b)

Thus from measurements of transmission or phase along a known path length it is
possible to infer the value of the susceptibility.

4.2 Electromagnetically Induced Transparency

To understand how transparency can arise in the three-level system, it is instructive
to diagonalise the Hamiltonian of Eq. 4.6 to obtain the eigenstates on the two-photon
resonance (� = �p + �c = 0), given by [11]

|+〉 = sin θ sin φ|g〉 + cosφ|e〉 + cos θ sin φ|r〉, (4.24a)

|D〉 = cos θ|g〉 − sin θ|r〉, (4.24b)

|−〉 = sin θ cosφ|g〉 − sin φ|e〉 + cos θ cosφ|r〉, (4.24c)

where θ and φ are the Stückelberg mixing angles defined as

tan θ = �p

�c
, tan 2φ =

√
�2

p + �2
c

�p
. (4.25)

In the weak probe limit ( �p � �c, �e), the mixing angle θ → 0 to give |±〉 =
(|r〉± |e〉)/√2 and |D〉 = |g〉 on resonance ( �p = 0). The probe laser only couples
to the |e〉 component of the states |±〉, which have equal magnitude but opposite

http://dx.doi.org/10.1007/978-3-642-29712-0_II
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Fig. 4.2 Three-level atom susceptibility. a–f show comparisons to the EIT condition (solid line)
to a two-level atom (dashed line), revealing the narrow transparency window on resonance and
the associated dispersion feature in χR. g–h illustrate the effect of a finite laser-linewidth (solid
line) compared to γrg = 0 (dashed line), which limits the visibility of the transparency. All
curves are calculated for �p = �e/10 and scaled relative to the probe-only resonant susceptibilty
χ̃ = 2ρd2

eg/ε0��e

signs. The result is a destructive interference of the excitation pathways, so the probe
laser is no longer absorbed. The state |D〉 is therefore known as a dark state as it
is not coupled to the light field, having a zero-energy eigenvalue. Since states |±〉
include the radiative state |e〉, they decay to populate |D〉 on timescales of order τe.
This coherent phenomenon is known as electromagnetically induced transparency
(EIT) [10, 11], as the strong coupling laser changes the optical properties of the
medium from resonant absorption of the probe laser to perfect transmission. EIT was
first observed experimentally by Boller et al. [20] using a �-configuration, where
the |r〉 state is replaced by a second ground-state transition, enabling very narrow
resonances.

Figure 4.2 shows the susceptibility for a range of parameters to illustrate the effect
of EIT. In (a), the coupling laser can be seen to switch the imaginary susceptibility
on resonance (and hence absorption) from a maximum to zero, giving complete
transparency assuming �r → 0, which gives a resonantly enhanced χ(3) in the
medium [10]. As �c is increased, the EIT resonance splits (known as Autler-Townes
splitting [21]), increasing the bandwidth of the transparency. The Kramers-Kronig
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relations show it is not possible to have a change in χI without a concommitant
change in χR. This can be seen in (d) with the appearance of a steep dispersive
feature. The group velocity vg of light as it passes through the atomic medium is [11]

vg = c

n(ωp) + ωp
dn

dωp

, (4.26)

which gives a drastically reduced group velocity on resonance due to the gradient
of χR, leading to light being slowed. Hau et al. used EIT in a BEC to reduce the
speed of light to 17 ms−1 [22], corresponding to χ(3) = 4.8 × 10−8 m2 V−2, the
largest recorded optical non-linearity in a cold atom system. As well as slowing
light, pulses can be stored in the medium for a duration of 1 ms [23]. This can be
used as an optical memory, and single photon storage has been demonstrated between
two spatially separate locations [24, 25].

EIT is very sensitive to dephasing, which destroys the coherence of the dark state.
In Fig. 4.2g–i the effect of the relative linewidth of the two-photon resonance γrg is
shown. The laser induced dephasing mixes the eigenstates, causing the dark state to
gain a contribution from |e〉 and hence suppression of the transmission on resonance.
It is therefore necessary for γrg � �c, �e to observe EIT. As well as dephasing,
the Doppler effect is important in thermal samples as the velocity averaging can
wash-out the transmission on the two-photon resonance [17]. For the ladder system,
this can be minimised using counter-propagating probe and coupling lasers, however
EIT can only be observed if kp < kc [26] unless cold atoms are used.

4.2.1 Related Phenomena

If the probe Rabi frequency is increased beyond the weak-probe limit, the state |D〉
is given by Eq. 4.24b, forming a super-position of states |g〉 and |r〉. For �r → 0,
this remains a dark state and population is transferred into |r〉 without population of
the radiative |e〉 state. This is known as coherent population trapping (CPT) [27–29],
illustrated in Fig. 4.3 which shows the evolution of population with the ratio of �p
to �c (and hence θ). An important distinction between EIT and CPT is that EIT only
occurs in an optically thick medium, where the atomic coherences induced by the
lasers cause a back-action on the probe laser.

In CPT the system is prepared in the dark state by decay from |±〉, limiting the
fidelity of the state preparation for θ > 0 [30]. Alternatively, an adiabatic evolution
of the field using a counter-intuitive pulse sequence allows smooth evolution from
θ = 0 with all atoms in |g〉 to θ = π/2 with all atoms in |r〉. This is known as
stimulated Raman adiabatic passage (STIRAP) [31, 32] and can be used to transfer
population via the dark state with almost 100 % efficiency.
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Fig. 4.3 Dark-state populations as a function of �p, �c. On the left-hand side �p � �c, resulting
in electromagnetically induced transparency (EIT). On the right-hand side �p � �p, leading to
coherent population transfer (CPT) into |r〉. If the laser intensities are changed in time from left to
right, this is equivalent to STIRAP

4.3 Summary

The evolution of the three-level system can be calculated using the optical Bloch
equations to model the effects of spontaneous emission and laser linewidth. This
enables the density matrix to be known for any time t , and hence the optical properties
of the medium from calculation of the complex susceptibility.

On the two-photon resonance the lasers drive the system into a coherent dark
state |D〉, which is not coupled to the probe field. For �p � �c, this dark state
corresponds to a narrow transmission window in the absorption feature of |e〉, leading
to the phenomena of EIT. The associated change in refractive index creates a steep
dispersive feature which can be used to slow and store light in the medium. Thus
EIT provides a means to create large optical non-linearities without a significant
absorption on resonance, as is the case for a two-level atom. Another important
feature of EIT is that in this weak probe regime |D〉 ≡ |g〉, allowing the Rydberg
state to be probed without transferring population into the state. However, as the
probe power is increased atoms are excited to the Rydberg states and it is necessary to
consider the effects of the strong dipole-dipole interactions discussed in the previous
chapter.
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Chapter 5
Cooperative Phenomena

In the previous chapter the atom-light interaction for a single atom was assumed to
describe the behaviour of a macroscopic sample, calculating the susceptibility of a
uniform gas with density ρ using the single atom density matrix. This description is
valid providing the atoms are both independent and identical. In some circumstances
the atoms behave independently but the overall response of the system depends on
the sum over all atoms. This is known as collective behaviour. An example is spin-
echo, where each atom dephases at a different rate but reversing the phase leads to a
restoration of the initial state, resulting in a collective emission.

If the atoms are no longer independent but instead correlated, the ensemble prop-
erties become fundamentally different to those of an isolated atom, and cannot be
determined by summing over the individual responses. This situation is described by
Mandel and Wolf in Sect. 16 of Ref. [1],

In other cases it is essential to include the effect of each atom on all the other atoms, because
this modifies the behaviour of each in a significant way. These phenomena, such as self
induced transparency and superradiance are collective effects in a deeper sense. They are
sometimes called cooperative effects.

Cooperative phenomena therefore occur in systems when the atom-atom interac-
tions cannot be treated simply as a perturbation, but instead dominate the evolution
of the ensemble. The main mechanism for such effects is the interaction of each atom
with the dipole-radiation field of the surrounding atoms, resulting in a well defined
phase between the dipoles that modifies the optical properties.

5.1 Cooperative Behaviour for Two Atoms

To see how cooperative behaviour can arise, it is instructive to first study the case of
a pair of atoms. Consider an atom located at the origin which has dipole moment d
oscillating at frequency ω. The electric field at position R due to this dipole is given
by [2]

J. D. Pritchard, Cooperative Optical Non-Linearity in a Blockaded Rydberg Ensemble, 49
Springer Theses, DOI: 10.1007/978-3-642-29712-0_5,
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E(R) = 1

4πε0

{
k2

R
(R̂ × d) × R̂ +

( 1

R3 − ik

R2

)
[3R̂(R̂ · d) − d]

}
e− ik R, (5.1)

where R = |R|, R̂ = R/R and k = ω/c is the wavevector. The e− ik R phase term
arises due to the finite speed of light c, which creates a retarded potential that lags
behind in time by a factor t − R/c.

The electric field can be expressed in two distinct limits:

Far-field (k R � 1): At long range the 1/R term dominates,

E(R) = k2(R̂ × d) × R̂
4πε0 R

e− ik R, (5.2)

which describes the propagation of a transverse spherical
wave; this limit is also known as the radiation zone.

Near-field (k R � 1): In the near-field the higher-order terms dominate, equivalent
to the field of a static dipole [3].

If we now place a second atom at position R which is at an angle θ to the z-axis
(Fig. 3.1a), it will experience an interaction with the dipole electric field of the first
atom that is described by the Hamiltonian Hdd = −d · E(R). Using the definition
of the spontaneous decay rate � from the excited state in terms of the dipole moment
[4]

� = k3d2

3�πε0
, (5.3)

this interaction Hamiltonian can be written in terms of � as

Hdd = −3��

4

[
1

k R
sin2 θ +

(
1

(k R)3 − i

(k R)2

)
(3 cos2 θ − 1)

]
e− ik R . (5.4)

If the atoms are initially excited to state |ee〉, they will decay into a Dicke state
|±〉 = (1/

√
2)(|eg〉± |ge〉) [5] by the spontaneous emission of a single photon. This

first emission creates a phase between the dipoles as either of the atoms could have
decayed. It can be shown that the effect of the coupling between the two atoms due
to Hdd is to modify both the decay rate and the energy of the states |±〉 to give [6]

�± = � ± �12, (5.5a)

W± = �ω0 ± ��12, (5.5b)

where �12 is the enhanced broadening term and �12 is the shift in the energy of the
|±〉 states. These are related to the real and imaginary parts of Hdd as follows1 [6]
(C.S. Adams, Private Communication, 2010)

1 Comparison of Hdd to D12 in Eq. (9) of [6] yields D12 ≡ 2 iHdd/��.

http://dx.doi.org/10.1007/978-3-642-29712-0_3
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(a) (b)

Fig. 5.1 Dipole–dipole induced broadening �12 and level-shift �12 for a pair of atoms. The level
shift dominates over dephasing for k R < π/2, indicated by the dashed line

�12 = −2Im{Hdd}/�, (5.6a)

�12 = 2Re{Hdd}/�. (5.6b)

Figure 5.1 plots these quantities as a function of k R for two different alignment con-
figurations, showing that it is possible to observe decay of the single excitation from
|+〉 at a maximum rate of 2�. This is known as a superradiant state, as the sponta-
neous emission occurs faster than �. Conversely, the |−〉 state is a sub-radiant state,
as the decay rate at close separations is less than �, corresponding to an enhanced
lifetime.

An important feature of Fig. 5.1 is the relative magnitude of the energy shift (�12)
compared to the broadening rate (�12). In the region π/2 � k R < 10, the dominant
effect is the modification of the decay rate to give sub- or superradiant decay. This
effect has been demonstrated experimentally for a pair of trapped ions at variable
separations [7]. However, at shorter range (k R < π/2) the energy-shift diverges.
Using Eqs. 5.1 and 5.6b, the energy shift is given by

�12 = d · d − 3(R̂ · d)(R̂ · d)

4πε0 R3 . (5.7)

This is equivalent to the dipole–dipole interaction between two static dipoles of
Eq. 3.1 that was used to calculate the interaction strength for a pair of Rydberg atoms
in Chap. 3.

In summary, the dipole–dipole coupling between two atoms significantly modifies
the effective energy and lifetime of the pair states. The effect cannot be reproduced
by considering each atom as a single independent emitter. Only by including the

http://dx.doi.org/10.1007/978-3-642-29712-0_3
http://dx.doi.org/10.1007/978-3-642-29712-0_3
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correlations between the dipoles of each atom can the superradiant decay and level
shift can be explained, making the process cooperative.

5.2 Superradiance from N -Atoms

Extension from a pair of atoms to a system of N -atoms is a complex problem which
has received much attention [5, 8–10]. In the original paper on the topic, Dicke
[5] assumed an ensemble of N -atoms were localised to a region small compared
to λ, allowing the e ik Ri phase-factors of each atom to tend to unity in the many-
body wavefunction. In this approximation, the decay of N -atoms initially in the
excited state |e〉 is analogous to an ensemble of spin-1/2 particles precessing in a
magnetic field. The system starts in a fully symmetric state |J, M〉 with total angular
momentum J = N /2, which has a projection along z of M = N /2. As each photon
is emitted, the system decays from M → M − 1 at a rate given by [10]

�M→M−1 = (J + M)(J − M + 1)�. (5.8)

The initial decay from |J, J 〉 to |J, J − 1〉 occurs at rate N�, the expected decay rate
for N -atoms. This projects the system into a symmetric superposition state as any
one of the N atoms could have decayed, introducing correlations between the dipoles
in the system. As subsequent photons are emitted, these correlations cause the rate
of spontaneous emission to increase, reaching a maximum value of approximately
N 2/4� for the decay of |J, 0〉 when exactly half the atoms have decayed. This is
shown schematically in Fig. 5.2a.

To illustrate the dynamic effects of this enhanced dephasing, Fig. 5.2b shows the
decay of the average magnetisation 〈M(t)〉 for N =10, compared to the decay of N
independent atoms. This reveals an initial delay followed by rapid decay at a rate
much faster than �. The intensity of the emission is related to I ∝ −d〈M(t)〉/dt [10],
which is plotted in Fig. 5.2c. The superradiant decay is observed as a pulsed emission,
with a peak intensity proportional to N 2 as opposed to an exponentially decaying
intensity expected for independent atoms. The characteristic delay time for the emis-
sion is τd ∼ ln(N )/N� 
 1/� [9], getting increasingly shorter as more atoms are
included.

For a sample of finite size, it is necessary to include the e ik Ri phase factors. This
creates a phase-matching condition in the sample, resulting in an angular emission
pattern that is strongly dependent upon the sample geometry [9]. These phases can
also break the symmetry assumed in the simple spin-model above, projecting the
system into an effective sub-space with J < N /2, suppressing the superradiant
emission. This finite size effect can be accounted for by replacing � with C� where
C is the cooperativity parameter. For a spherical volume with radius R0, this is given
by [11]

C = 9 [sin(k R0) − k R0 cos(k R0)]2

(k R0)6 . (5.9)
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(a) (b)

Fig. 5.2 Dicke model for superradiant emission. a Decay rate between symmetric states |J, M〉
occurs at rate (J + M)(J − M −1)�, reaching a peak of ∼N 2/4 at M = 0; b average magnetisation
〈M(t)〉 and c radiated intensity I (t) calculated for N = 10 atoms (solid) compared to emission from
independent atoms (dashed), revealing a pulsed emission with a characteristic delay τD marked as
a vertical line

For the experiments performed on laser cooled atoms in a magneto-optical trap
(MOT) the sample size is around 1 mm, for which C becomes negligible for n < 20.

Another important effect in finite size samples is the distribution of level shifts
in the system due to variation in the separations Ri j between atoms. This causes the
relative phases between the dipoles to evolve at different rates, which destroys the
coherence built up during the collective emission, turning off the superradiance. This
effect is known as van der Waals dephasing which is analogous to an inhomogeneous
dephasing of the dipoles [10].

To observe these cooperative effects it is necessary to localise atoms to dimensions
of λ. For optical transitions, this condition is very challenging, as at these short
ranges alternative dephasing processes such as collisional broadening destroy the
coherences between neighbouring dipoles, suppressing the superradiant emission.
Early observations of superradiance were therefore for transitions in the infrared
with λ ∼ 100 µm in HF molecules [12] and 2–9 µm in Na atoms [13].

Rydberg atoms, however, have transitions to close-lying n states that are in the
millimeter or microwave region, so even at modest densities it is possible to observe
superradiance, first demonstrated by Gounand et al. [14] for the 12S1/2 state in Rb.
Superradiance from the original Rydberg state leads to significant population transfer
into close-lying states, which may then also undergo superradiant decay. This is
known as a superradiant cascade, which is typically detected indirectly through the
distribution of population over a range of n� states rather than detection of the emitted
field. Recent experiments exploring superradiant cascade from ultracold gases have
demonstrated good agreement between calculated and observed population dynamics
[11, 15].
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For the low-� Rydberg states, the relative strengths of the broadening �12 and shift
�12 from Eq. 5.6 can be considered in terms of the principal quantum number using
the fact that the spontaneous decay rate, � ∝ ω3d2. For an isolated Rydberg atom, this
is dominated by the high-frequency coupling to the ground-state which has a dipole
moment d ∝ n∗−3/2, leading to � ∝ n∗−3. For superradiance however, the relevant
decay channel is that of the close-lying states with ω ∝ n∗−3 and d ∝ n∗2, and hence
� ∝ n∗−5. Conversely, the dipole–dipole energy shift scales as �12 ∝ d2 ∝ n∗4, so
combining these scalings with the fact that �12 dominates in the limit k R < π/2,
for high n states the superradiant broadening can be neglected due to the large van
der Waals dephasing. Therefore, for large n∗, the dipole–dipole interactions can be
treated purely as an energy shift of the multiply excited Rydberg states.

5.3 Dipole Blockade

In this high n∗ limit, where the dipole–dipole interactions can be treated as an energy
shift, this leads to a pair of atoms excited to the Rydberg state |rr〉 experiencing an
interaction energy V (R), as discussed in Chap. 3. At large separations the interaction
can be neglected, and the atoms behave independently. For the case of a pair of
atoms resonantly excited from |g〉 to |r〉 at Rabi frequency �, shown schematically
in Fig. 5.3a, the atoms will populate |rr〉 at a rate �. If the atoms are now moved
closer together, the interaction causes the |rr〉 state to be detuned from resonance
with the laser, preventing excitation of the |rr〉 state. This process is known as dipole
blockade [16], and occurs when the interaction shift is larger than the linewidth of
the |rr〉 state

V (R) > � × max(�, �r ), (5.10)

where the linewidth of the |rr〉 state is determined by the larger of the natural linewidth
�r or the power-broadened width �. As Rydberg states are relatively long-lived,
typically � � �r for experimental parameters.

The condition V (Rb) = �� defines the blockade radius Rb, which for van der
Waals interactions V (R) = C6/R6 is given by

Rb = 6

√
C6

�
, (5.11)

forming a sphere around the Rydberg atom in which only a single Rydberg excitation
is allowed. The blockade mechanism is important as it enables deterministic creation
of singly-excited entangled states, which can be used for implementing quantum gates
[16–19].

For an ensemble of N -atoms localised within a radius R < Rb, the blockade
mechanism projects the system into the symmetric entangled state

http://dx.doi.org/10.1007/978-3-642-29712-0_3
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(a) (b)

Fig. 5.3 Rydberg dipole blockade. a Dipole–dipole interactions shift the energy of state |rr〉 by
V(R), detuning the pair-state from resonance with the excitation laser. If V (R) > �× max(�, �r )

then |rr〉 cannot be populated, known as dipole-blockade; b for N independent atoms the Rydberg
population Rabi flops between 0 and N with frequency �. Dipole blockade causes oscillations to
a collective state with a single excitation with an enhanced frequency

√
N�

|gN−1r〉 = 1√N
N∑

i=1

e− ik·Ri |g1, g2, . . . , ri , . . . , gN 〉, (5.12)

as each of the atoms are equally likely to be excited. The dipole matrix element
between |gN 〉 and |gN−1r〉 is now enhanced to give a collective Rabi-frequency√N�, instead of the oscillations between 0 and N at rate � for the non-interacting
case. This is illustrated in Fig. 5.3b. If this collective state can be mapped onto an
intermediate excited state the result is cooperative emission of a single photon [20],
allowing enhanced atom-light coupling for communication of quantum information
between atomic ensembles [21].

Early evidence for dipole-blockade in cold atomic samples came indirectly
through a saturation in the resonant excitation of high n states [22–29]. The col-
lective scalings have since been seen from measurements on the coherence of a
blockaded Rydberg gas [30–32]. More recently, two groups have demonstrated the
collective scaling for a pair of atoms [33, 34], as well as realising entanglement [35]
and performing a C-NOT gate [36] using two single atoms loaded in microscopic
dipole traps with an atomic separation of R ∼ 3 µm.
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5.4 Cooperative Optical Non-Linearity

The challenges of observing cooperative behaviour on optical transitions with
k = 2π/λopt make it impossible to directly use dipole blockade on a single
photon transition to realise non-linear photonic devices. However, this limitation can
be overcome by mapping the large dipole–dipole interactions from the microwave
dipoles of the Rydberg states with k′ = 2π/λμ onto a strong optical transition from
the ground state using EIT. The result is that the optical response of a single atom
now depends on the surrounding atoms even though k R � 1, as for the Rydberg
transitions k′ R 
 1.

An alternative proposal has been put forward by Friedler et al. [37] to utilise
dipole–dipole interactions to create an accumulated π phase-shift between a pair
of photons counter-propagating through an EIT slow-light medium, which can be
realised using atoms loaded into a hollow-core fibre [38]. In such a system the
interactions can be treated as a perturbation on the propagation of the photons through
the medium. However, in the following it is the cooperative nature of the dipole
blockade that gives rise to a non-linear optical response.

5.4.1 N-Atom Model

To explore the effect of dipole blockade on the optical properties of the medium, it is
necessary to develop a many-atom model of the three-level EIT system introduced
in Sect. 4.1, where the dipole–dipole interactions are included as pair-wise couplings
between the Rydberg states of each atom, illustrated in Fig. 5.4. For a system of
N -atoms, the wavefunction in the coupled basis is given by

|�N 〉 =
N⊗
i

|ψ〉i , (5.13)

where |ψ〉i is the wavefunction of the i th atom. In this basis, the operator Ô(i) acting
on atom i can be expressed in terms of the corresponding operator Ô in the single-
atom basis using

Ô(i) = I ⊗(i−1)
3 ⊗ Ô ⊗ I ⊗(N−1)

3 (5.14)

where I3 is the rank-3 identity matrix. The Hamiltonian acting on the system is

ĤN =
N∑
i

Ĥ (i) +
N∑

i< j

V (Ri j )P̂(i)
rr P̂( j)

rr , (5.15)

http://dx.doi.org/10.1007/978-3-642-29712-0_4
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Fig. 5.4 Schematic of an
N -atom system with dipole–
dipole coupling between the
Rydberg states creating an
interaction V (Ri j ) dependent
upon the atomic separation

where Ĥ (i) is the Hamiltonian for the atom-light coupling of atom i given by Eq. 4.6,
P̂(i)

rr = |r〉i i 〈r | is the projector onto the Rydberg state of atom i and Ri j = |Ri − R j |
is the interatomic spacing between atoms i and j .

The time-evolution of the density matrix σ = |�N 〉〈�N | is calculated by solving
the optical Bloch equations of Eq. 4.15, however the Lindblad operator now includes
a sum over the decay channels m for each atom i ,

L(σ) = −1

2

∑
i,m

(
C (i)†

m C (i)
m σ + σC (i)†

m C (i)
m

)
+

∑
i,m

C (i)
m σC (i)†

m , (5.16)

where the operators C (i)
m can be obtained from the operators in Eq. 5.9. Similarly,

the operator Ld for the laser-induced dephasing is modified to include the dephasing
of each atom. As this dephasing term is not of the Lindblad form, it can only be
generalised with the use of a Hadamard product,2

Ld(σ) = −γ ◦ σ, (5.17)

where the matrix γ contains the contributions from the linewidth of the lasers, defined
as

γ =
N∑
i

J⊗(i−1)
3 ⊗

⎛
⎝ 0 γp γrel
γp 0 γc
γrel γc 0

⎞
⎠ ⊗ J⊗(N−1)

3 , (5.18)

where J3 is the rank-3 unit matrix (matrix of ones).
Combining these equations together the density matrix can be propagated in time,

from which the complex susceptibility at the probe frequencyωp is obtained by taking
the trace over the dipole operators of all the atoms in the system,

2 The Hadamard product defines element-wise multiplication of matrices A and B such that
[A ◦ B]i, j = [A]i, j · [B]i, j (see e.g.[39], p. 205).

http://dx.doi.org/10.1007/978-3-642-29712-0_4
http://dx.doi.org/10.1007/978-3-642-29712-0_4
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Fig. 5.5 Two-atom model,
showing the dipole–dipole
interaction V (R) acts as a
detuning on the |rr〉 state

χ(ωp) = − 2ρd2
eg

ε0� �p
Tr

⎧⎨
⎩σ

N∑
i

π̂−(i)

⎫⎬
⎭ . (5.19)

5.4.2 Two-Atom Model

The simplest system to consider is the case of two-atoms, shown in Fig. 5.5. For large
R the interactions can be neglected, and on resonance each of the atoms evolve into
the single-atom dark state |D〉 of Eq. 4.24b, resulting in the product state

|D2〉 = |D〉1 ⊗ |D〉2 = (cos θ|g〉1 − sin θ|r〉1) ⊗ (cos θ|g〉2 − sin θ|r〉2)

= cos2 θ|gg〉 − sin θ cos θ(|gr〉 + |rg〉) + sin2 θ|rr〉, (5.20)

which is independent of the intermediate state and corresponds to perfect trans-
parency on resonance. As the atoms move closer together, the dipole–dipole inter-
actions act to detune the |rr〉 state by energy V (R), which modifies the dark state.
For V (R) > γEIT, where γEIT is the width of the EIT resonance, the |rr〉 state is
blockaded. Diagonalisation of HN gives a new zero-energy eigenstate [18]

|�〉 = (cos2 θ − sin2 θ)|gg〉 − sin θ cos θ(|gr〉 + |rg〉) + sin2 θ|ee〉√
cos4 θ + 2 sin4 θ

. (5.21)

This new eigenvector is no longer a simple product state, but instead represents
an entangled state where the intermediate pair state |ee〉 is admixed in place of
the Rydberg pair-state. Recalling that tan θ = �p/�c, in the weak probe limit
|�〉 = |gg〉 which is equivalent to |D2〉, resulting in transparency on resonance. As
�p is increased however, the relative contribution of |ee〉 increases, which resonantly
couples to the probe laser. Thus |�〉 is no longer a dark state outside of the weak-probe
limit.

This eigenstate picture neglects the effect of the radiative decay of state |e〉,
however the true steady-state of the medium can be obtained by solving the optical

http://dx.doi.org/10.1007/978-3-642-29712-0_4
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Fig. 5.6 Two-atom dark state populations calculated for �p = �c = �e/2. a Non-interacting
case (V = 0) gives a product state with each atom in the dark state |D〉; b strong interactions
(V = 2 �e) blockade population of |rr〉, causing population of the radiative |e〉 state. Note unlike
the modified eigenstate of 5.21, |ee〉 is not populated

Bloch equations on the two-photon resonance and extracting the populations from the
diagonal elements of the density matrix. Figure 5.6 shows the steady-state solutions
calculated using parameters �p = �c = �e/2 (θ = π/4) for (a) V (R) = 0 and
(b) V (R) = 2 �e. In the non-interacting case, the system evolves into the dark state
|D2〉 with equal population of |g〉 and |r〉 due to the choice of mixing angle. In (b) the
blockade effect is evident, as there is no population of state |rr〉. Furthermore, there
is also no population in |ee〉 as predicted by |�〉. This is because |ee〉 decays rapidly,
leaking population into states |eg〉, |ge〉, |er〉 and |re〉 which each have approximately
5% population for these parameters. The interpretation of this state is as follows; if
one of the atoms is excited into the |g〉 − |r〉 dark state, then the other atom has
its |r〉 state detuned by V (R) > �c, meaning it no longer sees the coupling laser.
Instead, it now resonantly couples to the probe laser and cycles between states |g〉
and |e〉, resulting in population of |gg〉, |gr〉, |ge〉 and |re〉. As either atom can be
excited to the Rydberg state, this leads to an entangled state which can be seen from
the symmetric populations of each atom in (b).

Adding an extra atom to the system gives the three-atom model shown in Fig. 5.7,
which has 27 coupled energy levels. The dipole–dipole interactions are now depen-
dent on the geometry of the atoms, however to see the effect of blockade it is sufficient
to assume V (R12) = V (R13) = V (R23) = V . As before the steady-state populations
can be found from the density matrix, which reveals population of states |ggg〉, |gge〉,
|ggr〉 and |ger〉 and their respective permutations. This is expected from the analysis
of the state for two-atoms; the blockade means only a single atom can contribute to
the dark state, whilst the remaining atoms resonantly scatter on the two-level probe
transition.

As well as considering the effect of blockade on resonance, it is also necessary to
consider the shape of the spectrum. Figure 5.8 shows the real and imaginary parts of
the complex susceptibility as a function of probe laser detuning for 1, 2 and 3 atoms
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Fig. 5.7 Three-atom model assuming an equilateral geometry where the dipole interaction
V (R12) = V (R13) = V (R23) = V

0.5
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Fig. 5.8 Resonant susceptibility for �p = �e/4, �c = �e/2 and V = 2 �e, with the probe-
only susceptibility plotted as a dashed line. χ is scaled relative to the weak, probe-only resonant
susceptibility χ̃ = 2ρd2

eg/ε0��e

compared to the probe-only susceptibility. This reveals a suppression in the resonant
transmission due to the blockade, associated with a concomitant modification the
dispersive lineshape in χR. An interesting feature of the susceptibility is that there is
no shift or broadening of the two photon resonance, which may be expected as the
interactions cause a detuning of the Rydberg pair states. This is because the shifted
pair states, known as anti-blockade states, become resonant at �p = V (R)/2 which
is in the wings of the two-photon resonance when the blockade condition is met.
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Fig. 5.9 Cooperative non-linearity. a Resonant susceptibility calculated for �c = �e/2, showing
saturation above �p = 0.3 �e. Single points represent the empirical scaling χemp of Eq. 5.22;
b dispersive non-linearity on the peak of the refractive index feature. χ is scaled relative to the
probe-only susceptibility, χ̃

5.4.3 Cooperative Optical Non-Linearity

The effect of dipole blockade is therefore to change the optical properties of the
medium from being perfectly transparent on the EIT resonance to having all but one
of the atoms resonantly coupled to the probe beam, suppressing the transmission
as the probe power is increased from the weak probe regime. Figure 5.9 shows the
susceptibility as a function of �p for a blockade sphere of 1–3 atoms calculated both
on resonance and for the dispersive feature. From the resonant susceptibility plotted
in (a), it is clear to see the resulting optical non-linearity in the system, which begins
to saturate around �p = 0.3 �e as the two level transition becomes power broadened.
The important feature is that the optical non-linearity now depends not only on the
probe electric field, but also the number of atoms per blockade sphere. This makes
it a cooperative effect, where the optical response of a single atom depends on the
surrounding atoms, resulting in the single atom susceptibility χ ∝ Nb, where Nb
is the number of atoms per blockade sphere. Observation of this non-linear density
scaling is important as it is this that makes it different to an ordinary non-linear
medium.

Previously, a cooperative non-linear effect has only been observed in an
up-conversion process [40] requiring large laser intensities to overcome the relaxation
mechanisms in the system, making it unsuitable for quantum information process-
ing. The Rydberg states however allow significant tunability of interaction strength
through choice of n, enabling the mechanism to be used for very weak probe powers.

Calculating the optical response for N > 3 is challenging as the Hilbert space
in the coupled basis scales as 3N , rapidly becoming intractable. One method that
can be used to reduce the basis states in a many-body system is to use a mean-field
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theory, where each atom is modified by the mean interaction of all surrounding atoms.
This approach has been used successfully to reproduce excitation suppression due to
blockade in cold gases [22, 41, 42]. For the EIT system however, it cannot reproduce
the spectrum as the mean interaction detunes the |r〉 states of the atoms, causing the
lineshape to shift and broaden [43]—an effect not observed in the full many-body
model.

In the limit that the probe is strong enough to saturate the non-linearity, an empir-
ical scaling can be introduced to estimate the susceptibility of a blockade with Nb
atoms,

χemp = 1

Nb
χ1 + (Nb − 1)

Nb
χ

( �c=0)
1 , (5.22)

where χ1 denotes the susceptibility of a single non-interacting atom. This scaling
arises from the fact only a single atom can contribute to the dark state, whilst Nb − 1
atoms resonantly absorb light like an effective two-level atom. This scaling is plotted
on Fig. 5.9a as solid markers for �p = 0.5 �e, showing approximate agreement with
the exact calculation which allows estimation of the maximum suppression in the
system. Thus for large Nb it should be possible to suppress the transmission to the
probe-only value.

Recently a Monte-Carlo method has been developed by Ates et al. to calculate the
steady-state density matrix for very large atom numbers [44]. In this work, the authors
show that the total susceptibility on resonance scales quadratically with atomic den-
sity. This non-linear density scaling represents clear evidence of a cooperative effect,
rather than simply a collective scaling.

5.5 Summary

Cooperative phenomena arise when the interaction between the dipole of each atom
and the electric field of the surrounding atoms dominates, requiring k R < 1. For
the low n Rydberg states, this is manifested as superradiance, with the decay reach-
ing a maximum rate of N 2 �r when half the atoms have decayed. At high n, the
energy shift dominates over enhanced dephasing, leading to the dipole blockade
which prevents creation of more than a single Rydberg excitation within a radius
Rb = 6

√
C6/�. This deterministic process is important for applications in quan-

tum information processing, as it allows atomic quantum gates to be implemented.
For the case of EIT, blockade modifies the dark state, suppressing the transmission
on resonance. This creates a cooperative optical non-linearity in which the optical
response of a single atom is modified by the neighbouring atoms, resulting in a non-
linear density scaling in the single atom response. In the experiments presented in
Chap. 7 the non-linear density scaling and optical non-linearity will be tested for
these signatures of cooperativity.

http://dx.doi.org/10.1007/978-3-642-29712-0_7
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Part II
Observations of Cooperativity



Chapter 6
Experiment Setup

There are two requirements for experimental observation of cooperative optical
effects in Rydberg EIT due to dipole–dipole interactions. Firstly, a high atomic den-
sity is required to ensure a large optical depth on the probe transition whilst meeting
the condition k′ R < 1, where k′ is the wave-vector for the Rydberg dipole; and
secondly, the dipole–dipole interactions must dominate over any other dephasing
mechanisms in the system such as collisional broadening or the Doppler shift. The
Doppler effect is important as atoms moving at different velocities observe different
laser frequencies. This can shift the blockaded-states back into resonance, leading to
a significant reduction of the blockade size for room temperature samples [1].

Both of these requirements can be met using the techniques of laser cooling [2],
with which alkali-metal atoms can easily be cooled to temperatures around 100µK
with densities in the region of 1010 cm−3. At this density, the average interatomic
separation 〈R〉 ∼ ρ−1/3 ∼ 2 µm, smaller than the typical blockade radius of Rb ∼
5 µm. In this regime the sample can be treated as a frozen Rydberg gas [3, 4] where
the Rydberg interactions represent the largest energy scale in the system, allowing
studies of the excitation dynamics e.g.resonant energy transfer [3, 5–7], mechanical
effects of dipole–dipole interactions [8, 9], dipole blockade [10–19] and formation of
long-range molecules [20, 21]. These ultra-cold samples are also ideal for precision
measurements of quantum defects [22–24] and lifetimes [25, 26] of the Rydberg
states.

The experiments presented in this thesis are all performed using the setup shown
schematically in Fig. 6.1. Atoms are cooled using three pairs of retro-reflected,
counter propagating beams which intersect at the centre of a Kimball Physics spheri-
cal octagon vacuum chamber. This chamber was originally designed for a CO2 lattice
experiment [27], and therefore has no field plates for controlling electric fields in the
chamber, nor any form of ion detection. The chamber is sealed and pumped down to a
pressure below 10−10 torr as measured using an ion gauge, with rubidium dispensers
mounted inside to provide a source of atoms. The probe beam is aligned through
the centre of the atom cloud, monitoring the transmission using a photodiode on the
opposite side of the chamber. Atoms are prepared using an optical pumping beam
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Fig. 6.1 Schematic of experiment setup. Three pairs of orthogonal beams overlap at the centre of a
vacuum chamber which is coaxial with a pair of magnetic coils in an anti-Helmholtz configuration
to form a magneto-optical trap (MOT) that slows and traps atoms. Following collection of a dense
cold atomic sample, the cooling light is extinguished and the atoms are optically pumped, then
probed using counter propagating probe and coupling lasers which are overlapped using a dichroic
mirror (DM)

which counter-propagates with the probe beam at a shallow angle. The EIT coupling
laser is also aligned to counter-propagate with the probe beam. A detailed description
of each stage is presented below.

6.1 Laser Cooling

The starting point of any experiment with cold atoms is typically a magneto-optical
trap (MOT) [28] both to cool the atoms and provide 3D confinement, resulting in
a cold dense gas. Full details can be found in atomic physics textbooks e.g.[29],
however a brief description follows. The MOT consists of a pair of magnetic coils in
an anti-Helmholtz configuration to create a magnetic quadrupole field. At the origin
the field is zero, however the field gradient is linear in all directions. Three orthogonal
pairs of counter-propagating circularly polarised laser beams intersect the centre of
the coils, aligned so that the vertical beams are coaxial with the coils. The laser light
is red-detuned from the atomic transition (ω < ω0), such that as atoms move out
from the origin the Zeeman-shift due to the magnetic field brings the atoms closer
to resonance with the laser field propagating in the opposite direction. This creates a
position dependent restoring force which returns the atom to the centre of the beams,
trapping the atoms. Cooling occurs due to the Doppler effect, which causes the atom
to be shifted closer to resonance with the laser counter-propagating with the direction
of motion. This results in a frictional force proportional to atomic velocity that slows
the atoms. Combining these mechanisms, atoms can theoretically be cooled down



6.1 Laser Cooling 69

(a) (b)

(c)

Fig. 6.2 Laser Cooling. a Energy levels of rubidium D2-line [31, 32] showing cooling transition (C)
from 5s2S1/2 F = I +1/2 to 5p2P3/2 F ′ = I +3/2 and repump transition (R) from F = I −1/2 to
F ′ = I + 1/2; b schematic of modulation transfer spectroscopy used for locking cooling laser. The
probe and pump beams have powers of 500 µW and 1.2 mW respectively; c error-signal obtained
after demodulation. The large dispersive features correspond to the F ′ = I +1/2 cooling transition
for each isotope

to the Doppler limited temperature of TD = � �e/2kB, however in practise a MOT
can get well below this limit for atoms with hyperfine structure [30].

6.1.1 Cooling Lasers

Rubidium has two natural isotopes, 85Rb and 87Rb, with nuclear spins I of 5/2 and
3/2 respectively. The corresponding energy levels for the D2 line from 5s 2S1/2 to
5p 2P3/2 are shown in Fig. 6.2a, with the hyperfine splitting energies taken from D.
Steck [31, 32]. Cooling is performed using the closed transition from F = I + 1/2
to F ′ = I +3/2 (C) at 780.24 nm, however some atoms can fall into the F = I −1/2
lower hyperfine ground-state due to an off-resonant excitation of F ′ = I + 1/2. It
is therefore necessary to use a repump laser (R) on the transition from F = I − 1/2
to F ′ = I + 1/2 to prevent atoms being lost from the cooling cycle.

The cooling light is derived from a Toptica DL-100-MOD diode laser which is
stabilised to the closed transition using modulation transfer spectroscopy [33]. The
lock setup is shown schematically in Fig. 6.2b, where orthogonally polarised pump
and probe beams counter-propagate through an atomic vapour cell. A homebuilt
electro-optic modulator (EOM) is used to add side-bands onto the pump laser at a
frequency of 9.5 MHz with a modulation index of 0.2. Inside the cell, only atoms
with a velocity component along the axis of light propagation with |kv| < �e

interact with both pump and probe lasers, leading to a four-wave mixing process in
which the sidebands are transferred onto the probe laser on the F = I + 1/2 to
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F ′ = I + 3/2 resonance. The probe beam is detected using a homebuilt photodiode
with a 15 MHz frequency response (see appendix A.1). This gives the usual saturation
spectroscopy signal, however when demodulated and low-pass filtered at 50 kHz
gives a narrow sub-Doppler dispersion feature on a zero-background, removing offset
drift. Example error-signals are shown in Fig. 6.2c. A Toptica FALC module is used to
lock the laser, with fast-current feedback via a FET on the diode and slow correction
through the grating piezo. Using beat-note measurements with two different lasers,
the feedback was optimised to give a Lorentzian laser linewidth of γp/2π = 300 kHz
when averaging over a 20 s period. Light for the repump transition is derived from a
homebuilt diode laser, which is stabilised using dichroic-atomic-vapour laser locking
(DAVLL) [34]. This setup is described in Sect. 5.3.1 of [27]. Using these techniques
both lasers can be locked to either isotope.

6.1.2 MOT

The repump and cooling light are combined on a polarising beam splitter (PBS) with
orthogonal polarisations and coupled into a single mode polarisation maintaining
fibre which delivers light to the vacuum chamber. The MOT light is then expanded
to a 1/e2 radius of 9 mm and separated on PBS cubes into three beams that pass
orthogonally through the chamber to overlap in the centre, as shown in Fig. 6.1. These
are then retro-reflected after the chamber to create counter-propagating beams with
orthogonal circular polarisations. Each beam has 8.7 mW of cooling light, however,
due to the orthogonal polarisation of the repump light coupled into the fibre, the
6 mW of repump light is distributed unequally among the three beam pairs. A pair
of water-cooled coils are mounted coaxially onto the vacuum chamber that create
a quadrupole field with a calculated gradient of 0.136 G/cm/A at the centre, which
agrees well with the current required for trapping in Sect. 6.2. Additionally, three pairs
of rectangular bias coils are arranged around the chamber to cancel the offset magnetic
field inside the chamber. Atoms are loaded into the MOT from the background vapour
provided from dispensers (SAES Getters) which contain both isotopes in their natural
abundance. Once atoms are trapped in the MOT, it is necessary to characterise the
atom cloud to find the optimum parameters for cooling.

To determine the temperature and number of atoms in the MOT, a calibrated IR
CCD camera (JAI CV-M50) is used to perform fluorescence imaging. This is setup
with ×4.6 magnification to give an effective field of view of 5 × 5 mm, allowing
imaging after expansion times of up to 40 ms. The atom number is calculated from
summing over the pixel counts using

Natom = κ

(�/4π)�scτ

∑
px

cpx, (6.1)

http://dx.doi.org/10.1007/978-3-642-29712-0_5
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Fig. 6.3 MOT atom number and temperature as a function of detuning for a 5 s load time

where κ is the camera quantum efficiency, �sc is the photon scattering rate for each
atom, �/4π is the collection efficiency and τ is the imaging duration. The quantum
efficiency was measured by pulsing a probe beam of known power onto the CCD
and fitting the pixel sum as a function of incident photon number to obtain κ = 62
photons/count. The collection efficiency of the imaging lens is �/4π � r2/4d2,
where r = 13 mm is the lens radius and d = 200 mm the working distance, giving
an efficiency of 0.1 %. Finally, the scattering rate is calculated from the excited-state
probability multiplied by the decay rate �e, which using the steady-state excited
state population (Eq. 4.16a) gives

�sc = �eσ
ss
ee = �e

2

I/Isat

1 + I/Isat + (2 �p/�e)2 , (6.2)

where the relation �p = �e
√

I/2Isat has been used and Isat is the saturation inten-
sity, defined as [29]

Isat ≡ 2π� �ec

3λ3 . (6.3)

Using the decay rate from 5P3/2 of �e/2π = 6.065 MHz [35] gives Isat =
1.6 mW/cm2. This is only correct for the closed σ+-transition from (F = I +
1/2, m F = F) to (F ′ = I + 3/2, m′

F = F ′), however in the MOT the atoms are
distributed unevenly over a range of m F states [36]. An effective saturation intensity
is used instead, averaging over the transition strengths from all possible m F levels1

to give 3.9 mW/cm2 for 85Rb [31] and 3.6 mW/cm2 for 87Rb [32].
The temperature of the atoms can be found using time of flight imaging [38],

allowing the atoms to expand for a fixed time and fitting a Gaussian profile to the

1 A useful discussion of this is presented in Sect. 4.1 of [37].

http://dx.doi.org/10.1007/978-3-642-29712-0_4
http://dx.doi.org/10.1007/978-3-642-29712-0_4
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cloud to find the radius, σr, which is defined as the standard deviation of the Gaussian
profile. Extracting the radius for a range of flight times �t , the temperature T is then
determined by fitting to the function

σr(�t)2 = σr(0)2 + kBT

m
�t2, (6.4)

which gives both the initial cloud width and the temperature. To avoid errors in the
cloud size due to re-scattering of light at high densities, the atoms are imaged off-
resonance by pulsing on the MOT beams for 100 µs at a detuning of �p = −�e for
I = 1.5Isat to give �sc/2π = 1 MHz.

Using the two diagnostics of atom number and temperature, the MOT parameters
were optimised to give the greatest number of atoms, and hence optical depth along
the probe laser. Data taken for a 5 s load time at a gradient of 13.5 G/cm are shown
in Fig. 6.3 as a function of detuning, in units of the decay rate of the 5P3/2 state
�e. The coldest temperatures are obtained at large detuning, giving cooling below
the Doppler limit TD = 140 µK, however at the cost of atom number. The MOT
detuning was therefore set at � = −3.5�, with a temperature of 150 µK.

6.1.3 Optical Molasses

Once the quadrupole field of the MOT is turned off the atoms are cooled by the
radiation pressure of the MOT beams, known as an optical molasses. In the molasses,
temperatures far below the Doppler limit are achieved for multi-level atoms due
to the spatially dependent polarisation gradients formed by the interference of the
circularly polarised beams at the centre of the trap [39]. The temperature obtained in
the molasses is related to the dimensionless light-shift parameter �2/|�|� by [36]

kB T

��
= Cσ+σ−

�2

|�|� + C0, (6.5)

where � is the Rabi frequency calculated using the intensity per beam. The minimum
temperature achievable in sub-Doppler cooling is limited by the intensity of the light
becoming so weak that the atom does not experience a polarisation gradient. This
causes the linear relationship between temperature and light-shift to break down
below �2/|�|� � 0.05, and the temperature approaches that of the MOT.

In order to test the relationship of Eq. 6.5 for 87Rb, the molasses was first optimised
by pulsing the quadrupole MOT field on and off and monitoring the cloud expansion
on a camera in real time. The 3 bias coils were then set to give a slow, isotropic
expansion of the cloud when the coil is off, corresponding to zero magnetic field
at the chamber centre. If the field is not cancelled, the Zeeman splitting due to the
residual field leads to the atom being optically pumped into a particular m F state and
preferentially absorbing light from one direction, accelerating the atoms out of the
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Fig. 6.4 a Temperature versus molasses duration for molasses temperature as a function of dimen-
sionless light shift parameter �2/|�|�. Fitting gives Cσ+σ− = 0.58 ± 0.02

molasses beams. Atoms were then loaded into the MOT for 5 s and the temperature
as a function of molasses duration found. The results for I (per beam)= 3.3 mW/cm2

and � = −10 �e are presented in Fig. 6.4a, showing that the molasses temperature
changes significantly in the first 10 ms then remains approximately constant. Tem-
perature was then measured after a 20 ms molasses duration for a variety of values
of the light-shift parameter, varying both I and �, with results shown in Fig. 6.4b.
Each point represents the mean and standard error of 8 measurements, which were
used to perform a χ2 fit to give Cσ+σ− = 0.58 ± 0.02. This was calculated using
Isat = 3.2 mW/cm2 to allow direct comparison with the results of Wallace et al. [40]
who measured Cσ+σ− = 0.52 ± 0.03.

Subsequent improvement of the cancellation fields and beam-balance has further
reduced the temperature to 20 µK for a 1 s MOT load and 10 ms molasses duration,
resulting in an atom cloud with a Gaussian width of σr of 0.5–0.7 mm.

6.2 Optical Pumping

As mentioned above, in the MOT and molasses atoms are distributed over a range
of mF states due to their interaction with the light-field. For the EIT experiments
however, the atoms need to be prepared into the 5s 2S1/2 (F = I + 1/2, m F =
I + 1/2) (|g〉) stretched state to give the strongest coupling to the 5p 2 P3/2 (F =
I + 3/2, m F = I + 3/2) state on the closed σ+-transition. Preparing the sample
in a single state has two other advantages—firstly, it simplifies numerical modelling
of the system as there is only a single excitation pathway, and secondly, it prevents
excitation of Rydberg pair-states with different m j values, which experience weak
or even zero interaction strengths [41, 42].
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(a) (b)

Fig. 6.5 Optical pumping schemes for 87Rb to prepare atoms in (F = 2, m F = 2) a bright-state
pumping b dark state pumping. The transition-strengths for each transition are rescaled with respect
to the closed transition from (F = 2, m F = 2) to (F ′ = 3, m′

F = 3).

Two of the possible optical pumping schemes that can be used to achieve this are
illustrated in Fig. 6.5 for 87Rb. The simplest is bright-state pumping (a) using the σ+
cooling transition to pump population across to the stretched state. This requires no
additional laser frequencies, however once atoms are pumped into (F = 2, m F = 2)
they continue to scatter light from the pumping laser, leading to heating. Another
option is dark state pumping (b) using σ+ light resonant with F = 1 to F ′ = 2,
which makes m F = 2 a dark state, allowing population to collect in this state without
further scattering. As atoms can decay from F ′ = 2 to the lower hyperfine ground-
state it is also necessary to use repump light with the same polarisation as the pumping
light. Dark-state pumping is therefore a much better method for preparing the atomic
sample, however it is necessary to obtain light resonant on the F = I +1/2 to F ′ = F
transition.

The frequency of the cooling laser is controlled with a 200 MHz AOM in a double-
pass configuration which is set to lock 440 MHz off-resonance. Additional AOMs
are then used to control the frequency and intensity of the probe and MOT light
independently. As shown in Fig. 6.2a, the detuning required for the dark state pumping
in 87Rb is 266.7 MHz which can be achieved using another double-pass AOM at
86.65 MHz, whilst for 85Rb the energy difference is 120.6 MHz, requiring a double
pass at 159.7 MHz. The transition in 87Rb is more convenient, so the optical pumping
is setup for this isotope.

To measure the efficiency of the optical pumping, the quadrupole coils were used
to create a magnetic trap which has a force along z given by [29]

F = −gFμBm F
d|B|
dz

, (6.6)

where gF is the Landé g-factor [43] and μB is the Bohr magneton. For atoms with
m FgF > 0, known as weak-field seeking states, the atoms can be trapped when
the force is larger than gravity (as first demonstrated for a cooled Na beam [44]).
For atoms in the (F = 2, m F = 2) state m FgF = 1, requiring a gradient of
15 G/cm to trap them. The other weak-field seeking states are (F = 2, m F = 1) and
(F = 1, m F = −1) which both have m FgF = 1/2, corresponding to a gradient of
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Fig. 6.6 Optical pumping into quadrupole trap. a Atom number versus optical pumping duration
peaks close to the time required for each atom to scatter an average of 10 photons, indicated by red
dashed line; b atom number versus hold time gives a 1/e lifetime of τ = 3.8 ± 0.3 s, limited by
background collisions

30 G/cm. The maximum gradient for the experiment MOT coils is 20 G/cm, ensuring
only the desired state can be trapped.

Light resonant with F = 2 to F ′ = 2 and repump light are combined with the
same linear polarisation on a 50:50 beam splitter and coupled into a polarisation-
maintaining fibre. The fibre output is collimated to a 1/e2 beam waist of 1.7 mm to
ensure the MOT is approximately uniformly illuminated, and circularly polarised to
drive σ+-transitions. The beam is then aligned into the chamber coaxial to one of
the pairs of cancellation coils which provides a magnetic field along the beam axis
to define the quantisation axis for the atoms. Atoms are loaded into the MOT for 3 s
at a gradient of 20 G/cm, which is then turned off for a 10 ms molasses with a peak
atom number of 33 × 106 at 25 µK. Light is extinguished from the chamber for a
period of 1 ms to allow the bias-coil to turn on, after which time the optical pumping
pulse is applied. The quadrupole field is then turned on and the atoms are then held
in the trap for at least 100 ms to let the un-pumped atoms fall away, and imaged to
determine the atom number. The bias field, pumping duration and beam powers are
then optimised by maximising the atom number after a 100 ms trap time.

Figure 6.6a shows atom number as a function of pumping duration with 400 nW of
optical pumping light and 80 µW for the repump transition, with a bias field of 2 G.
For short pumping times the number of atoms in the trap is significantly enhanced,
obtaining approximately eight times more after 1 ms compared to the unpumped case.
This agrees well with the enhancement expected relative to an isotropic distribution of
atoms across the ground-state hyperfine levels, for which only 1/8th of the population
is expected in the stretched state. Longer pumping times results in a gradual loss due
to atoms in the dark state being able to scatter off-resonantly with the F = 2 to
F ′ = 3 state and decay to un-trapped states. Using the coupling strengths from
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Fig. 6.7 a Cloud radius as a function of depump time with mean and standard error plotted in red,
showing the cloud radius is approximately constant; b transmission data shows the density variation
is linear with depump duration

Fig. 6.5, the average transition-strength is
√

1/5 which gives a mean scattering rate
of 20 kHz for these parameters. Assuming an average of 10 photons is required to
pump the atoms across, this should give a peak number around 0.5 ms, consistent
with the observed pumping rate.

Fixing the pumping duration as 1 ms, the atom number is relatively insensitive
to the bias field for fields above 1 G, similarly for the repump power above 50 µW
which is sufficient to repump all of the atoms out of F = 1. Additional parameters to
improve the atom number are the wave-plate angle and beam alignment to improve
the matching to the bias-field. Ideally a retro-reflected optical pumping beam should
be used to prevent any heating of the atoms, however this was not possible in the
experiment setup. Having optimised the parameters, the atom number is measured
as a function of hold time in the trap, Fig. 6.6b. Fitting the data gives a 1/e lifetime of
3.8 ± 0.3 s, which is limited by collisions with background Rb atoms. Extrapolating
the lifetime fit to zero hold time, the peak atom number in the trap is 23 × 106,
corresponding to 70 % pumping efficiency. This could be partly limited by loss of
atoms from the trapping volume during the time delay in which the bias field is
switched.

6.2.1 Ground-State Density

Atomic density is an important parameter to vary in the EIT experiments, as it
governs the number of atoms per blockade sphere in the sample. Ballistic expansion
gives a simple method of varying the ground-state density, however it also changes
the length of the sample and allows the atoms to drop under gravity. These effects
makes analysis of the transmission variation due to the changing density rather than
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Fig. 6.8 a Two-photon excitation scheme with a probe laser at 780 nm on the cooling transition
and a coupling laser at 480 nm to the Rydberg states; b EIT lock setup using the same EOM as for
the modulation transfer lock described above; c example error signal

changing optical path length ambiguous. Instead, the repump laser is used to depump
atoms into the lower hyperfine ground state by turning it off before the end of the
optical pumping pulse. This allows the fraction of atoms in (F = 2, m F = 2) to be
changed in a controlled way whilst keeping the cloud size fixed.

Figure 6.7a shows the variation of cloud radius as a function of the depump time,
which is the time difference between the repump turning off and the end of the
optical pumping pulse. The cloud is imaged without any repump light to ensure
only atoms in F = 2 contribute to the image, which shows the cloud size remains
approximately constant during the depump process. Resonant transmission data were
recorded simultaneously using the probe beam, from which the average density ρ is
extracted (see below), which is plotted in (b). This shows that the density variation
is linear with the depump duration.

6.3 Rydberg Excitation

A key component of experiments on Rydberg states is the ability to excite atoms
coherently to the Rydberg state. Using a laser at 297 nm atoms can be excited directly
from the 5S1/2 ground state to the np states, however this has two significant dis-
advantages. The first is that the transition strengths are very low, requiring a high
intensity laser; and second the np states do not have isotropic interactions, and for
some states have angles with zero interaction [45]. A more convenient scheme is to
perform a two-photon excitation via 5P3/2 shown in Fig. 6.8a, where the first photon
is at the laser cooling frequency (780 nm) and a second photon around 480 nm to
either ns or nd states, allowing a choice of repulsive or attractive van der Waals
interactions (as discussed in Sect. 3.2).

http://dx.doi.org/10.1007/978-3-642-29712-0_3
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The upper transition is provided by a Toptica TA-SHG laser, which frequency
doubles an amplified 960 nm diode laser to provide around 280 mW at 480 nm. To
stabilise the laser to the Rydberg transition, an EIT locking scheme developed here in
Durham [46] is used, shown schematically in Fig. 6.8b. The 480 nm laser acts as the
coupling laser, which is focused into a Rb vapour cell to maximise the Rabi frequency
and drives σ±-transitions dependent on whether an ns or nd state is required. The
probe laser is modulated using the same EOM as for the modulation transfer lock,
splitting off a 5 µW frequency modulated beam which drives the σ+-transition.
The probe laser counter-propagates with the coupling laser to minimise the Doppler
mismatch which creates a frequency shift equal to (kc − kp)v, where kp,c are the
wave-vectors of the probe and coupling lasers, respectively, and v is the velocity
along the beam axis. A dichroic mirror picks off the probe beam which is detected
using a Hamamatsu C5460 APD module with 20 MHz bandwidth. This signal is
amplified and demodulated, finally using a low-pass filter to obtain the error signal.
The lock signal is generated from the beat signal between the sidebands and the
probe beam that acts as an optical heterodyne resulting in a line-shape similar to
Pound-Drever-Hall stabilisation to a cavity [47]. The laser is locked to this signal
using a Toptica FALC module to provide fast current modulation to the 960 nm diode
and slower correction using the grating piezo.

An example error signal for the 44D5/2 is shown in Fig. 6.8c, obtained using a
15 mW coupling beam, which shows the technique provides dispersive feature which
is much narrower than the 300 MHz Doppler width of the probe transition. The vapour
cell is wound inside a solenoid and mounted in a mu-metal shield, which allows a
Zeeman shift to be applied to lock on the wings of the EIT resonance if required.
One significant advantage of this locking technique is that the EIT signal is generated
from a two-photon resonance, meaning that the coupling laser is locked relative to
the probe laser. This provides common-mode noise rejection which correlates the
frequency fluctuations of the two lasers. As will be shown later, the resulting two-
photon Lorentzian linewidth is measured from the cold atom EIT to be γrel/2π =
100 kHz, a third of the linewidth of the probe laser.

This laser is then coupled into a Schäfter-Kirchhoff (S+K) single-mode polarisa-
tion maintaing fibre, providing up to 100 mW at the vacuum chamber. The output
coupler has an adjustable collimator (S+K 60FC-4-M12) which allows the beam
waist at the centre of the chamber to be varied from a collimated 1/e2 radius of
0.8 mm to a strongly focus waist around 70 µm to give a large intensity for coupling
to high n-states.

6.4 EIT Experiments

Having obtained a cold and optically pumped atomic ensemble, the optical pumping
light is extinguished and the atoms allowed to expand freely for 1 ms. The delay
ensures the optical pumping AOM is turned off before the strong 480 nm coupling
laser is turned on, preventing any unwanted Rydberg excitation. As there is no AOM
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Fig. 6.9 EIT spectroscopy. a Level scheme showing the |g〉, |e〉 and |r〉 levels probed in the experi-
ment. b Negative-positive-negative (NPN) and c positive-negative-positive (PNP) frequency ramps
used to give a double-scan across resonance

on the coupling laser, this is shuttered using a homebuilt mechanical shutter [48]
which has a 100 µs switching time but around 250 µs jitter. Once the coupling
laser is on, the EIT spectroscopy is performed using the two-photon scheme shown
schematically in Fig. 6.9a, with the probe laser driving the closed σ+-transition from
(F = I + 1/2, m F = F) to (F ′ = I + 3/2, m′

F = F ′). To obtain the EIT spec-
tra, the probe laser is scanned ±20 MHz across the transition in a time τ using the
frequency ramps shown in Fig. 6.9b and c whilst keeping the coupling laser on reso-
nance. Spectroscopy is typically performed using a negative-positive-negative (NPN)
ramp shown in (b), however for the D-states the scan direction plays an important
role, and a positive-negative-positive (PNP) ramp (c) is also used. Using this double-
scan technique allows the full EIT spectrum to be obtained in a single experiment,
whilst giving information about any loss or hysteresis from the first scan. The fre-
quency ramp is controlled using an Agilent 33250A arbitrary function generator to
vary the probe AOM frequency smoothly across the transition. Probe transmission
is detected using a Hamamatsu C5460 APD module with 20 MHz bandwidth, which
is connected to a Tektronix DPO 4034 digital oscilloscope.

The experiment is computer controlled using LabVIEW to output synchronised
digital and analog patterns via a DIO-32HS 32-channel digital output card and PCI-
6713 8-channel analog out card. This is interfaced with the oscilloscope to allow
automated data acquisition, with the probe power being actively stabilised between
experiments using an analog input on the probe AOM attenuator to remove long term
drifts in intensity.

For a given set of parameters, data are recorded in three stages—firstly probe-
only transmission is recorded with no atoms loaded to obtain the background voltage,
averaging over at least 10 repeats. The atoms are then loaded and probe-only data
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Fig. 6.10 Photodiode data for 5 nW probe beam. a Background and absorption traces are 10 shot
averages, whilst the EIT (red) is a single experiment run vertically offset for clarity by 1 mV; b
polynomial fit to the background data, with fit residuals

recorded again, also averaging over at least 10 repeats. Finally, data are taken with
both probe and coupling lasers, recording EIT spectra as single experiment runs. This
is done to prevent averaging out the narrow transparency feature due to fluctuations
in absolute frequency of the EIT laser lock, or for parameters close to superradiant
behaviour where two repeats give very different results at intermediate probe powers.

6.5 Data Analysis

The photodiode provides a voltage proportional to the power in the probe beam,
however the parameter of interest is the transmission. As some of the data are taken
at very low probe powers, it is necessary to ensure the errors due to noise in the
signal are dealt with correctly to obtain the correct transmission. An example dataset
is presented in Fig. 6.10a which shows voltages obtained using a 5 nW probe beam
for a τ = 0.96 ms scan time. The background and absorption traces are both taken
as 10 shot averages, whilst the EIT data (red) is a single run, offset vertically by
1 mV for clarity. The background probe trace is not flat due to the slight variation in
fibre-coupling efficiency as the frequency of the double-pass probe AOM is scanned.
Powers are therefore measured at zero detuning, to give the power on the EIT reso-
nance.

Due to the poor signal to noise ratio, directly dividing the absorption voltage
data by the background data yields a very noisy transmission signal. Instead, the
background data are used to obtain the mean and standard deviation of the intrinsic
offset voltage (Voffs,σoffs) of the photodiode using the data either side of the probe
pulse. The pulse is then divided at τ/2 = 0.48 ms to separate the two scans across
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Fig. 6.11 Data Fitting. a Fit to probe-only absorption data using Eq. 6.10; b EIT transmission data
fit using Eq. 6.11. Both fits are well conditioned with structureless residuals

resonance. Each of the datasets is then fitted using a least-squares minimisation to
a 10th-order polynomial, shown in Fig. 6.10b. Subtracting the fit from the data, the
residuals are used to determine the standard deviation of the fit, σfit. As the noise
during the background comes from the photodiode noise (σoffs) and the laser (σbg),
then providing they are uncorrelated the noise terms will add in quadrature to give
the standard-deviation in the fit. The variance in the background is then given by

σ2
bg = σ2

fit − σ2
offs. (6.7)

The absorption signal, Vabs, is converted to transmission T using

T (Vatoms; Vbg; Voffs) =
(

Vatoms − Voffs

Vbg − Voffs

)
, (6.8)

where Vbg is replaced by the best-fit polynomial that was fit to the background. The
uncertainty in the transmission, σT , can be calculated from [49]

σ2
T = {

T (Vatoms + σatoms; Vbg; Voffs) − T0
}2+{

T (Vatoms; Vbg + σoffs; Voffs)−T0
}2

+ {
T (Vatoms; Vbg; Voffs + σoffs) − T0

}2
, (6.9)

where T0 ≡ T (Vatoms; Vbg; Voffs) and the uncertainty in the absorption voltageσatoms
is assumed to be the same as the background uncertainty σbg. Data are then binned
in 10-point windows and a weighted average of each bin taken to smooth the data
and improve the signal to noise.

Finally, a Levenberg-Marquardt algorithm is used to perform aχ2-fit of the absorp-
tion data to the theoretical two-level transmission profile obtained by combining
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Eqs. 4.23a, 4.16b and 4.18 to give

T = exp

(
−kαd2

eg

ε0�

γeg

�2
p/2 + γ2

eg + �2
p

)
, (6.10)

where α ≡ ρ�, ρ the density, � the optical path length through the cloud, �p
and γeg are fit parameters and the dipole matrix element for the closed transi-
tion can be calculated using Eq. 2.16 combined with the reduced matrix element
〈5S1/2||er ||5P3/2〉 = 5.177ea0 [50, 51] to give deg = √

1/3 × 5.177ea0. An exam-
ple fit to the data from above is shown in Fig. 6.11a, which shows a good fit to the data
set with a reduced chi-squared value of χ2

ν = 1.1 and structureless residuals. The
effective linear density ρ along the probe beam is then calculated from the measured
cloud size � = 2σr from the time of flight imaging to give ρ = α/�, with uncer-
tainty calculated from the standard error. This is how the density measurements are
obtained in Fig. 6.7b above.

A similar procedure is applied to the EIT spectra, however as the traces are
recorded as a single experiment rather than as an average, it is necessary to increase
the size of the errorbar in Eq. 6.9 to give σatoms = √

Nσbg, where N is the number of
averages used for the background data. Data are then fit using the weak-probe EIT
transmission calculated using the susceptibility from Eq. 4.17

T = exp

(
−kαd2

eg

ε0�
Im

{
iγgr + (�p + �c)

(γeg − i �p)(γgr − i(�p + �c)) + �c/42

})
, (6.11)

to obtain the parameters γgr , �c and �c, where α, �p and γeg are constrained from
the absorption fit. An example is shown in Fig. 6.11b, which has larger errorbars than
(a) due to the

√
N factor. As before, the fit shows very good agreement with the data,

giving χ2
ν = 1.0 with structureless residuals even around the EIT resonance. The

weak-probe formula is therefore an excellent description of the observed spectra,
validating the underlying assumption of each atom giving an independent optical
response.

A number of values are extracted from these fit parameters. Firstly, for data in
the weak probe regime the relative two-photon linewidth can be calculated from
γrel = γgr − �r/2, and similarly the effective probe laser linewidth can be found
from γp = γge − �e/2, which typically agrees well with the measured value of
300 kHz. Secondly, the position of the two-photon laser linewidth can be used to
determine the transmission on resonance, highlighted as the blue datapoint on the
inset of (b).

http://dx.doi.org/10.1007/978-3-642-29712-0_4
http://dx.doi.org/10.1007/978-3-642-29712-0_4
http://dx.doi.org/10.1007/978-3-642-29712-0_4
http://dx.doi.org/10.1007/978-3-642-29712-0_2
http://dx.doi.org/10.1007/978-3-642-29712-0_4
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6.6 Summary

Using the techniques of laser cooling and optical pumping, the atomic sample can
be prepared in a well defined initial state from which EIT spectroscopy can be per-
formed. From the transmission spectra, properties such as detunings and linewidths
are obtained which give an insight into the cooperative phenomena arising due to the
strong dipole–dipole interactions between Rydberg atoms. These cooperative effects
will be the subject of the following chapter.

References

1. H. Kübler, J.P. Shaffer, T. Baluktsian, R. Löw, T. Pfau, Coherent excitation of Rydberg atoms
in micrometre-sized atomic vapour cells. Nat. Photon. 4, 112 (2010)

2. C.S. Adams, E. Riis, Laser cooling and trapping of neutral atoms. Prog. Quant. Electron. 21,
1 (1997)

3. W.R. Anderson, J.R. Veale, T.F. Gallagher, Resonant dipole–dipole energy transfer in a nearly
frozen Rydberg gas. Phys. Rev. Lett. 80, 249 (1998)

4. I. Mourachko, D. Comparat, F. de Tomasi, A. Fioretti, P. Nosbaum, V.M. Akulin, P. Pillet,
Many-body effects in a frozen Rydberg gas. Phys. Rev. Lett. 80, 253 (1998)

5. M. Mudrich, N. Zahzam, T. Vogt, D. Comparat, P. Pillet, Back and forth transfer and coherent
coupling in a cold Rydberg dipole gas. Phys. Rev. Lett. 95, 233002 (2005)

6. S. Westermann, T. Amthor, A.L. de Oliveira, J. Deiglmayr, M. Reetz-Lamour, M. Weidemuller,
Dynamics of resonant energy transfer in a cold Rydberg gas. Eur. Phys. J. D 40, 37 (2006)

7. J.A. Petrus, P. Bohlouli-Zanjani, J.D.D. Martin, ac electric-field-induced resonant energy trans-
fer between cold Rydberg atoms. J. Phys. B 41, 245001 (2008)

8. T. Amthor, M. Reetz-Lamour, S. Westermann, J. Denskat, M. Weidemüller, Mechanical effect
of van der waals interactions observed in real time in an ultracold Rydberg gas. Phys. Rev. Lett.
98, 023004 (2007)

9. T. Amthor, M. Reetz-Lamour, C. Giese, M. Weidemüller, Modeling many-particle mechanical
effects of an interacting Rydberg gas. Phys. Rev. A 76, 054702 (2007)

10. D. Tong, S.M. Farooqi, J. Stanojevic, S. Krishnan, Y.P. Zhang, R. Côté, E.E. Eyler, P.L. Gould,
Local blockade of Rydberg excitation in an ultracold gas. Phys. Rev. Lett. 93, 063001 (2004)

11. K. Singer, M. Reetz-Lamour, T. Amthor, L.G. Marcassa, M. Weidemüller, Suppression of
excitation and spectral broadening induced by interactions in a cold gas of Rydberg atoms.
Phys. Rev. Lett. 93, 163001 (2004)

12. K. Afrousheh, P. Bohlouli-Zanjani, D. Vagale, A. Mugford, M. Fedorov, J.D.D. Martin, Spec-
troscopic observation of resonant electric dipole–dipole interactions between cold Rydberg
atoms. Phys. Rev. Lett. 93, 233001 (2004)

13. T. Cubel Liebisch, A. Reinhard, P.R. Berman, G. Raithel, Atom counting statistics in ensembles
of interacting Rydberg atoms. Phys. Rev. Lett. 95, 253002 (2005)

14. T. Vogt, M. Viteau, J. Zhao, A. Chotia, D. Comparat, P. Pillet, Dipole blockade at förster
resonances in high resolution laser excitation of Rydberg states of cesium atoms. Phys. Rev.
Lett. 97, 083003 (2006)

15. T. Vogt, M. Viteau, A. Chotia, J. Zhao, D. Comparat, P. Pillet, Electric-field induced dipole
blockade with Rydberg atoms. Phys. Rev. Lett. 99, 073002 (2007)

16. C.S.E. van Ditzhuijzen, A.F. Koenderink, J.V. Hernández, F. Robicheaux, L.D. Noordam,
H.B. van Linden van den Heuvell, Spatially resolved observation of dipole–dipole interaction
between Rydberg atoms. Phys. Rev. Lett. 100, 243201 (2008)



84 6 Experiment Setup

17. R. Heidemann, U. Raitzsch, V. Bendkowsky, B. Butscher, R. Low, T. Pfau, Rydberg excitation
of Bose-Einstein condensates. Phys. Rev. Lett. 100, 033601 (2008)

18. E. Urban, T.A. Johnson, T. Henage, L. Isenhower, D.D. Yavuz, T.G. Walker, M. Saffman,
Observation of Rydberg blockade between two atoms. Nat. Phys. 5, 110 (2009)

19. A. Gaëtan, Y. Miroshnychenko, T. Wilk, A. Chotia, M. Viteau, D. Comparat, P. Pillet,
A. Browaeys, P. Grangier, Observation of collective excitation of two individual atoms in
the Rydberg blockade regime. Nat. Phys. 5, 115 (2009)

20. V. Bendkowsky, B. Butscher, J. Nipper, J.P. Shaffer, R. Löw, T. Pfau, Observation of ultralong-
range Rydberg molecules. Nature 458, 1005 (2009)

21. K.R. Overstreet, A. Schwettmann, J. Tallant, D. Booth, J.P. Shaffer, Observation of electric-
field-induced Cs Rydberg atom macrodimers. Nat. Phys. 5, 581 (2009)

22. W. Li, I. Mourachko, M.W. Noel, T.F. Gallagher, Millimeter-wave spectroscopy of cold Rb
Rydberg atoms in a magneto-optical trap: Quantum defects of the ns, np and nd series. Phys.
Rev. A 67, 052502 (2003)

23. J. Han, Y. Jamil, D.V.L. Norum, P.J. Tanner, T.F. Gallagher, Rb nf quantum defects from
millimeter-wave spectroscopy of cold 85Rb Rydberg atoms. Phys. Rev. A 74, 054502 (2006)

24. B. Sanguinetti, H.O. Majeed, M.L. Jones, B.T.H. Varcoe, Precision measurements of quantum
defects in the nP3/2 Rydberg states of 85Rb. J. Phys. B 42, 165004 (2009)

25. D.B. Tretyakov, I.I. Beterov, V.M. Entin, I.I. Ryabtsev, P.L. Chapovsky, Investigation of cold
Rb Rydberg atoms in a magneto-optical trap. J. Expt. Th. Phys. 108, 374 (2008)

26. D.B. Branden, T. Juhasz, T. Mahlokozera, C. Vesa, R.O. Wilson, M. Zheng, A. Kortyna,
D.A. Tate, Radiative lifetime measurements of rubidium Rydberg states. J. Phys. B 43, 015002
(2010)

27. K.J. Weatherill, A CO2 Laser Lattice Experiment for Cold Atoms. PhD thesis, Department of
Physics, Durham University, 2007

28. E.L. Raab, M. Prentiss, A. Cable, S. Chu, D.E. Pritchard, Trapping of neutral sodium atoms
with radiation pressure. Phys. Rev. Lett. 59, 2631 (1987)

29. C.J. Foot, Atomic Physics (OUP, Oxford, 2005)
30. A.M. Steane, C.J. Foot, Laser cooling below the doppler limit in a magneto-optical trap. Euro-

phys. Lett. 14, 231 (1991)
31. D.A. Steck, Rubidium 85 D line data (2008), http://steck.us/alkalidata/rubidium85numbers.

pdf
32. D.A. Steck, Rubidium 87 D line data (2007), http://steck.us/alkalidata/rubidium87numbers.

pdf
33. D.J. McCarron, S.A. King, S.L. Cornish, Modulation transfer spectroscopy in atomic rubidium.

Meas. Sci. Technol. 19, 105601 (2008)
34. K.L. Corwin, Z.-T. Lu, C.F. Hand, R.J. Epstein, C.E. Wieman, Frequency-stabilized diode laser

with the Zeeman shift in an atomic vapor. Appl. Opt. 37, 3295 (1998)
35. U. Volz, H. Schmoranzer, Precision lifetime measurements on alkali atoms and on helium by

beam-gas-laser spectroscopy. Phys. Scr. T65, 48 (1996)
36. C.G. Townsend, N.H. Edwards, C.J. Cooper, K.P. Zetie, C.J. Foot, A.M. Steane, P. Szriftgiser,

H. Perrin, J. Dalibard, Phase-space density in the magneto-optical trap. Phys. Rev. A 52, 1423
(1995)

37. A. Arnold, Preparation and Manipulation of an 87Rb Bose-Einstein Condensate. PhD thesis,
University of Sussex, 1999

38. P.D. Lett, W.D. Phillips, S.L. Rolston, C.E. Tanner, R.N. Watts, C.I. Westbrook, Optical
molasses. J. Opt. Soc. Am. B 6, 2084 (1989)

39. J. Dalibard, C. Cohen-Tannoudji, Laser cooling below the Doppler limit by polarisation gra-
dients: simple theoretical models. J. Opt. Soc. Am. B 6, 2023 (1989)

40. C.D. Wallace, T.P. Dinneen, K.Y.N. Tan, A. Kumarakrishnan, P. Gould, J. Javanainen, Mea-
surements of temperature and spring constant in a magneto-optical trap. J. Opt. Soc. Am. B
11, 703 (1994)

41. T.G. Walker, M. Saffman, Zeros of Rydberg–Rydberg förster interactions. J. Phys. B 38, S309
(2005)

http://steck.us/alkalidata/rubidium85numbers.pdf
http://steck.us/alkalidata/rubidium85numbers.pdf
http://steck.us/alkalidata/rubidium87numbers.pdf
http://steck.us/alkalidata/rubidium87numbers.pdf


References 85

42. T.G. Walker, M. Saffman, Consequences of Zeeman degeneracy for the van der Waals blockade
between Rydberg atoms. Phys. Rev. A 77, 032723 (2008)

43. B.H. Bransden, C.J. Joachain, Physics of Atoms and Molecules (Longman Scientific and Tech-
nical, London, 1983

44. A.L. Migdall, J.V. Prodan, W.D. Phillips, T.H. Bergeman, H.J. Metcalf, First observation of
magnetically trapped neutral atoms. Phys. Rev. Lett. 54, 2596 (1985)

45. A. Reinhard, T. Cubel Liebisch, B. Knuffman, G. Raithel, Level shifts of rubidium Rydberg
states due to binary interactions. Phys. Rev. A 75, 032712 (2007)

46. R.P. Abel, A.K. Mohapatra, M.G. Bason, J.D. Pritchard, K.J. Weatherill, U. Raitzsch,
C.S. Adams, Laser frequency stabilization to excited state transitions using electromagneti-
cally induced transparency in a cascade system. Appl. Phys. Lett. 94, 071107 (2009)

47. R.W.P. Drever, J.L. Hall, F.V. Kowalski, J. Hough, G.M. Ford, A.J. Munley, H. Ward, Laser
phase and frequency stabilization using an optical resonator. Appl. Phys. B 31, 97 (1983)

48. K. Singer, S. Jochim, M. Mudrich, A. Mosk, M. Weidemüller, Low-cost mechanical shutter
for light beams. Rev. Sci. Inst. 73, 4403 (2002)

49. I.G. Hughes, T.P.A. Hase, Measurements and Their Uncertainties: A Practical Guide to Modern
Error Analysis (OUP, Oxford, 2010)

50. P. Siddons, C.S. Adams, C. Ge, I.G. Hughes, Absolute absorption on rubidium D lines: com-
parison between theory and experiment. J. Phys. B 41, 155004 (2008)

51. J. Ye, S. Swartz, P. Jungner, J.L. Hall, Hyperfine structure and absolute frequency of the 87Rb
5P3/2 state. Opt. Lett. 21, 1280 (1996)



Chapter 7
Results

Rydberg EIT in thermal samples has already demonstrated coherent optical detection
[1] and excitation [2] of the Rydberg states. In addition, the large polarisability of
the Rydberg states have been exploited to control the properties of the probe field to
create an optical switch [3] and a giant electro-optic effect that is 106 times larger
than a typical nitrobenzene Kerr lens [4]. However, observation of dipole blockade
in room temperature samples is challenging.

Using the apparatus described in the previous chapter, EIT experiments are per-
formed on a cold atomic sample to look for evidence of the cooperative effects arising
from the dipole–dipole interactions. Data are presented in the following sections for
a range of principal quantum numbers, demonstrating two distinct regimes of behav-
iour. At low n (�26), the interactions are weak and the superradiant broadening
dominates over the level shifts. For the high n states (∼60) the ensemble is block-
aded, and the resulting non-linearity is characterised as a function of probe power
and density for both attractive and repulsive interactions.

7.1 Low-n EIT

For the initial experiments, spectroscopy is performed on the low-n states (n �
26) to demonstrate EIT as a non-destructive probe of the Rydberg energy states.
The probe beam is collimated and passed through an aperture to give a beam of
approximately uniform intensity with a radius of 0.75 mm, ensuring the entire atom
cloud is illuminated. The coupling laser was collimated to a 1/e2 waist of 0.8 mm
with a peak power of 100 mW. 85Rb atoms are loaded in the MOT for 5 s to maximise
the cloud size, and hence optical depth along the probe beam, giving 108 atoms with
a peak density of 1010 cm−3 and a cloud with a radius of σr = 0.7 mm. Following the
molasses, atoms are prepared in the (F = 3, m F = 3) ground state using bright state
optical pumping with the probe laser for a pulse length of 10–100µs dependent upon

J. D. Pritchard, Cooperative Optical Non-Linearity in a Blockaded Rydberg Ensemble, 87
Springer Theses, DOI: 10.1007/978-3-642-29712-0_7,
© Springer-Verlag Berlin Heidelberg 2012
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Fig. 7.1 EIT data for 22D5/2 for probe powers of 200 nW to 3.6µW corresponding to Rabi fre-
quencies of �p/2π = 0.3–1.5 MHz. At low power a narrow EIT spectra is observed, however as
the probe power is increased a non-linear loss mechanism is observed

the probe power. The atoms are then probed using an NPN probe laser frequency
sweep in a period of 960µs.

7.1.1 Weak Probe Spectroscopy

Figure 7.1 shows exemplary transmission spectra for the 22D5/2 Rydberg state
recorded using 75 mW of coupling laser power at a range of probe powers. Con-
sidering first the weak-probe spectrum for �p/2π = 0.3 MHz, this shows two sym-
metric scans with a narrow transparency window appearing in the centre of the 5P3/2
F ′ = 4 absorption feature. These data represent a single run of the experiment from
which it is possible to determine both the dephasing rate γgr of the two-photon tran-
sition and the effective coupling Rabi frequency �c, with values of 0.30 ± 0.05
and 3.6 ± 0.2(×2π)MHz respectively. The lifetime of the 22D5/2 state is 8µs [5]
corresponding to a natural linewidth of �r/2π = 20 kHz, an order of magnitude less
than the measured dephasing rate. This dephasing, γgr = �r/2 + γrel, is therefore
dominated by the relative two-photon laser linewidth of 300 kHz, which limits the
frequency resolution of the EIT to a FWHM of γEIT/2π = 1 MHz for these parame-
ters. Subsequent improvements of the laser stabilisation have reduced this relative
linewidth to give γrel/2π ∼ 100 kHz, allowing resonances with FWHM of 600 kHz
to be observed for 26D5/2 [6].

EIT therefore provides a non-destructive probe of the Rydberg state energies with-
out actually transferring population into the Rydberg state. The sub-MHz resolution
is comparable to spectroscopy performed on an isolated single atom [7] and better
than has been obtained previously in other experiments using Rydberg ensembles
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Fig. 7.2 a EIT spectra for n = 19 − 22D5/2 with uniform coupling Rabi frequency of �p/2π =
1.5 MHz b transmission as a function of density for 26D5/2

[8–11] which suffer from interaction-induced broadening. Rydberg EIT is thus suit-
able for applications in electrometry [3], and has been used to measure electric fields
close to surfaces with a sensitivity of 0.1 V/cm [12].

7.1.2 Strong Probe Regime

Outside of the weak-probe limit, the Rydberg component of the dark-state |D〉
increases proportional to ∼�p/�c. Neglecting the effects of interactions, this should
result in a reduced absorption in the wings of the EIT resonance due to population
transfer out of the ground state. Returning to the data presented in Fig. 7.1, at high
probe power a very asymmetric transmission profile is observed, which has a pro-
nounced enhancement in transmission at the start of the two-photon resonance. This
feature is associated with significant loss of atoms, as can be seen by the reduction
of optical depth in the reverse scan across resonance. For this second scan where the
density is lower, there is a recovery of the EIT even for �p/2π = 1.5 MHz which
has no distinguishable resonant feature in the first scan.

To explore this effect further, EIT spectra are taken at �p/2π = 1.5 MHz for
a range of principal quantum numbers and for different densities. To maintain a
constant value of �c across the datasets, the power in the coupling laser is scaled
proportional to n∗−3/2 for each state, matching the scaling of the transition dipole
moment from 5P3/2 to n� (see Sect. 2.3.3).

Transmission data for the first scan across the EIT resonance are presented in
Fig. 7.2 as a function of (a) quantum number and (b) density. In (a), the spectra
evolve smoothly from a well resolved EIT resonance with slight asymmetry at n =
19D5/2 to the pronounced loss at n = 22D5/2, as seen in Fig. 7.1. This loss is

http://dx.doi.org/10.1007/978-3-642-29712-0_2
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(a) (b)

Fig. 7.3 Density-dependent loss model. a Level scheme for model, with decay into state |S〉
proportional to the Rydberg state density σrr . b EIT data for 19D5/2 for �p/2π = 0.5 (red)
and 1.5 MHz (blue). Black lines show results obtained by fitting with four-level model. Below, the
populations of the Rydberg state σrr × 100 (solid) and the population of the reservoir state |S〉 for
the strong probe (dashed) are plotted, showing > 75 % population transfer into |S〉

observed consistently for states up to 26D5/2, which can be seen from the highest
density trace in (b). Due to the wavelength range of the coupling laser it was not
possible to excite atoms below n = 19 to see if the symmetry of the EIT recovers
completely. In (b), the atom cloud is heated by optically pumping for increasing
durations on the closed probe transition before performing the EIT on 26D5/2. This
reduces the ground state density in the system and increases the sample size. Spectra
are taken for fixed probe and coupling laser parameters, revealing almost complete
recovery of the EIT lineshape as the density is reduced. Comparison of (a) and (b)
reveal an almost indistinguishable evolution in the spectra, which implies a density
dependent interaction that causes rapid depopulation of the Rydberg states. The
timescale associated with this loss is much faster than the expected lifetime of the
Rydberg states, which are of the order of 10µs at 300 K [5].

The non-linear density scaling can be modelled phenomenologically using a mod-
ified set of optical Bloch equations from Sect. 4.1, in which an additional level |S〉
is introduced, shown in Fig. 7.3a. This state |S〉 acts as a reservoir state which the
Rydberg atoms can decay into, removing them from the three-level EIT system
to consistently reproduce loss. To enable spontaneous emission from |r〉 into both
|S〉 and |e〉, a branching ratio ε is introduced to control the weighting of these two
decay channels. The density dependence is included in the Lindblad operator L(σ)

(Eq. 4.9) by setting the operator for the decay channel from |r〉 into |S〉 equal to
Cs′ = √

(1 − ε) �r + γ′σrr |S〉〈r |, where the first term accounts for spontaneous
emission from |r〉 and the second term is an interaction-induced loss rate propor-
tional to the Rydberg state population, σrr . Correspondingly, the decay from |r〉 to
|e〉 becomes Cr = √

ε�r |e〉〈r |. Finally, the decay from |S〉 back to |g〉 is included
using Cs = √

�S|g〉〈S|. To calculate the transmission, the optical Bloch equations

http://dx.doi.org/10.1007/978-3-642-29712-0_4
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are solved in time for the full frequency sweep. Values for the coupling Rabi fre-
quency, relative linewidths and laser detunings are determined from fitting the weak
probe spectra, and the parameters ε, γ′ and �S are found by comparing the OBE
model to the strong probe data.

Figure 7.3b shows EIT spectra for 19D5/2 at �p/2π = 0.5 and 1.5 MHz compared
to the best-fit transmission predicted by the OBE model, where the only parameter
changed in the calculation is the probe Rabi frequency. The model is relatively
insensitive to the value of ε, whilst the decay back into |g〉 must occur very slowly,
corresponding to an effective state lifetime τS > 1 ms. The only significant parameter
is therefore γ′, adjusted to give a peak loss rate of 960 × 2π kHz for the strong
probe data. The model shows very good agreement with the experimental traces,
reproducing both the EIT spectra and the loss observed in the second scan. In the
lower panel, the Rydberg atom populations are plotted showing a peak population
around 2 % due to the rapid loss with increasing population, and showing greater
than 70 % of the initial population is transferred into the reservoir state |S〉. Attempts
to fit the higher n-states show good qualitative agreement with the lineshape of the
first scan requiring an increased value of γ′, however it is not possible to consistently
reproduce the sharp loss feature and predict the correct density in the second scan.

The model verifies the spectra are caused by a density-dependent loss from the
Rydberg state. Repeating the experiments for nearby S1/2 states yields very similar
results to those of Fig. 7.2, showing the effect is independent of the attractive or
repulsive dipole–dipole interactions. This is expected, as the interaction shift at the
average interatomic separation of 2µm for the 26D5/2 state is only around 250 kHz,
too small to observe blockade effects. This weak dipole interaction also rules out
mechanisms such as dipole–dipole energy transfer [13]. The most likely explanation
is therefore superradiant cascade from the Rydberg state. As discussed in Sect. 5.2,
the condition for observing superradiant decay is k R � 1, where k is the wavevector
of the decay channel and R is the sample size. For the nD5/2 states, the longest
wavelength decay channel is via the (n − 2)F states, which are approximately twice
as big as for decay via the n P states. The decay wavelengths are λDF = 0.35 and
1.0 mm for 19 and 26D5/2 respectively, which is comparable to the MOT diameter of
1.4 mm for n = 26. The result is a geometric enhancement in the superradiant decay,
with the cooperativity parameter of Eq. 5.9 changing by two orders of magnitude
from C = 10−5 to 10−3 from 19 to 26, which can be seen in the evolution of the
spectra for increasing n. Further evidence for cooperativity is provided by the data in
Fig. 7.2. In (a) k R is varied by changing wavelength to give a ratio of 0.57/0.35 = 1.6
between 19D5/2 and 22D5/2, whilst in (b) k R is varied by changing the density by a
factor of 4, and hence R by a ratio of 3

√
4 = 1.6. This scaling explains the similarity

between the two datasets, and shows this superradiant decay mechanism gives the
EIT a reproducible and characteristic lineshape. These findings are consistent with
more detailed studies of superradiance in cold Rydberg gases for n = 20 − 30
[14, 15], however without ion detection it is not possible to conclusively verify the
population is cascading down to lower n states, as the mm-wave emission cannot be
detected.

http://dx.doi.org/10.1007/978-3-642-29712-0_5
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Fig. 7.4 Importance of optical pumping in EIT spectra. a Probe transmission for σ± transitions
with no optical pumping (UP) or dark-state pumping into (F = 2, m F = 2) (OP). b 44D5/2 EIT
spectra for different coupling laser polarisations with a σ+ probe beam

7.1.3 Summary

As discussed previously, the superradiant decay rate scales as n∗−5 compared to
n∗11 for the dipole–dipole interactions. To observe cooperative behaviour due to the
energy shift rather than enhanced broadening, it is therefore necessary to use states
with higher n. These initial results, however, show that in the weak probe regime EIT
provides a non-destructive, state-selective probe of the Rydberg states which may be
useful for high resolution spectroscopy.

7.2 High n EIT : Optical Pumping and Polarisation

Extending the experiments to higher n states requires tighter focusing of the coupling
laser to give a sufficiently high Rabi frequency to observe EIT. The probe laser also
needs to have a smaller focus than the coupling laser to ensure the condition �c > �p
is achieved across the whole cloud. Using the adjustable focal length fibre collimators,
the probe and coupling lasers are therefore focused to 1/e2 radii of 160 and 215µm
respectively. Another important change in the experiment procedure is to use 87Rb
to enable the dark-state optical pumping scheme to be used, as detailed in Sect. 6.2.
To illustrate the importance of efficient optical pumping, Fig. 7.4a shows absorption
data recorded for a 1 s MOT load using a 10 nW probe ( �p/2π = 0.5 MHz) polarised
to drive either σ+ or σ− transitions. The middle (black) trace shows transmission
for a σ+ probe beam without any optical pumping stage or bias field, giving a peak
absorption of 70 %. If the optical pumping step is used however, the absorption now
increases to 85 %, with the shift in frequency due to the 2 G bias field causing a
Zeeman shift of the (F = 2, m F = 2) state. If the probe beam polarisation is now

http://dx.doi.org/10.1007/978-3-642-29712-0_6
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Fig. 7.5 EIT spectra for 46D5/2 showing the characteristic signatures of super-radiant loss observed
at low n

reversed toσ−, the absorption is reduced and Zeeman shifted to negative frequency as
atoms are pumped across to the (F = 2, m F = −2) state during the scan sequence,
giving a kink in the transmission curve at �p/2π = −10 MHz. The optical pumping
therefore significantly enhances the optical depth in the cold atom sample, with all
atoms on the closed optical transition. The MOT load time is 1 s in all subsequent
data.

Optical pumping is also important for enhancing the visibility of the EIT reso-
nance. Figure 7.4b shows EIT on the 44D5/2 state with the probe beam polarised
to drive a σ+ transition, using the same beam power as in (a). If the atoms are not
optically pumped, the σ+ coupling laser gives a broad transmission window on res-
onance with around 20 % change in transmission. If the atoms are optically pumped
however, the EIT is dramatically enhanced with 90 % transmission on resonance.
This is because the σ+–σ+ configuration drives two closed transitions up to the D5/2
state. If the coupling laser polarisation is reversed to drive the σ− transition, the EIT
is suppressed as the laser is now driving the weakest optical transition. This trace
shows an additional resonance at the same frequency as the un-pumped data due
to the Zeeman shift of the Rydberg state combined with imperfect optical pumping,
which allows the atoms remaining in m F < 2 to have a stronger coupling to the Ryd-
berg state. Repeating this for the S1/2 states, the EIT can be turned off completely
when the coupling laser drives a σ+ transition as this violates the selection rule for
excitation from 5P3/2.

Having optimised the optical pumping to maximise the optical density and cou-
pling Rabi frequency, spectra are taken for increasing probe powers to look for
evidence of an optical non-linearity. Results are presented in Fig. 7.5 for the 46D5/2
state, which shows narrow EIT spectra at low power but a sharp loss feature at
high power, very similar to the lineshape observed in Fig. 7.1. This shows that even
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at n = 46 the superradiant loss mechanism is still dominating over dipole–dipole
interactions.

7.3 Optical Non-Linearity due to Attractive Interactions

Continuing to focus on the nD5/2 states due to their stronger coupling to the 5P3/2
state relative to nS1/2 (and hence larger transparency on resonance), states of higher
principal quantum number were studied [16]. As discussed in Sect. 3.5, the nD5/2
states experience attractive long-range interactions which causes atoms to be accel-
erated together and collide to form ions on a timescale of around 10µs [17]. It is
therefore necessary to consider temporal effects due to atomic motion.

7.3.1 Temporal Dependence

The motional dynamics only play a role in EIT in the strong probe regime, when the
resonant dark state contains a non-zero Rydberg fraction. Using the optical Bloch
equations for a single, non-interacting atom it is possible to calculate the probe
susceptibility and Rydberg population σrr during the probe frequency ramp as a
function of scan speed. Figure 7.6a shows the results calculated using �p/2π =
0.9 MHz, �c/2π = 2.4 MHz and γrel/2π=200 kHz to match experiment parameters.
This illustrates the Rydberg population has an excitation bandwidth comparable to
the width of the EIT transmission window, which for these parameters corresponds
to a FWHM of γEIT/2π = 1.2 MHz. The Rydberg states are therefore populated even
in the wings of the EIT resonance. These results represent the steady-state solution
for the system, being independent of the frequency scan parameters for scan speeds
up to 1 GHz/ms. For higher speeds, the spectrum is distorted by transient effects as
the probe frequency is changing on a timescale comparable to the time required to
establish the dark state coherence. Thus, in the absence of any motion or interactions
the spectra should be independent of probe scan speeds below this rate.

To test this steady-state assumption for the interacting system, transmission is
recorded for the 58D5/2 state at a density of ρ = 0.9±0.1×1010 cm−3 for a positive
scan across the EIT resonance at a range of scan speeds, shown in Fig. 7.6b. For
the slowest speed of 50 MHz/ms, the laser scans across the EIT resonance in 60µs,
however the EIT feature is poorly resolved. Instead, the resonance appears broadened,
starting at �p/2π = −2 MHz on the edge of the two-photon transition and showing
a rapid change in transmission at �p/2π ∼ 0.5 MHz as atoms are lost from the
sample, seen from the narrowing of the width of the probe absorption feature. This
lineshape is consistent with initial loss due to ionisation of the close-spaced anti-
blockade states which are red-shifted due to the attractive interactions, and ionise
rapidly. These residual ions lead to a Stark-shift across the cloud, broadening and
suppressing the EIT. The large loss at �p/2π ∼ 0.5 MHz occurs approximately

http://dx.doi.org/10.1007/978-3-642-29712-0_3
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Fig. 7.6 Temporal effects in EIT. a Probe susceptibility (solid line) and Rydberg population (dashed
line) calculated using the single-atom OBEs from Sect. 4.1 show the Rydberg state population has
the same frequency width as the EIT resonance. The results are independent of scan duration for
scan speeds up to up to 1 GHz/ms. b Spectra recorded for 58D5/2 at different scan speeds for
�p/2π = 0.9 MHz. For the slowest scan (50 MHz/ms) there is broadening and loss consistent with
ionisation, however the faster scans show no evidence of ionisation and are consistent

10µs after the exact two-photon resonance, which could be due to the ionisation
of the long-range pair states. For higher scan speeds however, the spectra become
symmetric with approximately constant transmission on the EIT resonance, showing
the ion-induced loss is suppressed. The data below are all taken using a scan speed
of 80 MHz/ms, fast enough that there is no evidence of loss or asymmetry across the
EIT resonance.

7.3.2 EIT Suppression

Having set the probe scan speed to avoid any obvious asymmetry or loss in the
scan across resonance, the experiment is repeated at an increased density of ρ =
1.6 ± 0.2 × 1010 cm−3 to look for evidence of cooperativity due to dipole–dipole
interactions. The resulting spectra are shown in Fig. 7.7a, which shows a strong,
symmetric suppression of the resonant transmission for high probe power as expected
from the model in Sect. 5.4. Whilst this appears to show a cooperative suppression,
it is necessary to consider the effect of a small ion fraction within the atom cloud.

Ionisation is an incoherent mechanism that leads to a random distribution of
charges in the system. As the Rydberg states have very large polarisabilities, these
random electric fields can dominate over the quantisation axis provided by the bias
field, projecting the atom into a random |m j | state. Using the fit parameters from
Table 2.2, the scalar polarisabilities of the 58D5/2 states are α0 = −137, 111 and
607 MHz/(V/cm)2 for |m j | = 1/2, 3/2 and 5/2 respectively. These states therefore
experience shifts of different sign and strength, which means the signature of ion-

http://dx.doi.org/10.1007/978-3-642-29712-0_4
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Fig. 7.7 58D5/2 EIT Suppression. a Transmission data showing strong suppression of the EIT for a
strong probe beam as expected from cooperative effects. b Simulated lineshape to model the effects
of ionisation. Due to the difference in sign of α0 for the different |m j | states, the EIT is not shifted
but instead suppressed by ions, with the 0.3 % ion fraction comparable to suppression data in a

isation is not simply a net detuning of the two-photon resonance. To give an idea
of the effect of this mixture of shifts on the lineshape, a Monte-Carlo model was
used to randomly pick 105 atoms from a uniform density distribution and choose
a fixed fraction of them as ions. For each of the remaining atoms, the total electric
field due to all surrounding ions is calculated and the Stark-shift calculated using a
randomly assigned |m j | state. The susceptibility is then found using the weak-probe
formula of Eq. 4.20 and the total transmission profile obtained by summing over the
susceptibility of each atom. The results are presented in Fig. 7.7b, calculated using
�c/2π = 2.6 MHz and γrel/2π = 200 kHz to match the values obtained from fitting
the weak-probe spectrum in (a). This shows that for only a 0.3 % ion-fraction the
EIT is suppressed to a similar level to that observed in the experiment, making the
effect of ionisation and blockade difficult to distinguish.

One caveat to using this model for comparison to data is that it makes several
assumptions; firstly, that the ions are present for the full duration of the scan rather
than being created dynamically, and secondly, that there is an even distribution of the
atoms into each of the |m j | components. In addition, the blockade mechanism should
prevent excitation of closely-spaced pair states, suppressing the ion creation during
the scan across the two-photon resonance. For the 58D5/2 m j1 = m j2 = 5/2 pair
state the interaction strength is calculated as C6 = 150 GHzµm6, which for the EIT
linewidth ofγEIT/2π = 0.8 MHz corresponds to a blockade radius of Rb ∼ 8 µm. For
atoms with this initial separation, the timescale for collisions is tens of microseconds,
longer than the time taken for the probe laser to scan across the EIT bandwidth.

As the ion yield cannot be directly measured for these experiments, it is not
possible to completely discount the effect of ionisation in the observed suppression
data. However, the EIT remains symmetric with no shift or broadening of the two-
photon resonance over a wide range of probe powers, suggesting the dipole–dipole
interactions are the dominant mechanism. It is still interesting though to consider the

http://dx.doi.org/10.1007/978-3-642-29712-0_4
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Fig. 7.8 Transmission spectra for probe Rabi frequencies of �p/2π = 0.3 MHz a, c and 0.9 MHz
b, d. Data are recorded for NPN a, b and PNP c, d frequency sweeps. The weak probe data of a and
c shows symmetric EIT spectra with no evidence of hysteresis. For the strong probe data however,
the NPN scan b has enhanced suppression relative to the PNP spectrum in d, with more loss on the
second scan

non-linear response of the system due to a process such as ionisation. Whilst this is
an incoherent effect, the long-range Coulomb field could be used to Stark-shift the
EIT off-resonance to create an ion-blockade [18] which could switch the medium
from transparent to opaque, making a sensitive ion detector.

7.3.3 Frequency Dependence of the EIT Suppression

An additional handle that can be used to assess the importance of dynamical effects
in the EIT is to perform the spectroscopy with a reversed frequency scan direction.
The reason this should make a difference is due to the presence of the red-detuned
anti-blockaded pair states, which correspond to resonant excitation of atoms with
separation smaller than Rb. If these states are important in the evolution of the EIT at
high powers, then the spectra will show signs of hysteresis dependent upon whether
the probe laser scans across them before or after reaching the two-photon resonance.

Figure 7.8 shows transmission data recorded at probe Rabi frequencies of
�p/2π = 0.3 MHz in (a) and (c), and 0.9 MHz in (b) and (d) for NPN and PNP
frequency sweeps across the EIT resonance at a density of 1.6 ± 0.2 × 1010 cm−3.
For the weak probe data, symmetric EIT spectra are observed for both frequency
sequences, with no evidence of hysteresis between the first and second scan across
resonance. This symmetry is due to the Rydberg state not being populated for low
probe Rabi frequencies. For the strong probe NPN transmission spectrum in (b),
there is again a significant suppression of the EIT resonance in the first scan across
resonance as seen above in Fig. 7.7a.
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However, in the reverse scan the EIT appears to recover almost completely, with
a slight reduction in the optical depth suggesting some atoms have been lost during
the scan sequence. Comparing this with the strong probe PNP data in (d), this also
shows a suppression of the EIT on the first scan compared to the weak probe regime,
though much less than is seen in (b). On the second scan though, the suppression
is significant, with a larger reduction in the ground state density after the first scan.
These figures clearly illustrate a hysteresis effect in the EIT spectroscopy, with the
suppression maximised when scanning from negative to positive detunings across
the two-photon resonance. An additional parameter that can be found from the data
is the detuning of the two-photon resonance. For each set of parameters, the two-
photon resonance is compared across 20 data sets. No systematic shift is observed
above the ±300 kHz variation measured in the weak probe limit, which arises due to
the fluctuations in the frequency of the coupling laser.

These results show the EIT suppression is sensitive to the scan direction, with the
behaviour consistent with pair excitation. For the PNP sequence in (d), the laser scans
across the two-photon resonance, with suppression in the transmission appearing due
to blockade of the resonant dark state. The laser then becomes negatively detuned,
and can resonantly excite the anti-blockaded pair states which ionise, leading to the
observed loss in the second scan. For the NPN data however, the laser is initially
red-detuned and can therefore excite the closely-spaced pair states. These pair states
will ionise rapidly, creating a residual ion fraction in the cloud on the two-photon
resonance which would enhance the suppression of the EIT, as seen in Fig. 7.7b. This
explains the difference in the first scan for the PNP scan compared to NPN. Following
ionisation, these short-range pairs will be lost from the probe region, modifying the
nearest-neighbour distribution in the cloud. The result is less atoms in each blockade
sphere, which leads to a recovery of the EIT in the second scan across resonance.

Whilst this analysis is speculative, due to the lack of a time-resolved ion signal
to accompany the transmission spectra, the results are similar to direct studies of
Rydberg population in which the ion yield due to the anti-blockade states is seen
to be enhanced for excitation of the attractive D5/2 states with a red-detuned laser
relative to blue-detuned excitation [17, 19]. Despite the exact mechanism for the
strong suppression seen for the NPN sequence being unclear, it is still useful to
characterise the optical non-linearity resulting from these interactions.

7.3.4 Optical Non-Linearity

To make a quantitative measurement of the optical non-linearity arising from the
suppression of the EIT resonance, transmission data are recorded for a range of
probe powers and densities, using a variable depump time to systematically change
the ground-state density without changing the cloud size, as described in Sect. 6.2.1.
Spectra are recorded for both NPN and PNP scan sequences, from which the trans-
mission on the two-photon resonance is found. The transmission, T , is converted to
the imaginary part of the susceptibility using Eq. 4.23a to give χI = − loge(T )/k�,

http://dx.doi.org/10.1007/978-3-642-29712-0_6
http://dx.doi.org/10.1007/978-3-642-29712-0_4


7.3 Optical Non-Linearity due to Attractive Interactions 99

0 10 20 30
0

1

2

3

4 (a)

Ep (V/m)

χ
I

(×
10

−
4 )

0 10 20 30
0

0.5

1

1.5

2

2.5

3 (b)

Ep (V/m)

χ
I

(×
10

−
4 )

0 0.5 1 1.5
0

1

2

3

4

5

6 (c)

ρ (×1010 cm−3)

χ
(3

)
(×

10
−

7
m

2
V

−
2 )

0 0.5 1 1.5
0

1

2

3

4

5

6

7 (d)

ρ (×1010 cm−3)

χ
(2

)
(×

10
−6

m
V−1

)

Fig. 7.9 Resonant susceptibility as a function of probe electric field, Ep, and density, ρ. a and b
show data for NPN and PNP scan directions respectively, taken for ρ = 0.4 (©) 0.7 (�) 1.0 (•) 1.6
(�) ×1010 cm−3. Data in a and b is fitted to third- and second-order non-linearities respectively,
and the resulting density dependence plotted in c and d. Both χ(2) and χ(3) display a quadratic
density scaling, consistent with pair-wise interactions

where k is the probe wavevector and � is the optical path length through the cloud,
measured to be � = 0.9 ± 0.1 mm. For each set of parameters, the susceptibility is
calculated for 20 repeats, and then a weighted average taken to give the final value.
This is plotted against the probe electric field, Ep, to look for a non-linear scaling.

Results are shown in Fig. 7.9a,b measured for the NPN and PNP scan sequences
respectively for a range of densities. Immediately obvious is the difference in the
non-linear scaling for the different scan directions. For NPN, there is clear evidence
of a third-order non-linearity in agreement with the theoretical prediction of [20].
This non-linearity saturates for probe powers above 20 V/m at the peak density of
1.6 × 1010 cm−3. Increasing the probe power further, there is now an increase in
the transmission rather than suppression, most likely caused by loss as the block-
ade mechanism breaks down and ionisation becomes dominant. The data are fit to
the function χI = χ(1) + χ(3)E2

p , from which the third-order susceptibility can be

measured. The peak value of χ(3) = 5.3 ± 0.4 × 10−7 m2 V−2 represents a very
large non-linear scaling for an atomic ensemble, comparable in magnitude to the
slow-light experiments in a BEC [21] performed at densities two orders of magni-
tude higher than are used here. However, the PNP data in (b) are not consistent with
a third-order scaling, but instead agree well with a second-order scaling. The data
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are therefore fit using χI = χ(1) + χ(2)Ep to extract the value of χ(2), which has a
peak value of χ(2) = 5.6 ± 0.4 × 10−6 mV−1. Typically, this second order effect
can only be seen in non-centrosymmetric crystals in which the oscillating electrons
that form the dipoles experience an anharmonic potential [22]. The broken symmetry
in crystals is an artefact of the collective interaction of the atoms in each unit cell,
so the observation of a χ(2) dependence here is still consistent with a cooperative
effect where the optical response of a single atom is dependent upon the surrounding
atoms. Comparing the magnitude obtained in the experiment to that of bulk crystals,
which typically have χ(2) ∼ 10−10 mV−1 [22], the Rydberg blockade mechanism
gives a non-linearity 104 times larger than can be achieved in a crystalline medium.

The important signature of a cooperative optical non-linearity is a non-linear
density dependence in the susceptibility, as increasing the number of atoms in each
blockade sphere enhances the suppression of the EIT resonance. Figure 7.9c,d show
the third- and second-order susceptibilities obtained from fitting the NPN and PNP
data respectively as a function of density. The NPN third-order susceptibility shows
very good agreement with a quadratic scaling across the full range of densities, whilst
the second-order susceptibility initially agrees with a quadratic scaling but saturates
above a density of 1010 cm−3. These results are consistent with a cooperative non-
linear mechanism, and agree with theoretical predictions for a quadratic density
scaling obtained using a Monte-Carlo method to calculate the optical response of
very large atom numbers [20]. The Monte-Carlo model also predicts a saturation in
the quadratic density scaling around 1010 cm−3, as seen in (d).

7.3.5 Summary

These observations of suppression for the attractive Rydberg states show clear evi-
dence of cooperativity, reproducing the expected suppression of the EIT resonance
and displaying a quadratic density dependence consistent with the blockade mech-
anism. The data also reveal some interesting dynamical properties which can be
seen through the hysteresis between both the first and second scan across resonance.
This is demonstrated by the recovery of the EIT in the second scan in Fig. 7.8b, and
through the dependence upon scan direction. These effects are most likely related
to ionisation of the short-range anti-blockaded states which are excited when the
probe is negatively detuned. Without being able to detect the ion fraction explicitly,
this data cannot be used as conclusive proof of the blockade-induced cooperative
non-linearity described in Sect. 5.4. Rydberg EIT has, however, been demonstrated
to give a very large third-order non-linearity, and it would be interesting for the exact
mechanism to be verified in future studies. If ions are the cause of the suppression,
it could create a very sensitive optical method for performing single ion detection.

The D5/2 states have two additional properties that have not been exploited in this
present work. Firstly, the anisotropic interactions mean that the interaction depends
on the alignment of the dipoles [23], which could be used to control or tune the non-

http://dx.doi.org/10.1007/978-3-642-29712-0_5
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linearity. Secondly, the D pair states have small energy defects, as seen in Fig. 3.3,
allowing tuning to 1/R3 resonant dipole–dipole interactions using a Förster reso-
nance. This would enhance the non-linearity by increasing the size of the blockade
radius, and hence the number of atoms contributing to the suppression.

An additional mechanism for suppression that has not been considered so far is the
van der Waals dephasing discussed in Sect. 5.2, which leads to an in-homogeneous
broadening of the EIT resonance due to the distribution of interaction strengths in the
cloud. As the visibility of the EIT resonance is limited in the present setup, it is not
possible to distinguish this broadening effect from suppression due to interactions.
A number of changes are therefore needed to allow conclusive verification of the
cooperative suppression due to interactions; namely a clear spectral signature of
ionisation, and increased transparency on the two photon resonance.

7.4 Cooperativity due to Repulsive Interactions

7.4.1 Experiment Modifications

The main limitation in the analysis of the previous section arises from the different
signs in the Stark shifts of the |m j | components of the Rydberg state, leading to a
suppressed transmission without a clear shift in the resonance. This can be overcome
by using the S1/2 states [24], which have two important advantages over the D states.
Firstly, there is only a single |m j | component for which the scalar polarisability
α0 > 0, ensuring that all atoms experience a Stark-shift to negative detuning if there
are ions present in the sample. Secondly, the atoms experience isotropic, repulsive
dipole–dipole interactions, which significantly reduces the ionisation rate relative to
the D states, as discussed in Sect. 3.5.

The other issue to address is the magnitude of the transparency on the two-photon
resonance, which was limited by the weak coupling Rabi frequency for the 58D5/2
state. The coupling laser is therefore focused down to a 1/e2 radius of 66±3 µm, the
smallest waist possible using the fibre collimator. As the Rabi frequency is inversely
proportional to the waist, this gives a factor of ∼3 enhancement in �c relative to the
previous experiments. In addition to maximising the coupling laser Rabi frequency,
the probe beam was then focused to a 1/e2 radius of 12 ± 0.2 µm. This ensures an
approximately uniform coupling Rabi frequency across the probe beam to give the
largest possible transparency for all atoms in the probe region. To achieve this tight
waist, the setup was modified as shown in Fig. 7.10a, with the probe fibre output
collimated to a 1/e2 waist of 3.4 mm which was then focused using a 15 cm focal
length doublet outside the chamber. Since the output probe beam is highly divergent,
it is necessary to re-collimate it with another lens after the chamber. This required
moving the optical pumping fibre to co-propagate with the probe beam, making a
1:1 telescope that uses the doublet as the second lens to ensure the optical pumping
beam is not focused inside the chamber. After the chamber, a second telescope is

http://dx.doi.org/10.1007/978-3-642-29712-0_3
http://dx.doi.org/10.1007/978-3-642-29712-0_5
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(a) (b)

(c)

Fig. 7.10 a Modified setup to allow tight-focusing of probe beam down to 1/e2 radius of 12µm,
requiring a single-photon counter (SPAD) for detection. b Single shot EIT dataset recorded at 15 pW
probe power c Histogram for 100 shot average clearly revealing the EIT resonance

used to spatially filter the optical pumping light, and the probe beam is coupled into
a multi-mode fibre.

Using a tight probe focus means that the probe Rabi frequency is enhanced by
a factor of ∼13, and so even for a 1 pW beam �p/2π = 0.08 MHz. At these weak
probe powers, it is no longer possible to use a photodiode to detect probe transmis-
sion. Instead, a Perkin-Elmer SPCM-AQRH-15 single photon avalanche photodiode
(SPAD) is used, chosen for its very low dark count of 42 counts/s. The SPAD output
is not proportional to the probe intensity like a photodiode, instead a 15 ns TTL pulse
is emitted when one or more photons is detected. The SPAD is therefore connected to
a SensL HRMTime time correlated counting card which records the arrival times of
these TTLs with 27 ps resolution. To protect the photon counter from damage due to
a large photon flux, the detector is gated off using the circuit in appendix A.2 during
the MOT load and optical pumping stage, and activated during the probe pulse. To
avoid errors due to pile-up or saturation of the counter, the probe beam is attenuated
after the chamber to give a count rate of 1 MHz, giving on average 1 count/µs. Data
are recorded by taking 100 repeats to build up a histogram of arrival times, using a
1µs bin width. The errors in each bin are assumed to be Poissonian, such that for
each bin with m counts the standard deviation is

√
m [25]. Transmission is then cal-

culated from the histograms as described for the photodiode voltages in Sect. 6.5. An
example of a histogram obtained in a single experimental run is shown in Fig. 7.10b
for EIT on the 60S1/2 state with a 15 pW probe power. A single run gives a noisy
outline of the EIT resonance, however after 100 repeats a much clearer lineshape is
obtained, shown in (c). A final change from the old setup is an improvement in the
stability of the coupling laser lock to reduce the ±300 kHz frequency jitter observed
above.

http://dx.doi.org/10.1007/978-3-642-29712-0_6
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Fig. 7.11 a EIT spectra for 60S1/2 showing significant suppression of the resonant transmission
with increasing probe Rabi frequency. b Fitting the detuning of the two-photon resonance δ and c
FWHM linewidth γEIT show there is no shift or broadening associated with the suppression

7.4.2 Suppression Mechanisms

EIT spectroscopy is performed on the 60S1/2 state at a range of probe powers using a
1 s MOT load, which gives a density of ρ = 1.2±0.1×1010 cm−3 with around 7000
atoms contained within the probe volume. The results are shown in Fig. 7.11a which
for the low Rabi frequency data shows a narrow EIT feature with 75 % transmission on
the two-photon resonance, corresponding to a coupling Rabi frequency of �c/2π =
4.6 ± 0.1 MHz. Another noteworthy feature is that the histogram represents data
recorded over 100 s, however the effective linewidth of the two-photon resonance
obtained from fitting is γrel/2π = 110 ± 50 kHz, showing the coupling laser lock is
much more stable than before. For increased probe powers, the data shows significant
suppression of the resonant transmission by more than 50 % for �p/2π = 2 MHz
whilst giving a completely symmetric EIT lineshape. From the spectra the detuning
of the two-photon resonance, δ, and the FWHM of the EIT, γEIT, are determined,
plotted in (b) and (c). These graphs show there is no shift or broadening of the
EIT resonance accompanying the suppression, even for �p/2π = 5 MHz. It is now
necessary to compare these observations to alternative mechanisms for suppression
other than dipole blockade of the EIT dark state.

The lack of a shift in the data rules out ionisation as a suppression mechanism. This
can be seen clearly from Fig. 7.12a which shows the results of the ion model described
above calculated using experiment parameters, with the scalar polarisability of α0 =
180 MHz/(V/cm)2 for the 60S1/2 state. Another comparison that can be made is to a
mean-field model. As with the ion model, a random distribution of atoms is generated,
and a fraction of these selected as Rydberg atoms. For the remaining atoms, the level
shift is calculated by summing over the C6/R6 interaction energy with the Rydberg
atoms. The resulting lineshape is found by summing over the susceptibility of each
atom, using the interaction strength of C6 = −140 GHzµm6. The calculated spectra
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Fig. 7.12 Alternative suppression mechanisms. a Ion model showing the effect of Stark-shift,
resulting in a large red-shift. b Mean-field model for the Rydberg interaction showing a blue-shift
and broadening of the resonance accompanying the suppression

are plotted in Fig. 7.12b, which shows that whilst the mean-field model predicts
suppression of the EIT resonance, this is associated with a shift and broadening of
the two-photon resonance, as discussed in Sect. 5.4.3. This observation is important,
as it validates the assumption that the mean-field treatment is incomplete and that
the many-body cooperative model is an accurate description of the dynamics.

The final alternative suppression mechanism is van der Waals dephasing, which
was introduced in Sect. 5.2. Van der Waals dephasing leads to an inhomogeneous
broadening of the Rydberg states, caused by distribution of level shifts in the medium.
To reproduce this effect, a single atom optical Bloch model was used in which the
dephasing rate of the Rydberg state is proportional to the fraction of population in
the Rydberg state, shown schematically in Fig. 7.13a. This is done by adding the
dephasing rate γ′ = γvdWσrr to the relative laser linewidth terms γrel and γc in
Eq. 4.14 to increase the dephasing rate of the coherence terms without changing the
decay rate out of |r〉. The model is solved using the parameters obtained from the
weak-probe fit for a range of Rabi frequencies and the value of γvdW optimised to
reproduce the resonant transmission observed in the experiments. The results are
shown in Fig. 7.13b–d for �p/2π = 0.1, 2 and 4 MHz respectively for γvdW ∼ 7 �e.
These show that the dephasing can reproduce the resonant suppression for the 2 MHz
data quite well, with only a slight broadening of the EIT resonance. For higher probe
powers however, the EIT resonance is broadened significantly, and this also causes a
broadening of the probe absorption which is not observed in experiment. The FWHM
of the model traces is compared to the experiment in (e), clearly showing van der
Waals dephasing cannot explain the observed suppression as there is no broadening
in the data.

The result of this analysis is that the only mechanism consistent with observations
is the cooperative optical non-linearity arising due to dipole–dipole interactions. The
best proof for this however is to look for a non-linear density scaling to show the

http://dx.doi.org/10.1007/978-3-642-29712-0_5
http://dx.doi.org/10.1007/978-3-642-29712-0_5
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(a) (b)

(e)

(c) (d)

Fig. 7.13 Van der Waals dephasing model. a Schematic of model, with the dephasing rate of |r〉
proportional to the population in |r〉. b–d Comparison between theory and data for �p/2π = 0.1,
2 and 4 MHz. e FWHM for model compared to data, showing the dephasing model is not consistent
with observations

optical response of a single atom is dependent upon interactions with the surrounding
atoms.

7.4.3 Density Scaling

To test the density dependence of the suppression, transmission data is recorded at
probe Rabi frequencies of �p/2π = 0.1 and 2.0 MHz as a function of density for
the 60S1/2 and 54S1/2 states. Unlike the method described in Sect. 7.3.4, it is not
possible to directly convert the transmission data into susceptibility using the rela-
tion χI = − loge(T )/k�. This is because for the strong probe data, the transmission
changes from 80 % at low density to 20 % at high density. Over this range, the non-
linear absorption through the cloud cannot be neglected as the probe is attenuated as
it propagates through the medium. The modification of the susceptibility due to the
optical non-linearity will therefore vary strongly through the cloud at high density,
and only very weakly at low density. This makes comparison between the suscepti-
bility calculated in each regime unreliable. Instead, the optical depth − loge(TEIT) is
scaled relative to the probe-only optical depth − loge(TABS) to remove the first-order
density dependence in the medium as shown in Fig. 7.14.

Looking first at the weak-probe data, this shows there is no non-linear density
scaling for either state. This is expected from the weak probe dark state |D〉 = |g〉,
which means the optical response of each atom is independent of the surrounding
atoms. For the strong probe however there is a very clear second-order density scaling,
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Fig. 7.14 Optical depth as a function of density, scaled relative to the probe-only optical depth
to remove the trivial linear density scaling. This shows a second-order density dependence for the
strong probe data, verifying the cooperative nature of the non-linearity

as seen above in Fig. 7.9 for the D5/2 states, which verifies the cooperative nature of
the EIT suppression.

The 60S1/2 state shows a steeper density dependence than is observed for 54S1/2.
The difference in the gradients is due to the increased interaction strength of the
60S1/2 state compared to the 54S1/2 state, which leads to a larger blockade radius.
Making the assumption γEIT ∝ �c (consistent with experiment observations) and
using the scaling relations for C6 ∝ n∗11 and �c ∝ n∗−3/2, the number of atoms in
the blockade sphere should scale as Nb ∝ R3

b ∝ √
C6/γEIT ∝ n∗25/4. This gives a

ratio of 2.0 for the number of atoms per blockade sphere for the two states. Applying
a linear fit to the strong probe data, the ratio of the gradients is 2.7 ± 0.7 which is
consistent with the suppression scaling with Nb. The non-linearity can therefore be
tuned by choice of density and principal quantum number, offering a high degree of
control.

7.4.4 Comparison with the N-atom Model

Having proved the suppression is caused by the cooperative interaction between
atoms, it is interesting to compare the experiment to the N -atom model developed
in Sect. 5.4. For the spectra presented in Fig. 7.11a the EIT linewidth is γEIT/2π =
3 MHz, giving a blockade radius Rb = 6 µm. At a density of 1.2 × 1010 cm−3 this
corresponds to an average of Nb = 11 atoms per blockade sphere. Solving the model
for this number of atoms is not possible due to the large number of states required, so
instead the experiment is repeated at a density of 0.35±0.03×1010 cm−3 which gives
an average of Nb = 3.Transmission data for �p/2π = 0.1 to 3.2 MHz are shown in

http://dx.doi.org/10.1007/978-3-642-29712-0_5
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Fig. 7.15 Comparison of N -atom model to data. a–d show EIT spectra recorded at a density of
0.35 × 1010 cm−3 with an average Nb = 3 for �p/2π = 0.1, 1.0, 2.0 and 3.2 MHz respectively.
Transmission calculated using the three-atom model is plotted on top (thick line). e Resonant
transmission compared to the N -atom model for N = 1–3

Fig. 7.14a–d, which shows the familiar suppression at increasing probe powers but by
less than Fig. 7.11a due to the reduction in Nb. Plotted on the data is the transmission
calculated from the three-atom model using parameters of �c/2π = 0.8 MHz and
γrel = 110 kHz obtained from the weak-probe fit to (a), changing only �p between
the figures. The only free parameter in the model is the interaction strength V (R).
The transmission spectra presented here are calculated using V (R)/2π = 15 MHz,
however the result is insensitive to the interaction providing V (R) > γEIT to match
the blockade condition for the three atoms. The model is in excellent agreement
with the data, reproducing not only the resonant transmission but also the full EIT
lineshape. In (e) the resonant transmission is plotted as a function of �p compared
to the resonant transmission calculated for the 1, 2 and 3-atom models. This shows
that the agreement for the three-atom model is better than for 2, as expected from
the average Nb at this low density.
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Fig. 7.16 Monte-Carlo model of the high density 60S1/2 EIT spectra. a Shows the experiment data
and b the theoretical transmission. These calculations were performed by S. Sevinçli et al.

Blockade Dephasing Rate

The excellent quantitive agreement between the model and experiment show that the
EIT is sensitive to the coherence of the blockaded ensemble, as only by considering
the coherence of the many-body system is it possible to reproduce the observed sup-
pression without broadening. Thus on the two-photon resonance the system evolves
into an ensemble of blockaded ensembles at large probe power. Dephasing between
neighbouring blockade spheres would lead to broadening of the EIT resonance,
equivalent to an increase in the relative two-photon laser linewidth γrel. As there is
no broadening observed in this regime (seen from Fig. 7.11c), this places an upper
limit on the dephasing rate equal to the measured linewidth in the weak-probe regime.
Thus the dephasing rate between neighbouring blockade spheres < 110 kHz for the
60S1/2 state.

Monte-Carlo Modelling Results

Using the complete N -atom model has shown excellent agreement with data for this
low density data, however as it cannot be scaled to larger atom numbers its application
is limited to this low Nb regime. As mentioned in Sect. 5.4, an alternative method has
been developed by C. Ates, S. Sevinçli and T. Pohl [20] which uses a Monte-Carlo
approach to model the steady-state populations for very large numbers of interacting
atoms, from which the transmission can be calculated. As the EIT experiments are
performed slow enough to be in the steady-state regime, this model has been used
to reproduce the high density 60S1/2 data of Fig. 7.11a. The calculation makes no
assumptions about how many atoms are in a blockade sphere, and instead creates
a random distribution of atoms and calculates the real interaction strength with the

http://dx.doi.org/10.1007/978-3-642-29712-0_5
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surrounding atoms. It also fully accounts for the Gaussian distributions of the atomic
density and laser intensity, making it more complete than the treatment presented
above.

The results are presented in Fig. 7.15, with the data in (a) and the model output in
(b). Looking first at the resonant transmission, the model very accurately reproduces
the height of the EIT peak for each value of �p. However, the calculated spectrum is
asymmetric, showing evidence of both shift and broadening that is not observed in the
experiment. The cause for the asymmetry in the model is the laser resonantly exciting
the anti-blockaded pair states, which due to the repulsive dipole–dipole interactions
lie at positive detunings. The reason these are not observed in the experiment is most
likely due to motion from the strong van der Waals interactions. For a pair of atoms
separated by the blockade radius of 6µm, the interaction shift is 3 MHz. The laser
takes a time of 38µs to scan from �p/2π = 0 to 3 MHz, during which time the
atoms have been repelled to a separation around 10µm with an interaction energy of
0.5 MHz. Thus, by the time the laser reaches the resonance frequency of the short-
range pair states, they have been repelled to long range. This argument is consistent
with the slight asymmetry observed around �p/2π = 2 MHz for the low density
data in Fig. 7.14d, as at low density the atoms are initially further apart, making the
repulsive motion less important.

Complementary work has been done in the CPT regime discussed in Sect. 4.2.1,
where the atoms are initially excited to the Rydberg state and the interacting CPT
dark state studied by measuring the population remaining in |r〉 as a function of
laser detuning [26]. Using this Monte-Carlo method, it has been shown that these
two regimes can be collapsed onto a universal curve relating the transmission to
the Rydberg population [20], and a more detailed comparison of this model to both
experiments is presented in [27]. Unfortunately however, neither experiment mea-
sured both transmission and population. The universality therefore remains to be
demonstrated.

7.4.5 Summary

Using the repuslive S1/2 states it has been possible to conclusively demonstrate the
observed suppression of the EIT for strong probe powers is due to the cooperative
optical non-linearity arising from dipole–dipole interactions. This is characterised
by a suppression without shift, which also displays a second-order density scaling
dependent upon the number of atoms in the blockade volume, seen from the com-
parison of 54S1/2 to 60S1/2 in Fig. 7.16. Excellent agreement between experiment
and the full N -atom model is obtained at low density, reproducing both the resonant
transmission and the full frequency spectrum. As EIT is a probe of the coherence
between the atomic states, this allows an upper limit of 110 kHz to be placed on
the dephasing rate between neighbouring blockade spheres, showing the coherent
interaction in each blockade volume is not destroyed by surrounding atoms at longer
range.

http://dx.doi.org/10.1007/978-3-642-29712-0_4
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(a) (b)

Fig. 7.17 Microwave Dressing a A linearly-polarised microwave field couples the 46S1/2 state to
45P1/2, which due to quantisation drives σ+ + σ− transitions. b Microwave EIT showing Autler-
Townes splitting of the resonance due to the microwave coupling

7.5 Microwave Dressing

The EIT experiments so far have all been performed in the regime of van der Waals
interactions between the Rydberg states, with a 1/R6 interaction potential. An alter-
native is to resonantly couple two closely spaced Rydberg states together using a
microwave field, as described in Sect. 3.4.2. This microwave dressing changes the
interactions to resonant dipole–dipole which scale as 1/R3 resulting in a longer range
interaction, and hence larger Rb.

To measure the effect of this change in interaction strength, the 46S1/2 state is
resonantly coupled to the 45P1/2 state using microwaves at 44.58 GHz, as shown
schematically in Fig. 7.17a, derived from an Anritsu MG3696A synthesiser. At this
frequency it is necessary to use waveguide rather than coaxial cables, and a WR19
waveguide was used to direct the linearly polarised microwave field onto the cold
atom cloud. EIT spectra taken for �p/2π = 0.08 MHz and �c/2π = 5.5 MHz
are shown in Fig. 7.17b for different microwave Rabi frequencies, �µ. Without
the microwave field, a single EIT resonance is obtained. The effect of the strong
microwave coupling is to create an Autler-Townes splitting of the Rydberg states,

causing the EIT resonance to split proportional to ∝
√

�2
c + �2

µ.

As both the microwave polarisation and propagation direction were orthogonal
to the quantisation axis along the probe axis, shown schematically in Fig. 7.17a,
the microwave drives both σ+ and σ− transitions simultaneously. This makes the
interpretation of the spectra more complex as theσ± transitions have different angular
transition dipole matrix elements, giving a range of splittings for the Rydberg states.
To reproduce the spectra it is necessary to use a 10-level model which includes all
of the hyperfine levels of the two Rydberg states. This model was developed by M.
Tanasittikosol and is described in detail in ref. [28]. Using this model, the effective

http://dx.doi.org/10.1007/978-3-642-29712-0_3


7.5 Microwave Dressing 111

−10 −5 0 5 10
0

0.2

0.4

0.6

0.8

1

Δp 2π (MHz)

T
ra

ns
m

is
si

on

(a)

−10 −5 0 5 10
0

0.2

0.4

0.6

0.8

1

Δp 2π (MHz)

T
ra

ns
m

is
si

on

(b)

1.9
0.1

Ωp 2π
(MHz)

Fig. 7.18 Enhanced suppression from microwave dressing of 46S1/2. a EIT spectroscopy without
microwave field. b Applying a weak microwave field �eff

µ /2π ∼ 500 kHz results in a dramatic
enhancement of the EIT suppression

microwave Rabi frequency, �eff
µ was extracted by averaging over all of the transition

strengths, enabling calibration of the microwave coupling strength.
To observe an enhancement of the non-linearity, it is necessary to apply a weak

microwave coupling with �µ < �c for all transitions to prevent an Autler-Townes
splitting of the EIT resonance. Data are recorded at �p/2π = 0.1 and 1.9 MHz with-
out the microwave field, shown in Fig. 7.18a at a density ofρ = 1.2±0.1×1010 cm−3.
This shows suppression of the EIT, as expected from the previous experiments.
Repeating this with �eff

µ /2π ∼ 500 kHz, shown in (b) for the same probe powers,
the enhancement in the non-linearity due to the microwave source is dramatic - there
is no evidence of loss or asymmetry, instead the EIT is completely suppressed.

The 46S1/2 state has a van der Waals interaction strength of C6 = −5.6 GHzµm6,
which corresponds to a blockade radius of Rb = 3.8 µm for the fitted EIT linewidth of
γEIT/2π = 2 MHz. Thus in (a) there are an average of 3 atoms in each blockade sphere
contributing to the EIT suppression. Applying the resonant microwave coupling to
the 45P1/2 state, the interactions are now resonant dipole–dipole with a strength of
C3 � 0.8 GHzµm3 which gives Rb � 7.4 µm, almost twice the size of blockade in
the undressed system. Consequently, the average number of atoms in each blockade
volume increases to around 20 which is sufficient to suppress the EIT almost to
the probe-only transmission. Microwave dressing therefore provides a method to
significantly enhance the optical non-linearity by increasing the blockade radius
without requiring excitation to very high n states.
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7.6 Conclusion

In this chapter the results of performing Rydberg EIT on an interacting cold atom
cloud have been presented. In the weak-probe regime �p � �c, EIT has been
demonstrated to allow the Rydberg energy levels to be probed with sub-MHz reso-
lution. This has the benefit that the Rydberg state itself is not populated, preventing
shifts due to dipole–dipole interactions that can affect detection using ionisation.
It is also non-destructive, allowing repeated probing over timescales of ms. EIT is
therefore suitable for applications in precision spectroscopy or electrometry of the
Rydberg states.

In the strong probe regime however, Rydberg EIT reveals a wide range of cooper-
ative phenomena. For the low-n states this was manifested as a superradiant loss from
the Rydberg state on the two photon resonance. This is seen from the scaling of the
data with k R, and for 19D5/2 has been successfully modelled as a density-dependent
loss. Similar behaviour is also observed for 44D5/2, with higher n states required
to observe the effects of dipole–dipole level shifts dominating over the collective
broadening.

For the repulsive S-states, suppression of the EIT resonance due to a cooperative
optical non-linearity has been conclusively verified, reproducing not only the non-
linear density scaling but also obtaining a quantitative agreement to theory for low
density data with an average of Nb = 3 atoms per blockade sphere. As EIT probes
the coherence of the blockaded system, this places an upper limit of 110 kHz on
the dephasing rate of the blockade sphere, making it suitable for applications in
quantum optics. These results are significant, representing the first observation of a
novel cooperative optical non-linearity in an atomic system, mediated by the tuneable,
long-range dipole–dipole interactions of the Rydberg states.

Similar suppression was observed for the attractively interacting D5/2 states,
which show different non-linear scalings in the susceptibility dependent upon the
direction of the probe frequency sweep, suggesting motional effects from the pair-
wise interactions play a role in the observed spectra. For both scan directions the
non-linearity has been characterised, which again shows a quadratic density depen-
dence expected for a cooperative effect. Finally, a microwave coupling was shown
to dramatically enhance the suppression by switching the interactions to resonant
dipole–dipole, providing an additional control of the non-linear effect alongside
choice of n� state.

One of the limitations of the present experiments is the lack of information about
the ion fraction accompanying the optical spectra. Combining these two detection
methods could provide a complete understanding of the hysteresis observed in the
D state data and assess the relative importance of ionisation, motion and blockade
in the optical non-linearity. From measurements of both transmission and Rydberg
population for a range of ratios of �p to �c, the universal scaling predicted by Ates
et al. [20] for the cooperative non-linearity could be tested.

Another area not considered is working with the coupling laser detuned off-
resonance to measure a dispersive non-linearity due to the interactions. This would
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allow characterisation of the regime in which the non-linearity could be used for
providing controlled phase-shifts of optical fields, rather than the present regime
in which the light is attenuated by the effect. To measure phase shift directly, an
interferometer is required with the atoms in one arm [29]. This avoids the issues
encountered in trying to extract the imaginary part of susceptibility from the trans-
mission and having to use the Kramers-Kronig relations to calculate the dispersion.

As will be seen in the next chapter, the cooperative non-linearity offers a far more
subtle effect which has not been considered so far, but will present itself as far more
relevant to the objective of creating single-photon non-linearities.
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Chapter 8
Photon Blockade

In the preceeding chapters the laser field has been treated in the semi-classical
approximation, where the electric field is represented by E = E0 cos(ωt). This
assumption is adequate for considering the interaction between strong laser fields
with macroscopic ensembles of independent atoms, as in this limit the quantum
description of the light-field is indistinguishable from the classical treatment, for
reasons that will be discussed below. However, in order to exploit the effect of the
cooperative non-linearity at the single-photon level it is necessary to consider the
quantised electromagnetic field, without which the concept of a photon becomes
meaningless. Importantly, in quantum optics it is not the amplitude of the electric
field, but rather the temporal and spatial correlations of the field that reveal the non-
classical nature of light. Before considering the cooperative effect, it is necessary to
first outline some fundamental ideas of the quantised field.

8.1 The Quantised Electric Field

A full derivation of the quantisation of the electromagnetic field can be found in many
standard quantum optics textbooks e.g. [1], and here only the final results are detailed.
The electric field is quantised in a finite volume V to obtain a set of spatial modes
described by wavevector k, each of which has two transverse polarisations λ defined
by the polarisation unit vector, êk,λ. Each mode represents a quantum harmonic
oscillator with a ladder of energies separated by �ωk, where ωk = c|k|. In this
picture, a photon corresponds to a single excitation of the oscillator mode. Photons
are added or removed from the mode using the creation (â†

k,λ) and annihilation (âk,λ)
operators which act on the wavefunction |nk,λ〉 representing the number of photons
in mode k as follows,

âk,λ|nk,λ〉 = √
nk,λ|nk,λ − 1〉, â†

k,λ|nk,λ〉 = √
nk,λ + 1|nk,λ + 1〉. (8.1)
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118 8 Photon Blockade

These combine to give the photon number operator, n̂k,λ = â†
k,λâk,λ. Eigenstates of

this operator are known as Fock states, with exactly n photons in the mode.
As a consequence of the quantum nature of light, the electric field amplitude and

phase can no longer be known simultaneously. This is because they are conjugate
variables of the field, analogous to position and momentum, which are therefore
constrained by the Heisenberg uncertainty principle.1 Instead, the electric field is
represented by the operator [1]

Ê(r, t) = i
∑
k,λ

√
�ωk

2ε0V
êk,λ(âk,λ(t)e

−iωkt+ik·r − â†
k,λ(t)e

iωkt−ik·r),

= Ê
(+)

(r, t) + Ê
(−)

(r, t), (8.2)

where êk,λ is the polarisation unit vector. The operator is separated into the posi-

tive and negative frequency components such that Ê
(+)

contains only annihilation

operators and Ê
(−)

contains creation operators, with [Ê
(+)]† = Ê

(−)
.

8.1.1 Coherent States

The electric field emitted by a laser above threshold is described by a superposition
of Fock states, known as a coherent state |α〉 [1]. The coherent state is defined as

|α〉 =
∑

n

αn

√
n!e−|α|2/2|n〉, (8.3)

which is an eigenstate of the creation and annihilation operators with eigenvalues of

â|α〉 = α|α〉, â†|α〉 = α∗|α〉, (8.4)

whereα is the complex amplitude of the state. The probability of observing n photons
in this coherent state is

Pα(n) = |〈n|α〉|2 = α2n

n! e−|α|2 , (8.5)

which is a Poissonian distribution with a mean-photon number of n̄ = |α|2, and a
fractional uncertainty �n/n̄ = 1/

√
n̄. The coherent states are minimum uncertainty

states with equal uncertainty in phase and amplitude, thus for n̄ � 1 the coherent

1 An important consequence of the uncertainty principle is spontaneous emission, which arises due
to the coupling between an atom in the excited state and the vacuum fluctuations for the |0〉 state
of each mode [2, 3].
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state electric field 〈α|Ê |α〉 = E0 cos(ωt) [1], equivalent to the semi-classical laser
field used previously.

Having laid out a framework in which the photon can be defined, it is instructive
to consider how to discriminate between a coherent state and non-classical light.

8.2 Photon Statistics

For a classical electric field, a photodiode can be used to generate a continuous
signal proportional to the intensity of the field. Similarly, for a quantum field, the
intensity at a detector is related to the expectation value for the intensity 〈 Î (r, t)〉,
where the intensity operator is defined as Î = Ê

(−)
(r, t) · Ê

(+)
(r, t). However, this

is the same for both a single photon state and a coherent state with n̄ = 1. It is
therefore insufficient to simply measure the field intensity, instead it is necessary to
consider the photon statistics of the input field.

The photon statistics can be quantified using the second-order correlation function,
also known as the intensity correlation function. For a pair of detectors at positions
r1 and r2, the normalised second-order correlation function is defined as

g(2)(r1, r2, t, t ′) = 〈Ê (−)(r1, t)Ê (−)(r2, t ′)Ê (+)(r2, t ′)Ê (+)(r1, t)〉
〈Ê (−)(r1, t)Ê (+)(r1, t)〉〈Ê (−)(r2, t ′)Ê (+)(r2, t ′)〉 , (8.6)

which describes the correlations between the field at time t and t ′. If a continuous
light source is used, the relative time t ′ can be related to a delay τ using t ′ = t + τ ,
reducing this to the evaluation of g(2)(τ ).

For a classical field, the correlation function is bounded by the Cauchy–Schwarz
inequality [4]

g(2)(0) ≥ 1, (8.7)

however for a quantum field 0 ≤ g(2)(0) ≤ ∞. The g(2) function can therefore be
used as evidence of a quantum or non-classical light field if g(2)(0) < 1.

If the electric-field is single mode, the correlation function can be written in terms
of creation and annihilation operators to simplify evaluation of the correlations,

g(2)(τ ) = 〈a†(t)a†(t + τ )a(t + τ )a(t)〉
〈a†(t)a(t)〉〈a†(t + τ )a(t + τ )〉 . (8.8)

For a coherent state, g(2)(τ ) = 1 for all time independent of α, as expected for a
classical plane wave field. For a Fock state |n〉, g(2)(0) = 1 − 1/n. Thus for the
single photon state g(2)(0) = 0, violating the classical inequality as expected for this
purely quantum state of light. The physical interpretation of this result is that as there
is only a single photon, it cannot be simultaneously observed by both detectors. This
effect is known as anti-bunching, applicable to all states with g(2)(0) < 1, as photons
arrive at well spaced intervals compared to the random distribution of arrival times
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Fig. 8.1 Hanbury Brown
Twiss interferometer. The
input light is separated onto a
pair of single photon counters
using a 50:50 beam-splitter,
and coincidence counts are
detected as a function of delay
τ to build up the correlation
function

expected for the coherent state. Similarly, states with g(2)(0) > 1 are bunched as
photons are more likely to arrive together.

In practise, g(2)(τ ) is measured with a Hanbury Brown Twiss (HBT) interfer-
ometer [5], shown schematically in Fig. 8.1 which uses a 50:50 beam-splitter to
separate light onto a pair of photon counters. The correlator records the coincidences
between the counters as a function of delay τ which can be used to determine the
normalised correlation function. The first experimental evidence of anti-bunching
was from observation of suppressed correlations at τ = 0 in the resonance fluores-
cence of a single sodium atom [6], followed by the measurement of g(2)(0) = 0 for
fluorescence of a single ion [7].

8.3 Photon Blockade

As every mode of the quantised electric field is a harmonic oscillator, there is a discrete
ladder of energies which for laser light is initially populated with the Poissonian
distribution of the coherent state. However, if the harmonicity of this ladder can be
broken, it is possible to observe non-classical states of light. An example of this is the
interaction between a single atom and the mode inside an optical cavity. The effect of
the atom-light interaction is to create an anharmonic energy ladder dependent upon
the photon occupation, as illustrated in Fig. 8.2a. The interaction causes the cavity
to be shifted off resonance with the probe laser after the first photon is absorbed,
preventing another photon from entering the cavity until the first photon leaves.
This system allows a coherent state to be filtered into a train of single photons, an
effect known as a photon blockade [8] or a photon turnstile. The resulting anti-
bunched output has been observed experimentally for optical cavities [9, 10], and
more recently in a superconducting microwave cavity [11], where an artificial atom
is used to overcome the limited fidelity in optical cavities due to residual motion of
the atom.

For the cooperative non-linearity due to dipole blockade, a similar effect can be
realised. In Chap. 5, the suppression of transmission was interpreted as the formation
of an entangled state with one atom in the EIT dark state and the remaining atoms
resonantly scattering light from the probe beam. Combining this with the concept
of a quantised electric field, the formation of the single collective dark state can
only involve a single photon from the probe field. Any other photons arriving in the
blockaded ensemble now resonantly couple to the excited state of the atoms and are

http://dx.doi.org/10.1007/978-3-642-29712-0_5


8.3 Photon Blockade 121

(a) (b)

Fig. 8.2 Photon blockade. a Placing an atom at the centre of an optical cavity causes the cavity
modes to be detuned by ±√

ng0, where g0 is the coupling constant, preventing more than a single
photon entering the cavity. (States are labelled |n,±〉 to denote the photon number n and dressed
state of the atom) b For the EIT system with no interactions, all photons form the dark state |D〉,
so for two photons there are two dark states |2, D2〉. Dipole–dipole interactions detune this state,
breaking the EIT condition for the second photon and causing it to couple to the intermediate excited
state |2, De〉. This state decays at rate �e, scattering the photon into a different mode so only a
single photon remains in the probe beam

scattered out of the mode of the probe beam, as shown schematically in Fig. 8.2b.
This allows only a single photon to pass through un-scattered, resulting in a single
photon output in the mode of the probe laser.

An important difference between these two schemes is that for the atom+cavity
system, the energy of the optical transition is shifted for n > 1 so the cavity com-
pletely rejects all but a single photon, ensuring there will never be multiple photons
at the cavity output. The Rydberg blockade mechanism, however, does not shift the
energy of the optical transition for the probe laser. Instead, the medium changes from
being transparent for the first photon, to opaque for n > 1. The photon scattering
process for n > 1 is probabilistic, which may limit the fidelity as a photon turnstile.
Nonetheless, it provides a mechanism to generate non-classical states of light from
an input field initially in a coherent state without the need for an optical cavity.

8.3.1 Dark State Polariton

To aide the interpretation of a single-photon dark state, it is useful to introduce
the concept of a dark state polariton [12]. In the analysis of EIT in Sect. 4.2, the
dressed states of the atom were introduced to explain the EIT dark state assuming a

http://dx.doi.org/10.1007/978-3-642-29712-0_4
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constant amplitude driving field. For a weak probe beam, the probe electric field can
be coupled to the atomic evolution using the Maxwell-Bloch equations to model the
propagation through the medium. The result is that on the two-photon resonance, the
system forms a stable, lossless quasi-particle known as a dark state polariton � [13]

�(z, t) = cosϑEp(z, t) − sin ϑ
√
ρσg,r (z, t)e i�kz, (8.9)

where Ep = Ep/
√

�ωp/2ε0 is the normalised probe amplitude, �k = kc − kp is the
wave-vector mismatch, and the mixing angle ϑ is related to the group index,

tan2 ϑ = 6πcρ�e

k2
p �2

c
= ngr. (8.10)

The polariton represents a coherent superposition of the electromagnetic field and
atomic excitation, denoted by the coherence σrg . For a small group index, the mixing
angle is small and the electromagnetic component of the polariton dominates, with a
group velocity around c. For a large group index however, the energy from the probe
field is transferred to the atomic excitation, giving the field ‘mass’ and enabling slow
propagation at speed vgr � c. At the edge of the medium, the excitation is con-
verted back into an electromagnetic field without loss due to the perfect transmission
achieved in EIT. Treatment of the probe as a quantised field yields equivalent results,
with the electric field replaced by the electric field operator from Eq. 8.2 [12].

The polariton picture gives two insights relevant to achieving photon blockade.
The first is that it shows that a large group index is required in order to transfer the
single-photon field into atomic excitation in the medium. Without this, the Rydberg
state is not populated and there is no dipole blockade. The second follows on from
this, as the requirement of a large group-velocity means the single-photon polariton
propagates slowly through the medium. During this propagation time, subsequent
photons entering the medium should be scattered, introducing a characteristic delay
between photon emission at the output which will be referred to as the blockade time,
τb. In the limit of a strong driving field, this should result in a regular train of single
photons separated by time τb.

Applying the condition for ϑ to the experiments presented in Fig. 7.11a for the
suppression of transmission for the 60S1/2 state, the weak-probe group index was
ngr ∼ 4 × 104, corresponding to a mixing angle of ∼90◦. For these experiments, the
polariton is almost entirely composed of atomic excitation, meaning these photon-
statistics must play a role in the observed suppression. However, comparing the
blockade radius of Rb ∼ 5 µm to the 10µm 1/e2 radius of the beam waist shows the
probe laser interacts with of order 16 blockade spheres over the beam cross-section.
Thus, whilst each blockade region can potentially create a single-photon, the total
output can still have as many as 16 photons which makes the direct observation of
non-classical light in the probe beam challenging using g(2), as will be demonstrated
below.

This analysis of the photon blockade due to dipole–dipole interactions gives a
qualitative description of the mechanism, but a more quantitative approach is required

http://dx.doi.org/10.1007/978-3-642-29712-0_7
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to determine the potential fidelity and parameter range in which photon blockade can
be realised. Solving the complete quantum dynamics for a quantised field coupled
to an interacting N -atom system is a non-trivial problem, and will not be attempted
here. However, it is still possible to gain an insight into the expected correlations for
the light output from a single blockaded ensemble. This will be the subject of the
following sections.

8.4 Simple Model for g(2)(τ )

As a first attempt at predicting the photon statistics of the probe beam output from the
blockade region, a simple model of the blockade mechanism is developed. Consider
an ensemble of N -atoms confined within a sphere of diameter Rb to ensure all
atoms meet the blockade condition. This is probed by a tightly focused laser beam
with a 1/e2 radius of w0 < Rb/2 such that the probe beam is completely contained
within the interaction volume to enable complete absorption of the probe beam. As
mentioned above, the probe laser can be represented as a coherent state |α〉 with a
Poissonian distribution of photon numbers, however it is necessary to determine the
mean photon number for |α〉. To do this, a quantisation volume must be defined,
which is trivial for a cavity but not for light in free-space. The purpose of the model
is to determine the coincidences of photon arrival times at a detector, so quantisation
can be achieved by defining a time window �t in which photons are binned. In this
time light travels a distance c�t , so the probe beam can be quantised by introducing
a cylindrical volume V = πw2

0c�t as illustrated in Fig. 8.3a, where the cylinder is
assumed to have a radius equal to the beam waist. For a probe of power P , the mean
photon number can then be calculated using Eq. C.5,

n̄ = 2P�t

�ω
. (8.11)

From the mean photon number, a random input photon train C(t) is generated for
106 time-bins of width �t , with the photon number in each time bin determined from
the Poissonian distribution of Eq. 8.5. To model the effect of the photon blockade,
two output modes are defined—a forward channel Cf(t), which represents the probe
light on the other side of the atomic ensemble, and a scattered mode Cs(t), which
represents all other modes in which photons can be scattered by the interaction with
the medium. Starting at t = 0, the first photon to arrive in the medium is placed
in the forward channel and all photons arriving within a period of τb are put in the
scattered channel. This process is repeated across the entire photon train, as illustrated
schematically in Fig. 8.3b.

During the propagation of the slow polariton, the other photons are scattered by
resonantly coupling on the two-level transition between |g〉 and |e〉. If the ensemble
is not completely optically thick on this probe-only transition, then the efficiency of
this scattering process is limited. To account for this effect, photons in the scattered

http://dx.doi.org/10.1007/978-3-642-29712-0
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(a) (b)

Fig. 8.3 Simple g(2) model. a The probe laser field is quantised in a cylinder of length c�t . The
probe power can then be converted to n̄ to randomly generate photons in each window �t . b The
blockade mechanism is simulated by dividing the input photon train C(t) into the forward mode of
the probe beam Cf (t), with only one photon passing through in a period τb, and a scattered channel
Cs(t) for the remaining photons. Each box represents a time period �t , with dots showing photon
number in each window

channel can be transferred back into forward channel with a probability equivalent
to the probe-only transmission, which is parameterised in terms of the optical depth
OD = − loge(T ).

Finally, the second order correlation function is calculated for each of the two
output modes. This is achieved by taking the photon train Ci (t) and simulating the
effect of a beam-splitter to separate it into the counts detected by a pair of detectors
D1 and D2, equivalent to the HBT interferometer in Fig. 8.1. If there are n photons in
a given time-bin, the probability of detecting m photons at detector D1 can be found
using the binomial distribution

P(m) = n!
m!(n − m)! pm(1 − p)(n−m), (8.12)

where p is the probability of success which for a 50:50 beam-splitter is 0.5. This
distribution allows the beam-splitter to be modelled efficiently to obtain the counts
arriving at the first detector in each time window, D1(t), from which D2(t) = Ci (t)−
D1(t). The normalised correlation function is then calculated using the Weiner-
Khintchine theorem [14] as

g(2)(τ ) = Re

{F−1[F[D1(t)]F[D2(t)]∗]∑
D1(t)

∑
D2(t)

}
, (8.13)

where F and F−1 denote the Fourier transform and its inverse.
Having introduced the g(2) model for the correlations, it is useful to explicitly

define the optical depth in terms of physical parameters. From the definition of
transmission in Eq. 4.23a, OD = − loge(T ) = kp�χI. Taking � = Rb and using the
weak-probe limit for the probe-only susceptibilityχI from Eq. 4.20, the optical depth
is given by

OD = kp · 2ρd2
eg

ε0� �e
· Rb = 6πRbρ

k2
p

= 36 N
k2

p R2
b

, (8.14)

http://dx.doi.org/10.1007/978-3-642-29712-0_4
http://dx.doi.org/10.1007/978-3-642-29712-0_4
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where Eq. 5.3 has been used to eliminate d2
eg and a uniform density approximation

used to obtain ρ = 6 N /πR3
b. It is then trivial to re-scale the group index, and hence

velocity, of the dark state polariton from Eq. 8.10 in terms of OD as

ngr = ODc �e

Rb �2
c

, vgr = c

1 + ngr
� Rb �2

c

OD �e
. (8.15)

This results in the following simple relation for the blockade time,

τb = Rb

vgr
= OD �e

�2
c

. (8.16)

Combining these relations together, we consider the case of N = 200 confined
within a blockade radius of Rb ∼ 5 µm, corresponding to a density of ρ ∼ 3 ×
1012 cm−3. This is two orders of magnitude larger than the MOT density, however
this is achievable using an optical dipole trap, as will be discussed in Sect. 9.2. The
optical depth for this case is OD = 4.4, resulting in 99% probability for scattering
photons out of the probe beam. Taking �c = �e (consistent with a 5µm blockade
radius for 60S1/2) the corresponding blockade time is τb = 120 ns. The probe laser
is assumed to be focused to a waist of w0 = 1 µm to satisfy w0 < Rb/2, and the
model is run for probe powers of 500 fW and 10 pW, equivalent to �p/2π = 0.6 and
2.6 MHz respectively.

The results for low power are shown in Fig. 8.4a which shows significant anti-
bunching up to τ = τb in the forward mode, and bunching for the scattered mode.
This occurs because at low power there is a very low probability of observing
any photons, so a large proportion of the photons arrive in the medium separated
by times t > τb and pass through. For the scattered channel, there are now a rel-
atively large fraction of multi-photon events compared to Poissonian statistics as
the single photon component is suppressed, giving the observed bunching. For the
strong probe results in (b), the bunching of the scattered channel becomes insignifi-
cant as most photons are scattered, with only a very slight change in the photon count
distribution from the Poissonian input. In the forward channel however, a periodic
anti-bunching is observed with strong bunched peaks at harmonics of τ = τb. These
spikes are asymmetric as it is not possible for photons to arrive closer in time than
τb, but the next photon may arrive at anytime later, smearing out the sharp peak. This
also damps the amplitude of peaks at later times. For higher powers, the probability
of having at least one photon in each time step �t tends to unity, causing the g(2) to
look more like a comb of delta-functions.2

To explore the dependence on the optical depth, the model is run for a 10 pW
probe with N = 100 and 400, corresponding to OD = 2.2 and 8.8 respectively.
The results are shown in (c) compared to N = 200, with the variation in τb clearly

2 This sharp-edged correlation function is similar to that predicted for a p − i − n junction in
which the Coulomb blockade prevents more than a single photon emission [15], however the output
coupling efficiency for such devices is too weak to measure the correlations [16].

http://dx.doi.org/10.1007/978-3-642-29712-0_5
http://dx.doi.org/10.1007/978-3-642-29712-0_9
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Fig. 8.4 g(2) Model results. Correlation function for OD = 4.4 calculated for a P = 500 fW and
b 10 pW, clearly showing a strong anti-bunching for τ < τb. c Effect of varying OD for the forward
mode Cf at 10 pW, showing at OD ∼ 2 the anti-bunching is heavily suppressed. d Changing the
number of blockaded ensembles Mb in the probe beam for Cf at 10 pW, OD = 4.4 shows even two
blockade regions significantly reduces the visibility of the anti-bunching

visible from the arrival of the first peak. In the inset, the effect of small optical depth
is easy to see, as it suppresses the anti-bunching at short times and rapidly damps
out the peak visibility. An optical depth of OD � 4 is therefore required to observe
blockade experimentally.

Another effect that can be added to the model is having more than one blockaded
volume in the cross-section of the beam. This is achieved by randomly splitting the
input train C(t) between Mb blockade regions, and performing the scattering on each
blockade independently. The forward scattering from each is then combined, and the
correlation of the total output found. Results calculated for the original parameters
of OD = 4.4 are shown in (d). As more blockade regions are included, the anti-
bunching of the output light is suppressed as Mb photons can propagate through the
medium, which for Mb � n̄ allows the initial coherent state to be unchanged. Thus
the visibility of the anti-bunching of the output light is very small for the experiments
of Sect. 7.4 with Mb = 16, as mentioned above.

In summary, these results show that the blockaded ensemble can be used to create
a regularly spaced, highly correlated train of single photons, analogous to creating
‘hard-edge’ photons in a 1D lattice. The repetition rate of the photon pulses is τ−1

b ∼
MHz, which could be used as a semicontinuous single-photon source for quantum
information. The fidelity of the single photon output state is limited by the optical

http://dx.doi.org/10.1007/978-3-642-29712-0_7
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depth of the ensemble, however for 400 atoms the model predicts g(2)(τ < τb)< 10−2

which is smaller than the uncertainty in a typical measurement of g(2) [9, 10]. An
implicit assumption of this simple model is that the polariton is formed as soon as the
photon is in the medium. However, there may be a finite timescale associated with
the formation of a polariton. During this time two-photons could pass through the
medium, which would compromise the fidelity. These EIT transients are considered
in the next section.

From this simple model, it has been possible to verify the parameter range over
which photon blockade can be realised, requiring an optical depth equivalent to sev-
eral hundred atoms confined within a single blockade volume. This clearly represents
a complex system to model rigorously, however if we consider the case of only a few
atoms it is possible to calculate the correlations of the scattered field.

8.5 Resonance Fluorescence Correlation Functions

8.5.1 The Source-Field Expression

In Chap. 5 an N -atom model was developed to calculate the properties of the inter-
acting EIT system. Whilst this model is based on classical driving fields, these optical
Bloch equations can be used to calculate the properties of the scattered light field
from the atoms using the source-field expression [1]. This states that the electric

field operator at position r is given by Ê
(+)

(r, t) = Ê
(+)

f (r, t) + Ê
(+)

sf (r, t), where

Ê
(+)

f (r, t) is the incident field and Ê
(+)

sf (r, t) is the radiation field of the atomic
dipole, known as the source-field term. This is the quantum analogue of the classical
Ewald-Oseen extinction theorem [17], which describes ‘absorption’ as a destructive
interference between the incident plane wave and the radiated dipole field.

For an ensemble of N -atoms located at positions ri , the source-field term in the
far field (k|r − ri | � 1 for all i) is given by [4, 18]3

Ê
(+)

sf (r, t) = −k2(deg × r̂) × r̂
4πε0r

N∑
i

e−ikr̂·ri π̂−
i (t − r/c) , (8.17)

which is equivalent to the classical dipole radiation field of Eq. 5.2 with the dipole
moment replaced with operator degπ̂

−.
The source-field expression therefore relates the scattered electric field to the

properties of the atomic system. If we consider only positions off-axis with respect

to the probe and coupling lasers, the incident field Ê
(+)

f (r, t) vanishes, and the
electric field reduces to a sum over the dipole operators for the system. Absorbing

3 In [4] the atom is assumed to be at the origin, however for a finite displacement an additional
phase-factor is required which can be found in Eq. 7.13 of [18].

http://dx.doi.org/10.1007/978-3-642-29712-0_5
http://dx.doi.org/10.1007/978-3-642-29712-0_5
http://dx.doi.org/10.1007/978-3-642-29712-0_7
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the geometric factors into the function f (r), the scattered electric field is Ê
(±)

(r, t) =
f (r)�̂∓ (r, t − r/c), where �̂± are the combined raising and lowering operators for
the system,

�̂±(r, t) =
N∑
i

e±ikr̂·ri π̂±
i (t). (8.18)

8.5.2 Correlation Function

Using this definition of the electric field, the second order correlation function of
Eq. 8.6 can be written as

g(2)(τ ) = 〈�̂+(t)�̂+(t + τ )�̂−(t + τ )�̂−(t)〉
〈�̂+(t)�̂−(t)〉〈�̂+(t + τ )�̂−(t + τ )〉 , (8.19)

where 〈. . .〉 denotes a trace over the density matrix for the atomic system. The
correlation function is calculated using the quantum regression theorem which gives
[19, 20]

G(t; t ′) = 〈 Â(t ′)B̂(t)〉 = Tr{ Âσcond(t; t ′)} (t ′ ≥ t) (8.20)

where the σcond is the conditional density matrix defined at time t as σcond(t; t) =
B̂σ(t), which represents the state of the system after the action of B̂ is applied.

Applying this theorem to Eq. 8.19 allows the steady-state density matrix σss for
the N -atom system to be calculated from the optical Bloch equations derived in
Sect. 5.4. The conditional density matrix is evaluated using

σcond(0) = �̂−σss�̂+, (8.21)

which describes the state of the system after a photon has been emitted. The condi-
tional density matrix is then re-normalised and used as an initial condition for the
same optical Bloch equations, which are integrated until time τ to obtain σcond(τ ).
Finally, the second-order correlation function is

g(2)(τ ) = Tr{�̂−σcond(τ )�̂
+}

Tr{σcond(0)} . (8.22)

For large τ , the conditional density matrix will evolve back to the steady-state σss,
resulting in g(2)(τ � 1) = 1 as required. The fluorescence correlations therefore
arise from the dynamic evolution of the system back to the steady-state after emitting
the first photon.

http://dx.doi.org/10.1007/978-3-642-29712-0_5
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(a) (c)

(b) (d)

Fig. 8.5 N -atom fluorescence correlations. a Independent two-level atoms for �p = �e/5
displaying anti-bunching. b–d Interacting EIT system with �c = �e, V (Ri j ) = 2 �e and
�p = �e/5, �e/2 and �e respectively shows blockade causes bunching, which becomes anti-
bunched if the strong probe violates the blockade condition

8.5.3 Cooperative Emission from Incoherent Atoms

As a first approximation, the atoms are assumed to be incoherent emitters such that
the cross-phase factors average to zero, for example due to atomic motion. In this
case, the combined operators become separable to give

�̂−σ�̂+ =
N∑
i

π̂−
i σπ̂

+
i . (8.23)

The resonance fluorescence correlations of independent two-level atoms for
�p = �e/5 is shown in Fig. 8.5a, showing anti-bunching with g(2)(0) = 1−1/N as
each atom can emit a single photon at a random time, with the possibility to observe
two photons at zero delay from two atoms but with a non-Poissonian probability. In
(b) the correlation function for the EIT system with �c = �e and V (Ri j ) = 2 �e

is plotted. The N = 1 trace is anti-bunched at τ = 0, and then increases to give
g(2)(τ ) � 1 at τ ∼ 1/�p. This occurs because in the resonant EIT condition, the
emission of a photon projects the atom out of the dark state, requiring another photon
to be emitted at a later time to allow the atom to return to the dark state. Assuming
a perfect laser system, this would not be observable in an experiment as the prob-
ability to emit the initial photon is vanishing due to the EIT condition. This very
small probability for emission of the first photon leads to an an anomalously large
correlation for the emission of the second photon.
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If V (Ri j ) = 0, similar curves are obtained for N > 1, however when
V (Ri j ) > γEIT, Fig. 8.5b shows that interactions cause the two and three atom
system to be very strongly bunched at τ = 0, as expected from the simple model
in Sect. 8.4. This bunching can be understood from the analytic EIT dark state for
the interacting two-atom system in Eq. 5.21, which has a |ee〉 component in place of
the |rr〉 state expected without interactions. If one of the atoms emits a photon, then
|ee〉 was populated and correspondingly the other atom must emit a photon within a
few spontaneous lifetimes. This is a cooperative emission process mediated by the
dipole–dipole interactions. The correlation function therefore verifies that the block-
ade mechanism scatters multiple photons with very high probability. In (c) and (d)
the correlations for �p = �e/2 and �p = �e are plotted, showing that for a strong
probe field the blockade condition is violated and the light becomes anti-bunched at
short times, similar to the correlations for the probe-only system in (a).

Figure 8.5b therefore shows that a Rydberg superatom could be used as a correlated
photon source. The directionality of the emission is considered below.

8.5.4 Distinguishable Emission

Making a further assumption that the fluorescence emitted by each atom is distin-
guishable (for example in spatially separated dipole traps as in the experiments in
Orsay [21] and Madison [22]) it is possible to also calculate the self- and cross-
correlations between atoms i and j using

g
(2)
i j (τ ) = 〈π̂+

i (t)π̂+
j (t + τ )π̂−

j (t + τ )π̂−
i (t)〉

〈π̂+
i (t)π̂−

i (t)〉〈π̂+
j (t + τ )π̂−

j (t + τ )〉 , (8.24)

which is evaluated in exactly the same way as for g(2) except �̂± is replaced by the
single-atom dipole operators. The cross-correlation provides an insight into whether
the emission from one atom is related to emission of a neighbouring atom.

Figure 8.6 shows the results for the two-atom model calculated for the same para-
meters as before. In the case of two-level atoms, (a), g(2)

21 (τ ) = 1 for all times as
the atoms are independent with no correlations between their emission. This is why
the self-correlation shows the same correlation function as for N = 1 in Fig. 8.5a.
For the interacting EIT system however, the bunched behaviour is dominated by
the cross-correlation, seen from Fig. 8.6b, which is consistent with the interpretation
of the bunching as the population of |ee〉 discussed above. For (b)–(d), the self-
correlation remains approximately constant, whilst the cross-correlations change
from being strongly bunched to anti-bunched as the probe power is increased.

These results show that it is possible to not only use the strong Rydberg interac-
tions to generate a single-photon output train, but also to obtain highly correlated
fluorescence emission from a pair of atoms. In the current assumption of incoherent
phase, the direction of the fluorescence will be uncorrelated, however if the phases

http://dx.doi.org/10.1007/978-3-642-29712-0_5
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Fig. 8.6 Self- and cross-correlations for N = 2. a �p = �e/5. Two-level atoms have an indepen-
dent cross-correlation as the atoms are non-interacting. b–d Interacting EIT system with �c = �e,
V (Ri j ) = 2 �e and �p = �e/5, �e/2 and �e respectively. This shows the bunching arises from
the strong cross-correlation between the atoms, which are correlated by the dipole blockade. For a
strong probe, this cross-correlation is suppressed as the system is no longer blockaded

are well defined there exist geometries in which the correlations are insensitive to
the atomic position.

8.5.5 Coherent Emission

To check the effects of the the incoherent assumption from above, the correlation
function is evaluated using the e±ikr̂·ri phase-factors. This also requires a modification
of the optical Bloch equations to include the phase of the driving field in the Rabi
frequencies as given in Eq. C.4. The correlation function is then calculated for a
pair of atoms with the detectors placed orthogonal to the probe wave-vector kp as a
function of atomic separation in terms of the probe wavelength λ for �p = �e/2,
�c = �e and V (R) = 2 �e.

The results are plotted in Fig. 8.7 which shows the correlations for atoms aligned
parallel (a) and perpendicular (b) to the probe beam. For the parallel geometry in (a),
the photons are bunched independent of separation R, whilst for the perpendicular
configuration in (b) there is a destructive interference for R = mλ+ λ/4, 3λ/4, . . .

resulting in anti-bunching. This suggests the geometry of (a) is more robust for obser-
vation of photon blockade, and could be used to generate highly correlated photon
pairs. For other detector and atom geometries, the correlation function becomes more
sensitive to displacement, resulting in more complex correlation functions.

http://dx.doi.org/10.1007/978-3-642-29712-0
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(a) (b)

Fig. 8.7 Correlation function for coherent emission for different separations R, where m is an
integer. a Atoms aligned parallel to the probe beam are bunched for all separations. b The perpen-
dicular configuration shows anti-bunching due to destructive interference for R = mλ+λ/4, 3λ/4

8.6 Summary

In this chapter the concept of a quantised light-field has been introduced, along
with its relevance to generating non-classical light-fields using the blockade effect.
Rydberg atom interactions ensure only a single dark state polariton can pass lossless
through the blockade region, whilst other photons arriving at the medium will be
scattered to achieve photon blockade.

A simple model has been used to predict the correlation function arising from
this interaction, which shows that a large optical depth in a single blockade sphere is
required to obtain a high fidelity single photon output train. Quantitative calculations
of the correlations in the scattered light from a few blockaded atoms verify that the
blockade causes the atoms to scatter pairs of photons with very high probability,
as seen from the strong bunching in the correlation function at short times. These
calculations also highlight the importance of geometry in the system, with photon
blockade working better for atoms parallel to the probe to avoid sensitivity to atomic
position.

The process considered in this chapter is photons scattered out of the probe beam
which is destructive. However, this scattering is conditional on whether another
photon is in the medium. This conditional behaviour for the case of one or two
photons is a first step towards the development of a two-photon quantum gate, as
it shows the blockade mechanism is already sufficient to give a non-linearity at
the single photon level. Future work should look for ways to use this effect in the
dispersive regime to create a phase-shift on the photons. The first challenge though
is to create, and probe, a single blockaded ensemble which has a sufficiently large
optical depth. Measurement of the anti-bunching from the photon blockade would
enable verification of confinement to R < Rb before moving on to explore the
dispersive regime.
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Chapter 9
Progress Towards a Single Blockade
Sphere

9.1 Design Constraints

In the previous chapter photon blockade was considered to illustrate the ability to
realise non-classical states of light using the strong dipole–dipole interactions of the
Rydberg states. From the results of the simple model in Sect. 8.4, two key require-
ments were determined to enable creation of a highly correlated single-photon output;

1. A single blockade region in the transverse mode of the probe laser with waist
w0 < Rb/2 to prevent formation of more than a single dark state polariton,

2. An optical depth OD � 4 to maximise the probability of scattering photons out
of the probe beam.

An implicit assumption relevant to both of these requirements is that the atomic cloud
has a comparable size to the probe waist to ensure that light can be scattered from the
edges of the probe beam whilst maintaining the blockade condition R < Rb across
the sample.

Typically Rb ∼ 5 µm (although this can be increased by choice of n), requiring a
probe beam focus around 1 µm to meet the first constraint. This waist corresponds
to >98 % probe beam intensity contained within a diameter Rb. For a perfect lens
with numerical aperture NA, the smallest possible focus is given by the Airy radius
r = 1.22λ/2NA. Comparing this to the 1 µm waist for the 780 nm probe laser, a
diffraction limited lens with NA ∼ 0.5 is needed.

In the apparatus detailed in Part II there is insufficient optical access to obtain a
diffraction limited probe waist. A new experiment has therefore been designed and
built, which is described in the sections below.

J. D. Pritchard, Cooperative Optical Non-Linearity in a Blockaded Rydberg Ensemble, 135
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9.2 Trapping Atoms in a Single Blockade Volume

For the second requirement of large optical depth in the blockade volume, it is
insufficient to simply probe atoms in the MOT as the density is too low, as discussed
in Sect. 8.4. Instead, atoms must be loaded into an optical dipole trap which typically
gives a density of 1012 cm−3 [1, 2]. Using a dipole trap coaxial with the probe
beam has the advantage of providing tight transverse confinement of the atoms to a
dimension smaller than the blockade radius. It can also be focussed using the same
optics as the probe laser.

9.2.1 Dipole Force

The dipole trapping force arises from the AC Stark shift of an atom driven by a far
detuned laser field, which creates a potential U ∝ I/� where I is the laser intensity
[3]. This creates a conservative force F = −∇U that is proportional to the gradient of
the potential, where the sign depends on the detuning of the laser. The atomic dipole
also has a component out of phase with the driving field, and this causes atoms to
scatter photons from the trapping laser at a rate ∝ I/�2. This scattering heats atoms
out of the trap, so a large � is desirable, requiring increased laser intensity to maintain
trap depth.

For a red detuned laser (� < 0), the atom is trapped at the point of highest
intensity, and atoms can be confined using a focused Gaussian beam with waist w0.
The resulting trap potential is given by [1]

U (r, z) = U0 exp{−2r2/w(z)2}
1 + (z/zR)2 , (9.1)

where zR = πw2
0/λ is the Rayleigh range, w(z) = w0

√
1 + (z/zR)2 and U0 is the

trap depth. Approximating the trap to a harmonic potential well, the density distri-
bution in the trap is described by a 3D Gaussian. The radii of this distribution are

σr =
√

kBT w2
0/4U0 and σz =

√
kBT z2

R/2U0 in the transverse and longitudinal
directions respectively [1], where T is the temperature. Typically, the atoms ther-
malise in the trap at a temperature of kBT ∼ U0/10 [2, 4]. Using this empirical
factor, the spatial extent of the cloud in the trap is around σr ∼ 0.16w0, σz ∼ 0.2zR,
resulting in a very tight transverse confinement but an elongated sample along the
beam axis.

http://dx.doi.org/10.1007/978-3-642-29712-0_8
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(a) (b) (c)

Fig. 9.1 Dipole trap geometry. a Focusing the probe down to 1 µm in the MOT gives almost
no absorption, as the density is too low; b a 5 µm dipole trap along the probe axis provides tight
transverse confinement <Rb, however the longitudinal cloud size equivalent to around 6Rb; c adding
a 6 µm transverse beam to create a crossed dipole trap allows complete 3D confinement within a
blockade sphere

9.2.2 Dipole Trap Setup

For the new experiment, a wavelength of 915 nm is used for the dipole trap laser,
which is derived from a home-built TA system giving 1 W output. For the transverse
confinement, a waist of w0 = 5 µm is used to obtain a cloud size comparable to the
probe waist to give good mode matching whilst confining atoms within a blockade
radius. This waist corresponds to a Rayleigh range of zR = 86 µm, resulting in
a longitudinal cloud length of ∼35 µm, much larger than the blockade radius as
shown schematically in Fig. 9.1b. It is therefore necessary to use a crossed dipole trap
configuration, where a second laser beam is used to provide longitudinal confinement
along the probe axis.

The high numerical aperture required to obtain a tight probe focus places a number
of constraints on the optical access perpendicular to the probe beam. The horizontal
MOT beams cross at an angle of 20◦, which leaves an effective NA ∼ 0.12 for the
cross-trap. Using Zemax optical modelling software, a multi-element lens config-
uration has been designed to give a 6 µm Gaussian waist, requiring a high optical
quality viewport. Using this second laser, the atoms can be confined to a longitudinal
radius of 1 µm, enabling confinement within a single blockade volume, as illustrated
in Fig. 9.1c. This second beam must be orthogonally polarised to the first to prevent
creating unwanted effects due to interference.

There are a number of advantages to using the cross-trap geometry. The increased
volume of the larger dipole trap can be used to load a greater number of atoms into
the dipole trap. This can be used as a reservoir of atoms for enhanced loading of the
tighter trap, and may enable techniques such as evaporative cooling [5] with a dimple
trap [6, 7] to be used to increase the density of atoms in the blockade region. It also
allows the relative cloud size, and hence aspect ratio of the cloud, to be varied by
changing the relative powers in the trapping lasers. This could be useful for exploring
the angular dependence of the emission from a single blockade volume [8].
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Fig. 9.2 V-block designed for mounting the aspheric lenses in vacuum. The lenses are surrounded
by electrodes which enable cancellation of stray fields in all axes, which are insulated from the
V-block using ceramic spacers (white). a CAD model showing lenses aligned in V-block; b actual
V-block mounted in experiment. Holes in the block prevent virtual leaks from trapped air pockets

9.3 Experiment Setup

9.3.1 Diffraction Limited Optics

There are a number of options for achieving a diffraction limited imaging system with
NA = 0.5, such as commercial microscope objectives or custom multi-element lens
configurations [9, 10]. Typically these components are not compatible with ultra-
high vacuum, and must focus light tightly through a vacuum window which can
introduce aberrations into the system. The alternative is to place a diffraction limited
aspheric lens inside the vacuum system, greatly simplifying the optical design. This
approach has been successfully demonstrated in a number of groups for creating
microscopic dipole traps in which only a single-atom can be loaded [11, 12], enabling
measurement of 10 % absorption from a single atom [13].

For the new experiment, a pair of aspheric lenses manufactured by Lightpath
Technologies, Inc. (catalogue number 350240) are used to focus and recollect the
probe beam. These lenses have been chosen following their extensive characterisation
for applications in single atom trapping [14]. The aspherics have NA = 0.5 and are
designed to be diffraction limited at 780 nm for a collimated input beam if a 0.25 mm
glass window is placed in front of the lens. However, if this window is absent,
diffraction limited performance can be restored by using a weakly convergent input
beam.

The relative alignment of the lenses in the vacuum chamber is crucial. It not only
affects the collection efficiency of the probe laser after the focus, in future experiments
it may be required to use counter-propagating probe lasers with overlapped foci. A
symmetric alignment is therefore needed. The lenses are glued onto a custom V-block
machined from 316LN stainless steel, shown in Fig. 9.2. The V-block defines the
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optical axis for the two lenses, however the lenses can still be tilted relative to this
axis. These degrees of freedom were set by careful alignment of the lenses using a
commercial Shack-Hartmann interferometer to measure the wavefront curvature and
distortions, performed by A. Gauguet. The first lens is aligned to be perpendicular
relative to a well-defined input beam. The lens is then clamped in place and the glued
using UHV compatible Epotek H77. To cure the glue, the V-block must be heated to
135 ◦C for 4 h in an oven. Once cooled, the V-block is placed back in the input beam
and the second lens adjusted to match the wave-front curvature of the input beam
using a three-axis translation stage. The second lens is then clamped and glued. After
curing, the peak and rms wave-front errors added to the input beam by propagation
through the aspheric lens pair are measured to be λ/5 and λ/20 respectively, showing
this setup gives very good relative alignment of the two lenses. Reversing the lenses
results in the same magnitude of wave-front errors, demonstrating the symmetric and
reversible alignment achieved using this method. As a further test, the assembled
V-block was additionally heated to 140 ◦C for 6 h without any clamps to ensure the
alignment would survive the vacuum bakeout in the chamber. Repeated tests with
the Shack-Hartmann reveal no change in the alignment from the repeated baking.
Finally, a piezo-electric translation stage was used to knife-edge the probe focus,
obtaining a waist of 1.2 ± 0.1 µm using a beam with a 6 mrad convergence angle
and a 1/e2 waist of 2 mm at the first lens face. Tighter foci are possible using larger
input beams, however this results in loss due the lens aperturing the beam.

9.3.2 Electric Field Control

As discussed in Sect. 2.4, Rydberg states have extreme electric field sensitivity. It is
therefore necessary to be able to cancel stray-fields around the atoms or to apply a well
defined electric field, e.g. to change to 1/R3 interactions using a Förster resonance. To
provide electric field control, four polished steel electrodes are mounted around each
lens, as shown in Fig. 9.2, which enables electric fields to be applied or cancelled on
all three axes. These are insulated from the grounded V-block using ceramic spacers.
The electrodes and spacers are glued onto the V-block using Epotek H77.

One of the biggest sources of stray-field in this setup could come from patch-
potentials building up on the surface of the lenses over time, for example due to
deposition of rubidium atoms and ions [15]. The lenses have therefore been coated
with a conductive indium tin oxide (ITO) layer in addition to an anti-reflection (AR)
coating for 780 and 480 nm, preventing charge build up on the lens. The disadvantage
of this layer is that its refractive index cannot be well matched to provide a low
reflection AR coating, resulting in a transmission of 90 % through each lens at 780 nm.
It also limits the bakeout temperature to 150 ◦C to prevent degradation of the ITO
from reaction with oxygen in the air. The electrical contact is made using a piece of
solder (see Appendix B) clamped onto the top of the lens by the mounting bar for
the electrodes above each lens.

http://dx.doi.org/10.1007/978-3-642-29712-0_2
http://dx.doi.org/10.1007/978-3-642-29712-0
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(a) (b)

Fig. 9.3 New experiment vacuum chamber. a The V-block is mounted in a pancake shape vacuum
chamber, with the lens axis aligned horizontally; b assembled chamber including magnetic coils.
The cage visible above the chamber delivers the vertical MOT beam to the chamber

9.3.3 Vacuum Chamber

The V-block is mounted at the centre of a pancake-shaped chamber, as shown in
Fig. 9.3a, with the probe axis aligned to be in the horizontal plane. The two large
viewports at the side of the chamber are constructed using the method detailed in
Appendix B to provide high optical quality viewport windows close to the edges of
the V-block. These windows minimise the aberrations induced on the cross-trap, and
provide good optical access. There are eight DN16CF flanges around the edge of
the chamber, with the vertical and horizontal pairs used for the vertical MOT beam
and probe axis respectively. A pair of Alvasource dispensers are mounted diagonally
above the lens axis. These are contained in a conical reducer with a 45◦ bend to avoid
direct line of sight from the dispensers onto the lenses. This prevents the lenses being
coated with rubidium, which will cause them to become opaque. The two lower 45◦
flanges are used for an electrical feedthrough for the eight electrodes and the Gamma
Vacuum Titan 20S ion pump, which has a 20 l/s pumping speed. This is connected
via a T-piece with an all-metal valve to seal the chamber off after pumping down. The
chamber was baked at 150 ◦C to enable pumping down to a vacuum of 10−11 torr,
measured using an ion gauge.

9.3.4 Beam Alignment

Alignment of the probe beam through the chamber requires very high tolerances
on the matching of the input and output convergence and beam waist to obtain a
reversible optical path with a focus as the centre of the chamber. As the probe beam
fills the clear aperture of the lens, it must also be well centred on the optical axis of the
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two lenses to prevent clipping of the beam edges, which will introduce aberrations
and limit the transmission through the system.

The probe beam is set up using a fixed cage-mount system to expand the light
from a bare single mode polarisation maintaining (SPM) fibre, as shown in Fig. 9.4a.
The beam is weakly focused using an achromat to obtain a convergence angle of
6.48 ± 0.07 mrad, measured by knife-edging along the beam over a 1 m path length
and fitting to a Gaussian beam profile. The probe is aligned into the chamber using
caps on the viewports to provide mechanical alignment onto the optical axis of the
lenses. The divergence of the output beam is then measured by profiling the beam
with a minimum of 5 knife-edge measurements at 10–20 cm separations. The distance
between the input cage and the first aspheric lens in the chamber is then adjusted
until the output beam matches the input, with a divergence angle of 6.49±0.1 mrad.
The output beam is then coupled back into a second SPM fibre with an identical cage
setup, adjusting the alignment to give a reproducible and reversible coupling between
both fibres. This output beam is connected to the SPAD to record probe transmission.
Using the input beam convergence angle and 1/e2 beam waist of 2.17 ± 0.07 mm
on the first lens, Zemax lens modelling software was used to find the effective focal
length of the lens pair as 5.63 ± 0.03 mm.

The desired waist for the longitudinal dipole trap is 5 µm. Using the effective focal
length from the probe measurement, Zemax is used to find the input beam waist and
convergence angle required to achieve this spot size at the position of the probe focus.
The dipole trap light is then set to a convergence angle of 1.93 ± 0.04 mrad using an
adjustable focal length collimator, and aligned in the same manner as the probe beam
to match the input and output convergence. The final alignment corresponds to an
input beam waist of 0.45±0.02 mm, giving a calculated focus of 5.0±0.2 µm inside
the chamber. The probe and dipole trap light are combined using a dichroic mirror
before the chamber, which allows both beams to be coupled into the output fibre to
provide transverse alignment of the beams. An interference filter is then added to
prevent dipole trap light reaching the SPAD. Similarly, the 480 nm light is aligned
into the chamber to counter-propagate with the probe beam. This is set to give a spot
size of 18 µm inside the chamber, ensuring a uniform illumination of the blockade
region to prevent �c changing across the sample.

9.3.5 MOT Alignment

Due to the high NA of the aspheric lenses, it is not possible to use the standard
MOT geometry with three pairs of orthogonal beams. Instead, the horizontal MOT
beams cross at an angle of 20◦. The vertical MOT beam is coupled into a polarisation
maintaining fibre and expanded to a 1/e2 waist of 2.4 mm using a cage mount on
the top of the chamber, as seen in Fig. 9.3b. The horizontal beams have a waist of
1.4 mm to ensure they do not clip the electrodes mounted around lenses. The MOT
coils and three axis bias coils are mounted on a frame around the chamber, which
provides an additional degree of freedom, combined with the beam alignment, with
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(a) (b)

Fig. 9.4 New experiment setup. a Schematic of beam alignment around chamber. Light for dipole
trapping and Rydberg excitation is overlapped with the probe beam using dichroic mirrors (DM),
and filtered out of the collection optics using interference filters (IF); b image of MOT at the centre
of the V-block. The electrodes and ceramic spacers are clearly visible around the atoms

which the MOT can be positioned at the centre of the lens axis. This is crucial, as
the probe beam is aligned to be in the centre of the two lenses, and the dipole traps
only collect atoms from a region equivalent to the Rayleigh range. Thus, even for
the larger transverse dipole trap, the MOT must be aligned onto the centre to better
than around 100 µm.

The MOT has the best loading at a field gradient of 15 G/cm for cooling light
detuned by � = −2.3 �e at an intensity of 0.35 mW/cm2 in each beam. For a load of
1 s, around 500,000 atoms are collected in the MOT with a cloud size ∼0.1 mm. An
image of the MOT at the centre of the V-block can be seen in Fig. 9.4b. The position of
the MOT is very sensitive to beam balance and magnetic field cancellation around the
chamber. Further optimisation of the alignment and position is required to improve
the stability and reproducibility of the atoms in the lens axis.

9.4 Summary and Outlook

In this chapter the construction of a new experiment for the observation of non-
classical light from interaction with a single blockade volume is described. The
initial steps towards localising atoms within a single blockade sphere have been
made, with the probe and dipole traps aligned into the chamber and cold atoms being
collected in the MOT. One of the major difficulties in building the chamber was to
develop a method to mount the aspheric lenses in vacuum. Gluing the lenses onto the
V-block using the Shack-Hartmann, as described above, provides a reliable technique
for obtaining the required robust, symmetric alignment of the lenses.

Given the opportunity to build this apparatus again, alternative lenses would be
chosen to enable use of a collimated probe beam. This reduces the tolerances required
for the alignment of the input beams, and is better suited for experiments seeking
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to measure the phase-shift of the probe by building an interferometer around the
setup. Currently, the weak divergence of the probe beam makes mode-matching with
a reference beam challenging, potentially requiring a second aspheric lens pair to
be aligned in the reference arm [16]. The ITO coating would also be neglected in
a future setup as there are already dark-spots appearing on the lenses from where
rubidium has reacted with the coating. Despite these suggested improvements, the
current apparatus meet the requirements for probing a single blockade region and
will provide an excellent test-bed for looking for single-photon non-linearities. The
next steps will be to begin optimising the loading of the dipole trap to get a large
optical depth in the blockade volume.

Once obtained, an optically thick, isolated ensemble of atoms confined within
a blockade radius opens the possibility of studying a rich variety of non-classical
states of light in addition to photon blockade, such as generating single-photons
using four-wave mixing [17, 18] or photon-subtracted states [19]. This setup should
provide a flexible and versatile apparatus with which to characterise the blockade
mechanism, as there is the possibility of using different trap geometries and also the
ability to tune the interactions with electric fields. Dipole blockade has currently only
been demonstrated in macroscopic ensembles or for isolated atom pairs, however
probing a single ensemble allows direct testing of the collective blockade state. This
is important not only for experiments to generate and manipulate light at the single
photon level, but also for proposals to utilise the collective nature of blockade to
build atomic quantum gates [20, 21].
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Chapter 10
Conclusion

In this thesis, Rydberg EIT has been used to combine the strong dipole–dipole interac-
tions of the Rydberg states with the resonant Dark state to realise a novel cooperative
optical non-linearity. An interacting N -atom model was developed to show the effect
of the dipole blockade is to prevent more than a single Dark state in each blockade
region. The remaining atoms scatter photons from the probe laser, suppressing the
resonant transmission.

Experiments have been performed on a cold atomic ensemble to look for evidence
of interaction effects using EIT for Rydberg atoms with n = 19−60. For states with
n � 26, interactions are manifested as a density-dependent loss, consistent with
superradiance, that dominates over the suppression mechanism due to the geometric
enhancement from the atom cloud diameter compared to the emission wavelength.

At n ∼ 60, the cooperative optical non-linearity has been observed and charac-
terised for both attractive and repulsive dipole–dipole interactions. Results for the
repulsive interactions conclusively rule out alternative mechanisms for the sup-
pression, and excellent quantitative agreement is obtained at low density to the
three-atom model, placing an upper limit of 110 kHz on the relative dephasing
rate between neighbouring blockade spheres. Attractive interactions result in a non-
linearity dependent upon the direction of the frequency scan, characterised by second-
(third-)order non-linear susceptibilities for scanning across the two-photon resonance
with an initially positive (negative) probe frequency. For both directions, the magni-
tude of the non-linear susceptibility is significant when compared to other non-linear
media, and a quadratic density dependence consistent with cooperativity is observed.

One of the limitations of the data presented in Sect. 7.3 for attractive interactions
is the lack of information about the ion fraction to complement the transmission
spectra. Using an MCP and electrodes in the vacuum chamber, the attractive regime
could be studied further to give insight into the underlying mechanism for the second
or third order non-linearities. This would also allow the universal scaling predicted
by Ates et al. [1] to be tested.

The blockade mechanism allows a single blockaded ensemble to transmit a single
photon through formation of a single-photon Dark state polariton whilst scattering

J. D. Pritchard, Cooperative Optical Non-Linearity in a Blockaded Rydberg Ensemble, 147
Springer Theses, DOI: 10.1007/978-3-642-29712-0_10,
© Springer-Verlag Berlin Heidelberg 2012

http://dx.doi.org/10.1007/978-3-642-29712-0_7


148 10 Conclusion

additional photons out of the probe mode. The concept of photon blockade was
introduced in Chap. 8 to show the single-photon character of the observed cooperative
optical non-linearity, and a model developed to predict the correlation function of the
probe after a single blockade region. This can be used to generate a highly correlated
train of photons separated in time by τb ∼ 100 ns with several hundred atoms confined
within a single blockade sphere. Equivalently, the blockade can be used to create a
highly correlated photon pair source by collecting light scattered from the side of the
blockade region.

Progress towards obtaining a single blockade region has been presented, describ-
ing construction of a new apparatus in which the requirements of the photon blockade
can be realised. This new setup allows studies of a wide range of novel and interesting
physics relevant to realising optical non-linearities on the single photon level. Two
key areas of future study are;

• Collective single photon emission Blockade allows excitation of a collective
wavefunction with the Rydberg excitation shared across the ensemble, as dis-
cussed in Sect. 5.3. If this excitation is mapped onto the intermediate excited state
following a π -pulse, the result is collective emission of a highly collimated single
photon at a superradiant rate [2–4]. This process gives enhanced coupling between
a single photon and an atomic ensemble, which could allow high-fidelity transport
of quantum information between spatially separated ensembles [4]. The cross-trap
geometry in the future will enable studies of emission for different aspect ratios
of the atomic cloud.

• Single-photon phase-shift All of the experiments presented in this thesis are
performed through measurements of the transmission. Building an interferometer
with the blockade region in one arm will allow measurement of the single-photon
phase-shift in the dispersive regime. This can be done using homodyne detection
[5] in which the amplitude and phase of the single photon are amplified by a
strong reference beam. This setup also allows tomographic reconstruction of the
light-field [6], allowing better characterisation of the non-classical light.

Observation and characterisation of the blockade in a single ensemble is important
not only for developing photonic devices, but also for other approaches to quan-
tum information processing. In the long term, it may be possible to combine these
approaches to develop a high-fidelity photonic phase gate.
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Appendix A
Useful Circuits

A.1 Fast Photodiode

The photodiode is designed using a Hamamatsu S5972 500 MHz photodiode
combined with a Texas Instruments LT1222 op-amp, which has a 1 GHz gain
bandwidth product. This circuit gives a gain of 2:4 9 103 V/W with a 15 MHz
bandwidth, which is used for the modulation transfer lock of the cooling laser, as
discussed in Sect. 6.1.1. Best performance is obtained by placing a grounded
guard-rail around the non-inverting input (dashed line) and minimising the dis-
tance between the chip and the photodiode (Fig. A.1).

A.2 SPAD Protection Circuit

Protection circuit for the Perkin-Elmer SPCM-AQR photon counters. This ensures
the detectors are gated for a low TTL, preventing damage from overexposure of
the SPAD. The counter can be enabled using an active high Gate TTL. This
transistor is chosen based on the more detailed protection circuit in [1] (Fig. A.2).
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Fig. A.2 SPAD protection
circuit to gate by default
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Fig. A.1 Fifteen MHz band-
width fast photodiode.
Dashed line denotes groun-
ded guard loop around
photodiode anode and
non-inverting input on the
op-amp to prevent the
parasitic oscillating



Appendix B
Home-Made Viewport Construction

For the new experiment, two large high-quality vacuum windows were used to
provide good optical access from the side of the lens axis. The viewport
construction method builds on the design detailed in [2], using a soft solder seal
between the glass and metal to prevent stress, and hence birefringence, on the glass
window which is typical for standard conflat viewport windows. The difference
here is that the windows are now sealed directly onto the vacuum chamber, which
reduces the physical size of the viewport and enables the width of the chamber to
be kept small.

The windows are high quality BK7 glass with dimensions [70 9 9 mm, which
are AR coated for 780 and 480 nm with a 5 mm mask around the edge of the lens.
This ensures the seal is made directly onto the glass, as placing the solder on the
AR coating can reduce the reliability of the vacuum seal. The chamber is designed
with a flat rim 2 mm thick, with an outer diameter of 70 mm to match the glass.
Around this rim, eight lugs are welded onto the chamber which have an M4 thread
to hold the window in place. A cross-section of the viewport is shown in Fig. B.1a,
showing the window is clamped onto the chamber using an external flange with a
pair of solder

The solder seals are constructed using Indium Corporation WIREOT-51831
[ = 0.030’’ alloy wire (97.5 % Pb, 1.5 % Ag and 1 % Sn). Wire is wrapped round
a metal former and soldered into a ring the same diameter as the chamber rim,
shown in Fig. B.1b. The ring is then pressed flat to a thickness of 0.3 mm, leaving
excess around the solder join Fig. B.1c. This must be inspected to ensure the
solder join is not visible, as if the join can be seen the seal will be compromised.
The excess solder is then removed using a scalpel. All tools must be clean to
prevent getting grease inside the vacuum chamber.

Finally, the window is assembled as shown in Fig. B.1d. The outer flange is
secured to the chamber using M4 bolts, with two conical disk springs placed
baseto- base as washers on each bolt, which are tightened to a torque of 2 N m. The
chamber is then baked at 150 �C (limited by the lens ITO coating) and pumped
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down to a pressure of 10-11 torr. During baking, the solder rings become soft,
however the conical disk springs maintain a force on the flange to prevent leaks.
Once cooled, the bolts should be retightened to the original torque. However, the
windows on the new chamber remain leak-tight even if the outer flanges are
removed, demonstrating the robust seal formed during baking. This design is
poorly suited to chambers requiring repeated access to the chamber, as the
windows cannot be removed without risking damage to the rim of the chamber, but
is a very simple technique for obtaining high quality viewport windows.

(a)

(b) (c)

(e)(d)

Fig. B.1 Home-made viewport assembly. a Cross-section showing outer flange clamping the glass
onto the rim of the chamber using two soft solder seals. b Solder wire is soldered into a ring using a
metal former. c The ring is then pressed to a thickness of 0.3 mm to make the seal. d Solder seal on
glass window. e Finished window with outer flange tightened to a torque of 2 N m

154 Appendix B: Home-Made Viewport Construction



Appendix C
Quantised Atom-Light Interactions

Consider a two-level atom at position rA interacting with modes of the quantised
electromagnetic field, as introduced in chapter 8. The Hamiltonian for the coupled

system is given by Ĥ ¼ ĤA þ ĤE þ ĤI ; where each of these terms represents
the energy of the bare atom, the energy of the quantised field and the interaction
between the atom and the field respectively. Applying the rotating wave
approximation, the Hamiltonians for this system are given by [3]

ĤA ¼ �hx0bp
þ tð Þbp� tð Þ; ðC:1aÞ

ĤE ¼
X

k

�hxkba
y
k tð Þba tð Þ; ðC:1bÞ

ĤI ¼ i
X

k

�hgk bpþ tð Þbak tð Þeik�rA � bayk tð Þbp� tð Þe�ik�rA

n o

; ðC:1cÞ

where p̂� are the raising and lowering operators for the atom introduced in Eq. 4.2,

â
y
k and âk are the creation and annihilation operators for photons in mode k, and

gk ¼ ðwk=2e0�hVÞ1=2êk � deg is the coupling constant for the electromagnetic field
of mode k and the atomic dipole.

For an atom driven by a single-mode laser, the light field can be described by a
coherent state jai: Taking the expectation of the interaction Hamiltonian HI with
respect to the wavefunction of the coherent state, the creation and annihilation
operators can be replaced with the eigenstates of Eq. 8.4 to give

HI ¼ i�hgk ap̂þ tð Þeik�rA � a�bpþ tð Þeik�rA
� �

: ðC:2Þ

Comparing this to the interaction with a classical field from Eq. 4.3 yields
igka ¼ Xp=2 and � igka

� ¼ Xp=2: Combining these and using the definition of

the mean-photon number of a coherent state as �n ¼ jaj2; the equivalence between
an atom driven by a classical field with Rabi frequency Xp and a coherent-state is
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X2
p

4
� g2

k�n: ðC:3Þ

Thus for an atom displaced from the origin, the semiclassical coupling of Eq.
4.3 should be modified to include the position dependent phase-factors as follows,

V ¼ �hX
2

p̂þeik�rA þ p̂�e�ik�rA
� �

: ðC:4Þ

For the simplified g(2) model in Sect. 8.4, a quantisation volume of
V = px0

2cDt is assumed for the probe laser, where w0 is the 1/e2 beam radius.
Taking the intensity of the laser as I = 2P/px0

2, Eq. C.3 reduces to

�n ¼ 2PDt

�hx
: ðC:5Þ
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