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Preface

This brief is a pedagogical presentation of key elements of geometric algebra (GA)
and a selected sample of research areas in which it is being profitably applied. In
spite of its brevity, it is remarkably comprehensive and self-contained. Its contents
are designed to be particularly useful to advanced undergraduate students, beginning
graduate students, and professionals wishing to understand what are the essential
lineaments of GA and how it is effectively used to frame scientific theories and
engineering models.

On the applied side, we cover topics in physics, robotics, and molecular geome-
try. In more detail, the main themes are the geometry and physics of Minkowski’s
space-time, including Maxwell’s electromagnetism and Dirac’s equation (Chap. 3);
robot forward and inverse kinematics, including an overview of the singularity
problem for serial robots (Chap. 4); and protein structure calculations using nuclear
magnetic resonance data (Chap. 5).

These three chapters are largely independent, but they require the background
material covered in the first two chapters. Chapter 1 contains a detailed study
of the geometric algebras of the Euclidean plane and space (G2 and the Pauli
algebra P = G3) and of the four-dimensional Minkowski space (the Dirac algebra
D = G1,3). We also illustrate the ways in which G2 and G3 encode geometrical
facts in their domains. In the case of D, we explain its deep relationship with the
Pauli algebra. Chapter 2 is devoted to the conformal geometric algebra (CGA) of
the Euclidean space (C = G4,1), the system required for robotics and molecular
geometry.

The relevance of GA today, even for the study of elementary plane and space
geometry, deserves a comment. The most straightforward reason that comes to mind
is that these geometries are neatly and compactly described, as spelled out in the first
chapter, using a formalism that turns out to be equally well adapted to deal with more
general fields in mathematics, science, and engineering. In this way, elementary
Euclidean geometry provides, particularly for people new to the GA formalism, a
tangible path to a realm worthy of being better known by anyone concerned with
how best to understand and think about geometry and its applications.

v
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In general, GA provides strong advantages with respect to more common
approaches, as for instance that objects and transformations live in the same algebra;
that the product in the algebra (geometric product) behaves much like the product
of real numbers (except that it is not commutative), which allows easy and familiar
manipulations; that the expressions in the algebra are coordinate free; and that it is
well adapted to algorithmic and computational treatments.

The reasons why such statements have to be stressed even today have been
analyzed by many prominent authors, but most conspicuously and forcefully by
D. Hestenes in many of his works, particularly [40] (2nd edition, with a new Preface
by the author and a Foreword by A. Lasenby) and [48]. Such enlightened works,
and the references provided in them, justify that we do not address here general
historical and methodological considerations and that instead we refer the reader to
the specific related comments included in the chapters ahead.

The numbering of reusable statements is done in the usual way, like (2.12) for the
twelfth equation in Chap. 2 or 2.4.3 for the third numbered statement in Sect. 2.4.
The exercises at the end of each chapter are identified in the form E.2.5, which
means the fifth exercise in Chap. 2. In the text, these exercises are referred by their
identifiers and the page on which they can be found.

A word on the exercises is in order. Usually they are not unlike other items
in the text, but with more detail left for the reader to fill in. In such cases,
they cover materials that round some aspects of the main text, occasionally
including suggestions for streamlined proofs of some standard results or to highlight
interesting applications.
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Chapter 1
Low Dimensional Geometric Algebras

The concept of geometric algebra (GA) arises out of the desire to multiply vectors
with the usual rules of multiplying numbers, including the usual rules for taking
inverses. From that point of view, the construction of GA is an instance of a powerful
mechanism used in mathematics that may be described as creating virtue out of
necessity. In general, this mechanism comes to the rescue when the need arises to
extend a given structure in order to include desirable features that are not present in
that structure.

As an aside, and for the purpose of illustrating how the mechanism works in more
familiar grounds, let us consider the successive extensions of the notion of number:

N ⊂ Z ⊂ Q ⊂ R ⊂ C.

In the natural numbers, N = {1, 2, 3, . . . }, the difference x = a − b (a, b ∈ N),
which by definition satisfies a = b + x, is defined only when a > b. The need to
be able to subtract any two numbers leads to the introduction of 0 and the negative
numbers −a (for all a ∈ N). The extension Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . }
of N is the set of integers. The order, addition, and subtraction can be extended in
a natural way from N to Z and after that the equation a = b + x has a unique
solution x for any a, b ∈ Z. In other words, the difference x = a − b of any two
integers is always well defined. For a, b ∈ N, for example, x = a − b if a > b,
0 if a = b, −(b − a) if a < b. The bottom line is that Z implements the order,
addition, and subtraction of formal differences a − b of natural numbers a and b,
with the constraints that a − b = a′ − b′ (respectively a − b < a′ − b′) if and only
if a + b′ = a′ + b (respectively a + b′ < a′ + b) in N.

Now the division x = a/b (b �= 0) is possible in Z precisely when b is a divisor
of a. In fact, to say that the equation a = bx can be solved for x ∈ Z just says that
a is a multiple of b. The wish to overcome this limitation of the integers leads to the

© The Author(s), under exclusive licence to Springer International Publishing AG,
part of Springer Nature 2018
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2 1 Low Dimensional Geometric Algebras

introduction of fractions or rational numbers, Q = {a/b : a, b ∈ Z, b �= 0}. The
bottom line here is that Q implements the order, addition, and subtraction of formal
quotients a/b of integers a and b (b �= 0), with the constraints that a/b = a′/b′
(respectively a/b < a′/b′) if and only if ab′ = a′b (respectively ab′ < a′b) in Z.
In particular, the equation a = bx (a, b ∈ Z, b �= 0) can be solved uniquely for x in
Q: x = a/b.

The real numbers R can be introduced as the natural extension of Q that makes
possible to take the least upper bound of upper bounded sets, and C is the natural
extension of R in which−1 has a square root: i = √−1. Operationally, the number
i is manipulated so that i2 = −1.

At this point it is worthwhile to remark that the mechanism is more fertile than
what it might appear at a first sight. As a rule, the new structures obtained to
overcome some limitations of more primitive ones have a richness that goes far
beyond the original specifications, both by having interesting unexpected features
and for its capacity to suggest other potentially useful structures through analogy
and generalization. We will see this at work throughout this brief, notably in the
case of geometric algebra, and also in a number of scattered comments.

Here it should be sufficient to recall a couple of examples. Given any positive
number a ∈ R, it turns out that it has a unique positive real nth root r = n

√
a for any

n ∈ N (this means that r n = a), a fact that is not true in Q, as reminded by the old
Pythagoric story telling us that

√
2 cannot be a rational number (see E.1.1, p. 30).

In the same vein, when we accepted that there is i such that i2 = −1, and thus
extending R to C, how could we suspect that for any non-zero z ∈ C, and n ∈ N,
there are exactly n numbers ξ ∈ C such that ξn = z (nth roots of z)? For example,
(see E.1.2, p. 31), the nth roots of 1 are e2πik/n = cos(2πk/n) + i sin(2πk/n)

(0 � k < n).
In the case of GA, among the unexpected properties beyond its specification

(which is the wish to multiply vectors as if they were numbers), we will find that it
is capable of representing in a coordinate-free way both geometrical concepts and
geometric operations on them. Moreover, these two roles are naturally related in a
way that will be made precise in due time and which we call geometric covariance.

The aim of this chapter is to introduce and study some of the concrete geometric
algebras that will be used in the remaining chapters. These include the geometric
algebrasG2 andG3 of the Euclidean plane E2 and the Euclidean space E3 (Sections
2 and 3, respectively) and the geometric algebra G1,3 of the Minkowski space E1,3.
To pave the way to later chapters, in the Euclidean cases we also provide details
about how the G2 and G3 encode geometric notions and geometric transformations.

Convention. If f is a map and x an object (say a linear map and a vector), we allow
ourselves to (optionally) write f x, instead of f (x), to denote the image of x by f .
This device, which is a common practice in functional programming languages, is
useful to increase the readability of expressions in contexts where no confusion can
arise about the nature of f and x.
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1.1 Linear Algebra Background

We assume that the reader is familiar with some basic notions of linear algebra. For
reference convenience, here is a summary of what we need in the sequel.

By a vector space we mean a real vector space (also called an R-vector space).
The elements of R are called scalars and will be denoted by Greek letters: α, β, . . . .

In each concrete case of geometric algebra, the starting point is a vector space
E of finite dimension n (with n � 4 in this chapter). Its elements are denoted by
boldface italic characters (e,u, v, x, y, . . . ).

The vector subspace of E spanned by vectors x1, . . . , xk (that is, the set of
all linear combinations λ1x1 + · · · + λkxk , λ1, . . . , λk ∈ R) will be denoted by
〈x1, . . . , xk〉.

The symbol e will stand for a basis e1, . . . , en of E. In principle it is arbitrary, but
often it will be assumed to have specific properties that in each case will be declared
explicitly.

If E′ is another vector space, a map f : E → E′ is said to be linear if f (λx) =
λf x and f (x + y) = f x + f y for all x, y ∈ E and λ ∈ R.

1.1.1 (Construction of linear maps) The main device to construct linear maps is the
following observation: If we are given any vectors e′1, . . . , e′n ∈ E′, then there is a
unique linear map f : E → E′ such that f ej = e′j for j = 1, . . . , n. 
�

Metrics

The vector space E on which geometric algebra is grounded is supposed to be
equipped with a metric. By this we understand a non-degenerate (or regular)
symmetric bilinear form q : E × E → R. Recall that the non-degenerate condition
means that for any given vector x �= 0 we can find a vector y such that q(x, y) �= 0
or, equivalently, q(x, y) = 0 for all y implies that x = 0. Instead of q(x, x),
which is the quadratic form associated with q, we will simply write q(x). Note that
q(λx) = λ2q(x).

1.1.2 (Polarization identity) The quadratic form determines the metric:

2q(x, y) = q(x + y)− q(x)− q(y) for all x, y ∈ E.

Proof Use the bilinear property and the symmetry of q:

q(x + y) = q(x + y, x + y) = q(x, x)+ q(x, y)+ q(y, x)+ q(y, y)

= q(x)+ q(y)+ 2q(x, y). 
�



4 1 Low Dimensional Geometric Algebras

Two vectors x, y ∈ E are said to be orthogonal precisely when q(x, y) = 0. The
basis e is orthogonal if q(ej , ek) = 0 for all j �= k. As is well known, and easy to
proof, orthogonal basis exist for any q (E.1.3, p. 31).

A q-isometry of E (or just isometry if q is understood from the context) is a
linear map f : E → E such that q(f v, f v′) = q(v, v′) for all v, v′ ∈ E. Using the
polarization identity 1.1.2, we see that f is an isometry if and only if q(f v) = q(v)

for all vectors v. With the operation of composition, the set of q-isometries forms
a group, with the identity map Id as its neutral element. It is called the orthogonal
group of q and is denoted by Oq .

Note that an isometry maps orthogonal vectors to orthogonal vectors.

Euclidean Spaces

Many authors take Rn as a model for the n-dimensional Euclidean vector space, but
we prefer to denote it En (or E if the dimension is clear from the context) to stress
that no basis is assigned a preferred role. So En is a real vector space of dimension
n endowed with an Euclidean metric q, which means that q(v) = q(v, v) > 0 for
any non-zero vector v (note that q(0) = 0 follows from the bilinearity of q). We
also say that q is positive definite.

The length (or norm) of a vector v is denoted by |v| and is defined by the formula

|v| = √q(v). (1.1)

Thus |v| > 0 for v �= 0 and q(v) = |v|2 for any v.
A vector u such that q(u) = 1 is said to be a unit vector. For any non-zero vector

v, ±v/|v| are the only unit vectors of the form λv (λ ∈ R), and v/|v| is said to be
the normalization of v.

Notice that if we normalize the vectors of an orthogonal basis we get an
orthogonal basis of unit vectors. Such bases are said to be orthonormal.

The angle α = α(v, v′) ∈ [0, π ] between two non-zero vectors v and v′ is the
real number α defined by the relation

cos α = q(v, v′)/|v||v′|. (1.2)

By the Cauchy-Schwarz inequality (see E.1.4, p. 31), this is well defined. Moreover,
α ∈ (0, π) when v and v′ are linearly independent and α = 0 (α = π ) when v′ = λv

with λ > 0 (λ < 0) . Note also that α = π/2 if and only if q(v, v′) = 0, that is, if
and only if v and v′ are orthogonal (in the Euclidean case, the term perpendicular
may be used instead).

The isometry group of En (orthogonal group) will be denoted On.
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Algebras

By an algebra we understand a non-zero vector space A endowed with a bilinear
productA×A→ A, (x, y) �→ x ∗y. Unless declared explicitly otherwise, we also
assume that the product is associative, (x ∗ y) ∗ z = x ∗ (y ∗ z), and unital (that is,
there is 1A ∈ A such that 1A �= 0A and 1A ∗ x = x ∗ 1A = x for all x ∈ A).

1.1.3 (Example: The matrix algebra) For any positive integer n, the vector space
R(n) of n × n real matrices is an algebra with the usual matrix product. Its unit is
the matrix In that has 1 in the main diagonal and 0 elsewhere (identity matrix).

Later we will use the following observation about R(2). Let

e1 =
(

1 0
0 −1

)
, e2 =

(
0 1
1 0

)
.

Then it is easily checked that {I2, e1, e2, e1e2} is a basis of R(2) and that the
following relations hold: e2

1 = e2
2 = I2, e1e2 + e2e1 = 0.

The map R → A, λ �→ λ1A, allows us to regard R as embedded in A, and so
we will not distinguish between λ ∈ R and λ1A ∈ A.

Exterior Powers and Exterior Algebra

The exterior powers and the exterior algebra of E, ∧kE and ∧E, were discovered
by H. Grassmann [37–39]. They do not depend on the metric q, but we have
postponed its recall because they are a little more abstract, and this should not hide
that they have a clear geometric meaning and are quite manageable in practice. In
any case, we will use the exterior algebra to determine the (graded) linear structure
of geometric algebras and other related concepts.

Let Ek (k ∈ N) be the kth Cartesian power of E. It is the vector space whose
elements are k-tuples of vectors (x1, . . . , xk). The exterior power∧kE (1 � k � n)
is a vector space endowed with a skew-symmetric multilinear map

∧ : Ek →∧k
E, (x1, . . . , xk) �→ x1 ∧ · · · ∧ xk.

Recall that a map is multilinear if it is linear in each of its variables, for an arbitrary
value of the remaining variables, and that it is skew-symmetric if it changes sign
when any two consecutive variables are swapped. The elements of ∧kE are called
k-vectors and a k-blade is a non-zero k-vector of the form x1∧· · ·∧xk (k-blades are
also called decomposable k-vectors). It is to be thought as the oriented k-volume
determined by the vectors x1, . . . , xk (oriented area and volume for k = 2 and
k = 3). Algebraically, the skew-symmetric condition is reflected by the fact that
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x1∧· · ·∧xk vanishes if and only if x1, . . . , xk are linearly dependent. The restriction
k � n arises from the fact that there are no non-zero k-volumes for k > n, a point
that can also be expressed by declaring that ∧kE = {0} for k > n. For k = 1,
∧1E = E and ∧ : E →∧1E is the identity, while∧0E = R by convention.

1.1.4 (Universal property) The fundamental property of ∧kE is that for any skew-
symmetric k-multilinear map f : Ek → F (where F is any vector space) there
exists a unique linear map f ∧ : ∧kE → F such that

f (x1, . . . , xk) = f ∧(x1 ∧ · · · ∧ xk).

The exterior algebra (or Grassmann algebra) associated with E, (∧E,∧), is
the direct sum of the exterior powers∧kE of E (0 � k � n),

∧E =⊕n
k=0 ∧k

E = R⊕ E ⊕∧2
E ⊕ · · · ⊕∧n

E,

endowed with the exterior product ∧ whose basic computational rule is

(x1 ∧ · · · ∧ xk) ∧ (y1 ∧ · · · ∧ yk′) = x1 ∧ · · · ∧ xk ∧ y1 ∧ · · · ∧ yk′ .

So it is a graded algebra, as x ∧ x′ ∈ ∧k+k′E when x ∈ ∧kE and x′ ∈ ∧k′E. The
exterior product is skew-commutative (or supercommutative):

x ∧ x′ = (−1)kk′x′ ∧ x,

if x ∈ ∧kE, x′ ∈ ∧k′E. On account of the associativity of the exterior product, the
distinction between ∧ and ∧ is unnecessary and it will not be done in what follows.

The elements of∧E are called multivectors. Given a multivector x ∈ ∧E, there
is a unique decomposition x = x0+ x1+· · ·+ xn with xk ∈ ∧kE (k = 0, 1, . . . , n)
and we say that xk is the grade k component of x.

1.1.5 (The parity involution) If x = ∑ xk (xk ∈ ∧kE) is a multivector, we define
x̂ =∑(−1)kxk . This gives a linear map ∧E → ∧E, x �→ x̂, that is an involution

(which means that ˆ̂x = x for all x ∈ ∧E). It is called the parity involution of ∧E.
Since it satisfies x̂ ∧ y = x̂ ∧ ŷ for all x, y ∈ ∧E, we say that it is an algebra
automorphism of∧E.

Proof It is a direct consequence of the definitions and the fact that the exterior
product is graded. 
�
1.1.6 (The reverse involution) If x =∑ xk (xk ∈ ∧kE) is a multivector, we define
x̃ = ∑

(−1)k//2xk(k//2 = �q/2�). The linear map ∧E → ∧E, x �→ x̃, is an
involution that is called the reverse involution of∧E. Since it satisfies x̃ ∧ y = ỹ∧x̃

for all x, y ∈ ∧E, we say that it is an algebra antiautomorphism of∧E.
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Proof The key point is that if x = x1∧· · ·∧xk is a k-blade, then x̃ = xk∧· · ·∧x1.

Indeed, since the exterior product is skew-symmetric, xk ∧ · · · ∧ x1 = (−1)(
k
2 )x

and (−1)(
k
2 ) = (−1)k//2 because

(
k
2

)
has the same parity as k//2. With this, the proof

is easily completed. 
�
1.1.7 (Grassmann basis) For any basis e1, . . . , en of E, the

(
n
k

)
products

e
Ĵ
= ej1 ∧ · · · ∧ ejk

(J = {j1, . . . , jk}, 1 � j1 < . . . < jk � n)

form a basis of∧kE. In particular, dim∧kE = (n
k

)
and dim∧E = 2n. Moreover,

e
Î
∧ e

Ĵ
=
{

0 if I ∩ J �= ∅
(−1)t (I,J )eI+J otherwise

where I +J is the result of reordering the concatenated sequence I, J in increasing
order and t (I, J ) is the number order inversions in I, J . 
�
Proof From the universal property it can be seen that ∧kE is spanned by the
k-blades. Owing to the skew-symmetric character of the exterior product, ∧kE is
also spanned by the e

Ĵ
in the statement with |J | = k. So it will be enough to show

that these e
Ĵ

are linearly independent. In turn, this can be easily established if we
show that for each J there is a linear map ωJ : ∧kE → R such that ωJ (e

K̂
) = δJ,K

(so 0 for K �= J and 1 for K = J ). Now we can produce ωJ by letting ωj : E → R

be the (unique) linear map such that ωj (ei ) = δi,j and by considering the map
fJ : Ek → R such that (x1, . . . , xk) �→ det(ωjl

(xi )), where 1 � i, l � k. The
map fJ is skew-symmetric and multilinear, by the properties of the determinant,
and it is enough to take as ωJ : ∧kE → R the unique linear map such that
ωJ (x1 ∧ · · · ∧ xk) = fJ (x1, . . . , xk). 
�

The Projective Space PE

The projective space PE of the vector space E is the set of 1-dimensional linear
subspaces of E. To distinguish between the subspace 〈e〉 (e ∈ E − {0}) as a subset
of E and as a point of PE, the latter will be denoted |e〉 (corresponding to the
notation [e] in the projective geometry texts). Thus we have |e〉 = |e′〉 if and only if
e′ = λe for some λ ∈ R (necessarily non-zero because e, e′ ∈ E − {0}), a relation
that henceforth will be written e′ ∼ e.

1.1.8 (Linear subspaces and blades) Let X = x1 ∧ · · · ∧ xk be a k-blade. Then the
relation

x ∈ 〈x1, . . . , xk〉 ⇔ x ∧X = 0 (1.3)
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shows that X determines the subspace 〈x1, . . . , xk〉. Moreover, if X′ = x′1∧· · ·∧x′k
is another k-blade, then 〈x1, . . . , xk〉 = 〈x′1, . . . , x′k〉 if and only if X′ ∼ X. The if
part follows immediately from (1.3). The only if part is a consequence of the fact
that if F = 〈x1, . . . , xk〉 = 〈x′1, · · · , x′k〉, then X,X′ ∈ ∧kF and hence X′ ∼ X

because∧kF is 1-dimensional. Thus we see that the equality |X〉 = |X′〉 in P(∧kE)

is equivalent to the equality of the corresponding subspaces. Because of this, we will
denote by |X〉 the linear subspace 〈x1, . . . , xk〉 determined by X. 
�

1.2 GA of the Euclidean Plane, G2

Let us start our journey with an Euclidean plane E2. In the first part of this section
we will explain some basic notions about the geometry of this plane and in the
second part we will introduce G2 and study how it relates to the geometry.

1.2.1 (Example: The symmetry sv) Let v be a non-zero vector. Then there is a
unique f ∈ O2, f �= Id, such that f (v) = v. This isometry is called the symmetry
with respect to v, is denoted by sv , and it has the property that sv(v

′) = −v′ when
v′ is perpendicular to v (see Fig. 1.1a).

Proof Indeed, the linear subspace v⊥ = {v′ ∈ E2 | q(v, v′) = 0} has dimension 1
(it is the kernel of the non-zero linear map E2 → R such that v′ �→ q(v, v′)) and f

maps v⊥ to itself. If it were f (v′) = v′ for some non-zero v′ ∈ v⊥, then f would be
the identity. Therefore f (v′) = λv′ for some scalar λ �= 1. But q(v′) = q(f v′) =
λ2q(v′) implies that λ2 = 1 and hence λ = −1. 
�
By symmetry we understand a symmetry with respect to a non-zero vector.

1.2.2 (Cartan-Dieudonné theorem for E2) Let f ∈ O2 be an isometry. Then f is a
symmetry or a composition of two symmetries.

Proof If f = Id, then f = s2 for any symmetry s. So we may assume that f �= Id.
In that case, f = sv if there is a non-zero vector v such that f (v) = v. So we may
assume that f leaves no vector fixed. If f (v) = −v for all v, then f = −Id = svsv′
for any two non-zero perpendicular vectors v and v′. Thus we may assume that there
is a vector v such that f (v) �= −v, or v′ = f (v)+ v �= 0. Then

sv′(f (v)+ v) = f (v)+ v and sv′(f (v)− v) = −f (v)+ v,

as f (v)−v is perpendicular to f (v)+v (see Fig. 1.1b). Consequently sv′(f (v)) = v

and so sv′f = sv . Therefore f = sv′sv . 
�
An isometry that is the composition of two symmetries is called a rotation. So

we have O2 = O−2 � O+2 (disjoint union), where O−2 denotes the set of symmetries
and O+2 the set of rotations. We will see that O+2 is a subgroup of O2 called special
orthogonal group and which is also denoted by SO2.
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v

v′

sv(v′)

v

vi

αi

α

v′

(a) (b) (c)

v

fv
v′ = fv+ v

fv − v

Fig. 1.1 (a) Symmetry sv . (b) An isometry without fixed non-zero vectors is the composition of
two symmetries. (c) Oriented angle, case αi = 2π − α (see 1.2.6)

Geometric Algebra

We want to enlarge E2 to a system G2 in which vectors can be multiplied, and non-
zero vectors inverted, with the usual rules. Our strategy will be to show, under some
natural assumptions, that G2 is unique, and then establish its existence by displaying
a system that satisfies all the requirements.

Let us start with some general remarks. By xy we denote the product of x, y ∈ G2
(simple juxtaposition of the factors) and we say that it is the geometric product of x

and y. This notion was introduced by Clifford with this name [19], but some authors
call it the Clifford product (see, for instance, [72] or [92]).

Technically, the structure of G2 with the geometric product is supposed to be
an associative and unital R-algebra. Recall that this means that G2 is a real vector
space and that the geometric product is bilinear, associative, with unit 1 ∈ G2. We
have R ⊂ G2 and its elements are the scalars of G2. We also have E2 ⊂ G2, and its
elements are the vectors of G2. We assume that R ∩ E2 = {0}.

Let v ∈ E2. If v is to have an inverse v′ with respect to the geometric product, it
is natural to assume that v′ ∈ 〈v〉 = {λv | λ ∈ R}, as 〈v〉 is the only subset of E2
naturally associated with v using the linear structure. But 1 = v′v = (λv)v = λv2,
which implies that v2 must be a non-zero scalar.

If now v,w ∈ E2, then (v+w)2 = v2+w2+vw+wv implies that vw+wv ∈ R.
Thus the expression vw + wv defines a bilinear symmetric product in E2 and the
main insight of Clifford was to postulate the relation

vw + wv = q(v,w) + q(w, v) = 2q(v,w) (1.4)

(which we will call Clifford relation). Setting w = v, we get Clifford’s reduction
rule:

v2 = q(v). (1.5)

This formula tells us that any non-zero vector v has an inverse v−1 with respect to
the geometric product and that v−1 = v/q(v). In particular we have u−1 = u if u

is a unit vector.
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Remark also that vw = −wv if and only if v and w are perpendicular.
To go further, let us take an orthonormal basis e1, e2 ∈ E2, so that e2

1 = e2
2 = 1

and e2e1 = −e1e2. These relations imply that the geometric product of any number
of vectors belongs to the linear subspace L = 〈1, e1, e2, e1e2〉 ⊆ G2. Since a vector
belongs to this subspace, by induction it is enough to see that e1L and e2L are
contained in L, but these assertions are a direct consequence of the orthonormal
relations.

Since we wish that G2 be a minimal solution to the problem of multiplying
vectors, it is natural to assume, as we will do henceforth, that 〈1, e1, e2, e1e2〉 = G2.

1.2.3 (Linear basis of G2) The elements 1, e1, e2, e1e2 ∈ G2 are linearly indepen-
dent. In particular, dimG2 = 4. Moreover, the linear subspaces G0

2 = 〈1〉 = R,
G1

2 = 〈e1, e2〉 = E2, and G2
2 = 〈e1e2〉 are independent of the orthonormal basis

used to construct them.

Proof Assume a linear relation of the form

λ + λ1e1 + λ2e2 + λ12e1e2 = 0.

Multiplying by e1 from the left and from the right, we get the relation

λ + λ1e1 − λ2e2 − λ12e1e2 = 0.

Adding the last two relations, we conclude that λ+λ1e1 = 0 and hence λ = λ1 = 0.
So we are left with the relation λ2e2 + λ12e1e2 = 0 or, multiplying on the right by
e2, λ2 + λ12e1 = 0, which gives λ2 = λ12 = 0.

Since the assertions on G0
2 = R and G1

2 = E2 are clear, what remains is to see
that G2

2 is independent of the basis. We will do this by giving a description of it that
is basis independent.

Consider the map E2
2 → G2 given by (v,w) �→ 1

2 (vw − wv). Since this map
is bilinear and skew-symmetric, it gives a linear map ∧2E2 → G2 (which is basis
independent by definition) such that v ∧ w �→ 1

2 (vw − wv). In particular,

e1 ∧ e2 �→ 1
2 (e1e2 − e2e1) = e1e2,

which shows that the map in question yields a canonical linear isomorphism

∧2
E2 � G2

2. 
�
Thus we actually have a canonical linear isomorphism

∧E2 = ∧0
E2 ⊕ ∧1

E2 ⊕ ∧2
E2 � G0

2 + G1
2 + G2

2 = G2.
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This isomorphism shows that G2 is endowed with a natural grading as a vector
space and allows us to copy all the features and terminology of the exterior algebra
∧E2 onto G2. In particular, we have the exterior product (or outer product) in G2
coexisting, from now on, with the geometric product. The basic relation between
the two products is the following formula, also discovered by Clifford [from now on
we will use the expression v · w as an alternative notation for q(v,w)]:

1.2.4 (Key formula) vw = v · w + v ∧ w.

Proof Indeed, vw = 1
2 (vw + wv)+ 1

2 (vw − wv) = v · w + v ∧ w. 
�
1.2.5 (Involutions of G2) The parity and reverse involutions of ∧E2 are also
involutions of the geometric product: x̂y = x̂ ŷ and x̃y = ỹ x̃.

Proof From the definitions it follows that we may assume that x and y are
homogeneous. Let k and l be their grades. If k = l = 1, the claims follow
from the key formula (using the analogous rules for the exterior product). If
k = l = 2, it suffices to consider the case x = y = e1e2 and this is immediate
because e1e2e1e2 = −1. Finally, the mixed case follows from the fact that e1e2
anticommutes with vectors. 
�

As we have seen, the area element i = e1e2 is defined up to sign by E2. The
two elements ±i are called unit areas or orientations of E2, and E2 is considered
to be oriented when one of the two unit areas is chosen as the positive orientation.
Henceforth we will assume that E2 is oriented and we will let i denote the positive
unit area. For an arbitrary basis v1, v2 of E2, we have that v1 ∧ v2 = δi, δ ∈ R, and
we say that that basis is positive or negative according to whether δ > 0 or δ < 0.

The positive unit area i plays a very important role in what follows. Letting
e1, e2 be a positive orthonormal basis, then i = e1∧e2 = e1e2, and its fundamental
property is that i2 = e1e2e1e2 = −e2

1e
2
2 = −1, which may be stated by saying the

i is a geometric square root of −1.
If we set G+2 = G0

2 + G2
2 = 〈1, i〉, which is called the even geometric algebra,

we see that G+2 � C, via the mapping α + βi �→ α + βi. Note, however, that the
geometric meaning of i is lost when we map it to i, the formal square root of−1. To
retain the geometric meaning, we set C = G+2 and say that C is the field of complex
scalars.

Remark also that the map R = G0
2 → G2

2, λ �→ λi, is a linear isomorphism,
with inverse the map s �→ −si. Because of this isomorphism, the elements of G2

2
are also called pseudoscalars. Since e1i = e2 and e2i = −e1, we see that the map
E2 → E2, v �→ vi, is a linear isomorphism, with inverse v �→ −vi. Thus, in
particular, E2 becomes a C-vector space.

It is a good moment to introduce the oriented angle αi = αi(v, v′) between two
non-zero vectors v and v′. Since we impose that this angle does not depend on the
lengths of the vectors, we may assume that v and v′ are unit vectors. Then {v, vi}
is a positive orthonormal basis and αi is defined as the unique scalar αi ∈ [0, 2π)

such that v′ = v cos αi + vi sin αi (see Fig. 1.1c). We clearly have αi = α = 0 if
v′ = v and αi = α = π if v′ = −v.
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1.2.6 (Meaning of the oriented angle) We have v ∧ v′ = i sin αi . In particular we
see that if v and v′ are linearly independent, then v ∧ v′ has positive or negative
orientation according to whether αi ∈ (0, π), in which case αi = α, or αi ∈
(π, 2π), in which case αi = 2π − α.

Proof On the one hand we have, by the key formula, vv′ = cos α + v ∧ v′. On
the other, from the definition of αi we have that vv′ = cos αi + i sin αi . Therefore
cos αi = cos α and v ∧ v′ = i sin αi . The first equality tells us that either αi = α ∈
(0, π) or αi = 2π − α ∈ (π, 2π). In the first case, v ∧ v′ = i sin α and v ∧ v′
is positive. In the second case, v ∧ v′ = i sin(2π − α) = −i sin α and v ∧ v′ is
negative. 
�

We define P− ⊂ G−2 = E2 to be the set of unit vectors (the circle of radius 1
centered at 0) and P+ ⊂ G+2 = C to be the set of unit complex scalars (complex
scalars z such that zz̃ = 1). Since z̃ = α − βi if z = α + βi, zz̃ = α2 + β2 and
therefore P+ = {zϕ = eiϕ : ϕ ∈ [0, 2π)} and

P− = {uα = e1 cos α + e2 sin α = e1zα : α ∈ [0, 2π)}.

Notice that P+ is a group with the geometric product (spinor group of E2, also
denoted Spin2).

1.2.7 (Symmetries) (1) For any non-zero vector v ∈ E2, sv = v, where v(x) =
vxv−1. (2) If w ∈ E2 is non-zero, then sw = sv if and only if w = λv for some
λ ∈ R. (3) The map P− → O−2 , u �→ su, is onto and su′ = su if and only if u′ = ±u

(the map is 2 to 1).

Proof (1) The expression vxv−1 is linear in x, its value for x = v is v, and for
x = v′ ∈ v⊥ it is −v′, because vv′ = −v′v. This proves the first assertion.

(2) If w = λv, then it is clear that wxw−1 = vxv−1 for any x ∈ E2 and hence
sλv = sv . Conversely, if sw = sv , then in particular

wvw−1= sw(v)= sv(v)= v.

But this relation says that wv = vw, hence w∧v = 0, and this yields our claim.
(3) By definition, the elements of O−2 are the symmetries and by (2) any symmetry

has the form su, with u ∈ P−. So the stated map is onto. Finally note that if
u,u′ ∈ P− and su = su′ , then u′ = ±u. 
�

To get the corresponding result for rotations, first note that the previous result and
the definition of rotation imply that any f ∈ O+2 has the form su′su with u,u′ ∈ P−.

1.2.8 (Rotations) (1) Given u,u′ ∈ P−, z = u′u ∈ P+. (2) z = e−iϕ , where
ϕ = αi(u,u′). (3) If f = su′su, then f = z, where z(x) = zxz̃. (4) z(x) = xe2ϕi

(see Fig. 1.2a). (5) O+2 is a subgroup of O2 and the map P+ → O+2 , z �→ z, is an
onto 2 to 1 group homomorphism.
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Fig. 1.2 In both graphics i is the unit area. (a) Action of the map z defined in 1.2.8 on the vector u.
(b) Action of eϕi on e1 and e2 (it is the counterclockwise rotation by ϕ)

Proof (1) Indeed, zz̃ = u′uuu′ = 1.
(2) Indeed, u′u = u′ · u− u ∧ u′ = cos ϕ − i sin ϕ = e−ϕi .
(3) We have f (x) = su′(su(x)) = u′(uxu)u′ = zxz̃ = z(x).
(4) Since i anticommutes with vectors, z(x) = zxz̃ = xz̃2 = xe2ϕi .
(5) First let us check that the map, which is clearly onto, satisfies zz′ = z z′ for

z, z′ ∈ P+: zz′(x) = (zz′)x(z̃z′) = zz′xz̃′z̃ = z(z′(x)). This implies that O+2
is closed under composition and therefore that it is a subgroup of O2. Finally,
if z = eϕi , z′ = eϕ′i and z = z′, then in particular we have e1e

2ϕi = e1e
2ϕ′i ,

which implies that e2(ϕ′−ϕ)i = 1 and hence that ϕ′ = ϕ or ϕ′ = ϕ + π . 
�
The results on symmetries and rotations can be combined in a more comprehen-

sive presentation of O2.

1.2.9 (GA structure of O2) (1) The set P = P− � P+ ⊂ G2 is a group with the
geometric product (pinor group of E2, also denoted Pin2). (2) The map P → O2
obtained combining the maps P− → O−2 and P+ → O+2 is given by p �→ p, where
p(x) = pxp̃ (spinorial map). (3) The map P → O2 is a 2 to 1 and onto group
homomorphism.

Proof (1) It is enough to check that P is closed under the geometric product.
We have P+P+ ⊂ P+ (for P+ is a group), P−P− ⊂ P+ [1.2.8 (1)], and
P−P+, P+P− ⊂ P− (these follow from 1.2.8 (4) and the fact that zu = uz̃

for z ∈ P+ and u ∈ P−).
(2) By 1.2.7 and 1.2.8 (3).
(3) It is immediate to check that it is a group homomorphism [it goes like the proof

of 1.2.8 (5)] and all other claims are obvious. 
�

1.2.10 (Remark) The Euclidean plane E2 is special with respect to the general
theory in two important aspects: The group P+ is commutative and is isomorphic
(sic) to the rotation group O+2 , for the rotation by an angle ϕ is given by x �→ xeϕi

(see Fig. 1.2b). But the spinorial map P+ → O+2 , seen as a map P+ → P+,
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is z �→ z2. Topologically, P+ is the unit 1-sphere, S1, and the spinorial map is
wrapping S1 twice over itself.

1.2.11 (Remark) Strictly speaking, so far we have only shown that if G2 exists,
then it is unique up to a canonical isomorphism, and that it has dimension 4. The
existence can be shown using the Example 1.1.3 (see E.1.6, p. 32), but it can be
proved in general without resorting to matrices. This is done in many references,
and in particular in [97].

1.3 GA of the Euclidean Space, G3

The aim of this section is to explore the geometric algebraG3 of the Euclidean space
E3 and its bearing on the geometry of this space.

Geometric Background

Let us first recall the Cartan-Dieudonné theorem for the isometry group O3 of E3.
The notion of symmetry sv can also be defined for E3 (and for any En) in exactly the
same way as for E2. For n > 2, however, we actually need the notion of reflection
rv ∈ O3 associated with a non-zero vector v, which is defined as −sv . In other
words, rv is the unique linear map E3 → E3 such that rv(v) = −v and rv(x) = x

for x ∈ v⊥. The reason why we did not speak of reflections in the case n = 2
is that for this dimension we have sv = rv′ for any non-zero vector v′ orthogonal
to v, which tells us that for E2 the use of symmetries is equivalent to the use of
reflections.

1.3.1 (Cartan-Dieudonné theorem for E3) Any isometry of E3 is the composition
of at most three reflections.

Proof Let f ∈ O3. If f (x) = x for all x, f is the identity, which is the composition
of zero reflections (or the square of any reflection). So we may assume that there is
a vector v such that w = f (v)− v �= 0. Then we have rw(f (v)− v) = −f (v)+ v

and, since f (v) + v is orthogonal to w, rw(f (v) + v) = f (v) + v. It follows
that rw(f (v)) = v. This means that it will be enough to show that an isometry
leaving a vector fixed is the composition of at most two reflections. But this follows
easily by considering the isometry f ′ of v⊥ induced by f and the fact that f ′ is the
composition of at most two reflections. 
�

The Cartan-Dieudonné theorem shows that O3 = O+3 �O−3 , where O+3 is formed
by the isometries that are the composition of two reflections (which includes the
identity) and O−3 by those that are either a reflection or the composition of three
reflections. The set O+3 is also denoted SO3 and its elements are called rotations.
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Geometric Algebra

The initial steps are similar to those followed forG2 and so it will suffice to recall the
main points. We are looking for an algebra G3 that contains E3, with R ∩ E3 = {0}
and such that v2 = q(v) for any vector v, or, equivalently, such that

vw + wv = 2q(v,w)

for all v,w ∈ E3. In particular, vw = −wv if and only if v and w are orthogonal.
Let e1, e2, e3 be any orthonormal basis of E3. Define B0 = {1}, B1 =

{e1, e2, e3}, B2 = {e2e3, e3e1, e1e2}, B3 = {e1e2e3} and B = B0 ∪ B1 ∪ B2 ∪ B3.
The elements of B are called Clifford units (associated with the orthonormal basis
e1, e2, e3).

1.3.2 (Clifford bases) B is linearly independent.

Proof We will adapt the method used for E2 (Riesz’ method, [82]) to the present
case. Suppose we have a linear relation

λ+ λ1e1 + λ2e2 + λ3e3 + μ1e2e3 + μ2e3e1 + μ3e1e2 + μe1e2e3 = 0.

Multiplying by e1 from the left and from the right, we get

λ+ λ1e1 − λ2e2 − λ3e3 + μ1e2e3 − μ2e3e1 − μ3e1e2 + μe1e2e3 = 0.

Adding the two equations, we arrive at

λ+ λ1e1 + μ1e2e3 + μe1e2e3 = 0.

Now multiply by e2 from the left and from the right. This yields

λ− λ1e1 − μ1e2e3 + μe1e2e3 = 0,

and hence λ+μe1e2e3 = 0. But (e1e2e3)
2 = −1 and so λ2 = −μ2, which implies

λ = μ = 0. Thus λ1e1 + μ1e2e3 = 0. Multiplying by e1 from the left, we arrive at
an equation that allows us to conclude, as in the previous step, that λ1 = μ1 = 0.
So we are left with the relation

λ2e2 + λ3e3 + μ2e3e1 + μ3e1e2 = 0.

To conclude we can repeat the game with this equation. Multiplying by e2 from the
left and from the right, we obtain λ2 = μ2 = 0, and then λ3 = μ3 = 0 follows
readily. 
�
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With a similar argument as the one used for E2, we see that any product of vectors
is a linear combination of B and hence we conclude that

G3 = 〈B〉, (1.6)

because we assume that G3 is generated, as an R-algebra, by E3. In particular we
have dimG3 = 8.

1.3.3 (Linear grading of G3) There is a canonical linear map ∧kE3 → G3 whose
image is Gk

3 = 〈Bk〉. It follows that the linear map ∧kE3 → Gk
3 is an isomorphism

and in particular that the spaces Gk
3 are independent of the basis e1, e2, e3 used to

define them.

Proof Since ∧0E3 = R = 〈1〉 = G0
3 and ∧1E3 = E3 = 〈B1〉 = G1

3, we only need
to consider the cases k = 2, 3.

The map∧2E3 → G2
3 is the unique linear map such that v ∧w �→ 1

2 (vw−wv).
Its image is G2

3, as ei ∧ ej �→ 1
2 (eiej − ejei ) = eiej and hence∧2E3 � G2

3.
The map∧3E3 → G3

3 is the unique linear map such that

u ∧ v ∧ w �→ 1
6 (uvw + vwu+ wuv − uwv − vuw − wvu).

Note that the right-hand side is the full anti-symmetrization of the product uvw and
hence it is 3-multilinear and skew-symmetric expression of u, v,w. It follows that
e1 ∧ e2 ∧ e3 �→ e1e2e3 and hence∧3E3 � G3

3. 
�
So we have a canonical linear isomorphism ∧E3 � G3. With it we can transfer

to G3 the concepts pertaining to ∧E3. Thus we will say that the elements of G3 are
multivectors, with suitable names for k-vectors for the various k (see the left column
in Fig. 1.3 for a synopsis).

e2

e3

e1

e1i

e3i

e2i

i = e1e2e3

1

e1, e2, e3

e1i, e2i, e3i

Scalars

Vectors
–oriented segments
–polar vectors

Bivectors
–oriented areas
–axial vectors

Pseudoscalars
–oriented volumes

Fig. 1.3 Clifford units of E3 and Hodge duality
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As in the case of G2, we get an exterior product x ∧ y in G3 (also called outer
product), which is associative, unital, and skew-commutative. Its relation to the
geometric product is ruled by the key formula 1.2.4 (same proof) for the product
of two vectors. In particular we have ej ∧ ek = ejek . Note also that ∧3E3 � G3

3
gives that e1 ∧ e2 ∧ e3 = e1e2e3.

Like for E2, the orientations of E3 are ±i, where i = e1e2e3. Henceforth we
will assume that E3 is oriented by i, which is called (positive) volume element or
pseudoscalar. For an arbitrary basis v1, v2, v3, v1 ∧ v2 ∧ v3 = δ i (δ ∈ R) and we
say that the basis is positive or negative according to whether δ > 0 or δ < 0. The
choice of i, for example, tells us that the orthonormal basis e1, e2, e3 used to express
i is positive.

1.3.4 (Properties of i) (1) i2 = −1. (2) i commutes with all vectors and hence
commutes with any multivector (we say that i is in the center of G3). (3) If x ∈ Gk

3,

then xi = ix ∈ G3−k
3 and the linear map Gk

3 → G3−k
3 , x �→ x∗ = xi is an

isomorphism (Hodge duality). The inverse map is y �→ −yi.

Proof (1) i2 = e1e2e3e1e2e3 = e2e3e1e2 = −1.
(2) It suffices to see that i commutes with the basis vectors, and this is checked

immediately. For example,

e2i = e2e1e2e3 = −e1e3 and ie2 = e1e2e3e2 = −e1e3.

(3) Since i contains the three basis vectors, eki has grade 2 and ejeki has grade 1.
The last statements are now a direct consequence of (1). 
�

We can also transfer to G3 the parity and reverse involutions.

1.3.5 (Involutions of G3) The parity and reverse involutions of ∧E3 are also
involutions of the geometric product: x̂y = x̂ ŷ and x̃y = ỹ x̃.

Proof On account of bilinearity, we can assume that x and y are Clifford units,
say x = eJ of grade j and y = eK of grade k. In this case the grade of xy is
j + k − 2ν, where ν = |J ∩ K|. Thus we have x̂ ŷ = (−1)j+kxy and x̂y =
(−1)j+k−2νxy, which coincide because the signs are the same. Similarly, ỹ x̃ is
equal to (−1)k//2+j//2yx, while x̃y = (−1)(j+k)//2−νxy. But yx = (−1)kj−νxy and
so it suffices to show that k//2+ j//2+ kj and (j + k)//2 have the same parity. This
is easily checked by cases. For example, if both j and k are odd, say j = 2j ′ + 1
and k = 2k′ + 1, then the first expression has the same parity as j ′ + k′ + 1 while
(j + k)//2 = (2j ′ + 2k′ + 2)//2 = j ′ + k′ + 1. 
�

Now we are ready to explore how to express geometric facts about E3 by means
of the algebra G3.

1.3.6 (Geometric meaning of Hodge duality) If u ∈ G1
3 is a unit vector, a = ui ∈

G2
3 is the (oriented) unit area of the plane u⊥. Conversely, if a ∈ G2

3 is a unit area,
then u = −ai is the (oriented) orthogonal unit vector to the plane
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|a〉 = {x ∈ E3 | a ∧ x = 0}.

Proof The oriented unit area of u⊥ is, by definition, a = u1u2, where u1,u2 is
an orthonormal basis of u⊥ such that u1u2u = i. Since u2 = 1, it is obvious that
a = ui and, conversely, that u = −ai. 
�
1.3.7 (Spinorial formula for reflections) Let v ∈ E3 be a unit vector. Then

rv(x) = −vxv = v̂xv.

Proof The expression v̂xv is linear in x. For x = v, its value is v̂ = −v, and if
x ∈ v⊥, then v̂xv = −v̂vx = x. 
�
1.3.8 (Elements of a rotation) If f is a rotation, then f (x) = rv′(rv(x)), where
v and v′ are unit vectors (see the last paragraph of the background subsection at
the beginning of this section, page 14). By the preceding proposition, we can write
f (x) = −v′(−vxv)v′ = RxR̃, with R = v′v. If v and v′ are linearly dependent,
then R = ±1 and f is the identity. So we can assume that v and v′ are linearly
independent. Now the key formula allows us to write v′v = v · v′ − v ∧ v′ =
cos α−v∧v′, with α = α(v, v′). On the other hand, if we let i be the unit area of the
oriented plane 〈v, v′〉, then v∧ v′ = i sin β, where β ∈ [0, 2π) is the oriented angle
αi(v, v′). But i = ui, where u is the oriented unit vector in 〈v, v′〉⊥ = v⊥ ∩ v′⊥,
and so we finally have R = cos β − ui sin β = e−βui. Since u anticommutes with v

and v′, u commutes with R and hence it is fixed by f . We will say that u is the axis
of the rotation f . We will also say that R is the rotor associated with the vectors
v and v′ and we will denote it by Ru,β . The final touch in the geometric algebra
description of f is provided by next proposition.

1.3.9 (Euler’s spinorial formula for rotations) With the same notations as in the
preceding paragraph, we have f (x) = Ru,βxR̃u,β . Since u is fixed by f , it induces
an isometry f⊥ of the plane u⊥, and we have: f⊥ is the (oriented) rotation of u⊥
by 2β. In other words, f is the rotation about u by 2β.

Proof If x ∈ u⊥ = 〈v, v′〉, then x anticommutes with u, f⊥(x) = f (x) = xR̃2
u,β ,

and we know that this rotates x by 2β in the sense of the orientation i (which is the
same as the orientation v ∧ v′) of u⊥. 
�

Euler’s spinorial form of rotations tells us that the rotation ρu,θ about the unit
vector u by θ is given by the rotor Ru,θ/2 = e−θui/2 = cos(θ/2) − ui sin(θ/2). It
is an invertible element in G+3 = G0

3 + G2
3, the even subalgebra of G3. Its inverse

is eθui/2 = R̃u,θ/2, so that RR̃ = 1. In the next result we find that G+3 is a very
familiar algebra (at least from a historical point of view), which we will denote by
H for reasons that will become clear in a moment, and we will determine the form
of its elements that satisfy the rotor condition RR̃ = 1.

1.3.10 (Quaternions) (1) The elements of H can be written in a unique way in the
form h = λ+ vi, λ ∈ R and v ∈ E3. (2) hh̃ = λ2 + v2 ∈ R is positive if h �= 0, and

hence H is a (skew) field (h−1 = h̃/|h|2, where |h| =
√

hh̃). (3) H is isomorphic
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(non-canonically) to the (skew) field H of Hamilton’s quaternions. We will say that
H is the field of geometric quaternions. (4) The set Spin3 = {h ∈ H | |h| = 1} is a
subgroup of H∗ (the group of non-zero quaternions). Its elements are called spinors
and each spinor h �= ±1 has the form h = R̃u,β for some unit vector u and scalar
β ∈ [0, 2π). (5) If we define, for h ∈ Spin3, h : E3 → E3 by hx = hxh̃, then
h ∈ SO3 and h = ρu,2β . (6) The map Spin3 → SO3, h �→ h, is a 2 to 1 onto
homomorphism.

Proof (1) An element of H has the form λ + λ1e1i + λ2e2i + λ3e3i and so it has
the stated expression with v = λ1e1 + λ2e2 + λ3e3.

(2) Since h̃ = λ− vi, the expression for hh̃ follows because −vivi = −v2i2 = v2.
(3) Let i1 = e3i, i2 = e2i, i3 = e1i. Then H = 〈1, i1, i2, i3〉 and we have

i2
1 = i2

2 = i2
3 = −1, i1i2=−i2i1 = i3, i2i3=−i3i2= i1, i3i1=−i1i3= i2,

which are (up to notation) Hamilton’s celebrated defining relations for H.
(4) The first assertion is immediate. If h = λ + vi is a spinor, then λ2 + |v|2 =

1. This implies that there is a unique β ∈ [0, 2π) such that λ = cos β and
|v| = sin β. If h �= ±1, then v �= 0 and h = cos β + ui sin β, where u is the
normalization of v. Therefore h = R̃u,ϕ .

(5) Obvious by what we have said so far.
(6) If h and h′ are spinors, then hh′x = hh′xh̃h′ = hh′xh̃′h̃ = h h′x. This proves

that h �→ h is a homomorphism and Euler’s spinorial formula shows that it
is onto. To end the proof it suffices to see that if hxh̃ = x for all vectors x,
then h = ±1. Indeed, the condition is equivalent to say that hx = xh for
all x, and in particular that hek = ekh for k = 1, 2, 3. Using the expression
h = cos β + ui sin β, these relations imply that eku sin β = uek sin β. Then
either sin β = 0, in which case h = cos β = ±1, or eku = uek , which cannot
happen. 
�

1.3.11 (Composing rotations: Olinde Rodrigues formulas, [83]) Given the rota-
tions ρu,θ and ρu′,θ ′ , the composition ρu′,θ ′ρu,θ is a rotation. If it is not the identity,
it has the form ρu′′,θ ′′ , and Olinde Rodrigues’ formulas yield u′′ and θ ′′ in terms of
u, u′, θ and θ ′ (with α = α(u,u′)):

cos θ ′′
2 = cos θ

2 cos θ ′
2 − cos α sin θ

2 sin θ ′
2 ,

u′′ sin θ ′′
2 = u sin θ

2 cos θ ′
2 + u′ cos θ

2 sin θ ′
2 − (u ∧ u′)i sin θ

2 sin θ ′
2 .

Proof On account of the spinorial form of the rotations, the composition is given by
RxR̃, with R = Ru′,θ ′/2Ru,θ/2. Computing this product using the expressions

Ru,θ/2 = cos θ
2 − ui sin θ

2 and Ru′,θ ′/2 = cos θ ′
2 − u′i sin θ ′

2 ,
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and equating its scalar and bivector parts to those of R = cos θ ′′
2 − u′′i sin θ ′′

2 , we
get the two equations. It is important to note that u′u = cos α − u ∧ u′. 
�
1.3.12 (Geometric covariance) Euler’s spinor formula RxR̃ makes sense when
we insert a multivector x instead of the vector x. In this way we get a linear
map G3 → G3, x �→ RxR̃. This map is an automorphism, as shown by the
relation RxyR̃ = RxR̃RyR̃. This capacity of G3, which we like to call geometric
covariance, is a general feature of geometric algebra. For a first taste, here go a
couple of illustrations.

To ease notation, let us write x′ = RxR̃. For the first illustration, let x and y be
vectors. Then we have:

(x ∧ y)′ = 1
2 (xy − yx)′ = 1

2 (x′y′ − y′x′) = x′ ∧ y′.

The term x′ ∧ y′ constructs the area element defined by the rotated vectors x′ and
y′, which is the rotated oriented area. On the other hand, (x ∧ y)′ is the result of
rotating the oriented area as a bivector. For the first interpretation, we need to know
x and y separately, but for the second only the area element a = x ∧ y matters, not
the particular way in which it has been obtained.

For another instance, suppose that we have a rotor S = e−αp i/2, where p is a unit
vector and α a real number. Then geometric covariance allows us to construct S′ =
RSR̃ and its geometric meaning is easily discovered by looking at the following
relation:

S′ = (cos α
2 − p i sin α

2 )′ = cos α
2 − p′i sin α

2 .

Indeed, the right-hand side is the rotor of the rotation by α about the rotated axis p′
of the axis of the rotation defined by S. Said in other words, to rotate the rotation
ρp,α to ρp′,α it is enough to rotate the rotor S to S′, for the rotor S′ gives ρp′,α .
In the first interpretation we operate at the level of vectors, while in the second the
operations are carried out directly at the level of bivectors.

For more involved examples, and to better appreciate the fundamental impor-
tance of geometric covariance, see Chaps. 4 and 5, and in particular the geometric
solution of the inverse kinematics problem developed in Sect. 4.4. 
�
1.3.13 (The Pauli representation of G3) We found that G2 is isomorphic to R(2),
and that this gave a proof of the existence of G2. There is a similar development in
the case of G3, which turns out to be isomorphic to C(2). This can also be regarded
as a proof of the existence of G3, while uniqueness has been discussed at length all
along this section.

The isomorphism of G3 with C(2) is called the Pauli representation and works
as follows (cf. [78]). Consider the matrices

σ0 = I2 =
(

1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0
0 −1

)
.
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They are called the Pauli matrices and what interests us here is that they satisfy
Clifford’s relations:

σjσk + σkσj = 2δj,k (δj,k = 0 if j �= k, = 1 if j = k).

By straightforward computations, it can be checked that

σ0, σ1, σ2, σ3, σ1σ2, σ1σ3, σ2σ3, σ1σ2σ3

is a linear basis of C(2). If we now map x = λ1e1+λ2e2+λ3e3 ∈ E3 to the matrix
m(x) = λ1σ1 + λ2σ2 + λ3σ3 ∈ 〈σ1, σ2, σ3〉, then the Clifford relations yield that
m(x)2 = λ2

1 + λ2
2 + λ2

3 = q(x), which is to be understood as saying that C(2) is a
model of G3. Note, however, that the rich geometric structure of G3 is invisible in
C(2), much as the structure of G2 is invisible in the model R(2). 
�

Inner Product and Applications to Vector Algebra

We end the section with a few interesting questions that did not find a proper place
in the exposition so far.

1.3.14 (Inner product) The inner product x · y of x ∈ G
j

3 and y ∈ Gk
3 is defined

as 0 if j = 0 or k = 0 and otherwise as (xy)k−j if j � k and (xy)j−k if j � k.
For multivectors, it is just extended by bilinearity. For vectors, the key formula tells
us that x · y is the scalar product, which is coherent with the notation that we have
been using in this case as an alternative to q(x, y). For two bivectors, xi · yi =
(xiyi)0 = (−xy)0 = −x · y, and in particular xi · xi = −x2. For a vector and
bivector, x · yi = (xyi)1 = (x ∧ y)i, while yi · x = (yix)1 = (y ∧ x)i = −x · yi
(recall that (·)k means the grade k component of (·)).

The special case w·(x∧y) is important: its value is w·(x∧y) = (w·x)y−(w·y)x.
For a proof, note that it is enough, due to the bilinearity in x and y, to check the
formula for x = ej , y = ek , j �= k. In this case, x ∧ y = ejek and w · (x ∧ y) =
(wejek)1. Writing w = w1e1 + w2e2 + w3e3, only the terms j and k in this sum
count in the last expression, for the third term has grade 3, and

(wejek)1 = wjejejek + wkekejek = wjek − wkej = (w · ej )ek − (w · ek)ej .

1.3.15 (The cross product of vectors) The cross product x × y ∈ E3 of the vectors
x and y is defined as the Hodge dual of x ∧ y :

x × y = −(x ∧ y)i or x ∧ y = (x × y)i. (1.7)

For example, with the cross product the second Olinde Rodrigues formula
(see 1.3.11) becomes (in agreement with the original form)
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u′′ sin θ ′′
2 = u sin θ

2 cos θ ′
2 + u′ cos θ

2 sin θ ′
2 + u× u′ sin θ

2 sin θ ′
2 .

Note that whereas x ∧ y does not depend on the orientation, x × y does, and in
fact changes sign when the orientation is reversed. In old terminology, these kind of
vectors were called axial vectors, while polar vector refers to the ordinary vectors
(see Fig. 1.3). Actually, there is no mystery here, for x×y depends on x, y, and i, so
that a better notation for it would be x×i y. If we do so for a moment, the “axiality”
of the cross product is the relation x ×−i y = −x ×i y.

The properties of the cross product can be easily deduced with geometric algebra.
Here is a brief indication of how it works.

(1) If j, k, l is a cyclic permutation of 1,2,3, then ej × ek = −i(ej ∧ ek) =
−i(iel ) = el . This shows that the cross product agrees with the usual linear
algebra definition.

(2) By what has been established in 1.3.14, we have x × y = −x · yi = yi · x.
Since it is skew-symmetric, we also have x × y = −y × x = −xi · y = y · xi.
In sum,

x × y = −xi · y = −x · yi = yi · x = y · xi.

(3) The mixed product formula, (x × y) · z = det(x, y, z), can be deduced as
follows. Since x × y is a vector, 2(x × y) · z = (x × y)z + z(x × y) =
−i(x ∧ y)z− iz(x ∧ y), which equals −2i x ∧ y ∧ z = 2 det(x, y, z) (we have
used that bx + xb = 2b ∧ x for any bivector b and vector x).

(4) The double cross product formula (x×y)×z = (x ·z)y− (y ·z)x is also easy:

(x× y)× z = −i(x× y) · z = −(x ∧ y) · z = z · (x ∧ y) = (z · x)y− (z · y)z.

(5) Geometrically, the cross-product x × y of two linearly independent vectors is
determined by the following properties: (i) x×y is orthogonal to both x and y;
(ii) its length is A(x, y), the area of the parallelogram defined by x and y; and
(iii) x, y, x×y is positively oriented basis. The property (i) follows from Hodge
duality or by applying the mixed product formula. The property (iii) is also a
consequence of that formula, because det(x, y, x×y) = (x×y) · (x×y) > 0.
As for (ii), we may assume that x and y are linearly independent, and by 1.3.14
we have (x× y)2 = −(x ∧ y)2. Now x ∧ y = |x||y| a sin α, where a denotes a
unit area in 〈x, y〉 (hence a2 = −1) and α = α(x, y). Consequently (x∧y)2 =
|x|2|y|2 sin2 α = A(x, y)2. 
�

1.3.16 (When do two quaternions commute?) Since real scalars commute with any
quaternion, the question is posed for two non-real quaternions, say h = λ + uiμ
and h′ = λ′ + u′iμ′, where u and u′ are unit vectors and μμ′ �= 0. Then we have,
using the key formula, hh′ = λλ′ + u′iλμ′ + uiλ′μ − (u · u′)μμ′ − (u ∧ u′)μμ′.



1.4 GA of the Minkowski Space, G1,3 23

With a similar expression for h′h, we get that h′h − hh′ = 2u ∧ u′μμ′. Therefore
h′h = hh′ if and only if u ∧ u′ = 0, which only happens when u′ = ±u. 
�

1.4 GA of the Minkowski Space, G1,3

This section is devoted to a mathematical presentation of the geometric algebra
G1,3 of the Minkowski space E1,3, but its geometry and physical applications will
be considered in Chap. 3. For historical reasons that will be explained later, G1,3
is called the Dirac algebra and we will denote it by D. Let us remark that this
particular case may be a good preparation for the study of the general case (arbitrary
non-singular signatures) because it has many of the required ingredients for its
treatment (see [97]).

The existence of such an algebra, with the assumptions specified below, can be
proved by means of the Dirac representation, much as we proved the existence of
G2 by means of R(2) and that of G3 by means of C(2) (see E.1.8, p. 32). For a
detailed conceptual proof, see, for example, [97]. Our main concern, therefore, will
be the analysis of the rich structure displayed by D, including its deep relation to
G3, and conclude, in particular, thatD is unique up to a natural isomorphism.

We will denote by E = E1,3 a vector space of dimension 4 endowed with a
metric that will be denoted by η (instead of the symbol q used for the Euclidean
spaces). The subindexes indicate that the signature of η is (1, 3). This means that
there exist an orthogonal basis e0, e1, e2, e3 such that

η(e0) = 1, η(e1) = η(e2) = η(e3) = −1. (1.8)

Any such basis will be said to be orthonormal. Note that vectors are not written in
bold italic characters, but just in italic lowercase letters. We reserve the bold italic
for the 3D Euclidean space of relative vectors that will be introduced later.

A vector a ∈ E will be said to be positive (negative) if η(a) > 0 (η(a) < 0). If
η(a) = 0, then we say that a is isotropic or null (the 0 vector is null, of course,
but there are plenty of non-zero vectors that are null, as, for example, e0 − ek ,
k = 1, 2, 3).

Let us remark that the signature is well defined: in any orthogonal basis of E1,3,
one of its vectors is positive and the remaining three are negative (see E.1.7, p. 32).
As in the previous sections, the main assumption on D is that it is an algebra that
extends E (we will use the same conventions as before about its product, called
geometric product) and that it satisfies Clifford’s reduction rule for any vector a:
a2 = η(a) . This rule is equivalent to Clifford’s relations: ab + ba = 2η(a, b) for
all vectors a and b. The proof of the equivalence is the same as for the Euclidean
case.

In addition, we require that R ∩ E = {0} and that D is generated by E as an
R-algebra.
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In what follows, e0, e1, e2, e3 denote an orthonormal basis of E. To refer to this
basis we will use the symbol e.

Clifford Units

For any sequence J = j1, . . . , jm ∈ N = {0, 1, 2, 3}, set eJ = ej1 · · · ejm . We also
define ηJ = η(ej1) · · · η(ejm) = (−1)s(J ), where s(J ) is the number of indices l

such that η(ejl
) = −1.

Among the expressions eJ , we are especially interested in those for which J is a
multiindex, which means that j1 < · · · < jm, and in this case the eJ will be called
Clifford units. Note that the set J of multiindices has cardinal 24 = 16.

1.4.1 (Artin’s formula [4])

(1) If I, J ∈ J ,

eI eJ = (−1)t (I,J ) ηI∩J eI � J ,

where I � J is the (ordered) symmetric difference of I and J and t (I, J ) is the
number of transpositions (order inversions) in the concatenated sequence I, J .

(2) In particular, e2
J = (−1)m//2ηJ = (−1)s(J )+m//2, where m = |J | and m//2 =

�m/2� (the integer part of m/2).

Proof (1) The sign (−1)t (I,J ) is the result of repeatedly applying the anticommu-
tation rule for orthogonal vectors until reordering I, J in non-decreasing order.
The sign ηI∩J is the result of applying the contraction rule to repeated vectors.
What is left is clearly eI � J .

(2) We have t (J, J ) = (m2
)

and ηJ = (−1)s(J ). Therefore e2
J = (−1)s(J )+(m

2). Now
it is enough to observe that

(
m
2

)
has the same parity as m//2. 
�

As in the Euclidean spaces, the volume element or pseudoscalar

i = e0e1e2e3 = e0123 (1.9)

will play an important role. For the moment, let us illustrate (2) in the proposition
above: i2 = −1, as s(0123) = 3 and 4//2 = 2.

Another example is that if e2
ijk = 1, then necessarily ijk = 123. Indeed, since

3//2 = 1, s(ijk) has to be odd and this can only happen if 0 is not in ijk.
To continue, notice that i anticommutes with vectors. This follows from the fact

that it anticommutes with the elements of e, an assertion that is straightforward to
check. For example, e0i = e123 while ie0 = (−1)3e2

0e123 = −e123.
The following two statements amount to a specific treatment for the signature

(1, 3) of concepts, results, and methods that are valid in general. The issues involved
(some quite subtle) are discussed in detail in [97].
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1.4.2 (The Clifford units are distinct) (1) For any I ∈ J , I �= ∅, we have eI �= ±1.
(2) If I, J ∈ J and I �= J , then eI �= ±eJ .

Proof (1) If eI = ±1, e2
I = 1. This rules out the I such that e2

I = −1. The
remaining I such that |I | � 2 are also ruled out, for e0 �= ±1, and if we had
ej ek = ±1 (j �= k), then we would get the contradiction ej = ±ek . So the only
remaining case to be ruled out is e123. If it were e123 = ±1, multiplying by e0
on the left we would get i = ±e0, which cannot occur because i2 = −1 and
(±e0)

2 = e2
0 = 1.

(2) The equality eI = ±eJ implies that ±1 = e2
I = ±eI eJ = ±eI � J , which by

(1) is only possible if I � J = ∅, that is, only if I = J . 
�
1.4.3 (Clifford basis) The set B = {eJ | J ∈ J} of Clifford units is a linear basis
ofD. Thus dimD = 16.

Proof As in the Euclidean cases, we see that the geometric product of any number
of vectors is a linear combination of B. Since E generates D as an R-algebra, we
haveD = 〈B〉. So it will suffice to prove that B is linearly independent.

Suppose that we have a linear relation
∑

I λI eI = 0. We want to show that
λI = 0 for all I . To that end, it will be enough to show that λ∅ = 0. Indeed, 1.4.2
tells us that if we multiply the initial relation by an arbitrary eI , then we obtain a
similar relation whose e∅ coefficient is ±λI .

So let us show that λ∅ = 0. For each index k, the original relation clearly implies
that

∑
I λI ekeI e

−1
k = 0. Since ek commutes or anticommutes with eI , we easily

infer the relation
∑

I λI eI = 0 in which the sum is extended to all the eI that
commute with all the ek . Finally, note that eI anticommutes with anyone of its
factors when |I | is even and positive, and that it anticommutes with any ek such
that k /∈ I when |I | is odd. Since such k exist (any k ∈ N − I �= ∅, as |N | = 4), we
are just left with the relation λ∅ = 0. 
�

Exterior Product and the Canonical Linear Grading ofD

For any k ∈ N , k �= 0, consider the map A : Ek → D such that

A(x1, . . . , xk) = 1
k!
∑

p(−1)t (p)xp1 · · · xpk
,

where the sum is extended to all permutations p of {1, . . . , k} and where t (p) is
the number of transpositions (order inversions) in p. This map is k-multilinear and
skew-symmetric, and hence it induces a unique linear map g : ∧kE → D such
that

g(x1 ∧ · · · ∧ xk) = A(x1, . . . , xk). (1.10)

Note that g(x1∧· · ·∧xk) = x1 · · · xk if x1, . . . , xk are pairwise orthogonal, for in that
case the geometric product is skew-symmetric and (−1)t (p)xp1 · · · xpk

= x1 · · · xk
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for all permutations p. In particular, if we let e
Ĵ
= ej1 ∧ · · · ∧ ejk

, then g(e
Ĵ
) = eJ

for all J .
Since the k-vectors e

Ĵ
for J ∈ Jk = {J ∈ J : |J | = k} form a basis of

∧kE, we conclude that g is a canonical linear isomorphism ∧kE � 〈Bk〉, where
Bk = {eJ : J ∈ Jk}. In particular we see that the spacesDk = 〈Bk〉 do not depend
on the orthonormal basis e used to construct the Clifford basis and that we have a
canonical decompositionD = D0 +D1 +D2 +D3 +D4.

Now, again as in the Euclidean case, the linear isomorphism ∧E � D allows
us to graft the structures of ∧E to D. In particular, we can endow D with an
exterior product (denoted with the same symbol ∧, it is also called outer product),
which enriches D with another algebra structure (associative and unital). For the
computation of this exterior product, the most basic formula is that e

Ĵ
= eJ . In

addition, the exterior product is graded and skew-commutative, which means that if
x ∈ Dk and y ∈ Dl , then x ∧ y ∈ Dk+l and x ∧ y = (−1)kly ∧ x.

The linear isomorphism∧E � D also entitles us to apply the usual terminology
concerning ∧E . The elements of D, for example, will be called multivectors and
those of Dk , k-vectors. We also say that k is the grade of the elements of Dk .
The non-zero k-vectors of the form a1 ∧ · · · ∧ ak are called k-blades (or also
decomposable k-vectors). The 0-vectors are the scalars, as D0 = 〈1〉 = R. The
1-vectors are the usual vectors, for D1 = 〈e0, e1, e2, e3〉 = E. Instead of 2-vectors
and 3-vectors, it is customary to say bivectors and trivectors. The 4-vectors form a
1-dimensional space, for D4 = 〈i〉, and its elements are called volume elements or
pseudoscalars.

Another important concept that can be transferred from ∧E to D is the natural
extension of the metric η to ∧E and which we will still denote η. As seen in D,
this metric is determined by two conditions: The spaces Dk and Dl are orthogonal
for k �= l, and for two k-blades it is given by Gram’s formula, which here it will be
sufficient to state for k = 2:

η(a1∧a2, a′1∧a′2) =
∣∣∣∣∣
η(a1, a′1) η(a1, a′2)

η(a2, a′1) η(a2, a′2)

∣∣∣∣∣
, η(a1∧a2) =

∣∣∣∣∣
η(a1) η(a1, a2)

η(a2, a1) η(a2)

∣∣∣∣∣
. (1.11)

In particular we have η(eI , eJ ) = 0 if I �= J , and η(eI ) = (−1)s(I ). Thus the
Clifford basis is orthonormal. On the other hand, if we compare the value of e2

J

with η(eJ ), we get the relation

e2
J = (−1)m//2η(eJ ), m = |J |. (1.12)

The Inner Product

The algebraD is endowed with another bilinear product, denoted by x ·y and called
the inner product. It is not associative, nor unital, but it turns out to be a fundamental
ingredient. Due to the bilinearity, it is enough to define the inner product eI · eJ of
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two Clifford units. The fact that it does not depend on the Clifford units used will be
an immediate consequence of the definition in terms of the geometric product and
the grading (see 1.4.4).

Let l = |I | and m = |J |. The rules for the computation of eI · eJ are as follows:
If l = 0 or m = 0, then eI · eJ = 0; in other words, we have 1 · eJ = eI · 1 = 0
(this rule might seem a bit odd, but it is expedient in order to guarantee the validity
without exceptions of important formulas that we will find later).

If l, m � 1, then eI ·eJ = eI eJ if I ⊆ J or J ⊆ I , and= 0 in all other cases. The
explanation of this rule is that if we fix l and m, then the grade of eI eJ is l+m−2ν,
where ν = |I∩J |, and so its minimum possible grade is when ν is maximum, which
occurs precisely when I ⊆ J (and then its grade is m − l) or J ⊆ I (and then the
grade is l −m). To sum up:

eI · eJ =
{

0 if l = 0 or m = 0

(eI eJ )|l−m| if l, m � 1.
(1.13)

In particular we have eI · eI = e2
I if l � 1.

Notice that the maximum possible grade of eI eJ is l + m, and that it is reached
if and only if ν = 0, which is to say if and only if I ∩ J = ∅. If that is the case,
eI eJ = eI ∧ eJ .

If we interchange the factors of the inner product (1.13) in the case I ⊆ J (J ⊆
I ), the number of sign changes is (m−1)l = ml−l (respectively (l−1)m = lm−m).

All the considerations so far are systematized in the following statement:

1.4.4 (Grades of a product) Let x ∈ Dl , y ∈ Dm. If j ∈ {0, 1, 2, 3, 4} and (xy)j �=
0, then j = |m − l| + 2ν with ν � 0 and j � r + s. Moreover, (xy)l+m = x ∧ y

and for l, m > 0, (xy)|l−m| = x · y. Finally, x · y = (−1)lm+ly · x if l � m and
= (−1)lm+my · x if m � l. 
�
1.4.5 (Remark) We have systematically used the metric η in order to avoid
confusions with the inner product. A remarkable difference is that if x ∈ Dl and
y ∈ Dm, then η(x, y) = 0 when l �= m, but in general x · y may be �= 0 and
also may be non-symmetric. For example, e1 · e0e1e2 = e0e1e2 · e1 = e0e2, but
e1 · e0e1e2e3 = e0e2e3 while e0e1e2e3 · e1 = −e0e2e3. In the case l = m, we have
x · y = y · x and we will see in 1.4.8 that this is equal to (−1)m//2η(x, y). For
example, e1e2 · e1e2 = e1e2e1e2 = −1 and η(e1e2) = η(e1)η(e2) = 1.

1.4.6 (Key formulas) If a is a vector and x a multivector, then

ax = a · x + a ∧ x and xa = x · a + x ∧ a.

Proof Because of the bilinearity in a and x, we may assume that a = ej and
x = eK . If K = ∅, the inner products vanish and both the geometric and the exterior
products are equal to ej . If K �= ∅, there are two cases to consider: j ∈ K and
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j /∈ K . If j ∈ K , ej ·eK = ej eK and eK ·ej = eKej , while ej ∧eK = eK ∧ej = 0.
If j /∈ K , ej · eK = eK · ej = 0, while ej eK = ej ∧ eK and eKej = eK ∧ ej . 
�

Involutions

Now let us transfer the parity and reverse involutions of∧E toD.
So we have parity and reverse involutions D → D, x �→ x̂ and x �→ x̃, which

are given, for x ∈ Dk , by x̂ = (−1)kx and x̃ = (−1)k//2x, respectively.

1.4.7 (Properties of the involutions) The parity involution is an automorphism of
D, in the sense that

x̂y = x̂ ŷ, x̂ ∧ y = x̂ ∧ ŷ, x̂ · y = x̂ · ŷ.

The reverse involution is an antiautomorphism ofD, in the sense that

x̃y = ỹ x̃, x̃ ∧ y = ỹ ∧ x̃, x̃ · y = ỹ · x̃.

Proof In all cases, it is enough to check the identities for two elements of the
Clifford basis, say x = eI ∈ Dl , y = eJ ∈ Dm. For the parity involution, note
that the degrees of eI eJ , eI ∧ eJ , and eI · eJ are l+m− 2ν (ν = |I ∩J |), l+m and
|l − m|, respectively, and that all are congruent to l + m mod 2. For example, the
right-hand side of x̂y = x̂ ŷ is (−1)l+mxy and the left-hand side is (−1)l+m−2νxy,
so they are equal.

In the case of the reverse involution, the argument is similar, but we have to take
into account that ẽI = (−1)l//2eI = e

Ĩ
, where Ĩ is the reverse of I (the order

reversal Ĩ of I amounts to
(
l
2

)
sign changes, and we know that it is the same as

l//2 sign changes). In the case of the last equality, for example, and assuming that
l � m, the right-hand side is (−1)l//2+m//2y · x = (−1)l//2+m//2+lm+lx · y, whereas
the left-hand side is (−1)(m−l)//2x · y, and they agree because a little arithmetical
checking shows that l//2+m//2+ lm+ l and (m− l)//2 are congruent mod 2. 
�
1.4.8 (Alternative form of the metric) (1) For any x, y ∈ D, η(x, y) = (xỹ)0 =
(x̃y)0. (2) If X is a blade of grade k, then η(X) = (−1)k//2X2. In particular,
X2 ∈ R.

Proof (1) Given that the three expressions are bilinear, it suffices to show that they
hold for x = eI and y = eJ . Thus the checking is reduced to ascertain that
(eI ẽJ )0 and (ẽI eJ )0 vanish if J �= I , and that they are equal to η(eI ) if J = I .

The first claim holds because the grades of eI ẽJ and ẽI eJ are not 0 if J �= I .
Concerning the second, it is clear that eI ẽI = ẽI eI = (−1)s(I ) and we know
that this is the value of η(eI ).

(2) We have η(X) = (XX̃)0. But XX̃ ∈ R, because we can represent X as a
product of orthogonal vectors, and so η(X) = XX̃ = (−1)k//2X2. 
�
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Hodge Duality

Artin’s formula 1.4.1 shows that if eI has grade l, then eI i has grade 4 − l. So we
have a linear map

Dl → D4−l , x �→ x∗ = xi.

This map, which is called Hodge duality, is a linear isomorphism, and its inverse is
the map y �→ −yi. Even more:

1.4.9 The Hodge duality is an antiisometry.

Proof η(x∗) = η(xi) = (xi x̃i )0 = −(xx̃)0 = −η(x). 
�

Relative Space and the Pauli Algebra

Let D+ = D0 + D2 + D4. Since D+ = {x ∈ D : x̂ = x} and x �→ x̂ is an
automorphism ofD,D+ is a subalgebra ofD that is called the even subalgebra. By
what we have seen at the end of the previous subsection, we have

D2 = 〈σ1, σ2, σ3, σ1i, σ2i, σ3i〉 = E+ Ei,

where E is the space 〈σ1, σ2, σ3〉. Since σ 2
k = −η(σk) = 1, we see that E is a 3-

dimensional Euclidean space with the metric q = −η|E and that {σ1, σ2, σ3} is a
q-orthonormal basis. We will say that E is the relative space associated with e0. The
geometrical and physical significance of this space will be considered in Chap. 3.

1.4.10 D+ is the geometric algebra of (E, q) and its pseudoscalar is i.

Proof D+ is an associative unital algebra, it contains E as a subspace (Fig. 1.4), and
R ∩ E = {0}. It is also immediate that D+ is generated by E as an R-algebra, for
σj i = σkσl (where jkl is a cyclic permutation of 123) and i = σ1σ2σ3. Finally, the
fact that {σ1, σ2, σ3} is a q-orthonormal basis of E, and that σ 2

k = 1 = q(σk), shows

Grade Names Bases
0 Scalars 1
1 Vectors e0, e1, e2, e3
2 Bivectors σ1, σ2, σ3, σ*1, σ*2, σ*3
3 Pseudovectors e*0, e*1, e*2, e*3
4 Pseudoescalars 1*

Fig. 1.4 Synopsis of the Clifford basis (up to a few signs) with a row for each grade. For grade
2, the basis is split in two parts: The bivectors σk = eke0 and their Hodge duals σ ∗k (k = 1, 2, 3).
The significance of the order eke0 (instead of e0ek) will be seen in the next subsection. For a basis
element x, we write x̄ to denote that η(x) = −1
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that D+ satisfies the contraction rule with respect to q: x2 = q(x) for any x ∈ E.
The relation σ1σ2σ3 = i shows that the pseudoscalar of E coincides with i. 
�

We setP = D+ and will say that it is the Pauli algebra. The linear grading of this
algebra is as follows: P0 = R, P1 = E, P2 = Ei, P3 = 〈i〉 = D4. As established in
the preceding chapter, the even algebra of the Pauli algebra, P+ = P0 + P2, is the
field of (geometric) quaternions.

1.4.11 (Remark) The geometric product of P is the restriction of the geometric
product ofD. Moreover, P is clearly closed for the exterior and inner products ofD
(cf. 1.4.7). But the restrictions of the latter two products to P do not agree with the
exterior and inner products of P. To distinguish between the two exterior and inner
products, we make the convention of writing σ1, σ2, σ3 when we consider these
expressions as bivectors of D, and σ 1, σ 2, σ 3 when they are considered as vectors
of E. In this way, an expression such as σ 1 ∧ σ 2 indicates that the exterior product
is to be taken in P, and the result is the bivector σ 1σ 2 = σ 3i ∈ P2 (we let i denote
the pseudoscalar i ofD when considered as the pseudoscalar of P). Note, however,
that σ1 ∧ σ2 = e1 ∧ e0 ∧ e2 ∧ e0 = 0 in D. Analogously, σ 2 = σ 1 · σ 1σ 2, but
σ1 · σ1σ2 = −e1e0 · e1e2 = 0. 
�
1.4.12 (Complex Structure ofD) C = 〈1, i〉 = D0+D4 = P0+P3 is a subalgebra
of P and D (recall that i = i) which is isomorphic to the complex field C. Its
elements have the form α + βi (α, β ∈ R) and we call them complex scalars.

The space D1 + D3 = D1 + D1i is closed for the multiplication by i and we
will say that it is the space of complex vectors. Its elements have the form a + bi,
a, b ∈ D1.

The elements of the space D2 = E + Ei, which is also closed for the
multiplication by complex scalars, have the form x + yi, x, y ∈ E.

To sum up, all multivectors ofD can be represented in a unique way in the form
(α + βi)+ (a + bi)+ (x + yi), for α, β ∈ R, a, b ∈ D1, x, y ∈ E. 
�

1.5 Exercises

E.1.1 (
√

2 is irrational) Let a be a positive real number. Let

X = {x ∈ R | x > 0, xn � a}.

Then X is bounded above and if r is its least upper bound, then rn = a (or r = n
√

a).√
2 /∈ Q: If

√
2 = a/b, a, b ∈ N, we could assume that a and b are relatively

prime; then, 2 = a2/b2, or a2 = 2b2, and hence a = 2a′, 2a′2 = b2; therefore, we
arrive at the contradiction that a and b are both even.
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E.1.2 The exponential function ex is defined by the formula

ex = 1+ x

1! +
x2

2! +
x3

3! + · · · =
∑

k�0

xk

k! .

In the case x = iα, (iα)k = ikαk , and since i2 = −1, i3 = −i, i4 = 1, i5 = i,. . . ,
we get Euler’s formula:

eiα = 1− α2

2! +
α4

4! − · · · + i

(
α

1! −
α3

3! +
α5

5! − · · ·
)
= cos α + i sin α.

In particular we have eiπ/2 = i, eiπ = −1, and e2iπ = 1. For a given n ∈ N,
the complex numbers ξk = e2πik/n satisfy (ξk)

n = e2πik = 1, and since for
k = 0, . . . , n − 1 they are distinct, it follows that they are the only solutions of
the equation ξn = 1.

E.1.3 To show that we can find an orthogonal basis for the metric q we can proceed
as follows (we will not use that q is non-degenerate). If q(x) = 0 for all x, then the
relation 2q(x, y) = q(x + y) − q(x) − q(y) shows that q is identically 0, and in
this case all bases are orthogonal. So we may assume that there is a vector e1 such
that q(e1) �= 0. Then the kernel of the linear map E → R given by x �→ q(e1, x)

has dimension n − 1 and by induction it has an orthogonal basis e2, . . . , en. Since
its vectors are orthogonal to e1 (by construction), it follows that e1, e2, . . . , en is an
orthogonal basis of E.

E.1.4 (Cauchy-Schwarz inequality) Given the non-zero vectors v, v′ ∈ En, for any
λ ∈ R we have q(λv − v′) � 0, and q(λv − v′) = 0 can only happen if v′ = λv

for some λ. In this case, q(v, v′) = λq(v) = λ|v|2 = ±|v||v′|, where the sign ±
corresponds to the cases λ > 0 and λ < 0.

If v and v′ are linearly independent, then q(λv−v′) = q(λv−v′, λv−v′) > 0 for
all λ. Using that q is bilinear, we conclude that q(v)λ2− 2λq(v, v′)+ q(v′) > 0 for
any λ, which can occur only if q(v, v′)2 − q(v)q(v′) < 0, or q(v, v′)2 < |v|2|v′|2.
Finally this is equivalent to say that −|v||v′| < q(v, v′) < |v||v′|. Therefore

−|v||v′| � q(v, v′) � |v||v′|

in all cases, with equality on the right (left) precisely when v′ = λv with λ > 0
(λ < 0).

E.1.5 With the notations zϕ = eiϕ ∈ P+ and uα = e1zα ∈ P−, we can translate
into an element-wise form the assertions in the statement and proof of 1.2.9. In
particular we have the following relations: (1) zϕzϕ′ = zϕ+ϕ′ , (2) uαzϕ = uα+ϕ and
zϕuα = uα−ϕ , (3) uαuβ = zβ−α .
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E.1.6 (Existence ofG2) Pick an orthonormal basis e1, e2 of E2 and consider (using
the notations of 1.1.3) the isomorphism m : E2 = 〈e1, e2〉 � 〈e1, e2〉 ⊂ R(2)

determined by ej �→ ej (j = 1, 2). If v = λ1e1 + λ2e2, then

m(v)2 = (λ1e1 + λ2e2)
2 = λ2

1 + λ2
2 = q(v).

This and the fact that {I2, e1, e2, e1e2} is a linear basis of R(2) show that G2 exists.

E.1.7 (Sylvester’s law of inertia) Given an orthogonal basis of E1,3, let F be the
vector subspace spanned by its positive vectors. Since all non-zero vectors of F are
positive, and all non-zero vectors of 〈e1, e2, e3〉 are negative, F ∩〈e1, e2, e3〉 = {0}.
This implies, as E1,3 has dimension 4, that dim(F ) � 1. But it cannot be F = {0},
as otherwise all non-zero vectors would be negative. So dim(F ) = 1.

This argument can be easily adapted to prove the general Sylvester’s law of
inertia: if a metric η of a vector space has an orthogonal basis with r positive vectors,
s negative vectors, and t null vectors, then any other orthogonal basis has r positive
vectors, s negative vectors, and t null vectors.

E.1.8 (The Dirac representation) In 1928, Dirac introduced the famous matrices
Γμ ∈ C(4), [27], namely:

Γ0 =
(

σ0 0
0 −σ0

)
, Γk =

(
0 −σk

σk 0

)
.

The matrices Γμ satisfy the Clifford relations for the signature η = (+,−,−,−):

ΓμΓν + ΓνΓμ = 2ημν,

and so we have a representationD→ C(4) such that eμ �→ Γμ. This representation
can be used to prove that the Dirac algebraD exists by adapting the argument used
for the existence of G3. Note, however, that in this case the image of D is a 16-
dimensional subalgebra of the 32-dimensional algebra C(4).



Chapter 2
Conformal Geometric Algebra

This chapter is devoted to a presentation of conformal geometric algebra (CGA)
targeted to the sort of applications dealt with in Chaps. 4 (robotics) and 5 (molecular
geometry). This means that the ground space will be the Euclidean space E3 and that
the algebra we will be working with is designed so that it can encode all conformal
transformations of E3 in spinorial form. Except for noting that conformal means
angle-preserving, we can defer the necessary precisions to the most convenient
moments in our exposition. Here are some references: Foundational paper: [64];
a nice expository memoir: [55]; computationally oriented: [49]; vision and graphics
oriented: [54]; oriented conformal geometry: [12]; treatises: [20, 30, 63, 79].

2.1 Ground Notions

The conformal closure of the Euclidean space E = E3 is defined as the space

Ē = E ⊥ E1,1 � E4,1,

where E1,1 is a hyperbolic plane, that is, a two-dimensional vector space with a
metric of signature (1, 1). If we let q denote the metric of Ē (the same symbol used
for the metric of E), then we will say that the geometric algebra C = G4,1 of Ē is
the conformal geometric algebra (CGA) of E.

The algebra C is constructed from Ē in much the same way as the Dirac algebra
D was constructed from E1,3. It is an algebra that contains Ē as a linear subspace
satisfying R ∩ Ē = {0}, that is generated by Ē as an R-algebra, and which satisfies
Clifford’s reduction rule,

a2 = q(a) for all a ∈ Ē, (2.1)
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or, equivalently, Clifford’s relations,

ab + ba = 2q(a, b) for all a, b ∈ Ē. (2.2)

Now C can be endowed with a canonical linear grading

C = C0 + C1 + C2 + C3 + C4 + C5 (2.3)

such that dimCk = (5
k

)
, and hence dimC = 32, with C0 = R and C1 = Ē. This

may be constructed with the Clifford units associated with an orthonormal basis of
Ē formed with an orthonormal basis e1, e2, e3 of E and an orthonormal basis e, ē

of E1,1 (so e · ē = 0, e2 = 1 and ē2 = −1). This works because the statement
corresponding to 1.4.2 (1) is still true and then a proof of the linear independence
can be written by adapting the proof of 1.4.2 (2).

This enables us to use the terms multivectors (in general they will be denoted by
symbols such as x, y, etc.) and k-vectors (the grade k component of x ∈ C will be
denoted xk ∈ Ck; general blades will be denoted with symbols such as X, Y, etc.). In
C we also have outer (or exterior) and inner products (x∧y and x ·y, respectively),
and also parity and reversal involutions (x̂ and x̃, respectively).

All these ingredients obey rules that are analogous to the corresponding rules
for D and which can be proved by similar methods. So, for example, we have
a determination of the exterior and inner products analogous to 1.4.4 and the
remark 1.4.5 (in particular q(a, b) = a · b for all a, b ∈ E). We also have key
formulas 1.4.6, and the alternative form of the metric

q(x, y) = (xỹ)0 = (x̃y)0, (2.4)

for all x, y ∈ C (cf. 1.4.8). Rather than delving into more details here, it will be
sufficient to indicate them, when required, along the way.

Instead of the basis {e, ē} of E1,1, it is convenient to use the basis {e0, e∞} defined
as follows:

e0 = 1
2 (e + ē), e∞ = ē − e. (2.5)

These vectors satisfy the relations

e2
0 = e2∞ = 0, e0 · e∞ = −1. (2.6)

Note also that

e0 + 1
2e∞ = ē, e0 − 1

2e∞ = e. (2.7)

As in Chap. 1, the vectors in E will be represented with bold italic symbols
with the exception of the vectors e1, e2, e3 of an orthonormal basis. Then e =
{e1, e2, e3, e0, e∞} is a basis of Ē, but it is not orthonormal.
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Fig. 2.1 Basis blades of C.
The square of the eight blades
1 = e∅, ek , e0∞ and ek0∞
(k = 1, 2, 3) is 1, the square
of the eight blades ejk , e123,
ejk0∞ and e1230∞
(0 � j < k � 3) is −1, and
the square of the remaining
16 blades is 0

2.1.1 (Matrix of q) The matrix of q with respect to e is:

· e1 e2 e3 e0 e∞
e1 1 0 0 0 0

e2 0 1 0 0 0

e3 0 0 1 0 0

e0 0 0 0 0 −1

e∞ 0 0 0 −1 0

In other words, (v+λ0e0+λ∞e∞)·(v′+λ′0e0+λ′∞e∞) = v·v′−(λ0λ
′∞+λ∞λ′0).

For any j1, · · · , jk ∈ N = {1, 2, 3, 0,∞}, we set ej1···jk
= ej1 ∧ · · · ∧ ejk

. If the
indices j1, . . . , jk are distinct, then ej1···jk

is a blade, and if we further impose that
j1 < · · · < jk (in the order declared for N ), then we get a basis of Ck , which we
will simply call blade basis. In Fig. 2.1 we can see this basis displayed with a row
for each grade.

2.1.2 (Examples)

(1) The 2-blade Z = e0∞ is equal to eē (the pseudoscalar of E1,1) :

e0∞ = e0 ∧ e∞ = 1
2 (e + ē) ∧ (ē − e)∧ = e ∧ ē = eē,

where in the last step we use that e and ē are orthogonal.
(2) We have Z2 = (eē)2 = −e2ē2 = 1, Z̃ = −Z, Ze = −eZ = −ē,

Zē = −ēZ = −e.
(3) Using the alternative form of the metric [see 1.4.8 (2)], we can easily find the

squares of the basis blades. If the blade contains the indexes 0∞, its square is
1 for grades 2 and 3, and −1 for grades 4 and 5. Otherwise, if it contains 0 or
∞, its square is 0, and if it only contains indexes from {1, 2, 3}, then we are in
the case of G3 and the square is 1 for grades 0 and 1, and −1 for grades 2 and
3. See Fig. 2.1 for a different way of listing these values.
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2.1.3 (Remarks)

(1) All pairs of vectors in the basis e1, e2, e3, e0, e∞ are orthogonal, except for e0
and e∞. Thus, only in this case Z = e0∞ = e0 ∧ e∞ differs from the geometric
product e0e∞:

e0e∞ = e0 · e∞ + e0 ∧ e∞ = −1+ e0∞ = −1+ Z.

(2) e∞e0 = ẽ0e∞ = −1+ Z̃ = −1− Z.
(3) e0Z = −Ze0 = e0, e∞Z = −Ze∞ = −e∞.
(4) e0e∞e0 = −2e0, e∞e0e∞ = −2e∞.

The Hestenes’ Embedding

The vectors in Ē will be called conformal vectors, or just vectors if the context
allows it. Any conformal vector has the form

x = v + λe0 + μe∞, λ, μ ∈ R. (2.8)

The set Q = {x ∈ Ē : x2 = 0} of null vectors is a cone with vertex at 0, for if
x ∈ Q, then λx ∈ Q for all λ ∈ R. Note that e0, e∞ ∈ Q. We will say that Q is the
null cone of Ē. We will also write Q′ = Q− 〈e∞〉.
2.1.4 (Normalized form of a null vector) If x ∈ Q′, then there exist a non-zero
scalar λ and an x ∈ E, uniquely determined by x, such that x = λ(x+e0+ 1

2x2e∞).

Proof With the notations of relation (2.8), we have x2 = v2 − 2λμ. Therefore,
x ∈ Q if and only if v2 = 2λμ. We can have x ∈ Q′ only if λ �= 0 (λ = 0 implies
v = 0 and so we would have the contradiction x = μe∞ /∈ Q′). Thus we can write

x = λ(x + e0 + μ
λ
e∞), where x = v/λ. Finally μ

λ
e∞ = v2/2λ

λ
e∞ = 1

2x2e∞. 
�
This tells us that the section H of Q by the hyperplane of equation λ = 1 (or

x · e∞ = −1) is the locus of the vectors x = x+ e0+ 1
2x2e∞ for x ∈ E. Therefore,

H is the paraboloid in the hyperplane λ = 1 of equation μ = 1
2x2 (often called the

horosphere) and the map H : E → H , x �→ x, defined by

x = x + e0 + 1
2x2e∞ (2.9)

is bijective (the inverse map x �→ x is given by the restriction toH of the orthogonal
projection π : Ē → E of Ē onto E). H is called the Hestenes’ map (see Fig. 2.2).

2.1.5 (Remark on e0 and e∞) Since e0 = H(0), e0 is the conformal vector of the
origin of E. On the other hand, we have lim|x|→∞ 2x/x2 = e∞, which suggests
that e∞ is the conformal vector of the “point at infinity” of E. For a more precise
geometric interpretation of this, see next remark. 
�
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x e∞

e0 H

x = x + e0 + 1
2x

2e∞

x + e0

Q
E

Fig. 2.2 The Hestenes map. The sectionH of the null cone Q by the hyperplane of Ē through e0
which is parallel to E+〈e∞〉 (this hyperplane is given by the equation x ·e∞ = −1) is a paraboloid
in that hyperplane (the horosphere). The Hestenes’ vector x corresponding to x ∈ E belongs to
H and the map E → H , x �→ x = H(x) is bijective. In this picture the section of Q by the
hyperplane through e0 that is parallel to E + 〈e0 − e∞〉 is represented by the dotted ellipse

2.1.6 (Remark on conformal compactifications) Consider the projective space PĒ

of Ē. Given a non-zero vector x ∈ Ē, let |x〉 ∈ PĒ be the point defined by x. Recall
that |x〉 is the line 〈x〉 ⊂ Ē regarded as a point of PĒ, which gives the basic rule
that |x〉 = |x′〉 if and only if x′ = λx for some λ ∈ R (necessarily non-zero because
x′ �= 0), a relation that we denote x ∼ x′.

Now sitting in PĒ we have PQ, which is the set of points |x〉 for x ∈ Q− {0} (a
quadric hypersurface in projective geometry terminology). The main use of this is
that PH = PQ − {|e∞〉} and that the map E → PH , x �→ |x〉, is bijective. Thus
E is embedded in the compact manifold PQ and fills it except for the point |e∞〉.
This is why PQ is a one-point compactification of E and in this sense the conformal
closure is also called the conformal compactification.

The notion of conformal compactification can be defined for any space Er,s with
r+ s > 2 and plays a key role in conformal field theory (cf. [85]). For a GA account
of this process, see [97]. 
�

The next observation shows two ways of using the conformal vectors of two
points to determine their distance.

2.1.7 Let x = H(x), x′ = H(x′), x, x′ ∈ E. Then (1) (x − x′)2 = (x − x′)2, and
(2) x · x′ = − 1

2 (x − x′)2.

Proof

(1) We have x−x′ = x−x′ + (κ−κ ′)e∞, where κ = x2/2 and κ ′ = x′2/2. Since
e∞ is null and orthogonal to E, the conclusion is immediate.

(2) Indeed, −2x · x′ = (x − x′)2 − x2 − x′2 and the conclusion follows from (1)
and the fact that x and x′ are null. 
�

As already indicated, the orthogonal projection of the null vector a to E is a.
The proposition above tells us that we can achieve the same by appealing only to
the inner product of C:
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{a} = {x ∈ E : a · x = 0}.
Indeed, a · x = 0 is equivalent to (a − x)2 = 0 and hence to x = a.

This points out to the possibility of determining geometric objects in E by
means of operations in C involving conformal vectors related to the object. Before
exploring this possibility in the next two sections, another simple example may help
seeing the potential of this idea.

2.1.8 (Example: The bisector plane of a segment) Let a, b ∈ E. Then a point x lies
on the bisector plane of the segment [a, b] if and only if (a − b) · x = 0. Indeed,

(a − b) · x = (a − b + 1
2 (a2 − b2)e∞) · (x + e0 + 1

2x2e∞)

= (a − b) · x − 1
2 (a2 − b2)

= (a − b) ·
(
x − 1

2 (a + b)
)

and so the relation (a− b) · x = 0 is equivalent to say that x = 1
2 (a+ b)+ v, where

v ∈ (a − b)⊥, and this proves the claim. 
�
Instead of using the inner product, as in the examples above, we could try to

base the representation on the outer product. For example, for a given point a, the
relation x ∧ a = 0 is satisfied by the conformal vectors proportional to a, and all
these vectors are conformal representations of a (but only one is normalized). This
idea leads to what we will call outer representations and will be studied in Sect. 2.3.
The representations based on the inner product will be called inner representations.
We turn to them in the next section.
Caviat. In the literature, outer (inner) representations are called direct (dual)
representations, or OPNS for outer product null space (IPNS for inner product null
space) representations. If it is true that inner and outer representations are dual in a
sense that will be made precise later (see 2.3.3), the choosing of which one is primal
(or direct) and which one is dual is a matter of convenience and we prefer to use the
terms inner and outer because they refer directly to what is the operation involved.

2.2 Inner Representations

We will consider in turn the inner representations of spheres, planes, circles, and
lines. Point pairs will be considered in Sect. 2.3.

We say that K ∈ C is (or gives) an inner representation of F ⊆ E if (and only if)

F = {x ∈ E : x ·K = 0}.
Note that a scalar multiple of an inner representation of F is also an inner
representation of F .
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Spheres

Consider the sphere S = Sz, ρ with center at z ∈ E and radius ρ. Its points x are
those satisfying the equation (x − z)2 = ρ2, which is equivalent to

x · z = − 1
2ρ2 = x · ( 1

2ρ2e∞), or x · (z− 1
2ρ2e∞) = 0.

2.2.1 (Inner representation of spheres) (1) The vector

s = z− 1
2ρ2e∞ = z+ e0 + 1

2 (z2 − ρ2)e∞

is an inner representation of S. Since s · e∞ = −1, we say that s is a normalized
inner representation of S. (2) If a ∈ E is any point on S, s = a · (z ∧ e∞). (3) The
radius and the center of the sphere can be retrieved from s:

s · s = ρ2, z = s + 1
2ρ2e∞. (2.10)

Proof (1) It has already been established.
(2) Since a · z = − 1

2 (a − z)2 = − 1
2ρ2 and a · e∞ = −1, we have

s = z− 1
2ρ2e∞ = z+ (a · z)e∞ = (a · z)e∞ − (a · e∞)z = a · (z ∧ e∞).

(3) It is a direct consequence of z2 = 0 and z · e∞ = −1. 
�
In particular we see that points can be construed as spheres of zero radius. By

analogy, vectors of the form s = z + 1
2ρ2e∞ will be said to be (normalized inner

representations of) imaginary spheres, and in this case ρ2 = −s · s.
By definition, the quantity s · x vanishes for any point x on the sphere, but it has

also meaningful information if it is non-zero.

2.2.2 (Interior and exterior points) A point x such that s · x > 0 (s · x < 0) lies in
the interior (exterior) of the sphere.

Proof A short computation shows that 2s·x = ρ2−(x−z)2. If x is interior (exterior)
to the sphere, then (x − z)2 < ρ2 ((x − z)2 > ρ2) and s · x > 0 (s · x < 0). 
�

Planes

Let P = Pu,δ be the plane normal to the unit vector u and with a (signed)
perpendicular distance δ to the origin (this means that δu ∈ P ). Then the points
x of P are precisely those that satisfy u · x = δ (note that the points of P have the
form x = δu + v, with v ∈ u⊥). Now u · x = u · x and δ = −δ(x · e∞), so the
equation can be written as

x · (u+ δe∞) = 0.
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Fig. 2.3 P is the plane
through z with unit normal
vector u, C is the circle on P

with center z and radius ρ. If
S is the sphere with center z

and radius ρ, then P is a
diametric plane of S and
C = S ∩ P

ρ z

u S

C

P

2.2.3 (Inner representation of planes) (1) The vector p = u + δe∞ is an inner
representation of the plane P . (2) For any a ∈ P , p ∼ a · (u ∧ e∞) and hence
a · (u ∧ e∞) is also an inner representation of P . (3) Deconstruction: δ = −p · e0,
u = p − δe∞.

Proof

(1) It has already been proved and (3) is obvious.
(2) If the plane represented by u+ δe∞ passes through a, then a · (u+ δe∞) = 0.

So δ = (a ·u)/(−a · e∞) and−(a · e∞)(u+ δe∞) = −(a · e∞)u+ (a ·u)e∞ =
a · (u ∧ e∞) is also an inner representation of P . 
�

Circles

We seek an inner representation of the circle C of radius ρ and center z on the plane
through z with unit normal vector u (see Fig. 2.3).

2.2.4 Let s be an inner representation of the sphere S = Sz, ρ and p an inner
representation of the plane P = Pz,u through z with normal unit vector u. Then
c = s ∧ p is an inner representation of C = S ∩ P .

Proof By 2.2.1 and 2.2.3, we may assume that s = z− 1
2ρ2e∞ and p = z ·(u∧e∞).

We want to show that x · (s ∧ p) = 0 is equivalent to say that x ∈ S ∩ P .
Since x · (s ∧ p) = (x · s)p − (x · p)s, this expression vanishes if x lies on the

circle, because then x ·s = 0 (as x belongs to the sphere) and x ·p = 0 (as x belongs
to the plane).

Conversely, assume (x · s)p − (x · p)s = 0. Then the dot product with s gives

(x · s)(s · p)− (x · p)(s · s) = 0.

In this expression, s · p = (z− 1
2ρ2e∞) · (z · (u∧ e∞)) turns out to vanish because

both z · (z · (u ∧ e∞)) and e∞ · (z · (u ∧ e∞)) vanish, as it is easily checked. So we
have (x · p)(s · s) = 0 and hence x · p = 0 because s · s = ρ2 �= 0. Now we also
have (x · s)p = 0, and so x · s = 0. Thus x belongs to the circle because it belongs
to the sphere and to the plane. 
�
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2.2.5 (Retrieving the radius of C) ρ2 = −c2.

Proof We know that s · s = ρ2. We also have p ·p = u · u = 1. On the other hand,
s ·p = (z− 1

2ρ2e∞) · (u+ δe∞) = z · (u+ δe∞) = z · u− δ = 0 (as z lies on P )
and so c2 = (s ∧ p) · (s ∧ p) = − ((s ·s)(p ·p)− (s ·p)2

) = −ρ2. 
�
For an expression for the center of C, see E.2.7, p. 51.

Lines

Here we will write u∗ (u⊥) for the dual (perpendicular plane) of u ∈ E in G3.

2.2.6 (Line through a parallel to u) Let a,u ∈ E, with u unitary. Then the
expression l = a · (u∗e∞) provides an inner representation of the line L through a

parallel to u.

Proof We know that there is an orthonormal basis {u1,u2} of u⊥ such that u∗ =
u1u2. Then l = a · (u1u2e∞) = a1u2e∞ − a2u1e∞ − u1u2, where ak = a · uk ,
k = 1, 2 (the last sign comes from a ·e∞ = −1). Now for a point x we can compute
x · l and we find (a1x2 − a2x1)e∞ + (x2 − a2)u1 − (x1 − a1)u2, with xk = x · uk ,
k = 1, 2. This expression vanishes if and only if x1 = a1 and x2 = a2, which is
equivalent to say that x − a ∈ 〈u1,u2〉⊥ = 〈u〉, or x = a + λu (λ ∈ R), and this is
the parametric equation of L. 
�

2.3 Outer Representations

An element K of C is an outer representation of a set F ⊆ E if the relation
x ∧K = 0 is equivalent to say that x ∈ F . By what we saw in Sect. 2.1, a point
is an outer representation of itself, for x ∧ a = 0 is equivalent to say that x ∼ a and
hence to x = a.

2.3.1 (Point pair) (1) If a, b ∈ E and a �= b, then a ∧ b is an outer representation
of the point pair {a, b}. (2) (a ∧ b)2 = (a − b)4/4.

Proof (1) The relation x ∧ a ∧ b = 0 is equivalent to x ∈ 〈a, b〉, or

x = λa + μb ∼ λa + (1− λ)b + e0 + 1

2
(λa2 + (1− λ)b2)e∞

(normalize with λ+μ = 1). Imposing that x is null, we get λ(1−λ)(a−b)2 = 0,
whose solutions are λ = 0 and λ = 1.

(2) This follows from a2 = b2 = 0, a ·b = − 1
2 (a−b)2, and (a∧b)2 = −q(a∧b) =

(
1
2 (a − b)2

)2
. 
�



42 2 Conformal Geometric Algebra

2.3.2 (Line through two points) Let a, b ∈ E, a �= b. Then (1) L = a ∧ b ∧ e∞ is
an outer representation of the line joining a and b, and (2) L2 = (a − b)2.

Proof (1) Indeed, x ∧ L = 0 is equivalent to say that x ∈ 〈a, b, e∞〉:

x = λa + μb + ξe∞ = λa + μb + (λ+ μ)e0 + 1
2 (λa2 + μb2 + 2ξ)e∞.

Since we can normalize x, we can assume that λ+μ = 1, or μ = 1−λ, and so

x = λa + (1− λ)b + e0 + 1
2

(
λa2 + (1− λ)b2 + 2ξ

)
e∞.

Now it is immediate that there is a unique value of ξ for which x is null and so
we conclude that in E we have x = λa + (1− λ)b, λ ∈ R, which are precisely
the points on the line determined by a and b.

(2) L2 = −q(a ∧ b ∧ e∞). Using that a2 = b2 = e2∞ = 0, a · b = − 1
2 (a − b)2,

and a · e∞ = b · e∞ = −1, the claim follows from Gram’s formula. 
�
Before exploring the outer representations of circles, planes, and spheres, it

is convenient to establish a duality theorem that relates the inner and outer
representations. For this we need the pseudoscalar I = e1 ∧ e2 ∧ e3 ∧ e0 ∧ e∞
and the Hodge duality notation A∗ = AI. Note that we have A∗∗ ∼ A, because
I 2 = −1 (cf. Fig. 2.1, p. 35). It is also important to note that if A is a k-blade then
A∗ is a (5− k)-blade (E.2.4, p. 51).

2.3.3 (Duality) Let A be a k-vector (1 � k � 4). Then for any conformal vector x

we have (x ∧A)∗ = x ·A∗. In particular we have that the relations x ∧A = 0 and
x · A∗ = 0 are equivalent, which means that the outer representation of A agrees
with the inner representation of A∗. Conversely, replacing A by A∗ we see that the
inner representation of A agrees with the outer representation of A∗.

Proof The expressions (x ∧ A)∗ and x · A∗ are bilinear in x and A, so it suffices to
see that they are equal for x = ej , A = eK . If j ∈ K , ej ∧ eK = 0 and ej · e∗K
also vanishes because e∗K = eKI does not contain ej (it is absorbed by I). And if
j /∈ K , (ej ∧ eK)I = ej eKI = ej (e

∗
K) = ej · (e∗K), the latter step because ej

appears in e∗K . 
�
2.3.4 (Circle through three non-collinear points) If a1, a2, a3 ∈ E are three non-
collinear points, then (1) C = a1 ∧ a2 ∧ a3 is an outer representation of the circle
K determined by a1, a2, a3. (2) C2 = 4ρ2Δ2, where ρ is the radius of K and Δ the
area of the triangle a1a2a3.

Proof

(1) Let B ∈ C2 be a 2-blade whose inner representation is K (see 2.2.4). Then the
outer representation of the 3-blade B∗ is also K . It is therefore enough to show
that B∗ ∼ C. For this, we can argue as follows. The space V = |B∗〉 of vectors
such that x ∧ B∗ = 0 has dimension 3, and it clearly contains a1, a2, a3, so
V = 〈a1, a2, a3〉. The claim now follows from B∗, C ∈ ∧3V .
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(2) We have C2 = −q(a1 ∧ a2 ∧ a3). Since a2
1 = a2

2 = a2
3 = 0 and

aj · ak = − 1
2d2

l , d2
l = (aj − ak)

2, jkl a cyclic permutation of 123,

we easily obtain C2 = 1
4d2

1d2
2d2

3 . To conclude, it is enough to remember the
classical formula 4ρΔ = d1d2d3 (cf. [22, Exercise 5, p. 60]). 
�

Remark that the expression L = a ∧ b ∧ e∞ for the line defined by a and b can
now be phrased by saying that lines are circles through infinity.

2.3.5 (Plane through three non-collinear points) (1) If a, v,w ∈ E and v,w are
linearly independent, then the outer representation of P = a ∧ v ∧ w ∧ e∞ is the
plane through a directed by v ∧w. (2) If a, b, c are three non-collinear points, then
the outer representation of P = a ∧ b ∧ c ∧ e∞ is the plane determined by a, b, c.
(3) P 2 = −16Δ2, where Δ is the area of the triangle abc.

Proof

(1) We have a ∧ v ∧ w ∧ e∞ = (a + e0) ∧ v ∧ w ∧ e∞, for the factor e∞ kills the
e∞ part of a. Thus the normalized vectors x such that x ∧P = 0 have the form

x = a + e0 + λv + μw + νe∞, λ, μ, ν ∈ R.

If we further impose that x is null, we simply have to set ν = 1
2x2, with x =

a + λv + μw (λ,μ ∈ R), which is the parametric expression of the points of
the plane trough a directed by v ∧ w.

(2) We can write P = a ∧ (b− a)∧ (c− a)∧ e∞. As in (1), the factor e∞ kills the
e∞ part of the other factors and so P = a ∧ (b− a)∧ (c− a)∧ e∞. By (1), the
outer representation of P is the plane through a directed by (b − a) ∧ (c − a),
and this is the plane abc.

(3) We have P 2 = q(a∧b∧c∧e∞), which can be evaluated with the corresponding
Gram determinant with a2 = b2 = c2 = 0 and, with obvious meaning of the
notations, a · b = − 1

2d2
3 , a · c = − 1

2d2
2 , b · c = − 1

2d2
1 , a · e∞ = b · e∞ =

c · e∞ = −1. The result is identified as −16Δ2 by means of Heron’s classical
formula [22, p. 58]:

16Δ2 = (d1 + d2 + d3)(−d1 + d2 + d3)(d1 − d2 + d3)(d1 + d2 − d3)

= (d2
1 + d2

2 + d2
3 )2 − 2(d4

1 + d4
2 + d4

3 ). 
�

2.3.6 (Sphere through four points) (1) If a, b, c, d ∈ E are non-coplanar, then the
outer representation of S = a∧b∧c∧d is the sphere determined by the four points.
(2) The radius ρ of the sphere is determined by ρ2 = S2/(S ∧ e∞)2.

Proof

(1) It is similar to the proof of 2.3.4. Let s ∈ C1 be such that its inner representation
is the sphere through our four points [see 2.2.1 and Eq. (2.10)]. Then the outer
representation of s∗ is the same sphere and so we only need to see that s∗ ∼ S,
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or, equivalently, that |s∗〉 = |S〉. Now |S〉 = 〈a, b, c, d〉 and |s∗〉 = {x ∈ Ē :
x ∧ s∗ = 0} = {x ∈ Ē : x · s = 0}, which must coincide with |S〉 because both
spaces have dimension 4 and a · s = b · s = c · s = d · s = 0.

(2) If S = αs∗, α ∈ R, then S2 = α2(s∗)2. But (s∗)2 = (sI)2 = q(sI) = sIĨs =
−s2 = −ρ2, so that S2 = −α2ρ2 (we assume that s is normalized so that
s2 = ρ2). Finally α = −e∞ · (αs) = e∞ · S∗ = (e∞ ∧ S)∗ and consequently

α2 = ((e∞ ∧ S)∗)2 = −(e∞ ∧ S)2 = −(S ∧ e∞)2. 
�

Note that the planes a ∧ b ∧ c ∧ e∞ can be said to be spheres passing through
d = e∞.

2.4 Transformations

Let Ō = O(Ē) be the isometry group of Ē. This group preserves Q and hence we
have, for f ∈ Ō, a well-defined map Q → Q, x �→ x′ = f (x). In terms of the
normalized form x = x+e0+ 1

2x2e∞ (cf. 2.1.4), we can write, if λ = −x′ ·e∞ �= 0
(equivalent to x′ ∈ Q′),

x′ = λ(x′ + e0 + μe∞), x′ ∈ E.

Since x′ is null, we actually have μ = 1
2x′2, or x′ ∼ H(x′), and the map E → E,

x �→ x′ will be denoted by f . We will say that it is the geometric transformation
associated with f . Thus we have:

f (H(x)) ∼ H(f (x)). (2.11)

Note also that f (x) is undefined when x′ ∼ e∞, which happens at most for one
point (as we will see, this exception only occurs for inversions). Note also that if x

is fixed by f (so x′ = x), then x′ = x and so x is fixed by f .

2.4.1 (Composition of geometric transformations) If f, g ∈ Ō, then the composi-
tion gf is the geometric transformation associated with the composition gf .

Proof Applying g to f (H(x)) ∼ H(f (x)) we get g(f (H(x))) ∼ g(H(f (x))) and
g(H(f (x))) ∼ H(g(f (x))). If we write h = gf , then g(f (H(x))) ∼ H(h(x))

and so H(h(x)) ∼ H(g(f x))). Since both sides of this relation are normalized, we
conclude that h(x) = g(f (x)). 
�
2.4.2 (The isometry group O is a subgroup of Ō) The group O of isometries of
E can be identified with the subgroup of Ō formed by the isometries f such that
f (e0) = e0 and f (e∞) = e∞. For such an f , f (x) = f (x).
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Proof Given f ∈ O, we can consider its extension f̄ ∈ Ō which is the identity on
〈e0, e∞〉. This defines a monomorphism O → Ō, f �→ f̄ . Conversely, if g ∈ Ō
is the identity on 〈e0, e∞〉, then it leaves invariant E = 〈e0, e∞〉⊥ and g = f̄ for
f = g|E . Finally, H(f (x)) ∼ f (H(x)) and in this case f (H(x)) = H(f (x)), so
f (x) = f (x). 
�

Now we can associate an isometry R ∈ Ō with any rotor R ∈ C+ (recall that
this means that RR̃ = 1): R(x) = RxR̃. It is indeed an isometry, for (RxR̃)2 =
RxR̃RxR̃ = x2.

2.4.3 (Geometric covariance) The isometry R is an automorphism of C in the
strong sense that it preserves the geometric, outer and inner products, and is
compatible with the involutions.

Proof Since R(xy) = R(xy)R̃ = RxR̃RyR̃ = R(x)R(y), R is an automorphism
of the geometric product. From the definitions of the outer and inner products in
terms of the geometric product, it is also clear that R is an automorphism of these

products. Finally, ̂
RxR̃ = Rx̂R̃ because R is an even multivector and ˜

RxR̃ =
˜̃
Rx̃R̃ = Rx̃R̃. 
�

Now we will analyze in turn the kinds of isometries we get when we select
different kinds of rotors and also the geometric transformations they induce.

2.4.4 (Rotations) We know that the rotation of x ∈ E about the origin by an angle
iθ (i a unit area and θ ∈ R) is given by the rotor R = e−iθ/2. In the conformal
space, this rotation is given by the same formula (see 2.4.2):

R(x) = e−iθ/2xeiθ/2. (2.12)

Proof A direct consequence of the fact that the unit bivector i ∈ G2
3 commutes with

e0 and e∞ and hence these vectors are fixed by R. 
�
The transformation (2.12) will be denoted by Riθ and in this case, Riθ (x) = Riθ (x).

In what follows, the quadratic coefficient 1
2x2 of e∞ in x will be denoted by κ(x):

x = x + e0 + κ(x)e∞. (2.13)

2.4.5 (Translations) Let v ∈ E and consider the rotor R = e−ve∞/2 and the
isometry Tv = R. Then Tv(e∞) = e∞ and Tv(x) = x + v (the translation by v).

Proof It consists of several computational steps.

(a) Since (ve∞)2 = 0, e±ve∞/2 = 1± ve∞/2 and

Tv(x) =
(

1− 1
2ve∞

)
x
(

1+ 1
2ve∞

)
. (2.14)
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From this, and again e2∞ = 0, we see that e∞ is fixed and hence the part κ(x)e∞
of x is not changed by Tv .

(b) The transformation of e0 is v:

Tv(e0) = v = v + e0 + κ(v)e∞. (2.15)

Here is why:

Tv(e0) =
(

1− 1
2ve∞

)
e0

(
1+ 1

2ve∞
)
=
(
e0 − 1

2ve∞e0

) (
1+ 1

2ve∞
)

= e0 + 1
2e0ve∞ − 1

2ve∞e0 − 1
4ve∞e0ve∞

= e0 − 1
2v (e0e∞ + e∞e0)− 1

4e∞e0e∞v2.

Now − 1
2v(e0e∞ + e∞e0) = −v(e0 · e∞) = v, and the second summand of

the last expression reduces to v. In the third summand we have e∞e0e∞ =
e∞(−e∞e0 + 2(e0 · e∞)) = −2e∞, so Tv(e0) = e0 + v + 1

2v2e∞ = v.
(c) As for x, Tv(x) = x + (v · x)e∞. Indeed,

Tv(x) =
(

1− 1
2ve∞

)
x
(

1+ 1
2ve∞

)
=
(
x + 1

2vxe∞
) (

1+ 1
2ve∞

)

= x + 1
2xve∞ + 1

2vxe∞ = x + (v · x) e∞.

(d) Together, (a)–(c) yield:

Tv(x) = Tv(x + e0 + κ(x)e∞)

= x + v + e0 + (κ(x)+ κ(v)+ v · x)e∞
= x + v + e0 + κ(x + v)e∞
= H(x + v).

Therefore Tv(x) = x + v and this ends the proof. 
�
Because of the form of the rotor giving Tv and the fact that it leaves e∞ invariant,

translations are often said to be “rotations about infinity.”
Since rotations and translations generate the group G+(E) of proper affine

transformations that preserve distances (the proper Euclidean group of E), we see
that G+(E) is embedded in Ō.

2.4.6 (Dilations) Let Dα (α ∈ R) be the isometry associated with the rotor eαZ/2,
so that Dα(x) = eαZ/2xe−αZ/2 (recall that Z = e0∞). Then Dα(x) = eαx (we say
that Dα it is the dilation of E by eα).

Proof We refer to 2.1.2 and 2.1.3 for the justification of several steps in the
computation that follows. Since Z commutes with vectors x, eαZ/2xe−αZ/2 = x

for all x ∈ E. On the other hand (use Z2 = 1 and e0Z = −e0Z = e0),
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eαZ/2e0e
−αZ/2 = (cosh α

2 + Z sinh α
2 ) e0 (cosh α

2 − Z sinh α
2 )

= (cosh α
2 − sinh α

2 )(cosh α
2 − sinh α

2 )e0

= e−αe0,

and a similar computation yields eαZ/2e∞e−αZ/2 = eαe∞. Finally,

Dα(x+e0+κ(x)e∞)=x+e−αe0+eακ(x)e∞=e−α(eαx+e0+κ(eαx)e∞)∼H(eαx),

and this tells us that Dα(x) = eα(x). 
�
With dilations, the proper Euclidean group G+(E) is enlarged to the group Γ +(E)

of proper similarity transformations and the preceding analysis shows that we can
regard Γ +(E) as a subgroup of Ō. Thus we have

O+ ⊂ G+ ⊂ Γ + ⊂ Ō
+
.

Now we turn to improper isometries. Instead of rotor transformations R(x) =
RxR̃, to treat them we need versor isometries Vs : Ē → Ē (where s is a non-null
conformal vector), which is defined by the formula Vs(x) = −sxs−1. By what we
will see next, they are also called conformal reflections.

2.4.7 (Properties of Vs) Vs(s) = s and Vs(x) = −x for x ∈ s⊥. In other words,
Vs is the reflection in conformal space across s⊥. This implies that Vs is an isometry
and that it is improper (det Vs = −1).

Proof We have Vs(s) = −sss−1 = −s. On the other hand, if x ∈ s⊥ then it
anticommutes with s and Vs(x) = −sxs−1 = xss−1 = x. 
�
2.4.8 (Remark) Vs is a linear automorphism of C, but not an algebra automor-
phism: Vs(xy) = −sxys−1 = −(−sxs−1)(−sys−1) = −Vs(x)Vs(y). On the other
hand, Vs(x)ˆ= Vs(x̂) (because s is odd), but Vs(x)∼ = Vs−1(x̃). 
�

We can now find out the geometric transformation Vs associated with Vs in terms
of particular specifications of s.

2.4.9 (Euclidean reflections) Let u ∈ E be a unit vector and δ ∈ R. Then (1) Vu is
the reflection across the plane u⊥ and (2) Vu+δe∞ is the reflection across the plane
Pu,δ with normal vector u and perpendicular (signed) distance δ to 0.

Proof

(1) From Vu(x) = −uxu, we see that Vu leaves invariant e0 and e∞ and therefore
Vu(x) = Vu(x) = −uxu, which is, as we know, the expression of the reflection
of x across u⊥.

(2) The key is the relation Vu+δe∞ = TδuVuT−δu, as it implies Vu+δe∞ =
TδuVuT−δu and this is the claimed reflection:

Vu+δe∞(x) = −u(x − δu)u+ δu = −uxu+ 2δu.
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To end the proof, note that (TδuVuT−δu)(x) = Vp(x), where p =
e−δue∞/2ueδue∞/2, and then

p = (1− δue∞/2)u(1+ δue∞/2) = (u+ δe∞/2)(1+ δue∞/2) = u+ δe∞.


�
With reflections, the groups G+(E) and Γ +(E) are enlarged to the full Euclidean

group G(E) of distance-preserving affine transformations and to the group Γ (E) of
similarities, respectively. Thereby we have the following embeddings:

O ⊂ G ⊂ Γ ⊂ Ō.

2.4.10 (Inversions) Let s = e0 − 1
2ρ2e∞ (recall that its inner representation is the

sphere of radius ρ centered at 0 ∈ E). Then the isometry Vs satisfies: (1) Vs(e0) =
ρ2

2 e∞ and Vs(e∞) = 2
ρ2 e0. (2) Vs(x) = ρ2/x, which means that Vs is the inversion

with respect to the sphere of radius ρ centered at 0. (3) For any z ∈ E, the geometric
transformation associated with the isometry Vz,ρ = TzVsT−z is the inversion with
respect to the sphere of radius ρ centered at z.

Proof

(1) Since s2 = ρ2, s−1 = s/ρ2. Then

Vs(e0) = −se0s/ρ
2 = 1

2e∞e0(e0 − ρ2

2 e∞) = −ρ2

4 e∞e0e∞ = ρ2

2 e∞.

The proof of the other relation is very similar.
(2) For x = x + e0 + κ(x)e∞, Vs(x) = Vs(x) + Vs(e0) + κ(x)Vs(e∞). Now

Vs(x) = −sxs−1 = x (as x anticommutes with s), which together with (1)
yields Vs(x) = ρ2/x:

Vs(x) = x + 2
ρ2 κ(x)e0 + ρ2

2 e∞ ∼ H(
ρ2

x2 x) = H(ρ2/x).

(3) By 2.4.1 we have Vz,ρ = TzVsT−z. Thus Vz, ρ(x) = Vs(x− z)+ z = ρ2

x−z
+ z,

where in the last step we have used (2). 
�
2.4.11 (Remark on the conformal group) The tools developed in this section are
sufficient to prove that all geometric transformations induced by isometries of Ē are
conformal, which means that they preserve (non-oriented) angles (see E.2.2, p. 50).
Conformal transformations of E form a group with the composition, Conf(E), and
so we have a group homomorphism

Ō → Conf(E), f �→ f .
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Now this homomorphism is surjective as a consequence of a classical theorem of
Liouville asserting that any element of Conf(E) is the composition of inversions in
spheres and reflexions in planes [70], and we have shown that these belong to the
image. Finally, it is straightforward to check, for f ∈ Ō, that f = Id if and only if
f = ±Id, which can be stated as Conf(E) � Ō/{±Id}. 
�

2.5 Exercises

E.2.1 (Distances with conformal algebra)

(1) In 2.1.7 we have seen how to get the squared distance between two points
x, x′ ∈ E using the inner product of their conformal vectors x, x′:

(x − x′)2 = (x − x′)2 = −2x · x′.

(2) From 2.2.3 we know that if u is a unit vector and δ ∈ R, then p = u + δe∞ is
an inner representation of the plane P with normal vector u and signed distance
δ to 0 (meaning that δu ∈ P ). We also have δ = −p · e0. Now it is immediate
that p · x = x · u− δ. If we write x = δ′u+ v, with v ∈ u⊥ (so δ′ = x · u), we
get p · x = δ′ − δ, which is the (signed) distance from x to P (see Fig. 2.4a).

(3) Let s = z− 1
2ρ2e∞ be the inner representation of the sphere S = Sz,ρ of radius

ρ and center z, where z is the conformal vector of z (see 2.2.1). In the proof
of 2.2.2, we have noticed that −2s · x = δ2 − ρ2, where δ2 = (x − z)2 is the
squared distance of x to the center z. Since δ2 − ρ2 = (δ + ρ)(δ − ρ), we
conclude that −2s · x is the power of x with respect to S, and hence that it is
the square of the length of any segment [xa] with a ∈ S such that the line xa is
tangent to S (see Fig. 2.4b).

u

δu

δ′u

x

δ′ − δ

P

0

ρ
z

x

a

δ

ρS

(b)(a)

Fig. 2.4 (a) Signed distance from a point x to the plane P = Pu+δe∞ : δ′ − δ = p · x.
(b) Interpretation of−2s ·x as δ2−ρ2, which is the power of x with respect to the sphere S = Sz,ρ
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(4) Check that p · s = u · z − δ. By (2), this is the signed distance from z to P .
In particular we see that p and s are orthogonal if and only if P passes through
the center of z, or, in other words, if P is a diametric plane of S.

(5) Let s′ = z′ − 1
2ρ′2e∞ be the inner representations of S′ = Sz′,ρ′ . Show that

2s · s′ = ρ2 + ρ′2 − δ2, where δ2 = (z− z′)2. In particular we see that s and s′
are orthogonal if and only if ρ2 + ρ′2 = δ2.

E.2.2 (Angles with conformal algebra)

(1) Let L = La,u be the line through a ∈ E with direction 〈u〉 and let L′ = La′,u′
be defined similarly. The angle α between these two lines is defined as the angle
α = α(u,u′) and hence by cos α = (u · u′)/|u||u′|. Let l = a ∧ u ∧ e∞ and
l′ = a′∧u′∧e∞ be the outer representations of L and L′. Show that l ·l′ = u·u′,
and in particular that l2 = u2, so that |l| = |u|, and similarly |l′| = |u′|.
Consequently, we can express α in terms of l and l′ by cos α = (l · l′)/|l||l′|.
Hint: Use Gram’s formula to evaluate l · l′ and notice that the values below
the secondary diagonal of Gram’s matrix are 0, so that the values above that
diagonal are irrelevant.

(2) Let p = u + δe∞ be the inner representation of the plane P = Pu,δ with
normal unit vector u and signed distance δ to the origin, and let p′ = u′ + δ′e∞
be defined in a similar way. Then it is clear that p · p′ = uu′ = cos α, where
α = α(u,u′) agrees with the dihedral angle formed by P and P ′.

(3) Let P = Pa,u,v be the plane through a ∈ E with direction 〈u, v〉 and let P ′ =
Pa′,u′,v′ be defined similarly. The angle β between these two planes is defined
as the angle β = α(u × v,u′ × v′), that is, as the angle between the normal
vectors to the planes. Thus cos β = ((u× v) · (u′ × v′))/|u× v| |u′ × v′|. Now

(u× v) · (u′ × v′) = ((u ∧ v)i(u′ ∧ v′)i
)

0 = −(u ∧ v) · (u′ ∧ v′).

In particular, |u× v|2 = (u× v)2 = −(u ∧ v)2 and |u′ × v′|2 = (u′ × v′)2 =
−(u′ ∧ v′)2. Let p = a ∧ u ∧ v ∧ e∞ and p′ = a′ ∧ u′ ∧ v′ ∧ e∞ be the
outer representations of P and P ′. Show that p · p′ = (u ∧ v) · (u′ ∧ v′), and
in particular that p2 = (u ∧ v)2 and p′2 = (u′ ∧ v′)2. Consequently, we can
express β in terms of p and p′ by

cos β = −p ·p′/
√

p2p′2 = −p · p′/|p||p′|,

where |p| = √−p2 and |p′| =
√
−p′2.

Hint: Evaluate p·p′ using Gram’s formula to get p·p′ = − det

(
u · u′ u · v′
v · u′ v · v′

)
=

(u ∧ v) · (u′ ∧ v′).
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E.2.3 (Rotations about an arbitrary point) (1) The map Rz,iθ : x �→ Riθ (x−z)+z

(the rotation about z by iθ ) is the geometrical transformation corresponding to the
rotor TzRiθT−z. (2) Show that the last expression is equal to RTz(iθ).

E.2.4 (The dual of a blade is a blade) Let A be a 2-blade, say A = a1 ∧ a2.
Taking an orthonormal basis in 〈a1, a2〉, we may assume that a1 and a2 are part of
an orthogonal basis of Ē. If I is the pseudoscalar of this basis, then it is clear that
A∗ = (a1 ∧ a2)I = a1a2I and a1a2I is a blade (a1 and a2 are contracted with the
corresponding factors of I). The same argument works for any k-blade. Note that
the space spanned by AI is the orthogonal of the space spanned by A.

E.2.5 (The center of a sphere revisited) If the inner representation of s ∈ C1 is a
sphere, and s is normalized, we saw how to find its center z (see 2.2.1) and its radius
(2.10). Prove that we also have z ∼ se∞s. This has the advantage that it does not
assume that s is normalized.

E.2.6 (Alternative formula for the radius of a circle) With the same notations as
in 2.3.4, prove that ρ2 = −C2/(C ∧ e∞)2. Deduce that Δ2 = − 1

4 (C ∧ e∞)2.

E.2.7 (Center of a circle) If the inner representation of c ∈ C2 is a circle, prove that
then its center is ce∞c.

E.2.8 (Line perpendicular to circle passing through the center) Assume that the
inner representation of c ∈ C2 is a circle C with center at z. Prove that then the
inner representation of l = e∞ · c is the line perpendicular to the plane of C and
going through z.

E.2.9 (Further examples about composing transformations) Prove the following
statements (we use the notations introduced in Sect. 2.4):

(1) DβDα = Dα+β .
(2) The map Dz,α : x �→ eα(x − z) + z (the dilation with center z by eα) is the

geometrical transformation corresponding to TzDαT−z.
(3) The composition of two inversions with respect to concentric spheres is a

dilation with respect to that center. Moreover, if ρ and ρ′ are the radii of the
first and second spheres, then parameter α of the dilation is 2 ln(ρ′/ρ).

E.2.10 In conformal space, all similarity transformations (elements of the group
Γ (E)) leave e∞ invariant (use 2.4.2 and 2.4.4 for isometries of E, 2.4.5 for
translations, 2.4.6 for dilations, and 2.4.9 for Euclidean reflections). This implies
that similarities map point pairs, circles, lines, spheres, and planes to point pairs,
circles, lines, spheres, and planes, respectively (use geometric covariance 2.4.3 and
the outer representations of point pairs 2.3.1, circles 2.3.4, lines 2.3.2, spheres 2.3.6,
and planes 2.3.5).

On the other hand, in conformal space the inversions exchange e0 and e∞
(see 2.4.10). This and geometric covariance imply that inversions map: (1) flats
(lines and planes) not passing through 0 to rounds (circles and spheres) that go
through 0 ∈ E. (2) rounds through 0 to flats not going through 0. (3) any flat passing
through 0 to itself.



Chapter 3
Minkowski’s Space-Time: Geometry
and Physics

The purpose of this chapter is a study of Minkowski’s space-time that emphasizes
the fundamental geometric and physical aspects that concur in its structure.

The language used is linear algebra and its extension to geometric algebra, as
presented in Sect. 1.4, which is a prerequisite for Sects. 3.2–3.4. It is the method
that appears as best suited for expressing and managing Lorentz transformations,
relativistic electrodynamics, and Dirac’s electron theory.

As a starting point, we take a Lorentzian vector space E1,3, that is, a real
vector space of dimension 4 with a metric (symmetric bilinear form) of signature
(1, 3), and the affine space M (Minkowski space) whose associated vector space
is E1,3. This structure, one of the premises of Minkowski’s original article [74],
integrates, as we shall see, advances due to names like Maxwell, Lorentz, Poincaré,
and Einstein, among others.

Such an approach should not surprise a reader with mathematical training, who
is accustomed to take as a starting point for the study of Euclidean geometry
an Euclidean vector space En, that is, a real vector space of dimension n (take
n = 3 if it is desired to reinforce the analogy) endowed with a positive definite
metric, together with the corresponding affine space (Euclidean space). In this
case the statement synthesizes the understanding of Euclidean geometry achieved
over millennia, from the Greeks (Pythagoras, Euclid, Archimedes, etc.), through
the “analytical revolution” (Descartes, Pascal, Newton, Euler, etc.), and crystallized
with the development of “intrinsic” algebro-geometric structures from seminal
contributions such as those of Grassmann and Riemann.

The geometrical and physical aspects of the Minkowski space that do not depend
on GA are covered in Sect. 3.1. The remaining three sections offer a GA view of the
Lorentz transformations, relativistic electrodynamics, and Dirac’s equation. Besides
Hestenes’ many authoritative works, as, for instance, [40] and [47], and general
treatises such as [29], all of which have been an unfailing source of inspiration,
more specific references will be given at the places where they are required.

© The Author(s), under exclusive licence to Springer International Publishing AG,
part of Springer Nature 2018
C. Lavor et al., A Geometric Algebra Invitation to Space-Time Physics,
Robotics and Molecular Geometry, SpringerBriefs in Mathematics,
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3.1 From Physics to Geometry and Back

In this section we will review the main ideas in Minkowski’s view of the special
theory of relativity and then we will lay out a mathematical presentation of the key
geometric facts concerning that space.

Minkowski’s View of Special Relativity

The metric proposed by Minkowski is given, using his own terms, by the quadratic
form

c2t2 − (x2 + y2 + z2), (3.1)

where x, y, z are rectangular Cartesian coordinates with respect to an inertial
reference, t the time relative to it, and c the speed of light in vacuum.

It is crucial to point out that c is a universal constant, in the sense that it
does not depend on the inertial reference system in which it is measured nor on
the velocity of the emitter focus. This surprising fact is one of the predictions of
Maxwell’s theory. Indeed, Maxwell found that the speed of electromagnetic waves
in vacuum predicted by his theory should be, regardless of how they are generated,
c = (ε0μ0)

−1/2, where ε0 and μ0 are physical constants (electrical permittivity
and magnetic permeability of vacuum, respectively) that can be measured in the
laboratory and whose values are universal (admitting the principle of relativity
according to which physical laws have the same form in any inertial system).

The conclusion that light is an electromagnetic wave, thus incorporating optics
to his theory, was reached by Maxwell when he verified that the numerical value of
(ε0μ0)

−1/2 agreed with the speed of light in vacuum.
In addition to the theoretical prediction, the universality of c has been verified,

directly or indirectly, with a variety of experiments ranging from Michelson-
Morley’s [73] to the sophisticated current GPS systems (cf. [93]).

Let us also say that Einstein took the principle of relativity and the universality
of c as axioms in his work [33], thus being able to easily obtain the Lorentz
transformations which relate the values x, y, z, t relative to an inertial system S with
the values x′, y′, z′, t ′ relative to another inertial system S′. If time is not absolute,
these transformations can be deduced without assuming the constancy of c, as done,
for example, in [95].

The relevance of the Lorentz metric lies in the fact that the special Lorentz
transformation (Lorentz boost according to the usual terminology) is an isometry
of (3.1). This statement is checked with a simple calculation using the expression
of the boost. In units such that c = 1 (which is equivalent to measuring distances in
units of time), the Lorentz boost equations are as follows (cf. [33]):

t = γ (t ′ + ux′), x = γ (x′ + ut ′), y = y′, z = z′, (3.2)



3.1 From Physics to Geometry and Back 55

where u, which necessarily has to satisfy |u| < 1, is the velocity of the inertial
system S′ with respect to the inertial system S and γ = (1 − u2)−1/2 (the
Lorentz factor). It follows that the Lorentz transformations, which are composition
of spatial rotations and Lorentz boosts, are isometries of (3.1). In fact they are proper
isometries (their determinant is γ 2(1 − u2) = +1) and orthochronous (the t and t ′
variations have the same sign, since γ > 0).

Conversely, a proper and orthochronous isometry is a Lorentz transformation,
since it is easy to see that composed with a suitable rotation is an isometry (still
proper and orthochronous) that satisfies y = y′, z = z′, t2 − x2 = t ′2 − x′2,
and therefore it is enough to prove, as detailed below, that this transformation is a
Lorentz boost.

3.1.1 (Claim) Let t = δt ′ + δ′x′, x = ξ t ′ + ξ ′x′ be the equations of a proper
orthochronous isometry f of (3.1). Then f is a Lorentz boost.

Proof The matrix coefficients of f satisfy δξ ′ − δ′ξ = 1 (for being proper) and
δ > 0 (for being orthochronous). In addition, we have the relation

t ′2 − x′2 = (δt ′ + δ′x′)2 − (ξ t ′ + ξ ′x′)2

identically in t ′ and x′ by the condition of isometry. Equating coefficients, we see
that this relation is equivalent to the equations

δ2 − ξ2 = 1, δδ′ − ξξ ′ = 0, and δ′2 − ξ ′2 = −1.

The first equation and the condition δ > 0 allow us to state that there is a unique
α ∈ R such that δ = cosh α, ξ = sinh α. From the second equation we infer
that there exists λ ∈ R such that δ′ = λξ = λ sinh α and ξ ′ = λδ = λ cosh α.
Substituting these values into δξ ′ − δ′ξ = 1, we get λ = 1, whereby the third

equation is automatically satisfied. Thus the matrix of f has the form γ
(

1 u

u 1

)
, with

γ = cosh α and u = tanh α. Given that |u| < 1 and γ = (1 − u2)−1/2, it is clear
that f is the Lorentz boost of velocity u (or rapidity α). 
�

In sum, the intrinsic notion corresponding to the group of Lorentz transforma-
tions (denoted Gc in [74]) is the group SO+1,3 of the proper orthochronous isometries
of E1,3. It is a normal subgroup of the isometry group O1,3 of E1,3 and of the
subgroup SO1,3 ⊂ O1,3 of the proper isometries.

The essence of special relativity is the study of concepts and relations that
are invariant by the action of SO+1,3. It is, therefore, a particular case of Klein’s
geometry, but its very origin explains its extraordinary potential for expressing
statements of geometric and physical content. It is what we try to show in the pages
that follow.
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Matching Vocabularies: A Mathematical Presentation of Minkowski’s
Space-Time Geometry

The points of M will be called events and here they will be denoted with capital
letters. As in Sect. 1.4, the elements of E1,3 will be called vectors, and will be
denoted with lowercase letters (or capital letters with a dot when they denote
derivatives of variable points). This division of roles is necessary, as in Euclidean
geometry, to ensure that there are no privileged events (or points).

The vector separation between two events P and Q, denoted Q− P , is the only
vector a such that Q = P + a. Recall that in an affine space the sum of points is not
defined, and that we have the rules P + 0 = P and (P + a)+ b = P + (a + b) for
every point P and any vectors a and b.

The scalar separation (or, simply, separation, or interval) between two events
P and Q, denoted by σ(P,Q), is defined as η(a) = η(a, a), where a = Q − P .
As it can be anticipated by what has been said, and as we shall see later, the notion
of separation plays a fundamental role in relativistic chronometry and space-time
geometry.

To study the properties of separation, it is therefore necessary to study the
properties of η. Given a ∈ E1,3, let εa be the sign of η(a) (the signature of a). The
magnitude of a, which will be denoted by |a|, is defined as the non-negative real
number |a| = +√εaη(a). This definition, which is equivalent to η(a) = εa|a|2, is
valid for any metric of a real vector space and coincides with the notion of length or
norm of a vector in the case of an Euclidean space En. The vectors of magnitude 1
are called unit vectors.

For historical reasons (clarified below), positive (negative, null) vectors are also
said to be timelike (spacelike, lightlike). And the same terminology applies to the
separation as well. We will use both sets of words and let the context suggest which
one to choose.

In the following we will assume that e = e0, e1, e2, e3 is an orthonormal basis
with e0 positive (and therefore with e1, e2, e3 negative). In this chapter, such bases
will be called inertial frames or simply frames. It is important to remark, however,
that many authors use the symbol γμ instead of eμ to underline its close relationship
to Dirac’s Γμ matrices (see E.1.8, p. 32), a relation that will be studied in Sect. 3.4.

We will also follow Einstein’s summation criterion (a repeated index involves a
summation with respect to it, unless otherwise indicated) and the convention that
the indices designated with Greek letters vary in the set {0, 1, 2, 3}, whereas those
indicated by Latin letters do it in {1, 2, 3}. For example, if the components of a
vector a ∈ E1,3 are denoted aμ, then a = aμeμ, whereas akek = a − a0e0. Instead
of a0, it is also customary to use t (time coordinate), and x, y, z (space coordinates)
instead of a1, a2, a3. Thus η(a) = t2 − (x2 + y2 + z2) has the same meaning as

η(a) = η(aμeμ) = (a0)2 −
(
(a1)2 + (a2)2 + (a3)2

)
.
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These expressions of η(a) allow us to conclude that H = {a ∈ E1,3 : η(a) = 1} is a
two-sheeted hyperboloid. In terms of the frame e, its sheets are distinguished by the
sign of t , but this sign is not intrinsic, for the replacement of e0 by −e0 changes
t to −t . This indetermination (between two possible indistinguishable temporal
orientations) compels us to choose one of the two (let us call it H+) as the positive
temporal orientation. This in practice means that only frames e that satisfy e0 ∈ H+
will be used. We will also assume, to take into account the conclusions at the end
of the preceding subsection (p. 55), that any two of these frames (say e and e′) have
the same global orientation. Note that the two assumptions together are equivalent
to saying that the isometry determined by e �→ e′ is proper and orthochronous.

As we shall see, H+ plays a role analogous to that of the sphere S2 of E3, and
that is why we will call it the Lorentz sphere. We will also write

F+ = R
+H+ = {λu : u ∈ H+, λ ∈ R

+} (3.3)

(its elements are the future-oriented vectors) and F− = −F+ (past-oriented
vectors). The open set F+∪F− is the interior of the light cone {a ∈ E : η(a) = 0}.
The exterior of this cone is called Elsewhere (see Fig. 3.1a).

The results that follow are the mathematical counterpart used to explain and
understand relativistic phenomena that are not very intuitive in the framework of
ordinary experience, such as the delay of moving clocks and, in particular, the so-
called twin paradox.

3.1.2 (The hyperbolic Cauchy-Schwarz inequality) If a, b ∈ F+, then

η(a, b) � |a||b|,

and equality occurs if and only if b = λa, λ ∈ R
+.

Spacelike

Lightlike
Timelike

Past

Future

Elsewhere

x

t

t − x = 0

t + x = 0

Light cone: t2 − x2 = 0

ex

et

P

Q

R

a

b

a + b

τ(PR) ≥ τ(PQ) + τ(QR)

(a) (b)

P

Q

A

y = λa

z − x

(c)

Bx

z = (1 − λ)a

y + x

Fig. 3.1 (a) Lorentz sphere and types of vectors. (b) Hyperbolic triangle inequality (see 3.1.5
and 3.1.6). (c) Measuring the spatial distance AB with photons (PB and BQ) and clocks in the
timelike segment PQ (see 3.1.8)
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Proof There is no loss of generality in assuming that a, b ∈ H+, in which case
we have η(a) = η(b) = 1 and a0, b0 > 0 (the e0-components of a and b). Set
ā = a−a0e0, b̄ = b−b0e0, α = |ā| and β = |b̄|, so that−η(ā) = α2,−η(b̄) = β2

and −η(ā, b̄) � αβ, α, β � 0 (we use that −η is positive definite in 〈e1, e2, e3〉 and
so we can apply the Euclidean Cauchy-Schwarz inequality to it). Since

1 = η(a) = (a0)2 + η(ā) = (a0)2 − α2,

we have (a0)2 = 1+ α2, and similarly (b0)2 = 1+ β2. It follows that

η(a, b) = a0b0 + η(ā, b̄) � a0b0 − αβ.

But

(a0)2(b0)2 = (1+α2)(1+β2) = 1+α2+β2+α2β2 � 1+2αβ+α2β2 = (1+αβ)2,

which means that a0b0 � 1+ αβ. So η(a, b) � 1.
For the second claim, we may again assume that a and b are unit vectors and

what we have to see is that equality holds if and only if a = b. In order to achieve
equality, the two inequalities used in the proof so far must be an equality. The second
is an equality if and only if α = β, and this gives us that a0 = b0, inasmuch as

a2
0 = 1+ α2 = 1+ β2 = b2

0.

On the other hand, the equality −η(ā, b̄) = αβ is true if and only if ā = 0 or b̄ = 0
or b̄ = λā, λ > 0, and it is immediate to check that in all these cases we have a = b:
if ā = 0, then b̄ = 0 (for β = α = 0), and therefore a = a0e0 = b0e0 = b; the
case b̄ = 0 is analogous; and in the third case, β = |b̄| = λ|ā| = λα, from which it
follows that λ = 1 and a = a0e0 + ā = b0e0 + b̄ = b. 
�
3.1.3 (Hyperbolic angle) If a, b ∈ F+, there is a unique positive real number
δ such that cosh(δ) = η(a, b)/|a| |b|. We will say that δ is the hyperbolic angle
between a and b, and we will write δ(a, b) to denote it. 
�
3.1.4 (The hyperbolic cosine theorem) If a, b ∈ F+, and we set δ = δ(a, b), then
(a + b)2 = a2 + b2 + 2|a||b| cosh(δ). In particular we see that a + b ∈ F+. 
�
3.1.5 (Hyperbolic triangle inequality) If a, b ∈ F+, then |a + b| � |a| + |b|, and
equality holds if and only if b = λa, λ > 0. 
�

We also need some basic notions of relativistic kinematics and chronometry. Let
X = X(s) ∈ M , s ∈ [a, b] ⊆ R, and assume that X(s) is twice differentiable with
continuous second derivative with respect to s. Given that the tangent space TXM
of M at any event X is canonically isomorphic to E1,3, we have dX/ds ∈ E1,3.
We will say that X(s) is a timelike path if dX/ds ∈ F+. Note that this condition
is invariant with respect to strictly increasing reparameterizations s = s(τ ), for in
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this case dX/dτ = (dX/ds)(ds/dτ) and ds/dτ > 0. The proper time of a timelike
path X(s) is the function τ : [a, b] → [0, T ] defined by

τ(ξ) =
∫ ξ

0
|dX/ds| ds =

∫ ξ

0
η (dX/ds)1/2 ds, T = τ(b). (3.4)

Insofar as τ(s) is a strictly increasing function of s, we can consider its inverse,
s = s(τ ), τ ∈ [0, T ], and the parameterization X(τ) = X(s(τ)). Then dX/dτ ,
which will be denoted Ẋ, satisfies Ẋ ∈ H+, and in particular η(Ẋ) = 1:

Ẋ = dX/dτ = (dX/ds)(ds/dτ) = (dX/ds)/(dτ/ds) = (dX/ds)/|dX/ds|.

Physically, τ(s) is interpreted as the time ticked by a chronometer that travels along
with X(s) and set to 0 at X(a). Since the proper time T = τ(b) only depends on
the curve X traced by X(s), we can write τ(X) to denote it.

3.1.6 (The twins’ theorem) Let P,Q ∈ M and suppose a = Q − P ∈ F+. Then
X(s) = P + sa, s ∈ [0, 1] (geometrically it is the parameterization of the segment
PQ joining P and Q) is a timelike path and τ(s) = s|a|, because dX/ds = a for
all s and η (dX/ds)1/2 = |a|. In particular, τ(PQ) = |a|. Of these kind of timelike
paths we say that they are uniform. If b ∈ F+, and we set R = Q+b = P +(a+b),
then a+b ∈ F+ and we have τ(PR) � τ(PQ)+ τ(QR), with equality if and only
if Q ∈ PR (see Fig. 3.1 b). Indeed, τ(PQ) = |a|, τ(QR) = |b|, τ(PR) = |a + b|,
and we know that |a+b| � |a|+|b|, with equality if and only if b = λa, λ > 0. 
�

With the same notations as for the timelike paths, we say that X(s) is a spacelike
path if dX/ds is spacelike. This condition is also invariant under strictly increasing
reparameterizations s = s(δ) and the proper distance of the path X(s) is the
function δ : [a, b] → [0,D] defined by

δ(ξ) =
∫ ξ

0
|dX/ds| ds =

∫ ξ

0
(−η(dX/ds))1/2 ds, D = δ(b). (3.5)

Considering that the proper distance D = δ(b) only depends on the curve X traced
by X(s), we can write δ(X) to denote it. In the case of a uniform spacelike path
(which means that X(s) = P + sa, η(a) < 0, s ∈ [0, 1], Q = P + a), we have
δ(PQ) = |a|.
3.1.7 (Meaning of proper time) The proper time of an infinitesimal segment
X(s)X(s + ds) of a timelike path X(s) is

τ(X(s)X(s + ds)) = |X(s + ds)−X(s)| = ds |dX/ds| = ds η(dX/ds)1/2,

which is the integrand of (3.4). In this way we construe proper time as the integral
(sum) of uniform infinitesimal proper times. 
�
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A path X(s) is lightlike if the vector dX/ds ∈ C (the light cone). In this case
there is no distinguished geometric parameter of the path. Physically, such paths are
those traced by photons, or zero-mass particles, and they are generatrices of the light
cone.

3.1.8 (Distance measurement with clocks and photons; cf. [24, 2.2.1]) Let P,Q ∈
M and suppose a = Q − P is timelike. Let A = P + λa, 0 < λ < 1 and B ∈ M
such that B − P and Q − B are lightlike. Then x = B − A is spacelike and
δ(AB)2 = τ(PA)τ(AQ) (see Fig. 3.1c).

Proof It is clear that τ(PA) = λ|a|, τ(AQ) = (1 − λ)|a|, η(λa + x) = 0 (as
λa + x = B − P ) and η((1− λ)a − x) = 0 (as (1− λ)a − x = Q− B). The last
two equations give the relations

η(x)+λ2η(a)+2λη(a, x) = 0 and η(x)+ (1−λ)2η(a)−2(1−λ)η(a, x) = 0.

Multiplying the first by 1− λ, the second by λ and adding the results, we obtain

η(x)+ λ(1− λ)η(a) = 0.

Thus η(x) = −λ(1− λ)η(a) < 0 (this shows that x is spacelike), and

δ(AB)2 = λ(1− λ)η(a) = λ(1− λ)|a|2 = τ(PA)τ(AQ). 
�

3.2 A GA View of the Lorentz Group

In Chaps. 1 and 2 we saw how handy the notion of rotor was to construct and
operate with isometries, and how flexibly these could be used to deal with geometric
transformations, as, for example, the conformal transformations of the Euclidean
space E3. A similar bonus, which includes geometric covariance, also obtains for
the spacetime M . In this case the relevant algebra (the Dirac algebraD) was studied
in detail in Sect. 1.4 and we will see that the isometries given by rotors inD provide
precise ways to construct and operate with Lorentz transformations.

D-Rotors and Spacetime Isometries

An element R ∈ D+ satisfying RR̃ = 1 is called a rotor.

3.2.1 (Isometry associated with a rotor R) Let R be a rotor and define R : D→ D
by R(x) = RxR̃. Then:

(1) R is an automorphism of the geometric product ofD.
(2) R(D1) = D1.
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(3) The linear map R : D1 → D1 is an isometry.
(4) R preserves grades and is an automorphism of the exterior and inner products.

Proof (1) R is linear and R(xy) = RxyR̃ = RxR̃RyR̃ = R(x)R(y) for all
x, y ∈ D. This shows that R is an automorphism of the geometric product.

(2) To see that R(a) ∈ D1 when a ∈ D1, note that R and a are even and odd,

respectively, and hence R̂(a) = R̂â
ˆ̃
R = −RaR̃ = −R(a), which shows that

R(a) only can have odd grades (1 or 3). But we also have R̃(a) = ˜̃
RãR̃ =

RaR̃ = R(a), which shows that R(a) has no grade 3 component. This proves
that R(a) ∈ D1.

(3) (Ra)2 = R(a2) = a2 shows that R is an isometry. In the first step we have used
(1) and in the second that a2 is a scalar.

(4) The first part follows from the fact that R maps a product of k pair-wise
orthogonal vectors to a product of k pair-wise orthogonal vectors (by (1) and
(3)). From the definition of the exterior product by means of the geometric
product, it is immediate to derive that R(x1∧· · ·∧xk) = Rx1∧· · ·∧Rxk , and
this implies that we also have R(x ∧ y) = Rx ∧ Ry for all x, y ∈ D. Finally
R(x · y) = Rx · Ry follows easily from the definition of the inner product by
means of the geometric product. 
�

Although it is feasible to describe all rotors (as, for example, in [97]), for our
present purposes it will suffice to construct what we will call Lorentz rotors.

Given a bivector z = x + yi ∈ D2, we have z2 = x2 − y2 + 2(x · y)i ∈ C
(since i commutes with bivectors, xyi+ yix = 2(x · y)i, where the interior product
is relative to E, and x2, y2, x · y ∈ R). We see that z2 is real if and only if x · y = 0,
and in this case we will say that z is a Lorentz bivector. If in addition z2 = ±1 = ε,
we will say that z is a unit Lorentz bivector, positive or negative according to the
sign ε.

For example, if v ∈ E is a unit vector, then v and vi are unit Lorentz bivectors.
The first is positive and the second is negative.

3.2.2 (The rotor Rz,α) If z is a unit Lorentz bivector and α ∈ R, Rz,α = eαz/2 is
a rotor (the denominator 2 in the exponent is included in order that the significant
parameter be α, not 2α). Moreover,

Rz,α = cosε(α/2)+ z sinε(α/2),

where cosε and sinε denote cosh and sinh if z is positive and cos and sin if z is
negative.

Proof Let R = Rz,α . Given that z̃ = −z, R̃ = e−αz/2 and so RR̃ = 1.
Now in the development of the exponential eαz/2, all terms have positive sign if
ε = 1. The terms with even exponent have the form 1

(2k)! (α/2)2k , and the terms

with odd exponent have the form z 1
(2k+1)! (α/2)2k+1, and hence it is clear that

R = cosh(α/2) + z sinh(α/2). The case ε = −1 can be established with a similar
reasoning. 
�
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3.2.3 (Rotors of Lorentz boosts) Let v ∈ E be a unit relative vector and set v =
ve0 ∈ 〈e1, e2, e3〉 (note that v is the relative vector of v, as v ∧ e0 = ve0 = v). Then
R v,α is the Lorentz boost in the direction v of rapidity α (and velocity u = tanh α).

Proof Using that e0 anticommutes with v, we have

R(e0) = R2
v,αe0 = eαve0 = cosh(α)e0 + sinh(α)v,

R(v) = eαv/2ve−αv/2 = eαv/2veαv/2e0 = eαvv = sinh(α)e0 + cosh(α)v.

On the other hand, the vectors a ∈ 〈e0, v〉⊥ are fixed by R, for they commute with v,

and the matrix of the restriction of R v,α to 〈e0, v〉 is γ
(

1 u

u 1

)
, with γ = cosh α and

u = tanh α. Given that |u| < 1 and γ = (1 − u2)−1/2, it is clear that R v,α is the
Lorentz boost of velocity u in the direction v (cf. the proof of 3.1.1). 
�
3.2.4 (Relativistic composition of velocities) The velocity of the composition of
two Lorentz boosts of velocities u1 and u2 in the same direction is a boost in that
direction of velocity u = (u1 + u2)/(1+ u1u2).

Proof If αi ∈ R are the rapidities of the boosts and v their common direction, then
their rotors are Ri = eαiv/2, and ui = tanh(αi) (i = 1, 2). It follows that

R2R1 = e(α1+α2)v/2

is the rotor of the composition R2 R1, which shows that this composition is a boost
in the direction v of velocity

u = tanh(α1 + α2)

= (tanh α1 + tanh α2)/(1+ tanh α1 tanh α2)

= (u1 + u2)/(1+ u1u2). 
�

3.2.5 (Rotations) Let v ∈ E be a unit relative vector and set z = vi. As observed
before, z is a unit negative Lorentz bivector. Let R = Rz,α . In this case e0 commutes
with z and therefore

R(e0) = eαz/2e0e
−αz/2 = eαz/2e−αz/2e0 = e0.

Thus we see that R induces a rotation in e⊥0 = 〈e1, e2, e3〉. The axis of this rotation
is v = ve0, for v also commutes with z. Finally, the angle of rotation is α, for if
x ∈ 〈e1, e2, e3〉 is orthogonal to v, then x anticommutes with z and

R(x) = eαzx = cos(α)x + zx sin(α).
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Note that zx = vix ∈ 〈e1, e2, e3〉, as it is linear combination of x and Rx, and
that it is orthogonal to v and x, as it anticommutes with both. 
�

We end with a fact that will be useful in the next two sections.

3.2.6

(1) If e0, e
′
0 ∈ H+ (unit future pointing timelike vectors), there is a Lorentz boost L

such that L(e0) = e′0. The rapidity of this boost is the hyperbolic angle between
e0 and e′0.

(2) Any proper orthochronous isometry of E1,3 is the composition of a rotation and
Lorentz boost. In particular, it can be obtained as R for some rotor R,

Proof

(1) We may assume e0 and e′0 are linearly independent (by 3.1.2 this is equivalent
to say that e0 �= e′0). We set α to denote the hyperbolic angle between e0 and e′0,
so that e0 · e′0 = cosh α. Pick a unit vector v ∈ 〈e1, e2, e3〉 ∩ 〈e0, e

′
0〉 (the latter

intersection has dimension 1 and it is enough to normalize any non-zero vector
in it). Then we have 〈e0, e

′
0〉 = 〈e0, v〉 and e′0 = λe0 + μv (λ,μ ∈ R). Now

cosh α = e0 · e′0 = λ, 1 = e′0
2 = λ2 − μ2, and so

μ2 = cosh2 α − 1 = sinh2 α.

Since v was determined up to sign, we may take μ = sinh α. Thus
e′0 = cosh αe0+sinh αv and 3.2.3 shows that the Lorentz boost R v,α , v = v∧e0,
maps e0 to e′0.

(2) If e′ is the image of the e by a proper orthochronous isometry T , then e0 and e′0
are future pointing unit timelike vectors. By (1) there is a Lorentz boost L such
that L(e0) = e′0. Then R = L−1T leaves e0 fixed, so that it is a rotation, and
therefore T = LR. 
�

3.2.7 (Composition of general boosts) In 3.2.4 we have seen that the composition
of two boosts along the same direction is a boost in that direction. In general, the
composition of two boosts will be the composition of a rotation and a boost (by the
previous result) and the rotation is required when the directions of the boosts are
different.

3.3 A GA View of Electrodynamics

First we will see that the GA view of the differential operator d (familiar from the
calculus texts) is the Dirac operator ∂ . This is not an idle translation from one
formalism to another, for we soon discover that GA confers many powerful features
that cannot be phrased within the ordinary multivariable calculus.

We will need the notion of reciprocal frame of a frame e0, e1, e2, e3. It is defined
as the frame e0, e1, e2, e3 such that e0 = e0 and ek = −ek . In general it is
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determined by the relations eμ · eν = δ
μ
ν . The components of a vector a with respect

to the reciprocal frame are denoted aμ, so that a = aμeμ. We clearly have a0 = a0

and ak = −ak .

Dirac’s Operator

If f is a differentiable function defined in an open set U of M , its differential is
given by df = (∂μf ) dxμ, where ∂μ = ∂/∂xμ. It is a 1-form defined on U , so that
we have a linear map dxf : E → R for each x ∈ U . Its value on a vector a is

(dxf )(a) = df (x + at)/dt |t=0 = (Daf )(x),

where (Daf )(x) = df (x + at)/dt |t=0 is the directional derivative of f at x in the
direction a. Indeed, f (x + at)− f (x) = (dxf )(ta)+ o(t) = t (dxf )(a)+ o(t), by
definition of dx .

Therefore we can represent the operator d (differential) in the form dxμ∂μ. In
this expression, dxμ is the linear map E → R such that (dxμ)(eν) = δ

μ
ν . Since this

form coincides with eμ· , we see that d is realized by the operator ∂ = eμ∂μ. This is
the vector operator ofD, or Dirac’s operator, and by definition (∂f ) ·a = a ·(∂f ) is
the directional derivative of f in the direction a. In fact this shows that the operator
a · ∂ = (a · eμ)∂μ = aμ∂μ yields, when applied to a function f , its derivative in the
direction a.

Using ∂ instead of d has other advantages in the context ofD. The most relevant
is that we can form, for any multivector field F = F(x), the products ∂F , ∂ · F and
∂ ∧ F . For example, if F = FJ eJ , then

∂ · F = eμ∂μFJ · eJ = ∂μFJ eμ · eJ .

In fact, since eμeJ = eμ · eJ + eμ ∧ eJ , we have the relation

∂F = ∂ · F + ∂ ∧ F

for any F .
If F = Fνeν is a vector field, ∂ · F = ∂μF νeμ · eν = ∂μF νδ

μ
ν = ∂μFμ, which

is the (Lorentzian) divergence of F . In a similar way we see, still in the same case,
that ∂∧F = ∂μF νeμ∧eν . In the Euclidean space E3, the vector operator is denoted
by ∇, ∇ ·F = ∂kF

k is the usual divergence, ∇∧F is the curl of F in bivector form
(see E.3.2, p. 72). So it stands to reason to call ∂ · F and ∂ ∧ F the divergence and
curl of F .

Another important observation is that ∂ provides a solution of Dirac’s dream (to
find a square root of the dalembertian operator �):

∂2 = ∂ · ∂ = ∂2
0 − (∂2

1 + ∂2
2 + ∂2

3 ) = �.
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The Lab Picture

We will use the formalism and results introduced in the last subsection of Sect. 1.4
(page 23) about the relative space E.

The map E1,3 → E, x �→ x = x ∧ e0, is surjective and its kernel is 〈e0〉. If
x = xμeμ, it is clear that x = xkσ k . Setting t = x · e0, we have

xe0 = x · e0 + x ∧ e0 = t + x,

which is the representation of x in terms or the relative space E. This relative
representation is also called lab representation.

Taking an event O as origin, the lab representation of an event P is the lab
representation of x = P −O. For example, the lab representation of P = O + τe0
is t = τ and x = 0, which is interpreted as the time given by a clock at rest with
respect in E. Another example: the lab representation of the Lorentz quadratic form
agrees with the expression used by Minkowski,

η(x) = x2 = xe0e0x = (t + x)(t − x) = t2 − x2.

The relative expression of the relativistic velocity ẋ = dx/dτ is

ẋe0 = d(xe0)/dτ = d(t + x)/dτ,

which implies

dt/dτ = ẋ · e0, dx/dτ = ẋ ∧ e0 .

If v = dx/dt (relative velocity),

v = dx

dt
= dx

dτ

dτ

dt
= ẋ ∧ e0

ẋ · e0
.

Given that v2 = −η(v) = −η(ẋ ∧ e0)/(ẋ · e0)
2 = 1− (ẋ · e0)

−2, we have v2 < 1
and

ẋ · e0 = 1/
√

1− v2, (3.6)

which is the Lorentz factor of v and denoted by γ = γ (v). In particular, dt =
γ (v) dτ , or dτ = dt

√
1− v2, which gives the precise relation between proper time

and the time measured in the lab. Since γ > 1 if v �= 0, the time measured in the
lab is greater than proper time.

The relativistic moment of a particle is defined by the formula p = m0ẋ, where
m0 is the rest mass. Since ẋe0 = d(t + x)/dτ = γ + γ v,

pe0 = m0γ +m0γ v = m+mv = m+ p,
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where m = γm0 is called the relativistic mass of the particle and p = mv is moment
(relative to the lab). Now it is immediate that

ṗe0 = γ dm/dt + γ dp/dt. (3.7)

The relative representation of the vector operator ∂ is

∂e0 = ∂ · e0 + ∂ ∧ e0 = ∂0 + ∂.

In this case, ∂ = ∂ ∧ e0 = ek ∧ e0 ∂k = −σ k∂k = −∇, where ∇ = σ k∂k (the vector
operator of the relative space). We also have that e0∂ = ∂0 − ∂ = ∂0 +∇.

Riesz Form of Maxwell’s Equations

3.3.1 (The Maxwell equation, [82]) Let E,B, j ∈ E be time-dependent relative
vectors and ρ = ρ(x, t) a differentiable function of x ∈ E and t ∈ R. Define
F = E + Bi (it is called the Faraday bivector) and J = (ρ + j)e0. Then the
equation

∂F = J

is equivalent to the four Maxwell’s equations for the electric field E and the
magnetic field B created by the charge density ρ and the current density vector j .

Proof Since Je0 = ρ + j , we have ρ = J · e0 and j = J ∧ e0. Moreover, from

(ρ + j)e0 = e0(ρ − j)

we obtain that e0J = ρ− j . Multiplying the equation ∂F = J by e0 on the left, we
obtain the equivalent relation (∂0 + ∇)(E + iB) = ρ − j . With a little algebra to
develop the products, we get

∂0E +∇ ·E +∇ ∧E + i(∂0B +∇ · B +∇ ∧ B) = ρ − j .

On equating the corresponding grades of both sides, we see that this equation is
equivalent to the four equations

∇ ·E = ρ, ∂0E + i∇ ∧ B = −j , i∂0B +∇ ∧E = 0, i∇ · B = 0.

Now it suffices to observe that ∇· is the divergence operator of the relative space
and that i∇ ∧ B = −∇ × B = − curl(B) (the curl vector of B) to conclude that
these equations are equivalent to

div(E) = ρ (Gauss law for E) (3.8)
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curl(B)− ∂tE = j (Ampère-Maxwell law) (3.9)

∂tB + curl(E) = 0 (Faraday’s induction law) (3.10)

div(B) = 0 (Gauss law for B) (3.11)

which are Maxwell’s equations in differential form for the electromagnetic field
created by ρ and j (in units such that ε0 = μ0 = 1, and hence also c = 1). 
�
3.3.2 (Invariants) The expression F 2 is clearly Lorentz invariant. In terms of the
decomposition F = E+Bi, F 2 = E2−B2+2(E ·B)i, and so E2−B2 and E ·B
are Lorentz invariant. 
�
3.3.3 (The continuity equation) If we multiply ∂F = J by ∂ on the left, we obtain
�F = ∂ · J + ∂ ∧ J . Since the left side is a bivector (� preserves grades), the
scalar part of the right-hand side expression must vanish: ∂ · J = 0. This is the
charge conservation equation, as it is equivalent, in relative terms, to the continuity
equation ∂tρ +∇ · j = 0. 
�

The Relativistic Lorentz Force Law

Consider a particle with electric charge q in an electromagnetic field F . We will see
that the relativistic form of the Lorentz force law is the Einstein-Lorentz relation

ṗ = qF · ẋ, (3.12)

where ẋ is the proper velocity and p the relativistic moment of the particle.

3.3.4 (Lab form of the Lorentz force law) If F = E+ iB is the expression of F in
relative terms, then the Einstein-Lorentz formula is equivalent to the relations

dm/dt = q(E · v) and dp/dt = q(E + B × v). (3.13)

Proof The relative expression of the vector qF · ẋ is q(F · ẋ) · e0 + q(F · ẋ) ∧ e0.
The scalar part is q(F · ẋ) · e0 = qF · (ẋ ∧ e0) = γ qF · v = γ qE · v, because
(iB) · v = 0 (the inner products are inD, not in P; see E.3.4 and E.3.5, p. 73). This
and the formula (3.7) show that the first formula of our statement is equivalent to
the equality of the e0-components of the Einstein-Lorentz relation. Let us now turn
to q(F · ẋ) ∧ e0 = q(E · ẋ) ∧ e0 + q(iB · ẋ) ∧ e0. The first summand is equal to
γ qE, because

(σ k · ẋ) ∧ e0 = (eke0 · ẋ) ∧ e0 = (ẋ · e0)eke0 = γσ k.

And the second summand is equal to γ qB × v, because a similar calculation gives
(with jkl a cyclic permutation of 123)
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(iσ j · ẋ) ∧ e0 = (−(ekel) · ẋ) ∧ e0 = ẋkσ l − ẋlσ k

= γ (σ lvk − σ kvl) = γσ j × v,

where we have set v = vkσ k and ẋ = ẋμeμ. With the last two relations, and the
formula (3.7), the proof is complete. 
�
3.3.5 (m ∼ E) In the second formula (3.13), the term f = dp/dt is the force
exerted by the electromagnetic field on the particle and the term on its right is the
Lorentz law for this force. The power of the Lorentz force is f ·v = qE ·v, because
B × v is perpendicular to v. Now the first of the formulas (3.13) tells us that this
power is equal to dm/dt , which means that the variations of relativistic mass are
equivalent to energy. In fact, the work produced on the particle by the Lorentz force
in a time interval, which is to say the integral of the power on that interval, is equal
to the variation of mass in that interval. We may conclude that p0 = p · e0 = m has
the form m = w + w0, where w denotes the dynamical energy of the particle and
w0 a constant that only depends on the rest mass m0.

Since m0 is itself a mass, it can be equated to an energy, and in fact we may
think that it is the energy needed for its creation, or the energy liberated in its
disintegration, so that finally it makes sense to write m = E, where E is the sum
of the dynamical energy w and the energy that corresponds to m0. In SI units, the
formula looks more familiar: E = mc2.

Potentials

Equating the grade components of the two sides of ∂F = J , we see that the equality
is equivalent to the equations ∂ · F = J and ∂ ∧ F = 0 (which correspond to
the first and second pairs of Maxwell’s equations, namely the non-homogeneous
equations pair, (3.8) and (3.9), and the homogeneous equations pair, (3.10) and
(3.11), respectively).

The second equation (together with the Poincaré lemma) tells us that there is
a vector field A (which is called a potential of F ) such that F = ∂ ∧ A. In this
form the equation ∂ ∧ F = 0 is automatically satisfied, for ∂ ∧ ∂ = 0, and the
equation ∂ · F = J becomes ∂ · (∂ ∧ A) = J , that is, (∂ · ∂)A − ∂(∂ · A) = J , or
�A − ∂(∂ · A) = J . Let us see that we can choose A so that it satisfies ∂ · A = 0
(Lorenz gauge condition, or Lorenz gauge, after Ludvig Lorenz). Indeed, if f is a
scalar function, then ∂ ∧ ∂f = 0 and so ∂ ∧ (A + ∂f ) = ∂ ∧ A = F , and the
point is that we can find f so that ∂ · (A + ∂f ) = 0, as this condition is equivalent
to the equation �f = −∂ · A (for the existence of a solution of this equation, see,
for example, [53]). With the Lorentz condition, we have F = ∂A, and the equation
∂ · F = J becomes �A = J . This is the (non-homogeneous) wave equation for A.
If we manage to solve this equation, given J and appropriate boundary conditions,
then we can get F by computing ∂A.

In relative terms, Ae0 = φ + A, with φ = A · e0 and A = A ∧ e0 ∈ E.
Then we have ∂A = ∂e0e0A = (∂t − ∇)(φ − A) = −(∇φ + ∂tA) + ∇ ∧ A, for
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∂tφ +∇ ·A = ∂ · A = 0 (Lorentz condition). Equating corresponding grades with
E + Bi, we see that the relation ∂A = F is equivalent to the equations

E = −(∇φ + ∂tA), B = −i(∇ ∧A) = ∇ ×A = curl(A), (3.14)

which are the familiar formulas that supply the electric and magnetic fields in the
lab from φ (scalar potential) and A (vector potential).

Relative Transformation of the Electromagnetic Field

One of the more emblematic results of Einstein’s special theory of relativity
[33] is the relation between the electric and magnetic fields observed in two
inertial frames. The obtention of such relations can be posed as follows. We know
that the transformation that maps e into another inertial frame e′ is proper and
orthochronous. Thus there is a rotor R (see 3.2.6) such that

e′μ = R(eμ) = ReμR̃.

Now the fundamental observation is the following (note the use of geometric
covariance for R):

E′
k = σ ′k · F = R(σ k) · F = σ k · R̃(F ) = σ k · R̃FR,

B ′
k = σ ′∗k · F = R(σ ∗k) · F = σ ∗k · R̃FR.

We see that the problem is reduced to the calculation of R̃FR.
Let us work out in detail the case in which R is a Lorentz boost, say (with

notations from Example 3.2.3),

R = Rσ 1,α = eασ 1/2.

We recall that R is the Lorentz boost in the direction e1 = σ 1e0 whose velocity is
u = tanh α and γ = cosh α.

Relatively to e, we can write

F = E1σ 1 + E2σ 2 + E3σ 3 + B1σ
∗
1 + B2σ

∗
2 + B3σ

∗
3.

Since R commutes with σ 1 and anticommutes with σ 2 and σ 3,

R̃FR = E1σ 1 + e−ασ 1(E2σ 2 + E3σ 3)+ B1σ
∗
1 + e−ασ 1(B2σ

∗
2 + B3σ

∗
3).

To transform this expression we have that

e−ασ 1 = cosh α − σ 1 sinh α = γ (1− uσ 1)
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and the relations

σ 1σ 2 = σ ∗3, σ 1σ 3 = −σ ∗2, σ 1σ
∗
2 = −σ 3, σ 1σ

∗
3 = σ 2.

With all that we get

R̃FR = E1σ 1 + γ (E2σ 2 + E3σ 3)− γ u(E2σ
∗
3 − E3σ

∗
2)

+ B1σ
∗
1 + γ (B2σ

∗
2 + B3σ

∗
3)+ γ u(B2σ 3 − B3σ 2).

Setting E‖ = E1σ 1 and E⊥ = E2σ 2 + E3σ 3, with analogous notations for B, and
taking into account that E2σ 3 − E3σ 2 = σ 1 ×E, and similarly for B, one obtains
the following version of Einstein’s formulas (writing u = uσ 1):

E′ = E‖ + γE⊥ + u× B,

B ′ = B‖ + γB⊥ − u×E.

3.3.6 (Remark) These formulas show that both E and B are involved in the
calculation of E′, and the same is true for B ′. A specially compelling example is
a particle at rest at the origin of e′, whose field is reduced to an electric Coulomb
field E′. Then Einstein’s second formula gives us (inverting the roles of e and e′)

B = u×E′.

This shows that the reference e measures a magnetic field in addition to the electric
field E = E′‖ + γE′⊥. The conclusion is important: the magnetic fields created by
moving charges are relativistic effects of the Coulomb fields created by stationary
charges. 
�
3.3.7 (Remark) Einstein’s formulas are valid for any Lorentz boost. This is seen by
replacing the σ 1 in the rotor by the unit vector u giving the direction of the boost
and defining the parallel and perpendicular components of E and B with respect to
it. In this case the boost velocity is uu and the proof is similar, but using the rotor
Ru,α instead of Rσ 1,α . 
�

3.4 A GA View of Dirac’s Equation

In Schrödinger’s theory, the values of the wave function ψ(x), x ∈ M , are complex
numbers. When Pauli introduced the spin, he was lead to replace C by C

2, and this is
why since then the (normalized) vectors of C2 are called Pauli spinors. Then Dirac
was lead to replace C

2 by C
4 (space of Dirac spinors, or also bispinors) because

his matrices Γμ were 4× 4 complex matrices. The landmarks of the road followed
by Dirac can be summarized as follows.
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As starting point, take the Klein-Gordon equation, (�+m2)ψ = 0. This equation
is the Schrödinger equation for an electron, with m = me/h̄, me the rest-mass of the
electron and h̄ = h/(2π) the Planck constant (normalized). It is a partial differential
equation of the second order, but Dirac argued that what was needed was a linear
equation in ∂t and, requiring that it be relativistic, also linear in ∂x , ∂y and ∂z. So he
considered the operator D = dμ∂μ, and on imposing that D2 = � he discovered
that the simplest solution was to take dμ = Γμ (the matrices introduced in E.1.8,
p. 32).

Now the Klein-Gordon equation factors as (D − im)(D + im)ψ = 0, and Dirac
simply postulated the equation (D + im)ψ = 0, which is equivalent to the form in
which he wrote it: ih̄Dψ = meψ . But in order that this equation makes sense, ψ

has to take values in C
4, and with this assumption it is the Dirac equation. In the

presence of an electromagnetic potential A, it is included in the Dirac equation in
the form ih̄(D − eA)ψ = meψ , where e is the electron charge, but note that it is
also required that A has the form AμΓμ.

The problem of expressing the Dirac equation purely in terms of the algebra D
was studied for the first time by Hestenes [40], a theme on which he has provided
many decisive insights over the years, as in [41–46], culminating so far in the
masterpieces [47] (for perspective on his work, see also the New Preface to the
second edition of [40] and the paper [48]). We have found that all these works are
particularly instructive, and also others, as, for example, the pedagogical [13] or the
treatise [29]. The effort is worthwhile, since on the one hand it is possible to dispense
with burdens that are accidental to the problem (some have been mentioned before),
and on the other, the rich structure of D can be exploited to delve further into the
understanding of phenomena.

The Hestenes formulation of Dirac’s equation (cf. [41, §2]) reads:

∂ψ i h̄− eAψ = meψe0. (3.15)

The nature of its ingredients is as follows. The field ψ (the Dirac field) takes values
in the even algebra D+ (ψ : M → D+). Note that the complex dimension of
D+ is 4, the same as C4. The expression ∂ψ is the geometric product of the Dirac
operator ∂ with ψ , while Aψ is the geometric product of the vector potential A

and ψ . The symbol i is the geometric imaginary unit i = e2e1 = ie3e0 = iσ3 =
σ1σ2. Therefore we see that in the Equation (3.15), which Hestenes calls real Dirac
equation, and which here we will dub the Hestenes-Dirac equation, all terms are
geometrically meaningful. No matrices appear in it, and even the formal imaginary
unit i has been replaced by the geometric area unit σ1σ2.

But the real value gained with (3.15) is the possibility of exploiting the rich
structure of D+ to sharpen our understanding of the electron theory. A first
fundamental result is the following [41]:
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3.4.1 (Canonical form of ψ) If ψ ∈ D+ and ψψ̃ �= 0, there exist ρ ∈ R
+, β ∈

(−π, π ] and a rotor R such that ψ = ρ1/2eβ i/2R. Moreover, this expression is
unique.

Proof The product ψψ̃ is a complex scalar (its grade 2 term must vanish because
it is invariant by reversion). Therefore we can write it in polar form: ψψ̃ = ρeβ i,
with ρ > 0 and β ∈ (−π, π ]. Let R = ρ−1/2ψe−β i/2. Then R is a rotor, because
R̃ = ρ−1/2e−β i/2ψ̃ and RR̃ = ρ−1ψe−β iψ̃ = 1. Uniqueness is also clear, for
ρ and β are uniquely determined by ψψ̃ , and R is uniquely determined by the
relation R = ψρ−1/2e−β i/2. 
�

The role of R in the study of the Dirac-Hestenes equation is that R is a proper
and orthochronous isometry. That it is proper follows from the fact that R commutes
with i, so that Ri = RiR̃ = iRR̃ = i. On the other hand, R is orthochronous because
it is the composition of a rotation and a Lorentz boost.

The rotor R is in fact a rotor field and so it enables us to construct the frame field
e′ = Re, all with the same orientation and temporal orientation as e.

3.4.2 (Frame field of a ψ and Dirac’s current) We have the relation ψeμψ̃ = ρe′μ.

Setting v = e′0, we have ψe0ψ̃ = ρv (which is the Dirac current).

Proof Indeed, given that i anticommutes with vectors and that ĩ = i, we can write:

ψeμψ̃ = ρeβ i/2ReμR̃eβ i/2 = ρeβ i/2e−β i/2ReμR̃ = ρe′μ. 
�

The vector s = h̄
2 Re3R̃ = h̄

2 e′3 is the spin vector. The rotor R transforms the
geometric bivector unit i = e2e1 into ι = RiR̃ = e′2e′1 and S = h̄

2 ι is the spin
bivector.

3.4.3 (Meaning of the spin bivector) S = isv

Proof isv = h̄
2 iRe3R̃Re0R̃ = h̄

2 Rie3e0R̃ = h̄
2 Re2e1R̃ = h̄

2 RiR̃ = h̄
2 ι = S. 
�

3.5 Exercises

E.3.1 Write a proof of 3.1.5.

E.3.2 (The div and curl Operators of E3) If F = Fkek is a vector field on E3, its
divergence, div(F ), is defined as ∂1F

1 + ∂2F
2 + ∂3F

3. Check that this agrees with
∇ · F (recall that ∇ denotes the vector operator of E3). On the other hand, the curl
of F , denoted curl(F ), is defined as

∑
(∂jF

k − ∂kF
j )el , where jkl runs over the

cyclic permutations of 123. Show that ∇ ∧ F = ∑(∂jF
k − ∂kF

j )ej ∧ ek (same
summation convention). Since ej ∧ ek = −iel , we see that ∇∧F is the Hodge dual
of curl(F ). Hint: In E3, any orthonormal basis is its own reciprocal basis.
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E.3.3 If F ∈ D2, and we split it as F = E + Bi in the Pauli algebra, show that
then F ′ = E − Bi is the reversal of F in that algebra and that

FF ′ = E2 + B2 + 2E × B.

As shown in the standard treatises on electromagnetism, E2 + B2 measures the
density of the electromagnetic field energy, while E × B, which is called the
Poynting vector, controls the flow of energy across surfaces.

E.3.4 Prove that if a, b ∈ D1 and F ∈ Dk , k � 2, then a · (b ·F) = (a∧b) ·F . Use
the commutation rule for the inner product to see that the latter relation is equivalent
to (F · a) · b = F · (a ∧ b), which is the relation used at the beginning of the proof
of (3.13) in the case k = 2.

E.3.5 Prove the relation iB · v = 0 used in the proof of (3.13), where the inner
product is inD.

E.3.6 (Monochromatic electromagnetic waves in vacuum) An electromagnetic
field F of the form F = F0e

i(k·x) (where F0 ∈ D2 is a constant non-zero bivector
and k ∈ D1 a constant non-zero vector) is said to be a monochromatic wave. In
vacuum (absence of charges and currents), the Riesz-Maxwell equation for these
waves is ∂F = 0, and the steps below sketch how to derive well-known properties
of them.

(1) Show that ∂(k · x) = k and ∂F = kiF0e
i(k·x). So ∂F = 0 is equivalent to

kF0 = 0.
(2) Writing ke0 = ω + k in the lab formalism, and hence e0k = ω − k, we have

k2 = ke0ε0k = ω2 − k2. Therefore, multiplying kF0 = 0 by k, we get ω2 = k2

(this is called the dispersion relation and its meaning will be seen in a moment).
(3) Let F0 = E + iB, with E,B ∈ E. Then we have (ω− k)(E + iB) = 0, which

is equivalent to ωE + iωB = k ·E + k ∧E + i(k ·B)+ i(k ∧B). Looking at
the scalar part, we get k ·E. Similarly, the pseudoscalar part yields k · B.

(4) So we have ωE+ iωB = k∧E+ i(k∧B), and from this it is easy to conclude
that ωE = −k×B and ωB = k×E. This shows that k,E,B is an orthogonal
system, and also that E2 = B2.



Chapter 4
Robot Kinematics

In this chapter we present a general overview of the kinematics of serial robotic
manipulators based on the conformal geometric algebra, which simplifies its formu-
lation and provides means for solving, clearly and efficiently, several of the main
classical problems in this field. The core of the material presented in this chapter
is assembled from Sect. 4.2 onwards, and for convenience of the reader Sect. 4.1 is
devoted to provide a brief review of the classical approach to robot kinematics.

4.1 Classical Kinematics

A serial robot manipulator is an open kinematic chain made up of a sequence of
rigid bodies, called links, connected by means of actuated kinematic pairs, called
joints, that provide relative motion between consecutive links. At the end of the last
link, there is a tool or device known as the end-effector. Only two types of joints are
considered throughout this chapter: revolute joints, that only perform rotations, and
prismatic joints, that only perform translations.

From a kinematic point of view, the end-effector position and orientation (pose)
of a manipulator can be expressed as a differentiable function f : C → X, where C

denotes the space of joint variables, called configuration space, and X denotes the
end-effector configuration space, which is usually called the operational space.

For serial manipulators, a frame {oi , xi , yi , zi} is attached to each joint of the
manipulator to describe its relative position and orientation (Fig. 4.1a). The relations
between consecutive joint frames are described using the Denavit-Hartenberg
convention [26]. This convention consists of four parameters, the D-H parameters
(Fig. 4.1b): one acting as a joint variable, either an angle θi or a displacement
di , depending on whether the joint i is revolute or prismatic; and the other three
acting as constants: length ai , angle αi and either di or θi depending on which
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(a)

− 1

−1

−1

−1

−1

−1

(b)

Fig. 4.1 (a) Frame attached to joint i. (b) Relation between consecutive joints given by the four
D-H parameters: ai , the perpendicular distance between the joint axes zi−1 and zi ; αi , the angle
between the joint axes zi−1 and zi ; θi , the angle between xi−1 and xi ; and di , the distance between
o′i−1 and oi

one is used to describe the joint variable [88, 90]. Therefore, associated with each
joint i, together with the corresponding orthonormal frame (Fig. 4.2), there is a
transformation matrix i−1Ti that relates frame {i} to the preceding one (the first joint
frame is related to the world frame). The end-effector pose 0Tn can be represented
as follows:

0Tn = 0T1
1T2 · · · n−1Tn (4.1)

with

0Tn =
(

R p
0 1

)
, (4.2)

where R is a rotation matrix that describes the end-effector orientation with respect
to the world frame, while p is a position vector describing the end-effector position
with respect to the world frame.

This description is equivalent to the one provided by f , known as the kinematic
function of the serial robot. Thus, f (q) = x, where x denotes the vector describing
the end-effector pose, and q = (q1, . . . , qn), the vector whose components are the
joint variables, also known as the configuration. Clearly, either qi = θi if joint i is
revolute or qi = di if joint i is prismatic. Deriving with respect to time the kinematic
relation provided by f , we obtain another relation

ẋ = J (q)q̇, (4.3)
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Fig. 4.2 Schematic
representation of a spatial
serial robot manipulator of
three DoF

where ẋ denotes the end-effector velocity vector; q̇, the vector of the joint velocities;
and J , the Jacobian matrix of f . If f (q) = (f1(q), . . . , f6(q)), then J =
(∂fi(q)/∂qj )ij . In robot kinematics, this Jacobian is also known as the analytical
Jacobian matrix and is denoted by JA(q).

However, ẋ does not correspond to the vector of linear and angular velocities of
the end-effector. Therefore, the following relation is established:

JA(q) = T (x)JG(q), (4.4)

where T (x) denotes the transformation matrix that is only singular at representation
singularities [88], i.e., a singularity associated with an adopted minimal representa-
tion of the orientation and JG(q), the geometric Jacobian matrix of the serial robot.

4.1.1 If JG = (J1, . . . , Jn), then:

Ji =
[

zi × (on − oi )

zi

]
if i is revolute,

Ji =
[

zi

0

]
if i is prismatic.

(4.5)

In robotics, the geometric Jacobian JG is the most used because, computationally
speaking, it is easier to calculate and more efficient if implemented in different
algorithms. Furthermore, the geometric Jacobian relates the vector of joint velocities
q̇ with the vector of linear and angular velocities of the end-effector v:

v = JG(q)q̇. (4.6)

A manipulator is said to have n degrees of freedom (DoF) if its configuration can
be minimally specified by n variables. For a serial robot, the number and nature of
the joints determine the number of DoF. For the task of positioning and orientating
its end-effector in the three-dimensional space, the manipulators with more than 6
DoF are called redundant while the rest are non-redundant.

Robot kinematics includes the study of the forward and inverse kinematics.
Forward kinematics consists of obtaining the pose of the end-effector given the value
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of the joint variables. These variables can be angles or displacements, depending
on whether the joints are revolute or prismatic. Inverse kinematics consists of
recovering the joint variables given the end-effector pose. In other words, forward
kinematics relates configuration space C to operational space X, while inverse
kinematics gives the reverse relation.

The inverse kinematics problem is of special importance for serial robots since
it plays a major role in its programming, commanding and control. However, given
a target pose, the solution for this problem may not be unique, since non-redundant
manipulators have up to sixteen different solution configurations for the same pose
[81], while for redundant manipulators this number is infinite. For example, if a
trajectory in Cartesian space is considered, each point of such trajectory represents
a target pose of the end-effector. Thus, the high number of solutions allows the
selection of those with, for example, lower energy consumption or lower joint
velocities (these are examples of secondary tasks). Therefore, one of the main
objectives when solving the inverse kinematics is to obtain all the solutions for a
given end-effector pose. However, this still is an open problem of great relevance.

The methods used for solving the inverse kinematics are categorized into two
groups:

(a) Analytical or closed-form methods: All the solutions are expressed as functions
in terms of the pose elements.

(b) Numerical methods: Starting with an initial configuration q0, an iterative
process returns a good approximation q̃ of one of the solutions.

Closed-form methods strongly depend on the geometry of the manipulator and,
therefore, are not sufficiently general, i.e., they cannot be applied to arbitrary robots.
However, it is clear that they have advantages over the numerical methods such as
lower computational cost and execution time. Besides, they give all the solutions for
a given end-effector pose. In his PhD thesis, Pieper [81] develops a procedure for
obtaining the solutions for a class of serial manipulators, i.e., the manipulators with
three consecutive joints whose axes are either parallel or intersect at a single point
(if these joints are the last three, these manipulators are known as manipulators with
a spherical wrist). Later, Paul [77] establishes a more rigorous and generic method
based on the manipulation of the transformation matrices that can be applied to
arbitrary manipulators. Other methods include the use of Lagrange multipliers, the
definition of imaginary links for redundant manipulators, the definition of an extra
angle (the arm angle parameter), and different geometric methods [16, 51, 52, 71,
98].

On the other hand, numerical methods usually work for any manipulator, but
they suffer from several drawbacks like high computational cost and execution time,
existence of local minima and numerical errors. Moreover, only one of the sixteen
(infinite) possible solutions is obtained for non-redundant (redundant) manipulators.
The most well-known numerical approaches are the Jacobian-based methods, in
which the relation (4.6) is inverted and solved iteratively. Inverting the geometric
Jacobian matrix is not always possible. For redundant manipulators, JG(q) is a non-
square matrix, while for non-redundant robots det(JG(q)) vanishes at singularities.
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To handle these situations, alternative methods like the pseudoinverse, the transpose,
the damped least-squares and local optimization are used [10, 11, 25]. Other
numerical methods include the use of an augmented Jacobian matrix and Crank-
Nicholson methods [32, 34, 91].

As mentioned before, singularities do not allow the implementation of simple
schemes for solving the inverse kinematics. Besides, singularities affect the motion
of the robot. More precisely, a singularity is a configuration in which the robot loses
some of its degrees of freedom and, hence, motion in the operational space X.

Using the relation (4.6), it is easy to see that:

4.1.2 If q ∈ C is a singularity of a given serial robot, then the following two
statements hold:

• The end-effector cannot be translated or rotated around at least one Cartesian
direction.

• Finite linear and angular velocities of the end-effector may require infinite joint
velocities.

Any serial manipulator of n > 2 DoF has singularities as demonstrated in [36, 50].
The identification of such singularities is made by solving the following non-linear
equation:

det(JG(q)) = 0 (4.7)

if the robot is non-redundant, and

det(JG(q)J T
G(q)) = 0 (4.8)

if it is redundant.
In general, if the serial robot possesses at least one revolute joint, several

coefficients of the geometric Jacobian matrix are non-linear expressions and,
thus, neither Eq. (4.7) nor Eq. (4.8) is easy to formulate and solve. However, for
manipulators with a spherical wrist, a simplification can be made. Since the origin
of the frame attached to the end-effector can be placed at the common intersection
point, also known as the wrist center point, a zero block appears in JG(q) by
definition (see Eq. (4.5)). Hence,

JG(q) =
(

J11(q) 0
J21(q) J22(q)

)
, (4.9)

where J11(q), J21(q) are blocks of order 3× (n− 3) and J22(q) is a block of order
3. Clearly, Eq. (4.7) is simplified to:

det(JG(q)) = det(J11(q)) det(J22(q)), (4.10)
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from where the singularities can be obtained as solutions of either det(J11(q)) = 0
or det(J22(q)) = 0. These two equations allow to decouple the singularities into
position and orientation singularities as follows:

• Position singularities PS = {q ∈ C : det(J11(q)) = 0};
• Orientation singularities OS = {q ∈ C : det(J22(q)) = 0}.

4.2 Forward Kinematics

The conformal model of the three-dimensional geometric algebra C provides an
elegant and compact way of describing the forward kinematics of serial robots.
While the classical approach is based on the transformation matrices constructed
following the D-H convention, this approach needs only the elements of the rotor
group.

Let us consider the screw motion related to an arbitrary axis z given by the
translation and rotation around such axis. Both motions can be represented using
rotors and, therefore, the screw motion can also be represented by a rotor. To
establish such representation, let us consider the basis elements of the world frame
{e1, e2, e3}, i.e., the canonical basis of the Euclidean space E3. Since the i-th joint
frame is always described with respect to the (i − 1)-th joint frame, if the latter
is considered as the world frame, the i-th joint frame is described with respect to
{e1, e2, e3}.

Now, the following rotors are defined:

Tdi
= 1+ die∞e3

2
,

Rθi
= cos

(
θi

2

)
− sin

(
θi

2

)
e12,

Tai
= 1+ aie∞e1

2
,

Rαi
= cos

(αi

2

)
− sin

(αi

2

)
e23,

(4.11)

where eij = ei ∧ ej . Then, the rotors describing the screw motion are:

Mθi
= Tdi

Rθi
,

Mαi
= Tai

Rαi
.

(4.12)

Notice that rotor Mθi
contains both joint variables, while Mαi

is a constant rotor.
Some authors [5, 6] denote these rotors as motors due to their connections with the
screw theory (a motor is seen as a motion combining a translation and a rotation
around the same axis).



4.2 Forward Kinematics 81

Given a geometric entity (point, line, plane, etc.) x, the following relation is
applied in the same way as a general rotor:

x′ = Mθi
xM̃θi

= Tdi
Rθi

xR̃θi
T̃di

, (4.13)

where x′ denotes the geometric entity x once it has been rotated and translated.
Analogously to the classical approach, where the product of the transformation

matrices defines the forward kinematics (as shown in Eq. (4.1)), the successive
multiplication of rotors given by

x′ = Mθ1Mα1 · · ·MθnMαnxM̃αnM̃θn · · · M̃α1M̃θ1

= M1 · · ·MnxM̃n · · · M̃1,
(4.14)

with Mi = Mθi
Mαi

, also determines the forward kinematics of serial robots. This
statement can be easily proven: Eq. (4.14) is valid for points (that represent the end-
effector position) and lines (that represent the end-effector orientation).

4.2.1 Let us consider a particular configuration q = (q1, . . . , qn) ∈ C. Then, the
end-effector pose P ′ associated with q is the multivector:

P ′ = M1(q1) · · ·Mn(qn)P M̃n(qn) · · · M̃1(q1), (4.15)

where P denotes the initial pose of the end-effector.

As mentioned before, the advantages of this approach include a compact
representation of the forward kinematics. In addition, since geometric entities and
rotors are elements of the algebra, the manipulation of complex geometric structures
(like serial chains) becomes easier. Moreover, at computational level, it has lower
execution time and computational cost. By using conformal geometric algebra, the
matrix products become multivector products, avoiding a significant number of
operations.

To illustrate these advantages, a simple example is introduced. Let us consider
a planar manipulator of three links (Fig. 4.3a). According to the D-H parameters
depicted in Fig. 4.3b, rotor Mi is given by

Fig. 4.3 Planar manipulator:
(a) Schematic representation.
(b) D-H parameters

x

y

(a)

αi ai di θi

1 0 a1 0 θ1

2 0 a2 0 θ2

3 0 a3 0 θ3

(b)
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Mi = Mθi
Mαi

=
1
︷︸︸︷
Tdi

Rθi
Tai

1
︷︸︸︷
Rαi

=
(

cos

(
θi

2

)
− sin

(
θi

2

)
e12

)(
1+ aie∞e1

2

)

= cos

(
θi

2

)
− cos(θi/2)ai

2
e1e∞ − sin

(
θi

2

)
e12 − sin(θi/2)ai

2
e2e∞,

(4.16)

where cos(θi/2) is the scalar part and the remaining terms conform a grade-two
element. Let us denote by Bi this grade two element. Then, since the planar
manipulator has 3 DoF, the product of the three motors M1,M2, and M3 can be
written as:

M1M2M3 =
(

cos

(
θ1

2

)
− B1

)(
cos

(
θ2

2

)
− B2

)(
cos

(
θ3

2

)
− B3

)

= cos

(
θ1

2

)
cos

(
θ2

2

)
cos

(
θ3

2

)
− cos

(
θ1

2

)
cos

(
θ3

2

)
B2

− cos

(
θ2

2

)
cos

(
θ3

2

)
B1 − cos

(
θ1

2

)
cos

(
θ2

2

)
B3

+ cos

(
θ1

2

)
B2B3 + cos

(
θ2

2

)
B1B3 + cos

(
θ3

2

)
B2B3

− B1B2B3,

(4.17)

where

BiBj =
(

cos(θi/2) sin(θj /2)ai − cos(θj /2) sin(θi/2)aj

2

)
e2e∞

+
(

sin(θi/2) sin(θj /2)aj − sin(θi/2) sin(θj /2)ai

2

)
e1e∞

− sin

(
θi

2

)
sin

(
θj

2

)

(4.18)

and

B1B2B3 = −
(

C1 sin

(
θ3

2

)
+ C3

cos(θ3/2)a3

2

)
e1e∞

+
(

C2 sin

(
θ3

2

)
− C3

sin(θ3/2)a3

2

)
e2e∞ − C3 sin

(
θ3

2

)
e12,

(4.19)
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with

C1 = cos(θ1/2) sin(θ2/2)a1 − cos(θ2/2) sin(θ1/2)a2

2
,

C2 = sin(θ1/2) sin(θ2/2)a2 − sin(θ1/2) sin(θ2/2)a1

2
,

C3 = sin

(
θ1

2

)
sin

(
θ2

2

)
.

For each configuration q = (θ1, θ2, θ3), the elements C1, C2, and C3 are real
constant numbers. Therefore, the forward kinematics of the planar manipulator is
determined by Eq. (4.17):

P ′ = M1(θ1)M2(θ2)M3(θ3)P M̃3(θ3)M̃2(θ2)M̃1(θ1). (4.20)

4.3 Differential Kinematics

Differential kinematics refers to the relation (4.6), that allows to obtain the vector v

of linear and angular velocities of the end-effector given the joint velocities q̇.
In robot kinematics, Eq. (4.6) is used in the design of robust control algorithms

for commanding a serial robot in the execution of complex tasks. As in the preceding
case (the forward kinematics), conformal geometric algebra provides a framework
that avoids the use of matrices. In this context, the algorithms designed will exhibit
a better performance with less execution time.

In this section, an analogous of Eq. (4.6) is obtained in terms of rotors. This
development roughly follows the one introduced in [7, 99]. It starts by differentiating
Eq. (4.15), which yields

Ṗ ′ =
n∑

j=1

∂

∂qj

(
n∏

i=1

MiP

n∏

i=1

M̃n−i+1

)

q̇j , (4.21)

where the dependence on the configuration is omitted for simplicity. For the case
n = 2, (4.21) becomes

Ṗ ′ =
(

∂

∂q1
M1M2PM̃2M̃1 +M1M2PM̃2

∂

∂q1
M̃1

)
q̇1

+
(

M1
∂

∂q2
M2PM̃2M̃1 +M1M2PM̃2

∂

∂q1
M̃1

)
q̇2.

(4.22)
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Clearly, Eq. (4.22) can be extended and regrouped for an arbitrary n as follows:

Ṗ ′ =
n∑

j=1

⎡

⎣ ∂

∂qj

⎛

⎝
j∏

i=1

Mi

⎞

⎠A1 + A2
∂

∂qj

⎛

⎝
n∏

i=n−j+1

M̃n−i+1

⎞

⎠

⎤

⎦ q̇j , (4.23)

where

A1 =
n∏

i=j+1

MiP

n∏

i=1

M̃n−i+1,

A2 =
n∏

i=1

MiP

n−j∏

i=1

M̃n−i+1.

(4.24)

As stated in Exercise E.4.3, the derivative of a rotor R with respect to time is

Ṙ = −1

2
BR and ˙̃R = 1

2
R̃B, (4.25)

where B is the bivector associated with R. Thus, the derivatives of the products of
rotors can be rewritten as

∂

∂qj

⎛

⎝
j∏

i=1

Mi

⎞

⎠ = −1

2

⎛

⎝
j−1∏

i=1

Mi

⎞

⎠BjMj ,

∂

∂qj

⎛

⎝
n∏

i=n−j+1

M̃n−i+1

⎞

⎠ = 1

2
M̃jBj

n∏

i=n−j+2

M̃n−i+1,

(4.26)

where Bj denotes the bivector of rotor Mj .
By substitution of (4.26) in (4.23), the following expression is obtained:

Ṗ ′ =
n∑

j=1

⎡

⎣−1

2

⎛

⎝
j−1∏

i=1

Mi

⎞

⎠BjMjA1 + 1

2
A2M̃jBj

n∏

i=n−j+2

M̃n−i+1

⎤

⎦ q̇j . (4.27)

Now, (4.27) can be simplified by re-expressing A1 and A2

Ṗ ′ =
n∑

j=1

⎡

⎣−1

2

⎛

⎝
j−1∏

i=1

Mi

⎞

⎠BjA1 + 1

2
A2Bj

n∏

i=n−j+2

M̃n−i+1

⎤

⎦ q̇j , (4.28)

where A1 =
n∏

i=j

MiP
n∏

i=1
M̃n−i+1 and A2 =

n∏

i=1
MiP

n−j+1∏

i=1
M̃n−i+1.
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Using the property

j−1∏

i=1

Mi

j−1∏

i=1

M̃j−i = 1 ∀j = 1, . . . , n, (4.29)

identity (4.28) becomes

Ṗ ′ =
n∑

j=1

[
− 1

2

j−1∏

i=1

MiBj

j−1∏

i=1

M̃j−i

j−1∏

i=1

MiA1

+ 1

2
A2

j−1∏

i=1

M̃j−i

j−1∏

i=1

MiBj

j−1∏

i=1

M̃j−i

]
q̇j .

(4.30)

Clearly, since the conformal geometric algebra version of the forward kinematics
relation (4.14) is valid for any multivector, the following identity is deduced:

B ′
j =

j−1∏

i=1

MiBj

j−1∏

i=1

M̃j−i , (4.31)

where Bj and B ′
j are bivectors. These bivectors can be regarded as defining the

rotation plane normal to the axis of rotor Mj . Therefore, Eq. (4.30) remains as

Ṗ ′ =
n∑

j=1

⎡

⎣−1

2
B ′

j

j−1∏

i=1

MiA1 + 1

2
A2

j−1∏

i=1

M̃j−iB
′
j

⎤

⎦ q̇j . (4.32)

Finally, since

j−1∏

i=1

MiA1 =
j−1∏

i=1

Mi

n∏

i=j

MiP

n∏

i=1

M̃n−i+1

=
n∏

i=1

MiP

n∏

i=1

M̃n−i+1 = P ′
(4.33)

and

A2

j−1∏

i=1

M̃j−i =
n∏

i=1

MiP

n−j+1∏

i=1

M̃n−i+1

j−1∏

i=1

M̃j−i

=
n∏

i=1

MiP

n∏

i=1

M̃n−i+1 = P ′,

(4.34)
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Eq. (4.32) is simplified to

Ṗ ′ =
n∑

j=1

(
−1

2
B ′

jP
′ + 1

2
P ′B ′

j

)
q̇j . (4.35)

Now, let us define

Ji = 1

2

(
P ′B ′

i − B ′
iP

′) . (4.36)

Then, Eq. (4.35) can be rewritten as

Ṗ ′ = J q̇, (4.37)

where J = (J1 · · · Jn) is the rotor version of the geometric Jacobian matrix given
in (4.6). Therefore, identities (4.35) and (4.37) define the differential kinematics of
arbitrary serial robots.

4.4 Inverse Kinematics

As introduced in Sect. 4.1, inverse kinematics is one of the most important problems
in robot kinematics.

In this section, Pieper’s theorem [81] is revisited using the rich language given by
geometric algebra. As pointed out above, this theorem provides a constructive proof
of the resolvability of the inverse kinematics of certain classes of serial robots. In
practice, however, it is easier to develop a particular geometric strategy for solving
the inverse kinematics rather than applying directly Pieper’s method. Because of
that, the second part of this section is devoted to the development of one of these
strategies through an illustrative example. Readers interested in a further analysis
of serial manipulators with spherical wrist are referred to [100], where several
geometric strategies based on conformal geometric algebra are defined to develop a
complete solution for the inverse kinematics of manipulators of this kind.

The starting point is identity (4.14) with n = 6. If the desired end-effector pose
is denoted by

T =
(

R p
0 1

)
,

then it is possible to recover the rotor M that describes such pose by transforming
the matrix representation of the world frame T0 into T , where

T0 =
(

I3 0
0 1

)
.
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First, the position vector p defines the translation

Tp = 1+ ‖p‖e∞p
2

. (4.38)

Now, to obtain the rotor that relates the orientations defined by the rotation matrices
R and I3, the following procedure is introduced. Both orientations are seen as
two sets of vectors in the three-dimensional space: {e1, e2, e3} and {f 1, f 2, f 3}.
Here, the vectors of each basis are orthonormal, but, in general, this is not a
requirement. Since there is a rotor relating both sets of vectors, the following identity
holds:

f k = RekR̃ for k = 1, 2, 3, (4.39)

where a simple expression for rotor R is sought. To obtain such expression, some
preliminary results are needed.

As defined in Sect. 3.3, every frame {e1, e2, e3} has associated a reciprocal frame
{e1, e2, e3}. Two important properties of reciprocal frames are the following.

4.4.1 (First Property)

e1e1 + e2e2 + e3e3 = 3. (4.40)

4.4.2 (Second Property)
Given an m-vector Am,

3∑

k=1

ekAmek = (−1)m(3− 2m)Am. (4.41)

Readers interested in the proof of these two properties are referred to [29]. Now,
rotor R can be written as

R = exp

(
−θB

2

)
= α − βB, (4.42)

where α and β are defined as in the Euler’s spinorial formula (see 1.3.9). Its reverse
is

R̃ = exp

(
θB

2

)
= α + βB. (4.43)
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Therefore

3∑

k=1

ekR̃ek =
3∑

k=1

ek(α + βB)ek =
3∑

k=1

ekekα +
3∑

k=1

ekβBek

(1)= 3α + (−1)2(3− 4)βB = 3α − βB

= 3α + α − α − βB = 4α − R̃,

(4.44)

where (1) is the result of the application of Eqs. (4.40) and (4.41). Now, merging
(4.39) and (4.44), the following expression is obtained:

3∑

k=1

f kek =
3∑

k=1

RekR̃ek = 4αR − 1. (4.45)

It follows that R is a scalar multiple of 1 +
3∑

k=1
f kek and the following formula is

established:

R = 1+ f 1e1 + f 2e2 + f 3e3

|1+ f 1e1 + f 2e2 + f 3e3| . (4.46)

Finally, the rotor M describing the transformation between T0 and T is the product
of rotors (4.38) and (4.46), given by

M = TpR, (4.47)

and it is, by relation (4.14), equal to

M = M1M2M3M4M5M6. (4.48)

Now, we are in conditions to prove Pieper’s theorem using conformal geometric
algebra.

4.4.3 (Pieper) The inverse kinematics of any serial manipulator of 6 DoF with three
consecutive joints whose axes are either parallel or intersect at a single point can
be analytically solved.

Proof Let us suppose that three consecutive joint axes intersect at a single point or
are parallel. Without loss of generality, it can be assumed that the last three joints
(4, 5, and 6) have this property. The remaining cases are left as an exercise for the
reader since they are completely analogous to the case developed in this chapter.
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Equation (4.48) can be rearranged to isolate the three joints whose axes intersect
at a single point:

M4M5M6 = M̃3M̃2M̃1M. (4.49)

Since the axes of joints 4, 5, and 6 intersect at a common point p (the wrist center
point), it verifies that

M4M5M6pM̃6M̃5M̃4 = p = M̃3M̃2M̃1MpM̃M1M2M3. (4.50)

This equation shows how the problem is split into two subproblems

M̃1MpM̃M1 = M2M3pM̃3M̃2 (4.51)

and

M4M5M6 = M̃3M̃2M̃1M. (4.52)

The first of these equations only involves the joint variables θ1, θ2, and θ3. Once
this equation has been solved, by evaluating and solving the second equation, the
remaining joint variables, θ4, θ5, and θ6, can be obtained.

Equation (4.51) can be seen as a relation between points:

pa = M3pM̃3,

pb = M2paM̃2.
(4.53)

If the point pa is rotated around the second joint axis, the plane containing pa and
normal to such axis is invariant. Therefore, it is a scalar multiple of the expression
pa�̃2 + �2̃pa , where:

• p̃a does not denote the reverse of pa but the point obtained as M̃3pM3 (in fact,
the reverse of a vector a ∈ G3 verifies ã = a);

• �2 denotes the line defined by the joint axis z2.

An explanation of these and related properties can be found in [86]. Therefore:

pa�̃2 + �2p̃a = M3pM̃3�̃2 + �2M3pM̃3

(1)= M3pM̃3M̃2�̃2M2 + M̃2�2M2M3pM̃3

= M2M3pM̃3M̃2�̃2 + �2M2M3pM̃3M̃2

(2)= M̃1MpM̃M1�̃2 + �2M̃1MpM̃M1,

(4.54)
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where (1) uses the identity �2 = M̃2�2M2 and (2) uses Eq. (4.51). Now, in
Eq. (4.54), the second joint variable has been eliminated and, thus, it only depends
on θ1 and θ3. The process is repeated in order to eliminate another joint variable.
From (4.54), the following identity is extracted:

M3pM̃3 = M̃1MpM̃M1. (4.55)

Again, by rotating p around the third joint axis, the plane containing p and normal to
�3 is defined. Such plane is invariant and is given as a scalar multiple of p�̃3 + �3p.
Thus

p�̃3 + �3p = pM̃3�̃3M3 + M̃3�3M3p

= M3pM̃3�̃3 + �3M3pM̃3

= M̃1MpM̃M1�̃3 + �3M̃1MpM̃M1

(4.56)

and, hence, Eq. (4.56) only depends on θ1. Therefore

p�̃3 + �3p = M̃1MpM̃M1�̃3 + �3M̃1MpM̃M1

1 = cos2(θ1)+ sin2(θ1)

}

(4.57)

is a system of non-linear equations, that in general, has two distinct solutions. Once
θ1 is known, the system

pa�̃2 + �2̃pa = M̃1MpM̃M1�̃2 + �2M̃1MpM̃M1

1 = cos2(θ3)+ sin2(θ3)

}

(4.58)

can be solved for θ3. Again, two distinct solutions are obtained. Finally, having
found θ1 and θ3, θ2 is calculated using the original Eq. (4.51). For this case, a unique
solution is derived.

Once θ1, θ2, and θ3 have been found, they are evaluated in Eq. (4.52), obtaining

M4M5M6 = N, (4.59)

where N = M̃3M̃2M̃1M is a constant rotor. Notice, however, that there are four
possible values that N can take corresponding to the four sets of solutions for θ1, θ2,
and θ3. For each one of these solutions, rotor M6 can be eliminated easily acting N

over �6 as follows:

N�6Ñ = M4M5M6�6M̃6M̃5M̃4 = M4M5�6M̃5M̃4. (4.60)
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Now, a relation between lines is obtained, since �a = M5�6M̃5 and �b = M4�aM̃4
for two lines �a and �b. If �a is rotated around the fourth joint axis, an invariant
plane is generated. Such plane is a multiple scalar of �a�̃4 + �4�̃a , which leads to:

�a�̃4 + �4�̃a = M5�6M̃5�̃4 + �4M5�̃6M̃5

= M5�6M̃5M̃4�̃4M4 + M̃4�4M4M5�̃6M̃5

= M4M5�6M̃5M̃4�̃4 + �4M4M5�̃6M̃5M̃4

= N�6Ñ �̃4 + �4N�̃6Ñ�4.

(4.61)

Since Eq. (4.61) only depends on θ5, by adding the equation cos2(θ5)+sin2(θ5) = 1
to (4.61), two distinct solutions are derived.

Once θ5 has been calculated, the following identity is used for solving θ4:

M4M5�6M̃5M̃4 = N�6Ñ . (4.62)

Equation (4.62) has a unique solution. Finally, the original Eq. (4.59) is used to
recover θ6. 
�

For a given end-effector pose, it has been shown that the robots of this kind have
a maximum of eight distinct solutions for the inverse kinematics. In the general case,
where no three consecutive joint axes intersect or are parallel, it can be proven that
the inverse kinematics of 6 DoF serial robots has up to 16 distinct solutions.

As commented above, this proof provides the different equations required for
solving the inverse kinematics. However, a geometric strategy using the conformal
model of the spatial geometric algebra is usually more efficient and easier to
formulate.

The second part of this section is focused on the development of one of these
strategies. For that purpose, an illustrative example is introduced. Stäubli TX90 is
a 6 DoF manipulator with a spherical wrist (see Fig. 4.4). Thus, by translating the
end-effector position to the wrist center point, it is assured that the first three joints
contribute to the position and orientation but the last three only contribute to the
orientation. Since this transformation is fixed, i.e., it does not depend on any joint
variable, the inverse kinematics can be solved with the wrist center point pw as target
position.

The first part of the strategy consists of solving the inverse position problem,
i.e., finding the values of the joint variables needed for obtaining the target position.
Since only the first three joints contribute to the position, it is enough to calculate
θ1, θ2, and θ3. Let us denote by p0 the null vector representation of the point placed
at the origin of the world frame. Such representation is the result of applying the
Hestenes’ map to e0, according to 2.1.4. Therefore, the intermediate points p1 and
p2 are needed to be found.
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Fig. 4.4 Stäubli TX90:
initial position
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Point p0 is translated in the direction of z1 and, thus, p1 = d1e1+ 1/2d2
1 e∞+ e0

where, again, its representation comes from 2.1.4.
Once the point p1 has been obtained, the point p2 is established by intersecting

two spheres and one plane as shown in Fig. 4.5a, b. Planes are constructed in
conformal geometric algebra with three non-collinear points (see Theorem 2.3.5),
while spheres need four points (see Theorem 2.3.6):

π1 = p0 ∧ p1 ∧ pw ∧ e∞, (4.63)

where pw is the null vector representation of point pw. On the other side, the two
spheres are defined as:

S∗1 =
(

p1 − 1

2
a2

3e∞
)

, (4.64)

S∗2 =
(

pw − 1

2
d2

4 e∞
)

, (4.65)

where the inner representation of both spheres has been chosen because it only needs
their center and radius.
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P2
Pw

P0

π1

P2

(a) (b)

Fig. 4.5 Computation of P2: (a) P2 in the intersection of two spheres. (b) P2 in the intersection of
a circle and a plane

Now, the intersection between these three geometric entities is computed. For
that, a definition of such intersection in conformal geometric algebra is required.

4.4.4 The intersection or meet between two geometric entities O1 and O2 is defined
as the element of C:

O1 ∨O2 =
[
O∗

1 ∧O∗
2

]∗
.

As shown in Exercise E.4.6, the intersection of the plane (4.63) with the
spheres (4.64) and (4.65) is a bivector:

B2 = S1 ∨ S2 ∨ π1. (4.66)

This bivector represents a pair of points in the conformal geometric algebra, so
B2 = b1 ∧ b2 for some null points b1 and b2. To extract such points from (4.66), the
following equations are used:

b1 = −P̃ [(b1 ∧ b2) · e∞]P,

b2 = P [(b1 ∧ b2) · e∞]P̃ ,
(4.67)

where P denotes the projector operator defined as:

P = 1

2

(
1+ b1 ∧ b2

|b1 ∧ b2|
)

. (4.68)

Clearly, p2 is equal to one of the recovered points bi (for i = 1, 2).
It only remains to find the joint variables. Since the first three joints are revolute,

their joint variables are angles. First, we need to construct three auxiliary lines with
the already obtained points:
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Fig. 4.6 Relation between
the orientations

123
456

�1 = p0 ∧ p1 ∧ e∞, (4.69)

�2 = p1 ∧ p2 ∧ e∞, (4.70)

�3 = p2 ∧ pw ∧ e∞. (4.71)

Finally, using the geometric entities (4.63), (4.69)–(4.71) and Exercise E.2.2, the
joint variables are calculated:

θ1 = � (e1, π1), (4.72)

θ2 = � (�1, �2), (4.73)

θ3 = � (�2, �3), (4.74)

where � (·, ·) denotes the main angle defined by the two geometric entities.
The second part consists of solving the inverse orientation problem. Since

θ1, θ2, θ3 are known, it only remains to find θ4, θ5, and θ6. With θ1, θ2, θ3, the rotor
defining the orientation of the wrist center point pw under the effect of these joints
can be calculated. Let us denote by R123 such rotor. Besides, recall that R denotes
the rotor that relates the orientation of the world frame with the orientation of the
end-effector. Then, the rotor that defines the rotation between R123 and R can be
obtained from the formula

R = R123R456, (4.75)

where the rotor R456 only depends on θ4, θ5, and θ6 (see Fig. 4.6).
Now, the idea is to split R456 into three different rotors as follows:

R456 = R4R5R6, (4.76)

where Ri = cos(θi/2)− sin(θi/2)Bi with angle of rotation θi and bivector Bi . The
angles θ4, θ5, and θ6 will correspond to the desired joint variables.
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If Eq. (4.76) is expanded, the following expression is obtained:

(
cos

(
θ4

2

)
−sin

(
θ4

2

)
B4

)(
cos

(
θ5

2

)
−sin

(
θ5

2

)
B5

)(
cos

(
θ6

2

)
−sin

(
θ6

2

)
B6

)

= cos

(
θ4

2

)
cos

(
θ5

2

)
cos

(
θ6

2

)
− cos

(
θ4

2

)
cos

(
θ6

2

)
sin

(
θ5

2

)
B5

− cos

(
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2
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(
θ6
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(
θ4
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sin

(
θ6

2
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B6

+ cos

(
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2

)
sin

(
θ4

2

)
sin

(
θ5

2

)
B4B5 + cos

(
θ4

2

)
sin

(
θ5

2

)
sin

(
θ6

2

)
B5B6

+ cos

(
θ5

2

)
sin

(
θ4

2

)
sin

(
θ6

2

)
B4B6−sin

(
θ4

2

)
sin

(
θ5

2

)
sin

(
θ6

2

)
B4B5B6,

(4.77)

where, besides, we can express R456 as follows:

R456 = cos

(
θ

2

)
− sin

(
θ

2

)
B456, (4.78)

for an angle θ and a bivector B456. As it can be observed, working directly with
Eq. (4.77) is highly difficult, so an alternative path is required.

4.4.5 Let us denote by R a rotor in the conformal geometric algebra C. Then,
RH(x)R̃ = H(RxR̃) for every x ∈ R

3, where H(·) denotes the Hestenes’ map
(see 2.1.4).

Proof It follows immediately from applying 2.4.2 to rotors. 
�
Therefore, we can define the rotations in C using the bivectors of G3 and, as a result,
B456 can be expressed as a linear combination with respect to the basis bivectors
of G3:

B456 = β1e23 + β2e13 + β3e12, (4.79)

for some βi ∈ R. Now, Eq. (4.78) can be rewritten as

R456 = cos

(
θ

2

)
− sin

(
θ

2

)
β1e23 − sin

(
θ

2

)
β2e13 − sin

(
θ

2

)
β3e12. (4.80)

As it happens with the Euler angles, different conventions can be adopted.
Depending on the chosen convention, a particular set of equations is obtained. For
example, if

B4 = e23, B5 = e13, B6 = e12 (4.81)
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that correspond to the Euler angles convention XYZ, then:

B4B5 = B6; B5B6 = B4; B4B6 = −B5; B4B5B6 = −1. (4.82)

Hence, by regrouping the terms of (4.77) and equating them to the terms of (4.80),
the following system of equations is obtained:

β ′1 = cos

(
θ4

2

)
sin

(
θ5

2

)
sin

(
θ6

2

)
− cos

(
θ5

2

)
cos

(
θ6

2

)
sin

(
θ4

2

)
,

β ′2 = − cos

(
θ4

2

)
cos

(
θ6

2

)
sin

(
θ5

2

)
− cos

(
θ5

2

)
sin

(
θ4

2

)
sin

(
θ6

2

)
,

β ′3 = cos

(
θ6

2

)
sin

(
θ4

2

)
sin

(
θ5

2

)
− cos

(
θ4

2

)
cos

(
θ5

2

)
sin

(
θ6

2

)
,

(4.83)

where β ′i = − sin(θ/2)βi . This is a system of non-linear equations in θ4, θ5, and
θ6 that can be solved analytically. However, (4.83) is difficult to solve. By changing
the convention, a more suitable system of equations can be obtained. Therefore, by
setting

B4 = e12, B5 = e13, and B6 = e12, (4.84)

the following relations hold:

B4B5 = −e23; B5B6 = e23; B4B6 = −1; B4B5B6 = B5. (4.85)

Then, the system of equations obtained is:

β ′1 = cos

(
θ4

2

)
sin

(
θ5

2

)
sin

(
θ6

2

)
− cos

(
θ6

2

)
sin

(
θ4

2

)
sin

(
θ5

2

)
,

β ′2 = − cos

(
θ4

2

)
cos

(
θ6

2

)
sin

(
θ5

2

)
− sin

(
θ4

2

)
sin

(
θ5

2

)
sin

(
θ6

2

)
,

β ′3 = − cos

(
θ5

2

)
cos

(
θ6

2

)
sin

(
θ4

2

)
− cos

(
θ4

2

)
cos

(
θ5

2

)
sin

(
θ6

2

)
,

(4.86)
that can be simplified as follows:

β ′1 = sin

(
θ6 − θ4

2

)
sin

(
θ5

2

)
, (4.87)

β ′2 = − cos

(
θ6 − θ4

2

)
sin

(
θ5

2

)
, (4.88)
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β ′3 = − sin

(
θ6 + θ4

2

)
cos

(
θ5

2

)
. (4.89)

So, by squaring and adding (4.87) and (4.88), we obtain

(β ′)2
1 + (β ′)2

2 = sin2
(

θ6 − θ4

2

)
sin2

(
θ5

2

)
+ cos2

(
θ6 − θ4

2

)
sin2

(
θ5

2

)
=

= sin2
(

θ5

2

)
,

(4.90)
where the solution of this trigonometric equation is

θ5 =
sin−1

(
±
√

(β ′)2
1 + (β ′)2

2

)

2
. (4.91)

Finally, if sin(θ5/2) �= 0

β ′′1 =
β ′1

sin(θ5/2)
β ′′2 =

−β ′2
sin(θ5/2)

β ′′3 =
−β ′3

cos(θ5/2)
, (4.92)

and, therefore:

β ′′1 = sin

(
θ6 − θ4

2

)

β ′′3 = sin

(
θ6 + θ4

2

) "⇒
θ6 − θ4

2
= sin−1(β ′′1 ),

θ6 + θ4

2
= sin−1(β ′′3 ),

(4.93)

that is solved easily as follows:

θ6 = sin−1(β ′′1 )+ sin−1(β ′′3 ),

θ4 = sin−1(β ′′3 )− sin−1(β ′′1 ).
(4.94)

For the case where sin(θ5/2) = 0, an alternative solution, also based on the use of
rotors, can be found in [100].

This completes the resolution of the inverse orientation problem and, therefore,
the description of the geometric strategy presented in this section. As it has
been seen, this method strongly depends on the geometry of the robot but it is
much easier to formulate and solve than Pieper’s method. Besides, it allows a
better understanding of the geometry of the robot. If implemented, it has less
computational cost than any algorithm based on the geometric Jacobian matrix and,
as a result, it turns to be more efficient for computing the inverse kinematics. Again,
conformal geometric algebra has proven to be a powerful tool for simplifying the
formulation and resolution of robotic problems.
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4.5 Identification of Singularities

Although identity (4.37) in Sect. 4.3 provides a computationally efficient version of
the geometric Jacobian matrix based on rotors, J = (J1, . . . , Jn) is still a matrix.
Geometric algebra provides a framework where this problem is formulated and
solved in an easy and compact way. For that purpose, only 6 DoF serial robots
are considered.

The more natural way of formulating the singularity problem is through the six-
dimensional geometric algebra G6, that extends the three-dimensional algebra G3
introduced in Sect. 1.3.

4.5.1 A line � can be fully specified by two three-dimensional vectors: its direction
vector v and its position vector p. The Plücker coordinates of � define a six-
dimensional vector [v v × p]T , where v × p denotes the moment vector of �.

The identity that allows the computation of the singularities of a given 6 DoF serial
manipulator is the following:

4.5.2 If Si(q) denotes the six-dimensional vector whose components are the Plücker
coordinates of the i-th screw axis, then:

S1(q) ∧ · · · ∧ S6(q) = det(S1(q) · · · S6(q))e1 ∧ · · · ∧ e6. (4.95)

Proof Let us start with two vectors of G2. Let a1, a2 ∈ G2 be such vectors.
Therefore, a1 = a11e1 + a12e2 = (a11, a12) and a2 = a21e1 + a22e2 = (a21, a22).
The exterior product of both vectors is computed as follows:

a1 ∧ a2 = (a11e1 + a12e2) ∧ (a21e1 + a22e2)

= (a11a22 − a21a12)e1 ∧ e2

= det(a1 a2)e1 ∧ e2.

(4.96)

Clearly, (4.96) can be extended to a set of m vectors of Gm:

a1 ∧ · · · ∧ am = det(a1 · · · am)e1 ∧ · · · ∧ em. (4.97)

Since we have only made use of the exterior product, this result is also true for
any exterior algebra ∧Em. In particular, Eq. (4.97) is true for any set of six vectors
a1, · · · , a6 of G6, which gives the desirable identity. 
�

Taking the dual of 4.5.2, an expression for computing the singularities is
obtained:

(S1(q) ∧ · · · ∧ S6(q))∗ = 0, (4.98)

where, clearly, the solution of this equation are the singularities of the serial robot
whose axes can be expressed in Plücker coordinates as Si(q).
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In general, to obtain the singularities is difficult since Eq. (4.98) is non-linear.
However, for robots with a spherical wrist a simplification can be made. As men-
tioned in Sect. 4.1, the singularities of manipulators of this kind can be decoupled
into position and orientation singularities.

For each screw axis in Plücker coordinates Si(q) = (vi (q), mi (q)), the axis and
moment vectors can be expressed as vectors in G3. Again, by (4.97) but with m = 3,
the position singularities are obtained as the solutions of the following equation:

(m1(q) ∧m2(q) ∧m3(q))∗ = 0, (4.99)

while the orientation singularities are the solutions of

(v4(q) ∧ v5(q) ∧ v6(q))∗ = 0. (4.100)

As an illustrative example, let us consider the Stäubli TX90 manipulator introduced
in Sect. 4.4. Since it has a spherical wrist, the above-mentioned simplification can
be made and, as a result, its position singularities are the solutions of

sin(q3)(9031250+ 76765625 sin(q2)− 76765625 cos(q2) sin(q3)

+ 76765625 cos(q3) sin(q2)) = 0,
(4.101)

while its orientation singularities are the solutions of

− sin(q5) = 0. (4.102)

There are two position singularities, namely

• q3 = 0 or π , and
• the values of q2, q3 such that sin(q2)+ sin(q2 − q3) = −0.118 if q3 �= 0, π ;

and just one orientation singularity, namely q5 = 0 or π .

4.6 Exercises

E.4.1 Consider the planar manipulator introduced in Sect. 4.2 and let a1 = a2 =
a3 = a. If the initial pose is (3a, 0, 0), obtain the pose associated with the
configuration (π/2, π/4,−π/6).

E.4.2 Compute the forward kinematics multivector of the Stäubli TX90 using its
D-H parameters (see Fig. 4.7a).

E.4.3 Deduce that the expression for the derivative of a rotor R(t) with respect to
time is Ṙ(t) = − 1

2BR(t) where B is the bivector associated with R(t).
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αi ai di qi

1 0 0 480 q1
2 − 2 0 0 q2 − π

2

3 0 425 0 q3+ π
2

4 π
2 0 425 q4

5 − π
2 0 0 q5

6 π
2 0 0 q6

(a)

1

2 3

0

1

2

(b)

π

Fig. 4.7 (a) Stäubli TX90 D-H parameters. (b) Cartesian manipulator

E.4.4 Derive an equivalent expression to the rate relation (4.37).
Hint: Express the forward kinematics equations in terms of the exponentials of
bivectors. Manipulate such equations using the expression of the rotor’s derivative.

E.4.5 Prove Pieper’s theorem for the case of three consecutive revolute joints with
parallel axes.
Hint: The proof follows the one developed in this chapter but considering an
invariant plane instead of an invariant point. Such plane is normal to the parallel
joint axes.

E.4.6 Show that the meet of two spheres S1 and S2 with a plane π is always a
bivector.

E.4.7 Consider the Cartesian manipulator depicted in Fig. 4.7b. Its non-null D-H

parameters are: α2 = θ2 = θ3 = π

2
and α3 = −π

2 . Solve the inverse position

problem for a target position p = (px, py, pz).

E.4.8 Formulate the singularity problem for general manipulators in G3,1.
Hint: There are six different basis bivectors in G3,1. Besides, the screw axis of each
joint can be seen (in Plücker coordinates) as a bivector.



Chapter 5
Molecular Geometry

The 3D structure of a molecule is fundamental for understanding its function,
especially in the case of proteins [28]. The calculation of protein structures can be
tackled experimentally, through Nuclear Magnetic Resonance (NMR) spectroscopy
and X-ray crystallography [9], or theoretically, via molecular potential energy
minimization [56, 57].

This chapter will explain how geometric algebra and conformal geometric
algebra can be used to model problems in molecular geometry. In particular, we
will focus on problems related to protein structure determination using NMR data.

5.1 Distance Geometry

The X-ray crystallography was the first method applied to the determination of
protein structures, where crystallized proteins were considered as rigid objects. The
development of NMR experiments allowed to study protein molecules in solution,
putting in evidence the internal dynamics of the protein structures [94].

NMR spectroscopy is based on the measurement of distances between hydrogen
atoms that are close enough in a protein molecule, and the problem is to determine
its 3D structure using this distance information.

We can use two types of sets (the entities V and their relationships E) and a real
function d on E to model this problem: V represents the set of atoms, E represents
the set of atom pairs for which a distance is available, and the function d : E →
(0,∞) assigns non-negative real numbers to each pair {u, v} ∈ E.

When we consider V,E, d together we have a weighted graph, denoted by G =
(V ,E, d). We say that it is simple and undirected because, respectively, if {u, v} ∈
E then u �= v, and {u, v} = {v, u}.
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A graph G = (V ,E, d) is just a mathematical abstraction to represent the
problem data. The problem itself is to find a function x : V → R

3 that associates
each element of V with a point in R

3 in such a way that the Euclidean distances
between the points correspond to the values given by d. This is a Distance Geometry
Problem (DGP) in R

3, formally described as follows.

5.1.1 (Statement of the DGP) Given a simple undirected graph G = (V ,E, d)

whose edges are weighted by d : E → (0,∞), find a function x : V → R
3 such that

∀{u, v} ∈ E, ||xu − xv|| = du,v, (5.1)

where xu = x(u), xv = x(v), du,v = d({u, v}), and ||xu − xv|| is the Euclidean
distance between xu and xv .

In addition to protein conformation [23], there are many other applications of
the DGP. See [8, 68] for recent surveys, [76] for an edited book with different
applications, and [65] for DG historical notes.

Because Eq. (5.1) pose difficulties to be solved numerically, a common approach
is to formulate the DGP as an optimization problem,

minimize
x1,...,xn∈R3

∑

{u,v}∈E

(
||xu − xv||2 − d2

u,v

)2
,

where |V | = n. In [58], some optimization algorithms have been tested but none of
them scale well to medium or large instances. A survey on different methods to the
DGP is given in [67].

If we do not consider the effect of translations and rotations, the number of
solutions of the DGP depends on the structure of the associated graph G =
(V ,E, d) [69]. For example, if the set of edges E contains all possible pairs from V

(and the solution set is not empty), there is only one solution which can be found in
linear time. In general, the problem is NP-hard [84].

Using information from the chemistry of proteins and assuming that the input
data are correct and precise, the DGP solution set is finite (up to translations and
rotations), allowing the application of combinatorial methods [60].

5.2 Discretizable Molecular Distance Geometry Problem

The NMR data and the chemistry of proteins allow us to define a vertex order
v1, . . . , vn ∈ V such that [15, 35, 75] (we denote xi instead of xvi

and di,j instead
of dvivj

):

1. For the first three vertices, there exist x1, x2, x3 ∈ R
3 satisfying Eq. (5.1);

2. Each vertex with rank greater than three is adjacent to at least three contiguous
predecessors, i.e.

∀i > 3, {vi−3, vi}, {vi−2, vi}, {vi−1, vi} ∈ E.
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The set of DGP instances with this order is called the Discretizable Molecular
Distance Geometry Problem (DMDGP), and the order itself is a DMDGP order [59].
To guarantee a finite number of solutions, the DMDGP definition also requires that
the strict triangular inequality must be satisfied for each three consecutive vertices,
i.e. ∀i > 3,

di−3,i−2 + di−2,i−1 > di−3,i−1. (5.2)

Property 1 above guarantees that the DMDGP solution set will not consider
solutions modulo rotations and translations. From property 2, the position for vertex
v4 can be obtained solving the quadratic system

||x4 − x1||2 = d2
1,4,

||x4 − x2||2 = d2
2,4,

||x4 − x3||2 = d2
3,4,

which can result in up to two possible positions for v4. Using the same idea, for
each position already determined for v4, we obtain other two for v5, and so on. The
DMDGP definition then implies that the search space is finite, having 2n−3 possible
solutions [59].

In addition to {vi−3, vi}, {vi−2, vi}, {vi−1, vi} ∈ E, for some i > 3, we may also
have {vj , vi} ∈ E, j < i − 3, adding another equation to the system related to vi :

||xi − xj ||2 = d2
j,i ,

||xi − xi−3||2 = d2
i−3,i ,

||xi − xi−2||2 = d2
i−2,i ,

||xi − xi−1||2 = d2
i−1,i .

Subtracting one of these equations from the others, we eliminate the term ||xi ||2
and obtain a linear system in the variable xi (the positions xj , xi−3,xi−2,xi−1 ∈ R

3

were already calculated). If the points xj , xi−3,xi−2,xi−1 are not in the same plane,
we have a unique solution x∗i for vi , supposing ||x∗i − xj || = dj,i . It may happen
that both possible positions for vi are infeasible with respect to additional distances.
In this case, it is necessary to consider the other possible position for vi−1 and repeat
the procedure [59].

The idea described above can be formalized in an algorithm called Branch-
and-Prune (BP) [66], which can be exponential in the worst case. However,
considering precise input data, its performance is impressive in terms of efficiency
and reliability [59].
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Fig. 5.1 Cartesian and
internal coordinates

xi−3

xi−2

xi

xi−1

θi

θi−1
ωi

5.3 Cartesian and Internal Coordinates

A DMDGP order v1, . . . , vn represents bonded atoms of a protein molecule, where a
solution of the problem is given by the positions of such vertices in R

3 satisfying the
DMDGP equations. In addition to the Cartesian coordinates x1, . . . , xn ∈ R

3, the
molecular 3D structure related to the vertices v1, . . . , vn of a DMDGP instance can
also be described in terms of the internal coordinates [80], given by the bond lengths
di (the Euclidean distance related to vi−1, vi), for i = 2, . . . , n, the bond angles θi

(the angle associated to vi−2, vi−1, vi), for i = 3, . . . , n, and the torsion angles ωi

(the angle between the normals through the planes defined by vi−3, vi−2, vi−1 and
vi−2, vi−1, vi), for i = 4, . . . , n (Fig. 5.1).

In protein structure calculations, the internal coordinates are very useful because
it is common to assume that all bond lengths and bond angles are fixed at their
equilibrium values [28]. This means that all the values di , for i = 2, . . . , n, and
θi , for i = 3, . . . , n, are given a priori, and that the 3D protein structure can be
determined by the values ωi , for i = 4, . . . , n.

Due to the properties of DMDGP orders, we can also know a priori all the values
cos ωi , for i = 4, . . . , n, given by [62]

cos ωi =
2d2

i−2,i−1(d2
i−3,i−2 + d2

i−2,i
− d2

i−3,i
)− (di−3,i−2,i−1)(di−2,i−1,i )

√
4d2

i−3,i−2d2
i−2,i−1 − (d2

i−3,i−2,i−1)

√
4d2

i−2,i−1d2
i−2,i

− (d2
i−2,i−1,i

)
, (5.3)

where

di−3,i−2,i−1 = d2
i−3,i−2 + d2

i−2,i−1 − d2
i−3,i−1,

di−2,i−1,i = d2
i−2,i−1 + d2

i−2,i − d2
i−1,i ,

implying that the molecular structure is defined by choosing + or − from

sin ωi = ±
√

1− cos2 ωi.
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Based on the previous determined positions for v1, . . . , vi−1, BP algorithm
calculates the two possible values for xi = (xi, yi, zi) ∈ R

3, using the following
expression [59]:

⎡

⎢⎢
⎣

xi

yi

zi

1

⎤

⎥⎥
⎦ = B1B2B3 · · ·Bi

⎡

⎢⎢
⎣

0
0
0
1

⎤

⎥⎥
⎦ , (5.4)

where

B1 =

⎡

⎢⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥
⎦ , B2 =

⎡

⎢⎢
⎣

−1 0 0 −d2

0 1 0 0
0 0 −1 0
0 0 0 1

⎤

⎥⎥
⎦ ,

B3 =

⎡

⎢⎢
⎣

− cos θ3 − sin θ3 0 −d3 cos θ3

sin θ3 − cos θ3 0 d3 sin θ3

0 0 1 0
0 0 0 1

⎤

⎥⎥
⎦ ,

and

Bi =

⎡

⎢⎢
⎣

− cos θi − sin θi 0 −di cos θi

sin θi cos ωi − cos θi cos ωi − sin ωi di sin θi cos ωi

sin θi sin ωi − cos θi sin ωi cos ωi di sin θi sin ωi

0 0 0 1

⎤

⎥⎥
⎦ ,

for i = 4, . . . , n.
Following [62], Eq. (5.4) can be rewritten as

⎡

⎢⎢
⎣

xi

yi

zi

1

⎤

⎥⎥
⎦ = Qi−1Bi

⎡

⎢⎢
⎣

0
0
0
1

⎤

⎥⎥
⎦

=

⎡

⎢⎢⎢⎢⎢⎢
⎣

di

[
−qi−1

11 cos θi + sin θi

(
qi−1

12 cos ωi + qi−1
13 sin ωi

)]
+ qi−1

14

di

[
−qi−1

21 cos θi + sin θi

(
qi−1

22 cos ωi + qi−1
23 sin ωi

)]
+ qi−1

24

di

[
−qi−1

31 cos θi + sin θi

(
qi−1

32 cos ωi + qi−1
33 sin ωi

)]
+ qi−1

34

1

⎤

⎥⎥⎥⎥⎥⎥
⎦

,
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where Qi−1 = B1 · · ·Bi−1 is given by

Qi−1 =

⎡

⎢⎢⎢⎢⎢
⎣

qi−1
11 qi−1

12 qi−1
13 qi−1

14

qi−1
21 qi−1

22 qi−1
23 qi−1

24

qi−1
31 qi−1

32 qi−1
33 qi−1

34

0 0 0 1

⎤

⎥⎥⎥⎥⎥
⎦

.

This means that to obtain the Cartesian coordinates xi , in addition to the internal
coordinates di, θi, ωi , we have to use the elements of the matrix Qi−1, which
depends on all the internal coordinates of the previous points. See [87] for other
details.

5.4 Geometric Algebra Approach

To the best of our knowledge, the first time that a strong connection between
distance geometry and geometric algebra was established in 1993, by Dress and
Havel [31]. In [17, 18, 62], based on geometric algebra, an analytical expression
for the Cartesian coordinates xi was presented, using only xi−1, xi−2, xi−3 and the
internal coordinates di, θi, ωi , as explained below.

Using the expression (5.4), the first three atoms of the molecule can be fixed at
positions

x1 =
⎡

⎣
0
0
0

⎤

⎦ , x2 =
⎡

⎣
−d2

0
0

⎤

⎦ , x3 =
⎡

⎣
−d2 + d3 cos θ3

d3 sin θ3

0

⎤

⎦ .

Following the notation proposed in [62], let the vector r i ∈ R
3, for i = 3, . . . , n,

be defined by

r i = xi − xi−1.

For i = 4, . . . , n, define the vector rθ
i and the rotor Rθ

i as

rθ
i = −

(
di

di−1

)
r i−1

and

Rθ
i = cos

(
θi

2

)
− sin

(
θi

2

)
Bθ

i ,
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where Bθ
i is the normalized bivector r i−2 ∧ r i−1 and θi ∈ (0, π). Using rθ

i and Rθ
i ,

for i = 4, . . . , n, let the vector rω
i be defined by

rω
i = rθ

i

(
Rθ

i

)2
.

For i = 4, . . . , n, define the rotor Rω
i as

Rω
i = cos

(ωi

2

)
− sin

(ωi

2

)
Bω

i ,

where Bω
i is the normalized bivector (orthogonal to r i−1) given by

Bω
i = r i−1 · e123,

where ωi ∈ [0, 2π ]. Using rω
i and Rω

i , for i = 4, . . . , n, we get

r i = Rω
i rω

i R̃ω
i ,

which implies that

xi = xi−1 − ABC,

where

A =
(

cos
(ωi

2

)
− r i−1e123

||r i−1|| sin
(ωi

2

))( di

di−1
r i−1

)
,

B =
(

cos

(
θi

2

)
− r i−2 ∧ r i−1

||r i−2 ∧ r i−1|| sin

(
θi

2

))2

,

C =
(

cos
(ωi

2

)
− r i−1e123

||r i−1|| sin
(ωi

2

))
.

After some algebraic manipulations [62], we can eliminate the exterior and
geometric products to obtain

xi = −
(

di

||xi−1 − xi−2||
)

(α + β (γ + δ)) , (5.5)

where β ∈ R and α, γ, δ ∈ R
3, given by

α =
(

cos(θi)− ||xi−1 − xi−2||
di

)
xi−1 − cos(θi)xi−2,

β = sin(θi)

||(xi−1 − xi−2)× (xi−2 − xi−3)|| ,
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γ = cos(ωi)
(
||xi−1 − xi−2||2(xi−2 − xi−3)− (xi−1 − xi−2) ·

(xi−2 − xi−3)(xi−1 − xi−2)
)
,

δ = sin(ωi)||xi−1 − xi−2|| ((xi−1 − xi−2)× (xi−2 − xi−3)) .

In [80], using the concept of polyspherical coordinates, the authors present a
similar expression to (5.5).

5.5 Uncertainties from NMR Data

The main step of the BP algorithm is to calculate the two possible positions for
vertex vi , i > 3, in terms of the positions of vertices vi−3, vi−2, vi−1 and the
distances di−3,i , di−2,i , di−1,i . The distances di−1,i and di−2,i are related to bond
lengths and bond angles of a protein, considered as precise values, but the distances
di−3,i , in general, are provided by NMR data, implying that they may not be
precise, being represented by an interval of real numbers [di−3,i , di−3,i]. Thus, it
is necessary to solve the system

d i−3,i ≤ ||xi − xi−3|| ≤ di−3,i ,

||xi − xi−2|| = di−2,i ,

||xi − xi−1|| = di−1,i ,

(5.6)

where di−3,i ∈ [di−3,i , di−3,i].
From the expression (5.3), for each interval related to the distance di−3,i , we can

obtain an associated interval for cos ωi . Using expression (5.5), we can parameterize
the position of vertex vi , for i = 4, . . . , n, as

xi (cos ωi) = p1 + (cos ωi) p2 ±
√

1− (cos ωi)
2p3, (5.7)

where p1,p2,p3 ∈ R
3 are given in terms of di, θi and xi−1, xi−2, xi−3:

p1 = −
(

di

||xi−1 − xi−2||
)((

cos θi − ||xi−1 − xi−2||
di

)
xi−1 − (cos θi) xi−2

)
,

p2 = −
(

di

||xi−1 − xi−2||
)(

sin θi

||(xi−1 − xi−2)× (xi−2 − xi−3)||
)

(
||xi−1−xi−2||2(xi−2−xi−3)−(xi−1−xi−2) · (xi−2−xi−3)(xi−1−xi−2)

)
,

p3 = −
(

di

||xi−1 − xi−2||
)(

sin θi

||(xi−1 − xi−2)× (xi−2 − xi−3)||
)

||xi−1 − xi−2|| ((xi−1 − xi−2)× (xi−2 − xi−3)) .
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Since di , θi are given as part of the input of the problem and xi−1, xi−2, xi−3 are
previously calculated, the only variable is cos ωi ∈ [−1, 1].

As illustrated in [62], the analytical expression (5.7) for the position of vertex vi

in terms of the positions of the three previous ones and the corresponding distances
can be useful in the BP algorithm, but the positions for vi−3, vi−2, vi−1 are assumed
to be fixed.

Computational results presented in [59] demonstrate that the use of the expres-
sions (5.4), instead of resolutions of quadratic systems, is more stable in BP
algorithm. However, none of these approaches deals well with interval distances.
Some preliminary results for the application of the homogeneous matrices in the
context of interval distances are given in [21].

5.6 Conformal Geometric Algebra Approach

Geometrically, property 2 of the DMDGP (see Sect. 5.2) means that, at each iteration
of the BP algorithm, we have to intersect three spheres centered at the positions
for vertices vi−3, vi−2, vi−1 with radius given by di−3,i , di−2,i , di−1,i , respectively.
Since the centers are not collinear [see Eq. (5.2)], the sphere intersection will
provide up to two possible positions for vi . To avoid solutions modulo rotations
and translations (property 1 of the DMDGP), the first three vertices are fixed and,
for vertex vi , i > 3, an additional distance dj,i (j < i − 3) implies that we have to
intersect four spheres. If the centers of these four spheres are not in the same plane,
we obtain only one possible position xi for vi (if ||xi−xj || = dj,i) or an empty set.
In this case, we have to consider the second possible position for vi−1 and repeat the
same strategy. If the DMDGP solution set is not empty, this procedure is finite and
ends when a position for vertex vn is found such that all positions x1, . . . , xn ∈ R

3

satisfy the DMDGP equations [59].
Due to NMR uncertainties, we already mentioned that the distances di−3,i may be

represented by interval distances [ di−3,i , di−3,i]. In [61], an extension, called iBP,
of the BP algorithm was proposed to deal with interval distances, where the idea is
to sample distance values from the intervals [ di−3,i , di−3,i]. This is done because
it is difficult to do sphere intersection using linear algebra, when the data are not
precise. In fact, the problem now is much more complicated, because uncertainties
in distance values imply also uncertainties in the centers of the spheres, not only in
their radii.

The main problem of sampling distances from [di−3,i , di−3,i] is that if we
choose many values, the search space increases exponentially, and for small
samples, no solution is found [1, 14, 89].

Using conformal geometric algebra, we avoid the sampling process and can
calculate intersection of spheres considering the uncertainties associated to their
centers and radius.
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Fig. 5.2 Intersection
between two spheres and one
spherical shell
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Sphere Intersection with Uncertainties

We will follow the arguments presented in [2, 3] to explain how conformal geometric
algebra can be used to model uncertainties in the DMDGP. First, notice that when
di−3,i is an interval distance, we have to intersect two spheres with one spherical
shell resulting in two arcs, instead of two points in R

3 (Fig. 5.2).
Considering that the distance d1,4 is represented by the interval [d1,4, d1,4],

we first obtain the points from the intersection of the spheres centered at the
positions for v1, v2, v3 with radius d1,4, d2,4, d3,4, resulting in P 0

4 and P 1
4 , and with

radius d1,4, d2,4, d3,4, resulting in P 0
4 and P 1

4 (Fig. 5.2). The points from the sphere
intersection can be calculated in the classical way or by extracting them from the
point pairs [2] generated from S1,4 ∧ S2,4 ∧ S3,4 and S1,4 ∧ S2,4 ∧ S3,4 (in the
conformal model, we denote Si,j by the sphere centered at the position of vertex vi ,
denoted by Xi , with radius di,j ), where underline and overline indicate the use of
d1,4 and d1,4, respectively.

With the starting and the ending points of an arc, we can define a rotor acting on
that. In conformal geometric algebra, a rotor can be defined by its rotation axis and
rotation angle. For v4, the rotation axis is given by X2 and X3, denoted by z4, and

the rotation angle φ4 (in radians) is the angle corresponding to the arcs P 0
4 P 0

4 and

P 1
4 P 1

4 (Fig. 5.3).
Defining the rotor R4 by

R4 = cos
(

λ4
2

)
− sin

(
λ4
2

)
z∗4, 0 ≤ λ4 ≤ φ4,

where z4 = X2 ∧X3 ∧ e∞, the two possible arcs are the following (z∗4 is the dual of
z4 and R̃ is the reverse of R):

X0
4(λ4) = R4P

0
4 R̃4,

X1
4(−λ4) = R4P

1
4 R̃4.
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To simplify the notation, we will also use the symbols P 0
4 and P 1

4 in the conformal

model, i.e. X0
4(0) = P 0

4 and X1
4(0) = P 1

4 . Negative values in X1
4(−λ4) are necessary

to invert the orientation used in P 0
4 P 0

4 (Fig. 5.3).
These results can be easily generalized for any i > 4, given by

X0
i (λi) = RiP

0
i R̃i ,

X1
i (−λi) = RiP

1
i R̃i ,

where

Ri = cos

(
λi

2

)
− sin

(
λi

2

)
z∗i , 0 ≤ λi ≤ φi,

and

zi = Xi−2 ∧Xi−1 ∧ e∞.

X0
i (λi) and X1

i (−λi) are the analytical solutions to the system (5.6), which
generalize the case for a precise value of di−3,i (λi = 0). All the values φi , for
i > 3, can be computed a priori based on the DMDGP definition and the values
for intervals [di−3,i , di−3,i] (notice that sample values from [di−3,i , di−3,i] imply
sample values in [0, φi]).

The expressions for X0
i (λi) and X1

i (−λi) describe all the points in the related
arcs, considering fixed points (Xi−2 and Xi−1) for the rotation axis zi . However, in
order to avoid sampling process, we have to consider the effect of changing points
in the arcs. Using conformal geometric algebra, we can do that and continue the
search without sampling process.

Before analyzing what happens with the position of vertex v5, notice that the

circle C4 that contains the arcs P 0
4 P 0

4 and P 1
4 P 1

4 is given by

C4 = S2,4 ∧ S3,4,

whose points X4(λ4) are generated by the rotor

R4 = cos
(

λ4
2

)
− sin

(
λ4
2

)
z∗4, 0 ≤ λ4 ≤ 2π,

where

z4 = X2 ∧X3 ∧ e∞.

Since X2 and X3 are fixed, λ4 is the only parameter involved.
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For v5, we have to consider the three predecessors v2, v3, v4. Now, the center
of the sphere S4,5 is not fixed, which implies that the circle C5 = S3,5 ∧ S4,5 also
moves. The rotor R5 is given by

R5 = cos
(

λ5
2

)
− sin

(
λ5
2

)
z∗5, 0 ≤ λ5 ≤ 2π,

where

z5 = X3 ∧X4(λ4) ∧ e∞.

From the expression for z5, we can see that the rotation axis for R5 also changes
when λ4 varies. The points in the circle C4 can be described by

X4(λ4) = R4P
0
4 R̃4,

and for λ4 = 0, we have X4(0) = P 0
4 and z5 = X3 ∧ P 0

4 ∧ e∞. Doing some
calculations, we obtain

z5 = R4(X3 ∧ P 0
4 ∧ e∞)R̃4,

which means that we can fix one point in the circle C4 and “transfer” the movement
of the circle C5 to the rotor R4. An important consequence is that

X5(λ4, λ5) = R5R4P
0
5 R̃4R̃5,

implying that we can describe the whole set of possible positions for v5, without
sampling values from the interval [d1,4, d1,4]. The position X5 depends on the “local
action” of R5, through the axis determined by the “global action” of R4.

By induction [3], we can prove that, for i = 4, . . . , n,

Xi(λ4, . . . , λi) = (Ri · · ·R4) P 0
i

(
R̃4 · · · R̃i

)
,

where

Ri = cos

(
λi

2

)
− sin

(
λi

2

)
z∗i , 0 ≤ λi ≤ 2π,

zi = (Ri · · ·R4)
(
P 0

i−2 ∧ P 0
i−1 ∧ e∞

) (
R̃4 · · · R̃i

)
,

and P 0
i is one of the points obtained from the intersection Si−3,i∧Si−2,i∧Si−1,i . The

interval distances [d i−3,i , di−3,i] reduce the intervals related to λi , i.e. λi ∈ [0, φi].
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Example

Let us consider a small example (the same provided in [3]) just to illustrate
the difference between the classical approach and the one based on conformal
geometric algebra. We want to solve a DMDGP instance with the vertex order
v1, v2, v3, v4, v5, v6 and the following associated distances:

di−1,i = 1, i = 2, . . . , 6,

di−2,i =
√

3, i = 3, . . . , 6,

d1,4 = 2.15,

d2,5 ∈ [2.20, 2.60],
d3,6 ∈ [2.40, 2.60],
d1,5 ∈ [2.45, 2.55].

First, we can fix the positions for v1, v2, v3, given by

x1 =
⎡

⎣
0
0
0

⎤

⎦ , x2 =
⎡

⎣
−1
0
0

⎤

⎦ , x3 =
⎡

⎢
⎣
−1.5√

3
2
0

⎤

⎥
⎦ .

The distance d1,4 is a precise value, which implies that we have two possible
positions (instead of two arcs) for v4. Choosing one of them, since both are feasible,
we get

x4 =
⎡

⎣
−1.311
1.552
0.702

⎤

⎦ .

For vertex v5, we have two possible arcs, since d2,5 is an interval distance. Using
the classical approach, we have to sample values from the interval [d2,5, d2,5] =
[2.20, 2.60] to solve the system

d2,5 ≤ ||x5 − x2|| ≤ d2,5,

||x5 − x3|| = d3,5,

||x5 − x4|| = d4,5.

Since the distance d1,5 is available, it must be used to validate the candidates
for positions of v5. For example, selecting the values {2.25, 2.35, 2.45, 2.55}, no
solution is found. It is necessary a larger sample, given by

{2.225, 2.275, 2.325, 2.375, 2.425, 2.475, 2.525, 2.575},
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to find a solution for v5 that satisfies

d1,5 ≤ ||x5 − x1|| ≤ d1,5,

given by

x5 =
⎡

⎣
−0.779
2.368
0.474

⎤

⎦ .

For the next vertex v6, any value from the interval [d3,6, d3,6] can be selected,
since no distance di,6, i < 3, is available.

Because of the distance d1,5, in order to continue the search from v5 to v6 it was
necessary to improve the sample from [d2,5, d2,5] until a solution is found. If we
have a little bigger instance such that only at vertex v10, for example, an additional
distance di,10, i < 7, is available, we do not know (during the calculations for v5)
how refined the sample from [d2,5, d2,5] must be in order to obtain a position for
v10 that satisfies

di,10 ≤ ||x10 − xi || ≤ di,10.

Using conformal geometric algebra, we first consider the conformal representa-
tions of the points x1, x2, x3, x4, given by

X1 = e0,

X2 = e0 + x2 + 1

2
||x2||2e∞,

X3 = e0 + x3 + 1

2
||x3||2e∞,

X4 = e0 + x4 + 1

2
||x4||2e∞,

and the conformal representations of the points obtained from the intersection of the
spheres centered at x2, x3, x4 with radius d2,5, d3,5, d4,5, given by

P 0
5 = e0 − 0.409e1 + 1.981e2 + 0.753e3 + 2.329e∞,

P 1
5 = e0 − 1.502e1 + 1.350e2 + 1.663e3 + 3.422e∞.

Points P 0
5 and P 1

5 are obtained just replacing d2,5 by d2,5.

Defining the rotor R5 to act on the arc P 0
5 P 0

5 , we get

R5 = cos
(

λ5
2

)
− sin

(
λ5
2

)
z∗5, 0 ≤ λ5 ≤ φ5,



5.6 Conformal Geometric Algebra Approach 115

where z5 = X3 ∧ X4 ∧ e∞ and φ5 = 1.453 is the angle corresponding to the arc

P 0
5 P 0

5 , whose points are given by

X0
5(λ5) = R5P

0
5 R̃5.

The same procedure can be used to obtain the points in the arc P 1
5 P 1

5 .
Intersecting S3,5 ∧ S4,5 with the spherical shell defined by the interval distance

d1,5, we can eliminate the arc P 1
5 P 1

5 (since it does not satisfy d1,5) and, at the same
time, reduce to [0.559, 0.734] the interval related to λ5.

For the next vertex v6, we intersect the spheres centered at X3, X4, P
0
5 with

radius d3,6, d4,6, d5,6, respectively, resulting in (using d3,6, P
0
6 and P

1
6 are obtained

in a similar way)

P 0
6 = e0 − 0.2657e1 + 2.892e2 + 0.3658e3 + 4.283e∞,

P 1
6 = e0 + 0.2584e1 + 1.662e2 + 1.426e3 + 2.432e∞,

and define the rotor R6 to act on the arc P 0
6 P 0

6 , given by

R6 = cos
(

λ6
2

)
− sin

(
λ6
2

)
z∗6, 0 ≤ λ6 ≤ φ6,

where z6 = R5

(
X4 ∧ P 0

5 ∧ e∞
)

R̃5 and φ6 = 0.823. The points in the arc P 0
6 P 0

6

are given by

X0
6(λ5,λ6) = R6R5P

0
6 R̃5R̃6.

Since there is no distance di,6, i < 3, the solutions to the problem are given by

X1, X2, X3, X4, X
0
5(λ5,), X

0
6(λ5,λ6),

and

X1, X2, X3, X4, X
0
5(λ5,), X

1
6(λ5, − λ6),

where λ5 ∈ [0.5595, 0.734] and λ6 ∈ [0, 0.823].
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5.7 Exercises

E.5.1 In Sect. 5.3, it was mentioned that, for some i > 3, when there is an “extra”
edge {vj , vi} ∈ E, j < i − 3, in addition to the required edges in the DMDGP
definition ({vi−3, vi}, {vi−2, vi}, {vi−1, vi} ∈ E), the position for vertex vi can be
obtained from a linear system in the variable xi . Define this linear system and find
a condition to guarantee a unique solution.

E.5.2 Describe the main steps of the BP algorithm, also mentioned in Sect. 5.3.

E.5.3 Explain how expression (5.7) can be obtained from expression (5.5).

E.5.4 Explain how the angles φi , for i > 3 (defined in Sect. 5.6), can be computed
a priori based on the DMDGP definition and the values for intervals [di−3,i , di−3,i].
E.5.5 Based on the example given in Sect. 5.6, what are the main differences
between the classical and the conformal geometric algebra approaches? Can you
calculate all the values involved in the example?
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η, 23
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Archimedes, 53
Artin’s formula, 24
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automorphism, 6
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blade basis, 35
bond angle, 104
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Cartan-Dieudonné theorem, 14
Cartesian power, 5
Cauchy-Schwarz inequality

Euclidean, 31, 58
hyperbolic, 57
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density, 66

chronometry, 58
Clifford
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units, 15, 24, 34
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Conf(E), 48
configuration space, 75, 76
conformal
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geometric algebra, 33, 80, 83, 91
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vector, 36
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curl, 64

of vector, 66
current density, 66
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D-H convention, 75, 80, 81
dalembertian, 64
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degrees of freedom, 77
Descartes, 53
differential, 64
differential kinematics, 83, 86
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Dirac, 53

bispinor, 70
current, 72
equation, 53, 71
field, 71
gamma matrices, 71
operator, 64
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spinor, 70
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distance geometry, 102
divergence, 64
double cross product, 22
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duality theorem, 42
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Einstein, 53

formulas, 70
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electric field, 66
electrical permittivity, 54
electrodynamics, 53
electromagnetic field, 70

energy, 73
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metric, 4
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reflection, 47
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vector space, 53

Euler, 53
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formula, 31
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exterior

algebra, 6, 98
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frame, 56

G
geometric

covariance, 2, 20, 45
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Grassmann, 53
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Hamilton, 19
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Hestenes-Dirac equation, 71
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angle, 58
cosine theorem, 58
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triangle inequality, 58
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identity matrix, 5
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inertial frame, 56
inner product, 21, 26, 34
inner representation, 38, 92

of a circle, 40
of a line, 41
of a plane, 40
of a sphere, 39

internal coordinates, 104
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inverse kinematics, 77, 86, 88, 97
inversion, 48
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parity, 6, 11, 17, 28, 34
reverse, 6, 11, 17, 28, 34
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J
Jacobian matrix, 77
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geometric, 77
geometric Jacobian, 86, 97
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k-vector, 5, 26, 34
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L
lab representation, 65
Lasenby, A., vi
light cone, 57
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boost, 54, 62
factor, 55, 65
force law, 67
invariant, 67
relativistic force law, 67
sphere, 57
transformations, 53, 54

Lorentzian vector space, 53
Lorenz gauge condition, 68

M
magnetic field, 66
magnetic permeability, 54
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Maxwell, 53, 66

equations, 66
meet, 93
method

closed-form, 78
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Plücker coordinates, 98
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lemma, 68
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potential, 68
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principle of relativity, 54
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time, 59

pseudoscalar, 26
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quaternions
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Hamilton, 19
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reciprocal frame, 63, 87
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space, 29
velocity, 65

relativistic
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rest mass, 65
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Riemann, 53
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condition, 18
field, 72
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S
scalar separation, 56
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equation, 71
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serial robot, 75
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redundant, 77
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similarity transformation, 47

proper, 47
singularity, 79, 98

orientation, 80, 99
position, 80, 99
problem, 98
representation, 77

skew-commutative, 6
special relativity, 55
speed of light, 54
spherical wrist, 78
spin

bivector, 72
vector, 72

Spin3, 19
spinorial map, 13
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Dirac, 70

supercommutative, 6
symmetric difference, 24
symmetry, 8
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T
temporal orientation, 57
torsion angle, 104
translation, 45
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U
unit vector, 56
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universal

constant, 54
property, 6

V
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field, 64
future-oriented, 57
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length, 4, 56
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vector (cont.)
normalization, 4
null=isotropic, 23, 36, 56
past-oriented, 57
polar, 22
positive, 23, 56
Poynting, 73
signature, 56
spacelike, 56
timelike, 56

vector separation, 56

vector space, 3
basis, 3
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volume element, 17, 24, 26

W
wave

equation, 68
function, 70
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