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Preface

This book forms a twin pair with another book [1] by the same author, which is of a
different, historically oriented character, while the character of the present volume is
thoroughly mathematical. These two pieces of work constitute a twin pair since,
notwithstanding their different profile and contents, they arise from the same vision
and pursue complementary goals.

The vision, extensively discussed in [1], consists of the following main con-
ceptual assessments:

1. Our current understanding of the Fundamental Laws of Nature is based on a
coherent, yet provisional, set of five meta-theoretical principles, listed by me as
(A)–(E) and dubbed the current episteme. This episteme is of genuine geo-
metrical nature and can be viewed as the current evolutionary state of Einstein’s
ideas concerning the geometrization of physics.

2. Geometry and Symmetry are inextricably entangled, and their current conception
is the result of a long process of abstraction, traced back in [1], which was
historically determined and makes sense only within the Analytic System of
Thought of Western Civilization, started by the ancient Greeks.

3. The evolution of Geometry and Symmetry Theory in the last forty years has been
deeply and very much constructively influenced by Supersymmetry/Supergravity
and the allied constructions of Strings and Branes.

4. Further advances in Theoretical Physics cannot be based simply on the Galilean
Method of interrogating first Nature and then formulating a testable theory that
explains the observed phenomena. As stated in [1], one ought to interrogate also
Human Thought, by this meaning frontier-line mathematics concerned with
geometry and symmetry in order to find there the threads of so far unobserved
correspondences, reinterpretations, and renewed conceptions.

The complementary pursued goals are:

(a) In the case of book [1]

• the historical and conceptual analysis of the process mentioned in point
(2) of the above list which led to the current episteme.
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• the philosophical argumentation, on historical basis, of the assessment made
in point (4) of the above list.

(b) In the case of the present book, the mathematical full-fledged illustration of the
main developments in geometry and symmetry theory that occurred under the
fertilizing influence of Supersymmetry/Supergravity and that would be incon-
ceivable without the latter.

In view of this, it is reasonable to quote from the ample discussion presented in
[1] the summary of the current episteme as I understand it. There I say what follows.

The Episteme

As a theoretical physicist, I consider myself very fortunate to have witnessed, in my
own lifetime, the following series of experimental discoveries:

1. The detection of the W� and Z particles, definitely confirming that fundamental
non-gravitational interactions can be described by gauge theories.

2. The detection of the Brout Englert Higgs boson, definitely confirming that
gauge theories can be spontaneously broken by scalar fields falling into
non-symmetric extrema of some potential.

3. The direct detection of gravitational waves emitted in the coalescence of two
compact stars (black holes or neutron stars) which not only confirms the general
structure of General Relativity, but directly tests the dynamics encoded in
Einstein Equations, namely in a set of purely geometrical differential equations.

Trying to summarize the implications for the episteme of the last thirty-three years
of experimental physics, we can say the following.

Leaving apart the issue of quantization that we can generically identify with the
functional path integral over classical configurations, we have, within our Western
Analytic System of Thought, a rather simple and universal scheme of interpretation
of the Fundamental Interactions and of the Fundamental Constituents of Matter
based on the following few principles:

(A) The categorical reference frame is provided by Field Theory defined by some
action A ¼ R

M L ðU; @UÞ where L ðU; @UÞ denotes some Lagrangian
depending on a set of fields UðxÞ.

(B) All fundamental interactions are described by connections A on principal fiber
bundles PðG;M Þ where G is a Lie group and the base manifold M is some
space-time in d ¼ 4 or in higher dimensions.

(C) All the fields U describing fundamental constituents are sections of vector
bundles BðG;V ;M Þ, associated with the principal one PðG;M Þ and deter-
mined by the choice of suitable linear representations DðGÞ : V ! V of the
structural group G.

(D) The spin-zero particles described by scalar fields /I have the additional feature
of admitting nonlinear interactions encoded in a scalar potential V ð/Þ for
whose choice general principles, supported by experimental confirmation,
have not yet been determined.
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(E) Gravitational interactions are special among the others and universal since
they deal with the tangent bundle TM ! M to space-time. The relevant
connection is in this case the Levi-Civita connection (or some of its gener-
alization with torsion) which is determined by a metric g on M .

A quick look at the list of principles (A)–(E) immediately reveals that,
notwithstanding their simplicity and unifying power, they can be only provisional.
There are still too many ad hoc choices which strongly demand some deeper
unifying principle able to predict them from above. Most prominent among these
choices are those of the structural group G, of the representations DðGÞ and of the
potential V ð/Þ, the latter choice including also, in some extended sense, the
determination of quark and lepton masses. What I have described in the above way
is described in the physical literature of the last forty years as the problem of grand
unification or of super unification.

Supersymmetry-Inspired Trends in Geometry and Group Theory

In the same forty years, an enormously extended set of developments have taken
place in the quest for unification, starting from the new idea of Supersymmetry
which, as the word reveals, is an extension of the notion of Symmetry, meaning by
that Lie algebras. The reason why Supersymmetry, which leads to the fields of
Supergravity, Superstrings, and Brane Physics, entrains so many structural and
ramified implications is because it tackles with one of the most fundamental and, in
my opinion, not yet fully penetrated, principles of physics, namely the distinction
among fermion and bosons, intertwined, by means of the spin–statistics theorem
with Lie algebra theory, the distinction between two groups of representations, the
vector and the spinor ones, being a distinctive property of the soðnÞ Lie algebras,
unexisting for the others.

The largest part of the developments mentioned above, related with Supergravity/
Superstrings, have a distinctive geometrical/algebraic basis. Entire chapters of
algebraic geometry and of algebraic topology have been integrated by these
developments into the fabrics of theoretical physics, while some new geometries
have been introduced into the fabrics of mathematics. Furthermore, the very way to
analyze and interpret mathematical structures is sometimes redirected by the influ-
ence of Supergravity/Superstrings. Two or three examples suffice to illustrate what I
mean. Exceptional Lie algebras that, up to the mid-1960s were considered by the
majority of physicists like mathematical curiosities, have been promoted to the role
of primary actors on the stage of the Superworld. Special Kähler geometries, never
defined by pure mathematicians have by now entered, with full rights, the mathe-
matical club, revealing their relation with other geometries, already introduced by
mathematicians, like HyperKähler geometry and quaternionic Kähler geometry. The
notions of momentum map, Kähler, and HyperKähler quotients find a deep inter-
pretation in the context of supersymmetric field theories and connect with some
of the most brilliant mathematical achievements of the last few decades like the
Kronheimer construction of ALE manifolds.
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The Topics of the Present Volume and Its Mission

Relying on the above arguments and explanations, I can now more appropriately
restate the topic of the present book, which is the scope of Group Theory, of the
Differential Geometry of Coset Manifolds and of various issues in Special
Geometries as they have been promoted and assessed under the influence of current
research in Supergravity.

In line with above the statements, it goes without saying that the education of
present time physicists, in particular theoretical, but not only, should include, from
a very early stage of their student career, a ground course in the basic Mathematics
of Symmetry, namely in group theory, discrete and Lie groups being equally
essential, and in the fundaments of differential geometry. Such course should be
mathematically precise, yet more focused on the fundamental mathematical ideas
than on the task of mathematical rigorous proofs. Furthermore, it should provide
explicit constructions and train the student in the art of explicit calculations,
especially those implemented on computers. To such a task is devoted the textbook
[2] which was recently published.

Repeating my words in a slightly different form, I think that what is currently
practiced in the whole world as Fundamental Physics or Mathematics is based on
the Greek view of the episteme and it is meaningful only inside the Analytic System
of Thought founded by the ancient Greeks. To recuperate a full conscience of this
fact is mandatory in order to continue on the difficult but exciting path we are
confronted with.

The twin pair of which this book is a member, together with the more intro-
ductory textbook [2], is viewed by the author as his limited, humble contribution to
the promotion of a new season of more scholarly teaching of physical mathematics.

Spes, ultima dea.

Turin, Italy Pietro Giuseppe Fré
November 2017
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Chapter 1
Finite Groups and Lie Algebras: The ADE
Classification and Beyond

Tout ce qu’on invente est vrai, soi-en sure. La poésie est une
chose aussi précise que la géométrie.

Gustave Flaubert, letter to Louise Colet

The geometrical structures, mostly motivated by supergravity, that are considered
in this book are strongly related with the theory of symmetric spaces and of Lie
Algebras, the exceptional ones being of utmost relevance in this context.

At various stages of the here considered constructions also the finite groups play an
important role and, among them, those that are crystallographic in certain dimensions.
This is not too much surprising since there exists a profound relation among the
classification of simple, simply-laced, complex Lie Algebras and the classification
of finite subgroups of the three-dimensional rotation group, the so named ADE
classification.1

This ADE correspondence, known for a long time, finds a deeper and fertile inter-
pretation in the McKay correspondence, to be explained in Chap.8, that is crucial
for the Kronheimer construction of ALE-manifolds as HyperKähler quotients. This
construction is reviewed in Chap. 8. The McKay correspondence admits a general-
ization to finite subgroups Γ ⊂ SU(n), in particular for the case n = 3, which has
a significant role to play in the context of the gravity/gauge correspondence and in

1TheADE classification, according to the name frequently utilized in the physical literature, is based
on a diophantine inequality that we spell out in the sequel of the present chapter. It encompasses in
just one scheme the classification of several different types of mathematical objects:

1. the finite rotation groups,
2. the simple simply-laced Lie complex Lie algebras,
3. the locally Euclidean gravitational instantons,
4. the singularities C2/Γ ,
5. the modular invariant partition functions of 2D-conformal field theories.

© Springer International Publishing AG, part of Springer Nature 2018
P. G. Frè, Advances in Geometry and Lie Algebras
from Supergravity, Theoretical and Mathematical Physics,
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2 1 Finite Groups and Lie Algebras: The ADE Classification and Beyond

the theory of D-branes and M-branes. This we will illustrate in Chap.8 relying in a
decisive way on the constructions known as (Hyper)Kähler quotients.

We anticipate here the discussion of the joint ADE classification of binary exten-
sions Γb ⊂ SU(2) of finite subgroups Γ ⊂ SO(3) and of simple, simply-laced,
complex Lie algebras, since some of the involved notions happen to be needed in
other chapters previous to the last one.

For an identical reasonwe present in this chapter also the full-fledged theory of the
simple group L168 ≡ PSL(2, Z7) which fits into the discussion of crystallographic
groups and plays a relevant role not only in Chap. 8, but in other chapters.

In the third part of this chapter, relying on the Dynkin and on the root system
language, we consider a particular splitting, named by us golden, of the Lie algebras
that appear in later supergravity constructions and, focusing on the relevant instances
of the g(2,2) and f(4,4) cases, we explicitly construct the fundamental representations
of the two corresponding Lie groups.

Let me note that the explicit construction of the exceptional Lie algebras is
addressed at a paedagogical level in [1], with general group theoretical aims. Fur-
thermore in that book the algorithmic details of the construction are presented and
a guide is provided to the use of the special MATHEMATICA codes that have been
devoted to such a task. In the present book the emphasis is on the special geometries
introduced by supergravity. Within such a context exceptional Lie algebras play a
quite relevant role and several aspects of their structure seem just devised to satisfy
the constraints imposed by supersymmetry at various levels. It is in the light of these
considerations that the construction g(2,2) and f(4,4) is reviewed here. In particular the
golden splitting turns out to be fundamental for the discussion of the c-map and of
the c�-map, firstly addressed in Sect. 4.3 and then systematically reviewed in Chap.5.

1.1 The ADE Classification of the Finite Subgroups of
SU(2)

We start with theADE classification of platonic groups. This classification is encoded
in the possible solutions of a diophantine equation that we presently derive. To this
effect we begin with some preliminaries.

Let us start by considering the homomorphism:

ω : SU(2) → SO(3) (1.1.1)

between the group SU(2) of unitary 2× 2 matrices, each of which can be written as
follows

SU(2) � U =
(

α iβ
iβ̄ ᾱ

)
(1.1.2)

in terms of two complex numbers α, β satisfying the constraint:

http://dx.doi.org/10.1007/978-3-319-74491-9_8
http://dx.doi.org/10.1007/978-3-319-74491-9_8
http://dx.doi.org/10.1007/978-3-319-74491-9_4
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1.1 The ADE Classification of the Finite Subgroups of SU(2) 3

|α|2 + |β|2 = 1 (1.1.3)

and the group SO(3) of 3 × 3 of orthogonal matrices with unit determinant:

O ∈ SO(3) ⇔ OT O = 1 and detO = 1 (1.1.4)

The homomorphism ω can be explicitly constructed utilizing the so-named triplet
σ x of hermitian Pauli matrices:

σ 1 =
(
0 1
1 0

)
; σ 2 =

(
0 −i
i 0

)
; σ 3 =

(
1 0
0 −1

)
(1.1.5)

Using the above we can define:

H =
3∑

x=1

hx σ x (1.1.6)

where hx is a three-vector with real components. The matrixH = H † is hermitian
by construction and we have:

Tr
[
H 2

] =
3∑

x=1

h2
x (1.1.7)

Consider next the following matrix transformed by means of an SU(2) element:

H̃ = U † H U = h̃x σ x

h̃x = O y
x hy (1.1.8)

The first line of equation (1.1.8) can be written since the Pauli matrices form a
complete basis for the space of 2 × 2 hermitian traceless matrices. The second line
can be written since the matrix H̃ depends linearly on the matrix H . Next we
observe that because of its definition the matrix H̃ has the following property:

Tr
[
H 2

] =
3∑

x=1

h̃2
x =

3∑
x=1

h2
x (1.1.9)

This implies that the matrix O y
x is orthogonal and, by definition it is the image of

U through the homomorphism ω. We can write an explicit formula for the matrix
elements O y

x in terms of U :

∀U ∈ SU(2) : ω [U ] = O ∈ SO(3) / O y
x = 1

2 Tr
[
U † σx U σ y

]
(1.1.10)

which follows from the trace-orthogonality of the Pauli matrices 1
2 Tr [σ

y σx ] = δ
y
x .
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We named the map defined above a homomorphism rather than an isomorphism
since it has a non trivial kernel of order two. Indeed the following two SU(2)matrices
constitute the kernel of ω since they are both mapped into the identity element of
SO(3).

kerω =
{
e =

(
1 0
0 1

)
, Z =

(−1 0
0 −1

)}

1 = ω [e] = ω [Z ] (1.1.11)

We will now obtain the classification of all finite subgroups of SU(2) that are binary
extensions of SO(3) finite subgroups. We collectively name Gb

2n such subgroups
denoting by 2n their necessarily even order. Through the isomorphism ω each of
them maps into a finite subgroup Gn ⊂ SO(3), whose order is just n because of the
two-dimensional kernel mentioned above:

ω
[
Gb

2n

] = Gn (1.1.12)

1.1.1 The Argument Leading to the Diophantine Equation

We begin by considering one parameter subgroups of SO(3). These are singled out
by a rotation axis, namely by a point on the two–sphere S2. Explicitly let us consider
a solution (	, m, n) to the sphere equation (Fig. 1.1):

	2 + m2 + n2 = 1 (1.1.13)

The triplet of real numbers (	, m, n) parametrize the direction of a possible rotation
angle. The generator of infinitesimal rotations around such an axis is given by the
following matrix

A	,m,n =
⎛
⎝ 0 −n m

n 0 −	

−m 	 0

⎞
⎠ = −AT

	,m,n (1.1.14)

which being antisymmetric belongs to the SO(3) Lie algebra. The matrix A has the
property that A3 = −A and explicitly we have:

A2
	,m,n =

⎛
⎝−1 + 	2 	 m 	 n

	 m −1 + m2 m n
	 n m n −1 + n2

⎞
⎠ (1.1.15)

Hence a finite element of the group SO(3) corresponding to a rotation of an angle θ

around this axis is given by:

O(	,m,n) = exp[θ A	,m,n] = 1 + sin θ A	,m,n + (1 − cos θ) A2
	,m,n (1.1.16)
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Fig. 1.1 Every element of the rotation group O(	,m,n) ∈ SO(3) corresponds to a rotation around
some axis a = {	, m, n}. On the surface of the two-sphere S

2 this rotation has two fixed points, a
North Pole and a South Pole that do not rotate to any other point. The rotation O(	,m,n) is the image,
under the homomorphism ω of either one of 2 × 2 - matrices U ±

	,m,n that, acting on the space C
2,

admit two eigenvectors z1 and z2. The one-dimensional complex spaces p1,2 ≡ λ1,2z1,2 are named
the two poles of the unitary rotation

Setting

λ = 	 sin
θ

2
; μ = m sin

θ

2
; ν = n sin

θ

2
; ρ = cos

θ

2
(1.1.17)

the corresponding SU(2) finite group elements, realizing the double covering are:

U ±
	,m,n = ±

(
ρ + iν μ − iλ

−μ − iλ ρ − iν

)
(1.1.18)

namely we have:
ω
[
U ±

	,m,n

] = O(	,m,n) (1.1.19)

We can now consider the argument that leads to the ADE classification of the
finite subgroups of SU(2). Let us consider the action of the SU(2) matrices on C

2. A

generic U ∈ SU(2) acts on a C
2-vector z =

(
z1
z2

)
by usual matrix multiplication

U z. Each element U ∈ SU(2) has two eigenvectors z1 and z2, such that

U z1 = exp[iθ ] z1
U z2 = exp[−iθ ] z2 (1.1.20)

where θ is some (half)-rotation angle. Namely for each U ∈ SU(2) we can find an
orthogonal basis where U is diagonal and given by:
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U =
(
exp[iθ ] 0

0 exp[−iθ ]
)

(1.1.21)

for some angle θ . Then let us consider the rays {λ z1} and {μ z2} where λ,μ ∈ C are
arbitrary complex numbers. Since z1 · z2 = z†1z2 = 0 it follows that each element
of SU(2) singles out two rays, hereafter named poles that are determined one from
the other by the orthogonality relation. This concept of pole is the basic item in the
argument leading to the classification of finite rotation groups.

Let H ⊂ SO(3) be a finite, discrete subgroup of the rotation group and let Ĥ ⊂
SU(2) be its pre-image in SU(2) with respect to the homomorphism ω. Then the
order of H is some positive integer number:

|H | = n ∈ N (1.1.22)

The total number of poles associated with H is:

# of poles = 2n − 2 (1.1.23)

since n − 1 is the number of elements in H that are different from the identity. Let
us then adopt the notation

pi ≡ {λzi } (1.1.24)

for the pole or ray singled out by the eigenvector zi . We say that two poles are
equivalent if there exists an element of the group H that maps one into the other:

pi ∼ p j iff ∃γ ∈ H / γ pi = p j (1.1.25)

Let us distribute the poles pi into orbits under the action of the group H:

Qα = {
pα
1 , . . . , pα

mα

} ; α = 1, . . . , r (1.1.26)

and name mα the cardinality of the orbit class Qα , namely the number of poles it
contains. Hence we have assumed that there are r orbits and that each orbit Qα

contains mα elements.
Each pole p ∈ Qα has a stability subgroup K p ⊂ H :

∀ h ∈ K p : h p = p (1.1.27)

that is finite, abelian and cyclic of order kα . Indeed it must be finite since it is a
subgroup of a finite group, it must be abelian since in the basis z1, z2 the SU(2)
matrices that preserve the poles λz1 and μz2 are, of the form (1.1.21) and therefore
it is cyclic of some order. The H group can be decomposed into cosets according to
the subgroup K p:

H = K p + v1 K p + · · · + vmα
K p mα ∈ N (1.1.28)
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Consider now an element xi ∈ vi K p belonging to one of the cosets and define the
group conjugate to K p through xi :

K(xp)i = xi K p x−1
i (1.1.29)

Each element h ∈ K(xp)i admits a pole px :

h px = px (1.1.30)

that is given by:
px = xi p (1.1.31)

since
h px = x h px x−1 p = x h p p = x p = px (1.1.32)

Hence the set of poles
{

p, v1 p, v2 p, . . . vmα
p
}
are equivalent forming an orbit. Each

of them has a stability group K pi conjugate to K p which implies that all K pi are finite
of the same order:

∀vi p |K pi | = kα (1.1.33)

By this token we have proven that in each orbit Qα the stability subgroups of each
element are isomorphic, and cyclic of the same order kα which is a property of the
orbit. Hence we must have:

∀Qα ; kα mα = n (1.1.34)

The total number of poles we have in the orbitQα (counting coincidences) is:

# of poles in the orbit Qα = mα (kα − 1) (1.1.35)

since the number of elements in K p different from the identity is kα − 1. Hence we
find

2 n − 2 =
r∑

α=1

mα (kα − 1) (1.1.36)

Dividing by n we obtain:

2

(
1 − 1

n

)
=

r∑
α=1

(
1 − 1

kα

)
(1.1.37)

We consider next the possible solutions to the diophantine equation (1.1.37) and to
this effect we rewrite it as follows:

r + 2

n
− 2 =

r∑
α=1

1

kα

(1.1.38)
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We observe that kα ≥ 2. Indeed each pole admits at least two group elements that
keep it fixed, the identity and the non trivial group element that defines it by diago-
nalization. Hence we have the bound:

r + 2

n
− 2 ≤ r

2
(1.1.39)

which implies:

r ≤ 4 − 4

n
⇒ r = 1, 2, 3 (1.1.40)

On the other hand we also have kα ≤ n so that:

r + 2

n
− 2 ≥ r

n
⇒ r

(
1 − 1

n

)
≥ 2

(
1 − 1

n

)
⇒ r ≥ 2 (1.1.41)

Therefore there are only two possible cases:

r = 2 or r = 3 (1.1.42)

Let us now consider the solutions of the diophantine equation (1.1.39) and identify
the finite rotation groups and their binary extensions.

Taking into account the conclusion (1.1.42) we have two cases.

1.1.2 Case r = 2: The Infinite Series of Cyclic Groups an

Choosing r = 2, the diophantine equation (1.1.38) reduces to:

2

n
= 1

k1
+ 1

k2
(1.1.43)

Since we have k1,2 ≤ n, the only solution of (1.1.43) is k1 = k2 = n, with n arbitrary.
Since the order of the cyclic stability subgroup of the two poles coincides with the
order of the full group H it follows that H itself is a cyclic subgroup of SU(2) of
order n. We name it Γb[n, n, 1]. The two orbits are given by the two eigenvectors of
the unique cyclic group generator:

A ∈ SU(2) : Z ≡ A n (1.1.44)

The finite subgroup of SU(2), isomorphic to the abstract group Z2n is composed by
the following 2n elements:

Z2n ∼ Γb[n, n, 1] = {
1,A ,A 2, . . . ,A n−1,Z ,Z A ,A 2, . . . ,Z A n−1

}
(1.1.45)
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Under the homomorphism ω, the SU(2)-elementZ maps into the identity and both
A andZ A map into the same 3×3 orthogonal matrix A ∈ SO(3)with the property
An = 1. Hence we have:

ω [Γb[n, n, 1]] = Γ [n, n, 1] ∼ Zn (1.1.46)

In conclusionwe can define the cyclic subgroups of SO(3) and their binary extensions
in SU(2) bymeans of the following presentation in terms of generators and relations:

an ⇔
{

Γb[n, n, 1] = (A ,Z | A n = Z ; Z 2 = 1
)

Γ [n, n, 1] = (A | An = 1)
(1.1.47)

The nomenclature an introduced in the above equation is just for future comparison.
As we will see, in the ADE-classification of simply laced Lie algebras the case of
cyclic groups corresponds to that of an algebras.

1.1.3 Case r = 3 and its Solutions

In the r = 3 case the Diophantine equation becomes:

1

k1
+ 1

k2
+ 1

k3
= 1 + 2

n
(1.1.48)

In order to analyze its solutions in a unified way and inspired by the above case it is
convenient to introduce the following notations:

R = 1 +
r∑
α

kα (1.1.49)

and consider the abstract groups, that turn out to be of finite order, associated with
each triple of integers {k1, k2, k3} satisfying (1.1.48) and defined by the following
presentation:

Γb [k1, k2, k3] = (
A ,B,Z | (AB)k1 = A k2 = Bk3 = Z ; Z 2 = 1

)
Γ [k1, k2, k3] = (

A,B | (AB)k1 = Ak2 = Bk3 = 1
)

(1.1.50)

We will see that the finite subgroups of SU(2) are indeed isomorphic to the above
defined abstract groups Γb [k1, k2, k3] and that their image under the homomorphism
ω are isomorphic to Γ [k1, k2, k3].
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1.1.3.1 The Solution (k, 2, 2) and the Dihedral Groups Dihk

One infinite class of solutions of the diophantine equation (1.1.48) is given by

{k1, k2, k3} = {k, 2, 2} ; 2 < k ∈ Z (1.1.51)

The corresponding subgroups of SU(2) and SO(3) are:

Dihk ⇔
⎧⎨
⎩

Γb[k, 2, 2] = (A ,B,Z | (AB)k = A 2 = B2 = Z ;
Z 2 = 1)

Γ [k, 2, 2] = (A,B | (AB)k = A2 = B2 = 1
)

(1.1.52)
whose structure we illustrate next.

Γb[k, 2, 2] � Dihb
k is the binary dihedral subgroup. Its order is

|Dihb
k | = 4 k (1.1.53)

and it contains a cyclic subgroup of order k that we name K . Its index in Dihb
k is two.

The elements of Dihb
k that are not in K are of period equal to two since k2 = k3 = 2.

Altogether the elements of the dihedral group are the matrices given below:

Fl =
(

eilπ/k 0
0 e−ilπ/k

)
; (l = 0, 1, 2, . . . , 2k − 1)

Gl =
(

0 i e−ilπ/k

i eilπ/k 0

)
; (l = 0, 1, 2, . . . , 2k − 1)

In terms of them the generators are identified as follows:

F0 = 1 ; F1 G0 = A ; Fk = Z ; G0 = B . (1.1.54)

There are exactly R = k + 3 conjugacy classes

1. Ke contains only the identity F0

2. K Z contains the central extension Z
3. KG even contains the elements G2ν (ν = 1, . . . , k − 1)
4. KG odd contains the elements G2ν+1 (ν = 1, . . . , k − 1)
5. the k − 1 classes KFμ

: each of these classes contains the pair of elements Fμ and
F2k−μ for (μ = 1, . . . , k − 1).

Correspondingly the group Dihb
k admits k + 3 irreducible representations, 4 of

which are 1-dimensional while k − 1 are 2-dimensional. We name them as follows:
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Table 1.1 Character table of the group Dihb
k

. K E K Z K Ge K Go K F1 · · · K Fk−1

DE 1 1 1 1 1 · · · 1

DZ 1 1 −1 −1 1 · · · 1

DGe 1 (−1)k i k −i k (−1)1 · · · (−1)k−1

DGo 1 (−1)k −i k i k (−1)1 · · · (−1)k−1

DF1 2 (−2)1 0 0 2Cos π
k · · · 2Cos (k−1)π

k
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.

DFk−1 2 (−2)k−1 0 0 2Cos (k−1)π
k · · · 2Cos (k−1)2π

k

{
De ; DZ ; DG even ; DG odd ; 1-dimensional
DF1 ; . . . ; DFk−1 ; 2-dimensional

(1.1.55)

The combinations of the C2 vector components (z1, z2) that transform in the four
1-dimensional representations are easily listed:

De −→ |z1|2 + |z2|2
DZ −→ z1 z2

DG even −→ zk
1 + zk

2

DG odd −→ zk
1 − zk

2 . (1.1.56)

The matrices of the k − 1 two-dimensional representations are obtained in the fol-
lowing way. In the DFs representation, s = 1, . . . k − 1, the generator A , namely
the group element F1, is represented by the matrix Fs . The generator B is instead
represented by (i)s−1G0 and the generator Z is given by Fsk , so that:

DFs (Fj ) = Fsj

DFs (G j ) = (i)s−1Gsj . (1.1.57)

The character table is immediately obtained and it is displayed in Table1.1.2 This
concludes the discussion of the binary dihedral groups.

2In finite group-theory the square matrix χ
μ
i ≡ Tr

(
Dμ (γi )

)
where μ = 1, 2, . . . , r + 1 labels

the irreducible representations of a group Γ and i = 1, . . . , r + 1 labels the conjugacy classes C i

of Γ -group elements, (γi ∈ C i is any representative of the class) is named the character table and
plays a fundamental, central role.
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1.1.3.2 The Three Isolated Solutions Corresponding to the Tetrahedral,
Octahedral and Icosahedral Groups

There remain three isolated solutions of the Diophantine equation (1.1.48), namely:

{k1, k2, k3} = {3, 3, 2} (1.1.58)

{k1, k2, k3} = {4, 3, 2} (1.1.59)

{k1, k2, k3} = {5, 3, 2} (1.1.60)

They respectively correspond to the tetrahedral T12, octahedral O24 and icosahedral
I60 groups and to their binary extensions, namely:

Γ [3, 3, 2] � T12 (1.1.61)

Γ [4, 3, 2] � O24 (1.1.62)

Γ [5, 3, 2] � I60 (1.1.63)

As their name reveals these three groups have, 12,24 and 60 elements, respectively.
The corresponding binary extensions have 24,48 and 120 elements respectively.With
a procedure completely analogous to the one utilized in the case of the dihedral groups
we might reconstruct all these elements and organize them into conjugacy classes.
We do not do this explicitly; in the next section, while discussing crystallographic
groups, we will rather study in full detail the example of the octahedral group O24

and we will do that starting from the three-dimensional realization in SO(3).

1.1.4 Summary of the ADE Classification of Finite Rotation
Groups

Here we prepare the stage for the illustration of the deep and surprising relation,
already anticipated, between the platonic classification of finite rotation groups and
that of simple Lie algebras. To this effect let us consider Fig. 1.2 and diagrams of
the sort there displayed. Such diagrams are named Dynkin diagrams and obtain a
well-defined interpretationwhile studying root spaces and the classification of simple
Lie Algebras. For the time being let us note that Dynkin diagrams such as that in
Fig. 1.2 are characterized by three-integer numbers {k1, k2, k3}, denoting the lengths
of three chains of dots, linked one to the other and departing from a central node
which belongs to each of the three chains. In the case one of the number kα is equal to
one (say k3), the corresponding chain disappears and we are left with a simple chain
of length k1 + k2 − 1. In Sect. 1.5 we will see that the admissible Dynkin diagrams



1.1 The ADE Classification of the Finite Subgroups of SU(2) 13

Fig. 1.2 Interpretation of the solutions of the same Diophantine equation in the case of finite
subgroups of Γb ⊂ SU(2) and of simply laced Lie algebras

with one node are those and only those where the numbers {k1, k2, k3} satisfy the
diophantine equation (1.1.48). Hence each solution of that equation has a double
interpretation: it singles out a finite rotation group and labels a simple Lie algebra.
The anticipated correspondence is the following one:

Γ [	, 	, 1] � Z	 ⇔ a	 (1.1.64)

Γ [	, 2, 2] � Dih	 ⇔ d	 (1.1.65)

Γ [3, 3, 2] � T12 ⇔ e6 (1.1.66)

Γ [4, 3, 2] � O24 ⇔ e7 (1.1.67)

Γ [5, 3, 2] � I60 ⇔ e8 (1.1.68)
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where a	 is the Lie algebra associated with the Lie group SL(	 + 1, C), d	 is the Lie
algebra associated with the Lie group SO(2	, C), and e6,7,8 are the Lie algebras of
three exceptional Lie groups of dimensions 78, 133 and 248, respectively. A very
important concept, in Lie Algebra theory is that of rank that is the maximal number
of mutually commuting and diagonalizable elements of the algebra. As we see from
Fig. 1.2, the rank has a counterpart in the binary extension of the corresponding
finite rotation group: it is the number of non trivial conjugacy classes of the group,
except the class of the identity element. The property of Lie algebras that in Dynkin
diagrams there are no nodes with more than three converging lines corresponds on
the finite rotation group side to the property that in such a group there are at most
three different types of group-element orders.

A further challenging reinterpretation of the ADE-classification will be discussed
later on and regards the construction of the so called ALE-manifolds, that are four-
dimensional spaces with a self-dual curvature and asymptotic flatness. On their turn
such manifolds are in relation with certain finite polynomial rings also classified by
the same diophantine equation (see Chap.8).

1.2 Lattices and Crystallographic Groups

In this section we consider the finite rotation groups from the point of view of
crystallography, namely as groups of automorphisms of certain lattices. To this effect
we need first to introduce the very notion of lattice and then introduce the notion of
crystallographic group.

1.2.1 Lattices

We begin by fixing our notations for space and momentum lattices that define an
n-torus Tn endowed with a flat metric structure, namely with a symmetric positive
definite inner product.3

Let us consider the standard R
n manifold and introduce a basis of n linearly

independent n-vectors that are not necessarily orthogonal to each other and of equal
length:

wμ ∈ R
n μ = 1, . . . n (1.2.1)

Any vector in R can be decomposed along such a basis and we have:

r = rμwμ (1.2.2)

3A clarification for mathematicians: ametric on Tn is an inner product on the tangent spaces Tp (Tn)

for each p ∈ Tn . In physical jargon we identify the inner product on Tp (Tn) with the manifold
metric since the metric coefficients gμν are the same for all p ∈ Tn .

http://dx.doi.org/10.1007/978-3-319-74491-9_8


1.2 Lattices and Crystallographic Groups 15

The flat (constant) metric on R
n is defined by:

gμν = 〈wμ , wν〉 (1.2.3)

where 〈 , 〉 denotes the standard Euclidean scalar product. The space latticeΛ consis-
tent with the metric (1.2.3) is the free abelian group (with respect to sum) generated
by the n basis vectors (1.2.1), namely:

R
n � q ∈ Λ ⇔ q = qμ wμ where qμ ∈ Z (1.2.4)

The dual lattice Λ� is defined by the property:

p ∈ Λ� ⊂ R
n ⇔ 〈p , q〉 ∈ Z ∀q ∈ Λ (1.2.5)

A basis for the dual lattice is provided by a set of n dual vectors eμ defined by the
relations4:

〈wμ , eν〉 = δν
μ (1.2.6)

so that
∀p ∈ Λ� p = pμ eμ where pμ ∈ Z (1.2.7)

1.2.2 Crystallographic Groups and the Bravais Lattices for
n = 3

Every lattice Λ yields a metric g and every metric g singles out an isomorphic copy
SOg(3) of the continuous rotation group SO(n), which leaves it invariant:

M ∈ SOg(n) ⇔ MT g M = g (1.2.8)

By definition SOg(n) is the conjugate of the standard SO(n) in GL(n, R):

SOg(n) = S SO(n)S −1 (1.2.9)

with respect to the matrix S ∈ GL(n, R) which reduces the metric g to the Kro-
necker delta:

S T g S = 1 (1.2.10)

Notwithstanding this a generic lattice Λ is not invariant with respect to any proper
subgroup of the rotation group G ⊂ SOg(n) ≡ SO(n). Indeed by invariance of the
lattice one understands the following condition:

4In the sequel for the scalar product of two vectors we utilize also the equivalent shorter notation
a · b = 〈a ,b〉.
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∀ γ ∈ G and ∀q ∈ Λ : γ · q ∈ Λ (1.2.11)

For n = 3 lattices that have a non trivial symmetry group G ⊂ SO(3) are those
relevant to Solid State Physics and Crystallography. There are 14 of them grouped in
7 classes that were already classified in the XIX century by Bravais. The symmetry
group G of each of these Bravais lattices ΛB is necessarily one of the well known
finite subgroups of the three-dimensional rotation group O(3). In the language uni-
versally adopted by Chemistry and Crystallography for each Bravais lattice ΛB the
corresponding invariance group GB is named the Point Group.

According to a standard nomenclature the 7 classes of Bravais lattices are
respectively named Triclinic, Monoclinic, Orthorhombic, Tetragonal, Rhombohe-
dral, Hexagonal and Cubic. Such classes are specified by giving the lengths of the
basis vectors wμ and the three angles between them, in other words, by specifying
the 6 components of the metric (1.2.3).

In general we have the following

Definition 1.2.1 An abstract group Γ is named crystallographic in n-dimensions if
there exists an n-dimensional lattice Λn with basis vectors wμ such that:

1. there is a isomorphism:
ω : Γ → H ⊂ SOg(n) (1.2.12)

where SOg(n) is the conjugate of the n-dimensional group rotation group respect-
ing a metric g (see Eq. (1.2.10)

2. the metric g is that defined by the basis vectors of the lattice Λn (see Eq. (1.2.3)
3. all elements of H are n × n matrices with integer valued entries.

This is equivalent to the statement thatΓ has an orthogonal action inR
n and preserves

the lattice Λn .

When a group Γ is crystallographic with respect to a given n-dimensional lattice Λn

we say that is the Point Group of Λn .

1.2.3 The Proper Point Groups

Restricting one’s attention to n = 3, it was shown in the classical crystallographic
literature that the proper point groups that appear in the 7 lattice classes are either the
cyclic groups Zh with h = 2, 3, 4 or the dihedral groups Dihk with k = 3, 4, 6 or the
tetrahedral group T12 or the octahedral group O24. Indeed the n = 3 crystallographic
point groups are, by definition, finite subgroups of the rotation group, hence theymust
fall in the ADE-classification. Yet not every finite rotation group is crystallographic.
For instance there is no lattice that is invariant under the icosahedral group and in
general in a n = 3 point group there are no elements with orders different from
2, 3, 4, 6.
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Fig. 1.3 A view of the
self-dual cubic lattice

In this section, for the sake of illustration by means of a well structured example,
we restrict our attention to the largest possible point group, namely that of the cubic
lattice which has O24 symmetry.

1.2.4 The Cubic Lattice and Its Point Group

Let us now consider, within the general frame presented above the cubic lattice.
The cubic lattice is displayed in Fig. 1.3.
The basis vectors of the cubic lattice Λcubic are:

w1 = {1, 0, 0} ; w2 = {0, 1, 0} ; w3 = {0, 0, 1} (1.2.13)

which implies that the metric is just the Kronecker delta:

gμν = δμν (1.2.14)

and the basis vectors eμ of the dual lattice Λ�
cubic coincide with those of the lattice

Λ. Hence the cubic lattice is self-dual:

wμ = eμ ⇒ Λcubic = Λ�
cubic (1.2.15)
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The subgroup of the proper rotation group which maps the cubic lattice into itself is
the octahedral group O whose order is 24.

1.2.5 The Octahedral Group O24 ∼ S4

Abstractly the octahedral Group O24 ∼ S24 is isomorphic to the symmetric group of
permutations of 4 objects. It is defined by the following generators and relations:

A, B : A3 = e ; B2 = e ; (BA)4 = e (1.2.16)

Since O24 is a finite, discrete subgroup of the three-dimensional rotation group, any
γ ∈ O24 ⊂ SO(3) of its 24 elements can be uniquely identified by its action on the
coordinates x, y, z, as it is displayed below:

e 11 = {x, y, z}
21 = {−y,−z, x}
22 = {−y, z,−x}
23 = {−z,−x, y}

C2 24 = {−z, x,−y}
25 = {z,−x,−y}
26 = {z, x, y}
27 = {y,−z,−x}
28 = {y, z, x}
31 = {−x,−y, z}

C3 32 = {−x, y,−z}
33 = {x,−y,−z}

41 = {−x,−z,−y}
42 = {−x, z, y}

C4 43 = {−y,−x,−z}
44 = {−z,−y,−x}
45 = {z,−y, x}
46 = {y, x,−z}
51 = {−y, x, z}
52 = {−z, y, x}

C5 53 = {z, y,−x}
54 = {y,−x, z}
55 = {x,−z, y}
56 = {x, z,−y}

(1.2.17)

As one sees from the above list the 24 elements are distributed into 5 conjugacy
classes mentioned in the first column of the table. The relation between the abstract
and concrete presentation of the octahedral group is obtained by identifying in the
list (1.2.17) the generators A and B mentioned in Eq. (1.2.16). Explicitly we have:

A = 28 =
⎛
⎝ 0 1 0
0 0 1
1 0 0

⎞
⎠ ; B = 46 =

⎛
⎝ 0 1 0
1 0 0
0 0 −1

⎞
⎠ (1.2.18)

All other elements are reconstructed from the above two using the multiplication
table of the group which is displayed below:
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11 21 22 23 24 25 26 27 28 31 32 33 41 42 43 44 45 46 51 52 53 54 55 56
11 11 21 22 23 24 25 26 27 28 31 32 33 41 42 43 44 45 46 51 52 53 54 55 56
21 21 25 24 33 32 11 31 26 23 27 22 28 53 44 56 46 54 42 41 43 51 55 45 52
22 22 26 23 11 31 33 32 25 24 28 21 27 45 52 55 54 46 41 42 51 43 56 53 44
23 23 32 11 22 28 27 21 33 31 24 26 25 46 51 53 56 41 45 52 42 55 44 43 54
24 24 31 33 21 27 28 22 11 32 23 25 26 54 43 45 55 42 53 44 41 56 52 51 46
25 25 11 32 28 22 21 27 31 33 26 24 23 51 46 52 42 55 44 53 56 41 45 54 43
26 26 33 31 27 21 22 28 32 11 25 23 24 43 54 44 41 56 52 45 55 42 53 46 51
27 27 23 26 31 11 32 33 24 25 21 28 22 52 45 42 51 43 56 55 54 46 41 44 53
28 28 24 25 32 33 31 11 23 26 22 27 21 44 53 41 43 51 55 56 46 54 42 52 45
31 31 28 27 26 25 24 23 22 21 11 33 32 56 55 46 53 52 43 54 45 44 51 42 41
32 32 27 28 25 26 23 24 21 22 33 11 31 55 56 54 45 44 51 46 53 52 43 41 42
33 33 22 21 24 23 26 25 28 27 32 31 11 42 41 51 52 53 54 43 44 45 46 56 55
41 41 54 46 45 53 52 44 51 43 55 56 42 11 33 28 26 23 22 27 25 24 21 31 32
42 42 46 54 53 45 44 52 43 51 56 55 41 33 11 27 25 24 21 28 26 23 22 32 31
43 43 53 52 56 42 55 41 45 44 46 51 54 26 24 11 28 27 31 32 22 21 33 25 23
44 44 42 55 51 54 46 43 56 41 52 45 53 28 21 26 11 32 25 23 31 33 24 22 27
45 45 56 41 46 43 51 54 42 55 53 44 52 22 27 24 32 11 23 25 33 31 26 28 21
46 46 44 45 41 55 42 56 52 53 43 54 51 23 25 31 21 22 11 33 27 28 32 24 26
51 51 45 44 55 41 56 42 53 52 54 43 46 25 23 33 27 28 32 31 21 22 11 26 24
52 52 41 56 43 46 54 51 55 42 44 53 45 27 22 25 33 31 26 24 32 11 23 21 28
53 53 55 42 54 51 43 46 41 56 45 52 44 21 28 23 31 33 24 26 11 32 25 27 22
54 54 52 53 42 56 41 55 44 45 51 46 43 24 26 32 22 21 33 11 28 27 31 23 25
55 55 43 51 44 52 53 45 46 54 41 42 56 32 31 22 24 25 28 21 23 26 27 33 11
56 56 51 43 52 44 45 53 54 46 42 41 55 31 32 21 23 26 27 22 24 25 28 11 33

(1.2.19)

This observation is important in relation with representation theory. Any linear
representation of the group is uniquely specified by giving the matrix representation
of the two generators A = 28 and S = 46.

The Solvable Structure of O24

The groupO24 is solvable since there exists the following chain of normal subgroups:

O24 � N12 � N4 (1.2.20)

where the mentioned subgroups are given by the following lists of elements:

N12 ≡ {11, 21, 22, . . . , 28, 31, 32, 33} (1.2.21)

N4 ≡ {11, 31, 32, 33} (1.2.22)

The group N4 is abelian and we have:

N4 ∼ Z2 × Z2 (1.2.23)

since all of its elements are of order two. This abstract structure allows for an a
priori determination of all the irreducible representations, simply starting from the
multiplication table. Yet because of the interpretation of O24 as made of proper
rotations in three dimensions, its five irreps can also be constructed directly with
some ingenuity. This is what we do in the next section.
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1.2.6 Irreducible Representations of the Octahedral Group

There are five conjugacy classes in O24 and therefore according to theory there are
five irreducible representations of the same group, that we name Di , i = 1, . . . , 5.
They have dimensions:

dimD1 = 1 ; dimD2 = 1 ; dimD3 = 2 ; dimD4 = 3 ; dimD5 = 4
(1.2.24)

Let us briefly describe them.

1.2.6.1 D1: The Identity Representation

The identity representation which exists for all groups is that one where to each
element of O we associate the number 1

∀ γ ∈ O24 : D1(γ ) = 1 (1.2.25)

Obviously the character of such a representation is5:

χ1 = {1, 1, 1, 1, 1} (1.2.26)

1.2.6.2 D2: The Quadratic Vandermonde Representation

The representation D2 is also one-dimensional. It is constructed as follows. Consider
the following polynomial of order six in the coordinates of a point in R

3 or T3:

V(x, y, z) = (x2 − y2) (x2 − z2) (y2 − z2) (1.2.27)

As one can explicitly check under the transformations of the octahedral group listed in
Eq. (1.2.17) the polynomialV(x, y, z) is alwaysmapped into itselfmodulo an overall
sign. Keeping track of such a sign provides the form of the second one-dimensional
representation whose character is explicitly calculated to be the following one:

χ1 = {1, 1, 1,−1,−1} (1.2.28)

1.2.6.3 D3: The Two-Dimensional Representation

The representation D3 is two-dimensional and it corresponds to a homomorphism:

5Here as elsewhere we utilize the notion of group-characters for which we refer the reader to
standard textbooks on finite group theory as [2].
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D3 : O24 → SL(2, Z) (1.2.29)

which associates to each element of the octahedral group a 2 × 2 integer valued
matrix of determinant one. The homomorphism is completely specified by giving
the two matrices representing the two generators:

D3(A) =
(
0 1
−1 −1

)
; D3(B) =

(
0 1
1 0

)
(1.2.30)

The character vector of D2 is easily calculated from the above information and we
have:

χ3 = {2,−1, 2, 0, 0} (1.2.31)

1.2.6.4 D4: The Three-Dimensional Defining Representation

The three dimensional representation D4 is simply the defining representation, where
the generators A and B are given by the matrices in Eq. (1.2.18).

D4(A) = A ; D4(B) = B (1.2.32)

From this information the characters are immediately calculated and we get:

χ3 = {3, 0,−1,−1, 1} (1.2.33)

1.2.6.5 D5: The Three-Dimensional Unoriented Representation

The three dimensional representation D5 is simply that where the generators A and
B are given by the following matrices:

D5(A) =
⎛
⎝0 1 0
0 0 1
1 0 0

⎞
⎠ ; D5(B) =

⎛
⎝0 1 0
1 0 0
0 0 1

⎞
⎠ (1.2.34)

From this information the characters are immediately calculated and we get:

χ5 = {3, 0,−1, 1,−1} (1.2.35)

The table of characters is summarized in Table1.2.
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Table 1.2 Character table of the proper octahedral group

Irrep Class {e,1} {C2, 8} {C3, 3} {C4, 6} {C5, 6}
D1, χ1 = 1 1 1 1 1

D2, χ2 = 1 1 1 −1 −1

D3, χ3 = 2 −1 2 0 0

D4, χ4 = 3 0 −1 −1 1

D5, χ5 = 3 0 −1 1 −1

1.3 A Simple Crystallographic Point-Group
in 7-Dimensions

In the previous section we analyzed the possible crystallographic point groups in our
familiar three-dimensional Euclidean space.

Summarizing our discussion we point out some group–theoretical features that
follow from the ADE classification, combined with the further compatibility con-
straints which emerge when you impose the crystallographic condition that a lattice
should be left invariant by the action of the Point Group:

(a) The Point GroupPmust be a finite rotation group in d = 3 hence it must belong
to the list:

P ∈ {Zk , Dihk , T12 , O24 , I60} (1.3.1)

(b) The order of any element γ ∈ P belonging to the Point Group must be in the
range 2, 3, 4, 6

The intersection of these two conditions leads to the conclusion that:

P ∈ {
Z2,3,4,6 , Dih3,4,6 , T12 , O24

}
(1.3.2)

The classification of Bravais lattices, which is responsible for so many chemical-
physical properties of matter, is essentially encoded in Eq. (1.3.2). In this list of
candidate Point Groups there is no simple one which is non abelian. They are all
either solvable or abelian and this implies that their irreducible representations can be
constructed by means of an induction algorithm starting from the one-dimensional
irreps of their largest normal abelian subgroup. A simple group which occurs in the
ADE classification is the icosahedral group I60 which is isomorphic to the simple
alternating group A5 (the even permutations of 5 objects). It is barred out by the
crystallographic condition because it contains elements of order 5.

Under many respects this is the analogue of what happens with algebraic equa-
tions. The algebraic equations of order 2, 3, 4 are always solvable by radicals since
their Galois group is solvable. In degree d ≥ 5 the generic equation is not solvable
because the Galois group is generically not solvable.
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A natural question arises at this point. Is the condition b) on the possible orders of
the Point Group elements intrinsic to the crystallographic constraint in any dimension
or it is a specific feature of d = 3?

The correct answer to the above question is the second option and in this section
we show a counterexample of a crystallographic group in 7-dimensions that has
group elements of order 7. Not only that. Ours is an example of a simple non abelian
crystallographic Point Group!

It is quite remarkable that the analogue of the ADE classification of finite rotation
groups in d > 5 is so far non existing up to the knowledge of this author. Even less
is known about higher dimensional crystallographic groups.

It is philosophically quite challenging to imagine what Chemistry, Geology and
even Molecular Biology and Genetics might be in a world where the Point Group is
a simple non abelian group!

1.3.1 The Simple Group L168

The finite group:
L168 ≡ PSL(2, Z7) (1.3.3)

is the second smallest simple group after the alternating group A5 which has 60 ele-
ments and coincides with the symmetry group of the regular icosahedron or dodeca-
hedron.As anticipated by its givenname,L168 has 168 elements: they canbe identified
with all the possible 2 × 2 matrices with determinant one whose entries belong to
the finite field Z7, counting them up to an overall sign. In projective geometry, L168

is classified as a Hurwitz group since it is the automorphism group of a Hurwitz
Riemann surface, namely a surface of genus g with the maximal number 84 (g − 1)
of conformal automorphisms.6 The Hurwitz surface pertaining to the Hurwitz group
L168 is the Klein quartic [4], namely the locusK4 in P2(C) cut out by the following
quartic polynomial constraint on the homogeneous coordinates {x, y, z}:

x3 y + y3 z + z3 x = 0 (1.3.4)

Indeed K4 is a genus g = 3 compact Riemann surface and it can be realized as the
quotient of the hyperbolic Poincaré plane H2 by a certain group Γ that acts freely
on H2 by isometries.

The L168 group, which is also isomorphic to GL(3, Z2), has received a lot of
attention in Mathematics and it has important applications in algebra, geometry, and
number theory: for instance, besides being associated with the Klein quartic, L168 is
the automorphism group of the Fano plane [5].

6Hurwitz’s automorphisms theorem proved in 1893 [3] states that the order |G | of the group G of
orientation-preserving conformal automorphisms, of a compact Riemann surface of genus g > 1
admits the following upper bound |G | ≤ 84(g − 1).
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The reasonwhywe consider L168 in this section is associatedwith another property
of this finite simple group which was proved fifteen years ago in [6], namely:

L168 ⊂ g2(−14) (1.3.5)

This means that L168 is a finite subgroup of the compact form of the exceptional Lie
group g2 and the 7-dimensional fundamental representation of the latter is irreducible
upon restriction to L168.

The key reason to consider L168 in this section is that it happens to be crystallo-
graphic in d = 7, the preserved lattice being the root lattice of either the simple Lie
algebra a7 or, even more inspiringly, of the exceptional Lie algebra e7. Hence L168

is a subgroup of the e7 Weyl group. Because of the role of e7 in supergravity related
special geometries we will come back to it in the sequel. Here we are interested in its
properties in order to illustrate the case of a simple crystallographic non abelian
group.

1.3.2 Structure of the Simple Group L168 = PSL(2, Z7)

For the reasons outlined above we consider the simple group (1.3.3) and its crystal-
lographic action in d = 7. The Hurwitz simple group L168 is abstractly presented as
follows7:

L168 = (
R, S, T ‖ R2 = S3 = T 7 = RST = (T S R)4 = e

)
(1.3.6)

and, as its name implicitly advocates, it has order 168:

| L168 | = 168 (1.3.7)

The elements of this simple group are organized in six conjugacy classes according
to the scheme displayed below:

Conjugacy class C1 C2 C3 C4 C5 C6

representative of the class e R S T S R T S R
order of the elements in the class 1 2 3 4 7 7
number of elements in the class 1 21 56 42 24 24

(1.3.8)

As one sees from the above table (1.3.8) the group contains elements of order 2, 3,
4 and 7 and there are two inequivalent conjugacy classes of elements of the highest
order.According to the general theory of finite groups, there are 6 different irreducible
representations of dimensions 1, 6, 7, 8, 3, 3, respectively. The character table of the

7In the rest of this section we follow closely the results obtained by the present author in a recent
paper [7].
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group L168 can be found in the mathematical literature, for instance in the book [2].
It reads as follows:

Representation C1 C2 C3 C4 C5 C6

D1 [L168] 1 1 1 1 1 1
D6 [L168] 6 2 0 0 −1 −1
D7 [L168] 7 −1 1 −1 0 0
D8 [L168] 8 0 −1 0 1 1

DA3 [L168] 3 −1 0 1 1
2

(
−1 + i

√
7
)

1
2

(
−1 − i

√
7
)

DB3 [L168] 3 −1 0 1 1
2

(
−1 − i

√
7
)

1
2

(
−1 + i

√
7
)

(1.3.9)

Soon we will retrieve it by constructing explicitly all the irreducible representations.

1.3.3 The 7-Dimensional Irreducible Representation

For our purposes the most interesting representations are the real 7 dimensional and
the complex three dimensional ones. The properties of these irreps are the very reason
to consider the group L168 in the present context.

As for the 7-dimensional irrep the following three statements are true:

1. The 7-dimensional irreducible representation is crystallographic since all ele-
ments γ ∈ L168 are represented by integer valued matrices D7 (γ ) in a basis
of vectors that span a lattice, namely the root lattice Λroot of the a7 simple Lie
algebra.

2. The 7-dimensional irreducible representation provides an immersion L168 ↪→
SO(7) since its elements preserve the symmetric Cartan matrix of a7:

∀γ ∈ L168 : DT
7 (γ ) C D7 (γ ) = C

Ci, j = αi · α j (i, j = 1 . . . , 7)

(1.3.10)

defined in terms of the simple roots αi whose standard construction in terms of
the unit vectors εi of R

8 is recalled below8:

α1 = ε1 − ε2 ; α2 = ε2 − ε3 = ; α3 = ε3 − ε4
α4 = ε4 − ε5 ; α5 = ε5 − ε6 = ; α6 = ε6 − ε7
α7 = ε7 − ε8

(1.3.11)

8We refer the reader to Sect. 1.5 for the explicit form of the Cartan matrices associated with a	

algebras.
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3. Actually the 7-dimensional representation defines an embedding L168 ↪→ g2 ⊂
SO(7) since there exists a three-index antisymmetric tensor φi jk satisfying the
relations of the octonionic structure constants9 that is preserved by all thematrices
D7(γ ):

∀γ ∈ L168 : D7(γ )i i ′ D7(γ ) j j ′ D7(γ )kk ′ φi ′ j ′k ′ = φi jk (1.3.12)

Let us prove the above statements. It suffices to write the explicit form of the
generators R, S and T in the crystallographic basis of the considered root lattice:

v ∈ Λroot ⇔ v = ni αi ni ∈ Z (1.3.13)

Explicitly if we set:

R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 −1
0 0 0 0 0 −1 0
0 0 −1 1 0 −1 0
0 −1 0 1 0 −1 0
0 −1 0 1 −1 0 0
0 −1 0 0 0 0 0

−1 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

; S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 −1
1 0 0 0 0 0 −1
1 0 0 −1 1 0 −1
1 0 −1 0 1 0 −1
1 0 −1 0 1 −1 0
1 0 −1 0 0 0 0
1 −1 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 −1 1
1 0 0 0 0 −1 1
0 1 0 0 0 −1 1
0 0 1 0 0 −1 1
0 0 0 1 0 −1 1
0 0 0 0 1 −1 1
0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1.3.14)

we find that the defining relations of L168 are satisfied:

R2 = S 3 = T 7 = RST = (T SR)4 = 17×7 (1.3.15)

and furthermore we have:

RTCR = S TCS = T TCT = C (1.3.16)

where the explicit form of the a7 Cartan matrix is recalled below:

9For the history of quaternions and octonions I refer the reader to my book [8].
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C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 0 0 0 0
−1 2 −1 0 0 0 0
0 −1 2 −1 0 0 0
0 0 −1 2 −1 0 0
0 0 0 −1 2 −1 0
0 0 0 0 −1 2 −1
0 0 0 0 0 −1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(1.3.17)

This proves statements (1) and (2).
In order to prove statement (3) we proceed as follows. In R

7 we consider the
antisymmetric three-index tensor φABC that, in the standard orthonormal basis, has
the following components:

φ1,2,6 = 1
6

φ1,3,4 = − 1
6

φ1,5,7 = − 1
6

φ2,3,7 = 1
6

φ2,4,5 = 1
6

φ3,5,6 = − 1
6

φ4,6,7 = − 1
6

; all other components vanish (1.3.18)

This tensor satisfies the algebraic relations of octonionic structure constants,
namely 10:

φAB M φC DM = 1

18
δAB

C D + 2

3
ΦABC D (1.3.19)

φABC = −1

6
εABC P Q RS ΦABC D (1.3.20)

and the subgroup of SO(7)which leaves φABC invariant is, by definition, the compact
section g(2,−14) of the complex g2 Lie group (see for instance [9]). A particular matrix
that transforms the standard orthonormal basis of R

7 into the basis of simple roots
αi is the following one:

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
2 − 1√

2
0 0 0 0 0

0 − 1√
2

√
2 − 1√

2
0 0 0

0 0 0 − 1√
2

√
2 − 1√

2
0

0 0 0 0 0 − 1√
2

√
2

0 − 1√
2

0 1√
2

0 − 1√
2

0

0 0 0 − 1√
2

0 0 0

0 1√
2

0 0 0 − 1√
2

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1.3.21)

10In this equation the indices of the g2-invariant tensor are denoted with capital letter of the Latin
alphabet, as it was the case in the quoted literature on weak g2-structures. In the following we will
use lower case latin letters, the upper Latin letters being reserved for d = 8.
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since:
MT M = C (1.3.22)

Defining the transformed tensor:

ϕi jk ≡ (
M−1

) I

i

(
M−1

) J

j

(
M−1

) K

k φI J K (1.3.23)

we can explicitly verify that:

ϕi jk = (R)
p

i (R)
q
j (R) r

k ϕpqr

ϕi jk = (S )
p

i (S )
q
j (S ) r

k ϕpqr

ϕi jk = (T )
p

i (T )
q
j (T ) r

k ϕpqr (1.3.24)

Hence, being preserved by the three-generators R,S and T , the antisymmetric
tensor ϕi jk is preserved by the entire discrete group L168 which, henceforth, is a
subgroup of g(2,−14) ⊂ SO(7), as it was shown by intrinsic group theoretical argu-
ments in [6]. The other representations of the group L168 were explicitly constructed
about ten years ago by Pierre Ramond and his younger collaborators in [10]. They
are completely specified by giving the matrix form of the three generators R, S, T
satisfying the defining relations (1.3.6).

1.3.4 The 3-Dimensional Complex Representations

The two three dimensional irreducible representations are complex and they are
conjugate to each other. It suffices to give the form of the generators for one of them.
The generators of the conjugate representation are the complex conjugates of the
same matrices.

Setting:
ρ ≡ e

2iπ
7 (1.3.25)

we have the following form for the representation 3:

D[R]3 =

⎛
⎜⎜⎝

i(ρ2−ρ5)√
7

i(ρ−ρ6)√
7

i(ρ4−ρ3)√
7

i(ρ−ρ6)√
7

i(ρ4−ρ3)√
7

i(ρ2−ρ5)√
7

i(ρ4−ρ3)√
7

i(ρ2−ρ5)√
7

i(ρ−ρ6)√
7

⎞
⎟⎟⎠

D[S]3 =

⎛
⎜⎜⎝

i(ρ3−ρ6)√
7

i(ρ3−ρ)√
7

i(ρ−1)√
7

i(ρ2−1)√
7

i(ρ6−ρ5)√
7

i(ρ6−ρ2)√
7

i(ρ5−ρ4)√
7

i(ρ4−1)√
7

i(ρ5−ρ3)√
7

⎞
⎟⎟⎠
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D[T ]3 =
⎛
⎜⎝

−ie
3iπ
14 0 0

0 −ie− iπ
14 0

0 0 −e− iπ
7

⎞
⎟⎠ (1.3.26)

1.3.5 The 6-Dimensional Representation

Introducing the following short-hand notation:

cn = cos

[
2π

7
n

]

sn = sin

[
2π

7
n

]
(1.3.27)

The generators of the group L168 in the 6-dimensional irreducible representation can
be explicitly written as it is displayed below:

D[R]6 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

c3−1√
2

c2−1√
2

c1−1√
2

c3 − c1 c1 − c2 c2 − c3
c2−1√

2
c1−1√

2
c3−1√

2
c2 − c3 c3 − c1 c1 − c2

c1−1√
2

c3−1√
2

c2−1√
2

c1 − c2 c2 − c3 c3 − c1
c3 − c1 c2 − c3 c1 − c2

c1−1√
2

c2−1√
2

c3−1√
2

c1 − c2 c3 − c1 c2 − c3
c2−1√

2
c3−1√

2
c1−1√

2

c2 − c3 c1 − c2 c3 − c1
c3−1√

2
c1−1√

2
c2−1√

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

D[S]6 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(c3−1)ρ2√
2

(c2−1)ρ4√
2

(c1−1)ρ√
2

(c3 − c1)ρ3 (c1 − c2)ρ5 (c2 − c3)ρ6

(c2−1)ρ2√
2

(c1−1)ρ4√
2

(c3−1)ρ√
2

(c2 − c3)ρ3 (c3 − c1)ρ5 (c1 − c2)ρ6

(c1−1)ρ2√
2

(c3−1)ρ4√
2

(c2−1)ρ√
2

(c1 − c2)ρ3 (c2 − c3)ρ5 (c3 − c1)ρ6

(c3 − c1)ρ2 (c2 − c3)ρ4 (c1 − c2)ρ
(c1−1)ρ3√

2
(c2−1)ρ5√

2
(c3−1)ρ6√

2

(c1 − c2)ρ2 (c3 − c1)ρ4 (c2 − c3)ρ
(c2−1)ρ3√

2
(c3−1)ρ5√

2
(c1−1)ρ6√

2

(c2 − c3)ρ2 (c1 − c2)ρ4 (c3 − c1)ρ
(c3−1)ρ3√

2
(c1−1)ρ5√

2
(c2−1)ρ6√

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

D[T ]6 = (D[R]6 · D[S]6)−1 (1.3.28)
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1.3.6 The 8-Dimensional Representation

Utilizing the same notations as before we can write the matrix form of the generators
also in the irreducible 8-dimensional representation.

D[R]8 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 − 2c1 0 2c1 + 2c2 − 4c3 2 − 2c2
0 −2c1 + 4c2 − 2 0 0

2c1 + 2c2 − 4c3 0 −c1 + 2c2 − c3 −4c1 + 2c2 + 2c3
2 − 2c2 0 −4c1 + 2c2 + 2c3 2 − 2c3

0 2c2 − 4c3 + 2 0 0
2 − 2c3 0 2c1 − 4c2 + 2c3 2 − 2c1

0 4c1 − 2c3 − 2 0 0
2
√
3c1 − 2

√
3c2 0

√
3c1 − √

3c3 2
√
3c2 − 2

√
3c3

0 2 − 2c3 0 2
√
3c1 − 2

√
3c2

2c2 − 4c3 + 2 0 4c1 − 2c3 − 2 0
0 2c1 − 4c2 + 2c3 0

√
3c1 − √

3c3
0 2 − 2c1 0 2

√
3c2 − 2

√
3c3

4c1 − 2c3 − 2 0 2c1 − 4c2 + 2 0
0 2 − 2c2 0 2

√
3c3 − 2

√
3c1

2c1 − 4c2 + 2 0 −2c2 + 4c3 − 2 0
0 2

√
3c3 − 2

√
3c1 0 c1 − 2c2 + c3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

D[S]8 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c1 s1 0 0 0 0 0 0
−s1 c1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 c3 s3 0 0 0
0 0 0 −s3 c3 0 0 0
0 0 0 0 0 c2 s2 0
0 0 0 0 0 −s2 c2 0
0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

D[T ]8 = (D[R]8 · D[S]8)−1 (1.3.29)

1.3.7 The Proper Subgroups of L168

From the complexity of the other irreps, in relation with the simplicity of the 7-
dimensional one, it is already clear that this latter should be considered the natural
defining representation. The crystallographic nature of the group in d = 7 has already
been stressed and we will have more to say about it in Chap.7. Next we introduce the

http://dx.doi.org/10.1007/978-3-319-74491-9_7
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a7 weight lattice which, by definition, is just the dual of the root lattice. Explicitly

Λw � w = ni λi : ni ∈ Z (1.3.30)

is spanned by the simple weights that are implicitly defined by the relations:

λi · α j = δi
j ⇒ λi = (

C −1
)i j

α j (1.3.31)

Since the group L168 is crystallographic on the root lattice, by necessity it is crys-
tallographic also on the weight lattice. Given the generators of the group L168 in the
basis of simple roots we obtain the same in the basis of simple weights through the
following transformation:

Rw = C R C −1 ; Sw = C S C −1 ; Tw = C T C −1 (1.3.32)

Explicitly we find:

Rw =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 −1
0 0 0 −1 −1 −1 0
0 0 −1 0 0 0 0
0 0 1 1 1 0 0
0 0 0 0 −1 0 0
0 −1 −1 −1 0 0 0

−1 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

; Sw =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 −1 −1 −1 −1 −1 −1
1 1 1 1 0 0 0
0 0 0 −1 0 0 0
0 0 0 1 1 1 0
0 0 0 0 0 −1 0
0 0 −1 −1 −1 0 0
0 −1 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1.3.33)

Tw =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 −1 −1 −1 −1 −1 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1.3.34)

Given the weight basis, which is useful in several constructions, let us conclude our
survey of the remarkable simple group L168 by a brief discussion of its subgroups,
none of which, obviously, is normal.

L168 contains maximal subgroups only of index 8 and 7, namely of order 21 and
24. The order 21 subgroup G21 is the unique non-abelian group of that order and
abstractly it has the structure of the semidirect product Z3 � Z7. Up to conjugation
there is only one subgroup G21 as we have explicitly verified with the computer. On
the other hand, up to conjugation, there are two different groups of order 24 that are
both isomorphic to the octahedral group O24.
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1.3.7.1 The Maximal Subgroup G21

The group G21 has two generators X and Y that satisfy the following relations:

X 3 = Y 7 = 1 ; X Y = Y 2X (1.3.35)

The organization of the 21 group elements into conjugacy classes is displayed below:

ConjugacyClass C1 C2 C3 C4 C5

representative of the class e Y X 2Y X Y 2 Y X 2 X
order of the elements in the class 1 7 7 3 3
number of elements in the class 1 3 3 7 7

(1.3.36)

As we see there are five conjugacy classes which implies that there should be five
irreducible representations the square of whose dimensions should sum up to the
group order 21. The solution of this problem is:

21 = 12 + 12 + 12 + 32 + 32 (1.3.37)

and the corresponding character table is mentioned below:

0 e Y X 2Y X Y 2 Y X 2 X
D1 [G21] 1 1 1 1 1
DX1 [G21] 1 1 1 −(−1)1/3 (−1)2/3

DY1 [G21] 1 1 1 (−1)2/3 −(−1)1/3

DA3 [G21] 3 1
2 i
(

i + √
7
)

− 1
2 i
(
−i + √

7
)

0 0

DB3 [G21] 3 − 1
2 i
(
−i + √

7
)

1
2 i
(

i + √
7
)

0 0

(1.3.38)

In the weight-basis the two generators of the G21 subgroup of L168 can be chosen to
be the following matrices and this fixes our representative of the unique conjugacy
class:

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1
0 0 0 0 0 0 −1
0 −1 −1 −1 −1 −1 0
0 1 1 1 0 0 0
0 0 −1 −1 0 0 0
0 0 1 1 1 0 0
0 0 0 −1 −1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Y =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 0 0 0 0
0 0 0 1 1 1 1
0 0 −1 −1 −1 −1 −1
0 0 1 1 0 0 0

−1 −1 −1 −1 0 0 0
1 1 1 1 1 0 0
0 0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1.3.39)
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1.3.7.2 The Maximal Subgroups O24A and O24B

As we know from Sect. 1.2.5, the octahedral group O24 has two generators S ≡ B
and T ≡ A that satisfy the following relations:

S2 = T 3 = (ST )4 = 1 (1.3.40)

The 24 elements are organized in five conjugacy classes according to the scheme
displayed below:

Conjugacy Class C1 C2 C3 C4 C5

representative of the class e T ST ST S ST
order of the elements in the class 1 3 2 2 4
number of elements in the class 1 8 3 6 6

(1.3.41)

The irreducible representations of O24 were explicitly constructed in Sect. 1.2.6. We
repeat here the corresponding character table mentioning also a standard represen-
tative of each conjugacy class:

0 e T ST ST S ST
D1 [O24] 1 1 1 1 1
D2 [O24] 1 1 1 −1 −1
D3 [O24] 2 −1 2 0 0
D4 [O24] 3 0 −1 −1 1
D5 [O24] 3 0 −1 1 −1

(1.3.42)

By computer calculations we have verified that there are just two disjoint conjugacy
classes of O24 maximal subgroups in L168 that we have named A and B, respectively.
We have chosen two standard representatives, one for each conjugacy class, that we
have named O24A and O24B respectively. To fix these subgroups it suffices to mention
the explicit form of the their generators in the weight basis.

For the group O24A, we chose:

TA =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1
0 0 0 0 0 0 −1
0 −1 −1 −1 −1 −1 0
0 1 1 1 0 0 0
0 0 −1 −1 0 0 0
0 0 1 1 1 0 0
0 0 0 −1 −1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

SA =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 1 1 0
0 0 0 0 −1 −1 0

−1 −1 −1 −1 0 0 0
1 1 0 0 0 0 0
0 0 1 1 1 1 1
0 −1 −1 −1 −1 −1 −1
0 1 1 1 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1.3.43)
For the group O24B, we chose:
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TB =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 0 0 0
0 −1 −1 −1 0 0 0
0 1 1 1 1 0 0
0 0 −1 −1 −1 0 0
0 0 1 1 1 1 0
0 0 0 −1 −1 −1 0
0 0 0 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

SB =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 1 1 0 0
−1 −1 −1 −1 −1 0 0
1 1 1 1 1 1 1
0 0 0 0 0 0 −1
0 −1 −1 −1 −1 −1 0
0 1 1 1 0 0 0
0 0 0 −1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1.3.44)

1.3.7.3 The Tetrahedral Subgroup T12 ⊂ O24

Every octahedral groupO24 has, up toO24-conjugation, a unique tetrahedral subgroup
T12 whose order is 12. The abstract description of the tetrahedral group is provided
by the following presentation in terms of two generators:

T12 = (
s, t
∣∣s2 = t3 = (st)3 = 1

)
(1.3.45)

The 12 elements are organized into four conjugacy classes as displayed below:

Classes C1 C2 C3 C4

standard representative 1 s t t2s
order of the elements in the conjugacy class 1 2 3 3
number of elements in the conjugacy class 1 3 4 4

(1.3.46)

We do not display the character table since we will not use it. The two tetrahedral
subgroups T12A ⊂ O24A and T12B ⊂ O24B are not conjugate under the big group
L168. Hence we have two conjugacy classes of tetrahedral subgroups of L168.

1.3.7.4 The Dihedral Subgroup Dih3 ⊂ O24

Every octahedral group O24 has a dihedral subgroup Dih3 whose order is 6. The
abstract description of the dihedral group Dih3 is provided by the following presen-
tation in terms of two generators:

Dih3 = (
A, B

∣∣A3 = B2 = (B A)2 = 1
)

(1.3.47)

The 6 elements are organized into three conjugacy classes as displayed below:

ConjugacyClasses C1 C2 C3

standard representative of the class 1 A B
order of the elements in the class 1 3 2
number of elements in the class 1 2 3

(1.3.48)
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We do not display the character table since we will not use it. Differently from the
case of the tetrahedral subgroups the two dihedral subgroups Dih3A ⊂ O24A and
Dih3B ⊂ O24B turn out to be conjugate under the big group L168. Actually there is
just one L168-conjugacy class of dihedral subgroups Dih3.

1.3.7.5 Enumeration of the Possible Subgroups and Orbits

In d = 3 the orbits of the octahedral group acting on the cubic lattice are the
vertices of regular geometrical figures. Since L168 has a crystallographic action on
the mentioned 7-dimensional weight lattice, its orbits O in Λw correspond to the
analogue regular geometrical figures in d = 7. Every orbit is in correspondence with
a coset G/H where G is the big group and H one of its possible subgroups. Indeed
H is the stability subgroup of an element of the orbit.

Since the maximal subgroups of L168 are of index 7 or 8 we can have subgroups
H ⊂ L168 that are either G21 or O24 or subgroups thereof. Furthermore, as we know,
the order |H| of any subgroup H ⊂ G must be a divisor of |G|. Hence we conclude
that

|H| ∈ {1, 2, 3, 4, 6, 7, 8, 12, 21, 24} (1.3.49)

Correspondingly wemight have L168-orbitsO in the weight latticeΛw, whose length
is one of the following nine numbers:

	O ∈ {168, 84, 56, 42, 28, 24, 21, 14, 8, 7} (1.3.50)

Combining the information about the possible group orders (1.3.49) with the
information that themaximal subgroups are of index 8 or 7, we arrive at the following
list of possible subgroups H (up to conjugation) of the group L168:

Order (24) Either H = O24A or H = O24B.
Order (21) The only possibility is H = G21.
Order (12) The only possibilities are H = T12A or H = T12B where T12 is the

tetrahedral subgroup of the octahedral group O24.
Order (8) Either H = Z2 × Z2 × Z2 or H = Z2 × Z4.
Order (7) The only possibility is Z7.
Order (6) Either H = Z2 × Z3 or H = Dih3, where Dih3 denotes the dihedral

subgroup of index 3 of the octahedral group O24.
Order (4) Either H = Z2 × Z2 or H = Z4.
Order (3) The only possibility is H = Z3

Order (2) The only possibility is H = Z2.
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1.3.7.6 Synopsis of the L168 Orbits in the Weight Lattice Λw

In [7], the author of this bookhas presented his results, obtained bymeans of computer
calculations, on the orbits of the considered simple group acting on the a7 weight
lattice. They are briefly summarized below

1. Orbits of length 8 (one parameter nnn; stability subgroup Hs = G21)
2. Orbits of length 14 (two types A & B) (one parameter nnn; stability subgroup

Hs = T12A,B)
3. Orbits of length 28 (one parameter nnn ; stability subgroup Hs = Dih3)
4. Orbits of length 42 (one parameter nnn; stability subgroup Hs = Z4))
5. Orbits of length 56 (three parameters n,m,pn,m,pn,m,p; stability subgroup Hs = Z3)
6. Orbits of length 84 (three parameters n,m,pn,m,pn,m,p; stability subgroup Hs = Z2)
7. Generic orbits of length 168 (seven parameters; stability subgroup Hs = 1)

As we already said, the above list is in some sense the 7-dimensional analogue of
Platonic solids. It is only in some sense, since it is a complete classification for
the group L168 yet we are not aware of a classification of the other crystallographic
subgroups of SO(7), if any.

Notwithstanding this ignorance, the piece of knowledge we have summarized
above is already impressively complicated and demonstrates how even flat geometry
becomes more sophisticated in higher dimensions.

The next natural question is why just d = 7 should attract our geometrical atten-
tion. There are several reasons for the number 7. They are probably all related to
each other:

1. The possible division algebras are R, C, H, O, the real numbers, the complex
numbers, the quaternions and the octonions. The corresponding number of imag-
inary units are 0, 1, 3, 7. The automorphisms groups of these division algebras
are 1, U(1), SU(2), g2(−14).

2. The spheres that are globally parallelizable are S
1,S3,S7.

3. The manifolds of restricted holonomy are the complex ones, the Kähler ones, the
quaternionic ones, that exist in all dimensions d = 2n, respectively d = 4n, and
then, just in d = 7, we have the g2 manifolds and in d = 8 we have the Spin(7)
manifolds.

4. Seven are the dimensions that one has to compactify in order to step down from
the 11-dimensional M-theory to our d = 4 space-time and many solutions of the
theory naturally perform the splitting 11 = 4 + 7.

1.4 The General Form of a Simple Lie Algebra and the
Root Systems

Every simple Lie algebra G of dimension n = 2m + r can be described in a compact
and quite inspiring way. There exists an abelian subalgebra (the Cartan subalgebra
CSA) made of elements whose adjoint action is fully diagonalizable and whose
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dimension 	 < n is named the rank of G. A basis of generators spanning the CSA is
usually denoted by Hi (i =, . . . , 	). The remaining 2m generators, denoted Eα are
in one-to-one correspondence with a set Δ of vectors α living in an 	-dimensional
Euclidean space that are named the roots. The set Δ is dubbed a root space and it is
formally defined as follows:

Definition 1.4.1 A root space Δ of rank 	 is a finite set of vectors {α}, named the
roots and defined in an Euclidean space of dimension 	, that satisfy the following
properties. If α, β ∈ Δ are two roots, then the following two statements are true:

1. 2 (α , β)

(α ,α)
∈ Z

2. σα(β) ≡ β − 2 α
(α , β)

(α ,α)
∈ Δ is also a root.

The vector σα(β) defined above is named the reflection of β with respect to α and
the second part of the definition can be reformulated by saying that any root system
Δ is invariant under reflection with respect to any of its elements.

Utilizing these notations and the advocated notion of root system we have:

Theorem 1.4.1 The commutation relations of a complex simple Lie algebra take
necessarily the following general form:

[
Hi , Hj

] = 0[
Hi , Eα

] = αi Eα

[
Eα , E−α

] = αi Hi[
Eα , Eβ

] = N (α, β) Eα+β if α + β ∈ Δ[
Eα , Eβ

] = 0 if α + β /∈ Δ (1.4.1)

where N (α, β) is a coefficient that has to be determined using Jacobi identities.

From now on we can associate to every complex simple Lie algebra its root system
Δ. Furthermore each root system singles out a well-defined finite group, named the
Weyl group that is obtained combining together the reflections with respect to all the
roots.

Definition 1.4.2 Let Δ be a root system in dimension 	. The Weyl group of Δ,
denoted W (Δ) is the finite group generated by the reflections σα , ∀α ∈ Δ.

Since for any two vectors v,w ∈ E we have:

(σα(v) , σα(w)) = (v , w) (1.4.2)

it follows that the Weyl group, which is finite, is always a subgroup of the rotation
group in 	 dimensions:

W (Δ) ⊂ SO(	) (1.4.3)
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1.4.1 The Cartan Matrices

The main token in the classification of root systems is provided by the Cartan matri-
ces, which we presently define. We begin with the notion of simple roots.

Definition 1.4.3 Given a root system Δ ⊂ E
	 in an Euclidean space of dimension

	, a set Δ of exactly 	 roots is named a simple root basis if:

1. Δ is a basis for the entire E
	.

2. Every root α ∈ Δ can be written as a linear combination of the elements αi

whose coefficients are either all positive or all negative integers

α =
	∑

i=1

ki αi ; ki ∈
{

Z+
or Z−

(1.4.4)

The vectors αi comprised in Δ are named the simple roots of Δ.

A rather simple, yet fundamental theorem establishes that every root system has a
simple root basis α1, . . . , α	. This being the case to every root system and hence to
every complex Lie algebra we can associated the following 	 × 	 matrix:

Ci j =< αi , α j >≡ 2
(αi , α j )

(α j , α j )
(1.4.5)

Another simple and constructive theorem shows that from the Cartan matrix one can
retrieve the entire root system and hence the simple Lie algebra.

Having established that all possible irreducible root systemsΔ are uniquely deter-
mined (up to isomorphisms) by the Cartan matrix, we can classify all the complex
simple Lie algebras by classifying all possible Cartan matrices. This is the classifi-
cation originally achieved by Killing and Cartan. Later on in the XXth century the
theory of Cartan matrices of root systems and of the finite reflection groups associ-
ated with them was extensively developed by three mathematicians Hermann Weyl,
Harold Coxeter and Evgenij Dynkin.

1.4.2 Dynkin Diagrams

Each Cartan matrix can be given a graphical representation in the following way.
To each simple root αi we associate a circle © as in Fig. 1.4 and then we link the
i th circle with the j th circle by means of a line which is simple, double or triple
depending on whether

< αi , α j >< α j , αi >= 4 cos2 θi j =
⎧⎨
⎩
1
2
3

(1.4.6)
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Fig. 1.4 The simple roots αi
are represented by circles

Fig. 1.5 The four possible
Coxeter graphs with two
vertices

having denoted θi j the angle between the two simple roots αi and α j . The corre-
sponding graph is named a Coxeter graph.

If we consider the simplest case of two-dimensional Cartan matrices we have the
four possible Coxeter graphs depicted in Fig. 1.5 Given a Coxeter graph if it is simply
laced, namely if there are only simple lines, then all the simple roots appearing in
such a graph have the same length and the corresponding Cartanmatrix is completely
identified. On the other hand if the Coxeter graph involves double or triple lines, then,
in order to identify the corresponding Cartan matrix, we need to specify which of
the two roots sitting at the end points of each multiple line is the long root and which
is the short one. This can be done by associating an arrow to each multiple line.
By convention we decide that this arrow points in the direction of the short root.
A Coxeter graph equipped with the necessary arrows is named a Dynkin diagram.
Applying this convention to the case of the Coxeter graphs of Fig. 1.5 we obtain
the result displayed in Fig. 1.6. The one-to-one correspondence between the Dynkin
diagram and the associated Cartan matrix is illustrated by considering in some detail
the case B2 of Fig. 1.6. By definition of the Cartan matrix we have:

2
(α1 , α2)

(α2 , α2)
= 2

|α1|
|α2| cos θ = −2

2
(α2 , α1)

(α1 , α1)
= 2

|α2|
|α1| cos θ = −1 (1.4.7)

so that we conclude:
|α1|2 = 2 |α2|2 (1.4.8)

which shows that α1 is a long root, while α2 is a short one. Hence the arrow in the
Dynkin diagram pointing towards the short root α2 tells us that the matrix elements
C12 is−2 while the matrix element C21 is−1. It happens the opposite in the example
C2.
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Fig. 1.6 The distinct Cartan matrices in two dimensions (and therefore the simple Algebras in
rank two) correspond to the Dynkin diagrams displayed above. We have distinguished a b2 and a c2
matrix since they are the limiting case for 	 = 2 of two series of Cartan matrices the b	 and the c	
series that for 	 > 2 are truly different. However b2 is the transposed of c2 so that they correspond
to isomorphic algebras obtained one from the other by renaming the two simple roots α1 ↔ α2

Fig. 1.7 The Dynkin
diagrams of the four infinite
families of classical simple
algebras

1.5 The Classification Theorem

Having clarified the notation of Dynkin diagrams the basic classification theorem of
complex simple Lie algebras is the following:

Theorem 1.5.1 If Δ is an irreducible system of roots of rank 	 then its Dynkin
diagram is either one of those shown in Fig.1.7 or for special values of 	 is one of
those shown in Fig.1.8. There are no other irreducible root systems besides these
ones.

This fundamental theoremencoding the classification of complex simpleLie algebras
is proved in many textbooks and a proof, essentially based on that of [11], is provided
in the same notations of the present book in Chap.7 of [1]. Of that proof we report
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Fig. 1.8 The Dynkin
diagrams of the five
exceptional algebras

here only the crucial segment that leads to the diophantine Eq. (1.1.48) and shows
the ADE isomorphism between the classification of simply laced Lie algebras and
of finite Kleinian subgroups of SU(2).

The strategy of the proof, which is organized in ten steps is based on the intro-
duction of a set of vectors:

U = {ε1 , ε2 , . . . , ε	} (1.5.1)

that satisfy the following three conditions:

(εi , εi ) = 1(
εi , ε j

) ≤ 0 i �= j

4
(
εi ε j

)2 = 0, 1, 2, 3 i �= j (1.5.2)

Such a system of vectors is named admissible. It is clear that each admissible system
of vectors singles out a Coxeter graph Γ . Indeed the vectors εi correspond to the
simple roots αi divided by their norm:

εi = αi√|αi |2
(1.5.3)

The task is that of classifying all connected Coxeter graphs.
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In the first eight steps of the proof one establishes that there is a set of prohibited
Coxeter subgraphs that are those displayed in Fig. 1.9.

In this way, apart from the Coxeter graph of the g2 Lie algebra (see Fig. 1.8),
which is admissible, one is left with the candidate graphs displayed in Figs. 1.10 and
1.11.

In step 9 one considers the graphs of the type shown in Fig. 1.10 and utilizing the
properties of Euclidean geometry one establishes that there are only two solutions
namely:

p = 2 ; q = 2 ⇒ f4 Dynkin diagram
p = 	 ∈ N ; q = 1 ⇒ b	 or c	 Dynkin diagrams

(1.5.4)

The first solution leads to the Dynkin diagram of the exceptional Lie algebra f4, while
the second solution leads to the two infinite series of classical Lie algebras b	 and c	.

Fig. 1.9 Prohibited subgraphs

Fig. 1.10 Coxeter graph with a double link that is preceded by a simple chain of length p and
followed by a simple chain of length q
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Fig. 1.11 Coxeter graph
with a node. The unit vector
in the node is named ψ while
the unit vectors along the
three simple lines departing
from the node are
respectively named
ε1, . . . , εp−1, η1, . . . , ηq−1,
ζ1, . . . , ζr−1. The graph is
characterized by the three
integer numbers p, q, r that
denote the lengths of the
three simple lines departing
from the node

Finally in step 10 one considers the Coxeter graphs of the type shown in Fig. 1.11.
The claim is that the only possible solutions are:

(p, q, r) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(	, 1, 1) ⇒ A	 Dynkin diagrams 	 ∈ N

(	 − 2, 2, 2) ⇒ d	 Dynkin diagrams 4 ≤ 	 ∈ N

(3, 3, 2) ⇒ e6 Dynkin diagram
(4, 3, 2) ⇒ e7 Dynkin diagram
(5, 3, 2) ⇒ e8 Dynkin diagram

(1.5.5)

To prove this statement we follow a strategy similar to that used in the proof of Step
9, namely we define the following three vectors:

ε =
p−1∑
i=1

i εi ; η =
q−1∑
i=1

i ηi ;
r−1∑
i=1

i ζi (1.5.6)

Clearly ε, η, ζ are mutually orthogonal and ψ , the vector in the node is not in the
subspace generated by ε, η, ζ . Hence if in the linear span of {ψ, ε, η, ζ }we construct
a vector γ that is orthogonal to {ε, η, ζ } we obtain that (γ , ψ) �= 0. Normalizing
this vector to 1 we can write:

ψ = (ψ , γ ) γ + (ψ , ε)√
(ε , ε)

ε + (ψ , η)√
(η , η)

η + (ψ , ζ )√
(ζ , ζ )

ζ (1.5.7)

and we obtain:

(ψ , ψ) = 1 = (ψ , γ )2 + (ψ , ε)2

(ε , ε)
+ (ψ , η)2

(η , η)
+ (ψ , ζ )2

(ζ , ζ )
(1.5.8)

that implies the inequality:
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1 >
(ψ , ε)2

(ε , ε)
+ (ψ , η)2

(η , η)
+ (ψ , ζ )2

(ζ , ζ )
(1.5.9)

By definition of the Coxeter graph in Fig. 1.11 we have:

(ψ , ε) = (p − 1)
(
εp−1 , ψ

) ⇒ (ψ , ε)2 = (p − 1)2

4

(ε , ε) = p(p − 1)

2
(1.5.10)

and similarly for the scalar products associated with the other chains. Inserting these
results into the inequality of Eq. (1.5.9) we obtain the Diophantine inequality:

1

p
+ 1

q
+ 1

r
> 1 (1.5.11)

whose independent solutions are those displayed in Eq. (1.5.5). To this effect it is
sufficient to note that Eq. (1.5.11) has an obvious permutational symmetry in the three
numbers p, q, r . To avoid double counting of solutions we break this symmetry by
setting p ≥ q ≥ r and then we see that the only possibilities are those listed in
Eq. (1.5.5).

Having concluded the above proof we can look back and compare the just
obtained results with those summarized in Sect. 1.1.4. The anticipated correspon-
dence between finite rotation subgroups and simply laced Lie algebras should now
be clear: the profound meaning of the correspondence was displayed in Fig. 1.2.
The rank of the Lie algebra A corresponds to the number of non trivial conjugacy
classes of the finite group Γ , while the lengths kα of the simple chains in the Dynkin
diagram correspond to the order of the group generators. More implications of the
correspondence will be unveiled in Chap.8.

1.6 The Exceptional Lie Algebra g2

It wasKillingwho, through his own classification of the root systems, first discovered
the possible existence of the exceptional Lie algebras: yet their concrete existence
was proved only later by Cartan who was able to construct the fundamental repre-
sentation of all of them. In this section we study the smallest of the five exceptional
algebras, namely, g2 and we explicitly exhibit its fundamental representation which
is 7-dimensional.

Our presentation is aimed not only at showing that g2 exists but it also enlightens
some features of its structure that will turn out to be general within a certain algebraic
scheme that encompasses an entire set of classical and exceptional Lie algebras
relevant for the special geometries implied by supergravity and superstrings.

http://dx.doi.org/10.1007/978-3-319-74491-9_8
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Before the advent of supergravity, exceptional Lie algebras were viewed by physi-
cists as some mathematical extravagance good only for a Dickensian Old Curiosity
Shop. Supergravity quite surprisingly shew that all exceptional Lie algebras have
a distinct and essential role to play in the connected web of gravitational theories
that one obtains through dimensional reduction and coupling of matter multiplets in
diverse dimensions. Furthermore there is an inner algebraic structure of the excep-
tional algebras, shared with other classical algebras that appears to be specially pre-
pared to fit the geometrical yields of supersymmetry. This provides a new structural
viewpoint motivated by physics that, in Weyl’s spirit, encodes a deep truth, at the
same time physical andmathematical, the distinction being somewhat irrelevant. The
full-fledged span of the considerations first brought to the stage in this section will be
fully appreciated by the reader when he will address Chap.4 on special geometries
and Chap.5 on the theory of the Tits Satake projection. Let us next turn to the specific
topic of the present section.

The complex Lie algebra g2(C) has rank two and it is defined by the 2× 2 Cartan
matrix encoded in the following Dynkin diagram:

g2 �> � =
(

2 −1
−3 2

)

The g2 root systemΔ consists of the following six positive roots plus their negatives:

α1 = α1 = (1, 0) ; α2 = α2 =
√
3
2 (−√

3, 1)
α3 = α1 + α2 = 1

2 (−1,
√
3) ; α4 = 2 α1 + α2 = 1

2 (1,
√
3)

α5 = 3α1 + α2 =
√
3
2 (

√
3, 1) ; α6 = 3α1 + 2α2 = (0,

√
3)

(1.6.1)

The two fundamental weights are easily derived and have the following form:

λ1 =
{
1,

√
3
}

λ2 =
{
0,

2√
3

}
(1.6.2)

Simple roots, fundamental weights and the Weyl chamber are displayed in Fig. 1.12.
Figure1.13 instead displays the entire root system. The fundamental representation
of the Lie algebra is identified as the one which admits the fundamental weight λ1 as
highest weight. Using theWeyl group symmetry and the α through λ string technique
one derives all the weights of the 7-dimensional fundamental representation that are
the following ones:

http://dx.doi.org/10.1007/978-3-319-74491-9_4
http://dx.doi.org/10.1007/978-3-319-74491-9_5
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Fig. 1.12 The simple roots
and the fundamental weights
of the g2 Lie algebra. The
shaded region is the Weyl
Chamber

Fig. 1.13 The complete root
system of the g2 Lie algebra

Name Dynk lab Orth. comp. mult.

Λ1 = {1, 0} ⇒
{
1,

√
3
}

1

Λ2 = {−1, 1} ⇒
{
−1,− 1√

3

}
1

Λ3 = {2,−1} ⇒
{
2, 4√

3

}
1

Λ4 = {0, 0} ⇒ {0, 0} 1

Λ5 = {−2, 1} ⇒
{
−2,− 4√

3

}
1

Λ6 = {1,−1} ⇒
{
1, 1√

3

}
1

Λ7 = {−1, 0} ⇒
{
−1,−√

3
}

1

(1.6.3)
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Fig. 1.14 The six non
vanishing weights of the
fundamental representation
of the g2 Lie algebra. The
fundamental weight λ1 is the
highest weight of this
representation

The six non-vanishing weights are displayed in Fig. 1.14
Given this information we are ready to derive the fundamental representation of

the algebra. According to our general strategy we are supposed to construct 7 × 7
upper triangular matrices spanning the Borel subalgebra of the maximally split real
section g2(2) of g2(C):

Bor [g2] = span {H1, H2, Eα1 , Eα2 , . . . , Eα6} (1.6.4)

As for all maximally split algebras the Cartan generators Hi and the step opera-
tors Eα associated with each positive root α can be chosen completely real in all
representations.

In the fundamental 7-dimensional representation the explicit form of the g2(2)-
generators with the above properties is presented hereby. Naming {H1, H2} the
Cartan generators along the two ortho-normal directions and adopting the standard
Cartan–Weyl normalizations:

[Eα, Eα] = αi Hi , [Hi , Eα] = αi Eα . (1.6.5)
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we have:

H1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2 0 0 0 0 0 0
0 − 1

2 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 −1 0 0
0 0 0 0 0 1

2 0
0 0 0 0 0 0 − 1

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

; H2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
3
2 0 0 0 0 0 0

0
√
3
2 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 −
√
3
2 0

0 0 0 0 0 0 −
√
3
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1.6.6)

Eα1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1√
2
0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1√

2
0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

; Eα2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0

0 0
√

3
2 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 −
√

3
2 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1.6.7)

Eα1+α2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1√
2

0 0 0 0

0 0 0 −1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 −1 0
0 0 0 0 0 0 1√

2
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

; E2α1+α2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 −1 0 0 0
0 0 0 0 1√

2
0 0

0 0 0 0 0 − 1√
2
0

0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1.6.8)

E3α1+α2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 −
√

3
2 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 −
√

3
2

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

; E3α1+2α2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 −
√

3
2 0

0 0 0 0 0 0 −
√

3
2

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1.6.9)

1.7 A Golden Splitting for Quaternionic Algebras

In Chap.4 we shall address the study of special Kähler geometry and of quaternionic
geometry that are both implied by N = 2 supersymmetry, the first applying to the
scalars of vector multiplets, the second to the scalar of hypermultiplets. Furthermore
we shall discuss a very interesting relation between such geometries that is named
the c-map:

c − map : SK 2n → Q4n+4 (1.7.1)

http://dx.doi.org/10.1007/978-3-319-74491-9_4
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whereSK 2n denotes a special Kähler manifold of 2n-real dimension whileQ4n+4

denotes a quaternionic Kähler manifold of 4n + 4 real dimension. For the definition
and properties of such manifolds we refer the reader to later chapters. What is of
interest to us here is that among the special Kähler and quaternionic manifolds there
are also classes of homogeneous symmetric spaces G/H leading to a split of the Lie
algebra:

G = H ⊕ K (1.7.2)

into a subalgebraH and an orthogonal subspace K. We refer the reader to Chap.2 for
the notion of coset manifolds and symmetric spaces: here we just focus on the fact
that the existence of a c-map between two symmetric spaces implies the existence
of a well-defined relation between two Lie algebras that we can respectively dub the
special Kählerian algebra USK and the quaternionic algebra UQ.11 For reasons
that the reader will fully appreciate in later chapters this relation is provided by the
following decomposition of the adjoint representation of the quaternionic algebra
UQ with respect to its special Kähler subalgebra:

adj(UQ) = adj(USK ) ⊕ adj(SL(2, R)E) ⊕ W(2,W) (1.7.3)

whereW is a symplectic representation of USK in which the symplectic section of
Special Geometry (to be defined in Chap.4) transforms. Denoting the generators of
USK by T a , the generators of SL(2, R)E, which is named the Ehlers subalgebra,
by Lx and denoting byWiα the generators inW(2,W), the commutation relations that
correspond to the decomposition (1.7.3) have the following general form:

[T a, T b] = f ab
c T c

[Lx
E , L y

E ] = f xy
z Lz,

[T a,Wiα] = (Λa)αβ W
iβ,

[Lx
E ,Wiα] = (λx )i

j W
jα,

[Wiα,W jβ ] = εi j (Ka)
αβ T a + Cαβ ki j

x Lx
E (1.7.4)

where the 2 × 2 matrices (λx )i
j , are the canonical generators of SL(2, R) in the

fundamental, defining representation:

λ3 =
( 1

2 0
0 − 1

2

)
; λ1 =

(
0 1

2
1
2 0

)
; λ2 =

(
0 1

2− 1
2 0

)
(1.7.5)

while Λa are the generators of USK in the symplectic representation W. By

11We name a Lie algebra USK special Kählerian if the corresponding Lie group USK modded
by its maximal compact subgroup HSK defines a symmetric coset space USK

HSK
that is special

Kählerian. Similarly we name a Lie algebra UQ quaternionic if the corresponding Lie group
UQ modded by its maximal compact subgroup HQ defines a symmetric coset space UQ

HQ
that is

quaternionic.

http://dx.doi.org/10.1007/978-3-319-74491-9_2
http://dx.doi.org/10.1007/978-3-319-74491-9_4
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Cαβ ≡
(

0(n+1)×(n+1) 1(n+1)×(n+1)

−1(n+1)×(n+1) 0(n+1)×(n+1)

)
(1.7.6)

we denote the antisymmetric symplectic metric in 2n + 2 dimensions, n being the
complex dimension of the Special Kähler manifold USK

HSK
. The symplectic character

of the representation W is asserted by the identity:

Λa C + C
(
Λa
)T = 0 (1.7.7)

The fundamental doublet representation of SL(2, R)E is also symplectic and we have

denoted by εi j =
(

0 1
−1 0

)
the 2-dimensional symplectic metric, so that:

λx ε + ε
(
λx
)T = 0, (1.7.8)

The matrices (Ka)
αβ = (Ka)

βα and (kx )
i j = (

ky
) j i

are just symmetric matrices in
one-to-one correspondence with the generators of UQ and SL(2, R), respectively.
Implementing Jacobi identities we find the following relations:

KaΛ
c + Λc Ka = f bc

a Kb, kxλ
y + λykx = f yz

x kz,

which admit the unique solution:

Ka = c1 gab ΛbC, ; kx = c2 gxy λyε (1.7.9)

where gab, gxy are the Cartan-Killing metrics on the algebras USK and SL(2, R),
respectively and c1 and c2 are two arbitrary constants. These latter can always be
reabsorbed into the normalization of the generators Wiα and correspondingly set to
one. Hence the algebra (1.7.4) can always be put into the following elegant form:

[T a, T b] = f ab
c T c

[Lx , L y] = f xy
z Lz,

[T a,Wiα] = (Λa)αβ W
iβ,

[Lx ,Wiα] = (λx )i
j W

jα,

[Wiα,W jβ ] = εi j (Λa)
αβ T a + Cαβ λi j

x Lx (1.7.10)

where we have used the convention that symplectic indices are raised and lowered
with the symplectic metric, while adjoint representation indices are raised and low-
ered with the Cartan-Killing metric.

We name (1.7.10) the golden splitting of quaternionic Lie algebras and it is obvi-
ously an intrinsic property of certain Lie algebras that might have been discovered
by Killing, Cartan or Weyl if they had searched for it, independently of any super-
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symmetry or dimensional reduction of supergravity theories. It is the algebraic basis
of the c-map and it has far reaching geometrical consequences.

As we emphasized above, starting from Eq. (1.7.10) we can embark on the pro-
gramme of classifying all pairs of Lie algebras (UQ, USK ) whose structure fits
into such a presentation with the additional necessary constraint that the dimension
2n + 2 of the representation W should be consistent with

2n = dim [USK ] − dim [HSK ] (1.7.11)

the subalgebra HSK ⊂ USK being compact.
The result of such a scanning leads to the classfication of all the homogeneous

special Kähler manifolds and of their quaternionic images through the c-map, which
will be presented in Chap. 5.

Here we illustrate the first example of the golden splitting with the case of the g2
Lie algebra.

1.7.1 The Golden Splitting of the Quaternionic Algebra g2

The Lie algebra g2 is quaternionic since it contains two a1 ∼ sl(2, C) subalgebras
with respect to which the adjoint representation decomposes as follows:

adj [g] = (adj [sl(2, C)E ] , 1) ⊕ (1 , adj [sl(2, C)]) ⊕ (2 , 4) (1.7.12)

where 4, which is the present instance of the symplectic W, denotes the J = 3
2

irreducible representation of the Lie algebra so(3, C) ∼ sl(2, C).
To show this we begin to analyse theW-representation proving that it is symplec-

tic. To this effect we find it convenient to restrict our attention to the maximally split
real section of the algebra.

1.7.1.1 The J = 3
2 -Representation of SL(2, R)

The group SL(2, R) is also locally isomorphic to SO(1, 2) and the fundamental
representation of the first corresponds to the spin J = 1

2 of the latter. The spin
J = 3

2 representation is obviously four-dimensional and, in the SL(2, R) language,
it corresponds to a symmetric three-index tensor tabc. Let us explicitly construct the
4 × 4 matrices of such a representation. This is easily done by choosing an order
for the four independent components of the symmetric tensor tabc. For instance we
can identify the four axes of the representation with t111, t112, t122, t222. So doing, the
image of the group element:

http://dx.doi.org/10.1007/978-3-319-74491-9_5
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A =
(

a b
c d

)
; a d − b c = 1 (1.7.13)

in the cubic symmetric tensor product representation is the following 4 × 4 matrix:

D3 (A) =

⎛
⎜⎜⎝

a3 3a2b 3ab2 b3

a2c da2 + 2bca cb2 + 2adb b2d
ac2 bc2 + 2adc ad2 + 2bcd bd2

c3 3c2d 3cd2 d3

⎞
⎟⎟⎠ (1.7.14)

By explicit evaluation we can easily check that:

DT
3 (A) Ĉ4 D3 (A) = Ĉ4 where Ĉ4 =

⎛
⎜⎜⎝

0 0 0 1
0 0 −3 0
0 3 0 0

−1 0 0 0

⎞
⎟⎟⎠ (1.7.15)

Since Ĉ4 is antisymmetric, Eq. (1.7.15) is already a clear indication that the triple
symmetric representation defines a symplectic embedding. To make this manifest it
suffices to change basis. Consider the matrix:

S =

⎛
⎜⎜⎝

0 1 0 0
− 1√

3
0 0 0

0 0 1√
3
0

0 0 0 1

⎞
⎟⎟⎠ (1.7.16)

and define:
Λ(A) = S−1 D3 (A) S (1.7.17)

We can easily check that:

ΛT (A) C4 Λ(A) = C4 where C4 =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1

−1 0 0 0
0 −1 0 0

⎞
⎟⎟⎠ (1.7.18)

So we have indeed constructed a standard symplectic embedding SL(2, R) �→
Sp(4, R) whose explicit form is the following:

A =
(

a b
c d

)
�→

⎛
⎜⎜⎝

da2 + 2bca −√
3a2c −cb2 − 2adb −√

3b2d
−√

3a2b a3
√
3ab2 b3

−bc2 − 2adc
√
3ac2 ad2 + 2bcd

√
3bd2

−√
3c2d c3

√
3cd2 d3

⎞
⎟⎟⎠ ≡ Λ(A)

(1.7.19)
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The 2×2 blocks A, B, C, D of the 4×4 symplectic matrixΛ(A) are easily readable
from Eq. (1.7.19).

1.7.1.2 Putting the g2 Lie Algebra in the Quaternionic Form

Explicitly the g2 Lie algebra can be cast into the form (1.7.4) in the following way.
First we single out the two relevant sl(2, C) subalgebras. The Ehlers algebra is

associated with the highest root and we have:

L E
0 = 1√

3
H2 ; L E

± =
√
2

3
E±(3α1+2α2) (1.7.20)

while the special Kähler subalgebra USK = sl(2, C) is associated with the first
simple root orthogonal to the highest one and we have:

L0 = H1 ; L± = √
2 E±α1 (1.7.21)

Then we can arrange the remaining eight generators in the tensor W iβ as follows:

W 1M =
√
2

3

(
Eα1+α2 , Eα2 , E2α1+α2 , E3α1+α2

)

W 2M =
√
2

3

(−E−2α1−α2 , −E−3α1−α2 , E−α1−α2 , E−α2
)

(1.7.22)

Calculating the commutators of W i M with the generators of the two sl(2) algebras
we find:

[
L E
0 ,

(
W 1

W 2

)]
=
( 1

2 1 0
0 − 1

2 1

) (
W 1

W 2

)
[

L E
+ ,

(
W 1

W 2

)]
=
(

0 0
−1 0

) (
W 1

W 2

)
[

L E
− ,

(
W 1

W 2

)]
=
(
0 −1
0 0

) (
W 1

W 2

)
(1.7.23)

and:
[

L0 ,

(
W 1

W 2

)]
= −

(
U0 0
0 U0

) (
W 1

W 2

)
[

L± ,

(
W 1

W 2

)]
= −

(
U± 0
0 U±

) (
W 1

W 2

)
(1.7.24)
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where:

U0 =

⎛
⎜⎜⎝

1
2 0 0 0
0 3

2 0 0
0 0 − 1

2 0
0 0 0 − 3

2

⎞
⎟⎟⎠

U+ =

⎛
⎜⎜⎝
0 0 −2 0
−√

3 0 0 0
0 0 0

√
3

0 0 0 0

⎞
⎟⎟⎠

U− =

⎛
⎜⎜⎝
0 −√

3 0 0
0 0 0 0
−2 0 0 0
0 0

√
3 0

⎞
⎟⎟⎠ (1.7.25)

which are the generators of sl(2, C) in the symplectic embedding (1.7.19) as it can
be easily verified by considering the embedding of a group element infinitesimally
closed to the identity:

(
a b
c d

)
=
(
1 + 1

2 ε0 ε+
ε− 1 − 1

2 ε0

)
(1.7.26)

and collecting the matrix coefficients of the first order terms in ε0 and ε±.

1.7.2 Chevalley-Serre Basis

We utilize the case of the g2 algebra to illustrate another canonical presentation of
the Lie algebra commutation relations that is named the presentation in terms of
Chevalley-Serre triples. It is the analogue for Lie algebras of the presentation of
discrete groups through generators and relations and proves to be quite useful in
several applications. Given a simple Lie algebra of rank r defined by its Cartan
matrix Ci j , a Chevalley-Serre basis is given by r -triplets of generators:

(hi , ei , fi ) ; i = 1, . . . r (1.7.27)

such that the following commutation relations are satisfied:

[
hi , h j

] = 0[
hi , e j

] = Ci j e j[
hi , f j

] = −Ci j f j[
ei , f j

] = δi j hi
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adj [ei ](C ji +1)
(
e j
) = 0

adj [ fi ](C ji +1)
(

f j
) = 0 (1.7.28)

When such r -triplets are given the entire algebra is defined. Indeed all the other
generators are constructed by commuting these ones modulo the relations (1.7.28).
For simply-laced finite simple Lie algebras a Chevalley basis is easily constructed
in terms of simple roots. Let αi denote the simple roots, then it suffices to set:

(hi , ei , fi ) = (
Hαi , Eαi , E−αi

)
(1.7.29)

where Hαi ≡ αi · H are the Cartan generator associated with the simple roots and
E±αi are the step operators respectively associated with the simple roots and their
negative.

1.7.2.1 The g2 Lie Algebra in Terms of Chevalley Triples

Let us rewrite the commutation relations of the g(2,2) in terms of triples of Chevalley
generators.

Since the algebra has rank two there are two fundamental triples of Chevalley
generators:

(H1, e1, f1) ; (H2, e2, f2) (1.7.30)

with the following commutation relations:

[H2, e2] = 2e2 [H1, e2] = −3e2 [H2, f2] = −2 f2 [H1, f2] = 3 f2
[H2, e1] = −e1 [H1, e1] = 2e1 [H2, f1] = f1 [H1, f1] = −2 f1
[e2, f2] = H2 [e2, f1] = 0 [e1, f1] = H1 [e1, f2] = 0

(1.7.31)
The remaining basis elements are defined as follows:

e3 = [e1, e2] e4 = 1
2 [e1, e3] e5 = 1

3 [e4, e1] e6 = [e2, e5]

f3 = [ f2, f1] f4 = 1
2 [ f3, f1] f5 = 1

3 [ f1, f4] f6 = [ f5, f2]
(1.7.32)

and satisfy the following Serre relations:

[e2, e3] = [e5, e1] = [ f2, f3] = [ f5, f1] = 0 (1.7.33)

The Chevalley form of the commutation relation is obtained from the standard Cartan
Weyl basis introducing the following identifications:
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e1 = √
2Eα1 ; e2 =

√
2
3 Eα2

e3 = √
2Eα3 ; e4 = √

2Eα4

e5 =
√

2
3 Eα5 ; e6 =

√
2
3 Eα6

f1 = √
2E−α1 ; f2 =

√
2
3 E−α2

f3 = √
2E−α3 ; f4 = √

2E−α4

f5 =
√

2
3 E−α5 ; f6 =

√
2
3 E−α6

(1.7.34)

and
H1 = 2α1 · H ; H2 = 2

3 α2 · H (1.7.35)

1.8 The Lie Algebra f4 and its Fundamental Representation

Another exceptional Lie algebra that is also quaternionic and will be of concern to us
in the sequel is f4.We consider it here andwe construct its fundamental representation
for later use. f4 has rank r = 4 and we cannot visualize its root system as we easily
did for the planar g2 system. In any case the Lie algebra structure is codified by the
Dynkin diagram presented in Fig. 1.15. We show howwe can explicitly construct the
fundamental and the adjoint representations of this exceptional, non simply laced
Lie algebra.

Calling y1,2,3,4 a basis of orthonormal vectors:

yi · y j = δi j (1.8.1)

a possible choice of simple roots βi which reproduces the Cartan matrix encoded in
the Dynkin diagram (1.15) is the following:

β1 = −y1 − y2 − y3 + y4
β2 = 2 y3
β3 = y2 − y3
β4 = y1 − y2 (1.8.2)

With this basis of simple roots the full root system composed of 48 vectors is given
by:

Fig. 1.15 The Dynkin diagram of F4 and the labeling of simple roots
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Table 1.3 List of the positive roots of the exceptional Lie algebra f4. In this table the first column
is the name of the root, the second column gives its decomposition in terms of simple roots, while
the last column provides the component of the root vector in R

4

β1 = β1 = {−1,−1,−1, 1}
β2 = β2 = {0, 0, 2, 0}
β3 = β3 = {0, 1,−1, 0}
β4 = β4 = {1,−1, 0, 0}
β5 = β1 + β2 = {−1,−1, 1, 1}
β6 = β2 + β3 = {0, 1, 1, 0}
β7 = β3 + β4 = {1, 0,−1, 0}
β8 = β1 + β2 + β3 = {−1, 0, 0, 1}
β9 = β2 + 2β3 = {0, 2, 0, 0}
β10 = β2 + β3 + β4 = {1, 0, 1, 0}
β11 = β1 + β2 + 2β3 = {−1, 1,−1, 1}
β12 = β1 + β2 + β3 + β4 = {0,−1, 0, 1}
β13 = β2 + 2β3 + β4 = {1, 1, 0, 0}
β14 = β1 + 2β2 + 2β3 = {−1, 1, 1, 1}
β15 = β1 + β2 + 2β3 + β4 = {0, 0,−1, 1}
β16 = β2 + 2β3 + 2β4 = {2, 0, 0, 0}
β17 = β1 + 2β2 + 2β3 + β4 = {0, 0, 1, 1}
β18 = β1 + β2 + 2β3 + 2β4 = {1,−1,−1, 1}
β19 = β1 + 2β2 + 3β3 + β4 = {0, 1, 0, 1}
β20 = β1 + 2β2 + 2β3 + 2β4 = {1,−1, 1, 1}
β21 = β1 + 2β2 + 3β3 + 2β4 = {1, 0, 0, 1}
β22 = β1 + 2β2 + 4β3 + 2β4 = {1, 1,−1, 1}
β23 = β1 + 3β2 + 4β3 + 2β4 = {1, 1, 1, 1}
β24 = 2β1 + 3β2 + 4β3 + 2β4 = {0, 0, 0, 2}

Δf4 ≡ ±yi ± y j︸ ︷︷ ︸
24 roots

; ±yi︸︷︷︸
8 roots

; ±y1 ± y2 ± y3 ± y4︸ ︷︷ ︸
16 roots

(1.8.3)

and one can list the positive roots by height as displayed in Table1.3. Since the
considered Lie algebra is not simply-laced the 24 positive roots split into two subsets
of 12 long roots α	 and 12 short roots αs . They are displayed in Tables1.4 and 1.5,
respectively.

Calling Δ	 and Δs the two subsets we have the following structure:

∀α	 , β	 ∈ Δ	 : α	 + β	 =
{
not a root or
γ 	 ∈ Δ	

}

∀α	 ∈ Δ	 and ∀βs ∈ Δs : α	 + βs =
{
not a root or
γ s ∈ Δs

}
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Table 1.4 The Δ	 set of the 12 long positive roots in the f4 root system

f4 root labels f4 root in eucl. basis Root ordered by height

α	
1 {0, 1, 0, 0} 2 y3 β2

α	
2 {1, 0, 0, 0} −y1 − y2 − y3 + y4 β1

α	
3 {1, 1, 0, 0} −y1 − y2 + y3 + y4 β3

α	
4 {0, 1, 2, 0} 2 y2 β9

α	
5 {1, 1, 2, 0} −y1 + y2 − y3 + y4 β11

α	
6 {1, 2, 2, 0} −y1 + y2 + y3 + y4 β14

α	
7 {0, 1, 2, 2} 2 y1 β16

α	
8 {1, 1, 2, 2} y1 − y2 − y3 + y4 β18

α	
9 {1, 2, 2, 2} y1 − y2 + y3 + y4 β20

α	
10 {1, 2, 4, 2} y1 + y2 − y3 + y4 β22

α	
11 {1, 3, 4, 2} y1 + y2 + y3 + y4 β23

α	
12 {2, 3, 4, 2} 2 y4 β24

Table 1.5 The Δs set of 12 short positive roots in the f4 root system

f4 root labels f4 root in eucl. basis Root ordered by height

αs
1 {0, 0, 0, 1} y1 − y2 β4

αs
2 {0, 0, 1, 0} y2 − y3 β3

αs
3 {0, 1, 1, 0} y2 + y3 β6

αs
4 {0, 0, 1, 1} y1 − y3 β7

αs
5 {1, 1, 1, 0} −y1 + y4 β8

αs
6 {0, 1, 1, 1} y1 + y3 β10

αs
7 {1, 1, 1, 1} −y2 + y4 β12

αs
8 {0, 1, 2, 1} y1 + y2 β13

αs
9 {1, 1, 2, 1} −y3 + y4 β15

αs
10 {1, 2, 2, 1} y3 + y4 β17

αs
11 {1, 2, 3, 1} y2 + y4 β19

αs
12 {1, 2, 3, 2} y1 + y4 β21

∀αs , βs ∈ Δs : αs + βs =
⎧⎨
⎩
not a root or
γ s ∈ Δs or
γ 	 ∈ Δ	

⎫⎬
⎭ (1.8.4)

The standard Cartan-Weyl form of the Lie algebra is as follows:

[
Hi , E±β

] = ±β i E±βI (1.8.5)[
Eβ , E− β

] = β · H (1.8.6)
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[
Eβ , Eγ

] =
{

Nβγ Eβ + γ if β + γ is a root
0 if β + γ is not a root

(1.8.7)

where Nβγ are numbers that can be worked constructing an explicit representation
of the Lie algebra.

In the following three tables (1.8.8), (1.8.9), (1.8.10) we exhibit the values of Nβγ

for the f4 Lie algebra.

α	
1 α	

2 α	
3 α	

4 α	
5 α	

6 α	
7 α	

8 α	
9 α	

10 α	
11 α	

12

0 −√
2 0 0 −√

2 0 0 −√
2 0

√
2 0 0 α	

1√
2 0 0 −√

2 0 0 −√
2 0 0 0 −√

2 0 α	
2

0 0 0 −√
2 0 0 −√

2 0 0 −√
2 0 0 α	

3

0
√
2

√
2 0 0 0 0 −√

2
√
2 0 0 0 α	

4√
2 0 0 0 0 0

√
2 0

√
2 0 0 0 α	

5

0 0 0 0 0 0 −√
2 −√

2 0 0 0 0 α	
6

0
√
2

√
2 0 −√

2
√
2 0 0 0 0 0 0 α	

7√
2 0 0

√
2 0

√
2 0 0 0 0 0 0 α	

8

0 0 0 −√
2 −√

2 0 0 0 0 0 0 0 α	
9

−√
2 0

√
2 0 0 0 0 0 0 0 0 0 α	

10

0
√
2 0 0 0 0 0 0 0 0 0 0 α	

11

0 0 0 0 0 0 0 0 0 0 0 0 α	
12︸ ︷︷ ︸

Nα	β	

(1.8.8)

αs
1 αs

2 αs
3 αs

4 αs
5 αs

6 αs
7 αs

8 αs
9 αs

10 αs
11 αs

12

0
√
2 0 −√

2 0 0 0 0
√
2 0 0 0 α	

1

0 0 −√
2 0 0 −√

2 0
√
2 0 0 0 0 α	

2

0 −√
2 0

√
2 0 0 0 −√

2 0 0 0 0 α	
3√

2 0 0 0 0 0
√
2 0 0 0 0 0 α	

4

−√
2 0 0 0 0 −√

2 0 0 0 0 0 0 α	
5√

2 0 0
√
2 0 0 0 0 0 0 0 0 α	

6

0 0 0 0 −√
2 0 0 0 0 0 0 0 α	

7

0 0
√
2 0 0 0 0 0 0 0 0 0 α	

8

0
√
2 0 0 0 0 0 0 0 0 0 0 α	

9
0 0 0 0 0 0 0 0 0 0 0 0 α	

10
0 0 0 0 0 0 0 0 0 0 0 0 α	

11
0 0 0 0 0 0 0 0 0 0 0 0 α	

12︸ ︷︷ ︸
Nα	βs

(1.8.9)
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αs
1 αs

2 αs
3 αs

4 αs
5 αs

6 αs
7 αs

8 αs
9 αs

10 αs
11 αs

12

0 1 −1 0 −1 0 0
√
2 −√

2
√
2 1 0 αs

1

−1 0
√
2 0

√
2 1 −1 0 0 −1 0

√
2 αs

2

1 −√
2 0 1 −√

2 0 −1 0 1 0 0
√
2 αs

3

0 0 −1 0 1
√
2

√
2 0 0 1 −√

2 0 αs
4

1 −√
2

√
2 −1 0 1 0 1 0 0 0

√
2 αs

5

0 −1 0 −√
2 −1 0

√
2 0 1 0

√
2 0 αs

6

0 1 1 −√
2 0 −√

2 0 1 0 0
√
2 0 αs

7

−√
2 0 0 0 −1 0 −1 0

√
2

√
2 0 0 αs

8√
2 0 −1 0 0 −1 0 −√

2 0 −√
2 0 0 αs

9

−√
2 1 0 −1 0 0 0 −√

2
√
2 0 0 0 αs

10

−1 0 0
√
2 0 −√

2 −√
2 0 0 0 0 0 αs

11

0 −√
2 −√

2 0 −√
2 0 0 0 0 0 0 0 αs

12︸ ︷︷ ︸
Nαs βs

(1.8.10)
The ordering of long and short roots is that displayed in Tables: 1.4 and 1.5. The
explicit determinationof the tensor Nαβ wasperformedvia the explicit constructionof
the fundamental 26-dimensional representation of this Lie algebrawhichwe describe
in the next subsection.

1.8.1 Explicit Construction of the Fundamental and Adjoint
Representation of f4

The semisimple complex Lie algebra f4 is defined by the Dynkin diagram in Fig. 1.15
and a set of simple roots corresponding to such diagram was provided in Eq. (1.8.2).
A complete list of the 24 positive roots was given in Table1.3. The roots were fur-
ther subdivided into the set of 12 long roots and 12 short roots respectively listed
in Tables1.4 and 1.5. The adjoint representation of f4 is 52-dimensional, while its
fundamental representation is 26-dimensional. This dimensionality is true for all
real sections of the Lie algebra but the explicit structure of the representation is
quite different in each real section. Here we are interested in the maximally split
real section f4. For such a section we have a maximal, regularly embedded, subgroup
so(5, 4) ⊂ f4(4). The decomposition of the representations with respect to this partic-
ular subgroup is the essential instrument for their actual construction. For the adjoint
representation we have the decomposition:

52︸︷︷︸
adj f4(4)

so(5,4)=⇒ 36︸︷︷︸
adj so(5,4)

⊕ 16︸︷︷︸
spinor of so(5,4)

(1.8.11)

while for the fundamental one we have:
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26︸︷︷︸
fundamental f4(4)

so(5,4)=⇒ 9︸︷︷︸
vector of so(5,4)

⊕ 16︸︷︷︸
spinor of so(5,4)

⊕ 1︸︷︷︸
singlet of so(5,4)

(1.8.12)
In view of this, we fix our conventions for the so(5, 4) invariant metric as it follows

ηAB = diag {+,+,+,+,+,−,−,−,−} (1.8.13)

and we perform an explicit construction of the 16×16 dimensional gamma matrices
which satisfy the Clifford algebra

{ΓA , ΓB} = ηAB 1 (1.8.14)

and are all completely real. This construction is provided by the following tensor
products:

Γ1 = σ1 ⊗ σ3 ⊗ 1 ⊗ 1

Γ2 = σ3 ⊗ σ3 ⊗ 1 ⊗ 1

Γ3 = 1 ⊗ σ1 ⊗ 1 ⊗ σ1

Γ4 = 1 ⊗ σ1 ⊗ σ1 ⊗ σ3

Γ5 = 1 ⊗ σ1 ⊗ σ3 ⊗ σ3

Γ6 = 1 ⊗ iσ2 ⊗ 1 ⊗ 1

Γ7 = 1 ⊗ σ1 ⊗ i σ2 ⊗ σ3

Γ8 = 1 ⊗ σ1 ⊗ 1 ⊗ iσ2

Γ9 = i σ2 ⊗ σ3 ⊗ 1 ⊗ 1 (1.8.15)

where by σi we have denoted the standard Pauli matrices:

σ1 =
(
0 1
1 0

)
; σ2 =

(
0 −i
i 0

)
; σ3 =

(
1 0
0 −1

)
(1.8.16)

Moreover we introduce the C+ charge conjugation matrix, such that:

C+ = (C+)T ; C2
+ = 1

C+ ΓA C+ = (ΓA)T (1.8.17)

In the basis of Eq. (1.8.15) the explicit form of C+ is given by:

C+ = i σ2 ⊗ σ1 ⊗ i σ2 ⊗ σ1 (1.8.18)

Then we define the usual generators JAB = −JB A of the pseudorthogonal algebra
so(5, 4) satisfying the commutation relations:
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[JAB , JC D] = ηBC JAD − ηAC JB D − ηB D JAC + ηAD JBC (1.8.19)

and we construct the spinor and the vector representations by respectively setting:

J s
C D = 1

4
[ΓC , ΓD] ; (

J v
C D

) B

A = ηC A δB
D − ηD A δB

C (1.8.20)

In this way if vA denote the components of a vector, ξ those of a real spinor and
εAB = −εB A are the parameters of an infinitesimal so(5, 4) rotation we can write
the so(5, 4) transformation as follows:

δso(5,4) vA = 2 εAB vB ; δso(5,4) ξ = 1
2 εAB ΓABξ (1.8.21)

where indices are raised and lowered with the metric (1.8.13). Furthermore we intro-
duce the conjugate spinors via the position:

ξ ≡ ξ T C+ (1.8.22)

With these preliminaries, we are now in a position to write the explicit form of the
26-dimensional fundamental representation of f4 and in this way to construct also its
structure constants and hence its adjoint representation, which is our main goal.

According to Eq. (1.8.11) the parameters of an f4 representation are given by an
anti-symmetric tensor εAB and a spinor q. On the other hand a vector in the 26-
dimensional representation is specified by a collection of three objects, namely a
scalar φ, a vector vA and a spinor ξ . The representation is constructed if we specify
the f4(4) transformation of these objects. This is done by writing:

δF4(4)

⎛
⎝ φ

vA
ξ

⎞
⎠ ≡

[
εAB TAB + q Q

] ⎛⎝ φ

vA
ξ

⎞
⎠ =

⎛
⎝ q ξ

2 εAB vB + a q ΓA ξ
1
2 εAB ΓAB ξ − 3φ q − 1

a vA ΓA q

⎞
⎠

(1.8.23)
where a is a numerical real arbitrary but non-null parameter. Equation (1.8.23)
defines the generators TAB and Q as 26 × 26 matrices and therefore completely
specifies the fundamental representation of the Lie algebra f4(4). Explicitly we have:

TAB =
⎛
⎝ 0 0 0
0 J v

AB 0
0 0 J s

AB

⎞
⎠ (1.8.24)

and

Qα =
⎛
⎝ 0 0 δβ

α

0 0 a (ΓA)βα
−3 δβ

α − 1
a (ΓB)βα 0

⎞
⎠ (1.8.25)

and the Lie algebra commutation relations are evaluated to be the following ones:
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[TAB , TC D] = ηBC TAD − ηAC TB D − ηB DTAC + ηADTBC

[TAB , Q] = 1
2 ΓAB Q

[
Qα , Qβ

] = − 1

12

(
C+Γ AB

)
αβ

TAB (1.8.26)

Equation (1.8.26), together with Eqs. (1.8.15) and (1.8.17) provides an explicit
numerical construction of the structure constants of the maximally split f4(4) Lie
algebra. What we still have to do is to identify the relation between the tensorial
basis of generators in Eq. (1.8.26) and the Cartan-Weyl basis in terms of Cartan gen-
erators and step operators. To this effect let us enumerate the 52 generators of f4 in
the tensorial representation according to the following table:

Ω1 = T12 Ω2 = T13 Ω3 = T14 Ω4 = T15

Ω5 = T16 Ω6 = T17 Ω7 = T18 Ω8 = T19

Ω9 = T23 Ω10 = T24 Ω11 = T25 Ω12 = T26

Ω13 = T27 Ω14 = T28 Ω15 = T29 Ω16 = T34

Ω17 = T35 Ω18 = T36 Ω19 = T37 Ω20 = T38

Ω21 = T39 Ω22 = T45 Ω23 = T46 Ω24 = T47

Ω25 = T48 Ω26 = T49 Ω27 = T56 Ω28 = T57

Ω29 = T58 Ω30 = T59 Ω31 = T67 Ω32 = T68

Ω33 = T69 Ω34 = T78 Ω35 = T79 Ω36 = T89

Ω37 = Q1 Ω38 = Q2 Ω39 = Q3 Ω40 = Q4

Ω41 = Q5 Ω42 = Q6 Ω43 = Q7 Ω44 = Q8

Ω45 = Q9 Ω46 = Q10 Ω47 = Q11 Ω48 = Q12

Ω49 = Q13 Ω50 = Q14 Ω51 = Q15 Ω52 = Q16

(1.8.27)

Then, as Cartan subalgebra we take the linear span of the following generators:

C S A ≡ span (Ω5 , Ω13 , Ω20 , Ω26) (1.8.28)

and furthermore we specify the following basis:

H1 = Ω5 + Ω13 ; H2 = Ω5 − Ω13

H3 = Ω20 + Ω26 ; H4 = Ω20 − Ω26
(1.8.29)

With respect to this basis the step operators corresponding to the positive roots of
f4(4) as ordered and displayed in Table1.3 are those enumerated in Table1.6. The
steps operators corresponding to negative roots are obtained from those associate
with positive ones via the following relation:

E−β = −C Eβ C (1.8.30)

where the 26 × 26 symmetric matrix C is defined in the following way:
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C =
⎛
⎝ 1 0 0
0 η 0
0 0 C+

⎞
⎠ (1.8.31)

A further comment is necessary about the normalizations of the step operators Eβ

which are displayed in Table1.6. They have been fixed with the following criterion.
Once we have constructed the algebra, via the generators (1.8.24),(1.8.25), we have
the Lie structure constants encoded in Eq. (1.8.26) and hence we can diagonalize
the adjoint action of the Cartan generators (1.8.29) finding which linear combi-
nations of the remaining generators correspond to which root. Each root space is
one-dimensional and therefore we are left with the task of choosing an absolute
normalization for what we want to call the step operators:

Eβ = λβ (linear combination of Ω .s) (1.8.32)

The values of λβ are now determined by the following non trivial conditions:

1. The differences H
i = (

Eβi − E−βi
)
should close a subalgebra H ⊂ F4(4), the

maximal compact subalgebra su(2)R ⊕ usp(6)
2. The sums K

i = 1√
2

(
Eβi + E−βi

)
should span a 28-dimensional representation

of H, namely the aforementioned su(2)R ⊕ usp(6)

We arbitrarily choose the first four λβ associated with simple roots and then all the
others are determined. The result is that displayed in Table1.6. Using the Cartan
generators defined by Eqs. (1.8.29) and the step operators enumerated in Table1.6
one can calculate the structure constants of f4 in the Cartan-Weyl basis, namely:

[
Hi , H j

] = 0[
Hi , Eβ

] = β i Eβ

[
Eβ , E−β

] = β · H[
Eβi , Eβ j

] = Nβi ,β j Eβi +β j (1.8.33)

in particular one obtains the explicit numerical value of the coefficientsNβi ,β j , which,
as it is well known, are the only ones not completely specified by the components of
the root vectors in the root system. The result of this computation, following from
Eq. (1.8.26) is that encoded in Eqs. (1.8.8)–(1.8.10).

As a last point we can investigate the properties of the maximal compact subal-
gebra su(2) ⊕ usp(6) ⊂ f4(4). As we know a basis of generators for this subalgebras
is provided by:

Hi = (
Eβi − E−βi

) ; (i = 1, . . . , 24) (1.8.34)

but it is not a priori clear which are the generators of SU(2)R and which of Usp(6).
By choosing a basis of Cartan generators of the compact algebra and diagonalizing
their adjoint action this distinction can be established. The generators of SU(2)R are
the following linear combinations:
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JX = 1

4
√
2

(H1 − H14 + H20 − H22)

JY = 1

4
√
2

(H5 + H11 − H18 + H23)

JZ = 1

4
√
2

(−H2 + H9 − H16 − H24) (1.8.35)

close the standard commutation relations:

[
Ji , Jj

] = εi jk Jk (1.8.36)

and commute with all the generators of Usp(6). These latter are displayed as follows.

H (Usp6)
1 = − H2

2 − H9
2 + H16

2 − H24
2

H (Usp6)
2 = − H2

2 + H9
2 + H16

2 + H24
2

H (Usp6)
3 = H2

2 + H9
2 + H16

2 − H24
2

(1.8.37)

are the Cartan generators. On the other hand the nine pairs of generators which are
rotated one into the other by the Cartans with eigenvalues equal to the roots of the
compact algebra are the following ones

W1 = H10 Z1 = H7

W2 = H4 Z2 = −H13

W3 = H6 Z3 = −H3

W4 = −H1 + H14 + H20 − H22 Z4 = −H5 − H11 − H18 + H23

W5 = H21 Z5 = −H8

W6 = H1 + H14 + H20 + H22 Z6 = H5 − H11 − H18 − H23

W7 = −H1 − H14 + H20 + H22 Z7 = H5 − H11 + H18 + H23

W8 = H17 Z8 = H15

W9 = H12 Z9 = H19

(1.8.38)

The construction of the f4 Lie algebra presented in this section was published in [12].

1.9 Conclusions for This Chapter

As the last example of the f4 Lie algebra should have clearly illustrated, although
deterministic and implicitly defined by the Dynkin diagram, the actual construction
of exceptional Lie algebras is far from being a trivial matter and involves a series of
strategies and long calculations that are best done by means of computer codes. One
deals with large matrices that is difficult to display on paper and the best approach
is to save the constructions in electronic libraries that can be utilized in subsequent
calculations. It is not surprising that it took such a giant of mathematics as Elie
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Cartan to explicitly construct the fundamental representations of the exceptional Lie
algebras, especially at a time when computers were not available.

From another point of view, the existing mathematical literature usually presents
the construction of Lie algebra representations in a very compact format that is not
of too friendly use to physicists concerned with their application to the problems and
the conceptions discussed in this book. As we stressed it is not only a question of
convenience but also a conceptual one. There are in the architecture of Lie algebras
and of their representations deep and significant aspects that are easily lost if you are
not looking at them in the proper way, motivated by those questions that are posed
by the various special geometries implied by supersymmetry.

The explicit construction of the exceptional and non exceptional Lie algebras in
the light of supergravity is one of the motivations to write the present book. Our
constructions are at many stages different from the conventional approaches of most
text books [11, 13–15].

Similarly one can say about the issues in finite group theory that were reviewed
in the first part of the present chapter. Although pertaining to classical topics in
mathematics and retrievable with some considerable effort from various standard
textbooks, the constructions we presented here are, in their form and in their spirit,
original. The adopted viewpoint is motivated by the role of the considered mathe-
matical structures in supergravity inspired geometries that, according to the ideas
expressed in my other book [8], I deem not just one among their many possible
applications, rather the manifestation of their deepest intrinsic meaning.
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Chapter 2
Isometries and the Geometry of Coset
Manifolds

The art of doing mathematics consists in finding that special
case which contains all the germs of generality.

David Hilbert

2.1 Conceptual and Historical Introduction

The word isometry comes from the Greek word
′
η ισoμετρία which means the

equality of measures.
The origin of the modern concept of isometry is rooted in that of congruence of

geometrical figures that Euclid never introduced explicitly, yet implicitly assumed
when he proceeded to identify those triangles that can be superimposed one onto the
other.

As I explained in my other book [1], it was indeed the question about what
are the transformations that define such congruences what led Felix Klein to the
Erlangen Programme. Klein understood that Euclidean congruences are based on the
transformations of the EuclideanGroup and he came to the idea that other geometries
are based on different groups of transformations with respect to which we consider
congruences.

Such a concept, however, would have been essentially emptywithout an additional
element: the metric. The area and the volume of geometrical figures, the length of
sides and the relative angles have to be measured in order to compare them. These
measurements can be performed if and only if we have a metric g, in other words if
the substratum of the considered geometry is a Riemannian or a pseudo Riemannian
manifold (M , g).

Therefore the group of transformations which, according to the vision of the
Erlangen Programme, defines a geometry, is the group of isometries Giso of a given
Riemannian space (M , g), the elements of this group being diffeomorphisms:

© Springer International Publishing AG, part of Springer Nature 2018
P. G. Frè, Advances in Geometry and Lie Algebras
from Supergravity, Theoretical and Mathematical Physics,
https://doi.org/10.1007/978-3-319-74491-9_2
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φ : M → M (2.1.1)

such that their pull-back on the metric form leaves it invariant:

∀φ ∈ Giso : φ

[
gμν(x) dx

μ dxν
] = gμν(x) dx

μ dxν (2.1.2)

Quite intuitively it becomes clear that the structure of Giso is determined by the
manifoldM and by its metric g, so that the Kleinian concept of geometries is to be
identified with that of Riemannian spaces (M , g).

A generic metric g has no isometries and hence there are no congruences to
study. (Pseudo)-Riemannian manifolds with no isometry, or with few isometries, are
relevant to several different problems pertaining to physics and also to other sciences,
yet they are not in the vein of the Erlangen Programme, aiming at the classification of
geometries in terms of groups. Hence we can legitimately ask ourselves the question
whether such a programme can be ultimately saved, notwithstanding our discovery
that a geometry, according to Klein’s conception, is necessarily based on a (pseudo)-
Riemannian manifold (M , g). The answer is obviously yes if we can invert the
relation between the metric g and its isometry group Giso. Given a Lie group G can
we construct the Riemannian manifold (M , g) which admits G as its own isometry
group Giso? Indeed we can; the answers are also exhaustive if we add an additional
request, that of transitivity.

Definition 2.1.1 A group G acting on a manifoldM by means of diffeomorphisms:

∀γ ∈ G γ : M → M (2.1.3)

has a transitive action if and only if

∀p, q ∈ M , ∃γ ∈ G / γ (q) = p (2.1.4)

If the Riemannian manifold (M , g) admits a transitive group of isometries it means
that any point of M can be mapped into any other by means of a transformation
that is an isometry. In this case the very manifoldM and its metric g are completely
determined by group theory: M is necessarily a coset manifold G/H, namely the
space of equivalence classes of elements of G with respect to multiplication (either
on the right or on the left) by elements of a subgroup H ⊂ G. The metric g is induced
on the equivalence classes by the Killing metric of the Lie algebra, defined on G.

The present chapter, after a study of Killing vector fields, namely of the infinites-
imal generators that realize the Lie algebraG of the isometry group, will be devoted
to the geometry of coset manifolds. Among them particular attention will be given to
the so named symmetric spaces characterized by an additional reflection symmetry
whose nature will become clear to the reader in the following sections.
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2.1.1 Symmetric Spaces and Elie Cartan

The full-fledged classification of all symmetric spaces was the gigantic achievement
of Élie Cartan. As the reader will appreciate in the sequel, the classification of sym-
metric spaces is at the same time a classification of the real forms of the complex
Lie algebras and it is the conclusive step in the path initiated by Killing in his papers
of 1888, 1889. At the same time the geometries of non-compact symmetric spaces
can be formulated in terms of other quite interesting algebraic structures, the normed
solvable Lie algebras. The class of these latter is wider than that of symmetric spaces
and this provides a generalization path leading to a wider class of geometries, all of
them under firm algebraic control. This will be the topic of the last two sections of
the present chapter which is propaedeutical to the developments of the subsequent
chapters.

2.1.2 Where and How Do Coset Manifolds Come into Play?

By now it should be clear to the reader that, just as we have the whole spectrum of
linear representations of a Lie algebra G and of its corresponding Lie group G, in
the same way we have the set of non-linear representations1 of the same Lie algebra
G and of the same Lie group G. These are encoded in all possible coset manifolds
G/H with their associated G–invariant metrics.

Where and how do these geometries pop up?
The answer is that they appear at several different levels of analysis and in connec-

tion with different aspects of physical theories. Let us enumerate them and discover
a conceptual hierarchy.

(A) Afirst context of utilization of cosetmanifoldsG/H is in the quest for solutions of
Einstein Equations in d = 4 or in higher dimensions. One is typically interested
in space-times with a prescribed isometry and one tries to fit into the equations
G/H metrics whose parameters depend on some residual coordinate like the
time t in cosmology or the radius r in black-hole physics. The field equations of
the theory reduce to few parameter differential equations in the residual space.

1Clarification for mathematicians: in the physical literature linear representation of a symmetry
corresponds to the case where the fundamental fields spanning the theory transform in a linear
representation of the considered Lie group G. The Lagrangian defining the considered theory is
supposed to be invariant with respect to such transformations. On the other hand the wording non-
linear representation is universally used when the fundamental fields of the theory are identified
with the coordinates of a Riemannian manifold M on which the Lie group G acts as a group of
isometries. Indeed in order to be a symmetry of the theory, the action of the group G must leave
the lagrangian invariant and this implies the existence of an invariant metric g onM . The metric g
appears in the kinetic term of the fields.
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(B) Another instance of utilization of coset manifolds is in the context of σ -models.
In physical theories that include scalar fieldsφ I (x) the kinetic term is necessarily
of the following form:

Lkin = 1
2 γI J (φ) ∂μ φ I (x) ∂νφ

J (x) gμν(x) (2.1.5)

where gμν(x) is the metric of space-time, while γI J (φ) can be interpreted as the
metric of some manifold Mtarget of which the fields φ I are the coordinates and
whose dimension is just equal to the number of scalar fields present in the theory.
If we require the field theory to have some Lie Group symmetry G, either we
have linear representations or non linear ones. In the first case the metric γI J is
constant and invariant under the linear transformations of G acting on the φ I (x).
In the second case the manifoldMtarget = G/H is some coset of the considered
group and γI J (φ) is the corresponding G-invariant metric.

(C) Inmathematics and sometimes in physics you can consider structures that depend
on a continuous set of parameters, for instance the solutions of certain differential
equations, like the self-duality constraint for gauge-field strengths or the Ricci-
flat metrics on certain manifolds, or the algebraic surfaces of a certain degree
in some projective spaces. The parameters corresponding to all the possible
deformations of the considered structure constitute themselves a manifold M
which typically has some symmetries and in many cases is actually a coset
manifold. A typical example is provided by the so named Kummer surface K3
whose Ricci flat metric no one has so far constructed, yet we know a priori that
it depends on 3 × 19 parameters that span the homogeneous space SO(3,19)

SO(3)×SO(19) .
(D) In many instances of field theories that include scalar fields there is a scalar

potential termV(φ)which has a certain group of symmetries G. The vacua of the
theory, namely the set of extrema of the potential usually fill up a coset manifold
G/H where H ⊂ G is the residual symmetry of the vacuum configuration φ =
φ0.

2.1.3 The Deep Insight of Supersymmetry

In supersymmetric field theories, in particular in supergravities that are supersym-
metric extensions of Einstein Gravity coupled to matter multiplets, all the uses listed
above of coset manifolds do occur, but there is an additional ingredient whose conse-
quences are very deep and far reaching for geometry: supersymmetry itself. Consis-
tency with supersymmetry introduces further restrictions on the geometry of target
manifoldsMtarget that are required to fall in specialized categories like Kähler man-
ifolds, special Kähler manifolds, quaternionic Kähler manifolds and so on. These
geometries, that we collectively dub Special Geometries, require the existence of
complex structures and encompass both manifolds that do not have transitive groups
of isometries and homogeneous manifolds G/H. In the second case, which is one
of the main focuses of interest for the present essay, the combination of the special
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structures with the theory of Lie algebras produces new insights in homogenous
geometries that would have been inconceivable outside the framework of supergrav-
ity. This is what we call the deep geometrical insight of supersymmetry. In this
book we neither discuss the construction of supergravity theories, nor we derive
the constraints imposed by supersymmetry on geometry. Our commitment is simply
to present the vast wealth of geometrical lore that supergravity Occam’s razor has
introduced, or systematically reorganized, in the field of mathematics.

2.2 Isometries and Killing Vector Fields

The existence of continuous isometries is related with the existence of Killing vector
fields. Here we explain the underlying mathematical theory which leads to the study
of coset manifolds and symmetric spaces.

Suppose that the diffeomorphism considered in Eq. (2.1.1) is infinitesimally close
to the identity2

xμ → φμ(x) � xμ + kμ(x) (2.2.1)

The condition for this diffeomorphism to be an isometry, is a differential equation
for the components of the vector field k = kμ ∂μ which immediately follows from
(2.1.2):

∇μ kν + ∇ν kμ = 0 (2.2.2)

Hence given ametric one can investigate the nature of its isometries by trying to solve
the linear homogeneous Eq. (2.2.2) determining its general integral. The important
point is that, if we have two Killing vectors k and w also their commutator [k , w] is
a Killing vector. This follows from the fact that the product of two finite isometries
is also an isometry. Hence Killing vector fields form a finite dimensional Lie algebra
Giso and one can turn the question around. Rather then calculating the isometries of
a given metric one can address the problem of constructing (pseudo)-Riemannian
manifolds that have a prescribed isometry algebra. Due to the well established clas-
sification of semi-simple Lie algebras this becomes a very fruitful point of view.

2Clarification for mathematicians: in the physical literature it is universally utilized the following
jargon which turns out to be very clear to readers with an education as physicists. A Lie group
element g ∈ G is named infinitesimally close to the identity when its Taylor series expansion in
terms of a parameter ε that parameterizes a one-dimensional subgroup G ⊂ G to which g belongs
is truncated to the first order term: g = e + ε g + O(ε2). Clearly the coefficient g of the first order
term is an element of the Lie algebra G of G. Applying this jargon to the case of the group of
diffeomorphisms, by means of a diffeomorphism infinitesimally close to the identity we define a
vector field, the Lie algebra of the diffeomorphism group being the Lie algebra of vector fields.
In the case the considered infinitesimally close to identity diffeomorphism is an isometry, the
corresponding vector field is named a Killing vector field.
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In particular, also in view of the Cosmological Principle, one is interested in
homogeneous spaces, namely in (pseudo)-Riemannian manifolds where each point
of the manifold can be reached from a reference one by the action of an isometry.

Homogeneous spaces are identified with coset manifolds, whose differential
geometry can be thoroughly described and calculated in pure Lie algebra terms.

2.3 Coset Manifolds

Coset manifolds are a natural generalization of group manifolds and play a very
important, ubiquitous, role both in Mathematics and in Physics.

In group-theory (irrespectively whether the group G is finite or infinite, contin-
uous or discrete) we have the concept of coset space G/H which is just the set of
equivalence classes of elements g ∈ G, where the equivalence is defined by right
multiplication with elements h ∈ H ⊂ G of a subgroup:

∀ g, g′ ∈ G : g ∼ g′ iff ∃h ∈ H \ g h = g′ (2.3.1)

Namely two group elements are equivalent if and only if they can bemapped into each
other by means of some element of the subgroup. The equivalence classes, which
constitute the elements of G/H are usually denoted gH,where g is any representative
of the class, namely any one of the equivalentG-group elements the class is composed
of. The definition we have just provided by means of right multiplication can be
obviously replaced by an analogous one based on left-multiplication. In this case we
construct the coset H\G composed of right lateral classes H g while gH are named
the left lateral classes. For non abelian groups G and generic subgroups H the left
G/H and right H\G coset spaces have different not coinciding elements. Working
with one or with the other definition is just a matter of conventions. We choose to
work with left classes.

Coset manifolds arise in the context of Lie group theory whenG is a Lie group and
H is a Lie subgroup thereof. In that case the set of lateral classes gH can be endowed
with a manifold structure inherited from the manifold structure of the parent group
G. Furthermore on G/H we can construct invariant metrics such that all elements of
the original group G are isometries of the constructed metric. As we show below, the
curvature tensor of invariant metrics on coset manifolds can be constructed in purely
algebraic terms starting from the structure constants of the G Lie algebra, by-passing
all analytic differential calculations.

Cosetmanifolds are easily identifiedwithhomogeneous spaceswhichwepresently
define.

Definition 2.3.1 A Riemannian or pseudo-Riemannian manifold Mg is said to be
homogeneous if it admits as an isometry the transitive action of a group G. A group
acts transitively if any point of the manifold can be reached from any other by means
of the group action.
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A notable and very common example of such homogeneous manifolds is provided
by the spheres S

n and by their non-compact generalizations, the pseudo-spheres
H

(n+1−m,m)
± . Let x I denote the cartesian coordinates in R

n+1 and let:

ηI J = diag

⎛

⎝+,+ · · · ,+︸ ︷︷ ︸
n+1−m

, −,−, · · · , −︸ ︷︷ ︸
m

⎞

⎠ (2.3.2)

be the coefficient of a non degenerate quadratic formwith signature (n + 1 − m,m):

〈x , x〉η ≡ x I x J ηI J (2.3.3)

We obtain a pseudo-sphere H(n+1−m,m)
± by defining the algebraic locus:

x ∈ H
(n+1−m,m)
± ⇔ 〈x , x〉η ≡ ±1 (2.3.4)

which is a manifold of dimension n. The spheres Sn correspond to the particular case
H

n+1,0
+ where the quadratic form is positive definite and the sign in the right hand

side of Eq. (2.3.4) is positive. Obviously with a positive definite quadratic form this
is the only possibility.

All these algebraic loci are invariant under the transitive action of the group
SO(n + 1, n + 1 − m) realized by matrix multiplication on the vector x since:

∀ g ∈ G : 〈x , x〉η = ±1 ⇔ 〈g x , g x〉η = ±1 (2.3.5)

namely the group maps solutions of the constraint (2.3.4) into solutions of the same
and, furthermore, all solutions can be generated starting from a standard reference
vector:

〈x , x〉η = 0 ⇒ ∃ g ∈ G \ x = g x±
0 (2.3.6)

where:

x+
0 =

⎛

⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

1
0
...

0
0
0
...

0

⎞

⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟
⎠

; x−
0 =

⎛

⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

0
0
...

0
1
0
...

0

⎞

⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟
⎠

(2.3.7)

the line separating the first n + 1 − m entries from the last m. Equation (2.3.6) guar-
antees that the locus is invariant under the action of G, while Eq. (2.3.7) states that
G is transitive.
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Definition 2.3.2 In a homogeneous spaceMg , the subgroup Hp ⊂ G which leaves
a point p ∈ Mg fixed (∀ h ∈ Hp, h p = p) is named the isotropy subgroup of the
point. Because of the transitive action of G, any other point p′ = g p has an isotropy
subgroup Hp′ = gHp g−1 which is conjugate to Hp and therefore isomorphic to it.

It follows that, up to conjugation, the isotropy group of a homogeneous manifold
Mg is unique and corresponds to an intrinsic property of such a space. It suffices to
calculate the isotropy group H0 of a conventional properly chosen reference point
p0: all other isotropy groups will immediately follow. For brevity H0 will be just
renamed H.

In our example of the spacesH(n+1−m,m)
± the isotropy group is immediately derived

by looking at the form of the vectors x±
0 : all elements of G which rotate the vanishing

entries of these vectors among themselves are clearly elements of the isotropy group.
Hence we find:

H = SO(n,m) for H
(n+1−m,m)
+

H = SO(n + 1,m − 1) for H
(n+1−m,m)
−

(2.3.8)

It is natural to label any point p of a homogeneous space by the parameters describing
the G-group element which carries a conventional point p0 into p. These parameters,
however, are redundant: because of the H-isotropy there are infinitely many ways to
reach p from p0. Indeed, if g does that job, any other element of the lateral class gH
does the same. It follows by this simple discussion that the homogeneous manifold
Mg can be identified with the coset manifold G/H defined by the transitive group G
divided by the isotropy group H.

Focusing once again on our example we find:

H
(n+1−m,m)
+ = SO(n + 1 − m,m)

SO(n − m,m)
; H

(n+1−m,m)
− = SO(n + 1 − m,m)

SO(n + 1 − m,m − 1)
(2.3.9)

In particular the spheres correspond to:

S
n = H

(n+1,0)
+ = SO(n + 1)

SO(n)
(2.3.10)

Other important examples, relevant for cosmology are:

H
(n+1,1)
+ = SO(n + 1, 1)

SO(n, 1)
; H

(n+1,1)
− = SO(n + 1, 1)

SO(n + 1)
(2.3.11)

The general classification of homogeneous (pseudo)-Riemannian spaces corre-
sponds therefore to the classification of the coset manifolds G/H for all Lie groups
G and for their closed Lie subgroups H ⊂ G.

The equivalence classes constituting the points of the cosetmanifold canbe labeled
by a set of d coordinates y ≡ {

y1 , . . . , yd
}
where:
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d = dim
G

H
≡ dimG − dimH (2.3.12)

There are of course many different ways of choosing the y-parameters since, just as
in any other manifold, there are many possible coordinate systems. What is specific
of coset manifolds is that, given any coordinate system y by means of which we label
the equivalence classes, within each equivalence class we can choose a representative
group element L(y) ∈ G. The choice must be done in such a way that L(y) should
be a smooth function of the parameters y. Furthermore for different values y and y′,
the group elements L(y) and L(y′) should never be equivalent, in other words no
h ∈ H should exist such that L(y) = L(y′) h. Under left multiplication by g ∈ G,
L(y) is in general carried into another equivalence class with coset representative
L(y′). Yet the g image of L(y) is not necessarily L(y′): it is typically some other
element of the same class, so that we can write:

∀ g ∈ G : g L(y) = L(y′) h(g, y) ; h(g, y) ∈ H (2.3.13)

where we emphasized that the H-element necessary to mapL(y′) into the g-image of
L(y), depends, in general both from the point y and from the chosen transformation
g. Equation (2.3.13) is pictorially described in Fig. 2.1. For the spheres a possible set
of coordinates y can be obtained by means of the stereographic projection whose
conception is recalled in Fig. 2.2

As an other explicit example, which will be useful in the sequel, we consider
the case of the Euclidean hyperbolic spaces H(n,1)

− identified as coset manifolds in
Eq. (2.3.11). In this case, to introduce a coset parametrization means to write a family
of SO(n, 1)matricesL(y) depending smoothly on an n-component vector y in such a
way that for different values of y such matrices cannot be mapped one in the other by
means of right multiplication with any element h of the subgroup SO(n) ⊂ SO(n, 1):

SO(n, 1) ⊃ SO(n) � h =
(
O 0
0 1

)
; OT O = 1n×n (2.3.14)

An explicit parametrization of this type can be written as follows:

Fig. 2.1 Pictorial description of the action of the group G on the coset representatives
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Fig. 2.2 The idea of the stereographic projection. Considering the Sn sphere immersed in R
n+1,

from the North-Pole {1, 0, 0, . . . , 0} one draws the line that goes through the point p ∈ S
n and

considers the point π(p) ∈ R
n where such a line intersects the Rn plane tangent to sphere in the

South Pole and orthogonal to the line that joins the North and the South Pole. The n-coordinates
{y1 , . . . , yn} of π(p) can be taken as labels of an open chart in Sn

L(y) =

⎛

⎜⎜⎜
⎝

1n×n + 2 y yT

1−y2 − 2 y
1−y2

− 2 yT

1−y2
1+y2

1−y2

⎞

⎟⎟⎟
⎠

(2.3.15)

where y2 ≡ y · y denotes the standard SO(n) invariant scalar product in R
n . Why

the matrices L(y) form a good parametrization of the coset? The reason is simple,
first of all observe that:

L(y)T ηL(y) = η (2.3.16)

where
η = diag (+ , + , · · · , + , − ) (2.3.17)

This guarantees that L(y) are elements of SO(n, 1),secondly observe that the image
x(y) of the standard vector x0 through L(y),

x(y) ≡ L(y) x0 = L(y)

⎛

⎜
⎜⎜
⎝

0
...

0

1

⎞

⎟
⎟⎟
⎠

= 1

1 − y2

⎛

⎜⎜
⎜⎜
⎝

2 y1

...

2yn

1+y2

1−y2

⎞

⎟⎟
⎟⎟
⎠

(2.3.18)
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lies, as it should, in the algebraic locus H(n,1)
− ,

x(y)T η x(y) = − 1 (2.3.19)

and has n linearly independent entries (the first n) parameterized by y. Hence the
lateral classes can be labeled by y and this concludes our argument to show that
(2.3.15) is a good coset parametrization. L(0) = 1(n+1)×(n+1) corresponds to the
identity class which is usually named the origin of the coset.

2.3.1 The Geometry of Coset Manifolds

In order to study the geometry of a coset manifold G/H, the first important step is
provided by the orthogonal decomposition of the corresponding Lie algebra, namely
by

G = H ⊕ K (2.3.20)

where G is the Lie algebra of G and the subalgebra H ⊂ G is the Lie algebra of the
subgroup H and whereK denotes a vector space orthogonal toH with respect to the
Cartan Killing metric3 of G. By definition of subalgebra we always have:

[H , H] ⊂ H (2.3.21)

while in general one has:
[H , K] ⊂ H ⊕ K (2.3.22)

Definition 2.3.3 Let G/H be a Lie coset manifold and let the orthogonal decom-
position of the corresponding Lie algebra be as in Eq. (2.3.20). If the condition:

[H , K] ⊂ K (2.3.23)

applies, the coset G/H is named reductive.

Equation (2.3.23) has an obvious and immediate interpretation. The complementary
space K forms a linear representation of the subalgebra H under its adjoint action
within the ambient algebra G.

Almost all of the “reasonable” coset manifolds which occur in various provinces
of Mathematical Physics are reductive. Violation of reductivity is a sort of pathology
whose study we can disregard in the scope of this book. We will consider only
reductive coset manifolds.

3We assume that G is semi-simple so that the Cartan-Killing metric is non degenerate.
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Definition 2.3.4 Let G/H be a reductive coset manifold. If in addition to (2.3.23)
also the following condition:

[K , K] ⊂ H (2.3.24)

applies, then the coset manifold G/H is named a symmetric space.

Let TA (A = 1, . . . , n) denote a complete basis of generators for the Lie algebra G:

[TA , TB] = C C
AB TC (2.3.25)

and Ti (i = 1, . . . ,m) denote a complete basis for the subalgebra H ⊂ G. We also
introduce the notation Ta (a = 1, . . . , n − m) for a set of generators that provide a
basis of the complementary subspace K in the orthogonal decomposition (2.3.20).
We nickname Ta the coset generators. Using such notations, Eq. (2.3.25) splits into
the following three ones:

[
Tj , Tk

] = Ci
jk Ti (2.3.26)

[Ti , Tb] = Ca
ib Ta (2.3.27)

[Tb , Tc] = Ci
bc Ti + Ca

bc Ta (2.3.28)

Equation (2.3.26) encodes the property ofH of being a subalgebra. Equation (2.3.27)
encodes the property of the considered coset of being reductive. Finally if in
Eq. (2.3.28) we have Ca

bc = 0, the coset is not only reductive but also
symmetric.

We will be able to provide explicit formulae for the Riemann tensor of reduc-
tive coset manifolds equipped with G-invariant metrics in terms of such structure
constants. Prior to that we consider the infinitesimal transformation and the very
definition of the Killing vectors with respect to which the metric has to be invariant.

2.3.1.1 Infinitesimal Transformations and Killing Vectors

Let us consider the transformation law (2.3.13) of the coset representative. For a
group element g infinitesimally close to the identity, we have:

g � 1 + εA TA (2.3.29)

h(y, g) � 1 − εA W
i
A(y) Ti (2.3.30)

y′α � yα + εA kα
A (2.3.31)

The induced h transformation in Eq. (2.3.13) depends in general on the infinites-
imal G-parameters εA and on the point in the coset manifold y, as shown in
Eq. (2.3.30). The y-dependent rectangular matrix Wi

A(y) is usually named the H-
compensator. The shift in the coordinates yα is also proportional to εA and the vector
fields:
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kA = kα
A(y)

∂

∂yα
(2.3.32)

are named theKilling vectors of the coset. The reason for such a namewill be justified
when we will show that on G/H we can construct a (pseudo)-Riemannian metric
which admits the vector fields (2.3.32) as generators of infinitesimal isometries. For
the time being those in (2.3.32) are just a set of vector fields that, as we prove few
lines below, close the Lie algebra of the group G.

Inserting Eqs. (2.3.29)–(2.3.31) into the transformation law (2.3.13) we obtain:

TA L(y) = kA L(y) − Wi
A(y)L(y) Ti (2.3.33)

Consider now the commutator g−1
2 g−1

1 g2 g1 acting on L(y). If both group ele-
ments g1,2 are infinitesimally close to the identity in the sense of Eq. (2.3.29), then
we obtain:

g−1
2 g−1

1 g2 g1 L(y) � (
1 − εA

1 εB
2 [TA , TB]

)
L(y) (2.3.34)

By explicit calculation we find:

[TA , TB] L(y) = TA TB L(y) − TB TA L(y)

= [kA , kB] L(y)−
(
kA W

i
B −kB Wi

A + 2Ci
jk W

j
A W

k
B

)
L(y) Ti

(2.3.35)

On the other hand, using the Lie algebra commutation relations we obtain:

[TA , TB] L(y) = C C
AB TC L(y) = C C

AB

(
kC L(y) − Wi

C L(y) Ti
)

(2.3.36)

By equating the right hand sides of Eqs. (2.3.35) and (2.3.36) we conclude that:

[kA , kB] = C C
AB kC (2.3.37)

kA Wi
B − kB Wi

A + 2Ci
jk W

j
A W

k
B = C C

ABW
i
C (2.3.38)

where we separately compared the terms with and without W’s, since the decompo-
sition of a group element into L(y) h is unique.

Equation (2.3.37) shows that the Killing vector fields defined above close the
commutation relations of the G-algebra.

Instead, Eq. (2.3.38) will be used to construct a consistentH-covariant Lie deriva-
tive.

In the case of the spaces H
(n,1)
− , which we choose as illustrative example, the

Killing vectors can be easily calculated by following the above described procedure
step by step. For later purposes we find it convenient to present such a calculation in
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a slightly more general set up by introducing the following coset representative that
depends on a discrete parameter κ = ± 1:

Lκ(y) =

⎛

⎜⎜
⎜
⎝

1n×n + 2 y yT κ
1+κy2 − 2 y

1+κy2

2 κ
yT

1+κ y2
1−κ y2

1+κy2

⎞

⎟⎟
⎟
⎠

(2.3.39)

An explicit calculation shows that:

Lκ(y)T

⎛

⎜⎜⎜⎜
⎜
⎝

1 0 . . . 0 0
0 1 . . . 0 0
...

...
...

...
...

0 . . . 0 1 0
0 . . . 0 0 κ

⎞

⎟⎟⎟⎟
⎟
⎠

︸ ︷︷ ︸
ηκ

Lκ(y) =

⎛

⎜⎜⎜⎜
⎜
⎝

1 0 . . . 0 0
0 1 . . . 0 0
...

...
...

...
...

0 . . . 0 1 0
0 . . . 0 0 κ

⎞

⎟⎟⎟⎟
⎟
⎠

︸ ︷︷ ︸
ηκ

(2.3.40)

Namely L−1(y) is an SO(n, 1) matrix, while L1(y) is an SO(n + 1) group element.
Furthermore defining, as in Eq. (2.3.18):

xκ(y) ≡ Lκ(y)

⎛

⎜⎜⎜
⎝

0
...

0

1

⎞

⎟⎟⎟
⎠

(2.3.41)

we find that:
xκ(y)T ηκ xκ(y) = κ (2.3.42)

Hence by means of L1(y) we parameterize the points of the n-sphere Sn , while by
means of L−1(y) we parameterize the points of H(n,1)

− named also the n-pseudo-
sphere or the n-hyperboloid. In both cases the stability subalgebra is so(n) for which
a basis of generators is provided by the following matrices:

Ji j = Ii j − I j i ; i, j = 1, . . . , n (2.3.43)

having named:

Ii j =

⎛

⎜
⎜⎜⎜
⎝

0 . . . . . . 0 0
0 . . . 1 0 0 } i-th row
0 . . . . . . 0 0
0 . . . . . .︸︷︷︸

j-th column

0 0

⎞

⎟
⎟⎟⎟
⎠

. (2.3.44)
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the (n + 1) × (n + 1)matriceswhose only non vanishing entry is the i j-th one, equal
to 1.

The commutation relations of the so(n) generators are very simple. We have:

[
Ji j , Jk�

] = − δik J j� + δ jk Ji� − δ j� Jik + δi� Jjk (2.3.45)

The coset generators can instead be chosen as the following matrices:

Pi =

⎛

⎜⎜⎜
⎜
⎝

0 . . . . . . 0 0
0 . . . 0 0 1 } i-th row
0 . . . . . . 0 0
0 . . . −κ︸︷︷︸

i-th column

0 0

⎞

⎟⎟⎟
⎟
⎠

(2.3.46)

and satisfy the following commutation relations:

[
Ji j , Pk

] = − δik Pj + δ jk Pi (2.3.47)
[
Pi , Pj

] = −κ Ji j (2.3.48)

Equation (2.3.47) states that the generators Pi transform as an n-vector under
so(n) rotations (reductivity) while Eq. (2.3.48) shows that for both signs κ = ± 1
the considered coset manifold is a symmetric space. Correspondingly we name
ki j = k�

i j (y)
∂

∂y� the Killing vector fields associated with the action of the gener-
ators Ji j :

Ji j Lκ(y) = ki j Lκ(y) + Lκ(y) Jpq W
pq
i j (y) (2.3.49)

while we name ki = k�
i (y)

∂
∂y� the Killing vector fields associated with the action

of the generators Pi :

Pi Lκ(y) = ki Lκ(y) + Lκ(y) Jpq W
pq
i (y) (2.3.50)

Resolving conditions (2.3.49) and (2.3.50) we obtain:

ki j = yi ∂ j − y j ∂i (2.3.51)

ki = 1
2

(
1 − κ y2

)
∂i + κ yi y · ∂ (2.3.52)

TheH-compensators W pq
i and W pq

i j can also be extracted from the same calculation
but since their explicit form is not essential for our future discussion we skip them.
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2.3.1.2 Vielbeins, Connections and Metrics on G/H

Consider next the following 1-form defined over the reductive coset manifold G/H:

Σ(y) = L
−1(y) dL(y) (2.3.53)

which generalizes the Maurer Cartan form defined over the group manifold G. As a
consequence of its own definition the 1-form Σ satisfies the equation:

0 = dΣ + Σ ∧ Σ (2.3.54)

which provides the clue to the entire (pseudo)-Riemannian geometry of the coset
manifold. To work out this latter we start by decomposing Σ along a complete set
of generators of the Lie algebra G. According with the notations introduced in the
previous subsection we put:

Σ = V a Ta + ωi Ti (2.3.55)

The set of (n − m) 1-forms V a = V a
α (y) dyα provides a covariant frame for the

cotangent bundleCT(G/H), namely a complete basis of sections of this vector bundle
that transform in a proper way under the action of the group G. On the other hand
ω = ωi Ti = ωi

α(y) dyα Ti is called the H-connection. Indeed ω turns out to be the
1-form of a bona-fide principal connection on the principal fiber bundle:

P

(
G

H
,H

)
: G

π→ G

H
(2.3.56)

which has the Lie group G as total space, the coset manifold G/H as base space
and the closed Lie subgroup H ⊂ G as structural group. The bundle P

(
G
H ,H

)
is

uniquely defined by the projection that associates to each group element g ∈ G the
equivalence class gH it belongs to.

Introducing the decomposition (2.3.55) into the Maurer Cartan equation (2.3.54),
this latter can be rewritten as the following pair of equations:

dV a + Ca
ib ωi ∧ V b = − 1

2 C
a
bc V

b ∧ V c (2.3.57)

dωi + 1
2 C

i
jkω

j ∧ ωk = − 1
2 C

i
bc V

b ∧ V c (2.3.58)

where we have used the Lie algebra structure constants organized as in Eqs. (2.3.26)–
(2.3.28).

Let us now consider the transformations of the 1-forms we have introduced.
Under left multiplication by a constant group element g ∈ G the 1-form Σ(y)

transforms as follows:
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Σ(y′) = h(y, g)L−1(y)g−1 d
(
gL(y)h−1

)

= h(y, g)−1 Σ(y) h(y, g) + h(y, g)−1 dh(y, g) (2.3.59)

where y′ = g.y is the new point in the manifold G/H whereto y is moved by the
action of g. Projecting the above equation on the coset generators Ta we obtain:

V a(y′) = V b(y)D a
b (h(y, g)) (2.3.60)

where D = exp [DH], having denoted byDH the (n − m) dimensional representa-
tion of the subalgebra H which occurs in the decomposition of the adjoint represen-
tation of G:

adjG = adjH
︸︷︷︸
=AH

⊕DH (2.3.61)

Projecting on the other hand on the H-subalgebra generators Ti we get:

ω(y′) = A [h(y, g)] ω(y)A −1 [h(y, g)] + A [h(y, g)] dA −1 [h(y, g)]
(2.3.62)

where we have set:
A = exp [AH] (2.3.63)

Considering a complete basis TA of generators for the full Lie algebraG, the adjoint
representation is defined as follows:

∀ g ∈ G : g−1 TA g ≡ adj(g) B
A TB (2.3.64)

In the explicit basis of TA generators the decomposition (2.3.61) means that, once
restricted to the elements of the subgroup H ⊂ G, the adjoint representation becomes
block-diagonal:

∀ h ∈ H : adj(h) =
(
D(h) 0
0 A (h)

)
(2.3.65)

Note that for such decomposition to hold true the coset manifold has to be reductive
according to definition (2.3.23).

The infinitesimal form of Eq. (2.3.60) is the following one:

V a(y + δy) − V a(y) = − εA Wi
A(y)C

a
ib V

b(y) (2.3.66)

δyα = εA kα
A(y) (2.3.67)

for a group element g ∈ G very close to the identity as in Eq. (2.3.29).
Similarly the infinitesimal form of Eq. (2.3.62) is:

ωi (y + δy) − ωi (y) = − εA
(
Ci

k j W
k
A ω j + dWi

A

)
(2.3.68)
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2.3.1.3 Lie Derivatives

The Lie derivative of a tensor Tα1...αp along a vector field vμ provides the change in
shape of that tensor under an infinitesimal diffeomorphism:

yμ �→ yμ + vμ(y) (2.3.69)

Explicitly one sets:

�v Tα1...αp (y) = vμ ∂μ Tα1...αp + (∂α1v
γ ) Tγα2...αp + · · ·

+ (∂αp v
γ ) Tα1α2...γ (2.3.70)

In the case of p-forms, namely of antisymmetric tensors the definition (2.3.70) of Lie
derivative can be recast into a more intrinsic form using both the exterior differential
d and the contraction operator.

Definition 2.3.5 Let M be a differentiable manifold and let Λk (M ) be the vector
bundles of differential k-forms on M , let v ∈ Γ (TM ,M ) be a vector field. The
contraction ik is a linear map:

ik : Λk (M ) → Λk−1 (M ) (2.3.71)

such that for anyω(k) ∈ Λk (M ) and for any set of k − 1 vector fieldsw1, . . . ,wk−1,
we have:

ik ω(k) (w1, . . . ,wk−1) ≡ k ω(k) (v,w1, . . . ,wk−1) (2.3.72)

Then by going to components we can verify that the tensor definition (2.3.70) is
equivalent to the following one:

Definition 2.3.6 Let M be a differentiable manifold and let Λk (M ) be the vector
bundles of differential k-forms on M , let v ∈ Γ (TM ,M ) be a vector field. The
Lie derivative �v is a linear map:

�v : Λk (M ) → Λk (M ) (2.3.73)

such that for any ω(k) ∈ Λk (M ) we have:

�v ω(k) ≡ iv dω
(k) + d iv ω(k) (2.3.74)

On the other hand for vector fields the tensor definition (2.3.70) is equivalent to the
following one.

Definition 2.3.7 Let M be a differentiable manifold and let TM → M be the
tangent bundle, whose sections are the vector fields. Let v ∈ Γ (TM ,M ) be a
vector field. The Lie derivative �v is a linear map:
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�v : Γ (TM ,M ) → Γ (TM ,M ) (2.3.75)

such that for any w ∈ Γ (TM ,M ) we have:

�v w ≡ [v , w] (2.3.76)

The most important properties of the Lie derivative, which immediately follow from
its definition are the following ones:

[�v , d] = 0

[�v , �w] = �[v ,w] (2.3.77)

The first of the above equations states that the Lie derivative commutes with exterior
derivative. This is just a consequence of the invariance of the exterior algebra of
k-forms with respect to diffeomorphisms. On the other hand the second equation
states that the Lie derivative provides an explicit representation of the Lie algebra of
vector fields on tensors.

The Lie derivatives along the Killing vectors of the frames V a and of the H-
connection ωi introduced in the previous subsection are:

�vA V
a = Wi

A C
a
ib V

b (2.3.78)

�vA ωi = − (
dWi

A + Ci
k j W

k
A ω j

)
(2.3.79)

This result can be interpreted by saying that, associated with every Killing vector kA

there is a an infinitesimal H-gauge transformation:

WA = Wi
A(y) Ti (2.3.80)

and that the Lie derivative of both V a and ωi along the Killing vectors is just such
local gauge transformation pertaining to their respective geometrical type. The frame
V a is a section of anH-vector bundle and transforms as such, whileωi is a connection
and it transforms as a connection should do.

2.3.1.4 Invariant Metrics on Coset Manifolds

The result (2.3.78), (2.3.79) has a very important consequence which constitutes the
fundamental motivation to consider coset manifolds. Indeed this result instructs us
to construct G-invariant metrics on G/H, namely metrics that admit all the above
discussed Killing vectors as generators of true isometries.

The argument is quite simple. We saw that the one-forms V a transform in a linear
representation DH of the isotropy subalgebra H (and group H). Hence if τab is a
symmetric H-invariant constant two-tensor, by setting:
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ds2 = τab V
a ⊗ V b = τab V

a
α (y) V b

β (y)
︸ ︷︷ ︸

gαβ (y)

dyα ⊗ dyβ (2.3.81)

we obtain a metric for which all the above constructed Killing vectors are indeed
Killing vectors, namely:

�kAds
2 = τab

(
�kA V

a ⊗ V b + V a ⊗ �kA V
b
)

(2.3.82)

= τab
(
[DH(WA)]

a
c δbd + [DH(WA)]

b
c δad

)

︸ ︷︷ ︸
= 0 by invariance

V c ⊗ V d

= 0 (2.3.83)

The key point, in order to utilize the above construction, is the decomposition of
the representationDH into irreducible representations. Typically, for most common
cosets, DH is already irreducible. In this case there is just one invariant H-tensor τ

and the only free parameter in the definition of the metric (2.3.81) is an overall scale
constant. Indeed if τab is an invariant tensor, any multiple thereof τ ′

ab = λ τab is also
invariant. In the case DH splits into r irreducible representations:

DH =

⎛

⎜
⎜⎜⎜⎜
⎝

D1 0 . . . 0 0
0 D2 0 . . . 0
...

...
...

...
...

0 . . . 0 Dr−1 0
0 0 . . . 0 Dr

⎞

⎟
⎟⎟⎟⎟
⎠

(2.3.84)

we have r irreducible invariant tensors τ
(i)
ai bi

in correspondence of such irreducible
blocks and we can introduce r independent scale factors:

τ =

⎛

⎜⎜⎜⎜
⎜
⎝

λ1 τ (1) 0 . . . 0 0
0 λ2τ

(2) 0 . . . 0
...

...
...

...
...

0 . . . 0 λp−1τ
(p−1) 0

0 0 . . . 0 λp τ (p)

⎞

⎟⎟⎟⎟
⎟
⎠

(2.3.85)

Correspondingly we arrive at a continuous family of G-invariant metrics on G/H
depending on r-parameters or, as it is customary to say in this context, of r moduli.
The number r defined by Eq. (2.3.84) is named the rank of the coset manifold G/H.

In this section we confine ourself to the most common case of rank one cosets
(r = 1), assuming, furthermore, that the algebrasG andH are both semi-simple. By
an appropriate choice of basis for the coset generators T a , the invariant tensor τab
can always be reduced to the form:
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τab = ηab = diag

⎛

⎝+,+, · · · ,+︸ ︷︷ ︸
n+

,−,−, · · · ,−︸ ︷︷ ︸
n−

⎞

⎠ (2.3.86)

where the two numbers n+ and n− sum up to the dimension of the coset:

n+ + n− = dim
G

H
= dimK (2.3.87)

and provide the dimensions of the two eigenspaces, K± ⊂ K, respectively corre-
sponding to real and pure imaginary eigenvalues of the matrixDH(W ) which repre-
sents a generic element W of the isotropy subalgebra H.

Focusing on our example (2.3.39), that encompasses both the spheres and the
pseudo-spheres, depending on the sign of κ , we find that:

n+ = 0 ; n− = n (2.3.88)

so that in both cases (κ = ±1) the invariant tensor is proportional to a Kronecker
delta:

ηab = δab (2.3.89)

The reason is that the subalgebra H is the compact so(n), hence the matrix DH(W )

is antisymmetric and all of its eigenvalues are purely imaginary.
If we consider cosets with non-compact isotropy groups, then the invariant tensor

τab develops a non trivial Lorentzian signatureηab. In any case, ifwe restrict ourselves
to rank one cosets, the general form of the metric is:

ds2 = λ2 ηab V
a ⊗ V b (2.3.90)

where λ is a scale factor. This allows us to introduce the vielbein

Ea = λ V a (2.3.91)

and calculate the spin connection from the vanishing torsion equation:

0 = dEa − ωab ∧ Ec ηbc (2.3.92)

Using the Maurer Cartan equations (2.3.57)–(2.3.58), Eq. (2.3.92) can be immedi-
ately solved by:

ωab ηbc ≡ ωa
c = 1

2λ
Ca

cd E
d + Ca

ci ω
i (2.3.93)

Inserting this in the definition of the curvature two-form

Ra
b = dωa

b − ωa
c ∧ ωc

b (2.3.94)
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allows to calculate the Riemann tensor defined by:

Ra
b = Ra

bcd E
c ∧ Ed (2.3.95)

Using once again the Maurer Cartan equations (2.3.57)–(2.3.58), we obtain:

Ra
bcd = 1

λ2

(
− 1

4

1

2λ
Ca

be C
e
cd − 1

8C
a
ec C

e
bd + 1

8C
a
ed C

e
bc

− 1
2 C

a
bi C

i
cd

)
(2.3.96)

which, as previously announced provides the expression of the Riemann tensor in
terms of structure constants.

In the case of symmetric spaces Ca
be = 0 formula (2.3.96) simplifies to:

Ra
bcd = − 1

2 λ2
Ca

bi C
i
cd (2.3.97)

2.3.1.5 For Spheres and Pseudo-spheres

In order to illustrate the structures presented in the previous section we consider the
explicit example of the spheres and pseudo-spheres. Applying the outlined procedure
to this case we immediately get:

Ea = −2

λ

dya

1 + κy2

ωab = 2
κ

λ2
Ea ∧ Eb (2.3.98)

This means that for spheres and pseudo-spheres the Riemann tensor is proportional
to an antisymmetrized Kronecker delta:

Rab
cd = κ

λ2
δ

[a
[c δ

b]
d] (2.3.99)

2.4 The Real Sections of a Complex Lie Algebra
and Symmetric Spaces

In the context of coset manifolds a very interesting class that finds important appli-
cations in supergravity and superstring theories is the following one:

MGR = GR

Hc
(2.4.1)
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where GR is some semi-simple Lie group and Hc ⊂ GR is its maximal compact
subgroup.The Lie algebra Hc of the denominator Hc is the maximal compact subal-
gebra H ⊂ GR which has typically rank rcompact > r . Denoting, as usual, by K the
orthogonal complement of Hc in GR :

GR = Hc ⊕ K (2.4.2)

and defining as non compact rank or rank of the coset GR/H the dimension of the
non compact Cartan subalgebra:

rnc = rank (GR/H) ≡ dimH n.c. ; H n.c. ≡ CSAG(C)

⋂
K (2.4.3)

we obtain that rnc < r .
By definition the Lie algebra GR is a real section of a complex semi-simple Lie

algebra. Two universal instances of real sections of a simple Lie algebra G(C), are
the maximally split and the maximally compact real sections.

The Maximally Split and the Maximal Compact Real Sections of a Simple Lie
Algebra G(C).

Given the simple Lie algebra generators in the canonical Cartan-Weyl form: TA ={
Hi , Eα, E−α

}
the question iswhich restrictions on the imaginary and the real parts of

the coefficients cA of Lie algebra elements cA TA can be introduced that are consistent
with the Lie bracket and produce a real Lie algebra Gr . Furthermore one would like
to know how many such real sections do exist up to isomorphism.

Here we just introduce two real sections that are simply and universally defined
for all simple Lie algebras:

(a) The maximally split real section Gmax. This is defined by assuming that the
allowed coefficients cA are all real. In any linear representation of Gmax the
matrices representing

TA ≡ {
Hi , Eα , E−α

}
(2.4.4)

are all real. From the representations of Gmax, by taking linear combinations of
the generatorswith complex coefficients one obtains all the linear representations
of the complex Lie algebra G(C).

(b) The maximally compact real sectionGc. This real section, whose exponentia-
tion produces a compact Lie group, is obtained by allowing linear combinations
with real coefficients of the set of generators:

TA ≡ {
i Hi , i

(
Eα + E−α

)
,
(
Eα − E−α

)}
(2.4.5)

In all linear representations of Gc the matrices representing the generators TA

are anti-hermitian.

One easily obtains the hermitian matrix representation of the generators TA from
the real representation of the generators TA and viceversa. It also follows that the
matrices representing E−α are the transposed of those representing Eα .
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A very useful instrument in the explicit construction of matrix representations that
has also important consequences for later developments is provided by the notion of
Borel subalgebra. Starting from the Cartan-Weyl basis, if one consideres the subset
of generators:

Bor [G] = span {Hi , E
α} ; α > 0 (2.4.6)

we see that it corresponds to a solvable subalgebra of G. Hence every representation
ofBor [G] can be put into an upper triangular form.This gives a powerful construction
criterion for the fundamental representation. We just construct an upper triangular
representation of the Bor [G] subalgebra and then we promote it to a representation
of the full Lie algebra G, by setting:

E−α = (Eα)
T (2.4.7)

Furthermore in view of the above discussion, the representations of the real sections
Gmax and Gc can be considered together and on that we rely in the following.

Classification of all the Real Sections

All other possible real sections are obtained by studying the available Cartan invo-
lutions of the complex Lie algebra. So consider:

Definition 2.4.1 Let:
θ : g → g (2.4.8)

be a linear automorphism of the compact Lie algebra g = Gc, whereGc is the max-
imal compact real section of a complex semi-simple Lie algebraG(C). By definition
we have:

∀α, β ∈ R , ∀X,Y ∈ g :
{

θ (α X + β Y ) = α θ(X) + β θ(Y )

θ ([X , Y ]) = [θ(X) , θ(Y )]
(2.4.9)

If θ2 = Id then θ is named a Cartan involution of the Lie algebra g.

For any Cartan involution θ the possible eigenvalues are ±1. This allows us to split
the entire Lie algebra g in two subspaces corresponding to the eigenvalues 1 and −1
respectively:

g = Hθ ⊕ pθ (2.4.10)

One immediately realizes that:

[Hθ , Hθ ] ⊂ Hθ

[Hθ , pθ ] ⊂ pθ

[pθ , pθ ] ⊂ Hθ (2.4.11)
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Hence for any Cartan involution Hθ is a subalgebra and θ singles out a symmetric
homogeneous compact coset manifold:

Mθ = Gc

Hθ

where Hθ ≡ exp [Hθ ] ; Gc ≡ exp [g] (2.4.12)

The structure (2.4.11) has also another important consequence. Ifwe define the vector
space:

g

θ = Hθ ⊕ p


θ ; p

θ ≡ ipθ (2.4.13)

we see that g

θ is closed under the Lie bracket and hence it is a Lie algebra. It is some

real section of the complex Lie algebra G(C) and we can consider a new, generally
non compact coset manifold:

M 

θ = G


θ

Hθ

; Hθ ≡ exp [Hθ ] ; G

θ ≡ exp

[
g


θ

]
(2.4.14)

An important theorem for which we refer the reader to classical textbooks [2–4]4

states that all real forms of a Lie algebra, up to isomorphism, are obtained in this
way. Furthermore as part of the same theorem one has that θ can always be chosen
in such a way that it maps the compact Cartan subalgebra into itself:

θ : Hc → Hc (2.4.15)

This short discussion reveals that the classification of real forms of a complex Lie
Algebra G(C) is in one-to-one correspondence with the classification of symmetric
spaces, the complexification of whose Lie algebra of isometries is G(C). For this
reason we discuss the real forms in the present chapter devoted to homogeneous
coset manifolds.

Let us now consider the action of the Cartan involution on the Cartan subalgebra:
Hc = span{iHi } of themaximal compact sectionGc. Choosing a basis ofHc aligned
with the simple roots:

Hc = span
{
i Hαi

}
(2.4.16)

we see that the action of the Cartan involution θ is by duality transferred to the simple
roots αi and hence to the entire root lattice. As a consequence we can introduce the
notion of real and imaginary roots. One argues as follows.

We split the Cartan subalgebra into its compact and non compact subalgebras:

CSAGR = iH comp ⊕ H n.c.

� �
CSAGmax = H comp ⊕ H n.c.

(2.4.17)

4The proof is also summarized in Appendix B of [5].
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Fig. 2.3 The Tits–Satake diagram representing the real form so(p, 2� − p + 1) of the complex
so(2� + 1) Lie algebra

defining:

h ∈ H comp ⇔ θ(h) = h

h ∈ H n.c ⇔ θ(h) �= h (2.4.18)

Then every vector in the dual of the full Cartan subalgebra, in particular every root
α can be decomposed into its parallel and its transverse part toH n.c.:

α = α|| ⊕ α⊥ (2.4.19)

A root α is named imaginary if α|| = 0. On the contrary a root α is called real if
α⊥ = 0. Generically a root is complex.

Given the original Dynkin diagram of a complex Lie algebra we can character-
ize a real section by mentioning which of the simple roots are imaginary. We do
this by painting black the imaginary roots. The result is a Tits–Satake diagram like
that in Fig. 2.3 which corresponds to the real Lie Algebra so(p, 2� − p + 1) for
p > 2,� > 2.

2.5 The Solvable Group Representation of Non-compact
Coset Manifolds

Definition 2.5.1 A Riemannian space (M , g) is named normal if it admits a com-
pletely solvable5 Lie group exp[Solv(M )] of isometries that acts on the manifold in
a simply transitive manner (i.e. for every 2 points in the manifold there is one and
only one group element connecting them). The group exp[Solv(M )] is generated by
a so-called normal metric Lie algebra, Solv(M ) that is a completely solvable Lie
algebra endowed with a suitable, invariant Euclidean metric.

The main tool to classify and study homogeneous spaces of the type (2.4.14) is
provided by a theorem [3] that states that if a Riemannianmanifold (M , g) is normal,
according to Definition2.5.1, then it is metrically equivalent to the solvable group
manifold

5A solvable Lie algebra s is completely solvable if the adjoint operation adX for all generators X ∈ s
has only real eigenvalues. The nomenclature of the Lie algebra is carried over to the corresponding
Lie group in general in this chapter.
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M � exp [Solv(M )]

g |e∈M = <,> (2.5.1)

where <,> is a Euclidean metric defined on the normal solvable Lie algebra
Solv(M ). The key point is that non-compact coset manifolds of the form (2.4.14) are
all normal. This is so because there is always, for all real forms except the maximally
compact one a solvable subalgebra with the following features:

Solv

(
GR

Hc

)
⊂ GR

dim

[
Solv

(
GR

Hc

)]
= dim

(
GR

Hc

)

exp

[
Solv

(
GR

Hc

)]
= transitive on

GR

Hc
(2.5.2)

It is very easy to single out the appropriate solvable algebra in the case of the maxi-
mally split real formGmax. In that case, as we know, themaximal compact subalgebra
has the following form:

Hc = span
{(
Eα − E−α

)} ; ∀α ∈ Δ+ (2.5.3)

The solvable algebra that does the required job is the Borellian subalgebra:

Bor (Gmax) ≡ H ⊕ span (Eα) ; ∀α ∈ Δ+ (2.5.4)

whereH is the complete Cartan subalgebra and Eα are the step operators associated
with the positive roots. That Bor (Gmax) is a solvable Lie algebra follows from the
canonical structure of Lie algebras displayed in Eq. (1.4.74). If you exclude the
negative roots, you immediately see that the Cartan generators are not in the first
derivative of the algebra. The second derivative excludes all the simple roots: the third
derivative excludes the roots of height 2 and so on until you end up in a derivative
that makes zero. Hence the Lie algebra is solvable. Furthermore it is obvious that
any equivalence class of GR

Hc
has a representative that is an element of the solvable

Lie group exp [Bor (Gmax)]. This is intuitive at the infinitesimal level from the fact
that each element of the complementary space:

K = H ⊕ span
[(
Eα + E−α

)]
(2.5.5)

which generates the coset, can be uniquely rewritten as an element of Bor (Gmax)

plus an element of the subalgebra Hc. At the finite level we will show later an
exact formula which connects the solvable representative exp[s] (with s ∈ Bor) to
the orthogonal representative exp[k] (with k ∈ K) of the same equivalence class. For

http://dx.doi.org/10.1007/978-3-319-74491-9_1
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the moment it suffices to understand that the action of the Borel group is transitive
on the coset manifold, so that the coset manifold GR/Hc is indeed normal and its
metric can be obtained from the non degenerate Euclidean metric<, > defined over

Bor(Gmax) = Solv
(
Gmax
Hc

)
.

The example of the maximally split case clearly suggests what is the required
solvable algebra for other normal forms. We have:

Solv

(
GR

Hc

)
= H n.c. ⊕ span (E α) ; ∀α ∈ Δ+ / α‖ �= 0 (2.5.6)

where H n.c. is the non-compact part of the Cartan subalgebra and E α denotes the
combination of step operators pertaining to the positive roots α that appear in the real
form GR and the sum is extended only to those roots that are not purely imaginary.
Indeed the step operators pertaining to imaginary roots are included into themaximal
compact subalgebra that now is larger than the number of positive roots.

For any solvable group manifold with a non degenerate invariant metric6 the
differential geometry of the manifold is completely rephrased in algebraic language
through the relation of the Levi-Civita connection and the Nomizu operator acting
on the solvable Lie algebra. The latter is defined as

L : Solv (M ) ⊗ Solv (M ) → Solv (M ) , (2.5.7)
∀X, Y, Z ∈ Solv (M ) : 2 < LXY, Z >=< [X, Y ], Z > − < X, [Y, Z ] > − < Y, [X, Z ] > .

The Riemann curvature operator on this group manifold can be expressed as

Riem(X,Y ) = [LX ,LY ] − L[X,Y ]. (2.5.8)

This implies that the covariant derivative explicitly reads:

LX Y = Γ Z
XY Z (2.5.9)

where

Γ Z
XY = 1

2
(〈Z , [X, Y ]〉 − 〈X, [Y, Z ]〉 − 〈Y, [X, Z ]〉) 1

< Z , Z >
∀X, Y, Z ∈ Solv

(2.5.10)

Equation (2.5.10) is true for any solvable Lie algebra, but in the case of maximally
non-compact, split algebras we can write a general form for Γ Z

XY , namely:

6See [6–12] for reviews on the solvable Lie algebra approach to supergravity scalar manifolds and
the use of the Nomizu operator.
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Γ i
jk = 0

Γ i
αβ = 1

2

(−〈Eα,
[
Eβ, Hi

]〉 − 〈Eβ,
[
Eα, Hi

]〉) = 1
2 αiδαβ

Γ α
i j = Γ α

iβ = Γ i
jα = 0

Γ α
βi = 1

2

(〈Eα,
[
Eβ, Hi

]〉 − 〈Eβ,
[
Hi , Eα

]〉) = −αi δ
α
β

Γ
α+β

αβ = −Γ
α+β

βα = 1

2
Nαβ

Γ α
α+β β = Γ α

β α+β = 1

2
Nαβ (2.5.11)

where Nαβ is defined by the commutator

[
Eα , Eβ

] = Nαβ Eα+β (2.5.12)

The explicit form (2.5.11) follows from the following choice of the non degenerate
metric:

〈Hi , H j 〉 = 2 δi j

〈Hi , Eα〉 = 0

〈Eα , Eβ〉 = δα,β (2.5.13)

Hi ∈ CSA and Eα are the step operators associated with positive roots α ∈ Δ+.
For any other non split case, the Nomizu connection exists nonetheless although it
does not take the form (2.5.11). It follows from Eq. (2.5.10) upon the choice of an
invariant positive metric on Solv and the use of the structure constants of Solv.

2.5.1 The Tits Satake Projection: An Anticipation

Let us now come back to Eq. (2.4.19). Setting all α⊥ = 0 corresponds to a projection:

ΠT S : ΔG �→ Δ (2.5.14)

of the original root system ΔG onto a new system of vectors living in an Euclidean
space of dimension equal to the non compact rank rnc. A priori this is not obvious,
but it is nonetheless true that Δ, with only one exception, is by itself the root system
of a simple Lie algebra GT S , the Tits–Satake subalgebra of GR :

Δ = root system of GT S ⊂ GR (2.5.15)

The Tits–Satake subalgebra GT S ⊂ GR is always the maximally non compact real
section of its own complexification. For this reason, considering itsmaximal compact
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subalgebraHTS ⊂ GTS, we have a new smaller coset GTS
HTS

, which is maximally split.

What is the relation between the two solvable Lie algebras Solv
(
G
H

)
and Solv

(
GTS
HTS

)

is the natural question which arises. The explicit answer to this question and the sys-
tematic illustration of the geometrical relevance of the Tits Satake projection is the
subject of an entire later chapter, namelyChap. 5. To appreciate the role of this projec-
tion we still have to introduce Kähler and Quaternionic geometry, special geometries
and the c-map, all items that are the conspicuous contribution of Supergravity to
Modern Geometry.
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Chapter 3
Complex and Quaternionic Geometry

Mathematics, however, is, as it were, its own explanation; this,
although it may seem hard to accept, is nevertheless true, for the
recognition that a fact is so is the cause upon which we base the
proof.

Girolamo Cardano

3.1 Imaginary Units and Geometry

Considering the possible types of numbers we have R, C, H, or O. This is a mes-
sage for geometry. Keeping the fundamental idea that a geometrical space should be
viewed as a manifold, constructed bymeans of an atlas of open charts, the local coor-
dinates could be chosen not only as real numbers but also as complex, quaternionic
or even octonionic numbers. Yet an important lesson is immediately learnt from the
story told in my other book [1], twin of the present one: the possible numbers are,
anyhow, division algebras over the reals, whose classification is due to Frobenius, so
that the real structure remains the basis for everything.

This must be the same also in geometry. Manifolds of complex, quaternionic or
octonionic type, if they exist, are, first of all, real manifolds. Their characterization as
complex, quaternionic or octonionic must reside in some additional richer structure
they are able to support. It is evident that this additional structure are the imaginary
units, the same that provide the extensions of the field R to C, H or O.

Hence the conceptual path we have to follow starts revealing itself. We have to
imagine what the imaginary units might be in the context of differential geometry.
The catch is the relation J2 = − 1. How to reinterpret such a relation? It is rather
natural to consider J as a map, in particular a linear map, and 1 as the identity map
which always exists. We are almost there, the remaining question is on which space
does J act? The answer is obvious since for linear maps we need vector spaces and if

© Springer International Publishing AG, part of Springer Nature 2018
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we want to do things locally, point by point on the manifold, we need vector bundles.
The universal vector-bundle that it is intrinsically associated with any manifold M
is the tangent bundle TM → M . Hence the imaginary units, that from now on we
will name complex structures, are linear maps operating on sections of the tangent
bundle that square to minus one.

Complex and quaternionic or hyper-complex geometries arise when a manifold
admits one or more complex structures satisfying appropriate algebraic relations.
This mixture of algebra and geometry leads to new classes of very interesting spaces:

(a) Complex Manifolds
(b) Complex Kähler Manifolds
(c) HyperKähler Manifolds
(d) Quaternionic Kähler Manifolds

that is the mission of the present chapter to define and illustrate.
Furthermore when we come to discuss the symmetries of such manifolds, namely

their isometries, which is the main interest of this book, we discover that the pres-
ence of the complex-structures entrains a new very much challenging viewpoint on
continuous symmetries. To the Killing vectors, thanks to the symplectic structures
implied by the complex-structures we are able to associate hamiltonian functions,
named moment maps. These moment maps open a vast playing ground for new
constructions of high relevance both in Physics and Mathematics.

3.1.1 The Precognitions of Supersymmetry

Supersymmetric field-theories and in particular Supergravity have the remarkable
property of an intrinsic precognition of geometric and algebraic structures.All classes
of existing geometries found, in due time, their proper role within the frame of super-
symmetric field theories. For instance Kähler Manifolds describe the most general
coupling of scalar multiplets in N = 1 rigid supersymetry, while HyperKähler
Manifolds do the same for the rigid N = 2 case (see [2] which will be extensively
discussed in Chap. 8). Quaternionic Kähler Manifolds are the obligatory structure
for the coupling of hypermultiplets toN = 2 supergravity [3–5]. In these cases the
precognition resides in algebraic relations that come from supersymmetry and, once
duely interpreted, were shown to imply the mentioned geometry. In other, even more
spectacular cases, the geometric structures required by supersymmetry were not yet
available in the mathematical supermarkets when the corresponding supermultiplets
were studied. They were just discovered by the physicists working in supergravity
and now constitute new chapters of mathematics. These are the Special Geometries
to which Chap.4 is devoted.

Let us now turn to complex structures and their heritage.

http://dx.doi.org/10.1007/978-3-319-74491-9_8
http://dx.doi.org/10.1007/978-3-319-74491-9_4
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3.2 Complex Structures on 2n-Dimensional Manifolds

LetM be a 2n-dimensional manifold, TM its tangent space and T ∗M its cotangent
space. Denoting by {φα} (α = 1, . . . , 2n) the 2n coordinates in a patch, a section
t ∈ Γ (TM ,M ) is represented by a linear differential operator:

t = tα∂α (3.2.1)

while a section in T ∗M is a differential 1-form

ω = dφαωα(φ) (3.2.2)

The contraction is an operation that to each vector field t ∈ Γ (TM ,M ) associates
a map

it : T ∗M −→ C∞ (M ) (3.2.3)

of 1-forms into 0-forms locally given by the following expression:

it ω = tα(φ)ωα(φ) (3.2.4)

In particular, if ω = d f we have

it d f = tα∂α f = t f (3.2.5)

The contraction is also canonically extended to higher forms:

∀ t ∈ Γ (TM ,M ) :
{
it : Ω p (M ) −→ Ω p−1 (M )

it ω = tα(φ)ωαβ1...βp−1(φ) dφβ1 ∧ · · · ∧ dφβp−1

(3.2.6)
Now we can consider a linear operator L acting on the tangent bundle TM , or more
precisely acting on Γ (TM , M):

L : Γ (TM ,M ) → Γ (TM ,M )

∀t ∈ Γ (TM ,M ) : Lt ∈ Γ (TM ,M )

∀α, β ∈ C, ∀t1, t2 ∈ Γ (TM ,M ) : L(αt1 + βt2) = αLt1 + βLt2
(3.2.7)

In every local chart L is represented by a mixed tensor Lβ
α(φ) with one covariant

index and one controvariant index such that

Lt = tα(φ)Lβ
α(φ)∂β (3.2.8)

Moreover the action of L is naturally pulled back on the cotangent space:
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L : Γ (TM ∗,M ) → Γ (TM ∗,M ) (3.2.9)

by defining
itLω = iLtω (3.2.10)

which in a local chart yields

Lω = dφαLβ
α(φ)ωβ (3.2.11)

Definition 3.2.1 A 2n-dimensional manifold M is called almost complex if it has
an almost complex structure. An almost complex structure is a linear operator J :
Γ (TM ,M ) → Γ (TM ,M ) which satisfies the following property:

J 2 = − 11 (3.2.12)

In every local chart the operator J is represented by a tensor Jα
β (φ) such that

J β
α (φ)J γ

β (φ) = −δγ
α (3.2.13)

and by a suitable change of basis at every point p ∈ M we can reduce J β
α to the

form (
0 11

−11 0

)

where 11 is the n × n unity matrix. A local frame where J takes the form (3.2.14) is
called a “well-adapted” frame to the almost complex structure. Naming

eα = ∂α = ∂

∂φα

(3.2.14)

the basis of the well-adapted frame we have

Jeα = −eα+n i f α ≤ n

Jeα = eα−n i f α > n (3.2.15)

At this point, introducing the index i with range i = 1, . . . , n we can define the
complex vectors:

Ei = ei − iei+n

Ei∗ = ei + iei+n (3.2.16)

and we obtain the following result:
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JEi = iEi

JEi∗ = −iEi∗

(3.2.17)

The tangent vectors Ei are the partial derivatives along the complex coordinates:

zi = φi + iφi+n (3.2.18)

while Ei∗ are the partial derivatives along the complex conjugate coordinates zi
∗ =

φi − iφi+n:

Ei = ∂ i = ∂

∂zi
Ei∗ = ∂ i∗ = ∂

∂zi∗
(3.2.19)

This construction is the reason why J is called an almost complex structure: the
existence of this latter guarantees that at every point p ∈ M we can replace the 2n
real coordinates by n complex coordinates, corresponding to a well-adapted frame.
Moreover every two well-adapted frames are related to each other by a coordinate
transformation which is a holomorphic function of the corresponding complex coor-
dinates. Indeed let

φα → φα + ζ α(φ) (3.2.20)

be an infinitesimal coordinate transformation connecting two well adapted frames.
By definition this means

∂αζ β J γ

β = J β
α ∂βζ γ (3.2.21)

which is nothing but the Cauchy–Riemann equation for the real and imaginary parts
of a holomorphic function. Hence Eq. (3.2.20) can be replaced by

zi → zi + ζ i (z) (3.2.22)

where ζ i (z) is a holomorphic function of z j . Conversely ifM is a complex analytic
manifold,1 in every local chart {zi } we can set

φα = Rezi (α ≤ n) φα = Imzi (α > n) (3.2.23)

and we can define an almost complex structure J . Now let J act on T ∗(M ). In a
well-adapted frame we have

Jdzi = idzi

Jdzi
∗ = −idzi

∗
(3.2.24)

1Complex analytic manifold means a manifold whose transition functions in the intersection of two
charts are holomorphic functions of the local coordinates.
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Equation (3.2.24) characterize the holomorphic coordinates. More generally let {xα}
be a generic coordinate system (not necessarily well-adapted) and let w(x) be a
complex-valued function on the manifold M : we say that w is holomorphic if it
satisfies the equation:

Jdw = idw (3.2.25)

which in the generic coordinate system {xα} reads as follows:

J β
α ∂βw(x) = i∂αw(x) (3.2.26)

As we have seen, at every point p ∈ M , J can be reduced to the canonical form
(3.2.14) by a suitable coordinate transformation: what is not guaranteed is whether
J can be reduced to this canonical form in a whole open neighbourhood Up. This
amounts to asking the questionwhether Eq. (3.2.26) admits n C-linearly independent
solutions in some open subset U ∈ UX , where UX is the domain of the considered
local chart {xα}. If these solutions wi (x) exist we can consider them as the holomor-
phic coordinates in the neighbourhood U , that is we can set

zi = wi (z) (3.2.27)

In view of what we discussed before, the transition function between any two such
coordinate systems is holomorphic. Hence if Eq. (3.2.25) is integrable, then a holo-
morphic coordinate system exists and any function φ on the manifold can be viewed
as a function of zi and zi

∗
: φ = φ(z, zi

∗
). In this case we have

dφ = ∂iφdz
i + ∂i∗φdz

i∗

Jdφ = i(∂iφdz
i − ∂i∗φdz

i∗) (3.2.28)

By taking the exterior derivative of Eq. (3.2.28) we obtain

d J ∧ dφ = −2i∂i∂i∗φdz
i ∧ dzi

∗
(3.2.29)

and we can verify the equation

(1 − J )d J ∧ dφ = 0 (3.2.30)

which follows from

Jd J ∧dφ = −2i∂i∂ j∗φ Jdzi ∧ Jdz j
∗ = −2i∂i∂ j∗φdz

i ∧dz j
∗ = d J ∧dφ (3.2.31)

Equation (3.2.30) is true in a holomorphic coordinate system and, being an exterior
algebra statement, must be true in every coordinate system. In the real coordinate
system Eq. (3.2.30) reads

T α
βγ ∂αφdxβ ∧ dxγ = 0 (3.2.32)
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where the tensor
T α

βγ = ∂[β Jα
γ ] − Jμ

β J ν
γ ∂[μ Jα

ν] (3.2.33)

is called the “torsion”, or the Nienhuis tensor of the almost complex structure Jα
β .

The vanishing of T α
βγ is a necessary condition for the integrability of Eq. (3.2.26)

and hence for the existence of a complex structure. It can be shown that it is also
sufficient provided T α

βγ is real analytic with respect to some real coordinate system.

3.3 Metric and Connections on Holomorphic Vector
Bundles

In the previous section we considered the structure of complex manifolds. When
both the base space and the standard fibre are complex manifolds we can refine the
notion of fibre bundle by requiring that the transition function be locally holomorphic
functions. In particular a very relevant concept, which plays a major role in our
subsequent developments, is that of holomorphic vector bundle. For convenience we
recall the complete definition that follows from the general definition of fibre-bundle.

Definition 3.3.1 LetM be a complexmanifold and E be another complexmanifold.
A holomorphic vector bundle with total space E and base manifoldM is given by a
projection map:

π : E −→ M (3.3.1)

such that
(a) π is a holomorphic map of E onto M
(b) Let p ∈ M , then the fibre over p

Ep = π−1(p) (3.3.2)

is a complex vector space of dimension r . (The number r is called the rank of the
vector bundle.)

(c) For each p ∈ M there is a neighbourhood U of p and a holomorphic home-
omorphism

h : π−1(U ) −→ U × Cr (3.3.3)

such that
h
(
π−1(p)

) = { p } ×Cr (3.3.4)

(The pair (U, h) is called a local trivialization.)
(d) The transition functions between two local trivializations (Uα, hα) and

(Uβ, hβ):
hα ◦ h−1

β : (Uα ∩ Uβ ) ⊗ Cr −→ (Uα ∩ Uβ ) ⊗ Cr (3.3.5)
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induce holomorphic maps

gαβ : (Uα ∩ Uβ ) −→ GL (r,C) (3.3.6)

Let E −→ M be a holomorphic vector bundle of rank r andU ⊂ M an open subset
of the base manifold. A frame over U is a set of r holomorphic sections {s1, . . . , sr }
such that {s1(z), . . . , sr (z)} is a basis for π−1(z) for any z ∈ U . Let f ≡ {eI (z)} be
a frame of holomorphic sections. Any other holomorphic section ξ is described by

ξ = ξ I (z) eI (3.3.7)

where
∂ ξ I = dz j

�

∂ j� ξ I = 0 (3.3.8)

Given a holomorphic bundle with a frame of sections we can discuss metrics con-
nections and curvatures, as we already did for the general case of bundles.

In general a connection θ is defined by introducing the covariant derivative of any
section ξ

D ξ = d ξ + θ ξ (3.3.9)

where θ = θ I
J , the connection coefficient, is an r × r matrix-valued 1-form. On a

complex manifold this 1-form can be decomposed into its parts of holomorphic type
(1, 0) and (0, 1), respectively:

θ = θ(1,0) + θ(0,1)

θ (1,0) = dzi θi
θ(0,1) = dzi

�

θi� (3.3.10)

Let now a fiber hermitian metric h be defined on the holomorphic vector bundle.
This is a sesquilinear form that yields the scalar product of any two holomorphic
sections ξ and η at each point of the base manifold:

〈 ξ , η 〉h ≡ ξ
I �

(z) ηJ (z) hI � J (z, z) = ξ † h η (3.3.11)

As it is evident from the above formula, the metric h is defined by means of the
point-dependent hermitian matrix hI � J (z, z), which is requested to transform, from
one local trivialization to another, with the inverses of the transition functions gαβ

defined in Eq. (3.3.6). This is so because the scalar product 〈 ξ , η 〉h is by definition
an invariant (namely a scalar function globally defined on the manifold).

Definition 3.3.2 A hermitian metric for a complex manifoldM is a hermitian fibre
metric on the canonical tangent bundle TM . In this case the transition functions gαβ

are given by the jacobians of the coordinate transformations.
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In general h is just a metric on the fibres and the transition functions are different
objects from the Jacobian of the coordinate transformations. In any case, given a fibre
metric on a holomorphic vector bundle we can introduce a canonical connection θ

associated with it. It is defined by requiring that

(A) d 〈 ξ , η 〉h = 〈 D ξ , η 〉h + 〈 ξ , D η 〉h
(B) D(0,1)ξ ≡ [

∂ + θ(0,1)
]

ξ = 0
(3.3.12)

namely by demanding that the scalar product be invariant with respect to the parallel
transport defined by θ and by requiring that the holomorphic sections be transported
into holomorphic sections. Let f be a holomorphic frame. In this frame the canonical
connection is given by

θ( f ) = h( f )−1 ∂ h( f ) (3.3.13)

or, in other words, by
θ I

J = dzi h I J �

∂i hK � J (3.3.14)

In the particular case of a manifold metric (see Definition3.3.2), where h is a fibre
metric on the tangent bundle TM , the general formula (3.3.14) provides the defini-
tion of the Levi-Civita connection:

dzk Γ i
k j = − gil

�

∂ gl� j (3.3.15)

Given a connection we can compute its curvature by means of the standard formula
Θ = dθ + θ ∧ θ . In the case of the above-defined canonical connection we obtain

Θ ( f ) = ∂ θ + ∂ θ + θ ∧ θ = ∂ θ (3.3.16)

This identity follows from ∂ θ + θ ∧ θ = 0, which is identically true for the
canonical connection (3.3.13). Component-wise the curvature 2-form is given by

Θ I
J = ∂ i

(
hI K �

∂ j hK � J
)
dzi ∧ dz j (3.3.17)

For the case of the Levi-Civita connection defined in Eq. (3.3.15) we find

Γ i
j = Γ i

k j dz
k

Γ i
k j = −gi�

∗
(∂ j gk�∗)

Γ i∗
j∗ = Γ i∗

k∗ j∗dz
k∗

Γ i∗
k∗ j∗ = −gi

∗�(∂ j∗gk∗�) (3.3.18)

for the connection coefficients and
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Ri
j = Ri

jk∗�dz
k∗ ∧ dz�

Ri
jk∗� = ∂k∗Γ i

j�

Ri∗
j∗ = Ri∗

j∗k�∗dzk ∧ dz�∗

Ri∗
j∗k�∗ = ∂kΓ

i∗
j∗�∗ (3.3.19)

for the curvature 2-form. The Ricci tensor has a remarkable simple expression:

Rn
m∗ = Ri

m∗n i = ∂m∗Γ i
ni = ∂m∗∂n ln (

√
g) (3.3.20)

where g = det |gαβ | = (det |gi j∗ |)2.

3.4 Characteristic Classes and Elliptic Complexes

The cohomology2 of differential forms on differentiablemanifolds is named deRham
cohomology.3 There aremore general constructions of the same type. They are named
elliptic complexes.

Elliptic complexes are associated with fibre-bundles and their general definition
is provided below. To each elliptic complex we can associate a topological number
that is named its index. On its turn the index of a complex can be calculated as the
integral of certain polynomials in the curvature 2-forms of the connection that can
be introduced on the corresponding principle bundle. These polynomials are named
characteristic classes.

More precisely characteristic classes are maps from the ring I �(G) of invariant
polynomials on the Lie algebra G of the structural group of the bundle to the de
Rham cohomology ring H �(M ) of its base manifold. They provide an intrinsic
way of measuring the twisting, or deviation from triviality, of a fibre bundle. They
are also an essential ingredient of the index theorems that express the difference of
zero modes of an elliptic operator minus its adjoint precisely in terms of integrals
of characteristic classes. Index theorems play a fundamental role in many physical
problems. Characteristic classes are also needed in the definition of special geome-
tries that we later consider. For this reason we devote the present section to their
general discussion.

We begin by recalling the notion of de Rham cohomology groups. The differ-
ential forms of degree r on a k-dimensional manifold M are sections of a vector
bundle, namely of the completely antisymmetrized tensor product Λr (T �M ) of the
cotangent bundle T �M , r times with itself. We name Ωr = Γ (M ,Λr (T �M )) the

2For a pedagogical short introduction to cohomology theory I refer the reader to my book [6], Vol
1, Chap.2.
3The development of de Rham cohomology and of characteristic classes is historically reviewed in
the twin book to this one [1], within the general frame of the evolution of geometry in the XXth
century.

http://dx.doi.org/10.1007/978-3-319-74491-9_2
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space of sections of this bundle, namely the space of r -forms. The exterior derivative
d provides a sequence of maps di :

Ω0(M )
d0−→ Ω1(M )

d1−→ · · · dk−2−→ Ωk−1(M )
dk−1−→ Ωk(M )

dk−→ 0 (3.4.1)

where dr is the exterior derivative acting on r -forms and producing r + 1-forms as
a result. The property of the exterior derivative d2 = 0 implies that

di di+1 = 0 ∀ i = 0 , . . . , k (3.4.2)

What we have just described is named the de Rham complex and provides the first
and most prominent example of an elliptic complex. More generally we have

Definition 3.4.1 An elliptic complex (E�, D) is a sequence of vector bundles
Ei

πi−→ M constructed over the same base manifold and a sequence of Fred-
holm operators Di mapping the sections of the ith bundle into those of the (i+1)th
bundle:

Γ (M , E0)
D0−→ Γ (M , E1)

D1−→ · · · Dk−2−→ Γ (M , Ek−1)
Dk−1−→ Γ (M , Ek)

Dk−→ 0
(3.4.3)

such that
Di Di+1 = 0 ∀ i = 0 , . . . , k (3.4.4)

A Fredholm operator is a differential operator of elliptic type with finite kernel and
cokernel, as we discuss below. To each elliptic complex and to the de Rham complex
in particular we can attach the notion of cohomology groups. The i th cohomology
group is defined as follows:

Hi
(
E� , M

) = ker Di

Im Di−1
(3.4.5)

It is the space of sections of the i th bundle Ei satisfying Di s = 0, modulo those of
the form s = Di−1 s

′
. In the de Rham complex Hr (Ω�(M )) is the space of closed

r -forms modulo exact forms. For any Fredholm operator Di appearing in the elliptic
complex (3.4.3) we denote D†

i its adjoint, which is defined by

D†
i : Γ (M , Ei+1) → Γ (M , Ei )

(s ′, Dis)Ei+1 = (D†
i s

′, s)Ei (3.4.6)

where s ∈ Γ (M , Ei ), s ′ ∈ Γ (M , Ei+1) and ( , )E denotes the fibre metric in the
specified fibre. The laplacian operator is defined by

Δi : Γ (M , Ei ) → Γ (M , Ei )

Δi ≡ Di−1D
†
i−1 + D†

i Di (3.4.7)
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The cohomology group Hi (E∗,M ) is isomorphic to the kernel of the operator Δi ,
so that we have

dimHi (E∗, D) = dimHarmi (E∗, D) (3.4.8)

where by Harmi (E∗, D) we denote the vector space spanned by sections hi ∈
Γ (M , Ei ) which satisfy

Δi hi = 0 . (3.4.9)

Given a section si ∈ Γ (M , Ei ) we can write the Hodge decomposition:

si = Disi−1 + D†
i si+1 + hi (3.4.10)

where si±1 ∈ Γ (M , Ei ).

Definition 3.4.2 Given an elliptic complex (E∗, D) we define the index of this
complex by

ind (E∗, D) =
∑

(−)idim Hi (E∗, D) =
∑

(−)idim kerΔi (3.4.11)

Equation (3.4.11), when specialized to the de Rham complex, gives the Euler char-
acteristic of the base manifold:

ind d =
∑

(−)idimHi (E∗, d) ≡ χ(M ) =
∑

(−)i bi (3.4.12)

where bi is the i th Betti number, equal, by definition, to the number of linearly
independent harmonic i-forms. For a generic Fredholm operator D : Γ (M , E) →
Γ (M , F) we can define the analytical index of D as

indD = dim kerD − dim cokerD (3.4.13)

To show the relation between Eqs. (3.4.11) and (3.4.13), we have to resume our
discussion on Fredholm operators. Let D : Γ (M , E) → Γ (M , F) be an elliptic
operator. The kernel of D is the following set of sections:

kerD = {s ∈ Γ (M , E)|Ds = 0} . (3.4.14)

We define the cokernel of D by

cokerD = Γ (M , F)

ImD
(3.4.15)

We now state without proof the following theorem:

Theorem 3.4.1 Let D : Γ (M , E) → Γ (M , F) be a Fredholm operator. Then

cokerD ∼ kerD† (3.4.16)
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Using Theorem3.4.1 we immediately rewrite Eq. (3.4.11) as

indD = dim ker D − dim ker D† (3.4.17)

Consider now the one-operator complex Γ (M , E)
D→ Γ (M , F), which can also

be written as
0

i→ Γ (M , E)
D→ Γ (M , F)

φ→ 0 (3.4.18)

where i is the inclusion map (defined by i(0) = 0), and φ is a map from a generic
section in Γ (M , F) into 0. Using Eq. (3.4.11) for the complex (3.4.18) we find

dim ker D − [dim Γ (M , F) − dim ImD] = dim ker D − dim coker D (3.4.19)

The above equation shows the simple relation between the analytical index (3.4.13)
and the index of the elliptic complex (3.4.11). Equation (3.4.13) provides an easy
formula that is always recalled in physical literature. Moreover, given an elliptic
complex, it is always possible to construct a Fredholm operator whose analytical
index coincides with the index of the complex (E∗, D). Indeed if we define

E+ = ⊕i E2i , E− = ⊕i E2i+1 (3.4.20)

which are respectively called the even and the odd bundles and we consider the
operators

D ≡ ⊕i (D2i + D†
2i−1) D† ≡ ⊕i (D2i+1 + D†

2i ) (3.4.21)

we easily verify that

D : Γ (M , E+) → Γ (M , E−)

D : Γ (M , E−) → Γ (M , E+) (3.4.22)

Next, if we define

Δ+ ≡ D†D = ⊕iΔ2i Δ− ≡ DD† = ⊕iΔ2i+1 (3.4.23)

then we have

ind(E±, D) = dim kerΔ+ − dim kerΔ− =
∑

(−)idim kerΔi = ind(E∗, D)

(3.4.24)
In general the index of an elliptic complex can be expressed by an integral over M
of suitable characteristic classes. At the beginning of the present section we have
defined characteristic classes as maps from the ring of invariant polynomials on the
Lie algebra of the structural group to the de Rham cohomology group ring of the
base manifold. Let us now go a little deeper on the meaning of this definition. Let
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M (k, C) be the set of complex k×k matrices.We denote by Sr (M (k, C)) the vector
space of symmetric r -linear C-valued functions on M (k, C). A map

P̂ : ⊗rM (k, C) → C (3.4.25)

belongs to Sr (M (k, C)) if it satisfies, in addition to linearity in each entry, the
symmetry

P̂(a1, . . . , ai , . . . , a j , . . . .ar ) = P̂(a1, . . . , a j , . . . , ai , . . . , ar ) ∀i, j ≤ r
(3.4.26)

Consider now the formal sum

S∗(M (k, C)) = ⊕∞
0 Sr (M (k, C)) (3.4.27)

and define a product of P̂ ∈ Sp(M (k, C)) and Q̂ ∈ Sq(M (k, C)) by

P̂ · Q̂(a1, . . . , ap+q) = 1

(p + q)!
∑
P

P̂(aP(1), . . . , aP(p))Q̂(aP(p+1), . . . , aP(p+q))

(3.4.28)
where P denotes the permutation of the set (1, . . . , p + q). S∗(M (k, C)) equipped
with the product (3.4.28) is an algebra. If we now consider a Lie algebra G ∈
M (k, C), and the corresponding simply connected Lie group G = exp [G], in full
analogy with Eqs. (3.4.27) and (3.4.26), we can define the sum S∗(G) = ⊕r≥0Sr (G).
An element P̂(h1, . . . , hr ) ∈ Sr (G) (hi ∈ G) is said to be invariant if, for any g ∈ G,
it satisfies

P̂(g−1h1g, . . . , g
−1hr g) = P̂(h1, . . . , hr ) (3.4.29)

The set of invariant elements of Sr (G) is denoted by I r (G). The product defined in
(3.4.28) induces a natural multiplication

· : I p(G) ⊗ I q(G) → I p+q(G) (3.4.30)

The sum I ∗ = ⊕r≥0 I r (G) equipped with the product (3.4.30) is an algebra. The
diagonal combination P(h) = P(h, . . . , h) containing r -times the element h ∈ G

is a polynomial of degree r , which is said to be an invariant polynomial. Let now
P(M ,G) be a principal bundle that has as structural group a Lie group G with
Lie algebra G. We extend the domain of invariant polynomials from G to G-valued
p-forms onM . We define

P̂(h1ω1, . . . , hrωr ) ≡ ω1 ∧ · · · ∧ ωr P̂(h1, . . . , hr ) (3.4.31)

where hi ∈ G, ωi ∈ Ω pi (M ) (i = 1 . . . r ). The diagonal combination is now given
by

P(hω) = ω ∧ · · · ∧ ω P(h) (3.4.32)
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where the wedge product of ω ∈ Ω p(M ) is repeated r-times in (3.4.32). Consider
now the curvature 2-form Θ associated with a connection in a complex fibre bundle.
In the following we are particularly interested in invariant polynomials of the form
P(Θ). We can state the following theorem (Chern–Weil theorem).

Theorem 3.4.2 Let P(Θ) be an invariant polynomial in the curvature 2-form; then
(i) d P(Θ) = 0
(ii) Let Θ,Θ ′ be curvature 2-forms corresponding to different connections θ, θ ′ on
the fibre bundle. Then the difference P(Θ) − P(Θ ′) is exact.
This theorem proves that an invariant polynomial P(Θ) is closed and in general
non-trivial. We can then associate to P(Θ) a cohomology class of M . Moreover
Theorem3.4.2 ensures that this cohomology class is independent of the chosen con-
nection. The cohomology class defined by P(Θ) is called a characteristic class.
The characteristic class defined by an invariant polynomial P is denoted by χE (P),
where E is the fibre bundle on which curvatures and connections are defined.

Theorem 3.4.3 Let P be an invariant polynomial in I ∗(G) and E be a fibre bundle
over M , whose structural group G has G as Lie algebra. The map

χE : I ∗(G) → H∗(M ) (3.4.33)

defined by P → χE (P) is a homomorphism.

Theorem3.4.3 establishes a homomorphism, called the Chern–Weil homomor-
phism,4 between the ring I ∗(G) and the de Rham cohomology ring H∗(M ), defined
by

H∗(M ) = ⊕r H
r (M ) (3.4.34)

where Hr is the r th cohomolgy group. The Chern–Weil homomorphism is the fun-
damental instrument that allows one to relate the index of an elliptic complex with
the integral of particular characteristic classes, through the so called index theorem
(stated below in Eq. (3.4.56)). Before giving the statement of this theorem, due to
Atiyah and Singer, we list some specific examples of characteristic classes, which
will be useful in the following.

Definition 3.4.3 Given a complex vector bundle E equipped with a connection θ ,
whose fibre isC

r , we can define its total Chern class c(E,Θ) as the following formal
determinant:

c(E,Θ) = det

(
1 + i

2π
Θ

)
(3.4.35)

where Θ is the matrix-valued curvature 2-form.

The determinant is calculated with respect to the matrix indices. As it is well known,
the determinant det (1 + A) is a polynomial in the matrix elements of A and can

4The interesting history of the Chern–Weil homomorphism, independently discovered by the two
great mathematicians in the years of World War II, is reported in the twin book [1].
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be expanded in powers of A. Such an expansion of the total Chern class yields the
definition of the individual Chern classes ck(E,Θ). In particular, if we call x1, . . . xr
the (formal) eigenvaules5 2-forms of the matrix i

2π Θ we easily find

det

(
1 + i

2π
Θ

)
=

r∏
1

(1 + x j ) = 1 + (x1 + · · · + xr ) +

(x1x2 + · · · + xr−1xr ) + · · · + (x1x2 · · · xr ) (3.4.36)

so that, by writing

c(E,Θ) =
r∑

k=0

ck(E,Θ) (3.4.37)

we get

c0 = 1,

c1 = i

2π
tr (Θ) ,

c2 = 1

8π2

[
tr
(
Θ2

) − (trΘ)2
]

...
...

...

cr = det
iΘ

2π
(3.4.38)

where, for a generic form Ω , by Ωn we mean the nth wedge product ∧nΩ . A
remarkable property of the Chern class is the following: given two complex vector

bundles E
π→ M , F

π ′→ M we have

c(E ⊕ F) = c(E) ∧ c(F) (3.4.39)

Definition 3.4.4 Given a rank r vector bundle E
π→ M we define the total Chern

character by

ch(E,Θ) = tr exp

(
iΘ

2π

)
=
∑
l=1

1

l! tr
(
iΘ

2π

) j

(3.4.40)

and the j th Chern character by

5We stress the word “formal eigenvalues” because the correct framework to understand these eigen-
values is the “splitting principle”, which, for convenience, is mentioned after the Eq. (2.7.59).

http://dx.doi.org/10.1007/978-3-319-74491-9_2
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ch j (E,Θ) = 1

j ! tr
(
iΘ

2π

) j

(3.4.41)

From now on, for notational convenience we refer to ch(E,Θ) as ch E or chΘ

indifferently (and similarly for the Chern class c(E,Θ)). In terms of the eigenvectors
x j we get

ch(Θ) =
r∑
j=1

(
1 + x j + 1

2
x2j + · · ·

)
(3.4.42)

so that we can write

ch0(Θ) = r

ch1(Θ) = c1(Θ)

ch2(Θ) = 1

2
[c21(Θ) − 2c2(Θ)] (3.4.43)

Theorem 3.4.4 Let E and F be two vector bundles over a manifold M . The Chern
character of E ⊗ F and E ⊕ F are given by

ch(E ⊗ F) = ch(E) ∧ ch(F)

ch(E ⊕ F) = ch(E) + ch(F) (3.4.44)

Another useful characteristic class associated with a complex vector bundle is the
Todd class defined by

Td(Θ) =
r∏
j=1

x j

1 − e−x j
(3.4.45)

where x j are the eigenvalues of the curvature 2-form i
2π Θ . We obtain

Td(Θ) = 1 + 1

2

∑
j

x j + 1

12
x2j + · · ·

=
∏
j

(
1 + 1

2 x j +
∑
k≥1

(−)k−1 Bk

2k! x
2k
j

)

= 1 + 1

2
c1(Θ) + 1

12
[c21(Θ) + c2(Θ)] + · · · (3.4.46)

where the numbers Bk appearing in Eq. (3.4.46) are the Bernoulli numbers.
Finallywe define theEuler class. The characteristic classes previously introduced

are naturally defined for complex vector bundles. On the other hand the Euler class
can be defined for real vector bundles over an orientable Riemann manifold M . In
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particular it is consistently defined for even rank real bundles, while it is zero for odd
rank bundles. Given a rank k real bundle E it is useful to construct a complex vector
bundle from E by a complexification procedure. The complexification of E is the
bundle over M obtained by replacing the fibres R

k by C
k = (R ⊕ iR)k . We denote

the complexification of E by EC. We can think of EC as the following product

EC = E ⊗ (R ⊕ iR) (3.4.47)

Complex vector bundles can also be complexified by converting them into real vector
bundles and then complexifying the result. If the starting complex bundle has rank
r , its complexification has rank 2r . Notice that, given a complex vector bundle E ,
and denoting by ER the underlying real bundle, we have

EC

R
= ER ⊗ (R + iR) ∼ E ⊕ E (3.4.48)

where E denotes the conjugate complex bundle, defined by applying complex conju-
gation to the coordinates of the fibres C

r of E . Having outlined the complexification
procedure for a real vector bundle, we define the Euler class through another typical
characteristic class defined in real bundles: the Pontrjagin class. Let E be a real vector
bundle of rank r over M , the i th Pontrjagin class is defined as

pi (E) = (−)i c2i (E
C) (3.4.49)

where c2i (EC) is the 2i thChern class of the complexified bundle. The total Pontrjagin
class is defined as

P(E) = 1 + p1(E) + · · · + p[r/2] (3.4.50)

where [r/2] is the largest integer not greater than r . Consider now real vector bundles
E of even rank over an orientable manifold M . The Euler class is defined by

e2(V ) = p[r/2] (3.4.51)

The Euler class of a Whitney sum E ⊕ V is

e(E ⊕ V ) = e(E)e(V ) (3.4.52)

where we denote c(E)c(V ) = c(E) ∧ c(V ). For a complex vector bundle the Pon-
trjagin and the Euler class are the Pontrjagin and the Euler class of the underlying
real bundle. Since the eigenvalues of the curvature 2-form in the conjugate bundle
are given by −xi , we have

c(EC) = c(E ⊕ E) = c(E)c(E) =
r∏

i=1

(1 + xi )(1 − xi ) =
r∏

i=1

(1 − x2i ) (3.4.53)
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so that
cr (E

C) = (−)r x21 · · · x2r (3.4.54)

and (recalling that EC has rank 2r )

pr (E) = x21 · · · x2r
e(E) = x1x2 · · · xr = cr (E) (3.4.55)

We are now able to state the Atiyah–Singer index theorem in its full generality:

Theorem 3.4.5 Given an elliptic complex (E∗, D) over an m-dimensional
(dimRM = m) compact manifold M without a boundary, then

ind(E∗, D) = (−)
m(m+1)

2

∫
M

ch
(⊕ j (−) j E j

) Td(TM C)

e(TM )
(3.4.56)

where TM is the tangent bundle over M .

Let us now consider the application of the index theorem to some particular elliptic
complexes. Consider anm-dimensional compact orientablemanifoldwithout bound-
aries and the elliptic de Rham complex:

· · · d→ Ωr−1(M )C
d→ Ωr (M )C

d→ Ωr+1(M )C
d→ · · · (3.4.57)

withΩr (M )C = Γ (M ,∧r T ∗M C), where we have complexified the forms to apply
the Atiyah–Singer theorem. The analytical index is given by

ind d =
m∑

r=0

(−)rdimCH
r (M , C) =

m∑
r=0

(−)rdim RH
r (M , R) = χ(M ) (3.4.58)

where χ(M ) is the Euler characteristic of M . Suppose M is even dimensional
m = 2l. Equation3.4.56 gives the following result for the de Rham index:

ind d = (−)l(2l+1)
∫
M

ch
(⊕2l

r (−)r ∧r T ∗M C
) TdTM C

e(TM )
(3.4.59)

To compute ch
(⊕m

r (−)r ∧r T ∗M C
)
we employ the splitting principle. The splitting

principle uses the fact that in order to prove an identity for characteristic classes, it is
sufficient to prove it only for bundles which decompose into a sum of line bundles.
Suppose that a fibre bundle F is a Whitney sum of n line bundles Li ; then

∧p F = ⊕1≤i1···i p≤n
(
Li1 ⊗ · · · ⊗ Lip

)
(3.4.60)

This means that
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ch(∧pF) =
∑

1≤i1···i p≤n

ch(Li1)ch(Li2) · · · ch(Lip ) (3.4.61)

Since for any line bundle appearing in the Whitney sum ch(Li ) = exi , we finally get

ch(∧pF) =
∑

1≤i1···i p≤n

exii +···+xi p (3.4.62)

Applying this result to ⊕m
r (−)r ∧r T ∗M C, and using the fact that taking the dual

bundle merely changes the sign of xi we get

ch ⊕m
r (−)r ∧r T ∗M C =

m∏
i=1

(1 − e−xi )(TM C) (3.4.63)

Moreover we can write

Td(TM C) =
m∏
i=1

xi
1 − e−xi

(TM C) (3.4.64)

Then the index of the de Rham complex is given by

ind d = (−)l
∫
M

∏m
i=1 xi (TM

C)

e(TM )
= (−)l

∫
M

cm(TM C)

e(TM )
=
∫
M

e(TM )

(3.4.65)
where we have used

cm(TM C) = (−)m/2e(TM ⊕ TM ) = (−)l x21 · · · x2m = (−)l e2(TM )

By combining the results for the analytical index and for the Atiyah–Singer index
(often referred to as the topological index), we get the Gauss–Bonnet theorem

∫
M

e(TM ) = χ(M ) (3.4.66)

Form odd, the deRham index is zero. Let us consider now the application of the index
theorem to the Dolbeault complex, which we are going to define below. Consider a
complexmanifoldM with dimCM = m. We denote by T (1,0)M the tangent bundle
spanned by the vectors {∂/∂zμ} and by T (0,1)M its complex conjugate. The space
dual to T (1,0)M is spanned by the 1-forms {dzμ}. We denote it by T ∗(1,0)M . The
space Ωr (M )C of complexified r -forms is decomposed as

Ωr (M )C = ⊕p+q=rΩ
p,q(M ) (3.4.67)
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where by Ω p,q(M ) we denote the space of (p, q) forms. The exterior derivative can
be written as

d = dzμ ∧ ∂

∂zμ
+ dzμ ∧ ∂

∂zμ (3.4.68)

It is immediate to verify that ∂ , ∂ satisfy the following relations:

∂∂ − ∂∂ = ∂2 = ∂
2 = 0 (3.4.69)

Moreover ∂ maps (p, q)-forms into (p + 1, q)-forms and ∂ maps (p, q) forms into
(p, q + 1) forms. Let us consider the sequence

· · · ∂→ Ω(0,q)(M )
∂→ Ω(0,q+1)(M )

∂→ · · · (3.4.70)

This sequence is called theDolbeault complex. It can be shown that (3.4.70) defines
an elliptic complex. The index theorem in this case gives

ind ∂ =
∫
M

ch
(⊕r (−)r ∧r T ∗ (0,1)M

) TdTM C

e(TM )
(3.4.71)

The left hand side of the above equation can be computed using the Eq. (3.4.13), so
that

ind ∂ =
n∑

r=0

(−)r h(0,r) (3.4.72)

where

h(0,r) = dimCH
(0,r)(M ) = dimC

ker∂r

im∂r−1
(3.4.73)

is the complex dimension of the cohomology group H (0,r). The application of theo-
rem (3.4.56) to this case is analogous to the one presented for the de Rham complex
and gives

n∑
r=0

(−)r b(0,r) =
∫
M

Td(T (1,0)M ) (3.4.74)

In the Dolbeault complex the spaceΩ(0,r) can be replaced by a tensor product bundle
Ω(0,r) ⊗ V , where V is a holomorphic vector bundle. In this case we define the
following elliptic complex, named the twisted Dolbeault complex:

· · · ∂V→ Ω(0,q)(M ) ⊗ V
∂V→ Ω(0,q+1)(M ) ⊗ V

∂V→ · · · (3.4.75)

The Atiyah–Singer theorem for this particular complex reduces to the Hirzebruch–
Riemann–Roch theorem:
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ind ∂V =
∫
M

Td (T (1,0)M )ch(V ) (3.4.76)

In the case of complex dimension one, namely dimCM = 1, we get

ind ∂V = 1

2
dimV

∫
M

c1(T
(1,0)M ) +

∫
M

c1(M ) (3.4.77)

Since it can be shown that
∫
M

c1(T
(1,0)M ) =

∫
M

e(TM ) = 2(1 − g) (3.4.78)

where g is the genus of the basemanifold, which in complex dimension one is nothing
but a Riemann surface Σg , in this case we get

ind ∂V = dimV (1 − g) +
∫

Σg

iΘ

2π
(3.4.79)

In the general case of a complexmanifoldM of complexdimensionn, the dimensions

h(p,q) def= dimC H (p,q) (M ) (3.4.80)

of the Dolbeault cohomology groups are named Hodge numbers.

3.5 Kähler Metrics

In the previous sections we have discussed the general notion of hermitian fibre
metrics on holomorphic vector bundles and in particular of hermitian manifold met-
rics defined on the tangent bundle. In this section we introduce the more restricted
concept of Kählerian metrics that plays a fundamental role in many applications.6

The definition of the previous section Definition3.3.2 can also be restated in the
following way: a manifold metric g is a symmetric bilinear scalar valued functional
on Γ (TM ,M ) ⊗ Γ (TM ,M )

g : Γ (TM ,M ) ⊗ Γ (TM ,M ) → C∞(M ) (3.5.1)

In every coordinate system it is represented by the familiar symmetric tensor gαβ(x).
Indeed we have

g(u,w) = gαβu
αwβ (3.5.2)

6For Kähler’s life, his relations with Chern and other outstanding mathematicians and for the
conceptual development of Kähler metrics we refer the reader to the twin book [1].
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where uα,wβ are the components of the vector fields u and w, respectively. In this
language the hermiticity of the manifold metric g can be rephrased in the following
way:

Definition 3.5.1 Let M be a 2n-dimensional manifold with an almost complex
structure J . A metric g on M is called hermitian with respect to J if

g(Ju, Jw) = g(u,w) (3.5.3)

Given a metric g and an almost complex structure J let us introduce the following
differential 2-form K :

K (u,w) = 1

2π
g(Ju,w) (3.5.4)

The components Kαβ of K are given by

Kαβ = gγβ J
γ
α (3.5.5)

and by direct computation we can easily verify that:

Theorem 3.5.1 g is hermitian if and only if K is anti-symmetric.

Definition 3.5.2 A hermitian almost complex manifold is an almost complex man-
ifold endowed with a hermitian metric g.

In a well-adapted basis we can write

g(u,w) = gi j u
iw j + gi∗ j∗u

i∗w j∗ + gı j∗u
iw j∗ + gi∗ j u

iw j∗ (3.5.6)

Reality of g(u,w) implies

gi j = (gi∗ j∗)
∗

gi∗ j = (
gi j∗

)�
(3.5.7)

symmetry (g(u,w) = g(w, u)) yields

gi j = g ji

g j∗i = gi j∗ (3.5.8)

while the hermiticity condition gives

gi j = gi∗ j∗ = 0 (3.5.9)

Finally in the well-adapted basis the 2-form K associated to the hermitian metric g
can be written as

K = i

2π
gi j�dz

i ∧ dz j
∗

(3.5.10)
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Definition 3.5.3 A hermitian metric on a complex manifold M is called a Kähler
metric if the associated 2-form K is closed:

dK = 0 (3.5.11)

A hermitian complex manifold endowed with a Kähler metric is called a Kähler
manifold.

Equation (3.5.11) is a differential equation for gi j∗ whose general solution in any
local chart is given by the following expression:

gi j∗ = ∂i∂ j∗K (3.5.12)

whereK = K ∗ = K (z, z∗) is a real function of zi , zi∗ . The function K is called
theKähler potential and it is defined only up to the real part of a holomorphic function
f (z). Indeed one sees that

K ′(z, zi
∗
) = K (z, zi

∗
) + f (z) + f ∗(z∗) (3.5.13)

give rise to the same metric gi j∗ as K . The transformation (3.5.13) is called a
Kähler transformation. The differential geometry of a Kähler manifold is described
by Eqs. (3.3.18) and (3.3.19) with gi j∗ given by (3.5.12). Kähler geometry is that
implied by N = 1 supersymmetry for the scalar multiplets [7].

3.6 Hypergeometry

Next we turn our attention to the geometry that emerges when the manifold admits
three complex structures satisfying the quaternionic algebra first discovered by
Hamilton. To this effect the prerequisite is that the dimension of the manifold should
be a multiple of 4. This is precisely what happens in supersymmetry when we con-
sider the so called N = 2 hypermultiplets. Each of them contains 4 real scalar
fields and, at least locally, they can be regarded as the four components of a quater-
nion. The locality caveat is, in this case, very substantial because global quaternionic
coordinates can be constructed only occasionally even on those manifolds that are
denominated quaternionic in the mathematical literature [2, 3]. Anyhow, what is
important is that, in the hypermultiplet sector, the scalar manifold QM has dimen-
sion multiple of four:

dimR QM = 4m ≡ 4 # of hypermultiplets (3.6.1)

and, in some appropriate sense, it has a quaternionic structure.
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We name Hypergeometry that pertaining to the hypermultiplet sector, irrespec-
tivelywhetherwe dealwith global or localN = 2 theories. Yet there are two kinds of
hypergeometries. Supersymmetry requires the existence of a principal SU(2)-bundle

SU −→ QM (3.6.2)

The bundle SU is flat in the rigid supersymmetry case while its curvature is pro-
portional to the Kähler forms in the local case.

These two versions of hypergeometry were already known in mathematics prior
to their use [2–5, 8–10] in the context of N = 2 supersymmetry and are identified
as:

rigid hypergeometry ≡ HyperKähler geometry.

local hypergeometry ≡ Quaternionic Kähler geometry (3.6.3)

3.6.1 Quaternionic Kähler, Versus HyperKähler Manifolds

Both a Quaternionic Kähler or a HyperKähler manifold QM is a 4m-dimensional
real manifold endowed with a metric h:

ds2 = huv(q)dqu ⊗ dqv ; u, v = 1, . . . , 4m (3.6.4)

and three complex structures

(J x ) : T (QM ) −→ T (QM ) (x = 1, 2, 3) (3.6.5)

that satisfy the quaternionic algebra

J x J y = −δxy 11 + εxyz J z (3.6.6)

and respect to which the metric is hermitian:

∀X,Y ∈ TQM : h
(
J xX, J xY

) = h (X,Y) (x = 1, 2, 3) (3.6.7)

From Eq. (3.6.7) it follows that one can introduce a triplet of 2-forms

K x = K x
uvdq

u ∧ dqv ; K x
uv = huw(J x )wv (3.6.8)

that provides the generalization of the concept of Kähler form occurring in the com-
plex case. The triplet K x is named theHyperKähler form. It is an SU(2) Lie-algebra
valued 2-form in the same way as the Kähler form is a U(1) Lie-algebra valued
2-form. In the complex case the definition of Kähler manifold involves the statement
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that the Kähler 2-form is closed. At the same time in Hodge–Kähler manifolds the
Kähler 2-form can be identified with the curvature of a line-bundle which in the case
of rigid supersymmetry is flat. Similar steps can be taken also here and lead to two
possibilities: either HyperKähler or Quaternionic Kähler manifolds.

Let us introduce a principal SU(2)-bundle SU as defined in Eq. (3.6.2). Let
ωx denote a connection on such a bundle. To obtain either a HyperKähler or a
Quaternionic Kähler manifold we must impose the condition that the HyperKähler
2-form is covariantly closed with respect to the connection ωx :

∇K x ≡ dK x + εxyzωy ∧ K z = 0 (3.6.9)

The only difference between the two kinds of geometries resides in the structure of
theSU -bundle.

Definition 3.6.1 A HyperKähler manifold is a 4m-dimensional manifold with the
structure described above and such that the SU -bundle is flat

Defining theSU -curvature by:

Ω x ≡ dωx + 1

2
εxyzωy ∧ ωz (3.6.10)

in the HyperKähler case we have:

Ω x = 0 (3.6.11)

Viceversa

Definition 3.6.2 A Quaternionic Kähler manifold is a 4m-dimensional manifold
with the structure described above and such that the curvature of theSU -bundle is
proportional to the HyperKähler 2-form

Hence, in the quaternionic case we can write:

Ω x = λ K x (3.6.12)

where λ is a non vanishing real number.
As a consequence of the above structure the manifoldQM has a holonomy group

of the following type:

Hol(QM ) = SU(2) ⊗ H (Quaternionic Kähler)

Hol(QM ) = 11 ⊗ H (HyperKähler)

H ⊂ Sp(2m, R) (3.6.13)

In both cases, introducing flat indices {A, B,C = 1, 2}{α, β, γ = 1, . . . , 2m} that
run, respectively, in the fundamental representation of SU(2) and of Sp(2m, R), we
can find a vielbein 1-form
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U Aα = U Aα
u (q)dqu (3.6.14)

such that
huv = U Aα

u U Bβ
v CαβεAB (3.6.15)

where Cαβ = −Cβα and εAB = −εBA are, respectively, the flat Sp(2m) and Sp(2) ∼
SU(2) invariant metrics. The vielbein U Aα is covariantly closed with respect to
the SU(2)-connection ωz and to some Sp(2m, R)-Lie Algebra valued connection
Δαβ = Δβα:

∇U Aα ≡ dU Aα + i

2
ωx (εσxε

−1)AB ∧ U Bα

+ Δαβ ∧ U Aγ
Cβγ = 0 (3.6.16)

where (σ x ) B
A are the standard Pauli matrices. FurthermoreU Aα satisfies the reality

condition:
UAα ≡ (U Aα)∗ = εABCαβU

Bβ (3.6.17)

Equation (3.6.17) defines the rule to lower the symplectic indices by means of the flat
symplectic metrics εAB and Cαβ . More specifically we can write a stronger version
of Eq. (3.6.15) [7]:

(U Aα
u U Bβ

v + U Aα
v U Bβ

u )Cαβ = huvε
AB

(3.6.18)

We have also the inverse vielbein U u
Aα defined by the equation

U u
AαU

Aα
v = δuv (3.6.19)

Flattening a pair of indices of the Riemann tensor Ruv
ts we obtain

Ruv
tsU

αA
u U βB

v = − i

2
Ω x

tsε
AC(σx )

B
C C

αβ + R
αβ
ts εAB (3.6.20)

where R
αβ
ts is the field strength of the Sp(2m) connection:

dΔαβ + Δαγ ∧ Δδβ
Cγ δ ≡ R

αβ = R
αβ
ts dq

t ∧ dqs (3.6.21)

Equation (3.6.20) is the explicit statement that the Levi Civita connection associated
with the metric h has a holonomy group contained in SU(2) ⊗ Sp(2m). Consider
now Eqs. (3.6.6), (3.6.8) and (3.6.12). We easily deduce the following relation:

hst K x
us K

y
tw = −δxyhuw + εxyz K z

uw (3.6.22)
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that holds true both in the HyperKähler and in the quaternionic case. In the latter
case, using Eqs. (3.6.12), (3.6.22) can be rewritten as follows:

hstΩ x
usΩ

y
tw = −λ2δxyhuw + λεxyzΩ z

uw (3.6.23)

Equation (3.6.23) implies that the intrinsic components of the curvature 2-form Ω x

yield a representation of the quaternion algebra. In the HyperKähler case such a
representation is provided only by the HyperKähler form. In the quaternionic case
we can write:

Ω x
Aα,Bβ ≡ Ω x

uvU
u
AαU

v
Bβ = −iλCαβ(σx )

C
A εCB (3.6.24)

Alternatively Eq. (3.6.24) can be rewritten in an intrinsic form as

Ω x = −i λCαβ(σx )
C

A εCBU
αA ∧ U βB (3.6.25)

whence we also get:
i

2
Ω x (σx )

B
A = λUAα ∧ U Bα (3.6.26)

3.7 Moment Maps

The conception of moment maps has its root in Hamiltonian mechanics where the
time-derivative of any dynamical variable can be represented by the Poisson bracket
of that variable with the hamiltonian. More generally the action of any vector field
t on functions defined over the phase-space M can be represented as the Poisson
bracket of that function with a generalized hamiltonianHt which is associated with
the vector field:

t ≡ t i (p, q)
∂

∂qi
+ ti (p, q)

∂

∂pi
t f(p, q) = {f , Ht} (3.7.1)

The moment map is the map:

μ : Γ [TM ,M ] → C [M ]

μ[t] = Ht (3.7.2)

which to every vector field associates its proper hamiltonian.
In the present geometrical context, conceptually very much different from that

of dynamical systems which are of no concern to us in this book, the focus is on
the moment-maps of Killing vectors, associated with isometries of the manifoldM .
The symplectic structure which allows for the definition of Poisson-like brackets is
provided by the presence of the complex-structure leading to closed or covariantly
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closed 2-forms, theKähler or theHyperKähler ones. Our generalized hamiltonians or
simply moment-maps have another important role to play. On one hand they appear
as constructive items in supergravity lagrangians with gauge-symmetries, on the
other, purely mathematical side, they are the building blocks in a general procedure,
the Kähler or HyperKähler quotient which allows to construct non trivial Kähler or
HyperKähler manifolds starting from simple trivial ones.

In Chap.8 we plan to exemplify such constructions with the derivation of ALE-
manifolds by means of HyperKḧaler quotients. Here we just begin with the general
definitions of holomorphic and tri-holomorphic moment maps.

3.7.1 The Holomorphic Moment Map on Kähler Manifolds

The concept of holomorphic moment map applies to all Kähler manifolds, not nec-
essarily special. Indeed it can be constructed just in terms of the Kähler potential
without advocating any further structure. In this subsection we review its properties
and definition, as usual in order to fix conventions, normalizations and notations.

Let gi j� be the Kähler metric of a Kähler manifoldM and let us assume that gi j�
admits a non trivial group of continuous isometries G generated by Killing vectors kiI
(I = 1, . . . , dim G ) that define the infinitesimal variation of the complex coordinates
zi under the group action:

zi → zi + εIkiI(z) (3.7.3)

Let kiI(z)be abasis of holomorphicKillingvectors for themetric gi j� .Holomorphicity
means the following differential constraint:

∂ j∗k
i
I(z) = 0 ↔ ∂ j k

i∗
I (z) = 0 (3.7.4)

while the generic Killing equation (suppressing the gauge index I):

∇μkν + ∇μkν = 0 (3.7.5)

in holomorphic indices reads as follows:

∇i k j + ∇ j ki = 0 ; ∇i∗k j + ∇ j ki∗ = 0 (3.7.6)

where the covariant components are defined as k j = g ji∗ki
∗
(and similarly for ki∗ ).

The vectors kiI are generators of infinitesimal holomorphic coordinate transfor-
mations δzi = εIkiI(z) which leave the metric invariant. In the same way as the
metric is the derivative of a more fundamental object, the Killing vectors in a Kähler
manifold are the derivatives of suitable prepotentials. Indeed the first of Eq. (3.7.6)
is automatically satisfied by holomorphic vectors and the second equation reduces
to the following one:

http://dx.doi.org/10.1007/978-3-319-74491-9_8
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kiI = igi j
∗
∂ j∗PI, P∗

I = PI (3.7.7)

In other words if we can find a real functionPI such that the expression igi j
∗
∂ j∗P(I)

is holomorphic, then Eq. (3.7.7) defines a Killing vector.
The construction of the Killing prepotential can be stated in a more precise geo-

metrical fashion through the notion of moment map. Let us review this construction.
Consider a Kählerian manifold M of real dimension 2n. Consider an isometry

group G acting on M by means of Killing vector fields
−→
X which are holomorphic

with respect to the complex structure J ofM ; then these vector fields preserve also
the Kähler 2-form

L−→
X g = 0 ↔ ∇(μXν) = 0

L−→
X
J = 0

}
⇒ 0 = L−→

X K = i−→X dK + d(i−→X K ) = d(i−→X K )

(3.7.8)
HereL−→

X and i−→X denote respectively the Lie derivative along the vector field
−→
X and

the contraction (of forms) with it.
If M is simply connected, d(i−→X K ) = 0 implies the existence of a function P−→

X
such that

− 1

2
dP−→

X
= i−→

X
K (3.7.9)

The function P−→
X
is defined up to a constant, which can be arranged so as to make

it equivariant: −→
X P−→

Y = P[−→X ,
−→
Y ] (3.7.10)

P−→
X
constitutes then a moment map. This can be regarded as a map

P : M −→ R ⊗ G
∗ (3.7.11)

where G
∗ denotes the dual of the Lie algebra G of the group G . Indeed let x ∈ G

be the Lie algebra element corresponding to the Killing vector
−→
X ; then, for a given

m ∈ M
μ(m) : x −→ P−→

X
(m) ∈ R (3.7.12)

is a linear functional on G. If we expand
−→
X = aIkI in a basis of Killing vectors kI

such that
[kI, kL] = f K

IL kK (3.7.13)

we have also
P−→

X = aIPI (3.7.14)

In the following we use the shorthand notation LI, iI for the Lie derivative and the
contraction along the chosen basis of Killing vectors kI.
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From a geometrical point of view the prepotential, or moment map, PI is the
Hamiltonian function providing the Poissonian realization of the Lie algebra on the
Kähler manifold. This is just another way of stating the already mentioned equivari-
ance. Indeed the very existence of the closed 2-form K guarantees that every Kähler
space is a symplectic manifold and that we can define a Poisson bracket.

Consider Eq. (3.7.7). To every generator of the abstract Lie algebra G we have
associated a function PI on M ; the Poisson bracket of PI with PJ is defined as
follows:

{PI,PJ} ≡ 4πK (I, J) (3.7.15)

where K (I, J) ≡ K (kI,kJ) is the value of K along the pair of Killing vectors.
In Ref. [4] the following lemma was proved:

Lemma 3.1 The following identity is true:

{PI,PJ} = f L
IJ PL + CIJ (3.7.16)

where CIJ is a constant fulfilling the cocycle condition

f L
IM CLJ + f L

MJCLI + f L
JI CLM = 0 (3.7.17)

If the Lie algebra G has a trivial second cohomology group H 2(G) = 0, then the
cocycle CIJ is a coboundary; namely we have

CIJ = f L
IJ CL (3.7.18)

where CL are suitable constants. Hence, assuming H 2(G) = 0 we can reabsorb CL

in the definition of PI:
PI → PI + CI (3.7.19)

and we obtain the stronger equation

{PI,PJ} = f L
IJ PL (3.7.20)

Note that H 2(G) = 0 is true for all semi-simple Lie algebras. Using Eqs. (3.7.16),
(3.7.20) can be rewritten in components as follows:

i

2
gi j∗(k

i
Ik

j∗
J − kiJk

j∗
I ) = 1

2
f L
IJ PL (3.7.21)

Equation (3.7.21) is identical with the equivariance condition in Eq. (3.7.10).
Finally let us recall the explicit general way of solving Eq. (3.7.9) obtaining the

real valued function PI which satisfies Eq. (3.7.7). In terms of the Kähler potential
K we have:

PI
x = − i

2

(
kiI∂iK − kıI∂ıK

) + Im( fI) , (3.7.22)
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where fI = fI(z) is a holomorphic transformation on the line-bundle, defining a
compensating Kähler transformation:

kiI∂iK + kıI∂ıK = − fI(z) − f I(z) . (3.7.23)

3.7.2 The Triholomorphic Moment Map on Quaternionic
Manifolds

Next, following closely the original derivation of [4, 11] let us turn to a discussion of
the triholomorphic isometries of the manifoldQM associated with hypermultiplets.
In D = 4 supergravity the manifold of hypermultiplet scalarsQM is a Quaternionic
Kählermanifold andwe can gauge only those of its isometries that are triholomorphic
and that either generate an abelian group G or are suitably realized as isometries also
on the special manifold ŜK n . This means that on QM we have Killing vectors:

kI = kuI
∂

∂qu
(3.7.24)

satisfying the same Lie algebra as the corresponding Killing vectors on ŜK n . In
other words

KI = k̂iI∂ i + k̂i
∗
I ∂ i∗ + kuI ∂u (3.7.25)

is a Killing vector of the block diagonal metric:

g =
(
ĝi j� 0
0 huv

)
(3.7.26)

defined on the product manifold7 ŜK ⊗ QM .
Let us first focus on the manifoldQM . Triholomorphicity means that the Killing

vector fields leave the HyperKähler structure invariant up to SU(2) rotations in the
SU(2)-bundle defined by Eq. (3.6.2). Namely:

LIK x = εxyz K yW z
I ; LIω

x = ∇Wx
I (3.7.27)

7SpecialKähler geometrywill be discussed inChap.4, yetwe anticipate here that it is the geometrical
structure imposed by N = 2 supersymmetry on the scalars belonging to vector multiplets (the
scalar partners of the gauge vectors). In our notations the Special Kähler manifold which describes
the interaction of vector multiplets is denoted ŜK and all the Special Geometry Structures are
endowed with a hat in order to distinguish this Special Kähler manifold from the other one which is
incapsulated into the Quaternionic Kähler manifoldQM describing the hypermultiplets when this
latter happens to be in the image of the c-map. For all these concepts we refer the reader to Chap. 4.
They are not necessary to understand the present constructions, yet they were essential part for their
establishment in the original papers mentioned here above.

http://dx.doi.org/10.1007/978-3-319-74491-9_4
http://dx.doi.org/10.1007/978-3-319-74491-9_4
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where Wx
I is an SU(2) compensator associated with the Killing vector kuI . The com-

pensator Wx
I necessarily fulfills the cocycle condition:

LIW
x
J − LJW

x
I + εxyzW y

I W
z
J = f ··L

IJ Wx
L (3.7.28)

In the HyperKähler case the SU(2)-bundle is flat and the compensator can be reab-
sorbed into the definition of the HyperKähler forms. In other words we can always
find a map

QM −→ Lx
y(q) ∈ SO(3) (3.7.29)

that trivializes the SU -bundle globally. Redefining:

K x ′ = Lx
y(q) K y (3.7.30)

the new HyperKähler form obeys the stronger equation:

LIK
x ′ = 0 (3.7.31)

On the other hand, in the quaternionic case, the non-triviality of the SU -bundle
forbids to eliminate theW -compensator completely.Due to the identificationbetween
HyperKähler forms and SU(2) curvatures Eq. (3.7.27) is rewritten as:

LIΩ
x = εxyzΩ yW z

I ; LIω
x = ∇Wx

I (3.7.32)

In both cases, anyhow, and in full analogy with the case of Kähler manifolds, to each
Killing vector we can associate a triplet P x

I (q) of 0-form prepotentials. Indeed we
can set:

iIK x = −∇P x
I ≡ −(dP x

I + εxyzωyP z
I ) (3.7.33)

where ∇ denotes the SU(2) covariant exterior derivative.
As in the Kähler case Eq. (3.7.33) defines a moment map:

P : M −→ R
3 ⊗ G

∗ (3.7.34)

where G
∗ denotes the dual of the Lie algebra G of the group G . Indeed let x ∈ G

be the Lie algebra element corresponding to the Killing vector
−→
X ; then, for a given

m ∈ M
μ(m) : x −→ P−→

X (m) ∈ R
3 (3.7.35)

is a linear functional on G . If we expand
−→
X = aIkI on a basis of Killing vectors kI

such that
[kI, kL] = f K

IL kK (3.7.36)

and we also choose a basis ix (x = 1, 2, 3) for R
3 we get:



132 3 Complex and Quaternionic Geometry

P−→
X

= aIP x
I ix (3.7.37)

Furthermore we need a generalization of the equivariance defined by Eq. (3.7.10)

−→
X ◦ P−→

Y
= P[−→X ,

−→
Y ] (3.7.38)

In the HyperKähler case, the left-hand side of Eq. (3.7.38) is defined as the usual
action of a vector field on a 0-form:

−→
X ◦ P−→

Y = i−→X dP−→
Y = Xu ∂

∂qu
P−→

Y (3.7.39)

The equivariance condition implies that we can introduce a triholomorphic Poisson
bracket defined as follows:

{PI,PJ}x ≡ 2K x (I, J) (3.7.40)

leading to the triholomorphic Poissonian realization of the Lie algebra:

{PI,PJ}x = f KIJ P
x
K (3.7.41)

which in components reads:

K x
uv k

u
I k

v
J = 1

2
f KIJ P

x
K (3.7.42)

In the quaternionic case, instead, the left-hand side of Eq. (3.7.38) is interpreted as
follows: −→

X ◦ P−→
Y = i−→X ∇P−→

Y = Xu ∇u P−→
Y (3.7.43)

where ∇ is the SU(2)-covariant differential. Correspondingly, the triholomorphic
Poisson bracket is defined as follows:

{PI,PJ}x ≡ 2K x(I, J) − λ εxyz P y
I P

z
J (3.7.44)

and leads to the Poissonian realization of the Lie algebra

{PI,PJ}x = f KIJ P
x
K (3.7.45)

which in components reads:

K x
uv k

u
I k

v
J − λ

2
εxyz P y

I P
z
J = 1

2
f KIJ P

x
K (3.7.46)
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Equation (3.7.46), which is the most convenient way of expressing equivariance in a
coordinate basis was originally written in [4] and has played a fundamental role in
the construction of supersymmetric actions for gaugedN = 2 supergravity both in
D = 4 [4, 5] and in D = 5 [12].

3.8 Kähler Surfaces with One Continuous Isometry

As an illustration of the concepts introduced in the previous sections we consider
here a class of very simple manifolds for which a lot of explicit calculations can be
explicitly done, quite non trivial conceptual questions can be addressed and answered.
These are 2-dimensional surfaces endowedwith a one-dimensional continuous group
of isometries Giso. As we advocate below the geometry of such manifolds is com-
pletely encoded in a single positive real function V (φ) of a single real coordinate φ.
We name such a function the potential.8 The main point is that any two-dimensional
Euclidean manifold is actually complex and Kähler. This offers us the possibility of
exemplifying all the structures we have discussed.We have to find the complex struc-
ture, the Kähler form and the Kähler potential. Furthermore since we have a Killing
vector we can construct its moment map. Finally we can calculate the curvature. All
these objects are functions of a single coordinate related with the initial potential
V (φ) and its derivatives. Last but not least we have to decide the topological nature
of the isometry group.

Within this class ofmanifoldswe are able to construct several interesting examples
that hopefully should clarify the non trivial aspects of the geometrical apparatus
developed in previous sections. In particular, sincewe are dealingwith 2-dimensional
surfaces we can visualize them by means of their embedding in three-dimensional
space.

With the above motivations let us consider Riemannian 2-dimensional manifolds
Σ whose metric is the following one:

ds2Σ = p(U ) dU 2 + q(U ) dB2 (3.8.1)

p(U ), q(U ) being two positive definite functions of their argument. The isometry
group of the manifold Σ is generated by the Killing vector k[B] = ∂B .

A fundamental geometrical question is whether k[B] generates a compact rotation
symmetry, or a non compact symmetry either parabolic or hyperbolic. We plan to
discuss this issue in detail in the sequel.

Actually when Σ = Σmax is a constant curvature surface namely the coset
manifold SU(1,1)

U(1) ∼ SL(2,R)

O(2) , there is also a third possibility. In such a situation the
Killing vector k[B] can be the generator of a dilatation, namely it can correspond to

8This name is related with the use of this class of surfaces in supergravity inflationary models as
described in [13–15], yet this is not relevant to us here. In this book our view point is just geometrical.
Most of the material presented in this section was originally worked out in [13–15].
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a non-compact but semi-simple element d =
(
1 0
0 −1

)
of the Lie algebra SL(2, R)

rather then to a nilpotent one t =
(
0 1
0 0

)
.

As all other two-dimensional surfaces, Σ has an underlying complex Kählerian
structure that we can systematically uncover with the methods described in this
chapter. The first step is to determine the complex structure with respect to which
the metric (3.8.1) is hermitian. By definition an almost complex structure is a tensor
Jβ

α which squares to minus the identity:

Jβ
α J

γ

β = − δγ
α (3.8.2)

The almost complex structure Jβ
α becomes a true complex structure if its Nienhuis

tensor vanishes:
N γ

αβ ≡ ∂[α J
γ

β] − Jμ
α Jν

β ∂[μ J
γ

ν] = 0 (3.8.3)

Given a complex structure, a metric gαβ is hermitian with respect to it if the following
identity is true:

gαβ = Jγ
α J

δ
β gγ δ (3.8.4)

Given the metric (3.8.1) there is a unique tensor Jβ
α , which simulatenously satisfies

Eqs. (3.8.2), (3.8.3), (3.8.4) and it is the following:

J =
(

0 JUB
JB
U 0

)
=

⎛
⎝ 0

√
p(U )

q(U )

−
√

q(U )

p(U )
0

⎞
⎠ (3.8.5)

Next, according to theory, the Kähler 2-form is defined by:

K = Kαβ dx
α ∧ dxβ = gαγ J

γ

β dxα ∧ dxβ

= −√
p(U ) q(U ) dU ∧ dB (3.8.6)

and it is clearly closed. Hence the metric (3.8.1) is Kählerian and necessarily admits
a representation in terms of a complex coordinate ζ and a Kähler potentialK (ζ , ζ ).
In terms of the complex coordinate:

ζ = ζ(U, B) (3.8.7)

the Kähler 2-form K in Eq. (3.8.6) should be rewritten as:

K = ∂ ∂ K = ∂ζ ∂ζ K dζ ∧ dζ (3.8.8)

Next one aims at reproducing the Kählerian metric (3.8.1) in terms of a complex
coordinate z = z(U, B) and a Kähler potential K (z , z) = K �(z , z) such that:
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K = i ∂ ∂ K = i∂z ∂z K dz ∧ dz ; ds2Σ = ∂z ∂z K dz ⊗ dz (3.8.9)

The complex coordinate z is necessarily a solution of the complex structure equation:

Jβ
α ∂β z = i∂α z ⇒

√
p(U )

q(U )
∂B z(U, B) = i ∂U z(U, B) (3.8.10)

The general solution of such an equation is easily found. Define the linear combina-
tion9:

w ≡ iC(U ) − B ; C(U ) =
∫ √

p(U )

q(U )
dU (3.8.11)

and consider any holomorphic function f (w). As one can immediately verify, the
position z(U, B) = f (w) solves Eq. (3.8.10). What is the appropriate choice of the
holomorphic function f (w)? Locally (in an open neighborhood) this is an empty
question, since the holomorphic function f (w) simply corresponds to a change of
coordinates and gives rise to the same Kähler metric in a different basis. Globally,
however, there are significant restrictions that concern the range of the variables B
and C(U ), namely the global topology of the manifold Σ . By definition B is the
coordinate that, within Σ , parameterizes points along the GΣ -orbits, having denoted
by GΣ the isometry group. If GΣ is compact, then B is a coordinate on the circle and
it must be defined up to identifications B � B + 2 n π , where n is an integer. On the
other hand if B is non compact its range extends on the full real line R.

Furthermore, it is convenient to choose a canonical variable φ and codify the
geometry of the surface in terms of a single positive potential function V (φ) rewriting
it in the following way:

ds2g = dφ2 +
(
d
√
V (φ)

dφ

)2

︸ ︷︷ ︸
f 2(φ)

dB2 (3.8.12)

Hence we aim at a Kähler potential K (z, z) that in terms of the variables C(U )

and B should actually depend only on C , being constant on the G -orbits. Starting
from the metric (3.8.1) we can always choose a canonical variable φ defined by the
position:

φ = φ(U ) =
∫ √

p(U ) dU ; dφ = √
p(U ) dU (3.8.13)

9As it follows from the present discussion the coordinateC(U ) has an intrinsic geometric character-
ization as that one which solves the differential equation of the complex structure. For the historical
reasons explained in [13–15] we name C the Van Proeyen coordinate, abbreviated VP-coordinate.
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and assuming that φ(U ) can be inverted U = U (φ) we can rewrite (3.8.1) in the
following canonical form:

ds2can = dφ2 + (
P ′(φ)

)2 dB2 ; P ′(φ) = √
q (U (φ)) ; √

p(U (φ))
dU

dφ
= 1

︸ ︷︷ ︸
by construction

(3.8.14)
The reason to call the square root of q (U (φ)) with the nameP ′(φ) is the interpre-
tation of such a function as the derivative with respect to the canonical variable φ of
the moment map of the Killing vector k[B].

By using the canonical variable φ, the coordinate C defined in Eq. (3.8.11)
becomes:

C(φ) = C (U (φ)) =
∫

dφ

P ′(φ)
(3.8.15)

and the metric ds2Σ = ds2can of the Kähler surface Σ can be rewritten as:

ds2Σ = 1
2

d2 J

dC2

(
dC2 + dB2

)
(3.8.16)

where the function J (C) is defined as follows:

J (φ) ≡ 2
∫

P(φ)

P ′(φ)
dφ ; J (C) ≡ J (φ(C)) (3.8.17)

It appears from the above formula that the crucial step in working out the analytic
form of the function J (C) is the ability of inverting the relation between the coor-
dinate C , defined by the integral (3.8.15), and the canonical one φ, a task which,
in the general case, is quite hard in both directions. The indefinite integral (3.8.15)
can be expressed in terms of special functions only in certain cases and even less
frequently one has at his own disposal inverse functions. In any case the problem is
reduced to quadratures and one can proceed further. Having already established in
Eq. (3.8.11) the general solution of the complex structure equations, there are three
possibilities that correspond, in the case of constant curvature manifoldsΣmax , to the
three conjugacy classes of SL(2, R) elements (elliptic, hyperbolic and parabolic). In
the three cases J (C) is identified with the Kähler potential K (z, z), but it remains
to be decided whether the coordinate C is to be identified with the imaginary part
of the complex coordinate, namely C = Im z, with the logarithm of its modulus
C = 1

2 log |z|2, or with a third combination of z and z, namely whether we choose
the first the second or the third of the options listed below:

z =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ζ ≡ exp [− iw] = exp [C(φ)]︸ ︷︷ ︸
ρ(φ)

exp [iB]

t ≡ w = iC(φ) − B

ζ̂ ≡ i tanh
(
− 1

2 w
)

= i tanh
(
− 1

2 (iC(φ) − B)
)

∣∣∣∣∣∣∣∣∣
C(φ) ≡

∫
1

P ′(φ)
dφ

(3.8.18)
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If we choose the first solution z = ζ , that we name name of theDisk-type, we obtain
that the basic isometry generated by the Killing vector k[B] is a compact rotation
symmetry. Choosing the second solution z = t , that we name of Plane-type, is
appropriate instead to the case of a non compact shift symmetry. The third possibility
mentioned above certainly occurs in the case of constant curvature surfacesΣmax and
leads to the interpretation of the B-shift as an SO(1, 1)-hyperbolic transformation.

In Sect. 3.8.5 we recall that the classification of a one dimensional isometry group
as elliptic, parabolic or hyperbolic exists also for non maximally symmetric man-
ifolds and it can be unambiguously formulated for Hadamard manifolds that are,
by definition, simply connected, smooth Riemannian manifolds with a non positive
definite curvature, i.e. R(x) ≤ 0, ∀ x ∈ Σ , having denoted by R(x) the scalar
curvature at the point x .

In the three cases mentioned in Eq. (3.8.18) the analytic form of the holomorphic
Killing vector k[B] is quite different:

k[B] =

⎧⎪⎨
⎪⎩
iζ ∂ζ ≡ kz∂z ⇒ kz = i z ; Disk-type, compact rotation
∂t ≡ kz∂z ⇒ kz = 1 ; Plane-type, non-compact shift

i
(
1 + ζ̂ 2

)
∂
ζ̂

≡ kz∂z ⇒ kz = i
(
1 + z2

)
; Disk-type, hyperbolic boost

(3.8.19)

Choosing the complex structure amounts to the same as introducing one half of the
missing information on the global structure ofΣ , namely the range of the coordinate
B. The other half is the range of the coordinate U or C .

Actually, bymeans of the constant curvature examples, a criterion able to discrim-
inate the relevant topologies is encoded in the asymptotic behavior of the function
∂2
C J (C) for large and small values of its argument, namely in the center of the bulk
and on the boundary of the surface Σ . The main conclusions that we can reach by
considering the case of constant curvature surfaces are those summarized below and
are also encoded in Table3.1:

(I) The global topology of the group GΣ reflects into a different asymptotic behav-
ior of the function ∂2

C J (C) in the region that we can call the origin of themanifold.
In the compact case the complex coordinate z is charged with respect to U(1) and,
for consistency, this symmetry should exist at all orders in an expansion of the
line element ds2Σ for small coordinates. Hence for z → 0 the line element should
approach the canonical one of a flat complex-manifold:

ds2Σ ∝ dz dz (3.8.20)

Assuming, as it is necessary for the U(1) interpretation of the B-shift symmetry,
that z = ζ = exp [δ(C + i B)], where δ is some real coefficient, Eq. (3.8.20)
can be satisfied if and only if we have:

lim
C → − ∞ exp [− 2 δ C] ∂2

C J (C) = const. (3.8.21)
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or more precisely:

∂2
C J (C)

C → − ∞≈ const × exp [ 2 δ C] + subleading

J (C)
C → − ∞≈ const × exp [ 2 δ C] + subleading (3.8.22)

The above stated is an intrinsic clue to establish the global topology of the Käh-
ler surface Σ . In Sect. 3.8.5 we present some rigorous mathematical results that
justify the above criterion to establish the compact nature of the gauged isom-
etry. Indeed what, in heuristic jargon we call the origin of the manifold is, in
rigorous mathematical language, the fixed point for all Γ ∈ GΣ , located in the
interior of the manifold, whose existence is a necessary defining feature of an
elliptic10isometry group G .

(II) The above properties are general and apply to all surfaces of type (3.8.1)–
(3.8.12). In the particular case of constant curvature Kähler surfaces there are
five ways of writing the line-element (3.8.12), two associated with a flat Kähler
manifold and threewith the unique negative curvature two-dimensional symmetric
space SL(2,R)/O(2).

(III) Global topology amounts, at the end of the day, to giving the precise range of
the coordinates C and B labeling the points of Σ . In the five constant curvature
cases these ranges are as follows. In the elliptic and parabolic caseC is in the range
[−∞, 0], while it is in the range [−∞,+∞] for the flat case and it is periodic
in the hyperbolic case. The cooordinate B instead is periodic in the elliptic case,
while it is unrestricted in the hyperbolic and parabolic cases. The manifold Σ in
the flat case with B periodic is just a strip. It is instead the full plane in the flat
parabolic case.

Our goal is to extend the above results to examples where the curvature of the
Kähler surface Σ is not constant. In such examples we will verify the criterion that
singles out the interpretation of the B-shift isometry as a parabolic shift-symmetry.
In all such cases the range of the C coordinate is [−∞, 0]11 or [−∞,∞]. The limit
C → 0 always correspond to a boundary of the Kähler manifold Σ irrespectively
whether the isometry group GΣ is elliptic or parabolic. If the curvature is negative
we always have:

∂2
C J (C)

C → 0≈ const × 1

C2
+ subleading

J (C)
C → 0≈ const × log [C] + subleading (3.8.23)

10Let us stress that this is true for Hadamard manifolds and possibly for CAT(k) manifolds, in
any case for simple connected manifolds. In the presence of a non trivial fundamental group the
presence of a fixed point is not necessary in order to establish the compact nature of the isometry
group.
11Note that [−∞, 0] as range of the C-coordinate is conventional. Were it to be [∞, 0], we could
just replace C → −C which is always possible since the Kähler metric is given by Eq.3.8.16.
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In case the curvature atC = 0 is zero, the gauge group is necessarily parabolic, since
we cannot organize an exponential behavior of J (C) for C → 0. Such exponential
behavior is instead requested by an elliptic isometry, so the only conclusion is that a
limiting zero curvature at a boundary C = 0 can occur only in parabolic models and
there we have:

∂2
C J (C)

C → 0≈ const + subleading

J (C)
C → 0≈ const × C2 + subleading (3.8.24)

In the case of a parabolic structure of the isometry group GΣ , the locus C = −∞ is
always a boundary and not an interior fixed point which does not exist. Differently
from Eq. (3.8.22) the asymptotic behavior of the metric and of the J -function is
either:

∂2
C J (C)

C → − ∞≈ const × 1

C2
+ subleading

J (C)
C → − ∞≈ 1

R∞
× log [C] + subleading (3.8.25)

or

∂2
C J (C)

C → − ∞≈ const + subleading

J (C)
C → − ∞≈ const × C2 + subleading (3.8.26)

The asymptotic behavior (3.8.25) obtains when the limit of the curvature for
C → −∞ is R∞ < 0. On the other hand, the exceptional asymptotic behavior
(3.8.26) occurs when the limit of the curvature for C → −∞ is R∞ = 0. As we
did for the compact case, also for the parabolic case, in Sect. 3.8.5 we present rigor-
ous mathematical arguments that sustain the heuristic criteria (3.8.25) and (3.8.26).
Hence in the case where we deal with a parabolic isometry group, the Kähler poten-
tial has typically two logarithmic divergences one at C = 0, and one at C = −∞,
the two boundaries of the manifold Σ . One logarithm can be replaced by C2 in case
the limiting curvature on the corresponding boundary is zero. In other regions the
behavior of J is different from logarithmic because of the non constant curvature.

Finally we can wonder what is the criterion to single out a hyperbolic characteri-
zation of the isometry group GΣ . A very simple answer arises from the example in
the second line of Table3.1. The hallmark of such isometries is a periodic coordinate
C or anyhow a C that takes values in a finite range [Cmin , Cmax ]. We will present
an example of a non constant curvature Kähler surface with a hyperbolic isometry
in Sect. 3.8.3.

There is still one subtle case of which we briefly discuss an example in Sect. 3.8.2.
As we know there are two versions of flat manifolds, one where the selected isometry
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is a compact U(1) and one where it is a parabolic translation. In both cases the
curvature is zero but in the former case the J (C) function is:

J (C) ∝ exp [δ C] ; elliptic case (3.8.27)

while in the latter case we have

J (C) ∝ C2 ; parabolic case (3.8.28)

Hence the following question arises. For Σ surfaces with a parabolic isometry
group we foresaw the possibility, realized for instance in the example discussed in
Sect. 3.8.4, that the limiting curvature might be zero on one of the boundaries so that
the asymptotic behavior (3.8.25) is replaced by (3.8.26). In a similar way we might
expect that there are elliptic models where the asymptotic behavior at C → ±∞ is:

J (C)
C→±∞≈ exp

[
δ± C

]
(3.8.29)

one of the limits being interpreted as the symmetric fixed point in the interior of
the manifold, the other being interpreted as the boundary on which the curvature
should be zero. In Sect. 3.8.2 we will briefly sketch a model that realizes the above
forseen situation. The corresponding manifold Σ has the topology of the disk. In the
same section, as a counterexample, we consider a case where the same asymptotic
(8.3.56) is realized in presence of an elliptic symmetry, yet C → −∞ no longer
corresponds to an interior point, rather to a boundary. This is due to the non trivial
homotopy group π1(Σ) of the surface which realizes such an asymptotic behavior.
Being non-simply connected such Kähler surface is not a Hadamard manifold and
presents new pathologies from the mathematical stand-point.

So let us turn to the analysis of the curvature.

3.8.1 The Curvature and the Kähler Potential
of the Surface Σ

The curvature of a two-dimensional Kähler manifold with a one-dimensional isom-
etry group can be written in two different ways in terms of the canonical coordinate
φ or the coordinate C . In terms of the coordinate C we have the following formula:

R = R(C) = − 1
2

J
′′′′
(C) − J

′′′
(C)2

J ′′(C)3

= − 1
2 ∂2

C log
[
∂2
C J (C)

] 1

∂2
C J (C)

(3.8.30)

http://dx.doi.org/10.1007/978-3-319-74491-9_8
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which can be derived from the standard structural equations of the manifold 12:

0 = dE1 + ω ∧ E2

0 = dE2 − ω ∧ E1

R ≡ dω ≡ 2 R E1 ∧ E2 (3.8.31)

by inserting into them the appropriate form of the zweibein:

E1 =
√

J ′′(C)

2
dC ; E2 =

√
J ′′(C)

2
dB ⇒ ds2 = 1

2 J ′′(C)
(
dC2 + dB2

)
(3.8.32)

Alternatively we can write the curvature in terms of the moment mapP(φ) or of the
function V (φ) ∝ P2(φ) if we use the canonical coordinateφ and the corresponding
appropriate zweibein:

E1 = dφ ; E2 = P ′(φ) dB ⇒ ds2 =
(
dφ2 + (

P ′(φ)
)2

dB2
)

(3.8.33)
Upon insertion of Eq. (3.8.33) into (3.8.31) we get:

R(φ) = − 1
2

P ′′′(φ)

P ′(φ)
= − 1

2

(
V ′′′

V ′ − 3
2

V ′′

V
− 3

4

(
V ′

V

)2
)

(3.8.34)

The zero curvature and constant curvature cases can be easily analyzed. The general
solution of the equation:

R(φ) = − 1
2 ν2 ≡ − ν̂2 (3.8.35)

can be presented in terms of the moment map P(φ) and of the canonical variable
φ. We have:

P(φ) = a exp(ν φ) + b exp(− ν φ) + c ; a, b, c ∈ R (3.8.36)

In order to convert this solution in terms of the Jordan function J (C) of the coordinate
C , it is convenient to remark that, up to constant shift redefinitions and sign flips of
the canonical variable φ → ±φ + κ , which leave the dφ2 part of the line-element
invariant there are only three relevant cases:

(A) a �= 0, b �= 0 and a/b > 0. In this case, up to an overall constant, we can just
set:

P(φ) = cosh(ν φ) + γ ⇒ V (φ) ∝ (cosh(ν φ) + γ )2 (3.8.37)

12The factor 2 introduced in this equation is chosen in order to have a normalization of what we
name curvature that agrees with the normalization used in several papers of the physical literature.
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(B) a �= 0, b �= 0 and a/b < 0. In this case we can just set:

P(φ) = sinh(ν φ) + γ ⇒ V (φ) ∝ (sinh(ν φ) + γ )2 (3.8.38)

(C) a �= 0, b = 0. In this case we can just set:

P(φ) = exp(ν φ) + γ ⇒ V (φ) ∝ (exp(ν φ) + γ )2 (3.8.39)

Since our main goal is to understand the topology of the Kähler surface Σ and
possibly to generalize the above three-fold classification of isometries to the non
constant curvature case, it is very useful to recall how, in the above three cases, the
corresponding (Euclidean) metric ds2φ is realized as the pull-back on the hyperboloid
surface

X2
1 + X2

2 − X2
3 = − 1 (3.8.40)

of the flat Lorentz metric in the three-dimensional Minkowski space of coordinates
{X1, X2, X3}. The manifold is always the same but the three different parameteriza-
tions single out different gaussian curves on the same surface. It is indeed an excellent
exercise in differential geometry to see how the same space can be described in appar-
ently verymuch different coordinate systems. Furthermore the gaussian curves being
integral curves of different Killing vectors give visual appreciation of the different
global character of elliptic, parabolic and hyperbolic isometries.

3.8.1.1 Embedding of Case (A)

Let us consider the case of the moment map of Eq. (3.8.37). The corresponding
two-dimensional metric is:

ds2φ = dφ2 + sinh2 (ν φ) dB2 (3.8.41)

It is the pull-back of the (2, 1)-Lorentz metric onto the hyperboloid surface (3.8.40).
Indeed setting:

X1 = sinh(νφ) cos(Bν)

X2 = sinh(νφ) sin(Bν)

X3 = ± cosh(νφ) (3.8.42)

we obtain a parametric covering of the algebraic locus (3.8.40) and we can verify
that:

1

ν2

(
dX2

1 + dX2
2 − dX2

3

) = dφ2 + sinh2 (ν φ) dB2 = ds2φ (3.8.43)
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Fig. 3.1 In this figure we show the hyperboloid ruled by lines of constant φ that are circles and of
constant B that are hyperbolae. In this figure we also show the stereographic projection of points
of the hyperboloid onto points of the unit disk

A picture of the hyperboloid ruled by lines of constant φ and constant B according
to the parametrization (3.8.42) is depicted in Fig. 3.1. In case of non constant curva-
ture with a moment map which gives rise to a consistent U(1) interpretation of the
isometry, the surface Σ is also a revolution surface but of a different curve than the
hyperbola.

Setting:
f (φ) = P ′(φ) (3.8.44)

we consider the parametric surface:

X1 = f (φ) cos B

X2 = f (φ) sin B

X3 = ± g(φ) (3.8.45)

where g(φ) is a function that satisfies the differential equation:

g′(φ) =
√

( f ′(φ))2 − 1 ⇒ g(φ) =
∫

dφ
√

( f ′(φ))2 − 1 (3.8.46)
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The pull back on the parametric surface (3.8.45) of the flat Minkowski metric:

ds2M = dX2
1 + dX2

2 − dX2
3 (3.8.47)

reproduces the metric of the surface Σ under analysis:

ds2Σ = dφ2 + f 2(φ) dB2 (3.8.48)

Hence the revolution surface (3.8.45) is generically an explicit geometrical model of
the Kähler manifolds Σ where the considered isometry is elliptic, namely a compact
U(1). Note that the last integral in Eq. (3.8.46) can be performed and yields a real
function only for those functions f (φ) that satisfy the condition

(
f ′(φ)

)2
> 1. Hence

the condition: (
P ′′(φ)

)2
> 1 (3.8.49)

is a necessary requirement for the U(1) interpretation of the gauged isometry which
has to be true together with the asymptotic expansion criterion (3.8.22).

Applying to the present constant curvature case the general rule given in
Eq. (3.8.15) that defines the coordinate C we get:

C(φ) =
∫

dφ

P ′(φ)
= log

(
tanh

(
νφ

2

))
ν2

⇔ φ =
2Arctanh

(
eCν2

)
ν

(3.8.50)

from which we deduce that the allowed range of the flat variable C , in which the
canonical variable φ is real and goes from 0 to ∞, is the following one:

C ∈ [−∞ , 0] (3.8.51)

The Kähler potential function is easily calculated and we get:

J (C) = 2 (γ + 1)C − 2
log

(
1 − e2Cν2

)
ν2

+ 2
log(2)

ν2
(3.8.52)

In this case the appropriate relation between ζ in the unit circle and the real variables
C, B is the following:

ζ = eν2(iB+C) (3.8.53)

3.8.1.2 Embedding of Case (B)

Consider the case of Eq. (3.8.38). The corresponding two-dimensional metric is:

ds2φ = (
dφ2 + cosh2 (ν φ) dB2

)
(3.8.54)
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which can be shown to be another form of the pull-back of the Lorentz metric onto
a hyperboloid surface. Indeed setting:

X1 = cosh(νφ) sinh(Bν)

X2 = sinh(νφ)

X3 = ± cosh(Bν) cosh(νφ) (3.8.55)

we obtain a parametric covering of the algebraic locus (3.8.40) and we can verify
that:

1

ν2

(
dX2

1 + dX2
2 − dX2

3

) = (
dφ2 + cosh2 (ν φ) dB2

) = ds2φ (3.8.56)

A three-dimensional picture of the hyperboloid ruled by lines of constant φ and
constant B is displayed in Fig. 3.2. For other surfacesΣ (if they exist and are regular)
possessing a hyperbolic isometry we can realize their geometrical model considering
the following parametric surface:

Fig. 3.2 The hyperboloid
surface displayed in the
parametrization (3.8.55). The
lines drawn on the
hyperboloid surface are those
of constant B and constant φ
respectively. Both of them
are hyperbolae, in this case
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X1 = f (φ) sinh B

X2 = g(φ)

X3 = ± f (φ) cosh B (3.8.57)

where:
f (φ) = P ′(φ) (3.8.58)

and where g(φ) is a function that satisfies the following differential equation:

g′(φ) =
√
1 + ( f ′(φ))2 ⇒ g(φ) =

∫
dφ

√
1 + ( f ′(φ))2 (3.8.59)

Once again the pull-back of the flat Minkowski metric (3.8.47) on the parametric
surface (3.8.57) reproduces the looked for metric of the Σ-surface:

ds2Σ = dφ2 + f 2(φ) dB2 (3.8.60)

Which is the appropriate interpretation is dictated by the asymptotic behavior of
the J (C) function and of its second derivative, or alternatively by the equivalent
mathematical criteria discussed in Sect. 3.8.5.

Applying to the present constant curvature case the general rule given in
Eq. (3.8.15) that defines the coordinate C we get:

C(φ) =
∫

dφ

P ′(φ)
= 2Arctan

(
tanh

(
νφ

2

))
ν2

⇔ φ =
2Arctanh

(
tan

(
Cν2

2

))
ν

(3.8.61)
from which we deduce that the allowed range of the flat variable C , in which the
canonical variable φ is real and goes from −∞ to ∞, is the following one:

C ∈
[
− π

2 ν2
,

π

2 ν2

]
(3.8.62)

The Kähler function J (φ) is easily calculated and we obtain:

J (C) = 2 γ C − 2

ν2
log

(
cos

(
Cν2

))
(3.8.63)

In this case the appropriate relation between ζ in the unit circle and the real variables
C, B is different, it is:

ζ = i tanh

(
1

2
(B − iC)ν2

)
(3.8.64)
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3.8.1.3 Embedding of Case (C)

In the case the moment map is given by Eq. (3.8.39) the parameterization of the
hyperboloid is the following one:

X1 = 1

2

(
−eνφB2 + eνφ − e−νφ

ν2

)
ν

X2 = Beνφν

X3 = 1

2

(
eνφB2 + eνφ + e−νφ

ν2

)
ν (3.8.65)

Indeed upon insertion of Eq. (3.8.65) into (3.8.40) we see that for all values of B and
φ the constraint defining the algebraic locus is satisfied. At the same time by means
of an immediate calculation one finds:

1

ν2

(
dX2

1 + dX2
2 − dX2

3

) = dφ2 + e2νφ dB2 = ds2φ (3.8.66)

so that the consideredmetric is the pull-back of the three-dimensional Lorentz metric
on the surface Σ parameterized as in Eq. (3.8.65). The integration of Eq. (3.8.15) is
immediate and the coordinate C(φ) takes the following very simple invertible form:

C(φ) = −e−νφ

ν2
⇔ φ(C) = − log

(−Cν2
)

ν
(3.8.67)

The range of definition of C is:

C ∈ [−∞ , 0] (3.8.68)

A three-dimensional picture of the hyperboloid ruled by lines of constant φ and
constant B, according to Eq. (3.8.65) is displayed in Fig. 3.3.

The integration of Eq. (3.8.17) for the Kähler potential is equally immediate and
using the inverse function φ(C) we obtain:

J (C) = 2 γ C − 2

ν2
log (−C) + const (3.8.69)

From the form of Eq. (3.8.69) we conclude that in this case the appropriate solution
of the complex structure equation is:

z = t = − iC + B (3.8.70)

so that the Kähler metric becomes proportional to the Poincaré metric in the upper
complex plane (note that C is negative definite for the whole range of the canonical
variable φ):
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Fig. 3.3 The hyperboloid
surface displayed in the
parametrization (3.8.65). The
lines drawn on the
hyperboloid surface are those
of constant B and constant φ
respectively. The constant φ
curves are parabolae and
they are the orbits of the
translation group

ds2 = 1
2

d2 J

dC2

(
dC2 + dB2

) = 1

4 ν2

dt dt

(Imt)2
(3.8.71)

As a consequence of Eq. (3.8.70), we see that the B-translation happens to be, in this
case, a non-compact parabolic symmetry.

More generally for any surface Σ where the isometry of the metric:

ds2Σ = dφ2 + f 2(φ) dB2 (3.8.72)

is interpreted as a parabolic shift-symmetry we can construct a geometric model of
Σ in three-dimensional Minkowski space by considering the following parametric
surface:

X1 = 1

2

(− f (φ)B2 + f (φ) + g(φ)
)

X2 = B f (φ)

X3 = 1

2

(
f (φ)B2 + f (φ) − g(φ)

)
(3.8.73)
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where g(φ) is a function that satisfies the differential equation:

f ′(φ) g′(φ) = 1 ⇒ g(φ) =
∫

1

f ′(φ)
dφ (3.8.74)

The pull-back of the flat metric (3.8.47) onto the surface (3.8.73) is indeed the desired
metric (3.8.72).

3.8.2 Asymptotically Flat Kähler Surfaces with an Elliptic
Isometry Group

As announced above in this section we consider the problem of constructing a Kähler
surfaceΣ with an elliptic isometrywhose limiting curvature at the boundary vanishes
R±∞ = 0. In this case we can predict the asymptotic behavior of the function J (C)

for C → ±∞. Indeed we know that for flat Kähler manifolds with an elliptic
isometry, we have J (C) ∝ exp [δ C] for some value of δ ∈ R. Hence we expect that
the function J (C) for surfaces Σ with an elliptic isometry and a vanishing limiting
curvature should behave has follows:

J (C)
C→±∞≈ exp

[
δ± C

] + subleading terms (3.8.75)

There is however a fundamental subtlety that has to be immediately emphasized. If the
topologyof the surfaceΣ is the disk topology andΣ is simply connectedπ1(Σ) = 1,
then one of the two limits C → ∞ has to be interpreted as the interior fixed point,
required by Gromov criteria, for elliptic isometries in Hadamard manifolds (and
possibly in CAT(k) manifolds). The other limit corresponds to the unique boundary
of disk topology. On the other hand if π1(Σ) = Z and the Kähler surface has
the corona topology then there are two boundaries and the limiting curvature can
be zero on both boundaries. We will illustrate this with two examples, respectively
corresponding to the latter and to the former case.

3.8.2.1 The Catenoid Case with π1(Σ) = Z

We begin by considering explicit functions J (C) that have the required asymptotic
behavior and we try to work our way backward towards the canonical coordinate φ

and the moment mapP(φ). In particular we want to make sure that the considered
function J (C) does indeed correspond to a compact isometry. This will certainly be
the case if the corresponding metric is the pull-back of the flat three-dimensional
Euclidean metric on a smooth surface of revolution.

To carry out such a program we consider the following one-parameter family of
J (C) functions:
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J[μ](C) = 1

8

(
μC2 + cosh[2C]) (3.8.76)

which fulfills condition (3.8.75), by construction. Many other examples can be obvi-
ously put forward, but this rather simple one is sufficient to single out the main
subtlety that makes many asymptotically flat elliptic models pathological from the
point of view of Gromov et al. classification of isometries. Using Eqs. (3.8.16) and
(3.8.30) we write the metric and the curvature following from the J (C) function of
Eq. (3.8.76), obtaining

ds2Σ = 1

16
( 2μ + 4 cosh[2C]) (dC2 + dB2

)
(3.8.77)

R(C) = − 4μ cosh(C) + 1

(4μ + cosh[C])3 (3.8.78)

From these formulae we draw an important conclusion. In order forΣ to be a smooth
manifold the curvature should not develop a pole neither in the interior nor on the
boundary. This means that 4μ + cosh[C] > 0 in the whole range of C . This is
guaranteed if and only if μ > − 1

4 . On the other hand, according to our previous
discussions, in the case of an elliptic isometry, there should be, for a finite value of
C , a zero of the metric coefficient. Such a zero is the fixed point that characterizes
elliptic isometries of Hadamard manifolds. Looking at Eq. (3.8.77) we see that such
a zero exists, if and only if μ < − 1

2 . It follows that, at least in this family of models,
there are no smooth manifolds that are asymptotically flat in the elliptic sense and
fulfill the physical condition for U(1)-symmetry which corresponds to the Gromov
et al. identification of elliptic isometries of Hadamard manifolds. At first sight one
should draw the conclusion that, in the case of the J (C) functions of Eq. (3.8.76),
the isometry is not elliptic. Yet this is somehow strange, since at the boundary, where
the curvature goes to zero, the form of J (C) is precisely that which corresponds
to elliptic isometries. Furthermore we will shortly show that for every value of μ

the metric in Eq. (3.8.77) is just the metric of a smooth revolution surface. Actually
for μ = 2 such a revolution surface is the well-known catenoid, constructed by
Bernoulli in 1744 as the first example of a minimal surface. Hence we arrive at a
puzzle with Gromov et al. criteria, whose only resolution can be that the manifolds
associatedwith the J (C) functions of Eq. (3.8.76) are notHadamardmanifolds. From
Eq. (3.8.78) we see that, provided μ > − 1

4 , the curvature is negative definite and
attains its maximal value R = 0 only on the boundary. Hence in relation with the
curvature there is no violation of the properties defining a Hadamard manifold. The
violationmust be in another item of the definition. Considering theDefinition3.8.1 of
Hadamardmanifolds provided in Sect. 3.8.5 we realize that the only way out from the
puzzle is that the surfaces corresponding to the J (C) functions of Eq. (3.8.76) have
to be non simply connected. That this is the case becomes visually obvious when
we consider the plot of the surface in three-dimensional space-time (see Fig. 3.4),
yet it is quite clear also analytically. For constant C the orbits of the isometry group
spanned by B ∈ [0, 2π ] are circles of radius:
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Fig. 3.4 In this picture we present two views of the catenoid, the revolution surface corresponding
to J[2](C) = 1

8

(
2C2 + cosh[2C]). For large positive or negative values of C one is either in

the superior or in inferior plane which is clearly flat with zero curvature. The center of the picture
correspond instead to C → 0 and is a sort of strongly negatively curved wormhole that connects
the two asymptotic planes. Non simple connectedness is visually spotted. The circles on the surface
winding around the throat cannot be contracted to zero and their homotopy class forms the non
trivial element of the first homotopy group π1(Σ) = Z
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r(C) = 1

4

√
2μ + 4 cosh[2C] (3.8.79)

The fact that this radius has a minimum different from zero

rmin = 1

4

√
2μ + 4 > 0 (3.8.80)

is what spoils simple connectedness and prevents the existence of a fixed point for
U(1). In this way the puzzle is resolved mathematically.

Having anticipated this conceptual discussion of their meaning let us work out the
details of the models encoded in Eq. (3.8.76). Comparing Eqs. (3.8.16) and (3.8.14)
we derive the relation between the canonical coordinate φ and C :

φ = √
2
∫ √

J ′′
[μ](C) dC = Φ[μ](C) ≡ −1

2
i
√

μ + 2 E

(
iC

∣∣∣∣ 4

μ + 2

)

(3.8.81)
where E (x |m ) denotes the elliptic integral of its arguments. In the case μ = 2
which turns out to be that of the catenoid, the function Φ[μ](C) simplifies and it can
be easily inverted in terms of elementary functions

Φ[2](C) = sinh(C) ⇒ C(φ) = ArcSinh(C) (3.8.82)

Substituting into the metric (3.8.77) one finds:

μ = 2 : ds2Σ = cosh2(C)

2

(
dC2 + dB2) = 1

2

[
dφ2 + (

φ2 + 1
)
dB2]
(3.8.83)

This implies that the derivative of the moment map is P ′(φ) = √
φ2 + 1 so that

the moment map and the scalar potential are the following ones:

μ = 2 :P(φ) = 1

2

(√
φ2 + 1φ + ArcSinh[φ ]

)
⇒

V (φ) ∝
(√

φ2 + 1φ + ArcSinh[φ ]
)2

(3.8.84)

The metric (3.8.83) can be easily recognized to be the pull-back of the flat three-
dimensional Euclidean metric:

ds2
E3 = dX2

1 + dX2
2 + dX2

3 (3.8.85)

on the following parametric surface:
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X1 = cos(B) cosh(C)√
2

X2 = cosh(C) sin(B)√
2

X3 = C√
2

(3.8.86)

which is the classical catenoid. For other values of μ a similar parametric surface of
revolution can be written in terms of appropriate functions of C . As we have already
anticipated, although the catenoid is a rotation surface and its isometry is elliptic,
its metric does not satisfy Gromov et al. criterion that requires the existence of a
symmetric point. The reason for this pathology is the non trivial fundamental group
π1(Σ).

Finally let us appreciate the nature of the same problem from the point of view of
complex coordinates. If we introduce the complex coordinate:

ζ = exp [C − i B] ; ζ = exp [C + i B] (3.8.87)

and we insert it into the expression of (3.8.76) of the J (C) function we easily obtain
the Kähler potential:

K (ζ, ζ ) = 2 J (C) = 1

16
μ log2(ζ ζ ) + ζ ζ

8
+ 1

8 ζ ζ
(3.8.88)

from which we obtain the metric:

ds2Σ = dζ dζ
(
ζ ζ

(
μ + ζ ζ

) + 1
)

8
(
ζ ζ

)2 μ→ 2=⇒ dζ dζ
(
ζ ζ + 1

)2
8
(
ζ ζ

)2 (3.8.89)

Examining Eq. (3.8.89) we see that the metric diverges at the symmetry restoration
point ζ = 0 which now is the boundary of the manifold rather than its interior.

3.8.2.2 An Asymptotically Flat Kähler Surface with an Elliptic
Isometry and π1(Σ) = 1

Let us consider the following moment map written in terms of the canonical variable
φ:

P(φ) = φ2 − 1

2
ArcTan

(
φ2) (3.8.90)

Using the standard formulae (3.8.15) for the calculation of the coordinate C we
obtain:
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C(φ) = log

(
φ

8
√
2φ4 + 1

)
⇔ φ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

± 4
√√

e8C + e16C + e8C

±i
4
√√

e8C + e16C + e8C

± 4
√√

e8C − e16C + e8C

±i
4
√√

e8C − e16C + e8C

(3.8.91)

The eighth-root implies the existence of eight branches of the inverse function, that
have to considered carefully. Indeedwe can accept only those branches whereφ turns
out to be everywhere real. Six branches have to be rejected because of that reason
and the only acceptable ones are the first two which are equivalent under the always
possible sign revers of φ. In conclusion we have:

φ = 4

√√
e8C + e16C + e8C (3.8.92)

Using this branch the infinite interval [−∞ , ∞] of the variable C is mapped into
the semi-infinite interval [0 , ∞] of the variable φ. Indeed we have C(0) = −∞,
C(∞) = ∞. In the canonical coordinate the form of the metric is:

ds2Σ = dφ2 + f 2(φ) dB2 ; f 2(φ) =
(

φ5

φ4 + 1
+ φ

)2

(3.8.93)

and using Eq. (3.8.92) we can easily convert it to the C variable:

ds2Σ = 1
2

d2 J

dC2

(
dC2 + dB2

)

=
√√

e8C + e16C + e8C
(
2
√
e8C + e16C + 2e8C + 1

)2
(√

e8C + e16C + e8C + 1
)2 (

dC2 + dB2
)

(3.8.94)

For C → −∞ the behavior of the metric coefficient is:

1
2

d2 J

dC2

C→ − ∞≈ e2C + 5e6C

2
+ O

(
e10C

) ⇒ J (C)
C→−∞≈ 1

2 e
2C (3.8.95)

while for C → ∞ it is the following:

1
2

d2 J

dC2

C→∞≈ 4
√
2e4C − 3e−4C

√
2

+ O
(
e−12C

) ⇒ J (C)
C→ ∞≈ 1

2
1√
2
e4C

(3.8.96)
From previous considerations we see that C → −∞ corresponds to φ = 0 and
hence to the fixed point in the interior of themanifold, so that the exponential behavior
of J (C) is the expected one for an elliptic isometry. At the same time the exponential
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Fig. 3.5 In this picture we
present the plot of the
curvature for the elliptic
model of Eq. (3.8.90). It is
limited from above and has
three zeros, one at the
interior fixed point φ = 0, a

second one at φ =
(
5
3

)1/4
and one on the boundary at
φ = ∞

behavior on the unique boundary implies that the limiting curvature on the boundary
should be zero. Indeed from the standard formula (3.8.34) for the curvaturewe obtain:

R(φ) = − 2φ2
(
3φ4 − 5

)
(
φ4 + 1

)2 (
2φ4 + 1

) ; R(0) = 0 ; R(∞) = 0 (3.8.97)

whose plot is displayed in Fig. 3.5. The vanishing of the limiting curvature is visually
evident. Finally let us make sure that the isometry of this model is indeed elliptic.
This we verify by showing that the metric (3.8.93) can be retrieved as the pull-back
of the flat Lorentz metric in Minkowsian three-dimensional space (3.8.47) on the
parametric revolution surface (3.8.45) defined by:

f (φ) = φ5

φ4 + 1
+ φ ; g(φ) ≡

∫ φ

0

√√√√σ 4
(
σ 4 + 5

) (
3σ 8 + 9σ 4 + 2

)
(
σ 4 + 1

)4 dσ

(3.8.98)
Two views of this surface are presented in Fig. 3.6. It is evident from the picture that
this surface is simply connected and that there is in the interior of the manifold a
fixed point. It is given by X1 = X2 = X3 = 0 which lies on the surface and where
the radius of the U(1) orbit shrinks to zero.

3.8.3 An Example of a Non Maximally Symmetric Kähler
Surface with an Isometry Group of the Hyperbolic Type

In order to exhibit an example of a surface with non constant curvature that has a
hyperbolic isometry we consider the following moment map and potential:

V (φ) = [P(φ)]2 ; P(φ) = φ + sinh(φ) (3.8.99)
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Fig. 3.6 In this picture we
present two views of the
revolution surface Σ

associated with the elliptic
model of Eq. (3.8.90). It is
clearly regular and smooth
everywhere

which yields:

P ′ (φ) = 1 + cosh(φ) ; ds2Σ = dφ2 + (1 + cosh(φ))2 dB2 (3.8.100)

According to the mathematical classification discussed in Sect. 3.8.5 the metric
(3.8.100) has a hyperbolic type of isometry due to the two fixed points on the bound-
ary of the manifold corresponding to the two singularities φ = ±∞. The curvature
of this manifold is finite but not constant. Indeed, applying Eq. (3.8.34) we obtain:
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Fig. 3.7 In this figure we
present the plot of the
curvature of the surface Σ

defined by Eq. (3.8.100) that
has a hyperbolic isometry.
The first picture displays the
dependence of the curvature
on the canonical coordinate
φ, while the second picture
displays its dependence on
the coordinate C

R(φ) = − cosh(φ)

2(cosh(φ) + 1)
(3.8.101)

whose plot is presented in Fig. 3.7. In this case it is very simple to integrate the
complex structure equation which defines the C-coordinate. We obtain:

C(φ) = tanh

(
φ

2

)
; φ = 2ArcTanh(C) (3.8.102)

and we observe that in line with our general criteria for hyperbolic symmetry, the
range of the C-coordinate is in this case finite:

C ∈ [−1 , 1] (3.8.103)

From the integration of Eq. (3.8.17) that defines the J -function and the Kähler poten-
tial we obtain:

J (φ) = 2φ tanh

(
φ

2

)
= J (C) = 4C ArcTanh(C) (3.8.104)
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Calculating the metric coefficient from (3.8.104) we get:

1
2

d2 J

dC2
= 4(

C2 − 1
)2 ; ds2 = 4(

C2 − 1
)2 (

dC2 + dB2
)

(3.8.105)

displaying a polar singularity at both extrema of the C-range, namely at C = ±1.
In order to present a geometrical model of this Kähler manifold, we resort to the

hyperbolic parametric surface encoded in formulae (3.8.57) and we calculate the
relevant functions f (φ) and g(φ). In this case it is more convenient to express them
in terms of the finite range coordinate C . We have:

f (φ) = cosh(φ) + 1 = 2

1 − C2
(3.8.106)

and inserting the result into Eq. (3.8.59) we get:

g(C) = 1

8

(
2C

(
C2 − 3

)
(
C2 − 1

)2 + log(C − 1) − log(C + 1)

)
(3.8.107)

The plots of these functions is presented in Fig. 3.8. In Fig. 3.9 we display the three
dimensional shape of the parametric surfaceΣ realizing the desiredKählermanifold.

3.8.4 A Non Maximally Symmetric Kähler Manifold with
Parabolic Isometry and Zero Curvature at One
Boundary

As a final example we consider a parabolic model where the curvature at one of the
two boundaries goes to zero so that the asymptotic behavior of the J (C)-function on
that boundary becomes exceptional.

Let the moment map be the following one:

P(φ) = exp [ν φ] + μφ (3.8.108)

The corresponding f (φ)-function is:

f (φ) = P ′(φ) = ν exp [ν φ] + μ (3.8.109)

which has no zeros for finite φ if μ and ν have the same sign. If the two parameters
have opposite signs there is such a zero and this creates a fixed point of the isometry
B → B + c at finite φ which implies that the isometry is elliptic. Yet in case of
opposite signs the curvature has a singularity so that any smooth Kähler manifold
with a moment map of type (3.8.108) has a parabolic isometry group. Indeed using
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Fig. 3.8 In this picture we
present the plots of the
functions f (C), g(C) that
define the realization of the
Kähler manifold Σ

associated with the potential
(3.8.99) as a parametric
surface in flat Minkowski
three-dimensional space. The
geometrical model is that
appropriate to the hyperbolic
character of the isometry
B → B + c. The first two
pictures display the plot of g
and f as functions of the VP
coordinate C . The last plot is
the parametric plot of the
curve in the plane f, g.
Geometrically this is the
curve cut out by the surface
Σ in any plane orthogonal to
the axis X2

Eq. (3.8.34) we can immediately calculate the curvature and we find:

R(φ) = − eνφν3

2
(
μ + eνφν

) (3.8.110)

This shows what we just said. The manifold is smooth and singularity-free if and
only if μ and ν have the same sign so that at no value of φ the denominator can
develop a zero. Without loss of generality we can assume that ν > 0 since the sign of
φ can be flipped without changing its kinetic term.With this understanding it follows
that also μ > 0 for regularity.

Consider next the integral defining the VP coordinate C . We immediately obtain:

C(φ) =
∫

1

P ′(φ)
dφ = φ

μ
− log

(
μ + eνφν

)
μν

(3.8.111)

The range ofC is now easily determined considering the limits of the above function
for φ = ±∞. When μ > 0 , ν > 0 we have:
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Fig. 3.9 In this figure we
present the 3D-plot of the
surface Σ associated with
the potential (3.8.99). The
correct interpretation of the
isometry in this case is that
of a hyperbolic group. Indeed
the hyperbolic embedding
(3.8.57) in three-dimensional
Minkowski space works
beautifully and we have the
smooth surface displayed
here

C(−∞) = −∞ ; C(∞) = − log[ν]
μν

(3.8.112)

Hence C ∈
[
−∞ , − log[ν]

μ ν

]
. The VP coordinate is always negative and it spans a

semininfinite interval. Keeping this range inmindwe can invert the relation (3.8.111)
between φ and C obtaining:

φ = −
log

(
e−Cμν

μ
− ν

μ

)
ν

(3.8.113)

The J -function is easily calculated from Eq. (3.8.17) and we find:

J (φ) =
ν2φ2 + (2 − 2νφ) log

(
eνφν
μ

+ 1
)

− 2Li2
(
− eνφν

μ

)
ν2

(3.8.114)

where Lin(z) is the polylogarithmic function. Introducing in (3.8.114) the relation
between φ and C , we get an explicit analytic expression for the J (C) function,
namely:
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J (C) = 1

ν2

[
log2

(
e−Cμν − ν

μ

)
+ 2

(
log

(
e−Cμν − ν

μ

)
+ 1

)
log

(
1

1 − eCμνν

)

−2Li2

(
1 + 1

eCμνν − 1

)]
(3.8.115)

As for the metric, having the explicit expression (3.8.115), we easily calculate its
second derivative and we find:

ds2 = 1
2

d2 J

dC2

(
dC2 + dB2) = μ2

(
eCμνν − 1

)2 (
dC2 + dB2) (3.8.116)

For C → −∞ the metric coefficient 1
2

d2 J
dC2 tends to a constant:

1
2

d2 J

dC2

C→−∞≈ μ2 ⇒ J (C)
C→− ∞≈ μ2

2
C2 (3.8.117)

This asymptotic behavior differs from the usual logarithmic behavior of J (C) at the
boundary because at C = −∞ and hence at φ = −∞ the curvature goes to zero.

In the other extremum of the C-range, namely for C → − log[ν]
μ ν

the metric
coefficient diverges and we have the standard logarithmic singularity. To see this, set
C = − log[ν]

μ ν
− ξ and substitute it into the expression of the metric coefficient. We

obtain:

1
2

d2 J

dC2
= μ2

(
e
μν

(
−ξ− log(ν)

μν

)
ν − 1

)2

ξ→0≈ 1

ν2ξ 2
+ μ

νξ
+ 5μ2

12
+ 1

12
μ3νξ + O

(
ξ 2
)

(3.8.118)

and we conclude that, naming C0 = − log[ν]
μ ν

, we have:

J (C)
C→C0≈ 2

ν2
log [C0 − C] (3.8.119)

This is the standard logarithmic singularity and the coefficient in front of the logarithm
is indeed the inverse of the limiting curvature: RC0 = 1

2 ν2.
This result confirms once again the relation between the asymptotic behavior of the

J (C) function and the character of the isometry group. For a parabolic isometry the
asymtotic behavior is just that anticipated in Eqs. (3.8.25), (3.8.26). For a vanishing
limiting curvature the correct asymptotic is (3.8.26).

The present example is very paedagical in order to avoid possible misconceptions.
If we looked at the expression (3.8.116) and we forgot the precisely defined range
of the variable C which is determined by the integration of the complex structure
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equation, we might be tempted to consider the same metric also for positive values
of C . We would conclude that when C → ∞ the metric coefficient goes to zero
as exp[−ν C]. Then we would dispute that the last mentioned behavior indicates an
elliptic interpretation of the isometry and advocate that there is a clash with our a
priori knowledge that the isometry is instead parabolic. In fact there is no clash since
the positive range ofC is excluded and it is not to be considered. At the extrema of the
C-interval, the function J (C) displays the expected asymptotic behavior foreseen
for the parabolic case.

3.8.5 On the Topology of Isometries

In this last subsection we provide a mathematically more rigorous illustration of
the criteria discriminating among elliptic, parabolic and hyperbolic isometries of
a two dimensional manifold whose metric is written in the standard form utilized
throughout this section, namely:

ds2 = dφ2 + f (φ)2 dB2, (3.8.120)

In relation with the moment map issue, the function f (φ) is obviously the first
derivative P ′(φ) with respect to the canonical coordinate φ of the moment map
P(φ). Considering the metric (3.8.120) as god-given, it obviously admits the one
dimensional group of isometries B → B + c for any choice of the smooth function
f (φ) parameterizing themetric coefficient and the question is what is the topology of
such a group, is it compact or non-compact, and in the second case is it parabolic or
hyperbolic. When we deal with a constant negative curvature manifold, namely with
the coset SL(2, R)/O(2) these questions have a precise answer within Lie algebra
theory, since the considered one-dimensional group of isometries Giso is necessarily
a subgroup of SL(2, R) and as such its generator g ∈ sl(2, R) can be of three types:

(a) g is compact, which means that, as a matrix, in whatever representation of
the Lie algebra sl(2, R) it is diagonalizable and its eigenvalues are purely imagi-
nary. In this case the one-dimensional subrgroup is topologically a circle S

1 and
isomorphic to U(1). We name elliptic the isometry group Giso generated by
such a g.

(b) g is non-compact and semisimple, which means that, as a matrix, in whatever
representation of the Lie algebra sl(2, R), it is diagonalizable and its eigenvalues
are real and non vanishing. In this case the one-dimensional subgroup is topolog-
ically a line R and it is isomorphic to SO(1, 1). We name hyperbolic the isometry
group Giso generated by such a g.

(c) g is non-compact and nilpotent, which means that, as a matrix, in whatever
representation of the Lie algebra sl(2, R), it is nilpotent and its eigenvalues are
zero. In this case the one-dimensional subrgroup is topologically a line R. We
name parabolic the isometry group Giso generated by such a g.
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The interesting question is whether the characterization of an isometry as ellip-
tic,parabolic or hyperbolic can be reformulated in pure geometrical terms and applied
to caseswhere there is no ambient Lie algebra for the unique one-dimensional contin-
uous isometry Giso. In this respect it is useful to remark that a metric of type (3.8.120)
implies a fibre-bundle structure of the underlying two-dimensional manifold Σ :

Σ = P(R,F ,Giso) → R (3.8.121)

where the base manifold is the real line R spanned by the coordinate φ ∈
[−∞ , +∞], the structural group is the one-dimensional isometry groupGiso and the
standard fibreF is a one dimensional space on which Giso has a transitive action. In
other words the manifold Σ is fibered into orbits of the isometry group. An explicit
geometrical realization of this fibration in the three cases was already provided in
the previous subsections by means of the three types of parametric surfaces encoded
in:

1. Equation (3.8.45) which realize a surface in three-dimensional Minkowski space
which is fibered in circles S1 representating the orbits of an elliptic isometry group
Giso.

2. Equation (3.8.57) which realize a surface in three-dimensional Minkowski space
which is fibered in hyperbolae representating the orbits of a hyperbolic isometry
group Giso.

3. Equation (3.8.73) which realize a surface in three-dimensional Minkowski space
which is fibered in parabolae representating the orbits of a parabolic isometry
group Giso.

As we argued in previous subsections, providing also some counterexamples, the
subtle point is that the explicit geometric construction as a parametric surface fibered
in circles, parabolae or hyperbolae, which a priori seems always possible, should lead
to a smooth manifold having no singularity and being simply connected.

In more abstract terms the question was formulated by mathematicians for a
single isometry Γ , even belonging to a discrete isometry group, not necessarily
continuous and Lie, which can be characterized unambiguously as elliptic, parabolic,
or hyperbolic, for Riemannianmanifolds also of higher dimension than two, provided
they are Hadamard manifolds.

Definition 3.8.1 A Hadamard manifold is a simply connected, geodesically com-
plete Riemannian manifoldH = (M , g) whose scalar curvature R(x) is nonpos-
itive definite and finite, namely −∞ < R(x) ≤ 0, ∀x ∈ M .

The virtue of Hadamard manifolds is that they allow for what is usually not available
in generic Riemannian manifolds, namely the definition of a bilocal distance func-
tion d(x, y) providing the absolute distance between any two points x, y ∈ H .
As we teach our students when introducing (pseudo)-Riemanian geometry and Gen-
eral Relativity, the concept of absolute space-(time) distance is lost in Differential
Geometry and we can only define the length of any curve βμ(t) (t ∈ [0 , 1]), which
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starts at the point xμ = βμ(0) and ends at the point yμ = βμ(1). Given the metric
gμν(x) we introduce the length functional which provides such a length:

�(β) =
∫ 1

0

√
gμν

dβμ

dt

dβν

dt
dt (3.8.122)

The curves corresponding to extrema of the length functional are the geodesics,
but in a generic Riemannian manifold there is no guarantee that for any two-points
x, y ∈ M there is an arc of geodesic connecting them that is an absolute minimum
of the length functional and that suchminimum is unique and non-degenerate. Instead
the hypotheses characterizingHadamardmanifolds guarantee precisely this (see, e.g.
[16] and references therein) and one can define the distance function:

∀ x, y ∈ H : d(x, y) = infimum [�(β)] (3.8.123)

Hence restricting one’s attention to Hadamard manifolds one can introduce a very
useful geometrical concept that allows for a geometrical classification of isome-
tries Γ :

Γ : M → M ; Γ�

[
ds2g

] = ds2g (3.8.124)

where Γ� denotes the pull-back of Γ . The geometrical concept which provides the
clue for such a classification is the displacement function defined below for any
isometry Γ :

dΓ (x) ≡ d(x, Γ x) (3.8.125)

3.8.5.1 Classification of Isometries of Hadamard Manifolds
H = (M , g)

The isometries of a Hadamerd manifold belong to the following types (see, e.g. [16]
and references therein):

(a) elliptic, if dΓ (x) attains an absolute minimum of vanishing displacement
minx∈M dΓ (x) = 0, or, to say it in other words, if and only if Γ has a fixed
point x0 ∈ M in the interior of the manifold for which d (x0, Γ x0) = 0.

(b) hyperbolic, if dΓ (x) attains an absolute minimum larger than zero
minx∈M dΓ (x) > 0, or equivalently if Γ has two distinct fixed points on the
boundary ∂M of M

(c) strictly parabolic, if dΓ (x) never attains its infimum which is zero
inf x∈M dΓ (x) = 0, or equivalently if Γ has just one fixed point on the boundary
∂M of M ;

(d) mixed, if dΓ (x) does not attain its the infimum which is larger than zero:
inf x∈H dΓ (x) > 0.
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The above classification of isometries is a generalisation to a nonconstant curvature
case of the classification of isometries of the very particular constant curvature case,
namely the Poincaré-Lobachevsky plane SL(2,R)

O(2) , where only the isometries (a), (b)
and (c) are realized.

3.8.5.2 Application to the Kähler Surfaces considered in this Section

Not all Kähler surfaces Σ defined by Eq. (3.8.12) are Hadarmard since the curvature
sometimes becomes positive in the interior of the manifold but most of them are such
and moreover the limiting curvature of the boundary is non positive for all models.
Therefore it makes sense to utilize the above geometric classification of isometries
and verify that it just agrees with the criteria based on asymptotic expansions of the
function J (C) utilized in the previous subsections in order to discriminate among
elliptic, parabolic and hyperbolic groups.Negative curvature guarantees the existence
of a distance function, but probably in all considered examples such a distance
function is well defined in spite of the existence of positive curvature domains in the
deep interior of the manifold.

Hence with reference to the metric (3.8.120) let us consider the isometry Γ cor-
responding to B-shifts:

B → Γ B = B + δ , (3.8.126)

where δ is a constant parameter, let us assume that the curvature

R = −
d2

dφ2 f (φ)

f (φ)
, (3.8.127)

fulfills the Hadamard condition: −∞ < R ≤ 0 and let us apply the classification
scheme introduced above.

The first observation is the following. If the function f (φ) has neither a singularity
nor a zero (i.e., if f (φ) �= ±∞ and f (φ) �= 0) both in the range of the coordinates
{φ, B} corresponding to the interior of the manifoldM and for those limiting values
corresponding to the boundary {φ, B} ∈ ∂M then the metric (3.8.120) has no
coordinate singularity and the isometry (3.8.126) admits only one fixed point B =
∞ ∈ ∂M on the boundary of the manifold. In this case the isometry Γ is strictly
parabolic, according to item (c) of the above classification.

On the other hand, if the function f (φ) possesses a coordinate singularity at
some value of φ = φ0 ∈ M in the interior of M , then in order to establish
which is the type of the isometry Γ one has to introduce a new coordinate system
{φ, B} → {φ̃, B̃} such that the metric expressed in terms of the new coordinates
is non-singular in the vicinity of the former coordinate singularity. The existence of
such a coordinate system is guaranteed by the non-singularity of the curvature and
by the smoothness of the manifold. If in the newly constructed coordinate system the
isometry has a fixed point corresponding to the former coordinate singularity then,
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according to item a) of the above classification, it is elliptic. Since this happens for all
elements of the isometry group Giso, this latter is a compact U(1) and the appropriate
complex structure is z = ζ = exp [δ (c − iB)]. Otherwise the isometry is certainly
not elliptic and non-compact.

Summarizing, the necessary condition for the isometry Γ to be elliptic is that the
function f (φ) has a zero or a pole in the interior of M at some φ = φ0 ≡ − a1

a2
,

where a1 and a2 > 0 are arbitrary constant parameters. In case such a singularity is
power-like, we conclude that in a neighborhood Uφ0 of φ0 we have:

f (φ)|φ ∈Uφ0
= (a2 φ + a1)

n (3.8.128)

where n is a positive or negative integer. Comparing Eq. (3.8.127) we see that the
condition of a regular and finite curvature is fulfilled if and only if n = 1. In other
words the function f (φ) has the following behavior at φ = φ0:

f (φ)|φ ∈Uφ0
= a2 φ + a1 + O

[
(φ − φ0)

3
]

(3.8.129)

Correspondingly the curvature is zero at leading order:

R|φ ∈Uφ0
= 0 + O

[
(φ − φ0)

3
]

(3.8.130)

In the new coordinate system {x, y}, {φ, B} → {x, y}, defined by

x =
(

φ + a1
a2

)
cos(a2 B) , y =

(
φ + a1

a2

)
sin(a2 B) , (3.8.131)

the metric (3.8.120) becomes

ds2|φ ∈Uφ0
� dφ2 + (a2 φ + a1)

2 dB2

= dx2 + dy2, (3.8.132)

and the isometry transformations (3.8.126) takes the following form:

{x, y} → {x cos δ + y sin δ , − x sin δ + y cos δ} , (3.8.133)

The original coordinate singularity has disappeared, but in the new coordinates
(3.8.131) the isometry (3.8.133) acquires the fixed point {x0 = 0 , y0 = 0},
{0, 0} → {0, 0}, in the interior of M . Hence if the above situation is verified
according to item a) of the above classification the isometry group is elliptic.

Consider next the behavior of the C-coordinate, defined by Eq. (3.8.15), in the
neighborhood of φ0. To leading order we have
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φ → C � 1

a2
ln (a2 φ + a1) + O

[
(φ − φ0)

−1
] ⇒ φ0 ⇔ C0 = −∞

(3.8.134)
so that the metric (3.8.120) becomes

ds2|C ∈UC0
� e2 a2 C

(
dB2 + dC2) (3.8.135)

in theC0-neighborhoodC ∈ UC0 . Inspection of the latter formula shows that it repro-
duces the criterion to decide that the isometry is elliptic advocated in Eq. (3.8.22).

1
2

d2

dC2
J (C)|C ∈UC0

= e2 a2 C |C ∈UC0
→ 0 (3.8.136)

Let us stress that the fixed point in the interior of the manifold required for an elliptic
interpretation of the isometry group is just the origin of themanifoldwhere theKähler
metric becomes approximately the flat one.

Let us now turn to the case where the singularity of the metric coefficient is of
the exponential type, namely for φ0 = ∞ and for φ ∈ Uφ0 , we have

f (φ)|φ ∈Uφ0
= a1 e

a2 φ , a2 > 0 (3.8.137)

this behavior is also consistent with the regularity of the curvature R (see
Eq. (3.8.127)), which, in this case takes a finite negative value in the leading order
approximation:

R|φ ∈Uφ0
� − a22 + subleading terms (3.8.138)

The metric (3.8.120) reproduces locally the metric of the hyperbolic (Poincaré -
Lobachevsky) plane

ds2|φ ∈Uφ0
≈ dφ2 + a21 e

2a2 φ dB2 (3.8.139)

for which it is well known that the value of φ0 = ∞ corresponds to the boundary
∂M . If the function f (φ) does not have other singularities of the exponential type, but
(3.8.137), then one can immediately conclude that the isometry (3.8.126) is strictly
parabolic according to item c) of the above classification, since it possesses just a
single fixed point B = ∞ on the boundary ∂M .

If besides the singularity (3.8.137) the function f (φ) possesses a second expo-
nential singularity at φ̃0 = −∞ for φ ∈ Uφ̃0

, namely

f (φ)|φ ∈Uφ̃0
= ã1 e

−ã2 φ , ã2 > 0 , (3.8.140)

then by the same token as above we come to the conclusion that the point φ̃0 belongs
to the boundary of another hyperbolic plane locally isomorphic to the neighbor-
hood Uφ̃0

⊂ H and that isometry (3.8.126) possesses a second fixed point on such
a boundary. Hence the isometry is hyperbolic according to item (b) of the above
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classification and since this applies to all elements of the isometry group Giso this
latter is hyperbolic and isomorphic to SO(1, 1).

One can not exclude the existence of more sophisticated types of f (φ) singu-
larities, besides the above described power-like and exponential one, that might be
consistent with the regularity of the curvature R (3.8.127), yet in all examples con-
sidered in previous subsections no other singularities than these two are met.

Relying on these results we can summarize the geometric criteria for the classi-
fication of isometries in two-manifolds with a metric of type (3.8.120) which are of
the Hadamard type

(a) elliptic, if the function f (φ) possesses a first order zero, i.e. f (φ)|φ ∈Uφ0
=

a2 (φ − φ0);
(b) hyperbolic, if the function f (φ) possesses two different leading exponential

singularities at φ(±)
0 = ±∞, i.e. f (φ)|φ ∈U

φ
(±)
0

= a(±)
1 e± a(±)

2 φ and a(±)
2 > 0;

(c) strictly parabolic, if the function f (φ) possesses a single leading exponen-
tial singularity at either φ

(+)
0 = +∞ or φ

(−)
0 = −∞, i.e. f (φ)|φ ∈U

φ
(+)
0

=
a(+)
1 e+ a(+)

2 φ or f (φ)|φ ∈U
φ
(−)
0

= a(−)
1 e− a(−)

2 φ and a(±)
2 > 0.

The above characterization yields exactly the same result as the criteria based on the
asymptotic behavior of J (C) that have been utilized in the previous subsections and
this happens also for such models that do not lead to exactly Hadamard manifolds,
the curvature attaining somewhere also positive values. As an exemplification of the
use of the above concepts we briefly reconsider from this point of view the flatmodels
and the constant curvature models.

3.8.5.3 Flat Models

The flat metric
ds2 = dφ2 + (a2 φ + a1)

2 dB2 (3.8.141)

in case a2 �= 0 possesses a coordinate singularity at

φ = − a1
a2

(3.8.142)

corresponding to a first order zero f (φ) at finite φ. According to the above classifi-
cation this implies that the isometry B → B + δ is elliptic.

In the case a2 = 0 the metric (3.8.141) becomes

ds2 = dφ2 + a21 dB
2 (3.8.143)

and does not possess a coordinate singularity at all. This implies that the isometry
B → B + δ is strictly parabolic.
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3.8.5.4 Constant Negative Curvature Models

Case (A)
ds2 = dφ2 + sinh2 (ν φ) dB2 (3.8.144)

This metric possesses a coordinate singularity at φ = 0. In the neighborhood of
φ = 0 at leading order it behaves as follows

ds2 ≈ dφ2 + ν2 φ2 dB2 (3.8.145)

which modulo an inessential rescaling of the coordinate B and a shifting the coor-
dinate φ reproduces the metric (3.8.141). Hence its isometry (3.8.126) is elliptic in
this case.

Case (B)
ds2 = dφ2 + cosh2 (ν φ) dB2 (3.8.146)

This metric does not possess a coordinate singularity in the finite range of φ, but
it has two exponential singularities of the type (3.8.137) and (3.8.140). Hence the
isometry (3.8.126) is hyperbolic in this case.

Case (C)
ds2 = dφ2 + e2 ν φ dB2 (3.8.147)

This metric does not possess a coordinate singularity in the finite range of φ, but it
possesses a single exponential singularity either of the type (3.8.137) or of the type
(3.8.140). Hence the isometry (3.8.126) is strictly parabolic in this case.
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Chapter 4
Special Geometries

La géométrie…est une science née à propos de
l’expérience…nous avons créé l’espace qu’elle etudie, mais en
l’adaptant au monde où nous vivons. Nous avons choisie
l’espace le plus commode…

Henri Poincaré.

4.1 The Evolution of Geometry in the Second Half
of the XXth Century

Relying for a complete historical account on the tale told in the twin book [1], let us
summarize the steps that led, in the 1990’s to Special Geometries.

4.1.1 Complex Geometry Rises to Prominence

On the purely mathematical front in the years from 1953 to 1955, Pierre Dolbeault
introduced a new very important mathematical instrument: the ∂-cohomology of the
differential forms defined on complex analytic manifolds, namely the holomorphic
analogue of de Rham cohomology defined on real manifolds. The essence of Dol-
beault cohomology (described in Sect. 3.3) is the topic of Dolbeault’s thesis, prepared
by him under the direction of Henri Cartan, Élie’s son and one of the closest friends
of André Weil. The thesis was defended in Paris in 1955.

Complex Geometry and, within it Kähler Geometry, arose to high prominence in
the three decades from1950 to 1980. The language of fibre-bundles and characteristic
classes was combined with the notion of holomorphicity and line-bundles, namely
Principal Bundles whose structural group is the group of non vanishing complex
numbers C�, became ubiquitous in the discussion of complex manifolds.

A new innovative conception developed in this context, namely that of character-
izing the geometry of basemanifoldsM bymeans of statements on the characteristic
classes of bundles defined over them.
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Fig. 4.1 On the left Eugenio Calabi (Milano, Italy 1923). On the right Shing–Tung Yau (Shan-
tou, China 1949). Born Italian, Calabi is an American citizen. He graduated in 1946 from MIT
and obtained his Ph.D from Princeton in 1950. He held temporary positions in Minnesota and in
Princeton, then since 1967 to retirement he was Full Professor of Mathematics at the University
of Pennsylvania, successor of Hans Rademacher. He came to the definition of Calabi–Yau n-folds
while exploring the geometry of complex manifolds that support harmonic spinors. Born in China,
Yau studied first at Hong Kong University, then he went to the USA where he got his Ph.D. in
1971 from Berkeley under the supervision of Chern. Post-doctoral fellow in Princeton and in Stony
Brook, he became Professor in Stanford. Since 1987 he is Professor of Mathematics at Harvard
University. Yau’s proof of Calabi 1964 conjecture was published in 1977

The first example, which plays an important role in the sequel, is that of Hodge–
Kähler manifolds that are Kähler manifolds M characterized by the existence of a
line bundleL → M , such that its first Chern Class coincides with the cohomology
class of the Kähler 2-form: c1(L ) = [K ].

Another important example is provided by Calabi–Yau n-folds. These latter were
introduced by Eugenio Calabi (see Fig. 4.1) in 1964 with the definition of complex
n-dimensional algebraic varietiesMn , the first Chern class of whose tangent bundle
vanishes: c1 (TMn) = 0. Later, the American-Chinese mathematician Shin–Tung
Yau (see Fig. 4.1) proved the theorem that for Calabi–Yau n-folds, every (1, 1) Dol-
beault cohomology class contains a representative that can be identified with the
Kähler 2-form of a Ricci flat Kähler metric: the Calabi–Yau metric.

4.1.2 On the Way to Special Geometries

Other notable examples of this way of thinking, applying both to complex and to
real geometry are the manifolds of restricted holonomy. One considers Riemannian
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manifoldsMn in dimension n and their spin bundles, namely the principal bundles on
which their spin connections ωab are defined as Ehresman connections. Generically
such bundles have, as structural group, Spin(n), which is the double covering of
SO(n), yet it may happen that ωab is Lie algebra–valued in a proper subalgebra
G ⊂ so(n). Choosing algebras G for which this might happen and imposing that it
should happen is a strong constraint on the geometry of the manifold Mn .

Research on manifolds of restricted holonomy went on in the 1980s and 1990s in
the mathematical community but, not too surprisingly, it was heavily stimulated by
issues in theoretical physics and particularly in Superstring/Supergravity theory.

It is easy to understand why. The main input in Superstring/Supergravity is Super-
symmetry, a generalization of Lie algebras where spinor representations and vector
representations of groups SO(n) are transformed one into the other by new symmetry
operators Qα , dubbed the supercharges, that are themselves spinors. At the level of
field theories we work with fibre-bundles and the fields we consider are sections of
such bundles. Field theories can be supersymmetric if the supercharges Qα find a
field-theoretic realization which is a symmetry of the action, leaving the door open
for its desired spontaneous breaking. It is quite intuitive that such a realization of the
supercharges requires special restrictions on the bundles and this reflects into heavy
constraints on the geometry of the base manifolds.

The above simple reasoning reveals what, in the opinion of this author, is the main
conceptual contribution of Supergravity theories to the development of geometrical
thought and, eventually, of physical thought, provisionally assuming that geometry
and physics are, once properly interpreted, the same thing. Supersymmetry tackles
with one of the most fundamental and so far unexplained pillars of physics, namely
the separation of the physical world into bosons and fermions and the spin-statistics
theorem. The distinction between vector and spinor representations is at the basis of
all that and it is a distinctive property of the so(n) Lie algebras, unexisting for the
other simple Lie algebras. On the other hand the reduction of the tangent-bundle to
an so(n)-bundle is the same thing as the existence of a metric and can be interpreted
as gravity. Special Geometries arise because of supersymmetry, in order to allow the
mixing of boson and fermions. It is the mathematical investigation of Space from this
newviewpoint the newquality of geometrical studies inspired by supergravity.Before
telling such a story we need to recall another mathematical conception, that was
developed independently from Superstring/Supergravity yet found its most ample
and fertile applications in the supersymmetric context.

4.1.3 The Geometry of Geometries

Let us recall Hermann Weyl’s discussion of the ellipses, used by him to introduce
his conception of mathematical thinking and reported by us in the twin book [1].
The coefficients a, b, c of the quadratic form quoted by Weyl are the first example
of moduli and the portion of R3 where they are allowed to take values is the first
example of a moduli-space. In complex algebraic geometry one considers loci of
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some projective space Pn(C) cut out by some homogeneous polynomial constraint
of degree m:

0 = W (a, X) =
∑

i1 ... im

ai1...im X i1 . . . Xim (4.1.1)

imposed on the n +1 homogeneous coordinates Xi (i = 1, . . . , n +1). The complex
coefficients ai1...im are alsomoduli and fill some complexmanifoldM . If we consider
the following constraint imposed on the metric tensor of some Riemannian manifold
Mn:

Rμν [g] = λ gμν (4.1.2)

where Rμν [g] is the Ricci tensor and λ some constant, we actually write a set of
differential equations for the metric tensor gμν , which, on the manifold Mn , gener-
ically admit a solution depending on a set of parameters {p1, . . . pr }, among which
λ is included. Also these are moduli and they fill a space named the moduli space of
Einstein metrics on Mn .

Several other examples can be made of manifoldsMmod whose points correspond
to the specification of a particular geometry within a class, for instance the moduli
ρi of an instanton parameterize the solution of the self duality constraint1:

FΛ
μν(ρ, x) = 1

2 εμνλσ FΛ
λσ (ρ, x) (4.1.3)

imposed on the field strength of a connection on a principal fibre bundle P(G,M4).
A new mathematical idea that is of outmost relevance both for physics and for

mathematics is encoded in the following almost obvious argument. Being amanifold,
the moduli space Mmod can support such geometrical structures like a metric, like
a complex structure, or a fibration. We call this the geometry of geometries. There
are several mathematical constructions, dictated by the mathematical nature of the
objects of which we consider the moduli, that single out a canonical determination
of the geometry of geometries, yet it is precisely at this level that the interaction
between physics and mathematics becomes most profound and fertile. Indeed the
geometry of geometries is typically what enters the supergravity lagrangians under
the form of sigma-models for scalar fields that on one side are the spin zero members
of supersymmetry multiplets,2 while on the other side they are moduli of some

1Clarification for readers with a mostly mathematical background: in the physical literature instan-
tons play a very important role. They are field configurations that in the Wick-rotated space-time
with Euclidean signature satisfy first-order equations more restrictive than the second order Euler
Lagrangian equations (the latter are implied by the former). In the path integral formulation of
quantum field theory, instanton correspond to the absolute minimal of the action functional and
provide the dominant contribution to quantum correlators. Depending on the type of considered
fields instantons have different definitions. For gauge fields, instantons are the connections on the
underlying principal fibre-bundle whose field strengths are self dual, namely satisfy Eq. (4.1.3).
2Clarification for mathematicians: the wording supermultiplets is universally used in the context
of supersymmetric field theories to denote a finite set of standard fields of various spins that form a
unitary irreducible representation of the supersymmetry algebra extending the Poincaré Lie algebra.
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manifold, for a example a Calabi–Yau threefold, on which the superstring has been
compactified.

This evenience produces a double check on the geometry of geometries. Its use
in supersymmetric lagrangians, imposes strong constraints on the geometry of the
scalar fields that, in many cases, have a recognizable solution in terms of known geo-
metrical categories, in other cases it leads to the definition of new types of restricted
geometries, generically dubbed special geometries. It is particularly rewarding that
the special geometries selected by supersymmetry are just those apt to accomodate
the moduli spaces of such mathematical structures as the complex structures or the
Kähler structures of a compactification manifold like a Calabi–Yau threefold.

Altogether, a really new chapter has been written in the two decades from 1990
to 2010 in the history of geometry, where the distinction between physics and math-
ematics has become somewhat obsolete, ideas from one field compenetrating the
other in an essential way.

4.1.4 The Advent of Special Geometries

The first instance of a special geometry was found by brute force, immediately after
the discovery in 1976 by Sergio Ferrara, Daniel Freedman and Peter van Nieuwen-
huizen of N = 1, d = 4 supergravity (see Fig. 4.2). The next year, considering
the coupling of a scalar multiplet to the newly found gravitational theory, the three
supergravity founders, together with Breitenlohner, Gliozzi and Scherk, constructed
a rather impressive and cumbersome lagrangian, depending on an arbitrary real func-
tion G(A, B) of a scalar A and a pseudoscalar B and on all its derivatives up to the
fourth one [2]. It wasBrunoZumino (see Fig. 4.3)who, in 1979, decoded themeaning
of this monster, showing that G(A, B) is just the Kähler potential of a Kähler metric,
all of the introduced derivatives obtaining their adequate interpretation as metric,
connection and curvature of the Kählerian manifold [3]. In this way the generaliza-
tion to several scalar multiplets was singled out: it suffices to utilize an n-dimensional
Kähler manifold.

Shortly after, the so named holomorphic superpotential introduced by physicists
to describe fermion–scalar interactions and to produce a scalar potential consistent
with supersymmetry, was also interpreted geometrically. The superpotential is just a
holomorphic section of the Hodge line-bundle over the Kähler manifold.

In this way the firstly found special geometry was a known one, namely Hodge-
Kähler geometry. This is not so for the next case.

At the beginning of the 1980’s the next obvious case was the coupling of vector
multiplets toN = 2, d = 4 supergravity. Each multiplet contains a complex scalar
field and the question was what is the geometry of the scalar manifoldMscalar in the
case of several suchmultiplets. CertainlyMscalar had to beKähler, sinceN = 2 is in
particularN = 1. Yet the stronger supersymmetry imposes additional constraints so
thatMscalar had to be a special Kähler manifold. A pioneering work on this problem
was conducted in several different combinations by a group of French, Belgian,
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Fig. 4.2 From left to right the three founders of Supergravity Theory, Daniel Freedman (1939),
Sergio Ferrara (1945), Peter van Nieuwenhuizen (1938). Dan Freedman was born in the USA,
graduated from Wisconsin University. He has been professor at Stony Brook University and he is
currently full-professor at MIT. Sergio Ferrara born in Rome in 1945 graduated from la Sapienza
University under the supervision of Raoul Gatto. Permanent Member of the CERN Theoretical
Division for many years he is also professor of physics at UCLA. Peter van Nieuwenhuizen born
in Holland in 1938, graduated in Utrecht under the supervision of Veltman, held various positions
in the United States and since the middle 1980s he is full-professor of physics at Stony Brook
University. The paper containing the lagrangian and the transformation rules of N = 1, d = 4
supergravity was published by the three founders of the theory in 1976. Since then all the three
have contributed extensively and in various different directions to the development of supergravity.
Sergio Ferrara among the three has largely contributed to the development of special geometries

Fig. 4.3 Bruno Zumino (1923–2014). Born in 1923 in Rome, he graduated from the University
La Sapienza in 1945. He died in 2014 in California, where he was emeritus professor of Berkeley
University. Formany years hewas permanentmember of the Theoretical Division at CERN. Zumino
has givenmany important contributions to Theoretical Physics in several directions: supersymmetry,
anomalies, conformal field theories, quantum groups
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Fig. 4.4 On the left Antoine Van Proeyen (1953 Belgium), on the right Eugene Cremmer (Paris
1942). Antoine Van Proeyen graduated from KU Leuven and worked in several Laboratories and
Universities, among which the École Normale of Paris, CERN Theoretical Division and Torino
University, before becoming full-professor in Leuven. He is currently the Head of the Theoretical
Physics Section at the K.U. Leuven. Since 1979, he has been involved in the construction of various
supergravity theories, the resulting special geometries and their applications to phenomenology
and cosmology. Cremmer is directeur de recherche of the CNRS working at the École Normale
Supérieure of Paris. In 1978, together with Bernard Julia and Joël Scherk, he derived the space-time
formulation of 11 dimensional supergravity theory, regarded today as the low energy limit of the
so far mysterious M-theory. In the following few years, Cremmer, together with Bernard Julia,
constructed the dimensional reductions of d = 11 supergravity, arriving in d = 4 at the maximal
extendedN = 8 theory, whose structure is completely determined by the non-compact coset E7(7)

SU(8)
accomodating the 70 scalars of the gravitational multiplet. Active research is going on at the present
time to demonstrate that N = 8 supergravity is a finite theory

Dutch, Swiss and Italian theoretical physicists in the papers mentioned in [4–6].
Using a special set of complex coordinates, the special Kähler manifolds that can
accomodate the scalar fields of N = 2 vector multiplets were described as those
where the Kähler potential is obtained from a holomorphic prepotential according to
a specific formula.

Once this was established, a natural question arose whether among so defined
special Kähler manifolds there were symmetric spaces G/H. The answer to this
question was given in Paris in 1985 by Eugene Cremmer and Antoine Van Proeyen
(see Fig. 4.4) who, in a beautiful paper absolutely worth of Cartan’s tradition [7],
provided the exhaustive classification shown in the first column of Table4.1. As one
sees, exceptional Lie groupsmake their appearance in such a list through peculiar real
forms. This was no longer a surprise for supergravity researchers since, four years
before, the same Eugene Cremmer, in collaboration with Bernard Julia (see Fig. 4.5),
had shown that the dimensional reduction of maximally extended supergravity from
D = 11 down to D = 10, D = 9, . . . , D = 4, D = 3 produces, as scalar manifolds,
the following maximally split symmetric spaces:

MD = E11−D(11−D)

Hc
(4.1.4)
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Table 4.1 List of special Kähler symmetric spaces with their Quaternionic Kähler c-map images.
The number n denotes the complex dimension of the Special Kähler preimage. On the other hand
4n + 4 is the real dimension of the Quaternionic Kähler c-map image

SK n Special Kähler
manifold

QM 4n+4 Quaternionic Kähler
manifold

dimSK n = n

SU(1,1)
U(1)

G2(2)
SU(2)×SU(2) n = 1

Sp(6,R)
SU(3)×U(1)

F4(4)
USp(6)×SU(2) n = 6

SU(3,3)
SU(3)×SU(3)×U(1)

E6(2)
SU(6)×SU(2) n = 9

SO�(12)
SU(6)×U(1)

E7(−5)
SO(12)×SU(2) n = 15

E7(−25)
E6(−78)×U(1)

E8(−24)
E7(−133)×SU(2) n = 27

SL(2,R)
SO(2) × SO(2,2+p)

SO(2)×SO(2+p)
SO(4,4+p)

SO(4)×SO(4+p) n = 3 + p

SU(p+1,1)
SU(p+1)×U(1)

SU(p+2,2)
SU(p+2)×SU(2) n = p + 1

Fig. 4.5 Bernard Julia (Paris 1952). He graduated from Université de Paris-Sud in 1978, and he is
directeur de recherche of the CNRSworking at theÉcole Normale Supŕieure. In 1978, together with
Eugne Cremmer and Joël Scherk, he constructed 11-dimensional supergravity. Shortly afterwards,
Cremmer and Julia constructed the classical Lagrangian of four-dimensional N = 8 supergravity
by dimensional reduction from the 11-dimensional theory

where:

E5(5) � D5(5) � SO(5, 5)

E4(4) � A4(4) � SL(5,R)

E3(3) � A1(1) × A2(2) � SL(2,R) ⊗ SL(3,R)

E2(2) � A1(1) × A1(1) � SL(2,R) ⊗ SL(2,R) (4.1.5)
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Fig. 4.6 On the left LeonardoCastellani (born 1953 inFreiburg, Switzerland).On the rightRiccardo
D’Auria (born 1940 in Rome). Leonardo Castellani studied physics at the University of Florence
in Italy and obtained his Ph.D from Stony Brook University in the US, with a thesis written under
the supervision of van Nieuwenhuizen. He had post-doctoral positions at Caltech and at CERN,
then he became permanent Researcher in the Torino section of the National Institute of Nuclear
Research (INFN) and in 1993 he was appointed full-professor of Theoretical Physics at the Univer-
sity of Eastern Piedmont, position that he holds at the present time. He is especially known for his
contributions, together with D’Auria and Fré to the rheonomic formulation of supersymmetric the-
ories, for his derivation together with Larry Romans of the list of G/H compactifications of d = 11
supergravity and more recently for developments in quantum group theories and, together with P.A.
Grassi and R. Catenacci for the extension of Hodge theory to supermanifolds. Riccardo D’Auria
studied at the University of Torino and graduated there with a thesis written under the supervision
of Tullio Regge. He was for several years Associate Professor at the University of Torino, in 1987
he was appointed full-professor of Theoretical Physics at the University of Padua. Few years later
he was offered a full professor chair at the Politecnico of Torino where he concluded his academic
career becoming emeritus professor in 2011. D’Auria, together with Fré has been the founder of
the rheonomic formulation of supergravity and also with Fré he introduced the notion of super Free
Differential Algebras, that were singled out as the algebraic basis of all supergravity theories in
dimension higher than four. In particular in 1982, D’Auria and Fré obtained the FDA formulation of
d= 11 supergravity. D’Auria has givenmanymore contributions to supergravity theory in particular
in connection with special geometries, with the classification of black-hole solutions, with duality
rotations, with the various formulations of the d = 6 theories and with several other aspects of the
superworld

So exceptional Lie groups that had been regarded for long time as mathematical
curiosities were brought to prominence by supergravity and in parallel also by super-
string theory.

The fact that all such results were obtained in the École Normale Supérieure de
Paris demonstrates the far reaching influence of Élie Cartan’s tradition.

At the end of the eighties the intrinsic definition of special Kähler geometry, free
from the use of special coordinates, was independently obtained with two different
strategies byAndrew Strominger (see Fig. 4.7) and by Leonardo Castellani, Riccardo
D’Auria and Sergio Ferrara (see Fig. 4.6).

While Strominger derived his definition from the properties of Calabi–Yaumoduli
spaces [8], Castellani, D’Auria and Ferrara [9, 10] (and later D’Auria Ferrara and Fré
[11]) derived their own definition from the constraints imposed by supersymmetry on
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Fig. 4.7 On the left Bernard Quirinus Petrus Joseph de Wit (born 1945 in the Netherlands). On the
rightAndrewEbenStrominger (born 1955 in theUSA). Bernard deWit studied theoretical physics at
Utrecht University, where he got his PhD under the supervision of the Nobel Prize laureateMartinus
Veltman in 1973. He held postdoc positions in Stony Brook, Utrecht and Leiden. He became a staff
member at the National Institute for Nuclear and High Energy Physics (NIKHEF) in 1978, where he
becameheadof the theory group in 1981. In 1984hewas appointed professor of theoretical physics at
Utrecht University where he has stayed for the rest of his career. Bernard deWit has given important
contributions to the development of supergravity theory building, in collaboration mainly with Van
Proeyen, the so named conformal tensor calculus. Together with Herman Nicolai he constructed
the so(8)-gauged version ofN = 8 supergravity that has provided the paradigmatic example for all
supergravity gaugings. Andrew Strominger completed his undergraduate studies at Harvard in 1977
before attending the University of California, Berkeley for his Master diploma. He received his PhD
from MIT in 1982 under the supervision of Roman Jackiw. Prior to joining Harvard as a professor
in 1997, he held a faculty position at the University of California, Santa Barbara. Strominger is
especially known for introducing, together with Cumrun Vafa the string theory explanations of
the microscopic origin of black hole entropy, originally calculated thermodynamically by Stephen
Hawking and Jacob Bekenstein. Strominger, together with Philippe Candelas, Gary Horowitz and
Edward Witten was the first proposer of Calabi–Yau threefolds as compactification manifolds for
superstrings and supergravities in d = 10

the curvature tensor of the Kählerian manifold. With some labour they also showed
the full equivalence of the two definitions.

In the same years, Antoine Van Proeyen and Bernard deWit (see Fig. 4.7), in some
publications together with a younger collaborator, established a full classification of
homogeneous special geometries, namely of special manifolds that admit a solvable
transitive group of isometries [12–14]. They also explored the relation [12, 13]
between special Kähler geometries and quaternionic geometries that can be obtained
from them by means of a very interesting map, originally discovered by Cecotti [15]
and further developed by Ferrara et al. in [16, 17]. So doing they came in touch
with the classification of quaternionic manifolds with a transitive solvable group of
motion that had been performed several years before by Alekseevsky [18, 19].

Themapmentioned above is named the c-map and can be given amodern compact
definition exhibited in [20]. Furthermore the c-map has a non Euclidean analogue,
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the c�-map that plays an important role in the discussion of supergravity based black-
holes, another instance of geometry that will occupy us in later chapters.

4.1.5 A Survey of the Topics in This Chapter

In the sequel the special geometries motivated by supergravity will be thoroughly
discussed and the properties of the c-map will be analyzed in detail. In that we
closely follow the recent paper [20].3 Indeed, coming to these topics our history of
Symmetry and Geometry has reached the front of current research. Here physics and
mathematics are fully entangled.

4.2 Special Kähler Geometry

In this section we present Special Kähler Geometry in a full-fledged rigorous math-
ematical form. Let us begin by summarizing some relevant concepts and definitions
that are propaedeutical to the main definition.

4.2.1 Hodge–Kähler Manifolds

Consider a line bundleL
π−→M over a Kähler manifoldM . By definition this is a

holomorphic vector bundle of rank r = 1. For such bundles the only available Chern
class is the first:

c1(L ) = i

2
∂
(

h−1 ∂ h
) = i

2
∂ ∂ log h (4.2.1)

where the 1-component real function h(z, z) is some hermitian fibremetric onL . Let
ξ(z) be a holomorphic section of the line bundle L : noting that under the action of
the operator ∂ ∂ the term log

(
ξ(z) ξ(z)

)
yields a vanishing contribution, we conclude

that the formula in Eq. (4.2.1) for the first Chern class can be re-expressed as follows:

c1(L ) = i

2
∂ ∂ log ‖ ξ(z) ‖2 (4.2.2)

where ‖ ξ(z) ‖2 = h(z, z) ξ(z) ξ(z) denotes the norm of the holomorphic section
ξ(z).

Equation (4.2.2) is the starting point for the definition ofHodge–Kählermanifolds.
A Kähler manifold M is a Hodge manifold if and only if there exists a line bundle

3An early review of Special Kähler Geometry was written by this author in 1996 in [21].
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L
π−→M such that its first Chern class equals the cohomology class of the Kähler

two-form K:
c1(L ) = [ K ] (4.2.3)

In local terms this means that there is a holomorphic section ξ(z) such that we
can write

K = i

2
gi j� dzi ∧ dz j� = i

2
∂ ∂ log ‖ ξ(z) ‖2 (4.2.4)

Recalling the local expression of the Kähler metric in terms of the Kähler potential
gi j� = ∂i ∂ j�K (z, z), it follows from Eq. (4.2.4) that if the manifoldM is a Hodge
manifold, then the exponential of the Kähler potential can be interpreted as themetric
h(z, z) = exp (K (z, z)) on an appropriate line bundle L .

4.2.2 Connection on the Line Bundle

On any complex line bundleL there is a canonical hermitian connection defined as:

θ ≡ h−1 ∂ h = 1
h ∂i h dzi ; θ ≡ h−1 ∂ h = 1

h ∂i� h dzi�

(4.2.5)

For the line-bundle advocated by the Hodge-Kähler structure we have

[
∂ θ
] = c1(L ) = [K] (4.2.6)

and since the fibre metric h can be identified with the exponential of the Kähler
potential we obtain:

θ = ∂ K = ∂iK dzi ; θ = ∂ K = ∂i�K dzi�

(4.2.7)

To define special Kähler geometry, in addition to the afore-mentioned line–bundle
L we need a flat holomorphic vector bundle SV −→ M whose sections play
an important role in the construction of the supergravity Lagrangians. For reasons
intrinsic to such constructions the rank of the vector bundleSV must be 2 nV where
nV is the total number of vector fields in the theory. If we have n-vector multiplets
the total number of vectors is nV = n + 1 since, in addition to the vectors of the
vector multiplets, we always have the graviphoton sitting in the graviton multiplet.
On the other hand the total number of scalars is 2n. Suitably paired into n-complex
fields zi , these scalars span the n complex dimensions of the base manifold M to
the rank 2n + 2 bundle SV −→ M .

In the sequel we make extensive use of covariant derivatives with respect to the
canonical connection of the line–bundleL . Let us review its normalization. As it is
well known there exists a correspondence between line–bundles and U(1)–bundles.
If exp[ fαβ(z)] is the transition function between two local trivializations of the line–
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bundleL
π−→M , the transition function in the corresponding principal U(1)–bundle

U −→ M is just exp[iIm fαβ(z)] and the Kähler potentials in two different charts
are related by:Kβ = Kα+ fαβ+ f αβ . At the level of connections this correspondence
is formulated by setting: U(1)–connection ≡ Q = Imθ = − i

2

(
θ − θ

)
. If we apply

this formula to the case of the U(1)–bundle U −→ M associated with the line–
bundle L whose first Chern class equals the Kähler class, we get:

Q = i

2

(
∂iK dzi − ∂i�K dzi�)

(4.2.8)

Let now Φ(z, z) be a section of U p. By definition its covariant derivative is ∇Φ =
(d − i pQ)Φ or, in components,

∇iΦ = (∂i + 1
2 p∂iK )Φ ; ∇i∗Φ = (∂i∗ − 1

2 p∂i∗K )Φ (4.2.9)

A covariantly holomorphic section of U is defined by the equation: ∇i∗Φ = 0. We
can easily map each section Φ(z, z) of U p into a section of the line–bundle L by
setting:

Φ̃ = e−pK /2Φ . (4.2.10)

With this position we obtain:

∇i Φ̃ = (∂i + p∂iK )Φ̃ ; ∇i∗Φ̃ = ∂i∗Φ̃ (4.2.11)

Under the map of Eq. (4.2.10) covariantly holomorphic sections of U flow into
holomorphic sections ofL and viceversa.

4.2.3 Special Kähler Manifolds

We are now ready to give the first of two equivalent definitions of special Kähler
manifolds:

Definition 4.2.1 A Hodge Kähler manifold is Special Kähler (of the local type) if
there exists a completely symmetric holomorphic 3-index section Wi jk of (T �M )3⊗
L 2 (and its antiholomorphic conjugate Wi∗ j∗k∗ ) such that the following identity is
satisfied by the Riemann tensor of the Levi–Civita connection:

∂m∗ Wi jk = 0 ∂m Wi∗ j∗k∗ = 0

∇[m Wi] jk = 0 ∇[m Wi∗] j∗k∗ = 0

Ri∗ j�∗k = g�∗ j gki∗ + g�∗k g ji∗ − e2K Wi∗�∗s∗ Wtk j g
s∗t (4.2.12)
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In the above equations ∇ denotes the covariant derivative with respect to both the
Levi–Civita and the U(1) holomorphic connection of Eq. (4.2.8). In the case of Wi jk ,
the U(1) weight is p = 2.

Out of the Wi jk we can construct covariantly holomorphic sections of weight 2
and - 2 by setting:

Ci jk = Wi jk eK ; Ci� j�k� = Wi� j�k� eK (4.2.13)

The flat bundle mentioned in the previous subsection apparently does not appear in
this definition of special geometry. Yet it is there. It is indeed the essential ingredient
in the second definition whose equivalence to the first we shall shortly provide.

Let L
π−→M denote the complex line bundle whose first Chern class equals

the cohomology class of the Kähler form K of an n-dimensional Hodge–Kähler
manifold M . Let SV −→ M denote a holomorphic flat vector bundle of rank
2n + 2 with structural group Sp(2n + 2,R). Consider tensor bundles of the type
H = SV ⊗ L . A typical holomorphic section of such a bundle will be denoted
by Ω and will have the following structure:

Ω =
(

XΛ

FΣ

)
Λ,Σ = 0, 1, . . . , n

By definition the transition functions between two local trivializations Ui ⊂ M and
U j ⊂ M of the bundle H have the following form:

(
X
F

)

i

= e fi j Mi j

(
X
F

)

j

where fi j are holomorphicmapsUi ∩U j → Cwhile Mi j is a constant Sp(2n + 2,R)

matrix. For a consistent definition of the bundle the transition functions are obvi-
ously subject to the cocycle condition on a triple overlap: e fi j + f jk+ fki = 1 and
Mi j M jk Mki = 1.

Let i〈 | 〉 be the compatible hermitian metric on H

i〈Ω | Ω〉 ≡ −iΩT

(
0 11

−11 0

)
Ω

Definition 4.2.2 We say that a Hodge–Kähler manifold M is special Kähler if
there exists a bundle H of the type described above such that for some section
Ω ∈ Γ (H ,M ) the Kähler two form is given by:

K = i

2
∂∂ log

(
i〈Ω | Ω〉) = i

2
gi j∗ dzi ∧ dz j∗

(4.2.14)

From the point of view of local properties, Eq. (4.2.14) implies that we have an
expression for the Kähler potential in terms of the holomorphic section Ω:
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K = −log
(
i〈Ω | Ω〉) = −log

[
i
(

X
Λ

FΛ − FΣ XΣ
)]

(4.2.15)

The relation between the two definitions of special manifolds is obtained by intro-
ducing a non–holomorphic section of the bundle H according to:

V =
(

LΛ

MΣ

)
≡ eK /2Ω = eK /2

(
XΛ

FΣ

)
(4.2.16)

so that Eq. (4.2.15) becomes:

1 = i〈V | V 〉 = i
(

L
Λ

MΛ − MΣ LΣ
)

(4.2.17)

Since V is related to a holomorphic section by Eq. (4.2.16) it immediately follows
that:

∇i� V =
(

∂i� − 1

2
∂i�K

)
V = 0 (4.2.18)

On the other hand, from Eq. (4.2.16), defining:

Ui = ∇i V =
(

∂i + 1

2
∂iK

)
V ≡

(
f Λ
i

hΣ |i

)

U i� = ∇i� V =
(

∂i� + 1

2
∂i�K

)
V ≡

(
f

Λ

i�

hΣ |i�

)

it follows that:
∇iU j = iCi jk gk��

U �� (4.2.19)

where ∇i denotes the covariant derivative containing both the Levi–Civita connec-
tion on the bundle T M and the canonical connection θ on the line bundle L . In
Eq. (4.2.19) the symbolCi jk denotes a covariantly holomorphic (∇��Ci jk = 0) section
of the bundle T M 3 ⊗ L 2 that is totally symmetric in its indices. This tensor can
be identified with the tensor of Eq. (4.2.13) appearing in Eq. (4.2.12). Alternatively,
the set of differential equations:

∇i V = Ui

∇iU j = iCi jk gk��

U��

∇i�U j = gi� j V

∇i� V = 0 (4.2.20)
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with V satisfying equation (4.2.17) give yet another definition of special geometry.
In particular it is easy to find Eq. (4.2.12) as integrability conditions of (4.2.20).4

4.2.4 The Vector Kinetic MatrixNΛΣ in Special Geometry

In the construction of supergravity actions another essential item is the complex
symmetric matrix NΛΣ whose real and imaginary parts are necessary in order to
write the kinetic terms of the vector fields. From the physicist’s viewpoint the matrix
NΛΣ is an essential item since the Lagrangian cannot be written without it. From the
mathematical viewpoint it is very much significant that the same NΛΣ constitutes
an integral part of the Special Geometry set up. We provide its general definition
in the following lines. Explicitly NΛΣ which, in relation to its interpretation in the
case of Calabi–Yau threefolds, is named the period matrix, is defined by means of
the following relations:

MΛ = NΛΣ L
Σ ; hΣ |i = NΛΣ f Σ

i (4.2.21)

which can be solved introducing the two (n + 1) × (n + 1) vectors

f Λ
I =

(
f Λ
i

L
Λ

)
; hΛ|I =

(
hΛ|i
MΛ

)

and setting:
NΛΣ = hΛ|I ◦ ( f −1)I

Σ
(4.2.22)

Let us now consider the case where the Special Kähler manifold SK n of com-
plex dimension n has some isometry group US K . Compatibility with the Special
Geometry structure requires the existence of a 2n + 2-dimensional symplectic rep-
resentation of such a group that we name the W representation. In other words that
there necessarily exists a symplectic embedding of the isometry group SK n

US K �→ Sp(2n + 2,R) (4.2.23)

such that for each element ξ ∈ US K we have its representation by means of a
suitable real symplectic matrix:

ξ �→ Λξ ≡
(

Aξ Bξ

Cξ Dξ

)
(4.2.24)

4We omit the detailed proof that from Eq. (4.2.20) one obtains Eq. (4.2.12). The essential link
between the two formulations resides in the second of Eq. (4.2.20) which identifies the tensor Ci jk
with the expression of the derivative of Ui in terms of the same objects Uk .
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satisfying the defining relation (in terms of the symplectic antisymmetric metric C):

ΛT
ξ

(
0n×n 1n×n

−1n×n 0n×n

)

︸ ︷︷ ︸
≡C

Λξ =
(

0n×n 1n×n

−1n×n 0n×n

)

︸ ︷︷ ︸
C

(4.2.25)

which implies the following relations on the n × n blocks:

AT
ξ Cξ − CT

ξ Aξ = 0

AT
ξ Dξ − CT

ξ Bξ = 1

BT
ξ Cξ − DT

ξ Aξ = −1

BT
ξ Dξ − DT

ξ Bξ = 0 (4.2.26)

Under an element of the isometry group the symplectic section Ω of Special Geom-
etry transforms as follows:

Ω (ξ · z) = Λξ Ω (z) (4.2.27)

As a consequence of its definition, under the same isometry thematrixN transforms
by means of a generalized linear fractional transformation:

N (ξ · z, ξ · z) = (Cξ + Dξ N (z, z)
) (

Aξ + Bξ N (z, z)
)−1

(4.2.28)

4.3 The Quaternionic Kähler Geometry in the Image
of the c-Map

The main object of study in the present section are those Quaternionic Kähler man-
ifolds that are in the image of the c-map.5 This latter

c-map : SK n =⇒ QM 4n+4 (4.3.1)

is a universal construction that starting from an arbitrary Special Kähler manifold
SK n of complex dimension n, irrespectively whether it is homogeneous or not,
leads to a unique Quaternionic Kähler manifoldQM 4n+4 of real dimension 4n + 4
which containsSK n as a submanifold. The precise modern definition of the c-map,
originally introduced in [16, 17], is provided below.

5Not all non-compact, homogeneous Quaternionic Kähler manifolds which are relevant to super-
gravity (which are normal, i.e. exhibiting a solvable group of isometries having a free and transitive
action on it) are in the image of the c-map, the only exception being the quaternionic projective
spaces [14, 15].
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Definition 4.3.1 Let SK n be a special Kähler manifold whose complex coordi-
nates we denote by zi and whose Kähler metric we denote by gi j� . Let moreover
NΛΣ(z, z) be the symmetric period matrix defined by Eq. (4.2.22), introduce the
following set of 4n + 4 coordinates:

{
qu
} ≡ {U, a}︸ ︷︷ ︸

2 real

⋃
{zi }︸︷︷︸

n complex
︸ ︷︷ ︸
2n real

⋃
Z = {ZΛ , ZΣ }︸ ︷︷ ︸

(2n+2) real

(4.3.2)

Let us further introduce the following (2n + 2) × (2n + 2) matrixM−1
4 :

M−1
4 =

(
ImN + ReN ImN −1 ReN −ReN ImN −1

− ImN −1 ReN ImN −1

)
(4.3.3)

which depends only on the coordinate of the Special Kähler manifold. The c-map
image ofSK n is the unique Quaternionic Kähler manifoldQM 4n+4 whose coor-
dinates are the qu defined in (4.3.2) and whose metric is given by the following
universal formula

ds2QM = 1

4

(
dU2 + 4gi j� dz j dz j� + e−2U (da + ZT

CdZ)2 − 2 e−U dZT M−1
4 dZ

)

(4.3.4)

The metric (4.3.4) has the following positive definite signature

sign
[
ds2QM

] =
⎛

⎝+, · · · ,+︸ ︷︷ ︸
4+4n

⎞

⎠ (4.3.5)

since the matrixM−1
4 is negative definite.

In the case the Special Kähler pre-image is a symmetric space US K /HS K , the
manifoldQM turns out to be symmetric spaces, UQ/HQ . We will come back to the
issue of symmetric homogeneous Quaternionic Kähler manifolds in Sect. 4.3.4

4.3.1 The HyperKähler Two-Forms
and the su(2)-Connection

The reason why we state that QM 4n+4 is Quaternionic Kähler is that, by utilizing
only the identities of Special Kähler Geometry we can construct the three complex
structures J x |v

u satisfying the quaternionic algebra (3.6.6) the corresponding Hyper-

http://dx.doi.org/10.1007/978-3-319-74491-9_3
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Kähler two-forms K x and the su(2) connection ωx with respect to which they are
covariantly constant.

The construction is extremely beautiful, it was found in [20] and it is the following
one.

Consider the Kähler connection Q defined by Eq. (4.2.8) and furthermore intro-
duce the following differential form:

Φ = da + ZT
C dZ (4.3.6)

Next define the two dimensional representation of both the su(2) connection and of
the HyperKähler 2-forms as it follows:

ω = i√
2

3∑

x=1

ωx γx (4.3.7)

K = i√
2

3∑

x=1

K x σx (4.3.8)

where γx denotes a basis of 2 × 2 Euclidean γ -matrices for which we utilize the
following basis which is convenient in the explicit calculations we perform in later
chapters6:

γ1 =
(

1√
2
0

0 − 1√
2

)

γ2 =
(
0 − i√

2
i√
2
0

)

γ3 =
(
0 1√

2
1√
2
0

)
(4.3.9)

These γ -matrices satisfy the following Clifford algebra:

{
γx , γy

} = δxy 12×2 (4.3.10)

and i
2 γx provide a basis of generators of the su(2) algebra.

Having fixed these conventions the expression of the quaternionic su(2)-
connection in terms of Special Geometry structures is encoded in the following
expression for the 2 × 2-matrix valued 1-form ω. Explicitly we have:

6The chosen γ -matrices are a permutation of the standard pauli matrices divided by
√
2 and multi-

plied by i
2 can be used as a basis of anti-hermitian generators for the su(2) algebra in the fundamental

defining representation.
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ω =
(− i

2 Q − i
4 e−U Φ e− U

2 V T
C dZ

− e− U
2 V

T
C dZ i

2 Q + i
4 e−U Φ

)
(4.3.11)

where V and V denote the covariantly holomorphic sections of Special geometry
defined in Eq. (4.2.16). The curvature of this connection is obtained from a straight-
forward calculation:

K ≡ dω + ω ∧ ω

=
(

u v
− v − u

)
(4.3.12)

the independent 2-form matrix elements being given by the following explicit for-
mulae:

u = −i
1

2
K − 1

8
d S ∧ d S − e−U V T

C dZ ∧ V
T
C dZ − 1

4
e−U dZT ∧ C dZ

v = e− U
2

(
DV T ∧ C dZ − 1

2
d S ∧ V T

C dZ
)

v = e− U
2

(
DV

T ∧ C dZ − 1

2
d S ∧ V

T
C dZ

)
(4.3.13)

where

K = i

2
gi j� dzi ∧ dz j�

(4.3.14)

is the Kähler 2-form of the Special Kähler submanifold and where we have used the
following short hand notations:

d S = dU + i e−U
(
da + ZT

C dZ
)

(4.3.15)

d S = dU − i e−U
(
da + ZT

C dZ
)

(4.3.16)

DV = dzi ∇i V (4.3.17)

DV = dzi� ∇i� V (4.3.18)

The three HyperKähler forms7 K x are easily extracted from Eqs. (4.3.12)–(4.3.13)
by collecting the coefficients of the γ -matrix expansion andwe need not to write their
form which is immediately deduced. The relevant thing is that the components of
K x with an index raised through multiplication with the inverse of the quaternionic
metric huv exactly satisfy the algebra of quaternionic complex structures (3.6.6).
Explicitly we have:

7See Sect. 3.6 for notations.

http://dx.doi.org/10.1007/978-3-319-74491-9_3
http://dx.doi.org/10.1007/978-3-319-74491-9_3
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K x = − i 4
√
2 Tr

(
γ x K

) ≡ K x
uv dqu ∧ dqv

J x |s
u = K x

uv hvs

J x |s
u J y|v

s = −δxy δv
u + εxyz J z|v

u (4.3.19)

The above formulae are not only the general proof that the Riemanniann manifold
QM defined by the metric (4.3.4) is indeed a Quaternionic Kähler manifold, but,
what is most relevant, they also provide an algorithm to write in terms of Special
Geometry structures the tri-holomorphic moment map of the principal isometries
possessed by QM .

4.3.2 The Holomorphic Moment Map in Special Kähler
Manifolds

In any Kähler manifold

PI
x = − i

2

(
ki

I∂iK − kı
I∂ıK

)+ Im( fI) , (4.3.20)

where fI = fI(z) is a holomorphic transformation on the line-bundle, defining a
compensating Kähler transformation:

ki
I∂iK + kı

I∂ıK = − fI(z) − f I(z) . (4.3.21)

We also have:

TI · Ω = TI · Ω + fI Ω , (4.3.22)

TI · V + i Im( fI) V = ki
I∂i V + kı

I∂ı V , (4.3.23)

where TI · Ω denotes the symplectic action of the isometry on the section V . If TI

is represented by the symplectic matrix (TI)α
β = −(TI)

β
α , α, β = 1, . . . , 2n + 2:

TT
I C + CTI = 0 (4.3.24)

we have (TI · V )α = −TI β
α V β = Tα

I β V β . From (4.3.23) and (3.7.22) we derive
the following useful symplectic-invariant expression for the moment maps:

PI
x = −V

α
TI α

β
Cβγ V γ . (4.3.25)

Equations (3.7.22), (3.7.23), (4.3.23) generalize the corresponding formulae given in
Sects. 7.1 and 7.2 of [22], where the condition fI = 0 was imposed, to gaugings of
non-compact isometries which are associated with non-trivial compensating Kähler

http://dx.doi.org/10.1007/978-3-319-74491-9_3
http://dx.doi.org/10.1007/978-3-319-74491-9_3
http://dx.doi.org/10.1007/978-3-319-74491-9_3
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transformations and/or to gauged (non-compact) isometries whose symplectic action
is not diagonal.

4.3.3 Isometries ofQM in the Image of the c-Map
and Their Tri-Holomorphic Moment Maps

Let us now consider the isometries of the metric (4.3.4). There are three type of
isometries:

(a) The isometries of the (2n + 3)–dimensional Heisenberg algebra Heis which
is always present and is universal for any (4n + 4)–dimensional Quaternionic
Kähler manifold in the image of the c-map. We describe it below.

(b) All the isometries of the pre-image Special Kähler manifold SK n that are
promoted to isometries of the image manifold in a way described below.

(c) The additional 2n + 4 isometries that occur only when SK n is a symmetric
space and such, as a consequence, is also the c-map image QM 4n+4. We will
discuss these isometries in Sect. 4.3.4.

For the first two types of isometries (a) and (b)we are able towrite general expressions
for the tri-holomorphic moment maps that utilize only the structures of Special
Geometry. In the case that the additional isometries (c) do exist we have another
universal formulawhich can be used for all generators of the isometry algebraUQ and
which relies on the identification of the generators of the su(2) ⊂ H subalgebra with
the three complex structures. We will illustrate the details of such an identification
while discussing the example of the S3-model.

First of all let us fix the notation writing the general form of a Killing vector. This
a tangent vector:

k = ku(q) ∂u

= k� ∂

∂U
+ ki ∂

∂zi
+ ki� ∂

∂zi� + k• ∂

∂a
+ kα ∂

∂Zα

≡ k� ∂� + ki ∂i + ki�

∂i� + k• ∂• + kα ∂α (4.3.26)

with respect to which the Lie derivative of the metric element (4.3.4) vanishes:

�k ds2QM = 0 (4.3.27)

4.3.3.1 Tri-Holomorphic Moment Maps for the Heisenberg Algebra
Translations

First let us consider the isometries associated with the Heisenberg algebra. The
transformation:
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Zα �→ Zα + Λα ; a �→ a − ΛT
CZ (4.3.28)

whereΛα is an arbitrary set of 2n +2 real infinitesimal parameters is an infinitesimal
isometry for the metric ds2QM in (4.3.4). It corresponds to the following Killing
vector:

−→
k [Λ] = Λα −→

k α

= Λα ∂α − ΛT
CZ ∂• (4.3.29)

whose components are immediately deduced by comparison of Eq. (4.3.29) with
Eq. (4.3.26).

We are interested in determining the expression of the tri-holomorphic moment
map P[Λ] which satisfies the defining equation:

i[Λ] K ≡
(

i[Λ] u i[Λ] v
− i[Λ] v − i[Λ] u

)
= dP[Λ] + [

ω , P[Λ]
]

(4.3.30)

The general solution to this problem is

P[Λ] =
(

− i
4 e−U ΛT

CZ 1
2 e− U

2 ΛT C V

− 1
2 e− U

2 ΛT C V i
4 e−U ΛT

CZ

)

(4.3.31)

4.3.3.2 Tri-Holomorphic Moment Map for the Heisenberg Algebra
Central Charge

Consider next the isometry associated with the Heisenberg algebra central charge.
The transformation:

a �→ a + ε (4.3.32)

where ε is an arbitrary real small parameter is an infinitesimal isometry for the metric
ds2QM in (4.3.4). It corresponds to the following Killing vector:

ε
−→
k [•] = ε ∂• (4.3.33)

whose components are immediately deduced by comparison of Eq. (4.3.33) with
Eq. (4.3.26).

We are interested in determining the expression of the tri-holomorphic moment
map P[•] which satisfies the defining equation analogous to Eq. (4.3.30):

i[•] K = dP[•] + [
ω , P[•]

]
(4.3.34)
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The solution of this problem is even simpler than in the previous case. Explicitly we
obtain:

P[•] =
(

− i
8 e−U 0

0 i
8 e−U

)
(4.3.35)

The explicit expression of the moment maps and Killing vectors associated with
the Heisenberg isometries was used in the gauging of abelian subalgebras of the
Heisenberg algebra, which is relevant to the description of compactifications of Type
II superstring on a generalized Calabi–Yau manifold.

4.3.3.3 Tri-Holomorphic Moment Map for the Extension of SK n

Holomorphic Isometries

Next we consider the question how to write the moment map associated with those
isometries that where already present in the original Special Kähler manifoldSK n

which we c-mapped to a Quaternionic Kähler manifold.
Suppose thatSK n has a certain number of holomorphicKilling vectors ki

I(z) sat-
isfying equations (3.7.6), (3.7.7), (8.4.85) necessarily closing someLie algebra gS K

among themselves.8 Their holomorphic momentum-map is provided by Eq. (3.7.22).
Necessarily every isometry of a special Kähler manifold has a linear symplectic
(2n + 2)-dimensional realization on the holomorphic section Ω(z) up to an overall
holomorphic factor. This means that for each holomorphic Killing vector we have
(see Eq. (4.3.22)):

ki
I(z) ∂i Ω(z) = exp [ fI(z)] TI Ω(z) . (4.3.36)

where fI(z) the holomorphic Kähler compensator. Then it can be easily checked that
the transformation:

zi �→ zi + ki
I(z) ; Z �→ Z + TI Z (4.3.37)

is an infinitesimal isometry of the metric (4.3.4) corresponding to the Killing vector:

kI = ki
I(z) ∂i + ki�

I (z) ∂i� + (TI)
α
β Zβ ∂α (4.3.38)

Also in this case we are interested in determining the expression of the tri-
holomorphic moment map P[I] satisfying the defining equation:

ikI K = dP[I] + [
ω , P[I]

]
(4.3.39)

8Clarification for mathematicians: in the jargon ubiquitously utilized in the physical literature one
says that a set of operators closes a Lie algebra when any of the commutators thereof belongs to the
linear span of the same operators.

http://dx.doi.org/10.1007/978-3-319-74491-9_3
http://dx.doi.org/10.1007/978-3-319-74491-9_3
http://dx.doi.org/10.1007/978-3-319-74491-9_3
http://dx.doi.org/10.1007/978-3-319-74491-9_3
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The solution is given by the expression below:

P[I] =
(

i
4

(
PI + 1

2 e−U ZT
CTI Z

) − 1
2 e−U/2 V T

CTI Z
1
2 e−U/2 V

T
CTI Z − i

4

(
PI + 1

2 e−U ZT
CTI Z

)

)

(4.3.40)

where PI is the moment map of the same Killing vector in pure Special Geometry.

4.3.4 Homogeneous Symmetric Special Quaternionic Kähler
Manifolds

When the Special Kähler manifold SK n is a symmetric coset space, it turns out
that the metric (4.3.4) is actually the symmetric metric on an enlarged symmetric
coset manifold

QM 4n+4 = UQ

HQ
⊃ US K

HS K
(4.3.41)

Naming Λ[g] the W-representation of any finite element of the g ∈ US K group,
we have that the matrix M4(z, z) transforms as follows:

M4 (g · z, g · z) = Λ[g]M4 (z, z)] ΛT [g] (4.3.42)

where g · z denotes the non linear action of US K on the scalar fields. Since the space
US K

HS K
is homogeneous, choosing any reference point z0 all the others can be reached

by a suitable group element gz such that gz · z0 = z and we can write:

M−1
4 (z, z) = ΛT [g−1

z ]M−1
4 (z0, z0)] Λ[g−1

z ] (4.3.43)

This allows to introduce a set of 4n + 4 vielbein defined in the following way:

E I
QM = 1

2

⎧
⎪⎨

⎪⎩
dU , ei (z)︸︷︷︸

2 n

, e−U
(
da + ZT

CdZ
)

, e− U
2 Λ[g−1

z ] dZ
︸ ︷︷ ︸

2n+2

⎫
⎪⎬

⎪⎭
(4.3.44)

and rewrite the metric (4.3.4) as it follows:

ds2QM = E I
QM qI J E J

QM (4.3.45)
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where the quadratic symmetric constant tensor qI J has the following form:

qI J =

⎛

⎜⎜⎝

1 0 0 0
0 δi j 0 0
0 0 1 0
0 0 0 − 2M−1

4 (z0, z0)

⎞

⎟⎟⎠ (4.3.46)

The above defined vielbein are endowed with a very special property namely they
identically satisfy a set of Maurer Cartan equations:

d E I
QM − 1

2
f I

J K E J
QM ∧ E K

QM = 0 (4.3.47)

where f I
J K are the structure constants of a solvable Lie algebra A which can be

identified as follows:

A = Solv

(
UQ

HQ

)
(4.3.48)

In the above equation Solv
(
UQ

HQ

)
denotes the Lie algebra of the solvable group

manifold metrically equivalent to the non-comapact coset manifold UQ

HQ
according to

what we explained in Sect. 2.5. In the case US K is a maximally split real form of a
complex Lie algebra, then also UQ is maximally split and we have:

Solv

(
UQ

HQ

)
= Bor (UQ ) (4.3.49)

where Bor (UQ ) denotes the Borel subalgebra of the semi-simple Lie algebra G,
generated by its Cartan generators and by the step operators associated with all
positive roots.

According to themathematical theory summarized in Sect. 2.5 above, the very fact
that the vielbein (4.3.44) satisfies the Maurer Cartan equations of the Lie algebra

Solv
(
UQ

HQ

)
implies that the metric (4.3.45) is the symmetric metric on the coset

manifold UQ

HQ
which therefore admits continuous isometries associated with all the

generators of the Lie algebra UQ . For reader’s convenience the list of Symmetric
Special manifolds and of their Quaternionic Kähler counterparts in the image of the
c-map is recalled in Table4.1 which reproduces the results of [7], according to which
there is a short list of Symmetric Homogeneous Special manifolds comprising five
discrete cases and two infinite series.

Inspecting Eq. (1.7.19) we immediately realize that the Lie Algebra UQ contains
two universal Heisenberg subalgebras of dimension (2n + 3), namely:

http://dx.doi.org/10.1007/978-3-319-74491-9_2
http://dx.doi.org/10.1007/978-3-319-74491-9_2
http://dx.doi.org/10.1007/978-3-319-74491-9_1
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UQ ⊃ Heis1 = span
R

{
W1α , Z1

} ; Z1 = L+ ≡ L1 + L2

[
W1α , W1β

] = − 1

2
C

αβ
Z1 ; [

Z1 , W1β
] = 0

(4.3.50)

UQ ⊃ Heis2 = span
R

{
W2α , Z2

} ; Z2 = L− ≡ L1 − L2

[
W2α , W2β

] = − 1

2
C

αβ
Z2 ; [

Z2 , W2β
] = 0

(4.3.51)

The first of these Heisenberg subalgebras of isometries is the universal one that
exists for all Quaternionic Kähler manifolds QM 4n+4 lying in the image of the
c-map, irrespectively whether the pre-image Special Kähler manifold SK n is a
symmetric space or not. The tri-holomorphic moment map of these isometries was
presented in Eqs. (4.3.31) and (4.3.35). The second Heisenberg algebra exists only
in the case when the Quaternionic Kähler manifoldQM 4n+4 is a symmetric space.

From this discussion we also realize that the central charge Z1 is just the L+
generator of a universal sl(2,R)E Lie algebra that exists only in the symmetric space
case and which was named the Ehlers algebra in Sect. 1.7 where we presented the
golden splitting (1.7.12). When sl(2,R)E does exist we can introduce the universal
compact generator:

S ≡ L+ − L− = 2 λ2 (4.3.52)

which rotates the two sets of Heisenberg translations one into the other:

[
S , Wiα

] = εi j W jα (4.3.53)

The gauging of this generator is a rather essential ingredient in the inclusion of one-
field cosmological models into gauged N = 2 supergravity as it was explained in
[20].

4.3.4.1 The Tri-Holomorphic Moment Map in Homogeneous
Symmetric Quaternionic Kähler Manifolds

In the case the Quaternionic Kähler manifoldQM 4n+4 is a homogeneous symmetric
space UQ

HQ
, the tri-holomorphicmomentmap associatedwith anygenerator of t ∈ UQ

of the isometry Lie algebra can be easily constructed by means of the formula:

P x
t = Tr[fun]

(
J x

L
−1
Solv tLSolv

)
(4.3.54)

where:

(a) J x are the three generators of the su(2) factor in the isotropy subalgebra
H = su(2) ⊕ H

′, satisfying the quaternionic algebra (4.3.19). They should

http://dx.doi.org/10.1007/978-3-319-74491-9_1
http://dx.doi.org/10.1007/978-3-319-74491-9_1
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be normalized in such a way as to realize the following condition. Naming:

Ξ = L
−1
Solv(q) dLSolv(q) (4.3.55)

the Maurer Cartan differential one-form, its projection on J x should precisely
yield the su(2) one-form defined in Eq. (4.3.11):

ω = − i√
2N f

3∑

x=1

Tr[fun]
(
J x Ξ

)
γx =

⎛

⎝− i
2 Q − i

4 e−U Φ e− U
2 V T

C dZ

− e− U
2 V

T
C dZ i

2 Q + i
4 e−U Φ

⎞

⎠

(4.3.56)

In the above equation, which provides the precise link between the c-map
description and the coset manifold description of the same geometry, N f =
dim fun denotes the dimension of the fundamental representation of UQ .

(b) The solvable coset representative LSolv(q) is obtained by exponentiation of the
Solvable Lie algebra:

LSolv(q) � exp

[
q · Solv

(
UQ

HQ

)]
(4.3.57)

but the detailed exponentiation rule has to be determined in such a way that
projecting the same Maurer Cartan form (4.3.55) along an appropriate basis of

generators TI |Solv of the solvable Lie algebra Solv
(

UQ

HQ

)
we precisely obtain

the vielbein E I
QM defined in Eq. (4.3.44). This is summarized in the following

general equations:

E I
QM = Tr[fun]

(
T I

Solv Ξ
)

δ I
J = Tr[fun]

(
T I

Solv TI |Solv
)

Ξ = E I
QM TI |Solv (4.3.58)

In Eq. (4.3.58) by T I
Solv we have denoted the conjugate (with respect to the trace) of

the solvable Lie algebra generators.
A general comment is in order. The precise calibration of the basis of the solvable

generators T I
Solv and of their exponentiation outlined in Eq. (4.3.57) which allows the

identification (4.3.58) is a necessary and quite laborious task in order to establish
the bridge between the general c-map description of the quaternionic geometry and
its actual realization in each symmetric coset model. This is also an unavoidable
step in order to give a precise meaning to the very handy formula (4.3.54) for the
tri-holomorphic map. It should also be noted that although (4.3.54) covers all the
cases, the result of such a purely algebraic calculation is difficult to be guessed a
priori. Hence educated guesses on the choice of generators whose gauging produces
a priori determined features are difficult to be inferred from (4.3.54). The analytic
structure of the tri-holomorphic moment map instead is much clearer in the c-map
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framework of formulae (4.3.31), (4.3.35), (4.3.40). The use of both languages and
the construction of the precise bridge between them in each model is therefore an
essential ingredient to understand the nature and the properties of candidate gaugings
in whatever physical application.
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Chapter 5
Solvable Algebras and the Tits Satake
Projection

Quamlibet immani proiectu corporis extet, Lucretius, De Rerum
Natura, 3, 987

5.1 Historical Introduction

In this chapter we are going to develop the details of a theory pertaining to Lie
Algebras which, although it has its roots in mathematical work of the 1960s [1–3],
contributed by two great algebrists, Jacques Tits and Ichiro Satake (see Fig. 5.1), yet
fully revealed its profound significance for Geometry and Physics only much later,
by the end of the XXth century, and within the context of supergravity.

The addressed topics is the Tits–Satake projection, a construction which, accord-
ing to certain rules, from a class of homogeneous manifolds, extracts a single repre-
sentative of the entire class. What is extremely surprising and inspiring is that such
a projection, invented long before the advent of supergravity special geometries, has
very nice properties with respect to special structures. Indeed it maps special Käh-
ler manifolds into special Kähler manifolds, quaternionic Kähler into quaternionic
Kähler and commutes with the c-map discussed in the previous section. Actually it
also commutes with another map, the c�-map, which is relevant for the construction
of supergravity black-hole solutions and will be illustrated in this chapter.

A conceptual procedure specially cheered by theoretical physicists is that of
Universality Classes. Considering complex phenomena like, for instance, phase-
transitions one looks for universal features that are the same for entire classes of
such phenomena. After grouping the multitude of cases into universality classes,
one tries to construct a theoretical model of the behavior shared by all elements of
each class. A mathematical well founded projection is likely to provide a power-
ful weapon to this effect. Indeed one might expect that there are universal features
shared by all cases that have the same projection and that the theoretical model of

© Springer International Publishing AG, part of Springer Nature 2018
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Fig. 5.1 On the left J. Tits (1930 Uccle, Belgium). On the right Ichiro Satake (1927 Yamaguchi
Japan - 2014 Tokyo Japan). Jacques Tits was born in Uccle, on the southern outskirts of Brussels.
He graduated from the Free University of Brussels in 1950 with a dissertation Généralisation des
groupes projectifs basés sur la notion de transitivité. From 1956 to 1962 Tits was an assistant at
the University of Brussels. He became professor there in 1962 and remained in this role for two
years before accepting a professorship at the University of Bonn in 1964. In 1973 he was offered
the Chair of Group Theory at the College de France which he occupied until his retirement in 2000
being naturalised French citizen since 1974. Jacques Tits has given very prominent contributions
to the advancement of Group Theory in many directions and he is especially known for the Theory
of Buildings, which he founded, and for the Tits alternative, a theorem on the structure of finitely
generated groups. After his retirement from the College the France, a special Vallée-Poussin Chair
was created for him at the University of Louvain. Ichiro Satake was born in the Province of Yam-
aguchi in Japan and graduated from the University of Tokyo in 1959. He held various academic
positions in the USA and since 1968 to his retirement in 1983 he was Full Professor of Mathematics
at the University of California, Berkeley. He is specially known for his contributions to the theory of
algebraic groups and for the Satake diagrams that classify the real forms of a complex Lie algebra

this shared behavior is encoded in the algebraic structure of the projection image.
We will see that this is precisely what happens with the Tits–Satake projection that
captures universal geometrical features of supergravity models.

Since the interplay betweenMathematics and Theoretical Physics has been essen-
tial in the development of this newchapter of homogeneous space geometrywebriefly
recall the key facts of this short but intellectually intense history.

(1) In the early 1990s, as we have already reported, B. de Wit, A. Van Proeyen,
F. Vanderseypen studied the classification of homogeneous special manifolds
admitting a solvable transitive group of isometries [4–6]. This work extended
and completed the results obtained several years before by Alekseevsky in
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relation with the classification of quaternionic manifolds also admitting a tran-
sitive solvable group of isometries [7].

(2) In 1996–1998, L. Andrianopoli, R. D’Auria, S. Ferrara, P. Fré and M. Trigiante
explored the general role of solvable Lie algebras in supergravity [8–10], point-
ing out that, since all homogenous scalar manifolds of all supergravity models
are of the non-compact type, they all admit a description in terms of a solvable
group manifold as we explained in Sect. 2.5. The solvable representation of the
scalar geometry was shown to be particularly valuable in connection with the
description of BPS black hole solutions of various supergravity models.

(3) In the years 1999–2005 Thibaut Damour, Marc Henneaux, Hermann Nicolai,
Bernard Julia, F. Englert, P. Spindel and other collaborators, elaborating on old
ideas of V.A. Belinsky, I.M. Khalatnikov, E.M. Lifshitz [11–13], introduced the
conception of rigid cosmic billiards [14–27]. According to this conception the
various dimensions of a higher dimensional gravitational theory are identified
with the generators of the Cartan SubalgebraH of a supergravity motivated Lie
algebra and cosmic evolution takes place in a Weyl chamber ofH . Considering
the Cartan scalar fields as the coordinate of a fictitious ball, during cosmic evo-
lution such a ball scatters on the walls of the Weyl chambers and this pictorial
image of the phenomenon is at the origin of its denomination cosmic billiard. In
this context the distinction between compact and non-compact directions of the
Cartan subalgebra appeared essential and this brought the Tits Satake projection
into the game.

(4) In 2003–2005 F. Gargiulo, K. Rulik, P. Fré, A.S. Sorin and M. Trigiante devel-
oped the conception of soft cosmic billiards [28–30], corresponding to exact,
purely time dependent solutions of supergravity, including not only the Cartan
fields but also those associated with roots which dynamically construct theWeyl
chamber walls advocated by rigid cosmic billiards.

(5) In 2005, Fré, Gargiulo and Rulik constructed explicit examples of soft cosmic
billiards in the case of a non maximally split symmetric manifold. In that context
they analyzed the role of the Tits Satake projection and introduced the new
mathematical concept of Paint Group [31].

(6) In 2007, P. Fré, F.Gargiulo, J. Rosseel,K.Rulik,M.Trigiante andA.VanProeyen
[32] axiomatized the Tits Satake projection for all homogeneous special geome-
tries. They based their formulation of the projection on the intrinsic definition of
the Paint Group as the group of outer automorphisms of the solvable transitive
group of motion of the homogeneous manifold. This is the theory that will be
explained in this chapter. Up to the knowledge of this author, this theory was
never previously developed in the mathematical literature.

(7) In the years 2009–2011 the integration algorithm utilized in the framework of
soft cosmic billiards was extended by P. Fré, A.S. Sorin and M. Trigiante to
the case of spherical symmetric black-holes for manifolds in the image of the
c�-map [33–35].

(8) In 2011, P. Fré, A.S. Sorin and M. Trigiante demonstrated that the classification
of nilpotent orbits for a non maximally split Lie algebra depends only on its

http://dx.doi.org/10.1007/978-3-319-74491-9_2
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Tits–Satake projection and it is a property of the Tits–Satake universality class
(see Chap.6).

Through the above sketched historical course, which unfolded in about a decade, the
theory of the Tits–Satake projection has acquired a quite solid and ramified profile,
intertwined with the c and c� maps that opens new viewpoints and provides new
classification tools in the geometry of homogeneousmanifolds and symmetric spaces.
Although the theory is distinctively algebraic and geometric, yet it is poorly known
in the mathematical community due to its supergravity driven origins. Hopefully the
present exposition will improve its status in the mathematical club.

We turn next to a systematic discussion of the c�-map environment where the
Tits–Satake projection is best understood and most useful.

5.2 Physical-Mathematical Introduction

In the previous chapter we provided the definition of special Kähler geometry and of
quaternionic Kähler geometry. In the context ofN = 2 supergravity, as we stressed
there, the two types of geometries are respectively pertinent to the scalars included in
the vector multiplets and to those pertinent to thehypermultiplets. Thenextmain focus
of attention was the c-map from Special Kähler Manifolds of complex dimension n
to quaternionic Kähler manifolds of real dimension 4n + 4:

c-map : SK n → QM (4n+4) (5.2.1)

What we did not emphasize in the previous chapter is that the c-map follows from the
systematic procedure of dimensional reduction from a D = 4,N = 2 supergravity
theory to a D = 3σ -model endowedwithN = 4 three-dimensional supersymmetry.
We recall this point here since it helps understanding another very similar map that
we are going to consider in this chapter and that we name the c�-map. Naming zi

the scalar fields that fill the special Kähler manifold SK n and gi j� its metric, the
D = 3 σ -model which encodes all the supergravity field equations after dimensional
reductionon a space-like direction admits, as targetmanifold, a quaternionicmanifold
whose 4n + 4 coordinates we name as follows:

{U, a}
︸ ︷︷ ︸

2

⋃

{zi }
︸︷︷︸

2n

⋃

Z = {ZΛ , ZΣ }
︸ ︷︷ ︸

2n+2

(5.2.2)

and whose quaternionic metric has the general form that we discussed at length in
Chap.4.

The c�-map arises in a similar way from dimensional reduction but along a time-
like direction. Let us see in which context this takes place.

http://dx.doi.org/10.1007/978-3-319-74491-9_6
http://dx.doi.org/10.1007/978-3-319-74491-9_4
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5.2.1 Black Holes and the Geometry of Geometries

In the last twenty years a lot of interest was devoted to study black-hole solutions of
pure and matter coupled N -extended supergravity theories, the case N = 2 being
the most widely considered. Generally speaking a black-hole solution of matter
coupled supergravity is an exact solution of the bosonic field equations where all
the items of geometry that we have been so far studying are involved. Let us get an
orientation on this exciting entanglement of several geometries.

The general form of a bosonic supergravity lagrangian in D = 4 is the following
one:

L (4) = √|det g|
[

R[g]
2

− 1

4
∂μφa∂μφbhab(φ) + ImNΛΣ FΛ

μν FΣ |μν

]

+1

2
ReNΛΣ FΛ

μν FΣ
ρσ εμνρσ , (5.2.3)

The fields included in the theory are the metric gμν(x), nv abelian gauge fields AΛ
ν ,

whose field strengths (or curvatures) we have denoted by FΛ
μν ≡ (∂μ AΛ

ν − ∂ν AΛ
μ)/2

and ns scalar fields φa that parameterize a scalar manifold M D=4
scalar that, for super-

symmetryN > 2, is necessarily a coset manifold:

M D=4
scalar = UD=4

Hc
(5.2.4)

UD=4 being a non-compact real form of a semi-simple Lie group, essentially fixed
by supersymmetry and Hc its maximal compact subgroup. ForN = 2 Eq. (5.2.4) is
not obligatory yet it is possible: a well determined class of symmetric homogeneous
manifolds that are special Kähler manifolds fall into the set up of the present general
discussion.

Hence we see that we are dealing with geometries at three levels:

1. We deal with the geometry of space-timeM st
4 , encoded in its metric gμν which is

dynamical, in the sense that we have to determine it through the solution of field
equations, many possibilities being available, among which we have black-hole
geometries with event horizons and all the rest.

2. We deal with connections on a fiber bundle P
(

G ,M st
4

)

, whose base manifold
is the dynamically determined space-timeM st

4 and whose structural group is an
abelian group G of dimension equal to the number nv of involved gauge fields.
These connections are also dynamical in the sense that they have to be determined
as solutions of the coupled field equations.

3. We deal with a fixed Riemannian geometry encoded in the target manifold (5.2.4)
of which the scalar fields φa are local coordinates. Any solution of the coupled
field equations defines a map
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φ : M st
4 → M D=4

scalar (5.2.5)

of space-time into the scalar manifold.

There is still encoded into the lagrangian (5.2.3) another geometrical datum of utmost
relevance. Let us describe it. Considering the nv vector fields AΛ

μ let

F±|Λ
μν ≡ 1

2

[

FΛ
μν ∓ i

√|det g|
2

εμνρσ Fρσ

]

(5.2.6)

denote the self-dual (respectively antiself-dual) parts of the field-strengths. As dis-
played in Eq. (5.2.3) they are non minimally coupled to the scalars via the symmetric
complex matrix

NΛΣ(φ) = i ImNΛΣ + ReNΛΣ (5.2.7)

The key point is that the isometry group UD=4 of the scalar manifold (5.2.4) is pro-
moted to a symmetry of the entire lagrangian through the projective transformations
of NΛΣ under the group action.

Indeed the field strengths F±|Λ
μν plus their magnetic duals:

GΛ|μν ≡ 1
2 ε ρσ

μν

δL (4)

δFΛ
ρσ

(5.2.8)

fill up a 2 nv-dimensional symplectic representation of UD=4 which we call by the
name of W.

We rephrase the above statements by asserting that there is always a symplectic
embedding of the duality group UD=4,

UD=4 �→ Sp(2nv, R) ; nv ≡ # of vector fields (5.2.9)

so that for each element ξ ∈ UD=4 we have its representation by means of a suitable
real symplectic matrix:

ξ �→ Λξ ≡
(

Aξ Bξ

Cξ Dξ

)

(5.2.10)

satisfying the defining relation:

ΛT
ξ

(

0n×n 1n×n

−1n×n 0n×n

)

Λξ =
(

0n×n 1n×n

−1n×n 0n×n

)

(5.2.11)

Under an element of the duality group the field strengths transform as follows:

(

F+
G +

)′
=
(

Aξ Bξ

Cξ Dξ

) (

F+
G +

)

;
(

F−
G −

)′
=
(

Aξ Bξ

Cξ Dξ

) (

F−
G −

)

(5.2.12)
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where, by their own definitions we get:

G + = N F+ ; G − = N F− (5.2.13)

and the complex symmetric matrixN should transform as follows:

N ′ = (Cξ + Dξ N
) (

Aξ + Bξ N
)−1

(5.2.14)

Choose a parametrization of the coset L(φ) ∈ UD=4, which assigns a definite group
element to every coset point identified by the scalar fields. Through the symplectic
embedding (5.2.10) this produces a definite φ-dependent symplectic matrix

(

A(φ) B(φ)

C(φ) D(φ)

)

(5.2.15)

in the W-representation of UD=4. In terms of its blocks the kinetic matrix N (φ)

is explicitly given by a formula that was found at the beginning of the 1980s by
Gaillard-Zumino [36]:

N (φ) = [C(φ) − i D(φ)] [A(φ) − i B(φ)]−1 , (5.2.16)

The matrix N is the same which appears in the definition of special Kähler
geometry and it transforms according to Eq. (5.2.14).

Summarizing the geometrical structure of the bosonic supergravity lagrangian is
essentially encoded in two data. The duality-isometry groupUD=3 and its symplectic
representation W that corresponds to the embedding (5.2.9).

A brilliant discovery occurred in the first two decades of the XXIst century can
be dubbed as the D = 3 approach to supergravity black-holes. Mainly originating
from the contributions included in the following papers [37–43], it consists of the
following.

The radial dependenceof all the relevant functions parameterizing the supergravity
solution can be viewed as the field equations of another one-dimensional σ -model
where the evolution parameter τ is actually amonotonic function of the radial variable
r and where the target manifold is a pseudo-quaternionic manifold Q�

(4n+4) related to
the quaternionic manifoldQ(4n+4) in the following way. The coordinates ofQ�

(4n+4)
are the same as those of Q(4n+4), while the two metrics differ only by a change of
sign. Indeed we have

ds2Q = 1

4

[

dU2 + 2 gi j� dzi d z̄ j� + e−2U (da + ZT
CdZ)2 − 2 e−U dZT M4(z, z̄) dZ

]

⇓ Wick rot. (5.2.17)

ds2Q � = 1

4

[

dU2 + 2 gi j� dzi d z̄ j� + e−2U (da + ZT
CdZ)2 + 2 e−U dZT M4(z, z̄) dZ

]

(5.2.18)
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In Eqs. (5.2.17) and (5.2.18), C denotes the (2n + 2) × (2n + 2) antisymmetric
matrix defined over the fibers of the symplectic bundle characterizing special geom-
etry, while the negative definite, (2n + 2) × (2n + 2) matrix M4(z, z̄) is the one
already introduced in Eq. (4.3.3). The pseudo-quaternionic metric is non-Euclidean
and it has the following signature:

sign
(

ds2Q �

) =
⎛

⎝+ , . . . , +
︸ ︷︷ ︸

2n+2

, − , . . . , −
︸ ︷︷ ︸

2n+2

⎞

⎠ (5.2.19)

In thiswaywe arrive at aGeometry of the Geometries. As solutions of the σ -model
defined by the metric (5.2.18), all spherically symmetric black-holes correspond to
geodesics and consequently a geodetic in themanifoldQ� encodes all the geometrical
structures listed below:

(a) A spherical black-hole metric,
(b) a spherical symmetric connection on the fiber bundle P

(

G ,M st
4

)

(c) a spherical symmetric map from M st
4 into the manifold (5.2.4)

The indefinite signature (5.2.19) introduces a clear-cut distinction between non-
extremal and extremal black-holes: the non-extremal ones correspond to time-like
geodesics, while the extremal black-holes are associated with light-like ones. Space-
like geodesics produce supergravity solutions with naked singularities [37].

In those cases where the Special Manifold SK n is a symmetric space UD=4
HD=4

also the quaternionic manifold defined by the metric (5.2.17) is a symmetric coset
manifold:

UD=3

HD=3
(5.2.20)

where HD=3 ⊂ UD=3 is the maximal compact subgroup of the U-duality group, in
three dimensions UD=3. The change of sign in the metric (5.2.19) simply turns the
coset (5.2.20) into a new one:

UD=3

H�
D=3

(5.2.21)

where H�
D=3 ⊂ UD=3 is another non-compact maximal subgroup of the U-duality

group whose Lie algebra H
� happens to be a different real form of the complexifi-

cation of the Lie algebra H of HD=3. That such a different real form always exists
within UD=3 is one of the group theoretical miracles of supergravity.

5.2.2 The Lax Pair Description

Once the problem of black-holes is reformulated in terms of geodesics within
the coset manifold (5.2.21) a rich spectrum of additional mathematical techniques
becomes available for its study and solution.

http://dx.doi.org/10.1007/978-3-319-74491-9_4
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The most relevant of these techniques is the Lax pair representation of the super-
gravity field equations. According to a formalism reviewed in papers [34, 44], the
fundamental evolution equation takes the following form:

d

dτ
L(τ ) + [W (τ ) , L(τ )] = 0 (5.2.22)

where the so named Lax operator L(τ ) and the connection W (τ ) are Lie algebra
elements of U respectively lying in the orthogonal subspace K and in the subalgebra
H

� in relation with the decomposition:

U = H
� ⊕ K (5.2.23)

As it was proven in [29, 33–35], both for the case of the coset (5.2.20) and the
coset (5.2.21), the Lax pair representation (5.2.22) allows the construction of an
explicit integration algorithm which provides the finite form of any supergravity
solution in terms of two initial conditions, the Lax L0 = L(0) and the solvable coset
representative L0 = L(0) at radial infinity τ = 0.

The action of the global symmetry group UD=3 on a geodesic can be described
as follows: By means of a transformation UD=3/H� we can move the “initial point”
at τ = 0 (described by L0) anywhere on the manifold, while for a fixed initial point
we can act by means of H� on the “initial velocity vector”, namely on L0. Since
the action of UD=3/H� is transitive on the manifold, we can always bring the initial
point to coincide with the origin (where all the scalar fields vanish) and classify the
geodesics according to the H�-orbit of the Lax matrix at radial infinity L0. Since the
evolution of the Lax operator occurs via a similarity transformation of L0 by means
of a time evolving element of the subgroup H�, it will unfold within one H�-orbit.

The main goal is then that of classifying all possible solutions by means of H
�-

orbits within K which, in every supergravity based on homogeneous scalar geome-
tries, is a well defined irreducible representation of H

�.

5.2.3 Nilpotent Orbits and Tits Satake Universality Classes

As it was discussed in [44] and in previous literature, regular extremal black-holes are
associated with Lax operators L(τ ) that are nilpotent at all times of their evolution.
Hence the classification of extremal black-holes requires a classification of the orbits
of nilpotent elements of the K space with respect to the stability subgroup H

� ⊂
UD=3. This is a well posed, but difficult, mathematical problem. In [44] it was solved
for the case of the special Käher manifold SU(1,1)

U(1) which, upon time-like dimensional

reduction to D = 3, yields the pseudo quaternionic manifold G(2,2)

SU(1,1)×SU(1,1) . It would
be desirable to extend the classification of suchnilpotent orbits to supergravitymodels
based on all the other special symmetric manifolds. Although these latter fall into
a finite set of series, some of them are infinite and it might seem that we need to
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examine an infinite number of cases. This is not so because of a very important
property of special geometries and of their quaternionic descendants.

This relates to the Tits–Satake (TS) projection of special homogeneous (SH)
manifolds:

SH
Tits–Satake=⇒ SH TS (5.2.24)

which was analysed in detail in [32], together with the allied concept of Paint Group
that had been introduced previously in [31]. What it is meant by this wording is the
following. It turns out that one can define an algorithm, the Tits–Satake projection
πTS, which works on the space of homogeneous manifolds with a solvable transitive
group of motions GM , and with any such manifold associates another one of the same
type. This map has a series of very strong distinctive features:

1. πTS is a projection operator, so that several different manifolds SH i (i =
1, . . . , r ) have the same image πTS (SH i ).

2. πTS preserves the rank of GM namely the dimension of the maximal Abelian
semisimple subalgebra (Cartan subalgebra) of GM .

3. πTS maps special homogeneous into special homogeneous manifolds. Not only.
It preserves the two classes of manifolds discussed above, namely maps special
Kähler into special Kähler and maps Quaternionic into Quaternionic

4. πTS commutes with c-map, so that we obtain the following commutative diagram:

Special Kähler
c-map=⇒ Quaternionic-Kähler

πTS ⇓ πTS ⇓
(Special Kähler)TS

c-map=⇒ (Quaternionic-Kähler)TS

(5.2.25)

The main consequence of the above features is that the whole set of special homoge-
neous manifolds and hence of associated supergravity models is distributed into a set
of universality classes which turns out to be composed of extremely few elements.

If we confine ourselves to homogenous symmetric special geometries, which are
those for which we can implement the integration algorithm based on the Lax pair
representation, then the list of special symmetric manifolds contains only eight items
among which two infinite series. They are displayed in the first column of Table5.1.
The c-map produces just as many quaternionic (Kähler) manifolds, that are displayed
in the second column of the same table. Upon the Tits–Satake projection, this infinite
set of models is organized into just five universality classes that are displayed on the
third column of Table5.1. The key-feature of the projection, relevant to our purposes
is that all of its properties extend also to the pseudo-quaternionic manifolds produced
by a time-like dimensional reduction. We can say that there exists a c�-map defined
by this type of reduction, which associates a pseudo-quaternionic manifold with each
special Kähler manifold. The Tits–Satake projection commutes also with the c�-map
and we have another commutative diagram:
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Table 5.1 The eight series of homogenous symmetric special Kähler manifolds (infinite and finite),
their quaternionic counterparts and the grouping of the latter into five Tits Satake universality classes

Special Kähler
SK n

Quaternionic
QM 4n+4

Tits Satake projection of quater
QM TS

U(s+1,1)
U(s+1)×U(1)

U(s+2,2)
U(s+2)×U(2)

U(3,2)
U(3)×U(2)

SU(1,1)
U(1)

G(2,2)
SU(2)×SU(2)

G(2,2)
SU(2)×SU(2)

SU(1,1)
U(1) × SU(1,1)

U(1)
SO(3,4)

SO(3)×SO(4)
SO(3,4)

SO(3)×SO(4)

SU(1,1)
U(1) × SO(p+2,2)

SO(p+2)×SO(2)
SO(p+4,4)

SO(p+4)×SO(4)
SO(5,4)

SO(5)×SO(4)

Sp(6)
U(3)

SU(3,3)
SU(3)×SU(3)×U(1)

SO�(12)
SU(6)×U(1)
E(7,−25)

E(6,−78)×U (1)

F(4,4)
Usp(6)×SU(2)

E(6,−2)
SU(6)×SU(2)

E(7,−5)
SO(12)×SU(2)

E(8,−24)
E(7,−133)×SU(2)

F(4,4)
Usp(6)× SU(2)

Special Kähler
c�-map=⇒ Pseudo-Quaternionic-Kähler

πTS ⇓ πTS ⇓
(Special Kähler)TS

c�-map=⇒ (Pseudo-Quaternionic-Kähler)TS

(5.2.26)

By means of this token, we obtain Table5.2, perfectly analogous to Table5.1 where
the Pseudo-Quaternionic manifolds associated which each symmetric special geom-
etry are organized into five distinct Tits Satake universality classes.

Table 5.2 The eight series of homogenous symmetric special Kähler manifolds (infinite e finite),
their Pseudo-Quaternionic counterparts and the grouping of the latter into five Tits Satake univer-
sality classes

Special Kähler
SK n

Pseudo-quaternionic
QM �

4n+4

Tits Satake proj. of pseudo
quater
QM �

TS
U(s+1,1)

U(s+1)×U(1)
U(s+2,2)

U(s+1,1)×U(1,1)
U(3,2)

U(2,1)×U(1,1)

SU(1,1)
U(1)

G(2,2)
SU(1,1)×SU(1,1)

G(2,2)
SU(1,1)×SU(1,1)

SU(1,1)
U(1) × SU(1,1)

U(1)
SO(3,4)

SO(2,1)×SO(2,2)
SO(3,4)

SO(1,2)×SO(2,2)

SU(1,1)
U(1) × SO(p+2,2)

SO(p+2)×SO(2)
SO(p+4,4)

SO(p+2,2)×SO(2,2)
SO(5,4)

SO(3,2)×SO(2,2)

Sp(6)
U(3)

SU(3,3)
SU(3)×SU(3)×U(1)

SO�(12)
SU(6)×U (1)

E(7,−25)
E(6,−78)×U (1)

F(4,4)
Sp(6)×SU(1,1)

E(6,−2)
SU(3,3)×SU(1,1)

E(7,−5)
SO�(12)×SU(1,1)

E(8,−24)
E(7,−25)×SU(1,1)

F(4,4)
Sp(6)×SU(1,1)
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Hence we have the following:

Statement 5.2.1 The number, structure and properties of H� orbits of K nilpotent
elements depend only on the Tits Satake universality class and it is an intrinsic
property of the class.

So it suffices to determine the classification of nilpotent orbits for the five manifolds
appearing in the third column of Table5.2.

In Chap.6 we will work out the details for the simplest case corresponding to the
second line in Table5.2. The details of the algorithm should be clear from such an
illustration. In [45] the following case was studied in detail:

SK O2s+2 ≡ SU(1, 1)

U(1)
× SO(2, 2 + 2s)

SO(2) × SO(2 + 2s)
(5.2.27)

which corresponds to one of the possible couplings of 2 + 2s vector multiplets.
Upon space-like dimensional reduction to D = 3 and dualization of all the vector

fields, a supergravity model of this type becomes a σ -model with the following
quaternionic manifold as target space:

QM (4,4+2s) ≡ UD=3

H
= SO(4, 4 + 2s)

SO(4) × SO(4 + 2s)
. (5.2.28)

as mentioned in Table5.1. If we perform instead a time-like dimensional reduction,
as it is relevant for the construction of black-hole solutions, we obtain an Euclidean
σ -model where, as mentioned in Table5.2 the target space is the following pseudo-
quaternionic manifold:

QM �
(4,4+2s) ≡ UD=3

H�
= SO(4, 4 + 2s)

SO(2, 2) × SO(2, 2 + 2s)
. (5.2.29)

The Tits Satake projection of all such manifolds is:

QM �
TS = UT S

D=3

H�
T S

= SO(4, 5)

SO(2, 3) × SO(2, 2)
. (5.2.30)

We refer the reader to [45] for the explicit construction of nilpotent orbits pertaining
to this example.

5.3 The Tits Satake Projection

The arguments exposed in the previous section should have convinced the reader of
the high relevance of the Tits–Satake projection, both in the context of black-holes
and in the context of other geometrical aspects of supergravity theory, a notable one
being that of gauging. For this reason the remaining part of this chapter is devoted
to the illustration of the rich mathematical theory underlying this projection.

http://dx.doi.org/10.1007/978-3-319-74491-9_6


5.3 The Tits Satake Projection 215

In this section we explain the Tits–Satake projection of a metric solvable Lie
algebra and how it is related to the notions of paint group Gpaint and subpaint group
Gsubpaint ⊂ Gpaint. Although the Tits–Satake projection can be defined for general
solvable Lie algebras, ourmain interest is in symmetric spaces and the just mentioned
notions have been extracted precisely from the case of the Tits–Satake projections of
solvable Lie algebras associated with symmetric spaces Solv(G/H). On these latter
we focus.

5.3.1 The TS-Projection for Non Maximally Split Symmetric
Spaces

Following the discussion of Sect. 2.4 let us recall that if the scalar manifold of super-
gravity is a non maximally noncompact manifold G/H the Lie algebra of the numer-
ator group is some appropriate real form GR of a complex Lie algebra G. The Lie
algebraH of the denominator H is themaximal compact subalgebraH ⊂ GR . Denot-
ing, as usual, by K the orthogonal complement of H in GR :

GR = H ⊕ K (5.3.1)

and defining as noncompact rank or rank of the coset G/H the dimension of the non-
compact Cartan subalgebra (see Eq. (2.4.3), we obtain that rnc ≤ rank(G), where the
equality is the statement that the manifold is maximally noncompact (or ‘maximally
split’).

When the equality is strict, the manifold GR/H is still metrically equivalent to a
solvable groupmanifold but the form of the solvable Lie algebra Solv(GR/H), whose
structure constants define the Nomizu connection, is more complicated than in the
maximally non-compact case. It was discussed and explained in Sect. 2.5.1. The
Tits–Satake theory of non-compact cosets and split subalgebras is a classical topic in
Differential Geometry and appears in some textbooks. Within such a mathematical
framework there is a peculiar universal structure of the solvable algebra Solv(GR/H)

that had not been observed before [31] namely that of paint and subpaint groupswhich
extends beyond symmetric spaces as it was demonstrated in [32].

Explicitly we have the following scheme. One can split the Cartan subalgebra into
its compact and non-compact subalgebras as shown in Eq. (2.4.17) and these parts
are orthogonal using the Cartan-Killing metric. Therefore, every vector in the dual
of the full Cartan subalgebra, in particular every root α, can be decomposed into its
transverse and parallel part to H nc as it was done in Eq. (2.4.19).

TheTits–Satake projection consists of two steps. First one sets allα⊥ = 0, project-
ing the original root systemΔG onto a new system of vectorsΔ living in a Euclidean
space of dimension equal to the non-compact rank rnc. The setΔ is called a restricted
root system. It is not an ordinary root system in the sense that roots can occur with
multiplicities different from one and 2α|| can be a root if α|| is one. In the second
step, one deletes the multiplicities of the restricted roots. Thus we have

http://dx.doi.org/10.1007/978-3-319-74491-9_2
http://dx.doi.org/10.1007/978-3-319-74491-9_2
http://dx.doi.org/10.1007/978-3-319-74491-9_2
http://dx.doi.org/10.1007/978-3-319-74491-9_2
http://dx.doi.org/10.1007/978-3-319-74491-9_2


216 5 Solvable Algebras and the Tits Satake Projection

ΠTS : ΔG �→ ΔTS, ; ΔG

α⊥=0�−→ Δ

deleting

�−→
multiplicities

ΔTS. (5.3.2)

If Δ contains no restricted root that is the double of another one, then ΔTS is a
root system of simple type. We will show later that this root subsystem defines a Lie
algebra GTS, the Tits–Satake subalgebra of GR :

ΔTS = root system of GTS, GTS ⊂ GR . (5.3.3)

The Tits–Satake subalgebra GTS is, as a consequence of its own definition, the
maximally non-compact real section of its own complexification. For this reason,
considering its maximal compact subalgebra HTS ⊂ GTS we have a new smaller
coset GTS/HTS which is maximally split and whose associated solvable algebra
Solv(GTS/HTS) has the standard structure utilized in [29] to prove complete inte-
grability of supergravity compactified to 3 dimensions. This result demonstrates the
relevance of the Tits–Satake projection.

In the case doubled restricted roots are present in Δ, the projection cannot be
expressed in terms of a simple Lie algebra, but the concept remains the same. The
root system is the so-called bcr system, with r = rnc the non-compact rank of the
real form G. It is the root system of a group GTS, which is now non-semi-simple.
The manifold is similarly defined as GTS/HTS, where HTS is the maximal compact
subgroup of GTS.

The next question is: what is the relation between the two solvable Lie alge-
bras Solv(GR/H) and Solv(GTS/HTS)? The answer can be formulated through the
following statements A-E.

[A]

In a projection more than one higher dimensional vector can map to the same lower
dimensional one. Thismeans that in general therewill be several roots ofΔG that have
the same image in ΔTS. The imaginary roots vanish under this projection, according
to the definition of Sect. 2.5. Therefore, apart from these imaginary roots, there are
two types of roots: those that have a distinct image in the projected root system and
those that arrange into multiplets with the same projection. We can split the root
spaces in subsets according to whether there is such a degeneracy or not. Calling Δ+

G

and Δ+
TS the sets of positive roots of the two root systems, we have the following

scheme:

Δ+
G

= Δη
⋃

Δδ
⋃

Δcomp

↓ ΠTS ↓ ΠTS ↓ ΠTS

Δ+
TS = Δ�

TS

⋃

Δs
TS

∀α� ∈ Δ�
TS : dimΠ−1

TS

[

α�
] = 1, ∀αs ∈ Δs

TS : dimΠ−1
TS

[

αs
] = m[αs] > 1.

(5.3.4)

http://dx.doi.org/10.1007/978-3-319-74491-9_2
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The δ part thus contains all the roots that have multiplicities under the Tits–Satake
projectionwhile the roots in the η part have nomultiplicities. These roots of type η are
orthogonal toΔcomp. Indeed, this follows from the fact that for any two root vectors α

and β where there is no root of the form β + mα with m a non-zero integer, the inner
product of β and α vanishes. It also follows from this definition that in maximally
split symmetric spaces, in which case Δcomp = ∅, all root vectors are in Δη or Δ�

(as the Tits–Satake projection is then trivialized).
These subsets moreover satisfy the following properties under addition of root

vectors:
G GTS

Δη + Δη ⊂ Δη Δ�
TS + Δ�

TS ⊂ Δ�
TS

Δη + Δδ ⊂ Δδ Δ�
TS + Δs

TS ⊂ Δs
TS

Δδ + Δδ ⊂ Δη
⋃

Δδ Δs
TS + Δs

TS ⊂ Δ�
TS

⋃

Δs
TS

Δcomp + Δη = ∅
Δcomp + Δδ ⊂ Δδ

(5.3.5)

Because of this structure we can enumerate the generators of the solvable algebra
Solv(GR/H) in the following way:

Solv(GR/H) = {

Hi , Φα�,Ωαs |I
}

Hi ⇒ Cartan generators

Φα� ⇒ η − roots

Ωαs |I ⇒ δ − roots ; (I = 1, . . . , m[αs]). (5.3.6)

The index I enumerating the m-roots of ΔGR that have the same projection in ΔTS

is named the paint index.

[B]

There exists a compact subalgebra Gpaint ⊂ GR which acts as an algebra of
outer automorphisms (i.e. outer derivatives) of the solvable algebra SolvGR ≡
Solv(GR/H) ⊂ GR , namely:

[

Gpaint , SolvGR

] ⊂ SolvGR . (5.3.7)

[C]

The Cartan generators Hi and the generators Φα� are singlets under the action of
Gpaint, i.e. each of them commutes with the whole of Gpaint:

[

Hi , Gpaint
] = [

Φα� , Gpaint
] = 0 (5.3.8)

On the other hand, each of the multiplets of generators Ωαs |I constitutes an orbit
under the adjoint action of the paint group Gpaint, i.e. a linear representation D[αs]
which, for different roots αs can be different:
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∀ X ∈ Gpaint : [

X , Ωαs |I
] = (

D[αs ][X ])J

I Ωαs |J (5.3.9)

[D]

The paint algebra Gpaint contains a subalgebra

G
0
subpaint ⊂ Gpaint (5.3.10)

such that with respect to G
0
subpaint, each m[αs]-dimensional representation D[αs]

branches as follows:

D[αs] G
0
subpaint=⇒ 1

︸︷︷︸

singlet

⊕ J
︸︷︷︸

(m[αs ]−1)−dimensional

(5.3.11)

Accordingly we can split the range of the multiplicity index I as follows:

I = {0, x} , x = 1, . . . , m[αs] − 1. (5.3.12)

The index 0 corresponds to the singlet, while x ranges over the representation J.

[E]

The tensor product J ⊗ J contains both the identity representation 1 and the repre-
sentation J itself. Furthermore, there exists, in the representation

∧3 J a G
0
subpaint-

invariant tensor axyz such that the two solvable Lie algebras SolvGR and SolvGTS can
be written as follows

SolvGR SolvGTS[

Hi , H j
] = 0

[

Hi , H j
] = 0

[

Hi , Φ
α�

] = α�
i Φ

α�

[

Hi , Eα�
]

= α�
i

[

Hi , Ωαs |I
] = αs

i Ωαs |I
[

Hi , Eαs
]

= αs
i Eαs

[

Φ
α� , Φ

β�

]

= N
α�β� Φ

α�+β�

[

Eα�
, Eβ�

]

= N
α�β� Eα�+β�

[

Φ
α� , Ωβs |I

] = N
α�βs Ω

α�+βs |I
[

Eα�
, Eβs

]

= N
α�βs Eα�+βs

If αs + βs ∈ Δ�
TS :

[

Ωαs |I , Ωβs |J
] = δ I J Nαsβs Φαs+βs

[

Eαs
, Eβs

]

= Nαsβs Eαs+βs

If αs + βs ∈ Δs
TS :

⎧

⎪
⎨

⎪
⎩

[

Ωαs |0 , Ωβs |0
] = Nαsβs Ωαs+βs |0

[

Ωαs |0 , Ωβs |x
] = Nαsβs Ωαs+βs |x

[

Ωαs |x , Ωβs |y
] = Nαsβs

(

δxyΩαs+βs |0 + axyz Ωαs+βs |z
)

[

Eαs
, Eβs

]

= Nαsβs Eαs+βs

(5.3.13)

where Nαβ = 0 if α + β /∈ ΔTS.
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5.3.2 Paint and Subpaint Groups in an Example

We now want to illustrate the general structure described in the previous subsection
through the analysis of a specific example of a non maximally split symmetric space.
This will be both educational in order to clarify the notion of Tits–Satake projection
and instrumental to extract a general systematics for the paint and subpaint groups,
which we will later recognize in the entire classification of supergravity relevant
symmetric spaces.

Hence let us consider the following quaternionic Kähler manifold:

GR

H
= E8(−24)

E7(−133) × SU(2)
(5.3.14)

which, according to Table5.1 is the c-map image of the following special Kähler
manifold

E7(−25)

E6(−78) × U(1)
(5.3.15)

The quaternionic nature of the chosen non maximally split symmetric space is sig-
naled by the presence of the SU(2) factor in the denominator group and it is confirmed
by the decomposition of the adjoint representation of the numerator group:

248
E7(−133)×SU(2)=⇒ (133, 1) ⊕ (1, 3) ⊕ (56, 2) (5.3.16)

Indeed the 4 × 28 = 112 coset generators being in the (56, 2) of E7(−133) × SU(2)
are SU(2) doublets and transform symplectically under USp(56) transformations
due to the symplectic embedding of the 56 representation of the compact E7 group.

The quaternionic structure, however, is not relevant to our present discussion that
focuses on the mechanisms of the Tits–Satake projection. By means of this latter we
obtain the following result:

ΠTS : E8(−24)

E7(−133) × SU(2)
−→ F4(4)

USp(6) × SU(2)
(5.3.17)

and we just note that the projected manifold is still quaternionic for similar reasons
to those of (5.3.16). So the maximal non-compact Lie algebra F4(4) is the Tits–Satake
subalgebra of E8(−24). Let us see how this happens, following step by step the scheme
described in the previous section.

The rank of the complex E8 algebra is 8 and, and in its real section E8(−24) we
can distinguish 4 compact and 4 non-compact Cartan generators. In a Euclidean
orthonormal basis the complete E8 root system is composed of the following 240
roots:
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ΔE8 ≡

⎧

⎪
⎪
⎨

⎪
⎪
⎩

±εi ± ε j (i �= j) 112
± 1

2ε1 ± 1
2ε2 ± 1

2ε3 ± 1
2ε4 ± 1

2ε5 ± 1
2ε6 ± 1

2ε7 ± 1
2ε8

︸ ︷︷ ︸

even number of minus signs

128

240

⎫

⎪
⎪
⎬

⎪
⎪
⎭

,

(5.3.18)
and a convenient choice of the simple roots is provided by the following ones:

α1 = {0, 1,−1, 0, 0, 0, 0, 0},
α2 = {0, 0, 1,−1, 0, 0, 0, 0},
α3 = {0, 0, 0, 1,−1, 0, 0, 0},
α4 = {0, 0, 0, 0, 1,−1, 0, 0},
α5 = {0, 0, 0, 0, 0, 1,−1, 0},
α6 = {0, 0, 0, 0, 0, 1, 1, 0},
α7 =

{

−1

2
,−1

2
,−1

2
,−1

2
,−1

2
,−1

2
,−1

2
,−1

2

}

,

α8 = {1,−1, 0, 0, 0, 0, 0, 0}. (5.3.19)

The corresponding Dynkin diagram is displayed in Fig. 5.2. where the roots α3, α4,

α5, α6 have been marked in black. This indicates that these simple roots are imagi-
nary, andCartan generators as e.g.αi

3Hi belong toH comp. In thisway these diagrams
define both the real form E8(−24) and the corresponding Tits–Satake projection of the
root system. The non-compact CSA H nc is the orthogonal complement of H comp.
Let us also note that the black roots form the Dynkin diagram of a D4 algebra, i.e in
its compact form the Lie algebra of SO(8). This is the origin of the paint group

Gpaint = SO(8), (5.3.20)

pertaining to this example.We shall identify it in amoment, but let us first perform the
Tits–Satake projection on the root system. This case is particularly simple since the
span of the simple imaginary roots α3,α4,α5,α6 is just given by the Euclidean space
along the orthonormal axes ε4, ε5 ε6, ε7. The Euclidean space along the orthonormal
axes ε1, ε2 ε3, ε8 is the non-compact CSA. Note that this is not the same as the span
of α1,α2,α7,α8. Denoting the components of root vectors in the basis εi by αi , the
splitting (2.4.19) is very simple. We just have:

Fig. 5.2 The Tits–Satake diagram of E8(−24), rank = 8, split rank = 4, GTS = F4(4)

http://dx.doi.org/10.1007/978-3-319-74491-9_2
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α⊥ = {α4 , α5 , α6 , α3
} ; α‖ = {α1 , α2 , α7 , α8

}

, (5.3.21)

and the projection (5.3.2) immediately yields the following restricted root system:

ΔTS =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

±εi ± ε j (i �= j ; i, j = 1, 2, 3, 8) 24
±εi (i = 1, 2, 3, 8) 8

± 1
2ε1 ± 1

2ε2 ± 1
2ε3 ± 1

2ε8 16
48

⎫

⎪
⎪
⎬

⎪
⎪
⎭

, (5.3.22)

which can be recognized to be the root system of the simple complex algebra F4.
With reference to the notations introduced in the previous section let us now

identify the subsets Δη and Δδ in the positive root subsystem of Δ+
E8

and their
corresponding images in the projection, namely Δ�

TS and Δs
TS.

Altogether, performing the projection the following situation is observed:

• There are 24 roots that have null projection on the non-compact space, namely

α‖ = 0 ⇔ α = ±εi ± ε j ; i, j = 4, 5, 6, 7. (5.3.23)

These roots, togetherwith the four compactCartan generators, form the root system
of a D4 algebra, whose dimension is exactly 28. In the chosen real form such a
subalgebra of E8(−24) is the compact algebra SO(8) and its exponential acts as
the paint group, as already mentioned in (5.3.20). All the remaining roots have a
non-vanishing projection on the compact space. In particular:

• There are 12 positive roots of E8 that are exactly projected on the 12 positive long
roots of F4, namely the first line of (5.3.22), which we therefore identify withΔ�

TS.
For these roots we have α⊥ = 0 and they constitute the Δη system mentioned
above:

Δ+
E8

⊃ Δ
η

TS = {εi ± ε j
} = Δ�

TS ; i < j ; i, j = 1, 2, 3, 8 (5.3.24)

• There are 8 different positive roots of E8 that have the same projection on each of
the 12 = 4 ⊕ 8 positive short roots of F4, i.e. the second and third line of (5.3.22).
Namely the remaining 12 × 8 = 96 roots of E8 are all projected on short roots of
F4. The set of F4 positive short roots can be split as follows:

Δs
TS = Δs

vec

⋃

Δs
spin

⋃

Δs
spin

Δs
vec = {εi } i = 1, 2, 3, 8 4

Δs
spin = ± 1

2ε1 ± 1
2ε2 ± 1

2ε3 + 1
2ε8

︸ ︷︷ ︸

even number of minus signs

4

Δs
spin

= ± 1
2ε1 ± 1

2ε2 ± 1
2ε3 + 1

2ε8
︸ ︷︷ ︸

odd number of minus signs

4

12

(5.3.25)
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Correspondingly the subsetΔδ ⊂ ΔE8 defined by its projection propertyΠTS
(

Δδ
)

= Δs
TS is also split in three subsets as follows:

Δδ+ = Δδ
vec
⋃

Δδ
spin

Δδ
vec =

⎧

⎪
⎨

⎪
⎩

εi
︸︷︷︸

α‖

⊕ (±ε j
)

︸ ︷︷ ︸

α⊥

⎫

⎪
⎬

⎪
⎭

,

(

i = 1, 2, 3, 8
j = 4, 5, 6, 7

)

4 × 8 32

Δδ
spin =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

(± 1
2 ε1 ± 1

2 ε2 ± 1
2 ε3 + 1

2 ε8
)

︸ ︷︷ ︸

α‖ even # of −signs

⊕ (± 1
2 ε4 ± 1

2 ε5 ± 1
2 ε6 ± 1

2 ε7
)

︸ ︷︷ ︸

α⊥ even # of− signs

⎫

⎪
⎪
⎬

⎪
⎪
⎭

4 × 8 32

Δδ

spin
=

⎧

⎪
⎪
⎨

⎪
⎪
⎩

(± 1
2 ε1 ± 1

2 ε2 ± 1
2 ε3 + 1

2 ε8
)

︸ ︷︷ ︸

α‖ odd # of − signs

⊕ (± 1
2 ε4 ± 1

2 ε5 ± 1
2 ε6 ± 1

2 ε7
)

︸ ︷︷ ︸

α⊥ odd # of −

⎫

⎪
⎪
⎬

⎪
⎪
⎭

4 × 8 32

96
(5.3.26)

We can now verify the general statements made in the previous sections about the
paint group representations to which the various roots are assigned. First of all we
see that, as we claimed, the long roots of F4, namely those 12 given in (5.3.24) are
singlets under the paint group Gpaint = SO(8). All other roots fall into multiplets
with the same Tits–Satake projection and each of these latter has always the same
multiplicity, in our case m = 8 (compare with (5.3.9)). So the short roots of F4(4)
fall into 8-dimensional representations of Gpaint = SO(8). But which ones? SO(8)
has three kind of octets 8v, 8s and 8s̄ and, as we stated, not every root αs of the Tits–
Satake algebra GTS falls in the same representation D of the paint group although in
this case all D[αs] have the same dimension. Looking back at our result we easily
find the answer. The 4 positive roots in the subset Δδ

vec have as compact part α⊥ the
weights of the vector representation of SO(8). Hence the roots of Δδ

vec are assigned
to the 8v of the paint group. The 4 positive roots in Δδ

spin have instead as compact
part the weights of the spinor representation of SO(8) and so they are assigned to
the 8s irreducible representation. Finally, with a similar argument, we see that the
4 roots of Δδ

spin
are in the conjugate spinor representation 8s̄. The last part of the

general discussion of Sect. 5.3.1 is now easy to verify in the context of our example,
namely that relevant to the subpaint group G0

subpaint (we will omit sometimes the
‘subpaint’ indication for convenience). According to (5.3.10)–(5.3.11) we have to
find a subgroup G0 ⊂ SO(8) such that under reduction with respect to it, the three
octet representations branch simultaneously as:

8v
G0−→ 1 ⊕ 7,

8s
G0−→ 1 ⊕ 7,

8s̄
G0−→ 1 ⊕ 7. (5.3.27)
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SuchgroupG0 exists and it is uniquely identified as the14dimensionalG2(−14).Hence
the subpaint group is G2(−14). Considering now (5.3.13) we see that the commuta-
tion relations of the solvable Lie algebra Solv

(

E8(−24)/E7(−133) × SU(2)
)

precisely
fall into the general form displayed in the first column of that table with the index
x = 1, . . . , 7 spanning the fundamental 7-dimensional representation of G2(−14) and
the invariant antisymmetric tensor axyz being given by the G2(−14)-invariant octo-
nionic structure constants. Indeed the representation Jmentioned in Sect. 5.3.1 is the
fundamental 7 and we have the decomposition:

7 × 7 = 14 ⊕ 7
︸ ︷︷ ︸

antisymmetric

⊕ 27 ⊕ 1
︸ ︷︷ ︸

symmetric

. (5.3.28)

This shows that, as claimed in point [E] of the general discussion, the tensor product
J × J contains both the singlet and J.

In the example that is extensively discussed in [31], namely

ΠTS : E7(−5)

SO(12) × SU(2)
−→ F4(4)

USp(6) × SU(2)
(5.3.29)

the image of the Tits–Satake projection yields the samemaximally split coset as in the
case presently illustrated, although the original manifold is a different one. The only
difference that distinguishes the two cases resides in the paint group. There we have
Gpaint = SO(3) × SO(3) × SO(3) and the subpaint group is identified as G0

subpaint =
SO(3)diag. Correspondingly the index x = 1, 2, 3 spans the triplet representation of
SO(3) which is the J appropriate to that case and the invariant tensor axyz is given
by the Levi-Civita symbol εxyz .

Let us nowconsider the group theoreticalmeaningof the splitting of F4(4) roots into
the three subsetsΔs

vec,Δ
s
spin,Δ

s
TS,spin

, which are assigned to different representations
of the paint group SO(8). This is easily understood if we recall that there exists a
subalgebra SO(4, 4) ⊂ F4(4) with respect to which we have the following branching
rule of the adjoint representation of F4(4):

52
SO(4,4)→ 28nc ⊕ 8ncv ⊕ 8ncs ⊕ 8ncs̄ (5.3.30)

The superscript nc is introduced just in order to recall that these are representations
of the non-compact real form SO(4, 4) of the D4 Lie algebra. By 28, 8v, 8s and 8s̄

we have already denoted and we continue to denote the homologous representations
in the compact real form SO(8) of the same Lie algebra. The algebra SO(4, 4) is
regularly embedded and therefore its Cartan generators are the same as those of
F4(4). The 12 positive long roots of F4(4) are the only positive roots of SO(4, 4),
while the three sets Δs

vec, Δ
s
spin, Δ

s
spin

just correspond to the positive weights of the
three representations 8ncv , 8ncs and 8ncs̄ , respectively. This is in agreement with the
branching rule (5.3.30). So the conclusion is that the different paint group represen-
tation assignments of the various root subspaces correspond to the decomposition of
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the Tits–Satake algebra F4(4) with respect to what we can call the sub Tits–Satake
algebra GsubTS = SO(4, 4). We can just wonder how the concept of sub Tits–Satake
algebra can be defined. This is very simple and obvious from our example. GsubTS is
the normalizer of the paint group Gpaint within the original group GR. Indeed there
is a maximal subgroup:

SO(4, 4) × SO(8) ⊂ E8(−24), (5.3.31)

with respect to which the adjoint of E8(−24) branches as follows:

248
SO(4,4)×SO(8)−→ (1, 28) ⊕ (28nc, 1) ⊕ (8ncv , 8v) ⊕ (8ncs , 8s) ⊕ (8ncs̄ , 8s̄) (5.3.32)

and the last three terms in this decomposition display the pairing between represen-
tations of the paint group and representations of the sub Tits–Satake group. Alterna-
tively we can view the subpaint group G0

subpaint = G2(−14) as the normalizer of the
Tits–Satake subgroup GTS = F4(4) within the original group GR = E8(−24). Indeed
we have a subgroup

F4(4) × G2(−14) ⊂ E8(−24), (5.3.33)

such that the adjoint of E8(−24) branches as follows:

248
F4(4)×G2(−14)−→ (52, 1) ⊕ (1, 14) ⊕ (26, 7) (5.3.34)

The two decompositions (5.3.32) and (5.3.34) lead to the same decomposition with
respect to the intersection group:

G intsec ≡
(

GTS × G0
subpaint

)
⋂
(

GsubTS × Gpaint
) = GsubTS × G0

subpaint

= (

F4(4) × G2(−14)
)
⋂

(SO(4, 4) × SO(8)) = SO(4, 4) × G2(−14).

(5.3.35)

We find

248 → (1, 14) ⊕ (1, 7) ⊕ (1, 7) ⊕ (8ncv , 7) ⊕ (8ncs , 7) ⊕ (8ncs̄ , 7)

⊕(28nc, 1) ⊕ (8ncv , 1) ⊕ (8ncs , 1) ⊕ (8ncs̄ , 1). (5.3.36)

The adjoint of the Tits–Satake subalgebra GTS = F4(4) is reconstructed by collecting
together all the singlets with respect to the subpaint group G0

subpaint. Alternatively the
adjoint of the paint algebra Gpaint = SO(8) is reconstructed by collecting together
all the singlets with respect to the sub Tits–Satake algebra GsubTS = SO(4, 4).

Finally, we can recognize the sub Tits–Satake algebra as the algebra generated by
the CSA and roots Δ� (and their negatives) in the decomposition (5.3.4).
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5.3.3 TS Projection for the Normed Solvable Algebras of
Homogenous Special Manifolds

After our detailed discussion of the Tits–Satake projection in the above example
of a specific symmetric space we can extract a general scheme that applies to all
normal solvable Lie algebras. Let us discuss how the Tits–Satake projection can
be reformulated relying on the paint and subpaint group structures. In Sect. 5.3.1
our starting point was the geometrical projection of the root system ΔG onto the
non-compact Cartan subalgebra by setting, for each root α ∈ ΔG its compact part
α⊥ to zero. This is the operation that is no longer available in the general case of
a solvable algebra. We now only have the solvable algebra, which corresponds to
the non-compact part α‖. Indeed at the level of the solvable Lie algebra there is no
notion of the compact Cartan generators. However, the structures that still persist and
allow us to define the Tits–Satake projection are those of paint and subpaint groups.
Indeed for all the solvable Lie algebras Solv (M ) considered in the classification of
homogeneous special geometries the following statements A-E are true:

[A1]

There exists a compact algebra Gpaint which acts as an algebra of outer automor-
phisms (i.e. outer derivatives) of the solvable algebra Solv (M ). The algebra Gpaint

is rigorously defined as follows. Given the solvable Lie algebra Solv (M ) the corre-
sponding Riemannian manifold M = exp [Solv (M )] has an algebra of isometries
G

iso
M , which is normally larger than Solv (M ), and for all special homogeneous man-

ifoldsM such algebras were studied and completely classified in [4, 5]. Obviously
Solv (M ) ⊂ G

iso
M . Let us define the subalgebra of automorphisms of the solvable

Lie algebra in the standard way:

G
iso
M ⊃ Aut [Solv (M )] =
{

X ∈ G
iso
M | ∀Ψ ∈ Solv (M ) : [X , Ψ ] ∈ Solv (M )

}

(5.3.37)

By its own definition the algebra Aut [Solv (M )] contains Solv (M ) as an ideal.
Hence we can define the algebra of external automorphisms as the quotient:

AutExt [Solv (M )] ≡ Aut [Solv (M )]

Solv (M )
, (5.3.38)

and we identify Gpaint as the maximal compact subalgebra of AutExt [Solv (M )].
Actually we immediately see that

Gpaint = AutExt [Solv (M )] . (5.3.39)

Indeed, as a consequence of its own definition the algebra AutExt [Solv (M )]
is composed of isometries which belong to the stabilizer subalgebra H ⊂ G

iso
M

of any point of the manifold, since Solv (M ) acts transitively. In virtue of the
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Riemannian structure of M we have H ⊂ so(n) where n = dim (Solv (M )) and
hence also AutExt [Solv (M )] ⊂ so(n) is a compact Lie algebra.

[A2]

We can now reformulate the notion of maximally non-compact or maximally split
algebras in such a way that it applies to the case of all considered solvable alge-
bras, independently whether they come from symmetric spaces or not. The algebra
Solv (M ) is maximally split if the paint algebra is trivial, namely:

Solv (M ) = maximally split ⇔ AutExt [Solv (M )] = ∅. (5.3.40)

For maximally split algebras there is no Tits–Satake projection, namely the Tits–
Satake subalgebra is the full algebra.

[B]

Let us now consider non maximally split algebras such that AutExt [Solv (M )] �= ∅.
Let r be the rank of Solv (M ) , namely the number of its Cartan generators Hi and
n the number of its nilpotent generatorsWα , namely the number of generalized roots
α. The whole set of Cartan generators Hi , plus a subset of p nilpotent generatorsWα�

associated with roots α� that we name long, close a solvable subalgebra SolvsubTS ⊂
Solv (M ) that is made of singlets under the action of the paint Lie algebra Gpaint,
i.e.

SolvsubTS = span {Hi ,Wα�} ,

[SolvsubTS , SolvsubTS] ⊂ SolvsubTS,

∀ X ∈ Gpaint , ∀Ψ ∈ SolvsubTS : [X, Ψ ] = 0. (5.3.41)

We name SolvsubTS the sub Tits–Satake algebra. By definition SolvsubTS has the
same rank as the original solvable algebra Solv (M ). In all possible cases, it is the
solvable Lie algebra of a symmetric maximally split coset GsubTS/HsubTS. In this
way, eventually, we have the notion of a semisimple Lie algebra GsubTS.

[C1]

Considering the orthogonal decomposition of the original solvable Lie algebra with
respect to its sub Tits–Satake algebra:

Solv (M ) = SolvsubTS ⊕ Kshort. (5.3.42)

we find that the orthogonal subspace Kshort necessarily decomposes into a sum of q
subspaces:

Kshort =
q
⊕

℘=1

D
[

P+
℘ ,Q℘

]

, (5.3.43)

where each D
[

P+
℘ ,Q℘

]

is the tensor product:



5.3 The Tits Satake Projection 227

D
[

P+
℘ ,Q℘

] = P+
℘ ⊗ Q℘ (5.3.44)

of an irreducible moduleQ℘ (i.e. representation) of the compact paint algebra Gpaint

with an irreducible moduleP+
℘ of the solvable sub Tits–Satake algebra SolvsubTS. As

we already noticed, SolvsubTS is themaximal Borel subalgebra of themaximally split,
semisimple, real Lie algebra GsubTS. Hence an irreducible module P+

℘ of SolvsubTS
necessarily decomposes in the following way:

P+
℘ =

n℘
⊕

s=1

W[α(℘,s)], n℘ = dimP+
℘ , (5.3.45)

where each W[α(℘,s)] is an eigenspace of the CSA of GsubTS, which coincides with
that of SolvsubTS and eventually with the CSA of the original Solv (M ). Explicitly
this means:

∀ Hi ∈ CSA (Solv (M )) , ∀Ψ ∈ W[α(℘,s)] ⊗ Q℘ : [Hi , Ψ ] = α
(℘,s)
i Ψ.

(5.3.46)

Furthermore the r -vectors of eigenvalues, which are roots of Solv (M ), are identified
by (5.3.45) as the non negative weights of some irreducible moduleP℘ of the simple
Lie algebra GsubTS:

P℘ = P+
℘ ⊕ P−

℘ , P−
℘ =

n℘
⊕

s=1

W[−α(℘,s)]. (5.3.47)

Indeed for the solvable Lie algebras Solv(G/H) of maximally split cosets the irre-
ducible modules are easily constructed as half-modules of the full algebraG, namely
by taking the eigenspaces associated with non negative weights.

[C2]

The decomposition of Kshort mentioned in (5.3.43) has actually a general form
depending on the rank. We will discuss this here for the quaternionic-Kähler mani-
folds.

(r = 4) In this case there are just three modules of GsubTS = SO(4, 4) involved in
the sum of (5.3.43) namelyP8v ,P8s ,P8s̄ , where 8v,s,s̄ denotes the vector, spinor
and conjugate spinor representation, respectively. All these three modules are 8
dimensional, which means that for all of them there are 4 positive weights and 4
negative ones. Denoting these half spaces by 4+

v,s,s̄, we can write:

Kshort = (4+
v ,Qv

)⊕ (4+
s ,Qs

)⊕ (4+
s̄ ,Qs̄

)

, (5.3.48)

whereQv,s,s̄ are three different irreduciblemodules ofGpaint that wewill discuss in
later sections. The generic case is that where all three representationsQv,s,s̄ are non
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vanishing. Special cases where two of the three representations Gpaint vanish do
also exist. The limiting case is that where all three representations are deleted and

the full algebra is just Solv
(

SO(4,4)
SO(4)×SO(4)

)

. Note that (5.3.48) is the generalization

of the decomposition (5.3.32) applying to the case analyzed in detail above. There
we have Gpaint = SO(8) and the aforementioned irreducible modules are:

Qv = 8v ; Qs = 8s ; Qs̄ = 8s̄ (5.3.49)

(r = 3) In this case there is only one module of GsubTS = SO(3, 4) involved in the
sum of (5.3.43) namelyP8s where 8s denotes the 8 dimensional spinor represen-
tation of SO(3, 4). With a notation completely analogous to that employed above
let 4+

s denote the space spanned by the eigenspaces pertaining to positive spinor
weights. Then we can write:

Kshort = (4+
s ,Qs

)

, (5.3.50)

(r = 2) In this case, there is one exceptional case, namely SG5, where G R =
GsubTS = G2(2). In all other cases, there are two modules of SO(2, 2) involved
in the sum of (5.3.43) and these are the spinor moduleP4s and the vector module
P4v . Both modules are 4-dimensional and in our adopted notations we can write:

Kshort = (2+
s ,Qs

)⊕ (2+
v ,Qv

)

. (5.3.51)

(r = 1) In this case we have to distinguish between GsubTS = SO(1, 1) or GsubTS =
SU(1, 1). When GsubTS = SU(1, 1) we have:

Kshort = (1+
s ,Qs

)

, (5.3.52)

where 1+
s denotes the positive weight subspace of the spinor representation of

so(1, 2), i.e. the fundamental of su(1, 1), which is two-dimensional. The repre-
sentation Qs will be discussed later. When GsubTS = SO(1, 1) on the other hand,
we have:

Kshort = (1+
s ,Qs

)⊕ (1+
v ,Qv

)

. (5.3.53)

In this case,1+
s denotes a subspaceofweight 1/2with respect toGsubTS = so(1, 1),

while the subspace 1+
v has weight 1.

We can now note a regularity in the decomposition of Kshort. For all values of the
rank we always have the space (S +,Qs) that associates a representation of the paint
group to the half spinor representation of the sub Tits–Satake algebra. In the case of
rank r = 4 in addition to this we also have the representationsQv andQs̄, which we
associate to what we can name the V + and S̄ + half modules. We have established
a notation covering all the cases which enables us to proceed to the next point and
give a general definition of the Tits–Satake projection.
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[D]

The paint algebra Gpaint contains a subalgebra

G
0
subpaint ⊂ Gpaint, (5.3.54)

such that with respect to G
0
subpaint, each of the three irreducible representations Qv,s,s̄

branches as:

Qv,s,s̄
G

0
subpaint=⇒ 1

︸︷︷︸

singlet

⊕ Jv,s,s̄, (5.3.55)

where the representation Jv,s,s̄ is in general reducible.

[E]

The restriction to the singlets of G
0
subpaint defines a Lie subalgebra of SolvM, namely,

if we set:

SolvTS ≡ SolvsubTS ⊕ (

V +, 1
) ⊕ (

S +, 1
) ⊕

(

S
+
, 1
)

, (5.3.56)

we get:
[SolvTS , SolvTS] ⊂ SolvTS. (5.3.57)

Relying on all the above properties and structures described in points [A], [B],
[C], [D] and [E], which turn out to hold true for every Solv (M ) considered in
supergravity, irrespectively whether it is associated with a symmetric space or not,
we can define the Tits–Satake projection at the level of solvable algebras by stating:

ΠTS : Solv (M ) −→ SolvTS ⊂ Solv (M )

Ψ ∈ SolvTS if and only if : ∀X ∈ G
0
subpaint : [X, Ψ ] = 0

(5.3.58)

In other words, we define the Tits–Satake solvable subalgebra SolvTS as spanned by
all the singlets under the subpaint group Gsubpaint. By its very definition the Tits–
Satake subalgebra contains the sub Tits–Satake algebra SolvsubTS ⊂ SolvTS which
is made of singlets with respect to the full paint group Gpaint The subtle points in the
above definition of the Tits–Satake projection is given by point [D] and [E]. Namely it
is a matter of fact, which is not obvious a priori, that the addition of the three modules
(occasionally vanishing) V +,S +,S

+
to the sub Tits–Satake algebra SolvsubTS

always defines a new Lie algebra. Being true this implies that a subalgebra SolvTS
with the structure (5.3.56) exists in SolvQ and Gsubpaint is its stability subalgebra.
Vice versa, the existence of a subpaint algebra such that the decomposition (5.3.55)
is true, implies that the subspace (5.3.56) closes a subalgebra since the kernel of a
subalgebra of automorphisms is necessarily a closed subalgebra.
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5.4 The Systematics of Paint Groups

As we explained in Sect. 5.3.3, the Tits–Satake projection originally defined in terms
of a geometrical projection of the root space, can be generalized to all solvable
algebras of special geometries reformulating it in terms of the paint and subpaint
group structures. The systematic procedure outlined there, started as step A] with the
identification of the paint group. This is what we do now, unveiling a very elegant
pattern of such paint groups.

As we claimed in the introduction, the specially fascinating property of the paint
group is that it is invariant under both the c-map and the c�-map, namely under
dimensional reduction.

5.4.1 The Paint Group for Non-compact Symmetric Spaces

In Sect. 5.3.3, we defined the paint group as the group of external automorphisms
of the solvable algebra associated with a certain homogeneous space (5.3.39). For
non-compact symmetric spaces there exists another, more common, definition of the
paint group. Referring to the presentation in the beginning of Sect. 5.3.1, the paint
group is defined as a subgroup ofH, whose Cartan generators are those inH comp and
the roots are those in Δcomp (and their negatives), i.e. those that have no component
α|| in the decomposition (2.4.19).

As we mentioned already in the example in Sect. 5.3.2, a real form GR of the
Lie algebra G is represented by the so-called Satake diagrams, which are Dynkin
diagrams with the following extra decorations:

• Compact simple roots (those in Δcomp) are denoted by filled circles.
• Simple roots that, upon setting α⊥ = 0, project to the same restricted root are
connected with a two-sided arrow. These are simple roots that necessarily belong
to Δδ .

Given the Satake diagram the paint group can then be read from it in the follow-
ing way. The black dots form a Dynkin diagram of the semi-simple type. The paint
group then contains a factor corresponding to this painted subdiagram. This corre-
sponds to the roots in Δcomp and the elements of H comp for which these roots have
non-vanishing components. Furthermore, for every arrow, there is one additional
SO(2)-factor that commutes with the rest of the paint group. These correspond to
the additional generators inH comp. An example of this is given in Figs. 5.2 and 5.3.
For the symmetric quaternionic spaces of rank 4, the paint groups are summarized
in Table5.3. The case 4 has already been extensively discussed. Here we can briefly
explain the group theory of the case 2. It suffices to note that the E6(2) Lie alge-
bra contains F4(4) as a maximal subalgebra and that the adjoint has the following
branching rule:

78
F4(4)−→ 52 ⊕ 26. (5.4.1)

http://dx.doi.org/10.1007/978-3-319-74491-9_2
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Fig. 5.3 Satake diagram of
E6(2). The paint group can
be seen to be SO(2)2

Table 5.3 Symmetric special Kähler manifolds and their corresponding quaternionic spaces. The
last two columns indicate the paint and subpaint groups respectively. The spaces above the line are
maximally non-compact and do not have any paint group

C(h) Kähler Quaternionic Gpaint G0
subpaint

1 Sp(6)
U(3)

F4(4)
USp(6)×SU(2) – –

2 SU(3,3)
SU(3)×SU(3)×U(1)

E6(2)
SU(2)×SU(6) SO(2)2 1

3 SO∗(12)
SU(6)×U(1)

E7(−5)
SO(12)×SU(2) SO(3)3 SO(3)diag

4 E7(−25)
E6(−78)×U(1)

E8(−24)
E7(−133)×SU(2) SO(8) G2(−14)

This shows that the subpaint group is empty since the normalizer of the Tits–Satake
subalgebra F4(4) is null. On the other hand, recalling the decomposition of the fun-
damental representation of F4(4) with respect to the subalgebra SO(4, 4)

26
SO(4,4)−→ 1 ⊕ 1 ⊕ 8ncv ⊕ 8ncs ⊕ 8ncs̄ , (5.4.2)

together with the branching rule of the adjoint given in (5.3.30), we conclude that
under the subgroup SO(4, 4) × SO(2)2 we have:

78
SO(4,4)×SO(2)2−→ (28nc, 1, 1) ⊕ (

8ncv , 2, 1
)⊕ (

8ncs , 1, 2
)⊕ (8s̄nc , 1, 2)

⊕ (1, 1, 1) ⊕ (1, 1, 1) (5.4.3)

which shows that the paint group is indeed SO(2)2 as claimed.
From (5.4.3) we also read off the representations Qv,s,ŝ defined by (5.3.48) that

pertain to this case:

Qv = (2, 1) ; Qs = (1, 2) ; Qŝ = (1, 2). (5.4.4)

5.5 Classification of the Sugra-Relevant Symmetric Spaces
and Their General Properties

Equipped with the powerful weapon of the Tits Satake projection which allows to
organize them into universality classes, we can now make a complete survey of the
symmetric spaces G/H that are relevant to supergravity theories and in particular to
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the construction of black-hole solutions. Indeed, as the reader cannot fail to appre-
ciate there is a general group-theoretical framework underlying the construction of
supergravity black holes which allows both for

(1) a classification of the relevant symmetric spaces,
(2) a general description of their structures which are relevant to the black hole

solutions.

The presentation of both items in the above list is the goal of the present section. To
achieve such a goal we need to emphasize a few general aspects of the decomposition
(1.7.12) that relate to the underlying root systems and Dynkin diagrams. In the
following we heavily rely on results presented several years ago in [46]. Indeed
from the algebraic view-point a crucial property of the general decomposition in
Eq. (1.7.12) is encoded into the following statements which are true for all the cases1:

1. The A1 root-system associated with the sl(2, R)E algebra in the decomposition
(1.7.12) is made of ±ψ where ψ is the highest root of UD=3.

2. Out of the r simple roots αi of UD=3 there are r − 1 that have grading zero with
respect to ψ and just one αW that has grading 1:

(ψ , αi ) = 0 i �= W

(ψ , αW ) = 1 (5.5.1)

3. The only simple root αW that has non vanishing grading with respectψ is just the
highest weight of the symplectic representation W of UD=4 to which the vector
fields are assigned.

4. The Dynkin diagram of UD=4 is obtained from that of UD=3 by removing the dot
corresponding to the special root αW .

5. Hence we can arrange a basis for the simple roots of the rank r algebra UD=3

such that:
αi = {αi , 0} ; i �= W

αW =
{

wh,
1√
2

}

ψ =
{

0,
√
2
}

(5.5.2)

where αi are (r − 1)-component vectors representing a basis of simple roots for
the Lie algebraUD=4,wh is also an (r − 1)-vector representing the highest weight
of the representation W.

1An apparent exception is given by the case of N = 3 supergravity. The extra complicacy, there,
is that the duality algebra in D = 3, namely UD=3 has rank r + 2, rather than r + 1 with respect
to the rank of the algebra UD=4. Actually in this case there is an extra U(1)Z factor that is active
on the vectors, but not on the scalars and which is responsible for the additional complications. It
happens in this case that there are two vector roots, one for the complex representation to which the
vectors are assigned and one for its conjugate. They have opposite charges under U(1)Z. This case
together with that of N = 5 supergravity and with one of the series of N = 2 theories completes
the list of three exotic models which are anomalous also from the point of view of the Tits Satake
projection (see below).

http://dx.doi.org/10.1007/978-3-319-74491-9_1
http://dx.doi.org/10.1007/978-3-319-74491-9_1
http://dx.doi.org/10.1007/978-3-319-74491-9_1
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This means that the entire root system and the Cartan subalgebra of the UD=3 Lie
algebra can be organized as follows:

±ψ = ±
(

0 ,
√
2
)

; 2

±α̂ = ±
(

α ,
√
2
)

; 2 × # of roots = 2 nr

± ŵ = ±
(

w ,

√
2
2

)

; 2 × # of weights = 2 × dimW

H i ∈ CSA ⊂ UD=4 ; rankUD=4 = r
H ψ 1

dimUD=4 = 3 + dimUD=3 + 2 × dimW
(5.5.3)

This organization of the Lie algebra is very important, as it was thoroughly discussed
in [46], for the systematics of the Kač Moody extension which occurs when stepping
down from D = 3 to D = 2 dimensions, but it is equally important in the present
context to analyze the structure of the H�-subalgebra and the Tits Satake projection.

5.5.1 Tits Satake Projection

In most cases of lower supersymmetry, neither the algebra UD=4 nor the algebra
UD=3 are maximally split. In short this means that the non-compact rank rnc < r
is less than the rank of U, namely not all the Cartan generators are non-compact.
When this happens it means that the structure of black hole solutions is effectively
determined by the maximally split Tits Satake subalgebra U

T S ⊂ U, whose rank is
equal to rnc. Effectively determined does not mean that solutions of the big system
coincide with those of the smaller system rather it means that the former can be
obtained from the latter by means of rotations of the paint group, Gpaint. As we have
seen the Tits Satake algebra is obtained from the original algebra via a projection of
the root system of U onto the subspace orthogonal to the compact part of the Cartan
subalgebra of U

T S:
Π T S ; ΔU �→ ΔUT S (5.5.4)

In Euclidean geometry ΔUT S is just a collection of vectors in rnc dimensions; a priori
there is no reason why it should be the root system of another Lie algebra. Yet as
we illustrated, in most cases, ΔUT S turns out to be a Lie algebra root system and the
maximal split Lie algebra corresponding to it, UT S , is, the Tits Satake subalgebra of
the original non maximally split Lie algebra: U

T S ⊂ U. Such algebras U are called
non-exotic. The exotic non compact algebras are those for which the system ΔUT S is
not an admissible root system. In such cases there is no Tits Satake subalgebra U

T S .
Exotic algebras are very few and in supergravity they appear only in three instances
that display additional pathologies relevant also for the black hole solutions. For
the non exotic models we have that the decomposition (1.7.12) commutes with the
projection, namely:

http://dx.doi.org/10.1007/978-3-319-74491-9_1
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adj(UD=3) = adj(UD=4) ⊕ adj(sl(2, R)E ) ⊕ W(2,W )

⇓
adj(UT S

D=3) = adj(UT S
D=4) ⊕ adj(sl(2, R)E ) ⊕ W(2,W T S)

(5.5.5)

In other words the projection leaves the A1 Ehlers subalgebra untouched and has a
non trivial effect only on the duality algebra UD=4. Furthermore the image under the
projection of the highest root of U is the highest root of U

T S:

ΠT S : ψ → ψT S (5.5.6)

The reason why the Tits Satake projection is relevant to us was first pointed out in
[45] where the present author and his collaborators advocated that the classification
of nilpotent orbits and hence of extremal black hole solutions depends only on the
Tits Satake subalgebra and therefore is universal for all members of the same Tits
Satake universality class. By this name we mean all algebras who share the same
Tits Satake projection.

Having clarified these points we can proceed to present the classification of homo-
geneous symmetric spaces relevant to supergravity models and to black hole solu-
tions.

5.5.2 Classification of the Sugra-Relevant Symmetric Spaces

The classification of the symmetric coset based supergravitymodels is exhaustive and
it is presented in Tables5.4 and 5.5. There are 16 universality classes of non-exotic
models and 3 exceptional instances of exotic models which appear in the second
table.

In the tables we have also listed the Paint groups and the subpaint groups. These
latter are always compact and their different structures is what distinguishes the dif-
ferent elements belonging to the same class. As it was shown in [32] and extensively
illustrated in the previous sections, these groups are dimensional reduction invariant,
namely they are the same in D = 4 and in D = 3. Hence the representationW, which
in particular contains the electromagnetic charges of the hole, can be decomposed
with respect to the Tits Satake subalgebra and the Paint group revealing a regularity
structure inside each Tits Satake universality class which is at the heart of the clas-
sification of charge orbits. The same decomposition can be given also for the K

�

representation and this is at the heart of the classification of black holes according
to nilpotent orbits.

Focusing on the non-exotic models, we note that the 16 classes have a quite
different type of population. There are six one element classes whose single member
ismaximally split. They are the following ones and all have a distinguished standpoint
within the panorama of supergravity theories:
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1. TheN = 8 supergravity theory, which is the maximal one in D = 4, (model 1).
2. TheN = 2 supergravity theory with a single vector multiplet and non-vanishing

Yukawa coupling(model 2).
3. The N = 4 supergravity theory with 5 vector multiplets (model 11).
4. TheN = 4 supergravity theory with 6 vector multiplets which is obtained com-

pactifying a type II theory on a T6/Z2 orbifold (model 12).
5. The N = 2 theory with two vector multiplets and non vanishing Yukava cou-

plings, usually called the st-model (model 14).
6. The N = 2 theory with three vector multiplets and non vanishing Yukava cou-

plings, usually called the stu-model (model 15).

Next we have two universality classes, each containing an infinite number of ele-
ments. They are

1. The N = 4 supergravity theory with n = 6 + p vector multiplets (p ≥ 1),
(model 13).

2. The N = 2 supergravity theory with n = 3 + p vector multiplets (p ≥ 1) and
non vanishing Yukawa couplings (model 16).

We still have the very interesting 4-element universality class whose maximally split
representative corresponds to themaximally split special Kähler manifold Sp(6,R)

SU(3)×U(1) .
This class contains the models 3, 4, 5, 6 distinguished by quite peculiar Paint groups.
We will thoroughly analyze the structure of this class.

Finally we have the three exotic models whose common feature is that their group
and subgroup all belong to the pseudo-unitary series SU(p, q). The general decom-
position (1.7.12) still holds true, but the Tits Satake projection looses its significance.

5.5.3 Dynkin Diagram Analysis of the Principal Models

Next we analyze the form of the root systems of the UD=3 algebras in relation with
the decomposition (1.7.12).

N = 8

This is the case of maximal supersymmetry and it is illustrated by Fig. 5.4.
In this case all the involved Lie algebras are maximally split and we have

adj E8(8) = adj E7(7) ⊕ adj SL(2, R)E ⊕ (2, 56) (5.5.7)

The highest root of E8(8) is

ψ = 3α1 + 4α2 + 5α3 + 6α4 + 3α5 + 4α6 + 2α7 + 2α8 (5.5.8)

and the unique simple root not orthogonal to ψ is α8 = αW , according to the label-
ing of roots as in Fig. 5.4. This root is the highest weight of the fundamental 56-
representation of E7(7).

http://dx.doi.org/10.1007/978-3-319-74491-9_1
http://dx.doi.org/10.1007/978-3-319-74491-9_1
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Fig. 5.4 The Dynkin diagram of E8(8). The only simple root which has grading one with respect
to the highest root ψ is α8 (painted with three circles). With respect to the algebra UD=4 = E7(7)
whose Dynkin diagram is obtained by removal of the multiple circle, α8 is the highest weight of
the symplectic representation of the vector fields, namely W = 56

The well adapted basis of simple E8 roots is constructed as follows:

α1 = {1,−1, 0, 0, 0, 0, 0, 0} = {α1, 0}
α2 = {0, 1,−1, 0, 0, 0, 0, 0} = {α2, 0}
α3 = {0, 0, 1,−1, 0, 0, 0, 0} = {α3, 0}
α4 = {0, 0, 0, 1,−1, 0, 0, 0} = {α4, 0}
α5 = {0, 0, 0, 0, 1,−1, 0, 0} = {α5, 0}
α6 = {0, 0, 0, 0, 1, 1, 0, 0} = {α6, 0}
α7 =

{

− 1
2 ,− 1

2 ,− 1
2 ,− 1

2 ,− 1
2 ,− 1

2 ,
1√
2
, 0
}

= {α7, 0}
α8 =

{

−1, 0, 0, 0, 0, 0,− 1√
2
, 1√

2

}

=
{

wh,
1√
2

}

(5.5.9)

In this basis we recognize that the seven 7-vectors ᾱi constitute a simple root basis
for the E7 root system, while:

wh =
{

−1, 0, 0, 0, 0, 0,− 1√
2

}

(5.5.10)

is the highest weight of the fundamental 56 dimensional representation. Finally in
this basis the highest root ψ defined by Eq. (5.5.8) takes the expected form:

ψ = {0, 0, 0, 0, 0, 0, 0,√2} (5.5.11)

N = 6

In this case the D = 4 duality algebra is UD=4 = SO�(12), whose maximal compact
subgroup is H = SU(6) × U(1). The scalar manifold (Fig. 5.5):

SK N=6 ≡ SO�(12)

SU(6) × U(1)
(5.5.12)

is an instance of special Kähler manifold which can also be utilized in an N = 2
supergravity context. The D = 3 algebra is UD=3 = E7(−5). The 16 vector fields of
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Fig. 5.5 TheDynkin diagram of E7(−5). The only simple root which has grading onewith respect to
the highest rootψ isα7 (paintedwithmultiple circles).With respect to the algebraUD=4 = SO�(12)
whose Dynkin diagram is obtained by removal of the multiple circle, α7 is the highest weight of
the symplectic representation of the vector fields, namely the W = 32s

D = 4 N = 6 supergravity with their electric and magnetic field strengths fill the
spinor representation 32s of SO�(12), so that the decomposition (1.7.12), in this case
becomes:

adj E7(−5) = adj SO�(12) ⊕ adj SL(2, R)E ⊕ (2, 32s) (5.5.13)

The simple root αW is α7 and the highest root is:

ψ = α1 + 2α2 + 3α3 + 4α4 + 2α5 + 3α6 + 2α7 (5.5.14)

A well adapted basis of simple E7 roots can be written as follows:

α1 = {1,−1, 0, 0, 0, 0, 0} = {α1, 0}
α2 = {0, 1,−1, 0, 0, 0, 0} = {α2, 0}
α3 = {0, 0, 1,−1, 0, 0, 0} = {α3, 0}
α4 = {0, 0, 0, 1,−1, 0, 0} = {α4, 0}
α5 = {0, 0, 0, 0, 1,−1, 0} = {α5, 0}
α6 = {0, 0, 0, 0, 1, 1, 0} = {α6, 0}
α7 =

{

− 1
2 ,− 1

2 ,− 1
2 ,− 1

2 ,− 1
2 ,− 1

2 ,
1√
2

}

= {wh,
1√
2
}

(5.5.15)

In this basis we recognize that the six 6-vectors ᾱi (i = 1, . . . , 6) constitute a simple
root basis for the D6 � SO�(12) root system, while:

wh =
{

−1

2
,−1

2
,−1

2
,−1

2
,−1

2
,−1

2
,−1

2
,−1

2

}

(5.5.16)

is the highest weight of the spinor 32-dimensional representation of SO�(12). Finally
in this basis the highest root ψ defined by Eq. (5.5.14) takes the expected form:

ψ = {0, 0, 0, 0, 0, 0,√2} (5.5.17)

http://dx.doi.org/10.1007/978-3-319-74491-9_1
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Fig. 5.6 The Dynkin diagram of F4(4). The only root which is not orthogonal to the highest root
is �V = �1. In the Tits Satake projection ΠT S the highest root ψ of F4(4) is the image of the
highest root of E7(−5) and the root �V = �1 = ΠT S (α7) is the image of the root associated with
the vector fields

In this case, as in most cases of lower supersymmetry, neither the algebra UD=4

nor the algebra UD=3 are maximally split. The Tits Satake projection of E7(−5) is
F4(4) and the explicit form of Eq. (5.5.5) is the following one:

adj(E7(−5)) = adj(SO�(12)) ⊕ adj(SL(2, R)E) ⊕ (2, 32s)

⇓
adj(F4(4)) = adj(Sp(6, R) ⊕ adj(SL(2, R)E) ⊕ (2, 14′)

(5.5.18)

The representation 14′ of Sp(6, R) is that of an antisymmetric symplectic traceless
tensor:

dimSp(6,R)

˜

= 14′ (5.5.19)

The Dynkin diagram of the Tits Satake subalgebra f4(4) is discussed in Fig. 5.6.

N = 5

The case of N = 5 supergravity is described by Fig. 5.7 and it is one of the three
exotic models whose Tits–Satake projection does not produce a Lie algebra root
system.

In theN = 5 theory the scalar manifold is a complex coset of rank r = 1,

MN =5,D=4 = SU(1, 5)

SU(5) × U(1)
(5.5.20)

and there are 10 vector fields whose electric andmagnetic field strengths are assigned
to the 20-dimensional representation of SU(1, 5), which is that of an antisymmetric
three-index tensor

dimSU(1,5) = 20 (5.5.21)

The decomposition (1.7.12) takes the explicit form:

http://dx.doi.org/10.1007/978-3-319-74491-9_1
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Fig. 5.7 The Dynkin diagram of E6(−14). The only simple root which has grading one with respect
to the highest root ψ is α4 (painted with multiple circles). With respect to the algebra UD=4 =
SU(5, 1)) whose Dynkin diagram is obtained by removal of the black circle, α4 is the highest
weight of the symplectic representation of the vector fields, namely theW = 20

adj(E6(−14)) = adj(SU(1, 5) ⊕ adj(SL(2, R)E) ⊕ (2, 20) (5.5.22)

and we have that the highest root of E6, namely

ψ = α1 + 2α2 + 3α3 + 2α4 + 2α5 + α6 (5.5.23)

has non vanishing scalar product onlywith the rootα4 in the form depicted in Fig. 5.7.
Writing a well adapted basis of E6 roots is a little bit more laborious but it can be

done. We find:

α1 =
{

0, 0,−
√
3
2 , 1

2
√
5
,

√

6
5 , 0
}

= {α1, 0}
α2 =

{

− 1√
2
, 1√

6
, 2√

3
, 0, 0, 0

}

= {α2, 0}
α3 =

{√
2, 0, 0, 0, 0, 0

}

= {α3, 0}
α4 =

{

− 1√
2
, 1√

6
,− 1√

3
, 1√

5
,−
√

3
10 ,

1√
2

}

=
{

wh,
1√
2

}

α5 =
{

− 1√
2
,−
√

3
2 , 0, 0, 0, 0

}

= {α4, 0}
α6 =

{

0,
√

2
3 ,− 1

2
√
3
,−

√
5
2 , 0, 0

}

= {α5, 0}

(5.5.24)

In this basis we can check that the five 5-vectors ᾱi (i = 1, . . . , 5) constitute a simple
root basis for the A5 � SU(1, 5) root system, namely:

〈ᾱi , ᾱ j 〉 =

⎛

⎜

⎜

⎜

⎜

⎝

2 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 2

⎞

⎟

⎟

⎟

⎟

⎠

= Cartan matrix of A5 (5.5.25)
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while:

wh =
{

− 1√
2
,

1√
6
,− 1√

3
,

1√
5
,−
√

3

10

}

(5.5.26)

is the highest weight of the 20-dimensional representation of SU(1, 5). Finally in
this basis the highest root ψ defined by Eq. (5.5.23) takes the expected form:

ψ = {0, 0, 0, 0, 0, 0,√2} (5.5.27)

N = 4

The case of N = 4 supergravity is the first where the scalar manifold is not com-
pletely fixed, since we can choose the number nm of vector multiplets that we can
couple to the graviton multiplet. In any case, once nm is fixed the scalar manifold is
also fixed and we have:

MN=4,D=4 = SL(2, R)0

O(2)
⊗ SO(6, nm)

SO(6) × SO(nm)
(5.5.28)

The total number of vectors nv = 6 + nm is also fixed and the symplectic represen-
tationW of the duality algebra

UD=4 = SL(2, R)0 × SO(6, nm) (5.5.29)

to which the vectors are assigned and which determines the embedding:

SL(2, R)0 × SO(6) × SO(nm) �→ Sp(12 + 2 nm, R) (5.5.30)

is also fixed, namely W = (20,6+nm), 20 being the fundamental representation of
SL(2, R)0 and 6+nm the fundamental vector representation of SO(6, nm).

The D = 3 algebra is, UD=3 = SO(8, nm + 2). Correspondingly the form taken
by the general decomposition (1.7.12) is the following one:

adj(SO(8, nm + 2)) = adj(SL(2, R)0) ⊕ adj(SO(6, nm)) ⊕ adj(SL(2, R)E)

⊕(2E, 20,6+nm) (5.5.31)

where 2E,0 are the fundamental representations respectively of SL(2,R)E and of
SL(2,R)0.

In order to give a Dynkin Weyl description of these algebras, we are forced to
distinguish the case of an odd and even number of vector multiplets. In the first case
bothUD=3 andUD=4 are non simply laced algebras of the B-type, while in the second
case they are both simply laced algebras of the D-type

nm =
{

2k → UD=4 � Dk+3

2k + 1 → UD=4 � Bk+3
(5.5.32)

http://dx.doi.org/10.1007/978-3-319-74491-9_1
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Fig. 5.8 The Dynkin diagram of D4+k+1. The algebra D4+k+1 is that of the group SO(8, 2k + 2)
corresponding to the σ -model reduction of N = 4 supergravity coupled to nm = 2k vector mul-
tiplets. The only simple root which has non vanishing grading with respect to the highest one ψ

is α2. Removing it (black circle) we are left with the algebra D4+k−1 ⊕ A1 which is indeed the
duality algebra in D = 4, namely SO(6, 2k) ⊕ SL(2, R)0. The root α2 is the highest weight of the
symplectic representation of the vector fields, namely the W = (20, 6 + 2k)

Just for simplicity and for shortness we choose to discuss only the even case nm = 2k
which is described by Fig. 5.8.

In this case we consider the UD=3 = SO(8, 2k + 2) Lie algebra whose Dynkin
diagram is that of D5+k . Naming εi the unit vectors in an Euclidean �-dimensional
spacewhere � = 5 + k, awell adapted basis of simple roots for the considered algebra
is the following one:

α1 = √
2 ε1

α2 = − 1√
2

ε1 − ε2 + 1√
2

ε�

α3 = ε2 − ε3

α4 = ε3 − ε4

. . . = . . .

α�−1 = ε�−2 − ε�−1

α� = ε�−2 + ε�−1

(5.5.33)

which is quite different from the usual presentation but yields the correct Cartan
matrix. In this basis the highest root of the algebra:

ψ = α1 + 2α2 + 2α3 + · · · + 2α�−2 + α�−1 + α� (5.5.34)

takes the desired form:
ψ = √

2 ε� (5.5.35)

In the same basis the αW = α2 root has also the expect form:
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αW =
(

w,
1√
2

)

(5.5.36)

where:

w = − 1√
2

ε1 − ε2 (5.5.37)

is the weight of the symplectic representation W = (20, 6 + 2k). Indeed − 1√
2
ε1 is

the fundamental weight for the Lie algebra SL(2, R)0, whose root is α1 = √
2 ε1,

while−ε2 is the highest weight for the vector representation of the algebra SO(6, 2k),
whose roots are α3, α4, . . . , α�.

Nextwebriefly comment on theTits Satake projection. The algebraSO(8, nm + 2)
is maximally split only for nm = 5, 6, 7. The case nm = 6, from the superstring view
point, corresponds to the case of Neveu–Schwarz vector multiplets in a toroidal
compactification. For a different number of vectormultiplets, in particular for nm > 7
the study of extremal black holes involves considering the Tits Satake projection,
which just yields the universal algebra

U
T S
N=4,D=3 = so(8, 9) (5.5.38)

5.6 Tits Satake Decompositions of the W Representations

One of the goals that we plan to pursue in Chap.6 is the comparison of the classi-
fication of extremal black holes by means of charge orbits with their classification
by means of H� orbits. Charge orbits means orbits of the UD=4 group in the W-
representation.

For this reason, in the present section we consider the decomposition of the W-
representations with respect to Tits–Satake subalgebras and Paint groups for all
the non-exotic models. The relevant W-representations are listed in Table5.7. In
Table5.8 we listed the W-representations for the exotic models.

Given the paint algebra Gpaint ⊂ U and the Tits Satake subalgebra GTS ⊂ U,
one introduces, as we have seen, the sub Tits Satake and sub paint algebras as the
centralizers of the paint algebra and of the Tits Satake algebra, respectively. In other
words we have:

s ∈ GsubTS ⊂ GTS ⊂ U ⇔ [

s , Gpaint
] = 0 (5.6.1)

and
t ∈ Gsubpaint ⊂ Gpaint ⊂ U ⇔ [t , GTS] = 0 (5.6.2)

As it was stressed repeatedly, a very important property of the paint and subpaint
algebras is that they are conserved in the dimensional reduction, namely they are the
same for UD=4 and UD=3.

http://dx.doi.org/10.1007/978-3-319-74491-9_6
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In the next lines we analyze the decomposition of the W-representations with
respect to these subalgebras for each Tits Satake universality class of non maximally
split models. In the case of maximally split models there is no paint algebra and there
is nothing with respect to which to decompose.

5.6.1 Universality Class sp(6, R) ⇒ f4(4)

In this case the sub Tits Satake Lie algebra is

GsubTS = sl(2, R) ⊕ sl(2, R) ⊕ sl(2, R) ⊂ sp(6, R) = GTS (5.6.3)

and theW-representation of the maximally split model decomposes as follows:

14′ GsubTS=⇒ (2, 1, 1) ⊕ (1, 2, 1) ⊕ (1, 1, 2) ⊕ (2, 2, 2) (5.6.4)

This decomposition combines in the following way with the paint group representa-
tions in the various models belonging to the same universality class.

5.6.1.1 su(3, 3) Model

For this case the paint algebra is

Gpaint = so(2) ⊕ so(2) (5.6.5)

and the W-representation is the 20 dimensional of su(3, 3) corresponding to an
antisymmetric tensor with a reality condition of the form:

t�
αβγ = 1

3! εαβγ δηθ tδηθ (5.6.6)

The decomposition of this representation with respect to the Lie algebra Gpaint ⊕
GsubTS is the following one:

20
Gpaint⊕GsubTS=⇒ (2, q1|2, 1, 1) ⊕ (2, q2|1, 2, 1) ⊕ (2, q3|1, 1, 2) ⊕ (1, 0|2, 2, 2)

(5.6.7)
where (2, q) means a doublet of so(2) ⊕ so(2) with a certain grading q with respect
to the generators, while (1, 0)means the singlet that has 0 gradingwith respect to both
generators. The subpaint algebra in this case is Gsubpaint = 0 and the decomposition
of the same W-representation with respect to Gsubpaint ⊕ GTS is:

20
Gsubpaint⊕GTS=⇒ 6 ⊕ 14 (5.6.8)
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This follows from the decomposition of the 6 of sp(6,R) with respect to the sub Tits
Satake algebra (5.6.3):

6
GsubTS=⇒ (2, 1, 1) ⊕ (1, 2, 1) ⊕ (1, 1, 2) (5.6.9)

5.6.1.2 so�(12) Model

For this case the paint algebra is

Gpaint = so(3) ⊕ so(3) ⊕ so(3) (5.6.10)

and theW-representation is the 32s dimensional spinorial representation of so�(12).
The decomposition of this representation with respect to the Lie algebra Gpaint ⊕
GsubTS is the following one:

32s
Gpaint⊕GsubTS=⇒ (2, 2, 1|2, 1, 1) ⊕ (2, 1, 2|1, 2, 1) ⊕ (1, 1, 2|1, 1, 2) ⊕ (1, 1, 1|2, 2, 2)

(5.6.11)

where 2 means the doublet spinor representation of so(3). The subpaint algebra in
this case is Gpaint = so(3)diag and the decomposition of the sameW-representation
with respect to Gsubpaint ⊕ GTS is:

32s
GTS⊕Gsubpaint=⇒ (6|3) ⊕ (14′|1) (5.6.12)

This follows from the decomposition of the product 2 × 2 of so(3)diag times the Tits
Satake algebra (5.6.3):

2 × 2 = 3 ⊕ 1 (5.6.13)

5.6.1.3 e7(−25) model

For this case the paint algebra is

Gpaint = so(8) (5.6.14)

and theW-representation is the fundamental 56 dimensional representation of e7(−25)

The decomposition of this representation with respect to the Lie algebra Gpaint ⊕
GsubTS is the following one:

56
Gpaint⊕GsubTS=⇒ (8v|2, 1, 1) ⊕ (8s |1, 2, 1) ⊕ (8c|1, 1, 2) ⊕ (1|2, 2, 2) (5.6.15)
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where 8v,s,c are the three inequivalent eight-dimensional representations of so(8),
the vector, the spinor and the conjugate spinor. The subpaint algebra in this case is
Gsubpaint = g2(−14) with respect to which all three 8-dimensional representations of
so(8) branch as follows:

8v,s,c
g2(−14)=⇒ 7 ⊕ 1 (5.6.16)

In view of this the decomposition of the same W-representation with respect to
Gsubpaint ⊕ GTS is:

56
GTS⊕Gsubpaint=⇒ (6|7) ⊕ (14′|1) (5.6.17)

5.6.2 Universality Class sl(2, R) ⊕ so(2, 3) ⇒ so(4, 5)

This case corresponds to one of the possible infinite families ofN = 2 theories with
a symmetric homogeneous specialKählermanifold and a number of vectormultiplets
larger than three (n = 3 + p). The other infinite family corresponds instead to one
of the three exotic models.

The generic element of this infinite class corresponds to the following algebras:

UD=4 = sl(2, R) ⊕ so(2, 2 + p)

UD=3 = so(4, 4 + p) (5.6.18)

In this case the sub Tits Satake algebra is:

GsubTS = sl(2, R) ⊕ sl(2, R) ⊕ sl(2, R)

� sl(2, R) ⊕ so(2, 2) ⊂ sl(2, R) ⊕ so(2, 3) = GTS (5.6.19)

an the paint and subpaint algebras are as follows:

Gpaint = so(p)

Gsubpaint = so(p − 1) (5.6.20)

The symplectic W representation of UD=4 is the tensor product of the fundamental
representation of sl(2) with the fundamental vector representation of so(2, 2 + p),
namely

W = (2|4 + p) ; dimW = 8 + 2p (5.6.21)

The decomposition of this representation with respect to GsubTS ⊕ Gsubpaint is the
following one:

W
GsubTS⊕Gsubpaint=⇒ (2, 2, 2|1) ⊕ (2, 1, 1|1) ⊕ (2, 1, 1|p − 1) (5.6.22)



5.6 Tits Satake Decompositions of the W Representations 249

where 2, 2, 2 denotes the tensor product of the three fundamental representations
of sl(2, R)3. Similarly 2, 1, 1 denotes the doublet of the first sl(2, R) tensored with
the singlets of the following two sl(2, R) algebras. The representations appearing
in (5.6.22) can be grouped in order to reconstruct full representations either of the
complete Tits Satake or of the complete paint algebras. In this way one obtains:

W
GsubTS⊕Gpaint=⇒ (2, 2, 2|1) ⊕ (2, 1, 1|p + 1)

W
GTS⊕Gsubpaint=⇒ (2, 5|1) ⊕ (2, 1|p − 1) (5.6.23)

5.6.3 Universality Class sl(2, R) ⊕ so(6, 7) ⇒ so(8, 9)

This case, which corresponds to anN = 4 theory with a number of vector multiplets
larger than six (n = 6 + p) presents a very strong similaritywith the previousN = 2
case.

The generic element of this infinite class corresponds to the following algebras:

UD=4 = sl(2, R) ⊕ so(6, 6 + p)

UD=3 = so(8, 8 + p) (5.6.24)

In this case the sub Tits Satake algebra is:

GsubTS = sl(2, R) ⊕ so(6, 6) ⊂ sl(2, R) ⊕ so(6, 7) = GTS (5.6.25)

an the paint and subpaint algebras are the same as in the previous N = 2 case,
namely:

Gpaint = so(p)

Gsubpaint = so(p − 1) (5.6.26)

The symplectic W representation of UD=4 is the tensor product of the fundamental
representation of sl(2) with the fundamental vector representation of so(6, 6 + p),
namely

W = (2|12 + p) ; dimW = 24 + 2p (5.6.27)

The decomposition of this representation with respect to GsubTS ⊕ Gsubpaint is the
following one:

W
GsubTS⊕Gsubpaint=⇒ (2, 12|1) ⊕ (2, 1|1) ⊕ (2, 1|p) (5.6.28)

Just as above the three representations appearing in (5.6.28) can be grouped in order
to obtain either representation of the complete Tits Satake or of the complete paint
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algebras. This yields

W
GsubTS⊕Gpaint=⇒ (2, 12|1) ⊕ (2, 1|p + 1)

W
GTS⊕Gsubpaint=⇒ (2, 13|1) ⊕ (2, 1|p) (5.6.29)

5.6.4 The Universality Classes sl(2, R) ⊕ so(6, n) ⇒ so
(8, n + 2) with n ≤ 5

These classes correspond to the N = 4 theories with a number n = 1, 2, 3, 4, 5 of
vector multiplets. In each case we have the following algebras:

UD=4 = sl(2, R) ⊕ so(6, n)

UD=3 = so(8, n + 2) (5.6.30)

In all these cases the Tits Satake and sub Tits Satake algebras are:

GTS = sl(2, R) ⊕ so(n + 1, n)

GsubTS = sl(2, R) ⊕ so(n, n) (5.6.31)

and the paint and subpaint algebras are:

Gpaint = so(6 − n)

Gsubpaint = so(5 − n) (5.6.32)

The symplecticW representation is the tensor product of the doublet representation
of sl(2) with the fundamental representation of so(6, n), namely

W = (2, 6 + n) (5.6.33)

and its decomposition with respect to the GsubTS ⊕ Gsubpaint algebra is as follows

W
GsubTS⊕Gsubpaint=⇒ (2, 2n|1) ⊕ (2, 1|1) ⊕ (2, 1|5 − n) (5.6.34)

which, with the same procedure as above leads to:

W
GsubTS⊕Gpaint=⇒ (2, 2n|1) ⊕ (2, 1|6 − n)

W
GTS⊕Gsubpaint=⇒ (2, 2n + 1|1) ⊕ (2, 1|5 − n) (5.6.35)
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5.6.5 W-Representations of the Maximally Split Non Exotic
Models

In the previous subsections we have analysed the Tits–Satake decomposition of the
W-representation for all those models that are non maximally split. The remaining
models are the maximally split ones for which there is no paint algebra and the Tits
Satake projection is the identity map. For reader’s convenience we have extracted
the list of such models and presented it in Table5.6. As we see from the table we
have essentially five type of models:

1. The E7(7) model corresponding to N = 8 supergravity where the W-
representation is the fundamental 56.

2. The SU(1, 1) non exotic model where the W-representation is the j = 3
2 of

so(1, 2) ∼ su(1, 1)
3. The Sp(6, R) model where the W-representation is the 14′ (antisymmetric sym-

plectic traceless three-tensor).
4. Themodels sl(2, R) ⊕ so(q, q)where theW-representation is the (2, 2q), namely

the tensor product of the two fundamentals.
5. The models sl(2, R) ⊕ so(q, q + 1) where the W-representation is the

(2, 2q + 1), namely the tensor product of the two fundamentals.

Therefore, for the above maximally split models, the charge classification of black
holes reduces to the classification ofUD=4 orbits in thementionedW-representations.
Actually such orbits are sufficient also for the non maximally split models. Indeed
each of the above 5-models correspond to one Tits Satake universality class and,
within each universality class, the only relevant part of the W-representation is the
subpaint group singletwhich is universal for allmembers of the class. This is precisely
what we verified in the previous subsections.

For instance for all members of the universality class of Sp(6, R), the W-
representation splits as follows with respect to the subalgebra sp(6, R) ⊕ Gsubpaint:

W
sp(6,R)⊕Gsubpaint=⇒ (

6 |Dsubpaint
) + (

14′ | 1subpaint
)

(5.6.36)

where the representation Dsubpaint is the following one for the three non-maximally
split members of the class:

Dsubpaint =
⎧

⎨

⎩

1 of 1 for the su(3, 3) − model
3 of so(3) for the so�(12) − model
7 of g2(−14) for the e7(−25) − model

(5.6.37)

Clearly the condition:
(

6 |Dsubpaint
) = 0 (5.6.38)

imposed on a vector in theW-representation breaks the group UD=4 to its Tits Satake
subgroup. The key point is that eachW-orbit of the big group UD=4 crosses the locus
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(5.6.38) so that the classification of Sp(6, R) orbits in the 14′-representation exhausts
the classification ofW-orbits for all members of the universality class.

In order to prove that the gauge (5.6.38) is always reachable it suffices to show that
the representation

(

6 |Dsubpaint
)

always appears at least once in the decomposition
of the Lie algebra UD=4 with respect to the subalgebra sp(6, R) ⊕ Gsubpaint. The
corresponding parameters of the big group can be used to set to zero the projection
of the W-vector onto

(

6 |Dsubpaint
)

.
The required condition is easily verified since we have:

adj su(3, 3)
︸ ︷︷ ︸

35

sp(6,R)=⇒ adj sp(6, R)
︸ ︷︷ ︸

21

⊕ 6 ⊕ 6 ⊕ 1 ⊕ 1

adj so�(12)
︸ ︷︷ ︸

66

sp(6,R)⊕so(3)=⇒ adj sp(6, R)
︸ ︷︷ ︸

21

⊕ adj so(3)
︸ ︷︷ ︸

3

⊕ (6, 3) ⊕ (6, 3) ⊕ (1, 3) ⊕ (1, 3)

adj e7(−25)
︸ ︷︷ ︸

133

sp(6,R)⊕g2(−14)=⇒ adj sp(6, R)
︸ ︷︷ ︸

21

⊕ adj g2(−14)
︸ ︷︷ ︸

14

⊕ (6, 7) ⊕ (6, 7) ⊕ (1, 7) ⊕ (1, 7)

(5.6.39)

The reader cannot avoid being impressed by the striking similarity of the above
decompositions which encode the very essence of Tits Satake universality. Indeed
the representations of the common Tits Satake subalgebra appearing in the decom-
position of the adjoint are the same for all members of the class. They are simply
uniformly assigned to the fundamental representation of the subpaint algebra which
is different in the three cases. The representation

(

6 |Dsubpaint
)

appears twice in these
decompositions and can be used to reach the gauge (5.6.38) as we claimed above.

For the models of type sl(2, R) ⊕ so(q, q + p) having sl(2, R) ⊕ so(q, q + 1)
as Tits Satake subalgebra and so(p − 1) as subpaint algebra the decomposition of
theW-representation is the following one:

W = (2, 2q + p)
sl(2,R)⊕so(q,q+1)⊕so(p−1)=⇒ (2, 2q + 1|1) ⊕ (2, 1|p − 1)

(5.6.40)
and the question is whether each sl(2, R) ⊕ so(q, q + p) orbit in the (2, 2q + p)

representation intersects the sl(2, R) ⊕ so(q, q + 1) ⊕ so(p − 1)-invariant locus:

(2, 1|p − 1) = 0 (5.6.41)

The answer is yes since we always have enough parameters in the coset

SL(2, R) × SO(q, q + p)

SL(2, R) × SO(q, q + 1) × SO(p − 1)
(5.6.42)

to reach the desired gauge (5.6.41). Indeed let us observe the decomposition:
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adj [sl(2, R) ⊕ so(q, q + p)] = adj [sl(2, R)] ⊕ adj [so(q, q + 1)]

⊕adj [so(p − 1)] ⊕ (1, 2q + 1|p − 1)

(5.6.43)

The 2q + 1 vectors of so(p − 1) appearing in (5.6.43) are certainly sufficient to set
to zero the 2 vectors of so(p − 1) appearing inW.

The conclusion therefore is that the classification of charge-orbits for all super-
gravity models can be performed by restriction to the Tits Satake sub-model. The
same we show, in the next section, to be true at the level of the classification based on
H� orbits of the Lax operators, so that the final comparison of the two classifications
can be performed by restriction to the Tits Satake subalgebras.

5.7 Tits Satake Reduction of the H
� Subalgebra and of Its

Representation K
�

As we show in Chap.6, in the σ -model approach to black hole solutions one arrives
at the new coset manifold (4.3.41). The structure of the enlarged group UD=3 and
of its Lie algebra UD=3 was discussed in Eq. (1.7.12). The subgroups H

� are listed
in Table5.7 for the non exotic models and in Table5.8 for the exotic ones. The
coset generators fall into a representation of H

� that we name K
�. The Lax operator

L0 which determines the spherically symmetric black hole solution up to boundary
conditions of the scalar fields at infinity is just an element of such a representation:

L0 ∈ K
� (5.7.1)

so that the classification of spherical black holes is reduced to the classification of
H

� orbits in the K
� representation. On the other hand, in Chap.6, we demonstrate

how nilpotent orbits can be associated to multicenter solutions.
We focus on non-exotic models that admit a regular Tits Satake projection.
A first general remark concerns the structure of H

� in all those models that cor-
respond to N = 2 supersymmetry. In these cases the H

� subalgebra is isomorphic
to sl(2, R) ⊕ UD=4 so that we have a decomposition of the UD=3 Lie algebra with
respect to H

� completely analogous to that in Eq. (1.7.12), namely:

adj(UD=3) = adj(ÛD=4) ⊕ adj(sl(2, R)h� )
︸ ︷︷ ︸

H�

⊕ (2h� , ̂W)
︸ ︷︷ ︸

K�

(5.7.2)

Hence the representation K
� which contains the Lax operators has a structure analo-

gous to the representation which contains the generators of UD=4 that originate from
the vector fields, namely: (2h� , ̂W). This means that in all these models, by means of
exactly the same argument as utilized above, we can always reach the gauge where

http://dx.doi.org/10.1007/978-3-319-74491-9_6
http://dx.doi.org/10.1007/978-3-319-74491-9_4
http://dx.doi.org/10.1007/978-3-319-74491-9_1
http://dx.doi.org/10.1007/978-3-319-74491-9_6
http://dx.doi.org/10.1007/978-3-319-74491-9_1
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Table 5.7 Table of H
� subalgebras of UD=3, K

�-representations and W representations of UD=4
for the supergravity models based on non-exotic scalar symmetric spaces

# UD=3 H
�

K
�

UD=4 Rep.W Hc

1 e8(8) so�(16) 128s e7(7) 56 su(8)

2 g2(2) ̂sl(2,R) ⊕
sl(2,R)h�

(

43/2 , 2h�

)

sl(2,R) 43/2 so(2)

3 f4(4) ̂sp(6,R) ⊕
sl(2,R)h�

(

̂14
′
, 2h�

)

sp(6,R) 14′ u(3)

4 e6(2) ̂su(3, 3) ⊕
sl(2,R)h�

(

̂20 , 2h�

)

su(3, 3) 20 su(3) ⊕
su(3)
⊕u(1)

5 e7(−5) ̂so�(12) ⊕
sl(2,R)h�

(

3̂2spin , 2h�

)

so�(12) 32spin u(6)

6 e8(−24) ê7(−25) ⊕
sl(2,R)h�

(

̂56 , 2h�

)

e7(−25) 56 u(6)

7 so(8, 3) so(6, 2) ⊕ so(2, 1) (8 , 3) so(6, 1) ⊕
sl(2,R)

(7, 2) so(6) ⊕
u(1)

8 so(8, 4) so(6, 2) ⊕ so(2, 2) (8 , 4) so(6, 2) ⊕
sl(2,R)

(8, 2) so(6) ⊕
so(2)
⊕u(1)

9 so(8, 5) so(6, 2) ⊕ so(2, 3) (8 , 5) so(6, 3) ⊕
sl(2,R)

(9, 2) so(6) ⊕
so(3)
⊕u(1)

10 so(8, 6) so(6, 2) ⊕ so(2, 4) (8 , 6) so(6, 4) ⊕
sl(2,R)

(10, 2) so(6) ⊕
so(4)
⊕u(1)

11 so(8, 7) so(6, 2) ⊕ so(2, 5) (8 , 7) so(6, 5) ⊕
sl(2,R)

(11, 2) so(6) ⊕
so(5)
⊕u(1)

12 so(8, 8) so(6, 2) ⊕ so(2, 6) (8 , 8) so(6, 6) ⊕
sl(2,R)

(12, 2) so(6) ⊕
so(6)
⊕u(1)

13 so(8, 8 + p) so(6, 2) ⊕
so(2, 6 + p)

(8 , 8 + p) so(6, 6 +
p) ⊕
sl(2,R)

(12 + p, 2) so(6) ⊕
so(6 +
p)

⊕u(1)

14 so(4, 3) ̂sl(2,R) ⊕ ̂so(2, 1)
⊕sl(2,R)h�

(

̂2 ,̂3 , 2h�

)

sl(2,R) ⊕
so(2, 1)

(2 , 3) so(2) ⊕
u(1)

15 so(4, 4) ̂sl(2,R) ⊕ ̂so(2, 2)
⊕sl(2,R)h�

(

̂2 ,̂4 , 2h�

)

sl(2,R) ⊕
so(2, 2)

(2 , 4) so(2) ⊕
so(2)
⊕u(1)

16 so(4, 4 + p) ̂sl(2,R) ⊕
̂so(2, 2 + p)

⊕sl(2,R)h�

(

̂2 , 4̂ + p , 2h�

)

sl(2,R) ⊕
so(2, 2)

(2 , 4 + p) so(2) ⊕
so(2 +
p)

⊕u(1)
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the K
� representation is localized on the image of the Tits Satake projection K

�
TS.

For instance, for the models in the f4(4) universality class we have:

H
�
TS = sl(2, R)h� ⊕ ̂sp(6,R) (5.7.3)

and:

H
� H

�
TS⊕Gsubpaint=⇒ adj sl(2, R)h� ⊕ adj ̂sp(6,R)

⊕ (

6 |Dsubpaint
) ⊕ (

6 |Dsubpaint
)

⊕ (

1 |Dsubpaint
) ⊕ (

1 |Dsubpaint
)

K
� H

�
TS⊕Gsubpaint=⇒ (

2h� , 14′ | 1subpaint
)⊕ (

2h� , 6 |Dsubpaint
)

(5.7.4)

and the two representations
(

6 |Dsubpaint
)

appearing in the adjoint representation of
H

� can be utilized to get rid of
(

2h� , 6 |Dsubpaint
)

appearing in the decomposition of
K

�.
What is important to stress is that, although isomorphic H

� and sl(2, R) ⊕ UD=4

are different subalgebras of UD=3:

UD=3 ⊃ sl(2, R)h� �= sl(2, R)E ⊂ UD=3 ; UD=3 ⊃ ÛD=4 �= UD=4 ⊂ UD=3

(5.7.5)
Moreover, while the decomposition (1.7.12) is universal and holds true for all super-
gravity models, the structure (5.7.3) of the H

� subalgebra is peculiar to the N = 2
models. In other cases the structure of H

� is different.
The reduction to the Tits Satake projection however is universal and applies to all

non maximally split cases.
Indeed the remaining cases are of the form:

UD=3

H�
= SO(2 + q, q + 2 + p)

SO(q, 2) × SO(2, q + p)
(5.7.6)

leading to

K
� = (q + 2,q + p + 2)

so(q,2)⊕so(2,q+1)⊕so(p−1)=⇒ (q + 2,q + 1, 1) ⊕ (q + 2, 1,p − 1)
(5.7.7)

where:

so(q, 2) ⊕ so(2, q + 1) = H
�
TS (5.7.8)

so(p − 1) = Gsubpaint (5.7.9)

Considering the coset:

H�

H�
TS × Gsubpaint

= SO(2, q + p)

SO(q + 1, 2) × SO(p − 1)
(5.7.10)

http://dx.doi.org/10.1007/978-3-319-74491-9_1
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we see that its (q + 3) × (p − 1) parameters are arranged into the

(q + 3|p − 1) (5.7.11)

representation of so(q + 1, 2) ⊕ so(p − 1) and can be used to put to zero the com-
ponent (q + 2, 1,p − 1) in the decomposition (5.7.7). Note that the N = 4 cases
with more than 6 vector multiplets are covered by the above formulae by setting:

q = 6 ; p > 1 (5.7.12)

Similarly the N = 2 cases with more than 3 vector multiplets are covered by the
above formulae by setting:

q = 2 ; p > 1 (5.7.13)

Finally theN = 4 cases with less than 6 vector multiplets are covered by the above
formulae by setting:

q = n ; p = 6 − n ; n = 1, 2, 3, 4, 5 (5.7.14)

5.8 The General Structure of the H
� ⊕ K

� Decomposition
in the Maximally Split Models

In the previous section we have shown that all H� orbits in the K
� representation

cross the locus defined by:
ΠTS

(

K
�
) = K

� (5.8.1)

where ΠTS is the Tits–Satake projection.
In other words just as for theW-representation of UD=4, it suffices to classify the

orbits H�
TS in the K

�
TS representation. In view of this result, in the present section

we study the general structure of the H
� ⊕ K

� decomposition for maximally split
algebras UD=3.

A key point in our following discussion is provided by the structure of the root
system of UD=3 as described in Sect. 5.5.3. The entire set of positive roots can be
written as follows:

0 < a =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

α = {α, 0}
w =

{

w, 1√
2

}

ψ =
{

0,
√
2
}

(5.8.2)

where α > 0 denotes the set of all positive roots of UD=4, while w denotes the
complete set of weights (positive, negative and null) of the W representation of
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UD=4. The root ψ is the highest root of the UD=3 root system and is also the root
of the Ehlers subalgebra sl(2, R)E . Accordingly, a basis of the Cartan subalgebra of
UD=3 is constructed as follows:

CSA
︸︷︷︸

of UD=3

= span of

⎧

⎪
⎨

⎪
⎩

H1 , H2 , . . . , Hr
︸ ︷︷ ︸

CSA generators of UD=4

, Hψ
︸︷︷︸

CSA generator of sl(2,R)E

⎫

⎪
⎬

⎪
⎭

(5.8.3)

For all maximally split Lie algebras U of rank r + 1, the maximal compact sub-
algebra H ⊂ U is generated by:

T a = Ea − E−a (5.8.4)

while the complementary orthogonal space K is generated by

K a = Ea + E−a (5.8.5)

K I = H I ; I = 1, . . . , r + 1 (5.8.6)

The splitting H
� ⊕ K

� is obtained by means of just one change of sign which, thanks
to the structure (5.8.2) of the root system is consistent, namely still singles out a
subalgebra.

The generators of the H
� subalgebra are as follows:

T α
� = Eα − E−α

T w
� = Ew + E−w

T ψ
� = Eψ − E−ψ (5.8.7)

while the generators of the K
� complementary subspace are as follows:

K α
� = Eα + E−α

Kw
� = Ew − E−w

K ψ
� = Eψ + E−ψ

K I = H I ; I = 1, . . . , r + 1 (5.8.8)

From Eq. (5.8.7) we see that H
� contains the maximal compact subalgebra of the

originalUD=4 and themaximal compact subalgebra so(2) ⊂ sl(2, R)E of the Ehlers
group. Using this structure we can now compare the classification of K

� orbits with
the classification ofW-orbits.
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5.9 K
� Orbits Versus W-Orbits

In the σ -model approach the complete black hole spherically symmetric supergravity
solution is obtained from two data,2 namely the Lax operator L0 evaluated at spatial
infinity (see Eq. (5.7.1)) and the coset representative L0 also evaluated at spatial
infinity. In terms of these data one defines the matrix of conserved Noether charges:

QNoether = L0 L0 L
−1
0 = L(τ ) L(τ ) L

−1(τ ) (5.9.1)

from which the electromagnetic charges of the black hole, belonging to the W-
representation of UD=4, can be obtained by means of the following trace:

Qw = Tr
(

QNoether T w) (5.9.2)

where
T w ∝ Ew (5.9.3)

are the generators of the solvable Lie algebra corresponding to theW-representation.
It is important to stress that, because of physical boundary conditions, the coset

representative at spatial infinity L0 belongs to the subgroup UD=4 ⊂ UD=3. Indeed
it simply encodes the boundary values at infinity of the D = 4 scalar fields:

UD=3 ⊃ UD=4 � L0 = exp

[

φα
0 Eα +

r
∑

i=1

φi
0 Hi

]

(5.9.4)

Using this information in Eq. (5.9.2) we obtain

Qw = Tr
(

L0 L
−1
0 (φ)T w

L0(φ)
) = R(φ)ww′ Qw′

(5.9.5)

where:
Qw′ = Tr

(

L0 T
w′)

(5.9.6)

are the electromagnetic charges obtained with no scalar field dressing at infinity and

R(φ)ww′ ∈ UD=4 (5.9.7)

is the matrix representing the group element L0(φ) in theW-representation.
This result has a very significant consequence. The scalar field dressing at infinity

simply rotates the charge vector along the same W-orbit and is therefore irrelevant.
Hence we conclude that for each Lax operator, the W-orbit of charges is com-

pletely determined and unique. The next question is whether the charge-orbit W is

2See papers [34, 44, 45] for detailed explanations.
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the same for all Lax operators belonging to the sameH�-orbit. As already anticipated,
the answer is no and it is quite easy to produce counter examples.

Yet if we impose the condition that the Taub-NUT charge should be zero:

Tr
(

L0 L E
−
) = 0 (5.9.8)

then for all Lax operators in the same H�, satisfying the additional constraint (5.9.8),
the corresponding charges Qw = Tr (L0 T w) fall into the same W-orbit.

We were not able to prove this statement, but we assert it as a conjecture, since we
analyzed many cases and it was always true, no counter example being ever found.

In the case of multicenter non spherically symmetric solutions our conjecture
appears to be true as long as we impose the condition of vanishing of the Taub-NUT
current:

j T N = 0 (5.9.9)

So doing, at every pole of the involved harmonic functions, we obtain a black hole
that always falls into the same W-orbit.

What happens instead when the Taub-NUT current is turned on cannot be pre-
dicted in general terms at the present status of our knowledge and more study is
certainly in order.

The reader will understand the meaning of the last two paragraphs by carefully
reading Chap.6. In the present one we outlined the entire beautiful group-theoretical
machinery that sustains the construction and classification of black-hole geometries
addressed there.
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Chapter 6
Black Holes and Nilpotent Orbits

Deep into that darkness peering, long I stood there,
wondering, fearing, doubting,
dreaming dreams no mortal
ever dared to dream before.

Edgar Allan Poe

6.1 Historical Introduction

When on September 14th 2015 the gravitational wave signal emitted 1.5 billion year
ago by two coalescing black stars was detected at LIGO I and LIGO II, we not only
obtained a new spectacular confirmation of General Relativity but we actually saw
the dynamical process of formation of the most intriguing objects populating the
Universe, namely black holes (Fig. 6.1).

Black Holes are on one side physical objects capable of interacting with the
emission of enormous quantities of energy, on the other side they are just pure
geometries. Indeed a classical black-hole is nothing else but a solution of Einstein
equations which are just geometrical statements on the curvature tensor.

6.1.1 Black Holes in Supergravity and Superstrings

A new season of research in Black Hole theory started in the middle nineties of
the XXth century with the contributions of Sergio Ferrara, Renata Kallosh, Andrew
Strominger and Cumrun Vafa, that are described in the following short summary:

1. In 1995 R. Kallosh, S. Ferrara and A. Strominger considered black holes in the
context of N = 2 supergravity and introduced the notion of attractors [1, 2].

2. In 1996 S. Ferrara (see Fig. 4.2) and R. Kallosh (see Fig. 6.2) formalized the
attractor mechanism for supergravity black holes [1, 2].
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Fig. 6.1 The gravitationalwave signal emitted in the coalescence of two black holeswhich occurred
1.5 billion of years agowas simultaneously detectedSeptember 14th 2015 by the two interferometers
LIGO I and LIGO II

3. In 1996 A. Strominger (see Fig. 4.7) and C. Vafa (see Fig. 6.3) showed that an
extremal BPS black hole in d = 5 has a horizon area that exactly counts the
number of string microstates it corresponds to [3].1

4. In the years 1997–2000 the horizon area of BPS supergravity black holes was
interpreted in terms of a symplectic invariant constructed with the black hole
electromagnetic charges (for a review containing also an extensive bibliography
see [11]).

5. In the years 2006–2009 new insights extended the attractor mechanism to non
BPS black-holes [12–25].

6. Since 2010 new exact integration techniques for Sugra Black Holes were found
by A. Sorin, P. Fré, M. Trigiante and their younger collaborators [26–33].

6.1.2 Black Holes in This Chapter

The intriguing relation between Geometry and Physics arises at several levels, the
most profound and challenging being provided by the identification of the horizon
areawith the statistical entropy of themysterious dynamical systemwhich is encoded
in a classical black solution.

1There followed a vast literature some items of which are are quoted in [4–10].

http://dx.doi.org/10.1007/978-3-319-74491-9_4
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Fig. 6.2 Renata Kallosh (on the left) born in Moscow in 1943 completed her Bachelor’s from
Moscow State University in 1966 and obtained her Ph.D. from Lebedev Physical Institute, Moscow
in1968. She thenheld aposition, as professor, at the same institute, beforemoving toCERNfor a year
in 1989. Kallosh joined StanfordUniversity in 1990 and continues towork there. She ismarriedwith
the famous cosmologist Andrei Linde. Renata Kallosh is renowned for her pioneering contributions
with Ferrara to the attractor mechanism in supergravity black holes, for her studies in supergravity
cosmology and for her early work with A. Van Proeyen on the AdS/CFT correspondence. Indeed
Kallosh and Van Proeyen were the first to propose the interpretation of the anti de Sitter group
as the conformal group on a brane boundary. Anna Ceresole (on the right), born 1961 in Torino,
graduated from Torino University in 1984 with a thesis on Kaluza Klein supergravity written under
the supervision of HermannNicolai and the author of this book. In 1989 she obtained her Ph.D. from
Stony Brook University under the supervision of Peter van Nieuwenhuizen. Post doctoral fellow at
Caltech for two years shewasAssistant Professor at the Politecnico di Torino for several years. Then
she became Senior Research Scientist of INFN and joined the TorinoUniversity String Group. Anna
Ceresole has given many important contributions to the development of supergravity, in particular
in relation with special Kähler Geometry and black hole charges, duality transformations, gaugings
and inflaton potentials. She has worked both with younger students and post-doc and, in different
combinations, with all the main actors in the development of supergravity theory

We are not going to touch upon the physics of black holes and on the exciting
question of their interpretation in terms ofmicrostates, yetwe cannot avoid discussing
their several nested geometrical aspects, glimpses of which were already provided
in Chap.5.

We emphasized there that in the context of supergravity a black hole solution of
Einstein equations comes equipped with other associated geometrical data, namely
those encoded in a set of electromagnetic fields that are connections on suitable
bundles and those encoded in scalar fields that describe a map from 4-dimensional
space-timeM4 to special manifoldsSK n . We also stressed the remarkable picture
of a black-hole solution as a map from a three-dimensional Euclidean manifoldM3

to a Lorentzian pseudo-quaternionic manifoldQr lying in the image of the c�-map.

http://dx.doi.org/10.1007/978-3-319-74491-9_5
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Fig. 6.3 Cumrun Vafa (on the left) was born in Tehran, Iran in 1960. He graduated from Alborz
High School and went to the US in 1977. He got his undergraduate degree from the Massachusetts
Institute of Technology with a double major in physics and mathematics. He received his Ph.D.
from Princeton University in 1985 under the supervision of Edward Witten. He then became a
junior fellow at Harvard, where he later got a junior faculty position. In 1989 he was offered a
senior faculty position, and he has been there ever since. Currently, he is the Donner Professor of
Science at Harvard University. Vafa’s most relevant achievement is, together with Strominger, the
first example of interpretation of the Bekenstein Hawking black hole entropy in terms of superstring
microstates. He has also given pioneering contributions to topological strings, F-theory and to the
general vision named geometric engineering of quantum field theories, which is a programme aimed
at decoding quantum field theories in terms of algebraic geometry constructions. Dieter Luest (on
the right) born 1956 in Chicago, graduated from the Ludvig Maximillian University in Muenchen
in 1985. He was postdoctoral fellow in Caltech, Pasadena, in the Max Planck Institute in Muenchen
and at CERN in Geneva. From 1993 to 2004 he was full professor of Quantum Field Theory at the
von Humboldt University in Berlin. Since 2004 he made return to Muenchen where he is both full
professor at the Ludwig Maximilan University and Research Director at the Max Planck Institute.
Dieter Luest has given very important contributions in a large variety of topics connectedwith String
Theory and Supergravity, in particular in relation with Black Hole solutions, D-brane engineering,
Calabi Yau compactifications, double geometries, flux compactifications and string cosmology

This last viewpoint corresponds to the σ -model approach to black-hole solutions
and it was developed in the last two decades.

If the special manifold SK n = UD=4
HD=4

is a symmetric coset manifold, then

also the pseudo-quaternionic manifold Qr = UD=3
HD=3

is such and the classification
of possible extremal black-hole solutions is turned into an algebraic problem that
is the contemporary frontier of research in Lie algebra theory: the classification of
nilpotent orbits.

In this chapterwe analyze in detail the newvery rich geometric lorewhich emerges
from the issue of black–hole constructions within the σ -model approach. Here all
the issues discussed in previous chapters enter the game in an essential way:

1. Special Kähler Geometry,
2. Lie Algebra invariants,
3. c� map,
4. Tits Satake projection and its universality classes,
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5. Weyl Group and its extensions,
6. Classification of nilpotent orbits.

In view of the deep relation between quantum physics and geometry encapsulated
into black-holes it is to be expected that all the intriguing geometrical relations listed
above are the tip of an iceberg of theoretical knowledge yet to be uncovered.

Hence let us resume the σ -model approach to black-holes.

6.2 The σ -Model Approach to Black-Hole Resumed

We start from Eq. (5.2.21) and from the golden splitting (1.7.12) which we rewrite
as follows:

adj(UD=3) = adj(UD=4) ⊕ adj(sl(2, R)E ) ⊕ W(2,W) (6.2.1)

whereW is the symplectic representation ofUD=4 towhich the electric andmagnetic
field strengths are assigned.

Next we consider a gravity coupled three-dimensional Euclidean σ -model, whose
fields

Φ A(x) ≡ {U (x), a(x), φ(x), Z(x)}

describe mappings:
Φ : M3 → Q (6.2.2)

from a three-dimensional manifold M3, whose metric we denote by γi j (x), to the
target space Q. The action of this σ -model is the following:

A [3] =
∫ √

detγ R[γ ] d3x +
∫ √

detγ L (3) d3x (6.2.3)

L (3) = (
∂iU ∂ jU + hrs ∂iφ

r ∂ jφ
s

+e−2U
(
∂i a + ZT

C∂iZ
) (

∂ j a + ZT
C∂ jZ

)
+ 2 e−U ∂iZ

T M4 ∂ jZ
)

γ i j (6.2.4)

where R[γ ] denotes the scalar curvature of the metric γi j .
The field equations of the σ -model are obtained by varying the action both in the

metric γi j and in the fields Φ A(x). The Einstein equation reads as usual:

Ri j − 1
2γi j R = Ti j (6.2.5)

where:

Ti j = δL (3)

δγ i j
− γi j L

(3) (6.2.6)

is the stress energy tensor, while the matter field equations assume the standard form:

http://dx.doi.org/10.1007/978-3-319-74491-9_5
http://dx.doi.org/10.1007/978-3-319-74491-9_1
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1√
detγ

γ i j ∂i

[√
detγ

δL (3)

δ ∂ jΦ A

]
− δL (3)

δΦ A
= 0 (6.2.7)

As it is well known, in D = 3 there is no propagating graviton and the Riemann
tensor is completely determined by the Ricci tensor, namely, via Einstein equations,
by the stress-energy tensor of the matter fields.2

Extremal solutions of the σ -model are those for which the three-dimensional
metric can be consistently chosen flat:

γi j = δi j (6.2.8)

corresponding to a vanishing stress-energy tensor:

∂iU ∂ jU + hrs ∂iφ
r ∂ jφ

s + e−2U
(
∂i a + ZT

C∂iZ
) (

∂ j a + ZT
C∂ jZ

)
+ 2 e−U ∂iZT M4 ∂ jZ = 0

(6.2.9)

We will see in the sequel how the nilpotent orbits of the group H� in the K
� represen-

tation can be systematically associated with general extremal solutions of the field
equations.

6.2.1 Oxidation Rules for Extremal Multicenter Black Holes

Let us now describe the oxidation rules, namely the procedure by means of which
to every configuration of the three-dimensional fields Φ(x) = {U (x), a(x), φ(x),
Z(x)}, satisfying the field equations (6.2.7) and also the extremality condition (6.2.9),
we can associate awell defined configuration of the four-dimensional fields satisfying
the field equations of supergravity that follow from the lagrangian (5.2.3). We might
write such oxidation rules for general solutions of the σ -model, also non extremal,
yet given our present goal we confine ourselves to spell out such rule in the extremal
case, which is somewhat simpler since it avoids the extra complications related with
the three-dimensional metric γi j .

In order to write the D = 4 fields, the first necessary item we have to determine is
the Kaluza–Klein vector fieldA[KK ] = A[KK ]

i dxi . This latter is worked out through
the following dualization procedure:

2Clarification for mathematicians: General Relativity in D = 3 = 1 ⊕ 2 dimensions is a rather
empty field theory. Einstein equations do not describe the propagation of any particle since there
are no solutions of the wave-type and the only degree of freedom is the analogue of the Newton
potential. Mathematically this follows from the fact that the Riemann tensor is fully determined by
the Ricci tensor and the latter is identified by Einstein equations with the stress-energy tensor of
matter fields.

http://dx.doi.org/10.1007/978-3-319-74491-9_5
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F[KK ] = dA[KK ]

F[KK ] = −εi jk dx
i ∧ dx j

[
exp[−2U ] (∂ka + Z C ∂k Z

)]
(6.2.10)

Given the Kaluza–Klein vector we can write the four-dimensional metric which is
the following:

ds2 = − exp[U ] (dt + A[KK ])2 + exp[−U ] dxi ⊗ dx j δi j (6.2.11)

The vielbein description of the same metric is immediate. We just write:

ds2 = −E0 ⊗ E0 + Ei ⊗ Ei

E0 = exp[U2 ] (dt + A[KK ])
Ei = exp[−U

2 ] dxi (6.2.12)

Next we can present the form of the electromagnetic field strengths:

FΛ = C
ΛM∂i ZM dxi ∧ (dt + A[KK ])

+ εi jkdx
i ∧ dx j

[
exp[−U ] (ImN −1

)ΛΣ (
∂k ZΣ + ReNΣΓ ∂k ZΓ

)]

(6.2.13)

Next we define the electromagnetic charges and the Taub-NUT charges for multicen-
ter solutions. Considering the metric (6.2.11) the black hole centers are defined by
the zeros of the warp-factor exp[U (x)]. In a composite m-black hole solution there
are m three-vectors rα (α = 1, . . . ,m), such that:

lim
x→rα

exp[U (x)] = 0 (6.2.14)

Each of these zeros defines a non trivial homology two-cycle S
2
α of the 4-dimensional

space-time which surrounds the singularity rα . The electromagnetic charges of the
individual holes are obtained by integrating the field strengths and their duals on
such homology cycles.

(
pΛ

qΣ

)
α

= 1

4π
√
2

( ∫
S2α

FΛ∫
S2α

GΣ

)
≡ 1

4π

∫
S2α

j EM (6.2.15)

Utilizing the form of the field strengths we obtain the explicit formula:

Qα ≡
(
pΛ

qΣ

)
α

= 1

4π
√
2

∫
S2α

εi jkdx
i ∧ dx j

[
exp[−U ]M4 ∂k Z

+ exp[−2U ] (∂ka + Z C ∂k Z
)

C Z
]

(6.2.16)
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which providesm-sets of electromagnetic charges associated with the solution. Sim-
ilarly we have m Taub-NUT charges defined by:

nα = − 1

4π

∫
S2α

εi jkdx
i ∧ dx j exp[−2U ] (∂ka + Z C ∂k Z

) ≡ 1

4π

∫
S2α

j T N

(6.2.17)

6.2.1.1 Reduction to the Spherical Case

The spherical symmetric one-center solutions are retrieved from the general case by
assuming that all the three-dimensional fields depend only on one radial coordinate:

τ = − 1

r
; r =

√
x21 + x22 + x23 (6.2.18)

On functions only of τ we have the identity:

∂i f (τ ) = −xi τ 3 d

dτ
f (τ ) (6.2.19)

and introducing polar coordinates:

x1 = 1

τ
cos θ

x2 = 1

τ
sin θ sin ϕ

x3 = 1

τ
sin θ cosϕ (6.2.20)

we obtain:
τ 3εi jk x

i dx j ∧ dxk = − 2 sin θ dθ ∧ dϕ (6.2.21)

By using these identities and restricting one’s attention to the extremal case, the
action of the σ -model (6.2.3) reduces to:

A =
∫

dτ L

L = U̇ 2 + hrs ϕ̇r ϕ̇s + e−2U (ȧ + ZT
CŻ)2 + 2 e−U ŻT M4 Ż (6.2.22)

where the dot denotes derivatives with respect to the τ variable. The σ -model field
equations take the standard form of the Euler Lagrangian equations:
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d

dτ

dL

dΦ̇
= dL

dΦ
(6.2.23)

and the extremality conditions (6.2.9) reduces to:

L = U̇ 2 + hrs ϕ̇r ϕ̇s + e−2U (ȧ + ZT
CŻ)2 + 2 e−U ŻT M4 Ż = 0 (6.2.24)

It appears from this that spherical extremal black holes are in one-to-one correspon-
dence with light-like geodesics of the manifold Q.

The Reduced Oxidation Rules

In the spherical case the above discussed oxidation rules reduce as follows. For the
metric we have

ds2(4) = − eU (τ ) (dt + 2 n cos θ dϕ)2 + e−U (τ )

[
1

τ4
dτ2 + 1

τ2

(
dθ2 + sin2 θ dφ2

)]

(6.2.25)

where n denotes the Taub-NUT charge obtained from the form of the Kaluza–Klein
field strength:

FKK = −2 n sin θ dθ ∧ dϕ

n = (ȧ + Z C Ż
)

(6.2.26)

The electromagnetic field-strengths are instead the following ones:

FΛ = 2 pΛ sin θ dθ ∧ dϕ + ŻΛdτ ∧ (dt + 2n cos θ dϕ) (6.2.27)

where the magnetic charges pΛ are extracted from the reduction of the general
formula (6.2.16), namely:

QM =
(
pΛ

qΣ

)
= √

2
[
e−U M4 Ż − nC Z

]M
(6.2.28)

6.3 The g2(2) Lie Algebra and the S3 Model

In Sect. 1.6 we discussed the structure of the smallest exceptional Lie algebra g2 and
we anticipated that it plays an important role in relation with the simplest example of
special Kähler geometry and of its quaternionic images under the c and the c� maps.
Indeed the simplest example of special Kähler geometry occurs when we have only

http://dx.doi.org/10.1007/978-3-319-74491-9_1
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one complex scalar coordinate z which parameterizes the complex lower half-plane
endowed with the standard Poincaré metric. In other words3:

gzz̄dz dz̄ = 3

4

1

(Imz)2
dz dz̄ (6.3.1)

From the point of view of geometry the lower half-plane is the symmetric coset
manifold SL(2,R)

SO(2) ∼ SU(1,1)
U(1) .

According to the presented theory and to Table5.2 the c-map and c�-map images
of this special Kähler manifold are:

c

[
SU(1, 1)

U(1)

]
= G2(2)

SU(2) × SU(2)

c�

[
SU(1, 1)

U(1)

]
= G2(2)

SU(1, 1) × SU(1, 1)
(6.3.2)

and the architecture of the (pseudo)-quaternionic manifold is algebraically governed
by the golden splitting (1.7.21) and analytically determined by the explicit form of
theN -matrix of special geometry appearing in Eqs. (5.2.17) and (5.2.18).

In our discussion of supergravity black-holes from the point of view of the D = 3
σ -model and of nilpotent orbits, the master model we will constantly utilize is the
simplest one based on the abovementioned one dimensional special Kähler manifold
traditionally dubbed the S3 model. Hence we are interested in the explicit derivation
of its special geometry items.

The manifold SU(1,1)
U(1) admits a standard solvable parametrization constructed as it

follows. Let:

L0 = 1
2

(
1 0
0 −1

)
; L+ = 1

2

(
0 1
0 0

)
; L− = 1

2

(
0 0
1 0

)
(6.3.3)

be the standard three generators of the sl(2, R) Lie algebra satisfying the commu-
tation relations

[
L0, L±

] = ±L± and
[
L+, L−

] = 2L0. The coset manifold SU(1,1)
U(1)

is metrically equivalent with the solvable group manifold generated by L0 and L+.
Correspondingly we can introduce the coset representative:

L4(φ, y) = exp[y L1] exp[ϕ L0] =
(
eϕ/2 e−ϕ/2y
0 e−ϕ/2

)
(6.3.4)

Generic group elements of SL(2, R) are just 2 × 2 real matrices with determinant
one:

SL(2, R) 	 A =
(
a b
c d

)
; ad − bc = 1 (6.3.5)

3The special overall normalization of the Poincaré metric is chosen in order to match the general
definitions of special geometry applied to the present case.

http://dx.doi.org/10.1007/978-3-319-74491-9_5
http://dx.doi.org/10.1007/978-3-319-74491-9_1
http://dx.doi.org/10.1007/978-3-319-74491-9_5
http://dx.doi.org/10.1007/978-3-319-74491-9_5
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and their action on the lower half-plane is defined by usual fractional linear transfor-
mations:

A : z → a z + b

c z + d
(6.3.6)

The correspondence between the lower complex half-plane C− and the solvable
-parameterized coset (6.3.4) is easily established observing that the entire set of
Imz < 0 complex numbers is just the orbit of the number i under the action of
L(φ, y):

L4(φ, y) : i → −eϕ/2 i + e−ϕ/2 y

e−ϕ/2
= y − ieϕ (6.3.7)

This simple argument shows that we can rewrite the coset representative L(φ, y) in
terms of the complex scalar field z as follows:

L4(z) =
⎛
⎝

√|Imz | Rez√
|Imz |

0 1√
|Imz |

⎞
⎠ (6.3.8)

The issue of special Kähler geometry becomes clear at this stage. If we did not con-
sider the symplectic vector bundle, the choice of the coset metric would be sufficient
and nothing more would have to be said. The point is that we still have to define
theN –matrix associated with the flat symplectic bundle which enters the definition
of special Kähler geometry. On the same base manifold SL(2, R)/SO(2) we have
different special structures which lead to different physical models and to different
duality groups UD=3 upon reduction to D = 3. The special structure is determined
by the choice of the symplectic embedding SL(2, R) → Sp(4, R). The symplectic
embedding that defines our master model and which eventually leads to the duality
group UD=3 = G2(2) is cubic and it was already described in Sect. 1.7.1.1. It is
explicitly given by Eq. (1.7.28).

The 2 × 2 blocks A, B,C, D of the 4 × 4 symplectic matrix Λ(A) are easily
readable from Eq. (1.7.28) so that, assuming that the matrix A(z) is the coset repre-
sentative of the manifold SU(1, 1)/U(1), we can apply the Gaillard-Zumino formula
(5.2.16) and obtain the explicit form of the kinetic matrix NΛΣ :

N =
(− 2ac−ibc+iad+2bd

a2+b2 −
√
3(c+id)(ac+bd)

(a−ib)(a+ib)2

−
√
3(c+id)(ac+bd)

(a−ib)(a+ib)2 − (c+id)2(2ac+ibc−iad+2bd)

(a−ib)(a+ib)3

)
(6.3.9)

Inserting the specific values of the entries a, b, c, d corresponding to the coset rep-
resentative (6.3.8), we get the explicit dependence of theN -matrix on the complex
coordinate z:

N ΛΣ(z) =
(− 3z+z̄

2zz̄ −
√
3(z+z̄)
2zz̄2

−
√
3(z+z̄)
2zz̄2 − z+3z̄

2zz̄3

)
(6.3.10)

http://dx.doi.org/10.1007/978-3-319-74491-9_1
http://dx.doi.org/10.1007/978-3-319-74491-9_1
http://dx.doi.org/10.1007/978-3-319-74491-9_1
http://dx.doi.org/10.1007/978-3-319-74491-9_5
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This might conclude the determination of the quaternionic or pseudo-quaternionic
metric of our master example, yet we have not yet seen the special Kähler structure
induced by the cubic embedding. Let us present it.

The key point is the construction of the required holomorphic symplectic section
Ω(z). As usual the transformation properties of a geometrical object indicate the
way to build it explicitly. For consistency we should have that:

Ω

(
a z + b

c z + d

)
= f (z)Λ(A)Ω(z) (6.3.11)

where Λ(A) is the symplectic representation (1.7.28) of the considered SL(2, R)

matrix

(
a b
c d

)
and f (z) is the associated transition function for that line-bundle

whose Chern-class is the Kähler class of the base-manifold. The identification of the
symplectic fibres with the cubic symmetric representation provide the construction

mechanismofΩ . Consider a vector

(
v1
v2

)
that transforms in the fundamental doublet

representation of SL(2, R). On one hand we can identify the complex coordinate z
on the lower half-plane as z = v1/v2, on the other we can construct a symmetric
three-index tensor taking the tensor products of three vi , namely: ti jk = vi v j vk .
Dividing the resulting tensor by v32 we obtain a four vector:

Ω̂(z) = 1

v32

⎛
⎜⎜⎝

v31
v21 v2
v1 v22
v32

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
z3

z2

z
1

⎞
⎟⎟⎠ (6.3.12)

Next, recalling the change of basis (1.7.25), (1.7.26) required to put the cubic repre-
sentation into a standard symplectic form we set:

Ω(z) = S Ω̂(z) =

⎛
⎜⎜⎝

−√
3z2

z3√
3z

1

⎞
⎟⎟⎠ (6.3.13)

and we can easily verify that this object transforms in the appropriate way. Indeed
we obtain:

Ω

(
a z + b

c z + d

)
= (c z + d)−3 Λ(A)Ω(z) (6.3.14)

The pre-factor (c z + d)−3 is the correct one for the prescribed line-bundle. To see
this let us first calculate the Kähler potential and the Kähler form. Inserting (6.3.13)
into Eq. (4.2.15) we get:

http://dx.doi.org/10.1007/978-3-319-74491-9_1
http://dx.doi.org/10.1007/978-3-319-74491-9_1
http://dx.doi.org/10.1007/978-3-319-74491-9_1
http://dx.doi.org/10.1007/978-3-319-74491-9_4
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K = −log
(
i〈Ω | Ω̄〉) = − log

(−i(z − z̄)3
)

K = i

2π
∂ ∂̄ K = i

2π

3

(Imz)2
dz ∧ dz̄ (6.3.15)

This shows that the constructed symplectic bundle leads indeed to the standard
Poincaré metric and the exponential of the Kähler potential transforms with the
prefactor (c z + d)3 whose inverse appears in Eq. (6.3.14).

To conclude let us show that the special geometry definition of the period matrix
N agrees with the Gaillard-Zumino definition holding true for all symplectically
embedded cosets. To this effect we calculate the necessary ingredients:

∇zV (z) = exp

[
K

2

]
(∂zΩ(z) + ∂zK Ω(z)) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
3z(z+2z̄)

(z−z̄)
√−i(z−z̄)3

− 3z2 z̄
(z−z̄)

√−i(z−z̄)3

−
√
3(2z+z̄)

(z−z̄)
√−i(z−z̄)3

− 3
(z−z̄)

√−i(z−z̄)3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≡
(

f Λ
z

hΣz

)

(6.3.16)
Then according to Eq. (4.2.21) we obtain:

f Λ
I =

⎛
⎝

√
3z(z+2z̄)

(z−z̄)
√

−i(z−z̄)3
− 2

√
6z̄2

(−i(z−z̄))3/2

− 3z2 z̄

(z−z̄)
√

−i(z−z̄)3
2
√
2z̄3

(−i(z−z̄))3/2

⎞
⎠

hΛ|I =
⎛
⎝−

√
3(2z+z̄)

(z−z̄)
√

−i(z−z̄)3
2
√
6z̄

(−i(z−z̄))3/2

− 3

(z−z̄)
√

−i(z−z̄)3
2
√
2

(−i(z−z̄))3/2

⎞
⎠ (6.3.17)

and applying definition (4.2.21) we exactly retrieve the same form ofNΛΣ as given
in Eq. (6.3.10).

For completeness and also for later usewe calculate the remaining items pertaining
to special geometry, in particular the symmetricC-tensor. From the general definition
(4.2.18) applied to the present one-dimensional case we get:

∇z Uz = iCzzz h
zz�

Ūz� ⇒ Czzz = − 6i

(z − z�)3
(6.3.18)

As for the standard Levi-Civita connection we have:

Γ z
zz = 2

z − z�
; Γ z�

z�z� = − 2

z − z�
; all other components vanish (6.3.19)

This concludes our illustration of the cubic special Kähler structure on SL(2,R)

SO(2) .

http://dx.doi.org/10.1007/978-3-319-74491-9_4
http://dx.doi.org/10.1007/978-3-319-74491-9_4
http://dx.doi.org/10.1007/978-3-319-74491-9_4
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6.3.1 The Quartic Invariant

In the cubic spin j = 3
2 representation of SL(2, R) there is a quartic invariant which

plays an important role in the discussion of black-holes. As it happens for all the
other supergravity models, the quartic invariant of the symplectic vector of magnetic
and electric charges:

Q =
(
pΛ

qΣ

)
(6.3.20)

is related to the entropy of the extremal black-holes, the latter being its square root.
The origin of the quartic invariant is easily understood in terms of the symmetric
tensor ti jk . Using the SL(2, R)-invariant antisymmetric symbol εi j we can construct
an invariant order four polynomial in the tensor ti jk by writing:

I4 ∝ εai εbj ε pl εqm εkr εcn tabc ti jk tpqr tlmn (6.3.21)

If we use the standard basis t111, t112, t122, t222, we rotate it with the matrix (1.7.25)
andwe identify the components of the resultant vector with those of the charge vector
Q the explicit form of the invariant quartic polynomial is the following one:

I4 = 1

3
√
3
q2 p

3
1 + 1

12
q2
1 p

2
1 − 1

2
p2q1q2 p1 − 1

3
√
3
p2q

3
1 − 1

4
p22q

2
2 (6.3.22)

where we have also chosen a specific overall normalization which turns out to be
convenient in the sequel.

6.4 Attractor Mechanism, the Entropy and Other Special
Geometry Invariants

One of themost important features of supergravity black-holes is the attractormecha-
nism discovered in the nineties by Ferrara and Kallosh for the case of BPS solutions4

[1, 2] and in recent time extended to non-BPS cases [12–14, 21–25]. According
to this mechanism, if we focus on spherical symmetric configurations, the evolving

4Clarification for mathematicians: the acronym BPS stands for Bogomolny, Prasad and Sommer-
feld. It is a notion occuring in the theory of monopoles where one always derives a bound according
to which the energy (or mass) of a quasi-particle corresponding to a localized solution of non
linear propagation equations is always larger or equal than some kind of charge carried by the
quasi-particle. BPS states are those that saturate the bound and typically correspond to shortened
representations of the space-time group. In the case of supergravity black–holes the BPS bound
relates the mass of the hole with the modulus of the central charge of the supersymmetry algebra.
Because of the scope of this book we omit the original definition of the central charge in terms of
superalgebras and we confine to give its expression in terms of special Kähler geometrical items
(see Eq. (6.4.4)).

http://dx.doi.org/10.1007/978-3-319-74491-9_1
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scalar fields zi (τ ) flow to fixed values at the horizon of the black-hole (τ = −∞),
which do not depend from their initial values at infinite radius (τ = 0) but only on
the electromagnetic charges p, q.

In order to establish the relation of the quartic invariant I4 defined in Eq. (6.3.22)
with the black-hole entropy and review the attractor mechanism, we must briefly
recall the essential items of black hole field equations in the geodesic potential
approach [10]. In this framework we do not consider all the fields listed in Eq.
(5.2.2). We introduce only the warp factor U (τ ) and the original scalar fields of
D = 4 supergravity. The information about vector gauge fields is encoded solely in
the set of electric and magnetic chargesQ defined by Eq. (6.3.20) which is retrieved
in Eq. (6.2.28). Under these conditions the correct field equations for an N = 2
black-hole are derived from the geodesic one dimensional field-theory described by
the following lagrangian:

Sef f ≡
∫

Le f f (τ ) dτ ; τ = −1

r

Le f f (τ ) = 1
4

(
dU

dτ

)2

+ gi j�
dzi

dτ

dz j
�

dτ
+ eU VBH (z, z̄,Q) (6.4.1)

where, by definition, the geodesic potential V (z, z̄,Q) is given by the following
formula in terms of the matrix M4 introduced in Eq. (4.3.4):

VBH (z, z̄,Q) = 1
4 Q

t M−1
4 (N ) Q (6.4.2)

The effective lagrangian (6.4.1) is derived from the σ -model lagrangian (6.2.24)
upon substitution of the first integrals ofmotion corresponding to the electromagnetic
charges (6.2.28) under the condition that the Taub-NUT charge, defined in (6.2.17),
vanishes5 (n = 0). Indeed, when the Taub-NUT charge n vanishes, which will be
our systematic choice, we can invert the above mentioned relations, expressing the
derivatives of the ZM fields in terms of the charge vector QM and the inverse of
the matrix M4. Upon substitution in the D = 3 sigma model lagrangian (4.3.4) we
obtain the effective lagrangian for the D = 4 scalar fields zi and the warping factor
U given by Eqs. (6.4.1)–(6.4.3).

The important thing is that, thanks to various identities of special geometry, the
effective geodesic potential admits the following alternative representation:

VBH (z, z̄,Q) = − 1
2

(|Z |2 + |Zi |2
) ≡ − 1

2

(
Z Z̄ + Zi g

i j� Z̄ j�
)

(6.4.3)

5As we are going to see later, each orbit of Lax operators always contains representatives such that
the Taub-NUT charge is zero. Alternatively from a dynamical system point of view the Taub-NUT
charge can be annihilated by setting a constraint which is consistent with the hamiltonian and which
reduces the dimension of the system by one unit. The problem of black hole physics is therefore
equivalent to the sigma model based on an appropriate codimension one hypersurface in the coset
manifold G/H�.

http://dx.doi.org/10.1007/978-3-319-74491-9_5
http://dx.doi.org/10.1007/978-3-319-74491-9_4
http://dx.doi.org/10.1007/978-3-319-74491-9_4
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where the symbol Z denotes the complex scalar field valued central charge of the
supersymmetry algebra:

Z ≡ V T
CQ = MΣ pΣ − LΛ qΛ (6.4.4)

and Zi denote its covariant derivatives:

Zi = ∇i Z = Ui CQ ; Z j� = g j�i Zi

Z̄ j� = ∇ j� Z = Ū j� CQ ; Z̄ i = gi j
�

Z̄ j� (6.4.5)

Equation (6.4.3) is a result in special geometry whose proof can be found in several
articles and reviews of the late nineties.6

6.4.1 Critical Points of the Geodesic Potential and Attractors

The structure of the geodesic potential illustrated above allows for a detailed discus-
sion of its critical points, which are relevant for the asymptotic behavior of the scalar
fields.

By definition, critical points correspond to those values of zi for which the first
derivative of the potential vanishes: ∂i VBH = 0. Utilizing the fundamental identities
of special geometry andEq. (6.4.3), the vanishing derivative condition of the potential
can be reformulated as follows:

0 = 2 Zi Z̄ + iCi jk Z̄
j Z̄ k (6.4.6)

From this equation it follows that there are three possible types of critical points:

Zi = 0 ; Z �= 0 ; BPS attractor
Zi �= 0 ; Z = 0 ; iCi jk Z̄ j Z̄ k = 0 non BPS attractor I
Zi �= 0 ; Z �= 0 ; iCi jk Z̄ j Z̄ k = − 2 Zi Z̄ non BPS attractor II

(6.4.7)

It should be noted that in the case of one-dimensional special geometries, like the
S3-model, only BPS attractors and non BPS attractors of type II are possible. Indeed
non BPS attractors of type I are forbidden unless Czzz vanishes identically.

In order to characterize the various type of attractors, the authors of [20] and
[34] introduced a certain number of special geometry invariants that obey different
and characterizing relations at attractor points of different type. They are defined as
follows. Let us introduce the symbols:

N3 ≡ Ci jk Z̄
i Z̄ j Z̄ k ; N̄3 ≡ Ci� j�k� Zi� Z j� Zk�

(6.4.8)

6See for instance the lecture notes [11].
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and let us set:

i1 = Z Z̄ ; i2 = Zi Z̄ j� gi j
�

i3 = 1
6

(
Z N3 + Z̄ N̄3

) ; i4 = i 1
6

(
Z N3 − Z̄ N̄3

)
i5 = Ci jk C�̄m̄n̄ Z̄

j Z̄ k Z m̄ Z n̄ gi �̄ ;
(6.4.9)

An important identity satisfied by the above invariants, that depend both on the scalar
fields zi and the charges (p, q), is the following one:

I4(p, q) = 1
4 (i1 − i2)

2 + i4 − 1
4 i5 (6.4.10)

where I4(p, q) is the quartic symplectic invariant that depends only on the charges
(see Eq. (6.3.22)). This means that in the above combination the dependence on the
fields zi cancels identically.

In the case of the one-dimensional S3 model there are two additional identities
[34] that read as follows:

i22 = 3
4 i5 ; i23 + i24 = 4i1

(
i2
3

)3

; for the S3 model (6.4.11)

In [20] it was proposed that the three types of critical points can be characterized by
the following relations among the above invariants holding at the attractor point:

At BPS Attractor Points

we have:
i1 �= 0 ; i2 = i3 = i4 = i5 = 0 ; (6.4.12)

At Non BPS Attractor Points of Type I

we have:
i2 �= 0 ; i1 = i3 = i4 = i5 = 0 (6.4.13)

At Non BPS Attractor Points of Type II

we have:

i2 = 3i1 ; i3 = 0 ; i4 = −2 i21 ; i5 = 12 i21 (6.4.14)

These relations follow from the definition of the critical point with the use of standard
special geometry manipulations. Their values resides in that they inform us in a
simple way about the nature of the black-hole solution we are considering. Indeed
they provide a partial classification of solution orbits since, given a configuration of
charges (p, q), whose structure depends, as we are going to see, from the choice
of an H� orbit for the Lax operator, we can calculate the possible critical points of
the corresponding geodesic potential and find out to which type they belong. We
might expect several different critical points for each (p, q)-choice, yet it turns out
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that there is only one and it always belongs to the same type for all elements of the
same H� orbit. This fact, whose a priori proof has still to be given, implies that a
classification of attractor points is also a partial classification of Lax operator orbits.
We shall come back on this crucial issue later on. Yet it is appropriate to emphasize
the word partial classification. Although the type of fixed point is the same for each
element of the same orbit we should by nomeans assume that fixed point types select
orbits. Indeed there are Lax operators belonging to different H� orbits that have the
same electromagnetic charges and therefore define the same fixed point. Furthermore
the fact that a Lax operator defines certain charges and hence an associated fixed point
does not imply that the solution generated by such Lax will necessarily reach that
fixed point. The solution can break up at a finite value of τ , stopping before the fixed
point is attained. Hence the classification of fixed points is not a classification of H�

orbits although the two classifications have partial relations to each other.

6.4.2 Fixed Scalars at BPS Attractor Points

In the case of BPS attractors we can find the explicit expression in terms of the
(p,q)-charges for the scalar field fixed values at the critical point.

By means of standard special geometry manipulations the BPS critical point
equation

∇ j Z = 0 ; ∇ j� Z̄ = 0 (6.4.15)

can be rewritten in the following celebrated formwhich, in the late nineties, appeared
in numerous research and review papers (see for instance [11]):

pΛ = i
(
Z f ix L̄

Λ
f i x − Z̄ f i x L

Λ
f i x

)
(6.4.16)

qΣ = i
(
Z f ix M̄

f i x
Σ − Z̄ f i x M

f ix
Σ

)
(6.4.17)

Using the explicit form of the symplectic section Ω(z) given in Eq. (6.3.13), we can
easily solve Eq. (6.4.17) for the S3 model and obtain the following fixed scalars:

z f i xed = − p1q1 + 3p2q2 + i 6
√
I4(p, q)

2
(
q2
1 + √

3p1q2
) (6.4.18)

where I4(p, q) is the quartic invariant defined in Eq. (6.3.22). In fact, one can give
the BPS solution in a closed form by replacing in the expression (6.4.18) z f i xed the
quantized charges with harmonic functions

qΛ → HΛ ≡ hΛ − √
2 qΛ τ ; pΛ → HΛ ≡ hΛ − √

2 pΛ τ (6.4.19)

The same substitution allows to describe the radial evolution of the warp factor:
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e−U = 1

2

√
I4(HΛ, HΛ) (6.4.20)

The constants hΛ, hΛ in the harmonic functions are subject to two conditions: one
originates from the requirement of asymptotic flatness (limτ→0− eU = 1), while the
other reads hΛqΛ − hΛ pΛ = 0. The remaining two free parameters are fixed by the
choice of the value of z at radial infinity.

By replacing the fixed values (6.4.18) into the expression (6.4.3) for the potential
we find:

VBH
(
z f i xed , z̄ f i xed , Q

) = −√I4(p, q) (6.4.21)

The above result implies that the horizon area in the case of an extremal BPS black-
hole is proportional to the square root of I4(p, q) and, as such, depends only on the
charges7 The argument goes as follows.

Consider the behavior of the warp factor exp[−U ] in the vicinity of the horizon,
when τ → −∞. For regular black-holes the near horizon metric must factorize as
follows:

ds2near hor. ≈ − 1

r2H τ 2
dt2 + r2H

(
dτ

τ

)2

︸ ︷︷ ︸
AdS2 metric

+ r2H
(
dθ2 sin2 θ dφ2

)
︸ ︷︷ ︸

S2 metric

(6.4.22)

where rH is the Schwarzschild radius defining the horizon. This implies that the
asymptotic behavior of the warp factor, for τ → −∞ is the following one:

exp[−U ] ∼ r2H τ 2 (6.4.23)

In the same limit the scalar fields go to their fixed values and their derivatives become
essentially zero. Hence near the horizon we have:

(
U̇
)2 ≈ 4

τ 2
; gi j�

dzi

dτ

dz j
�

dτ
≈ 0

eU VBH (z, z̄,Q) ≈ 1

r2H τ 2
V
(
z f i xed , z̄ f i xed , Q

)
(6.4.24)

Since for extremal black-holes the sum of the above three terms vanishes (see
Eq. (6.2.3)), we conclude that:

r2H = − VBH
(
z f i xed , z̄ f i xed , Q

)
(6.4.25)

which yields
AreaH = 4π r2H = 4π

√
I4(p, q) (6.4.26)

7Clarification for mathematicians: for a short but comprehensive introduction to the theory of Black
Holes we refer the interested reader to Chaps. 2 and 3 of Volume II of [35] by the present author.



284 6 Black Holes and Nilpotent Orbits

6.5 A Counter Example: The Extremal Kerr Metric

In this section, in order to better clarify the notion of extremality provided by con-
ditions (6.2.8)–(6.2.9) we consider the physically relevant counter-example of the
extremal Kerr metric. Such static solution of Einstein equations is certainly encoded
in the σ -model approach yet it is not extremal in the sense of Eqs. (6.2.8)–(6.2.9) and
therefore it is not related to any nilpotent orbit. Indeed the extremal Kerr metric is a
solution of pure gravity and as such its σ -model representation lies in the Euclidean
submanifold:

SL(2, R)

O(2)
(6.5.1)

for which the coset tangent space K contains no nilpotent elements.
Instead the so named BPS Kerr–Newman metric, which is not extremal in the

sense of General Relativity and actually displays a naked singularity, is extremal in
the sense of Eqs. (6.2.8)–(6.2.9) and can be retrieved in one of the nilpotent orbits of
the S3-model. We will show that explicitly in Sect. 6.11.4.

As a preparation to such discussions let us recall the general form of the Kerr–
Newman metric which we represent in polar coordinates as it follows:

ds2K N = −V 0 ⊗ V 0 +
3∑

i=1

V i ⊗ V i (6.5.2)

V 0 = δ(r)

σ (r, θ)

(
dt − α sin2 θ dφ

)
(6.5.3)

V 1 = σ(r, θ)

δ(r)
dr (6.5.4)

V 2 = σ(r, θ) dθ (6.5.5)

V 3 = sin(θ)

σ (r, θ)

((
r2 + α2

)
dφ − α dt

)
(6.5.6)

δ(r) =
√
q2 + r2 + α2 − 2mr (6.5.7)

σ(r, θ) =
√
r2 + α2 cos2(θ) (6.5.8)

Parameters of the Kerr–Newman solution are the mass m, the electric charge q and
the angular momentum J = m α of the Black Hole. The two particular cases we
shall consider in this paper correspond to:

(a) The extremal Kerr solution: q = 0 and m = α.
(b) The BPS Kerr–Newman solution q = m, arbitrary α.

Let us then focus now on the extremal Kerr solution. With the choice m = α, q = 0,
the metric (6.5.2) can be rewritten in the following form:

ds2EK = − exp[U ] (dt + A[KK ])2 + exp[−U ] γi j dy
i ⊗ dy j (6.5.9)
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where yi = {r, θ, φ} are the polar coordinates, the three dimensional metric γi j is
the following one:

γi j =
⎛
⎝

2r2−α2+α2 cos(2θ)

2r2 0 0
0 r2 − α2

2 + 1
2α

2 cos(2θ) 0
0 0 r2 sin2(θ)

⎞
⎠ (6.5.10)

the warp factor is:

U = log

[
r2 − α2 sin2(θ)

(r + α)2 + α2 cos2(θ)

]
(6.5.11)

and the Kaluza Klein vector has the following appearance:

A[KK ] = 2α2(r + α) sin2(θ)

r2 − α2 sin2(θ)
dφ (6.5.12)

In presence of the metric γi j the duality relation between the Kaluza Klein vector
field and the σ -model scalar field a reads as follows:

F[KK ]
i j ≡ ∂[iA[KK ]

j] = exp[−2U ]√det γ εi jk γ k� ∂� a (6.5.13)

and it is solved by:

a = − 2α2 cos(θ)

2r2 + 4αr + 3α2 + α2 cos(2θ)
(6.5.14)

In this way, by means of inverse engineering we have showed how the extremal Kerr
metric is retrieved in the σ -model approach. The crucial point is that the metric γi j
is not flat and hence such a configuration of theU, a fields does not correspond to an
extremal solution of the σ -model field equations. Indeed calculating the curvature
two-form of the three-dimensional metric (6.5.10) we find

R12 = 4α2
(
2r2 + α2 − α2 cos(2θ)

)
(
2r2 − α2 + α2 cos(2θ)

)3 e1 ∧ e2 (6.5.15)

R13 = 4α2

(
2r2 − α2 + α2 cos(2θ)

)2 e1 ∧ e3 (6.5.16)

R23 = − 4α2

(
2r2 − α2 + α2 cos(2θ)

)2 e2 ∧ e3 (6.5.17)
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where

e1 =
dr
√

cos(2θ)α2

r2 − α2

r2 + 2
√
2

(6.5.18)

e2 = dθ

√
r2 − α2

2
+ 1

2
α2 cos(2θ) (6.5.19)

e3 = dφ r sin(θ) (6.5.20)

is the dreibein corresponding to (6.5.10).
Hopefully this explicit calculation should have convinced the reader that the

extremal Kerr solution and, by the same token, also the extremal Kerr–Newman
solution are not extremal in the σ -model sense and are retrieved in regular rather
than in nilpotent orbits8 of U/H�.

6.6 The Standard Triple Classification of Nilpotent Orbits

The construction and classification of nilpotent orbits in semi-simple Lie algebras is
a relatively new field of mathematics which has already generated a vast literature.
Notwithstanding this, a well established set of results ready to use by physicists is
not yet available mainly because existing classifications are concerned with orbits
with respect to the full complex group GC or of one of its real forms GR [36],
which is not exactly what the problem of supergravity black-holes requires (i.e. the
classification of the nilpotent H�-orbits in K). Furthermore the complexity of the
existing mathematical papers and books is rather formidable and their reading not
too easy. Yet themainmathematical idea underlying all classification schemes is very
simple and intuitive and can be rephrased in a language very familiar to physicists,
namely that of angular momentum. Such rephrasing allows for what we named a
practitioner’s approach to the method of triples. In other words after decoding this
method in terms of angular momentumwe can derive case by case the needed results
by using a relatively elementary algorithm supplemented with some hints borrowed
from the mathematical literature.

8Clarification for mathematicians: Extremal in the GR sense means something different than
extremal in the σ -model sense. As we mentioned above the extremal Kerr solution, according
to General Relativity is the solution where m = α. In the σ -model sense any extremal solution
corresponds to a light-like geodesic of the of the U/H� manifold. Light-like geodesics, on their turn
are associated with H� orbits of nilpotent U Lie algebra elements. As shown above the extremal
Kerr solution is obtained from a U/H� geodesic that is not light-like so it is not extremal in the
σ -model sense.
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6.6.1 Presentation of the Method

In this section we shall denote the isometry group UD=3 by GR to emphasize that it
is a real form of some complex semisimple Lie group.

We will present the practitioner’s argument in the form of an ordered list.

1. The basic theorem proved by mathematicians (the Jacobson–Morozov theorem
[36]) is that any nilpotent element of a Lie algebra X ∈ g can be regarded as
belonging (X = x) to a triple of elements {x, y, h} that satisfy the standard
commutation relations of the sl(2) Lie algebra, namely:

[h , x] = x ; [h , y] = − y ; [x , y] = 2 h (6.6.1)

Hence the classification of nilpotent orbits is just the classification of embeddings
of an sl(2) Lie algebra in the ambient one, modulo conjugation by the full group
GR or by one of its subgroups. In our case the relevant subgroup is H� ⊂ GR.

2. The second relevant point in our decoding is that embeddings of subalgebras
h ⊂ g are characterized by the branching law of any representation of g into
irreducible representations of h. Clearly two embeddings might be conjugate
only if their branching laws are identical. Embeddings with different branching
laws necessarily belong to different orbits. In the case of the sl(2) ∼ so(1, 2) Lie
algebra, irreducible representations are uniquely identified by their spin j , so that
the branching law is expressed by listing the angular momenta { j1, j2, . . . jn} of
the irreducible blocks into which any representation of the original algebra, for
instance the fundamental, decomposes with respect to the embedded subalgebra.
The dimensions of each irreducible module is 2 j+1 so that an a priori constraint
on the labels { j1, j2, . . . jn} characterizing an orbit is the summation rule:

n∑
i=1

(2 ji + 1) = N = dimension of the fundamental representation (6.6.2)

Taking into account that ji are integer or half integer numbers, the sum rule (6.6.2)
is actually a partition of N into integers and this explains why mathematicians
classify nilpotent orbits starting from partitions of N and use Young tableaux in
the process.

3. The next observation is that the central element h of any triple is by definition
a diagonalizable (semisimple) non-compact element of the Lie algebra and as
such it can always be rotated into the Cartan subalgebra by means of a GR

transformation. In the case of interest to us, the Cartan subalgebra C can be
chosen, as we will do, inside the subalgebra H

� and consequently we can argue
that for any standard triple {x, y, h} the central element is inside that subalgebra:

h ∈ H
� (6.6.3)
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Sincewe shall workwith real representations ofGR, we choose a basis inwhich h
is a symmetric matrix. Indeed there are two possibilities: either x ∈ H

� or x ∈ K.
In the first casewe have y ∈ H

�, while in the secondwe have y ∈ K. This follows
from matrix transposition. Given x , the element y is just its transposed y = xT

and transposition maps H
� into H

� and K into K. Since it is already in H
�, in

order to rotate the central element h into the Cartan subalgebra it suffices an H�

transformation. Therefore to classify H� orbits of nilpotent K elements we can
start by considering central elements h belonging to the Cartan subalgebra C
chosen inside H

�.
4. The central element h of the standard triple, chosen inside the Cartan subalgebra,

is identified by its eigenvalues and by their ordering with respect to a standard
basis. Since h is the third component of the angular momentum, i.e. the operator
J3, its eigenvalues in a representation of spin j are − j,− j + 1, . . . , j − 1, j .
Hence if we choose a branching law { j1, j2, . . . jn}, we also decide the eigen-
values of h and consequently its components along a standard basis of simple
roots. The only indeterminacy which remains to be resolved is the order of the
available eigenvalues.

5. The question which remains to be answered is how much we can order the
eigenvalues of Cartan elements by means of H� group rotations. The answer is
given in terms of the generalized Weyl group GW and the Weyl group W .

6. The generalized Weyl group is the discrete group generated by all matrices of
the form:

Oα = exp
[
θα

(
Eα − E−α

)]
(6.6.4)

where E±α are the step operators associated with the roots ±α and the angle θα

is chosen in such a way that it realizes the α-reflection on a Cartan subalgebra
element β · H associated with a vector β:

Oα β · H O−1
α = σα(β) · H

σα(β) ≡ β − 2
(α , β)

(α , α)
α (6.6.5)

The generalized Weyl group has the property that for each of its elements γ ∈
GW and for each element h ∈ C of the Cartan subalgebra C , we have:

γ h γ −1 = h′ ∈ C (6.6.6)

7. The generalized Weyl group contains a normal subgroup H W ⊂ GW , named
the Weyl stability group and defined by the property that for each element ξ ∈
H W and for each Cartan subalgebra element h ∈ H W we have:

γ h γ −1 = h (6.6.7)
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8. The proper Weyl group is defined as the quotient of the generalized Weyl group
with respect to the Weyl stability subgroup:

W ≡ GW

H W
(6.6.8)

9. The above definition of the Weyl group shows that we can distinguish among
its elements those that can be realized by H� transformations, namely those
whose corresponding generalized Weyl group elements satisfy the condition
OTηO = η and those that are outside of H�.

10. If we were to consider nilpotent orbits with respect to the whole group G we
would just have to mod out all Weyl transformations. In the case of H� orbits
this is too much since the entire Weyl group is not contained in H� as we just
said. The rotations that have to be modded out are those of the intersection of
the generalized Weyl group GW H with H�, namely:

GW H ≡ GW
⋂

H� (6.6.9)

It should be noted that the Weyl stability subgroup is always contained in H� so
that, by definition, it is also a subgroup of GW H :

H W ⊂ GW H (6.6.10)

which happens to be normal. Hence we can define the ratio

WH ≡ GW H

H W
(6.6.11)

which is a subgroup of the Weyl group.
11. There is a simple method to find directly WH . The Weyl group is the symmetry

group of the root system Δ. When we choose the Cartan subalgebra inside H�

the root system splits into two disjoint subsets:

Δ = ΔH

⊕
ΔK (6.6.12)

respectively containing the roots represented in H
� and those represented in K.

Clearly the looked for subgroupWH ⊂ W is composed by those Weyl elements
which do not mix ΔH with ΔK and thus respect the splitting (6.6.12). Accord-
ing to this viewpoint, given a Cartan element h corresponding to a partition
{ j1, j2, . . . jn}, we consider its Weyl orbit and we split this Weyl orbit into m
suborbits corresponding to the m cosets:

W

WH
; m ≡ |W |

|WH | (6.6.13)
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Each Weyl suborbit corresponds to an H�-orbit of the neutral elements h in the
standard triples. We just have to separate those triples whose x and y elements
lie in K from those whose x and y elements lie in H

�. By construction if the x
and y elements of one triple lie in K, the same is true for all the other triples
in the same WH orbit. Weyl transformations outside WH mix instead K-triples
with H

� ones.
12. The construction described in the above points fixes completely the choice of

the central element h in a standard triple providing a standard representative of
an H� orbit. The work would be finished if the choice of h uniquely fixed also x
and y = xT that are our main target. This is not so. Given h one can impose the
commutation relations:

[h , x] = x (6.6.14)[
x , xT

] = 2 h (6.6.15)

as a set of algebraic equations for x . Typically these equations admit more than
one solution.9 The next task is that of arranging such solutions in orbits with
respect to the stability subgroupSh ⊂ H� of the central element. Typically such
a group is the product, direct or semidirect, of the discrete group H W , which
stabilizes any Cartan Lie algebra element, with a continuous subgroup of H�

which stabilizes only the considered central element h. The presence of such a
continuous part of the stabilizerSh manifests itself in the presence of continuous
parameters in the solution of the second equation (6.6.15) at fixed h.

13. When there are no continuous parameters in the solution of Eq. (6.6.15) what
we have to do is quite simple. We just need to verify which solutions are related
to which by means of H W transformations and we immediately construct the
H W -orbits. EachH W orbit of x solutions corresponds to an independent H�

orbit of nilpotent operators.
14. When continuous parameters are left over in the solutions space, signaling the

existence of a continuous part in theSh stabilizer, the direct construction ofSh

orbits is more involved and time consuming. An alternative method, however, is
available to distribute the obtained solutions into distinct orbits which is based
on invariants. Let us define the non-compact operator:

Xc ≡ i
(
x − xT

)
(6.6.16)

and consider its adjoint action on the maximal compact subalgebra H ⊂ U

which, by construction, has the same dimension as H
�. We name β-labels the

spectrum of eigenvalues of that adjoint matrix10:

9Such solutions actually correspond to different GR-orbits [36].
10In the literature, see [36], β-labels are defined as the value of the simple roots β i of the complex-
ification HC of H

� on the non-compact element Xc, viewed as a Cartan element of HC in the Weyl
chamber of (β i ). We find it more practical to work with the equivalent characterization (6.6.17).
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β − label = Spectrum
[
adj

H (Xc)
]

(6.6.17)

Since the spectrum is an invariant property with respect to conjugation,
x-solutions that have different β-labels belong to different H� orbits necessarily.
Actually they even belong to different orbits with respect to the full group U.
In fact there exists a one-to-one correspondence between nilpotent U orbits in
U and β-labels, which directly follows from the celebrated Kostant-Sekiguchi
theorem [36]. So we arrange the different solutions of Eq. (6.6.15) into orbits by
grouping them according to their β-labels.

15. The set of possible β-labels at fixed choice of the partition { j1, j2, . . . jn} is
predetermined since it corresponds to the set of γ -labels [37]. Let us define
these latter. Given the central element h of the triple, we consider its adjoint
action on the subalgebra H

� and we set:

γ − label = Spectrum
[
adj

H� (h)
]

(6.6.18)

Obviously all h-operators in the same WH -orbit have the same γ -label. Hence
the set of possible γ -labels corresponding to the same partition { j1, j2, . . . jn}
contains at most as many elements as the order of lateral classes W

W H
. The actual

number can be less when some WH -orbits of h-elements coincide.11 Given the
set of γ -labels pertaining to one { j1, j2, . . . jn}-partition the set of possible β-
labels pertaining to the same partition is the same. We know a priori that the
solutions to Eq. (6.6.15) will distribute in groups corresponding to the available
β-labels. Typically all availableβ-labels will be populated, yet for some partition
{ j1, j2, . . . jn} and for some chosen γ -label one ormoreβ-labelsmight be empty.

16. The above discussion shows that by naming α-label the partition { j1, j2, . . . jn}
(branching rule of the fundamental representation ofUwith respect to the embed-
ded sl(2)) the orbits can be classified and named with a triple of indices:

Oα
γβ (6.6.19)

the set of γβ-labels available for each α-label being determined by means of the
action of the Weyl group as we have thoroughly explained.

Whatwe have described in the above list is a concrete algorithm to single out standard
triple representatives of nilpotent H� orbits of K operators. In the next section we
apply it to the example of the g(2,2) model in order to show how it works.

11Note that the action of certain Weyl group elements g ∈ W on specific h.s can be the identity:
g · h = h. When such stabilizing group elements g are insideWH the number of different h.s inside
each lateral classes is accordingly reduced. If there are stabilizing elements g that are not inside
WH than two or more WH orbits coincide.
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6.7 The Nilpotent Orbits of the g(2,2) Model

In the present section we consider the classification of nilpotent H�-orbits in g(2,2)

by using the algorithm described in the previous section.

6.7.1 The Weyl and the Generalized Weyl Groups for g(2,2)

According to our general discussion the most important tools for the orbit classifi-
cation are the generalized Weyl groups and its subgroups.

We begin with the structure of the Weyl group for the g(2,2) root system Δg2. By
definition this is the group of rotations in a two-dimensional plane generated by the
reflections along all the roots contained in Δg2. Abstractly the structure of the group
is given by the semidirect product of the permutation group of three object S3 with
a Z2 factor:

W = S3 � Z2 (6.7.1)

Correspondingly the order of the group is:

|W | = 12 (6.7.2)

An explicit realization by means of 2 × 2 orthogonal matrices is the following one:

Id =
(
1 0
0 1

)
; α1 =

(−1 0
0 1

)
; α2 =

(
− 1

2

√
3
2√

3
2

1
2

)

α3 =
(

1
2

√
3
2√

3
2 − 1

2

)
; α4 =

(
1
2 −

√
3
2

−
√
3
2 − 1

2

)
; α5 =

(
− 1

2 −
√
3
2

−
√
3
2

1
2

)

α6 =
(
1 0
0 −1

)
; ξ1 =

(−1 0
0 −1

)
; ξ2 =

(
− 1

2 −
√
3
2√

3
2 − 1

2

)

ξ3 =
(

− 1
2

√
3
2

−
√
3
2 − 1

2

)
; ξ4 =

(
1
2 −

√
3
2√

3
2

1
2

)
; ξ5 =

(
1
2

√
3
2

−
√
3
2

1
2

)

(6.7.3)

where I d is the identity element, αi (i = 1, . . . , 6) denote the reflections along the
corresponding roots and ξi (i = 1, . . . , 5) are the additional elements created by
products of reflections. The multiplication table of this group is displayed below:
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0 Id α1 α2 α3 α4 α5 α6 ξ1 ξ2 ξ3 ξ4 ξ5
Id Id α1 α2 α3 α4 α5 α6 ξ1 ξ2 ξ3 ξ4 ξ5
α1 α1 Id ξ4 ξ2 ξ3 ξ5 ξ1 α6 α3 α4 α2 α5

α2 α2 ξ5 Id ξ4 ξ1 ξ3 ξ2 α4 α6 α5 α3 α1

α3 α3 ξ3 ξ5 Id ξ2 ξ1 ξ4 α5 α4 α1 α6 α2

α4 α4 ξ2 ξ1 ξ3 Id ξ4 ξ5 α2 α1 α3 α5 α6

α5 α5 ξ4 ξ2 ξ1 ξ5 Id ξ3 α3 α2 α6 α1 α4

α6 α6 ξ1 ξ3 ξ5 ξ4 ξ2 Id α1 α5 α2 α4 α3

ξ1 ξ1 α6 α4 α5 α2 α3 α1 Id ξ5 ξ4 ξ3 ξ2
ξ2 ξ2 α4 α5 α1 α3 α6 α2 ξ5 ξ3 Id ξ1 ξ4
ξ3 ξ3 α3 α6 α4 α1 α2 α5 ξ4 Id ξ2 ξ5 ξ1
ξ4 ξ4 α5 α1 α2 α6 α4 α3 ξ3 ξ1 ξ5 ξ2 Id
ξ5 ξ5 α2 α3 α6 α5 α1 α4 ξ2 ξ4 ξ1 Id ξ3

(6.7.4)

Next let us discuss the structure of the generalized Weyl group. In this case GW is
composed by 48 elements and its stability subgroup H W ∼ Z2 × Z2 is made by
the following four 7 × 7 matrices belonging to the G(2,2) group:

hw1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 −1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 −1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

; hw2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 −1
0 0 0 0 0 −1 0
0 0 0 0 −1 0 0
0 0 0 −1 0 0 0
0 0 −1 0 0 0 0
0 −1 0 0 0 0 0
−1 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

hw3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 1
0 0 0 0 0 −1 0
0 0 0 0 1 0 0
0 0 0 −1 0 0 0
0 0 1 0 0 0 0
0 −1 0 0 0 0 0
1 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

; Id =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.7.5)

In order to complete the description of the generalizedWeyl group it is now sufficient
to write one representative for each equivalence class of the quotient:

GW

H W
� W (6.7.6)

We have:
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α1 ∼

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 −1 0 0 0 0
0 0 0 0 0 1 0
1 0 0 0 0 0 0
0 0 0 −1 0 0 0
0 0 0 0 0 0 −1
0 1 0 0 0 0 0
0 0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

; α2 ∼

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 1
2 0 0 − 1√

2
0 0 1

2

0 1
2 − 1

2 0 − 1
2 − 1

2 0
0 − 1

2 − 1
2 0 1

2 − 1
2 0

− 1√
2
0 0 0 0 0 − 1√

2
0 − 1

2
1
2 0 − 1

2 − 1
2 0

0 − 1
2 − 1

2 0 − 1
2

1
2 0

1
2 0 0 − 1√

2
0 0 − 1

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

α3 ∼

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 1
2 − 1

2 0 0 0 − 1
2 − 1

2
1
2 − 1

2 0 0 0 1
2 − 1

2
0 0 1

2
1√
2

1
2 0 0

0 0 − 1√
2
0 1√

2
0 0

0 0 1
2 − 1√

2
1
2 0 0

1
2

1
2 0 0 0 − 1

2 − 1
2− 1

2
1
2 0 0 0 1

2 − 1
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

; α4 ∼

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 1
2 0 0 − 1√

2
0 0 1

2

0 − 1
2

1
2 0 1

2
1
2 0

0 1
2

1
2 0 − 1

2
1
2 0

− 1√
2
0 0 0 0 0 − 1√

2
0 1

2 − 1
2 0 1

2
1
2 0

0 1
2

1
2 0 1

2 − 1
2 0

1
2 0 0 − 1√

2
0 0 − 1

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

α5 ∼

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 1
2 − 1

2 0 0 0 − 1
2 − 1

2− 1
2

1
2 0 0 0 − 1

2
1
2

0 0 − 1
2 − 1√

2
− 1

2 0 0

0 0 − 1√
2
0 1√

2
0 0

0 0 − 1
2

1√
2

− 1
2 0 0

− 1
2 − 1

2 0 0 0 1
2

1
2− 1

2
1
2 0 0 0 1

2 − 1
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

; α6 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 −1 0 0 0 0
0 0 0 0 0 −1 0
−1 0 0 0 0 0 0
0 0 0 −1 0 0 0
0 0 0 0 0 0 1
0 −1 0 0 0 0 0
0 0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.7.7)
and

ξ1 ∼

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 0 0 0 0
0 −1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 −1 0
0 0 0 0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

; ξ2 ∼

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 − 1
2 − 1√

2
− 1

2 0 0
1
2

1
2 0 0 0 − 1

2 − 1
2− 1

2 − 1
2 0 0 0 − 1

2 − 1
2

0 0 1√
2

0 − 1√
2
0 0

1
2 − 1

2 0 0 0 − 1
2

1
2

1
2 − 1

2 0 0 0 1
2 − 1

2
0 0 1

2 − 1√
2

1
2 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ξ3 ∼

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 − 1
2 − 1

2 0 1
2 − 1

2 0
0 1

2
1
2 0 1

2 − 1
2 0

− 1
2 0 0 − 1√

2
0 0 1

2
1√
2

0 0 0 0 0 1√
2

− 1
2 0 0 1√

2
0 0 1

2

0 − 1
2

1
2 0 1

2
1
2 0

0 1
2 − 1

2 0 1
2

1
2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

; ξ4 ∼

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 − 1
2 − 1

2 0 1
2 − 1

2 0
0 − 1

2 − 1
2 0 − 1

2
1
2 0

1
2 0 0 1√

2
0 0 − 1

2
1√
2
0 0 0 0 0 1√

2
1
2 0 0 − 1√

2
0 0 − 1

2

0 1
2 − 1

2 0 − 1
2 − 1

2 0
0 1

2 − 1
2 0 1

2
1
2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ξ5 ∼

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 − 1
2 − 1√

2
− 1

2 0 0

− 1
2 − 1

2 0 0 0 1
2

1
2

1
2

1
2 0 0 0 1

2
1
2

0 0 1√
2

0 − 1√
2
0 0

− 1
2

1
2 0 0 0 1

2 − 1
2− 1

2
1
2 0 0 0 − 1

2
1
2

0 0 1
2 − 1√

2
1
2 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

;

(6.7.8)
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We can explicitly verify that all the elements of theH W subgroup are in H� =
su(1, 1) × su(1, 1) since they satisfy the condition:

hwT
i η hwi = η (6.7.9)

where

η =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 0 0 0 0
0 −1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 −1 0
0 0 0 0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.7.10)

is the invariant metric which defines the H� subgroup. Note that here we use all the
conventions and the definitions introduced in [32].

The next required ingredient of our construction is the subgroup WH . As it was
shown in [32], when we diagonalize the adjoint action of a Cartan Subalgebra con-
tained in the H

� subalgebra, the root system of the g2 Lie algebra (see Fig. 6.4),
decomposes in two subsystems ΔH and ΔK such that the step operators correspond-
ing to roots in ΔH belong to H

� while the step operators corresponding to roots in
ΔK belong to K. The subsystem ΔH is composed by the roots ±α3,±α5, while ΔK

is made by the remaining ones. The subgroup WH ⊂ W can be easily derived. It
is made by all those elements of the Weyl group which map ΔH into itself and ΔK

into itself, as well. Referring to the previously introduced notation, we easily see that
(Fig. 6.5):

WH = {Id, α3, α5, ξ1} (6.7.11)

Fig. 6.4 The g2 root system
Δg2 is made of six positive
roots and of their negatives
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Fig. 6.5 The root system
Δg2 splits in two subsystems,
the system ΔH on the left,
the system ΔK on the right

Abstractly the structure of WH is the following:

WH ∼ Z2 × Z2 (6.7.12)

since all of its elements square to the identity.
There are three lateral classes inW /WH , respectively associated with the identity

element and with the reflection along the two simple roots.

[Id] = {Id, α3, α5, ξ1} (6.7.13)

[α1] = {α1, α6, ξ3, ξ4} (6.7.14)

[α2] = {α2, α4, ξ2, ξ5} (6.7.15)
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It follows that for each partition { j1, j2, . . . jn} (α-label) there are three possible
γ -labels and three possible β-labels. It remains to be seen for which combinations of
these γ and β-labels there exist an x-operator purely contained inKwhich completes
the standard triple.

6.7.2 The Table of G(2,2)
SU(1,1)×SU(1,1) Nilpotent Orbits

In order to derive the desired table of nilpotent orbits we begin from the first step
namely from partitions or, said differently, from α-labels.

6.7.2.1 α-Labels

Taking into account the restriction (see [36]) that every half-integer spin j should
appear an even number of times we easily conclude that the possible branching laws
of the 7-dimensional fundamental representation of g(2,2) into irreducible represen-
tations of sl(2) are the following ones:

α1 − label = [j=3] (6.7.16)

α2 − label = [j=1] × 2[ j = 1/2] (6.7.17)

α3 − label = 2[j=1] × [ j = 0] (6.7.18)

α4 − label = 2[j=1/2] × 3[ j = 0] (6.7.19)

6.7.2.2 γ -Labels

Analyzing the two Eqs. (6.6.14), (6.6.15) for the x-triple element at fixed h we find
the following result:

α1 In this sector there are x operators inK only for the second lateral class (6.7.14).
This means that there is only one γ -label which has the following form:

γ1 = {±8,±4, 0, 0} ≡ {81, 41, 01} (6.7.20)

The notation introduced in Eq. (6.7.20) is based on the following observation.
The dimension of H or H

� is six and every eigenvalue appears together with its
negative. Hence it suffices to mention the non-negative eigenvalues (including the
zero) with their multiplicity (all zeros appear in pairs as well). It follows that the
β-label is also unique so that in this sector there is only one nilpotent orbit.

α2 For this partition theWH orbits (6.7.13) and (6.7.14) coincide: within them we
find x operators in K. In the third WH orbit there are no solutions for x in K. So
we have only one γ -label:
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Table 6.1 Classification of nilpotent orbits of G(2,2)
SU(1,1)×SU(1,1)

N dn α − label γβ − labels Orbits WH − classes

1 7 [j=3] γβ1 = {814101} O1
1 (×, γ1,×)

2 3 [j=1] × 2[ j = 1/2] γβ1 = {311101} O2
1 (γ1, γ1,×)

7 3 2[j=1] × [ j = 0] γβ1 = {4102}
γβ2 = {2201}

β1 β2

γ1 O3
1,1 O3

1,2

γ2 O3
2,1 O3

2,2

(γ1, γ2, γ2)

4 2 2[j=1/2]× 3[ j = 0] γβ1 = {1201} O4
1 (0, γ1, γ1)

γ1 = {31, 11, 01} (6.7.21)

and consequently only one nilpotent orbit.
α3 For this partition theWH orbits (6.7.14) and (6.7.15) coincide while the first is

distinct. We find solutions for x in K both for the first WH -orbit (6.7.13) and for
the coinciding subsequent two. That means that we have two γ -labels

γ1 = {41, 02} (6.7.22)

γ2 = {22, 01} (6.7.23)

Considering the solutions for x both in the case of γ1 and γ2 they group in two
non empty classes corresponding to β-labels β1 and β2. This means that we have
a total of 4 nilpotent orbits from this sector.

α4 For this partition the situation is similar to that of partition one and two. There
are no K solutions for x in the firstWH orbit while there are such solutions in the
second and third WH -orbits, which coincide. Hence there is only one γ -label:

γ1 = {12, 01} (6.7.24)

and one nilpotent orbit.

In Table6.1 the results we have described are summarized.

6.8 Construction of Multicenter Solutions Associated with
Nilpotent Orbits

In this section we summarize in purely mathematical terms the algorithm that asso-
ciates extremal black hole solutions of supergravity to nilpotent orbits of the Lie
algebra U. As the reader will appreciate the algorithm is completely sequential and
constructive so that it can be easily implemented by means of computer codes.
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For spherically symmetric black holes the construction of solutions is associated
with nilpotent orbits in the following way. A representative of the H� orbit is a
standard triple {h, X,Y } and hence an embedding of an sl(2, R) Lie algebra:

[h, X ] = 2 X ; [h,Y ] = − 2 Y ; [X,Y ] = 2 h (6.8.1)

into UD=3 in such a way that h ∈ H
� and X,Y ∈ K

�. The nilpotent operator X is
identified with the Lax operator L0 at Euclidean time τ = 0 and the corresponding
solution depending on τ is constructed by using the algorithm described in [27, 29,
32].

In themulticenter approach of [15–19, 38] one utilizes the standard triple to single
out a nilpotent subalgebra N, as follows. One diagonalizes the adjoint action of the
central element h of the triple on the Lie Algebra UD=3:

[
h , Cμ

] = μCμ (6.8.2)

The set of all eigen-operators Cμ corresponding to positive gradings μ > 0 spans a
subalgebra N ⊂ UD=3 which is necessarily nilpotent

N = span [C2 , C3 , . . . , Cmax ] (6.8.3)

Such a nilpotent subalgebra has an intersection N
⋂

K
� with the space K

� which is
not empty since at least the operator C2 = X is present by definition of a standard
triple. The next steps of the construction are as follows.

6.8.1 The Coset Representative in the Symmetric Gauge

Given a basis Ai of the space NK ≡ N
⋂

K
�, whose dimension we denote:

� ≡ dimNK (6.8.4)

and a basis Bα of the subalgebra NH ≡ N
⋂

H
�, whose dimension we denote

m ≡ dimNH (6.8.5)

we can construct a map:
H : R

3 → NK (6.8.6)

by writing:

NK 	 H(x) =
�∑

i=1

hi (x) Ai (6.8.7)
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By construction, the point dependentLie algebra elementH(x) is nilpotent of a certain
maximal degree dn, so that its exponential map to the nilpotent group N ⊂ UD=3

truncates to a finite sum:

Y (x) = exp [H(x)] = 1 +
dn∑
a=1

1

a! H
a(x) (6.8.8)

The above constructed object realizes an explicit x-dependent coset representative
from which we can construct the Maurer Cartan left-invariant one form:

Σ = Y −1∂iY dxi (6.8.9)

Next let us decomposeΣ along theK
� subspace and theH

� subalgebra, respectively.
This is done by setting:

P = Tr(Σ K A)KA ; Ω = Tr(Σ Hm)Hm (6.8.10)

where KA and Hm denote a basis of generators for the two considered subspaces,
K A and Hm being their duals:

Tr(K A KB) = δA
B ; Tr(Hm Hn) = δmn ; Tr(K A Hn) = 0 (6.8.11)

Denoting:
�P ≡ 1

2 εi jk δim Pm dx j ∧ dxk (6.8.12)

the Hodge-dual of the coset vielbein

P = Pm dxm (6.8.13)

the field equations of the three dimensional σ -model reduce to the following one:

d�P = Ω ∧ �P − �P ∧ Ω (6.8.14)

Actually, since N ⊂ UD=3 forms a nilpotent subalgebra the constructed object Y
realizes a map from the three-dimensional space to the much smaller coset manifold:

Y : R
3 → N

NH
(6.8.15)

and due to the polynomial form of the coset representative the final equations of
motion obtain a triangular solvable form that we describe here below. Since the
algebra N is nilpotent, its derivative series terminates, namely we have:

N ⊃ DN ⊃ . . . ⊃ Dn
N ⊃ Dn+1

N = 0 (6.8.16)
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where at each stepD i
N is a proper subspace ofD i−1

N. Correspondingly let us define:

D i
NK = D i

N

⋂
K

� (6.8.17)

the intersections of the derivative subalgebras with the K
� subspace and let us intro-

duce the complementary orthogonal subspaces:

D i
NK = N

(i)
K ⊕ D i+1

NK (6.8.18)

This yields an orthogonal graded decomposition of the space NK of the following
form:

NK =
n⊕

a=0

N
(a)

K
(6.8.19)

The space N
(0)
K

contains those generators that cannot be produced by any commu-
tator within the algebra, N

(1)
K

contains those generators that are produced in simple
commutators, N

(2)
K

contains those that are produced in double commutators and so
on. Let us name

�a = dimN
(a)

K
;

n∑
a

�a = � (6.8.20)

Correspondinglywe can arrange the � functionshi (x) according to the graded decom-
position (6.8.19), by writing:

H(x) =
n∑

α=0

�α∑
i=1

h
(α)
i (x) Ai

α

︸ ︷︷ ︸
∈N

(α)

K

(6.8.21)

and Eq. (6.8.14) take the following triangular form:

∇2h
(0)
i = 0

∇2h
(1)
i = F

(1)
i

(
h(0),∇h(0)

)
∇2h

(2)
i = F

(2)
i

(
h(0),∇h(0), h(1),∇h(1))

. . . = . . .

∇2h
(n)
i = F

(n)
i

(
h(0),∇h(0), h(1),∇h(1), . . . , h(n−1),∇h(n−1)

)
, (6.8.22)

where ∇2 denotes the three-dimensional Laplacian and at each level α, by F(α)
i (. . . )

we denote an so(3) invariant polynomial of all the functions hβ up to level α −1 and
of their derivatives.
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Therefore the first �0 functions h
(0)
i are just harmonic functions, while the higher

ones satisfy Laplace equation with a source that is provided by the previously deter-
mined functions.

6.8.2 Transformation to the Solvable Gauge

Given the symmetric coset representative Y (x), parameterized by functions h(α)
i (x)

which satisfy the field equations (6.8.22), in order to retrieve the corresponding
supergravity fields satisfying supergravity field equations, we need to solve a tech-
nical, yet quite crucial problem. We need to construct a new upper triangular coset
representative:

L(Y ) =

⎛
⎜⎜⎜⎜⎜⎝

L1,1(Y ) L1,2(Y ) · · · L1,n−1(Y ) L1,n(Y )

0 L2,2(Y ) · · · L2,n−1(Y ) L2,n(Y )

0 0 L3,3(Y ) · · · L3,n(Y )
... . . . 0 · · · ...

0 0 · · · 0 L3,n(Y )

⎞
⎟⎟⎟⎟⎟⎠

(6.8.23)

which depends algebraically on the matrix entries of Y and satisfies the following
equivalence condition

L(Y )Q(Y ) = Y ; Q(Y ) ∈ H� (6.8.24)

where, as specified above,Q(Y ) is a suitable element of the subgroup H�. It should
be stressed that in the existing literature, this transition from the symmetric to the
solvable gauge, which is compulsory in order to make the construction of the black
hole solutions explicit, has been advocated, yet it has been left to ad hoc procedures
to be invented case by case.

Actually a universal and very elegant solution of such a problem exists and was
found, from a different perspective, by the author of the present book in collaboration
with A. Sorin. It was presented in [27–30, 32]. Defining the following determinants:

Di (Y ) := Det

⎛
⎜⎝
Y1,1 . . . Y1,i

...
...

...

Yi,1 . . . Yi,i

⎞
⎟⎠ , D0(Y ) := 1 (6.8.25)

the matrix elements of the inverse of the upper triangular coset representative satis-
fying both Eqs. (6.8.23) and (6.8.24) are given by the following expressions:
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(
L(Y )−1

)
i j ≡ 1√

Di (Y )Di−1(Y )
Det

⎛
⎜⎝
Y1,1 . . . Y1,i−1 Y1, j

...
...

...
...

Yi,1 . . . Yi,i−1 Yi, j

⎞
⎟⎠

(6.8.26)

Equation (6.8.26) provides a universal non-trivial and very elegant solution to the
gauge-change problem and makes the entire construction based on harmonic func-
tions truly algorithmic from the start to the very end.

6.8.3 Extraction of the Three Dimensional Scalar Fields

The result of the procedure described in the previous section is a triangular coset
representative L(h

(α)
i ) whose entries are polynomial and square root of polynomials

in the functions h(α)
i (x). The extraction of the scalar fields {U (x), a(x), Z(x), φ(x)}

can now be performed according to the rules already presented in [32], which we
recall here in full.

The general form of the solvable coset representative in terms of the fields is the
following one:

L(Φ) = exp
[−a LE

+
]
exp
[√

2 ZM WM

]
L4(φ) exp

[
U LE

0

]
(6.8.27)

where LE
0 , LE± are the generators of the Ehlers group and W M ≡ W 1M are the

generators in the W -representation, according to the general structure (1.7.13) of
the UD=3 Lie algebra; furthermore L4(φ) is the coset representative of the D = 4
scalar coset manifold immersed in the UD=3 group. From this structure, identifying
L(Φ) = L(h

(α)
i ) we deduce the following iterative procedure for the extraction of

the relevant fields:
First of all we can determine the warp factorU by means of the following simple

formula:
U (h) = log

[
1
2 Tr

(
L(h) LE

+ L
−1(h) LE

−
)]

(6.8.28)

Secondly we obtain the fields φi as follows. Defining the functionals

Ξi (h) = Tr
(
L

−1(h) Ti L(τ )
)

(6.8.29)

from the form of the coset representative (6.8.27) it follows that Ξi depend only on
the D = 4 scalar fields and, according to the explicit form of the D = 4 coset, one
can work out the scalar fields φi .

The knowledge of U, φi allows to define:

Ω(h) = L(h) exp
[−U LE

0

]
L4(φ)−1 (6.8.30)

http://dx.doi.org/10.1007/978-3-319-74491-9_1
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from which we extract the ZM fields by means of the following formula:

ZM(h) = 1

2
√
2
Tr
[
Ω(h)W T

M

]
(6.8.31)

where T means transposed. Finally the knowledge of ZM(h) allows to extract the a
field by means of the following trace:

a(h) = − 1
2Tr
[
Ω(h) exp

[
−√

2 ZM(h)WM

]
LE

+
]

(6.8.32)

6.9 General Properties of the Black Hole Solutions
and Structure of Their Poles

Having discussed the structure of supergravity solutions in terms of black-boxes
that are a set of harmonic functions and of their descendants generated through the
solution of the hierarchical equations (6.8.22), it is appropriate to study the general
form of the geometries one obtains in this way and the properties of the available
harmonic functions.

First of all, naming:
W = exp[U (x)] (6.9.1)

the warp factor that defines the 4-dimensional metric (6.2.11), we would like to
investigate the general properties of the corresponding geometries. For the casewhere
the Kaluza–Klein monopole is zeroA[KK ] = 0 we can write the general form of the
curvature two-form of such spaces and therefore the intrinsic form of the Riemann
tensor. Using the vielbein formalism introduced in Eq. (6.2.12) we obtain:

R0i = −W∇ i∇kW E0 ∧ Ek − 2∇ iW∇kW E0 ∧ Ek

Ri j = − 2W∇[i∇kW E j] ∧ Ek + (∇W · ∇W) ∇kW Ei ∧ E j (6.9.2)

where the derivatives used in the above equations are defined as follows. Let the flat
metric in three dimension be described by a Euclidean dreibein ei such that:

ds2f lat =
3∑

i=1

ei ⊗ ei

Ei = 1

W
ei (6.9.3)

then the total differential of the warp factor expanded along ei yields the derivatives
∇kW, namely:

dW = ∇kW ek (6.9.4)
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Next let us consider the general form of harmonic functions. These latter form a
linear space since any linear combination of harmonic functions is still harmonic.
There are three types of building blocks that we can use:

a Real center pole:

Hα(x) = 1

|x − xα| (6.9.5)

b Real part of an imaginary center pole:

Rα(x) = Re

[
1

|x − i xα|
]

(6.9.6)

c Imaginary part of an imaginary center pole:

Jα(x) = Im

[
1

|x − i xα|
]

(6.9.7)

Hence the most general harmonic function can be written as the following sum:

Harm(x) = h∞ +
∑
α

pα

|x − xα | +
∑
β

qβ Re

[
1

|x − i xβ |
]

+
∑
γ

kγ Im

[
1

|x − i xγ |
]

(6.9.8)

where the constant h∞ is the boundary value of the harmonic function at infinity far
from all the poles. In order to study the behavior of Harm(x) in the vicinity of a real
pole (|x − xα| << 1) it is convenient to adopt local polar coordinates:

x1 − x1α = r cos θ

x2 − x2α = r sin θ sin φ

x3 − x3α = r sin θ cos φ

(6.9.9)

In this coordinates the harmonic function is approximated by:

Harm(x) � hα + pα

r
(6.9.10)

where the effective constant hα encodes the finite part of the function contributed
by all the other poles. In polar coordinates the Laplacian operator on functions of r
becomes:

Δ = d2

dr2
+ 2

r

d

dr
(6.9.11)

The general outcome of the construction procedure outlined in the previous section is
that the warp factor is the square root of a rational function of n harmonic functions,
where n = dimNK
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W(x) =

√√√√√ P

(
Ĥarm1(x), . . . , Ĥarmn(x)

)

Q

(
Ĥarm1(x), . . . , Ĥarmn(x)

) (6.9.12)

whereP andQ are twopolynomials.By Ĥarm1(x)wedenote both harmonic functions
and their descendants generated by the hierarchical system (6.8.22). For a given
multicenter solution it is convenient to enumerate all the poles displayed by one or
the other of the harmonic functions and in the vicinity of each of those poles we will
have:

Ĥarmi (x) � pi
rmi

(6.9.13)

where pi �= 0 if the considered pole belongs to the considered function and it is
zero otherwise. Furthermore if Harmi (x) is one of the level one harmonic function
the exponent mi = 1. Otherwise it is bigger, but in any case mi ≥ 1. Taking this
into account the effective behavior of the warp factor will always be of the following
form:

W(x) � r �α
√
cα (6.9.14)

where � is some integer or half integer power (positive or negative) and cα is a
constant. In order for the pole to be a regular point of the solution, two conditions
have to be satisfied:

1. The constant cα > 0 must be positive so that the warp factor is real.
2. The power �α ≥ 1 so that the Riemann tensor does not diverge at the pole.

The second condition follows from the form (6.9.2) of the Riemann tensor which
implies that all of its components behave as:

Rab
cd � r2�α−2 × const (6.9.15)

Near the pole the metric behaves as follows:

ds2 � −√
cα r

�αdt2 + 1√
cα

1

r �α

[
dr2 + r2

(
dθ2 + sin2 θ dφ2)] (6.9.16)

In order for the pole to be an event horizon of finite or of vanishing area, wemust have
2 − �α > 0, so that the volume of the two-sphere described by

(
dθ2 + sin2 θ dφ2

)
does not diverge. Hence for regular black holes we have only three possibilities:

�α = 2︸ ︷︷ ︸
Large Black Holes

; �α = 3
2︸ ︷︷ ︸

Small Black Holes

; �α = 1︸ ︷︷ ︸
Very Small Black Holes

(6.9.17)

When we are in the case of Large Black Holes, the near horizon geometry is approx-
imated by that:

AdS2 × S
2 (6.9.18)
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The case of the harmonic functions with an imaginary center requires a differ-
ent treatment. Their near singularity behavior is best analyzed by using spheroidal
coordinates.

These are easily introduced by setting:

x1 =
√
r2 + α2 sin θ sin φ

x2 =
√
r2 + α2 sin θ cosφ

x3 = r cos θ (6.9.19)

where r, θ, φ are the new coordinates and α is a deformation parameter which rep-
resents the position of the center in the complex plane. In terms of these coordinates
the flat Euclidean three-dimensional metric takes the following form:

ds2
E3 = dΩ2

spheroidal ≡
(
r2 + α2 cos2 θ

)
dr2

r2 + α2
+ (r2 + α2

)
sin2 θ dφ2

+ (r2 + α2 cos2 θ
)
dθ2 (6.9.20)

and the two harmonic functions that correspond to the real and imaginary part of a
complex harmonic function with center on the imaginary z-axis at α-distance from
zero are:

Pα(r, θ) = r

r2 + α2 cos2 θ
(6.9.21)

Rα(r, θ) = α cos θ

r2 + α2 cos2 θ
(6.9.22)

and the Hodge duals of their gradients, in spheroidal coordinates have the following
form:

� ∇Pα = sin θ(
r2 + α2 cos2 θ

)2
[
2α2 r cos θ sin θ dr ∧ dφ

+ (r2 + α2) (r2 − α2 cos2 θ
)
dθ ∧ dφ

]
(6.9.23)

�∇Rα = α sin θ(
r2 + α2 cos2 θ

)2
[(

α2 cos2 θ − r2
)
sin θdr ∧ dφ

+2r
(
r2 + α2

)
cos θdθ ∧ dφ

]
(6.9.24)

These are the building blockswe can use to construct Kerr–Newman like solutions
and we shall outline a pair of examples in the sequel.
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6.10 The Example of the S3 Model: Classification
of the Nilpotent Orbits

As an illustration of the general procedure we explore the case of the S3 model,
leading to the G2,2 group in D = 3. The detailed classification of the nilpotent orbits
pertaining to this case was derived in Sect. 6.7. According to it, for the case of the
coset manifold12:

UD=3

H�
= G(2,2)

̂SL(2, R) × SL(2, R)h�

(6.10.1)

there just seven distinct nilpotent orbits of theH� = ̂SL(2, R)×SL(2, R)h� subgroup
in the K

� representation
(
2, 3

2

)
, which are enumerated by the three set of labels αβγ

and are denotedOα
βγ as described in Table6.1. An explicit choice of a representative

for each of the seven orbits is provided below.

O1
11 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
3
2

√
5
2

2

√
3
2

√
5
2 0

√
5
2

2 0√
5
2

2

√
6 −

√
5
2

2 −√
3 −

√
5
2

2 0
√

5
2

2

−
√

3
2

√
5
2

2 −
√

3
2

√
5
2 0

√
5
2

2 0

−
√
5
2

√
3

√
5
2 0

√
5
2 −√

3 −
√
5
2

0
√

5
2

2 0
√
5
2

√
3
2

√
5
2

2

√
3
2√

5
2

2 0 −
√

5
2

2

√
3 −

√
5
2

2 −√
6

√
5
2

2

0
√

5
2

2 0
√
5
2 −

√
3
2

√
5
2

2 −
√

3
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.10.2)

O4
11 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2 0 0 0 1

2 0 0
0 0 0 0 0 0 0
0 0 1

2 0 0 0 1
2

0 0 0 0 0 0 0
− 1

2 0 0 0 − 1
2 0 0

0 0 0 0 0 0 0
0 0 − 1

2 0 0 0 − 1
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.10.3)

O2
11 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2 0 − 1

2 0 0 0 0
0 1 0 1√

2
0 0 0

1
2 0 − 1

2 0 0 0 0
0 − 1√

2
0 0 0 1√

2
0

0 0 0 0 1
2 0 − 1

2
0 0 0 − 1√

2
0 −1 0

0 0 0 0 1
2 0 − 1

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.10.4)

12For the rationale of our notation we refer the reader to previous Sect. 5.8.

http://dx.doi.org/10.1007/978-3-319-74491-9_5
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O3
11 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 − 1√
2
0 0 0

0 1 − 1
2 0 1

2 0 0
0 1

2 0 0 0 − 1
2 0

1√
2
0 0 0 0 0 1√

2
0 − 1

2 0 0 0 1
2 0

0 0 1
2 0 − 1

2 −1 0
0 0 0 − 1√

2
0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.10.5)

O3
22 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1√
2
0 0 0

0 1 − 1
2 0 − 1

2 0 0
0 1

2 0 0 0 1
2 0

− 1√
2
0 0 0 0 0 − 1√

2
0 1

2 0 0 0 1
2 0

0 0 − 1
2 0 − 1

2 −1 0
0 0 0 1√

2
0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.10.6)

O3
21 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 1√
2
0 0 0

0 0 − 1
2 0 − 1

2 0 0
0 1

2 −1 0 0 1
2 0

− 1√
2
0 0 0 0 0 − 1√

2
0 1

2 0 0 1 1
2 0

0 0 − 1
2 0 − 1

2 0 0
0 0 0 1√

2
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.10.7)

O3
12 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 − 1√
2
0 0 0

0 0 − 1
2 0 1

2 0 0
0 1

2 −1 0 0 − 1
2 0

1√
2
0 0 0 0 0 1√

2
0 − 1

2 0 0 1 1
2 0

0 0 1
2 0 − 1

2 0 0
0 0 0 − 1√

2
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.10.8)

Each orbit representative Oα
βγ identifies a standard triple {h, X,Y } and hence an

embedding of an sl(2, R) Lie algebra:

[h, X ] = 2 X ; [h,Y ] = − 2 Y ; [X,Y ] = 2 h (6.10.9)
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into g(2,2) in such a way that h ∈ H
� and X,Y ∈ K

�. The triple is obtained by setting:

Xα|βγ ≡ Oα
βγ ; Yα|βγ ≡ XT

α|βγ ; hα|βγ ≡ [
Xα|βγ ,Yα|βγ

]
(6.10.10)

The relevant item in the construction of solutions based on the integration of equations
in the symmetric gauge is provided by the central element of the triple hα|βγ which
defines the gradings. In the present example of the S3 model, it turns out the orbits
having the same α and γ labels but different β-labels have the same central element,
namely:

hα|βγ = hα|β ′γ (6.10.11)

so that the solutions pertaining both to orbitOα
βγ and to orbitOα

β ′γ are obtained from
the same construction and are distinguished only by different choices in the space of
the available harmonic functions parameterizing the general solution.

The explicit form of the central elements are the following ones:

Large Orbit O1
11: Central Element

h1|11 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 −1 0 5 0 0
0 0 0

√
2 0 0 0

−1 0 0 0 0 0 5
0

√
2 0 0 0

√
2 0

5 0 0 0 0 0 −1
0 0 0

√
2 0 0 0

0 0 5 0 −1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Eigenvalues
[
1
2 h1|11

] = {−3, 3,−2, 2,−1, 1, 0} (6.10.12)

Very Small Orbit O4
11: Central Element

h4|11 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 −1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 −1
0 0 0 0 0 0 0
−1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 −1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Eigenvalues
[
1
2 h4|11

] =
{
−1

2
,−1

2
,
1

2
,
1

2
, 0, 0, 0

}
(6.10.13)
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Small Orbit O2
11: Central Element

h2|11 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0 0
0 0 0 −√

2 0 0 0
1 0 0 0 0 0 0
0 −√

2 0 0 0 −√
2 0

0 0 0 0 0 0 1
0 0 0 −√

2 0 0 0
0 0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Eigenvalues
[
1
2 h2|11

] =
{
−1, 1,−1

2
,−1

2
,
1

2
,
1

2
, 0

}
(6.10.14)

Large BPS Orbit O3
11: Central Element

h3|11 = h3|21 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0
√
2 0 0 0

0 0 1 0 −1 0 0
0 1 0 0 0 1 0√
2 0 0 0 0 0 −√

2
0 −1 0 0 0 −1 0
0 0 1 0 −1 0 0
0 0 0 −√

2 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Eigenvalues
[
1
2 h3|11

] = {−1,−1, 1, 1, 0, 0, 0} (6.10.15)

Large Non BPS Orbit O3
22: Central Element

h3|12 = h3|22 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 −√
2 0 0 0

0 0 1 0 1 0 0
0 1 0 0 0 −1 0
−√

2 0 0 0 0 0
√
2

0 1 0 0 0 −1 0
0 0 −1 0 −1 0 0
0 0 0

√
2 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Eigenvalues
[
1
2 h3|22

] = {−1,−1, 1, 1, 0, 0, 0} (6.10.16)

6.11 Explicit Construction of the Multicenter Black Holes
Solutions of the S3 Model

Having enumerated the central elements for the independent orbits we proceed to
the construction and discussion of the corresponding black hole solutions, whose
properties are summarized in Table6.2.
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Table 6.2 Properties of the g(2,2) orbits in the S3 model. The structure of the electromagnetic
charge vector is that obtained for solutions with vanishing Taub-NUT current. The symbol � is
meant to denote semidirect product. SW denotes the subgroup of the D = 4 duality group which
leaves the charge vector invariant, whileSH� denotes the subgroup of the H� isotropy group of the
D = 3 sigma-model which leaves invariant the X element of the standard triple. This latter is the
Lax operator in the one-dimensional spherical symmetric approach

Name pq Quart. Inv. W −
stab. group

H� −
stab. group

dim dim

of orbit charges I4 SW ⊂
sl(2, R)

SH� ⊂
̂sl(2, R) ⊕
sl(2, R)h�

N N
⋂

K
�

O4
11

⎛
⎜⎜⎜⎝

0

0

0

q

⎞
⎟⎟⎟⎠ 0

(
1 0

c 1

)
ISO(1, 1)︸ ︷︷ ︸
3 gen.

3 3

O2
11

⎛
⎜⎜⎜⎝

√
3 p

0

0

0

⎞
⎟⎟⎟⎠ 0 1 SO(1, 1) � R︸ ︷︷ ︸

2 gen.

4 3

O3
11

⎛
⎜⎜⎜⎝

0

p

−√
3q

0

⎞
⎟⎟⎟⎠ 9 p q3 > 0 Z3 R︸︷︷︸

1 gen.

A2 = 0 5 4

O3
22

⎛
⎜⎜⎜⎝

0

p√
3q

0

⎞
⎟⎟⎟⎠ −9 p q3 < 0 1 R︸︷︷︸

1 gen.

A3 = 0 3 3

O1
11

⎛
⎜⎜⎜⎜⎝

1
2

√
3
2 p

0
7
6 p√
2q

⎞
⎟⎟⎟⎟⎠

1
128 p

3×
(49p + 72q)

1 1 6 4

6.11.1 The Very Small Black Holes of O4
11

We begin with the smallest orbits which, in a sense that will become clear further on,
represent the elementary blocks in terms of which bigger black holes are constructed.

Focusing on any orbit Oα
βγ and considering the nilpotent element of the corre-

sponding triple Xα|βγ ∈ K
� as a Lax operator L0, we easily workout the electro-

magnetic charges by calculating the traces displayed below (see Sect. 5.9, for more
explanations)

Qw = Tr(Xα|βγT
w) (6.11.1)

http://dx.doi.org/10.1007/978-3-319-74491-9_5
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W-Representation

In the case of the orbit O4
11 we obtain:

Qw
4|11 = (0, 0, 0, 1) (6.11.2)

Substituting such a result in the expression for the quartic symplectic invariant (see
[32]):

I4 = 1

4

(
4
√
3Q4Q

3
1 + 3Q2

3Q
2
1 − 18Q2Q3Q4Q1 − Q2

(
4
√
3Q3

3 + 9Q2Q
2
4

))
(6.11.3)

of the W representation which happens to be the spin 3
2 of sl(2, R) we find:

I4 = 0 (6.11.4)

The result ismeaningful since, by calculating the traceTr(X4|11LE+) = 0,we can also
check that the Taub-NUT charge vanishes. We can also address the question whether
there are subgroups of the original duality group in four-dimensions SL(2,R) that
leave the charge vector (6.11.2) invariant. Using the explicit form of the j = 3

2
representation displayed in Eq. (3.13) of [32], we realize that indeed such group
exists and it is the parabolic subgroup described below:

∀ c ∈ R :
(
1 0
c 1

)
∈ S4|11 ⊂ SL(2, R) (6.11.5)

This stability subgroup together with the vanishing of the quartic invariant are the
intrinsic definition of the W-orbit pertaining to very small black holes.

H�-Stability Subgroup

In a parallel way we can pose the question what is the stability subgroup of the
nilpotent element X4|11 in H� = ̂sl(2, R) ⊕ sl(2, R)h� (For further explanations on
H� and its structure see Sect. 5.8). The answer is the following:

S4|11 = ISO(1, 1) (6.11.6)

A generic element of the corresponding Lie algebra is a linear combination of three
generators J, T1, T2, satisfying the commutation relations:

[J , T1] = 1√
2
T1 + 3

2
√
6
T2

[J , T2] = 3

2
√
2
T1 ; [T1 , T2] = 0

(6.11.7)

It is explicitly given by the following matrix:

http://dx.doi.org/10.1007/978-3-319-74491-9_5
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ω J + x T1 + y T2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 − x
2
√
2

ω

2
√
2

− x
2 0 − 1

2

√
3
2 y 0

x
2
√
2

0 − 1
2

√
3
2 y −ω

2
x

2
√
2

0 − 1
2

√
3
2 y

ω

2
√
2

− 1
2

√
3
2 y 0 − x

2 0 − x
2
√
2

0

− x
2 −ω

2
x
2 0 − x

2 −ω
2

x
2

0 x
2
√
2

0 x
2 0 1

2

√
3
2 y

ω

2
√
2

1
2

√
3
2 y 0 − x

2
√
2

−ω
2

1
2

√
3
2 y 0 − x

2
√
2

0 1
2

√
3
2 y 0 x

2
ω

2
√
2

x
2
√
2

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.11.8)
Nilpotent Algebra N4|11

Considering next the adjoint action of the central element h4|11 on the subspace K
�

we find that its eigenvalues are the following ones:

EigenvaluesK
�

4|11 = {−2, 2,−1,−1, 1, 1, 0, 0} (6.11.9)

Therefore the three eigenoperators A1, A2, A3 corresponding to the positive eigen-
values 2, 1, 1, respectively, form the restriction to K

� of a nilpotent algebra N4|11. In
this case Ai commute among themselves so thatN4|11 = N4|11

⋂
K

� and it is abelian.
This structure of the nilpotent algebra implies that for the orbit O4

11 we have only
three functions h0i which will be harmonic and independent.

Explicitly we set:

H(h1, h2, h3) =
3∑

i=1

hi Ai =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−h1 h3 0 −√
2h3 −h1 −h2 0

h3 0 −h2 0 h3 0 −h2
0 h2 −h1

√
2h3 0 −h3 −h1√

2h3 0
√
2h3 0

√
2h3 0

√
2h3

h1 −h3 0
√
2h3 h1 h2 0

−h2 0 h3 0 −h2 0 h3
0 −h2 h1 −√

2h3 0 h3 h1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.11.10)

Considering H(h1, h2, h3) as a Lax operator and calculating its Taub-NUT charge
and electromagnetic charges we find:

nT N = −2 h2 ; Q =
(
0 , 2h2 , −2

√
3h3 , −2h1

)
(6.11.11)

This implies that constructing the multi-centre solution with harmonic functions the
condition h2 = 0 should be sufficient to annihilate the Taub-NUT current.

For later convenience let us change the normalization in the basis of harmonic
functions as follows:

h
(0)
1 = 1√

2
H1 ; h

(0)
2 = 1

2 (1 − H2) ; h
(0)
3 = 1√

2
H3 (6.11.12)
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Implementing the symmetric coset construction with:

Y (H1,H2,H3) ≡ exp
[
H
(

1√
2
H1,

1
2 (1 − H2) , 1√

2
H3

)]
(6.11.13)

and calculating the upper triangular coset representative L(Y ) according to
Eq. (6.8.26) we find a relatively simple expression which, however, is still too large
to be displayed. Yet the extraction of the σ -model scalar fields produces a quite
compact answer which we list below:

exp [−U ] =
√
H 2

2 − 3H 2
3 + H1 (6.11.14)

Im z =
√
H 2

2 − 3H 2
3 + H1

H 2
2 − H 2

3 + H1
(6.11.15)

Re z = −
√
2H3

H 2
2 − H 2

3 + H1
(6.11.16)

ZM =

⎛
⎜⎜⎜⎜⎜⎜⎝

√
6H 2

3

H 2
2 −3H 2

3 +H 1

(H 2−2H 3)(H 2+H 3)
2+H 1H 2√

(H 2
2 −3H 2

3 +H 1)
2

−
√
3H 3

H 2
2 −3H 2

3 +H 1
H 2

2 −3H 2
3 +H 1−1√

2(H 2
2 −3H 2

3 +H 1)

⎞
⎟⎟⎟⎟⎟⎟⎠

(6.11.17)

a = H 3
2 + (−3H 2

3 + H1 + 1
)
H2 − 2H 3

3√
2
(
H 2

2 − 3H 2
3 + H1

) (6.11.18)

The Taub-NUT Current

Given this explicit result we can turn to the explicit oxidation formulae described in
Sect. 6.2.1 and calculate the Taub-NUT current which is the integrand of Eq. (6.2.17).
We find:

j T N = √
2 �∇ H2 (6.11.19)

Hence the vanishing of the Taub-NUT current is guaranteed by the very simple
condition:

H2 = α ; ∇H2 = 0 (6.11.20)

where α is just a constant. This confirms the preliminary analysis obtained from the
Lax operator which requires a vanishing component of the Lax along the second
generator A2 of the nilpotent algebra.
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General Form of the Solution

Imposing this condition we arrive at the following form of the solution depending
on two harmonic functions H1,H3:

exp[−U ] =
√

α2 − 3H 2
3 + H1 (6.11.21)

z = i
1√

α2 − 3H 2
3 + H1

−
√
2H3

α2 − 3H 2
3 + H1

(6.11.22)

j T N = 0 (6.11.23)

j EM = �∇

⎛
⎜⎜⎝

0
0√
3H3

− 1√
2
H1

⎞
⎟⎟⎠ (6.11.24)

Obviously the physical range of the solution is determined by the condition (α2 −
3H 2

3 +H1) > 0 which can always be arranged, by tuning the parameters contained
in the harmonic functions.

To this effect let us discuss the nature of the black holes encompassed by this solu-
tion, that, by definition, are located at the poles of the harmonic functions H1,H3.

According to the argument developed in Sect. 6.9, in the vicinity of each pole
|x− xI | = r < ε we can choose polar coordinates centered at xα and the behavior
of the harmonic functions, for ε → 0 is the following one:

H1 ∼ a1 + b1
r

(6.11.25)

H3 ∼ a3 + b3
r

(6.11.26)

which corresponds to the following behavior of the warp factor:

exp[−U ] ∼
√

α2 − 3a23 − 3b23
r2

+ a1 + b1
r

− 6a3b3
r

(6.11.27)

In order for the warp factor to be real for all values of r → 0 we necessarily find

b3 = 0

b1 > 0

α2 − 3a23 + a1 > 0 (6.11.28)

Since conditions (6.11.28) hold true for each available pole, it means the harmonic
functionH3 has actually no pole and is therefore equal to some constant. The bound-
ary condition of asymptotic flatness fixes the value of such a constant:
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lim
r→∞ exp[−U ] = 1 ⇔ H3 =

√
α2 + H1(∞) − 1√

3
(6.11.29)

Under such conditions in the vicinity of eachpolexα , thewarp factor has the following
behavior:

|x − xα|2 exp[−U ] x→xα∼ √
b1 |x − xα|3/2 + O

(|x − xα|5/2) (6.11.30)

leading to a vanishing horizon area:

Area Hα
= lim

x→xα

|x − xα|2 exp[−U ] = 0 (6.11.31)

At the same time using the form of the electromagnetic current in Eq. (6.11.24) and
the behavior of the harmonic function in the vicinity of the poles we obtain the charge
vector of each black hole encompassed by the solution:

Qα =
∫
S2α

j EM =

⎛
⎜⎜⎝

0
0
0

− 1√
2
qα

⎞
⎟⎟⎠ ; where qα = b1 for pole xα (6.11.32)

Summarizing

For the regular multicenter solutions associated with the orbit 4|11 all blacks holes
localized at each pole are of the same type, namely they are very small black holes
with vanishing horizon area and a charge vector Q belonging to W-orbit which is
characterized by both a vanishing quartic invariant and the existence of a continuous
parabolic stability subgroup of SL(2, R). Every black hole is a repetition in a different
place of the spherical symmetric black hole which gives its name to the orbit.

6.11.2 The Small Black Holes of O2
11

Next let us consider the orbit O2
11.

W-Representation

Applying the same strategy as in the previous case, from the general formula we
obtain

Qw
2|11 = Tr(X2|11T w) =

(√
3, 0, 0, 0

)
(6.11.33)

Substituting such a result in the expression for the quartic symplectic invariant (see
Eq. (6.11.3) we find:

I4 = 0 (6.11.34)
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Just as before we stress that this result is meaningful since, by calculating the trace
Tr(X2|11LE+) = 0, we can also check that the Taub-NUT charge vanishes. Address-
ing the question whether there are subgroups of the original duality group in four-
dimensions SL(2,R) that leave the charge vector (6.11.33) invariant we realize that
such a group contains only the identity

SL(2, R) ⊃ S2|11 = 1 (6.11.35)

Hencewe clearly establish the intrinsic difference between the two type of small black
holes at the level of theW-representation. Both have vanishing quartic invariant, yet
only the orbit 4|11 has a residual symmetry.

H�-Stability Subgroup

Considering next the stability subgroup of the nilpotent element X2|11 in H� =
̂sl(2, R) ⊕ sl(2, R)h� we obtain:

S2|11 = SO(1, 1) � R (6.11.36)

A generic element of the corresponding Lie algebra is a linear combination of two
generators J, T , satisfying the commutation relations:

[J , T ] = 3

2
√
6
T

(6.11.37)

We do not give its explicit form which we do not use in the sequel.

Nilpotent Algebra N4|11

Considering next the adjoint action of the central element h2|11 on the subspace K
�

we find that its eigenvalues are the following ones:

EigenvaluesK
�

4|11 = {−3, 3,−2, 2,−1, 1, 0, 0} (6.11.38)

Therefore the three eigenoperators A3, A2, A1 corresponding to the positive eigen-
values 3, 2, 1, respectively, form the restriction to K

� of a nilpotent algebra N2|11.
In this case Ai do not all commute among themselves so that, differently from the
previous case we have N4|11 �= N4|11

⋂
K

�. In particular we find a new generator:

B ∈ H
� (6.11.39)

which completes a four-dimensional algebra with the following commutation rela-
tions:
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0 = [A3 , A2] = [A1 , A3] (6.11.40)

B = [A2 , A1]

0 = [B , A1]

0 = [B , A2]

0 = [B , A3] (6.11.41)

As in the previous case, the structure of the nilpotent algebra implies that for the
orbit O2

11 we have only three functions h
0
i which will be harmonic and independent.

This is so because D2
N2|11 = 0 and DN2|11

⋂
K

� = 0.
Explicitly we set:

H(h1, h2, h3) = ∑3
i=1 hi Ai =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−h2 h1 − h3 h2 −√
2h1 − √

2h3 0 −3h1 − h3 0
h1 − h3 −2h2 h3 − 3h1 −√

2h2 h1 + h3 0 −3h1 − h3
−h2 3h1 − h3 h2

√
2h1 − √

2h3 0 −h1 − h3 0√
2h1 + √

2h3
√
2h2

√
2h1 − √

2h3 0
√
2h1 − √

2h3 −√
2h2

√
2h1 + √

2h3
0 −h1 − h3 0

√
2h1 − √

2h3 −h2 3h1 − h3 h2
−3h1 − h3 0 h1 + h3

√
2h2 h3 − 3h1 2h2 h1 − h3

0 −3h1 − h3 0 −√
2h1 − √

2h3 −h2 h1 − h3 h2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.11.42)

ConsideringH(h1, h2, h3) as a Lax operator and calculating its Taub-NUT charge
and electromagnetic charges we find:

nT N = −2 (3h1 + h3) ; Q =
{
−2

√
3h2, 6h1 − 2h3,−2

√
3 (h1 + h3) , 0

}
(6.11.43)

This implies that constructing the multi-centre solution with harmonic functions the
condition h3 = − 3 h1 might be sufficient to annihilate the Taub-NUT current. We
shall demonstrate that in this case the condition is slightly more complicated.

For later convenience let us change the normalization in the basis of harmonic
functions as follows:

h
(0)
1 = 1

4H3 ; h
(0)
2 = 1

2 (1 − H2) ; h
(0)
3 = 1

4H1 (6.11.44)

Implementing the symmetric coset construction with:

Y (H3,H2,H1) ≡ exp
[
H
(
1
4H3,

1
2 (1 − H2) , 1

4H1
)]

(6.11.45)

calculating the upper triangular coset representative L(Y ) according to equations
(6.8.26) and extracting the σ -model scalar fields we obtain the answer which we list
below:
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exp [−U ] = 1

2

√
−H 2

3 + (4H 3
1 + 6H2H1

)
H3 + H 2

2

(
3H 2

1 + 4H2
)

(6.11.46)

Im z =
√

−H 2
3 + (4H 3

1 + 6H2H1
)
H3 + H 2

2

(
3H 2

1 + 4H2
)

2
(
H 2

1 + H2
)

(6.11.47)

Re z = H3 − H2H1

2
(
H 2

1 + H2
) (6.11.48)

ZM =

⎛
⎜⎜⎜⎜⎜⎜⎝

√
3
2 (H

2
3 −2H 1(2H 2

1 +3H 2−1)H 3+H 2(−4H 2
2 +(4−3H 2

1 )H 2+2H 2
1 ))

H 2
3 −2(2H 3

1 +3H 2H 1)H 3−H 2
2 (3H 2

1 +4H 2)√
2(2H 3

1 +3H 2H 1−H 3)
−H 2

3 +(4H 3
1 +6H 2H 1)H 3+H 2

2 (3H 2
1 +4H 2)√

6(H 1H
2
2 +H 3(2H 2

1 +H 2))
H 2

3 −2(2H 3
1 +3H 2H 1)H 3−H 2

2 (3H 2
1 +4H 2)

4H 3H
3
1 +3H 2

2 H 2
1 +H 2

3√
2(−H 2

3 +(4H 3
1 +6H 2H 1)H 3+H 2

2 (3H 2
1 +4H 2))

⎞
⎟⎟⎟⎟⎟⎟⎠

(6.11.49)

a = H3
(−6H 2

1 − 3H2 + 1
)− H1

(
3H 2

2 + 3H2 + 2H 2
1

)
H 2

3 − 2
(
2H 3

1 + 3H2H1
)
H3 − H 2

2

(
3H 2

1 + 4H2
) (6.11.50)

The Taub-NUT Current

Given this explicit result we can turn to the explicit oxidation formulae described in
Sect. 6.2.1 and calculate the Taub-NUT current which is the integrand of Eq. (6.2.17).
We find:

j T N = 1
2

(
�∇H3 + 3

(
H2

�∇H1 − H1
�∇H2

))
(6.11.51)

Analyzing Eq. (6.11.51) we see that there are just two possible solutions to the con-
dition j T N = 0:

(case a) H3 = β = const ; H1 = 0. With this condition we obtain:

exp[−U ] = 1

2

√
4H 3

2 − β2 (6.11.52)

z =
β + i

√
4H 3

2 − β2

2H2
(6.11.53)

j EM = �∇

⎛
⎜⎜⎜⎝

−
√

3
2H2

0
0
0

⎞
⎟⎟⎟⎠ (6.11.54)

(case b) H3 = β = const ; H2 = 0
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exp[−U ] = 1

2

√
β
(
4H 3

1 − β
)

(6.11.55)

z =
β + i

√
β
(
4H 3

1 − β
)

2H 2
3

(6.11.56)

j EM =

⎛
⎜⎜⎜⎝

0
0

−
√

3
2H1

0

⎞
⎟⎟⎟⎠ (6.11.57)

It might seem that these two solutions correspond to different types of black holes
but this is not the case, as we now show. From the asymptotic flatness boundary
condition we find that the value of β is fixed in terms of the value at infinity of the
corresponding harmonic function H1,2, which of course must satisfy the necessary
condition for reality of the solution H1,2(∞) ≥ 1:

{
β = 2

√
[H2(∞)]3 − 1 case a

β = 2
(
[H1(∞)]3 +

√
[H1(∞)]6 − 1

)
case b

(6.11.58)

In the vicinity of a pole by means of the usual argument we obtain the following
behavior of the warp factor:

|x − xα|2 exp[−U ] x→xα∼
⎧⎨
⎩
√
b32

√|x − xα| + O
(|x − xα|3/2) : case a√

β b31
√|x − xα| + O

(|x − xα|3/2) : case b
(6.11.59)

Hence in both cases the horizon area vanishes at all poles xα and the reality conditions
are satisfied choosing the appropriate sign of b1,2. The charge vector has the same
structure for all black holes encompassed in the first or in the second solution, namely:

Qα =
⎧⎨
⎩
{
−
√

3
2 pα , 0 , 0 , 0

}
: pα = b2 for pole α{

0 , 0 , −
√

3
2 qα , 0

}
: qα = b1 for pole α

(6.11.60)

In both cases the quartic invariant I4 is zero for all black holes in the solutions, yet
one might still doubt whether the W-orbit for the two cases might be different. It is
not so, since a direct calculation shows that the image in the j = 3

2 representation
Λ[A]13 of the following SL(2, R) element:

A =
(
0 p

q

− q
p 0

)
(6.11.61)

13See [32] for details, in particular Eq. (3.13) of that reference for the explicit form of the spin 3
2

matrices.



322 6 Black Holes and Nilpotent Orbits

maps the charge vector Q[q] = {0 , 0 , − q , 0}, into the charge vector Q[p] =
{p , 0 , 0 , 0}, namely we have Λ[A]Q[q] = Q[p]. Hence the two solutions we
have here discussed simply give different representatives of the same W-orbit.

Summary

Just as in the previous case for a multicenter solution associated with the O2
11 orbit

all the black holes included in one solution are of the same type, namely small black
holes with the same identical properties.

6.11.3 The Large BPS Black Holes of O3
11

Next let us consider the orbit O3
11, which in the spherical symmetric case leads to

BPS Black holes with a finite horizon area.

W-Representation

In order to better appreciate the structure of these solutions, let us slightly generalize
our orbit representative, writing the following nilpotent matrix that depends on two
parameters (p, q) to be interpreted later as the magnetic and the electric charge of
the hole:

X3|11(p, q) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q 0 0 − q√
2
0 0 0

0 p+q
2 − p

2 0 q
2 0 0

0 p
2

q−p
2 0 0 − q

2 0
q√
2
0 0 0 0 0 q√

2
0 − q

2 0 0 p−q
2

p
2 0

0 0 q
2 0 − p

2
1
2 (−p − q) 0

0 0 0 − q√
2
0 0 −q

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.11.62)

The standard triple representative mentioned in Eq. (6.10.5) is just the particular case
X3|11(1, 1). Applying the same strategy as in the previous case, from the general
formula we obtain

Qw
3|11 = Tr(X3|11(p, q)T w) =

(
0, p,−√

3q, 0
)

(6.11.63)

Substituting such a result in the expression for the quartic symplectic invariant (see
Eq. (6.11.3)) we find:

I4 = 9 p q3 > 0 if p and q have the same sign (6.11.64)

Just as before we stress that this result is meaningful since, by calculating the trace
Tr(X3|11LE+) = 0, we can also check that the Taub-NUT charge vanishes. Further-
more we note that the condition that p and q have the same sign was singled out
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in [32] as the defining condition of the orbit O3
11 which, in the spherical symmetry

approach leads to regular BPS solutions. The choice of opposite signs was proved in
[32] to correspond to a different H� orbit, the non diagonal O3

21 which instead con-
tains only singular solutions. Here we will show another important and intrinsically
four dimensional reason to separate the two cases.

Addressing the question whether there are subgroups of the original duality group
in four-dimensions SL(2,R) that leave the charge vector (6.11.63) invariant we
realize that such a subgroup exists and is the finite cyclic group of order three:

SL(2, R) ⊃ S3|11 = Z3 (6.11.65)

S3|11 is made by the following three elements:

1 =
(
1 0
0 1

)
(6.11.66)

B =
⎛
⎝− 1

2 −
√
3
2

√
p
q√

3
2

√
q
p − 1

2

⎞
⎠ (6.11.67)

B2 =
⎛
⎝− 1

2

√
3
2

√
p
q

−
√
3
2

√
q
p − 1

2

⎞
⎠ ; B3 = 1 (6.11.68)

It is evident that such aZ3 subgroup exists if and only if the two charges p, q have the
same sign. Otherwise the corresponding matrices develop imaginary elements and
migrate to SL(2, C). The existence of this isotropy group Z3 can be considered the
very definition of theW-orbit corresponding to BPS black holes. Indeed let us name

λ =
√

p
q and consider the algebraic condition imposed on a generic charge vector:

Q = {Q1, Q2, Q3, Q4} by the request that it should admit the above described Z3

stability group:

Λ[B]Q = Q ⇔ Q =
(√

3λ2Q4,−λ2Q3√
3

, Q3, Q4

)
(6.11.69)

It is evident from the above explicit result that the charge vectors having this sym-
metry depend only on three parameters (λ2, Q3, Q4). The very relevant fact is that
substituting this restricted charge vector in the general formula (6.11.3) for the quartic
invariant we obtain:

J4 = λ2
(
Q2

3 + 3λ2Q2
4

)2
> 0 (6.11.70)

Hence the Z3 guarantees that the quartic invariant is a perfect square and hence
positive. It is an intrinsic restriction characterizing the W-orbit.
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H�-Stability Subgroup

Considering next the stability subgroup of the nilpotent element X3|11(1, 1) in H� =
̂sl(2, R) ⊕ sl(2, R)h� we obtain:

S3|11 = R (6.11.71)

the group being generated by a matrix A3|11 of nilpotency degree 2:

A
2
3|11 = 0 (6.11.72)

We do not give its explicit form which we do not use in the sequel.

Nilpotent Algebra N3|11

Considering next the adjoint action of the central element h3|11 on the subspace K
�

we find that its eigenvalues are the following ones:

EigenvaluesK
�

3|11 = {−2,−2,−2,−2, 2, 2, 2, 2} (6.11.73)

Therefore the four eigenoperators A1, A2, A3, A4 corresponding to the four positive
eigenvalues 2, respectively, form the restriction to K

� of a nilpotent algebra N3|11.
Also in this case the Ai do not all commute among themselves so that, we have
N3|11 �= N3|11

⋂
K

�. In particular we find a new generator:

B ∈ H
� (6.11.74)

which completes a five-dimensional algebra with the following commutation rela-
tions:

[
Ai , A j

] = Ωi j B

[B , Ai ] = 0

B =

⎛
⎜⎜⎝
0 0 −1 1
0 0 −1 −1
1 1 0 0
−1 1 0 0

⎞
⎟⎟⎠ (6.11.75)

The structure of the nilpotent algebra implies that for the orbitO3
11 we have only four

functions h0i which will be harmonic and independent. This is so becauseD2
N3|11 =

0 and DN3|11
⋂

K
� = 0.

Explicitly we set:

H(h1, h2, h3, h4) = ∑4
i=1 hi Ai =
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2h3 h1 − 2h2 2h1 − h2 −√
2h3 −3h2 −3h1 0

h1 − 2h2 h3 − h4 h4
√
2h2 − 2

√
2h1 h3 0 −3h1

h2 − 2h1 −h4 h3 + h4
√
2h1 − 2

√
2h2 0 −h3 −3h2√

2h3 2
√
2h1 − √

2h2
√
2h1 − 2

√
2h2 0

√
2h1 − 2

√
2h2

√
2h2 − 2

√
2h1

√
2h3

3h2 −h3 0
√
2h1 − 2

√
2h2 −h3 − h4 −h4 2h1 − h2

−3h1 0 h3 2
√
2h1 − √

2h2 h4 h4 − h3 h1 − 2h2
0 −3h1 3h2 −√

2h3 h2 − 2h1 h1 − 2h2 −2h3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.11.76)

Considering H(h1, h2, h3, h4) as a Lax operator and calculating its Taub-NUT
charge and electromagnetic charges we find:

nT N = −6h1 ; Q =
{
2
√
3 (h2 − 2h1) ,−2h4,−2

√
3h3,−6h2

}
(6.11.77)

This implies that constructing the multi-centre solution with harmonic functions the
condition h1 = 0 might be sufficient to annihilate the Taub-NUT current. We shall
demonstrate that also in this case the condition is slightly more complicated. This
emphasizes the difference between the Lax operator one-dimensional approach and
the multicenter construction based on harmonic functions.

For later convenience let us change the normalization in the basis of harmonic
functions as follows:

h
(0)
1 = 1√

12
H1 ; h

(0)
2 = 1√

12
H2 ; h

(0)
3 = 1

2 (H3 − 1) ; h
(0)
4 = 1

2 (H4 + 1)

(6.11.78)
Implementing the symmetric coset construction with:

Y (H1,H2,H3,H4) ≡ exp
[
H
(

1√
12
H1,

1√
12
H2,

1
2 (H3 − 1) , 1

2 (H4 + 1)
)]

(6.11.79)

calculating the upper triangular coset representative L(Y ) according to Eq. (6.8.26)
and extracting the σ -model scalar fieldswe obtain an explicit but rathermessy answer
which we omit. In particular we obtain the Taub-NUT current in the following form:

j T N =
4∑

i=1

Ri (H ) ∇Hi (6.11.80)

where Ri (H ) are rational functions of the four harmonic functions, the maximal
degree of involved polynomials being 16. A priori, imposing the vanishing of the
Taub-NUT current is a problem without guaranteed solutions. In the 4-dimensional
linear space of the harmonic functions we can introduce r -linear relations of the
form:

0 = V i
α Hi ; α = 1, . . . , r (6.11.81)
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Let Ui
a be a set of 4 − r linear independent 4-vectors orthogonal to the vectors V i

α .
Then itmust happen that on the locus defined byEqs. (6.11.81), the following rational
functions should also vanish

0 = Pa(H ) ≡ Ui
a Ri (H ) ; (a = 1, . . . , r − 4) (6.11.82)

For generic rational functions this will never happen, yet we know that for our
system such solutions should exist and in want of a clear cut algorithm it is a matter
of ingenuity to find them. We do not find any solution with r = 1 but we find two
nice solutions with r = 2. They are the following ones:

(a) H1 = H2 = 0. The complete form of the supergravity solution correspond-
ing to this choice is:

exp[ −U ] =
√

−H 3
3 H4 (6.11.83)

z = i

√
−H 3

3 H4

H 2
3

(6.11.84)

j T N = 0 (6.11.85)

j EM = �∇

⎛
⎜⎜⎜⎝

0
H 4√
2√
3
2H3

0

⎞
⎟⎟⎟⎠ (6.11.86)

(b) H1 = 0, H3 = −H4. The complete form of the supergravity solution
corresponding to this choice is:

exp[ −U ] =
√

−H 4
2

3
− 2H 2

4 H
2
2 + H 4

4 (6.11.87)

z =
2H2H4 − i

√
−H 4

2 − 6H 2
4 H

2
2 + 3H 4

4√
3
(
H 2

2 − H 2
4

) (6.11.88)

j T N = 0 (6.11.89)

j EM = �∇

⎛
⎜⎜⎜⎜⎜⎝

−H 2√
2

H 4√
2

−
√

3
2H4√

3
2H2

⎞
⎟⎟⎟⎟⎟⎠

(6.11.90)

We can nowmake some comments about the two solutions. First of all both in case a)
and in case b) we have to fix the asymptotic value of the harmonic functions at spatial
infinity r = ∞, in such a way as to obtain asymptotic flatness. This is quite easy
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and we do not dwell on it. Secondly we have to fix the parameters of the harmonic
functions in such a way that the warp factor is always real on the whole physical
range. These conditions are also easily spelled out:

a) −H3H4 > 0

b) −H 4
2
3 − 2H 2

4 H
2
2 + H 4

4 > 0
(6.11.91)

and in a multicenter solution can be easily arranged adjusting the coefficients of each
pole. Thirdly we can comment about the structure of the charge vector that we obtain
at each pole:

Hi ∼ ai + Qi

|x − xα| (6.11.92)

In case (a) and (b) we respectively obtain:

Qα =

⎛
⎜⎜⎜⎝

0
Q4√
2√
3
2Q3

0

⎞
⎟⎟⎟⎠ (6.11.93)

Qα =

⎛
⎜⎜⎜⎜⎜⎝

− Q2√
2

Q4√
2

−
√

3
2Q4√

3
2Q2

⎞
⎟⎟⎟⎟⎟⎠

(6.11.94)

Comparing with Eqs. (6.11.69), (6.11.70) we see that in both cases the structure of
these charges is that imposed by the Z3 invariance which characterizes BPS black
holes. The necessary choice of signs in the case (a)

Q4

Q3
< 0 (6.11.95)

is the same which is required by the reality of the warp factor. Hence in case (b) all
the black holes encompassed by the solution at each pole are finite area BPS black
holes. In case (a) the same is true for all the poles common to the harmonic function
H3 and H4: they are finite area BPS black holes. Yet we can envisage the situation
where some poles ofH3 are not shared byH4 and viceversa. In this case the pole of
H4 defines a very small black hole, while the pole ofH3 defines a small black hole.
This is confirmed by the fact that a charge vector of type {0, p, 0, 0} is mapped into

{0, 0, 0, p} by Λ

[(
0 −1
1 0

)]
and as such admits a parabolic subgroup of stability

Λ

[(
1 b
0 1

)]
.
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Summary

For a multicenter solution associated with the O3
11 orbit there are two possibilities

either all the black holes included in one solution are regular, finite area, BPS black
holes, either we have amixture of very small and small black holes. A finite area BPS
black hole emerges when the center of a very small black hole coincides with the
center of a small one. This provides the challenging suggestion that a BPS black hole
can be considered quantum mechanically as a composite object where the “quarks”
are small and very small black holes.

6.11.4 BPS Kerr–Newman Solution

Next we want to show how this orbit encompasses also the BPS Kerr–Newman
solution that was found by Luest et al. in [39].

To this effect we go back to the general formulae for the scalar fields in this
orbit and we make the following reduction from four to two independent harmonic
functions:

H2 = 0 ; H4 = − 1
3 H3 (6.11.96)

With such a choice the expressions for all the scalar fields dramatically simplify and
we obtain:

W =
√
3

H 2
1 + H 2

3

(6.11.97)

z = i
1√
3

(6.11.98)

Z =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

− 3H 1√
2(H 2

1 +H 2
3 )

H 2
1 +(H 3−3)H 3√
2(H 2

1 +H 2
3 )

−
√

3
2 (H

2
1 +(H 3−1)H 3)
H 2

1 +H 2
3

− H 1√
6(H 2

1 +H 2
3 )

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(6.11.99)

a = 5H1√
3
(
H 2

1 + H 2
3

) (6.11.100)

Utilizing the above expressions in the final oxidation formulae we obtain the follow-
ing result for the Taub-Nut current and for the electromagnetic currents:

j T N = 2 (�∇H1H3 − �∇H3H1)√
3

(6.11.101)
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j EM =

⎛
⎜⎜⎜⎜⎜⎜⎝

2 �∇H 3H 1(H 2
1 +(H 3−2)H 3)− �∇H 1((2H 3+1)H 2

1 +H 2
3 (2H 3−3))√

2(H 2
1 +H 2

3 )
�∇H 3(3H 2

1 −H 2
3 )−4 �∇H 1H 1H 3

3
√
2(H 2

1 +H 2
3 )√

3
2 (4 �∇H 1H 1H 3+ �∇H 3(H 2

3 −3H 2
1 ))

H 2
1 +H 2

3
2 �∇H 3H 1(H 2

1 +(H 3−6)H 3)− �∇H 1((2H 3+3)H 2
1 +H 2

3 (2H 3−9))√
6(H 2

1 +H 2
3 )

⎞
⎟⎟⎟⎟⎟⎟⎠

(6.11.102)

Next identifying the two harmonic functions with those introduced in Eqs. (6.9.21)–
(6.9.24), according to:

H1 = 3
1
4 (1 + mP) ; H3 = 3

1
4 mR (6.11.103)

we obtain the following result for the warp-factor:

exp[U ] = (m + r)2 + α2 cos2(θ)

r2 + α2 cos2(θ)
(6.11.104)

and for the Kaluza–Klein vector:

A[KK ] = ω ≡ m(m + 2r)α sin2(θ)

r2 + α2 cos2(θ)
dφ (6.11.105)

Indeed one can easily check that, in the spheroidal coordinates (6.9.19) with flat
metric Eq. (6.9.20) we have:

2m (�∇PR − P � ∇R) = dω (6.11.106)

where �∇ denotes the Hodge dual of the exterior derivative d. Writing the corre-
sponding final form of the metric:

ds2BPSK N = − exp[U ] (dt + ω)2 + exp[−U ] dΩ2
spheroidal (6.11.107)

we can easily check that it is just the Kerr–Newman metric (6.5.2) with q = m.
The only necessary step, in order to verify such an identity is a redefinition of the
coordinate r . If in the metric (6.5.2) one replaces r → r + m, then (6.5.2) becomes
identical to (6.11.107).

It is interesting to consider the expressions for the vector field strengths that solve
the Maxwell-Einstein system together with the BPS Kerr–Newman metric. For the
first two field strengths (magnetic), from Eq. (6.11.102) we find:
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F1 = − 1√
2
(
r2 + α2 cos2 θ

)2 (
(m + r)2 + α2 cos2 θ

)
(

4√3mα sin θ (((−3

+2 4√3
)

α4 cos4 θ

+m
(
2 4√3m + m + 2

(
1 + 4√3

)
r
)

α2 cos2 θ

−r(m + r)2
(
2 4√3m +

(
−3 + 2 4√3

)
r
))

sin θdr ∧ dφ

+2
(
r2 + α2

)
cos θ

(((
−2 + 4√3

)
m

+
(
−3 + 2 4√3

)
r
)

α2 cos2 θ + (m + r)
(

4√3m2

+
(
−1 + 3 4√3

)
rm +

(
−3 + 2 4√3

)
r2
))

dθ ∧ dφ
))

(6.11.108)

F2 = 1√
233/4

(
r2 + α2 cos2 θ

)2 (
(m + r)2 + α2 cos2 θ

)
(
m sin θ

(
α2
(
−2 cos θ sin θr3

+m2 sin 2θr − 2(2m + r)α2 cos3 θ sin θ
)
dr ∧ dφ

−1

8

(
r2 + α2

) (
8r4 + 16mr3 + 8m2r2 + α4

−8α2
(
−3m2 − 6rm + α2

)
cos2 θ − α4 cos(4θ)

)
dθ ∧ dφ

))
(6.11.109)

while for the second two we get:

G3 = 1√
2
(
r2 + α2 cos2 θ

)2 (
(m + r)2 + α2 cos2 θ

) (33/4m sin θ
((
sin 2θr3

−2m2 cos θ sin θr

+2(2m + r)α2 cos3 θ sin θ
)
dr ∧ dφα2

+1

8

(
r2 + α2

) (
8r4 + 16mr3 + 8m2r2 + α4

−8α2
(−3m2 − 6rm + α2

)
cos2 θ − α4 cos(4θ)

)
dθ ∧ dφ

))
(6.11.110)

G4 = − 1√
2
(
r2 + α2 cos2 θ

)2 (
(m + r)2 + α2 cos2 θ

) (mα sin θ ((

− (−2 + 333/4
)
α4 cos4 θ

+m
((
2 + 33/4

)
m + 2

(
1 + 33/4

)
r
)
α2 cos2 θ

+r(m + r)2
((−2 + 333/4

)
r − 2m

))
sin θdr ∧ dφ

−2
(
r2 + α2

)
cos θ

(−m3 + (−4 + 33/4
)
rm2 + (−5 + 433/4

)
r2m

+ (−2 + 333/4
)
r3

+ ((−1 + 233/4
)
m + (−2 + 333/4

)
r
)
α2 cos2 θ

)
dθ ∧ dφ

))
(6.11.111)
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The above expressions are rather formidable, yet considering them in some limit
their meaning can be decoded. First of all we recall that in the limit α → 0 the
metric (6.11.107) becomes the Reissner–Nordstrom metric. Correspondingly in the
same limit the above four-vector of field strengths degenerates into:

⎛
⎜⎜⎝

F1

F2

G3

G4

⎞
⎟⎟⎠ α→0=⇒

⎛
⎜⎜⎜⎝

0
−m sin(θ)dθ∧dφ√

233/4
33/4m sin(θ)dθ∧dφ√

2
0

⎞
⎟⎟⎟⎠ (6.11.112)

showing that the black hole charges
(
0,− m√

2 31/4
, m 31/4√

2
, 0
)
have the correct form for

a BPS black hole and are endowed with the characteristic Z3 symmetry.
Also in the α �= 0 we can easily determine the black hole charges by integrating

the field strengths on a two-sphere of very large radius r → ∞. For this purpose
it is important to evaluate the asymptotic expansion of the field strengths for large
radius. We find:

⎛
⎜⎜⎝

F1

F2

G3

G4

⎞
⎟⎟⎠ r→∞�

⎛
⎜⎜⎜⎜⎜⎝

−
√
2 4√3

(
−3+2 4√3

)
mα cos θ sin θdθ∧dφ

r + O
(
1
r2
)

−m sin θdθ∧dφ√
233/4

+ O
(
1
r2
)

33/4m sin θdθ∧dφ√
2

+ O
(
1
r2
)

√
2(−2+333/4)mα cos θ sin θdθ∧dφ

r + O
(
1
r2
)

⎞
⎟⎟⎟⎟⎟⎠

(6.11.113)

and the integration on the angular variables produces the same result as for the
corresponding Reissner–Nordstrom black hole:

QBPSK N =
(
0,− m√

2 31/4
,
m 31/4√

2
, 0

)
(6.11.114)

In conclusion the BPS Kerr–Newman solution is a deformation of the Reissner–
Nordstrom BPS black hole. It is extremal in the σ -model sense and for this reason
could be retrieved from the nilpotent orbit construction. However it is not extremal
in the sense of General Relativity since the mass is less than

√
q2 + α2 being equal

to m. For this reason we are below the limit of the cosmic censorship, there is no
horizon and we have instead a naked singularity.

The important message is that, notwithstanding the deformation and the presence
of a Kaluza–Klein vector, the structure of the charges is that pertaining to the orbit
where the solution has been constructed, namely the BPS orbit O3

11.
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6.11.5 The Large Non BPS Black Holes of O3
22

Next let us consider the orbit O3
22, which in the spherical symmetric case leads to

non BPS Black holes with a finite horizon area.

W-Representation

As in the previous case, in order to better appreciate the structure of these solutions,
let us slightly generalize our orbit representative, writing the following nilpotent
matrix that depends on two parameters (p, q)

X3|22(p, q) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q 0 0 q√
2
0 0 0

0 p+q
2 − p

2 0 − q
2 0 0

0 p
2

q−p
2 0 0 q

2 0
− q√

2
0 0 0 0 0 − q√

2
0 q

2 0 0 p−q
2

p
2 0

0 0 − q
2 0 − p

2
1
2 (−p − q) 0

0 0 0 q√
2
0 0 −q

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.11.115)

The standard triple representative mentioned in Eq. (6.10.6) is just the particular case
X3|22(1, 1). Applying the usual strategy from the general formula we obtain

Qw
3|22 = Tr(X3|22(p, q)T w) =

(
0, p,

√
3q, 0

)
(6.11.116)

Substituting such a result in the expression for the quartic symplectic invariant (see
Eq. (6.11.3) we find:

I4 = − 9 p q3 < 0 if p and q have the same sign (6.11.117)

This result is meaningful since, by calculating the trace Tr(X3|22LE+) = 0, we find
that the Taub-NUT charge vanishes. Furthermore we note that the condition that p
and q have the same sign was singled out in [32] as the defining condition of the orbit
O3

22 which, in the spherical symmetry approach leads to regular non BPS solutions.
The choice of opposite signs was proved in [32] to correspond to a different H� orbit,
the non diagonal O3

12 which instead contains only singular solutions.
Addressing the question of stability subgroups of the original duality group in four-

dimensions SL(2,R), we realize that for the charge vector (6.11.116) this subgroup
is just trivial:

SL(2, R) ⊃ S3|22 = 1 (6.11.118)

H�-Stability Subgroup

Considering next the stability subgroup of the nilpotent element X3|22(1, 1) in H� =
̂sl(2, R) ⊕ sl(2, R)h� we obtain:

S3|22 = R (6.11.119)
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the group being generated by a matrix A3|22 of nilpotency degree 2:

A
3
3|22 = 0 (6.11.120)

We do not give its explicit form which we do not use in the sequel.

Nilpotent Algebra N3|22

Considering next the adjoint action of the central element h3|22 on the subspace K
�

we find that its eigenvalues are the following ones:

EigenvaluesK
�

3|22 = {−4, 4,−2,−2, 2, 2, 0, 0} (6.11.121)

Therefore the three eigenoperators A1, A2, A3 corresponding to the three positive
eigenvalues 4, 2, 2, respectively, form the restriction to K

� of a nilpotent algebra
N3|22. In this case the Ai do all commute among themselves so that we have N3|22 =
N3|22

⋂
K

� and it is abelian. The abelian structure of the nilpotent algebra implies
that for the orbit O3

22 we have only three functions h0i which will be harmonic and
independent. This is so because DN3|22 = 0

Explicitly we set:

H(h1, h2, h3) = ∑3
i=1 hi Ai =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2h3 h1 − 2h2 2h1 − h2 −√
2h3 −3h2 −3h1 0

h1 − 2h2 h3 0
√
2h2 − 2

√
2h1 h3 0 −3h1

h2 − 2h1 0 h3
√
2h1 − 2

√
2h2 0 −h3 −3h2√

2h3 2
√
2h1 − √

2h2
√
2h1 − 2

√
2h2 0

√
2h1 − 2

√
2h2

√
2h2 − 2

√
2h1

√
2h3

3h2 −h3 0
√
2h1 − 2

√
2h2 −h3 0 2h1 − h2

−3h1 0 h3 2
√
2h1 − √

2h2 0 −h3 h1 − 2h2
0 −3h1 3h2 −√

2h3 h2 − 2h1 h1 − 2h2 −2h3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.11.122)

ConsideringH(h1, h2, h3) as a Lax operator and calculating its Taub-NUT charge
and electromagnetic charges we find:

nT N = −6h1 ; Q =
{
2
√
3 (h2 − 2h1) , 0,−2

√
3h3,−6h2

}
(6.11.123)

This implies that constructing the multi-centre solution with harmonic functions the
condition h1 = 0 might be sufficient to annihilate the Taub-NUT current. In this
case we will be lucky and such a condition suffices.

For later convenience let us change the normalization in the basis of harmonic
functions as follows:

h
(0)
1 = H1 ; h

(0)
2 = 1

2 (1 − H2) ; h
(0)
3 = 1

2 (1 − H3) (6.11.124)
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Implementing the symmetric coset construction with:

Y (H1,H2,H3) ≡ exp
[
H
(
H1,

1
2 (1 − H2) , 1

2 (1 − H3)
)]

(6.11.125)

calculating the upper triangular coset representative L(Y ) according to Eq. (6.8.26)
and extracting the σ -model scalar fields we obtain an explicit expression which is
sufficiently simple to be displayed:

exp [−U ] =
√
H2H

3
3 − 4H 2

1 (6.11.126)

Im z =
√
H2H

3
3 − 4H 2

1

H 2
3

(6.11.127)

Re z = −2H1

H 2
3

(6.11.128)

ZM =

⎛
⎜⎜⎜⎜⎜⎜⎝

−
√
6H 1H 3

4H 2
1 −H 2H

3
3

4H 2
1 −(H 2−1)H 3

3√
2(4H 2

1 −H 2H
3
3 )√

3
2 (4H

2
1 −H 2(H 3−1)H 2

3 )
4H 2

1 −H 2H
3
3√

2H 1H 2

4H 2
1 −H 2H

3
3

⎞
⎟⎟⎟⎟⎟⎟⎠

(6.11.129)

a = −H1 (H2 + 3H3 − 2)

4H 2
1 − H2H

3
3

(6.11.130)

Using these results we easily obtain the Taub-NUT current in the following form:

j T N = 2 � ∇H1 (6.11.131)

In this case the predicted condition H1 = 0 is sufficient to annihilate the Taub-
NUT current and we obtain an extremely simple result.14 The complete form of the
supergravity solution corresponding to this choice is:

exp[ −U ] =
√
H 3

3 H2 (6.11.132)

z = i

√
H 3

3 H2

H 2
3

(6.11.133)

j T N = 0 (6.11.134)

14Actually even the condition H1 = const suffices to annihilate the Taub-NUT charge allowing
for a non trivial real part of the z-field. However in this section we analyze the caseH1 = 0 for its
remarkable simplicity.
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j EM = �∇

⎛
⎜⎜⎜⎝

0
− H 2√

2

−
√

3
2H3

0

⎞
⎟⎟⎟⎠ (6.11.135)

Comparing with the case of the large BPS orbit we see that the only difference is
the relative sign of the harmonic functions in the electromagnetic current. What we
said for the BPS black holes extends to the non BPS ones in the same way.

Summary

For a multicenter solution associated with the O3
22 orbit we have a mixture of very

small and small black holes as in the case of the orbitO3
22. Also here a finite area non

BPS black hole emerges when the center of a very small black comes to coincides
with the center of a small one. The only difference is the relative sign of the two
charges. With equal signs we construct a non BPS state, while with opposite charges
we construct a BPS one. This reinforces the conjecture that at the quantum level
finite black holes can be interpreted as composite states.

This conjecture is also supported by an angular momentum analysis. Looking at
the representations in Table6.1, we see that the representation 2( j = 1) + ( j = 0)
that corresponds to BPS and non BPS large black holes can be obtained by summing
the representation ( j = 1) + 2( j = 1

2 ) that corresponds to small black holes with
the representation 3( j = 0) + 2( j = 1

2 ) that corresponds to very small black holes.
Consider the following table:

1 1
2

1
2 0 −1

2 −1
2 −1

0 1
2 −1

2 0
1
2 −1

2 0
1 1 0 0 0 −1 −1

the numbers in the first line are the eigenvalues of the central element h in the triplet
(h, X,Y ) characterizing the orbit O4

11. The second line contains the eigenvalues
for the central element of the triplet of the orbit O4

11. In the last line we have the
eigenvalues for the h in the triplet characterizing the orbit O3

i, j . We realize that the
coincidence of centres correspond to the identification of a new SL(2,R) subgroup
which is the direct sum of the original two associated with the two small black holes.

6.11.6 The Largest Orbit O1
11

Next let us consider the orbit O1
11, which in the spherical symmetric case leads only

to singular solutions.
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W-Representation

Applying the usual strategy from the general formula we obtain a charge vector

Qw
1|11 = Tr(X1|11(p, q)T w) (6.11.136)

which has no invariance:
SL(2, R) ⊃ S1|11 = 1 (6.11.137)

and yields a quartic invariant generically different from zero:

I4 �= 0 (6.11.138)

Because of our simplified choice of the representative the Taub-NUT charge is not
zero and only later we will enforce the vanishing of the Taub-NUT current on the
harmonic function parameterized solution.

H�-Stability Subgroup

Considering next the stability subgroup of the nilpotent element X1|11 in H� =
̂sl(2, R) ⊕ sl(2, R)h� we obtain that it is trivial:

S1|11 = 1 (6.11.139)

Nilpotent Algebra N1|11

Considering next the adjoint action of the central element h1|11 on the subspace K
�

we find that its eigenvalues are the following ones:

EigenvaluesK
�

3|22 = {−5, 5,−3, 3,−1,−1, 1, 1} (6.11.140)

Therefore the four eigenoperators A1, A2, A3, A4 corresponding to the four positive
eigenvalues 5, 3, 1, 1, respectively, form the restriction to K

� of a nilpotent algebra
N1|11. In this case the Ai do not all commute among themselves so that we have
N1|11 �= N1|11

⋂
K

�. The full algebra involves also two operators B1, B2 ∈ H
� and

the full set of commutation relations is the following one:

0 = [A1 , A2] = [A1 , A3] = [A1 , A4]

0 = [A2 , A3]

0 = [B1 , B2] = [B1 , A1] = [B1 , A2]

0 = [B1 , A4] = [B2 , A1] = [B2 , A3]

B1 = [A2 , A4]

B2 = [A3 , A4]

−16 A1 = [B1 , A3]

−16 A1 = [B2 , A1]
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24 A2 = [B2 , A4] (6.11.141)

By inspection of Eq. (6.11.141) we easily see that:

DN1|11 = span {B1, B2, A1, A2} ; DN1|11
⋂

K
� = span {A1, A2}

(6.11.142)

D2
N1|11 = span {A1} = D2

N1|11
⋂

K
� (6.11.143)

This structure of the nilpotent algebra implies that for the orbit O1
11 we have only

two functions h03, h
0
4 which are harmonic and independent. The other two functions

h21, h
1
2, obey instead equations in which the previous two play the role of sources. Not

surprisingly h21, h
1
2 correspond to the higher gradings 5 and 3, while h

0
3, h

0
4 correspond

to the gradings 1, 1.More precisely h12 receives source contributions only from h03, h
0
4,

while h21 receives source contributions from h12, h
0
3, h

0
4

Explicitly we set:

H(h1, . . . , h4) = ∑4
i=1 hi Ai =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h1 + h4
h2
3 − h3 h4

√
2h2
3 − √

2h3 −h1 −h2 − h3 0
h2
3 − h3 2h4 h2 + h3 −√

2h4 h3 − h2
3 0 −h2 − h3

−h4 −h2 − h3 h1 − h4

√
2h2
3 − √

2h3 0 h2
3 − h3 −h1√

2h3 −
√
2h2
3

√
2h4

√
2h2
3 − √

2h3 0
√
2h2
3 − √

2h3 −√
2h4

√
2h3 −

√
2h2
3

h1
h2
3 − h3 0

√
2h2
3 − √

2h3 h4 − h1 −h2 − h3 h4

−h2 − h3 0 h3 − h2
3

√
2h4 h2 + h3 −2h4

h2
3 − h3

0 −h2 − h3 h1

√
2h2
3 − √

2h3 −h4
h2
3 − h3 −h1 − h4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.11.144)

ConsideringH(h1, . . . , h4) as a Lax operator and calculating its Taub-NUT charge
and electromagnetic charges we find:

nT N = −2(h2 + h3) ; Q =
{
−2

√
3h4,−2 (h2 + h3) ,

2 (h2 − 3h3)√
3

,−2h1

}

(6.11.145)
This implies that constructing the multi-centre solution with harmonic functions the
condition h2 = − h3 might be sufficient to annihilate the Taub-NUT current.

Implementing the symmetric coset construction with:

Y (h1, . . . , h4) ≡ exp [H (h1, . . . , h4)] (6.11.146)

and imposing the field equations (6.8.14) we obtain the following conditions:
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0 = 224

5
∇h3 ◦ ∇h3 h

3
4 − 16

5
h3Δ h3 h

3
4 − 416

5
∇ h3 ◦ ∇h4 h3 h

2
4 + 16

5
h23Δ h4 h

2
4

+192

5
∇ h4 ◦ ∇h4 h

2
3 h4 + 32

3
∇h2 ◦ ∇h3 h4 − 8

3
h3Δh2 h4 − 8

3
h2Δ h3 h4

−16

3
∇ h3 ◦ ∇h4 h2 − 16

3
∇h2 ◦ ∇h4 h3 + Δ h1 + 16

3
h2 h3Δh4

0 = 4Δh3 h
2
4 − 8∇ h3 ◦ ∇h4 h4 − 4 h3Δh4 h4 + 8∇h4 ◦ ∇h4 h3 + Δh2

0 = Δh3

0 = Δh4 (6.11.147)

Solutions of the above system can be quite complicated and can encompass many
different types of behaviors, yet what is generically true is that the contributions from
the source term introduces in h1 and h2 poles 1/r p stronger than p = 1, while h3 and
h4 have only simple poles. Hence if the structure of the polynomials in the functions
h1,2,3,4 is such that at simple poles the divergence of the inverse warp factor is already
too strong or the coefficient already becomes imaginary, introducing stronger poles
can only make the situation worse. For this reason we confine ourselves to analyze
solutions encompassed in this orbit in which the source terms vanish identically upon
the implementation of some identifications.

There are few different reductions with such a property and we choose just one
that has also the additional feature of annihilating the Taub-NUT current. It is the
following one:

h3 = h4 = − h2 ≡ h (6.11.148)

The reader can easily check that with the choice (6.11.148) the system of equations
(6.11.147) reduces to:

Δh = Δh1 = 0 (6.11.149)

For later convenience let us change the normalization in the basis of harmonic func-
tions as follows:

h4 = 1
4 H ; h3 = 1

4 H ; h2 = − 1
4 H ; h1 = − 1

4 + W (6.11.150)

calculating the upper triangular coset representative L(Y ) according to Eq. (6.8.26)
and extracting the σ -model scalar fields we obtain explicit expressions which are
sufficiently simple to be displayed:

exp [U ] = 8
√
15√

−(H + 2)3
(
H 5 + 10H 4 + 40H 3 + 80H 2 − 60(4W + 1)

) (6.11.151)

Im z = 3
√
15(H + 2)√

− H +2
H 2(H (H (H +10)+40)+80)−60(4W +1)

(
(H (H (H + 10) + 20) − 40)H 2 + 90(4W + 1)

)

(6.11.152)

Re z = 15H (H + 2)(H + 4)

H 5 + 10H 4 + 20H 3 − 40H 2 + 360W + 90
(6.11.153)
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We skip the form of the Z fields and of a but we mention their consequences,
namely the Taub-NUT current

j T N = 0 (6.11.154)

and the electromagnetic currents

j EM = �∇
{
1

2

√
3

2
H , 0,

7H

6
,
√
2W

}
(6.11.155)

This shows that a black hole belonging to this orbit has a charge vector Q ={
1
2

√
3
2 p, 0,

7p
6 ,

√
2q
}
, whose quartic invariant is:

I4 = 1

128
p3(49p + 72q) (6.11.156)

This latter can be positive or negative depending on the choices for p and q. The
problem, however, is that this solution is always singular around all poles of H .
Indeed setting:

H ∼ p

r
; W ∼ q

r
(6.11.157)

we find that for r → 0 the inverse warp factor behaves as follows:

exp[−U ] ∼
√−p8

8
√
15r4

+
√−p8√
15pr3

+
√

3
5

√−p8

p2r2
+ 4

√−p8√
15p3r

+
√

3
5 p

3(p + 5q)√−p8
+ O (r)

(6.11.158)

The coefficient
√−p8 indicates that approaching the pole the warp factor becomes

imaginary at a finite distance from it and the would be horizon r = 0 is never
reached. If it were reached, the divergence 1

r4 would imply an infinite area of the
horizon. As we know from our general discussion the Riemann tensor diverges if the
warp factor goes to zero faster than r2 so that the would be horizon would actually be
a singularity. Yet since the warp factor becomes imaginary at a finite distance from
the pole it remains open the question if solutions of this type can be prolonged by
suitably changing the coordinate system. In that case they might acquire a physical
meaning. So far such a question has not been tackled but it deserves to be.

6.12 Conclusions on the Episteme Contained in This
Chapter

In this very long chapter we have tackled quite advanced issues of current or of quite
recent research. Although all the inspiring motivations come from Supergravity, the
material here presented is of genuine algebraic and geometrical character; indeed it
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might be understood and treated within the scope of pure Mathematics. As usual, the
role of supersymmetry was just that of directing our choices, leading us to focus on
special manifolds endowed with special geometries.

Actually the methods and the constructions considered in this chapter are general
and might be dealt with no knowledge of supermultiplets and supercharges. Addi-
tional inspiration coming from Supergravity is encoded in the strategic attention paid
to the Tits–Satake projection and to Tits–Satake universality classes, which, however,
are purely mathematical phenomena, self-contained in Lie algebra theory.

Even the very final physical motivation of constructing extremal black-hole solu-
tionsmight be forgotten once, in the spirit of the geometry of geometries, a physical–
geometrical problem has been mapped into another purely geometrical one.

Thus let us summarize into a list of points the mathematical logic of what we have
been discussing in the present chapter.

(A) The problem of constructing extremal black-hole solutions is reduced to the
construction and classification of mappings:

Φ : R
3 =⇒ Ms (6.12.1)

where (Ms, g) is a pseudo-Riemmannian manifold and the map Φ satisfies both
the σ -model equations of motion and the stress-tensor vanishing condition:

∂i

(
∂Φμ

∂xi
∇μΦν

)
= 0 ; gμν(Φ) ∂iΦ

μ ∂ jΦ
ν = 0 (6.12.2)

(B) The geometrical problem posed in (A) can be considered for any Lorentzian-
manifoldMs but, instructed by supersymmetry,we localize it on the homogeneous
manifolds:

Ms = UD=3

H�
(6.12.3)

listed in Table5.4 that are in the image of the c�-map and have a structure fitting
the golden splitting (1.7.12)

(C) For the reasons discussed at length in previous sections and chapters we are
actually interested only in those maps of the type (6.12.1) where:

Φ
[
R

3
] ⊂ UTS

D=3

H�
TS

⊂ UD=3

H�
(6.12.4)

namely where the image of the three-dimensional space R
3 lies entirely inside

the Tits-Satake submanifold.
(D) TheseH�–orbits of solutions can be classified and explicitly constructed thanks

to an algorithm, thoroughly explained in Sect. 6.8, that associates such solutions
to each H�–orbit of nilpotent operators X ∈ K, where K is the orthogonal com-
plement of the subalgebra H

� ⊂ U. The classification of U-nilpotent orbits is a
frontier topic in Mathematics and, further specialized to H� ⊂ U orbits, involves

http://dx.doi.org/10.1007/978-3-319-74491-9_5
http://dx.doi.org/10.1007/978-3-319-74491-9_1
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items and techniques generically not yet available in the mathematical supermar-
ket, like the generalized Weyl group GW and the H-Weyl subgroup WH.

(E) Within the class of manifolds in the image of the c�-map, the problem of H�

nilpotent orbits acquires very special features because of the special nature of
the subgroup H�. These special features are ultimately related with the golden
splitting structure (1.7.12) which is on its turn a land-mark of special geometries.
The complicated mechanisms here at work relate the classification of H�–orbits
with the classification of UD=4–orbits in theW-representation.

(F) The association of the considered mathematical problem with extremal black-
holes provides the features pointed out in (E) with physical interpretations in
terms of electromagnetic charges, horizon areas and fixed scalars. Yet we might
complete ignore such interpretations and ask ourself the question of what is the
abstract, purely mathematical meaning of such relations as that between UD=4–
orbits in the W-representation and H� nilpotent orbits. Such a study has not yet
been performed but might be the source of new precious insights.

Generally speaking the problem considered in this chapter unveils new very profound
aspects of Special Geometries pertaining both to the scope of Geometry and of Lie
Algebra Theory.Aswe tried to emphasize in point (F) of the above list amathematical
reformulation of all themechanisms spotted in this contextmight be of greatmoment.
We might find clues to some generalization of the golden splitting that goes beyond
both supersymmetry and even homogeneous spaces and opens some new direction
in differential and algebraic geometry. Inspiring clues come probably from a careful
analysis of Weyl subgroups and the characterization among them of those that can
be regarded as H-subgroups.

In this context an inspiring observation appears to be the one highlighted in pre-
vious pages that regular finite horizon black-holes can be regarded as bound-states
of small or very small black-holes. An in depth investigation of the proper mathe-
matics lurking behind this feature is potentially capable of revealing new exciting
perspectives both in geometry and physics.
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Chapter 7
E7, F4 and Supergravity Scalar Potentials

To him who looks upon the world rationally, the world in its turn
presents a rational aspect. The relation is mutual.

Georg Wilhelm Friedrich Hegel

7.1 Historical Introduction

As we mentioned in previous chapters, the exceptional Lie algebras, for long time
regarded as mathematical curiosities, came to the forefront of research with the
advent of supergravity.

Their first sensational appearance took place with the work of Cremmer and Julia
(see Figs. 4.4 and 4.5) who constructed ungaugedN = 8 supergravity in D = 4 by
means of dimensional reduction of the D = 11 theory and demonstrated that the
entire structure of the lagrangian is governed by a duality symmetry E7(7) [1]. Indeed
the 70 scalar fields comprised in the unique graviton multiplet are the coordinates of
the symmetric space:

Mscalar = E7(7)

SU(8)
(7.1.1)

and the field strengths of the 28 vector fields, together with their magnetic duals span
the fundamental 56 representation of E7(7), which Élie Cartan had constructed in his
doctoral thesis. Actually Cremmer and Julia proved that in the dimensional reduction
of the D = 11 theory compactified on a torus T d one obtains, for d = 2, 3, . . . , 8,
all the Lie algebras of the series Ed(d) according to the scheme displayed in Table7.1.

In 1982, Bernard de Wit and Hermann Nicolai (see Fig. 7.1) constructed the
first example of a gauged supergravity, namely N = 8 with the compact gauge
group SO(8) ⊂ SU(8) ⊂ E7(7) [2, 3]. Their seminal paper was extremely influential
because of two separate reasons:

© Springer International Publishing AG, part of Springer Nature 2018
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Table 7.1 Scalar geometries in maximal supergravities

D = 9 E2(2) ≡ SL(2,R)⊗ O(1, 1) H = O(2) dimR (G /H ) = 3

D = 8 E3(3) ≡ SL(3,R)⊗ SL(2,R) H = O(2)⊗ O(3) dimR (G /H ) = 7

D = 7 E4(4) ≡ SL(5,R) H = O(5) dimR (G /H ) = 14

D = 6 E5(5) ≡ O(5, 5) H = O(5)⊗ O(5) dimR (G /H ) = 25

D = 5 E6(6) H = Usp(8) dimR (G /H ) = 42

D = 4 E7(7) H = SU(8) dimR (G /H ) = 70

D = 3 E8(8) H = O(16) dimR (G /H ) = 128

Fig. 7.1 Herman Nicolai (1952) graduated in 1978 from Karlsruhe University with a thesis written
under the supervision of Julius Wess. He obtained his habilitation from Heidelberg University in
1983. He was postdoctoral fellow and staff member at CERN from 1979 to 1986. Full Professor of
Theoretical Physics at Hamburg University from 1986 to 1996, since 1997 he is Research Director
at theMax Planck Institute for Gravitational Physics in Potsdam (Albert Einstein Institute). In 1980,
together with Bernard de Wit (see Fig. 4.7) Nicolai constructed the first example of gaugedN = 8
supergravity, the de Wit–Nicolai theory with SO(8) gauge group. Nicolai has given outstanding
contribution to Kaluza Klein supergravity and to the algebraic foundations of M-theory introducing
the study of hyperbolic Lie algebras like E10 and E11. He also contributed to the first development
of cosmic billiards

(a) On one side it provided the explicit interacting form of D = 11 supergravity
compactified on anti de Sitter space times the round seven sphere:

M11 � AdS4 × S
7 (7.1.2)

and consistently truncated to the massless modes.

http://dx.doi.org/10.1007/978-3-319-74491-9_4
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(b) On the other side it provided a paradigm for the gauging of supergravity theories
via the introduction of a gauge algebra, of fermion shifts in the supersymmetry
transformation rules of the fermions and of a scalar potential that is always given
by a quadratic form in such fermion shifts.

The same years 1982–1986 witnessed the first golden season of Kaluza–Klein super-
gravity. After the seminal paper by Freund and Rubin [4], in a quick succession of
papers, the various solutions of D = 11 supergravity of the form:

M11 � AdS4 × M7 (7.1.3)

where M7 = G
H is a 7-dimensional compact coset manifold were found:

1. In [5] the case where M7 is one the Mpqr manifolds with isometry G = SU(3)×
SU(2)× U(1).

2. In [6] the case where M7 is the seven sphere but there is an additional internal
flux.

3. In [7] the casewhereM7 is the given by the squashed seven spherewhose isometry
is G = SO(5)× SO(3).

4. In [8] the case where M7 is given by the Qpqr manifolds with isometry G =
SU(2)× SU(2)× SU(2).

5. In [9] where M7 is given by the Npqr spaces with isometry SU(3).
6. In [10] where all the remaining cases were classified.

Relying on general techniques of harmonic analysis on homogeneous spaces, the
number of preserved supersymmetry and the Kaluza Klein spectra of all such com-
pactifications were also determined in [11–15]. There followed an intense research
activity where the two approaches top-bottom and bottom-up were compared. It
soon became evident that compactifications on AdS4 × M7 and AdS4 × ̂M7 can be
connected at the level of the D = 4 theory if the two manifolds M7 and ̂M7 are
diffeomorphic as topological manifolds, although with different Einstein metrics. In
that case the second solution corresponds to a different extremum of the potential in
the gauged supergravity obtained from the first compactification. The paradigmatic
example is that of the round and squashed seven sphere that have the same topol-
ogy but two different Einstein metrics. Both compactification are encoded in the
de Wit–Nicolai theory. The round seven sphere corresponds to an SO(8)-symmetric
extremum of the potential and preservesN = 8, supersymmetries, while the second
compactification corresponds to an extremum with SO(5)× SO(3) symmetry and
preserves only N = 1 supersymmetry. When the compact manifolds M7 and ̂M7

have different topology the low energy supergravities corresponding to the two com-
pactifications are different theories, either different gaugings of the same ungauged
supergravity or even different gaugings of different ungauged supergravities with a
different content of matter multiplets.

This state of affairs promoted the search for new supergravity gaugings and for
their interpretation in terms of compactification either of D = 11 supergravity or of
D = 10 supergravities of type IIA or IIB.
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In a series of papers dating 1985 [16–22] Christopher Hull and Nick Warner
determined an entire list of gaugings of maximal N = 8 supergravity based on
gauge Lie algebras that are not semi-simple. We recall in the present chapter how
that list can be systematically retrieved and exhausts the classification of so named
electric gaugings of maximal supergravity.

There followed an intermission of about ten years when the research interests
in the field of superstring and supergravity were mostly focused on Calabi–Yau
compactifications, non perturbative dualities and D-branes.

After 1997 a second golden season for Kaluza–Klein supergravity opened up with
the advent of the AdS/CFT correspondence introduced by Maldacena [23] and by
Kallosh and Van Proeyen [24]. In the new perspective promoted by this conceptual
scheme, gauged supergravities corresponding to AdS5 or AdS4 backgrounds were
viewed as a tool to calculate quantum correlators of Conformal Field Theories on
the boundary (see also the discussion of these viewpoints in Chap.8, in particular,
Sect. 8.1.2). In this new vision the Kaluza–Klein spectra were revisited as describing
towers of superconformal BPS multiplets on the boundary ∂AdS5 [25–28] or on the
boundary ∂AdS4 [29–32]. The geometry of the metric cone on the compact manifold
G/H:

C (G/H) ⇒ dr2 + r2 dΩ2
G/H (7.1.4)

raised to prominence as the key to the geometrical engineering of the dual supercon-
formal theories.

Obviously the interest in classifying, constructing and interpreting supergravity
gaugings came once again to prominence.

In 1998 the present author togetherwithMarioTrigiante (see Fig. 7.2) and younger
collaborators addressed the classification of electric gaugings of the N = 8 theory
in a paper [33] that turned out to be seminal. Analyzing the so named T -identities
introduced by de Wit and Nicolai, which are field dependent relations between the
fermion shifts necessary for the consistency and supersymmetry of the action, it was
possible to reduce them to a purely algebraic constraint imposed on the embedding
matrix. The very concept of the embedding matrix, which will be reviewed in the
present chapter was formulated for the first time in [33]. The algebraic t-identity
was solved in [33], yielding an exhaustive classification of the electric gaugings of
N = 8 supergravity.

In the next few years Mario Trigiante and Henning Samtleben, also in collab-
oration with Bernard de Wit, generalized the setup of the embedding matrix, now
known in the literature under the name of embedding tensor, and developed a general
scheme for the construction and classification of gaugings in all type of supergravities
[34–36]. A very much detailed review and classification of all gauged supergravities
is provided in [37]. Very good lectures on the relation between gauged supergravity
and flux compactifications are presented in [38].

The interest in the scalar potentials that can be obtained from supergravity gaug-
ings grew more and more in the last decade in connection with the following issues:

http://dx.doi.org/10.1007/978-3-319-74491-9_8
http://dx.doi.org/10.1007/978-3-319-74491-9_8


7.1 Historical Introduction 349

Fig. 7.2 Mario Trigiante (on the left) was born in Bari in 1970. He graduated from Pisa University
in 1994 and he obtained his Ph.D. in Theoretical Physics from SISSA in 1998 writing a thesis under
the supervision of this book’s author. Postdoctoral Fellow first at Wales University in Swansea,
then in Utrecht, since 2004 he is Associate Professor at the Politecnico of Torino. Mario Trigiante
together with this book’s author started a project aimed at the strategical use of solvable Lie algebras
in supergravity. He has given many important contributions in supergravity black hole theory, in
the systematic approach to supergravity gaugings, in the inclusion of cosmological models into
supergravity and in the classification of nilpotent orbits. Hennig Santleben, graduated fromHamburg
University and in 1998 he obtained his PhD writing a thesis under the supervision of Hermann
Nicolai. Hewas postdoctoral fellow inUtrecht and currently he is Professor of Theoretical Physics at
the ÉcoleNormale Superiéure of Lyon. TogetherwithMario Trigiante, Santleben set the foundations
of the embedding tensor formalism for supergravity gaugings. The very first idea of the embedding
matrix was put forward in [33] by Cordaro et al.

1. Search of stable and unstable de Sitter vacua.
2. Patterns of spontaneous symmetry breaking.
3. Inflaton potentials and the inclusion of realistic inflationary models into super-

gravity.

The first example of a non-compact gauging of N = 2 supergravity leading to a
stable de Sitter vacuumwas found by the present author togetherwithMarioTrigiante
and Antoine Van Proeyen in [39]. Such vacua are quite rare and their search justifies
a systematic scanning of all gauging constructions.
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Summarizing we can say that one more deep geometrical aspect of supergravity
is encoded in the supergravity scalar potentials. From a mathematical point of view
the scalar potential is a map from the scalar manifold to the real line:

V (φ) : Mscalar → R (7.1.5)

Differently from the case of non supersymmetric field theories, where the potential
V (φ) is just any function, in supergravity, the determination of the scalar potential
V (φ) is a complicated algebro-geometric issue that involves all the structures of spe-
cial geometries and the algebraic subtleties of the embedding tensor. In this chapter
we plan to illustrate these construction considering two different paradigmatic cases.
The first concerns maximal N = 8 supergravity where we illustrate the e7(7) alge-
braic machinery underlying the classification of gaugings. The second case-study
relates instead with the inclusion of Starobinsky-like inflaton potentials in N = 2
supergravity models whose origin is traced back to the c-map and to the universal
structure of the sub Tits Satake algebra.

Having spelled out our goals we turn to a more technical description of the items
we shall be working with.

7.1.1 Gaugings and Vacua

The conventional lore is that a vacuum of gravity or supergravity is a configu-
ration with maximal symmetry, namely with Lorentz invariance SO(1,D − 1) in
D-dimensions. Adding translation invariance one ends up with either Poincaré, or
de Sitter, or anti de Sitter symmetry, which forces the vacuum expectation values of
all scalar fields to be constant. Conventional vacua are also effectively characterized
by their properties with respect to supersymmetry breaking or preservation. Hence
we begin our analysis of supergravity gaugings by recalling the general properties
of conventional vacua and of the possible supersymmetry breaking patterns, that,
as it will immediately appear, encode fundamental information about the basic new
ingredients produced by the gaugings, namely the fermion shifts.

7.1.2 General Aspects of Supergravity Gaugings and Susy
Breaking

Let us begin by recalling some very general aspects of the super-Higgs mechanism
in extended supergravity that were codified in the literature of the early and middle
eighties [40–43] and were further analyzed and extended in the middle nineties
[44–47]. Because of the fundamental property of extended supergravity that the
scalar potential is generated by the gauging procedure, the discussion of spontaneous
supersymmetry breaking goes hand in hand with the discussion of possible gaugings.
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7.1.2.1 Supersymmetry Breaking in Conventional Vacua

A conventional vacuum of p + 2-dimensional supergravity corresponds to a space-
time geometry with a maximally extended group of isometries, namely with 1

2 (p +
2)(p + 3) Killing vectors. This means that the metric ds2 = gμνdxμ ⊗ dxν neces-
sarily has constant curvature in p + 2-dimensions and is one of the following three:

Mspace−time =
⎧

⎨

⎩

Ad Sp+2 ; negative curvature
Minkowskip+2 ; zero curvature
dSp+2 ; positive curvature

(7.1.1)

At the same time, in order to be consistent with this maximal symmetry, the v.e.v.s of
the scalar fields,< φi >= φi

0 must be constant and be extrema of the scalar potential:

∂V

∂φi

∣

∣

∣

∣

φ=φ0
= 0 , (7.1.2)

Minkowski space occurs when V (φ0) = 0, anti de Sitter space AdSp+2 occurs when
V (φ0) < 0 and finally de Sitter space dSp+2 is generated by V (φ0) > 0. To be
definite we focus on the 4-dimensional case, but all the mechanisms and properties
we describe below have straightforward counterparts in higher dimensions. So let us
state that in relation with the super-Higgs mechanism, there are just three relevant
items of the entire D = 4 supergravity construction that have to be considered.

1. The gravitino mass matrix SAB(φ), namely the non-derivative scalar field depen-
dent term that appears in the gravitino supersymmetry transformation rule:

δψA|μ = Dμ εA + SAB (φ) γμ ε
B + . . . , (7.1.3)

and reappears as a mass term in the Lagrangian:

L SUGRA = . . . + const
(

SAB(φ)ψ
A
μ γ

μν ψ B
ν + S AB(φ)ψ A|μ γ μν ψB|ν

)

(7.1.4)
2. The fermion shifts, namely the non-derivative scalar field dependent terms in the

supersymmetry transformation rule of the spin 1
2 fields:

δ λi
R = derivative terms + Σ i

A (φ) ε
A ,

δ λi
L = derivative terms + Σ A|i (φ) εA . (7.1.5)

3. The scalar potential itself, V (φ).

These three items are related by a general supersymmetry Ward identity, firstly dis-
covered in the context of gauged N = 8 supergravity [2, 3] and later extended to
all supergravities [40, 42, 43, 48, 49], that, in the conventions of [41, 50–52] reads
as follows:
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24 SAC SC B − 4 Ki, jΣ
i

A Σ
B| j = −δB

A V , (7.1.6)

where Ki, j is the kinetic matrix of the spin-1/2 fermions. The numerical coefficients
appearing in (7.1.6) depend on the normalization of the kinetic terms of the fermions,
while A, B, · · · = 1, . . . ,N are SU(N ) indices that enumerate the supersymmetry
charges. We also follow the standard convention that the upper or lower position of
such indices denotes definite chiral projections of Majorana spinors, right or left,
depending on the species of fermions considered.1 The position denotes also the
way of transforming of the fermion with respect to SU(N ), with lower indices
in the fundamental and upper indices in the fundamental bar. In this way we have
S AB = (SAB)

� and Σ i
A = (

Σ B|i)�. Finally, the index i is a collective index that
enumerates all spin-1/2 fermions λi present in the theory.2

The corresponding fermion shifts are defined by

δ λi = derivative terms + Σ i
A (φ) ε

A . (7.1.7)

A vacuum configuration φ0 that preserves N0 supersymmetries is characterized
by the existence of N0 vectors ρ A

(�) (� = 1, . . . ,N0) of SU(N ), such that

SAB (φ0) ρ
A
(�) = eiθ

√

−V (φ0)
24 ρA(�) ,

Σ i
A (φ0) ρ

A
(�) = 0 , (7.1.8)

where θ is an irrelevant phase. Indeed, consider the spinor

εA(x) =
N 0
∑

�=1

ρ A
(�)ε

(�)(x) , (7.1.9)

where ε(�)(x) areN0 independent solutions of the equation for covariantly constant
spinors in AdS4 (or Minkowski space) with 2 e = √−V (φ0)/24:

D(AdS)
a ε(x) ≡

(

∂a − 1

4
ωbc

aγbc − 2 e γ5γa

)

ε(x) = 0 , (7.1.10)

The integrability of Eq. (7.1.10) is guaranteed by the expression of the AdS4 curva-
ture, Rab

cd = −16 e2 δab
cd , that corresponds to the Ricci tensor:

Rab = −24 e2 ηab = 1

4
V (φ0) ηab, (7.1.11)

1For instance, we have γ5 εA = εA and γ5 εA = −εA.
2We denote by λi the right handed chiral projection while λi are the left handed ones.
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Then it follows that under supersymmetry transformations of parameter (7.1.9) the
chosen vacuum configuration φ = φ0 is invariant.3 That such a configuration is a
true vacuum follows from another property proved, for instance, in [43]: all vacua
that admit at least one vector ρ A satisfying Eq. (7.1.8) are automatically extrema of
the potential, namely they satisfy Eq. (7.1.2). Furthermore, for constant scalar field
configurations the Ricci tensor must be Rμν = 1

4 V (φ0) gμν as in Eq. (7.1.11).
The above integrability argument can be easily generalized to all dimensions

and to all numbers of supersymmetries N . Consider a supergravity action in D
dimensions that, once reduced to the gravitational plus scalar field sector, has the
following normalization:

A[D]
grav+scal =

∫

d D x
√−g

[

2 R[g] + α 1

2
gi j (φ) ∂

μ φi∂μφ
j − V (φ)

]

(7.1.12)

whereα is a normalization constant that can vary from case to case since it can always
be reabsorbed into the definition of the scalar metric but the scalar potential V has
an unambiguous and unique normalization with respect to the Einstein term. For
constant field configurations φ0 the Einstein equations derived from (7.1.12) imply
that:

Rμν = 1

2(D − 2)
V (φ0) gμν (7.1.13)

Then the Riemann tensor of an anti de Sitter space Ad SD consistent with Eq. (7.1.13)
is necessarily the following:

Rρσμν = 1

(D − 1)(D − 2)
V (φ0) δ

[ρ
[μ δ

σ ]
ν] (7.1.14)

Consider next the equation for a covariantly constant spinor in Ad SD . Its general
form is:

D(AdS)
μ ε ≡ Dμε(x)− μγμ ε =

(

∂μ − 1

4
ωbc

μγbc − μγμ
)

= 0 , (7.1.15)

where the parameter μ is fixed by integrability in terms of the vacuum value of
potential V (φ0). Indeed from the condition D(AdS)

[μ D(AdS)
ν] = 0 we immediately get:

|μ|2 = 1

4

|V (φ0)|
(D − 1)(D − 2)

(7.1.16)

On the other hand the general form of the gravitino transformation rule is, inde-
pendently from the number of space-time dimensions, that given in Eq. (7.1.3), so
that, in a conventional vacuum with an unbroken supersymmetry μ is to be inter-

3As already stressed, the v.e.v.s of all the fermions are zero and Eq. (7.1.8) guarantees that they
remain zero under supersymmetry transformations of parameters (7.1.9).
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preted as an eigenvalue of the gravitino mass-matrix. So the general conditions for
the preservation of N0 supersymmetries in D dimensions are fully analogous to
those in Eq. (7.1.8) and correspond to the existence of N0 independent vectors ρ A

(�)

(� = 1, . . . ,N0), such that:

SAB (φ0) ρ
A
(�) = eiθ

√

|V (φ0)|
4(D−2)(D−1) ρA(�) ,

Σ i
A (φ0) ρ

A
(�) = 0 , (7.1.17)

By extension of language the vectors ρ A
(�) are named Killing spinors.

7.2 Electric Gaugings ofN = 8 Supergravity in D = 4

To illustrate the general ideas in a case of maximal supersymmetry, we consider the
possible gaugings of the N = 8 theory in four dimensions. The complete classifi-
cation that can be reached in this case constitutes an inspiring paradigm.

Considering the N = 8, D = 4 case we recall that here there is no other mul-
tiplet besides the graviton multiplet which contains the graviton gμν , 8 gravitinos
ψA|μ dxμ, 28 one-form gauge fields AΛΣμ dxμ = −AΣΛμ dxμ transforming in the 28
antisymmetric representation of the electric subgroup SL(8,R) ⊂ E7(7), 56 spin 1/2
dilatinosχABC = γ5χABC (anti-symmetric in ABC) and 70 scalars parametrizing the
E7(7)/SU(8) coset manifold. We have labeled the vector fields with a pair of anti-
symmetric indices, each of them ranging on 8 values Λ,Σ,Δ,Π,= 1, . . . , 8 and
transforming in the fundamental representation of SL(8,R). The capital latin indices
carried by the fermionic fields range also on eight values A, B,C,= 1, . . . , 8 but
they are covariant under the maximal compact subgroup SU(8) ⊂ E7(7) rather than
the non compact SL(8,R) ⊂ E7(7). As in previous sections, also here we use the
convention that upper and lower SU(8) indices denote different chirality projections
of the fermion fields: ψ A = −γ5ψ A and χ ABC = −γ5χ ABC .

7.2.1 The Bosonic Action

In order to proceed further we need to fix our conventions for N = 8 supergravity
and for its gaugings. We adopt those utilized in papers [33, 53]. We introduce the
coset representative IL of E(7)7

SU (8) in the 56 representation of E(7)7:

IL = 1√
2

⎛

⎝

f + ih f + ih

f − ih f − ih

⎞

⎠ (7.2.1)
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where the submatrices (h, f ) are 28 × 28 matrices indexed by antisymmetric pairs
Λ,Σ , A, B, in which Λ,Σ = 1, . . . , 8, A, B = 1, . . . , 8. The first pair transforms
under E7(7) while the second one transforms under SU(8):

(h, f ) = (

hΛΣ |AB, f ΛΣAB

)

(7.2.2)

Note that IL ∈ Usp (28, 28). The vielbein PABC D and the SU(8) connection Ω B
A of

E7(7)

SU(8) are computed from the left invariant 1-form IL−1dIL:

IL−1dIL =
⎛

⎜

⎝

δ
[A
[CΩ

B]
D] P

ABC D

PABC D δ
[C

[A Ω
D]

B]

⎞

⎟

⎠ (7.2.3)

where PABC D ≡ PABC D,αdΦα (α = 1, . . . , 70) is completely antisymmetric and
satisfies the reality condition

PABC D = 1

24
εABC DE FG H P

E FG H
(7.2.4)

The bosonic lagrangian of gauged N = 8 supergravity is the following

L =
∫ √−g d4x

(

2R + ImNΛΣ |ΓΔFΛΣ
μν FΓΔ|μν + 1

6
PABC D,i P

ABC D
j ∂μΦ

i∂μΦ j +

+ 1

2
ReNΛΣ |ΓΔ

εμνρσ√−g
F ΛΣ
μν FΓΔ

ρσ − V (φ)

)

(7.2.5)

where:
FΛΣ = d AΛΣ + CΛΣ

ΓΔ,ΦΞ AΓΔ ∧ AΦΞ (7.2.6)

having denoted CΛΣ
ΓΔ,ΦΞ the structure constant of the gauge Lie algebra. The 28

one-forms AΛΣμ dxμ = −AΣΛμ dxμ transform in the 28 antisymmetric representation
of the electric subgroup SL(8, IR) ⊂ E7(7). We have labeled these vector fields with
a pair of antisymmetric indices. The curvature two-form is defined as

Rab = dωab − ωa
c ∧ ωcb. (7.2.7)

and the kinetic matrix NΛΣ |ΓΔ is given by:

N = h f −1 → NΛΣ |ΓΔ = hΛΣ |AB f −1 AB
ΓΔ. (7.2.8)

The same matrix relates the (anti)self-dual electric and magnetic 2-form field
strengths, namely, setting
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F± ΛΣ = 1

2
(F ± i �F )ΛΣ (7.2.9)

one has

G −
ΛΣ = N ΛΣ |ΓΔF− ΓΔ

G +
ΛΣ = NΛΣ |ΓΔF+ ΓΔ (7.2.10)

where the “dual” field strengths G ±
ΛΣ are defined as G ±

ΛΣ = i
2

δL
δF ± ΛΣ . Note that the

56 dimensional (anti)self-dual vector
(

F± ΛΣ,G ±
ΛΣ

)

transforms covariantly under
U ∈ Sp(56,R)

U

(

F
G

)

=
(

F ′
G ′

)

; U =
(

A B
C D

)

At C − Ct A = 0

Bt D − Dt B = 0

At D − Ct B = 1 (7.2.11)

The matrix transforming the coset representative IL from the Usp (28, 28) basis,
Eq. (7.2.1), to the real Sp(56, IR) basis is the Cayley matrix:

ILUsp = C ILSpC
−1 C =

(

11 i11
11 −i11

)

(7.2.12)

implying

f = 1√
2
(A − iB)

h = 1√
2
(C − iD) (7.2.13)

The only object which we need to manipulate to get command of the theory is
the coset representative IL(φ) parametrizing the equivalence classes of E7(7)/SU(8).
Just to fix ideas and avoiding the subtleties of the solvable decomposition we can
think of IL(φ) as the exponential of the 70-dimensional coset IK in the orthogonal
decomposition of the Lie algebra:

e7(7) = su(8) ⊕ IK (7.2.14)

In practice this means that we can write:

IL(φ) = exp

(

0 φE FG H

φABC D 0

)

=
(

uΛΞ AB vΛΞC D

vΔΓ AB uΔΓ C D

)

(7.2.15)
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where the 70 parameters φABC D satisfy the self-duality condition4:

φABC D = 1

4!εABC DE FG Hφ
E FG H (7.2.16)

The interaction structure of the theory is fully encoded in the following geomet-
rical data:

1. The symplectic geometry of the scalar coset manifold E7(7)/SU(8)
2. The choice of the gauge group Ggauge ⊂ SL(8, IR) ⊂ E7(7).

In this chapter wemainly need the second item of the this list, yet we need to recollect
some information on the other items.

Let us first recall that

gi j = 1

6
PABC D,i P

ABC D
j (7.2.17)

appearing in the scalar field kinetic term of the lagrangian (7.2.5) is the unique E7(7)

invariant metric on the scalar coset manifold.
The coset representative IL as defined by (7.2.15) is in the Usp(28, 28) represen-

tation. There are actually four bases where the 56 × 56 matrix IL(φ) can be written:

1. The SpD(56)-basis
2. The UspD(28, 28)-basis
3. The SpY(56)-basis
4. The UspY(28, 28)-basis

corresponding to two cases where IL is symplectic real (SpD(56),SpY(56)) and
two cases where it is pseudo-unitary symplectic (UspD(56),UspY(56)). This further
distinction in a pair of subcases corresponds to choosing either a basis composed
of weights or of Young tableaux. By relying on (7.2.15) we have chosen to utilize
the UspY(28, 28)-basis which is directly related to the SU(8) indices carried by
the fundamental fields of supergravity. However, for the description of the gauge
generators the Dynkin basis is more convenient. We can optimize the advantages of
both bases introducing a mixed one where the coset representative IL is multiplied on
the left by the constant matrixS performing the transition from the pseudo-unitary
Young basis to the real symplectic Dynkin basis. Explicitly we have:

(

u AB

vAB

)

= S

(

W i

W i+28

)

(i, 1, . . . 28) (7.2.18)

where

S =
(

S 0
0 S�

)

C = 1√
2

(

S i S
S� −i S�

)

(7.2.19)

the 28 × 28 matrix S being unitary:

4Here we have used the notation, φABC D ≡ (φABC D)
∗.
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S†S = 11 (7.2.20)

The explicit form of the U(28) matrix S was given in Sect. 5.4 of [54] while the
weights of the E7(7) 56 representation are listed in Table7.2. In the Dynkin basis
the basis vectors of the real symplectic representation are eigenstates of the Car-
tan generators with eigenvalue one of the 56 weight vectors (±ΛΛΛ = {Λ1, . . . , Λ7}
pertaining to the representation:

(W = 1, . . . 56) : | W 〉 =
{ |ΛΛΛ〉 : Hi |ΛΛΛ 〉 = Λi |ΛΛΛ 〉 (Λ = 1, . . . 28)

| −ΛΛΛ〉 : Hi | −ΛΛΛ 〉 = −Λi | −ΛΛΛ 〉 (Λ = 1, . . . 28)

| V 〉 = f Λ |ΛΛΛ〉 ⊕ gΛ |−ΛΛΛ〉
or in matrix notation

VSpD =
(

f Λ

gΣ

)

(7.2.21)

In the Young basis, instead, the basis vectors of the complex pseudounitary repre-
sentation correspond to the natural basis of the 28 + 28 antisymmetric representation
of the maximal compact subgroup SU(8). In other words, in this realization of the
fundamental E7(7) representation a generic vector is of the following form:

|V 〉 = u AB A
B

⊕ vAB
A

B
; (A, B = 1, . . . , 8)

or in matrix notation

VUspY =
(

u AB

vAB

)

(7.2.22)

To complete the illustration of the bosonic lagrangian we need to discuss the scalar
potential V (φ). This cannot be done without referring to the supersymmetry trans-
formation rules since, as we have explained in Sect. 7.1.2, the potential is determined
by the fundamental relation (7.1.6) that gives it as a quadratic form in terms of the
fermion shifts. These latter appear in the supersymmetry transformation rules of the
fermionic fields and are the primary objects determined by the choice of the gauge
algebra.

7.2.2 Supersymmetry Transformation Rules of the Fermi
Fields

Since the N = 8 theory has no matter multiplets the fermions are just, as already
pointed out, the 8 spin 3/2 gravitinos and the 56 spin 1/2 dilatinos. The two numbers
8 and 56 have been written boldfaced since they also single out the dimensions of
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the two irreducible SU(8) representations to which the two kind of fermions are
respectively assigned, namely the fundamental and the three times antisymmetric:

ψμ|A ↔ A ≡ 8 ; χABC ↔
A
B
C

≡ 56 (7.2.23)

Following the conventions of [53] the fermionic supersymmetry transformation rules
are written as follows:

δψAμ = ∇μεA − 1

4
T (−)AB|ρσ γ

ρσ γμε
B + SAB γμ ε

B + · · ·
δχABC = 4i PABC D|i∂μΦ iγ μεD − 3T (−)[AB|ρσ γ

ρσ εC] +ΣD
ABC εD · · ·(7.2.24)

where T −
AB|μν is the antiselfdual part of the graviphoton field strength, PABC D|i is the

already mentioned vielbein of the scalar coset manifold completely antisymmetric in
ABC D and satisfying the same pseudoreality condition as our choice of the scalars
φABC D:

PABC D = 1

4!εABC DE FG H P
E FG H

. (7.2.25)

By comparison with Eqs. (7.1.3) and (7.1.5) we see that SAB , ΣD
ABC are the appro-

priate gravitino mass matrix and fermion shifts. Recalling also the normalization of
the fermion kinetic terms:

L kin
f ermion =

∫

d4x

[

2
(

ψ
A
μ γν∇ρψA|μ + h.c

)

− i
√−g

1

24

(

χ ABCγμ ∇μχABC − h.c.
)

]

(7.2.26)
the general Ward identity (7.1.6) takes, in this theory, the following explicit form:

− V δA
B = 24 SAM SB M − 1

6
Σ

P Q R
A Σ B

P Q R (7.2.27)

What we need is the explicit expression of the two items appearing in the super-
symmetry transformations (7.2.24) in terms of the coset representatives. For the
graviphoton such an expression is independent of the gauging and coincides with
that appearing in the case of ungauged supergravity. On the contrary, the expression
of the scalar vielbein and of the fermion shifts, involves the choice of the gauge group
and can be given only upon introducing the gauged Maurer Cartan equations. Hence
we first recall the structure of the graviphoton and then we turn our attention to the
second kind of items entering the transformation rules that are the most relevant ones
in our discussion.
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7.2.2.1 The Graviphoton Field Strength

We introduce the multiplet of electric and magnetic field strengths:

Vμν ≡
(

FΛΣμν
GΔΠ |μν

)

(7.2.28)

where

GΔΠ |μν = −ImNΔΠ,ΛΣ
˜FΛΣμν − ReNΔΠ,ΛΣ FΛΣμν

˜FΛΣμν = 1

2
εμνρσ FΛΣ |ρσ (7.2.29)

The 56-component field strength vectorVμν transforms in the real symplectic repre-
sentation of the U-duality group E7(7). We can also write a column vector containing
the 28 components of the graviphoton field strengths and their complex conjugate:

Tμν ≡
(

T |AB
μν

Tμν|AB

)

T |AB
μν = (

Tμν|AB
)�

(7.2.30)

in which the upper and lower components transform in the canonical Young basis of
SU(8) for the 28 and 28 representation respectively.

The relation between the graviphoton field strength vectors and the electric mag-
netic field strength vectors involves the coset representative in the SpY(56) repre-
sentation and it is the following one:

Tμν = −C CL
−1
SpY (φ)Vμν (7.2.31)

The matrix C being the symplectic invariant matrix. Equation (7.2.31) reveals that
the graviphotons transform under the SU(8) compensators associated with the E7(7)

rotations. It is appropriate to express the upper and lower components of T in terms
of the self-dual and antiself-dual parts of the graviphoton field strengths, since only
the latter enters the transformation rules (7.2.24).

These components are defined as follows:

T +|AB
μν = 1

2

(

T |AB
μν + i

2
εμνρσ gρλgσπ T |AB

λπ

)

T −
AB|μν = 1

2

(

TAB|μν − i

2
εμνρσ gρλgσπ TAB|λπ

)

(7.2.32)

As shown in [54] the following equalities hold true:

T |AB
μν = T +|AB

μν ; Tμν|AB = T −
μν|AB (7.2.33)
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and we can simply write:

Tμν ≡
(

T +|AB
μν

T −
μν|AB

)

(7.2.34)

7.2.3 The Embedding Matrix

The main item in the construction of the electrically gauged supergravity is the
embedding matrix whose conception was introduced in [33] and later extended to
more general (not necessarily electric) gaugings under the name of embedding tensor
[34–36]. In [33] the general form of the embedding matrix was derived by solving so
named t-identities. Because of its central role in the present discussion let us recall
the setup of the embedding matrix following [33].

The generators of the electric subalgebra SL(8, IR) ⊂ E7(7) have the following
form

Gα =
(

qΛΣΠΔ(α) pΛΣΨΞ(α)
pΔΓΠΔ(α) qΛΣΨΞ(α)

)

(7.2.35)

where the matrices q and p are real and have the following form

qΛΣΠΔ = 2δ[Λ[ΠqΣ]
Δ] = 2

3
δ[Λ[ΠqΣ]Γ

Δ]Γ ,

pΔΓΠΩ = 1

24
εΔΓΠΩΛΣΨΞ pΛΣΨΞ . (7.2.36)

The index α = 1, . . . 63 in (7.2.35) spans the adjoint representation of SL(8, IR)
according to some chosen basis and we can freely raise and lower the greek indices
Λ,Σ, . . . because of the reality of the representation.

The fundamental item in the gauging construction is the 28 × 63 constant embed-
ding matrix:

E ≡ eαΛΣ (7.2.37)

transforming under SL(8, IR) as its indices specify, namely in the tensor product
of the adjoint with the antisymmetric 28. This matrix specifies which generators of
SL(8, IR) are gauged and by means of which vector fields in the 28-dimensional
stock. In particular, using this matrix E , one writes the gauge 1-form as:

A ≡ AΛΣeαΛΣGα (7.2.38)

As already stressed, the main result of [33] was the determination of the most gen-
eral form and the analysis of the embedding matrix eαΛΣ . This general form was
obtained by solving the algebraic t-identity which is a linear equation imposed on
the embeddingmatrixE by the request that the lagrangian should be supersymmetric.
These identities were solved by means of a computer program and a 36-parameter
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solution was found which we do not display explicitly since it is encoded in too large
formulae.

Let us summarize the derivation of this result. In terms of the gauge 1-form A and
of the coset representative L(φ) we can write the gauged left-invariant 1-form:

Ω = L
−1dL + gL−1AL (7.2.39)

which belongs to the E7(7) Lie algebra in theUspY(28, 28) representation and defines
the gauged scalar vielbein P AB E F and the SU(8) connection Q B

D :

Ω =
(

2δ[A
[C Q B]

D] P AB E F

PC DG H −2δ[E
[G QF]

H ]

)

(7.2.40)

Because of its definition the 1-form Ω satisfies gauged Maurer Cartan equations:

dΩ +Ω ∧Ω = g
[

FΛΣ − (√
2(uΛΣ AB + vΛΣ AB)ψ

A ∧ ψB + h.c.
)]

eαΛΣL
−1GαL ,
(7.2.41)

with FΛΣ the supercovariant field strength of the vectors AΛΣ . Let us focus on the
last factor in Eq. (7.2.41):

Uα ≡ L
−1GαL =

(

A (α) B(α)

B(α) A (α)

)

(7.2.42)

SinceUα is an E7(7) Lie algebra element, for each gauge generator Gα we necessarily
have:

A AB
C D(α) = 2

3
δ

[A
[C A B]M

D]M

BAB FG(α) = B[AB FG](α) (7.2.43)

Comparing with Eq. (7.2.41) we see that the scalar field dependent SU(8) tensors
multiplying the gravitino bilinear terms are the following ones:

T A
BC D ≡ (uΩΣC D + vΩΣC D) eαΩΣ A AM

B M(α)

Z AB E F
C D ≡ (uΩΣC D + vΩΣC D) eαΩΣ BAB E F (α) (7.2.44)

As shown in the original papers by de Wit and Nicolai [2, 3] (or Hull [16–22]) and
reviewed in [55], closure of the supersymmetry algebra5 and hence existence of the
corresponding gauged supergravity models is obtained if and only if the following
T -identities are satisfied:

5In the rheonomy approach closure of the Bianchi identities.
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T A
BC D = T A[BC D] + 2

7
δA
[C T M

D]M B (7.2.45)

ZC D
AB E F = 4

3
δ[C [AT D]

B E F] (7.2.46)

Equations (7.2.45) and (7.2.46) have a clear group theoretical meaning. Namely,
they state that both the T A

BC D tensor and the Z AB E F
C D tensor can be expressed in

a basis spanned by two irreducible SU(8) tensors corresponding to the 420 and 36
representations respectively:

◦
T A

BC D ≡ εAI1...I7

I1 B
I2 C
I3 D
I4
I5
I6
I7

≡ 420 ; ◦
T DB ≡ D B ≡ 36

To see this let us consider first Eq. (7.2.45). In general a tensor of type T A
B[C D]

would have 8 × 8 × 28 components and contain several irreducible representations
of SU(8). However, as a consequence of Eq. (7.2.45) only the representations 420,
28 and 36 can appear. (see Fig. 7.3). In addition, since the A tensor, being in the
adjoint of SU(8), is traceless also the T -tensor appearing in (7.2.45) is traceless:
T A

ABC = 0. Combining this information with Eq. (7.2.45) we obtain

T M [AB]M = 0, (7.2.47)

Equation (7.2.47) is the statement that the 28 representation appearing in Fig. 7.3 van-
ishes so that the T A

B[C D] tensor is indeed expressed solely in terms of the irreducible
tensors (7.2.47).

448

36 420 28 36

Fig. 7.3 Decomposition of a tensor of type T A
BC D into irreducible representations
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Fig. 7.4 Decomposition of a
tensor of type ZC D

AB E F into
irreducible representations

1960 1512 420 28

A similar argument can be given to interpret the second T -identity (7.2.46). A
tensor of type Z [AB E F]

[C D] contains, a priori, 70 × 28 components and contains the
irreducible representations 1512, 420 and 28 (see Fig. 7.4). Using Eq. (7.2.46) one
immediately sees that the representations 1512 and 28 must vanish and that the
surviving 420 is proportional through a fixed coefficient to the 420 representations
appearing in the decomposition of the T A

B[C D] tensor.
In view of this discussion, the T -identities can be rewritten as follows in the basis

of the independent irreducible tensors

◦
T A

BC D = T A[BC D] ; ◦
T AB = T M

AM B (7.2.48)

The irreducible tensors 420 and 36 can be identified, through a suitable coefficient
fixed by Bianchi identities, with the fermion shifts appearing in the supersymmetry
transformation rules (7.2.24):

Σ A
BC D = σ

◦
T A

BC D ; SDB = s
◦

T DB (7.2.49)

Finally, as shown by de Wit and Nicolai [2, 3] the crucial Ward identity (7.2.27) is
satisfied if and only if the ratio between the two constants in Eq. (7.2.49) is:

s2

σ 2
= 1

392
(7.2.50)

7.2.4 Algebraic Characterization of the Gauge Group
Embedding Ggauge −→ SL(8,R)

As we have seen in the previous section the existence of gauged supergravity models
relies on a peculiar pair of identities to be satisfied by the T -tensors. Therefore
a classification of all possible electric gaugings involves a parametrization of all
SL(8,R) subalgebras that lead to satisfied T -identities. Since the T -tensors are scalar
field dependent objects it is not immediately obvious how such a program can be
carried through. On the other hand since the problem is algebraic in nature (one
looks for all Lie subalgebras of SL(8,R) fulfilling a certain property) it is clear that
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it should admit a completely algebraic formulation. It turns out that such an algebraic
formulation is possible and actually very simple. Indeed the T -identities imposed
on the T -tensors are nothing else but a single algebraic equation imposed on the
embedding matrix E introduced in Eq. (7.2.37). This is what we outline next.

To begin with we recall a general and obvious constraint to be satisfied by E
which embeds a subalgebra of the SL(8,R) Lie algebra into its 28 irreducible rep-
resentation: the vectors should be in the coadjoint representation of the gauge
group. Hence under the reduction to Ggauge ⊂ SL(8,R) we must obtain the follow-
ing decomposition of the entire set of the electric vectors:

28
Ggauge→ coadjGgauge ⊕ R (7.2.51)

where R denotes the subspace of vectors not entering the adjoint representation of
Ggauge which is not necessarily a representation of Ggauge itself.

Next in order to reduce the field dependent T -identities to an algebraic equation
on E we introduce the following constant tensors6:

t (1)ΩΣ
ΠΓ

ΔΛ ≡
∑

α

eαΩΣ qΠΓ ΔΛ(α) , t (2)ΩΣ
ΠΓΔΛ ≡

∑

α

eαΩΣ pΠΓΔΛ(α) . (7.2.52)

In terms of t (1) and t (2) the field dependent T -tensor is rewritten as

T A
BC D = (uΩΣC D + vΩΣC D)

[

t (1)ΩΣ
ΠΓ

ΔΛ (u
AM

ΠΓ uΔΛB M − vAMΦΓ vΔΛB M )

+t (2)ΩΣ
ΠΓΔΛ (u AM

ΠΓ vΔΛB M − vAMΦΓ uΔΛB M )
]

.

(7.2.53)

By means of lengthy algebraic manipulations in [33] the following statement was
shown to be true

Theorem 7.2.1 The field dependent T -identities are fully equivalent to the following
algebraic equation:

t (1)ΩΣ
ΠΓ

ΔΛ + t (1)ΔΛ
ΠΓ

ΩΣ + t (2)ΠΓ
ΔΛΩΣ = 0 (7.2.54)

Here we omit the proof but we stress the relevance of the result. All possible gauged
supergravities have been put into one-to-one correspondence with the inequivalent
solutions of an algebraic equation to be satisfied by the embedding matrix.

The algebraic t-identity (7.2.54) is a linear equation imposed on the embed-
ding matrix E . In [33] it was solved by means of a computer program yielding a
36-parameter solution. It was then shown that all the 36 parameters could be absorbed
by means of conjugations with elements of the electric subgroup leaving only a finite

6For example, in the de Wit–Nicolai theory, where one gauges Ggauge = SO(8) we have:

t (1)ΩΣ
ΠΓ

ΔΛ = δ[Π[Δ δΛ][ΩδΓ ]
Σ] , t (2)ΩΣ

ΠΓΔΛ = 0 .
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discrete set of inequivalent solutions corresponding to as many inequivalent com-
pact and non compact subalgebras of SL(8,R). In order to describe this result more
explicitly we need to discuss the embedding of the electric group in some detail.

7.2.5 Embedding of the Electric Group

The first information we need to specify is the explicit embedding of the electric
subalgebra SL(8,R) into the U-duality algebra E7(7). For this latter we adopt the
conventions and notations of [54].

7.2.5.1 The E7(7) Algebra: Roots and Weights

We consider the standard E7 Dynkin diagram (see Fig. 7.5) and we name αi (i =
1, . . . , 7) the corresponding simple roots. An explicit representation of the simple
roots in Euclidean 7-dimensional space is the following one:

α1 = {1,−1, 0, 0, 0, 0, 0}
α2 = {0, 1,−1, 0, 0, 0, 0}
α3 = {0, 0, 1,−1, 0, 0, 0}
α4 = {0, 0, 0, 1,−1, 0, 0}
α5 = {0, 0, 0, 0, 1,−1, 0}
α6 = {0, 0, 0, 0, 1, 1, 0}
α7 =

{

−1

2
,−1

2
,−1

2
,−1

2
,−1

2
,−1

2
,

1√
2

}

(7.2.55)

Having fixed this basis, each E7(7) root is intrinsically identified by its Dynkin labels,
namely by its integer valued components in the simple root basis (Fig. 7.5).

Having identified the roots, the next step we need is the construction of the real
fundamental representation SpD(56) of our U-duality Lie algebra E7(7). For this we
need the corresponding weight vectors W.

A particularly relevant property of the maximally non-compact real sections of a
simple complex Lie algebra is that all its irreducible representations are real. E7(7) is
the maximally non compact real section of the complex Lie algebra E7, hence all its
irreducible representations Γ are real. This implies that if an element of the weight

Fig. 7.5 E7 Dynkin diagram
and root labeling
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lattice W ∈ Λw is a weight of a given irreducible representation W ∈ Γ then also
its negative is a weight of the same representation: −W ∈ Γ . Indeed changing sign
to the weights corresponds to complex conjugation.

According to standardLie algebra lore every irreducible representation of a simple
Lie algebraG is identified by a unique highest weightWmax . Furthermore all weights
can be expressed as integral non-negative linear combinations of the simple weights
W� (� = 1, . . . , r = rank(G)), whose components are named the Dynkin labels of
the weight. The simple weights Wi of G are the generators of the dual lattice to the
root lattice and are defined by the condition:

2(Wi , α j )

(α j , α j )
= δi j (7.2.56)

In the simply laced E7(7) case, the previous equation simplifies as follows

(Wi , α j ) = δi j (7.2.57)

where α j are the simple roots. Using the Dynkin diagram of E7(7) (see Fig. 7.5) from
Eq. (7.2.57) we can easily obtain the explicit expression of the simple weights that
are listed in Table7.2.

TheDynkin labels of the highestweight of an irreducible representationΓ give the
Dynkin labels of the representation. Therefore the representation is usually denoted
by Γ [n1, . . . , nr ]. All the weights W belonging to the representation Γ can be
described by r integer non-negative numbers q� defined by the following equation:

Wmax − W =
r
∑

�=1

q�α� (7.2.58)

where α� are the simple roots. According to this standard formalism the fundamental
real representation SpD(56) of E7(7) is Γ [1, 0, 0, 0, 0, 0, 0] and the expression of its
weights in terms of q� is given in Table7.2, the highest weight being W(51).

We can now explain the specific ordering of the weights we have adopted.
First of all we have separated the 56 weights in two groups of 28 elements so that

the first group:
ΛΛΛ(n) = W(n) n = 1, . . . , 28 (7.2.59)

are the weights for the irreducible 28 dimensional representation of the electric sub-
group SL(8,R) ⊂ E7(7). The remaining group of 28 weight vectors are the weights
for the transposed representation of the same group that we name 28.

Secondly the 28 weights ΛΛΛ have been arranged according to the decomposition
with respect to the T-duality subalgebra SO(6, 6) ⊂ E7(7). From a superstring point
of view the first 16 correspond to Ramond–Ramond vectors and are the weights of
the spinor representation of SO(6, 6) while the last 12 are associated with Neveu–
Schwarz fields and correspond to theweights of the vector representation of SO(6, 6).
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Table 7.2 Weights of the 56 representation of E7(7)

Weight q� Weight q�

Name Vector Name Vector

W(1) = {2, 3, 4, 5, 3, 3, 1} W(2) = {2, 2, 2, 2, 1, 1, 1}
W(3) = {1, 2, 2, 2, 1, 1, 1} W(4) = {1, 1, 2, 2, 1, 1, 1}
W(5) = {1, 1, 1, 2, 1, 1, 1} W(6) = {1, 1, 1, 1, 1, 1, 1}
W(7) = {2, 3, 3, 3, 1, 2, 1} W(8) = {2, 2, 3, 3, 1, 2, 1}
W(9) = {2, 2, 2, 3, 1, 2, 1} W(10) = {2, 2, 2, 2, 1, 2, 1}
W(11) = {1, 2, 2, 2, 1, 2, 1} W(12) = {1, 1, 2, 2, 1, 2, 1}
W(13) = {1, 1, 1, 2, 1, 2, 1} W(14) = {1, 2, 2, 3, 1, 2, 1}
W(15) = {1, 2, 3, 3, 1, 2, 1} W(16) = {1, 1, 2, 3, 1, 2, 1}
W(17) = {2, 2, 2, 2, 1, 1, 0} W(18) = {1, 2, 2, 2, 1, 1, 0}
W(19) = {1, 1, 2, 2, 1, 1, 0} W(20) = {1, 1, 1, 2, 1, 1, 0}
W(21) = {1, 1, 1, 1, 1, 1, 0} W(22) = {1, 1, 1, 1, 1, 0, 0}
W(23) = {3, 4, 5, 6, 3, 4, 2} W(24) = {2, 4, 5, 6, 3, 4, 2}
W(25) = {2, 3, 5, 6, 3, 4, 2} W(26) = {2, 3, 4, 6, 3, 4, 2}
W(27) = {2, 3, 4, 5, 3, 4, 2} W(28) = {2, 3, 4, 5, 3, 3, 2}
W(29) = {1, 1, 1, 1, 0, 1, 1} W(30) = {1, 2, 3, 4, 2, 3, 1}
W(31) = {2, 2, 3, 4, 2, 3, 1} W(32) = {2, 3, 3, 4, 2, 3, 1}
W(33) = {2, 3, 4, 4, 2, 3, 1} W(34) = {2, 3, 4, 5, 2, 3, 1}
W(35) = {1, 1, 2, 3, 2, 2, 1} W(36) = {1, 2, 2, 3, 2, 2, 1}
W(37) = {1, 2, 3, 3, 2, 2, 1} W(38) = {1, 2, 3, 4, 2, 2, 1}
W(39) = {2, 2, 3, 4, 2, 2, 1} W(40) = {2, 3, 3, 4, 2, 2, 1}
W(41) = {2, 3, 4, 4, 2, 2, 1} W(42) = {2, 2, 3, 3, 2, 2, 1}
W(43) = {2, 2, 2, 3, 2, 2, 1} W(44) = {2, 3, 3, 3, 2, 2, 1}
W(45) = {1, 2, 3, 4, 2, 3, 2} W(46) = {2, 2, 3, 4, 2, 3, 2}
W(47) = {2, 3, 3, 4, 2, 3, 2} W(48) = {2, 3, 4, 4, 2, 3, 2}
W(49) = {2, 3, 4, 5, 2, 3, 2} W(50) = {2, 3, 4, 5, 2, 4, 2}
W(51) = {0, 0, 0, 0, 0, 0, 0} W(52) = {1, 0, 0, 0, 0, 0, 0}
W(53) = {1, 1, 0, 0, 0, 0, 0} W(54) = {1, 1, 1, 0, 0, 0, 0}
W(55) = {1, 1, 1, 1, 0, 0, 0} W(56) = {1, 1, 1, 1, 0, 1, 0}

7.2.5.2 The Matrices of the Fundamental 56 Representation

Equipped with the weight vectors we can now proceed to the explicit construction
of the SpD(56) representation of E7(7). In the construction of [33], the basis vectors
are the 56 weights, according to the enumeration of Table7.2. What we need are
the 56 × 56 matrices associated with the 7 Cartan generators Hαi (i = 1, . . . , 7) and
with the 126 step operators Eα that are defined by:
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[

SpD56
(

Hαi

)]

nm ≡ 〈W(n)| Hαi |W(m)〉
[

SpD56
(

Eα
)]

nm ≡ 〈W(n)| Eα |W(m)〉 (7.2.60)

Following [33] let us begin with the Cartan generators. As a basis of the Cartan
subalgebra we use the generators Hαi defined by the commutators:

[

Eαi , E−αi
] ≡ Hαi (7.2.61)

In the SpD(56) representation the corresponding matrices are diagonal and of the
form:

〈W(p)| Hαi |W(q)〉 = (

W(p),αi
)

δp q ; (p, q = 1, . . . , 56) (7.2.62)

The scalar products

(

ΛΛΛ(n) · h,−ΛΛΛ(m) · h) = (

W(p) · h) ; (n,m = 1, . . . , 28 ; p = 1, . . . , 56)
(7.2.63)

are to be understood in the following way:

W(p) · h =
7
∑

i=1

(

W(p),αi
)

hi (7.2.64)

Next we construct the matrices associated with the step operators. Here the first
observation is that it suffices to consider the positive roots. Because of the reality
of the representation, the matrix associated with the negative of a root is just the
transposed of that associated with the root itself:

E−α = [

Eα
]T ↔ 〈W(n)| E−α |W(m)〉 = 〈W(m)| Eα |W(n)〉 (7.2.65)

The method followed in [33] to obtain the matrices for all the positive roots is that
of constructing first the 56 × 56 matrices for the step operators Eα� (� = 1, . . . , 7)
associated with the simple roots and then generating all the others through their com-
mutators. The construction rules for the SpD(56) representation of the six operators
Eα� (� �= 5) are:

� �= 5

{ 〈W(n)| Eα� |W(m)〉 = δW(n),W(m)+α�
; n,m = 1, . . . , 28

〈W(n+28)| Eα� |W(m+28)〉 = −δW(n+28),W(m+28)+α�
; n,m = 1, . . . , 28

(7.2.66)
The six simple roots α� with � �= 5 belong also to the Dynkin diagram of the electric
subgroup SL(8,R). Thus their shift operators have a block diagonal action on the
28 and 28 subspaces of the SpD(56) representation that are irreducible under the
electric subgroup. From Eq. (7.2.66) we conclude that:
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� �= 5 SpD56
(

Eα�
) =

(

A[α�] 0
0 −AT [α�]

)

(7.2.67)

the 28 × 28 block A[α�] being defined by the first line of Eq. (7.2.66).
On the contrary the operator Eα5 , corresponding to the only root of the E7 Dynkin

diagram that is not also part of the A7 diagram is represented by a matrix whose non-
vanishing 28 × 28 blocks are off-diagonal. We have

SpD56
(

Eα5
) =

(

0 B[α5]
C[α5] 0

)

(7.2.68)

where both B[α5] = BT [α5] and C[α5] = CT [α5] are symmetric 28 × 28 matrices.
More explicitly the matrix SpD56 (Eα5) is given by:

〈W(n)| Eα5 |W(m+28)〉 = 〈W(m)| Eα5 |W(n+28)〉
〈W(n+28)| Eα5 |W(m)〉 = 〈W(m+28)| Eα5 |W(n)〉 (7.2.69)

with

〈W(7)| Eα5 |W(44)〉 = −1 〈W(8)| Eα5 |W(42)〉 = 1 〈W(9)| Eα5 |W(43)〉 = −1
〈W(14)| Eα5 |W(36)〉 = 1 〈W(15)| Eα5 |W(37)〉 = −1 〈W(16)| Eα5 |W(35)〉 = −1
〈W(29)| Eα5 |W(6)〉 = −1 〈W(34)| Eα5 |W(1)〉 = −1 〈W(49)| Eα5 |W(28)〉 = 1

〈W(50)| Eα5 |W(27)〉 = −1 〈W(55)| Eα5 |W(22)〉 = −1 〈W(56)| Eα5 |W(21)〉 = 1
(7.2.70)

In this way we have completed the construction of the Eα� operators associated with
simple roots. For thematrices associated with higher roots we just proceed iteratively
in the following way. As usual we organize the roots by height:

α = n� α� → htα =
7
∑

�=1

n� (7.2.71)

and for the roots αi + α j of height ht = 2 we set:

SpD56
(

Eαi +α j
) ≡ [

SpD56 (E
αi ) , SpD56 (E

αi )
] ; i < j (7.2.72)

Next for the roots of ht = 3 that can be written as αi + β where αi is simple and
htβ = 2 we write:

SpD56
(

Eαi +β) ≡ [

SpD56 (E
αi ) , SpD56

(

Eβ
)]

(7.2.73)

Obtained the matrices for the roots of ht = 3 one proceeds in a similar way for those
of the next height and so on up to exhaustion of all the 63 positive roots.
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This concludes our description of the algorithm by means of which our com-
puter program constructed all the 133 matrices spanning the E7(7) Lie algebra in the
SpD(56) representation. A fortiori, if we specify the embeddingwe have thematrices
generating the electric subgroup SL(8,R).

7.2.5.3 The SL(8,R) Subalgebra

The Electric sl(8,R) subalgebra is identified in E7(7) by specifying its simple roots
βi spanning the standard A7 Dynkin diagram. The Cartan generators are the same
for the E7(7) Lie algebra as for the SL(8,R) subalgebra and if we give βi every other
generator is defined. The basis we have chosen is the following one:

β1 = α2 + 2α3 + 3α4 + 2α5 + 2α6 + α7 ; β2 = α1
β3 = α2 ; β4 = α3
β5 = α4 ; β6 = α6
β7 = α7

(7.2.74)

The complete set of positive roots of SL(8R) is then composed of 28 elements that
we name ρi (i = 1, . . . , 28) and that are enumerated according to our chosen order
in Table7.3.

Hence the 63 generators of the SL(8,R) Lie algebra are:

The 7 Cartan generators Ci = Hαi i = 1, . . . , 7
The 28 positive root generators Eρi i = 1, . . . , 28
The 28 negative root generators E−ρi i = 1, . . . , 28

(7.2.75)

and since the 56 × 56 matrix representation of each E7(7) Cartan generator or step
operator was constructed in the previous subsection it is obvious that it is in particular
given for the subset of those that belong to the SL(8,R) subalgebra. The basis of
this matrix representation is provided by the weights enumerated in Table7.2.

In this way we have concluded our illustration of the basis in which the algebraic
t-identity was solved in [33]. The result is the 28 × 63 matrix:

E (h, �) −→ eαW (h, �) (7.2.76)

where the index W runs on the 28 negative weights of Table7.2, while the index α
runs on all the SL(8,R) generators according to Eq. (7.2.75). The matrix E (h, p)
depends on 36 parameters that we have named:

hi i = 1, . . . , 8
�i i = 1, . . . , 28

(7.2.77)

and its entries are explicitly displayed in tables given in [33]. The distinction between
the hi parameters and the �i parameters has been drawn in the following way:
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Table 7.3 The choice of the order of the SL(8,R) roots

ρ1 ≡ β2

ρ2 ≡ β2 + β3
ρ3 ≡ β2 + β3 + β4
ρ4 ≡ β2 + β3 + β4 + β5
ρ5 ≡ β2 + β3 + β4 + β5 + β6
ρ6 ≡ β3

ρ7 ≡ β3 + β4
ρ8 ≡ β3 + β4 + β5
ρ9 ≡ β3 + β4 + β5 + β6
ρ10 ≡ β4

ρ11 ≡ β4 + β5
ρ12 ≡ β4 + β5 + β6
ρ13 ≡ β5

ρ14 ≡ β5 + β6
ρ15 ≡ β6

ρ16 ≡ β1 + β2 + β3 + β4 + β5 + β6 + β7
ρ17 ≡ β2 + β3 + β4 + β5 + β6 + β7
ρ18 ≡ β3 + β4 + β5 + β6 + β7
ρ19 ≡ β4 + β5 + β6 + β7
ρ20 ≡ β5 + β6 + β7
ρ21 ≡ β6 + β7
ρ22 ≡ β1

ρ23 ≡ β1 + β2
ρ24 ≡ β1 + β2 + β3
ρ25 ≡ β1 + β2 + β3 + β4
ρ26 ≡ β1 + β2 + β3 + β4 + β5
ρ27 ≡ β1 + β2 + β3 + β4 + β5 + β6
ρ28 ≡ β7

• The 8 parameters hi are those that never multiply a Cartan generator
• The 28 parameters �i are those that multiply at least one Cartan generator.

In other words if we set all the �i = 0 the gauge subalgebra Ggauge ⊂ SL(8,R) is
composed solely of step operators while if you switch on also the �i .s then some
Cartan generators appear in the Lie algebra. This distinction is very useful in classi-
fying the independent solutions.



7.2 Electric Gaugings of N = 8 Supergravity in D = 4 373

7.2.6 Classification of Electrically GaugedN = 8
Supergravities

Equippedwith the explicit solution of the t-identity encoded in the embeddingmatrix
E one can address the complete classification of the electrically gauged supergravity
models.

The complete set of possible theories found in [33] coincides with the gaugings
found by Hull [16–22] (together with the ones simply outlined by Hull [16–22]) in
the middle of the eighties and correspond to all possible non-compact real forms
of the SO(8) Lie algebra plus a number of Inonu–Wigner contractions thereof. The
method of [33] is algorithmic and allows to construct any model in this class. It is
particularly suited for our present purposes.

We have to begin our discussion with two observations:

1. The solution of t-identities encoded in the matrix E (h, �) is certainly overcom-
plete sincewe are still free to conjugate any gauge algebraGgauge with an arbitrary
finite element of the electric group g ∈ SL(8,R): G ′

gauge = g Ggauge g−1 yields
a completely physically equivalent gauging as Ggauge. This means that we need
to consider the SL(8,R) transformations of the matrix E (h, �) defined as:

∀ g ∈ SL(8,R) : g · E (h, �) ≡ D28(g
−1)E (h, �) D63(g) (7.2.78)

where D28(g) and D63(g) denote the matrices of the 28 and the 63 representation
respectively. If two set of parameters {h, �} and {h′, �′} are related by an SL(8,R)
conjugation, in the sense that:

∃g ∈ SL(8,R) : E (h′, �′) = g · E (h, �) (7.2.79)

then the theories described by {h, �} and {h′, �′} are the same theory. In other
words what we need is the space of orbits of SL(8,R) inequivalent embedding
matrices.

2. Possible theories obtained by choosing a set of {h, �} parameters are further
restricted by the constraints that

• The selected generators of SL(8,R) should close a Lie subalgebra Ggauge

• The selected vectors (=weights, see Table7.2) should transform in the coad-
joint representation Coad j

(

Ggauge
)

In view of these observations a natural question we should pose is the following one:
is there a natural way to understand why the number of parameters on which the
embedding matrix depends is, a part from an immaterial overall constant, precisely
35? The answer is immediate and inspiring. Because of point (2) in the above list of
properties the 28 linear combinations of SL(8,R) generators:

TW ≡ e α
W (h, �) Gα (7.2.80)
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must span the adjoint representation of a 28-dimensional subalgebra Ggauge(h, �) of
the SL(8,R) algebra.

Naming Ggauge(h, �) the corresponding Lie subgroup, because of its very def-
inition we have that the matrix E (h, �) is invariant under transformations of
Ggauge(h, �)7:

∀ γ ∈ Ggauge(h, � ⊂ SL(8,R) : γ · E (h, �) = E (h, �) (7.2.81)

Comparing Eq. (7.2.81) with (7.2.78) we see that having fixed a matrix E (h, �) and
hence an algebra Ggauge(h, �), according to point (1) of the above discussion we can
obtain a 35-dimensional orbit of equivalent embedding matrices:

E
(

h′(μ), �′(μ)
) ≡ g(μ) · E (h, �) where g(μ) ∈ SL(8,R)

Ggauge(h, �)
(7.2.82)

Hence, 35 = 63 − 28 is the dimension of the coset manifold SL(8,R)/Ggauge(h, �)
and E

(

h′(μ), �′(μ)
)

is the embedding matrix for the family of conjugated,
isomorphic, Lie algebras:

Ggauge
(

h′(μ), �′(μ)
) = g−1(μ)Ggauge(h, �) g(μ) (7.2.83)

An essential and a priori unexpected conclusion was drown in [33] from this discus-
sion.

Proposition 7.2.1 The gauged N = 8 supergravity models cannot depend on more
than a single continuous parameter (=coupling constant), even if they correspond
to gauging a multidimensional abelian algebra.

Since the explicit solution of the algebraic t-identities has produced an embedding
matrix E (h, �) depending on no more than 36-parameters, then the only continuous
parameter which is physically relevant is the overall proportionality constant. The
remaining 35-parameters can be reabsorbed by SL(8,R) conjugations according to
Eq. (7.2.83)

In other words what it was found is that the space of orbits one was looking for
is a discrete space. The classifications of electrically gauged supergravity models is
just a classification of gauge algebras a single coupling constant being assigned to
each case. This is considerably different from other supergravities with less super-
symmetries, like the N = 2 case. There gauging a group Ggauge involves as many
coupling constants as there are simple factors in Ggauge. So in those cases not only we
have a much wider variety of possible gauge algebras but also we have lagrangians
depending on several continuous parameters. In the N = 8 case supersymmetry
constraints the theory in a much stronger way. This is an yield of supersymmetry

7Note that some of the 28 generators of Ggauge(h, �) ⊂ SL(8,R) may be represented trivially in
the adjoint representation, but in this case also the corresponding group transformations leave the
embedding matrix invariant.
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and not of Lie algebra theory. It is the algebraic t-identity, enforced by the closure of
Bianchi identities, that admits a general solution depending only on 36-parameters.
If the solution depended on 35 + m parameters then we might have introduced m
relevant continuous parameters into the Lagrangian.

Relying on these observations one is left with the problem of classifying the orbit
space already knowing that it is composed of a finite number of discrete elements.
Orbits are characterized in terms of invariants, so we have to ask ourselves what is the
natural invariant associated with the embedding matrix E (h, �). The answer is once
again very simple. It is the signature of the Killing–Cartan 2-form for the resulting
gauge algebra Ggauge(h, �). Consider the 28 generators (7.2.80) and define:

ηW1W2 (h, �) ≡ Tr
(

TW1 TW1

)

= e αW1
(h, �) e βW2

(h, �) Tr
(

Gα Gβ

)

= e αW1
(h, �) e βW2

(h, �) Bαβ

(7.2.84)

where the trace T r is taken over any representation and the constant matrix Bαβ ≡
Tr

(

Gα Gβ

)

is the Killing–Cartan 2-form of the SL(8,R) Lie algebra. The 28 × 28
matrix is the Killing–Cartan 2-form of the gauge algebra Ggauge. As it is well known
from general Lie algebra theory, by means of suitable changes of bases inside the
same Lie algebra the matrix ηW1W2 (h, �) can be diagonalized and its eigenvalues
can be reduced to be either of modulus one or zero. What cannot be done since
it corresponds to an intrinsic characterization of the Lie algebra is to change the
signature of ηW1W2 (h, �), namely the ordered set of 28 signs (or zeros) appearing on
the principal diagonal when ηW1W2 (h, �) is reduced to diagonal form. Hence what is
constant throughout an SL(8,R) orbit is the signature. Let us nameΣ (orbit) the 28
dimensional vector characterizing the signature of an orbit:

Σ (orbit) ≡ signature
[

ηW1W2

(

h′(μ), �′(μ)
) ]

(7.2.85)

From our discussion we conclude that

Proposition 7.2.2 The classification of gauged N = 8 models has been reduced to
the classification of the signature vectors Σ (orbit) of Eq. (7.2.85).

The procedure to calculate Σ (orbit) associated with an orbit ηW1W2

(

h′(μ), �′(μ)
)

is that of choosing the representative
(

h′(μ0), �
′(μ0)

)

for which the corresponding
matrix ηW1W2

(

h′(μ0), �
′(μ0)

)

is diagonal and then to evaluate the signs of the diag-
onal elements. In principle finding the appropriate h′(μ0), �

′(μ0) could be a difficult
task since we are supposed to diagonalize a 28 × 28 matrix. However our choice of
coordinates on the parameter space is such that our task becomes very simple. Using
the results for the embedding matrix we can calculate the matrix ηW1W2 (h, �) and for
generic values of hi and �i we find that all of its 28 × 28 entries are non vanishing;
yet setting �i = 0 the matrix becomes automatically diagonal and we get:
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Table 7.4 Electric gauge algebras

Algebra n+ n− n0 {h1, h2, h3, h4, h5, h6, h7} Dimension

SO(8) 28 0 0 {1, 1,−1, 1,−1, 1, 1,−1} 28

SO(1, 7) 21 7 0 {1, 1,−1, 1,−1, 1, 1, 1} 28

SO(2, 6) 16 12 0 {−1, 1,−1, 1,−1, 1, 1, 1} 28

SO(3, 5) 13 15 0 {−1,−1,−1, 1,−1, 1, 1, 1} 28

SO(4, 4) 12 16 0 {−1,−1, 1, 1,−1, 1, 1, 1} 28

SO(5, 3) 13 15 0 {−1,−1, 1,−1,−1, 1, 1, 1} 28

SO(6, 2) 16 12 0 {−1,−1, 1,−1, 1, 1, 1, 1} 28

SO(7, 1) 21 7 0 {−1,−1, 1,−1, 1,−1, 1, 1} 28

CSO(1, 7) 0 0 28 {0, 0, 0, 0, 0, 0, 0, 1} 7

CSO(2, 6) 1 0 27 {−1, 0, 0, 0, 0, 0, 0, 1} 13

CSO(3, 5) 3 0 25 {−1,−1, 0, 0, 0, 0, 0, 1} 18

CSO(4, 4) 6 0 22 {−1,−1, 1, 0, 0, 0, 0, 1} 22

CSO(5, 3) 10 0 18 {−1,−1, 1,−1, 0, 0, 0, 1} 25

CSO(6, 2) 15 0 13 {−1,−1, 1,−1, 1, 0, 0, 1} 27

CSO(7, 1) 21 0 7 {−1,−1, 1,−1, 1,−1, 0, 1} 28

CSO(1, 1, 6) 0 1 27 {1, 0, 0, 0, 0, 0, 0, 1} 13

CSO(1, 2, 5) 1 2 25 {1,−1, 0, 0, 0, 0, 0, 1} 18

CSO(2, 1, 5) 1 2 25 {1, 1, 0, 0, 0, 0, 0, 1} 18

CSO(1, 3, 4) 3 3 22 {1,−1, 1, 0, 0, 0, 0, 1} 22

CSO(2, 2, 4) 2 4 22 {1, 1, 1, 0, 0, 0, 0, 1} 22

CSO(3, 1, 4) 3 3 22 {1, 1,−1, 0, 0, 0, 0, 1} 22

CSO(1, 4, 3) 6 4 18 {1,−1, 1,−1, 0, 0, 0, 1} 25

CSO(2, 3, 3) 4 6 18 {1, 1, 1,−1, 0, 0, 0, 1} 25

CSO(3, 2, 3) 4 6 18 {1, 1,−1,−1, 0, 0, 0, 1} 25

CSO(4, 1, 3) 6 4 18 {1, 1,−1, 1, 0, 0, 0, 1} 25

CSO(1, 5, 2) 10 5 13 {1,−1, 1,−1, 1, 0, 0, 1} 27

CSO(2, 4, 2) 7 8 13 {1, 1, 1,−1, 1, 0, 0, 1} 27

CSO(3, 3, 2) 6 9 13 {1, 1,−1,−1, 1, 0, 0, 1} 27

CSO(4, 2, 2) 7 8 13 {1, 1,−1, 1, 1, 0, 0, 1} 27

CSO(5, 1, 2) 10 5 13 {1, 1,−1, 1,−1, 0, 0, 1} 27

CSO(1, 6, 1) 15 6 7 {1,−1, 1,−1, 1,−1, 0, 1} 28

CSO(2, 5, 1) 11 10 7 {1, 1, 1,−1, 1,−1, 0, 1} 28

CSO(3, 4, 1) 9 12 7 {1, 1,−1,−1, 1,−1, 0, 1} 28

CSO(4, 3, 1 ) 9 12 7 {1, 1,−1, 1, 1,−1, 0, 1} 28

CSO(5, 2, 1) 11 10 7 {1, 1,−1, 1,−1,−1, 0, 1} 28

CSO(6, 1, 1) 15 6 7 {1, 1,−1, 1,−1, 1, 0, 1} 28
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Table 7.5 Generators of electric gauge algebras in the �i = 0 frame

Electric vector Gauge generator

W(35) ↔ h2E−β2 − h1Eβ2
W(36) ↔ h3E−β2−β3 + h1Eβ2+β3
W(37) ↔ h4E−β2−β3−β4 − h1Eβ2+β3+β4
W(38) ↔ h5E−β2−β3−β4−β5 + h1Eβ2+β3+β4+β5
W(30) ↔ h6E−β2−β3−β4−β5−β6 − h1Eβ2+β3+β4+β5+β6
W(45) ↔ −h7E−β2−β3−β4−β5−β6−β7 + h1Eβ2+β3+β4+β5+β6+β7
W(51) ↔ h1E−β1 + h8Eβ1
W(52) ↔ h2E−β1−β2 + h8Eβ1+β2
W(53) ↔ h3E−β1−β2−β3 − h8Eβ1+β2+β3
W(54) ↔ h4E−β1−β2−β3−β4 + h8Eβ1+β2+β3+β4
W(55) ↔ h5E−β1−β2−β3−β4−β5 − h8Eβ1+β2+β3+β4+β5
W(56) ↔ h6E−β1−β2−β3−β4−β5−β6 + h8Eβ1+β2+β3+β4+β5+β6
W(29) ↔ −h7E−β1−β2−β3−β4−β5−β6−β7 − h8Eβ1+β2+β3+β4+β5+β6+β7
W(43) ↔ −h3E−β3 − h2Eβ3
W(42) ↔ −h4E−β3−β4 + h2Eβ3+β4
W(39) ↔ −h5E−β3−β4−β5 − h2Eβ3+β4+β5
W(31) ↔ −h6E−β3−β4−β5−β6 + h2Eβ3+β4+β5+β6
W(46) ↔ h7E−β3−β4−β5−β6−β7 − h2Eβ3+β4+β5+β6+β7
W(44) ↔ h4E−β4 + h3Eβ4
W(40) ↔ h5E−β4−β5 − h3Eβ4+β5
W(32) ↔ h6E−β4−β5−β6 + h3Eβ4+β5+β6
W(47) ↔ −h7E−β4−β5−β6−β7 − h3Eβ4+β5+β6+β7
W(41) ↔ −h5E−β5 − h4Eβ5
W(33) ↔ −h6E−β5−β6 + h4Eβ5+β6
W(48) ↔ h7E−β5−β6−β7 − h4Eβ5+β6|β7
W(34) ↔ h6E−β6 + h5Eβ6
W(49) ↔ −h7E−β6−β7 − h5Eβ6+β7
W(50) ↔ h7E−β7 − h6Eβ7

η (h, � = 0) = diag
{

−h7 h8, h1 h6, h2 h6, −h3 h6, h4 h6, −h5 h6, h1 h2,

−h1 h3, h1 h4, −h1 h5, −h2 h5, h3 h5, −h4 h5, h2 h4,
−h2 h3, −h3 h4, h1 h7, h2 h7, −h3 h7, h4 h7, −h5 h7,

h6 h7, −h1 h8, −h2 h8, h3 h8, −h4 h8, h5 h8, −h6 h8
}

(7.2.86)
Hence all possible signaturesΣ (orbit) are obtained by assigning to the parameters
hi the values 1,−1, 0 in all possible ways. Given an h vector constructed in this
way we have then to check that the corresponding 28 generators (7.2.80) close a Lie
subalgebra and accept only those for which this happens. Clearly such an algorithm
can be easily implemented by means of a computer program. The result is provided



378 7 E7, F4 and Supergravity Scalar Potentials

by a table of SL(8,R) Lie subalgebras identified by a corresponding acceptable h-
vector. This result is displayed inTable7.4. In this table in addition to the h-vector that
identifies it we have displayed the signature of the Killing–Cartan form by writing
the numbers n+,n−,n0 of its positive, negative and zero eigenvalues. In addition we
have also written the actual dimension of the gauge algebra namely the number of
generators that have a non-vanishing representations or correspondingly the number
of gauged vectors that are gauged (=paired with a non vanishing generator).

By restricting the matrix e α
W to the parameters hi we can immediately write the

correspondence between the vectorsW(28+i) and the generators of the gauge algebra
that applies to all the gaugings we have classified above. For the reader’s convenience
this correspondence is summarized in Table7.5, where it suffices to substitute the
corresponding values of hi to obtain the generators of each gauge algebra expressed
as linear combinations of the 56 positive and negative root step operators of SL(8,R).

7.3 Embedding of the Group L168 into E7(7)

In Sect. 1.3we considered the simple groupL168 ∼ PSL(2, 7) andwe shew that it acts
crystallographically on Λroot[A7] and, consequently, also on the dual weight lattice
Λroot[A7].

This clearly raises the question of the embedding of L168 into SL(8,R) ⊂ E7(7)

suggesting that we might consider gaugings where the embedding matrix is invariant
under L168. As we are going to show, this condition uniquely determines the gauged
supergravity model, once the embedding is stated. As examples we will consider two
embeddings and derive the corresponding gauged supergravity models.

7.3.1 Embedding of L168 into the Weyl Group

Let us consider the Weyl group Weyl [e7] of the e7 Lie algebra. It is necessarily a
finite subgroup of the maximal compact subgroup of E7(7) namely of SU(8):

Weyl [e7] ⊂ SU(8) ⊂ E7(7) (7.3.1)

Since the electric subgroup SL(8,R) is regularly embedded into E7(7), namely shares
with it the same Cartan subalgebra, it follows that the Weyl group of the smaller
algebra is a subgroup of the Weyl group of the larger one:

Weyl [a7] ⊂ Weyl [e7] (7.3.2)

As it is well known the Weyl group of any a� Lie algebra is isomorphic to the
symmetric group S�+1 and can be realized by means of integer valued orthogonal
matrices in dimension �+ 1. Applied to our case this means that:

http://dx.doi.org/10.1007/978-3-319-74491-9_1
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Weyl [a7] ∼ S8 ⊂ SO(8,Z) (7.3.3)

It is known that the group L168 is a subgroup of S8, hence it follows that we have a
chain of embeddings:

L168 ⊂ Weyl [a7] ⊂ SO(8,Z) ⊂ SL(8,R) ⊂ E7(7) (7.3.4)

Following this chain we can determine the action of the group L168 on the embedding
matrix and work out the gaugings that are L168-invariant. What we need is just the
form of the generators of L168 inside SO(8,Z).

Let us recall that the simple group under consideration is abstractly defined in
terms of the following generators and relations:

L168 = (

R, S, T ‖ R2 = S3 = T 7 = RST = (T S R)4 = e
)

(7.3.5)

In view of the above we just need to specify three orthogonal integer valued matrices
8 × 8 that satisfy relations (7.3.5). This is done below:

T =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

; S =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(7.3.6)

R =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(7.3.7)

Given these generators we immediately construct the immersion of the group L168

into the 28 representation of SL(8,R) by means of an antisymmetrized tensor prod-
uct:

T [ΛΣ]
[ΔΓ ] = T [Λ

[Δ TΣ]
Γ ]

S [ΛΣ]
[ΔΓ ] = S[Λ

[Δ SΣ]
Γ ]

R[ΛΣ]
[ΔΓ ] = R[Λ

[Δ RΣ]
Γ ] (7.3.8)
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This provides the immersion of the group L168 into the fundamental 56 representation
of E7(7) by means of the following definitions:

T =
(

T 0
0 T

)

∈ E7(7)

S =
(

S 0
0 S

)

∈ E7(7)

R =
(

R 0
0 R

)

∈ E7(7) (7.3.9)

Next we can easily derive the action of the subgroup L168 ⊂ Weyl[e7] on the e7
simple roots and consequently on the e7 root lattice. It suffice to define:

T−1 Hαi T = Hα j T j i

S−1 Hαi S = Hα j S j i

R−1 Hαi R = Hα j R j i (7.3.10)

where Hαi are the Cartan generators of E7(7) in the 56-dimensional representation
dual to the simple roots:

[

Eαi , E−αi
] = Hαi (7.3.11)

The explicit form of the 7 × 7 matrices R,S,T is given below:

T =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 1 −1 1
1 0 0 0 1 −2 2
0 1 0 0 1 −3 3
0 0 1 0 1 −4 4
0 0 0 0 1 −2 2
0 0 0 1 0 −3 3
0 0 0 0 0 −1 2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

; S =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 1 0 −1
0 0 −1 1 1 0 −2
0 −1 0 1 1 0 −3
0 −1 0 1 2 −1 −3
0 0 0 0 1 0 −2
0 −1 0 0 2 0 −2

−1 0 0 0 1 0 −1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(7.3.12)

R =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 1 −1 0
0 −1 1 0 1 −1 −1

−1 0 1 0 1 −1 −2
−1 0 1 −1 2 0 −3
0 0 0 0 1 0 −2

−1 0 0 0 1 0 −2
0 0 0 0 0 0 −1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(7.3.13)

We can now easily verify that L168 is crystallographic with respect to the e7-root
lattice as indeed it should be since it is a subgroup of Weyl[e7]. It suffices to check
that the integer valued matrices R,S,T satisfy:

TT Ce7 T = ST Ce7 S = RT Ce7 R = Ce7 (7.3.14)
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where:

Ce7 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

2 −1 0 0 0 0 0
−1 2 −1 0 0 0 0
0 −1 2 −1 0 0 0
0 0 −1 2 −1 −1 0
0 0 0 −1 2 0 0
0 0 0 −1 0 2 −1
0 0 0 0 0 −1 2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(7.3.15)

is the Cartan matrix of e7.
Equation (7.3.13) imply that L168 is embedded into SO(7) as we already know.

Given the matrix which transforms the e7 simple root basis into the a7 simple root
basis:

βi = Πi j α j

Π =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 1 2 3 2 2 1
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(7.3.16)

We can easily convert the generators of the discrete group L168 from the e7 root lattice
to the a7 root lattice by setting:

Ta = (

Π T
)−1

TΠ T ; Sa = (

Π T
)−1

TΠ T ; Ra = (

Π T
)−1

RΠ T

(7.3.17)
and we get:

Ta =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 0 −1 1
1 0 0 0 0 −1 1
0 1 0 0 0 −1 1
0 0 1 0 0 −1 1
0 0 0 1 0 −1 1
0 0 0 0 1 −1 1
0 0 0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

; Sa =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 0 0 −1
1 0 0 0 0 0 −1
1 0 0 −1 1 0 −1
1 0 −1 0 1 0 −1
1 0 −1 0 1 −1 0
1 0 −1 0 0 0 0
1 −1 0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Ra =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 0 0 −1
0 0 0 0 0 −1 0
0 0 −1 1 0 −1 0
0 −1 0 1 0 −1 0
0 −1 0 1 −1 0 0
0 −1 0 0 0 0 0

−1 0 0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(7.3.18)
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The integer valued matrices Ra,Sa,Ta satisfy:

TT
a Ca7 Ta = ST

a Ca7 Sa = RT
a Ca7 Ra = Ca7 (7.3.19)

where:

Ca7 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

2 −1 0 0 0 0 0
−1 2 −1 0 0 0 0
0 −1 2 −1 0 0 0
0 0 −1 2 −1 0 0
0 0 0 −1 2 −1 0
0 0 0 0 −1 2 −1
0 0 0 0 0 −1 2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(7.3.20)

is the Cartan matrix of a7.
Given the established representation of the L168 group inside the electric groupwe

can now impose the condition of L168 invariance on the embedding matrix (7.2.37)
which can be expressed in the following way:

eαΛΣ(h, �)T
−1 Gα T = T ΔΓ

ΛΣ eαΔΓ (h, �)Gα

eαΛΣ(h, �)S
−1 GαS = T ΔΓ

ΛΣ eαΔΓ (h, �) Gα

eαΛΣ(h, �)R
−1 GαR = R ΔΓ

ΛΣ eαΔΓ (h, �)Gα (7.3.21)

Equation (7.3.21) have a unique solution for the parameters hi , �a , namely:

�i = 0 (i = 1, . . . , 28) ; {h1, h2, h3, h4, h5, h6, h7, h8} = e × {1, 1,−1, 1,−1, 1, 1,−1}
(7.3.22)

where e is an arbitrary real parameter that plays the role of gauge coupling constant.
Inserting the values (7.3.22) into Eq. (7.2.86) we find that the Killing–Cartan metric
ηW1W2 has only negative eigenvalues, namely that all the 28 generators are compact
(this conclusion is verified also by looking at eigenvalues of all generators that are
all purely imaginary).

Hence when L168 is embedded into theWeyl groupWeyl[a7] ⊂ Weyl[e7] the L168

invariant gauging is the purely compact SO(8) gauging leading to de Wit Nicolai
gauged supergravity.

7.3.1.1 Conformal Speculations

As it is well known SO(8)-gauged supergravity is obtained from d= 11 supergravity
compactified on:

AdS4 × S
7 (7.3.23)

which is the near horizon geometry of anM2-brane withR8 transverse space. Indeed
R

8 is the metric cone on S7. The entire Kaluza–Klein spectrum which constitutes the
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spectrum of BPS operators of the d=3 theory is organized in short representations of
the supergroup:

Osp(8|4) (7.3.24)

Our discussion leads to the conclusion that we can consider the compactification of
supergravity on orbifolds of the following type:

C�S
7 = S

7

Γ
; Γ ⊂ L168 ⊂ Weyl[a7] ⊂ SO(8,Z) (7.3.25)

The corresponding M2-brane solution has the orbifold:

C�R
8 = R

8

Γ
(7.3.26)

as transverse space.
Themassive andmasslessmodes of theKalauzaKlein spectrum are easily worked

out from the Osp(8|4) spectrum of the 7-sphere. Indeed since the group Γ is embed-
ded by the above construction into SO(8,Z) ⊂ SO(8) ⊂ Osp(8|4), it suffices to cut
the spectrum to the Γ singlets. An observation is particularly important. The 8-
dimensional representation of SO(8) is not irreducible under L168. Indeed the vector:

{a, a, a, a, a, a, a, a} (7.3.27)

is invariant under the action of the generators (7.3.7) and it is the only one to be
such. The 8-dimensional vector representation is the one to which the gravitinos are
assigned. It follows that by means of the L168 projection we eliminate 7 out of 8
massless gravitinos. In other words the projected Kaluza–Klein spectrum must be
organized into supermultiplets of:

Osp(1|4) (7.3.28)

corresponding to N = 2 superconformal symmetry on the brane.
It seems an interesting game to study the formulation of the superconformal field

theories dual to supergravity compactified on these peculiar orbifolds.

7.3.2 Embedding of L168 into SO(7) ⊂ SO(8) ⊂ SL(8,R)

and the Domain Wall

We consider next a different embedding of the group L168 which leads to a gauged
supergravity with domain wall vacua. An embedding with these properties is not into
the Weyl group and does not preserve the Cartan subalgebra.
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We obtain it with the following simple argument. Let us consider the generators
(7.3.18) which are orthogonal with respect to the a7 - Cartan matrix and transform
them to the basis where such Cartan matrix is reduced to the identity matrix.

We have:
QT Ca7 Q = 17×7 (7.3.29)

where

Q =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1
4

1
4

1
4

1
4

1
4 − 1

4
1√
2

1 0 0 0 0 0 1√
2

3
4

3
4 − 1

4 − 1
4 − 1

4
1
4

1√
2

1
2

1
2

1
2 − 1

2 − 1
2

1
2

1√
2

1
4

1
4

1
4

1
4 − 3

4
3
4

1√
2

0 0 0 0 0 1 1√
2

− 1
4 − 1

4 − 1
4 − 1

4 − 1
4

1
4

1√
2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(7.3.30)

Hence if we define:

Tq = Q−1 T Q ; Sq = Q−1 S Q ; Rq = Q−1 R Q (7.3.31)

we obtain three standard orthogonal 7 × 7 matrices that generate the group L168

inside SO(7). They are not integer valued.
Next let us embed these generators into SO(8) according to the following block-

diagonal way:

Tq =
(

Tq 0
0 1

)

; Sq =
(

Sq 0
0 1

)

; Rq =
(

Rq 0
0 1

)

(7.3.32)

Explicitly we obtain

Tq =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1
4

1
4

1
4

1
4

1
4 − 3

4
1

2
√
2

0
3
4 − 1

4 − 1
4 − 1

4 − 1
4 − 1

4 − 1
2
√
2
0

− 1
4

3
4 − 1

4 − 1
4 − 1

4 − 1
4 − 1

2
√
2
0

− 1
4 − 1

4
3
4 − 1

4 − 1
4 − 1

4 − 1
2
√
2
0

− 1
4 − 1

4 − 1
4

3
4 − 1

4 − 1
4 − 1

2
√
2
0

1
4

1
4

1
4

1
4 − 3

4
1
4

1
2
√
2

0

− 1
2
√
2

− 1
2
√
2

− 1
2
√
2

− 1
2
√
2

− 1
2
√
2

− 1
2
√
2

1
2 0

0 0 0 0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(7.3.33)
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Sq =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

3
4

1
4

1
4

1
4

1
4 − 1

4
1

2
√
2

0
1
4 − 1

4 − 1
4

3
4 − 1

4
1
4 − 1

2
√
2
0

1
4 − 1

4
3
4 − 1

4 − 1
4

1
4 − 1

2
√
2
0

1
4 − 1

4 − 1
4 − 1

4 − 1
4 − 3

4 − 1
2
√
2
0

1
4 − 1

4 − 1
4 − 1

4
3
4

1
4 − 1

2
√
2
0

− 1
4 − 3

4
1
4

1
4

1
4 − 1

4
1

2
√
2

0

− 1
2
√
2

1
2
√
2

1
2
√
2

1
2
√
2

1
2
√
2

− 1
2
√
2

− 1
2 0

0 0 0 0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(7.3.34)

Rq =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 0 −1 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0

−1 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(7.3.35)

Given these generators we immediately construct a new immersion of the group
L168 into the 28 representation of SL(8,R) by means of an antisymmetrized tensor
product:

T [ΛΣ]
q [ΔΓ ] = T [Λ

q [Δ TΣ]
q Γ ]

S [ΛΣ]
q [ΔΓ ] = S[Λ

q [Δ SΣ]
q Γ ]

R[ΛΣ]
q [ΔΓ ] = R[Λ

q [Δ RΣ]
q Γ ] (7.3.36)

This provides also a new immersion of the group L168 into the fundamental 56
representation of E7(7) by means of the following definitions:

Tq =
(

T1 0
0 Tq

)

∈ E7(7)

Sq =
(

S 0
0 S

)

∈ E7(7)

Rq =
(

Rq 0
0 Rq

)

∈ E7(7) (7.3.37)

Differently from the previous case the CSA is not preserved by the new action of the
L168-group
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T−1 Hαi T �= linear combination of Hα j

S−1 Hαi S �= linear combination of Hα j

R−1 Hαi R �= linear combination of Hα j (7.3.38)

Nevertheless the group is embedded into the electric group SL(8,R) and this
allows us to impose a new condition of L168 invariance on the embedding matrix
(7.2.37), in the same way as before, namely:

eαΛΣ(h, �)T
−1
q Gα Tq = T ΔΓ

q|ΛΣ eαΔΓ (h, �)Gα

eαΛΣ(h, �)S
−1
q GαSq = T ΔΓ

q|ΛΣ eαΔΓ (h, �) Gα

eαΛΣ(h, �)R
−1
q GαRq = R ΔΓ

q|ΛΣ eαΔΓ (h, �)Gα (7.3.39)

Equation (7.3.39) have a two-parameter solution hi , �a , namely:

�i = 0 (i = 1, . . . , 28) ; {h1, h2, h3, h4, h5, h6, h7, h8} = {x, x,−x, x,−x, x, y,−x}
(7.3.40)

Up to rescaling of the gauge coupling constant there are only four cases in the above
solution:

SO(8) This gauging obtains for x = y = ±1. With this choice the Killing metric
of the gauge algebra has 28 negative eigenvalues.

SO(1, 7) This gauging obtains for x = −y = ±1. With this choice the Killing
metric of the gauge algebra has 21 negative eigenvalues and 7 positive ones.

CSO(7, 1) This gauging obtains for x = ±1, y = 0. With this choice the Killing
metric has 21 negative eigenvalues and 7 vanishing ones.

CSO(1, 7) This gauging obtains for x = 0, y = ±1. With this choice the Killing
metric has 28 vanishing eigenvalues. The gauge group is abelian and contains
only 7 non vanishing translation generators.

As we see there are four solutions.
The above items provide all the ingredients necessary to calculate the potential

reduced to any chosen subset of the 70 scalar fields in any chosen gauging. The
algorithm was developed in [33, 54]. First we construct the coset representative in
the solvable parameterization explicitly defined as follows

L = LC · LN1 · LN2 · LN3 · LN4 · LN5 · LN6 (7.3.41)

where:

LC = exp

[

7
∑

i=1

si Hwi

]

(7.3.42)

and

LNi = exp

⎡

⎣

∑

αi, j ∈Di

φi, j Eαi, j

⎤

⎦ (7.3.43)
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In the above formulae the 7-Cartan fields Hwi are associated with the simple weights
wi of SL(8,R) so that the field sp is a singlet under the SL(p,R)× SL(8 − p,R)
subalgebra of SL(8,R). Correspondingly it is a singlet under the SO(p)× SO(8 − p)
compact subalgebra of the gauge algebra. On the other hand the spacesDi correspond
to the filtration of the Borel subalgebra of E7(7) into abelian ideals of dimensions:

dimD
i = 1, 3, 6, 10, 16, 27 (7.3.44)

This filtration was introduced in [54].
Once the coset representative L is constructed in the solvable parametrization in

the Dynkin basis, it can be rotated to UspY basis in order to extract the blocks useful
to construct the potential. The entire procedure can be automatized on a computer. In
1998 together with Mario Trigiante, the present author constructed a MATHEMAT-
ICA package, named N8potent that was utilized to obtain the following results.

First within the Cartan subalgebra that contains all the candidate dilaton fields we
looked for the scalar that is a singlet of L168 according to the embedding presently
discussed. To noone’s surprise we found that there is only one such singlet s7 which
is actually a singlet with respect to the entire SO(7). Secondly we calculated the
form of its kinetic term in the absence of all other nilpotent scalars. We found the
lagrangian:

L = √−det g
[

2 R[g] + 7
8 ∂μs7 ∂

μs7 − V (s7)
]

(7.3.45)

where V (s7) is the potential. Thirdly utilizing the package N8potent we calculated
the potential for the four gaugings enumerated above.

We found

SO(8) This gauging obtains for x = y = ±1. With this choice the potential is the
following one:

VSO(8)(s7) = 147

4
e− s7

2
(−2e2s7 + e4s7 + 13

)

(7.3.46)

SO(1, 7) This gauging obtains for x = −y = ±1. With this choice the potential
is the following one:

VSO(1,7)(s7) = 147

4
e− s7

2
(

2e2s7 + e4s7 + 13
)

(7.3.47)

CSO(7, 1) This gauging obtains for x = ±1, y = 0. With this choice the potential
is the following one:

VCSO(7,1)(s7) = 1911

4
e− s7

2 (7.3.48)

CSO(1, 7) This gauging obtains for x = 0, y = ±1.With this choice the potential
is the following one:

VCSO(1,7)(s7) = 147

4
e

7s7
2 (7.3.49)
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The renormalization of the scalar field s7 which reduces its kinetic term to the canon-
ical form is:

s7 = − 2√
7
φ (7.3.50)

Inserting such a redefinition into the above calculated scalar potentials we obtain
interesting domain wall potentials in canonical normalizations.

This is as much as we wanted to say about N = 8 supergravity. Our goal was
to illustrate how the interaction structure of the lagrangian and in particular all the
scalar potentials that can be obtained from its possible gaugings are all structurally
encoded in the e7(7) Lie algebra, which is the ultimate core of this supergravity theory.

Next we turn toN = 2 supergravity models and we consider the mechanism that
generates Starobinsky like inflaton potentials in these theories. As announced in the
introduction, our main goal is to emphasize the role of the c-map and of the Tits
Satake projection in these constructions.

7.4 Abelian Gaugings and General Properties of Their
Potentials in the c-Map Framework

As we stressed in the introduction the inclusion into N = 2 supergravity obtained
in [56] of inflaton potentials such as the Starobinsky potential8

VStarobinsky(φ) ≡ (1 − exp [−φ])2 (7.4.1)

is not occasional and limited to the case of hypermultiplets lying in G(2,2)
SU(2)×SU(2) ,

rather it follows a general pattern that can be uncovered and relies on the properties
of the c-map. In this way the mechanisms of the [56] can be generalized to larger
Quaternionic Kähler manifolds opening a quite interesting new playground for the
search of inflaton potentials that can be classified and understood in their geometrical
origin.

Let us schematically summarize the main ingredients of the approach pioneered
in [56] whose generalization, obtained in [57] we present in this chapter:

(A) The inflaton field φ is assumed to belong to the hypermultiplet Quaternionic
Kähler manifold QM .

(B) In analogy with the construction in [56], we require the graviphoton not to be
minimally coupled to any other field. This condition originally followed from
the general argument that in the dual to the R + R2 supergravity the central
charge is gauged. This will amount to a constraint on the form of the embedding
tensor θ defining the gauge algebra.

(C) The inflaton potential is generated by the gauging of an abelian subalgebra
A ⊂ iso [QM ] of the isometry algebra of the hypermultiplet manifold.

8Just as in [56] we mention scalar fields that typically have non canonical kinetic terms.
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(D) Since A is abelian it is not required to have any action on the vector multiplet
scalarsωi which are inert. Actually it is quite desirable that the potential Vgauging

generated by the gauging allows to fix all theωi to their values at some reference
point, say ωi = 0:

∂

∂ωi
Vgauging

∣

∣

∣

∣

ωi = 0

= 0 (7.4.2)

As shown in [56], one can generically guarantee the fixing conditions (7.4.2)
if the Special Kähler Geometry of the vector multiplets is chosen to be that of
the so named Minimal Coupling, defined below in Eqs. (7.5.1)–(7.5.3).

(E) With the above choice of the vector multiplet geometry, after fixing the scalars
ωi the effective potential reduces to a sum of squares of the tri-holomorphic
moment maps Px

A which still depend on the variables
{

Z ,U, a, zi , zi�
}

. In
order to approach effective potentials recognizable also as N = 1 supergrav-
ity potentials one would like to be able to fix all the Heisenberg fields Z (and
possibly also the other fields U and a) to zero, remaining only with the com-
plex fields

(

zi , zi�
)

of the inner Special Kähler manifold. Looking at the general
form (4.3.31) of the tri-holomorphic moment map for the Heisenberg algebra
generators and (4.3.40) for the tri-holomorphic moment map of the inner Spe-
cial Kähler isometries we immediately realize that, gauging these isometries
separately, the condition:

∂

∂Zα
∑

t∈A

(Pt)
2

∣

∣

∣

∣

∣

Z= 0

= 0 (7.4.3)

is always satisfied. A gauge generator which is a combination of a translation
in the Heisenberg algebra and a Special Kähler isometry, yields in general a
scalar potential exhibiting linear terms inZ, so that (7.4.3) provides a non-trivial
constraint.
The definition of the locusL involves setting to zero a certain number of fields
φr belonging toSK n so that we should also realize the consistency condition:

∂

∂φr

∑

t∈A

(Pt)
2

∣

∣

∣

∣

∣ Z = 0
φr = 0

= 0 . (7.4.4)

As mentioned earlier, the gauging yielding Starobinsky-like potentials need
also involve the compact generatorS. As we shall show in the following, if the
gauged isometry is a combination of S and an SK n isometry, (7.4.3) poses
no constraint on the gauging.

(F) A favorite, though not mandatory, choice corresponds to looking for abelian
generators of iso [SK n] such that the locus which satisfies conditions (7.4.4)
is defined by setting to zero all the axions pr , namely all the fields associated
with nilpotent generators of the solvable Lie algebra of SK n . The inclusion

http://dx.doi.org/10.1007/978-3-319-74491-9_4
http://dx.doi.org/10.1007/978-3-319-74491-9_4
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of the Starobinsky potential in supergravity was obtained in [56] precisely in
this way. In Sect. 7.9.4 we show a generalization of the same mechanism in
the case of a bigger manifold QM 4n+4, obtaining what can be denominated a
multi Starobinsky model.

(G) The U -problem. If we use only the type of isometries yielding the tri-
holomorphic moment maps (4.3.31), (4.3.35) and (4.3.40) we face a serious
problem with the fields U . It appears only through exponentials all of the same
sign (exp[−2U ] or exp[− U ] in front of perfect squares. Hence the field U
cannot be stabilized unless all such squares are zero which means no residual
potential. To overcome such a problem one should have moment maps with the
opposite sign of U in the exponential and this can happen only by introducing
in the gauging either L E− or generators W2,α this means that such generators
should exist, namely the manifold QM 4n+4 should be a symmetric space. In
[56] the U -problem was solved by adding to a parabolic generator of aSK n-
isometry the universal compact generator (4.3.52). As we have emphasized
the Ehlers subalgebra exists in all symmetric spaces and so does the compact
generator (4.3.52). This implies that the mechanism leading to the inclusion
of the Starobinsky model found in [56] is actually rather universal and can be
generalized in several ways.

The above discussion provides a framework for the search of other inflaton potentials.

7.5 Minimal Coupling Special Geometry

In this section we shortly describe the structure of the Minimal Coupling Special
Kähler manifoldMSK p+1, mostly in order to fix our conventions and to establish
our notations. As announced in the introduction, this kind of Special Geometry is
our favorite choice for the vector multiplet sector of the N = 2 lagrangian which
allows us to construct an entire class of theories where the vector multiplet scalars
can be stabilized and the effective potential of an abelian gauging is reduced only
to the hypermultiplet sector. In view of such a use of MSK p+1, all items of its
Special Geometry will be denoted with a hat, and its complex coordinates will be
named ωi rather than zi . However it is clear that MSK p+1 might also be used as
c-map preimage of a Quaternionic Kähler manifold describing hypermultiplets.

As a manifold MSK p+1 is the following coset:

MSK p+1 = SU(1, p + 1)

U(1)× SU(p + 1)
(7.5.1)

In terms of the complex coordinates ωi a convenient choice of the (2 p + 4)-
dimensional holomorphic symplect section is the following one:

http://dx.doi.org/10.1007/978-3-319-74491-9_4
http://dx.doi.org/10.1007/978-3-319-74491-9_4
http://dx.doi.org/10.1007/978-3-319-74491-9_4
http://dx.doi.org/10.1007/978-3-319-74491-9_4
http://dx.doi.org/10.1007/978-3-319-74491-9_4
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̂Ω =
(

̂XΛ

̂FΣ

)

=

⎛

⎜

⎜

⎝

1
ωi

−i
iωi

⎞

⎟

⎟

⎠

; (i = 1, . . . p + 1) (7.5.2)

which leads to the following Kähler potential:

̂K = − log
[

− îΩ ̂C
̂Ω
]

= − log [ 2 (1 − ω · ω)] (7.5.3)

and to the following Kähler metric:

ĝi j� = ∂i ∂ j�
̂K = 1

(1 − ω · ω)2
(

δi j (1 − ω · ω) + ωi ω j
)

(7.5.4)

Defining the Kähler covariant derivatives of the covariantly holomorphic sections as
in Eq. (4.2.18) we obtain three results that are very important for the discussion of
reduced scalar potentials in the present paper. Firstly we get:

∇i ̂U j ≡ ∇i ∇ ĵV = 0 (7.5.5)

which compared with Eq. (4.2.19) implies the vanishing of the three-index symmet-
ric tensor ̂Ci jk . This unique property of the special Kähler manifold MSK p+1

defined by Eq. (7.5.1) is the reason why it has been named the Minimal Coupling
Special Geometry, the interpretation of the tensor Ci jk in phenomenological appli-
cations being that of Yukawa couplings of the gauginos. In Ref. [56] it was shown
that the vanishing of ̂Ci jk guarantees the consistency (see Eq. (3.10) of the quoted
reference) of the truncation of the classical supergravity theory to the hypermulti-
plet quaternionic scalars by fixing the vector multiplet scalars to the origin of their
manifold:

ωi = 0 (7.5.6)

Secondly we evaluate the covariantly symplectic holomorphic section in the origin
of the manifold and we obtain:

̂V
∣

∣

ω= 0 = 1√
2

{

1 0 − i 0
}

(7.5.7)

http://dx.doi.org/10.1007/978-3-319-74491-9_4
http://dx.doi.org/10.1007/978-3-319-74491-9_4
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In the same point we have:

(

ĝi j� ∇îV
α ∇ j�

̂V
)∣

∣

∣

ω= 0
= 1

2

⎛

⎜

⎜

⎝

0 0 0 0
0 1(p+1)×(p+1) 0 i 1(p+1)×(p+1)

0 0 0 0
0 − i 1(p+1)×(p+1) 0 1(p+1)×(p+1)

⎞

⎟

⎟

⎠

(7.5.8)

7.5.1 Gauging Abelian Isometries of the Hypermultiplets

Relying on these results we see that if the hypermultiplet Quaternionic manifold
QM 4m possesses a p + 1-dimensional abelian Lie algebra of isometries, we can
always gauge them by using, for the vector multiplets, the Special Kähler manifold
MSK p+1 introducing also the following embedding tensor:

θ I
M ≡ {

θ I
Λ , θ

Σ |I} = {

θ0
I = 0 , θJ

I = δ I
J , θ

Σ |I = 0
}

. (7.5.9)

Notice that the choice of setting θ0 I = 0 follows from the requirement (B) that the
graviphoton should not be gauged. This indeed amounts to requiring:

̂V
∣

∣

M

ω= 0 θM
A = 0 ⇒ θ0

I = 0 . (7.5.10)

In such a theory the scalar potential has the following general form:

Vscalar (ω, ω, q) = 4 ku
I kv

J huv ̂V
I ̂V J +

(

ĝi j� ∇îV
I ∇ j�

̂V J − 3 ̂V I ̂V J
)

P x
I P

x
J

(7.5.11)
settingωi = 0 is a consistent truncation and the reduced potential takes the following
universal general form which is positive definite by construction:

Vscalar (0, 0, q) =
p+1
∑

I=1

P x
I (q)P

x
I (q) (7.5.12)

In the next Sect. 7.5.2 we reconsider the derivation of the Starobinsky potential
obtained in [56] from a parabolic gauging as a master example that can be gen-
eralized to bigger manifolds.

7.5.2 The Starobinsky Potential

Recently a great deal of activity was devoted to the inclusion of phenomenologically
interesting inflaton potentials intoN = 1 supergravity. A first wave of investigations
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considered the possible generation of potentials by means of suitably chosen super-
potentials, subsequently, after an important new viewpoint was introduced in [58]
and was subsequently developed in [59–64], it became clear that positive definite
inflaton potentials can be generated by the gauging of some isometry of the Kähler
manifold of scalar multiplets. Such potentials have the form of squares of Kähler
moment maps. In [63] this mechanism was applied to the case of constant curvature
one-dimensional Kähler manifolds and it was shown that Starobinsky-like potentials
[65] emerge from the moment map of a parabolic isometry in SL(2,R) � SU(1, 1)
with the addition of a Fayet Iliopoulos term. In particular the standard Starobinsky
model that is dual to an R + R2 supergravity emerges fromgauging the parabolic shift
isometry of an SU(1,1)

U(1) manifold with Kähler potential K = −3 log(z − z) which

is precisely the Special Kähler manifold S3. Let us now consider Eq. (4.3.40) and we
can learn an important lesson. If in the c-map image of some SK Special Kähler
manifold, for instance the S3 model, we gauge, according to the scheme discussed
in Sect. 7.4, some nilpotent Lie algebra elementN+ ∈ US K ⊂ UQ identical with
the parabolic shift generator that we would have gauged in N = 1 supergravity,
(for instance the generator L+ ∈ sl(2,R) in the case of the S3 model), we obtain
a moment map that contains precisely the PI of the N = 1 case, modified by Z
dependent terms. In case the Z can be stabilized to zero the remaining effective
potential is that of the correspondingN = 1 theory, apart from the Fayet Iliopoulos
term. There are two remaining problems. The generation of a Fayet Iliopoulos term
and the stabilization of the U field. They are solved in one stroke by modifying the
parabolic generator of the inner Special Kähler isometry with the addition of the
universal Ehlers rotation (4.3.52).

Let us see how this works.
With reference to Eq. (7.7.26) let us consider the following generator:

p = N+ + κS (7.5.13)

whereN+ is the previously mentioned nilpotent element of the Special Kähler sub-
algebra (Nr+ = 0, for some positive integer r ) and κ is a parameter. Let us then
calculate the tri-holomorphic moment map P x

p according to formula (4.3.54).
Because of the linearity of the momentum map in Lie algebra elements we have:

Pp = PN+ + PS

PN+ =
( i

4 PN+ + O
(

Z2
)

O (Z)
O (Z) − i

4 PN+ − O
(

Z2
)

)

PS =
( i

8 e−U
(

1 + a2 + e2U
) + O

(

Z2
)

O (Z)
O (Z) − i

8 e−U
(

1 + a2 + e2U
) − O

(

Z2
)

)

(7.5.14)

where PN+ is the Kählerian moment map of the Killing vector associated with
the generator N+ as defined in Eq. (3.7.22). It is evident by the above completely
universal formulae that the potential:

http://dx.doi.org/10.1007/978-3-319-74491-9_4
http://dx.doi.org/10.1007/978-3-319-74491-9_4
http://dx.doi.org/10.1007/978-3-319-74491-9_4
http://dx.doi.org/10.1007/978-3-319-74491-9_3
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Vgauging = const Tr
[

Pp · Pp

]

(7.5.15)

possesses the following universal property:

∂

∂Zα
Vgauging

∣

∣

∣

∣

Z=0

= 0 (7.5.16)

allowing for a consistent truncation of the Heisenberg fields. After such truncation
we find:

Vef f (U, a, z, z) = Vgauging

∣

∣

Z=0 = const ×
[

PN+ + κ

2
e−U

(

1 + a2 + e2U
)

]2

(7.5.17)
From Eq. (7.5.17) we further learn that we can consistently truncate the fields a and
U setting them to zero since

∂

∂U
Vef f

∣

∣

∣

∣

U=a=0

= 0 ; ∂

∂a
Vef f

∣

∣

∣

∣

U=a=0

= 0 (7.5.18)

We find:
Vin f l(z, z) ≡ Vef f (0, 0, z, z) = (

PN+ + κ
)2

(7.5.19)

which clearly shows how the universal generator S provides, after stabilization of
the U field, the mechanism that generates the Fayet Iliopoulos term [66] essential
for inflation.

7.6 Examples

As an illustration of the general patterns and mechanisms described in the previ-
ous pages we consider two examples of Quaternionic Kähler manifolds QM 4n+4

obtained from the c-map of two homogeneous symmetric Special Kähler manifolds
SK n .

1. The manifold G(2,2)
SU(2)×SU(2) which is the c-map image of the Special Kähler man-

ifold SU(1,1)
U(1) with cubic embedding of SU(1, 1) in Sp(4,R). In this case n = 1

and the corresponding coupling of one vector multiplet to supergravity is usually
named the S3 model in the literature.We already used the S3-model extensively in
Chap.6 as an example for the construction of nilpotent orbits and black-hole solu-
tions. There the key point was the c� map of SU(1,1)

U(1) to the pseudo-quaternionic

manifold G(2,2)
SU(1,1)×SU(1,1) . For the issue of scalar potentials the key point is the

c-map of the same special Kähler manifold to the quaternionic Kähler manifold
G(2,2)

SU(2)×SU(2) . It is very instructive to make a close comparison between the two
cases, lorentzian and Euclidean, respectively.

http://dx.doi.org/10.1007/978-3-319-74491-9_6
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2. The manifold F(4,4)
SU(2)×USp(6) which is the c-map image of the Special Kähler man-

ifold Sp(6,R)
SU(3)×U(1) . In this case n = 6.

For these two models we provide a full fledged construction of all the geometrical
items and in particular we realize the bridge between the algebraic description and
the analytic one advocated at the end of Sect. 4.3.4.1. This allows us to discuss a
couple of examples of gaugings. In particular in the case of the of the first model
which we utilize as a calibration device for our general formulae we retrieve the
inclusion of the Starobinsky model first demonstrated in [56].

The detailed construction of the secondmodel is utilized to provide an example of
generalization of the results of [56] by means of the inclusion of a multi Starobinsky
model.

7.7 The S3 Model and Its Quaternionic Image G(2,2)
SU(2)×SU(2)

In this which is the simplest example n = 1, namely the Special Kähler manifold
has complex dimension 1 and it can be identified with the time honored Poincaré
Lobachevsky plane:

SK 1 = SU(1, 1)

U(1)
(7.7.1)

The special Kähler structure of this model was exhaustively described in Sect. 6.3 to
which we refer for details.

7.7.1 The Matrix M−1
4 and the c-Map

For the S3 model thematrixM4 and its inverse have the following explicit appearance:

M4 =

⎛

⎜

⎜

⎜

⎜

⎝

4i zz(z2+4zz+z2)
(z−z)3 − 4i

√
3z2z2(z+z)
(z−z)3 − i(z+z)(z2+10zz+z2)

(z−z)3 − 2i
√
3(z+z)2

(z−z)3

− 4i
√
3z2z2(z+z)
(z−z)3

8i z3z3

(z−z)3
2i

√
3zz(z+z)2

(z−z)3
i(z+z)3

(z−z)3

− i(z+z)(z2+10zz+z2)
(z−z)3

2i
√
3zz(z+z)2

(z−z)3
4i(z2+4zz+z2)

(z−z)3
4i

√
3(z+z)

(z−z)3

− 2i
√
3(z+z)2

(z−z)3
i(z+z)3

(z−z)3
4i

√
3(z+z)

(z−z)3
8i

(z−z)3

⎞

⎟

⎟

⎟

⎟

⎠

(7.7.2)
its inverse being:

http://dx.doi.org/10.1007/978-3-319-74491-9_4
http://dx.doi.org/10.1007/978-3-319-74491-9_6
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M−1
4 =

⎛

⎜

⎜

⎜

⎜

⎝

4i(z2+4zz+z2)
(z−z)3

4i
√
3(z+z)

(z−z)3
i(z3+11zz2+11z2z+z3)

(z−z)3 − 2i
√
3zz(z+z)2

(z−z)3

4i
√
3(z+z)

(z−z)3
8i

(z−z)3
2i

√
3(z+z)2

(z−z)3 − i(z+z)3

(z−z)3
i(z3+11zz2+11z2z+z3)

(z−z)3
2i

√
3(z+z)2

(z−z)3
4i zz(z2+4zz+z2)

(z−z)3 − 4i
√
3z2z2(z+z)
(z−z)3

− 2i
√
3zz(z+z)2

(z−z)3 − i(z+z)3

(z−z)3 − 4i
√
3z2z2(z+z)
(z−z)3

8i z3z3

(z−z)3

⎞

⎟

⎟

⎟

⎟

⎠

(7.7.3)
Furthermore, in this case a convenient reference point is given by z0 = i that can be
mapped into any point of the upper complex plane by means of the element:

gz =
(

eh/2 e−h/2y
0 e−h/2

)

∈ SL(2,R) (7.7.4)

acting by means of fractional linear transformations. The explicit form of the Λ(g)
matrix in theW-representationwas given in Eq. (1.7.19). This provides uswith all the
necessary information in order to write down the explicit form of the E I

QM vielbein
for the S3 case.

7.7.2 The Vielbein and the Borellian Maurer Cartan
Equations

They are the following ones:

E I
QM = 1

2

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

dU√
3dh√
3dye−h

e−U (da + dZ3Z1 + dZ4Z2 − dZ1Z3 − dZ2Z4)√
2e− h

2 − U
2

(

dZ1 + y
(

2dZ3 − √
3ydZ4

))

√
2e− 3h

2 − U
2

((√
3dZ3 − ydZ4

)

y2 + √
3dZ1y + dZ2

)

√
2e

h−U
2

(

dZ3 − √
3ydZ4

)

√
2e

3h
2 − U

2 dZ4

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(7.7.5)

Furthermore we find M−1
4 (i,−i) = − 14×4 so that the quadratic form (4.3.46) is

just:
qAB = diag (1, 1, 1, 1, 1, 1, 1, 1) (7.7.6)

The next step consists of calculating the geometry of the space described by the above
vielbein and flat metric (7.7.6). To this effect we have first to calculate the contorsion,
namely the exterior derivatives of the vielbein and then using such a result the spin
connection ωI J , finally the curvature two-form from which we extract the Riemann
and the Ricci tensor.

http://dx.doi.org/10.1007/978-3-319-74491-9_1
http://dx.doi.org/10.1007/978-3-319-74491-9_4
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Addressing the first step, namely the contorsion, we have the first important
surprise. The exterior derivatives of the vielbein are expressed in terms of wedge-
quadratic products of the same vielbein with constant numerical coefficients. This
means that the above constructed vielbein satisfy a set of Maurer Cartan equations
describing a Lie algebra, namely9:

d E I − 1

2
f I

J K E I ∧ E J = 0 (7.7.7)

the tensor f A
BC being the structure constants of such a Lie algebra. Explicitly for

the S3 model we get:

0 = d E1

0 = d E2

0 = d E3 + 2 E2∧E3√
3

0 = d E4 + 2 E1 ∧ E4 − 2 E5 ∧ E7 − 2 E6 ∧ E8

0 = d E5 + E1 ∧ E5 + E2∧E5√
3

− 4 E3∧E7√
3

0 = d E6 + E1 ∧ E6 + √
3E2 ∧ E6 − 2 E3 ∧ E5

0 = d E7 + E1 ∧ E7 − E2∧E7√
3

+ 2 E3 ∧ E8

0 = d E8 + E1 ∧ E8 − √
3E2 ∧ E8

(7.7.8)

Hence it arises the following question: which Lie algebra is described by suchMaurer
Cartan equations? Utilizing the standard method of diagonalizing the adjoint action
of the two commuting generators H1,2 dual to E1,2 we find that the eigenvalues are
just the positive roots of g2,2 as given in Eq. (1.6.1). As it is well known the complex
Lie algebra g2(C) has rank two and it is defined by the 2 × 2 Cartan matrix encoded
in the following Dynkin diagram:

The real form g2,2 is the maximally split form of the above complex Lie algebra.
With a little bit of more work we can put Eq. (7.7.8) into the standard Cartan Weyl
form for the Borel subalgebra of g2,2, composed by the Cartan generators and by all
the positive root step operators. Naming TJ the generators dual to the vielbein E I

such that E I (TJ ) = δ I
J , we find that the appropriate identifications are the following

ones:

9Note that here, for simplicity we have dropped the suffix SK . This is done for simplicity since
there is no risk of confusion.

http://dx.doi.org/10.1007/978-3-319-74491-9_1
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T2 = 2 H 1√
3

T1 = 2 H 2√
3

T3 = 2 Eα1

T4 = 2 Eα6

T8 = 2 Eα2

T7 = 2 Eα3

T5 = 2 Eα4

T6 = 2 Eα5

(7.7.9)

We conclude that the manifold on which the metric (4.3.4) is constructed is homeo-
morphic to the solvable group-manifold Bor(g2,2).

7.7.3 The Spin Connection

Next, calculating the Levi-Civita spin connection from its definition, namely the
vanishing torsion condition:

0 = d E I + ωI J ∧ E J (7.7.10)

we find the following result:

ωI J =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 E4 E5

2
E6

2
E7

2
E8

2
0 0 E3√

3
0 E5

2
√
3

1
2

√
3E6 − E7

2
√
3

− 1
2

√
3E8

0 − E3√
3

0 0 − E6

2 − E7√
3

− E5

2
E8

2 − E5√
3

E7

2

−E4 0 0 0 E7

2
E8

2 − E5

2 − E6

2
− E5

2 − E5

2
√
3

E6

2 + E7√
3

− E7

2 0 E3

2 − E3√
3

− E4

2 0

− E6

2 − 1
2

√
3 E6 E5

2 − E8

2 − E3

2 0 0 − E4

2
− E7

2
E7

2
√
3

E5√
3

− E8

2
E5

2
E3√
3

+ E4

2 0 0 E3

2

− E8

2
1
2

√
3E8 − E7

2
E6

2 0 E4

2 − E3

2 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(7.7.11)

which can be decomposed in the way we now describe.

7.7.4 Holonomy Algebra and Decompostion of the Spin
Connection

Let us introduce two triplets J x
[I ] and J x

[I I ] of 8 × 8 matrices that can be read off
explicitly as the coefficients of αx and βx in the following linear combinations:

http://dx.doi.org/10.1007/978-3-319-74491-9_4
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∑3
x=1 αx J x

[I ] =
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 −α1
2 − 1

4

√
3α3 −α2

4

√
3α2
4 −α3

4

0 0 α1
2 0 −α3

4 − 1
4

√
3α2 −α2

4

√
3α3
4

0 −α1
2 0 0 −α2

4

√
3α3
4

α3
4

√
3α2
4

α1
2 0 0 0

√
3α2
4 −α3

4

√
3α3
4

α2
4√

3α3
4

α3
4

α2
4 − 1

4

√
3α2 0

√
3α1
4 −α1

4 0
α2
4

√
3α2
4 − 1

4

√
3α3

α3
4 − 1

4

√
3α1 0 0 α1

4

− 1
4

√
3α2

α2
4 −α3

4 − 1
4

√
3α3

α1
4 0 0

√
3α1
4

α3
4 − 1

4

√
3α3 − 1

4

√
3α2 −α2

4 0 −α1
4 − 1

4

√
3α1 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(7.7.12)

∑3
x=1 βx J x

[I I ] =
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 3β1
2 − 1

4

√
3β3 − 3β2

4 − 1
4

√
3β2

3β3
4

0 0 β1
2 0 − β3

4 − 3
4

√
3β2

β2
4 − 3

4

√
3β3

0 − β1
2 0 0 5β2

4

√
3β3
4

5β3
4 − 1

4

√
3β2

− 3β1
2 0 0 0 − 1

4

√
3β2

3β3
4

√
3β3
4

3β2
4√

3β3
4

β3
4 − 5β2

4

√
3β2
4 0

√
3β1
4 − 5β1

4 0
3β2
4

3
√
3β2
4 − 1

4

√
3β3 − 3β3

4 − 1
4

√
3β1 0 0 − 3β1

4√
3β2
4 − β2

4 − 5β3
4 − 1

4

√
3β3

5β1
4 0 0

√
3β1
4

− 3β3
4

3
√
3β3
4

√
3β2
4 − 3β2

4 0 3β1
4 − 1

4

√
3β1 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(7.7.13)

Both triplets form an 8-dimensional representation of the su(2) Lie algebra and the
two triplets commute with each other:

[

J x
[I ] , J y

[I ]
] = εxyz J y

[I ]
[

J x
[I I ] , J y

[I I ]
] = εxyz J y

[I I ]
[

J x
[I ] , J y

[I I ]
] = 0 (7.7.14)

Furthermore all matrices are antisymmetric so that the two Lie algebras suI(2) and
suII(2) are both subalgebras of so(8). The distinction between these two represen-
tations becomes clear when we calculate the Casimir operator for both of them. We
obtain:

3
∑

x=1

J x
[I ] · J x

[I ] = − 3

4
1 ;

3
∑

x=1

J x
[I I ] · J x

[I I ] = − 15

4
1 (7.7.15)
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Hence the first suI(2) Lie algebra is realized on the considered eight-dimensional
space in the j = 1

2 representation, while the second suII(2) Lie algebra is realized
on the same space in the j = 3

2 . In other words, with respect to both subalgebras of
so(8), the fundamental representation decomposes as follows:

8
suI(2)⊕suII(2)⊂so(8)=⇒ (2, 4) (7.7.16)

By direct calculation we verify that the spin connection displayed in Eq. (7.7.11) has
the following structure:

ω = ω[I ]
x J x

[I ] ⊕ ω[I I ]
x J x

[I I ] (7.7.17)

where:

ω[I ]
x =

⎛

⎝

√
3E3 − E4√
3E7 − E6

−E8 − √
3E5

⎞

⎠ ; ω[I I ]
x =

⎛

⎜

⎝

E4

2 + E3

2
√
3

− E7

2
√
3

− E6

2
E8

2 − E5

2
√
3

⎞

⎟

⎠
(7.7.18)

This structure clearly demonstrates the reduced holonomyof theQuaternionicKähler
manifold. Indeed, according to Eq. (7.7.16) the vielbein transforms in the doublet
of suI(2) tensored with the fundamental representation of sp(4,R). In the present
case the symplectic 4 × 4 matrices are actually reduced to the subalgebra suII(2) ⊂
sp(4,R) with respect to which the fundamental of sp(4,R) remains irreducible and
coincides with the j = 3

2 representation of suII(2). The above discussion can be
summarized by the statement:

so(8) ⊂ su(2) ⊕ usp(4) ⊂ Hol = suI(2) ⊕ suII(2) (7.7.19)

by definition the holonomy algebra being the Lie algebra in which the Levi-Civita
spin connection takes values.

7.7.5 Structure of the Isotropy Subalgebra H

It remains to single out the structure of the denominator subalgebra H ⊂ U ≡ g2,2
in the orthogonal decomposition:

U = H ⊕ K ;
⎧

⎨

⎩

[H , H] ⊂ H

[H , K] ⊂ K

[K , K] ⊂ H

(7.7.20)

Since our quaternionic Kähler manifold is a symmetric space it follows that the Lie
algebra H must be isomorphic with the holonomy algebra Hol = suI(2)⊕ suII(2)
that we have calculated in the previous subsection. By definition the Lie algebra H
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is the maximal compact subalgebra which for maximal split algebras has a universal
definition in terms of the step operators associated with the positive roots Eα and
their conjugates E−α . In the case of g2,2 which has six positive roots we can write:

H ≡ spanR
{

Eα1 − Eα1 , Eα2 − Eα2 , Eα3 − Eα3 , Eα4 − Eα4 , Eα5 − Eα5 , Eα6 − Eα6
}

(7.7.21)
The structure of (7.7.21) is the following:

H = suI(2) ⊕ suII(2) (7.7.22)

where the generators of the two subalgebras are:

j x
[I ] =

⎛

⎜

⎜

⎜

⎝

−3E−α1+3Eα1+√
3(Eα6−E−α6)

6
√
2

3E−α3−3Eα3+√
3(E−α5−Eα5)

6
√
2√

3(Eα2−E−α2)+3(E−α4−Eα4)
6
√
2

⎞

⎟

⎟

⎟

⎠

(7.7.23)

and

j x
[I I ] =

⎛

⎜

⎜

⎜

⎝

−E−α1+Eα1+√
3(E−α6−Eα6)

2
√
2

−E−α3+Eα3+√
3(E−α5−Eα5)

2
√
2√

3(E−α2−Eα2)+E−α4−Eα4

2
√
2

⎞

⎟

⎟

⎟

⎠

(7.7.24)

and satisfy among themselves the same relations (7.7.14) as their homologous gener-
ators J x

[I ] and J x
[I I ]. In Eq. (7.7.22) we have used the same notation as in Eq. (7.7.19)

using the obligatory homomorphism between the holonomy algebra Hol and the
isotropy subalgebraH. The precise correspondence between generators of one alge-
bra and generators of the other will be established in the next subsection by means
of the use of the coset representative.

7.7.6 The Coset Representative

The next step in the development of the coset approach is the construction of the solv-
able coset representative LSolv(φ), advocated in Eqs. (4.3.57) and (4.3.58), namely
a coordinate dependent element of the Borel group of g(2,2) such that the Maurer
Cartan form

Ξ = LSolv(φ)
−1 dLSolv(φ) (7.7.25)

projected along the Borel algebra generators, as given in Eq. (7.7.9), reproduces the
vielbein of Eq. (7.7.5). The appropriate coset representative is obtained by exponen-
tiating the Borel Lie algebra and the precise recipe is provided below. First define:

http://dx.doi.org/10.1007/978-3-319-74491-9_4
http://dx.doi.org/10.1007/978-3-319-74491-9_4
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LE
0 = 1√

3
H2 ; LE

+ = −
√

2

3
Eα6

L0 = H1 ; L+ = √
2Eα1

WI =
√

2

3
{Eα4 , Eα5 , − Eα3 , − Eα2 , } (7.7.26)

and then set:

L = exp
[

aLE
+
] · exp

[√
2
(

Z1 W1 + Z3 W3
)

]

·
· exp

[√
2
(

Z1 W1 + Z3 W3
)

]

· exp [yL+
] · exp [hL0] · exp [ULE

0

]

(7.7.27)

By explicit evaluation we obtain the result displayed in the appendix in formulae
(7.12.1) and (7.12.2) and we verify that, if we set:

TI = {

LE
0 , L0 , LE

+ , L+ , W1 , W2 , W3 , W4
}

(7.7.28)

upon substitution of (7.12.2) into the Maurer Cartan form (7.7.25) we obtain:

LSolv(φ)
−1 dLSolv(φ) =

8
∑

I=1

TI E I
QM (7.7.29)

the forms E I
QM being given in Eq. (7.7.5). Alternatively we can also write:

LSolv(φ)
−1 dLSolv(φ) =

3
∑

x=1

(

ω[I ]
x j x

[I ] ⊕ ω[I I ]
x j x

[I I ]
) ⊕

8
∑

I

TI E I
S Q (7.7.30)

In the above equationω[I ]
x andω[I I ]

x are the components of the spin connections given
in Eq. (7.7.18), j x

[I ] and j x
[I I ] are the generators ofH defined in Eqs. (7.7.23), (7.7.24)

and TI denotes a suitable base of generators in the K subspace of g(2,2) defined as:

K ≡ , span
R

{H1 , H2 , Eα1 + Eα1 , Eα2 + Eα2 , Eα3 + Eα3

Eα4 + Eα4 , Eα5 + Eα5 , Eα6 + Eα6} (7.7.31)

The precise form of the generators TI is not relevant to our purposes and we omit it.
The key point is instead the identification of the generators j x

[I ] ofH with generators
J x
[I ] of the holonomy algebra. This provides uswith the knowledge of the quaternionic

complex structures within the algebraUQ and allows to calculate the tri-holomorphic
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moment map of any generator t ∈ UQ by means of the formula (4.3.54) which in
our case reads:

P x
t = 1

2
Tr7

(

j x
[I ] L

−1
Solv tLSolv

)

(7.7.32)

having denoted by 7 the 7-dimensional fundamental representation of g(2,2).

7.7.6.1 The Starobinsky Potential

As an immediate application of Eq. (7.7.32) one can retrieve the results of [56] on the
inclusion of the Starobinsky potential into supergravity. In Sect. 7.5.2 we presented
a general discussion of the gaugings of nilpotent generators in the Special Kähler
subalgebra US K ⊂ UQ . In the present case where US K = sl(2,R) the only
available nilpotent operator is L+ and from the general formula (3.7.22) applied to the
casewhere themetric is given by (6.3.1) and the complex coordinate is parameterized
as in Eq. (6.3.7) we find:

PL+ = const × exp[−h] = const × (Im z)−1 (7.7.33)

This result inserted into the general formula (7.5.19) yields

V (h) = const × (exp[−h] + κ)2 (7.7.34)

which is indeed the Starobinsky potential, since, once expressed in terms of h, the
Kähler potential is exactly K = 3 h. The same result is directly obtained with
precise coefficients by inserting in Eq. (7.7.32) the 7-dimensional image of L+ in the
fundamental representation of g(2,2).

7.8 The Sp(6,R)/SU(3) × U(1) - Model and Its c-Map
Image

Next we consider the Special Kähler manifold

MSp 6 = Sp(6,R)

SU(3)× U(1)
(7.8.1)

and its c-map image which is the following quaternionic manifold:

c-map : MSp 6 �→ QM F4 ≡ F(4,4)
SU(2)× USp(6)

(7.8.2)

http://dx.doi.org/10.1007/978-3-319-74491-9_4
http://dx.doi.org/10.1007/978-3-319-74491-9_3
http://dx.doi.org/10.1007/978-3-319-74491-9_6
http://dx.doi.org/10.1007/978-3-319-74491-9_6
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MSp 6 belongs to the magic square of exceptional special Kähler manifolds whose
quaternionic c-map is a homogeneous symmetric space having, as it is evident from
(7.8.2), an exceptional Lie group as isometry group.

We begin by illustrating some general properties of this remarkable manifold.
First of all, in order to discuss them adequately we need to choose a basis for the
sp(6,R) Lie algebra. Since we are not interested in solving Lax equations we do
not choose the basis where the matrices of the Borel subalgebra are upper triangular.
We rather use the basis where the symplectic preserved metric is the standard one,
namely:

C =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(7.8.3)

This traditional choice allows to describe in a simple way other aspects of the man-
ifold geometry that are more relevant to our present purposes.

According to the above choice, an element of the Sp(6,R) group and an element
of the sp(6,R) Lie-algebra are matrices respectively fulfilling the following two
constraints:

(

A B
C D

)T

C

(

A B
C D

)

= C ;
(

A B
C D

)T

C + C

(

A B
C D

)

= 0 (7.8.4)

where A, B,C, D, A,B,C,D are 3 × 3 blocks. By means of the so called Cayley
transformation

C =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1√
2
0 0 i√

2
0 0

0 1√
2
0 0 i√

2
0

0 0 1√
2
0 0 i√

2
1√
2
0 0 − i√

2
0 0

0 1√
2
0 0 − i√

2
0

0 0 1√
2
0 0 − i√

2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(7.8.5)

a real element of the symplectic group (or algebra) can be mapped into a matrix that
is simultaneously symplectic and pseudounitary:

S = C †

(

A B
C D

)

C =
(

U0 U �
1

U1 U �
0

)

∈ Sp(6,C)
⋂

SU(3, 3) (7.8.6)

The diagonal blocksU0 ∈ U(3) span the H-subgroup of the coset (7.8.1). This allows
to introduce a set of projective coordinates that parameterize the points of the man-
ifold (7.8.1) and have a nice fractional linear transformation under the action of the
group Sp(6,R). Given any coset parameterization
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(

A(φ) B(φ)
C(φ) D(φ)

)

∈ Sp(6,R) (7.8.7)

namely a family of symplectic group elements depending on 12 parameters φi such
that each different choice of theφi provides a representative of a different equivalence
class in (7.8.1), we can construct the following, symmetric complex matrix:

Z(φ) ≡ (A(φ) − i B(φ)) (C(φ) − iD(φ))−1 (7.8.8)

which has a very simple transformation under the action of the symplectic group.
Let us consider the action of any element of Sp(6,R) on the coset representative. We
have:

(

Â B̂
Ĉ D̂

)

︸ ︷︷ ︸

=g∈ Sp(6,R)

(

A(φ) B(φ)
C(φ) D(φ)

)

=
(

A(φ′) B(φ′)
C(φ′) D(φ′)

)

H(φ, g) (7.8.9)

where φ′ is the label of a new equivalence class and H(φ, g) ∈ U(3) is a suitable
H-compensator. Calculating the matrix Z(φ′) according to the definition (7.8.8) we
find that it is related to Z(φ) by a simple linear fractional transformation (generalized
to matrices):

Z(φ′) = (AZ(φ) + B) (C Z(φ) + D)−1 (7.8.10)

Formula (7.8.10) is of crucial relevance and requires several comments. From amath-
ematical point of view, (7.8.10) is the well known generalization of the action of the
SL(2,R) � Sp(2,R) group on the upper complex plane of Poincaré–Lobachevsky.
The complex numbers z with positive imaginary parts (Imz > 0) are replaced by
the complex symmetric matrices Zi j whose imaginary part is positive definite. Such
matrices constitute the so named upper Siegel plane, which indeed is homeomor-
phic to the coset Sp(2n,R)/U(n). From the physical point of view (7.8.10) is just
identical to the Gaillard–Zumino formula for the construction of the kinetic matrix
NΛΣ which appears in the lagrangian of the vector fields in N = 2 supergravity
and is rooted in the structure of special Kähler geometry. Indeed, as we know, for
any special Kähler manifold Mn of complex dimension n that is also a symmetric
space G/H, there exists a W-representation of G, which is symplectic, has dimen-
sion 2n + 2 and hosts the electric and magnetic field strengths of the model. Such a
representation defines a symplectic embedding:

G → Sp (2n + 2,R) (7.8.11)

which associates to any coset representative g(φ) ∈ G/H its corresponding symplec-

tic (2n + 2)× (2n + 2) representation

(

A(φ) B(φ)
C(φ) D(φ)

)

. From this latter, utilizing

the recipe provided by formula (7.8.10) we obtain an (n + 1)× (n + 1) complex
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symmetric matrix to be identified with the appropriate N kinetic matrix largely
discussed and utilized in Sect. 4.2.4.

The peculiarity of theN = 2model under investigation is that the original isome-
try group G is already symplectic so that we can utilize the Gaillard–Zumino formula
(7.8.10) in the fundamental 6 dimensional representation in order to construct a Siegel
parametrization of the coset in terms of a symmetric complex 3 × 3 matrix Z . The
W-representation is the 14′ and this defines the embedding:

Sp(6,R) �→ Sp(14,R) (7.8.12)

from which we can construct the 7 × 7 kinetic matrixN (Z).

7.8.1 The Transitive Action of Sp(6,R) on the Upper Siegel
Plane

Before proceeding with the actual construction of the Lie algebra let us comment
on the transitive action of the symplectic group on the Siegel plane. Focusing on
the formula (7.8.10), consider the Sp(6,R) parabolic subgroup composed by the
following matrices:

g(B) =
(

13×3 B
03×3 13×3

)

(7.8.13)

where B is symmetric and real. By means of such a subgroup we can always map
a generic Z matrix into one that has vanishing real part ReZ = 0. Next consider
the action on the residual imaginary part of Z of the GL(3,R) ⊂ Sp(6,R) subgroup
composed by the matrices:

g(B) =
(

A 03×3

03×3
(

A T
)−1

)

; A ∈ GL(3,R) (7.8.14)

We obtain:
ImZ �→ A ImZ A T (7.8.15)

Choosing A = (ImZ)
1
2 , which is always possible since ImZ is positive definite

we can reduce the imaginary part to the identity matrix. This shows the transitive
action of the symplectic group on the Siegel plane and also provides a nice coset
parameterizationof the cosetmanifold. Indeedwecan introduce the followingmatrix:

g(Z) ≡
(

(ImZ)
1
2 ReZ (ImZ)−

1
2

0 (ImZ)−
1
2

)

(7.8.16)

which maps the origin of the manifold i13×3 in the complex symmetric matrix Z .

http://dx.doi.org/10.1007/978-3-319-74491-9_4
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Fig. 7.6 The Dynkin
diagram of C3

7.8.2 The sp(6,R) Lie Algebra

From the point of view of the Dynkin classification the Lie algebra sp(6,R) is the
maximally split real section of the complex Lie algebra C3 whose Dynkin diagram
is displayed in Fig. 7.6. The root system is composed of 18-roots whose subset of 9
positive ones is displayed here below:

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

α1
α2
α3
α4
α5
α6
α7
α8
α9

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

α1 {1,−1, 0}
α2 {0, 1,−1}
α3 {0, 0, 2}
α1 + α2 {1, 0,−1}
α2 + α3 {0, 1, 1}
α1 + α2 + α3 {1, 0, 1}
2α2 + α3 {0, 2, 0}
α1 + 2α2 + α3 {1, 1, 0}
2α1 + 2α2 + α3 {2, 0, 0}

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(7.8.17)

The simple roots are the first three. Of the remaining 6 we have provided both their
expression in terms of the simple roots and their realization as three-vectors in R

3.
Such a realization is spelled out also for the simple roots. Next we present the basis
of 6 × 6 matrices that fulfill the standard commutation relations of the Lie Algebra
in the Cartan Weyl basis.

7.8.2.1 Cartan Generators

The Cartan generators are namedH i and can be easily read-off from the following
formula:

3
∑

i=1

hi H
i =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

h1 0 0 0 0 0
0 h2 0 0 0 0
0 0 h3 0 0 0
0 0 0 −h1 0 0
0 0 0 0 −h2 0
0 0 0 0 0 −h3

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(7.8.18)

by collecting the coefficient of the parameter hi .
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7.8.2.2 Positive Root Step Operators

The step operator associated with the positive root αi is named E αi and can be easily
read-off from the following formula:

9
∑

i=1

ai E
αi =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 a1 a4

√
2a9 a8 a6

0 0 a2 a8

√
2a7 a5

0 0 0 a6 a5

√
2a3

0 0 0 0 0 0
0 0 0 −a1 0 0
0 0 0 −a4 −a2 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(7.8.19)

by collecting the coefficient of the parameter ai .

7.8.2.3 Negative Root Step Operators

The step operator associated with the negative root −αi is named E −αi and can be
easily read-off from the following formula:

9
∑

i=1

bi E
−αi =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 0 0
b1 0 0 0 0 0
b4 b2 0 0 0 0√
2b9 b8 b6 0 −b1 −b4

b8
√
2b7 b5 0 0 −b2

b6 b5
√
2b3 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(7.8.20)

by collecting the coefficient of the parameter bi .

7.8.3 The Representation 14′

The 14′ representation of sp(6,R) which plays the role of W-representation for the
special manifold under consideration is defined as the representation obeyed by the
three-times antisymmetric tensors with vanishing C-traces, namely:

tABC
︸︷︷︸

antisymmetric in A,B,C

× C
BC = 0 (7.8.21)

The generators are constructed in the appendix, Sect. 7.12.2, and displayed in
Eqs. (7.12.11)–(7.12.13).
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7.8.4 The Holomorphic Symplectic Section and Its
Transformation in the 14′

In order to construct the special geometry of the manifold (7.8.1) we need to intro-
duce the holomorphic symplectic section that, by definition, should transform in the
14′ representation of Sp(6,R). To this effect, we choose as special coordinates the
components of the symmetric complex matrix defined by Eq. (7.8.10) and we choose
a lexicographic order to enumerate its independent components, namely we set:

Z =
⎛

⎝

z1 z2 z3
z2 z4 z5
z3 z5 z6

⎞

⎠ (7.8.22)

Next we introduce the holomorphic prepotential defined by:

F ≡ Za,i Zb, j Zc,k ε
abc εi jk

= −6
(

z6z22 − 2z3z5z2 + z23z4 + z1
(

z25 − z4z6
))

(7.8.23)

and we can introduce a first ansatz for the symplectic section by writing:

Ω̃ =
{

1, z I , F ,
∂F

∂z J

}

= {

1, z1, z2, z3, z4, z5, z6,−6
(

z6z22 − 2z3z5z2 + z23z4 + z1
(

z25 − z4z6
))

,

6z4z6 − 6z25, 12 (z3z5 − z2z6) , 12 (z2z5 − z3z4) ,

6z1z6 − 6z23, 12 (z2z3 − z1z5) , 6z1z4 − 6z22
}

(7.8.24)

In order to match the transformation of this holomorphic section with the transfor-
mations of the 14′ representation as we defined it in Sect. 7.8.4 we still need a change
of basis. Consider the following matrix

S =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 0 0
√
2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1
3
√
2

0 0

0 0 0 0 0 0 0 0 − 1
3
√
2

0 0 0 0 0

0 0 0 0 0 0 0 1
3
√
2

0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1
6 0

0 0 0 0 0 0 0 0 0 0 − 1
6 0 0 0

0 0 0 0 0 0 0 0 0 1
6 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1
3
√
2

0 0 0 0 −√
2 0 0 0 0 0 0 0 0 0

0
√
2 0 0 0 0 0 0 0 0 0 0 0 0√

2 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −2 0 0 0 0 0 0 0 0
0 0 0 2 0 0 0 0 0 0 0 0 0 0
0 0 −2 0 0 0 0 0 0 0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(7.8.25)

and define:



410 7 E7, F4 and Supergravity Scalar Potentials

Ω (Z) = S Ω̃(Z) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

√
2z6√
2
(

z1z6 − z23
)

√
2
(

z25 − z4z6
)

−√
2
(

z6z22 − 2z3z5z2 + z23z4 + z1
(

z25 − z4z6
))

2z2z3 − 2z1z5
2z3z4 − 2z2z5
2z3z5 − 2z2z6√
2
(

z1z4 − z22
)

−√
2z4√

2z1√
2

−2z5
2z3
−2z2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(7.8.26)

NamingD14 [g] the 14-dimensional representation of a finite element g,∈ Sp(6,R)
of the symplectic group that corresponds to the representation of the algebra as we
constructed it above, the holomorphic symplectic section (7.8.26) transforms in the
following way:

Ω
[

(A Z + B) (C Z + D)−1
] = 1

Det (C Z + D)
D14

[(

A B
C D

)]

Ω[Z ]
(7.8.27)

The formula (7.8.27) can be in particular applied to the case where the original Z is
the origin of the coset manifold: Z0 = i 13×3. In that case, recalling Eq. (7.8.16) we
find:

Ω[Z0] =
{

i
√
2,−√

2,
√
2,−i

√
2, 0, 0, 0,−√

2,−i
√
2, i

√
2,

√
2, 0, 0, 0

}

(7.8.28)
and

Ω[Z0] = √

Det [Im Z ] × D14

[(

(ImZ)
1
2 ReZ (ImZ)−

1
2

0 (ImZ)−
1
2

)]

· Ω[Z0] (7.8.29)

7.8.5 The Kähler Potential and the Metric

Provided with this information we can now write the explicit form of the Kähler
potential and of the Kähler metric for the manifold (7.8.1) according to the rules of
special Kähler geometry. We have:
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K ≡ − log
(

iΩ[Z ]C14Ω[Z ])

= − log
(

2i
(

−z6z22 + z6z22 + 2z6z2z2 − 2z5z3z2 + 2z3z5z2 − 2z2z6z2 − z6z22 − z4z23 + z1z25+
z25z1 − z4z6z1 + 2z5z2z3 + z23z4 + z6z1z4 + z23 (z4 − z4)− 2z5z1z5 − 2z2z3z5

+2z3 (−z5z2 + z5z2 + z4z3 − z3z4 + z2 (z5 − z5))+ z22z6 + z4z1z6 − z1z4z6

−z1
(

z25 − 2z5z5 + z25 + z6z4 − z4z6 + z4 (z6 − z6)
)))

(7.8.30)

and the line element on the manifold, in terms of the special coordinates zi takes the
standard form:

ds2K = ∂

∂zi

∂

∂z j K dzi ⊗ dz j (7.8.31)

The explicit form of ds2K in terms of the special coordinate zi can be worked out by
simple derivatives, yet its explicit form is quite lengthy and so much involved that
we think it better not to display it. For the purposes that we pursue we rather prefer
to write the form of the metric in terms of solvable real coordinates.

7.8.5.1 The Solvable Parametrization

The transition to a solvable parametrization of the coset is rather simple. Let us
define the solvable coset representative as the product of the exponentials of all the
generators of the Borel subalgebra of sp(6,R):

L(h, p) = ∏9
i=1 exp

[

p10−i E α10−i
] ∏3

j=3 exp
[

h j H j
] =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

eh1 eh2 p1 eh3 p4

e−h1
(√

2p1 p2 p3 p4
+ (p1 p2 − p4) p6
−p1 p8 + √

2p9
)

e−h2
(

−√
2p2 p3 p4

−p2 p6 + p8)
e−h3

(√
2p3 p4 + p6

)

0 eh2 eh3 p2
e−h1

(

(p1 p2 − p4) p5
−√

2p1 p7 + p8
)

e−h2
(√

2p7
−p2 p5

) e−h3 p5

0 0 eh3 e−h1
(√

2p1 p2 p3 − p1 p5 + p6
)

e−h2
(

p5 − √
2p2 p3

) √
2e−h3 p3

0 0 0 e−h1 0 0
0 0 0 −e−h1 p1 e−h2 0
0 0 0 e−h1 (p1 p2 − p4) −e−h2 p2 e−h3

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(7.8.32)

The real coordinates of the manifold are now the 12 parameters:

coordinates ≡ {h1, . . . , h3, p1, . . . p9} (7.8.33)

Extracting the complex matrix Z from the symplectic matrix L(h, p) we find:
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Z(h, p) =
⎛

⎝

ie2h2 p21 + ie2h1 +
(√

2p3 + ie2h3
)

p24 + √
2p9 ie2h2 p1 + ie2h3 p2 p4 + p8

(√
2p3 + ie2h3

)

p4 + p6

ie2h2 p1 + ie2h3 p2 p4 + p8 ie2h3 p22 + ie2h2 + √
2p7 ie2h3 p2 + p5

(√
2p3 + ie2h3

)

p4 + p6 ie2h3 p2 + p5
√
2p3 + ie2h3

⎞

⎠

(7.8.34)

which defines the coordinate transformation from the special to the solvable coordi-
nates:

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

z1
z2
z3
z4
z5
z6

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

√
2p3 p2

4 + i
(

e2h2 p2
1 + e2h1 + e2h3 p2

4

)+ √
2p9

i
(

e2h2 p1 + e2h3 p2 p4
)+ p8

ie2h3 p4 + √
2p3 p4 + p6

i
(

e2h3 p2
2 + e2h2

)+ √
2p7

ie2h3 p2 + p5√
2p3 + ie2h3

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(7.8.35)

Inserting such a coordinate transformation into the Kähler metric (7.8.31) we obtain
its form in termsof the real coordinates (7.8.33). For the explicit formof themetric,we
refer the reader to the appendix, Eq. (3.8.80). The completemetric is quite formidable
(3.8.80) since it contains a total of 100 terms. It has however quite simple properties
when we sit in the neighborhood of the coset origin, in particular at pi ∼ 0. In this
case it drastically simplifies and becomes diagonal:

ds2K
pi →0=⇒ dh21 + dh22 + dh23 + 1

2
e2h2−2h1dp21 + 1

2
e2h3−2h2dp22 + 1

2
e−4h3dp23 + 1

2
e2h3−2h1dp24

+1

2
e−2h2−2h3dp25 + 1

2
e−2h1−2h3dp26 + 1

2
e−4h2 dp27 + 1

2
e−2h1−2h2dp28 + 1

2
e−4h1dp29 (7.8.36)

which shows that it is positive definite as it should be. It is also interesting to note
that if the truncation to the Cartan’s fields is permitted by the potential, then we just
have three dilatons with canonical kinetic terms.

7.8.6 The Quartic Invariant in the 14′

Of crucial relevance for the analysis of Black Hole charges and in general for the
classification of orbits in the W-representation is the quartic symplectic invariant.
Given a 14-vector

Q = {q1, q2 . . . , q14} (7.8.37)

the standard form of this invariant can be expressed in the following manifestly
Sp(6,R)-invariant form

J4(Q) = −nV (2nV + 1)

6d
(Λa)αβ (Λ

a)γ δQ
αQβ Qγ Qδ , (7.8.38)

http://dx.doi.org/10.1007/978-3-319-74491-9_3
http://dx.doi.org/10.1007/978-3-319-74491-9_3
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where in our case nV = 7 and d = dimSp(6,R) = 21, the symplectic indices are
raised and lowered by C

αβ

14 and C14αβ and the index a is raised by the inverse of
ηab ≡ Tr(Λa Λb). The explicit form of J4(Q) reads:

J4(Q) = −2q1q9q2
5 + 2q3q11q2

5 − 2
√
2q6q7q11q5 − 2q1q8q12q5 + 2q2q9q12q5 − 2q3q10q12q5

+2q4q11q12q5 − 2
√
2q7q9q13q5 + 2

√
2q1q6q14q5 + 2

√
2q3q13q14q5 + q2

1q2
8

+q2
2q2

9 + q2
3q2

10 + q2
4q2

11 + 2q2q8q2
12 − 2q4q10q2

12 − 2q3q8q2
13 + 2q4q9q2

13 − 2q2q3q2
14

−2q1q4q2
14 + 2q1q2q8q9 + 2q1q2

6q10 + 2q1q3q8q10 − 2q2
7q9q10 − 2q2q3q9q10

−4q1q4q9q10 − 2q2q2
6q11 − 2q2

7q8q11 − 4q2q3q8q11

−2q1q4q8q11 + 2q2q4q9q11 + 2q3q4q10q11

+2
√
2q6q7q10q12 − 2q1q6q8q13 − 2q2q6q9q13 + 2q3q6q10q13

+2q4q6q11q13 − 2
√
2q7q8q12q13 + 2q1q7q8q14

+2q2q7q9q14 + 2q3q7q10q14 + 2q4q7q11q14 − 2
√
2q2q6q12q14 + 2

√
2q4q12q13q14

(7.8.39)

7.8.7 Truncation to the STU-Model

Next we analyze how the ST U -model is embedded into the Sp(6,R)-model. At the
level of the special coordinates the truncation to the ST U -model is very simply done.
It suffices to set to zero the complex coordinates z2, z3, z5 keeping only z1, z4, z6
that can be identified with the fields S, T,U . When we do so the symplectic section
reduces as follows:

Ω

⎡

⎣Z

⎛

⎝

z1 0 0
0 z4 0
0 0 z6

⎞

⎠

⎤

⎦ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

√
2z6√
2z1z6

−√
2z4z6√

2z1z4z6
0
0
0√
2z1z4

−√
2z4√

2z1√
2

0
0
0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(7.8.40)

and the Kähler potential reduces to:
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K → − log [2i (z1 − z1) (z4 − z4) (z6 − z6)] (7.8.41)

which yields three copies of the Poincaré metric, one for each of the three SL(2,R)
SO(2)

submanifolds.
The result (7.8.40) is in agreement with the decomposition of the 14′ of sp(6,R)

with respect to the three subalgebras sl(2):

14′ sl(2)×sl(2)×sl(2)=⇒ (2, 2, 2)⊕ (2, 1, 1)⊕ (1, 2, 1)⊕ (1, 1, 2) (7.8.42)

From (7.8.40) we also learn that the directions {1, 2, 3, 4, 8, 9, 10, 11} of the 14′ vec-
tor space span the representation (2, 2, 2), while the directions {5, 6, 7, 12, 13, 14} of
the same space span the representations (2, 1, 1)⊕ (1, 2, 1)⊕ (1, 1, 2). The adjoint
representation of sp(6,R) decomposes instead in the following way:

adj [sp(6,R)]
sl(2)×sl(2)×sl(2)=⇒ (3, 1, 1)⊕ (1, 3, 1)⊕ (1, 1, 3)

⊕ (2, 2, 1)⊕ (2, 1, 2)⊕ (1, 2, 2) (7.8.43)

as it is evident by a quick inspection of the roots (7.8.17). In terms of the Cartan–
Weyl basis the three sl(2,R) subalgebra contains the three Cartan generators Hi

and the step operators E ±α3 , E ±α7 , E ±α9 . The remaining 12 step operators span the
representation (2, 2, 1)⊕ (2, 1, 2)⊕ (1, 2, 2), namely:

(2, 2, 1)⊕ (2, 1, 2)⊕ (1, 2, 2) = span
[

E ±α1 ,E ±α2 ,E ±α4 ,E ±α5 ,E ±α6 ,E ±α8]

(7.8.44)
The explicit form of an sp(6,R)Lie algebra element reduced to the sl(2)3 subalgebra
is the following one:

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

h1 0 0 b1 0 0
0 h2 0 0 b2 0
0 0 h3 0 0 b3
c1 0 0 −h1 0 0
0 c2 0 0 −h2 0
0 0 c3 0 0 −h3

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

∈ sl(2)⊗ sl(2)⊗ sl(2) ⊂ sp(6,R) (7.8.45)

7.8.8 Reduction of the Charge Vector to the (2, 2, 2)

In order to study the orbits of the charge vectors in the 14′ our first step consists
of reducing it to normal form, namely to the (2, 2, 2) representation. We claim that
for generic charge vectors this is always possible by means of Sp(6,R) rotations
generated by elements of the (2, 2, 1)⊕ (2, 1, 2)⊕ (1, 2, 2) subspace. To show this
let us consider the six dimensional compact Lie algebra element:
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Kψ = ψ1
(

E α1 − E −α1)+ ψ2
(

E α2 − E −α2)+ ψ3
(

E α4 − E −α4)

ψ4
(

E α5 − E −α5)+ ψ5
(

E α6 − E −α6)+ ψ6
(

E α8 − E −α8) (7.8.46)

and a generic charge vector that has components only in the (2, 2, 2) subspace.

Q2,2,2 = {Θ1,Θ2,Θ3,Θ4, 0, 0, 0,Θ5,Θ6,Θ7,Θ8, 0, 0, 0} (7.8.47)

If we apply the 14′ representation of Kψ to the charge vector QN we obtain:

D14
(

Kψ

)

Q2,2,2 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0
0
0
0
−√

2Θ2ψ2 + √
2Θ5ψ2 − √

2Θ4ψ4 − √
2Θ7ψ4

−√
2Θ3ψ3 − √

2Θ5ψ3 + √
2Θ4ψ5 − √

2Θ6ψ5√
2Θ2ψ1 + √

2Θ3ψ1 − √
2Θ1ψ6 − √

2Θ4ψ6

0
0
0
0
−√

2Θ1ψ2 − √
2Θ6ψ2 + √

2Θ3ψ4 − √
2Θ8ψ4√

2Θ1ψ3 − √
2Θ7ψ3 + √

2Θ2ψ5 + √
2Θ8ψ5√

2Θ6ψ1 + √
2Θ7ψ1 − √

2Θ5ψ6 − √
2Θ8ψ6

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(7.8.48)
which clearly shows that the six parametersψ1,...,6 are sufficient to generate arbitrary
components {5, 6, 7, 12, 13, 14} of the charge vector starting from vanishing ones.
Reverting the path this means that by means of the same rotations, apart from sin-
gular orbits that deserve a separate study we can always fix the gauge where the six
components {5, 6, 7, 12, 13, 14} vanish.

7.8.8.1 Further Reduction to Normal Form of the Charge Vector

Once the charge vector is reduced to the (2, 2, 2) representation, we can further act
on it with the SL(2,R)3 group in order to further reduce its components. By using
the three parameters of the abelian translation group R

3 contained in SL(2,R)3 we
can put to zero three of the eight charges and a possible normal form of the charge
vector is the following one:

QN = {0, P1, P2, P3, 0, 0, 0, P4, 0, 0, P5, 0, 0, 0} (7.8.49)

The corresponding quartic invariant is:

J4 (QN ) = P2
3 P2

5 − 4P1P2P4P5 (7.8.50)
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Fig. 7.7 The Dynkin
diagram of F4(4). The only
root which is not orthogonal
to the highest root is
βV = β1. The root βV = β1
is the highest weight of the
W-representation of sp(6,R)

7.9 The F(4,4)
SU(2)×USp(6) Quaternionic Kähler Manifold

Let us now come to the c-map image of the Special Kähler manifold (7.8.1), namely
to the quaternionic Kähler manifold (7.8.2). The F(4,4) Lie algebra has rank four and
its structure is codified in the Dynkin diagram presented in Fig. 7.7. The complete
set of positive roots contains 24 elements that were listed in Table1.3. In that table
the first column is the name of the root, the second column gives its decomposition
in terms of simple roots, while the last column provides the component of the root
vector in R4.

The standard Cartan–Weyl form of the Lie algebra is as follows:

[

Hi , E±β] = ±β i E±βI (7.9.1)
[

Eβ , E−β] = β · H (7.9.2)

[

Eβ , Eγ
] =

{

Nβγ Eβ + γ if β + γ is a root
0 if β + γ is not a root

(7.9.3)

where Nβγ are numbers that were constructed in Sect. 1.8 and displayed in
Eqs. (1.8.8)–(1.8.10). All the rest of the construction can be easily presented in terms
of these Weyl generators and this is what we presently do.

7.9.1 The Maximal Compact Subalgebra
H = su(2) ⊕ usp(6)

The maximal compact subalgebraH of a maximally split simple Lie algebra such as
F(4,4), is just the real span of all the independent compact generators Eβi − E−βi .
In our case we have 24 positive roots and we can write:

H = span
R

{H1 , H2 , . . . , H24} (7.9.4)

where we have defined:
Hi = Eβi − E−βi (7.9.5)

http://dx.doi.org/10.1007/978-3-319-74491-9_1
http://dx.doi.org/10.1007/978-3-319-74491-9_1
http://dx.doi.org/10.1007/978-3-319-74491-9_1
http://dx.doi.org/10.1007/978-3-319-74491-9_1
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the positive roots being numbered as in Table1.3. We know from theory that this
maximal compact subalgebra has the structure:

H = su(2)⊕ usp(6) (7.9.6)

It is important to derive an explicit basis of generators satisfying the standard com-
mutation relations of the two simple factors in Eq. (7.9.6) for holonomy calculations
of the coset manifold. Particularly important are the three generators J x of the su(2)
subalgebra since they will act as quaternionic complex structures in the calculation
of the tri-holomorphic moment map. By means of standard techniques of diago-
nalization of the adjoint action of generators we have retrieved the required basis
rearrangement.

7.9.1.1 The su(2) Lie Algebra

The three generators J x have tho following explicit form:

J 1 = H1 − H14 + H20 − H22

4
√
2

J 2 = H5 + H11 − H18 + H23

4
√
2

J 3 = − H2 − H9 + H16 + H24

4
√
2

(7.9.7)

and close the standard commutation relations:

[

J x , J y
] = εxyz J y (7.9.8)

7.9.1.2 The usp(6) Lie Algebra

The 21 generators of the usp(6) Lie algebra are given by the following combinations.
First we have threemutually commuting generators (the compact Cartan generators):

[

L i , L j
] = 0 (7.9.9)

that are given by the following combinations:

L 1 = − H2
2 − H9

2 + H16
2 − H24

2
L 2 = − H2

2 + H9
2 + H16

2 + H24
2

L 3 = H2
2 + H9

2 + H16
2 − H24

2

(7.9.10)

http://dx.doi.org/10.1007/978-3-319-74491-9_1
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Secondly we have 9 pairs of generators {Xi , Yi } which are in correspondence with
the 9 positive roots of the sp(6,C) Lie algebra (see Eq. (7.8.17)). Explicitly we have:

X1 = H10 ; Y1 = H7

X2 = H4 ; Y2 = −H13

X3 = H6 ; Y3 = −H3

X4 = −H1 + H14 + H20 − H22 ; Y4 = −H5 − H11 − H18 + H23

X5 = H21 ; Y5 = −H8

X6 = H1 + H14 + H20 + H22 ; Y6 = H5 − H11 − H18 − H23

X7 = −H1 − H14 + H20 + H22 ; Y7 = H5 − H11 + H18 + H23

X8 = H17 ; Y8 = H15

X9 = H12 ; Y9 = H19

(7.9.11)

The commutation relations with the compact Cartan generators are as follows:

[

L i , X I
] = αi

I YI ; [

L i , YI
] = −αi

I X I (7.9.12)

where αI are the roots of Eq. (7.8.17). The remaining commutation relations mix the
Y and the X among themselves and reproduce the Cartan generators.

7.9.2 The Subalgebra sl(2,R)E ⊕ sp(6,R) and the
W-Generators

Of great relevance in all applications of the (pseudo)-quaternionic geometry either
in the construction of Black-Hole solutions or in the quest of inflaton potentials
by means of the gauging of hypermultiplet isometries is the identification of the
subalgebra:

sl(2,R)E ⊕ sp(6,R) ⊂ f(4,4) (7.9.13)

and the recasting of f(4,4) in the general form (1.7.10) by means of the identification
of the W-generators.

To this effect a very powerful tool is provided by the comparison of the f(4,4) root
system displayed in Eq. (1.3) with the sp(6,R) root system displayed in Eq. (7.8.17).
The step operators associated with the highest (lowest) root ±β24 are the only ones
that have a grading ±2 with respect to the fourth Cartan generator H4. These three
operators close among themselves the Lie algebra sl(2,R)E . There are 9 roots that
have grading zero with respect to H4. Projected onto the plane H4 = 0 these 9
roots form, together with their negatives, a sp(6,R) root system. Correspondingly
the sp(6,R) subalgebra is generated by the step operators associated with these 9
roots (and with their negatives) plus the first 3 Cartan generators. Finally there are 14
positive roots β that have grading 1 with respect toH4. The step operators associated
with these 14 roots form theW-generators with index 1 of SL(2,R)E . Their partners
with index 2 are provided by the corresponding negative root step operators.

http://dx.doi.org/10.1007/978-3-319-74491-9_1
http://dx.doi.org/10.1007/978-3-319-74491-9_1
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It is quite important to arrange the generatorsW in such a way that under any ele-
ment g ∈ sp(6,R) ⊂ f(4,4) they transform exactly with theD14(g)matrices defined
in Eqs. (7.12.11)–(7.12.13).

The precise definition of all the generators that satisfy the specified requirements
is given below.

7.9.2.1 The Ehlers Subalgebra sl(2,R)E

The standard commutation relations:

[

L E
0 , L E

±
] = ± L E

± (7.9.14)
[

L E
+ , L E

−
] = 2 L E

0 (7.9.15)

are satisfied by the following generators:

L E
0 = 1

2
H4

L E
+ = 1√

2
E β24

L E
− = 1√

2
E −β24 (7.9.16)

7.9.2.2 The Subalgebra sp(6,R)

The Cartan generators are the following ones:

H1 = H1

H2 = H2

H3 = H3 (7.9.17)

while the step operators are identified as follows

E ±α1 = E ±β4
E ±α2 = E ±β3
E ±α3 = E ±β2
E ±α4 = E ±β7
E ±α5 = −E ±β6
E ±α6 = E ±β10
E ±α7 = −E ±β9
E ±α8 = E ±β13
E ±α9 = E ±β16

(7.9.18)
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We would like to attract the attention of the reader on the two minus signs introduced
in the identifications (7.9.18). Together with the other minus signs that appear below
in the identification of the W-generators these signs are essential in order for the
transformations of theW.s to be identical with those given by the previously defined
D14(g) matrices.

7.9.2.3 The W-Generators

Casting the f(4,4) Lie algebra in the general form (1.7.10) is completed by the iden-
tification of the W-generators. We find:

W1,1 = E β5

W1,2 = E β20

W1,3 = E β14

W1,4 = −E β23

W1,5 = E β21

W1,6 = E β19

W1,7 = −E β17

W1,8 = −E β22

W1,9 = −E β11

W1,10 = −E β18

W1,11 = −E β1

W1,12 = −E β8

W1,13 = −E β12

W1,14 = −E β15

(7.9.19)

and for all g ∈ sp(6,R) ⊂ f(4,4) we have:

[

g , W1,α
] = D14(g)

α
γ W

1,γ (7.9.20)

The generators W2,α are then easily obtained from by means of a rotation with the
unique compact generator of the Ehlers subalgebra introduced in Eq. (4.3.52):

[

S , W1,α
] = W2,α (7.9.21)

7.9.3 The Solvable Coset Representative

The precise constructions of the previous sections enable us to introduce the solvable
coset representativeLSolv (a,U, h, p, Z) of themanifold (7.8.2) such that theMaurer
Cartan form:

Ξ ≡ L
−1
Solv dLSolv (7.9.22)

http://dx.doi.org/10.1007/978-3-319-74491-9_1
http://dx.doi.org/10.1007/978-3-319-74491-9_4
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decomposed along the generators of the Borel Lie algebra:

Ξ = E I
QM TI

TI =

⎧

⎪

⎨

⎪

⎩

L E
0 , L E

+
︸ ︷︷ ︸

2 ↪→ Solv[sl(2)]

, H i , E αi

︸ ︷︷ ︸

12 ↪→ Solv[sp(6)]

, W1α
︸︷︷︸

14 ↪→Heis

⎫

⎪

⎬

⎪

⎭

(7.9.23)

provides the vielbein E I
QM mentioned in Eq. (4.3.44) and by squaring the metric

(4.3.35).
In full analogy with Eqs. (7.7.27) and (7.8.32) we write:

LSolv = exp
[

a L E
+
] · exp

⎡

⎣

7
∑

j=1

Z2 j−1 W1,2 j−1

⎤

⎦ · exp
⎡

⎣

7
∑

j=1

Z2 j W1,2 j

⎤

⎦ ×

×
9
∏

i=1

exp
[

p10−i E
α10−i

] ·
3
∏

j=3

exp
[

h j H
j
] · exp [U L E

0

]

(7.9.24)

The explicit expression of LSolv in the fundamental 26-dimensional representation
is obviously very large but it can be dealt with by means of an appropriate MATH-
EMATICA code.

We are finally in the position of calculating the tri-holomorphic moment map of
any element t ∈ f(4,4) of the isometry Lie algebra ofQM through the formula:

P x
t = Tr26

(

J x
L

−1
Solv tLSolv

)

(7.9.25)

7.9.4 The Example of the Inclusion of Multi Starobinsky
Models

In Sect. 7.8.7 we studied the truncation of the sp(6,R) model to the STU model.
There we showed that setting to zero the three complex coordinates z2, z3, z5, the
remaining ones z1, z4, z6 span the STUmodel, namely they parameterize three copies
of the Lobachevsky–Poincaré hyperbolic plane. Inspecting Eq. (7.8.35) we also see
that the three coordinates z1, z4, z6 are the only ones that survive when all the axions
pi are set to zero. We also recall from Sect. 7.8.7 that the three parabolic generators
of the three SL(2,R) groups spanning the STU model are E α3 , E α7 , E α9 whose
identification with f(4,4) generators is provided by Eq. (7.9.18). Correspondingly we
introduce the following generator:

tST U = β3 E
α3 + β2 E

α7 + β1 E
α9 − κS (7.9.26)

http://dx.doi.org/10.1007/978-3-319-74491-9_4
http://dx.doi.org/10.1007/978-3-319-74491-9_4
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andwe calculate its tri-holomorphicmomentmap, bymeans of Eq. (7.9.25). Defining
the potential:

VST U =
3
∑

x=1

(

P x
tST U

)2
(7.9.27)

We can verify that:

∂

∂Zα
VST U

∣

∣

∣

∣

Z=U=a=0

= 0

∂

∂U
VST U

∣

∣

∣

∣

Z=U=a=0

= 0

∂

∂a
VST U

∣

∣

∣

∣

Z=U=a=0

= 0 (7.9.28)

Hence we can consistently truncate U , a and the Heisenberg fields Z. We find:

VST U |Z=U=a=0 = 9

4

(

2κ − √
2

3
∑

i=1

βi e−2hi

)2

(7.9.29)

The above potential can be named amulti-Starobinsky model with three independent
dilatons.

First of all let us note that in the above model the absolute value of βi is irrelevant
since we can always reabsorb it by a constant shift hi → hi − log |βi |. The only
relevant thing are the signs of βi including in this notion also zero, namely βi can be
±1 or 0. Secondly we observe that when all the non vanishing βi have the same sign
we can make a consistent one field truncation to

hi = h ; for all i such that βi �= 0 (7.9.30)

After this truncation the potential (7.9.29) becomes the following:

Vef f = 9

4

(

2κ − √
2 q e−2h

)2
(7.9.31)

where q is the number of equal sign non zero βi , which obviously can take only
three values q = 1, 2, 3. In order to compare this result with the definition of α-
attractors introduced in [67–69], we just have to compare the potential (7.9.31) with
the normalization of the scalar kinetic terms in the lagrangian:

L = . . . + 1

4
(∂U )2 + (∂h1)

2 + (∂h2)
2 + (∂h3)

2 + . . . (7.9.32)
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which follows from Eqs. (4.3.4) and (3.8.80). Renaming h = 1√
2 q
φ, so that the new

field φ has canonical kinetic term 1
2 (∂φ)

2, we obtain a potential:

Vef f = const ×
(

2κ − √
2 q exp

[

−
√

2

q
φ

])2

(7.9.33)

which, in the notation of [67–69], corresponds to α = q
3 , namely to:

α = 1 ,
2

3
,
1

3
(7.9.34)

The above result has been obtained by gauging only one generator, namely (7.9.26).
Correspondingly we have generated Starobinsky-like models with only one massive
vector that is the gauge vector associated with the gauged generator. There is another
way of obtaining the same potential but with q-massive vectors (one for each con-
stituent Starobinsky model with q = 1

3 ). This is very simply understood remarking
that the f(4,4) algebra contains an sl(2,R)4 subalgebra singled out as follows:

f(4,4) ⊃ sl(2,R)E ⊕ sl(2,R)S ⊕ sl(2,R)T ⊕ sl(2,R)U
︸ ︷︷ ︸

⊂ sp(6,R)

(7.9.35)

where sl(2,R)S ⊕ sl(2,R)T ⊕ sl(2,R)U describes the STU model embedded in
the Kähler manifold (7.8.1). These four sl(2,R) algebras are completely symmetric
among themselves and the gauging of their generators produce identical results. So
we can introduce the abelian gauge algebra spanned by the following three commut-
ing generators:

tS = β3 E
α3 − κ3 S

tT = β2 E
α7 − κ2 S

tU = β1 E
α9 − κ1 S (7.9.36)

Gauging with three separate vectors each of the above generators we obtain a new
potential:

̂VST U =
3
∑

x=1

(

P x
tS

)2 +
3
∑

x=1

(

P x
tT

)2 +
3
∑

x=1

(

P x
tU

)2
(7.9.37)

that has the same property as the potential (7.9.27), namely it allows us to truncate
consistently to zero all the axions pi , all the Heisenberg fields Zα and the Taub NUT
field a. The reduced potential after such a truncation has the form:

http://dx.doi.org/10.1007/978-3-319-74491-9_4
http://dx.doi.org/10.1007/978-3-319-74491-9_3
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̂Vred = 9

4

3
∑

i=1

(

2κi − √
2e−2hiβi

)2
(7.9.38)

As we already remarked before, the absolute value of the βi parameters is irrelevant:
what matters is only the relative signs of the βi with respect to the sign of their
corresponding κi . If for all non vanishingβi wehave

βi

κi
= 1, thenwe can consistently

perform the same truncation (7.9.30) as before andwe reobtain the potentials (7.9.33)
with the same spectrum ofα-values (7.9.34). The differencewith the previous case is,
as we emphasized at the beginning of this discussion, that now the number of massive
fields is q, namely as many as the elementary non trivial constituent Starobinsky-like
models.

7.9.5 Nilpotent Gaugings and Truncations

Let us now put the above obtained results in the general framework discussed in
Sect. 7.5.2. The issue is the classification of orbits of nilpotent operators and the
question whether for each of these orbits we can find a consistent one-field reduction
that produces a Starobinsky-like model with an appropriate value of α.

To answer this question we follow the algorithm described Chap. 6. As we know,
up to conjugation, every nilpotent orbit is associated with a standard triple {x, y, h}
satisfying the standard commutation relations of the sl(2) Lie algebra, namely:

[h , x] = x ; [h , y] = − y ; [x , y] = 2 h (7.9.39)

Interesting for us is the classification of nilpotent orbits in the Kähler subalgebra
sp(6,R) and, according to the abovemathematical theory, this is just the classification
of embeddings of an sl(2) Lie algebra in the ambient one, modulo conjugation by
the full group Sp(6,R). The second relevant point emphasized in Sect. 6.6.1 is that
embeddings of subalgebras h ⊂ g are characterized by the branching law of any
representation of g into irreducible representations of h. Clearly two embeddings
might be conjugate only if their branching laws are identical. Embeddings with
different branching laws necessarily belong to different orbits. In the case of the
sl(2) ∼ so(1, 2) Lie algebra, irreducible representations are uniquely identified by
their spin j , so that the branching law is expressed by listing the angular momenta
{ j1, j2, . . . jn} of the irreducible blocks into which any representation of the original
algebra, for instance the fundamental, decomposes with respect to the embedded
subalgebra. The dimensions of each irreducible module is 2 j + 1 so that an a priori
constraint on the labels { j1, j2, . . . jn} characterizing an irreducible orbit of sp(6,R)
is the summation rule:

n
∑

i=1

(2 ji + 1) = 6 = dimension of the fundamental representation (7.9.40)

http://dx.doi.org/10.1007/978-3-319-74491-9_6
http://dx.doi.org/10.1007/978-3-319-74491-9_6


7.9 The F(4,4)
SU(2)×USp(6) Quaternionic Kähler Manifold 425

Therefore we have considered all possible partitions of the number 6 into integers
and for each partition we have constructed a candidate h element in the Cartan sub-
algebra of sp(6,R) containing as eigenvalues all the J3 values of the corresponding
{ j1, j2, . . . jn} representation. To clarify what we mean by this it suffices to consider
the example of the first partition 6 = 6. In this case the 6 dimensional representation
of sl(2) is the j = 5

2 and the 6 eigenvalues are ± 5
2 , ± 3

2 , ± 1
2 . Having so fixed the so

named central element h of the candidate standard triplet we have tried to construct
the corresponding x and y. Imposing the standard commutation relations (7.9.39) one
obtains quadratic equations on the coefficients of the linear combinations express-
ing the candidate x and y that may have or may not have solutions. If the solutions
exist, then the corresponding standard triple is found, the orbit exists and we have
constructed one representative x .

Next, given the existing orbits and the corresponding standard triples, for each of
them we have constructed a Lobachevsky complex plane immersed in the Special
Kähler manifold MSp6 defined by Eq. (7.8.1). The construction is very simple. One
calculates the group element g(λ, ψ) ∈ sp(6,R) defined below:

g(λ, ψ) = exp [ψ x] · exp [λ h] =
(

A(λ, ψ) B(λ, ψ)
C(λ, ψ) D(λ, ψ)

)

(7.9.41)

and using Eq. (7.8.8), we write:

Z(λ , ψ) = (A(λ, ψ) − iB(λ, ψ)) · (C(λ, ψ) − iD(λ, ψ))−1

≡
⎛

⎝

z1(λ, ψ) z2(λ, ψ) z3(λ, ψ)
z2(λ, ψ) z4(λ, ψ) z5(λ, ψ)
z3(λ, ψ) z5(λ, ψ) z6(λ, ψ)

⎞

⎠ (7.9.42)

which defines the explicit embedding:

φ : SL(2,R)

SO(2)
→ Sp(6,R)

SU(3)× U(1)
≡ MSp6 (7.9.43)

of the Lobachevsky plane inMSp6. Indeed from (7.9.42) we read off the parameter-
ization of the complex coordinates zi (i = 1, . . . , 6) as functions of λ = log Imw
and ψ = Rew, the complex variable w being the local variable over the embedded
Poincaré–Lobachevsky plane.

The question is whether the field equations of the scalar fields:

∂i ∂ j� K ∂μ∂μ z j� + ∂i ∂ j� ∂k� K ∂μz j� ∂μzk� − 1

4
∂i Vgauging (z , z) = 0

(7.9.44)
admit first a consistent reduction to the complex scalar field w and then a consistent
truncation to a vanishing axionψ = 0. Consistency of the truncation can be verified
or disproved in the following simple way. The pull-back on the immersed surface

φ�
(

SL(2,R)
SO(2)

)

⊂ MSp6 of the twelve field Eq. (7.9.44) (six complex equations) should
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be consistent among themselves and be identicalwith the twofield equations obtained
from the variation of the pull-back φ�(L ) on the immersed surface of the Lagrangian
L from which Eq. (7.9.44) derive, namely:

L = 4 ∂i ∂ j� K ∂μ zi ∂μ z j� − Vgauging (z , z) (7.9.45)

In other words, defining w = i eλ + ψ , the truncation is consistent if the following
diagram is commutative:

L (z, z)
φ�=⇒ φ�L (w,w)

↓ ↓
∂μ ∂L

∂(∂μz) − ∂L
∂z

φ�=⇒ ∂μ
∂φ�L
∂(∂μw) − ∂φ�L

∂w

(7.9.46)

Partition J.s Orbit Name One field reduction

6 = 6
(

5
2

)

O1 NO

6 = 5 + 1 (2, 0) Orbit does not exist NO
6 = 4 + 2

( 3
2 ,

1
2

)

O2 NO
6 = 3 + 3 (1, 1) O3 NO
6 = 3 + 2 + 1

(

1, 12 , 0
)

Orbit does not exist NO
6 = 3 + 1 + 1 + 1 (1, 0, 0, 0) Orbit does not exist NO
6 = 2 + 2 + 2

( 1
2 ,

1
2 ,

1
2

)

O4 YES
6 = 2 + 2 + 1 + 1

( 1
2 ,

1
2 , 0, 0

)

O5 YES
6 = 2 + 1 + 1 + 1 + 1

( 1
2 , 0, 0, 0, 0

)

O6 YES

In the above table we have summarized the results of this simple investigation. There
is a total of six orbits (up to possible further splitting in Weyl group orbits which we
have not analyzed) and for each of them the corresponding immersion formulae in
theMSp6 manifolds are those described below.

7.9.5.1 Orbit O1: ( j = 5
2 )

⎛

⎝

z1 z2 z3
z2 z4 z5
z3 z5 z6

⎞

⎠ =
⎛

⎝

−6ψ5 + 10ieλψ4 + 5ie3λψ2 + ie5λ
√
5ψ

(

3ψ3 − 4ieλψ2 − ie3λ
)

i
√
10
(

iψ + eλ
)

ψ2√
5ψ

(

3ψ3 − 4ieλψ2 − ie3λ
)

i
(

8iψ3 + 8eλψ2 + e3λ
) √

2ψ
(

3ψ − 2ieλ
)

i
√
10
(

iψ + eλ
)

ψ2
√
2ψ

(

3ψ − 2ieλ
)

ieλ − 3ψ

⎞

⎠

w = i eλ + ψ (7.9.47)

The pull-back of the lagrangian is the following one:
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φ�L = 35
(

∂μψ ∂μψ e−2λ + ∂μλ ∂μλ
) − 1

4
g2

(

3 e−λ − κ
)2

(7.9.48)

The pull-backs of the scalar field equations are inconsistent among themselves and
differ from the equations derived from the pull-back of the lagrangian (7.9.48), hence
the truncation is not consistent. No Starobinsky-like model can be obtained from this
orbit.

One might wonder whether the inconsistency is due to the particularly chosen
coset representative (7.9.41) and to the explicit form of the embedding (7.9.47)
which turns out to be non-holomorphic. To clarify such a doubt and show that the
inconsistency of the equations is an intrinsic property of the orbit, we have addressed
the problem from a different view point which leads to a perfectly holomorphic
embedding of the Lobachevsky plane associated with the considered orbit into the
target Special Kähler manifold (7.8.1).

The argument is the following one. Having fixed the embedding sl(2,R) �→
sp(6,R) at the level of the fundamental representation 6 it is fixed also in all other rep-
resentations and we can wonder what is the branching rule of the W-representation
14′ such an embedding. By direct evaluation of the Casimir we obtain the following
branching:

14′ sl(2,R)−→
(

j = 9

2

)

⊕
(

j = 3

2

)

(7.9.49)

This means that the symplectic section (7.8.26) splits into the sum of two vectors,
one lying in the 10-dimensional space of the first representation, the other in the
4-dimensional space of the second representation. Imposing the vanishing of the
lowest spin representation introduces a set of 4 holomorphic constraints on the six
coordinates zi . By construction these constraints are sl(2,R) invariant: therefore the
sought for Lobachevsky plane certainly lies in the complex two-folds defined by the
vanishing of these constraints. With a little bit of work one can further eliminate one
of the two remaining complex coordinates in such a way that the ten entries of the
(

j = 9
2

)

representation correspond to all the powers wr , with r = 0, 1, . . . , 9 of a
complex parameter w. Because of this very property w can be interpreted as the local
coordinate of the sought for Lobachevsky plane embedded in the Kähler manifold
(7.8.1) according to the specified orbit. Indeed if w transforms by fractional linear
transformation under some algebra sl(2), then the 2 j + 1 first powers of w provide a
basis for the j-representation of that sl(2). Viceversa, if a vector, which is known to
transform in the j-representation of a given sl(2) (up to an overall function of w), is
made by linear combinations of the first 2 j + 1 powers of a coordinate w, then that
w is the local coordinate on a Lobachevsky plane transitive under the action of that
very sl(2).

In our case the four holomorphic constraints that express the vanishing of the
j = 3

2 representation inside the 14′ are the following ones:
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√

2

7

(√
5
(

z4z6 − z25
)− 2z2

)

= 0

8z3 − √
10z4√

21
= 0

√

2

7

(√
5z1 + 2z3z5 − 2z2z6

)

= 0

−√
10z23 + 8z4z3 − 8z2z5 + √

10z1z6√
21

= 0 (7.9.50)

The explicit form of (7.9.50) obviously depends on the standard triple chosen as
representative of the orbit, yet for whatever representative the four constraints are
holomorphic. The next point consists in solving (7.9.50) in terms of a parameter
w so that the complementary set of ten polynomials of the zi spanning the j = 9

2
representation provide all the powers of w from 0 to 9. The requested solution is
given by:

z1 → 3w5

16
, z2 → 3

√
5w4

16
, z3 → 1

4

√

5

2
w3, z4 → w3, z5 → 3w2

2
√
2
, z6 → 3w

2
(7.9.51)

Implementing the transformation (7.9.51) in the symplectic section (7.8.26) one
finds:

Ω[Z ] φ=⇒ Ω 9
2
[w] =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

3w√
2

w6

4
√
2

− 3w4

4
√
2

w9

256
√
2

− 3w7

32
√
2

− 1
16

√

5
2w6

− 3
16

√
5w5

3w8

128
√
2

−√
2w3

3w5

8
√
2√
2

− 3w2√
2

1
2

√

5
2w3

− 3
8

√
5w4

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(7.9.52)

which as requested contains all the powers of w and has vanishing projection on
the j = 3

2 representation. Calculating the Kähler potential from such a section we
obtain:
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K 9
2

= − log
(

Ω 9
2
[w]C14Ω 9

2
[w]

)

= log

(

− i

256
(w − w)9

)

(7.9.53)

Now the question of consistency can be readdressed in the present context. Imple-
menting the substitution (7.9.51) in the six complex Eq. (7.9.44) (with for instance
vanishing potential) do we obtain six consistent equations or not? The answer is
no. The six Eq. (7.9.44) are inconsistent and this confirms in a holomorphic set up
the same result we had previously obtained in the direct approach of Eqs. (7.9.41)–
(7.9.42). Hence the sl(2) embedding of orbit O1 leads to inconsistent truncations
and has to be excluded.

7.9.5.2 Orbit O2: ( j1 = 3
2 , j2 = 1

2 )

For the second orbit, the direct approach (7.9.41) and (7.9.42) leads to:

⎛

⎝

z1 z2 z3
z2 z4 z5
z3 z5 z6

⎞

⎠ =
⎛

⎝

(

eλ − iψ
)2 (

2ψ − ieλ
)

0
√
3ψ

(

ψ + ieλ
)

0 −ψ − ieλ 0√
3ψ

(

ψ + ieλ
)

0 −2ψ − ieλ

⎞

⎠

w = i eλ + ψ (7.9.54)

The pull-back of the lagrangian is the following one:

φ�L = 11
(

∂μψ ∂μψ e−2λ + ∂μλ ∂μλ
) − 1

4
g2

(

3 e−λ − κ
)2

(7.9.55)

Also in this case the pull-back of the scalar field equations yields an inconsistent set
and there is no truncation. No Starobinsky-likemodel can be obtained from this orbit.
In a similar way to the previous case we can discuss the same issue in a holomorphic
set up. The branching rule of the 14′ representation in the considered embedding is
the following one:

14′ sl(2,R)−→
(

j = 5

2

)

⊕
(

j = 3

2

)

⊕
(

j = 3

2

)

(7.9.56)

and we can impose holomorphic constraints that suppress the two lowest spin rep-
resentations

(

j = 3
2

)

leaving only the top one
(

j = 5
2

)

spanned by the powers of a
parameter w from 0 to 5. Such a holomorphic embedding is given:

z1
2w3

33/4
, z2 → 0, z3 → w2, z4 → w

4
√
3
, z5 → 0, z6 → 2w

4
√
3

(7.9.57)
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Substitution of Eq. (7.9.57) into the field equations (7.9.44) confirms that their pull-
back on this surface is inconsistent.

7.9.5.3 Orbit O3: ( j1 = 1, j2 = 1)

For the third orbit, the direct approach (7.9.41) and (7.9.42) leads to

⎛

⎝

z1 z2 z3
z2 z4 z5
z3 z5 z6

⎞

⎠ =
⎛

⎝

−ie2λ −ψ2 −√
2ψ

−ψ2 −i
(

2ψ2 + e2λ
) −i

√
2ψ

−√
2ψ −i

√
2ψ −i

⎞

⎠

w = i eλ + ψ (7.9.58)

The pull-back of the lagrangian is the following one:

φ�L = 8
(

∂μψ ∂μψ e−2λ + ∂μλ ∂μλ
) − 1

4
g2 κ2 (7.9.59)

while the pull-back of the scalar field equations is an inconsistent set. Hence this
truncation is not consistent and no Starobinsky-like model can be obtained from this
orbit. As in the previous two cases we can confirm the same result in a holomorphic
set up, yet we consider it useless to repeat once more the same type of calculations.
What is relevant tomention in view of our subsequent considerations is the branching
rule of the 14′ representation under this forbidden embedding leading to inconsistent
field equations::

14′ sl(2,R)−→ ( j = 2) ⊕ ( j = 2) ⊕ 4 × ( j = 0) (7.9.60)

7.9.5.4 Orbit O4: ( j1 = 1
2 , j2 = 1

2 , j3 = 1
2 )

For the fourth orbit, the direct approach (7.9.41) and (7.9.42) leads to

⎛

⎝

z1 z2 z3
z2 z4 z5
z3 z5 z6

⎞

⎠ =
⎛

⎝

ieλ − ψ 0 0
0 ieλ − ψ 0
0 0 ieλ − ψ

⎞

⎠

w = i eλ − ψ (7.9.61)
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The pull-back of the lagrangian is the following one:

φ�L = 3
(

∂μψ ∂μψ e−2λ + ∂μλ ∂μλ
) − g2 1

4

(

3 e−λ − 2 κ
)2

(7.9.62)

The pull-back of the scalar field equations produces equations consistent among
themselves which coincide with the equations derived from the pull-back of the
lagrangian (7.9.62), hence the truncation is consistent. We reobtain the Starobinsky
model discussed in the previous section with q = 3 and hence with α = 1. In this
case the consistent truncation is already produced form holomorphic constraints.
Indeed Eq. (7.9.61) can be summarized as:

z2 = z3 = z5 = 0 ; z1 = z4 = z6 = w (7.9.63)

It is interesting and important for our future consideration to mention the branching
rule of the 14′ representation under this sl(2) subalgebra:

14′ sl(2,R)−→
(

j = 3

2

)

⊕ 5 ×
(

j = 1

2

)

(7.9.64)

and the constraints (7.9.63) precisely are the conditions under which the five repre-
sentations

(

j = 1
2

)

vanish and we are left with the representation
(

j = 3
2

)

duely
spanned by the powers 1,w,w2,w3.

7.9.5.5 Orbit O5: ( j1 = 1
2 , j2 = 1

2 , j3 = 0)

For the fifth orbit, the direct approach (7.9.41) and (7.9.42) leads to

⎛

⎝

z1 z2 z3
z2 z4 z5
z3 z5 z6

⎞

⎠ =
⎛

⎝

ieλ − ψ 0 0
0 ieλ − ψ 0
0 0 i

⎞

⎠

w = i eλ − ψ (7.9.65)

The pull-back of the lagrangian is the following one:

φ�L = 2
(

∂μψ ∂μψ e−2λ + ∂μλ ∂μλ
) − g2

(

e−λ − κ
)2

(7.9.66)

The pull-back of the scalar field equations yields a consistent system identical with
the field equations derived from the pull-back of the lagrangian (7.9.70), hence the
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truncation is consistent. We reobtain the Starobinsky-like model discussed in the
previous section with q = 2 and hence with α = 2

3 .
In this, as in the previous case, the consistent truncation is produced from holo-

morphic constraints. Indeed Eq. (7.9.61) can be summarized as:

z2 = z3 = z5 = 0 ; z1 = z4 = w ; z6 = i (7.9.67)

In this case the branching rule of the 14′ representation under the considered sl(2)
subalgebra is the following one:

14′ sl(2,R)−→ ( j = 1) ⊕ ( j = 1) ⊕ 2 ×
(

j = 1

2

)

+ 4 × ( j = 0) (7.9.68)

and the constraint (7.9.67) guarantees that the singlets and the
(

j = 1
2

)

representa-
tions are all set to zero.s

7.9.5.6 Orbit O6: ( j1 = 1
2 , j2 = 0, j3 = 0)

For the sixth orbit, the direct approach (7.9.41) and (7.9.42) leads to

⎛

⎝

z1 z2 z3
z2 z4 z5
z3 z5 z6

⎞

⎠ =
⎛

⎝

ψ + ieλ 0 0
0 i 0
0 0 i

⎞

⎠

w = i eλ + ψ (7.9.69)

The pull-back of the lagrangian is the following one:

φ�L = (

∂μψ ∂μψ e−2λ + ∂μλ ∂μλ
) − 1

4
g2 (eλ + κ

)2
(7.9.70)

The pull-back of the scalar field equations yields a consistent system coinciding
with the equations derived from the pull-back of the lagrangian (7.9.70). So we
have a consistent truncation and we reobtain the Starobinsky-like model discussed
in the previous section with q = 1. It corresponds to α = 1

3 . Equation (7.9.69) can
be summarized as:

z2 = z3 = z5 = 0 ; z1 = w ; z4 = z6 = i (7.9.71)

The branching of the 14′ dimensional representation under this sl(2) subalgebra is
the following one:
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14′ sl(2,R)−→ 5 ×
(

j = 1

2

)

⊕ 4 × ( j = 0) (7.9.72)

7.9.5.7 Conclusion of the Above Discussion

This concludes our preliminary study of the orbits and shows that the embedded
Starobinsky-like models described in Sect. 7.9.4 exhaust the list of possible embed-
dings, the values of α = 1, 23 ,

1
3 being, apparently the only admissible ones. Next

let us observe that the branching rules of the 14′ dimensional representation which
lead to consistent truncations, namely, (7.9.64), (7.9.68) and (7.9.72) are the only
possible ones that we can obtain by embedding:

sl(2) �→ sl(2) × sl(2) × sl(2) (7.9.73)

if the considered 14′ representation of sl(2) × sl(2) × sl(2) is the following one:

14′ =
(

1

2
,
1

2
,
1

2

)

⊕
(

1

2
, 0, 0

)

⊕
(

0,
1

2
, 0

)

⊕
(

0, 0,
1

2

)

(7.9.74)

This has a profound meaning. It implies that the only consistent truncations occur
when the sl(2) Lie algebra is embedded in the sub-Tits-Satake Lie algebra, which as
we discuss in the conclusive part is universal for allN = 2models. This allows us to
make the bold statement that the only values of α one can obtain form the gauging of
hypermultiplet isometries in any supergravity theory based on symmetric manifolds
is just α = 1, 23 ,

1
3 .

7.10 Holomorphic Consistent Truncations and the Sub Tits
Satake Algebra

In order to find the deep rationale for the conclusions reached from the above results
we need to recall the results on the Tits Satake projection and the universality classes
that were derived inChap.5, in particular those of Sect. 5.6 concerning the Tits Satake
decompositions of theW-representation.

Let us remark that the gauge condition (5.6.38) has another important interpreta-
tion if applied to the holomorphic section of special geometry. The key point is the
following numerical identity valid for all members of the universality class:

dim
US K

HS K
= dim

UT S
S K

HT S
S K

⊕ 6 × dimDsubpaint (7.10.1)

This means that if we decompose the symplectic section of the big group according
to the Tits-Satake subalgebra and we impose on it the condition (5.6.38) we just

http://dx.doi.org/10.1007/978-3-319-74491-9_5
http://dx.doi.org/10.1007/978-3-319-74491-9_5
http://dx.doi.org/10.1007/978-3-319-74491-9_5
http://dx.doi.org/10.1007/978-3-319-74491-9_5
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obtain the right number of holomorphic constraints to project onto the submanifold
UT S

S K

HT S
S K

. At the level of field equations this is certainly a consistent truncation, since

we project onto the singlets of the subpaint group.
On the other hand if we decompose the W-representation with respect to the

sub-Tits-Satake subalgebra sl(2)× sl(2)× sl(2) we have the branching rule:

W → (D1|2, 1, 1) ⊕ (D2|1, 2, 1) ⊕ (D3|1, 1, 2) ⊕ (1|2, 2, 2) (7.10.2)

where D1,2,3 are three suitable representations of the Paint Group. Imposing on the
symplectic section of the big model the constraints:

(D1|2, 1, 1) = 0

(D2|1, 2, 1) = 0

(D3|1, 1, 2) = 0 (7.10.3)

yields precisely the correct number of holomorphic constraints that restrict the con-
sidered Special Kähler manifold to the Special Kähler manifold of the STU-model

namely to
(

SL(2,R)
SO(2)

)3
. This follows from the numerical identity true for all members

of the universality class:

dim
US K

HS K
=

3
∑

i=1

2 × dimDi + 6 (7.10.4)

The reason why the truncation to the STU-model is always a consistent truncation at
the level of field equations is obvious in this set up. It corresponds to the truncation
to the Paint Group singlets.

7.10.1 W-Representations for the Remaining Models

For the models of type sl(2,R)⊕ so(q, q + p) having sl(2,R)⊕ so(q, q + 1)
as Tits Satake subalgebra and so(p − 1) as subpaint algebra the decomposition
of the W-representation was presented in Eq. (5.6.40) and the question whether
each sl(2,R)⊕ so(q, q + p) orbit in the (2, 2q + p) representation intersects the
sl(2,R)⊕ so(q, q + 1)⊕ so(p − 1)-invariant locus (5.6.41) was positively
answered.

Relevant for the case of N = 2 supersymmetry is the value q = 2 and, in this
case, the sub-Tits-Satake Lie algebra is:

GsubTS = sl(2,R)⊕ so(2, 2) = sl(2,R)⊕ sl(2,R)⊕ sl(2,R) (7.10.5)

http://dx.doi.org/10.1007/978-3-319-74491-9_5
http://dx.doi.org/10.1007/978-3-319-74491-9_5
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namely it is once again the Lie algebra of the STU-model. Reduction to the STU-
model is consistent for the same reason as in the other universality classes: it corre-
sponds to truncation to Paint Group singlets.

7.10.2 Gaugings with Consistent One-Field Truncations

On the basis of the analysis presented in the previous sectionwe arrive at the following
conclusion.Bygauging a nilpotent element of the isometry subalgebra ofSK inside
QM we generate a potential. The structure of the theory depends on the nilpotent
orbit, namely on the embedding of an sl(2) Lie algebra in US K and there are many
ways of doing this (the orbits), yet the gauged theory will admit a one-field truncation
if and only if the sl(2) is embedded into the sub Tits Satake Lie algebra:

sl(2) �→ GsubTS ⊂ US K (7.10.6)

There are only three different embeddings of sl(2) into (sl(2))3 and these correspond
to the three admissible values α = 1, 2

3 ,
1
3 in the Starobinsky-like model.

7.11 Conclusions for This Chapter

This chapter tackled the problem of potentials and gaugings in supergravity. The
main message that we hope has reached our reader is that while the key item in
the construction of black-hole solutions is the c�-map, for the case of gaugings and
candidate inflaton potentials the key item is the c-map. In both cases the crucial
mathematical structure is encoded in the Tits-Satake projection and in the sub Tits
Satake subalgebra. Just as we said for the case of black-holes, uplifting the described
algebraic mechanisms to a higher degree of abstraction, disentangling them from the
details of their physical interpretation might result in a deeper understanding and in
new perspectives.

Appendix

7.12 Large Formulae Not Displayed in the Main Text

In this appendix we collect some large formulae that need the landscape format and
are not presented in the main text.
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7.12.1 Concerning the G(2,2) Model

7.12.1.1 The Solvable Coset Representative for G(2,2)

SU(2)×SU(2)

L = (7.12.1)

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

e
h+U
2 e

U−h
2 y −

√

2
3 eh Z3 − 2Z1√

3
− 2y Z3√

3
−
√

2
3 e−h Z3y2 − 2

√

2
3 e−h Z1y − √

2e−h Z2

0 e
U−h
2 −√

2eh Z4
2Z3√

3
− 2y Z4 −√

2e−h Z4y2 + 2
√

2
3 e−h Z3y +

√

2
3 e−h Z1

0 0 eh
√
2y e−h y2

0 0 0 1
√
2e−h y

0 0 0 0 e−h

0 0 0 0 0
0 0 0 0 0

e
h−U
2

(

a − Z1Z3
3 − Z2Z4

)

e− h
2 − U

2

(

2Z2Z3√
3

− 2Z2
1

3

)

+ e− h
2 − U

2 y
(

a − Z1Z3
3 − Z2Z4

)

e
h−U
2

(

2Z2
3

3 + 2Z1Z4√
3

)

e− h
2 − U

2 y

(

2Z2
3

3 + 2Z1Z4√
3

)

+ e− h
2 − U

2

(

a + Z1Z3
3 + Z2Z4

)

−
√

2
3 e

h−U
2 Z1 −

√

2
3 e− h

2 − U
2 y Z1 − √

2e− h
2 − U

2 Z2

2e
h−U
2 Z3√
3

2e− h
2 − U

2 Z1√
3

+ 2e− h
2 − U

2 y Z3√
3√

2e
h−U
2 Z4

√
2e− h

2 − U
2 y Z4 −

√

2
3 e− h

2 − U
2 Z3

e
h−U
2 e− h

2 − U
2 y

0 e− h
2 − U

2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(7.12.2)

7.12.2 Explicit Form of Generators for the Lie Algebra
sp(6,R) in the 14′ Representation

The 14′ representation of sp(6,R) which plays the role W-representation for the
special manifold under consideration is defined as the representation obeyed by the
three-times antisymmetric tensors with vanishing C-traces, namely:

tABC
︸︷︷︸

antisymmetric in A,B,C

× C
BC = 0 (7.12.3)
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Let us then consider a lexicographic ordered basis for the 20-dimensional reducible
representation provided by the three times antisymmetric tensor:

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

V1
V2
V3
V4
V5
V6
V7
V8
V9
V10
V11
V12
V13
V14
V15
V16
V17
V18
V19
V20

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

≡

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

t123
t124
t134
t234
t125
t135
t235
t145
t245
t345
t126
t136
t236
t146
t246
t346
t156
t256
t356
t456

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(7.12.4)

The splitting into the two irreducible subspaces of dimension 14 and 6 respectively
can be performed by defining the following new basis vectors:

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

Φ1

Φ2

Φ3

Φ4

Φ5

Φ6

Φ7

Φ8

Φ9

Φ10

Φ11

Φ12

Φ13

Φ14

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

V1

V4

V6

V10

V11

V15

V17

V20

V5 − V12

−V2 − V13

V7 − V3

V16 − V9

V8 + V19

V14 − V18

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

;

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

C1

C2

C3

C4

C5

C6

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

V5 + V12

V13 − V2

−V3 − V7

−V9 − V16

V8 − V19

V14 + V18

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(7.12.5)

Taking the antisymmetric cubic tensor product and using the splitting (7.12.5), the
matrices ̂D14(g) representing any element g ∈ sp(6,R) of the Lie algebra in the 14′
representation can be easily extracted. The so obtained ̂D14(g)matrices are symplec-
tic, since, by direct calculation one can determine a unique antisymmetric matrix:
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̂C14 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 0 0 0 2 0 0 0 0 0 0
0 0 0 0 0 0 −2 0 0 0 0 0 0 0
0 0 0 0 0 −2 0 0 0 0 0 0 0 0
0 0 0 0 2 0 0 0 0 0 0 0 0 0
0 0 0 −2 0 0 0 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0 0 0 0 0 0 0
−2 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −1 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(7.12.6)

which verifies the relation:

∀ g ∈ sp(6,R) : ̂D14(g)
T
̂C14 + ̂C14 ̂D14(g) = 0 (7.12.7)

Unfortunately ̂C14 is not yet the standard symplectic matrix for the Lie algebra
sp(14,R). Hence we still need to perform a change of basis that brings ̂C14 to its
standard form:

C14 ≡

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1
−1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 0 0 0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(7.12.8)

Such a change of basis is provided by the matrix:
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Λ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 1√
2
0 0 0 0 0 0 0 0 0 0

0 0 − 1√
2
0 0 0 0 0 0 0 0 0 0 0

0 − 1√
2
0 0 0 0 0 0 0 0 0 0 0 0

1√
2
0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1√
2
0 0 0 0 0 0

0 0 0 0 0 0 0 0 1√
2
0 0 0 0 0

0 0 0 0 0 0 0 0 0 1√
2
0 0 0 0

0 0 0 0 0 0 0 0 0 0 1√
2
0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(7.12.9)

Indeed we have:

ΛT
̂C14Λ

T = C14

D14(g) ≡ Λ−1
̂D14(g)Λ

0 = D14(g)
T
C14 + C14 D14(g) (7.12.10)

Wedonot present the intermediatematrices ̂D14(g).Wegodirectly to the presentation
of the final ones D14(g) that are standard symplectic matrices of the sp(14,R) Lie
algebra.

7.12.2.1 Cartan Generators in the 14′

The Cartan generators are namedH i
14 ≡ D14

(

H i
)

and can be easily read-off from
the following formula:

∑3
i=1 hi H

i
14 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−h1 − h2 + h3 0 0 0 0 0 0
0 h1 − h2 + h3 0 0 0 0 0
0 0 −h1 + h2 + h3 0 0 0 0
0 0 0 h1 + h2 + h3 0 0 0
0 0 0 0 h1 0 0
0 0 0 0 0 h2 0
0 0 0 0 0 0 h3
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
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0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
h1 + h2 − h3 0 0 0 0 0 0
0 −h1 + h2 − h3 0 0 0 0 0
0 0 h1 − h2 − h3 0 0 0 0
0 0 0 −h1 − h2 − h3 0 0 0
0 0 0 0 −h1 0 0
0 0 0 0 0 −h2 0

0 0 0 0 0 0 −h3

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(7.12.11)

by collecting the coefficient of the parameter hi .

7.12.2.2 Positive Root Step Operators in the 14′

The step operator associated with the positive root αi is named E αi
14 ≡ D14 (E αi ) and

can be easily read-off from the following formula:

∑9
i=1 ai E

αi
14 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 0 0 0 0 0 0
√
2a3 0 0 0√

2a9 0 0 0 0 0 −√
2a1 0 0

√
2a3 0 0 −√

2a6 0
−√

2a7 0 0 0 0 0 0 0
√
2a3 0 0 −√

2a5 0 0
0

√
2a7 −√

2a9 0
√
2a5 −√

2a6
√
2a8

√
2a3 0 0 0 0 0 0

0 −√
2a2 0 0 0 a1 −a4 0 0 −√

2a5 0
√
2a9 a8 −a6

0 0 −√
2a4 0 0 0 a2 0 −√

2a6 0 0 a8
√
2a7 a5

−√
2a8 0

√
2a1 0 0 0 0 0 0 0 0 −a6 a5

√
2a3

0 0 0 0 −√
2a2

√
2a4 0 0 −√

2a9
√
2a7 0 0 0

√
2a8

0 0 0 0 0 0 0 0 0 0 −√
2a7

√
2a2 0 0

0 0 0 0 0 0 0 0 0 0
√
2a9 0

√
2a4 −√

2a1
0 0 0 0 0 0 0 0 0 0 0 0 0 0
−√

2a2 0 0 0 0 0 0 0 0 0 −√
2a5 0 0 0√

2a4 0 0 0 0 0 0 0 0 0
√
2a6 −a1 0 0

0 0 0 0 0 0 0 0
√
2a1 0 −√

2a8 a4 −a2 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(7.12.12)

by collecting the coefficient of the parameter ai .

7.12.2.3 Negative Root Step Operators in the 14′

The stepoperator associatedwith thenegative root−αi is namedE −αi
14 ≡ D14 (−E αi )

and can be easily read-off from the following formula:
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∑9
i=1 bi E

−αi
14 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0
√
2b9 −√

2b7 0 0 0 −√
2b8

0 0 0
√
2b7 −√

2b2 0 0
0 0 0 −√

2b9 0 −√
2b4

√
2b1

0 0 0 0 0 0 0
0 0 0

√
2b5 0 0 0

0 0 0 −√
2b6 b1 0 0

0 −√
2b1 0

√
2b8 −b4 b2 0

0 0 0
√
2b3 0 0 0

0 0
√
2b3 0 0 −√

2b6 0
0

√
2b3 0 0 −√

2b5 0 0√
2b3 0 0 0 0 0 0

0 0 −√
2b5 0

√
2b9 b8 −b6

0 −√
2b6 0 0 b8

√
2b7 b5

0 0 0 0 −b6 b5
√
2b3

0 0 0 0 −√
2b2

√
2b4 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
−√

2b2 0 0 0 0 0 0√
2b4 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
−√

2b9 0 0 0 0 0
√
2b1√

2b7 0 0 0 0 0 0
0 −√

2b7
√
2b9 0 −√

2b5
√
2b6 −√

2b8
0

√
2b2 0 0 0 −b1 b4

0 0
√
2b4 0 0 0 −b2√

2b8 0 −√
2b1 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(7.12.13)

by collecting the coefficient of the parameter bi .

7.12.2.4 The Metric in Solvable Coordinates

The explicit form of the metric in solvable coordinates reads:
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ds2K = dh21 + dh22 + dh23 + 1

2
e2h2−2h1dp21 + 1

2
e2h3−2h2dp22

+1

2
e−4h3dp23 + 1

2
e2h3−2h1dp24 + 1

2
e−2h2−2h3dp25 + 1

2
e−2h1−2h3dp26 + 1

2
e−4h2dp27

+1

2
e−2h1−2h2dp28 − √

2e−2h1−2h2dp7 p1dp8 + 1

2
e−4h1dp29

−e2h3−2h1dp2dp4 p1 − e−2h1−2h3dp5dp6 p1

+1

2
e2h3−2h1dp22 p2

1 + 1

2
e−2h1−2h3dp25 p2

1 + e−2h1−2h2dp27 p2
1 + e−4h1dp28 p2

1

−√
2e−4h1dp8dp9 p1

+1

2
e−4h1dp27 p4

1 − √
2e−4h1dp7dp8 p3

1 + e−4h1dp7dp9 p2
1 − √

2e−2h2−2h3dp3dp5 p2

−√
2e−4h2dp5dp7 p2

−e−2h1−2h2dp6dp8 p2 + √
2e−2h1−2h3dp3dp6 p1 p2 + √

2e−2h1−2h2dp6dp7 p1 p2

+2e−2h1−2h2dp5dp8 p1 p2

+√
2e−4h1dp6dp9 p1 p2

+√
2e−4h1dp6dp7 p2 p3

1 − √
2e−2h1−2h3dp3dp5 p2 p2

1 − 2
√
2e−2h1−2h2dp5dp7 p2 p2

1

−2e−4h1dp6dp8 p2 p2
1 − √

2e−4h1dp5dp9 p2 p2
1

−√
2e−4h1dp5dp7 p2 p4

1 + √
2e−4h1dp6dp7 p2 p3

1 + 2e−4h1dp5dp8 p2 p3
1

+e−2h2−2h3dp23 p2
2

+e−4h2dp25 p2
2 + 1

2
e−2h1−2h2dp26 p2

2

+e−2h1−2h3dp23 p2
1 p2

2 + 2e−2h1−2h2dp25 p2
1 p2

2 + e−4h2dp3dp7 p2
2

−2e−2h1−2h2dp5dp6 p1 p2
2 − √

2e−2h1−2h2dp3dp8 p1 p2
2

−2e−4h1dp5dp6 p2
2 p3

1 − √
2e−4h1dp3dp8 p2

2 p3
1 + 2e−2h1−2h2dp25 p2

2 p2
1

+e−4h1dp26 p2
2 p2

1

+2e−2h1−2h2dp3dp7 p2
2 p2

1 + e−4h1dp3dp9 p2
2 p2

1

+e−4h1dp25 p2
2 p4

1 + e−4h1dp3dp7 p2
2 p4

1 − 2
√
2e−2h1−2h2dp3dp5 p3

2 p2
1

+√
2e−2h1−2h2dp3dp6 p3

2 p1 − √
2e−4h2dp3dp5 p3

2
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+1

2
e−4h1dp23 p42 p41 − √

2e−4h1dp3dp5 p32 p41 + √
2e−4h1dp3dp6 p32 p31

+e−2h1−2h2dp23 p42 p21

−2
√
2e−2h1−2h2dp3dp5 p32 p21 + 1

2
e−4h2dp23 p42

+√
2e−2h1−2h3dp4dp6 p3 − √

2e−2h1−2h3dp4dp5 p1 p3

−√
2e−2h1−2h2dp4dp8 p2 p3 + 2e−2h1−2h3dp3dp4 p1 p2 p3 + 2e−2h1−2h2dp4dp7 p1 p2 p3

+2e−4h1dp4dp7 p2 p3 p31 − 2
√
2e−4h1dp4dp8 p2 p3 p21

−2
√
2e−2h1−2h2dp4dp5 p22 p3 p1 + 2e−4h1dp4dp9 p2 p3 p1 + √

2e−2h1−2h2dp4dp6 p22 p3

+2e−4h1dp3dp4 p32 p3 p31 − 2
√
2e−4h1dp4dp5 p22 p3 p31 + 2

√
2e−4h1dp4dp6 p22 p3 p21

+2e−2h1−2h2dp3dp4 p32 p3 p1 + e−2h1−2h3dp24 p23

+e−2h1−2h2dp24 p22 p23 + 2e−4h1dp24 p21 p22 p23 − e−2h1−2h2dp5dp8 p4

−√
2e−4h1dp6dp9 p4 + √

2e−2h1−2h2dp5dp7 p1 p4

+√
2e−4h1dp5dp7 p4 p31 − √

2e−4h1dp6dp7 p4 p21 − 2e−4h1dp5dp8 p4 p21

+2e−4h1dp6dp8 p4 p1 + √
2e−4h1dp5dp9 p4 p1

−2e−4h1dp25 p2 p4 p31 + 4e−4h1dp5dp6 p2 p4 p21 − 2e−2h1−2h2dp25 p2 p4 p1

−2e−4h1dp26 p2 p4 p1 + e−2h1−2h2dp5dp6 p2 p4√
2e−4h1dp3dp5 p22 p4 p31 − √

2e−4h1dp3dp6 p22 p4 p21 + √
2e−2h1−2h2dp3dp5 p22 p4 p1

−2
√
2e−4h1dp4dp6 p2 p3 p4 p1 + √

2e−2h1−2h2dp4dp5 p2 p3 p4

+e−4h1dp25 p24 p21 + 2
√
2e−4h1dp4dp5 p2 p3 p4 p21 − 2e−4h1dp5dp6 p24 p1

+1

2
e−2h1−2h2dp25 p24 + e−4h1dp26 p24 (7.12.14)
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Chapter 8
(Hyper)Kähler Quotients, ALE-Manifolds
and C

n/Γ Singularities

Quando chel cubo con le cose appresso
Se agguaglia a qualche numero discreto
Trouan dui altri differenti in esso.

Niccoló Tartaglia

8.1 Historical and Conceptual Introduction

In this last chapter we turn to the analysis of important developments in complex
geometry which took place in the 1980–1990s, directly motivated by supersymmetry
and supergravity and completely inconceivable outside such a framework. Notwith-
standing their roots in the theoretical physics of the superworld, such developments
constitute, by now, the basis of some of the most innovative and alive research direc-
tions of contemporary geometry.

8.1.1 From Supersymmetric σ -Models to (Hyper)Kähler
Quotients

Aswe remarked in previous chapters, an entire new life was contributed to Geometry
by the problems posed by the coupling of matter multiplets to supergravity or by the
description of their self-interaction in rigid supersymmetry. This was the cradle of
special geometries whose theory gained momentum by the end of the 1980s and
the beginning of the 1990s. In connection with supersymmetry a basic problem
which was to reveal his deep geometrical implications is that of gauging: namely
how to promote global symmetries of supersymmetric lagrangians to local gauge
ones. In that context one crucial geometrical item happens to be the moment-map
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we already discussed in previous chapters. Indeed the hamiltonian functionsΣA(φ)

associated with the generators TA of any Lie isometry group play a distinctive role
in supersymmetric field theories: they are the on-shell value taken by the so named
auxiliary fields and appear in the supersymmetry transformation rules of the fermion
members of the supermultiplets: spin 1

2 or spin
3
2 fields. Furthermore, according with

a general scheme touched upon in Chap.7, these hamiltonian functions, or moment
maps, are also the building blocks of the scalar potential generated by the gauging.

By the end of the 1980s the geometrical characterization of the scalar manifolds
appearing in N = 2 field theories in D = 4 or N = 4 in D = 3 was universally
clear and the notion of HyperKähler manifolds, well established both in Theoretical
Physics and inMathematics, was attracting a lot of interest in both communities. The
prototype of compact HyperKähler manifolds were the torus T4 and the Kummer
surface K3, largely utilized in supergravity and string compactifications. From the
mathematical point of view the main interest was focused on the identification and
on the construction of new examples, compact or non compact of HyperKählerian
spaces: supersymmetry came to aid.

In the 1980s, with the presence of Peter van Nieuwenhuizen, one of the three
founders of supergravity, and the contiguity to a Department of Mathematics of very
high level, the Institute of Theoretical Physics (ITP) of New York State Univer-
sity at Stony Brook had become a very prominent center of Mathematical Physics,
particularly active in those geometrical directions that are more closely related to
supersymmetry. Several young researchers from Europe that extensively contributed
to the topics discussed in this book spent research stages in Stony Brook in various
capacities, either as post-doctoral fellows or as visiting scientists (see Fig. 8.1).

In 1987 a milestone paper for the history of HyperKähler geometry was written
by four authors, three of which were or had been associated with Stony Brook (see
Fig. 8.2). The mentioned paper, entitled HyperKähler metrics and supersymmetry
authored by Anders Karlhede, Nigel Hitchin, Ulf Lindstrom and Martin Rocek [1]
grew out from two different cultural traditions turning out to be extremely influential
both in Physics and in Mathematics.

The British author Hitchin, former student of Sir Michael Atiyah and presently
his successor on the Savilian Chair of Geometry in Oxford, brought in the distin-
guished geometrical and topological tradition of the Cambridge school, whose roots
can be traced back to Hodge and which is responsible for such other milestones as,
for instance, the index theorem. Martin Rocek, Anders Karlhede and Ulf Lindstrom,
together with Marc Grisaru and Jim Gates, were among the early founders of super-
space formalism for supersymmetric theories and had a deep working knowledge of
the latter. From the inbreeding of these two traditions arose a quite powerful new
mathematical vision, that of HyperKähler quotient.

The guiding line was provided by the lagrangian realization of a supersymmetric
field theory encompassing hypermultiplets that span a flat HyperKähler manifold
S and are coupled to gauge vector multiplets which promote a group G of global
isometries of the spaceS to local symmetries of the lagrangian. If the kinetic terms of
these vector multiplets V are omitted, the latter can be integrated away by means of a
gaussian integration.The result of this functional integrationyields, as a remnant, a set
of constraints. The systematic solution of such constraints provides the geometrical

http://dx.doi.org/10.1007/978-3-319-74491-9_7
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Fig. 8.1 The first picture dating 1979 is the historical one taken during the first international
conference on Supergravity, held at Stony Brook ITP. The second picture dating 1982 shows Peter
vanNieuwenhuizen, the present author andRiccardoD’Auria in front of the StonyBrook house they
were sharing during a one month stay of the two Italians for collaboration with van Nieuwenhuizen.
The third and the fourth pictures were taken in November 2001 during the conference Supergravity
at 25 held in Stony Brook ITP. In the second picture one sees Leonardo Castellani, the present
author, Peter van Nieuwenhuizen and Alberto Lerda. The last picture is the group photo of all
participants to the workshop. In the 1980s the scientific relations between Torino University and
Stony Brook were particularly intense and fruitful. Equally important were the relations of Stony
Brook with Leuven in Belgium, Utrecht in the Netherlands and the École Normale Superiéure in
Paris

construction of a new non trivial, yet smaller, HyperKähler manifold, namely the
HyperKähler quotient S //G .

The great value of paper [1] was the clear cut axiomatization of this procedure
which, extracted from field theory, was recast in pure mathematical terms as a self
contained mathematical construction.

In the following years the HyperKähler quotient was adopted by mathematicians
as a preferred constructive algorithm for new HyperKähler manifolds.

A very important instance of such constructions was provided a couple of years
after the publication of [1] byKronheimer, who succeeded in showing that all asymp-
totically flat gravitational instantons, the so named ALE manifolds, can be realized
as HyperKähler quotients [2, 3]. To ALE spaces and to the Kronheimer construction
we devote several sections of the present chapter. We anticipate here that the classi-
fication of ALE manifolds is a new incarnation of the ADE classification of simply
laced Lie algebras, finite subgroups of SU(2) and of singularities. It clearly encodes
a very deep connection between fundamental issues of Geometry and Physics.
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Fig. 8.2 From the left to the right: Martin Rocek, Anders Karlhede (1952), Nigel J. Hitchin (1946),
Ulf Lindstrom (1947), finally a view of the campus of New York University at Stony Brook. Martin
Rocek is currently Professor of Theoretical Physics at Stony Brook and a member of the C. N. Yang
Institute for Theoretical Physics. He received A.B. and Ph.D. degrees from Harvard University in
1975 and 1979. He did post-doctoral research at the University of Cambridge and Caltech before
becoming a professor at Stony Brook. Anders Karlhede is currently Vice Rector of Stockholm
University and a member of the Swedish Academy of Sciences. Nigel Hitchin is currently Savilian
Professor of Geometry, Oxford, a position previously held by his doctoral supervisor (and later
research collaborator) Sir Michael Atiyah. Hitchin is responsible, together with Atiyah for the
index theorem and for the ADHM construction of instantons. Ulf Lindstrom is currently chairman
of the theoretical physics department at the University of Upsala. He originally graduated from
Stockholm University. Lindstrom and Hitchin have both contributed to the development of the
notion of generalized complex geometry. In 1987 when their fundamental paper on HyperKähler
quotients was written, three of the above four authors (Karlhede, Lindstrom and Rocek) were
working at the ITP of Stony Brook
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Many current research lines in geometry related with manifolds of restricted
holonomy, spin(7) manifolds and the like are intimately related with the idea of the
HyperKähler quotient. Similarly quiver constructions in brane physics and most of
the geometrical constructions in the CFT/gauge correspondence are off-springs of
the HyperKähler quotient algorithm.

8.1.2 Further Geometrical Visions from p-Branes and the
Gauge/Gravity Correspondence

The immensely fertile field of the gauge/gravity correspondence, originally viewed
as the AdS/CFT correspondence, has its starting point in November 1997 with the
publication on the ArXive of a paper by Juan Maldacena [4] on the large N limit of
gauge theories.

In this book we do not address the multifaceted history of this important subject
that has generated an extremely large corpus of physically relevant results. We rather
concentrate on its more geometrical aspects and group-theoretical foundations.

The central idea of the gauge/gravity correspondence, frequentely referred to as
the holographic principle, envisages that fundamental informations on the quantum
behavior of fields leaving on some boundary of a larger space-time can be obtained
from the classical gravitational dynamics of fields leaving in the bulk of that space-
time. This can be regarded as a modern mathematical reformulation of Plato’s myth
of the shadows on the walls of the cavern (the myth of the antrum platonicum). In
such a framework geometrical issues are the central focus of attention.

The group theoretical foundations of the AdS/CFT correspondence were explored
in many papers and important contributions were given by Ferrara, Fronsdal, Zaffa-
roni, Kallosh and Van Proeyen in [5–8]. As everything important and profound, the
AdS/CFT correspondence has a relative simple origin which, however, is extremely
rich in ramified and powerful consequences. The key point is the double interpreta-
tion of any anti de Sitter group SO(2, p+ 1) as the isometry group of AdSp+2 space
or as the conformal group on the p + 1-dimensional boundary ∂AdSp+2. Such a
double interpretation is inherited by the supersymmetric extensions of SO(2, p+ 1).
This is what leads to consider superconformal field theories on the boundary. Two
cases are of particular relevance because of concurrent reasons which are peculiar
to them: from the algebraic side the essential use of one of the low rank sporadic
isomorphisms of orthogonal Lie algebras, from the supergravity side the existence
of a spontaneous compactification of the Freund–Rubin type [9]. The two cases are:

(A) The case p = 3 which leads to AdS5 and to its 4-dimensional boundary. Here
the sporadic isomorphism is SO(2, 4) ∼ SU(2, 2) which implies that the list
of superconformal algebras is given by the superalgebras su(2, 2 | N ) for
1 ≤ N ≤ 4. On the other hand in Type IIB Supergravity, there is a self-dual
five-form field strength. Giving a v.e.v to this latter (Fa1a2a3a4a5 �εa1a2a3a4a5 ), one
splits the ambient ten-dimensional space into 5⊕5where the first 5 stands for the
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AdS5 space, while the second 5 stands for any compact 5-dimensional Einstein
manifold M5. The holonomy of M5 decides the number of supersymmetries
and on the 4-dimensional boundary ∂AdS5 we have a superconformal Yang-
Mills gauge theory.

(B) The case p = 2 which leads which leads to AdS4 and to its 3-dimensional
boundary. Here the sporadic isomorphism is SO(2, 3) ∼ Sp(4,R) which
implies that the list of superconformal algebras is given by the superalge-
bras Osp(N | 4) for N = 1, 2, 3, 6, 8. On the other hand in D = 11
Supergravity, there is a a four-form field strength. Giving a v.e.v to this lat-
ter (Fa1a2a3a4 � εa1a2a3a4 ), one splits the ambient ten-dimensional space into
4 ⊕ 7 where 4 stands for the AdS4 space, while 7 stands for any compact 7-
dimensional Einstein manifoldM7. The holonomy ofM7 decides the number
of supersymmetries and on the 3-dimensional boundary ∂AdS4 we should have
a superconformal gauge theory.

From the p-brane point of view, case (A) is associated with D3-branes, while case
(B) is associated with M2-branes.

The former case was that mostly explored at the beginning of the AdS/CFT tale in
1998 and in successive years. Yet the existence of the second case was immediately
evident to anyone who had experience in supergravity and particularly to those who
had worked in Kaluza–Klein supergravity in the years 1982–1985. Thus in a series
of papers [10–16], mostly produced by the Torino Group but in some instances in
collaboration with the SISSA Group, the AdS4/CFT3 correspondence was proposed
and intensively developed in the spring and in the summer of the year 1999.

One leading idea, motivating this outburst of activity, was that the entire corpus
of results on Kaluza–Klein mass-spectra [9, 17–32], which had been derived in the
years 1982–1986, could now be recycled in the new superconformal interpretation.
Actually it was immediately clear that the Kaluza–Klein towers of states, in particu-
larly those corresponding to short representations of the superalgebra Osp(N | 4),
provided an excellent testing ground for the AdS4/CFT3 correspondence.1 One had
to conceive candidate superconformal field theories living on the boundary, that were
able to reproduce all the infinite towers of Kaluza Klein multiplets as corresponding
towers of composite operators with the same quantum numbers.

In the case the manifold M7 was a coset manifold G /H , an exhaustive list of
cases was known since the middle eighties, thanks to the work of Castellani, Romans
andWarner [32]. The supersymmetric cases form an even shorter sublist of the main
list in [32] and were also classified by the same authors (see Tables8.1 and 8.2).

Since it was clear that the theory on the boundary had to be amatter coupled gauge-
theory, in three papers [12, 13, 15], the general form of matter coupled N = 2, 3
non abelian gauge theories in D = 3, with both a canonical kinetic term for the
gauge fields and a Chern Simons one, were constructed using auxiliary fields and
the rheonomic approach.

1The unitary induced representations of the Osp(N | 4) superalgebra in their double interpretation
as gravitational multiplets or as multiplets of superconformal fields were discussed in [12] and have
been systematically reviewed in Chap.12 of the book [33].



8.1 Historical and Conceptual Introduction 453

Table 8.1 The homogeneous 7-manifolds that admit at least 2 Killing spinors are all sasakian or
tri-sasakian. This is evident from the fibration structure of the 7-manifold, which is either a fibration
in circles S

1 for the N = 2 cases or a fibration in S
3 for the unique N = 3 case corresponding to

the N010 manifold. Since this latter is also an N = 2 manifold, there is in addition the S
1 fibration.

N Name Coset
Holon.

so(8)bundle
Fibration

8 S
7 SO(8)

SO(7) 1

{
S
7 π=⇒ P

3

∀ p ∈ P
3 ; π−1(p) ∼ S

1

2 M111 SU(3)×SU(2)×U(1)
SU(2)×U(1)×U(1) SU(3)

{
M111 π=⇒ P

2 × P
1

∀ p ∈ P
2 × P

1 ; π−1(p) ∼ S
1

2 Q111 SU(2)×SU(2)×SU(2)×U(1)
U(1)×U(1)×U(1) SU(3)

{
Q111 π=⇒ P

1 × P
1 × P

1

∀ p ∈ P
1 × P

1 × P
1 ; π−1(p) ∼ S

1

2 V 5,2 SO(5)
SO(2) SU(3)

{
V 5,2 π=⇒ Ma ∼ quadric in P

4

∀ p ∈ Ma ; π−1(p) ∼ S
1

3 N 010 SU(3)×SU(2)
SU(2)×U(1) SU(2)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

N 010 π=⇒ P
2

∀ p ∈ P
2 ; π−1(p) ∼ S

3

N 010 π=⇒ SU(3)
U(1)×U(1)

∀ p ∈ SU(3)
U(1)×U(1) ; π−1(p) ∼ S

1

Table 8.2 The homogeneous 7-manifolds that admit just one Killing spinors are the squashed
7-sphere and the infinite family of Npqr manifolds for pqr �= 010.

N Name Coset
Holon.

so(8) bundle

1 S
7
squashed

SO(5)×SO(3)
SO(3)×SO(3) SO(7)+

1 Npqr SU(3))×U(1)
U(1)×U(1) SO(7)+

In the series of papers [10, 12–16], it was also conjectured that the gauge theories
dual to the supergravity backgrounds of type AdS4 ×M7 have an infrared fixed
point where the YangMills coupling constant goes to infinity. In this limit the kinetic
terms are removed for all the fields in the gauge multiplet. These latter become
auxiliary fields and, with the exception of the non abelian gauge one-forms, they can
be integrated away leaving, as remnant, a pure Chern Simons gauge theory with a
very specific form, that was discussed in the quoted papers.

The question remains how to fill the blackbox of matter multiplets in the general
Chern Simons lagrangian constructed in the way sketched above.
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8.1.3 The Sasakian Structure and the Metric Cone

It is in the resolution of this problem that the interplay between the geometry of the
compactification manifold M7 and the structure of the d = 3 superconformal field
theory becomes evident.

In paper [14] the authors introduced a systematic bridge between the geometry of
M7 and the structure of the boundary gauge theory based on the crucial observation
that all the 7-dimensional cosets with at least two Killing spinors of AdS-type are
sasakian manifolds or tri-sasakian manifolds.

What sasakian means is visually summarized in the following table. First of all

base of the fibration projection 7-manifold metric cone

B6
π←− M7 C (M7)


 ∀p ∈ B6 π−1(p) ∼ S
1 
 


Kähler K3 sasakian Kähler Ricci flat K4

theM7 manifold must admit an S
1-fibration over a complex Kähler three-fold K3:

π : M7
S
1−→ K3 (8.1.1)

Calling zi the three complex coordinates of K3 and φ the angle spanning S
1, the

fibration means that the metric of M7 admits the following representation:

ds2M 7
= (dφ −A )2 + gi j� dz

i ⊗ dz̄ j
�

(8.1.2)

where the one-form A is some suitable connection one-form on the U(1)-bundle
(8.1.1).

Secondly the metric cone C (M7) over the manifold M7 defined by the direct
product R+ ⊗M7 equipped with the following metric :

ds2C (M 7)
= dr2 + 4 e2 r2 ds2M 7

(8.1.3)

should also be aRicci-flat complexKähler 4-fold. In the above equation e just denotes
a constant scale parameter with the dimensions of an inverse length [e] = 	−1.

Altogether the Ricci flat Kahler manifold K4, which plays the role of transverse
space to the M2-branes, is a rank-one holomorphic vector bundle over the base
manifold K3 associated to a corresponding principal fibre-bundle over the same base
with C

� structural group (i.e. a line-bundle over the base manifold K3):

π : K4 −→ K3

∀p ∈ K3 π−1(p) ∼ C (8.1.4)
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All the manifolds listed in Table8.1 are sasakian in the sense described above. The
so(8)-holonomy mentioned in this table is the holonomy of the Levi-Civita con-
nection of the metric cone C (M7) which can be easily calculated from that of the
M7-manifold relying on the following one-line construction. Define the vielbein of
C (M7) in terms of the vielbein of M7 in the following way:

V I =
{
V 0 = dr
V α = e r Bα r ∈ R+ (8.1.5)

where ds2M 7
= ∑7

α=1 Bα ⊗Bα . The torsion equation:

dV I + Ω I J ∧ V J = 0 (8.1.6)

where Ω I J is the spin-connection of the metric cone, is solved by:

Ωαβ = Bαβ

Ω0β = −2 e r Bβ (8.1.7)

having denoted byBαβ the spin-connection ofM7, namely dBα +Bαβ∧Bβ = 0.
According to the summary of Kaluza–Klein supergravity presented in [34], Ω I J is
the so(8)-connectionwhose holonomy decides the number ofKilling spinor admitted
by the AdS4 ×M7 compactification of M-theory. When this holonomy vanishes we
have the maximal number of preserved supersymmetries. When it is SU(3) ⊂ SO(8)
we have N = 2. When it is SU(2) ⊂ SO(8) we might in principle expect N = 4,
but we actually have only N = 3, as firstly remarked by Castellani, Romans and
Warner in 1985.

In [14], it was emphasized that the fundamental geometrical clue to the field
content of the superconformal gauge theory on the boundary is provided by the
construction of the Kähler manifold K4 as a holomorphic algebraic variety in some
higher dimensional affine or projective space Vq , plus a Kähler quotient. The equa-
tions identifying the algebraic locus in Vq are related with the superpotential W
appearing in the d = 3 lagrangian, while the Kähler quotient is related with the
D-terms appearing in the same lagrangian. The coordinates u, v of the space Vq are
the scalar fields of the superconformal gauge theory, whose vacua, namely the set
of extrema of its scalar potential, should be in one-to-one correspondence with the
points of K4. Going from one to multiple M2-branes just means that the coordinate
u, v of Vq acquire color indices under a proper set of color gauge groups and are
turned into matrices. In this way we obtain quivers.

All these conceptual and algorithmic points were enumerated in the set of papers
[10, 12–14, 16], where the cases Q1,1,1, M1,1,1 and N 0,1,0 were worked out in detail,
finding the algebraic embedding, defining the superpotential and the quiver. Finally
theKaluza–Klein spectrumof supergravity compactifiedon eachof these three spaces
was matched with the spectrum of composite conformal operators in the correspond-
ing boundary superconformal theory.
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The subject of theAdS4/CFT3 correspondence received newpowerfulmomentum
in 2007–2009 by the work presented in papers [35–37] which stirred a great interest
in the scientific community and obtained a very large number of citations.

The ABJM-construction of [36] is very clear and the attentive reader, making the
required changes of notations and names of the objects, can verify that the N = 3
lagrangian presented there is just the same as that one obtains from the lagrangian
constructed in papers [10, 12] by letting theYang-Mills coupling constant go to infin-
ity. What is really new and extremely important in ABJM is the relative quantization
of the Chern Simons levels k1,2 of the two gauge groups and its link to a quotiening
of the seven sphere by means of a cyclic group Zk . Indeed the theories presented in
[36] pertain to the first case in Table8.1, modified by a finite group quotiening.

8.1.4 Finite Group Quotiening

As we emphasized the key guiding item in the construction of the d= 3 gauge theory
is the K4 manifold and its representation as an algebraic locus in some Vq . We can
extract the logic which underlies [36], by means of the following arguments. First
consider the following projections and embeddings pertaining to the case whereM7

is a smooth coset manifold

K3
π←− G /H

C
↪→ K4

A
↪→ Vq (8.1.8)

In the above formula
C
↪→ is the embeddingmap into themetric cone,while

A
↪→ denotes

the algebraic embedding into an affine of projective variety by means of a suitable
set of algebraic equations.

For instance in the case of the seven sphere G /H = SO(8)/SO(7), we have

K3 = P
3 and K4 = C

4 ∼ R
8. Then the algebraic map

A
↪→ is just the identity map

since Vq = C
4.

On the contrary, in the case N 010, the base manifold K3 = SU(3)
U(1)×U(1) is just the

su(3) flag manifold and K4 is obtained as the Kähler quotient of an algebraic locus
cutout inVq = C

6 by a quadric equation. In this particular case the entire procedure
how to go from C

6 to K4 can be seen as a HyperKähler quotient with respect to the
triholomorphic action of a U(1) group:

K4 = C
6//H U(1) (8.1.9)

The quadric constraint is traced back to the vanishing of the holomorphic part of
the triholomorphic moment map, while the Kähler quotient encodes the constraint
coming from the real part of the same moment map.

Next we consider some finite group Γ ⊂ G and in Eq. (8.1.8) we replace the
homogeneous space G /H with the orbifold G /H

Γ
. The finite group quotient extends
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both to the projection map and to the metric cone enlargement. Thus Eq. (8.1.8) is
replaced by:

K3

Γ

π←− G /H

Γ

C
↪→ K4

Γ

A
↪→ Vq (8.1.10)

Typically the quotient K4
Γ

is a singular manifold. We need a resolution of the singu-
larities by means of an appropriate resolving map:

X res → K4

Γ
(8.1.11)

which typically leads to an affine variety X res A
↪→ C

q embedded by suitable algebraic
equations into some C

q .
The final outcome is that the coordinates of C

q are the matter fields in the d = 3
conformal field theory, while the embedding equations should determine the super-
potential W . The gauging is instead dictated by the final Kähler quotient of the
resolved algebraic variety X res which produces the resolved metric cone K res

4 .
New contributions to this algebro-geometric approach to the gauge theories dual

to M2-brane solutions of D = 11 supergravity have been recently given in [38, 39].
The rest of this chapter is essentially based on these two papers and on the much
earlier paper [40] of 1994 where the Kronheimer construction was firstly applied to
2D Conformal Field Theories.

8.1.5 Crepant Resolution of Gorenstein Singularities

It appears from the above discussion that the most fundamental question at stake
is a classical problem of algebraic geometry, namely the resolution of singularities,
in particular of the quotient singularities. For this there is a well established set of
results that were all obtained by the mathematical community at the beginning of
1990s, under the stimulus of string and supergravity theory.

First of all we fix sum vocabulary.

Definition 8.1.1 The canonical line bundle KV over a complex algebraic variety
V of complex dimension n is the bundle of holomorphic (n, 0)-formsΩ(n,0) defined
over V.

Definition 8.1.2 An orbifold V/Γ of an algebraic variety modded by the action of
a finite group is named Gorenstein if the isotropy subgroup Hp ⊂ Γ of every point
p ∈ V has a trivial action on the canonical bundle KV.

Definition 8.1.3 A resolution of singularities π : W → X ≡ V/Γ is named
crepant, if KW = π�KX. In particular this implies that the first Chern class of the
resolved variety vanishes (c1 (TW) = 0), if it vanishes for the orbifold, namely if
c1 (TX) = 0.
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In the case V = C
n , a resolution of quotient singularity:

π : W → C
n/Γ (8.1.12)

is crepant if the resolved variety W has vanishing first Chern class, namely it is a
Calabi-Yau q-fold.

TheGorenstein condition plus the request that there should be a crepant resolution
restricts the possible Γ s to be subgroups of SL(n,C).

Concerning the crepant resolution of Gorenstein singularities C
n/Γ , what was

established in the early 1990s is what follows:

1. For n = 2 the classification of Gorenstein singularities boils down to the clas-
sification of finite Kleinian subgroups Γ ⊂ SU(2). This latter is just the A-D-E
classification and the crepant resolution of singularities is done in one stroke by
the Kronheimer construction of ALE-manifolds [2, 3] via an HyperKähler quo-
tient of a flat HyperKähler manifold HΓ , whose dimension and structure depends
on the group Γ .

2. For n = 3 the classification of finite subgroups of SL(3,C) was performed at
the very beginning of the XX century [41–43] and it is summarized in [44]. As
stressed by Markushevich in [45] in that list there are only two types of groups,
either solvable groups or the simple group PSL(2,7) of order 168. For this reason
the same Markushevich studied the resolution of the Gorenstein orbifold:

O168 ≡ C
3

PSL(2,Z7)
(8.1.13)

which corresponds to a unique truely new case. There are several other physical
motivations for the study of orbifolds with respect to

L168 ≡ PSL(2,Z7) (8.1.14)

or one of its maximal subgroups.
3. For n > 3 essentially nothing is known with the exception of those cases that can

be reduced to singularities in n = 2, 3.

8.1.6 The Complex Hopf Fibration of S
7 and Quotient

Singularities C
4/Γ

In order to arrive at what is for us most interesting, namely quotient singularities
of the type C

4/Γ we start from the first of the cases listed in Table8.1, namely the
complex Hopf fibration of the seven sphere:
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π : S
7 → CP

3

∀y ∈ CP
3 : π−1(y) ∼ S

1 (8.1.15)

We want to establish the following important conclusion. Writing the metric cone
over the seven sphere as C

4, namely:

C (S7) = R
8 ∼ C

4 (8.1.16)

the homogeneous coordinates Zi of CP
3 can be identified with the standard affine

coordinates of C
4 defined above.

To this purpose we consider the standard definition of the CP
3 manifold as the

set of quadruplets
{
Z1, . . . , Z4

}
modulo an overall complex factor:

{
Z1, . . . , Z4

} ∼ λ
{
Z1, . . . , Z4

}
, ∀λ ∈ C

� (8.1.17)

On the other hand we define the 7-sphere as the locus in C
4 cut out by the following

constraint:

|Z|2 ≡
4∑

i=1
|Zi |2 = 1 (8.1.18)

Let us define the Kähler metric on theCP
3 in terms of the homogeneous coordinates:

ds2
CP

3 = dZ · dZ̄
|Z|2 −

(
Z · dZ̄

) (
Z̄ · dZ

)
|Z|4 (8.1.19)

That the above is indeed a metric on CP
3 is verified in the following way: if in

Eq. (8.1.19) Z is replaced by λZ all the factors λ and all their differentials cancel
identically. If we fix the λ-gauge by setting Z4 = 1 and we rename Z1,2,3 = Y1,2,3,
then we find that the above metric is identical with the Kähler metric obtained from
the Fubini–Study Kähler potential:

K
CP

3(Y) = log
(
1+ |Y|2) (8.1.20)

On the other hand if we consider the pull-back of the flat Kähler metric of C4 on the
locus (8.1.17) we obtain the metric of the seven sphere:

ds2
S7
= dZ · dZ̄ ||Z|2 = 1 (8.1.21)

Let us next consider the following 1-form:

Ω (Z) = i

2 |Z|2
(
Z · dZ̄ − Z̄ · dZ

)
(8.1.22)

and perform the following two calculations. If we replace Z → λZ, we obtain:
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Ω (λZ) = i

2

(
λdλ̄ − λ̄dλ

) + Ω (Z) (8.1.23)

In particular if λ = eiθ we get:

Ω
(
eiθZ

) = dθ +Ω (Z) (8.1.24)

This shows that Ω is a U(1)-connection on the principal U (1)-bundle that has CP
3

as base manifold and which can be identified with the 7-sphere. The curvature of this
connection is just the Kähler 2-form on CP

3.
On the other hand we have:

ds2S ≡ dΩ2 + ds2
CP

3 = dZ · dZ̄
|Z|2 −

(
Z · dZ̄+ Z̄ · dZ

)2
|Z|4 (8.1.25)

If we restrict the above line element to the locus (8.1.17) we find:

ds2S ||Z|2=1= dZ · dZ̄ ||Z|2=1= ds2
S7

(8.1.26)

In this way we have obtained the desired result: the metric cone over the 7-sphere is
described by the homogeneous coordinates of CP3 interpreted as affine ones on C

4:

ds2C = dr2 + r2ds2
S7
= dZ · dZ̄ (8.1.27)

Another way of stating the same result is the following one. We can regard C
4 as the

total space of a rank = 1 holomorphic vector bundle over CP
3, with structural group

C
�:

π : C
4 → CP

3

∀y ∈ CP
3 : π−1(y) ∼ C (8.1.28)

The form Ω is a connection on this line-bundle.
The consequence of this discussion is that ifwe have a finite subgroupΓ ⊂ SU(4),

which obviously is an isometry of CP
3 we can consider its action both on CP

3 and
on the seven sphere so that we have:

AdS4 × S
7

Γ
→ ∂AdS4 × C

4

Γ
(8.1.29)

This is the setup for the theory of M2-branes that probe the singularity C
4

Γ
.
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8.2 From Singular Orbifolds to Smooth Resolved Manifolds

The next point which provides an important orientation in addressing mathematical
questions comes from physics in view, as we stressed above, of the final use of the
considered mathematical lore in connection with M2-brane solutions of D = 11
supergravity and later on in the construction of quantum gauge theories dual to such
M2-solutions of supergravity.

Let us start once again from

K3
π←− M7

Cone
↪→ K4

A
↪→ Vq (8.2.1)

namely from Eq. (8.1.8) that we are going to rewrite in slightly more general terms.
The AdS4 compactification of D = 11 supergravity is obtained by utilizing as com-
plementary 7-dimensional space a manifoldM7 which occupies the above displayed
position in the inclusion-projection diagram (8.2.1). The metric cone C (M7) enters
the game when, instead of looking at the vacuum:

AdS4 ×M7 (8.2.2)

we consider the more general M2-brane solutions of D= 11 supergravity, where the
D = 11 metric is of the following form:

ds211 = H(y)−
2
3
(
dξμ ⊗ dξνημν

)− H(y)
1
3
(
ds2M 8

)
(8.2.3)

ημν being the constant Lorentz metric of Mink1,2 and:

ds2M 8
= dyI ⊗ dyJ gI J (y) (8.2.4)

being a Ricci-flat metric on an asymptotically locally Euclidean 8-manifold M8. In
Eq. (8.2.3) the symbol H(y) denotes a harmonic function over the manifold M8,
namely:

�gH(y) = 0 (8.2.5)

Equation (8.2.5) is the only differential constraint required in order to satisfy all the
field equations of D = 11 supergravity in presence of the standard M2-brain ansatz
for the 3-form field:

A[3] ∝ H(y)−1
(
dξμ ∧ dξν ∧ dξρ εμνρ

)
(8.2.6)

In this more general setup the manifold M8 is what substitutes the metric cone
C (M7). To see the connection between the two viewpoints it suffices to introduce
the radial coordinate r(y) by means of the position:
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H(y) = 1 − 1

r(y)6
(8.2.7)

The asymptotic region where M8 is required to be locally Euclidean is defined by
the condition r(y) → ∞. In this limit the metric (8.2.4) should approach the flat
Euclidean metric of R

8 � C
4. The opposite limit where r(y)→ 0 defines the near

horizon region of the M2-brane solution. In this region the metric (8.2.3) approaches
that of the space (8.2.2), the manifoldM7 being a codimension one submanifold of
M8 defined by the limit r → 0.

To be mathematically more precise let us consider the harmonic function as a
map:

H : M8 → R+ (8.2.8)

This viewpoint introduces a foliation of M8 into a one-parameter family of 7-
manifolds:

∀h ∈ R+ : M7(h) ≡ H−1(h) ⊂M8 (8.2.9)

In order to have the possibility of residual supersymmetries we are interested in cases
where the Ricci flat manifold M8 is actually a Ricci-flat Kähler 4-fold.

In this way the appropriate rewriting of Eq. (8.1.8)–(8.2.1) is as follows:

K3
π←−︸︷︷︸

if it applies

M7
H−1←− K4

A
↪→ Vq (8.2.10)

Next we recall the general pattern laid down in [38] that will be our starting point.

The N = 8 Case with no Singularities.

The prototype of the above inclusion-projection diagram is provided by the case of
the M2-brane solution with all preserved supersymmetries. In this case we have:

CP
3 π←− S

7 Cone
↪→ C

4 A =Id
↪→ C

4 (8.2.11)

On the left we just have the projection map of the Hopf fibration of the 7-sphere. On
the right we have the inclusion map of the 7 sphere in its metric cone C (S7) ≡ R

8 ∼
C

4. The last algebraic inclusion map is just the identity map, since the algebraic
variety C

4 is already smooth and flat and needs no extra treatment.

The Singular Orbifold Cases.

The next orbifold cases are those of interest to us here. Let Γ ⊂ SU(4) be a finite
discrete subgroup of SU(4). Then Eq. (8.2.11) is replaced by the following one:

CP
3

Γ

π←− S
7

Γ

Cone
↪→ C

4

Γ

A =?
↪→ ? (8.2.12)



8.2 From Singular Orbifolds to Smooth Resolved Manifolds 463

The consistency of the above quotient is guaranteed by the inclusion SU(4) ⊂ SO(8).
The question marks can be removed only by separating the two cases:

(A) Case: Γ ⊂ SU(2) ⊂ SU(2)I ⊗ SU(2)II ⊂ SU(4). Here we obtain:

C
4

Γ
� C

2 × C
2

Γ
(8.2.13)

and everything is under full control for the Kleinian C
2

Γ
singularities and their

resolution à la Kronheimer in terms of hyperKähler quotients.
(B) Case: Γ ⊂ SU(3) ⊂ SU(4). Here we obtain:

C
4

Γ
� C× C

3

Γ
(8.2.14)

and the study and resolution of the singularity C
3

Γ
in a physicist friendly way is

the main issue of this chapter. The comparison of case (B) with the well known
case (A) will provide us with many important hints.

Let us begin by erasing the question marks in case (A). Here we can write:

CP
3

Γ

π←− S
7

Γ

Cone
↪→ C

2 × C
2

Γ

Id×AW
↪→ C

2 × C
3 (8.2.15)

In the first inclusion map on the right, Id denotes the identity map C
2 → C

2 while
AW denotes the inclusion of the orbifold C

2

Γ
as a singular variety in C

3 cut out by a
single polynomial constraint:

AW : C
2

Γ
→ V(I W

Γ ) ⊂ C
3

C [V(IΓ )] = C[u,w, z]
WΓ (u,w, z)

(8.2.16)

where by C [V(IΓ )] we denote the coordinate ring of the algebraic variety V. As
we recall in more detail in next sections, the variables u,w, z are polynomial Γ -
invariant functions of the coordinates z1, z2 on which Γ acts linearly. The unique
generatorWΓ (u,w, z) of the idealI W

Γ which cuts out the singular variety isomorphic
to C

2

Γ
is the unique algebraic relation existing among such invariants. In the next

sections we discuss the relation between this algebraic equation and the embedding
in higher dimensional algebraic varieties associated with the McKay quiver and the
hyperKähler quotient.

Let us now consider the case (B). Up to this level things go in a quite analogous
way with respect to case (A). Indeed we might write

CP
3

Γ

π←− S
7

Γ

Cone
↪→ C× C

3

Γ

Id×AW
↪→ C× C

4 (8.2.17)



464 8 (Hyper)Kähler Quotients, ALE-Manifolds and C
n/Γ Singularities

In the last inclusion map on the right, Id denotes the identity map C → C whileAW

denotes the inclusion of the orbifold C
3

Γ
as a singular variety in C

4 cut out by a single
polynomial constraint:

AW : C
3

Γ
→ V(IΓ ) ⊂ C

4

C [V (IΓ )] ∼ C[u1, u2, u3, u4]
WΓ (u1, u2, u3, u4)

(8.2.18)

For the case Γ = L168 discussed by Markushevich the variables u1, u2, u3, u4
are polynomial Γ -invariant functions of the coordinates z1, z2, z3 on which Γ acts
linearly. The unique generator WΓ (u1, u2, u3, u4) of the ideal IΓ which cuts out
the singular variety isomorphic to C

3

Γ
is the unique algebraic relation existing among

such invariants.
The simple representation of the orbifold as a hypersurface in C

4 is no longer
true for the subgroups of L168. For instance for the maximal subgroup G21 ⊂ L168

the orbifold C3

G21
is an affine algebraic variety in C

5, the corresponding ideal being
generated by two polynomials.2

As for the relation of this algebraic equation with the embedding in higher dimen-
sional algebraic varieties associated with the McKay quiver, things are now more
complicated.

In the years 1990s up to 2010s there has been an intense activity in the mathemat-
ical community on the issue of the crepant resolutions of C

3/Γ (see for [44–46, 51])
that has gone on almost unnoticed by physicists since it was mostly formulated in
the abstract language of algebraic geometry, providing few clues to the applicability
of such results to gauge theories and branes. Yet, once translated into more explicit
terms, by making use of coordinate patches, and equipped with some additional
ingredients of Lie group character, these mathematical results turn out to be not only
useful, but rather of outmost relevance for the physics of M2-branes. In the present
paper we aim at drawing the consistent, systematic scheme which emerges in this
context upon a proper interpretation of the mathematical constructions.

So let us consider the case of smooth resolutions. In case (A) the smooth resolution
is provided by a manifold ALEΓ and we obtain the following diagram:

M7
H−1←− C

2 × ALEΓ
Id×qK←− C

2 × V|Γ |+1
AP
↪→ C

2 × C
2|Γ | (8.2.19)

In the above equation the map
H−1←− denotes the inverse of the harmonic function map

on C
2×ALEΓ that we have already discussed. The map

Id×qK←− is instead the product
of the identity map Id : C

2 → C
2 with the Kähler quotient map:

qK : V|Γ |+1 −→ V|Γ |+1 //KF|Γ |−1 � ALEΓ (8.2.20)

2This result was derived in private conversations of the author with Dimitry Markushevich.
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of an algebraic variety of complex dimension |Γ | + 1 with respect to a suitable Lie

group F|Γ |−1 of real dimension |Γ | − 1. Finally the map
AP
↪→ denotes the inclusion

map of the variety V|Γ |+1 in C
2|Γ |. Let y1, . . . , y2|Γ | be the coordinates of C

2|Γ |. The
variety V|Γ |+1 is defined by an ideal generated by |Γ | − 1 quadratic generators:

V|Γ |+1 = V (IΓ )

C [V (IΓ )] = C
[
y1, . . . , y2|Γ |

]
(
P1(y),P2(y), . . . ,P|Γ |−1(y)

) (8.2.21)

Actually the |Γ |−1 polynomialsPi (y) are the holomorphic part of the triholomor-
phic moment maps associated with the triholomorphic action of the groupF|Γ |−1 on
C

2|Γ | and the entire procedure from C
2|Γ | to ALEΓ can be seen as the hyperKähler

quotient:
ALEΓ = C

2|Γ |//HKF|Γ |−1 (8.2.22)

yet we have preferred to split the procedure into two steps in order to compare case
(A) with case (B) where the two steps are necessarily distinct and separated.

Indeed in case (B) we can write the following diagram:

M7
H−1←− C× YΓ

Id×qK←− C× V|Γ |+2
Id×AP
↪→ C× C

3|Γ | (8.2.23)

In this case, just as in the previous one, the intermediate step is provided by the

Kähler quotient but the map on the extreme right
AP
↪→ denotes the inclusion map of

the variety V|Γ |+2 in C
3|Γ |. Let y1, . . . , y3|Γ | be the coordinates of C

3|Γ |. The variety
V|Γ |+2 is defined as the principal branch of a set of quadratic algebraic equations
that are group-theoretically defined. Altogether the mentioned construction singles
out the holomorphic orbit of a certain group action to be discussed in detail in the
sequel. So we anticipate:

V|Γ |+2 = DΓ ≡ OrbitGΓ (LΓ ) (8.2.24)

where both the set LΓ and the complex group GΓ are completely defined by the
discrete group Γ defining the quotient singularity.

8.3 Generalities on C
3

Γ
Singularities

Recalling what we summarized above we conclude that the singularities relevant to
our goals are of the form:

X = C
3

Γ
(8.3.1)
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where the finite group Γ ⊂ SU(3) has a holomorphic action on C
3. For this case, as

we mentioned above, there is a series of general results and procedures developed
in algebraic geometry that we want to summarize in the perspective of their use in
physics.

To begin with let us observe the schematic diagram sketched here below:

(8.3.2)
The fascination of the mathematical construction lying behind the desingularization
process, which has a definite counterpart in the structure of the Chern-Simons gauge
theories describing M2-branes at the C

3/Γ singularity, is the triple interpretation of
the same number r which alternatively yields:

• The number of nontrivial conjugacy classes of the finite group Γ ,
• The number of irreducible representations of the finite group Γ ,
• The center of the Lie algebra ζ [FΓ ] of the compact gayge group FΓ , whose
structure, as we will see, is:

FΓ =
r⊗

i=1
U(ni) (8.3.3)

The levels ζI of themomentmaps are themain ingredient of the singularity resolution.
At levelζ I = 0 we have the singular orbifold M0 = C

3

Γ
, while at ζ i �= 0 we obtain

a smooth manifold Mζ which develops a nontrivial homology and cohomology. In
physical parlance the levels ζ I are the Fayet-Iliopoulos parameters appearing in the
lagrangian, while Mζ is the manifold of vacua of the theory, namely of extrema of
the potential, as we already emphasized.

Quite generally, we find that each of the gauge factors U(ni) is the structural group
of a holomorphic vector bundle of rank ni :

Vi
π−→ Mζ (8.3.4)

whose first Chern class is a nontrivial (1,1)-cohomology class of the resolved smooth
manifold:

c1 (Vi ) ∈ H 1,1
(
Mζ

)
(8.3.5)
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On the other hand a very deep theorem originally proved in the nineties by Reid
and Ito [46] relates the dimensions of the cohomology groups Hq,q

(
Mζ

)
to the

conjugacy classes of Γ organized according to the grading named age. So named
junior classes of age = 1 are associated with H 1,1

(
Mζ

)
elements, while the so-

named senior classes of age = 2 are associated with H 2,2
(
Mζ

)
elements.

The link that pairs irreps with conjugacy classes is provided by the relation, well-
known in algebraic geometry, between divisors and line bundles. The conjugacy
classes of γ can be put into correspondence with the exceptional divisors created in

the resolution Mζ

ζ→0−→ C
3

Γ
and each divisor defines a line bundle whose first Chern

class is an element of the H 1,1
(
Mζ

)
cohomology group.

These line bundles labeled by conjugacy classes have to be compared with the
line bundles created by the Kähler quotient procedure that are instead associated
with the irreps, as we have sketched above. In this way we build the bridge between
conjugacy classes and irreps.

Finally there is the question whether the divisor is compact or not. In the first case,
by Poincaré duality, we obtain nontrivial H 2,2

(
Mζ

)
elements. In the second case

we have no new cohomology classes. The age grading precisely informs us about
the compact or noncompact nature of the divisors. Each senior class corresponds to
a cohomology class of degree 4, thus signaling the existence of a non-trivial closed
(2,2) form, and via Poincaré duality, it also corresponds to a compact component of
the exceptional divisor.

The physics-friendly illustration of this general beautiful scheme, is the main goal
of the present chapter. We begin with the concept of age grading.

8.3.1 The Concept of Aging for Conjugacy Classes
of the Discrete Group Γ

According to the above quoted theorem that we shall explain below, the age grading
of Γ conjugacy classes allows to predict the Dolbeault cohomology of the resolved
algebraic variety. It goes as follows.

Suppose that Γ (a finite group) acts in a linear way on C
n . Consider an element

γ ∈ Γ whose action is the following:

γ.z =
⎛
⎜⎝
. . . . . . . . .
...
...
...

. . . . . . . . .

⎞
⎟⎠

︸ ︷︷ ︸
Q (γ )

·
⎛
⎜⎝
z1
...

zn

⎞
⎟⎠ (8.3.6)

Since in a finite group all elements have a finite order, there exists r ∈ N, such that
γ r = 1. We define the age of an element in the following way. Let us diagonalize
D(γ ), namely compute its eigenvalues. They will be as follows:
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(λ1, . . . , λn) = exp

[
2π i

r
ai

]
; r > ai ∈ N i = 1, . . . , n (8.3.7)

We define:

age (γ ) = 1

r

n∑
i=1

ai (8.3.8)

Clearly the age is a property of the conjugacy class of the element, relative to the
considered three-dimensional complex representation.

8.3.2 The Fundamental Theorem

In [46] Y. Ito and M. Reid proved the following fundamental theorem:

Theorem 8.3.1 Let Y → C
3/Γ be a crepant 3 resolution of a Gorenstein 4 singu-

larity. Then we have the following relation between the de-Rham cohomology groups
of the resolved smooth variety Y and the ages of Γ conjugacy classes:

dim H 2k (Y ) = #of age kconjugacy classes of Γ

On the other hand it happens that all odd cohomology groups are trivial:

dim H 2k+1 (Y ) = 0 (8.3.9)

This is true also in the case of C
2/Γ singularities, yet in n = 2, 3 the consequences

of the same fact are drastically different. In all complex dimensions n the deforma-
tions of the Kähler class are in one-to-one correspondence with the harmonic forms
ω(1,1), while those of the complex structure are in correspondence with the harmonic
forms ω(n−1,1). In n = 2 the harmonic ω(1,1) forms play the double role of Kähler
class deformations and complex structure deformations. This is the reason why we
can do a hyperKähler quotient and we have both moduli parameters in the Kähler
potential and in the polynomials cutting out the smooth variety. Instead in n = 3
Eq. (8.3.9) implies that the polynomials constraints cutting the singular locus have
no deformation parameters. The parameters of the resolution occur only at the level
of the Kähler quotient and are the levels of the Kählerian moment maps.

Given an algebraic representation of the variety Y as the vanishing locus of cer-
tain polynomials W (x) = 0, the algebraic 2k-cycles are the 2k-cycles that can be
holomorphically embedded in Y . The following statement in n = 3 is elementary:

3A resolution of singularities X → Y is crepant when the canonical bundle of X is the pullback of
the canonical bundle of Y .
4A variety is Gorenstein when the canonical divisor is a Cartier divisor, i.e., a divisor corresponding
to a line bundle.
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Statement 8.3.1 The Poincaré dual of any algebraic 2k-cycle is necessarily of type
(k, k)

Its converse is known as the Hodge conjecture.
Taking the above for granted we conclude that the so named junior conjugacy

classes (age = 1) are in a one-to-one correspondence with ω(1,1)-forms that span
H 1,1, while conjugacy classes of age 2 are in one-to-one correspondence with ω(2,2)-
forms that span H 2,2.

8.3.3 Ages for Γ ⊂ L168

For the holomorphic action on C
3 of the group L168 we have calculated the ages

of the various conjugacy classes, starting from the construction of the irreducible
three-dimensional complex representation discussed in Sect. 1.3.4.

In order to be able to compare with Markushevich’s paper [45], we sometimes
utilize its basis for the generators. It is important to note that the form given by
Markusevich of the generators which he calls τ , χ and ω, respectively of order 7,
3 and 2, does not correspond to the standard generators in the presentation of the
group L168 utilized in Sect. 1.3. Yet there is no problem since we have a translation
vocabulary. Setting:

R = ω.χ ; S = χ.τ ; T = χ2.ω (8.3.10)

these new generators satisfy the standard relations of the presentation displayed in
Eq. (1.3.7). For practical convenience we distinguish the abstract description of the
group, from its concrete realization in terms of matrices, by rewriting Eq. (1.3.7) in
terms of abstract generators denoted by the corresponding greek letters:

L168 =
(
ρ, σ, τ ‖ ρ2 = σ 3 = τ 7 = ρ.σ.τ = (τ.σ.ρ)4 = ε

)
(8.3.11)

In this way we can give an exhaustive enumeration of all the group elements as words
in the three symbols ρ,σ ,τ .

We begin by constructing explicitly the group L168 in Markusevich basis sub-
stituting the analytic form of the generators which follows from the identification
(8.3.10). We find

ε→
⎛
⎝ 1 0 0
0 1 0
0 0 1

⎞
⎠

ρ →

⎛
⎜⎜⎝
− 2Cos[ π14 ]√

7
− 2Cos[ 3π

14 ]√
7

2Sin[ π7 ]√
7

− 2Cos[ 3π
14 ]√
7

2Sin[ π7 ]√
7

− 2Cos[ π14 ]√
7

2Sin[ π7 ]√
7

− 2Cos[ π14 ]√
7

− 2Cos[ 3π
14 ]√

7

⎞
⎟⎟⎠

http://dx.doi.org/10.1007/978-3-319-74491-9_1
http://dx.doi.org/10.1007/978-3-319-74491-9_1
http://dx.doi.org/10.1007/978-3-319-74491-9_1
http://dx.doi.org/10.1007/978-3-319-74491-9_1
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σ →
⎛
⎝ 0 0 −(−1)1/7
(−1)2/7 0 0

0 (−1)4/7 0

⎞
⎠

τ →

⎛
⎜⎜⎝

i+(−1)13/14√
7

− (−1)1/14(−1+(−1)2/7)√
7

(−1)9/14(1+(−1)1/7)√
7

(−1)11/14(−1+(−1)2/7)√
7

i+(−1)5/14√
7

(−1)3/14(1+(−1)3/7)√
7

− (−1)11/14(1+(−1)1/7)√
7

− (−1)9/14(1+(−1)3/7)√
7

−−i+(−1)3/14√
7

⎞
⎟⎟⎠ (8.3.12)

We remind the reader that ρ, σ, τ are the abstract names for the generators of
L168 whose 168 elements are written as words in these letters (modulo relations).
Substituting these letters with explicit matrices that satisfy the defining relation of
the group one obtains an explicit representation of the latter. In the present case the
substitution (8.3.12) produces the irreducible 3-dimensional representation DA3.

8.3.3.1 The Case of the Full Group Γ = L168

Utilizing this explicit representation it is straightforward to calculate the age of each
conjugacy class and we obtain the result displayed in the following table.

Conjugacy class of L168 C1 C2 C3 C4 C5 C6

representative of the class e R S T SR T SR
order of the elements in the class 1 2 3 4 7 7

age 0 1 1 1 1 2
number of elements in the class 1 21 56 42 24 24

(8.3.13)

8.3.3.2 The Case of the Maximal Subgroup Γ = G21 ⊂ L168

In order to obtain the ages for the conjugacy classes of the maximal subgroup G21,
we just need to obtain the explicit three-dimensional form of its generators X and
Y satisfying the defining relations (1.3.35). This latter is determined by the above
explicit form of the L168 generators, by recalling the embedding relations:

Y = ρ σ τ 3 σ ρ ; X = σ ρ σ ρ τ 2 (8.3.14)

In this way we obtain the following explicit result:

Y → Y =
⎛
⎝−(−1)3/7 0 0

0 (−1)6/7 0
0 0 −(−1)5/7

⎞
⎠

Y → X =
⎛
⎝0 1 0
0 0 1
1 0 0

⎞
⎠ (8.3.15)

http://dx.doi.org/10.1007/978-3-319-74491-9_1
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Hence, for the action on C
3 of the maximal subgroup G21 ⊂ L168 we obtain the

following ages of its conjugacy classes:

Conjugacy Class of G21 C1 C2 C3 C4 C5

representative of the class e Y X 2Y X Y 2 Y X 2 X
order of the elements in the class 1 7 7 3 3

age 0 2 1 1 1
number of elements in the class 1 3 3 7 7

(8.3.16)

8.3.3.3 The Case of the Two Maximal Octahedral Subgroups

For the other two maximal subgroups O24A and O24B we find instead an identical
result. This latter is retrieved from the two embedding conditions of the generators
S and T .

Subgroup O24A

T = ρ σ ρ τ 2 σ ρ τ ; S = τ 2 σ ρ τ σ 2 (8.3.17)

Subgroup O24B

T = ρ τ σ ρ τ 2 σ ρ τ ; S = σ ρ τ σ ρ τ (8.3.18)

In this way we get:

Conjugacy Class of the O24A C1 C2 C3 C4 C5

representative of the class e T ST ST S ST
order of the elements in the class 1 3 2 2 4

age 0 1 1 1 1
number of elements in the class 1 8 3 6 6

(8.3.19)

and
Conjugacy Class of the O24B C1 C2 C3 C4 C5

representative of the class e T ST ST S ST
order of the elements in the class 1 3 2 2 4

age 0 1 1 1 1
number of elements in the class 1 8 3 6 6

(8.3.20)

8.3.3.4 The Case of the Cyclic Subgroups Z3 and Z7

Last we consider the age grading for the quotient singularities C
3/Z3 and C

3/Z7.
As generators of the two cyclic groups we respectively choose the matrices X and Y
displayed in Eq. (8.3.15). In other words we utilize either one of the two generators
of the maximal subgroup G21 ⊂ L168.
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The Γ = Z3 Case

The first step consists of diagonalizing the action of the generator X. Introducing the
unitary matrix:

q =
⎛
⎜⎝

1√
3

1√
3

1√
3

−1+i√3
2
√
3

−1−i√3
2
√
3

1√
3

−1−i√3
2
√
3

−1+i√3
2
√
3

1√
3

⎞
⎟⎠ (8.3.21)

we obtain:

X̃ ≡ q† X q =
⎛
⎝ e

2iπ
3 0 0
0 e− 2iπ

3 0
0 0 1

⎞
⎠ (8.3.22)

This shows that the quotient singularity C
3/Z3 is actually of the form C

2/Z3 ⊗ C

since it suffices to change basis of C
3 by introducing the new complex coordinates:

z̃a = q b
a zb (8.3.23)

It follows that in the resolution of the singularity we will obtain:

ALEZ3 ⊗ C → C
3

Z3
(8.3.24)

Yet, aswe discussmore extensively below, the starting setupC
3/Γ produces a special

type of ALE-manifold where all the holomorphic moment map levels are frozen to
zero and only the Kähler quotient parameters are switched on.

Equation (8.3.22) corresponds also to the decomposition of the three-dimensional
representation of Z3 into irreducible representations of Z3. From the diagonalized
form (8.3.22) of the generator we immediately obtain the ages of the conjugacy
classes:

Conjugacy Class of Z3 C1 C2 C3

representative of the class e X X2

order of the elements in the class 1 3 3
age 0 1 1

number of elements in the class 1 1 1

(8.3.25)

The Γ = Z7 Case

In the Z7 case, the generator Y is already diagonal and, as we see none of the three
complex coordinates is invariant under the action of the group. Hence differently
from the previous case we obtain:

MZ7 →
C

3

Z7
(8.3.26)
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where the resolved smooth manifold is not the direct product of C with an ALE-
manifold:

MZ7 �= ALEZ7 ⊗ C (8.3.27)

From the explicit diagonal form (8.3.15) of the generator we immediately obtain the
ages of the conjugacy classes:

Conjugacy Class of Z7 C1 C2 C3 C4 C5 C6 C7

representative of the class e Y Y2 Y3 Y4 Y5 Y6

order of the elements in the class 1 7 7 7 7 7 7
age 0 2 2 1 2 1 1

number of elements in the class 1 1 1 1 1 1 1

(8.3.28)

8.4 ALE Manifolds and the Resolution of C
2/Γ

Singularities

ALE manifolds are interesting per se since they are gravitational instantons; they
also provide a very important item of comparison for C

3/Γ singularities, since they
happen to be the crepant resolution ofC2/Γ singularitiesΓ ⊂ SU(2) being a kleinian
group.

8.4.1 ALE Manifolds

ALE means asymptotically locally Euclidean. This means that ALE manifolds are
smooth 4-manifolds with Euclidean signature and a metric leading to a self-dual
curvature two-form:

Rab
ALE = 1

2 ε
abcd Rcd

ALE (8.4.1)

which, for large distances from a core, approaches the flat Euclidean metric.
Actually ALE manifolds are all Ricci flat and constitute vacuum solutions of

Einstein equations afterWick rotation. In this sense ALE-manifolds are gravitational
instantons in the sameway as the connections with a self dual field strength are gauge
instantons.

The first instance of an ALE manifold was found by Eguchi and Hanson [52] in
1979 and its explicit form will be discussed in Sect. 8.7.

The fascination of ALE manifolds is that they happen to be in one-to-one corre-
spondence with the finite subgroups Γ ⊂ SU(2) and are similarly classified by the
ADE classification of simply-laced Lie algebras.



474 8 (Hyper)Kähler Quotients, ALE-Manifolds and C
n/Γ Singularities

Fig. 8.3 Peter Benedict Kronheimer (born 1963) is a British mathematician, known for his work
on gauge theory and its applications to 3- and 4-dimensional topology. He is currentlyWilliam Cas-
par Graustein Professor of Mathematics at Harvard University. He completed his PhD at Oxford
University under the direction of Sir Michael Atiyah. Kronheimer’s early work was on gravita-
tional instantons, in particular the classification of HyperKähler four manifolds with asymptotical
locally Euclidean geometry (ALE spaces) leading to the papers The construction of ALE spaces as
hyper-Kahler quotients and A Torelli-type theorem for gravitational instantons.He also contributed
extensively to the topology of 4-manifolds and to theory of Donaldson invariants. He and Nakajima
gave a construction of instantons on ALE spaces generalizing the Atiyah-Hitchin-Drinfeld-Manin
construction

In 1989 Peter Kronheimer (see Fig. 8.3) succeeded in constructing all of them as
HyperKähler quotients of suitably chosen flat HyperKähler manifolds dictated by
the structure of the finite group Γ to which each of them corresponds.

The association between ALE manifolds, ADE singularities and subgroups Γ ⊂
SU(2) is not a superficial matter rather it is a very deep and structural one. The
topological properties of theALE four-manifold are identifiedwith intrinsic numbers
of the corresponding Lie algebra; for instance the Hirzebruch signature τ of the ALE
coincides with the rank of the corresponding Lie Algebra G and with the dimension
of the chiral ring RΓ associated with the singular potential WΓ . On the other hand
the same number is also that of the non trivial conjugacy classes of Γ , apart of the
identity class.

The catch of all this is encoded in a surprising correspondence between extended
Dynkin diagrams and irreducible representations of the finite groups Γ that had
been discovered years before Kronheimer by McKay [53]. Without any doubt the
McKay correspondence provided Kronheimer with an essential guideline for his
construction.
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Fig. 8.4 Gary William Gibbons (born 1946) is a British theoretical physicist. Gibbons was born
in Coulsdon, Surrey. He was educated at Purley County Grammar School and the University of
Cambridge, where in 1969 he became a research student under the supervision of Dennis Sciama.
When Sciama moved to the University of Oxford, he became a student of Stephen Hawking,
obtaining his PhD from Cambridge in 1973. Gibbons became a full professor in 1997, a Fellow
of the Royal Society in 1999, and a Fellow of Trinity College, Cambridge in 2002. He has given
outstanding contributions to the theory of quantum black holes and to the theory of gravitational
instantons. His special interests in geometry in all of its aspects led him to contribute to many issues
in string and M-theory compactifications

A very important basis for Kronheimer work was encoded in the work on gravita-
tional instantons previously conducted by Gibbons and Hawking [47] (see Fig. 8.4)
and by Hitchin [48] (see also [49, 50]).

In the next subsections we begin the discussion of ALE manifolds and of their
topology. Kronheimer construction will be presented in Sect. 8.5.1.

8.4.2 ALE Manifolds and Their Relation with the ADE
Singularities

ALE spaces are non-compact manifolds that have originally emerged in the liter-
ature as gravitational instantons. Indeed they are Riemannian 4-manifolds with an
(anti)selfdual curvature 2-form and a metric that approaches the Euclidean metric at
infinity. In polar coordinates (r,ΘΘΘ) on R

4, we have gμν(r,ΘΘΘ) = δμν +O(r−4). This
corresponds to the intuitive concept of an instanton as a defect which is localized in
a finite region of space-time. This picture, however, is verified only modulo an addi-
tional subtlety that is of utmost relevance in the present geometrical construction.
The base manifold of the gravitational instanton has a boundary at infinity which,
rather than a pure 3-sphere is:

S
3/Γ (8.4.2)
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Γ ⊂ SU(2) being a finite subgroup of SU(2) ∼ S
3. Therefore, outside the core of

the instanton, rather than R
4, the manifold looks like the quotient singularity R

4/Γ .
This is the reason for the name given to these spaces: the asymptotic behaviour is
Euclidean only locally.

For the sake of our purposes the most important aspect of ALE spaces is that they
are complex 2-folds endowed with a HyperKähler structure and a trivial canonical
bundle c1 (ALEΓ ) = 0. This makes ALE spaces the non-compact analogues of the
K3 surface which, apart from the T4 torus is the only compact Calabi–Yau 2-fold.
Indeed viewed as a complex manifold, outside the core of the instanton, the ALE
space looks like the quotient singularity

ALEΓ ∼ C
2/Γ ; Γ ⊂ SU(2) (8.4.3)

where Γ is the above mentioned finite subgroup of SU(2). In this way we have
explained the rationale for the subindex Γ attached to the symbol denoting an ALE
space. Indeed it can be shown that the choice of the identification group at infinity
completely fixes the topological type of the ALE manifold. These types are in one-
to-one correspondence with the finite groups Γ which admit an ADE classification,
like simple Lie algebras and simple singularities. The correspondence between the
ADE classification of ALE spaces and that of simple singularities will be discussed
below. For the moment we note that the remaining ambiguity, once the identification
group Γ has been fixed is given by the moduli of the self dual metric (i.e. of the
HyperKähler structure) at fixed topological type.

In the HyperKähler quotient construction of the ALE spaces the complete set
of the HyperKähler structure moduli can be seen as the levels of the quaternionic
momentum map.

Let us summarize this viewpoint. In this approach the 4-dimensional HyperKähler
ALE space is obtained from a flat HyperKähler manifold S of real dimension 4n
invariant under the action of a compact Lie group GΓ whose generators are vector
fields X holomorphic with respect to the three complex structures of S . In this
construction the compact Lie group GΓ is fully determined by the choice of the
discrete group Γ . Because of their triholomorphicity the vector fields X preserve
also the HyperKähler 2-forms Ω i (i = 1, 2, 3):

0 = LXΩ
i = iXdΩ

i + d(iXΩ
i ) = d(iXΩ

i ) . (8.4.4)

IfS is simply connected, d(iXΩ i ) = 0 implies the existence of three functions μX
i

such that dμX
i = iXΩ

i . The functions μX
i are defined up to a constant, which can

be arranged so as to make them equivariant: XμY
i = μ[X,Y]i . The {μX

i } constitute the
triholomorphic momentum map discussed in Sect. 3.7.2, namely a map μ : S →
R

3⊗G
�
Γ , where G

�
Γ denotes the dual of the Lie algebra GΓ of the group GΓ . Indeed

let x ∈ GΓ be the element corresponding to the Killing vector X; then for a given
m ∈ F ,μi (m) : x �−→ μX

i (m) ∈ C is a linear functional onGΓ . LetZ ⊂ G
�
Γ be the

dual of the centre of GΓ . For each � ∈ R
3 ⊗Z the level set of the momentum map

http://dx.doi.org/10.1007/978-3-319-74491-9_3
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N ≡
⋂

X∈Z

(
μX
i

)−1
(	X

i ) ⊂ F , (8.4.5)

which has dimension dim N = dim S − 3 dim GΓ , is left invariant by the action
of GΓ , due to the equivariance of μ. Thus we can take the quotient

ALEΓ = N /GΓ . (8.4.6)

which is a manifold of dimension dimALEΓ = dimS − 4 dimGΓ as long as the
action of GΓ onN has no fixed points. The triplet Ω̂ i of 2-forms on ALEΓ , defined
via the restriction ofΩ i toN ⊂ S and the quotient projection fromN toALEΓ , are
the HyperKähler forms on ALEΓ . It is important to note that, once the third complex
structure J 3 is chosen as the preferred complex structure, the momentum maps
μX± = μX

1 ± iμX
2 are holomorphic (resp. antiholomorphic) functions. For ∀X ∈ Z

the level parameter �X is a 3-vector, corresponding to a unit quaternion:

�X =
(

	X
3 i(	X

1 − i	X
2 )

i(	X
1 + i	X

2 ) −	X
3

)
(8.4.7)

and the complex combinations:

	X
± = 	X

1 ± i	X
2 (8.4.8)

can be regarded as moduli of the complex structure deformations. This goes as
follows.

As a complex manifold, the ALE space equipped with the HyperKähler metric of
moduli �X can be identified with the zero-locus in C

3 of the following polynomial:

W ALE
Γ (u,w, z; t) = WΓ (u,w, z) +

r∑
i=1

ti P
(i)(u,w, z)

r ≡ dimRΓ (8.4.9)

where

1. WΓ (u,w, z) is the simple singularity polynomial corresponding to the finite sub-
group Γ ⊂ SU(2)

2. P (i)(u,w, z) is a basis spanning the chiral ring

RΓ = C[u,w, z]
∂WΓ

(8.4.10)

of polynomials in u,w, z that do not vanish upon use of the vanishing relations
∂u WΓ = ∂w WΓ = ∂z WΓ = 0.

3. The complex parameters t i are the complex structure moduli and they are in
one-to-one correspondence with the set of complex level parameters 	X+. As an
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illustration, in a later section the explicit relation between these two sets will be
worked out for the case of the Ak finite groups. Alternatively the parameters t i

can be seen as the moduli for the resolution of the quotient singularity C
2/Γ

It is a matter of fact that the dimension of the chiral ring r ≡ |RΓ | is precisely
equal to the number of non-trivial conjugacy classes (or of non trivial irreducible
representations) of the finite groupΓ . From the geometrical point of view this implies
an identification between the number of complex structure deformations of the ALE
manifold and the number r of non-trivial conjugacy classes just mentioned. As we
recall below this implies that τ = r , where τ is the Hirzebruch signature of the
manifold ALEΓ . In the language of algebraic geometry the singular orbifold C

2/Γ ,
which is in one-to-one correspondence with the vanishing locus Z0 of the potential

WΓ (u,w, z) admits an equivariant minimal resolutions of singularity Z
λ−→ Z0,

where Z is a smooth variety, λ is an isomorphism outside the singular point {0} ∈ Z0

and it is a proper map such that λ−1(Z0 − 0) is dense in Z . The fundamental fact
is that the exceptional divisor λ−1(0) ⊂ Z consists of a set of irreducible curves
cα, α = 1, . . . , r one for each vertex of the Dynkin diagram of the simple Lie
Algebra associated with Γ in the ADE classification of finite rotation groups. Each
cα is isomorphic to a copy of P

1; the intersection matrix of these non-trivial two-
cycles is the negative of the Cartan matrix:

cα ∩ cβ = −Cαβ . (8.4.11)

Kronheimer construction, reviewed inSect. 8.5.1, shows that the basemanifoldALEΓ
of an ALE space is diffeomorphic to the space Z supporting the resolution of the
orbifold Z0 ∼ C

2/Γ . Therefore Eq. (8.4.11) applies to the generators of the second
homology group of ALEΓ . In particular we see that

τ = dimH 2
c (ALEΓ ) = dimH2(ALEΓ ) =

= rank of the corresponding Lie Algebra =
= # of non trivial conj. classes in Γ = |RΓ | . (8.4.12)

For a proper illustration of (8.4.12) let us recall that on a non-compact manifold it is
worth considering the “compact-support” cohomology groups, which coincide with
the relative cohomology groups of forms vanishing on the boundary at infinity of the
manifold:

H p
c =

{L2 integrable, closed p − forms}
{L2 integrable, exact p − forms} = H p(ALEΓ , ∂ALEΓ ),

of dimensions bp
c . Analogously we will consider the compact support Dolbeault

cohomology groups H p,q
c , of dimensions h p,q

c . The Poincaré duality provides an iso-
morphism Hp(ALEΓ ) ∼ H 4−p

c (ALEΓ ), where Hp(ALEΓ ) are the homology groups.
Call bp their dimensions (theBetti numbers); then bp = b4−p

c . The fundamental topo-
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logical invariants characterizing gravitational instantons were recognized long time
ago to be the Euler characteristic χ and the Hirzebruch signature τ of the base
manifold. The Euler characteristic is the alternating sum of the Betti numbers:

χ =
4∑

p=0
(−1)pbp =

4∑
p=0
(−1)pb4−p

c =
4∑

p=0
(−1)pbp

c . (8.4.13)

The Hirzebruch signature is the difference between the number of positive and neg-
ative eigenvalues of the quadratic form on H 2

c (ALEΓ ) given by the cup product∫
ALEΓ

α ∧ β, with α, β ∈ H 2
c (ALEΓ ). That is, if b

2(+)
c and b2(−)c are the number of

selfdual and anti-selfdual 2-forms with compact support, τ = b2(+)c − b2(−)c . At this
point, we need two observations.

1. The HyperKähler formsΩ3,Ω±, being covariantly constant, cannot be L2 if the
space is non-compact

2. In the compact case, for instance for the K3 manifold, they are the unique
antiselfdual 2-forms, so that b2(−) = 3, b2(+) = τ + 3. Indeed from the
expression of the Hirzebruch signature in terms of the Hodge numbers, τ =∑

p+q=0mod2(−1)ph p,q , using the Calabi–Yau condition c1(K3) = 0, which
implies h2,0 = h0,2 = 1, and the fact that h0,0 = h2,2 = 1 we obtain h1,1 = τ+4.
Hence the cohomology in degree two splits as follows:

h2,0 h1,1 h0,2

1 1+ (τ + 3) 1

This leads to the conclusion that Ω3 ∈ H 1,1 and Ω± ∈ H 2,0 (resp. H 0,2) are the
unique antiselfdual two-forms.

In the non compact case, by the observation (1) the HyperKähler two-forms are
deleted from the compact support cohomology groups. However the Hirzebruch sig-
nature is what it is, hence also other three selfdual two-forms have to be deleted as
being non square-integrable, in order to maintain the value of τ . The “Hodge dia-
monds” for the usual andL2 Dolbeault cohomology groups are respectively given by:

tot. cohom. =

1
0 0

1 τ + 4 1
0 0

0

comp. cohom. =

0
0 0

0 τ 0
0 0

1
(8.4.14)

Note that, from (8.4.13), χ = τ + 1.
The list of the simple singularity potentials in association with the various finite

groups Γ ⊂ SU(2) and the corresponding ALE manifolds is given in Table8.3.
We show later on how the undeformed singularity potentials can be derived from
consideration of Γ -invariants.
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Table 8.3 FINITE SU(2) SUBGROUP versus ALE MANIFOLD properties

Γ . WΓ (u,w, z) R = C[u,w,z]
∂W |R| #c.c. τ ≡ χ − 1

Ak u2+w2−zk+1 {1, z, ..
.., zk−1}

k k + 1 k

Dk+2 u2 + w2z +
zk+1

{1,w, z,w2,

z2, ..., zk−1}
k + 2 k + 3 k + 2

E6 = T u2 + w3 + z4 {1,w, z,
wz, z2,wz2}

6 7 6

E7 = O u2+w3+wz3 {1,w, z,w2,

z2,wz,w2z}
7 8 7

E8 = I u2 + w3 + z5 {1,w, z, z2,wz,
z3,wz2,wz3}

8 9 8

8.4.3 ALE Manifolds as Algebraic Loci

The ALE manifold is the algebraic locus cut out in C
3 by the polynomial constraint:

W ALE
Γ (u,w, z, t) = 0 (8.4.15)

The complex parameters t parameterize the complex structure of the considered
ALE manifold.

An example of this construction corresponds to the following choices:

Γ = Ak

WAk (u,w, z, ζ ) = u2 + w2 + zk+1

|RΓ |∑
i=1

t i P i (u,w, z) = tk z
k−1 tk−1 zk−2 + · · · + t2z + t1 (8.4.16)

In the case we consider we can rewrite:

W ALE
Ak

(u,w, z, t) = u2 + w2 + P(z, t)

P(z, t) ≡ zk+1 + tk z
k−1 + tk−1 zk−2 + · · · + t2 z + t1 (8.4.17)

The order k + 1 polynomial P(x, t) can always be factorized according to its roots
ai and we can write:

P(z, t) =
k+1∏
i=1
(z − ai ) (8.4.18)

This parametrization allows a simple characterization of the k homology cycles cα
with intersection matrix given by (8.4.11).
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8.4.4 Explicit Form of the Homology 2-Cycles on ALE
Manifolds

Consider the particular case where the ALE moduli relative to the complex structure,
namely the roots ai introduced in (8.4.18) are all real and ordered on the real line as:

ai ∈ R a1 > a2 > · · · > ak (8.4.19)

we can introduce the following k maps of the compact 2-sphere

S
2 = { 0 ≤ θ ≤ π ; 0 ≤ ϕ ≤ 2π} (8.4.20)

into the ALE manifold:

(θ, ϕ) −→ cα ≡
⎧⎨
⎩
u = Aα (θ) sin ϕ
w = Aα (θ) cosϕ
z = aα+aα+1

2 + cos θ
( aα−aα+1

2

) (8.4.21)

where the function Aα (θ) is to be determined in such a way that the ALE equation
is satisfied, that is:

u2 + w2 +
k+1∏
i=1
(z − ai ) = 0 (8.4.22)

We immediately obtain:

Aα (θ) = aα − aα+1
2

sin θ
√
Δα (θ) (8.4.23)

where

Δα (θ) =
∏

j �=α,α+1

[
aα + aα+1 − 2a j

2
+ cos θ

(
aα − aα+1

2

)]
(8.4.24)

The 2-spheres do touch in one point on the real z-axis since for θ = 0, π we have
Aα(0) = Aα(π) = 0 implying u = w = 0, while:

zα(π) = aα = zα+1(0) (8.4.25)

This shows that the intersection matrix of these cycles is indeed the negative of the
Cartan matrix for the Ak Lie algebra:
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cα ∩ cβ = −

⎛
⎜⎜⎝

2 −1 0 0 . . . 0
−1 2 −1 0 . . . 0
. . . . . . . . . . . . . . . . . .

0 . . . 0 0 −1 2

⎞
⎟⎟⎠ (8.4.26)

Next we can observe that for any value of the moduli away from the singularities,
namely where all the roots ai are distinct, the ALE manifold, viewed as a real man-
ifold, is always the same manifold in the same way as for any non singular value of
the modulus parameter τ the complex torus

z ∼ z + n + mτ n,m ∈ Z (8.4.27)

is always the same real torus. Hence the homology basis we have constructed in a
specific complex structure is a homology basis for the underlying realALE-manifold.

8.4.5 Periods of the Ω
(2,0)
AL E Form on ALE Spaces

Given these preliminaries we can calculate the periods of the Ω(2,0)
ALE holomorphic

2-form on the ALEmanifolds. For an arbitrary ALE-space the number of homology
2-cycles is:

#2-cycles = |R| = dimension of chiral ring

= # of irreps of Γ − 1

= τ = Hirzebruch signature of ALE

= k = rank of the Lie algebra ↔ Γ (8.4.28)

and we can introduce the following k = τ -dimensional vector of periods:

ΘΘΘ ALE (t) ≡=

⎛
⎜⎜⎜⎝
∫
c1
Ω
(2,0)
ALE∫

c2
Ω
(2,0)
ALE

. . .∫
ck
Ω
(2,0)
ALE

⎞
⎟⎟⎟⎠ (8.4.29)

8.4.5.1 Explicit Calculation of the Periods in the Ak Case

In the case of the ALE manifolds encoded in Eq. (8.4.17) and (8.4.18) it is fairly
simple to calculate explicitly the periods (8.4.29).
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As holomorphic 2-form we can choose:

Ω
(2,0)
ALE =

du ∧ dz

∂wW ALE
Ak

= 1
2

du ∧ dz

w
(8.4.30)

Specializing Ω(2,0)
ALE to the homology two-cycles we have:

du = A′α(θ) sin ϕ dθ + Aα(θ) cosϕ dϕ (8.4.31)

dz = aα − aα+1
2

sin θ dθ (8.4.32)

w = 2Aα(θ) cosϕ (8.4.33)

Hence we obtain: ∫
cα

Ω
(2,0)
ALE =

∫
S2

c�α
[
Ω
(2,0)
ALE

]

= 1
2

aα − aα+1
2

∫
dϕ ∧ sin θ dθ

= π (aα − aα+1) (8.4.34)

The ALE manifold develops a singularity when some of the periods (volumes) of the
cohomology 2-cycles shrinks to zero and this happens when two contiguous roots of
the polynomial (8.4.18) coincide. In particular all cycles shrink to zero and we are
at the orbifold singular point when all roots coincide (Fig. 8.5).

8.4.6 Comparison with the C
3/Γ Case

Let us compare the above predictions for the case (B) of C
3/Γ singularities with

the well known case (A) of C
2/Γ where Γ is a Kleinian subgroup of SU(2) and

the resolution of the singularity leads to an ALE manifold. As we already stressed
above this latter can be explicitly constructed by means of a HyperKähler quotient,
according with Kronheimer’s construction.

Table8.3 encodes the main properties about Y → X = C
2/Γ which we have

been discussing throughout the present section. They can be summarized as follows:

1. As an affine variety the singular orbifold X is described by a single polynomial
equation WΓ (u,w, z) = 0 in C

3. This equation is simply given by a relation
existing among the invariants of Γ as we anticipated in the previous section. Note
that this is the case also for X = C

3

L168
, asMarkushevich has shown. As we already

recalled, he has found one polynomial constraint WL168(u1, u2, u3, u4) = 0 of
degree 10 in C

4 which describes X . Generically this is not rue for other groups
including subgroups of L168.
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Fig. 8.5 The homology 2-cycles of an ALE manifold of type Ak . Naming ai the k + 1 roots of the
polynomial P(x, t), the radii of the homology two spheres are rα = aα−aα+1

2 and the centers are
aα+aα+1

2

2. The resolved locus Y in the case of ALE manifolds is obtained by a deformed
equation:

W ALE
Γ (u,w, z; t) = WΓ (u,w, z) +

r∑
i=1

ti P
(i)(u,w, z)

r ≡ dimRΓ (8.4.35)

where

(a) WΓ (u,w, z) is the simple singularity polynomial corresponding to the finite
subgroup Γ ⊂ SU(2)

(b) P (i)(u,w, z) is a basis spanning the chiral ring

RΓ = C[u,w, z]
∂WΓ

(8.4.36)

of polynomials in u,w, z that do not vanish upon use of the vanishing rela-
tions ∂u WΓ = ∂w WΓ = ∂z WΓ = 0.

(c) The complex parameters t i are the complex structure moduli and they are
in one-to-one correspondence with the set of complex level parameters 	X+.

3. According with the general view put forward in the previous section, for ALE
manifolds we have:
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dimH (1,1) = r ≡ # non trivial conjugacy classes of Γ (8.4.37)

We also have:
dimRΓ = r (8.4.38)

as one sees from Table8.3. From the point of view of complex differential geom-
etry this is the consequence of a special coincidence, already stressed in the
previous section, which applies only to the case of complex dimension 2. As one
knows, for Calabi-Yau n-folds complex structure deformations are associated
with ωn−1,1 ∈ H (n−1,1) harmonic forms, while Kähler structure deformations, for
all n, are associated with ω1,1 ∈ H (1,1) harmonic forms. Hence when n = 2, the
(1, 1)-forms play a double role as complex structure deformations and as Kähler
structure deformations. For instance, this is well known in the case of K3. Hence
in the n = 2 case the number of non trivial conjugacy classes of the group Γ
coincides both with the number of Kähler moduli and with number of complex
structure moduli of the resolved variety.

4. In the case of Y → X = C
3

Γ
the number of (1, 1)-forms and hence of Kähler

moduli is still related with r = #junior conjugacy classes of Γ but there are no
complex-structure deformations.

8.5 The McKay Correspondence for C
2/Γ

Next we address the McKay correspondence and we show how it leads, accord-
ing to Kronheimer, to the explicit construction of ALE-manifolds as HyperKähler
quotients.

The character table of any finite group γ allows to reconstruct the decomposition
coefficients of any representation along the irreducible representations:

D =
r⊕
μ=1

aμ Dμ

aμ = 1

g

r∑
i=1

gi χ
(D)
i χ

(μ) �

i (8.5.1)

For the finite subgroups Γ ⊂ SU(2) a particularly important case is the decompo-
sition of the tensor product of an irreducible representation Dμ with the defining
2-dimensional representation Q. It is indeed at the level of this decomposition that
the relation between these groups and the simply laced Dynkin diagrams becomes
explicit and it is named the McKay correspondence. This decomposition plays a
crucial role in the explicit construction of ALE manifolds according to Kronheimer.
Setting
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Q ⊗ Dμ =
r⊕
ν=0

Aμν Dν (8.5.2)

where D0 denotes the identity representation, one finds that the matrix c̄μν =
2δμν − Aμν is the extended Cartan matrix relative to the extended Dynkin diagram
corresponding to the given group. We remind the reader that the extended Dynkin
diagram of any simply laced Lie algebra is obtained by adding to the dots represent-
ing the simple roots {α1 ...... αr } an additional dot (marked black in Figs. 8.6, 8.7)
representing the negative of the highest root α0 = ∑r

i=1 ni αi (ni are the Coxeter
numbers). Thus we see a correspondence between the non-trivial conjugacy classes
Ci (or equivalently the non-trivial irrepses) of the groupΓ (G) and the simple roots of
G. In this correspondence the extended Cartan matrix provides the Clebsch–Gordon
coefficients (8.5.2), while the Coxeter numbers ni express the dimensions of the
irreducible representations. All these informations are summarized in Figs. 8.6, 8.7
where the numbers ni are attached to each of the dots: the number 1 is attached to
the extra dot since it stands for the identity representation.
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Fig. 8.6 Extended Dynkin diagrams of the infinite series
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Fig. 8.7 Exceptional extended Dynkin diagrams
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8.5.1 Kronheimer’s Construction

Given any finite subgroup of Γ ⊂ SU(2), we consider a space P whose elements
are two-vectors of |Γ | × |Γ | complex matrices: p ∈P = (A, B). The action of an
element γ ∈ Γ on the points of P is the following:

(
A
B

)
γ−→

(
uγ i v̄γ
i vγ ūγ

) (
R(γ ) A R(γ−1)
R(γ ) B R(γ−1)

)
(8.5.3)

where the two-dimensional matrix on the right hand side is the realization of γ inside
the defining two-dimensional representationQ ⊂ SU(2), while R(γ ) is the regular,
|Γ |-dimensional representation. The basis vectors in R named eγ are in one-to-one
correspondence with the group elements γ ∈ Γ and transform as follows:

R(γ ) eδ = eγ ·δ ∀ γ , δ ∈ Γ (8.5.4)

In mathematical notation the space P is named as:

P � Hom (R,Q ⊗ R) (8.5.5)

Next we introduce the space S , which by definition is the subspace of Γ -invariant
elements inP:

S ≡ {p ∈P/∀γ ∈ Γ, γ · p = p} (8.5.6)

Explicitly the invariance condition reads as follows:

(
uγ i v̄γ
i vγ ūγ

) (
A
B

)
=
(
R(γ−1) A R(γ )
R(γ−1) B R(γ )

)
(8.5.7)

The decomposition (8.5.2) is very useful in order to determine the Γ -invariant flat
space (8.5.6).

A two-vector of matrices can be thought of also as a matrix of two-vectors: that is,
P = Q⊗Hom(R, R) = Hom(R,Q⊗R). Decomposing the regular representation,
R =⊕r

ν=0 nμDμ into irrepses, using Eq. (8.5.2) and Schur’s lemma, we obtain:

S =
⊕
μ,ν

Aμ,νHom(C
nμ,Cnν ) . (8.5.8)

The dimensions of the irrepses, nμ are displayed in Figs. 8.6, 8.7. From Eq. (8.5.8)
the real dimension of S follows immediately: dim S =∑

μ,ν 2Aμνnμnν implies,
recalling that A = 2×1− c̄ [see Eq. (8.5.2)] and that for the extended Cartan matrix
c̄n = 0:

dimC S = 2
∑
μ

n2μ = 2|Γ | . (8.5.9)
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In mathematical notation the space S is denoted as follows:

S � Hom Γ (R,Q ⊗ R) (8.5.10)

So we can summarize the discussion by saying that:

dimC [Hom Γ (R,Q ⊗ R)] = 2 |Γ | (8.5.11)

The quaternionic structure of the flat manifolds P and S can be seen by simply
writing their elements as follows:

p =
(

A i B†

i B A†

)
∈ Hom (R,Q ⊗ R) A, B ∈ End(R) .

Then theHyperKähler forms and theHyperKählermetric are definedby the following
formulae:

Θ = Tr(dp† ∧ dp) =
(
iK iΩΩΩ
iΩΩΩ −iK

)
ds2 × 1 = Tr(dp† ⊗ dp) (8.5.12)

In the above equations the trace is taken over the matrices belonging to End(R) in
each entry of the quaternion. From Eq. (8.5.12) we extract the explicit expressions
for the Kähler 2-form K and the holomorphic 2-form ΩΩΩ of the flat HyperKähler
manifold Hom (R,Q ⊗ R). We have:

K = −i [Tr (dA† ∧ dA
)+ Tr

(
dB† ∧ dB

)] ≡ igαβ̄ dq
α ∧ dq β̄

ds2 = gαβ̄ dq
α ⊗ dq β̄

ΩΩΩ = 2Tr (dA ∧ dB) ≡ Ωαβ dq
α ∧ dqβ (8.5.13)

Starting from the above written formulae, by means of an elementary calculation one
verifies that both the metric and the HyperKähler forms are invariant with respect to
the action of the discrete group Γ defined in Eq. (8.5.3). Hence one can consistently
reduce the space Hom (R,Q ⊗ R) to the invariant space Hom Γ (R,Q ⊗ R) defined
in Eq. (8.5.6). The HyperKähler 2-forms and the metric of the flat space S , whose
real dimension is 4|Γ | are given by Eq. (8.5.13) where the matrices A, B satisfy the
invariance condition Eq. (8.5.7).

8.5.1.1 Solution of the Invariance Constraint in the Case of the Cyclic
Groups Ak

The space S can be easily described when Γ is the cyclic group Ak . The order of
Ak is k + 1; the abstract multiplication table is that of Zk+1. We can immediately
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read it off from the matrices of the regular representation. Obviously, it is sufficient
to consider the representative of the first element e1, as R(e j ) = (R(e1)) j .

One has:

R(e1) =

⎛
⎜⎜⎜⎜⎜⎝

0 0 · · · 0 1
1 0 · · · 0 0
0 1 · · · 0 0
...
...
. . .
...
...

0 0 · · · 1 0

⎞
⎟⎟⎟⎟⎟⎠ (8.5.14)

Actually, the invariance condition Eq. (8.5.7) is best solved by changing basis so as
to diagonalize the regular representation, realizing explicitly its decomposition in
terms of the k unidimensional irrepses. Let ν = e

2π i
k+1 , be a (k + 1)th root of unity so

that νk+1 = 1. The looked for change of basis is performed by means of the matrix:

Si j = 1√
k + 1

νi j ; i, j = 0, 1, 2, . . . , k

(
S−1

)
i j =

(
S†
)
i j =

1√
k + 1

νk+1−i j (8.5.15)

In the new basis we find:

R̂(e0) ≡ S−1 R(e0) S =

⎛
⎜⎜⎜⎜⎜⎝

1 0 . . . 0 0
0 1 0 . . . 0 0
...
...
. . .

...
...

0 0 . . . 1 0
0 0 . . . 0 1

⎞
⎟⎟⎟⎟⎟⎠

R̂(e1) ≡ S−1 R(e1) S =

⎛
⎜⎜⎜⎜⎜⎝

1 0 . . . 0 0
0 ν 0 . . . 0 0
...
...
. . .

...
...

0 0 . . . νk−1 0
0 0 . . . 0 νk

⎞
⎟⎟⎟⎟⎟⎠ (8.5.16)

Equation (8.5.16) displays on the diagonal the representatives of e j in the one-
dimensional irrepses.

In the above basis, the explicit solution of Eq. (8.5.7) is given by

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 u0 0 · · · 0
0 0 u1 · · · 0
...
...
...
. . .

...
...
...
... uk−1

uk 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎠

; B =

⎛
⎜⎜⎜⎜⎜⎝

0 0 · · · · · · vk
v0 0 · · · · · · 0
0 v1 · · · · · · 0
...
...
. . .

...

0 0 · · · vk−1 0

⎞
⎟⎟⎟⎟⎟⎠ (8.5.17)
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We see that these matrices are parameterized in terms of 2k + 2 complex, i.e. 4(k +
1) = |Ak | real parameters. In the Dk+2 case, where the regular representation is 4k-
dimensional, choosing appropriately a basis, one can solve analogously Eq. (8.5.7);
the explicit expressions are too large, so we do not write them. The essential point
is that the matrices A and B no longer correspond to two distinct set of parameters,
the group being non-abelian.

8.5.2 The Gauge Group for the Quotient and Its Moment
Maps

The next step in the Kronheimer construction of the ALE manifolds is the deter-
mination of the group F of triholomorphic isometries with respect to which we
will perform the quotient. We borrow from physics the nomenclature gauge group
since in a would beN = 3, 4 rigid three-dimensional gauge theory where the space
Hom Γ (R,Q ⊗ R) is the flat manifold of hypermultiplet scalars, the triholomorphic
moment maps ofF emerge as scalar dependent non derivative terms in the hyperino
supersymmetry transformation rules generated by the gauging of the group F .

Consider the action of SU(|�|) onHom (R,Q ⊗ R) given, using the quaternionic
notation for the elements of Hom (R,Q ⊗ R), by

∀g ∈ SU(|�|) , g :
(

A i B†

i B A†

)
�−→

(
gAg−1 i g B† g−1
i g B g−1 g A† g−1

)
(8.5.18)

It is easy to see that this action is a triholomorphic isometry of Hom (R,Q ⊗ R).
Indeed both the HyperKähler forms Θ and the metric ds2 are invariant.

Let F ⊂ SU(|�|) be the subgroup of the above group which commutes with the
action of Γ on the space Hom (R,Q ⊗ R), action which was defined in Eq. (8.5.3).
Then the action ofF descends to Hom Γ (R,Q ⊗ R) ⊂ Hom (R,Q ⊗ R) to give a
triholomorphic isometry: indeed the metric and the HyperKähler forms on the space
Hom Γ (R,Q ⊗ R) are just the restriction of those on Hom (R,Q ⊗ R). Therefore
one can take the HyperKähler quotient of Hom Γ (R,Q ⊗ R) with respect toF .

Let { f A} be a basis of generators for F, the Lie algebra ofF . Under the infinites-
imal action of f = 1 + λA fA ∈ F, the variation of p ∈ Hom Γ (R,Q ⊗ R) is
δp = λAδA p, with

δA p =
( [ f A, A] i[ f A, B†]
i[ f A, B] [ f A, A†]

)

The components of the momentum map are then given by

μA = Tr (q† δA p) ≡ Tr

(
f A μ3(p) f A μ−(p)
f A μ+(p) f A μ3(p)

)
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so that the real and holomorphic maps μ3 : Hom Γ (R,Q ⊗ R) → F
∗ and μ+ :

Hom Γ (R,Q ⊗ R) → C× F
∗ can be represented as matrix-valued maps:

μ3(p) = −i
([A, A†] + [B, B†])

μ+(p) = ([A, B]) . (8.5.19)

In this way we get:

μA =
(
P3

A P−
A

P+
A −P3

A

)
(8.5.20)

where:

P3
A = −i

[
Tr
([
A , A†] f A

)+ Tr
([
B† , B

]
f A
)]

P+
A = Tr ([A , B] f A) (8.5.21)

Let Z� be the dual of the center of F.
In correspondence with a level ζ = {ζ 3, ζ+} ∈ R3 ⊗ Z� we can form the Hyper-

Kähler quotient:
Mζ ≡ μ−1(ζ ) //HK F (8.5.22)

Varying ζ and Γ all ALE manifolds can be obtained as Mζ .
First of all, it is not difficult to check that Mζ is four-dimensional. Let us see

how this happens. There is a nice characterization of the group F in terms of the
extended Dynkin diagram associated with Γ . We have

F =
r+1⊗
μ=1

U(nμ)
⋂

SU(|�|) (8.5.23)

where the sum is extended to all the irreducible representations of the group Γ and
nμ are their dimensions. One should also take into account that the determinant of
all the elements must be one, since F ⊂ SU(|�|). Pictorially the group F has a
U(nμ) factor for each dot of the diagram, nμ being associated with the dots as in
Figs. 8.6, 8.7. F acts on the various components of Hom Γ (R,Q ⊗ R) that are in
correspondence with the edges of the diagram, see Eq. (8.5.8), as dictated by the
diagram structure. From Eq. (8.5.23) it is immediate to derive:

dimF =
∑
μ

n2μ − 1 = |Γ | − 1 (8.5.24)

It follows that

dimR Mζ = dimR Hom Γ (R,Q ⊗ R)− 4 dimR F = 4|Γ | − (4|Γ | − 1) = 4
(8.5.25)
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Analyzing the construction we see that there are two steps. In the first step, by
setting the holomorphic part of the moment map to its level ζ , we define an algebraic
locus in a larger space. Next the Kähler quotient further reduces such a locus to
the necessary complex dimension 2. The two steps are united in one because of the
triholomorphic character of the isometries. As we are going to stress in a subsequent
section, in complex dimension 3 there is only holomorphicity; hence the two steps
are separated. There must be another principle that leads to impose those constraints
that cut out the algebraic locus V|Γ |+2 of which we perform the Kähler quotient in
the next step (see Eq. (8.2.24)). The main question is to spell out such principles.
As anticipated, equation p ∧ p = 0 is the one that does the job. We are not able to
reduce the 3|Γ |2 quadrics on 3|Γ | variables to an ideal with 2|Γ |−2 generators, yet
we know that such reduction must exist. Indeed, by means of another argument that
utilizes Lie group orbits we can show that there is a variety of complex dimension
3, named D0

Γ which is in the kernel of equation p ∧ p = 0.

8.5.2.1 The Triholomorphic Moment Maps in the Ak Case of
Kronheimer Construction

The structure of F and the momentum map for its action are very simply worked
out in the Ak case. An element f ∈ F must commute with the action of Ak on P ,
Eq. (8.5.3), where the two-dimensional representation in the l.h.s. is given by:

Γ (Ak) � γ	 = Q	 ≡
(
e2π i	/(k+1) 0

0 e− 2π i	/(k+1)

)
; {	 = 1, ....., k + 1}

Then f must have the form

f = diag(eiϕ0 , eiϕ1 , . . . , eiϕk ) ;
k∑

i=0
ϕi = 0 . (8.5.26)

Thus F is just the algebra of diagonal traceless k + 1-dimensional matrices, which
is k-dimensional. Choose a basis of generators for F, for instance:

f1 = diag(1,−1, 0, . . . , 0)
f2 = diag(1, 0,−1, 0, . . . , 0)
. . . = . . .
fk = diag(1, 0, 0, . . . , 0,−1) (8.5.27)

From Eq. (8.5.21) we immediately obtain the components of the momentum map:

P3
A = |u0|2 − |uk |2 − |v0|2 + |vk |2 +

(|uA−1|2 − |uA|2 − |vA−1|2 + |vA|2
)

P+
A = u0v0 − ukvk +

(
uA−1vA−1 − uA vA

)
, (A = 1, . . . , k) (8.5.28)
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8.5.3 Level Sets and Weyl Chambers

In order forMζ to be a smooth manifold, it is
necessary thatF acts freely onμ−1(ζ ). This happens or does not happen depend-

ing on the value of ζ . A simple characterization of Z can be given in terms of the
simple Lie algebra G associated with Γ . There exists an isomorphism between Z
and the Cartan subalgebra HCSA ⊂ G. Thus we have

dim Z = dim HCSA = rank G

= #of non trivial conj. classes in Gamma (8.5.29)

The space Mζ turns out to be singular when, under the above identification Z ∼
HCSA, any of the level components ζ i ∈ R3⊗Z lies on the walls of aWeyl chamber.
In particular, as the point ζ i = 0, (i = 1, . . . , r ) is identified with the origin of the
root space, which lies of course on all the walls of the Weil chambers, the spaceM0

is singular. Not too surprisingly we will see in a moment thatM0 corresponds to the
orbifold limit C

2/Γ of a family of ALE manifolds with boundary at infinity S
3/Γ .

To verify this statement in general let us choose the natural basis for the regular
representation R, in which the basis vectors eδ transform as in Eq. (8.5.4). Define the
space L ⊂ S as follows:

L =
{(

C
D

)
∈ S /C, D are diagonal in the basis {eδ}

}
(8.5.30)

For every element γ ∈ Γ there is a pair of numbers (cγ , dγ ) given by the corre-
sponding entries of C, D: C · eγ = cγ eγ , D · eγ = dγ eγ . Applying the invariance
condition Eq. (8.5.7), which is valid since L ⊂ S , we obtain:

(
cγ ·δ
dγ ·δ

)
=
(
uγ i v̄γ
ivγ ūγ

)(
cδ
dδ

)
(8.5.31)

We can identify L with C
2 associating for instance (C, D) ∈ L �−→ (c0, d0) ∈ C

2.
Indeed all the other pairs (cγ , dγ ) are determined in terms of Eq. (8.5.31) once (c0, d0)
are given. By Eq. (8.5.31) the action of Γ on L induces exactly the action of Γ on C

2

provided by the its two-dimensional defining representation inside SU(2). It is quite
easy to show the following fundamental fact: each orbit of F in μ−1(0) meets L in
one orbit of Γ . Because of the above identification between L and C

2, this leads to
conclude thatμ−1(0)/F is isometric toC

2/Γ . Instead of reviewing the formal proof
of these statements devised by Kronheimer, we will verify them explicitly in the case
of the cyclic groups, giving a description which sheds some light on the deformed
situation; that is we show in which way a non-zero level ζ+ for the holomorphic
momentum map puts μ−1(ζ ) in correspondence with the affine hypersurface in C

3

cut out by the polynomial constraint (8.4.35)which is a deformation of that describing
the C

2/Γ orbifold, obtained for ζ+ = 0.
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8.5.3.1 Retrieving the Polynomial Constraint from the HyperKähler
Quotient in the Γ =Ak Case

We can directly realize C
2/Γ as an affine algebraic surface in C

3 by expressing
the coordinates x , y and z of C

3 in terms of the matrices (C, D) ∈ L . The explicit
parametrization of the matrices inS in the Ak case, which was given in Eq. (8.5.17)
in the basis in which the regular representation R is diagonal, can be conveniently
rewritten in the natural basis

{
eγ
}
via the matrix S−1 defined in Eq. (8.5.15). The

subset L of diagonal matrices (C, D) is given by:

C = c0 diag(1, ν, ν
2, . . . , νk), D = d0 diag(1, ν

k, νk−1, . . . , ν), (8.5.32)

This is nothing but the fact thatC2 ∼ L . The set of pairs

(
νmc0
νk−md0

)
,m = 0, 1, . . . , k

is an orbit of Γ in C
2 and determines the corresponding orbit of Γ in L . To describe

C
2/Ak one needs to identify a suitable set of invariants (u,w, z) ∈ C

3 such that

0 = WΓ (u,w, z) ≡ u2 + w2 − zk+1 (8.5.33)

To this effect we define:

u = 1
2 (x + y) ; w = −i 12 (x − y) ⇔ xy = u2 + w2 (8.5.34)

and we make the following ansatz:

x = det C ; y = det D, ; z = 1

k + 1
TrCD. (8.5.35)

This guess is immediately confirmed by the study of the deformed surface. We know
that there is a one-to-one correspondence between the orbits of F in μ−1(0) and
those of Γ in L . Let us realize this correspondence explicitly.

Choose the basis where R is diagonal. Then (A, B) ∈ S have the form of
Eq. (8.5.17). The relation xy = zk+1 holds also true when, in Eq. (8.5.35), the pair
(C, D) ∈ L is replaced by an element (A, B) ∈ μ−1(0).

To see this, let us describe the elements (A, B) ∈ μ−1(0). We have to equate the
right hand sides of Eq. (8.5.19) to zero. We note that:

[A, B] = 0 ⇒ vi = u0v0
ui

∀i (8.5.36)

Secondly,

[A, A†] + [B, B†] = 0 ⇒ |ui | = |u j | and |vi | = |v j | ∀i, j (8.5.37)

From the previous two equations we conclude that:
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u j = |u0|eiφ j ; v j = |v0|eiψ j (8.5.38)

Finally:
[A, B] = 0 ⇒ ψ j = Φ − φ j ∀ j (8.5.39)

where Φ is an arbitrary overall phase.
In this way, we have characterized μ−1(0) and we immediately check that the

pair (A, B) ∈ μ−1(0) satisfies xy = zk+1 if x = det A, y = det B and z =
1/(k + 1)Tr AB as we have proposed in Eq. (8.5.35).

After this explicit solution of themomentummapconstraint has been implemented
we are left with k + 4 parameters, namely the k + 1 phases φ j , j = 0, 1, . . . k, plus
the absolute values |u0| and |v0| and the overall phase Φ. So we have:

dimμ−1(0) = dimS − 3 dimF = 4|Γ | − 3(|Γ | − 1) = |Γ | + 3 (8.5.40)

where |Γ | = k + 1.
Now we perform the quotient of μ−1(0) with respect toF . Given a set of phases

fi such that
∑k

i=0 fi = 0mod 2π and given f = diag(ei f0 , ei f1 , . . . , ei fk ) ∈ F , the

orbit ofF in μ−1(0) passing through

(
A
B

)
has the form

(
f A f −1
f B f −1

)
.

Choosing f j = f0 + jψ +∑ j−1
n=0 φn , j = 1, . . . , k, with ψ = − 1

k

∑k
n=0 φn , and

f0 determined by the condition
∑k

i=0 fi = 0mod 2π , one obtains

f A f −1 = a0

⎛
⎜⎜⎜⎜⎝
0 1 0 . . . 0
0 0 1 . . . 0
. . . . . .

0 0 . . . 0 1
1 0 0 . . . 0

⎞
⎟⎟⎟⎟⎠ , f B f −1 = b0

⎛
⎜⎜⎜⎜⎝
0 0 . . . 0 1
1 0 0 . . . 0
0 1 0 . . . 0
. . . . . .

0 . . . 0 1 0

⎞
⎟⎟⎟⎟⎠

(8.5.41)
where a0 = |u0|eiψ and b0 = |v0|ei(Φ−ψ). Since the phasesφ j are determinedmodulo
2π , it follows that ψ is determined modulo 2π

k+1 . Thus we can say (a0, b0) ∈ C
2/Γ .

This is the one-to-one correspondence between μ−1(0)/F and C
2/Γ .

Next we derive the deformed relation between the invariants x, y, z. It fixes the
correspondencebetween the resolutionof the singularity performed in themomentum
map approach and the resolution performed on the hypersurface xy = zk+1 in C

3.
To this purpose, we focus on the holomorphic part of the momentum map, i.e. on the
equation:

[A, B] = Λ0 = diag(λ0, λ1, λ2, . . . , λk) ∈ Z⊗ C (8.5.42)

λ0 = −
k∑

i=1
λi (8.5.43)
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Let us recall the expression (8.5.17) for the matrices A and B. Naming ai = uivi ,
Eq. (8.5.42) implies:

ai = a0 + λi ; i = 1, . . . , k (8.5.44)

Let Λ = diag(λ1, λ2, . . . , λk). We have

xy = det A det B = a0"
k
i=1(a0 + λi ) = ak+10 det

(
1+ 1

a0
Λ

)
=

k∑
i=0

ak+1−i0 Si (Λ)

(8.5.45)
The Si (Λ) are the symmetric polynomials in the eigenvalues ofΛ. They are defined
by the relation det(1+Λ) =∑k

i=0 Si (Λ) and are given by:

Si (Λ) =
∑

j1< j2<···< ji

λ j1λ j2 · · · λ ji (8.5.46)

In particular, S0 = 1 and S1 =∑k
i=1 λi . Define Sk+1(Λ) = 0, so that we can rewrite:

xy =
k+1∑
i=0

ak+1−i0 Si (Λ) (8.5.47)

and note that

z = 1

k + 1
TrAB = a0 + 1

k + 1
S1(Λ). (8.5.48)

Then the desired deformed relation between x , y and z is obtained by substituting
a0 = z − 1

k S1 in (8.5.45), thus obtaining

xy =
k+1∑
m=0

k+1−m∑
n=0

(
k + 1− m

n

)
zn
(
− 1

k + 1
S1

)k+1−m−n
Sm zn =

k+1∑
n=0

tn+1 zn

=⇒ tn+1 =
k+1−n∑
m=0

(
k + 1− m

n

)(
− 1

k + 1
S1

)k+1−m−n
(8.5.49)

Note in particular that tk+2 = 1 and tk+1 = 0, i.e.

xy = zk+1 +
k∑

n=0
tn+1zn (8.5.50)

which means that the deformation proportional to zk is absent. This establishes a
clear correspondence between the momentum map construction and the polynomial
ring C[x,y,z]

∂W where W (x, y, z) = xy − zk+1. Moreover, note that we have only
used one of the momentum map equations, namely [A, B] = Λ0. The equation
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[A, A†]+[B, B†] = Σ has been completely ignored.Thismeans that the deformation
of the complex structure is described by the parameters Λ, while the parameters Σ
describe the deformation of the Kähler structure. The relation (8.5.49) can also be
written in a simple factorized form, namely

xy = "k
i=0(z − μi ), (8.5.51)

where

μi = 1

k
(λ1 + λ2 + · · · + λi−1 − 2λi + λi+1 + · · · + λk), i = 1, . . . , k − 1

μ0 = −
k∑

i=1
μi = 1

k
S1. (8.5.52)

8.6 Generalization of the Correspondence: McKay Quivers
for C

3/Γ Singularities

One can generalize the extended Dynkin diagrams obtained in the above way by
constructing McKay quivers, according to the following definition:

Definition 8.6.1 Let us consider the quotient C
n/Γ , where Γ is a finite group that

acts on C
n by means of the complex representation Q of dimension n and let Di ,

(i = 1, . . . , r + 1) be the set of irreducible representations of Γ having denoted by
r + 1 the number of conjugacy classes of Γ . Let the matrix Ai j be defined by:

Q ⊗ Di =
r+1⊕
j=1

Ai j D j (8.6.1)

To such a matrix we associate a quiver diagram in the following way. Every irre-
ducible representation is denoted by a circle labeled with a number equal to the
dimension of the corresponding irrep. Next we write an oriented line going from
circle i to circle j if D j appears in the decomposition of Q ⊗ Di , namely if the
matrix element Ai j does not vanish.

The analogue of the extended Cartan matrix discussed in the case of C
2/Γ is defined

below:
c̄i j = n δi j − Ai j (8.6.2)

and it has the same property, namely, it admits the vector of irrep dimensions

n ≡ {1, n1, . . . , nr } (8.6.3)

as a null vector:
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c̄.n = 0 (8.6.4)

Typically the McKay quivers encode the information determining the interaction
structure of the dual gauge theory on the brane world volume. Indeed the bridge
between Mathematics and Physics is located precisely at this point. In the case of
a single M2-brane, the n|�| complex coordinates (n = 2, or 3) of the flat Kähler
manifold HomΓ (R, Q⊗ R) are the scalar fields of the Wess-Zumino multiplets, the
unitary group F commuting with the action of Γ is the gauge group, the moment
maps ofF enter the definition of the potential, according to the standard supersym-
metry formulae and the holomorphic constraints defining the V|Γ |+2 variety have to
be related with the superpotential W of the N = 2 theories in d = 3 i.e. the n = 3
case where the singular space is C×C

3/Γ ). In the case ofN = 4 theories, also in
d = 3, (i.e. the n=2 case where the singular space is C

2 × C
2/Γ ), the holomorphic

constraints Pi (y) are identified with the holomorphic part of the tri-holomorphic
moment map. When one goes to the case of multiple M2-branes the gauge group
is enlarged by color indices. This is another story. The first step is to understand
the case of one M2-brane and here the map between Physics and Mathematics is
one-to-one.

8.6.1 Representations of the Quivers and Kähler Quotients

Let us now follow the same steps of the Kronheimer construction and derive the rep-
resentations of the C

3/Γ quivers. The key point is the construction of the analogues
of the spaces PΓ in Eq. (8.5.5) and of its invariant subspace SΓ in Eq. (8.5.6). To
this effect we introduce three matrices |Γ | × |Γ | named A, B,C and set:

p ∈PΓ ≡ Hom (R,Q ⊗ R) ⇒ p =
⎛
⎝ A

B
C

⎞
⎠ (8.6.5)

The action of the discrete group Γ on the space PΓ is defined in full analogy with
the Kronheimer case:

∀γ ∈ Γ : γ · p ≡ Q(γ )

⎛
⎝ R(γ ) A R(γ−1)

R(γ ) B R(γ−1)
R(γ )C R(γ−1)

⎞
⎠ (8.6.6)

whereQ(γ ) denotes the three-dimensional complex representation of the group ele-
ment γ , while R(γ ) denotes its |Γ |×|Γ |-matrix image in the regular representation.

In complete analogy with Eq. (8.5.6) the subspace SΓ is obtained by setting:

SΓ ≡ HomΓ (R, Q ⊗ R) = {p ∈PΓ /∀γ ∈ Γ, γ · p = p} (8.6.7)
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Just as in the previous case a three-vector of matrices can be thought as a matrix
of three-vectors: that is,Pγ = Q⊗Hom(R, R) = Hom(R,Q⊗ R). Decomposing
the regular representation, R =⊕r

i=0 ni Di into irreps, using Eq. (8.6.1) and Schur’s
lemma, we obtain:

SΓ =
⊕
i, j

Ai, jHom(C
ni ,Cn j ) (8.6.8)

The properties (8.6.2)–(8.6.4) of the matrix Ai j associated with the quiver diagram
guarantee, in perfect analogy with Eq. (8.5.9)

dimC SΓ � Hom Γ (R,Q ⊗ R) = 3
∑
i

n2i = 3|Γ | . (8.6.9)

8.6.2 The Quiver Lie Group, Its Maximal Compact Subgroup
and the Kähler Quotient

We address now the most important point, namely the reduction of the 3|Γ |-
dimensional complex manifold HomΓ (R,Q ⊗ R) to a |Γ | + 2-dimensional sub-
variety of which we will perform the Kähler quotient in order to obtain the final
3-dimensional (de-singularized) smooth manifold that provides the crepant resolu-
tion. The inspiration about how this can be done is provided by comparison with
the C

2/Γ case, mutatis mutandis. The key formulae to recall are the following ones:
Eqs. (8.5.19), (8.5.23) and (8.5.30).

From Eq. (8.5.19) we see that the analytic part of the triholomorphic moment
map is provided by the projection onto the gauge group generators of the commutator
[A , B].When the level parameters are all zero (namelywhen the locus equation is not
perturbed by the elements of the chiral ring) the outcome of themomentmap equation
is simply the condition [A , B] = 0. In the case of C

3/Γ we already know that there
are nodeformations of the complex structure and that the analogueof the holomorphic
moment map constraint has to be a rigid parameterless condition. Namely the ideal
that cuts out the V|Γ |+2 variety should be generated by a list of quadric polynomials
Pi (y) fixed once and for all in a parameterless way. It is reasonable to guess that
these equations should be a generalization of the condition [A , B] = 0. In theC

3/Γ

case we have three matrices A, B,C and the obvious generalization is given below:

p ∧ p = 0 (8.6.10)

where:

p =
⎛
⎝ A

B
C

⎞
⎠ ∈ HomΓ (R,Q ⊗ R)

p1 = A ; p2 = B ; p3 = C (8.6.11)
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This is a short-hand for the following explicit equations

0 = εi jkpi · p j



0 = [A, B] = [B,C] = [C, A] (8.6.12)

Equation (8.6.10) is the very same equation numbered (1.18) in Craw’s doctoral
thesis [51]. We will see in a moment that it is indeed the correct equation reducing
HomΓ (R,Q ⊗ R) to a |Γ | + 2-dimensional subvariety. The way to understand it
goes once again through a detailed comparison with the Kronheimer case.

One has to discuss the construction of the gauge group and to recall the identifica-
tion of the singular orbifoldC

2/Γ with the subspace named L defined byEq. (8.5.30).
Both constructions have a completely parallel analogue in the C

3/Γ case and these
provide the key to understand why (8.6.10) is the right choice.

Before we do that let us provide the main link between the here considered math-
ematical constructions and the Physics of three-dimensional Chern-Simons gauge
theories. To this purpose let us go back to the results of [38]. For those specialN = 2
Chern-Simons gauge theories that are actually N = 3, the superpotential W has
the form displayed below:

W = − 1

8α
PΛ
+ PΣ

+ κΛΣ (8.6.13)

where P+
Λ denote the holomorphic parts of the triholomorphic moment maps and

κΛΣ is the Killing metric of the gauge Lie algebra. When looking for extrema at
V = 0 of the scalar potential, namely for classical vacua of the gauge theory, taking
into account the positive definiteness of the scalar metric gαβ� of the Killing metric
κΛΣ and of the matrix mΛΣ one obtains the following conditions:

P3
Λ = ζ 3Λ (8.6.14)

P+
Λ = ζ+Λ (8.6.15)

In mathematical language, the above equations just define the level set μ−1 (ζ ) uti-
lized in the hyperKähler quotient.

The same field theoretic mechanism is realized in a gauge theory whose scalar
fields span the space SΓ for a C

3/Γ singularity, if we introduce the following
superpotential:

W = Tr
[
px py pz

]
εxyz (8.6.16)

With this choice the conditions for the vanishing of the scalar potential are indeed
the Kähler moment map equations that we are going to discuss and Eq. (8.6.10).
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8.6.2.1 Quiver Lie Groups

We are interested in determining the subgroup

GΓ ⊂ SL(|�|,C) (8.6.17)

made by those elements that commute with the group Γ .

GΓ =
{
g ∈ SL(|�|,C) | ∀γ ∈ Γ : [DR (γ ) , Ddef (g)

] = 0
}

(8.6.18)

In the above equation DR() denotes the regular representation while Ddef denotes
the defining representation of the complex linear group. The two representations, by
construction, have the same dimension and this is the reason why equation (8.6.18)
makes sense.

It is sufficient to impose the defining constraint for the generators of the group on
a generic matrix depending on |Γ |2 parameters: this reduces it to a specific matrix
depending on |Γ |-parameters. The further condition that the matrix should have
determinant one, reduces the number of free parameters to |Γ | − 1. In more abstract
terms we can say that the group GΓ has the following general structure:

GΓ =
r+1⊗
μ=1

GL(nμ,C)
⋂

SL(|�|,C) (8.6.19)

This is a perfectly analogous result to that displayed in Eq. (8.5.23) for the Kron-
heimer case. The difference is that there we had unitary groups while here we are
talking about general linear complex groups with a holomorphic action on the quiver
coordinates. The reason is that we have not yet introduced a Kähler structure on
the quiver space HomΓ (R , Q ⊗ R): we do it presently and we shall realize that
isometries of the constructed Kähler metric will be only those elements of GΓ that
are contained in the unitary subgroup mentioned below:

FΓ ≡
r+1⊗
μ=1

U(nμ)
⋂

SU(|�|) ⊂ GΓ (8.6.20)

8.6.2.2 The Holomorphic Quiver Group and the Reduction to V|Γ |+2

Yet the group GΓ plays an important role in understanding the rationale of the holo-
morphic constraint (8.6.10). The key item is the coset GΓ /FΓ .
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Let us introduce some notations. Relaying on Eq. (8.6.5) we define the diagonal
embedding:

D : GL(|�|,C) → GL(3|�|,C) (8.6.21)

∀M ∈ GL(|�|,C) ; D[M] ≡
⎛
⎝M 0 0

0 M 0
0 0 M

⎞
⎠ (8.6.22)

In this notation, the invariance condition that definesSΓ = HomΓ (R,Q× R) can
be rephrased as follows:

∀γ ∈ Γ : Q[γ ]p = D[R−1γ ]p D[Rγ ] (8.6.23)

It is clear that any |Γ | × |Γ | - matrix M that commutes with Rγ realizes an auto-
morphism of the space SΓ , namely it maps it into itself. The group GΓ is such
an automorphism group. In particular equation (8.6.10) or alternatively (8.6.12) is
invariant under the action of GΓ . Hence the locus:

DΓ ⊂ SΓ

DΓ ≡ {p ∈ SΓ | [A, B] = [B,C] = [C, A] = 0} (8.6.24)

is invariant under the action of GΓ . A priori the locusDΓ might be empty, but this is
not so because there exists an important solution of the constraint (8.6.10) which is
the obvious analogue of the space LΓ defined for the C

2/Γ -case in Eq. (8.5.30). In
full analogy we set:

SΓ ⊃ LΓ ≡
⎧⎨
⎩
⎛
⎝ A0

B0
C0

⎞
⎠ ∈ SΓ | A0, B0,C0 are diagonal in the natural basis of R : {eδ}

⎫⎬
⎭

(8.6.25)
Obviously diagonal matrices commute among themselves and they do the same
in any other basis where they are not diagonal, in particular in the split basis. By
definition we name in this way the basis where the regular representation R is split
into irreducible representations. A general result in finite group theory tells us that
every ni -dimensional irrep DDDi appears in R exactly ni -times:

R =
r⊕

i=0
ni DDDi ; dimDDDi ≡ ni (8.6.26)

In the split basis every element γ ∈ Γ is given by a block diagonal matrix of the
following form:
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R(γ ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 . . . . . . 0 1

0

a1,1 . . . a1,n1
... . . .

...

an1,1 . . . an1,n1

0 . . . . . . 0

... . . . . . . . . . . . .
...

... . . . . . . . . . . . .
...

0 . . . . . . 0

b1,1 . . . b1,nr−1
... . . .

...

bnr−1,1 . . . bnr−1,nr−1

0

0 . . . . . . . . . 0

c1,1 . . . c1,nr
... . . .

...

cnr ,1 . . . cnr ,nr

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(8.6.27)
In analogy to what was noticed for the Kronheimer case, the space LΓ has complex
dimension three (in Kronheimer case it was two):

dimC LΓ = 3 (8.6.28)

Indeed if we fix the first diagonal entry of each of the three matrices, the invariance
condition (8.6.23) determines all the other ones uniquely. In any other basis the
number of parameters remains three. Let us call them (a0, b0, c0). Because of the
above argument and, once again, in full analogy with the Kronheimer case, we can
conclude that the space LΓ is isomorphic to the singular orbifold C

3/Γ , the Γ -orbit
of a triple (a0, b0, c0) representing a point in C

3/Γ .
The existence of the solution of the constraint (8.6.10) provided by the complex

three-dimensional space LΓ shows that we can construct a variety of dimension
|Γ | + 2 which is in the kernel of the constraint (8.6.10). This is just the orbit, under
the action of GΓ of LΓ . We set:

DΓ ≡ OrbitGΓ (LΓ ) (8.6.29)

The counting is easily done.

1. A generic point in LΓ has the identity as stability subgroup in GΓ .
2. The group GΓ has complex dimension |Γ | − 1, hence we get:

dimC (DΓ ) = |Γ | − 1+ 3 = |Γ | + 2 (8.6.30)

In the sequel we define the variety V|Γ |+2 to be equal to D0
Γ .
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8.6.2.3 The Coset GΓ /FΓ and the Kähler Quotient

It is now high time to introduce the Kähler potential of the original 3|Γ |-dimensional
complex flat manifold SΓ . We set:

KSΓ
≡ Tr

(
p† p

) = Tr
(
A† A

) + Tr
(
B† B

) + Tr
(
C† C

)
(8.6.31)

Using the matrix elements of A, B,C as complex coordinates of the manifold and
naming λi the independent parameters from which they depend in a given explicit
solution of the invariance constraint, the Kähler metric is defined, as usual, by:

ds2SΓ
= g	m̄ dλ	 ⊗ dλ̄m̄ (8.6.32)

where:
g	m̄ = ∂	 ∂̄m̄ K (8.6.33)

FromEq. (8.6.31) we easily see that the Kähler potential is invariant under the unitary
subgroup of the quiver group defined by:

FΓ =
{
M ∈ GΓ | M M† = 1

}
(8.6.34)

whose structurewas alreadymentioned inEq. (8.6.20). The centerZof theLie algebra
FΓ has dimension r , namely the same as the number of nontrivial conjugacy classes
of Γ and it has the following structure:

Z = u(1)⊕ u(1)⊕ · · · ⊕ u(1)︸ ︷︷ ︸
r

(8.6.35)

In the appendices we provide the explicit form of FΓ while working out examples.
Since FΓ acts as a group of isometries on the space SΓ we might construct the

Kähler quotient of the latter with respect to the former, yet we may do better.
In the case of an abelian |Γ | the center z[F] = F coincides with the entire gauge

algebra. We discuss in detail these cases in the sequel.
Let us consider the inclusion map of the variety DΓ into SΓ :

ι = DΓ → SΓ (8.6.36)

and let us define as Kähler potential and Kähler metric of the locusDΓ the pull backs
of the Kähler potential (8.6.31) and of metric (8.6.32) of SΓ , namely let us set:

KDΓ
≡ ι�KSΓ

(8.6.37)

ds2DΓ
= ι� ds2SΓ

(8.6.38)
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By construction, the isometry group FΓ is inherited by the pullback metric on DΓ
and we can consider the Kähler quotient:

Mζ ≡ DΓ //
ζ

FΓ
(8.6.39)

Let f I be a basis of generators of FΓ (I = 1, . . . , |Γ | − 1) and let Zi (i =
1, . . . , |Γ | + 2) be a system of complex coordinates spanning the points of DΓ .
By means of the inclusion map we have:

∀Z ∈ DΓ : ι(Z) = p(Z) =
⎛
⎝ A(Z)

B(Z)
C(Z)

⎞
⎠ (8.6.40)

The action of the gauge group FΓ on DΓ is implicitly defined by:

p(δI Z) = δIp(Z) =
⎛
⎝ [ f I , A(Z)]
[ f I , B(Z)]
[ f I , C(Z)]

⎞
⎠ (8.6.41)

and the corresponding real moment maps are easily calculated:

μI (Z , Z̄) = Tr
(
f I
[
A(Z), A†(Z̄)

]) + Tr
(
f I
[
B(Z), B†(Z̄)

]) + Tr
(
f I
[
C(Z),C†(Z̄)

])
(8.6.42)

One defines the level sets by means of the equation:

μ−1 (ζ ) = {
Z ∈ DΓ ‖ μI (Z , Z̄) = 0 if f I /∈ Z ; μI (Z , Z̄) = ζI if f I ∈ Z

}
(8.6.43)

which, by construction, are invariant under the gauge group FΓ and we can finally
set:

Mζ ≡ μ−1 (ζ ) //FΓ
≡ DΓ //

ζ

FΓ
(8.6.44)

The real and complex dimensions ofMζ are easily calculated. We start from |Γ |+2
complex dimensions, namely from 2|Γ | + 4 real dimensions. The level set equation
imposes |Γ |−1 real constraints, while the quotiening by the group action takes other
|Γ | − 1 parameters away. Altogether we remain with 6 real parameters that can be
seen as 3 complex ones. Hence the manifolds Mζ are always complex three-folds
that, for generic values of ζ , are smooth: supposedly the crepant resolutions of the
singular orbifold. For ζ = 0 the manifoldM0 degenerates into the singular orbifold
C

3/Γ , since the solution of the moment map equation is given by the FΓ orbit of
the locus LΓ , namely:

μ−1 (0) = OrbitFΓ
(LΓ ) (8.6.45)

Comparing Eq. (8.6.29) with Eq. (8.6.45) we are led to consider the direct sum of the
Lie algebra:
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GΓ = FΓ ⊕KΓ (8.6.46)

[FΓ , FΓ ] ⊂ FΓ ; [FΓ , KΓ ] ⊂ KΓ ; [KΓ , KΓ ] ⊂ FΓ (8.6.47)

where FΓ is the maximal compact subalgebra.
A special feature of all the quiver Groups and Lie Algebras is thatFΓ andKΓ have

the same real dimension |Γ | − 1 and one can choose a basis of hermitian generators
TI such that:

∀ΦΦΦ ∈ FΓ : ΦΦΦ = i×∑|Γ |−1
I=1 cI T I ; cI ∈ R

∀KKK ∈ KΓ : KKK = ∑|Γ |−1
I=1 bI T I ; bI ∈ R

(8.6.48)

Correspondingly a generic element g ∈ GΓ can be split as follows:

∀g ∈ GΓ : g = U H ; U ∈ FΓ ; H ∈ exp [KΓ ] (8.6.49)

Using the above property we arrive at the following parametrization of the spaceDΓ

DΓ = OrbitFΓ
(exp [KΓ ] · LΓ ) (8.6.50)

where, by definition, we have set:

p ∈ exp [KΓ ] · LΓ ⇒ p =
⎧⎨
⎩
exp [−KKK ] A0 exp [KKK ]
exp [−KKK ] B0 exp [KKK ]
exp [−KKK ] C0 exp [KKK ]

⎫⎬
⎭ (8.6.51)

{A0, B0, C0} ∈ LΓ (8.6.52)

KKK = KΓ (8.6.53)

Relying on this, in the Kähler quotient we can invert the order of the operations. First
we quotient the action of the compact gauge group FΓ and then we implement the
moment map constraints. We have:

DΓ //FΓ
= exp [KΓ ] · LΓ (8.6.54)

Calculating the moment maps on exp [KΓ ] · LΓ and imposing the moment map
constraint we find:

μ−1 (ζ ) //FΓ
=
{
Z ∈ exp [KΓ ] · LΓ ‖ μI (Z , Z̄) =

{
0 if f I /∈ Z
ζI if f I ∈ Z

∣∣∣∣
}

(8.6.55)

Equation (8.6.55) provides an explicit algorithm to calculate the Kähler potential
of the final resolved manifold if we are able to solve the constraints in terms of an
appropriate triple of complex coordinates. Furthermore for each level parameter ζa we
have tofind the appropriate one-parameter subgroupofGΓ that lifts the corresponding
moment map from the 0-value to the generic value ζ . Indeed we recall that the Kähler
potential of the resolved variety is given by the celebrated formula:
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KM = π�KN + ζIC
I J ΦΦΦ J (8.6.56)

where, by definition:
π : N → M (8.6.57)

is the quotient map and exp[ζI CI J ΦΦΦ I ] ∈ exp [KΓ ] ⊂ GΓ is the element of the
quiver group which lifts the moment maps from zero to the values ζI , while CI J is
a constant matrix whose definition we discuss later on. Indeed the rationale behind
formula (8.6.56) requires a careful discussion, originally due to Hitchin, Karlhede,
Lindström and Roček [1] which we shall review in the next sections.

8.7 The Example of the Eguchi–Hanson Space

In order to give a concrete illustrative example of the Kronheimer construction we
focus on the simplest and oldest known ALE manifold, namely on the Eguchi–
Hanson space [52] (see Fig. 8.8).

To this effect we begin by introducing a set of Maurer Cartan forms on the three
sphere S

3 ∼ SU(2):

Fig. 8.8 On the left Tohru Eguchi (1948), on the right Andrew J. Hanson. Eguchi is currently
emeritus professor of the University of Tokyo, Yukawa Institute. He held positions at SLAC and
at the Enrico Fermi Institute of Chicago University. Andrew J. Hanson received the BA degree in
chemistry and physics from Harvard College in 1966 and the PhD degree in theoretical physics
from MIT in 1971. He is an Emeritus Professor of Computer Science in the School of Informatics
and Computing at Indiana University, Bloomington. He worked in theoretical physics from 1971
until 1980, when he began working in machine vision, graphics, and visualization, first with the
perception research group at the SRI Artificial Intelligence Center, and then at Indiana University
from 1989 until his retirement in 2012. The Eguchi Hanson metric was derived by the two authors
in 1978 when both of them were in California, the first in Stanford, the second in Berkeley



508 8 (Hyper)Kähler Quotients, ALE-Manifolds and C
n/Γ Singularities

σ1 = − 1

2
(dθ cos(ψ)+ dφ sin(θ) sin(ψ))

σ2 = 1

2
(dθ sin(ψ)− dφ sin(θ) cos(ψ))

σ3 = − 1

2
(dφ cos(θ)+ dψ) (8.7.1)

which depend on three Euler angles θ, φ,ψ and satisfy the Maurer Cartan equations
in the form:

dσi = εi jk σ j ∧ σk (8.7.2)

Furthermore, let us introduce a radial coordinate m ≤ r ≤ +∞ and the following
function:

G(r) =
√
1 −

(m
r

)2
(8.7.3)

The Eguchi Hanson metric is given by the following expression:

ds2EH = G(r)−2 dr2 + r2
(
σ 2
1 + σ 2

2

) + r2 G(r)2 σ 2
3

= 1

4

((
r4 − a4

)
(dφ cos(θ)+ dψ)2

r2
+ 4dr2

1− a4
r4

+ r2
(
dφ2 sin2(θ)+ dθ2

))

(8.7.4)

Calculating the curvature two-form of the above metric, we find that it is self-dual,
while its Ricci tensor vanishes. Hence the Eguchi–Hanson metric is an Euclidean
vacuum solution of Einstein equations and it describes a gravitational instanton. As
r →∞ the Eguchi–Hanson metric approaches the flat Euclidean metric:

ds2EH
r→∞=⇒ 1

2
r2dψdφ cos(θ)+ 1

4
r2dθ2 + 1

4
r2dψ2 + 1

4
r2dφ2 + dr2 (8.7.5)

Next we can show that the Eguchi–Hanson space is a complex manifold MEH

and that the Eguchi Hanson metric ̂ds2EH is a Kähler metric on MEH . To this effect
let us introduce the following two complex coordinates:

Z1 = (
r4 − m4) 14 (

ei(θ+φ) + ieiθ + eiφ − i
)
e− 1

2 i(θ−ψ+φ)

2
√
2

Z2 = (
r4 − m4

) 1
4

(
ei(θ+φ) − ieiθ + eiφ + i

)
e− 1

2 i(θ−ψ+φ)

2
√
2

(8.7.6)

By direct calculation we can verify that:

ds2EH = ∂

∂Zi

∂̄

∂ Z̄ j�
KEH dZi ⊗ d Z̄ j� (8.7.7)
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where:

KEH =
√
τ 2 + m4 − m2 log

(√
τ 2 + 1+ m4

)
+ m2 log(τ )

τ ≡ |Z1|2 + |Z2|2 (8.7.8)

Having derived the form of the Kähler potential for the Eguchi–Hanson metric we
can now connect it to the Kronheimer construction of the ALEmanifolds by recalling
Eq. (8.5.28) and rewriting them in the case k = 1 for which the group F = U(1)
so that there is only one component of the triholomorphic moment map:

P3 = |u0|2 − |v0|2 + |v1|2 − |u1|2 (8.7.9)

P+ = u0 v0 − u1 v1 (8.7.10)

In this case it is convenient to redefine:

U = {u0, v1} (8.7.11)

V = {v0, u1} (8.7.12)

so that Eq. (8.7.10) can be rewritten as follows:

P3 =P3(U, V ) ≡
2∑

i=1
|Ui |2 −

2∑
i=1
|Vi |2 (8.7.13)

P+ =P+(U, V ) ≡
2∑

i=1
Ui Vi (8.7.14)

Furthermore the action of the groupFZ2 = U(1) on the complex coordinates U, V
is the following one:

U(1) : (U, V ) =⇒ (
eiϕU , e−iϕV

)
(8.7.15)

Considering the quiver groupGZ2 which is just the complexification ofFZ2 we obtain
the transformation:

GZ2 : (U, V ) =⇒ (
e−ΦΦΦU , eΦΦΦV

)
(8.7.16)

Relying on these preliminarieswe are ready to perform the algebro-geometricHyper-
Kähler quotient. Introducing the level parameters we have to solve the equations:

	 =P3
(
e−ΦΦΦU, eΦΦΦV

)
s =P+ (e−ΦΦΦU, eΦΦΦV ) = P+ (U, V ) (8.7.17)
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As stated several times and recalled in the second line of the above equation the
holomorphic part of the moment-map is invariant under the action of the quiver
group. This is very useful for the solution of the constraints. Indeed we can just
choose a gauge condition like the following one:

U1 = V2 (8.7.18)

Furthermore, in the case k = 1 the holomorphic level parameter s can be just set equal
to zero without loss of generality since it simply amounts to a change of coordinates.
In this way we arrive at:

U1 = V2 ≡ 1
2 Z

1 ; U2 = V1 ≡ 1
2 Z

2 (8.7.19)

and the first of Eq. (8.7.17) is solved by:

ΦΦΦ = − log

[
	±√	2 + 4|U |2 |V 2|

2|V 2|

]
= − log

[
	±√	2 + |Z|4

2|Z|2
]

|Z|2 ≡ |Z1|2 + |Z2|2 (8.7.20)

The restriction to the level surface of the ambient Kähler potential is calculated in
an equally easy fashion:

K |N = e−2ΦΦΦ |U |2 + e2ΦΦΦ |V |2 =
√
	2 + |Z|4 (8.7.21)

Choosing one branch of the solution (8.7.20) and applying the general formula
(8.6.56) to the case under considerationweobtain theKähler potential of themanifold
M :

KM =
√
	2 + |Z|4 − 	 log

[
	±√	2 + |Z|4

2|Z|2
]

(8.7.22)

For 	 = m2, we see that the Kähler potential (8.7.22) obtained by means of the
HyperKähler quotient advocated in the Kronheimer construction coincides with that
of the Eguchi–Hanson manifold displayed in Eq. (8.7.8). This concludes the proof
that the Eguchi–Hanson manifold is the smooth resolution of the singularity C

2/Z2.

8.7.1 The Algebraic Equation of the Locus
and the Exceptional Divisor

First we consider the algebraic equation of the locus in C
3 that corresponds to the

Eguchi Hanson manifold. According to the discussion following Eq. (8.5.35) such
an equation is provided by the relation between the Γ invariants:
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x ≡ Det A ; Det B ; z ≡ 1
2 Tr (A B) (8.7.23)

Upon use of the gauge condition (8.7.18) and of the solution of the holomorphic
moment map constraint (8.7.19) we have:

A =
(

0 1
2 Z1

1
2 Z1 0

)
; B =

(
0 1

2 Z2
1
2 Z2 0

)
(8.7.24)

so that:

x = − 1
4 Z1 Z2 ; y = − 1

4 Z1 Z2 ; z = 1
4 Z1 Z2 (8.7.25)

and the equation of the orbifold locus C
2/Γ :

xy = z2 (8.7.26)

remains unmodified. This happens because the holomorphic moment map has not
been lifted away from zero and similarly will happen in all the resolutions of
the C

3/Γ singularities since, as we stressed, there we have no complex struc-
ture deformations and the analogue of the holomorphic moment map equation
[A , B] = [B , C] = [C , A] obtains no deformation. Yet we know that by lifting
the level of the real moment-map we obtain the smooth Eguchi Hanson manifold
which has a non trivial homology 2-cycle, as foreseen by the general Theorem 8.3.1.
In quasi polar coordinates these homology cycle is the two-sphere spanned by angles
θ and φ when we set r = m and we disregard the angle ψ . Such a homology cycle
disappears whenm → 0 hence it is the exceptional divisor generated by the minimal
resolution of the singularity. Hence it is interesting to see where such an exceptional
divisor is located in the complex description of the Eguchi Hansonmanifold obtained
from the Kronheimer construction. To this effect it is convenient to recall the relation
between divisors and line-bundles.

8.7.1.1 Divisors and Line Bundles

A prime divisor in a complex manifold or algebraic variety X is an irreducible
closed codimension one subvariety of X . A divisorD is a locally finite formal linear
combination

D =
∑
i

ai Di (8.7.27)

where the ai are integers, and the Di are prime divisors. A prime divisor D can be
described by a collection {(Uα, fα)}, where {Uα} is an open cover of X , and the { fα}
are holomorphic functions on Uα such that fα = 0 is the equation ofD ∩Uα in Uα .
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As a consequence, the functions gαβ = fα/ fβ are holomorphic nowhere vanishing
functions

gαβ : Uα ∩Uβ → C
∗

that on triple intersections Uα ∩Uβ ∩Uγ satisfy the cocycle condition

gαβgβγ = gαγ

and therefore define a line bundleL (D). IfD is a divisor as in (8.7.27) then one sets

L (D) =
⊗
i

L (Di )
ai .

The inverse correspondence (from line bundles to divisors) is described as follows.
If s is a nonzero meromorphic section of a line bundle L , and V is a codimension
one subvariety of X over which s has a zero or a pole, denoted by ordV (s) the order
of the zero, or minus the order of the pole; then

D =
∑
V

ordV (s) · V

is a divisor, whose associated line bundle L (D) is isomorphic toL .

8.7.1.2 The Exceptional Divisor

It is easy to work out the exceptional divisor in the Eguchi–Hanson case by perform-
ing the following holomorphic coordinate transformation:

Z1 → (1− ξ1) ξ2 ; Z2 → − (1+ ξ1) ξ2 (8.7.28)

Upon the substitution (8.7.28) and the identification 	 = m2 the Kähler potential
(8.7.22) becomes:

KEH = K0 + m2
(
KE + log |W |2

)
K0 =

√
m4 + 4

(
1+ |ξ1|2

)2 |ξ2|4 − m2 log

(
m2 +

√
m4 + 4

(
1+ |ξ1|2

)2 |ξ2|4
)

KE = log
(
1+ |ξ1|2

)
W ≡ √2 ξ2 (8.7.29)

Inspecting Eq. (8.7.29) we realize that KE is the standard Kähler potential of a P
1

written in the affine coordinate ξ1. This suggests that the Eguchi–Hanson manifold
is covered by two open charts:
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UN =
{
ξ N1 , ξ

N
2

}
US =

{
ξ S1 , ξ

S
2

}
(8.7.30)

with transition function: {
ξ N1 , ξ

N
2

} = {
1

ξ S1
, ξ S2 ξ

S
1

}
(8.7.31)

Under the transformation (8.7.30) the functionK0 is invariant, whileKE transforms
as follows:

KE

(
ξ N , ¯ξ N

)
= KE

(
ξ S, ξ̄ S

)
− log |ξ S1 |2 (8.7.32)

Therefore we can introduce a line bundle L
π→MEH defined by two local trivial-

izations, one based on UN , the other on US with transition function:

gNS : WN (ξ
N ) = ξ S1 WS(ξ

S) (8.7.33)

a fiber metric on such a bundle is obtained by defining the following invariant norm
for the bundle sections:

‖ W ‖2≡ eKE |W |2 (8.7.34)

The corresponding first Chern class is:

c1(L ) = ω(1,1) ≡ i

2π
∂∂̄ log ‖ W ‖2 W→0−→ i

2π

dξ1 ∧ d ξ̄1(
1+ |ξ1|2

)2 ≡ ω
(1,1)
D

(8.7.35)
The divisor D related with this line bundle is obviously obtained as the vanishing
locus of the global section W = ξ2 = 0. The cohomology class of ω(1,1) is that of
the Poincaré dual ω(1,1)D of the vanishing section W , namely of the divisor D:

[
ω(1,1)

] = [
ω
(1,1)
D

]
(8.7.36)

What we have discussed so far is just an explicit illustration of the well known fact
that the Eguchi–Hanson manifold is the total space of the fiber bundle OP1(−2).

Since the function K0 is invariant, it is clear that its contribution ∂∂̄K0 to the
Kähler 2-form is cohomologous to zero which implies:

[KEH ] = m2
[
ω
(1,1)
D

]
(8.7.37)

Finally it is instructive to compare the above complex description of the Eguchi–
Hanson space with its description in terms of quasi polar coordinates. To this effect it
suffices to rewrite the coordinate transformation (8.7.6) in terms of the xi coordinates.
We have:
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ξ1 = eiφ cot

(
θ

2

)
, ξ2 = 1

2

√
1− cos(θ) 4

√
r4 − m4e

1
2 i(ψ−φ) (8.7.38)

As we see the locus ξ2 = 0 corresponds to r = m and ψ = any value.

8.8 Gibbons Hawking Metrics and the Resolution of C
2/Γ

Singularities

As an exercise that exemplifies the generalized Kronheimer construction which
resolves the quotient singularities C

3/Γ , we intend to discuss the abelian cases
Γ = Z3 and Z7. In this way, by steps of increasing complexity, we approach the
discussion of the non abelian cases. When Γ = Z3 we already pointed out that the
singularity is actually of the type mentioned in Eq. (8.3.26). This is quite useful for
our purposes since the ALEZk manifolds admit another well known representation
with which we can compare the Kronheimer construction in order to get orientation
in our main task of understanding the cohomology of the resolved Kähler manifold.
The representation we are alluding to is that of the Gibbons Hawking multicenter
metrics that are known to be HyperKählerian and indeed equivalent to ALEZk . The
comparison between these two forms of the same metrics is very useful in order to
get queues about the mechanisms by means of which the moment map parameters
blow up the singularities in the purely Kählerian case. Hence let us start with the
general form of the GH-metrics.

Let the x, y, z be the real coordinates ofR3 towhichwe adjoin an angle τ spanning
a circle S

1. A general GH-metric has the following form:

ds2GH =
(d τ + ω)2

V
+ V

(
dx2 + dy2 + dz2

)
(8.8.1)

where V = V (x, y, z) is a harmonic function on R
3:

∂2 V

∂x2
+ ∂2 V

∂y2
+ ∂2 V

∂z2
= 0 (8.8.2)

and
ω = ωx dx + ωy dy + ωz dz (8.8.3)

is a one-form whose external derivative is requested to be Hodge dual, in the flat
metric ds2

R3 = dx2 + dy2 + dz2 of R
3, to the gradient of V :

�R3 dω = dV (8.8.4)

Without loss of generality we can choose an axial gauge for the connection ω by
setting:
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ωz = 0 (8.8.5)

The four-dimensional Riemannian space MGH, whose metric is (8.8.1), is a U(1)-
bundle over R

3. Actually we can easily prove that MGH is Kählerian by means of
the following argument. Consider the following two-form:

KGH = 2 ((dτ + ω) ∧ dz − V dx ∧ dy) (8.8.6)

which is closed in force of Eqs. (8.8.2) and (8.8.3):

dKGH = 0 (8.8.7)

From Eq. (8.8.1) we easily workout the components of the metric in the x, y, z, τ
coordinate basis:

gi j =

⎛
⎜⎜⎜⎝
V + ω2

x
V

ωxωy

V 0 ωx
V

ωxωy

V V + ω2
y

V 0 ωy

V
0 0 V 0
ωx
V

ωy

V 0 1
V

⎞
⎟⎟⎟⎠ (8.8.8)

and of its inverse:

gi j =

⎛
⎜⎜⎝

1
V 0 0 −ωx

V
0 1

V 0 −ωy

V
0 0 1

V 0

−ωx
V −ωy

V 0
V 2+ω2

x+ω2
y

V

⎞
⎟⎟⎠ (8.8.9)

Similarly, from Eq. (8.8.6) we work out the components of the form KGH:

Ki j =

⎛
⎜⎜⎝

0 −V ωx 0
V 0 ωy 0
−ωx −ωy 0 −1
0 0 1 0

⎞
⎟⎟⎠ (8.8.10)

Raising the second index of the antisymmetric tensor Ki j with the inverse metric g j	

we obtain a mixed tensor

J 	
i ≡ Ki j g

j	 =

⎛
⎜⎜⎝
0 −1 ωx

V ωy

1 0 ωy

V −ωx

0 0 0 −V
0 0 1

V 0

⎞
⎟⎟⎠ (8.8.11)

which satisfies the property:
J 	
i J m

	 = − δmi (8.8.12)
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Hence J is a quasi-complex structure which is proved to be a complex structure by
verifying that its Nienhuis tensor vanishes:

N 	i j ≡ ∂[i J
	

j] − J m
i J n

j ∂[m J
	

n] = 0 (8.8.13)

It follows that MGH is a complex manifold, the metric (8.8.6) being hermitian with
respect to J since the matrix Ki j ≡ J 	

i g	j is by construction antisymmetric and, as
such, it defines a Kähler 2-form. Thus we have a Kähler form which is closed and
this, by definition, implies that the complex manifoldMGH is a Kähler manifold.

8.8.1 Integration of the Complex Structure and the Issue of
the Kähler Potential

The first task in order to put the Kähler metric of a 2n-dimensional real manifold
into a standard complex form derived from a Kähler potential is that of deriving a
suitable set of complex coordinates Zμ that are eigenstates of the complex structure.
This means to find a complete set of n complex solutions of the following differential
equation:

J 	
i ∂	Z = i ∂i Z (8.8.14)

In the case of the complex structure inEq. (8.8.11) a basis of the eigenspace pertaining
to the eigenvalue i is easily provided by the following two vectors

v1 =
{−iωy, iωx , iV , 1

}
v2 = {i, 1, 0, 0}

J v1,2 = iv1,2 (8.8.15)

The second eigenvector v2 inserted into Eq. (8.8.14) immediately singles out one of
the two complex coordinates:

z ≡ y + i x (8.8.16)

In order to integrate Eq. (8.8.14) utilizing the first eigenvector v1, a very useful tool is
provided by a recent observation made by Ortin et al. in [54] who pointed out that a
convenient way of automatically realizing conditions (8.8.2) and (8.8.4) is obtained
by setting:

ωx = ∂2F

∂y∂z
; ωy = − ∂

2F

∂x∂z
; V = ∂2F

∂z2
(8.8.17)

where F (x, y, z) is a harmonic prepotential:
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∂2 F

∂x2
+ ∂2 F

∂y2
+ ∂2 F

∂z2
= 0 (8.8.18)

Using the prepotentialF the differential equation to be satisfied by the searched for
complex coordinate w is the following one:

{
i
∂2F

∂z∂z
, i
∂2F

∂y∂z
, i
∂2F

∂z2
, 1

}
= {

∂xw, ∂yw, ∂zw, ∂τw
}

(8.8.19)

In view of Eq. (8.8.17) we can set:

F (x, y, z) =
∫

dz
∫

dz V (x, y, z) (8.8.20)

and the differential Eq. (8.8.19) is immediately integrated by setting:

w = τ + i ∂zF = τ + i
∫

dz V (8.8.21)

Obviously, whenever a complex coordinate has been found, any holomorphic func-
tion of the same is an equally good complex coordinate. Hence in addition to z,
defined in Eq. (8.8.16), we choose the second complex coordinate as follows:

h = exp [iw] = eiτ ρ ; ρ = exp

[
−
∫

V dz

]
(8.8.22)

Using the above implicit definition of the complex coordinates one can transform
the Kähler 2-form (8.8.6) to the complex coordinates obtaining:

KGH = Khh̄ dh ∧ dh̄+ Khz̄ dh ∧ d z̄+ Kzh̄ dz ∧ dh̄+ Kzz̄ dz ∧ d z̄ (8.8.23)

where

Khh̄ = i
1

h h̄V
= ∂h∂̄h̄K

Khz̄ = iωx + ωy

hV
= ∂h∂̄z̄K

Kzh̄ =
iωx − ωy

h̄V
= ∂z∂̄h̄K

Kzz̄ = i
ω2
x + ω2

y + V 2

V
= ∂z∂̄z̄K (8.8.24)

The problem of deriving the Kähler potential K (h, z, h̄, z̄) corresponding to the
GH-metric is reduced to the inverting the coordinate transformation encoded in
Eqs. (8.8.21) and (8.8.16) and then solving the system of coupled differential equa-
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tions encoded in Eq. (8.8.24). Typically this is far from being an easy task, but in
some simple cases it can be done. The primary illuminating example is provided by
the Eguchi Hanson metric corresponding to ALEZ2 .

8.8.2 Identification of the Eguchi–Hanson Space with the
Two-Center GH-Manifold

We derive the map between the manifold with a two center GH metric and the
Eguchi Hanson space. We begin with a conceptual discussion about the parameters
of GH-metrics.

The Gibbons Hawking multi-center metrics have a number of parameters that can
be counted in the following way. Let n be the number of centers. Each center has
3-coordinates, hence a priori we have 3n parameters. Yet, using the Euclidean group
of translations and rotations, which is a symmetry of the 3d laplacian, we can always
bring a center to a reference point, say the origin xxx = 0. So we are left with 3(n− 1)
parameters. Furthermore, once a center is fixed, another center lies somewhere on a
two-sphere around the first center and we can use the rotation group to bring it to a
preferred direction. This kills two other parameters. In this way we have:

# of effective parameters in a GH metric = 3n − 5 (8.8.25)

From the point of view of the Kronheimer construction, the n-center metric corre-
sponds to the resolution Y → C

2

Zm
via a HyperKähler quotient. In this case the gauge

group is U(1)n−1 and we have indeed 3(n − 1) parameters. Two parameters corre-
sponding to one complex moment-map level can be disposed of by a redefinition of
the complex coordinates for the resolved manifold Y. Hence also on the side of the
HyperKähler quotient we have:

# of effective parameters in a HyperK̈ahler quotient resolution of
C

2

Zn
= 3n − 5

(8.8.26)
In the Eguchi–Hanson case n = 2 and there is only one effective parameter on both
sides of the correspondence, namely the parameter m2 that we have associated with
the real moment map level. The level of the holomorphic moment map corresponds
to the two parameters that can be disposed of by a coordinate transformation and
was set to zero.

From the GH-side, the removal of the spurious parameters can be conventionally
performed by aligning the two centers on the z-axis at symmetrical positions with
respect to the origin z = 0. Hence referring to Eqs. (8.8.1) and (8.8.2) we set:
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VEH = 1√(
m2

8 + z
)2 + x2 + y2

+ 1√(
z − m2

8

)2 + x2 + y2
(8.8.27)

and we obtain the following connection one-form :

ωEH =
⎛
⎝m2

⎛
⎝ 1√(

m2 − 8z
)2 + 64

(
x2 + y2

) − 1√(
m2 + 8z

)2 + 64
(
x2 + y2

)
⎞
⎠

− 8z√(
m2 − 8z

)2 + 64
(
x2 + y2

)

− 8z√(
m2 + 8z

)2 + 64
(
x2 + y2

) + 2

⎞
⎠× y dx − x dy

x2 + y2

(8.8.28)

which satisfies with VEH the duality relation (8.8.4). The one-form ωEH agrees with
Eq. (8.8.17) if we set:

∂zFEH =
∫

dz VEH

= log

⎛
⎝
√(

z − m2

8

)2

+ x2 + y2 − m2

8
+ z

⎞
⎠

+ log

⎛
⎝
√(

m2

8
+ z

)2

+ x2 + y2 + m2

8
+ z

⎞
⎠

(8.8.29)

The metric:

ds2two−center =
1

VEH
(dτ + ωEH )

2 + VEH
(
dx2 + dy2 + dz2

)
(8.8.30)

is exactlymapped into the Eguchi–Hansonmetric (8.7.4) by the following coordinate
transformation:

x → 1

8
sin(θ)

√
r4 − m4 cos(ψ) , y → 1

8
sin(θ)

√
r4 − m4 sin(ψ)

z → 1

8
r2 cos(θ) , τ → 2ψ + 2φ (8.8.31)
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It is also interesting to work out the explicit form, in the present case of the complex
coordinates h and z introduced in Eqs. (8.8.16) and (8.8.22) within the framework of
the general discussion. After some algebra one finds:

h = 64 e2i(ψ+φ)

(cos(θ)+ 1)2
(
r4 − m4

) , z = 1

8
i e−iψ sin(θ)

√
r4 − m4 (8.8.32)

As one realizes, both these coordinates are singular on the exceptional divisor r = m
and they are not convenient to describe it. The relation with the good coordinates
ξ1,2 is actually antiholomorphic and it would be difficult to be guessed a priori:

ξ̄1 = − i

z
√
h
, ξ̄2 = −

√
2 z 4
√
h

m
(8.8.33)

In terms of the GH-coordinates, by inspecting Eq. (8.8.31) we readily retrieve the
image of exceptional divisor inside the GH space. It is given by the locus:

DE =
{
x = y = 0 , −m2

8
≤ z ≤ m2

8
, 0 ≤ τ ≤ 2π

}
(8.8.34)

namely the tensor product of the segment joining the two centers on the z-axis with
the circle spanned by the τ -angle. This observation is useful in order to find the
exceptional divisors in the more complicated multi-center cases.

8.9 The Generalized Kronheimer Construction for C
3

Γ
and

the Tautological Bundles

In the present section we aim at extracting a general scheme from the detailed dis-
cussions presented in the previous sections. Our final goal is to establish all the
algorithmic steps that give a precise meaning to each of the lines appearing in the
conceptual diagram of Eq. (8.3.2).

8.9.1 Construction of the Space Nζ ≡ μ−1(ζ )

Summarizing the points of our construction we have the following situation.We have
considered the moment map

μ : SΓ −→ FΓ
∗ (8.9.1)

where FΓ
∗ is the dual of the Lie algebra of the maximal compact subgroup FΓ of

the quiver group GΓ . Next we have considered the center of the above Lie algebra
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z[FΓ ]⊂FΓ and its dual Z [FΓ ] ∗. The moment map can be restricted to the subspace:

DΓ ⊂ SΓ ; DΓ ≡ { p ∈ SΓ | p ∧ p = 0} (8.9.2)

which is just the orbit, with respect to the quiver group GΓ , of a locus EΓ ⊂ SΓ of
complex dimension three obtained in the following way.

Consider the following subspace of S [0,0]
Γ ⊂ SΓ

S [0,0]
Γ = { p ∈ SΓ | p ∧ p = 0 ; μ(p) = 0} (8.9.3)

whose elements are triples of |Γ | × |Γ | complex matrices (A,B,C) satisfying, by
the above definition, in addition to the invariance constraint (8.6.6), (8.6.7) also the
following two ones:

[A, B] = [B,C] = [C, A] = 0

Tr
[
TI
([
A, A†

]+ [B, B†
]+ [C,C†

])] = 0 ; I = 1, . . . , |Γ | − 1 (8.9.4)

Since the action of the compact group FΓ leaves both the first and the second
constraint invariant, it follows that it maps the locus S [0,0]

Γ into itself

FΓ : S [0,0]
Γ → S [0,0]

Γ (8.9.5)

The locus EΓ is defined as the quotient:

EΓ ≡ S [0,0]
Γ

FΓ

(8.9.6)

which turns out to be of complex dimension three and to be isomorphic to the singular
orbifold :

S [0,0]
Γ

FΓ

� C
3

Γ
(8.9.7)

Choosing a representative in each equivalence class S [0,0]
Γ

FΓ
simply amounts to a choice

of local coordinates on C
3

Γ
which will be promoted to a system of local coordinates

on the manifold Mζ of the final resolved singularity.
We have a canonical algorithm to construct a canonical coordinate system for EΓ

which originates from Kronheimer and from the 1994 paper by Anselmi, Billò, Frè,
Girardello and Zaffaroni on ALE manifolds and conformal field theories [40]. The
construction is the following. We begin with the locus LΓ ⊂SΓ defined as the set of
triples (Ad ,Bd ,Cd ) such that the invariance constraint (8.6.7) is satisfied with respect
to Γ and they are diagonal in the natural basis of the regular representation. We have
shown on the basis of several examples that :

DΓ = OrbitGΓ (LΓ ) (8.9.8)
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We obtain an explicit parameterization of the locus EΓ by solving the algebraic
equation for the hermitian matrix V0 ∈ exp [KΓ ], such that

∀p ∈ LΓ : μ (V0.p) = 0 (8.9.9)

The important thing is that the solution for the above equation is a constant matrix
V0, independent from the point p ∈ LΓ . Then we fix the coordinates of our manifold
by parameterizing

p ∈ EΓ ⇒ p =
⎛
⎝ A0

B0

C0

⎞
⎠ =

⎛
⎝ V0

−1AdV0

V0
−1BdV0

V0
−1CdV0

⎞
⎠ where

⎛
⎝ Ad

Bd

Cd

⎞
⎠ ∈ LΓ (8.9.10)

It follows that Eq. (8.9.8) can be substituted by

V|Γ |+2 ≡ DΓ = OrbitGΓ (EΓ ) (8.9.11)

We can also introduce a subspace DΓ 0⊂V|Γ |+2 which is the orbit of EΓ under the
compact subgroup FΓ :

DΓ
0 = OrbitFΓ

(EΓ ) (8.9.12)

This being the case we consider the restriction of the moment map to DΓ

μ : DΓ −→ FΓ
∗ (8.9.13)

and given an element
ζ ∈ z [FΓ ]

∗ (8.9.14)

we define:

Nζ ≡ μ−1(ζ ) ⊂ DΓ : Nζ = { p ∈ DΓ |μ(p) = ζ } (8.9.15)

Obviously we have:
N0 ≡ μ−1(0) = DΓ

0 (8.9.16)

8.9.2 The Space Nζ as a Principal Fiber Bundle

The spaceNζ has a natural structure of anFΓ principal line bundle over the quotient
Mζ :

Nζ
π−→ Mζ ≡ Nζ //FΓ (8.9.17)
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On the tangent space to the total space of the FΓ -bundle TNζ we have a metric
induced, as the pullback, by the inclusion map:

ι : Nζ −→ SΓ (8.9.18)

of the flat metric g on SΓ

gN = ι∗ (gSΓ

)
(8.9.19)

Since the metric gSΓ
is Kählerian we have a Kähler potential KSΓ

from which it
derives and we define the function

KN ≡ ι∗ (KSΓ

)
(8.9.20)

This function is not the Kähler potential of Nζ which is not even Kählerian (it has
odd dimensions) but it will be related to the Kähler potential of the final quotient
Mζ by means of an argument due to [1], that we spell out a few lines below. Let us
denote by p ∈ Mζ a point of the base manifold and by π−1(p) the FΓ -fiber over
that point.

8.9.2.1 The Natural Connection and the Tautological Bundles

We can determine a natural connection on the principal bundle (8.9.17) through the
following steps. As it is observed in Eq. (2.7) of the paper by Degeratu andWalpuski
[55], which agreeswith the formulae of the present paper, the quiver group has always
the following form:

GΓ =
r∏

i=1
GL

(
C

dim[DDDi ]
)

(8.9.21)

where DDDi are the nontrivial irreducible representations of the finite group Γ , with the
exclusion of DDD0, the identity representation. It also follows that the compact gauge
subgroup FΓ has the corresponding following structure

FΓ =
r∏

i=1
U (dim [Di ]) (8.9.22)

Consequently, the principal bundle (8.9.17) induces holomorphic vector bundles of
rank dim [DDDi ] on which the compact structural group acts non-trivially only with
its component U (dim [DDDi ]). A natural connection on these bundles is obtained as it
follows

A = i

2

(
H −1∂H −H ∂̄H −1)+ g−1dg ∈ r⊕

i=1
u (dim [Di ]) (8.9.23)
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where H is a hermitian fiber-metric on the direct sum of the tautological vector
bundles defined below:

R ≡
r⊕

i=1
Ri ; Ri

π−→Mζ ; ∀p ∈Mζ : π−1(p) � C
dim[Di ] (8.9.24)

By definition the matrixH must be of dimension

dim[H ] = n × n where n =
r∑

i=1
dim [Di ] =

r∑
i=1

ni (8.9.25)

In order to find the hermitian matrix H , we argue in the following way. First we
observe that in the regular representation R each irreducible representation DDDi is
contained exactly dim [DDDi ] times, so that the form of the matrix V corresponding to
the hermitian parameterization of the coset GΓ

FΓ
has always the following form:

V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

H0 0 0 . . . 0

0 H1 ⊗111n1×n1111n1×n1111n1×n1 0 . . .
...

0 0 H2 ⊗111n2×n2111n2×n2111n2×n2 . . .
...

... . . . . . . . . . . . .
...

... . . . . . . . . . 0
0 . . . . . . 0 Hr ⊗111nr×nr111nr×nr111nr×nr

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(8.9.26)

where ni denotes the dimension of the i th nontrivial representation of the discrete
group Γ and from this we extract the block diagonal matrix:

H ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

H1 0 . . . . . . 0

0 H2 . . . . . .
...

... . . . . . . . . . . . . . . .
...

... . . . . . . . . . Hr−1 0
0 . . . . . . . . . 0 Hr

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(8.9.27)

The hermitian matrix H is the fiber metric on the direct sum:

R =
r⊕

i=1
Ri (8.9.28)

of the r tautological bundles that, by construction, are holomorphic vector bundles
with rank equal to the dimension of the r irreducible representations of Γ :
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Ri
π−→ Mζ ; ∀p ∈Mζ : π−1(p) ≈ C

ni (8.9.29)

The compatible connection5 on the holomorphic vector bundle R is given by:

ϑ = H −1 ∂H =
r⊕

i=1
θi

θi = H−1i ∂Hi ∈ GL(ni ,C) (8.9.30)

where GL(ni ,C) is the Lie algebra of GL(ni ,C) which is structural group of the
i th tautological vector bundle. The natural connection of the FΓ principal bundle,
mentioned in Eq. (8.9.23) is just, according to a universal scheme, the imaginary part
of the holomorphic connection ϑ .

8.9.2.2 The Tautological Bundles from the Irrep Viewpoint and the
Kähler Potential

From the analysis of the above section we have reached a very elegant conclusion.
Once the matrix V is calculated as function of the level parameters ζ and of the
base-manifold coordinates (zm, z̄m) (m = 1, 2, 3), we also have the block diagonal
hermitian matrix H which encodes the hermitian fiber metrics Hi (ζ, z, z̄) on each
of the tautological holomorphic bundles Vi whose ranks are equal, one by one, to
the dimensions ni of the irreps of Γ . The first Chern classes of these bundles are
represented by the differential (1, 1) forms:

ωi
(1,1) = i

2π
∂̄∂Log [Det [Hi ]] (8.9.31)

Let us recall another remarkable group theoretical fact. The number r of nontrivial
irreps of Γ is equal to the number r of nontrivial conjugacy classes and to the number
r of generators of the center of the compact Lie algebra FΓ , hence also to the number
r of level parameters ζ and to number r of holomorphic tautological bundles. Now
we are in a position to derive in full generality the formula for the Kähler potential
and, hence, for the Kähler metric of the resolved manifold Mζ that we anticipated
in (8.6.56) . In view of the above discussion, we rewrite the latter as it follows:

KM ζ
= KSΓ

|N ζ
+ζ iCijLog

[
Det

[
H j
]]

(8.9.32)

whereKSΓ
is the Kähler potential of the flat spaceSΓ and |N ζ

denotes its restriction
to the level surfaceNζ , while CIJ is an r×r constant matrix whose structure we will
define and determine below. Why the matrix defined there yields the appropriate

5Following standard mathematical nomenclature, we call compatible connection on a holomorphic
vector bundle, one whose (0, 1) part is the Cauchy Riemann operator of the bundle.
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Kähler potential is what we will now explain starting from an argument introduced
in 1987 by Hitchin, Karlhede, Lindström and Roček.

The HKLR Differential Equation and Its Solution

Before explaining the origin of the matrix CIJ, we would like to stress that, concep-
tually it encodes a pairing between the level parameters (= generators of the Lie
algebra center) and the tautological bundles (= irreps). If we could understand the
relation between conjugacy classes with their ages and cohomology classes, then we
would have a relation between irreps and conjugacy classes and we could close the
three-sided relation diagram among the center z [FΓ ] and the other two items, irreps
and conjugacy classes. As we are going to show, this side of the relation is based on
the concept of weighted blowup. On the other hand, understanding the matrix CIJ, is
a pure Lie algebra theory issue, streaming from the HKLR argument.

Hence, continuing such an argument, let us consider the flat Kähler manifoldSΓ

and its Kähler potential

K =
3∑

i=1
Tr
[
Ai A

†
i

]
where we have defined Ai = {A, B,C} (8.9.33)

The exponential of the Kähler potential is also, by definition, the hermitian metric
on the Hodge line bundle:

LHodge
π−→ SΓ where ∀p ∈ SΓ : π−1(p) ≈ C

∗

‖W‖2 ≡ eKS WW̄ (8.9.34)

Indeed, the second line of the above equation ‖W‖2 defines the invariant norm of
any section of LHodge.

Let us know consider the action of the quiver group on SΓ and its effect on the
fiber metric h = eK . The maximal compact subgroup FΓ is an isometry group
for the Kähler metric defined by (8.9.33). Hence we focus on the orthogonal (with
respect to the Killing form) complement of FΓ . Let

ΦΦΦ ∈ KΓ (8.9.35)

be an element of the orthogonal subspace to the maximal compact subalgebra

GΓ = FΓ ⊕KΓ (8.9.36)

consider the one parameter subgroup generated by this Lie algebra element

g(λ) ≡ eλΦΦΦ (8.9.37)

The action of this group on the Kähler potential is easily calculated
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KS (λ) =
3∑

i=1
Tr
[
Aie

2λΦΦΦ A†
i e
−2λΦΦΦ

]
(8.9.38)

Performing the derivative with respect to λ we obtain

∂λKS (λ) |λ=0=
3∑

i=1
Tr
(
ΦΦΦ
[
Ai , A

†
i

])
(8.9.39)

Then we utilize the fact that each elementΦΦΦ ∈ KΓ is just equal to i×ΦΦΦc whereΦΦΦc

denotes an appropriate element of the compact subalgebra. Hence the above equation
becomes

∂λKS (λ) |λ=0= i×
3∑

i=1
Tr
(
ΦΦΦc

[
Ai , A

†
i

])
= iPΦΦΦc (8.9.40)

Let us decompose the moment map along the standard basis of compact generators.
We obtain:

PΦ =
|Γ |−1∑
I=1

ΦΦΦ ITr
(
Kc

I

[
Ai , A

†
i

])

= i
|Γ |−1∑
I=1

ΦΦΦ I
cPI (p) =

|Γ |−1∑
I=1

ΦΦΦ IPI (p) =
|Γ |−1∑
I=1

ΦΦΦ ITr
(
KI

[
Ai , A

†
i

])
(8.9.41)

where p ∈DΓ ⊂ SΓ denotes the arbitrary point in the ambient space described by
the triple of matrices Ai , KI = i Kc

I are the |Γ |-1 noncompact generators of the
quiver group GΓ that, by construction, are just as many as the compact generators Kc

I
of the maximal compact subgroup FΓ . Formally integrating the above differential
equation it follows that the fiber of the metric Hodge line bundle (8.9.34)

h(p) ≡ Exp [KS (p)] (8.9.42)

transforms in the following way under the action of the quiver group

∀g ∈ GΓ g : h(p) −→ hg(p) ≡ h
(
eLog[g] p

) = ec(g,p)h(p) (8.9.43)

where
Log[g] ∈ GΓ (8.9.44)

is an element of the quiver group Lie algebra and as such can be decomposed along
a complete basis of generators
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Log[g] =
7∑

I=1
ΦΦΦ IKI +ΦΦΦc

IKc
I (8.9.45)

and the anomaly c(g, p)introduced in Eq. (8.9.43) has, in force of the differential
equation discussed above the following form:

c(g, p) =
7∑

I=1

(
ΦΦΦ I + iΦΦΦc

I
)
PI (p) (8.9.46)

where PI (p) are the moment maps at point p.
Next consider the diagram

SΓ
ι←− Nζ

π−→ Mζ ≡ Nζ /FΓ (8.9.47)

where Nζ is the level surface and Mζ the final Kähler threefold with its associated
Hodge line bundle whose curvature is the Kähler form KM

KM ≡ i

2π
∂̄∂KM = i

2π
∂̄

(
1

hM
∂hM

)
(8.9.48)

KM being the Kähler potential of the resolved variety. Following HKLR, we require
that

π∗KM = ι∗KSΓ
(8.9.49)

whereKSΓ
is the Kähler form of the flat Kähler manifoldSΓ = HomΓ (Q⊗R,R). At

the level of fiber metric on the associated Hodge line bundles, Eq. (8.9.49) amounts
to stating that

∀p ∈Mζ : hM (p) = hg
SΓ
(p) = hSΓ

(g.p) = ec(g,p) hSΓ
(p) (8.9.50)

where g is an element of the quiver group that brings the point p ∈Nζ on the level
surface of level ζ to the reference level surfaceN0 which corresponds to the singular
orbifold C

3

Γ
. Applying this to Eq. (8.9.46) we obtain:

c(g, p) = ζ IΦΦΦ I (p) = ζ I ∗ Tr
[
KILog[g]

] = r∑
i=1
ζ I ∗ Tr [Kcentral

I Log[g]] (8.9.51)

since the only non-vanishing levels are located in the Lie Algebra center. On the
other hand we have g =H :

Tr
[
Kcentral

I Log[H ]] ≡ r∑
J=1

CIJLog [Det [HJ ]] (8.9.52)
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The above formula defines the constant matrix CIJ and justifies the final formula
(8.9.32). In the case of cyclic Γ the center of the Lie Algebra FΓ coincides with the
algebra itself and the matrix CI J is just diagonal and essentially trivial.

Dolbeault Cohomology

The objects we are dealing with are Dolbeault cohomology classes of the final
resolved manifoldMζ which is Kähler as a result of its Kähler quotient construction.

When we say that ωp,q is a harmonic representative of a nontrivial cohomology
class in H 1,1

(
Mζ

)
we are stating that:

• The form is ∂-closed and ∂-closed

∂ωp,q = ∂ωp,q = 0

• There do not exist forms φ p−1,q and φ p,q−1 such that:

ωp,q = ∂φ p−1,q = ∂φ p,q−1

The reason why theω(1,1)i are nontrivial representatives of (1, 1) cohomology classes
is that they are obtained as ∂ of connection one-forms θ(1,0) that are not globally
defined. Indeed if we introduce the curvatures and the first Chern classes of the
tautological vector bundles we have the elegant formula anticipated in Eq. (8.9.31):

Θi = ∂θi
ω
(1,1)
i ≡ c1(Ri ) = Tr(Θi ) = ∂ ∂ log [Det (Hi )] (8.9.53)

Comparing now with the definition of Dolbeault cohomology we see that ω(1,1)i are
nontrivial cohomology classes because either

θ(1,0) ≡ ∂ log [Det (Hi )] or θ(0,1) ≡ ∂ log [Det (Hi )] (8.9.54)

are non-globally defined 1-forms on the base manifold. This is so because they
transform nontrivially from one local trivialization of the bundle to the next one. The
transition functions on the connections are determined by the transition functions on
the metric H , namely on the coset representative. Here comes the delicate point.

Where from in the Kronheimer-like construction do we know that there are dif-
ferent local trivializations, otherwise that the tautological bundles are nontrivial?
Computationally we solve the algebraic equations forH in terms of the coordinates
zi (i = 1, 2, 3) parameterizing the locus LΓ , which is equivalent to the singular
locus C

3

Γ
and we find H = H (ζ, z) where ζ are the level parameters. In order to

conclude that the tautological bundle is nontrivial we should divide the locus LΓ
into patches and find the transition functions of the connections θi from one patch to
the other. Obviously the transition function must be an element of the quiver group
g ∈ GΓ . At the first sight it is not clear how to implement such a program, since
we do not know how we should partition the locus LΓ . Clearly the actual solution
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of the algebraic equations is complicated and, as we very well know, we are able to
implement it only by means of a power series in ζ , yet it is obvious that this is not a
case by case study. As everything else in the Kronheimer-like construction, it must
be based on first principles and it is precisely these first principles that we are going
to find out. It is at this level that the issue of ages is going to come into play in an
algorithmic way. We begin by inspecting the only case where the final analytic form
of all the construction items is available in closed form, namely the Eguchi–Hanson
case.

8.9.3 What We See in the Eguchi–Hanson Case

Let us briefly summarize what we have verified in the EH case. The space Nζ has
a natural structure of principal U(1)-bundle over the quotient Mζ , as the maximal
compact subgroup of the quiver group FΓ ⊂GΓ in this case is just U(1).

Nζ
π−→ Mζ ≡ Nζ //FΓ (8.9.55)

AsNζ is a closed submanifold ofSΓ it has an induced metric g. The vertical tangent
bundle toNζ is locally generated by the vector field

Vvert = ∂

∂φ
(8.9.56)

Pointwise we can consider the space TNhor orthogonal to the vertical tangent bundle

TN hor =
{
X ∈ TN ζ

∣∣ < X,
∂

∂φ
>≡ g

(
X,

∂

∂φ

)
= 0

}
(8.9.57)

This assignment of a complement to the vertical tangent spaces is smooth and U(1)-
invariant, and therefore defines a connection on the principal bundle Nζ , whose
connection form AAA satisfies

∀X ∈ TN hor : AAA(X) = 0 ; AAA
(
∂

∂φ

)
= 1 (8.9.58)

In the chosen coordinates we find:

AAA === d φ − ζd θ1ρ21

2
(
1+ ρ21

)√
ζ 2 + 64

(
1+ ρ21

)
2ρ42

− ζd θ2

2
√
ζ 2 + 64

(
1+ ρ21

)
2ρ42
(8.9.59)

where:
z1,2 = exp

[
i θ1,2

]
ρ1,2 (8.9.60)
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are the standard complex coordinates labeling the points of the locus LΓ , namely
parametrizing the two matrices A, B that solve the invariance constraint of Γ , defin-
ing HomΓ (Q × R, R), and are also diagonal in the natural basis of the regular
representation. In the split basis they turn out to be antidiagonal:

A =
(

0 Z1

Z1 0

)
; B =

(
0 Z2

Z2 0

)
(8.9.61)

By means of the usual correspondence between U(1) bundles and line bundles we
conclude that this connection AAA is the imaginary part of the connection theta of the
corresponding bundle and we write the equation:

θ = H−1∂H (8.9.62)

where the explicit solution of the algebraic moment map equations yields:

H =
4

√
ζ+
√
ζ 2+16|Z2

1|2+|Z2
2|2

|Z1|2+|Z2|2√
2

(8.9.63)

Curvature of the Line Bundle

In this way we find that the tautological bundle has the following curvature:

Θ = ∂̄∂Log[H] (8.9.64)

Θ is the first Chern class of the tautological line bundle implicitly defined by the
above construction

L
π−→Mζ

c1(L ) =
[

i

2π
Θ

]
∈ H 1,1 (Mζ

)
(8.9.65)

where H 1,1
(
Mζ

)
is the (1,1) cohomology group of the manifold Mζ . On the other

hand the very space of Eguchi–Hanson Mζ is a line bundle over P1:

Mζ
π0−→ P1 (8.9.66)

There is a (1,1)-form ω over P1 which is the the first Chern class of the bundleMζ .

c1
(
Mζ

) = ω ∈ H 1,1 (P1) (8.9.67)

We find that, as usual the pullback π0∗of the projection π0 works in particular as
follows:

π0
∗ : T(1,1)

∗
P1 −→ T(1,1)

∗Mξ (8.9.68)
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We find that the (1,1)-form Θ which is defined over the whole Mζ is the pullback
image of the first Chern class of the line bundle Mζ .

π0
∗ [c1 (Mζ

)] = c1(L ) (8.9.69)

The line bundle Mζ
π0−→ P1 is by definition the one associated with the vanishing

locus of the section ξ2.

What We Have Learned from this Explicit Case?

The above detailed analysis reveals that, according to general lore, the cohomol-
ogy classes constructed as first Chern classes of the tautological holomorphic vector
bundles defined by the Kähler quotient via hermitian matricesHi , are naturally asso-
ciated with the components of the exceptional divisor. This latter is defined as the
vanishing locus of a global holomorphic section W (p) of a line bundle:

LD
π−→ Mζ

D ⊂Mζ ; D = {
p ∈Mζ | W (p) = 0 where W ∈ Γ (LD)

}
(8.9.70)

The line bundleLD is singled out by the divisorD and for this reason it is labeled
by it. Its first Chern class ω(1,1)D is certainly a cohomology class and so it must be
a linear combination of the first Chern classes ω(1,1)i created by the Kähler quotient
and associated with the hermitian matrices Hi (ζ, p):[

ω
(1,1)
D

]
= SD,i

[
ω
(1,1)
i

]
(8.9.71)

The question is to know which is which and to determine the constant matrix SD,i .
Another point revealed by the analysis of the Eguchi–Hanson case is that, at least

locally, the entire space Mζ can be viewed as the total space of a line bundle over
the divisor D:

Mζ

πd−→ D

∀p ∈ D ; π−1d (p) � C
� (8.9.72)

Furthermore the matrix Hi can be viewed as the invariant norm of a section of the
appropriate line bundle:

Hi (ζ, z, z̄) = Hi (ξ, ξ̄ ,W, W̄ ) |W |2 (8.9.73)

where ξ denote the two coordinates spanning the divisor D and W (as in Fig. 8.9)
spans the vertical fibers out of the divisor. The projection πd corresponds to setting
W → 0 and obtaining:
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Fig. 8.9 In the Eguchi–Hanson case the exceptional divisor is a submanifold D ⊂ Mζ of codi-

mension one that is mapped into the singular point by the resolving morphismMζ −→ C
2

Γ
. There

is a projection operationMζ
π−→ D that makesMζ the total space of a line bundle over the divisor.

Accordingly we can choose a local coordinate system for Mζ such that two coordinates span the
divisor while the third, named W , transforms as if it were a section of the mentioned line bundle

πd : H(ξ, ξ̄ ,W, W̄ ) −→ h(ξ, ξ̄ ) ≡ H(ξ, ξ̄ , 0, 0) (8.9.74)

Just as in the case of Eguchi–Hanson, we expect that the two (1,1)-forms:

Ωi = ∂∂Hi (ξ, ξ̄ ,W, W̄ )

Ω̂i = ∂∂h(ξ, ξ̄ ) (8.9.75)

should be cohomologous:
[Ωi ] =

[
Ω̂i
]

(8.9.76)

The form Ω̂i is the first Chern class of the line bundle (8.9.72) while Ωi is the first
Chern class of the line bundle (8.9.70) that defines the divisor.

Divisors and Conjugacy Classes Graded by Age

Hence the question boils down to the following: What are the components of the
exceptional divisor of a crepant resolution of the singularity C

3/Γ , and how many
are they? The answer is provided by Theorem 8.3.1 (Theorem 1.6 in [46]); they are
the inverse images via the blowdown morphism of the irreducible components of the
fixed locus of the action of Γ onC

3, and are in a one-to-one correspondence with the
junior conjugacy classes ofΓ . The irreducible components of the exceptional divisor
may be compact (corresponding to a component of the fixed locus which is just the
origin of C

3) or noncompact (corresponding to fixed loci of higher dimensions, i.e.,
curves).

Let us consider the case of a cyclic groupΓ , with only the origin as fixed locus, and
choose ageneratorγ ofΓ of order r .As inEq. (8.3.7),we canwriteγ = 1

r (a1, a2, a3).
As described in [46], Sects. 2.3 and 2.4, the resolution of singularities is obtained by
iterating the following construction, which uses toric geometry (a general reference

http://dx.doi.org/10.1007/978-3-319-74491-9_2
http://dx.doi.org/10.1007/978-3-319-74491-9_2
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for toric geometry, which in particular explains how to perform a toric blowup by
subdividing the fan of the toric variety one wants to blowup, is [56]). The fan of
the toric variety C

3 is the first octant of R
3, with all its faces; by adding the ray

1
r (a1, a2, a3) we perform a blowup B[a1,a2,a3] → C

3 whose exceptional divisor F is
the weighted projective space WP[a1, a2, a3]. The same procedure applied to C

3/Γ

produces a partial desingularization Wγ → C
3/Γ which is the base of a cyclic

coveringB[a1,a2,a3] → Wγ , ramified along the exceptional divisor E ofWγ → C
3/Γ .

The situation is summarised by the following diagram

F B[a1,a2,a3]
weighted blowup

C
3

E Wγ

crepant resolution
C

3/Γ

. (8.9.77)

The full desingularization is obtained by performing a multiple toric blowup,
adding all rays corresponding to junior conjugacy classes.

8.10 Analysis of the (1,1)-Forms: Irreps Versus Conjugacy
Classes that is Cohomology Versus Homology

In the present section we plan to analyze in full detail, within the scope of a one
junior class model, the relation between the above extensively discussed ω(1,1)α forms
(α = 1, . . . , r = # of nontrivial irreps), with the exceptional divisors generated by
the blowup of the singularity, together with the other predictions of the fundamental
Theorem 8.3.1 which associates cohomology classes ofMζ with conjugacy classes
of Γ . The number of nontrivial conjugacy classes and the number of nontrivial irreps
are equal to each other so that we use r in both cases, yet what is the actual pairing
is not clear a priori and it is not intrinsic to group theory, as we have stressed several
times. In this section we want to explore this pairing and to do that in an explicit way
we need explicit calculable examples. These are very few because of the bottleneck
constituted by the solution of the moment map equations, that are algebraic of higher
degree and only seldomadmit explicit analytic solutions. For this reasonwe introduce
here the full-fledged construction of one of those rare examples, where the moment
map equations are solved in terms of radicals. As anticipated above this model has
the additional nice feature that the number of junior conjugacy classes is just one. It
will be the master model for our explicit analysis.

It is also important to stress that aim of the Kronheimer-like construction is not
only the calculation of cohomology but also the actual determination of the Kähler
potential (yielding the Kähler metric), which is encoded in formula (8.9.32). From
this point of view one of the DetHi may lead to a corresponding ω(1,1)i = i

2π ∂̄∂DetHi

that is either exact or cohomologous to another one, yet its contribution to the Kähler
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potential, which is very important in physical applications, cannot be neglected. It is
only the cohomology class of the Kähler 2-form that is affected by the triviality of
one or more of the ω(1,1)i ; the contributions to the Kähler potential that give rise to
exact form deformations of the Kähler 2-form are equally important as others.

Having anticipated these general considerations we turn to our master model.

8.10.1 The Master Model C
3

Γ
with Generator {ξ, ξ, ξ}

In this section we develop all the calculations for the Kähler quotient resolution of
the quotient singularity C

3

Z3
in the case where the generator Y ofZ3 is of the following

form:

Y =
⎛
⎝ ξ 0 0
0 ξ 0
0 0 ξ

⎞
⎠ (8.10.1)

ξ being a primite cubic root of unity ξ 3 =1.
The equation p ∧ p = 0 which is a set of quadrics has solutions arranged in

various branches. There is a unique, principal branch of the solution that hasmaximal
dimension D0

Γ and is indeed isomorphic to the GΓ orbit of the singular locus LΓ .
This principal branch is the algebraic variety V|Γ |+2 mentioned in Eq. (8.2.24), of
which we perform the Kähler quotient with respect to the groupFΓ

FΓ =
r+1⊗
μ=1

U
(
nμ
) ∩ SU(|Γ |) = U(1)⊗ U(1) (8.10.2)

in order to obtain the crepant resolution together with its Kähler metric. In the above
formulanμ = {1,1,1} are the dimensions of the irreducible representations ofΓ = Z3

and r + 1 = 3 is the number of conjugacy classes of the group (r is the number of
nontrivial representations).

To make a long story short, exactly as in the Kronheimer case we are able to
retrieve the algebraic equation of the singular locus from traces and determinants of
the quiver matrices restricted to LΓ . Precisely for the Z3 case under consideration
we obtain

I1 = Det [Ao] ;I2 = Det [Bo] ; I3 = Det [Co] ;I4 = 1

3
Tr [AoBoCo] (8.10.3)

and we find the relation
I1I2I3 = I4

3 (8.10.4)

which reproduces the C
3 analogue of Eqs. (8.5.33)–(8.5.35) applying to the C

2 case
of Kronheimer and Arnold.
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The main difference, as we have several time observed, is that now the same
equations remain true, with no deformation for the entire GΓ = C

∗ × C
∗, orbit of

the locus LΓ , namely for the entire V|Γ |+2 = V5 variety of which we construct the
Kähler quotient with respect to the compact subgroup U(1)×U(1)⊂C

∗ ×C
∗. This

is in line with the many times emphasized feature that in the C
3 case there is no

deformation of the complex structure.

8.10.1.1 The Actual Calculation of the Kähler Quotient and of the
Kähler Potential

The calculation of the final form of the Kähler potential is reduced to the solution
of a set of two algebraic equations. The solutions of such equations are accessible in
this particular case since they reduce to a single cubic for which we have Cardano’s
formula. For this reason the present case is the three-dimensional analogue of the
Eguchi–Hanson space where everything is explicitly calculable and all theorems
admit explicit testing and illustration.

By calculating the ages we determine the number ofω(q,q) harmonic forms (where
q = 1, 2). According to Theorem 8.3.1 all these forms (and their dual cycles in
homology) should be in one-to-one correspondence with the r nontrivial conjugacy
classes of Γ . On the other hand the Kähler quotient construction associates one
level parameter ζ to each generator of the center z(FΓ ) of the group FΓ , two ζ s
in this case, that are in one-to-one correspondence with the r nontrivial irreducible
representation of Γ . The number is the same, but what is the pairing between irreps
and conjugacy classes?More precisely how dowe see the homology cycles that are
created when each of the r level parameters ζ departs from its original zero value?
Using the explicit expression of the functions H1,2 defined in Eqs. (8.9.26)–(8.9.31)
we arrive at the calculation of the ω(1,1)i=1,2 forms that encode the first Chern classes
of the two tautological bundles. The expectation from the age argument is that these
two 2-forms should be cohomologous corresponding to just the unique predicted
class of type (1,1) since h1,1=1. On the other hand we should be able to construct
an ω(2,2) form representing the unique class that is Poincarè dual to the exceptional
divisor.

In this case we can successfully answer both questions and this is very much
illuminating.

Ages

Indeed taking the explicit generator

Y =
⎛
⎝ (−1)2/3 0 0

0 (−1)2/3 0
0 0 (−1)2/3

⎞
⎠ (8.10.5)
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we easily calculate the {a1, a2, a3} vectors respectively associated to each of the three
conjugacy classes and we obtain:

a − vectors = {{0, 0, 0}, 13 {1, 1, 1}, 13 {2, 2, 2}} (8.10.6)

from which we conclude that, apart from the class of the identity, there is just one
junior and one senior class.

Hence we conclude that the Hodge numbers of the resolved variety should be
h(0,0) = 1; h(1,1) = 1 ; h(2,2) = 1.

If we follow the weighted blowup procedure described in [39] using the weights
of the unique junior class {1, 1, 1}, we see that the bundle projection π yields

π : B(1,1,1) −→ WP(1,1,1) ∼ P
2 (8.10.7)

So the blowup replaces the singular point 0 ∈ C
3 with a P

2, which is compact. As
a result, also the exceptional divisor in the resolution Mζ is compact. By Poincaré
duality this entrains the existence of a harmonic (2,2)-form associatedwith the unique
senior class.

8.10.1.2 The Quiver Matrix

In this case, the quiver matrix defined by Eq. (8.6.1) is the following one :

Ai j =
⎛
⎝ 0 3 0
0 0 3
3 0 0

⎞
⎠ (8.10.8)

and it has the graphical representation displayed in Fig. 8.10

8.10.1.3 The Space SΓ = HomΓ (Q ⊗ R, R) in the Natural Basis

Solving the invariance constraints (8.6.7) in the natural basis of the regular represen-
tation we find the triples of matrices {A,B,C} spanning the locus SΓ . They are as
follows:

Fig. 8.10 The quiver
diagram of the cyclic group
with generator
Y = diag{ξ, ξ.ξ}
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A =
⎛
⎝ α1,1 α1,2 α1,3
(−1)2/3α1,3 (−1)2/3α1,1 (−1)2/3α1,2
−(−1)1/3α1,2 −(−1)1/3α1,3 −(−1)1/3α1,1

⎞
⎠

B =
⎛
⎝ β1,1 β1,2 β1,3
(−1)2/3β1,3 (−1)2/3β1,1 (−1)2/3β1,2
−(−1)1/3β1,2 −(−1)1/3β1,3 −(−1)1/3β1,1

⎞
⎠

C =
⎛
⎝ γ1,1 γ1,2 γ1,3
(−1)2/3γ1,3 (−1)2/3γ1,1 (−1)2/3γ1,2
−(−1)1/3γ1,2 −(−1)1/3γ1,3 −(−1)1/3γ1,1

⎞
⎠ (8.10.9)

The Locus LΓ

The locus LΓ ⊂SΓ is easily described by the equation:

A0 =
⎛
⎝α1,1 0 0

0 (−1)2/3α1,1 0
0 0 −(−1)1/3α1,1

⎞
⎠

B0 =
⎛
⎝β1,1 0 0

0 (−1)2/3β1,1 0
0 0 −(−1)1/3β1,1

⎞
⎠

C0 =
⎛
⎝γ1,1 0 0

0 (−1)2/3γ1,1 0
0 0 −(−1)1/3γ1,1

⎞
⎠ (8.10.10)

8.10.1.4 The Space SΓ in the Split Basis

Solving the invariance constraints in the split basis of the regular representation we
find another representation of the triples of matrices {A, B,C} that span the space
SΓ . They are as follows:

A =
⎛
⎝ 0 0 m1,3

m2,1 0 0
0 m3,2 0

⎞
⎠

B =
⎛
⎝ 0 0 n1,3
n2,1 0 0
0 n3,2 0

⎞
⎠

C =
⎛
⎝ 0 0 r1,3
r2,1 0 0
0 r3,2 0

⎞
⎠ (8.10.11)
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8.10.1.5 The Equation p ∧ P = 0 and the Characterization of the
Variety V5 = DΓ

Here we are concerned with the solution of Eq. (8.6.12) and the characterization of
the locus DΓ .

Differently from the more complicated cases of larger groups, in the present
abelian case of small order, we can explicitly solve the quadratic equations provided
by the commutator constraints and we discover that there is a principal branch of the
solution, namedD0

Γ that has indeed dimension 5 = |Γ |+2. In addition however there
are several other branches with smaller dimension. These branches describe different
components of the locus DΓ . Actually as already pointed out they are all contained
in the GΓ orbit of the subspace LΓ defined above. The quadratic equations defining
DΓ have a set of 14 different solutions realized by a number ni of constraints on the
9 parameters. Hence there are 14 branches D i

Γ (i = 0, 1, . . . , 16) of dimensions:

dimC D i
Γ = 9− ni (8.10.12)

The full dimension table of these branches is displayed below

{5, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 2, 2}

As we see, there is a unique branch that has the maximal dimension 5 = | Z3| + 2.
This is the principal branch D0

Γ . It can be represented by the substitution:

n2,1 → m2,1n1,3
m1,3

, n3,2 → m3,2n1,3
m1,3

, r2,1 → m2,1r1,3
m1,3

, r3,2 → m3,2r1,3
m1,3
(8.10.13)

In this way we have reached a complete resolution of the following problem. We
have an explicit parametrization of the variety V|Γ |+2. This variety is described by
the following threematrices depending on the 5 complex variablesωi (i = 1, . . . , 5):

A =
⎛
⎝ 0 0 ω1

ω2 0 0
0 ω3 0

⎞
⎠

B =
⎛
⎝ 0 0 ω4
ω2ω4
ω1

0 0
0 ω3ω4

ω1
0

⎞
⎠

C =
⎛
⎝ 0 0 ω5
ω2ω5
ω1

0 0
0 ω3ω5

ω1
0

⎞
⎠ (8.10.14)
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8.10.1.6 The Quiver Group

Our next point is the derivation of the group GΓ defined in Eqs. (8.6.17) and (8.6.18),
namely:

GΓ =
{
g ∈ SL(|Γ |,C) ∣∣∀γ ∈ Γ : [DR(γ ), Ddef(g)

] = 0
}

(8.10.15)

Let us proceed to this construction. In the diagonal basis of the regular representation
this is a very easy task, since the group is simply given by the diagonal 3×3 matrices
with determinant one. We introduce such matrices

g ∈ GΓ : g =
⎛
⎝a1 0 0

0 a2 0
0 0 a3

⎞
⎠ (8.10.16)

8.10.1.7 V5 as the Orbit Under GΓ of the Locus LΓ

In this section we want to verify and implement Eq. (8.2.24), namely we aim at
showing thatV5 = D� = OrbitGΓ (LΓ ). To this effect we rewrite the locus LΓ in the
diagonal split basis of the regular representation. The change of basis is performed
by the character table of the cyclic group Z3. The result is displayed below:

A0 =
⎛
⎝ 0 0 α1,1
α1,1 0 0
0 α1,1 0

⎞
⎠

B0 =
⎛
⎝ 0 0 β1,1
β1,1 0 0
0 β1,1 0

⎞
⎠

C0 =
⎛
⎝ 0 0 γ1,1
γ1,1 0 0
0 γ1,1 0

⎞
⎠ (8.10.17)

Eventually the complex parameters

z1 ≡ α1,1; z2 ≡ β1,1; z3 ≡ γ1,1 (8.10.18)

will be utilized as complex coordinates of the resolved variety when the level param-
eters ζ1,2 are switched on. Starting from the above the orbit is given by:

OrbitGΓ ≡
{{

g A0 g
−1, g B0 g

−1, gC0 g
−1} | ∀ g ∈ GΓ

∀ {A0, B0,C0} ∈ LΓ

}
⊃ D0

Γ

(8.10.19)
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and the correspondence between the parameters of the principal branch D0
Γ and the

parameters spanning GΓ and LΓ is provided below:

a1 → ω
1/3
2

ω
1/3
1

, a2 → ω
1/3
3

ω
1/3
2

, a3 → ω
1/3
1

ω
1/3
3

z1 → ω
1/3
1 ω

1/3
2 ω

1/3
3

z2 → ω
1/3
2 ω

1/3
3 ω4

ω
2/3
1

, z3 → ω
1/3
2 ω

1/3
3 ω5

ω
2/3
1

(8.10.20)

Branches of smaller dimension of the solution are all contained in the OrbitGΓ (LΓ )
and correspond to the orbits of special points of LΓ where some of the zi vanish or
satisfy special relations among themselves. Hence, indeed we have:

OrbitGΓ = DΓ

8.10.1.8 The Compact Gauge Group FΓ = U(1)2

We introduce a basis for the generators of the compact subgroup U(1)2 = FΓ ⊂ GΓ
provided by the set of two generators displayed here below

T 1 =
⎛
⎝ i 0 0
0 −i 0
0 0 0

⎞
⎠ ; T 2 =

⎛
⎝ 0 0 0
0 i 0
0 0 −i

⎞
⎠ (8.10.21)

whose trace-normalization is the A2 Cartan matrix

Tr
(
T i T j

) = Cij =
(

2 −1
−1 2

)
(8.10.22)

8.10.1.9 Calculation of the Kähler Potential and of the Moment Maps

Naming Δi the moduli of the coordinates zi and θi their phases according to zi =
eiθiΔi and considering a generic element gR of the quiver group that is real and hence
is a representative of a coset class in GΓ

FΓ
:

gR =
⎛
⎝ eλ1 0 0

0 e−λ1+λ2 0
0 0 e−λ2

⎞
⎠ ; λ1,2 ∈ R (8.10.23)

The triple of matrices {A,B,C}={gR A0gR
−1, gR B0gR

−1, gRC0gR
−1} have the fol-

lowing explicit appearance:
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A =
⎛
⎝ 0 0 eiθ1−λ1−λ2Δ1

eiθ1+2λ1−λ2Δ1 0 0
0 eiθ1−λ1+2λ2Δ1 0

⎞
⎠

B =
⎛
⎝ 0 0 eiθ2−λ1−λ2Δ2

eiθ2+2λ1−λ2Δ2 0 0
0 eiθ2−λ1+2λ2Δ2 0

⎞
⎠

C =
⎛
⎝ 0 0 eiθ3−λ1−λ2Δ3

eiθ3+2λ1−λ2Δ3 0 0
0 eiθ3−λ1+2λ2Δ3 0

⎞
⎠ (8.10.24)

Calculating the Kähler potential we find

KS |D =
(
Tr
[
A A†]+ Tr

[
B B†]+ Tr

[
C C†])

= e−2(λ1+λ2)
(
1+ e6λ1 + e6λ2

) (
Δ2

1 +Δ2
2 +Δ2

3

)
(8.10.25)

We have used the above notation since Tr
[
A, A†

]+ Tr
[
B, B†

]+ Tr
[
C,C†

]
is the

Kähler potential of the ambient space SΓ restricted to the orbit DΓ . Indeed since
FΓ is an isometry of SΓ , the dependence in KS |D is only on the real part of the
quiver group, namely on the real factors λ1,2. Just as it stands,KS |D cannot work as
Kähler potential of a complex Kähler metric. Yet, when the real factors λ1,2 will be
turned into functions of the complex coordinates zi , then KS |D will be enabled to
play the role of a contribution to the Kähler potential of the resolved manifoldMζ .

Next we calculate the moment maps according to the formulas:

P1 ≡ −i Tr [T 1
([
A, A†

]+ [B, B†
]+ [C,C†

])]
= e−2(λ1+λ2)

(
1− 2e6λ1 + e6λ2

) (
Δ2

1 +Δ2
2 +Δ2

3

)
P2 ≡ −i Tr [T 2

([
A, A†

]+ [B, B†
]+ [C,C†

])]
= e−2(λ1+λ2)

(
1+ e6λ1 − 2e6λ2

) (
Δ2

1 +Δ2
2 +Δ2

3

)
(8.10.26)

8.10.1.10 Solution of the Moment Map Equations

In order to solve the moment map equations it is convenient to introduce the new
variables

ϒ1,2 = exp
[
2 λ1,2

]
(8.10.27)

and to redefine the moment maps with indices lowered by means of the inverse of
the Cartan matrix mentioned above

Pi =
(
C−1

)
ijP

j (8.10.28)

In this way imposing the level condition
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Pi = −ζi (8.10.29)

where ζ1,2 > 0 are the two level parameters, we obtain the final pair of algebraic
equations for the factors ϒ1,2{

Σ
(−1+ϒ3

1

)
ϒ1ϒ2

,
Σ
(−1+ ϒ3

2

)
ϒ1ϒ2

}
= {

ζ1,ζ2
}

(8.10.30)

where we have introduced the shorthand notation:

Σ =
3∑

i=1
|zi |2 (8.10.31)

The above algebraic system composed of two cubic equations is simple enough in
order to find all of its nine roots by means of Cardano’s formula. The very pleasant
property of these solutions is that one and only one of the nine branches satisfies the
correct boundary conditions, namely provides real ϒi (ζ ,Σ) that are positive for all
values of Σ and ζ and reduce to 1 when ζ→0.

The complete solution of the algebraic equations can be written in the following
way. For the first factor we have:

ϒ1 = 1

61/3

(
N

Σ3"
1
3

) 1
3

(8.10.32)

where

N = 2× 21/3ζ 31 ζ
2
2 + 6Σ3"

1
3 + 2ζ 21

(
3× 21/3Σ3 + ζ2"

1
3

)
+ζ1

(
6× 21/3Σ3ζ2 + 22/3"

2
3

)
" = 27Σ6 + 9Σ3 ζ 21 ζ2 + 9Σ3 ζ1ζ

2
2 + 2 ζ 31 ζ

3
2 + 3

√
3Σ3R

R =
√
27Σ6 + 6Σ3ζ1ζ

2
2 − ζ 41 ζ 22 − 4Σ3ζ 32 + ζ 31

(
−4Σ3 + 2ζ 32

)
+ ζ 21

(
6Σ3ζ2 − ζ 42

)
(8.10.33)

For the second factor we have

ϒ2 =
− M8/3

Σ5 + 18M5/3

Σ2 − 72M2/3Σ + 36
(

M
Σ3

)2/3
ζ 31 − 36

(
M
Σ3

)2/3
ζ 21 ζ2 + 6

(
M
Σ3

)5/3
ζ 21 ζ2

36× 62/3Σ2ζ1
(8.10.34)

where

M = 6Σ3"1/3 + 22/3"2/3ζ1 + 6× 21/3Σ3 ζ 21 + 6× 21/3Σ3 ζ1ζ2 + 2"1/3ζ 21 ζ2 + 2× 21/3ζ 31 ζ
2
2

Ω1/3

(8.10.35)
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8.10.2 Discussion of Cohomology in the Master Model

Since the two scale factorsϒ1,2 are functions only ofΣ , the two (1,1)-forms, relative
to the two tautological bundles, respectively associated with the first and second
nontrivial irreps of the cyclic group, defined in Eq. (8.9.31) take the following general
appearance:

ω
(1,1)
1,2 = i

2π

(
d

d Σ
Log

[
ϒ1,2(Σ)

]
dz̄i ∧ dzi + d2

d Σ2
Log

[
ϒ1,2(Σ)

]
z j z̄idzi ∧ dz̄ j

)

= i

2π

(
f1,2Θ + g1,2'

)
(8.10.36)

where we have introduced the short hand notation

Θ =
3∑

i=1
dz̄i ∧ dzi ; ' =

3∑
i, j=1

z j z̄i dzi ∧ dz̄ j (8.10.37)

Indeed in the present case the fiber metrics H1,2 are one-dimensional and given by
H1,2 =

√
ϒ1,2. The most relevant point is that the two functions f1,2 and g1,2 being

the derivatives (first and second) of ϒ1,2 depend only on the variable Σ .
It follows that a triple wedge product of the two-forms ω(1,1)a (a=1,2) has always

the following structure:

ω
(1,1)
a ∧ω(1,1)b ∧ω(1,1)b =

(
i

2π

)3
( fa fb fc + 2Σ (ga fb fc + gb fc fa + gc fa fb))×Vol

(8.10.38)
where

Vol = dz1 ∧ dz2 ∧ dz3 ∧ dz̄1 ∧ dz̄2 ∧ dz̄3 (8.10.39)

This structure enables us to calculate intersection integrals of the considered forms
very easily. It suffices to change variables as we explain below. The equations

Σ =
3∑

i=1
|zi |2 = ρ2 (8.10.40)

define 5-spheres of radius ρ. Introducing the standard Euler angle parametrization
of a 5-sphere, the volume form (8.10.39) reduces to:

Vol = 8iρ5 cos4 (θ1) cos
3 (θ2) cos

2 (θ3) cos (θ4)
5∏

i=1
dθi (8.10.41)

The integration on the Euler angles can be easily performed and we obtain:
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4∏
i

∫ π
2

π
2

dθi

∫ 2π

0
dθ5

(
8iρ5 cos4 (θ1) cos

3 (θ2) cos
2 (θ3) cos (θ4)

) = 8iπ3ρ5

(8.10.42)
Hence defining the intersection integrals:

Iabc =
∫
M
ω(1,1)a ∧ ω(1,1)b ∧ ω(1,1)b (8.10.43)

we arrive at

Iabc =
(

i

2π

)3
× 8iπ3 ×

∫ ∞
0

(
6ρ5 fa fb fc + 2ρ7 ( fb fcga + fa fcgb + fa fbgc)

)
dρ

=
∫ ∞
0

(
6ρ5 fa fb fc + 2ρ7 ( fb fcga + fa fcgb + fa fbgc)

)
dρ (8.10.44)

We have performed the numerical integration of these functions and we have found
the following results

(ζ1 > 0, ζ2 = 0) : I111 = 1
8

(ζ1 = 0, ζ2 ≥ 0) : I111 = 0
(ζ1 > 0, ζ2 > 0) : I111 = 1

(8.10.45)

From this we reach the following conclusion. Since the corresponding integral is
nonzero it follows that:

ω
(2,2)
S ≡ ω(1,1)1 ∧ ω(1,1)1 (8.10.46)

is closed but not exact and by Poincaré duality it is the Poincaré dual of some cycle
S ∈ H2(M ) such that: ∫

S
ι∗ω(1,1)1 =

∫
M
ω
(1,1)
1 ∧ ω(2,2)S (8.10.47)

where
ι : S −→M (8.10.48)

is the inclusion map. Since H 2
c (M ) = H 2(M ) and both have dimension 1 it follows

that dim H2(M ) = 1, so that every nontrivial cycle S is proportional, (as homology
class) via some coefficient α to a single cycle C , namely we have S = α C . Then
we can interpret Eq. (29) as follows

∫
αC
ι∗ω(1,1)1 = α

∫
M
ω
(1,1)
1 ∧ ω(2,2)C (8.10.49)

If we choose as fundamental cycle, that one for which
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C
ι∗ω(1,1)1 = 1 (8.10.50)

we conclude that

α =
{
1 case {ζ1 > 0, ζ2 > 0}
1
8 case {ζ1 > 0, ζ2 = 0} (8.10.51)

Next we have calculated the intersection integral I211 and we have found:

(ζ1 > 0, ζ2 = 0) : I211 = 0
(ζ1 = 0, ζ2 ≥ 0) : I211 = 0
(ζ1 > 0, ζ2 > 0) : I211 = 1

(8.10.52)

Conclusions on Cohomology

We have two cases.

case {ζ1 > 0, ζ2 > 0} . The first Chern classes of the two tautological bundles are
cohomologous: [

ω
(1,1)
1

]
=
[
ω
(1,1)
2

]
= [
ω(1,1)

]
(8.10.53)

case {ζ1 > 0, ζ2 = 0} .] The first Chern class of the first tautological bundle is
nontrivial and generates H (1,1)

c (M ) = H 1,1(M ).

[
ω
(1,1)
1

]
= nontrivial (8.10.54)

The first Chern class of the second tautological bundle is trivial, namely

ω
(1,1)
2 = exact form (8.10.55)

Obviously since there is symmetry in the exchange of the first and second scale fac-
tors, exchanging ζ1↔ζ2, the above conclusion is reversed in the case {ζ1 = 0, ζ2 > 0}.

In passing we have also proved that the unique (2,2)-class is just the square of the
unique (1,1)-class [

ω(2,2)
] = [

ω(1,1)
] ∧ [ω(1,1)] (8.10.56)

8.10.2.1 The Exceptional Divisor

Finally let us discuss how we retrieve the exceptional divisor P
2 predicted by the

weighted blowup argument. As we anticipated in Eqs. (8.9.73)–(8.9.74), replacing
the three coordinates zi with

z1 = W ; z2 = W ξ1 ; z3 = W ξ2 (8.10.57)
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which is the appropriate change for one of the three standard open charts of P
2, we

obtain

H1(Σ) = 1

|W |2 H1(ξ, ξ̄ ,W, W̄ )
(8.10.58)

where the function H1(ξ, ξ̄ ,W, W̄ ) has the property that:

lim
W→0

log[H1(ξ, ξ̄ ,W, W̄ )] = − log[1+ |ξ1|2 + |ξ2|2] + log[const] (8.10.59)

From the above result we conclude that the exceptional divisor D(E) is indeed the
locusW = 0 and that on this locus the first Chern class of the first tautological bundle
reduces to the Kähler 2-form of the Fubini–Study Kähler metric on P

2. Indeed we
can write:

c1 (L1) |D(E) = − i

2π
∂̄ ∂ log[1+ |ξ1|2 + |ξ2|2] (8.10.60)

From this point of view thismaster example is the perfect three-dimensional analogue
of the Eguchi–Hanson space, the P

1 being substituted by a P
2.

With this we conclude our long and detailed exposition of the Kronheimer con-
struction for the resolution of C

2/Γ and C
3/Γ singularities. By now the reader

should have accumulated enough insight in the simplicity of the principles and the
calculation complexity of this beautiful branch of modern geometry.

8.11 Conclusion

In this chapter we have seen that the 2400 year old classification problem of pla-
tonic solids is still alive and able to produce very challenging modern fruits. We
started in Chap.1 with the diophantine equation that provides the ADE classification
of finite rotation groups. In Sect. 1.5 we retrieved, via Dynkin diagrams, the same
classification in terms of simply laced Lie algebras. In the present chapter we found a
third incarnation of the same classification under the form of gravitational instantons
associated with the resolution of singularities [57–59].

The relation between finite groups, Lie algebras and complex geometry have in
the topics discussed in this chapter a most exciting illustration. Furthermore the pro-
found role played by supersymmetry in bringing to the surface deep and unexpected
connections is exemplified by the contents of the present chapter in a paradigmatic
way.

Indeed one of the most fundamental question at stake in many problems of super-
gravity and superstring, in particular related with compactifications and with the
AdS/CFT correspondence, is just the classical algebraic geometry problemof resolv-
ing quotient singularities. Under the inspired stimulus of supersymmetric theories a

http://dx.doi.org/10.1007/978-3-319-74491-9_1
http://dx.doi.org/10.1007/978-3-319-74491-9_1
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rich set of results were obtained by the mathematical community at the beginning of
1990s, those reviewed in this chapter being just the first ones in such a list.

Entering a more circumstantial analysis I have tried to emphasize where the catch
of a such a stimulus is. The example of (Hyper)Kähler quotients is indeed paradig-
matic. The whole story began from the physical interpretation of the mathemati-
cal notion of moment-map. Identifying the moment-maps with the auxiliary fields
of supersymmetric gauge-theories new scenarios opened up. Extremization of the
scalar potential, namely the physical problem of searching for classical vacua of a
field-theory naturally produced the notion of (Hyper)Kähler quotient. It was once
again a physical problem, that of instantons extended from gauge-theories to grav-
ity, what motivated the consideration of ALE manifolds. Yet their construction as
HyperKähler quotients would not have been possible without the further ingredient
of the McKay correspondence. This latter came neither from physics nor from the
solution of some mathematical problem posed in a standard way. It just came from
that type of Interrogation of Mathematics rather than of Nature which I discussed
in the twin book [60]. It is looking for traces of unexpected correspondences that
sometimes we uncover the deeper nature of certain mathematical structures we have
known for long time. As a result of such discoveries we usually open new scenarios
not only for Mathematics but also for Physics, where identifications, such as that
of the moment-maps with the auxiliary fields, become possible with far reaching
consequences of the type highlighted above.

From these considerations it is evident how wide and deep is the extent of the
fertilizing influence exerted by supersymmetry on the development ofmodernGeom-
etry. I believe that this latter has entered a new season of expansion and progress that
can, in the long run, lead to new conceptions in Physics.
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Chapter 9
Epilogue

M. Poincaré a écrit que dans les Sciences mathématiques une
bonne notation a la même importance philosophique qu’une
bonne classification dans les Sciences naturelles. Évidemment,
et même avec plus de raison, on peut en dire autant des
méthodes, car c’est bien de leur choix que dépend la possibilité
de forcer (pour nous servir encore des paroles de lillustre
géomètre francais) une multitude de faits sans aucun lien
apparent à se grouper suivant leurs affinités naturelles.

Ricci and Levi-Civita

What happened in mathematics since the mid thirties of the XX century to the early
eighties of the same century is deeply characterized, in my opinion, by the following
two highly momentous developments, one intrinsic to the mathematical community
the other forced on it by the new visions of theoretical physics. These developments
are the following ones:

(a) Starting with the monumental work of Cartan on symmetric spaces the theory
of symmetry, meaning group theory, Lie Algebra theory and associated topics
merged more tightly with the theory of geometry, meaning manifolds and fibre-
bundles, their isometries, their holonomies and their topology.

(b) With the advent of supersymmetry and of its obligatory consequences, namely
supergravity, superstrings and branes, what in geometry was so far generic, for
instance the dimensions D of the space-time manifold or the possible scalar
potentials ceased to be such and started being determined within finite ranges of
choices that are dictated by a superior structure, at the same time very restrictive
and surprisingly rich in its power to relate so far uncorrelated mathematical
objects.

© Springer International Publishing AG, part of Springer Nature 2018
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Before supersymmetry D might be any number, after supersymmetry it took the
fixed values either D = 11, or D = 10, related to each other by a deep mechanism
named duality. Before supersymmetry, all Riemannian spaces were equally inter-
esting, after supersymmetry special geometries occupied the scene introducing new
exciting mathematical structures that I have described at length in several chapters
of this book. Before supersymmetry, exceptional Lie algebras were mathematical
curiosities mostly disregarded by physicists, after supersymmetry all the exceptional
Lie algebras fell into appropriate boxes specially prepared for them in a grandiose
fresco which almost unexpectedly started revealing itself.

Looking at matters from a distance and with a mathematical attitude one gets the
impression that supersymmetry played the role of that critical tile in a puzzle, putting
which into its proper place, all the other tiles almost automatically find their way to
their correct positions. Many examples can be made but one spectacular one might
suffice to clarify this point.

The possible holonomy groups of Riemannian manifolds were classified before
supersymmetry and fill a very short list. Generic manifolds have holonomy SO(n) in
d = n dimensions. In even dimensions d = 2n, manifolds with holonomy U(n) ⊂
SO(2n) are the complex manifolds. Those among the complex manifolds that have
holonomy SU(n) ⊂ U(n) ⊂ SO(2n) are the Kähler manifolds and here wemeet with
N = 1 supersymmetry, as my attentive reader already knows. In d = 4n, manifolds
with holonomy USp(2n) ⊂ U(2n) ⊂ SO(4n) are the HyperKähler manifolds while
those with holonomy USp(2n) × SU(2) ⊂ U(2n) ⊂ SO(4n) are the quaternionic
Kähler manifolds. In both cases we meet here with N = 2 supersymmetry, rigid
in the first case, local in the second one. The list contained two more exceptional
cases, the mysterious 7-dimensional manifolds with G2(−14) holonomy and the 8-
dimensional manifolds with Spin(7) ⊂ SO(8) holonomy. Both cases were decoded
by supergravity. The first was decoded by observing that d = 7 is the complement
of d = 4 in compactifications of D = 11 supergravity and that G2(−14) holonomy is
the condition for a residualN = 1 supersymmetry of the compactified vacuum. The
second case was decoded considering M2-branes in D = 11 space-time, Spin(7)-
holonomy of the 8-manifold transverse to the M2-brane being the condition for its
N = 1 supersymmetry.

Not only known mathematics found its interpretation within the framework of
supersymmetry and supergravity but new entire chapters of geometry were con-
structed under the stimulus of supergravity. Most notable among them are some of
the topics extensively discussed in this book, namely:

1. Special Kähler Geometry.
2. The c and c� maps from Special Kähler Geometry to quaternionic or pseudo

quaternionic geometry.
3. The relations of the above constructions with the Tits Satake projection.
4. The systematics of Kähler and HyperKähler quotients leading, for instance, to

the classifications and construction of all ALE manifolds.
5. The σ -model approach to supergravity black-holes and the refinement of the

theory of nilpotent orbits.
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One more item in this already large conceptual landscape needs proper emphasis.
This is the compound of physical-mathematical ideas and conceptual frameworks
that has been stirred by the AdS/CFT correspondence in its various declinations.

The original emphasis in these developments was on the holographic principle
which is an intrinsic property of anti de Sitter space, liable to be extended to more
complicated space-time geometries, and on the cheered by physicists opportunity
of calculating exact quantum field-theoretic correlators by means of classical eval-
uations of geometrical nature. Yet, in my humble opinion, there is an even more
important physical-mathematical conception that has emerged within the AdS/CFT
framework and which was discussed with a certain amplitude in the last chapter of
the present book.

This is the dynamical interpretation of geometry as a low-energy effect in field
theories with a much larger set of coordinate-fields endowed with canonical kinetic
terms. This is the lagrangian description, within gauged–coupled σ -models, of
the (Hyper)Kähler quotient algorithm able to construct ALE–manifolds and other
crepant resolutions of Cn/Γ singularities, Γ being a discrete group.

From a philosophical point of view that above is a new variant of Einstein guiding
principle that space-time geometry is created by gravitating energy. In the brane setup
the geometry of the space transverse to the brane world volume is just a collective
phenomenon due to the gauge interactions of microscopic coordinates spanning a
much larger flat world. From a physical-mathematical viewpoint the crucial item is
the appearance of a discrete group Γ and the relation of the field-theoretical setup
with the issue of quotient singularity resolutions.

In this respect the ADE classification of ALE-manifolds as resolutions of the sin-
gularities C2/Platonic Group plays a fundamental paradigmatic role. Its generaliza-
tion to higher dimensional resolutions, in particularC3/Γ brings in new challenging
actors, the simple Hurwitz group L168 = PSL(2,Z7) and the generalized McKay
correspondence.

In my humble opinion, further investigation of all the implications, physical,
geometrical and philosophical of the vast panorama only very partially unveiled by
the above considerations is mandatory.

Indeed the same general conclusions put forward in the epilogue of the twin
historical book [1] fit equally well in the epilogue of the present one.

After the spectacular detection of gravitational waves emitted from the coales-
cence of two massive black holes and the numerical verification of Einstein field
equations, the points (A)–(E) introduced in the preface are firmly established, at
least within our Western Analytical System of Thought. The choices of symmetries,
bundles and potentials within such a framework have to be made in a way enlight-
ened by the lesson of supersymmetry. It is not yet clear whether supersymmetry is
realized in Nature in the way we think and it might take a quite long time before we
are able to answer such a question in an experimental way, yet we cannot ignore the
geometrical structures and the miraculous relations among them that supersymme-
try has brought to the front stage. We have to continue the exploration of the new
mathematics introduced by supergravity and superstrings to find new hidden clues,
so far not yet observed.
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From generic choices we have been instructed to look at special structures,
restricted holonomy, for instance, exceptional Lie algebras, hyperbolic algebras,
sporadic simple groups and the like, searching for new corners where other tiles of
the mathematical puzzle might find their proper place. At the end of a long day it
might happen that supersymmetry is only the tip of an iceberg and that in the deep
waters under the cold sea surface there lies another mathematical logic able to lead
us to a new physical vision and to new far reaching conclusions. Yet the tip is there,
it was observed and one cannot avoid to explore further what lies underneath the
surface of the sea.
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