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Preface

This book forms a twin pair with another book [1] by the same author, which is of a
different, historically oriented character, while the character of the present volume is
thoroughly mathematical. These two pieces of work constitute a twin pair since,
notwithstanding their different profile and contents, they arise from the same vision
and pursue complementary goals.

The vision, extensively discussed in [1], consists of the following main con-

ceptual assessments:

1.

Our current understanding of the Fundamental Laws of Nature is based on a
coherent, yet provisional, set of five meta-theoretical principles, listed by me as
(A)—(E) and dubbed the current episteme. This episteme is of genuine geo-
metrical nature and can be viewed as the current evolutionary state of Einstein’s
ideas concerning the geometrization of physics.

. Geometry and Symmetry are inextricably entangled, and their current conception

is the result of a long process of abstraction, traced back in [1], which was
historically determined and makes sense only within the Analytic System of
Thought of Western Civilization, started by the ancient Greeks.

. The evolution of Geometry and Symmetry Theory in the last forty years has been

deeply and very much constructively influenced by Supersymmetry/Supergravity
and the allied constructions of Strings and Branes.

. Further advances in Theoretical Physics cannot be based simply on the Galilean

Method of interrogating first Nature and then formulating a testable theory that
explains the observed phenomena. As stated in [1], one ought to interrogate also
Human Thought, by this meaning frontier-line mathematics concerned with
geometry and symmetry in order to find there the threads of so far unobserved
correspondences, reinterpretations, and renewed conceptions.

The complementary pursued goals are:

(a) In the case of book [1]

e the historical and conceptual analysis of the process mentioned in point
(2) of the above list which led to the current episteme.

vii
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¢ the philosophical argumentation, on historical basis, of the assessment made
in point (4) of the above list.

(b) In the case of the present book, the mathematical full-fledged illustration of the
main developments in geometry and symmetry theory that occurred under the
fertilizing influence of Supersymmetry/Supergravity and that would be incon-
ceivable without the latter.

In view of this, it is reasonable to quote from the ample discussion presented in
[1] the summary of the current episteme as I understand it. There I say what follows.

The Episteme

As a theoretical physicist, I consider myself very fortunate to have witnessed, in my
own lifetime, the following series of experimental discoveries:

1. The detection of the W* and Z particles, definitely confirming that fundamental
non-gravitational interactions can be described by gauge theories.

2. The detection of the Brout Englert Higgs boson, definitely confirming that
gauge theories can be spontaneously broken by scalar fields falling into
non-symmetric extrema of some potential.

3. The direct detection of gravitational waves emitted in the coalescence of two
compact stars (black holes or neutron stars) which not only confirms the general
structure of General Relativity, but directly tests the dynamics encoded in
Einstein Equations, namely in a set of purely geometrical differential equations.

Trying to summarize the implications for the episteme of the last thirty-three years
of experimental physics, we can say the following.

Leaving apart the issue of quantization that we can generically identify with the
functional path integral over classical configurations, we have, within our Western
Analytic System of Thought, a rather simple and universal scheme of interpretation
of the Fundamental Interactions and of the Fundamental Constituents of Matter
based on the following few principles:

(A) The categorical reference frame is provided by Field Theory defined by some
action &/ = [, Z(P,0P) where £(P,00) denotes some Lagrangian
depending on a set of fields @(x).

(B) All fundamental interactions are described by connections A on principal fiber
bundles P(G, #) where G is a Lie group and the base manifold .# is some
space-time in d = 4 or in higher dimensions.

(C) All the fields @ describing fundamental constituents are sections of vector
bundles B(G,V,.#), associated with the principal one P(G,.#) and deter-
mined by the choice of suitable linear representations D(G) : V — V of the
structural group G.

(D) The spin-zero particles described by scalar fields ¢’ have the additional feature
of admitting nonlinear interactions encoded in a scalar potential ¥ (¢) for
whose choice general principles, supported by experimental confirmation,
have not yet been determined.
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(E) Gravitational interactions are special among the others and universal since
they deal with the rangent bundle T.# — ./ to space-time. The relevant
connection is in this case the Levi-Civita connection (or some of its gener-
alization with torsion) which is determined by a metric g on .Z.

A quick look at the list of principles (A)—(E) immediately reveals that,
notwithstanding their simplicity and unifying power, they can be only provisional.
There are still too many ad hoc choices which strongly demand some deeper
unifying principle able to predict them from above. Most prominent among these
choices are those of the structural group G, of the representations D(G) and of the
potential ¥'(¢), the latter choice including also, in some extended sense, the
determination of quark and lepton masses. What I have described in the above way
is described in the physical literature of the last forty years as the problem of grand
unification or of super unification.

Supersymmetry-Inspired Trends in Geometry and Group Theory

In the same forty years, an enormously extended set of developments have taken
place in the quest for unification, starting from the new idea of Supersymmetry
which, as the word reveals, is an extension of the notion of Symmetry, meaning by
that Lie algebras. The reason why Supersymmetry, which leads to the fields of
Supergravity, Superstrings, and Brane Physics, entrains so many structural and
ramified implications is because it tackles with one of the most fundamental and, in
my opinion, not yet fully penetrated, principles of physics, namely the distinction
among fermion and bosons, intertwined, by means of the spin—statistics theorem
with Lie algebra theory, the distinction between two groups of representations, the
vector and the spinor ones, being a distinctive property of the so(n) Lie algebras,
unexisting for the others.

The largest part of the developments mentioned above, related with Supergravity/
Superstrings, have a distinctive geometrical/algebraic basis. Entire chapters of
algebraic geometry and of algebraic topology have been integrated by these
developments into the fabrics of theoretical physics, while some new geometries
have been introduced into the fabrics of mathematics. Furthermore, the very way to
analyze and interpret mathematical structures is sometimes redirected by the influ-
ence of Supergravity/Superstrings. Two or three examples suffice to illustrate what I
mean. Exceptional Lie algebras that, up to the mid-1960s were considered by the
majority of physicists like mathematical curiosities, have been promoted to the role
of primary actors on the stage of the Superworld. Special Kéhler geometries, never
defined by pure mathematicians have by now entered, with full rights, the mathe-
matical club, revealing their relation with other geometries, already introduced by
mathematicians, like HyperKéhler geometry and quaternionic Kéhler geometry. The
notions of momentum map, Kéhler, and HyperKéahler quotients find a deep inter-
pretation in the context of supersymmetric field theories and connect with some
of the most brilliant mathematical achievements of the last few decades like the
Kronheimer construction of ALE manifolds.
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The Topics of the Present Volume and Its Mission

Relying on the above arguments and explanations, I can now more appropriately
restate the topic of the present book, which is the scope of Group Theory, of the
Differential Geometry of Coset Manifolds and of various issues in Special
Geometries as they have been promoted and assessed under the influence of current
research in Supergravity.

In line with above the statements, it goes without saying that the education of
present time physicists, in particular theoretical, but not only, should include, from
a very early stage of their student career, a ground course in the basic Mathematics
of Symmetry, namely in group theory, discrete and Lie groups being equally
essential, and in the fundaments of differential geometry. Such course should be
mathematically precise, yet more focused on the fundamental mathematical ideas
than on the task of mathematical rigorous proofs. Furthermore, it should provide
explicit constructions and train the student in the art of explicit calculations,
especially those implemented on computers. To such a task is devoted the textbook
[2] which was recently published.

Repeating my words in a slightly different form, I think that what is currently
practiced in the whole world as Fundamental Physics or Mathematics is based on
the Greek view of the episteme and it is meaningful only inside the Analytic System
of Thought founded by the ancient Greeks. To recuperate a full conscience of this
fact is mandatory in order to continue on the difficult but exciting path we are
confronted with.

The twin pair of which this book is a member, together with the more intro-
ductory textbook [2], is viewed by the author as his limited, humble contribution to
the promotion of a new season of more scholarly teaching of physical mathematics.

Spes, ultima dea.

Turin, Italy Pietro Giuseppe Fré
November 2017
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Chapter 1
Finite Groups and Lie Algebras: The ADE

Classification and Beyond

Tout ce qu’on invente est vrai, soi-en sure. La poésie est une
chose aussi précise que la géométrie.
Gustave Flaubert, letter to Louise Colet

The geometrical structures, mostly motivated by supergravity, that are considered
in this book are strongly related with the theory of symmetric spaces and of Lie
Algebras, the exceptional ones being of utmost relevance in this context.

Atvarious stages of the here considered constructions also the finite groups play an
importantrole and, among them, those that are crystallographic in certain dimensions.
This is not too much surprising since there exists a profound relation among the
classification of simple, simply-laced, complex Lie Algebras and the classification
of finite subgroups of the three-dimensional rotation group, the so named ADE
classification.!

This ADE correspondence, known for a long time, finds a deeper and fertile inter-
pretation in the McKay correspondence, to be explained in Chap. 8, that is crucial
for the Kronheimer construction of ALE-manifolds as HyperKihler quotients. This
construction is reviewed in Chap. 8. The McKay correspondence admits a general-
ization to finite subgroups I" C SU(n), in particular for the case n = 3, which has
a significant role to play in the context of the gravity/gauge correspondence and in

' The ADE classification, according to the name frequently utilized in the physical literature, is based
on a diophantine inequality that we spell out in the sequel of the present chapter. It encompasses in
just one scheme the classification of several different types of mathematical objects:

1. the finite rotation groups,

2. the simple simply-laced Lie complex Lie algebras,

3. the locally Euclidean gravitational instantons,

4. the singularities (CZ/F,

5. the modular invariant partition functions of 2 D-conformal field theories.
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the theory of D-branes and M-branes. This we will illustrate in Chap. 8 relying in a
decisive way on the constructions known as (Hyper)Kihler quotients.

We anticipate here the discussion of the joint ADE classification of binary exten-
sions I, C SU(2) of finite subgroups I" C SO(3) and of simple, simply-laced,
complex Lie algebras, since some of the involved notions happen to be needed in
other chapters previous to the last one.

For an identical reason we present in this chapter also the full-fledged theory of the
simple group Li¢g = PSL(2, Z7) which fits into the discussion of crystallographic
groups and plays a relevant role not only in Chap. 8, but in other chapters.

In the third part of this chapter, relying on the Dynkin and on the root system
language, we consider a particular splitting, named by us golden, of the Lie algebras
that appear in later supergravity constructions and, focusing on the relevant instances
of the g2y and 4,4y cases, we explicitly construct the fundamental representations
of the two corresponding Lie groups.

Let me note that the explicit construction of the exceptional Lie algebras is
addressed at a paedagogical level in [1], with general group theoretical aims. Fur-
thermore in that book the algorithmic details of the construction are presented and
a guide is provided to the use of the special MATHEMATICA codes that have been
devoted to such a task. In the present book the emphasis is on the special geometries
introduced by supergravity. Within such a context exceptional Lie algebras play a
quite relevant role and several aspects of their structure seem just devised to satisfy
the constraints imposed by supersymmetry at various levels. It is in the light of these
considerations that the construction g, 2y and f,4) is reviewed here. In particular the
golden splitting turns out to be fundamental for the discussion of the c-map and of
the c*-map, firstly addressed in Sect. 4.3 and then systematically reviewed in Chap. 5.

1.1 The ADE Classification of the Finite Subgroups of
SU(2)

We start with the ADE classification of platonic groups. This classification is encoded
in the possible solutions of a diophantine equation that we presently derive. To this
effect we begin with some preliminaries.

Let us start by considering the homomorphism:

w: SUQR) — SO®3) (1.1.1)

between the group SU(2) of unitary 2 x 2 matrices, each of which can be written as
follows

SUQ) > % = (1‘; lf) (1.1.2)

in terms of two complex numbers «, B satisfying the constraint:
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la® + 181 =1 (1.1.3)

and the group SO(3) of 3 x 3 of orthogonal matrices with unit determinant:
0 e€S0B3) & 0T0 =1 and detd = 1 (1.1.4)

The homomorphism w can be explicitly constructed utilizing the so-named triplet
o of hermitian Pauli matrices:

ol = ((1)(1)) .ot = (? 6‘) C oot = ((1) _01) (1.1.5)

Using the above we can define:
H =D hot (1.1.6)

where £, is a three-vector with real components. The matrix 7 = " is hermitian
by construction and we have:

3
Tr[#7] = Zh§ (1.1.7)
x=1

Consider next the following matrix transformed by means of an SU(2) element:

H=UAHU = hyo”
hy=07"h, (1.1.8)

The first line of equation (1.1.8) can be written since the Pauli matrices form a
complete basis for the space of 2 x 2 hermitian traceless matrices. The second line
can be written since the matrix depends linearly on the matrix 7. Next we
observe that because of its definition the matrix . has the following property:

3 3
Te[#%) = D k2 =D h? (1.1.9)
x=1 x=1

This implies that the matrix &, is orthogonal and, by definition it is the image of
% through the homomorphism w. We can write an explicit formula for the matrix
elements &, in terms of % :

Y% € SUQ) : w[%] = 0 € SOB) | 0 = sTe[% 0, % o]
(1.1.10)
which follows from the trace-orthogonality of the Pauli matrices %Tr [0 0,] = 83.
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We named the map defined above a homomorphism rather than an isomorphism
since it has a non trivial kernel of order two. Indeed the following two SU(2) matrices
constitute the kernel of w since they are both mapped into the identity element of

SO(3).
e o= (19)-2 - (512)

l=wle] = w[Z] (1.1.11)

We will now obtain the classification of all finite subgroups of SU(2) that are binary
extensions of SO(3) finite subgroups. We collectively name G5, such subgroups
denoting by 2n their necessarily even order. Through the isomorphism w each of
them maps into a finite subgroup G, C SO(3), whose order is just n because of the
two-dimensional kernel mentioned above:

w[G5,] = G (1.1.12)

1.1.1 The Argument Leading to the Diophantine Equation

We begin by considering one parameter subgroups of SO(3). These are singled out
by a rotation axis, namely by a point on the two—sphere S2. Explicitly let us consider
a solution (¢, m, n) to the sphere equation (Fig. 1.1):

CrmP+ni=1 (1.1.13)
The triplet of real numbers (¢, m, n) parametrize the direction of a possible rotation

angle. The generator of infinitesimal rotations around such an axis is given by the
following matrix

0 —n m
Atmn=| n 0 —t|=-4],, (1.1.14)
—-m £ 0

which being antisymmetric belongs to the SO(3) Lie algebra. The matrix A has the
property that A3 = — A and explicitly we have:

1+ tm ln
= tm  —1+m> mn (1.1.15)
ln mn —1+n?

AZ

l,m,n
Hence a finite element of the group SO(3) corresponding to a rotation of an angle 6

around this axis is given by:

Cwmn = expl0Asmn]l =145sin60 Agyn + (1 —cosb) A? (1.1.16)

2,m,n
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Fig. 1.1 Every element of the rotation group &y .,y € SO(3) corresponds to a rotation around
some axis a = {£, m, n}. On the surface of the two-sphere S? this rotation has two fixed points, a
North Pole and a South Pole that do not rotate to any other point. The rotation &y ,, ») is the image,
under the homomorphism w of either one of 2 x 2 - matrices %im ,, that, acting on the space C?,
admit two eigenvectors z; and z,. The one-dimensional complex spaces pj » = X122 > are named
the two poles of the unitary rotation

Setting
A = £sind i i 9 1117
= sin — = m S1in — ; V = nsm—- ; = COS — .
2 M 2 2 F 2

the corresponding SU(2) finite group elements, realizing the double covering are:

+iv p—iA
Ui = (—pu—i)»l/j—iv) (1.1.18)
namely we have:
o[, = Owmn (1.1.19)

We can now consider the argument that leads to the ADE classification of the
finite subgroups of SU(2). Let us consider the action of the SU(2) matrices on C>. A

generic % € SU(2) acts on a C*-vector z = (? by usual matrix multiplication
2

% z. Each element %/ € SU(2) has two eigenvectors z; and z,, such that

U 7, = explif] z;
U 1, = exp[—if] z, (1.1.20)

where 0 is some (half)-rotation angle. Namely for each %7 € SU(2) we can find an
orthogonal basis where % is diagonal and given by:
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[ explif] 0
%—( 0 exp[—i@]) (1.1.21)

for some angle 6. Then let us consider the rays {A z;} and {u z,} where A, u € C are
arbitrary complex numbers. Since z; - z; = szz = 0 it follows that each element
of SU(2) singles out two rays, hereafter named poles that are determined one from
the other by the orthogonality relation. This concept of pole is the basic item in the
argument leading to the classification of finite rotation groups.

Let H C SO(3) be a finite, discrete subgroup of the rotation group and let HC
SU(2) be its pre-image in SU(2) with respect to the homomorphism w. Then the
order of H is some positive integer number:

|Hl=neN (1.1.22)
The total number of poles associated with H is:
#of poles = 2n — 2 (1.1.23)

since n — 1 is the number of elements in H that are different from the identity. Let
us then adopt the notation
pi = {\z;} (1.1.24)

for the pole or ray singled out by the eigenvector z;. We say that two poles are
equivalent if there exists an element of the group H that maps one into the other:

pi~pj iff 3y € H/ypi=p; (1.1.25)
Let us distribute the poles p; into orbits under the action of the group H:
Ly={p}.....p5}  a=1...r (1.1.26)

and name m,, the cardinality of the orbit class 2,, namely the number of poles it
contains. Hence we have assumed that there are r orbits and that each orbit 2,
contains m, elements.

Each pole p € 2, has a stability subgroup K, C H:

VheK, : hp=p (1.1.27)

that is finite, abelian and cyclic of order k,. Indeed it must be finite since it is a
subgroup of a finite group, it must be abelian since in the basis z;, z, the SU(2)
matrices that preserve the poles Az; and uz, are, of the form (1.1.21) and therefore
it is cyclic of some order. The H group can be decomposed into cosets according to
the subgroup K ,:

H=K,+K,+-+vm K, myeN (1.1.28)
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Consider now an element x; € v; K, belonging to one of the cosets and define the
group conjugate to K, through x;:

Kapy =% Kpx;™! (1.1.29)

Each element i € K(,),), admits a pole p:

h py = pyx (1.1.30)
that is given by:
DPx=Xi p (1.1.31)
since
th:xh,,xx’Ip:xh,,p:xp:pX (1.1.32)

Hence the set of poles { PVIDVIPs . Vi, p} are equivalent forming an orbit. Each
of them has a stability group K, conjugate to K, which implies that all K, are finite
of the same order:

Yvip |Kp | =ky (1.1.33)

By this token we have proven that in each orbit 2, the stability subgroups of each
element are isomorphic, and cyclic of the same order k, which is a property of the

orbit. Hence we must have:
V2, : kymyg=n (1.1.34)

The total number of poles we have in the orbit 2, (counting coincidences) is:
# of poles in the orbit 2, = m, (kg — 1) (1.1.35)

since the number of elements in K, different from the identity is k, — 1. Hence we
find

2n — 2=Zma (ke — 1) (1.1.36)
a=1

Dividing by n we obtain:

1 _ 1
2 (1 — ;) = Z (1 — E) (1.1.37)

a=1

We consider next the possible solutions to the diophantine equation (1.1.37) and to
this effect we rewrite it as follows:

2 |
——2= — 1.1.38
r+ - ;ka ( )
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We observe that k, > 2. Indeed each pole admits at least two group elements that
keep it fixed, the identity and the non trivial group element that defines it by diago-
nalization. Hence we have the bound:

(1.1.39)

which implies:

4
r<4-= = r=123 (1.1.40)
n

On the other hand we also have k, < n so that:

2 r 1 1
r+Z-2>=- = rl1==)22(1=-=) = r>2 (.14
n n n n

Therefore there are only two possible cases:
r=2 or r=3 (1.1.42)

Let us now consider the solutions of the diophantine equation (1.1.39) and identify
the finite rotation groups and their binary extensions.
Taking into account the conclusion (1.1.42) we have two cases.

1.1.2 Case r = 2: The Infinite Series of Cyclic Groups a,,

Choosing r = 2, the diophantine equation (1.1.38) reduces to:

2—1+1 (1.1.43)
n ki ik o

Since we have k; » < n, the only solution of (1.1.43) is k; = k, = n, with n arbitrary.
Since the order of the cyclic stability subgroup of the two poles coincides with the
order of the full group H it follows that H itself is a cyclic subgroup of SU(2) of
order n. We name it I, [n, n, 1]. The two orbits are given by the two eigenvectors of
the unique cyclic group generator:

o € SUR) : & =" (1.1.44)

The finite subgroup of SU(2), isomorphic to the abstract group Z,, is composed by
the following 2n elements:

Zow ~ Tyln,n, ) = (Lo, > " % P, ..., %)
(1.1.45)
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Under the homomorphism w, the SU(2)-element 2 maps into the identity and both
o/ and Z o/ map into the same 3 x 3 orthogonal matrix A € SO(3) with the property
A" = 1. Hence we have:

wl[lyn,n,1]] = I'n,n, 1] ~ Z, (1.1.46)

In conclusion we can define the cyclic subgroups of SO(3) and their binary extensions
in SU(2) by means of the following presentation in terms of generators and relations:

Lnn =, Z | od" =2 ; Z*=1)

I'ln,n,1] (A| A" = 1) (1.1.47)

oo |

The nomenclature a,, introduced in the above equation is just for future comparison.
As we will see, in the A D E-classification of simply laced Lie algebras the case of
cyclic groups corresponds to that of a, algebras.

1.1.3 Case r = 3 and its Solutions

In the r = 3 case the Diophantine equation becomes:
2
k—+—+—=1+— (1.1.48)

In order to analyze its solutions in a unified way and inspired by the above case it is
convenient to introduce the following notations:

=1+ ke (1.1.49)

and consider the abstract groups, that turn out to be of finite order, associated with
each triple of integers {k, k>, k3} satisfying (1.1.48) and defined by the following
presentation:

Ltk ko k)= (o, B, L (A B = o = B° =2, 2% =1)
Ik, ky, ksl = (A,B| (AB)" = A® = B = 1) (1.1.50)
We will see that the finite subgroups of SU(2) are indeed isomorphic to the above

defined abstract groups I}, [k, k2, k3] and that their image under the homomorphism
w are isomorphic to I" [k, ky, k3].
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1.1.3.1 The Solution (k, 2, 2) and the Dihedral Groups Dih,
One infinite class of solutions of the diophantine equation (1.1.48) is given by

{ki, ko, k3} = {k,2,2} 5 2 <k eZ (1.1.51)

The corresponding subgroups of SU(2) and SO(3) are:

Fb[k,Z,Z] (»‘Z{,v@,g|(ﬂ,@)k=%2=,@2:ff’
Dlhk R gZZ 1)

I'k,2,2] = (A,B | (AB)*¥ = A? = B? = 1)
(1.1.52)
whose structure we illustrate next.
Iplk,2,2] ~ Dihz is the binary dihedral subgroup. Its order is
|Dih? | = 4k (1.1.53)

and it contains a cyclic subgroup of order k that we name K. Its index in Dihf is two.
The elements of Dihf that are not in K are of period equal to two since k, = k3 = 2.
Altogether the elements of the dihedral group are the matrices given below:

il/k
Flz(e 0 ) S 1=0,1,2,...,2k—1)

0 e—ilrr/k
0 ie*iln/k
Gl_(l'ei]r[/k 0 s (1_051725’2](_1)

In terms of them the generators are identified as follows:
F()Zl;FlG():JZ/;Fk:ff;G():%. (1154)

There are exactly Z = k + 3 conjugacy classes

. K, contains only the identity Fj

. K7 contains the central extension &

. KGeven contains the elements G,, (v =1,...,k—1)

. K¢ o4a contains the elements Go,.1 (v =1,...,k—1)

. the k — 1 classes K, : each of these classes contains the pair of elements F;, and
F2k—u fOI‘(M: 1,...,k— 1)

| S R S R

Correspondingly the group Dih,f admits k 4 3 irreducible representations, 4 of
which are 1-dimensional while k — 1 are 2-dimensional. We name them as follows:
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Table 1.1 Character table of the group Dihz

KE KZ KG, KG, KF K Fi_y
DE 1 1 1 1 1 1
DZ 1 1 -1 -1 1 e 1
DG, 1 (=Dk |k —ik (=D! (=1
DG, 1 (=D¥ | =ik ik (=D! - (=Dt
DF; 2 =21 |0 0 2Cos% 2 Cos 50T
DF; |2 -2 o 0 2Cos &0 | 2 Cos k=1

D.; Dz ; DgGeven; Dgoda ; 1-dimensional

Dri...: D, ; 2-dimensional (1.1.55)

The combinations of the C? vector components (z;, z») that transform in the four
1-dimensional representations are easily listed:

D, — |zl + |z
D; — 2122
DGeven — 25+ 725
DGoia — i —725. (1.1.56)

The matrices of the k — 1 two-dimensional representations are obtained in the fol-
lowing way. In the D F; representation, s = 1, ...k — 1, the generator <7, namely
the group element F}, is represented by the matrix F;. The generator 4 is instead
represented by (i)*~! G, and the generator 2 is given by Fy, so that:

DF, (Fj) = F;
DF, (G;) = (i) 'Gy; . (1.1.57)

The character table is immediately obtained and it is displayed in Table 1.1.> This
concludes the discussion of the binary dihedral groups.

2In finite group-theory the square matrix Xi“ =Tr (D# (yi)) where u = 1,2,...,r + 1 labels
the irreducible representations of a group I"andi = 1, ..., r + 1 labels the conjugacy classes %"
of I'-group elements, (y; € €" is any representative of the class) is named the character table and
plays a fundamental, central role.
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1.1.3.2 The Three Isolated Solutions Corresponding to the Tetrahedral,
Octahedral and Icosahedral Groups

There remain three isolated solutions of the Diophantine equation (1.1.48), namely:

{ki, ko, k3} = {3,3,2} (1.1.58)
{klvk27k3} = {47372} (1159)
{ki, ko, k3} = {5, 3,2} (1.1.60)

They respectively correspond to the tetrahedral T;,, octahedral O,4 and icosahedral
Iso groups and to their binary extensions, namely:

I[3,3,2] ~Tp (1.1.61)
I'[4,3,2] ~ Oy (1.1.62)
r(s,3,2] ~ Ig (1.1.63)

As their name reveals these three groups have, 12,24 and 60 elements, respectively.
The corresponding binary extensions have 24,48 and 120 elements respectively. With
aprocedure completely analogous to the one utilized in the case of the dihedral groups
we might reconstruct all these elements and organize them into conjugacy classes.
We do not do this explicitly; in the next section, while discussing crystallographic
groups, we will rather study in full detail the example of the octahedral group Oyq4
and we will do that starting from the three-dimensional realization in SO(3).

1.1.4 Summary of the ADE Classification of Finite Rotation
Groups

Here we prepare the stage for the illustration of the deep and surprising relation,
already anticipated, between the platonic classification of finite rotation groups and
that of simple Lie algebras. To this effect let us consider Fig. 1.2 and diagrams of
the sort there displayed. Such diagrams are named Dynkin diagrams and obtain a
well-defined interpretation while studying root spaces and the classification of simple
Lie Algebras. For the time being let us note that Dynkin diagrams such as that in
Fig. 1.2 are characterized by three-integer numbers {k\, k7, k3}, denoting the lengths
of three chains of dots, linked one to the other and departing from a central node
which belongs to each of the three chains. In the case one of the number k,, is equal to
one (say k3), the corresponding chain disappears and we are left with a simple chain
of length k; 4+ k, — 1. In Sect. 1.5 we will see that the admissible Dynkin diagrams
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O_..
ki—1
ko —1
Simple Lie Algebras Finite subgroups of I}, C SU(2)

number of simple chains
in the Dynkin diagram

# of different types of

group—element orders present in I" = @ [[}]

ko ko — 1 =lengths of group-element orders in
the simple chains I =
in the Dynkin diagram (A,B| (AB)M1 = Ak = Bk — 1)
X —1= ||Z =rank of the Lie algebra Z + 1 = # of conjugacy classes in I,
Yo-1(ka —1)

Fig. 1.2 Interpretation of the solutions of the same Diophantine equation in the case of finite
subgroups of I, C SU(2) and of simply laced Lie algebras

with one node are those and only those where the numbers {k;, k>, k3} satisfy the
diophantine equation (1.1.48). Hence each solution of that equation has a double
interpretation: it singles out a finite rotation group and labels a simple Lie algebra.
The anticipated correspondence is the following one:

e, e,11 =~ 7y &
I'te,2,2] ~ Dih, & 9

I'[3,3,2]
I"[4,3,2]

>~ T & e
>~ Oy & e

I'[5,3,2] =~ Igp < e3

(1.1.64)
(1.1.65)
(1.1.66)
(1.1.67)
(1.1.68)
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where a, is the Lie algebra associated with the Lie group SL(¢ + 1, C), 0, is the Lie
algebra associated with the Lie group SO(2¢, C), and ¢ 7 3 are the Lie algebras of
three exceptional Lie groups of dimensions 78, 133 and 248, respectively. A very
important concept, in Lie Algebra theory is that of rank that is the maximal number
of mutually commuting and diagonalizable elements of the algebra. As we see from
Fig. 1.2, the rank has a counterpart in the binary extension of the corresponding
finite rotation group: it is the number of non trivial conjugacy classes of the group,
except the class of the identity element. The property of Lie algebras that in Dynkin
diagrams there are no nodes with more than three converging lines corresponds on
the finite rotation group side to the property that in such a group there are at most
three different types of group-element orders.

A further challenging reinterpretation of the ADE-classification will be discussed
later on and regards the construction of the so called ALE-manifolds, that are four-
dimensional spaces with a self-dual curvature and asymptotic flatness. On their turn
such manifolds are in relation with certain finite polynomial rings also classified by
the same diophantine equation (see Chap. 8).

1.2 Lattices and Crystallographic Groups

In this section we consider the finite rotation groups from the point of view of
crystallography, namely as groups of automorphisms of certain lattices. To this effect
we need first to introduce the very notion of lattice and then introduce the notion of
crystallographic group.

1.2.1 Lattices

We begin by fixing our notations for space and momentum lattices that define an
n-torus T" endowed with a flat metric structure, namely with a symmetric positive
definite inner product.’

Let us consider the standard R” manifold and introduce a basis of n linearly
independent n-vectors that are not necessarily orthogonal to each other and of equal
length:

w,eR'" pn=1...n (1.2.1)

Any vector in R can be decomposed along such a basis and we have:

r = r“wu (1.2.2)

3A clarification for mathematicians: a metric on T” is an inner product on the tangent spaces T, (T™)
for each p € T". In physical jargon we identify the inner product on 7}, (T") with the manifold
metric since the metric coefficients g, are the same for all p € T".
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The flat (constant) metric on R” is defined by:

Guv = (W, Wy) (1.2.3)
where (, ) denotes the standard Euclidean scalar product. The space lattice A consis-
tent with the metric (1.2.3) is the free abelian group (with respect to sum) generated
by the n basis vectors (1.2.1), namely:

R">5qe A& q=qg"w, where ¢g' € Z (1.2.4)
The dual lattice A* is defined by the property:

pe A"CR" & (p,q) €Z Vqe A (1.2.5)

A basis for the dual lattice is provided by a set of n dual vectors e* defined by the
relations*:

Wy, e) =36, (1.2.6)
so that
Vpe A* p=p,e! where p, € Z (1.2.7)

1.2.2 Crystallographic Groups and the Bravais Lattices for
n=3

Every lattice A yields a metric g and every metric g singles out an isomorphic copy
SO, (3) of the continuous rotation group SO(n), which leaves it invariant:

M € SO,(n) & M'gM =g (1.2.8)
By definition SO, (n) is the conjugate of the standard SO(n) in GL(n, R):

SO,(n) = .#SO(n).7~! (1.2.9)
with respect to the matrix . € GL(n, R) which reduces the metric g to the Kro-
necker delta:

ITegs =1 (1.2.10)
Notwithstanding this a generic lattice A is not invariant with respect to any proper

subgroup of the rotation group G C SOgz(n) = SO(n). Indeed by invariance of the
lattice one understands the following condition:

“In the sequel for the scalar product of two vectors we utilize also the equivalent shorter notation
a-b = (a,b).
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Vy € G and Vq € A : y-qeA (1.2.11)

For n = 3 lattices that have a non trivial symmetry group G C SO(3) are those
relevant to Solid State Physics and Crystallography. There are 14 of them grouped in
7 classes that were already classified in the XIX century by Bravais. The symmetry
group G of each of these Bravais lattices Ap is necessarily one of the well known
finite subgroups of the three-dimensional rotation group O(3). In the language uni-
versally adopted by Chemistry and Crystallography for each Bravais lattice Ap the
corresponding invariance group Gg is named the Point Group.

According to a standard nomenclature the 7 classes of Bravais lattices are
respectively named Triclinic, Monoclinic, Orthorhombic, Tetragonal, Rhombohe-
dral, Hexagonal and Cubic. Such classes are specified by giving the lengths of the
basis vectors w,, and the three angles between them, in other words, by specifying
the 6 components of the metric (1.2.3).

In general we have the following

Definition 1.2.1 An abstract group I" is named crystallographic in n-dimensions if
there exists an n-dimensional lattice A, with basis vectors w,, such that:

1. there is a isomorphism:
w: I — H CSO4(n) (1.2.12)

where SO, (n) is the conjugate of the n-dimensional group rotation group respect-
ing a metric g (see Eq.(1.2.10)
2. the metric g is that defined by the basis vectors of the lattice A, (see Eq.(1.2.3)
3. all elements of H are n x n matrices with integer valued entries.

This is equivalent to the statement that I” has an orthogonal action in R” and preserves
the lattice A,,.

When a group I is crystallographic with respect to a given n-dimensional lattice A,
we say that is the Point Group of A,,.

1.2.3 The Proper Point Groups

Restricting one’s attention to n = 3, it was shown in the classical crystallographic
literature that the proper point groups that appear in the 7 lattice classes are either the
cyclic groups Z;, with h = 2, 3, 4 or the dihedral groups Dih; with k = 3, 4, 6 or the
tetrahedral group T, or the octahedral group Oy4. Indeed the n = 3 crystallographic
point groups are, by definition, finite subgroups of the rotation group, hence they must
fall in the ADE-classification. Yet not every finite rotation group is crystallographic.
For instance there is no lattice that is invariant under the icosahedral group and in
general in a n = 3 point group there are no elements with orders different from
2,3,4,6.
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Fig. 1.3 A view of the
self-dual cubic lattice
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In this section, for the sake of illustration by means of a well structured example,
we restrict our attention to the largest possible point group, namely that of the cubic
lattice which has O,4 symmetry.

1.2.4 The Cubic Lattice and Its Point Group

Let us now consider, within the general frame presented above the cubic lattice.
The cubic lattice is displayed in Fig. 1.3.
The basis vectors of the cubic lattice A.,p;c are:

wi ={1,0,0} ; wy, =1{0,1,0} ; w3 =1{0,0,1} (1.2.13)
which implies that the metric is just the Kronecker delta:
8uv = Suv (1.2.14)

and the basis vectors e* of the dual lattice A* coincide with those of the lattice

cubic
A. Hence the cubic lattice is self-dual:

W, =€ = Agpe = A (1.2.15)

*
cubic
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The subgroup of the proper rotation group which maps the cubic lattice into itself is
the octahedral group O whose order is 24.

1.2.5 The Octahedral Group O34 ~ S4

Abstractly the octahedral Group Oy4 ~ Sy4 is isomorphic to the symmetric group of
permutations of 4 objects. It is defined by the following generators and relations:

A,B : Al=e ; B’=c¢ ;: (BA)4=e (1.2.16)
Since Oy4 is a finite, discrete subgroup of the three-dimensional rotation group, any

y € Oy4 C SO(3) of its 24 elements can be uniquely identified by its action on the
coordinates x, y, z, as it is displayed below:

el ={x,y z} 4 = {—x, -z, -y}
21 ={-y,—zx}|| b={-xzy |
2, ={—y,z, —x}||C4|d3 = {—y, —x, -2}
23={_Z’ _-xvy} 442{_Zv -y, —.X'}
Cr|24 = {—z,x, -y} 4s = {z, =y, x}
25:{Zv _X’_y} 46={y7x’_z}
26 = {z, x, y} 51={-y,x, 2}
27 ={y, -z, —x} 52 ={-z,y,x}
25 = {y,z,x} Cs|53 = {z,y, —x}
31 ={—x,—-y,2} S5¢={y,—x,z}
C3|3 ={—x,y, -z} 55 ={x, =z, ¥}
33 = {x,—y, -z} 56 = {x,z, -y}

(1.2.17)

As one sees from the above list the 24 elements are distributed into 5 conjugacy
classes mentioned in the first column of the table. The relation between the abstract
and concrete presentation of the octahedral group is obtained by identifying in the
list (1.2.17) the generators A and B mentioned in Eq. (1.2.16). Explicitly we have:

010 010
A=2=1001 ; B=4=1100 (1.2.18)
100 00-1

All other elements are reconstructed from the above two using the multiplication
table of the group which is displayed below:
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11 21 22 23 24 25 26 27 28 31 32 33 41 42 43 44 45 4g 51 52 53 54 55 56
11|11 21 22 23 24 25 26 27 28 31 32 33 41 42 43 44 45 46 51 52 53 54 55 56
21|21 25 24 33 32 11 31 26 23 27 22 28 53 44 56 46 54 42 41 43 51 55 45 52
22122 26 23 11 31 33 32 25 24 28 21 27 45 52 55 54 46 41 42 51 43 56 53 44
23123 35 11 22 28 27 21 33 31 24 26 25 46 51 53 5S¢ 41 45 52 42 55 44 43 54
24|24 31 33 21 27 23 22 11 32 23 25 26 54 43 45 55 42 53 44 41 56 52 51 46
25|25 11 32 28 22 21 27 31 33 26 24 23 51 46 52 42 55 44 53 56 41 45 54 43
26|26 33 31 27 21 22 28 32 11 25 23 24 43 54 44 41 56 52 45 55 42 53 46 51
27127 23 26 31 11 32 33 24 25 21 28 2 52 45 42 51 43 56 55 54 46 41 44 53
28|28 24 25 32 33 31 11 23 26 22 27 21 44 53 41 43 51 55 56 46 54 42 52 45
31131 28 27 26 25 24 23 22 21 11 33 32 56 55 46 53 52 43 54 45 44 51 2 4
32132 27 28 25 26 23 24 21 22 33 11 31 55 56 54 45 44 51 46 53 52 43 41 4
33(33 22 21 24 23 26 25 23 27 32 31 11 42 41 51 52 53 54 43 44 45 46 56 55 (1.2.19)
41|41 5446 45 53 52 44 51 43 55 56 42 11 33 28 26 23 22 27 25 24 21 31 32
42|42 46 54 53 45 44 52 43 51 56 55 41 33 11 27 25 24 21 28 26 23 22 32 34
43|43 53 52 56 42 55 41 45 44 46 51 54 26 24 11 28 27 31 32 2 21 33 25 23
44|44 42 55 51 54 46 43 56 41 5245 53 28 21 26 11 32 25 23 31 33 24 20 27
45|45 56 41 46 43 51 54 42 55 53 44 52 22 27 24 35 11 23 25 33 31 26 28 21
46|46 44 45 41 55 42 56 52 53 43 54 51 23 25 31 21 25 11 33 27 28 32 24 26
51|51 45 44 55 41 56 42 53 52 54 43 46 25 23 33 27 28 32 31 21 22 11 26 24
52|52 41 56 43 46 54 51 55 42 44 53 45 27 2 25 33 31 26 24 32 17 23 21 2
53|53 5542 54 51 43 46 41 56 45 52 44 21 28 23 31 33 24 26 11 32 25 27 2,
54|54 52 53 42 56 41 55 44 45 51 46 43 24 26 32 22 21 33 11 28 27 31 23 25
55|55 43 51 44 52 53 45 46 54 41 42 56 32 31 22 24 25 28 21 23 26 27 33 13
56|56 51 43 52 44 45 53 54 46 42 41 55 31 32 21 23 26 27 22 24 25 23 11 33

This observation is important in relation with representation theory. Any linear
representation of the group is uniquely specified by giving the matrix representation
of the two generators A = 2g and S = 4.

The Solvable Structure of O,y

The group Oy4 is solvable since there exists the following chain of normal subgroups:
Oy > Npp > Ny (1.2.20)
where the mentioned subgroups are given by the following lists of elements:

Ni2 = {11, 21, 25, ..., 28, 31, 32, 33} (1.2.21)
Ny = {14, 34, 32, 33} (1.2.22)

The group Ny is abelian and we have:
N4 ~ Zz X Zz (1223)

since all of its elements are of order two. This abstract structure allows for an a
priori determination of all the irreducible representations, simply starting from the
multiplication table. Yet because of the interpretation of O,4 as made of proper
rotations in three dimensions, its five irreps can also be constructed directly with
some ingenuity. This is what we do in the next section.
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1.2.6 Irreducible Representations of the Octahedral Group

There are five conjugacy classes in O,4 and therefore according to theory there are
five irreducible representations of the same group, that we name D;,i = 1,...,5.
They have dimensions:

dimD; =1 ; dimD, =1 ; dimD; =2 ; dimDy =3 ; dimDs = 4
(1.2.24)
Let us briefly describe them.

1.2.6.1 D;: The Identity Representation

The identity representation which exists for all groups is that one where to each
element of O we associate the number 1

Yy € O : Di(y) =1 (1.2.25)
5.

Obviously the character of such a representation is

xi ={L 1111} (1.2.26)

1.2.6.2 D;: The Quadratic Vandermonde Representation

The representation D; is also one-dimensional. It is constructed as follows. Consider
the following polynomial of order six in the coordinates of a point in R3 or T?:

V(x,y,2) = &=y x> =) (> —29) (1.2.27)
As one can explicitly check under the transformations of the octahedral group listed in
Eq.(1.2.17) the polynomial U (x, y, z) is always mapped into itself modulo an overall
sign. Keeping track of such a sign provides the form of the second one-dimensional

representation whose character is explicitly calculated to be the following one:

X1 = {171’17_15_1} (1.2.28)

1.2.6.3 Dj3: The Two-Dimensional Representation

The representation Dj is two-dimensional and it corresponds to a homomorphism:

SHere as elsewhere we utilize the notion of group-characters for which we refer the reader to
standard textbooks on finite group theory as [2].
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Ds : Oy — SL(2,7) (1.2.29)
which associates to each element of the octahedral group a 2 x 2 integer valued

matrix of determinant one. The homomorphism is completely specified by giving
the two matrices representing the two generators:

Ds(A) = (2111) . Ds(B) = (?é) (1.2.30)

The character vector of D is easily calculated from the above information and we
have:
X3 = {27_1»2a Ov O} (1.2.31)

1.2.6.4 Dy4: The Three-Dimensional Defining Representation

The three dimensional representation Dy is simply the defining representation, where
the generators A and B are given by the matrices in Eq. (1.2.18).

D4y(A) = A ; D4B) =B (1.2.32)
From this information the characters are immediately calculated and we get:

X3 = {3705_1’_171} (1233)

1.2.6.5 Ds: The Three-Dimensional Unoriented Representation

The three dimensional representation Ds is simply that where the generators A and
B are given by the following matrices:

010 010
DsA) = [001 ] ; Ds@B) =[100 (1.2.34)
100 001

From this information the characters are immediately calculated and we get:
xs = {3,0,-1,1, -1} (1.2.35)

The table of characters is summarized in Table 1.2.
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Table 1.2 Character table of the proper octahedral group

Irrep Class {e,1} {C>, 8} {C3, 3} {C4, 6} {Cs, 6}
Dy, X1 = 1 1 1 1 1

Dy, X2 = 1 1 1 -1 -1
Ds, X3 = 2 -1 2 0 0

Da, Y4 = 3 0 1 —1

Ds, X5 = 3 0 -1 1 —1

1.3 A Simple Crystallographic Point-Group
in 7-Dimensions

In the previous section we analyzed the possible crystallographic point groups in our
familiar three-dimensional Euclidean space.

Summarizing our discussion we point out some group—theoretical features that
follow from the ADE classification, combined with the further compatibility con-
straints which emerge when you impose the crystallographic condition that a lattice
should be left invariant by the action of the Point Group:

(a) The Point Group 3 must be a finite rotation group in d = 3 hence it must belong
to the list:
B € {Z, Dihy, Tz, O, Igo} (1.3.1)

(b) The order of any element y € ‘B belonging to the Point Group must be in the
range 2,3,4,6

The intersection of these two conditions leads to the conclusion that:

B € {Zr346. Dihzse, Tiz, On} (1.3.2)

The classification of Bravais lattices, which is responsible for so many chemical-
physical properties of matter, is essentially encoded in Eq.(1.3.2). In this list of
candidate Point Groups there is no simple one which is non abelian. They are all
either solvable or abelian and this implies that their irreducible representations can be
constructed by means of an induction algorithm starting from the one-dimensional
irreps of their largest normal abelian subgroup. A simple group which occurs in the
ADE classification is the icosahedral group Igy which is isomorphic to the simple
alternating group As (the even permutations of 5 objects). It is barred out by the
crystallographic condition because it contains elements of order 5.

Under many respects this is the analogue of what happens with algebraic equa-
tions. The algebraic equations of order 2, 3, 4 are always solvable by radicals since
their Galois group is solvable. In degree d > 5 the generic equation is not solvable
because the Galois group is generically not solvable.
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A natural question arises at this point. Is the condition b) on the possible orders of
the Point Group elements intrinsic to the crystallographic constraint in any dimension
or it is a specific feature of d = 3?

The correct answer to the above question is the second option and in this section
we show a counterexample of a crystallographic group in 7-dimensions that has
group elements of order 7. Not only that. Ours is an example of a simple non abelian
crystallographic Point Group!

It is quite remarkable that the analogue of the ADE classification of finite rotation
groups in d > 5 is so far non existing up to the knowledge of this author. Even less
is known about higher dimensional crystallographic groups.

It is philosophically quite challenging to imagine what Chemistry, Geology and
even Molecular Biology and Genetics might be in a world where the Point Group is
a simple non abelian group!

1.3.1 The Simple Group Li¢s

The finite group:
Liss = PSL(2,Zy) (1.3.3)

is the second smallest simple group after the alternating group As which has 60 ele-
ments and coincides with the symmetry group of the regular icosahedron or dodeca-
hedron. As anticipated by its given name, L¢g has 168 elements: they can be identified
with all the possible 2 x 2 matrices with determinant one whose entries belong to
the finite field Z;, counting them up to an overall sign. In projective geometry, L;¢s
is classified as a Hurwitz group since it is the automorphism group of a Hurwitz
Riemann surface, namely a surface of genus g with the maximal number 84 (g — 1)
of conformal automorphisms.® The Hurwitz surface pertaining to the Hurwitz group
Leg is the Klein quartic [4], namely the locus 7} in P, (C) cut out by the following
quartic polynomial constraint on the homogeneous coordinates {x, y, z}:

Py+yiz4+2x=0 (1.3.4)

Indeed 7 is a genus ¢ = 3 compact Riemann surface and it can be realized as the
quotient of the hyperbolic Poincaré plane H, by a certain group I” that acts freely
on H, by isometries.

The Ligg group, which is also isomorphic to GL(3, Z;), has received a lot of
attention in Mathematics and it has important applications in algebra, geometry, and
number theory: for instance, besides being associated with the Klein quartic, L;¢g is
the automorphism group of the Fano plane [5].

SHurwitz’s automorphisms theorem proved in 1893 [3] states that the order |#| of the group & of
orientation-preserving conformal automorphisms, of a compact Riemann surface of genus g > 1
admits the following upper bound |¢| < 84(g — 1).
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The reason why we consider L;¢g in this section is associated with another property
of this finite simple group which was proved fifteen years ago in [6], namely:

Ligs C g2(-14 (1.3.5)

This means that L¢g is a finite subgroup of the compact form of the exceptional Lie
group g, and the 7-dimensional fundamental representation of the latter is irreducible
upon restriction to Ljeg.

The key reason to consider Li¢g in this section is that it happens to be crystallo-
graphic in d = 7, the preserved lattice being the root lattice of either the simple Lie
algebra a7 or, even more inspiringly, of the exceptional Lie algebra ¢;. Hence Ligg
is a subgroup of the ¢; Weyl group. Because of the role of ¢; in supergravity related
special geometries we will come back to it in the sequel. Here we are interested in its
properties in order to illustrate the case of a simple crystallographic non abelian
group.

1.3.2 Structure of the Simple Group L1¢g = PSL(2, Z7)

For the reasons outlined above we consider the simple group (1.3.3) and its crystal-
lographic action in d = 7. The Hurwitz simple group L¢g is abstractly presented as
follows’:

Liggs = (R.S,T || R> = S* =T = RST = (TSR)* = ¢) (1.3.6)
and, as its name implicitly advocates, it has order 168:

| Ligs | = 168 (1.3.7)

The elements of this simple group are organized in six conjugacy classes according
to the scheme displayed below:

Conjugacy class 61165 63 61 |Cs5| 6o

representative of the class R|S|TSR| T |SR
order of the elements in the class 2131 4 |77
number of elements in the class 21|56 42 (24|24

(1.3.8)

—| —

As one sees from the above table (1.3.8) the group contains elements of order 2, 3,
4 and 7 and there are two inequivalent conjugacy classes of elements of the highest
order. According to the general theory of finite groups, there are 6 different irreducible
representations of dimensions 1, 6, 7, 8, 3, 3, respectively. The character table of the

7In the rest of this section we follow closely the results obtained by the present author in a recent
paper [7].
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group L can be found in the mathematical literature, for instance in the book [2].
It reads as follows:

Representation |6 | 6> | 65 | €4 %s %
Dy[Ligg] |1]1]1]1 1 1
Dg[Ligg] |6/2]/0|0 -1 1
D7[Lies]l |7 |—1]1 |-1 0
Dg[Liss] |8]0 |—1]/0 1 1 (1.3.9)
DAs[Lies] |3 |—1/0 |1 %(—1+i\/7) %(—l—iﬁ)
DBs[Ligs] |31/ 0 1 3(=1-iv7) }(~1+iv7)

Soon we will retrieve it by constructing explicitly all the irreducible representations.

1.3.3 The 7-Dimensional Irreducible Representation

For our purposes the most interesting representations are the real 7 dimensional and
the complex three dimensional ones. The properties of these irreps are the very reason
to consider the group Leg in the present context.

As for the 7-dimensional irrep the following three statements are true:

1. The 7-dimensional irreducible representation is crystallographic since all ele-
ments y € Ligg are represented by integer valued matrices D7 (y) in a basis
of vectors that span a lattice, namely the root lattice Ay of the a; simple Lie
algebra.

2. The 7-dimensional irreducible representation provides an immersion Ligg <
SO(7) since its elements preserve the symmetric Cartan matrix of a:

VyeLlies : DI (y)€D:i(y)=%
(fi,j:ai-aj (l,] 21,7)
(13.10)

defined in terms of the simple roots «; whose standard construction in terms of
the unit vectors &; of R® is recalled below®:

Q=6 —& ;U =6 —€6 =03 =6 —&
Oy = E4 — &5, 05 =&E5— &=, 0g=2¢Ec— &7 (1311)
o7 = &7 — &3

8We refer the reader to Sect. 1.5 for the explicit form of the Cartan matrices associated with ap
algebras.
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3. Actually the 7-dimensional representation defines an embedding L¢s < g, C
SO(7) since there exists a three-index antisymmetric tensor ¢;;; satisfying the
relations of the octonionic structure constants’ that is preserved by all the matrices

Ds(y):
Vy € Liggs : D1V D1(¥) i D7(¥)w birje = Giji (1.3.12)

Let us prove the above statements. It suffices to write the explicit form of the
generators R, S and T in the crystallographic basis of the considered root lattice:

vV € Arool <& vV=mn,a; n;e Z (1313)

Explicitly if we set:

0 0 000 0 —1 00 0 000 —1

0 0 000-10 10 0 000 —1

0 0-110-10 10 0 —-110 -1
#Z=]10-1010-10 ; =110 -1010 -1

0-101-10 O 10 -101-10

0-1000 0 O 10 -1000 O

-10 000 0 O 1-10 000 O

00000-11

10000—-11

01000-11
T =]100100-11 (1.3.14)

00010-11

0000111

00000 0 1

we find that the defining relations of L¢g are satisfied:
B =9 =9 =RST = (TIRE)* = 1747 (1.3.15)
and furthermore we have:
RTECR = STCS = T'€¢T =€ (1.3.16)

where the explicit form of the a; Cartan matrix is recalled below:

9For the history of quaternions and octonions I refer the reader to my book [8].
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2 -10 0 0 0 O
-12-10 0 0 O
0

0-12-10 0
¢=100-12-10 0 (1.3.17)
00 0 —12-10
000 0 —12 -1
0000 0—12

This proves statements (1) and (2).

In order to prove statement (3) we proceed as follows. In R7 we consider the
antisymmetric three-index tensor ¢4 ¢ that, in the standard orthonormal basis, has
the following components:

=

126 =
D134 = —
P157 = —

$237 = é ; all other components vanish (1.3.18)
1
6

A= =

P45 =

$356 = —

A= =

Pa67 = —

This tensor satisfies the algebraic relations of octonionic structure constants,
namely '°:

1y 2
baBM Pcom = ESCD + §¢ABCD (1.3.19)
1
YaBc = —gEABCPORS D 4BcD (1.3.20)

and the subgroup of SO(7) which leaves ¢4 p¢ invariant is, by definition, the compact
section g2, 14y of the complex g, Lie group (see for instance [9]). A particular matrix
that transforms the standard orthonormal basis of R into the basis of simple roots
«; is the following one:

Sul=sl- <

(1.3.21)

Sl
oooo&oo
[

oooooslo
|

3
|
oo oo oo

|
S N i
© o o §| © o o

i

L

72

10T this equation the indices of the go-invariant tensor are denoted with capital letter of the Latin
alphabet, as it was the case in the quoted literature on weak g-structures. In the following we will
use lower case latin letters, the upper Latin letters being reserved for d = 8.
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since:
m'om = ¢ (1.3.22)

Defining the transformed tensor:

o = (M), )" bk (1.3.23)

we can explicitly verify that:

i = (B (D) (B par
ik = () (D (D Opar
ik = (D (D (D bpar (1.3.24)

Hence, being preserved by the three-generators Z,.¥ and 7, the antisymmetric
tensor ¢;j; is preserved by the entire discrete group Lieg which, henceforth, is a
subgroup of g, —14y C SO(7), as it was shown by intrinsic group theoretical argu-
ments in [6]. The other representations of the group L¢3 were explicitly constructed
about ten years ago by Pierre Ramond and his younger collaborators in [10]. They
are completely specified by giving the matrix form of the three generators R, S, T
satisfying the defining relations (1.3.6).

1.3.4 The 3-Dimensional Complex Representations

The two three dimensional irreducible representations are complex and they are
conjugate to each other. It suffices to give the form of the generators for one of them.
The generators of the conjugate representation are the complex conjugates of the
same matrices.

Setting:

2im

e (1.3.25)

I
we have the following form for the representation 3:

i(p2=p?) i(p=p®) i(r'=p")

; 76 (4 7 3 ; 3/7 5
D[R]; = l(p\—ﬁp) I(P\;@) i(p —7p)
i(p*=p*) i(p*=p°) i(p—p®)

V7 NG NG

i(p*=p°) i(P’=p) ip=1)
DIS]; = "(”{;1) i(pﬁgps) i(pipz)
i(e°=pt) i(p*=1) i(P’=p)

S
S

V7
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—iew 0 0
D[T]; = 0 —ieh 0 _ (1.3.26)
0 0 —e 7
1.3.5 The 6-Dimensional Representation
Introducing the following short-hand notation:
5]
Cp =cos|—n
7
2
5 = sin [7" ni| (1.3.27)

The generators of the group L;¢g in the 6-dimensional irreducible representation can
be explicitly written as it is displayed below:

—1 =1 —1
“5 | %5 | 5 la-aa-ala—a
=1 =1 =1
Ci/ﬁ C'ﬁ Ci/i C) —C3|C3 —C1|C1 —C
=1 =1 =
D[R] Cl/i 03\/5 Ci/i Cl —C|Cr —C3|C3 — (1
6 = = = =
c3—cilea—cslep —cy 9t | et el
ﬁl ﬁl ﬁl
_ _ _ c— — c1—
Cl Cr(C3 C1|C2 C3 Zl 2] ﬁl
_ _ _ 3 — (& C—
(6] C3|C C2|C3 Cl /2 72 72
—1)p? —1pt —1
(”ﬁ)" (Czﬁ”’ (”ﬁ)” (c3—c)p*|(c1 — )P | (c2 — c3)p®
—1)p? Y —1
e | =g | G20 ey —e3)p®|(e3 — ep® (e — e2)p°
—1)p? Y —1
Q= | G 2R ey —)p®| (2 — e3)p° | (e3 — e1)p®
DISls = 2 4 (c1=Dp? (2=Dp° (c3=Dp®
(c3 —c1)p”|(ca —c3)p™|(c1 —c2)p 72 . 72 : 72 -
_ 2 _ 4 _ (e2—=1)p’ (c3=Dp’ (c1=Dp
(c1 —c2)p” (3 —c)p”|(e2 = ¢3)p o o o
o 2 o 4 o (c3=Dp (c1=Dp (c2=Dp
(c2 —c3)p”|(c1 —c2)p™|(c3 —c1)p 72 72 72

D[T]s = (DIR]s - D[Sls)~" (1.3.28)
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1.3.6 The 8-Dimensional Representation

Utilizing the same notations as before we can write the matrix form of the generators
also in the irreducible 8-dimensional representation.

2 —2c 0 2¢1 + 2¢y — 4¢3 2—2c
0 —2c1+4c, -2 0 0
2c1 + 2¢y —4c3 0 —c1+2cp —c3 —4c1 +2cp + 2¢3
2 —2c¢ 0 —4c1 4+ 2¢p + 2¢3 2 —2c¢
DIR]y = o 26y — dey +2 e o
2—2c3 0 2c1 —4cy + 2¢3 2 —2cq
0 4c1 —2¢3 —2 0 0
23¢1 = 24/3¢ 0 V3ep — \/§C3 2V3¢y — 2«/§C3
0 2—2¢3 0 23/3¢1 — 24/3¢2
2c) —4c3 42 0 4c) —2¢3 =2 0
0 2c1 —4cy + 2¢3 0 V31 = 3¢z
0 2—2¢ 0 23/3¢7 — 24/3¢3
4cp —2c3—2 0 2c1 —4cp +2 0
0 2—2cy 0 23/3¢3 — 24/3¢;
2c) —4cp +2 0 —2¢p +4c3—2 0
0 2«@63 —23¢] 0 c1 —2c+c¢3
ci 510 0 0 0 0O
—s1¢c10 0 0 0 00O
001 0 0 O 0O
0 00 c3 53 0 00
DISE=1"9 00-55c5 0 00
0 00 0 0 ¢ 0
0 00 0 0 —s¢20
0 000 0 O0 01

D[T)s = (D[R]s - D[S]s)~" (1.3.29)

1.3.7 The Proper Subgroups of Lies

From the complexity of the other irreps, in relation with the simplicity of the 7-
dimensional one, it is already clear that this latter should be considered the natural
defining representation. The crystallographic nature of the group ind = 7 has already
been stressed and we will have more to say about it in Chap. 7. Next we introduce the
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a; weight lattice which, by definition, is just the dual of the root lattice. Explicitly
A, d5w=mnm) : neZ (1.3.30)
is spanned by the simple weights that are implicitly defined by the relations:
Moap =8 = A= (") o (1.3.31)
Since the group L ¢s is crystallographic on the root lattice, by necessity it is crys-
tallographic also on the weight lattice. Given the generators of the group L;¢g in the
basis of simple roots we obtain the same in the basis of simple weights through the

following transformation:

Ry =CRE" ; Ly=CSEC" ; T =C€TE! (1.3.32)

Explicitly we find:
00 0 0 0 0 —1 -1-1-1-1-1-1-1
00 0 —-1-1-10 1 1.1 1 0 0 O
0 0-10 0 00 00 0-10 00
Zv=1]10 0 1 1 1 0 O Sv=10 0 0 1 1 1 O
0O 0 0 0-10 0 00 0 0 0 -10
0 -1-1-10 0 O 0 0-1-1-10 0
-10 0 0 0 0 O 0-10 0 0 0 O
(1.3.33)
-1-1-1-1-1-10
1 00 00 0O
01 0 0 0 0O
=10 0 1 0 0 00 (1.3.34)
0001 0 O00O0
0 00 01 00O
0 00 0 0 11

Given the weight basis, which is useful in several constructions, let us conclude our
survey of the remarkable simple group L;eg by a brief discussion of its subgroups,
none of which, obviously, is normal.

L,¢s contains maximal subgroups only of index 8 and 7, namely of order 21 and
24. The order 21 subgroup Gy; is the unique non-abelian group of that order and
abstractly it has the structure of the semidirect product Zz x Z;. Up to conjugation
there is only one subgroup Gy; as we have explicitly verified with the computer. On
the other hand, up to conjugation, there are two different groups of order 24 that are
both isomorphic to the octahedral group Oo4.
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1.3.7.1 The Maximal Subgroup G»;

The group Gy; has two generators 2~ and ¢ that satisfy the following relations:
23="=1: XA =% (1.3.35)

The organization of the 21 group elements into conjugacy classes is displayed below:

ConjugacyClass CCy Cs Csy |Cs
representative of the class e W\ *HXW\ WXL (1.3.36)
order of the elements in the class| 1 | 7 7 3 3 e
number of elements in the class | 1 | 3 3 7 7

As we see there are five conjugacy classes which implies that there should be five
irreducible representations the square of whose dimensions should sum up to the
group order 21. The solution of this problem is:

21 = P4+ 12412432432 (1.3.37)

and the corresponding character table is mentioned below:

0 e 7 I &
D; [Ga] |1 1 1 1 1
DX [Ga]]1 1 1 —(=D'"?| (=1
DY, [Gay] 1 i i )P (=) (1.3.38)
DAy [Gn] 3| 4 (i++7) —di(=i+v7) 0 0
DB;[Gai13~4i (—i+v7)| 4i(i++7) | 0 0

In the weight-basis the two generators of the G,; subgroup of L3 can be chosen to
be the following matrices and this fixes our representative of the unique conjugacy
class:

11 1 1 1 1 1 01 1 0 0 0 O
00 0 0 0 0 -1 000 1 1 11
0-1-1-1-1-1 0 0 0 —-1-1-1-1-1
Z =101 11 0 0 O % =10011 0 00
00 -1-10 0 O -1-1-1-10 0 O
00 1 1 1 0 O 1 11 1 1 00
00 0-1-100 00 00 01 O0
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1.3.7.2 The Maximal Subgroups O,4x and Oy4p

As we know from Sect. 1.2.5, the octahedral group O,4 has two generators S = B
and T = A that satisfy the following relations:

S2=73= ST =1 (1.3.40)

The 24 elements are organized in five conjugacy classes according to the scheme
displayed below:

Conjugacy Class C11Cy| C3 |C4|Cs
representative of the class e |T|STST S |ST (1.3.41)
order of the elements in the class| 1 | 3 2 214 o
number of elements in the class | 1 | 8 3 6|6

The irreducible representations of O,4 were explicitly constructed in Sect. 1.2.6. We
repeat here the corresponding character table mentioning also a standard represen-
tative of each conjugacy class:

0 |e| T |STST| S ST
Di[Onllj 1 1 | 1]1
Dy[On]1] 1] 1 |—1/—1
D3 [0x]2|—1| 2 |0 (1.3.42)
D4[0][3/ 0 —1 |—1] 1
Ds[On]3/ 0] —1 |1 |-1

By computer calculations we have verified that there are just two disjoint conjugacy
classes of O,4 maximal subgroups in L;cg that we have named A and B, respectively.
We have chosen two standard representatives, one for each conjugacy class, that we
have named Oy44 and O,4p respectively. To fix these subgroups it suffices to mention
the explicit form of the their generators in the weight basis.

For the group Oy4a, we chose:

11 1 1 1 11 0 001 1 10
00 0 0 0 0 -1 0 00 0-1-10
0-1-1-1-1-1 0 -1-1-1-1 0 0 O
I, =101 1 1 0 0 O Sa = 1 1.0 0 0 0O
00 -1-10 0 O 0 01 1 1 1 1
00 1 1 1 0 O 0O -1-1-1-1-1-1
00 0-1-100 01 1 1 1 00

(1.3.43)
For the group Oy, we chose:
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11 1 1 0 00 0 01 11 0O
0-1-1-10 0O —-1-1-1-1—-10 O
01 1 1 1 00 1 1 1 1 1 11
s =100 -1-1-1 00 Sp = 0 000 0 0 -1
00 11 1 10 0O -1-1-1-1-120
00 0 -1-1-10 011 1 00O
00 0 1 1 11 0 0 0-10 0 O

(1.3.44)

1.3.7.3 The Tetrahedral Subgroup T, C Oy4

Every octahedral group Oy4 has, up to O,4-conjugation, a unique tetrahedral subgroup
T}, whose order is 12. The abstract description of the tetrahedral group is provided
by the following presentation in terms of two generators:

le = (S, t |S2 = t3 = (s[)3 = 1) (1345)

The 12 elements are organized into four conjugacy classes as displayed below:

Classes Ci1C|C3|Cy
standard representative 1 s|t]|t’s (1.3.46)
order of the elements in the conjugacy class| 1 |2 |3 | 3 e
number of elements in the conjugacyclass | 1 |3 |4 | 4

We do not display the character table since we will not use it. The two tetrahedral
subgroups Tjpa C Oua and Tip C Ooyp are not conjugate under the big group
L,¢s- Hence we have two conjugacy classes of tetrahedral subgroups of Lieg.

1.3.7.4 The Dihedral Subgroup Dih; C Oy4

Every octahedral group O,4 has a dihedral subgroup Dih; whose order is 6. The
abstract description of the dihedral group Dih; is provided by the following presen-
tation in terms of two generators:

Dih; = (A, B|A’ = B> = (BA)’ = 1) (1.3.47)

The 6 elements are organized into three conjugacy classes as displayed below:

ConjugacyClasses C|C|Cs
standard representative of the class| 1 | A | B (1.3.48)
order of the elements in the class | 1 | 3 | 2 o
number of elements in the class | 1 |2 |3
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We do not display the character table since we will not use it. Differently from the
case of the tetrahedral subgroups the two dihedral subgroups Dih3zs C Oy4s and
Dihzg C Oy4p turn out to be conjugate under the big group Lieg. Actually there is
just one Lgs-conjugacy class of dihedral subgroups Dihjs.

1.3.7.5 Enumeration of the Possible Subgroups and Orbits

In d = 3 the orbits of the octahedral group acting on the cubic lattice are the
vertices of regular geometrical figures. Since Ljgg has a crystallographic action on
the mentioned 7-dimensional weight lattice, its orbits & in Ay correspond to the
analogue regular geometrical figures in d = 7. Every orbit is in correspondence with
a coset G/H where G is the big group and H one of its possible subgroups. Indeed
H is the stability subgroup of an element of the orbit.
Since the maximal subgroups of Leg are of index 7 or 8 we can have subgroups
H C L¢g that are either G; or O,4 or subgroups thereof. Furthermore, as we know,
the order |H| of any subgroup H C G must be a divisor of |G|. Hence we conclude
that
H| € {1,2,3,4,6,7,8, 12,21, 24} (1.3.49)

Correspondingly we might have L;¢g-orbits & in the weight lattice A,,, whose length
is one of the following nine numbers:

Lo € {168,84,56,42,28,24,21, 14,8, 7} (1.3.50)

Combining the information about the possible group orders (1.3.49) with the
information that the maximal subgroups are of index 8 or 7, we arrive at the following
list of possible subgroups H (up to conjugation) of the group Lieg:

Order (24) Either H = Oyyp or H = Oyyp.

Order (21)  The only possibility is H = Gy;.

Order (12) The only possibilities are H = Tj;p or H = Tjp5 where Ty, is the
tetrahedral subgroup of the octahedral group Oy4.

Order (8) Either H=7, x Zy X Zy or H=7 X Zy4.

Order (7) The only possibility is Z;.

Order (6) Either H = Z, x Z3 or H = Dihz, where Dihs denotes the dihedral
subgroup of index 3 of the octahedral group Oa4.

Order (4) EitherH=7, x Z, or H=74.

Order (3) The only possibility is H = Z3

Order (2) The only possibility is H = Z,.
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1.3.7.6 Synopsis of the Ligg Orbits in the Weight Lattice A,,

In [7], the author of this book has presented his results, obtained by means of computer
calculations, on the orbits of the considered simple group acting on the a; weight
lattice. They are briefly summarized below

1. Orbits of length 8 (one parameter n; stability subgroup H® = Gj;)

2. Orbits of length 14 (two types A & B) (one parameter n; stability subgroup
H* = TiaB)

Orbits of length 28 (one parameter n ; stability subgroup H® = Dihj3)

Orbits of length 42 (one parameter n; stability subgroup H® = Z,))

Orbits of length 56 (three parameters n,m,p; stability subgroup H® = Z3)

Orbits of length 84 (three parameters n,m,p; stability subgroup H® = 7Z,)
Generic orbits of length 168 (seven parameters; stability subgroup H® = 1)

Nownesw

As we already said, the above list is in some sense the 7-dimensional analogue of
Platonic solids. It is only in some sense, since it is a complete classification for
the group Lcg yet we are not aware of a classification of the other crystallographic
subgroups of SO(7), if any.

Notwithstanding this ignorance, the piece of knowledge we have summarized
above is already impressively complicated and demonstrates how even flat geometry
becomes more sophisticated in higher dimensions.

The next natural question is why just d = 7 should attract our geometrical atten-
tion. There are several reasons for the number 7. They are probably all related to
each other:

1. The possible division algebras are R, C, H, O, the real numbers, the complex
numbers, the quaternions and the octonions. The corresponding number of imag-
inary units are 0, 1, 3, 7. The automorphisms groups of these division algebras
are 1, U(l), SU(Z), g2(-14)-

2. The spheres that are globally parallelizable are S',S*,S”.

3. The manifolds of restricted holonomy are the complex ones, the Kihler ones, the
quaternionic ones, that exist in all dimensions d = 2n, respectively d = 4n, and
then, justin d = 7, we have the g, manifolds and in d = 8 we have the Spin(7)
manifolds.

4. Seven are the dimensions that one has to compactify in order to step down from
the 11-dimensional M-theory to our d = 4 space-time and many solutions of the
theory naturally perform the splitting 11 = 4 + 7.

1.4 The General Form of a Simple Lie Algebra and the
Root Systems

Every simple Lie algebra G of dimension n = 2m + r can be described in a compact
and quite inspiring way. There exists an abelian subalgebra (the Cartan subalgebra
CSA) made of elements whose adjoint action is fully diagonalizable and whose
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dimension £ < n is named the rank of G. A basis of generators spanning the CSA is
usually denoted by H; (i =, ..., £). The remaining 2m generators, denoted E are
in one-to-one correspondence with a set A of vectors « living in an £-dimensional
Euclidean space that are named the roots. The set A is dubbed a root space and it is
formally defined as follows:

Definition 1.4.1 A root space A of rank £ is a finite set of vectors {«}, named the
roots and defined in an Euclidean space of dimension ¢, that satisfy the following
properties. If o, B € A are two roots, then the following two statements are true:

1. 2&h 7

(o, )

2. 0u(B) =B — Za% € Ais also a root.

The vector o, (B) defined above is named the reflection of § with respect to & and
the second part of the definition can be reformulated by saying that any root system
A is invariant under reflection with respect to any of its elements.

Utilizing these notations and the advocated notion of root system we have:

Theorem 1.4.1 The commutation relations of a complex simple Lie algebra rake
necessarily the following general form:

[Hi. Hi]=0

[Hi, E*| = E

(£, E] =o' H

[E ,Eﬁ]=N(aﬁ)E°’+ﬁ if a+peA

[E“, EF]=0 if a+pB¢A (14.1)

where N (a, B) is a coefficient that has to be determined using Jacobi identities.

From now on we can associate to every complex simple Lie algebra its root system
A. Furthermore each root system singles out a well-defined finite group, named the
Weyl group that is obtained combining together the reflections with respect to all the
roots.

Definition 1.4.2 Let A be a root system in dimension £. The Weyl group of A,
denoted # (A) is the finite group generated by the reflections o,, Voo € A.

Since for any two vectors v, w € E we have:
(04(V), o (W) = (V, W) (1.4.2)

it follows that the Weyl group, which is finite, is always a subgroup of the rotation
group in ¢ dimensions:
W (A) C SO€) (1.4.3)
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1.4.1 The Cartan Matrices

The main token in the classification of root systems is provided by the Cartan matri-
ces, which we presently define. We begin with the notion of simple roots.

Definition 1.4.3 Given a root system A C E’ in an Euclidean space of dimension
£, a set A of exactly £ roots is named a simple root basis if:

1. A is abasis for the entire E°.
2. Every root & € A can be written as a linear combination of the elements ¢;
whose coefficients are either all positive or all negative integers

4
o = Zki o ; ke [Orzi (1.4.4)
i=1 -

The vectors «; comprised in A are named the simple roots of A.

A rather simple, yet fundamental theorem establishes that every root system has a
simple root basis «y, ..., a,. This being the case to every root system and hence to
every complex Lie algebra we can associated the following £ x ¢ matrix:

(i, aj)

(aj, aj)

(1.4.5)

Cij =<, aj == 2

Another simple and constructive theorem shows that from the Cartan matrix one can
retrieve the entire root system and hence the simple Lie algebra.

Having established that all possible irreducible root systems A are uniquely deter-
mined (up to isomorphisms) by the Cartan matrix, we can classify all the complex
simple Lie algebras by classifying all possible Cartan matrices. This is the classifi-
cation originally achieved by Killing and Cartan. Later on in the XXth century the
theory of Cartan matrices of root systems and of the finite reflection groups associ-
ated with them was extensively developed by three mathematicians Hermann Wey],
Harold Coxeter and Evgenij Dynkin.

1.4.2 Dynkin Diagrams

Each Cartan matrix can be given a graphical representation in the following way.
To each simple root «; we associate a circle O as in Fig. 1.4 and then we link the
ith circle with the jth circle by means of a line which is simple, double or triple
depending on whether

—

<, o ><0oj, >= 4 cos’ 0ij =12 (1.4.6)
3
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Fig. 1.4 The simple roots o; O O Q O . O Q

are represented by circles
g (0%) o3 Oy -1 O

ap Xaj O Q

Fig. 1.5 The four possible
Coxeter graphs with two
vertices

a O—CO
by~ O—0O
0 O==0O

having denoted 6;; the angle between the two simple roots «; and o;. The corre-
sponding graph is named a Coxeter graph.

If we consider the simplest case of two-dimensional Cartan matrices we have the
four possible Coxeter graphs depicted in Fig. 1.5 Given a Coxeter graph if it is simply
laced, namely if there are only simple lines, then all the simple roots appearing in
such a graph have the same length and the corresponding Cartan matrix is completely
identified. On the other hand if the Coxeter graph involves double or triple lines, then,
in order to identify the corresponding Cartan matrix, we need to specify which of
the two roots sitting at the end points of each multiple line is the long root and which
is the short one. This can be done by associating an arrow to each multiple line.
By convention we decide that this arrow points in the direction of the short root.
A Coxeter graph equipped with the necessary arrows is named a Dynkin diagram.
Applying this convention to the case of the Coxeter graphs of Fig.1.5 we obtain
the result displayed in Fig. 1.6. The one-to-one correspondence between the Dynkin
diagram and the associated Cartan matrix is illustrated by considering in some detail
the case B, of Fig. 1.6. By definition of the Cartan matrix we have:

(ay, a3) oy |

—— =2—co0sf0 = -2
(az, a3) s |
@.0) el o= (1.4.7)
(aq, ) ey |
so that we conclude:
lort |* = 2 |ea]? (1.4.8)

which shows that ¢ is a long root, while «; is a short one. Hence the arrow in the
Dynkin diagram pointing towards the short root ¢, tells us that the matrix elements
Cy, is —2 while the matrix element C,; is —1. It happens the opposite in the example
C,.
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ar X ay O O = (32)

. o—o = (473
b o=0 - (47)
s o=<0 - (37)
" =0 = (27)

Fig. 1.6 The distinct Cartan matrices in two dimensions (and therefore the simple Algebras in
rank two) correspond to the Dynkin diagrams displayed above. We have distinguished a b, and a ¢
matrix since they are the limiting case for £ = 2 of two series of Cartan matrices the by and the ¢,
series that for £ > 2 are truly different. However b is the transposed of ¢ so that they correspond
to isomorphic algebras obtained one from the other by renaming the two simple roots o] <> a2

Fig. 1.7 The Dynkin
diagrams of the four infinite
families of classical simple

algebras by O—O—~0O-- O_oi@

o (2% o3 Q2 Oyp—1 O

¢ O—0C0—~0O 0—0C=<0

[04] (25 o3 Oro Oy Oy

a O—0—"~0O O—0—™20

o [2%) o3 Q2 Oyp—1 O

o O—0O0——~—0~

o (0%) o3

1.5 The Classification Theorem

Having clarified the notation of Dynkin diagrams the basic classification theorem of
complex simple Lie algebras is the following:

Theorem 1.5.1 If A is an irreducible system of roots of rank £ then its Dynkin
diagram is either one of those shown in Fig. 1.7 or for special values of £ is one of
those shown in Fig. 1.8. There are no other irreducible root systems besides these
ones.

This fundamental theorem encoding the classification of complex simple Lie algebras
is proved in many textbooks and a proof, essentially based on that of [11], is provided
in the same notations of the present book in Chap.7 of [1]. Of that proof we report
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Fig. 1.8 The Dynkin o
diagrams of the five
exceptional algebras
¢ O—O—0O—C0O——70
o (%) o3 s U6
T )
¢7 O—O—"0O—"—C0O—C0C——20
o 2] o s 6 o7

I
8 O O

I M
% N\ %
(07) o3 Q5

80O
20

fa O—O=0—-20O

o 0% o3 (o7}
0 O=0
[25] (25}

here only the crucial segment that leads to the diophantine Eq. (1.1.48) and shows
the ADE isomorphism between the classification of simply laced Lie algebras and
of finite Kleinian subgroups of SU(2).

The strategy of the proof, which is organized in ten steps is based on the intro-
duction of a set of vectors:

U = {81 y €2, o ,84} (151)

that satisfy the following three conditions:

(8i7 8[):1
(ai,sj)§0 i#j
4(s6))° =0,1,2,3 i #j (15.2)

Such a system of vectors is named admissible. It is clear that each admissible system
of vectors singles out a Coxeter graph I". Indeed the vectors &; correspond to the
simple roots «; divided by their norm:

o

Ve ?

The task is that of classifying all connected Coxeter graphs.

€ = (15.3)
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In the first eight steps of the proof one establishes that there is a set of prohibited
Coxeter subgraphs that are those displayed in Fig. 1.9.

In this way, apart from the Coxeter graph of the g, Lie algebra (see Fig.1.8),
which is admissible, one is left with the candidate graphs displayed in Figs. 1.10 and
1.11.

In step 9 one considers the graphs of the type shown in Fig. 1.10 and utilizing the
properties of Euclidean geometry one establishes that there are only two solutions
namely:

p=2 ;g =2= fa Dynkin diagram (1.54)
p=£eN;g=1= b, or ¢ Dynkindiagrams e
The first solution leads to the Dynkin diagram of the exceptional Lie algebra {4, while
the second solution leads to the two infinite series of classical Lie algebras b, and c;.

O—O—0O O—(O=—/0

S H<

Fig. 1.9 Prohibited subgraphs
O—O- —0—0 O0—O0
€1 & 8p71 8[7 nq anl le Tl -1

Fig. 1.10 Coxeter graph with a double link that is preceded by a simple chain of length p and
followed by a simple chain of length ¢
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Fig. 1.11 Coxeter graph
with a node. The unit vector
in the node is named i while
the unit vectors along the
three simple lines departing
from the node are
respectively named

Elyenny Sp_l,m ..... Ng—1»
Cly ..., &—1. The graph is
characterized by the three
integer numbers p, g, r that
denote the lengths of the
three simple lines departing
from the node

Finally in step 10 one considers the Coxeter graphs of the type shown in Fig. 1.11.
The claim is that the only possible solutions are:

@, 1,1 = A, Dynkin diagrams teN

(£ —2,2,2) = 9, Dynkin diagrams 4 < £ € N
(p,q,r)=1@3,3,2) = ¢¢ Dynkin diagram (1.5.5)

4,3,2) = ¢7 Dynkin diagram

(5,3,2) = e¢g Dynkin diagram

To prove this statement we follow a strategy similar to that used in the proof of Step
9, namely we define the following three vectors:

p—1 r—1

g-1
e=Die s m=im ;1 DG (1.5.6)
i=l1

i=1 i=1

Clearly ¢, n, ¢ are mutually orthogonal and v, the vector in the node is not in the
subspace generated by ¢, 1, ¢. Hence if in the linear span of {{/, €, 1, {} we construct
a vector y that is orthogonal to {e, n, {} we obtain that (y, ¥) # 0. Normalizing
this vector to 1 we can write:

W.o Wm0
—w. n + n 15.7
V=0t ettt T e ot (1>7

and we obtain:

W.e .0 W, 0)?
el 15.8
W. ¥ Wy Y T o (>

that implies the inequality:
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_ W, e W, n* @, )?

! + + 1.5.9
(e.o)  m,m (.0 (1.5.9)
By definition of the Coxeter graph in Fig. 1.11 we have:
— 1?2
(w,g):(p—])(gpil’w) = (1//,8)22(1)4 )
(aw=£%%2 (1.5.10)

and similarly for the scalar products associated with the other chains. Inserting these
results into the inequality of Eq.(1.5.9) we obtain the Diophantine inequality:

11 1
SR (1.5.11)
p oq r

whose independent solutions are those displayed in Eq.(1.5.5). To this effect it is
sufficient to note that Eq. (1.5.11) has an obvious permutational symmetry in the three
numbers p, ¢q, r. To avoid double counting of solutions we break this symmetry by
setting p > g > r and then we see that the only possibilities are those listed in
Eq.(1.5.5).

Having concluded the above proof we can look back and compare the just
obtained results with those summarized in Sect. 1.1.4. The anticipated correspon-
dence between finite rotation subgroups and simply laced Lie algebras should now
be clear: the profound meaning of the correspondence was displayed in Fig.1.2.
The rank of the Lie algebra </ corresponds to the number of non trivial conjugacy
classes of the finite group I”, while the lengths k,, of the simple chains in the Dynkin
diagram correspond to the order of the group generators. More implications of the
correspondence will be unveiled in Chap. 8.

1.6 The Exceptional Lie Algebra g,

It was Killing who, through his own classification of the root systems, first discovered
the possible existence of the exceptional Lie algebras: yet their concrete existence
was proved only later by Cartan who was able to construct the fundamental repre-
sentation of all of them. In this section we study the smallest of the five exceptional
algebras, namely, g, and we explicitly exhibit its fundamental representation which
is 7-dimensional.

Our presentation is aimed not only at showing that g, exists but it also enlightens
some features of its structure that will turn out to be general within a certain algebraic
scheme that encompasses an entire set of classical and exceptional Lie algebras
relevant for the special geometries implied by supergravity and superstrings.


http://dx.doi.org/10.1007/978-3-319-74491-9_8
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Before the advent of supergravity, exceptional Lie algebras were viewed by physi-
cists as some mathematical extravagance good only for a Dickensian Old Curiosity
Shop. Supergravity quite surprisingly shew that all exceptional Lie algebras have
a distinct and essential role to play in the connected web of gravitational theories
that one obtains through dimensional reduction and coupling of matter multiplets in
diverse dimensions. Furthermore there is an inner algebraic structure of the excep-
tional algebras, shared with other classical algebras that appears to be specially pre-
pared to fit the geometrical yields of supersymmetry. This provides a new structural
viewpoint motivated by physics that, in Weyl’s spirit, encodes a deep truth, at the
same time physical and mathematical, the distinction being somewhat irrelevant. The
full-fledged span of the considerations first brought to the stage in this section will be
fully appreciated by the reader when he will address Chap.4 on special geometries
and Chap. 5 on the theory of the Tits Satake projection. Let us next turn to the specific
topic of the present section.

The complex Lie algebra g, (C) has rank two and it is defined by the 2 x 2 Cartan
matrix encoded in the following Dynkin diagram:

0 o=0 - (47)

The g, root system A consists of the following six positive roots plus their negatives:

o = o) = (1,0 sa = o = \/72 (=3, 1
a3 = o +ay = %(—1,\/5) sy =201 +ay = %(1,\/5) (1.6.1)

ws =3mt+m=LW3D) s =30+2m= (0,3

The two fundamental weights are easily derived and have the following form:

Al = {1«/5}
A= io, %] (1.6.2)

Simple roots, fundamental weights and the Weyl chamber are displayed in Fig. 1.12.
Figure 1.13 instead displays the entire root system. The fundamental representation
of the Lie algebra is identified as the one which admits the fundamental weight A! as
highest weight. Using the Weyl group symmetry and the « through X string technique
one derives all the weights of the 7-dimensional fundamental representation that are
the following ones:


http://dx.doi.org/10.1007/978-3-319-74491-9_4
http://dx.doi.org/10.1007/978-3-319-74491-9_5
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Fig. 1.12 The simple roots
and the fundamental weights
of the g Lie algebra. The
shaded region is the Weyl
Chamber

b S
i
\
Fig. 1.13 The complete root
system of the g, Lie algebra
Name| Dynk lab
Ay |= {1,0}|=
A = (=1, 1}=
Ay = 2,-1}=
Ay = {0,0)=
As = {=2,1}|=
A = {1,—1}|=
A7 = {—-1,0}|=

Y

(1.6.3)
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Fig. 1.14 The six non
vanishing weights of the
fundamental representation
of the gp Lie algebra. The
fundamental weight A! is the
highest weight of this
representation

The six non-vanishing weights are displayed in Fig. 1.14

Given this information we are ready to derive the fundamental representation of
the algebra. According to our general strategy we are supposed to construct 7 x 7
upper triangular matrices spanning the Borel subalgebra of the maximally split real
section g2y of g2(C):

Bor[g,] = span{H;, Hy, E*', E*, ..., E*} (1.6.4)

As for all maximally split algebras the Cartan generators H; and the step opera-
tors E associated with each positive root @ can be chosen completely real in all
representations.

In the fundamental 7-dimensional representation the explicit form of the gy()-
generators with the above properties is presented hereby. Naming {H;, H,} the
Cartan generators along the two ortho-normal directions and adopting the standard
Cartan—Weyl normalizations:

[Ey,EJJ =o' H; , [H,E]=0d"E,. (1.6.5)
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we have:
100000 0 %300000
0-£00000 0 2000 0
0010000 0 0000 O
H=[0000000]|:Hm=]0 0000 0
0 000-100 0 0000 O
00000%0 0 0000_§
1
0000003 0 0000 0
1 00 0 00 0
0550000 0 .

0000000 00,500 0
0001000 00 000 0
Eqy=|0000100 |:E,=]00000 0
SR N LR TE

V2 00 000 0

0000000 000 00 0

1 —
007000 0 000 1(])
000 -100 0 0000 -
000 000 O 0000 0
Eo 4o, = 00 O 00—1(1) i Eday4an = 000 0 0
00 0 OOOﬁ 000 0 O
000 000 0 0000 0
000 000 O 0000 O
0000—/30 0 00000 —

0000 0 0 O 00000

E _ o000 o 0—\@ . _looo000
Santar 0000 0 0 0 |’ "Rt 00000
0000 0 0 0 00000

0000 0 0 O 00000

0000 0 0 0 00000

‘50 S oo o O

1.7 A Golden Splitting for Quaternionic Algebras

[=NeNeNo Nl

(1.6.6)

(1.6.7)

(1.6.8)

(1.6.9)

In Chap. 4 we shall address the study of special Kdhler geometry and of quaternionic
geometry that are both implied by .4~ = 2 supersymmetry, the first applying to the
scalars of vector multiplets, the second to the scalar of hypermultiplets. Furthermore
we shall discuss a very interesting relation between such geometries that is named

the c-map:

c—map : LA —> Punia

(1.7.1)


http://dx.doi.org/10.1007/978-3-319-74491-9_4
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where . % 5, denotes a special Kihler manifold of 2n-real dimension while 24,14
denotes a quaternionic Kidhler manifold of 4n + 4 real dimension. For the definition
and properties of such manifolds we refer the reader to later chapters. What is of
interest to us here is that among the special Kéhler and quaternionic manifolds there
are also classes of homogeneous symmetric spaces G/H leading to a split of the Lie
algebra:

G =HeK 1.7.2)

into a subalgebra H and an orthogonal subspace K. We refer the reader to Chap. 2 for
the notion of coset manifolds and symmetric spaces: here we just focus on the fact
that the existence of a c-map between two symmetric spaces implies the existence
of a well-defined relation between two Lie algebras that we can respectively dub the
special Kdhlerian algebra U4 5 and the quaternionic algebra Ug."" For reasons
that the reader will fully appreciate in later chapters this relation is provided by the
following decomposition of the adjoint representation of the quaternionic algebra
U o with respect to its special Kihler subalgebra:

adj(Ug) = adj(U.».») ® adj(SL(2, R)g) ® Wi, w) (1.7.3)

where W is a symplectic representation of U »» 5 in which the symplectic section of
Special Geometry (to be defined in Chap.4) transforms. Denoting the generators of
U by T¢, the generators of SL(2, R)g, which is named the Ehlers subalgebra,
by L* and denoting by W® the generators in W, ), the commutation relations that
correspond to the decomposition (1.7.3) have the following general form:

[Ta’ Tb] — fubc T¢

(L. Lyl = f*, L7,

[T, W] = (A%)° W,

[L}, W] = (), Wi,

(W W = el (K)* T+ C kI L, (1.7.4)

where the 2 x 2 matrices (A" j., are the canonical generators of SL(2,R) in the
fundamental, defining representation:

1 1 1
L) 0> 0 >

)\'3=(2 1) ; )"l=(12) ; )\.zz( 12) (175)
0—3 20 -0

while A“ are the generators of U & 5 in the symplectic representation W. By

"'We name a Lie algebra U s ¢ special Kihlerian if the corresponding Lie group U s modded

by its maximal compact subgroup H o 5 defines a symmetric coset space H“" 2 that is special

Kdhlerian. Similarly we name a Lie algebra Ug quaternionic if the corre%pondmg Lie group
Ug

U o modded by its maximal compact subgroup Ho defines a symmetric coset space o that is

quaternionic.



http://dx.doi.org/10.1007/978-3-319-74491-9_2
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o — 0+1)xnrt) | Lntyxns1y (17.6)
—LitDxn1) | O x (n1)

we denote the antisymmetric symplectic metric in 2n + 2 dimensions, n being the
complex dimension of the Special Kihler manifold Ed; . The symplectic character
of the representation W is asserted by the identity:

AC+C (4" =0 1.7.7)

The fundamental doublet representation of SL.(2, R)g is also symplectic and we have

denoted by £/ = ( 01

1 O) the 2-dimensional symplectic metric, so that:

Wete (W) =0, (1.7.8)

The matrices (Ka)""3 = (Ka)ﬂ“ and (k)7 = (ky)ji are just symmetric matrices in
one-to-one correspondence with the generators of Ug and SL(2, R), respectively.
Implementing Jacobi identities we find the following relations:

K A+ A°K, = [ Ky, kX + 27k, = [k,
which admit the unique solution:
Ki=c185 A’C, 5 ki =crgy Ve (1.7.9)

where g,,, g, are the Cartan-Killing metrics on the algebras U s » and SL(2, R),
respectively and c¢; and ¢, are two arbitrary constants. These latter can always be
reabsorbed into the normalization of the generators W® and correspondingly set to
one. Hence the algebra (1.7.4) can always be put into the following elegant form:

[T, T = f T°

[LY, L] = f¥, L,

[T W] = (A%, Wik

[L*, W] = (A5, Wi,

(W, WP = 6] (A)® T + CF 1) L' (1.7.10)

where we have used the convention that symplectic indices are raised and lowered
with the symplectic metric, while adjoint representation indices are raised and low-
ered with the Cartan-Killing metric.

We name (1.7.10) the golden splitting of quaternionic Lie algebras and it is obvi-
ously an intrinsic property of certain Lie algebras that might have been discovered
by Killing, Cartan or Weyl if they had searched for it, independently of any super-
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symmetry or dimensional reduction of supergravity theories. It is the algebraic basis
of the c-map and it has far reaching geometrical consequences.

As we emphasized above, starting from Eq.(1.7.10) we can embark on the pro-
gramme of classifying all pairs of Lie algebras (Ug, U ») whose structure fits
into such a presentation with the additional necessary constraint that the dimension
2n + 2 of the representation W should be consistent with

2n = dim[Ugx] — dim [Hy ] (1.7.11)

the subalgebra H o » C U 4 being compact.

The result of such a scanning leads to the classfication of all the homogeneous
special Kédhler manifolds and of their quaternionic images through the c-map, which
will be presented in Chap. 5.

Here we illustrate the first example of the golden splitting with the case of the g,
Lie algebra.

1.7.1 The Golden Splitting of the Quaternionic Algebra g,

The Lie algebra g, is quaternionic since it contains two a; ~ s[(2, C) subalgebras
with respect to which the adjoint representation decomposes as follows:

adj[g] = (adj[sl(2, O], 1) & (1, adj[s1(2,C)]) & (2. 4 (1.7.12)

3

where 4, which is the present instance of the symplectic W, denotes the J = 3

irreducible representation of the Lie algebra so(3, C) ~ sl(2, C).

To show this we begin to analyse the W-representation proving that it is symplec-
tic. To this effect we find it convenient to restrict our attention to the maximally split
real section of the algebra.

1.7.1.1 The J = %-Representation of SL(2, R)

The group SL(2, R) is also locally isomorphic to SO(1, 2) and the fundamental
representation of the first corresponds to the spin J = % of the latter. The spin
J = % representation is obviously four-dimensional and, in the SL(2, R) language,
it corresponds to a symmetric three-index tensor #,,.. Let us explicitly construct the
4 x 4 matrices of such a representation. This is easily done by choosing an order
for the four independent components of the symmetric tensor 7,.. For instance we
can identify the four axes of the representation with #1171, 112, f122, 222. So doing, the

image of the group element:


http://dx.doi.org/10.1007/978-3-319-74491-9_5
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ab
A = (cd) ; ad —bc=1 (1.7.13)
in the cubic symmetric tensor product representation is the following 4 x 4 matrix:

a? 3ab 3ab? b’
a*c da® + 2bca cb* + 2adb b*d

7@ = 42 b2 4 2ade ad? + 2bed b (1.7.19
3 3c%d 3cd? d?
By explicit evaluation we can easily check that:
0001
PN PN PN 00-30
2T ) C4 25 (A) = C; where C,; = 0300 (1.7.15)
—-10 00

Since Cy is antisymmetric, Eq. (1.7.15) is already a clear indication that the triple
symmetric representation defines a symplectic embedding. To make this manifest it
suffices to change basis. Consider the matrix:

0 100
-Loo0o0
S = oﬁo Lo (1.7.16)
7
0 001
and define:
A =S'D; Q) S (1.7.17)
We can easily check that:
0 010
AT () C4A Q) = C4 where C; = _01 g 8(1) (1.7.18)
0 —100

So we have indeed constructed a standard symplectic embedding SL(2, R) +—
Sp(4, R) whose explicit form is the following:

da® +2bca —+/3a*c|—cb? — 2adb —/3b*d
A= (a b) . —/3a%b a® ‘ V3ab? b?
~\cd —bc? —2adc +3ac® | ad®+2bcd  /3bd?
—V/3c%d e ‘ V3cd? d?

=A%)

(1.7.19)
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The 2 x 2 blocks A, B, C, D of the 4 x 4 symplectic matrix A () are easily readable
from Eq.(1.7.19).

1.7.1.2 Putting the g, Lie Algebra in the Quaternionic Form

Explicitly the g, Lie algebra can be cast into the form (1.7.4) in the following way.

First we single out the two relevant sl(2, C) subalgebras. The Ehlers algebra is
associated with the highest root and we have:

1 2
LE = 7 H, ; LY = \/; EFCat2e) (1.7.20)

while the special Kihler subalgebra Uy » = sl(2, C) is associated with the first
simple root orthogonal to the highest one and we have:

Ly=H, ; L. = 2E*™ (1.7.21)
Then we can arrange the remaining eight generators in the tensor W# as follows:
M 2 2 3
w — = (Et)l|+0(2 , E*® ; E o) +an , E 0(1+ot2)
3

WM — \/g (mE72um@, gm0 prete o) (1.7.22)

Calculating the commutators of W™ with the generators of the two sl(2) algebras

we find:

[ e (W'Y 11 0 w!

Lo Aw2 )= o =t1) \we

e (W] 2 (L0L0) (W

AW )T \—10) \w?

i W\ 0/—1Y\ [ W!

LE, (W2) = (00) (W2) (1.7.23)
and:

(N ES R A £ N
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where:

100 0
030 0

— 2

o= 00-10
000 -3
0 0-20

y.— | —v300 0

1o 00 V3
0 00 0
0 —/30 0
00 0 0

U-=1"50 0 o (1.7.25)
0 0 30

which are the generators of s[(2, C) in the symplectic embedding (1.7.19) as it can
be easily verified by considering the embedding of a group element infinitesimally

closed to the identity:
ab) (1+ %8() &4
(cd) = ( e - %80 (1.7.26)

and collecting the matrix coefficients of the first order terms in ¢y and €.

1.7.2 Chevalley-Serre Basis

We utilize the case of the g, algebra to illustrate another canonical presentation of
the Lie algebra commutation relations that is named the presentation in terms of
Chevalley-Serre triples. It is the analogue for Lie algebras of the presentation of
discrete groups through generators and relations and proves to be quite useful in
several applications. Given a simple Lie algebra of rank r defined by its Cartan
matrix C;;, a Chevalley-Serre basis is given by r-triplets of generators:

(hi, e, fi) ; i=1,...r (1.7.27)

such that the following commutation relations are satisfied:

[hi 1] =0

[hi ’ ej] =Cijej
[hi. fi]=—=Cij f;
lei. fi] =8 h
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adj [ei](C,H—l) (ej) -0
adj [£;19V (f;) =0 (1.7.28)

When such r-triplets are given the entire algebra is defined. Indeed all the other
generators are constructed by commuting these ones modulo the relations (1.7.28).
For simply-laced finite simple Lie algebras a Chevalley basis is easily constructed
in terms of simple roots. Let «; denote the simple roots, then it suffices to set:

(hi, e, fi) = (Hy, , E*, E™%) (1.7.29)

where H,, = «; - H are the Cartan generator associated with the simple roots and
E*% are the step operators respectively associated with the simple roots and their
negative.

1.7.2.1 The g, Lie Algebra in Terms of Chevalley Triples

Let us rewrite the commutation relations of the g 2) in terms of triples of Chevalley
generators.

Since the algebra has rank two there are two fundamental triples of Chevalley
generators:

(A, e, f1) 3 (S, e [o) (1.7.30)
with the following commutation relations:
[, e2] = 2e2 [, 2] = —3ex [, ol = —2f, [F4, 21 =3/>

(56, e1]]=—ey [, e1l=2e1 [5G, il=f 44, fil = -2/
[627f2]:<% [32, fl]:() [elﬂ fl]:% [elva]:O

The remaining basis elements are defined as follows: (730
e3=ler, 2] es =73 ler,e3] es =73 [es e1] e =er, e5]
=1 A1 fa=5 101 =5 1A f] fo=1fs ol (173
and satisfy the following Serre relations:
le2, e3] = [es,e1]l = [f2, f3] = [fs, il =0 (1.7.33)

The Chevalley form of the commutation relation is obtained from the standard Cartan
Weyl basis introducing the following identifications:
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er = V2EY ;e = [2E®
e3 = V2E® ey = 2E%
2 2
es = JSE® ;e = E%
: 3 (1.7.34)
f] = \/EE_C” ; f2 = §E—Otz
fs=N2E™ 5 fy = 2E
fs=\/3E™%; fo= /3E%
and
A =20 -H ; M =3%m-H (1.7.35)

1.8 The Lie Algebra f4 and its Fundamental Representation

Another exceptional Lie algebra that is also quaternionic and will be of concern to us
in the sequel is f4. We consider it here and we construct its fundamental representation
for later use. f4 has rank r = 4 and we cannot visualize its root system as we easily
did for the planar g, system. In any case the Lie algebra structure is codified by the
Dynkin diagram presented in Fig. 1.15. We show how we can explicitly construct the
fundamental and the adjoint representations of this exceptional, non simply laced
Lie algebra.
Calling y; 23,4 a basis of orthonormal vectors:

Yi - yj=3ij (1.8.1)

a possible choice of simple roots 8; which reproduces the Cartan matrix encoded in
the Dynkin diagram (1.15) is the following:

Bi=—-y1—y2— Y3ty

Br=2y3

Bs=y2—y3

Bs=y1— (1.8.2)

With this basis of simple roots the full root system composed of 48 vectors is given

by:
o O—O=<0—0

Bo B B B

Fig. 1.15 The Dynkin diagram of F4 and the labeling of simple roots
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Table 1.3 List of the positive roots of the exceptional Lie algebra f4. In this table the first column
is the name of the root, the second column gives its decomposition in terms of simple roots, while
the last column provides the component of the root vector in R*

B =P ={-1,—-1,-1,1}
b= B ={0,0, 2,0}
B3 =P ={0,1, 1,0}
Ba = Pa ={1,-1,0,0}
Bs=p1+ B2 ={-1,-1,1,1}
Be = P2+ B3 =1{0,1,1,0}
Br=p3+ 54 ={1,0,-1,0}
Bs=P1+ B+ B3 ={-1,0,0, 1}
Bo = P2 +2B3 ={0,2,0, 0}
Bio=pPo+ B3+ P ={1,0, 1,0}
Bii = B1+ P2 +2B3 ={-11,-1,1}
Brz=p1+ B2+ B3+ B4 ={0,-1,0, 1}
Bz = B2+ 283+ fa ={1, 1,0, 0}
Bia = 1 +2B2+283 ={-11,1,1}
Bis=PB1+B2+2B3+ B4 ={0,0,—1,1}
Bie = B2 +2B3 +2p4 =1{2,0,0,0}
Bi11=PB1+2p2+2B3+ Pa =1{0,0, 1, 1}
Bis = P1+ P2 +2p3 + 24 ={l,-1,-1,1}
Bro=pP1+2p2+3B3+ Pa ={0,1,0, 1}
Bao = B1+2P2 + 283+ 2p4 ={l, -1, 1,1}
Ba1 = B1 +2B2 +3B3+2B4 ={1,0,0, 1}
B =B1+2p2+4B3+2p4 ={1,1,-1,1}
Baz=P1+3P2+4B3+2p4 ={1,1,1,1}
Boa =2P1 + 3B+ 483+ 2P =1{0,0,0,2}
A, = EyiEy; I SRR = (1.8.3)
_
24 roots 16 roots

and one can list the positive roots by height as displayed in Table 1.3. Since the
considered Lie algebra is not simply-laced the 24 positive roots split into two subsets
of 12 long roots o’ and 12 short roots o*. They are displayed in Tables 1.4 and 1.5,

respectively.

Calling A, and A; the two subsets we have the following structure:

val, Bt € Ay at + B¢ =

Vot € A, and VB° € A, o' + 85 = [

not a root or
yte A,

not a root or
vy’ e A
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Table 1.4 The A, set of the 12 long positive roots in the f4 root system

f4 root labels fa root in eucl. basis Root ordered by height
af {0, 1,0, 0} 2y3 B>
ol {1,0,0, 0} —yi—n—»ty |Bi
af {1, 1,0, 0} —yi—y+y3s+ys |B3
ol {0, 1,2, 0} 2y, Bo
ab {1,1,2,0} —yi+y—y3s+ys |Bu
af {1,2,2,0} —yity+y+y |Bua
o {0,1,2,2) 2y Bis
af {1,1,2,2} YI—Y2—y3+ya Bis
af {1,2,2,2} Yi—Yy2+y3+ya B0
afy {1,2,4,2} yi+y2—y3+ys B2
af) {1,3,4,2) yitnt+ytu Bn
af, {2,3,4,2} 2 y4 Boa

Table 1.5 The A; set of 12 short positive roots in the f4 root system

f4 root labels f4 root in eucl. basis Root ordered by height
o {0,0,0, 1} 1=y Ba
o {0,0, 1,0} Y2 —¥3 B3
a3 {0,1, 1,0} Y2 +y3 Bes
oy {0,0, 1, 1} yi—y3 B7
as {1,1,1,0} —y1+ ¥4 Bs
o 0,1, 1,1} Y1+ 3 Bio
o {1,1,1,1} —¥y2+ 4 Bi2
oy {0, 1,2, 1} i+ B3
o {1,1,2,1} —y3+ ¥4 Bis
ol {1,2,2,1} 3+ 4 Bi7
o) {1,2,3,1} V2 + va Bio
aty {1,2,3,2} Y1+ y4 B21

not a root or
Vai, B5 € Ay:a® +8° = JyF € Ay or (1.8.4)
vt e A

The standard Cartan-Weyl form of the Lie algebra is as follows:

[, E*P] = £ B E*P (1.8.5)
[P EFl=8 (1.8.6)
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if B+ y is aroot (1.8.7)

if B 4 y is not a root

5 . NﬂyEﬁ-H/
(£ 2] = |

where Ng, are numbers that can be worked constructing an explicit representation

of the Lie algebra.

In the following three tables (1.8.8), (1.8.9), (1.8.10) we exhibit the values of Ng,

for the f4 Lie algebra.
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(1.8.10)
The ordering of long and short roots is that displayed in Tables: 1.4 and 1.5. The
explicit determination of the tensor N,g was performed via the explicit construction of
the fundamental 26-dimensional representation of this Lie algebra which we describe
in the next subsection.

1.8.1 Explicit Construction of the Fundamental and Adjoint
Representation of f4

The semisimple complex Lie algebra {4 is defined by the Dynkin diagram in Fig. 1.15
and a set of simple roots corresponding to such diagram was provided in Eq. (1.8.2).
A complete list of the 24 positive roots was given in Table 1.3. The roots were fur-
ther subdivided into the set of 12 long roots and 12 short roots respectively listed
in Tables 1.4 and 1.5. The adjoint representation of f4 is 52-dimensional, while its
fundamental representation is 26-dimensional. This dimensionality is true for all
real sections of the Lie algebra but the explicit structure of the representation is
quite different in each real section. Here we are interested in the maximally split
real section f4. For such a section we have a maximal, regularly embedded, subgroup
50(5,4) C fau). The decomposition of the representations with respect to this partic-
ular subgroup is the essential instrument for their actual construction. For the adjoint
representation we have the decomposition:

50(5,4)

52 = 36 @ 16 (1.8.11)
— —— ——
adj faw adjso(5,4) spinor of so(5,4)

while for the fundamental one we have:
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5.4
26 Y 9 @ 16 ® 1
~— ~— ~— ~—
fundamental 4, vector of so(5,4)  spinor of so(5.4)  singlet of so(5,4)

(1.8.12)
In view of this, we fix our conventions for the so0(5, 4) invariant metric as it follows

nap = diag{+, +. +, +. +, —. — —, —} (1.8.13)

and we perform an explicit construction of the 16 x 16 dimensional gamma matrices
which satisfy the Clifford algebra

{'a, I'p} =nap1l (1.8.14)

and are all completely real. This construction is provided by the following tensor
products:

IN=01®03011

D=0303;1®1

=190 1% 0

I'=1®0, Q0 ®0;

I5=1®0 ®03®03

Ii=1ir1®1

In=1®0 ®io, ® o3

Il3=1%0, ®1R®io,

H=iR03;01®1 (1.8.15)

where by o; we have denoted the standard Pauli matrices:

01 0 —i 10
alz(]o) : 02=(i 0‘) : a3=(0_]) (1.8.16)

Moreover we introduce the C charge conjugation matrix, such that:

Ci=(p’ ; ci=1
C.IyCyp =TT (1.8.17)

In the basis of Eq. (1.8.15) the explicit form of C is given by:
Ci=i0Q01 Q10 Q0; (1.8.18)

Then we define the usual generators Jo4p = —Jpa of the pseudorthogonal algebra
50(5, 4) satisfying the commutation relations:
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[Jag, Jep]l =nBc Jap — nac Jep — nepJac +napJIsc (1.8.19)

and we construct the spinor and the vector representations by respectively setting:

, 1 L\ B
Jep=7c, Ipl (J¢p), = ncadp — npadd (1.8.20)

In this way if v4 denote the components of a vector, & those of a real spinor and
e48 = —gB4 are the parameters of an infinitesimal s0(5, 4) rotation we can write
the so0(5, 4) transformation as follows:
B AB
Ssosayva =26a8V" 1 Ssoisa & = 56" Tupé (1.8.21)
where indices are raised and lowered with the metric (1.8.13). Furthermore we intro-
duce the conjugate spinors via the position:
E=¢TC, (1.8.22)
With these preliminaries, we are now in a position to write the explicit form of the
26-dimensional fundamental representation of f4 and in this way to construct also its
structure constants and hence its adjoint representation, which is our main goal.
According to Eq.(1.8.11) the parameters of an f4 representation are given by an
anti-symmetric tensor €43 and a spinor g. On the other hand a vector in the 26-
dimensional representation is specified by a collection of three objects, namely a
scalar ¢, a vector v4 and a spinor &. The representation is constructed if we specify
the f4(4) transformation of these objects. This is done by writing:

¢ ¢ 9§
SFy) | VA [SABTAB + ﬁQ] va | = [ 2eav® +aqrat
§

3 TeABrape —3¢q — Lviryug

(1.8.23)
where a is a numerical real arbitrary but non-null parameter. Equation (1.8.23)
defines the generators T4p and Q as 26 x 26 matrices and therefore completely
specifies the fundamental representation of the Lie algebra §4(). Explicitly we have:

0000
Tag = | 0Tz O (1.8.24)
0] 0 [J3p
and
0 0 8f
0y = 0 0 a (I'y)? (1.8.25)
38 =L@ o

and the Lie algebra commutation relations are evaluated to be the following ones:
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[Tag, Tcpl = npc Tap — nac Tep — NepTac +napTsc

[Tas. Q1= 5Tus Q
1 AB

[Qo. O5] = T (C+T%) 5 Tan (1.8.26)
Equation (1.8.26), together with Eqgs.(1.8.15) and (1.8.17) provides an explicit
numerical construction of the structure constants of the maximally split f44) Lie
algebra. What we still have to do is to identify the relation between the tensorial
basis of generators in Eq. (1.8.26) and the Cartan-Weyl basis in terms of Cartan gen-
erators and step operators. To this effect let us enumerate the 52 generators of f4 in
the tensorial representation according to the following table:

21 =T | 2:=T13 | $23=T4 | 24 =Ti5
2s =T | 2="T17 | 27 =Tz | 23 = Ti9
29 = T3 |§210 = Tas |$211 = Tos | 212 = T
213 = Ty7 |$214 = Tog |$215 = To9 |§216 = T34
§$217 = T35 |$218 = T3 |$219 = T37 |§220 = T3
$201 = T30 |$290 = Tus |$203 = Tys |$224 = Tz
§2y5 = Tyg |$226 = Tuo |$227 = Ts6 |$228 = Ts7 (1.8.27)
§299 = Tsg |$230 = Ts9 |$231 = Te7 |§230 = Tog
§233 = T |$234 = T1g |$235 = T79 |§236 = Ty
§237 = Q1 |$238 = Q2 (8230 = Q3 |§240 = Q4
241 = Qs (2420 = Q¢ 243 = Q7 |44 = O3
245 = Qo |$246 = Q108247 = O11|§248 = O12
240 = Q13(8250 = Q148251 = Q158252 = Q16

Then, as Cartan subalgebra we take the linear span of the following generators:
CSA = Span (95 s [213 s 920 s 926) (1828)
and furthermore we specify the following basis:

S = Q25+ 213 5 I = Q25 — 213 (1.8.29)

HG = §20 + §226 5 Ha = §220 — §226 o
With respect to this basis the step operators corresponding to the positive roots of
fa4) as ordered and displayed in Table 1.3 are those enumerated in Table 1.6. The
steps operators corresponding to negative roots are obtained from those associate
with positive ones via the following relation:

EP=—%EP¥ (1.8.30)

where the 26 x 26 symmetric matrix % is defined in the following way:
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1/0/ 0
¢ =10n o0 (1.8.31)
0/0/Cs

o3

A further comment is necessary about the normalizations of the step operators E?
which are displayed in Table 1.6. They have been fixed with the following criterion.
Once we have constructed the algebra, via the generators (1.8.24),(1.8.25), we have
the Lie structure constants encoded in Eq.(1.8.26) and hence we can diagonalize
the adjoint action of the Cartan generators (1.8.29) finding which linear combi-
nations of the remaining generators correspond to which root. Each root space is
one-dimensional and therefore we are left with the task of choosing an absolute
normalization for what we want to call the step operators:

Ef = Ap (linear combination of £2.s) (1.8.32)

The values of A4 are now determined by the following non trivial conditions:

1. The differences H! = (E b _E ”3") should close a subalgebra H C Fjyu4), the
maximal compact subalgebra su(2) g @ usp(6)

2. The sums K' = % (EPi + E~F) should span a 28-dimensional representation
of Hl, namely the aforementioned su(2) z & usp(6)

We arbitrarily choose the first four Ag associated with simple roots and then all the
others are determined. The result is that displayed in Table 1.6. Using the Cartan
generators defined by Eqs. (1.8.29) and the step operators enumerated in Table 1.6
one can calculate the structure constants of {4 in the Cartan-Weyl basis, namely:

[, ] =0
[ B = ' &
[EF,EP]l=p
[E,Bi , Eﬂj] = N8, EPi+Bi (1.8.33)

in particular one obtains the explicit numerical value of the coefficients .43, 5, , which,
as it is well known, are the only ones not completely specified by the components of
the root vectors in the root system. The result of this computation, following from
Eq.(1.8.26) is that encoded in Egs. (1.8.8)—(1.8.10).

As a last point we can investigate the properties of the maximal compact subal-
gebra su(2) @ usp(6) C fa4). As we know a basis of generators for this subalgebras
is provided by:

H=(EF—EP) ; (i=1,...,24) (1.8.34)

but it is not a priori clear which are the generators of SU(2)r and which of Usp(6).
By choosing a basis of Cartan generators of the compact algebra and diagonalizing
their adjoint action this distinction can be established. The generators of SU(2)r are
the following linear combinations:
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1
Jx = 4\/_ (Hi — Hi4 + Hy — Hy)
1
Jy = 4_ﬁ(H5+HII — Hig + H»3)
1
Jz = m (—=Hy + Hy — Hig — Hy) (1.8.35)

close the standard commutation relations:
[J,‘ 5 Jj] = &jjk Jk (1836)

and commute with all the generators of Usp(6). These latter are displayed as follows.

%(Usm):_&_&_kﬂ_@
2 2 2 2
(Usp6) _ _Hy | Hy 4 Hig 4 Hyu
%(Usp@ _ H2 +H2 +H2 +H2 (1830
— H 4 Ho | He _ Hu
Jf = 53+t37+t3 2

are the Cartan generators. On the other hand the nine pairs of generators which are
rotated one into the other by the Cartans with eigenvalues equal to the roots of the
compact algebra are the following ones

Wi = Hy Z, = H,;

W2 = H4 ZZ = _H13

W = Hi 7s = —Hs

Wi =—H| + Hyy+ Hy — Hy|Zy = —Hs — Hjy — Hig + Hy

Ws = Hy, Zs = —Hg (1.8.38)

We = Hy + His + Hyy+ Hy |Z¢ = Hs — Hyy — Hig — Hy
W; = —H; — His + Hyy+ Hyp|Z7 = Hs — Hyy + Hig + Hps
Ws = Hiy Zg = His
Wy = Hi, Zy = Hyg

The construction of the f4 Lie algebra presented in this section was published in [12].

1.9 Conclusions for This Chapter

As the last example of the f4 Lie algebra should have clearly illustrated, although
deterministic and implicitly defined by the Dynkin diagram, the actual construction
of exceptional Lie algebras is far from being a trivial matter and involves a series of
strategies and long calculations that are best done by means of computer codes. One
deals with large matrices that is difficult to display on paper and the best approach
is to save the constructions in electronic libraries that can be utilized in subsequent
calculations. It is not surprising that it took such a giant of mathematics as Elie
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Cartan to explicitly construct the fundamental representations of the exceptional Lie
algebras, especially at a time when computers were not available.

From another point of view, the existing mathematical literature usually presents
the construction of Lie algebra representations in a very compact format that is not
of too friendly use to physicists concerned with their application to the problems and
the conceptions discussed in this book. As we stressed it is not only a question of
convenience but also a conceptual one. There are in the architecture of Lie algebras
and of their representations deep and significant aspects that are easily lost if you are
not looking at them in the proper way, motivated by those questions that are posed
by the various special geometries implied by supersymmetry.

The explicit construction of the exceptional and non exceptional Lie algebras in
the light of supergravity is one of the motivations to write the present book. Our
constructions are at many stages different from the conventional approaches of most
text books [11, 13-15].

Similarly one can say about the issues in finite group theory that were reviewed
in the first part of the present chapter. Although pertaining to classical topics in
mathematics and retrievable with some considerable effort from various standard
textbooks, the constructions we presented here are, in their form and in their spirit,
original. The adopted viewpoint is motivated by the role of the considered mathe-
matical structures in supergravity inspired geometries that, according to the ideas
expressed in my other book [8], I deem not just one among their many possible
applications, rather the manifestation of their deepest intrinsic meaning.
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Chapter 2
Isometries and the Geometry of Coset

Manifolds

The art of doing mathematics consists in finding that special
case which contains all the germs of generality.

David Hilbert

2.1 Conceptual and Historical Introduction

The word isometry comes from the Greek word 7/7 toopetpio which means the
equality of measures.

The origin of the modern concept of isometry is rooted in that of congruence of
geometrical figures that Euclid never introduced explicitly, yet implicitly assumed
when he proceeded to identify those triangles that can be superimposed one onto the
other.

As I explained in my other book [1], it was indeed the question about what
are the transformations that define such congruences what led Felix Klein to the
Erlangen Programme. Klein understood that Euclidean congruences are based on the
transformations of the Euclidean Group and he came to the idea that other geometries
are based on different groups of transformations with respect to which we consider
congruences.

Such a concept, however, would have been essentially empty without an additional
element: the metric. The area and the volume of geometrical figures, the length of
sides and the relative angles have to be measured in order to compare them. These
measurements can be performed if and only if we have a metric g, in other words if
the substratum of the considered geometry is a Riemannian or a pseudo Riemannian
manifold (., g).

Therefore the group of transformations which, according to the vision of the
Erlangen Programme, defines a geometry, is the group of isometries Gig, of a given
Riemannian space (#, g), the elements of this group being diffeomorphisms:

© Springer International Publishing AG, part of Springer Nature 2018 69
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o - M > M (2.1.1)

such that their pull-back on the metric form leaves it invariant:
Vo € Giso ¢ [guv(X)dx"dx"] = guu(x)dx" dx" (2.1.2)

Quite intuitively it becomes clear that the structure of Gjg, is determined by the
manifold .# and by its metric g, so that the Kleinian concept of geometries is to be
identified with that of Riemannian spaces (., g).

A generic metric g has no isometries and hence there are no congruences to
study. (Pseudo)-Riemannian manifolds with no isometry, or with few isometries, are
relevant to several different problems pertaining to physics and also to other sciences,
yet they are not in the vein of the Erlangen Programme, aiming at the classification of
geometries in terms of groups. Hence we can legitimately ask ourselves the question
whether such a programme can be ultimately saved, notwithstanding our discovery
that a geometry, according to Klein’s conception, is necessarily based on a (pseudo)-
Riemannian manifold (.#, g). The answer is obviously yes if we can invert the
relation between the metric g and its isometry group Gis,. Given a Lie group G can
we construct the Riemannian manifold (.#, g) which admits G as its own isometry
group G, ? Indeed we can; the answers are also exhaustive if we add an additional
request, that of transitivity.

Definition 2.1.1 A group G acting on a manifold .# by means of diffeomorphisms:
VyeG y: M — M (2.1.3)

has a transitive action if and only if
Vp,gqe # , FyeG/y(q) =rp (2.1.4)

If the Riemannian manifold (.#, g) admits a transitive group of isometries it means
that any point of .# can be mapped into any other by means of a transformation
that is an isometry. In this case the very manifold .# and its metric g are completely
determined by group theory: .# is necessarily a coset manifold G/H, namely the
space of equivalence classes of elements of G with respect to multiplication (either
on the right or on the left) by elements of a subgroup H C G. The metric g is induced
on the equivalence classes by the Killing metric of the Lie algebra, defined on G.

The present chapter, after a study of Killing vector fields, namely of the infinites-
imal generators that realize the Lie algebra G of the isometry group, will be devoted
to the geometry of coset manifolds. Among them particular attention will be given to
the so named symmetric spaces characterized by an additional reflection symmetry
whose nature will become clear to the reader in the following sections.
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2.1.1 Symmetric Spaces and Elie Cartan

The full-fledged classification of all symmetric spaces was the gigantic achievement
of Elie Cartan. As the reader will appreciate in the sequel, the classification of sym-
metric spaces is at the same time a classification of the real forms of the complex
Lie algebras and it is the conclusive step in the path initiated by Killing in his papers
of 1888, 1889. At the same time the geometries of non-compact symmetric spaces
can be formulated in terms of other quite interesting algebraic structures, the normed
solvable Lie algebras. The class of these latter is wider than that of symmetric spaces
and this provides a generalization path leading to a wider class of geometries, all of
them under firm algebraic control. This will be the topic of the last two sections of
the present chapter which is propaedeutical to the developments of the subsequent
chapters.

2.1.2 Where and How Do Coset Manifolds Come into Play?

By now it should be clear to the reader that, just as we have the whole spectrum of
linear representations of a Lie algebra G and of its corresponding Lie group G, in
the same way we have the set of non-linear representations' of the same Lie algebra
G and of the same Lie group G. These are encoded in all possible coset manifolds
G/H with their associated G—invariant metrics.

Where and how do these geometries pop up?

The answer is that they appear at several different levels of analysis and in connec-
tion with different aspects of physical theories. Let us enumerate them and discover
a conceptual hierarchy.

(A) Afirstcontext of utilization of coset manifolds G/H is in the quest for solutions of
Einstein Equations in d = 4 or in higher dimensions. One is typically interested
in space-times with a prescribed isometry and one tries to fit into the equations
G/H metrics whose parameters depend on some residual coordinate like the
time ¢ in cosmology or the radius r in black-hole physics. The field equations of
the theory reduce to few parameter differential equations in the residual space.

IClarification for mathematicians: in the physical literature linear representation of a symmetry
corresponds to the case where the fundamental fields spanning the theory transform in a linear
representation of the considered Lie group G. The Lagrangian defining the considered theory is
supposed to be invariant with respect to such transformations. On the other hand the wording non-
linear representation is universally used when the fundamental fields of the theory are identified
with the coordinates of a Riemannian manifold .# on which the Lie group G acts as a group of
isometries. Indeed in order to be a symmetry of the theory, the action of the group G must leave
the lagrangian invariant and this implies the existence of an invariant metric g on .#. The metric g
appears in the kinetic term of the fields.
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(B) Another instance of utilization of coset manifolds is in the context of o-models.
In physical theories that include scalar fields ¢/ (x) the kinetic term is necessarily
of the following form:

Liin = 3715 (@) 3, 9" (x) 0,87 (x) g (x) (2.1.5)

where g"¥ (x) is the metric of space-time, while y;; (¢) can be interpreted as the
metric of some manifold .#,ree of Which the fields ¢! are the coordinates and
whose dimension is just equal to the number of scalar fields present in the theory.
If we require the field theory to have some Lie Group symmetry G, either we
have linear representations or non linear ones. In the first case the metric y;; is
constant and invariant under the linear transformations of G acting on the ¢/ (x).
In the second case the manifold //mget = G/H is some coset of the considered
group and y;, (¢) is the corresponding G-invariant metric.

(C) Inmathematics and sometimes in physics you can consider structures that depend
on a continuous set of parameters, for instance the solutions of certain differential
equations, like the self-duality constraint for gauge-field strengths or the Ricci-
flat metrics on certain manifolds, or the algebraic surfaces of a certain degree
in some projective spaces. The parameters corresponding to all the possible
deformations of the considered structure constitute themselves a manifold .#
which typically has some symmetries and in many cases is actually a coset
manifold. A typical example is provided by the so named Kummer surface K3
whose Ricci flat metric no one has so far constructed, yet we know a priori that
it depends on 3 x 19 parameters that span the homogeneous space %.

(D) In many instances of field theories that include scalar fields there is a scalar
potential term V(¢) which has a certain group of symmetries G. The vacua of the
theory, namely the set of extrema of the potential usually fill up a coset manifold
G/H where H C G is the residual symmetry of the vacuum configuration ¢ =

®o.

2.1.3 The Deep Insight of Supersymmetry

In supersymmetric field theories, in particular in supergravities that are supersym-
metric extensions of Einstein Gravity coupled to matter multiplets, all the uses listed
above of coset manifolds do occur, but there is an additional ingredient whose conse-
quences are very deep and far reaching for geometry: supersymmetry itself. Consis-
tency with supersymmetry introduces further restrictions on the geometry of target
manifolds .# e that are required to fall in specialized categories like Kéhler man-
ifolds, special Kahler manifolds, quaternionic Kdhler manifolds and so on. These
geometries, that we collectively dub Special Geometries, require the existence of
complex structures and encompass both manifolds that do not have transitive groups
of isometries and homogeneous manifolds G/H. In the second case, which is one
of the main focuses of interest for the present essay, the combination of the special
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structures with the theory of Lie algebras produces new insights in homogenous
geometries that would have been inconceivable outside the framework of supergrav-
ity. This is what we call the deep geometrical insight of supersymmetry. In this
book we neither discuss the construction of supergravity theories, nor we derive
the constraints imposed by supersymmetry on geometry. Our commitment is simply
to present the vast wealth of geometrical lore that supergravity Occam’s razor has
introduced, or systematically reorganized, in the field of mathematics.

2.2 Isometries and Killing Vector Fields

The existence of continuous isometries is related with the existence of Killing vector
fields. Here we explain the underlying mathematical theory which leads to the study
of coset manifolds and symmetric spaces.
Suppose that the diffeomorphism considered in Eq. (2.1.1) is infinitesimally close
to the identity”
xt = ot (x) > xM* + kM (x) 2.2.1)

The condition for this diffeomorphism to be an isometry, is a differential equation
for the components of the vector field k = k* 9, which immediately follows from
(2.1.2):

Vik, + Vyk, =0 (2.2.2)

Hence given a metric one can investigate the nature of its isometries by trying to solve
the linear homogeneous Eq.(2.2.2) determining its general integral. The important
point is that, if we have two Killing vectors k and w also their commutator [k, w]is
a Killing vector. This follows from the fact that the product of two finite isometries
is also an isometry. Hence Killing vector fields form a finite dimensional Lie algebra
G50 and one can turn the question around. Rather then calculating the isometries of
a given metric one can address the problem of constructing (pseudo)-Riemannian
manifolds that have a prescribed isometry algebra. Due to the well established clas-
sification of semi-simple Lie algebras this becomes a very fruitful point of view.

2 Clarification for mathematicians: in the physical literature it is universally utilized the following
jargon which turns out to be very clear to readers with an education as physicists. A Lie group
element g € G is named infinitesimally close to the identity when its Taylor series expansion in
terms of a parameter € that parameterizes a one-dimensional subgroup ¢ C G to which g belongs
is truncated to the first order term: g = e + &g + &(¢?). Clearly the coefficient g of the first order
term is an element of the Lie algebra G of G. Applying this jargon to the case of the group of
diffeomorphisms, by means of a diffeomorphism infinitesimally close to the identity we define a
vector field, the Lie algebra of the diffeomorphism group being the Lie algebra of vector fields.
In the case the considered infinitesimally close to identity diffeomorphism is an isometry, the
corresponding vector field is named a Killing vector field.
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In particular, also in view of the Cosmological Principle, one is interested in
homogeneous spaces, namely in (pseudo)-Riemannian manifolds where each point
of the manifold can be reached from a reference one by the action of an isometry.

Homogeneous spaces are identified with coset manifolds, whose differential
geometry can be thoroughly described and calculated in pure Lie algebra terms.

2.3 Coset Manifolds

Coset manifolds are a natural generalization of group manifolds and play a very
important, ubiquitous, role both in Mathematics and in Physics.

In group-theory (irrespectively whether the group G is finite or infinite, contin-
uous or discrete) we have the concept of coser space G/H which is just the set of
equivalence classes of elements g € G, where the equivalence is defined by right
multiplication with elements 7 € H C G of a subgroup:

Vg, g €eG : g~g iff 3heH \ gh=¢ (2.3.1)

Namely two group elements are equivalent if and only if they can be mapped into each
other by means of some element of the subgroup. The equivalence classes, which
constitute the elements of G/H are usually denoted g H, where g is any representative
of the class, namely any one of the equivalent G-group elements the class is composed
of. The definition we have just provided by means of right multiplication can be
obviously replaced by an analogous one based on left-multiplication. In this case we
construct the coset H\G composed of right lateral classes H g while g H are named
the left lateral classes. For non abelian groups G and generic subgroups H the left
G/H and right H\G coset spaces have different not coinciding elements. Working
with one or with the other definition is just a matter of conventions. We choose to
work with left classes.

Coset manifolds arise in the context of Lie group theory when G is a Lie group and
H is a Lie subgroup thereof. In that case the set of lateral classes g H can be endowed
with a manifold structure inherited from the manifold structure of the parent group
G. Furthermore on G/H we can construct invariant metrics such that all elements of
the original group G are isometries of the constructed metric. As we show below, the
curvature tensor of invariant metrics on coset manifolds can be constructed in purely
algebraic terms starting from the structure constants of the G Lie algebra, by-passing
all analytic differential calculations.

Coset manifolds are easily identified with homogeneous spaces which we presently
define.

Definition 2.3.1 A Riemannian or pseudo-Riemannian manifold .#, is said to be
homogeneous if it admits as an isometry the transitive action of a group G. A group
acts transitively if any point of the manifold can be reached from any other by means
of the group action.
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A notable and very common example of such homogeneous manifolds is provided
by the spheres S" and by their non-compact generalizations, the pseudo-spheres
Hi’ H=mm 1 et x! denote the cartesian coordinates in R"*! and let:

iy =diag |+, + -+, — =0, — (232)

n+l—m m

be the coefficient of a non degenerate quadratic form with signature (n + 1 — m, m):

(x, x), = x!x! nrJ 2.3.3)

(n4+1—m,m)
+

‘We obtain a pseudo-sphere H by defining the algebraic locus:

x € H{T'""™ o (x, x), = £1 (2.3.4)

which is a manifold of dimension n. The spheres S” correspond to the particular case
H'fl‘o where the quadratic form is positive definite and the sign in the right hand
side of Eq. (2.3.4) is positive. Obviously with a positive definite quadratic form this
is the only possibility.

All these algebraic loci are invariant under the transitive action of the group
SO(n+ 1,n + 1 — m) realized by matrix multiplication on the vector x since:

VeeG : x,x), ==x1 & (gx,gx), =%l (2.3.5)
namely the group maps solutions of the constraint (2.3.4) into solutions of the same

and, furthermore, all solutions can be generated starting from a standard reference
vector:

x,x), =0 = 3JgeG \ x=gx; (2.3.6)
where:
1 0
0 0
0 , 0
Xo = 6 s Xg = T (237)
0 0
0 0

the line separating the first n + 1 — m entries from the last m. Equation (2.3.6) guar-
antees that the locus is invariant under the action of G, while Eq. (2.3.7) states that
G is transitive.



76 2 Isometries and the Geometry of Coset Manifolds

Definition 2.3.2 In a homogeneous space .#,, the subgroup H,, C G which leaves
apoint p € M, fixed(Vh € H,,h p = p)is named the isotropy subgroup of the
point. Because of the transitive action of G, any other point p’ = g p has an isotropy
subgroup H,, = gH, g~! which is conjugate to H, and therefore isomorphic to it.

It follows that, up to conjugation, the isotropy group of a homogeneous manifold
M4 is unique and corresponds to an intrinsic property of such a space. It suffices to
calculate the isotropy group Hy of a conventional properly chosen reference point
po: all other isotropy groups will immediately follow. For brevity Hy will be just
renamed H.

In our example of the spaces H the isotropy group is immediately derived
by looking at the form of the vectors XS—L: all elements of G which rotate the vanishing
entries of these vectors among themselves are clearly elements of the isotropy group.
Hence we find:

(n+1—m,m)
+

H = SO(n, m) for (™
(n+1—m,m) (238)

H=SOn+1,m—1) for H"

Itis natural to label any point p of a homogeneous space by the parameters describing

the G-group element which carries a conventional point pg into p. These parameters,

however, are redundant: because of the H-isotropy there are infinitely many ways to

reach p from py. Indeed, if g does that job, any other element of the lateral class g H

does the same. It follows by this simple discussion that the homogeneous manifold

M can be identified with the coset manifold G/H defined by the transitive group G

divided by the isotropy group H.

Focusing once again on our example we find:

SO(n + 1 —m, m) SO(n + 1 —m, m)

H(n+l—m,m) — H(ﬂ+1—l?l,m) —
* SO(n—m,m) =~ SOm+1—m,m-—1)
(2.3.9)
In particular the spheres correspond to:
st — grto M (2.3.10)
* SO(n) .
Other important examples, relevant for cosmology are:
H(’H']’l) _ SO(H+1,1) . H(""’Ll) _ SO(H—I—],]) (2311)
+ SOm, 1) =~ SO+ 1) o

The general classification of homogeneous (pseudo)-Riemannian spaces corre-
sponds therefore to the classification of the coset manifolds G/H for all Lie groups
G and for their closed Lie subgroups H C G.

The equivalence classes constituting the points of the coset manifold can be labeled
by a set of d coordinates y = {yl e, yd} where:
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. G . .
d = dlmﬁ = dimG — dimH (2.3.12)

There are of course many different ways of choosing the y-parameters since, just as
in any other manifold, there are many possible coordinate systems. What is specific
of coset manifolds is that, given any coordinate system y by means of which we label
the equivalence classes, within each equivalence class we can choose a representative
group element L(y) € G. The choice must be done in such a way that IL(y) should
be a smooth function of the parameters y. Furthermore for different values y and y’,
the group elements IL(y) and IL(y") should never be equivalent, in other words no
h € H should exist such that I.(y) = L.(y’) . Under left multiplication by ¢ € G,
L(y) is in general carried into another equivalence class with coset representative
IL(y"). Yet the g image of LL(y) is not necessarily IL(y'): it is typically some other
element of the same class, so that we can write:

Vege G : gL(y) =LO)h(g,y) : h(gy €H (2.3.13)

where we emphasized that the H-element necessary to map IL(y’) into the g-image of
LL(y), depends, in general both from the point y and from the chosen transformation
g. Equation (2.3.13) is pictorially described in Fig.2.1. For the spheres a possible set
of coordinates y can be obtained by means of the stereographic projection whose
conception is recalled in Fig.2.2

As an other explicit example, which will be useful in the sequel, we consider
the case of the Euclidean hyperbolic spaces H"" identified as coset manifolds in
Eq.(2.3.11). In this case, to introduce a coset parametrization means to write a family
of SO(n, 1) matrices L.(y) depending smoothly on an n-component vector y in such a
way that for different values of y such matrices cannot be mapped one in the other by
means of right multiplication with any element / of the subgroup SO(n) C SO(n, 1):

0|0

SO(n, 1) D SO(Mm) > h = (0 I

) 0T 0 = 1,4, (2.3.14)

An explicit parametrization of this type can be written as follows:

Fig. 2.1 Pictorial description of the action of the group G on the coset representatives
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" Pointon the
sphere

Stereographicprojection
on the plane

Fig. 2.2 The idea of the stereographic projection. Considering the S sphere immersed in R+,
from the North-Pole {1, 0,0, ..., 0} one draws the line that goes through the point p € S" and
considers the point 7(p) € R" where such a line intersects the R" plane tangent to sphere in the
South Pole and orthogonal to the line that joins the North and the South Pole. The n-coordinates
{y', ..., y"} of m(p) can be taken as labels of an open chart in S”

T
1n><n +2 ly_yyz _2#
L(y) = (2.3.15)
T 2
- 2 ,fyz ‘ {izz

where y> = y -y denotes the standard SO(n) invariant scalar product in R". Why
the matrices L(y) form a good parametrization of the coset? The reason is simple,
first of all observe that:

Ly)" nL(y) = n (2.3.16)

where
n =dag (+,+, --,+, —) (2.3.17)

This guarantees that L(y) are elements of SO(n, 1),secondly observe that the image
x(y) of the standard vector x( through LL(y),

0 2y!
: 1 :
=L =L 1=—1,: 2.3.18
x(y) (¥) %o 2 I =y | 2y ( )
T R

1—y?
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lies, as it should, in the algebraic locus HD s

xy nx@y) = -1 (2.3.19)

and has n linearly independent entries (the first n) parameterized by y. Hence the
lateral classes can be labeled by y and this concludes our argument to show that
(2.3.15) is a good coset parametrization. IL(0) = 1(,41)x@+1) corresponds to the
identity class which is usually named the origin of the coset.

2.3.1 The Geometry of Coset Manifolds

In order to study the geometry of a coset manifold G/H, the first important step is
provided by the orthogonal decomposition of the corresponding Lie algebra, namely
by

G=HoK (2.3.20)

where G is the Lie algebra of G and the subalgebra H C G is the Lie algebra of the
subgroup H and where K denotes a vector space orthogonal to H with respect to the
Cartan Killing metric® of G. By definition of subalgebra we always have:

[H, H] ¢ H (2.3.21)

while in general one has:
[H,K]c He K (2.3.22)

Definition 2.3.3 Let G/H be a Lie coset manifold and let the orthogonal decom-
position of the corresponding Lie algebra be as in Eq. (2.3.20). If the condition:

[H, K] c K (2.3.23)

applies, the coset G/H is named reductive.

Equation (2.3.23) has an obvious and immediate interpretation. The complementary
space K forms a linear representation of the subalgebra H under its adjoint action
within the ambient algebra G.

Almost all of the “reasonable” coset manifolds which occur in various provinces
of Mathematical Physics are reductive. Violation of reductivity is a sort of pathology
whose study we can disregard in the scope of this book. We will consider only
reductive coset manifolds.

3We assume that G is semi-simple so that the Cartan-Killing metric is non degenerate.



80 2 Isometries and the Geometry of Coset Manifolds

Definition 2.3.4 Let G/H be a reductive coset manifold. If in addition to (2.3.23)
also the following condition:
[K, K] c H (2.3.24)

applies, then the coset manifold G/H is named a symmetric space.

Let T4 (A =1, ..., n)denote a complete basis of generators for the Lie algebra G:

[Ta, Tp] = CS, Te (2.3.25)
and 7; (i = 1,...,m) denote a complete basis for the subalgebra H C G. We also
introduce the notation 7T, (a = 1, ...,n — m) for a set of generators that provide a

basis of the complementary subspace K in the orthogonal decomposition (2.3.20).
We nickname T, the coset generators. Using such notations, Eq. (2.3.25) splits into
the following three ones:

(7). Ti] = C'4 T (2.3.26)
[T, T,] = C%, T, (2.3.27)
[Ty, T.] = C,. T; + C4,. T, (2.3.28)

Equation (2.3.26) encodes the property of H of being a subalgebra. Equation (2.3.27)
encodes the property of the considered coset of being reductive. Finally if in
Eq.(2.3.28) we have C9,. = 0, the coset is not only reductive but also
symmetric.

We will be able to provide explicit formulae for the Riemann tensor of reduc-
tive coset manifolds equipped with G-invariant metrics in terms of such structure
constants. Prior to that we consider the infinitesimal transformation and the very
definition of the Killing vectors with respect to which the metric has to be invariant.

2.3.1.1 Infinitesimal Transformations and Killing Vectors

Let us consider the transformation law (2.3.13) of the coset representative. For a
group element g infinitesimally close to the identity, we have:

g1+ T, (2.3.29)
h(y,g) ~1—es Wi T; (2.3.30)
YOy + etk 2.331)

The induced 4 transformation in Eq.(2.3.13) depends in general on the infinites-
imal G-parameters ¢4 and on the point in the coset manifold y, as shown in
Eq.(2.3.30). The y-dependent rectangular matrix W/g (y) is usually named the H-
compensator. The shift in the coordinates y® is also proportional to ¢4 and the vector
fields:
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0

ks, = kS
A A()’) 3y

(2.3.32)

are named the Killing vectors of the coset. The reason for such a name will be justified
when we will show that on G/H we can construct a (pseudo)-Riemannian metric
which admits the vector fields (2.3.32) as generators of infinitesimal isometries. For
the time being those in (2.3.32) are just a set of vector fields that, as we prove few
lines below, close the Lie algebra of the group G.

Inserting Egs. (2.3.29)—(2.3.31) into the transformation law (2.3.13) we obtain:

TAL() = kaL(y) = Wy LW T; (2.3.33)

Consider now the commutator g, ! gl_l g2 g1 acting on LL(y). If both group ele-
ments g » are infinitesimally close to the identity in the sense of Eq.(2.3.29), then
we obtain:

&g g L(y) ~ (1 — el e? [Ta, Tpl) L(y) (2.3.34)
By explicit calculation we find:

[(Ta, Tel L(y) = Ta Tp L(y) — Tp T4 L(y)
= [ka ksl L)~ (ka Wy —ks W) + 2 Wi WE) LD T,
(2.3.35)

On the other hand, using the Lie algebra commutation relations we obtain:
[Ta. Tp] L(y) = Chp Tc L) = CYp (ke L) — WeLO)Ti)  (2.3.36)
By equating the right hand sides of Eqs. (2.3.35) and (2.3.36) we conclude that:

[ka, kgl = CGpke (2.3.37)
ky Wi — kg Wi + 2C, Wi Wk = CG, Wi (2.3.38)

where we separately compared the terms with and without W’s, since the decompo-
sition of a group element into LL(y) % is unique.

Equation (2.3.37) shows that the Killing vector fields defined above close the
commutation relations of the G-algebra.

Instead, Eq. (2.3.38) will be used to construct a consistent H-covariant Lie deriva-
tive.

In the case of the spaces 18I , which we choose as illustrative example, the
Killing vectors can be easily calculated by following the above described procedure
step by step. For later purposes we find it convenient to present such a calculation in
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a slightly more general set up by introducing the following coset representative that
depends on a discrete parameter k = =+ 1:

Lo +2yY | — 275
L.(y) = (2.3.39)
1—ky?
k 1+yl< y? ‘ 1+K§l’2
An explicit calculation shows that:
(2.3.40)

Namely L_(y) is an SO(n, 1) matrix, while L (y) is an SO(n + 1) group element.
Furthermore defining, as in Eq. (2.3.18):

0

x(y) = Le(y) (2.3.41)

0
T

we find that:
X (Y)T Me X (y) = « (2.3.42)

Hence by means of IL;(y) we parameterize the points of the n-sphere S", while by
means of IL_;(y) we parameterize the points of H"" named also the n-pseudo-
sphere or the n-hyperboloid. In both cases the stability subalgebra is so(n) for which
a basis of generators is provided by the following matrices:

Jij =S — S Lj=1....n (2.3.43)
having named:
0.. 0]0
0.. 1 0{0 }i-th row
S =10.. 0]0 . (2.3.44)
0.. 0]0

j-th column
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the (n + 1) x (n + 1) matrices whose only non vanishing entry is the i j-th one, equal
to 1.

The commutation relations of the so(n) generators are very simple. We have:

[Jij s Jke] = =8 Jje + 8ji Jie — 8je Jix + i Jjx (2.3.45)

The coset generators can instead be chosen as the following matrices:

0 0[0
0... 0 0|1 }i-th row
P=1]0... 0[0 (2.3.46)
0 —K 0[0
—_——
i-th column

and satisfy the following commutation relations:

[Jij. P]=—8 P + 8ji P (2.3.47)
[Pi. P;] =~k ] (2.3.48)

Equation (2.3.47) states that the generators P; transform as an n-vector under
s0(n) rotations (reductivity) while Eq.(2.3.48) shows that for both signs ¥ = 1
the considered coset manifold is a symmetric space. Correspondingly we name
ki = kfj ) % the Killing vector fields associated with the action of the gener-
ators J;;:

T Le(¥) = Kij L) + Le(y) Jog W () (2.3.49)

while we name k; = kf ) aiy@ the Killing vector fields associated with the action
of the generators P;:

PiLe(y) = ki L (y) + Le(y) Jpg W () (2.3.50)

Resolving conditions (2.3.49) and (2.3.50) we obtain:

kij =y 0; — y; 0 (2.3.51)
ki=1(1—«ky)d +kyy-d (2.3.52)

The H-compensators W/ and W/ can also be extracted from the same calculation
but since their explicit form is not essential for our future discussion we skip them.
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2.3.1.2 Vielbeins, Connections and Metrics on G/H

Consider next the following 1-form defined over the reductive coset manifold G/H:
2(y) =L (dL) (2.3.53)

which generalizes the Maurer Cartan form defined over the group manifold G. As a
consequence of its own definition the 1-form X satisfies the equation:

0=d¥ +X A X (2.3.54)

which provides the clue to the entire (pseudo)-Riemannian geometry of the coset
manifold. To work out this latter we start by decomposing X along a complete set
of generators of the Lie algebra G. According with the notations introduced in the
previous subsection we put:

Y =V'T, + o T (2.3.55)

The set of (n —m) 1-forms V¢ = VI (y)dy® provides a covariant frame for the
cotangent bundle CT(G/H), namely a complete basis of sections of this vector bundle
that transform in a proper way under the action of the group G. On the other hand
w=0o"T, = &, (y)dy"T; is called the H-connection. Indeed w turns out to be the
1-form of a bona-fide principal connection on the principal fiber bundle:

P (9, H) .68 (2.3.56)
H H

which has the Lie group G as total space, the coset manifold G/H as base space
and the closed Lie subgroup H C G as structural group. The bundle & (g, H) is
uniquely defined by the projection that associates to each group element g € G the
equivalence class g H it belongs to.

Introducing the decomposition (2.3.55) into the Maurer Cartan equation (2.3.54),
this latter can be rewritten as the following pair of equations:

dve + Cl o' A V= —1C VP A VS (2.3.57)

do' + %Cijkwj A of —% e VPA Ve (2.3.58)

where we have used the Lie algebra structure constants organized as in Egs. (2.3.26)—
(2.3.28).
Let us now consider the transformations of the 1-forms we have introduced.
Under left multiplication by a constant group element g € G the 1-form X' (y)
transforms as follows:
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() =h(y,9) L' (g 'd (sL»h ™)
=h(y,8) ' 2O h(y, g) + h(y,g) ' dh(y, g) (2.3.59)

where y' = g.y is the new point in the manifold G/H whereto y is moved by the
action of g. Projecting the above equation on the coset generators 7, we obtain:

V) = V() 24 (h(y, 8)) (2.3.60)

where = exp [®y], having denoted by Dy the (n — m) dimensional representa-
tion of the subalgebra H which occurs in the decomposition of the adjoint represen-
tation of G:
adjG = adjH @Dy (2.3.61)
——

= Ay

Projecting on the other hand on the H-subalgebra generators 7; we get:

w(y) = [h(y.9)] o) & [h(y, 9] + & [h(y, 9)] 4" [h(y, g)]
(2.3.62)
where we have set:
o = exp [An] (2.3.63)

Considering a complete basis 74 of generators for the full Lie algebra G, the adjoint
representation is defined as follows:

VeeG : g 'Tyg =adi(e)fTp (2.3.64)

In the explicit basis of T4 generators the decomposition (2.3.61) means that, once
restricted to the elements of the subgroup H C G, the adjoint representation becomes

block-diagonal:
Vh e H : adjh) = (@(()h) %?h)) (2.3.65)

Note that for such decomposition to hold true the coset manifold has to be reductive
according to definition (2.3.23).
The infinitesimal form of Eq. (2.3.60) is the following one:

VY +38y) — Vi) = —&* Wi() €4, VP (2.3.66)
8y* = e k% (y) (2.3.67)

for a group element g € G very close to the identity as in Eq.(2.3.29).
Similarly the infinitesimal form of Eq.(2.3.62) is:

W' (y+8y) — o' (y) = —e* (C}; Who! + dW)) (2.3.68)
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2.3.1.3 Lie Derivatives

The Lie derivative of a tensor Ty,. ., along a vector field v* provides the change in
shape of that tensor under an infinitesimal diffeomorphism:

Y v+ vE () (2.3.69)
Explicitly one sets:

Ly Tal...ap ) = v 314 Tal...a,, + (aalvy) TVC(Z...Dt,, + -
+ (0, V") Toyy...y (2.3.70)

In the case of p-forms, namely of antisymmetric tensors the definition (2.3.70) of Lie
derivative can be recast into a more intrinsic form using both the exterior differential
d and the contraction operator.

Definition 2.3.5 Let ./ be a differentiable manifold and let A, (.#) be the vector
bundles of differential k-forms on .#Z,letv € I'(T.#,.#) be a vector field. The
contraction i is a linear map:

ik : Ak (%) — Ak,1 (%) (2371)
such that for any w® e Ay (A) and for any setof k — 1 vector fields wy, ..., wi_p,
we have:

iko® (Wi, ..., wil) = ko® (v, wy, ..., Wil)) (2.3.72)

Then by going to components we can verify that the tensor definition (2.3.70) is
equivalent to the following one:

Definition 2.3.6 Let .# be a differentiable manifold and let A, (.#) be the vector
bundles of differential k-forms on .#,letv € I'(T.#,.#) be a vector field. The
Lie derivative ¢ is a linear map:

by + A (M) — A (M) (2.3.73)
such that for any o® € Ay (.#) we have:
o = i,do® + diy 0® (2.3.74)

On the other hand for vector fields the tensor definition (2.3.70) is equivalent to the
following one.

Definition 2.3.7 Let .# be a differentiable manifold and let T.# — .# be the
tangent bundle, whose sections are the vector fields. Let ve I'(T.#,.#) be a
vector field. The Lie derivative ¢y is a linear map:
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&  I'TH, #) — I'TH, H) (2.3.75)

such that forany w € I'(T.#, .#) we have:
lyw = [v, W] (2.3.76)

The most important properties of the Lie derivative, which immediately follow from
its definition are the following ones:

[¢y,d] =0
[0y, €yl = Ly, w) (2.3.77)

The first of the above equations states that the Lie derivative commutes with exterior
derivative. This is just a consequence of the invariance of the exterior algebra of
k-forms with respect to diffeomorphisms. On the other hand the second equation
states that the Lie derivative provides an explicit representation of the Lie algebra of
vector fields on tensors.

The Lie derivatives along the Killing vectors of the frames V“ and of the H-
connection ' introduced in the previous subsection are:

by, V= Wi 4, VP (2.3.78)
— (AW} + C%; Wi o) (2.3.79)

by, o

This result can be interpreted by saying that, associated with every Killing vector k 4
there is a an infinitesimal H-gauge transformation:

Wy = Wi T (2.3.80)

and that the Lie derivative of both V¢ and o' along the Killing vectors is just such
local gauge transformation pertaining to their respective geometrical type. The frame
V4 is a section of an H-vector bundle and transforms as such, while &' is a connection
and it transforms as a connection should do.

2.3.1.4 Invariant Metrics on Coset Manifolds

The result (2.3.78), (2.3.79) has a very important consequence which constitutes the
fundamental motivation to consider coset manifolds. Indeed this result instructs us
to construct G-invariant metrics on G/H, namely metrics that admit all the above
discussed Killing vectors as generators of true isometries.

The argument is quite simple. We saw that the one-forms V¢ transform in a linear
representation Dy of the isotropy subalgebra H (and group H). Hence if 7, is a
symmetric H-invariant constant two-tensor, by setting:
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ds> = 1 VE@ VP = 14 VI (») VS () dy* ® dy” (2.3.81)
—_—
8ap ()

we obtain a metric for which all the above constructed Killing vectors are indeed
Killing vectors, namely:

b,ds® =14 (G, VR VP + V@&, V) (2.3.82)
= 1 (Du(Wa)l% 8] + [Du(Wa)l’, 85) V@ V*

=0 by invariance
=0 (2.3.83)

The key point, in order to utilize the above construction, is the decomposition of
the representation Dy into irreducible representations. Typically, for most common
cosets, Dy is already irreducible. In this case there is just one invariant H-tensor t
and the only free parameter in the definition of the metric (2.3.81) is an overall scale
constant. Indeed if 7,, is an invariant tensor, any multiple thereof z/, = A 7, is also
invariant. In the case Dy splits into v irreducible representations:

D:0]...] 0 |0
0(D,/0] ... 10
Dy = N I : : (2.3.84)
01...]0[®D:.4] 0
0(0]...] 0 |D,

we have v irreducible invariant tensors t:l),, in correspondence of such irreducible

blocks and we can introduce r independent scale factors:

Mmoo ... 0 0
0 [Mmt@]o0 0
T = : : : : : (2.3.85)
0 ... 10 )L,,_lt(l’*” 0
0 0 ... 0 Ap @

Correspondingly we arrive at a continuous family of G-invariant metrics on G/H
depending on v-parameters or, as it is customary to say in this context, of v moduli.
The number r defined by Eq. (2.3.84) is named the rank of the coset manifold G/H.

In this section we confine ourself to the most common case of rank one cosets
(t = 1), assuming, furthermore, that the algebras G and H are both semi-simple. By
an appropriate choice of basis for the coset generators 7¢, the invariant tensor 7,
can always be reduced to the form:
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Tap = Nap = diag [ 4,4, - 4+, — — -, — (2.3.86)

ny n_

where the two numbers n,. and n_ sum up to the dimension of the coset:
.G .
ny + n_ = dim q= dim K (2.3.87)

and provide the dimensions of the two eigenspaces, K C K, respectively corre-
sponding to real and pure imaginary eigenvalues of the matrix (W) which repre-
sents a generic element W of the isotropy subalgebra H.

Focusing on our example (2.3.39), that encompasses both the spheres and the
pseudo-spheres, depending on the sign of «, we find that:

ny=0,; n_=mn (2.3.88)

so that in both cases (k = =1) the invariant tensor is proportional to a Kronecker
delta:
Nab = dab (2389)

The reason is that the subalgebra H is the compact so(n), hence the matrix D ¢ (W)
is antisymmetric and all of its eigenvalues are purely imaginary.

If we consider cosets with non-compact isotropy groups, then the invariant tensor
7, develops anon trivial Lorentzian signature 7,;,. In any case, if we restrict ourselves
to rank one cosets, the general form of the metric is:

ds> = My Vi Vvh (2.3.90)
where A is a scale factor. This allows us to introduce the vielbein
EY = A V" (2.3.91)
and calculate the spin connection from the vanishing torsion equation:
0 = dE* — & A E°npe (2.3.92)

Using the Maurer Cartan equations (2.3.57)—(2.3.58), Eq.(2.3.92) can be immedi-
ately solved by:

1 .
o e = o = - CYE! + Clof (2.3.93)
Inserting this in the definition of the curvature two-form

R, = dof — o A 0 (2.3.94)

SR
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allows to calculate the Riemann tensor defined by:
d
R, =R, E NE (2.3.95)

Using once again the Maurer Cartan equations (2.3.57)—(2.3.58), we obtain:

a 1 1 1 a e 1 a e 1 a e
Riyeq = 2 (_Zﬁcbeccd_ §CecCha + 5Ca Che

=35 Cla) (2.3.96)
which, as previously announced provides the expression of the Riemann tensor in

terms of structure constants.
In the case of symmetric spaces C9, = 0 formula (2.3.96) simplifies to:

1 ‘
Ry = =573 Chi Cla (2.3.97)

2.3.1.5 For Spheres and Pseudo-spheres

In order to illustrate the structures presented in the previous section we consider the
explicit example of the spheres and pseudo-spheres. Applying the outlined procedure
to this case we immediately get:

a

2 dy?
A1+ ky?
w0 =2 % E A EY (2.3.98)

This means that for spheres and pseudo-spheres the Riemann tensor is proportional
to an antisymmetrized Kronecker delta:

a K a ob
R, = ﬁa{c 8 (2.3.99)

2.4 The Real Sections of a Complex Lie Algebra
and Symmetric Spaces

In the context of coset manifolds a very interesting class that finds important appli-
cations in supergravity and superstring theories is the following one:

_GR

M
Gr HC

(2.4.1)
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where Gg is some semi-simple Lie group and H, C Gg is its maximal compact
subgroup.The Lie algebra H, of the denominator H, is the maximal compact subal-
gebra H C Gy which has typically rank rcompacs > 7. Denoting, as usual, by K the
orthogonal complement of H,. in Gg:

Gr=H, & K (2.4.2)

and defining as non compact rank or rank of the coset Gr /H the dimension of the
non compact Cartan subalgebra:

rac = tank (Gg/H) = dim.#" ; A" = CSAgq) [ |K  (243)

we obtain that r,,. < r.

By definition the Lie algebra Gy is a real section of a complex semi-simple Lie
algebra. Two universal instances of real sections of a simple Lie algebra G(C), are
the maximally split and the maximally compact real sections.

The Maximally Split and the Maximal Compact Real Sections of a Simple Lie
Algebra G(C).

Given the simple Lie algebra generators in the canonical Cartan-Weyl form: 74 =
{ H;,E* E~* } the question is which restrictions on the imaginary and the real parts of
the coefficients ¢ of Lie algebra elements ¢ T4 can be introduced that are consistent
with the Lie bracket and produce a real Lie algebra G, . Furthermore one would like
to know how many such real sections do exist up to isomorphism.

Here we just introduce two real sections that are simply and universally defined
for all simple Lie algebras:

(a) The maximally split real section G,ax. This is defined by assuming that the
allowed coefficients ¢ are all real. In any linear representation of Gy the
matrices representing

Ty = {H, E*, E™*} (2.4.4)

are all real. From the representations of Gy, by taking linear combinations of
the generators with complex coefficients one obtains all the linear representations
of the complex Lie algebra G(C).

(b) The maximally compact real section G.. This real section, whose exponentia-
tion produces a compact Lie group, is obtained by allowing linear combinations
with real coefficients of the set of generators:

T4 = {iH, i(E*+E™), (E*—E™)} (2.4.5)
In all linear representations of G, the matrices representing the generators ¥4

are anti-hermitian.

One easily obtains the hermitian matrix representation of the generators T4 from
the real representation of the generators 74 and viceversa. It also follows that the
matrices representing £~ are the transposed of those representing E“.
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A very useful instrument in the explicit construction of matrix representations that
has also important consequences for later developments is provided by the notion of
Borel subalgebra. Starting from the Cartan-Weyl basis, if one consideres the subset
of generators:

Bor[G] = span{H;, E*} ; a>0 (2.4.6)

we see that it corresponds to a solvable subalgebra of G. Hence every representation
of Bor [G] can be putinto an upper triangular form. This gives a powerful construction
criterion for the fundamental representation. We just construct an upper triangular
representation of the Bor [G] subalgebra and then we promote it to a representation
of the full Lie algebra G, by setting:

E™ = (EY)T (2.4.7)
Furthermore in view of the above discussion, the representations of the real sections
Gmax and G, can be considered together and on that we rely in the following.

Classification of all the Real Sections

All other possible real sections are obtained by studying the available Cartan invo-
lutions of the complex Lie algebra. So consider:

Definition 2.4.1 Let:
6 : g—g (2.4.8)

be a linear automorphism of the compact Lie algebra g = G, where G, is the max-
imal compact real section of a complex semi-simple Lie algebra G(C). By definition
we have:

O@X+BY)=ab(X) + BOY)

0 (X, Y]) = [0(X), 6(Y)] (2.4.9)

Yo, eR , VX, Yeg : {

If 6> = Id then @ is named a Cartan involution of the Lie algebra g.

For any Cartan involution 6 the possible eigenvalues are 1. This allows us to split
the entire Lie algebra g in two subspaces corresponding to the eigenvalues 1 and —1
respectively:

g = 5 Dpo (2.4.10)

One immediately realizes that:

[$o . $H9] C He
[$6 . o]l C po
[Po . Pol C $o (2.4.11)
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Hence for any Cartan involution $)y is a subalgebra and 6 singles out a symmetric
homogeneous compact coset manifold:

G
My = H_C where Hy =exp[$Hs] G. = exp [g] (2.4.12)
0

The structure (2.4.11) has also another important consequence. If we define the vector
space:
8 = Do ®p; Py =iy (2.4.13)

we see that g is closed under the Lie bracket and hence it is a Lie algebra. It is some
real section of the complex Lie algebra G(C) and we can consider a new, generally
non compact coset manifold:
* G; * *
My = . ;. Ho =exp[99] G, = exp [99] (2.4.14)
0

An important theorem for which we refer the reader to classical textbooks [2—4]*
states that all real forms of a Lie algebra, up to isomorphism, are obtained in this

way. Furthermore as part of the same theorem one has that  can always be chosen
in such a way that it maps the compact Cartan subalgebra into itself:

0. A — A (2.4.15)

This short discussion reveals that the classification of real forms of a complex Lie
Algebra G(C) is in one-to-one correspondence with the classification of symmetric
spaces, the complexification of whose Lie algebra of isometries is G(C). For this
reason we discuss the real forms in the present chapter devoted to homogeneous
coset manifolds.

Let us now consider the action of the Cartan involution on the Cartan subalgebra:
. = span{iH;} of the maximal compact section G.. Choosing a basis of .7Z;. aligned
with the simple roots:

A, = span {i H,,} (2.4.16)

we see that the action of the Cartan involution 6 is by duality transferred to the simple
roots ¢; and hence to the entire root lattice. As a consequence we can introduce the
notion of real and imaginary roots. One argues as follows.

We split the Cartan subalgebra into its compact and non compact subalgebras:

CSAGR — i%comp @ %VLC.
& & (2.4.17)

CSAG — <%C{H‘ﬂp @ %n(‘

‘max

4The proof is also summarized in Appendix B of [5].
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b, O O O10O—@ @ .i.

o (0%) o o) 0 Oy Oy

Fig. 2.3 The Tits—Satake diagram representing the real form so(p, 2¢ — p + 1) of the complex
50(2¢ + 1) Lie algebra

defining:

he# & 0(h) = h
he A" s 0(h) #h (2.4.18)

Then every vector in the dual of the full Cartan subalgebra, in particular every root
a can be decomposed into its parallel and its transverse part to J7"<:

o = (&) o] (2419)

A root « is named imaginary if o) = 0. On the contrary a root « is called real if
a) = 0. Generically a root is complex.

Given the original Dynkin diagram of a complex Lie algebra we can character-
ize a real section by mentioning which of the simple roots are imaginary. We do
this by painting black the imaginary roots. The result is a Tits—Satake diagram like
that in Fig.2.3 which corresponds to the real Lie Algebra so(p,2¢ — p + 1) for
p>240>2

2.5 The Solvable Group Representation of Non-compact
Coset Manifolds

Definition 2.5.1 A Riemannian space (.#, g) is named normal if it admits a com-
pletely solvable’ Lie group exp[Solv(.#)] of isometries that acts on the manifold in
a simply transitive manner (i.e. for every 2 points in the manifold there is one and
only one group element connecting them). The group exp[Solv(.#)] is generated by
a so-called normal metric Lie algebra, Solv(.#) that is a completely solvable Lie
algebra endowed with a suitable, invariant Euclidean metric.

The main tool to classify and study homogeneous spaces of the type (2.4.14) is
provided by a theorem [3] that states that if a Riemannian manifold (.#, g) is normal,
according to Definition2.5.1, then it is metrically equivalent to the solvable group
manifold

3 A solvable Lie algebra s is completely solvable if the adjoint operation ad x for all generators X & s
has only real eigenvalues. The nomenclature of the Lie algebra is carried over to the corresponding
Lie group in general in this chapter.
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M >~ exp[Solv(.A)]
8 leew = <,> 2.5.1)

where <, > is a Euclidean metric defined on the normal solvable Lie algebra
Solv(.#'). The key point is that non-compact coset manifolds of the form (2.4.14) are
all normal. This is so because there is always, for all real forms except the maximally
compact one a solvable subalgebra with the following features:

Gr
Solv [ 2) cG
olv (Hc ) C Gp
G G
dim |:Solv <—R)] = dim <—R)

G G
exp |:Solv <H_R):| = transitive on H_R (2.5.2)

C c

It is very easy to single out the appropriate solvable algebra in the case of the maxi-
mally split real form Gpay. In that case, as we know, the maximal compact subalgebra
has the following form:

H, = span {(E* — E™)} : Vae A, (2.5.3)
The solvable algebra that does the required job is the Borellian subalgebra:
Bor (Gpax) = 7 @span (E%) ; VYo e Ay 2.5.4)

where 7 is the complete Cartan subalgebra and E¢ are the step operators associated
with the positive roots. That Bor (Gpax) is a solvable Lie algebra follows from the
canonical structure of Lie algebras displayed in Eq.(1.4.74). If you exclude the
negative roots, you immediately see that the Cartan generators are not in the first
derivative of the algebra. The second derivative excludes all the simple roots: the third
derivative excludes the roots of height 2 and so on until you end up in a derivative
that makes zero. Hence the Lie algebra is solvable. Furthermore it is obvious that
any equivalence class of % has a representative that is an element of the solvable
Lie group exp [Bor (Gmax)j. This is intuitive at the infinitesimal level from the fact

that each element of the complementary space:
K = 27 @ span [(E“ + Ef")] (2.5.5)

which generates the coset, can be uniquely rewritten as an element of Bor (Gpax)
plus an element of the subalgebra H,.. At the finite level we will show later an
exact formula which connects the solvable representative exp[s] (with s € Bor) to
the orthogonal representative exp[k] (with k € K) of the same equivalence class. For
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the moment it suffices to understand that the action of the Borel group is transitive
on the coset manifold, so that the coset manifold Ggr/H. is indeed normal and its
metric can be obtained from the non degenerate Euclidean metric <, > defined over

Bor(Gimax) = Solv (=),
The example of the maximally split case clearly suggests what is the required

solvable algebra for other normal forms. We have:

G
Solv (H—R> = A" Gspan (6%) ; Va e A, a # 0 (2.5.6)

C

where 7" is the non-compact part of the Cartan subalgebra and & denotes the
combination of step operators pertaining to the positive roots « that appear in the real
form Gy and the sum is extended only to those roots that are not purely imaginary.
Indeed the step operators pertaining to imaginary roots are included into the maximal
compact subalgebra that now is larger than the number of positive roots.

For any solvable group manifold with a non degenerate invariant metric® the
differential geometry of the manifold is completely rephrased in algebraic language
through the relation of the Levi-Civita connection and the Nomizu operator acting
on the solvable Lie algebra. The latter is defined as

L : Solv(#) ® Solv (.#) — Solv () , (2.5.7)
VX, Y, ZeSolv(#):2<LyxY, Z>=<I[X,Y],Z>—-—<X,[V,Z]>—<VY,[X,Z]>.

The Riemann curvature operator on this group manifold can be expressed as
Riem(X, Y) = [Lx, ]Ly] — L[xﬁy]. (258)

This implies that the covariant derivative explicitly reads:

LyY =T Z (2.5.9)
where
1 1
F)?y = §(<Z, [X, YD) — (X,[Y,Z]) — (Y,[X, Z]) — 7= VX,Y,Z € Solv
’ (2.5.10)

Equation (2.5.10) is true for any solvable Lie algebra, but in the case of maximally
non-compact, split algebras we can write a general form for I'Z,, namely:

6See [6-12] for reviews on the solvable Lie algebra approach to supergravity scalar manifolds and
the use of the Nomizu operator.
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rj, =0
iy = 4 (~(Eu. [Ep. H']) = (Ep. [Ea. H']) = La'us
I =T = Tjy =0

1
rg = L [ B~ (Ep. [Ho E)) = —a05

1

ret = et = SNy
Ilipp = Tharp = %Naﬁ (2.5.11)

where N/ is defined by the commutator
[Eo, Eg] = Nup Eaip (2.5.12)

The explicit form (2.5.11) follows from the following choice of the non degenerate
metric:

(Eq, Eg) = Sap (2.5.13)

4 € CSA and E, are the step operators associated with positive roots « € A.
For any other non split case, the Nomizu connection exists nonetheless although it
does not take the form (2.5.11). It follows from Eq.(2.5.10) upon the choice of an
invariant positive metric on Solv and the use of the structure constants of Solv.

2.5.1 The Tits Satake Projection: An Anticipation

Let us now come back to Eq. (2.4.19). Setting all o« ; = 0 corresponds to a projection:
Mrs : Ag > A (2.5.14)

of the original root system Ag onto a new system of vectors living in an Euclidean
space of dimension equal to the non compact rank r,.. A priori this is not obvious,
but it is nonetheless true that A, with only one exception, is by itself the root system
of a simple Lie algebra Grg, the Tits—Satake subalgebra of Gg:

A = root system of Grg C Gpg (2.5.15)

The Tits—Satake subalgebra Grs C Gp is always the maximally non compact real
section of its own complexification. For this reason, considering its maximal compact
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subalgebra Hrs C Grg, we have a new smaller coset S—Iz, which is maximally split.
What is the relation between the two solvable Lie algebras Solv ( %) and Solv (g—:z)
is the natural question which arises. The explicit answer to this question and the sys-
tematic illustration of the geometrical relevance of the Tits Satake projection is the
subject of an entire later chapter, namely Chap. 5. To appreciate the role of this projec-
tion we still have to introduce Kihler and Quaternionic geometry, special geometries
and the c-map, all items that are the conspicuous contribution of Supergravity to
Modern Geometry.
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Chapter 3
Complex and Quaternionic Geometry

Mathematics, however, is, as it were, its own explanation; this,
although it may seem hard to accept, is nevertheless true, for the
recognition that a fact is so is the cause upon which we base the

proof.

Girolamo Cardano

3.1 Imaginary Units and Geometry

Considering the possible types of numbers we have R, C, H, or Q. This is a mes-
sage for geometry. Keeping the fundamental idea that a geometrical space should be
viewed as a manifold, constructed by means of an atlas of open charts, the local coor-
dinates could be chosen not only as real numbers but also as complex, quaternionic
or even octonionic numbers. Yet an important lesson is immediately learnt from the
story told in my other book [1], twin of the present one: the possible numbers are,
anyhow, division algebras over the reals, whose classification is due to Frobenius, so
that the real structure remains the basis for everything.

This must be the same also in geometry. Manifolds of complex, quaternionic or
octonionic type, if they exist, are, first of all, real manifolds. Their characterization as
complex, quaternionic or octonionic must reside in some additional richer structure
they are able to support. It is evident that this additional structure are the imaginary
units, the same that provide the extensions of the field R to C, H or Q.

Hence the conceptual path we have to follow starts revealing itself. We have to
imagine what the imaginary units might be in the context of differential geometry.
The catch is the relation J> = — 1. How to reinterpret such a relation? It is rather
natural to consider J as a map, in particular a linear map, and 1 as the identity map
which always exists. We are almost there, the remaining question is on which space
does J act? The answer is obvious since for linear maps we need vector spaces and if
© Springer International Publishing AG, part of Springer Nature 2018 99
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we want to do things locally, point by point on the manifold, we need vector bundles.
The universal vector-bundle that it is intrinsically associated with any manifold .#
is the tangent bundle 7.# — .# . Hence the imaginary units, that from now on we
will name complex structures, are linear maps operating on sections of the tangent
bundle that square to minus one.

Complex and quaternionic or hyper-complex geometries arise when a manifold
admits one or more complex structures satisfying appropriate algebraic relations.
This mixture of algebra and geometry leads to new classes of very interesting spaces:

(a) Complex Manifolds

(b) Complex Kihler Manifolds

(c) HyperKihler Manifolds

(d) Quaternionic Kihler Manifolds

that is the mission of the present chapter to define and illustrate.

Furthermore when we come to discuss the symmetries of such manifolds, namely
their isometries, which is the main interest of this book, we discover that the pres-
ence of the complex-structures entrains a new very much challenging viewpoint on
continuous symmetries. To the Killing vectors, thanks to the symplectic structures
implied by the complex-structures we are able to associate hamiltonian functions,
named moment maps. These moment maps open a vast playing ground for new
constructions of high relevance both in Physics and Mathematics.

3.1.1 The Precognitions of Supersymmetry

Supersymmetric field-theories and in particular Supergravity have the remarkable
property of an intrinsic precognition of geometric and algebraic structures. All classes
of existing geometries found, in due time, their proper role within the frame of super-
symmetric field theories. For instance Kihler Manifolds describe the most general
coupling of scalar multiplets in .#” = 1 rigid supersymetry, while HyperKihler
Manifolds do the same for the rigid .4~ = 2 case (see [2] which will be extensively
discussed in Chap. 8). Quaternionic Kéhler Manifolds are the obligatory structure
for the coupling of hypermultiplets to .4~ = 2 supergravity [3-5]. In these cases the
precognition resides in algebraic relations that come from supersymmetry and, once
duely interpreted, were shown to imply the mentioned geometry. In other, even more
spectacular cases, the geometric structures required by supersymmetry were not yet
available in the mathematical supermarkets when the corresponding supermultiplets
were studied. They were just discovered by the physicists working in supergravity
and now constitute new chapters of mathematics. These are the Special Geometries
to which Chap. 4 is devoted.
Let us now turn to complex structures and their heritage.
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3.2 Complex Structures on 2n-Dimensional Manifolds

Let .# be a 2n-dimensional manifold, 7./ its tangent space and 7./ its cotangent
space. Denoting by {¢“} (¢ = 1, ..., 2n) the 2n coordinates in a patch, a section
t e I'(T.#, #) is represented by a linear differential operator:

t=1r%0, (3.2.1)
while a section in T*.# is a differential 1-form
w = do® wy (@) (3.2.2)

The contraction is an operation that to each vector field t € I'(T .# , .#') associates

a map
i 1 T* M —> C° (M) (3.2.3)

of 1-forms into O-forms locally given by the following expression:
itw = t*(¢)wq () (3.24)
In particular, if ® = df we have
ivdf =1%0,f =tf (3.2.5)
The contraction is also canonically extended to higher forms:

iy 1 QU(AM) — QPN ()

it = 1(@)ap,..5,  ($) dDPT A - A dpPr
(3.2.6)

Now we can consider a linear operator L acting on the tangent bundle T.#, or more

precisely acting on I'(T .4, M):

Nte I'(TH, %) - {

L. Ir'(TH, #)— T (TH, H)

YVee'(TAH, #): Lte '(TAH, H)

VO[,,BG(C, Vi,toe '(TAH, H) : L(at; + ty) = oLt + BLL,
3.2.7)

In every local chart L is represented by a mixed tensor Lf(¢) with one covariant
index and one controvariant index such that

Lt =1*(¢p)LE($)d (3.2.8)

Moreover the action of L is naturally pulled back on the cotangent space:
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L:I'(TH* M) — I'(TH*, M) (3.2.9)

by defining
itLw =igw (3.2.10)

which in a local chart yields

Lo =d¢*LE (¢p)wps (3.2.11)

Definition 3.2.1 A 2n-dimensional manifold .# is called almost complex if it has
an almost complex structure. An almost complex structure is a linear operator J :
'(T#, #)— I'(T A, #) which satisfies the following property:

J2P=—1 (3.2.12)

In every local chart the operator J is represented by a tensor Jg (¢) such that
TE @) ) () = =] (3.2.13)
and by a suitable change of basis at every point p € .# we can reduce J to the

form
01
-1 0

where 1l is the n X n unity matrix. A local frame where J takes the form (3.2.14) is
called a “well-adapted” frame to the almost complex structure. Naming

0
ey =0y = (3.2.14)
Lo
the basis of the well-adapted frame we have
Jey = —€yin if a<n
Jey =€y if a>n (3.2.15)
At this point, introducing the index i with range i = 1,...,n we can define the
complex vectors:
E =e —ie,
E,‘* =e; + ie,-+,, (3216)

and we obtain the following result:
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JE; = iE;
JE,‘* = —lE,*
(3.2.17)

The tangent vectors E; are the partial derivatives along the complex coordinates:
7 =¢ +igpt" (3.2.18)

while E;+ are the partial derivatives along the complex conjugate coordinates 7' f =
¢i —i ¢i+n:

d 0
E=0=— E:«=0:=— (3.2.19)
az! a7

This construction is the reason why J is called an almost complex structure: the
existence of this latter guarantees that at every point p € .# we can replace the 2n
real coordinates by n complex coordinates, corresponding to a well-adapted frame.
Moreover every two well-adapted frames are related to each other by a coordinate
transformation which is a holomorphic function of the corresponding complex coor-
dinates. Indeed let

¢% — ¢ +%(9) (3.2.20)

be an infinitesimal coordinate transformation connecting two well adapted frames.
By definition this means
0 TY = I 0pt” (3.2.21)

which is nothing but the Cauchy—Riemann equation for the real and imaginary parts
of a holomorphic function. Hence Eq. (3.2.20) can be replaced by

7= +¢(2) (3.2.22)

where ¢/ (z) is a holomorphic function of z/. Conversely if .# is a complex analytic
manifold,' in every local chart {z'} we can set

$* =Rez' (@ <n) ¢%=Imz (a > n) (3.2.23)

and we can define an almost complex structure J. Now let J act on T*(.#). In a
well-adapted frame we have

Jd7' =idz!
Jd7" = —id7" (3.2.24)

IComplex analytic manifold means a manifold whose transition functions in the intersection of two
charts are holomorphic functions of the local coordinates.
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Equation (3.2.24) characterize the holomorphic coordinates. More generally let {x“}
be a generic coordinate system (not necessarily well-adapted) and let w(x) be a
complex-valued function on the manifold .#: we say that w is holomorphic if it
satisfies the equation:

Jdw =idw (3.2.25)

which in the generic coordinate system {x“} reads as follows:
JPgw(x) = iduw(x) (3.2.26)

As we have seen, at every point p € .#, J can be reduced to the canonical form
(3.2.14) by a suitable coordinate transformation: what is not guaranteed is whether
J can be reduced to this canonical form in a whole open neighbourhood %, This
amounts to asking the question whether Eq. (3.2.26) admits n C-linearly independent
solutions in some open subset % € %x, where % is the domain of the considered
local chart {x*}. If these solutions w' (x) exist we can consider them as the holomor-
phic coordinates in the neighbourhood %, that is we can set

7 =wi(z) (3.2.27)
In view of what we discussed before, the transition function between any two such
coordinate systems is holomorphic. Hence if Eq.(3.2.25) is integrable, then a holo-

morphic coordinate system exists and any function ¢ on the manifold can be viewed
as a function of z/ and z'": ¢ = ¢(z, z'"). In this case we have

de = d¢dz’ + 0;-pdz
Jdp = i(8;¢d7z’ — di-¢pdz") (3.2.28)

By taking the exterior derivative of Eq.(3.2.28) we obtain
dJ ANde = =2i9;0x¢dz' NdZ" (3.2.29)
and we can verify the equation
1=JD)dJndpg=0 (3.2.30)
which follows from
JdJ ndp = —=2i8;8-¢pJd7 AJdZ'" = —2i8;8;-pdz' AdZ/ = dJ Adp (3.2.31)
Equation (3.2.30) is true in a holomorphic coordinate system and, being an exterior
algebra statement, must be true in every coordinate system. In the real coordinate

system Eq. (3.2.30) reads
T§, 0updx? Adx? =0 (3.2.32)



3.2 Complex Structures on 2n-Dimensional Manifolds 105

where the tensor
a o 1228 2% o
Tﬁy = 0jg Jy] — Jﬂ Jy O I (3.2.33)

is called the “torsion”, or the Nienhuis tensor of the almost complex structure J;;‘.
The vanishing of 7%, is a necessary condition for the integrability of Eq.(3.2.26)
and hence for the existence of a complex structure. It can be shown that it is also
sufficient provided T, is real analytic with respect to some real coordinate system.

3.3 Metric and Connections on Holomorphic Vector
Bundles

In the previous section we considered the structure of complex manifolds. When
both the base space and the standard fibre are complex manifolds we can refine the
notion of fibre bundle by requiring that the transition function be locally holomorphic
functions. In particular a very relevant concept, which plays a major role in our
subsequent developments, is that of holomorphic vector bundle. For convenience we
recall the complete definition that follows from the general definition of fibre-bundle.

Definition 3.3.1 Let.# be a complex manifold and E be another complex manifold.
A holomorphic vector bundle with total space E and base manifold ./ is given by a
projection map:

n: E — A (3.3.1)

such that
(a) 7 is a holomorphic map of E onto .#
(b) Let p € ., then the fibre over p

E, = 7 '(p) (3.3.2)

is a complex vector space of dimension r. (The number r is called the rank of the
vector bundle.)
(c) For each p € .# there is a neighbourhood U of p and a holomorphic home-
omorphism
h:a'(U)y — U xC (33.3)

such that
h(z ' (p)) = {p} xC (3.3.4)

(The pair (U, h) is called a local trivialization.)
(d) The transition functions between two local trivializations (U, h,) and
(Ulg, h,s):
ho o hy' : (Ua NUR)QC —> Uy NUR) QT (3.3.5)
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induce holomorphic maps
8up : (Uy N Ug) — GL (r,C) (3.3.6)

Let E — ./ be aholomorphic vector bundle of rank » and U C .# an open subset
of the base manifold. A frame over U is a set of » holomorphic sections {si, ..., s,}
such that {s(z), ..., s,(z)} is a basis for 7 ~!(z) forany z € U.Let f = {e;(z)} be
a frame of holomorphic sections. Any other holomorphic section £ is described by

£ =¢&@e (3.3.7)

where _ L
3! =d7l" 9.8 =0 (3.3.8)

Given a holomorphic bundle with a frame of sections we can discuss metrics con-
nections and curvatures, as we already did for the general case of bundles.
In general a connection 6 is defined by introducing the covariant derivative of any
section &
D& =d&E +60¢ (3.3.9)

where § = 6! » the connection coefficient, is an r x r matrix-valued 1-form. On a
complex manifold this 1-form can be decomposed into its parts of holomorphic type
(1, 0) and (0, 1), respectively:

g =10 4 0D
000 = dz' 6,
o0 — 47" g,. (3.3.10)

Let now a fiber hermitian metric h be defined on the holomorphic vector bundle.
This is a sesquilinear form that yields the scalar product of any two holomorphic
sections £ and 7 at each point of the base manifold:

(&, 0 =& @n'@hps(z7) = E Iy (33.11)

As it is evident from the above formula, the metric / is defined by means of the
point-dependent hermitian matrix 4+ (z, Z), which is requested to transform, from
one local trivialization to another, with the inverses of the transition functions g
defined in Eq. (3.3.6). This is so because the scalar product (£, ), is by definition
an invariant (namely a scalar function globally defined on the manifold).

Definition 3.3.2 A hermitian metric for a complex manifold ./ is a hermitian fibre
metric on the canonical tangent bundle 7.7 . In this case the transition functions g
are given by the jacobians of the coordinate transformations.
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In general £ is just a metric on the fibres and the transition functions are different
objects from the Jacobian of the coordinate transformations. In any case, given a fibre
metric on a holomorphic vector bundle we can introduce a canonical connection 6
associated with it. It is defined by requiring that

(A) d (&, n)n =(D&, )y + (&, Dn)n

(B) D®Ve = [3+60D]e=0 (3.3.12)

namely by demanding that the scalar product be invariant with respect to the parallel
transport defined by 6 and by requiring that the holomorphic sections be transported
into holomorphic sections. Let f be a holomorphic frame. In this frame the canonical
connection is given by

0(f) = h(f)~ dn(f) (3.3.13)

or, in other words, by '
0!, = dz' ' 9 hges (3.3.14)

In the particular case of a manifold metric (see Definition 3.3.2), where # is a fibre

metric on the tangent bundle 7.4, the general formula (3.3.14) provides the defini-
tion of the Levi-Civita connection:

' = —g¢" dgn, (3.3.15)

Given a connection we can compute its curvature by means of the standard formula
® = dbf + 6 A6.In the case of the above-defined canonical connection we obtain

O(f) =300 +00+60A0=230 (3.3.16)

This identity follows from 06 + 6 A 6 = 0, which is identically true for the
canonical connection (3.3.13). Component-wise the curvature 2-form is given by

O, =9, ("5 8 hg-y) dZ' A dZ’ (3.3.17)
For the case of the Levi-Civita connection defined in Eq. (3.3.15) we find
ri=rjdz
I =—g" (0;gke)
i PR
I = Fk*j*dz
e = —g"" (0j-gre) (3.3.18)

for the connection coefficients and
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R = Ryeyd? A dz'
i _ i
‘%jk*f = O sz

it opi* k —0*
Ry = Rjedz A dZ

Rippe = 0T} (3.3.19)
for the curvature 2-form. The Ricci tensor has a remarkable simple expression:
R =R i = O Ty = By In (J3) (3.3.20)

where g = det|gop| = (det|g;j+])*.

3.4 Characteristic Classes and Elliptic Complexes

The cohomology? of differential forms on differentiable manifolds is named de Rham
cohomology.’ There are more general constructions of the same type. They are named
elliptic complexes.

Elliptic complexes are associated with fibre-bundles and their general definition
is provided below. To each elliptic complex we can associate a topological number
that is named its index. On its turn the index of a complex can be calculated as the
integral of certain polynomials in the curvature 2-forms of the connection that can
be introduced on the corresponding principle bundle. These polynomials are named
characteristic classes.

More precisely characteristic classes are maps from the ring 7*(G) of invariant
polynomials on the Lie algebra G of the structural group of the bundle to the de
Rham cohomology ring H*(.#') of its base manifold. They provide an intrinsic
way of measuring the twisting, or deviation from triviality, of a fibre bundle. They
are also an essential ingredient of the index theorems that express the difference of
zero modes of an elliptic operator minus its adjoint precisely in terms of integrals
of characteristic classes. Index theorems play a fundamental role in many physical
problems. Characteristic classes are also needed in the definition of special geome-
tries that we later consider. For this reason we devote the present section to their
general discussion.

We begin by recalling the notion of de Rham cohomology groups. The differ-
ential forms of degree r on a k-dimensional manifold .# are sections of a vector
bundle, namely of the completely antisymmetrized tensor product A" (T*.#) of the
cotangent bundle T*.#, r times with itself. We name 2" = I' (A, A" (T*.#)) the

2For a pedagogical short introduction to cohomology theory I refer the reader to my book [6], Vol
1, Chap.2.

3The development of de Rham cohomology and of characteristic classes is historically reviewed in
the twin book to this one [1], within the general frame of the evolution of geometry in the XXth
century.
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space of sections of this bundle, namely the space of r-forms. The exterior derivative
d provides a sequence of maps d;:

dkz dy—

Q) = QY — QW) = Q) = 0 (34.1)
where d, is the exterior derivative acting on r-forms and producing » + 1-forms as

a result. The property of the exterior derivative d> = 0 implies that
didis,y, =0 Vi=0,...,k (3.4.2)

What we have just described is named the de Rham complex and provides the first
and most prominent example of an elliptic complex. More generally we have

Definition 3.4.1 An elliptic complex (E*, D) is a sequence of vector bundles

E; = _# constructed over the same base manifold and a sequence of Fred-
holm operators D; mapping the sections of the ith bundle into those of the (i+1)th
bundle:

F#. E) 2 rea. By 2 o 2% rew B 29 rew By 25 0
(3.4.3)

such that
DiDiyy =0 Vi=0,..,k (3.4.4)

A Fredholm operator is a differential operator of elliptic type with finite kernel and
cokernel, as we discuss below. To each elliptic complex and to the de Rham complex
in particular we can attach the notion of cohomology groups. The ith cohomology
group is defined as follows:

ker D;
Im Di—l

H (E*, /) = (34.5)

It is the space of sections of the ith bundle E; satisfying D; s = 0, modulo those of
the forms = D;_; s . In the de Rham complex H" (2*(.#)) is the space of closed
r-forms modulo exact forms. For any Fredholm operator D; appearing in the elliptic
complex (3.4.3) we denote D; its adjoint, which is defined by

D} :I'(M,Ein) — I'(M, E)
(', Dis)g,, = (D;"s/,s)E,. (3:4.6)

i+1

where s € I'(A, E;),s' € I'(#, E;y1) and (, )g denotes the fibre metric in the
specified fibre. The laplacian operator is defined by

A; F(%,E,) — F(%vEl)
A =D, D] |+ D] D; (3.4.7)
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The cohomology group H' (E*, .#) is isomorphic to the kernel of the operator A;,
so that we have ' ‘
dimH'(E*, D) = dim Harm' (E*, D) (3.4.8)

where by Harm'(E*, D) we denote the vector space spanned by sections /; €
I’ (A, E;) which satisfy

Aih; =0. (3.4.9)
Given a section s; € I'(#, E;) we can write the Hodge decomposition:

si = Disi_1 + D}siy1 + b (3.4.10)

where Si+1 € F(%, E,)

Definition 3.4.2 Given an elliptic complex (E*, D) we define the index of this
complex by

ind (E*, D) = Z(—)idim H'(E*, D) = Z(—)idimkerAi (3.4.11)

Equation (3.4.11), when specialized to the de Rham complex, gives the Euler char-
acteristic of the base manifold:

indd = "(=)'dimH"(E*.d) = x(A) =Y (—)'D' (3.4.12)

where b’ is the ith Betti number, equal, by definition, to the number of linearly
independent harmonic i-forms. For a generic Fredholm operator D : I'(#, E) —
I’ (A, F) we can define the analytical index of D as

indD = dimkerD — dim cokerD (3.4.13)

To show the relation between Egs.(3.4.11) and (3.4.13), we have to resume our
discussion on Fredholm operators. Let D : I'(.#, E) — I' (., F) be an elliptic
operator. The kernel of D is the following set of sections:

kerD ={s € I'(.#, E)|Ds = 0}. (3.4.14)
We define the cokernel of D by

(A, F)
ImD

cokerD = (3.4.15)

We now state without proof the following theorem:

Theorem 3.4.1 Let D : I'(M, E) — I'(M, F) be a Fredholm operator. Then

cokerD ~ kerD' (3.4.16)
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Using Theorem 3.4.1 we immediately rewrite Eq.(3.4.11) as

indD = dimker D — dimker D' (3.4.17)

Consider now the one-operator complex I' (., E) —D> I'(#, F), which can also
be written as

05 rwt. B2 rew. r3o (3.4.18)

where i is the inclusion map (defined by i (0) = 0), and ¢ is a map from a generic
section in I' (., F) into 0. Using Eq. (3.4.11) for the complex (3.4.18) we find

dimker D — [dim ' (4, F) — dimImD] = dimker D — dimcoker D (3.4.19)

The above equation shows the simple relation between the analytical index (3.4.13)
and the index of the elliptic complex (3.4.11). Equation (3.4.13) provides an easy
formula that is always recalled in physical literature. Moreover, given an elliptic
complex, it is always possible to construct a Fredholm operator whose analytical
index coincides with the index of the complex (E*, D). Indeed if we define

Ey =®iEy, E_=®Eju (3.4.20)

which are respectively called the even and the odd bundles and we consider the
operators
D =®(Dy+ D} ) D'=®i(Dysi + D) (3.4.21)

we easily verify that

D:I'(#,E.) — I'(M,E.)
D:I(#,E_)— I'(M,E) (3.4.22)

Next, if we define
A, =D'D=@;Ay A_=DD' =@ Ay (3.4.23)
then we have

ind(Ey, D) = dimkerA; — dimkerA_ = Z(—)idim kerA; = ind(E*, D)
(3.4.24)
In general the index of an elliptic complex can be expressed by an integral over .Z
of suitable characteristic classes. At the beginning of the present section we have
defined characteristic classes as maps from the ring of invariant polynomials on the
Lie algebra of the structural group to the de Rham cohomology group ring of the
base manifold. Let us now go a little deeper on the meaning of this definition. Let
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M (k, C) be the set of complex k x k matrices. We denote by S (# (k, C)) the vector
space of symmetric r-linear C-valued functions on .# (k, C). A map

P:®,.4k, C)— C (3.4.25)

belongs to S"(.# (k, C)) if it satisfies, in addition to linearity in each entry, the
symmetry

Is(al,...,ai,...,aj,....a,) = ﬁ(al,...,aj,...,a[,...,a,) Vi,j<r
(3.4.26)
Consider now the formal sum

S*(A (k,C)) = @y S" (A (k, C)) (3.4.27)

and define a product of Pec S? (A (k,C)) and Q € S9(A (k, C)) by

A A 1 ~ ~
P-QOa,...,ap ) = ———— P(apy,...,a )O(a L., a )
O(a P+ Pt ZP: (apq) pP(p)) Qapp+1 P(p+q)

(3.4.28)
where P denotes the permutation of the set (1, ..., p + q). S*(.# (k, C)) equipped
with the product (3.4.28) is an algebra. If we now consider a Lie algebra G
M (k, C), and the corresponding simply connected Lie group ¢ = exp [G], in full
analogy with Egs. (3.4.27) and (3.4.26), we can define the sum S*(G) = ®,505"(G).
An element ﬁ(hl, ..., h) € S"(G) (h; € G)issaidto beinvariant if, forany g € G,
it satisfies

P(g'hig,....g 'hyg) = P(hy,..., h) (3.4.29)

The set of invariant elements of S”(G) is denoted by /" (G). The product defined in
(3.4.28) induces a natural multiplication

2 IP(G) @ I1(G) — IPTI(G) (3.4.30)

The sum I* = @,59I"(G) equipped with the product (3.4.30) is an algebra. The
diagonal combination P(h) = P(h, ..., h) containing r-times the element 2 € G
is a polynomial of degree r, which is said to be an invariant polynomial. Let now
P(#,G) be a principal bundle that has as structural group a Lie group ¢ with
Lie algebra G. We extend the domain of invariant polynomials from G to G-valued
p-forms on .Z . We define

Phioy,....,hho)=w) A Aw, P(hy, ..., h) (3.4.31)
where h; € G, w; € 2P (#) (i = 1...r). The diagonal combination is now given

by
Phw)=wA -+ AwP(h) (3.4.32)
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where the wedge product of w € 27 (.#) is repeated r-times in (3.4.32). Consider
now the curvature 2-form ® associated with a connection in a complex fibre bundle.
In the following we are particularly interested in invariant polynomials of the form
P(®). We can state the following theorem (Chern—Weil theorem).

Theorem 3.4.2 Let P(®) be an invariant polynomial in the curvature 2-form, then
(i)dP(®) =0

(ii) Let ®, @' be curvature 2-forms corresponding to different connections 0,0’ on
the fibre bundle. Then the difference P(®) — P(®’) is exact.

This theorem proves that an invariant polynomial P(®) is closed and in general
non-trivial. We can then associate to P(®) a cohomology class of .#. Moreover
Theorem 3.4.2 ensures that this cohomology class is independent of the chosen con-
nection. The cohomology class defined by P(®) is called a characteristic class.
The characteristic class defined by an invariant polynomial P is denoted by xg(P),
where E is the fibre bundle on which curvatures and connections are defined.

Theorem 3.4.3 Let P be an invariant polynomial in I*(G) and E be a fibre bundle
over M, whose structural group 4 has G as Lie algebra. The map

xe : I°(G) - H*(A) (3.4.33)

defined by P — yxg(P) is a homomorphism.

Theorem3.4.3 establishes a homomorphism, called the Chern—Weil homomor-
phism,* between the ring 7*(G) and the de Rham cohomology ring H*(.#), defined
by

H*(#) =@, H (M) (3.4.34)

where H" is the rth cohomolgy group. The Chern—Weil homomorphism is the fun-
damental instrument that allows one to relate the index of an elliptic complex with
the integral of particular characteristic classes, through the so called index theorem
(stated below in Eq.(3.4.56)). Before giving the statement of this theorem, due to
Atiyah and Singer, we list some specific examples of characteristic classes, which
will be useful in the following.

Definition 3.4.3 Given a complex vector bundle E equipped with a connection 8,
whose fibre is C", we can define its total Chern class c(E, ©) as the following formal
determinant:

c(E,®) = det <1 + l—@) (3.4.35)
21

where @ is the matrix-valued curvature 2-form.

The determinant is calculated with respect to the matrix indices. As it is well known,
the determinant det (1 4+ A) is a polynomial in the matrix elements of A and can

“The interesting history of the Chern—Weil homomorphism, independently discovered by the two
great mathematicians in the years of World War 11, is reported in the twin book [1].
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be expanded in powers of A. Such an expansion of the total Chern class yields the
definition of the individual Chern classes ¢ (E, @) In particular, if we call xy, . .. x,
the (formal) eigenvaules® 2-forms of the matrix 3- O we easily find

l. r
det (1 +E@) = U(l +x) =14+0G 4+ +x)+
(x4 X1 X))+ (nxn--x) (3.4.36)
so that, by writing
c(E,0) = Y alE,0) (3.4.37)
k=0
we get
Cop = ],

i
c :Etr(@)’

1
Cy = @ [tr (@2) — (tr@)z]

)
¢, = det — (3.4.38)
2

where, for a generic form £2, by £2" we mean the nth wedge product A"§2. A
remarkable property of the Chern class is the following: given two complex vector

bundles E > M, F 1) A we have

c(E®F)=c(E)ANc(F) (3.4.39)

Definition 3.4.4 Given a rank r vector bundle E = .# we define the total Chern

character by A
ie 1 i0Y’

h(E,0) =t — | = —tr | — 3.4.40

ch(E. ©) = trexp <2n) I;I! : (271) (3.440)

and the jth Chern character by

5We stress the word “formal eigenvalues” because the correct framework to understand these eigen-
values is the “splitting principle”, which, for convenience, is mentioned after the Eq. (2.7.59).
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1 [ioY
ch;(E,®0) = —tr| — (3.4.41)
J! 2

From now on, for notational convenience we refer to ch(E, ®) as ch E or ch ®
indifferently (and similarly for the Chern class ¢(E, ©)). In terms of the eigenvectors
Xj we get

: 1
ch(®) =Y <1 +x; 4 Ex} + - ) (3.4.42)
j=1
so that we can write
Cho(@) =r

ch| (@) = c1(O)
1
chy(®) = E[C%(@) —2c2(0)] (3.4.43)

Theorem 3.4.4 Let E and F be two vector bundles over a manifold #. The Chern
character of E ® F and E ® F are given by

ch(E ® F) = ch(E) A ch(F)
ch(E & F) = ch(E) + ch(F) (3.4.44)

Another useful characteristic class associated with a complex vector bundle is the
Todd class defined by

r

Td©) =] % (3.4.45)
=1

where x; are the eigenvalues of the curvature 2-form 5-©. We obtain

1 r,
Td(@)zl-i-zg:x.,‘*l—ﬁxj‘F"'

—]_[<1+ i+ Y (9F 'ZBZ‘, ,”‘)

k>1

=14+ %cl(@) + E[cf(@) + (@) + - (3.4.46)

where the numbers By appearing in Eq. (3.4.46) are the Bernoulli numbers.

Finally we define the Euler class. The characteristic classes previously introduced
are naturally defined for complex vector bundles. On the other hand the Euler class
can be defined for real vector bundles over an orientable Riemann manifold .. In
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particular it is consistently defined for even rank real bundles, while it is zero for odd
rank bundles. Given a rank k real bundle E it is useful to construct a complex vector
bundle from E by a complexification procedure. The complexification of E is the
bundle over .# obtained by replacing the fibres R¥ by C* = (R @ iR)*. We denote
the complexification of E by EC. We can think of E€ as the following product

EC=E® R®iR) (3.4.47)

Complex vector bundles can also be complexified by converting them into real vector
bundles and then complexifying the result. If the starting complex bundle has rank
r, its complexification has rank 2r. Notice that, given a complex vector bundle E,
and denoting by ER the underlying real bundle, we have

ES=ErR®@R+iR)~E®E (3.4.48)

where E denotes the conjugate complex bundle, defined by applying complex conju-
gation to the coordinates of the fibres C" of E. Having outlined the complexification
procedure for a real vector bundle, we define the Euler class through another typical
characteristic class defined in real bundles: the Pontrjagin class. Let E be areal vector
bundle of rank r over ., the ith Pontrjagin class is defined as

pi(E) = (=) ez (E) (3.4.49)

where ¢,; (EC) is the 2ith Chern class of the complexified bundle. The total Pontrjagin
class is defined as
P(E) =1+ pi(E)+---+ p2 (3.4.50)

where [r/2] is the largest integer not greater than r. Consider now real vector bundles
E of even rank over an orientable manifold .. The Euler class is defined by

e*(V) = pya (3.4.51)
The Euler class of a Whitney sum E @ V is
e(E®V)=e(E)e(V) (3.4.52)

where we denote c(E)c(V) = c(E) A ¢(V). For a complex vector bundle the Pon-
trjagin and the Euler class are the Pontrjagin and the Euler class of the underlying
real bundle. Since the eigenvalues of the curvature 2-form in the conjugate bundle
are given by —x;, we have

c(EX) =c(E®E) = c(E)e(E) = [0 +x) —xp) =[] —x)) (34.53)

i=1 i=1
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so that
e (ES) = (=)x?-- - x? (3.4.54)

and (recalling that EC has rank 2r)

pr(E) = xi---x}

e(E) =x1xp---x, = ¢, (E) (3.4.55)

We are now able to state the Atiyah—Singer index theorem in its full generality:

Theorem 3.4.5 Given an elliptic complex (E*, D) over an m-dimensional
(dimg.Z = m) compact manifold .# without a boundary, then

m(m+1)

 Td(T.#C
ind(E*, D) = (—) 2 / ch(®,;(—)E;) )
M

e(T.H)

(3.4.56)

where T . is the tangent bundle over A .

Let us now consider the application of the index theorem to some particular elliptic
complexes. Consider an m-dimensional compact orientable manifold without bound-
aries and the elliptic de Rham complex:

O LT o L5 Lo L Y /A L G (3.4.57)

with Q7 (#)C = I' (A, N"T*.# ), where we have complexified the forms to apply
the Atiyah—Singer theorem. The analytical index is given by

m

indd =) (=)'dimcH" (A, C) =Y (=)'dimgH" (A, R) = x(A) (3.4.58)

r=0 r=0

where x (.#) is the Euler characteristic of .#. Suppose .# is even dimensional
m = 2l. Equation 3.4.56 gives the following result for the de Rham index:

TdT .#¢

T (3.4.59)

indd = (_)1(21+l)/ ch (@zl(_)r A T*%C)
M

To compute ch (@;” (=) N T*H C) we employ the splitting principle. The splitting
principle uses the fact that in order to prove an identity for characteristic classes, it is
sufficient to prove it only for bundles which decompose into a sum of line bundles.
Suppose that a fibre bundle F is a Whitney sum of n line bundles L;; then

AP F = @1cipeiyen (L ® - ® Ly (3.4.60)

This means that
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ch(APF)= > ch(L;)ch(Ly,)---ch(L;,) (3.4.61)

15[] ~~~il,§n
Since for any line bundle appearing in the Whitney sum ch(L;) = e*, we finally get

ch(APF) = Z i (3.4.62)

1§i1~~~i,,§n

Applying this result to @ (—)" A" T*.4 C, and using the fact that taking the dual
bundle merely changes the sign of x; we get

ch@" (=) AN T*uC = ]_[(1 — e )T ) (3.4.63)

i=1

Moreover we can write

Td(T.#%) = ﬁ

i=1

Xi
1—e

(T #%) (3.4.64)

Then the index of the de Rham complex is given by
indd = (—)' f M@t _ f n(T A7) f (T.4)
= (— = \— = e
o (T AH) w e(TAH) M
(3.4.65)

where we have used
(T M) = ()" e(THM ST M) = (—)x7 x5 = (—) (T M)

By combining the results for the analytical index and for the Atiyah—Singer index
(often referred to as the topological index), we get the Gauss—Bonnet theorem

f (T M) = x (M) (3.4.66)
M

For m odd, the de Rham index is zero. Let us consider now the application of the index
theorem to the Dolbeault complex, which we are going to define below. Consider a
complex manifold .# with dimc.# = m. We denote by T":9_# the tangent bundle
spanned by the vectors {9/3z*} and by T*D_# its complex conjugate. The space
dual to T is spanned by the 1-forms {dz"}. We denote it by T*9_#. The
space 2" (.#)C of complexified r-forms is decomposed as

QUM = @ prger RVI(M) (3.4.67)
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where by 27-9(.#') we denote the space of (p, ¢) forms. The exterior derivative can
be written as

d a
d=d* N — +d7?* A — 3.4.68

&N Tz az" ( )
It is immediate to verify that 3, 9 satisfy the following relations:

- = )

900 —00=0>=9 =0 (3.4.69)

Moreover 8 maps (p, g)-forms into (p + 1, g)-forms and @ maps (p, ¢) forms into
(p,q + 1) forms. Let us consider the sequence

L 0oy B QOat Ly D (3.4.70)

This sequence is called the Dolbeault complex. It can be shown that (3.4.70) defines
an elliptic complex. The index theorem in this case gives

TdT # €

T (3.4.71)

indﬁ:/ ch (@r(_)r AT T*(O’D«%)
M

The left hand side of the above equation can be computed using the Eq. (3.4.13), so
that

indd = Z(—)’h@»’) (3.4.72)

r=0

where _
kerd,
hO" = dime HO" () = dimc- o (3.4.73)
1m8,,1

is the complex dimension of the cohomology group H "), The application of theo-
rem (3.4.56) to this case is analogous to the one presented for the de Rham complex
and gives

D b = f Td(T"0.4) (3.4.74)
r=0 M

In the Dolbeault complex the space 2" can be replaced by a tensor product bundle
20" ® V, where V is a holomorphic vector bundle. In this case we define the
following elliptic complex, named the twisted Dolbeault complex:

B Q00 eV Q0 ey . (3.4.75)

The Atiyah—Singer theorem for this particular complex reduces to the Hirzebruch—
Riemann—Roch theorem:
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inddy = / Td (T 4 )ch(V) (3.4.76)
M

In the case of complex dimension one, namely dimc.Z = 1, we get

- 1
inddy, = —dime cl(T(l’O)///)+/ c1(A) (3.4.77)
2 V% V%
Since it can be shown that
f (T ) =/ e(T#)=2(1-g) (3.4.78)
M M

where g is the genus of the base manifold, which in complex dimension one is nothing
but a Riemann surface X, in this case we get
ie

inddy =dimV( —g) + / — (3.4.79)
z, 27'[

In the general case of acomplex manifold .# of complex dimension 7, the dimensions

R0 dime HPD (1) (3.4.80)

of the Dolbeault cohomology groups are named Hodge numbers.

3.5 Kaihler Metrics

In the previous sections we have discussed the general notion of hermitian fibre
metrics on holomorphic vector bundles and in particular of hermitian manifold met-
rics defined on the tangent bundle. In this section we introduce the more restricted
concept of Kihlerian metrics that plays a fundamental role in many applications.®
The definition of the previous section Definition3.3.2 can also be restated in the
following way: a manifold metric g is a symmetric bilinear scalar valued functional

on (T M, #)RT (T M, )
g: T, HQI (T M, H) — C®(H) (3.5.1)
In every coordinate system it is represented by the familiar symmetric tensor gqyg (x).

Indeed we have
gu, w) = gopuw’ (3.5.2)

SFor Kihler’s life, his relations with Chern and other outstanding mathematicians and for the
conceptual development of Kihler metrics we refer the reader to the twin book [1].
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where u®, w? are the components of the vector fields u and w, respectively. In this
language the hermiticity of the manifold metric g can be rephrased in the following
way:

Definition 3.5.1 Let .# be a 2n-dimensional manifold with an almost complex
structure J. A metric g on . is called hermitian with respect to J if

g(Ju, Jw) = g(u, w) (3.5.3)

Given a metric g and an almost complex structure J let us introduce the following
differential 2-form K:

K(u,w) = %g(]u, w) 3.5.4)

The components Kg of K are given by
Kap = gypJs (3.5.5)

and by direct computation we can easily verify that:

Theorem 3.5.1 g is hermitian if and only if K is anti-symmetric.

Definition 3.5.2 A hermitian almost complex manifold is an almost complex man-
ifold endowed with a hermitian metric g.

In a well-adapted basis we can write
glu,w) = g,-juiwj + g,»*j*ui*wj* + glj*uiwj* + g,»*juiwj* (3.5.6)
Reality of g(u, w) implies

gij = (girj*)"
8ixj = (gij*)* (3.5.7)

symmetry (g(u, w) = g(w, u)) yields

8ij = 8ji
8j+i = &ij* (3.5.8)
while the hermiticity condition gives
8ij = &+j» =0 (3.5.9)

Finally in the well-adapted basis the 2-form K associated to the hermitian metric g
can be written as

K= —gipdi AdZ (3.5.10)
2
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Definition 3.5.3 A hermitian metric on a complex manifold .# is called a Kihler
metric if the associated 2-form K is closed:

dK =0 (3.5.11)

A hermitian complex manifold endowed with a Kéhler metric is called a Kéhler
manifold.

Equation (3.5.11) is a differential equation for g; ;» whose general solution in any
local chart is given by the following expression:

8ijx = 8,»81»*%/ (3512)

where 7 = #* = ¥ (z, z*) is a real function of 7/, z'". The function .# is called
the Kihler potential and it is defined only up to the real part of a holomorphic function
f(2). Indeed one sees that

H'(z2,7)=H(2,2)+ f@) + [ (3.5.13)

give rise to the same metric g;;~ as . The transformation (3.5.13) is called a
Kihler transformation. The differential geometry of a Kéhler manifold is described
by Eqgs.(3.3.18) and (3.3.19) with g;;« given by (3.5.12). Kéhler geometry is that
implied by .#” = 1 supersymmetry for the scalar multiplets [7].

3.6 Hypergeometry

Next we turn our attention to the geometry that emerges when the manifold admits
three complex structures satisfying the quaternionic algebra first discovered by
Hamilton. To this effect the prerequisite is that the dimension of the manifold should
be a multiple of 4. This is precisely what happens in supersymmetry when we con-
sider the so called .#* = 2 hypermultiplets. Each of them contains 4 real scalar
fields and, at least locally, they can be regarded as the four components of a quater-
nion. The locality caveat is, in this case, very substantial because global quaternionic
coordinates can be constructed only occasionally even on those manifolds that are
denominated quaternionic in the mathematical literature [2, 3]. Anyhow, what is
important is that, in the hypermultiplet sector, the scalar manifold 2.4 has dimen-
sion multiple of four:

dimg 2.4 = 4m = 4# of hypermultiplets (3.6.1)

and, in some appropriate sense, it has a quaternionic structure.
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We name Hypergeometry that pertaining to the hypermultiplet sector, irrespec-
tively whether we deal with global or local .4~ = 2 theories. Yet there are two kinds of
hypergeometries. Supersymmetry requires the existence of a principal SU(2)-bundle

LU — .M (3.6.2)

The bundle . % is flat in the rigid supersymmetry case while its curvature is pro-
portional to the Kéhler forms in the local case.

These two versions of hypergeometry were already known in mathematics prior
to their use [2-5, 8-10] in the context of .4#” = 2 supersymmetry and are identified
as:

rigid hypergeometry = HyperKihler geometry.
local hypergeometry = Quaternionic Kahler geometry (3.6.3)

3.6.1 Quaternionic Kdihler, Versus HyperKdhler Manifolds

Both a Quaternionic Kéhler or a HyperKihler manifold 2.4 is a 4m-dimensional
real manifold endowed with a metric A:

ds®> = hy(q)dg" @dq* ; u,v=1,..., 4m (3.6.4)
and three complex structures
Y T(H) — T(2H) x=1,2,3) (3.6.5)
that satisfy the quaternionic algebra
JIJY = =8§Y1 + ¢7%J*F (3.6.6)
and respect to which the metric is hermitian:
VX, YeT2.4 : h (J"X, J"Y) =h(X,Y) x=1,2,3) (3.6.7)
From Eq. (3.6.7) it follows that one can introduce a triplet of 2-forms
K* =K} dg" ndq' ; K}, = hy(JV)Y (3.6.8)

that provides the generalization of the concept of Kéhler form occurring in the com-
plex case. The triplet K* is named the HyperKdhler form. It is an SU(2) Lie-algebra
valued 2-form in the same way as the Kéhler form is a U(1) Lie-algebra valued
2-form. In the complex case the definition of Kédhler manifold involves the statement
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that the Kéhler 2-form is closed. At the same time in Hodge—K&hler manifolds the
Kihler 2-form can be identified with the curvature of a line-bundle which in the case
of rigid supersymmetry is flat. Similar steps can be taken also here and lead to two
possibilities: either HyperKihler or Quaternionic Kéhler manifolds.

Let us introduce a principal SU(2)-bundle .7 as defined in Eq.(3.6.2). Let
" denote a connection on such a bundle. To obtain either a HyperKéhler or a
Quaternionic Kéhler manifold we must impose the condition that the HyperK#hler
2-form is covariantly closed with respect to the connection w*:

VK*=dK* + &0’ AK* =0 (3.6.9)
The only difference between the two kinds of geometries resides in the structure of

the . % -bundle.

Definition 3.6.1 A HyperKihler manifold is a 4m-dimensional manifold with the
structure described above and such that the . % -bundle is flat

Defining the .7 -curvature by:
I ..
2% =do* + ng,\zwy A @° (3.6.10)
in the HyperKéhler case we have:
2 =0 (3.6.11)

Viceversa

Definition 3.6.2 A Quaternionic Kihler manifold is a 4m-dimensional manifold
with the structure described above and such that the curvature of the .’% -bundle is
proportional to the HyperKéhler 2-form

Hence, in the quaternionic case we can write:
2F = LK* (3.6.12)

where A is a non vanishing real number.
As a consequence of the above structure the manifold 2.4 has a holonomy group
of the following type:

Hol(2.#) = SU(2) ® H (Quaternionic Kihler)
Hol(2.4) = 1 ® H (HyperKihler)
H c Sp2m, R) (3.6.13)

In both cases, introducing flat indices {A, B, C = 1,2}{wo, B,y = 1,...,2m} that
run, respectively, in the fundamental representation of SU(2) and of Sp(2m, R), we
can find a vielbein 1-form
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UM = U (q)dq" (3.6.14)

such that
My = UL U PPCopenp (3.6.15)

where Cog = —Cp, and 45 = —ep4 are, respectively, the flat Sp(2m) and Sp(2) ~
SU(2) invariant metrics. The vielbein % 4% is covariantly closed with respect to
the SU(2)-connection »* and to some Sp(2m, R)-Lie Algebra valued connection
A = AP,

VUL = dy 4 + %a)x(saxe_l)AB A U B
+ AP AU Cp, =0 (3.6.16)

where (o¥) AB are the standard Pauli matrices. Furthermore % 4% satisfies the reality
condition:
Ung = (U = eapCopU ®P (3.6.17)

Equation (3.6.17) defines the rule to lower the symplectic indices by means of the flat
symplectic metrics €45 and C,g. More specifically we can write a stronger version

of Eq.(3.6.15) [7]:

(%MAQ%Bﬂ + %AQ%MB}S)(C&B — hungB

(3.6.18)
We have also the inverse vielbein %, defined by the equation
ULUN = 5" (3.6.19)
Flattening a pair of indices of the Riemann tensor %"}, we obtain
R UAYPE = — %Qge“(ax)c‘?(caﬁ + R gAB (3.6.20)
where Rf‘f is the field strength of the Sp(2m) connection:
dA% + A A APC,s = R =RPdg' Adg? (3.6.21)

Equation (3.6.20) is the explicit statement that the Levi Civita connection associated
with the metric & has a holonomy group contained in SU(2) ® Sp(2m). Consider
now Egs. (3.6.6), (3.6.8) and (3.6.12). We easily deduce the following relation:

BKE KD = —8hy + VK2, (3.6.22)
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that holds true both in the HyperKédhler and in the quaternionic case. In the latter
case, using Egs. (3.6.12), (3.6.22) can be rewritten as follows:
R QT 20, = A28V Ry, + A8

uw

(3.6.23)

Equation (3.6.23) implies that the intrinsic components of the curvature 2-form £2*
yield a representation of the quaternion algebra. In the HyperKihler case such a
representation is provided only by the HyperKihler form. In the quaternionic case
we can write:

Qranp = 2 Uk Uy = —iACap(0x) e (3.6.24)

Alternatively Eq. (3.6.24) can be rewritten in an intrinsic form as
Q2% = —iACop (o) ,Secs%** N UPE (3.6.25)

whence we also get:

%m(ax)AB = AUpa NUP (3.6.26)

3.7 Moment Maps

The conception of moment maps has its root in Hamiltonian mechanics where the
time-derivative of any dynamical variable can be represented by the Poisson bracket
of that variable with the hamiltonian. More generally the action of any vector field
t on functions defined over the phase-space .# can be represented as the Poisson
bracket of that function with a generalized hamiltonian % which is associated with
the vector field:

. | 0
t=1p,q)—+t(p,q9)—
aq' ap;

1

ti(p.q) = {j. 74} (3.7.1)

The moment map is the map:

w: ITH, H] — ClA]
wit] = 54 (3.7.2)

which to every vector field associates its proper hamiltonian.

In the present geometrical context, conceptually very much different from that
of dynamical systems which are of no concern to us in this book, the focus is on
the moment-maps of Killing vectors, associated with isometries of the manifold .Z .
The symplectic structure which allows for the definition of Poisson-like brackets is
provided by the presence of the complex-structure leading to closed or covariantly
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closed 2-forms, the Kéhler or the HyperKéhler ones. Our generalized hamiltonians or
simply moment-maps have another important role to play. On one hand they appear
as constructive items in supergravity lagrangians with gauge-symmetries, on the
other, purely mathematical side, they are the building blocks in a general procedure,
the Kdhler or HyperKdhler quotient which allows to construct non trivial Kahler or
HyperKéhler manifolds starting from simple trivial ones.

In Chap. 8 we plan to exemplify such constructions with the derivation of ALE-
manifolds by means of HyperKhaler quotients. Here we just begin with the general
definitions of holomorphic and tri-holomorphic moment maps.

3.7.1 The Holomorphic Moment Map on Kdhler Manifolds

The concept of holomorphic moment map applies to all Kdhler manifolds, not nec-
essarily special. Indeed it can be constructed just in terms of the Kéhler potential
without advocating any further structure. In this subsection we review its properties
and definition, as usual in order to fix conventions, normalizations and notations.
Let g; j» be the Kahler metric of a Kdhler manifold .# and let us assume that g; ;-
admits a non trivial group of continuous isometries ¢ generated by Killing vectors k}
I=1,...,dim%¥) that define the infinitesimal variation of the complex coordinates
z' under the group action:
7=+ eki(z) (3.7.3)

Letki(z) be abasis of holomorphic Killing vectors for the metric g; ;». Holomorphicity
means the following differential constraint:

djki(z) =0« 3k ) =0 (3.7.4)
while the generic Killing equation (suppressing the gauge index I):
Vuk, +V,k, =0 (3.7.5)
in holomorphic indices reads as follows:
Vik;j +Viki =0; Vickj + Viki» =0 (3.7.6)

where the covariant components are defined as k; = g ji*ki* (and similarly for k;-).

The vectors k; are generators of infinitesimal holomorphic coordinate transfor-
mations 8z' = Slki (z) which leave the metric invariant. In the same way as the
metric is the derivative of a more fundamental object, the Killing vectors in a Kédhler
manifold are the derivatives of suitable prepotentials. Indeed the first of Eq.(3.7.6)
is automatically satisfied by holomorphic vectors and the second equation reduces
to the following one:
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K =igla;. P, Pr= (3.7.7)

In other words if we can find a real function 2! such that the expressionig'/" 9+ 2,
is holomorphic, then Eq. (3.7.7) defines a Killing vector.
The construction of the Killing prepotential can be stated in a more precise geo-
metrical fashion through the notion of moment map. Let us review this construction.
Consider a Kihlerian manifold .# of real dimension 2n. Consider an isometry
group ¢ acting on .# by means of Killing vector fields 7() which are holomorphic

with respect to the complex structure J of .#; then these vector fields preserve also
the Kéhler 2-form

§§§ z(()) © VX = O} = 0=23K = ipdK +d(i3K) = d(i3K)
(3.7.8)
Here % and i denote respectively the Lie derivative along the vector field 7() and
the contraction (of forms) with it.
If ./ is simply connected, d (i3 K) = 0 implies the existence of a function &

such that |
— Edﬂy =iy K (3.7.9)

The function &+ is defined up to a constant, which can be arranged so as to make
it equivariant:

—

X Py = @[7,7] (3.7.10)

P+ constitutes then a moment map. This can be regarded as a map
P M — RRG* (3.7.11)

where G* denotes the dual of the Lie algebra G of the group ¢. Indeed let x € G
be the Lie algebra element corresponding to the Killing vector 7(); then, for a given
me M

p(m) : x — P (m) € R (3.7.12)

is a linear functional on G. If we expand 7() = a'ky in a basis of Killing vectors kg
such that
kt, kil = fig ke (3.7.13)

we have also
Py = ad'P (3.7.14)

In the following we use the shorthand notation %3, iy for the Lie derivative and the
contraction along the chosen basis of Killing vectors kj.
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From a geometrical point of view the prepotential, or moment map, &7 is the
Hamiltonian function providing the Poissonian realization of the Lie algebra on the
Kihler manifold. This is just another way of stating the already mentioned equivari-
ance. Indeed the very existence of the closed 2-form K guarantees that every Kihler
space is a symplectic manifold and that we can define a Poisson bracket.

Consider Eq.(3.7.7). To every generator of the abstract Lie algebra G we have
associated a function #?; on ./ ; the Poisson bracket of &1 with &y is defined as
follows:

(P, Py} =4nK(1,)) (3.7.15)

where K (I, J) = K (Kky, kj) is the value of K along the pair of Killing vectors.
In Ref. [4] the following lemma was proved:

Lemma 3.1 The following identity is true:
(P, Py} = fy" PL+ Cy (3.7.16)
where Cyy is a constant fulfilling the cocycle condition
fiw'Cry + Ay Cu + fii"Cm =0 (3.7.17)

If the Lie algebra G has a trivial second cohomology group H?(G) = 0, then the
cocycle Cyy is a coboundary; namely we have

Cy = fi“Cu (3.7.18)

where Cy, are suitable constants. Hence, assuming H*(G) = 0 we can reabsorb Cy,
in the definition of Z:
Py — P+ Cy (3.7.19)

and we obtain the stronger equation
(P, Py} = fy" P (3.7.20)

Note that H>(G) = 0 is true for all semi-simple Lie algebras. Using Egs. (3.7.16),
(3.7.20) can be rewritten in components as follows:

i . o 1
> 8ij (kiky —kyky ) = §fuL=@L (3.7.21)

Equation (3.7.21) is identical with the equivariance condition in Eq. (3.7.10).

Finally let us recall the explicit general way of solving Eq.(3.7.9) obtaining the
real valued function &) which satisfies Eq.(3.7.7). In terms of the Kihler potential
J we have:

P* (k{3 — kjor¢) + Im(f1) (3.7.22)

i
T2
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where fi = fi(z) is a holomorphic transformation on the line-bundle, defining a
compensating Kéhler transformation:

ki A +kjort = — fi(2) — f1@). (3.7.23)

3.7.2 The Triholomorphic Moment Map on Quaternionic
Manifolds

Next, following closely the original derivation of [4, 11] let us turn to a discussion of
the triholomorphic isometries of the manifold 2.4 associated with hypermultiplets.
In D = 4 supergravity the manifold of hypermultiplet scalars 2. is a Quaternionic
Kihler manifold and we can gauge only those of its isometries that are triholomorphic
and that either generate an/e_lgilian group ¥ or are suitably realized as isometries also

on the special manifold .. % ,,. This means that on 2.# we have Killing vectors:

kp = k! (3.7.24)

a qu
satisfying the same Lie algebra as the corresponding Killing vectors on IH n- In
other words

Ry = kid; + ki i + k', (3.7.25)

is a Killing vector of the block diagonal metric:

(& O

defined on the product manifold’ FH 2.

Let us first focus on the manifold 2.7 . Triholomorphicity means that the Killing
vector fields leave the HyperKédhler structure invariant up to SU(2) rotations in the
SU(2)-bundle defined by Eq. (3.6.2). Namely:

LK = VKW Lot = VWY (3.7.27)

7Special Kihler geometry will be discussed in Chap. 4, yet we anticipate here that it is the geometrical
structure imposed by .4~ = 2 supersymmetry on the scalars belonging to vector multiplets (the
scalar partners of the gauge vectors). In our notations the Special Kdhler manifold which describes
the interaction of vector multiplets is denoted 7 and all the Special Geometry Structures are
endowed with a hat in order to distinguish this Special Kéhler manifold from the other one which is
incapsulated into the Quaternionic Kéhler manifold 2.4 describing the hypermultiplets when this
latter happens to be in the image of the c-map. For all these concepts we refer the reader to Chap. 4.
They are not necessary to understand the present constructions, yet they were essential part for their
establishment in the original papers mentioned here above.


http://dx.doi.org/10.1007/978-3-319-74491-9_4
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where Wy is an SU(2) compensator associated with the Killing vector ky'. The com-
pensator Wy necessarily fulfills the cocycle condition:

LW — LW+ VW W = [ W (3.7.28)

In the HyperKihler case the SU(2)-bundle is flat and the compensator can be reab-
sorbed into the definition of the HyperKéhler forms. In other words we can always
find a map

24 — L' (q) € SOQ3) (3.7.29)

that trivializes the .’% -bundle globally. Redefining:
K" = L" (¢) K” (3.7.30)
the new HyperKéhler form obeys the stronger equation:
AKY =0 (3.7.31)

On the other hand, in the quaternionic case, the non-triviality of the .#% -bundle
forbids to eliminate the W-compensator completely. Due to the identification between
HyperKiéhler forms and SU(2) curvatures Eq.(3.7.27) is rewritten as:

AR = eVQDW Lot = VW (3.7.32)

In both cases, anyhow, and in full analogy with the case of Kéhler manifolds, to each
Killing vector we can associate a triplet &7} (¢) of 0-form prepotentials. Indeed we
can set:

iK' = -V =—-dP + e F) (3.7.33)

where V denotes the SU(2) covariant exterior derivative.
As in the Kihler case Eq.(3.7.33) defines a moment map:

PH — RG* (3.7.34)

where G* denotes the dual of the Lie algebra G of the group ¢. Indeed let x € G
be the Lie algebra element corresponding to the Killing vector 7(); then, for a given
me .

p(m) : x — P~(m) € R’ (3.7.35)

is a linear functional on ¢. If we expand 7() = a'ky on a basis of Killing vectors ky
such that
[kr, kil = fiXkx (3.7.36)

and we also choose a basis i, (x = 1, 2, 3) for R? we get:
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P = d"' P, (3.7.37)

Furthermore we need a generalization of the equivariance defined by Eq. (3.7.10)
XoPs = P = (3.7.38)

In the HyperKihler case, the left-hand side of Eq.(3.7.38) is defined as the usual
action of a vector field on a O-form:

0

- . "
XoPy =ipdPy =X Yo P (3.7.39)

The equivariance condition implies that we can introduce a triholomorphic Poisson
bracket defined as follows:

{21, Py =2K*1,)) (3.7.40)
leading to the triholomorphic Poissonian realization of the Lie algebra:
(P, 2y = N Pk (3.7.41)

which in components reads:
X pu v 1 K X
K ki ky = 3 g Pk (3.7.42)
In the quaternionic case, instead, the left-hand side of Eq.(3.7.38) is interpreted as
follows:

7 : u
X o ,927 =iy V327 = X"V, @7 (3.7.43)

where V is the SU(2)-covariant differential. Correspondingly, the triholomorphic
Poisson bracket is defined as follows:

{21, Py =2K (1)) — A e™* P P (3.7.44)
and leads to the Poissonian realization of the Lie algebra
(P 2y = 8 Pk (3.7.45)

which in components reads:

R | .
K ki ky — 58"” PP = 3 Ny 2% (3.7.46)
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Equation (3.7.46), which is the most convenient way of expressing equivariance in a
coordinate basis was originally written in [4] and has played a fundamental role in
the construction of supersymmetric actions for gauged ./ = 2 supergravity both in
D =414,5]andin D = 5[12].

3.8 Kaihler Surfaces with One Continuous Isometry

As an illustration of the concepts introduced in the previous sections we consider
here a class of very simple manifolds for which a lot of explicit calculations can be
explicitly done, quite non trivial conceptual questions can be addressed and answered.
These are 2-dimensional surfaces endowed with a one-dimensional continuous group
of isometries ¥,. As we advocate below the geometry of such manifolds is com-
pletely encoded in a single positive real function V (¢) of a single real coordinate ¢.
We name such a function the potential.® The main point is that any two-dimensional
Euclidean manifold is actually complex and Kéhler. This offers us the possibility of
exemplifying all the structures we have discussed. We have to find the complex struc-
ture, the Kiahler form and the Kihler potential. Furthermore since we have a Killing
vector we can construct its moment map. Finally we can calculate the curvature. All
these objects are functions of a single coordinate related with the initial potential
V(¢) and its derivatives. Last but not least we have to decide the topological nature
of the isometry group.

Within this class of manifolds we are able to construct several interesting examples
that hopefully should clarify the non trivial aspects of the geometrical apparatus
developed in previous sections. In particular, since we are dealing with 2-dimensional
surfaces we can visualize them by means of their embedding in three-dimensional
space.

With the above motivations let us consider Riemannian 2-dimensional manifolds
X whose metric is the following one:

ds: = p(U)dU? + q(U)dB> (3.8.1)

p(U), q(U) being two positive definite functions of their argument. The isometry
group of the manifold X' is generated by the Killing vector kjz; = 95.

A fundamental geometrical question is whether K] generates a compact rotation
symmetry, or a non compact symmetry either parabolic or hyperbolic. We plan to
discuss this issue in detail in the sequel.

Actually when ¥ = X, is a constant curvature surface namely the coset
manifold SYU ~ SLEE) “here is also a third possibility. In such a situation the

u) 0(2)
Killing vector k{p; can be the generator of a dilatation, namely it can correspond to

8This name is related with the use of this class of surfaces in supergravity inflationary models as
described in [13—15], yet this is not relevant to us here. In this book our view point is just geometrical.
Most of the material presented in this section was originally worked out in [13-15].
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a non-compact but semi-simple elementd = <(1) _Ol ) of the Lie algebra SL(2, R)

01
00)

As all other two-dimensional surfaces, X' has an underlying complex Kihlerian
structure that we can systematically uncover with the methods described in this
chapter. The first step is to determine the complex structure with respect to which
the metric (3.8.1) is hermitian. By definition an almost complex structure is a tensor
32 which squares to minus the identity:

rather then to a nilpotent one t =

b3y =8 (3.82)

The almost complex structure J# becomes a true complex structure if its Nienhuis
tensor vanishes:
N&'ﬂ = Oo SE] — Iy Jp o dy =0 (3.8.3)
Given a complex structure, a metric g, is hermitian with respect to it if the following
identity is true:
A~V AB
8op = Jby Jp 8ys (3.8.4)

Given the metric (3.8.1) there is a unique tensor 3{;’, which simulatenously satisfies
Egs.(3.8.2), (3.8.3), (3.8.4) and it is the following:

)

~_ (033 _ 0 )

J—<350 ol (3.8.5)
p(0)

Next, according to theory, the Kéhler 2-form is defined by:

K =Ky dx* A dx? = 8ay 3; dx® A dxP
—J/p(U)qU)dU A dB (3.8.6)

and it is clearly closed. Hence the metric (3.8.1) is Kéhlerian and necessarily admits
arepresentation in terms of a complex coordinate ¢ and a Kéhler potential 2 (¢ , ¢).
In terms of the complex coordinate:

¢ =¢U,B) (3.8.7)
the Kéhler 2-form K in Eq. (3.8.6) should be rewritten as:
K =000 =08, 0;d; Adt (3.8.8)

Next one aims at reproducing the Kéhlerian metric (3.8.1) in terms of a complex
coordinate 3 = 3(U, B) and a Kéhler potential .7 (3, 3) = £ *(3, 3) such that:
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K =i00.4 =id,0;.¢d3 Adj ; dsy =0,0;4d3 ®d3  (3.89)

The complex coordinate 3 is necessarily a solution of the complex structure equation:

pU)
qU)

P gz =ides = 35 3(U, B) = idy 3(U, B) (3.8.10)

The general solution of such an equation is easily found. Define the linear combina-

tion”:
. _ ] _ [pU)
w=1CU) B ; CWU) = / _q(U) dU (3.8.11)

and consider any holomorphic function f(w). As one can immediately verify, the
position 3(U, B) = f(w) solves Eq.(3.8.10). What is the appropriate choice of the
holomorphic function f(w)? Locally (in an open neighborhood) this is an empty
question, since the holomorphic function f(w) simply corresponds to a change of
coordinates and gives rise to the same Kihler metric in a different basis. Globally,
however, there are significant restrictions that concern the range of the variables B
and C(U), namely the global topology of the manifold X'. By definition B is the
coordinate that, within X', parameterizes points along the ¢x-orbits, having denoted
by ¥ the isometry group. If ¥ is compact, then B is a coordinate on the circle and
it must be defined up to identifications B >~ B + 2 n 7, where n is an integer. On the
other hand if B is non compact its range extends on the full real line R.

Furthermore, it is convenient to choose a canonical variable ¢ and codify the
geometry of the surface in terms of a single positive potential function V (¢) rewriting
it in the following way:

2
ds} = d¢* + (d—vd‘;@> dB? (3.8.12)

——— ———
2@

Hence we aim at a Kéhler potential #"(3, 3) that in terms of the variables C(U)
and B should actually depend only on C, being constant on the ¢-orbits. Starting
from the metric (3.8.1) we can always choose a canonical variable ¢ defined by the
position:

¢ =o¢WU) = / Vp)du ; d¢ = /pU)dU (3.8.13)

9 As it follows from the present discussion the coordinate C(U) has an intrinsic geometric character-
ization as that one which solves the differential equation of the complex structure. For the historical
reasons explained in [13—15] we name C the Van Proeyen coordinate, abbreviated VP-coordinate.
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and assuming that ¢ (U) can be inverted U = U (¢) we can rewrite (3.8.1) in the
following canonical form:

dU
ds, = do* + (/@) dB? ;. P (¢) = Vg U@) ; \/p(U(zzS))% =1
by construction
(3.8.14)

The reason to call the square root of g (U (¢)) with the name &7’ (¢) is the interpre-
tation of such a function as the derivative with respect to the canonical variable ¢ of
the moment map of the Killing vector k).

By using the canonical variable ¢, the coordinate C defined in Eq.(3.8.11)
becomes:

cw = cwen = [ b (3815)
and the metric ds3. = ds>,, of the Kihler surface X can be rewritten as:
dsy = %dQ—J (dC* +dB?) (3.8.16)
dc?
where the function J (C) is defined as follows:
S (@) =2 z,—((i?)d¢ 2 J(O) = J(9(C) (3.8.17)

It appears from the above formula that the crucial step in working out the analytic
form of the function J(C) is the ability of inverting the relation between the coor-
dinate C, defined by the integral (3.8.15), and the canonical one ¢, a task which,
in the general case, is quite hard in both directions. The indefinite integral (3.8.15)
can be expressed in terms of special functions only in certain cases and even less
frequently one has at his own disposal inverse functions. In any case the problem is
reduced to quadratures and one can proceed further. Having already established in
Eq.(3.8.11) the general solution of the complex structure equations, there are three
possibilities that correspond, in the case of constant curvature manifolds X,,,,,, to the
three conjugacy classes of SL(2, R) elements (elliptic, hyperbolic and parabolic). In
the three cases J(C) is identified with the Kdhler potential # (3, 3), but it remains
to be decided whether the coordinate C is to be identified with the imaginary part
of the complex coordinate, namely C = Imj, with the logarithm of its modulus
C = % log |3/, or with a third combination of 3 and 3, namely whether we choose
the first the second or the third of the options listed below:

(= expl—iw] =exp[C(p)] exp[iB]
——

p(®) _ 1
3=Vi=  w  —iC)-B C("’):/W‘M’

= itanh (— 3 w) =itwnh (-} GC@) - B))

w
I

(3.8.18)
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If we choose the first solution 3 = ¢, that we name name of the Disk-type, we obtain
that the basic isometry generated by the Killing vector k;z; is a compact rotation
symmetry. Choosing the second solution 3 = ¢, that we name of Plane-type, is
appropriate instead to the case of a non compact shift symmetry. The third possibility
mentioned above certainly occurs in the case of constant curvature surfaces X,,,, and
leads to the interpretation of the B-shift as an SO(1, 1)-hyperbolic transformation.

In Sect. 3.8.5 we recall that the classification of a one dimensional isometry group
as elliptic, parabolic or hyperbolic exists also for non maximally symmetric man-
ifolds and it can be unambiguously formulated for Hadamard manifolds that are,
by definition, simply connected, smooth Riemannian manifolds with a non positive
definite curvature, i.e. R(x) < 0, Vx € X, having denoted by R(x) the scalar
curvature at the point x.

In the three cases mentioned in Eq. (3.8.18) the analytic form of the holomorphic
Killing vector K is quite different:

i 9, =kio; = k3 =13 ; Disk-type, compact rotation
k(g = 0r =k3d; = ki =1 ; Plane-type, non-compact shift
i (l + 22) 34: =k3d; = ki =1 (1 + 32> ; Disk-type, hyperbolic boost
(3.8.19)

Choosing the complex structure amounts to the same as introducing one half of the
missing information on the global structure of X', namely the range of the coordinate
B. The other half is the range of the coordinate U or C.

Actually, by means of the constant curvature examples, a criterion able to discrim-
inate the relevant topologies is encoded in the asymptotic behavior of the function
8%] (C) for large and small values of its argument, namely in the center of the bulk
and on the boundary of the surface X'. The main conclusions that we can reach by
considering the case of constant curvature surfaces are those summarized below and
are also encoded in Table 3.1:

(I) The global topology of the group ¥ reflects into a different asymptotic behav-
ior of the function E)é J (C) in the region that we can call the origin of the manifold.
In the compact case the complex coordinate 3 is charged with respect to U(1) and,
for consistency, this symmetry should exist at all orders in an expansion of the
line element ds3. for small coordinates. Hence for 3 — 0 the line element should
approach the canonical one of a flat complex-manifold:

ds% o d3d3 (3.8.20)
Assuming, as it is necessary for the U(1) interpretation of the B-shift symmetry,

that; = ¢ = exp[8(C + iB)], where § is some real coefficient, Eq. (3.8.20)
can be satisfied if and only if we have:

lim exp[—26C] 8éJ(C) = const. (3.8.21)

C——o0
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or more precisely:

C——
BéJ(C) ~ const X exp[246 C] + subleading

C——
J(C) = = const x exp[26 C] + subleading (3.8.22)

The above stated is an intrinsic clue to establish the global topology of the Kih-
ler surface X'. In Sect.3.8.5 we present some rigorous mathematical results that
justify the above criterion to establish the compact nature of the gauged isom-
etry. Indeed what, in heuristic jargon we call the origin of the manifold is, in
rigorous mathematical language, the fixed point for all I’ € ¥s, located in the
interior of the manifold, whose existence is a necessary defining feature of an

elliptic'’isometry group .

(II) The above properties are general and apply to all surfaces of type (3.8.1)—
(3.8.12). In the particular case of constant curvature Kihler surfaces there are
five ways of writing the line-element (3.8.12), two associated with a flat Kihler
manifold and three with the unique negative curvature two-dimensional symmetric
space SL(2, R)/O(2).

(IIT)  Global topology amounts, at the end of the day, to giving the precise range of
the coordinates C and B labeling the points of X'. In the five constant curvature
cases these ranges are as follows. In the elliptic and parabolic case C is in the range
[—o0, 0], while it is in the range [—o0, +oc] for the flat case and it is periodic
in the hyperbolic case. The cooordinate B instead is periodic in the elliptic case,
while it is unrestricted in the hyperbolic and parabolic cases. The manifold X' in
the flat case with B periodic is just a strip. It is instead the full plane in the flat
parabolic case.

Our goal is to extend the above results to examples where the curvature of the
Kihler surface X is not constant. In such examples we will verify the criterion that
singles out the interpretation of the B-shift isometry as a parabolic shift-symmetry.
In all such cases the range of the C coordinate is [—oc0, 01" or [—00, co]. The limit
C — 0 always correspond to a boundary of the Kéhler manifold X irrespectively
whether the isometry group ¥ is elliptic or parabolic. If the curvature is negative
we always have:

) =0 1 .
9cJ(C) = const x o + subleading

C—>0
J(C) = const x log[C] + subleading (3.8.23)

10 et us stress that this is true for Hadamard manifolds and possibly for CAT (k) manifolds, in
any case for simple connected manifolds. In the presence of a non trivial fundamental group the
presence of a fixed point is not necessary in order to establish the compact nature of the isometry
group.

Note that [—o0, 0] as range of the C-coordinate is conventional. Were it to be [co, 0], we could
justreplace C — — C which is always possible since the Kéhler metric is given by Eq.3.8.16.
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In case the curvature at C = 0 is zero, the gauge group is necessarily parabolic, since
we cannot organize an exponential behavior of J(C) for C — 0. Such exponential
behavior is instead requested by an elliptic isometry, so the only conclusion is that a
limiting zero curvature at a boundary C = 0 can occur only in parabolic models and
there we have:

2 C—0 .
0cJ(C) =~ const + subleading

C—0
J(C) = const X C? + subleading (3.8.24)

In the case of a parabolic structure of the isometry group ¢s, the locus C = — oo is
always a boundary and not an interior fixed point which does not exist. Differently
from Eq.(3.8.22) the asymptotic behavior of the metric and of the J-function is
either:

2 C = - 1 .
9cJ(C) =~ const x Il + subleading

C—— 1
J(C) = OOR— x log[C] + subleading (3.8.25)

[e.¢]

or

2 C— —o0 .
d9cJ(C) =~ const + subleading

C——o0 2 .
J(C) = const x C° + subleading (3.8.26)

The asymptotic behavior (3.8.25) obtains when the limit of the curvature for
C - —001is Ry < 0. On the other hand, the exceptional asymptotic behavior
(3.8.26) occurs when the limit of the curvature for C — — o0 is Ry, = 0. As we
did for the compact case, also for the parabolic case, in Sect. 3.8.5 we present rigor-
ous mathematical arguments that sustain the heuristic criteria (3.8.25) and (3.8.26).
Hence in the case where we deal with a parabolic isometry group, the Kihler poten-
tial has typically two logarithmic divergences one at C = 0, and one at C = —o0,
the two boundaries of the manifold X. One logarithm can be replaced by C? in case
the limiting curvature on the corresponding boundary is zero. In other regions the
behavior of J is different from logarithmic because of the non constant curvature.

Finally we can wonder what is the criterion to single out a hyperbolic characteri-
zation of the isometry group ¢x. A very simple answer arises from the example in
the second line of Table 3.1. The hallmark of such isometries is a periodic coordinate
C or anyhow a C that takes values in a finite range [Cynin , Cmax]- We will present
an example of a non constant curvature Kéhler surface with a hyperbolic isometry
in Sect.3.8.3.

There is still one subtle case of which we briefly discuss an example in Sect. 3.8.2.
As we know there are two versions of flat manifolds, one where the selected isometry
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is a compact U(1) and one where it is a parabolic translation. In both cases the
curvature is zero but in the former case the J (C) function is:

J(C) x exp[§C] ; elliptic case (3.8.27)
while in the latter case we have
J(C) x c? parabolic case (3.8.28)

Hence the following question arises. For X surfaces with a parabolic isometry
group we foresaw the possibility, realized for instance in the example discussed in
Sect. 3.8.4, that the limiting curvature might be zero on one of the boundaries so that
the asymptotic behavior (3.8.25) is replaced by (3.8.26). In a similar way we might
expect that there are elliptic models where the asymptotic behavior at C — £00 is:

C—>+o0
J(C) =~ exp[bsC] (3.8.29)

one of the limits being interpreted as the symmetric fixed point in the interior of
the manifold, the other being interpreted as the boundary on which the curvature
should be zero. In Sect.3.8.2 we will briefly sketch a model that realizes the above
forseen situation. The corresponding manifold X' has the topology of the disk. In the
same section, as a counterexample, we consider a case where the same asymptotic
(8.3.56) is realized in presence of an elliptic symmetry, yet C — —oo no longer
corresponds to an interior point, rather to a boundary. This is due to the non trivial
homotopy group 7;(X') of the surface which realizes such an asymptotic behavior.
Being non-simply connected such Kihler surface is not a Hadamard manifold and
presents new pathologies from the mathematical stand-point.
So let us turn to the analysis of the curvature.

3.8.1 The Curvature and the Kahler Potential
of the Surface X~

The curvature of a two-dimensional Kéhler manifold with a one-dimensional isom-
etry group can be written in two different ways in terms of the canonical coordinate
¢ or the coordinate C. In terms of the coordinate C we have the following formula:

J"(C) - J'(C)?

R = R(C) = _% ]//(C)3

= —19¢ log[92J(O)]

T (3.8.30)
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which can be derived from the standard structural equations of the manifold '*:

0=dE' + » A E?
0=dE> — w A E!
MR=dw = 2RE' A E? (3.8.31)

by inserting into them the appropriate form of the zweibein:

" "
E' = /%dc B2 = /#dlg = ds? = 577(C) (ac? + ap?)
(3.8.32)
Alternatively we can write the curvature in terms of the moment map & (¢) or of the

function V (¢) o< 272(¢) if we use the canonical coordinate ¢ and the corresponding
appropriate zweibein:

E'=d¢ ; E*= P @#)dB = ds* = <d¢2 +(2@6) dBZ)
(3.8.33)
Upon insertion of Eq. (3.8.33) into (3.8.31) we get:

P 7 v v/ 2
R(¢) =1 @/(:sb)) -1 (V/ DA (7) ) (3.8.34)

The zero curvature and constant curvature cases can be easily analyzed. The general
solution of the equation:
R(p) = —1vi = -7 (3.8.35)

can be presented in terms of the moment map &?(¢) and of the canonical variable
¢. We have:

P(P) = aexp(vp) + bexp(—veo) + ¢ ; a,b,c € R (3.8.36)

In order to convert this solution in terms of the Jordan function J (C) of the coordinate
C, it is convenient to remark that, up to constant shift redefinitions and sign flips of
the canonical variable ¢ — ¢ + «, which leave the d¢? part of the line-element
invariant there are only three relevant cases:

(A) a#0,b+#0anda/b > 0.In this case, up to an overall constant, we can just
set:

P(p) = cosh(vg) +y = V(p) x (cosh(vep) + y)? (3.8.37)

12The factor 2 introduced in this equation is chosen in order to have a normalization of what we
name curvature that agrees with the normalization used in several papers of the physical literature.
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B) a#0,b#0anda/b < 0. In this case we can just set:

P (@) = sinh(vg) +y = V(¢) x (sinh(vg) + y)? (3.8.38)
(C) a #0, b=0.In this case we can just set:

P(@) =expve) +y = V(§) x (expve) + )’ (3.8.39)

Since our main goal is to understand the topology of the Kihler surface X~ and
possibly to generalize the above three-fold classification of isometries to the non
constant curvature case, it is very useful to recall how, in the above three cases, the
corresponding (Euclidean) metric d sé is realized as the pull-back on the hyperboloid
surface

XT+ X5 - X3 =—1 (3.8.40)

of the flat Lorentz metric in the three-dimensional Minkowski space of coordinates
{X1, X2, X3}. The manifold is always the same but the three different parameteriza-
tions single out different gaussian curves on the same surface. Itis indeed an excellent
exercise in differential geometry to see how the same space can be described in appar-
ently very much different coordinate systems. Furthermore the gaussian curves being
integral curves of different Killing vectors give visual appreciation of the different
global character of elliptic, parabolic and hyperbolic isometries.

3.8.1.1 Embedding of Case (A)

Let us consider the case of the moment map of Eq.(3.8.37). The corresponding
two-dimensional metric is:

ds; = d¢* + sinh® (v ¢) dB* (3.8.41)

It is the pull-back of the (2, 1)-Lorentz metric onto the hyperboloid surface (3.8.40).
Indeed setting:

X, = sinh(v¢) cos(Bv)
X, = sinh(v¢) sin(Bv)
X3 = Fcosh(vo) (3.8.42)

we obtain a parametric covering of the algebraic locus (3.8.40) and we can verify
that:

1
— (dX7 4 dX; — dX3) = d¢* + sinh® (v¢) dB* = ds; (3.8.43)
vV
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X2 T

X3

Fig. 3.1 In this figure we show the hyperboloid ruled by lines of constant ¢ that are circles and of
constant B that are hyperbolae. In this figure we also show the stereographic projection of points
of the hyperboloid onto points of the unit disk

A picture of the hyperboloid ruled by lines of constant ¢ and constant B according
to the parametrization (3.8.42) is depicted in Fig. 3.1. In case of non constant curva-
ture with a moment map which gives rise to a consistent U(1) interpretation of the
isometry, the surface X is also a revolution surface but of a different curve than the
hyperbola.
Setting:
f) = 7' (3.8.44)

we consider the parametric surface:

X1 = f(¢) cos B
Xy = f(¢) sin B
X; = +g(¢) (3.8.45)

where g(¢) is a function that satisfies the differential equation:

§@) = (@) -1 = gl¢) = / de/(f' (@) =1 (3.8.46)
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The pull back on the parametric surface (3.8.45) of the flat Minkowski metric:

dsy = dXi+dX; —dX; (3.8.47)
reproduces the metric of the surface X' under analysis:

dst = d¢* + f*(¢)dB? (3.8.48)

Hence the revolution surface (3.8.45) is generically an explicit geometrical model of
the Kéhler manifolds X~ where the considered isometry is elliptic, namely a compact
U(1). Note that the last integral in Eq.(3.8.46) can be performed and yields a real
function only for those functions f (¢) that satisfy the condition ( f ’(qb))2 > 1.Hence
the condition:

(2"($)" > 1 (3.8.49)

is a necessary requirement for the U(1) interpretation of the gauged isometry which
has to be true together with the asymptotic expansion criterion (3.8.22).

Applying to the present constant curvature case the general rule given in
Eq. (3.8.15) that defines the coordinate C we get:

do _10g(tanh(%)) N ¢=M (3.8.50)

) 2@ T V2 "

C(o)

from which we deduce that the allowed range of the flat variable C, in which the
canonical variable ¢ is real and goes from 0 to oo, is the following one:

C e [-o0, 0] (3.8.51)

The Kihler potential function is easily calculated and we get:

log (1 — e*¢
JC) =2(y+1)C -2 ( )+21°g(2)

- = (3.8.52)

In this case the appropriate relation between ¢ in the unit circle and the real variables
C, B is the following:

¢ = e UBHO) (3.8.53)
3.8.1.2 Embedding of Case (B)

Consider the case of Eq. (3.8.38). The corresponding two-dimensional metric is:

ds; = (d¢*> + cosh® (v¢) dB?) (3.8.54)
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which can be shown to be another form of the pull-back of the Lorentz metric onto
a hyperboloid surface. Indeed setting:

X1 = cosh(v¢) sinh(Bv)
X, = sinh(v¢)
X3 = £ cosh(Bv) cosh(v¢) (3.8.55)

we obtain a parametric covering of the algebraic locus (3.8.40) and we can verify
that:

1
= (dX] + dX; — dX3) = (d¢> + cosh® (v¢) dB*) = ds, (3.8.56)

A three-dimensional picture of the hyperboloid ruled by lines of constant ¢ and
constant B is displayed in Fig. 3.2. For other surfaces X' (if they exist and are regular)
possessing a hyperbolic isometry we can realize their geometrical model considering
the following parametric surface:

Fig. 3.2 The hyperboloid
surface displayed in the
parametrization (3.8.55). The
lines drawn on the
hyperboloid surface are those
of constant B and constant ¢
respectively. Both of them
are hyperbolae, in this case
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Xi = f(¢) sinh B

X = g(¢)
X3 == f(¢) cosh B (3.8.57)
where:
f@) = Z'() (3.8.58)

and where g(¢) is a function that satisfies the following differential equation:

g@) =1+ (f@®)? = gl = / dp+/1 + (f/(¢)*  (3.8.59)

Once again the pull-back of the flat Minkowski metric (3.8.47) on the parametric
surface (3.8.57) reproduces the looked for metric of the X'-surface:

dst = d¢* + f*(¢)dB? (3.8.60)

Which is the appropriate interpretation is dictated by the asymptotic behavior of
the J(C) function and of its second derivative, or alternatively by the equivalent
mathematical criteria discussed in Sect. 3.8.5.

Applying to the present constant curvature case the general rule given in
Eq. (3.8.15) that defines the coordinate C we get:

d¢ ~ 2Arctan (tanh (%)) o ¢— 2Arctanh (tan (CTUZ)>

Clp) = @) 2 )

(3.8.61)
from which we deduce that the allowed range of the flat variable C, in which the
canonical variable ¢ is real and goes from —oo to oo, is the following one:

C e [—% %] (3.8.62)

The Kéhler function J(¢) is easily calculated and we obtain:
2 2
J(€) =2y C — — log (cos (Cv?)) (3.8.63)

In this case the appropriate relation between ¢ in the unit circle and the real variables
C, B is different, it is:

¢ = itanh (%(B —iC)v2> (3.8.64)
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3.8.1.3 Embedding of Case (C)

In the case the moment map is given by Eq.(3.8.39) the parameterization of the
hyperboloid is the following one:

X 1 —¢"?B? 4 ¢"% — e v
2 V2

X, = Be"®v

| g
Xi= ("B +e?+ 5 v (3.8.65)
2 V2

Indeed upon insertion of Eq. (3.8.65) into (3.8.40) we see that for all values of B and
¢ the constraint defining the algebraic locus is satisfied. At the same time by means
of an immediate calculation one finds:

1
= (dX] + dX; — dX3) = d¢* + ¢ dB* = ds, (3.8.66)

so that the considered metric is the pull-back of the three-dimensional Lorentz metric
on the surface ¥ parameterized as in Eq. (3.8.65). The integration of Eq. (3.8.15) is
immediate and the coordinate C (¢) takes the following very simple invertible form:

—vg _ 2
e o $(C) = _log( Cv?)

C(p) = — (3.8.67)

V2
The range of definition of C is:

C € [-00, 0] (3.8.68)

A three-dimensional picture of the hyperboloid ruled by lines of constant ¢ and
constant B, according to Eq. (3.8.65) is displayed in Fig. 3.3.

The integration of Eq. (3.8.17) for the Kihler potential is equally immediate and
using the inverse function ¢ (C) we obtain:

2
J(C) =2y C — — log(—C) + const (3.8.69)
v

From the form of Eq. (3.8.69) we conclude that in this case the appropriate solution
of the complex structure equation is:

3=t=—1C + B (3.8.70)

so that the Kihler metric becomes proportional to the Poincaré metric in the upper
complex plane (note that C is negative definite for the whole range of the canonical
variable ¢):
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Fig. 3.3 The hyperboloid
surface displayed in the
parametrization (3.8.65). The
lines drawn on the
hyperboloid surface are those
of constant B and constant ¢
respectively. The constant ¢
curves are parabolae and
they are the orbits of the
translation group

|27

ds* = 1 —= (dC* +dB?) =

2 dc?

149

(3.8.71)

As a consequence of Eq. (3.8.70), we see that the B-translation happens to be, in this

case, a non-compact parabolic symmetry.

More generally for any surface X' where the isometry of the metric:

ds2 = d¢? + f*(¢)dB*

(3.8.72)

is interpreted as a parabolic shift-symmetry we can construct a geometric model of
X in three-dimensional Minkowski space by considering the following parametric

surface:

1
X =3 (—f@)B*+ f(d) +g(9))

X> = Bf(¢)

1
X3 =3 (f(@)B*+ f($) — g(9))

(3.8.73)
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where g(¢) is a function that satisfies the differential equation:

1
f@ge) =1 = g@¢) = [ —=do (3.8.74)
1'(®)
The pull-back of the flat metric (3.8.47) onto the surface (3.8.73) is indeed the desired
metric (3.8.72).

3.8.2 Asymptotically Flat Kahler Surfaces with an Elliptic
Isometry Group

As announced above in this section we consider the problem of constructing a Kihler
surface ¥ with an elliptic isometry whose limiting curvature at the boundary vanishes
Rio = 0. In this case we can predict the asymptotic behavior of the function J(C)
for C — =+£oo. Indeed we know that for flat Kédhler manifolds with an elliptic
isometry, we have J(C) o exp [§ C] for some value of § € R. Hence we expect that
the function J(C) for surfaces X with an elliptic isometry and a vanishing limiting
curvature should behave has follows:

C—=to0 .
J(C) = exp [Si C] + subleading terms (3.8.75)

There is however a fundamental subtlety that has to be immediately emphasized. If the
topology of the surface X' is the disk topology and X' is simply connected 7, (~) = 1,
then one of the two limits C — oo has to be interpreted as the interior fixed point,
required by Gromov criteria, for elliptic isometries in Hadamard manifolds (and
possibly in CAT (k) manifolds). The other limit corresponds to the unique boundary
of disk topology. On the other hand if 7;(¥) = Z and the Kéhler surface has
the corona topology then there are two boundaries and the limiting curvature can
be zero on both boundaries. We will illustrate this with two examples, respectively
corresponding to the latter and to the former case.

3.8.2.1 The Catenoid Case with 7;(X) = Z

We begin by considering explicit functions J(C) that have the required asymptotic
behavior and we try to work our way backward towards the canonical coordinate ¢
and the moment map &?(¢). In particular we want to make sure that the considered
function J(C) does indeed correspond to a compact isometry. This will certainly be
the case if the corresponding metric is the pull-back of the flat three-dimensional
Euclidean metric on a smooth surface of revolution.

To carry out such a program we consider the following one-parameter family of
J (C) functions:
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J(€) = = (1 C* + cosh[2C]) (3.8.76)

0| —

which fulfills condition (3.8.75), by construction. Many other examples can be obvi-
ously put forward, but this rather simple one is sufficient to single out the main
subtlety that makes many asymptotically flat elliptic models pathological from the
point of view of Gromov et al. classification of isometries. Using Eqgs. (3.8.16) and
(3.8.30) we write the metric and the curvature following from the J(C) function of
Eq.(3.8.76), obtaining

1
dsk = 6 (2u + 4 cosh[2C]) (dC* + dB?) (3.8.77)

4p cosh(C) + 1

RO =~ T+ coshic))?

(3.8.78)

From these formulae we draw an important conclusion. In order for X' to be a smooth
manifold the curvature should not develop a pole neither in the interior nor on the
boundary. This means that 4u + cosh[C] > 0 in the whole range of C. This is
guaranteed if and only if u > — }1. On the other hand, according to our previous
discussions, in the case of an elliptic isometry, there should be, for a finite value of
C, a zero of the metric coefficient. Such a zero is the fixed point that characterizes
elliptic isometries of Hadamard manifolds. Looking at Eq. (3.8.77) we see that such
a zero exists, if and only if © < — % It follows that, at least in this family of models,
there are no smooth manifolds that are asymptotically flat in the elliptic sense and
fulfill the physical condition for U(1)-symmetry which corresponds to the Gromov
et al. identification of elliptic isometries of Hadamard manifolds. At first sight one
should draw the conclusion that, in the case of the J(C) functions of Eq.(3.8.76),
the isometry is not elliptic. Yet this is somehow strange, since at the boundary, where
the curvature goes to zero, the form of J(C) is precisely that which corresponds
to elliptic isometries. Furthermore we will shortly show that for every value of u
the metric in Eq. (3.8.77) is just the metric of a smooth revolution surface. Actually
for © = 2 such a revolution surface is the well-known catenoid, constructed by
Bernoulli in 1744 as the first example of a minimal surface. Hence we arrive at a
puzzle with Gromov et al. criteria, whose only resolution can be that the manifolds
associated with the J (C) functions of Eq. (3.8.76) are not Hadamard manifolds. From
Eq.(3.8.78) we see that, provided u > — }P the curvature is negative definite and
attains its maximal value R = 0 only on the boundary. Hence in relation with the
curvature there is no violation of the properties defining a Hadamard manifold. The
violation must be in another item of the definition. Considering the Definition 3.8.1 of
Hadamard manifolds provided in Sect. 3.8.5 we realize that the only way out from the
puzzle is that the surfaces corresponding to the J(C) functions of Eq.(3.8.76) have
to be non simply connected. That this is the case becomes visually obvious when
we consider the plot of the surface in three-dimensional space-time (see Fig.3.4),
yet it is quite clear also analytically. For constant C the orbits of the isometry group
spanned by B € [0, 2 ] are circles of radius:
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Fig. 3.4 In this picture we present two views of the catenoid, the revolution surface corresponding
to Jp(C) = % (2 C? + cosh[2 C]). For large positive or negative values of C one is either in
the superior or in inferior plane which is clearly flat with zero curvature. The center of the picture
correspond instead to C — 0 and is a sort of strongly negatively curved wormhole that connects
the two asymptotic planes. Non simple connectedness is visually spotted. The circles on the surface
winding around the throat cannot be contracted to zero and their homotopy class forms the non
trivial element of the first homotopy group 71 (X) = Z
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r(C) = ‘1—1\/ 2 4 4 cosh[2C] (3.8.79)

The fact that this radius has a minimum different from zero

1
Ymin = Z\/m >0 (3880)

is what spoils simple connectedness and prevents the existence of a fixed point for
U(1). In this way the puzzle is resolved mathematically.

Having anticipated this conceptual discussion of their meaning let us work out the
details of the models encoded in Eq. (3.8.76). Comparing Eqgs. (3.8.16) and (3.8.14)
we derive the relation between the canonical coordinate ¢ and C:

NG [ _ L. . 4
(3.8.81)
where E (x |m) denotes the elliptic integral of its arguments. In the case © = 2

which turns out to be that of the catenoid, the function &,;(C) simplifies and it can
be easily inverted in terms of elementary functions

P (C) = sinh(C) = C(¢) = ArcSinh(C) (3.8.82)
Substituting into the metric (3.8.77) one finds:

cosh?(C)

o (dC? +dB%) =} [dg +(¢* +1) dB’]

(3.8.83)
This implies that the derivative of the moment map is £'(¢) = /¢2 + 1 so that
the moment map and the scalar potential are the following ones:

w=2 : dsy =

= 2:P(p) = %(\hp? n 1¢+Arcsmh[¢]) -
V($) (\/¢>2 Flg+ ArcSinh[¢]>2 (3.8.84)

The metric (3.8.83) can be easily recognized to be the pull-back of the flat three-
dimensional Euclidean metric:

dsg; = dXi + dX; + dX;3 (3.8.85)

on the following parametric surface:
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X — cos(B) cosh(C)
1= —\/5
X, — cosh(C) sin(B)
2= —ﬁ
C
X3 =— 3.8.86
3 7 ( )

which is the classical catenoid. For other values of u a similar parametric surface of
revolution can be written in terms of appropriate functions of C. As we have already
anticipated, although the catenoid is a rotation surface and its isometry is elliptic,
its metric does not satisfy Gromov et al. criterion that requires the existence of a
symmetric point. The reason for this pathology is the non trivial fundamental group
T (X).

Finally let us appreciate the nature of the same problem from the point of view of
complex coordinates. If we introduce the complex coordinate:

¢ =exp[C —iB] ; ¢ =exp[C +iB] (3.8.87)

and we insert it into the expression of (3.8.76) of the J (C) function we easily obtain
the Kihler potential:

7) = _ L ey 4 58
H(,0) =2J(C) = 16,ulog €eo)+ 2 +8§E (3.8.88)
from which we obtain the metric:
— = — = 2
1) .o 1
g5y = WA+ e) +1) g ded (et +1) 5559

8 (¢2)° 8 (¢2)°

Examining Eq.(3.8.89) we see that the metric diverges at the symmetry restoration
point ¢ = 0 which now is the boundary of the manifold rather than its interior.

3.8.2.2 An Asymptotically Flat Kihler Surface with an Elliptic
Isometry and 7;(X¥) = 1

Let us consider the following moment map written in terms of the canonical variable
¢: |
P(¢) = ¢ — SArcTan (¢7) (3.8.90)

Using the standard formulae (3.8.15) for the calculation of the coordinate C we
obtain:
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+//e8C F ¢16C 4 8C
b= +iV/\/e5C £ 16C 4 ¢8C (3.891)
| £7/Ve8C — £16C 4 8C e

-4
+iv/\/e8C — ¢16C 4 ¢8C

C(¢) = log ({7%)

The eighth-root implies the existence of eight branches of the inverse function, that
have to considered carefully. Indeed we can accept only those branches where ¢ turns
out to be everywhere real. Six branches have to be rejected because of that reason
and the only acceptable ones are the first two which are equivalent under the always
possible sign revers of ¢. In conclusion we have:

b= \‘/\/Wﬂsc (3.8.92)

Using this branch the infinite interval [—oo, oo] of the variable C is mapped into
the semi-infinite interval [0, oco] of the variable ¢. Indeed we have C(0) = — oo,
C(o00) = o00. In the canonical coordinate the form of the metric is:

5 2
dsy = do* + fA(@)dB® ;. [i(¢) = ( ¢4"’+1 +¢) (3.8.93)

and using Eq. (3.8.92) we can easily convert it to the C variable:

asp =1 &1 (dC* + dB?)
R TeR
2
V& + e16C 4 o8C (2 [e8C 4 oT6C 4 268C 4 1)
= - (dC* + dB?)
( /eBC 1 oT6C 4+ o8C 4+ 1)
(3.8.94)
For C — — oo the behavior of the metric coefficient is:
d2J C— —o0 5 6C C— — o0
155 AT o) 5 10 TR L0 (3899)
while for C — oo it is the following:
d?] c— oo 3e4C C— 00
1 i 4c —12¢ 2211 4c
(3.8.96)

From previous considerations we see that C — — oo corresponds to ¢ = 0 and
hence to the fixed point in the interior of the manifold, so that the exponential behavior
of J(C) is the expected one for an elliptic isometry. At the same time the exponential
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Fig. 3.5 In this picture we R
present the plot of the 2
curvature for the elliptic
model of Eq.(3.8.90). It is
limited from above and has
three zeros, one at the
interior fixed point ¢ = 0, a
1/4 1
second one at ¢ = (%
and one on the boundary at
¢ =00

(%)\L.L—-——'""_'_ 3 5 ¢

behavior on the unique boundary implies that the limiting curvature on the boundary
should be zero. Indeed from the standard formula (3.8.34) for the curvature we obtain:

2¢* (3¢* —5)

R@®) = —
(¢ +1)° (2¢* + 1)

: R0)=0 ; R() =0 (3.897)

whose plot is displayed in Fig. 3.5. The vanishing of the limiting curvature is visually
evident. Finally let us make sure that the isometry of this model is indeed elliptic.
This we verify by showing that the metric (3.8.93) can be retrieved as the pull-back
of the flat Lorentz metric in Minkowsian three-dimensional space (3.8.47) on the
parametric revolution surface (3.8.45) defined by:

f(@) =

5 ¢ 4 (54 8 4
4¢ v e g(¢)5/ o (o +5)(3o —290 +2)d0'
¢+ 1 (o4 +1)

(3.8.98)
Two views of this surface are presented in Fig. 3.6. It is evident from the picture that
this surface is simply connected and that there is in the interior of the manifold a
fixed point. It is given by X| = X, = X3 = 0 which lies on the surface and where
the radius of the U(1) orbit shrinks to zero.

3.8.3 An Example of a Non Maximally Symmetric Kdiihler
Surface with an Isometry Group of the Hyperbolic Type

In order to exhibit an example of a surface with non constant curvature that has a
hyperbolic isometry we consider the following moment map and potential:

V@) = [P ; P(p) = ¢+ sinh(p) (3.8.99)
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Fig. 3.6 In this picture we
present two views of the
revolution surface X
associated with the elliptic
model of Eq.(3.8.90). It is
clearly regular and smooth
everywhere

which yields:
P'(¢p) = 1 4 cosh(¢p) ; dsz = d¢> + (1 + cosh(¢))*> dB*>  (3.8.100)

According to the mathematical classification discussed in Sect.3.8.5 the metric
(3.8.100) has a hyperbolic type of isometry due to the two fixed points on the bound-
ary of the manifold corresponding to the two singularities ¢ = Zoo. The curvature
of this manifold is finite but not constant. Indeed, applying Eq. (3.8.34) we obtain:
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Fig. 3.7 In this figure we " R
present the plot of the N T";‘\
curvature of the surface X f \
defined by Eq. (3.8.100) that 113
has a hyperbolic isometry. / \
. . 11 \
The first picture displays the 13 \
dependence of the curvature f-' ‘.‘
on the canonical coordinate / ",‘
¢, while the second picture ; ke e P
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displays its dependence on ] \
the coordinate C / ‘\
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cosh(¢)
R(¢) = (3.8.101)

" 2(cosh(¢) + 1)

whose plot is presented in Fig.3.7. In this case it is very simple to integrate the
complex structure equation which defines the C-coordinate. We obtain:

C(¢) = tanh (%) ;¢ = 2 ArcTanh(C) (3.8.102)

and we observe that in line with our general criteria for hyperbolic symmetry, the
range of the C-coordinate is in this case finite:

C e [-1,1] (3.8.103)

From the integration of Eq. (3.8.17) that defines the J-function and the Kéhler poten-
tial we obtain:

J(¢) = 2¢ptanh (%) = J(C) = 4C ArcTanh(C) (3.8.104)
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Calculating the metric coefficient from (3.8.104) we get:

NG S " (dC’+dBY)  (38.105)
2dC* - (c2 1) (c2—1) o

displaying a polar singularity at both extrema of the C-range, namely at C = +1.

In order to present a geometrical model of this Kdhler manifold, we resort to the
hyperbolic parametric surface encoded in formulae (3.8.57) and we calculate the
relevant functions f(¢) and g(¢). In this case it is more convenient to express them
in terms of the finite range coordinate C. We have:

= cosh 1 = 3.8.106
f(#) = cosh(¢) + T2 ( )
and inserting the result into Eq. (3.8.59) we get:
1 [2C (c?-3)
g(C) = = — -+ log(C — 1) —log(C + 1) (3.8.107)
s\ ()

The plots of these functions is presented in Fig.3.8. In Fig. 3.9 we display the three
dimensional shape of the parametric surface X realizing the desired Kéhler manifold.

3.8.4 A Non Maximally Symmetric Kihler Manifold with
Parabolic Isometry and Zero Curvature at One
Boundary

As a final example we consider a parabolic model where the curvature at one of the
two boundaries goes to zero so that the asymptotic behavior of the J (C)-function on
that boundary becomes exceptional.

Let the moment map be the following one:

P(p) = explvd] + no (3.8.108)

The corresponding f (¢)-function is:

f@) = Z'(¢p) =vexplvel + u (3.8.109)

which has no zeros for finite ¢ if © and v have the same sign. If the two parameters
have opposite signs there is such a zero and this creates a fixed point of the isometry
B — B + c at finite ¢ which implies that the isometry is elliptic. Yet in case of
opposite signs the curvature has a singularity so that any smooth Kéhler manifold
with a moment map of type (3.8.108) has a parabolic isometry group. Indeed using
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Fig. 3.8 In this picture we £
present the plots of the
functions f(C), g(C) that
define the realization of the
Kihler manifold ¥
associated with the potential
(3.8.99) as a parametric
surface in flat Minkowski
three-dimensional space. The 4
geometrical model is that

appropriate to the hyperbolic 3
character of the isometry

B — B + c. The first two

pictures display the plot of g 1 1 1
and f as functions of the VP 3 "7 T z
coordinate C. The last plot is

the parametric plot of the g

curve in the plane f, g.
Geometrically this is the
curve cut out by the surface
X in any plane orthogonal to
the axis X»

Eq. (3.8.34) we can immediately calculate the curvature and we find:

e"%y3

RO = v om)

(3.8.110)

This shows what we just said. The manifold is smooth and singularity-free if and
only if © and v have the same sign so that at no value of ¢ the denominator can
develop a zero. Without loss of generality we can assume that v > 0 since the sign of
¢ can be flipped without changing its kinetic term. With this understanding it follows
that also o > 0 for regularity.

Consider next the integral defining the VP coordinate C. We immediately obtain:

vo
Clp) = 1 dd):f_log(,u—i—e v)

3.8.111
P'(9) M v ( .

The range of C is now easily determined considering the limits of the above function
for ¢ = +o0o. When u > 0, v > 0 we have:
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Fig. 3.9 In this figure we
present the 3 D-plot of the
surface X associated with
the potential (3.8.99). The
correct interpretation of the
isometry in this case is that
of a hyperbolic group. Indeed
the hyperbolic embedding
(3.8.57) in three-dimensional
Minkowski space works
beautifully and we have the
smooth surface displayed
here

log[v
Cl—00) = —00 : Cl(oo) = — 28V (3.8.112)
nv
Hence C € [—oo , — 105#] The VP coordinate is always negative and it spans a

semininfinite interval. Keeping this range in mind we can invert the relation (3.8.111)
between ¢ and C obtaining:

log (,i - ﬁ)
- V

¢ = (3.8.113)
The J-function is easily calculated from Eq. (3.8.17) and we find:
242 ey . ey
vegp© + (2 —2v¢) log (T + 1) —2Lip <_T)
J(@) = (3.8.114)

v2

where Li,(z) is the polylogarithmic function. Introducing in (3.8.114) the relation
between ¢ and C, we get an explicit analytic expression for the J(C) function,
namely:
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70 =~ Tiog2 (222 42 (10 (2222 1)1 :
= —|log° | ———— og| —— og| ————
2 | %8 I 5 " S ey

—2Li (1 + ;)} (3.8.115)

eCrvy — 1

As for the metric, having the explicit expression (3.8.115), we easily calculate its
second derivative and we find:
d2J w?

ds*> = %d_cz (dC* + dB?) = m (dC* + dB?) (3.8.116)

1 d>J

For C — — oo the metric coefficient R Ted tends to a constant:

2 o N 2
%% KT o g0 =T %C2 (3.8.117)
This asymptotic behavior differs from the usual logarithmic behavior of J(C) at the
boundary because at C = —oo and hence at ¢ = — oo the curvature goes to zero.

In the other extremum of the C-range, namely for C — — % the metric
coefficient diverges and we have the standard logarithmic singularity. To see this, set
C =— 105% — & and substitute it into the expression of the metric coefficient. We
obtain:

o

2]_ MZ

C? <ew(_g_lnﬁ<"w)v ~ 1>2

£-0 1 woospro1 o, )
~ b, o 3.8.118
e ToE T Tt T (&) ( )

1
2

Q.

and we conclude that, naming Cy = — 105#, we have:
C—>Cy 2
J(C) = —log[Cy — C] (3.8.119)
v
This is the standard logarithmic singularity and the coefficient in front of the logarithm
is indeed the inverse of the limiting curvature: R¢, = % 2.

This result confirms once again the relation between the asymptotic behavior of the
J (C) function and the character of the isometry group. For a parabolic isometry the
asymtotic behavior is just that anticipated in Eqgs. (3.8.25), (3.8.26). For a vanishing
limiting curvature the correct asymptotic is (3.8.26).

The present example is very paedagical in order to avoid possible misconceptions.
If we looked at the expression (3.8.116) and we forgot the precisely defined range
of the variable C which is determined by the integration of the complex structure
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equation, we might be tempted to consider the same metric also for positive values
of C. We would conclude that when C — oo the metric coefficient goes to zero
as exp[—v C]. Then we would dispute that the last mentioned behavior indicates an
elliptic interpretation of the isometry and advocate that there is a clash with our a
priori knowledge that the isometry is instead parabolic. In fact there is no clash since
the positive range of C is excluded and it is not to be considered. At the extrema of the
C-interval, the function J(C) displays the expected asymptotic behavior foreseen
for the parabolic case.

3.8.5 On the Topology of Isometries

In this last subsection we provide a mathematically more rigorous illustration of
the criteria discriminating among elliptic, parabolic and hyperbolic isometries of
a two dimensional manifold whose metric is written in the standard form utilized
throughout this section, namely:

ds®> = d¢* + f(¢)*dB>, (3.8.120)

In relation with the moment map issue, the function f(¢) is obviously the first
derivative &?'(¢) with respect to the canonical coordinate ¢ of the moment map
P (¢). Considering the metric (3.8.120) as god-given, it obviously admits the one
dimensional group of isometries B — B + ¢ for any choice of the smooth function
f (¢) parameterizing the metric coefficient and the question is what is the topology of
such a group, is it compact or non-compact, and in the second case is it parabolic or
hyperbolic. When we deal with a constant negative curvature manifold, namely with
the coset SL(2, R)/O(2) these questions have a precise answer within Lie algebra
theory, since the considered one-dimensional group of isometries ¥, is necessarily
a subgroup of SL(2, R) and as such its generator g € s[(2, R) can be of three types:

(a) g is compact, which means that, as a matrix, in whatever representation of
the Lie algebra sl(2, R) it is diagonalizable and its eigenvalues are purely imagi-
nary. In this case the one-dimensional subrgroup is topologically a circle S' and
isomorphic to U(1). We name elliptic the isometry group ¥, generated by
such a g.

(b) g is non-compact and semisimple, which means that, as a matrix, in whatever
representation of the Lie algebra s[(2, R), it is diagonalizable and its eigenvalues
are real and non vanishing. In this case the one-dimensional subgroup is topolog-
ically a line R and it is isomorphic to SO(1, 1). We name hyperbolic the isometry
group %, generated by such a g.

(c) g is non-compact and nilpotent, which means that, as a matrix, in whatever
representation of the Lie algebra s[(2, R), it is nilpotent and its eigenvalues are
zero. In this case the one-dimensional subrgroup is topologically a line R. We
name parabolic the isometry group ¥, generated by such a g.
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The interesting question is whether the characterization of an isometry as ellip-
tic,parabolic or hyperbolic can be reformulated in pure geometrical terms and applied
to cases where there is no ambient Lie algebra for the unique one-dimensional contin-
uous isometry ¥, In this respect it is useful to remark that a metric of type (3.8.120)
implies a fibre-bundle structure of the underlying two-dimensional manifold X:

Y =PR, ¥, %, — R (3.8.121)

where the base manifold is the real line R spanned by the coordinate ¢ &
[—oo, +oc], the structural group is the one-dimensional isometry group ¥;,, and the
standard fibre .% is a one dimensional space on which ¥, has a transitive action. In
other words the manifold ¥ is fibered into orbits of the isometry group. An explicit
geometrical realization of this fibration in the three cases was already provided in
the previous subsections by means of the three types of parametric surfaces encoded
in:

1. Equation (3.8.45) which realize a surface in three-dimensional Minkowski space
which s fibered in circles S! representating the orbits of an elliptic isometry group
gis(r

2. Equation (3.8.57) which realize a surface in three-dimensional Minkowski space
which is fibered in hyperbolae representating the orbits of a hyperbolic isometry
group giw-

3. Equation (3.8.73) which realize a surface in three-dimensional Minkowski space
which is fibered in parabolae representating the orbits of a parabolic isometry
group Y.

As we argued in previous subsections, providing also some counterexamples, the
subtle point is that the explicit geometric construction as a parametric surface fibered
in circles, parabolae or hyperbolae, which a priori seems always possible, should lead
to a smooth manifold having no singularity and being simply connected.

In more abstract terms the question was formulated by mathematicians for a
single isometry I”, even belonging to a discrete isometry group, not necessarily
continuous and Lie, which can be characterized unambiguously as elliptic, parabolic,
or hyperbolic, for Riemannian manifolds also of higher dimension than two, provided
they are Hadamard manifolds.

Definition 3.8.1 A Hadamard manifold is a simply connected, geodesically com-
plete Riemannian manifold /# = (.#, g) whose scalar curvature R(x) is nonpos-
itive definite and finite, namely —co < R(x) < 0, Vx € Z.

The virtue of Hadamard manifolds is that they allow for what is usually not available
in generic Riemannian manifolds, namely the definition of a bilocal distance func-
tion d(x, y) providing the absolute distance between any two points x, y € 7.
As we teach our students when introducing (pseudo)-Riemanian geometry and Gen-
eral Relativity, the concept of absolute space-(time) distance is lost in Differential
Geometry and we can only define the length of any curve g*(¢) (t € [0, 1]), which
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starts at the point x* = B#(0) and ends at the point y* = g*(1). Given the metric
g,v(x) we introduce the length functional which provides such a length:

1 v
(p) = / POt g (3.8.122)
0

dt dt

The curves corresponding to extrema of the length functional are the geodesics,
but in a generic Riemannian manifold there is no guarantee that for any two-points
x,y € . there is an arc of geodesic connecting them that is an absolute minimum
of the length functional and that such minimum is unique and non-degenerate. Instead
the hypotheses characterizing Hadamard manifolds guarantee precisely this (see, e.g.
[16] and references therein) and one can define the distance function:

Vx,y € € : d(x,y) = infimum [£(8)] (3.8.123)

Hence restricting one’s attention to Hadamard manifolds one can introduce a very
useful geometrical concept that allows for a geometrical classification of isome-
tries I":

r . #—.# ; Tl[ds]=ds; (3.8.124)
where I, denotes the pull-back of I". The geometrical concept which provides the
clue for such a classification is the displacement function defined below for any
isometry I":

dr(x) = d(x, I'x) (3.8.125)

3.8.5.1 Classification of Isometries of Hadamard Manifolds
H = ('// ¥4 )

The isometries of a Hadamerd manifold belong to the following types (see, e.g. [16]
and references therein):

(a) elliptic, if di-(x) attains an absolute minimum of vanishing displacement
min,c 4 dr(x) = 0, or, to say it in other words, if and only if I" has a fixed
point xo € . in the interior of the manifold for which d (x¢, I'xyp) = O.

(b) hyperbolic, if di-(x) attains an absolute minimum larger than zero
min,c 4 dr(x) > 0, or equivalently if I" has two distinct fixed points on the
boundary 0.7 of .#

(c) strictly parabolic, if d;-(x) never attains its infimum which is zero
inf,c 4 dr(x) = 0, or equivalently if I" has just one fixed point on the boundary
oM of M,

(d) mixed, if di(x) does not attain its the infimum which is larger than zero:
infxejf dr(x) > 0.
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The above classification of isometries is a generalisation to a nonconstant curvature
case of the classification of isometries of the very particular constant curvature case,
namely the Poincaré-Lobachevsky plane S]E)((Zz‘;R) , where only the isometries (a), (b)
and (c) are realized.

3.8.5.2 Application to the Kiihler Surfaces considered in this Section

Not all Kihler surfaces X' defined by Eq. (3.8.12) are Hadarmard since the curvature
sometimes becomes positive in the interior of the manifold but most of them are such
and moreover the limiting curvature of the boundary is non positive for all models.
Therefore it makes sense to utilize the above geometric classification of isometries
and verify that it just agrees with the criteria based on asymptotic expansions of the
function J(C) utilized in the previous subsections in order to discriminate among
elliptic, parabolic and hyperbolic groups. Negative curvature guarantees the existence
of a distance function, but probably in all considered examples such a distance
function is well defined in spite of the existence of positive curvature domains in the
deep interior of the manifold.
Hence with reference to the metric (3.8.120) let us consider the isometry I” cor-
responding to B-shifts:
B —-TB=B+43, (3.8.126)

where § is a constant parameter, let us assume that the curvature

&
R = —M, (3.8.127)
f(@®

fulfills the Hadamard condition: —oo < R < 0 and let us apply the classification
scheme introduced above.

The first observation is the following. If the function f(¢) has neither a singularity
nor a zero (i.e., if f(¢) # Foo and f(¢) # 0)both in the range of the coordinates
{¢, B} corresponding to the interior of the manifold .# and for those limiting values
corresponding to the boundary {¢, B} € 0.# then the metric (3.8.120) has no
coordinate singularity and the isometry (3.8.126) admits only one fixed point B =
00 € 3.7 on the boundary of the manifold. In this case the isometry I” is strictly
parabolic, according to item (c) of the above classification.

On the other hand, if the function f(¢) possesses a coordinate singularity at
some value of ¢ = ¢y € .4 in the interior of .#, then in order to establish
which is the type of the isometry I" one has to introduce a new coordinate system
{¢, B} — {5, B } such that the metric expressed in terms of the new coordinates
is non-singular in the vicinity of the former coordinate singularity. The existence of
such a coordinate system is guaranteed by the non-singularity of the curvature and
by the smoothness of the manifold. If in the newly constructed coordinate system the
isometry has a fixed point corresponding to the former coordinate singularity then,



3.8 Kihler Surfaces with One Continuous Isometry 167

according to item a) of the above classification, it is elliptic. Since this happens for all
elements of the isometry group ¥;,,, this latter is a compact U(1) and the appropriate
complex structureis 3 = ¢ = exp[§ (¢ — iB)]. Otherwise the isometry is certainly
not elliptic and non-compact.

Summarizing, the necessary condition for the isometry I to be elliptic is that the
function f(¢) has a zero or a pole in the interior of .Z at some ¢ = ¢9 = — Z—;,
where a; and a; > 0 are arbitrary constant parameters. In case such a singularity is
power-like, we conclude that in a neighborhood Uy, of ¢y we have:

F@lpeu,, = (@¢ + a)” (3.8.128)
where n is a positive or negative integer. Comparing Eq. (3.8.127) we see that the

condition of a regular and finite curvature is fulfilled if and only if n = 1. In other
words the function f(¢) has the following behavior at ¢ = ¢o:

f@lpev,, = a2 + ar+ 0@ — ¢0)°] (3.8.129)
Correspondingly the curvature is zero at leading order:
Rlpev, =0+ O[(¢ — ¢0)’] (3.8.130)

In the new coordinate system {x, y}, {¢, B} — {x, y}, defined by

x = <¢ n ﬂ) cos(as B), y = <¢ + a-‘) sin(as B), (3.8.131)
ar ap
the metric (3.8.120) becomes

ds’|pcu,, ~ do* + (¢ + a1)* dB’
=dx* + dy?, (3.8.132)

and the isometry transformations (3.8.126) takes the following form:
{x, y} — {x cosd + ysind, —x sind + y cosd}, (3.8.133)

The original coordinate singularity has disappeared, but in the new coordinates
(3.8.131) the isometry (3.8.133) acquires the fixed point {xo = 0, yo = 0},
{0, 0} — {0, 0}, in the interior of .#. Hence if the above situation is verified
according to item a) of the above classification the isometry group is elliptic.

Consider next the behavior of the C-coordinate, defined by Eq.(3.8.15), in the
neighborhood of ¢y. To leading order we have
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1
¢—>C:a—zln(a2¢+a1)+6”[(¢—¢o)_l] = ¢ & Cp = —00

(3.8.134)
so that the metric (3.8.120) becomes

ds’|ceu,, ~ €“C (dB* + dC?) (3.8.135)

in the Cy-neighborhood C € Ug,. Inspection of the latter formula shows that it repro-
duces the criterion to decide that the isometry is elliptic advocated in Eq. (3.8.22).

2
%d%ucnc% = e Clcey, = 0 (3.8.130)
Let us stress that the fixed point in the interior of the manifold required for an elliptic
interpretation of the isometry group is just the origin of the manifold where the Kihler
metric becomes approximately the flat one.
Let us now turn to the case where the singularity of the metric coefficient is of
the exponential type, namely for ¢9 = oo and for ¢ € Uy, we have

F@lpev, = are®?, a; >0 (3.8.137)

this behavior is also consistent with the regularity of the curvature R (see
Eq.(3.8.127)), which, in this case takes a finite negative value in the leading order
approximation:

Rlyeu, =~ —a; + subleading terms (3.8.138)

The metric (3.8.120) reproduces locally the metric of the hyperbolic (Poincaré -
Lobachevsky) plane

ds*|ycu, ~ d¢* + ai e dB? (3.8.139)

for which it is well known that the value of ¢y = oo corresponds to the boundary
9./ If the function f (¢) does not have other singularities of the exponential type, but
(3.8.137), then one can immediately conclude that the isometry (3.8.126) is strictly
parabolic according to item c) of the above classification, since it possesses just a
single fixed point B = oo on the boundary 9./ .

If besides the singularity (3.8.137) the function f(¢) possesses a second expo-
nential singularity at q~5() = —oofor¢ € Uy, namely

f@lpeu;, = @e™?, @ >0, (3.8.140)

then by the same token as above we come to the conclusion that the point do belongs
to the boundary of another hyperbolic plane locally isomorphic to the neighbor-
hood U; C J and that isometry (3.8.126) possesses a second fixed point on such
a boundary. Hence the isometry is hyperbolic according to item (b) of the above
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classification and since this applies to all elements of the isometry group %, this
latter is hyperbolic and isomorphic to SO(1, 1).

One can not exclude the existence of more sophisticated types of f(¢) singu-
larities, besides the above described power-like and exponential one, that might be
consistent with the regularity of the curvature R (3.8.127), yet in all examples con-
sidered in previous subsections no other singularities than these two are met.

Relying on these results we can summarize the geometric criteria for the classi-
fication of isometries in two-manifolds with a metric of type (3.8.120) which are of
the Hadamard type

(a) elliptic, if the function f(¢) possesses a first order zero, i.e. f(¢)lpev, =

ar (¢ — ¢o);
(b) hyperbolic, if the function f(¢) possesses two different leading exponential

. .. . +)
singularities at ¢(()i) = Fo00,1i.e. f(¢)|¢eU¢(i) = afi) et @ ¢ and aéi) > 0;

(c) strictly parabolic, if the function f(¢) Igossesses a single leading exponen-
tial singularity at either ¢(()+) = +ooor ¢>((f) = —o0,ie. f(¢>)|¢€1U¢<+)
0

) _ )
aﬁ) et ¢ or f(¢)|d>eU¢(—) = ai "e=% % and aéi) > 0.
0

The above characterization yields exactly the same result as the criteria based on the
asymptotic behavior of J(C) that have been utilized in the previous subsections and
this happens also for such models that do not lead to exactly Hadamard manifolds,
the curvature attaining somewhere also positive values. As an exemplification of the
use of the above concepts we briefly reconsider from this point of view the flat models
and the constant curvature models.

3.8.5.3 Flat Models

The flat metric
ds* = d¢* + (@ ¢ + ay)*dB? (3.8.141)

in case a; # 0 possesses a coordinate singularity at

a
¢ = —— (3.8.142)
ap

corresponding to a first order zero f(¢) at finite ¢p. According to the above classifi-
cation this implies that the isometry B — B + § is elliptic.
In the case a, = 0 the metric (3.8.141) becomes

ds* = d¢* + a7 dB? (3.8.143)

and does not possess a coordinate singularity at all. This implies that the isometry
B — B + 4 is strictly parabolic.
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3.8.5.4 Constant Negative Curvature Models

Case (A)
ds®> = d¢* + sinh? (v ¢) d B? (3.8.144)

This metric possesses a coordinate singularity at ¢ = 0. In the neighborhood of
¢ = 0 at leading order it behaves as follows

ds® ~ d¢* + v’ ¢* d B? (3.8.145)

which modulo an inessential rescaling of the coordinate B and a shifting the coor-
dinate ¢ reproduces the metric (3.8.141). Hence its isometry (3.8.126) is elliptic in
this case.

Case (B)
ds® = d¢* + cosh? (v ¢) dB? (3.8.146)

This metric does not possess a coordinate singularity in the finite range of ¢, but
it has two exponential singularities of the type (3.8.137) and (3.8.140). Hence the
isometry (3.8.126) is hyperbolic in this case.

Case (C)
ds®> = d¢*> + ¢*'? dB? (3.8.147)

This metric does not possess a coordinate singularity in the finite range of ¢, but it
possesses a single exponential singularity either of the type (3.8.137) or of the type
(3.8.140). Hence the isometry (3.8.126) is strictly parabolic in this case.
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Chapter 4
Special Geometries

La géométrie...est une science née a propos de
Dexpérience...nous avons créé I’espace qu’elle etudie, mais en
I’adaptant au monde ou nous vivons. Nous avons choisie
I’espace le plus commode...

Henri Poincaré.

4.1 The Evolution of Geometry in the Second Half
of the XXth Century

Relying for a complete historical account on the tale told in the twin book [1], let us
summarize the steps that led, in the 1990’s to Special Geometries.

4.1.1 Complex Geometry Rises to Prominence

On the purely mathematical front in the years from 1953 to 1955, Pierre Dolbeault
introduced a new very important mathematical instrument: the 3-cohomology of the
differential forms defined on complex analytic manifolds, namely the holomorphic
analogue of de Rham cohomology defined on real manifolds. The essence of Dol-
beault cohomology (described in Sect. 3.3) is the topic of Dolbeault’s thesis, prepared
by him under the direction of Henri Cartan, Elie’s son and one of the closest friends
of André Weil. The thesis was defended in Paris in 1955.

Complex Geometry and, within it Kdhler Geometry, arose to high prominence in
the three decades from 1950 to 1980. The language of fibre-bundles and characteristic
classes was combined with the notion of holomorphicity and line-bundles, namely
Principal Bundles whose structural group is the group of non vanishing complex
numbers C*, became ubiquitous in the discussion of complex manifolds.

A new innovative conception developed in this context, namely that of character-
izing the geometry of base manifolds .# by means of statements on the characteristic
classes of bundles defined over them.
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Fig. 4.1 On the left Eugenio Calabi (Milano, Italy 1923). On the right Shing-Tung Yau (Shan-
tou, China 1949). Born Italian, Calabi is an American citizen. He graduated in 1946 from MIT
and obtained his Ph.D from Princeton in 1950. He held temporary positions in Minnesota and in
Princeton, then since 1967 to retirement he was Full Professor of Mathematics at the University
of Pennsylvania, successor of Hans Rademacher. He came to the definition of Calabi—Yau n-folds
while exploring the geometry of complex manifolds that support harmonic spinors. Born in China,
Yau studied first at Hong Kong University, then he went to the USA where he got his Ph.D. in
1971 from Berkeley under the supervision of Chern. Post-doctoral fellow in Princeton and in Stony
Brook, he became Professor in Stanford. Since 1987 he is Professor of Mathematics at Harvard
University. Yau’s proof of Calabi 1964 conjecture was published in 1977

The first example, which plays an important role in the sequel, is that of Hodge—
Kdhler manifolds that are Kéhler manifolds .# characterized by the existence of a
line bundle . — ., such that its first Chern Class coincides with the cohomology
class of the Kihler 2-form: ¢;(¥) = [K].

Another important example is provided by Calabi—Yau n-folds. These latter were
introduced by Eugenio Calabi (see Fig.4.1) in 1964 with the definition of complex
n-dimensional algebraic varieties .4, the first Chern class of whose tangent bundle
vanishes: ¢i (T.#,) = 0. Later, the American-Chinese mathematician Shin—Tung
Yau (see Fig.4.1) proved the theorem that for Calabi—Yau n-folds, every (1, 1) Dol-
beault cohomology class contains a representative that can be identified with the
Kihler 2-form of a Ricci flat Kdhler metric: the Calabi—Yau metric.

4.1.2 On the Way to Special Geometries

Other notable examples of this way of thinking, applying both to complex and to
real geometry are the manifolds of restricted holonomy. One considers Riemannian
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manifolds .#, in dimension n and their spin bundles, namely the principal bundles on
which their spin connections w® are defined as Ehresman connections. Generically
such bundles have, as structural group, Spin(n), which is the double covering of
SO(n), yet it may happen that w® is Lie algebra—valued in a proper subalgebra
G C so(n). Choosing algebras G for which this might happen and imposing that it
should happen is a strong constraint on the geometry of the manifold .#,,.

Research on manifolds of restricted holonomy went on in the 1980s and 1990s in
the mathematical community but, not too surprisingly, it was heavily stimulated by
issues in theoretical physics and particularly in Superstring/Supergravity theory.

It is easy to understand why. The main input in Superstring/Supergravity is Super-
symmetry, a generalization of Lie algebras where spinor representations and vector
representations of groups SO(n) are transformed one into the other by new symmetry
operators Q%, dubbed the supercharges, that are themselves spinors. At the level of
field theories we work with fibre-bundles and the fields we consider are sections of
such bundles. Field theories can be supersymmetric if the supercharges Q“ find a
field-theoretic realization which is a symmetry of the action, leaving the door open
for its desired spontaneous breaking. It is quite intuitive that such a realization of the
supercharges requires special restrictions on the bundles and this reflects into heavy
constraints on the geometry of the base manifolds.

The above simple reasoning reveals what, in the opinion of this author, is the main
conceptual contribution of Supergravity theories to the development of geometrical
thought and, eventually, of physical thought, provisionally assuming that geometry
and physics are, once properly interpreted, the same thing. Supersymmetry tackles
with one of the most fundamental and so far unexplained pillars of physics, namely
the separation of the physical world into bosons and fermions and the spin-statistics
theorem. The distinction between vector and spinor representations is at the basis of
all that and it is a distinctive property of the so(n) Lie algebras, unexisting for the
other simple Lie algebras. On the other hand the reduction of the tangent-bundle to
an so(n)-bundle is the same thing as the existence of a metric and can be interpreted
as gravity. Special Geometries arise because of supersymmetry, in order to allow the
mixing of boson and fermions. It is the mathematical investigation of Space from this
new viewpoint the new quality of geometrical studies inspired by supergravity. Before
telling such a story we need to recall another mathematical conception, that was
developed independently from Superstring/Supergravity yet found its most ample
and fertile applications in the supersymmetric context.

4.1.3 The Geometry of Geometries

Let us recall Hermann Weyl’s discussion of the ellipses, used by him to introduce
his conception of mathematical thinking and reported by us in the twin book [1].
The coefficients a, b, ¢ of the quadratic form quoted by Weyl are the first example
of moduli and the portion of R? where they are allowed to take values is the first
example of a moduli-space. In complex algebraic geometry one considers loci of
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some projective space [P, (C) cut out by some homogeneous polynomial constraint
of degree m:
0= % X) = Z ai, . XX (4.1.1)

ol

imposed on the 7 4+ 1 homogeneous coordinates X’ (i =1, ..., n 4+ 1). The complex
coefficients a;, _;, are also moduli and fill some complex manifold . . If we consider
the following constraint imposed on the metric tensor of some Riemannian manifold
My

Ruv[8] = % g 4.12)

where R,,, [g] is the Ricci tensor and A some constant, we actually write a set of
differential equations for the metric tensor g,,,, which, on the manifold ./, gener-
ically admit a solution depending on a set of parameters {py, ... p,}, among which
A is included. Also these are moduli and they fill a space named the moduli space of
Einstein metrics on A,,.

Several other examples can be made of manifolds .#,,; whose points correspond
to the specification of a particular geometry within a class, for instance the moduli
o' of an instanton parameterize the solution of the self duality constraint!:

FA(0.%) = 3 e Fii (0. %) (4.1.3)

imposed on the field strength of a connection on a principal fibre bundle P (G, .#;).

A new mathematical idea that is of outmost relevance both for physics and for
mathematics is encoded in the following almost obvious argument. Being a manifold,
the moduli space .#,,,4 can support such geometrical structures like a metric, like
a complex structure, or a fibration. We call this the geometry of geometries. There
are several mathematical constructions, dictated by the mathematical nature of the
objects of which we consider the moduli, that single out a canonical determination
of the geometry of geometries, yet it is precisely at this level that the interaction
between physics and mathematics becomes most profound and fertile. Indeed the
geometry of geometries is typically what enters the supergravity lagrangians under
the form of sigma-models for scalar fields that on one side are the spin zero members
of supersymmetry multiplets,” while on the other side they are moduli of some

L Clarification for readers with a mostly mathematical background: in the physical literature instan-
tons play a very important role. They are field configurations that in the Wick-rotated space-time
with Euclidean signature satisfy first-order equations more restrictive than the second order Euler
Lagrangian equations (the latter are implied by the former). In the path integral formulation of
quantum field theory, instanton correspond to the absolute minimal of the action functional and
provide the dominant contribution to quantum correlators. Depending on the type of considered
fields instantons have different definitions. For gauge fields, instantons are the connections on the
underlying principal fibre-bundle whose field strengths are self dual, namely satisfy Eq. (4.1.3).

2Clarification for mathematicians: the wording supermultiplets is universally used in the context
of supersymmetric field theories to denote a finite set of standard fields of various spins that form a
unitary irreducible representation of the supersymmetry algebra extending the Poincaré Lie algebra.



4.1 The Evolution of Geometry in the Second Half of the XXth Century 177

manifold, for a example a Calabi—Yau threefold, on which the superstring has been
compactified.

This evenience produces a double check on the geometry of geometries. Its use
in supersymmetric lagrangians, imposes strong constraints on the geometry of the
scalar fields that, in many cases, have a recognizable solution in terms of known geo-
metrical categories, in other cases it leads to the definition of new types of restricted
geometries, generically dubbed special geometries. It is particularly rewarding that
the special geometries selected by supersymmetry are just those apt to accomodate
the moduli spaces of such mathematical structures as the complex structures or the
Kdhler structures of a compactification manifold like a Calabi—Yau threefold.

Altogether, a really new chapter has been written in the two decades from 1990
to 2010in the history of geometry, where the distinction between physics and math-
ematics has become somewhat obsolete, ideas from one field compenetrating the
other in an essential way.

4.1.4 The Advent of Special Geometries

The first instance of a special geometry was found by brute force, immediately after
the discovery in 1976 by Sergio Ferrara, Daniel Freedman and Peter van Nieuwen-
huizen of 4 = 1, d = 4 supergravity (see Fig.4.2). The next year, considering
the coupling of a scalar multiplet to the newly found gravitational theory, the three
supergravity founders, together with Breitenlohner, Gliozzi and Scherk, constructed
arather impressive and cumbersome lagrangian, depending on an arbitrary real func-
tion G(A, B) of a scalar A and a pseudoscalar B and on all its derivatives up to the
fourth one [2]. It was Bruno Zumino (see Fig. 4.3) who, in 1979, decoded the meaning
of this monster, showing that G(A, B) is just the Kéhler potential of a Kédhler metric,
all of the introduced derivatives obtaining their adequate interpretation as metric,
connection and curvature of the Kihlerian manifold [3]. In this way the generaliza-
tion to several scalar multiplets was singled out: it suffices to utilize an n-dimensional
Kihler manifold.

Shortly after, the so named holomorphic superpotential introduced by physicists
to describe fermion—scalar interactions and to produce a scalar potential consistent
with supersymmetry, was also interpreted geometrically. The superpotential is just a
holomorphic section of the Hodge line-bundle over the Kihler manifold.

In this way the firstly found special geometry was a known one, namely Hodge-
Kihler geometry. This is not so for the next case.

At the beginning of the 1980’s the next obvious case was the coupling of vector
multiplets to A" = 2, d = 4 supergravity. Each multiplet contains a complex scalar
field and the question was what is the geometry of the scalar manifold .#,;,, in the
case of several such multiplets. Certainly .#; ., had to be Kihler, since .4 = 2isin
particular 4~ = 1. Yet the stronger supersymmetry imposes additional constraints so
that .#;.q14- had to be a special Kéhler manifold. A pioneering work on this problem
was conducted in several different combinations by a group of French, Belgian,
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Fig. 4.2 From left to right the three founders of Supergravity Theory, Daniel Freedman (1939),
Sergio Ferrara (1945), Peter van Nieuwenhuizen (1938). Dan Freedman was born in the USA,
graduated from Wisconsin University. He has been professor at Stony Brook University and he is
currently full-professor at MIT. Sergio Ferrara born in Rome in 1945 graduated from la Sapienza
University under the supervision of Raoul Gatto. Permanent Member of the CERN Theoretical
Division for many years he is also professor of physics at UCLA. Peter van Nieuwenhuizen born
in Holland in 1938, graduated in Utrecht under the supervision of Veltman, held various positions
in the United States and since the middle 1980s he is full-professor of physics at Stony Brook
University. The paper containing the lagrangian and the transformation rules of .4 = 1,d = 4
supergravity was published by the three founders of the theory in 1976. Since then all the three
have contributed extensively and in various different directions to the development of supergravity.
Sergio Ferrara among the three has largely contributed to the development of special geometries

Fig. 4.3 Bruno Zumino (1923-2014). Born in 1923 in Rome, he graduated from the University
La Sapienza in 1945. He died in 2014 in California, where he was emeritus professor of Berkeley
University. For many years he was permanent member of the Theoretical Division at CERN. Zumino
has given many important contributions to Theoretical Physics in several directions: supersymmetry,
anomalies, conformal field theories, quantum groups
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Fig. 4.4 On the left Antoine Van Proeyen (1953 Belgium), on the right Eugene Cremmer (Paris
1942). Antoine Van Proeyen graduated from KU Leuven and worked in several Laboratories and
Universities, among which the Ecole Normale of Paris, CERN Theoretical Division and Torino
University, before becoming full-professor in Leuven. He is currently the Head of the Theoretical
Physics Section at the K.U. Leuven. Since 1979, he has been involved in the construction of various
supergravity theories, the resulting special geometries and their applications to phenomenology
and cosmology. Cremmer is directeur de recherche of the CNRS working at the Ecole Normale
Supérieure of Paris. In 1978, together with Bernard Julia and Jo€l Scherk, he derived the space-time
formulation of 11 dimensional supergravity theory, regarded today as the low energy limit of the
so far mysterious M-theory. In the following few years, Cremmer, together with Bernard Julia,

constructed the dimensional reductions of d = 11 supergravity, arriving in d = 4 at the maximal

. . E
extended .4~ = 8 theory, whose structure is completely determined by the non-compact coset #((78))

accomodating the 70 scalars of the gravitational multiplet. Active research is going on at the present
time to demonstrate that .4~ = 8§ supergravity is a finite theory

Dutch, Swiss and Italian theoretical physicists in the papers mentioned in [4-6].
Using a special set of complex coordinates, the special Kidhler manifolds that can
accomodate the scalar fields of .#° = 2 vector multiplets were described as those
where the Kéhler potential is obtained from a holomorphic prepotential according to
a specific formula.

Once this was established, a natural question arose whether among so defined
special Kdhler manifolds there were symmetric spaces G/H. The answer to this
question was given in Paris in 1985 by Eugene Cremmer and Antoine Van Proeyen
(see Fig.4.4) who, in a beautiful paper absolutely worth of Cartan’s tradition [7],
provided the exhaustive classification shown in the first column of Table4.1. As one
sees, exceptional Lie groups make their appearance in such a list through peculiar real
forms. This was no longer a surprise for supergravity researchers since, four years
before, the same Eugene Cremmer, in collaboration with Bernard Julia (see Fig. 4.5),
had shown that the dimensional reduction of maximally extended supergravity from
D =11ldowntoD =10,D =9, ..., D =4, D = 3 produces, as scalar manifolds,
the following maximally split symmetric spaces:

_ Eu-pai-p)

Mp = H—c “4.1.4)
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Table 4.1 List of special Kihler symmetric spaces with their Quaternionic Kéhler c-map images.
The number n denotes the complex dimension of the Special Kihler preimage. On the other hand
4n + 4 is the real dimension of the Quaternionic Kéhler c-map image

S H , Special Kihler Q.M 4n+4 Quaternionic Kdhler | dim %, = n
manifold manifold
Su(, 1) Ga) n=1
T() SUQ)=SUQ) =
Sp(6.R) Fa@) n=6
SUG)=xU(D) USp(6)xSUQ) =
SU(@3,3) o) n=9
SUG)=xSUB)xU(D) SU6)xSUQ) =
SO*(12) E7-s) _
SU6)xU(D) 50(12)xSUQ) n=15
E7(-25) Eg(—24) _
Eo(—78) xU(1) E7(—133) xSU(Q2) n=27
SL(2,R) SO(2,2+p) SO(4,4+p) _
S02) X S00)xSO0C+p) SO@) xSO(+p) n=3+p
SU(p+1,1) SU(p+2.,2) _ 1
SU(p+DxU(D) SU(p+2)xSUQ) n=p-+

Fig. 4.5 Bernard Julia (Paris 1952). He graduated from Université de Paris-Sud in 1978, and he is
directeur de recherche of the CNRS working at the Ecole Normale Supfieure. In 1978, together with
Eugne Cremmer and Joél Scherk, he constructed 11-dimensional supergravity. Shortly afterwards,
Cremmer and Julia constructed the classical Lagrangian of four-dimensional .#” = 8 supergravity
by dimensional reduction from the 11-dimensional theory

where:

Essy >~ Dsisy >~ SO(S, 5)

E4uy ~ Aquy ~ SL(5,R)

E33) >~ A1y X Az) = SL(2, R) ® SL(3, R)

Eyo) = Ay x A1) = SL(2,R) ® SL(2, R) (4.1.5)
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Fig.4.6 Onthe left Leonardo Castellani (born 1953 in Freiburg, Switzerland). On the right Riccardo
D’Auria (born 1940 in Rome). Leonardo Castellani studied physics at the University of Florence
in Italy and obtained his Ph.D from Stony Brook University in the US, with a thesis written under
the supervision of van Nieuwenhuizen. He had post-doctoral positions at Caltech and at CERN,
then he became permanent Researcher in the Torino section of the National Institute of Nuclear
Research (INFN) and in 1993 he was appointed full-professor of Theoretical Physics at the Univer-
sity of Eastern Piedmont, position that he holds at the present time. He is especially known for his
contributions, together with D’ Auria and Fré to the rheonomic formulation of supersymmetric the-
ories, for his derivation together with Larry Romans of the list of G/H compactifications of d = 11
supergravity and more recently for developments in quantum group theories and, together with P.A.
Grassi and R. Catenacci for the extension of Hodge theory to supermanifolds. Riccardo D’ Auria
studied at the University of Torino and graduated there with a thesis written under the supervision
of Tullio Regge. He was for several years Associate Professor at the University of Torino, in 1987
he was appointed full-professor of Theoretical Physics at the University of Padua. Few years later
he was offered a full professor chair at the Politecnico of Torino where he concluded his academic
career becoming emeritus professor in 2011. D’ Auria, together with Fré has been the founder of
the rheonomic formulation of supergravity and also with Fré he introduced the notion of super Free
Differential Algebras, that were singled out as the algebraic basis of all supergravity theories in
dimension higher than four. In particular in 1982, D’ Auria and Fré obtained the FDA formulation of
d = 11 supergravity. D’ Auria has given many more contributions to supergravity theory in particular
in connection with special geometries, with the classification of black-hole solutions, with duality
rotations, with the various formulations of the d = 6 theories and with several other aspects of the
superworld

So exceptional Lie groups that had been regarded for long time as mathematical
curiosities were brought to prominence by supergravity and in parallel also by super-
string theory.

The fact that all such results were obtained in the Ecole Normale Supérieure de
Paris demonstrates the far reaching influence of Elie Cartan’s tradition.

At the end of the eighties the intrinsic definition of special Kdhler geometry, free
from the use of special coordinates, was independently obtained with two different
strategies by Andrew Strominger (see Fig. 4.7) and by Leonardo Castellani, Riccardo
D’ Auria and Sergio Ferrara (see Fig.4.6).

While Strominger derived his definition from the properties of Calabi—Yau moduli
spaces [8], Castellani, D’ Auria and Ferrara [9, 10] (and later D’ Auria Ferrara and Fré
[11]) derived their own definition from the constraints imposed by supersymmetry on
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Fig. 4.7 On the left Bernard Quirinus Petrus Joseph de Wit (born 1945 in the Netherlands). On the
right Andrew Eben Strominger (born 1955 in the USA). Bernard de Wit studied theoretical physics at
Utrecht University, where he got his PhD under the supervision of the Nobel Prize laureate Martinus
Veltman in 1973. He held postdoc positions in Stony Brook, Utrecht and Leiden. He became a staff
member at the National Institute for Nuclear and High Energy Physics (NIKHEF) in 1978, where he
became head of the theory group in 1981. In 1984 he was appointed professor of theoretical physics at
Utrecht University where he has stayed for the rest of his career. Bernard de Wit has given important
contributions to the development of supergravity theory building, in collaboration mainly with Van
Proeyen, the so named conformal tensor calculus. Together with Herman Nicolai he constructed
the s0(8)-gauged version of .#” = 8 supergravity that has provided the paradigmatic example for all
supergravity gaugings. Andrew Strominger completed his undergraduate studies at Harvard in 1977
before attending the University of California, Berkeley for his Master diploma. He received his PhD
from MIT in 1982 under the supervision of Roman Jackiw. Prior to joining Harvard as a professor
in 1997, he held a faculty position at the University of California, Santa Barbara. Strominger is
especially known for introducing, together with Cumrun Vafa the string theory explanations of
the microscopic origin of black hole entropy, originally calculated thermodynamically by Stephen
Hawking and Jacob Bekenstein. Strominger, together with Philippe Candelas, Gary Horowitz and
Edward Witten was the first proposer of Calabi—Yau threefolds as compactification manifolds for
superstrings and supergravities in d = 10

the curvature tensor of the Kédhlerian manifold. With some labour they also showed
the full equivalence of the two definitions.

In the same years, Antoine Van Proeyen and Bernard de Wit (see Fig.4.7), in some
publications together with a younger collaborator, established a full classification of
homogeneous special geometries, namely of special manifolds that admit a solvable
transitive group of isometries [12—-14]. They also explored the relation [12, 13]
between special Kdihler geometries and quaternionic geometries that can be obtained
from them by means of a very interesting map, originally discovered by Cecotti [15]
and further developed by Ferrara et al. in [16, 17]. So doing they came in touch
with the classification of quaternionic manifolds with a transitive solvable group of
motion that had been performed several years before by Alekseevsky [18, 19].

The map mentioned above is named the c-map and can be given a modern compact
definition exhibited in [20]. Furthermore the c-map has a non Euclidean analogue,
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the c*-map that plays an important role in the discussion of supergravity based black-
holes, another instance of geometry that will occupy us in later chapters.

4.1.5 A Survey of the Topics in This Chapter

In the sequel the special geometries motivated by supergravity will be thoroughly
discussed and the properties of the c-map will be analyzed in detail. In that we
closely follow the recent paper [20].° Indeed, coming to these topics our history of
Symmetry and Geometry has reached the front of current research. Here physics and
mathematics are fully entangled.

4.2 Special Kihler Geometry

In this section we present Special Kihler Geometry in a full-fledged rigorous math-
ematical form. Let us begin by summarizing some relevant concepts and definitions
that are propaedeutical to the main definition.

4.2.1 Hodge-Kdihler Manifolds

Consider a line bundle ¥ —> .# over a Kihler manifold .. By definition this is a
holomorphic vector bundle of rank r = 1. For such bundles the only available Chern
class is the first:

(L) = ’55 (h'on) = %5810gh 4.2.1)

where the 1-component real function 4 (z, z) is some hermitian fibre metric on .Z. Let
£(z) be a holomorphic section of the line bundle .Z: noting that under the action of
the operator 9  the term log (5(2) &(z)) yields a vanishing contribution, we conclude
that the formula in Eq. (4.2.1) for the first Chern class can be re-expressed as follows:

c(Z) = gﬁalog I &) 1IP (422

where || £(z) |I> = h(z,2) E(Z) &(2) denotes the norm of the holomorphic section
£(2).

Equation (4.2.2) is the starting point for the definition of Hodge—Ké#hler manifolds.
A Kihler manifold ./ is a Hodge manifold if and only if there exists a line bundle

3 An early review of Special Kihler Geometry was written by this author in 1996 in [21].
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£> # such that its first Chern class equals the cohomology class of the Kéhler
two-form K:
ca(Z) = [K] (4.2.3)

In local terms this means that there is a holomorphic section £(z) such that we
can write ) )
1 . " 1 —
K = 3 gijpdz ANd7 = 3 dalog || £ I 4.2.4)
Recalling the local expression of the Kéhler metric in terms of the Kéhler potential
gij» = 0; 0j+J (2, 2), it follows from Eq. (4.2.4) that if the manifold ./ is a Hodge
manifold, then the exponential of the Kéhler potential can be interpreted as the metric
h(z,7) = exp (J (z,7)) on an appropriate line bundle .Z.

4.2.2 Connection on the Line Bundle

On any complex line bundle . there is a canonical hermitian connection defined as:
O=h"'oh=0hd? ;0=h"'0h=40:hdZ" (42.5)

For the line-bundle advocated by the Hodge-Kéhler structure we have
[00] = c1(¥) = [K] (4.2.6)

and since the fibre metric 4 can be identified with the exponential of the Kihler
potential we obtain:

0 =04 =0, #d7 ;0 =04 = 0. 4dZ" 4.2.7)

To define special Kéhler geometry, in addition to the afore-mentioned line—bundle
Z we need a flat holomorphic vector bundle .7 — _# whose sections play
an important role in the construction of the supergravity Lagrangians. For reasons
intrinsic to such constructions the rank of the vector bundle .¥ must be 2 ny where
ny is the total number of vector fields in the theory. If we have n-vector multiplets
the total number of vectors is ny = n + 1 since, in addition to the vectors of the
vector multiplets, we always have the graviphoton sitting in the graviton multiplet.
On the other hand the total number of scalars is 2n. Suitably paired into n-complex
fields 7, these scalars span the n complex dimensions of the base manifold .# to
the rank 2n + 2 bundle ¥ — /.

In the sequel we make extensive use of covariant derivatives with respect to the
canonical connection of the line-bundle .. Let us review its normalization. As it is
well known there exists a correspondence between line—bundles and U(1)—bundles.
If expl[ fop(2)] is the transition function between two local trivializations of the line—
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bundle ¥ — ., the transition function in the corresponding principal U(1)-bundle
U — A is just explilm f,p(z)] and the Kihler potentials in two different charts
arerelated by: g = o+ fup +1, - Atthe level of connections this correspondence
is formulated by setting: U(1)-connection = 2 = Imf = —% (0 - 5). If we apply
this formula to the case of the U(1)-bundle % —> .# associated with the line—
bundle . whose first Chern class equals the Kéhler class, we get:

2= % (82 dz' — 0. dZ") 4.2.8)

Let now @ (z, 7) be a section of %/ 7. By definition its covariant derivative is V@ =
(d —ip2)® or, in components,

Vi® = (0 +1p )P ; Vie® = (3 — 1 p0i- ) D 4.2.9)

A covariantly holomorphic section of % is defined by the equation: V@ = 0. We
can easily map each section @ (z, z) of %7 into a section of the line-bundle . by
setting:

S =e PP, (4.2.10)

With this position we obtain:
Vi® = (0; + pd; )P : Vied = 0D 4.2.11)

Under the map of Eq.(4.2.10) covariantly holomorphic sections of % flow into
holomorphic sections of .Z and viceversa.

4.2.3 Special Kiihler Manifolds

We are now ready to give the first of two equivalent definitions of special Kihler
manifolds:

Definition 4.2.1 A Hodge Kéhler manifold is Special Kiihler (of the local type) if
there exists a completely symmetric holomorphic 3-index section W of (T*.# PY®
Z? (and its antiholomorphic conjugate Wi j«;+) such that the following identity is
satisfied by the Riemann tensor of the Levi—Civita connection:

O Wije = 0 0y Winjopr =0
VimWirjk =0 Vi Wisjjers =0
R jox = 8o 8k + 8ergjir — €7 Winpg Wi g (4.2.12)
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In the above equations V denotes the covariant derivative with respect to both the
Levi—Civita and the U(1) holomorphic connection of Eq. (4.2.8). In the case of W;jy,
the U(1) weightis p = 2.

Out of the W;j; we can construct covariantly holomorphic sections of weight 2
and - 2 by setting:

Cijt = Wike” 5 Cijopr = Winjue e (4.2.13)

The flat bundle mentioned in the previous subsection apparently does not appear in
this definition of special geometry. Yet it is there. It is indeed the essential ingredient
in the second definition whose equivalence to the first we shall shortly provide.

Let £—> ./ denote the complex line bundle whose first Chern class equals
the cohomology class of the Kihler form K of an n-dimensional Hodge—Kéihler
manifold .Z. Let ¥ — _# denote a holomorphic flat vector bundle of rank
2n + 2 with structural group Sp(2n 4 2, R). Consider tensor bundles of the type
H = SV @ L. A typical holomorphic section of such a bundle will be denoted
by £2 and will have the following structure:

XA
2 = <F2) ALY =0,1,...,n

By definition the transition functions between two local trivializations U; C .# and
U; C . of the bundle 5 have the following form:

<F>i N erMij(F)j

where f;; are holomorphic maps U;NU; — C while M;; is aconstant Sp(2n + 2, R)
matrix. For a consistent definition of the bundle the transition functions are obvi-
ously subject to the cocycle condition on a triple overlap: efi+/x*fi = 1 and
MiijkMki =1.

Leti{ | ) be the compatible hermitian metric on 57’

. = _ .7( 0 1\=
(2| 2) = —-i2 (—110 2
Definition 4.2.2 We say that a Hodge—Kihler manifold .# is special Kéhler if

there exists a bundle 77 of the type described above such that for some section
2 € I'(J7, #) the Kihler two form is given by:

i

5 8ir dz' nd7l” (4.2.14)

i _
K = 793 log (i(2192)) =

From the point of view of local properties, Eq.(4.2.14) implies that we have an
expression for the Kéhler potential in terms of the holomorphic section £2:
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. - . (A = o
A = —log (i(22)) = —log [1 (X Fo—FsX )] 4.2.15)

The relation between the two definitions of special manifolds is obtained by intro-
ducing a non-holomorphic section of the bundle .7# according to:

A A
V= (AL42> = 2 = N (’;2) (4.2.16)

so that Eq. (4.2.15) becomes:
| = i(V|V) = i(ZAMA —M;LE) 4.2.17)

Since V is related to a holomorphic section by Eq. (4.2.16) it immediately follows
that:

1
ViV = (B,u — 58,wf> V=20 (4.2.18)

On the other hand, from Eq. (4.2.16), defining:

it follows that: .
ViUj =iCijx g Uye (4.2.19)

where V; denotes the covariant derivative containing both the Levi—Civita connec-
tion on the bundle .7 .# and the canonical connection 6 on the line bundle .Z. In
Eq. (4.2.19) the symbol C; j; denotes a covariantly holomorphic (V- C;jx = 0) section
of the bundle .7.#°> ® £ that is totally symmetric in its indices. This tensor can
be identified with the tensor of Eq.(4.2.13) appearing in Eq. (4.2.12). Alternatively,
the set of differential equations:

Vv,V =U;
V;U; =iCijrg"" Up
V,‘ij = g,-«jV

ViV =0 (4.2.20)
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with V satisfying equation (4.2.17) give yet another definition of special geometry.
In particular it is easy to find Eq. (4.2.12) as integrability conditions of (4.2.20).*

4.2.4 The Vector Kinetic Matrix .V, 5 in Special Geometry

In the construction of supergravity actions another essential item is the complex
symmetric matrix .4,y whose real and imaginary parts are necessary in order to
write the kinetic terms of the vector fields. From the physicist’s viewpoint the matrix
A4 5 1s an essential item since the Lagrangian cannot be written without it. From the
mathematical viewpoint it is very much significant that the same .4 5 constitutes
an integral part of the Special Geometry set up. We provide its general definition
in the following lines. Explicitly .4, » which, in relation to its interpretation in the
case of Calabi—Yau threefolds, is named the period matrix, is defined by means of
the following relations:

— )
My=NsL™ ; hsgi=Nasf” 4.2.21)

which can be solved introducing the two (n + 1) x (n + 1) vectors
A
a_(1Y . _ ( haii
Ji —(ZA> ; hA|1—<MA)

Nas =hayro (f_l)lz (4.2.22)

and setting:

Let us now consider the case where the Special Kéhler manifold .. %, of com-
plex dimension n has some isometry group U . Compatibility with the Special
Geometry structure requires the existence of a 2n + 2-dimensional symplectic rep-
resentation of such a group that we name the W representation. In other words that
there necessarily exists a symplectic embedding of the isometry group .. %",

Uy .r = Sp(2n +2, R) (4.2.23)

such that for each element § € Uy » we have its representation by means of a
suitable real symplectic matrix:

As B
= Ae = & E> (4.2.24)
3 & < Cg Dé

4We omit the detailed proof that from Eq.(4.2.20) one obtains Eq.(4.2.12). The essential link
between the two formulations resides in the second of Eq. (4.2.20) which identifies the tensor C; jx
with the expression of the derivative of U; in terms of the same objects Uy.
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satisfying the defining relation (in terms of the symplectic antisymmetric metric C):
0 1 0 1
T nxn nxn _ nxn nxn
Ag <_1n><n Onxn) AE - <_1n><n Onxn) (4225)

=C C
which implies the following relations on the n x n blocks:
AL C:—C[ A =0
Al D;—Cl B =1
B! Cc — D[ A; = —1
Bl D — D[ B; =0 (4.2.26)

Under an element of the isometry group the symplectic section £2 of Special Geom-
etry transforms as follows:

RE-2) = A2 (2) 4.2.27)

As a consequence of its definition, under the same isometry the matrix .4~ transforms
by means of a generalized linear fractional transformation:

N (E-2,E-7) = (Ce+ De N (2,D) (Ae + Be N (2,D) " (4.2.28)

4.3 The Quaternionic Kihler Geometry in the Image
of the c-Map

The main object of study in the present section are those Quaternionic Kéhler man-
ifolds that are in the image of the c-map.® This latter

cmap : S K, — DMipia 4.3.1)

is a universal construction that starting from an arbitrary Special Kéhler manifold
S K, of complex dimension n, irrespectively whether it is homogeneous or not,
leads to a unique Quaternionic Kéhler manifold 2.4 4,4 of real dimension 4n + 4
which contains .’ %", as a submanifold. The precise modern definition of the c-map,
originally introduced in [16, 17], is provided below.

5Not all non-compact, homogeneous Quaternionic Kihler manifolds which are relevant to super-
gravity (which are normal, i.e. exhibiting a solvable group of isometries having a free and transitive
action on it) are in the image of the c-map, the only exception being the quaternionic projective
spaces [14, 15].
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Definition 4.3.1 Let .., be a special Kéhler manifold whose complex coordi-
nates we denote by z' and whose Kihler metric we denote by g;;-. Let moreover
Nax(z,7) be the symmetric period matrix defined by Eq.(4.2.22), introduce the
following set of 4n + 4 coordinates:

“1' = (U, a 4 Z={z" 2z 432
¢} =wal) & U { =} (43.2)
2 real n complex (2n+2) real
————
2n real

Let us further introduce the following (2n + 2) x (2n 4 2) matrix ///4_1:

-1 (ImA + ReJVImJV’lReJV‘ —Re A Im A !
My = < —Im.A/" "' RetV - Im ! (4.3.3)

which depends only on the coordinate of the Special Kidhler manifold. The c-map
image of . %, is the unique Quaternionic Kéhler manifold 2.# 4, .4 whose coor-
dinates are the g* defined in (4.3.2) and whose metric is given by the following
universal formula

1 -
dsy.q =7 (dU2 +dgjeded a7 + 72V da+27Caz)? — 27V az” ! dZ)

4.3.4)
The metric (4.3.4) has the following positive definite signature
sign[dsy, ,] = |+ .+ 4.3.5)
M
4+4n

since the matrix .#, 4_1 is negative definite.

In the case the Special Kihler pre-image is a symmetric space U » » /H o, the
manifold 2.4 turns out to be symmetric spaces, Uy /Hgy. We will come back to the
issue of symmetric homogeneous Quaternionic Kihler manifolds in Sect.4.3.4

4.3.1 The HyperKihler Two-Forms
and the su(2)-Connection

The reason why we state that 2.4 4,4 is Quaternionic Kihler is that, by utilizing
only the identities of Special Kihler Geometry we can construct the three complex
structures J; " satisfying the quaternionic algebra (3.6.6) the corresponding Hyper-
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Kihler two-forms K* and the su(2) connection w* with respect to which they are
covariantly constant.

The construction is extremely beautiful, it was found in [20] and it is the following
one.

Consider the Kihler connection 2 defined by Eq. (4.2.8) and furthermore intro-
duce the following differential form:

® =da+7Z"CdZ (4.3.6)

Next define the two dimensional representation of both the su(2) connection and of
the HyperKihler 2-forms as it follows:

. 3
1
w=— E " Yy 4.3.7)
ﬁ x=1

. 3
1

K=—)Y K'o, (4.3.8)
V2 =

where y, denotes a basis of 2 x 2 Euclidean y-matrices for which we utilize the
following basis which is convenient in the explicit calculations we perform in later
chapters®:

| <
S -
S———

s

S s S sk
S
N——

L
ys = ( 3y ) (4.3.9)
These y-matrices satisfy the following Clifford algebra:
{re. v} =8 (4.3.10)

and % yx provide a basis of generators of the su(2) algebra.

Having fixed these conventions the expression of the quaternionic su(2)-
connection in terms of Special Geometry structures is encoded in the following
expression for the 2 x 2-matrix valued 1-form w. Explicitly we have:

5The chosen y-matrices are a permutation of the standard pauli matrices divided by /2 and multi-
plied by 5 canbe used as a basis of anti-hermitian generators for the 51(2) algebra in the fundamental
defining representation.
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s , , (4.3.11)
vV CdZ ;2 + ﬁe‘Udb

U
—e 7

(—%,@ — e U@ e 5VICdZ )
w =

where V and V denote the covariantly holomorphic sections of Special geometry
defined in Eq. (4.2.16). The curvature of this connection is obtained from a straight-
forward calculation:

K=dw + 0w Ao
u v
= (—5 —u) 4.3.12)

the independent 2-form matrix elements being given by the following explicit for-
mulae:

I 1 _ _ 1
u= iz K —2dS A dS - e UVTCdZ A V' CdZ — Ze_UdZT A CdZ

1
b=e 2 (DVT A CdZ — 2dS A VT(CdZ)
_ — 1 — _
D=e? <DVT A CdZ — 2dS A VTCdZ) (4.3.13)
where )
K = % g dz A dT (4.3.14)

is the Kéhler 2-form of the Special Kéhler submanifold and where we have used the
following short hand notations:

dS=dU +ieV (da + Z" CdZ) 4.3.15)
dS=dU —ieV (da + Z" CdZ) (4.3.16)
DV =dz' V;V (4.3.17)
DV =d7" V.V (4.3.18)

The three HyperKihler forms’ K* are easily extracted from Egs. (4.3.12)—(4.3.13)
by collecting the coefficients of the y-matrix expansion and we need not to write their
form which is immediately deduced. The relevant thing is that the components of
K~ with an index raised through multiplication with the inverse of the quaternionic
metric h"Y exactly satisfy the algebra of quaternionic complex structures (3.6.6).
Explicitly we have:

7See Sect. 3.6 for notations.
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K* = —i4v27Tr (y*K) = K2, dg" A dg’
T =K
TV = =8 8y 4 e I (4.3.19)

The above formulae are not only the general proof that the Riemanniann manifold
2.# defined by the metric (4.3.4) is indeed a Quaternionic Kéhler manifold, but,
what is most relevant, they also provide an algorithm to write in terms of Special
Geometry structures the tri-holomorphic moment map of the principal isometries
possessed by 2. .

4.3.2 The Holomorphic Moment Map in Special Kiihler
Manifolds
In any Kihler manifold
Pt = —% (kid; # — kjo=) + Im(fy) (4.3.20)

where f;y = f1(z) is a holomorphic transformation on the line-bundle, defining a
compensating Kihler transformation:

ki A+ kjop = —fiz) — [1@) . (4.3.21)

We also have:
- R=%-2+4+ f1i82, (4.3.22)
T -V4+ilm(f)V =Ko,V + ko Vv, (4.3.23)
where Ty - £2 denotes the symplectic action of the isometry on the section V. If Ty
is represented by the symplectic matrix (T)).” = —(TDPe, o, B=1,..., 20+ 2:
TFTC+CTH =0 (4.3.24)

we have (T - V)* = —F14% VP = 3¢5 VP, From (4.3.23) and (3.7.22) we derive
the following useful symplectic-invariant expression for the moment maps:

P =V Z1,PCp, V7. (4.3.25)
Equations (3.7.22), (3.7.23), (4.3.23) generalize the corresponding formulae given in

Sects.7.1 and 7.2 of [22], where the condition f; = 0 was imposed, to gaugings of
non-compact isometries which are associated with non-trivial compensating Kéhler
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transformations and/or to gauged (non-compact) isometries whose symplectic action
is not diagonal.

4.3.3 Isometries of 2./ in the Image of the c-Map
and Their Tri-Holomorphic Moment Maps

Let us now consider the isometries of the metric (4.3.4). There are three type of
isometries:

(a) The isometries of the (2n + 3)—dimensional Heisenberg algebra Heis which
is always present and is universal for any (4n + 4)—dimensional Quaternionic
Kihler manifold in the image of the c-map. We describe it below.

(b) All the isometries of the pre-image Special Kihler manifold ..¢", that are
promoted to isometries of the image manifold in a way described below.

(c) The additional 2n + 4 isometries that occur only when .. %, is a symmetric
space and such, as a consequence, is also the c-map image 2.7 4, 14. We will
discuss these isometries in Sect.4.3.4.

For the first two types of isometries (a) and (b) we are able to write general expressions
for the tri-holomorphic moment maps that utilize only the structures of Special
Geometry. In the case that the additional isometries (c) do exist we have another
universal formula which can be used for all generators of the isometry algebra U ¢ and
which relies on the identification of the generators of the su(2) C H subalgebra with
the three complex structures. We will illustrate the details of such an identification
while discussing the example of the S3-model.

First of all let us fix the notation writing the general form of a Killing vector. This
a tangent vector:

k =k"(q) 9,
el +k"i. +k"'i. +k'i + k* 9
U azi az" da 9z
=k, 4+ k' 0; + k' 9 + k* 00 + k% (4.3.26)

with respect to which the Lie derivative of the metric element (4.3.4) vanishes:
tdsy , =0 (4.3.27)
4.3.3.1 Tri-Holomorphic Moment Maps for the Heisenberg Algebra
Translations

First let us consider the isometries associated with the Heisenberg algebra. The
transformation:
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7%+ Z°4+ A" ; ar— a— ATCZ (4.3.28)

where A® is an arbitrary set of 2n + 2 real infinitesimal parameters is an infinitesimal
isometry for the metric dsf@‘ 10 (4.3.4). It corresponds to the following Killing
vector:

— o«
K =A% K,
= A%9, — ATCZ3, (4.3.29)

whose components are immediately deduced by comparison of Eq.(4.3.29) with
Eq.(4.3.26).

We are interested in determining the expression of the tri-holomorphic moment
map ‘P 4; which satisfies the defining equation:

. _ i[A]u i[A] b _
l[A]K = <—i[A]E —i[A]u> = d‘B[A] + [0), ng[A]] (4.3.30)

The general solution to this problem is
e VATCZ Le s ATCV>

i
Pra = N _°
W\l b aTCV iV aTCz
(4.331)

4.3.3.2 Tri-Holomorphic Moment Map for the Heisenberg Algebra
Central Charge

Consider next the isometry associated with the Heisenberg algebra central charge.
The transformation:
ar a+e (4.3.32)

where ¢ is an arbitrary real small parameter is an infinitesimal isometry for the metric
dsf@(  in (4.3.4). It corresponds to the following Killing vector:

e K =¢d. (4.3.33)

whose components are immediately deduced by comparison of Eq.(4.3.33) with
Eq.(4.3.26).

We are interested in determining the expression of the tri-holomorphic moment
map Pi,; which satisfies the defining equation analogous to Eq. (4.3.30):

i K = dPie + [@, Fpal] (4.3.34)
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The solution of this problem is even simpler than in the previous case. Explicitly we

obtain:
— % eV 0
Pral = - (4.3.35)

The explicit expression of the moment maps and Killing vectors associated with
the Heisenberg isometries was used in the gauging of abelian subalgebras of the
Heisenberg algebra, which is relevant to the description of compactifications of Type
II superstring on a generalized Calabi—Yau manifold.

4.3.3.3 Tri-Holomorphic Moment Map for the Extension of .77,
Holomorphic Isometries

Next we consider the question how to write the moment map associated with those
isometries that where already present in the original Special Kéhler manifold .7,
which we c-mapped to a Quaternionic Kihler manifold.

Suppose that .., has a certain number of holomorphic Killing vectors j (z) sat-
isfying equations (3.7.6), (3.7.7), (8.4.85) necessarily closing some Lie algebra g o »
among themselves.? Their holomorphic momentum-map is provided by Eq. (3.7.22).
Necessarily every isometry of a special Kédhler manifold has a linear symplectic
(2n + 2)-dimensional realization on the holomorphic section §2(z) up to an overall
holomorphic factor. This means that for each holomorphic Killing vector we have
(see Eq.(4.3.22)):

ki(2) 9; £2(z) = exp[f1(2)] T1 £2(2). (4.3.36)

where f1(z) the holomorphic Kidhler compensator. Then it can be easily checked that
the transformation:

d k) L 2+ T2 (4.3.37)
is an infinitesimal isometry of the metric (4.3.4) corresponding to the Killing vector:
ki = ki(2) 9 + kt @ 3 + (T0)% ZP d, (4.3.38)

Also in this case we are interested in determining the expression of the tri-
holomorphic moment map *Byy; satisfying the defining equation:

i, K= dBy + [@. Bu] (4.3.39)

8 Clarification for mathematicians: in the jargon ubiquitously utilized in the physical literature one
says that a set of operators closes a Lie algebra when any of the commutators thereof belongs to the
linear span of the same operators.
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The solution is given by the expression below:

I 1 L e L e
e VPV CHL (4 Le V2T CTiZ)
(4.3.40)

where &7 is the moment map of the same Killing vector in pure Special Geometry.

4.3.4 Homogeneous Symmetric Special Quaternionic Kdihler
Manifolds

When the Special Kidhler manifold .. %, is a symmetric coset space, it turns out
that the metric (4.3.4) is actually the symmetric metric on an enlarged symmetric
coset manifold

U Uy
DM opss = =0 5 A

(4.3.41)
Hy ~ Hyx

Naming A[g] the W-representation of any finite element of the g € U » » group,
we have that the matrix .#4(z, 7) transforms as follows:

My (9-2,9-7) = Algl A4 (z,2)] A[g] (4.3.42)
where g - z denotes the non linear action of U & on the scalar fields. Since the space

gj—j is homogeneous, choosing any reference point z( all the others can be reached
by a suitable group element g, such that g, - zo = z and we can write:

My Nz, 7) = AT[g]" A (20, Z0)] Alg] '] (4.3.43)

This allows to introduce a set of 4n + 4 vielbein defined in the following way:

1 .
El, , = 514U €@, eV (da+Z"CdZ) , e Alg;'1dZ}  (43.44)
S——" —— ——

2n 2n+2

and rewrite the metric (4.3.4) as it follows:

dsh, = Eb a1 ED (4.3.45)
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where the quadratic symmetric constant tensor ¢;; has the following form:

1/0lo 0
0/6;0 0

qr; = 001 0 (4.3.46)
0/ 0[0/—2.7,"(z0,70)

The above defined vielbein are endowed with a very special property namely they
identically satisfy a set of Maurer Cartan equations:

dE! —lf’ E, , NEX =0 (4.3.47)
QQH 2 JK =24 QH o

where f/, are the structure constants of a solvable Lie algebra 2 which can be
identified as follows:

Ug
A = Solv( Q) (4.3.48)
Ho

In the above equation Solv (H ) denotes the Lie algebra of the solvable group

manifold metrically equivalent to the non-comapact coset manifold UJ according to
what we explained in Sect.2.5. In the case U is a maximally spllt real form of a
complex Lie algebra, then also Ug is maximally split and we have:

Uy
Solv( 2 ) = Bor (Uy) (4.3.49)
Ho

where Bor (Ug) denotes the Borel subalgebra of the semi-simple Lie algebra G,
generated by its Cartan generators and by the step operators associated with all
positive roots.

According to the mathematical theory summarized in Sect. 2.5 above, the very fact
that the vielbein (4.3.44) satisfies the Maurer Cartan equations of the Lie algebra

Solv <g—j) implies that the metric (4.3.45) is the symmetric metric on the coset

manifold g—j which therefore admits continuous isometries associated with all the
generators of the Lie algebra Ug. For reader’s convenience the list of Symmetric
Special manifolds and of their Quaternionic Kéhler counterparts in the image of the
c-map is recalled in Table 4.1 which reproduces the results of [7], according to which
there is a short list of Symmetric Homogeneous Special manifolds comprising five
discrete cases and two infinite series.

Inspecting Eq. (1.7.19) we immediately realize that the Lie Algebra U, contains

two universal Heisenberg subalgebras of dimension (27 + 3), namely:
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Uy D Heis; = spang {W'*, Z} ; Z; =L, =L"'+ L’

(W, W] = —%caﬂzl ; [z, WP =0
(4.3.50)
Uy D Heis, = spang {W>*, Z,} ; Z,=L_=1L"-L?
(W, W] = —%(C"‘“ Z, i |Z, W¥] =0
(4.3.51)

The first of these Heisenberg subalgebras of isometries is the universal one that
exists for all Quaternionic Kéhler manifolds 2.4 4,14 lying in the image of the
c-map, irrespectively whether the pre-image Special Kahler manifold .%7.¢", is a
symmetric space or not. The tri-holomorphic moment map of these isometries was
presented in Egs. (4.3.31) and (4.3.35). The second Heisenberg algebra exists only
in the case when the Quaternionic Kéhler manifold 2.4 4,4 is a symmetric space.
From this discussion we also realize that the central charge Z; is just the L
generator of a universal s[(2, R) g Lie algebra that exists only in the symmetric space
case and which was named the Ehlers algebra in Sect. 1.7 where we presented the
golden splitting (1.7.12). When s[(2, R) g does exist we can introduce the universal

compact generator:
G =L, —L_=2)° (4.3.52)

which rotates the two sets of Heisenberg translations one into the other:
[6, W] = ¢/ W/* (4.3.53)

The gauging of this generator is a rather essential ingredient in the inclusion of one-
field cosmological models into gauged .4~ = 2 supergravity as it was explained in
[20].

4.3.4.1 The Tri-Holomorphic Moment Map in Homogeneous
Symmetric Quaternionic Kihler Manifolds

In the case the Quaternionic Kihler manifold 2.4 4, 4 is ahomogeneous symmetric
space %, the tri-holomorphic moment map associated with any generatorof t € Ug
of the isometry Lie algebra can be easily constructed by means of the formula:

P = Trigam (J* Ly, tLson) (4.3.54)

where:

(a) J* are the three generators of the su(2) factor in the isotropy subalgebra
H = su(2) @& H, satisfying the quaternionic algebra (4.3.19). They should
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be normalized in such a way as to realize the following condition. Naming:
E = L, (@) dLson(9) (4.3.55)

the Maurer Cartan differential one-form, its projection on J* should precisely
yield the su(2) one-form defined in Eq.(4.3.11):

. 3 i i —U -vor
1 — _jg — Ze ® e 2V (CdZ
©0=—-— Trifun] (V¥ &) v = . .
VaNg o —e VI cdz o+ ie Vo
(4.3.56)

[Nl

v

B

In the above equation, which provides the precise link between the c-map
description and the coset manifold description of the same geometry, Ny =
dim fun denotes the dimension of the fundamental representation of Ug.

(b) The solvable coset representative Lg,;,(q) is obtained by exponentiation of the
Solvable Lie algebra:

Ug
Lson(q) =~ exp [q - Solv ({}; >:| (4.3.57)

g

but the detailed exponentiation rule has to be determined in such a way that
projecting the same Maurer Cartan form (4.3.55) along an appropriate basis of

Ug

the vielbein E IQ  defined in Eq. (4.3.44). This is summarized in the following
general equations:

generators Tjso of the solvable Lie algebra Solv ( ) we precisely obtain

1 I —
E\Ql/// = Tr[f““] (TSUIV ‘:’)
87 = Triran) (T5,1, Trisolv)
E =EY% , Tiison (4.3.58)

In Eq.(4.3.58) by T¢,,, we have denoted the conjugate (with respect to the trace) of
the solvable Lie algebra generators.

A general comment is in order. The precise calibration of the basis of the solvable
generators 74, and of their exponentiation outlined in Eq. (4.3.57) which allows the
identification (4.3.58) is a necessary and quite laborious task in order to establish
the bridge between the general c-map description of the quaternionic geometry and
its actual realization in each symmetric coset model. This is also an unavoidable
step in order to give a precise meaning to the very handy formula (4.3.54) for the
tri-holomorphic map. It should also be noted that although (4.3.54) covers all the
cases, the result of such a purely algebraic calculation is difficult to be guessed a
priori. Hence educated guesses on the choice of generators whose gauging produces
a priori determined features are difficult to be inferred from (4.3.54). The analytic
structure of the tri-holomorphic moment map instead is much clearer in the c-map
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framework of formulae (4.3.31), (4.3.35), (4.3.40). The use of both languages and
the construction of the precise bridge between them in each model is therefore an
essential ingredient to understand the nature and the properties of candidate gaugings
in whatever physical application.
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Chapter 5
Solvable Algebras and the Tits Satake

Projection

Quamlibet immani proiectu corporis extet, Lucretius, De Rerum
Natura, 3, 987

5.1 Historical Introduction

In this chapter we are going to develop the details of a theory pertaining to Lie
Algebras which, although it has its roots in mathematical work of the 1960s [1-3],
contributed by two great algebrists, Jacques Tits and Ichiro Satake (see Fig.5.1), yet
fully revealed its profound significance for Geometry and Physics only much later,
by the end of the XXth century, and within the context of supergravity.

The addressed topics is the Tits—Satake projection, a construction which, accord-
ing to certain rules, from a class of homogeneous manifolds, extracts a single repre-
sentative of the entire class. What is extremely surprising and inspiring is that such
a projection, invented long before the advent of supergravity special geometries, has
very nice properties with respect to special structures. Indeed it maps special Kdh-
ler manifolds into special Kdhler manifolds, quaternionic Kdhler into quaternionic
Kdihler and commutes with the c-map discussed in the previous section. Actually it
also commutes with another map, the c*-map, which is relevant for the construction
of supergravity black-hole solutions and will be illustrated in this chapter.

A conceptual procedure specially cheered by theoretical physicists is that of
Universality Classes. Considering complex phenomena like, for instance, phase-
transitions one looks for universal features that are the same for entire classes of
such phenomena. After grouping the multitude of cases into universality classes,
one tries to construct a theoretical model of the behavior shared by all elements of
each class. A mathematical well founded projection is likely to provide a power-
ful weapon to this effect. Indeed one might expect that there are universal features
shared by all cases that have the same projection and that the theoretical model of
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Fig. 5.1 On the left J. Tits (1930 Uccle, Belgium). On the right Ichiro Satake (1927 Yamaguchi
Japan - 2014 Tokyo Japan). Jacques Tits was born in Uccle, on the southern outskirts of Brussels.
He graduated from the Free University of Brussels in 1950 with a dissertation Généralisation des
groupes projectifs basés sur la notion de transitivité. From 1956 to 1962 Tits was an assistant at
the University of Brussels. He became professor there in 1962 and remained in this role for two
years before accepting a professorship at the University of Bonn in 1964. In 1973 he was offered
the Chair of Group Theory at the College de France which he occupied until his retirement in 2000
being naturalised French citizen since 1974. Jacques Tits has given very prominent contributions
to the advancement of Group Theory in many directions and he is especially known for the Theory
of Buildings, which he founded, and for the Tits alternative, a theorem on the structure of finitely
generated groups. After his retirement from the College the France, a special Vallée-Poussin Chair
was created for him at the University of Louvain. Ichiro Satake was born in the Province of Yam-
aguchi in Japan and graduated from the University of Tokyo in 1959. He held various academic
positions in the USA and since 1968 to his retirement in 1983 he was Full Professor of Mathematics
at the University of California, Berkeley. He is specially known for his contributions to the theory of
algebraic groups and for the Satake diagrams that classify the real forms of a complex Lie algebra

this shared behavior is encoded in the algebraic structure of the projection image.
We will see that this is precisely what happens with the Tits—Satake projection that
captures universal geometrical features of supergravity models.

Since the interplay between Mathematics and Theoretical Physics has been essen-
tial in the development of this new chapter of homogeneous space geometry we briefly
recall the key facts of this short but intellectually intense history.

(1) In the early 1990s, as we have already reported, B. de Wit, A. Van Proeyen,
F. Vanderseypen studied the classification of homogeneous special manifolds
admitting a solvable transitive group of isometries [4—6]. This work extended
and completed the results obtained several years before by Alekseevsky in
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relation with the classification of quaternionic manifolds also admitting a tran-
sitive solvable group of isometries [7].

In 1996-1998, L. Andrianopoli, R. D’ Auria, S. Ferrara, P. Fré and M. Trigiante
explored the general role of solvable Lie algebras in supergravity [8—10], point-
ing out that, since all homogenous scalar manifolds of all supergravity models
are of the non-compact type, they all admit a description in terms of a solvable
group manifold as we explained in Sect.2.5. The solvable representation of the
scalar geometry was shown to be particularly valuable in connection with the
description of BPS black hole solutions of various supergravity models.

In the years 1999-2005 Thibaut Damour, Marc Henneaux, Hermann Nicolai,
Bernard Julia, F. Englert, P. Spindel and other collaborators, elaborating on old
ideas of V.A. Belinsky, I.M. Khalatnikov, E.M. Lifshitz [11-13], introduced the
conception of rigid cosmic billiards [14-27]. According to this conception the
various dimensions of a higher dimensional gravitational theory are identified
with the generators of the Cartan Subalgebra 7 of a supergravity motivated Lie
algebra and cosmic evolution takes place in a Weyl chamber of 7. Considering
the Cartan scalar fields as the coordinate of a fictitious ball, during cosmic evo-
lution such a ball scatters on the walls of the Weyl chambers and this pictorial
image of the phenomenon is at the origin of its denomination cosmic billiard. In
this context the distinction between compact and non-compact directions of the
Cartan subalgebra appeared essential and this brought the Tits Satake projection
into the game.

In 2003-2005 F. Gargiulo, K. Rulik, P. Fré, A.S. Sorin and M. Trigiante devel-
oped the conception of soft cosmic billiards [28-30], corresponding to exact,
purely time dependent solutions of supergravity, including not only the Cartan
fields but also those associated with roots which dynamically construct the Weyl
chamber walls advocated by rigid cosmic billiards.

In 2005, Fré, Gargiulo and Rulik constructed explicit examples of soft cosmic
billiards in the case of a non maximally split symmetric manifold. In that context
they analyzed the role of the Tits Satake projection and introduced the new
mathematical concept of Paint Group [31].

In2007, P. Fré, F. Gargiulo, J. Rosseel, K. Rulik, M. Trigiante and A. Van Proeyen
[32] axiomatized the Tits Satake projection for all homogeneous special geome-
tries. They based their formulation of the projection on the intrinsic definition of
the Paint Group as the group of outer automorphisms of the solvable transitive
group of motion of the homogeneous manifold. This is the theory that will be
explained in this chapter. Up to the knowledge of this author, this theory was
never previously developed in the mathematical literature.

In the years 2009-2011 the integration algorithm utilized in the framework of
soft cosmic billiards was extended by P. Fré, A.S. Sorin and M. Trigiante to
the case of spherical symmetric black-holes for manifolds in the image of the
¢*-map [33-35].

In 2011, P. Fré, A.S. Sorin and M. Trigiante demonstrated that the classification
of nilpotent orbits for a non maximally split Lie algebra depends only on its
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Tits—Satake projection and it is a property of the Tits—Satake universality class
(see Chap.6).

Through the above sketched historical course, which unfolded in about a decade, the
theory of the Tits—Satake projection has acquired a quite solid and ramified profile,
intertwined with the ¢ and ¢* maps that opens new viewpoints and provides new
classification tools in the geometry of homogeneous manifolds and symmetric spaces.
Although the theory is distinctively algebraic and geometric, yet it is poorly known
in the mathematical community due to its supergravity driven origins. Hopefully the
present exposition will improve its status in the mathematical club.

We turn next to a systematic discussion of the c¢*-map environment where the
Tits—Satake projection is best understood and most useful.

5.2 Physical-Mathematical Introduction

In the previous chapter we provided the definition of special Kihler geometry and of
quaternionic Kdhler geometry. In the context of .4~ = 2 supergravity, as we stressed
there, the two types of geometries are respectively pertinent to the scalars included in
the vector multiplets and to those pertinent to the hypermultiplets. The next main focus
of attention was the c-map from Special Kidhler Manifolds of complex dimension »
to quaternionic Kihler manifolds of real dimension 4n + 4:

cmap : S H, = 2Manta 5.2.1)

What we did not emphasize in the previous chapter is that the c-map follows from the
systematic procedure of dimensional reduction from a D = 4, .4 = 2 supergravity
theorytoa D = 3 o-model endowed with .4~ = 4 three-dimensional supersymmetry.
We recall this point here since it helps understanding another very similar map that
we are going to consider in this chapter and that we name the ¢*-map. Naming z’
the scalar fields that fill the special Kihler manifold .”.%,, and g; - its metric, the
D = 3 o-model which encodes all the supergravity field equations after dimensional
reduction on a space-like direction admits, as target manifold, a quaternionic manifold
whose 4n + 4 coordinates we name as follows:

i _ A
w.ay | i UJz=1(z". zs5) (5.2.2)
2 2n 2n+2

and whose quaternionic metric has the general form that we discussed at length in
Chap. 4.

The c*-map arises in a similar way from dimensional reduction but along a time-
like direction. Let us see in which context this takes place.
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5.2.1 Black Holes and the Geometry of Geometries

In the last twenty years a lot of interest was devoted to study black-hole solutions of
pure and matter coupled ./ -extended supergravity theories, the case ./~ = 2 being
the most widely considered. Generally speaking a black-hole solution of matter
coupled supergravity is an exact solution of the bosonic field equations where all
the items of geometry that we have been so far studying are involved. Let us get an
orientation on this exciting entanglement of several geometries.

The general form of a bosonic supergravity lagrangian in D = 4 is the following
one:

R 1
2% — Jdetg] [% — 00" 0 6 ha (@) + Tm Ao F,quE"”}

1
+§ReJVAg F{Fy e (5.2.3)
The fields included in the theory are the metric g, (x), ny abelian gauge fields A2,
whose field strengths (or curvatures) we have denoted by F/, = (3, A{' — 3,A%)/2
and ny scalar fields ¢“ that parameterize a scalar manifold .#" azl;‘r that, for super-
symmetry .4 > 2, is necessarily a coset manifold:

P4 = Un
“scalar T
H,

(5.2.4)

Up—4 being a non-compact real form of a semi-simple Lie group, essentially fixed
by supersymmetry and H, its maximal compact subgroup. For .4 = 2 Eq.(5.2.4) is
not obligatory yet it is possible: a well determined class of symmetric homogeneous
manifolds that are special Kidhler manifolds fall into the set up of the present general
discussion.

Hence we see that we are dealing with geometries at three levels:

1. We deal with the geometry of space-time .#,", encoded in its metric g, which is
dynamical, in the sense that we have to determine it through the solution of field
equations, many possibilities being available, among which we have black-hole
geometries with event horizons and all the rest.

2. We deal with connections on a fiber bundle P (% , //lgf’ ), whose base manifold
is the dynamically determined space-time ., and whose structural group is an
abelian group ¢ of dimension equal to the number ny of involved gauge fields.
These connections are also dynamical in the sense that they have to be determined
as solutions of the coupled field equations.

3. We deal with a fixed Riemannian geometry encoded in the target manifold (5.2.4)
of which the scalar fields ¢“ are local coordinates. Any solution of the coupled
field equations defines a map
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¢ - M — AP (5.2.5)

scalar

of space-time into the scalar manifold.

There is still encoded into the lagrangian (5.2.3) another geometrical datum of utmost
relevance. Let us describe it. Considering the n, vector fields Al’} let

JIdetg]
T =3 [F,fv +iY 26 g'e,w,w F”"] (5.2.6)

denote the self-dual (respectively antiself-dual) parts of the field-strengths. As dis-
played in Eq. (5.2.3) they are non minimally coupled to the scalars via the symmetric
complex matrix

Nax(@) =ilmA, 5 +ReANyp (5:2.7)

The key point is that the isometry group Up_4 of the scalar manifold (5.2.4) is pro-
moted to a symmetry of the entire lagrangian through the projective transformations
of 4 5 under the group action.

Indeed the field strengths .%£4 plus their magnetic duals:

v

(5.2.8)

fill up a 2 n,-dimensional symplectic representation of Up—_4 which we call by the
name of W.

We rephrase the above statements by asserting that there is always a symplectic
embedding of the duality group Up_4,

Up=4 — Sp(2n,,R) ; n, = # of vector fields (5.2.9)

so that for each element & € Up_4 we have its representation by means of a suitable
real symplectic matrix:
5}—)A=<A€BS) (5.2.10)
£§= C: Dy -

satisfying the defining relation:

Ag‘ < Onxn lnxn) AE — ( O”X" lnxn) (5211)

_1n><n Onxn _lnxn Onxn

Under an element of the duality group the field strengths transform as follows:

FN _ (A B\ (FT\ . (F Y _ (A B\ (T
<g+) _<Cst> <5¢+> ’ <g—> _<Cst g- ) 6:212)
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where, by their own definitions we get:
Gt=NFt ; G =NTF (5.2.13)
and the complex symmetric matrix .#” should transform as follows:
N'=(Ce+ De N) (Ae + Be N) (5.2.14)

Choose a parametrization of the coset IL(¢) € Up—4, which assigns a definite group
element to every coset point identified by the scalar fields. Through the symplectic
embedding (5.2.10) this produces a definite ¢-dependent symplectic matrix

A(¢) B(9)
(C(¢) D(¢)) (5.2.15)

in the W-representation of Up_4. In terms of its blocks the kinetic matrix .4 (¢)
is explicitly given by a formula that was found at the beginning of the 1980s by
Gaillard-Zumino [36]:

N (@) = [C(¢) —iD)I[A@) —i B, (5.2.16)

The matrix .4 is the same which appears in the definition of special Kéhler
geometry and it transforms according to Eq. (5.2.14).

Summarizing the geometrical structure of the bosonic supergravity lagrangian is
essentially encoded in two data. The duality-isometry group Up—3 and its symplectic
representation W that corresponds to the embedding (5.2.9).

A brilliant discovery occurred in the first two decades of the XXIst century can
be dubbed as the D = 3 approach to supergravity black-holes. Mainly originating
from the contributions included in the following papers [37—43], it consists of the
following.

The radial dependence of all the relevant functions parameterizing the supergravity
solution can be viewed as the field equations of another one-dimensional o-model
where the evolution parameter 7 is actually a monotonic function of the radial variable
r and where the target manifold is a pseudo-quaternionic manifold 27, , 4 related to
the quaternionic manifold 24,14, in the following way. The coordinates of Q(*‘m 1)
are the same as those of 24,14y, while the two metrics differ only by a change of
sign. Indeed we have

1 -
ds%) = i [dU2 +2gijpdz d7 + eV (da+27Cdz)* — 27V dZ" Mz, 7) dZ]
1l Wick rot. (5.2.17)
1 R
dsh. = |:dU2 +2gid7 dz +e 2V (da+ ZTCAZ)? + 27V dZT My(2. %) dZ]

(5.2.18)
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In Egs. (5.2.17) and (5.2.18), C denotes the (2n + 2) x (2n + 2) antisymmetric
matrix defined over the fibers of the symplectic bundle characterizing special geom-
etry, while the negative definite, (2n + 2) x (2n 4 2) matrix .#4(z, 7) is the one
already introduced in Eq. (4.3.3). The pseudo-quaternionic metric is non-Euclidean
and it has the following signature:

sign (ds.) = |+, ...+, —, ..., — (5.2.19)
2n+2 2n+2

In this way we arrive at a Geometry of the Geometries. As solutions of the o -model
defined by the metric (5.2.18), all spherically symmetric black-holes correspond to
geodesics and consequently a geodetic in the manifold 2* encodes all the geometrical
structures listed below:

(a) A spherical black-hole metric,
(b) a spherical symmetric connection on the fiber bundle P (g , ///4”)
(c) aspherical symmetric map from .#" into the manifold (5.2.4)

The indefinite signature (5.2.19) introduces a clear-cut distinction between non-
extremal and extremal black-holes: the non-extremal ones correspond to time-like
geodesics, while the extremal black-holes are associated with light-like ones. Space-
like geodesics produce supergravity solutions with naked singularities [37].

In those cases where the Special Manifold .’.%, is a symmetric space %
also the quaternionic manifold defined by the metric (5.2.17) is a symmetric coset
manifold:

Up=3

= (5.2.20)
Hp_;

where Hp_3 C Up_3 is the maximal compact subgroup of the U-duality group, in
three dimensions Up—_3. The change of sign in the metric (5.2.19) simply turns the
coset (5.2.20) into a new one:
Up=
=3 (5.2.21)
Hp_;

where Hf,_; C Up=3 is another non-compact maximal subgroup of the U-duality
group whose Lie algebra H* happens to be a different real form of the complexifi-
cation of the Lie algebra H of Hp_3. That such a different real form always exists
within Up_3 is one of the group theoretical miracles of supergravity.

5.2.2 The Lax Pair Description

Once the problem of black-holes is reformulated in terms of geodesics within
the coset manifold (5.2.21) a rich spectrum of additional mathematical techniques
becomes available for its study and solution.
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The most relevant of these techniques is the Lax pair representation of the super-
gravity field equations. According to a formalism reviewed in papers [34, 44], the
fundamental evolution equation takes the following form:

%L(r) + W), L(t)] = 0 (5.2.22)

where the so named Lax operator L(t) and the connection W(t) are Lie algebra

elements of U respectively lying in the orthogonal subspace K and in the subalgebra
H* in relation with the decomposition:

U=HeokK (5.2.23)

As it was proven in [29, 33-35], both for the case of the coset (5.2.20) and the
coset (5.2.21), the Lax pair representation (5.2.22) allows the construction of an
explicit integration algorithm which provides the finite form of any supergravity
solution in terms of two initial conditions, the Lax Ly = L(0) and the solvable coset
representative Iy = IL(0) at radial infinity 7 = 0.

The action of the global symmetry group Up_3 on a geodesic can be described
as follows: By means of a transformation Up_3/H* we can move the “initial point”
at T = 0 (described by L) anywhere on the manifold, while for a fixed initial point
we can act by means of H* on the “initial velocity vector”, namely on Ly. Since
the action of Up_3/H* is transitive on the manifold, we can always bring the initial
point to coincide with the origin (where all the scalar fields vanish) and classify the
geodesics according to the H*-orbit of the Lax matrix at radial infinity L. Since the
evolution of the Lax operator occurs via a similarity transformation of Ly by means
of a time evolving element of the subgroup H*, it will unfold within one H*-orbit.

The main goal is then that of classifying all possible solutions by means of H*-
orbits within K which, in every supergravity based on homogeneous scalar geome-
tries, is a well defined irreducible representation of H*.

5.2.3 Nilpotent Orbits and Tits Satake Universality Classes

Asitwas discussed in [44] and in previous literature, regular extremal black-holes are
associated with Lax operators L(7) that are nilpotent at all times of their evolution.
Hence the classification of extremal black-holes requires a classification of the orbits
of nilpotent elements of the K space with respect to the stability subgroup H* C
Up=3. This is a well posed, but difficult, mathematical problem. In [44] it was solved

for the case of the special Kdher manifold S%((ll’)l) which, upon time-like dimensional
G

reduction to D = 3, yields the pseudo quaternionic manifold STaDxsoaD - 1t would
be desirable to extend the classification of such nilpotent orbits to supergravity models
based on all the other special symmetric manifolds. Although these latter fall into
a finite set of series, some of them are infinite and it might seem that we need to
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examine an infinite number of cases. This is not so because of a very important
property of special geometries and of their quaternionic descendants.
This relates to the Tits—Satake (TS) projection of special homogeneous (SH)

manifolds:
Tits—Satake

R = (5.2.24)

which was analysed in detail in [32], together with the allied concept of Paint Group
that had been introduced previously in [31]. What it is meant by this wording is the
following. It turns out that one can define an algorithm, the Tits—Satake projection
mrs, which works on the space of homogeneous manifolds with a solvable transitive
group of motions ¥, and with any such manifold associates another one of the same
type. This map has a series of very strong distinctive features:

1. mrs is a projection operator, so that several different manifolds .7 7¢; (i =
1, ..., r) have the same image 7rrs (7 5;).

2. mrs preserves the rank of ¢, namely the dimension of the maximal Abelian
semisimple subalgebra (Cartan subalgebra) of ¥,.

3. mrs maps special homogeneous into special homogeneous manifolds. Not only.
It preserves the two classes of manifolds discussed above, namely maps special
Kdihler into special Kdhler and maps Quaternionic into Quaternionic

4. mrs commutes with c-map, so that we obtain the following commutative diagram:

Special Kéhler = Quaternionic-Kéhler
mrs U mrs | (5.2.25)

(Special Kihler) g = (Quaternionic-Kahler) g

The main consequence of the above features is that the whole set of special homoge-
neous manifolds and hence of associated supergravity models is distributed into a set
of universality classes which turns out to be composed of extremely few elements.

If we confine ourselves to homogenous symmetric special geometries, which are
those for which we can implement the integration algorithm based on the Lax pair
representation, then the list of special symmetric manifolds contains only eight items
among which two infinite series. They are displayed in the first column of Table5.1.
The c-map produces just as many quaternionic (Kéhler) manifolds, that are displayed
in the second column of the same table. Upon the Tits—Satake projection, this infinite
set of models is organized into just five universality classes that are displayed on the
third column of Table 5.1. The key-feature of the projection, relevant to our purposes
is that all of its properties extend also to the pseudo-quaternionic manifolds produced
by a time-like dimensional reduction. We can say that there exists a ¢*-map defined
by this type of reduction, which associates a pseudo-quaternionic manifold with each
special Kihler manifold. The Tits—Satake projection commutes also with the ¢*-map
and we have another commutative diagram:



5.2 Physical-Mathematical Introduction

213

Table 5.1 The eight series of homogenous symmetric special Kdhler manifolds (infinite and finite),
their quaternionic counterparts and the grouping of the latter into five Tits Satake universality classes

Special Kéhler Quaternionic Tits Satake projection of quater
S H DM 444 Q.M 1s
U(s+1,1) U(s+2,2) U@G,2)
UG+DxUD UG+2)xUQ2) ORI
sud,1) G2 Ge.o
U SU@)=SUQ) SU@)=SUQ)
su(Ll) . SU(LD) S0(3,4) NOEXD)
SORESRE)) SOB)xS0@) SOB)xS0@)
SULD | SO(p+2.2) SO(p+4.4) SO(5.4)
UM X S0p+2)xS02) SO(p+4)xSO(@) SO(5)xS04)
Sp(6) Faa
U®3) Usp(6)xSU(2)
SU3.3) Ee,—2
SUG)xSUR) xU(1) SU@XSUQ) Fu4
SO*(12) Usp(6)x SUQ)
SU®) xU(D so%z)st(z)
E@,-25 (8,—24)

E,—78)xU(1)

E(7,-133) xSU(2)

Special Kéhler

mrs

=P Pseudo-Quaternionic-Kihler

(5.2.26)

(Special Kihler) g “":mi" (Pseudo-Quaternionic-Kihler)tg

By means of this token, we obtain Table 5.2, perfectly analogous to Table 5.1 where
the Pseudo-Quaternionic manifolds associated which each symmetric special geom-
etry are organized into five distinct Tits Satake universality classes.

Table 5.2 The eight series of homogenous symmetric special Kéhler manifolds (infinite e finite),
their Pseudo-Quaternionic counterparts and the grouping of the latter into five Tits Satake univer-

sality classes

Special Kéhler Pseudo-quaternionic Tits Satake proj. of pseudo
S H DMy, y quater
DM 7
UGs+1,1) U(s+2,2) UG3,2)
UG+D=UD) UG+1,HxU(, 1) U2 D0, D
Su(, 1) Gp.2) G
S[0) SO, DH=SU(T, 1) SO, DH=SU, 1)
su(,1) _ sud,l) SO(3,4) SO(3,4)
un X T 502, 1)xS02.2) 50(1,2)xS0(2,2)
SULD _ SO(p+2.2) SO(p+4,4) SO(5,4)
U() SO(p+2)xS0Q) S0(p+2,2)xS0(2.2) 50(3,2)xS0(2.2)
Sp(©) Fua
U(3) Sp(6) xSU(I,T)
SU@3,3) E@,-2)
SUB)xSUB) xU() SUB.3)xSU(1, 1) Fa,a
S0*(12) (1,-5) Sp(6)xSU(T, 1)
SU6)xU(1) SO*(12) xSU(1, 1)
E@7,-25 (8.-24)

E6,—78)xU(1)

E7._25 xSU(I, 1)
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Hence we have the following:

Statement 5.2.1 The number, structure and properties of H* orbits of K nilpotent
elements depend only on the Tits Satake universality class and it is an intrinsic
property of the class.

So it suffices to determine the classification of nilpotent orbits for the five manifolds
appearing in the third column of Table 5.2.

In Chap. 6 we will work out the details for the simplest case corresponding to the
second line in Table 5.2. The details of the algorithm should be clear from such an
illustration. In [45] the following case was studied in detail:

11 2,242
FH Oy = 0L D S0Q. 24129 (5.227)
U < S02) x SO2+2)

which corresponds to one of the possible couplings of 2 + 2s vector multiplets.

Upon space-like dimensional reduction to D = 3 and dualization of all the vector
fields, a supergravity model of this type becomes a o-model with the following
quaternionic manifold as target space:

UD:3 _ SO(4, 44 28)
H  SO®@) x SO4 +2s)

2%(4,4+2s) = (5228)

as mentioned in Table5.1. If we perform instead a time-like dimensional reduction,
as it is relevant for the construction of black-hole solutions, we obtain an Euclidean
o-model where, as mentioned in Table 5.2 the target space is the following pseudo-
quaternionic manifold:

Up=s SO4, 4 + 2s)
QM7 = = . 5.2.29
D SO(2,2) x SO(2, 2 + 25) ( )
The Tits Satake projection of all such manifolds is:
uls SO, 5
Qs = 2= = k) (5.2.30)

Hig  SO(2,3) x SO(2,2)

We refer the reader to [45] for the explicit construction of nilpotent orbits pertaining
to this example.

5.3 The Tits Satake Projection

The arguments exposed in the previous section should have convinced the reader of
the high relevance of the Tits—Satake projection, both in the context of black-holes
and in the context of other geometrical aspects of supergravity theory, a notable one
being that of gauging. For this reason the remaining part of this chapter is devoted
to the illustration of the rich mathematical theory underlying this projection.
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In this section we explain the Tits—Satake projection of a metric solvable Lie
algebra and how it is related to the notions of paint group Gpaine and subpaint group
Giubpaint C Gpaine. Although the Tits—Satake projection can be defined for general
solvable Lie algebras, our main interest is in symmetric spaces and the just mentioned
notions have been extracted precisely from the case of the Tits—Satake projections of
solvable Lie algebras associated with symmetric spaces Solv(G/H). On these latter
we focus.

5.3.1 The TS-Projection for Non Maximally Split Symmetric
Spaces

Following the discussion of Sect. 2.4 let us recall that if the scalar manifold of super-
gravity is a non maximally noncompact manifold G /H the Lie algebra of the numer-
ator group is some appropriate real form Gy of a complex Lie algebra G. The Lie
algebra H of the denominator H is the maximal compact subalgebra H C G. Denot-
ing, as usual, by K the orthogonal complement of H in Gg:

Gr=H oK (5.3.1)

and defining as noncompact rank or rank of the coset G/H the dimension of the non-
compact Cartan subalgebra (see Eq. (2.4.3), we obtain that r,. < rank(G), where the
equality is the statement that the manifold is maximally noncompact (or ‘maximally
split’).

When the equality is strict, the manifold Gg /H is still metrically equivalent to a
solvable group manifold but the form of the solvable Lie algebra Solv(Gg /H), whose
structure constants define the Nomizu connection, is more complicated than in the
maximally non-compact case. It was discussed and explained in Sect.2.5.1. The
Tits—Satake theory of non-compact cosets and split subalgebras is a classical topic in
Differential Geometry and appears in some textbooks. Within such a mathematical
framework there is a peculiar universal structure of the solvable algebra Solv(Gg /H)
that had not been observed before [31] namely that of paint and subpaint groups which
extends beyond symmetric spaces as it was demonstrated in [32].

Explicitly we have the following scheme. One can split the Cartan subalgebra into
its compact and non-compact subalgebras as shown in Eq.(2.4.17) and these parts
are orthogonal using the Cartan-Killing metric. Therefore, every vector in the dual
of the full Cartan subalgebra, in particular every root «, can be decomposed into its
transverse and parallel part to 72" as it was done in Eq. (2.4.19).

The Tits—Satake projection consists of two steps. Firstone sets allor; = 0, project-
ing the original root system Ag onto a new system of vectors A living in a Euclidean
space of dimension equal to the non-compact rank r,,c. The set A is called a restricted
root system. It is not an ordinary root system in the sense that roots can occur with
multiplicities different from one and 2« can be a root if ) is one. In the second
step, one deletes the multiplicities of the restricted roots. Thus we have
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0 — deleting
s : Ag +— Ars,: Ag 0> A +—  Ars. (5.3.2)

multiplicities

If A contains no restricted root that is the double of another one, then Ars is a
root system of simple type. We will show later that this root subsystem defines a Lie
algebra Grs, the Tits—Satake subalgebra of Gg:

Ats = root system of Gts,  Grs C Gpg. (5.3.3)

The Tits—Satake subalgebra Grg is, as a consequence of its own definition, the
maximally non-compact real section of its own complexification. For this reason,
considering its maximal compact subalgebra Hts C Grs we have a new smaller
coset Grs/Hrs which is maximally split and whose associated solvable algebra
Solv(Grts/Hrts) has the standard structure utilized in [29] to prove complete inte-
grability of supergravity compactified to 3 dimensions. This result demonstrates the
relevance of the Tits—Satake projection.

In the case doubled restricted roots are present in A, the projection cannot be
expressed in terms of a simple Lie algebra, but the concept remains the same. The
root system is the so-called bc, system, with r = r,,. the non-compact rank of the
real form G. It is the root system of a group Grs, which is now non-semi-simple.
The manifold is similarly defined as Grs/Hrs, where Hrg is the maximal compact
subgroup of Grs.

The next question is: what is the relation between the two solvable Lie alge-
bras Solv(Gg/H) and Solv(Grs/Hrts)? The answer can be formulated through the
following statements A-E.

[A]

In a projection more than one higher dimensional vector can map to the same lower
dimensional one. This means that in general there will be several roots of Ag that have
the same image in Ars. The imaginary roots vanish under this projection, according
to the definition of Sect.2.5. Therefore, apart from these imaginary roots, there are
two types of roots: those that have a distinct image in the projected root system and
those that arrange into multiplets with the same projection. We can split the root
spaces in subsets according to whether there is such a degeneracy or not. Calling A
and Al the sets of positive roots of the two root systems, we have the following
scheme:

AL =41 U4 U Acomp
Vs | ITrs | IIts
A?s = A’Lfs U A?s

Vo' € Afg @ dim g [¢'] =1, Vo' € Alg : dim I [¢'] = m[e’] > 1.
(5.34)
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The § part thus contains all the roots that have multiplicities under the Tits—Satake
projection while the roots in the 1 part have no multiplicities. These roots of type 1 are
orthogonal to Acomp. Indeed, this follows from the fact that for any two root vectors o
and B where there is no root of the form 8 + ma with m a non-zero integer, the inner
product of 8 and o vanishes. It also follows from this definition that in maximally
split symmetric spaces, in which case Acomp = ¥, all Toot vectors are in A" or Al
(as the Tits—Satake projection is then trivialized).

These subsets moreover satisfy the following properties under addition of root
vectors:

G Grs

AT+ AT C A" Al + Al C Al

A;’ + Aj c Al 6 Afs + Afs C Airs ‘ (535)
A%+ A2 C AT A% Afg + At C Arg U At

Acomp +A"=10

Acomp + A° C A?

Because of this structure we can enumerate the generators of the solvable algebra
Solv(Ggr/H) in the following way:

Solv(Gr/H) = {H;, Pyt 201}
H; = Cartan generators

Dy = 1 — roots
Qs = 8—roots ; (I =1,...,m[e"]). (5.3.6)

The index I enumerating the m-roots of Ag, that have the same projection in Ars
is named the paint index.
[B]

There exists a compact subalgebra Gpany C Ggr which acts as an algebra of
outer automorphisms (i.e. outer derivatives) of the solvable algebra Solvg, =
Solv(Ggr/H) C Gg, namely:

[Gpaint » Solvg, | C Solvg,. (5.3.7)

[C]

The Cartan generators H; and the generators @, are singlets under the action of
Gpaint» i.€. each of them commutes with the whole of Gpin:

[Hi » Gpainl] = [(Dazz s Gpaint] =0 (5.3.8)
On the other hand, each of the multiplets of generators £2,s|; constitutes an orbit

under the adjoint action of the paint group Gpain, 1.€. a linear representation D[]
which, for different roots «® can be different:
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5 J
VX € Gpimt : [X. Q] = (DX]), 2wy (539

(D]

The paint algebra Gy contains a subalgebra

<Gsubpamt - Gpaint (5.3.10)
such that with respect to Gsubpamt’ each m[a’]-dimensional representation D[o®]
branches as follows:

s G.(\‘]ubpuinl
D] = 1 & J (5.3.11)
singlet (m[a*]—1)—dimensional

Accordingly we can split the range of the multiplicity index / as follows:
I={0,x}, x=1,...,mle']—1. (5.3.12)

The index O corresponds to the singlet, while x ranges over the representation J.
(E]

The tensor product J ® J contains both the identity representation 1 and the repre-
sentation J itself. Furthermore, there exists, in the representation A\’ J a (Gbubpdmt

invariant tensor a*>* such that the two solvable Lie algebras Solvg, and Solvg,, can
be written as follows

Solvg Solvg g
Hj|= [Hi. Hj]=0
3
H,,(Dg]_a D0 H,,Ea}:af
Hi, B ] = af B2

[H;
[
[Hi . Qa51] = o 2511
[0
[

Dyes 2psir] = Nyegs Lyt pss
Ifa' + 5 € ALy
[asir+ 2171 = 81 Nos ps Pus s
Ifo' +p° € Afg:
[2as10+ 2ps10] = Nosps 2as4ps10

[Qas‘o, Qﬂsp(] = NaSﬂSQaS+ﬁX|x

[
[

ol ] Nyegt Pyt pt [E“ ,
[ ,
[

[E'. BF'] = Nyspo ' +F°

(5.3.13)

where Nyg = 0if o 4+ B ¢ Arg.
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5.3.2 Paint and Subpaint Groups in an Example

We now want to illustrate the general structure described in the previous subsection
through the analysis of a specific example of a non maximally split symmetric space.
This will be both educational in order to clarify the notion of Tits—Satake projection
and instrumental to extract a general systematics for the paint and subpaint groups,
which we will later recognize in the entire classification of supergravity relevant
symmetric spaces.

Hence let us consider the following quaternionic Kihler manifold:

G Eg(—
e ) N (5.3.14)
H E7(,133) X SU(2)

which, according to Table 5.1 is the c-map image of the following special Kéhler

manifold
E7 25

- (5.3.15)
Eg(-78) x U(1)

The quaternionic nature of the chosen non maximally split symmetric space is sig-
naled by the presence of the SU(2) factor in the denominator group and itis confirmed
by the decomposition of the adjoint representation of the numerator group:

248 72X (133 1) @ (1.3) @ (56, 2) (5.3.16)

Indeed the 4 x 28 = 112 coset generators being in the (56, 2) of E7(_133) x SU(2)
are SU(2) doublets and transform symplectically under USp(56) transformations
due to the symplectic embedding of the 56 representation of the compact E; group.

The quaternionic structure, however, is not relevant to our present discussion that
focuses on the mechanisms of the Tits—Satake projection. By means of this latter we
obtain the following result:

Eg(—24 Fa)

HTS —>
E7(,133) X SU(Z) USp(6) X SU(Z)

(5.3.17)

and we just note that the projected manifold is still quaternionic for similar reasons
to those of (5.3.16). So the maximal non-compact Lie algebra F44) is the Tits—Satake
subalgebra of Eg(_»4). Let us see how this happens, following step by step the scheme
described in the previous section.

The rank of the complex Eg algebra is 8 and, and in its real section Eg_4) we
can distinguish 4 compact and 4 non-compact Cartan generators. In a Euclidean
orthonormal basis the complete Eg root system is composed of the following 240
roots:
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te te; (i # j) 112
A :I:%El + %82 + %83 + %84 + %6‘5 + %86 + %87 + %Sg 128
Eg = )
* even number of minus signs
240
(5.3.18)

and a convenient choice of the simple roots is provided by the following ones:

ay =1{0,1,—1,0,0,0,0,0},
@ =1{0,0,1,-1,0,0,0,0},

a; = {0,0,0,1,—1,0,0,0},

as = {0,0,0,0,1,—1,0,0},

as = {0,0,0,0,0, 1, —1,0},

a6 = {0,0,0,0,0, 1, 1,0},

11 1 1 1 1 1 1
= {_5’ Ty Ty Ty Ty _E}’
as = {1,—1,0,0,0,0,0,0}. (5.3.19)

The corresponding Dynkin diagram is displayed in Fig. 5.2. where the roots a3, o4,
as, o have been marked in black. This indicates that these simple roots are imagi-
nary, and Cartan generators as e.g. s 7% belong to 7#°°™. In this way these diagrams
define both the real form Eg(_,4) and the corresponding Tits—Satake projection of the
root system. The non-compact CSA 7" is the orthogonal complement of J#<°™P.
Let us also note that the black roots form the Dynkin diagram of a D, algebra, i.e in
its compact form the Lie algebra of SO(8). This is the origin of the paint group

Gpaint = SO(9), (5.3.20)

pertaining to this example. We shall identify it in a moment, but let us first perform the
Tits—Satake projection on the root system. This case is particularly simple since the
span of the simple imaginary roots 3, a4, &5, &g is just given by the Euclidean space
along the orthonormal axes &4, €5 &g, £7. The Euclidean space along the orthonormal
axes &1, & €3, &g is the non-compact CSA. Note that this is not the same as the span
of a1, a2, 7, ag. Denoting the components of root vectors in the basis ¢; by o, the
splitting (2.4.19) is very simple. We just have:

s

Ey-2) O—@ & O—0O——0
(0%) o

o Olg Oy [04] og

Fig. 5.2 The Tits—Satake diagram of Eg(_»4), rank = 8, split rank = 4, Gts = Fa)
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a) = {oz4, o, al, a3} ;oo = {ozl, o, o, ozg}, (5.3.21)

and the projection (5.3.2) immediately yields the following restricted root system:

e e (i#j : i,j=12,3,8)24
_ +e, i=1,2,3,8) 8
Ars = :l:%gl + %82 + %83 4 %88 16 ( ° (5.3.22)
48

which can be recognized to be the root system of the simple complex algebra Fj.
With reference to the notations introduced in the previous section let us now
identify the subsets A” and A’ in the positive root subsystem of AJEF8 and their
corresponding images in the projection, namely A and A.
Altogether, performing the projection the following situation is observed:

e There are 24 roots that have null projection on the non-compact space, namely
o=0& a=xs*e; ; i,j=4,5067. (5.3.23)

These roots, together with the four compact Cartan generators, form the root system
of a D, algebra, whose dimension is exactly 28. In the chosen real form such a
subalgebra of Eg_,4) is the compact algebra SO(8) and its exponential acts as
the paint group, as already mentioned in (5.3.20). All the remaining roots have a
non-vanishing projection on the compact space. In particular:

e There are 12 positive roots of Eg that are exactly projected on the 12 positive long
roots of F4, namely the first line of (5.3.22), which we therefore identify with A%s.
For these roots we have «; = 0 and they constitute the A” system mentioned
above:

AL D Ag=ete}=A 1 i<j; i.j=1238 (5324

e There are 8 different positive roots of Eg that have the same projection on each of
the 12 = 4 & 8 positive short roots of Fy, i.e. the second and third line of (5.3.22).
Namely the remaining 12 x 8 = 96 roots of Eg are all projected on short roots of
F,4. The set of F4 positive short roots can be split as follows:

A = A U 43, U A

vec spin

spin
Afee = {&i} i=1,23238 4
A:pin = :f:%é‘] + %82 + %83 + %88 4
even number of minus signs (5325)
Azﬁ = :l:%&‘] + %82 + %6‘3 + %88 4

odd number of minus signs

12
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Correspondingly the subset A® C A, defined by its projection property ITts (A°)
= Ajyg is also split in three subsets as follows:

A(-Sl— = Aeec U A2

spin

s ) , i=1238
Ajee = 1 & @(:i:a]) , (j:4,5,6,7 4 x 8|32
| oy
Al =1 (£381 £ 360 + o3 + Jes) © (h3es & o5 + Jog + he7) ¢ |4 x 8|32

a) even # of —signs a) even # of— signs

S =) (Eher £ Jer £ Jes + ge) @ (E3ea £ g5 & Jeo £ 5e7) 114 % 832
a odd # of — signs o) odd# of —
96
(5.3.26)

We can now verify the general statements made in the previous sections about the
paint group representations to which the various roots are assigned. First of all we
see that, as we claimed, the long roots of F4, namely those 12 given in (5.3.24) are
singlets under the paint group Gpuine = SO(8). All other roots fall into multiplets
with the same Tits—Satake projection and each of these latter has always the same
multiplicity, in our case m = 8 (compare with (5.3.9)). So the short roots of Fau,
fall into 8-dimensional representations of Gpaine = SO(8). But which ones? SO(8)
has three kind of octets 8, 85 and 85 and, as we stated, not every root s of the Tits—
Satake algebra Grg falls in the same representation D of the paint group although in
this case all D[«*] have the same dimension. Looking back at our result we easily
find the answer. The 4 positive roots in the subset A%, have as compact part o« the
weights of the vector representation of SO(8). Hence the roots of A%, are assigned
to the 8, of the paint group. The 4 positive roots in Aﬁpm have instead as compact
part the weights of the spinor representation of SO(8) and so they are assigned to
the 8 irreducible representation. Finally, with a similar argument, we see that the
4 roots of Aipﬁ are in the conjugate spinor representation 8s. The last part of the

general discussion of Sect.5.3.1 is now easy to verify in the context of our example,
namely that relevant to the subpaint group Ggubpaim (we will omit sometimes the
‘subpaint’ indication for convenience). According to (5.3.10)—(5.3.11) we have to
find a subgroup G° C SO(8) such that under reduction with respect to it, the three
octet representations branch simultaneously as:

8, - 107,
GO
8§ — 197,
0
8 197 (5.3.27)
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Such group G exists and it is uniquely identified as the 14 dimensional G,(_4,. Hence
the subpaint group is Gy(—14,. Considering now (5.3.13) we see that the commuta-
tion relations of the solvable Lie algebra Solv (Eg(_24) /E7-133) X SU(Z)) precisely
fall into the general form displayed in the first column of that table with the index
x =1, ..., 7 spanning the fundamental 7-dimensional representation of G,(_14) and
the invariant antisymmetric tensor a*** being given by the Gy(_14)-invariant octo-
nionic structure constants. Indeed the representation J mentioned in Sect. 5.3.1 is the
fundamental 7 and we have the decomposition:

Tx7= 1467 270 1. (5.3.28)
S——— S———

antisymmetric symmetric

This shows that, as claimed in point [E] of the general discussion, the tensor product
J x J contains both the singlet and J.
In the example that is extensively discussed in [31], namely

E7(-s) Fiu

) B . .. ) B— (5.3.29)
SO(12) x SU(2) USp(6) x SU(2)

HTS .

the image of the Tits—Satake projection yields the same maximally split coset as in the
case presently illustrated, although the original manifold is a different one. The only
difference that distinguishes the two cases resides in the paint group. There we have
Gpaint = SO(3) x SO(3) x SO(3) and the subpaint group is identified as Ggubpaim =
SO(3)giag- Correspondingly the index x = 1, 2, 3 spans the triplet representation of
SO(3) which is the J appropriate to that case and the invariant tensor a*>* is given
by the Levi-Civita symbol &*%.

Letus now consider the group theoretical meaning of the splitting of F44) roots into
the three subsets Ay, Ay, A;S’Spm, which are assigned to different representations
of the paint group SO(8). This is easily understood if we recall that there exists a
subalgebra SO(4, 4) C Fa4) with respect to which we have the following branching

rule of the adjoint representation of Fyy:

52 SOﬁt)A) 28nc ® SSC o SI;C ® 8?0 (5330)

The superscript nc is introduced just in order to recall that these are representations
of the non-compact real form SO(4, 4) of the D, Lie algebra. By 28, 8,, 8; and 8;
we have already denoted and we continue to denote the homologous representations
in the compact real form SO(8) of the same Lie algebra. The algebra SO(4, 4) is
regularly embedded and therefore its Cartan generators are the same as those of
F4w). The 12 positive long roots of Fy4) are the only positive roots of SO(4, 4),
while the three sets Aj., Ag,, AZPT just correspond to the positive weights of the
three representations 8, 87° and 8:°, respectively. This is in agreement with the
branching rule (5.3.30). So the conclusion is that the different paint group represen-
tation assignments of the various root subspaces correspond to the decomposition of
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the Tits—Satake algebra F, 4, with respect to what we can call the sub Tits—Satake
algebra Ggyrs = SO(4, 4). We can just wonder how the concept of sub Tits—Satake
algebra can be defined. This is very simple and obvious from our example. Ggyprs iS
the normalizer of the paint group Gpaine Within the original group Gg. Indeed there
is a maximal subgroup:

SO(4,4) x SO(8) C Esg—24), (5.3.31)
with respect to which the adjoint of Eg(_»4) branches as follows:

248 Y400 (1 28y @ (28™ 1) @ (8™, 8,) B (8™, 8,) ® (8™, 8) (5.3.32)

and the last three terms in this decomposition display the pairing between represen-
tations of the paint group and representations of the sub Tits—Satake group. Alterna-
tively we can view the subpaint group Ggubpaim = Gy(—14) as the normalizer of the
Tits—Satake subgroup Grs = Fa) within the original group Gr = Eg(—24). Indeed
we have a subgroup

F4(4) X Gz(_14) C Eg(_24), (5.3.33)
such that the adjoint of Eg(_4) branches as follows:

4(4) X Go(—14)

248 : — 2, )e (1,14 (26,7) (5.3.34)

The two decompositions (5.3.32) and (5.3.34) lead to the same decomposition with
respect to the intersection group:

— 0 0
Gintsec = (GTS X Gsubpaint) ﬂ (GsubTS X Gpaint) = GsubTS X Gsubpainl

= (Faes) X Gar-1) [ | (SO, 4) x SO(8)) = SO, 4) x G- 14).
(5.3.35)

We find

248> 1,101 A,D®E@ DB BT DB, T
28, Do @F, Do 8", 1o @8, 1). (5.3.36)

The adjoint of the Tits—Satake subalgebra Gts = Fa) is reconstructed by collecting
together all the singlets with respect to the subpaint group Ggubpaim. Alternatively the
adjoint of the paint algebra Gpine = SO(8) is reconstructed by collecting together
all the singlets with respect to the sub Tits—Satake algebra Ggyprs = SO(4, 4).
Finally, we can recognize the sub Tits—Satake algebra as the algebra generated by

the CSA and roots A’ (and their negatives) in the decomposition (5.3.4).
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5.3.3 TS Projection for the Normed Solvable Algebras of
Homogenous Special Manifolds

After our detailed discussion of the Tits—Satake projection in the above example
of a specific symmetric space we can extract a general scheme that applies to all
normal solvable Lie algebras. Let us discuss how the Tits—Satake projection can
be reformulated relying on the paint and subpaint group structures. In Sect.5.3.1
our starting point was the geometrical projection of the root system Ag onto the
non-compact Cartan subalgebra by setting, for each root @ € Ag its compact part
a, to zero. This is the operation that is no longer available in the general case of
a solvable algebra. We now only have the solvable algebra, which corresponds to
the non-compact part cr. Indeed at the level of the solvable Lie algebra there is no
notion of the compact Cartan generators. However, the structures that still persist and
allow us to define the Tits—Satake projection are those of paint and subpaint groups.
Indeed for all the solvable Lie algebras Solv (.#) considered in the classification of
homogeneous special geometries the following statements A-E are true:

[Al]

There exists a compact algebra Gin Which acts as an algebra of outer automor-
phisms (i.e. outer derivatives) of the solvable algebra Solv (.#). The algebra Gpain
is rigorously defined as follows. Given the solvable Lie algebra Solv (.#) the corre-
sponding Riemannian manifold .# = exp [Solv (.#)] has an algebra of isometries
G‘;‘} , which is normally larger than Solv (.#), and for all special homogeneous man-
ifolds .# such algebras were studied and completely classified in [4, 5]. Obviously
Solv () C Gf;‘;. Let us define the subalgebra of automorphisms of the solvable
Lie algebra in the standard way:

50 5 Aut [Solv (.#)] =
[X € GY | V¥ € Solv(4) : [X, W] € Solv(#)} (5337

By its own definition the algebra Aut [Solv (.#)] contains Solv (.#) as an ideal.
Hence we can define the algebra of external automorphisms as the quotient:

Autgy [Solv (A4)] = %’ (5.3.38)

and we identify Gpaine as the maximal compact subalgebra of Autgy [Solv (.Z)].
Actually we immediately see that

Gpaint = Autgy [Solv (Z)]. (5.3.39)
Indeed, as a consequence of its own definition the algebra Autgy [Solv (.#)]

is composed of isometries which belong to the stabilizer subalgebra H C G‘;‘}
of any point of the manifold, since Solv (.#) acts transitively. In virtue of the
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Riemannian structure of .#Z we have H C so(n) where n = dim (Solv (.#)) and
hence also Autgy [Solv (#)] C so(n) is a compact Lie algebra.

[A2]

We can now reformulate the notion of maximally non-compact or maximally split
algebras in such a way that it applies to the case of all considered solvable alge-
bras, independently whether they come from symmetric spaces or not. The algebra
Solv (#) is maximally split if the paint algebra is trivial, namely:

Solv (.#) = maximally split < Autgy [Solv (#Z)] = @. (5.3.40)

For maximally split algebras there is no Tits—Satake projection, namely the Tits—
Satake subalgebra is the full algebra.

(B]

Let us now consider non maximally split algebras such that Autgy, [Solv (#Z)] # @.
Let r be the rank of Solv (.#) , namely the number of its Cartan generators H; and
n the number of its nilpotent generators %, namely the number of generalized roots
a. The whole set of Cartan generators H;, plus a subset of p nilpotent generators %,
associated with roots e’ that we name long, close a solvable subalgebra Solvg,yrs C
Solv (.#) that is made of singlets under the action of the paint Lie algebra Gpin,
ie.

SOlvsubTS = Span {Hiv %l} s
[Solvgurs , Solvguwrs] C Solvgurs,
VX e Gpaint , YU € SO]VsubTS . [X, 'I/] =0. (5341)

We name Solvgyprs the sub Tits—Satake algebra. By definition Solvg,rs has the
same rank as the original solvable algebra Solv (.#). In all possible cases, it is the
solvable Lie algebra of a symmetric maximally split coset Ggyprs/Hsuprs. In this
way, eventually, we have the notion of a semisimple Lie algebra Ggyprs.-

[C1]

Considering the orthogonal decomposition of the original solvable Lie algebra with
respect to its sub Tits—Satake algebra:

Solv () = Solvarrs @ Kahor. (5.3.42)

we find that the orthogonal subspace Kgpor necessarily decomposes into a sum of g

subspaces:
q

Ko = @D D[2}. Qq]. (5.3.43)

p=1

where each D [z@g , Qp] is the tensor product:
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D[2}. Q] = 25 ® Qp (5.3.44)

of an irreducible module Q,, (i.e. representation) of the compact paint algebra Gpains
with an irreducible module 395 of the solvable sub Tits—Satake algebra Solvyprs. As
we already noticed, Solvgyrs is the maximal Borel subalgebra of the maximally split,
semisimple, real Lie algebra Gyyprs. Hence an irreducible module Wg of Solvguprs
necessarily decomposes in the following way:

ng

P} = @ W[a®*],  n, =dim 2J, (5.3.45)
s=1

where each W[a®-9] is an eigenspace of the CSA of Ggyprs, which coincides with
that of Solvgrs and eventually with the CSA of the original Solv (.#). Explicitly
this means:

VH; € CSA (Solv (.#)) , V¥ € Wa®)]1 ® Q, : [H;, ¥]=a®"w.
(5.3.46)

Furthermore the r-vectors of eigenvalues, which are roots of Solv (.#), are identified
by (5.3.45) as the non negative weights of some irreducible module &, of the simple
Lie algebra Gyyprs:

Po=2 0 P, P, =P W-a®]. (5.3.47)
s=1

Indeed for the solvable Lie algebras Solv(G/H) of maximally split cosets the irre-
ducible modules are easily constructed as half-modules of the full algebra G, namely
by taking the eigenspaces associated with non negative weights.

[C2]

The decomposition of K,y mentioned in (5.3.43) has actually a general form
depending on the rank. We will discuss this here for the quaternionic-Kahler mani-
folds.

(r=4) In this case there are just three modules of Gg,rs = SO(4, 4) involved in
the sum of (5.3.43) namely Y, , P, Ps,, where 8,5 denotes the vector, spinor
and conjugate spinor representation, respectively. All these three modules are 8
dimensional, which means that for all of them there are 4 positive weights and 4

negative ones. Denoting these half spaces by 4:§ s3> We can write:

Ko = (47. Qv) @ (4. Qs) @ (45, Qs) . (5.3.48)

where Qs are three different irreducible modules of G,y that we will discuss in
later sections. The generic case is that where all three representations Qys s are non
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vanishing. Special cases where two of the three representations Gpain; vanish do
also exist. The limiting case is that where all three representations are deleted and

the full algebra is just Solv (%). Note that (5.3.48) is the generalization

of the decomposition (5.3.32) applying to the case analyzed in detail above. There
we have Gpaine = SO(8) and the aforementioned irreducible modules are:

Q=8 ; Q=8 ; Q=8 (5.3.49)

(r=23) In this case there is only one module of Ggrs = SO(3, 4) involved in the
sum of (5.3.43) namely &5, where 85 denotes the 8 dimensional spinor represen-
tation of SO(3, 4). With a notation completely analogous to that employed above
let 47 denote the space spanned by the eigenspaces pertaining to positive spinor
weights. Then we can write:

Kahor = (47 Qs) - (5.3.50)

(r=2) In this case, there is one exceptional case, namely SGs, where Gr =
Gabts = G- In all other cases, there are two modules of SO(2, 2) involved
in the sum of (5.3.43) and these are the spinor module &4, and the vector module
Z4,. Both modules are 4-dimensional and in our adopted notations we can write:

Kshort = (2:7 Qs) @ (2‘4;’ Qv) . (5.3.51)

(r=1) Inthiscase we have to distinguish between Ggprs = SO(1, 1) or Ggyprs =
SU(, 1). When Ggprs = SU(1, 1) we have:

Kot = (17, Qs) (5.3.52)

where 1} denotes the positive weight subspace of the spinor representation of
s0(1,2), i.e. the fundamental of su(1, 1), which is two-dimensional. The repre-
sentation Qg will be discussed later. When Gprs = SO(1, 1) on the other hand,
we have:

Kehort = (1;r QS) &) (lir Qv) . (5.3.53)

Inthis case, lj denotes a subspace of weight 1/2 withrespect to Ggyprs = s0(1, 1),
while the subspace 1] has weight 1.

We can now note a regularity in the decomposition of Kgo¢. For all values of the
rank we always have the space (", Q) that associates a representation of the paint
group to the half spinor representation of the sub Tits—Satake algebra. In the case of
rank r = 4 in addition to this we also have the representations Q, and Q;, which we
associate to what we can name the ¥ * and . half modules. We have established
a notation covering all the cases which enables us to proceed to the next point and
give a general definition of the Tits—Satake projection.
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(D]

The paint algebra Gy contains a subalgebra

G(s)ubpaim C Gpaint ’ (5354)
such that with respect to Ggubpaim, each of the three irreducible representations Qy s
branches as:
Ggubpainl
Quss = 1 ®Jvss, (5.3.55)

singlet

where the representation Jy s is in general reducible.

(E]
The restriction to the singlets of Ggubpaim defines a Lie subalgebra of Solvy, namely,
if we set:
Solvrs = Solvars @ (#*.1) @ (%.1) @ (77.1), (5.3.56)
we get:
[Solvrs, Solvrs] C Solvrs. (5.3.57)

Relying on all the above properties and structures described in points [A], [B],
[C], [D] and [E], which turn out to hold true for every Solv (.#Z') considered in
supergravity, irrespectively whether it is associated with a symmetric space or not,
we can define the Tits—Satake projection at the level of solvable algebras by stating:

Is : Solv(#) — Solvrs C Solv (.#)
¥ e Solvys ifandonlyif : VX € G? D [X,¥]1=0

subpaint

(5.3.58)

In other words, we define the Tits—Satake solvable subalgebra Solvrs as spanned by
all the singlets under the subpaint group Gguppain- By its very definition the Tits—
Satake subalgebra contains the sub Tits—Satake algebra Solvg,rs C Solvrs which
is made of singlets with respect to the full paint group Gpaine The subtle points in the
above definition of the Tits—Satake projection is given by point [D] and [E]. Namely it
is a matter of fact, which is not obvious a priori, that the addition of the three modules
(occasionally vanishing) ¥'*, .7 *,?+ to the sub Tits—Satake algebra Solvgurs
always defines a new Lie algebra. Being true this implies that a subalgebra Solvrg
with the structure (5.3.56) exists in Solvy and Gguppain is its stability subalgebra.
Vice versa, the existence of a subpaint algebra such that the decomposition (5.3.55)
is true, implies that the subspace (5.3.56) closes a subalgebra since the kernel of a
subalgebra of automorphisms is necessarily a closed subalgebra.
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5.4 The Systematics of Paint Groups

As we explained in Sect. 5.3.3, the Tits—Satake projection originally defined in terms
of a geometrical projection of the root space, can be generalized to all solvable
algebras of special geometries reformulating it in terms of the paint and subpaint
group structures. The systematic procedure outlined there, started as step A] with the
identification of the paint group. This is what we do now, unveiling a very elegant
pattern of such paint groups.

As we claimed in the introduction, the specially fascinating property of the paint
group is that it is invariant under both the c-map and the c¢*-map, namely under
dimensional reduction.

5.4.1 The Paint Group for Non-compact Symmetric Spaces

In Sect.5.3.3, we defined the paint group as the group of external automorphisms
of the solvable algebra associated with a certain homogeneous space (5.3.39). For
non-compact symmetric spaces there exists another, more common, definition of the
paint group. Referring to the presentation in the beginning of Sect.5.3.1, the paint
group is defined as a subgroup of H, whose Cartan generators are those in .727°°™ and
the roots are those in Acomp (and their negatives), i.e. those that have no component
| in the decomposition (2.4.19).

As we mentioned already in the example in Sect.5.3.2, a real form Gg of the
Lie algebra G is represented by the so-called Satake diagrams, which are Dynkin
diagrams with the following extra decorations:

e Compact simple roots (those in Acomp) are denoted by filled circles.

e Simple roots that, upon setting o; = 0, project to the same restricted root are
connected with a two-sided arrow. These are simple roots that necessarily belong
to A°,

Given the Satake diagram the paint group can then be read from it in the follow-
ing way. The black dots form a Dynkin diagram of the semi-simple type. The paint
group then contains a factor corresponding to this painted subdiagram. This corre-
sponds to the roots in Acomp and the elements of 77°°™ for which these roots have
non-vanishing components. Furthermore, for every arrow, there is one additional
SO(2)-factor that commutes with the rest of the paint group. These correspond to
the additional generators in 72°°™P. An example of this is given in Figs.5.2 and 5.3.
For the symmetric quaternionic spaces of rank 4, the paint groups are summarized
in Table 5.3. The case 4 has already been extensively discussed. Here we can briefly
explain the group theory of the case 2. It suffices to note that the Eq ) Lie alge-
bra contains F4) as a maximal subalgebra and that the adjoint has the following

branching rule:
Faw

78 2 52 26. (5.4.1)


http://dx.doi.org/10.1007/978-3-319-74491-9_2

5.4 The Systematics of Paint Groups 231

Fig. 5.3 Satake diagram of Egi2) o
E¢(2). The paint group can
be seen to be SO(2)2
[s] [s] (s} (s} c
\ "-‘x____h___/’/

Table 5.3 Symmetric special Kéhler manifolds and their corresponding quaternionic spaces. The
last two columns indicate the paint and subpaint groups respectively. The spaces above the line are
maximally non-compact and do not have any paint group

C(h) Kihler Quaternionic Ghpaint Ggubpaim
1 Sp(6) Fa@ _ _
U3) TUSp(6) xSU2)
SU@3.3) Es2) 2

2 SUB)xSUB)xU() | SUR)xSU6) S0(2) 1

S0*(12) E7-s) 3
3 SU®G)xU(D) SO0(12)xSU(2) S0G3) SO@)diag

E7(-25) Eg(—24)

4 For_75) <UD iy xsum | S0®) Go-14)

This shows that the subpaint group is empty since the normalizer of the Tits—Satake
subalgebra Fu4) is null. On the other hand, recalling the decomposition of the fun-
damental representation of F44) with respect to the subalgebra SO(4, 4)

2625 10108 @ 8™ @ 8™, (5.4.2)

together with the branching rule of the adjoint given in (5.3.30), we conclude that
under the subgroup SO(4, 4) x SO(2)? we have:

SO(4,4)xSO(2)?
—>

78 28, 1,1) & (8,2, 1)@ (8%,1,2) ® (8, 1,2)

o1 1,He 1,11 (5.4.3)

which shows that the paint group is indeed SO(2)? as claimed.
From (5.4.3) we also read off the representations Q43 defined by (5.3.48) that
pertain to this case:

Q=D ; Q=02 ; Q=00,2. (5.4.4)

5.5 Classification of the Sugra-Relevant Symmetric Spaces
and Their General Properties

Equipped with the powerful weapon of the Tits Satake projection which allows to
organize them into universality classes, we can now make a complete survey of the
symmetric spaces G/H that are relevant to supergravity theories and in particular to
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the construction of black-hole solutions. Indeed, as the reader cannot fail to appre-
ciate there is a general group-theoretical framework underlying the construction of
supergravity black holes which allows both for

(1) aclassification of the relevant symmetric spaces,
(2) a general description of their structures which are relevant to the black hole
solutions.

The presentation of both items in the above list is the goal of the present section. To
achieve such a goal we need to emphasize a few general aspects of the decomposition
(1.7.12) that relate to the underlying root systems and Dynkin diagrams. In the
following we heavily rely on results presented several years ago in [46]. Indeed
from the algebraic view-point a crucial property of the general decomposition in

Eq.(1.7.12) is encoded into the following statements which are true for all the cases':

1. The A; root-system associated with the s[(2, R)g algebra in the decomposition
(1.7.12) is made of & ¢y where V' is the highest root of Up_3.

2. Out of the r simple roots «; of Up—3 there are r — 1 that have grading zero with
respect to ¥ and just one ay that has grading 1:

W,a)=0 i#W
W, aw) =1 (5.5.1)

3. The only simple root ay that has non vanishing grading with respect v is just the
highest weight of the symplectic representation W of Up_4 to which the vector
fields are assigned.

4. The Dynkin diagram of Up_4 is obtained from that of Up_3 by removing the dot
corresponding to the special root ayy .

5. Hence we can arrange a basis for the simple roots of the rank r algebra Up_3

such that:
o ={a;,0} ; i#FW

aw = | W, %] (5.5.2)
v =102

where o; are (r — 1)-component vectors representing a basis of simple roots for
the Lie algebra Up_4, Wj, is also an (r — 1)-vector representing the highest weight
of the representation W.

! An apparent exception is given by the case of .#" = 3 supergravity. The extra complicacy, there,
is that the duality algebra in D = 3, namely Up—3 has rank r + 2, rather than r 4+ 1 with respect
to the rank of the algebra Up—4. Actually in this case there is an extra U(1), factor that is active
on the vectors, but not on the scalars and which is responsible for the additional complications. It
happens in this case that there are two vector roots, one for the complex representation to which the
vectors are assigned and one for its conjugate. They have opposite charges under U(1)y. This case
together with that of .#” = 5 supergravity and with one of the series of .#” = 2 theories completes
the list of three exotic models which are anomalous also from the point of view of the Tits Satake
projection (see below).
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This means that the entire root system and the Cartan subalgebra of the Up_3 Lie
algebra can be organized as follows:

+y = + (0, fz) ; 2
+a = + (oz, ﬁ) ;2 x # ofroots = 2n,
41 = £ (w, %) 12 x # of weights = 2 x dimW
H' € CSA C Up_y : rankUp_y = r
HV 1
dimUp_4 =3+dimUp—3 + 2 x dimW

(5.5.3)
This organization of the Lie algebra is very important, as it was thoroughly discussed
in [46], for the systematics of the Ka¢ Moody extension which occurs when stepping
down from D = 3 to D = 2 dimensions, but it is equally important in the present
context to analyze the structure of the H*-subalgebra and the Tits Satake projection.

5.5.1 Tits Satake Projection

In most cases of lower supersymmetry, neither the algebra Up_4 nor the algebra
Up—3 are maximally split. In short this means that the non-compact rank r,,. < r
is less than the rank of U, namely not all the Cartan generators are non-compact.
When this happens it means that the structure of black hole solutions is effectively
determined by the maximally split Tits Satake subalgebra UTS C U, whose rank is
equal to r,.. Effectively determined does not mean that solutions of the big system
coincide with those of the smaller system rather it means that the former can be
obtained from the latter by means of rotations of the paint group, Gpain. As we have
seen the Tits Satake algebra is obtained from the original algebra via a projection of
the root system of U onto the subspace orthogonal to the compact part of the Cartan
subalgebra of UTS:

HTS ; A[U = ZUTS (554)

In Euclidean geometry Ayrs is just a collection of vectors in r,,. dimensions; a priori
there is no reason why it should be the root system of another Lie algebra. Yet as
we illustrated, in most cases, ZUrs turns out to be a Lie algebra root system and the
maximal split Lie algebra corresponding to it, UTS, is, the Tits Satake subalgebra of
the original non maximally split Lie algebra: U5 c U. Such algebras U are called
non-exotic. The exotic non compact algebras are those for which the system Ayrs is
not an admissible root system. In such cases there is no Tits Satake subalgebra U”5.
Exotic algebras are very few and in supergravity they appear only in three instances
that display additional pathologies relevant also for the black hole solutions. For
the non exotic models we have that the decomposition (1.7.12) commutes with the
projection, namely:


http://dx.doi.org/10.1007/978-3-319-74491-9_1

234 5 Solvable Algebras and the Tits Satake Projection

adj(Up=3) = adj(Up=4) ® adj(s[(2, R)g) & We.w)
U (5.5.5)
adj(UT2,) = adj(UTE,) @ adj(sl(2, R)g) ® W wrs)

In other words the projection leaves the A; Ehlers subalgebra untouched and has a
non trivial effect only on the duality algebra Up_4. Furthermore the image under the
projection of the highest root of U is the highest root of U”*:

ars . ¢y — YIS (5.5.6)

The reason why the Tits Satake projection is relevant to us was first pointed out in
[45] where the present author and his collaborators advocated that the classification
of nilpotent orbits and hence of extremal black hole solutions depends only on the
Tits Satake subalgebra and therefore is universal for all members of the same Tits
Satake universality class. By this name we mean all algebras who share the same
Tits Satake projection.

Having clarified these points we can proceed to present the classification of homo-
geneous symmetric spaces relevant to supergravity models and to black hole solu-
tions.

5.5.2 Classification of the Sugra-Relevant Symmetric Spaces

The classification of the symmetric coset based supergravity models is exhaustive and
it is presented in Tables 5.4 and 5.5. There are 16 universality classes of non-exotic
models and 3 exceptional instances of exotic models which appear in the second
table.

In the tables we have also listed the Paint groups and the subpaint groups. These
latter are always compact and their different structures is what distinguishes the dif-
ferent elements belonging to the same class. As it was shown in [32] and extensively
illustrated in the previous sections, these groups are dimensional reduction invariant,
namely they are the same in D = 4 and in D = 3. Hence the representation W, which
in particular contains the electromagnetic charges of the hole, can be decomposed
with respect to the Tits Satake subalgebra and the Paint group revealing a regularity
structure inside each Tits Satake universality class which is at the heart of the clas-
sification of charge orbits. The same decomposition can be given also for the K*
representation and this is at the heart of the classification of black holes according
to nilpotent orbits.

Focusing on the non-exotic models, we note that the 16 classes have a quite
different type of population. There are six one element classes whose single member
is maximally split. They are the following ones and all have a distinguished standpoint
within the panorama of supergravity theories:
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1. The .#" = 8 supergravity theory, which is the maximal one in D = 4, (model 1).

2. The .4/ = 2 supergravity theory with a single vector multiplet and non-vanishing
Yukawa coupling(model 2).

3. The .#" = 4 supergravity theory with 5 vector multiplets (model 11).

4. The .4 = 4 supergravity theory with 6 vector multiplets which is obtained com-
pactifying a type II theory on a T®/Z, orbifold (model 12).

5. The 4" = 2 theory with two vector multiplets and non vanishing Yukava cou-
plings, usually called the s¢-model (model 14).

6. The .4 = 2 theory with three vector multiplets and non vanishing Yukava cou-
plings, usually called the sfu-model (model 15).

Next we have two universality classes, each containing an infinite number of ele-
ments. They are

1. The .# =4 supergravity theory with n = 6 + p vector multiplets (p > 1),
(model 13).

2. The .4 = 2 supergravity theory with n = 3 4 p vector multiplets (p > 1) and
non vanishing Yukawa couplings (model 16).

We still have the very interesting 4-element universality class whose maximally split
representative corresponds to the maximally split special Kihler manifold %.
This class contains the models 3, 4, 5, 6 distinguished by quite peculiar Paint groups.
We will thoroughly analyze the structure of this class.

Finally we have the three exotic models whose common feature is that their group
and subgroup all belong to the pseudo-unitary series SU(p, q). The general decom-

position (1.7.12) still holds true, but the Tits Satake projection looses its significance.

5.5.3 Dynkin Diagram Analysis of the Principal Models

Next we analyze the form of the root systems of the Up_3 algebras in relation with
the decomposition (1.7.12).

N =8

This is the case of maximal supersymmetry and it is illustrated by Fig.5.4.
In this case all the involved Lie algebras are maximally split and we have

adj Egs) = adj E7(7) @ adj SL(2, R)g & (2, 56) (5.5.7)

The highest root of Egg) is
Y = 3aq + 4oy + Saz + 604 + 3as + dag + 207 + 208 (5.5.8)
and the unique simple root not orthogonal to v is g = oy, according to the label-

ing of roots as in Fig.5.4. This root is the highest weight of the fundamental 56-
representation of E7(7).


http://dx.doi.org/10.1007/978-3-319-74491-9_1
http://dx.doi.org/10.1007/978-3-319-74491-9_1
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Fig. 5.4 The Dynkin diagram of Egg). The only simple root which has grading one with respect
to the highest root ¥ is ag (painted with three circles). With respect to the algebra Up—_s4 = E7(7)

whose Dynkin diagram is obtained by removal of the multiple circle, ag is the highest weight of
the symplectic representation of the vector fields, namely W = 56

The well adapted basis of simple Eg roots is constructed as follows:

a; ={1,-1,0,0,0,0,0,0} = {o, 0}
a, =1{0,1,-1,0,0,0,0,0} = {a, 0}
a3 ={0,0,1,-1,0,0,0,0} = {a3, 0}
a4={05070717_1’05070} 2{5470}
s = 1{0,0,0,0,1,—1,0,0} — (@, 0) (5.5.9)
as ={0,0,0,0,1,1,0,0} = {us, 0}
1 1 1 1 1 1 1 —

07 = 1773, 7735 773 T3 30 2 7570} = {a7, 0}

— 1 1 _ 1
g = _170507070507_\/_55 \/_z} - {Wha \/_z}

In this basis we recognize that the seven 7-vectors ¢; constitute a simple root basis
for the E; root system, while:

|
Wi, = 1-1.0,0,0,0.0, - (5.5.10)
! { ﬁ}

is the highest weight of the fundamental 56 dimensional representation. Finally in
this basis the highest root ¥ defined by Eq. (5.5.8) takes the expected form:

¥ ={0,0,0,0,0,0,0,v2} (5.5.11)

N =6

In this case the D = 4 duality algebra is Up_4 = SO*(12), whose maximal compact
subgroup is H = SU(6) x U(1). The scalar manifold (Fig.5.5):

_S07(12)
S H N=6 = m (5.5.12)

is an instance of special Kihler manifold which can also be utilized in an A" =2
supergravity context. The D = 3 algebra is Up—3 = E7._s). The 16 vector fields of
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s
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o7 (043 Oy 03 (0%} o

v=01+20p+303+40u+205+30+204
(v,ar)=1 ; (y,a)=0 i#7

Fig.5.5 The Dynkin diagram of E7(_s). The only simple root which has grading one with respect to
the highest root v is &7 (painted with multiple circles). With respect to the algebra Up—4 = SO*(12)
whose Dynkin diagram is obtained by removal of the multiple circle, 7 is the highest weight of
the symplectic representation of the vector fields, namely the W = 32

D =4 ¥ = 6 supergravity with their electric and magnetic field strengths fill the
spinor representation 32 of SO*(12), so that the decomposition (1.7.12), in this case
becomes:
adj E;_s) = adj SO*(12) @ adj SL(2, R)g & (2, 32,) (5.5.13)
The simple root oy is a7 and the highest root is:

Y = oy + 20 + 303 + 4oy + 205 + 3o + 207 (5.5.14)

A well adapted basis of simple E7 roots can be written as follows:

ap ={1,-1,0,0,0,0,0} = {or}, 0}
a, =1{0,1,-1,0,0,0, 0} = {0z, 0}
a3 ={0,0,1,—-1,0,0,0} = {o3, 0}
a4 =1{0,0,0,1,—1,0,0} = {ay, 0} (5.5.15)
as ={0,0,0,0,1,—1, 0} = {os, 0}
as = {0,0,0,0,1, 1,0} = {o, 0}

=1 1 1 1 1 1 11 __rF L
a7—{ 2 2 2 2 2 2’ A —{Wha ﬁ}

In this basis we recognize that the six 6-vectors ¢; (i = 1, ..., 6) constitute a simple
root basis for the Dg >~ SO*(12) root system, while:
1 1 1 1 1 1 1 1
Wl’l = TR A A A AT AT AT A (5'5'16)
272 2 2 2 2 2 2

is the highest weight of the spinor 32-dimensional representation of SO*(12). Finally
in this basis the highest root i defined by Eq. (5.5.14) takes the expected form:

¥ = {0,0,0,0,0,0,v2} (5.5.17)


http://dx.doi.org/10.1007/978-3-319-74491-9_1
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F oy 3 (05) ()]
W =20, + 30, + 403+ 204
(v,m)=2 ; (v, @;)=0 i#l

Fig. 5.6 The Dynkin diagram of Fy4). The only root which is not orthogonal to the highest root
is @y = . In the Tits Satake projection I77S the highest root v of Fy4) is the image of the
highest root of E7(_sy and the root wy = @ = I1 TS (a7) is the image of the root associated with
the vector fields

In this case, as in most cases of lower supersymmetry, neither the algebra Up_4
nor the algebra Up—; are maximally split. The Tits Satake projection of E7_s is
F44) and the explicit form of Eq.(5.5.5) is the following one:

adj(E7s)) = adj(SO*(12)) @ adj(SL(2, R)g) ® (2, 32,)
U (5.5.18)
adj(F44)) = adj(Sp(6, R) & adj(SL(2, R)g) & (2, 14')

The representation 14" of Sp(6, R) is that of an antisymmetric symplectic traceless
tensor: =~
dimsp((,,R) @ =14 (5519)

The Dynkin diagram of the Tits Satake subalgebra f4(4) is discussed in Fig. 5.6.
N =5

The case of .4~ = 5 supergravity is described by Fig.5.7 and it is one of the three
exotic models whose Tits—Satake projection does not produce a Lie algebra root
system.

In the .#" = 5 theory the scalar manifold is a complex coset of rank r = 1,

_ SuU(l, 5)
My =5 D=4 = m (5.5.20)

and there are 10 vector fields whose electric and magnetic field strengths are assigned
to the 20-dimensional representation of SU(1, 5), which is that of an antisymmetric

three-index tensor
dimSU(lys) @ =20 (5521)

The decomposition (1.7.12) takes the explicit form:


http://dx.doi.org/10.1007/978-3-319-74491-9_1
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(v,ou)=1 ; (v, )=0 i#4
Fig.5.7 The Dynkin diagram of E¢(_14). The only simple root which has grading one with respect
to the highest root v is a4 (painted with multiple circles). With respect to the algebra Up—4 =

SU(S5, 1)) whose Dynkin diagram is obtained by removal of the black circle, a4 is the highest
weight of the symplectic representation of the vector fields, namely the W = 20

adj(Ee—14)) = adj(SU(1, 5) @ adj(SL(2, R)r) & (2, 20) (5.5.22)

and we have that the highest root of E¢, namely
Y=oy + 20, + 3a3 + 204 + 205 + g (5.5.23)
has non vanishing scalar product only with the root ¢4 in the form depicted in Fig. 5.7.

Writing a well adapted basis of E¢ roots is a little bit more laborious but it can be
done. We find:

o =10,0,-4, 1 /¢ 0] = (@, 0)
—J_1r 1 2 — [
o = ﬁ,ﬁ,ﬁ,o,o,o} = (@, 0}
o = {v/2,0,0,0,0,0] = (@, 0}
(5.5.24)
_ 4 o 11 /3 11 _ g L
0y = {_ﬁy \/6’ ﬁ’ \fs’ \/Ta ﬁ} - {Wh’ ﬁ}
o5 = {-%.-\/3.0.0,0,0} = (@.0)
O = {O’ﬁa_#g9_\/7§7050} Z{&S’O}
In this basis we can check that the five 5-vectors; (i = 1, ..., 5) constitute a simple

root basis for the A5 >~ SU(1, 5) root system, namely:

2 -10 0 O
-1 2 —-10 0
(@i, a;j)=1 0 —-12 -10 = Cartan matrix of As (5.5.25)

0 0 —-12 -1
0 0 0 —-12
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while:

1 1 1 1 3
Wy =31——=,—, ———=, —=, —/ — (5.5.26)
{ Ve VA s V0 }
is the highest weight of the 20-dimensional representation of SU(1, 5). Finally in
this basis the highest root ¢ defined by Eq. (5.5.23) takes the expected form:

¥ = {0,0,0,0,0,0,v2) (5.5.27)

N =4

The case of .4~ = 4 supergravity is the first where the scalar manifold is not com-
pletely fixed, since we can choose the number n,, of vector multiplets that we can
couple to the graviton multiplet. In any case, once n,, is fixed the scalar manifold is
also fixed and we have:

SL(Z, R)o SO(6, nm)

My=.p=4 = 02 2 50(6) x SO (5.5.28)

The total number of vectors n, = 6 + n,, is also fixed and the symplectic represen-
tation W of the duality algebra

Up=s = SL(2,R)y x SO(6, ny,) (5.5.29)
to which the vectors are assigned and which determines the embedding:
SL(2,R)yp x SO(6) x SO(ny) +— Sp(12 + 2ny,, R) (5.5.30)

is also fixed, namely W = (2¢,6+n,,), 2¢ being the fundamental representation of
SL(2, R)p and 6+ny, the fundamental vector representation of SO(6, n,,.

The D = 3 algebra is, Up—3 = SO(8, ny, + 2). Correspondingly the form taken
by the general decomposition (1.7.12) is the following one:

adj(SO(8, ny, + 2)) = adj(SL(2, R)¢) & adj(SO(6, ny)) @ adj(SL(2, R)g)
®(2E, 20,6+n,,) (5.5.31)

where 2 are the fundamental representations respectively of SL(2,R)g and of
SL(2,R)o.

In order to give a Dynkin Weyl description of these algebras, we are forced to
distinguish the case of an odd and even number of vector multiplets. In the first case
both Up_3 and Up_4 are non simply laced algebras of the B-type, while in the second
case they are both simply laced algebras of the D-type

2k — Up_y > Dk+3
Ry = {Zk +1 > Upes~ Buss (5.5.32)


http://dx.doi.org/10.1007/978-3-319-74491-9_1
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oy
s O—@—0)  De=avin
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y=01+200+203+ - +20_2+ 01+ 0y
(v,m)=1 ; (y,a)=0 i#2

Fig. 5.8 The Dynkin diagram of Dyy1. The algebra D444 is that of the group SO(8, 2k + 2)
corresponding to the o-model reduction of .4 = 4 supergravity coupled to n,, = 2k vector mul-
tiplets. The only simple root which has non vanishing grading with respect to the highest one
is ap. Removing it (black circle) we are left with the algebra Ds4x—; @ A which is indeed the
duality algebra in D = 4, namely SO(6, 2k) @ SL(2, R)o. The root «; is the highest weight of the
symplectic representation of the vector fields, namely the W = (29, 6 + 2k)

Just for simplicity and for shortness we choose to discuss only the even case n,,, = 2k
which is described by Fig.5.8.

In this case we consider the Up_3 = SO(8, 2k + 2) Lie algebra whose Dynkin
diagram is that of Ds;. Naming ¢; the unit vectors in an Euclidean £-dimensional
space where £ = 5 4+ k, awell adapted basis of simple roots for the considered algebra
is the following one:

o] = \/581

012=—E81—82+

a3 = & — &3

1
— &
V2

Oy = €3 — &4
Qp—1 = &2 — Ep—1

Oy = & + &1
(5.5.33)

which is quite different from the usual presentation but yields the correct Cartan
matrix. In this basis the highest root of the algebra:

Y=o+ 20 + 203+ -+ 200+ + oy (5.5.34)

takes the desired form:

v =+2e¢ (5.5.35)

In the same basis the oy = a; root has also the expect form:
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1
ay = |w, — (5.5.36)
" < ﬁ)
where: {
w= —E g1 — & (5.5.37)

is the weight of the symplectic representation W = (2, 6 + 2k). Indeed —\/% e is

the fundamental weight for the Lie algebra SL(2, R)g, whose root is «; = V2e I
while —e; is the highest weight for the vector representation of the algebra SO(6, 2k),
whose roots are a3, ay4, ..., 0.

Next we briefly comment on the Tits Satake projection. The algebra SO(8, ny, + 2)
is maximally split only for n,, = 5, 6, 7. The case n,, = 6, from the superstring view
point, corresponds to the case of Neveu—Schwarz vector multiplets in a toroidal
compactification. For a different number of vector multiplets, in particular for n,,, > 7
the study of extremal black holes involves considering the Tits Satake projection,
which just yields the universal algebra

ULSy s = 50(8,9) (5.5.38)

5.6 Tits Satake Decompositions of the W Representations

One of the goals that we plan to pursue in Chap. 6 is the comparison of the classi-
fication of extremal black holes by means of charge orbits with their classification
by means of H* orbits. Charge orbits means orbits of the Up_4 group in the W-
representation.

For this reason, in the present section we consider the decomposition of the W-
representations with respect to Tits—Satake subalgebras and Paint groups for all
the non-exotic models. The relevant W-representations are listed in Table5.7. In
Table 5.8 we listed the W-representations for the exotic models.

Given the paint algebra Gpane C U and the Tits Satake subalgebra Grs C U,
one introduces, as we have seen, the sub Tits Satake and sub paint algebras as the
centralizers of the paint algebra and of the Tits Satake algebra, respectively. In other
words we have:

5 € Guprs C Grs C U &[5, Gpaine] = 0 (5.6.1)

and
te Gsubpainl C Gpaint cU <« [t, GTS] =0 (5.6.2)

As it was stressed repeatedly, a very important property of the paint and subpaint
algebras is that they are conserved in the dimensional reduction, namely they are the
same for Up—4 and Up_3.


http://dx.doi.org/10.1007/978-3-319-74491-9_6
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In the next lines we analyze the decomposition of the W-representations with
respect to these subalgebras for each Tits Satake universality class of non maximally
split models. In the case of maximally split models there is no paint algebra and there
is nothing with respect to which to decompose.

5.6.1 Universality Class sp(6, R) = f4.4)

In this case the sub Tits Satake Lie algebra is
Gawrs = 52, R) ®sl(2,R) @ sl(2,R) C sp(6, R) = Grs (5.6.3)

and the W-representation of the maximally split model decomposes as follows:

14/ Zuy 2,1,)e1,2,1)e(1,1,2) 8 (2,2,2) (5.6.4)

This decomposition combines in the following way with the paint group representa-
tions in the various models belonging to the same universality class.

5.6.1.1 su(3,3) Model
For this case the paint algebra is
Gpaint = $0(2) @ 50(2) (5.6.5)

and the W-representation is the 20 dimensional of su(3, 3) corresponding to an
antisymmetric tensor with a reality condition of the form:

1
apy = 31 Sapysne long (5.6.6)

The decomposition of this representation with respect to the Lie algebra Gpain @
Gyguprs is the following one:

20 IS 2,012, 1L,1D) 8 2,01, 2,1 @ 2,511, 1,2) & (1,012, 2,2)
(5.6.7)
where (2, g) means a doublet of s0(2) @ so(2) with a certain grading g with respect
to the generators, while (1, 0) means the singlet that has 0 grading with respect to both
generators. The subpaint algebra in this case is Ggyppainc = 0 and the decomposition
of the same W-representation with respect to Ggyppaint ® Grs is:

20 Gsubge;GTs 6 @ 14 (5.6.8)
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This follows from the decomposition of the 6 of sp(6, R) with respect to the sub Tits
Satake algebra (5.6.3):

6@ 21, )e12De 11,2 (5.6.9)

5.6.1.2 so*(12) Model
For this case the paint algebra is
Gpaint = 50(3) @ 50(3) B 50(3) (5.6.10)

and the W-representation is the 32; dimensional spinorial representation of s0*(12).
The decomposition of this representation with respect to the Lie algebra Gpain @
Gyuprs 18 the following one:

Gpaim DGsubts
s ==

32, 2,212, ) 2,121,281, 1,211,1,2) & (1, 1, 112, 2, 2)

(5.6.11)
where 2 means the doublet spinor representation of so(3). The subpaint algebra in

this case is Gpaine = 50(3)giag and the decomposition of the same W-representation
with respect to Ggyppaint @ Grs is:

G Gsu aint 7
32, ST (613) @ (14']1) (5.6.12)
This follows from the decomposition of the product 2 x 2 of 50(3)ia times the Tits

Satake algebra (5.6.3):
2x2=3@1

(5.6.13)

5.6.1.3 e7(—25) model
For this case the paint algebra is

Gpaint = 50(8) (5.6.14)
and the W-representation is the fundamental 56 dimensional representation of e7(_»s)

The decomposition of this representation with respect to the Lie algebra Gpain @
Gyuprs 1 the following one:

56 U 8,12,1,1) 0 (1,21 @ (1,1,2) @ (112,2,2) (5615
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where 8, ; . are the three inequivalent eight-dimensional representations of so(8),
the vector, the spinor and the conjugate spinor. The subpaint algebra in this case is
Ggubpaint = @2(—14) With respect to which all three 8-dimensional representations of
50(8) branch as follows:

92(—14)

In view of this the decomposition of the same W-representation with respect to
Gsubpaim (&) GTS is:

56 IR (67) @ (14D) (56.17)

5.6.2 Universality Class sI(2,R) ® s0(2,3) = s04,5)

This case corresponds to one of the possible infinite families of .4~ = 2 theories with
asymmetric homogeneous special Kéhler manifold and a number of vector multiplets
larger than three (n = 3 + p). The other infinite family corresponds instead to one
of the three exotic models.

The generic element of this infinite class corresponds to the following algebras:

Up—y4 =sl2,R) ®s0(2,2+ p)
Up=3 = s0(4,4+ p) (5.6.18)

In this case the sub Tits Satake algebra is:

Gsuwrs = 512, R) @ 512, R) @ sl(2, R)
~s5l2,R)®s0(2,2) C sl2,R)®s0(2,3) = Grs (5.6.19)

an the paint and subpaint algebras are as follows:

Gpaint = 50(17)
Gsubpaint = 50(]7 - 1) (5620)

The symplectic W representation of Up_4 is the tensor product of the fundamental
representation of s[(2) with the fundamental vector representation of so(2, 2 + p),
namely

W= _24+p) ; dmW =8+2p (5.6.21)

The decomposition of this representation with respect to Gaprs @ Gsubpaint 18 the
following one:

GsuhTS @Gsubpaint
——9

w 2.22he 2 1L, 2, 1,1p—1) (5.6.22)
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where 2, 2, 2 denotes the tensor product of the three fundamental representations
of 5[(2, R)3. Similarly 2, 1, 1 denotes the doublet of the first s[(2, R) tensored with
the singlets of the following two s[(2, R) algebras. The representations appearing
in (5.6.22) can be grouped in order to reconstruct full representations either of the
complete Tits Satake or of the complete paint algebras. In this way one obtains:

w e o s A e @ L1 p+ 1)

W GTSGLGngbpaint (2, 5|1) @ (27 1|p _ 1) (5.6.23)

5.6.3 Universality Class s1(2, R) ® s0(6,7) = s0(8,9)

This case, which corresponds to an .#” = 4 theory with a number of vector multiplets
larger than six (n = 6 + p) presents a very strong similarity with the previous .4~ = 2
case.

The generic element of this infinite class corresponds to the following algebras:

Up=4 = 512, R) & s0(6,6 + p)
Up=3 = 50(8,8 + p) (5.6.24)

In this case the sub Tits Satake algebra is:
Gaurs = sl(2,R) @ 50(6,6) C sl(2,R) @s0(6,7) = Grs (5.6.25)

an the paint and subpaint algebras are the same as in the previous ./” = 2 case,
namely:

Gpaint = s50(p)
Gsubpaim =so(p—1) (5.6.26)

The symplectic W representation of Up_4 is the tensor product of the fundamental
representation of s[(2) with the fundamental vector representation of s0(6, 6 + p),
namely

W= _Q2[12+p) ; dmW = 24+2p (5.6.27)

The decomposition of this representation with respect to Gguprs @ Gsubpaint 18 the
following one:

Gubrs DG subpaint

w 2, 12D 2, 1D & 2 1]p) (5.6.28)

Just as above the three representations appearing in (5.6.28) can be grouped in order
to obtain either representation of the complete Tits Satake or of the complete paint
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algebras. This yields

W G,ub’lﬁgpninl (2’ 12'1) [a) (2’ 1|p + 1)

W GTse&;hpainl (2’ 13|1) 69 (2, 1|p) (5629)

5.6.4 The Universality Classes s1(2, R) @ so0(6,n) = so
@, n+2)withn <5

These classes correspond to the .4 = 4 theories with a number n = 1, 2, 3,4, 5 of
vector multiplets. In each case we have the following algebras:

Up=4 = sl(2,R) & s0(6, n)
Up=s; = s50(8,n +2) (5.6.30)

In all these cases the Tits Satake and sub Tits Satake algebras are:

GTS = 5[(2, R) @50(” + 1, n)
Gaubrs = (2, R) @ s0(n, n) (5.6.31)

and the paint and subpaint algebras are:

Gpaint = 50(6 — n)
Gsubpaint =50(5 —n) (5.6.32)

The symplectic W representation is the tensor product of the doublet representation
of s[(2) with the fundamental representation of s0(6, n), namely

W =(2,6+n) (5.6.33)
and its decomposition with respect to the Gguprs @ Gubpaint algebra is as follows

GsubTS @Gsubpaint
——

w 2,201 @ 2, 1]1) @ (2, 1|5 —n) (5.6.34)

which, with the same procedure as above leads to:

W Gsubiﬁgpﬂin‘ 2,2n|]1) & (2,1|6 — n)

W GTsQLGs;bpaint (2’ 211 + 1|1) @ (2’ 1|5 — n) (5635)
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5.6.5 W-Representations of the Maximally Split Non Exotic
Models

In the previous subsections we have analysed the Tits—Satake decomposition of the
W-representation for all those models that are non maximally split. The remaining
models are the maximally split ones for which there is no paint algebra and the Tits
Satake projection is the identity map. For reader’s convenience we have extracted
the list of such models and presented it in Table5.6. As we see from the table we
have essentially five type of models:

1. The E;7 model corresponding to .# =8 supergravity where the W-
representation is the fundamental 56.

2. The SU(1, 1) non exotic model where the W-representation is the j = % of
s0(1,2) ~su(l, 1)

3. The Sp(6, R) model where the W-representation is the 14’ (antisymmetric sym-
plectic traceless three-tensor).

4. Themodelssl(2, R) & so(q, g) where the W-representation is the (2, 2q), namely
the tensor product of the two fundamentals.

5. The models sl(2,R) @ so(q,q + 1) where the W-representation is the
(2,2q + 1), namely the tensor product of the two fundamentals.

Therefore, for the above maximally split models, the charge classification of black
holes reduces to the classification of Up_4 orbits in the mentioned W-representations.
Actually such orbits are sufficient also for the non maximally split models. Indeed
each of the above 5-models correspond to one Tits Satake universality class and,
within each universality class, the only relevant part of the W-representation is the
subpaint group singlet which is universal for all members of the class. This is precisely
what we verified in the previous subsections.

For instance for all members of the universality class of Sp(6,R), the W-
representation splits as follows with respect to the subalgebra sp(6, R) @ Gguppaint:

59 (6,R)DGuppaint
=" (6| Dautpaint) + (14 Laupaint) (5.6.36)

where the representation ZDgyppaint is the following one for the three non-maximally
split members of the class:

1of 1 forthe su(3, 3) — model
Dsuvpaine = § 3 of s0(3) for the s0*(12) — model (5.6.37)
7 of g2(—14) for the €7(-25) — model

Clearly the condition:
(6| Duopaint) = 0 (5.6.38)

imposed on a vector in the W-representation breaks the group Up_4 to its Tits Satake
subgroup. The key point is that each W-orbit of the big group Up_4 crosses the locus
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(5.6.38) so that the classification of Sp(6, R) orbits in the 14’ -representation exhausts
the classification of W-orbits for all members of the universality class.

In order to prove that the gauge (5.6.38) is always reachable it suffices to show that
the representation (6 | Zsuppaint) always appears at least once in the decomposition
of the Lie algebra Up_4 with respect to the subalgebra sp(6, R) ® Gguppain. The
corresponding parameters of the big group can be used to set to zero the projection
of the W-vector onto (6 | qubpaim).

The required condition is easily verified since we have:

sp(6,R)

adjsu(3,3) "B adjsp(6,R) 6 & 6 & 1 & 1
—— ———
35 21

adjso*(12) POEZO disp(6, R) @ adjso(3) @ (6,3) @ 6,3)® (1,3) ® (1,3)
——— —_——— ——

66 21 3
sp(6,R)Bgr(—14)
=

adj e7(—25) adjsp(6,R) @ adjgo-14) ® (6,7) ® (6,7 (1,7) & (1,7)
[ — —_——— [ ——
133 21 14

(5.6.39)

The reader cannot avoid being impressed by the striking similarity of the above
decompositions which encode the very essence of Tits Satake universality. Indeed
the representations of the common Tits Satake subalgebra appearing in the decom-
position of the adjoint are the same for all members of the class. They are simply
uniformly assigned to the fundamental representation of the subpaint algebra which
is different in the three cases. The representation (6 | @Subpaim) appears twice in these
decompositions and can be used to reach the gauge (5.6.38) as we claimed above.

For the models of type sl(2, R) & so(q, ¢ + p) having s[(2, R) ® so(g,q + 1)
as Tits Satake subalgebra and so(p — 1) as subpaint algebra the decomposition of
the W-representation is the following one:

s[(2,R)@so(g.g+1)Pso(p—1)
=

W = (2,2q+p) 2,2q+1) & 2,1jp—1)

(5.6.40)
and the question is whether each sl(2, R) @ so(g, g + p) orbit in the (2, 2q + p)
representation intersects the sl(2, R) & so(q, g + 1) ® so(p — 1)-invariant locus:

2,1p—-1) =0 (5.6.41)
The answer is yes since we always have enough parameters in the coset

SL(2,R) x SO(q, q + p)
SL(2,R) x SO(q,q+ 1) x SO(p — 1)

(5.6.42)

to reach the desired gauge (5.6.41). Indeed let us observe the decomposition:
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adj [s[(2, R) @ so(g, g + p)] = adj [sl(2, R)] @ adj [so(g, g + 1)]
@adj [so(p— 1] & 1,2q+1p—1)
(5.6.43)

The 2g + 1 vectors of so(p — 1) appearing in (5.6.43) are certainly sufficient to set
to zero the 2 vectors of so(p — 1) appearing in W.

The conclusion therefore is that the classification of charge-orbits for all super-
gravity models can be performed by restriction to the Tits Satake sub-model. The
same we show, in the next section, to be true at the level of the classification based on
H* orbits of the Lax operators, so that the final comparison of the two classifications
can be performed by restriction to the Tits Satake subalgebras.

5.7 Tits Satake Reduction of the H* Subalgebra and of Its
Representation K*

As we show in Chap. 6, in the o-model approach to black hole solutions one arrives
at the new coset manifold (4.3.41). The structure of the enlarged group Up_3 and
of its Lie algebra Up—3 was discussed in Eq.(1.7.12). The subgroups H* are listed
in Table5.7 for the non exotic models and in Table5.8 for the exotic ones. The
coset generators fall into a representation of H* that we name K*. The Lax operator
Lo which determines the spherically symmetric black hole solution up to boundary
conditions of the scalar fields at infinity is just an element of such a representation:

Ly € K* (5.7.1)

so that the classification of spherical black holes is reduced to the classification of
H* orbits in the K* representation. On the other hand, in Chap. 6, we demonstrate
how nilpotent orbits can be associated to multicenter solutions.

We focus on non-exotic models that admit a regular Tits Satake projection.

A first general remark concerns the structure of H* in all those models that cor-
respond to .4~ = 2 supersymmetry. In these cases the H* subalgebra is isomorphic
to s[(2, R) @ Up—_4 so that we have a decomposition of the Up_3 Lie algebra with
respect to H* completely analogous to that in Eq. (1.7.12), namely:

adj(Up=3) = adj(Up_y) & adj(s12, R)p) ® (2, W) (5.7.2)
——
H* K*

Hence the representation K* which contains the Lax operators has a structure analo-
gous to the representation which contains the generators of Up_4 that originate from
the vector fields, namely: (2, W). This means that in all these models, by means of
exactly the same argument as utilized above, we can always reach the gauge where
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Table 5.7 Table of H* subalgebras of Up—3, K*-representations and W representations of Up—4
for the supergravity models based on non-exotic scalar symmetric spaces

# Up=3 H* K* Up=4 Rep.W H,
1 €8(8) 50*(16) 1285 €7(7) 56 SU.(S)
2 | ;o) SR @ (432 21 SR | 43 50(2)
502, R)px
3| faw) sp(6.R) @ (1. 2 sp6.R) | 14 u(3)
502, R)px
4 | e 5u(3,3) @ (20, 2)+) su(3,3) |20 su(3) ®
502, R)px su(3)
Gu(l)
5 es) s (12) ® (37,,\ , 2,,.) 50%(12) | 32pin u(6)
502, R)px
6 | es—24) €725 @ (56. 2;v) €7(-25) 56 u(6)
s[(2, R)p
7 50(8, 3) 50(6,2) ®so2,1) | (8, 3) so6, ) | (7,2) 50(6) @
sl(2,R) u(l)
8 | 50(8,4) 50(6,2) ®s0(2,2) | (8,4) 50(6,2) D | (8,2) 50(6) @
sl(2,R) 50(2)
du(l)
9 | 50(8,5) 50(6,2) ®s0(2,3) | (8,5) 50(6,3)® | (9,2) 50(6) @
s[(2,R) 50(3)
du(l)
10 | s0(8, 6) 50(6,2) @ s0(2,4) | (8, 6) 50(6,4) @ | (10,2) 50(6) @
sl(2,R) s50(4)
du(l)
11 | 50(8,7) 50(6,2) ®s0(2,5 | 8,7 50(6,5) @ | (11,2) 50(6) @
s[(2,R) s50(5)
Gu(l)
12 | 50(8, 8) 50(6,2) @ so(2,6) | (8, 8) 50(6,6)® | (12,2) 50(6) @
sl(2,R) 50(6)
Gu(l)
13 | 50(8,8 +p) | 50(6,2) ® 8,8+p) 50(6,6+ | (12+p,2)|50(6) D
50(2,6 + p) p)® 50(6 +
s[(2,R) p)
du(l)
14 | s0(4,3) SR @502, 1) | (2,3, 2) SR @ | (2, 3) 50(2) @
Psl(2, R)p+ s0(2,1) u(l)
15| s04,4) | s, R)@s02,2) | (2,4, 2) SRS | (2,4 |50 e
Dsl(2, R)p+ 50(2,2) 50(2)
du(l)
16 | s0(4.4+p) | sI2.R) & (2.4%p.2) SIQRI® | 2.4+D) 500) @
50(2,2 + p) 50(2,2) s0(2 +
®sl(2, R)p+ p)

du(l)
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the K* representation is localized on the image of the Tits Satake projection Kiy.
For instance, for the models in the f4(4) universality class we have:

Hig = sl(2, Ry ® sp(6,R) (5.7.3)

and:

T Gsu aint . . =
» HisBmin 0 45 612, R)pe @ adj 5p(6, R)

@ (6 | -@subpaim) 5] (6 | -@subpaim)
@ (1 | -@subpaint) @ (1 | -@subpaint)

(Zh* s 14 | 1subpaint) S (zh* , 6 | -@subpaim) (5.7.4)

H

K* H} s BGubpaint

and the two representations (6 | qubpaim) appearing in the adjoint representation of
H* can be utilized to get rid of (Zh, , 6] .@Subpaim) appearing in the decomposition of
K*.

What is important to stress is that, although isomorphic H* and s[(2, R) & Up_4
are different subalgebras of Up_3:

Up=s D sl2,R)n # sl(2,R)g C Up=s ; Up=s D Up=s # Up=s C Up=
(5.7.5)

Moreover, while the decomposition (1.7.12) is universal and holds true for all super-
gravity models, the structure (5.7.3) of the H* subalgebra is peculiar to the 4" = 2
models. In other cases the structure of H* is different.

The reduction to the Tits Satake projection however is universal and applies to all
non maximally split cases.

Indeed the remaining cases are of the form:

UD:3 . SO(2+q,Q~|—2+p)
H*  SO(q,2) x SO2,q+p)

(5.7.6)

leading to

50(q,2)®s0(2,q+1)dso(p—1
q q p

K* = (q+2,q+p+2) ' @+2.q+1D @ (q+2.1,p—1)

(5.7.7)
where:
so(q,2) @so(2,q + 1) = Hig (5.7.8)
s0(p — 1) = Ggubpaint (5.7.9)
Considering the coset:
il 30,94 p) (5.7.10)

Hffs X Gsubpaint B So(q + 17 2) X SO(P - 1)
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we see that its (g + 3) x (p — 1) parameters are arranged into the
q+3p-1 (5.7.11)

representation of so(q + 1, 2) @ so(p — 1) and can be used to put to zero the com-
ponent (q + 2,1, p — 1) in the decomposition (5.7.7). Note that the .4 = 4 cases
with more than 6 vector multiplets are covered by the above formulae by setting:

g=6; p>1 (5.7.12)

Similarly the .4 = 2 cases with more than 3 vector multiplets are covered by the
above formulae by setting:
g=2; p>1 (5.7.13)

Finally the .4 = 4 cases with less than 6 vector multiplets are covered by the above
formulae by setting:

gq=n; p=6-n; n=1,2,3,4,5 (5.7.14)

5.8 The General Structure of the H* & K* Decomposition
in the Maximally Split Models

In the previous section we have shown that all H* orbits in the K* representation
cross the locus defined by:
I (K*) = K~ (5.8.1)

where Iltg is the Tits—Satake projection.

In other words just as for the W-representation of Up_y, it suffices to classify the
orbits Hyg in the Kfg representation. In view of this result, in the present section
we study the general structure of the H* @ K* decomposition for maximally split
algebras Up_3.

A key point in our following discussion is provided by the structure of the root
system of Up_j3 as described in Sect.5.5.3. The entire set of positive roots can be
written as follows:

o = {a, 0}
0O<a={M={W. % (5.8.2)
¥ =10,v2

where o > 0 denotes the set of all positive roots of Up_4, while W denotes the
complete set of weights (positive, negative and null) of the W representation of
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Up=4. The root ¢ is the highest root of the Up_3 root system and is also the root
of the Ehlers subalgebra s[(2, R) g. Accordingly, a basis of the Cartan subalgebra of
Up—3 is constructed as follows:

CSA = spanof {54, 76, ..., ], Sy (5.8.3)
~—— ——
of Up—_s CSA generators of Up—4s  CSA generator of s[(2,R)

For all maximally split Lie algebras U of rank r + 1, the maximal compact sub-
algebra H C U is generated by:

T = E* — E™° (5.8.4)
while the complementary orthogonal space K is generated by

K®= E* + E¢ (5.8.5)
Kl=x" ; 1=1,...,r+1 (5.8.6)

The splitting H* @ K* is obtained by means of just one change of sign which, thanks
to the structure (5.8.2) of the root system is consistent, namely still singles out a
subalgebra.

The generators of the H* subalgebra are as follows:

TO! — EO[ _ E—Ot
T*m — Em + E—m
TV =EV — E7V (5.8.7)

while the generators of the K* complementary subspace are as follows:

K =E* + E™®
K® =E® — E™™
K/ =EV + E7Y
Kl=u" ; 1=1,...,r+1 (5.8.8)

From Eq.(5.8.7) we see that H* contains the maximal compact subalgebra of the
original Up—4 and the maximal compact subalgebraso(2) C sl(2, R)g of the Ehlers
group. Using this structure we can now compare the classification of K* orbits with
the classification of W-orbits.
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5.9 K* Orbits Versus W-Orbits

In the o-model approach the complete black hole spherically symmetric supergravity
solution is obtained from two data,> namely the Lax operator Ly evaluated at spatial
infinity (see Eq.(5.7.1)) and the coset representative L also evaluated at spatial
infinity. In terms of these data one defines the matrix of conserved Noether charges:

QN()ezher = Lo Lo Lal — L(‘E)L('L')L_](T) (5.9.1)

from which the electromagnetic charges of the black hole, belonging to the W-
representation of Up_4, can be obtained by means of the following trace:

9% — Tr (QNUether yw) (592)

where
T¥ x E™ (5.9.3)

are the generators of the solvable Lie algebra corresponding to the W-representation.

It is important to stress that, because of physical boundary conditions, the coset
representative at spatial infinity Ly belongs to the subgroup Up—_4 C Up_3. Indeed
it simply encodes the boundary values at infinity of the D = 4 scalar fields:

Up=s D Up_y 2 Ly = exp |:¢g E* + Z¢6 %i| 5.9.4)
i=1
Using this information in Eq. (5.9.2) we obtain
2" = Tr (LoLy'(#) 7" Lo(9)) = R, 2% (5.9.5)

where:

2% — Tr (L(, 9W’) (5.9.6)
are the electromagnetic charges obtained with no scalar field dressing at infinity and
R(®)",, € Up=s (5.9.7)

is the matrix representing the group element Ly (¢) in the W-representation.
This result has a very significant consequence. The scalar field dressing at infinity
simply rotates the charge vector along the same W-orbit and is therefore irrelevant.
Hence we conclude that for each Lax operator, the W-orbit of charges is com-
pletely determined and unique. The next question is whether the charge-orbit W is

2See papers [34, 44, 45] for detailed explanations.
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the same for all Lax operators belonging to the same H*-orbit. As already anticipated,
the answer is no and it is quite easy to produce counter examples.
Yet if we impose the condition that the Taub-NUT charge should be zero:

Tr(Lo L) = 0 (5.9.8)

then for all Lax operators in the same H*, satisfying the additional constraint (5.9.8),
the corresponding charges Q" = Tr (Lo T") fall into the same W-orbit.
We were not able to prove this statement, but we assert it as a conjecture, since we
analyzed many cases and it was always true, no counter example being ever found.
In the case of multicenter non spherically symmetric solutions our conjecture
appears to be true as long as we impose the condition of vanishing of the Taub-NUT
current:
JjTN =0 (5.9.9)

So doing, at every pole of the involved harmonic functions, we obtain a black hole
that always falls into the same W-orbit.

What happens instead when the Taub-NUT current is turned on cannot be pre-
dicted in general terms at the present status of our knowledge and more study is
certainly in order.

The reader will understand the meaning of the last two paragraphs by carefully
reading Chap. 6. In the present one we outlined the entire beautiful group-theoretical
machinery that sustains the construction and classification of black-hole geometries
addressed there.
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Chapter 6
Black Holes and Nilpotent Orbits

Deep into that darkness peering, long I stood there,
wondering, fearing, doubting,
dreaming dreams no mortal
ever dared to dream before.
Edgar Allan Poe

6.1 Historical Introduction

When on September 14th 2015 the gravitational wave signal emitted 1.5 billion year
ago by two coalescing black stars was detected at LIGO I and LIGO II, we not only
obtained a new spectacular confirmation of General Relativity but we actually saw
the dynamical process of formation of the most intriguing objects populating the
Universe, namely black holes (Fig.6.1).

Black Holes are on one side physical objects capable of interacting with the
emission of enormous quantities of energy, on the other side they are just pure
geometries. Indeed a classical black-hole is nothing else but a solution of Einstein
equations which are just geometrical statements on the curvature tensor.

6.1.1 Black Holes in Supergravity and Superstrings

A new season of research in Black Hole theory started in the middle nineties of
the XXth century with the contributions of Sergio Ferrara, Renata Kallosh, Andrew
Strominger and Cumrun Vafa, that are described in the following short summary:

1. In 1995 R. Kallosh, S. Ferrara and A. Strominger considered black holes in the
context of .4~ = 2 supergravity and introduced the notion of attractors [1, 2].

2. In 1996 S. Ferrara (see Fig.4.2) and R. Kallosh (see Fig.6.2) formalized the
attractor mechanism for supergravity black holes [1, 2].
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Fig.6.1 The gravitational wave signal emitted in the coalescence of two black holes which occurred
1.5 billion of years ago was simultaneously detected September 14th 2015 by the two interferometers
LIGO I and LIGO II

3. In 1996 A. Strominger (see Fig.4.7) and C. Vafa (see Fig.6.3) showed that an
extremal BPS black hole in d = 5 has a horizon area that exactly counts the
number of string microstates it corresponds to [3].!

4. In the years 1997-2000 the horizon area of BPS supergravity black holes was
interpreted in terms of a symplectic invariant constructed with the black hole
electromagnetic charges (for a review containing also an extensive bibliography
see [11]).

5. In the years 2006-2009 new insights extended the attractor mechanism to non
BPS black-holes [12-25].

6. Since 2010 new exact integration techniques for Sugra Black Holes were found
by A. Sorin, P. Fré, M. Trigiante and their younger collaborators [26-33].

6.1.2 Black Holes in This Chapter

The intriguing relation between Geometry and Physics arises at several levels, the
most profound and challenging being provided by the identification of the horizon
area with the statistical entropy of the mysterious dynamical system which is encoded
in a classical black solution.

IThere followed a vast literature some items of which are are quoted in [4-10].
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Fig. 6.2 Renata Kallosh (on the left) born in Moscow in 1943 completed her Bachelor’s from
Moscow State University in 1966 and obtained her Ph.D. from Lebedev Physical Institute, Moscow
in 1968. She then held a position, as professor, at the same institute, before moving to CERN for a year
in 1989. Kallosh joined Stanford University in 1990 and continues to work there. She is married with
the famous cosmologist Andrei Linde. Renata Kallosh is renowned for her pioneering contributions
with Ferrara to the attractor mechanism in supergravity black holes, for her studies in supergravity
cosmology and for her early work with A. Van Proeyen on the AdS/CFT correspondence. Indeed
Kallosh and Van Proeyen were the first to propose the interpretation of the anti de Sitter group
as the conformal group on a brane boundary. Anna Ceresole (on the right), born 1961 in Torino,
graduated from Torino University in 1984 with a thesis on Kaluza Klein supergravity written under
the supervision of Hermann Nicolai and the author of this book. In 1989 she obtained her Ph.D. from
Stony Brook University under the supervision of Peter van Nieuwenhuizen. Post doctoral fellow at
Caltech for two years she was Assistant Professor at the Politecnico di Torino for several years. Then
she became Senior Research Scientist of INFN and joined the Torino University String Group. Anna
Ceresole has given many important contributions to the development of supergravity, in particular
in relation with special Kdhler Geometry and black hole charges, duality transformations, gaugings
and inflaton potentials. She has worked both with younger students and post-doc and, in different
combinations, with all the main actors in the development of supergravity theory

We are not going to touch upon the physics of black holes and on the exciting
question of their interpretation in terms of microstates, yet we cannot avoid discussing
their several nested geometrical aspects, glimpses of which were already provided
in Chap. 5.

We emphasized there that in the context of supergravity a black hole solution of
Einstein equations comes equipped with other associated geometrical data, namely
those encoded in a set of electromagnetic fields that are connections on suitable
bundles and those encoded in scalar fields that describe a map from 4-dimensional
space-time .#4 to special manifolds . % ,. We also stressed the remarkable picture
of a black-hole solution as a map from a three-dimensional Euclidean manifold .3
to a Lorentzian pseudo-quaternionic manifold 2, lying in the image of the c*-map.
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~

Fig. 6.3 Cumrun Vafa (on the left) was born in Tehran, Iran in 1960. He graduated from Alborz
High School and went to the US in 1977. He got his undergraduate degree from the Massachusetts
Institute of Technology with a double major in physics and mathematics. He received his Ph.D.
from Princeton University in 1985 under the supervision of Edward Witten. He then became a
junior fellow at Harvard, where he later got a junior faculty position. In 1989 he was offered a
senior faculty position, and he has been there ever since. Currently, he is the Donner Professor of
Science at Harvard University. Vafa’s most relevant achievement is, together with Strominger, the
first example of interpretation of the Bekenstein Hawking black hole entropy in terms of superstring
microstates. He has also given pioneering contributions to topological strings, F-theory and to the
general vision named geometric engineering of quantum field theories, which is a programme aimed
at decoding quantum field theories in terms of algebraic geometry constructions. Dieter Luest (on
the right) born 1956 in Chicago, graduated from the Ludvig Maximillian University in Muenchen
in 1985. He was postdoctoral fellow in Caltech, Pasadena, in the Max Planck Institute in Muenchen
and at CERN in Geneva. From 1993 to 2004 he was full professor of Quantum Field Theory at the
von Humboldt University in Berlin. Since 2004 he made return to Muenchen where he is both full
professor at the Ludwig Maximilan University and Research Director at the Max Planck Institute.
Dieter Luest has given very important contributions in a large variety of topics connected with String
Theory and Supergravity, in particular in relation with Black Hole solutions, D-brane engineering,
Calabi Yau compactifications, double geometries, flux compactifications and string cosmology

This last viewpoint corresponds to the o-model approach to black-hole solutions
and it was developed in the last two decades.

If the special manifold .. %", = % is a symmetric coset manifold, then
also the pseudo-quaternionic manifold 2, = ggj is such and the classification
of possible extremal black-hole solutions is turned into an algebraic problem that
is the contemporary frontier of research in Lie algebra theory: the classification of
nilpotent orbits.

In this chapter we analyze in detail the new very rich geometric lore which emerges
from the issue of black—hole constructions within the o-model approach. Here all

the issues discussed in previous chapters enter the game in an essential way:

Special Kéhler Geometry,

Lie Algebra invariants,

¢* map,

Tits Satake projection and its universality classes,

el S
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5. Weyl Group and its extensions,
6. Classification of nilpotent orbits.

In view of the deep relation between quantum physics and geometry encapsulated

into black-holes it is to be expected that all the intriguing geometrical relations listed

above are the tip of an iceberg of theoretical knowledge yet to be uncovered.
Hence let us resume the o-model approach to black-holes.

6.2 The o-Model Approach to Black-Hole Resumed

We start from Eq.(5.2.21) and from the golden splitting (1.7.12) which we rewrite
as follows:
adj(Up=3) = adj(Up=4) & adj(s[(2, R)g) ® W w) (6.2.1)

where W is the symplectic representation of Up_4 to which the electric and magnetic
field strengths are assigned.

Next we consider a gravity coupled three-dimensional Euclidean o -model, whose
fields

24 (x) = {U(), ax), $(x), Z(x)}

describe mappings:
D M~ 2 (6.2.2)

from a three-dimensional manifold .#3, whose metric we denote by y;;(x), to the
target space 2. The action of this o-model is the following:

Bl = / Jdety Rlyld3x + / Jdety 2 g3« (6.2.3)
LD = (U U+ hys 89" 9;¢°
+e72U (g +27Cyz) (9ja+27Cosz) + 2e7V 0,27 M4 0,2) v (6.2.4)
where [y ] denotes the scalar curvature of the metric y;;.

The field equations of the o -model are obtained by varying the action both in the
metric y;; and in the fields @4 (x). The Einstein equation reads as usual:

Ri; — %yiji)f{ =% (6.2.5)
where: 0
)
(Iij = — — VYij 3(3) (626)
¥ 57/1] .

is the stress energy tensor, while the matter field equations assume the standard form:
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1
J/dety

As it is well known, in D = 3 there is no propagating graviton and the Riemann
tensor is completely determined by the Ricci tensor, namely, via Einstein equations,
by the stress-energy tensor of the matter fields.”

Extremal solutions of the o-model are those for which the three-dimensional
metric can be consistently chosen flat:

=0 6.2.7)

) |:‘/ dety

5. 5L
881¢A] o4

vii = 8 (6.2.8)
corresponding to a vanishing stress-energy tensor:

JU ;U + hys 89" 0" + e 2V (8ia + Z"CHZ) (3;a+ 2" Cd;Z)
+2e VQZ M ;2 = 0
(6.2.9)

We will see in the sequel how the nilpotent orbits of the group H* in the K* represen-
tation can be systematically associated with general extremal solutions of the field
equations.

6.2.1 Oxidation Rules for Extremal Multicenter Black Holes

Let us now describe the oxidation rules, namely the procedure by means of which
to every configuration of the three-dimensional fields @ (x) = {U(x), a(x), ¢ (x),
Z(x)}, satisfying the field equations (6.2.7) and also the extremality condition (6.2.9),
we can associate a well defined configuration of the four-dimensional fields satisfying
the field equations of supergravity that follow from the lagrangian (5.2.3). We might
write such oxidation rules for general solutions of the o-model, also non extremal,
yet given our present goal we confine ourselves to spell out such rule in the extremal
case, which is somewhat simpler since it avoids the extra complications related with
the three-dimensional metric y;;.

In order to write the D = 4 fields, the first necessary item we have to determine is
the Kaluza—Klein vector field AK¥1 = A% K] gy This latter is worked out through
the following dualization procedure:

2Clarification for mathematicians: General Relativity in D = 3 = 1 @ 2 dimensions is a rather
empty field theory. Einstein equations do not describe the propagation of any particle since there
are no solutions of the wave-type and the only degree of freedom is the analogue of the Newton
potential. Mathematically this follows from the fact that the Riemann tensor is fully determined by
the Ricci tensor and the latter is identified by Einstein equations with the stress-energy tensor of
matter fields.
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FIKK] — gAlKK]

FYK = —gi i dx’ Adx! [expl—2U] (0%a + ZC0*Z)]  (6.2.10)

Given the Kaluza—Klein vector we can write the four-dimensional metric which is
the following:

ds®> = — explU] (dt + AKX’ 4 exp[~Uldx' @ dx’ 8 6.2.11)
The vielbein description of the same metric is immediate. We just write:

ds’=—-E°QE’ + E'QE'
E° = exp[¥] (dr + AFXY)
E' = exp[—5]dx’ (6.2.12)

Next we can present the form of the electromagnetic field strengths:
F4' = C™o;Zy dx' A (di + AKKD)
+&ijdx’ A dx! [exp[—U] (Idefl)AE 0"z + R&/VngkZF)]
(6.2.13)

Next we define the electromagnetic charges and the Taub-NUT charges for multicen-
ter solutions. Considering the metric (6.2.11) the black hole centers are defined by
the zeros of the warp-factor exp[U (x)]. In a composite m-black hole solution there
are m three-vectors r, (¢ = 1, ..., m), such that:

lim exp[U(x)] = 0 (6.2.14)

Each of these zeros defines a non trivial homology two-cycle S2 of the 4-dimensional
space-time which surrounds the singularity r,. The electromagnetic charges of the
individual holes are obtained by integrating the field strengths and their duals on
such homology cycles.

PA _ 1 fSZ k4 1 -EM
L =— [ (6.2.15)
as ), 4ny2 \Js Gs 4 Jo

Utilizing the form of the field strengths we obtain the explicit formula:

qx
+ exp[—2U] (3*a + ZzCd*Z) CZ] (6.2.16)

A 1 . .
p i k
2, = = —— giidx' Ndx’! |exp[—U] M, 03" Z
( )Ol 4'7-[\/§ Sz I [ P )
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which provides m-sets of electromagnetic charges associated with the solution. Sim-
ilarly we have m Taub-NUT charges defined by:

1 . . 1
n, = gijedx’ A dx’ exp[-2U] (3*a + ZC3*Z) = y G

B E s? T 2
6.2.17)

6.2.1.1 Reduction to the Spherical Case

The spherical symmetric one-center solutions are retrieved from the general case by
assuming that all the three-dimensional fields depend only on one radial coordinate:

1
T=-C 5 = VxP+xd + a3 (6.2.18)

On functions only of T we have the identity:

if(r) = —x'13 %f(r) (6.2.19)

and introducing polar coordinates:

1

X = — cos 6O
T
I .

Xy = — sin 6 sing
T
1

X3 = — sin 6 cos ¢ (6.2.20)
T

we obtain: o
e x'dxl Adx* = —25sin0do Ady (6.2.21)

By using these identities and restricting one’s attention to the extremal case, the
action of the o-model (6.2.3) reduces to:

%:/dt,ﬁf
L=U+hs¢ ¢ +e 2V a@a+2"CZ)? + 2 VLT M7 (62.22)

where the dot denotes derivatives with respect to the T variable. The o-model field
equations take the standard form of the Euler Lagrangian equations:
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ddy dZ
dr d¢  do
(6.2.23)

and the extremality conditions (6.2.9) reduces to:
L =U+hys¢" ¢ +e 2V (a+Z"CL)? + 2 V2" M7 =0 (6224)

It appears from this that spherical extremal black holes are in one-to-one correspon-
dence with light-like geodesics of the manifold 2.
The Reduced Oxidation Rules

In the spherical case the above discussed oxidation rules reduce as follows. For the
metric we have

1 1
ds?, = —eV D (@t + 2n cos0dg)? + e VO | = dr? + — (d6? + sin? 6 dg?
@) 4 72

(6.2.25)

where n denotes the Taub-NUT charge obtained from the form of the Kaluza—Klein
field strength:

FX = 2nsin0db A do

n=(a + 2C2) (6.2.26)

The electromagnetic field-strengths are instead the following ones:
FA = 2p*sin0dd Adp + Zsdt A (dt + 21 cosd dy) (6.2.27)

where the magnetic charges p? are extracted from the reduction of the general
formula (6.2.16), namely:

A
M = (;’ ) =V2[e V7 —nCz]" (6.2.28)
P

6.3 The g;(2) Lie Algebra and the S° Model

In Sect. 1.6 we discussed the structure of the smallest exceptional Lie algebra g, and
we anticipated that it plays an important role in relation with the simplest example of
special Kéhler geometry and of its quaternionic images under the ¢ and the ¢* maps.
Indeed the simplest example of special Kéhler geometry occurs when we have only
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one complex scalar coordinate z which parameterizes the complex lower half-plane
endowed with the standard Poincaré metric. In other words®:

1

2 dzdz 63.1
4 (Imp)? °° 31

gzdzdz =

From the point of view of geometry the lower half-plane is the symmetric coset
. SL2,R) . SU(,D)
manifold S00) OB .
According to the presented theory and to Table 5.2 the c-map and c*-map images

of this special Kihler manifold are:

J[suany_ Gao
U) |~ SU@) x SUQ®)

¢t [SU(I’ ])} - G2 (6.3.2)
u() SU(, 1) x SU(L, 1)

and the architecture of the (pseudo)-quaternionic manifold is algebraically governed
by the golden splitting (1.7.21) and analytically determined by the explicit form of
the .4 -matrix of special geometry appearing in Egs. (5.2.17) and (5.2.18).

In our discussion of supergravity black-holes from the point of view of the D = 3
o-model and of nilpotent orbits, the master model we will constantly utilize is the
simplest one based on the above mentioned one dimensional special Kihler manifold
traditionally dubbed the S* model. Hence we are interested in the explicit derivation
of its special geometry items.

The manifold S%((ll’)l) admits a standard solvable parametrization constructed as it
follows. Let:

10 01 00
STERL) NRSTLT) WL Qe

be the standard three generators of the s[(2, R) Lie algebra satisfying the commu-
tation relations [Lo, Li] =+L, and [L+, L_] = 2L,. The coset manifold S%((ll’)l)
is metrically equivalent with the solvable group manifold generated by L, and L.

Correspondingly we can introduce the coset representative:

e?/? e=%/2y
Lu(@.y) = exply Li] exply Lol = (0 o ) (6.34)

Generic group elements of SL(2, R) are just 2 x 2 real matrices with determinant
one:
ab

SL2,R) > 2 = <cd

) ; ad —bc=1 (6.3.5)

3The special overall normalization of the Poincaré metric is chosen in order to match the general
definitions of special geometry applied to the present case.
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and their action on the lower half-plane is defined by usual fractional linear transfor-
mations:

az+ b
—_

A
cz +d

(6.3.6)

The correspondence between the lower complex half-plane C_ and the solvable
-parameterized coset (6.3.4) is easily established observing that the entire set of
Imz < O complex numbers is just the orbit of the number i under the action of
L. y):

—e?/?1 + e*fﬂ/2y

Lap,y) : i— p=— =7y —ie’ 6.3.7)

This simple argument shows that we can rewrite the coset representative L(¢, y) in
terms of the complex scalar field z as follows:

/Mmz | Rez
Li@) = |, Vilmz | (6.3.8)

ViImz |

The issue of special Kidhler geometry becomes clear at this stage. If we did not con-
sider the symplectic vector bundle, the choice of the coset metric would be sufficient
and nothing more would have to be said. The point is that we still have to define
the .4 "—matrix associated with the flat symplectic bundle which enters the definition
of special Kéhler geometry. On the same base manifold SL(2, R)/SO(2) we have
different special structures which lead to different physical models and to different
duality groups Up_3 upon reduction to D = 3. The special structure is determined
by the choice of the symplectic embedding SL(2, R) — Sp(4, R). The symplectic
embedding that defines our master model and which eventually leads to the duality
group Up—3 = Gy is cubic and it was already described in Sect.1.7.1.1. It is
explicitly given by Eq.(1.7.28).

The 2 x 2 blocks A, B, C, D of the 4 x 4 symplectic matrix A (%) are easily
readable from Eq. (1.7.28) so that, assuming that the matrix 2(z) is the coset repre-
sentative of the manifold SU(1, 1) /U(1), we can apply the Gaillard-Zumino formula
(5.2.16) and obtain the explicit form of the kinetic matrix A4 5:

_ 2ac—ibetiad+2bd __ /3(c+id)(ac+bd)
_ a?+b? (a—ib)(a+ib)?
A=\ Blesidactbd) _ (chid?Gac tibe—iad12ha) (6.3.9)
(a—ib)(a+ib)? (a—ib)(a+ib)’

Inserting the specific values of the entries a, b, ¢, d corresponding to the coset rep-
resentative (6.3.8), we get the explicit dependence of the .4 -matrix on the complex
coordinate z:

_ N3G+ 243 (6.3.10)
2772 2223

_ 3z+Z _ \@(Zti)
JR— 222 55
JVAE(Z) — 2z 2z
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This might conclude the determination of the quaternionic or pseudo-quaternionic
metric of our master example, yet we have not yet seen the special Kihler structure
induced by the cubic embedding. Let us present it.

The key point is the construction of the required holomorphic symplectic section
£2(z). As usual the transformation properties of a geometrical object indicate the
way to build it explicitly. For consistency we should have that:

Q(az-i—b

p +d) = f(0) AR 2(2) (6.3.11)

where A(Rl) is the symplectic representation (1.7.28) of the considered SL(2, R)
matrix <i 2 and f(z) is the associated transition function for that line-bundle
whose Chern-class is the Kihler class of the base-manifold. The identification of the
symplectic fibres with the cubic symmetric representation provide the construction

. . v .
mechanism of §2. Consider a vector vl that transforms in the fundamental doublet
2

representation of SL(2, R). On one hand we can identify the complex coordinate z
on the lower half-plane as z = v;/v,, on the other we can construct a symmetric
three-index tensor taking the tensor products of three v;, namely: f;;x = v; v; vx.
Dividing the resulting tensor by v3 we obtain a four vector:

v z?
1 V2V2 Zz
212) = = ! = 6.3.12
=3 i (6.3.12)
v 1

Next, recalling the change of basis (1.7.25), (1.7.26) required to put the cubic repre-
sentation into a standard symplectic form we set:

—V322
. 3
Q@) =52 = f/§z (6.3.13)
1

and we can easily verify that this object transforms in the appropriate way. Indeed
we obtain:

Q (“Z + b) — (14 d) ARG (6.3.14)
cz+d

The pre-factor (c z 4+ d)~2 is the correct one for the prescribed line-bundle. To see
this let us first calculate the Kéhler potential and the Kéhler form. Inserting (6.3.13)
into Eq. (4.2.15) we get:
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H = —log (i(2]2)) = —log (—i(z — 2)°)
- i3
K=-004 = -~ T A4 (6.3.15)

This shows that the constructed symplectic bundle leads indeed to the standard
Poincaré metric and the exponential of the Kéhler potential transforms with the
prefactor (¢ z + d)* whose inverse appears in Eq. (6.3.14).

To conclude let us show that the special geometry definition of the period matrix
A agrees with the Gaillard-Zumino definition holding true for all symplectically
embedded cosets. To this effect we calculate the necessary ingredients:

=2/ =i(z=2)}
H _\?}#— A
(z=2)+/—i(z=2)% | _
V:V(z) = ex [—} (3;2() + ;4 2(z)) = = < z )
Z ANy ) _ Aesh h:
@=Dv=iz=2?
3
=D/ —iz=2)3 63.16)
Then according to Eq. (4.2.21) we obtain:
V3z2(z427) _ /e
A = (z=2Da/—i(z=2)? (—i(z=2)
1 — . 3727 24/253
(—2)N/—i(z—2)} FiGE=D)
__ A3+d) 263
7—7 (—i( ))‘/2
har = (z— J\/ i(z—z)3 (THeT2 63.17)

e z)\/ i3 & '(Z Z»m

and applying definition (4.2.21) we exactly retrieve the same form of .4, 5 as given
in Eq.(6.3.10).

For completeness and also for later use we calculate the remaining items pertaining
to special geometry, in particular the symmetric C-tensor. From the general definition
(4.2.18) applied to the present one-dimensional case we get:

. o 6i
V.U, =iC h* U, = C,p = —m (6.3.18)
As for the standard Levi-Civita connection we have:
2 . 2
c o= ;o T = — ;  all other components vanish (6.3.19)
77—z N 72—z
SL(2,R)

This concludes our illustration of the cubic special Kéhler structure on 500 -
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6.3.1 The Quartic Invariant

In the cubic spin j = % representation of SL(2, R) there is a quartic invariant which
plays an important role in the discussion of black-holes. As it happens for all the
other supergravity models, the quartic invariant of the symplectic vector of magnetic

and electric charges:
A
2 = <” ) (6.3.20)
4z

is related to the entropy of the extremal black-holes, the latter being its square root.
The origin of the quartic invariant is easily understood in terms of the symmetric
tensor 7. Using the SL(2, R)-invariant antisymmetric symbol " we can construct
an invariant order four polynomial in the tensor #;;; by writing:

Ty o< g% ghl gl gam ghr geny tijk togr timn (6.3.21)

If we use the standard basis #111, t112, t122, 1222, We rotate it with the matrix (1.7.25)
and we identify the components of the resultant vector with those of the charge vector
2 the explicit form of the invariant quartic polynomial is the following one:

1 1

3 = — P+ TP — e — —=paql — p3gE (6322)
3\/5 1 12 171 2 3\/§ 1 4 242 e

where we have also chosen a specific overall normalization which turns out to be
convenient in the sequel.

6.4 Attractor Mechanism, the Entropy and Other Special
Geometry Invariants

One of the most important features of supergravity black-holes is the attractor mecha-
nism discovered in the nineties by Ferrara and Kallosh for the case of BPS solutions*
[1, 2] and in recent time extended to non-BPS cases [12-14, 21-25]. According
to this mechanism, if we focus on spherical symmetric configurations, the evolving

4Clarification for mathematicians: the acronym BPS stands for Bogomolny, Prasad and Sommer-
feld. It is a notion occuring in the theory of monopoles where one always derives a bound according
to which the energy (or mass) of a quasi-particle corresponding to a localized solution of non
linear propagation equations is always larger or equal than some kind of charge carried by the
quasi-particle. BPS states are those that saturate the bound and typically correspond to shortened
representations of the space-time group. In the case of supergravity black-holes the BPS bound
relates the mass of the hole with the modulus of the central charge of the supersymmetry algebra.
Because of the scope of this book we omit the original definition of the central charge in terms of
superalgebras and we confine to give its expression in terms of special Kahler geometrical items
(see Eq.(6.4.4)).
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scalar fields z/(7) flow to fixed values at the horizon of the black-hole (z = —o0),
which do not depend from their initial values at infinite radius (z = 0) but only on
the electromagnetic charges p, g.

In order to establish the relation of the quartic invariant J4 defined in Eq. (6.3.22)
with the black-hole entropy and review the attractor mechanism, we must briefly
recall the essential items of black hole field equations in the geodesic potential
approach [10]. In this framework we do not consider all the fields listed in Eq.
(5.2.2). We introduce only the warp factor U(t) and the original scalar fields of
D = 4 supergravity. The information about vector gauge fields is encoded solely in
the set of electric and magnetic charges 2 defined by Eq. (6.3.20) which is retrieved
in Eq.(6.2.28). Under these conditions the correct field equations for an A4~ = 2
black-hole are derived from the geodesic one dimensional field-theory described by
the following lagrangian:

r

1
Sg.ffE/e%ff(T)dT P

du '\’ dz' dz”’ .
Ly (M) =3 (E) + g - e V(2,52 (641)

where, by definition, the geodesic potential V (z,z, 2) is given by the following
formula in terms of the matrix .#; introduced in Eq. (4.3.4):

Ven(z,2,2) = 2 2 a7 (/) 2 (6.4.2)

The effective lagrangian (6.4.1) is derived from the o-model lagrangian (6.2.24)
upon substitution of the first integrals of motion corresponding to the electromagnetic
charges (6.2.28) under the condition that the Taub-NUT charge, defined in (6.2.17),
vanishes® (n = 0). Indeed, when the Taub-NUT charge n vanishes, which will be
our systematic choice, we can invert the above mentioned relations, expressing the
derivatives of the ZM fields in terms of the charge vector 2¥ and the inverse of
the matrix .#4. Upon substitution in the D = 3 sigma model lagrangian (4.3.4) we
obtain the effective lagrangian for the D = 4 scalar fields z' and the warping factor
U given by Egs. (6.4.1)—(6.4.3).

The important thing is that, thanks to various identities of special geometry, the
effective geodesic potential admits the following alternative representation:

Ven(z,2, 2 = -3 (1ZP+ 1) =-1 (2Z+ 2ig7" Z;.) (643)

5 As we are going to see later, each orbit of Lax operators always contains representatives such that
the Taub-NUT charge is zero. Alternatively from a dynamical system point of view the Taub-NUT
charge can be annihilated by setting a constraint which is consistent with the hamiltonian and which
reduces the dimension of the system by one unit. The problem of black hole physics is therefore
equivalent to the sigma model based on an appropriate codimension one hypersurface in the coset
manifold G/H*.
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where the symbol Z denotes the complex scalar field valued central charge of the
supersymmetry algebra:

Z=VIC2 = Msp* — L"q4 (6.4.4)
and Z; denote its covariant derivatives:

Z;
Zj' =

V;Z=UC2 ; 7/ =¢"7z

Equation (6.4.3) is a result in special geometry whose proof can be found in several
articles and reviews of the late nineties.°

6.4.1 Critical Points of the Geodesic Potential and Attractors

The structure of the geodesic potential illustrated above allows for a detailed discus-
sion of its critical points, which are relevant for the asymptotic behavior of the scalar
fields.

By definition, critical points correspond to those values of z' for which the first
derivative of the potential vanishes: 9; Vgy = 0. Utilizing the fundamental identities
of special geometry and Eq. (6.4.3), the vanishing derivative condition of the potential
can be reformulated as follows:

0=2Z2Z7+iCu 2z Z* (6.4.6)
From this equation it follows that there are three possible types of critical points:

Z;i=0;Z#0; o BPS attractor
Z; #0; Z=0;iCij gj gk = 0 _non BPS attractor I 6.4.7)
Zi#0;Z#0;iCjx Z/) Z¥ = —2Z; Z non BPS attractor I

It should be noted that in the case of one-dimensional special geometries, like the
S3-model, only BPS attractors and non BPS attractors of type II are possible. Indeed
non BPS attractors of type I are forbidden unless C,, vanishes identically.

In order to characterize the various type of attractors, the authors of [20] and
[34] introduced a certain number of special geometry invariants that obey different
and characterizing relations at attractor points of different type. They are defined as
follows. Let us introduce the symbols:

Ny = Cj2' 2/ 25 ; Ny = Cpojo 2" 27" ZF (6.4.8)

6See for instance the lecture notes [11].
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and let us set:

i1 = zzZ vih= ZiZp gl
¢ (ZNs + ZNs)  1ia=ig (ZNs — ZNs) (6.4.9)
is = Cijx Cgan Z) ZF 2™ 77 g'* ;

mn

iy =

An important identity satisfied by the above invariants, that depend both on the scalar
fields z* and the charges (p, q), is the following one:

J4(p.q) = LGy —ix)* +iy— }is (6.4.10)

where J4(p, q) is the quartic symplectic invariant that depends only on the charges
(see Eq.(6.3.22)). This means that in the above combination the dependence on the
fields z' cancels identically.

In the case of the one-dimensional S model there are two additional identities
[34] that read as follows:

. 3
i3 = Jis; i34 i2=4i (%) . for the $? model (6.4.11)

In [20] it was proposed that the three types of critical points can be characterized by
the following relations among the above invariants holding at the attractor point:

At BPS Attractor Points

we have:
il#o 5 i2:i3:i4:i5:0 5 (6412)

At Non BPS Attractor Points of Type I

we have:
ih 20 ; i1=i3=i4=i5=0 (6.4.13)

At Non BPS Attractor Points of Type II

we have:
iy =30 5 i3=0 ; iy=-2i7 ; is = 12i} (6.4.14)

These relations follow from the definition of the critical point with the use of standard
special geometry manipulations. Their values resides in that they inform us in a
simple way about the nature of the black-hole solution we are considering. Indeed
they provide a partial classification of solution orbits since, given a configuration of
charges (p, q), whose structure depends, as we are going to see, from the choice
of an H* orbit for the Lax operator, we can calculate the possible critical points of
the corresponding geodesic potential and find out to which type they belong. We
might expect several different critical points for each (p, g)-choice, yet it turns out
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that there is only one and it always belongs to the same type for all elements of the
same H* orbit. This fact, whose a priori proof has still to be given, implies that a
classification of attractor points is also a partial classification of Lax operator orbits.
We shall come back on this crucial issue later on. Yet it is appropriate to emphasize
the word partial classification. Although the type of fixed point is the same for each
element of the same orbit we should by no means assume that fixed point types select
orbits. Indeed there are Lax operators belonging to different H* orbits that have the
same electromagnetic charges and therefore define the same fixed point. Furthermore
the fact that a Lax operator defines certain charges and hence an associated fixed point
does not imply that the solution generated by such Lax will necessarily reach that
fixed point. The solution can break up at a finite value of 7, stopping before the fixed
point is attained. Hence the classification of fixed points is not a classification of H*
orbits although the two classifications have partial relations to each other.

6.4.2 Fixed Scalars at BPS Attractor Points

In the case of BPS attractors we can find the explicit expression in terms of the
(p,q)-charges for the scalar field fixed values at the critical point.
By means of standard special geometry manipulations the BPS critical point
equation
ViZ=0; Vu.Z=0 (6.4.15)

can be rewritten in the following celebrated form which, in the late nineties, appeared
in numerous research and review papers (see for instance [11]):

P =1(Zpin LA, — Zgin LY) (6.4.16)

ax =i (Zpu MY = Zgi ME™) (6.4.17)

Using the explicit form of the symplectic section £2(z) given in Eq. (6.3.13), we can
easily solve Eq. (6.4.17) for the S* model and obtain the following fixed scalars:

_ P11 +3p2g2 +16V/Ta(p. q)
2(a7 +3pig2)

Zfixed =

(6.4.18)

where J4(p, q) is the quartic invariant defined in Eq. (6.3.22). In fact, one can give
the BPS solution in a closed form by replacing in the expression (6.4.18) z f;r.q the
quantized charges with harmonic functions

ga— Hyi=ha—2qat; p* > HA=h" —V2p%t  (64.19)

The same substitution allows to describe the radial evolution of the warp factor:
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V3I4(HA, Hy) (6.4.20)

eV =

N =

The constants 24, /4 in the harmonic functions are subject to two conditions: one
originates from the requirement of asymptotic flatness (lim,_,o- ¥ = 1), while the
other reads hg 4 — h, p”* = 0. The remaining two free parameters are fixed by the
choice of the value of z at radial infinity.

By replacing the fixed values (6.4.18) into the expression (6.4.3) for the potential
we find:

Veu (Zfixed’ zfixed ) °@) = vV 34([7, f]) (6421)

The above result implies that the horizon area in the case of an extremal BPS black-
hole is proportional to the square root of J4(p, ¢) and, as such, depends only on the
charges’ The argument goes as follows.

Consider the behavior of the warp factor exp[—U] in the vicinity of the horizon,
when T — — oo. For regular black-holes the near horizon metric must factorize as
follows:

~ —
near hor. 2 12 H

d 2
ds? dr® + r? (i> + 12 (d0? sin?0de?)  (6.4.22)
ry T

2 .
AdS; metric 5% metric

where rg is the Schwarzschild radius defining the horizon. This implies that the
asymptotic behavior of the warp factor, for t — — oo is the following one:

exp[-U] ~ ri t° (6.4.23)

In the same limit the scalar fields go to their fixed values and their derivatives become
essentially zero. Hence near the horizon we have:

2 4 dz' dz’’
U) ~ — ; P — —— R
( ) 72 8ij dt drt
_ 1 _
eV Vpr(z,72, 2) ~ o V (2fixeds Zfixed » 2) (6.4.24)
H

Since for extremal black-holes the sum of the above three terms vanishes (see
Eq. (6.2.3)), we conclude that:

ri = — Ven (2fived Zyived s 2) (6.4.25)
which yields
Areay = 4mwry = 47 JI4(p. q) (6.4.26)

7 Clarification for mathematicians: for a short but comprehensive introduction to the theory of Black
Holes we refer the interested reader to Chaps. 2 and 3 of Volume II of [35] by the present author.
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6.5 A Counter Example: The Extremal Kerr Metric

In this section, in order to better clarify the notion of extremality provided by con-
ditions (6.2.8)—(6.2.9) we consider the physically relevant counter-example of the
extremal Kerr metric. Such static solution of Einstein equations is certainly encoded
in the o-model approach yet it is not extremal in the sense of Egs. (6.2.8)—(6.2.9) and
therefore it is not related to any nilpotent orbit. Indeed the extremal Kerr metric is a
solution of pure gravity and as such its o-model representation lies in the Euclidean

submanifold:
SL(2,R)

0Q) (6.5.1)

for which the coset tangent space K contains no nilpotent elements.

Instead the so named BPS Kerr—Newman metric, which is not extremal in the
sense of General Relativity and actually displays a naked singularity, is extremal in
the sense of Egs. (6.2.8)—(6.2.9) and can be retrieved in one of the nilpotent orbits of
the S*-model. We will show that explicitly in Sect.6.11.4.

As a preparation to such discussions let us recall the general form of the Kerr—
Newman metric which we represent in polar coordinates as it follows:

3

dsgy =-V'@VO+> ViV (6.5.2)
i=1
0 __ 3(r) _ .2
VY= v (dt — asin® 6 de) (6.5.3)
yi = 29 (6.5.4)
50 5.

V2=0(06)de (6.5.5)

3 sin(9) 2 2 _
= —o(r, % ((r +« ) do adt) (6.5.6)
§(r) =g +r2+a?—2mr (6.5.7)

o(r,0) = /r? + a?cos?(0) (6.5.8)

Parameters of the Kerr—Newman solution are the mass m, the electric charge g and
the angular momentum J = m « of the Black Hole. The two particular cases we
shall consider in this paper correspond to:

(a) The extremal Kerr solution: ¢ = 0 and m = «.
(b) The BPS Kerr—Newman solution ¢ = m, arbitrary «.

Let us then focus now on the extremal Kerr solution. With the choice m = «, g = 0,
the metric (6.5.2) can be rewritten in the following form:

dsti = — explU] (dr + A¥¥)? 4+ exp[—Uly;dy ®dy!  (6.5.9)
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where y' = {r, 0, ¢} are the polar coordinates, the three dimensional metric y;; is
the following one:

2r2 —a?+a? cos(26) 0 0
2r2
vii = |0 r2— 2 4 1a2c05(20) 0 (6.5.10)
0 0 r2sin’(0)

the warp factor is:

r? — o sin’(0)
U =1 6.5.11
08 |:(r +a)? + o 0052(0)i| ( )
and the Kaluza Klein vector has the following appearance:
2 )
AIKK] _ 20°(r 4+ ) sin“(0) ¢ 6.5.12)

r2 — a2 sin(0)

In presence of the metric y;; the duality relation between the Kaluza Klein vector
field and the o-model scalar field a reads as follows:

FIEE = 9, AN = exp[—2U1/dety & v 9y a (6.5.13)
and it is solved by:

202 0
a=— o” cos(9) (6.5.14)
2r2 + dar + 3a? + o2 cos(26)

In this way, by means of inverse engineering we have showed how the extremal Kerr
metric is retrieved in the o-model approach. The crucial point is that the metric y;;
is not flat and hence such a configuration of the U, a fields does not correspond to an
extremal solution of the o-model field equations. Indeed calculating the curvature
two-form of the three-dimensional metric (6.5.10) we find

4 (2P o —a? cos(20))

Dt e e’ (6.5.15)
(2r2 —a?+a? cos(29))
4 2
R = ’ N (6.5.16)
(2r2 —a? 4 a2 cos(29))
4 2
RE = * N (6.5.17)

(2r2 — a? + a? cos(26))
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where
N TP 6.5.18)
e = h
V2

) a2 1
e“=do/r?— 5 + 50(2 cos(20) (6.5.19)

e’ =d¢rsin(0) (6.5.20)

is the dreibein corresponding to (6.5.10).

Hopefully this explicit calculation should have convinced the reader that the
extremal Kerr solution and, by the same token, also the extremal Kerr—-Newman
solution are not extremal in the o-model sense and are retrieved in regular rather
than in nilpotent orbits® of U/H*.

6.6 The Standard Triple Classification of Nilpotent Orbits

The construction and classification of nilpotent orbits in semi-simple Lie algebras is
a relatively new field of mathematics which has already generated a vast literature.
Notwithstanding this, a well established set of results ready to use by physicists is
not yet available mainly because existing classifications are concerned with orbits
with respect to the full complex group G¢ or of one of its real forms Gy [36],
which is not exactly what the problem of supergravity black-holes requires (i.e. the
classification of the nilpotent H*-orbits in K). Furthermore the complexity of the
existing mathematical papers and books is rather formidable and their reading not
too easy. Yet the main mathematical idea underlying all classification schemes is very
simple and intuitive and can be rephrased in a language very familiar to physicists,
namely that of angular momentum. Such rephrasing allows for what we named a
practitioner’s approach to the method of triples. In other words after decoding this
method in terms of angular momentum we can derive case by case the needed results
by using a relatively elementary algorithm supplemented with some hints borrowed
from the mathematical literature.

8 Clarification for mathematicians: Extremal in the GR sense means something different than
extremal in the o-model sense. As we mentioned above the extremal Kerr solution, according
to General Relativity is the solution where m = «. In the o-model sense any extremal solution
corresponds to a light-like geodesic of the of the U/H* manifold. Light-like geodesics, on their turn
are associated with H* orbits of nilpotent U Lie algebra elements. As shown above the extremal
Kerr solution is obtained from a U/H* geodesic that is not light-like so it is not extremal in the
o-model sense.
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6.6.1 Presentation of the Method

In this section we shall denote the isometry group Up_3 by Ggr to emphasize that it
is a real form of some complex semisimple Lie group.
We will present the practitioner’s argument in the form of an ordered list.

1. The basic theorem proved by mathematicians (the Jacobson—-Morozov theorem
[36]) is that any nilpotent element of a Lie algebra X € g can be regarded as
belonging (X = x) to a triple of elements {x, y, h} that satisfy the standard
commutation relations of the s[(2) Lie algebra, namely:

[h,x]=x ; [h,yl=—y ; [x,yl =2h 6.6.1)

Hence the classification of nilpotent orbits is just the classification of embeddings
of an 5[(2) Lie algebra in the ambient one, modulo conjugation by the full group
Gr or by one of its subgroups. In our case the relevant subgroup is H* C Gg.

2. The second relevant point in our decoding is that embeddings of subalgebras
h C g are characterized by the branching law of any representation of g into
irreducible representations of f. Clearly two embeddings might be conjugate
only if their branching laws are identical. Embeddings with different branching
laws necessarily belong to different orbits. In the case of the s[(2) ~ so(1, 2) Lie
algebra, irreducible representations are uniquely identified by their spin j, so that
the branching law is expressed by listing the angular momenta {ji, js, ... j,} of
the irreducible blocks into which any representation of the original algebra, for
instance the fundamental, decomposes with respect to the embedded subalgebra.
The dimensions of each irreducible module is 2 j + 1 so that an a priori constraint
on the labels {j, j2, ... j,} characterizing an orbit is the summation rule:

Z(Zji + 1) = N = dimension of the fundamental representation (6.6.2)
i=1

Taking into account that j; are integer or half integer numbers, the sum rule (6.6.2)
is actually a partition of N into integers and this explains why mathematicians
classify nilpotent orbits starting from partitions of N and use Young tableaux in
the process.

3. The next observation is that the central element 4 of any triple is by definition
a diagonalizable (semisimple) non-compact element of the Lie algebra and as
such it can always be rotated into the Cartan subalgebra by means of a Gy
transformation. In the case of interest to us, the Cartan subalgebra % can be
chosen, as we will do, inside the subalgebra H* and consequently we can argue
that for any standard triple {x, y, /} the central element is inside that subalgebra:

h e H* (6.6.3)
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Since we shall work with real representations of Gg, we choose a basis in which &
is a symmetric matrix. Indeed there are two possibilities: either x € H* orx € K.
In the first case we have y € H*, while in the second we have y € K. This follows
from matrix transposition. Given x, the element y is just its transposed y = x7
and transposition maps H* into H* and K into K. Since it is already in H*, in
order to rotate the central element 4 into the Cartan subalgebra it suffices an H*
transformation. Therefore to classify H* orbits of nilpotent K elements we can
start by considering central elements / belonging to the Cartan subalgebra ¢
chosen inside H*.

. The central element 4 of the standard triple, chosen inside the Cartan subalgebra,

is identified by its eigenvalues and by their ordering with respect to a standard
basis. Since £ is the third component of the angular momentum, i.e. the operator
J3, its eigenvalues in a representation of spin j are —j, —j + 1,...,j — 1, j.
Hence if we choose a branching law {ji, ja, ... j,}, we also decide the eigen-
values of & and consequently its components along a standard basis of simple
roots. The only indeterminacy which remains to be resolved is the order of the
available eigenvalues.

. The question which remains to be answered is how much we can order the

eigenvalues of Cartan elements by means of H* group rotations. The answer is
given in terms of the generalized Weyl group ¢ and the Weyl group #'.

. The generalized Weyl group is the discrete group generated by all matrices of

the form:
O, = exp [Qa (E“ - Ef"‘)] (6.6.4)

where E** are the step operators associated with the roots -« and the angle 6,
is chosen in such a way that it realizes the «-reflection on a Cartan subalgebra
element 8 - 77 associated with a vector §:

OuB-H0;" =0u(B)- H

o(B)=B-2 @ p o (6.6.5)

(a, a)

The generalized Weyl group has the property that for each of its elements y €
4w and for each element 1 € % of the Cartan subalgebra %', we have:

yhy ' =h' €€ (6.6.6)

. The generalized Weyl group contains a normal subgroup 7% C 4% , named

the Weyl stability group and defined by the property that for each element & €
JCW and for each Cartan subalgebra element i € % we have:

yhy ' =nh (6.6.7)
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. The proper Weyl group is defined as the quotient of the generalized Weyl group

with respect to the Weyl stability subgroup:

g
W = A (6.6.8)

. The above definition of the Weyl group shows that we can distinguish among

its elements those that can be realized by H* transformations, namely those
whose corresponding generalized Weyl group elements satisfy the condition
0"nO = n and those that are outside of H*.

If we were to consider nilpotent orbits with respect to the whole group G we
would just have to mod out all Weyl transformations. In the case of H* orbits
this is too much since the entire Weyl group is not contained in H* as we just
said. The rotations that have to be modded out are those of the intersection of
the generalized Weyl group ¥ #  with H*, namely:

GW y = gWﬂH* (6.6.9)

It should be noted that the Weyl stability subgroup is always contained in H* so
that, by definition, it is also a subgroup of 4% :

FEW C GWn (6.6.10)

which happens to be normal. Hence we can define the ratio

Gy
Vn= 7 (6.6.11)

which is a subgroup of the Weyl group.

There is a simple method to find directly #%. The Weyl group is the symmetry
group of the root system A. When we choose the Cartan subalgebra inside H*
the root system splits into two disjoint subsets:

A=Ay EBAK (6.6.12)

respectively containing the roots represented in H* and those represented in K.
Clearly the looked for subgroup #y C # is composed by those Weyl elements
which do not mix Ay with Ak and thus respect the splitting (6.6.12). Accord-
ing to this viewpoint, given a Cartan element 4 corresponding to a partition
{j1, j2, - - - Ju}, we consider its Weyl orbit and we split this Weyl orbit into m
suborbits corresponding to the m cosets:

(6.6.13)
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Each Weyl suborbit corresponds to an H*-orbit of the neutral elements % in the
standard triples. We just have to separate those triples whose x and y elements
lie in K from those whose x and y elements lie in H*. By construction if the x
and y elements of one triple lie in K, the same is true for all the other triples
in the same #y orbit. Weyl transformations outside #% mix instead K-triples
with H* ones.

12. The construction described in the above points fixes completely the choice of
the central element /4 in a standard triple providing a standard representative of
an H* orbit. The work would be finished if the choice of / uniquely fixed also x
and y = x7 that are our main target. This is not so. Given & one can impose the
commutation relations:

[h, x] =x (6.6.14)
[x.x"]=2h (6.6.15)

as a set of algebraic equations for x. Typically these equations admit more than
one solution.” The next task is that of arranging such solutions in orbits with
respect to the stability subgroup ., C H* of the central element. Typically such
a group is the product, direct or semidirect, of the discrete group 2%, which
stabilizes any Cartan Lie algebra element, with a continuous subgroup of H*
which stabilizes only the considered central element /. The presence of such a
continuous part of the stabilizer .}, manifests itself in the presence of continuous
parameters in the solution of the second equation (6.6.15) at fixed h.

13. When there are no continuous parameters in the solution of Eq.(6.6.15) what
we have to do is quite simple. We just need to verify which solutions are related
to which by means of J##  transformations and we immediately construct the
JCW -orbits. Each % orbit of x solutions corresponds to an independent H*
orbit of nilpotent operators.

14. When continuous parameters are left over in the solutions space, signaling the
existence of a continuous part in the .#}, stabilizer, the direct construction of .%,
orbits is more involved and time consuming. An alternative method, however, is
available to distribute the obtained solutions into distinct orbits which is based
on invariants. Let us define the non-compact operator:

Xe=i(x —x") (6.6.16)
and consider its adjoint action on the maximal compact subalgebra H C U

which, by construction, has the same dimension as H*. We name B-labels the
spectrum of eigenvalues of that adjoint matrix'%:

9Such solutions actually correspond to different Gr-orbits [36].

101n the literature, see [36], B-labels are defined as the value of the simple roots g of the complex-
ification H¢ of_ H* on the non-compact element X, viewed as a Cartan element of H¢ in the Weyl
chamber of (8'). We find it more practical to work with the equivalent characterization (6.6.17).
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15.

16.

B — label = Spectrum [adjy (X.)] (6.6.17)

Since the spectrum is an invariant property with respect to conjugation,
x-solutions that have different 5-labels belong to different H* orbits necessarily.
Actually they even belong to different orbits with respect to the full group U.
In fact there exists a one-to-one correspondence between nilpotent U orbits in
U and B-labels, which directly follows from the celebrated Kostant-Sekiguchi
theorem [36]. So we arrange the different solutions of Eq. (6.6.15) into orbits by
grouping them according to their 8-labels.

The set of possible B-labels at fixed choice of the partition {j;, j2, ... j,} is
predetermined since it corresponds to the set of y-labels [37]. Let us define
these latter. Given the central element 4 of the triple, we consider its adjoint
action on the subalgebra H* and we set:

y — label = Spectrum [adjg. (h)] (6.6.18)

Obviously all /#-operators in the same #}-orbit have the same y -label. Hence
the set of possible y-labels corresponding to the same partition {j;, jo, ... ju}
contains at most as many elements as the order of lateral classes % The actual
number can be less when some %} -orbits of -elements coincide.'! Given the
set of y-labels pertaining to one {j, ja, ... j,}-partition the set of possible -
labels pertaining to the same partition is the same. We know a priori that the
solutions to Eq. (6.6.15) will distribute in groups corresponding to the available
B-labels. Typically all available B-labels will be populated, yet for some partition
{Jj1, j2, - - . jn} and for some chosen y -label one or more B-labels might be empty.
The above discussion shows that by naming «-label the partition {j;, jo, ... j.}
(branching rule of the fundamental representation of U with respect to the embed-

ded s[(2)) the orbits can be classified and named with a triple of indices:
ﬁ;‘ﬁ (6.6.19)

the set of yB-labels available for each «-label being determined by means of the
action of the Weyl group as we have thoroughly explained.

What we have described in the above list is a concrete algorithm to single out standard
triple representatives of nilpotent H* orbits of K operators. In the next section we
apply it to the example of the g, 2y model in order to show how it works.

1Note that the action of certain Weyl group elements g € # on specific A.s can be the identity:
g - h = h. When such stabilizing group elements g are inside # the number of different 4.s inside
each lateral classes is accordingly reduced. If there are stabilizing elements g that are not inside
#y than two or more #y orbits coincide.
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6.7 The Nilpotent Orbits of the g(2,2) Model

In the present section we consider the classification of nilpotent H*-orbits in g2 2)
by using the algorithm described in the previous section.

6.7.1 The Weyl and the Generalized Weyl Groups for g2,2)

According to our general discussion the most important tools for the orbit classifi-
cation are the generalized Weyl groups and its subgroups.

We begin with the