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Preface

This book forms a twin pair with another book [90] by the same author, which is of
a different, thoroughly mathematical character, while the character of the present
volume is historically and philosophically oriented. These two pieces of work
constitute a twin pair since, notwithstanding their different profiles and contents,
they arise from the same vision and pursue complementary goals.

The vision, extensively discussed in the first chapter of the present book and
throughout several other chapters, consists of the following main conceptual
assessments:

1. Our current understanding of the Fundamental Laws of Nature is based on a
coherent, yet provisional, set of five meta-theoretical principles, listed by me as
A)-E) and dubbed the current episteme. This episteme is of genuine geometrical
nature and can be viewed as the current evolutionary state of Einstein’s ideas
concerning the geometrization of physics.

2. Geometry and Symmetry are inextricably entangled, and their current conception
is the result of a long process of abstraction, traced back in the present work,
which was historically determined and makes sense only within the Analytic
System of Thought of Western Civilization, started by the ancient Greeks.

3. The evolution of Geometry and Symmetry Theory in the last 40 years has
been deeply and very much constructively influenced by Supersymmetry/
Supergravity and the allied constructions of Strings and Branes. My reader is
not supposed to know what supersymmetric field theories and supergravity are,
since this book has the ambition to be written for a much more general public
than that formed by theoretical physicists specialized in the super-world. It
suffices to be alerted that, since the seventies of the twentieth century, an entire
new theoretical world has opened up by the introduction of a new symmetry
principle, indeed dubbed supersymmetry, that can be enforced on field theories,
in particular on Einstein Gravity, at the price of adding to every physical field a
new copy of the same, named its superpartner with a spin shifted by 1

2. This
entrains that the superpartners of bosons are fermions and vice versa. In a
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nutshell, supersymmetry is the invariance of such new type of field theories
under the exchange of bosons with fermions.

4. Further advances in Theoretical Physics cannot be based simply on the Galilean
Method of Interrogating first Nature and then formulating a testable theory that
explains the observed phenomena. As stated later on in the present work, one
ought to Interrogate also Human Thought, by this meaning frontier-line math-
ematics concerned with geometry and symmetry in order to find there the
threads of so far unobserved correspondences, reinterpretations and renewed
conceptions.

The complementary pursued goals are as follows:

(a) In the case of the present book

• the historical and conceptual analysis of the process mentioned in point (2).
of the above list which led to the current episteme.

• the philosophical argumentation, on historical basis, of the assessment made
in point (4). of the above list.

(b) In the case of book [90], the mathematical full-fledged illustration of the main
developments in geometry and symmetry theory that occurred under the fer-
tilizing influence of Supersymmetry/Supergravity and that would be incon-
ceivable without the latter.

Repeating in a slightly different from the arguments advocated particularly in
Chapter One of the present work, I think that what is currently practiced in the
whole world as Fundamental Physics or Mathematics is based on the Greek view
of the episteme and it is meaningful only inside the Analytic System of Thought
founded by the Ancient Greeks. To recuperate a full-conscience of this fact is
mandatory in order to continue on the difficult but exciting path we are confronted
with.

The twin pair of which this book is a member is viewed by the author as his
limited, humble contribution to the promotion of a new season of more scholarly
teaching of physical-mathematics.

TO MY READER

Ideally, this book has been written for an audience wider than that composed by
mathematicians and theoretical physicists. My ambitious aim was that of attracting
the attention of all finely educated persons with an interest in the history of Ideas,
mathematical conceptions being an integral part of the general episteme. Yet,
mathematics is also technical and it is very difficult to single out the main ideas and
tell the story of their evolution without mentioning some fundamental definitions
and some formulae. Coping with this essential difficulty, well known to everyone
who tries to explain the theories of the world to wider audiences, I have tried my
best, where formulae and definitions were unavoidable, to convey the underlying
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concepts by means of wordly explanations and with the help of numerous ad hoc
created images. I have tried to intertwine storytelling and philosophic argumenta-
tions with some essential technical material introduced according to the above-
mentioned method, hoping to keep the attention of all my dear readers alive
throughout the chapters and up to my epilogue that expresses the results of long
self-debating meditations.

Spes, ultima dea.

Turin, Italy Pietro Giuseppe Fré
June 2018
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Chapter 1
The Episteme

Ce sont tous ces phénomènes de rapport entre les sciences ou
entre les différents discours dans les divers secteurs scientifiques
qui constituent ce que j’appelle épistémè d’une epoque.

Michel Foucault

The present book is a conceptual history, namely it aims at tracing back the
development of some fundamental ideas. Those addressed here are the ideas of
Space and of Symmetry that lay the foundations of our present understanding of the
Physical World and of its conceptualization in Geometry. Such a tale belongs to
the history of Mathematics and Physics but also to the General History of Thought,
namely of Philosophy.

The motivations to write down this conceptual outline originate from a set of
considerations on the present state of Culture, Science and Education on which I
have long pondered, coming to much worried conclusions.

Let me expose these thoughts.
I begin by noting a matter of fact. In the teaching of literature, philosophy and

other disciplines pertaining to the sphere of the so named humanities, the histori-
cal perspective is, worldwide, an essential part of the game. While introducing the
reading of literary masterpieces, no one ever omits to locate historically and geo-
graphically the author, to illustrate the cultural environment in which he operated and
to connect his work to the long–time political and social trends that shaped the world
around him. The same is true for the teaching of the Arts. In philosophy, economics
and political sciences it is absolutely standard to trace the historical development of
the main ideas and conceptions. On the contrary the contemporary teaching of math-
ematics and physics is distinctively characterized by an almost complete absence
of any historical perspective. Students learn theorems named after someone with-
out ever learning who that someone was. Worse than that, the architecture of the
mathematical or physical theories is typically presented in a self-contained way with
no tracing of the development of ideas and conceptions leading to them.

The reasons for this state of affairs are many fold. On one side there is the obvious
and legitimate need to compress the scientific achievements of the past into modern,
logical and economical notations, in order to transmit them in a reasonable time and,
most important of all, in order to integrate them into the current structure of Science.

© Springer Nature Switzerland AG 2018
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2 1 The Episteme

Secondly, behind this worldwide practice of teaching, there is the tacitly accepted
positivistic attitude, shared by most scientists, by public opinion makers, by most
politicians and by the man in the street, that Science is continuously progressing, that
it mainly consists of the discovery of truths which, once uncovered, will last for ever,
being great if they are beneficial to humanity. Such views are particularly strong with
regard to mathematics where the common message conveyed to the new generations
is that a theorem is just a theorem, namely an imperishable truth. No question about
that, yet a theorem has hypotheses that are related to definite problems, historically
determinedwithin a conceptual framework, also pertaining to theHistory of Thought.
Furthermore the very question to which a theorem gives an answer has no absolute
meaning; it is meaningful only inside the conceptual framework mentioned above,
where the abstract entities dealt with in the considered propositions are defined.

Last but not least, the causes for the current trend in the tuition of fundamental
sciences lies in the generalized impoverishment of classical education of the entire
society in general and of the scientific community in particular. Studying the biogra-
phies of the great mathematicians of the past, also of the recent past, one discovers
that almost all of them had received a solid classical education, had learned effi-
ciently Latin and Greek and sometimes, like Cayley, Hamilton and André Weil,
were endowed with special talents for modern and ancient languages. Now we are
facing a near future, in at most a couple of generations, when most educated people
and, in particular, scientists will completely ignore classical languages, will have no
familiarity with the history of philosophy and even more seriously a very superfi-
cial knowledge of the history of science. This development, which projects ominous
shadows on the future of Modern European Civilization has received a fatally strong
acceleration through the so named Bologna agreements, their consequences being
the bureaucratization of European University Studies and the reduction of structured
knowledge to pills of information to be quickly swallowed and readily forgotten. For
a European Federalist like myself, who always dreamt of the United States of Europe
as of the Land of Utopia, it is a bitter disappointment to see that the downgrading of
European Culture has been precisely promoted and it is being successfully realized
just within the framework of European Union Plans aimed at the cultural integration
of the European Society.

For many years I pondered on these evolutions in Education and Culture and a
great influence has been exerted on my ideas by the brilliant analysis of Hellenistic
Science contained in the remarkable essay La Rivoluzione Dimenticata (The Forgot-
ten Revolution) by Lucio Russo.1 The author, professor of Mathematical Physics in
the Second University of Rome, but also a refined classical philologist, after giving
a vivid and exhaustive fresco of the advances of natural sciences and technology in
the third and second century before Christ, mainly centered in Alexandria and in the
other hellenistic capitals, concludes that Modern Science was born at least twice,
which means that it died at least once. The causes of the first death of Scientific
Thought are carefully analyzed by Russo who tends to blame it on the Romans.
Whether our Latin ancestors should carry the entire responsibility for this epochal

1Lucio Russo, La Rivoluzione Dimenticata, Feltrinelli 1996.



1 The Episteme 3

disaster, which prepared the stage for the long intermission of the Dark Ages, is
disputable, yet Russo’s analysis of the mechanisms leading to the death of Science
is magistral and, in my opinion, undisputable. At the very root of the process we
find the emphasis on applied science and technology based on existing theories, at
the expenses of the development of new ideas. The second stage of the process is
the almost inevitable consequence of the first, namely a shift of gear in the Educa-
tional System: specialized programmes aimed at the creation of specialists substitute
formative schools aimed at the education of free thinkers. Tightly untangled with the
second is the third stage of the process: the writing of textbooks tuned up to the task
of quick specialization which substitute the original works of the scientists and any
ponderous conceptual synthesis containing discussions and elaborations. The fourth
and final stage of this destructing path occurs in a couple of generations when the
overwhelming majority of educated people are the product of the system established
in the first three steps. Then almost no one exists who is still able to read and properly
understand the original sources of living science and all what remains are the pills
of all–purpose information written by people who are no longer scientists, just only
specialists. At this stage we have the Death Certification of Scientific Thought.

Russo illustrates this point quite extensively and provides a definitely convincing
evidence by showing that, with few important exceptions, all what we know about
Ancient Science is through indirect reports contained in compilations that were writ-
ten by non-scientist erudites, hardly knowing the topic they talked about.

To this I can add a personal remark. The absence of historical perspectives in
the post-hellenistic scientific teaching, which was clearly an allied aspect of the
negative path eventually leading to the final death of Science, is under our eyes in
the clearest possible way. While we know with good precision the birth and death
dates, together with extensive details of their lives, for Plato, Aristotle, Aeschylus,
Sophocles, Euripides, Virgil and many other Greek and Latin writers, information
about the life of Euclid and of many other ancient scientists is very scan. In some
cases, as in that of Diophantus, the father of algebra, our ignorance reaches its peak:
up to the end of the XIXth century, his life-time was determined only within a spread
of four hundred years! A fortuitous discovery of a Byzantine document in Spain
allowed to reduce the uncertainty. After that discovery we have some ground to think
that Diophantus lived in the third century after Christ.

Another source of reflections provided by the reading of Russo’s book is encoded
in the quite circumstantial remarks made by the author on the relation between the
practice of democracy, diffuse among the Ancient Greeks, and the birth of Mathe-
matics as a discipline made out of propositions and proofs.

The present trends are essentially based on the already stigmatized neo-
positivistic attitude towards Science that implicitly assumes scientific theories to
be philosophically neutral statements, independent from any System of Thought,
which are either false or provisionally true. A quite orthogonal view point to which
I entirely subscribe is expressed, for instance, in the interesting article quoted below.2

2Culture and Systems of Thought: Holistic Versus Analytic Cognition byR.E.Nisbett et al. published
in Psychological Review 2001, Vol. 108, No. 2. 291–310.
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In this paper the System of Thought of the Ancient Greeks is compared with that of
the contemporary Ancient Chinese, the first dubbed Analytic, the second Holistic.
The authors discuss howWesternMathematics and Science are natural consequences
of the Greek Analytic System while the Chinese Holistic System was apt to produce
many advances in Technology, yet not the type of theoretical inductive and deductive
science of the West. The authors also show that the deep differences in the way of
thinking of contemporary individuals whose cultural origin is either in theWest or in
the Far East are still marked by this ancient dichotomy. Furthermore they trace back
the difference between the two systems in social organization and locate the origin
of the Greek Analytic System in the practice of Democracy of the Ancient Greeks
and in the Individualism characterizing their attitude toward life.

Having sufficiently explained the ideas and the vision by which my story telling
is inspired let me turn to describe its focus and my pursued goals.

As it follows from the above argumentation, it is my deep belief that mathemat-
ical and physical knowledge is also historical knowledge as much as literary and
philosophical knowledge is. The mathematical ideas develop through a historical
process which is strongly rooted in the general development of Culture and Society,
not too differently from what happens with humanities. It is the goal of this book to
enlighten the historical process which led to the contemporary visions about Space
and Symmetry that are utilized by modern theoretical physics and in particular by
such abstract and advanced descriptions of the Physical World as those provided by
Supergravity and its High Energy precursor, i.e. Superstring Theory.

Let me once again resort to Ancient Greece and advocate the concept of epis-
teme (see Fig. 1.1) whose status with respect to the Physical World I would like to
summarize.

I start by noticing that, as a theoretical physicist, I considermyself very fortunate to
havewitnessed, inmyown life-time, the following series of experimental discoveries:

1. The detection of the W ± and Z particles, definitely confirming that fundamental
non gravitational interactions can be described by gauge theories.

2. The detection of the Brout Englert Higgs boson, definitely confirming that gauge
theories can be spontaneously broken by scalar fields falling into non symmetric
extrema of some potential.

3. The direct detection of gravitational waves emitted in the coalescence of two
black-holes which, not only confirms the general structure of General Relativity,
but directly tests the dynamics encoded in Einstein Equations, namely in a set of
purely geometrical differential equations.

Trying to summarize the implications for the episteme of the last thirty–three years
of experimental physics culminating in the above three discoveries we can say the
following.

Leaving apart the issue of quantization, that we can generically identify with the
functional path integral over classical configurations, we have, within our Western
Analytic System of Thought, a rather simple and universal scheme of interpretation
of the Fundamental Interactions and of the Fundamental Constituents ofMatter based
on the following few principles:
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Fig. 1.1 The personification
of the Episteme in Celsus
library in Ephesus

(A) The categorical reference frame is provided by Field Theory defined by
some actionA = ∫

M L (Φ, ∂Φ)whereL (Φ, ∂Φ) denotes someLagrangian
depending on a set of fields Φ(x).

(B) All fundamental interactions are described by connections A on principle fibre-
bundles P(G,M ) where G is a Lie group and the base manifold M is some
space-time in d = 4 or in higher dimensions.

(C) All the fieldsΦ describing fundamental constituents are sections of vector bun-
dles B(G, V,M ), associated with the principal one P(G,M ) and determined
by the choice of suitable linear representations D(G) : V → V of the structural
group G.

(D) The spin zero particles, described by scalar fields φ I have the additional feature
of admitting non linear interactions encoded in a scalar potential V (φ) for
whose choice general principles, supported by experimental confirmation, have
not yet been determined.

(E) Gravitational interactions are special among the others and universal since they
deal with the tangent bundle TM → M to space-time. The relevant connection
is in this case the Levi–Civita connection (or some of its generalization with
torsion) which is determined by a metric g on M .
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In enumerating the principles (A)–(E) I have purposely used the mathematical
language of fibre-bundles and emphasized the concepts of Lie Group and of connec-
tion, in order to advocate my main argument, which is the following. The concep-
tual basis of Modern Fundamental Physics, including Einstein General Relativity, is
deeply rooted in the evolution of the mathematical conception of Symmetry and in
its relation with the mathematical conception of Geometry. The frequently asserted
statements that modern physics has geometrized our understanding of the world have
no real meaning outside the mathematical framework alluded to in the enumeration
of principles (A)–(E).

As I am going to outline later on, the mathematical theory of fibre-bundles, of
connections and of characteristic classes was essentially ready and already brought
almost to perfection in the middle of the 1950s, yet it took at least another forty years
before that language and those conceptions were completely assimilated into the
fabrics of theoretical physics andwere recognized to be not just auxiliary instruments
rather a relevant part of the very essence of the physical episteme.

A quick look at the list of principles (A)–(E) immediately reveals that, notwith-
standing their simplicity and unifying power, they can be only provisional. There
are still too many ad hoc choices which strongly demand some deeper unifying
principle able to predict them from above. Most prominent among these choices are
those of the structural group G, of the representations D(G) and of the potential
V (φ), the latter choice including also, in some extended sense, the determination of
quark and lepton masses. In the physical literature of the last forty years, what I have
described in the above way is referred to as the problem of grand-unification or of
super-unification.

In the same forty years an enormously extended set of developments have taken
place in the quest for unification, starting from the new idea of Supersymmetry
which, as the word reveals, is an extension of the notion of Symmetry, meaning
by that Lie Algebras. The reason why Supersymmetry, which leads to the fields
of Supergravity, Superstrings and Brane-Physics entrains so many structural and
ramified implications is because it tackles with one of the most fundamental and, in
my opinion, not yet fully penetrated, principles of physics, namely the distinction
among fermion and bosons, intertwined, bymeans of the spin–statistic theorem, with
Lie algebra theory, the distinction between two groups of representations, the vector
and the spinor ones, being a distinctive property of the so(n) Lie algebras, unexisting
for the others.

The largest part of the developments mentioned above, related with Supergrav-
ity/Superstrings, have a distinctive geometric/algebraic basis. Entire chapters of alge-
braic geometry and of algebraic topology have been integrated by these develop-
ments into the fabrics of theoretical physics, while some new geometries have been
introduced into the fabrics of mathematics. Furthermore the very way to analyze
and interpret mathematical structures is sometimes redirected by the influence of
Supergravity/Superstrings. Two or three examples suffice to illustrate what I mean.
Exceptional Lie algebras that, up to the mid 1960s were considered by the majority
of physicists likemathematical curiosities, have been promoted to the role of primary
actors on the stage of the super-world. Special Kähler Geometries, never defined by



1 The Episteme 7

pure mathematicians have by now entered, with full-rights, the mathematical club,
revealing their relation with other geometries, already introduced by mathemati-
cians, like HyperKähler geometry and quaternionic Kähler geometry. The notions of
momentum-map, Kähler and HyperKähler quotients find a deep interpretation in the
context of supersymmetric field theories and connect with some of the most brilliant
mathematical achievements of the last few decades like the Kronheimer construction
of ALE manifolds.

Relying on the above arguments and explanations I can now more appropriately
restate the topic whose conceptual development constitutes the target of my story
telling. This is the entire scope of Group Theory and of the Differential Geometry of
Coset Manifolds from the basic initial definitions to the most advanced items utilized
in the current research in Supergravity, that I have briefly sketched in the above lines.

In view of the provisional stationary point reached by the episteme with points
(A)–(E), I chose to tell my story from a mathematical/geometric viewpoint, seeking
through history the threads that led to the present views on geometry as the science
of space which eventually is also the science of phenomena substantiating space,
namely of physics.

When I started the organization ofmymaterial according to these principles, all the
stages of the conceptual development I wanted to report were not yet completely clear
tomyself, yet, as I went onwithmywork, I had the pleasure to realize that a grandiose
historic–philosophical fresco was unfolding in front of me: the main turning points
in the History of Thought concerning Symmetry and Space progressively acquired
an alive dramatic character, contributed by their actualization in history and in the
life of great thinkers. Furthermore I captured glimpses of the remote roots of many
conceptions that were previously all squeezed onto a sort of intellectual flatlandia,
deprived of historical depth. The understanding of a field of mathematics which
I know well and practice everyday in my research activity acquired a completely
new quality by means of this historic-philosophical revisitation.

I think, that it is time to reshape and update our teaching of fundamental physics
in view of the impressive, although provisional, advances made by the episteme in
the last thirty years, which I tried to summarize in points (A)–(E). This involves
reshaping our teaching of mathematics and in particular of mathematics for physics
majors, which is sometimes extremely obsolete and inadequate. Such a reshaping
cannot avoid involving the historic–philosophical dimension and should be a step on
a reversed path, hopefully reinstating classical education to its proper place in the
Western Culture.



Chapter 2
Symmetry and Mathematics

Mathematics, rightly viewed, possesses not only truth, but
supreme beauty, a beauty cold and austere, like that of sculpture.

Bertrand Russell, Philosophical Essays (1910)

2.1 Setting the Stage: Symmetry and Beauty

The word symmetry comes from the Greek συμμετρία which is composed of
two words σ ύν (with) and μέτρoν (measure). Literally συμμετρία indicates the
adequate proportion of the different parts of something, material or immaterial, and
it is well represented in classical Greek literature. For instance from Plato we have
η νυκτ óς πρoς ημέραν συμμετρία, the right proportion of night to day time, or
τ ò σ ύμμετρoν καὶ καλóν, namely what is proportionate is also beautiful.

The last sentence reflects not only Plato’s specific views but a widespread con-
ception which inspired the whole of Greek culture in the Vth century BC and crys-
tallized into the Canon of Classicism for all the Arts. Indeed the Canon, from the
word κανών (the rule), was the title of a treatise written by the famous Vth century
sculptor Polykleitos, who exemplified his theory in a bronze statue, the Doryphoros
(the Spear Bearer). Both the treatise and the statue are unfortunately lost, but a roman
marble copy dating about 120 BC has reached us from Pompeii and it is preserved
in Naples National Archaeological Museum (see Fig. 2.1).

A quotation from the treatise has survived in the book De Placitis Hippocratis
et Platonis by Galen, the famous medical writer of the IInd century A.D. which
reads as follows: Chrysippos holds beauty to consist not in the commensurability
or “symmetria” of the constituent elements of the body, but in the commensurability
of the parts, such as that of finger to finger, and of all the fingers to the palm and
wrist, and of those to the forearm, and of the forearm to the upper arm, and in fact,
of everything to everything else, just as it is written in the Canon of Polyclitus. For
having taught us in that work all the proportions of the body, Polyclitus supported
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Fig. 2.1 The Canon of Polykleitos was exemplified by the statue the Doryphoros

his treatise with a work: he made a statue according to the tenets of his treatise, and
called the statue, like the work, the ’Canon’.

Looking at Fig. 2.1 we easily realize what symmetry essentially meant for the
classical Greeks: it meant measure–ratios provided by rational numbers p

q where
both the numerator p and the denominator q are small integer numbers from the set
{1, 2, 3, 4, 5, 6, 7, 8}. The extension of the head should be 1

8 of the full extension
of the body, the extension of the torso 3

8 and so on. That such rational numbers
correspond to beauty in figurative arts is probably a conceptual extension of what
Pythagoras (see Fig. 2.2) had discovered already in the VIth century BC about music,
namely that the sounds that are nice to our ears are those produced by strings whose
lengths are in simple ratios like 2 : 1, 3 : 2 and 4 : 3. Indeed there are reasons to think
that Polykleitos, as many other intellectuals of his own age and as Plato himself after
him, was influenced by Pythagorean philosophy in which numbers were identified
as the true substance of the existing things.

Before analyzing such Pythagorean ideas let us remark that there is another obvi-
ous influence to which Polykleitos was responding in conceiving his Canon, namely
just the observation of the human body, whose actual structure he was trying to ratio-
nalize. Not every human has a head that is exactly 1

8 of its full stature but, fortunately,
there are no humans whose head is 1

2 or 7
3 of the same. Hence, in fixing a Canon
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Fig. 2.2 A head-sculpture of
Pythagoras: Roman copy
from Musei Capitolini di
Roma of a lost Greek
original

of symmetry, the sculptor was actually inventing a code able to describe reality and
this code was indeed mathematical. In some sense he was prefiguring the Platonic
philosophy of Ideas: the fixed simple ratios correspond to the Idea of a Human. An
individual, namely an actualization of the Idea of a Human is the more beautiful as
closer his/her proportions are to those encoded in the Idea.

Behind this way of thinking we easily see the standard procedure utilized in
modern science to analyze complex phenomena: you make a mathematical model,
which is supposed to capture the essential dynamical degrees of freedom inherent to
the phenomenon under investigation, then you compare actual existing phenomena
with this mathematical model. Those phenomena that behave closer to the model
are the Ideal Ones. Examples are ready to hand like Ideal Gases or Ideal Fluids.
The difference between Modern Science and Classical Greek Philosophy is that we
no longer attach any moral or aesthetical value to the adherence of Reality to the
Idealistic Model: quite the opposite. If Reality is too much away from the Model it is
the latter that comes under stress and has to be discarded. Yet we preserve the option
to give an aesthetical evaluation of the Models: if they have no symmetry in the
Greek sense of an adequate proportions between their parts, that are the assumptions
on one hand and their consequences on the other hand, if there is no due economy
in their founding principles, then the Models are not beautiful and, we tend to think,
they are hardly true.

As we see, the identification of the True with the Beautiful and the guiding prin-
ciple that Symmetry is the keyword for both, is valid in contemporary science just as
it was in Classical Antiquity, although what symmetry means has undergone a very
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significant evolution in the last 2500 years. Illustrating this evolution and introducing
the reader to the Mathematics involved in the contemporary conception of Symmetry
is the mission of the present essay.

Although the alluded above evolution has been quite extensive and ramified, yet it
is honest to say that some fundamental constants are there and it is proper to empha-
size them at once. What has remained substantially unchanged from Antiquity to the
present time is the association of the process of understanding with the conception
of numbers and the numerical encoding of what we call symmetries.

Reviewing the origin of words is illuminating. ThewordMathematics comes from
the Greek τ ò μάθημα which means the object of study, what has to be understood,
derived from the verbμανθάνω (I investigate). Themathematiciano μαθηματικ óς

is just the scientist.
Coming back to the Pythagoreans, in his Metaphysics Aristotle says:
…the so-called Pythagoreans applied themselves to the study of mathematics, and

were the first to advance that science; insomuch that, having been brought up in it,
they thought that its principles must be the principles of all existing things.

In his brilliant history of Greek Mathematics [112], Sir Thomas Heath says:
May we not infer from these scattered remarks of Aristotle about the Pythagorean

doctrine that “the number in the heaven” is the number of visible stars, made up of
units which are material points? And may this not be the origin of the theory that all
things are numbers...?

There is in this sentence the echo of a deep historical truth that was pointed out
more than one hundred years ago by the great German scholar of Antiquity, Theodor
Mommsen (see Fig. 2.3). On the basis of Indo-European linguistics he conceived
his proof that Astronomy and Arithmetic have a very ancient origin that precedes
the agricultural revolution. He remarked that the roots associated with the names

Fig. 2.3 Christian Matthias Theodor Mommsen (1817–1903) and the Neolithic monument of
Stonehenge, whose astronomical significance has been deeply studied
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of the numbers, of the stars and of the planets are the same in all Indo-european
languages, so as are the roots associated with the animals and the items in pastoral
life, while there are several variants for the names of the plants, of the tools and of the
products of farming. It is quite probable that the birth of the abstract notion of unity,
which is the very beginning of Number Theory and of Mathematics is rooted in the
observation of the sky that was practiced by all ancient populations of the world.

We quote again Sir Thomas Heath:
Aristotle observes that the One is reasonably regarded as not being itself a number,

because a measure is not the things measured, but the measure or the One is the
beginning (or principle) of number. This doctrine may be of Pythagorean origin;
Nichomachus has it; Euclid implies it when he says that a unit is that by virtue of
which each of the existing things is called one, while a number is ‘the multitude made
up of units’; and the statement was generally accepted.

It is often emphasized that Greek Mathematics lacked the notion of Zero which
is of Indian origin and was transmitted to the West by the Middle Age Arabs. We
see here that even the number One was not immediately a number and it took a good
deal of abstraction to define the natural numbers which appear to be a fundamental
achievement of Human Thought and the basis of our rational understanding of the
external World.

Hence we see in symmetrical or harmonic a synonym of easily countable and
hence of understandable. It is the human satisfaction, streaming fromcomprehension,
what makes the object of observation beautiful.

We perceive in this sequence of arguments that symmetry principles are the basic
weapons utilized by the Human Mind to grasp the structure of Reality.

2.2 Symmetry Principles

What are at the end of the day symmetry principles? Loosely speaking they are a
powerful predictive instrument. Let us consider the pictures of some leaving beings
that are displayed in Fig. 2.4. In the first two photographs, that of the leave and that of
the dog, we have instances of a reflection symmetry with respect to a vertical plane
that cuts the object in two halves. Thanks to this symmetry, if we observe the left
half of the image, we no longer have to observe the right half: we are essentially able
to predict it from the knowledge we have already acquired of the left one and this is
quite economical for data storing in our mind. We perceive this reduction of efforts
and it is in this that probably resides our appreciation of beauty. Arguing along these
lines the picture of the starfish is even more economical. We can just observe one of
the five arms and we can predict the other four. There is a larger degree of symmetry.
Even larger is the predictive power inherent to the symmetries that characterize the
tiled walls of the Alhambra Palace in Grenada, two examples of which are shown in
Fig. 2.5. It is evident that from a finite portion of the figure we can predict it in the
entire plane yet the prediction rules now become more and more complicated and
most important of all we start wondering how many of these patterns are possible?
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Fig. 2.4 Symmetries in the living beings

Fig. 2.5 Tessellations at the Alhambra

The moment we formulate such a question we have made a gigantic step forward
on the road of abstract thinking.

Indeed it took a very long time, essentially up to the beginning of the XIXth
century, before the proper mathematical framework was found where such questions
as the above one might be asked and answered.

In order to understand the developments that lead to that fundamental advance
we have to consider the history of Geometry and Algebra.

2.3 Geometry and Algebra up to the Birth of Group Theory

The origins of Geometry are quite ancient, although not as ancient as the origins of
Number Theory. It appears that both the Egyptians and the Babylonians developed
empirical formulae to calculate the area of surfaces of various shapes. Themotivation
was related with the collection of tributes. In ancient Egypt, landowners were sup-
posed to pay taxes to Pharaoh’s officers according to the extension of their property,
usually rectangular shaped. Every year the periodic floods of the Nile changed the
utilizable area for cultivation and the proprietor asked for a tax-reduction accord-
ingly: Pharaoh’s prospectors had to verify the adequateness of such claims and they
needed such empirical ready to use formulae to accomplish their duties.
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Fig. 2.6 Thales Milesius (624 BC–546 BC): the first Greek philosopher, according to Aristotle,
and the first Greek geometer. Thales’ theorem states that the angle in B of the triangle inscribed in
a circle as shown in the figure is of 90 degrees

According to tradition Thales Milesius, the first Greek philosopher and mathe-
matician, learnt about geometrical formulae in Egypt and in Babylon but he was the
first who conceived the deductive method and provided what we call a mathematical
proof of a theorem. Indeed the proposition about the inscription of a rectangular
triangle in a circle shown in Fig. 2.6 is referred to as Thales’ theorem.

Sir Thomas Heath quotes Proclus’ summary about Thales:
…first went to Egypt and thence introduced this study (geometry) into Greece. He

discovered many propositions himself, and instructed his successors in the principles
underlying many others, his method of attack being in some cases more general, in
others more empirical.

Next Heath quotes Plutarch who included Thales among the Seven Wise Men:
he was apparently the only one of these whose wisdom stepped, in speculation,

beyond the limits of practical utility: the rest acquired the reputation of wisdom in
politics.

In his impressive Essay on Hellenic and Hellenistic Science, Lucio Russo [153]
puts into evidence the role in the development of the conception of a mathematical
proof that was played by the practice of democracy in the Greek π óλις and by the
frequent need of the Greek citizen, the πoλίτης , to advocate publicly his own case
in front of juries.

The Greekword for proof, απ óδειξ ις , comes from the verb απoδείκνυμιwhich
means I present, I submit. Russo illustrates the close relation between the geometrical
απ óδειξ ις and Rhetoric, quoting Aristotle’s Ars Rhetorica where the enthymemes
of rhetors are shown to be just syllogisms: then he recalls the impressive sentence by
Quintilian: …nullo modo sine geometria esse possit orator, there can be no orator
without geometry [149].
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Fig. 2.7 Euclid of Alexandria was active during the reign of Ptolemy I (323–283 BC). His treatise
the Elements (ΣT O I K E IΩ N in Greek) is probably themost famousmathematical textbook of all
times. The Greek original was transmitted through the edition cured by Theon from Alexandria in
the IVth century AD. In 1808 François Peyrard discovered in Vatican a manuscript of the Elements
coming from a byzantine workshop of the X century that was not based on Theon’s edition. The
first latin translation appears to have been produced by Boethius in the VI century AD but then
the Elements disappeared in Western Europe, until the English monk Adelard of Bath produced
a Latin translation of an Arabic version. The Arabs received the Elements from the Byzantines
approximately around 760; this version was translated into Arabic under Harun al Rashid c. 800
and became the source of Adelard. Theon’s Greek edition was recovered in 1533. In the picture we
see Euclid as imagined by Raffaello in his School of Athens and on the side an example of a proof
from the original Greek version of the Elements

The elaborate historical development in the course of the Vth and IVth century
BC of theElements of Geometry, that were finally systematized in Euclid’s bookwith
the same title (see Fig. 2.7), are masterfully reviewed in Heath’s book and we do not
dwell on them. What is important for us to stress is the axiomatic crystallization of
the science of geometrical figures, points, triangles, circles, polygons and polyhedra
that was the end-point of this process and that lasted for about two thousand year as a
back-bone of mathematics, but also as a very severe bias on philosophical thinking.

The axioms, or postulates of euclidian geometry were analyzed for almost twenty
centuries by mathematicians and philosophers, who gave special attention to the Vth
postulate (see Fig. 2.8):

If a line segment intersects two straight lines forming two interior angles on the
same side that sum to less than two right angles, then the two lines, if extended
indefinitely, meet on that side on which the angles sum to less than two right angles.

Numberless efforts were devoted to prove the above proposition that invariably
ended up into a failure. Indeed, as we now firmly know, the Vth postulate is logically
independent from the others and can be substituted with different ones that lead to
various non euclidian geometries.
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Fig. 2.8 Euclid’s Vth
postulate

The main justification for this stubborn determination of the philosophers of all
times to erect Euclidian Geometry into an unavoidable logical scheme is largely
psychological: Euclidian Geometry is the axiomatic codification of the properties
of a plane surface without curvature, such as a portion of the surface of the Earth
appears to be at the human scale. The temptation to identify Euclidian Geometry with
Reality is very strong and, in line with what we said above, we have to rationalize
Reality in order to make it satisfactorily understandable to us. Immanuel Kant (see
Fig. 2.9) boosted this way of arguing to its extreme consequences stating that:

Space is not an empirical concept which has been derived from outer experiences.
On the contrary: it is the subjective condition of sensibility, under which alone outer
intuition is possible for us.

By space he meant Euclidian Space as conveyed to us by the Elements. On this
we can remark that, had the human race developed on the surface of a small asteroid,
where curvature effects are strongly perceivable, the Vth postulate probably would
not have been introduced by anyone. Yet it was and it took almost 2000 years to
overcome the prejudice that it is unavoidable.

Fig. 2.9 Portrait of
Immanuel Kant
(1724–1804). Kant is
considered the central figure
of modern philosophy. He
spent almost all of his life in
Königsberg, Eastern Prussia,
now Kaliningrad in Russia
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Fig. 2.10 Portrait of Nicolai Ivanovich Lobachevsky (1793–1856). Born in Nizhny Novgorod in a
poor family he was raised with many difficulties by his mother, the widow of a small public officer.
He studied in the newly founded University of Kazan’ of which he later became Rector. His new
conceptions ofGeometrywere originally presented to hisKazan’ colleagues in some seminars based
on lecture notes. His paperwas refused publication inRussia and he succeeded to publish it in French
only in 1837 with the title “Geometrie Imaginaire”. A summary of his results was later written in
German and published in Berlin in 1840 with the title “Geometrische Untersuchungen zur Theorie
der Parallelinien”. Removed from his position by an “ukas” of the Tzar in 1846, Lobachevsky
died in poverty and afflicted by complete blindness in 1856. One year before death he composed a
summary of his entire geometrical conception in a book entitled “Pangeometria”

Although there are some evidences that Gauss considered non euclidian geome-
tries with positive curvatures almost at the same time,1 it is a historically established
fact that non-euclidian geometry, in its negative curvature variant, was introduced by
the Russianmathematician Lobachevsky (see Fig. 2.10) in 1826. Explicit realizations
of Lobachevsky’s geometries on curved surfaces immersed in three-dimensional
Euclidian space were constructed in the 1860s by the Italian mathematician Eugenio
Beltrami (see Fig. 2.11). Lobachevsky geometry was brought under full analytic
command by Poincaré and constitutes a paradigmatic simple example of a curved
manifold whose geodesics can be analytically determined.

1See Chap. 7 and Sect. 7.3.1 for more details on this.
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Fig. 2.11 Eugenio Beltrami (1836–1900) who was Professor in Bologna, Pisa, Rome and Pavia
invented the pseudo-sphere, a surface with constant negative curvature where geodesics realize
Lobachevsky’s geometry

Relevant to us at this point of our introductory discussion is not the issue of non-
euclidian geometry for its own sake, rather the very conception of geometry, as we
have outlined it here from pre-euclidian time to the XIXth century. The objects of
study for the whole span of this very long time have been idealized entities (the
points, the segments, the lines) that certainly had symmetries, in the classical Greek
sense of fixed and possibly harmonious proportions in their sizes and angles, and
obeyed interesting relations among themselves, yet they were not operated on by
means of any prescribed algorithms. Indeed, as we plan to explain in more detail
in Chap. 8, the very word algorithm is of Arabic origin, from the name of the IXth
century scholar al-Khwarizmi, who shares with Diophantus the title of Father of
Algebra, also a word of Arabic descent.

The conception of operations to be performed on abstract mathematical objects
and forming together with their own targets a single structure to be analyzed for
internal consistency is the very heart of Algebra, but it was never attained by the
Ancient Greeks. On the other hand, in order to answer questions such as the one
posed at the end of the last section, namely how many patterns do exist such as those
represented on the Alhambra walls, this conception was precisely the necessary
viewpoint.
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Fig. 2.12 On top the Rhind Papyrus, conserved in the British Museum that dates to around 1650
BC. In the lower part of the picture the Moscow Papyrus conserved in the Pushkin Museum in
Moscow and slightly older than the first. These are the two known to us mathematical papiri of
ancient Egypt

Quoting once again Sir Thomas Heath:
In algebra, as in geometry, the Greeks learnt the beginnings from the Egyptians.

Familiarity on the part of the Greeks with the Egyptian methods of calculation is
well attested. These methods are found in operation in the Heronian writings and
collections.

From the Egyptians the Greeks learnt the hau-calculations which essentially
amounted to the solution of first order equations, just as the following one

2
3 x + 1

2 x + 1
7 x + x = 33 (2.3.1)

from the Papyrus Rhind, where hau, the heap, is the name given to the unknown x .
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The goal of Algebra remained up to the beginning of the XIXth century the
solution of algebraic equations2 but, while pursuing this goal, many new mathemat-
ical conceptions were developed. First of all, similarly to what already happened
at Pythagorean times with the radicals, it was understood that the field of numbers
had to be enlarged with the inclusion of transcendental numbers like π or the Euler
number e and then with the imaginary unit i = √−1 which leads to complex num-
bers,3 secondly, when it was established, by means of the Ruffini-Abel theorem, that
the algebraic equation of the 5th degree is not generically solvable by radicals, the
notion of Group made its appearance in Mathematics through the work of Évariste
Galois and a new season began in which the question posed at the end of last section
could be rephrased and answered in the proper conceptual framework.

2.4 Galois and the Advent of Group Theory

Everything is exceptional about Évariste Galois (see Fig. 2.13), both his mathemat-
ical achievements and his short unlucky personal life. No more romantic and tragic
cradle for the Theory of Groups might have been invented by the capricious des-
tiny. Furthermore just as full of contradictory aspects was his human career and his
relation with the other humans that came across it, so his first class mathematical
results present two quite contrasting faces. The theory named after him and the theo-
rem which, within such a theory, constitutes Galois’ major result, are rather difficult
both at the level of the definitions and of the proofs: in addition one can honestly
say that Galois theory of the solubility of algebraic equations is a rather special-
ized topic which, nowadays, finds relevant applications eminently in number theory
and associated topics, but not too many in geometry at large and in physics. On the
contrary the weapon that Galois developed to obtain his own results, namely the
Theory of Groups, has proved of extraordinary conceptual relevance and fertility,
being the starting point for an entirely new vision of Mathematics and in particular
of Symmetry.

Évariste Galois was born October 25th of 1811 in the small town of Bourg-le-
Reine. He died at the dawn of May 31st 1832 from the wounds received the day
before in a duel. During the 21 years of his life he suffered all types of misfortunes
and blows, mainly caused by the incomprehension and stiff stupidity of his teachers,
by the political turmoils of the time and by his naiveness. Both his mother and his
father were highly educated persons, committed to Revolutionary Ideals and fierily
opposed to the Restoration. Galois’ father acted as Mayor of Bourg-le-Reine and
in 1827 he fell victim of a clerical conspiracy organized by a priest who circulated
a false poem, full of obscenities, that he pretended written by the Mayor; Galois
father, full of rage and shame, escaped to Paris and committed suicide in a hotel

2See Sect. 8.1 for many more details.
3See once again sect. 8.1 for more details.
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Fig. 2.13 Evariste Galois
(1811–1832)

room. During the funeral Évariste suffered the aggravating sorrow to see his father’s
coffin at the center of a violent brawl between clericals and liberals.

In the Lyceum Luis-le-Grand where he was studying, Galois met quite stiff and
stupid teachers, who did not understand his exceptional talents for mathematics and
treated him as an idiot. Twice he was rejected at the entrance exams to the École
Polytechnique where he ardently desired to enroll, not only for the excellent tuition
there available, but also for the democratic ideals that inflamed all of the Polytechnic
students. Notwithstanding these adversities, Galois studied mathematics by himself,
directly reading books and articles by Legendre, Fourier, Abel and Gauss and, at the
age of 17, he was already well advanced on the development of his own theory of
algebraic equations. He wrote his results in a paper that he wanted to submit to the
Academy and, for that purpose, he managed to give it to Cauchy who promised to
support its publication. Unfortunately Cauchy lost Galois’s manuscript.

In 1830 Galois tried once again to publish his own results by giving a new paper to
the scientific secretary of the Academy. This latter brought home Galois’ manuscript
to read it, but the very same night he unexpectedly died; Galois’ work was once again
lost. Disappointed and disgusted by life, Galois entered the political agon, just at the
eve of the July Revolution, supporting the Republicans.

In the last two years of his life Galois was twice arrested as a subversive, spent
some months in prison, was released, participated to other political quarrels, had a
love affair with a girl of vulgar personality, who disgusted him also on that front,
finallywas involved in a stupid debatewith a political exponent of opposite views, that
ended up in the duelwhich caused his death. Perfectly aware of being confrontedwith
almost sure death, the night before the duel, Évariste wrote an exposition of all his
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mathematical results that he gave to his loyal friend Auguste Chevalier. Fortunately,
this latter did not loose the sixty pages received from Galois and in 1846 Galois
main theorem was finally published [98] on the Journal de Mathématiques Pures et
Appliquées, with the praising comments of its main editor, namely Joseph Liouville
(see Figs. 2.14, 2.15, 2.16).

2.5 A New Conception of Symmetry

What had Galois actually done? He had established a criterion for the solubility
of algebraic equations in terms of radicals. Permutations had already been used by
Ruffini and Lagrange, but he grasped their essence, which is that of being elements
of a group and he started building on that fact. Let us outline his arguments.

Consider an algebraic equation of degree n with rational coefficients ui ∈ Q.

Pn(x) = xn + u1xn−1 + · · · + un = 0 , (2.5.1)

The set of rational numbersQ fulfils the axioms of a field. Using amore abstract view
point we can say that the field F = Q to which the coefficients belong is provided by
the set of rational functions with rational coefficients of the coefficients ui . Since a
rational function of a rational number is a rational number this definition seems rather
tautological, yet it is convenient to envisage the next step that is the field extension.

Let αi (i = 1, . . . n) be the n roots of the considered polynomial Eq. (2.5.1).
Define:

K ≡ F (α1, . . . αn) (2.5.2)

the field obtained by adjoining to F the roots. This means that every element a ∈
K can be written as a rational function, with coefficients in F, of the roots: a =
r(α1, . . . , αn). Consider a permutation of the roots:

P : (α1, . . . , αn) �→ (Pα1, . . . , Pαn). (2.5.3)

The action of the permutation P can be defined on the field K, by setting:

P : a = r(α1, . . . αn) �→ Pa ≡ r(Pα1, . . . , Pαn) , (2.5.4)

A given element ofK has different representations in terms rational functions of the
roots. If a = r1(α1, . . .) = r2(α1, . . .) are two such representations then Eq. (2.5.4)
defines a consistent action of the permutation on the field K only if r1(Pα1, . . .) =
r2(Pα1, . . .). This amounts to requiring that the two internal operations of the field
K are preserved by the map P:

∀ a, b ∈ K : P(a + b) = P(a) + P(b) ,

∀ a, b ∈ K : P(ab) = P(a)P(b)
(2.5.5)
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Fig. 2.14 The issue of the Journal de Mathématiques Pures et Appliquées containing the paper of
Galois, published posthumous by Liouville. Courtesy of the Biblioteca-Peano of the Dipartimento
di Matematica of Torino University
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Fig. 2.15 Galois’ introduction to his own Memoire. Courtesy of the Biblioteca-Peano of the
Dipartimento di Matematica of Torino University
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Fig. 2.16 A sample page of Galois’ posthumous Memoire published in 1846. Courtesy of the
Biblioteca-Peano of the Dipartimento di Matematica of Torino University
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Maps P satisfyingEq. (2.5.5) are named automorphisms of the extend fieldK relative
to the base field F. They form a group G(K) (the Galois group of the original
polynomial) since the product of any two elements P1, P2 ∈ G(K) is still an element
in the same set which contains also an identity element and the inverse of any element
in the set. By product of two permutations we mean here the result of performing P1

first and then P2.
A solvable group, by definition is one that possesses a chain of normal subgroups

ending in the trivial group composed only by the identity. Referring to such a notion
we can state Galois theorem. He showed that an algebraic equation such as that in
(2.5.1) is solvable by radicals if and only if its Galois group is solvable.

2.5.1 Conceptual Analysis of Galois Results

Let us analyse the revolutionary content of what Galois did in the field of Mathemat-
ics.

(1) First of all he changed perspective and, rather than analyze the properties of
static mathematical objects, he emphasized the relevance of the transformations
one can operate on them.

(2) Secondly he put to the forefront the notion of group: the transformations one can
consider are combined together by an operation, the product and with respect to
that operation they form an algebraic structure, the group G.

(3) Thirdly he put into evidence that once a group G is introduced, its action, origi-
nally defined on something (the roots in this case) can be extended to something
else (the field extension K). This was the beginning of representation theory
which will concern us a lot in the sequel.

(4) Next, by means of the concept of automorphism he showed that given a group
G which acts on some space V (the extended field K in this case), the most
important things to study are the properties of objects contained in V that are
left unchanged by G-transformations. This is the beginning of the theory of
invariants that was central to mathematics for the whole XIXth century and still
is essential in contemporary scientific thought.

(5) Last but not least, by means of his very theorem he showed that the key infor-
mation about the structure of a mathematical object (in this case the algebraic
equation) operated on by a group of transformations G (in this case the Galois
group acting on the roots) resides in the algebraic structure of G. In this case the
equation is solvable if G is solvable.
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2.5.2 Symmetry After Galois

What we summarized above was going to be the new mathematical conception of
Symmetry that would be slowly developed through the XIXth century, eventually
producing the scientific revolutions of the XXth century, forming, up to the present
day, the backbone of our understanding of the Fundamental Forces of Nature.

After Galois, symmetry is no longer some adequate proportion of the parts of
something, as it was for the Classical Greeks, symmetry is just the group G. Indeed
we started talking about symmetry groups. The old notion of symmetry is not entirely
lost: it remains, to some extent, in the notion of invariant. Something is symmet-
ric, with respect to a group of transformations G, if it is left unchanged by such
transformations.

We can come back to the Alhambra tilings and ask ourselves the question, what
are the transformations in a plane that leave one of those tilings invariant? Obviously
they are made of some rotations with prescribed angles θ = π

2 or θ = 2π
3 , just to

mention realized examples, and of some translations with prescribed directions and
lengths. The set of all such transformations necessarily form a group G. Groups of
this type that combine together in a consistent way discrete rotations and discrete
translations are named Wall Paper Groups. The many time repeated question how
many different Alhambra patterns are conceivable? is reformulated into the algebraic
question How many Wall Paper Groups do exist? The answer is 17. The same answer
was formulated at the end of theXIXth century in 3-dimensional space and its answer,
obtained by the Russian Mathematician and Geologist Fyodorov is a list of 230, so
named, Space Groups. This list forms the basis of Crystallography and of Molecular
Chemistry.

Point (4) in our analysis of Galois results corresponds to one of the most fertile
implications of his work. It had, in the long run, an enormous influence on our
conception ofGeometry and eventually it is even at the origin of Special and General
Relativity.

Once the notion of a transformation group G is introduced, the notion of equiva-
lence classes naturally arises. A set of objects acted on by G can be rationalized by
dividing it into stocks, each of which contains all those that are mapped one into the
other by some transformation of the group. In some sense all the objects that happen
to be in the same stock are different realizations of the same entity which is none of
them, but just the entire equivalence class. As we explain in detail in Chap. 5, directly
influenced by Galois’ ideas that came to them through Darboux and Jordan, Sophus
Lie and Felix Klein started rethinking classical geometry from a new viewpoint. In
particular Klein realized that Euclid axiomatic definitions of what is an equilateral
triangle, a rectangular triangle and so on, can be recast into the notion of equivalence
classes. There are many triangles that one can draw in a plane but two triangles that
can be mapped one into other by means of a rotation or a translation, namely an
element of what we shall name the Euclidian Group E2, have to be identified and
considered just the same triangle. Hence the objects of study in Euclidian Geometry
are just the equivalence classes with respect to E2. It follows immediately that all the
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propositions of Euclidian Geometry are just statements on properties and relations
that are invariant with respect to E2 or in three-space with respect to E3. In this
way Klein came to conceive the momentous Erlangen Programme (see Sect. 5.2.2).
Since there are other groups different from the Euclidian Group, you can conceive
other geometries, among which the non-euclidian one introduced by Lobachevsky.
Actually you can classify geometries according to the group G with respect to which
the relations considered in that geometry are invariant.

This way of thinking shifted the interest from the mathematical objects that are
transformed to the group of transformations that operate on the objects. Through
several conceptual steps, the main issue became the classification of Groups, both
the discrete finite ones, whose theory was the first to be fully developed and the
continuous, Lie ones, introduced in the last quarter of the XIXth century. Essentially
this is the full-fledged development of point (5) in the above list.

2.6 Symmetry, Geometry and Space

Indeed the XIXth century witnessed a powerful development of Group Theory, this,
after Galois, being the proper new name for Symmetry, but also of the mathematical
conception of Geometries, the plural number now replacing the singular one, referred
to Euclidian Geometry, which had dominated Philosophy and Mathematics for 2000
years.

One fundamental aspect of the groups, shared by the discrete and by the contin-
uous ones, is that their intrinsic algebraic structure determines also their possible
realizations as linear transformations in some vector space. This very fact is a new
component of the mathematical and physical episteme having revolutionary conse-
quences.

Reality, namely what exists in actuality is no longer investigated to learn about its
symmetries (=properties) rather it is a priori defined as one of the available states,
which realize the a priori known symmetries and exist in potentiality.

In this new vision the episteme, namely knowledge, mainly consists in a principle
of choice which selects a symmetry (i.e. a group G) and one of its realizations (i.e.
a representation D(G)) attributing to them actuality.

As it was emphasized in the Preface, this encodes in a nutshell the structure of the
Standard Model of the Fundamental Interactions, provided we specify within larger
categories the principle of choice mentioned above.

In a ramified process which unfolded throughout the XIXth century up to the
middle of the XXth century, Geometry, defined as the science of Space was deeply
influenced by the developments of Group Theory.

On one side, starting with the pioneering work of Gauss and Riemann (see
Chap. 7), Differential Geometry was born, able to describe curved spaces and this
eventually led to Einstein General Relativity. The new concept of Space is encoded
in the notion of a Differentiable Manifold formalized by Whitney in 1936 [110] but
already implicit in Riemann’s Habilitation thesis.
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On the other side, the discovery of Lie Groups, of their associated Lie algebras
and the classification of the latter (a story which is the main theme of Chap. 5)
led to the idea of groups acting by isometries on Riemannian manifolds and to the
classification of symmetric spaces G/H, realized by Cartan. Slowly a new concept
of Space emerged in the first half of the XXth century, corresponding to the notion
of fibre-bundle and in particular of principal fibre-bundle P(G,M ). The language
of fibre-bundles is that of modern geometry and it is the one which underlies modern
gauge theories and substantiate the present episteme of Theoretical Physics (the
conceptual history of these geometrical developments is told in Sect. 9.1).

The complicated frontier line of contemporary researches in geometry is heav-
ily marked by the influence of Supergravity/Superstrings and involves three new
conceptual ingredients, contributing new categories in the episteme:

(A) Consideration of compatible Complex Structures defined over the tangent bundle
TM which qualify the geometry of the considered manifold M as Complex,
Quaternionic or even Octonionic.

(B) The geometry of geometries, namely the consideration of metrics and other
structures defined on thosemanifolds (moduli spaces)whose points parameterize
the available geometries of other manifolds.

(C) ManifoldsM featuring Special Geometries, typically characterized by assump-
tions made on the structure and the characteristic classes of certain fibre-bundles
constructed over M .

The conceptual historical analysis of these developments is contained in Chaps. 8
and 9. Section 9.2 and then Chap. 10 outline instead the applications of special
geometries with particular attention to symmetric spaces. The last Chap. 11 recalls
how new mechanisms were found able to produce new non trivial geometries from
trivial ones, by means of Kähler and HyperKähler quotients which have a very
important field theoretical interpretation.

Wedonot dwell on the content of the last four chapters since, in order to understand
the addressed issues, it is necessary for the reader to have already well digested
the theory whose historical development concerns us in the previous chapters. We
remark instead that the most relevant for the episteme is item (B) of the above list.
The geometry of geometries is indeed a new philosophical category in some sense
approaching, at least methodologically, the issue of the principle of choice. To say
it bluntly it is like introducing the idea of a theory of theories. One has defined a
collection, finite or infinite of options, each of which describes a particular theory.
Now these options become the degrees of freedom of a new theory which has a
dynamics able to determine a smaller set of options. Now it can happen that the
theory of theories is also defined up to some options and one can imagine to repeat
the process. One can eventually dream of a tree, at whose top everything becomes
uniquely determined.

Although this idea is fairly general and can be applied in various contexts (the
renormalization group, for instance), the really important thing for the episteme of
fundamental physics is that everything appears to be geometrical at every level;
indeed we are talking of the geometry of geometries, meaning that the mathematical
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structures advocated at the superior level are the same ones used one step below:
fibre-bundles, riemannian manifolds, geodetics and so on. This is best exemplified
by the case of black-hole solutions of supergravity (see Chap. 10). The items we are
dealing with in that context are the possible geometries of a black-hole, equipped
with electric and magnetic fields that describe the connection of a fibre-bundle. Each
of such articulated geometries corresponds just to a geodetic of a larger manifold
that can be chosen to be a suitable lorentzian symmetric space.



Chapter 3
How Group Theory Came into Being

Ancora indietro un poco ti rivolvi,
diss’io, là dove di’ ch’usura offende
la divina bontade, e ’l groppo solvi.

Dante, Inferno XI, 94

3.1 The Essentials of Group Theory in Modern Parlance

The essentials of group theory can be summarized in few mathematical definitions
that admit a description in relatively simple words.

A group G is first of all a set of elements. There are three cases:

1. The set G contains a finite number r of elements {γ1, γ2 . . . , γr }. In this case G
is a finite group and the number r , usually denoted |G| is named the order of the
group G (see Fig. 3.1).

2. The set G contains an infinite number of elements, but it is denumerable, namely
we can count the elements as {γ1, γ2, γ3, . . . , γ∞}. In this case the group is infinite
but discrete.

3. The set G is a continuous space as it is for instance the plane, or a sphere or some
higher dimensional variety. In this case the group G is named a continuous group
(see Fig. 3.2) and when additional properties of analyticity are satisfied it is a Lie
group.

The feature that promotes a set G (falling in one of the above specified cases) to the
status of a group is the existence of a binary operation:

p : G × G −→ G (3.1.1)

Modern mathematics has at its centre the notion of map. In simple words a map ϕ is
a correspondence between two sets A and B:

ϕ : A −→ B (3.1.2)
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Fig. 3.1 A finite group G is a set with a finite number of elements and an internal binary operation
named the product. In the above picture we imagine a finite group where the product of the element
γ3 with the element γ5 produces the element γ21

Fig. 3.2 A continuous group
G is a continuous
(topological) space like the
plane or some other higher
dimensional manifold,
whose points can be labeled
by coordinates and which is
endowed with an internal
binary operation named the
product

that to each element a ∈ A of the first set associates an element ϕ(a) ∈ B of the
second set. The element ϕ(a) is named the image of a in B. On the other hand any
element a ∈ A whose image is a given element b ∈ B is said to be in the preimage
ϕ−1(b). In general the preimage ϕ−1(b) can contain more than one element.

The binary product p of a group G is a map from the set of ordered pairs {a, b},
where a, b ∈ G are elements of the group, to the group G. The image of the pair:

p(a, b) ≡ a · b ∈ G (3.1.3)

is an element of the same set G and it is named the product of a with b.
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In order for G to deserve the name of group, the product should have the following
necessary properties:

(a) The set G must include a specific element e ∈ G, named the identity, which
multiplied either on the left or on the right with any element x ∈ G reproduces
the latter, i.e.:

x · e = e · x = x (3.1.4)

(b) Chosen any element x belonging to the group G, the latter must contain also a
unique element x−1, named the inverse of x such that:

x · x−1 = x−1 · x = e (3.1.5)

where e is the previously introduced identity element.

3.1.1 Examples

A familiar example of infinite, but discrete group is provided by the integer relative
numbers Z. In that case the product is simply the sum a + b, the identity element is
the number zero 0 and the inverse of any element a is just−a. A very simple example
of continuous group is provided by the complex numbers deprived of the number 0,
namely C

� = C − {0}. In this case the product is the ordinary product, the identity
element is the number 1 and the inverse of z ∈ C

� is the reciprocal 1
z which always

exists, since we have excluded z = 0. The simplest example of finite group is Z2

formed by the two-element set {1,−1}. The product is the ordinary one, the identity
element is 1 and the inverse of −1 is just the same element, since (−1) × (−1) = 1.

3.1.2 Groups as Transformation Groups

In all the examples quoted above the product operation is commutative, namely the
product a · b of the element a with the element b yields the same result as the product
b · a taken in the reverse order. This is not the general case and the groups that possess
such a property form the subclass of abelian groups. The generic case is that of non
abelian groups.

To understand how the apparently unfamiliar situation a · b �= b · a enters the
stage we have to think of the groups not as sets of numbers rather as sets of trans-
formations that act on another set S, which can be either finite, or infinite discrete,
or continuous. In other words every element γ ∈ G of a given group G is viewed as
a map:

γ : S −→ S (3.1.6)
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Fig. 3.3 In this picture we illustrate the notion of group product with the example of familiar
three-dimensional rotations. A finite rotation of a three-dimensional solid object is effected around
some axis for the extension of some angle θ . After performing a rotation R1, we can perform a
second rotation R2. The net result of the sequence of the two transformations is a new rotation R3
around some new axis and for the extension of some new angle

that associates an image γ (a) ∈ S in the same set to every element a of the set
S. The product γ2 · γ1 of two group elements is just the transformation of the set
S into itself that is obtained by applying first the transformation γ1 and then the
transformation γ2 in the specified sequence. This fundamental idea is illustrated in
Fig. 3.3 with the example of the rotations in three-dimensional space. The set of such
rotations is the rotation group that has the mathematical name SO(3). It is evident
from familiar experience that once thought in this way the group–product can be
non commutative. The result on any three-dimensional object of performing first a
rotation around the x-axis and then a rotation along the y-axis is typically different
from the result obtained by performing the same rotations in reversed order.

It is precisely in the capacity of sets of transformations that groups became the
pivot item in the modern conception of symmetry originating from the fundamental
work of Galois (see Sect. 2.5.2). The above summarized concept of group came into
being through a rather long historical process which we plan to outline in the present
chapter.
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Fig. 3.4 Focusing on the case of four objects in the above figure we exemplify the product law
within the permutation group

The first group to be considered, which is also at the basis of Galois’ work and
which actually encompasses all the other finite groups as subgroups, was the permu-
tation group of n-objects. The elements of this latter, denoted Sn and named the nth
symmetric group are the permutations of an array of n objects into a different order
like, for instance:

π : {♠, ♥, ♦, ♣} −→ {♥, ♠, ♣, ♦} (3.1.7)

which is an element of S4. As it is probably known tomost readers, the total number of
permutations of n objects is n! = n × (n − 1) × (n − 2) × · · · × 2 × 1 which is the
order |Sn| of the symmetric group Sn . In the case of four objects, like the playing card
suits, the number of permutations is just 24 and such is the order of the corresponding
symmetric group.

An example of product of permutations is provided in Fig. 3.4.

3.1.3 Representations of a Group

Once the idea of transformation is absorbed, it becomes evident that every group G
acts as a transformation group on itself, since each of its elements g ∈ G acts, via the
product, on all the group elements γ ∈ G (the same g included) and maps them in
other elements of G. Furthermore it is evident that the same group can operate as a
transformation–group on different spaces. Each of these incarnations of G is named
one of its representations and a central issue of group–theory is the classification of
all possible representations of each G.

To be more precise we ought to rely on the notion of homomorphism. A homo-
morphism is a map from one group G to another group Γ that respects the product
law of the two groups. Let denote by · the product in the first group G and by � the
product in the second group Γ . A map:
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h : G −→ Γ (3.1.8)

is a group homomorphism if and only if the product of two images is equal to the
image of the product, namely for any a, b ∈ G we must have:

h(a) � h(b) = h(a · b) (3.1.9)

Given a group G and a group of transformations T acting on some space S we say
that T is a representation of G, if there exists a homomorphism h : G −→ T .

Among the possible representations a distinctive privileged role is played by the
linear ones. What do we mean by this? To answer such a question we need the notion
of vector space. This is the generalization to arbitrary dimension of the familiar
notion of three-dimensional vectors.

Vector Spaces

Let us consider Fig. 3.5 which displays two vectors v and w in the ordinary three–
dimensional space R3. The basic property of the space of vectors is that vectors can
be summed and the sum is a vector in the same space. For instance the new vector
v + w is displayed in the figure. A vector v can be multiplied also by real numbers
λ ∈ R obtaining a vector λ v that has the same direction if λ > 0 but length λ × |v|
where the latter symbol denotes the length of v. In the case λ < 0 the vector λ v has
direction opposite to the direction of v and length −λ |v|.

Actually the entire vector space V3 of three dimensional vectors can be viewed as
the set of all possible linear combinations of three linear independent vectors e1,2,3
such as the orthonormal versors displayed in Fig. 3.5:

V3 =
{

3⊕
i=1

λi ei | λi ∈ R

}
(3.1.10)

Fig. 3.5 In this picture we
display two vectors v and w
in the ordinary
three-dimensional vector
space V3 � R

3 and we show
their sum. For reference we
display also the three unit
vectors e1,2,3 respectively
aligned with the x, y and z
axis. Every vector in V3 is a
linear combination of the
basis vectors e1,2,3
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Fig. 3.6 The vectors v and
w (and their sum) displayed
in Fig. 3.5 can be expressed
as linear combinations with
real coefficients also of the
non orthonormal basis
vectors εεε1,2,3 displayed in
this figure

The essential point is that the basis of a given vector space is not uniquely defined.
In the case of V3 any other triplet εεε1,2,3 of three vectors that do not lie in the same
plane (this is the concept of linear independence) provides an equally good basis
as the orthonormal set e1,2,3. This is illustrated in Fig. 3.6 which displays the same
vectors v and w already displayed in Fig. 3.5 but emphasizes that they, as any other
vector in the same vector space, can be expressed also as linear combinations of the
non orthonormal triplet εεε1,2,3.

The general concept of vector space emerges therefore from such a discussion.
A vector space V is first of all a commutative group with respect to an operation
that we can name the vector addition. The identity element is the 0-vector and the
inverse of any element (vector) v is just−v. In addition the vector space has a second
operation that is a map:

s : K × V −→ V (3.1.11)

where K is a field typically R - in this case V is a real vector space - or C - in this
case V is a complex vector space. The vector space is of finite dimension n < ∞ if
the maximal number of vectors vi=1,...,n that can be linearly indipendent is n. Linear
independence of r vectors vi=1,...,r means that the equation:

r∑
i=1

λi vi = 0 (3.1.12)

has the unique solution λ1 = λ2 = · · · = λr . This is the generalization to higher
dimension of the condition applying to the n = 3 case that three linear indipendent
vectors cannot lie in the same plane. Surprisingly it took about a century to arrive at
the above four definitions which appear at first sight extremely simple and natural.
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In any n-dimensional vector space we can always choose a basis formed by n
linearly indipendent vectors εεεi=1,...,n and express all the others as linear combination
thereof as in Eq. (3.1.10):

Vn =
{

n⊕
i=1

λi εεεi | λi ∈ K

}
(3.1.13)

The Group of Homomorphisms of a Vector Space V into Itself

Given a finite dimensional vector space Vn there is always a very interesting contin-
uous group of transformations that is associated with it. Mathematically it is named
Hom(V,V) and it consists of all the invertible linear homomorphisms of V into V .
In practice an element of h ∈ Hom(V,V) is a map:

h : V −→ V (3.1.14)

that to each vector v ∈ V associates and image vector h(v) ∈ V . Linearity of themap
is the property that the image of a linear combination must be the linear combination
of the images, namely:

h

(
n⊕

i=1

λi vi

)
=

n⊕
i=1

λi h (vi ) (3.1.15)

Finally the map is invertible if the preimage h−1(w) of any vector w in the image of
the map exists and it is unique.

The Linear Representations of an Abstract Group G

Given the notion of vector space a linear representation D of dimension n of a group
G is a homomorphism:

D : G −→ Hom(V,V) (3.1.16)

Choosing a basis of V , each homomorphism h ∈ Hom(V,V) is translated into an
n × n matrix hi j , so that the representation D(γ ) of every group element γ ∈ G is
provided, at the end of the day, by a suitable matrix Di j . Hence the theory of groups
is intimately related with the theory of matrices that was a crucial focus of attention
in the middle of the XIXth century. In the next sections we trace the historical
development finally leading to the concepts and definitions briefly reviewed in the
present section.
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3.2 From Cayley and Sylvester’s Matrices to Vector Spaces
and Groups: A Long Gestation

Any introductory text on group theorymakes extensive use ofmatrices; from the point
of view of contemporary students inMath and Physwe rightly consider suchmaterial
as simple and elementary, yet this fact, which is true, should not induce us into
the erroneous assumption that what nowadays we call linear algebra is something
naturally obvious for the human mind. Historically it took a rather long time before
the fundamental concepts of linear algebra were consolidated and settled down to
the apparently simple shape used in current textbooks and lecture courses. The same
is true for the abstract notion of a group.

Reconsidering the conceptual history of these ideas is very useful in order to fully
appreciate the degree of abstraction which is tacitly involved in our current way of
thinking, both in elementary mathematics and in elementary physics, a degree of
abstraction which has percolated down the generation–tree and currently makes part
of the educational process. As a result, in the average, the mentality of XXth–XXIst
century students, already incorporates such categorical structures as part of their
logical thinking, which is a non trivial advance.

3.2.1 Cayley and Sylvester: A Short Account of Their Lives

The main figures in the early history of linear algebra are Arthur Cayley and Joseph
Sylvester who became life long friends and whose lives often intersected. Hence we
start our historic outline with a summary of their biographies.

Cayleywas first educated at theKing’s College School in London and then entered
Cambridge University where he studied mathematics. At the beginning he could not
continue an academic career in Cambridge since he refused to take the minor orders
of the Church of England. Having turned to Law, and having worked for 14 years as
an attorney in the City of London, during which he never stopped doing research in
mathematics, at the age of 42Cayleywas electedSadleirianProfessor ofMathematics
in Cambridge, a position that he occupied until his death. He has been one of the
most prolific mathematicians of history giving extensive contributions to different
provinces of algebra, geometry and analysis.

James Joseph Sylvester studied mathematics at St John’s College, Cambridge. He
was not awarded a Cambridge degree since, to that purpose, he had to renounce his
Jewish religion and accept the Thirty-Nine Articles of the Church of England, which
he refused to do. After holding for some time a teaching position in London and
then obtaining a degree from Trinity College in Dublin he became professor in the
United States in Virginia. He stayed there briefly and came back to London where he
studied Law; the following 10 years he worked in an Insurance Company. In London
he met with Cayley and a life-long interaction between the two mathematicians
started which was very fruitful for both. Then he crossed once again the Atlantic and
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for several years he was professor of mathematics at the John Hopkins University in
Maryland. In 1883 he returned to Englandwhere hewas appointed Savilian Professor
of Geometry at Oxford University.

Cayley and Sylvester have been nicknamed the Invariant Twins for their extensive
and outstanding contributions to the theory of invariants.

3.2.2 Matrices in the Middle 1850s

Probably the most important paper in the history of linear algebra was written by
Arthur Cayley (see Fig. 3.7) in 1857–1858 and was published in 1859 on the Philo-
sophical Transactions of the Royal Society of London with the title A Memoir on the
Theory of Matrices [39].

At beginning of his Memoir, Cayley says:
The term matrix might be used in a more general sense, but in the present memoir

I consider only square and rectangular matrices and the term used without qualifi-
cation is to be understood as meaning a square matrix; in this restricted sense, a set
of quantities arranged in the form of a square, e.g.

is said to be a matrix.

Fig. 3.7 Arthur Cayley (Richmond 1821–Cambridge 1895)–James Sylvester (London 1814–
London 1897)
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What originally a matrix meant for Cayley is immediately stated by him. He says
that the notion of a matrix arises as an abbreviation for a system of linear equations:

which may be more simply represented by:

The rather curious and obsolete notation used by Cayley reveals its graphical
motivation in the above equation. The round brackets embracing each other make a
sort of times symbol × which is probably what he liked.

So matrices were born in the field of algebraic equations as many other mathe-
matical items of the XIXth century.

Notwithstanding this equation–based start point, Cayley’s article contains, spelled
out for the first time,most of the concepts that elevate the set ofmatrices to an algebra.
He introduced the multiplication of matrices L.M, the addition of matrices L + M,
the 0-matrix and the identity matrix 1. He also defined the operation of transposition
and gave rules for the calculation of determinants. He went as far as defining rational
functions ofmatrices but there is no indication in this paper that Cayley had developed
the abstract notion of a vector space V and that he identified the matrix as an explicit
representation of a linear map μ : V → V in a basis of V .

The most important result of Cayley’s 1858 Memoir is what was named by pos-
terity the Cayley–Hamilton theorem, namely the statement that the eigenvalues λ of
a matrix M are roots of the characteristic polynomial:

0 = P(λ) ≡ det (M − λ 1) (3.2.1)

After verifying the statement for 2 × 2 matrices, Cayley wrote: I have verified the
theorem in the next simplest case, of a matrix of order 3, but I have not thought it
necessary to undertake the labour of a formal proof of the theorem in the general
case of a matrix of any degree.

In his marvelous thesis which has become the main reference for the early history
of linear algebra [48], Crilly says:

Cayley’s Memoir, which could have been a useful starting point for further devel-
opments, went largely ignored…His habit of instant publication and not waiting
for maturation had the effect of making the idea available even if it was effectively
shelved.

Crilly also wrote: As it is well known, it was Sylvester who introduced the word
matrix into mathematical language in 1850, but he then meant an array of numbers
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from which determinants could be formed. Sylvester’s concern was with determi-
nants, as his consideration for the multiplication rule for determinants shows. A
letter written in 1852 to Cayley by Sylvester shows a matrix being multiplied by
another matrix. It is quite natural for Sylvester to be using row by row multiplication
to obtain the resulting matrix as he was interested in determinants.

The multiplication of matrices row by row introduced by Sylvester (see Fig. 3.7)
is the clearest evidence how far the notion still was in the middle 1850s of a matrix
as an explicit representation of a linear map of a vector space V into itself.

Almost thirty years later in 1882, Cayley visited his friend Sylvester in Baltimore
(Maryland) for the spring semester. There Sylvester told Cayley of his own new
discovery of a theory of matrices, only to be reminded by Cayley of the 1858memoir.
Nevertheless Sylvester explained his rediscovery, in his typical prolix and flourishing
style:

Much as I owe in the way of fruitful suggestion to Cayley’s immortal memoir, the
idea of subjecting matrices to the additive process and of their consequent amenabil-
ity to the laws of functional operation was not taken from it, but occurred to me
independently before I had seen the memoir or was acquainted with its contents; and
indeed forced itself upon my attention as a means of giving simplicity and generality
to my formula for the powers or roots of matrices, published in the Comptes Rendus
of the Institute for 1882 (Vol. 94, pp. 55, 396).

So it was Sylvester, more than Cayley, who took up the development of matrix
theory towards the end of his time at the Johns Hopkins University. N. J. Higham
wrote [115]:

We owe quite a lot of our linear algebra terminology to Sylvester, including the
words annihilator, canonical form, discriminant, Hessian, Jacobian minor, and
nullity. Sylvester coined latent roots, and after reading his explanation of the term,
one may wonder why eigenvalue has supplanted it:

It will be convenient to introduce here a notion (which plays a conspicuous part
in my new theory of multiple algebra), namely that of the latent roots of a matrix
…latent in a somewhat similar sense as vapour may be said to be latent in water or
smoke in a tobacco-leaf.

3.2.3 Cayley and Sylvester: The Invariant Twins

Before we continue tracing back the conceptual history of the notions of a group and
of linear algebra, it is appropriate that we pause to consider in some more detail the
human figures of Cayley and Sylvester.

Let us begin with a vivid picture of Cayley drawn in 1859 by his friend Hirst, as
reported in Crilly’s thesis [48]:

This evening, Friday Dec. 23rd 1859, I called upon Cayley and we had a very
interesting hour’s talk on Curves of the Third Order a propos of Möbius, …
What a wonderful head he has, not merely round but spheroidal with the largest
diameter parallel to his eyes, or rather to the line joining his ears. He never sits
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upright on his chair but his posterior on the very edge he leans one elbow on the
seat of the chair and throws the other arm over the back. Yet he is a keen sighted and
extraordinary man, gentle I think by nature and at once timid, modest and reticent.
Often when he speaks he shuts his eyes and talks as if he were reading from an unseen
book, and talks well too that one has to sharper one’s own wits to follow him.

Crilly comments on that as follows:
Yet for this exceptionally gifted man there was no suitable academic position

available and at one point he considered taking private pupils.
…employment prospects for research scientists in general were bleak in mid century
Britain. Most research was done outside the Universities and those already in teach-
ing posts and whose main interest was primarily in teaching had a little aptitude for
research.

Indeed this was still the time when Cayley, notwithstanding his extraordinary
mathematical production, which proceeded at the pace of six-seven articles per year
and reached, once, that of thirty in one year, was obliged to make a living for himself
working as a conveyancing barrister in the City of London.

A political comment is unavoidable at this point. With respect to this issue, the
difference existing at this time between France and the United Kingdom is striking.
In 1851 Britain was fast becoming the most industrialized nation of the world. The
British Empire was the strongest and largest Dominion on the Planet, the British
Industrial Revolution, based on the use of Technologies originating fromSciencewas
coming to a second stage of sustained development which was influencing society
and the world market to a degree never seen before in history, yet, as Crilly remarks,
in 1857 the only University Institutions with University Status in England andWales
were Oxford and Cambridge, Durham, King’s College and University College in
London, Owen’s College atManchester and Lampeter inWales. Furthermore Oxford
and Cambridge, the main intellectual centres of the Kingdom, were still immobilized
under the obsolete and stiff cape of the Church of England.

On the contrary, in France theÉcole Polytechnique, and theÉcole Normale Super-
iéure, both supported by the State, had already been shaped into the main formation
and research centres of a modern, laic, industrial nation. French mathematicians, if
they were talented, had a typically much easier career then their British colleagues
and obtained much greater respect and honour from the various governments that
succeeded one the other during the complicated French history of the XIXth century.
Thiswas the result of the FrenchRevolution and of the epochalmodernizations, never
too much estimated, that had been introduced by the napoleonic administration. It is
not by chance that revolutionary and napoleonic times have been so immensely pro-
lific in mathematics in France with Laplace, Lagrange, Legendre, Fourier, Monge,
Poncelet, Delambre, Carnot and several others.

As it is well known, the French Revolution had been prepared by the philosophical
remakingof theEuropeanCivilization conducted during theAge of the Enlightenment
by the philosophes of France, Britain and Germany. With Napoleon the Revolution
swept the whole of Europe and, although Napoleon was eventually defeated and his
time was followed by the gloomy Restoration, administrated by clerical Austria, yet,
wherever napoleonic administration had once been, even for a short time, nothing
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was really again as it used to be before. Also in Prussia, one of the main defeaters
of Napoleon, the legacy of the French type of Enlightenment found its original
way of continuing its own development path through the German Idealism of Kant,
Hegel and finally Marx. The hegelian conception of the State certainly helped the
development of the great, state–owned German Universities of the XIXth century,
Göttingen, Berlin, Königsberg, Bonn, Leipzig and highly contributed to the high
prestige and comfortable life of german professors. This is certainly an important
factor in the impressive development of German mathematics in the XIXth century.
Only the British Islands had not been swept by the Napoleonic Armies and for
twenty years His Majesty’s Governments had patiently prepared Napoleon’s final
annihilation. This made the difference in the early lives of two of the greatest British
mathematicians of the same century: Cayley and Sylvester.

In the course of time they came to know each other very well, they became
close friends, they shared very similar mathematical interests and gave important
contributions to the same provinces of mathematics, namely linear algebra and the
theory of invariants. At the beginning of their career, without knowing each other
they stumbled, for the same motivation, in the same obstacle that, in my opinion, is
a shame for Victorian England.

Arthur Cayley was born 1821 in England in a well-to-do family of English mer-
chants boasting descent from the Norman Conquerors. He spent his early years in
Sankt Peterburg, capital of the Russian Empire where his father had established his
business. There are not sure evidences, but it seems that Cayley’s mother was of
Russian origin. He made his secondary studies in London in King’s College School
where he immediately showed many talents, both in mathematics and in languages.
In his adult life he conserved the ability to read Greek and Latin classics in the orig-
inal and furthermore he spoke French as well as English and he was also proficient
in German, language in which he later wrote some scientific papers, as well as he
did in French. At age of 17 he enrolled at Cambridge University, brilliantly passing
the entrance examinations. He mainly studied mathematics and was extremely suc-
cessful in all the tests. In the first three years after graduation Cayley had already
published twenty-five mathematical research papers and he could easily continue a
Cambridge academic career. It was only required that he entered the religious orders
of the Church of England. Cayleywas a christian believer and all of his life he piously
followed the practices of the Church of England, yet he could not accept the idea
that, in order to make an academic career, he should unwillingly become a minister
of the cult. Hence he refused and in 1846 he left Cambridge.

James Joseph Sylvester was born in London seven years before Cayley in a Jewish
family. It seems that the surnameSylvesterwas inventedby James’ senior brotherwho
had emigrated to theUnited States and that surnamewas adopted by the entire family.
Similarly to Cayley, also Sylvester had a brilliant start in secondary studies, first in
London, then in Liverpool. Just as his future friend, he learnt classical languages,
Latin and Greek to such a high degree of perfection that in his late years he could
amuse himself translating Horace poems, writing an essay on Classical Metrics
and the like. Throughout all of his life he used to replenish his scientific papers
with classical quotations that demonstrate his huge classical culture. He also studied
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and became absolutely proficient in French, German and Italian. His interest in
mathematics developed early and similarly to Cayley he enrolled at the University
of Cambridge at the age of 17, entering St. John’s College in 1831. Cayley could
not continue an academic career in Cambridge because he did not want to become
a minister of the cult. Sylvester, by religion being a Jew, could not even obtain his
doctoral degree. Thenecessary condition to obtain the diplomawas that of renouncing
his Jewish faith and subscribe to the Thirty-Nine Articles of the Church of England.
The University of Cambridge, honoris causa, awarded Sylvester the delated doctor
degree in 1871, after that it had been freed from Church surveillance by an Act of
Parliament. At that time Sylvester was already on pension from the Royal Military
Academy of Woolwich where he had been professor for 16 years.

Before telling that part of the story let us go back to the years 1840s when both
Cayley and Sylvester had left, for similar reasons Cambridge University.

In 1841 Sylvester went to the United States where he was Professor at the
University of Virginia for only one year. Then, having a quarrel with the admin-
istration of the university, he resigned and came back to England where in 1846 he
entered the Inner Temple and studied Law. The same did Cayley entering instead
Lincoln’s Inn also in the City of London. Cayley was called to the bar on May 3rd
1849 at the age of twenty seven and for the next 14 years he practiced his profession
as a conveyancing barrister. Sylvester instead worked as an Actuary for the Equity
and Law Life Assurance up to 1856 and the two friends who, by that time, had
become acquainted, had many opportunities to meet and discuss mathematics in the
yards around Lincoln’s Inn. They were both members of the Royal Society and had
already written an impressive number of scientific papers on closely related topics
although they never signed a joint paper.

In 1863 a newchairwas created inCambridge, the Saidlerian chair ofMathematics
and Cayley was elected to it with the duty to explain and teach the principles of pure
mathematics and to apply himself to the advancement of that science. In other words
it was a teaching and research position at the same time, which, as Crilly clearly
explains, was a sort of new gear for Cambridge. Cayley settled down in Cambridge,
married and continued an intense research activity up to his death in 1895.

In 1876 at the age of 62, already a pensioneer, Sylvester was appointed on a full
chair of mathematics by the John’s Hopkins University in Baltimore and worked
there until 1883, becoming also one of the founders of the American Journal of
Mathematics.

In 1883, leaving with regret his American friends, Sylvester made return to Eng-
land being appointed on the Chair of Geometry of Oxford University which he
occupied until his death in 1897.

3.2.4 The Calculus of Operations: Cayley and George Boole

As we emphasized above, the notion of a vector space was completely absent in
the society of 1850s mathematicians although, as we recall in the next section, a
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revolutionary book had already been published in 1844 by an obscure German school
teacher, which, for a long time, no one wanted either to read or to understand.

The lack of this fundamental notion is what prevented Sylvester and Cayley to
properly understand the essence of the matrices with which they were playing a lot
of successful games. Yet Cayley came quite close to the right modern conception.
The first key point was to identify a matrix with an operator or, in the language of
that time, with an operation. The next two obligatory logical points were:

(a) To realize that operations can be combined together and are the objects of an
algebraic calculus. Indeed they are elements of an Algebra.

(b) To inquire what are the mathematical entities on which the action of these oper-
ators is defined. Assessing the definition of such objects means to introduce the
space of which they are elements and there you are: you have discovered the
concept of linear realization of an algebra (or of a group).

Cayley had come to grasp point (a) already four years before publishing the Memoir
on the Theory of Matrices when he wrote another article [38] which can be viewed as
the first paper on abstract group theory. In that publication he started precisely from
the notion of an operation. We shortly come back to this 1854 work by Cayley. Here
we note that, quite curiously and probably quite significantly, the notion of operation
is not mentioned in the 1858 Memoir. However someone else detected this notion
in Cayley’s paper. Crilly discovered that one of the referees of Cayley’s paper was
George Boole, the founder of modern Symbolic Logic (see Fig. 3.8). In his report on
the paper dated March 29th 1858, Boole stated:

This memoir is an application of what has recently been termed Calculus of
Operations, to a particular branch of the Calculus of Functions. A matrix is a complex
symbol denoting an operation by which from any set of quantities {x, y, z}, we form
a set of linear functions of these quantities, e.g.

a x + b y + c z , a′ x + b′ y + c′ z , & c

the number of such functions being in the class of Matrices chiefly considered by
author, equal to the number of the subject quantities. As operations such as the
above may be performed in succession, as the results to which they lead are capable
of addiction and subtraction, as also, here as elsewhere, a direct operation supposes
the existence of a corresponding inverse operation - the inquiry is suggested what are
the distinctive laws of this class of operations, and to what special forms of Calculus,
included under the more general calculus of operations, they give birth. This inquiry
forms the business of the memoir, and its results are developed with clearness and
ability.
In certain general feature they resemble, and necessarily so, the results of all other
special developments of the Calculus of Operations and they are certainly of an
interesting character …

The founder of symbolic logic had clearly spotted the key point of the paper and
in modern language, if he had it at his own disposal, he could give himself the answer
to the question to what special forms of Calculus, included under the more general
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Fig. 3.8 George Boole (Lincoln 1815–Ballintemple 1864)–Boole was born in Lincoln,
Lincolnshire, England, the son of John Boole, a shoemaker and Mary Ann Joyce. He had a primary
school education, and received lessons from his father, but because of the poverty of his family
he could not receive any academic education. William Brooke, a bookseller in Lincoln, may have
helped him with Latin. He was self-taught in modern languages. At age 16 Boole became the bread-
winner for his family, taking up a junior teaching position. He taught briefly in Liverpool. Later
he made a living running a boarding school. From 1838 onwards Boole was in touch with sympa-
thetic British academic mathematicians and enlarged his own culture widely. He studied algebra in
the form of symbolic methods and published research papers. In 1849 he was appointed the first
professor of mathematics at Queen’s College, Cork in Ireland. He died from pneumonia in 1864
as a consequence of his walking under a heavy rain. In 1841 Boole published an influential paper
in early invariant theory. He receive a Medal in 1844 from the Royal Society for another paper on
the same subject. In 1847 he published The Mathematical Analysis of Logic which founded a new
field: symbolic logic, named after him Boolean Algebra

calculus of operations, they (the matrices) give birth. The answer is: an Algebra.
Subsets singled out by proper restrictions can be Lie Agebras and subsets singled
out by other proper restrictions can be Groups. However such an answer in 1858 was
out of reach, even for the founder of symbolic logic, since the three quoted definitions
did not yet exist. The necessary degree of abstraction had not yet been reached.

Yet at least for the last definition, which is actually the first in the hierarchy of
algebraic complexity, namely that of a group, Cayley had come quite close to it in
his paper of 1854 [38]. An interesting analysis of this paper from the viewpoint of a
XXIst century student is provided in a note by David Pengelley [144]. Let us follow
it closely.

At the time Cayley was writing, the only well known group was the permutation
group and to prominence had come its applications in the issue of algebraic equations
introduced by Galois. Yet linear substitutions were considered in the framework of
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quadratic forms and of their invariants (the favorite theme of Cayley and Sylvester)
and also in relation with differential equations. So a general idea of transformation
as an operation was emerging and Cayley tried to capture some general features of
the Calculus of these operations that would correspond to the notion of a group.

Pengelley selected some extracts fromCayley’s paper that are quite useful in order
to appreciate the slow development of fundamental ideas.

At the beginning Cayley says: Let θ be a symbol of operation, which may, if we
please, have for its operand, not a single quantity x , but a system (x, y, . . . ), so that:

θ(x, y, . . . ) = (
x ′, y′, . . .

)
where x ′, y′, . . . are any functions whatever of x, y, . . . , it is not even necessary that
x ′, y′, . . . should be the same in number with x, y, . . . . In particular, x ′, y′,&c. may
represent a permutation of x, y,&c., θ is in this case what is termed a substitution;
and if, instead of a set x, y . . . , the operand is a single quantity x , so that θ x =
x ′ = f (x), θ is an ordinary functional symbol.

Pengelley comments at this point: It is delightfully unclear just how Cayley’s
initial general notion of operation really differs from that of function, and this makes
good classroom discussion.

Indeed this sentence reveals that the notion of function was at that time something
more concrete and analytic then the simple abstract notion of a map from some space
to another space.

Next Cayley expresses very clearly the idea that the symbol θφ denotes the com-
pound operation, the performance of which is equivalent to the performance, first
of the operation φ, and then of the operation θ ; θφ is of course in general differ-
ent from φθ . This shows that he had captured the abstract notion of product which,
in general, is not commutative, yet as he says next, it should be associative since
θ · φχ = θφ · χ .

Few lines below Cayley arrives at his closest approach to the axiomatic definition
of a group saying:

A set of symbols, 1, α, β, . . . all of them different, and such that the product of
any two of them (no matter what order), or the product of any one of them into itself,
belongs to the set, is said to be a group.1 It follows that if the entire group is multiplied
by any one of the symbols, either as further or nearer factor, the effect is simply to
reproduce the group.

Is this the complete axiomatic definition of a group? Let us translate Cayley’s
words into logical symbols. He makes three statements:

(1) ∀ a, b ∈ G : a · b ∈ G.
(2) ∀a, b ∈ G : ∃b′ ∈ G \ a · b′ = b
(3) ∀a, b ∈ G : ∃b′ ∈ G \ b′ · a = b

1[Cayley’s footnote]: The idea of a group as applied to permutations or substitutions is due toGalois,
and the introduction of it may be considered as marking an epoch in the progress of the theory of
algebraic equations.
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If we know that the set G contains also the neutral element e such that ∀a ∈ G,
a · e = e · a = a, then the above three statements imply also the existence of the
inverse a−1 for each element a: indeed it suffices to choose b = e in the property (2)
or (3). Yet if we do not know that such element exists the properties (2) and (3) are
not sufficient to imply its existence. They imply the existence of some element that
mulitplied by a reproduces a but we are not guaranteed that it is the same for all the
elements a ∈ G.

Cayley did not explicitly define the neutral element but he implicitly assumed
its existence since his list of symbols begins with the number 1. The full fledged
axiomatic definition of a group was given by Camille Jordan in 1870 in [118], yet it
is fair to say that Cayley had essentially put it forward in his 1854 paper. Notwith-
standing this, Cayley’s 1858 memoir does not make a clear connection between
matrices and the abstract notion of a group. The main reason is probably that the
notion of a vector spacewas absent. The x, y, z-operandwas seen as a set of quantities
and not yet as the description of another abstract object like a vector v ∈ V .

3.2.5 Grassmann, Peano and the Birth of Vector Spaces

The life and the achievements in mathematics of Hermann Günther Grassmann (see
Fig. 3.9) present similarities with those of another great German scientist, Wilhelm
Killing about whom we will say a lot later on. Both Grassmann and Killing did
not make an academic career and became teachers in secondary schools of Eastern
Prussia; both, notwithstanding their isolation from the main currents of academic
mathematical research, contributed extremely original breakthroughs. Furthermore
for both of them the recognition of their achievements came only later. In the case of
Killing, his work was resumed and brought to perfection by Cartan during Killing’s
life-time. The case of Grassmannwasworse. No one considered seriously hismaster-
piece, namely the book Die Lineale Ausdehnungslehre, ein neuer Zweig der Math-
ematik (The Theory of Linear Extension, a New Branch of Mathematics) that he
published in 1844 (see Fig. 3.10). His abstract approach which was much ahead of
his time, was not appreciated even by such great mathematicians like Kummer or
Möbius, who dismissed it as obscure, criticizing the lack in his work of intuitive
examples. The second revised edition of 1862 had no better fortune. Yet a contem-
porary mathematician, Fearnley Sander, in 1979 described Grassmann’s foundation
of linear algebra as follows:

The definition of a linear space (vector space)... became widely known around
1920, when Hermann Weyl and others published formal definitions. In fact, such
a definition had been given thirty years previously by Peano, who was thoroughly
acquainted with Grassmann’s mathematical work. Grassmann did not put down a
formal definition — the language was not available — but there is no doubt that he had
the concept. Beginning with a collection of units e1, e2, e3, . . . , he effectively defines
the free linear space which they generate; that is to say, he considers formal linear
combinations a1 e1 + a2 e2 + a3 e3 + . . . where the a j are real numbers, defines
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Fig. 3.9 On the leftHermannGüntherGrassman (Stettin 1809–Stettin 1877) -On the rightGiuseppe
Peano (Cuneo 1858–Torino 1932). Grassman has been both a mathematician and a linguist. His
aspirations to become an academic researcher were frustrated and he reached only the level of
teacher first in lower secondary school and later of higher secondary school. During Grassmann
life-time, his book which essentially founded modern linear algebra was completely ignored almost
by everyone both in its first and its second edition. It was only after Grassmann’s death that the
great value of its conception started being appreciated. Born in a village near Cuneo, Peano studied
at the Liceo Classico Cavour of Torino, and then at the University of Torino. He was full Professor
of Infinitesimal Calculus at Torino University since 1888 till 1930 when his chair was renamed
Complementary mathematics. In 1890 he produced his famous curve, the first example of a fractal.
Strongly admired by Bertrand Russel, Peano has been the founder of Modern Mathematical Logic
after Boole. He has contributed also in the fields of differential equations and vector calculus. He
invented a new language, Latino sine flexione, a drastic grammatical simplification of Latin that he
wanted to propose as the international language for mathematics and science. He taught until the
last day of his life in 1932

addition and multiplication by real numbers and formally proves the linear space
properties for these operations. ... He then develops the theory of linear independence
in a way which is astonishingly similar to the presentation one finds in modern
linear algebra texts. He defines the notions of subspace, linear independence, span,
dimension, join and meet of subspaces, and projections of elements onto subspaces.
…few have come closer than Hermann Grassmann to creating, single-handedly, a
new subject.

Indeed it was only in 1888 that Giuseppe Peano (see Figs. 3.9, 3.11 and 3.12)
finally provided the axiomatic definition of a vector space which, from our contem-
porary viewpoint, is so simple and fundamental. Quite significant is the subtitle of
Peano’s book: Preceded by the Operations of Deductive Logic. Apparently it was
necessary, in order to arrive at this fundamental concept that opened up the world of
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Fig. 3.10 On the left the frontispiece of the original book Die Lineale Ausdehnungslehre, ein neuer
Zweig der Mathematik of 1844, authored by Grassmann
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Fig. 3.11 The 1888 book by PeanoCalcolo Geometrico secondo l’Ausdehnungslehre di Grasmann
that contains the formal definition of a vector space. Frontespice. Courtesy of the Bilioteca-Peano
- Dipartimento di Matematica - Universitá di Torino

representation theory, tomake few step further on the path of abstraction. The concept
of space, even of the familiar flat one, had to be dematerialized and axiomatized.

As later Hermann Weyl would say in his the mathematical way of thinking (see
Sect. 6.1.2), also coordinates have to become mere symbols and the mathematician
should forget what the symbols stand for and concentrate only on the operations one
can make on them.
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Fig. 3.12 The 1888 book by PeanoCalcolo Geometrico secondo l’Ausdehnungslehre di Grasmann
that contains the formal definition of a vector space. Some interior pages. Courtesy of the Bilioteca-
Peano - Dipartimento di Matematica - Universitá di Torino

3.3 Classification of Finite Groups

In the previous sections we traced the slow development through the XIXth century
of the abstract definition of a group as an algebraic structure.

Once the conception of groups as abstract mathematical objects is completely
integrated into the fabrics ofMathematics and Physics, the next two natural questions
are:
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(a) The classification issue. Which are the possible groups G?
(b) The representation issue. Which are the possible explicit realizations of each

given abstract group G.

Let us comment on the first issue. If the classification of groups were accomplished,
given a specific realization of a group arising e.g. in some physical system, one might
just identify its isomorphic class in the general classification and know a priori, via
the isomorphism, all the relevant symmetry properties of the considered physical
systems. For finite groups, this means the classification of all possible distinct (non-
isomorphic) groups of a given finite order n. Such a goal is too ambitious and cannot
be realized, yet there is a logical way to proceed.

One is able to single out certain types of groups (the so-called simple groups)
which are the hard core of the possible different group structures. The complete
classification of simple finite groups is one notable achievement of modern math-
ematics in the seventies and eighties of the XXth century which became possible
thanks to massive computer calculations.

Assuming the list of simple groups as given one can study the possible extensions
which allow the construction of new groups having the simple groups as building
blocks.

Also for groups of infinite order there are some general results in the line of a
classification, mainly regarding abelian groups.

For Lie groups the quest of classification follows a pattern very similar to the case
of finite groups, involving the definition of simple Lie groups to be classified first.

In order to address the issue of group classification one ought to introduce several
concepts and general theorems related with the inner structure of a given group; for
instance, essential is the concept of conjugacy classes and of invariant subgroups.

Although the present is a history essay it is appropriate to recall here some of the
fundamental definitions that clarify what we are talking about.

Conjugacy Classes

The conjugacy relation between elements of a group G, (g′ ∼ g ⇔ ∃h ∈ G such that
g′ = h−1gh) is an equivalence relation. Therefore we can consider the quotient of G
(as a set) by means of this equivalence relation. The elements of the quotient set are
named the conjugacy classes. Any group element g defines a conjugacy class [g]:

[g] ≡ {g′ ∈ G such that g′ ∼ g} = {h−1gh , for h ∈ G} . (3.3.1)

Basically, conjugation is the implementation of an inner automorphism of the group;
wemay think of it as a change of basis in the group (it is indeed so for matrix groups).
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Conjugate Subgroups

Let H be a subgroup of a group G. Let us consider

Hg ≡ {
hg ∈ G : hg = g−1hg , for h ∈ H

}
(3.3.2)

which we simply write as Hg = g−1Hg. It is esay to see that Hg is a subgroup. The
subgroups Hg are called conjugate subgroups to H .

Invariant Subgroups

A subgroup N of a group G is called an invariant (or normal) subgroup if it coincides
with all its conjugate subgroups: ∀g ∈ G, Ng = N . When a subgroup is normal the
coset G/N , namely the set of equivalence classes with respect to the relation that
identifies twoG elements if they differ bymultiplication on the right by an H -element
is itself a group, namely the factor group.

Simple, Semi-simple, Solvable Groups

In general a group G admits a chain of invariant subgroups, called its subnormal
series2:

G = Gr � Gr−1 � Gr−2 � . . . � G1 � {e} , (3.3.3)

where every Gi is a normal subgroup.
G is a simple group if it has no proper invariant subgroup. For simple groups, the

subnormal series is minimal:
G � {e} . (3.3.4)

Simple groups are the hard core of possible group structures. There is no factor group
G/H smaller than G out of which the group G could be obtained by some extension,
because there is no normal subgroup H other than the trivial one {e} or G itself.

G is a semi-simple group if it has no proper invariant subgroup which is abelian.
A group G is solvable if it admits a subnormal series Eq. (3.3.3) such that all the

factor groups G/G1, G1/G2, . . ., Gk−1/Gk , . . . are abelian.
A fundamental property of groups which has a profound influence on the con-

temporary episteme is that their intrinsic structure determines their possible linear
representations.

2Following a convention widely utilized in finite group theory we make a distinction between
subgroups and normal subgroups. The notation G ⊃ H simply means that H is a subgroup of G,
not necessarily an invariant one. On the other hand G � N means that N is a normal (invariant)
subgroup of G.
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Fig. 3.13 Issai Schur 1875
Mogilev, (Russian Empire) -
1941 in Tel Aviv (Palestine)

3.4 Group Representation and the Unhappy Life
of the Man of Two Lemmas

Coming to the second issue, a fundamental property of groups which has a profound
influence on the contemporary episteme is that their intrinsic structure determines
their possible linear representations. This is true both for finite and for continuous
groups. Any representation can be split into a finite number of so named irreducible
representations which constitute the building blocks, usually nicknamed irreps. It
is the set of these blocks that the intrinsic group structure uniquely determines. The
only difference between finite groups and continuous groups resides in that for finite
groups the set of irreps is also finite, while for continuous groups it is infinite, but
denumerable and classifiable. In the case of finite groups, irreps are in one-to-one
correspondence with conjugacy classes of G and they are as many as these latter are.

The profound implications of such basic mathematical properties of groups for
the episteme is easily explained. In the thirties of the XXth century, after the advent
of Quantum Mechanics, particularly under the influence of the fundamental book
Gruppentheorie und Quantenmechanik by Hermann Weyl, the labels identifying
an irreducible representation started being renamed quantum numbers and were
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associated with the possible eigenvalues of suitable observable operators. In this way
the spectrum of available physical states appeared to be partially or fully determined
in terms of group theory. Objects of reality are just representations of a symmetry and
the primary entity is, in a fully neo-platonic mode, the abstract algebraic structure,
namely the group. This viewpoint underpins the five points (A)–(E) in which the
contemporary episteme was articulated in Chap. 1. Indeed the possible matter fields
are just sections of vector bundles corresponding to specific representations of the
gauge group, whose intrinsic structure determines the possible types of matter.

These considerations demonstrate the fundamental relevance of group represen-
tation theory.

In the last part of the XIXth century representation theory for finite groups was
developed independently by William Burnside in Britain and by Georg Frobenius in
Germany. About Frobenius we talk more extensively in Chap. 8 in connection with
his fundamental result on division algebras (see Fig. 8.7).

In its present form the theory of finite group representations owes a lot to Issai
Schur who was Frobenius’ student in Berlin. In particular Schur’s lemmas, the first
and the second, are the main instrument to work out the conclusion that irreducible
representations are just in equal number to the conjugacy classes.

Schur was born in a Jewish family in Mogilev, at the time part of the Russian
Empire, today a city of Belarus. In his late childhood he went to Latvia and since
then he always attended German schools and all of his life he considered himself a
German. Indeed he spoke theGerman languagewithout any accent. He enteredBerlin
University in 1894 and there he became Frobenius student obtaining his doctorate
in 1901. From Frobenius, with whom he collaborated, he took up the field of group
representations that he brought to perfection. He made advances also in other fields
of mathematics, in particular in number theory. He invented ante litteram the second
cohomology group of a manifold, utilizing for it a different name. For a short time
he was professor in Bonn. In 1919 he was appointed full professor in Berlin where
he built a famous school. In 1922 Schur was elected to the Prussian Academy, on
Planck’s proposal.

When the Nazis came to power, Schur, as a Jew, was first dismissed from his
University chair, then forced to resign from the Academy and finally in 1939 to
emigrate to Palestine where two years later he died in Tel Aviv. He stubbornly refused
appointments in Britain and the USA, unable to understand why a German could not
be Professor in Germany.



Chapter 4
From Crystals to Plato

χαλεπὰ, τ ὰ καλά

Nothing beautiful without struggle.
Plato

4.1 Mathematics and Crystallography

On the basis of finite group theory, that by the end of the XIXth century was reaching
a firm state of ripeness, the question raised in Sect. 2.2, how many of the Alhambra
patterns are possible? could be answered. The man who found the answer, estab-
lishing that they are exactly 17, as many as those realized in the decorations of
the XIIIth century arabic palace, was the Russian geologist, crystallographer and
mathematician Evgar Stepanovich Fyodorov (see Fig. 4.1).

He published his result about the classification of the symmetry groups of two-
dimensional regular lattices (wallpaper groups) in a paper of 1891 [94] that was
just a warming up exercise for the more ambitious task accomplished by the same
author in the same year, namely the classification of the symmetry groups of three
dimensional lattices and figures, presently dubbed space-groups. Fyodorov found
the list of 230 space groups [93] which constitutes to the present day the back-bone
of crystallography and plays a fundamental rule in all aspects of chemical-physics.

We shortly dwell on the biography of this extraordinary scientist before analyzing
from a mathematical point of view what was his problem, that encodes some of the
most fundamental questions about symmetry and group-theory.

Fyodorov

Fyodorov was born in Orenburg in the Southern Ural region of the Russian Empire
in 1853. Son of a military engineer who left the Urals for the northern capital, Evgraf
Stepanovich graduated from the Sankt Peterburg Military Engineering School in
1872. In 1874, after a brief service in a military engineering unit at Belaya Tzerkov,
he followed courses at the Military Medical Academy of the imperial capital. While
being a student he entered the secret organization Zemlya i Volya (Land and Will),
developing tight contacts with the German Worker Movement. In 1877 Evgraf mar-
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Fig. 4.1 Evgraf Stepanovich Fyodorov (Orenburg 1853–Sankt Peterburg 1919). The man who
classified the 17 wallpaper groups in d = 2 and the 230 space-groups in d = 3

riedLyudmilaVasilievnaPanyutina (1851–1936). In their flat, the newmarried couple
organized the publication of the two revolutionary journals,Nachalo (the Beginning)
and Zemlya i Volya.

In 1881, at the eve of the Narodnaya Volya (People’s Will)1 revolutionary move-
ment’s defeat after the assassination of Alexander II, the 26 year old Fyodorov devel-
oped a strong interest in crystallography and enrolled at the Gorny Institut (Mining
Institut) of Sankt Peterburg graduating in 1883.

Many years later, at the time of the first Russian Revolution of 1905, elections
were conducted to appoint the Director of that Institute and the chosen scientist was
just Evgraf Stepanopvich.

In 1885 Fyodorov joined the staff of the Geological Committee and carried out
geological research in the Northern Urals from 1885 to 1890. In 1894 he was a min-
ing engineer at Turinskie Rudniki in the Urals. In 1895 he was appointed professor at
the Moscow Agricultural Institute. After the revolutionary events of 1905, Fyodorov
became, as we already said, the first elected director of the Mining Institute in St.
Petersburg. His reelection in 1910 was nullified by the government, which feared
the development of revolutionary sentiments among the students and believed that
Fyodorov promoted such development. He was elected a member of the Bavarian
Academy of Sciences in 1896 and an adjunct of the Imperial St. Petersburg Academy
of Sciences in 1901. He resigned from the Imperial St. Petersburg Academy of Sci-
ences in 1905 after failing to obtain support for the establishment of a mineralogical
institute.

Fyodorov began writing his first major work, Principles of the Theory of Figures,
when he was quite young. This fundamental paper published in 1885 contained the
ideas of most of Fyodorov’s subsequent discoveries in geometry and crystallography.
In particular, this work introduced parallelohedrons, that is, the convex polyhedrons

1This movement was an offspring of Zemlya i Volya.
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upon which Fyodorov based his theory of crystal structure. From 1885 to 1890 he
wrote a series of papers on the structure and symmetry of crystals, culminating in the
classic work The Symmetry of Regular Systems of Figures [93]. This work presented
the first derivation of the 230 space groups known as Fyodorov groups. The groups
were derived at almost the same time by the German mathematician A. Schoenflies.
An epistolar correspondence between Fyodorov and Schoenflies provided mutual
consultations on the derivation of the space groups, and Schoenflies later published
a letter in which he confirmed that Fyodorov’s derivation was the first.

The 1917 Bolshevik Revolution found in Fyodorov an enthusiastic supporter who
believed that it would bring a brilliant future to Russia and to Russian Science. Unfor-
tunately the material conditions of living in Sankt Peterburg were not so brilliant, in
the early Bolshevik years, as Fyodorov hoped for: nutrition and heating were quite
scan. Evgraf Stepanovich fell ill of pneumonia in the spring of 1919 and died on
May 21st of that year.

4.1.1 Crystallographic Groups

Most chemical compounds that exist at room temperature in a solid state have a
crystalline structure and crystals are known to mankind since remote ages. The
macroscopically observable structure of crystals corresponds, at the atomic level,
to a periodic disposition of the atoms, ions or molecules that form the material.
This results in symmetric shapes of macroscopic samples of the compound that are
invariant under rotations and translations forming a group (see for instance Fig. 4.2).

Fig. 4.2 Apatite crystal fromCerro deMercadoMine, Victoria deDurango, Cerro de los Remedios,
Durango, Mexico. Matteo Chinellato - ChinellatoPhoto/Getty Images
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Fig. 4.3 A view of the self-dual cubic lattice on the left and of the hexagonal lattice on the right

Mathematically we describe the structure of a crystal saying that the elementary
constituents (ions, atoms or molecules) are disposed on the vertices of a lattice such
as those depicted in Fig. 4.3, which are images of the cubic and of the hexagonal
lattice, respectively.

4.1.1.1 Lattices

The notion of lattice is relatively simple, once the notion of vector space is granted.
Let us begin with the planar case which allows for simple visualizations. According
to what we explained in Sect. 3.1.3 the planeR2 can be viewed as a two-dimensional
vector space and each of its points {x, y} can be identified with a vector v, namely
the oriented segment which reaches it from the origin {0, 0}.

As we emphasized in the quoted section, there are infinitely many possible bases
of the same n-dimensional vector space V. It suffices to choose an n-tuple of linearly
independent vectorswww1, . . . ,wwwn . In the planar case it suffices to choose a pairwww1,www2.
Hence let us choose a specific basis, for instance the orthonormal basis www1 = e1 =
{1, 0},www2 = e2 = {0, 1}. Once the basis is chosenwe can do somethingweird. Instead
of considering all possible vectors, namely the entire vector space V , we can consider
the infinite subset Λwww ⊂ V formed by all those vectors that in the given basis have
integer valued components:

Λwww =
{

n⊕
i=1

mi wwwi | mi ∈ Z

}
(4.1.1)
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Fig. 4.4 In this picture we
display an image of the
square lattice generated by
the orthonormal basis e1, e2.
The points of the lattice are
marked as small circles. The
vector v shown in the figure
belongs to the vector space
V = R

2 generated by e1, e2,
but not to the corresponding
lattice, since its components
with respect to the chosen
basis are not integer
numbers. On the other hand
the vector u, having integer
components in this basis,
belongs to the square lattice

The set Λwww defined in Eq. (4.1.1) is what we name a lattice and its elements form
an abelian group with respect to the addition (the sum of two vectors in the lattice
belong to the lattice), the identity element being the 0-vector. As an abstract group,
the lattice is just the tensor product of n copies of the group Z.

If we apply this recipe to the planar case with the above chosen orthonormal basis
we obtain the square lattice shown in Fig. 4.4.

One can choose another basis, for instance:

www1 = {1, 0} ; www2 =
{

−1

2
,

√
3

2

}
(4.1.2)

and applying the definition (4.1.1) one obtains another lattice, in this case the hexag-
onal lattice which is shown in Fig. 4.5.

In higher dimensional vector spaces everything is analogous. Once a basis is
chosen, the corresponding lattice is given. In three dimensions, for instance, the cubic
lattice displayed in Fig. 4.3 is generated by the orthonormal basis e1 = {1, 0, 0}, e2 =
{0, 1, 0}, e3 = {0, 0, 1}. The hexagonal lattice shown in the same figure is instead

generated by the basis vectors www1 = {1, 0, 0}, www2 =
{
− 1

2 ,
√
3
2 , 0

}
, www3 = {0, 0, 1}.

4.1.1.2 Crystallographic Groups and the Bravais Lattices for n = 3

The continuous rotation group O(n), transforms the vector space V � R
n into itself.

Given a lattice Λ, the question is whether there is a non trivial subgroup GΛ ⊂ O(n)
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Fig. 4.5 An overview of the hexagonal two-dimensional lattice generated by the two base vectors
displayed in Eq.4.1.2

that leaves Λ invariant. By invariance of the lattice one understands the following
condition:

∀ γ ∈ GΛ and ∀q ∈ Λ : γ · q ∈ Λ (4.1.3)

namely the image of any lattice point created by any element of the group is another
lattice point. A generic lattice Λ is not invariant with respect to any proper subgroup
of the rotation group G ⊂ SO(n), namely the corresponding symmetry group is just
the identity element.

For n = 3 lattices that have a non trivial symmetry group G ⊂ O(3) are those
relevant to Solid State Physics and Crystallography. There are 14 of them grouped in
7 classes that were already classified in the XIXth century by Bravais. The symmetry
group G of each of these Bravais lattices ΛB is necessarily one of the well known
finite subgroups of the three-dimensional rotation group O(3). In the language uni-
versally adopted by Chemistry and Crystallography for each Bravais lattice ΛB the
corresponding invariance group GB is named the Point Group.
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According to a standard nomenclature the 7 classes of Bravais lattices are
respectively named Triclinic, Monoclinic, Orthorombic, Tetragonal, Rhombohedral,
Hexagonal and Cubic. Such classes are specified by giving the lengths of the basis
vectors wμ and the three angles between them.

An abstract group Γ is named crystallographic in n-dimensions if there exists an
n-dimensional lattice Λn with basis vectors wμ such that there is a isomorphism:

ω : Γ → H ⊂ O(n) (4.1.4)

where O(n) is the n-dimensional rotation group and the subgroup H leaves the lattice
Λn invariant. Obviously in the basis wμ all group elements of H ∼ Γ are integer
valued matrices.

When a group Γ is crystallographic with respect to a given n-dimensional lattice
Λn we say that it is the Point Group of Λn .

4.1.1.3 The Proper Point Groups

Restricting one’s attention to n = 3, it was shown in the classical crystallographic
literature that the proper point groups that appear in the 7 lattice classes are either
the cyclic groups Zh with h = 2, 3, 4, 6 or the dihedral groups Dihk with k = 3, 4, 6
or the tetrahedral group T12 or the octahedral group O24. Indeed the n = 3 crys-
tallographic point groups are, by definition, finite subgroups of the rotation group,
hence they must fall in the classification of these latter. Yet not every finite rotation
group is crystallographic. For instance there is no lattice that is invariant under the
icosahedral group and in general in a n = 3 point group there are no elements with
orders different from 1, 2, 3, 4, 6.

4.1.2 Platonic Groups

We arrive in this way at an important conclusion. The physical structure of reality,
for what attains such a relevant subclass of materials as those that have a crystalline
form, is a priori mathematically determined by available and classifiable symmetries,
namely by available groups of a certain class i.e. crystallographic groups Γcrys in
n-dimensions which are a subclass of the finite subgroups of the rotation group in
the same dimension:

Γfinite ⊂ O(n) ; |Γfinite| < ∞ (4.1.5)

We have used the generic notation n instead of the value n = 3 in order to stress
that the problem can be formulated in any dimension and consists of two steps,
first the derivation of all the finite subgroups Γfinite ⊂ O(n), next the determination
among them of the crystallographic ones, which entrains the construction of the
corresponding invariant lattices.
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For n = 3 the finite subgroups of the rotation group are the Platonic Groups
since they correspond to the symmetry groups of the regular solids or of the regular
polygons.

Hence the seeds of crystallography are contained in the Platonic conceptions of
2500 years ago! Evenmore fascinating is the isomorphismof the PlatonicGroup clas-
sification with the classification of simple Lie algebras, to be discussed in Sect. 5.6.

Let us analyze Plato’s philosophy and mathematics in relation with the regular
solids.

4.2 Plato and the Regular Solids

The first mention in history of the five regular solids of Euclidian Geometry in three-
dimensions, namely the Tetrahedron, the Cube, the Octahedron, the Icosahedron and
the Dodecahedron, occurs in Plato’s dialogue Timaeus [44], which was probably
composed about the year 360 B.C. (see Fig. 4.6).

In our contemporary understanding of mathematics we have a powerful technique
to prove that the possible regular solids are just five, starting from the notion of
symmetry, namely from finite group theory. Each regular solid singles out a finite

Fig. 4.6 The 1578 Stephanus edition of Plato’s works
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Fig. 4.7 The first of the five platonic regular solids is the tetrahedron that has 4 faces that are
equilateral triangles, 4 vertices and 6 edges. The discrete subgroup T12 ⊂ SO(3) of the rotation
group each element of which maps the regular tetrahedron into itself is a finite group or order 12

subgroup of the rotation group containing those transformations that map the solid
into itself. If we are able to classify the possible symmetry groups, a classification
of the solids follows from that.

There is just one loophole that we have to take into account in this reasoning.
There might be two solids that have the same symmetry group. Under a rotation,
vertices are mapped into vertices, faces into faces and edges into edges. Hence if
two solids are dual to each other in the sense that one obtains one from the other by
interchanging vertices with faces (this is done by taking as vertices of the new solid
the central points in the faces of the old one), then it is clear that those rotations that
map the first solid into itself do the same with the second one.

It is a very remarkable thing that by a simple argument that we sketch in the next
section, the classification of finite discrete subgroups of the rotation group is reduced
to the enumeration of solutions of a certain Diophantine equation, namely an alge-
braic equation with integer coefficients for integer valued unknowns. It is even more
remarkable that the very same Diophantine equation emerges in the classification of
simple Lie algebras, as we are going to see in Sect. 5.6, and even in the classification
of singularity types as we briefly mention further on.

Such Diophantine equation admits two infinite families of solutions and three
exceptional sporadic solutions. In the case of finite subgroups of SO(3) the two
infinite families of solutions of the Diophantine equation correspond to the cyclic
groups Zn that we have already introduced and to the dihedral groups Dn that we are
going to introduce in next section. In the case of simple Lie algebras the two infinite
families of diophantine solutions correspond, in the same order, to the Lie algebras an
associated with the matrix groups SL(n + 1,C) and to the Lie algebras dn associated
with the matrix groups SO(2n,C). The three sporadic solutions, correspond instead
to the three symmetry groups T12, O24 and I60 of the Tetrahedron (see Fig. 4.7), of
the Octahedron (see Fig. 4.8) and of the Icosahedron (see Fig. 4.9).
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Fig. 4.8 The next two of the five platonic regular solids are the regular octahedron and the cube.
The octahedron has 8 faces that are equilateral triangles, 6 vertices and 12 edges. The cube instead
has 6 faces that are squares, 8 vertices and 12 edges. These two solids are dual to each other since one
obtains one from the other by exchanging faces with vertices. If we take as vertices of a new solid
the central points of the six faces of a cube and we join them with edges we obtain an octahedron.
This means the discrete subgroup O24 ⊂ SO(3) made by those rotations that map a cube into itself
has the same property with respect to the octahedron. This unique discrete subgroup has order 24
and it is named the octahedral group

Fig. 4.9 The last two of the five platonic regular solids are the regular icosahedron and the cube.
The icosahedron has 20 faces that are equilateral triangles, 12 vertices and 30 edges. The regular
dodecahedron has 12 faces that are regular pentagons, 20 vertices and 30 edges. These two solids
are dual to each other in the same way as the octahedron and the cube. Taking as vertices of a new
solid the central point in the 12 faces of the dodecahedron and joining them with edges one obtains
the icosahedron. It follows that also in this case there is a unique subgroup of the rotation group
named I60 ⊂ SO(3) that is the symmetry group of both the icosahedron and the dodecahedron. This
group is named the icosahedral group and has order 60
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In the Lie algebra case the three sporadic solutions are respectively associated
with the exceptional Lie algebras e6, e7 and e8. In a language that will become clear
while considering the constructions of Chap. 5, the simple algebras an, dn, e6,7,8 form
the set of simply laced Lie algebras. Hence the classification of finite subgroups of
the rotation group is in one-to-one correspondence with the classification of simply
laced Lie algebras and this classification is named the ADE-classification.

We can now understand the enumeration of platonic solids. There is a pair (a solid
S and its dual S) for each of the exceptional groups T12, O24 and I60. The result
would be six but it is 5 since the first solid in the list, the tetrahedron is self-dual.
Indeed there are four faces and four vertices in this solid and constructing the dual
of a tetrahedron we obtain another tetrahedron.

In view of the fundamental relevance of the mentioned Diophantine equation it is
mandatory to recall the little we know about Diophantus.

Diophantus

We have very scarce information about the life of Diophantus from Alexandria (see
Fig. 4.10) and even the dates of his birth and death are unknown. Various philological
arguments and a few certain historical references place his life somewhere in a rather
wide time-range of about five centuries from 150 BC to AD 415. Accepting as true
a story related by the great XI century byzantine historian Michael Psellus in one of
his letters that was discovered by the French scholar Paul Tannery (1843–1904) in
the Escurial Library in Spain, we can pin down the life span of Diophantus to the
third century AD. According to Psellus, Anatolius of Alexandria, a philosopher who
was Bishop of Laodicea in the decade 270/280 AD, dedicated a treatise on arithmetic
composed by himself to the great mathematician Diophantus who, on the basis of
this, was presumably his contemporary [155].

What is certain is that the main work of Diophantus Arithmetica (,A�ιθμητ ικά)
written, according to tradition, in thirteen books, six of which have come down to us
in the original Greek version, has played an outstanding role in the history ofModern
Mathematics. Translated fromGreek into Latin in 1621 by the FrenchMathematician
Claude Gaspard Bachet de Méziriac [9] was studied by many scholars and won to
Diophantus the nick-name of Father of Algebra. A copy of this published Latin
version was in possession of Pierre de Fermat and on the margin of one of its pages,
the French genius noted with his pen his famous third theorem, whose proof he
omitted stating that it was very simple. As it is well known, after many efforts that
lasted three centuries, the proof was finally established by Andrew Wiles in 1995.
As we stressed, only six of the thirteen books of the Arithmetica are extant in the
Greek original. The remaining books were believed to be lost, until the discovery of
a medieval Arabic translation of four of the remaining books in a manuscript that
was kept in the Shrine Library in Meshed in Iran. The manuscript was discovered in
1968 by F. Sezgin [158].

Let us now return to the analysis of Plato’s dialogue and of his philosophical-
mathematical conception.
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Fig. 4.10 Diophantus and its book translated into Latin by Gaspard Bachet de Méziriac

Plato’s Timaeus and the Regular Solids

All sporadic solutions of a given problem have always duely excited the imagina-
tion of any mathematician or theoretical physicist throughout the history of science.
The property of being sporadic generates the suspect that the considered sporadic
mathematical object is endowedwith special significance, having somehidden funda-
mental property which promotes its candidacy to be a fundamental brick in Nature’s
Architecture. Therefore it is not too much surprising that the five sporadic regular
solids strongly impressed Plato and excited his philosophical creativity, leading him
to associate them with the fundamental architecture of the physical world.

As any serious philosopher or scientist should do at any time, Plato had to encom-
pass, within the framework of his new theory of the world, all the laws of Nature as
they were known by his time. In the fourth century B.C. the prevailing conception of
the physical world was that originated from Empedocle’s theory, which envisaged
four fundamental elements to be the ultimate constituents of matter: Earth, Air, Fire
and Water. Plato produced a mathematization of Empedocle’s theory associating a
regular solid to each of the four elements. He associated Fire with the Tetrahedron,
Air with the Octahedron, Water with the Icosahedron and he left apart the Dodeca-
hedron as an extra Decoration of the World for which his pupil Aristotle found later
a dignified association with the Empyreal Aether (see Fig. 4.11).
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Fig. 4.11 The four elements of ancient physics, Earth, Fire, Water and Air are identified with four
of the five regular solids in Plato’s Timaeus

Plato’s choices were not arbitrary, rather they were motivated by an underlying
quite elaborated conception which is deeply rooted in the fundamentals of Platonic
philosophy. Indeed Timaeus is one of the most important of Plato’s dialogues, where
the exposition of his philosophy is most extended and systematic.

To begin with, the main speaker of the dialogue, the very Timaeus of Locri,
quite seemingly an invented character, is implicitly presented as a philosopher of
the Pythagorean school. As I mentioned in Chap. 2, the Pythagoreans were the first
to conceive a mathematical vision of the world, actually an arithmetical one. After
they discovered that musical instruments that produce consonant sounds are related
to one another by simple numerical ratios, the Pythagoreans sought to establish
other correspondences between integer numbers and natural processes. In the already
quoted words of Aristotle, they concluded that the elements of numbers are the
elements of things.

The pythagorean dream of an arithmetical physics came to a sudden endwhen one
member of the same school discovered the existence of the incommensurables, that
is, of magnitudes which can be constructed geometrically but stand in no conceivable
proportion to one another. As we know from our modern mathematical wisdom, this
was the first step towards the discovery of the real numbers R that were properly
axiomatized only in the XIXth century. Indeed what the Pythagorean discovered
were the irrational numbers like

√
2, the trascendental numbers like the Euler e

being still to come. From our current point of view, educated by differential and
integral calculus, which, incidentally might have been also the viewpoint of the
later Archimedes (287–212 B.C), nothing non mathematical was inherent to the
incommensurables, yet from the philosophical stand point of the pythagoreans who
viewed the essence of things in the integer numbers this was a serious inconvenience
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and produced a serious doubt about the existence of a mathematical theory of the
world. In particular the existence of the incommensurables highlighted a discrepancy
betweengeometry andarithmetic that in the pythagorean conception, probably shared
by Plato, was the essence of mathematics. This raises the question whether Plato,
admired by the modern founders of physics Copernicus, Kepler and Galilei, as the
ancient philosopherwho shared their belief inmathematics as the language ofNature,
was actually committed to a mathematical theory of the world. According to Roberto
Torretti [164] there are several hints that he was not. In the dialogue The Republic
he says:Motion presents not just one, but many forms. Someone truly wise might list
them all, but there are two which are manifest to us.2 According to Torretti: One is
that is imperfectly illustrated by celestial motions. The other is the musical motion,
studied by Pythagorean acoustics. The same Torretti stresses that Plato’s warning to
would-be astronomers, that they should not expect heavenly bodies to be excessively
punctual, nor spend too much effort observing them in order to grasp their truth,
was probably aimed at none other than the young Eudoxus, who, while the Republic
was being written, attended Plato’s lectures and perhaps mentioned his plan for a
mathematical theory of planetary motions [164].

The life span of Eudoxus of Cnidus is probably (408–355 B.C.) and it is gener-
ally believed that his work is the ground basis of Euclid’s Vth Book, dealing with
the exact quantitative comparison of geometrical magnitudes, irrespectively whether
they are commensurable or not. He was also the first developper of Greek mathemat-
ical astronomy. He introduced models of the heavenly motions based on uniformly
rotating spheres whose poles, at the extremity of the rotation axes, are pinned on
other rotating spheres. Such models evolved in the Ptolemaic theory of the cycles
and epicycles that dominated astronomy for almost two thousand years up to the
Copernican revolution.

The quite successful outcome of the models conceived by his pupil Eudoxus
seem to have convinced Plato, in his older age, of the feasibility of a mathematical
theory of heavenly motions. According to Torretti, Plato reconciled his opposition
to a mathematical theory of physical phenomena with this counter evidence from
astronomyby setting apart the heavenly bodies, as intelligent entities,whose behavior
is quite different from the clumsy, unpredictable behavior of the inanimate objects
that surround us [164].

In modern parlance Plato’s distinction might be rephrased as the distinction
between simple few-body systems following the fundamental laws of fundamen-
tal interactions and complex systems admitting just a thermodynamical description.
Nonetheless the question remains whether Plato’s theory of the world is ultimately
mathematical in character or not.

In my humble opinion, the answer is very simple and fully sustained by the
long exposition of the Pythagorean Timaeus in the homonymous dialogue. Plato’s
theory of the physical world is geometrical as opposed to arithmetic, Geometry
and Arithmetic being two branches of Mathematics in our present day view, yet
philosophically different in Plato’s and Pythagorean perception.

2Plato, Respub 530d1.
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Let us review the essentials of the theory presented in Timaeus.
The Demiurge, Creator of the Universe, was by definition the Very Good One

and therefore he wanted to create things as much similar to himself as he might do.
The Very Good One nothing is allowed to do that is not the most beautiful, since in
Greek mentality the good and the beautiful coincide (remember the καλoκα̌γ αθ òς
of Xenophon). Hence the Demiurge made the World beautiful, which, in line with
the Canon of Polykleitos (see Sect. 2.1), means in good proportions. Indeed Timaeus
says: Now that which is created is of necessity corporeal, and also visible and tan-
gible. And nothing is visible where there is no fire, or tangible which has no solidity,
and nothing is solid without earth. Wherefore also God in the beginning of creation
made the body of the universe to consist of fire and earth. But two things cannot
be rightly put together without a third; there must be some bond of union between
them. And the fairest bond is that which makes the most complete fusion of itself
and the things which it combines; and proportion is best adapted to effect such a
union. For whenever in any three numbers, whether cube or square, there is a mean,
which is to the last term what the first term is to it; and again, when the mean is to
the first term as the last term is to the mean-then the mean becoming first and last,
and the first and last both becoming means, they will all of them of necessity come
to be the same, and having become the same with one another will be all one. If the
universal frame had been created a surface only and having no depth, a single mean
would have sufficed to bind together itself and the other terms; but now, as theworld
must be solid, and solid bodies are always compacted not by one mean but by two,
God placed water and air in the mean between fire and earth, and made them to
have the same proportion so far as was possible (as fire is to air so is air to water,
and as air is to water so is water to earth); and thus he bound and put together a
visible and tangible heaven. And for these reasons, and out of such elements which
are in number four, the body of the world was created, and it was harmonised by
proportion, and therefore has the spirit of friendship; and having been reconciled to
itself, it was indissoluble by the hand of any other than the framer.

Translating into modern physical terms, the Demiurge created the Universe out of
radiation (=fire) andmatter (=earth) since what is generated has to be felt (=gravity)
and it has to be seen (you need light). Yet in order to fulfil the imperative of beauty
you need proportions and this implies at least one mean x as to be able to write
F
X = X

E where F stands for fire and E for earth (this is certainly reminiscent of
Eudoxus’ theory ofmagnitude comparisons exposed in Euclid’sVth book). However,
the Universe had to be three-dimensional, rather than two-dimensional. In d = 3 one
mean is not sufficient to write proportions of solid bodies so you need two means
X,Y so to be able to write F

X = X
Y = Y

E . The X and the Y were the two additional
elements Air and Water.

The argument that leads to the identification of the four elements with four out of
the five regular solids is quite elaborate and based on the fundamentals of Platonic
Idealism. For Plato, as it is well known, the real beings are just the Ideas, while the
material world is made of imperfect copies of the true entities, the shadows on the
walls of the cavern in the myth of the Antrum Platonicum. Yet the subdivision in two
is not sufficient as Timaeus explains: This new beginning of our discussion of the
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universe requires a fuller division than the former; for then we made two classes,
now a third must be revealed. The two sufficed for the former discussion: one, which
we assumed, was a pattern intelligible and always the same; and the second was only
the imitation of the pattern, generated and visible. There is also a third kind which
we did not distinguish at the time, conceiving that the two would be enough. But now
the argument seems to require that we should set forth in words another kind, which
is difficult of explanation and dimly seen. What nature are we to attribute to this new
kind of being? We reply, that it is the receptacle, and in a manner the nurse, of all
generation.

The patterns are the Ideas, the imitations of the patterns are the Physical Phenom-
ena, the receptacle is just Space, the space of Geometry.

After this momentous conceptual insertion, Timaeus embarks on two auxiliary
discussions. On one side he observes the regime of continuous transformations of
the four elements, their dynamical and chemical interactions that make it difficult to
distinguish them in a firm way: I must first raise questions concerning fire and the
other elements, and determinewhat each of them is; for to say, with any probability or
certitude, which of them should be called water rather than fire, and which should be
called any of them rather than all or some one of them, is a difficult matter. In modern
terms Timaeus remarks that matter changes shape and status since it is probably
made of subconstituents as it was claimed by the atomist Democritus (see Fig. 4.12).
Secondly Timaeus calls geometry into the play by saying: In the first place, then, as
is evident to all, fire and earth and water and air are bodies. And every sort of body
possesses solidity, and every solid must necessarily be contained in planes; and every
plane rectilinear figure is composed of triangles; and all triangles are originally of
two kinds, both of which are made up of one right and two acute angles; one of them
has at either end of the base the half of a divided right angle, having equal sides,
while in the other the right angle is divided into unequal parts, having unequal sides.
Thus Timaeus argues that all the elements are three-dimensional bodies that occupy
a finite portion of space. Such finite volumes correspond to some solids delimited
by faces that are, on their turn, finite portions of the plane. All plane figures and
in particular the faces of the considered solid can be triangulated, namely they can
be decomposed into triangles. All triangles, on their turn, can be decomposed into
two rectangular triangles as shown in Fig. 4.13. There are two cases: either the two
constituent triangles of the considered triangle, have unequal sides meeting at the
right angle or they have equal sides. Timaeus states that the constituent triangles are
thefinal subconstituents ofmatter andhenceof the four elements: in short these are the
platonic version of Democritus’ atoms. Indeed Timaeus says: These (the constituent
triangles), then, proceeding by a combination of probability with demonstration, we
assume to be the original elements of fire and the other bodies; but the principles
which are prior to these God only knows, and he of men who is the friend God. At
this very point the supreme principle of beauty is utilized which is the Greek word
for symmetry, as we emphasized several times. Timaeus continues: Now of the two
(constituent) triangles, the isosceles has one form only; the scalene or unequal-sided
has an infinite number. Of the infinite forms we must select the most beautiful, if we
are to proceed in due order, and any one who can point out a more beautiful form
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Fig. 4.12 Democritus
(c. 460–c. 370 BC)

Fig. 4.13 Every triangle
ABC can be decomposed in
two rectangle triangles ABE
and EBC. Generically the
remaining two angles, of
these two triangles, apart
from the 90◦ angle are
different, being their sides
unequal

than ours for the construction of these bodies, shall carry off the palm, not as an
enemy, but as a friend. Now, the one which we maintain to be the most beautiful
of all the many triangles (and we need not speak of the others) is that of which the
double forms a third triangle which is equilateral. The casewhere the two constituent
triangles of another triangle are isosceles is unique as it is shown in Fig. 4.14. Such
triangles have two 45◦ angles and one 90◦ angle.
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Fig. 4.14 The isoscele
rectangular triangle is
unique: it has two 45◦ angles
apart from the 90◦ one

Fig. 4.15 The most
beautiful scalene rectangular
triangle is that one that has
one 90◦ angle, one 60◦ angle
and one 30◦ angle

It remains to choose one case among the infinite scalene instances of rectangular
triangles and our choice must correspond to the most beautiful case. There is no
other such triangle - asserts Timaeus - that is more beautiful than that one which,
once doubled, makes an equilateral triangle. Such a triangle has one angle of 90◦, one
of 60◦ and one of 30◦. One of the two sides meeting at the right angle is obviously√

3
2 times longer than its companion (see Fig. 4.15).
In this way Plato elaborates a conception according to which there are sub-

constituents of the basic elements, namely triangles with quantized angles θ =
30◦, 45◦, 60◦ or 90◦ and the faces of the fundamental elements∼solids are either
squares or equilateral triangles that can be constructed by adjoining two triangles of
the above classes (Figs. 4.14 and 4.15).

The Tetrahedron, the Octahedron and the Icosahedron have equilateral triangu-
lar faces so that they are made of the same unique type of subconstituents. Their
identification with Fire, Air and Water is somewhat arbitrary and it is made in order
of complexity, assuming that Fire is thinner than Air and Air is thinner than Water.
The Cube, whose square faces can be decomposed in terms of the other species of
constituent triangles, is set apart and associated with Earth which looks less akin to
be transformed into Fire, Air or Water than the other three are akin to transform
into eachother. This conception provided also an embryonal idea of chemical reac-
tions conceived as the dissociation and reassociation of the elementary constituent
triangles.



4.2 Plato and the Regular Solids 79

Notwithstanding the self-consistency of the platonic scheme it is rather obvious
that it had no other real motivation but the need to exclude one of the five solids,
since the elements to be explained were four rather than five. The Dodecahedron,
having pentagonal faces cannot be decomposed into the same type of subconstituent
triangles as the other four platonic solids. Had Plato come to the concept of duality
and had he arrived at the mathematical notion of symmetry group, which was instead
introduced two thousand years after him, he would have had at his disposal three
rather than five candidates for the fundamental bricks of matter. There is no doubt
that Plato would have highly liked the intrinsic notion of symmetry group, which
perfectly fits into his Philosophy of Ideas, the representation of a group being a
magnificent example of the material shadows or receptacles of becoming, yet it is
difficult to imagine how he would have solved the excess of fundamental elements
to be explained: may be by identifying two of them? It is anyhow curious to note that
the quantization of angles in the first quadrant (θ = 30◦, 45◦, 60◦ or 90◦) introduced
by Plato is the same that occurs in the classification of root-spaces, the main basis in
the classification of simple Lie algebras.

An important lesson told by the above analysis is the following. It is indeed fruitful
to focus on sporadicmathematical objects in the quest for the interpretation of natural
laws, yet if you have to introduce arbitrary choices among the sporadic structures a
strong suspicion should arise that you are not on the right track. Logically there are
three possible origins of error:

1. Notwithstanding its appeal, the considered sporadic mathematical structure has
no place in Nature’s Architecture.

2. The current formulation of the fundamental laws of Nature has a flaw. It needs a
motivated revision, leading either to an increase or to a reduction by identification
of the postulated constituents.

3. The considered features of the sporadic mathematical structure under study are
not the really fundamental ones.Newmathematical principles are possibly needed
to revise our understanding of the mathematical objects we play with.

The first possibility cannot be excluded yet it is unlikely. Sooner or later all excep-
tional mathematical objects have come into play in Physics and Chemistry. The other
two possibilities are not mutually exclusive. In the case of Plato’s Timaeus, Empedo-
cle’s four elements had to be replaced by more adequate constituents whose number
is not four. A substantial flaw occurred in the laws ofNature as seen at that time. From
the theoretical point of view the relevant feature was not encoded in the geometrical
appearance of the solids, rather in their group of symmetries.

In the next section we obtain the ADE classification of the finite subgroups of
SU(2), which are the binary extensions of the finite rotation groups.



80 4 From Crystals to Plato

Fig. 4.16 Every element of the rotation group O(�,m,n) ∈ SO(3) corresponds to a rotation around
some axis a = {�,m, n}. On the surface of the two-sphere S2 this rotation has two fixed points, a
North Pole and a South Pole that do not rotate to any other point. The rotation O(�,m,n) is the image,
under the homomorphism ω of either one of 2 × 2 - matrices U ±

�,m,n that, acting on the space C2,
admit two eigenvectors z1 and z2. The one-dimensional complex spaces p1,2 ≡ λ1,2z1,2 are named
the two poles of the unitary rotation

4.2.1 The Diophantine Equation that Classifies Finite
Rotation Groups

We begin by considering one parameter subgroups of SO(3). These are singled
out by a rotation axis, namely by a point pS = {�,m, n} on the two–sphere S

2.
Mathematically a two-sphere is the locus in three-dimensional space of all the points
{�,m, n} that have the same fixed distance, say 1 in some length units, from some
reference point, say 0 = {0, 0, 0}, which is the centre of the sphere. This yields the
equation:

�2 + m2 + n2 = 1 (4.2.1)

The unique infinite line that goes through the origine 0 and through the point pS can
be regarded as the rotation axis a ∼ {�,m, n} of a one-dimensional rotation subgroup
O(�,m,n) ∈ SO(3). Therefore to specify an element of the rotation group it suffices to
give the axis a and the rotation angle θ (see Fig. 4.16). All the elements of the rotation
subgroup O(�,m,n) have two fixed points on the sphere, that never rotate, namely the
south pole pS and the its antipodal point pN = −{�,m, n} that we name the North
Pole.

In terms of these elements any finite element of the rotation group can be repre-
sented by the following 3 × 3 matrix
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O(�,m,n),θ =⎛
⎜⎜⎜⎝

(
m2 + n2

)
cos(θ) + 2 −m� cos(θ) − n sin(θ) + 1 −n� cos(θ) + m sin(θ) + 1

−m� cos(θ) + n sin(θ) + 1
(
n2 + �2

)
cos(θ) + 2 −mn cos(θ) − � sin(θ) + 1

−n� cos(θ) − m sin(θ) + 1 −mn cos(θ) + � sin(θ) + 1
(
m2 + �2

)
cos(θ) + 2

⎞
⎟⎟⎟⎠

(4.2.2)

In Sect. 3.1.3 we discussed3 the notion of group homomorphism. One of the most
important homomorphisms in group–theory, which plays an extremely relevant role
in Physics and in Quantum Mechanics, is that from the group SU(2) to the rotation
group SO(3):

ω : SU(2) −→ SO(3) (4.2.3)

By definition the group SU(2) is composed by all those 2 × 2 matrices U that
are unitary, namely satisfy the relation U U † = Id, and, furthermore, have unit
determinant, i.e det U = 1. The identity Id is that matrix that has all elements zero,
except those on the principal diagonal that are all equal to 1.

Id =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 . . . . . . . . . 0
0 1 0 . . . . . . 0

0 0 1 0 . . .
...

...
... 0

. . . 0
...

...
...

... 0 1 0
0 . . . . . . . . . 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.2.4)

By definition, the hermitian conjugateU † of a complexmatrix is the matrix obtained
by interchanging the rows with the columns4 and complex conjugating all the so
obtained entries.5

The angular momentum J of macroscopic particles was known in Classical
Physics since its very beginning in the XVIIth century. Mathematically, specify-
ing the angular momentum vector

{
Jx , Jy, Jz

}
of a particle corresponds to assigning

such a particle to an irreducible representation of the rotation group SO(3). It is
known from the founders of Quantum Mechanics that the third component Jz , once
the reference frame is fixed in such a way that z is the rotation axis, should be quan-
tized in either integer or half integer units. It was Wolfgang Pauli (see Fig. 4.17) the
great physicist who fully understood the deep mathematical and physical meaning
of such a thumb rule. He was the founder of the theory of the spin, namely of the

3See in particular Eqs. (3.1.8) and (3.1.9).
4The result of performing the exchange of the rows with the columns of a matrix A is a new matrix
AT , named the transpose of the previous one. The element AT

i j of the transposed matrix is equal to
A ji of the original one.
5In fomulae the elements of the hermitian conjugate matrix U  are as follows U †

i j = U 
j i .
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Fig. 4.17 Wolfgang Pauli (Vienna 1900–Zurich 1958) was born in a rich and educated family in
Vienna. Wolfgang’s father was a chemist coming from a prominent Jewish family based in Prague,
who converted to Catholicism when he married his christian wife, Wolfgang’s mother. Pauli first
studied in Vienna where his diploma thesis, defended in 1918, was the basis of the first thoroughful
review of Einstein’s General Relativity, published one year later. Next he went for his Ph.D. to
Munich where he worked under the supervision of Sommerfeld. After graduation in 1921, he had
various temporary appointments in Göttingen, Copenhagen and Hamburg, where he met the most
prominent physicists and mathematicians of that gold period. In 1931 he was appointed professor
in Zurich ETH and then in 1940, offered a position in Princeton, he emigrated to the USA. In
the meantime he obtained Swiss citizenship and after the war he made return to Zürich, where he
remained for the rest of his life. Among the many fundamental contributions of Pauli to theoretical
physics the most outstanding and the deepest one is Pauli exclusion principle stating that two
fermions, namely two particles with half integer spin can not occupy the same quantum state. For
this achievement he was awarded the Nobel Prize in 1945 on Einstein’s nomination

intrinsic angular momentum of elementary particles. He understood that spin 1
2 par-

ticles like all the basic constituents of the atoms (electrons, protons and neutrons)
are assigned to the lowest dimensional representation of the rotation group which
is actually two-dimensional complex. Furthermore it is, as physicists say, a double
valued representation, namely to each element of SO(3) there correspond two ele-
ments in the two-dimensional representation that have the same image in the standard
three-dimensional one. This is essentially the homomorphism (4.2.3).

In explicit matemathical term the homomorphism ω is described as follows. Set-
ting

λ = � sin
θ

2
; μ = m sin

θ

2
; ν = n sin

θ

2
; ρ = cos

θ

2
(4.2.5)
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the two SU(2) group elements, whose image under ω is the matrix (4.2.2) are the
following ones:

U ±
�,m,n = ±

(
ρ + iν μ − iλ

−μ − iλ ρ − iν

)
(4.2.6)

A generic U ∈ SU(2) acts on a C2-vector z =
(
z1
z2

)
by usual matrix multipli-

cation U z. The matrices U ±
�,m,n ∈ SU(2) have two eigenvectors:

z1 =
(

1 − n
l − im

)
; z2 =

(−n − 1
l − im

)
(4.2.7)

such that

U ±
�,m,n z1 = ± exp

[
− i

θ

2

]
z1

U ±
�,m,n z2 = ± exp

[
i
θ

2

]
z2 (4.2.8)

where θ is the corresponding rotation angle in three-dimension. Next consider the
complex one-dimensional subspaces

{
ξ1,2 z1,2

}
where ξ1,2 ∈ C are arbitrary complex

numbers. The latter are named rays. Since z1 · z2 = z†1z2 = 0 it follows that each
element of SU(2) singles out two rays, hereafter named poles that are determined
one from the other by the orthogonality relation. This concept of pole is the basic
item in the argument leading to the classification of finite rotation groups.

Let H ⊂ SO(3) be a finite, discrete subgroup of the rotation group and let Ĥ ⊂
SU(2) be its pre-image in SU(2) with respect to the homomorphism ω. Then the
order of H is some positive integer number:

|H | = n ∈ N (4.2.9)

The total number of poles associated with H is:

# of poles = 2n − 2 (4.2.10)

since n − 1 is the number of elements in H that are different from the identity. Indeed
the identity singles out no poles having the property of leaving invariant the full C2

space. As one sees each pair of poles is in correspondence with a rotation axis and
hence, once the angle θ is specified with an element of the finite rotation subgroup.

The rest of the argument relies on the consideration that the finite group Ĥ maps
the poles of each of its elements into the poles of other elements. Hence under the
action of the finite group the set of poles organizes into orbits that we name Qα . Each
orbit contains an integer number of poles pi , each of them being invariant under a
subgroup Ki ⊂ Ĥ which is necessarily cyclic of finite order. Since the stability
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subgroups of the poles in the same orbit are conjugate to each other, all of them have
the same order kα ∈ N which is a property of the entire orbit Qα and it is necessary
a divisor of the order of the group, namely we have mα = n

kα
∈ N. Obviously mα is

the cardinality of the orbit Qα , namely the number of poles it contains. Hence we
assume that there are r orbits and that each orbit Qα contains mα elements.

On the other hand, counting also coincidences, the total number of poles we have
in the orbit Qα is:

# of poles in the orbit Qα = mα (kα − 1) (4.2.11)

since the number of elements in each stability subgroup that are different from the
identity is just kα − 1. So we find

2 n − 2 =
r∑

α=1

mα (kα − 1) (4.2.12)

By means of a few straightforward arithmetic manipulations from Eq. (4.2.12), one
obtains:

r + 2

n
− 2 =

r∑
α=1

1

kα

(4.2.13)

with kα ≥ 2 since each pole admits at least two group elements that keep it fixed,
the identity and the non trivial group element that defines it by diagonalization. With
few more manipulations one concludes there are only two possible cases:

r = 2 or r = 3 (4.2.14)

Let us now consider the solutions of the diophantine equation (4.2.13) and identify
the finite rotation groups and their binary extensions.

Taking into account the conclusion (4.2.14) we have two cases.

4.2.2 Case r = 2: The Infinite Series of Cyclic Groups An

Choosing r = 2, the diophantine equation (4.2.13) reduces to:

2

n
= 1

k1
+ 1

k2
(4.2.15)

Since we have k1,2 ≤ n, the only solution of (4.2.15) is k1 = k2 = n, with n arbitrary.
Since the order of the cyclic stability subgroup of the two poles coincides with the
order of the full group H it follows that H itself is a cyclic subgroup of SU(2) of
order n. We name it Γb[n, n, 1]. The two orbits are given by the two eigenvectors of
the unique cyclic group generator:
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A ∈ SU(2) : Z ≡ A n (4.2.16)

The finite subgroup of SU(2), isomorphic to the abstract group Z2n is composed by
the following 2n elements:

Z2n ∼ Γb[n, n, 1] = {
1,A ,A 2, . . . ,A n−1,Z ,Z A ,Z A 2, . . . ,Z A n−1

}
(4.2.17)

Under the homomorphism ω, the SU(2)-elementZ maps into the identity and both
A andZ A map into the same3 × 3 orthogonalmatrixA ∈ SO(3)with the property
An = 1. Hence we have:

ω [Γb[n, n, 1]] = Γ [n, n, 1] ∼ Zn (4.2.18)

In conclusionwe can define the cyclic subgroups of SO(3) and their binary extensions
in SU(2) bymeans of the following presentation in terms of generators and relations:

An ⇔
{

Γb[n, n, 1] = (A ,Z | A n = Z ; Z 2 = 1
)

Γ [n, n, 1] = (A | An = 1)
(4.2.19)

The nomenclatureAn introduced in the above equation is just for future comparison.
As we will see, in the ADE-classification of simply laced Lie algebras the case of
cyclic groups corresponds to that of An algebras.

4.2.3 Case r = 3 and Its Solutions

In the r = 3 case the Diophantine equation becomes:

1

k1
+ 1

k2
+ 1

k3
= 1 + 2

n
(4.2.20)

In order to analyze its solutions in a unified way and inspired by the above case it is
convenient to introduce the following notations:

R = 1 +
r∑
α

kα (4.2.21)

and consider the abstract groups, that turn out to be of finite order, associated with
each triple of integers {k1, k2, k3} satisfying (4.2.20) and defined by the following
presentation:

Γb [k1, k2, k3] = (
A ,B,Z | (AB)k1 = A k2 = Bk3 = Z ; Z 2 = 1

)
Γ [k1, k2, k3] = (

A,B | (AB)k1 = Ak2 = Bk3 = 1
)

(4.2.22)
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We will see that the finite subgroups of SU(2) are indeed isomorphic to the above
defined abstract groups Γb [k1, k2, k3] and that their image under the homomorphism
ω are isomorphic to Γ [k1, k2, k3].

4.2.3.1 The Solution (k, 2, 2) and the Dihedral Groups Dihk

One infinite class of solutions of the diophantine equation (4.2.20) is given by

{k1, k2, k3} = {k, 2, 2} ; 2 < k ∈ Z (4.2.23)

The corresponding subgroups of SU(2) and SO(3) are:

Dihk ⇔
⎧⎨
⎩

Γb[k, 2, 2] = (A ,B,Z | (AB)k = A 2 = B2 = Z ;
Z 2 = 1)

Γ [k, 2, 2] = (A,B | (AB)k = A2 = B2 = 1
)

(4.2.24)
whose structure we illustrate next.

Γb[k, 2, 2] � Dihbk is the binary dihedral subgroup. Its order is

|Dihbk | = 4 k (4.2.25)

and it contains a cyclic subgroup of order k that we name K . Its index in Dihbk is two.
The elements of Dihbk that are not in K are of period equal to two since k2 = k3 = 2.

4.2.3.2 The Three Isolated Solutions Corresponding to the Tetrahedral,
Octahedral and Icosahedral Groups

There remain three isolated solutions of the Diophantine equation (4.2.20), namely:

{k1, k2, k3} = {3, 3, 2} (4.2.26)

{k1, k2, k3} = {4, 3, 2} (4.2.27)

{k1, k2, k3} = {5, 3, 2} (4.2.28)

They respectively correspond to the tetrahedral T12, octahedral O24 and icosahedral
I60 groups and to their binary extensions, namely:

Γ [3, 3, 2] � T12 (4.2.29)

Γ [4, 3, 2] � O24 (4.2.30)

Γ [5, 3, 2] � I60 (4.2.31)

As their name reveals these three groups have, 12,24 and 60 elements, respectively.
The corresponding binary extensions have 24,48 and 120 elements respectively.
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4.3 A Provisional Conclusion for a Tale Two Thousand
Year Long

As their names reveal, the groups Γ [3, 3, 2], Γ [4, 3, 2], Γ [5, 3, 2] are the automor-
phism groups of the five platonic solids, Γ [5, 3, 2] being the symmetry of the icosa-
hedron and of its dual, the dodecahedron, Γ [4, 3, 2] being the symmetry of the
octahedron and of its dual, the cube, Γ [3, 3, 2] being the symmetry of the self dual
tetrahedron. The algebraic structure of these groups is encoded in the triplet of three
numbers that label them and satisfy a Diophantine inequality of deep significance
also for Lie Algebra Theory.

We see in this a paradigmatic example of the gigantic progress in abstract thought
provided by the conceptual revolution of group theory.

The Greeks admired symmetry and identified it with the beautiful. Plato went
one step further and identified symmetry and the beautiful with the inner structure
of the world, namely with the fundamental laws of Nature. From the point of view
of a contemporary theoretical physicist he was essentially right, yet he still missed a
good intrinsic definition of what symmetry is and that was the source of his troubles
with the apparently excessive number of solids. Plato was rightly impressed by the
sporadic solution of the problem encoded in the classification of the five regular
solids, yet he did not know what the formulation of such a problem was.

Today we exactly know the correct formulation of this problem and we realize
that the essential point is the three-dimensional extension of space (at constant time).
Indeed the triplet of numbers denoting the element-orders contained in the group Γ

is a characteristic feature of finite subgroups of SO(3) and of its binary extension
SU(2). Finite subgroups of higher rotation groups can have more than three of such
element–orders and lead to more complicated solutions of the Platonic problem for
n > 3. Hence the relevant issue for the episteme is to find an a priori reason why
the effective dimensions of our world are 3 ⊕ 1. The fascination of the ADE corre-
spondence between Platonic Groups and semi–simple Lie algebras, here anticipated
and discussed in Sect. 5.6, relies precisely in the triplet of integer number structure
satisfying the same constraint. The classification of Lie Algebras makes no reference
to three dimensions and promotes the classification of Platonic groups to a higher
level of abstraction. The full fledged mathematical and philosophical consequences
of this view point have still to be worked out, showing that the present two thousand
year tale is still an open chapter.

4.4 Further Comments About Crystallography

At the beginning of this chapter we looked at group-theory from the point of view of
crystallography emphasizing that being crystallographic is a further restrictionwhich
in any dimension d = n selects, among the available Platonic Groups, the subclass
of candidate Point Groups for lattices to be constructed in the same dimensions.
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Let us summarize for the n = 3 case some group–theoretical features that follow
from the ADE classification, combined with the crystallographic constraint:

(a) The Point GroupPmust be a finite rotation group in d = 3 hence it must belong
to the list:

P ∈ {Zk , Dihk , T12 , O24 , I60} (4.4.1)

(b) The order of any element γ ∈ P belonging to the Point Group must be in the
range 2, 3, 4, 6

The intersection of these two conditions leads to the conclusion that:

P ∈ {
Z2,3,4,6 , Dih3,4,6 , T12 , O24

}
(4.4.2)

The classification of Bravais lattices, which is responsible for so many chemical-
physical properties of matter, is essentially encoded in Eq. (4.4.2). In this list of
candidate Point Groups there is no simple one which is non abelian. They are all
either solvable or abelian and this implies that their irreducible representations can be
constructed by means of an induction algorithm starting from the one-dimensional
representations of cyclic groups. A simple group which occurs in the ADE classi-
fication is the icosahedral group I60 which is isomorphic to the simple alternating
group A5 (the even permutations of 5 objects). It is barred out by the crystallographic
condition because it contains elements of order 5.

Under many respects this is the analogue of what happens with algebraic equa-
tions. The algebraic equations of order 2, 3, 4 are always solvable by radicals since
their Galois group is solvable. In degree d ≥ 5 the generic equation is not solvable
because the Galois group is generically not solvable.

A natural question arises at this point. Is the condition b) on the possible orders of
the Point Group elements intrinsic to the crystallographic constraint in any dimension
or it is a specific feature of d = 3?

The correct answer to the above question is the second option and there exists,
for instance, a counterexample of a crystallographic group in 7-dimensions that has
group elements of order 7. Not only that. The simple group of order 168 is an example
of a simple non abelian crystallographic point group!

It is quite remarkable that the analogue of the ADE classification of finite rotation
groups in d > 5 is so far non existing up to the knowledge of this author. Even less
is known about higher dimensional crystallographic groups.

It is philosophically quite challenging to imagine what Chemistry, Geology and
even Molecular Biology and Genetics might be in a world where the point group is
a simple non abelian group!



Chapter 5
The Long Tale of Lie Groups

The analysts try in vain to conceal the fact that they do not
deduce: they combine, they compose ... when they do arrive at
the truth they stumble over it after groping their way along.

Evariste Galois

5.1 From Discrete to Continuous Groups

So far we outlined the conceptual development of group theory paying particular
attention to finite groups. It is historically correct to do so, since finite groups were
the first to be considered and studied. Indeed the very notion of group is to be credited
to Galois and, by definition, Galois groups are finite.

Next we turn our attention to continuous groups the tale of whose birth and
development is the topic of the present chapter.

For some time, as we are going to outline, the construction of this new field of
mathematics went on in parallel with the conceptual evolution which finally led to
the establishment of modern differential geometry, another exciting story we plan to
unfold in Chap.7.

Yet it was implicit in their very logical structure that differential geometry and
Lie group theory should merge, as they eventually did, in particular because of the
enormously influential ideas and monumental work of Élie Cartan.

From its very start Lie group theory was associated with a deep revision of the
conception of geometry, specially promoted by Felix Klein. The mathematical idea
of Space and that of Symmetry were indeed destined to compenetrate each other in
an essential way and in the long run the two tales of differential geometry and Lie
Groups led to both General Relativity and Gauge Theories, the two pillars of the
present day episteme.

As we did in the case of finite groups, let us first summarize, in modern mathe-
matical language what Lie groups are.

These latter, arise from the consistent merging of two structures:
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1. an algebraic structure, since the elements of a Lie group G can be composed via
an internal binary operation, generically called product, that obeys the axioms
of a group,

2. a differential geometric structure since G is an analytic differentiable manifold
and the group operation are infinitely differentiable in such a topology.

General Relativity is founded on the concept of differentiable manifolds. The math-
ematical model of space–time that we adopt is given by a pair (M , g) where M
is a differentiable manifold of dimension D = 4 and g is a metric, that is a rule to
calculate the length of curves connecting points of M . In physical terms the points
of M take the name of events while every physical process is a continuous succes-
sion of events. In particular the motion of a point–like particle is represented by a
world–line, namely a curve inM while the motion of an extended object of dimen-
sion p is given by a d = p + 1 dimensional world–volume obtained as a continuous
succession of p–dimensional hypersurfaces Σp ⊂ M .

Therefore, the discussion of such physical concepts is necessarily based on a col-
lection of geometrical concepts that constitute the backbone of differential geometry.
The latter is at the basis not only of General Relativity but of all Gauge Theories
by means of which XXth century Physics obtained a consistent and experimentally
verified description of all Fundamental Interactions.

The central notions are those which fix the geometric environment:

• Differentiable Manifolds
• Fibre-Bundles

and those which endow such environment with structures accounting for the measure
of lengths and for the rules of parallel transport, namely:

• Metrics
• Connections

Once the geometric environments are properly mathematically defined, the metrics
and connections one can introduce over them turn out to be the structures which
encode the Fundamental Forces of Nature.

The above remarks clearly demonstrate that differential geometry andLie group
theory

• are intimately and inextricably related and
• have a much wider range of applications in all branches of physics and of other
sciences.

since that of a manifold is the appropriate mathematical concept of a continuous
space whose points can have the most disparate interpretations and that of a group
is the appropriate mathematical framework to deal with symmetry operations acting
on that space.

We postpone the discussion of the modern definition of differentiable manifolds
and fibre-bundles to Chap.7 were we outline the history of differential geometry and
we begin our historical outline of how Lie group theory came into being.
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5.2 Sophus Lie and Felix Klein

Who was Lie? Let us begin with the words dedicated to his memory, spoken on the
occasion of Lie birth centennial by another giant of modern mathematics, namely by
Élie Cartan (see Fig. 5.9):

Sophus Lie was of tall stature and had the classic Nordic appearance. A full blond
beard framed his face and his gray-blue eyes sparkled behind his eyeglasses. One
always immediately felt at ease with him, certain beforehand of his sincerity and
his loyalty. He was not afraid to admit his ignorance of branches of mathematics
unfamiliar to him, which nevertheless did not keep him from being aware of his own
worth. . . Posterity will see him the genius who created the theory of transformation
groups, and we French shall never be able to forget the ties which bind us to him and
which make his memory dear to us.

The theory of transformation groups, mentioned by Cartan and to whose accom-
plishment Cartan himself gave the largest and deepest contributions, was born in
dramatic times of war for Europe, and the history of an extremely deep conceptual
revolution, whose ramifications have some of the furthest reaching consequences for
modern Mathematics and Physics, is tightly linked with a quite interesting and very
emotional story of a life-time friendship, eventually turned into scientific rivalry with
touches of bitterness. The two main actors in such a historical drama are Sophus Lie
and Felix Klein (see Fig. 5.1).

Felix Klein

Felix Klein was born in Dusseldorf in 1849. After his secondary school education in
Dusseldorf, he enrolled as a student at Bonn University where he became student of

Fig. 5.1 Sophus Lie (1842–1899) on the left and Felix Klein (1849–1925) on the right
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Plücker. He graduated in 1868 with a thesis on Plücker’s formulation of Geometry
applied to Mechanics. From 1868 to 1870 he was travelling to Berlin, Paris and
Göttingen. In 1871 he was nominated dozent in Göttingen. In 1872 he was offered
a full chair in Erlangen where he stayed for three years. In 1875 he was appointed
on a new chair at the Technische Hochschule in Munich. The same year he married
with Anne Hegel the grand-daughter of the famous philosopher. In 1880, after five
years of intensive work in Munich Felix Klein was appointed on the chair of Geom-
etry at the University of Leipzig. Finally in 1886 he got an offer from Göttingen
University where he worked until his retirement in 1913. He greatly contributed to
make Göttingen the mathematical center of the world, in particular promoting the
appointment ofDavid Hilbert and funding the journalMathematische Annalen. Dur-
ing World-War-One he privately taught mathematics in his home. He died in Berlin
in 1925.

Sophus Lie

Marius Sophus Lie was born in 1842 in a small town in Norway, son of a Lutheran
minister. He was the youngest of six brothers in a family with restricted economic
possibilities. In 1857 he entered Nisses’s Private Latin School in Christiania (the
name of Oslo at that time). He entered Christiania University at beginning of the
60s and in 1862 he had the chance of attending a course on finite group theory and
Galois theory given by Ludwig Sylow. He received his first diploma in Mathematics
in 1865. In 1869 he published his first research paper and was granted a fellowship
that allowed him to travel to Berlin and Göttingen (where he met Klein) and finally
to Paris. In 1871 he obtained his Ph.D. from the University of Christiania with a
thesis entitled On a class of geometric transformations. In 1874 he married with the
20 year old Ann Birch from whom he had three children. In 1884 Friedrich Engel,
a former student of Klein, was dispatched to him by his advisor with the purpose of
helping him writing his monumental books on transformation groups. In 1886 when
Klein left for Göttingen, Lie was appointed on Klein’s chair of geometry at Leipzig
University. There he continued his work with Engel until 1898 when the anaemia
perniciosa from which he was suffering since long progressed quite seriously and
he decided to retire to his home country. Next year (1899) he died in Christiania.

5.2.1 The Spring of 1870 in Paris

The two decades of the XIXth century after the continental outbreak of the 1848 rev-
olutions, mostly suppressed by the force of the arms, had witnessed a steady political
evolution towards the creation of coherent Nation-States, whose gluing principle was
self-identification around one national language, one national culture and one cur-
rency. This process had certainly many positive aspects in promoting the removal
of the last remaining traces of feudalism, in boosting the diffusion of education
among the popular masses and in strongly facilitating industrial development. Yet
the negative aspects of XIXth century nationalism were the raising tensions among
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the emerging Nation-States and their competition for dominance both in Europe and
in the rest of the World. The Great Power that was steadily declining was the multi-
ethnic, catholic oriented and strongly conservative Austrian Empire. With the initial
help of the French Empire, at the expenses of Austria and of the obsolete absolute
monarchies that were its clients and occupied the largest part of the italian peninsula,
1861 witnessed the birth of the liberal, anti-clerically oriented United Kingdom of
Italy. The next historical problem to be solved was the unification of Germany.

This unification occurred in a different way, with iron and fire under the leadership
of the strongly military oriented Prussian Monarchy and by means of the astute
diplomacy of its chancelor Otto von Bismarck. Firstly, in 1866, Austria was defeated
by Prussia in the famous seven week war and Italy used that opportunity to complete
its unification process, freeing Venice and its interland from the Austrians. Prussian
victory in the battle of Sadowa definitely destroyed Austrian influence on Southern
German States, in particular Bavaria, preparing the stage for the final leap toward
the unification of Germany.

With the acquisition of the industrial, highly culturally evolute German Regions
along the Rhein, Prussia, whose power was originally based on the Army, the tight
structure of Public Administration and the wealth of the rich agricultural lands in
the East, became extremely strong in all respects and with a clear-cut leadership on
the whole of Germany. The cultural development of Germany in the XIXth century
is impressive and more and more it checked the long term predominance of French
Culture. In philosophy with Kant, Hegel, Schopenauer and their followers, in lit-
erature with Goethe, Heine, Schiller and others, in music with Beethoven, Brahms,
Mendelssohn and a further long list of first class artists, we just see the top of a gigan-
tic iceberg of intellectual ferment that was extremely active throughout the whole
century.

German science was by no means behind and German Mathematics was by that
time in a truly exploding phase. The epicentre of this explosion was the University
of Göttingen where the Prince of Mathematicians, Gauss, had left a long-enduring
legacy. Yet also other German Universities were coming to prominence: Berlin, first
of all, but also Bonn, Leipzig, the historical Halle and, in the south, the institutions
in Munich and the University of Erlangen.

In the spring of 1870 the tempest of the Franco-Prussian war, the first large scale
modern war that prefigured World War One and from whose smoking guns the uni-
fication of Germany would emerge, was approaching. Two young men who had just
made friendship were in Paris, attracted by their common interest for Mathematics
and for the French advances in Geometry. They were Felix Klein and Sophus Lie
(see Fig. 5.1).

After his first graduation in Mathematics in Christiania, the capital of Norway,
Sophus Lie went through a period of uncertainty. He just knew that he wanted to
make an academic career in Science but he was not sure which science to choose. For
some time he was attracted by Astronomy, then he followed courses in Zoology an
Botanic, finally it became clear to him that Mathematics was his mission and within
the vast mathematical landscape Geometry was what mostly attracted his attention.
We should now clarify what was the concept of geometry that fascinated the young
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Fig. 5.2 Julius Plucker (1801–1868) Born in a small city near Wuppertal, Plücker was both a
physicist and a geometer. Professor of Experimental Physics at Bonn University, he made important
researches on the behavior of rarefied gases in magnetic fields, essentially discovering cathodic
rays. He was also one of the founder of what became atomic spectroscopy. In geometry his relevant
contributions arose from the studies he did in Paris in 1823 when he visited there and came in
contactwith the geometrical school ofGasparMonge. Plücker’smain contribution in geometry is the
invention of Plücker coordinates. These are a set of homogeneous co-ordinates introduced initially
to embed the set of lines in three dimensions as a quadric in five dimensions. The construction uses
2 × 2 minor determinants

Lie. In modern parlance we might say that it was algebraic geometry. In 1868 he
fell in love with the papers on geometry written by Poncelet and Plücker. Poncelet,
a French officer who was taken prisoner by the Russians in Napoleon’s campaign
of 1812, was the first to introduce complex numbers in projective geometry and
described his results in a book published in 1822 and written while he was a prisoner
on the Volga [147, 148]. In Plücker’s paper, instead, geometric figures are no longer
a collection of points but geometry becomes just as much a study of families of
lines or of spheres and other extended surfaces [146]. Plücker’s monumental idea to
create new geometries by choosing figures other than points - in fact straight lines -
as elements of space was cause of high excitement in Lie’s mind. He wrote a short
mathematical paper on these topics that he published at his own expenses. A year later
Lie’s paper was eventually accepted by the most prestigious mathematical journal
of the time namely Crelle’s Journal. This proved decisive for his future since this
convinced the Collegium Academicum in Christiania to give him a research–travel
grant that allowed him to go to Berlin, Göttingen and eventually to Paris.
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Fig. 5.3 On the left Gaston Darboux (1842–1917); on the right Marie Ennemond Camille
Jordan (1838–1922). Gaston Darboux taught at the College de France, at the École Normale
Superiéure and eventually he was appointed on the chair of higher geometry at the Sorbonne. He
is remembered for many results in mathematical analysis and in differential geometry. He was the
biographer of Henri Poincaré. Among his students were Émile Borel and most remarkably Élie
Cartan. About him Struik wrote . . . he followed the spirit of Gaspar Monge and Darboux’s spirit
can be detected in the work of Cartan.Camille Jordan, Engineer by profession and later professor
of mathematical analysis at the École Polytechnique has got his name associated with various
important items in mathematics (Jordan normal form for matrices, Jordan’s theorem in finite group
theory and more). He was among the first promoters of discrete group theory and of Galois theory

In 1870, in Berlin, Sophus Lie met with Felix Klein who had studied in Bonn pre-
cisely under the supervision of Plücker, passed away two years before (see Fig. 5.2).
The two young scientists had a lot of interests in common and became immediately
close friends, although, as Freudenthal remarks, they had quite different characters
both as humans and as mathematicians: . . . the algebraist Klein was fascinated by
the peculiarities of charming problems; the analyst Lie, parting from special cases,
sought to understand a problem in its appropriate generalization. They traveled
together to Paris where they met and interacted with Gaston Darboux and Camille
Jordan (see Fig. 5.3). The conversations with Jordan were of the highest relevance
for both Lie and Klein since the French mathematician attracted their attention to the
role that group–theory could play in geometry. For Lie this was the germ of a rea-
soning that conducted him to the notion of transformation groups. Klein developed
these ideas in what two years later appeared as the Erlangen Programme. In any case
Lie and Klein discussed intensively about these issues and eventually published a
common work. They lived in adjoining rooms in the same hotel and saw each other
continuously.

The first stumbling of Lie on a Lie group occurred in early July 1870 when,
working in his Paris hotel room, he made the discovery of what is now called Lie’s
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line-sphere transformation. In a nut-shell it goes as follows. Arguing à la Plücker, Lie
considered the space of cycles that can be either oriented circles (or straight lines)
or points in the plane or the point at infinity (indeed the points can be thought of
as circles of radius zero). It turned out that this space can be viewed as a quadric
in the real five dimensional projective space RP

5. In homogeneous coordinates xi

(i = 1, . . . , 6) the equation of the quadric is the following one:

0 = xi Mi j x
j ; Mi j =

⎛
⎜⎜⎜⎜⎜⎜⎝

−1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

(5.2.1)

The eigenvalues of the matrix M are 1, 1, 1,−1,−1,−1 so that the group of linear
transformations SO(3, 3) is an automorphism group of Lie’s quadric. Obviously Lie
did not use such a language but his transformations that can map oriented circles
into points and viceversa are just the group elements of SO(3, 3). Extending his
procedure from real to complex projective geometry Lie found also what in modern
terms can be described as the local isomorphism of the group SL(4,C) with the
group SO(6,C).

Klein recalls the event in this way [129]1:
. . . one morning I got up early and wanted to go out right away when Lie, who still

lay in bed called me to his room. He explained to me the relationship he had found
during the night between the asymptotic curves of one surface and the lines of curva-
ture of another, but in such a way that I could not understand a word. In any case he
assured me that the asymptotic curves of the fourth degree Kummer surface must be
algebraic curves of degree sixteen. That morning, while I was visiting the Conserva-
toire des Arts etMétiers, the thought came tome that these must be the same curves of
degree sixteen that had appeared in my paper Theorien der Liniencomplexen ersten
un zweiten grades and I quickly succeeded in showing this independently of Lie’s
geometric considerations. When I returned around four o’clock in the afternoon, Lie
had gone out, so I left a summary of my results in a letter.

As a consequence of this, Klein and Lie wrote a paper together on the topics.
The mentioned Kummer surface of fourth degree is obviously the algebraic locus
K3 which has been the object of a lot of mathematical investigations and up to the
present day plays an important role in string and supergravity compactifications.

Few days after these scientific events, Napoleon the third, falling into Bismarck’s
trap, declared war to Prussia and hostilities began (July 19th 1870). Being a citizen
of Prussia, Klein had to flee immediately from France, while Lie, who was a citizen
of Norway, namely of a neutral state, remained. In August, when the Prussians had
already trapped part of the French Army in Metz, Lie decided to leave Paris and

1Several details of the story told in the present sections are from an article of Sigurdur Helgason
entitled Sophus Lie, the mathematician.
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hike towards Italy. When he reached Fontainebleau he was arrested as a German spy
and his mathematical notes, written in German, were used as an evidence against
him, regarding them as ciphered messages. He spent several weeks in prison and was
finally released thanks to the intervention of Darboux who explained the case to the
suspicious police. Once he was freed, Lie fled to Italy and from there he made his
way back to Norway through Germany.

In 1871, back in Christiania, Lie completed his Ph.D doctoral thesis on the basis
of his Paris discoveries and he was awarded his doctorate in 1872. The same year
the University of Christiania created a new chair on which he was appointed.

5.2.2 The Erlangen Programme

In 1872, at the age of 23, Felix Klein was appointed Full Professor at the University
of Erlangen, where he remained only three years, since in 1875 he received and
accepted an offer from the Technische Hochschule of Münich. There he remained
longer, namely five years, and accomplished important steps both in his personal
and professional life. As for personal life, Münich was the city where, in August
1875, he married with Anne Hegel, the grand daughter of the philosopher Georg
Wilhelm Friedrich Hegel. On the scientific side, Klein worked very much intensively
in Münich and his fame as a brilliant and profound teacher spread through the world
attracting there students that later became famous mathematicians and physicists:
among them Max Planck, Adolf Hurwitz and Ricci Curbastro.

In these years Klein developed the ideas that he had exposed in 1872 in his
inaugural address as a Professor in Erlangen. This lecture, whose German title is
Verglichende Betrachtungen über neure geometrische Forschungen (A Comparative
Review of Recent Researches in Geometry) has become known to posterity as the
Erlangen Programme (see Fig. 5.4).

At the beginning of his lecture Klein stated the following:
Have a geometric space and some transformation group. A geometry is the study

of those properties of the given geometric space that remain invariant under the
transformations from this group. In other words, every geometry is the invariant
theory of the given transformation group.

Up to that time geometry meant the study of geometrical figures like points, lines,
triangles, circles, polyhedra. Euclidian geometry had been extended, in the course
of the XIXth century, to other geometries like Lobachevsky hyperbolic geometry, or
elliptic geometry. Projective geometry existed since long. In all known geometries
a founding concept was, as Klein emphasized, the notion of equivalence classes. In
Euclidian geometry, for instance,when you study triangles you do not distinguish this
or that equilateral triangle: all equilateral triangles of the same size are equivalent and
you study the properties of the class. What does it actually mean to be equivalent?
It means that one triangle can be mapped into the other by means of a suitable
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Fig. 5.4 The original title
page of the lecture given by
Felix Klein in 1872 at the
University of Erlangen on
the occasion of his admission
as a Full Professor. The
importance of the Erlangen
Programme was not
appreciated by the scientific
community for a long time.
Klein’s text remained quite
unknown as long it existed
only as a booklet of Erlangen
University. It became
world-wide known later after
its publication on the
Mathematische Annalen in
1893
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transformation of the chosen transformation group, namely the euclidian groupE3 =
ISO(3), made of rotations and translations in R

3. If the size of the two equilateral
triangle is not the same, for instance they have a different height, then they are not
equivalent and indeed some of their euclidian property are different, for example the
area or the perimeter. Now you change the reference group enlarging for instance
E
3 with the dilatations. At this point all equilateral triangles become equivalent but

the area which is not invariant against dilatation is no longer a subject of study in the
new geometry.

In this way the notion of transformation group became the central notion in the
definition of geometry and a unified viewpoint was established that could encompass
all possible geometries. Not only that. Geometries could now be organized into a
hierarchy. If the group GB of a geometry B was a subgroup GB ⊂ GA of the group
of another geometry A, then all invariant properties that are the object of study in
geometry A are invariant also in geometry B and pertain to it. Yet, since the group
GB is smaller, there are typically further invariant properties with respect to it that
are object of study in geometry B in addition to those of geometry A.

It is obvious that the discussions hold in Paris, on the verge of the franco-prussian
war, by Klein and Lie with Jordan and Darboux had a great influence in bringing
the concept of group to the forefront in the conceptual elaborations of both the
German and the Norwegian mathematician and, through them, on the subsequent
evolution of Mathematics and Physics. It is historically quite significant that Bianchi
and Ricci-Curbastro were in Germany in those years and participated in the seminars
and lectures organized by Klein. The crucial contribution of these two Italians to the
development of Differential Geometry will be reviewed later on. Einstein’s theory
of General Relativity needed, in order to be conceived, the geometrical language
developed by Bianchi, Ricci and the student of this latter, Levi-Civita. The spring of
1870 in Paris was really a crucial moment in the history of science (Fig. 5.5).

5.2.3 Lie Discovers Lie Algebras in Christiania

Once appointed to professorship in Christiania in 1872, Lie startedworking on partial
differential equations. He wrote:

. . . the theory of differential equations is the most important discipline in modern
mathematics.

The influence of their group discussions in Paris motivated Lie in a direction
different from the geometrical one pursued byKlein in Bavaria. After the interactions
with Jordan he was under the strong impression of Galois theory about which he had
previously heard from Sylow in his student years, without paying toomuch attention.
He wanted to uplift to the level of differential equations what Galois had done for
the algebraic ones. In a paper [136] of 1874 he wrote:

How can knowledge of a stability group for a differential equation be utilized
towards its integration?
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Fig. 5.5 A summary of the trips and chair shifts of Lie and Klein. First Lie went to Gottingen
were he met Klein, then the two went to Paris on the eve of the Franco-Prussian war of 1870. Lie
went back to Norway through Italy and Germany. Klein moved from Göttingen to Erlangen, then
to Münich and after some years to Leipzig. When he was offered a chair in Göttingen and left his
Leipzig chair open, this latter was offered to Lie who accepted and stayed there until his last year
of life. Finally Klein moved to Berlin were he lived during World War One and died a few years
after its end

By stability group of a differential equation it was meant a group of transfor-
mations whose effect was that of permuting the solutions of the equations among
themselves. In the quoted paper Lie proved a famous theorem that was the beginning
of Lie Group Theory. Let us describe this theorem in some detail since it illuminates
the logical path that finally lead to Lie’s most important discovery. We consider the
real plane R2, whose coordinates we name x, y and the following, generically non
linear, first order differential equation:

dy

dx
= Y (x, y)

X (x, y)
(5.2.2)

where X (x, y),Y (x, y) are two generic functions. Next let us consider a one param-
eter group of transformations of the plane:

∀t ∈ [0,+∞] φ(t) : R2 → R
2

φ [t, {x, y}] = {U (t, x, y) , W (t, x, y)}
φ [0, {x, y}] = {U (0, x, y) , W (0, x, y)} = {x, y} (5.2.3)
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We can associate a vector field to such one-parameter group, defined as follows:

ΨΨΨ = ξ(x, y)
∂

∂x
+ η(x, y)

∂

∂y

ξ(x, y) = dU (t, x, y)

dt
|t=0

η(x, y) = dU (t, x, y)

dt
|t=0 (5.2.4)

Next let us introduce the vector field implicit in the differential equation (5.2.2):

ZZZ ≡ X (x, y)
∂

∂x
+ Y (x, y)

∂

∂y
(5.2.5)

Lie theorem states:

Theorem 5.2.1 The transformation groupφ(t) is a stability group for the differential
equation (5.2.2), if and only if :

[ΨΨΨ , ZZZ ] = λ ZZZ (5.2.6)

where λ = λ(x, y) is some function.

Next Lie showed how the existence of a stability group generated by the vector field
ΨΨΨ allowed the construction of an integration factor and the actual integration of
certain equations.

Important for us is that starting from this example and always motivated by the
theory of differential equations, Lie went on to consider groups of transformation
depending not on one-parameter t but on several, say r , and viewed them as acting
not on R

2 rather on R
n with generic n and r . He considered transformations:

φ[t] :Rn → R
n

x ′
i = fi

(
x1, . . . , xn|t1, . . . tr

)
(5.2.7)

where the group property was encoded in the requirements:

φ[0] = I ≡ Identity map; φ[s] ◦ φ[t] = φ[u] (5.2.8)

having set:

u = u(s, t) = continuous analytic function of its arguments (5.2.9)
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Generalizing his previous construction of the vector fieldΨΨΨ , Lie introduced r vector
fields:

ΨΨΨ α ≡
n∑

i=1

∂fi
∂tα

∣∣∣∣
t=0

∂

∂xi
(5.2.10)

and showed that the group property (5.2.7) and (5.2.9) is satisfied if and only if:

[
ΨΨΨ α , ΨΨΨ β

] =
r∑

γ=1

c γ

αβ ΨΨΨ γ (5.2.11)

where c γ

αβ are constants (hereafter we shall name them structure constants) that ought
to satisfy the following constraints;

c γ

αβ = − c γ

βα (5.2.12)

0 =
r∑

σ=1

(
c σ
αβ c γ

σδ + c σ
βδ c γ

σα + c σ
δα c γ

σβ

)
(5.2.13)

What Lie had discovered was indeed Lie algebras. A set of transformations of the
type (5.2.7) form a group if and only if the induced vector fields (5.2.10) span a Lie
algebra.

Let us summarize in fewwords the notion of what a Lie Algebra is. In Sect. 3.1.13
we discussed the notion of vector spaces (see in particular Eq. (3.1.13) and Fig. 3.5).
A Lie algebraG is a vector space (with complex or real coefficients) that is equipped
with an additional internal binary operation, usually named the Lie bracket:

[ , ] : G × G −→ G (5.2.14)

which satisfies the following three axiomatic properties:

1. It is antisymmetric, in the sense that for any two elements A, B of the Lie algebra
we have [A, B] = − [B, A].

2. It is linear in the sense that for any linear combination α A + β B, where
α, β are numbers (real or complex) and A, B are elements of G, we have
[α A + β B , C] = α [A , C] + β [B C], having denoted by C an arbitrary
third element of the Lie algebra.

3. For any A, B,C ∈ G the Jacobi identity is satisfied:

[A , [B , C]] + [B , [C , A]] + [C , [A , B]] = 0 (5.2.15)

Hence Lie’s problem, namely the classification of all possible transformation groups,
which he viewed just as a useful tool to solve differential equations, was reduced to
the problem of classifying Lie algebras. The accomplishment of such a classification
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is essentially themonumental work of Élie Cartanwho brought to perfection previous
work of Wilhelm Karl Joseph Killing.

5.2.4 Lie and Klein from 1876 to Lie’s Death in 1899

The above described results of Lie are without any doubt a fundamental milestone in
the history of Mathematics and also of Theoretical Physics, yet in order to appreciate
this fact it required some time and a change of perspective. It was necessary to
disentangle Lie theory from differential equations and enlighten both its geometrical
foundations and its deep geometrical consequences, which eventually produced its
entanglement with Physics.

In the first decade after the discovery, very few people took notice of Lie’s results
and this caused Lie’s bitter disappointment. In 1884, writing to Adolf Mayer, Lie
wrote:

If only I knew how to get mathematicians interested in transformation groups
and their applications to differential equations. I am certain, absolutely certain, that
these theories will some time in the future be recognized as fundamental. When I
wish such a recognition sooner, it is partly because then I could accomplish ten
times more.

By that time, Klein, whose fame had grownwider and wider, had left Münich and,
since 1876 he was established in Leipzig University that offered him a prestigious
Chair of Geometry. He had not forgotten his good friend Lie and, knowing about
his isolation in Norway, organized to send to him his student Friedrich Engel who
helped him in the course of nine years, at the beginning in Christiania, then in
Leipzig to compile a three volume detailed and exhaustive exposition of the theory
of transformation groups that was published in Leipzig from1888 to 1893 [137–140].

In 1886 Felix Klein changed once again his location accepting the offer of Göttin-
gen University, whose world leadership in Mathematics and Physics Klein strongly
helped to further strengthen in particular with the appointment of David Hilbert.

The vacant Chair of Geometry in Leipzig was immediately offered to Lie who
accepted and lived in Germany for twelve years up to 1898. Since 1890 he started
suffering from a progressive illness, anaemia perniciosa, that deteriorated his health
conditions steadily. In 1898, already very much physically proved he accepted a
honorary professorship inChristiania andone year after his return in his homecountry
he died.

In the last years of Lie’s life his old friendship with Klein broke down and in 1892
Lie publicly attacked Klein writing:

I am no pupil of Klein, nor is the opposite the case, although this might be closer
to the truth.

The cause of this sudden outbreak of enmity was attributed to Lie’s mental insta-
bility caused by his illness and Klein defended his friend’s behavior remarking that
there is sometime a relation between being a genius and having some touches ofmad-
ness. Recent biographical studies have found some possible basis for Lie’s behavior
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in his dissatisfaction with Klein’s historical reconstruction of the conceptual process
that lead from Paris Spring to the Erlangen Programme. Some biographers main-
tain that Klein burnt all letters received from Lie up to 1877. We do not enter this
controversial matter and we just remark that crediting has always been a source of
bitterness for science at all times. Whatever was the case of their controversy Klein
and Lie are two giants whose contributions to the development of Mathematics and
eventually of Physics have few rivals in history.

5.3 The Tale of Lie Algebras Takes the Lead

In the present section the tale of Lie algebras continues.
Since the aim of this essay is to present both the logical development of the

mathematical theories inherent to Symmetry and, hence, to the Modern Picture of
the Physical World, together with a historical account of how these theories were
born, our tale cannot proceed all the time in chronological order.

Indeed the history of ideas, just as the general political history is not a sequence of
logical steps, rather it proceeds along capricious paths, notwithstanding the fact that,
on the very long time scale, some rationally understandable order can be detected,
but always a posteriori.

In the previous section we told the complicated tale of how the very notion of
Lie groups came into being in Lie’s studies of differential equations, motivated by
Lie’s desire to classify all possible transformation groups. Once the relation between
transformation groups and Lie algebras was established, the logical task was that of
classifying all Lie algebras.

Just as for finite groups the classification of all of them is a too much ambitious
programme which, upon restriction to the simple groups, becomes a difficult yet
doable task, in the sameway the classification of all Lie algebras is unattainable,while
that of the simple Lie algebras turns out to be possible and exhaustive. Historically
it was accomplished by Killing and Cartan and it will be described in full in the next
sections.

The philosophical question which is immediately raised in connection with this
matter of fact is that the restriction to simple algebras (what simple means we will
shortly explain) should have a logical basis and should avoid the criticism that we
just classify what we are able to.

In the case of finite groups we advocated the viewpoint that simple groups are
the really fundamental building blocks of group theory, while solvable groups are
in some sense trivial structures that can be disassembled into smaller and smaller
blocks until one reaches the abelian cyclic groups. The main point, however, is that
any finite group is a semidirect product or, more generally, a splitting extension of
the tensor product of simple groups with some solvable one. Is something similar
true for Lie algebras as well? Indeed it is!
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The basic result in connection with this issue is encoded in the Levi decomposition
theorem: it states that the most general Lie algebra is the semidirect product of a
semisimple algebra with a solvable ideal.

5.3.1 Levi’s Theorem

Consider a Lie algebra G and define:

DG = [G , G] (5.3.1)

the set of all elements g ∈ G that can be written as the Lie bracket of two other
elements g = [g1 , g2]. Clearly DG is an ideal in G. By definition an ideal I ⊂ G

of a Lie algebra is a vector subspace of G, such that if a lies in I and g ∈ G is any
element of the full algebra, than the Lie bracket of a with g lies in the the ideal
[a , g] ∈ I.

It is important to remark that the notion of ideal is the analogue for Lie algebras
of the notion of normal subgroup for groups.

Consider next the sequence of ideals Dn
G = [

Dn−1
G , Dn−1

G
]
:

G ⊃ DG ⊃ D2
G ⊃ · · · ⊃ Dn

G (5.3.2)

which is named the derivative series of the Lie algebra. It is the analogue for Lie
algebras G of the subnormal series (3.3.3) for groups.

A Lie algebra G is named solvable if there exists an integer n ∈ N such that

Dn
G = {0} (5.3.3)

Let G be a Lie algebra. An ideal H ⊂ G is named maximal if there is no other
ideal H′ ⊂ G such that H′ ⊃ H except H itself.

The maximal solvable ideal of a Lie algebra G is named the radical of G and it
is denoted RadG. A Lie algebra G is named semisimple if and only if RadG = 0.
This is just the analogue of the definition of simple groups. We said that a group is
simple if it admits no non trivial normal subgroup. Indeed we can equivalently say
that a Lie algebra G is simple if its only ideals are G and 0.

It follows that any semisimple Lie algebra is the direct product of a sequence of
simple Lie algebras.

Levi’s fundamental theorem states that every Lie algebraG is the semidirect sum
of a (semi)-simple Lie algebra L with a solvable one (the radical of G).

Levi’s theorem dates 1905 when Killing was absorbed in different deals and
Cartan’s doctoral dissertation was ten years old. Yet as a logical step Levi’s theorem
comes before and for this reason we present it here.
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In a nutshell solvable Lie algebras, for which an exhaustive classification does
not exist, are the trivial part, in the sense that all their linear representations are given
by triangular matrices. On the contrary, for the semisimple algebras their exhaustive
classification is provided by the formalism of roots and Dynkin diagrams whose
story we outline in the next section.

Solvable Lie algebras are anyhow important also in the context of differential
geometry. Solvable Lie algebras provide an efficient and privileged way of encoding
the local geometry of non-compact homogeneous spaces.

5.3.2 Who Was Levi?

Addressing the issue of Eugenio Elia Levi’s biography a lot of emotions are imme-
diately raised. The most prominently emotional aspect of his life is just his tragic
death in battle during World War One, a destiny that he shared with one of his
brothers, Decio Valerio Levi. The emotions stirred by a fate that deprived the his-
tory of Mathematics of a surely talented actor, who perished definitely too young,
are strongly reinforced from knowing that he participated voluntarily to the conflict
having to obtain special permissions from the Rector of his University and from the
Ministry to breach regulations that demanded him to remain safely home continuing
his teaching and researches (Fig. 5.6).

Hence in order to give the fundamental theorem we have presented its proper
historical perspective, we have to explain the environment where its discoverer grew
up and we cannot avoid knitting our history of some profound mathematical ideas
into the texture of general history at large.

We emphasized that the beginning of Lie group theory could be traced back to the
Spring of 1870 on the verge of the franco-prussian war. The time separation between
the fall of France under the strikes of Prussian Cannons in 1870 and the outbreak
of World War One is only 45 years, usually considerably less than one’s life span.
Indeed Felix Klein was still alive during World War One and he had the time to
see the German Empire defeated, the Kaiser fugitive to Holland and the advent of
a new, much more democratic, course in his own country, that unfortunately lasted
too shortly.

The blows received by France in 1870 were not easily forgotten and the desire of
revenge continued to be nourished in several layers of French Society and Culture.
The victory in World War One was such an occasion and this, quite unfortunately,
contributed to create the basis of World War Two.

The Italian Kingdom, on the other hand, from 1870 to World War One continued
in the process of strengthening its internal structure, the main issue being, after the
creation of Italy, that of creating the Italians, as Massimo D’Azeglio said. Indeed
the differences in civil development, in habits and in fundamental attitudes towards
life were so gigantic among the various Regions of Italy that trying to homogenize
them required an equally gigantic effort. As the Risorgimento, namely the movement
towards italian unification, had mainly been a matter of intellectual èlites with lim-
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Fig. 5.6 Eugenio Elia Levi
(1883–1917) was born in
Torino where he completed
his secondary school studies.
Then he won the national
competition for selection and
entered the University of
Pisa and the Scuola Normale
Superiore. He worked in Pisa
with Bianchi and Dini and
later he became Full
Professor of Infinitesimal
Analysis at the University of
Genova. He participated as a
volunteer to World War One
and was killed in battle in
1917 after the Caporetto
Debacle. One of his brothers
was the well-known
mathematician Beppo Levi

ited involvement of popular masses, also the first 45 years of united italian history
continued to bemarked by the same spirit who had in the liberal, anticlerical, socially
advanced Piedmont a strong center.

TheKingdom of Sardinia had been the first, in Italy, and among the forerunners, in
Europe, to grant to the citizens of Jewish origin complete parity, dignity and freedom
of enterprise, opening also the doors of public administration to them. Furthermore
the laic, anticlerical foundations of Piedmont ruling classes, thatwere inherited by the
Kingdom of Italy, were particularly appreciated by the Piedmontese quite flourishing
Jewish Community which was equally laic, well-to-do and had a strong orientation
towards intellectual professions, science and mathematics in particular.

Eugenio Elia Levi was an offspring of that community.
He was born October 1883, in the Crocetta neighborhood of Torino, up to these

days the living location of the best and richest piedmontese bourgeoisie. His father
was a famous lawyer, with clearcut liberal ideas, who felt a strong commitment to
the Risorgimento and to the Italian Fatherland of which he just felt a citizen, giving
no relevance to religious differences. This spirit he rightly communicated to his ten
children.

The University of Torino founded as a studium in 1404, under the initiative of
Prince Ludovico di Savoia, has a long noble history in all fields of Natural and
Human Sciences. At the time of Levi’s youth, Torino University had become the
center of the celebrated Italian School of Algebraic Geometry founded by Enrico
D’Ovidio (also Rector of Torino University from 1880 to 1885). Professors of Torino
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Universitywere suchoutstandingmathematicians asGiuseppePeano,CorradoSegre,
Alessandro Terracini, Gino Fano. Due to the fame of the Torino School, other world-
wide famous mathematicians like Guido Castelnuovo, Federico Amodeo, Federigo
Enriques, came to Torino to accomplish their advanced education.With the exception
of Giuseppe Peano, most of these mathematicians were of Jewish origin and this
shows how much the environment of Eugenio Elia was intruded of mathematical
thought. In his Principia Mathematicae Bertrand Russel openly stated that Giuseppe
Peano was the greatest living mathematician.

Yet EugenioElia Levi did not attendTorinoUniversity.After his secondary studies
in the still existing Liceo Classico D’Azeglio, where he was such an excellent student
that he was granted his baccalaureate cum laude and without examination, he won
the national competition to enter the Regia Scuola Normale Superiore of Pisa and
in 1899, the year when Lie died, he enrolled in the Faculty of Mathematics of Pisa
University.

In Scuola Normale he studied with Luigi Bianchi and through the strong influence
of this latter he became involved with differential geometry, with analytic geometry
and with theory of analytic functions. It is quite obvious that the spirit of Felix Klein
and Lie, shared byBianchi during his youth stages inMünich, came down to Levi and
played some role in orienting his interest to transformation groups and Lie algebras.

Indeed in 1905, Eugenio Levi graduated from Pisa University and the same year
he published the paper Sulla struttura dei gruppi finiti e continui (On the structure
of finite and continuous groups) [134] that contains the theorem we presented in the
previous section.

The subsequent career of the young Levi was fast and brilliant as its beginning
promised. In the ten years between 1905 and 1915 he published 34 research papers
in quite different directions of mathematics: about group theory, about automorphic
functions, about differential equations, in particular the heat equation, on the calculus
of variations, on multiple integrals, to mention some of them. He worked as an
Assistant in Pisa until 1909 when he was included among the three winners of a
competition for a Chair at the University of Messina. Consequently in the same year
he was called as Professore Straordinario by the University of Genova of which he
became Professore Ordinario (Full Professor) in 1912.

Having been dispensed frommilitary service in his young age on the ground of his
short stature and being a Full Professor of a Royal University, he had no obligation to
serve in the Army when Italy entered World War One against Austria and Germany.
Actually he could not leave his University without special permissions from the
Rector and from the Ministry of Education.

Why did he ask for such permissions and insisted to be sent to the front, where in
1917 he would be killed by an Austrian bullet?

We believe that the reason must be looked for in the risorgimental spirit inherited
from his father and in his loyalty to the Kingdom of Italy where the Jews like he was
could be ordinary citizens as everyone else, also civil servants and scientists. The
Austrian Empirewas the historical enemy of thatKingdomwhich, in order to be born,
had to fight battles against it and its clerical obsolete clients. Last but not least came,
as a possible motivation of Levi’s commitment to war the so calledManifesto of the
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Ninety-Three a declaration signed in 1914 by 93 german intellectual and scientists,
among which also Max Planck who later withdrew his signature, where German
militarismwas justified, the war crimes committed by the German Army in Belgium,
whoseneutrality hadbeenviolated,were denied andGerman Imperialismwaspraised
and dubbed a defense of european culture in the nameofGoethe,Beethoven andKant.
For amathematician who certainly admired Germanmathematics, whowas certainly
thinking of Germany as the homeland of Gauss, Riemann, Klein, Weierstrass and
the other giants of the XIXth century, this Manifesto was a disgusting treason, an
unacceptable offense to truth and justice. So he wanted to fight such barbarians and
in 1917 he fell when the Italian Army was routed at Caporetto.

It is bitter to remark that themain offspring of Italy’s victory inWorldWarOne, for
whose sake Eugenio Levi donated his own life, was the upraise of Fascism. In 1938
the Fascist Government promulgated the Racist Laws against the Jews and among
several others the outstandingmathematician Beppo Levi, Eugenio’s beloved brother
was thrown away from his University Chair and had to emigrate to Argentina.

Having established how semisimple Lie algebras were singled out by Levi to be
the hard-core of Lie Algebra theory being themselves simply the tensor product of
simple Lie algebras let us turn to the story of how these latter were classified and
constructed.

5.4 Killing and Cartan

In this section we step back to the XIX century and we tell the story how it happened
that simple Lie algebras were classified. As it often happens in mathematics, the task
was achieved by mapping the problem under consideration into another equivalent
one that pertains to a different mathematical theory. In this case the equivalent prob-
lem pertains to euclidian geometry and consists of the classification of certain finite
collections of vectors named root systems.

The classification of root systems has found several other interpretations and
appears to be a deep fundamental structure of mathematics. One of these interpre-
tations we have already met: it is the classification of finite rotation groups in three
dimensions, namely Plato’s problem.

The story of how the notion of root systemswas found and how simpleLie algebras
were classified is quite interesting and has two main actors: Wilhelm Karl Joseph
Killing (see Fig. 5.7) and Élie Cartan (see Fig. 5.9).

The latter is one of the greatest mathematicians of the XXth century. His name has
already occurred few times in previous chapters and will be extensively mentioned in
subsequent ones. The former is instead a very remarkable figure of a school-teacher
who, notwithstanding his isolation from the academic world and from the currents of
frontier-research, being moreover overburden with daily tuition and administrative
duties, nevertheless succeeded in making a very original mathematical discovery of
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Fig. 5.7 Wilhelm Karl Joseph Killing (1847–1923). Born in a small center near Siegen, he died
in Muenster. He studied first in Muenster then in Berlin and wrote his doctoral thesis under the
supervision of Weierstrass. The rest of his life he was a secondary school teacher or the Principal of
some school. Notwithstanding his essential isolation from the world of frontier research he made
remarkable mathematical discoveries. In particular he classified simple Lie algebras and discovered
also the exceptional ones prior to Cartan. He was a fervent catholic and in the last part of his life
was blown by a great tragedy: the loss of his two sons during World War One

the first class, although he had neither the time nor the strength to complete all the
detailed proofs and the explicit constructions required by mathematical rigour.

Wilhelm Killing

Wilhelm Killing was born in a small city, Burbach, few kilometers south of Siegen
in catholic Westfalia. The education which he received both in his family and in the
primary school he attended made him a fervent catholic and such he remained the
whole of his life. Almost forty of age, together with his wife he even entered the laic
order of franciscan tertiaries.

In Wilhelm’s youth the Killing family moved around considerably in the territory
of Westfalia since his father served, at different times, as mayor of different small
cities of the region. The secondary education of Killing was in the Gymnasium of
Brilon where he received an excellent classical education, he learnt Latin, Greek and
even Hebrew, but very poor mathematics. Yet he was very much attracted by that
subject and he studied it on his own, reading books of Gauss and Plücker.

After graduation from secondary school, he studied for sometime in the Royal
Academy of Münster where, once again, he was dissatisfied with the level of math-
ematical tuition. Finally he went to Berlin where he received instead a first class
scientific education by such top level mathematicians and physicists as Kummer,
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Weierstrass and Helmholtz. He received his doctoral degree in 1872 (the same year
as Lie did and the same year of Klein’s Erlangen lecture) defending a thesis on Bun-
dles of surfaces of the second degree (Der Flächenbüschel zweiter Ordnung) written
under the supervision of Weierstrass.

Having become, soon after, a secondary school teacher of mathematics, but also
of Greek and Latin, notwithstanding his teaching duties, he found the time to publish
a few papers on curved surfaces and non-euclidian geometry. Then with a recom-
mendation of Weierstrass, in 1882 he was appointed to a Chair of Mathematics in
the Lyceum Hosianum located in the distant Eastern Prussia city of Braunsberg (the
present name is Braniewo, a small centre of northeastern Poland almost on the border
with the Russian enclave of Kaliningrad, former Königsberg).

It was there that, in complete isolation from the mathematical academic commu-
nity and ignoring the work of Lie, Wilhelm Killing independently discovered Lie
algebras. The idea of this mathematical structure was described in 1884 in a small
booklet published by his own Lyceum with the humble name of Programmschrift
(Notes for a Programme).

In a vein similar to that of Klein in the Erlangen Programme, Killing wanted to
classify possible geometries by classifying the infinitesimal motions under which
the objects of study in each geometry should be invariant. That idea of considering
infinitesimal, rather than finite motions brought him directly to the notion of Lie
algebra, bypassing the stage of transformation groups which was the main concern
in Lie’s work.

Examining his work from a modern stand point it appears that, already in the
Programmschrift, Killing had singled out the notion of simple Lie algebra (one
which has no solvable ideal) and had already formulated a strategy how to classify
such algebras, yet, distracted by his original motivation of geometries, so far he had
not undertaken that classification.

Right after its publication, Killing sent his Programschrift to Klein who immedi-
ately replied, saying that what he saw in the booklet was closely related to the struc-
tures considered by Sophus Lie, published in a series of papers that had appeared
over the last ten years. Hence in August 1884 Killing forwarded his own booklet to
Lie. He waited more than a year for an answer never getting it. So in October 1885
he wrote once again to Lie, requesting a copy of his papers. Lie send them to Killing
under the condition that after reading he should return them to the author, which
Killing did in March 1886.

Informed byKlein that his student Engel was workingwith Lie in Norway, Killing
wrote also to this latter who, differently from his bad-tempered master, replied to
Killing enthusiastically.Acorrespondence startedbetween the two thatwas beneficial
to both and encouraged Killing to push forward his researches on Lie algebras.

As we know, in 1886 Klein shifted from Leipzig to Göttingen and Lie was
appointed on the Leipzig Chair of Geometry, vacant after Klein’s departure. This
provided an opportunity for Killing to visit both Lie and Engel in Leipzig on his way
from Braunsberg to Heidelberg, whereto he was called for matters connected with
his Lyceum.
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The bad-tempered Lie, always very jealous of his own results and obsessed with
the idea of getting insufficient recognition for his work was ill–disposed towards this
humble school teacher, coming from nowhere in the far east and claiming to have
independently obtained Lie algebras. Themeeting was a complete failure andKilling
continued his journey, remaining however on good terms with Engel.

Next year, in April 1887, Killing wrote to Engel that he had perfectioned the
definition of semisimple Lie algebras and by October 18th he wrote to him again,
announcing that he had found the complete list of the simple ones, any semisimple
Lie algebra being a tensor sum of the latter. All of Killing’s results were published
between 1888 and 1889 on the prestigious journalMathematische Annalen founded
by Klein [125–128].

In this short series of remarkable papers, Killing invented or discovered (depend-
ing on the case) all the following items, namely:

1. The notion of Cartan subalgebra
2. The notion of root system
3. The notion of simple roots and Cartan matrix
4. The list of simple Lie algebra that might exist, including the exceptional ones,

G2,F4,E6,E7,E8

While he correctly identified the Lie algebrasA�,B�,C�,D� with the known classical
matrix algebras, he lacked an interpretation for those associated with the exceptional
root systems mentioned above. Hence, from the mathematical point of view he had
only proven the possible existence, not the very existence of the exceptional Lie
algebras, which required an explicit representation. Indeed as Sigurdur Helgason
remarked in [113]:

The exceptional simple Lie algebras are the subject of the final paragraph 18
in Killing’s paper. This is certainly his most remarkable discovery, although these
algebras appeared to him at first as a kind of nuisance, which he tried to eliminate.
Even Lie, who was generally critical of Killing’s work, expressed in letters to Felix
Klein his admiration for such a result [111].

This shows, notwithstanding his typical bad-temper the profound intellectual hon-
esty of Sophus Lie and it is a big praise for him to have written such words to Klein
(Fig. 5.8).

For the rest of his life-time, that extended until 1923, Killing was absorbed by
teaching, administration and charitable work. In 1897–1898 he also temporarily
served as Rector of the newly created University ofMünster to which he had returned
after his productive exile in the tedious foggy lands of Eastern Prussia.

It was in 1894 the turn of Cartan to continue to marvelous tale of Lie algebras.
Élie Cartan

The origins of Cartan (see Fig. 5.9) were very humble just as those of the King of
Mathematicians and those of Riemann. The environment where Cartan was born was
even poorer and deprived of any cultural background, since his father was a plain
blacksmith in the mountain village of Dolomieu in Haute Savoie. Gauss could study
thanks to the generosity of the Duke of Brunswick, Cartan obtained the very best
scientific education available at the time thanks to state stipends that the French
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Fig. 5.8 The main trips of Wilhelm Killing. From the native Westfalia he moved to Berlin to study
mathematics under the supervision of Weierstrass, then to Eastern Prussia where he became the
Principal of a secondary school. He had a very strong classical culture and he was at some point also
a teacher of Latin and Greek. The most momentous trip of Killing was that from Eastern Prussia
to Heidelberg crossing through Leipzig where he met with Lie and Engel, remaining the rest of his
life in good friendly terms with the latter. Stimulated by Engel, Killing published his extraordinary
papers on the classification of simple Lie algebras based on the formalism of roots of which he is
the inventor

Fig. 5.9 Élie Cartan
(1869–1951). A true giant of
XXth century mathematical
thought. He completed the
theory of Lie Algebras,
invented exterior differential
calculus, invented the theory
of symmetric spaces,
introduced the notion of
mobile frames, reformulated
the theory of General
Relativity, discovered
spinors much earlier than
physicists. He gave
fundamental results in the
theory of differential
equations and essentially
invented the concept of
fibre-bundles
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Republic had introduced for talented people, independently from their social or
economical status. Discovered in his remote village by the school inspector Dubost,
Élie was state-supported in order to attend Lycée in Lyon and then entered the École
Normale Superiéure of Paris where he had such masters as Picard, Darboux and
Hermite. Cartan’s doctoral dissertation was presented in 1894 and was already a
masterpiece [32]. His thesis [32]was a rigorous remake ofKilling’s papers [125–128]
where he also gave the explicit matrix construction of all exceptional Lie algebras,
already announced in a paper published by him one year before in German [31].

After such a brilliant start the scientific production of Élie Cartan was an endless
piling up of fundamental results. He brought the theory of Lie algebras and Lie
groups to perfection by classifying all their representations and, so doing, in a paper
of 1913, he discovered spinors, much earlier than physicists found them necessary to
describe the intrinsic angular momentum of fermions. He combined Lie theory with
differential geometry, founding, developing and completing the theory of symmetric
spaces. Extending his very early work on differential forms, he created the exterior
differential calculus, which eventually proved much more powerful and synthetic
than the tensor calculus of Ricci and Levi-Civita. Right after the creation of General
Relativity by Einstein, Cartan started rethinking it in terms of mobile frames and
came to the reformulation of gravitational equations which goes under the name of
Einstein–Cartan theory [34].

WhenÉlie Cartan died in 1951, two greatmathematicians, Shiing-ShenChern and
Claude Chevalley joined to write an obituary that is also an impressive summary of
Cartan’smathematical work. They said:His death came at a timewhen his reputation
and the influence of his ideas were in full ascent. Undoubtedly one of the greatest
mathematician of this century, his career was characterized by a rare harmony
of genius and modesty. They also said:Closely interwoven with Cartan’s life as a
scientist and teacher has been his family life, which was filled with an atmosphere of
happiness and serenity. He had four children, three sons, Henri, Jean, Louis and a
daughter, Hélène. Yet fate was quite cruel at least with two of them. Jean Cartan who
studied music and was very early recognized as a prominent and talented composer
was stolen to his family by premature death from an incurable illness. Louis Cartan,
who was a physicist, joined the Resistance during the German occupation of France
and, captured by the Nazis, was beheaded in 1943. His father suspected the terrible
truth but learnt about it only in 1945: a deadly blow from which he never recovered.
Henri Cartan followed his father steps and became a very prominent mathematician.

5.4.1 The General Form of a Simple Lie Algebra
and the Root Systems

Thefinal result of the historical processwehave reconstructed in the previous sections
is that every simple Lie algebra G of dimension n = 2m + � can be described in a
compact and quite inspiring way, in terms of certain systems of vectors in an �

dimensional Euclidian space that are named the roots and were invented by Killing.
As anticipated above, the problem of classifying Lie algebras is mapped into another
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Fig. 5.10 The root systems
of the a2 (above) and of the
g2 (below) Lie algebras. In
both pictures the vectors
denoted α1,2 are the simple
roots. That the remaining
ones are linear combinations
with integer coefficients (all
positive or all negative) of
the simple ones is something
that the reader can
graphically verify in an
elementary way

mathematical problem which is just a problem of elementary euclidean geometry in
dimension �.

Let us become acquaintedwith these geometrical objects that, for � = 2, 3, we can
even visualize in pictures. Consider for instance the plane systems of vectors shown
in Fig. 5.10. They are the root systems of two of the three rank two Lie algebras
the rank being the aforementioned number � whose meaning we will explain below.
Consider also the system of vectors displayed in Fig. 5.12 which is the root system of
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Fig. 5.11 In this figure we
illustrate the second defining
property of root systems,
namely the requirement that
the reflection of any root with
respect to any other must be
a root of the same system.
We consider the planar case
a2 and we display the two
planes orthogonal to the root
α1 and α2, respectively. The
mirror image of the roots that
are located on one side of the
planes are just the remaining
roots located on the other
side

the d3 Lie algebra. What are the very special properties of these sets of vectors that
qualify them as a root system Δ? We can determine such properties almost visually
from the given pictures (Fig. 5.11).

(a) Given any pair of vectors α and β that belong to the root system and considering
scalar products in the ordinary euclidean space Rr , we have that the following
ratio 2 (α , β)

(α ,α)
must be an integer number, namely:

2
(α , β)

(α , α)
∈ Z
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Fig. 5.12 The root systems
of the d3 Lie algebra. It
contains 12 roots that are
vectors in ordinary
three-dimensional space

(b) Given any root α belonging to the root systemΔ and considering the hyperplane
Hypα orthogonal to it, the reflectionof any rootwith respect to such anhyperplane
is again a root of the same system. This property is illustrated for the planar case
a2 in Fig. 5.11 and it is illustrated for the three-dimensional case d3 in Fig. 5.13.
Mathematically the described property is formulated as follows:

∀α, β ∈ Δ : σα(β) ≡ β − 2α
(α , β)

(α , α)
∈ Δ

(c) In every root system Δ of rank � there exists a subset α1, α2, . . . , α� of linearly
independent roots, named the simple roots, that form a basis for R� and are such
that every other root β = ∑�

i=1 ni αi is a linear combination of these simple
ones with integer valued coefficients ni that are either all positive or all negative.
Actually this property is not independent from the previous two, rather it can be
demonstrated as a theorem starting from (a) and (b) as axioms.

What is the relation of these peculiar systems of vectors with Lie algebras? The
answer is simple and it encodes the main discoveries of Killing, revisited by Cartan.
Any complex simple Lie algebra G contains a maximal abelian subalgebra (named
the Cartan subalgebra CSA) made of elements whose adjoint action on G is fully
diagonalizable andwhose dimension � < n is indeed named the rank ofG. A basis of
generators spanning the CSA is usually denoted by Hi (i =, . . . , �). The remaining
2m generators, denoted Eα are in one-to-one correspondence with a set of vectors α

living in an �-dimensional euclidian space and forming a root space according with
the above discussion.
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Fig. 5.13 In this figure we
illustrate, in a case of rank
� = 3 the second defining
property of root systems,
namely the requirement that
the reflection of any root
with respect to any other
must be a root of the same
system. We consider the d3
root system and we draw the
plane orthogonal to a
particular root that is marked
in a special way by dashing.
The 12 roots split into three
sets. Two roots lie on the
plane and hence are
self-mirror, one set of five
roots lie on one side of the
plane, the remaining five lie
on the opposite side and are
the mirror images of the
former

Utilizing these notations and the advocated notion of root system the commutation
relations of a complex simple Lie algebra take necessarily the following general form:

[
Hi , Hj

] = 0[
Hi , Eα

] = αi E
α

[
Eα , E−α

] = αi Hi[
Eα , Eβ

] = N (α, β) Eα+β if α + β ∈ Δ[
Eα , Eβ

] = 0 if α + β /∈ Δ (5.4.1)

where N (α, β) is a coefficient that has to be determined using Jacobi identities.
From now onwe can associate to every complex simple Lie algebra its root system

Δ. Furthermore each root system singles out a well-defined finite group, named
the Weyl group that is obtained combining together the reflections with respect to
all the roots.

5.5 Dynkin and Coxeter and the Classification of Root
Systems

The main token in the classification of root systems is provided by the Cartan matri-
ces, which we presently define. Since, as we already stated, every root system pos-
sesses a simple root basis α1, . . . , α� it follows that to every root system and hence
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to every complex Lie algebra we can associated the following � × � matrix, named
the Cartan matrix:

Ci j =< αi , α j >≡ 2
(αi , α j )

(α j , α j )
(5.5.2)

A simple and constructive theorem shows that from theCartanmatrix one can retrieve
the entire root system and hence the simple Lie algebra.

Having established that all possible irreducible root systemsΔ are uniquely deter-
mined (up to isomorphisms) by the Cartan matrix, we can classify all the complex
simple Lie algebras by classifying all possible Cartan matrices.

This is the classification originally achieved by Killing and Cartan. Later in the
XXth century the theory of Cartanmatrices of root systems and of the finite reflection
groups associated with them was extensively developed by three mathematicians
Hermann Weyl, Harold Coxeter and Evgenij Dynkin. The next chapter is entirely
devoted to Weyl and to his fundamental contributions not only to representation
theory but in general to modern mathematical thought. Here we discuss both the
life and the contributions of Coxeter and Dynkin who invented an extremely useful
graphical representation for Cartan matrices that goes under the name of Coxeter–
Dynkin diagrams.

Coxeter and Dynkin

The twomathematicianswhose name is associatedwith twovariants of suchdiagrams
are shown in Fig. 5.14. Both of them had a long life, beginning on the European
Continent and ending in the New World, on the North American Continent. Both
were very much talented and obtained a lot of recognitions during their long career,
yet the character of their life was very different because of the difference of their
country of origin. Born in London in 1907, the long life of Donald Coxeter, as he
was usually named by all his friends, relatives and colleagues, was healthy, quiet
and serene, although animated by his strong geometrical and artistic creativity. On
the contrary Dynkin’s life started in Sankt Peterburg, already renamed Leningrad, in
the troubled times after the Bolshevik Revolution, was early marked by the ominous
shadow of Stalin’s purges and continued to be difficult and insecure until his final
emigration to the United States in 1976.

In 1935, when Eugene was eleven of age, he and his family, of Jewish origin,
were forcefully expelled from their native town and were exiled to a small city in
Kazachstan. Two years later, in 1937, Eugene’s father, Boris Dynkin, who in previous
times had been a well-to-do lawyer, was arrested without any concrete charge and
declared to be a People’s Enemy. Disappeared in a Gulag, he was probably executed
there, one among the several thousands that in all corners of the Soviet Union lost
their life in those ominous year and in the following equally terrible ones.

In Soviet Union, being son to a People’s Enemy andmoreover a Jew, meant to be a
priori excluded from higher education in top level universities. Notwithstanding this,
Eugene Dynkin succeeded to be admitted to Moscow University in 1940, thanks to
the protection of a distinguished soviet scientist. Dynkin himself wrote: It was almost
a miracle that I was admitted (at the age of sixteen) toMoscowUniversity. Every step
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Fig. 5.14 Eugene Borisovich Dynkin (1924–2014) on the left. Harold Scott MacDonald Coxeter
(1907–2003) on the right

in my professional career was difficult because the fate of my father, in combination
with my Jewish origin, made me permanently undesirable for the party authorities at
the university. Only special efforts by A. N. Kolmogorov, who put, more than once, his
influence at stake, made it possible for me to progress through the graduate school
to a teaching position at Moscow University.

Saved from military service because of his poor eyesight, Dynkin was able to
continue his studies throughout World War II, graduating with a Master of Science
from the Faculty of Mechanics and Mathematics in 1945. His work at this time was
partly in algebra and partly in probability. Indeed he attended the seminars of Gelfand
on the theory of Lie groups and those of Kolmogorov on Markov chains. These two
areas of mathematics, algebra and probability, remained the focus of his interest
throughout all of his life, with a strong shift toward the second in his later years. It
was during his student years that Dynkin, trying to understandWeyl’s writings on Lie
Groups, invented theDynkin diagrams to classifyCartanmatrices. Similar graphs had
been independently introduced by Coxeter in his study of reflection groups, presently
named Coxeter groups. After graduating, Dynkin remained at Moscow University
where he became a research student of Kolmogorov. For ten years he worked both on
the theory of Lie algebras and on probability theory, although his main work during
this period was in algebra. In 1945 he solved a problem on Markov chains suggested
by Kolmogorov and his first publication in probability resulted. Dynkin received his
Ph.D. in 1948 and he became an assistant professor in the Probability Department
directed byKolmogorov.Dynkin becameDoctor of Physics andMathematics in 1951
and Kolmogorov pressed for Dynkin to be awarded a chair. However there was no
way that the Communist Party leaders of Moscow University would allow a person
with such a background as Dynkin’s to hold a chair. After Stalin’s death in 1953 the
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grasp of Party hardliners on all sectors of Soviet Society eased a little bit. It was
the time of Khrushchev’s reforms. The following year, with Kolmogorov’s strong
support, Dynkinwas appointed to a chair at theUniversity ofMoscow and he held this
chair until 1968. From the time he was appointed to the chair, Dynkin’s work became
more and more devoted to probability theory. In 1968, the year of Prague Spring and
of its suppression by the Soviet tanks sent by Brezhnev, Dynkin was removed from
his chair at Moscow University because he had signed a letter in support of the two
dissidents Alexander Ginzburg and Yuri Galanskov who were at that time on trial for
compiling theWhiteBook. This latterwas a four-hundred page report of the infamous
mock trial of the two writers Yuri Daniel and Andrei Sinyavsky condemned in 1965
to long detentions in labor camps because of anti-soviet activities. BothGinzburg and
Galanskov were on their turn sentenced to several years of hard labor and Galanskov
died in the lager. Dynkin, removed from Moscow State University, was simply sent
to the Institute of Central Economics and Mathematics of the USSR Academy of
Sciences. He worked there from 1968 to 1976. At the end of 1976, Dynkin left the
USSR for the United States. The decision to leave was very hard: pupils, friends,
and youth were left behind. To apply for emigration was a great risk, especially for
an outstanding scientist: many such applicants were denied exit visas, they lost their
jobs and lived for years as outcasts of soviet society. Dynkin took the risk since life in
the USSR had became more and more unbearable to him and since his only daughter
had already managed to emigrate to Israel.

In the United States, Dynkin was offered a chair by Cornell University, which he
accepted. He stayed in Ithaca, New York State, the rest of his life until his death in
2014.

Dynkin has been awarded many prizes for his outstanding contributions. He was
elected fellow of the Institute of Mathematical Statistics in 1962 and of the Ameri-
can Academy of Arts and Sciences in 1978. In 1985 he was elected member of the
National Academy of Sciences of the United States. He received honorary doctor-
ates from the Pierre and Marie Curie University of Paris in 1997, the University of
Warwick in 2003 and the Independent University of Moscow also in 2003.

Donald Coxeter’s father, Harold, was a gas manufacturer while his mother, Lucy,
was a painter. The artistic tendencies of Donald can be probably traced back to his
mother’s legacy. Donald was educated at the University of Cambridge, receiving his
Bachelor of Science in 1929. He continued to study for a doctorate at Cambridge and
this was awarded to him in 1931. He spent the next two years as a research visitor at
Princeton University working with Veblen. He had a second fellowship at Princeton
for the years 1934–35.

In 1936Coxeter received an appointment from theUniversity ofToronto inCanada
that he accepted. He remained on the faculty at Toronto until his death in 2003.

Coxeter’s work was mainly in Geometry. In particular he made contributions of
major relevance to the theory of polytopes, non-Euclidian geometry, group theory and
combinatorics. Coxeter polytopes are defined as the fundamental domains of discrete
reflection groups, now called Coxeter groups, and they give rise to tessellations. In
1934 Coxeter classified all spherical and euclidian Coxeter groups. In this context he
introduced Coxeter diagrams. His mathematical work was motivated by the search
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for beauty. Robert Moody, proposing Coxeter for an honorary degree from York
University in Toronto, said:Modern science is often driven by fads and fashions, and
mathematics is no exception.Coxeter’s style, I would say, is singularly unfashionable.
He is guided, I think, almost completely by a profound sense of what is beautiful.

Coxeter wrote many books not only on topics of Mathematics. He had artistic
tendencies and was fascinated by the work of the Dutch painter Escher whom he met
in 1954 building up with him a life-long friendship, certainly eased by the Dutch
nationality of his ownwifeRien.Donald hadmany artistic gifts, particularly inmusic.
In fact before he became amathematician hewanted to become a composer. However
his interest in symmetry pulled him towards mathematics and into a career which he
never stop loving and practicing also in his late years. Coxeter wrote: I am extremely
fortunate for being paid for what I would have done anyway. In 2006 the Canadian
journalist Siobhan Roberts wrote a biography of this outstandingmathematician with
the title King of Infinite Space: Donald Coxeter, The Man Who Saved Geometry.

5.5.1 Dynkin Diagrams

In order to make the objects of our previous historical account concrete, let us briefly
recollect the definition of Dynkin diagrams and present, in terms of them, the content
of the classification theorem of simple Lie algebras. Each Cartan matrix can be given
a graphical representation in the following way. To each simple root αi we associate
a circle © as in Fig. 5.15 having denoted θi j the angle between the two simple roots
αi and α j . Then we link the i th circle with the j th circle by means of a line which is
simple, double or triple depending on whether:

< αi , α j >< α j , αi >= 4 cos2 θi j =
⎧⎨
⎩
1
2
3

(5.5.3)

The corresponding graph is named a Coxeter graph.
If we consider the simplest case of two–dimensional Cartan matrices we have

the four possible Coxeter graphs depicted in Fig. 5.16. Given a Coxeter graph if
it is simply laced, namely if there are only simple lines, then all the simple roots
appearing in such a graph have the same length and the corresponding Cartan matrix
is completely identified. On the other hand if the Coxeter graph involves double or
triple lines, then, in order to identify the corresponding Cartan matrix, we need to
specify which of the two roots sitting at the end points of each multiple line is the
long root andwhich is the short one. This can be done by associating an arrow to each
multiple line. By convention we decide that this arrow points in the direction of the

Fig. 5.15 The simple roots
αi are represented by circles
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Fig. 5.16 The four possible Coxeter graphs with two vertices

Fig. 5.17 The distinct Cartan matrices in two dimensions (and therefore the simple Algebras in
rank two) correspond to the Dynkin diagrams displayed above. We have distinguished a b2 and a c2
matrix since they are the limiting case for � = 2 of two series of Cartan matrices the b� and the c�
series that for � > 2 are truly different. However b2 is the transposed of c2 so that they correspond
to isomorphic algebras obtained one from the other by renaming the two simple roots α1 ↔ α2

short root. A Coxeter graph equipped with the necessary arrows is named a Dynkin
diagram. Applying this convention to the case of the Coxeter graphs of Fig. 5.16 we
obtain the result displayed in Fig. 5.17.

5.5.2 The Classification Theorem

Having clarified the notation of Dynkin diagrams the basic classification theorem of
complex simple Lie algebras is the following. If Δ is an irreducible system of roots
of rank � then its Dynkin diagram is either one of those shown in Fig. 5.18 or for
special values of � is one of those shown in Fig. 5.19. There are no other irreducible
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Fig. 5.18 The Dynkin diagrams of the four infinite families of classical simple algebras

Fig. 5.19 The Dynkin diagrams of the five exceptional algebras
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root systems besides these ones. The four infinite families a�, b�, c�, d� correspond
to the Lie algebras of the four classical matrix groups, mentioned in the same order
SL(� + 1), SO(2� + 1), Sp(2�), SO(2� + 1). By definition SL(� + 1) denotes the
group of matrices in � + 1 dimensions whose determinant is one, SO(n) denotes
the group of n × n orthogonal matrices and Sp(2�) denotes the group of 2� × 2�
symplectic matrices.

The five exceptional algebras, whose possible existence had been spotted by
Killing, cannot be identified by means of algebraic conditions imposed on matri-
ces. Indeed, as we explained, their actual existence was established by Cartan who
was able to construct explicit matrix realizations for each of them.

5.6 The ADE Classification

A very interesting aspect of the root system classification relates with the subset of
Dynkin diagrams, named simply laced, that involve only simple lines between the
vertices.

At some point in the demonstration of the theorem one arrives at the stage where
it is established that the only possible simply laced Dynkin diagrams have the form
depicted in Fig. 5.20. A series of simple arguments in elementary euclidian geometry
shows that the three integer number characterizing the diagram fulfill the following
diophantine inequality:

Fig. 5.20 Dynkin diagramwith a node. The simple root in the node is namedψ while the roots along
the three simple lines departing from the node are respectively named ε1, . . . , εp−1, η1, . . . , ηq−1,
ζ1, . . . , ζr−1. The graph is characterized by the three integer numbers p, q, r that denote the lengths
of the three simple lines departing from the node
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1

p
+ 1

q
+ 1

r
> 1 (5.6.4)

whose independent solutions are those displayed below:

(p, q, r) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(�, 1, 1) ⇒ a� Dynkin diagrams � ∈ N

(� − 2, 2, 2) ⇒ d� Dynkin diagrams 4 ≤ � ∈ N

(3, 3, 2) ⇒ e6 Dynkin diagram
(4, 3, 2) ⇒ e7 Dynkin diagram
(5, 3, 2) ⇒ e8 Dynkin diagram

(5.6.5)

Changing the names of the variables:

p = k1 ; q = k2 ; r = k3 (5.6.6)

Equation (5.6.4) is the same as Eq. (4.2.20) obtained in the classification of finite
subgroups of the spinor group SU(2) and of its homeomorphic image in the three-
dimensional rotation group SO(3). Hence it has the same solutions. This extraordi-
nary coincidence establishes a deep correspondence between the symmetry groups
of polygons and polyhedra with simply laced Lie algebras. In particular, this corre-
spondence associates the three symmetry groups of the five platonic solids with the
exceptional Lie algebras of E-type.

The double interpretation of the same diophantine constraint is summarized in
Fig. 5.21 and leads to the following correspondences between finite rotation groups
and simply laced Lie algebras:

Fig. 5.21 Interpretation of the solutions of the same Diophantine equation in the case of finite
subgroups of Γb ⊂ SU(2) and of simply laced Lie algebras
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Γ [�, �, 1] � Z� ⇔ a� (5.6.7)

Γ [�, 2, 2] � Dih� ⇔ d� (5.6.8)

Γ [3, 3, 2] � T12 ⇔ e6 (5.6.9)

Γ [4, 3, 2] � O24 ⇔ e7 (5.6.10)

Γ [5, 3, 2] � I60 ⇔ e8 (5.6.11)

where a� is the Lie algebra associated with the Lie group SL(� + 1,C), d� is the
Lie algebra associated with the Lie group SO(2�,C), and e6,7,8 are the Lie algebras
of three exceptional Lie groups of dimensions 78, 133 and 248, respectively. In
Lie Algebra theory, as we have seen, the rank is the maximal number of mutually
commuting and diagonalizable elements of the algebra. As we see from Fig. 5.21,
the rank has a counterpart in the binary extension of the corresponding finite rotation
group: it is the number of non trivial conjugacy classes of the group, except the
class of the identity element. The property of Lie algebras that in Dynkin diagrams
there are no nodes with more than three converging lines corresponds on the finite
rotation group side to the property that in such groups there are at most three different
types of group-element orders. Finite groups with more than three type of group
element orders do not correspond to Dynkin diagrams of Lie algebras, although
more complicated diagrams can still be associated with them that play a role in the
algebraic geometry of singularity resolutions (theMacKay quivers, briefly discussed
in Chap.11).

5.7 Comments on the ADE Classification

The last remark in the previous section leads us to mention what follows. The fate
of the diophantine inequality (5.6.4) is not accomplished with the above illustrated
correspondence. A further incarnation of the ADE classification is much more recent
and will be discussed in Chap. 11. It relates with HyperKähler geometry and with
the so named resolution of singularities. From the point of view of singularities the
ADE classification of the latter was discovered in the 1970s by Vladimir Arnold.
Quotient singularities with respect to discrete group that have more than three type
of group element orders provide a generalization of the ADE classification which is
topical in current frontier research.

Wehave here a primary example of the continuous dialectics between fundamental
issues in geometry, algebra and number theory that is at the heart of the mathematical
conceptions of Space and Symmetry, ultimately of Physics.

A final remarkable coincidence is the following. Because of the defining property
(a) the angle θ between any two roots α and β is quantized, namely:

θ = ±30◦ or ± 60◦ or 120◦ or ± 45◦ or 90◦ or 135◦ (5.7.12)

This is precisely the quantization of angles in Plato’s fundamental triangles conceived
by the ancient philosopher as the ultimate subconstituents of matter!



Chapter 6
Hermann Weyl and Representation
Theory

My work always tried to unite the truth with the beautiful, but
when I had to choose one or the other, I usually chose the
beautiful....

Hermann Weyl

6.1 Conceptual Introduction

The Lie algebra tale continues in this chapter with the essential and fundamental
issue of linear representations.

In previous chapters we saw how the notion of continuous groups of transforma-
tions, initiated by Lie in connection with differential equations, lead to the notion
of Lie algebras, whose abstract classification was the objective pursued by Killing
first and by Cartan later on. In this process exceptional Lie algebras were discovered,
whose first explicit realization in terms of matrices was found by Cartan himself
in his doctoral thesis. In this way exceptional Lie algebras obtained the same sta-
tus as classical Lie algebras that are originally defined as vector spaces of matrices
equipped with the ordinary commutator playing the role of Lie-bracket.

The realization of a Lie algebra in terms of matrices corresponds to the notion of a
linear representation and it is a fundamental issue in Lie algebra and Lie group theory.
The question raised by the case of exceptional Lie algebras is the same that can be
raised for any other Lie algebra: can we classify the irreducible linear representation
of a Lie algebra and construct them explicitly? It is a question absolutely analogous
to the question that was already addressed in the case of finite groups and has a
similar type of answer. If we restrict our attention to simple Lie algebras, just as in
the case of finite groups, the set of linear representations, which now is infinite, is
fully determined by the very structure of the Lie algebra and can be regarded as an
integral part of its mathematical essence. From a philosophical point of view, this
fact is quite significant.

Our present understanding of the fundamental interactions governing the dynam-
ics of the fundamental constituents of matter is that they are all described by
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connections on principal fibre-bundleswith specifically chosen structural Lie groups:
in particular SU(3) × SU(2) × U(1) for non-gravitational interactions, gravity being
instead associated with connections on the tangent bundle determined by a pseudo-
Riemannian metric. Matter fields are instead sections of associated vector bundles
that are as many as the possible linear representations of the structural group. Hence
the ultimate understanding of the architecture of the world relies on the discovery of
some adequate superselection principle that chooses the right structural group and
the right linear representations among the available ones. A definite answer to this
problem is still lacking but all the steps towards a unified ultimate theory of funda-
mental interactions are along this line of thinking. Symmetry encodes dynamics and
also the catalogue of its own possible realizations.

6.1.1 Hermann Weyl

When talking about representation theory and the accomplishment of continuous
group theory the entire scene is dominated by the outstanding figure of a mathemati-
cian, philosopher and scientist who is another giant of the XXth century: Hermann
Weyl (see Fig. 6.1). Weyl is beyond any doubt the great scientific personality that
more than others fits into the ideal of a modern variant of the Renaissance Universal
Scholar, interested with an equal degree of intensity in those aspects of Culture that
are dubbed Humanities and those that are dubbed Natural Sciences. He was talented
in languages and his scientific books are pieces of Art also from the literary point of
view, both in German and in English. At the center of the intellectual texture in which
Weyl moved at ease with a never ceasing depth of thinking there is Mathematics,
strongly linked with Philosophy, and at the center of Mathematics, Weyl certainly
placed Symmetry. Such was the title ofWeyl’s last book, published in 1952 and based
on a lecture series given by him in Princeton in the previous several months. Coxeter
reviewed this book and said: ... The first lecture begins by showing how the idea of
bilateral symmetry has influenced painting and sculpture, especially in ancient times.
This leads naturally to a discussion of “the philosophy of left and right”, including
such questions as the following. Is the occurrence in nature of one of the two enan-
tiomorphous forms of an optically active substance characteristic of living matter?
At what stage in the development of an embryo is the plane of symmetry determined?
The second lecture contains a neat exposition of the theory of groups of transfor-
mations, with special emphasis on the group of similarities and its subgroups: the
groups of congruent transformations, of motions, of translations, of rotations, and
finally the symmetry group of any given figure. ... the cyclic and dihedral groups are
illustrated by snowflakes and flowers, by the animals called Medusae, and by the
plans of symmetrical buildings. Similarly, the infinite cyclic group generated by a
spiral similarity is illustrated by the Nautilus shell and by the arrangement of florets
in a sunflower. The third lecture gives the essential steps in the enumeration of the
seventeen space-groups of two-dimensional crystallography ... In the fourth lecture
he shows how the special theory of relativity is essentially the study of the inher-
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Fig. 6.1 Hermann Klaus Hugo Weyl (1885–1955). Born in Elmshorn near Hamburg, he studied
mathematics in Münich and Göttingen where he accomplished his doctorate under the supervision
of David Hilbert. After a beginning as a dozent in Göttingen, Weyl joined the Faculty of Zürich
Polytechnic ETH in 1913 where he remained until 1930 and for some years he was colleague of
Einstein. In 1930, after Hilbert’s retirement he was his successor in Göttingen. In 1933 when Hitler
came to power, Weyl, whose wife Helene Joseph was a Jew, emigrated to the U.S.A. accepting an
offer from the Institute of Advanced Study in Princeton and there he was once again Einstein’s
colleague. Weyl’s wife was a philosopher who had been Husserl’s student and this stirred Weyl’s
interests in philosophy. They had two sons. Weyl lived in Princeton until 1951, when he retired.
After his first wife’s death in 1948, Weyl married again in 1950 with the sculptress Ellen Bär and
with his second wife he divided his time between Princeton and Zürich where he died in 1955 from
heart attack

ent symmetry of the four-dimensional space-time continuum, where the symmetry
operations are the Lorentz transformations; and how the symmetry operations of an
atom, according to quantum mechanics, include the permutations of its peripheral
electrons. Turning from physics to mathematics, he gives an extraordinarily con-
cise epitome of Galois theory, leading up to the statement of his guiding principle:
“Whenever you have to do with a structure-endowed entity, try to determine its group
of automorphisms”.

Weyl was born in 1885 in northern Germany in a small city close to Hamburg,
son to a director of a bank. After secondary school he entered first the University
of Münich, studying mathematics and physics and then he moved to the University
of Göttingen, where he became Hilbert’s student. After graduation and habilitation,
obtained with two theses devoted to integral equations and to the spectral theory
of Sturm–Liouville operators, already in 1913 he published a book Die Idee der
Riemannschen Fläche (The Idea of a Riemann Surface) that, according to an eval-
uation expressed by L. Sario in 1956, has undoubtedly had a greater influence on
the development of geometric function theory than any other publication since Rie-
mann’s dissertation. Weyl’s philosophical attitude is already evident from the title,
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full of Platonic suggestions, yet in typical Weyl’s spirit the book is not just made of
beautiful words rather of the soundest mathematics providing a consistent unified
approach to Riemann’s function theory where geometrical, analytical and topologi-
cal aspects all obtain their proper place. The philosophical inclinations of Hermann
Weyl were boosted in Göttingen by the influence of Edmund Husserl that reached
him both directly and through Weyl’s fiancée Helene Joseph with whom he married
the same year of publication of his first book. Helene had been Husserl’s student and
was herself a philosopher.

1913was a very important year inWeyl’s life not only because of his first book and
of hismarriage, but also because hewas appointed professor at theZürichPolytechnic
ETH, whose Faculty he joined that year becoming Einstein’s colleague. The early
contact between Weyl and Einstein at a time when the latter was accomplishing the
set up of the General Theory of Relativity was momentous for the former whose
interest in Relativity both at the mathematical and at the philosophical level lasted
all the rest of his life. Equally important for the development of Weyl’s thought was
his close friendshipwith Erwin Schrödinger who joined ETH in 1922 andwithwhose
wife Anny, Weyl had a short-lived but intense love affair.

In Zürich where he remained until 1930, Weyl started and developed what he
himself considered the major achievement of his life and found its accomplished
expression in the book: The Classical Groups, published by him in 1939, when he
was already in the United States [168]. We refer hereby to the theory of Lie Group
representations that Weyl, by means of his famous character formula, brought to the
same perfection attained by the theory of finite groups.

Both in the field of relativity, his interest in which was stimulated by Einstein,
and in the field of quantum mechanics, to which he was attracted by Schrödinger,
Weyl’s contributions were pivoted around the idea of symmetry. Weyl’s third book
Gruppentheorie undQuantenmechanik (QuantumMechanics andGroup Theory) set
up the standard universally adopted for the treatment of symmetries of the quantum
hamiltonians and the treatment of their eigenfunctions.

In 1930, after Hilbert’s retirement, Weyl was appointed to his chair by Göttingen
University where he remained only three years. In 1933 when Hitler and the nazis
came to power,Weyl accepted Princeton’s offer and joined the Institute for Advanced
Studies where he became once again Einstein’s colleague. In Weyl’s decision the
Jewish origin of his wife played an important role but certainly the vulgarity of
nazism was no less important given his intellectual standards and his love of the
beautiful expressed in his famous sentence:

My work always tried to unite the truth with the beautiful, but when I had to
choose one or the other, I usually chose the beautiful...

In Princeton Weyl spent the last active part of his life giving lecture courses
that gave origin to other important books, Elementary Theory of Invariants, the
already quoted The Classical Groups, Algebraic Theory of Numbers, Philosophy
of Mathematics and Natural Sciences up to his swan song, Symmetry. In 1948 he
suffered the loss of his wife and two years later he remarried with the swiss sculptress
Ellen Bär with whom he lived his last five years dividing his time between Zürich
and Princeton from which he retired in 1952. He died in Zürich from heart attack
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on his 70th birthday in 1955. His ashes are interred in Princeton’s cemetery close
to those of his son Michael Weyl passed away in 2011 at the age of 93 after a long
life that saw him scholar of German literature, actor, soldier, journalist and cultural
attachée in American diplomatic missions around the world.

Because of the extraordinary relevance of Weyl’s views on symmetry and mathe-
matics for the spirit of the present book we devote the next subsection to the analysis
of the mathematical way of thinking according to him. This was the title of one
address of his given at the University of Pennsylvanya in 1940 and published in
Science the same year [169].

6.1.2 The Mathematical Way of Thinking, According to
Hermann Weyl, with This Author’s Comments

After some initial words that we omit Weyl says:
A movement for the reform of the teaching of mathematics, which some decades

ago made a stir in Germany under the leadership of the great mathematician Felix
Klein, adopted the slogan functional thinking. The important thing which the aver-
age educated man should have learned in his mathematics classes, so the reformers
claimed, is thinking in terms of variables and functions. A function describes how
one variable y depends on another x ; or more generally, it maps one variety, the range
of a variable x , upon another (or the same) variety. This idea of function or mapping
is certainly one of the most fundamental concepts, which accompanies mathematics
at every step in theory and application.

After exhibiting Galileo’s law of accelerated fall in a constant gravitational field:

s = 1
2g t

2 (6.1.1)

Weyl continued:
Right from the beginning we encounter these characteristic features of the math-

ematical process:

1. variables, like t and s in the above formula, whose possible values belong to a
range, here the range of real numbers, which we can completely survey because
it springs from our own free construction,

2. representation of these variables by symbols,
3. functions of a priori constructed mapping of the range of one variable t upon the

range of another s.

In studying a function one should let the independent variable run over its full
range. A conjecture about the mutual interdependence of quantities in Nature, even
before it is checked by experience, may be probed in thought by examining whether
it carries through, over the whole range of independent variables. Sometimes certain
simple limiting cases at once reveal that the conjecture is untenable. Leibnitz taught
us by the principle of continuity to consider rest not as contradictorily opposed to



134 6 Hermann Weyl and Representation Theory

motion, but as a limiting case of motion. Arguing by continuity he was able a priori
to refute the laws of impact proposed by Descartes.

We clearly see in the above sentences written by Weyl himself what Sir Michael
Atiyah told about him in his recent Biographical Memoir [8]:

Weyl was a strong believer in the overall unity of mathematics, not only across
sub-disciplines but also across generations. For him the best of the past was not
forgotten, but was subsumed and refined by the mathematics of the present. His
book The Classical Groups was written to bring out this historical continuity.

Without any undue pretension to originality and with a due sense of proportions,
the author of this book entirely subscribes to such an opinion as that attributed
by Atiyah to Weyl. Indeed such a belief in the unity of scientific thought across
generations and in the importance of a historical understanding of the development of
fundamental concepts is the verymotivation to write the present long essay. Actually,
persuaded that Weyl would agree with it, this book is marked by a further extension
of the unitarian vision advocated above for mathematics. Mathematics is linked with
theoretical physics, with philosophy and with the arts and mathematical thinking just
encompasses one particular very fundamental branch of the overall human thinking
that cannot and never should be separated from the other branches. To confirm us in
this Weyl wrote:

My own mathematical works are always quite unsystematic, without mode or
connection. Expression and shape are almost more to me than knowledge itself. But
I believe that, leaving aside my own peculiar nature, there is in mathematics itself,
in contrast to the experimental disciplines, a character which is nearer to that of free
creative art.

A little further, in the same conceptual article quoted above [169] about mathe-
matical thinking Weyl said:

In Aristotle’s logic one passes from the individual to the general by exhibiting
certain abstract features in a given object and discarding the remainder, so that two
objects fall under the same concept or belong to the same genus if they have those
features in common. This descriptive classification, e.g., the description of plants and
animals in botany and zoology, is concerned with actual existing objects. One might
say that Aristotle thinks in terms of substance and accident, while the functional idea
reigns over the formation of mathematical concepts. Take the notion of ellipse. Any
ellipse in the x − y-plane is a set E of points (x, y) defined by a quadratic equation:

ax2 + bxy + cy2 = 1 (6.1.2)

whose coefficients a, b, c satisfy the conditions:

a > 0, c > 0, ac − b2 > 0 (6.1.3)

The set E depends on the coefficients a, b, c: we have a function E(a, b, c) which
gives rise to an individual ellipse by assigning definite values to the variable coef-
ficients a, b, c. In passing from the individual ellipse to the general notion one
does not discard any specific difference, one rather makes certain characteristics
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(here represented by the coefficients) variable over an a priori surveyable range
(here described by the inequalities). The notion thus extends over all possible, rather
than over all actually existing, specifications.

In relation with the above views about the formation of mathematical concepts we
can add that there is a constant historical dialectics inherent to both mathematics and
theoretical physics which has, as main untangled opponents, the issue of generaliza-
tion and that of specific choices. This dialectics ultimately stems from our ambition
to understand Nature in purely rational terms. On one side, exactly as described by
Weyl, we generalize the notion of what exists into amathematically defined family of
what is possible. Typically the possible structures are parameterized by variables (the
quadric coefficients in Weyl’s example) that have a range, namely can be thought as
points in a certain space which, in contemporary mathematical physics, is customar-
ily dubbed the moduli space. In this way the trend of geometrization of both physics
and mathematics is generally boosted: whatever is the notion we consider, it carries,
attached with it, some sort of moduli space and our understanding of the virtual is
essentially encoded in our command over the geometry of moduli spaces. On the
other hand we always would like to be able to select, among the possible structures,
those that actually exist in Nature. Indeed some of Aristotle’s spirit persists in us
up to the present time! In mathematical terms what actually exists corresponds to
some definite points in moduli space and our ambition is to characterize a priori such
points, as special ones that we might predict. To this effect one resorts to new func-
tions defined over moduli space, typically some potential or hamiltonian function,
whose minima can select the special moduli points corresponding to what exists in
actuality. The game starts at this point once again in the new rush to define the family
of possible hamiltonians and their moduli spaces. In these games a fundamental issue
is provided by symmetries and by their classification to which Weyl also contributed
a lot. The ultimate dream of many scientists is associated with sporadic entities, for
instance groups. Because of their uniqueness they have no moduli and correspond
to some end point in the conceptual chain. In some sense sporadic structures are the
analogue in mathematical thinking of God or better of Gods, sticking to a politheistic
attitude that is historically much safer and peaceful of the monotheistic one.

In a later paragraph of his impressive article on mathematical thinking Weyl said:
Words are dangerous tools. Created for our everyday life they may have their

good meanings under familiar circumstances, but Pete and the man in the street are
inclined to extend them to wider spheres without bothering about whether they then
still have a sure foothold in reality. We are witnesses of the disastrous effects of
this witchcraft of words in the political sphere where all words have a much vaguer
meaning and human passion so often drowns the voice of reason. The scientist must
thrust through the fog of abstract words to reach the concrete rock of reality. It seems
to me that the science of economics has a particularly hard job, and will still have
to spend much effort, to live up to this principle. It is, or should be, common to
all sciences, but physicists and mathematicians have been forced to apply it to the
most fundamental concepts where the dogmatic resistance is strongest, and thus it
has become their second nature. For instance, the first step in explaining relativity
theory must always consist in shattering the dogmatic belief in the temporal terms
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past, present, future. You can not apply mathematics as long as words still becloud
reality.

Further on, talking about relativity, Weyl continued as follows:
…the real thing emerges as soon as we replace the intuitive space in which our

diagrams are drawn by its construction in terms of sheer symbols. Then the phrase
that the world is a four-dimensional continuum changes from a figurative form of
speech into a statement of what is literally true. At this second step the mathemati-
cian turns abstract, and there is the point where the layman’s understanding most
frequently breaks off: the intuitive picture must be exchanged for a symbolic con-
struction. “By its geometric and later by its purely symbolic construction”, says
Andreas Speiser,“mathematics shook off the fetters of language, and one who knows
the enormous work put into this process and its ever recurrent surprising successes
can not help feeling that mathematics to-day is more efficient in its sphere of the
intellectual world, than the modern languages in their deplorable state or even music
are on their respective fronts”. I will spend most of my time to-day in an attempt to
give you an idea of what this magic of symbolic construction is.

Indeed, after this sentenceWeyl illustrated the constructive nature ofmathematics
by explaining in some detail the combinatorial construction of topological spaces in
terms of cells and infinite divisions. While doing that, in full agreement with views
earlier expressed by Poincaré, he emphasized the principle of iteration as the most
fundamental idea underlying the whole of mathematical thinking. We pause instead
for a moment in order to make some comments on his previously reported sentences.

First of all it is clearly transparent from his words that mathematics and theoretical
physics are in Weyl’s thinking just two aspects of the very same thing. Secondly one
can easily summarize Weyl’s conception of the process which according to him can
lead to a mathematical understanding of the laws of nature. This process occurs in
three steps:

1. First one has to go to reality by dismantling the witchcraft of words, in particular
of the abstract ones like past, present and future, higher and lower, parallel and
so on.

2. Secondly one has to reformulate reality into a symbolic scheme that you treat and
develop as such ignoring the interpretation of the symbolic objects.

3. Thirdly, from the developed scheme taken as a whole you can work out implica-
tions that can be compared with experimental data.

The first step in the above list is very important. It is frequently said that mathematics
is the language inwhichNature has written its own laws butWeyl goes beyond that. It
is the very dismission of the concept of words which he brings to the forefront.Words
are deceiving because they are descriptive and behind the same word everyone sees
something different. In a symbolic construction the intermediate objects do not need
to describe anything in particular: what is relevant are the relations and the operations
one can make within the scheme. It is from these operations that one extracts the
meaning of the construction and ultimately the predictions to compare with reality.
In a later passage Weyl says:
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We now come to the decisive step of mathematical abstraction: we forget about
what the symbols stand for. The mathematician is concerned with the catalogue
alone; he is like the man in the catalogue room who does not care what books or
pieces of an intuitively given manifold the symbols of his catalogue denote. He need
not be idle; there are many operations which he may carry out with these symbols,
without ever having to look at the things they stand for.

Still further Weyl states:
The historic development of our theories proceeds by heuristic arguments over

a long and devious road and in many steps from experience to construction. But
systematic exposition should go the other way: first develop the theoretical scheme
without attempting to define individually by appropriate measurements the symbols
occurring in it as space-time coordinates, electromagnetic field strengths, etc, then
describe, as it were in one breath, the contact of the whole system with observable
facts.

We clearly see in this the difference between symbols andwords.Aword describes
some supposedly real object. A symbol is an item on which you do operations or
which operates on other symbols. Then partially correcting his own standpoint Weyl
says:

Up to now I have emphasized the constructive character of mathematics. In
our actual mathematics there lives with it the non-constructive axiomatic method.
Euclid’s axioms of geometry are the classical prototype. Archimedes employs the
method with great acumen and so do later Galileo and Huyghens in erecting the
science of mechanics. One defines all concepts in terms of a few undefined basic
concepts and deduces all propositions from a number of basic propositions, the
axioms, concerning the basic concepts.

…I should like to point out that since the axiomatic attitude has ceased to be
the pet subject of all methodologists its influence has spread from the roots to all
branches of the mathematical tree. We have seen before that topology is to be based
on a full enumeration of the axioms which a topological scheme has to satisfy. One
of the simplest and most basic axiomatic concepts which penetrates all fields of
mathematics is that of group. Algebra with its fields, rings, etc, is to-day from
bottom to top permeated by the axiomatic spirit. …modern mathematical research
often is a dexterous blending of the constructive and the axiomatic procedures.

The last abovewords ofWeyl are verymuch significant for themotivations and the
entire development of the present book. When he was writing, about seventy years
ago, it was absolutely clear to Hermann Weyl that the axiomatic notion of group is
probably the most central and most relevant in the whole universe of mathematics
and in physics as well. Actually group theory is just the perfect example of what was
said above about the irrelevance of the objects the symbols stand for. Historically, as
we have seen, continuous groups were discovered by Sophus Lie as transformation
groups, yet following the work of Killing, Cartan and finallyWeyl continuous groups
became independent symbolic structures able to intrinsically determine their own
concrete realizations as linear or non linear representations. Indeed the father of
linear representation theory is Hermann Weyl who gave to continuous group theory
the same status asfinite group theoryhad alreadyobtained fewdecades before through
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the work of Frobenius.With his book TheClassical Groups published in 1939Weyl
set a very influential milestone for the whole subject. Groups, both continuous and
finite are central and fundamental in Geometry, in Algebra and in Topology. Weyl
was the first to grasp that they are the essence of physical laws as well.

How this happened is beautifully described inWeyl’s Memoir recently written by
Atiyah [8]. We quote again from that article:

Quantum mechanics was not Weyl’s first encounter with physics. He had already
learned about Einstein’s general relativity, which explained gravity in geometrical
terms. Weyl had the idea of extending Einstein’s theory to incorporate electromag-
netism, so that Maxwell’s equations would also acquire geometrical significance.
Weyl’s idea was to introduce a scale, or gauge, that varied from point to point and
whose variation round a closed path in space-timewould encapsulate the electromag-
netic force. Almost immediately (in fact in an appendix to Weyl’s paper) Einstein
criticized the idea on physical grounds. If Weyl was right, then the size of a parti-
cle would depend on its past history, whereas experiments showed that all atoms of
hydrogen, say, had identical properties. One might have thought that such a telling
criticism from someone of Einstein’s standing would have discouraged Weyl and
that he might have withdrawn his paper. It is a tribute to his mathematical insight
and self-confidence that he went ahead. The idea was too beautiful to discard, and
Maxwell’s equations came out like magic.

As often happens, a good idea lives to fight another day and only a few years
later, with the advent of quantum mechanics, a new physical interpretation was put
onWeyl’s calculations. Oscar Klein proposed that Weyl’s gauge should be viewed as
a phase and that space-time should be viewed as having a fifth dimension consisting
of a very small circle. Mathematically Weyl’s gauge variable gets multiplied by
i (the square root of −1) and is periodic. This point of view, called the Kaluza–Klein
theory (Theodor Kaluza made the first steps after Weyl) is now generally accepted.
Moreover, it is just the first stage in the enlargement of ordinary spacetime. To include
the other nuclear forces we need even more dimensions and current research centres
on a total space-time dimension of 10 or 11.

Independently of these extra dimensions Weyl’s gauge theory description of
Maxwell’s equations is now applied to local symmetry groups other than the cir-
cle. This leads to the non-Abelian gauge theories, which are the basis of the standard
model of elementary particle physics.

This gauge theory, the infant that was nearly thrown out with the bath water, has
grown up into sturdy adulthood. Not only is it the framework of modern physics
but it is also one of the most novel and exciting areas in modern mathematics. One
notable example is the theory of 4-dimensional manifolds due to Simon Donaldson
(Donaldson and Kronheimer, 1990), which emerged from physics but has turned out
to be of profound importance to geometry.More recently, an alternative interpretation
uses spinors coupled non-linearly to electromagnetism, a twist that would certainly
have captured the imagination of Hermann Weyl and justifies his remarks about the
geometrical significance of spinors.

The past 25 years have seen the rise of gauge theories Kaluza–Klein models of
high dimensions, string theories, and now M theory, as physicists grapple with the
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challenge of combining all the basic forces of nature into one all embracing theory.
This requires sophisticatedmathematics involvingLie groups,manifolds, differential
operators, all of which are part of Weyls inheritance. There is no doubt that he would
have been an enthusiastic supporter and admirer of this fusion of mathematics and
physics. No other mathematician could claim to have initiated more of the theories
that are now being exploited. His vision has stood the test of time.

Let us once again add some comments to the above beautiful telling.
The next Chap.7 of this book is devoted to the development of differential geom-

etry, in particular of the notions of metric and connections on fibre-bundles. As
anticipated by Atiyah’s words, the contemporary understanding of the physical laws
envisages that all fundamental interactions, the forces binding matter together and
shaping our Universe are encoded in gauge-fields, namely in connections on princi-
pal fibre-bundles. Gravity is universal since it is associated with the connection on
the tangent bundle to space-time and this latter (the Levi-Civita connection) follows
from a metric, namely from a structure that allows to define the lengths of curves.
Although he missed an i-factor, Weyl was the first to understand that non gravita-
tional interactions, like electromagnetism, are an yield of a symmetry group, just
made local. In modern parlance this is the structural Lie group of a fibre-bundle. In
addition to forces we have matter. As we illustrate at length in Chap. 7, the various
types of particles are in correspondence with associated bundles, namely with linear
representations of the structural Lie group. Here once again we find Weyl’s legacy
as stated by Atiyah. Linear representation theory of Lie groups was systematized by
Weyl.

6.2 The Basic Notions in Representation Theory

According to what we discussed in Sect. 3.1.3, a linear representation of a group
G, it does not matter whether discrete or continuous, is a homomorphism D : G →
Hom(V, V ) where V denotes some vector space of dimension n; the latter number
is named the dimension of the representation (see Eq. (3.1.16)). In the case of finite
groups Γ , the set of irreducible representations Dμ, namely those where there is
no non-trivial invariant subspace W ⊂ V ,1 is also finite and its cardinality r + 1
is equal to the number of conjugacy classes into which the group is partitioned.
In the case of Lie groups the set of irreducible representations is infinite and the
corresponding carrier vector spaces Vμ have to be classified. Weyl’s genial idea
was that of introducing a geometric description of all the existing representations in
terms of a lattice similar to the crystallographic ones we discussed in Sect. 4.1.1.1.
The basis of his idea comes from the root system formalism utilized by Killing and
Cartan to obtain the classification of simple Lie algebras. This latter was illustrated
in Sects. 5.4.1 and 5.5.2. Given the root system Δ, as defined in Sect. 5.4.1, and its
basis of simple roots αi one can easily define the root lattice Λr by setting:

1A subspace W ⊂ V is named invariant if it is mapped into itself by all group elements.
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Λroot ⊂ R
� / v ∈ Λroot ⇔ v = ni αi , ni ∈ Z (6.2.1)

Given the root lattice one can construct its dual that is named the the weight lattice
and is of the utmost relevance, in Weyl’s intrinsic approach to representation theory:

Λweight ≡ Λ�
root (6.2.2)

To construct the weight lattice one defines the basis of simple weights dual to the
basis of simple roots through the following condition:

〈λi , α j 〉 ≡ 2
(λi , α j )

(α j , α j )
= δij (6.2.3)

and one sets:

Λweight ⊂ R
� / w ∈ Λweight ⇔ w = ni λ

i , ni ∈ Z (6.2.4)

These two notions are illustrated in Fig. 6.2with the example of the a2 Lie algebra. As
it is always the case the dual Λ� of a lattice is larger and contains the original lattice
Λ as a sublattice. Hence all points of the root lattice are also points of the weight
lattice, yet there are weights that do not belong to the root lattice. What have these
weight vectors got to do with the linear representations of a Lie algebra? The answer
to this question is very simple and once formulated it shows the geniality of Weyl’s
approach. In every representation each of the Lie algebra elements is associated with
a matrix. Utilizing the Cartan-Weyl basis displayed in Eq. (5.4.1) we see that we
have two types of generators, the Cartan generators Hi and the step operators Eα

associated with the roots. In every linear representation D the images D(Hi ) of the
Cartan generators can be simultaneously diagonalized since they commute. Hence a
basis of the representation vector space V can be provided by a set of states2 denoted
|w > that satisfy the condition

D(Hi ) |w >= wi |w > (6.2.5)

where we have named wμ the vector in R� whose components are the � eigenvalues
of the � Cartan generators D(Hi ) (the number � is obviously the rank of the Lie
algebra).

The main result of Weyl’s theory is that all the possible vectors wμ, named
weights lie in the weight lattice we have previously defined. Furthermore every
irreducible representation Dμ contains a finite number sμ of weights organized in a
setΠΠΠμ ≡ {

w1, . . . ,wsμ

}
. InΠΠΠμ there is a unique highest weightwhighest defined by

2In this context it is quite convenient to utilize the notations and the nomenclature of quantum
mechanics where, as basis of the Hilbert space of physical states, one utilizes the eigenstates of a
complete set of commuting observable operators O1,2,...,n . According with Dirac, these eigenstates
are denoted |O1, O2, . . . , On > naming O1,2,...,n the eigenvalues of the considered observables.
See later on in this chapter for an introduction to functional spaces and the Hilbert space.
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Fig. 6.2 The weight and the
root lattice of the a2 Lie
algebra. The points of the
root lattice are marked in
red, while those of the
weight lattice are marked in
black. The simple roots α1,2
and the simple weights are
also displayed λ1,2

the condition that the corresponding eigenstate is annihilated by all step operators
Eα associated with positive roots α > 0:

Eα |whighest >= 0 (6.2.6)

The highest weight uniquely defines the irreducible representation since all the other
weights can be obtained from the highest one by subtracting a suitable number of
roots, until you reach a lowest weight3 that is annihilated by all step operators Eα

associated with negative roots α < 0.
The final beauty of the formalism is the geometrical characterization of the avail-

able highest weights that are all contained in the so named Weyl chamber. What is
this latter? It is the convex hull delimited by the Weyl walls, namely by the hyper-
planes orthogonal to the � simple roots αi . Hence all the available representations
are in one-to-one correspondence with the weight lattice points that lie in the Weyl
chamber.

We exemplify the above concept utilizing once again the case of the a2 Lie algebra.
The Weyl chamber and the weights of one of the representations (the fundamental
defining one) are displayed in Fig. 6.3. Utilizing the weight formalism, Weyl was
able to bring the theory of semisimple Lie groups and of their linear representa-
tions to absolute perfection. The tale initiated many decades before in the turbolent
Paris spring of 1870 reached a firm stationary point in 1939 with Weyl’s master-
piece book Classical Groups [168]. Still the contributes of Dynkin and Coxeter to
come just a few years later would provide a further improvement in notation and
a powerful graphical instrument to master classical group theory and in particular
all the implications of the Weyl group, yet it is fair to say that when World War II
broke out the algebraic substratum of the current episteme encoded in points A) to E)

3Indeed the possible number of α root subtractions from a given weightw is completely determined
by the scalar product of the weight with the root < w , α >.
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Fig. 6.3 In the picture on top the Weyl chamber of the a2 Lie algebra is the shaded infinite region.
In the second picture we display the three weights of the fundamental defining representation of
a2 ∼ sl(3,C). The weight that falls in theWeyl chamber (actually on one of its walls) is the highest
weight; the other two are subdominant weights

mentioned in Chap.1 was ready. In the next chapters we trace the historical develop-
ment of the equally fundamental geometrical pillar of the current episteme. As we
are going to advocate that pillar was also essentially ready by the very end of World
War II with the establishment of the notions of fibre bundles and of the Ehresman
connection on principal bundles that extends to connections on all of their associated
vector bundles. Yet it still took about 40 years before these essential mathematical
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Fig. 6.4 Henri Léon Lebesgue (1875–1941) was born in the city of Beauvais in Norther France
in 1875. His father was a printer. He entered École Normale Supérieure in 1894 and graduated in
mathematics in 1897. After some years as a school-teacher in secondary school in 1901 he wrote his
most famous andmost important paper Sur une généralisation de l’intégrale definiewhich appeared
in the Compte Rendus the same year. This article contains the generalised definition of the definite
integral based on the theory of measure. This contribution revolutionised modern integral calculus
and it is the most important achievement of Henri Lebesgue. On the basis of this result he wrote his
doctoral dissertation defended at the Faculty of Science of Paris in 1902. He had various academic
appointments in French provincial Universities until he was appointed maître de conferérences at
the Sorbonne in 1910. He published several other mathematical papers of high quality and had a
distinguished academic career until his death in 1941, but for posterity his name is indissolubly
entangled with the integral: the Lebesgue integral indeed

structures were fully integrated into the fabrics of theoretical physics. Indeed the
notion of gauge–fields was parallely developed in physics and the complete identifi-
cation of the mathematical leave with the physical one, according with C.N. Yang’s
weltanshaung recalled in Fig. 7.4, came later.

6.3 Infinite Dimensional Representations, Hilbert
and Quantum Mechanics

Before plunging into the history of differential geometry, it is appropriate to shed
some light on the parallel development, by the end of theXIXth through the beginning
of the XXth century, of new ideas in the calculus of functions. These ideas led to
Functional Analysis, namely to an entire subdiscipline of modern mathematics that
constitutes today a major field of mathematical analysis, of high relevance in all pure
and applied sciences. In the frame of our historical review, which aims at tracing
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the formation of the current episteme, we ought to stress that Functional Analysis
provides the rigorous mathematical basis of QuantumMechanics and is essential for
Quantum Field Theory.

Here, once again, we intersect the intellectual path of Hermann Weyl and his
major contributions to Group Theory in relation with Quantum Mechanics. Indeed
functional analysis is tightly entangled both with the basic notion of quantum states
and with the issue of unitary representations of a Lie group G. This happens when
G is non-compact, as it is the case if G is the symmetry group of space–time.
Following this way of arguing and in complete compliance with the mathematical
way of thinking of HermanWeyl, one is finally led to thrust through the fog of words
and reach the solid reality of abstract symbols, identifying the intuitive notion of a
particle with a unitary irreducible representation of the Poincaré group, labeled by
its two invariants, that we respectively name its mass and its spin.

This is a stimulating anticipation: let us proceed orderly.
The birth of Functional Analysis can be identified with some fundamental con-

tributions of Hilbert dating 1909.
Conceptually there are several different mathematical issues that came together

and crossed each other’s way in this context. Let us enumerate them in some logical
order.

(1) Throughout XIXth century the theory of functions underwent a spectacular
development with the fundamental contributions of Fourier, Laurent, Cauchy,
Riemann, Weierstrass, Fuchs and many others. At the dawn of the new century
an issue came to prominence: that of integration and of integrable functions. The
following idea started being conceived that we continue to cheer in the contem-
porary vision of mathematics. We would like to treat functions f (x1, . . . , xn)
over a closed subset of Rn (an interval [a, b] ⊂ R in the one variable case) as if
they were points in a suitable continuous spaceH that we are able to organize in
some suitable way, introducing at the same time some notion of distance among
its points. This is the proper setting in order to evaluate approximations and
decide how close an approximant is to a given function. Therefore one focuses
on continuous functions and looks for their integrability. Since the limit of a
succession of continuous functions can be discontinuous, it came out that, in
order to obtain that the limit of a succession of integrable continuous functions
is also integrable one had to appropriately revise the notion of integral and this
was done by Lebesgue (see Fig. 6.4).

(2) Secondly one had the issue of infinite dimensional vector spaces. Indeed, when
the abstract notion of a vector space, originally envisaged by Grassman but, as
we explained before, largely disregarded by the mathematical community, was
finally and firmly established by Peano,4 it appeared that it does not imply that it
should be finite dimensional. If we allow for the possibility that a vector space V
might admit an arbitrary large number of linearly indipendent vectors we arrive
at the notion of an infinite dimensional vector space. Every n-dimensional real

4Look back at Sect. 3.2.5.
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vector space Vn(R) is isomorphic toRn . If we introduce a positive definite scalar
product, the norm squared of a vector v ∈ Vn(R) is N 2(v) = ∑n

i=1 v
2
i , where

vi ∈ R. On the other hand every n–dimensional vector space Vn(C) over the
complex number field is isomorphic toCn . Introducing a hermitian scalar product
the norm squared of a vector v ∈ Vn(C) is N 2(v) = ∑n

i=1 |vi |2 where vi ∈ C.
Then it is natural to assume that an infinite dimensional complex vector space
V∞(C) is isomorphic to the space of infinite successions (v1, v2, . . . , vn, . . . )
of complex numbers; in other words an infinite dimensional vector space is, in
a formal sense, C∞. In this case, however, in order to give a meaning to such
successions of complex numbers we have to assume that they define convergent
series, namely:

∞∑

n=1

|vn|2 < ∞ (6.3.1)

(3) Issue (1) and (2) were brought together by the issue of orthogonal functions.
Indeed the available functional spaces turn out to be the spaces of square inte-
grable functions L2

w(Σ) that are maps from a closed domain Σ ⊂ R
n into C,

satisfying the following condition:

L2
w(Σ) � f : Σ −→ C

⇓
N 2 (f) =

∫

Σ

|f(x)|2 w(x) dnx < ∞ (6.3.2)

wherew(x) is a suitable positive definite real function that is named themeasure.
Such spaces have a naturally defined hermitian scalar product:

∀ f (x), g(x) ∈ L2
w(Σ) ; (f , g) ≡

∫

Σ

f (x) g(x)w(x) dnx

( f , g) = (g , f )� (6.3.3)

and the problem is raised of finding complete orthonormal basis of functions
em(x) such that

• (en , em) = δn,m

• and ∀ f (x) ∈ L2
w(Σ) we can write f (x) = ∑∞

n=1 an em(x) with an ∈ C

When such bases are found we see that:

N 2 (f) =
∞∑

n=1

| fm |2 < ∞ (6.3.4)

and we can identify the vector f with its succession of coefficients am . The issue
of orthogonal functions in spaces L2

w(Σ), that we shall collectively nameHilbert
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spaces, is the appropriate way to reorganize a lot of XIXth century results about
so named orthogonal polynomials and other classical special functions.

(4) The issue of differential equations and of self-adjoint (or hermitian) operators in
a Hilbert spaceH = L2

w(Σ) is the third main item in the present list. Typically
an operator in a functional space is a linear differential operator5:

∀ f ∈ H : L f =
p∑

m=0

cm(x)
dm f

dxm
∈ L (6.3.5)

and one is led to define differential operatorsL that are self-adjoint with respect
to the hermitian scalar product that exists on that functional space, namely such
that:

∀ f, g ∈ H : (g , L f ) = (L g , f ) (6.3.6)

The spectrum of eigenvalues of such operators is composed of real numbers λn:

L fn(x) = λn fn(x) ; λn ∈ R (6.3.7)

As it happens in the case of finite dimensional vector spaces, the eigenfunctions
of an operator corresponding to different eigenvalues are orthogonal among
themselves and this provides a connection between this problem and the prob-
lem of orthonormal basis for functional Hilbert spaces, in particular orthogonal
polynomials. This issue is strongly related with the conceptions of Quantum
Mechanics. Indeed, in Quantum Mechanics the Hilbert space H is consid-
ered as the space of possible quantum states of some physical system and one
searches for bases ofH composed of eigenstates of a maximal set of commut-
ing self-adjoint operators Oi named the observables. The eigenvalues of these
latter constitute the labels λi of any given quantum state S. The representative
function ΨS(x) ∈ H is the wave function of the abstract quantum state S and
its square modulus |ΨS(x)|2 represents the probability that the quantum particle
in the state S can be found at place x in the ambient space M . Since the sum
of probability over all possibilities must be necessarily one, the function ΨS(x),
properly normalized, must be square integrable:

∫

M
|ΨS(x)|2 w(x) dn = 1 (6.3.8)

(5) The last issue in this list which is strongly related with the issue above and with
the issue (2) is that of unitary representations of non compact groups.
We introduced in Eq. (3.1.16) the notion of group representation that was
resumed for the case of Lie Groups in Sect. 6.2. Let V be a vector space, any
homomorphism

5In the definition below, for simplicity we confine ourselves to the case where the functional space
is composed of functions of only one variable x .
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D : G −→ Hom(V, V )

∀g1 , g2 ∈ G : D (g1 · g2) = D (g1) · D (g2) (6.3.9)

is named a linear representation of the group G and the dimension of the vector
space V is named the dimension of the representation.

Definition 6.3.1 A representation D of a group G is named unitary if the images
D(g) of all group elements are unitary operators D(g)† = D(g)−1 = D(g−1).

To this effect let us recall the definition of the hermitian conjugate A † or adjoint of
a linear operatorA in a generic vector space V endowed with a scalar product ( , ):

∀ f, g ∈ V ; (g, A f ) = (
A† g , f

)
(6.3.10)

which applies equally well to the case of finite and infinite dimensional vector spaces.
Why is the unitarity property so much relevant? The answer is that it is essential

in connection with Quantum Mechanics and, in a wider context, with Quantum
Field Theory, because of what we said above on the probabilistic interpretation of
the wave-functions. Suppose that a physical system has some symmetry encoded
in a Lie group G. Then G will act on the space of the quantum states H that, by
the fundamental principle of superposition, ought to be a vector space. Hence H
is the carrier space of a linear representation D(G) : H → H . Because of the
unavoidable conservation of probability, the representation D(G) has to be unitary
so that all scalar products and norms of wave-functions are G-invariant.

Let us now consider the case of continuous groups, in particular of Lie groups
G, that have a fundamental direct connection with the notion of Lie algebras, as
extensively discussed in previous chapters. Essentially a Lie group G is:

• Agroup from the algebraic point of view, namely a setwith an internal composition
law, the product

∀ g1 , g2 ∈ G g1 · g2 ∈ G (6.3.11)

which is associative, admits a unique neutral element e and yields an inverse for
each group element.

• A smooth continuous space of finite dimension dimG = n < ∞ and the two
algebraic operations of taking the inverse of an element and performing the product
of two elements are continuous and even analytic, namely admit a power series
expansion.

The fact that a Lie Group is also a continuous space, actually a differentiable man-
ifold, according with the notion discussed in next chapter, is what introduces the
fundamental distinction between compact and non-compact groups. The difference
between compact and non-compact spaces is best illustrated by the comparison of
a sphere (prototype of a compact manifold) with a hyperboloid (prototype of a non
compact smooth manifold) (see Fig. 6.5). In a compact manifold, like the sphere, all
continuous curves necessarily converge to some point of the manifold, while in a
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Fig. 6.5 In this figure we visually compare two paradigmatic instances of a compact manifold and
of a non–compact one: the sphere and the hyperboloid

non–compact one there are continuous curves that have no limiting point and can
extend indefinitely.

The connection between Lie Groups and Lie Algebras that we have repeatedly
quoted, is provided by the consideration of group elements infinitesimally close to
the identity element e. Developping in power series of a suitable parameter λ every
group element g ∈ G can be written as follows:

g = exp [λX] � e + λX + O(λ2) (6.3.12)

whereX is an element of a Lie algebraG, whose dimension is equal to the dimension
of the Lie group G, that is completely determined by G.

Any linear representation of the Lie group G induces a linear representation of
its Lie algebra G and viceversa.

In the case of a unitary representation of the group G the corresponding repre-
sentation of the Lie algebra G is provided by antihermitian operators:

∀X ∈ G ; D(X)† = − D(X) (6.3.13)

which, multiplying just by an i-factor, provides a relation with self-adjoint operators.
The key point in connectionwith the above discussion is provided by the following

general theorem of group theory that we state without proof.

Theorem 6.3.1 Let G be a non-compact Lie group. All the unitary representations
of G are necessarily infinite dimensional and for this reason they are provided by
suitable L2

w functional spaces. The generators TI of the Lie algebraG are represented
by i × LI , where LI are self-adjoint operators in the Hilbert space L2

w.

Hence most of the interesting self-adjoint differential operators in Hilbert spaces are
actually generators of suitable Lie groups and the solutions of the corresponding
differential equations are eigenvectors of such generators. Conversely when we con-
sider physical space-time, its basic symmetries are provided by non compact groups
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G as the Euclidian group of roto-translations in three or higher dimensions or as the
Lorentz group in special relativity and its extension with translations, namely the
Poincaré group.

The last sentence above provides the clue to what we anticipated concerning
the rigorous formulation of the concept of a particle in Quantum Field theory. The
space of quantum states of an elementary relativistic particle moving in Minkowsky
space coincides with the carrier space of a unitary, irreducible representation of the
Poincaré group and thewave-function corresponding to a specific state is a function in
this functional space. So even the physical idea of a particle is just a group theoretical
notion!

6.3.1 David Hilbert

The Eastern Prussian city of Königsberg is by now the fully Russian speaking town
of Kaliningrad, capital of the homonimous Russian Enclave Region on the Baltic
shores. It is a rather dull place where World War II seems to have ended only a few
months ago and everything appears as strange as it might possibly be. Orthodox
churches have an improbable gothic appearance while cottages with distinctively
german spiked roofs, once upon a time clean and tidy, are still orderly lined up
on dirty side roads, yet their broken glasses, their untidy courtyards, occasionally
populated by chickens and uniformely filled up with all sorts of wastes, generate the
impression that the strict lutheran bourgeois families that were their legal owners
and inhabitants have just fled away, forced to evacuate the entire region in favor of
an equally forced host of immigrants from the distant Ural Region. No one speaks
German or has German ancestors, yet everywhere in the centre of the town you
find german styled Bierstuben where, besides drinking good german ales, you can
eat bratwurst with sauerkraut. Furthermore the Russian Federal University of the
Baltic is pompously named after Immanuel Kant whose thumbstone stands in the
churchyard of the cathedral erected on the little island at the centre of the river Pregel.

Lively capital of Eastern Prussia and one of the historic harbour cities of the
Anseatic League, Königsberg was formerly a very important centre for Culture and
Science and occupies a distinctively brilliant place in the history of Philosophy and
Mathematics. Here, throughoutmost of theXVII century, lived, taught and developed
his philosophy Immanuel Kant, here in the second half of the XIX century Wilhelm
Killing discovered Lie Algebras independently from Sophus Lie and classified the
simple ones prior to Cartan. Here were professors of mathematics for several years
Ferdinand von Lindemann and Adolf Hurwitz. In Königsberg University studied
both Hermann Minkowski and David Hilbert who became close friend and were
later colleagues at Göttingen University.

David Hilbert (see Fig. 6.6) is an overwhelming figure in the history of modern
mathematics and also of physics. His contributions have been of the highest quality
and very much extensive, yet his influence goes beyond the specificity of his own
results. He exerted an intellectual guiding role over the whole field. He was born in
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Fig. 6.6 David Hilbert
(1862–1943). The most
influential mathematician of
the early XXth century

Königsberg in 1862, two years earlier than his friend Minkowski, whose birth place,
in the province of Kaunas within contemporary Lithuania, was at the time part of
the Russian Empire, yet quite close to Königsberg. David Hilbert’s father was a high
ranking judge and hismotherMaria, awell educated daughter of a richmerchant,with
deep interests in philosophy and astronomy, cared about David’s early education. He
went to school at the age of eight and was not a particularly brilliant student until the
time he shifted from the more classically oriented Friedrichskolleg to the Wilhelm
Gymnasium, where he completed his final year of high school, prior to University,
and could finally find some response to his natural inclination towards mathematics.

When Hilbert enrolled at the University of Königsberg in 1880 he started an
academic career that in the course of twenty years would bring him to be professor
of mathematics in Göttingen and probably the most influential mathematician of the
world in his own time. Utilizing internal ante-litteram Erasmus programmes of the
GermanEmpire, Hilbert went for a semester toHeidelbergwhere he attended lectures
given by Lazarus Fuchs. Back to Königsberg he could benefit from the lectures on
modular forms of Adolf Hurwitz and graduated in 1884 under the supervision of
Lindemann, having met among his fellow students Minkowsky who became one of
his life-time closest friends.

Quite influential on Hilbert’s mathematical career was the figure of Felix Klein
whose lectures Hilbert attended in Leipzig before Klein shifted to Göttingen, leaving
his chair of Geometry to Sophus Lie. In 1886 Klein organized a visit of Hilbert and
Study to Paris where the two young and promising German mathematicians met
with the gotha of French mathematics, namely with Henri Poincaré, Camille Jordan,
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Fig. 6.7 Charles Hermite (1822–1901). Born in Dieuze,Moselle, Hermite died in Paris while being
professor of the Paris Faculty of Sciences. Throughout his life Hermite suffered both physically
and psychologically from a defomormity in his right foot which affected him from his birth. For
instance he was dismissed from Ècole Polytechnique as not being fit to a school that was military
in character. Notwithstanding such difficulties he made a brilliant career in mathematics and was
eventually professor of the Ècole Polytechnique that had not accepted him as a student. Among his
doctoral thesis students Henri Poincaré is the most eminent one. His major contributions to pure
mathematics are in number theory in the theory of orthogonal polynomials and in that of elliptic
functions. His name is associated with Hermite Polynomials, Hermitian operators and metrics and
with the Hermite normal form of matrices

Gaston Darboux, Pierre Bonnet and in particular with Charles Hermite (see Fig. 6.7).
Always in the highest esteem of Felix Klein, Hilbert benefited from the decisive
promotion action of the former who twice tried to appoint him full professor of
mathematics in Göttingen succeeding in his mission the second time in 1895. In the
meantime, Hilbert had turned down Berlin University offer to appoint him on the
vacant chair of Lazarus Fuchs. He had also proven the so named finiteness theorem
which recites as follows.

Theorem 6.3.2 (Hilbert finiteness) If G is a Lie group whose finite dimensional
representations are completely reducible, then the ring of invariants of G acting on
a finite dimensional vector space V is finitely generated.
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That above is actually part of a more abstractly formulated Basis Theorem proved
by Hilbert in commutative algebra that turned out to be the very corner stone of
modern Algebraic Geometry. The little story behind the publication of this theorem
is quite revealing both historically and conceptually. Throughout the XIXth century
the theory of invariants was a very hot topic studied by many scientists, Cayley
and Sylvester in particular, as we already remarked in Sect. 3.2. The approach of
everyone working in the subject was direct and computational and Paul Gordan,
the German leading expert in this field, made no exception. Hilbert’s approach was
different and revolutionary, it was just abstract and purely formal. Submitted in 1888
for publication to Felix Klein as Editor of Mathematische Annalen, Hilbert’s paper
had Paul Gordan as referee. Gordan’s report is traditionally reputed to include the
sentence: This is theology, not mathematics. Upon Hilbert insistence formulated as
follows: …I am not prepared to alter or delete anything and regarding this paper, I
say with all modesty, that this is my last word so long as no definite and irrefutable
objection against my reasoning is raised, Felix Klein published the paper on the
Annalen in its original form. Later after a second more extended paper on the same
subject was published by Hilbert, also Gordan agreed that even theology has its own
merits.

Next fundamental achievements by Hilbert were in Algebraic Number Theory.
The modern discipline of Class Field Theory was essentially founded by Hilbert’s
paper Zahlbericht that summarized and systematized all previous’ results by Kum-
mer, Kronecker and Dedekind, introducing into the texture a wealth of new math-
ematical ideas. Then he turned to Geometry that he posed into a formal axiomatic
setting. His views were published in 1899 in a book Grundlagen der Geometrie that
was reissued inmany subsequent editions and exerted amajor influence in promoting
the axiomatic approach to mathematics throughout the XXth century.

The Second International Congress of Mathematicians, held in Paris in 1900 was
the occasion for Hilbert to present his very famous list of 23 problems that chal-
lenged and still challenge mathematicians to solve fundamental questions. Several
of Hilbert’s problems were solved in the XXth century and each obtained solution
corresponded to a major upgrading of mathematical thinking.

About the years 1909–1910 Hilbert laid the corner stones of modern functional
analysis and introduced the concept of Hilbert Space which we have already dis-
cussed. In the short run, this mathematical new object that provided the appropriate
conceptual frame encompassing all XIXth century results on Fourier series, Laplace
transforms, orthogonal polynomials and the like, provided also the appropriate lan-
guage for the formulation of Quantum Mechanics which was just about to be born.

Hilbert’s interestswere approaching thefield of Physics closer and closer and since
1912 he got himself so much involved into it that the most influential mathematician
of the world hired a private physics teacher to give him lectures so as to progress
more quickly in his own self-education.

Spectacular was the result. Apart from some papers on the kinetic theory of
gases, November 20th 1915, five days before the submission of Einstein’s paper
containing the field equations of General Relativity, Hilbert submitted an article that
some one pretended to contain Einstein’s field equations. Yet December 6th 1915,
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while correcting the proofs of his own work, Hilbert deleted Einstein’s equation,
if ever they were there, and added the following sentence that firmly established
Einstein’s priority:The differential equations of gravitation that result are, as it seems
to me, in agreement with the magnificent theory of general relativity established by
Einstein in his later papers.

The differential equations that result. So said Hilbert. Result from what? From
the action of pure General Relativity that has been duely named the Hilbert-Einstein
action and does not appear in Einstein’s paper.

When Hilbert retired in 1930 he was at the peak of his fame and Göttingen was
probably themost prestigious and active centre formathematical physical sciences of
the entireworld. Three years later,when theNazis came to power, everything changed
and rapidly decayed. Jewish scientists were dismissed or fled mostly replenishing
Princeton’s ranks. Göttingen became an empty place and last years of Hilbert’s life
were somewhat gloomish in that deserted place. He died in 1943 in the middle of
WorldWar Two. On Hilbert’s tombstone the following sentence of his was engraved:

Wir müssen wissen, wir werden wissen
Namely We must know, we shall know.

6.4 Concluding Remarks on the Idea of Functional Spaces

The first important book written by Hermann Weyl, Hilbert’s most outstanding stu-
dent, was entitled The Idea of a Riemann Surface. In Weyl’s spirit I entitled the
present section Concluding Remarks on the Idea of Functional Spaces. My goal is
to outline the logic that led to Hilbert spaces, whose elements are, in a sense to be
explained, functions. The connection of these mathematical developments with the
development of Physics in the XXth century is very strong.

Classical Physics, as it evolved from the XVIIIth to the XIXth century, finally
led to the notion of phase-space. All the possible states of a physical system are
provided by the points of an even dimensional manifold ΦΦΦ, whose coordinates we
denote

{
pi , qi

}
, (i = 1, . . . , n), that is endowed with a symplectic structure encoded

in a closed two form ΩΩΩ defined over it. The dynamical evolution of a physical sys-
tem is described by curves in phase space, determined by 2n first order differential
equations, the Hamilton Equations. With the advent of Quantum Mechanics and of
Schrödinger Equation this mathematical picture changed completely. The state of a
system is no longer a point in a manifold, rather it is described by a function Ψ (q)

of the generalized coordinates qi or of the momenta pi . This object, named thewave
function, has its own support on half of the phase space ΦΦΦ, while the other half of
the canonical variables become a set of operators, typically differential, acting on the
possiblewave functions. HenceQuantumMechanics posed the problem of character-
izing the space of states of a physical system as a space whose points are functions.
The superposition principle or, differently stated, the linearity of Schrödinger equa-
tion, implies that quantum states form a vector space. In this way the conception of
infinite dimensional vector spaces whose elements (vectors) are “functions” emerged
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almost at the same time from the logical development of mathematical and physical
theories.

Here we outline the mathematical logical path.

(a) The first problem to be solved arises from the observation that there are infinite
successions of continuous functions defined over an interval of the real line R
or over some closed subset of Rn whose limit is a discontinuous function. It
follows that if we were to consider a functional space defined as the space of
continuous function or of differentiable functions, it might be not complete,
namely it might miss the limit of sequences of its own points. One needs some
different definition.

(b) Another mathematical discomfort with spaces of functions is that the Riemann
definition of an integral is not apt to cope with the case of discontinuous, yet
bounded functions which, as we have seen, can be the limit of successions of
Riemann integrable continuous functions.

(c) The French mathematician Lebesgue provided the solution to both the above
problems introducing a generalized definition of the integral, coinciding for
continuous functions with the Riemann definition, yet allowing the calculation
of the integral of discontinuous functions as well. Lebesgue integration theory
is based on the notion of measure μ(S ) of subsets of the real lineS ⊂ R and
introduces the notion of measure zero sets.

(d) Relying on the Lebesgue integral one arrives at a good definition of functional
spaces that are complete, by considering the spaces L2

w(Σ) of those complex
valued functions defined over a regionΣ ⊂ R

n (wewill mainly focus on the case
n = 1) whose squared norm | f (x)|2 is integrable over Σ yielding a finite result.
The fundamental theorem named after Fischer Riesz states that the space L2

w(Σ)

is complete. Since the addition of a function that is non-zero only on measure
zero sets does not change the value of any Lebesgue integral, it follows that the
elements of L2

w(Σ) are not exactly functions f (x) rather they are equivalence
classes of functions with respect to the following equivalence relation f (x) ∼
g(x) if the difference f (x) − g(x) does not vanish only on measure zero sets.

(e) Having established that L2
w(Σ) is a complete vector space one looks for bases of

orthonormal functions en(x) such that any element f ∈ L2
w(Σ) can be expanded

as f (x) = ∑∞
n=0 an en(x). Once a basis is singled out the space L2

w(Σ) becomes
isomorphic to an abstract Hilbert space H whose elements are, by definition,
successions of complex numbers ai the series of whose norms is convergent∑∞

i=0 |ai |2 < ∞.
(f) The hintwhere to look for basis of functions is provided byWeierstrass theorem

stating that a continuous bounded function can be approximated with arbitrary
accuracy by a polynomial of sufficiently large degree. Since every element of
f ∈ L2

w(Σ) can be seen as the limit of a succession of continuous functions, it
follows that the polynomials and in particular the monomials xn provide a basis
of functions. Typically such a basis is not orthonormal.
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(g) The Gram–Schmidt orthonormalization algorithm utilized in finite dimensional
vector spaces is iterative and inductive. Hence it can be easily extended to the
infinite dimensional case. This shows that for L2

w(Σ) one can find orthonormal
bases composed of orthogonal polynomials.

(h) The XIXth century French mathematician Rodrigues developed an ingenious
algorithm for the direct construction of families of orthogonal polynomials asso-
ciated suitable weight functions w(x).

The above long list of chained implications has been displayed in order to show
Weyl’s mathematical way of thinking in action. Once set on the move, mathematical
ideas develop a long way, propelled by the inner force of their own logical impli-
cations. Usually the result of this process is not only a new mathematical theory,
rather we also witness new additions to, or even substantial revisions of, the physi-
cal episteme. Conversely new physical ideas always produce new lines of thinking
in mathematics. Pivot in these processes is always the Idea of Symmetry, which,
after Galois, means Group Theory. Thus the problem of unitary representations of
non–compact groups happily marries with the new visions of Physics entrained by
Quantum Mechanics and leads to the Idea of Functional Spaces.



Chapter 7
A Short History of Differential Geometry

My work always tried to unite the truth with the beautiful, but
when I had to choose one or the other, I usually chose the
beautiful....

Hermann Weyl

7.1 Conceptual Introduction from a Contemporary
Standpoint

In Chap.5, before exposing the long and exciting history of Lie group discovery, we
remarked that differential geometry is at the basis not only of General Relativity but
of all those Gauge Theories by means of which XXth century Physics obtained a
consistent and experimentally verified description of all Fundamental Interactions.
We also noted that the central notions in differential geometry and in its application to
the description of the Physical World are those which fix the geometric environment:

• Differentiable Manifolds
• Fibre-Bundles

and thosewhich endowsuch environmentswith structures accounting for themeasure
of lengths and for the rules of parallel transport, namely:

• Metrics
• Connections

In this chapter we plan to outline the one century long historic process which led to
establish such fundamental concepts forming nowadays integral part of the episteme
as summarized in points (A)–(E).

As we already did in previous chapters, we find it convenient to begin from stating
the end point result of the historical development we are concerned with by recalling,
formulated in contemporary language, the definition of the mathematical structures
which constitute the object of study of differential geometry, namely differentiable
manifolds. This is specially important in view of the ultimate goal of the present essay
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which is to illustrate the historic evolution of the concepts of Space and Symmetry.
Differentiable Manifolds is indeed the present day interpretation of the notion of
Space.

7.1.1 Differentiable Manifolds

First and most fundamental in the list of geometrical concepts we need to introduce
in order to address differential geometry is that of a manifold which corresponds, as
we already explained, to our intuitive idea of a continuous space. In mathematical
terms this is, to begin with, a topological space, namely a set of elements where
one can define the notion of neighborhood and limit. This is the correct mathemat-
ical description of our intuitive ideas of vicinity and close-by points. Secondly the
characterizing feature that distinguishes a manifold from a simple topological space
is the possibility of labeling its points with a set of coordinates. Coordinates are a
set of real numbers x1(p), . . . , xD(p) ∈ R associated with each point p ∈ M that
tell us where we are. Actually in General Relativity each point is an event so that
coordinates specify not only its where but also its when. In other applications the
coordinates of a point can be the most disparate parameters specifying the state of
some complex system of the most general kind (dynamical, biological, economical
or whatever).

In classical physics the laws of motion are formulated as a set of differential
equations of the second order where the unknown functions are the three cartesian
coordinates x, y, z of a particle and the variable t is time. Solving the dynamical
problem amounts to determine the continuous functions x(t), y(t), z(t), that yield
a parametric description of a curve in R

3 or better define a curve in R
4, having

included the time t in the list of coordinates of each event. Coordinates, however,
are not uniquely defined. Each observer has its own way of labeling space points
and the laws of motion take a different form if expressed in the coordinate frame of
different observers. There is however a privileged class of observers in whose frames
the laws of motion have always the same form: these are the inertial frames, that are
in rectilinear relative motion with constant velocity. The existence of a privileged
class of inertial frames is common to classical newtonian physics and to Special
Relativity: the only difference is the form of coordinate transformations connecting
them, Galileo transformations in the first case and Lorentz transformations in the
second. This goes hand in hand with the fact that the space–time manifold is the flat
affine1 manifold R

4 in both cases. By definition all points of RN can be covered by
one coordinate frame {xi } and all frames with such a property are related to each
other by general linear transformations, that is by the elements of the general linear
group GL(N,R):

xi
′ = Ai

j x
j ; Ai

j ∈ GL(N,R) (7.1.1)

1A manifold (defined in this section) is named affine when it is also a vector space.
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Fig. 7.1 The two open
charts composing an atlas of
the two-sphere: the north
pole and the south pole chart
described by the
stereographic projection

In plain words what we have written above means that the coordinates xi
′
of the new

coordinate system are linear combinations with some numerical coefficients of the
coordinates in the old system:

x1
′ = a11 x

1 + a12 x
2 + · · · + a1n , xn (7.1.2)

and similarly for the others.
The restriction to the Galilei or Lorentz subgroups of GL(4,R) is a consequence

of the different scalar product on R4 vectors one wants to preserve in the two cases,
but the relevant common feature is the fact that the space–timemanifold has a vector–
space structure (see Sect. 3.1.3 for the notion of vector space). The privileged coor-
dinate frames are those that use the corresponding vectors as labels of each point.

A different situation arises when the space–time manifold is not flat, like, for
instance, the surface of a hypersphere SN (see Fig. 7.1).

As chartographers know very well there is no way of representing all points of
a curved surface in a single coordinate frame, namely in a single chart. However
we can succeed in representing all points of a curved surface by means of an atlas,
namely by a collection of charts, each of which maps one open region of the surface
and such that the union of all these regions covers the entire surface (see Fig. 7.2).
Knowing the transition rule from one chart to the next one, in the regions where they
overlap, we obtain a complete coordinate description of the curved surface by means
of our atlas (see Fig. 7.3).

The intuitive idea of an atlas of open charts, suitably reformulated in mathemat-
ical terms, provides the very definition of a differentiable manifold, the geometrical
concept that generalizes our notion of space–time, from R

N to more complicated
non flat situations.
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Fig. 7.2 An open chart is a homeomorphism of an open subsetUi of the manifoldM onto an open
subset of Rm

Fig. 7.3 A transition function between two open charts is a differentiable map from an open subset
of Rm to another open subset of the same

There are many possible atlases that describe the same manifold M , related
to each other by more or less complicated transformations. For a generic M no
privileged choice of the atlas is available differently from the case of RN : here the
inertial frames are singled out by the additional vector space structure of themanifold,
which allows to label each point with the corresponding vector. Therefore if the laws
of physics have to be universal and have to accommodate non–flat space–times, then
they must be formulated in such a way that they have the same form in whatsoever
atlas. This is the principle of general covariance at the basis of General Relativity:
all observers see the same laws of physics.

Similarly, in a wider perspective, the choice of a particular set of parameters to
describe the state of a complex system should not be privileged with respect to any
other choice. The laws that govern the dynamics of a system should be intrinsic and
should not depend on the set of variables chosen to describe it.
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7.2 The Second Stage in the Development of Modern
Differential Geometry

Once the notions have been established, of a manifold and of a fibre-bundle, this
latter to be illustrated in a later section, one considers differential calculus on these
spaces and, rather than ordinary derivatives, one utilizes covariant derivatives. In
General Relativity we mainly use the covariant derivative on the tangent bundle but
it is important to realize that one can define covariant derivatives on general fibre
bundles. Indeed the covariant derivative is the physicist’s name for the mathematical
concept of connection that we plan to recall at the end of this chapter. It is also impor-
tant to stress that even restricting one’s attention to the tangent bundle, the connection
used in General Relativity is a particular one, the so called Levi Civita connection
that arises from a more fundamental object the metric. A manifold endowed with a
metric structure is a space where one can measure lengths, specifically the length of
all curves. A generic connection on the tangent bundle is named an affine connec-
tion and the Levi Civita connection is a specific affine connection that is uniquely
determined by themetric structure. Every connection has, associated with it, another
object (actually a 2–form) that we name its curvature. The curvature of the Levi
Civita connection is what we name the Riemann curvature of a manifold and it is the
main concern of General Relativity. It encodes the intuitive geometrical notion of
curvature of a surface or hypersurface. The field equations of Einstein’s theory are
statements about the Riemann curvature of space–time that is related to its energy–
matter content. We should be aware that the notion of curvature applies to generic
connections on generic fibre bundles, in particular on principal bundles. Physically
these connections and curvatures are not less important than the Levi-Civita con-
nection and the Riemann curvature. They constitute the main mathematical objects
entering the theory of fundamental non-gravitational interactions, according to points
(A)–(E) of the current episteme summarized in Chap.1.

Having clarified what is the end point that was eventually reached, let us turn
to illustrate the historic development of the fundamental conceptions underlying
Differential Geometry.

7.3 The Development of Differential Geometry: A Historic
Outline

One spring in the late seventies, C.N. Yang, the father of gauge–theories and one
among the most extraordinary scientific minds of the XXth century, was invited by
Scuola Normale di Pisa to give the traditional yearly series of Fermian Lectures. It
was just the eve of the 1983 experimental discovery of the W and Z bosons, which
finally confirmed that gauge theories are indeed the language adopted by Nature to
express the fundamental forces binding matter together and driving the evolution of
the physical world. Yang chose to start his recollection of gauge-theories and his
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Fig. 7.4 A symbolic
assessment by C.N. Yang
that mathematics and physics
have a common root

personal assessment of the entire subject from a symbolic picture of the kind shown
in Fig. 7.4

Two leaves depart from the same stem: one is Mathematics, the other is Physics.
The two leaves live parallel lives but have a common root and, as it happens in non
euclidian geometry, parallels can and indeed do intersect. They frequently intersect
and, equally frequently, interchange the role of guiding pivot. Examples are number-
less both in recent and less recent history of science. This is a relevant but somehow
trivial observation.

The most profound allusion in the typical Chinese symbolism of Yang’s picture
is the common stem of the two leaves. Mathematics and Physics were not that much
socially and academically separated in the XIXth as they became in the XXth century
andwere further unified by a common denominator: the shared philosophical attitude
of both the mathematician and the physicist, the latter assessing himself a natural
philosopher.

The common root of Modern Mathematics and Modern Theoretical Physics is
most prominently evident in the case of the concepts of connections and metrics
whose history constitutes the main topics of the present chapter. From the physi-
cal side these mathematical notions encode all the fundamental interactions among
elementary matter constituents as we already stressed several times. From themathe-
matical side they are the corner stones of Differential Geometry, Algebraic Topology
and allied subjects.

The historical developments of both the notion of a connection and the notion
of a metric are quite long, spreading over more than a century. They are strongly
intertwined and involve both Physics and Mathematics in an alternate and entangled
fashion.

Two fundamental geometrical problems are at the basis of both notions: the prob-
lem of length and the problem of parallel transport, namely how can we measure
distances in a general continuous space and how do we assess the parallelism of two
lines going through different points of that space. It turns out that these two appar-
ently different problems are intimately related. Such a relation is the reason why
connections andmetrics, although genuinely different and independentmathematical
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notions can be, under certain conditions, related in a one-to-one fashion. The case
where connection and metric are one-to-one related corresponds to Gravity and is
the play-ground of General Relativity, while the case where the connection stands
on his own feet is the case of non-gravitational interactions and encodes all the rest
of Physics.

Historically the first notion of connection that was discovered is that of themetric
connection named after its systematizer, the Italian mathematician Levi-Civita. The
Levi-Civita connection is that appropriate to a Riemannian manifold, namely to a
manifold equipped with a metric and it is analytically described by the 3-index

symbols

{
μ

ν ρ

}
, introduced in the XIXth century by their German inventor, Elwin

BrunoChristoffel. The development of such a notion is embedded in the development
of Riemannian geometry, embracing the fall of the XIXth century and the dawn of
the XXth, which is a mathematical tale strongly intertwined with the physical tale
of Einstein’s quest for General Covariance and the Theory of Gravity.

It took several decades in the first half of the XXth century and the work of several
mathematicians to single out the notion of a connection on a principal fibre bundle,
purified from association with a metric. In a completely independent way in 1954
Yang and Mills introduced the physical notion of non–abelian gauge fields which
extends to all Lie groups G the structure of the electromagnetic theory based on the
simplest of all such groups, namely U(1). In the course of due time the mathematical
notion of a connection and the physical one of a Yang–Mills field were recognized
to be identical.

Let us sketch the main outline of this crucial, century long intellectual develop-
ment.

7.3.1 Gauss Introduces Intrinsic Geometry and Curvilinear
Coordinates

The first appearance of a metric is in the 1828 essay of Gauss on curved surfaces (see
Fig. 7.5).Written in latin, theDisquisitiones Generales circa Superficies Curvas [99]
contains the major revolutionary step forward that was necessary to overcome the
precincts of euclidian geometry and find a new differential science of spaces able to
treat both flat and curved ones. Up to Gauss’ paper, Geometry was either formulated
abstractly in terms of Euclidian axioms or analytically in terms of cartesian coordi-
nates. By Geometry it was meant the study of global properties of plane figures like
triangles, squares and other polygons, or solids like the regular polyhedra. All such
objects were conceived as immersed in an external space where it was implicitly
assumed that one could always define the absolute distance d(A, B) between any
two given points A and B. Distance is the basic brick of the whole euclidian building
and it is calculated as the length of the segment with end-points in A and B, lying
on the unique straight line which goes through any such pair of distinct points.
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Fig. 7.5 Carl Friedrich Gauss (1777–1855). Gauss, the King of Mathematicians, was Professor at
the University of Göttingen for many decades up to the very end of his long life. His contributions
to all fields of mathematics were enormous and most profound

Curved surfaces were obviously known before Gauss, yet their shape and proper-
tieswere conceived only through their immersion in three-dimensional space, consid-
ered unique and absolute, as pretended by Immanuel Kant who promoted euclidian
geometry to an a priori truth lying at the basis of any sensorial experience. Gauss rev-
olutionary starting point was that of reformulating the geometrical study of surfaces
from an intrinsic rather than extrinsic viewpoint. He wondered how a little being,
confined to live on the surface, might have perceived the geometry of his world.
Rather than viewing the global shape of the surface Σ , unaccessible to his observa-
tions, the little creature would have explored its local properties in the vicinity of a
point p ∈ Σ .

In order to study curved surfaces in these terms, Gauss understood that it was
necessary to abandon cartesian coordinates as a system of point identification. In
analytic geometry every point p ∈ E ≡ R

3 of euclidian space is singled out by
a triplet of real numbers x, y, z which determine the distance of p from the three
coordinate axes. As long as the points of the surfaceΣ are particular points ofE, they
admit the labeling in terms of three cartesian coordinates, yet in such a description
there is an excess of superfluous information. Why three coordinates when we are
talking about a two-dimensional surface? Two should suffice. Gauss was the first
to grasp the notion of curvilinear coordinates and invented gaussian coordinates. A
very simple but revolutionary idea.

On the surface Σ let us consider a family of curves U such that each element
of the family never intersects any other element of the same family, at least in the
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Fig. 7.6 The points p of a
curved surface Σ can be
labeled with the three
cartesian coordinates x, y, z
of the euclidian space in
which M is immersed. Yet
this is a redundant
information. The two
gaussian coordinates u and v
are given through the
construction of two systems
of curves U and V on the
surface

neighborhoodUp of the point p (for instance the lighter curves in Fig. 7.6) and such
that the family covers the entire considered neighborhood. Let us next introduce a
second family of curves V , with the same properties among themselves, yet such
that each element of the family V intersects all elements of the U family at least in
the neighborhoodUp (for instance the darker curves Fig. 7.6). Once such systems of
curves have been constructed, any point q ∈ Up in the neighborhood of p can be
localized by stating on whichU -curve and on which V -curve it lies. Assuming that u
and v are the real parameters respectively enumerating the U and V curves, the pair
of real numbers (u, v) provides the new (gaussian) system of coordinates to label
surface points. Using these coordinates we no longer need to make any reference to
the exterior space in which M is immersed that might also be non-existing!

By introducing curvilinear gaussian coordinates the King of Mathematicians
freed the study of surfaces from their immersion in the external euclidian space E
but he immediately had to cope with a new fundamental problem. Having abolished
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Fig. 7.7 The tangent plane to a point p of a surfaceΣ is a two-dimensional euclidian spaceE2 where
the notion of distance is defined. In the tangent plane which approximates infinitesimal regions of
the surface surrounding p, we can define the line element as the euclidian distance between two
infinitesimally close points of the surface

from the list of one’s mathematical instruments the straight line segments that join
any two points A and B of the surface Σ , how can we calculate their distance? The
great intuitions of Gauss were the tangent plane TpM and the linear element ds2,
namely the metric.

Defining the absolute distance between two points A and B was no longer possible
but also not interesting. In the external euclidian space, the distance between A and
B is the length of the segment which joins them, but which relevance has this datum
for the little creature confined to live on the surface Σ , if such a segment does not lie
on it? For the little two-dimensional being the only interesting datum is the length
of a road going from A to B: the length of any possible road with such a property!
The small ant has exactly the same needs as any contemporary car-driver who wants
to start on a journey. Both need to know the length of all possible paths from their
origin to their destination (Fig. 7.7).

Hence the problem addressed by Gauss was to give an answer to the following
question: Can we define the length of any curve departing from p ∈ Σ and arriving
at q ∈ Σ in terms of data completely intrinsic to the surface Σ?

Gauss’ answer was positive and based on the change of perspective at the basis
of the new differential geometry.

Let us reformulate the initial question whether we might define the absolute dis-
tance between two arbitrary points A, B ∈ Σ of the surface, adding the extra condi-
tion that A and B should be only infinitesimally apart from eachother. Analytically
this means that if the gaussian coordinates of A are (u, v), then those of B should
be (u + du, v + dv) where du e dv are infinitesimal. Gauss crucial observation is
that a very small portion of the surface Σ around any point p ∈ M can be approxi-
mated by a portion of the tangent plane to the surface at the point p, namely TpM .
Smaller the considered region ofΣ better the approximation. This being the case we
observe that euclidian geometry makes sense in the tangent plane. Gauss remarked
that the distance of two infinitesimally close points can be defined as the length of the
infinitesimally short segment which joins them and which lies in the tangent plane.
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Recalling Pithagora’s theorem one might be tempted to say that the square length
of the segments joining A and B, named ds2, is the sum of the squared differences
of the gaussian coordinates, namely: ds2 = du2 + dv2. Yet this is not necessarily
true. In order to apply Pithagora’s theorem it is required that the axes u and v be
orthogonal, which is generically false. Indeed a priori it is by no means guaranteed
that the curve u and the curve v, meeting at point A, should intersect there at right
angle. In order to calculate ds2 one has therefore to find the components dx and
dy of the infinitesimal segment AB in an orthogonal system of axes x and y. Once
these components are known one can apply Pithagora’s theorem and write ds2 =
dx2 + dy2. The components dx and dy depend on the gaussian shifts du and dv
linearly: (

dx
dy

)
=

(
a(u, v) b(u, v)
c(u, v) d(u, v)

) (
du
dv

)
(7.3.1)

with matrix coefficients that vary from place to place on the surface, namely are
functions of the gaussian coordinate u, v. Taking this into account Gauss wrote the
line element in the following way:

ds2 = F(u, v) du2 + G(u, v) dv2 + H(u, v)dudv (7.3.2)

where F = a2 + c2, G = b2 + d2 , H = 2ab + 2cd.
Formula (7.3.2), written in 1828 provided the first example (a two-dimensional

one) of a Riemannian metric, although Riemann was at that time only a two-year old
child.

7.3.2 Bernhard Riemann Introduces n-Dimensional Metric
Manifolds

The name of Riemann is associated in Mathematics with so many different and
fundamental objects that the contemporary student is instinctively led to think about
the scientific production of this giant of human thought as composed by a countless
number of papers, books and contributions. Actually the entire corpus of Riemann’s
works is constituted only by 225 pages distributed over 11 articles published during
the life-time of their author towhich one has to add the 102 pages of the 4 posthumous
publications. Among the latter there are the 16 pages of the Ueber die Hypothesen,
welche der Geometrie zu Grunde liegen [152] which, in 1854, was debated by the
candidate in front of the Göttingen Faculty of Philosophy as Habilitationsschrift.
The habilitation to teach courses was the traditional first step in the academic career
foreseen by most European universities all over their very long history. In XIXth
century Germany the procedure to access habilitation consisted of the writing of
a dissertation on a topic chosen by the Faculty from a list of three proposed by
the candidate. Typical time allowed for the preparation of such a dissertation was a
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Fig. 7.8 Bernhard Riemann, a genius and a giant of human thought, had a very short and not too
happy life. Hewas Gauss’ student both at the level of Diploma and ofHabilitationschrift. The whole
of his work is contained in no more than 11 papers for a total of little more than 200 pages. Yet
each of his contributions was a milestone in Mathematics and set the path for century long future
developments. The foundations of Riemannian geometry were laid in the 16 page long dissertation
of his Habilitation. Riemann had important ties with the Scuola Normale di Pisa and died in Italy
at the age of 39

couple of months and in the case of Riemann it amounted to exactly seven weeks
(Fig. 7.8).

Obsessed the whole of his short life by extreme poverty and by a very poor
health that eventually led him to death from pulmonary consumption at the quite
young age of thirty-nine, the shy and meek Bernhard Riemann, who was nonetheless
quite conscious of his own talents, had already profoundly impressed Gauss with his
diploma thesis. Written in 1851 and entitledGrundlagen für eine allgemeine Theorie
der Functionen einer veränderlichen complexen Grösse which can be translated as
Principles of a General Theory of the Functions of one complex variable, Riemann’s
thesis was completely new and contained all the essentials of the theory of analytic
functions as it is taught up to the present day in most universities of the world. Quite
openly Gauss told his young student that for many years he had cheered the plan
of writing a similar essay on that very topics yet now he would refrain from doing
so since everything relevant to that province of thought had already been said by
Riemann.

When three years later Riemann presented to the Göttingen Faculty his three
proposals for the theme of his own Habilitationsschrift, two choices were in fields
where the young mathematician felt quite confident, while the third, with some
hesitation, was just added in order to complete the triplet and with the secret hope
that it would be immediately discarded by the academic committee as something too
philosophical and ill defined.The third proposed titlewasGrundlagenderGeometrie,
namely the Principles of Geometry. Remembering the talents of the young Herr



7.3 The Development of Differential Geometry: A Historic Outline 169

Riemann, Gausswas fascinated by the idea of giving himprecisely such a challenging
subject as the Foundations of Geometry to see what he might come up with it. The
King of Mathematicians persuaded the Faculty to make such a choice and the poor
Bernhard was dismayed by the news. He wrote to his father, a poor lutheran minister,
about his concerns on this matter but he also expressed him his confidence that he
would not come too late and that his merits as an independent researcher would be
appreciated.

Riemann had accepted the challenge and in seven weeks he produced such a
masterpiece ofMathematics and Philosophy as theUeber dieHypothesen, welche der
Geometrie zu Grunde liegen, that is About the Hypotheses lying at the Foundations
of Geometry (see Fig. 7.9).

With an unparalleled clarity of mind, Riemann began his essay with a profound
criticism of the traditional approach to Geometry, refusing the kantian dogma that
this latter is an a-priori datum and rather inclining to the idea that which geometry is
the actual one of Physical Space should be determined from experience. He said: It is
known that geometry assumes, as things given, both the notion of space and the first
principles of constructions in space. She gives definitions of them which are merely
nominal, while the true determinations appear in the form of axioms. The relation of
these assumptions remains consequently in darkness; we neither perceive whether
and how far their connection is necessary, nor a priori, whether it is possible. From
Euclid to Legendre (to name the most famous of modern reforming geometers) this
darkness was cleared up neither by mathematicians nor by such philosophers as
concerned themselves with it.2

After stating this two-thousand year old stalemate, Riemann proceeded to diag-
nose its cause. Explicitly he said: The reason of this is doubtless that the general
notion of multiply extended magnitudes (in which space-magnitudes are included)
remained entirely unworked. I have in the first place, therefore, set myself the task
of constructing the notion of a multiply extended magnitude out of general notions of
magnitude. It will follow from this that a multiply extended magnitude is capable
of different measure-relations, and consequently that space is only a particular case
of a triply extended magnitude.

In contemporary language themultiply extended magnitudes3 are simply the man-
ifolds and the measure relations are just the metrics introduced for the first time by
Gauss through Eq. (7.3.2).

Following the new road opened by Gauss with theDisquisitiones, Riemann intro-
duced n-extendedmanifoldswhose points are labeled by n rather than two curvilinear
coordinates xi and introduced the line element as a generic symmetric quadratic form
in the differentials of these coordinates:

ds2 = gi j (x) dx
i dx j (7.3.3)

2The translation of Riemann’s essay from German into English was done by William Clifford.
3In the original German text of Riemann these were named mehrfach ausgedehnter Grossen. In
modern scientific German the notion of manifolds is referred to as mannigfaltigkeiten.
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Fig. 7.9 Riemann’s Habilitationschrift entitled Ueber die Hypothesen, welche der Geometrie zu
Grunde liegen, that is about the hypotheses lying at the foundations of geometry

The coefficients of this quadratic form gi j (x) were later known as the Riemannian
metric tensor.

Riemann grasped the main point, namely that the geometry of manifolds is
encoded in the possible metric tensors or measure relations, as he called them, and
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made the following bold statement:Hence flows as a necessary consequence that the
propositions of geometry cannot be derived from general notions of magnitude, but
that the properties which distinguish space from other conceivable triply extended
magnitudes are only to be deduced from experience. Thus arises the problem, to dis-
cover the simplest matters of fact from which the measure-relations of space may be
determined; a problem which from the nature of the case is not completely determi-
nate, since there may be several systems of matters of fact which suffice to determine
the measure-relations of space.

In other words, the young genius was aware that the same manifold could support
quite different metrics and thought that this applied in particular to Space, i.e. to
the 3-dimensional physical world of our sensorial experience. He posed himself the
question which should be the metric of Space and came to the conclusion that such
a question could only be answered through experiment. This amounted to say that
the geometry of the world is a matter of Physics and not of a priori Philosophy
or Mathematics. Such a sentence of Riemann must have influenced Einstein quite
deeply. Indeed the final outcome of Einstein Theory of Relativity is that the geometry
of space-time is dynamically determined by its matter content through Einstein field
equations.

In considering such a question as what is the preferred metric to be selected for a
given manifold, Riemann formulated the basic problem of invariants. The matter of
facts4 to which he alluded are the intrinsic properties encoded in a givenmetric tensor
namely its invariants and he formulated the problem of determining, for instance, the
minimal complete number of invariants able to select Euclidian geometry. Riemann’s
views anticipate from a different wider angle Klein’s Erlangen Programme (see
Sect. 5.2.2) that linked the specification of a geometry with an invariance group.
In Riemann’s approach Klein’s group would be the isometry group (see Sect. 7.6).
Yet as we discuss later there are metrics with a small or no non-trivial isometry:
hence the question as posed by Riemann is more general and more profound. What
are the invariants (or covariants) that completely characterize a metric and hence a
geometry?

In this quest for invariants Riemann came to the notion of the Riemann curvature
tensor that he outlined in his very dissertation. The curvature form of connections
will be the subject of a subsequent section.

As we already recalled, Riemann died young and had no time to develop the new
theory of differential geometry that he had founded. Yet he had the time to come to
Italy and, through his contact with the Scuola Normale di Pisa and the research group
of Enrico Betti, of whom he was a close friend since the time they met in Göttingen,
to plant the seeds of the absolute differential calculus in the Italian Peninsula where,
later, they were strongly developed by Gregorio Ricci Curbastro, Luigi Bianchi and
Tullio Levi Civita.

4Einfachsten Thatsachen in the original German text.
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7.3.3 Parallel Transport and Connections

The idea of connections developed in the XIXth century along two different routes
which merged only in the XXth century. One route comes directly from Riemann
and through Christoffel, Ricci and Levi Civita went to Einstein. We can name this
the metric route. It resulted in the notion of the Levi Civita connection, which is the
parallel transport defined by the existence of a metric structure. The other route was
independently started in France by the work of Frenet and Serret and went down
to Élie Cartan: it is the route of the mobile frames (or r é pères mobiles as they are
named in French). A metric structure is not required in the second approach and
the connection deals with the parallel transport of a basis of vectors from one point
of a manifold to another one, along a curve. Connections of this type are named
Cartan connections. There is obviously a relation between Cartan connections and
metric connections. Such a relation is established through a so named soldering of the
frame bundlewith the tangent bundle, which also provides the conversion vocabulary
between two different formulations of General Relativity: the original metric one
of Einstein and the vielbein reformulation by Cartan. From a modern perspective
the vielbein formulation appears to be the most fundamental since it includes the
metric formulation, yet, differently from this latter, allows also for the coupling
to gravity of the fermionic fields, the spinors. A modern revisitation of Cartan’s
viewpoint is encoded in the notion of group-structure on manifolds, Riemannian
metrics corresponding essentially to SO(n)-structures on n-dimensional manifolds.

The further generalization of Cartan connections to principal connections on
generic fibre bundles was finally elaborated by Ehresmann in the post-war years
of the middle XXth century and this mathematical development came almost in par-
allel with the introduction of non-abelian gauge theories in physics: the two leaves
of C.N. Yang’s drawing protruding from the same stem!

7.3.4 The Metric Connection and Tensor Calculus from
Christoffel to Einstein, via Ricci and Levi Civita

Aswe emphasized in the previous section, the primary concern of the new differential
geometry, founded by Riemann as a generalization of Gauss work on surfaces, was
that of defining the length of curves on arbitrarymanifolds. This leads to the notion of
the metric gik(x), introduced in Eq. (7.3.3). Once the metric is established, a natural
way arises of transporting vectors along any given curve xμ(λ) (see Fig. 7.10).

We can say that a vector is parallel-transported along an arc of curveC (t) = λ(t)
if the angle between the transported vector and the tangent vector to the curve remains
constant throughout the entire transport (see Fig. 7.11).

This notion is meaningful if we can define and measure angles. This is precisely
what the existence of ametric allows. Indeed, in presence of gμν(x),we cangeneralize
the relations of Euclidean geometry by defining the norm of any vector as:
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Fig. 7.10 A curve C (t) in a
manifold M is just a
continous map of the interval
[0, 1] of the real line R into
M . The image of 0 through
this map is the initial point
pi ∈ M , the image of 1 is
the final point p f

Fig. 7.11 The parallel
transport of a vector X along
a curve is defined through
the preservation of its angle
θ with the tangent vector T
to the curve λ(t) at each
point of the curve. This
definition is possible if we
have a metric and hence the
notion of scalar product of
local vectors

||v|| ≡ √
vμ(x) vν(x) gμν(x) (7.3.4)

and the angle between any two vectors vμ
1 (x) and vν

2(x) as

cos θ ≡ < v1 , v2 >

||v1|| ||v2|| (7.3.5)

where the scalar product < v1 , v2 > is:

< v1 , v2 >≡ vμ
1 (x) vν

2(x) gμν(x) (7.3.6)

The metric connection is that infinitesimal displacement of a vector X along the
direction singled out by another one Y which is so defined as to fulfil the property
of preserving angles. It was first conceived by Christoffel.

Elwin Bruno Christoffel was born in 1829 in Montjoie, near Aachen, that was
renamed Monschau in 1918. After attending secondary schools in Cologne, he
enrolled at the University of Berlin, where he had such teachers as Eisenstein and
Dirichlet. Particularly the latter is duely considered his master. Christoffel’s doc-
tor dissertation, dealing with the motion of electricity in homogeneous media was
defended in 1856, just two years after Riemann’s presentation of the Ueber die
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Fig. 7.12 Elwin Bruno
Christoffel (Montjoie 1829,
Strasbourg 1918)

Hypothesen. Having spent a few years out of the academicworld, Christoffel returned
toMathematics in 1859, obtaining his habilitation from Berlin University. In the fol-
lowing years he was professor at the Polytechnic of Zurich, at the newly founded
Technical University of Berlin and finally at the University of Strasbourg which
had become German after the defeat of Napoleon III in the 1870 war. According to
opinions reported by contemporaries, Elwin Bruno Christoffel was one of the most
polished teachers ever to occupy a chair. His lectures were meticulously prepared
and his delivery was lucid and of the greatest aesthetic perfection... The core of
his course was the theory of complex functions that he developed and presented
according to Riemann’s approach (Fig. 7.12).

Although he wrote papers on several different topics like potential theory, differ-
ential equations, conformal mappings, orthogonal polynomials and still more, the
most relevant and influential of Christoffel’s contributions with the furthest reach-
ing consequences was his invention of the three-index symbols that bear his name.
Defined in terms of a metric gμν(x) and of its inverse gρσ (x), the symbols:

{
λ

μ ν

}
≡ 1

2 g
λσ

(
∂μ gνσ + ∂ν gμσ − ∂σ gμν

)
(7.3.7)

are the first example of connection coefficients, actually those of the Levi-Civita
connection, that preserves angles along the parallel transport it defines [43].

Christoffel symbols are the key ingredients in the definition of the covariant
derivative of a tensor (in particular of a vector):
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∇μ tλ1...λn ≡ ∂μ tλ1...λn −
{

ρ

μλ1

}
tρ λ2...λn −

{
ρ

μλ2

}
tλ1ρ...λn . . .

−
{

ρ

μλn

}
tλ1...λn−1ρ (7.3.8)

The word tensor was introduced for the first time by Hamilton in 1846, but tensor
calculus was developed around 1890 by Gregorio Ricci Curbastro under the title
of absolute differential calculus and was made accessible to mathematicians by the
publication of Tullio Levi Civita’s 1900 classic text of the same name, originally
written in Italian, later republished in French with Ricci [135] (see Fig. 7.13).

We report the words that open Levi Civita and Ricci’s paper of 1899. They are
particularly inspiring in view of what was to follow:M. Poincaré a écrit que dans les
Sciences mathématiques une bonne notation a la même importance philosophique
qu’une bonne classification dans les Sciences naturelles. Évidemment, et même avec
plus de raison, on peut en dire autant des méthodes, car c’est bien de leur choix
que dépend la possibilité de forcer (pour nous servir encore des paroles de l’illustre
géomètre français) une multitude de faits sans aucun lien apparent à se grouper
suivant leurs affinités naturelles.

Indeed it happens, as stressed by Weyl (see Chap.6), that the scientist must thrust
through the fog of abstract words to reach the concrete rock of reality and the real
thing emerges as soon as we replace the intuitive space in which our diagrams are
drawn by its construction in terms of sheer symbols.

The intuitive notion of curvature and of curved surfaces is as old as the dawn
of human thought, yet it was only through the work of Gauss and Riemann that
curvature found the beginning of its intrinsic mathematical definition. In order to
develop in a full–fledged fashion the vision pioneered by Riemann, who first intro-
duced the curvature coefficients and counted them, the sheer symbols were needed
and a new mathematical language was required that would accommodate them. The
sheer symbols were la bonne notation introduced by Ricci and Levi Civita and the
mathematical language in which they fit was the tensor calculus or absolute differ-
ential calculus as they named it.

Ricci Curbastro

Gregorio Ricci Curbastro (see Fig. 7.14) was son in an aristocratic family of Lugo
di Romagna. On the house where he was born in 1853 there stands a plate with
the following words Diede alla scienza il calcolo differenziale assoluto, strumento
indispensabile per la teoria della relativitá generale, visione nuova dell’universo.5

He began his studies at Rome University but he continued them at Scuola Nor-
male di Pisa and finally graduated from the University of Padova in 1875. As his
younger friend Luigi Bianchi, born in Parma in 1865 and also student of Scuola
Normale, in the Pisa years he was deeply influenced by the teaching of Ulisse Dini

5He gave to science Absolute Differential Calculus, essential instrument of the Theory of General
Relativity, a new vision of the Universe.
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Fig. 7.13 The first page of Ricci and Civita’s 1899 paper on tensor calculus

and Enrico Betti, the founder of modern topology. Through Betti, both Ricci and
Bianchi captured the seeds of differential geometry planted by Riemann few years
before. After graduation, Ricci obtained a fellowship that allowed him to spend some
years in Munich, in Germany. There he came in touch with the new conception and
classification of geometries, based on symmetry groups, developed by Felix Klein
and magisterially summarized by him in the celebrated Erlangen Programme. These
ideas had an analogous strong impact on Luigi Bianchi.
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Fig. 7.14 Gregorio Ricci
Curbastro (1853–1925).
Born in Lugo di Romagna,
Ricci Curbastro studied first
in Rome, than in Pisa and
finally graduated from Padua
of which university he later
became full-professor. There
he had as student Tullio
Levi-Civita. Together they
wrote the fundamental
papers establishing the
general form of tensor
calculus

Promoted to the position of full-professor at the University of Padova in 1880,
Ricci had there an exceptionally talented graduate student: TullioLeviCivitawhowas
born in that city in 1873. Ricci, Bianchi andLevi-Civita constructed themathematical
language used by Einstein to formulate General Relativity, which is also the most
common language for classical differential geometry. The key ingredients of that
language are just the tensors tμ1...μm

λ1...λn
, whose defining property is that of transforming

from one coordinate patch xμ to another one x̃σ , according to:

t̃μ1...μm
λ1...λn

(x̃) = ∂ x̃μ1

∂xρ1
. . .

∂ x̃μm

∂xρm

∂xσ1

∂ x̃σ1
. . .

∂xσn

∂ x̃σn
tρ1...ρm
σ1...σn

(x) (7.3.9)

In contemporary mathematical language, a tensor with m upper indices and n lower
indices is just a section of the m-th power of the tangent bundle and at the same time
a section of the n-th power of the cotangent bundle.6 Hence the absolute differential
calculus of Ricci, Levi Civita and Bianchi is just the differential calculus for sec-
tions of those fibre bundles whose transition functions are completely determined
by the very manifold structure of their base-manifold M , namely TM and T ∗M .
The concept of covariant differentiation was formally developed by Ricci and Levi

6The fundamental notion of fibre bundle is described in simple words in Sect. 7.4
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Fig. 7.15 The formula for the Riemann tensor in Ricci’s and Levi Civita’s paper of 1899

Civita and, as already stressed above, by using the Christoffel symbols, it realizes
the idea of parallel transport preserving the angles defined by a metric structure.

The Riemann Curvature Tensor

Once the covariant differentiation ∇μ is given, one can consider its antisymmetric
square and this leads to the Riemann–Christoffel curvature tensor (see Figs. 7.15 and
7.20):

R μ
λσν ≡ ∂λ

{
μ

σ ν

}
− ∂σ

{
μ

λ ν

}
+

{
μ

λ θ

} {
θ

σ ν

}
−

{
μ

σ θ

} {
θ

λ ν

}
(7.3.10)

which, sketched by Riemann in the Ueber die Hypothesen and analytically defined
by Christoffel [43], realizes for an arbitrary manifold the idea of intrinsic curvature
devised by Gauss in the 1828 Disquisitiones.

In Ricci and Levi Civita’s paper of 1899, the Riemann tensor was referred as le
Systeme de Riemann and was denoted ars,tu (see Fig. 7.15). The authors said that
these coefficients formed les elements d’un systeme quadruple covariant. The Com-
mentatio Mathematica quoted by Ricci and Levi Civita in their paper (see Fig. 7.15)
is an essay in Latin written by Riemann in 1861 and submitted to the Paris Academy,
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in order to compete for a prize relating to the conduction of heat. The second part of
this essay contains some of the mathematical analysis underlying Riemann’s Habil-
itationssrhift and in particular his way of writing what became the Riemann tensor.

Here are some of the crucial passages of the Commentatio:

De transformatione expressionis
∑

βι,ι′ dsι dsι′ in formam datum
∑

αι,ι′ dxι dxι′ .

. . . . . .

Quantitatibus pι,ι′,ι′′ iterum differentiatis obtinetur

∂pι,ι′,ι′′

∂sι′′′
− ∂pι,ι′,ι′′′

∂sι′′
= 2

∑
ν

∂2xν

∂sι′ ∂sι′′
∂2xν

∂sι ∂sι′′′
− 2

∑
ν

∂2xν

∂sι′ ∂sι′′′
∂2xν

∂sι ∂sι′′
,

unde tandem prodit, substitutis valoribus . . . . . .

. . . . . .

partes laevas harum aequationum designabimus per

(ιι′, ι′′ι′′′).

. . . . . .

Quo pacto haec expressio invenietur

Δ2 = (ιι′, ι′′ι′′′)(dsι δsι′ − dsι′ δsι)(dsι′′ δsι′′′ − dsι′′′ δsι′′ ). (7.3.11)

Although the notation is quite involute, for our contemporary eyes it is wrapped in
deep darkness, yet the coefficients

(ιι′, ι′′ι′′′)

are just the entries of the Riemann tensor. The Riemann tensor appears also in the
first edition of Bianchi’s Lezioni di Geometria differenziale) (see Fig. 7.20) and it is
named there th 4–index symbol.

Considering a vector V ρ we find:

[∇μ , ∇ν

]
V ρ = V σ R ρ

μνσ (7.3.12)

The geometrical meaning of this relation is exemplified in Fig. 7.16.
Consider an infinitesimally small rectangle whose two sides are given by the two

vectors Xμ and Yμ (also of infinitesimally short length), departing from a given point
p. Consider next the parallel transport of a third vector V ρ to the opposite site of the
rectangle. This parallel transport can be performed along two routes, both arriving
at the same destination. The first route follows first X and then Y . The second route
does the opposite. The image vectors of these two transports are based at the same
point, so they can be compared, in particular they can be subtracted. So doing we
find:
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Fig. 7.16 The images of the same vector parallel transported along two different paths that converge
at the same point of a manifold, generically differ by a rotation angle. That angle is a measure of
the intrinsic curvature of the manifold and it is the information codified in the Riemann–Christoffel
tensor

∇X ∇Y V ρ − ∇Y ∇X V ρ = Xμ Y ν
[∇μ ∇ν

]
V ρ + (∇X Y σ − ∇Y Xσ ) ∇σ V ρ

= Xμ Y ν
(
V σ R ρ

μνσ + T σ
μν ∇σ V ρ

) + [X , Y ]σ ∇σ V ρ

(7.3.13)

where the Riemann–Christoffel tensor was defined above and where:

T ρ
μλ ≡

{
ρ

μλ

}
−

{
ρ

λ μ

}
(7.3.14)

is another tensor named the torsion. In the case of the Christoffel symbols the torsion
is identically zero, yet for more general connections it can be different from zero
and Levi-Civita correctly singled out the vanishing of the torsion as one of the two
axioms from which the metric connection can be derived. In any case comparison of
Eq. (7.3.13) with Fig. 7.16 enlightens the geometrical meaning of both torsion and
curvature. If torsion is zero the parallel transport along the two different paths pro-
duces two vectors that differ from one another by a rotation angle and the Riemann
tensor R ρ

μνσ encodes all these possible angles. If torsion is not zero the two images
of parallel transport differ also by a displacement and the torsion tensor T ρ

μλ encodes
all such possible displacements. In a flat space, just as a plane, parallel transport
produces no rotation angle and no displacement. Hence the Riemann–Christoffel
tensor R ρ

μνσ measures the intrinsic curvature of a metric manifold (Fig. 7.17).

The Ricci tensor

In a paper of 1903 [151], Gregorio Ricci introduced a new tensor, later named after
him, which is obtained from the Riemann–Christoffel tensor through a contraction
of indices. The Ricci tensor is defined as follows:

Ricμν ≡
N∑

ρ=1

R ρ
μνρ (7.3.15)
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Fig. 7.17 Tullio Levi Civita (1873–1941) Born in Padova, died in Rome. He graduated in 1892
from the University of Padua, faculty of mathematics, writing his laurea thesis under the supervision
of Ricci Curbastro. In 1898 hewas appointed to the Padua Chair of rational mechanics. He remained
in his position at Padua until 1918, when he was appointed to the chair of higher analysis at the
University ofRome. In 1936, receiving an invitation fromEinstein, Levi-Civita traveled toPrinceton,
United States and lived there with him for a year. Then he returned to Italy. The 1938 Fascist race
laws deprived Levi-Civita of his professorship and of his membership of all scientific societies.
Einstein used to say that the best things in Italy were spaghettis and Levi Civita

and, on a metric manifold, measures the first deviation of its volume form from the
euclidian value. Just for this reason it was originally considered by its inventor. Yet
such tensor was doomed to play a major role in the development of XXth century
scientific thought and in the birth of General Relativity.7

Bianchi and the Bianchi identities

Preparatory to this great future of the Ricci tensor were the algebraic and differential
identifies it satisfies. They were derived by Luigi Bianchi (see Fig. 7.18) in 1902.
Actually, according to Levi Civita, the same identities had already been discovered

7The very first embryonal idea of the Ricci tensor actually appeared as early as 1892 in another
publication of its inventor [150].
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Fig. 7.18 Luigi Bianchi
(1865–1928)

by Ricci as early as 1880 but they had been discarded by their author as not relevant.
The first of Bianchi identities states that the Ricci tensor is symmetric:

Ricμν = Ricνμ (7.3.16)

the second, differential identity, states that its divergence is equal to one half of the
gradient of its trace:

∇μ Ricμν = 1
2∇νR (7.3.17)

where, by definition, we have posed:

R = gμν Ricμν (7.3.18)

which is named the curvature scalar and we have set ∇μ = gμσ ∇σ .
The Bianchi identities were precisely the clue that lead Einstein, with the help of

Marcel Grossman, to single out the form of the field equations of General Relativity.
Combined in a proper way, they suggest the form of a covariantly conserved tensor,
the Einstein tensor, which plays the role of left hand side in the propagation equations,
the right hand side being already decided on physical grounds, namely the conserved
stress energy-tensor.

Actually the identities discovered by Bianchi on the Ricci tensor are the particular
form taken, in the case of the Levi-Civita connection, by very general and fundamen-
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tal identities satisfied by the curvature 2-form of any connection on any principal
fibre bundle. In the present chapter we will emphasize this concept, which has the
highest significance both in Physics and in Mathematics.

After his laurea in Mathematics from the University of Pisa, which he obtained
in 1877, Bianchi remained in that city for other two years as student of the Corso di
Perfezionamento of the Scuola Normale Superiore. He graduated in 1879, defending
a thesis on helicoidal surfaces. Then, just following the steps of Ricci, he was in
Germany, first in Munich and then in Göttingen, were he attended courses and sem-
inars given by Felix Klein. As already stated, he was deeply influenced by Klein’s
group-theoretical view of geometry and one of his major achievements is precisely
along that line. In a paper of 1898 [18], Bianchi classified all tridimensional spaces
that admit a continuous group of motions. Actually, so doing, he classified all Lie
algebras of dimension three. This classification, which is organized into nine types,
turned out to be quite relevant for Cosmology in the framework of General Relativity,
since it amounts to a classification of all possible space-times that are spatially homo-
geneous (see Chapter 5 of Volume Two of [89]). Since 1882, Bianchi was internal
professor at the Scuola Normale and in 1886 he won the competition for the chair
of Projective Geometry at University of Pisa, where he was full-professor for the
rest of his life. In 1894 he published the first edition of his Lezioni di Geometria
Differenziale [17], which is the very first comprehensive treaty on the new discipline
pioneered by Riemann and also the first place where the nameDifferential Geometry
appeared (see Figs. 7.19, 7.20 and 7.21).

Bianchi died in 1928 and he is buried in the Cimitero Monumentale, Piazza
dei Miracoli of Pisa. Since the later 1880s up to the end of his life he was an
extremely prominent and influential mathematician of the then flourishing Italian
School of Geometry. In 1904 Bianchi was member of the committee appointed by
the Accademia Nazionale dei Lincei to select the winning paper for the 1901 Royal
Prize of Mathematics. Ricci’s ambitions on that Prize had already been manifested
some years before, when he presented his works to the committee then headed by
Eugenio Beltrami. Notwithstanding Beltrami’s very favorable impressions, the final
verdict of the jury on the relevance of tensor analysis had been hesitating and the Prize
had not been attributed. Similar conclusion obtained the competition of 1904. Luigi
Bianchi showed a great appreciation for the mathematical soundness and vastity of
Ricci’s methods but concluded that tensor analysis had not yet demonstrated its rel-
evance and essentiality. He utilized Kronecker’s words to say that he preferred new
results found with old methods rather than old results retrieved with new, although
very powerful, techniques. These events are quite surprising in view of the fact that
two years before, in 1902, Bianchi had published his paper [19] containing those
identities on the Ricci tensor for which his name is mostly remembered.

The Royal Prize for Mathematics, denied to Ricci Curbastro, was attributed few
years later, in the 1907 edition, to Ricci’s former student Tullio Levi Civita, by
a committee that once again included Luigi Bianchi, together with other distin-
guished mathematicians such as Vito Volterra and Corrado Segre. This time the use-
fulness of the tensor methods had beenmade absolutely undoubtable by the vastity of
Levi-Civita’s results.
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Fig. 7.19 The first edition (1894) of Luigi Bianchi’s lectures on differential geometry. Frontespice.
(Courtesy of the Bliblioteca Peano - Dipartimento di Matematica - University of Torino)

Although a little bit dismayed by the failure to get the Royal Prize, Ricci Curbastro
ended his life in 1925 surrounded by the appreciation of his colleagues and of his
fellow citizens both as a scientist and as a politician. Indeed he was nominated
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Fig. 7.20 The first edition (1894) of Luigi Bianchi’s lectures on differential geometry. Pages con-
taining the formula of the Riemann tensor, named 4-index symbol. (Courtesy of the Bliblioteca
Peano - Dipartimento di Matematica - University of Torino)

member of several academies, including the most prestigious one, that of Lincei
and also occupied positions in the local administration of his native city, Lugo di
Romagna. On the contrary his genial student Levi-Civita, who was professor at the
University of Rome La Sapienza, notwithstanding the Royal Prize and other honours,
suffered, under the fascist racial laws of 1938, the removal from his chair because
of his Jewish origin. Depressed and completely isolated from the scientific world he
died from sorrow in 1941. It is a luminous shot in a dark and barbarous time that
when he was removed from his Chair at la Sapienza, Levi-Civita was offered a chair
by the Academia Pontificia.

7.3.5 Mobiles Frames from Frenet and Serret to Cartan

As everyone knowsEinstein’s paper on Special Relativity is dated 1905, while that on
General Relativity was published at the end of 1915. Einstein’s theory of gravitation,
which is themain theme of a previous book of the present author [89], was formulated
in the language of differential geometry as developed by Ricci and Levi-Civita and
centered around the notion ofmetric, firstly introduced byGauss for two-dimensional
surfaces and then extended to all dimensions by Riemann.
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Fig. 7.21 The first edition (1894) lk,of Luigi Bianchi’s lectures on differential geometry. Pages con-
taining the discussion of Beltrami pseudosphere. (Courtesy of the Bliblioteca Peano - Dipartimento
di Matematica - University of Torino)

Yet as early as 1901, a relatively young scholar, who was to be a giant of XXth
century mathematical thought, had already introduced a different approach to differ-
ential geometry, whose greater depth and power started to be appreciated only later
on.

The genius we are referring to is Élie Cartan about whom we already said a lot in
Sect. 5.4 and the above mentioned 1901 paper actually deals with the theory of first
order partial differential equations. Just as SophusLie, dealingwith the same classical
problem of analysis, developed the notion of Lie groups, in the same way Cartan,
who had already given unparalleled contributions to the completion of Lie’s theory,
reconsidering differential systems from a new view-point, introduced the notion
of exterior differential forms and laid the basis of modern differential geometry.
In a subsequent paper of 1904 [33], Cartan introduced a particular set of 1-forms
that, in modern scientific literature, bear his name together with that of the German
mathematician Ludwig Maurer.8 Maurer–Cartan one-forms are associated with Lie
groups and play an essential role in the general theory of connections on fibre-

8Ludwig Maurer (1859–1927) obtained his Doctorate in 1887 from the University of Strassburg
(at the time under German rule after the defeat of France in the 1870 war) and became professor
of Mathematics at the University of Tübingen. His doctoral dissertation Zur Theorie der linearen
Substitutionen [142] happens to contain a germ of the idea of Maurer–Cartan forms developed by
Cartan in 1904.
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bundles, namely in establishing the notion of gauge-fields, presently identified with
themediators of all fundamental forces of Nature. Cartan’s 1904 paper, that preceded
both Special and General Relativity, is fundamental not only for the actual result it
contained about covariantly closed one-forms on Lie group manifolds, but also for
the general view-point on geometry that such structures advocated. Using Cartan’s
phrasing, this view-point is that of repères mobiles, mobile frames in English. As
all great and simples ideas, that of mobile frames developed slowly, through the
contribution of more than one mind and, in this case, all the minds were French.

Jean Frédéric Frenet was born in Périgueux in 1816 and died in the same city in
1900. He entered the École Normale Supérieure in 1840 but then he quitted it and
studied at the University of Toulouse. Frenet’s doctoral thesis, submitted in 1847
had the intriguing title Sur le fonctiones qui servent à determiner l’attraction des
sphéroides quelconques. Programme d’une thèse sur quelque propriétés des courbes
a double courbure.9 This thesis presented the idea of attaching a frame to each point
of an arbitrary curve that develops in three-dimensional space. As this frame moves
along the curve, we can look at its rate of change to determine how the curve turns and
twists, two evolutions which completely determine the geometry of the considered
curve.

At the time of his writing, matrix notation and matrix calculus were not yet in
general use and Frenet wrote six formulae which just correspond to six entries of
a 3 × 3 matrix. The latter has obviously nine entries and it was Serret’s historical
mission to write all of them independently from Frenet.

Joseph Alfred Serret was three year younger than Frenet. Born in Paris in 1819 he
died in Versailles in 1885. While Frenet had been a missed issue of École Normale
Superiéure, Serret was an achieved product of École Polytechnique, from which he
graduated in 1848. Appointed professor of Celestial Mechanics at the Collège de
France in 1861, Serret was later offered the chair of differential and integral calculus
at the Sorbonne. Frenet instead, after his start in Toulouse, was appointed professor of
mathematics at theUniversity of Lyon,where hewas also director of the astronomical
observatory.

Frenet–Serret formulae, as history decided they should be named, were published
(nine and six) in two independent papers with a very similar title, at one year distance
one from theother. Serret’s paper [157] appeared in 1851 andwasnamedSur quelques
formules relatives à la théorie des courbes à double courbure. Frenet published in
1852 the results of his 1847 doctoral thesis under the title: Sur quelques proprétés
des courbes à double courbure [91].

Consider Fig. 7.22. Given a curve C (s) in three-dimensional Euclidean space, we
can easily fix the following rule which uniquely defines a basis of three orthonormal
vectors attached to each point of the curve. Let r be the standard cartesian coordinates
ofR3.Anycurve canbedescribedbygiving r = r(s)where s is the length parameter:

9About the functions which help determining the attraction of general spheroids. Programme for a
thesis about some properties of curves with a double curvature.
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Fig. 7.22 The moving
frames of Frenet and Serret

s =
∫ s

0

∣∣∣∣ drds ′

∣∣∣∣ ds ′ (7.3.19)

By definition the tangent vector to the curve is:

T(s) = d

ds
r(s) (7.3.20)

and we can define the normal vector by means of the normalized second derivative:

N(s) = 1

|t(s)|
d

ds
t(s) (7.3.21)

Finally we can complete the orthonormal system by means of the exterior product
of N(s) and T(s) which is historically named the binormal vector:

B(s) = T(s) ∧ N(s) ⇔ Bi (s) = εi jk T j (s) Nk(s) (7.3.22)

Since E(s) = {T(s),B(s),N(s)} provides a basis for three-vectors, it is clear that
also the derivative of this basis can be reexpressed in terms of itself, namely we can
write:

d

ds
E(s) = Ω(s)E(s) (7.3.23)

where Ω(s) is a 3 × 3 matrix which is necessarily antisymmetric since ET
E = 1.

Indeed from such a relation it follows d
dsEE

T = Ω = −E
d
dsE

T = −ΩT .
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In the component language of the middle XIXth century, Frenet and Serret proved
that this matrix is not only antisymmetric but it has also a special normal form, in
terms of two-parameters that they identified with the curvature κ and the torsion τ

of the curve:

Ω(s) =
⎛
⎝ 0 κ(s) 0

−κ(s) 0 τ(s)
0 − τ(s) 0

⎞
⎠ (7.3.24)

The reason of these names becomes obvious looking at Fig. 7.22. The span of the
vectors T,N defines the osculating plane to the curve. If the torsion parameter τ

vanishes the curve lies at all times in such a plane and the tangent and normal vectors
undergo, from one point to the next one, an infinitesimal rotation of an angle δθ = κ .
When the torsion τ is different from zero, the tangent and normal vectors undergo
not only an infinitesimal rotation but also a displacement in the direction of the third
vector B and this displacement is precisely proportional to τ . The geometry of the
curve is fully determined by the knowledge of the parameters κ and τ . For instance all
planar curves are characterized by τ = 0 and among them the circles are those with
constant curvature κ . Similarly when both κ and τ are non vanishing but constant
we have a spiral and so on.

In these very elementary geometrical facts the astonishingmathematical insight of
Élie Cartan perceived a far reaching perspective of incredible richness. Refining the
idea of the moving frames he started a conceptual revolution of the same amplitude
as that done by Gauss with the Disquisitiones of 1828.

Right after the creation of General Relativity by Einstein, he started rethinking it
in terms of mobile frames and came to the reformulation of gravitational equations
which goes under the name of Einstein–Cartan theory [34].While the original metric
formulation is inadequate to incorporate fermionic fields, the new one can do that
and is therefore more fundamental. Moreover it is much simpler from the algorith-
mic point of view and leads to extremely elegant and compact formulae. Cartan’s
viewpoint is centered around the idea of mobile frames which comes down from
Frenet and Serret. It also leads to a simple formulation of the notion of connection
that Charles Ehresman, one of the most brilliant students of Cartan, finally brought
to mathematical perfection in the fifties of the XXth century.

Élie Cartan grasped from Frenet and Serret formulae the message that the geome-
try of anm-dimensionalmanifoldM could be described by attaching an orthonormal
frame to each of its points. The evolution of the orthonormal frame from one point
to the next one, which can occur in m directions, encodes all information about the
intrinsic curvature and torsion of the manifold. Relying on the exterior differential
calculus he had created, Cartan introduced a system of m one-forms:

Ea = Ea
μ(x) dxμ (7.3.25)

which at each point constitute an orthonormal reference frame for controvariant
vectors. In modern words {Ea} are a basis of sections of the cotangent bundle
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T ∗M π=⇒ M . Calculating the exterior derivative of the forms Ea we can write the
following formula, just analogous to Frenet and Serret’s formulae:

dEa = −ωab ∧ Eb + Ta (7.3.26)

where ωab = −ωba is an antisymmetric-valued one-form, named the spin connec-
tion and

Ta = T a
bc(x) E

b ∧ Ec (7.3.27)

is a 2-formwhich will be named the torsion. If we have no information on the torsion,
Eq. (7.3.26) is undetermined, namely there are many solutions for the one-form ωab.
This latter falls into the mathematical category of connections. According to the
definition we shall provide in next section, ωab is a connection on a principal bundle
P(M ,SO(m))where the basemanifold is the consideredmanifoldM andwhere the
structural group is SO(m), namely the Lie group which rotates orthonormal frames
among themselves. If we have geometrical or physical reasons to prescribe the value
of the torsion, for instance zero (T a = 0), but also any other externally given 2-form,
then Eq. (7.3.26) uniquely determines the SO(m)-connectionωab. In this case we say
that the SO(m)-bundle is soldered to the tangent bundle and the SO(m)-connection
ωab becomes a Cartan-connection. Just as in the Frenet-Serret case, the geometry
of the manifold, in particular its curvature, is revealed through the calculation of the
second derivative, which Cartan immediately understood should be another exterior
derivative. Indeed, according to the general theory of principal connections, one can
calculate the natural 2-form associated with any connection, which in this case reads
as follows:

Rab = dωab + ωac ∧ ωcb (7.3.28)

and the expansion ofRab along the orthonormal frame provides a tensor Rab
cd which

represents the curvature of the manifold:

Rab = Rab
cd E

c ∧ Ed (7.3.29)

Indeed Rab
cd has a unique invertible one-to-one relation with the Riemann tensor

introduced in Eq. (7.3.10).
In this way Cartan’s was able to reformulate the entire setup of Riemannian

geometry, and with it General Relativity, into the language of exterior differential
forms, avoiding the metric tensor of Gauss and Riemann, replaced by the notion of
mobile-frames. From the physical viewpoint, Cartan’s approach is also very natural
since it can be rephrased as Einstein’s beloved equivalence principle, asserting that
we can always find locally inertial reference frames.

There is another important aspect of Cartan’s formulation of gravitational theory:
it suppresses its diversity from the other gauge-theories describing non gravitational
interactions. Adopting Cartan’s viewpoint, the fundamental fields describing gravity
are also encoded into a connection on a principal bundle as it happens for all other
forces. What is special about gravity is the soldering phenomenon, namely the pos-
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sibility of solving for one part of the connection (ωab) in terms of the other (Ea),
by imposing an external condition on the torsion T a . In Einstein–Cartan formula-
tion the condition on the torsion becomes a field equation streaming from the same
variational principle which yields Einstein equations on the Riemann tensor and so
everything is unified in a consistent, powerful scheme.

7.4 Fibre-Bundles and Principal Connections

The concept of fibre bundle emerged slowly in the mathematical literature of the
XXth century and came to full ripeness at the time of World War II when the theory
of characteristic classes was developed by Chern and Weil. Telling the story of this
development will be my concern in Chap. 9, as part of the general fresco depicting
the evolution of geometry in the first half of the XXth century.

Here we sketch and discuss the mathematical definition of fibre-bundles in order
to clarify what the mathematical conceptions whose evolution we discuss actually
are.

As amatter of fact the concept of fibre bundle is absolutely central both in contem-
porary mathematics and physics as it provides the appropriate mathematical frame-
work to formulate modern field theory. All the fields one can consider are either
sections of associated bundles or connections on principal bundles. There are indeed
two kinds of fibre bundles:

1. principal bundles
2. associated bundles

The notion of a principal fibre bundle is the appropriate mathematical concept
underlying the formulation of gauge theories that provide the general framework
to describe the dynamics of all non–gravitational interactions. The concept of a con-
nection on such principal bundles codifies the physical notion of the bosonic particles
mediating the interaction, namely the gauge bosons, like the photon, the gluon or
the graviton. Indeed, gravity itself is a gauge theory although of a very special type.
On the other hand the notion of associated fibre bundles is the appropriate mathe-
matical framework to describematter fields that interact through the exchange of the
gauge bosons. The reader recognizes here points (B) and (C) of the episteme as we
formulated it in Chap.1.

Also from a more general viewpoint and in relation with all sort of applications
the notion of fibre bundles is absolutely fundamental. As we already emphasized, the
points of a manifold can be identified with the possible states of a complex system
specified by anm–tuplet of parameters x1, . . . xm . Real or complex functions of such
parameters are the natural objects one expects to deal with in any scientific theory
that explains the phenomena observed in such a system. Yet, as we already antic-
ipated, calculus on manifolds that are not trivial as the flat Rm cannot be confined
to functions, which correspond to a too restrictive notion. The appropriate general-
ization of functions is provided by the sections of fibre bundles. Locally, namely in
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each coordinate patch, functions and sections are just the same thing. Globally, how-
ever, there are essential differences. A section is obtained by gluing together many
local functions by means of non trivial transition functions that reflect the geometric
structure of the fibre bundle.

7.4.1 Definition of Fibre-Bundles

To introduce the mathematical definition of a fibre bundle we need the notion of Lie
group whose history was thoroughly discussed in Chap.5. A Lie group G is:

• Agroup from the algebraic point of view, namely a setwith an internal composition
law, the product

∀ g1 , g2 ∈ G g1 · g2 ∈ G (7.4.1)

which is associative, admits a unique neutral element e and yields an inverse for
each group element.

• A smoothmanifold of finite dimension dimG = n < ∞whose transition function
are not only infinitely differentiable but also real analytic, namely they admit an
expansion in power series.

• In the topology defined by the manifold structure the two algebraic operations of
taking the inverse of an element and performing the product of two elements are
real analytic (admit a power series expansion).

Coming now to fibre bundles let us begin by recalling that an artistic illustration of
such spaces is provided by the celebrated picture by Escher of an ant crawling on a
Mobius strip (see Fig. 7.23).

The basic idea is that if we consider a piece of the bundle this cannot be dis-
tinguished from a trivial direct product of two spaces, an open subset of the base
manifold and the fibre. In Fig. 7.24 the base manifold is a circle and the fibre is a

Fig. 7.23 Escher’s ant crawling on a Mobius strip provides an artistic illustration of a fibre bundle
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Fig. 7.24 Mobius strip provides a pedagogical example of a fibre bundle

Fig. 7.25 Local triviality of an open piece of the Mobius strip

segment I ≡ [−1, 1]. Locally the space is the direct product of an open interval of
U =]a, b[⊂ R with the standard fibre I , as it is evident from Fig. 7.25.

However, the relevant point is that, globally, the bundle is not a direct product of
spaces.

Hence the notion of fibre bundle corresponds to that of a differentiable manifold
P with dimension dim P = m + n that locally looks like the direct product U × F
of an open manifold U of dimension dimU = m with another manifold F (the
standard fibre) of dimension dim F = n. Essential in the definition is the existence
of a map:

π : P → M (7.4.2)

named the projection from the total manifold P of dimensionm+n to a manifoldM
of dimension m, named the base manifold. Such a map is required to be continuous.
Due to the difference in dimensions the projection cannot be invertible. Indeed to



194 7 A Short History of Differential Geometry

Fig. 7.26 A fibre bundle is
locally trivial

every point ∀ p ∈ M of the base manifold the projection associates a submanifold
π−1(p) ⊂ P of dimension dim π−1(p) = n composed by those points of x ∈ P
whose projection onM is the chosen point p: π(x) = p. The submanifold π−1(p)
is named the fibre over p and the basic idea is that each fibre is homeomorphic to
the standard fibre F . More precisely for each open subset Uα ⊂ M of the base
manifold we must have that the submanifold

π−1(Uα)

is homeomorphic to the direct product

Uα × F

This is the precisemeaning of the statement that, locally, the bundle looks like a direct
product (see Fig. 7.26). Explicitly what we require is the following: there should be
a family of pairs (Uα, φα) where Uα are open charts covering the base manifold⋃

α Uα = M and φα are maps:

φα : π−1 (Uα) ⊂ P → Uα ⊗ F (7.4.3)

that are required to be one–to–one, bicontinuous (=continuous, together with its
inverse) and to satisfy the property that:

π ◦ φ−1
α (p, f ) = p (7.4.4)

Namely the projection of the image in P of a base manifold point p times some fibre
point f is p itself.
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Each pair (Uα, φα) is named a local trivialization. As for the case ofmanifolds, the
interesting question is what happens in the intersection of two different local trivial-
izations. Indeed if Uα

⋂
Uβ �= ∅, then we also have π−1 (Uα)

⋂
π−1

(
Uβ

) �= ∅.
Hence each point x ∈ π−1

(
Uα

⋂
Uβ

)
is mapped by φα and φβ in two different

pairs (p, fα) ∈ Uα ⊗ F and (p, fβ) ∈ Uα ⊗ F with the property, however, that the
first entry p is the same in both pairs. This follows from property (7.4.4). It implies
that there must exist a map:

tαβ ≡ φ−1
β ◦ φα :

(
Uα

⋂
Uβ

)
⊗ F →

(
Uα

⋂
Uβ

)
⊗ F (7.4.5)

named the transition function, which acts exclusively on the fibre points in the sense
that:

∀ p ∈ Uα

⋂
Uβ, ∀ f ∈ F tαβ(p, f ) = (

p, tαβ(p). f )
)

(7.4.6)

where for each choice of the point p ∈ Uα

⋂
Uβ ,

tαβ(p) : F �→ F (7.4.7)

is a continuous and invertible map of the standard fibre F into itself (see Fig. 7.27).
The last bit of information contained in the notion of fibre bundle is related with

the structural group. This has to do with answering the following question: where
are the transition functions chosen from? Indeed the set of all possible continuous
invertible maps of the standard fibre F into itself constitute a group, so that it is
no restriction to say that the transition functions tαβ(p) are group elements. Yet the
group of all homeomorphisms Hom(F,F) is very large and it makes sense to include
into the definition of fibre bundle the request that the transition functions should be
chosen within a smaller hunting ground, namely inside some finite dimensional Lie
group G that has a well defined action on the standard fibre F .

Fig. 7.27 Transition
function between two local
trivializations of a fibre
bundle
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Just as manifolds can be constructed by gluing together open charts, fibre bundles
can be obtained by gluing together local trivializations. Explicitly one proceeds as
follows.

1. First choose a base manifold M , a typical fibre F and a structural Lie Group G
whose action on F must be well–defined.

2. Then choose an atlas of open neighborhoods Uα ⊂ M covering the base mani-
foldM .

3. Next to each non–vanishing intersection Uα

⋂
Uβ �= ∅ assign a transition func-

tion, namely a smooth map:

ψαβ : Uα

⋂
Uβ �→ G (7.4.8)

from the open subset Uα

⋂
Uβ ⊂ M of the base manifold to the structural Lie

group. For consistency the transition functions must satisfy the two conditions:

∀Uα,Uβ / Uα

⋂
Uβ �= ∅ : ψβα = ψ−1

αβ

∀Uα,Uβ,Uγ / Uα

⋂
Uβ

⋂
Uγ �= ∅ : ψαβ · ψβγ · ψγα = 1G

(7.4.9)

Whenever a set of local trivializations with consistent transition functions satisfying
Eq. (7.4.9) has been given a fibre bundle is defined. A different and much more
difficult question to answer is to decide whether two sets of local trivializations
define the same fibre bundle or not. We do not address such a problem whose proper
treatment is beyond the scope of this essay. We just point out that the classification
of inequivalent fibre bundles one can construct on a given base manifold M is a
problem of global geometry which can also be addressed with the techniques of
algebraic topology and algebraic geometry.

Typically inequivalent bundles are characterized by topological invariants that
receive the name of characteristic classes (see Sect. 8.2).

In physical language the transition functions (7.4.8) fromone local trivialization to
another one are the gauge transformations, namely group transformations depending
on the position in space–time (i.e. the point on the base manifold).

A principal bundle P(M ,G) is a fibre bundle where the standard fibre coincides
with the structural Lie group F = G and the action of G on the fibre is the action
of the group on itself either by left or by right multiplication. The name principal
is given to the fibre bundle in such a definition since it is a “father” bundle which,
once given, generates an infinity of associated vector bundles, one for each linear
representation of the Lie group G.

An associated vector bundle is a fibre bundle where the standard fibre F = V is
a vector space and the action of the structural group on the standard fibre is a linear
representation of G on V .

The reason why the bundles in the above definition are named associated is almost
obvious. Given a principal bundle and a linear representation of G we can immedi-
ately construct a corresponding vector bundle. It suffices to use as transition functions
the linear representation of the transition functions of the principal bundle:
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ψ
(V )
αβ ≡ D

(
ψ

(G)
αβ

)
∈ Hom (V, V ) (7.4.10)

For any vector bundle the dimension of the standard fibre is named the rank of the
bundle.

7.4.2 Ehresmann and the Connections on a Principal Fibre
Bundle

The mathematician who brought the definition of a connection on principal fibre-
bundle to perfection, providing in this way the rigorous basis of physical gauge–
theories is Charles Ehresman (see Fig. 7.28).

He was born in German speaking Alsace in 1905 from a poor family. His first
education was in German, but after Alsace was returned to France in 1918 as a result
of Germany’s defeat in World War I, Ehresman attended only French schools and
his University education was entirely French. Indeed in 1924 he entered the École
Normale Superieure from which he graduated in 1927.

After that, he served as a teacher ofMathematics in the French colony ofMorocco
and then he went to Göttingen that in the late twenties and beginning of the thirties
was the major scientific center of the world, at least for Mathematics and Physics.

The raising of Nazi power in Germany dismantled the scientific leadership of the
country, caused the decay of Göttingen and obliged all the Jewish scientists, who so
greatly contributed to German culture, to emigrate to the United States.

Fig. 7.28 Charles Ehresman
(1905–1979)
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Ehresman also fled from Göttingen to Princeton where he studied for few years
until 1934. In that year he returned to France to obtain his doctorate under the
supervision of Élie Cartan. Charles Ehresman was professor at the Universities of
Strasbourg and Clermont Ferrand.

In 1955 a special chair of Topology was created for him at the University of Paris
which he occupied up to his retirement in 1975. He died in 1979 in Amiens where
his second wife, also a mathematician held a chair.

Charles Ehresman was one of the creators of differential topology and, as we
already stressed, he greatly contributed to the development of the notion of fibre-
bundles [69] and of the connections defined over them [70]. He founded the mathe-
matical theory of categories.

7.4.2.1 The Notion of a Connection

Let P(M ,G) be a principal fibre-bundlewith base-manifoldM and structural group
G. Let us moreover denote π the projection:

π : P → M (7.4.11)

Consider the action of the Lie group G on the total space P . By definition this action
is vertical in the sense that

∀u ∈ P , ∀g ∈ G : π(g(u)) = π(u) (7.4.12)

namely it moves points only along the fibres. Given any element X ∈ G where
we have denoted by G the Lie algebra of the structural group, we can consider the
one-dimensional subgroup generated by it gX (t) = exp [ t X ], where t is a real
parameter. There is a curveCX (t, u) in the manifold P obtained by acting with gX (t)
on some point u ∈ P , namely: CX (t, u) ≡ gX (t)(u). Because of the vertical action
of the structural group, this curve develops along the fibres and every point of the
curve has the same projection on the base manifold:

π (CX (t, u)) = p ∈ M if π(u) = p (7.4.13)

This feature is illustrated in Fig. 7.29.
By means of this construction, to every Lie algebra element X ∈ G we associate

a vector fieldX# defined at each point u of the total space P which is just the tangent
vector to the vertical curve CX (t, u). In short what we have achieved is a map from
the structural group Lie algebra G to the tangent space to the bundle at each of its
points u:

#u : G → Tu P (7.4.14)

Clearly the map #u is not surjective: its image is what we can name the vertical
subspace Vu P since it spans the fibre–directions.
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Fig. 7.29 Every element
X ∈ G of the structural group
Lie algebra generates a curve
CX (t, u) in the total space P ,
that starting from a point u is
completely vertical, namely
all points of the curve have
the same projection p on the
base manifold M

Having defined the vertical subspace of the tangent space one would be interested
in giving a definition also of the horizontal subspace Hu P , which, intuitively, must
be somehow parallel to the tangent space TpM to the base manifold at the projection
point p = π(u). The dimension of the vertical space is the same as the dimension of
the fibre, namely n = dimG. The dimension of the horizontal space Hu P must be the
same as the dimension of the base manifoldm = dimM . Indeed Hu P should be the
orthogonal complement of Vu P . Easy to say, but orthogonal with respect to what?
This is precisely the point. Is there an a priori intrinsically definedway of defining the
orthogonal complement to the vertical subspace Vu ⊂ Tu P? The answer is that there
is not. Given a basis {vμ} of n vectors for the subspace Vu P , there are infinitely many
ways of findingm extra vectors {hi }which complete this basis to a basis of Tu P . The
span of any such collection of m vectors {hi } is a possible legitimate definition of
the orthogonal complement Hu P . This arbitrariness is the root of the mathematical
notion of a connection. Providing a fibre bundle with a connection precisely means
introducing a rule that uniquely defines the orthogonal complement Hu P .

Let P(M,G) be a principal fibre-bundle. A connection on P is a rule which at
any point u ∈ P defines a unique splitting of the tangent space Tu P into the verti-
cal subspace Vu P and into a horizontal complement Hu P satisfying the following
properties:

(i) Tu P = Hu P ⊕ Vu P
(ii) Any smooth vector field X separates into the sum of two smooth vector fields

X = XH +XV such that at any point u ∈ P we haveXH
u ∈ Hu P andXV

u ∈ Vu P
(iii) the horizontal spaces along the same fibre are related to each other by the action

of the structural group G on the fibre bundle.
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Fig. 7.30 The tangent space
to a principal bundle P splits
at any point u ∈ P into a
vertical subspace along the
fibres and a horizontal
subspace parallel to the base
manifold. This splitting is
the intrinsic geometric
meaning of a connection

This beautiful purely geometrical definition of the connection illustrated in
Fig. 7.30 is due to Ehresmann [70]. It emphasizes that it is just an intrinsic attribute of
the principal fibre-bundle. In a trivial bundle, which is a direct product of manifolds,
the splitting between vertical and horizontal spaces is done once for ever. The vertical
space is the tangent space to the fibre, the horizontal space is the tangent space to the
base. In a non trivial bundle the splitting between vertical and horizontal directions
has to be reconsidered at every next point and fixing this ambiguity is the task of the
connection.

7.4.2.2 The Connection One-Form

The algorithmic way to implement the splitting rule advocated by the Ehresmann
definition is provided by introducing a connection one-form A which is just a Lie
algebra valued differential one-form on the bundle P satisfying two precise require-
ments:

(i) ∀X ∈ G : A
(
X#

) = X
(ii) ∀g ∈ G : g∗A = g−1 A g

Given the connection one-form A the splitting between vertical and horizontal sub-
spaces is performed in the following way. At any u ∈ P , the horizontal subspace
Hu P of the tangent space to the bundle is the kernel of A, namely

Hu P ≡ {X ∈ Tu P |A (X) = 0} (7.4.15)

Elaborating the consequences of the above definitions one arrives at the conclusion
that, in that in any local trivialization u = (x, g) the connection one-form has the
following structure:

A = g · A · g−1 + dg · g−1 (7.4.16)
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where
A = A I

μ (x) dxμ TI (7.4.17)

is a G Lie algebra valued one-form on the base manifold M , having denoted by TI

a basis of generators of the Lie algebra G.
In contemporary theoretical physics the objects like that displayed in Eq. (7.4.17)

are named gauge fields and encode the variousmediators of fundamental interactions.

7.5 Conclusive Considerations on Gauge Fields

Reconsidering what we have learnt from our historical survey we can say the fol-
lowing. Gauge fields and connections on fibre-bundles are just the very same thing.
The first is the name utilized in the early physical literature, the second that intro-
duced by the early mathematical literature. Nowadays the identification of the two
conceptions is fully perceived both by physicists and by mathematicians. Hence the
two denominations are utilized in an interchangeable way in both communities. We
see in this the deep significance of the two leaves departing from the same stem
presented in Fig. 7.4.

Strictly speaking the very first to introduce a connection was Christoffel, whose
paper on the coefficients named after himdates 1869. TheChristoffel symbols encode
the components of an affine connectionderived fromametric, theLevi-Civita connec-
tion which we interpret as encoding gravitational interactions. Almost immediately
after him, in 1873, Maxwell was the second to introduce a connection, this time on
a U(1) principal bundle. In his famous Treatise on Electricity and Magnetism, pub-
lished in 1873, Maxwell utilized a vector potential A which is indeed a connection
one form–on a U(1) bundle and describes magnetic interactions.10

In 1923 Cartan formalized the notion of affine connections, while Ehresman con-
nection on a principal bundle was introduced in 1950. The famous paper by Yang
and Mills introducing non-abelian gauge fields dates 1954 and it is completely inde-
pendent from Ehresmann’s paper. As early as 1929, Hermann Weyl had introduced
his peculiar gauge theory based on scale transformations rather than phase transfor-
mations, as it is appropriate for electromagnetism.

From this short summary not only we can fully appreciate the meaning of Yang’s
picture but we also learn another important lesson.

Observing the history of science on a longer time-scale we see that the Galilean
Method consisting of the three phases:

(a) Interrogation of Nature
(b) Formulation of a Theory to explain Observed Phenomena
(c) Verification or Falsification of the further predictions of the Theory

is very important and valuable but it is not the end of the story.

10Obviously Maxwell was not aware of the mathematical significance of the vector potentialA, yet
that A is a U(1)–connection, is a fact beyond any doubt.
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Indeed there is not only Nature that has to be interrogated, but also Abstract
Human Thought which finds its most efficient way of expression in the language
of Mathematics. There exists, historically, an independent logical development of
mathematical notions and constructions, whose point of origin is of philosophical
nature, rooted in a System of Thought which is civilization dependent. Fundamental
steps forward in physics occur quite often through a process of agnition: an existing
mathematical structure is recognized to be the category encompassing fundamen-
tal concepts elaborated in physics. At that moment all the conceptual implications
for physical thought of that mathematical structure are activated and a new vision
emerges which not only contributes to a modification of the episteme but it is also
capable of reorienting item (a) of the Galilean method, namely the Interrogation of
Nature. Posing a question, even to Nature, always requires a language, and languages
do not exist elsewhere than in the human mind.

The history of Gauge Fields is a paradigmatic example of what we said above.
The notion of connection, just as that of fibre-bundle to which it refers, has a

long independent history in mathematics and pertains to the mathematical develop-
ment of the philosophical concept of Space, namely it pertains to Geometry in its
most comprehensive definition. Starting from the rigidity of Kant’s conceptions it
took about one and half century to enlarge the notion of Space by including non-
euclidian geometries, to recognize that the propositions about geometrical figures are
propositions about invariants with respect to some symmetry group, to smooth rigid
spaces into differentiable manifolds endowed with the features of curvature, finally
to glue together differentiable manifolds into smoothly twisted fibre-bundles. These
developments were motivated by the urge to answer two philosophical-mathematical
questions:

1. How do we define distances?
2. How do we define parallelism and parallel transport?

During the same period of time, physicists were interrogating Nature in a Galilean
way about electric andmagnetic phenomena. All the laws experimentally determined
in this way were summarized by Maxwell in his four differential equations whose
further consequence is the existence of electromagnetic waves, leading to the under-
standing of light, to Marconi and to the radio.

All that was Galilean.
However, when Weyl tried to interpret Electromagnetism as a gauge theory, the

detachment from the Galileanmethod was complete. Similarly it was complete in the
identification of the gravitational field with a riemannian metric pursued by Einstein.
Yang and Mills succeeded in generalizing the U(1)-gauge-structure of electromag-
netism to non abelian groups G and this was also a non galilean operation which,
nonetheless, opened the door to the contemporary Standard Model of non gravi-
tational interactions. It was a conceptual operation inside a mathematical category
extracted from the empirically established Maxwell Theory. Yet the deeper math-
ematical significance of the gauge transformations was still missing in the phys-
ical thought, while it was already established in mathematics through Ehresman’s
work. The agnition came later and produced a quite significant upgrading of physical
thought.



7.6 Isometries: Back from Geometry to Groups 203

7.6 Isometries: Back from Geometry to Groups

The word isometry comes from the Greek word
′
η ισoμετ�ία which means the

equality of measures.
The origin of the modern concept of isometry is rooted in that of congruence of

geometrical figures that Euclid never introduced explicitly, yet implicitly assumed
when he proceeded to identify those triangles that can be superimposed one onto the
other.

Aswe already explained, it was indeed the question aboutwhat are the transforma-
tions that define such congruences what led Felix Klein to the Erlangen Programme.
Klein understood that Euclidian congruences are based on the transformations of the
Euclidian Group and he came to the idea that other geometries are based on different
groups of transformations with respect to which we consider congruences.

Such a concept, however, would have been essentially emptywithout an additional
element, the metric. The area and the volume of geometrical figures, the length of
sides and the relative angles have to be measured in order to compare them. These
measurements can be performed if and only if we have a metric g, in other words if
the substratum of the considered geometry is a Riemannian or a pseudo Riemannian
manifold (M , g).

Therefore the group of transformations which, according to the vision of the
Erlangen Programme, defines a geometry, is the group of isometries Giso of a given
Riemannian space (M , g), the elements of this group being diffeomorphisms:

φ : M → M (7.6.1)

such that their pull-back on the metric form leaves it invariant:

∀φ ∈ Giso : φ�
[
gμν(x) dx

μ dxν
] = gμν(x) dx

μ dxν (7.6.2)

Quite intuitively it becomes clear that the structure of Giso is determined by the
manifoldM and by its metric g, so that the concept of geometries is now identified
with that of Riemannian spaces (M , g).

A generic metric g has no isometries and hence there are no congruences to
study. (Pseudo)-Riemannian manifolds with no isometry, or with few isometries, are
relevant to several different problems pertaining to physics and also to other sciences,
yet they are not in the vein of the Erlangen Programme, aiming at the classification of
geometries in terms of groups. Hence we can legitimately ask ourselves the question
whether such a programme can be ultimately saved, notwithstanding our discovery
that a geometry is necessarily based on a (pseudo)-Riemannian manifold (M , g).
The answer is obviously yes if we can invert the relation between the metric g and its
isometry group Giso. Given a Lie group G can we construct the Riemannian manifold
(M , g) which admits G as its own isometry group Giso? Indeed we can; the answers
are also exhaustive if we add an additional request, that of transitivity. A group G
acting on a manifold M by means of diffeomorphisms:
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∀γ ∈ G γ : M → M (7.6.3)

has a transitive action if and only if any two points p, q of the manifold are mapped
one into the other by some element of the group G, namely if

∀p, q ∈ M , ∃γ ∈ G / γ (q) = p (7.6.4)

If the Riemannian manifold (M , g) admits a transitive group of isometries it
means that any point ofM can bemapped into any other bymeans of a transformation
that is an isometry. In this case the very manifoldM and its metric g are completely
determined by group theory: M is necessarily a coset manifold G/H, namely the
space of equivalence classes of elements of G with respect to multiplication (either
on the right or on the left) by elements of a subgroup H ⊂ G. The metric g is induced
on the equivalence classes by the Killing metric of the Lie algebra, defined on G.

In the mathematical-philosophical perspective of the present tale the geometry
of coset manifolds is extensively discussed in my parallel book [90]. Among coset
manifolds particular attention is there given to the so named symmetric spaces char-
acterized by an additional reflection symmetry whose nature will become clear to
the reader of [90].

7.6.1 Symmetric Spaces and Élie Cartan

The full-fledged classification of all symmetric spaces was the gigantic achievement
of Élie Cartan. The classification of symmetric spaces is at the same time a classi-
fication of the real forms of the complex Lie algebras and it is the conclusive step
in the path initiated by Killing in his papers of 1888, 1889. At the same time the
geometries of non-compact symmetric spaces can be formulated in terms of other
quite interesting algebraic structures, the normed solvable Lie algebras. The class of
these latter is wider than that of symmetric spaces and this provides a generalization
path leading to a wider class of geometries, all of them under firm algebraic con-
trol. This topic is also thoroughly discussed in a dedicated chapter of [90] which is
propaedeutical to the developments of the subsequent chapters of that book.

7.6.2 Where and How do Coset Manifolds Come into Play?

By now it should be clear to the reader that, just as we have the whole spectrum of
linear representations of a Lie algebra G and of its corresponding Lie group G, in
the same way we have the set of non-linear representations of the same Lie algebra
G and of the same Lie group G. These are encoded in all possible coset manifolds
G/H with their associated G–invariant metrics.

Where and how do these geometries pop up?
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The answer is that they appear at several different levels of analysis and in connec-
tion with different aspects of physical theories. Let us enumerate them and discover
a conceptual hierarchy.

(A) A first context of utilization of coset manifolds G/H is in the quest for solu-
tions of Einstein Equations in d = 4 or in higher dimensions. One is typically
interested in space-times with a prescribed isometry and one tries to fit into the
equations G/H metrics whose parameters depend on some residual coordinate
like the time t in cosmology or the radius r in black-hole physics. The field
equations of the theory reduce to few parameter differential equations in the
residual space.

(B) Another instance of utilization of coset manifolds is in the context of σ -models.
In physical theories that include scalar fieldsφ I (x) the kinetic term is necessarily
of the following form:

Lkin = 1
2 γI J (φ) ∂μ φ I (x) ∂νφ

J (x) gμν(x) (7.6.5)

where gμν(x) is the metric of space-time, while γI J (φ) can be interpreted as
the metric of some manifold Mtarget of which the fields φ I are the coordinates
and whose dimension is just equal to the number of scalar fields present in the
theory. If we require the field theory to have some Lie Group symmetryG, either
we have linear representations or non linear ones. In the first case the metric
γI J is constant and invariant under the linear transformations of G acting on
the φ I (x). In the second case the manifoldMtarget = G/H is some coset of the
considered group and γI J (φ) is the corresponding G-invariant metric.

(C) In mathematics and sometimes in physics you can consider structures that
depend on a continuous set of parameters, for instance the solutions of certain
differential equations, like the self-duality constraint for gauge-field strengths
or the Ricci-flat metrics on certain manifolds, or the algebraic surfaces of a
certain degree in some projective spaces. The parameters corresponding to all
the possible deformations of the considered structure constitute themselves a
manifold M which typically has some symmetries and in many cases is actu-
ally a coset manifold. A typical example is provided by the so named Kummer
surface K3 whose Ricci flat metric no one has so far constructed, yet we know
a priori that it depends on 3× 19 parameters that span the homogeneous space

SO(3,19)
SO(3)×SO(19) .

(D) In many instances of field theories that include scalar fields there is a scalar
potential termV(φ)which has a certain group of symmetriesG. The vacua of the
theory, namely the set of extrema of the potential usually fill up a coset manifold
G/H where H ⊂ G is the residual symmetry of the vacuum configuration
φ = φ0.
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7.6.3 The Deep Insight of Supersymmetry

In supersymmetric field theories, in particular in supergravities that are supersym-
metric extensions of Einstein Gravity coupled to matter multiplets, all the uses listed
above of coset manifolds do occur, but there is an additional ingredient whose conse-
quences are very deep and far reaching for geometry: supersymmetry itself. Consis-
tency with supersymmetry introduces further restrictions on the geometry of target
manifoldsMtarget that are required to fall in specialized categories like Kähler man-
ifolds, special Kähler manifolds, quaternionic Kähler manifolds and so on. These
geometries, that we collectively dub Special Geometries, require the existence of
complex structures and encompass both manifolds that do not have transitive groups
of isometries and homogeneous manifolds G/H. In the second case, which is one of
the main focuses of interest for the companion book [90], the combination of the spe-
cial structures with the theory of Lie algebras produces new insights in homogenous
geometries that would have been inconceivable outside the framework of super-
gravity. This is what we call the deep geometrical insight of supersymmetry. In this
history oriented book and in his mathematically constructive companion [90] we nei-
ther discuss the construction of supergravity theories, nor we derive the constraints
imposed by supersymmetry on geometry. Our commitment is simply to present the
vast wealth of geometrical lore that supergravity Occam’s razor has introduced, or
systematically reorganized, in the field of mathematics.



Chapter 8
Geometry Becomes Complex

Mathematics, however, is, as it were, its own explanation; this,
although it may seem hard to accept, is nevertheless true, for the
recognition that a fact is so is the cause upon which we base the
proof

Girolamo Cardano

8.1 History of Algebra and Complex Numbers

In our conceptual journey from the algebraic notions to the geometrical ones, jour-
ney that may be deemed to be the very heart of the present history essay, we have
vastly emphasized the idea that groups exist abstractly as algebraic structures, yet are
concretely realized as symmetries of geometrical structures, in particular of smooth
manifolds. Conversely, possible geometries can be characterized in terms of the sym-
metries they admit, i.e. of the groups of transformations that preserve some of their
fundamental properties.

Along a different line, we have illustrated the historical path that, starting from
Gauss’ new conception of curvilinear coordinates led to the idea of gluing together
different open charts, in this way giving birth to the very notions of differentiable
manifold and fibre bundle.

At this point an attentive and unbiased reader should note that from geometry we
are back to algebra, since the following question arises. Which mathematical beasts
are the coordinates, by means of which, in every local chart, we label the points of
a geometrical space?

To begin with, the answer is that they are real numbers and this choice was the
basis of the definition of manifolds recalled in Chap. 7. Yet they might be other
numbers, for instance complex numbers. A different choice of the numbers, leads to
different geometries, the deep philosophical question therefore being what are the
numbers? No doubt, this is an algebraic question.

The history of the concept of real numbers is a long tale, hallmarked by the quest
to master the notion of the infinitesimals and that of the limits. It probably started in
the third century B.C. with Archimedes, came down the ages to Newton and Leibnitz
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Fig. 8.1 Abu Jafar Muhammad ibn Musa al-Khwarizmi

and mixed up with the invention of differential and integral calculus. It found its
final ubi consistam in the XIXth century through the axiomatic construction of real
numbers in the related works of Cantor, Cauchy, Dedekind and Weierstrass.

The history of complex numbers is of a completely different type and it has a
clear-cut algebraic profile.

Algebra is a word which came into being through the latin transliteration of an
arabic verb that means to complete. This transliteration appears for the first time in
the Liber algebrae et almucabala providing the translation from arabic, performed
by Robert of Chester, of the main work of the IXth century persian mathematician
al-Khwarizmi (see Fig. 8.1).

Abu Jafar Muhammad ibn Musa al-Khwarizmi lived in Bagdad in the first half
of the IXth century. Estimated dates of his birth and death are 780 A.D. and 850
A.D. respectively. Of persian origin he worked at the court of the Abbasid Caliph
al-Mamun, who appointed him director of his rich library. Astronomer, geographer,
mathematician, al-Khwarizmi shares with Diophantus the title of Father of Algebra.
Benefiting from the cultural aliveness of the contemporary Abbasid capital which
allowed him to meet with Indian scientists and with the heirs of hellenistic science,
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he both made original researches and compiled precious systematic summaries of
known results in mathematics. His works were all written in arabic. His most famous
book al-Kitab al-mukhtasar fi hisab al-jabr wa al-muqabala which deals with the
solution of first and second degree equations was translated in the XIIth century
from arabic into latin by western scholars who used to come to Spain to study in
those centers that were at the time the most scientifically advanced of the world. The
first translation was done by the English arabist Robert from Chester who worked in
Segovia in the years around 1140.

This is Liber algebrae et almucabala mentioned above. The latin title does not
reveal the actual meaning of the original title, literally The Compendious Book on
Calculation by Completion and Balancing, yet, by transliterating into latin the arabic
wordal-jabr, which means to complete it is responsible for the introduction in western
mathematics of the very notion of algebra.

A second translation of al-Khwarizmi’s book, which obtained larger popularity
in the latin-germanic world, was performed by the italian arabist Gerard of Cremona
who came to Toledo and lived there in the years from A.D. 1134 to A.D. 1178. In
that city recently reconquered to Christianity by Alfonso VI of Castilla, the Hebrew
and Arabic scholars were allowed to continue their work and to meet with scholars
from the West who purposely came there to meet them, learn the arabic language and
approach by this token the sources of the lost hellenistic and oriental science. Gerard
learnt arabic and not only translated al-Khwarizmi’s book but also the Almagesto,
namely the Opera Omnia of Tolomeus on Astronomy. The original Greek treatise
composed in the IInd century by Claudius Tolomeus was known as Mεγ ιστη (the
large one) and in the arabic translation it became the Almagesti.

8.1.1 The Middle Age Conception of Algebra

The main issue of what we came to know as algebra was the solution of equations,
viewed in Antiquity and in the Middle Ages as puzzles to be solved with special
sagacity, the frequent main obstacle being the lack of the appropriate entity which
corresponds to the solution. The methods utilized by the IXth century Arabs, who
probably learnt them from the Indians and from lost treatises of the hellenistic period,
came to be known to the XIIIth century italian scholars via the latin translations of
al-Khwarizmi’s book, especially that of Gerard of Cremona.

So it happened that about 1225, when Leonardo Fibonacci (see Fig. 8.2) was
received by the Emperor Frederick II at his court in Sicily, a local mathematician,
probably of arabic culture, posed several problems to him one of which was a cubic
equation:

x3 + 2x2 + 10x = 0 (8.1.1)

At the time a general formula for the solution of the cubic equation was not known,
yet particular solutions were occasionally constructed.
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Fig. 8.2 Leonardo Pisano named il Fibonacci since his father’s last name was Bonacci was born
in Pisa about september 1175 and died an unknown date in the period between 1240 and 1250.
Thanks to the mercantile activity of the father, who traded with North African partners, he had the
opportunity to visit some cities on the shore of Algeria and come in touch with arabic mathematicians
of the time learning from them the Hindu-Arabic numeral system for whose introduction in Europe
he is responsible especially by means of his Liber Abbaci. Famous for the sequence of integer
numbers that is named after him he gave several contributions to the early development of algebra
and algebraic equations

8.1.2 The Cubic and Quartic Equation

It seems that the first who arrived at the solution formula of the cubic equation was
Scipione del Ferro, professor in the University of Bologna who kept it as a secret.
When he died in 1526 he confided it to his pupil Antonio Maria Fiore who, relying on
such a secret weapon, challenged Tartaglia (see Fig. 8.3) to a mathematical contest,
refereed by a public notary.

Unfortunately for Fiore, Tartaglia had separately discovered the solution formula
of the equation x3 + p x + q = 0 and solved all the problems posed by Fiore, while
the latter solved none of those posed by his opponent.

The news of this contest spread around and Tartaglia, who had become quite
famous, was invited to visit Milano by Cardano. This latter learned from his guest
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Fig. 8.3 Niccoló Fontana (Brescia 1499 – Venice 1557), nicknamed Tartaglia since he was stam-
mering because of severe face blows received in his infancy during the brutal French sack of Brescia.
Tartaglia, born in a very power family and orphan of his father since his youth had a much quieter
life than Cardano. He was a teacher in Verona where he wrote his famous book General trattato di
numeri et misure containing his even more famous triangle (see Fig. 8.5)

about the cubic equation formula, under the condition that he would not reveal it to
anyone. Cardano worked further on it with his own student Ludovico Ferrari who
arrived at the solution formula also for the quartic equation. Since Tartaglia had not
yet published his results and Cardano came to know about the previous discovery of
the same formula by Scipione del Ferro, he felt free from his promise to Tartaglia
and published the solution formulae of both the cubic and the quartic equations in
his book Artis Magnae (see Fig. 8.4).

As it might be expected, this publication was the origin of a ten year long and
very harsh querelle between Tartaglia on one side and Cardano and Ferrari on the
other. Notwithstanding their enmity the solution formula for the cubic equation was
named by posterity the Cardano–Tartaglia formula.

According to the author of [167], Cardano was the first to introduce complex
numbers since he wrote solutions of some cubic equation in the form 5 + √−5, yet
it appears that he was not perfectly conscious of the general implications of what he
was writing. Instead Rafael Bombelli, the author of a book named Algebra which
was published in 1572, consciously introduced a special notation for the number√−1 and utilized it in the discussion of solutions to cubic equations.

8.1.3 The Imaginary Numbers froms Descartes to Euler

On the other hand, René Descartes, besides his achievements in philosophy and his
invention of analytic geometry, is to be credited for coining the term imaginary since
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Fig. 8.4 On the left Girolamo Cardano (Pavia 1501–Rome 1576). On the right the front page of
Artis Magnae, the book published by Cardano in 1545 which contains the solution formulae for
the cubic and quartic equations. Cardano’s life, illegitimate son of one of Leonardo da Vinci’s best
friends and collaborators, was quite adventurous and troubled by problems of money that Girolamo
usually solved by gambling. He was a medical doctor, a mathematician and a philosopher

he wrote such a sentence1: For any equation one can imagine as many roots as its
degree would suggest but in many cases no quantity exists which corresponds to what
one imagines. This is just the General Theorem of Algebra in disguise. What was
necessary to proceed further in the development of Algebra was to become aware of
what is the result of extending the field of real numbers with a new imaginary entity.

In the XVIIIth century the inventor of the mathematical notation
√−1 = i which

we still use, is Leonhard Euler, whose contributions to the development of modern
mathematics are so extensive and monumental that we do not feel it necessary to
mention them in this place. Yet the main point, namely the formulation of the notion
of field and of field extension, of which the inclusion of i = √−1 is a primary
example, was yet to come.

1Some of the historical informations contained in the present section are to be credited to an unpub-
lished note of Orlando Merino available at the following site: http://www.math.uri.edu/~merino/
spring06/mth562/ShortHistoryComplexNumbers2006.pdf.

http://www.math.uri.edu/~merino/spring06/mth562/ShortHistoryComplexNumbers2006.pdf.
http://www.math.uri.edu/~merino/spring06/mth562/ShortHistoryComplexNumbers2006.pdf.
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Fig. 8.5 Frontespice of the General Trattato of Niccolò Tartaglia, an original copy of which is
preserved in the Biblioteca Peano of Torino University. Photopicture taken by this author thanks
to the courtesy of Biblioteca Peano

8.1.4 Fields, Algebraic Closure and Division Algebras

The notion of field was implicitly used by Abel and Galois, then the concept devel-
oped steadily through the work ofKarl von Staudt,RichardDedekind who introduced
the German denomination Körper, David Hilbert and finally of Heinrich Weber who
provided the first axiomatic definition of a field.

In the meantime the idea of the field extension and of algebraic closure was to be
correlated with the other one of division algebra.

Let us start with algebraic closure.
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A field K is algebraically closed if and only if it contains a root for every non-
constant polynomial P(x) ∈ K[x], the ring of polynomials in the variable x with
coefficients in K.

In other words a field is closed if all algebraic equations can be solved P(x) = 0
by means of special elements x� of the same field K wherefrom the coefficients ai
of the polynomial

P(x) ≡
n∑

i=0

ai x
i

are taken, in such a way that P(x�) = 0 for all � = 1, 2, . . . , n. The numbers x� ∈ K

are named the roots of the considered polynomial.
The field of real numbers R is not closed and just for this reason we have to extend

it to the complex number field C which is closed.
Recalling the definition of algebras we have:
Let D be an algebra over a field K, and assume that D does not just consist of its

zero element. We call D a division algebra if ∀a ∈ D and for any non-zero element
b ∈ D , ∃x ∈ D such that a = bx and ∃y ∈ D such that a = yb. The name given to
this type of algebras is clearly justified by their definition. We can always define the
ratio a/b of any two elements a, b of the algebra except for the case where b = 0.

Another way of looking at the complex numbers is the following: C is nothing
else but a division algebra of dimension 2 over R, the field of real numbers. This
way of thinking is the ultimate understanding of an almost two–thousand–year–long
constructive process. Descartes had difficulties to understand imaginary numbers,
but he had no problem with the pairs of real numbers (x, y), namely with a two-
dimensional vector space, especially taking in due account the fact that he had himself
invented such a notion. The key aspect to which Descartes had not given due attention
is that pairs of real numbers can not only be summed and subtracted (they form a
vector space), but they can also be multiplied among themselves:

(x, y) · (u, v) ≡ (xu − yv, xv + yu) (8.1.2)

This promotes the complex numbers to an algebra. The marvelous point is that such
an algebra is a division algebra! Indeed for any pair of real numbers different from
(0, 0) we can construct its inverse:

(x, y)−1 =
(

x

x2 + y2
, − y

x2 + y2

)
(8.1.3)

Equation (8.1.3) constitutes a miracle: given a vector v it makes sense to talk about
its inverse v−1 which is clearly a non-sense in most vector spaces.

The algebraic closed field of the complex numbers C is a division algebra of
dimension 2 constructed over the field of real numbersR. It is obtained by introducing
one imaginary unit i .
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8.1.5 Hamilton and the Quaternions

Sir William Rowan Hamilton (see Fig. 8.6) is probably the greatest Irish scientist
of history. He was the fourth of nine children born to Sarah Hutton and Archibald
Hamilton who lived in Dublin. Hamilton’s father worked as a solicitor and was a
joyous fellow, a lover of good wine and of good food. Both of these inclinations
Archibald left as a legacy to his son William who developed gout from excessive
drinking and overeating and eventually died from it at the age of 60.

Quite early William lost both of his parents and he was looked after and educated
by his uncle, the Rev. James Hamilton. This latter was a graduate from Trinity Col-
lege who was obsessed by the passion of studying all sort of ancient and modern
languages. Such a passion he easily communicated to his most talented nephew who
learned Latin, Greek, Hebrew, French, Italian and also Persian, Arabic, Sanskrit and
other oriental languages, at the pace of a new language every year. It is reported that

Fig. 8.6 Sir William Rowan
Hamilton (August 3rd 1805
– September 2nd 1865)
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by the age of eleven William composed a short welcome poem in Persian for the
Persian Ambassador who was visiting Dublin at the time. This almost pathologi-
cal commitment to language learning might have distracted the young genius from
Mathematics and Physics, by which he was also strongly attracted, were it not for
a check to his pride when, at the age of 8, William lost a challenge in quick mental
calculations against the American calculating prodigy Zerah Colburn who was being
exhibited those days in Dublin.

Since then Hamilton concentrated more on science than on languages and shortly
he became famous for such contributions to Mechanics and Algebra that place him
in the short list of the most distinguished mathematical minds of the XIXth century.

The two greatest achievements of Hamilton are the invention of hamiltonian
mechanics, a reformulation of lagrangian analytical mechanics, whose influence on
the later development of theoretical physics up to the birth of quantum mechanics
and modern field theory are enormous, and the discovery of quaternions.

The obvious curiosity that was obsessing William Rowan Hamilton, was the fol-
lowing: how to construct the next case after the complex numbers, namely a division
algebra over the reals of dimension 3? He was trying in all conceivable ways without
any success. For this there was a good reason since such a division algebra does not
exist, as it was later proved.

One fine October day of 1843 he was strolling with his wife through his city,
Dublin, just crossing the Broom Bridge, and he had a fundamental idea. What cannot
be done in d = 3 has a relatively easy solution in d = 4. It suffices to associate one
of the four dimensions with the real part of a new hyper-complex number and the
remaining three with three imaginary units rather than just one. The price one has
to pay for that is to assume that the new imaginary units jx (x = 1, 2, 3) satisfy the
following algebra:

jx · jy = − 1 + εxyz jz (8.1.4)

where εxyz is the yet to be invented Levi-Civita epsilon symbol. This is just a con-
densed modern notation, Hamilton wrote the relations (8.1.4) explicitly one by one
[108, 109] as it follows:

i2 = j2 = k2 = ijk = −1 (8.1.5)

The consequence of Eq. (8.1.4) is that the division algebra introduced by Hamilton,
differently from that of complex numbers is non-commutative.

Hamilton named his new numbers, the quaternions (H in current notation) and
was extremely excited by his discovery.

According to his own account, using a knife, Hamilton scrabbled formula (8.1.5)
on the stones at the end of the bridge, although traces of such a scrabbling have
disappeared. In the location where, according to Hamilton, they should have been, a
memorial plaque designed by a modern artist was placed in 1958.

Hamilton had many relations and many good friends, among which the jurist and
amateur mathematician John T. Graves but also such other giants of Mathematics
like Arthur Cayley. He was frequently talking, or corresponding with them. So it
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happened that the very same year 1843, Graves discovered another division algebra
over the fields of real numbers R. This time the dimension was 8 and the number
of imaginary units was 7. This division algebra is both non-commutative and non-
associative.

Hamilton reported about the discovery of his friend in a communication [107] to
the Irish Academy in 1848 but in the mean-time the same division algebra had been
independently discovered by Arthur Cayley [37] and the corresponding numbers,
mostly named octonions (O in current notation) are frequently referred to as the
Cayley numbers.

During his life Hamilton obtained both in the United Kingdom and world-wide
a lot of honours and recognitions being member of many Foreign Academies and
being also awarded the title of Sir by Queen Victoria.

8.1.6 Frobenius and His Theorem

Ferdinand Georg Frobenius is known for his important contributions to the devel-
opment of finite group-theory and to some aspects of differential geometry. Born
in Charlottenburg he completed his secondary school education in Berlin and then
attended the University of Göttingen, where he became Weierstrass’student. After
graduation he had a temporary position in Berlin and then for seventeen years he was
professor in Switzerland at the ETH of Zürich. There he married, raised his family
and did most of his career. In 1891, after Kronecker’s death he was suggested by
Weierstrass as his successor on the chair of mathematics at the University of Berlin.
So in 1893 he made return to Berlin where he lived the last 25 years of his life becom-
ing also member of the Prussian Academy of Science. It was reserved to Ferdinand
Georg Frobenius (see Fig. 8.7) to prove by means of a theorem published in 1877
that, up to isomorphism, the only associative, normed, division algebras over the
reals are R, C and H, of dimensions 1, 2, 4, respectively [92].

By norm here we mean a quadratic non degenerate form over the algebra D :

N : D → R

N(λ a) = λ2 N(a) ∀λ ∈ R , ∀a ∈ D

N(a b) = N(a) N(b) ∀a, b ∈ D (8.1.6)

The norm corresponds to the modulus square of the real, complex or quaternionic
number.

If we relax the hypothesis of associativity, the landscape is not too much enlarged.
Using for instance the very powerful Bott periodicity theorem it can be shown that
any real normed division algebra must be isomorphic to either the real numbers R,
the complex numbers C, the quaternions H, or the octonions O.
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Fig. 8.7 Ferdinand Georg
Frobenius (October 26th
1849 Charlottenburg –
August 3rd 1917 Berlin)

8.1.7 Imaginary Units and Geometry

Summarizing the outcome of this long historical excursus we can say that the possible
numbers are of four types R, C, H, or O. This is a message for geometry. Keeping
the fundamental idea that a geometrical space should be viewed as a manifold,
constructed by means of an atlas of open charts, the local coordinates could be
chosen not only as real numbers but also as complex, quaternionic or even octonionic
numbers. An important lesson, however, is immediately learnt from the previously
told story: the other possible numbers are, anyhow, division algebras over the reals,
so that the real structure remains the basis for everything. This must be the same also
in geometry. Manifolds of complex, quaternionic or octonionic type, if they exist,
are, first of all, real manifolds. Their characterization as complex, quaternionic or
octonionic must reside in some additional richer structure they are able to support. It
is evident that this additional structure are the imaginary units, the same that provide
the extensions of the field R to C, H or O.

Hence the conceptual path we have to follow starts revealing itself. We have to
conceive what the imaginary units might be in the context of differential geometry.
The catch is the relation J2 = − 1. How to reinterpret such a relation? It is rather
natural to consider J as a map, in particular a linear map, and 1 as the identity map
which always exists. We are almost there, the remaining question is on which space
does J act? The answer is obvious since for linear maps we need vector spaces and if
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Fig. 8.8 Given a
differentiable manifold M ,
at each of its points p ∈ M
we can draw the tangent
space TMp . A complex
structure J is a map that
sends any vector v ∈ TMp
to its image Jv which is
another vector in the same
space. Applying the complex
structure twice, the image Jv
is mapped in the vector −v,
namely J2v = −v

we want to do things locally, point by point on the manifold, we need vector bundles.
The universal vector-bundle that it is intrinsically associated with any manifold M
is the tangent bundle TM → M . Hence the imaginary units, that from now on we
will name complex structures, are linear maps, operating on sections of the tangent
bundle, that square to minus one (see Fig. 8.8):

J : TM → TM

J2 = − Id (8.1.7)

Complex and quaternionic or hyper-complex geometries arise when a manifold
admits one or more complex structures satisfying appropriate algebraic relations.
This mixture of algebra and geometry leads to new classes of very interesting spaces:

(a) Complex Manifolds
(b) Complex Kähler Manifolds
(c) HyperKähler Manifolds
(d) Quaternionic Kähler Manifolds

It is the mission of the present chapter to define and illustrate such manifolds.
Furthermore when we come to discuss the symmetries of such manifolds, namely

their isometries, we discover that the presence of the complex-structures entrains
a new very much challenging viewpoint on continuous symmetries. To the Killing
vectors, thanks to the symplectic structures implied by the complex-structures we are
able to associate hamiltonian functions, named moment maps. These moment maps
open a vast playing ground for new constructions of high relevance both in Physics
and Mathematics.
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8.1.8 The Precognitions of Supersymmetry

Supersymmetric field theories, frequently mentioned in previous pages of the present
essay, have the remarkable property of an intrinsic precognition of geometric and
algebraic structures. All classes of existing geometries found, in due time, their
proper role within the frame of this new type of field theories. For instance Käh-
ler Manifolds describe the most general coupling of scalar multiplets2 in N = 1
rigid supersymetry, while HyperKähler Manifolds do the same for the rigid N = 2
hypermultiplets3 (see [117] and the discussions presented in Chap. 11). Quaternionic
Kähler Manifolds are the obligatory structure for the coupling of hypermultiplets to
N = 2 supergravity [3, 55, 97]. In these cases the precognition resides in algebraic
relations that come from supersymmetry and, once duely interpreted, were shown to
imply the mentioned geometry. In other, even more spectacular cases, the geometric
structures required by supersymmetry were not yet available in the mathematical
supermarkets when the corresponding supermultiplets were studied. They were just
discovered by the physicists working in supergravity and now constitute new chap-
ters of mathematics. These are the Special Geometries whose history is outlined in
Chap. 9.

Let us now turn to complex structures and their heritage.

8.2 Fundamental Definitions for Complex Geometry
and Its Descendants

Complex, Kähler, HyperKähler and Quaternionic Kähler Manifolds are discussed
in ample detail in my parallel more technical book [90]. In this historical essay I
confine myself to an abbreviated collection of the most fundamental definitions in
order to clarify what the objects of our present discussions actually are.
Complex Manifolds

A 2n-dimensional manifold M is called almost complex if it has an almost com-
plex structure. An almost complex structure is a linear operator J : Γ (TM ,M ) →
Γ (TM ,M ) which satisfies the following property:

J 2 = − 11 (8.2.1)

2Supermultiplet is the name given to a collection of fields that form an irreducible representation of
the supersymmetry algebra. The structure of supermultiplets that always involve both bosons and
fermions depends on the space-time dimensions D in which we construct our field theory and on
the number of supercharges (fermionic Lie algebra generators) that we include in our supersymetry
algebra. This latter is usually named N and in D = 4 can range from 1 to 8.
3Scalar multiplets and hypermultiplets are multiplets that involve only spin 1

2 and spin 0 fields. The
connection with geometry occurs at level of the scalar fields, that are interpreted, sigma–model like
as coordinates of a target manifold with an appropriate geometry (see Sect. 7.6.2).
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In every local chart the operator J is represented by a tensor Jα
β (φ) such that

J β
α (φ)J γ

β (φ) = −δγ
α (8.2.2)

The tensor
T α

βγ = ∂[β Jα
γ ] − Jμ

β J ν
γ ∂[μ Jα

ν] (8.2.3)

is called the torsion, or the Nienhuis tensor4 of the almost complex structure Jα
β . Let

{xα} be a generic coordinate system and let w(x) be a complex-valued function on
the manifold M : we say that w is holomorphic if it satisfies the equation5:

Jdw = idw (8.2.4)

which in the generic coordinate system {xα} reads as follows:

J β
α ∂βw(x) = i∂αw(x) (8.2.5)

The vanishing of T α
βγ is a necessary condition for the integrability of Eq. (8.2.5).

When this latter is integrable, in every patch we can establish a system of complex
coordinates zi , (i = 1, . . . , n) such that:

Jdzi = idzi

Jdzi
∗ = −idzi

∗
(8.2.6)

and the transition functions between complex well-adapted coordinate in two differ-
ent patches will be holomorphic. In this way we realize that the manifold supporting
an almost complex structure with vanishing Nienhuis tensor is complex. Correspond-
ingly we say that an almost complex structure with vanishing Nienhuis tensor is a
complex structure.

Holomorphic Vector Bundles

Holomorphic bundles on complex manifolds are defined in complete analogy to
fibre-bundles on real manifolds. The essential point is the holomorphicity of the
transitions functions. We especially need holomorphic vector bundles.

LetM be a complex manifold and E be another complex manifold. A holomorphic
vector bundle with total space E and base manifold M is given by a projection map:

π : E −→ M (8.2.7)

4Albert Nijenhuis (November 21, 1926–February 13, 2015) was a Dutch-American mathematician.
He wrote his Ph.D. thesis at the University of Amsterdam under the supervision of Jan Arnoldus
Schouten.
5We defined complex structures as operators acting on sections of the tangent bundle, namely
on vector fields. By means of the duality between the tangent bundle and the cotangent bundle,
complex structures (or almost complex structures) act equally well on sections of the contangent
bundle, namely on differential 1-forms: ω(Jv) ≡ Jω(v). This is what we use here.



222 8 Geometry Becomes Complex

such that

(a) π is a holomorphic map of E onto M
(b) Given any point of the base manifold p ∈ M , the fibre over p, i.e., Ep = π−1(p)

is a complex vector space of dimension r . (The number r is called the rank of
the vector bundle.) We have an atlas of local trivializations (Uα, hα) where Uα

is a collection of open neighborhoods covering the complex base manifold M
and hα : π−1(Uα) → Uα × C

r is a homeomorphism.
(c) The transition functions between two local trivializations (Uα, hα) and (Uβ, hβ):

hα ◦ h−1
β : (Uα ∩ Uβ ) ⊗ C

r −→ (Uα ∩ Uβ ) ⊗ C
r (8.2.8)

induce holomorphic maps:

gαβ : (Uα ∩ Uβ ) −→ GL (r,C) (8.2.9)

In other words the transition function from one local trivialization of the bundle
to another one is provided by a non singular r × r matrix gαβ(z) that depends in
a holomorphic way from the complex coordinates zi of the base manifold in the
intersection of the two patches.

Connections and Metrics on Holomorphic Vector Bundles

Let E −→ M be a holomorphic vector bundle of rank r andU ⊂ M an open subset
of the base manifold and consider the concept of fibre bundle sections, illustrated in
Fig. 8.9.

Fig. 8.9 The concept of section of a fibre-bundle is illustrated by the above picture. To every point p
of the base manifold a section s associates, in a continuous way, a point of the total space s(p) ∈ P ,
that must belong to the fibre over p, namely such that π (s (p)) = p. In the case of vector bundles
the section image s (p) of a base manifold point p is necessarily an r -dimensional vector, r being
the rank of the bundle
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Fig. 8.10 The concept of a frame of sections of a vector bundle is illustrated in the above picture
using the example of the tangent bundle to a sphere S

2 that, in this case, plays the role of base
manifold M . At each point p ∈ M of the base manifold we have the fibre vector space π−1(p)
which, in this case, is the tangent plane. The sections s1(p) and s2(p) provide, at each point p, a
basis of the tangent plane, namely of the fibre vector space, since they are linearly independent. The
system composed by s1,2(p) is a frame for this vector bundle

A frame over U is a set of r holomorphic sections { s1 , . . . , sr } such that
{ s1(z) , . . . , sr (z) } is a basis for π−1(p) for any p ∈ U , having denoted by zi

the complex coordinates labeling the points of the base manifold in the chosen patch
(see Fig. 8.10).

Let f ≡ { sI (z) } be a frame of holomorphic sections. Any other holomorphic
section ξ is described by

ξ = ξ I (z) sI (8.2.10)

where
∂̄ ξ I ≡ dz̄ j

�

∂̄ j� ξ I = 0 (8.2.11)

Given a holomorphic bundle with a frame of sections we can discuss metrics con-
nections and curvatures, as we already did for the general case of bundles.

In general a connection θ is defined by introducing the covariant derivative of any
section ξ

D ξ = d ξ + θ ξ (8.2.12)

where θ = θ I
J , the connection coefficient, is an r × r matrix-valued 1-form (see

Sect. 7.4.2 and the concept of Ehresmann connection). On a complex manifold this
1-form can be decomposed into its parts respectively of holomorphic type (1,0) and
antiholomorphic type (0,1).
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θ = θ(1,0) + θ(0,1)

θ (1,0) = dzi θi
θ(0,1) = dz̄i

�

θi� (8.2.13)

In Chap. 7 we reviewed the one century long development of differential geometry
culminating with the Levi Civita definition of the priviledged connection, induced on
the tangent bundle to a general riemannian manifold, by the existence of a rieman-
niann metric. We also reviewed the Ehresmann general definition of a connection on
any bundle as a smooth splitting of the tangent space to the bundle in a vertical and
a horizontal space. Combining these two lines of thought it is quite obvious that any
time we introduce a metric on the fibres of a vector bundle a special connection must
emerge that is the analogue of the Levi Civita connection.

The construction of such a connection is particularly elegant and natural when
we deal with holomorphic vector bundles and we introduce a hermitian fibre met-
ric h. This is a hermitian quadratic form that yields the scalar product of any two
holomorphic sections ξ and η at each point of the base manifold:

〈 ξ , η 〉h ≡ ξ̄ I �

(z̄) ηJ (z) hI � J (z, z̄) = ξ † h η (8.2.14)

As it is evident from the above formula, the metric h is defined by means of the
point-dependent hermitian matrix hI � J (z, z̄), which is requested to transform, from
one local trivialization to another, with the inverses of the transition functions gαβ

defined in Eq. (8.2.9). This is so because the scalar product 〈 ξ , η 〉h is by definition
an invariant (namely a scalar function globally defined on the manifold).

A hermitian metric for a complex manifold M is a particular case of the above
construction, namely it is a hermitian fibre metric on the tangent bundle TM . In
this case the transition functions gαβ are given by the jacobians of the coordinate
transformations.

In general h is just a metric on the fibres and the transition functions are different
objects from the Jacobian of the coordinate transformations. In any case, as we have
emphasized above, given a fibre metric on a holomorphic vector bundle, we can
introduce a canonical connection θ associated with it. It is defined by requiring that

A) d 〈 ξ , η 〉h = 〈 D ξ , η 〉h + 〈 ξ , D η 〉h
B) D(0,1)ξ ≡ [

∂̄ + θ(0,1)
]

ξ = 0
(8.2.15)

namely by demanding that the scalar product be invariant with respect to the parallel
transport defined by θ and by requiring that the holomorphic sections be transported
into holomorphic sections.

Properties of the Canonical Connection and of Its Curvature

Let f be a holomorphic frame. In this frame the canonical connection is given by

θ( f ) = h( f )−1 ∂ h( f ) (8.2.16)
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or, in other words, by
θ I

J = dzi h I J �

∂i hK � J (8.2.17)

In the particular case of a manifold metric, where h is a fibre metric on the tangent
bundle TM , the general formula (8.2.17) provides the definition of the Levi-Civita
connection:

dzk Γ i
k j = − gil

�

∂ gl� j (8.2.18)

that for complex manifolds with hermitian metrics has a much simpler form as it is
evident to the reader from the above formula.

Given a connection we can compute its curvature by means of the standard formula
Θ = dθ + θ ∧ θ . In the case of the above-defined canonical connection we obtain

Θ ( f ) = ∂ θ + ∂̄ θ + θ ∧ θ = ∂̄ θ (8.2.19)

This identity follows from ∂ θ + θ ∧ θ = 0, which is identically true for the
canonical connection (8.2.16). Component-wise the curvature 2-form is given by

Θ I
J = ∂̄i

(
hI K �

∂ j hK � J
)
dz̄i ∧ dz j (8.2.20)

In the Levi-Civita case, namely when the fibre metric h = g is just a hermitian metric
on the tangent bundle, the above formula provides the calculation of the Riemann
tensor and of the Ricci tensor appropriate to complex geometry:

Ri
j = Ri

jk∗�dz̄
k∗ ∧ dz�

Ri
jk∗� = ∂k∗Γ i

j� (8.2.21)

The Ricci tensor has a remarkably simple expression:

Rn
m∗ = Ri

m∗n i = ∂m∗Γ i
ni = ∂m∗∂n ln (

√
g) (8.2.22)

where g = det |gαβ | = (det |gi j∗ |)2.

8.2.1 Kähler Manifolds

In the previous section we saw the significant simplifications in the codification
of geometry that occur from the presence of a complex structure. It was the mission
of a very original and, under some respects, also extravagant German mathematician
of the XXth century to discover an ample class of very much relevant complex
manifolds the codification of whose geometry is even more compact since it reduces
to the specification of a single real function K (z, z̄) = K �(z, z̄) of the complex
variables. The family name of this mathematician is Kähler and the manifolds he
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Fig. 8.11 Erich Kähler
(1906 Leipzig, Germany -
2000 Wedel, near Hamburg,
Germany)

introduced into the modern mathematical landscape are named, after him, Kähler
manifods. As we said, Kählerian complex manifolds form a large class, encompassing
many important instances of varieties that are relevant both in pure mathematics and
in contemporary theoretical physics, in particular in the context of supersymmetric
field theories.

Let us first see who Kähler was.

Kähler

Born in Leipzig, since the age of 12 Erich Kähler (see Fig. 8.11) developed a strong
interest and a true passion for mathematics. Utilizing notes taken at Weierstrass’
lectures by one of his school teachers, Kähler became acquainted with Gauss work
and with the theory of elliptic functions while he was still a school boy. He entered
Leipzig University in 1924 and graduated from it in 1928 writing a thesis entitled
On the existence of equilibrium figures which are derived from certain solutions
of the n-body problem. As the title reveals, the addressed topics were mathematical
problems of classical mechanics. After a short term in Königsberg University, he was
PrivatDozent in Hamburg where he interacted with Artin. Thanks to a Rockefeller
fellowship he spent the academic year 1931–1932 in Italy where he studied with
Enriques, Castelnuovo, Levi-Civita, Severi, and Beniamino Segre. This experience
was very important in his life, both for the development of his mathematical ideas
and for his learning of Italian which he later utilized to write one of his scientific
essays.

In 1932 Kähler published a paper entitledÜber eine bemerkenswerte Hermitesche
Metrik [119] in which he introduced the notion of a Kähler metric. This proved to
be a major contribution to the development of geometry in the XXth century and the
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notion of Kähler manifolds has played and still plays a fundamental role not only in
Mathematics but also in contemporary Theoretical Physics.

During World War II, Kähler served in the German Navy, was taken prisoner
by the French and, while being in a concentration camp of the Allies, he was able
to resume his mathematical studies with the help of his several friends among the
French mathematicians. After he was released in 1947, Kähler was for a short period
in Hamburg and then, in 1948 he accepted a full professorship in Leipzig. After
ten years in the gloomy DDR, he managed to escape from the socialist lager to
the West in 1958, going back to Hamburg where he spent the rest of his life, being
professor of Hamburg University until retirement. During his Leipzig years, Kähler
wrote in Italian a long essay entitled Geometria Aritmetica that was published in
1958 on the journal Annali di Matematica. The incipient inclination of this brilliant
mathematician towards a somewhat extravagant, almost mystical, reformulation of
mathematical lore in a new philosophical approach was remarked with the follow-
ing words by Kähler’s affectionate friend André Weil: This, in more ways than one,
is an unusual piece of work. By its size, it is a book; it appears as a volume in a
journal. The author is German; the book appears in Italian. The subject combines
algebra and geometry, with some arithmetical flavouring; but the author, instead of
following in his terminology the accepted usage in either one of those subjects, or
adapting it to his purposes, has chosen to borrow his vocabulary from philosophy,
so that rings, homomorphisms, factor-rings, ideals, complete local rings appear as
“objects”, “perceptions”, “subjects”, “perspectives”, “individualities”. The book
includes altogether new material along with much which turns out to be quite famil-
iar (sometimes to the point of triteness) once it is translated back into more familiar
language; but no attempt is made to point out what may be novel and what is not so;
there are no historical or bibliographical indications, no “Leitfaden”, no introduc-
tion apart from a two-page philosophical discourse which ends up with the following
statement: “... bibliographical references would probably have obscured the fact that
a single philosophical tendency has been the real motive power behind the chain of
my reasonings.”

In his last years Kähler, who suffered heavy blows in his personal life from the
death in 1966 of his son Reinhard caused by an accident and from the death in 1970 of
his wife, caused by leukemia, got more and more involved into philosophical studies.
In 1992, evocating F. Nietzsche’s most famous piece of work, Kähler wrote a book
entitledAlso sprach Ariadnewhere he exposed his attempts to bring mathematics and
philosophy together. According to a review of the book, written by Doru Stefanescu:
The author considers various mathematical interpretations of some philosophical
texts. He especially dwells on the theory of monades of Leibniz and on the work
“Also sprach Zarathustra” of F. Nietzsche. His speculative considerations are illus-
trated by suggestive examples from set theory, mathematical logic, abstract algebra
and differential, algebraic and analytic geometry. He considers basic philosophic
concepts such as Sein, Schein, monades, transcendental perception, pure reason,
Sehkraft, and mathematical objects such as equivalence relations, polynomials, pro-
jections. The main thesis of the paper is that algebraic geometry is a prolegomenon
to a mathematical theory of monades.
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The Kähler 2- Form and Kähler Metrics

Let M be a 2n-dimensional manifold with a complex structure J . A metric g on M
is called hermitian with respect to J if, for any pair u,w of sections of the tangent
bundle, i.e. for any pair of vector fields, we have:

g(Ju, Jw) = g(u,w) (8.2.23)

Given a metric g and a complex structure J , let us introduce the following differential
2-form K:

K(u,w) = 1

2π
g(Ju,w) (8.2.24)

The components Kαβ of K are given by

Kαβ = gγβ J
γ
α (8.2.25)

and by direct computation we can easily verify that g is hermitian if and only if K
is anti-symmetric. A hermitian complex manifold is a complex manifold endowed
with a hermitian metric g.

In a well-adapted basis we can write

g(u,w) = gi j∗u
iw j∗ + gi∗ j u

i∗w j (8.2.26)

Finally in the well-adapted basis the 2-form K associated with the hermitian
metric g can be written as follows:

K = i

2π
gi j�dz

i ∧ dz̄ j
∗

(8.2.27)

A hermitian metric on a complex manifold M is called a Kähler metric if the asso-
ciated 2-form K is closed:

dK = 0 (8.2.28)

A hermitian complex manifold endowed with a Kähler metric is called a Kähler
manifold.

An Excursus on Cohomology

In order to appreciate the meaning and the conceptual substance of Eq. (8.2.28)
my reader should have a minimal familiarity with the fundamental notions of
cohomology. For the benefit of readers who might be deprived of that I hereby
try to convey some intuitive description of the main concepts regarding differential
forms and cohomology; my tools will be the same utilized for similar explanations
in previous chapters, namely I will rely on images and on some sketchy example.
The addressed topics are anyhow of relevance to the tales told in the next chapter.

Let us begin with Fig. 8.12. The fundamental idea underlying cohomology theory
is captured by that image. There is a sequence of spaces Ω [i], whose elements we
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Fig. 8.12 A pictorial view of cohomology. The sequence of spaces Ω [i] whose elements are named
cochains are represented as a sequence of large circles. The maps produced by the external dif-
ferential d are represented by truncated cones. The smaller circles represent the cocycles, namely
the elements of the kernel of d. The even smaller circles represent the coboundaries, namely the
elements of the image of d

name the cochains6 and there is a linear operator, named d (the exterior derivative)
that provides non surjective maps from each space Ω [i] to the next one Ω [i+1]:

∂i : Ω [i] d−→ Ω [i+1] ; ∀φ ∈ Ω [i] dφ ∈ Ω [i+1] (8.2.29)

The fundamental property of the operator d is its nilpotency, namely it squares to
zero d2 = 0. In practice this means that the kernel of the map ∂i , whose elements
we name the cocycles7 always contains the image Im∂i−1 of the previous map ∂i−1,
namely the subspace of Ω [i] formed by all those elements that can be written as dφ

for some φ belonging to Ω [i−1]. We name coboundaries the elements of Im∂i−1. In
formula one writes:

ker∂i ⊃ Im∂i−1 (8.2.30)

Such a scenario occurs in various mathematical constructions and it is named an
elliptic complexC . The cohomology groups of the complex, usually denoted H [i] (C )

are defined as the set of equivalence classes in which the subspace ker∂i can be
partitioned with respect to the following equivalence relation:

∀ω[i], ψ [i] ∈ ker ∂i : ω[i] ∼ ψ [i] iff
(
ω[i] − ψ [i]) ∈ Im∂i−1 (8.2.31)

The standard and best known example of cohomology is de Rham cohomology of
a differentiable manifold M (see next chapter). In this case the spaces Ω [p] are the

6We will be not too particular about the algebraic nature of the spaces Ω [i]. What is important is that
their elements can be summed and subtracted and that they form an abelian group under addition.
In many instances one can take linear combinations of the cochains so that they actually form a
vector space over some field, or a module over some ring, but we do not discuss the many subtleties
concerning the utilized coefficients.
7By definition the kernel of a map μ : V → W from a group V to a group W is the subspace of
V that is mapped by μ mapped into the neutral element of W that for abelian groups we denote 0.
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vector spaces of differential p-forms on M which, mathematically speaking, are
sections of the pth external power of the cotangent bundle T �M

π−→ M .
Which kind of object is a p-form in simple intuitive terms? The answer is given

by its expression in each coordinate patch of the manifold. It is given by:

ω[p] = ωα1...αp (x) dx
α1 ∧ · · · ∧ dxαp (8.2.32)

where ωα1...αp (x) is a completely antisymmetric tensor depending on the location x
in the manifold. The expression (8.2.32) is an object prepared for integration. Given
any oriented p-dimensional hypersurface Σp ⊂ Mn of the ambient n-dimensional
manifold Mn , the p-form can be integrated on that surface. A simple example can
be given in two dimension where the forms can be displayed by plotting. Consider
for instance the ambient manifold Mn to be the xy-plane and consider the following
1-form:

ω[1] = cos[y] dx + sin[x] dy (8.2.33)

The components ω[1]
α = {cos[y], sin[x]} form a covariant vector field that can be

plotted as in Fig. 8.13. The form (8.2.33) is not a cocycle, since its exterior derivative
does not vanish. The operator d is just the generalization of the curl operator of
three-dimensional vector calculus:

dω[p] = ∂α1ωα2...αp+1 dx
α1 ∧ · · · ∧ dxαp+1 (8.2.34)

and in the case of the 1-form (8.2.33) we obtain:

ω[2] ≡ dω[1] = − (cos[x] + sin[y]) dx ∧ dy (8.2.35)

In two dimensions a 2-form is a top form, namely a form of the highest degree
that can be integrated over the entire manifold. Its unique component is the function
ω

[2]
12 (x, y) = − (cos[x] + sin[y]). In this case we can visualize the 2-form by means

of a plot like in Fig. 8.14. In the same xy-plane an example of a cocycle, namely of
a closed 1-form (dψ [1] = 0), is the following one:

ψ [1] = cos[x] dx + sin[y] dy (8.2.36)

which is visualized in Fig. 8.15 with the same method utilized in Fig. 8.13.
In the present case the cocycle ψ [1] is also a coboundary, namely it can be repre-

sented as the exterior derivative ψ [1] = dψ [0] of a 0-form, i.e. of a function:

ψ [0] = sin[x] − cos[y] (8.2.37)

Actually it could not be differently. The plane R2 is a trivial topological space with-
outh handles or holes and this triviality implies that all cohomology groups are trivial,
namely all closed one-forms are exact. In the case of de Rham cohomology another
word for coboundary is exact form!
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Fig. 8.13 Plotting of the 1-form (8.2.33), as a covariant vector field. On the right we plot the integral
curves of this covariant vector field, namely those lines that have at each point the vector field as
tangent vector

In this example the reader gets the flavor of what algebraic topology is about. The
calculation of cohomology is a way of probing the topology of manifolds.

After these clarifications we come back to the Kähler manifolds, condition (8.2.28)
states that the Kähler two form should be a cocycle.

The Kähler Potential

Seen from a different view point, Eq. (8.2.28) is a differential equation for the metric
gi j∗ , whose general solution in any local chart can be found since, locally, every
closed form is also exact; the non-triviality of a cocycle appears only while gluing
together its representations in different charts. The solution for the hermitian metric
is given by the following expression:

gi j∗ = ∂i∂ j∗K (8.2.38)

where K = K ∗ = K (z, z∗) is a real function of zi , zi
∗
. The function K is called

the Kähler potential and it is defined only up to the real part of a holomorphic function
f (z). Indeed one sees that

K ′(z, zi
∗
) = K (z, zi

∗
) + f (z) + f ∗(z∗) (8.2.39)

gives rise to the same metric gi j∗ as K . The transformation (8.2.39) is called a
Kähler transformation.8 The differential geometry of a Kähler manifold is described
by Eq. (8.2.21) with gi j∗ given by (8.2.38). Kähler geometry is that implied byN = 1
supersymmetry for the scalar multiplets [10].

8The non triviality of the Kähler 2-form manifests itself in the Kähler transformations that are
required to connect the Kähler potential as given in one-chart with the Kähler potential as given in
another one.
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Fig. 8.14 The above two
pictures are two different
visualizations of the 2-form
dω[1]. In the first picture the
blue plane is the xy space on
which one sees the plot of
the the 1-form ω[1],
displayed as a vector field
plot. The third dimension z
has been introduced in order
to diplay also the 2-form
ω[2] = dω[1]. The
z-coordinate of the displayed
surface points (in
yellow-brownish color) is the
value of ω

[2]
12 (x, y). In the

second planar diagram the
value of ω

[2]
12 (x, y) is

codified by colors according
to the plotlegend. As a
reference, on the same plot
we display also the integral
curve of the one-form ω[1]

8.2.2 Quaternionic Kähler, Versus HyperKähler Manifolds

We saw the wealth of new features and, at the same time, the stricter structure of a
manifold geometry whenM admits one complex structure and is, therefore, complex.
Following Hamilton, it is natural to inquiry what it might happen if a manifold
admitted not just one, rather three complex structures, fulfilling the relations scribbled
170 years ago by the Irish genious on the walls of his Dublin bridge. Such manifolds
do indeed exist and they happen to be of the highest relevance for supersymmetric
field theories in the context of the Supergravity/Superstring world. Actually these
geometries fall in two ample classes that we presently introduce and are respectively
named that of Quaternionic Kähler manifolds and that of HyperKähler manifolds.
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Fig. 8.15 Plotting of the 1-form (8.2.36), as a covariant vector field. On the right we plot the integral
curves of this covariant vector field, namely those lines that have at each point the vector field as
tangent vector

Both a Quaternionic Kähler or a HyperKähler manifoldQM is a 4m-dimensional
real manifold endowed with a metric h:

ds2 = huv(q)dqu ⊗ dqv ; u, v = 1, . . . , 4m (8.2.40)

and three complex structures

(J x ) : T (QM ) −→ T (QM ) (x = 1, 2, 3) (8.2.41)

that satisfy the quaternionic algebra

J x J y = −δxy 11 + εxyz J z (8.2.42)

and respect to which the metric is hermitian:

∀X,Y ∈ TQM : h
(
J xX, J xY

) = h (X,Y) (x = 1, 2, 3) (8.2.43)

From Eq. (8.2.43) it follows that one can introduce a triplet of 2-forms

Kx = K x
uvdq

u ∧ dqv ; K x
uv = huw(J x )wv (8.2.44)

that provide the generalization of the concept of Kähler form occurring in the complex
case. The tripletKx is named theHyperKähler form. It is an SU(2) Lie-algebra valued
2-form in the same way as the Kähler form is a U(1) Lie-algebra valued 2-form. In
the complex case the definition of Kähler manifold involves the statement that the
Kähler 2-form is closed. At the same time in Hodge–Kähler manifolds the Kähler
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2-form can be identified with the curvature of a line-bundle which in the case of
rigid supersymmetry is flat. Similar steps can be taken also here and lead to two
possibilities: either HyperKähler or Quaternionic Kähler manifolds.

Let us introduce a principal SU(2)-bundle SU
π−→ QM over the considered

manifold. Let ωx denote a connection on such a bundle. To obtain either a Hyper-
Kähler or a Quaternionic Kähler manifold we must impose the condition that the
HyperKähler 2-form is covariantly closed with respect to the connection ωx :

∇Kx ≡ dKx + εxyzωy ∧ Kz = 0 (8.2.45)

The only difference between the two kinds of geometries resides in the structure of
the SU -bundle.

A HyperKähler manifold is a 4m-dimensional manifold with the structure
described above and such that the SU -bundle is flat. Defining the SU -curvature
by:

ΩΩΩ x ≡ dωx + 1

2
εxyzωy ∧ ωz (8.2.46)

in the HyperKähler case we have:

ΩΩΩ x = 0 (8.2.47)

Viceversa a quaternionic Kähler manifold is a 4m-dimensional manifold with
the structure described above and such that the curvature of the SU -bundle is
proportional to the HyperKähler 2-form. Hence, in the quaternionic case we can
write:

ΩΩΩ x = λ K x (8.2.48)

where λ is a non vanishing real number.
As a consequence of the above structure the manifoldQM has a holonomy group

of the following type:

Hol(QM ) = SU(2) ⊗ H (Quaternionic Kähler)

Hol(QM ) = 11 ⊗ H (HyperKähler)

H ⊂ Sp(2m,R) (8.2.49)

Let us briefly comment on the notion of holonomy group. For any differentiable
manifold, using Cartan’s formulation of moving frames that leads to the vielbein
and the spin connection (see Sect. 7.3.5), the curvature 2-form Rab is an so(n) Lie
Algebra valued object if n is the real dimension of M . When the geometry of M
is not generic, rather restricted as it is the case of complex, Kähler and quaternionic
Kähler or HyperKähler manifolds, the curvature 2-form is forced to take values in
subalgebras of so(n) and these subalgebras are named the holonomy Lie algebras
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of the manifold. The corresponding Lie groups are the holonomy groups. This is the
modern declination of Klein’s Erlangen programme: the holonomy groups are the
main algebraic classifiers of the different types of geometries.

8.3 L’Ésprit de Géométrie

..Olibri, habile géomètre, et grand physicien fonda la secte de vorticoses. Circino,
habile physicien et grand géomètre fut le premier attractionnaire. …On entre sans
préparation dans l’école dOlibri; tout le monde en a la clef. Celle de Circino n’est
ouverte qu’aux premiers géomètres.

In his philosophical novel Les Bijoux Indiscrets, published in 1748, Diderot (see
Fig. 8.16) described with such words the antithesis of Descartes’ mechanicistic vor-
tex theory, that denies vacuum existence and long distance interactions, with the
Newtonian theory of central forces (see Fig. 8.17). As we know, the latter won the
historic competition for preminence and became the final basis of Classical Physics
namely of the Système du Monde, to use the title of Laplace’s monumental work,
which of Newtonian Physics constitutes the apotheosis.

Fig. 8.16 Denis Diderot (Langres, 1713 - Paris, 1784) and his philosophical novel Les Bijoux
Indiscrets
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Fig. 8.17 Olibri = René Descartes (La Haye en Touraine 1596 - Stockholm 1650) and Circino =
Isaac Newton (Woolsthorpe-by-Colsterworth, 1642 - London 1727)

Diderot’s contraposition of Réné Descartes (Olibri) qualified habile géomètre, et
grand physicien against Newton (Circino), described as habile physicien et grand
géomètre, looks, at first sight, rather curious. Indeed it seems strange that, according
to the Encyclopedist Philosopher’s viepoint, the founder of Rationalist Thought and
the inventor of Analytic Geometry, should miss the Ésprit de Géométrie theorized in
the so entitled treatise that Blaise Pascal (see Fig. 8.18), great scholar in Projective
Geometry, wrote in 1657, seven years after the death of the Cogito, ergo sum author.

According to Pascal, the geometric spirit corresponds to human mind’s hability
to possess, just by intuition and without any formal definition, such fundamental
notions as those of point, line, surface and space. After having accepted such intuitive
concepts, that constitute the bricks of the Euclidian building, Geometry is constructed
with the use of logical deductive faculties, in line with the Discourse on the Method.
Hence the cartesian method is fully accepted by Pascal, yet Diderot was probably
right when, in the Descartes’ horror vacui and in the mechanicistic transmission of
the motion by means of vortices he identified the very negation of Pascal’s Ésprit de
Géométrie.

Olibri et Circino se proposèrent l’un et l’autre d’expliquer la nature. So Diderot
says and continues: Les principes d’Olibri ont au premier coup d’oeil une simplicité
qui séduit: ils satisfont en gros aux principaux phénomènes; mais ils se démentent
dans les détails. Quant à Circino, il semble partir d’une absurdité; mais il n’y a que
le premier pas qui lui coute. Les détail minutiex qui ruinent le système d’Olibri affer-
missent le sien. Il suit une route obscure à l’entrée, mais qui s’éclaire à mesure qu’on
avance. Celle au contraire, d’Olibri, claire à l’entrée, va toujours en s’obscurcissant.

The attentive reader of Chap. 6 can compare these words of Diderot with Weyl’s
conception of the mathematical way of thinking when he says that …we forget about
what the symbols stand for. The mathematician is concerned with the catalogue
alone; he is like the man in the catalogue room who does not care what books or
pieces of an intuitevely given manifold the symbols of his catalogue denote. He need
not be idle; there are many operations which he may carry out with these symbols,
without ever having to look at the things they stand for.
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Fig. 8.18 Blaise Pascal
(Clermont Ferrand, 1623 -
Paris, 1662)

Pascal’s characterization of the Ésprit de Géométrie as the hability to know a
priori what points, lines, surfaces and space are, is probably the first step towards
that conceptual elaboration that led Kant to elevate Euclidian Geometry to the fun-
dament of any sensitive perception. As we extensively discussed, this secular sanc-
tification of Euclid’s postulates, including the fifth, was, in the early XIXth century,
the main barrier to the development of non-euclidian geometries. Notwithstanding
this obstruction, Bolyai, Lobachevsky and the same Gauss succeeded to introduce
their new geometrical conceptions that start from different axioms, yet utilize the
same cartesian method in the following deductive phase. Thus the screams of the
Beotians were not so loud as Gauss feared and the road was paved to the Revolu-
tion of Geometry pursued in different fashions by Riemann, Klein, Beltrami, Lie,
Helmholtz, Poincaré, culminating, on the mathematical side, with the tensor calculus
introduced by Ricci and Levi-Civita and on the physical side with Einstein’s General
Relativity.

How can we characterize the reformulation of theÉsprit deGéométrie after XIXth
century conceptual revolutions? The path is clear. Once the Kantian apriorism was
removed, dramatically flunk by the explicit construction of non-euclidian models,
once the notion of intrinsic curvature was introduced, first by means of Gauss’ 1828
Disquisitiones Generales supra Superficies Curvas, then through the concept of dif-
ferentiable manifold advanced by Riemann in his 1854 Habilationschrift Ueber die
Hypothesen, welche der Geometrie zu grunde liegen, mathematical-philosophical
attention shifted to the problem of determining the True Geometry of Space by
means of physics, thus anticipating Einstein’s philosophical foundations of General
Relativity. Already Riemann, in hisUeber die Hypothesen, wrote: the propositions of
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Geometry cannot be deduced from the general notion ofmanifold (merfach asgedehn-
ter Grosse, in the original German text), rather the properties which distinguish our
Space from other three-dimensional varieties can be assessed only on the basis of
experiment.

Following Klein’s 1872 Erlangen Programme, history witnessed a vast and varia-
gated collection of conceptual elaborations aimed at the axiomatization of our three-
dimensional physical space. The standard philosophical vice, aimed at an a priori
determination of existing reality, came back into the game in new ways. Extremely
interesting and paradigmatic is the 1868 article written Hermann Helmholtz with the
title Ueber di Tatschen, die der Geometrie zum Grunde liegen, namely The Facts
that lie at the foundations of Geometry. On the basis of what Helmholtz said in this
essay I am sure that Diderot would have qualified him habile géomètre and, quite
duely, grand physicien.

Joining the notion of manifold with a vision similar to the one that four year later
was advocated by Klein in his Erlangen Programme, Helmholtz ventured into an
axiomatic definition of Physical Space which was articulated into five axioms. The
fifth axiom establishes that the dimension of Space is d = 3. In modern mathematical
parlance, the remaining axioms, that are formulated in terms of the existence and
mobility of rigid bodies, can be summarized, together with the fifth one, just in one
sentence: Space is a Riemaniann three-dimensional manifold of constant curvature.
In this way only three choices survive κ = 1, 0,−1, having denoted by κ the sign
of the constant curvature. The first choice was immediately dismissed by Helmholtz
since it would lead to a compact and hence finite Universe (a three-sphere). That
the Universe was infinite was accepted as a dogma in the middle XIXth century,
notwithstanding Olbers paradox. Among the Euclid Geometry (κ = 0) and that of
Lobachevsky (κ = −1) the new Olibri–Helmholtz was not able to choose and his
essay remained inconclusive.

Looking at these matters from our XXI century standpoint, educated by the
impressive advances of Observational Cosmology in the last fifteen years, Helmholtz
discussion is much less extravagant than it might look at first sight. Indeed the ques-
tion at stake is about the spatial curvature of the Universe which, by means of Einstein
equations, is determined by its overall energy-matter contents, whether larger, equal
or less than the so called critical density. On the other hand, that the Universe has
a large scale constant curvature is something established by the Cosmological Prin-
ciple which is an axiomatization of an observational fact, namely the homogeneity
and the isotropy of what we see.

In conclusion L’Esprit de Géométrie in the second half of the XIXth century
was ambiguous: one hand the idea that a priori intuitive notions of Space and of its
subvarieties did exist was dismissed and the task of choosing the True Geometry was
assigned to Nature. On the other hand efforts were abundant aimed at predicting on
philosophical grounds Nature’s choice.

Two lines of developments slowly changed and completely reversed this atti-
tude. On one side the heritage of General Relativity shew that Geometry is not only
revealed through physical experiments rather it can be dynamically predicted by the
development of Einstein equations, starting from given initial data that vary from
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case to case. On the other hand the impressive advances in the very formulation of
geometrical questions and the new visions, whose development we have outlined in
the present chapter shifted the attention of mathematicians to deeper characteriza-
tions of the available spaces that started to be organized in a vast and quite articulated
bestiary. In the same way as in Zoology no one ventures to predict the unique existing
animal in the same way in modern geometry no one aims anymore at singling out
the unique God given True Geometry.

Further visions were to be established and developed in the XXth century that we
address in the next chapter.



Chapter 9
Geometry Becomes Special

La géométrie…est une science née à propos de
l’expérience…nous avons créé l’espace qu’elle etudie, mais en
l’adaptant au monde où nous vivons. Nous avons choisie
l’espace le plus commode…

Henri Poincaré

9.1 The Evolution of Geometry in the First Half of the XX
Century

Let us begin with a quotation from a talk given in Cambridge by William Hodge
The last thirty years (1925–1955) have seen an enormous improvement in the posi-

tion of geometry as a branch of mathematics, or, rather, have seen the re-integration
of geometry into the main fabric of mathematics. Indeed, one can go further and say
that with the restoration of geometry to its rightful place in the mathematical scheme
the process of fragmentation which had been doing so much harm to mathematics
has been reversed, and we may look forward to the day in which there are no longer
analysts, algebraists, geometers and so on, but simply mathematicians. Mathemat-
ical research has two aspects, motivation and technique, and when the latter gains
control the result is apt to be excessive specialization. The revolution of geometrical
thought, and the reinstatement of geometry as one of the major mathematical disci-
plines, have helped to bring about a unification of mathematics which we may justly
regard as one of the major contributions of the last quarter century to the subject.

Hodge

Born in Scotland, William Hodge, (see Fig. 9.1) studied Mathematics first in Edin-
burgh, then in Cambridge and graduated under the supervision of EdmundWhittaker.
In 1936 he was appointed as Lowndean Professor of Astronomy and Geometry in
Cambridge, a position that he held up to retirement. Prior to that he was Lecturer
in Bristol University and held temporary positions in Princeton. Hodge has given
outstanding contributions in the field of differential forms, topological invariants,
harmonic integrals and complex analysis. He invented Hodge duality. Sir Michael
Atiyah has been one of Hodge’ students.
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Fig. 9.1 Sir William
Vallance Douglas Hodge
(Edinburgh 1903 –
Cambridge 1975)

In 1925, Hodge, whose biography is shortly summarized in the above lines, was
a student in Cambridge, dividing a room in St. John’s college with Alan Broadbent
who would become his brother in law by marrying his sister Janet. In 1955, as we
have recalled he was a distinguished Cambridge Professor of Mathematics sitting
on the chair named after Lowndean. Four years later he was to be knighted by
Queen Elizabeth. Just in the middle of those thirty years that, according to him, had
reintegrated geometry into the main fabrics of mathematics, Hodge had published a
paper on the Theory of Harmonic Integrals that won him the 1937 Adams Prize and
then, in 1941 the book The Theory and applications of harmonic integrals whose
content was described by Hermann Weyl as:

…one of the great landmarks in the history of science in the present century.
Certainly William Hodge had himself given an outstanding contribution to the

conceptual revolution he refers to in his quoted words. By means of the integrals
of harmonic forms on Riemannian manifolds, he had brought together geometry,
topology and analysis into a solid unity that, since then, would last in the successive
history of mathematics and physics. Incidentally the conserved quantities of physical
theories (the electric charge, for example) are instances of harmonic integrals and
the link between topology and physics is by them best exemplified.

However Hodge’s contribution was not the only one. Other high class mathemati-
cians were active in those thirty years and gave extremely relevant contributions.
A look at the second chapter of Hodge’s book helps our orientation. It is entitled
Integrals and their Periods and it includes as section 23, 24 and 25 the exposition
and proof of de Rham theorems.
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Fig. 9.2 Georges de Rham (1903 Roche, Switzerland – 1990 Lausanne, Switzerland)

de Rham

Born in the small town of Roche at the foot of the Jura, de Rham made his first
studies there. In 1919 his family moved to the city of Lausanne, where Georges lived
most of his life up to his death in 1990. Since 1924 he attended the University of
Lausanne but in 1931 he wrote his doctoral thesis Sur l’Analysis situs des variétés a
n dimensions under the supervision of Élie Cartan and defended it in Paris, obtaining
his doctorate in mathematical sciences from the Faculty of Science, University of
Paris. In the French capital, where he lived at his own expenses, he attended courses
from the greatmathematicians of the timeGaston Julia, ArnaudDenjoy, Émile Picard
and met with André Weil. He spent also a short period in Göttingen where he met
with Richard Courant, Charles Ehresmann, AndreyKolmogorov, EmmyNoether and
Hermann Weyl. Since 1943 to his retirement in 1971 he was professor in Lausanne
and he also held a chair at the University of Geneva. The academic year 1957–1958
hewas visiting professor in Princeton. His greatest achievement inmathematics is the
theorem that bears his name and states the isomorphism of de Rham cohomology of
differential forms with the dual of singular homology based on simplexes (Fig. 9.2).

In 1926 and in 1928, as we recalled above, he had been in Paris renting a cheap
room at his own expenses and following courses at the Sorbonne where he was
particularly impressed by the lectures of Jacques Hadamard and Henri Lebesgue.
But he also read Cartan’s book Sur les nombres de Betti des espaces de groupes clos.
Topology, geometry and symmetry were approaching each other from many sides in
those years! The first seeds of the de Rham theorem were implanted in the mind of
the young Swiss mathematician by such readings and by his personal contacts with
the magic circle of contemporary French mathematicians, at whose center, stood the
great personality of Cartan. Indeed Georges de Rham’s doctoral thesis is essentially
the first exposition of his theorem.
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Another greatmathematician, Raoul Bott assessed the impact of deRham theorem
in the following way:

In some sense the famous theorem that bears his name dominated his mathematical
life, as indeed it dominates so much of the mathematical life of this whole century.
When I met de Rham in 1949 at the Institute in Princeton he was lecturing on
the Hodge theory in the context of his currents. These are the natural extensions
to manifolds of the distributions which had been introduced a few years earlier
by Laurent Schwartz and of course it is only in this extended setting that both the
de Rham theorem and the Hodge theory become especially complete. The original
theorem of de Rham was most probably believed to be true by Poincaré and was
certainly conjectured (and even used!) in 1928 by Élie Cartan. But in 1931 de Rham
set out to give a rigorous proof. The technical problems were considerable at the
time, as both the general theory of manifolds and the ’singular theory’ were in their
early formative stages.

Three Things

Three things should have become manifest to the reader from the facts and from the
evaluations that we have collected above.

First a historical political note. In the middle thirties of the XXth century, while
the ominous shadows of nazism, antisemitism and stalinism were growing, project-
ing threats of new wars, the world centers of Mathematics, that once upon a time had
been Paris, Berlin and Göttingen, underwent a shift, Princeton replacing the Ger-
man centers from which the greatest scientists of Jewish origin were fleeing away.
Great mathematicians, philosophers and physicists from other countries, will soon
replenish Princeton ranks in the eves of World War II.

The second notable thing is the deep influence of Cartan, which is felt in all
respects. Looking at all new developments we invariably discover a direct root in the
thought and in the teaching of this great man.

Thirdly we see that what was in the process of formation in the thirties was a
new vision of geometry where the global properties of manifolds were coming to
prominence and new instruments to measure these properties were introduced. Inte-
grals, being extended to the whole space, probe its structure at large and this was the
viewpoint introduced by Hodge. On the other hand, through isomorphism theorems
like de Rham’s theorem, the result of Hodge’s harmonic integrals can be largely
predicted a priori, since these integrals are associated with algebraic structures, like
cohomologies (see Sect. 8.2.1), which allow for a formal abstract description. Groups
were once again coming into prominence but in a new capacity, that of classifiers of
topology.

The Emergence of Fibre- Bundles

In this context the notion of fibre-bundle was slowly emerging as the appropriate
conception that encompasses all geometrical spaces of interest both in mathematics
and in physics. Slowly it was becoming clear that the key point is the locality of the
product structure. Indeed fibre-bundles are just those manifolds that look like the
direct product of two spaces at the local level but are not a direct product in globality.

http://dx.doi.org/10.1007/978-3-319-98023-2_8
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Fig. 9.3 On the left
Shiing-shen Chern (1911 in
Chia-hsing, China – 2004
Tianjin, China)

The lesson of Riemannian geometry had thought mathematicians that the devia-
tion from some property which, in a class of objects, is valid only for a subclass, is
measured by appropriate intrinsic indicators, such as the curvature tensor. In a flat
manifold the parallel transport of vectors is independent from the transport path. In a
curvedmanifold, this is not true and the curvature tensor measures the deviation from
absolute parallelism. Trivial fibre-bundles are direct-product of spaces. Non trivial
fibre-bundles are such because they globally deviate from a direct product. What is
it, analogous to the curvature, that indicator, or set of indicators, that measures the
deviation from globality of the product? The answer is provided by the so called
characteristic classes.

The theory of characteristic classes was founded by the Chinese-American math-
ematician Shiing-shen Chern.

Chern

Born in China, son to a classical Confucian scholar, Chern (see Fig. 9.3) studied
there mathematics until 1932, when he left his country for Europe, ending up first
in Hamburg and then in Paris. In Hamburg he met with Kähler who introduced him
to Cartan’s works and he graduated from that University in 1936. The same year he
reached Paris where he interacted with Cartan himself and met with André Weil. In
1937 he left Paris and went back to China to take a professorship of mathematics at
the Tsing Hua University. He was trapped in China by the break-up of the Chinese-
Japanese war until 1942, when he received an invitation to the Institute of Advanced
Study of Princeton which he reached by means of an adventurous trip on board
of a US military plane that took him from the remote inland regions of China to



246 9 Geometry Becomes Special

destination, crossing through India, Africa and South America. In the US he met
again with Weil who, at the time, was teaching in Pennsylvania. After the war Chern
went back to China, but in 1949 he fled once again from his country to US, escaping
fromMao Tse Dung’s communist revolution. In the States he became US citizen and
he was professor in Chicago and at Berkeley, until his retirement. In the last years
of his life he went once again back to China. Chern’s contributions to mathematics
are very ample and deep. As stated above he has been the founder of the theory of
characteristic classes and of the modern vision of fibre-bundles.

From the above short biographical note we know that Chern’s first studies were in
Peking. In 1932 a visit to the Chinese capital of the Austrian mathematician Blashke
was at the origin of a turning point in Chern’s life. He received a scholarship from
Tsing Hua University to study in the United States but he asked that it might be rather
used to go to the University of Hamburg. He was convinced that the mathematics he
was interested in was done more in Europe than in the States. Chern wrote: It was
professor Blaschke whose influence on me cannot be overstated. In 1932 he visited
Peking as part of his world tour. I was a young college student in his audience. I was
immediately impressed by his fresh ideas and his insistence on mathematics being a
lively and intelligible subject. This contact with him was instrumental in making me
to decide to come to Hamburg as a student.

In 1934 Chern arrived in Hamburg and there he met with the young Kähler who
had just written a book describing Cartan’s mathematics. The conversations with
Kähler were very influential in determining Chern to spend in Paris the third year of
his fellowship, after his graduation from Hamburg that took only two years.

So in 1936 Chern went to Paris and there he absorbed Cartan’s viewpoint on
mathematics that has been described in this way:

There is a tendency in mathematics to be abstract and have everything defined,
whereas Cartan approached mathematics more intuitively. That is, he approached
mathematics from evidence and the phenomena which arise from special cases rather
than from a general and abstract viewpoint.

Not surprisingly, with such an attitude, Cartan has been not only a mathematician
but also a theoretical physicist, in the senseHermanWeyl alsowas. Indeed, aswe have
explained in Chap.7, Cartan introduced the vielbein or réperes mobiles formalism
for Gravity, and in that he proved to be more right than Einstein himself. Looking
at it a posteriori Cartan’s entire work has been a monumental investigation of the
mathematical structure of what we name Space and in doing that he used those
concrete spaces that he had the venture to classify exhaustively, namely symmetric
spaces.

Speaking of Cartan’s ideas Chern said:
Without the notation and terminology of fibre bundles, it was difficult to explain

these concepts in a satisfactory way.
Chern also gave an alive description of his interaction with Élie Cartan:
Usually the day after meeting with Cartan I would get a letter from him. He would

say, After you left, I thought more about your questions ... - he had some results, and
some more questions, and so on. He knew all these papers on simple Lie groups, Lie
algebras, all by heart. When you saw him on the street, when a certain issue would
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Fig. 9.4 André Abraham
Weil (1906 Paris, France –
1998 Princeton, USA)

come up, he would pull out some old envelope and write something and give you the
answer. And sometimes it took me hours or even days to get the same answer. I saw
him about once every two weeks, and clearly I had to work very hard.

The Status of Geometry in the Eves of World War II

We can summarize the status of geometry in 1937–38 as follows.
Since a few years de Rham had put the systematic use within topology of differ-

ential forms and of their cohomology on firm grounds. In 1937 Hodge, by means
of harmonic differential forms and of their integrals, had given to Poincaré duality
between homology an cohomology its solid basis. The notion of fibre-bundle was
slowly coming into being and Chern and André Weil were about to provide their
proper characterizations by means of characteristic classes. The great examples of
Cartan’s symmetric spaces were in everyone’s mind, providing a precious, guiding
principle.

André Weil

The life of André Weil (see Fig. 9.4), one of the greatest mathematician of the XXth
century, has also been somewhat adventurous with several shifts and turning points
on the dramatic background of World War II. Born in Paris in a Jewish family
that had escaped from Alsace after the 1870 annexation to the German Empire, he
graduated there in 1928 under the supervision of Hadamard. Strongly interested
in classical languages and ancient cultures he had an experience as a teacher at a
Muslim University in India and, once he was back to France, he interacted with
Cartan’s son Henri in Strasbourg, where he became involved with the famous group
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of mathematicians writing under the name Nicolas Bourbaki. In 1939 he was in
Finland when the Finnish-Soviet war broke up. He was arrested as a spy. Released,
he went back to France to be arrested once again as a renitent to the military service.
Released, he took part in the 1940 campaign and in the May Debacle. In January
1941 he fled from France to the USwith his entire family. During the war he survived
teaching in a minor university in Pennsylvania. After the war he went for a few years
to Brazil and from there he made return to the US, where he became member of
Princeton Institute for Advanced Studies in 1958. In Princeton he spent the rest of
his life. Weil’s contributions to mathematics are extremely important in many fields,
algebraic geometry and number theory, in particular. The proof of the fundamental
theorem stating the Chern–Weil homomorphism was independently developed by
Weil and Chern in the 1940s.

Indeed, when Chern arrived in Princeton in 1943, after his adventurous air-trip
across three continents, he found there such outstanding mathematical personalities
as HermannWeyl, Claude Chevalley and Solomon Lefshetz. Einstein was also in the
group.Without any doubt in such an environment Chern’s ideas found a fertile humus
where to grow. However he had not forgotten André Weil with whom he had met
seven years before in Paris and who was teaching in Pennsylvania, few tens of miles
away from Princeton. The twomet several times, talking about Cartan’s mathematics
and certainly such conversations are responsible for their almost simultaneous but
independent discovery of the Chern–Weil homorphism. With great generosity, in all
of his later lectures and books Chern always referred to Chern–Weil homomorphism
as to theWeil homomorphism. On the other hand recalling these war-time encounters
with Chern, Weil wrote:

...we seemed to share a common attitude towards such subjects, or towards
mathematics in general; we were both striving to strike at the root of each question
while freeing our minds from preconceived notions about what others might have
regarded as the right or the wrong way of dealing with it.

Summarizing…

So the theory of fibre-bundles and characteristic classes was developed in those
years while Ehresman definitely fixed the notion of a connection on a Principal
Bundle as we have explained in Chap.7 (see Sect. 7.4). The appropriatemathematical
language of modern gauge theories in which the StandardModel of non gravitational
interactions could be properly formulated was essentially ready by the mid fifties of
the XXth century when Hodge wrote his sentence, quoted at the beginning of this
chapter. Yet it took half a century before theoretical physicists became fully aware
of the mathematical nature of those objects with which they were playing, striving
to describe the Fundamental Forces of Nature.

9.1.1 Complex Geometry Rises to Prominence

On the purely mathematical front in the years from 1953 to 1955, Pierre Dol-
beault (see Fig. 9.5) introduced a new very important mathematical instrument: the
∂̄-cohomology of the differential forms defined on complex analytic manifolds,
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Fig. 9.5 Pierre Dolbeault (1924–2015). Dolbeault graduated at the École Normale Supérieure with
a thesis written under Henri Cartan’s supervision. He held positions at several French universities,
such as Montpellier and Bordeaux; in 1960, he became a professor at the University of Poitiers
and finally moved to Paris VI (Université Pierre et Marie Curie) in 1972, where he stayed until
his retirement in 1992. Dolbeault has given outstanding contributions to complex geometry and
analysis and he is specially known for the creation of Dolbeault cohomology and the theorems
associated with it

namely the holomorphic analogue of de Rham cohomology defined on real man-
ifolds. The essence of Dolbeault cohomology is the topic of Dolbeault’s thesis, pre-
pared by him under the direction of Henri Cartan, Élie’s son and one of the closest
friends of André Weil. The thesis was defended in Paris in 1955.

Complex Geometry and, within it Kähler Geometry, arose to high prominence in
the three decades from1950 to 1980. The language of fibre-bundles and characteristic
classes was combined with the notion of holomorphicity and line-bundles, namely
Principal Bundles whose structural group is the group of non vanishing complex
numbers C�, became ubiquitous in the discussion of complex manifolds.

A new innovative conception developed in this context, namely that of character-
izing the geometry of basemanifoldsM bymeans of statements on the characteristic
classes of bundles defined over them.

The first example, which plays an important role in the sequel, is that of Hodge–
Kähler manifolds that are Kähler manifolds M characterized by the existence of a
line bundleL → M , such that its first Chern Class coincides with the cohomology
class of the Kähler 2-form: c1(L ) = [K ].

Calabi Yau n-folds

Another important example is provided by Calabi–Yau n-folds. These latter were
introduced by Eugenio Calabi (see Fig. 9.6) in 1964 with the definition of complex
n-dimensional algebraic varietiesMn , the first Chern class of whose tangent bundle
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Fig. 9.6 On the left Eugenio Calabi (Milano, Italy 1923). On the right Shing-Tung Yau (Shantou,
China 1949). Born Italian, Calabi is an American citizen. He graduated in 1946 from MIT and
obtained his Ph.D. from Princeton in 1950. He held temporary positions in Minnesota and in
Princeton, then since 1967 to retirement he was Full Professor of Mathematics at the University
of Pennsylvania, successor of Hans Rademacher. He came to the definition of Calabi–Yau n-folds
while exploring the geometry of complex manifolds that support harmonic spinors. Born in China,
Yau studied first at Hong Kong University, then he went to the USA where he got his Ph.D. in
1971 from Berkeley under the supervision of Chern. Post-doctoral fellow in Princeton and in Stony
Brook, he became Professor in Stanford. Since 1987 he is Professor of Mathematics at Harvard
University. Yau’s proof of Calabi 1964 conjecture was published in 1977

vanishes: c1 (TMn) = 0. Later, the American-Chinese mathematician Shin-Tung
Yau (see Fig. 9.6) proved the theorem that for Calabi–Yau n-folds, every (1, 1) Dol-
beault cohomology class contains a representative that can be identified with the
Kähler 2-form of a Ricci flat Kähler metric: the Calabi–Yau metric.

9.1.2 On the Way to Special Geometries

Other notable examples of this way of thinking, applying both to complex and to
real geometry are the manifolds of restricted holonomy. One considers Riemannian
manifoldsMn in dimension n and their spin bundles, namely the principal bundles on
which their spin connections ωab are defined as Ehresman connections. Generically
such bundles have, as structural group, Spin(n), which is the double covering of
SO(n), yet it may happen that ωab is Lie algebra–valued in a proper subalgebra
G ⊂ so(n).1 Choosing algebras G for which this might happen and imposing that it
should happen is a strong constraint on the geometry of the manifold Mn .

1We have already described the notion of holonomy at the end of Sect. 8.2.2.
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Research on manifolds of restricted holonomy went on in the 1980s and 1990s in
the mathematical community but, not too surprisingly, it was heavily stimulated by
issues in theoretical physics and particularly in Superstring/Supergravity theory.

It is easy to understand why. The main input in Superstring/Supergravity is Super-
symmetry, a generalization of Lie algebras where spinor representations and vector
representations of groups SO(n) are transformed one into the other by new symmetry
operators Qα , dubbed the supercharges, that are themselves spinors. At the level of
field theories we work with fibre-bundles and the fields we consider are sections of
such bundles. Field theories can be supersymmetric if the supercharges Qα find a
field-theoretic realization which is a symmetry of the action, leaving the door open
for its desired spontaneous breaking. It is quite intuitive that such a realization of the
supercharges requires special restrictions on the bundles and this reflects into heavy
constraints on the geometry of the base manifolds.

The above simple reasoning reveals what, in the opinion of this author, is the main
conceptual contribution of supergravity theories to the development of geometrical
thought and, eventually, of physical thought, provisionally assuming that geometry
and physics are, once properly interpreted, the same thing. Supersymmetry tackles
with one of the most fundamental and so far unexplained pillars of physics, namely
the separation of the physical world into bosons and fermions and the spin-statistics
theorem. The distinction between vector and spinor representations is at the basis of
all that and it is a distinctive property of the so(n) Lie algebras, unexisting for the
other simple Lie algebras. On the other hand the reduction of the tangent-bundle to
an so(n)-bundle is the same thing as the existence of a metric and can be interpreted
as gravity. Special Geometries arise because of supersymmetry, in order to allow the
mixing of boson and fermions. It is the mathematical investigation of Space from this
newviewpoint the newquality of geometrical studies inspired by supergravity.Before
telling such a story we need to recall another mathematical conception, that was
developed independently from Superstring/Supergravity yet found its most ample
and fertile applications in the supersymmetric context.

9.1.3 The Geometry of Geometries

Let us recall Hermann Weyl’s discussion of the ellipses, used by him to introduce
his conception of mathematical thinking and reported by us in Sect. 6.1.2. The coef-
ficients a, b, c of the quadratic form quoted by Weyl are the first example of moduli
and the portion of R3 where they are allowed to take values is the first example of a
moduli-space. In complex algebraic geometry one considers loci of some projective
space Pn(C) cut out by some homogeneous polynomial constraint of degree m:

0 = W (a, X) =
∑

i1 ... im

ai1...im X i1 . . . Xim (9.1.1)
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imposed on the n + 1 homogeneous coordinates Xi (i = 1, . . . , n + 1). The complex
coefficients ai1...im are alsomoduli and fill some complexmanifoldM . If we consider
the following constraint imposed on the metric tensor of some Riemannian manifold
Mn:

Rμν [g] = λ gμν (9.1.2)

where Rμν [g] is the Ricci tensor and λ some constant, we actually write a set of
differential equations for the metric tensor gμν , which, on the manifoldMn , admit a
solution depending on a set of parameters {p1, . . . pr }, among which λ is included.
Also these are moduli and they fill a space named the the moduli space of Einstein
metrics on Mn .

Several other examples can be made of manifoldsMmod whose points correspond
to the specification of a particular geometry within a class, for instance the moduli
ρi of an instanton parameterize the solution of the self duality constraint:

FΛ
μν(ρ, x) = 1

2 εμνλσ FΛ
λσ (ρ, x) (9.1.3)

imposed on the field strength of a connection on a principal fibre bundle P(G,M4).
A new mathematical idea that is of outmost relevance both for physics and for

mathematics is encoded in the following almost obvious argument. Being amanifold,
the moduli space Mmod can support such geometrical structures like a metric, like
a complex structure, or a fibration. We call this the geometry of geometries. There
are several mathematical constructions, dictated by the mathematical nature of the
objects of which we consider the moduli, that single out a canonical determination of
the geometry of geometries, yet it is precisely at this level that the interaction between
physics and mathematics becomes most profound and fertile. Indeed the geometry
of geometries is typically what enters the supergravity lagrangians under the form of
sigma-models for scalar fields that on one side are the spin zero members of super-
symmetry multiplets, while on the other side they are moduli of some manifold, for
a example a Calabi–Yau threefold, on which the superstring has been compactified.

This evenience produces a double check on the geometry of geometries. Its use
in supersymmetric lagrangians, imposes strong constraints on the geometry of the
scalar fields that, in many cases, have a recognizable solution in terms of known geo-
metrical categories, in other cases it leads to the definition of new types of restricted
geometries, generically dubbed special geometries. It is particularly rewarding that
the special geometries selected by supersymmetry are just those apt to accomodate
the moduli spaces of such mathematical structures as the complex structures or the
Kähler structures of a compactification manifold like a Calabi–Yau threefold.

Altogether, a really new chapter has been written in the two decades from 1990
to 2010 in the history of geometry, where the distinction between physics and math-
ematics has become somewhat obsolete, ideas from one field compenetrating the
other in an essential way.
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9.1.4 The Advent of Special Geometries

The first instance of a special geometry was found by brute force, immediately after
the discovery in 1976 by Sergio Ferrara, Daniel Freedman and Peter van Nieuwen-
huizen of N = 1, d = 4 supergravity (see Fig. 9.7). The next year, considering the
coupling of a scalar multiplet to the newly found gravitational theory, the three
supergravity founders, together with Breitenlohner, Gliozzi and Scherk, constructed
a rather impressive and cumbersome lagrangian, depending on an arbitrary real func-
tion G(A, B) of a scalar A and a pseudoscalar B and on all its derivatives up to the
fourth one [73]. It was Bruno Zumino (see Fig. 9.8) who, in 1979, decoded the mean-
ing of this monster, showing that G(A, B) is just the Kähler potential of a Kähler
metric, all of the introduced derivatives obtaining their adequate interpretation as
metric, connection and curvature of the Kählerian manifold [171]. In this way the
generalization to several scalar multiplets was singled out: it suffices to utilize an
n-dimensional Kähler manifold.

Shortly after, the so named holomorphic superpotential introduced by physicists
to describe fermion–scalar interactions and to produce a scalar potential consistent

Fig. 9.7 From left to right the three founders of Supergravity Theory, Daniel Freedman (1939),
Sergio Ferrara (1945), Peter van Nieuwenhuizen (1938). Dan Freedman was born in the USA,
graduated from Wisconsin University. He has been professor at Stony Brook University and he is
currently full-professor at MIT. Sergio Ferrara born in Rome in 1945 graduated from la Sapienza
University under the supervision of Raoul Gatto. Permanent Member of the CERN Theoretical
Division for many years, he is also professor of physics at UCLA. Peter van Nieuwenhuizen born
in Holland in 1938, graduated in Utrecht under the supervision of Veltman, held various positions
in the United States and since the middle 1980s he is full-professor of physics at Stony Brook
University. The paper containing the lagrangian and the transformation rules of N = 1, d = 4
supergravity was published by the three founders of the theory in 1976. Since then all the three
have contributed extensively and in various different directions to the development of supergravity.
Sergio Ferrara among the three has largely contributed to the development of special geometries
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Fig. 9.8 Bruno Zumino (1923–2014). Born in 1923 in Rome, he graduated from the University
La Sapienza in 1945. He died in 2014 in California, where he was emeritus professor of Berkeley
University. Formany years hewas permanentmember of the Theoretical Division at CERN. Zumino
has givenmany important contributions to Theoretical Physics in several directions: supersymmetry,
anomalies, conformal field theories, quantum groups

with supersymmetry, was also interpreted geometrically. The superpotential is just a
holomorphic section of the Hodge line-bundle over the Kähler manifold.

In this way the firstly found special geometry was a known one, namely Hodge-
Kähler geometry. This is not so for the next case.

At the beginning of the 1980s the next obvious case was the coupling of vector
multiplets toN = 2, d = 4 supergravity. Each multiplet contains a complex scalar
field and the question was what is the geometry of the scalar manifoldMscalar in the
case of several suchmultiplets. CertainlyMscalar had to beKähler, sinceN = 2 is in
particularN = 1. Yet the stronger supersymmetry imposes additional constraints so
thatMscalar had to be a special Kähler manifold. A pioneering work on this problem
was conducted in several different combinations by a group of French, Belgian,
Dutch, Swiss and Italian theoretical physicists in the papers mentioned in [46, 59,
60]. Using a special set of complex coordinates, the special Kähler manifolds that
can accomodate the scalar fields ofN = 2 vector multiplets were described as those
where the Kähler potential is obtained from a holomorphic prepotential according to
a specific formula.

Once this was established, a natural question arose whether among so defined
special Kähler manifolds there were symmetric spaces G/H. The answer to this
question was given in Paris in 1985 by Eugene Cremmer and Antoine Van Proeyen
(see Fig. 9.9) who, in a beautiful paper absolutely worth of Cartan’s tradition [47],
provided the exhaustive classification shown in the first column of Table9.1. As one
sees, exceptional Lie groupsmake their appearance in such a list through peculiar real
forms. This was no longer a surprise for supergravity researchers since, four years
before, the sameEugeneCremmer, in collaborationwithBernard Julia (seeFig. 9.10),
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Fig. 9.9 On the left Antoine Van Proeyen (1953 Belgium), on the right Eugene Cremmer (Paris
1942). Antoine Van Proeyen graduated from KU Leuven and worked in several Laboratories and
Universities, among which the École Normale of Paris, CERN Theoretical Division and Torino
University, before becoming full-professor in Leuven. He is currently the Head of the Theoretical
Physics Section at the K.U. Leuven. Since 1979, he has been involved in the construction of various
supergravity theories, the resulting special geometries and their applications to phenomenology
and cosmology. Cremmer is directeur de recherche of the CNRS working at the École Normale
Supérieure of Paris. In 1978, together with Bernard Julia and Joël Scherk, he derived the space-time
formulation of 11 dimensional supergravity theory, regarded today as the low energy limit of the
so far mysterious M-theory. In the following few years, Cremmer, together with Bernard Julia,
constructed the dimensional reductions of d = 11 supergravity, arriving in d = 4 at the maximal
extendedN = 8 theory, whose structure is completely determined by the non-compact coset E7(7)

SU(8)
accomodating the 70 scalars of the gravitational multiplet. Active research is going on at the present
time to demonstrate that N = 8 supergravity is a finite quantum field theory

Table 9.1 List of special Kähler symmetric spaces with their Quaternionic Kähler c-map images.
The number n denotes the complex dimension of the Special Kähler preimage. On the other hand
4n + 4 is the real dimension of the Quaternionic Kähler c-map image. The c-map is a central item
in the mathematical technical exposition of special geometries contained in the parallel book [90]

SK n
Special Kähler manifold

QM 4n+4
Quaternionic Kähler manifold

dimSK n = n

SU(1,1)
U(1)

G2(2)
SU(2)×SU(2) n = 1

Sp(6,R)
SU(3)×U(1)

F4(4)
USp(6)×SU(2) n = 6

SU(3,3)
SU(3)×SU(3)×U(1)

E6(2)
SU(6)×SU(2) n = 9

SO�(12)
SU(6)×U(1)

E7(−5)
SO(12)×SU(2) n = 15

E7(−25)
E6(−78)×U(1)

E8(−24)
E7(−133)×SU(2) n = 27

SL(2,R)
SO(2) × SO(2,2+p)

SO(2)×SO(2+p)
SO(4,4+p)

SO(4)×SO(4+p) n = 3 + p

SU(p+1,1)
SU(p+1)×U(1)

SU(p+2,2)
SU(p+2)×SU(2) n = p + 1
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Fig. 9.10 Bernard Julia (Paris 1952). He graduated from Université de Paris-Sud in 1978, and he is
directeur de recherche of the CNRSworking at theÉcole Normale Supŕieure. In 1978, together with
Eugene Cremmer and Joël Scherk, he constructed 11-dimensional supergravity. Shortly afterwards,
Cremmer and Julia constructed the classical Lagrangian of four-dimensional N = 8 supergravity
by dimensional reduction from the 11-dimensional theory

had shown that the dimensional reduction of maximally extended supergravity from
D = 11 down to D = 10, D = 9, . . . , D = 4, D = 3 produces, as scalar manifolds,
the following maximally split symmetric spaces:

MD = E11−D(11−D)

Hc
(9.1.4)

where:

E5(5) � D5(5) � SO(5, 5)

E4(4) � A4(4) � SL(5,R)

E3(3) � A1(1) × A2(2) � SL(2,R) ⊗ SL(3,R)

E2(2) � A1(1) × A1(1) � SL(2,R) ⊗ SL(2,R) (9.1.5)

So exceptional Lie groups that had been regarded for long time as mathematical
curiosities were brought to prominence by supergravity and in parallel also by super-
string theory.

The fact that all such results were obtained in the École Normale Supérieure de
Paris demonstrates the far reaching influence of Élie Cartan’s tradition.

At the end of the eighties the intrinsic definition of special Kähler geometry,
free from the use of special coordinates, was independently obtained with two dif-
ferent strategies by Andrew Strominger (see Fig. 9.12) and by Leonardo Castellani,
Riccardo D’Auria and Sergio Ferrara (see Fig. 9.11).
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Fig. 9.11 On the left Leonardo Castellani (born 1953 in Freiburg, Switzerland). On the right
Riccardo D’Auria (born 1940 in Rome). Leonardo Castellani studied physics at the University of
Florence in Italy and obtained his Ph.D. from Stony Brook University in the US, with a thesis
written under the supervision of van Nieuwenhuizen. He had post-doctoral positions at Caltech and
at CERN, then he became permanent Researcher in the Torino section of the National Institute of
Nuclear Research (INFN) and in 1993 he was appointed full-professor of Theoretical Physics at the
University of Eastern Piedmont, position that he holds at the present time. He is especially known for
his contributions, together with D’Auria and Fré to the rheonomic formulation of supersymmetric
theories, for his derivation together with Larry Romans of the list of G/H compactifications of
d = 11 supergravity and more recently for developments in quantum group theories and, together
with P.A. Grassi and R. Catenacci for the extension of Hodge theory to supermanifolds. Riccardo
D’Auria studied at the University of Torino and graduated there with a thesis written under the
supervision of Tullio Regge. He was for several years Associate Professor at the University of
Torino, in 1987 he was appointed full-professor of Theoretical Physics at the University of Padua.
Few years later he was offered a full professor chair at the Politecnico of Torino where he concluded
his academic career becoming emeritus professor in 2011. D’Auria, together with Fré has been the
founder of the rheonomic formulation of supergravity and also with Fré he introduced the notion
of super Free Differential Algebras, that were singled out as the algebraic basis of all supergravity
theories in dimension higher than four. In particular in 1982, D’Auria and Fré obtained the FDA
formulation of d = 11 supergravity. D’Auria has given many more contributions to supergravity
theory in particular in connection with special geometries, with the classification of black-hole
solutions, with duality rotations, with the various formulations of the d = 6 theories and with
several other aspects of the superworld

While Strominger derived his definition from the properties of Calabi–Yaumoduli
spaces [160], Castellani, D’Auria and Ferrara [35, 36] (and later D’Auria Ferrara and
Fré [55]) derived their owndefinition from the constraints imposedby supersymmetry
on the curvature tensor of theKählerianmanifold.With some labour they also showed
the full equivalence of the two definitions.

In the sameyears,AntoineVanProeyen andBernarddeWit (seeFig. 9.12), in some
publications together with a younger collaborator, established a full classification of
homogeneous special geometries, namely of special manifolds that admit a solvable
transitive group of isometries [61, 62, 64]. They also explored the relation [62]
between special Kähler geometries and quaternionic geometries that can be obtained
from them by means of a very interesting map, originally discovered by Cecotti [40]
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Fig. 9.12 On the left Bernard Quirinus Petrus Joseph deWit (born 1945 in the Netherlands). On the
rightAndrewEbenStrominger (born 1955 in theUSA).Bernard deWit studied theoretical physics at
UtrechtUniversity,where he got his Ph.D. under the supervision of theNobel Prize laureateMartinus
Veltman in 1973. He held postdoc positions in Stony Brook, Utrecht and Leiden. He became a staff
member at the National Institute for Nuclear and High Energy Physics (NIKHEF) in 1978, where he
becameheadof the theory group in 1981. In 1984hewas appointed professor of theoretical physics at
Utrecht University where he has stayed for the rest of his career. Bernard deWit has given important
contributions to the development of supergravity theory building, in collaboration mainly with Van
Proeyen, the so named conformal tensor calculus. Together with Herman Nicolai he constructed
the so(8)-gauged version ofN = 8 supergravity that has provided the paradigmatic example for all
supergravity gaugings. Andrew Strominger completed his undergraduate studies at Harvard in 1977
before attending theUniversity ofCalifornia, Berkeley for hisMaster diploma.He received his Ph.D.
from MIT in 1982 under the supervision of Roman Jackiw. Prior to joining Harvard as a professor
in 1997, he held a faculty position at the University of California, Santa Barbara. Strominger is
especially known for introducing, together with Cumrun Vafa the string theory explanations of
the microscopic origin of black hole entropy, originally calculated thermodynamically by Stephen
Hawking and Jacob Bekenstein. Strominger, together with Philippe Candelas, Gary Horowitz and
Edward Witten was the first proposer of Calabi–Yau threefolds as compactification manifolds for
superstrings and supergravities in d = 10

and further developed by Ferrara et al. in [56, 77]. So doing they came in touch
with the classification of quaternionic manifolds with a transitive solvable group of
motion that had been performed several years before by Alekseevsky [1, 45].

Themapmentioned above is named the c-map and can be given amodern compact
definition exhibited in [88]. Furthermore the c-map has a non euclidian analogue, the
c�-map that plays an important role in the discussion of supergravity based black-
holes, another instance of geometry that is extensively discussed in the parallel book
[90].

Since these constructions involve an extensive use of advanced mathematical
techniques and a lot of intermediate steps, just in the same spirit as that adopted
in previous chapters, I confine myself to quote without development the two basic
definitions of special Kähler geometry and of c-map, referring the reader to [90] for
all further mathematical information.
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9.1.5 Special Kähler Geometry

In this section we present the definition of Special Kähler Geometry. Let us begin by
summarizing some relevant concepts and definitions that are propaedeutical to the
main one.

Hodge–Kähler Manifolds

Consider a line bundleL
π−→M over a Kähler manifoldM . By definition this is a

holomorphic vector bundle of rank r = 1. For such bundles the only available Chern
class is the first:

c1(L ) = i

2
∂̄

(
h−1 ∂ h

) = i

2
∂̄ ∂ log h (9.1.6)

where the 1-component real function h(z, z̄) is some hermitian fibremetric onL . Let
ξ(z) be a holomorphic section of the line bundle L : noting that under the action of
the operator ∂̄ ∂ the term log

(
ξ̄ (z̄) ξ(z)

)
yields a vanishing contribution, we conclude

that the formula in Eq. (9.1.6) for the first Chern class can be re-expressed as follows:

c1(L ) = i

2
∂̄ ∂ log ‖ ξ(z) ‖2 (9.1.7)

where ‖ ξ(z) ‖2 = h(z, z̄) ξ̄ (z̄) ξ(z) denotes the norm of the holomorphic section
ξ(z).

Equation (9.1.7) is the starting point for the definition ofHodge–Kählermanifolds.
A Kähler manifold M is a Hodge manifold if and only if there exists a line bundle
L

π−→M such that its first Chern class equals the cohomology class of the Kähler
two-form K:

c1(L ) = [ K ] (9.1.8)

In local terms this means that there is a holomorphic section ξ(z) such that we can
write

K = i

2
gi j� dzi ∧ dz̄ j� = i

2
∂̄ ∂ log ‖ ξ(z) ‖2 (9.1.9)

Recalling the local expression of the Kähler metric in terms of the Kähler potential
gi j� = ∂i ∂ j�K (z, z̄), it follows from Eq. (9.1.9) that if the manifoldM is a Hodge
manifold, then the exponential of the Kähler potential can be interpreted as themetric
h(z, z̄) = exp (K (z, z̄)) on an appropriate line bundle L .

Connection on the Line Bundle

On any complex line bundle L there is a canonical hermitian connection (see
Eq.8.2.16) defined as:

θ ≡ h−1 ∂ h = 1
h ∂i h dzi ; θ̄ ≡ h−1 ∂̄ h = 1

h ∂i� h dz̄i�

(9.1.10)
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For the line-bundle advocated by the Hodge-Kähler structure we have

[
∂̄ θ

] = c1(L ) = [K] (9.1.11)

and since the fibre metric h can be identified with the exponential of the Kähler
potential we obtain:

θ = ∂ K = ∂iK dzi ; θ̄ = ∂̄ K = ∂i�K dz̄i�

(9.1.12)

To define special Kähler geometry, in addition to the afore-mentioned line–bundle
L we need a flat holomorphic vector bundle S V −→ M whose sections play
an important role in the construction of the supergravity Lagrangians. For reasons
intrinsic to such constructions the rank of the vector bundleS V must be 2 nV where
nV is the total number of vector fields in the theory. If we have n-vector multiplets
the total number of vectors is nV = n + 1 since, in addition to the vectors of the
vector multiplets, we always have the graviphoton sitting in the graviton multiplet.
On the other hand the total number of scalars is 2n. Suitably paired into n-complex
fields zi , these scalars span the n complex dimensions of the base manifold M to
the rank 2n + 2 bundle S V −→ M .

Special Kähler Manifolds

We are now ready to give the first of two equivalent definitions of special Kähler
manifolds. We can formulate it as follows. A Hodge Kähler manifold is Special
Kähler (of the local type) if there exists a completely symmetric holomorphic 3-
index section Wi jk of (T �M )3 ⊗ L 2 (and its antiholomorphic conjugate Wi∗ j∗k∗ )
such that the following identities are satisfied and the Riemann tensor of the Levi-
Civita connection can be written as follows:

∂m∗ Wi jk = 0 ∂m Wi∗ j∗k∗ = 0

∇[m Wi] jk = 0 ∇[m Wi∗] j∗k∗ = 0

Ri∗ j�∗k = g�∗ j gki∗ + g�∗k g ji∗ − e2K Wi∗�∗s∗ Wtk j g
s∗t (9.1.13)

In the above equations ∇ denotes the covariant derivative with respect to both the
Levi-Civita and the U(1) holomorphic connection of the above mentioned Hodge
line-bundle. In the case of Wi jk , the U(1) weight is p = 2.

Out of the Wi jk we can construct covariantly holomorphic sections of weight 2
and - 2 by setting:

Ci jk = Wi jk eK ; Ci� j�k� = Wi� j�k� eK (9.1.14)

The flat bundle mentioned in the previous subsection apparently does not appear in
this definition of special geometry. Yet it is there. It is indeed the essential ingredient
in the second definition whose equivalence to the first we shall shortly outline.
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Let L
π−→M denote the complex line bundle whose first Chern class equals

the cohomology class of the Kähler form K of an n-dimensional Hodge–Kähler
manifold M . Let S V −→ M denote a holomorphic flat vector bundle of rank
2n + 2 with structural group Sp(2n + 2,R). Consider tensor bundles of the type
H = S V ⊗ L . A typical holomorphic section of such a bundle will be denoted
by Ω and will have the following structure:

Ω =
(

XΛ

FΣ

)
Λ,Σ = 0, 1, . . . , n

By definition the transition functions between two local trivializations Ui ⊂ M and
U j ⊂ M of the bundle H have the following form:

(
X
F

)

i

= e fi j Mi j

(
X
F

)

j

where fi j are holomorphicmapsUi ∩ U j → Cwhile Mi j is a constant Sp(2n + 2,R)

matrix. For a consistent definition of the bundle the transition functions are obvi-
ously subject to the cocycle condition on a triple overlap: e fi j + f jk+ fki = 1 and
Mi j M jk Mki = 1.

Let i〈 | 〉 be the compatible hermitian metric on H

i〈Ω | Ω̄〉 ≡ −iΩT

(
0 11

−11 0

)
Ω̄

Given these preliminarieswe formulate the second definition of special Kähler geom-
etry as follows. We say that a Hodge–Kähler manifold M is special Kähler if
there exists a bundle H of the type described above such that for some section
Ω ∈ Γ (H ,M ) the Kähler two form is given by:

K = i

2
∂∂̄ log

(
i〈Ω | Ω̄〉) = i

2
gi, j∗ dzi ∧ dz̄ j∗

.. (9.1.15)

From the point of view of local properties, Eq. (9.1.15) implies that we have an
expression for the Kähler potential in terms of the holomorphic section Ω:

K = −log
(
i〈Ω | Ω̄〉) = −log

[
i
(
X̄ΛFΛ − F̄Σ XΣ

)]
(9.1.16)

The relation between the two definitions of special manifolds is obtained by intro-
ducing a non–holomorphic section of the bundle H according to:

V =
(

LΛ

MΣ

)
≡ eK /2Ω = eK /2

(
XΛ

FΣ

)
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so that Eq. (9.1.16) becomes:

1 = i〈V | V̄ 〉 = i
(
L̄ΛMΛ − M̄Σ LΣ

)
(9.1.17)

Since V is related to a holomorphic section by Eq. (9.1.5) it immediately follows
that:

∇i� V =
(

∂i� − 1

2
∂i�K

)
V = 0 (9.1.18)

On the other hand, from Eq. (9.1.17), defining:

Ui = ∇i V =
(

∂i + 1

2
∂iK

)
V ≡

(
f Λ
i

hΣ |i

)

Ūi� = ∇i� V̄ =
(

∂i� + 1

2
∂i�K

)
V̄ ≡

(
f̄ Λ
i�

h̄Σ |i�

)

it follows that:
∇iU j = iCi jk gk��

Ū�� (9.1.19)

where∇i denotes the covariant derivative containing both the Levi-Civita connection
on the bundleT M and the canonical connection θ on the line bundleL . In this way
we reveal the existence of the completely symmetric tensor Ci jk and all the other
identities follow. For further details we refer the reader to [90].

The Vector Kinetic Matrix NΛΣ in Special Geometry

In the construction of supergravity actions another essential item is the complex
symmetric matrix NΛΣ whose real and imaginary parts are necessary in order to
write the kinetic terms of the vector fields. The matrix NΛΣ constitutes an integral
part of the Special Geometry set up and we provide its general definition in the
following lines. Explicitly NΛΣ which, in relation to its interpretation in the case
of Calabi–Yau threefolds, is named the period matrix, is defined by means of the
following relations:

M̄Λ = NΛΣ L̄Σ ; hΣ |i = NΛΣ f Σ
i (9.1.20)

which can be solved introducing the two (n + 1) × (n + 1) vectors

f Λ
I =

(
f Λ
i

L̄Λ

)
; hΛ|I =

(
hΛ|i
M̄Λ

)

and setting:
NΛΣ = hΛ|I ◦ (

f −1
)I

Σ
(9.1.21)
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9.1.6 The Quaternionic Kähler Geometry in the Image
of the c-Map

A very rich class of geometries is made by those Quaternionic Kähler manifolds that
are in the image of the c-map.2 This latter

c-map : SK n =⇒ QM 4n+4 (9.1.22)

is a universal construction that starting from an arbitrary Special Kähler manifold
SK n of complex dimension n, irrespectively whether it is homogeneous or not,
leads to a unique Quaternionic Kähler manifoldQM 4n+4 of real dimension 4n + 4
which containsSK n as a submanifold. The precise modern definition of the c-map,
originally introduced in [56, 77], is provided below.

Let SK n be a special Kähler manifold whose complex coordinates we denote
by zi and whose Kähler metric we denote by gi j� . Let moreover NΛΣ(z, z̄) be the
symmetric period matrix defined by Eq. (9.1.21), introduce the following set of 4n +
4 coordinates:

{
qu

} ≡ {U, a}︸ ︷︷ ︸
2 real

⋃
{zi }︸︷︷︸

n complex
︸ ︷︷ ︸
2n real

⋃
Z = {ZΛ , ZΣ }︸ ︷︷ ︸

(2n+2) real

(9.1.23)

Let us further introduce the following (2n + 2) × (2n + 2) matrixM−1
4 :

M−1
4 =

(
ImN + ReN ImN −1 ReN −ReN ImN −1

− ImN −1 ReN ImN −1

)
(9.1.24)

which depends only on the coordinate of the Special Kähler manifold. The c-map
image ofSK n is the unique Quaternionic Kähler manifoldQM 4n+4 whose coor-
dinates are the qu defined in (9.1.23) and whose metric is given by the following
universal formula

ds2QM = 1

4

(
dU2 + 4gi j� dz j d z̄ j� + e−2U (da + ZT

CdZ)2 − 2 e−U dZT M−1
4 dZ

)

(9.1.25)

2Not all non-compact, homogeneous Quaternionic Kähler manifolds which are relevant to super-
gravity (which are normal, i.e. exhibiting a solvable group of isometries having a free and transitive
action on it) are in the image of the c-map, the only exception being the quaternionic projective
spaces [40, 64].
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The metric (9.1.25) has the following positive definite signature

sign
[
ds2QM

] =
⎛

⎝+, · · · ,+︸ ︷︷ ︸
4+4n

⎞

⎠ (9.1.26)

since the matrixM−1
4 is negative definite.

In the case the Special Kähler pre-image is a symmetric space US K /HS K , the
manifold QM turns out to be a symmetric space as well, UQ/HQ . In any case it is
Quaternionic Kähler since there are general formulas for the three complex structures
and for the su(2) connection with the necessary properties. We refer to [90] for all
details.

9.2 The Geometric Role of Solvable Algebras and the Tits
Satake Projection

In the last section of the present chapter we sketch the history of a relatively new
development in Geometry which occurred over the last twenty years under the cru-
cial influence of supergravity. This development is based on a mathematical theory
pertaining to Lie Algebras which, although it has its roots in mathematical work of
the 1960s [20, 154, 163], contributed by two great algebrists, Jacques Tits and Ichiro
Satake (see Fig. 9.13), yet fully revealed its profound significance for Geometry and
Physics only much later, by the end of the XXth century, and, as anticipated, within
the context of supergravity.

The addressed topics is theTits-Satake projection, a constructionwhich, according
to certain rules, from a class of homogeneous manifolds, extracts a single represen-
tative of the entire class. What is extremely surprising and inspiring is that such a
projection, invented long before the advent of supergravity special geometries, has
very nice properties with respect to special structures. Indeed it maps special Käh-
ler manifolds into special Kähler manifolds, quaternionic Kähler into quaternionic
Kähler and commutes with the c-map discussed in the previous section. Actually it
also commutes with another map, the c�-map, which is relevant for the construction
of supergravity black-hole solutions and is thoroughly illustrated in [90].

A conceptual procedure specially cheered by theoretical physicists is that of
Universality Classes. Considering complex phenomena like, for instance, phase-
transitions one looks for universal features that are the same for entire classes of
such phenomena. After grouping the multitude of cases into universality classes,
one tries to construct a theoretical model of the behavior shared by all elements of
each class. A mathematical well founded projection is likely to provide a power-
ful weapon to this effect. Indeed one might expect that there are universal features
shared by all cases that have the same projection and that the theoretical model of
this shared behavior is encoded in the algebraic structure of the projection image. In
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Fig. 9.13 On the left J. Tits (1930 Uccle, Belgium). On the right Ichiro Satake (1927 Yamaguchi
Japan - 2014 Tokyo Japan). Jacques Tits was born in Uccle, on the southern outskirts of Brussels.
He graduated from the Free University of Brussels in 1950 with a dissertation Généralisation des
groupes projectifs basés sur la notion de transitivité. From 1956 to 1962 Tits was an assistant at
the University of Brussels. He became professor there in 1962 and remained in this role for two
years before accepting a professorship at the University of Bonn in 1964. In 1973 he was offered
the Chair of Group Theory at the College de France which he occupied until his retirement in 2000
being naturalised French citizen since 1974. Jacques Tits has given very prominent contributions
to the advancement of Group Theory in many directions and he is especially known for the Theory
of Buildings, which he founded, and for the Tits alternative, a theorem on the structure of finitely
generated groups. After his retirement from the College the France, a special Vallée-Poussin Chair
was created for him at the University of Louvain. Ichiro Satake was born in the Province of Yam-
aguchi in Japan and graduated from the University of Tokyo in 1959. He held various academic
positions in the USA and since 1968 to his retirement in 1983 he was Full Professor of Mathematics
at the University of California, Berkeley. He is specially known for his contributions to the theory of
algebraic groups and for the Satake diagrams that classify the real forms of a complex Lie algebra

[90] it is shown that this is precisely what happens with the Tits-Satake projection
that captures universal geometrical features of supergravity models.

Since the interplay betweenMathematics and Theoretical Physics has been essen-
tial in the development of this newchapter of homogeneous space geometrywebriefly
recall the key facts of this short but intellectually intense history.

(1) In the early 1990s, as we have already reported, B. de Wit, A. Van Proeyen,
F. Vanderseypen studied the classification of homogeneous special manifolds
admitting a solvable transitive group of isometries [63, 64]. This work extended
and completed the results obtained several years before by Alekseevsky in rela-
tion with the classification of quaternionic manifolds also admitting a transitive
solvable group of isometries [2].

(2) In 1996–1998, L. Andrianopoli, R. D’Auria, S. Ferrara, P. Fré and M. Trigiante
explored the general role of solvable Lie algebras in supergravity [4, 5, 78, 165],



266 9 Geometry Becomes Special

pointing out that, since all homogenous scalar manifolds of all supergravity
models are of the non-compact type, they all admit a description in terms of
a solvable group manifold. The solvable representation of the scalar geometry
was shown to be particularly valuable in connection with the description of BPS
black hole solutions of various supergravity models.

(3) In the years 1999–2005 Thibaut Damour, Marc Henneaux, Hermann Nicolai,
Bernard Julia, F. Englert, P. Spindel and other collaborators, elaborating on old
ideas of V.A. Belinsky, I.M. Khalatnikov, E.M. Lifshitz [11, 12, 72], intro-
duced the conception of rigid cosmic billiards [28, 50–54, 58, 65–67, 71, 114,
123, 124]. According to this conception the various dimensions of a higher
dimensional gravitational theory are identified with the generators of the Cartan
Subalgebra H of a supergravity motivated Lie algebra and cosmic evolution
takes place in a Weyl chamber ofH . Considering the Cartan scalar fields as the
coordinate of a fictitious ball, during cosmic evolution such a ball scatters on
the walls of the Weyl chambers and this pictorial image of the phenomenon is
at the origin of its denomination cosmic billiard. In this context the distinction
between compact and non-compact directions of the Cartan subalgebra appeared
essential and this brought the Tits Satake projection into the game.

(4) In 2003–2005 F. Gargiulo, K. Rulik, P. Fré, A.S. Sorin and M. Trigiante devel-
oped the conception of soft cosmic billiards [81, 86, 87], corresponding to exact,
purely time dependent solutions of supergravity, including not only the Cartan
fields but also those associated with roots which dynamically construct theWeyl
chamber walls advocated by rigid cosmic billiards.

(5) In 2005, Fré, Gargiulo and Rulik constructed explicit examples of soft cosmic
billiards in the case of a non maximally split symmetric manifold. In that context
they analyzed the role of the Tits Satake projection and introduced the new
mathematical concept of Paint Group [80].

(6) In 2007, P. Fré, F. Gargiulo, J. Rosseel, K. Rulik, M. Trigiante and A. Van
Proeyen [79] axiomatized the Tits Satake projection for all homogeneous spe-
cial geometries. They based their formulation of the projection on the intrinsic
definition of thePaint Group as the group of outer automorphisms of the solvable
transitive group of motion of the homogeneous manifold. This is the theory that
is thoroughly explained in an appropriate chapter of [90]. Up to the knowledge
of this author, this theory was never previously developed in the mathematical
literature.

(7) In the years 2009–2011 the integration algorithm utilized in the framework of
soft cosmic billiards was extended by P. Fré, A.S. Sorin and M. Trigiante to
the case of spherical symmetric black-holes for manifolds in the image of the
c�-map [42, 82, 83].

(8) In 2011, P. Fré, A.S. Sorin and M. Trigiante demonstrated that the classification
of nilpotent orbits for a non maximally split Lie algebra depends only on its
Tits-Satake projection and it is a property of the Tits-Satake universality class
(see Chap.10).
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Through the above sketched historical course, which unfolded in about a decade,
the theory of the Tits-Satake projection has acquired a quite solid and ramified profile,
intertwined with the c and c� maps that opens new viewpoints and provides new
classification tools in the geometry of homogeneousmanifolds and symmetric spaces.
Although the theory is distinctively algebraic and geometric, yet it is poorly known
in the mathematical community due to its supergravity driven origins. Hopefully its
full-fledged exposition included in [90] will improve its status in the mathematical
club.



Chapter 10
Black Holes: The Physics of Geometry

Deep into that darkness peering, long I stood there, wondering,
fearing, doubting, dreaming dreams no mortal ever dared to
dream before

Edgar Allan Poe

10.1 An Exciting Historical Moment

When on September 14th 2015 the gravitational wave signal emitted 1.5 billion year
ago by two coalescing black stars was detected at LIGO I and LIGO II, we not only
obtained a new spectacular confirmation of General Relativity but we actually saw
the dynamical process of formation of the most intriguing objects populating the
Universe, namely black holes (Fig. 10.1).

Black Holes are on one side physical objects capable of interacting with the
emission of enormous quantities of energy, on the other side they are just pure
geometries. Indeed a classical black-hole is nothing else but a solution of Einstein
equations which are just geometrical statements on the curvature tensor.

10.2 A Short History of Black Holes

It seems that the first to conceive the idea of what we call nowadays a black-hole was
the English Natural Philosopher and Geologist John Michell (1724–1793). As early
as 1783, Michell, member of the Royal Society, had invented a device to measure
Newton’s gravitational constant, namely the torsion balance that he built indepen-
dently from its co-inventor Charles Augustin de Coulomb. He did not live long
enough to put into use his apparatus which was inherited by Cavendish. In 1784 in a
letter addressed precisely to Cavendish, John Michell advanced the hypothesis that
there could exist heavenly bodies so massive that even light could not escape from
their gravitational attraction. This letter surfaced back to the attention of contempo-
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Fig. 10.1 The gravitational wave signal emitted in the coalescence of two black holes which
occurred 1.5 billion of years ago was simultaneously detected september 14th 2015 by the two
interferometers LIGO I and LIGO II

rary scientists only in the later seventies of the XXth century. Before that finding,
credited to be the first inventor of black-holes was Pierre Simon Laplace.

Laplace

Pierre Simon Laplace (see Fig. 10.2) was born in Beaumont en Auge in Normandy
in the family of a poor farmer. He could study thanks to the generous help of some
neighbors. Later with a recommendation letter of d’Alembert he entered the military
school of Paris where he became a teacher of mathematics. There he started his
monumental and original research activity inMathematics and Astronomy that made
him one of the most prominent scientists of his time and qualified him to the rank
of founder of modern differential calculus, his work being a pillar of XIXth century
Mathematical Physics. A large part of his work on Astronomy was still done under
theAncienRegime and dates back to the period 1771–1787.He proved the stability of
the Solar System and developed all themathematical tools for the systematic calculus
of orbits in Newtonian Physics. His results were summarized in the two fundamental
booksMecanique Cèleste andExposition du Système du Monde. Besides introducing
the first idea of what we call nowadays a black-hole, Laplace was also the first to
advance the hypothesis that the Solar System had formed through the cooling of a
globular–shaped, rotating, cluster of very hot gas (a nebula). In later years of his career
Laplace gave fundamental and framing contributions to the mathematical theory of
probability. His name is attached to numberless corners of differential analysis and
function theory. He receivedmany honors both in France and abroad.Hewasmember
of all most distinguishedAcademies of Europe. He also attempted the political career
serving as Minister of Interiors in one of the first Napoleonic Cabinets, yet he was
soon dismissed by the First Consul as a person not qualified for that administrative
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Fig. 10.2 Pierre Simon
laplace (1749–1827)

job notwithstanding Napoleon’s recognition that he was a great scientist. Politically
Laplace was rather cynic and ready to change his opinions and allegiance in order to
follow the blowing wind. Count of the First French Empire, after the fall of Napoleon
he came on good terms with the Bourbon Restoration and was compensated by the
King with the title of marquis.

In the 1796 edition of his monumental book Exposition du Système du Monde
he presented exactly the same argument put forward in Michell’s letter, developing
it with his usual mathematical rigor. All historical data support the evidence that
Michell and Laplace came to the same hypothesis independently. Indeed the idea
was quite mature for the physics of that time, once the concept of escape velocity ve

had been fully understood.

The Escape Velocity

Consider a spherical celestial body of mass M and radius R and let us pose the
question what is the minimum initial vertical velocity that a point–like object located
on its surface, for instance a rocket, should have in order to be able to escape to infinite
distance from the center of gravitational attraction. Energy conservation provides the
immediate answer to such a problem. At the initial moment t = t0 the energy of the
missile is:

E = 1
2 mm v2e − G M mm

R
(10.2.1)

where G is Newton’s constant. At a very late time, when the missile has reached
R = ∞ with a final vanishing velocity its energy is just 0 + 0 = 0. Hence E



272 10 Black Holes: The Physics of Geometry

vanished also at the beginning, which yields:

ve =
√
2

G M

R
(10.2.2)

If we assume that light travels at a finite velocity c, then there could exist heavenly
bodies so dense that: √

2
G M

R
> c (10.2.3)

In that case not even light could escape from the gravitational field of that body
and no-one on the surface of the latter could send any luminous signal that distant
observers could perceive. In other words by no means distant observers could see
the surface of that super-massive object and even less what might be in its interior.

Obviously neither Michell nor Laplace had a clear perception that the speed of
light c is always the same in every reference frame, since Special Relativity had to
wait its own discovery for another century.Yet Laplace’s argumentwas the following:
let us assume that the velocity of light is some constant number a on the surface of
the considered celestial body. Then he proceeded to an estimate of the speed of light
on the surface of the Sun, which he could do using the annual light aberration in
the Earth-Sun system. The implicit, although unjustified, assumption was that light
velocity is unaffected, or weakly affected, by gravity. Analyzing such an assumption
in full-depth it becomes clear that it was an anticipation of Relativity in disguise.

Actually condition (10.2.3) has an exact intrinsic meaning in General Relativity.
Squaring this equation we can rewrite it as follows:

R > rS ≡ 2
G M

c2
≡ 2m (10.2.4)

where rS is the Schwarzschild radius of a body of mass M , namely the unique
parameter which appears in the Schwarzschild solution of Einstein Equations.

So massive bodies are visible and behave qualitatively according to human com-
mon sense as long as their dimensions are much larger then their Schwarzschild
radius. Due to the smallness of Newton’s constant and to the hugeness of the speed
of light, this latter is typically extremely small. Just of the order of a kilometer for a
star, and about 10−23 cm for a human body. Nevertheless, sooner or later all stars col-
lapse and regions of space–time with outrageously large energy–densities do indeed
form, whose typical linear size becomes comparable to rS . The question of what
happens if it is smaller than rS is not empty, on the contrary it is a fundamental one,
relatedwith the appropriate interpretation ofwhat lies behind the apparent singularity
of the Schwarzschild metric at r = rS .

The Event Horizon

Any singularity is just the signal of some kind of criticality. At the singular point
a certain description of physical reality breaks down and it must be replaced by a
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different one: for instance there is a phase–transition and the degrees of freedom that
capturemost of the energy in an ordered phase becomenegligiblewith respect to other
degrees of freedom that are dominating in a disordered phase. What is the criticality
signaled by the singularity r = rS of the Schwarzschild metric? Is it a special feature
of this particular solution of Einstein Equations or it is just an instance of a more
general phenomenon intrinsic to the laws of gravity as stated by General Relativity?
The answer to the first question is encoded in the wording event horizon. The answer
to the second question is that event horizons are a generic feature of static solutions
of Einstein equations.

An event-horizon H is a hypersurface in a pseudo-Riemannian manifold (M , g)

which separates two sub-manifolds, one E ⊂ M , named the exterior, can communi-
cate with infinity by sending signals to distant observers, the other BH ⊂ M , named
the black-hole, is causally disconnected from infinity, since no signal produced in
BH can reach the outside region E. The black-hole is the region deemed by Michell
and Laplace where the escape velocity is larger than the speed of light.

In order to give a precise mathematical sense to the above explanation of event-
horizons a lot of things have to be defined and interpreted. First of all what is infinity
and is it unique? Secondly which kind of hypersurface is an event-horizon? Thirdly
can we eliminate the horizon singularity by means of a suitable analytic extension
of the apparently singular manifold? Finally, how do we define causal relations in a
curved Lorentzian space-time?

The answers were found in the course of the XXth century and constitute the
principal milestones in the history of black-holes.

Schwarzschild

Karl Schwarzschield (see Fig. 10.3) was born in Frankurt am Mein in a well to do
Jewish family. Very young he determined the orbits of binary stars. Since 1900 hewas
Director of the Astronomical Observatory of Göttingen, the hottest point of the world

Fig. 10.3 Karl
Schwarzschield (1873–1916)
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for Physics and Mathematics at that time and in subsequent years. Famous scientist
and member of the Prussian Academy of Sciences in 1914 he enrolled as a volunteer
in the German Army and went to war first on the western and then on the eastern
front against Russia. At the front in 1916 he wrote two papers. One containing the
quantization rules discovered by him independently from Sommerfeld. The second
containing the Schwarzschild solution ofGeneral Relativity.At the front he had learnt
General Relativity just two months before, by reading Einstein’s paper of November
1915. He sent his paper to Einstein who wrote in reply : …I did not expect that one
could formulate the exact solution of the problem in such a simple way. Few months
later Schwarschild died from an infection taken at the front. Although Schwarzschild
metric [156] was discovered in 1916 (see Fig. 10.3), less than six months after the
publication of General Relativity, its analytic extension, that opened the way to a
robust mathematical theory of black-holes, was found only forty-five years later, six
after Einstein’s death.

Kruskal

Student of the University of Chicago, Martin Kruskal (see Fig. 10.4) obtained his
Ph.D. from New York University and was for many years professor at Princeton
University. In 1989 he joined Rutgers University where he remained the rest of his
life.Mathematician and Physicist,Martin Kruskal gave very relevant contributions in
theoretical plasma physics and in several areas of non-linear science. He discovered
exact integrability of some non-linear differential equations and is reported to be the
inventor of the concept of solitons. In 1960, Kruskal found a one-to-many coordinate
transformation [132] that allowed him to represent Schwarzschild space-time as a
portion of a larger space-time where the locus r = rS is non-singular, rather it is
a well-defined light-like hypersurface constituting precisely the event-horizon. A
similar coordinate change was independently proposed the same year also by the
Australian-Hungarian mathematician Georges Szekeres (see Fig. 10.4).

Szekeres

Born in Budapest, Szekeres graduated from Budapest University in Chemistry. As a
Jewish he had to escape from Nazi persecution and he fled with his family to China
where he remained under Japanese occupation till the beginning of the Communist
Revolution. In 1948 he was offered a position at the University of Adelaide in Aus-
tralia. In this country he remained the rest of his life. Notwithstanding his degree
in chemistry Szekeres was a Mathematician and he gave relevant contributions in
various of its branches. He is among the founders of combinatorial geometry.

The Gravitational Collapse

Thesemathematical results provided a solid framework for the description of the final
state in the gravitational collapse of those stars that are toomassive to stop at the stage
of white–dwarfs or neutron–stars. Robert Openheimer and H. Snyder in their 1939
paper, wrote:When all thermonuclear sources of energy are exhausted, a sufficiently
heavy star will collapse. Unless something can somehow reduce the star’s mass to
the order of that of the sun, this contraction will continue indefinitely...past white
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Fig. 10.4 Martin David Kruskal (1925–2006) on the left and George Szekeres (1911–2005) on the
right

dwarfs, past neutron stars, to an object cut off from communication with the rest of
the universe. Such an object, could be identified with the interior of the event horizon
in the newly found Kruskal space-time. Yet, since the Kruskal–Schwarzschild metric
is spherical symmetric such identification made sense only in the case the parent star
had vanishing angular momentum, namely was not rotating at all. This is quite rare
since most stars rotate.

Kerr and Petrov

In 1963 the New Zealand physicist Roy Kerr, working at the University of Texas
(see Fig. 10.5), found the long sought for generalization of the Schwarzschild metric
that could describe the end-point equilibrium state in the gravitational collapse of a
rotating star. Kerr metric [122] introduced the third missing parameter characterizing
a black-hole, namely the angular momentum J . The first is the mass M , known since
Schwarzschild’s pioneering work, the second, the charge Q (electric, magnetic or
both) had been introduced already in the first two years of life of General Relativity.
Indeed the Reissner–Nordström metric, which solves coupled Einstein–Maxwell
equations for a charged spherical body, dates back to 1916–1918 (see Fig. 10.6).

The long time delay separating the early finding of the spherical symmetric solu-
tions and the construction of the axial symmetric Kerr metric is explained by the
high degree of algebraic complexity one immediately encounters when spherical
symmetry is abandoned. Kerr’s achievement would have been impossible without
the previous monumental work of the young Russian theoretician A.Z. Petrov. Edu-
cated in the same University of Kazan where, at the beginning of the XIXth cen-
tury Lobachevsky had first invented non-euclidian geometry, in his 1954 doctoral
dissertation, Petrov conceived a classification of Lorentzian metrics based on the
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Fig. 10.5 Born in 1934 in New Zealand, where later he was professor until his retirement, Kerr
worked for several years in the U.S.A. and in particular in Texas. There, in 1963, he found what
was sought for a long time by many people, i.e. the generalization of Schwarzschild solution with
cylindrical symmetry and angular momentum: The rotating black hole!

properties of the corresponding Weyl tensor. This leads to the concept of principal
null-directions. According to Petrov there are exactly six types of Lorentzian metrics
and, in current nomenclature, Schwarzschild and Reissner Nodström metrics are of
Petrov type D. This means that they have two double principal null directions. Kerr
made the hypothesis that the metric of a rotating black-hole should also be of Petrov
type D and searching in that class he found it.

From 1964 to 1974

The decade from 1964 to 1974 witnessed a vigorous development of the mathe-
matical theory of black-holes. Brandon Carter solved the geodesic equations for the
Kerr-metric, discovering a fourth hidden first integral which reduces these differen-
tial equations to quadratures. In the same time through thework of StephenHawking,
George Ellis, Roger Penrose and several others, general analytic methods were estab-
lished to discuss, represent and classify the causal structure of space-times. Slowly
a new picture emerged. Similarly to soliton solutions of other non-linear differential
equations, black-holes have the characteristic features of a new kind of particles,
mass, charge and angular momentum being their unique and defining attributes.
Indeed it was proved that, irrespectively from all the details of its initial structure,
a gravitational collapsing body sets down to a final equilibrium state parameterized
only by (M, J, Q) and described by the so called Kerr–Newman metric, the gener-
alization of the Kerr solution which includes also the Reissner Nordström charges.
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Fig. 10.6 Hans Jacob Reissner (1874–1967) was a German aeronautical engineer with a passion
for mathematical physics. He was the first to solve Einstein’s field equations with a charged electric
source and he did that already in 1916. Emigrated to theUnited States in 1938 he taught at the Illinois
Institute of Technology and later at the Polytechnic Institute of Brooklyn. Reissner’s solution was
retrieved and refined in 1918 by Gunnar Nordström (1881–1923) a Finnish theoretical physicist
who was the first to propose an extension of space-time to higher dimensions. Independently from
Kaluza and Klein and as early as 1914 he introduced a fifth dimension in order to construct a unified
theory of gravitation and electromagnetism. His theory was, at the time, a competitor of Einstein’s
theory. Working at the University of Leiden in the Netherlands with Paul Ehrenfest, in 1918 he
solved Einstein field equations for a spherically symmetric charged body thus extending the Hans
Reissner’s results for a point charge

The Information Loss

This introduced the theoretical puzzle of information loss. Through gravitational
evolution, a supposedly coherent quantum state, containing a detailed fine structure,
can evolve to a new state where all such information is unaccessible, being hidden
behind the event horizon. The information loss paradox became even more severe
when Hawking on one side demonstrated that black-holes can evaporate through a
quantum generated thermic radiation and on the other side, in collaboration with
Bekenstein, he established, that the horizon has the same properties of an entropy
and obeys a theorem similar to the second principle of thermodynamics.

Hence from the theoretical view-point black-holes appear to be much more pro-
found structures than just a particular type of classical solutions of Einstein’s field
equations. Indeed they provide a challenging clue into the mysterious realm of quan-
tum gravity where causality is put to severe tests and needs to be profoundly revised.
For this reason the study of black-holes and of their higher dimensional analogues
within the framework of such candidates to a Unified Quantum Theory of all Inter-
actions as Superstring Theory is currently a very active stream of research.
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Laplace’s Demon

Ironically such a Revolution in Human Thought about the Laws of Causality, whose
settlement is not yet firmly acquired,was initiated twocentury agoby the observations
of Laplace, whose unshakable faith in determinism is well described by the following
quotation from the Essai philosophique sur les probabilités. In that book he wrote:
We may regard the present state of the universe as the effect of its past and the cause
of its future. An intellect which at a certain moment would know all forces that set
nature in motion, and all positions of all items of which nature is composed, if this
intellect were also vast enough to submit these data to analysis, it would embrace
in a single formula the movements of the greatest bodies of the universe and those
of the tiniest atom; for such an intellect nothing would be uncertain and the future
just like the past would be present before its eyes. The vast intellect advocated by
Pierre Simon and sometimes named the Laplace demonmight find some problems in
reconstructing the past structure of a star that had collapsed into a black hole even if
that intellect had knowledge of all the conditions of the Universe at that very instant
of time.

From the astronomical view-point the existence of black-holes of stellar mass has
been established through many overwhelming evidences, the best being provided
by binary systems where a visible normal star orbits around an invisible companion
which drags matter from its mate. Giant black-holes of millions of stellar masses
have also been indirectly revealed in the core of active galactic nuclei and also at the
center of our Milky Way a black hole is accredited.

Gravitational Wave Evidence

As we recalled at the beginning, in the last two years the detection of gravitational
events emitted in the coalescence of two compact stars, has provided new dramatic
evidence on the existence of black holes and on their formation. A spectacular almost
theatrical event which might be used as a convenient temporary conclusion of this
short history of black-holes, has been in the current 2017 year the direct detection,
both gravitational and electromagnetic, of the formation of a new black hole in the
coalescence of two neutron stars. Clearly this is just the conclusion of a chapter in
the story. A new exciting age has just started and we are going to learn much more
about these intriguing manifestations of space-time geometry that hide many of the
most profound secrets of quantum physics.

10.3 Black Holes in Supergravity and Superstrings

A new season of research in Black Hole theory started in the middle nineties of
the XXth century with the contributions of Sergio Ferrara, Renata Kallosh, Andrew
Strominger and Cumrun Vafa, that are described in the following short summary:
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1. In 1995 R. Kallosh, S. Ferrara and A. Strominger considered black holes in the
context of N = 2 supergravity and introduced the notion of attractors [75, 76].

2. In 1996 S. Ferrara (see Fig. 9.7) and R. Kallosh (see Fig. 10.7) formalized the
attractor mechanism for supergravity black holes [75, 76].

3. In 1996 A. Strominger (see Fig. 9.12) and C. Vafa (see Fig. 10.8) showed that
an extremal BPS black hole in d = 5 has a horizon area that exactly counts the
number of string microstates it corresponds to [162].1

4. In the years 1997–2000 the horizon area of BPS supergravity black holes was
interpreted in terms of a symplectic invariant constructed with the black hole
electromagnetic charges (for a review containing also an extensive bibliography
see [57]).

5. In the years 2006–2009 new insights extended the attractor mechanism to non
BPS black-holes [6, 13, 14, 21–25, 41, 103, 104, 120, 121, 166].

6. Since 2010 new exact integration techniques for Sugra Black Holes were found
by A. Sorin, P. Fré, M. Trigiante and their younger collaborators [42, 81–87].

10.4 The Black Holes Mathematically Discussed in the
Twin Book Advances in Geometry and Lie Algebras
from Supergravity

The intriguing relation between Geometry and Physics arises at several levels, the
most profound and challenging being provided by the identification of the horizon
areawith the statistical entropy of themysterious dynamical systemwhich is encoded
in a classical black hole solution.

Neither here, nor in the twin volume [90] we touch upon the physics of black
holes2 and on the exciting question of their interpretation in terms of microstates,
yet we can not avoid discussing their several nested geometrical aspects, glimpses
of which we provide next.

In the context of supergravity a black hole solution of Einstein equations comes
equipped with other associated geometrical data, namely those encoded in a set of
electromagnetic fields that are connections on suitable bundles and those encoded in
scalar fields that describe a map from 4-dimensional space-timeM4 to some internal
manifold whose geometry is dictated by supersymmmetry. Indeed the general form
of a bosonic supergravity lagrangian in D = 4 is the following one:

L (4) = √|det g|
[

R[g]
2

− 1

4
∂μφa∂μφbhab(φ) + ImNΛΣ FΛ

μν FΣ |μν

]

+1

2
ReNΛΣ FΛ

μν FΣ
ρσ εμνρσ , (10.4.1)

1There followed a vast literature some items of which are are quoted in [16, 49, 100, 101, 133,
141, 161]
2For a short but comprehensive exposition of basic black-hole physicswe refer the reader to Chaps. 2
and 3 in the second volume of [89] by the present author.
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Fig. 10.7 Renata Kallosh (on the left) born in Moscow in 1943 completed her Bachelor’s from
Moscow State University in 1966 and obtained her Ph.D. from Lebedev Physical Institute, Moscow
in1968. She thenheld aposition, as professor, at the same institute, beforemoving toCERNfor a year
in 1989. Kallosh joined StanfordUniversity in 1990 and continues towork there. She ismarriedwith
the famous cosmologist Andrei Linde. Renata Kallosh is renowned for her pioneering contributions
with Ferrara to the attractor mechanism in supergravity black holes, for her studies in supergravity
cosmology and for her early work with A. Van Proeyen on the AdS/CFT correspondence. Indeed
Kallosh and Van Proeyen were the first to propose the interpretation of the anti de Sitter group
as the conformal group on a brane boundary. Anna Ceresole (on the right), born 1961 in Torino,
graduated from Torino University in 1984 with a thesis on Kaluza Klein supergravity written under
the supervision of HermannNicolai and the author of this book. In 1989 she obtained her Ph.D. from
Stony Brook University under the supervision of Peter van Nieuwenhuizen. Post doctoral fellow at
Caltech for two years shewasAssistant Professor at the Politecnico di Torino for several years. Then
she became senior research scientist of INFN and joined the Torino University String Group. Anna
Ceresole has given many important contributions to the development of supergravity, in particular
in relation with special Kähler Geometry and black hole charges, duality transformations, gaugings
and inflaton potentials. She has worked both with younger students and post-doc and, in different
combinations, with all the main actors in the development of supergravity theory

The fields included in the theory are the metric gμν(x), nv abelian gauge fields
AΛ

ν , whose field strengths (or curvatures) we have denoted by FΛ
μν ≡ (∂μ AΛ

ν −
∂ν AΛ

μ)/2 and ns scalar fields φa that parameterize a scalar manifoldM D=4
scalar that, for

supersymmetry N > 2, is necessarily a coset manifold:

M D=4
scalar = UD=4

Hc
(10.4.2)

UD=4 being a non-compact real form of a semi-simple Lie group, essentially fixed by
supersymmetry and Hc its maximal compact subgroup. For N = 2 Eq. (10.4.2) is
not obligatory yet it is possible: a well determined class of symmetric homogeneous
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Fig. 10.8 Cumrun Vafa (on the left) was born in Tehran, Iran in 1960. He graduated from Alborz
High School and went to the US in 1977. He got his undergraduate degree from the Massachusetts
Institute of Technology with a double major in physics and mathematics. He received his Ph.D.
from Princeton University in 1985 under the supervision of Edward Witten. He then became a
junior fellow at Harvard, where he later got a junior faculty position. In 1989 he was offered a
senior faculty position, and he has been there ever since. Currently, he is the Donner Professor of
science at Harvard University. Vafa’s most relevant achievement is, together with Strominger, the
first example of interpretation of the Bekenstein Hawking black hole entropy in terms of superstring
microstates. He has also given pioneering contributions to topological strings, F-theory and to the
the general vision named geometric engineering of quantum field theories, which is a programme
aimed at decoding quantum field theories in terms of algebraic geometry constructions. Dieter
Luest (on the right) born in Chicago in 1956, graduated from the Ludvig Maximillian University in
Muenchen in 1985. He was postdoctoral fellow in Caltech, Pasadena, in the Max Planck Institute
in Muenchen and at CERN in Geneva. From 1993 to 2004 he was full professor of quantum field
theory at the von Humboldt University in Berlin. Since 2004 he made return to Muenchen where
he is both full professor at the Ludwig Maximilan University and research director at the Max
Planck Institute. Dieter Luest has given very important contributions in a large variety of topics
connected with string theory and supergravity, in particular in relation with black hole solutions,
D-brane engineering, Calabi Yau compactifications, double geometries, flux compactifications and
string cosmology

manifolds that are special Kähler manifolds fall into the set up of the present general
discussion.

Hence we see that we are dealing with geometries at three levels:

1. We deal with the geometry of space-timeM st
4 , encoded in its metric gμν which is

dynamical, in the sense that we have to determine it through the solution of field
equations, many possibilities being available, among which we have black-hole
geometries with event horizons and all the rest.

2. We deal with connections on a fibre bundle P
(
G ,M st

4

)
, whose base manifold

is the dynamically determined space-timeM st
4 and whose structural group is an

abelian group G of dimension equal to the number nv of involved gauge fields.
These connections are also dynamical in the sense that they have to be determined
as solutions of the coupled field equations.
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3. We deal with a fixed Riemannian geometry encoded in the target manifold
(10.4.2) of which the scalar fields φa are local coordinates. Any solution of
the coupled field equations defines a map

φ : M st
4 → M D=4

scalar (10.4.3)

of space-time into the scalar manifold.

There is still encoded into the lagrangian (10.4.1) another geometrical datum of
utmost relevance. Let us describe it. Considering the nv vector fields AΛ

μ let

F±|Λ
μν ≡ 1

2

[
FΛ

μν ∓ i

√|det g|
2

εμνρσ Fρσ

]
(10.4.4)

denote the self-dual (respectively antiself-dual) parts of the field-strengths. As dis-
played in Eq. (10.4.1) they are nonminimally coupled to the scalars via the symmetric
complex matrix

NΛΣ(φ) = i ImNΛΣ + ReNΛΣ (10.4.5)

The key point is that the isometry group UD=4 of the scalar manifold (10.4.2) is pro-
moted to a symmetry of the entire lagrangian through the projective transformations
of NΛΣ under the group action.3

Indeed the field strengths F±|Λ
μν plus their magnetic duals:

GΛ|μν ≡ 1
2 ε ρσ

μν

δL (4)

δFΛ
ρσ

(10.4.6)

fill up a 2 nv–dimensional symplectic representation of UD=4 which we call by the
name of W.

We rephrase the above statements by asserting that there is always a symplectic
embedding of the duality group UD=4,

UD=4 �→ Sp(2nv,R) ; nv ≡ # of vector fields (10.4.7)

so that for each element ξ ∈ UD=4 we have its representation by means of a suitable
real symplectic matrix:

ξ �→ Λξ ≡
(

Aξ Bξ

Cξ Dξ

)
(10.4.8)

satisfying the defining relation:

ΛT
ξ

(
0n×n 1n×n

−1n×n 0n×n

)
Λξ =

(
0n×n 1n×n

−1n×n 0n×n

)
(10.4.9)

3See Sect. 9.1.5 for the interpretation of NΛΣ in the context of Special Kähler Geometry.
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Under an element of the duality group the field strengths transform as follows:

(
F+
G +

)′
=

(
Aξ Bξ

Cξ Dξ

) (
F+
G +

)
;

(
F−
G −

)′
=

(
Aξ Bξ

Cξ Dξ

) (
F−
G −

)

(10.4.10)

where, by their own definitions we get:

G + = N F+ ; G − = N F− (10.4.11)

and the complex symmetric matrixN should transform as follows:

N ′ = (
Cξ + Dξ N

) (
Aξ + Bξ N

)−1
(10.4.12)

Choose a parametrization of the coset L(φ) ∈ UD=4, which assigns a definite group
element to every coset point identified by the scalar fields. Through the symplectic
embedding (10.4.8) this produces a definite φ-dependent symplectic matrix

(
A(φ) B(φ)

C(φ) D(φ)

)
(10.4.13)

in the W-representation of UD=4. In terms of its blocks the kinetic matrix N (φ)

is explicitly given by a formula that was found at the beginning of the 1980.s by
Gaillard–Zumino [95]:

N (φ) = [C(φ) − i D(φ)] [A(φ) − i B(φ)]−1 , (10.4.14)

As we have already remarked, the matrix N is the same which appears in the
definition of special Kähler geometry and it transforms according to Eq. (10.4.12).

Summarizing the geometrical structure of the bosonic supergravity lagrangian is
essentially encoded in two data. The duality-isometry group UD=4 and its symplectic
representation W that corresponds to the embedding (10.4.7).

A brilliant discovery that occurred in the first two decades of the XXIst century
can be dubbed the D = 3 approach to supergravity black-holes. Mainly originating
from the contributions included in the following papers [15, 24, 26, 96, 105, 106,
145], it consists of the following.

The radial dependenceof all the relevant functions parameterizing the supergravity
solution can be viewed as the field equations of another one-dimensional σ -model
where the evolution parameter τ is actually amonotonic function of the radial variable
r and where the target manifold is a pseudo-quaternionic manifold Q

(4n+4) related to
the quaternionic manifoldQ(4n+4) in the following way.4 The coordinates ofQ

(4n+4)
are the same as those of Q(4n+4), while the two metrics differ only by a change of
sign. Indeed we have

4Compare with Sect. 9.1.6.
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ds2Q = 1

4

[
dU2 + 2 gi j dzi d z̄ j + e−2U (da + ZT

CdZ)2 − 2 e−U dZT M4(z, z̄) dZ
]

⇓ Wick rot. (10.4.15)

ds2Q  = 1

4

[
dU2 + 2 gi j dzi d z̄ j + e−2U (da + ZT

CdZ)2 + 2 e−U dZT M4(z, z̄) dZ
]

(10.4.16)

In Eqs. (10.4.15), (10.4.16),C denotes the (2n +2)× (2n +2) antisymmetric matrix
defined over the fibres of the symplectic bundle characterizing special geometry,
while the negative definite, (2n + 2) × (2n + 2) matrixM4(z, z̄) is the one already
introduced in Eq. (9.1.24). The pseudo-quaternionic metric is non-Euclidean and it
has the following signature:

sign
(
ds2Q 

) =
⎛
⎝+ , . . . , +︸ ︷︷ ︸

2n+2

, − , . . . , −︸ ︷︷ ︸
2n+2

⎞
⎠ (10.4.17)

In thiswaywe arrive at aGeometry of the Geometries. As solutions of the σ -model
defined by the metric (10.4.16), all spherically symmetric black-holes correspond to
geodesics and consequently a geodetic in themanifoldQ encodes all the geometrical
structures listed below:

(a) A spherical black-hole metric,
(b) a spherical symmetric connection on the fibre bundle P

(
G ,M st

4

)
(c) a spherical symmetric map from M st

4 into the manifold (10.4.2)

The indefinite signature (10.4.17) introduces a clear-cut distinction between non-
extremal and extremal black-holes: the non-extremal ones correspond to time-like
geodesics, while the extremal black-holes are associated with light-like ones. Space-
like geodesics produce supergravity solutions with naked singularities [26].

In those cases where the Special Manifold SK n is a symmetric space UD=4
HD=4

also the quaternionic manifold defined by the metric (10.4.15) is a symmetric coset
manifold:

UD=3

HD=3
(10.4.18)

where HD=3 ⊂ UD=3 is the maximal compact subgroup of the U-duality group, in
three dimensions UD=3. The change of sign in the metric (10.4.17) simply turns the
coset (10.4.18) into a new one:

UD=3

H
D=3

(10.4.19)

where HD=3
 ⊂ UD=3 is another non-compact maximal subgroup of the U-duality

group whose Lie algebra H happens to be a different real form of the complexifi-
cation of the Lie algebra H of HD=3. That such a different real form always exists
within UD=3 is one of the group theoretical miracles of supergravity.
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Chapter6 of the twin book [90] contains a detailed analysis of the new very rich
geometric lore which emerges from the issue of black–hole constructions within
the σ -model approach, considering also multicenter and non spherical symmetric
solutions that correspond to maps, satisfying certain general conditions, of R3 into
the target manifold Ms = UD=3

H
D=3

. In such constructions all the issues discussed in
previous chapters of the present conceptual history enter the game in an essential
way:

1. Special Kähler Geometry,
2. Lie Algebra invariants,
3. c map,
4. Tits Satake projection and its universality classes,
5. Weyl Group and its extensions,
6. Classification of nilpotent orbits.

In the quoted chapter of the twin book [90], at the end of my mathematical
exposition I arrive at some conclusions on the upgrading of the episteme contributed
by such recent developments that I report here in toto, since they strongly pertain to
the conceptual history of symmetry.

10.5 Upgrading of the Episteme from the Supergravity
Approach to Black-Holes

Although the inspiring motivations for the quite recent research results I sketched
above come from Supergravity, yet the presented constructions are of genuine alge-
braic and geometrical character; indeed they might be understood and treated within
the scope of pure Mathematics. As usual, the role of supersymmetry is just that of
directing our choices, leading us to focus on special manifolds endowed with special
geometries.

Actually themethods and the constructions described above are general andmight
be dealt with no knowledge of supermultiplets and supercharges. Additional inspi-
ration coming from Supergravity is encoded in the strategic attention paid to the
Tits–Satake projection and to Tits–Satake universality classes, which, however, are
purely mathematical phenomena, self-contained in Lie algebra theory.

Even the very final physical motivation of constructing extremal black-hole solu-
tions might be forgotten once, in the spirit of the geometry of geometries, a physical–
geometrical problem has been mapped into another purely geometrical one.

Thus let us summarize into a list of points the mathematical logic of what we have
been discussing above.

(A) The problem of constructing extremal black-hole solutions is reduced to the
construction and classification of mappings:

Φ : R
3 =⇒ Ms (10.5.1)
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where (Ms, g) is a pseudo-Riemmannian manifold and the mapΦ satisfies both
the σ -model equations of motion and the stress-tensor vanishing condition:

∂i

(
∂Φμ

∂xi
∇μΦν

)
= 0 ; gμν(Φ) ∂iΦ

μ ∂ jΦ
ν = 0 (10.5.2)

(B) The geometrical problem posed in (A) can be considered for any Lorentzian-
manifold Ms but, instructed by supersymmetry, we localize it on the homoge-
neous manifolds:

Ms = UD=3

H
(10.5.3)

that are in the image of the c-map.
(C) For the reasons discussed at length in previous sections and chapters we are

actually interested only in those maps of the type (10.5.1) where:

Φ
[
R

3
] ⊂ UTS

D=3

H
TS

⊂ UD=3

H
(10.5.4)

namely where the image of the three-dimensional space R3 lies entirely inside
the Tits-Satake submanifold.

(D) The H–orbits of solutions can be classified and explicitly constructed thanks to
an algorithm, thoroughly explained in [90], that associates such solutions to each
H–orbit of nilpotent operators X ∈ K, where K is the orthogonal complement
of the subalgebra H ⊂ U. The classification of U-nilpotent orbits is a frontier
topic in Mathematics and, further specialized to H ⊂ U orbits, involves items
and techniques generically not yet available in the mathematical supermarket,
like the generalized Weyl group GW and the H-Weyl subgroup WH.

(E) Within the class of manifolds in the image of the c-map, the problem of H

nilpotent orbits acquires very special features because of the special nature of
the subgroup H. These special features are ultimately related with the algebraic
structure of special geometries.

(F) The association of the considered mathematical problem with extremal black-
holes provides the features pointed out in (E) with physical interpretations in
terms of electromagnetic charges, horizon areas and fixed scalars. Yet we might
complete ignore such interpretations and ask ourself the question of what is the
abstract, purely mathematical meaning of such relations as that between UD=4–
orbits in theW-representation and H nilpotent orbits. Such a study has not yet
been performed but might be the source of new precious insights.

Generally speaking the problem considered in this chapter unveils new very profound
aspects of Special Geometries pertaining both to the scope of Geometry and of Lie
Algebra Theory.Aswe tried to emphasize in point (F) of the above list amathematical
reformulation of all themechanisms spotted in this contextmight be of greatmoment.
We might find clues to some generalization of the golden splitting that goes beyond
both supersymmetry and even homogeneous spaces and opens some new direction
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in differential and algebraic geometry. Inspiring clues come probably from a careful
analysis of Weyl subgroups and the characterization among them of those that can
be regarded as H-subgroups.

In this context an inspiring observation appears to be the one highlighted in previ-
ous pages that regular finite horizon black-holes can be regarded as bound-states of
small or very small black-holes. An in depth investigation of the proper mathematics
lurking behind this feature is potentially capable of revealing new exciting perspec-
tives both in geometry and physics. In view of the deep relation between quantum
physics and geometry encapsulated into black-holes it is to be expected that all the
intriguing geometrical relations listed above are the tip of an iceberg of theoretical
knowledge yet to be uncovered.

Ultimately we can state the following. Black holes have been recognized to be the
most intriguing arena where geometry and quantum physics are entangled. Within
the scope of Supergravity black-holes display a much richer geometrical structure
than in pure General Relativity and that geometrical structure is based on the most
advanced aspects of Lie algebra theory. It is to be expected that interrogating this
advanced mathematics in the proper way we can make further non trivial steps in
our physical conceptions.



Chapter 11
Modern Manifolds from Ancient
Polyhedra

Quotiens bella non ineunt, non multum venatibus, plus per
otium transigunt, dediti somno ciboque

Tacitus, Germania, XV

11.1 Historical Introduction

In this chapter which is the last we turn to the analysis of important developments
in complex geometry which took place in the 1980s–1990s, directly motivated by
supersymmetry and supergravity and completely inconceivable outside such a frame-
work. Notwithstanding their roots in the theoretical physics of the superworld, such
developments constitute, by now, the basis of some of the most innovative and alive
research directions of contemporary geometry.

Aswe already remarked in passing, an entire new lifewas contributed toGeometry
by the problems posed by the coupling of matter multiplets to supergravity or by the
description of their self-interaction in rigid supersymmetry. This was the cradle of
special geometries whose theory gained momentum by the end of the 1980s and
the beginning of the 1990s. In connection with supersymmetry a basic problem
which was to reveal his deep geometrical implications is that of gauging: namely
how to promote global symmetries of supersymmetric lagrangians to local gauge
ones. In that context one crucial geometrical item happens to be the moment-map.
Indeed the hamiltonian functionsΣA(φ) associated with the generators TA of any Lie
isometry group play a distinctive role in supersymmetric field theories: they are the
on-shell value taken by the so named auxiliary fields and appear in the supersymmetry
transformation rules of the fermion members of the supermultiplets: spin 1

2 or spin
3
2

fields. Furthermore, according with a general scheme, these hamiltonian functions,
or moment maps, are also the building blocks of the scalar potential generated by
the gauging.

By the end of the 1980s the geometrical characterization of the scalar manifolds
appearing in N = 2 field theories in D = 4 or N = 4 in D = 3 was universally
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Fig. 11.1 The first picture dating 1979 is the historical one taken during the first international
conference on Supergravity, held at Stony Brook ITP. The second picture dating 1982 shows Peter
vanNieuwenhuizen, the present author andRiccardoD’Auria in front of the StonyBrook house they
were sharing during a one month stay of the two Italians for collaboration with van Nieuwenhuizen.
The third and the fourth pictures were taken in November 2001 during the conference Supergravity
at 25 held in Stony Brook ITP. In the second picture one sees Leonardo Castellani, the present
author, Peter van Nieuwenhuizen and Alberto Lerda. The last picture is the group photo of all
participants to the workshop. In the 1980s the scientific relations between Torino University and
Stony Brook were particularly intense and fruitful. Equally important were the relations of Stony
Brook with Leuven in Belgium, Utrecht in the Netherlands and the École Normale Superiéure in
Paris

clear and the notion of HyperKähler manifolds, well established both in Theoretical
Physics and inMathematics, was attracting a lot of interest in both communities. The
prototype of compact HyperKähler manifolds were the torus T4 and the Kummer
surface K3, largely utilized in supergravity and string compactifications. From the
mathematical point of view the main interest was focused on the identification and
on the construction of new examples, compact or non compact of HyperKählerian
spaces: supersymmetry came to aid.

In the 1980s, with the presence of Peter van Nieuwenhuizen, one of the three
founders of supergravity, and the contiguity to a Department of Mathematics of very
high level, the Institute of Theoretical Physics (ITP) of New York State University at
Stony Brook had become a very prominent center of Mathematical Physics, partic-
ularly active in those geometrical directions that are more closely related to super-
symmetry. Several young researchers from Europe who extensively contributed to
the topics outlined in this essay and mathematically explained in [90], spent research
stages in Stony Brook in various capacities, either as post-doctoral fellows or as
visiting scientists (see Fig. 11.1).
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In 1987 a milestone paper for the history of HyperKähler geometry was written
by four authors, three of which were or had been associated with Stony Brook (see
Fig. 11.2). The mentioned paper, entitled HyperKähler metrics and supersymmetry
authored by Anders Karlhede, Nigel Hitchin, Ulf Lindstrom andMartin Roček [117]
grew out from two different cultural traditions turning out to be extremely influential
both in Physics and in Mathematics.

The British author Hitchin, former student of Sir Michael Atiyah and presently
his successor on the Savilian Chair of Geometry in Oxford, brought in the distin-

Fig. 11.2 From the left to the right:Martin Roček, AndersKarlhede (1952), Nigel J. Hitchin (1946),
Ulf Lindstrom (1947), finally a view of the campus of New York University at Stony Brook. Martin
Roček is currently Professor of Theoretical Physics at Stony Brook and a member of the C. N. Yang
Institute for Theoretical Physics. He received A.B. and Ph.D. degrees from Harvard University in
1975 and 1979, respectively. He did post-doctoral research at the University of Cambridge and
Caltech before becoming a professor at Stony Brook. Anders Karlhede is currently Vice Rector of
StockholmUniversity and amember of the SwedishAcademyof Sciences.NigelHitchin is currently
Savilian Professor of Geometry, Oxford, a position previously held by his doctoral supervisor (and
later research collaborator) Sir Michael Atiyah. Hitchin is responsible, together with Atiyah for the
index theorem and for the ADHM construction of instantons. Ulf Lindstrom is currently chairman
of the theoretical physics department at the University of Upsala. He originally graduated from
Stockholm University. Lindstrom and Hitchin have both contributed to the development of the
notion of generalized complex geometry. In 1987 when their fundamental paper on HyperKähler
quotients was written, three of the above four authors (Karlhede, Lindstrom and Roček) were
working at the ITP of Stony Brook
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guished geometrical and topological tradition of the Cambridge school, whose roots
can be traced back to Hodge and which is responsible for such other milestones as,
for instance, the index theorem. Martin Roček, Anders Karlhede and Ulf Lindstrom,
together with Marc Grisaru and Jim Gates, were among the early founders of the
superspace formalism for supersymmetric theories and had a deep working knowl-
edge of the latter. From the inbreeding of these two traditions arose a quite powerful
new mathematical vision, that of HyperKähler quotient.

The guiding line was provided by the lagrangian realization of a supersymmetric
field theory encompassing hypermultiplets that span a flat HyperKähler manifold
S and are coupled to gauge vector multiplets which promote a group G of global
isometries of the spaceS to local symmetries of the lagrangian. If the kinetic terms of
these vector multiplets V are omitted, the latter can be integrated away by means of a
gaussian integration.The result of this functional integrationyields, as a remnant, a set
of constraints. The systematic solution of such constraints provides the geometrical
construction of a new non trivial, yet smaller, HyperKähler manifold, namely the
HyperKähler quotient S //G .

The great value of paper [117] was the clear cut axiomatization of this procedure
which, extracted from field theory, was recast in pure mathematical terms as a self
contained mathematical construction.

In the following years the HyperKähler quotient was adopted by mathematicians
as a preferred constructive algorithm for new HyperKähler manifolds.

A very important instance of such constructions was provided a couple of years
after the publication of [117] by Kronheimer, who succeeded in showing that all
asymptotically flat gravitational instantons, the so named ALE manifolds, can be
realized as HyperKähler quotients [130, 131]. The classification of ALE manifolds
is a new incarnation of the ADE classification of simply laced Lie algebras, finite
subgroups of SU(2) and of singularities. It clearly encodes a very deep connection
between fundamental issues of Geometry and Physics.

Many current research lines in geometry related with manifolds of restricted
holonomy, spin(7) manifolds and the like are intimately related with the idea of the
HyperKähler quotient or of its smaller version, namely Kähler quotient. Similarly
quiver constructions in brane physics and most of the geometrical constructions in
the CFT/gauge correspondence are off-springs of the HyperKähler/Kähler quotient
algorithm.

11.2 The Ideology of the Kähler/HyperKähler Quotient

AnyKähler manifoldM is symplectic, the symplectic two-form being provided pre-
cisely by the Kähler two-form. Henceforth ifM admits a Lie group G of isometries
one can introduce the moment map:

P : M −→ R ⊗ G
∗ (11.2.1)
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where G
∗ denotes the dual of the Lie algebra G of the group G , i.e. the space of

linear functionals on G.
Themoment-map is defined by the following properties that have to be satisfied by

the functionsPX associated with each holomorphic Killing vector field X belonging
to G:

− dPX = iXK (11.2.2)

XPY = P[X,Y] (11.2.3)

where K is the Kähler two-form and iX denotes the contraction with the mentioned
vector field. Equation (11.2.3) is named the equivariance condition of the moment-
map.

HyperKähler manifolds are characterized by the presence of three complex struc-
tures and of three corresponding Kähler forms Kx (x = 1, 2, 3).1 This allows to
introduce a tri-holomorphic moment-map:

P : M −→ R
3 ⊗ G

∗ (11.2.4)

where the triplet of functions P x
X associated with each holomorphic Killing vector

field X belonging to G satisfy the conditions:

− dP x
X = iXKx (11.2.5)

XP x
Y = P x

[X,Y] (11.2.6)

Given a HyperKähler manifold S which admits a Lie group G of triholomorphic
isometries, the HyperKähler quotient [117] is a procedure that provides a way to
construct from S a lower-dimensional HyperKähler manifold M , as follows. Let
Z∗ ⊂ G

∗ be the dual of the center of the Lie algebra G. For each ζ ∈ R
3 ⊗ Z∗ the

level set of the momentum map

N ≡
⋂

X

P−1
X (ζ x ) ⊂ S , (11.2.7)

which has dimension dim N = dim S − 3 dim G , is invariant under the action
of G , due to the equivariance of the moment mapP . Thus one can take the quotient:

M = N /G (11.2.8)

The manifoldM is smooth of dimension dimM = dimS − 4 dimG as long as the
action of G on N has no fixed points. The three two-forms κ x on M , defined via
the restriction toN ⊂ S of the three Kähler forms Kx onS are closed and satisfy
the quaternionic algebra thus providing M with a HyperKähler structure.

1Compare with Sect. 8.2.2.
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In view of this fundamental property, the HyperKähler quotient offers a natural
way to construct aN = 2, D = 4 orN = 4, D = 2 σ -model on a non-trivial man-
ifoldM starting from a free σ -model on a trivial flat-manifoldS = Hn . It suffices
to gauge appropriate triholomorphic isometries by means of non-propagating gauge
multiplets. Omitting the kinetic term of these gauge multiplets and performing the
gaussian integration of the corresponding fields one realizes the HyperKähler quo-
tient in a Lagrangian way. In the four-dimensional case, this fact was fully exploited,
by Hitchin, Kärlhede, Lindstrom and Roček in their seminal paper [117], was fur-
ther discussed by Galicki [97] and was applied, in the context of string theory by
Ferrara, Girardello, Kounnas and Porrati [74]. Actually the HyperKähler quotient is
a generalization of a similar Kähler quotient procedure, where the momentum map
P : S → R ⊗ G

∗ consists just of one hamiltonian function, rather than three. The
Kähler quotient is related with either N = 1, D = 4 or N = 2, D = 2 supersym-
metry, the reason being that, in these cases the vector multiplet contains just one real
auxiliary field P .

11.3 ALE Manifolds and the ADE Classification

ALE means asymptotically locally euclidian. This means that ALE manifolds are
smooth 4-manifolds with euclidian signature and a metric leading to a self-dual
curvature two-form:

Rab
ALE = 1

2 εabcd Rcd
ALE (11.3.9)

which, for large distances from a core, approaches the flat euclidian metric.
Actually ALE manifolds are all Ricci flat and constitute vacuum solutions of

Einstein equations afterWick rotation. In this sense ALE-manifolds are gravitational
instantons in the sameway as the connections with a self dual field strength are gauge
instantons.

The first instance of an ALE manifold was found by Eguchi and Hanson [68] in
1979 (see Fig. 11.3).

The fascination of ALE manifolds is that they happen to be in one-to-one corre-
spondence with the finite subgroups Γ ⊂ SU(2) and are similarly classified by the
ADE classification of simply-laced Lie algebras.

In 1989 Peter Kronheimer (see Fig. 11.4) succeeded in constructing all of them
as HyperKähler quotients of suitably chosen flat HyperKähler manifolds dictated by
the structure of the finite group Γ to which each of them corresponds.

The association between ALE manifolds, ADE singularities and subgroups Γ ⊂
SU(2) is not a superficial matter rather it is a very deep and structural one. The
topological properties of theALE four-manifold are identifiedwith intrinsic numbers
of the corresponding Lie algebra; for instance the Hirzebruch signature τ of the ALE
coincides with the rank r of the corresponding Lie AlgebraG and with the dimension
of the chiral ring RΓ associated with the singular potential WΓ . On the other hand
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Fig. 11.3 On the left Tohru Eguchi (1948), on the right Andrew J. Hanson. Eguchi is currently
emeritus professor of the University of Tokyo, Yukawa Institute. He held positions at SLAC and
at the Enrico Fermi Institute of Chicago University. Andrew J. Hanson received the BA degree in
chemistry and physics from Harvard College in 1966 and the Ph.D. degree in theoretical physics
from MIT in 1971. He is an Emeritus Professor of Computer Science in the School of Informatics
and Computing at Indiana University, Bloomington. He worked in theoretical physics from 1971
until 1980, when he began working in machine vision, graphics, and visualization, first with the
perception research group at the SRI Artificial Intelligence Center, and then at Indiana University
from 1989 until his retirement in 2012. The Eguchi Hanson metric was derived by the two authors
in 1978 when both of them were in California, the first in Stanford, the second in Berkeley

the same number r is also that of the non trivial conjugacy classes of Γ , apart of the
identity class.

The catch of all this is encoded in a surprising correspondence between extended
Dynkin diagrams and irreducible representations of the finite groups Γ that had been
discoveredyears beforeKronheimer byMcKay [143].Without anydoubtMcKaycor-
respondence provided Kronheimer with an essential guideline for his construction.

A very important basis for Kronheimer work was encoded in the previous work
on gravitational instantons conducted by Gibbons and Hawking [102] (see Fig. 11.5)
and by Hitchin [116] (see also [30, 170]).

11.3.1 ALE Manifolds and ADE Singularities

ALE spaces are non–compact manifolds that have originally emerged in the liter-
ature as gravitational instantons. Indeed they are Riemannian 4–manifolds with an
(anti)selfdual curvature 2-form and a metric that approaches the Euclidean metric at
infinity. In polar coordinates (r,ΘΘΘ) onR4, we have gμν(r,ΘΘΘ) = δμν + O(r−4). This
corresponds to the intuitive concept of an instanton as a defect which is localized in
a finite region of space-time. This picture, however, is verified only modulo an addi-
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Fig. 11.4 Peter Benedict Kronheimer (born 1963) is a British mathematician, known for his work
on gauge theory and its applications to 3- and 4-dimensional topology. He is currentlyWilliam Cas-
par Graustein Professor of Mathematics at Harvard University. He completed his PhD at Oxford
University under the direction of Sir Michael Atiyah. Kronheimer’s early work was on gravita-
tional instantons, in particular the classification of HyperKähler four manifolds with asymptotical
locally euclidean geometry (ALE spaces) leading to the papers The construction of ALE spaces
as hyper-Kahler quotients and A Torelli-type theorem for gravitational instantons. He also con-
tributed extensively to the topology of 4-manifolds and to the theory of Donaldson invariants. He
and Nakajima gave a construction of instantons on ALE spaces generalizing the Atiyah-Hitchin-
Drinfeld-Manin construction

Fig. 11.5 Gary William Gibbons (born 1946) is a British theoretical physicist. Gibbons was born
in Coulsdon, Surrey. He was educated at Purley County Grammar School and the University of
Cambridge, where in 1969 he became a research student under the supervision of Dennis Sciama.
When Sciama moved to the University of Oxford, he became a student of Stephen Hawking,
obtaining his PhD from Cambridge in 1973. Gibbons became a full professor in 1997, a Fellow
of the Royal Society in 1999, and a Fellow of Trinity College, Cambridge in 2002. He has given
outstanding contributions to the theory of quantum black holes and to the theory of gravitational
instantons. His special interests in geometry in all of its aspects led him to contribute to many issues
in string and M-theory compactifications
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tional subtlety that is of utmost relevance in the present geometrical construction.
The base manifold of the gravitational instanton has a boundary at infinity which,
rather than a pure 3–sphere is:

S
3/Γ (11.3.10)

Γ ⊂ SU(2) being a finite subgroup of SU(2) ∼ S
3. Therefore, outside the core of

the instanton, rather than R4, the manifold looks like the quotient singularity R4/Γ .
This is the reason for the name given to these spaces: the asymptotic behaviour is
euclidean only locally.

For the sake of our purposes the most important aspect of ALE spaces is that they
are complex 2–folds endowed with a HyperKähler structure and a trivial canonical
bundle c1 (ALEΓ ) = 0. This makes ALE spaces the non–compact analogues of the
K3 surface which, apart from the T4 torus is the only compact Calabi–Yau 2–fold.
Indeed viewed as a complex manifold, outside the core of the instanton, the ALE
space looks like the quotient singularity

ALEΓ ∼ C
2/Γ ; Γ ⊂ SU(2) (11.3.11)

where Γ is the above mentioned finite subgroup of SU(2). In this way we have
explained the rationale for the subindex Γ attached to the symbol denoting an ALE
space. Indeed it can be shown that the choice of the identification group at infinity
completely fixes the topological type of the ALE manifold. These types are in one–
to–one correspondence with the finite groups Γ which admit an ADE classification,
like simple Lie algebras and simple singularities. The correspondence between the
ADE classification ofALE spaces and that of simple singularities is shortly discussed
below. On the contrary the whole topic of ALE manifolds, Kronheimer construction
and quotient singularities is fully mathematically developed in my other book [90].
For the moment we note that the remaining ambiguity, once the identification group
Γ has been fixed is given by themoduli of the self dualmetric (i.e. of theHyperKähler
structure) at fixed topological type.

In the HyperKähler quotient construction of the ALE spaces the complete set
of the HyperKähler structure moduli can be seen as the levels of the quaternionic
momentum map.

11.3.2 The McKay Correspondence for C2/Γ

The character table of any finite group Γ allows to reconstruct the decomposition
coefficients of any representation D along the irreducible representations Dμ that
for any finite group are as many as the conjugacy classes, i.e. r + 1:
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Fig. 11.6 Extended Dynkin
diagrams of the infinite series

D =
r⊕

μ=0

aμ Dμ

aμ = 1

g

r∑

i=0

gi χ
(D)
i χ

(μ) �

i (11.3.12)

For the finite subgroups Γ ⊂ SU(2) a particularly important case is the decompo-
sition of the tensor product of an irreducible representation Dμ with the defining
2-dimensional representation Q. It is indeed at the level of this decomposition that
the relation between these groups and the simply laced Dynkin diagrams becomes
explicit and it is named the McKay correspondence. As we already stressed, this
decomposition plays a crucial role in the explicit construction of ALE manifolds
according to Kronheimer. Setting:

Q ⊗ Dμ =
r⊕

ν=0

Aμν Dν (11.3.13)

where D0 denotes the identity representation, one finds that the matrix c̄μν =
2δμν − Aμν is the extended Cartan matrix relative to the extended Dynkin diagram
corresponding to the given group. We remind the reader that the extended Dynkin
diagram of any simply laced Lie algebra is obtained by adding to the dots represent-
ing the simple roots { α1 ...... αr } an additional dot (marked black in Figs. 11.6 and
11.7) representing the negative of the highest root α0 = ∑r

i=1 ni αi (the integers ni
are named the Coxeter numbers). Thus we see a correspondence between the non-
trivial conjugacy classes Ci (or equivalently the non-trivial irrepses) of the group
Γ (G) and the simple roots of G. In this correspondence the extended Cartan matrix
provides the Clebsch-Gordon coefficients (11.3.13), while the Coxeter numbers ni
express the dimensions of the irreducible representations. All these informations are
summarized in Figs. 11.6 and 11.7 where the numbers ni are attached to each of
the dots: the number 1 is attached to the extra dot since it stands for the identity
representation.
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Fig. 11.7 Exceptional
extended Dynkin diagrams

11.3.3 Philosophical Interlude

Let us pose for a moment and comment about the extraordinary philosophical mes-
sage contained in the just explained correspondence.

We outlined in previous chapters the correspondence between the ADE classi-
fication of simply laced Lie Algebras and the classification of finite subgroups of
the rotation group SO(3), ultimately the classification of platonic polyhedra. We
emphasized that this correspondence is due to the identity of the two diophantine
inequalities of which the two classifications are respectively solutions. Thanks to
the McKay correspondence, discovered in the last decades of the XXth century, we
understand that the identity of the two classifications is no pure coincidence. Indeed
the Dynkin diagrams and the associated Coxeter numbers encode such a fundamental
information about the finite Platonic Groups as the dimensions of their irreps. In this
we observe the manifestation of a profound unity of apparently different algebraic
structures which is a matter for further thinking and investigation. The fact that these
structures are consistently utilized in an algorithm which is capable of constructing
new manifolds of physical interest as the gravitational instantons and provides the
clue to resolve quotient singularities, should attract our attention to the successful,
vastly non galilean, path of discovery underlying these important developments in
contemporary Geometrical Physics.

It is worth to consider briefly the personality and the way of thinking of John
McKay (see Fig. 11.8) who is responsible for the opening up of such new horizons
in geometric–physical thinking.

McKay’s other most relevant contribution is related with the Monstrous Moon-
shine and provides another example of the discovery of an unexpected relation
between seemingly different mathematical entities. The termMonstrous Moonshine
was coined by the Princeton mathematician John Conway to describe the mysterious
connection between sporadic simple groups and modular invariants initiated by an
observation that McKay did in 1978. That year, reconsidering the classical modular
function of weight zero, namely Klein’s J (τ )-function, McKay observed that in the
Fourier expansion of this latter:

J (τ ) = 1
q +

∞∑

�=1

n� q
� ; q = exp [2π iτ ] (11.3.14)
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Fig. 11.8 JohnMcKay (16 June 1939, Kent (England)) is currently Emeritus Distinguished Profes-
sor of Mathematics at the Concordia University in Canada. McKay went to Manchester University
in 1958 from which he graduated in 1962. Next he went to Edinburgh University from which he
obtained his Ph.D. in 1971. He works at the Concordia University since 1974. He was elected a
fellow of the Royal Society of Canada in 2000, and won the 2003 CRM-Fields-PIMS prize. He
is especially known for his discovery of the monstrous moonshine, his joint construction of some
sporadic simple groups, for the McKay (McKay–Alperin) conjecture in representation theory, and
for the McKay correspondence

the integer coefficients n� could be expressed as linear combinations with posi-
tive integer coefficients of the dimensions of the irreducible representations of the
Monster Group, the largest sporadic simple group M of order |M | ∼ 1053. McKay
guessed that there should be an infinite dimensional graded representation of the
Monster Group whose lower grades decompose into irreps in the way shown by
the coefficients of the J expansion. Such a representation was later constructed by
Frenkel, Lepowsky andMeuman in 1988 in terms of primary conformal fields associ-
atedwith a self-dual lattice in 24 dimensions and ultimately relatedwith compactified
bosonic string theory.

As his friend and colleague John Harnad says, McKay’s peculiar genius lies
in noticing connections that no one else has seen. He doesn’t solve new problems
so much as make observations of surprising relations, and pose challenges that
sometimes end up pointing to whole new domains of research, Harnad said with
admiration.

McKay attributes his ability to the fact that his knowledge is unusually broad in
an era of specialization. You have to have a lot of curiosity and do a lot of thinking,
he said simply. There’s a lot of pressure to find applications, but if you don’t do the
basics, you wont get the applications.2

Personally I subscribe entirely to thisway of thinking. The pressure for application
is a morbus that can, in the long run, kill our modern science and also the economic

2These informations about John McKay are taken from an article by Barbara Black published on
the web-site of Concordia University.
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prosperity of our society which is built on the technological advances that came
from it.

Yet, accepting the relevance of fundamental science, which many people do, is
not yet sufficient to make it advance if we stick only to the galilean method and we
ignore the methods of inquiry followed by scientists like JohnMcKay. The following
aphorism of his:

“Pure math is math that hasn’t happened yet. We solve problems without under-
standing them”.
encodes in a provocative quite vivid expression a great truth. Sooner or later all
elegant and deep mathematical constructions found their place in theories that aim
at the explanation of physical phenomena. The discovery of the possible physical
meaning of mathematical constructions goes hand in hand with the discovery of
their deeper mathematical and philosophical sense. As I said in earlier pages we can
Interrogate Nature only in parallel with the Interrogation of Human Mathematical
Thought, since the only language by means of which we can talk with Nature is
indeed Mathematics, as Galileo properly stated, yet Mathematics is made by the
human mind.

11.3.4 Sketch of Kronheimer’s Construction

Given any finite subgroup of Γ ⊂ SU(2), we consider a space V whose elements
are two-vectors of |Γ | × |Γ | complex matrices: p ∈ V = (A, B). The action of an
element γ ∈ Γ on the points of V is the following:

(
A
B

)
γ−→

(
uγ i v̄γ

i vγ ūγ

) (
R(γ ) A R(γ −1)

R(γ ) B R(γ −1)

)
(11.3.15)

where the two-dimensional matrix on the right hand side is the realization of γ inside
the defining two-dimensional representationQ ⊂ SU(2), while R(γ ) is the regular,
|Γ |-dimensional representation. The basis vectors in R named eγ are in one-to-one
correspondence with the group elements γ ∈ Γ and transform as follows:

R(γ ) eδ = eγ ·δ ∀ γ , δ ∈ Γ (11.3.16)

In mathematical notation the space V is named as:

V � Hom (R,Q ⊗ R) (11.3.17)

Next we introduce the space S , which by definition is the subspace of Γ -invariant
elements in V :

S ≡ {p ∈ V /∀γ ∈ Γ, γ · p = p} (11.3.18)
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Explicitly the invariance condition reads as follows:

(
uγ i v̄γ

i vγ ūγ

) (
A
B

)
=

(
R(γ −1) A R(γ )

R(γ −1) B R(γ )

)
(11.3.19)

The decomposition (11.3.13) is very useful in order to determine the Γ -invariant flat
space (11.3.18).

A two-vector of matrices can be thought of also as a matrix of two-vectors: that
is,P = Q ⊗ Hom(R, R) = Hom(R,Q ⊗ R). Decomposing the regular represen-
tation, R = ⊕r

ν=0 nμDμ into irrepses, using Eq. (11.3.13) and Schur’s lemma, we
obtain:

S =
⊕

μ,ν

Aμ,νHom(Cnμ,Cnν ) . (11.3.20)

The dimensions of the irrepses, nμ are dispayed in Figs. 11.6 and 11.7. From Eq.
(11.3.20) the real dimension ofS follows immediately: dim S = ∑

μ,ν 2Aμνnμnν

implies, recalling that A = 2 × 1 − c̄ [see Eq. (11.3.13)] and that for the extended
Cartan matrix c̄n = 0:

dimC S = 2
∑

μ

n2μ = 2|Γ | . (11.3.21)

In mathematical notation the space S is denoted as follows:

S � Hom Γ (R,Q ⊗ R) (11.3.22)

So we can summarize the discussion by saying that:

dimC [Hom Γ (R,Q ⊗ R)] = 2 |Γ | (11.3.23)

The manifoldS defined in Eq. (11.3.20) is the flat HyperKähler manifold of which
we are supposed to perform the HyperKähler quotient in order to obtain the ALEΓ

manifold. We need to know the isometry group F to quotient. This is mentioned
below:

F =
r⊗

μ=0

U(nμ)
⋂

SU(|Γ |) (11.3.24)

where the sum is extended to all the irreducible representations of the group Γ and
nμ are their dimensions. One should also take into account that the determinant of
all the elements must be one, since F ⊂ SU(|Γ |). Pictorially the group F has a
U(nμ) factor for each dot of the diagram, nμ being associated with the dots as in
Figs. 11.6 and 11.7. F acts on the various components of Hom Γ (R,Q ⊗ R) that
are in correspondence with the edges of the diagram, see Eq. (11.3.20), as dictated
by the diagram structure.
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I do not add further details about Kronheimer’s construction which is thoroughly
presented and mathematically elaborated in [90]. What I collected here are just the
formulae which I considered essential in order to explain the basic conception of
such a construction and discuss its place in the current development of geometrical
ideas.

In order to put such development into a historical perspective which looks at the
future, I conclude by mentioning the generalization of the McKay correspondence
and its use to resolve higher dimensional singularities by means of suitable Kähler
quotients. I will say just few words, since these are topics of current research.

11.4 Generalization of the Correspondence: McKay
Quivers for C

3/Γ Singularities

One can generalize the extended Dynkin diagrams obtained in the above way by
constructing McKay quivers, according to the following definition:

Let us consider the quotient Cn/Γ , where Γ is a finite group that acts on C
n by

means of the complex representationQ of dimension n and let Di , (i = 1, . . . , r + 1)
be the set of irreducible representations of Γ having denoted by r + 1 the number
of conjugacy classes of Γ . Let the matrix Ai j be defined by:

Q ⊗ Di =
r+1⊕

j=1

Ai j D j (11.4.25)

To such a matrix we associate a quiver diagram in the following way. Every irre-
ducible representation is denoted by a circle labeled with a number equal to the
dimension of the corresponding irrep. Next we write an oriented line going from
circle i to circle j if D j appears in the decomposition of Q ⊗ Di , namely if the
matrix element Ai j does not vanish.

The analogue of the extended Cartan matrix discussed in the case of C2/Γ is
defined below:

c̄i j = n δi j − Ai j (11.4.26)

and it has the same property, namely it admits the vector of irrep dimensions

n ≡ {1, n1, . . . , nr } (11.4.27)

as a null vector:
c̄.n = 0 (11.4.28)

The McKay quiver of L168

An example is for instance provided by the simple group of order 168, L168, which
has a complex three dimensional irreducible representation Q that can be used to
construct the singularity C3/L168.
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We calculate the McKay matrix defined by

Q ⊗ Di =
6⊕

j=1

Ai j D j (11.4.29)

where Di denote the 6 irreducible representation ordered in the following standard
way:

Di = {
D1,D6,D7,D8,D3,D3̄

}
(11.4.30)

A =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0
0 0 1 1 0 1
0 1 1 1 0 0
0 1 1 1 1 0
0 1 0 0 0 1
1 0 0 1 0 0

⎞

⎟⎟⎟⎟⎟⎟⎠
(11.4.31)

The matrixA admits the graphical representation displayed in Fig. 11.9, named the
McKay quiver of the quotient C3/L168 The picture in Fig. 11.9 is a diagram with a
loop and does not correspond to any root space. This is so because there are in the
corresponding group more than three types of element-order. Indeed, in Γ = L168

Fig. 11.9 The quiver
diagram of the finite group
L168 ⊂ SU(3)
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we have elements of order 2, 3, 4, 7. Yet Kronheimer construction can be extended
to cases like this.

Just as before we introduce the space:

SΓ =
⊕

i, j

Ai, jHom(Cni ,Cn j ) (11.4.32)

andwecan take itsKähler quotientwith respect to the analogueof the group (11.3.24).
In this case the quotient can be only Kählerian since no three-dimensional complex
space can be HyperKählerian. The number of constraints in this case is not sufficient
to produce a three-dimensional complex manifold, we need an extra holomorphic
constraint. This construction was recently investigated and physically interpreted in
[29]. A review is provided in the twin book [90].

11.5 Conclusion

In this chapter we have seen that the 2400 year old classification problem of platonic
solids is still alive and able to produce very challenging modern fruits. We started
in Chap.4 with the diophantine equation that provides the ADE classification of
finite rotation groups. In Sect. 5.5.2 we retrieved, via Dynkin diagrams, the same
classification in terms of simply laced Lie algebras. In the present chapter we found
a third incarnation of the same classification under the formof gravitational instantons
associated with the resolution of singularities [7, 27, 159].

The relation between finite groups, Lie algebras and complex geometry have in
the topics discussed in this chapter a most exciting illustration. Furthermore the pro-
found role played by supersymmetry in bringing to the surface deep and unexpected
connections is exemplified by the contents of the present chapter in a paradigmatic
way.

Indeed one of the most fundamental question at stake in many problems of super-
gravity and superstring, in particular related with compactifications and with the
AdS/CFT correspondence, is just the classical algebraic geometry problemof resolv-
ing quotient singularities. Under the inspired stimulus of supersymmetric theories a
rich set of results were obtained by the mathematical community at the beginning of
1990s, those reviewed in this chapter being just the first ones in such a list.

Entering a more circumstantial analysis I have tried to emphasize where the catch
of a such a stimulus is. The example of (Hyper)Kähler quotients is indeed paradig-
matic. The whole story began from the physical interpretation of the mathemati-
cal notion of moment-map. Identifying the moment-maps with the auxiliary fields
of supersymmetric gauge–theories new scenarios opened up. Extremization of the
scalar potential, namely the physical problem of searching for classical vacua of a
field–theory naturally produced the notion of (Hyper)Kähler quotient. It was once
again a physical problem, that of instantons extended from gauge–theories to gravity,
what motivated the consideration of ALEmanifolds. Yet their construction as Hyper-
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Kähler quotients would not have been possible without the further ingredient of the
McKay correspondence. This latter came neither from physics nor from the solution
of some mathematical problem posed in a standard way. It just came from that type
of Interrogation of Mathematics rather than of Nature which we discussed above. It
is looking for traces of unexpected correspondences that sometimes we uncover the
deeper nature of certain mathematical structures we have known for long time. As a
result of such discoveries we usually open new scenarios not only for Mathematics
but also for Physics, where identifications, such as that of the moment-maps with
the auxiliary fields, become possible with far reaching consequences of the type
highlighted above.

From these considerations it is evident how wide and deep is the extent of
the fertilizing influence exerted by supersymmetry on the development of modern
Geometry. I believe that this latter has entered a new season of expansion and progress
that can, in the long run, lead to new conceptions in Physics.



Epilogue

The theoretical understanding of the world, which is the aim of
philosophy, is not a matter of great practical importance to
animals, or to savages, or even to most civilised men.

Bertrand Russell

The patient reader who followed me through the previous pages went on a quite long
journey, through different times and across different human ideas, a journey that
embraces about twenty-five centuries. While talking about mathematical concepts
and theories, my aimwas that of telling a story, a long and complex one, not deprived,
occasionally, of dramatic touches.

My main theme was the mathematical conception of symmetry and its develop-
ment from Classical Antiquity to the most advanced constructions that have been
vigorously springing up in the twilight of the XXth century and at the dawn of the
new millenium.

Telling this story I tried to convince my reader that mathematics and physics have
a status not so much different from that of other branches of culture, like literature,
philosophy or the figurative arts. At the basis of the so named exact sciences there
is a cultural substratum made of shared feelings, shared attitudes towards life and
death, personal aspirations and ways of thinking that developed through history and
have quite remote roots.

Modern Theoretical Science is an expression of Western Culture, whose firm
basis consists of the Analytic Thought System developed by the ancient Greeks and
rooted in their early development of individualism and democracy. Nothing similar
to the mathematical physical science that we know today might have been developed
by any of the Asian civilizations, notwithstanding their antiquity and their technical
advances. Actually the system of thought pertaining to those civilizations might have
produced a different kind of science, if theWesternmodel did not prevail world-wide.
Although the Arabs played an invaluable historical role in preserving, reorganizing
and transmitting back to the Latin West the ancient hellenistic science, a process
which took place in Sicily and Spain in the eleventh and twelfth century, yet a
careful analysis reveals that the Arabic scholars, mostly Persians, Syrians and Jews
were the late depositaries of Hellenistic Culture, who survived as they could, through
the tempests of Islamic invasions and the imposition, by means of the sword, of an

© Springer Nature Switzerland AG 2018
P. G. Fré, A Conceptual History of Space and Symmetry,
https://doi.org/10.1007/978-3-319-98023-2

307



308 Epilogue

alien language and faith. The Byzantines, on the contrary, went the opposite way and,
under the continuous pressure, wave after wave, of barbarian invaders, crystallized
the vital Greek culture of Antiquity into an Asiatic hieratic system of values and
paradigms, deprived of any innovative force. This, however, was useful to preserve
some of the ancient heritage for better times.

Not surprisingly the resurrection of what we call mathematical and physical sci-
ences took place during the thirteenth century in the environment of the Italian, com-
merce oriented, self governed cities, continuously fighting against each other and
against the German Emperors. This was a historical setup which reproduced most of
the conditions of ancient Greece, mutatis mutandis. May be the German Emperors
played the same role as the Persian Empire of theVth century B.C. and the inclination
of the Italian Maritime Republics to navigate through the Mediterranean, dissemi-
nating strongholds and trade centers everywhere on its shores is somewhat similar to
the Greek colonization movement of classical antiquity. In any case the development
by Fibonacci of the Abacus, namely the first step in modern algebra, was mostly
motivated by commercial accounting reasons, just as the cradle of ancient geometry
was in the quite practical need to estimate the extension of land properties for fiscal
imposition.

Also the second stage of development of modern mathematics and physics, which
took place in the age of the Renaissance and in the following two centuries, displays
many similarities with the impetuous growth of Ancient Science in the Hellenistic
Age. The new national monarchies that were forming at the expenses of the declining
feudal system, in particular France, England and the Northern States were in a status
of continuous confrontation and warfare, more and more basing their power on the
use of new science–derived technologies, just as it was the case of the Hellenistic
States. Fortunately for Modern European Science no Roman Peace was imposed on
the Continent by any prevailing superpower and the Analytic Critical Thinking of
Greek origin could develop, without a stop, up to the stage reached in the Age of
Enlightenment, eventually leading to the French Revolution.

The Napoleonic Age was really a most fertile one for mathematics and physics
and France took the lead, propelled by the democratic ideals of the Revolution and
by a new conception of the State whose newly perceived obligations to organize and
finance the progress of science is clearly exemplified by the establishment of the
École Polytechnique and of the École Normale Superiéure.

The most intense phase of the tale told in this book begins May 31st 1832 with
the death of Évariste Galois. Through several chapters I tried to trace back the flow
of ideas and of conceptions that finally issued the modern Theory of Groups and of
their LinearRepresentations. It was a lengthy processwhose principal actors, Camille
Jordan, Felix Klein, Sophus Lie, Arthur Cayley, Joseph Sylvester, Wilhelm Killing,
Élie Cartan, Ferdinand Frobenius, Issai Schur and finally HermannWeyl were active
in France, Germany, England and more lately in the United States of America. I tried
to emphasize how many notions that we consider quite elementary and granted, like
that of vector spaces, were instead characterized by a long gestation. From the ancient
contemplative admiration of nice proportions, the notion of symmetry turned into
an operative code of transformations active on intermediate mathematical objects
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that, according to Weyl’s views, do not need to have any immediate correspondence
with reality. Mathematical constructions are just sophisticated intellectual machines
which, once correctly utilized, canproduce someobservable predictions.Comparison
between theory and experiments can occur only at the level of such final predictions,
not at any intermediate stage.

Along a parallel historical path which started in 1828 with Gauss’ Disquisitiones
Generales circa superficies curvas and lastedmore than a century, the notion of Space
developed from the apodictic view of Euclidian Geometry sustained by Kant into
the modern notion of differentiable manifolds whose geometry is not known a priori
rather it is dictated by aRiemannian or a pseudoRiemannianmetricwhich, according
to Einstein’s General Relativity, might be determined by dynamical equations.

In our ideal historical journey we saw that the gestation of modern differential
geometry, in particular of the notions of differentiable manifolds, fibre-bundles, con-
nections and metrics was just as long as the gestation of linear algebra, passing
through the truly genial work of Riemann, Klein, Ricci–Curbastro, Bianchi, Levi-
Civita, Ehresman. The first part of this conceptual development was essential to
Einstein and to his geometrization of gravitation that could not even be imagined
without such a mathematical framework, slowly constructed in the course of about
50 years.

With the addition of topology, of characteristic classes and of harmonic integrals
all the geometrical ingredients of the contemporary episteme, as I described it in
points (A)–(E) of thefirst chapter,were essentially readyby themidfifties of theXXth
century but it took another forty years before they were consistently and consciously
threaded into the fabrics of theoretical physics.

What happened in mathematics since the mid thirties of the XXth century to the
early eighties of the same century is deeply characterized, in my opinion, by the
following two highly momentous developments, one intrinsic to the mathematical
community the other forced on it by the new visions of theoretical physics. These
developments are the following ones:

(a) Starting with the monumental work of Cartan on symmetric spaces the theory
of symmetry, meaning group theory, Lie Algebra theory and associated topics
merged more tightly with the theory of geometry, meaning manifolds and fibre-
bundles, their isometries, their holonomies and their topology.

(b) With the advent of supersymmetry and of its obligatory consequences, namely
supergravity, superstrings and branes, what in geometry was so far generic, for
instance the dimensions D of the space-time manifold or the possible scalar
potentials ceased to be such and started being determined within finite ranges of
choices that are dictated by a superior structure, at the same time very restrictive
and surprisingly rich in its power to relate so far uncorrelated mathematical
objects.

Before supersymmetry D might be any number, after supersymmetry it took the
fixed values either D = 11, or D = 10, related to each other by a deep mechanism
named duality. Before supersymmetry, all Riemannian spaces were equally inter-
esting, after supersymmetry special geometries occupied the scene introducing new
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exciting mathematical structures that I have described at length in several chapters
of another more technical book [90], also published by Springer. Before supersym-
metry, exceptional Lie algebras were mathematical curiosities mostly disregarded by
physicists, after supersymmetry all the exceptional Lie algebras fell into appropriate
boxes specially prepared for them in a grandiose fresco which almost unexpectedly
started revealing itself.

Looking at matters from a distance and with a mathematical attitude one gets the
impression that supersymmetry played the role of that critical tile in a puzzle, putting
which into its proper place, all the other tiles almost automatically find their way to
their correct positions. Many examples can be made but one spectacular one might
suffice to clarify this point.

The possible holonomy groups of Riemannian manifolds were classified before
supersymmetry and fill a very short list. Generic manifolds have holonomy SO(n) in
d = n dimensions. In even dimensions d = 2n, manifolds with holonomy U(n) ⊂
SO(2n) are the complex manifolds. Those among the complex manifolds that have
holonomy SU(n) ⊂ U(n) ⊂ SO(2n) are the Kähler manifolds and here we meet
with N = 1 supersymmetry, as the attentive reader of my other book [90] knows.
In d = 4n, manifolds with holonomy USp(2n) ⊂ U(2n) ⊂ SO(4n) are the Hyper-
Kählermanifoldswhile thosewith holonomyUSp(2n) × SU(2) ⊂ U(2n) ⊂ SO(4n)
are the quaternionic Kähler manifolds. In both cases we meet here with N = 2
supersymmetry, rigid in the first case, local in the second one. The list contained
two more exceptional cases, the mysterious 7-dimensional manifolds with G2(−14)

holonomy and the 8-dimensional manifolds with Spin(7) ⊂ SO(8) holonomy. Both
cases were decoded by supergravity. The first was decoded by observing that d = 7
is the complement of d = 4 in compactifications of D = 11 supergravity and that
G2(−14) holonomy is the condition for a residualN = 1 supersymmetry of the com-
pactified vacuum. The second case was decoded considering M2-branes in D = 11
space-time, Spin(7)-holonomy of the 8-manifold transverse to the M2-brane being
the condition for itsN = 1 supersymmetry.

Not only known mathematics found its interpretation within the framework of
supersymmetry and supergravity but new entire chapters of geometry were con-
structed under the stimulus of supergravity. Most notable among them are some of
the topics extensively discussed in my other book [90], namely:

1. Special Kähler Geometry.
2. The c and c� maps from Special Kähler Geometry to quaternionic or pseudo

quaternionic geometry.
3. The relations of the above constructions with the Tits Satake projection.
4. The systematics of Kähler and HyperKähler quotients leading, for instance, to

the classifications and construction of all ALE manifolds
5. The σ -model approach to supergravity black-holes and the refinement of the

theory of nilpotent orbits.

What are, at the end of this long historical and mathematical journey, the conclusions
we might draw on the status of the episteme in the current year 2018?
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After the spectacular detection of gravitational waves emitted from the
coalescence of two massive black holes and the numerical verification of Einstein
field equations, the points (A)–(E) introduced in the preface are firmly established, at
least within our Western Analytical System of Thought. The choices of symmetries,
bundles and potentials within such a framework have to be made in a way enlight-
ened by the lesson of supersymmetry. It is not yet clear whether supersymmetry is
realized in Nature in the way we think and it might take a quite long time before we
are able to answer such a question in an experimental way, yet we cannot ignore the
geometrical structures and the miraculous relations among them that supersymme-
try has brought to the front stage. We have to continue the exploration of the new
mathematics introduced by supergravity and superstrings to find new hidden clues,
so far not yet observed.

Let me, at this point, summarize some of the general ideas I have put forward
in Sect. 6.1.2 while making my own annotations to Weyl’s mathematical way of
thinking.

In our effort to understandNature in purely rational termswe generalize the notion
of what exists into a mathematically defined family of what is possible. Typically
the possible structures can be thought of as points in a certain variety that we name
moduli space. Our understanding of the virtual, i.e. of the aristotelian potential, is
essentially encoded in our command over the geometry ofmoduli spaces. On the other
hand, within the possible, we alwayswould like to be able to select what indeed exists
in Nature, i.e. to determine the aristotelian actual. Our ambition is to characterize a
priori the actual points of moduli space as some special ones on the basis of some
criterion. To this effect one resorts to new functions defined over moduli space,
let us name them hamiltonians, whose minima can select what exists in actuality.
The game starts at this point once again in the new rush to define the family of
possible hamiltonians and their moduli spaces. In these games the fundamental issue
is provided by symmetries and by their classification. The ultimate dream of many
scientists is associated with sporadic entities, for instance sporadic groups. Because
of their uniqueness they have no moduli and correspond to some end point in the
conceptual chain. In some sense sporadic structures are the analogue, inmathematical
thinking, of God or better of Plato’s Demiurge.

Discovering hidden relations among quite different mathematical structures is
probably the only possible way of reshuffling the formulation of physical laws into
new terms that reveal new conceptions and open the way to new moduli spaces and
new hamiltonians in our quest for the sporadic end-point.

In this vein, from generic choices we have been instructed, within the superworld,
to look at special structures, restricted holonomy, for instance, exceptional Lie alge-
bras, hyperbolic algebras, sporadic simple groups and the like, searching for new
corners where other tiles of the mathematical puzzle might find their proper place.
At the end of a long day it might happen that supersymmetry is only the tip of an
iceberg and that in the deep waters under the cold sea surface there lies another
mathematical logic able to lead us to a new physical vision and to new far reaching
conclusions. Yet the tip is there, it was observed and one cannot avoid to explore
further what lies underneath the surface of the sea.
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