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Preface

The aim of this book is to present in an elementary manner the basic notions related
with differentiable manifolds and some of their applications, especially in physics.
The book is aimed at advanced undergraduate and graduate students in physics and
mathematics, assuming a working knowledge of calculus in several variables, linear
algebra, and differential equations. For the last chapter, which deals with Hamilto-
nian mechanics, it is useful to have some previous knowledge of analytical mechan-
ics. Most of the applications of the formalism considered here are related to dif-
ferential equations, differential geometry, and Hamiltonian mechanics, which may
serve as an introduction to specialized treatises on these subjects.

One of the aims of this book is to emphasize the connections among the areas of
mathematics and physics where the formalism of differentiable manifolds is applied.
The themes treated in the book are somewhat standard, but the examples developed
here go beyond the elementary ones, trying to show how the formalism works in
actual calculations. Some results not previously presented in book form are also in-
cluded, most of them related to the Hamiltonian formalism of classical mechanics.
Whenever possible, coordinate-free definitions or calculations are presented; how-
ever, when it is convenient or necessary, computations using bases or coordinates
are given, not underestimating their importance.

Throughout the work there is a collection of exercises, of various degrees of
difficulty, which form an essential part of the book. It is advisable that the reader
attempt to solve them and to fill in the details of the computations presented in the
book.

The basic formalism is presented in Chaps. 1 and 3 (differentiable manifolds,
differentiable mappings, tangent vectors, vector fields, and differential forms), after
which the reader, if interested in applications to differential geometry and general
relativity, can continue with Chaps. 5 and 6 (even though in the definitions of a
Killing vector field and of the divergence of a vector field given in Chap. 6, the
definition of the Lie derivative, presented in Chap. 2, is required). Chapter 7 deals
with Lie groups and makes use of concepts and results presented in Chap. 2 (one-
parameter groups and Lie derivatives). Chapters 2 and 4 are related with differential
equations and can be read in an independent form, after Chaps. 1 and 3. Finally,
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for Chap. 8, which deals with Hamiltonian mechanics, the material of Chaps. 1, 2,
and 3, is necessary and, for some sections, Chaps. 6 and 7 are also required.

Some of the subjects not treated here are the integration of differential forms,
cohomology theory, fiber bundles, complex manifolds, manifolds with boundary,
and infinite-dimensional manifolds.

This book has been gradually developed starting from a first version in Spanish
(with the title Notas sobre variedades diferenciables) written around 1981, at the
Centro de Investigaciéon y de Estudios Avanzados del IPN, in Mexico, D.F. The
previous versions of the book have been used by the author and some colleagues in
courses addressed to advanced undergraduate and graduate students in physics and
mathematics.

I would like to thank Gilberto Silva Ortigoza, Merced Montesinos, and the re-
viewers for helpful comments, and Bogar Diaz Jiménez for his valuable help with
the figures. I also thank Jessica Belanger, Tom Grasso, and Katherine Ghezzi at
Birkh&user for their valuable support.

Puebla, Puebla, Mexico Gerardo F. Torres del Castillo
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Chapter 1
Manifolds

The basic objective of the theory of differentiable manifolds is to extend the appli-
cation of the concepts and results of the calculus of the R" spaces to sets that do not
possess the structure of a normed vector space. The differentiability of a function
of R" to R™ means that around each interior point of its domain the function can
be approximated by a linear transformation, but this requires the notions of linearity
and distance, which are not present in an arbitrary set.

The essential idea in the definition of a manifold should already be familiar from
analytic geometry, where one represents the points of the Euclidean plane by a pair
of real numbers (e.g., Cartesian or polar coordinates). Roughly speaking, a manifold
is a set whose points can be labeled by coordinates.

In this chapter and the following three, the basic formalism applicable to any
finite-dimensional manifold is presented, without imposing any additional structure.
In Chaps. 5 and 6 we consider manifolds with a connection and a metric tensor,
respectively, which are essential in differential geometry.

1.1 Differentiable Manifolds

Let M be a set. A chart (or local chart) on M is a pair (U, ¢) such that U is a subset
of M and ¢ is a one-to-one map from U onto some open subset of R” (see Fig. 1.1).
A chart on M is also called a coordinate system on M. Defining a chart (U, ¢) on
a set M amounts to labeling each point p € U by means of n real numbers, since
¢ (p) belongs to R”, and therefore consists of n real numbers that depend on p; that
is, ¢ (p) is of the form

o (p) = (x'(p), x2(p), ... x"(p)). (1.1)

This relation defines the n functions x!, x2, ..., x", which will be called the coordi-
nate functions or, simply coordinates, associated with the chart (U, ¢). The fact that
¢ is a one-to-one mapping ensures that two different points of U differ, at least, in

the value of one of the coordinates.

G.F. Torres del Castillo, Differentiable Manifolds, 1
DOI 10.1007/978-0-8176-8271-2_1, © Springer Science+Business Media, LLC 2012
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Rl’l

Fig. 1.1 A coordinate system in a set M; with the aid of ¢, each point of U corresponds to some
point of R”. The image of U under ¢ must be an open subset of some R”

We would also like close points to have close coordinates, but that requires some
notion of nearness in M, which can be given by the definition of a distance be-
tween points of M or, more generally, by assigning a topology to M. We are not
assuming that the reader is acquainted with the basic concepts of topological spaces
and in most applications we will be dealing with sets possessing a natural notion of
nearness (see, however, the comment after Exercise 1.2). Hence, we shall not make
use of the concepts required for an adequate general discussion. For a more rigorous
treatment see, e.g., Crampin and Pirani (1986), Conlon (2001), Boothby (2002), and
Lee (2002).

These concepts have many applications in physics. For instance, if M is the con-
figuration space of a mechanical system with n degrees of freedom, a choice of the
so-called generalized coordinates is equivalent to the definition of a chart on M;
when M is the set of equilibrium states of a thermodynamical system, the coordi-
nates associated with a chart on M are, typically, the pressure, the temperature, and
the volume of the system.

The coordinates associated with any chart (U, ¢) must be functionally inde-
pendent among themselves, since the definition of a chart requires that ¢ (U)
(={¢(p)| p € U}) be an open subset of R". If, for instance, the coordinate x"
could be expressed as a function of x!, x2, ..., x" ! then the points ¢ (p) (p € U)
would lie in a hypersurface of R", which is not an open subset of R".

Frequently, a chart (U, ¢) on M will not cover all of M, that is, U will be a
proper subset of M; moreover, it is possible that a given set M cannot be covered
by a single chart, as in the case of the circle or the sphere, where at least two charts
are necessary to cover all the points of M (see the examples below). Hence, in order
to cover all of M, it may be necessary to define two or more charts and, possibly,
some points of M will lie in the domain of more than one chart.

A function F : R" — R™ given by F(q) = (f1(q), f2(q), ..., fm(q)) is differ-
entiable of class C* if the real-valued functions f1, f2, ..., fm have kth continuous
partial derivatives; two charts on M, (U, ¢) and (V, ), are said to be Ck_related (or
Ck—compatible) if UNV =0 (the empty set), orif ¢ o X_l x(UNV)y—=>pUNYV)
and x o~ ! : (U NV) = x(U N V), whose domains are open in R”, are dif-
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Fig. 1.2 Two coordinate systems whose domains have a nonempty intersection. A point p belong-
ing to U NV corresponds to two points of R”, ¢ (p) and yx (p); the charts (U, ¢) and (V, x) are
C*-related if the maps ¢ (p) — x(p) and x(p) — ¢(p) are differentiable functions of class C k

ferentiable of class CX (see Fig. 1.2). If x!,x2,...,x" are the coordinates as-
sociated to (U, ¢) and yl, y2, ..., y" are the coordinates associated to (V, x),
the fact that (U, ¢) and (V, x) be Ck-related amounts to the fact that, for all
peUnV, y(p),y*(p),...,y"(p) be differentiable functions of class C* of
x'(p), x2(p), ..., x"(p), and conversely.

A CF subatlas on M is a collection of charts on M, {(U;, ¢;)}, such that for any
pair of indices i, j, (U;, ¢;) and (Uj, ¢;) are Ck-relatedand M = U UU, U+ (s0
that each point of M is in the domain of at least one chart). The collection of all the
charts C*-related with the charts of a C* subatlas, on M, form a C¥ atlas on M.

Definition 1.1 A C* manifold of dimension # is a set M with a C* atlas; if k > 1, it
is said that M is a differentiable manifold. If k = 0, it is said that M is a topological
manifold.

In the space R”, the pair (R”, id) (where id denotes the identity map) is a chart
that, by itself, forms a C*° subatlas. The infinite collection of all the coordinate sys-
tems C*°-related with this chart form a C atlas with which R” is a C° manifold
of dimension n. When we consider R” as a differentiable manifold, it is understood
that this is its atlas.

For instance, the usual polar coordinates of the Cartesian plane belong to the atlas
of RZ; one can readily verify that the pair (V, x), with V ={(x, y) € R?|x > 0} and

x(x,y)= (,/)c2 +y2, arctany/x)

is a chart on R? with x (V) = (0, 00) x (—m/2, w/2), which is an open set in R2.
Taking (U, ¢) = (R?,1id), one readily verifies that (x o ¢_1)(x, y)=x(x,y) =
(v/x2+ y2, arctan y/x) and (¢ o x ") (r,0) = x "' (r,0) = (rcos 0, r sind) are dif-
ferentiable of class C*®° in ¢(UNV)=V and x(UNV) = x(V) = (0,00) x
(—m/2,7/2), respectively.

Let M be a manifold. A subset A of M is said to be open if for any chart (U, ¢)
belonging to the atlas of M, the set ¢(A N U) is open in R”.
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Fig. 1.3 The stereographic projection establishes a one-to-one correspondence between the points
of the n-sphere, excluding the “north pole” (0,0, ..., 1), and the points of the plane x"+! = 0. The
point (a1 Ja, ..., a"tyisa point of the n-sphere different from (0, 0, ..., 1)

Exercise 1.2 Show that the collection t of open subsets of a manifold M is a topol-
ogy of M, that is, show that M and the empty set belong to t, that the union of any
family of elements of t belongs to 7, and that the intersection of any finite family
of elements of T belongs to . We say that this topology is induced by the manifold
structure given in M.

When a given set, M, already possesses a topology and one wants to give it the
structure of a manifold in such a way that the topology induced by the manifold
structure coincides with the topology originally given, one demands that for each
chart (U, ¢), in the atlas of M, the map ¢ be continuous and have a continuous
inverse; as a consequence, U must be an open set of M. (A map is continuous if and
only if the preimage of any open set is open.)

Example 1.3 Almost all the points of the n-sphere
St = {(al,...,an+]) e R*H! | (a1)2+...+ (a”+1)2= 1}

(n > 1) can be put into a one-to-one correspondence with the points of R” by
means of the stereographic projection defined in the following way. Any point
(@',...,a"t") e 8", different from (0,0, ..., 1), can be joined with (0,0,...,1)
by means of a straight line that intersects the hyperplane x"*! = 0 at some point
(b], ..., b",0) (see Fig. 1.3). The condition that the three points (a], e a”“),
0,0,...,1),and (bl, ..., b",0) lie on a straight line amounts to

(b',....6",0) = (0,0,...., ) =A[(a",....a"T") = 0,0,...., D],  (1.2)

for some A € R. By considering the last component in the vector equation (1.2)
we have 0 — 1 = A(a"*! — 1); hence, A = 1/(1 — a™*!). Substituting this value
of A into (1.2) we find that the mapping ¢ : S" \ {(0,0, ..., 1)} - R" defined by
¢, ....a"tH= @', ..., b") is given by

1
qb(al,...,a"H)=m(al,...,a"). (13)

The pair (U, ¢), with U = S" \ {(0,0, ..., 1)}, is a chart of coordinates, since ¢ is
injective and ¢ (U) = R" (which is an open set in R").
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In a similar manner, joining the points of S” with (0,0, ..., —1) by means of
straight lines, another projection is obtained, x : S* \ {(0,0, ..., —1)} - R”", given
by

1
1 +1y _ 1
X(a,...,a" )—W(a,...,a”) (14)
so that (V, x), with V. =8§"\ {(0,0,...,—1)}, is a second chart of coordinates

which is C*°-related with (¢, U). In effect, from (1.3) and (1.4) we find that

1 LN
T,y =——n | 2b, 20 -1+ (B,
| n_ (1.5)
1) = —— (2!, 20 1= (6,
) = >0
and therefore
(! n) = -1\ (p! n _u
(qub )(b,...,b)_(¢ox )(b,...,b)— Z?Zl(bi)z.
We have U NV = 8"\ {(0,0,...,1),(0,0,...,—1)}; hence ¢(U NV) =

x(U NV)=R"\{(0,0,...,0)}, where the compositions x o ¢! and ¢ o x !
are differentiable of class C*°. Since S" = U U V, the charts (U, ¢) and (V, x)
form a C subatlas for S”.

The Cartesian product of two differentiable manifolds, M and N, acquires the
structure of a differentiable manifold in a natural way. If {(U;, ¢;)} and {(V;, )}
are subatlases of M and N, respectively, one can verify that {(U; x V;, p;;)} is a
subatlas for M x N, with p;;(p, q) = &L (p), ... x(p), Y (), ..., Y™ (q)), where
@ (p),....x"(p) =¢(p) and (y' (@), ..., y" (@) = V(@)

Differentiability of Maps If f is a real-valued function defined on a differen-
tiable manifold M, f : M — R, and (U, ¢) is a chart belonging to the atlas of M,
the composition f o ¢! is a real-valued function defined on an open subset of R”,
which may be differentiable or not (see Fig. 1.4). The differentiability of the com-
position f o ¢! does not depend on the chart chosen, since the charts of the atlas
of M are C*-related (for some k > 1). From the identities

fooT' =(rox ) olxod™).  foxT'=(fos)o(pox)

it follows that f o ¢! is differentiable if and only if f o x ! is. Hence, it makes
sense to state the following definition. Let M be a differentiable C* manifold.
A function f : M — R is differentiable of class C* (r < k) if f o ¢! is differ-
entiable of class C” for every chart (U, ¢) in the atlas of M.

For a fixed coordinate system (U, ¢) belonging to the atlas of M, and a real-
valued function f: M — R, letting F = f o ¢!, we have [see (1.1)]

)= (foo o) =F(d(p)=F(x'(p),x*(p),....x"(p)),
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f

(0 — R
R" _/
foo™!

Fig. 1.4 With the aid of a coordinate system on M, a real-valued function f defined on M is
represented by the function f o ¢~ : R" — R

for p € U. Thus, we write f = F(xl, x2, ..., x"); in this manner, the function f is
expressed in terms of a real-valued function defined in (a subset of) R”.

Exercise 1.4 Let M be a C*¥ manifold. Show that the coordinates associated with
any chart in the atlas of M are differentiable functions of class C*. (Hint: if
d(p) = x'(p), x2(p), ..., x"(p)), then x' = 7! o ¢ where 7' : R” — R is defined
by ni(al,az, oat) :ai.)

If M is a C* manifold and N is a C' manifold, a map ¥ from M into N is differ-
entiable of class C” (with r < min{k, [}) if for any pair of charts (U, ¢) on M and
(V, x) on N, the map x o ¥ o ¢~ ! is differentiable of class C”; thatis, ¢ : M — N
is differentiable if, for p € M, the coordinates of 1 (p) depend differentiably on the
coordinates of p (see Fig. 1.5). In fact, if x!, x2, ..., x" are the coordinates associ-
ated with the chart (U, ¢) on M and yl, yz, ..., y™ are the coordinates associated
with the chart (V, x) on N, we have

MW P). - "W (P)) = x (W () = (x o 0d ™) (B (p)
=(xovod )P, ... x"(p).

A diffeomorphism i is a one-to-one map from a differentiable manifold M to a
differentiable manifold N such that ¢ and ¥ ~! are differentiable; two differentiable
manifolds M and N are diffeomorphic if there exists a diffeomorphism i from M
onto N.

Exercise 1.5 Show that the set of diffeomorphisms of a manifold onto itself forms
a group with the operation of composition.

Let M be a C* manifold of dimension n. A subset N of M is a submanifold
of M, of dimension m (m < n), if there exists a C* subatlas of M, {(U;, ¢i)}, such
that

¢,~(NﬂUi):{(a1,a2,...,a")GR" |am+1:am+2:--~:a”:0}.
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v N
—_
M
o X
Rm
R" xowoo™!

Fig. 1.5 The map ¥ : M — N is locally represented by the map x o ¥ o ¢~ 1. v is differentiable
if the compositions x o ¥ o ¢~ ! are differentiable for any pair of charts (U, ¢) on M and (V, x)
on N

Let 77 be the canonical projection from R” onto R™ given by 7 (a',a?,...,a") =
(a',a?,...,a™). The collection {(N NU;, 7 o ¢;)} is a C¥ subatlas on N, and N
becomes a C* manifold of dimension m with the atlas generated by this subatlas;
in other words, N is a submanifold of dimension m if there exist coordinate sys-
tems (U, ¢) on M such that if U intersects N, then NNU ={p e U | ™t (p) =
x’"+2(p) =... =x"(p) =0}, where x!, x2, ..., x" are the coordinates associated
to (U, ¢).

With the aid of the following theorem we can construct or identify many exam-
ples of submanifolds.

Theorem 1.6 Let f', f2,..., f™ be real-valued differentiable functions defined
onM.Theset N={peM| fl(p)= f2(p)=---= f™(p) =0} is a submanifold
of dimension n — m of M if for any chart (U, ¢) of the atlas of M such that U
intersects N, the matrix with entries Di(f-/ o ¢_1)|¢(p) (I<i<mnl=<j<m)isof
rank m for p € N. (D; stands for the ith partial derivative.)

Proof Let p € N and let (U, ¢) be a chart on M with p € U. Assuming that the
determinant of the square matrix D;(f” o ¢_1)|¢,( p» (1 <1, j <m)is different from
zero (which can be achieved by appropriately labeling the coordinates if necessary)

and denoting by x', x2%, ..., x" the coordinates associated with (U, ¢), the relations
1 1 2 2
y=r, yo=rfo o yt=r",
(1.6)
ym—H :xm—&-l’ . yn Ex”

define a coordinate system in some subset V of U, that is, the x! can be written as
differentiable functions of the y'. In the coordinates y’ the points p of N satisfy
yi(p) =y*(p) =--- = y™(p) =0. Therefore, N is a submanifold of M of dimen-
sion n — m. O
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A~

fo

Fig. 1.6 A curve in M and its image in a coordinate system. C is differentiable if ¢ o C is differ-
entiable for any chart (U, ¢) on M

Example 1.7 Let M =R3? and N = {p e R3| f(p) = 0} with f =x2 +y? — ¢z,
where (x, v, z) are the natural coordinates of R3. The matrix (D;(f o ¢>’1)|¢,( 7))
mentioned in Theorem 1.6, is the row matrix (2x(p) 2y(p) — 1), whose rank is
equal to 1 at all the points of N (actually, it is equal to 1 everywhere). Thus, we
conclude that N is a submanifold of R? of dimension two. However, in order to
see in detail how the proof of the theorem works, we shall explicitly show that N
satisfies the definition of a submanifold given above.

It is convenient to relabel the coordinates, so that f takes the form f = y* +
z2 — x, because in that way the first entry of the matrix (D;(f o ¢_1)|¢,(p)) is al-
ways different from zero. Then, following the steps of the proof of the theorem, we
introduce the coordinate system (u, v, w) [see (1.6)],

u=f=y2+z2—x, v=y, w=z,

on all of R3. From these expressions and their inverses, x = v+ w? —u, y=wu,
7z = w, we see that the two coordinate systems are C*°-related, and in terms of the
coordinate system (u, v, w), each point p € N satisfies u(p) =0.

Exercise 1.8 Show that if x!,x2,...,x" are the natural coordinates of R”
(that is, the coordinates associated with the chart (R”,id) of R"), then S"~! =
{peR" | x'(p)? + x2(P)? + --- + (x"(p))? = 1}, is a submanifold of R" of
dimension n — 1.

Definition 1.9 Let M be a C* manifold. A differentiable curve, C, of class C",
in M, is a differentiable mapping of class C" from an open subset of R into M ; that
is, C : I — M is a differentiable curve of class C" in M if I is an open subset of R
and ¢ o C is a differentiable map of class C" for every chart (U, ¢) of the atlas of
M (see Fig. 1.6).

In what follows it will be assumed that all the objects dealt with (manifolds,
maps, curves, etc.) are of class C*°.
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The set of all differentiable functions from M to R will be denoted by C*°(M).
This set is a ring with the operations given by
(f+8) P = fp)+8p)
(af)(p)=af(p) (1.7)
(fe)(p) = f(p)g(p) for f,g € C¥(M), aeR, and pe M.

If ¢ is a differentiable map from M to a differentiable manifold N and
f € C°(N), the pullback of f under ¥, y¥* f, is defined by

Vif=foy. (1.8)

From the relation (Y* f) o' = (fox o (x oy op~!) it follows that ¥* f €
C°°(M). Thatis, y* : C®°(N) — C>®(M) (¢* is applied to functions defined on N
to produce functions defined on M; hence the name pullback for ™).

Exercise 1.10 Show that v*(af + bg) = a¥*f + by*g and y*(fg) =
(* f)(*g) for f, g € C*(N)anda,beR.

Exercise 1.11 Show that a map ¥ : M — N is differentiable if and only if ¥* f €
C*®(M) for f € C*(N).

Exercise 1.12 Show that if y; : My — M, and Y, : My — M3 are differentiable
maps, then (Y2 0 ¥r1)* = 1™ o Y™

1.2 The Tangent Space

If C is a differentiable curve in M and f € C®°(M), then C*f = f o C is a dif-
ferentiable function from an open subset / C R into R (see Fig. 1.7). If 1o € I, the
tangent vector to C at the point C (%), denoted by C,’O, is defined by

i FC@) = F(Ct0) (19)
1

/ _ d *
Cto[f]=a(c )] = hm PR

Hence, Ct’0 is a map from C*° (M) into R with the properties (see Exercise 1.10)

d
Cplaf +bgl = E(C*(af +bg))

fo

d
= a(aC*f—i-bC*g)

fo

=aC,’0[f]+th/0[g], for f,g € C*(M), a,beR,
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foC

-~

fo

R"

Fig. 1.7 Composition of a curve in M with a real-valued function f. The derivative of f o C,
which is a function from R into R, represents the directional derivative of f along C

and
! d *
C,lf8l= 2 (C*(£9)|

4]

d * *
= ncy)|

= £(C(t0)) €} [g1+&(C 1)) CL[f1,  for f. g € C™(M).

fo

The real number C ;0 [ f] is the rate of change of f along C around the point C(t).

The properties of the tangent vector to a curve lead to the following definition.

Definition 1.13 Let p € M. A tangent vector to M at p is amap, v, of C*°(M) in
R such that

vl,[af + bg] =avp[f] + bvp[g]
vplfel=f(p)vplgl+g(p)vplfl,
for f,g € C*°(M),a,beR.

(1.10)

For a constant function, ¢ (denoting by ¢ both the function and its value, i.e.,
c(p) =cforall p e M), we have

vplel = vple- 11=cuvp[ll=cuvp[l-1]
=c(1-vp[1]+1-vp[1]) =2cvp[1]=2vp[c];
therefore,
v,le] =0. (1.11)

The tangent space to M at p, denoted by T, M (or by the symbols 7}, (M) and
M), is the set of all the tangent vectors to M at p. The set T, M is a real vector
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space with the operations defined by

(p +wp)lf1=vplf1+wplf],

(1.12)
(avp)lf1=a(vplf]),
forv,, w, e T,M, f € C*°(M), and a, b € R. Hence, 0, the zero vector of T, M,
satisfies 0,[ f]1= 0 for f € C®(M).
If (U, ¢) is a chart on M, with coordinates x! x2, ..., x" and p € U, the tangent
vectors, (8/8x1)p, (8/3x2)p, ..., (0/0x™"),, are defined by

9 - o]
<axi>p[f]zDi(fo¢ ‘)|¢(p), for f € C®(M), (1.13)

where D; denotes the partial derivative with respect to the ith argument; that is,

0 1 l ° -1 1 i n
(52) 1= lm [ 08 ) P X 1)
—(foo ('), ....x (p),....x" ()] (1.14)

Using the definition (1.13) one readily verifies that, in effect, (9/ Bxi) p satisfies the
conditions (1.10) and therefore (9/0x"), € T,M.
Taking f = x/ in (1.14) and noting that

(x/ o) (x'(p). x*(p), ... x"(p)) = (x/ 007" (B () =x/ (p)
and, similarly,

x/(p) ifi#j,

Jod=(x! 2 i n Y
(x ¢ )(x (P).x(p)y....x'(p)+t,....x (p)) {xf(p)+t iz

(for ¢ sufficiently small, so that all the points belong to U), we find that

5 ' ‘ 0 ifi],
<—> [xf]zags{ igty (1.15)
ax'/J, 1 ifi=j.

The set {(3/dx"),}/_, is linearly independent since if a’(3/0x"), = 0, (here
and in what follows, any index that appears twice, once as a subscript and once
as a superscript, implies a sum over all the values of the index, for instance,
al(@/dx"), =>""_,a'(3/dx") ), then using (1.15) we have

0=Op[xj]=ai<%> [xj]zai(sij =al.
p
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Theorem 1.14 If (U, ¢) is a chart on M and p € U, the set {(8/8)#‘)1,};‘:1 is a
basis of TyM and

: 0
vp vp[x ](8x1>p (1.16)
forv, e T,M.

Proof We only have to prove that any tangent vector to M at p can be expressed
as a linear combination of the vectors (3/dx’) p- Let f € C*°(M). The composition
F = f o¢~!is areal-valued function defined on ¢ (U), which is an open set of R”.
For an arbitrary point ¢ € U, we have f(g) = (f o ¢~ 1) o (¢(q)) = F(¢(g)) and,
similarly, f(p) = F(¢(p)). According to the mean value theorem for functions
from R” in R, for a real-valued differentiable function, F, defined in some open
subset of R", given two points (al, ...,a") and (bl, ..., b"™") such that the straight
line segment joining them is contained in the domain of F, we have

F(b',....b") = F(a',....a") = (b' —a')D;Fl1___n. (1.17)

where (c!,...,c") is some point on the straight line segment joining the points
(@',...,a"y and (',....,p") [ie, (c',....c") = (I — t)@a',...,a") +
to(b',...,b"), for some 1y € (0,1)]. Applying the formula (1.17) with
(@, ....a)=&"p),....x" (p)=¢(p)and (b',....b") = (x'(q), ..., x"(q) =
¢(q) we obtain

F(p(@)=F(¢(p) +[x'(q) —x' (D) Di Flar_eny.- (1.18)

Taking p fixed, the real numbers D; F'| .1
gi(q); then (1.18) amounts to

) depend on g and will be denoted by

.....

f@=fp)+[x'@—x"(»]si@
or, since ¢ is an arbitrary point in a neighborhood of p,
f=rm+[" =2 )]s (1.19)

Using'(l.lo), (1.11), and the expressior_l (1.19), taking into account that f(p) as
well as x' (p) are real numbers, while f, x*, and g; are real-valued functions defined
in a neighborhood of p, for any v, € T,M we have

vp[ £ (D] +[x () — X' (P)] vplgil + i (p) vp[x' — X' (p)]

= gi(p) vp[x'].

Up[f]

but g;(p) = D; Flyp) = (8/8xi)p[f] [see (1.13)]. Therefore

i 0
vp[f] = vp[x ](g) [f]
p
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and, since f is arbitrary, we obtain the expression (1.16). As a corollary of this result
we find that the dimension of T), M coincides with the dimension of M. g

According to (1.16), the tangent vector to a differentiable curve C in M
(C: 1 — M), at the point C(tp) is given by

; a
a=al(5),,,
0

But, from (1.9), C; [x'] =d(x' o C)/dt|;,; therefore

9
(—,) . (1.20)
10 \ 0%/ C (1)

Exercise 1.15 Let v, € T, M. Show that there exists a curve C such that v, = C} .

d(x' 0 )
4
Co= "4

If (V, x) is a second chart on M with coordinate functions yl, y?, ..., y", and
p € UNYV, then we have another basis for 7, M given by {(3/9y"),}/_,. From

(1.16) we see that
< 3‘> ( 8.) [/]( 8}) .
ay! p ay! P ax/ p

It is convenient to write (Bf/axi),, instead of (B/Bxi)p[f], keeping in mind the

definition (1.13), so that (1.15) becomes (3x/ /dx"),, = 8] and the foregoing relation
can be expressed in the simpler form

'/, ay' ) ,\ox/ /),
<i> :(ayl) <i> , (122)
ax/ » ax/ » ay! »

which means that the two bases of T, M, {(3/0x"),}!_, and {(3/dy"),}!_,, are
related by means of the matrix ¢/ (p) = (9x7/dy’),, whose inverse is the matrix
&5 (p) = (9y* /9xT) .

Let M and N be two differentiable manifolds, and let ¥ : M — N be a differ-
entiable map (see Fig. 1.8). The map ¢ induces a linear transformation between
the tangent spaces T, M and Ty )N called the Jacobian (or differential) of r at p,
denoted by vy, (or by drp). If v, € Ty M, ¥4, (v)) is defined as the tangent vector
to N at ¥ (p) such that for f € C®(N)

and, similarly,

1p*p(vp)[f] = Up[w*f] (1.23)
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N

Fig. 1.8 If ¥ : M — N is a differentiable mapping from M into N, its Jacobian, or differential,
maps tangent vectors to M into tangent vectors to N

Exercise 1.16 Show that if v, € T, M, then V., (v,) € Ty ()N and that ¥ is
linear.

If (x!,x%,...,x") is a coordinate system on M about the point p and
(y',¥2,...,y™) is a coordinate system on N about v/ (p), since Yup(0/0x")) €
Ty (pyN, using (1.16) we obtain the relation

a) B (a i
w*p<ﬁ p_w*p W)p[y ]<W>w(p)'

But from the definitions (1.23) and (1.8), ¥, (3/3x") ,[y/1 = (3/3x) [y *y/] =
(8/3x") p[y’ o Yr]; therefore

9\ _(307ow) (0
volaw), = (55, (), "

In other words, the matrix with entries (3(y/ o ¥)/dx") p represents the linear trans-
formation v, with respect to the bases {(3/9x"),}"_, and {(3/0y/)y () yi_ ) (com-
pare with the usual definition of the Jacobian matrix in the calculus of several vari-
ables).

If Yy : M| — M> and v : My — M3 are differentiable maps between differen-
tiable manifolds, then, for v, € T,M; and f € C*°(M3), using (1.23) and Exer-
cise 1.12, we have

W2 0 YD ap W) F1=vp[(W2 0 Y)* f] = vp[ (W1 0 ¥2™) f]

=, [V1* W2 )] = Yisp Wp) Y2 " f]
= Y2y () (Y 15p (V) L f],

i.e.,

(V2 0 Y1) ep = Y2uy (p) © Visp- (1.25)

This relation is called the chain rule.
If ¥ : M — N is a differentiable map between differentiable manifolds and
C:I1— M is a curve in M, the composition ¢ o C is a curve in N. According
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G

— R

N~

To

Fig. 1.9 The tangent vectors of the curve v o C are obtained applying the Jacobian of ¥ to the

tangent vectors of C
T,M
h

M

Fig. 1.10 The tangent bundle of M is formed by the union of the tangent spaces to M at all the
points of M. Each tangent space to M is represented here by a vertical line

to (1.9) and (1.23), the tangent vector to 1 o C at the point (¢ o C)(tp) = ¥ (C(9))
satisfies

!/ d /
(Y o)yl f]1= a(folﬂ oC) t0=Ct0[f01/f]
= Cy [V" f1=Yucay (Ci)lf],  for f e CP(N).

Hence

(¥ © Oy = VY a) (Cry), (1.26)

which means that the tangent vectors to the image of a curve C under the map
are the images of the tangent vectors to C under the Jacobian of ¢ (see Fig. 1.9).

The Tangent Bundle of a Manifold The rangent bundle of a differentiable man-
ifold M, denoted by TM, is the set of all tangent vectors at all points of M; that
is, ™M =} pem TpM . The canonical projection, 7, from TM on M is the mapping
that associates to each element of 7M the point of M at which it is attached; that is,
if v, € TyM, then 7 (v,) = p. Therefore, T (p) = T, M (see Fig. 1.10).
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L (U)
[0+
a
¢

M RZn

Rll

Fig. 1.11 Each coordinate system on M, (U, ¢), induces a coordinate system on TM, @~ '(U), )

The tangent bundle has the structure of a differentiable manifold induced by
the structure of M in a natural way. If (U, ¢) is a coordinate system on M, each
vp € LU ) is a linear combination of the vectors (3/ dx’) p» with real coefficients
that depend on v,,. Hence, we can write

. 3
v,,zq'(vp)(g) , (1.27)
14

which defines n functions c]i : 7~ 1(U) = R. (This notation comes from that com-
monly employed in Lagrangian mechanics, when M is the configuration space of a
mechanical system.) From (1.15) we also have

' (vp) = vp[x]. (1.28)

Defining the n functions ¢’ : 7 '(U) — R, by ¢' = x' o = 7*x’, the pair
(= (U), ¢), with

dwp) = (q"Wp), oo q"Wp) G Wp), .., 4" (V))),

is a chart on TM (see Fig. 1.11). (The image of 7~ !(U) under ¢ is ¢(U) x R,
which is an open subset of R?", and the injectivity of ¢ follows from the injectivity
of ¢ and the fact that if two vectors have the same components with respect to a
basis, they must be the same vector.)

Two coordinate systems (U, ¢) and (U’, ¢’) on M, C*-related, induce the co-
ordinate systems (7~ (U), ¢) and (x—1(U’), ¢') on TM, which are C*~!-related,
since from (1.27) [or from (1.21) and (1.22)] it follows that the coordinates ¢’ and

¢! are related by
. , axi . . ax/i
.1 — ‘/]7_[,* _ , -/l — ‘j]T* ; ,
i=iin () a=iin(5)
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where x! denotes the coordinates associated with (U, ¢), x’ I those associated with
(U’, ¢"), while ¢' and ¢'* are the coordinates induced on TM by (U, ¢) and ', ¢,
respectively. Thus, if {(U;, ¢;)} is a subatlas on M, {x=(U), ¢;)} is a subatlas on

TM that defines a differentiable manifold structure.

Since, by definition, a*xi = qi, the projection 7 is differentiable. Moreover,

from (1.24) we obtain

0 0 0
o N B
aq' /, ox! () agt J,

forven 1 (U).

Exercise 1.17 With the notation employed above, show that

L[ 0x" aq't L Of A(T* f)
T - | = - and 77| — )= —,
ox/ an ox/ an

for f € C®°(M).

The tangent bundle and the cotangent bundle (defined in Sect. 8.1) of a mani-
fold are two examples of vector bundles and fiber bundles. We are not giving here
the definitions of these more ample concepts, since we will not make use of them.
However, the vector bundles and the fiber bundles are two very useful concepts
in manifold theory and topology. Some introductory presentations can be found in
Crampin and Pirani (1986), Lee (1997), Isham (1999), and Conlon (2001).

1.3 Vector Fields

A vector field X, on M, is a function that to each point p of M assigns a tangent
vector X(p) € T, M. The tangent vector X(p) is also denoted by X,. A vector field
may not be defined in all of M (for instance, its domain may be the image of a
curve); but when a vector field is defined in all of M we say that it is defined globally,
otherwise we say that it is defined only locally.

Since a vector field gives us a tangent vector at each point of its domain and a
tangent vector can be applied to real-valued differentiable functions to yield real
numbers, given a vector field X and f € C*°(M), we can form a real-valued func-
tion X f, defined by

XN p) =Xplf] (1.30)
Since X, € T, M, from (1.10) it follows that

X(af +bg) =aXf+bXg and X(fg)= fXg+ gX/, (1.31)

for f,g € C*°(M) and a,b € R.
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A vector field X is differentiable (of class C*°) if for all f € C°°(M), the func-
tion X f also belongs to C*°(M). The set of all differentiable vector fields on M will
be denoted by X(M). Vector fields can be combined by means of the operations

(aX+bY), =aX, +bY),
FX)p=F(p)X,

for X, Y e X(M), a,beR, and f € C*°(M). Making use of the definitions above,
one verifies directly that aX + bY and fX are vector fields.

(1.32)

Exercise 1.18 Let X and Y be two vector fields on M. Show that
@X+bY)f =aXf+bYS, (1.33)
&X) f =gX/f), (1.34)

fora,b e R and f, g € C®(M).

If (U, ¢) is ac‘hart on M, We.have n vector fields, (a/axi), i=1,2,...,n,onU
defined by (9/0x")(p) = (9/9x") ,. These vector fields are differentiable since from
(1.30) and (1.13) we see that, for any f € C>*°(M),

<aii>f:[Di(f°¢l)]°¢~ (1.35)

Below (3/9x") f will be also written as df/dx", keeping in mind that these functions
are defined by (1.35).

Since the tangent vectors (3/dx") p form a basis of T, M, any vector field X
evaluated at the point p must be a linear combination of the vectors (3/9x"), with
real coefficients, which may depend on p. Therefore

; 0
X=X -
p

This relation defines n real-valued functions X!, X2, ..., X" in the intersection of U
and the domain of X. Making use of the operations (1.32) we have

) 0 )
X, = Xl(p)(ﬁ)@) = [X’ (ax,.)}(p),

X = Xl<i> (1.36)
ox!

(Strictly speaking, the left-hand side of this last equation is the restriction of X to the
intersection of U and the domain of X, denoted by X|y, where V is the intersection
of U and the domain of X.)

hence



1.3 Vector Fields 19

Exercise 1.19 Let X = X' (d/9x"). Show that the functions X_i are given by
X' =Xx' and that X is differentiable if and only if the functions X" are.

Exercise 1.20 Let (xl,x?,...,gc") and (x’l,)g’z,...,gc’”) be two coordinate sys-
tems. Show that if X = X*(3/0x") and X = X'/(3/dx"/), then

oxi’

in the intersection of the domains of X and those of the two coordinate systems.
(This last expression is the definition of a contravariant vector field in the tensor
formalism.)

There is another operation between vector fields, called the Lie bracket, with
which X (M) becomes a Lie algebra over R (see Appendix A). If X and Y are vector
fields on M, their Lie bracket is defined by

X, Y]f =X(Yf) = Y(Xf) for feC®M). (1.37)
Then [X, Y] = —[Y, X].

Exercise 1.21 Show thatif X,Y,Z € X(M) then [X, Y] € X(M) and [X, [Y,Z]] +
Y, [Z,X]] + [Z, [X, Y]] =0.

Exercise 1.22 Show that [fX,gY] = fg[X.Y] + f(Xg)Y — g(Y/)X, for
X,Y € X(M) and f, g € C®°(M).

If (U, ¢) is a chart on M with coordinates xL x2, ..., x", from (1.35) we have
[(o/0x'). (2/2x7)]
d _ ad _

~ (52 {1237 007N o6) = (55 ) {27 007 )] 00)
={DiDj(fod™") = D;Di(fog™)} oo

:0,

for f € C*°(M); hence
[(8/0x"), (3/0x7)] =0. (1.38)

Exercise 1.23 Show that if X,Y € X(M) are given by X = X'(3/9x") and
Y=Y/(d/9x’), then [X,Y] = (XY' — YX")(d/0x"). (Hint: use the result of the
first part of Exercise 1.19.)

Exercise 1.24 Compute the Lie brackets of the vector fields

1—r2 9
d cosf —,
a0

0
_ 2\ o
X_(1+r )Sln98r+ .
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Y (1+ 2)cos9a +1_rzsin98
= — r _— —_—,
ar r a0

7Z=—.
a0

As shown above, each coordinate system gives rise to a set of n vector fields that
can be used to express an arbitrary vector field in the local form (1.36), and that sat-
isfy the relations (1.38). Nevertheless, an arbitrary vector field can also be expressed
in a form analogous to (1.36) in terms of any set of n vector fields such that at each
point of their common domain forms a basis for the tangent space. The use of this
kind of set of vector fields, not necessarily associated with coordinate systems, may
be convenient when there exists some additional structure on the manifold (e.g.,
a connection, a metric tensor or a Lie group structure), as shown, e.g., in Sects. 5.3,
6.2,6.3,64,7.2,and 7.5.

While any differentiable mapping from a manifold into another manifold allows
us to map tangent vectors to the first manifold into tangent vectors to the second
one (by means of the Jacobian of the map), not any differentiable map between
manifolds allows us to map a vector field on the first manifold into a vector field
on the second one. For instance, if a differentiable map ¢ : M — N is not injective,
there exist two different points p and ¢, belonging to M, which have the same image
under v; however, for a vector field X on M, the tangent vectors ¥, X, and ¥4, X,
need not coincide.

Let v : M — N be a differentiable map between differentiable manifolds. If
XeX(M)and Y € X(N), we say that X and Y are y-related if

Yy(p) = VupXp, forpeM. (1.39)
From (1.30) and (1.23) it follows that if f € C*°(N), then
YN W) =Yyplf1=pXplf 1= X, f 0 Y]
=(X(foy))(p), forpeM,
that is
Yoy =X(foy), forfeC®(N). (1.40)

For example, according to Exercise (1.17), the vector fields 8/d¢g/ and 3/9x/ are
7 -related.

If X1, X5 € X(M) are y-related with Y1, Y, € X(N), respectively, then [X1, X>]
is y-related with [Y1, Y2], since, by hypothesis, (Y1 f) o ¥ = X1(f o ¥) and
(Yag8) oy =Xo(g o), for f, g € C*°(N) [see (1.40)]. Taking g =Y, f, we have

[Y2(Y1 )] oy =Xo((Y1 /) ov) =Xa(Xi(f o)),
and a similar relation is obtained by interchanging the indices 1 and 2. Then

(Y1, Y2l f) o = (Y1i(Yaf) = Yo(Y1 /) o ¥
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=X (X2(f o)) = Xo (X1 (f o ¥))
=[X1, Xol(f o ¥).
Since a vector field on M, X, is a function that maps each point p € M into an

element X, € T,M C TM, X is a function from M into TM such that 7 o X =idy,,
where 7 is the projection of the tangent bundle 7M onto M.

Exercise 1.25 Show that a vector field X on M is differentiable if and only if the
function p — X, from M into TM, is differentiable. (Hint: prove that if X is given
locally by (1.36), then X*g' = x' and X*¢' = X', where the ¢' and ¢' are the
coordinates induced on TM by a system of coordinates x’ on M.)

1.4 1-Forms and Tensor Fields
Let f € C*(M); the differential of f at the point p (p € M), denoted by d f,, is
defined by
dfy(vp) =v,lf], forv, e TyM. (1.41)
The map d f), is a linear transformation from 7, M in R, since if v, w), € T, M and
a,b eR, from (1.41) and (1.12) we have
dfplavy +bwy) = (avy +bwp)[ f]
= avp[f] +bwp[f]
=adf,(vp) +bdf,(wp).

This means that d f}, belongs to the dual space of T, M, denoted by T;M . By defi-
nition, the elements of T;‘M are the linear transformations from 7, M in R, which
are called covectors or covariant vectors, while T;M is called the cotangent space
to M at p. The space T;‘M is a vector space over R with the operations

(ap + Bp)(vp) =ap(vp) + Bp(vp), (aap)(vp) = a(ap(vp))» (1.42)

forap, Bp e TyM,v, € TyM,anda € R.

A covector field o on M is a map that assigns to each p € M an element
a(p) € T;M . The covector a(p) will also be denoted by « ). A covector field o
is differentiable (of class C*°) if for all X € X(M) the function «(X) defined by

(X)) (p) =a,(X;) (1.43)

is differentiable (of class C°).

The function «(X) is also denoted by X« (which allows us to reduce the re-
peated use of parentheses with various purposes) and by i (X)«, ixc, or (X, «). This
operation is called contraction or interior product.
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The set of all differentiable covector fields on M will be denoted by A'(M). The
set A'(M) is a module over C°° (M) with the operations given by
(a +,3)p =ap +,Bp,

(1.44)
(fe)p = f(P)ap,

for a, B € A'(M) and f € C®(M). The elements of A'(M) are called linear dif-
ferential forms or 1-forms.

If f € C* (M), the differential of f, denoted by d f and given by d f(p) =d f),
is a differentiable covector field or 1-form [i.e., df € A'(M)], since if X € X(M),
then from (1.41) and (1.30) it follows that

(df X)) (p) =dfp,(Xp) =X,[f1=Xf)(p),
for p € M; that is,
dfX)=Xf (1.45)

(or, equivalently, X Jd f = X f), which is a differentiable function for all X € X(M),
thus verifying that d f is, indeed, a differentiable covector field.

From (1.45), (1.31), (1.44), and (1.42) it follows that the map d : C*°(M) —
AY(M), which sends f into d f, satisfies

dlaf +bg)(X) =X(af + bg) =aXf + bXg
= adf(X) +bdg(X) = (adf +bdg)(X),

for X € X(M); therefore
d(af +bg)=adf +bdg, for f,ge C®°(M)anda,becR. (1.46)
Similarly, from (1.45), (1.31), and (1.42),

d(fe)X) =X(fg) = fXg +gXf
= fdgX)+gdfX)=(fdg+gdf)X), forXeX(M),

hence,
d(fg)= fdg+gdf, forf,geC®(M). (1.47)
If (U, ¢) is achart on M, then (1.41) and (1.15) imply that the differential of the
coordinate functions x1, x2, ..., x" satisfies

wl())-Gr) e s
axi ), axi J, /

This relation implies that {d)clﬁ,}?:1 is a basis of T[;"M , since if a linear com-

bination, with real coefficients, a; dx;, is equal to the zero covector, we have
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0= (a; dx;,)((a/axj)p) = aié; =a;. Furthermore‘, if o e T;‘M, for any tangent
vector v, € T, M expressed in the form v, = v, [x'](3d/9x"), [see (1.16)], then we

find
ap(vp) =ap (Up[xi] <%)p) =vp[x'], ((%)p)

but, according to (1.41), v,[x'] = dxé, (vp). Therefore

d : B .
ap(vp)=ap<<ﬁ> )dx;,(vp)= |:Olp<<ﬁ) )dx;il(vp),
p p

and since v), is arbitrary, we have

apzap<<%> )dxj, (1.49)
p
[cf. (1.16)].

If « is a covector field on M, using (1.49), (1.43), and (1.44) it follows that the
covector a(p) € T;‘M is expressed as

a(p) = a(p)((%)p) dxj, = [“((aii ))}(p) dx'(p)
(oo

a:a(( a.))dx". (1.50)
dx!

Denoting the real-valued functions o ((9/ 9x')) by «; we conclude that any covector
field is locally expressed (i.e., in the domain of a local chart of coordinates) in the
form

that is,

o =q;dx’. (1.51)

Exercise 1.26 Show that « is a differentiable covector field if and only if the func-
tions «; are differentiable.

Exercise 1.27 Let (x!,x2,...,x") and (x'",x"2,...,x"") be two coordinate sys-
tems. Show that if « = o; dx’ and @ = Ol} dx'/, then

p ax!
= g
in the common domain of « and the two systems of coordinates (cf. Exercise 1.20).
(This relation is taken as the definition of a covariant vector field in the tensor for-
malism.)
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The local expression of the differential of a function f € C*°(M) is, according to
(1.50), df =[df((a/0x"))]dx"; but, by virtue of (1.45), df((d/0x")) = (3/9x") f,
so that

df:ﬂdx", (1.52)

dx!

which agrees with the expression for the total differential of a function of several
variables, as defined in textbooks on the calculus of several variables.

Example 1.28 The linear differential forms and the differential forms of degree
greater than 1, defined in Chap. 3, correspond to the integrands of the line inte-
grals, surface integrals, and so on, encountered in various areas of mathematics and
physics [see, e.g., Guillemin and Pollack (1974), do Carmo (1994), Lee (2002)]. If
C :la, b] — M is a differentiable curve in M (that is, C is the restriction to [a, b] of
a differentiable map of an open subset of R containing [a, b] to M) and « is a linear
differential form on M, then the line integral of @ on C is defined by

b
/Coczf acw(C'(1)dr, (1.53)

where the integral on the right-hand side is the Riemann integral of the real-valued
function # > ac()(C'(¢)). As is well known, the value of fC o depends on C only
through its image and the direction in which these points are traversed.

If « is the differential of a function f, according to the definitions (1.53), (1.41),
and (1.9) we have

b b b d
/Cdf=/ dfc:(z)(C’(t))dt:/ Cé[f]dt=/ E(C*f)dt

= f(C®)) - f(C@).
Hence, if C is a closed curve [that is, C(a) = C(b)],

/Cdfzo.

For instance, if M = R?\ {(0, 0)}, recalling that

(dxi)c(t)(C,/) =C|[x']= %(xi o C)
[see (1.41) and (1.9)], the line integral of the 1-form
o xdy —ydx
X2+ y?
on the closed curve C : [0, 27] — M, defined by C(¢) = (cost, sint), has the value

2T costcost + sint sint
o= — dr =27,
c 0 cos2 t + sin” ¢
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which is different from zero and, therefore, « is not the differential of some function
defined on M [see also Guillemin and Pollack (1974), do Carmo (1994)].

Tensor Fields A tensor of type (2) (or covariant tensor of rank k) at p is a multi-
linearmap ¢, : Ty M x --- x T, M (k times) — R. A tensor of type ((1)) is a covector.
The set of tensors of type (2) at p is a real vector space if for any pair of tensors of
type (2) at p, tp and s, we define

(atp —l—bsp)(v], eeey UK) Eatl,(vl, eeey UK) +bsp(v1, ey Uk, (1.54)

forvy,...,uu€TpyManda,beR.
If ¢, is a tensor of type (2) at p and s, is a tensor of type (?) at p, the tensor
product tp, ® s, is defined by

tp ®sp)Wi, .oy Vi) =tp (1, o, V) Sp(Vkts + v v s Vktd)s (1.55)
forvy,...,vg4s € TyM. Then t, ® s is a tensor of type (k(?H) at p.
Exercise 1.29 Show that

(at1p +bt2p) Qsp=at1p Qsp +bt2p QSp,
tp @ (asip +bsyp) = aty, @ s1p + bty @ 52p,

(rp®sp)®tp=rp®(sp®tp)~

If 7, is a tensor of type (2) at p and vy, ..., v € Tp M, making use of the multi-
linearity of 7, of the definition of the tensor product, and expressing the vectors v;

in the form v; = v;[x/](3/0x/), = dx{;(vi)(a/axf)p (i=1,2,...,k), according to
the definition (1.55) we have

i 9 m 9
(U1, ..., ) = tp(dx,,(vl)(ﬁ>p, oo dxy (Uk)(axm>p)
; m 9 9
casir-aon((3) - (3))

0 0 ;
=|:tp<<ﬁ> ’7(8)6—’") )dx;,®®dx;":|(v1,,vk),
b4 4
therefore,

_ 9 d d i J m
tp _tp<<ﬁ)p’ (E)p, ey <ax—m)p>d)€p ®dxp RX--- ®dxp . (156)

A tensor field of type (2) (or covariant tensor field of rank k), t, on M is a map
that associates with each point p € M a tensor of type (2), t(p)ortp, at p.If t
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is tensor field of type (2) and X1, ..., Xy are k vector fields on M, t(Xy, ..., Xp)
is the real-valued function given by [#(Xy, ..., Xp)](p) = 1,(X1(p), ..., Xk(p)).
We say that ¢ is differentiable if #(X{, ..., Xy) is a differentiable function for all
X],...,Xk E%(M)

Exercise 1.30 .Show that ¢ is differentiable if and only if the functions #;; ,, =
1(d/0x",9/9x/,...,9/9x™) (the components of # with respect to the basis induced
by the coordinates x') are differentiable.

The sum, the product by scalars, the product by real-valued functions, and the
tensor product of tensor fields are defined pointwise:

(at + bs)p = atp + bsy,
(ft)p = f(P)lp,
t®s)p =ty sp,

for a,b € R, s, tensor fields on M, and f : M — R. Using these operations, any
tensor field of type ( 2) has the local expression

(b out oue
N axt )7\ ax/ )77 axm ' '

If 7 is a tensor field of type (2) on M and Xy, ..., X} are k vector fields on M,
owing to the linearity of 7, in each of its arguments, for any function f : M — R,

[(Xi, .o XL X0 (p) =1 (Xi(p), - (XD (D), -, Xk (p))

=1,(Xi(p), ... F(P)Xi(P), ... Xk(p))
= f(P)tp(X1(p), ... Xi(p), ... Xi(p))
= X, X X0 (),

for p € M, that is,

(X1 X X = XL XX, 1 <i <k
Similarly, we conclude that
(XX X LX) =X X LX) XX LX),

Note that, for instance, the Lie bracket is not a tensor since [X, fY] = f[X, Y]+
(X )Y (see Exercise 1.22).

Conversely, if ¢ is a map that to each set of k vector fields on M associates a
function of M in R with the property that for any pair of functions f, g : M — R,

tXy, . X+ 8XE LX)
=ftXy, .. L X, X)) F et (XL X L X,
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1 <i <k, then ¢ is a tensor field of type (2). In effect, the property for ¢ as-
sumed ensures that, locally, ¢ is of the form ¢ = 7((3/dx"), ..., (3/3x™))dx’ ®
-+- ® dx™, since if Xy, ..., Xy are vector fields on M, writing them in the form
X; =dx/(X;)(@/dx7),i =1,..., k, we have

z(Xl,...,Xk)=z<dxi(xl)<i.>,...,dx'"(Xk)(i))
Jx! dxm
=dx!(X dx™(Xp) t 9 0
=dx'(Xy) - -dx"(Xg) <<@>,,<ax—m>)
=[t((i),...,(i))dxi®...®dxm]<xl,...,xk>.
ox! axm

A tensor of type (](‘)) (or contravariant tensor of rank k) at p is a multilinear
mapping f, : T;M X +ee X TI;"M (k times) — R. The set of tensors of type (15) at
p forms a vector space defining the sum and the multiplication by real scalars in
an analogous manner to the operations for tensors of type (2). Similarly, if ¢, is a
tensor of type (g) at p and s, is a tensor of type (f)) at p, the tensor product z, ®@ s,
given by

(tp @sp)ar, ..., ap)) =tp(ar, ..., Q) Sp (At 1y vy Aptl),
foraq, ..., o4 € T;M, is a tensor of type (k(;rl) at p.
If ¢, is a tensor of type (](‘)) at pand o, ..., ok € T, M, expressing each covector

o; in the form o; = ai((a/axi),,) dx,j; [see (1.49)], we have

0 . d
th(ar, ..., 0 = tp(oq((ﬁ) >dx;,,...,ak<<ax—m) )dx;;’)
p p
9 9 i m
= a1<(§>‘v) . .-C{k((ax—m>p>tp(dxp, ey d.xp)

Defining v, (ap) = ap(vp) for v, € T, M and a) € T;M (which amounts to the
identification of 7}, M with the dual space of T;‘M ), we have

) 9 d
t =|t,(dxt,...,dx")| — — ,
ple 79 |:p( X, p)<axl)p® ®<axm)p}(a1 o)
and therefore
) 9 d
tpztp(dx;,...,dx;”)(—axi) ®“.®<8xm> .
p p

A tensor field of type (16) (or contravariant tensor field of rank k), t, on M is
a map that associates to each point p € M a tensor of type ((]j), t(p) or t,, at p.
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The tensor field ¢ is differentiable if for any k& 1-forms, o, ..., o, the function
t(oy, ..., o), defined by [f(aq,...,c)](p) = tp(a1(p), ..., ar(p)), is differen-
tiable. Any tensor field of type (’(‘)) on M is expressed locally as

. 0 )
t:t(dx’,...,dxm)<axl.>® ®(ax—m>

Again, it turns out that ¢ is differentiable if and only if the functions '~ =
t(dxi, ...,dx™) are differentiable. Furthermore, any map ¢ that to each set of k
covector fields associates a function from M into R is a tensor field of type (’5) if
and only if for «q, ..., «;, alf, ..., 0, covector fields on M,

1, e, foi 80, oo o) = f1(0, ey Qe k) + 811, ey 0y, Q)

for f,g: M — R.

A mixed tensor of type (f‘ ) at p, is a multilinear map from the Cartesian product
of k copies of 7;M and [ copies of T, M in R. The tensors of type (f) at p form
a real vector space where the sum and the product by real scalars are defined in the

natural way. The tensor product of a tensor of type (f‘ ) by a tensor of type (;‘,/) isa

k+k'
I+ ‘ _
formed by the tensor products of k vectors (3/dx"), and I covectors dx;,; therefore,

tensor of type (', ). A basis for the vector space of the tensors of type (f )at pis
this space has dimension n*+,

A tensor field of type (f‘) on M is a map that to each point p € M associates
a tensor of type (f‘) at p; a tensor field of type (8) on M is a function of M
in R. A tensor field, 7, of type (;‘) is differentiable if for Xy, ..., X; € X(M) and
o1, ...,0 € Al (M), the function of M into R that to each point p € M associates
the value of ¢, on X1 (p), ..., Xj(p),a1(p), ..., ax(p) (taken in an appropriate or-
der) is differentiable.

The sum, the product by scalars, the product by real-valued functions, and the
tensor product of mixed tensor fields are defined pointwise:

(at +bs)p, = atp, +bs, (whent and s are of the same type)
(f)p = f(ptp,
t®s)p =1, ®sp,

fora,beR, f: M — R, and ¢, s mixed tensor fields on M. The set of differen-
tiable tensor fields of type (f‘) on M, denoted by le (M), is a module over the ring
C®(M).



Chapter 2
Lie Derivatives

In this chapter several additional useful concepts are introduced, which will be ex-
tensively employed in the second half of this book. It is shown that there is a one-to-
one relation between vector fields on a manifold and families of transformations of
the manifold onto itself. This relation is essential in the study of various symmetries,
as shown in Chaps. 4, 6, and 8, and in the relationship of a Lie group with its Lie
algebra, treated in Chap. 7.

2.1 One-Parameter Groups of Transformations and Flows

Definition 2.1 Let M be a differentiable manifold. A one-parameter group of
transformations, ¢, on M, is a differentiable map from M x R onto M such that
¢(x,0)=xand p(p(x,1),s) =@(x,t+s) forallx e M, t,s € R.

If we define ¢; (x) = ¢(x, 1), then, for each 7 € R, ¢; is a differentiable map from
M onto M and ¢4+5(x) = 9(x.1 +5) = (@ (x.1).5) = @(¢r(x).5) = 95 (01 (x)) =
(¢s 0 1) (x), that is,

Pr4+s =Ps O Pt = Pt © Ps

(since t + s =5 + ). o is the identity map of M since ¢p(x) = ¢(x, 0) = x for all
x € M. We have then ¢; o ¢_; = ¢_; o ¢; = @, which means that each map ¢; has
an inverse, ¢_,, which is also differentiable. Therefore, each ¢ is a diffeomorphism
of M onto itself. Thus, the set of transformations {¢; | € R} is an Abelian group of
diffeomorphisms of M onto M, and the map ¢ — ¢; is a homomorphism from the
additive group of the real numbers into the group of diffeomorphisms of M.

Each one-parameter group of transformations ¢ on M determines a family of
curves in M (the orbits of the group). The map ¢, : R — M given by ¢,(¢) =
¢ (x, 1) is a differentiable curve in M for each x € M. Since ¢, (0) = ¢(x, 0) = x, the
tangent vector to the curve ¢, at t = 0 belongs to T M. The infinitesimal generator
of ¢ is the vector field X such that X, = ((px)6. In other words, the infinitesimal
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generator of ¢ is a vector field tangent to the curves generated by the one-parameter
group of transformations.

Example 2.2 Let M = {(x,y) e R?|x >0} andlet o : M x R — M be given by

(2x0, 2ypcost + (1 — xo% — yo2) sint)
14 x02 4 yo? + (1 — x0%2 — yo2) cost — 2ypsint

o((x0. y0), 1) = 2.1

The map (2.1) is differentiable because it is the composition of differentiable func-
tions and the denominator does not vanish for xg 7% O (it can be verified that the de-
nominator in (2.1) is equal to 2[(xq sin(r/2))* + (yo sin( /2) — cos(t /2))?]). Further-
more, ¢((xo, Yo),t) € M for any (xo, yo) € M, t € R, and ¢((x0, y0), 0) = (x0, Y0)-
Finally, a direct but lengthy computation shows that (2.1) satisfies the relation
o(@((x0, y0),1),5) = ¢((x0, ¥0),t + 5), and therefore we have a one-parameter
group of transformations on M.

For (xo, yo) € M fixed, ¢(x,,y,) (t) = ¢ ((x0, Y0), t) is a differentiable curve in M
whose tangent vector at t = 0 can be obtained using (1.20), that is,

(&)
=0 \ 9y (x0,y0)

d 0 d
(§0(xo,y0))6 = 5@ © Y(xg,y0)) t=0<a)(x0,yo) + E()’ ° P(x0.0))

with

2)6()
2 2 — . 2_ 2 _ P
1 4+ x02 + yo2 + (1 — x0% — yg2) cost — 2ygsint

(xo <.0(x0,y0))(l) =

2.2)
2ypcost + (1 — X02 — yoz) sint

14 x02 4+ yo2 + (1 — x¢2 — yo2) cost — 2ypsint

(Y © O(xg,y0)) () =

[see (2.1)]. Calculating the derivatives of the expressions (2.2) with respect to ¢ at
t = 0, one finds that the infinitesimal generator of the one-parameter group (2.1), X,
is given by

9 1—x02+yo2( d
X(x0.30) = @(x0.30))0 = X0y0<—> +
dx (x0,Y0) 2 dy (x0,Y0)

a 1—x24+y% 9
=\xy— “+ f_
dx dy (x0,y0)

[see (1.32)]; thus,

3 1—x24+y% 9
X=xy—+ ——. 2.3

S T R T )

The (images of the) curves defined by the one-parameter group (2.1), to which

X is tangent, are circle arcs. In order to simplify the notation, we shall write x and

y in place of x 0 ¢y, y,) and y o @(x,, y,)» T€spectively; then, from (2.2), eliminating
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the parameter ¢, we see that

T+x02+y02\> 5 [(1+x02+y2\?
x—————— | 4y =——FF——) - L
2x0 2x0

which is the equation of a circle centered at a point of the x axis.

Exercise 2.3 Show that the following families of maps ¢, : R* — R? form one-
parameter groups of transformations and find their infinitesimal generators:

(@) ¢r(x,y)=(xcost — ysint,xsint 4+ ycost).
(b) @ (x,y) = (x +at,y+bt), witha,beR.
(©) @i (x,y) = (e“x,e"y), witha,b eR.

Exercise 2.4 Let ¢ be a one-parameter group of transformations on M and let
X be its infinitesimal generator. Show that if y = ¢, (fp), for some 7y € R, then
(gox);() = (¢y)(, and, therefore, ((px);o =X, (10)-

Given a differentiable vector field, X, on M, there does not always exist a one-
parameter group of transformations whose infinitesimal generator is X it is said that
X is complete if such a one-parameter group of transformations exists.

Integral Curves of a Vector Field

Definition 2.5 Let X be a vector field on M. A curve C : I — M is an integral
curve of X if C; =X (), for t € I. If C(0) = x we say that C starts at x. (Accord-
ing to Exercise 2.4, if ¢ is a one-parameter group of transformations and X is its
infinitesimal generator, then the curve ¢, is an integral curve of X that starts at x.)

If (x!, x2‘, ..., x") is a local coordinate system on M and X is expressed in the
form X = X*(9/dx"), the condition that C be an integral curve of X amounts to the
system of ordinary differential equations (ODEs) [see (1.20)]

dx' 0 C) _

X'oC. 2.4
P ° 2.4)

More explicitly, writing the right-hand side of the previous equation in the form
(X0 C)) = (X" 097 ")(p(C™))
= (X" oo ) (x'(Ct)), x*(C®),....x"(C®))
= (X" 0¢p™)((x" 0 C) (@), (x* 0 C) (@), ..., (x" 0 C) (1)),
one finds that equations (2.4) correspond to the (autonomous) system of equations

dx'oC)

< (X'op N (x'oC,x?0C,....x" 0 C) (2.5)
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for the n functions x’ o C of R to R. (Note that each composition X' o ¢! is a
real-valued function defined in some subset of R”.) According to the fundamental
theorem for systems of ODEs, given x € M, there exists a unique integral curve of
X, C, starting at x. (That is, if D is another integral curve of X starting at x, then
D = C in the intersection of their domains.)

Let C be an integral curve of X starting at x, and let p(x, t) = C(¢). The curve
D defined by D(t) = C(t + s), with s fixed, is an integral curve of X, since for an
arbitrary function f € C*°(M)

f(D@+h) — f(D@))
h
L S(CUth+s) = f(CG+5)

=1l
h—0 h

=Ci [ f1=Xcars[f1=Xpu [ f].

DjIf]= lim

The curve D starts at D(0) = C(s) and by virtue of the uniqueness of the integral
curves, we have

D(1) =¢(C(s).1) = p(p(x,5),1).
On the other hand, from the definition of D,

D(t)=C(t+s)=9p(x,t+5);

therefore,

o(p(x.5).1) = p(x,1+9) (2.6)

(cf. Definition 2.1).

In some cases ¢ is not defined for all # € R, and for that reason it is not a one-
parameter group of transformations. However, for each x € M there exist a neigh-
borhood, U of x and an ¢ > 0 such that ¢ is defined on U x (—e¢, ¢) and is differen-
tiable. The map ¢ is called a flow or local one-parameter group of transformations
and X is its infinitesimal generator.

If X is the infinitesimal generator of a one-parameter group of transformations or
a flow, the transformations ¢, are also denoted by exp #X. Then, the relation (2.6) is
expressed as exptX oexpsX = exp(t + s)X.

Example 2.6 Let M = R with the usual coordinate system, x = id. The integral
curves of the vector field X = x?>9/dx are determined by the single differential
equation [see (2.4)]

%:)ﬁoC:(xoCﬁ (2.7)

[the previous equality follows from (1.7), which gives x*(p) = (x(p))?; hence,
(x20 C)(1) =x%3(C(1)) = [x(C(1))]* = ((x 0 C)(t))*> = (x 0 C)*(¢)]. The solution
of 2.7) is (x o C)(t) = —1/(t + a), where a is a constant or, simply, since
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x =1id, C(t) = —1/(t + a). If the integral curve of X starts at xg, then C(0) =
—1/a =xo, i.e.,, a = —1/xg. Since ¢y, is the integral curve of X starting at xq (see
Definition 2.5), we have

1 X0
t—1/x0 1—xot

Pxo (t) =

and therefore
X0
1 — xot

p(xo, 1) = (2.8)
is the local one-parameter group generated by x?d/dx.

The expression (2.8) is not defined for # = 1/x¢, and therefore we are not dealing
with a one-parameter group of transformations, despite the fact that X is differen-
tiable. However, the flow (2.8) satisfies the relation (2.6), since, according to (2.8),

(o0, ), 1) = 208 _ xo/(L—x08) X
PR ) = T oot T—txo/(1—x08)  1—xo(t +9)
= @p(x0,t+5),

whenever all the expressions involved are defined.

Example 2.7 Let M =R? and let X = y9/dx + x 3/dy, where (x, y) are the usual
coordinates of R2. Equations (2.4) are in this case

d(x o C) d(yoC)
———=yoC(, ——=x

C.
dt dt °

By adding and subtracting these equations we obtain

dxoC+yoC)
_ = C C,
dr roltyo dr

d(xoC—yoC):_(xoC_yOC)

whose solutions are (x o C + y o C)(t) = (xo + yo)e' and (x o C — y o C)(t) =
(xo — yo) e~ !, where x¢ and y( are the initial values of x o C and y o C, respectively.
Hence, (x o C)(t) = xgcosht + ygsinh?, (y o C)(t) = xosinht 4+ ygcosht, and

©(xg,y0) (t) = (xg cosht + yg sinht, xg sinh ¢ + yg cosh?). 2.9)

Since (x 0 C)? — (y 0 €)% = xo% — yo?, the (images of the) integral curves of X
are hyperbolas or straight lines. The expression (2.9) is defined for all + € R, and
therefore it corresponds to a one-parameter group of transformations. Substituting
(2.9) into (2.6) one finds the well-known addition formulas

cosh(t 4+ s) = cosh# coshs + sinht sinh s,

sinh(¢ + s) = sinh# cosh s 4+ cosht sinhs.
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Exercise 2.8 Let ¢ : M| — M, be a differentiable map and let ¢; and ¢, be one-
parameter groups of transformations or flows on M and M,, respectively. Show that
if ¢p; o ¥ = ¥ o @1;, then the infinitesimal generators of ¢ and ¢, are ¥ -related,
i.e., show that ¥4 X, = Yy (r), where X and Y are the infinitesimal generators of
@1 and ¢y, respectively.

Example 2.9 An integration procedure distinct from that employed in the preced-
ing examples is illustrated by considering the vector field X = %()c2 —y$)d/ox +
xyd/dy on M = {(x,y) € R?| y > 0}. (The one-parameter group generated by this
vector field is also found, by another method, in Example 6.12.) The system of
equations (2.4) is

dx 1., dy

i Z(x y ), =xy, (2.10)
where, in order to simplify the notation, we have written x and y in place of x o C
and y o C, respectively. Eliminating the variable ¢ from these equations (with the
aid of the chain rule) we obtain the ODE dy/dx = 2xy/(x?> — y?). Noting that the
right-hand side of the last equation is the quotient of two homogeneous functions
of the same degree, it is convenient to introduce u = y/x, so that du/dx = u(l +
u?) Jlx(1 — u?)], which by the standard procedures leads to

dx (1—u?)du <1 2u
— = (- == |du,
X u(l+u?) u 1+u?

whose solution is given by x = cu/(1 + u?) = cy/[x(1 4+ y?/x?)], where ¢ is some
constant. Hence x2 + y? = ¢y, which corresponds to the circle centered at (0, c/2)
and radius ¢/2.

In order to obtain the parametrization of these curves, one can substitute x =
+./cy — y? into the second of equations (2.10), which yields dy/dt = +y+/cy — y2,
or, putting v =1/y, dv/dt = F+/cv — 1; hence 2+/cv — 1 = Fc(t — ty), where 19 is
a constant. Thus, from the foregoing relations we find that

4 202(t —t
¢ P Ut O 2.11)

YT A -1 A2 —19)?

For the integral curve of X starting at (xg, o), from (2.11) we have yy = 4c/(4 +
c219?) and xp = 202t0/(4 + ¢%1y?), which imply that

x0% + yo? 2x0
c=——0" h="5"3
Yo X0~ + Yo
and, substituting these expressions into (2.11), we obtain

2(x0? + ¥0%) (2x0 — (x0% + yo2)t, 2y0)
[(x02 + o)t — 2x0]> + 4yo?

o((x0,y0),1) =
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_ (xo — (x0* + y09)1/2. yo)
(1 —x0t/2)2 + yo2(t/2)%

2.12)

From (2.12) we see that the integral curves of X are defined for all 7 € R, and there-
fore X is complete and (2.12) corresponds to a one-parameter group of transforma-
tions. Further examples are given in Examples 4.1, 6.11, 6.12, 6.20, 7.40, and 7.41.

Exercise 2.10 Find the integral curves of the vector field X = ﬁ(x% - y%)

on R?\ {(0,0)} and the one-parameter group of diffeomorphisms generated by X.

From equations (2.10) one notices that if one looks for the integral curves of fX,
where f is some real-valued differentiable function, on eliminating the variable ¢
the function f disappears and one obtains the same equation for dy/dx as obtained
in the preceding example. Therefore, the same circles are obtained. For any vec-
tor field X, the integral curves of X and fX, with f € C*°(M), only differ in the
parametrization. If ¢, denotes the flow or one-parameter group generated by X and
o is a function of some open subset of R in the domain of the curve ¢,, then the
tangent vector to the curve ¥, = ¢, o o satisfies, for g € C*°(M),

d d
I _ v _4
(V) Lg] = dtg(‘”x(”)‘,:,o (o) oa)m\t:m
Lgoun| LI =) a1
=—(go —| = .
dr 82 o Plo)!8Ty, o
do
=37 | Xeonlgl: (2.13)
t 10

where we have made use of the chain rule for functions from R into R and of the
result of Exercise 2.4. The expression (2.13) coincides with (fX)y o (1)) [g] if we
choose o in such a way that

do

P f(gox(a(t))). (2.14)
Hence, if additionally we impose the condition o (0) = 0, the curve ¥, = ¢, 00 is
an integral curve of fX starting at x.

Example 2.11 The integral curves of fX, where X is the vector field considered
in Example 2.9 and f is any function belonging to C°°(M), can be obtained by
solving equation (2.14) with ¢, given by (2.12), i.e.,

do ((x& + y0H)[4x0 — 2(x0” + y0*)o (1)]
e [(x02 4+ y02)o (1) — 2x0]2 + 402
4y0(x0% + 0% )
[(x0% + yo2)o (1) — 2x012 +4yo? )

2.15)
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If we take, for example, f(x, y) = y~!, equation (2.15) becomes

do [(xo> + yoH)o (1) — 2x0]* + 4y0®

dr 4yo(x0% + Yo%)

and with the change of variable (xo> + yo?)o(f) — 2xo = 2yptanu we have
du/dt =1/2. Hence u = (t — tp)/2, where ty is some constant and

2x0 + 2yo tan 1 (1 — t9)
x0% + yo? '

o(t)= (2.16)

The condition ¢ (0) = 0 amounts to 0 = xg — yp tan %to, which, substituted into
(2.16), yields

2tan%t 28in %t
o) =

= . (2.17)
yo + xp tan %t X0 sin %t + yocos %t

Thus, the flow generated by fX = y_l[%(x2 — y»)d/dx 4+ xy d/dy] is given by
¥ ((x0, y0), 1) = ¢((x0, y0),0 (), where ¢ is the one-parameter group generated
by X, given by (2.12), and o is the function (2.17), i.e.,

¥ ((x0, y0), 1)

_ D0 22

+ % (2x0y0 cost — (yo? — xo%) sint, (yo* — x0%) cost + 2xgyo sint)
0

(2.18)

[cf. (2.12)]. Even though the expression (2.18) is defined for all # € R, the variable ¢
has to be restricted to some open interval of length 27t where ¥ ((xg, yo), t) # (0, 0),
taking into account that the manifold being considered is M = {(x, y) € R?| y > 0}.
It may be noticed that fX is differentiable on M because y does not vanish there.
Whereas X is complete, fX is not. The expression (2.18) shows that the images of
the integral curves of /X (and of X) are arcs of circles.

Second-Order ODEs A vector field X on the tangent bundle 7M such that, for
veTM,

T Xy =V, (2.19)

where 7 is the canonical projection of TM on M, corresponds to a system of second-
order ODEs. (Equation (2.19) makes sense because v is a tangent vector to M at
7 (v), thatis, v € T )M, and 7., applies T,,(TM) into T,y M.) In effect, using the
local expression X = A’ 3/dq' + B' /34" as well as (1.29) and (1.27), the relation
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A"(v)(—a ) —é’@)(—a )
oxi o oxi ’
7 (v) 7(v)

that is, A’ = ¢'. Hence, any vector field on TM satisfying (2.19) locally is of the
form

(2.19) amounts to

o gl
dg! ag!
in a coordinate system induced by a coordinate system on M (see Sect. 1.2), where

the B are n arbitrary real-valued functions defined on 7M. The integral curves of
X are determined by the equations

X=4'

dg' _ ' _ i
dt ’ dt

)

which are equivalent to the system of n second-order ODEs

d’q' ;=1 dg! dg"
—— = (B’ T L :
dr? (B'o9 )(q T4 dr )

Exercise 2.12 Let ¢(x, y,t) = (Fi(x, y,t), F2(x, y,t)) be a one-parameter group
of transformations on R? [which, among other things, implies that F; and F are dif-
ferentiable functions from R3 into R such that F; (x, y,0) = x and F>(x, y, 0) = y],
and let

DiFy+zDy P,
D\ Fi +zDyFy’
where D; represents partial differentiation with respect to the ith argument. Show
that @V (x, y. 2. 1) = (Fi(x,y.1). Fa(x,y.1). F3(x,y.2.1)) is a (possibly local)
one-parameter group of transformations on R? (known as the extension or first pro-
longation of ¢). Show that if £ (9/0x) + 1 (3/9y) is the infinitesimal generator of ¢,
then the infinitesimal generator of ¢! is

F3(x,y,z,1) = (2.20)

d 0 5,10
§£+n5+[nx +z(ny —&x) —2 %—y]a_z, (2.21)
where the subscripts denote partial differentiation (e.g., ny = dn/dx). [Strictly
speaking, in (2.21), in place of x, y, &, n, their pullbacks under the projection of
R onto R? should appear.] The prolongation of a one-parameter group of diffeo-
morphisms is employed in the study of the symmetries of an ODE; see, e.g., Hydon
(2000).

Canonical Lift of a Vector Field A differentiable mapping ¥ : Mj — M; gives
rise to a differentiable mapping y : TM| — TM>, defined by

W(vl,) =Yyp(vp), forv, eT,(My).
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Since V4 (vp) € Ty (p) M2, we see that 3 o E = v o 1, where 7| is the canonical
projection of TM| on M; and, similarly, w5 is the canonical projection of TM;
on M». Making use of the chain rule (1.25), one can readily verify that if ¢y : M} —
Mj and v, : My — M3 are two differentiable mappings, then (Y o ¥r1) = % oEl.
Hence, if {¢;} is a one-parameter group of diffeomorphisms on a manifold M, the
mappings @; form a one-parameter group of diffeomorphisms on 7M.

The local expression of the transformations ¢, is given by the functions ¢, *x,
where the x! form some coordinate system on M. Then, in terms of the coordinates
q', ¢ induced on TM by the x’, the transformations @; are locally glven by the
functions @;*q" and @;*¢". Since 7 o ¢; = ¢; o w and, by definition, ¢' = 7*x', we
obtain

g =@ on)x' = (m o)yt = (¢ om)*x' = 7% (g *x")

and, making use of the definitions of @; and of the coordinates qi [see (1.27)], we
find that

(@74 Wp) = ' @ Wp) = ' (1pp)) = (1pWp)) [x'] = vp [0 %]

9 e [ 3D
=4/ (v p)(a ]) [ x]=[qfn <%>}(v,,),

e L d(p*x )
kol __ o]
Yt 9 =4q 77( O )

Recalling that the infinitesimal generator, X, of ¢, is given by X = X' 9/0x'
with X' = (d/dt)(¢;*x')|;=0, from the expressions obtained above we find that the
infinitesimal generator, X, of @y is locally given by

ie.,

— N C (XY 9
X = (n*X’)—, +q/n* - | —. (2.22)
aq’ axJ ) dq?

The vector field X is called the canonical lift of X to TM.

Exercise 2.13 Find the one-parameter group of diffeomorphisms on the tangent
bundle TR? induced by the one-parameter group of diffeomorphisms on R? defined
by ¢ (x, y) = (€ x, e’ y), with a, b € R. Show that its infinitesimal generator is
0 d d 0
1 2
— — +bh—,
3 Yot TVag
where the ¢’ and ¢’ are the coordinates on TRR? induced by the Cartesian coordi-
nates x, y.

Exercise 2.14 Show that [X, Y] = [X, Y], for X, Y € X(M).
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Exercise 2.15 A (time-independent) Lagrangian is a real-valued function defined
in TM. A differentiable curve C in M is a solution of the Euler-Lagrange equations
corresponding to the Lagrangian L if, locally,

d[aL

31 327(C ())}—%(C(l)): i=1,2,...,n,

where C is the curve in TM defined by E(t)_: C/. The vector field X on M rep-
resents a symmetry of the Lagrangian L if XL = 0. Show that if X represents a
symmetry of L, then

X'(cm)

oL —
8q'i (C(t))

is a constant of motion, i.e., it does not depend on . (Note that rr(E(t).)f C(),
hence q’(C(()) =x'(C(1)), and that, according to (1.28) and (1.20), qg'(C@)) =
C/x'1=d(x' 0 C)/dt =d(¢q' (C(1)))/dr.)

2.2 Lie Derivative of Functions and Vector Fields

Let ¢ be a one-parameter group of transformations or a flow on M. As pointed
out above, the map ¢; : M — M, defined by ¢;(x) = ¢(x, ), is a differentiable
mapping. For f € C®(M), ¢/ f = f o ¢; also belongs to C°°(M); the limit
lim; ¢ wl=f f A represents the rate of change of the function f under the family of
transformatlons r.

If X is the infinitesimal generator of ¢, the curve ¢, given by ¢, (f) = ¢(x, 1) is
the integral curve of X that starts at x; therefore

<hm<ﬂt*ft—f>() . f(sDz(X))—f(X)

t—0 t

i S0 D) = f)
= l1m

t—0 t

— i L) — f(9x(0)
= um

t—0 t

= X/f)x),
which shows that, for any differentiable function, the limit lim;_, ¢ 21 ";_'f : exists and
depends on ¢ only through its infinitesimal generator. This limit is called the Lie
derivative of f with respect to X and is denoted by £x f. From the expression

exf=X/f (2.23)

one can derive the properties of the Lie derivative of functions.
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Exercise 2.16 Show that if X,Y € X(M) and f € C®°(M), then £x(£yf) —
fvEx ) =£xv1/-

Let M and N be differentiable manifolds and let v : M — N be a diffeomor-
phism. If X is a vector field on N, then there exists a unique vector field Y on M
such that Y and X are v -related. Indeed, since ! o v is the identity map of M,
using the chain rule (1.25) we find that (w’l)*,/,(x) is the inverse of V., and, there-
fore, the condition that Y and X be yr-related (i.e., ¥y Yy = Xy (x)) has a unique
solution, given by

Yo = (") o X

The vector field Y is, by definition, the pullback of X under i and will be denoted
by ¥*X, that is,

@ X =)0 Xvw: (2.24)
Note that since ¥*X and X are y-related,

W X)W f) =y Xf), (2.25)
for f € C®°(N) [see (1.40)].

Exercise 2.17 Show that ¥*(fX) = (¢* f)(¢v*X) and that ¥*(aX + bY) =
ay*X 4+ by*Y for X, Y € X(N), f € C*°(N),and a,b € R.

Exercise 2.18 Show that if Y : M — N is a diffeomorphism and ¢ is a one-
parameter group of transformations on N whose infinitesimal generator is X, then
x: =¥ ' og oy is a one-parameter group of transformations on M whose in-
finitesimal generator is ¥ *X (cf. Exercise 2.8).

Exercise 2.19 Show that if v : My — M, and v, : My — M3 are diffeomor-
phisms, then (Y o ¥1)*X = (Y1* 0 ¥ ™)X, for X € X(M3).

Let ¢ be a one-parameter group of transformations or a flow on M and let X be
*Y— .
its infinitesimal generator. For any vector field Y on M, the limit lim,_,¢ (p"i Y, if

it exists, is called the Lie derivative of Y with respect to X and is denoted by £xY.

Proposition 2.20 Let X,Y € X(M); then the Lie derivative of Y with respect to X
exists and is equal to the Lie bracket of X and Y.

Proof Let f be an arbitrary differentiable function, then, using (2.25),
oY) -Yf
t

e @@ H =Y
= 1um
t—0 t

£x(Yf) = lim
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)(pzft f+‘Pt fi|

=1 Y
tg%[(% t

=YExf) + EY) S, (2.26)
but £x f = X f'; therefore

X(YfH)=£xXf)=YXS])+ EY) f,
hence

ExY)f =X [f)-YX)=[XY]f,
which means that

£xY = [X, Y]. (2.27)
O

As in the case of the relation (2.23), the formula (2.27) allows us to readily obtain
the properties of the Lie derivative of vector fields. Furthermore, the relation (2.27)
allows us to give a geometrical meaning to the Lie bracket.

Exercise 2.21 Show that if X, Y € X(M) and f € C®°(M), then £x(fY) =
FEXY + (Ex )Y [cf. (2.26)]. Also show that £x(Y + Z) = £xY + £xZ. (Hint:
use (2.23), (2.27), and Exercise 1.22.)

Exercise 2.22 Show that if X, Y,Z € X(M), then £x(£yZ) — £y(£xZ) = £x,|Z
(cf. Exercise 2.16).

Example 2.23 The Lie derivative frequently appears in connection with symmetries.
The vector field Y € X (M) is invariant under the one-parameter group of diffeomor-
phisms ¢; if £xY = 0, where X is the infinitesimal generator of ¢;. For instance, in
order to find all the vector fields on R? invariant under rotations about the origin,
it is convenient to employ polar coordinates (r, ), so that, locally, X = 9/06. The
condition £5Y = 0 amounts to

0 [(8/89) Y'@/or) + Y2(3/89)] vl o + o
= s r = — _

06 or 96 00
where Y!, Y? are the components of Y with respect to the natural basis induced by
the coordinates (r, 6). Hence, Y is invariant under rotations about the origin if and
only if Y!, Y2 are functions of  only.

Exercise 2.24 Show that if ¢; and y; are two one-parameter groups of diffeomor-
phisms on M that commute with each other, i.e., ¢y = V¥s¢; for all ¢, s € R, then
the Lie bracket of their infinitesimal generators is equal to zero (cf. Exercise 2.18).
(The converse is also true: two vector fields X, Y on M such that [X, Y] = 0 gener-
ate (local) one-parameter groups that commute.)
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2.3 Lie Derivative of 1-Forms and Tensor Fields

Let ¥ : M — N be a differentiable map. If 7 is a tensor field of type (2) on N, the
pullback of ¢ under v, y*1, is the tensor field on M such that

WD) W o W) = Ly () Wapli s - oy PapW), (2.28)

for up,...,w, € T,M, p € M. Given that v, is a linear transformation, it can
readily be verified that effectively ¥ *¢ is a tensor field of type (2) on M.

Exercise 2.25 Let  : M — N be a differentiable map and let « be a linear differ-

ential form on N. Show that
e o
C YoC

for any differentiable curve C in M (see Example 1.28).

If f € C*°(N), the differential of f, df, is a tensor field of type ((1)). Therefore,
from (2.28)

U df)p(vp) = dfw(p)(lﬁ*pvp),

for v, € T, M. But from the definitions of d f and of the Jacobian [see (1.41) and
(1.23)], we have

dfy(p) Wepvp) = Yapvpl F1=vp[¥™ fF1=dW@™ ) p(vp).
Thus
yrdf =d@r . (2.29)
If t and s are tensor fields of type (2) on N and a, b € R, we have
(V™ (@t +bs)) up, ..., wp)
= (at + b8y (p) Dapltp, - - Yapwp)
= (aty (p) + bsy(p)) Wsplip, ..., Yupwp)
= aty (p)(Vspttps - s YapWp) + b5y (p) Yraptps - Yapwp)
=a(W ) pup, ..., wp) +bW*s),(up, ..., wp)
=@y t+by*s)y(up, ..., wp),

forup,...,w, € T,M, that is,

Y*(at + bs) = ayr*t + byr*s. (2.30)
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Similarly, if f: N - R
(W (D), p. oo wp) = (FOpp) Wapltps - Yapwp)
= f(W(P))tw(p)(llf*pup, e Ypwp)
=W HPW ) pup, ..., wp)
= (W WD), wp . wp);
hence

VD =T HE. (2.31)

Finally, if ¢ and s are tensor fields of type (2) and (?) on N, respectively, we
have

(v*@ ®S))p = Q8)y(p)(Ysplp, ... Yspwp)
=ty (p) Wapltp, ) Sy(p) (- - YspWp)
=W pp, .. )W) p(..,wp)
= (W'D @ W™s) (up, ..., wp),

forup,...,w, € T, M, and therefore
Y ERs)= W) Ws). (2.32)

Exercise 2.26 Let | : M| — M> and v, : My — M3 be differentiable maps. Show
that (2 0 Y1)*1 = (Y1* 0 Y2*)1, for 1 € T (M3).

Thus, if 7 is a tensor field of type (2) on N, given locally by t =1#; _; e o
dy/, the pullback of ¢ under v is given by

Vi =y (. dy ©---@dy’)
=W NP d)®-- o (v*dy’)
=W Ndy*y) @ @d(y*yl).

But d(y*y') = (8(y*y')/dx") dx!, where (x!,...,x™) is a coordinate system on
M hence

Yy AWty

l
ol Py dx' @ @dx™. (2.33)

Y=t )
This expression shows that *¢ is differentiable if  is.

Example 2.27 In the standard treatment of ODEs one encounters expressions of the
form Pdx 4+ Qdy = 0. The left-hand side of this equation can be regarded as a
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1-form on some manifold, M, with local coordinates (x, y) (assuming that the func-
tions P and Q are differentiable) and the equality to zero is to be understood con-
sidering curves, C : I — M, such that C*(P dx + Qdy) =0. (Thatis, Pdx + Qdy
is not equal to zero as a covector field on M it is only its pullback under C that van-
ishes.) Then, for one of these curves, using the properties (2.29), (2.30), and (2.31),
we have

(PoC)d(xoC)+(QoC)d(yoC)=0. (2.34)

Since x o C and y o C (as well as P o C and Q o C) are functions from 7 to R,
we can write [see (1.52)]

d(xoC d(yoC
d(xoC):%dt and d(yoC):%dt,

where ¢ is the usual coordinate of R. Hence, from (2.34), we get the equivalent
expression

(Po C)d(’C C)+(Q C)d(y 9 _o.

This equation alone does not determine the two functions x o C and y o C. If, for
instance, d(x o C)/df # 0 in I (which holds if Q does not vanish), using the chain
rule (regarding x o C as the independent variable instead of ), one finds that

d(yoC)__PoC
dxoC)  QoC’

In this manner, writing x in place of x o C and similarly for the other functions, one
obtains the first-order ODE

dy _ P(y)
v~ 00y

where it is assumed that y is a function of x. According to the existence and unique-
ness theorem for the solutions of the differential equations, through each point of
M there passes one of these curves. In this way, equation (2.35) corresponds to the
expression Pdx + Qdy =0.

Now we want to find one-parameter groups of diffeomorphisms, ¢, on M such
that, when applied to a solution curve of the differential equation expressed in the
usual form, P dx + Q dy = 0, they yield another solution curve. More precisely, this
corresponds to finding the one-parameter groups of diffeomorphisms such that if
C*a =0, where « = P dx + Qdy, then (¢5 o C)*a =0, for all s € R. The previous
equality amounts to C*(p;*«) = 0 (see Exercise 2.26), which is equivalent to the
existence of a function y; € C°°(M) (which may depend on s) such that ¢;*a =
Xs@. A one-parameter group of diffeomorphisms, ¢y, such that ¢;*a = s« is a
symmetry of the equation o = 0. (As shown in Sect. 4.3, knowing a symmetry of the
equation o = 0, or its infinitesimal generator, allows us to find the solution of the
differential equation.)

(2.35)
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Let ¢ be a one-parameter group of transformations or a flow on M with in-
finitesimal generator X, and let ¢ be a tensor field of type (2) on M. If the limit

. *r—t . .. . .. . .
limy ¢ (p"; exists, it is called the Lie derivative of ¢ with respect to X and is de-

noted by £x7. The properties of the Lie derivative of tensor fields of type (2) follow
from the properties of the pullback of tensor fields. That is, given two tensor fields
of type (2) on M, s, and t, it follows from (2.32) that

*(t —t
bx1 @) = lim #H0 S =10

— tm (Ppt) ® (¢rs) —t®s
h—0 h

. Ors—s gt —t
=1 it
h%[(wh )® W + 7 Qs

=1 ® (£xs) + (Ext) ® 5. (2.36)

If t and s are of type (2) and a, b € R, by (2.30) we have

@ (at + bs) — (at + bs)

£x(at + bs) = lim
h—0

h
appt +byys —at — bs
~ h—>0 h
— afxt + bExs. (2.37)

For f € C*°(M), using (2.31) we have

@, (f1) — [t
h

£x(f1) = lim

- (p H)(@pt) — ft

=1
h—0 h
1 * w;zkt —1 (PZf B f
= hlfb[‘”hf n ’}
= f(£x1) + (Ex )t (2.38)

Furthermore, by (2.29), the Lie derivative of d f with respect to X is

. ppdf—df
£xdf = lim ———
xdf h% h

. d(gp f)—df

= lim ————

h—0 h

= d(Ex ). (2.39)
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Using these properties of the Lie derivative we can find the components of the
Lie derivative of any tensor field of type (2). If  is given locally by t =¢;;dx' ®
.-~ ®dx/, we have

£xt = £x(ti. jdx' @ - @ dx/)
=(Exti H)dx' ® - @dx’
+ti_.,j(£xdxi ® - Qdx) 4 4+dx ®...®£dej)
=Xt Hdx' ® - ®@dx’
+1ij[d(Exx) @ ®@dx/ + -+ dx' ®@ - @ d(£xx7)].

Expressing X in the form X = X/(3/dx") and using (2.23) we find that

£Xxl =Xx'= XZ<F)XI = Xla
X

hence, d(£xx’) = dX’ = (3X'/9x’) dx!, and

£xt = (Xtp, ) dx' ® - ®@dx/

axi , . X/
+t i —dr® - @d)+ +dX Q- Q@ —dx
T\ ax! dx!

dli...j ax' ax'\ . .
Y R _ '
_<X 9x! +t1~-~]W+"‘+¢z...lm>d3€l®"~®dx/. (2.40)

Example 2.28 According to the results of Example 2.27, if X is the infinitesimal
generator of a one-parameter group of diffeomorphisms that maps solutions of the
differential equation P dx + Q dy = 0O into solutions of the same equation, then
£x(P dx + Qdy) = v(P dx + Qdy), where v is some real-valued function. Writing

Xoed gy
C 7 ox ”ay’

by means of the relation (2.40) we find that

EaP—f- 3P+P3§+Q3n P
il il - L —vpP,
ox "ay ox ox
00 90 on 9§
= = 4+ P>2=v0,
gBx—l—nay—i_QBy—i_ dy Ve

which can be conveniently expressed in the form (eliminating the unknown func-
tion v)
af 3f_3_n+<377 35) & o

554'77@— o f—=r (2.41)
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where f = —P/Q [cf. (2.35)]. This equation, for the two functions £ and 7, has
infinitely many solutions and turns out to be more convenient for finding the sym-
metries of the differential equation P dx 4+ Q dy = 0 than the condition ¢;*a = ya.
This is so since, whereas ¢ must satisfy the conditions defining a one-parameter
group of diffeomorphisms, the functions & and n only have to be differentiable.
A practical way of finding some solution of (2.41) consists in proposing expressions
for £ and n containing some constants to be determined (see, e.g., Hydon 2000).

If ¢ is a tensor field of type (2) on M and X is a vector field on M, the contraction
of ¢+ with X, denoted by X Iz, is the tensor field of type ( k(ll) on M given by

XDy (ps s wp) =kty(Xp, vy, ..y W), (2.42)

for vp,...,wp € Ty M (the constant factor k appearing on the right-hand side is
introduced for later convenience). If ¢ is a tensor field of type (8) on M, thatis, ¢ is
a function from M into R, we define Xt = 0. Note that if « is a 1-form on M, X«
is the function « (X) [see (1.43)].

The contraction commutes with the pullback under diffeomorphisms; for if
¥ 1M — N is a diffeomorphism, ¢ a tensor field of type (2) on N, and X a vec-
tor field on N, then, since ¥*X and X are 1 -related, we have

[ X)W D], (s s wp) = kWD (WX p, v, ., w))

=kty(p) (Vap W X) o Yapp. -, Yapw))
=kty(p) Xy (p)s VapVps - -+, YapWp)

= XDy (p) Wspp, -, Yapwp)

= [y &XInN], ... wp),

forvp,...,w, € T, M, that is,
Y*(XJr) = (X)) (). (2.43)
Hence, for X, Y € X(M) and ¢ € TkO(M), we have
£x(YJt) = ExY)Jt + Y (£x1). (2.44)

Thus, if ¢t € TkO(M ) and X, Yy, ..., Y, € X(M), repeatedly applying this relation,
we obtain

X(t(Yy,....Yp)

=£x(1(Y1,.... Yo)

1
= Ef:x(YkJYk,]J .. ~JY1JI)
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1
= F[(ﬁxYk)JYk_lJ Y+ Y EXYio DI Yoo - JY 1
+ o+ Y Y d - JEXY D)+ Y Y d - 'JYIJ(QSXZ‘)]
:t(Yl’Yz’"'a£XYk)+t(Y1,Y2,-..,£XYk_1,Yk)+~--
+1(ExY1, Yo, .. Y + Exn) (Y, ..., Y
k
=ExDY1. ... YO+ ) 1Y, £xYi, ... Yo,
i=1
that is,
ExD Y1, .. YO =X(t(Y1.....YO) = Y t(Yi .. X, Vil ... Yg). (245)
i=1

Exercise 2.29 Show that all the properties of the Lie derivative of tensor fields of
type (2) follow from (2.45).

Exercise 2.30 Show that if X, Y € X(M) and ¢ € TkO(M), then £x(£yt) —
£Y(£Xt) = £[X,Y]t~

Exercise 2.31 Show thatif X € X(M) and t € TkO(M), then £x(XJr) = X(£x1).

Exercise 2.32 Let ¢ be a differentiable tensor field of type (f‘) on M. Assuming that
the first k arguments of ¢ are covectors and defining £x¢ by

Exn)(ar, .0k, Y, .., Y0)
EX(t(Oé],...,Olk,Yl,...,Y]))

k
—Zl(al,...,£xo{i,...,Olk,Yl,...,Yl)
i=l1

I
_Zt(‘xlv°~'saksY19'-'9£XYis“‘sYl)v
i=1

foraq,...,ar € Al(M), Y:,...,Y; € X(M), show that £x¢ is a differentiable ten-
sor field of type (f‘) and that £x(r ® 5) = (£x1) ® s +t ® (£xs) for any pair of mixed
tensor fields.



Chapter 3
Differential Forms

Differential forms are completely skew-symmetric tensor fields. They are applied in
some areas of physics, mainly in thermodynamics and classical mechanics, and of
mathematics, such as differential equations, differential geometry, Lie groups, and
differential topology. Many of the applications of differential forms are presented in
subsequent chapters.

3.1 The Algebra of Forms

Definition 3.1 Let M be a differentiable manifold. A differential form of degree k,
or k-form, w, on M, is a completely skew-symmetric differentiable tensor field of
type (2) on M, that is,

a)(Xl,...,X,-,...,Xj,...,Xk)z—a)(Xl,...,Xj,...,Xi,...,Xk), (3.1)

1<i<j<k,forXy,..., X, € X(M);a0-formis a differentiable real-valued func-
tion on M.

Starting from an arbitrary tensor field, 7, of type (2), one can construct a com-
pletely skew-symmetric tensor field of the same type. Let Si be the group of all
permutations of the numbers (1,2, ..., k) and let sgno be the sign of the permuta-
tion o € Sk (sgno = 1if o is even, sgno = —1 if o is odd). We define o7t by

1
d[(xl, . ..,Xk) = E Z (SgnU)t(XG(l), .. .,Xg(k)), (3.2)

: (Tesk

for X1,..., Xk € X(M). It can readily be seen that o/t is completely skew-
symmetric, and that if # and s are tensor fields of type (2), then &7 (t +5) = At +A's
and &7 (ft) = fo't, for f: M — R; furthermore if ¢ is skew-symmetric, then
ot =t,sothat @72 = o .
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The set of the k-forms on M, which will be denoted here by Ak (M), is a sub-
module of Tk0 (M), since the sum of two k-forms, the product of a k-form by a scalar
and the product of a k-form by a function f € C®(M) = A%(M) are also k-forms,
as can be verified directly from the definition of the operations in TkO(M ). By con-
trast, the tensor product of a k-form by an /-form is skew-symmetric, separately,
in its first £ arguments and in its last / arguments, but it is not necessarily com-
pletely skew-symmetric in its k + [/ arguments (except in the case where k or [ is
zero); nevertheless, from the tensor product of two differential forms one can obtain
a completely skew-symmetric tensor field with the aid of the map <.

Definition 3.2 If w is a k-form and 7 is an /-form on M, the exterior, or wedge,
product of w by n, w A n, is defined by

woAnN=d(w®n). (3.3)
(Some authors employ the definition

!
A= %ﬂﬂw@n),

with which some numerical factors that appear in several expressions [e.g., (2.42),
(3.7), and (3.28)] are avoided, but it makes it necessary to introduce some factors
in other expressions. However, some important formulas, such as (3.27), (3.35), and
(3.39), are equally valid whether one makes use of the conventions followed here in
the definitions of the exterior product, the contraction, and the exterior derivative,
or in the alternative conventions.)

The exterior product of w by 7 is then a (k + [)-form. (Note that if w is a k-form
and f isa0-form, we have f Ao = (f Q)= (fw)= fAw=fo=wA f.)

From the properties of o7 it follows that if w, w{, w; € AKX (M) and ne AZ(M),
then

(aw + bawp) An=a(wi A1)+ b(wr A1) (3.4)
and
(fo)yrn=won(fn)=f(oArn), (3.5)

fora,beR, f € A%(M). The exterior product is associative but not always com-
mutative [see (3.23)]. If «, B, and y are differential forms on M, it can be shown
that

@AB)Ny=aNBAY)=d(@Q@PQY). (3.6)

If « and B are 1-forms, applying the definition of the exterior product we have
(@A B)Xi1,X2) = (a® B)(Xi, X2)

1
= 5@ @A X1, X2) — (@ ® f)(X2, X1)]
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1
= E[a(Xl)ﬂ(Xz) —a(X2)BX1)]

1
=5@®p-pRa)X1.Xy). forX;,X; € X(M).

that is,
aAﬂ:%(a@ﬁ—ﬁ@a):—ﬁAa, fora, B € AL (M). (3.7

Combining the definition of the contraction (2.42) with (3.7) one finds that if X is a
vector field on M, then for any v, € T, M,

[XJ(a A ﬁ)]p(vp) =2(a A B) Xy, vp)
=@@B-Ra)p(Xp,vp)
= o, (Xp)Bp(vp) — Bp(Xp)ap(vp)
= [XJa)p - XJ ﬂ)a]p(vp),
which means that
XA B)=XJa)— (XIB)a, fora, e A(M). (3.8)

Let (x Lo, x™) be alocal coordinate system on M. A k-form possesses the local
expression [see (1.57)]

w=w; i dx"1®- - @dx', (3.9)

0 d
Wiy ..ix Za)((axil)’“.’ <axik>>. (310)

As a consequence of the skew-symmetry of w, its components w;, . ;, are completely
skew-symmetric in all their indices and @ = ./ (w). Therefore, making use of the
properties of ./ we have

with

w = 9 (w)
= wil,,_ik%(dxil ® - ® dxik)
:a)ilmikdxi‘ Ao Adxk. (3.11)
Since the differentials of the coordinates are 1-forms, from (3.7) it follows that
dx't A AdX A AT A A daE
=—dx" Ao AdXT Ao AdXTT A AdxE, (3.12)

and therefore dx’! A --- A dx* = 0 if one of the values of the indices i1, ..., iy
appears more than once. Hence, if w is a k-form with k > n then w = 0, since
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w = wil,__ikdxil A -+ Adxic, and for k > n necessarily some value of the indices
i, ...,I; will appear more than once.

Example 3.3 Let M be a manifold of dimension two, with local coordinates (g, p).
Given a function H € C®°(M x R), there exists only one vector field, X, on the
manifold M x R, such that X¢ = 1, where ¢ is the usual coordinate of R, and

XJ(dp Adg —dH Adr) =0. (3.13)

Indeed, the condition Xt = 1 is equivalent to X having the local expression

X=al +B8 +8 (3.14)
T ag ap ot ’

where A and B are functions of M x R in R. From (1.52) and (3.12) one finds that
(3.13) amounts to

oH oH
XIldpAadg — —dgAdt — —dp Adr ) =0, (3.15)
dq ap
and making use of (3.8) one has

oH oH
0=dpX)dg —dg(X)dp — Edq(X) dr + @ dr (X) dg
oH oH
— —dpX)dr + — dr(X)dp
ap ap
oH oH
=|dpX)+ —dtr(X) |dg — [dg(X) — — dt(X) |dp
aq ap

oH oH
— | 5= dg(X) + S—dp(X) | dr,
dq ap

which means that the expressions inside the brackets must be separately equal
to zero. Then, making use of (3.14) and (1.45), one obtains A = dH/dp, B =
—JdH/dq, that is,

oH 0 dH d a

X=——  —— + —, (3.16)

ap dq dqg dp Ot
thus proving the assertion above. The integral curves of X are determined by the
equations

dg 0H dp  0H
dr — ap’ dt dq’

which, in the context of classical mechanics, are known as the Hamilton equations.
According to this, if (Q, P, t) is a second coordinate system on M x R such that

(3.17)

dpAndg —dH Adt =dP AdQ —dK Adt, (3.18)
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where K is some function of M x R in R [see (3.13)], then equations (3.17) are
equivalent to

dQo oK dpP oK

dt P’ dt 90’
that is, the form of the Hamilton equations is maintained if (3.18) holds. (Note that
0, P need not be coordinates on M, in the same manner as the polar coordinates
(r,0) on R2, which can be identified with R x R, are not formed by one coordi-
nate function on the first copy of R and one coordinate on the second copy of R.)

The relationship between the coordinate systems (q, p,t) and (Q, P,t) is called a
canonical transformation. (See also Sect. 8.7.)

Exercise 3.4 Show that the relationship between two coordinate systems on P x R,
(g, p,t) and (Q, P, t), is a canonical transformation if and only if

0P20 _9PI0 (3.19)

(Among other things, this means that if the condition (3.19) holds, then there exists a
function K € C*°(P x R) such that equation (3.18) is satisfied.) Usually, a canonical
transformation is defined as a transformation satisfying (3.19).

From (3.12) it follows that if n = dim M, then the exterior product of n differen-
tials of the coordinates satisfies

dx't Ao A dxt = g dx b Adx? A A dX, (3.20)
where
o 1 if (i1, ..., iy) is an even permutation of (1,2, ...,n),
ghtm={4 —1 if(iy,...,i,) is an odd permutation of (1,2, ...,n), (3.21)

0  if one of the values of the indices appears repeated.

Hence, if w € A" (M), using the fact that the components of w are totally skew-
symmetric and that there exist n! permutations for a set of n objects, we have

w=wj i, T A Adx =nlog pdet AdP A A" (3.22)

Let w € AK(M) and n € A/(M) be given locally by @ = w;, _;, dx’t A --- A dxi*
and n =nj,..; dx/' A--- Adx/, using the associativity of the exterior product and
its skew-symmetry for the 1-forms [see (3.7)], we have

o AN =wi iy Nj..jdxT A Adx*AdeN A Adx !
= (=DM, inj.jdxt Ao A AdxT A Adx

=D A w. (3.23)
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This implies that a form of even degree commutes under the exterior product with
any form and that the exterior product of two differential forms of odd degrees is
anticommutative. The set of all the differential forms on M forms an associative
algebra with the exterior product.

Expression (3.11) shows that any k-form, with & > 1, can be expressed locally in
terms of the exterior products of the differentials of the coordinates of some chart;
however, from (3.12) it follows that such products are not independent among them-
selves, so that the equation ¢;,._;, dx! A --- A dx’* = 0 does not imply that the co-
efficients ¢;, ;, are equal to zero, but only that the totally skew-symmetric part of
Ciy...ig» given by

1
Clirit) = 75 > (58N0) Ciy 1 ity (3.24)
’ GESk

is zero. This fact follows from the definitions (3.2) and (3.3); for if ¢;; dx’t A
-« Adx** =0, then

) . 0 d
— (. . oA, Wy —— —
O—(Cllmlkdx Ao ndy )<8x11""’8x-/k>
:[sz/(c . dxi‘®---®dxik)] a 0
ik ox/1’ T dxk
1 ; )
= Z (SgnU)Cil...ik5;la(l) . "5},;(1()
o €Sk
1
=17 2 (58n0) iy gy
" oeSy

Since ¥* (0w ® n) = (Y *w) ® (Y *n) for any differentiable map ¢ : M — N and
tensor fields w, n on N [see (2.32)], from (2.30), (3.2), and (3.3) it follows that

U@ An) = o) AT n), (3.25)
for w € AK(N), n € AL(N) and, therefore,
£x(w A n) = Exw) An+ oA Exn), (3.26)

for w € AK(M), n e AL(M), X € X(M).

If w is a k-form on M and X € X (M), the contraction X Jw is a (k — 1)-form; in
other words, X is a map of AK(M) into Akl (M). The operation of contraction is
also called interior product and XJ w is also denoted by i (X)w or by ixw. If Y is
another vector field on M, then we have Y_J(XJw) = —X (Yl w), by virtue of the
skew-symmetry of ; therefore X J(X_w) = 0, for w € AX(M), X € X(M).

By means of a lengthy computation it can be shown that if w is a k-form and 7 is
an [-form, then

XlwAn) =XJlo) An+ (—=DFo A (XUn), (3.27)
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for X € X(M) [cf. (3.8)]. Owing to this relation it is said that the map
X : AK(M) — A*=Y(M) is an antiderivation.

Exercise 3.5 Show that if = w;,__j, dxt Ao Adx* and X = X/(8/3x7), then
Xlw= kXijil...ik,l dx't Ao Adxte-t,

3.2 The Exterior Derivative

Definition 3.6 Let w be a k-form on M its exterior derivative, dw, is given by

k+1DdoXy, ..., Xk+1)

k+1 . .
=Y DX (X, XL X))

i=1
+ Y DM o(X X1 X0 X X X)), (3.28)
i<j

for X1, ..., Xks1 € X(M), where the symbol ~ on X; indicates that X; is omitted.
The coefficient (k + 1) on the left-hand side of the definition has the same origin
as the coefficient appearing in the definition of the contraction; both are included in
order for the contraction and the exterior differentiation to be antiderivations of the
algebra of forms of M.

It is convenient to present in a more explicit way the definition (3.28) for the
degrees that will be encountered more frequently in what follows. When k = 0, the
definition (3.28) gives, for f € AO(M),

dfX)=Xf. (3.29)

Comparing with (1.45), we see that the exterior derivative of a function f is just the
differential of f. In the case of a 1-form o we have

2da(X,Y) = X(a(Y)) - Y(a(X)) — (X, Y]), (3.30)
and for a differential form of degree 2, o,
3do(X,Y,Z) = X(o(Y, Z)) + Y(0(Z, X)) + Z(0(X, Y))
— (X, Y], Z) - o(IY, Z].X) — o([Z,X],Y), (331)

where we have made use of the skew-symmetry of w.

Exercise 3.7 Show that the expressions (3.30) and (3.31) effectively define differ-
ential forms. Using (3.29)—(3.31), show that for f € C*°(M), ddf = 0 and that if «
is a 1-form, then dda = 0.
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Exercise 3.8 Show that the definitions (3.29)—(3.31) imply that £x® = XJdw +
dXJw), if w is a differential form of degree 0, 1, or 2, and X is a differentiable
vector field.

From the definition (3.28) it follows that dw is completely skew-symmetric and
R-linear in each of its k 4+ 1 arguments [this is more easily seen in the specific
cases (3.29)—(3.31)]. In order to show that it is also a tensor field, it is sufficient
to show that dw is C°°(M)-linear in its first argument, do (f Xy, Xp, ..., Xk+1) =
fdo(X1,Xs3, ..., Xk+1), since

doXi, ..o, fXiy oo XerD) = D T do (P Xy, FXG e X ),

by virtue of the skew-symmetry of dw. Making use of the definition (3.28) we find
that, for f € A%(M) (= C®(M)),

k+1)do(fX1,X2,..., Xk+1)

= (XD (eXa, ..., Xk11))

k+1

+ D DX (XL X X )

i=2

> D o(fXL XL X X Xe)

j>i

+ > D Ho(X XL X X X Xe).

l<i<j

Using now (1.34), the fact that w is a tensor field, and that [ X, X;] = f[Xy, X;]—
(X; )X (see Exercise 1.32), this expression becomes

(k+1Ddo(fX1, X2, ..., Xgt1)

= f[Xi(0Xa2, ..., Xk11)]

k+1
+) DX (oL X X))
i=2

S D o(fIX X1 - X HX1. Xo. . X X
j>1

+ Y D fo(X X1 X X X X)

I<i<j
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= f[Xi(0Xa2, ..., Xk11)]
k+1

+ DX (XL X X))

i=2
+Xi HoXi, .., Xy X )]

=D (X X)) X, L X X)
j>1

_(Xjf)w(X17-"’i;,...,XkJrl)}

+ ) D fo(X XL X X X X))

I<i<j

= flk+ DdoX1,..., Xps1).

From the definition (3.28) we also see that dw is differentiable, and we conclude that
dw is a (k 4+ 1)-form or, equivalently, that d is a map from AR(M) into AKFL(M).

If w1 and w; are k-forms and a, b € R, from the definition of d we directly see
that

d(awi + bwr) =adw; + bdw,. (3.32)

On the other hand, for w € AK(M) and f € A°(M) we have

(k+Dd(fo)Xy, ..., Xks1)
k+1

=Y DX ((forXi. ... X X))
i=1

+ D (o) (X XL X X X Xe)

i<j
k+1

= DX (X X X))

i=1
+XiHoXi, . Xiy oo Xeg )]

+ D fo(IX X1 X0 X X X)
i<j
=k+1)fdoXy, ..., Xkt1)
k+1 '
+Y DX H o, X Xeg)

i=1
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=k+1)fdoXy,..., Xk+1)

k+1
+) DA XD o X, X Xeg)

i=1

=k+DfdoXi, ..., Xee) + k+ DA A0)XL, ..., Xps1),

that is,
d(fw)= fdo+df Aw. (3.33)

Expressing w € AK(M) in local coordinates as w = Wi ...i dxt A+ Adxi, with
wiy..i; € AO%(M), from the properties (3.32) and (3.33) we find that

dw = d(a)ilmikdxil VANERRIAN dxik)
= iy d(dxT A Adx®) +dwy, g, AdxT A A dxE
The exterior derivative of dx/! A --- A dx’ is equal to zero, as can be seen by apply-

ing the definition (3.28) to calculate d(dx A Adx®)((3/0x71), ..., (3)dxTk+1)),
using that [(d/dx"), (3/0x7)] = 0. Thus, dw is given locally by

do = dw;, i, Adx't Ao A dxk

9 . :
= (F)‘“"l"'ik dx! Adxt A AdrE (3.34)
X

Exercise 3.9 Derive the expression (3.34) for the components of dw without em-
ploying (3.33), directly from (3.10) and (3.28). Making use of (3.34), demonstrate
the validity of (3.33).

With the aid of the local expression (3.34) for d one can show that the exterior
differentiation is an antiderivation of the algebra of forms, that is, if w € AR (M)
andn e AL(M), then

d(w/\n):da)/\n—l—(—l)kw/\dn. (3.35)

Indeed, expressing w and 1 as w = w;, .., dxt A --- A dx'* and n=nj.j dx/t A
.-+ Adx/!, respectively, and using the expression for the differential of a product of
functions (1.47), from (3.34) we have

d@An) =d(wiy.injy.; dxT A AdeE Adx ! A A dxT)
=d(wji,_i,j. ) AT A AdxE A A Ade
= [[dwi,..i)nj..j + @iy A0y

AdxT A Adx R AdX A Adx T
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= (da)i]“.ik A\ dxil /AR /\dxi") A (njl.“j[dle A A dle)
+ (—l)k(a)i,,__,'kdxi1 Ao AdxX®) A (dnj, AT A A dxT)

=dw An+ (=D*w Adn.

(Note that (3.33) is a particular case of (3.35).)

A k-form whose exterior derivative is zero is called closed; a k-form is exact if it
is the exterior derivative of some (k — 1)-form. Any exact differential form is closed
since if w = dn with n € A/ (M), locally we have

. , 3 , . .
o=dn;, j Adx" A Adx = <_8 j)r]il‘-.i[ dx/ Adx't Ao Adx,
X

with the functions »;, . ;, being the components of 7; then
9 i i i
do=d|{ — |mi..i | Adx/ Adxt A Adx!
ox/

d 9 ' ' .
= ({jx—m> <W>77i1...i1 dxm /\dX'I /\dxll Ao /\dx’l,

which is equal to zero since (3/3x™) and (3/dx/) commute, whereas dx™ A dx/ =
—dx/ A dx™. In other words, the exterior differentiation has the property that

=0 (3.36)

(see also Exercise 3.7). Note that there do not exist exact O-forms and that any
n-form is closed because any (n + 1)-form is zero.

Example 3.10 According to the first and the second law of thermodynamics, for a
given thermodynamical system there exist two real-valued functions, U (the internal
energy) and S (the entropy) defined on the set of equilibrium states of the system,
such that

TdS=dU + PdV.

This is the case if the only way in which one can do mechanical work on the sys-
tem is by compression, where 7', P, and V are the absolute temperature, pressure,
and volume, respectively. Using the properties of the exterior derivative we obtain
dT AdS =dP A dV and therefore, dP A dV A dT = 0, which implies that P, V,
and T cannot be functionally independent; that is, there must exist an “equation of
state” expressing, e.g., P as some function of V and T'. In a similar manner, com-
bining the expressions above, one finds that any set formed by three of the func-
tions T, S, U, P, and V is functionally dependent. (For instance, dU A dS AdV =
(TdS — PdV) AdS AdV =0.) Therefore, the manifold of the equilibrium states is
two-dimensional.
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Exercise 3.11 Compute the exterior derivative of the 2-form

1

defined on R3 \ {(0,0,0)}, where (x, y, z) are the natural coordinates of R3. Find
the local expression of this form in terms of the spherical coordinates (r, 6, ¢) (with
x =rsinfcos¢,y=rsinfsing,z=rcosb).

1

Exercise 3.12 Consider the 1-forms !, w2, o3 defined by

o' =hdx' = x'dh — x> dx? + X3 dx?,

w? =hdx? —x%dh — x3dx! +x! dx3,

@ =hdxd —x3dh — x! dxz—i—xzdxl,
in terms of a local coordinate system (', x2, x3), withh = /1 — Z?:l (x1)2. Show
that

3

do' = —20* A , !

do? = —20° Aw , 2

do® = 20" A 0.
(The forms o' arise in connection with the group SU(2); see Sect. 7.3.)

If M and N are two differentiable manifolds and ¥ : M — N is a differentiable
map, then we have

¥ (dw) = d(YPFw), forwe AK(N). (3.38)

In effect, expressing @ as @ = w;,_;, dy'! A --- A dy'*, where (y!,...,y™) is a
coordinate system on N, we have [see (3.25)]

Y*(do) = ¥*(dwj, i AdyT A= Ady)
= Y (dwj,.i) AYF(dyT) A AYF(dy),

but Y*(df) = d(y* f) for f € AY(N) [see (2.29)]. Using the fact that d is an an-
tiderivation and that d2 = 0 on functions [see Exercise 3.7 or (3.36)], it follows that

Y (do) = A w;,.q) Ad(PFYT) A Ad(PFyH)
=d[(¥ o) APy A A d(w*y’k)]
= d[(¥*oi )P (AyT) A AP (dy™)]
= d[y " (@i YT A A dy"k)]
=d(y*w).
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Exercise 3.13 Show that £x(dw) = d(£xw), for @ € A¥(M) and X € X(M).

The Lie derivative is related with the exterior derivative in the following manner.
(Cf. Exercise 3.8.)

Proposition 3.14 For X € X(M) and w € A*(M) we have
£xo =XJdw + dXJw). (3.39)

Proof Making use of the definitions of the contraction and of the exterior derivative,
for X,Yq,..., Y, € X(M) we obtain

XJdw)(Y1,....Y) = k+ DdoX, Y1, ..., Y

= X(a)(Yl, . ,Yk))

+Z( DY (0X, Yi,..., Yi, ..., Yo)

+ D o(X YL YL YY)

+ DY YK LY YY)
i<j

on the other hand,

(AXJ ) (Y1, ..., Yi)

k
1 . R
= % |:Z(_1)1+1Yi ((XJC())(Y], e ,Yi, ey Yk))

i=1

+ ) DT X o) (Y5, Y1 YL Y .,f,.,...,Yk)}

i<j

=~

Z DY (X, Y, .., Y, Y0))

+Z( 1)l+]w [Ylej]sYlyy?lvajssYk)

i<j

By adding these two relations and using the expression for £xw given at the end of
Chap. 2 [equation (2.45)] we obtain the proposed relation. (Another proof is given
in Sect. 4.1.) 0
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Exercise 3.15 Compute the Lie derivatives of the 2-form (3.37) with respect to the
vector fields
0 0 0 9 9 0

ya—z—zaa Za—xa—z, xa— e

Poincaré’s Lemma Given a closed k-form, w, there does not always exist a
(k — 1)-form n such that @ = dn. That is, not every closed form is exact. How-
ever, as shown below, such an n always exists locally, and this result is known as
the Poincaré Lemma. The global existence of 5 (that is, on all of M) depends on the
properties of M (see also do Carmo 1994).

A well-known, illustrative example is given by the 1-form

dy — yd
=222 (3.40)
xc+y
on M =R2\ {(0, 0)} (which is the analog of the 2-form (3.37), considered in Exer-
cise 3.11). One readily verifies that « is closed:

a X a y
do=|—(—=——)+—(—=2—)|dxrdy=0,
¢ [3X<x2+y2>+8y<x2+y2)} g

but there does not exist a function defined on all of M whose differential coincides
with o (see Example 1.28).

However, on the simply connected set R2\ {(x,0)|x > 0} (the plane with the
positive x axis removed), ¢ = df, where 6 is the standard coordinate function
used in the polar coordinates, with its values restricted to the interval (0, 2x).
(Substituting x = rcosf, y = rsinf into the expression for o one finds o =
r=2[rcosO(rcost df +sinf dr) — r sin@ (—r sinf df +cos6 dr)] = dh.) On M, the
angle 6 is not a well-defined (single-valued) differentiable function.

In order to prove that a closed k-form, with k > 1, is locally exact, we consider a
one-parameter group of diffeomorphisms ¢; on M; then, for any k-form @ we have

Orin o — oo

—¢; w = lim
dr ¢ h—0 h
oo —o
= @;* lim
¢ h—0 h
= (pt*£XCU,

where X is the infinitesimal generator of ¢,. Making use of the relation
£xw =X ldw + dXJw), if w is closed

%(pt*w = (pt*[XJ dow + d(XJ a))]

= ¢ d(XJw)
= d[p* (XJw)]
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Rﬂ

Fig. 3.1 The images in R” of the orbits of the group (3.42) under ¢ are radial segments

and integrating on the parameter ¢, from 7y to 0, we find

0 0 d
d/ 0" X w) dt=/ (ago,*a)> dt =0 — ¢ w. (3.41)
1 1

0 0

(Note that in this last integral, ¢ is only an integration variable; the product of the
differential form appearing in the integrand by dr is not an exterior product. See the
examples given below.) With the aid of the group ¢; given by

o xl =elx’, (3.42)

where (x!,...,x") is some local coordinate system on M (see Fig. 3.1) [then
X = x(8/3x")], we have ¢,;* dx’ = ¢’ dx'; therefore, if

) (3.43)

fp—>—00

then from (3.41) it follows that

0
w=d / o (X o) dr, (3.44)

—00

assuming that the integrand is well behaved for ¢ € (—o0, 0] (see the discussion
below). Thus we express w as the exterior derivative of a (k — 1)-form.

For instance, one can verify that the 2-form @ = Sxdy A dz — 3ydz A dx —
(x2 4+ 2z)dx A dy is closed. In order to apply (3.44) we start by computing the
contraction XJw

3 3 3
XJo=(x—+y—+z— ) J[5xdy Adz —3ydz Adx — (x* +2z) dx A dy]
ox ay 0z

=5x(ydz —zdy) — 3y(zdx — xdz) — (x* +2z)(xdy — ydx)
= (x%y — yz)dx — (x* + 7xz) dy + 8xydz.
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Then,

0 0
/ o Xdw)dt = / dr [(e4tx2y — e3tyz) dx
o0

oo _
— (64’x3 + e3t7xz) dy +e¥8xy dz]

[note that the integrand satisfies the condition (3.43)] and, with the change of vari-
able s = ¢, we have

0 1
/ o (Xdw)dt = / ds [(s*x%y — s?yz) dx — (s°x +527xz) dy + s?8xy dz]
0

—0o0

= (lx2 _! z) dx — <lx3 + l7xz) dy + le dz
“\at 7T 4* 73 Yyt

A direct computation shows that, indeed, the exterior derivative of this 1-form coin-
cides with the 2-form w originally given.

Note that the 2-form w, defined in (3.37), and the 1-form «, defined in (3.40),
are both closed and satisfy X 1w = 0, XJa = 0, but they do not satisfy the condi-
tion (3.43) (in fact, both forms are invariant under the group (3.42), ¢;*® = w and
¢*a = ). Therefore (3.44) cannot be applied to them.

However, by simply making use of another coordinate system, we can locally
express these forms as exterior derivatives of some appropriate forms. For instance,
the 1-form « defined in (3.40) can also be expressed as

(@ 1dy' = y'dx!
S @D 4y

)

in terms of the coordinate system (x’, y’) related to (x,y) by x' =x — 1, y/ = y.
Dropping the primes we have

ey
(e'x +1)2 4 (e'y)?

Y

XJo=—">—.
(x+ D2+ y?

o (Xda) =

Now, condition (3.43) is satisfied and, putting s = ¢, we find

0 ! 2 2 1
[ o= [ o < arean
* o (x+ D74 (sy) y =0

= arctan

x+1’
provided that y # 0, or that x > —1 if y =0, so that the integrand does not become
singular for s € [0, 1] (in other words, (x, y) € R2 \{(x,»|x<—-1,y=0}).

Example 3.16 Using the properties (3.32), (3.35), and (3.36), the condition (3.18)
defining a canonical transformation can be expressed in the form

d(pdg — Hdt — PdQ + K dt) =0,
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which is locally equivalent to the existence of a function F' such that
pdg — PdQ + (K — H)dt =dF.

If g and Q are functionally independent, then (g, Q, ¢) can be used as local coordi-
nates on P x R and from the last equation we have

_OF P oF K=H4+ oF
P=%" T 790 - or
Assuming that 3> F /9 Qdq # 0, these expressions allow us to express P and Q in
terms of p, g, and ¢. For this reason, F is a generating function of the canonical
transformation.

Example 3.17 Using the notation and results of Example 3.3, if Y is the infinitesi-
mal generator of a one-parameter group of diffeomorphisms on P x R which maps
any solution of the Hamilton equations (3.17) into another solution, then there exists
some function v € C*°(P x R) such that £y(dp Adg —dH Adt) =v(dp Adg —
dH A dt) (cf. Example 2.28). In particular, if £y(dp A dg —dH A df) =0, making
use of the identity (3.39) and the fact that the form dp A dg — dH A dt is closed, we
have

d[YJ(dp Adg —dH AdD)] =0,

which is equivalent to the local existence of a function, y, such that
YIdp Adg —dH A dt) =dy. (3.45)

The function y is a constant of motion, that is, its value is constant along the
curves in P x R which are a solution of the Hamilton equations (3.17); this amounts
to Xx = 0, where X is the vector field (3.16). In fact, making use of (3.13) and (3.45)
we have

Xx =XJdy
=XJYIdp Adg —dH Adr)
=-YIX(dp Adg —dH A dr)
=0.
Exercise 3.18 Using the definitions given in Example 3.17, show that the function

v appearing in £y(dp Adg —dH A dt) =v(dp Adg —dH A dt) is a constant of
motion. (See also Sect. 8.7.)



Chapter 4
Integral Manifolds

We have met the concept of integral curve of a vector field in Sect. 2.1 and we
have seen that finding such curves is equivalent to solving a system of ODEs. In
this chapter we consider a generalization of this relationship defining the integral
manifolds of a set of vector fields or of differential forms. We shall show that the
problem of finding these manifolds is equivalent to that of solving certain systems
of differential equations.

4.1 The Rectification Lemma

As shown in Sect. 1.3, any vector field, X, on a differentiable manifold M can be

expressed locally in the form X = X! (B/Bxi ), where (x Lox2 ..., x™") is a coordinate
system on M [see (1.36)]. As we shall see now, for each point of M where X does
not vanish, there exists a local coordinate system, (x'!, x’2, ..., x™), such that
0
=T 4.1)

This result, known as the rectification, or straightening-out, lemma, ensures that,
in some neighborhood of each point where X is different from zero, there exists a
coordinate system adapted to X, in which X has a very simple form.

Assuming that there exists a coordinate system (x'!,x’?,...,x™) such that

X =9/dx’!, the functions x%,...,x” must satisfy Xx? =0, Xx” =0,...,

Xx™ = 0; that is, the coordinates x>, ..., x” must be n — 1 functionally inde-
pendent solutions of the linear partial differential equation (PDE)

af af af

x' =2 x2 L o xn =0. 4.2

ax! ox2 axn (4.2

Given n — 1 functionally independent solutions of (4.2), the coordinates x” 2

can be chosen as any set of n — 1 functionally independent functions of them. In
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contrast, x’! must satisfy the (inhomogeneous) equation Xx’! = 1, that is,

LAY o 43
STt gzt X =1 4.3)

Given a solution of this equation, one can obtain another solution by adding to it
any solution of (4.2).

The problem of finding the solutions of (4.2) is related to that of finding
the integral curves of X (see Sect. 2.1), because if X has the form (4.1), then
its integral curves are given by (x’' o C)(r) =t + const, x> o C = const, x> o
C =const, ..., x™ o C = const. Therefore, if we have the integral curve of X =
X'(3/9x") that starts at an arbitrary point of some neighborhood, in the original
coordinate system ()c1 Jx2 x™), then we have n functions x’ o C satisfying the
system (2.5), which must contain n arbitrary constants (which determine the starting
point of the curve C). Combining these n expressions to eliminate the parameter of
the curve [the variable ¢ in equations (2.5)], one obtains n — 1 equations that are
equivalent to the n — 1 equations x> o C = const, x> o C =const,...,x" o C =
const.

The coordinate x'! (which is defined up to an additive function of x/z, x/3,
..., x™) can be found noting that the contraction of X with any of the 1-forms
dxl/Xl, dx2/X2, ..., and dx"/ X", among many others, is equal to 1. Since any
1-form on a manifold of dimension one is locally exact and since the integral curves
of X are manifolds of dimension one, on these curves each of the 1-forms dx! /X 1
dx? /X 2, dx" /X", is, locally, the differential of a function that can be chosen as
XL

Example 4.1 Let us consider the vector field X given locally by

a a ad
X=—x>——xy— —y)—, 4.4
ox ey + (xz y)aZ (4.4)
where (x, y, z) is a coordinate system on some manifold of dimension three. Its
integral curves are determined by the system of ODEs

dx dy

dz 45)
— s = —X s —_— = XZ — N .
dr dr 4 £y

dr
where, as in the previous examples, we have written x, y, and z in place of x o C,
yoC,and zo C, respectively. The first of equations (4.5) is readily integrated, giving

where x( is the value of the coordinate x at the starting point of the curve, or, equiv-
alently,
X0

x(t) = L (4.6)
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Substituting this expression into the second equation (4.5) we find that

Yo
xot + L’

(@) = 4.7)
where yq is the value of the coordinate y at the starting point of the curve. Substi-
tuting now (4.6) and (4.7) into the third equation (4.5) we obtain a linear equation
whose solution is

z(t) = zo + (x0z0 — yo)t, (4.8)

where zg is the value of the coordinate z at the initial point of the curve. Eliminating
the parameter ¢ from (4.6)—(4.8) one finds that

x() _ xo
— = x(1)z(t) — y(r) = x0z0 — Yo,

y(@) Yo
which means that the (images of the) integral curves of X are the intersections
of the surfaces x/y = const, xz — y = const, and that the coordinates x” 2 and x
can be chosen as x/y and xz — y. (One can readily verify that X(x/y) = 0 and
Xxz—y)=0)

According to the discussion above, on the curves x/y = const, xz — y = const,
the 1-forms —dx/x2, —dy/xy, and dz/(xz — y) (whose contractions with X are
equal to 1) are the differentials of possible choices for x’!. In fact, —dx/x* =
d(1/x), so that we can choose x’! = 1/x. Alternatively, by imposing the conditions
x/y = const, xz — y = const, we have, for instance,

d
z =d< z )
Xz =Yy XZ—Yy

which gives another acceptable choice for x'!, namely, x'! = z/(xz — y). The func-
tions 1/x and z/(xz — y) differ by —(x/y)~!(xz — y)~', which is effectively a
function of x/y and xz — y only, as stated above.

In order to find the images of the integral curves of a vector field X (and to iden-
tify a set of coordinates x2, ..., x"") it is not necessary to integrate equations (2.5),
with the subsequent elimination of the parameter ¢; the parameter can be eliminated
from the beginning (see, e.g., Example 2.9), which leads to a set of equations that is
usually expressed in the form

del  dx? dx”
=== % 4.9
[see, e.g., Sneddon (2006, Chap. 2)].

The fact that a vector field can be expressed in the form (4.1) has several applica-
tions. For instance, it allows us to simplify the demonstration of some propositions
involving vector fields, as can be seen in connection with Proposition 3.14. If w is a
k-form and X is a vector field, on some neighborhood of each point where X does
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not vanish, one can find a coordinate system (xl, x2, ..., x"™) such that X = 8/8x1 s
using then the expression w = w;; ., dxt A --- A dx and the properties of the
Lie derivative of differential forms, we have £x dx! = d(Xx!) = 0 [see (2.39) and
(2.23)], hence, according to (3.26)

£xw = A A dk,

dwi, iy dx
1
On the other hand, using (3.34) and (3.27)

9 dwi . 4 .
Xdow = —J(def A dx! A-~~/\dx”‘>

axl Bx/
B 0 ‘
_ (';l]}.lkFJ(dxj/\dxll/\.../\dxlk)
X X
awil.

e g v 0Pl :
T A A — ke de A A Ada

0x 0x

and
d(XJw) = d(kwij,. i dx2 A+ A dx'™)

=k —80}1[21"[" dx/ Adx2 A - Adxk,
axJ
Thus, £x0 = XJdw + dXJw).

The form (4.1) is also useful in the solution of ODEs. In many cases it is possible
to find explicitly a vector field, X, that generates some symmetry of a given ODE,
which means that the image of any solution of the equation under the flow generated
by X is a solution of the same equation [see, e.g., Stephani (1989), Hydon (2000),
and Sect. 4.3]. The form of the ODE is simplified making use of a coordinate system
in which X has the expression (4.1).

It should be clear that the expression (4.1) is not valid at the points where X
vanishes. Whereas the rectification lemma establishes that all vector fields look the
same wherever they do not vanish, there exist several different behaviors for a vector
field in a neighborhood of a point where it vanishes [see, e.g., Guillemin and Pollack
(1974, Chap. 3)].

If Y is a second vector field, it is not always possible to find a coordinate system
(x'1, x%,...,x"), such that Y = 8/9x'%, simultaneously with X = 3/9x'!. A nec-
essary condition for this to happen is that [X, Y] = 0, since [3/8x'!,3/0x"*] =0
[see (1.38)]. This condition is also sufficient; in general, if X1, Xo, ..., Xy € X(M)
satisfy [X;, X;] =0, for 1 <1, j <k, then, in a neighborhood of each point where
{X1,..., X} is linearly independent, there exists a coordinate system x’ Lo xm
such that X = 8/9x’', ..., Xy = 8/0x’%. The proof is similar to that given in the
case with k = 1.
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4.2 Distributions and the Frobenius Theorem

As shown in Example 2.27, the solutions of the first-order ODE

dy P,
dr ~ 0@, y)

are the images of the curves C such that C*(P dx + Q dy) = 0. A similar formu-
lation can be given in the case of an ODE of order m, making use of a set of m
1-forms on a manifold of dimension m + 1. For instance, given a second-order ODE
of the form

d? y
— = F(x,y,dy/dx), (4.10)
dx?

where F is a differentiable real-valued function of three variables, we introduce an

auxiliary variable z and define the two 1-forms

a'=dy—zdx and o’=dz— F(x,y,z)dx. 4.11)

Then, considering (x, y,z) as local coordinates of some manifold M, the solu-
tions of (4.10) are given by the images of the curves C in M such that C*a! =0,
C*a? =0 (see Sect. 4.3, below).

The 1-forms are also employed in classical mechanics to express constraints.
When a mechanical system is subject to a constraint represented by a 1-form «, the
possible curves in the configuration space must satisfy the condition C*« = 0, and
a mechanical systems may have more than one of such constraints.

For instance, for a block sliding under the influence of gravity on a wedge of
angle 6, which lies on a horizontal table, there are two constraints, given by

a! =dy — tanf(dx — dX),
{ (4.12)
o? =dy,

where 6 is the angle of the wedge, (x, y) and (X, ¥) are Cartesian coordinates of the
block and the wedge, respectively (see Fig. 4.1). The condition C*«? = 0, that is,
C*dy = 0, means that y has to remain constant along the admissible curves in the
configuration space.

Another well-known example of a mechanical system with constraints corre-
sponds to a vertical disk, of radius a, say, that rolls without slipping on a horizontal
plane (see Fig. 4.2). The constraints can be expressed by means of the 1-forms
a! =dx —acosfde and o> = dy — asinf d¢p, where (x, y) are Cartesian coordi-
nates of the contact point of the disk with the plane, 6 is the angle between the x
axis and the plane of the disk, and ¢ is the angle between a given radius of the disk
and the line joining the center of the disk with the point of contact with the plane.

A final example is given by a sphere of radius a that rolls without slipping on a
plane surface; there are two constraints represented by the 1-forms

B! = dx + a(sinf cos ¢ dyy — sin d6),

) ) 4.13)
2 =dy + a(sinf sing dy + cos ¢ db),
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my

Fig. 4.1 The block remains in contact with the wedge, which lies on a horizontal table

Fig. 4.2 The disk rolls without slipping on a horizontal plane. 6 is the angle between the velocity
of the disk and the positive x axis

where (¢, 0, ) are Euler angles (see, e.g., Sect. 8.6) and (x, y) are Cartesian coor-
dinates of the point of contact between the sphere and the plane.

An important difference between the sets of 1-forms (4.12) and (4.13) is that in
the first case the curves C in the configuration space satisfying C*a! =0 = C*a?
lie on a submanifold defined by y —tan 6 (x — X) = const, y = const (which is related
to the facts that ! = d[y — tan6(x — X)] and «? = d¥), whereas, as we shall be able
to show below, in the case of the 1-forms (4.13) the curves C satisfying the condi-
tions C*B! = 0 = C*B? are not contained in submanifolds of the form y!' = const,
y2 = const (see Exercise 4.8, below). Owing to this difference, the 1-forms (4.12)
constitute holonomic constraints and the 1-forms (4.13) represent non-holonomic
constraints (a precise definition is given below).

Now we shall introduce some definitions. Let a!, ..., af be 1-forms on M
and let p € M such that {ozll,, .. .,oef,} is linearly independent. Then, the set of
vectors v, € T, M such that a},(vp) = af,(vp) =...= af,(vp) = 0 forms a vec-
tor subspace of T, M of dimension (n — k), with n being the dimension of M.
A distribution of dimension /[ on M is a map, &, that assigns to each point
p € M a vector subspace, ¥, of T, M of dimension [. Thus, a set of k indepen-

dent 1-forms {a!,. ._.,oek} defines a distribution of dimension (n — k) given by
Dy ={vp e TyM| a;(vp) =0, i=1,...,k}. The sets of 1-forms {&', ..., ¥} and
{,31, e ,Bk } define the same distribution if and only if there exist k2 real-valued

functions bl] i,j=1,2,...,k, such that ﬁi = b;otj, with det(bi,) nowhere zero.
An integral manifold of the distribution Z is a submanifold N of M such that the
tangent space to N at p is contained in Z,,. If the distribution & is defined by the k
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1-forms a!, ..., ok, as explained above, the submanifold N is an integral manifold
of Z if and only if i*a' =0, ..., i*aX =0, where i : N — M is the inclusion map
(cf. Example 2.27). (If N is a subset of M, the inclusion mapping, i : N — M, sends
each point of N into the same point, considered as an element of M.)

In classical thermodynamics, a quasistatic adiabatic process is (the image of) a
curve C in the space of equilibrium states such that C*(dU + PdV — udv) =0,
where U, P, V, u, and v are the internal energy, pressure, volume, chemical
potential, and mole number, respectively. In this case, the space of equilibrium
states is a manifold of dimension three and the distribution defined by the 1-form
dU + P dV — udv (the heat 1-form) is of dimension two.

A distribution 2 of dimension [ is completely integrable in U C M if each point
p € U is contained in an integral manifold of & of dimension /. An integral mani-
fold N of the distribution Z is maximal if any integral manifold N’ of &, such that
N C N’, coincides with N.

The second law of thermodynamics states that the distribution defined by the
heat 1-form is completely integrable; its integral manifolds are given by S = const,
where S is the entropy [see, e.g., Sneddon (2006, Chap. 1)].

Lemma 4.2 Let o', ..., " be independent 1-forms on M. The distribution 9 de-
fined by {a!, ..., o} is completely int@gmble in U C M if there exist k functionally
independent differentiable functions y' defined in U such that

o(i = c; dyj, 4.14)

where the c? are differentiable functions. (Note that the condition that the 1-forms

o! be independent implies that the matrix (c;) be non-singular, that is, invertible.)

Proof The fact that the functions y’ be functionally independent implies that the
set N, formed by the points p € U such that y'(p) =a’, where a', ..., a* are fixed
real numbers, is a submanifold of M of dimension n — k (see Theorem 1.6). Let v,
be a tangent vector to N at p; then v,[y'] =0, since at the points of N the y' are
constant. Therefore, using (4.14) and (1.41)

ol (vp) = ¢ (p) dyp(vy) = ¢ (p)vy [y ] =0, (4.15)

that is, v, € Z,. Thus, N is an integral manifold of Z. O
In particular, a single 1-form, o, defines a distribution of dimension n — 1 at
the points of M where o does not vanish. According to the preceding lemma, the

distribution given by « is completely integrable if there exists a function, y, such
that

o =vdy, (4.16)

where v is some real-valued differentiable function. In the terminology employed
in the textbooks on differential equations, when a linear differential form « is of the
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form (4.16), it is said to be integrable (and one says that 1/v is an integrating factor
for «).

Theorem 4.3 A 1-form « is locally integrable if and only if
a Ada =0. (4.17)

(It should be noticed that a A da is a 3-form and therefore is identically equal to
zero if the dimension of M is one or two.)

Proof If « has the local expression (4.16) then
aAda=vdy A (dv Ady)=0.

Let us assume now that ¢« A doo = 0; and let n = dim M. If n = 1, the assertion
is trivially true since any 1-form has the local expression o = o dx!. For n =2, we
have @ = o dx! + ap dx?2. Making use of the functions «; and o we construct the
first-order ODE

b _ o (4.18)

dx! ™ ’
whose general solution must contain an arbitrary constant. Assuming that
F(x', x?) = const represents the general solution of (4.18), differentiating implic-
itly with respect to x! and using (4.18), we have

9F OF d&x*? OF o) OF

O:— —_— = - — —,
ax!  axZdx!  9x!  wpdx?
thus
F oF
dF = — dx! dx?
ax1 9x2
=——d —dx
ay 9x2 + ax2
1 oF ' )
:a—zﬁ(aldx +a2d.x ),
that is,

o= 2 dF
0F/dx2

Therefore, any 1-form in two variables is locally integrable.
Considering now an arbitrary value of n, the 1-form o has the local expression
a = «; dx'. On the submanifold N given by x”* = const = (x"*)¢, @ becomes

n—1
&= ady,
i=l
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where the real-valued functions & depend only on x!,..., x"~!, with (x")g as a
parameter (see the example given below). More precisely, « is the pullback of «
under the inclusion mapping i : N — M and, by abuse of notation, we denote by
xL, ..., x""! the restrictions to N (or pullbacks under i) of the coordinates of M.

Since i* (¢ A da) = (i*a) Ad(i*a) [see (3.25) and (3.38)], the 1-form & satisfies
the condition & A da = 0; therefore, assuming, by induction, that the proposition
holds for manifolds of dimension n — 1, there exist real-valued functions u and f
which depend parametrically on (x")g, with

o= u(xl, xh (x”)o) df(xl, U (x”)o),

therefore, eliminating the restriction on x”,

a=pdf + <ot,, —uaaxfn>dx”
=udf +bdx".
Substituting this expression into the equation o A do = 0 we find that
0= (udf +bdx") A (du Adf +dbAdx")
=dx" Adf A(udb—bdu)
= p2dx" /\df/\d(%),

which is equivalent to the fact that b/u is a function of x" and f only, b/u =
g(x", ). Then

a:u(df—}-ﬁdx”)
I

= pu(df +g(x", f)dx"). (4.19)
Since df + g(x", f)dx" is a 1-form in two variables, it is integrable and therefore
« is integrable. d

Example 4.4 Let
a=2z(y+z)dx —2xzdy + [(y + 1)2 —x? = 2xz] dz,

where x, y, z are local coordinates of a manifold of dimension three. One can verify
that

de=2(x+y+2z)dyAndz+2(x +y+3z)dzAdx —4zdx Ady

and that o A da = 0; therefore, « is integrable, at least locally.
Following the procedure shown in the proof of the foregoing theorem, making
z = const = 7, we obtain the 1-form in two variables

a =2z0(y +z9) dx — 2xzody.



76 4 Integral Manifolds
Then, equation (4.18) is, in this case, the first-order linear (and also separable) ODE

dy y+zo
dx  x

whose general solution is given by F(x,y) = (y + z9)/x = const and, as can be
verified directly, & = —2x%zo dF. Taking now F(x, y,z) = (y + z)/x we find that

= —2x2zdF + [+ 2)? — x2] dz

1 (y+2)?
= —2x2z|dF d
* Z{ + [22 i |
) 1- F?
= —2x Z dF+ dZ
27

[cf. (4.19)]. The 1-form inside the parentheses in the last equality is, in effect,
a 1-form in two variables, which must be integrable. In this case, we can see di-
rectly that

— F? n( dF  dz
dZ—(l—F)(l_F2+2—Z>

B (I—F)zd[z(1+F):|
T2z 1-F |

1
dF +

Hence,

M} (4.20)

_ 24l ¢
a=(y+z—x) d[ r—

Going back to the more general case of Lemma 4.2, we can see that a necessary
condition for the existence of the functions y', appearmg in (4.14), is obtained by
applymg the exterior derivative d to the relations o' = c dy/. Expressing dy/ as

dy/ = cl a!, where (cl ) is the inverse of the matrix (¢ j), we have

do' = d(c; dyj)
= dci- Ady/
—dC /\( J l)
= (Elj dc‘j) Aol

E@;/\O{l

with Qli c Al (M), i,l=1,..., k. It turns out that this condition is also sufficient.
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Theorem 4.5 (Frobenius) Let {o!, ..., ozk} be a set of independent 1-f0rms. In
a neighborhood of each point there exist k independent functions y’ such that
o = c‘j dy/ if and only if there exist k* 1-forms, 0] € AN (M), such that

do! = 9; Aol 4.21)
Proof (Sufficiency) If {a', ..., ak} is a set of k independent 1-forms on a manifold
of dimension k, the conclusion is trivial, since if (xl, .. .,xk) is any coordinate

system, then, o' = c’j dx/, where (c’j) is a non-singular matrix.

We now consider the case n > k. If (xl, ..., x™") is a local coordinate system
on M, the k 1-forms o' have the local expressions a' = a;. dx/. Let us assume that

the 1-forms &' = Z?;i ' dx/, obtained from the o’ on setting x" = const = (x")o,
are independent, which can be achieved by relabeling the coordinates if necessary.
Then the condition (4.21) implies that d&' = éli A&, considering x" as a parameter.
(Again, &' is the pullback of o’ under the inclusion mapping i : N — M, where N is
the submanifold defined by x” = const = (x")( and, by abuse of notation, we denote
by x!, ..., x" ! the restrictions to N (or pullbacks under i) of the coordinates of M.)

Assuming that the Theorem holds for n — 1 dimensions, there exist k independent
functions, y/, which depend parametrically on x”, such that &@' = bj. dy/, where (bf/)
is a non-singular k x k matrix. Hence,

of =0 dy/ +a' dx" = b (dy! +b]a' dx") = b (dy! +57 dx"),  (4.22)

where the a’ are functions and (l;lj ) is the inverse of (bj.). Substituting the expression
o = bj. (dy/ + b7 dx™) into (4.21), we obtain

d(dy' +b' dx") =0’} A (dy' + ' dx"),
with 9’f e A'(M); hence,
db’ Adx" =0} A (dy + ' dx"). (4.23)
From this equation it follows that
dbf Adx" Adx" =6') A (dy! 4B dx) A dx”,
and, since dx" A dx" =0 [see (3.12)],
6’ Ady! Adx" =0,

which implies that 6y = A} dy” + B} dx", with A} , B} € C*°(M)and A} = A!
(see (3.24) et seq.). Substituting into (4.23) we obtain

db' Adx" Ady' Ao AdyF =607 A (dy 5! dx") Ady! A Adyk =0,

which means that &' is function of x”, y!, ..., y&; ' = b' (x", y!, ..., y5).
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Now we consider the system of ODEs made out of the functions bt (x", yl,
k
NSAD)

dy = b (x" YN, i=1.2,k (4.24)
dx”
The general solution of this system must contain k arbitrary constants. Let
y'!, ...,y be independent functions such that y/ (x", y!,..., y¥) = const (j =

1,2,...,k) is a solution of the system (4.24). Then (by implicit differentiation as
in the proof of Theorem 4.3) one finds that dy’ + b* dx" = f; dy'’, where (f;) isa
non-singular matrix; therefore we have, finally '

of = b f] dy" = cj dy”. O

Exercise 4.6 Consider the distribution defined by the 1-forms al = dy — zdx,
a? =dz — Fdx, where (x, y, z) are local coordinates of some manifold M, with
F € C*®(M) [cf. (4.11)]. Find explicitly a set of four 1-forms 0!, 921, 912, 922, such
that de’ = 0% A «/. Hence, the distribution is locally completely integrable; its in-
tegral manifolds are one-dimensional submanifolds of M which represent the solu-
tions of the ODE y” = F(x, y, y'). (See, e.g., Example 4.15, below.)

It is convenient to notice that if the relations (4.21) hold, then, fori =1,2,...,k,

a' AP A Adf Adat =0 (4.25)

[cf. (4.17)], since, frequently, for a given set of 1-forms {ozl, e ak}, it is simpler to
verify that this condition is satisfied than to show the existence of 1-forms 9; satis-

fying (4.21). Conversely, if the 1-forms o'!, .. ., ok satisfy (4.25), then (4.21) holds.
Indeed, locally there exist (n — k) 1-forms (ka, ...,a" such that {ocl, .o, is
a basis for the 1-forms on M, hence, for 1 <i <k, da’ = fliva“ A a”, where u, v
—fi,
pression into (4.25) we obtain )% i) fi @' A A«
implies that f;iv = 0for i, v > k, provided that k +2 < n (otherwise all the products

are real-valued functions. Substituting this ex-
K Aok Aa¥ =0, which

range from 1 to n and f;w =

al Ao naf Aat A are equal to zero); hence,
k k n
W= 3 fhed na 125 3 Sl na

Jjsm=1 j=1 u=k+1
k n

— i i m

=2 (2o Fime? +2 30 e | ne,
m=1 \j=1 nw=k+1

which is of the form (4.21). (In the cases where k =n or k =n — 1, the conclusion
follows trivially.)
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Example 4.7 Let us consider the set of 1-forms

1 2
o =(xw—yz)dx —xzdy + x“dw,

o Y Y (4.26)
o =—z"dy + (xw — yz)dz + xz dw,

where (x, y, z, w) are local coordinates of a manifold of dimension four. By a direct
calculation one finds that

do! = xdx Adw 4+ ydx Adz 4+ xdy Adz,

do? = zdx Adw + wdx Adz +zdy Adz.
Whereas it does not seem simple to determine if there exist 1-forms 9; such that
equations (4.21) are satisfied, it can be seen that

a' Aa? = (xw —yz)[—zzdx/\dy 4+ xzdx Adw —xzdy Adz

+ (xw — yz)dx Adz — x*dz A dw],

hence a' A a? Ada! =0=a' Aa? Ada?, and therefore the distribution given by
! and o? is completely integrable, at least locally.

Following the procedure employed in the proof of the Frobenius Theorem, we
will start from the fact that a system of k£ 1-forms in k variables is locally com-
pletely integrable in a trivial manner; therefore, in this example, we have to reduce
the number of variables from four to three and, afterwards, from three to two. The
integration process will start, then, with two variables only.

Setting w = wo, z = zo (constants), the 1-forms o' and o2 reduce to the 1-forms
in two variables, denoted by a! and @2, that in matrix form are expressed as

al xwo —yzo —xzo\ [dx
") , . (4.27)
a? 0 —20 dy

(This is already of the form o = cij dy/.) With the aid of the matrix

-1 —z02 XZ0
202(xwo—yzo) \ 0 xwo—yzo/

which is the inverse of the 2 x 2 matrix appearing in (4.27), we find that, when only
w is kept constant (denoting by &', &2 the corresponding forms), we have

al Xwo—yz —Xxz dx — 2 dg 129)
at) 0 —z2 ) \dy — ¥ 4z -
[see (4.22)].

In order to express the column on the right-hand side of the foregoing equation
in terms of the differentials of two functions only, we now consider the auxiliary
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system [cf. (4.24)]

dx x
dz 7’
dy  xwo—yz
d 2

The solution of the first equation is x = c¢;z, where c| is a constant, and using this
expression in the second one we obtain the linear equation

d clw
_y+Y_10

dz z Z

)

whose solution is yz = cjwgz + ¢, Where ¢ is a constant. Hence, the solution of
the system is given by u = const, v = const, where

X
u=-—, V=yz— XWwp.
z

In fact, the 1-forms in the column on the right-hand side of (4.28) are

Xwo — yZ

dx—fdzzzdu, dy 3
Z

Z

1
dz = wodu + —dv,
z
then, substituting into (4.28),
a! Xwo—yz —XxZ z du
al 0 —72 wo dv
—yz2  —x du
—Z2wy -z dv /]’

Finally, eliminating the condition that w be a constant, one finds that the original

1-forms are given by
ol —yz?  —x du
a?] 2w —z dv /]’

without the presence, in this case, of additional terms. This final expression is of
the form (4.14) and the integral manifolds of the distribution defined by the 1-forms
(4.26) are locally given by x/z = const, yz — xw = const

nj—= O

The constraints of a mechanical system given by a set of 1-forms a!, ..., o*

are holonomic if the distribution defined by {a!, ..., ¥} is completely integrable.
Otherwise, the constraints are non-holonomic.

Exercise 4.8 Show that the constraints (4.13), as well as those of a disk rolling on
a plane, are non-holonomic.
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Even though the distribution defined by the two 1-forms (4.13) is not completely
integrable, there exist one-dimensional integral manifolds of the distribution; a sim-
ple example is given by the curve C*x = const, C*y = at, C*¢ =0, C*0 = —t,
C*yr = const, which therefore represents a possible motion of the sphere. The fact
that the distribution is not completely integrable means that it does not have three-
dimensional integral manifolds.

Involutive Distributions Given a distribution &, we shall denote by V¢ the set
of vector fields X such that X, € &, for all p € M; one finds that if X, Y € Vg,
then aX 4 bY and fX also belong to Vg for any a,b € R and any real-valued
differentiable function f. That is, V4 is a submodule of X(M). Conversely, if B
is a submodule of X(M) such that ¥, = {X,, | X € B} has dimension [ for all p,
then Z is a distribution of dimension /; we say that the distribution & is involutive
if [X,Y] e Vg forall X,Y € Vy.

For a distribution & defined by k independent 1-forms {a!,..., &}, V4 is
formed by the vector fields X such that ol X)=0,i=1,2,...,k. If there exist
1-forms 9{ such that do! = 0; Aal [see (4.21)], then the distribution 2 is involutive
since, if X, Y € Vg, using the definition (3.30) we have

2do’ (X, Y) = X (' (V) — Y(o! (X)) — &' ([X, Y1)
= —a' ([X, Y]).

On the other hand, from (3.7)

2do’ (X, Y) =2(0) nd!)(X,Y)
=60/ (X)a! (Y) — 6/ (Y)a! (X) =0;
therefore, o/ ([X, Y]) = 0, that is, [X, Y] € V.

Conversely, given an involutive distribution, 2, let X1, ..., X; be independent
vector fields such that {Xy,,...,X,} is basis of Z,. If X;11,...,X, are n —
vector fields such that {Xi, ..., X,,} is a basis of X(M) and denoting by {a!, ..., &}
its dual basis, the distribution Z is defined by the 1-forms {aH‘l, ..., a"}; that is,
Dy ={vp € TPM|ozi,(vp)=O, i=Il+1,...,n}.

Since Z is involutive, for i > and 1 < j, m <1, we have

2do’ (X, X)) =X (@' X)) = X (' (X)) — & (IX;, X])
= —a'(IX;, X]) =0,

which, substituted into the identity

do’ = [do’ (Xj, Xp) ]/ Aa =2 "[da’ (X, Xp) e/ A,

j<m
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yields, fori > [,

do' =2 ) [do (X;. X,) ]/ Ae™

j<m
m>1

- Z[z Z doei(Xj,Xm)Olji| Aa™

m>l~ j<m

n
Z o, Ana™,

m=Il+1

which means that the distribution is completely integrable. Putting together the fore-
going results, the Frobenius Theorem can be expressed in the following form.

Theorem 4.9 Let 9 be a distribution on M. The distribution 9 is completely inte-
grable in a neighborhood of each point if and only if 9 is involutive.

The /-dimensional integral manifolds of a completely integrable distribution of
dimension / defined by the / independent vector fields X, ..., X; are locally given
by y' =const,i =1,2,...,n — [, where the y' are n — [ functionally independent
solutions of the [ linear PDEs

Xiy/ =0, i=1,2,....1; j=1,2,...,n—1. (4.29)

It may be noticed that these equations imply that [X;,X;]y" =0, for i, j =
1,2,...,1, m=1,2,...,n —[. On the other hand, any vector field Z such that
Zyj =0for j=1,2,...,n — [ must be a linear combination of the X;, and there-
fore the Lie brackets [X;, X ;] must be linear combinations of the X, which amounts
to saying that the distribution must be involutive, as we already knew. The Frobenius
Theorem ensures that the converse is also true; that is, if the distribution defined by
the / vector fields X, ..., X; is involutive, then there exist locally n — I functionally
independent solutions y/ of (4.29), and the /-dimensional integral manifolds of the
distribution are given by y/ = const.

Note that any distribution & of dimension one is involutive and, therefore, com-
pletely integrable, for if X is a vector field that at each point generates Z,, then
any pair of vector fields Y,Z € Vg is of the form Y = fX and Z = gX [with
f, & € C*°(M)] and therefore

[Y.Z]=[fX, gX] = (f(Xg) — g(Xf))X € Vg.

The integral manifolds of & are the images of the integral curves of X. For ex-
ample, one finds that all the vector fields satisfying the condition «'(X) = 0 for
the two 1-forms (4.11) are of the form f(d/dx +z9/dy + F 3/9z), where f is an
arbitrary real-valued function. Thus, the integral manifolds of the distribution de-
fined by these two 1-forms are the images of the integral curves of the vector field
d/dx +z9/dy + Fd/0z.
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Exercise 4.10 Let w € A2(M) and let 2, = {vp e T,M | v, Jw, = 0}. Show that
if there exists a @ € A'(M) such that dw = 6 A w, then Z is completely integrable.

4.3 Symmetries and Integrating Factors

In the previous section we have seen how to find, in principle, the integral manifolds
of a completely integrable distribution. In this section we shall show how the knowl-
edge of one-parameter groups of symmetries of a distribution allows us to find its
integral manifolds.

Let ¢; be a (possibly local) one-parameter group of transformations on M and
let o be a 1-form on M. We shall say that « is invariant under ¢; if for each value
of ¢ in the domain of ¢, there exists some function different from zero, x;, such that

oo = xa. (4.30)

Then, ¢; maps each integral manifold of « into another integral manifold. For in-
stance, the one-parameter group of transformations on R” given by ¢, (x!, ..., x") =
e(x!,...,x"), ie., ¢ x' =e'x!, leaves invariant any 1-form « = o; dx’ whose
components are homogeneous functions of the same degree k [that is,
o (Axt, o ax™) = Mka;(xt, ..., x™)] since
(p[*(ai dxl) — e(kﬂ)tai dxi.

Condition (4.30) implies that £xo = va, where X is the infinitesimal generator of ¢
and v is the partial derivative of x; with respect to ¢, evaluated at t = 0.

On the other hand, applying the relation (3.39) and the properties (3.27) and
(3.23) we find that, for X € X(M) and « € AL (M),

aANfxa=a A [XJda + d(XJa)]
= —Xl(a Ada)+ Xla)da —dXJa) Aa
= —X(a Ada) + (XJa)? d[(XJa) '],

where we have assumed that X |« is different from zero; therefore if « is integrable
(which, according to Theorem 4.3, implies that @ A do = 0), then

d[(XJa)fla] =XJa) 2o A fxa,

thus showing that (XJa)~! is an integrating factor of « if and only if X is the
infinitesimal generator of a (possibly local) one-parameter group of transformations
that leaves « invariant.

Hence, if an integrable 1-form, «, is invariant under the group generated by X
and X o # 0, then there exists locally a function y such that

a=XJa)dy. 431
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This result implies that a nonzero integrable 1-form on a manifold of dimension
greater than or equal to two possesses an infinite number of symmetries. For in-
stance, if X is the infinitesimal generator of a one-parameter group of transforma-
tions that leaves « invariant and Y is any vector field such that YJo = 0, then
[(X+Y)Ja]™! = XJa)~! is an integrating factor of «, and therefore X + Y is
the infinitesimal generator of another one-parameter group of transformations that
leaves « invariant.

Example 4.11 Since the components of the 1-form
a=2z(y+z)dx —2xzdy + [(y +2)2—x*— 2xz] dz,

considered in Example 4.4, are homogeneous functions of degree 2, this 1-form is
invariant under the one-parameter group of transformations given by ¢, (x, y, z) =
e’ (x, v, z), whose infinitesimal generator is X = x 9/dx + y 3/dy + z 9/9z. Hence,
an integrating factor for this 1-form is given by

1

Qi) R —
(XJe) Z[(y +2)2 — x2]

and, in effect, one finds that

1 w—dln +z4+x)z
Ay +2)2—x2] y+z—x

[cf. (4.20)].

Example 4.12 Another way of finding an integrating factor for the 1-form o con-
sidered in Example 4.11 consists of using a coordinate system adapted to the vector
field X =x9/0x + yd/dy + zd/9z, which generates a symmetry of «.

Following the steps given in Example 4.1, or by inspection, one finds that y/x
and z/x are constant along the integral curves of X [i.e., X(y/x) = 0=X(z/x)] and
that XIn |x| = 1; hence, in terms of the coordinates (u, v, w) defined by

<
Il
=<

w=Inx,

<
1
BN

we have X = 0/dw. In terms of the new coordinates, the 1-form « is given by
a =2e"v(u+v)de” —2e"vd(ue”) +e™ [(u+v)* — 1 —2v]d(ve”)
= ew{[(u +v)v— v]du) —2vdu + [(u +v)?r—1-— 2v] dv}

_ 3w 2_ dv  2d(u+v)
=e v[(u+v) 1][dw+ 5 7(u+v)2—1:|

1
= &3 y[(u+v)? — 1]d<w +1n|v|+1n ﬂ‘)
u

+v—1
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hence

(y+z+x)z

_ 22
a—z[(y—i-z) x]dln r—

which coincides with the expression obtained above. (It should be pointed out, how-
ever, that if there exists an integrating factor for a 1-form «, then there exists an
infinite number of integrating factors.)

Exercise 4.13 Show that the 1-form o = ; dx' is invariant under the one-parameter
group of transformations generated by X = 8/dx! if and only if (assuming a; # 0)

9 (ﬂ):O (i=2,3,...,n).

ax! \ o

If X = 3/0x! generates a one-parameter group of transformations that leaves invari-
ant the 1-form o = ¢; dx*, then ; = X is an integrating factor of «. This means
that locally there exists a function y such that

n
ot:otl(dx1 —I—ZZ—:dxi) = dy
i=2

(cf. Example 4.12).

In a more general way, the set of 1-forms a!, ..., af is invariant under a (possibly

local) one-parameter group of transformations, g, if there exist k2 functions A"/. such
that ‘
(pt*o[i = A;o(j; (432)

therefore, there exist functions N ; such that
fxa! = Néaj, (4.33)

where X is the infinitesimal generator of ¢ and N } is the partial derivative with
respect to ¢ of A; atr=0.
If the system is completely integrable, then there exist k> functions cj. such that

o = Ci/- dyj (4.34)

[cf. (4.14)]. By analogy with (4.31), the functions cj. can be expressed in the form

¢ =X; o, (4.35)

in terms of k vector fields Xi, ..., Xk, which, however, are not uniquely deter—
mined by these relations. Combining (4.34) and (4.35) one finds that c’j =X’ =
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¢l (X;y™), which implies that
X;y" = 5;!1. (4.36)
Hence, [X;, X;]y" =0 or, by virtue of (4.34),
X:, X;1Ja" =0 (i,j,m=1,2,...,k). 4.37)

Using several properties of the Lie derivative [(2.23), (2.38), and (2.39)] from
(4.34) and (4.36) one finds that

£x;0' =£x; (cﬁndym)
= (Xjcp) " + ¢, d(X;y")
= (chﬁn)E',"ar.
Comparing with (4.33), one concludes that each of the k vector fields X; defined

by (4.35) is the infinitesimal generator of a one-parameter group of transformations
that leaves invariant the system ol ok, Now, we shall show that the converse is

also true.
Theorem 4.14 Let o', ..., o be a set of independent 1-forms that define a com-
pletely integrable distribution. Let X1, ..., Xy be vector fields that generate non-

trivial symmetries of the distribution, i.e., the matrix (ci,) with ¢&. =X jJ o' is non-
singular, and let them satisfy the additional conditions [X;,X;]J ™ = 0. Then,
locally, o' = c’j dy/, where y!, ...,y are real-valued functions.

Proof According to the hypotheses, there exists a set of 1-forms 9; such that do/ =
9} Ao’ and
£x,0" = XpJde” +d(Xla”)
=X, J (6] Aa*) +dc),
= (XnJ0] )’ — ;6] + dc),
=N, o’, (4.38)

for some real-valued functions N, [cf. (4.33)]. The conditions [X,,, X;]Ja" =0
amount to

0= (£Xij)JOlr = £Xm (XjJOlr) — XjJ (£Xm0lr)

— r . r S __ ro__ r S
=X = XjIN, 0" =Xpuc; = Ny,
hence

Njpy =& X', (4.39)
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where (53.) is the inverse of the matrix (c;). Thus, making use of (4.38) and (4.39)
d(al) = dé; nal + & da
= —&lemde), Aol + 20 A"
= L [Npyo® — (X O] + 5,00 Aatd + &0 A o™
= —Eié;" (ElY Xonc] — X100 o Ao
==& (Xme —cf X)) a* Ao, (4.40)
On the other hand, from (3.30), we have
2da” X, Xp) =X (XlJoz’) -X; (XmJoz’) — X, Xy Ja" =Xpne] — X,
which must coincide with [see (3.7)]
2da” X, X1) =2(0), Aa?) X, X1) = ¢ X 16 — i X1 16),.

Thus, the expression inside the parentheses in (4.40) is symmetric in the subscripts
m,l,
Xnep — clp X, 91’, =Xch, — ch X167,
and therefore, by virtue of the skew-symmetry of the exterior product a* A o, we
find that d(E’joﬂ) =0. O
Example 4.15 The distribution defined by the two 1-forms
1_ 2 _ 3
o =dy —zdx, o =dz— (x —y)z”dx,
is invariant under the one-parameter groups generated by Stephani (1989, Sect. 7.5)

9 9 9 9
X|=—+—, Xo=(x—y)— —1H—.
1 8x+8y = (x y)8x+z(z )az

A direct computation shows that [X1, X>] =0 and
1—z —(x—=y)z
—x =02 @-D-(x-y**)

)= 050 =

Hence det(c;-) = —z[(z— 1)®+ (x — y)?z?] and therefore, except at the points where
z =0 or on the line x =y, z = 1, the conditions of Theorem 4.14 are satisfied.
A straightforward computation yields

Sy I =y’ —zz-1D —@-yz
(€)= z2l(z = D2+ (x — y)22?%] ’

—(x =)z z—1
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As shown in Theorem 4.14, the 1-forms Ei.aj must be, locally, exact; indeed, we
find

ol = :
/ Z[(z = D2 + (x — y)?2?]

x {22z — Ddx + [(x — )z’ — 2z = D]dy — (x — y)zdz}
_ 1
=D (x— )22
x [z(z = Dd(x — y) + (z — D*dy + (x — y)*22dy — (x — y) dz]

= d[)’ + arctan w]
z—1
and
j 1
200 — e k- Ad i
i z[(z—1)2+(x_y)2zz][(x )z (x — 22 dy + (z — 1) dz]
2

z—1
) (Z—1>2+<x—y>2z2[()‘_”d(’c_y)+ . dz]

ganl(1-1) + o]
=—dhnf{l——) +x—y)].
2 z

Thus, the integral manifolds of the distribution are given by

—v)z 1\2
y + arctan (x—yl)z = const, <1 — —) + (x — y)2 = const. 4.41)
- z

Symmetries of a Second-Order Ordinary Differential Equation The results
derived above can be applied to the specific case of a second-order ODE.
The second-order ODE
d%y

2 =F(x,y,dy/dx) 4.42)

is equivalent to the system of first-order ODEs

dx dy dz
— =7z, —=F(x,y,2),
z O (x,y,2)

dr dr

which, as shown in Sect. 2.1, determines the integral curves of the vector field

d d 0
A=—+7—+F(x,y,20)— (4.43)
0x dy 9z

on a manifold M with local coordinates (x, y, z).
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The vector field A is the only vector field on M that satisfies
Ala' =0, Ax =1, (4.44)

where
ol =dy — zdx, o’ =dz — F(x,y,z7)dx. (4.45)

From the equation (£xA)J o’ = £x(AJa’) — Al (£xa’) = —AJ (£xa’) it follows
that the set formed by the two 1-forms ! and «? is invariant under the group gen-
erated by a vector field X if and only if

[X,A]=2A (4.46)

(that is, £xA = AA), for some real-valued function A.

In some cases it is possible to find by inspection symmetry groups of a sys-
tem of the form (4.45). For instance, the 1-forms dy — zdx and dz — (3xz3/y2) dx
transform into multiples of themselves when x, y, z are replaced by ax, a_zy,
a3z, for a € R. This means that the system (4.45) with F(x y,2) = 3xz°/y?
(which corresponds to the second-order equation y?y” = 3xy’?) is invariant un-

der the one-parameter group of transformations ¢, (x, y,z) = (e'x, e 2y e 3y,
whose infinitesimal generator is X =x 9/dx — 2y d/dy — 3z 0/0z.
Writing
d
X= S——l—n——i—{ (4.47)

dy
one finds that (4.46) amounts to two PDEs (for the functions &, 1, and ¢) whose so-
lution is difficult to obtain. However, by imposing the condition that the functions &
and n depend only on x and y (which corresponds to the so-called Lie point symme-
tries), a straightforward computation shows that the condition (4.46) is equivalent
to

¢ =+ 20y — &) — &, (4.48)
where the subscripts denote partial differentiation [cf. (2.21)] and

SFx+77Fy+§Fz=§x+Z§y+F§z_($x+ZEy)F (4.49)

[cf. (2.41)]. Substituting the relation (4.48) into (4.49), in order to eliminate ¢, one
obtains a PDE for the two functions of two variables £ and 5 [see also Hydon (2000,
Sect. 3.2)].

Knowing one or several symmetry groups of the system (4.45) allows us to find
the solutions of the ODE (4.42). For instance, if we have two suitable symme-
tries satisfying the conditions of Theorem 4.14, we can readily find the solutions
of (4.42). Nevertheless, if we know only one vector field X that generates a nontriv-
ial symmetry group of (4.45) (that is, X satisfies (4.46) but is not proportional to A),
we can calculate the 1-form

B=XJ(a' Aa?) (4.50)
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which is proportional to the differential of a first integral of (4.42), thatis, 8 = pdy,
where p is some function and Ay = 0. (If X is proportional to A, then 8 is equal to
Zero.)

In order to demonstrate the preceding assertion it may be noticed that from (4.45)
we have

d(ot1 /\0[2) =F,dx A (al /\az)
(cf. Exercise 4.10), and from (4.33) it follows that
£X(ozl A otz) = (Nl1 + N22)ozl Aa’.
Hence, using (3.39) and the previous relations,
df =d[XJ(a' Aa?)]

= £X(a1 A az) — XJd(ot1 A az)

= (Nl1 + sz)al Aa? — XJ[FZ dx A (al /\az)]

= (N} + N3) o' Ao — F.(XJdx) A (¢! Ae?) + Fodx A B.

On the other hand, from (4.50) it follows that B is a combination of o' and &2,
therefore B A dB = 0, which is equivalent to the local existence of two functions
w and x such that 8 = udyx (Theorem 4.3). Thus, from (4.50) and (4.44) we have
AlB=AJX](a' Aa?) = —XIJA (@' Aa?)=0,ie., Al(udx) = nAx =0,
as claimed above.

The condition A y = 0 means that each integral curve of A is contained in some
surface y = const (that is, in one of the level surfaces of x). The definition (4.50)
and the expression g = udy give (XJa')a? — (XJa?)a! = udy, therefore on
a surface y = const, one of the 1-forms ol is proportional to the other, hence on
the submanifold xy = const, any nonzero 1-form, y, combination of the o', is inte-
grable because it is a 1-form on a manifold of dimension two. As in the case of 8,
the 1-form y is proportional to the differential of a first integral of (4.42) (since
A_a! =0), which is functionally independent of x and these two first integrals give
the integral curves of A or, equivalently, the solutions of (4.42).

Example 4.16 The second-order ODE y” = (x — y)y’® corresponds to the system
of 1-forms

o' =dy —zdx, o’ =dz — (x — )2 dx,

which is invariant under the one-parameter group of translations ¢;(x,y,z) =
(x +1t,y +t,z), whose infinitesimal generator is X = d/dx + d/dy. The 1-form
(4.50) is in this case

X (' Aa?) =1 —2)dz — (x — )2} (dx — dy),
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which is indeed integrable and is equivalent to

2 , 121 2 > (1

Hence, we can take x = (x — y)* + (% -1

On the surface x = const we have 1/z =1+ /c2 — (x — y)2, where we have
denoted by ¢? the value of that constant, and on that surface, the 1-form a! becomes

dy

dx - 2 —(x —y)? |:d d(x —y) :|
yF o

I/ e A By gy s v ALY -y e
+/c2 — (x —y)? [ . <X—Y>i|
= d| y F arcsin .
1£/c%—(x —y)? c

Hence, y F arcsin(?) is another first integral of the equation, and therefore the

solution is implicitly given by y F arcsin(%) = const.

The set of 1-forms considered in this example is the one already studied in Exam-
ple 4.15. One can verify that, by eliminating z from (4.41), one obtains the solution
given above.

An alternative procedure, applicable in the case where the symmetry is a Lie
point symmetry, consists of using the rectification lemma in order to find a new
coordinate system. This coordinate system frequently is denoted by (r, s), instead of
(x, y), and it is such that the vector field £ 9/0x +1n d/9y takes the form d/dr (which
amounts to say that, in the new coordinates, £ is equal to 1 and 7 is equal to 0). In
that manner, from (4.48) one finds that { becomes equal to 0, while (4.49) reduces
to F, = 0. As is well known, when F does not depend on one of the variables, the
order of the equation can be reduced.

Example 4.17 The vector field X = 9/9x + 9/0y employed in Example 4.16 corre-
sponds to a Lie point symmetry [i.e., it is of the form (4.47) with ¢ given by (4.48)]
and a coordinate system adapted to X is (7, s, w) with

r=x, s=x-Y, w=zg

(in the sense that Xx = 1, X(x — y) =0, and Xz = 0; hence, in the new coordinate
system, X = 8/9r). In terms of these coordinates, the ODE y” = (x — y)y’? takes
the form d2s / d?r = s(ds/dr — 1)3, which does not contain the variable r. Hence,
using the standard procedures, this last equation can be transformed into a first-order
ODE, and finally one obtains the solution given above.



Chapter 5
Connections

5.1 Covariant Differentiation

The tangent space, Ty M, to a differentiable manifold M at a point x is a vector
space different from the tangent space to M at any other point y, 7, M. In general,
there is no natural way of relating 7, M with Ty, M if x # y. This means that if v and
w are two tangent vectors to M at two different points, e.g., v € T, M and w € Ty M,
there is no natural way to compare or to combine them. However, in many cases it
will be possible to define the parallel transport of a tangent vector from one point
to another point of the manifold along a curve. Once this concept has been defined,
it will be possible to determine the directional derivatives of any vector field on M;
conversely, if we know the directional derivatives of an arbitrary vector field, the
parallel transport of a vector along any curve in M is determined.

A connection, V, on M, is a rule to calculate the directional derivatives of the
vector fields on M. If X and Y are two vector fields, VxY denotes the vector field
whose value at each point x € M is equal to the directional derivative of Y in the
direction of X,. In the following definition we copy the properties of the directional
derivative of vector fields in R”.

Definition 5.1 Let M be a differentiable manifold. A connection on M assigns to
each X € X(M) an operator Vx from X(M) into itself, such that for all X, Y,Z €
X(M),a,beR,and f € C*(M),

Vx (@Y + bZ) = aVxY + bVxZ,
Vx(fY) = f VxY + (XY,
Vax+pyZ = aVxZ + bVYZ,
v xY = f VxY.

The vector field VXY is called the covariant derivative of Y with respect to X.

If (xl,xz,...,x") is a coordinate system in some neighborhood, U, of M,
any pair of vector fields X,Y can be expressed in the form X = X'(d/dx"),
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Y =Y/ (3/0x7). Using the properties established in the definition it follows that

d

VXY = in(a/axi) (Y‘] a)

= X'V, Yfi
9/0dx 9

_xi aY’\ o vivg. 0
=\ o T Yy |

The covariant derivatives V; ;. (3/ dx/) must be differentiable vector fields, which

implies the existence of n3 differentiable real-valued functions on U, I’ jki, such that

d

axk’

Vy v~ = Ik (5.1)
8/8x’axj— Jji .

This set of functions characterizes the connection V in the coordinate system cho-

sen, since
T/av7y @ , 0
vxY =X’ ) — 4 yirk_—
X [(ax’ )8x1 LR Bxk]

i YE kvi) 9 )
=X W+FJ~[Y p (5.2)

This formula shows that in order to calculate (VxY)y, the value of VxY at a point
x € M, we only need to know the value of X at that point (since only the com-
ponents of X appear in (5.2), but not their partial derivatives) and the values of
Y in a neighborhood of x at the points of some curve to which X, is tangent
(since the partial derivatives of the components Y* only appear in the combination
X1 (x)(8/8x") Y*¥ = X, [Y*]). Hence it makes sense to define the covariant deriva-
tive of a vector field Y with respect to a tangent vector v, € T M as the value at x of
the covariant derivative of Y with respect to a vector field X such that X, = vy. The
expressions dY*/dx’ + I }‘i Y/, appearing in (5.2), are the components of a tensor

field [of type ( {)] traditionally denoted by Y k;,- and also by V; Y.

Exercise 5.2 Show that if (x!,...,x") and (x’!, ..., x") are two systems of coor-
dinates on M, then the relation

axt ox/ ax'P o 0x'P 92xk

P _
Tor = ax’ ax’s gxk I gxk gx'rox’s’ (5-3)
holds in the intersection of the domains of the two charts.
If a given manifold M can be covered by a single coordinate system (x!, ..., x")

(as in the case of R" with its natural coordinates), a connection can be defined
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by simply choosing n> arbitrary differentiable functions, F}k, by means of (5.1)
(see Examples 5.4 and 5.5), but if {(U;, ¢;)} is a subatlas of M with more than
one coordinate chart, the functions I” ?k for each chart have to be related according
to (5.3). As shown in the following chapter and in Appendix B, when a manifold
has a metric tensor or the structure of a Lie group, there exists a naturally induced
connection on the manifold.

Parallel Transport Let C : I — M be a differentiable curve. If Y is a vector field
defined on the image of C, then its covariant derivative along C, V'Y, is the vector

field on C such that (Vc'Y)c ) = VC;Y fortel.

Definition 5.3 A vector field is parallel (to itself) along C if VoY =0 and a curve
C is a geodesic if Vo C' = 0.

, dixioC)[ @
Cl=——|7>

see (12()) N maklng use Of (5.2) we ha\/e
C(t <Ea )( t
() X ()

d(x' o C) [ 3YF .
VCI(I)Y=M< ._i_[‘kyj)
<8> .
c@) dxk C(t)7

dr 0xt !
hence, Y is parallel along C if and only if its components satisfy the system of ODEs

Since

d(x'oC 4
_ (C,’[Yk] + %Fﬁyf)

d(Y*o 0) N d(x' 0 C)
dt dt

(I'f;oC)(Y/ o C)=0. (5.4)

For a given a curve C : I — M, these equations for Y* o C are linear; therefore there
exists a unique solution defined on / for any initial condition Y(C (#)) (see Fig. 5.1).
Furthermore, the map P; 4, : Tcy)M — TcnM, defined by P, 4, (Yo) = Y(C(?)),
where Y is parallel along C and Y(C(#p)) = Yo, is an isomorphism (Hochstadt
1964, Sect. 2.8) called parallel transport along of C from C(zg) to C(¢).

Example 5.4 Consider the connection on R? defined by F112 = 1 and the other
r J’ ¢ €qual to zero, with respect to the basis associated with the natural coordinates

(x', x%) = (x, y). The equations for the parallel transport of a vector field (5.4) are

dy! d
__i__yyl_()’

dy?
= — =0
dr dr

)

where, by abuse of notation, we have written Y 1 y2 and y, in place of YlocC,
Y20 C, and y o C, respectively. From the second of these equations it follows that
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Fig. 5.1 The tangent vector Yy is transported along the curve C

Y2 is constant along any curve, whereas the first equation implies that Y'e” is a
constant; hence, under the parallel transport of a vector field Y along a curve C
from C(t) to C(t), the components of Y with respect to the natural basis {d/9x'}
are related by means of

Yicw)) eY(CM)—y(Cw)) Yi(C(1))
y2cay) 0 1) \r2cwy/)

The 2 x 2 matrix appearing in this last relation represents the isomorphism F; 4,
mentioned above. In this example, the vector obtained by means of the parallel
transport depends on the coordinates of the end-points C(#p) and C(¢), but not on
the intermediate points. This is equivalent to the fact that under the parallel transport
of an arbitrary vector along any closed curve one obtains the vector originally given
at the initial point of the curve. (As we shall see, this corresponds to the fact that

the curvature, defined in the following section, of the connection considered in this
example is equal to zero.) (See Example 5.18.)

Example 5.5 Let us consider now the connection on M ='{(x, y) € R?| y > 0}
given by F112 =TI 211 = F222 =—1/y= —F121 , with the other F]? « being equal to zero.
Equations (5.4) read

ar'  1/dx_, dy_, ar? 1/dx_, dy_,
— =2+ =y ) =0, —+ (=Y ——=Y7)=0. (553
dr y\ dt dr dr y\ dt dr

This system can readily be solved employing the complex combination Y! +i¥?2,
in terms of which we have

dy'+ir®» 1/d d
AW _ 1y dv) g gy)
dt y\ dt dr

and therefore

Y! 4+ir? Y! 4+ir? 1 dx
()= (= cwnen(— [5G,

which means that the isomorphism P, ;, defined above is represented by

Y'(c@e)) _ y(C@) [cos® —sin® Y (C (1)) 5.6)
Y2(C(t)) ] y(C) \sin® cos® |\ Y2(C(t)) '
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'
@E_/ 1 dxoC) dr
n Y(C@) dr

(It should be clear that the use of complex variables is not essential, but only a
convenience; one can verify directly that (5.6) is the solution of the system (5.5).)
Since @ is the line integral of y’1 dx, which is not an exact 1-form, ® not only
depends on the end-points of the curve, but on the entire (image of the) curve itself.
This fact is equivalent to that after the parallel transport of a vector along a closed
curve, the final vector may not coincide with the original one (see Example 1.28).
Indeed, if C is a simple closed curve, using Green’s theorem one finds that the angle

d);gy , where D is the region

with

© can also be expressed as the surface integral — [f; D
enclosed by C. For a closed curve, (5.6) reduces to

Y1 (C (1)) cos® —sin®\ (Y (C(t))

Y2Cto) ), \sin®@ cos® J\v:cw)y), ..
so that the only effect of the parallel transport is similar to that of a rotation in the
plane through the angle @ (in this example, as in the rest of this chapter, we are not

assuming the existence of a structure that allows us to define lengths of vectors or
the angle between vectors). (Cf. Example 6.29.)

A geodesic C is a curve whose tangent vector field, C’, is parallel along C.
Hence, from (5.4), with Y/ = d(x’ o C)/dt we obtain the geodesic equations

d2(x* o )
dr?

By contrast with the equations for the parallel transport of a vector field (5.4) along
a given curve, which are first-order linear equations for Y’ o C, the equations for the
geodesics (5.7) are second-order equations for the functions x’ o C, which regularly
are nonlinear.

dx/0oC)d(x' 0 C)

+ (FJ{Ci ° C) dr dr

0. (5.7)

Example 5.6 Considering the connection locally defined by

2

2r 1_r(rz—l) 1—r

1
Iy=——— n= 7

2 2
1472’ ’ =1

A7 (142

with all the other functions F; « being equal to zero, with respect to the basis induced

by the polar coordinates (7, 0) = (x!, x2) of the Euclidean plane, equations (5.7)

take the form
d2r 2 (dr 2+r(r2—1) do 2_0
dr2 1472\ dr 1472 \dr )] 7

d%6 L2 —r})drdo
dr2 " r(14+r> de dr

(5.8)
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2 de

T4 ar] = 0; therefore

The second of these equations amounts to %[

o (14r?)?

where L is a constant. If L = 0, then # is constant, and the first equation (5.8)
reduces to

d 1 dr
1+72)— — ] =0.
( +r)dt(1+r2dt>
1 dr

Hence T2 =6 where ¢ is another constant and, therefore, r = tanc(t — 1),
which means that the (images of the) geodesics with L = 0 are straight lines passing
through the origin.

When L # 0, substituting (5.9) into the first equation (5.8), we have

d?r 2 (dr\* L E— (1 +r2)3
— = (= P .
drz2 1+4r2\dr r

Multiplying the previous equation by (1 + r%)~2dr/dt, the result can be written in
the form

al1 1 dr\?  L2(1+4r2)?

— === ) +——|=0.

de [ 2 (1+r2)2\ dt 2r?

11 dr\> | L2(1+rH)?
2(1+r2)2\dr 22

Thus we have

E, (5.10)

where E is a constant. Equation (5.10) is an equation of separable variables that
determines r o C, which substituted into (5.9) leads to 8 o C.
The image of C can be obtained by combining (5.9) and (5.10), which yields

(trhdr _ (A4r)dr

2 2B _ (42 o 2B 4 (=)
L2 r2 L2 72

do ==+

r

. . _,2 . .
and with the change of variable IT’ =,/ i—g — 4 cos v, this equation reduces to

df = +dv; hence,
5 2FE
1—rc= ﬁ—4rcos(9—90)
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or, in terms of the Cartesian coordinates,

+,/E 1 92+ +,/E 1'92 E
X —— — 1 cos —— — Isin =
212 0 YTV a2 0) =312

which corresponds to a circle enclosing the origin.

Exercise 5.7 Considering the connection given in Example 5.4, show that the
geodesic starting at the point (xo, yo), with the initial velocity a(d/0x)(x,,y,) +
B(/3Y) (xg.ye)» 1S given by x = xo +a(l — e~ /b, y = yo + bt.

Covariant Derivative of Tensor Fields The covariant derivative of a tensor field
of type (2), t, with respect to a vector field X, denoted by Vxt, is defined by the
relation

X(I(Yl, ... ,Yk)) = (Vxt)(Y1,...,Yr)

k
+Zt(Yl,-~-,Yi—1,VXYi,Yi+1,~--,Yk), (5.11)
i=1

for X, Yy, ..., Yy € X(M) [cf. (2.45)]. The covariant derivative of ¢ with respect to
X is also a tensor field of type (2) since (see Sect. 1.4)

(th)(Yl, ce fY,',...,Yk)
=X(l‘(Y1,...,fY,',...,Yk))

k
—Zt(Yl,...,fY,-,...,VXYj,...,Yk)
i
—t(Y1,....Vx(fYi), ..., Yk)
=X(ft(Y1,....Yi, ..., Y1)

k
= Y YL XYL YY)
j=1
j#i
—t(Y1,..., fVXYi + XNYi, ..., Yr)
=f(Vxt)(Y1,.... Y, ..., Yy), for feC®M).
When k = 0, that is, when ¢ is a function of M in R, we define Vxt = X¢. From the

definition of Vxt it follows that Vyxt = f Vxt and that V,x,pyt = aVxt + bVyt,
fora,b e R and f € C*(M).
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Exercise 5.8 Show that

Vx(ft) = f Vxt + (X[,
Vx(at + bs) = aVxt + bVxs,
Vx(t®s)=(Vxt) ®s +1Q (Vxs).

If (x!,...,x") is a local coordinate system and Y = Y! (8/8xi) is an arbitrary
vector field, applying the foregoing definition we have

; 0 . )
(VB/BX’ dx/)(Y) = a—(dxf(Y)) —dx/ (V5,0 )

xi

Y/ VL) CERRR
= o ‘d"’<<W+sz’Y )a_k>
oY/ Y/ i om
= oxi _<8xi LY )
:_I_;iiym
= I X" (Y),
that is,
Voo dxd = =) dx™. (5.12)

Exercise 5.9 Show thatif X = X/ (3/dx") and t =#;_;dx’ ® --- ® dx/, then
k 8ti.‘.j m m i J
Vt =X =5 = Tt = = Tt ) dx @ - @ da
(The components 3ti,_.j/3xk Ity j—— F;;’(t,-___m are denoted by #; ;.4 or by
Viti..j.)

Exercise 5.10 Show that Vx(Y_?) = (VxY)Jt + YJ(Vxt) for any tensor field # of
type (9) and X, Y € X(M).

5.2 Torsion and Curvature
The torsion, T, of the connection V is the map from X(M) x X(M) into X(M)
given by

TX,Y)=VxY—-VWwX—-[X,Y], forX,YeX(M). (5.13)

Clearly, T is skew-symmetric, T(X,Y) = —T (Y, X), and T is a tensor field since,
making use of the result of Exercise 1.22, if f € C°°(M) we have
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T(rX,Y)=VyxY—-Vy(fX) - [fX,Y]
=fVxY — f WX - (Y HX - fIX, Y]+ (Y HX
=fTX,Y).
(The object T defined above does not satisfy the definition of a tensor field given in
Sect. 1.4 since T'(X, Y) is not a function, but avector field; however, T is equivalent
to a tensor field of type (%), T, defined by T(X, Y, o) = «(T (X, Y)), for any pair

of vector fields X, Y, and any covector field «.) A connection V is symmetric, or
torsion-free, if its torsion tensor is zero.

Exercise 5.11 Show that if X = X/(3/9x%) and Y = Y/(3/dx/) are two arbi-
trary differentiable vector fields, then 7(X,Y) = X'Y/ Til;(a/ ax*), where Tl’j‘ =
F][‘i — Fllj‘ Show that V is symmetric if and only if F/; = iji.

The curvature tensor, R, of the connection V is a map that associates to each pair
of vector fields an operator from X (M) into itself, given by

R(X,Y) =VxVy - VyVx — Vixy}, forX,YeX(M). (5.14)

It can readily be seen that R(X,Y) = —R(Y,X), R(@X + bY,Z) =aR(X,Z) +
bR(Y,Z),and R(X,Y)(aZ+bW) =aR(X,Y)Z+bR(X, Y)W. The curvature ten-
sor is indeed a tensor field, since
RX,Y)(fZ) =VxVy(fZ) — VyVx(fZ) — Vix,y](fZ)
= fVXWZ+ XHVYZ+ (YFIVXZ+ (X(Y[))Z
— fYWVYXZ — (YF)VXZ — (X/)VYZ — (YX[))Z
- fVixyiZ— (X, Y]f)Z
=fRX,Y)Z

and

R(fX.Y)Z =V xVyZ — VyVxZ — Vi ;x.v|Z
= fVxVyZ — fVyVXZ — (Y [)VxZ
— fVixZ+ (Y f)VXZ
=fRX,Y)Z, forX,Y,ZecX(M), feC®M).

(As in the case of the torsion, R does not satisfy the definition of a tensor field
given in Sect. 1.4; however, R is equivalent to the tensor field of type (é) R defined

by R(X, Y,Z,0)=a(R(X,Y)Z).) A connection V is flat if its curvature tensor is
Zero.
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Exercise 5.12 Show that if X = X?(3/9x"), Y = Y/ (3/8x/), and Z = Z*(3/9x5),
then R(X, Y)Z = XY/ ZKR™;;(3/3x™), where

oy grm
_ Tk k 14 )4
R™i; = e axfl + F,’,’}ij — F,’,T}Fki.

Exercise 5.13 Show that if R(X, Y)t = VxVyt — VyVxt — V[x yjt, for any tensor
field ¢ of type (2), then
RX,Y)(f1) = f RX, Y)t,
RX,Y)(t®s)=(RX,Y)1)®s+1® (RX,Y)s).

Exercise 5.14 Show that for X, Y,Z, W € X(M),

R(X,Y)Z + R(Z,X)Y + R(Y,Z)X
=Vx(T(Y,Z)) + Vy(T(Z,X)) + Vz(T (X, Y))
+T(X,[Y,Z]) + T(Y.[Z,X]) + T(Z, [X, Y]) (5.15)

and

Vx(R(Y,Z)W) + Vy(R(Z,X)W) + Vz(R(X, Y)W)
= R(Y,Z)VxW + R(Z,X)VyW + R(X, Y)VzW
+ R([Y.Z], X)W+ R([Z,X], Y)W+ R(X, Y,LZ)W.  (5.16)

The relations (5.16) are known as the Bianchi identities.

Parallel Transport in Terms of the Tangent Bundle Each curve C: 1 — M,
where [ is an open interval of the real numbers, gives rise to curves in the tangent
bundle of M, defined with the aid of the connection of M. Let p = C(#), where fg
is some point of /, and let v, € T, M. As discussed in Sect. 5.1, the existence of
a connection on M allows us to define an isomorphism P, 4 : TcyM — Tc(nyM
representing the parallel transport of tangent vectors to M along C. The curve C, )
in the tangent bundle of M will be defined by 61,1, (t) = Pt ,4y(vp), so that Evp (1) €
Tc(yM and, therefore, 7 o Eu,, = C, where 7 is the canonical projection of TM
on M. Furthermore, fvp (to) = vp (see Fig. 5.2).

In terms of the coordinates (¢‘, ¢') on TM, induced by a local coordinate sys-
tem x' on M (see Sect. 1.2), we have qi(Evp (1)) = x'(C(t)) and the functions
' (Cy, (1)) satisfy [see (5.4) and (1.27)]

dgk(C, () N dg'(Cy, (1))

k i (= .
dr dr I (C®) ¢’ (Co, ) =0,
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Fig. 5.2 The image of Ev,, is formed by the tangent vectors obtained by parallel transport of v,
along C

with c]i (C, » (t0)) = q[ (vp). According to the foregoing relations and (1.20), the tan-
gent vector to C,, at t =1y is

( 9 ) d(@' o Cy,) ( d )
- + — —
fo aql Up dt 1o 8(’][ Vp

[( a) AnYIe )(i) }
N aqi o JU P aqk ) .

P

d(qi o 6v,,)
dr

_d(x'00)
T A&

The 7 real numbers d(x’ o C)/ dt|;=,, appearing on the right-hand side of the last
expression, are the components of the tangent vector of C at t = 7y and do not
depend on v, while the n tangent vectors to TM at v,

9 y 9 .
(W)U _ka"(p)qj(””)(W)U (i=12,...,n),

p p

which do not depend on C, form a basis of an n-dimensional subspace of T, (TM),
which is called the horizontal subspace of T, » (TM). A curve in TM is a horizontal
curve if at each point of the curve its tangent vector belongs to the horizontal sub-
space at that point. Thus, a horizontal curve o in TM represents a parallel vector
field along the curve w o o in M. It may be noticed that defining a connection on
M is equivalent to defining the horizontal subspace of T, (TM) at each point v, of
TM. However, if v, and w), belong to T), M, the horizontal subspaces of T, (TM)
and T, (TM) are not independent of each other.

Exercise 5.15 A differentiable curve C in M defines a curve ¢ — Ct’ in TM, such
that 7 (C;) = C(r). Show that C is a geodesic if and only if the curve r — C; is
horizontal.
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The n vector fields X; on TM locally given by

k a

— * =
generate an n-dimensional distribution on 7M and one readily finds that
[Xi, X;]1=—¢"(7*R™ ~)i (5.18)
i»Xjl=—q \T kij aq.m» .

where the R™;; are the components of the curvature tensor with respect to the basis
{0/0x"'} (see Exercise 5.12); hence, according to Frobenius’ theorem, the distribu-
tion is locally integrable if and only if the curvature vanishes.

When the connection if flat, the integral manifold of the distribution defined by
the vector fields (5.17) passing through v, is formed by all tangent vectors to M
obtained by the parallel transport of v, along some curve in M passing through p.

Example 5.16 In the case of the connection considered in Example 5.4, the vector
fields (5.17) are
X, — 0 X, — 0 .10
SaFrih 2752 1 8

One can readily verify that the Lie bracket of these vector fields is equal to zero,
which implies that the connection is flat. One can also verify that the functions ¢
and c]leq2 are two functionally independent solutions to the linear PDEs X; f =0,
i = 1,2, and, therefore, the integral manifolds of the distribution generated by the
horizontal vector fields X; are given by

. g2
4% = const, ¢'e?” = const.

Acc_ording to the definition of the coordinates c]i [see (1.27)], this means that
Y =Y'0/0x" is a parallel vector field if Y 2 — const, and Y 'e? = const, which agrees
with the result found in Example 5.4.

5.3 The Cartan Structural Equations

In order to represent a connection, or any tensor field, we can employ bases not in-
duced by some coordinate system. Let {eq, ..., e,} be a set of differentiable vector
fields defined on some open subset U of M such that, at each point x € U, the tan-
gent vectors (e;), form a basis of 7, M, and let the set of 1-forms {A', ..., 6"} be its
dual basis (that is, 6’ (e i) = 8;). If there exists a coordinate system (x!, ..., x") such
that e; = 3/dx' or, equivalently, ' = dx’, we will say that the basis {ey, ..., e,} is
holonomic. A necessary and sufficient condition for a basis {ey, ..., e,} to be locally
holonomic is that [e;, €] = 0 or, equivalently, d®? = 0. As shown in this section and
in the following chapters, when M possesses a connection, a metric, the structure of
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a Lie group, or some other structure, it is convenient to make use of nonholonomic
bases adapted to the structure present.

As pointed out in Chap. 1, in some manifolds there are no coordinate systems
covering all the points of the manifold (that is the case, e.g., of the circle S! and of
the ordinary sphere S?) and therefore, in those manifolds there are no global holo-
nomic bases. For some manifolds, it may even be impossible to find nonholonomic
bases defined globally (e.g., the sphere S?; but in the case of the circle S! one can
find a nowhere zero differentiable vector field). A manifold M is parallelizable if
there exists a set of differentiable vector fields such that at every point of M they
form a basis for the tangent space to M at that point. (As we shall see in Chap. 7,
every Lie group is parallelizable.)

In the rest of this chapter, {eq, ..., e,} will represent a local basis for the vector
fields, holonomic or not. If V is a connection on M, the connection forms, I i j» with
respect to the basis {eq, ..., e,}, are the n? 1-forms defined by

I';(X)=6'(Vxe)), (5.19)

for X € X(M). From the properties that define a connection it follows that the I’ j
are, in effect, linear differential forms. The definition (5.19) is equivalent to

Vxe; = IV (X)e;, (5.20)
for X € X(M). Defining the n3 functions F[jk by
Iy=T"(e) (5.21)
(i.e., I''j = I'" j36%), one finds that (5.19) and (5.20) amount to
Veej =" jiey, (5.22)

which is of the form (5.1), but now we are considering the possibility of dealing
with a nonholonomic basis.

Exercise 5.17 Show that Vx0' = —I"' ;(X)6/.
The torsion 2-forms, T!, with respect to the basis {eq, ..., e,}, are defined by
, 1 .
T'X,Y) = 59‘ (T(X, Y)). (5.23)
Since the torsion is a tensor field satisfying the condition 7' (X, Y) = —T (Y, X), for
X, Y € X(M), each T" is a 2-form and making use of the definitions (5.13), (5.11),
(3.30), and (3.7) and the result of Exercise 5.17, we obtain

, 1 .
TH(X,Y) = 5el(T(X, Y))

1
= 26 (xY - WX~ [X.Y])
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1 . . . . .
=3 {X(6' (V) — (Vx0')(Y) = Y(0' (X)) + (Vy0')(X) — 6" (IX, Y])}

1 ‘ . . . .
= E{2c19’(X, Y)+ I (X)0/(Y) — I ;(Y)6! (X)}
= (d6' + 1" AOT)(X, Y),
that is,
T'=do' + 1" n6/. (5.24)
These equations are equivalent to the definition of the torsion tensor and are known
as the first Cartan structural equations. ‘
In a similar manner, defining the curvature 2-forms, %' j» with respect to the
basis {ej, ez, ..., e,}, by

Z (X, Y) = =60'(R(X, Y)e;), (5.25)

N =

the properties of the curvature tensor imply that each %' j is a 2-form and from
(5.25), (5.14), (5.20), (5.19), (3.30), and (3.7) one finds that

Z (X, Y) = %Gi(VXVYej — VyVxe; — Vixyje))
= %ef(vx(r"j (Y)er) — Vy (I j(X)er)) — %Fi,-([x, Y)
_ %{X(ri JOD) + FeX) ¥ ()
—Y(I70) = I () I 5(X) = 1 (X, Y1)}
=dI' ;(X,Y) + (I A T*) (X, Y),
ie.,

R =dIr'j+ T ATk (5.26)

These relations are known as the second Cartan structural equations.

If the components of the torsion and the curvature with respect to the basis
{e1,...,e,} are defined by means of T'(e;, e;) = Ti’;ek and R(e;,ej)e; = R’k,-jel,
respectively (cf. Exercises 5.11 and 5.12), then the definitions (5.23) and (5.25)
amount to

) 1 . . . 1 .
T = ET;kej AOK and #' ;= ER'ijQk N (5.27)

In the domain of {ey, ..., e,}, knowing the torsion forms or the curvature forms
is equivalent to knowing the torsion tensor or the curvature tensor, respectively. As
can be seen in the following examples, the Cartan structural equations constitute a
very convenient way of calculating the torsion and the curvature of a connection
(further examples can be found in Chaps. 6 and 8, and in Appendix B).
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Example 5.18 The connection considered in Example 5.4 corresponds to the con-
nection forms 'l = dy, I L, =r?% =r?2,=0, with respect to the holonomic
basis e; = d/dx' (hence 6' = dx'). From (5.24), (3.36), and (5.26) we have
T'=d(dx) + I''j Ade/ =dy Ade = -0 A6,
T? =d(dy)+ I'*j Adx/ =0,
which shows that the only components of the torsion different from zero are Tll =
—1= —Tzll. On the other hand, %" ; =0 and, therefore, the connection is flat (cf.
Example 5.16).

In a similar way, the connection forms in Example 5.5, with respect to the holo-
nomic basis e; = d/dx", are rt, = —y’1 dy = r,, ri,= —y’1 dx =—-TI?}, so
that from the first Cartan structural equations one finds that

T!'=d(dx) + ' Adx/
= —y_ldy/\dx —y_ldx/\dy=0,
T? =d(dy) + I'*; Adx/

=y_1dx Adx —y_ldy/\dy=0,

and

B =d(—y ' dy) + e ATk =0,

By =d(—y 'dx)+ I A TS
=y 2dy Adx +y 2dy Adx 4+ y2dx Ady
— _y 201 p 02,

A =d(y~'dx) + T3 AT
=—y2dyAdx —y2dx Ady — y 2dy Adx
—y 291 A G2,

By =d(—y~'dy) + I ATk =0.

(5.28)

Comparing (5.28) with (5.27) one finds that the only components different from
zero of the curvature tensor are determined by R'51» = —y =2 = —R? 5.

Exercise 5.19 Compute the curvature of the connection given in Example 5.4 with
the aid of (5.18).

Applying the operator of exterior differentiation, d, to the first Cartan structural
equations and making use of the first as well as of the second structural equations
we find the identities

AT+ T AT =% n 67 (5.29)
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Hence, if the torsion of the connection is equal to zero,
R NG =0. (5.30)

Similarly, applying d to the second Cartan structural equations we obtain the identi-
ties

d%ijzﬁikAij—Fik/\%kj. (5.31)

Equations (5.29) and (5.31) are equivalent to (5.15) and (5.16), respectively; there-
fore (5.31) is an expression of the Bianchi identities.

Substituting the second equation (5.27) into (5.30) we obtain R! jklef A
6% A 6! = 0, which amounts to the conditions Ri[jkl] = 0 [see (3.24)] or, using
the fact that R jkl = —R! jlk» it follows that when the torsion is equal to zero, the
components of the curvature satisfy

R'ji+ R'yj + R'ji = 0. (5.32)

The fact that the connection V is flat is equivalent to the local existence of n
linearly independent vector fields whose covariant derivatives are equal to zero. In
effect, if Y1, Y3, cees Y,, are vector fields such that VxY; = 0 for all X € X(M),
then writing Y; = b/ 9/9x/, from (5.2) it follows that

ab! ,
axlk + Il pr=o0, (5.33)

where the F,;; & are the components of the connection with respect to the holonomic
basis 8/dx/ given by some coordinate system. Applying 8/dx" to the previous equa-
tion and using it again we find that

3 b} PR 1O o P SRR )
axl ok~ gt~ = Dl

therefore, the integrability conditions of equations (5.33), given by

AL
axl axk — gxk axl’

are (317, /ox* — L), Jox! + [T, — LT ) b =0, or, simply, RY i b =0
(see Exercise 5.12). The vector fields Y, Ys,...,Y, are linearly independent if
and only if det(bij ) # 0, which means that the matrix (bij ) has an inverse, so that
R/ b" =0 amounts to R/ 5 = 0.

Conversely, if R,k = 0, equations (5.33) are integrable and the integration con-
stants appearing in the solution of this system of equations can be chosen in such a
way that det(bl.j ) is different from zero and, according to the preceding derivation,

the n vector fields given by Y; = bij d/dx/ are covariantly constant, VxY; = 0.
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Thus, the curvature of a connection is equal to zero if and only if there exists
locally an invertible matrix (bij ) such that

, - bl
rjy=-b"—2 (5.34)

I axk’
where (l;l.j ) denotes the inverse of the matrix (bij ) [see (5.33)] or, equivalently (not-
: _ ] k _ i pm k _ 3i qpm k m i k
ing that 0 = 88;/8x = a(b;nbj )/0x" =by, abj /ox +bj ab;, /0x")
"

. ;0]

1“/?,( Zbi”W' (5.35)
In terms of the connection 1-forms I j=r }kdxk for the holonomic basis 8/9x/,
equations (5.33) and (5.35) are equivalent to

db] =—bj'rs,,  I'j=b},db7, (5.36)
respectively.

Exercise 5.20 Show that the matrix (bij ) is defined by (5.33) up to a multiplicative
constant n X n matrix.

Example 5.21 With the aid of (5.26) one readily verifies that the connection 1-forms

o udu+vdv

1 vdu —udv
Fh=ra=—mry e

I 2
, IFy=-I“1=
u? 402

, (5.37)
where u, v is a coordinate system of a manifold M, correspond to a flat connection
[without having to specify which are the vector fields appearing in (5.22)]. Assum-
ing that these connection 1-forms correspond to the holonomic basis {3/du, 9/dv},
the components, Y i ofa covariantly constant vector field Y = Yo Jou+Y 29 /dv,
are determined by dY’ + Y/ I'' ; = 0 [see (5.33)], that i,

Yludu—i—vdv ovdu —udv

dy' = —
u? +v? u? +v?
vdu —udv udu +vdv
dyz=y! —y?
M2+U2 M2+U2

By combining these equations one obtains

Layl & v2av2 — _[(y1)2 1y2q4du +vdv
vlay' +y2dy*=—[(v')" + (v')] R
which implies that
(0P ) = 3
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and
v2ar! - ylay? = [(y') 4 (v') ] vde
u? + 02
hence,
t r! t v + t
arctan — = arctan — -+ const,
Y2 u
which leads to
Y! v—cu
—_ =, 5.39
Y2 cv+u ( )
where c is a constant.
From (5.38) and (5.39) one finds that
YIZK(v—cu)’ Y2=K(cv+u)’
M2 + U2 Lt2 + U2

where K is another arbitrary constant and therefore any covariantly constant vector
field is a linear combination (with constant coefficients) of the vector fields

1 d 0 1 0 n 0
———\u——v—), ——(v—+u—).
u2+v2\ du v u?+v2\ " du v
Hence, as a consequence of the vanishing of the curvature, there exists a basis for
the vector fields formed by covariantly constant vector fields.

5.4 Tensor-Valued Forms and Covariant Exterior Derivative

A k-form w on M is a totally skew-symmetric C°° (M )-multilinear map of X(M) x
-+ x X(M) (k times) in C*°(M). We can also define differential forms whose values
are vector or tensor fields. For instance, the torsion tensor of a connection can be
regarded as a 2-form whose values are vector fields, and the curvature tensor as a
2-form whose values are tensor fields of type ( {).

Definition 5.22 A vector-valued or tensor-valued differential form of degree k is a
map, w, from X(M) x --- x X(M) (k times) in X(M) or in T (M), respectively,
C°°(M)-multilinear and totally skew-symmetric:

oX1, .. fXi +¢X0 .. X0)
= foXi,....Xi,...Xp) +goX,....X,,....Xp),
oXih . Xin X Xp)
=—oXi,....Xj, .., X0, ., Xp),

for Xy, ..., X;, X}, ..., Xk € X(M), f,g € C®(M).
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The vector-valued or tensor-valued k-forms can be added among themselves,
multiplied by real numbers, by functions and by /-forms in the obvious way. The
set of vector-valued k-forms will be denoted by X(M) ® AK(M), while the set
of the k-forms whose values are tensor fields of type (%) will be denoted by
T/ (M) ® AK(M).

For instance, the map I7 from X(M) into X(M) given by I1(X) = X for
X € X(M) is a vector-valued 1-form as can be seen directly. The maps @ and £2
defined by ©(X,Y) = IT7(X,Y) and 2(X,Y) = 1 R(X,Y), where T is the torsion
tensor of a connection V on M and R is the curvature tensor, are 2-forms with val-
ues in X(M) and in Tl1 (M), respectively. (£2(X,Y) is the tensor field of type (})
given by 2(X,Y)(«, Z) = 3a(R(X, Y)Z).)

If w is a vector-valued k-form and {ey, ..., e,} is a set of independent vector
fields, defining ' by

o' Xi, .., X)) =60 (0(Xy, ..., Xp)), (5.40)
where {91, ..., 0™} is the dual basis to {ey, ..., e,}, we have

oX1,.... X =o' Xq,...,Xp) e, (5.41)
for X1, ..., X € X¥(M). From the definition it can be seen that each o’ is a k-form,

so that a vector-valued k-form can be represented by n ordinary k-forms.

Definition 5.23 Let X be a vector field and let 5 be a k-form; the tensor product of
X times 7, denoted by X ® n, is defined by

XeonXi1,....Yo)=nY1,...,YX, forYy,...,YreX(M).
Clearly, X ® n is a vector-valued k-form.

Any vector-valued k-form, w, can be expressed in terms of the k-forms o' defined
above by means of

w=e Q. (5.42)
Thus, for the vector-valued 1-form I7 defined by I7(X) = X, from (5.40) we have,
IT'(X) = 6 (IT(X)) = 0" (X), and therefore IT' =6’ and IT = ¢; ® 6'. Similarly,
O'X,Y)=0'3T(X,Y)) =T/ (X, Y); therefore, ® =T and © = ¢; @ T', where
the T are the torsion 2-forms defined in (5.23).
In an analogous way, defining the tensor product of a tensor field ¢ by a k-form
n by

tenXyi,...,. X =nXy, ..., Xpt, (5.43)

for X1, ..., Xy € X(M), it follows that any tensor-valued k-form w can be expressed
in the form

v=(®e® Q0D - )Qaw" (5.44)

im...>
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with
ol Xy, X)) = [0Xd, L X0 (60,67, e e, ). (5.45)

For instance, for the 2-form 2 with values in Tl1 (M) defined above, using (5.25),
we have sz; X,Y) = 2X,Y)(0",¢;) = 16/ (R(X,Y)e;) = #' ;(X,Y); hence,
2=(e )% ;.

The definition of the exterior derivative given in Chap. 3 cannot be applied for
a vector-valued or a tensor-valued k-form, since now w (X, . s Xi, ..., Xgy1) isa
vector-field or a tensor field and the expression X; (w (X1, ..., X, ..., Xk+1)) is not
defined; in this case we can define the exterior differentiation in the following form.

Definition 5.24 Let M be a differentiable manifold with a connection V. If w is
a vector-valued or a tensor-valued k-form on M, its covariant exterior derivative,
Duw, is given by

(k+1)Do(Xy, ..., Xkt1)
k+1 )
= Z(_l)H—lei (a)(Xl, X, ,Xk+1))

i=1

+ ) Do (X X1 XL X X X)),

i<j
for Xy, ..., Xk+1 € X(M).

It can readily be seen that Dw is totally skew-symmetric and that its values are
of the same type as those of w. The proof that Dw is a (k + 1)-form is completely
analogous to that given for the exterior derivative of an ordinary differential form in
Chap. 3. Clearly, D(aw; + bw;y) = aDw) 4+ bDw; for a, b € R.

If ¢ is a vector or tensor field n € A¥(M), applying the definition above we have
[see Exercise 5.8 and (3.28)]

k+1DDE @ X1, ..., Xes1)
k+1 _
=Y (=DVx (X X X))

i=1
+ D DX XL XL X X X))
i<j
k+1 '
=Y (=D [nXpL X X ) V!

i=1
+Xi(7](X1,...,X\i, ...,Xk+1))t]
D DT (X XL X X X X))

i<j
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=k+1)dnXy, ..., Xks1)?
k+1

+ ) DX X X ) VX
i=1

Using the identity X; = 6/ (X;)e;, it follows that Vx, = 6/ (X;) Ve, and therefore

k+1 '
D DX X X ) Vgt

i=1
k+1 _ _
=D DT Xy nXi, ., X Xy 1) Vet

i=1
= (k+ D07 An) X1, Xie ) Ve
hence,
Dt ®n) =t®dn+ Vet ® (6" An). (5.46)

Applying this result, using the first and second Cartan structural equations,
(5.24), and (5.20), we find that

DIT=D(e; ®6')
=€ ®d0' + Ve, ® (67 A 0O')
= ® (0" AT+ T)+T"i(ej)en ® (07 NO')
=e®@(O0"AT ) +T") +eu® (I AO")
=T,
ie.,
DIT = 6.

In a similar way one finds that the Bianchi identities amount to
D =0.

By contrast with the usual exterior differentiation, if the connection is not flat,
D? 0. In effect, making use of (5.46), (3.36), (3.35), (3.7), (5.24), and (5.14), we
find that

D*(t®n) =D[t ®@dn+ Vet ® (6" A1)]
=1®ddn+ Vet ® (0" Adn) + Vet ®d(6' A1)
+ Ve, Vet ® (07 A 67 A)
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= Vet ® (0" Ad) + Vet ® (d0° A — 6" Adn)

+ Ve, Vet ® (07 70" A)

. 1 , ,
= Ve, 1 ® (d0' An) + 5 (Ve Vest = Ve, Ve, 1) ® (07 0" Am)
=Vet ®[(0/ AT j+T") An]
1 o
+ E(R(ej, )t + Vie;.e1t) ® (67 A6 A7),

but [ej, e,'] = Veje,' — Vel.ej — T(ej, ei) = [1"’”,-(ej) — ij(e,') — 2Tm(ej, ei)]em
[see (5.13), (5.20), and (5.23)]. Therefore, we have

1 . .
5 Viej i1t @ (NN

=%Vemt@)(rmiA@i/\n—QjAij/\r]—ZTm/\n)
= Ve, @[/ AT™j +T™) A1),

and, hence

1 . .
DX(t®n) = SR e @ (6" A67 A D).

Exercise 5.25 Let w be a vector-valued k-form given by w = €; ® o'. Show that
Dow=¢ ® (do' +TI"; Aw’).



Chapter 6
Riemannian Manifolds

In many cases, the manifolds of interest possess a metric tensor which defines an
inner product between tangent vectors at each point of the manifold. Some examples
are the submanifolds of an Euclidean space and the space—time, in the context of
special or general relativity.

6.1 The Metric Tensor

Definition 6.1 Let M be a differentiable manifold and let g be a symmetric tensor
field of type ((2)) on M, that is, g,(vy, wp) = gp(wp, vp) for v,, w, € T,M. g is
positive definite if for all v, € T, M, we have g, (vp, vp) >0, and if g, (vp, vp) =0
implies v, = 0 (that is, g, (v), vp) > 0 for all nonzero v, € T, M); the tensor field
g is non-singular if g,(v,, wp) =0 for all w, € T, M implies that v, = 0.

If g is positive definite, then it is non-singular, for if g,(v,, wp) = 0 for all
wp € TpM, we find, in particular, that g, (v, v,) = 0, which implies that v, = 0.

Definition 6.2 A Riemannian manifold is a differentiable manifold M with a non-
singular, symmetric differentiable tensor field of type (g), called the metric tensor
or metric of M. When the metric tensor is not positive definite, we also say that the
manifold is pseudo-Riemannian (or semi-Riemannian).

In a Riemannian manifold, M, with a positive definite metric, g, is an inner
product on T}, M. The norm or length of a tangent vector v, € T, M, ||v, ||, is defined

by lvpll = /gp(vp, vp) and the length of a curve C : [a, b] — M is defined by

b
LCE/ IC 1l de. 6.1)
a

Let M be a Riemannian manifold and let (xl,...,x”) be a_local qoordi-
nate system on M. The metric tensor is given by g = g;;dx' ® dx’/ with
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gij = g(0/0x',9/9x/). Since g is symmetric, we have g;; = g(8/0x',9/9x/) =
g(d/0x7,9/dx") = gji-

Example 6.3 The standard metric of the n-dimensional Euclidean space, E”, ex-

pressed in terms of Cartesian coordinates, (xl, Lo, xh), s
g=dx' @dx' +dx’@dx? +--- +dx" @ dx", (6.2)
that is, (g;;) = diag(1, 1, ..., 1). This amounts to saying that at each point p € E",

the tangent vectors (d/dx”), form an orthonormal basis of T,E".

Since {((‘J/Ebc")‘,,};.’:1 is a basis of T, M, the condition g,(v,,w,) = 0 for all
wy € TpM is .equivalent to gp(vp, (B/Bxi)p) =0, fori =1,2,...,n; therefore, if
vp, =a'(d/0x")p is such that g, (v,, wp) =0 for all w, € T, M, we have

gij(p)a' =0,

which is a homogeneous system of linear equations for the a’. The tensor field g
is non-singular if and only if a’ = 0 is the only solution of this system. Thus, g is
non-singular if and only if the determinant of the matrix (g;;(p)) is different from
zero for all p in the domain of the coordinate system.

If X is a vector field on M, the contraction of X with g, X g, is a tensor field of
type (9), that is, a covector field. If X is locally given by X = X*(3/dx'), we have

XJg=2X"g;jdx’.

Since the determinant of the matrix (g;;) never vanishes, the matrix (g;;) has an
inverse, whose entries are denoted by g'/, that is,

gijg’* =8k (6.3)

Since the functions g;; are differentiable, the functions g% are also differentiable.
Furthermore, the symmetry of the components g;; implies that g =gll.

Hence, if « is a covector field, locally given by o = «; dx’, there exists only one
vector field X such that

1
«=XJg, (6.4)

Indeed, in terms of the components of « and X, the condition o = %XJ g amounts
to

o = X'gji, 6.5)
therefore the components of X are determined by
X/ = aigij. (6.6)

Since the functions g;; are differentiable, from (6.5) and (6.6) it follows that the
vector field X is differentiable if and only if « is. Hence, in a Riemannian manifold,
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there exists a linear one-to-one correspondence between differentiable vector fields
and 1-forms. (Owing to the form of expressions (6.5) and (6.6) this correspondence
is an example of the operations called raising and lowering of indices.)

Definition 6.4 Let M be a Riemannian manifold and let f € C*°(M). The gradient
of f, grad f, is the vector field on M such that

1
df =5 (grad f)Jg. (6.7)

Then, from (2.42) and (1.45), for any vector field X, we have

1
g(erad £.X) = > ((grad £)Jg) (X) = df(X) =X /. 6.8)

From the foregoing definition, (6.6) and (1.52) it follows that the gradient of f is
locally given by

3

xi 9xJ’ ©.9)

grad f = g
Exercise 6.5 Show that g'/ = g(gradx’, gradx/).

Let ¢ and s be two tensor fields of type (2) on M locally givenby t =1, ;, dx'' ®
- ®dx* and s =5, _j, dx/! ® - -- ® dx/¥; the product (t|s) will be defined by

(t1s) =Kty iSjy. g0 -+ g™k, (6.10)
Exercise 6.6 Show that the product ( | ) is symmetric, bilinear and non-singular.
Exercise 6.7 Show that g'/ = (dx'|dx/).

If M is a Riemannian manifold with a positive definite metric tensor g and
¥ : N — M is a differentiable map from a manifold N into M such that for all
p € N, ¥, has maximal rank, that is, if ¥, v, = Oy (p) implies v, = 0, then ¥*g
is a positive definite metric tensor in N since it is a symmetric tensor field of type
((2)) and if (Y*g),(v,, wp) =0 for all w, € T, N, from the definition of ¥*g, we
have gy (p) (VspVp, Yupwp) = 0 for all w, € T, N; in particular taking w, = v
and using that g is positive definite it follows that ¥ ,v, = 0, and one concludes
that v, =0,. A differentiable mapping satisfying the condition above is called an
immersion (that is, for all p € N, the rank of the linear mapping ., is equal to the
dimension of N).

Example 6.8 The inclusion map i : S — R? is locally given by i*x = sin6 cos ¢,
i*y =sin@sing, i*z = cos6, in terms of the usual coordinates (x, y, z) of R3 and
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of the spherical coordinates (0, ¢) of S2. As can readily be verified, the Jacobian
matrix of i with respect to these coordinate systems is given by

cosfcos¢p —sinfsing
cosfsing  sinfcos¢
—sinf 0

and its rank is equal to 2 in the whole domain of the spherical coordinates
0<6 <m, 0< ¢ < 2m); therefore, the pullback of the Euclidean metric of R3,
g =dx ® dx +dy ® dy 4+ dz ® dz, under i is a positive definite metric for S%. In
fact, a straightforward computation yields

i*g = d(sinf cos ¢) ® d(sind cos ¢) + d(sinf sin¢) ® d(sin sin ¢)
+ d(cosf) ® d(cos )
=df ® df + sin’ 6 dp ® d¢ 6.11)

and, as can be directly verified, it is positive definite at the points in the domain of
the coordinate system.

Isometries. Killing Vector Fields Let M| and M; be two Riemannian manifolds
with metric tensors g1 and g», respectively. A diffeomorphism v : M| — M> is an
isometry if

Ve =gi. (6.12)

Two Riemannian manifolds M| and M, are isometric if there exists an isometry
v My — M.

Exercise 6.9 Show that the isometries of a manifold onto itself form a group under
the composition.

Let ¢ be a one-parameter group of transformations on a Riemannian manifold,
M, such that each transformation ¢, : M — M is an isometry; then, if X is the
infinitesimal generator of ¢, we have

vrg—g _

p 0. (6.13)

The vector fields satisfying (6.13) are called Killing vector fields. The set of Killing
vector fields of M will be denoted by R(M).

Making use of the expression for the components of the Lie derivative of a tensor
field (2.40), one finds that the components of a Killing vector field must satisfy the
system of equations

dgii axk axk
8 4 gy o + gk =0, (6.14)
0x

x* ; :
ki dx! ox/
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Since the expression on the left-hand side of this equation is symmetric in the in-
dices i and j, equations (6.14), known as the Killing equations, constitute a system
of n(n + 1)/2 homogeneous, linear, PDEs for the n components X’ of a Killing
vector field, if n is the dimension of M. A solution of (6.13) is formed by n func-
tions X', X2,..., X" of n variables. The linearity and homogeneity of the Killing
equations imply that any linear combination with constant coefficients of solutions
of these equations is also a solution (see the examples below).

From (6.14), it can be seen that if, for some specific value of the index m, the
functions g;; donot depend on x™ (i.e., dg;; /9x™ =0),then X =9/9x™ =4 9/9x!
is a Killing vector field and conversely.

i
m

Exercise 6.10 Show that the set of Killing vector fields of a Riemannian manifold
M, R(M), is a Lie subalgebra of X(M).

Example 6.11 Let us consider a Riemannian manifold, M, of dimension n such
that, in some coordinate system, the components of the metric tensor are constant.
(For instance, in Cartesian coordinates, the components of the metric tensor of an
Euclidean space are g;; = §;; and for the metric of the Minkowski space, (g;;) is the
matrix diag(1, 1, 1, —1) or its negative.) The Killing equations (6.14) then reduce to

0&; 0§ . _ k
oxi o) =0, with Sj :gij . (6.15)
Hence,
0 98 0 05 0 & 0 0 0 0& 0 0%
axkoxi — axkox/ T 9xJax* T 9xJ oxi T axiox/  xf oxk
_ d d&;
axk axi’

and therefore 82(‘;/ /3xKdx! = 0, which means that the components & j must be of the
form

g =ajx* +b;, (6.16)

where the a;; and b; are constant. Substituting this expression into (6.15) one only
obtains the condition a;j; + a;; = 0; therefore, in a manifold of this class, locally,
any Killing vector field is of the form

‘I 5
S =8 (@ +0)) o

9 )
X = XK — = gMg;
g S] 8xk

axk

1 kj .1 kl . j J k 9
= yule —e gt

where bF = ghip ;- This means that the n(n — 1)/2 vector fields

0

V= (gijl — gklxj)w,

j<l, (6.17)
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together with the n vector fields

My=— 6.18
k=S (6.18)

form a basis of K(M), which in this case has dimension n(n + 1) /2. It turns out that,
for an arbitrary n-dimensional Riemannian manifold, M, dimR(M) <n(n + 1)/2.

The integral curves of the Killing vector field %a jll«i I are determined by the sys-
tem of linear ODEs

dxk 1 ; ; ;
_ . kj .l Kkl j\ — Jkj . .1
—=—aj(gVx —g"x))=gajx’,
ETE (s g'xl)=g"a;
where A = (a;;) is an arbitrary real n x n skew-symmetric matrix. This system of
equations can be expressed in matrix form:
dx 4
@ = (g A)x,
where g = (g;;) is a symmetric (constant) matrix and x is a column matrix with
entries x1, ..., x" (or, more precisely, x'oC,....,x" o C, where C is an integral

curve of %a ﬂI/ ! ). The solution of this matrix equation is (see, e.g., Hirsch and Smale
1974)

x(t) =exp(tg™' A) x(0),

where exp(tg™'A) = Z;’fzo(tg_lA)m/m!. That is, the column matrix x(¢) is re-
lated to x (0) by means of the matrix exp(rg~' A). One can readily verify that

(Ag™V"e=g(g7'A)", m=0,1,2,...

and therefore, denoting by B* the transpose of B, using the fact that A' = —A and
g' =g, we have

[exp(tg_lA)]tg exp(tg'A) = [exp(—tAg~")] g exp(tg ™' A)
=g [exp(—tg_lA)] exp(tg_lA)
=g,

which means that, for all ¢ € R, the matrix exp(tg~' A) is orthogonal with respect
to g. (Note that g is symmetric, but not necessarily diagonal.)

Example 6.12 The tensor field
g=y(dx®dx+dy®dy), (6.19)

defines a positive definite metric on the Poincaré half-plane (or hyperbolic plane),
H? = {(x, y) € R?| y > 0}. From (6.14), with x and y in place of x! and x2, respec-
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tively, we obtain

2)(2+2—8X1 0 (6.20a)
i = =0, .20a
y3 y2 9x
ax? ax!
— +— =0, (6.20b)
ax ay
2, 23x°
-5X°+ 5 —=0. (6.20¢)
y y© 9y

The last of these equations amounts to d(y~!'X2)/dy = 0; hence, X> = yh(x),
where & is some real-valued function of one single variable.

On the other hand, the equality of the second partial derivatives 82X ' /dx 8y and
82X1/dy dx, obtained from (6.20a) and (6.20b), is equivalent to d*4(x)/dx? = 0;
hence, h(x) = ax + b, where a and b are two real constants. Therefore, X = axy +
by and using again (6.20a) and (6.20b) one finds that X! = %a(x2 —y2) 4+ bx +c,
where c is another real constant. Thus, the general solution of the Killing equations
(6.14) for the metric (6.19) has the form

a d d d 0 d
X=—((x*—y)—+2xy— ) +b[x—+y— —.
2((x Y )Bx + xy8y>+ <x8x +y8y)+cax

In other words, the vector fields
0 0

d d 0

2 2

— ) — +2xy—, —+y—, =, 6.21
(x Y)aer xyay x8x+y8y o (6.21)

form a basis of R(M). (In this case, as in the preceding example, K(M) has the
maximum dimension allowed by the dimension of M.)
Instead of the vector fields (6.21), we can choose the set

X 2 0 + 0
=-2(x— — ),
! dax y8y

0
Xo=——, (6.22)
dax
0 0
X3 = (x* — y?) — +2xy—,
3= (x y)ax-i- Xyay

as a basis of R(M). The Lie brackets among these vector fields are given by
(X1, Xo] =2X0, X2, X3] =X, (X3, X1]=2X3, (6.23)

which shows, in this particular case, that the Killing vector fields form a real Lie
algebra (of dimension three in this example). The choice given by (6.22) has been
made taking into account that with the group SL(2, R), formed by the 2 x 2 real
matrices with determinant equal to 1, there is associated a Lie algebra that possesses
a basis with relations identical to (6.23) (see Examples 7.16 and 7.60).



122 6 Riemannian Manifolds

In fact, in this case it is not difficult to find the isometries generated by an ar-
bitrary Killing vector field (that is, the one-parameter groups generated by these
vector fields) and show that they are related with the group SL(2, R). To this end, it
is convenient to make use of the complex variable

7=x +1y. (6.24)
In the present case, any Killing vector field X can be expressed as
X =a'X; +a’X; +a’X;

=(—2a'x —a* +a’(x* - yz))i

d
_241 3 —
ax+( 2a y+2a Xy)ay,

where the a' are arbitrary real numbers. The integral curves of X are determined by
the system of ODEs

dx

d
T =—2a'v—a+a'(: -y, = = 24y +24%xy,

dt

which amounts to the single equation

% = (—Zalx —a’+ a3(x2 - y2)) + i(—2a1y + 2a3xy)
=a32—24'z — &2 (6.25)

The form of the solution of this equation depends on the nature of the roots of
the polynomial a®z> — 2a'z — a? or, equivalently, on the value of the discriminant
K = —[(a")?* +d?a’]. If K < 0, the polynomial a’z> — 2a'z — a® has two different
real roots, {1 = (a' +/—K)/a>, o = (a' — v/=K)/a? and from (6.25), according
to the partial fractions method, we obtain

/'dt fz(ﬂ dz ( 1 1 ) 1 2(1) =41 2(0) = &
= —_ = n s
0 200 2//—K\z2—8 z—0 2V-K z2(t) =& z(0) — &
which amounts to the expression

_az(O)+ B

20 = yz(0) +8°

(6.26)

where (;’f g ) is the matrix (dependent on the parameter t) belonging to SL(2, R)
given by

a B _ 1 0 sinh/—Kt (gl a?
<}/ 8) =coshv/—Kt <0 1> — ﬁ <a3 —al . (627)

Note that we can multiply the coefficients «, 8, y, and § appearing in (6.26) by a
common nonzero, real or complex, factor A, without altering the validity of (6.26).
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Taking advantage of this freedom, it is convenient to impose the condition that the
determinant of the matrix of the coefficients in the linear fractional transformation
(6.26) be equal to 1. Nevertheless, this condition does not specify completely this
matrix, because the determinant of its negative is also equal to 1. Thus, to each linear
fractional transformation (6.26) there correspond two real matrices with determinant
equal to 1.

In a similar way, in the cases where K is positive or equal to zero, one finds that
the solution of (6.25) can be expressed in the form (6.26), with

10 sin/Krt (a' a? .
v B cos\/ft(m)— Nid (Zg_”al) if K >0,
. — (6.28)
10 1 q? :
(o) —1(% %) if K =0.
These matrices are also real and have determinant equal to 1 and, therefore, they
also belong to SL(2, R). Note that, in all cases, the solution contains the traceless
matrix

whose determinant is equal to K. One may notice that the expressions (6.28) can be
obtained from (6.27) making use of the relationship between the hyperbolic func-
tions of an imaginary argument and the trigonometric functions, or taking the limit
as K goes to zero.

Even though one could express the solution (6.26) in terms of the original vari-
ables, x, y, it is more convenient to employ directly the formula (6.26), in part be-
cause the composition of linear fractional transformations is represented by matrix
multiplication in the following sense. The composition of the linear fractional trans-

. O{Z-i-ﬁ . . . . o ﬂ
formation z —~ ats which can be associated with the matrix (y 3)’ followed by
b

az+b : . a
4z, associated with (C .

(aa+by)z+ap+bs
(ca+dy)z+cf+ds?

(but also with any nonzero multiple of this product).

the map z — ), is the linear fractional transformation

which can be associated with the matrix product (‘C’ 5)@ g )

Not all the elements of the group SL(2, R) are of the form (6.27) or (6.28) (see
Example 7.41); however, it can be directly verified that all the elements of this group
give rise to isometries of (6.19).

Exercise 6.13 Show that if (;‘ f ) is any matrix belonging to SL(2, R), then

_az+p
yz+48’

vz (6.29)

with z = x + 1y, is an isometry of (6.19) [cf. (6.26)].
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Exercise 6.14 Find the Killing vector fields of the hyperbolic space H> =
{(x,y,2) € R3|z > 0}, which possesses the metric tensor

g =Z_2(dx Qdx +dy®dy +dz ® dz).
Example 6.15 The metric induced on S?, expressed in terms of the spherical coordi-

nates (xl, x2) = (0, ¢), has components g1 =1, g12 =0, g = sin 0 [see (6.11)],
and therefore the Killing equations are

ax!
— =0,
90
X2  ax!
sin? — + — =0, (6.30)
90 EY)
9 si 20 2
x! s 2sin?6 — =0

The first of these equations amounts to X L— (¢), where F is some real-valued
function of one variable. Substituting this expression into the last equation of (6.30)
we have 9(—X?tan)/d¢ = F(¢); hence, we have —X’tan® = H(¢) + G(9),
where H is a primitive of F (i.e., F = H’) and G is some real-valued function
of a single variable. Substitution of the expressions obtained above into the second
equation of (6.30) yields

5, d(G©®)cotd) d*H
—sin“ 6

a0 d¢2+H=0.

Since the first term on the left-hand side of this last equation depends on 6 only,
while the last two terms depend on ¢ only, d* H /d¢? + H = k, where k is some con-
stant and sin” @ d(G(0) cotd)/d6 = k. The solutions of these equations are H (¢) =
n! cos ¢+ n? sing +k and G(O) = —k — n3 tan 6, where n! s n?, and n? are real con-
stants; thus, X' = H'(¢) = —n' sing+n?cos¢ and X = —cot(H (¢) + G (0)) =
—cotd(n' cos ¢ +n?sin¢) 4 n3. Therefore, the Killing vector fields of S, with the
Riemannian structure induced by that of R3, are locally of the form

ad ]
X =n! (— sin¢% — cotf cos¢%>

+n? cosq&i—cotesimpi +n3i. (6.31)
a6 ¢ ap

Exercise 6.16 By means of the stereographic projection, each point of S? is put in
correspondence with a point of the extended complex plane; in terms of the spherical
coordinates of S, this mapping is given by z = e cot(6/2) [see (1.3)]. Find the
integral curves of (6.31) making use of the complex variable z and show that the
isometries generated by the Killing vector fields (6.31) can be expressed in the form
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(6.26) with (;'f 3’3 ) being a unitary complex matrix with determinant equal to 1 [that
is, an element of the group SU(2)].

Example 6.17 The space R? with its usual manifold structure and the metric tensor
dx ®@dx +dy ®dy — dz ® dz, (6.32)

where (x, y, z) are the natural coordinates of R3, is a pseudo-Riemannian manifold
denoted by R>! (analogous to the Minkowski space, with two spatial and one tem-
poral dimensions). Even though the metric tensor (6.32) is not positive definite, the
metric tensor induced on the submanifold

ME{(x,y,Z)ERZ’l|x2+y2—z2=—1, z>0}

is. This can be seen by noting first that the points of M can be put into a one-to-one
correspondence with the points of the disk

D={(X,Y)eR*|X*+Y¥? <1}

by means of

X = , Y=—— (6.33)
1+z 1+z2
[cf. (1.4)] or, equivalently,
2X 2Y 14+ X24+7? 6.34)
X=—, = = .
—X2_7? Y1 x2_y2 Tiox2_y?

(The coordinates (X, Y, 0) are those of the intersection of the plane z = 0 with the
straight line joining the point (x, y, z) € M with the point (0, 0, —1); see Fig. 6.1.)
Making use of this correspondence, the variables (X, Y) can be used as coordinates
of M and, in terms of these, the metric induced on M has the expression

—————([dX®dX +dY ®dY). 6.35
a- X2 — Y2)2( ® + ® ) ( )
A simple form of finding the Killing vector fields for the metric (6.35) consists of
using the facts that the Killing vector fields of R?>! are linear combinations of the six
vector fields (6.17) and (6.18), with (g"/) = diag(1, 1, —1), and that the only Killing
vector fields of R>! tangent to the submanifold M are the linear combinations of
the first three,
0 d NE

Ilzzy— —-x—,

d d 23 0 9
=z— +x—, I"=z—+y—. (6.36)
dax ay

ox 0z ay 0z

(Since M is defined by x> 4+ y?> — z2 = —1 and that the derivative of x? + y? — z?
along the direction of each of the fields (6.36) is equal to zero, it follows that these
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7 7(—){,{,0)
(0707 _1)

Fig. 6.1 Stereographic projection. The points (x,y,z) € M, (X,Y,0) and (0,0, —1) lie on the
same straight line

fields are tangent to M.) Using the relation (6.33) one finds that, on M,

9 9
=y —-—x—,
X Y
1 9 )
IB=-(1-X*2+7%)— — XY — 6.37
2( + )aX Y’ (6.37)

23 0 1 2 2 9
=Xy~ + 2(1+X Y )aY’
and by means of a direct computation it can be verified that these fields satisfy the
Killing equations (6.14) for the metric (6.35).

Expression (6.35) can be regarded as that of the metric tensor of M in terms of
the coordinates (X, Y) or as that of a metric tensor on . Formulas (6.33) and (6.34)
then represent an isometry between M and ID. The vector fields (6.37) thus are also
a basis for the Killing vector fields of D.

On the other hand, the equation

(X +iY) +i

= (6.38)
(X +iY)+1

x +1iy
establishes a correspondence between each point (X,Y) € D and a point (x, y)
of the Poincaré half-plane; this correspondence is one-to-one and, furthermore, an
isometry. Consequently, there also exists a one-to-one correspondence between the
Poincaré half-plane and the submanifold M of R2! defined above, and this corre-
spondence is an isometry. Since all the Killing vector fields of the Poincaré half-
plane and the isometries generated by them have been found in Example 6.12, by
means of equations (6.33), (6.34), and (6.38) one can obtain all the Killing vector
fields of M and the isometry groups generated by them [see also Lee (1997)].

Exercise 6.18 Show that, effectively, (6.38) establishes a one-to-one relation be-
tween the points (x, y) of the Poincaré half-plane (that is, y > 0) and the points
(X,Y) e D (with X?> + Y? < 1) and that this relation is an isometry. Using the
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correspondence (6.38), show that the isometry of the Poincaré half-plane given by
(6.29) amounts to the linear fractional transformation

_aZ+b

%
Z
v cZ+d

’

where Z = X +1iY and

a b 1 1 —i a BY 1 (1 i
(Ca)-50 0 DB e
which is, therefore, an isometry of D (or of M). Show that the matrix (Z 3 ) belongs

to the group SU(1, 1), which is formed by the complex 2 x 2 matrices, A, with
determinant equal to 1, such that

i1 0Y,_(1 ©
A (o _1)A_(O _1>. (6.40)

(It can be verified that the relation (6.39) is an isomorphism of the group SL(2, R)
onto SU(1, 1).)

Conformal Mappings Besides the isometries, the transformations that preserve
the metric up to a factor are also interesting. If M; and M, are two Riemannian
manifolds, a differentiable mapping v : M1 — M3 is a conformal transformation
if there exists a positive function o € C*° (M), such that *g, = o g, where g;
and gy are the metric tensors of M| and M», respectively.

Example 6.19 The inclusion mapping i : S” — R”"*! identifies each point of the
sphere S" with the same point considered as a point of R**!. The stereographic
projection, ¢ : "\ {(0,0, ..., 1)} = R”" defined in Example 1.3 is a diffeomorphism
and the composition i o ¢! maps the points of R” into the subset

{(al, . ,an+1) e R*F! | (al)z 4+ 4 (a”"’])z =1, a"t! < 1},
i.e., the sphere with the north pole removed. In terms of the Cartesian coordinates

L y2, ., y") of R” and (x!, x2, ..., x™t1) of R, the composition i o ¢~ ! is
given by

. 2vJ
(iop™)'x/ = 1jy2’ for j=1,2,....n,
where y2 = (y1)? + ()2 +--- + (3")? [see (1.5)], and

y -1
y+1

(fop~)x" =
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Hence, making use of the properties (1.52), (2.29), (2.30), and (2.32), one finds that

n+1
(iogp™! (def ®de> ﬁZdyf ®dy/

Jj=1

or, equivalently,

n+1
() ( def®dx1> T 42)2Zdy ®dy’. (6.41)

j=1

The expression )_j_; dy/ ®dy/ is the usual metric of R", while i* Z’;:} dx/ @dx/
is the metric induced on S” by the usual metric of R”*! (see Example 6.8). Thus,
¢! (and ¢) is a conformal map. (Note, however, that ¢ is not defined on all of S".)

If X is the infinitesimal generator of a one-parameter group of conformal trans-
formations of a Riemannian manifold M, then £xg = 2x g, where x is some func-
tion (the factor 2 is inserted for future convenience) and we say that X is a conformal
Killing vector field. In terms of the components with respect to the natural basis in-
duced by a coordinate system, X is a conformal Killing vector field if

3gij axk axk

k
X 8xk+g/8 i +g!k8

=2xgij- (6.42)
When yx is a nonzero constant, X is called a homothetic Killing vector field.

Example 6.20 As in Example 6.11, we shall consider a Riemannian manifold such
that, in some coordinate system, the components of the metric tensor are constant.
Then equations (6.42) reduce to

08, | & . .
B_xJ’ + 3;/ =2xgij, with§;j=gpX (6.43)
[cf. (6.15)]. From (6.43) we obtain
a 9 a d§; B
5/ & — g, X ' (6.44)

axk axi | axk oxd | S xk

By cyclic permutations of the indices 7, j, k in (6.44) we obtain two equations equiv-
alent to that equation:

0 b 008 0x
oxi ox) | oxi axk | kG
00k 0 dh i
axd oxk T axi gxi | Sk
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Adding these two equations and subtracting equation (6.44) one finds that

9 Bék_ 8_x+gk dx dx
1

ax oxd Sl T8k T8y g (6:45)

Applying 9/9x™ to both sides of this equation we now obtain

a 0 0J& d dx 9 dx 33)(

ax™ dxi dxJ T8k axm axi = Bkigm axm dxj 8ij 9xm xk

Since the left-hand side is symmetric under the interchange of the indices i and m,
the same must happen with the right-hand side, that is,

d 8)( _‘8 8)(_ 88)( '8 ax (6.46)
Bkt em xS Gm gk T Bkm G T T T M i gk '
Multiplying both sides of (6.46) by g”/ we obtain
2 X 4
g Vix + (- )8’8xk =0, (6.47)
where

LI
ax™ dxJ

and n is the dimension of M. (The general definition of the Laplace operator, V2, is
given in Sect. 6.4 and it can be seen that the expression (6.113) derived there reduces
to the one employed in the present case.) Multiplying (6.47) by g one finds

(n—1)V*x =0.
Thus, if n # 1, V2 x = 0 and from (6.47) one concludes that, for n > 3,

9 0x
axi dxk
Hence, for n > 3, x must be of the form
X = cjxj +d, (6.48)
where the c¢; and d are arbitrary constants. Substituting (6.48) into (6.45) one finds
that
o8
0x/

where the h;; are constants. Using (6.48) and (6.49) it follows that (6.43) reduces
to the equation

= gjkcix' + gricjx’ — gijorx’ + hyj, (6.49)

hij +hji =2dgij,

which relates the symmetric part of 4;; with d.
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Finally, from (6.49) one finds that
i1 i j
Sk = gjkcix x! — Sergijx x + hyjxt + by
where the by are arbitrary constants. Defining
1

ajj = E(hij —hji),

which satisfies the condition a;; = —aj;, we have
1 1
hij = E(hij +hji) + E(hij —hji) =dgij + aij.

Hence, when the dimension of M is greater than or equal to three, the general solu-
tion of (6.43) can be expressed in the form

& = gjkcix'x) — Eckg,-jx’x/ +dgijx’ +akjx’ + by, (6.50)

which contains n + 1 + %n(n —D+n= %(n + 1)(n + 2) arbitrary constants and
reduces to (6.16) when x = 0 (that is, when ¢; = 0 and d = 0). It can be verified
directly that for n = 1 or 2 the expression (6.50) is also a solution of equations
(6.42); however, when n is equal to 1 or 2, (6.50) does not contain all solutions of
(6.42). In fact, when n = 1 any transformation of M into M with positive Jacobian
is conformal (see also the comments at the end of this section regarding the case
n=2).

According to the preceding results, taking n = 2 and g;; = §;;, with i, j = 1,2,
the vector fields given by (6.50) generate some conformal transformations of the
Euclidean plane onto itself (with x!, x? being Cartesian coordinates). Fortunately,
the transformations of this restricted class can be found explicitly in a relatively
simple form making use of complex quantities. In fact, making z = x' + ix? one
finds that in this case (n = 2, g;; = §;;) the integral curves of the vector field (6.50)
are given by the equation

dz

1
— = —(c1 —ie)z* + (d —ia1)z + by +iby,
de 2

where c1, ¢2, d, aj2, by, and by are six arbitrary real constants [cf. (6.25)]. This
equation can be integrated following a procedure similar to that employed in Ex-
ample 6.12. The result is that z(¢) is related to z(0) by means of a linear fractional
transformation,

_az(O)+ B

dn= yz(0) +38

6.51)

[cf. (6.26)], where

(y 8>_cosh<2«/Xl>1+ A (—(cl—icz) —(d—ia12)>’
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with A =(d — ia12)2 —2(b1 +1by)(cy —icy) [cf. (6.27)]. This matrix belongs to the
SL(2, C) group, formed by the 2 x 2 complex matrices with determinant equal to 1.

As known from the complex variable theory, every analytic function, f : C — C,
is a conformal mapping; the linear fractional transformations (or Mobius transfor-
mations) (6.51) are distinguished because they are the only analytic one-to-one map-
pings of the extended complex plane (the complex plane plus the point at infinity)
onto itself [see, e.g., Fisher (1999)].

Exercise 6.21 Show directly that any linear fractional transformation

_az+p
yz+46

vz

given by a matrix (;f f ) belonging to the SL(2, C) group, with z = x! +ix?,is a con-
formal transformation of the Euclidean plane and find the corresponding conformal
factor.

6.2 The Riemannian Connection

Theorem 6.22 Let M be a Riemannian manifold. There exists a unique connection,
V, the Riemannian or Levi-Civita connection, with vanishing torsion and such that
Vxg =0 forall X € X(M); that is, there exists a unique connection on M such that

X, Y] = VxY — VyX, (6.52)
X(g(Y,2)) = g(VxY,Z) + g(Y, VxZ), (6.53)
for X, Y, Z e X(M).
Proof Let X,Y,Z € X(M). Assuming that such a connection exists, we have
X(g(Y.2)) +Y(g(Z, X)) — Z(g(X, Y))
=g(VxY,Z) + g(Y, VXZ) + g(VYZ,X) + g(Z, VyX)
—8(VzX,Y) — g(X, VzY)
=g(VxY+ VWX, Z) 4+ g(Y,VXZ — VzX) + g(X, VYyZ — VzY)
=g(VxY + VxY +[Y,X],Z) +g(Y.[X, Z]) + g(X, [Y, Z])
=2¢(VxY,Z) + g(Z,[Y.X]) + (Y, [X, Z]) + g(X, [Y, Z]),
that is,
28(VxY,Z) =X(g(Y,Z)) + Y(g(Z,X)) — Z(g(X,Y))
—g(Z,1Y.X]) — g(Y. X, Z]) — g(X.[Y.Z]). (6.54)
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Since g is non-singular, this relation defines VxY. By construction, this connec-
tion has a vanishing torsion and satisfies Vxg = 0 for all X € X(M). The explicit
expression (6.54) shows its uniqueness. U

A connection, V, is a metric connection if Vxg = 0 for all X € X(M). The Levi-
Civita connection is the only metric connection whose torsion vanishes.

Making use of the relations g;; = g(9/dx', 3/dx/) and [8/dx", 3/9x/] =0, from
(6.54) we obtain

a 9 0gjk | 08ki  08ij
2g<V8/8x’ a_fa_k) = ox Taxd ok

hence, writing V; ;i 3/dx) = r}ia/axl, it follows that

_0gjk | 08ki  0&ij

ol g = Z8J b ,
Ji8lk dx! ox/J axk
which leads to
1 0gjk 08k  0gij
rl =gk =L Ll 6.55
i =28 (Z)x’ T T ok (6.55)

This expression defines the so-called Christoffel symbols, which determine the Rie-
mannian connection with respect to a holonomic basis. From (6.55) we find that
F;l. = I“ZIJ (cf. Exercise 5.11); therefore, in a manifold of dimension n, there exist

n®(n + 1)/2 independent Christoffel symbols.

From (6.55) and Exercise 5.12 it follows that if the components of the metric
tensor in some holonomic basis are constant, then the curvature of the Riemannian
connection is equal to zero.

Exercise 6.23 Show that if the g;; are the components of the metric tensor with
respect to a holonomic basis and the I"'; are the connection 1-forms for the Rie-
mannian connection with respect to this basis, then dg;; = gin ™ j + gjmI"™; and
show that g;; %/ = —gi; %’ ;. (Note that this last equation amounts to g;; R’y =
—8kj R itm.)

A convenient way of computing the Christoffel symbols, especially in those cases
where (g;;) is diagonal, consists of using the fact that the geodesic equations (5.7)
amount to the Euler-Lagrange equations for the Lagrangian

1 % Y
L= E(” 8ij)4q 4’ (6.56)
where 7 is the canonical projection of the tangent bundle of M on M, the ¢’ are
coordinates on 7M induced by local coordinates x’ on M [see (1.28)], and the g;;
are the components of the metric tensor with respect to the holonomic basis 9/9x".



6.2 The Riemannian Connection 133
In effect, the Euler—Lagrange equations (see Exercise 2.15)

d

oL aL
d,[ 7 (C U)}— 3k —(C()) =0, k=1,2,....n,

where C is the curve in TM defined by CH=C 7, yield
dr . 70T i) |~
Gl ) €w)) - | 300725 52 @) =0,

Since n(é(r)) = C(¢) and, according to (1.28) and (1.20), qi(?:(z)) = C,’[xi] =
d(x! o C)/dt, these equations are equivalent to (see Exercise 1.17)

d(x' o C) ld(xioC)d(xjoC)% B
dt[ dr g"‘(c(t))] 2 @ ok (W)=

and to [see (1.20)]

B %d(x;; C) d(x;to 0) E;gi]i (c®)
e e e R O
= g (C)) [% + 17 (Co) d(x;: “ d(x;zo C)}'

These equations are equivalent to the geodesic equations, since (g;;) is non-singular.

Example 6.24 The tensor field

g=———dr®dr+r*(dd ®do +sin’ 0 dp ® de), (6.57)

1—kr2

with k € R, is a positive definite metric on an open subset of a manifold of dimension
three defined by » > 0,0 <0 < m, 0 < ¢ < 27. In the case where k is positive, r is
restricted by 0 < r < 1/+/k. The Lagrangian (6.56) becomes

L@ : Y
T L@ s )],
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where ¢! = 7%r, g% = %0, g3 = n*¢. Substituting this expression into the Euler—
Lagrange equations, one finds, for example,

7! 1,132
Ao I BV ROy O
[W(Cm)} {[l—k(q1)2]2+q [(q ) +sin“ ¢ (‘I ) ]}(C(t))_O,

that is,
1 dr kr ar\?  [deN? ., [do)?
— 4+ ——— (=) —r[=) —rsino| =) =0,
1—kr2de2 (1 —kr?)2\ dr dr dr

where, in order to simplify the notation, we have written r, 6, and ¢ in place of
roC,8o0C,and ¢ o C, respectively. Comparing with the geodesic equations one
obtains at once six of the Christoffel symbols:

_ kr
T =k

d
dt

i Ly =—r(1—kr?),  Iyy=—rsin®0(1 —kr?),
and]“i} =0fori#j.

Proceeding in this manner, one finds that the connection 1-forms I” i = F; k dx*
are

krd
Fllz—l rkrz, r'y=—r(1—kr?)do,  I''s=—rsin?0(1 —kr?)dg,
— kr
2 1 2 1 2 ;
r<;=-4deo, ', =—dr, I'“3 = —sinf cosf dg,
r r
3 ! 3 3 !
I'’1=-do, '’y =cotfdg, I'’3=—dr +cotfdb,
r r

(6.58)
and making use of the second Cartan structural equations one readily finds that the
nonzero curvature forms are given by

Ry =kr’dr A do,
H*3 = kr?sin®6.do A dg,

k
R = d¢ Adr,
IS N
and
k
2 _
%]—mde/\dr,

Ry =kr*d¢p A db,
R'3 =kr’sin’0dr A d¢

(see Exercise 6.23), which can be summarized by the expression %' ; = kg j, dx' A
dx™, that is,

R jim = k(818 jm — 81,81 (6.59)
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[see (5.27)]. (A Riemannian manifold of dimension greater than two whose curva-
ture is of the form (6.59) is said to be a constant curvature manifold.)

When k = 0, the curvature is equal to zero and (6.57) coincides with the usual
metric of the Euclidean space of dimension three, in spherical coordinates. For
k =1, (6.57) coincides with the usual metric of the sphere S3 (which, perhaps, can
be more readily seen using, in place of r, the variable x defined by r = sin y).

Rigid Bases Besides the holonomic bases, {0/ dx! }?:1 , induced by coordinate sys-

tems, another important class of bases are the rigid ones. A set of basis vector fields
{er, ..., e,}, not necessarily holonomic, is a rigid basis if the components of the
metric tensor, g;; = g(e;, €;), are constant. From the property (6.53) and recalling
that Ve = Fl./,-el [see (5.20) and (5.21)] it follows that
0=-eigjr =e;(g(ej, e) =g(Veej, e) +g(e;, Veex)
= g(rljiel,ek) + g(e;, Flkiel) =gl ji + g M s
hence, defining
Ij = gilfljk, (6.60)
we have
Iji + Tjgi =0. (6.61)

In this case the functions I'? jk or, equivalently, I, are called the Ricci rotation co-

efficients; owing to the skew-symmetry of 17 in the two first indices, in a manifold

of dimension n, there are n”(n — 1)/2 independent Ricci rotation coefficients.
From the property (6.52) we see that

le;. €] =Vee; — Ve,& = (I ji — I'"j)ex, (6.62)

that is, the Lie brackets of the basis fields give the skew-symmetric part in the last
two indices of the Ricci rotation coefficients, I'* lij] = %(Fki i = rk ji)- These re-
lations [alone or combined with the property (6.61)] allow us to calculate the Ricci
rotation coefficients; in effect, noting that 2g(Ve,e;, €;) = 2g(Fljiel, er) =21,
from (6.54) we obtain
Zg(ve,-eja ek) = _g(ek’ [eja ei]) - g(ej9 [ei7 ek]) - g(ei’ [ej7 ek])
= —g(ew. 20 ij1er) — g(ej. 2 kiner) — g (er, 217 wj0e))
= =20qij) — 2 j1kiy — 2L

hence
Iji = Tkgjiy — Ljikiy — Tipkg)- (6.63)
(Note that (6.61) follows from (6.63).)
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Alternatively, from the first Cartan structural equations, owing to the fact that the
torsion of the Riemannian connection is equal to zero and that the exterior product
of 1-forms is skew-symmetric, we have

d0" = I 467 AOF =T 967 A 6K (6.64)

Therefore, the computation of the exterior derivative of the 1-forms 6’ also yields
the skew-symmetric part in the last two indices of the Ricci rotation coefficients
and by means of the relation (6.63) the value of each of the coefficients I7;;; can be
obtained (see Examples 6.25, 6.37, 6.39, and 6.47).

The skew-symmetry of the Ricci coefficients, (6.61), is equivalent to the skew-
symmetry of the connection 1-forms I57; = gix rk =1 jké‘k, with respect to a rigid
basis, given by

Iy =-rj;, (6.65)
which implies that the curvature 2-forms %;; = g; 57 j are also skew-symmetric
Kij =—Rji- (6.66)

Indeed, from the second Cartan structural equations, using (6.65) and the anticom-
mutativity of the exterior product of 1-forms, we have %; j=dlj + D A r* =
—dFji—Fki/\ijZ—dFji—Fki/\ijZ—dFji—ij/\FkiZ—%ji (cf. Ex-
ercise 6.23).

Example 6.25 By expressing the metric tensor (6.57) in the form
dr dr
= ®
VI—kr2 V1 —kr?
it follows that the 1-forms
dr

g +rdd ®rdf +rsinfde ® rsind do,

elzﬁ, 6% =rdo, 03 =rsin6dg (6.67)
form the dual basis of an orthonormal basis, that is, g = g;;0' ® 6/, with
1 0 0
@p=[0 10 (6.68)
0 0 1
The exterior derivatives of the 1-forms (6.67) are
o' =0,
o> =dr ndf = 7‘1:/”291 N
do3 =sinfdr Ade + rcos0do A de
_ Yk, A3+ 52 5 g3,

r r
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which, compared with (6.64) and using (6.68) lead to Iiyiz = Y25 = ),
I35 = Cgtre , and the other I7[ ] are equal to zero. Substituting into (6.63) one finds

that all the nonzero Ricci rotation coefficients are given by I'ipp = —+/1 — kr2/r,
D33 =—cotf/r,and I’313 =+/1 — kr?/r. Hence,

Iy =—+v1—kr?do, I3 = —cos6do, 31 =+1—kr?sin6d¢
(6.69)
[cf. (6.58)]. Employing now the second Cartan structural equations, one finds that

R = kO A B2, Ry = kO* A 63, Ry =kO> AO',

which can be expressed in the form [see (6.68)] Z;; = %(g,'lgjm — 8&im&jl) ol A o™,
Thus, we find again that the components of the curvature tensor of the metric (6.57)
are given by (6.59).

Exercise 6.26 Show that the curvature of the manifold H" = {(xl, x2, ..., x") e
R"™ | x™ > 0}, with the metric tensor

g= (x")_z(dx1 Rdi'+d?@de’l+---+d" ® dx"),
called the hyperbolic space, is given by R;jim = gim&ji — &i1&jm-

Geodesics of a Riemannian Manifold If C : ] — M is a geodesic (that is,
Ve C' =0), then g(C’, C’) is constant, since

C'[g(C".C] = g(VerC'. €'y +8(C'. VerC) = 28(C". VerCy =0, (6.70)

If M is a Riemannian manifold with a positive definite metric, g(C’, C’) is the
square of the length of the vector field tangent to C; therefore, in this case, the
length of the tangent vector field of a geodesic is constant. In the case of a Rieman-
nian manifold with a positive definite metric tensor, the geodesics are the curves that
locally minimize length [see, e.g., do Carmo (1992), Lee (1997)].

The following theorem gives an alternative way of defining a Killing vector field,
making use of the Riemannian connection [cf. (6.13)].

Theorem 6.27 X is a Killing vector field if and only if
g§(WyX,Z) +g(Y, VzX) =0,
forY,Z e X(M).
Proof Making use of (2.45), (2.27), (6.53), and (5.13) with T = 0 one finds that

= X(g(Y. 2)) — g(IX. Y. Z) — g(Y. [X, Z])



138 6 Riemannian Manifolds

=g(VxY,Z) + g(Y, VxZ)
—8(VxY — WX, Z) — g(Y, VXZ — VzX)
=g(WX,Z) +g(Y, VzX),

which leads to the desired result. O

Theorem 6.28 If C is a geodesic and X is a Killing vector field, then g(X, C’) is
constant along C.

Proof Making use of (6.53) and the definition of a geodesic we have
C'leX. )] =5(VeX, €) +g(X. Ve C') = g (Ve X, ),
which is equal to zero according to Theorem 6.27. g

Example 6.29 In order to find the geodesics of Poincaré’s half-plane we can take
advantage of the existence of the three Killing vector fields (6.22). Making use of
(6.19) and (6.22), according to Theorem 6.28 we obtain the three constants

B dx d
c=gX;,C)=-2y Z(XE +yd—f>,
pdx

) 6.71
” (6.71)

c=gXp,C)=—y

_ N o—of2  anydx dy
3=¢(X3,C) =y ((x y )dt +2xydt),

where, by abuse of notation, we have written x in place of x o C, and so on.
By combining the first two equations one finds that 2cp(x dx/df + ydy/df) =
c1 dx/dt, that is, d(c2(x? + y?) — ¢1x)/dt = 0; hence c3(x% + y%) — c1x is a con-
stant that, if ¢y # 0, is conveniently expressed by c2[R? = (¢; /2cz)2], so that we
have (x — ¢1/2¢2)? + y? = R?, which corresponds to the upper part of a circle
(since y > 0) whose center is on the x axis. When ¢; = 0, from (6.71) we see that x
is a constant. Thus, the images of the geodesics for the metric (6.19) are half-circles
with center on the x axis or vertical lines.

The parametrization of these curves can be obtained making use again of (6.71),
which gives (for ¢ # 0)

1 dx 1 1
dt=— 2dx=— —
cy 2Rcr [ x — (c1/2¢2) + R x —(c1/2¢2) — R

and, therefore,

(xp — x(0)x1 + (x(0) — xl)xzefﬂeczt

YO= "0 70 + (0) — e 2R

3
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where x1 = (¢1/2¢2) — R, x3 = (c1/2¢2) + R. (Note that when ¢+ — £o00, x tends
to x1 or x3.) Substituting the expressions obtained above into (6.71) one finds that
the radius R is related to the constants ¢; through R? = (c12 +4cae3)/ (4@2). The
expression for y(#) can be obtained from the second equation in (6.71).

In addition to the three constants (6.71), equation (6.70) yields a fourth constant,
E = % g(C’, C"), which turns out to be function of the ¢;. In fact, making use of
(6.19) and (6.71) one finds that

1 dx\? dy\? 1, 5,
E=—||— — = 4
el (&) +(5) =gt e

so that, if ¢ # 0, we have E = %chzz. Making use of the foregoing results, one
can readily see that each geodesic of this manifold has infinite length since L¢ =
ffooo V&cw(Cr,CHdt = «/ﬁffooo d¢, and from equations (6.71) one also finds
that given any point p of the half-plane y > 0 and any tangent vector at p, there
exists a (unique) geodesic passing through p, where its tangent vector coincides
with the given vector. For this reason, this manifold is geodesically complete [see
also, e.g., do Carmo (1992), Lee (1997), and Conlon (2001)].

Example 6.30 Starting from the three basis Killing vector fields for the metric
(6.11), given by (6.31), with the aid of Theorem 6.28 we have the three constant
quantities

. do d
c = —slnqba — sinf cos O cosqﬁa,

do d
= cosd)a —sinf cosf sinqbd—(f,

. d
3= sin% 6 —¢
dr
By combining these equations one obtains cj cos ¢ + ¢ sin¢ = —c3 cotd or, equiv-

alently, cqsinfcos¢ + csinfsing + c3cosf = 0. Taking into account the rela-
tion between the spherical and the Cartesian coordinates, one concludes that this
last equation corresponds to the intersection of the sphere with the plane passing
through the origin given by c1x + ¢2y + 3z = 0; that is, the geodesics of S? are the
intersections of the sphere with the planes passing through the origin.

Exercise 6.31 Show that the connection considered in Example 5.6 is the Levi-
Civita connection corresponding to the metric tensor g = (1 4+ r2)~2(dr ® dr +
r?df ® db). Since the components of the metric tensor in these coordinates do not
depend on 6, 9/96 is a Killing vector field for this metric. Find the geodesics making
use of Theorem 6.28 and of the fact that g(C’, C’) is a constant for any geodesic C.
Find all the Killing vector fields and the constants associated with them.

Exercise 6.32 Show that if the vector field X is the gradient of some function and
g(X, X) is constant, then VxX = 0, i.e., the integral curves of X are geodesics.
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(Hint: assuming that X = grad f, make use of the definition [X, Y] f = X(Y f) —
Y(Xf) together with (6.8) to establish the equality g(X, [X, Y]) = X[g(X,Y)] —
Y[g(X, X)], and then employ (6.52) and (6.53).)

The result stated in Exercise 6.32 is especially interesting for it relates the prob-
lem of writing down and solving the equations for the geodesics (5.7) (which may
involve the computation of the functions F;k) with that of solving the PDE

g(grad W, grad W) = const. (6.72)

It turns out that, locally, any geodesic is an integral curve of the gradient of a solu-
tion of (6.72); what is more remarkable and useful is that if one knows a complete
solution of (6.72) (a concept defined in the next paragraph), then the geodesics can
be found without having to solve the differential equations for the integral curves of
grad W.

A complete solution of (6.72) is a function satisfying (6.72) that depends on n — 1
parameters a;, where n = dim M, in such a way that the partial derivatives of W with
respect to the parameters a; are (functionally) independent. In terms of a coordinate
system Xt equation (6.72) is equivalent to [see (6.9)]

ow
—— = const. (6.73)
X-

Differentiating this equation with respect to the parameter a; one obtains

L OW 9 oW
20—~ 77 . (6.74)
dx! dx/ day
Since g/ (dW/dx')3/dx/ = grad W, equation (6.74) means that each of the n — 1
partial derivatives d W/day is constant along the integral curves of grad W that is,
if we define

ow
br=— (k=1,....,n—1), (6.75)

Bak
then the (images of the) integral curves of grad W (which are geodesics) are the
intersection of the n — 1 hypersurfaces given by b* = const. By suitably selecting
the values of the 2n — 2 parameters ax, bX, we obtain the geodesic passing through

a given point in any given direction (see Example 6.33).

Example 6.33 Considering again the Poincaré half-plane with the coordinates em-
ployed in Example 6.12, equation (6.73) takes the form

2 2
y2|:<8_W> + <8_W) :| = const. (6.76)
ox ay

This PDE can be solved by the method of separation of variables, looking for a
solution of the form W = F(x) + G(y), substituting into (6.76) and denoting by 2
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the value of the constant on the right-hand side of the equation, one finds that

dF\* ¢ (dG\?

(&) =5-(&)
This equation will hold for all values of x and y only if each side of the equa-
tion is equal to a constant, which will be denoted by a?; then (setting to zero
the integration constants), F(x) = ax and G = [/c?y=2 —a?dy, so that W =
ax + [/c2y=2 —a*dy is a solution of (6.76) depending on the parameter a and,

since dW/da # 0, this is a complete solution. Then, using the fact that b =9dW/da
is constant along each geodesic one finds

d c?
b:x—a/ e X+ —2—y2,
a

Ja—ay

which represents a two-parameter family of arcs of circles.

Exercise 6.34 Making use of the procedure employed in the preceding example,
find the geodesics of the metric g = (1 + rH~2(dr ® dr + r2do ® d9), considered
in Exercise 6.31.

Exercise 6.35 Show that the geodesics of the metric y~!(dx ® dx + dy ® dy) on
{(x,y) e R?|y > 0} are cycloid arcs. (This problem corresponds to that of the
brachistochrone, that is, to the problem of finding the curve along which a body
slides in a uniform gravitational field to go from one given point to another, not
directly below the first one, in the least time.)

The eikonal equation,
g(grad S, grad S) = n?

or, in local coordinates,
iy 95 85 _ n?, (6.77)
axt dx/
where n is a real-valued function called the refractive index, arises in the study
of geometrical optics. It can be derived from the Maxwell equations in the short-
wavelength limit [see, e.g., Born and Wolf (1999)]. According to Exercise 6.32, the
integral curves of grad S, which represent the light rays, are geodesics of the metric
tensor n” g (with the gradient of § calculated with this metric). Taking into account
that the geodesics are the curves that locally minimize the length, defined by the
corresponding metric g, and that the refractive index is inversely proportional to
the velocity of light in the medium, it follows that the light rays are the curves that
locally minimize the time required to go from one point to another. This is known
as the Fermat principle (see also Sect. 8.4).
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6.3 Curvature of a Riemannian Manifold

The algebraic properties of the curvature tensor of a Riemannian connection, as
well as the definition of several tensor fields related to it, are more easily established
making use of their components with respect to some basis [see, e.g., (5.27)]. It is
convenient to define

Rijki = gimR™ jui

[cf. (6.5)], so that the skew-symmetry R ki = —R! jik [which is equivalent to
R(X,Y)=—R(Y,X)] amounts to

Rijki = —Rijik. (6.78)

We have already seen that when the torsion is equal to zero, R! kL F Ri kj +
R';jx =0 [see (5.32)], hence

Rijx + Rixij + Rijk =0, (6.79)

and from (6.66) we have
Rijri = —Rjin (6.80)

(see also Exercise 6.23). Given that R is a tensor field, its components with respect
to any basis satisfy (6.78)—(6.80).

As a consequence of the relations (6.78)—(6.80), the components of the curvature
tensor also satisfy

Rikij = Rijik. (6.81)
In fact, from (6.79) and (6.78) we have

Rijki = —Rikij — Ritjk = —Rirtj + Riik;- (6.82)
On the other hand, from (6.80),
1
Riju = E(Rijkl — Rjir)

and expressing each of the terms on the right-hand side with the aid of (6.82), we
find

1
Rijr = 5(_Riklj + Ritkj + Rjri — Rjiki)-
Thus, exchanging i with k and j with /,
1
Ryiij = 5(—Rkijz + Ryjit + Riijk — Ryjik),

which coincides with R;jx;, by virtue of (6.78) and (6.80), as claimed above.
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Since an object skew-symmetric in two indices has n(n — 1) /2 independent com-
ponents, relations (6.78) and (6.80) imply that, out of the n* components Ry;;, at
most [n(n — 1)/ 2]? are independent; while the relations (6.79), being totally skew-
symmetric in the three indices j, k, [, for each value of the first index, constitute
n(s) = n2(n—1)n—=2) /6 restrictions. Therefore the number of independent com-
ponents of the curvature tensor is

n2(n — 1)2 B nn—1(n—-2) n*(n*-1
4 6 B 2

(6.83)

Ricci Tensor, Conformal, and Scalar Curvature From the curvature tensor one
can construct other tensor fields which can be conveniently defined in terms of com-
ponents. The Ricci tensor is a tensor field of type ( (2)) with components R;;, defined
by

Rij = R*; = g" Ry (6.84)

(This definition is not uniform; some authors adopt the definition R;; = R¥; ks
which amounts, by virtue of (6.78), to —Rk,-kj.) From (6.84) and (6.81) it follows
that the Ricci tensor is symmetric:

Rij = g" Rijii = ¢" Rijii = Rji.
The scalar curvature, R, is the real-valued function locally defined by
R=g"R;;. (6.85)

For a Riemannian manifold of dimension n > 3, the Weyl tensor or conformal cur-
vature tensor is a tensor field with components defined by

1
Cijii = Riju — m(gikle — gjkRii + gjiRix — g1 Rjk)

1

T Do — o) Rk — sugje): (6.86)

From (6.78)—(6.80), and the symmetry of R;; and g;; it follows that the components
of the Weyl tensor (6.86) also satisfy the relations (6.78)—(6.80) and, additionally,

gklckilj =0. (6.87)

When n = 3, the Weyl tensor is identically zero, which amounts to saying that
the components of the curvature tensor can be expressed in the form

1
Rijxii = gikRj1 — gjkRit + gjiRix — guRjk — ER(gikgjl — &ilgjk) (6.88)

[cf. (6.86)], so that the curvature tensor is completely determined by the Ricci ten-
sor. The Ricci tensor in a manifold of dimension three, being symmetric, possesses
six independent components, which coincides with the number of independent com-
ponents of the curvature [see (6.83)].
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Exercise 6.36 Show that for any Riemannian manifold of dimension three the com-
ponents of the curvature tensor can be expressed in the form (6.88). (Hint: show that
if the components C;jy; satisfy (6.78)—(6.80), and (6.87), then C;j; =0.)

When n = 2, the curvature has only one independent component [see (6.83)] and
the curvature tensor (and, therefore, the Ricci tensor) is determined by the scalar
curvature. In this case, the components of the curvature tensor are given by

1
Riju = ER(gikgjl — &ilgjk)- (6.89)

Example 6.37 In the context of general relativity, the Schwarzschild metric, given
locally by

-1
_(1_ " 2 )
g=|1 dr®@dr+r (d9®d9+sm 9d¢®d¢)

r

r

— (1 _ r—g>c2 dt @ dr (6.90)

in terms of a local coordinate system (r, 0, ¢, t), where r, is a constant and ¢ is
the velocity of light in vacuum, corresponds to the exterior gravitational field of
a spherically symmetric distribution of matter. The constant r,, called the gravita-
tional radius, is related to M, the mass of the matter distribution, by r, =2GM/ 2,
where G is the Newton gravitational constant. From (6.90) we see that the 1-forms

1 Tg -2 2
0 = - = dr, 0“=rdo,

r

o 6.91)
63 = rsin6 dg, 94=< —r—g) cdi

form the dual basis to a basis such that
(gij) =diag(1,1,1, —1);

therefore, e.g., I'134 = Ty, but Typp = — T [see (6.60)]. Calculating the exterior
derivative of each of the 1-forms (6.91), one finds that the connection 1-forms are

r 1/2 r 1/2
F]z:—(l——g> de, F]?,:—(l——g) Sin9d¢,
r

,
Tg

F]4=—zcdt, I3 =—cos6do,
2r

I4 =0, I34=0.

The components of the curvature can be obtained making use of the second Car-
tan structural equations [cf. (5.26)]. One finds that the only nonvanishing compo-
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nents of the curvature 2-forms are given by [see (5.27)]

r r r

g g g
Ripppp=—=—= Risn=—=— Ry =——
2r3’ 2r3’ r3’
r r r
Ry = = Rosps = =% Ryazs = 2.
i r3’ 2r3’ i 2r3

With these expressions and the aid of the properties (6.78) and (6.80) we can now
compute the components of the Ricci tensor [see (6.84)]. Since in the present case
(g") =diag(1, 1, 1, —1) we have, for instance,

Ry = giniljl = Ri111 + R2121 + R3131 — R4141 = R1212 + R1313 — R1414 =0.

In a similar manner one finds that all the components of the Ricci tensor are equal to
zero (for r #0), i.e., R;; = 0, which are the Einstein equations for the gravitational
field in vacuum. Thus, for  # 0, the Schwarzschild metric (6.90) is a solution of the
Einstein vacuum field equations.

Exercise 6.38 Calculate the Ricci tensor of the metric
g=[f(n] 7 dr@dr+r*(d0 ® 6 +sin’ 0 dp ® dg),

where f is a differentiable real-valued function of a single variable. Show that the
Ricci tensor is proportional to the metric tensor, R;; = hg;;, where h is some real-

valued function, if and only if
d/f2-1
w(5) =0
dr r2

(cf. Example 6.24).

Example 6.39 The metric tensor of a Riemannian manifold of dimension two with
a positive definite metric has the local expression

g=Edx' @dx' + F(dx! ® dx? + dx? @ dx') + G dx? @ dx?,

where E, F, and G are real-valued differentiable functions with £ > 0 and EG —
F2>0,or, equivalently

— E(dx! L 1, F oo _F_2 2 2
g= +de ®dx+de +1G z dx* ® dx~.

Since in a manifold of dimension two any 1-form is (locally) integrable, there exist
functions, x and x’ 1 such that

F
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hence

FZ
g=Eu’dx"' @dx" + (G — F) dx? ® dx?,

thus showing that it is possible to find locally systems of orthogonal coordinates.
That is, we may assume that the metric tensor can be written (at least locally) in the
form

g=Edx' ®@dx' + Gdx® ® dx?
= (VEdx") ® (VEdx') + (VG dx?) ® (VG dx?), (6.92)
so that
' =VEdx', 6*=+Gdx? (6.93)

is the dual basis of an orthonormal basis.
The exterior derivatives of the 1-forms (6.93) are

~ 2JE x? © 2E/G x2
and
1 090G 1 0G
d0* = —=—dx' Adx® = —0' n %
2:/G dx 2G+/E 0x
Comparing with (6.64) one finds that r'y—rly)=— 251/5 gTEZ, but since the dual

basis of (6.93) is orthonormal (i.e., g;; = 8;;), we have I'' 15 — 'y = T2 — M2y
[see (6.60)]. This reduces to — 1721, since the skew-symmetry (6.61) implies that
I117 is equal to zero, and hence we have I'2; = ﬁ Pyen In a similar way one

. _ 1 3G . _ .. .
obtains 32 = SGVE T and therefore the connection 1-forms for the rigid basis

(6.93) are determined by

Ip = N0 + Mpb? = Ty 6t — 01p6?

1 IE 9G
= —dxl——dx2>. (6.94)
2VEG \ 9x? ax!

By virtue of the skew-symmetry %;; = —Z; [cf. (6.66)], the curvature is deter-
mined by Z1» and, according to the second Cartan structural equations (5.26), we
have

%12:%12=dF12+F11AF12+F12/\F22=dF12=dF12
1] o 1 090G d 1 OFE
_ | - R dxl/\dx2
2|:8x1<«/EG 8x1)+8x2<4/EG8x2>:|

B 1 3 18G+8<18E ol g
 2VEG|Lx'\VEG dx! ax2\ VEG 0x2 '
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On the other hand, %15 = 1 R12;j0" A 67 = Ri2120' A2 = JRO' A 67 [see (5.27)
and (6.89)], so that the scalar curvature is given by

1 il 1 dG n a ( 1 OE 6.95)
VEG Lax'\VEG ox! a2\ VEGx2) ] ’
If, instead of the rigid basis (6.93), we employ the holonomic basis
o' =dx!, 6% = dx?, (6.96)

the connection 1-forms can be obtained computing the Christoffel symbols (6.55)
(with g11 = E, g12 =0, g22 = G), which turn out to be

.1 9E pL_ L OE L1 3G

7o 9x1” 272 9x2° 27 2F axl’ 6.97)
) 1 3E , 193G , 193G '
I =362 275G axl’ 279G ax2

Hence, the connection 1-forms for the holonomic basis (6.96), I i= F;k dx*, are

1 1 (JE 3
r,=_—dkE, F12=—< dx! — dez),

T 2E 2E \ 9x2 ax!
1 1 [ dE 3G (6%
2, =—dg, 2 =——( —dx!' — — dx?
2G 2G \ 9x2 ax!

[cf. (6.94)]. The only independent curvature 2-form is then given by

R =81iR# 2 =ER 2 =Edly+ T\ AT+ T AT%)

=d(ET";) - LclEAErlz— idG/\Erlz
2E 2G
1
=VEGd| —E 1“5)
EG

E 1 oE 0
_VEG L (BE 122G 2
2 EG \ 0x2 ax!
VEG[ 0 ( 1 BG) d 1 0F
2 | ax!'\JEG dx! Ix2\ JEG 9x2

Taking (5.27) and (6.89) into account, we have

)]dxl Adx?. (6.99)

1 1
<@12:R1212d)61 Adx? = ERg“gzgdxl Adx? = EREGd)Cl /\dx2,

so that from (6.99) we obtain again the expression (6.95) for the scalar curvature, as
we should.
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A constant curvature Riemannian manifold is a Riemannian manifold of dimen-
sion greater than two such that the components of the curvature tensor are of the
form

Riji = R (gik&j1 — &i1gjk), (6.100)

1
nn—1)
where R is the scalar curvature (cf. Example 6.25). From (5.27) it follows that the
curvature 2-forms are %' i=R/[n(n—-1)]g ,-,9" A 6! (no matter what type of basis
is used). Substituting this relation into the Bianchi identities (5.31) and using the
first Cartan structural equations (5.24) (with the torsion equal to zero) one obtains
dR A 6" ABH! =0 [the computation is simpler making use of a rigid basis, with the
aid of the relation (6.65)]; then, since n > 2, it follows that R is constant. (It may be
noticed that the curvature of a Riemannian manifold of dimension two is always of
the form (6.100), but dR A 0i AO! is necessarily equal to zero, because it is a 3-form;
therefore, in this case, the Bianchi identities do not imply that R is a constant.)

Exercise 6.40 Show that the scalar curvature of the sphere [equation (6.11)] and of
the Poincaré half-plane [equation (6.19)] is constant.

Apart from the fact that in a Riemannian manifold of dimension two with a pos-
itive definite metric one can always find orthogonal coordinates, where the metric
tensor takes the “diagonal” form (6.92), it is also possible to find local coordinates
where the metric tensor has the form (6.92) with £ = G, i.e., any metric tensor
of this class is locally conformally equivalent to a flat metric (and such a system
of coordinates is not unique). This assertion can readily be proved making use of
complex combinations of 1-forms. Writing

Edx' ®dx' + G dx? @ dx?
= %[(«/del +ivVGdx?) ® (VE dx' —ivG dx?)
+ (VEdx' - iVG dx?) ® (VE dx' +ivG dx?)]

and taking into account that ~/E dx' +i+/G dx? is a (complexified) 1-form in two
variables, it is locally integrable; that is, locally there exist complex-valued func-
tions A, B such that VE dx! + i\/a dx? = AdB (though these functions are not
unique, see the example below). Letting B = y! +iy?, with y!, y? being real-valued
functions, we obtain

1 o
del®dx1+de2®dx2=E(AdB@AdB—i—AdB@AdB)
= |A]*(dy' ® dy' +dy* ® dy?),

where the bar denotes complex conjugation, thus showing that the metric tensor is
proportional to the flat metric dy' ® dy' + dy? ® dy?.
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For example, the standard metric of the sphere S? is locally given by d6 ® d6 +

sin? 0 dg @ d¢ [see (6.11)], which is already of the form (6.92). An integrating factor
for the 1-form df + isin6 d¢ can be found by inspection, namely

d6 +isin6 d¢ = sinf(cscH dO + ide)

1
=sin6 d(lntan 5«9 + i¢),

.o . . . . 1 2 . 1 _ l
giving a possible choice for the local coordinates y', y~ (that is, y' = Intan 29,
y% = ¢). However, a more convenient choice is obtained on taking

. 1
de+isin9d¢=sin9d1n<e‘¢tan§9)
in6 - 1
= s : d<e1¢tan—0>
eld tan 560 2
i 2l ig,, 1
=2e ¥Ycos” =0d|e?tan =0 );
2 2

hence df ® df + sin’ @ d¢p ® dp = 4 cos? %Q[d(tan %9 cos¢) ® d(tan %9 cosp) +
d(tan 30 sin¢) ® d(tan $6 sin¢)] (cf. Example 6.19).

6.4 Volume Element, Divergence, and Duality of Differential

Forms

Let {e1,...,e,} C X(M) be an orthonormal basis for the vector fields on M, that
is, g(e;, ej) = £4;;. There exists an n-form 1 on M, called a volume element, such
that n(ey, ..., e,) = 1/n!. In fact, if (61, ...,0"} is the dual basis to {eq, ..., e,} we
have

n=0'"ANO*A---AO". (6.101)
If {e’l, el n} is any other orthonormal basis of vector fields, then n(el, e, n) =
+1/n!. We say that {e/, ..., e} is positively or negatively oriented according to 7,
if n(e},...,e,)is greater or less than zero, respectively. The n-form —pn is another

volume element defining the opposite orientation to that defined by 7.
If the 1-forms 6* are given locally by 6' = c’j dx/, then

n:(c-ldxi)/\(cz-dx-/)/\-~~A(chxk)
1 2 k
HaE ckdx‘/\dx] < Adx
=c/ 7 etk dxt Adx? Ao Adx”

= det(c}) dx' Adx® A Adx"
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On the other hand, we have the matrix relation
(0 @F — i T KL
+8ij = (0'|07) = c;cf g
hence, the determinants of these matrices are related by
i \12 kl
[det(c’j)] det(g"') = £1,
ie.,
det(c’) = %,/|det(gi))|,

where the sign is positive or negative according to whether the basis {9/dx!, ...,
d/dx™} is positively or negatively oriented according to 1. Thus,

n==£/|det(g;))|dx" Adx? A Adx". (6.102)

For some manifolds there does not exist a nowhere vanishing n-form defined on
all of M; such manifolds are called non orientable. A manifold M of dimension n
is orientable if there exists a nowhere vanishing n-form defined at all points of M.
(This property does not depend on the existence of a Riemannian structure on M,
but is a topological property of the manifold.) If M is an orientable Riemannian
manifold, then there exists a volume element defined at all points of M.

Example 6.41 As shown in Example 6.39, in a Riemannian manifold, M, of dimen-
sion two, with a positive definite metric, there exist systems of orthogonal coordi-
nates, in which the metric tensor has the diagonal form (6.92). Using the Christoffel
symbols (6.97) one finds that the equations for the parallel transport of a vector (5.4)
are

dy!' 1 [9Edx!' , 9E (dx®>_, dx!' ,\ 9G dx? ,
—t—| ==Y+ =(—Y'+—V* ) - ——=—Y*| =0,
dr  2E[ax! dr ax2\ dr dr ax1 dr

dy?2 1[G dx> , 9G (dx! , dx?_,\ 9E dx! ,
— t == — =Y +—v'") - —=—=—Y'| =0,
dt 2G| ax% dt ax1\ dr dr ax2 dt

or, equivalently,
d 14 2
O (VEY +ivGY?)

i dE dx!  9G dx? , )
— = = \WEY'+iJGY?).
2«/EG(8x2 dr oxl dr >( + )
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Then,
(VEY'+iVGY?)(C(0)
=(VEY'+ivVGY?)(C(ty)) exp = /

<8E dx! 3G dx2>
JEG\ax2 dr  oax! dr

The value of the line integral appearing in the preceding formula only depends
on the endpoints of the curve, C(f) and C(¢), if and only if the 1-form

1 aEd1 8Gd
y_ZN/EG dx? dx

is exact [cf. (6.94)]. By means of a direct computation we see that

o 1[0 (1 8G)+8 L EN g a2 By 6103)
V=73 ox\ JEG ax' ) T ax2\ JEG ox2 A

where R is the scalar curvature and n = 60' A 62 = VEG dx!' A dx? is a volume
element [see (6.95), (6.93), and (6.101)]. Hence, if R # 0, the 1-form y is not closed.
In particular, if C is a simple closed curve, with C(#y) = C (1), then

((JEYU (C(n)))_(eos@ —sin@) <(ﬁ¥‘> (C(t0))

sin® cos®

, (6.104)
WGY? (Cw) (VG Y?) (C(m)))

with

OE dx!' 3G dx?
al dr. (6.105)
ax2 dr ox! dr

ofr[ i
C 1o 2 EG

The functions ~/E Y! and /G Y2 appearing in (6.104) are the components of
the vector field Y with respect to the orthonormal basis e; = (1/v/E)3/dx',
e = (1/+/G) 3/0x?% [cf. (6.93)], and therefore (6.104) represents a rotation through
the angle & at T¢(,) M. That is, the parallel transport of any vector along a closed
curve C only rotates the original vector through the angle ®, with ® being in-
dependent of the vector chosen and of the point of the curve taken as the initial
point [see (6.105)]. (Example 5.5 is a particular case of the present example, with
E=G=1/y%)

The fact that the parallel transport of a vector along a closed curve corresponds to
a rotation is to be expected, because the Riemannian connection is compatible with
the metric tensor, so that during the parallel transport of a vector, its length does
not vary. The parallel transport of vectors along a curve is a linear transformation
(see Sect. 5.1) and the only linear transformations of a space with inner product into
itself that preserve the inner product are rotations or reflections.



152 6 Riemannian Manifolds

Divergence of a Vector Field If 5 is a volume element and X € X(M), the Lie
derivative of n with respect to X is also an n-form and therefore there exists a real-
valued function, div X, the divergence of X, such that

£x1 = (divX)n. (6.106)

The definition of the divergence of a vector field does not depend on the orientation,
since, if 7 is substituted by —n into (6.106), the value of divX does not change.
Using (3.39) and taking into account that dn = 0, because it is an (n + 1)-form, the
definition (6.106) amounts to

(divX)n = dXJn). (6.107)

Using the local expression of the volume element (6.102) and equations (2.23),
(2.37)—(2.39), and (3.26), we find that

xk \/det(gl/)d 1

.X

axt .o, | ax"

+,/det(gij)<mdx Adx“ Ao Adx" o 4dx Ao A P dx )

© 0 det(g
( Iveetsi)  fo et(8ij) 5 k)dxl A dx"
1 d «
= | ———=—(,/det(gij)) X
[\/det(gij) 3xk( (8i) )}n
and, comparing with (6.106), we obtain the well-known expression

1 a 7/

for the divergence of a vector field in terms of its components and those of the metric
tensor with respect to a coordinate system (x L., x™).

£Xn::I:|: <o Adx”

Exercise 6.42 Show that if {e, ..., e,} is an orthonormal basis and X = X iej is a
differentiable vector field, then

divX = e X5 + 'y X5, (6.109)

where I jk are the Ricci rotation coefficients for the basis {ey, ..., e,}. (Hint: em-
ploy (6.101), (3.39), (6.64), (3.27), and (6.61).)

Using the expression (6.108) or (6.109) it follows that for f € C*°(M),
XeX(M),

div(fX) = fdivX + Xf (6.110)
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or, equivalently [see (6.8)],

div (fX) = fdivX + g(grad f, X). (6.111)
From (6.108) or (6.109) it also follows that div(X 4+ Y) =divX +divY.
Exercise 6.43 Show that div[X, Y] = X(divY) — Y(divX).

The Laplacian of a differentiable function f € C*°(M), denoted by V2 f or by
Af, is defined as the divergence of its gradient

V2 f =div grad f. (6.112)

From the expressions (6.9) and (6.108) it follows that

1 3 B)
V2f=mw( [det(g;;) g" a_j:l> (6.113)
Y ij

Exercise 6.44 Show that under a conformal rescaling of the metric of a Riemannian
manifold of dimension two, g’ = e*g, the scalar curvatures of g and g’ are related
by

R —2Au=¢e’R. (6.114)

In the case of the sphere S2 with its standard metric, the scalar curvature is
R = 2; the existence of a solution to (6.114) with R’ = 0 would mean that the stan-
dard metric of S? is conformally flat (that is, conformally equivalent to a flat metric).
However, the PDE Au = 1 has no solution on S? (cf. Example 6.19 and the exam-
ple at the end of Sect. 6.3). This fact can be proved by integrating both sides of this
equation on S?, making use of the natural area element of S, so that the integral
of 1 yields the total area of S?, i.e., 4. Meanwhile the integral of Au, being the
integral of a divergence on a surface without boundary, is equal to zero.

Duality of Differential Forms Let @ € AX(M) and 8 € A" %(M); the exterior
product @ A B8 is an n-form and, therefore, there exists a function f € C®°(M)
such that @ A B = fn. If (x!,..., x") is a local coordinate system positively ori-
ented according to n, «, and B are given by @ = ;. dxt A --+ A dx* and
B =Bjisi...j» X7+ A oo A dxn; then we have

A AB =i iy Bjesroj XA AdxE AT A Adx
— o B ol Jk 1) 1 n
=iy Bjiyr.ju€ Fldndxt Ao Adx

i1k Jk+1 - Jn

—-1/2
det(gij)|~*n,

=iy iy Bjyr.jn€
that is,

_1/2 . ”.. . . .
f=|det(gij)| ™ eI gy Bl
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Noting that
&iy..in& 1+ ginin = det(g')e1-In
= [det(gij)]_ls-/""j'l,

we also have

1/2 il il k1l jul
f=|det(gip)| ery..0, 81" - g gIHIH gy By

Therefore, there exists a unique (n — k)-form, denoted by *«, such that f = (x«|8);
in fact, * is given locally by

det(gi;)|/? . .
- % llmlngll[1 o 'glklkailmik dlel ANRRA dxl"'

The uniqueness of xa comes from the fact that the product ( | ) is non-singular.

The mapping * : AK(M) — A" %(M), given by « > xa, is called the star or
Hodge operator, and x« is called the dual form of «. From its local expression we
see that the Hodge operator is an isomorphism of AK(M) onto A" % (M), that is,
any (n — k)-form is the dual of a unique k-form in such a way that

x(fwl +gw) = f*w +g*wy forwi,wye A¥(M)and f, g e C®(M).
Exercise 6.45 Let X be a vector field and let « = %X_J g. Show that xa = X n.

Note that if the orientation is reversed, that is, if 1 is replaced by —n, then %«
changes sign. Owing to this behavior *« is said to be a pseudotensor field.

6.5 Elementary Treatment of the Geometry of Surfaces

The theory of Riemannian manifolds started with the study of (two-dimensional)
surfaces in R3. Here we shall present only an introductory study of surfaces, as an
example of the usefulness of the formalism already given. We shall be interested
mainly in two-dimensional submanifolds of a three-dimensional Riemannian mani-
fold, which may not be the Euclidean space. More detailed treatments can be found,
e.g., in do Carmo (1992), Oprea (1997), and O’Neill (2006).

Let M be a Riemannian manifold of dimension three, with a positive definite
metric and let X' be a submanifold of M of dimension two, with the metric induced
by that of M. Among other things, we want to relate the intrinsic properties of X
(that is, the properties of X' as a Riemannian manifold on its own) with the behavior
of a unit normal vector field to 2.

Let p € ¥ and let n be a unit normal vector field to X' defined in a neighborhood
of p. The shape operator (or Weingarten map) of X' at p, S, is defined by

SP(UP)E—VUPn, forv,eT,X. (6.115)
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Roughly speaking, S, (v,) measures how quickly X' bends in the direction of v,,.
It can readily be seen that, as a consequence of (6.53), S,(v,) also belongs to
T, X, since

1 1
gp(Sp(vp).my) = —g,(Vy,m.m)) = —Evp[g(n, n)|= —ivp[l] =0.

By virtue of the properties of a connection, S, is a linear map. The Gaussian cur-
vature and the mean curvature of X' at p are defined as

1
K(p)=detS, and H(p):itrSp,

respectively.
The shape operator S, is also symmetric, in the sense that

8p (Sp(vp)’ wp) =8&p (Up, Sp(wp))v

forall vy, wy, € T X.

In order to prove that §), is symmetric, we shall use the fact that for each point
p € X one can find an orthonormal set of vector fields {ej, e, e3}, defined in some
neighborhood of p, such that at the points of ¥, e, and e, span the tangent space
to X' and, therefore, restricted to X we see that e3 is a unit normal vector field to X.
Then the vector fields e; and e;, restricted to X', form an orthonormal basis for the
vector fields on Y. Thus,

i*6% =0, (6.116)
where i : ¥ — M is Fhe inclusion map; Fherefore, i*d03 = d(*03) = 0, and the
equation d03 = I'3;;0' A0/ = I'3;;60' A6 [see (6.64)] yields

i*(I312 — I321) =0. (6.117)

Making use of (5.22) and the skew-symmetry (6.61) we have, letting the lower-
case Greek indices i, v, ... take the values 1, 2,

Ve, 3= 13,6 =T"3,€,+ 3,65 =T"3,e,. (6.118)

By comparing this equation with the definition of the shape operator, (6.115), one
finds that, with respect to the orthonormal basis of T), ¥ formed by (e;), and (e2),
Sp is represented by the 2 x 2 matrix

(=I5 (i1(p)) = (F3up (i (). 6.119)

Hence, (6.117) means that this matrix is symmetric and, therefore, S, is symmetric,
as claimed above.

The symmetry of S, implies the existence of two linearly independent eigenvec-
tors, whose directions are called the principal curvature directions of X at p and
the corresponding eigenvalues are called principal curvatures at p.
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The 1-forms
ot =i*o* (6.120)

constitute the dual basis of the orthonormal basis formed by the restriction of e
and e; to X'. Making use of the properties of the pullback, the first Cartan structural
equations, and (6.116), we have

dpt = i*(do") = —i* (M A0") = —(i*T",) A ¢,

which implies that the 1-forms i*I"*,, are the connection 1-forms associated with
the orthonormal basis (6.120).

In a similar manner, we can compute the pullback under the inclusion map of the
second Cartan structural equations. We start by computing i*%" ,, for u,v =1, 2.
Owing to the skew-symmetry (6.66), this reduces to a computation, e.g., of i* %!,
and, making use of the fact that 'Yy and I'?, are equal to zero by virtue of the
skew-symmetry (6.65), we find

"B =d(i*T) + () A7) =d(i* 1Y) + (F0'5) A (5 703).
(6.121)
On the other hand, applying the second Cartan structural equations to compute the
curvature of X, if we denote by £2#,, the curvature 2-forms of X' with respect to the
basis (6.120), we have 2!y =d(*I"'2) + (*I'' ) A ((*IT'*2) = d@*T'5). Hence,
(6.121) amounts to the relation

%'y = Q'+ (i*T'3) A (i*77) (6.122)
or, equivalently [see (5.27) and (6.116)],
((*R'212)9" A ¢* = 212120" AP +[(*T'31) (i*T722)
- (i*F132)(i*F321)]¢1 AP
Hence, taking into account (6.119),
"Ry =020 —detS=2%, — K. (6.123)

When the curvature of M is equal to zero, as in the case of the Euclidean space
with its standard metric, equation (6.123) gives K = .(21212; that is, the Gaussian
curvature, K, defined above in terms of the (extrinsic) behavior of the unit normal
vector field to X, is equal to the intrinsic curvature of X', defined by the Rieman-
nian connection of X'. This result is the famous Gauss’ Theorema Egregium, which
states that the Gaussian curvature of X' depends only on the metric induced on the
surface. Thus, according to (6.95), if the metric induced on X' is expressed in the
form E dx!' ® dx! 4+ G dx? ® dx?, the Gaussian curvature of X is given by

o 1 3 1 3G L0 1 9E
 2JEGLax' \VEG ax! a2\ JEG 0x2 ) |
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Since %33 identically vanishes, we are left with %> . only and we obtain

+ (i(*130p) (T o )¢ A 97

Denoting by {Xj, X} the dual basis of that formed by the 1-forms (6.120), the last
equation amounts to

R0 =X (i1 ) — Xo (i1 1)
) (T 0) = (7))
+ (P 030) (T w2) — (7)) (6.124)

These equations are known as the Codazzi-Mainardi equations [cf. Oprea (1997,
Sect. 3.4)].

Exercise 6.46 Assuming that the curvature of M is equal to zero, show that the
Codazzi—-Mainardi equations (6.124) are equivalent to the symmetry

(Vx,8)(X2) = (Vx,$)(X1),

where V denotes the Riemannian connection of X and S is considered as a tensor
field on X of type (%).

Example 6.47 The catenoid is a well-known example of a minimal surface, that is,
a surface with mean curvature equal to zero. This is a surface of revolution obtained
by revolving a catenary, and can be defined by means of the parametrization

x =coshucosv, y =coshusinv, Z=uU.

This means that # and v can be considered as local coordinates on X', so that the
inclusion, i : ¥ — R3, is given by

i*x = coshucosv,
i*y = coshusinv, (6.125)

i*z=u,

where (x, y, z) is the natural coordinate system of R3.



158 6 Riemannian Manifolds

At each point p € X, the tangent space T), X' is generated by (3/du)p, (3/0v)p,
and, according to (1.24) and (6.125),

i), = @) G),,

= —coshu(p)sinv(p) (;)
X

(25 +3)
= —y— X—

0x ay i(p)
and, similarly,

d a
i*p<£) =sinhu(p)cosv(p)<£>
p i(p)

d 0
+ sinhu(p) sinv(p)(—) + (—)
W/ iy \02/igp)

_(x\/xz—i—yz—la yWx2+y2—19 8)
i(p)

dy

0
+ coshu(p) cos v(p)(—)
i(p) i(p)

+ +
‘/x2+y2 0x 1/.X2+y2 8y aZ

The latter equality is valid only where sinhu > 0, that is, only for z > 0.
One readily finds that the vector fields

9 9 xVx24+y2 -1 Vx24+y2—19 9
L y K y 9
dx ay

Vx24y2 o ox Vx24yz Oy T

are orthogonal to each other and their norms are equal to v/x2 + y2. Looking for a
vector field orthogonal to these vector fields one obtains the orthonormal basis
y 0] n X ad

¥2 4 y2 dx /X2 4+ y2 ay’
xy/x2+y2—=10  y/x2+y2—-139 N 1 9

x24+y2  ox x4y 9y x24y20z
e by 8+ y d VxZ4+yr2—139
ST X2 ox | X242 ay JrZ+y? 8z

whose dual basis is

e = —

€ =

(6.126)

_ —ydx+xdy
Va2 +y?
92_ /x2+y2_

1 dz
(xdx +ydy) + —— (6.127)

x2 + 2 x4 y2

91
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93=xdx+ydy_ x2+y2—1dz
X2+y2 x2+y2 :

The computation of the exterior derivative of these 1-forms is simplified by the fact
that d(x% + y2) =2(xdx + ydy). A straightforward computation yields

2 2_1
o' = —— 291A93—-4i%i13——91A9%
xX“+y xXc+y
1
(w2=-7:7792A9% (6.128)
x+y
do? A

— 1 02
(2 +y)yx2+y2—1

(Note that these equations imply that the three 1-forms 6’ are integrable or, equiva-
lently, that the pairs of vector fields {e;, e>}, {e>, e3}, and {es, e;} generate integrable
distributions.)

Comparison with (6.64), using the fact that Iz = —1I'jix, shows that the only
nonzero Ricci rotation coefficients for the orthonormal basis (6.126) are given by

VxZ4+y2—1

M2y = :
121 e
1
I3 =131 =———, 6.129
m=ln==50 ( )
r 1
233 =— -
(2 +y)/x2+y2—1

Hence, with respect to the orthonormal basis {X|, X,}, dual to {¢', ¢?}, the shape
operator is represented by the matrix

1 (—1 0>
cosh2y \ 0 1)~

Therefore, the mean curvature of the catenoid is indeed equal to zero, while its
Gaussian curvature is K = —1/ (cosh* ).

Exercise 6.48 Consider the helicoid, which is a surface in R3 that can be defined
by

i*x =avcosu,
. .
i*y =avsinu,
i*z=bu,

where a, b are positive real constants. Construct an orthonormal basis {eq, €3, €3}
such that, at the points of the surface, e; and e, span the tangent space. Find the
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shape operator making use of the first Cartan structural equations and show that the
mean curvature is zero.

Exercise 6.49 Let p € X and let n be a unit vector field defined on a neighborhood
of p in M, such that at the points of X', n is normal to the surface. Show that

1
H(p) = 7 (divm)(p).

(Hint: the conclusion can readily be obtained making use of (6.109) and (6.119).)



Chapter 7
Lie Groups

7.1 Basic Concepts

A Lie group is a group that possesses, in addition to the algebraic structure of a
group, a differentiable manifold structure compatible with its algebraic structure in
the sense that the group operations are differentiable functions.

Definition 7.1 Let G be a group which is a differentiable manifold. We say that G
is a Lie group if the map from G x G into G given by (g1, g2) — g1£2 and the map
from G into G given by g — g~ !, where g ! is the inverse of g, are differentiable.
The dimension of the group is the dimension of the manifold.

Roughly speaking, if G is a Lie group, there exist locally coordinates labeling
the elements of the group in such a way that the coordinates of the product g;g»
are differentiable functions of the coordinates of g and g». The coordinates of g~!
must be differentiable functions of those of g. In this context, the coordinates are
also called group parameters.

Example 7.2 The space R" where the group operation is the usual sum of n-tuples,
with its usual differentiable manifold structure (see Sect. 1.1), is a Lie group of di-
mension n. In fact, if (x!,...,x") is the natural coordinate system of R”, we have
xi(gg) =x'(g) + x'(¢g’) and x* (g~ 1) = —x(g), which shows that the coordinates
of gg’ are differentiable functions of the coordinates of g and g’, while the coordi-
nates of g~ ! are differentiable functions of the coordinates of g.

Example 7.3 Let GL(n, R) be the group of non-singular n x n real matrices, where
the group operation is the usual matrix multiplication. Each g € GL(n, R) is a matrix
(ai.) and the n? functions xj. :GL(n, R) — R, defined by x;. (o) = a;, can be used as
coordinates in all of GL(n, R). The atlas containing this chart of coordinates defines
a differentiable manifold structure for GL(n, R). Since x’l (gg)) = x,’;(g)xf (g") and

G.F. Torres del Castillo, Differentiable Manifolds, 161
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x; (g_l) is a differentiable function of the x;. (g) (specifically,

1

—1 2w jn in
x(g7) = mekiz...i,,El” Mxp(g) X (8),
where
Eiriyi) = gli1i2in
1 if (i1, ..., i,) is an even permutation of (1,2, ...,n),
=4 —1 if(iy,...,i,) is an odd permutation of (1,2, ...,n),

0 if one of the values of the indices appears repeated,

ie., xj. (g~ 1) is a rational function of the x§ (g) and the denominator in the preced-
ing expression does not vanish because g is a non-singular matrix), GL(n, R) is a
Lie group of dimension n2. The group GL(n, R) is Abelian only when n = 1 and
GL(1, R) can be identified with R \ {0} with the usual multiplication.

Example 7.4 Any pair of real numbers a, b, with a # 0, defines an affine motion
of R, given by x + ax + b. One can readily verify that these transformations form
a group under the composition. It is convenient to note that

6 H0)-7)

which shows that the affine motions of R can be represented by the 2 x 2 real

matrices of the form (“ b), with a # 0, which form a group with the usual matrix

01
multiplication. By associating the matrix (g i’ ) to the transformation x +— ax + b,

the composition of two transformations of this class is associated with the product
of the corresponding matrices.
The coordinate system (x!, x?) defined by

xlg) x%(g)
— 7.1
g < 0 . (7.1

covers the entire group and, therefore, defines a differentiable manifold structure
(the image of the entire group under this chart of coordinates is {(x, y) € R? | x 0},
which is an open subset of Rz). The product of two matrices, g and g’, of the form
(7.1) is another matrix of the same form with

xggh) =x'(ox'(g),  x*(gg) =x"(9)x*(g) +x*(g) (7.2)
and
1,-1y_ | 2(,—1 __xz(g)
x(g )_xl(g)’ x(g )— xl(g)' (7.3)

The differentiability of these expressions implies that we are dealing with a Lie
group (recall that x!(g) cannot be equal to zero). It may be noticed that this group is
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not connected (the set of matrices with x! > 0 is separated from the set of matrices
with x! < 0, but is simply connected (a closed curve is shrinkable to a point).

Example 7.5 The group SL(2, R) is formed by the 2 x 2 real matrices with deter-
minant equal to 1, with the usual operation of matrix multiplication. Any element of
this group in a neighborhood of the identity is of the form (Z a +lf o)/ a), with a # 0;

therefore we can define the local coordinate system (x', x2, x>) by

g x%(g) 1
g= oo | xe #o0. (7.4)
A Leipre

Calculating the product of two elements of this group, g and g’, expressed in the
form (7.4), we find that

x!(gg) = x"(@)x' (g + ¥} (9)x° (&),

1 20 N3/
x*(gg") =x"(9)x*(g) +x2(8)w
x'(g)

2 3
I+x 1(g)x (g)x3 @)
x'(g)

; (1.5)

x(gg) =x*(g)x' (g +

[assuming that x!(gg’) # 0, so that gg’ is also of the form (7.4)]. Calculating the
inverse of the matrix in (7.4) one has

1(o-1y = LFF@x ()
) =0
(g7 = —x*(g), (7.6)

(g =-x(g).

’

Taking into account that x! does not vanish in the domain of the coordinate system
defined in (7.4), the expressions (7.5) and (7.6) are differentiable functions. The
coordinate system x' does not cover all of the set SL(2, R), but together with the
coordinates (y!, y2, y*) given by

Yl ¥

g = 1 3(0)—1
dapost i)

. Y@ #0, (7.7)
it forms a subatlas that defines a differentiable manifold structure for SL(2, R). Con-
sidering the possible products of matrices of the form (7.4) by matrices of the form
(7.7), the result must be of the form (7.4) or (7.7), which leads to expressions sim-
ilar to (7.5), showing that the mapping (g, g’) — gg’ is differentiable. Similarly,
expressing the inverse of a matrix of the form (7.4) or (7.7) in the form (7.4) or
(7.7), one obtains differentiable expressions analogous to (7.6), leading one to con-
clude that SL(2, R) is a Lie group of dimension three.
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Example 7.6 The group SU(2) is formed by the complex unitary 2 x 2 matrices
with determinant equal to 1, with the usual operation of matrix multiplication. It can
readily be seen that any element of SU(2) is of the form ( _“CJS:’ . ;J_F;Z), with a® +b%+
¢ + d? = 1, which means that the set SU(2) can be identified with S3, the sphere
of radius 1 in R*. In a neighborhood of the identity we can define the coordinate

system (x', x%,x3) in such a manner that if g = (fcﬁfd ;ii) then x'(g) = —d,

x2(g) = —c, x3(g) = —b, witha = \/1 — >3 | [xi(g)]2. Thatis,

h(g) —ix3(g) —x%(g) —ix!(g) >
= , withh= |1-— ) > 0.
¢ (xz(g) —ix'(g) k() +ixr’(g) Z(X )

(7.8)
It may be noticed that x!(e) = x2(e) = x3(e) = 0, where e is the identity of the
group, and that the coordinate system (x!, x2, x3) covers almost one half of SU(2),
corresponding to a > 0.
Calculating the product of two matrices of the form (7.8), it can readily be seen
that

x'(gg") =x"(@h(g") + h(g)x' (g) + x*(9)x’ (&) — ¥’ (9)x* (g,
x2(g8) = x*(@h(g) + h(®)x* () + x(9)x' (g —x' (9)x’(g).  (7.9)
x(gg") =x7(9h(g)) + h(g)x*(g) + x' (9)x*(g) — x*(9)x' ().

and

x(g7h) =—x'(9). (7.10)

These expressions are differentiable functions for z(g), h(g’) > 0. As in the previ-
ous example, it is necessary to consider additional coordinate systems in order to
cover the whole group and it can be verified that SU(2) is a Lie group of dimen-
sion three.

Example 7.7 Let SE(2) be the group of all the isometries of the Euclidean plane that
preserve the orientation (translations and rigid rotations), with the group operation
being the composition. Using Cartesian coordinates in the plane, each element g of
this group can be characterized by three real numbers x(g), y(g), and 6(g), where
(x(g), y(g)) are the coordinates of the image of the origin under the transformation
g and 6(g) is the angle between the new x axis and the original one. (Here we are
considering active transformations; the points of the plane move under the trans-
formation, with the coordinate axes fixed.) It can readily be seen that if gg’ is the
transformation obtained by applying g after having applied g’, then

x(g8") = x(g) +x(g')cosb(g) — y(g')sinb(g),
y(gg) = y(g) +x(g')sinb(g) + y(g') cosb(g), (7.11)
6(gg") =06(g)+0(g)
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(these formulas can be obtained taking into account the fact that under the trans-
formation g, a point of the plane, with Cartesian coordinates (a, b), is mapped
into the point with coordinates (x(g) + acos6(g) — bsinf(g), y(g) +asinf(g) +
bcosO(g)) and then calculating the effect of the composition of two transformations
g and g’). Similarly, for g!, the inverse transformation of g,

x(g7") = —x(g)cosf(g) — y(g)sind(g),
¥(g7") = x(g)sin6(g) — y(g) cosb(g), (7.12)
0(g7") =—0(2).

In order for (x, y, #) to be a coordinate system it is necessary to restrict the values
of 9, for instance, imposing the condition —7 < 6(g) < m (so that the image of this
chart is an open subset of R3 and @ is single-valued); hence, this chart of coordinates
will not cover all of the group, but, as in the two previous examples, introducing
additional coordinate systems in a similar way, it can be verified that SE(2) is a Lie
group of dimension three.

Equations (7.11) and (7.12) can also be obtained associating with each g € SE(2)
the matrix

cosf(g) —sinf(g) x(g)

p(g)=| sinf(g) cosO(g) y(g) |- (7.13)
0 0 1

Then it can be verified that p(gg’) = p(g)p(g"). By virtue of this relation, the map
g — p(g) is a matrix representation of the group SE(2). In general, if G is any
group, a matrix representation of G is a map, p, that assigns to each element g € G
a non-singular square matrix, p(g), in such a way that p(gg’) = p(g)p(g’), for any
pair of elements g, g’ € G.

Exercise 7.8 Let G be a group which is a differentiable manifold. Show that G is a
Lie group if and only if the map from G x G into G given by (g1, g2) — glgg1 is
differentiable.

Definition 7.9 Let G be a Lie group. A Lie subgroup of G is a subgroup of G which
is a submanifold of G.

Thus, in Example 7.7, the set H formed by the elements with 6 = 0 is, clearly,
a submanifold of G. Using (7.11) and (7.12) it can readily be verified that H is a
subgroup of G; hence, H is a Lie subgroup of SE(2) (which corresponds to the rigid
translations of the plane).

Exercise 7.10 Show that the set SL(n, R), formed by the real n x n matrices with
determinant equal to 1, is a Lie subgroup of GL(n, R).
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7.2 The Lie Algebra of the Group

In this section we shall show that each Lie group possesses an associated Lie algebra
whose properties reflect those of the group.
Let G be a Lie group. For g € G, L, denotes the map from G onto G defined by

Lo(gh=gg', forg'eG

(sometimes called the left translation by g). Similarly, R, : G — G (the right trans-
lation by g) is defined by

Re(g)=g'g, forg' €G.

From the definition of a Lie group it follows that L, and R, are differentiable maps
and, furthermore, are diffeomorphisms since (L g)_l = Lg—l and (Rg)_l = qu
forallgeG.

Exercise 7.11 Show that Lg, ¢, = Lg 0 Lg,, Rg gy = Rg, 0 Rg,, and R, 0 Ly, =
Lg, o Ry, for g1, €G.

Definition 7.12 Let X be a vector field on G. We say that X is left-invariant if
L,*X =X for all g € G; analogously, X is right-invariant if R;*X =X for all
g€eG.

In other words, X is left-invariant if and only if X is L¢-related with itself for all
g € G (see Fig. 7.1); therefore, X is left-invariant if and only if [see (1.40)]

(Xf)oL,=X(foLg), forallgeGandfeC™(G).

From this expression we see that if X and Y are two left-invariant vector fields, then
the linear combination aX + bY, for a, b € R, and the Lie bracket [X, Y] are left-
invariant (see Sect. 1.3). This means that the left-invariant vector fields form a Lie
subalgebra of X(G). Of course, something analogous holds for the right-invariant
vector fields. (Clearly, if G is Abelian, the left-invariant vector fields coincide with
the right-invariant ones.) The Lie algebra of G, denoted by g, is the Lie algebra of
the left-invariant vector fields on G.

If X € g, then, for g € G, we have X = Lg—] *X; hence, X, = (Lg_l*X)g, that is
[see (2.24)],

X, = LgseXe, (7.14)

where e denotes the identity element of G. Therefore, a left-invariant vector field is
uniquely defined by its value at the identity.

From the foregoing formula it follows that each tangent vector £ to G at the
identity (¢ € T, G) defines a left-invariant vector field X, given by

X, = Lguek. (7.15)
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Fig. 7.1 A left-invariant vector field on G

The vector field thus defined belongs effectively to g, since if f € C°°(G) and
g, ¢ € G, using (1.30), (7.15), the chain rule (1.25), the fact that Ly =LgoLyg,
and (1.23), we find

(Xf)oLg)(gh = Xf)(gg)
= Xeg'[f]
= (Lgge8)Lf]
= (Lgrg (Lgiet))f]
= (Lgxg'Xg)Lf]
=Xy[f oLg]
= (X(foLy)(&)-
Thus, there exists a one-to-one correspondence between the Lie algebra of G and

T,G. Using this correspondence the bracket of any pair of elements & and ¢ € T,G
is defined by means of

£, ¢1=1X, Y], (7.16)

where X and Y are the left-invariant vector fields such that £ = X, and ¢ = Y,.
With this bracket, T,G becomes a Lie algebra isomorphic to the Lie algebra of the

group.
Exercise 7.13 Show that, effectively, T, G is a Lie algebra.

The existence of this isomorphism between the left-invariant vector fields and
the tangent vectors at the identity shows that the dimension of the Lie algebra of G
coincides with the dimension of G.

Example 7.14 Let us consider R" with the structure of Lie group defined in Exam-
ple 7.2, and let (x', ..., x™) be the natural coordinates of R”". Then, (x o Ly)(g)=
x'(gg) =x'(g)+x(g), for g, g’ € R", thatis, x' oL, = x'(g) +x'. Any & € T,R"
is of the form & = a’(3/3x"), with a’ € R. The left-invariant vector field corre-
sponding to £ is given in these coordinates by [see (7.15) and (1.24)]
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. ) ar . d
Xe= Lot = Lo (57 ) = (530) [ o2 (5 )

ey . . B e e
=al<—i> [xj(g)+xj]<—j) =a’8{<—j> =a’(—i> s
ax' /, 0x ¢ 0x ¢ 0x ¢

that is, X = a’(3/0x"). For ¢ = b (3/dx"),, the corresponding left-invariant vector
field is then Y = bi(a/axi); therefore, [X, Y] =0 and [&, ¢] =[X, Y], =0, that is,
the Lie algebra of this group is Abelian. (In fact, as shown in Sects. 7.3 and 7.5, the
Lie algebra of a group is Abelian if and only if the group is Abelian.)

Example 7.15 Let GL(n, R) be the Lie group with the coordinates x; defined in
Example 7.3. We then have (x; o Lg)(g) = x;-(gg’) = x,’;(g)xj?(g’), for g, g’ €
GL(n, R), that is, x; oL, = x,i (g)x;?. Any tangent vector to GL(n, R) at the identity

is of the form & = a§ (a/ axj)e, with aj. € R, and the corresponding left-invariant
vector field is

: 0
Xg = Lg*e'g Zal/Lg*e(_i)
: axj e

(50) o255
=a\ _ ) |xf oL, | —
](8x;>e[ m e g] 8x,’§, g
) 0
=a’ - *()xl (—)
(o) bl ().

J

. )
= dix{(9) (—)
k 9
I axj 2
that is,
X =aixt (7.17)
J7 gk

j
Thus, the left-invariant vector fields on GL(n, R) are in a one-to-one correspondence
with the real n x n matrices. If A = (a}), we will denote by X4 the vector field
(7.17). _ _
If¢= b’j 9/ ax;)e is another element of T,GL(n, R), then the corresponding left-
invariant vector field is Xp = baxf(a / ij? ), where B = (b;). A direct computation
yields [X4, Xp] = (a},b" — b},a)x} (3/9x}) and, since x{ (¢) = 5}, we have

. . d
[s,g]z[XA,XB]ez(a;nb;"—bina}’“)( ) :

dxt
J

Noting that a,,b"" — b},a’’" are the entries of the matrix [A, B]= AB — BA, we

conclude that [X4, Xg] = X4, 5]
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In other words, associating to each element of 7,GL(#n, R) the matrix formed by
its components with respect to the basis {(9/ Bx;)e}, the matrix associated with the
bracket of a pair of elements of 7,GL(n, R), is the commutator of the corresponding
matrices. Furthermore, X,4+55 = aX4 + bXp, for a, b € R. For these reasons, the
Lie algebra of the group GL(n, R), denoted by gl(n, R), is identified with the space
of n x n matrices, where the bracket is given by the commutator.

Example 7.16 For SL(2,R) with the coordinates defined by (7.4), equations (7.5)
amount to

()c1 oLyg) =x'(g)x" + x%(g)x>,

1+ x2x3
(x2 o Lg) = xl(g))c2 + xz(g)4

’

x!
1+22()x () 5.

(x3 oLyg) =x3(g)x! + (2) ;

hence, if the left-invariant vector fields X;, X», X3 are such that (X;), = (9/ ax1),,
then, for instance, taking into account that x! (e) =1, xz(e) =0=2x3(e),

XD)e=L (i) :<i) [xjoL ](i)
s \axt ), \ax! )/, N\oxi /,
3 1+ x2x3 d 3
=stw(5), 0o (), 0 (),

=x( )(i) —x%( )(i) +x3( )(i)
=18 Bxlg 8 szg 8 8x3g’

ie.,
0 0
_ 1 2 3
Xl—x F— ﬁ 8_x3’ (718)
and in a similar way one finds that
X, = x! 2
2=X ﬁ’
(7.19)
o 20 +1+x2x3 3
=x"—+4+ ———=.
: ax! xb o 9x3

It should be noticed that these expressions are local [valid only in the domain of
the coordinates (x 1 x2 43 )], but that, in all cases, the left-invariant vector fields are
globally defined (even if, as in the case of GL(n, R), G is not connected). Among
other things, this means that any Lie group is a parallelizable manifold.

Since SL(2,R) is a Lie subgroup of GL(2, R), the left-invariant vector fields
(7.18) and (7.19) must be expressible in the form (7.17), in terms of the coordi-
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nates x} From (7.4) we find that the inclusion i : SL(2, R) — GL(2, R) is given
locally by

and hence, using (1.24),

d ol 0
ke XDe=lse|l — ) = —) - | —S ) .
xe (X1)e *c(axl)e (axll)e <8x22>e
d ol
ixeXe=lse|l =— ) = — )
e (X2)e *c(axZ)e (ale)e
d ol
ek =i (55 ) = (55)
*e e e\ 5y3 . ax% .

Thus, the matrices associated with the vector fields (7.18) and (7.19), in the sense
defined in the preceding example, are

1 0 0 1 0 0
X]I—)(O —l>’ le—)(o 0), X3I—><1 0). (7.20)

The matrices (7.20) have trace equal to 0 as a consequence of the fact
that SL(2,R) is formed by matrices with determinant equal to 1. The group
SL(2,R) corresponds to the submanifold of GL(2, R) defined by the equation

xllx% —x2 2 = 1; therefore, if X, = a'. (8/8x )e 1s tangent to this submanifold,

0=X,[x! x2 — x2 2] (see Sect. 4.2). Hence, takmg into account that x] (e) = 8;,
we obtain "1 + a2 =0, that is, tr (ai.) =0.

Exercise 7.17 Show that if £ =a(d/dx), + b(3/dy). + c(3/36), is a tangent vec-
tor to the group of isometries of the plane at the identity, expressed in the coor-
dinates defined in Example 7.7, then X = (acosf — bsin6)(d/dx) + (asinf +
bcos0)(9/dy) + c(3/36) is the element of the Lie algebra of the group such that
& =X,.

Exercise 7.18 Show that the Lie algebra of SO(n) = {A € GL#,R)|
detA =1, AA' = I} can be identified with the set of skew-symmetric n x n ma-
trices.

Exercise 7.19 Show that if X;, X5, and X3 are the left-invariant vector fields on

SU(2) such that (X;), = %(8/ dx')., where the x’ are the coordinates defined in
(7.8), then

X; = 2( o jzls,lkx T) (7.21)
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(The factor 1/2 included in the definition of the X; is introduced in order for them
to coincide with the elements of the basis of su(2) [the Lie algebra of SU(2)] com-
monly employed.)

Exercise 7.20 Making use of the formulas (7.2), find the left-invariant vector fields
on the group of affine motions of R, considered in Example 7.4, whose values at the
identity are (3/9x"), and (3/8x?).. Show that [(8/3x"),, (3/0x%).] = (3/3x?)e.

The Structure Constants Let {£1, &, ..., &,} be a basis of T, G, since the bracket
[&i,&;] belongs to T, G, and then there exists a set of real numbers cf.‘j @i, j, k=

1,2,...,n) such that [§;,§;] = cf.‘j &x. Denoting by X; the element of g correspond-

ing to &;, we have [X;, X;] = cl’-‘»Xk. The scalars cf? are called the structure con-
stants of G with respect to the basis {X;}. The skew-symmetry of the bracket and
the Jacobi identity imply that the structure constants must satisfy the relations

oy =—c; (7.22)
and
C?}'Cfnk + c;?‘lkcfni + i C;lnj =0, (7.23)
respectively.

Exercise 7.21 Calculate the structure constants of R”, the group of isometries of
the plane, SL(2, R), and SU(2).

The fact that the values of the structure constants depend on the basis of g cho-
sen means, among other things, that it is possible to obtain some simplification in
the expressions for the structure constants by conveniently choosing the basis of g.
A simple example is given by considering the Lie algebras of dimension two. If
{X1, X5} is a basis of g (or of any real Lie algebra of dimension two), we neces-
sarily have [X1, X1] =0 = [X>, X>] and [X1, X5] = —[X3, X1], so that the only
relevant bracket is [X, X;], which must be of the form aX; + bX, with a, b € R.
(Note that when the dimension of the algebra is 2, the Jacobi identity is identically
satisfied as a consequence of the skew-symmetry of the bracket, and therefore there
are no restrictions on the values of a and b.)

It is necessary to analyze separately the following two cases:

(i) both coefficients are zero, a = b =0,
(ii) at least one coefficient is different from zero.

In the first case the algebra is Abelian and cf.‘j = 0 with respect to any basis. In
the second case, assuming, for instance, b # 0, owing to the bilinearity and the
skew-symmetry of the bracket it follows that the set {X},X)}, with X = b 1X,,
X/, = aXj + bXy, is a basis of g such that [X/, X}] =X, (cf. Exercise 7.20).

Thus, for any Lie algebra of dimension two we have cf.‘j = 0 (the algebra is
Abelian) or it is possible to choose a basis for which the only structure constants
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different from zero are

ch=1 g =-I (7.24)
[cf. Erdmann and Wildon (2006, Chap. 3)].
Lie Group Homomorphisms Let G and H be two Lie groups with Lie algebras
g and b, respectively, if ¢ : G — H is a Lie group homomorphism, that is, ¢ is dif-
ferentiable and ¢ (gg’) = ¢ (g)¢(g’), then to each X € g there corresponds a unique

left-invariant vector field on H, which will be denoted by ¢, X, such that X and ¢, X
are ¢-related, i.e.,

beeXg = ($:X)g(). forgeG. (7.25)

Indeed, the condition ¢ (gg’) = ¢(g)¢p(g’) can be written in the form ¢ (L,g") =
L (g)(#(g"). thatis,

poLg=Lgygop, forgeG; (7.26)
therefore, if ¢, X is the left-invariant vector field on H such that

(D4X)e = Pre Xe, (7.27)

then using (7.14), (7.27), the chain rule, and (7.26) we have

(¢*X)¢(g) = L¢(g)*e(¢*x)e = L¢(g)*e¢*exe = (L¢(g) 0 P)seXe
=(do Lg)*eXe = ‘P*ng*eXe = ¢*ng~

Since X and ¢, X are ¢-related, the map X — ¢, X from g into b is a Lie algebra
homomorphism.

Example 7.22 The mapping

a b N a’* ab

0 1/a o 1)
from the group G formed by the upper triangular 2 x 2 real matrices with deter-
minant equal to 1 into the group H of the affine motions of R (see Example 7.4)

is a (two-to-one) Lie group homomorphism. In fact, making use of the coordinate
systems (y!, y?) and (x', x?), on G and H, respectively, defined by

1 2
_(y (& y(
= (76" i) e

and

1 2
g=<x$>x§@>’geH
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(as in Example 7.4), the mapping ¢ : G — H defined above is given by
2
¢*xl — (yl) , ¢*x2 — y1y2 (728)

and is differentiable.
Proceeding as in the examples above, one finds that a basis of g is formed by the
vector fields
1 9 2 0 1 0
Xi=y FIRRAP X2=yW (7.29)
on G. With the aid of (1.24), (7.28), and (7.29) one finds that, for g € G,

. ad
¢*g(X1)g = (Xl)g [¢*xl] <8xi )
#(2)

1 2 0 1 0
=2(y'(9) (—8x1> = <2x —axl) ,
¢ (g) ¢ (8)

* 1 0
¢*g(X2)g = (X2)g[ X ]<8xi)¢( )
8

1 2 a 18
(), 3.,
@) 9x%/ 4(e) x>/ 4(4)

On the other hand, a similar, direct computation shows that the vector fields
x'9/8x! and x! 3/3x2 form a basis of §j (see Exercise 7.20) and, therefore, in this
case the mapping X — ¢, X is an isomorphism of Lie algebras.

It may be remarked that the mapping ¢ considered in this example is not injective
nor surjective; however, the mapping ¢, : g — b is one-to-one. Also note that even
in those cases where ¢ is not surjective, the vector field ¢, X, as any left-invariant
vector field on a Lie group, is defined at all the points of H.

Example 7.23 Since the determinant of a product of n x n matrices is equal to
the product of their determinants, the mapping det : GL(n, R) — R\ {0} is a Lie
group homomorphism, considering R \ {0} as a group with the multiplication; the
differentiability of the mapping is evident from its explicit expression in terms of the

coordinates x! of GL(n, R), det = %gil.‘.in sfl"'j"xj.'l . x’l:: Any n x n matrix A =
(a;.) defines an element X4 of gl(n, R) in such a way that (X4), = a} (8/8x;.)e (see
Example 7.15), and det,.(X4), = a} det*e(a/ax})e = a}(a/ax})e(x odet)(9/9x)1,
where x is the natural coordinate of R \ {0} (i.e., x = id). By means of a simple
calculation, taking into account that x,.j (e) = 8ij , one obtains

d 9 9 1 S .
<—> (x odet) = ( . ) det = ( . ) — &y, &It
x5/ axt /e dxt ) on! /1 Jn

1 A . ,
e ogll2ednglz gl 8.
(D1 iin &0 0 =0
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(0 (0 d
det, X4), = dety. a* _ | =d|— ) =wrA|—) .
(detXa)e e*ea]<ax}>e al<8x>1 ' <3x>1

Hence, just like X4 is identified with the matrix A, its image under det, is iden-
tified with the trace of A. According to the previous results, it follows that the map-
ping A — tr A is a Lie algebra homomorphism, which simply amounts to saying that
the trace of the commutator of any two matrices is equal to zero (the Lie algebra of
R\ {0}, as any Lie algebra of dimension one, is Abelian), tr[A, B] =[trA,tr B] =0
and that the trace is a linear mapping.

thus,

Two well-known examples of Lie group homomorphisms are the following. Let
G be the additive group of the real numbers and let H be the group of the complex
numbers of modulus equal to 1 with the usual multiplication (identifiable with the
unit circle S!). Then, the map x — e is an infinite-to-one homomorphism (the
kernel of this homomorphism is formed by all the integral multiples of 2m). The
second example corresponds to the two-to-one homomorphism between SU(2) and
SO(3). In order to give explicitly this homomorphism it is convenient to make use
of the Pauli matrices

1_(0 1 2 (0 —i 5_(1 0
":(1 0)’ C"(i o)’ "—(o -1)

which form a basis for the real vector space formed by the traceless Hermitian 2 x 2
complex matrices. Furthermore, the Pauli matrices satisfy

3
olol =571+i) e*ok, (7.30)
k=1
where I denotes the 2 x 2 unit matrix.
If g € SU(2), then, fori =1,2, 3, g’la’g is also a traceless Hermitian 2 x 2

complex matrix and therefore there exist real numbers, a§ (which depend on g)
such that

g_laigzai-aj, i=1,2,3. (7.31)

As we shall show now, (a;) belongs to SO(3), i.e., (a?) is an orthogonal 3 x 3 real
matrix with determinant equal to 1. To this end, we calculate

3
¢ lololg=g"" <5ij1 + iZsiijk>g

k=1

3
=48] —i—iZs"jkg*lakg
k=1
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3
. ) kK
=8I +i E e %ay, o™,

On the other hand,

g lololg=¢"o'gg olg

= a,’;oka,éom
) 3
= a,’ca,/,, skm +iZsk’"r0r .
r=1

Using the fact that {/, o 1 o2, 03} is linearly independent, it follows that
alapskm = s, > elkaf = " alay,.

The first of these equations means that (aj.) is an orthogonal matrix, and from the
second one we have

Zsljk k n(srs — gkmraka’]nan(;rv

and since a ayé”’ = skn. we obtain V" = sk’”’a,ia,]na" which means that

det(aj) =1 (see Example 7.23). Thus, we have a map ¢ : SU(2) — SO(3) given
by ¢(g) = (a;.), with (a;) defined by (7.31).

Combining (7.31) and (7.30), making use of the fact that tro* =0 and tr/ = 2,
and the linearity of the trace, we have

3
tr(g o' go*) =tr (a;ojak) = aj. tr (8‘”‘1 +i Z sjkmom) =2al,

m=1

that is, ai. = ltr(g_1

aj. = xj. (¢(g)), hence

o'go/). In terms of the natural coordinates x; of GL(3,R),

Xj(p(@) = —tr(g 'o'gal). (7.32)

With the aid of the explicit expression (7.32) we can verify that ¢ is a group
homomorphism. Indeed, for g, g’ € SU(2), making use of (7.32) we obtain

1 .
xi(¢(28)) = (g g lolgglol) = S (e” i (¢(9))okg'ad)

. 1 .
=1 (¢(9) St (g7 o g'oT) = 2 (6 (9) ¥ (#(2")-



176 7 Lie Groups

The fact that ¢ is two-to-one is equivalent to saying that there exist only two ele-
ments of SU(2) that are mapped by ¢ to the identity of SO(3) (i.e., ker ¢ consists of
exactly two elements). If g € SU(2) is such that ¢ (g) is the 1dent1ty of SO(3), then
from (7.31) we have g~ 'o’g = o/, which amounts to o'g = go', for i = 1,2, 3.

These equations imply that g is a multlple of I, and from the condition detg =1
one concludes that g = +1.

Lie Subgroups If H is a Lie subgroup of G, the left-invariant vector fields of H,
being defined at e, can be extended to all of G as left-invariant vector fields on G,
using (7.14). In this manner, the Lie algebra of H can be regarded as a Lie sub-
algebra of the Lie algebra of G. Conversely, if ) is a subalgebra of g, h defines
a distribution in G which is involutive and, according to the Frobenius Theorem,
completely integrable. Let H be the maximal integral manifold of this distribution
containing e. Since f is formed by left-invariant vector fields, for h € H, L1 (H)
is also an integral manifold of the distribution that contains the identity; therefore,
L,-1(H) C H, which implies that H is a Lie subgroup of G.

In particular, any X € g different from zero generates a Lie subalgebra of dimen-
sion one, h ={Y € g| Y =aX, a € R}, and the integral manifold of the distribution
generated by X containing the identity (which in this case is the image of a curve)
is a one-parameter subgroup of G (see Sect. 7.4).

Example 7.24 The matrices

(0%) (o)

form a basis of a Lie subalgebra of gl(2, R). Substituting these matrices into (7.17)
one obtains the two left-invariant vector fields on GL(2, R),

NI

1 9 2
— X5 Xo=x— +x1—

1 0 2
X|=x;— +xj T XT3 1
dx,y dx;y dx,

1 9.2
0x; 0xj
Itis convenient to simplify the notation, using (x, y, z, w) in place of (x1 , xz, x? i xz),
so that the vector fields above are
X a 42 d a 0] X a n a
=x—+z——y——w—, =x—4+z—

P TR ey T Yaw 27 T
In order to find the integral manifolds of the distribution defined by X; and X,
in the underlying manifold of GL(2, R), we look for two functionally independent
solutions of the system of linear PDEs X f =0, X5 f =0.

Following the procedure employed in Example 4.1 [see also (4.9)] one finds that
the functions xy, xw, and yz satisfy X f = O (that is, they are constant along the in-
tegral curves of Xj). Similarly, by inspection, x and z are constant along the integral
curves of X5, and therefore xw — zy also satisfies X, f = 0. Hence, xw — zy and
z/x are two functionally independent solutions of the system of equations X; f =0,
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X5 f = 0, which means that the integral manifolds of the distribution under con-
sideration are given by xw — zy = const, z/x = const Since x(e) = 1 = w(e),
y(e) = 0 = z(e), the integral manifold passing through the identity of GL(2, R)
. . . . Xy
is given by xw — yz = 1, z =0, which corresponds to matrices of the form (0 | /x).
These matrices form, effectively, a subgroup of GL(2, R) (cf. Example 7.22).
Alternatively, one can find first two independent 1-forms that, contracted with X
and X3, yield zero. A possible choice is given by the 1-forms

al = (w— yz)dx —xzdy + x2 dw, o = —zzdy 4+ (xw — yz)dz + xzdw,

which can be written in the form
ol :xd(xw—yz)—}—xzyd(i), azzzd(xw—yz)+x2wd<£>
x X

(cf. Example 4.7). Hence, we find again that the integral manifolds sought for are
given by xw — yz = const, z/x = const

Exercise 7.25 Verify that the matrices

1 0 0 1

0 0) 0 0)°
form a basis of a Lie subalgebra of gl(2, R) and identify the corresponding subgroup
of GL(2, R).

7.3 Invariant Differential Forms

In this section we shall see explicitly that from a given Lie algebra one can find a
Lie group. This process is simplified by the use of differential forms.

Let G be a Lie group and let w be a differential form on G, we say that w is left-
invariant if Lg*w = w for all g € G. If w is left-invariant, dw is also left-invariant,
since, according to (3.38), L,*dw = dLg*w = dw. Given two left-invariant differ-
ential forms, w; and w;, the combinations aw| + bwy and w; A wy also are left-
invariant differential forms, for a, b € R [see (2.30) and (3.25)]. Thus, the set of all
the left-invariant differential forms is a subalgebra of the algebra of forms of G,
which is closed under the operator of exterior differentiation.

Exercise 7.26 Show that a O-form on G, that is, a differentiable function
f G — R, is left-invariant if and only if f is constant.

As in the case of a left-invariant vector field, a left-invariant differential form is
determined by its value at the identity. Therefore, the set of left-invariant k-forms
forms a vector subspace of AK(G) of dimension (-
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Exercise 7.27 Let o be a left-invariant 1-form. Show that oy = @, o L ¢ for

g€eg.

’l*g’

According to the formula g =, o L e lxg> established in Exercise 7.27, if the

x' form a local coordinate system on a neighborhood of the identity, the value of
any left-invariant 1-form « at the identity can be expressed in the form o, = g; dxé,
where the a; are some real numbers. Hence, for any other point g in the domain of
the coordinate system we have [see (1.49) and (1.24)]

0 ; a ;
Qg :O[g<<ﬁ>g) dxg :(X3<Lg—l*g<ﬁ)g> dxg
= ((l] dxﬁ)[(E)g[xk f¢) Lgl](ﬁ>e:| dxg
0 . .
:aj[<ﬁ>g[xf oLg_l]} docy,. (7.33)

Example 7.28 By combining (7.5) and (7.6) we find that

1+x%(g)x*(g)

1 2 3
xoL,1=——FF—"—-—Xx —X X7,
oLg-1 (g) ()
14+ 2 3 1+ 2.3
oL, =1 8T8 (8)x (g)xz—xz(g)ix a )
8 xl(g) x!
o L= —x3(g)x1 +x1(g)x3.

Hence, according to (7.33) one readily sees that the left-invariant 1-forms o' on
SL(2,R), whose values at the identity are dx}, are given locally by

1 2.3
wlzllxdxl—xzdf,
X
2 2.3 252
2:X (I +x7x )dxl+idx2—(x) dx3,
(XI)Z x! x!

@ = —x3dx' +x'dx3.

The exterior derivative of o' is a left-invariant 2-form and therefore can be written as

a linear combination of {w' Aw?, w?* Aw?, w3 Aw'}. A straightforward computation
shows that

do' = —0?* A a)3, dw?® = 20" A a)z, dw’ =20 A 0’.

As shown below, the coefficients in this linear combinations are related to the struc-
ture constants of the group with respect to the dual basis to {a)1 , w2, w3} [see (7.35)].
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Note that these relations, being equalities between left-invariant 2-forms, hold glob-
ally on the whole group manifold, not only in the domain of the coordinate system
employed.

Exercise 7.29 Find a basis for the left-invariant 1-forms of R” and of GL(n, R).

Exercise 7.30 Show that if ¢ : G — H is a homomorphism of Lie groups and w is
a left-invariant k-form on H, then ¢*w is left-invariant on G.

Exercise 7.31 A differential form w on G is right-invariant if Ry*w = w, for all
g € G. Show that if ¢ : G — G is the inversion mapping, ((g) = g~', then (*w is
right-invariant if and only if w is left-invariant.

The Maurer-Cartan Equations Let {wl, ..., "} be a basis for the 1-forms on
G and let {X1, ..., X,} be a basis for the vector fields on G such that o' X;) = 5;
(that is, these bases are dual to each other); then the elements of each of these bases
are left-invariant if and only if the elements of the other are. This follows from
L*[of (X))] = (Lg* o) (Lg*X;) and Lg*8' = &', wherefore (Lg*@')(Lg*X;) =
8; This relation and the fact that for a given basis there exists only one dual basis
prove the assertion above.

If {a)l, ..., "} is a basis of the space of left-invariant 1-forms, then the exterior
products w/ A @ with j < k form a basis for the left-invariant 2-forms. Since de’
is a left-invariant 2-form, de' should be a linear combination (with constant coeffi-
cients) of the products @' A oF with j < k.Infact, if {Xy, ..., X} is the dual basis
to {w, ..., ®"}, the components of dw' are given by [see (3.30)]

. 1 . . .
do' (X;,X¢) = E{Xj (o' Xp)) — Xk (0 (X)) — o' (IX, Xk) }

1 . 1.,
= _sz (X, Xk]) = —5‘01 (e Xi)
1
= _Ecjk’
where the c;k are the structure constants of the group with respect to the basis
{Xi,...,X,}; therefore
dof = — el ol A o (7.34)
p—y 2 jk . .

These relations are known as the Maurer—Cartan equations. Taking into account
the skew-symmetry of the structure constants in the two subscripts [equation (7.22)]
and that of the exterior product of 1-forms, it follows that

do' = — Zc;ka)-i A ok, (7.35)
j<k
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Exercise 7.32 Show that d?’ = 0 amounts to c;'}cfn ot c;."kcfni + el i =0.

Employing the Maurer—Cartan equations it is possible to determine locally the
group G starting from its structure constants. For instance, if cf.‘j =0, that is, if g
is Abelian, equations (7.34) give de' = 0, which means that, locally, there exist n
functions x’ such that ' = dx’ (that is, being closed, the ' are locally exact). The
functions x’ form a local coordinate system, since the ' are linearly independent.
Since, in addition, the ' are left-invariant, L e dx! =dx’,but L . dxi =d(L g*xi );
therefore d(Lg*x' —x') =0, for g € G, and this implies that L,*x' —x' is a constant
(which may depend on g), a’(g). Thus

Lg*xi =x'+d'(g),
hence, for g’ € G such that g’ and gg’ belong to the domain of the coordinates x',
X (88") = (' o L) (8" = (Lg*x) (8" = x'(g) +d' (). (7.36)
In particular, if g’ = e, from the previous equation we obtain
X' (g) =x"(e) +d'(9),
so that a’ (g) = x/(g) — x’ (e) and substituting into (7.36)
x'(gg") =x'(g) +x'(9) —x'(e), (7.37)

and therefore x’(gg’) = x’(g’g), that is, G is Abelian.

If we define y' = x’ — x/(e), then equation (7.37) amounts to y’ (gg’) = y'(g') +
y(g), which is identical to the relation found in the case of the additive group R”
(see Example 7.8); however, since the coordinates x' (and the yi) may not cover
all of G, this does not imply that G be isomorphic to R" globally, but only locally.
As pointed out above, the structure constants determine the group G only locally.
However, the structure constants define a unique simply connected Lie group, which
is a covering group of any other Lie group with the given structure constants [see,
e.g., Warner (1983), Sattinger and Weaver (1986)].

A second example of the determination of the group from its structure con-
stants is given by the Lie algebra of dimension two given by (7.24); in this case
the Maurer—Cartan equations yield

do' =0, do? = —o' A &?. (7.38)

The first of these equations implies that ! is locally exact, that is, there exists
locally a function x! such that

o' =dx'. (7.39)

Substituting this expression into the second equation of (7.38) we have

dw? + dx! /\a)2=0,
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2

. 1 . .
which amounts to d(e* a)z) = 0; therefore, locally, there exists a function x“ such

that
w? =e ¥ dx2. (7.40)

The functions x' and x? form a local coordinate system in some neighborhood in G
dx' Adi?=e" o' N? £0).

From the condition o' = L,*w', for g € G, and equations (7.39) and (7.40) we
have

de! = Ly*dx! =d(Lg*x") =d(x' o Ly),
e—X] dx2 — Lg*(e—xl dx2) :e—(x]oLg)d(xz ° Lg),
which leads to
xloLy=x"+d(g), (7.41)
where a'(g) is a constant (which may depend on g), and d(x? o Lg) =
exl"Lg —x! dx? = e“l(g)dxz; therefore

x’o L,= e ()2 +a’(g), (7.42)

where az(g) is another constant. Evaluating both sides of (7.41) and (7.42) at e we
obtain

M =x'0+a'(®).  x2(g)=c" @x2(e) +d(g).

so that a'(g) = x'(g) — x'(e) and a?(g) = x2(g) — e @' (©x2(¢). Substituting
these expressions into (7.41) and (7.42), and evaluating at g’, we then obtain

xl(ggh =x' (g +x'(g) —x'(e),
2000/ (@) —x"e)[2(, 2 2 (7.43)
x*(gg)=e" @ [x*(g") —x*(e)] + x*(g).
Equivalently, defining the coordinates
yl = e[xlfxl(e)]/2, y2 = [x2 _x2(e)] ef[xlfxl(e)]/z’
equations (7.43) become
y*(g)
yligh

Yiegh=y'@y'@), Y eH=y'(©y e+
It can readily be seen that these equations correspond to the group formed by the

upper triangular 2 x 2 real matrices with determinant equal to 1, with the usual
matrix multiplication, if the elements of this group are expressed in the form

g=<y‘(g) y*(g) )
0 1/y'(e)

(cf. Example 7.24).
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2

. 1_ 1 .
Alternatively, we can make y1 =e¥ ¥ (0 y2 =x° — x2(e), so that equations

(7.43) take the form
Yiggh=y" '),  ygg)=y"(@y () +yi g, (7.44)

which coincide with the equations corresponding to the group formed by the 2 x 2
matrices of the form (y lég) yzl(g)), y!(g) > 0, with the usual operation of matrix
multiplication (see Example 7.4).

Exercise 7.33 Verify that the structure constants 6%3 = —c%l = 1,c§3 = —c%z =k,
with all the others being equal to zero, define a Lie algebra of dimension three, and
find the local expressions for the operation of the corresponding group or groups,
by integrating the Maurer—Cartan equations.

Exercise 7.34 Verify that the structure constants C%z = —c%l =1, 6%3 =
—c%l =1, cf3 = —cg | = 1, with all the others being equal to zero, define a Lie

algebra of dimension three, and find the local expressions for the operation of the
corresponding group or groups, by integrating the Maurer—Cartan equations.

Invariant Forms on Subgroups of GL(n,R) In the case of the Lie subgroups
of GL(n,R), there exists a particularly simple form of finding a basis for the
left-invariant or the right-invariant 1-forms. As shown in Example 7.15, the vec-
tor fields xll‘ 9/ 9xX), where the x’ are the natural coordinates on GL(n, R), form
a basis for the left-invariant vector fields of GL(n, R). Hence, if H is a Lie sub-
group of GL(n,R) and {Xj,X>,...,X,}, where p = dim H, is a basis of b, the
Lie algebra of H, then there exist real numbers ()\a);, witha =1,2,...,p and
i,j=1,2,...,n,such that

Xaz(xa)g.x{‘ik, a=1,...,dimH (7.45)

0x;
(see, e.g., Example 7.16) and the n x n matrices A, = (()»a);.) satisfy the commuta-
tion relations [A4, Ap] = AgAp — ApAq = ¢y, Where the ¢, are the structure con-
stants of the basis {X1,X>,...,X,} (see Example 7.15). The 1-forms (L*x;)dx,{,
where ¢ is the inversion map, t(g) = g‘l, form the dual basis to {xf(a/axf)} and,
therefore, are left-invariant on GL(n, R); hence, the restriction of (L*xj.) dx,{ to H is

equal to (ka)};a)“, where the 1-forms w® are left-invariant on H and form the dual
basis to (7.45). .
In effect, from (7.45), using that (L*x;)x,i = 8]’;, we have
() dx{ ] (Xa) = (x5 o) xin = ()
and, on the other hand,

[’ (Xa) = )8 = ()i
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Since at each point of H, the vector fields X, form a basis of the tangent space to H,

it follows that the restriction of (L*xj.) dx,{ to H coincides with ()\;,)f{wb. Thus, we
have proved the following.

Theorem 7.35 If H is a Lie subgroup of GL(n,R) and j: H — GL(n,R) de-
notes the inclusion map, then j*((t*x;) dx,f) = ()La);;a)“, where the w® are the left-
invariant 1-forms on H that form the dual basis to (7.45).

Expressed in matrix form, this theorem shows that if g represents an arbitrary
element of H, then
g~ dg =140, (7.46)
where dg is the matrix whose entries are the differentials of the entries of g.
Example 7.36 The basis of s[(2, R) [the Lie algebra of SL(2, R)] given by (7.18)

and (7.19) is of the form (7.45), where the A, are the matrices given in (7.20).
Making use of the expression (7.4) one readily finds that

1+x12x3 _x2 dxl d_x2
g ldg=| " s
_x3 xl dx3 d( +j:|x )
1+ x2x3
= <+7ldx] —xzdx3))»1
X

(xl)z xl x1

2 2,3 2 252
(.X ( X X) ] 1 X (X) 1 3);2 ( li 3 3:]171))\,3.

According to (7.46), the coefficients of the matrices A, are the left-invariant 1-forms
that form the dual basis to (7.18) and (7.19), and they coincide with the left-invariant
1-forms obtained in Example 7.28. (See also Examples B.1, B.6, and B.8.)

Exercise 7.37 Find the basis of the left-invariant 1-forms for the group formed by
the real 2 x 2 matrices of the form ()(; i’), with xz # 0, dual to the basis of left-
invariant vector fields corresponding to the matrices

1 0 0 1 0 0
)\.15(0 0), sz(O 0), )»35(0 1).

In a similar manner one finds that the vector fields

. .0
X‘,:(Aa)’jx,{F, a=1,...,dimH,
X

k

form a basis for the right-invariant vector fields on H and its dual basis, {w?}, is
such that j*(x; d(t*x)) = —(A,)i " or, equivalently, j*((*x}) dxj.) = ()" In

terms of matrices, we have gdg~! = —A,®“, which amounts to (dg)g~" = A.a%.

Comparing with (7.46) it follows that ®* = —t*w? (cf. Exercise 7.31).
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7.4 One-Parameter Subgroups and the Exponential Map

In any Lie group, the one-parameter subgroups are particularly important. A set of
elements of G, {g;}, with € R, is a one-parameter subgroup of G if g;gs = g+
and if g, depends differentiably on the parameter 7. This implies that gop = ¢ and
that g_; = (g;)~'. The map from R into G given by ¢ — g; is then a (differentiable)
curve in G starting at the identity. The following result relates the one-parameter
groups of G with the left-invariant or right-invariant vector fields and is a particular
case of the relation between subgroups and subalgebras mentioned at the end of
Sect. 7.2.

Theorem 7.38 Let {g;}, with t € R, be a one-parameter subgroup of G; then the
curve t — g, is the integral curve starting at e of some left-invariant (or right-
invariant) vector field.

Proof Let & be the tangent vector to the curve o (1) = g, att =0,& = 06, that is,

d
§171= 3 (f@&)|_, forfeC¥(G). (7.47)
Similarly, the tangent vector to this curve at t =s, o, is such that

’

t=s

, _ d
o, f1= a(f(gt))

but g; = g,8:—s and making the change of variable u =t — s, we have

) d d
o [ f1= E(f(gxgm))‘ = E(f(gsgu))‘

t=s u=0
d
= (o Le)(@)|,_ =81F o L) = LsebLf)

that is, 0] = Lg & = Xy, = Xo(s), where X is the left-invariant vector field such
that X, = & [see (7.15)]. Thus showing that ¢ is an integral curve of X.
Alternatively, from the previous expressions we also have

e d _d
oi1f1= - (£(8u8))| _ = 1-((F o Re) (&)
=&[fo Rgs] = (Rgx*eé)[f]a

u=

which means that o] = Rg «&, which is the value at o (s) of the right-invariant
vector field whose value at the identity is &. 0

Conversely, given a left-invariant or right-invariant vector field on G (or, equiv-
alently, given & € T,G) there exists a one-parameter subgroup of G, {g;}, such that
t — g; is the integral curve starting at e of the given vector field (or, equivalently,
& is the tangent vector to the curve ¢ — g; at ¢ = 0). Indeed, if X is any vector field
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on G, according to the existence and uniqueness theorems for systems of ODEs (see
Sect. 2.1), there exists an integral curve of X starting at e, defined in some neigh-
borhood I, of O for which we have: if t — ¢(g, ) is the integral curve of X starting
at g, then

p(g.1+95) =9(p(g.1).s), (7.48)

for all those values of ¢ and s for which both sides of the equation are defined [see
(2.6)]. In the case of a left-invariant vector field on G, ¢(g,t) is defined for all
t € R. In fact, if C is an integral curve of X that starts at e [i.e., C(¢) = ¢(e, 1)],
then, for g € G, C‘(t) = (Lg o C)(¢) is defined in the same neighborhood I, of 0
as C and C(0) = Lg(C(0)) = Lg(e) = ge = g. The tangent vector to Catr=0is
Lg*eC’(O) = Lg«e X, = X, since X € g [see (7.14)]; therefore Cisan integral curve
of X starting at g. Since g is arbitrary, from (7.48) we see that ¢(g, t) is defined
for all ¢ € R. On the other hand, C(t) = @(g, 1), that is, p(g,1) = (Lg 0 C)(t) =
gC(t) =go(e,t). Taking g = (e, s) in this equation and using (7.48), we then
obtain

go(go(e,s),t) =g(e,s)pe, t) =ple, t +5), (7.49)

which means that the elements of G defined by g; = (e, t) form a one-parameter
subgroup of G. It can readily be verified, basically replacing L, by R, in the fore-
going derivation, that (7.49) also holds if X is right-invariant.

The element ¢(e, 1) is denoted by expX and the map from g into G given by
expX = ¢(e, 1) is called the exponential map. It can readily be seen that exptX =
¢(e, t) and that exp(s + )X = (exp sX)(exp tX). The element exp(X + Y) may not
coincide with (exp X)(exp Y) unless [X, Y] = 0. The exponential map, exp : g — G,
is not always injective or onto; in some groups there exist elements that are not
the exponential of some X € g (see the examples given below). Nevertheless, any
element of a group G belonging to the connected component of the identity (that is,
it can be joined with the identity by means of a curve in G), can be expressed as the
product of exponentials, exp X exp X» - - - exp Xy (see Example 7.41).

Exercise 7.39 Show that exptX = ¢(e,t). (Hint: consider the curve t(s) =
@(e, st), with ¢ fixed, and calculate 7;.)

Example 7.40 Consider again the group formed by the 2 x 2 real matrices of the
form g = (x l(gg) le(g))’ x!(g) # 0 (see Example 7.4). Each element of this group

can be identified with a point of R? excluding the x> axis, which allows us to see
that this group is not a connected set, but has two components (identified with the
right and left half-planes). Using (7.44), it can readily be verified that the vector
fields X; = x'3/9x!, and X, = x! 9/8x? form a basis of the Lie algebra of this
group (see Exercise 7.20). Any element of this algebra can be expressed in the form
X =ax! 8/8x1 +bx! 8/8x2, with a, b € R; then exp X corresponds to the solution
of the system of equations [see (2.4)]
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Fig. 7.2 The matrix group considered in Example 7.40 is identified with the Cartesian plane with
the vertical axis removed. The point (1, 0) corresponds to the identity and the one-parameter sub-
groups correspond to the intersections of the straight lines passing through (1,0) with the half-
plane x! >0

dx! dx?

— =ax!, — =bx,

dr dr

where, by abuse of notation, we have written x'in place of x' o C, with the initial
condition x'(0) = 1, x2(0) = 0 (so that the integral curve of X starts at e). Then, it
can readily be seen that, if a # 0, x! (r) = e, then x?(t) = b(e™ — 1)/a, that s,

at  b.at _
exth:(eO “(el 1)>, a#0.

When a = 0 one obtains x!(z) = 1, x2(r) = bt. Eliminating the parameter ¢ from
the foregoing expressions, one finds that ax> = b(x! — 1), which is the equation of
a straight line passing through the point (1, 0), which corresponds to the identity
(see Fig. 7.2). Since xl(t) =e% > 0, in this case the image of the exponential map
is one half of G (the connected component of the identity).

Example 7.41 In terms of the parametrization of the group SL(2, R) given by (7.4),
in a neighborhood of the identity, any left-invariant vector field can be expressed in
the form X = a'X;, with a’ € R and {X1, X5, X3} being the basis of s[(2, R) given
by (7.18) and (7.19). The integral curve of X starting at e corresponds to the solution
of the system of equations

dxl

F:alxl—i—a%cz,

dx2

s =—a'x?+ azx], (7.50)
3 2.3

di=a1x3+a31+x1x ’

dt X

where, for simplicity, we have written x’ instead of x’ o C, with the initial condition
x10) =1, x2(0) = 0 = x3(0). By combining equations (7.50) one finds that each
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of the functions x? and (1 4+ x2x3)/x! satisfies the equation

df

1\2 2.3
F = [(Cl ) +a“a ]f,
whose solution is
acosv/Kt +bsinv/Kt if K=—[(a"H?+a%d’1>0,
f(@) =1 acoshy/—Kt+bsinh/—Kt if K <0,
a+ bt if K =0.

Hence, using again (7.50) and the initial conditions, one obtains

sin/K ¢t .
cos\/ftl+—ﬁ A if K >0,
exp(ta’X;) = 1 cosh/—KtI & % {;{KIA ifK <0, (7.51)
I1+1tA if K =0,

where I is the 2 x 2 identity matrix and A = (Z_i _“:1) [cf. (6.27) and (6.28)]. (Note
that K = det A.) Even though the foregoing expressions were obtained making use
of alocal coordinate system, it turns out that equations (7.51) are globally valid [that
is, for any value of ¢ and for any X € s[(2, R)].

For any real number a < 0 and a # —1, the matrix ((6 I?a) belongs to SL(2, R),
but cannot be expressed in the form exp X, as can be seen from (7.51), even though
the set SL(2, R) is connected.

In fact, noting that the trace of the matrix A is equal to zero, from (7.51) we
find that the trace of the exponential of any element of the Lie algebra of SL(2, R)
belongs to the interval [—2, 2], if K > 0; to the interval [2, 00), if K < 0; and is
equal to 2, if K = 0. On the other hand, the trace of the matrix given above is equal
toa + 1/a, which is less than —2 fora < 0, and a # —1.

Now,
a 0Y (-1 0 —a 0
0 1/a)  \ 0 -1 0 —1/a
= exp(n(Xz — X3)) exp(ln|a|X1).

Example 7.42 In the case of the group GL(n, R), any left-invariant vector field is
of the form xll‘a;(a/ax?) [see (7.17)], where (aj.) is some n X n matrix; therefore,
denoting by A the matrix (aj.) and by X4 the vector field xl{‘aj 0/ 8x§? ), as in Exam-
ple 7.15, exptXy4 is the solution of the system of linear ODEs
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with the initial condition, x? li=0 = 85.. Noting that this system of equations can be
written as the matrix equation
dg
dr
where g = (xj.), with g|;=0 = I (the n x n identity matrix), it can readily be seen
that the solution is given by

ng’

o0 A m
s=3 "0

m=0

Hence we have

exptXy = Z A" (7.52)

m!
m=0

The series appearing in this equation is defined as the exponential of the matrix ¢ A
and is denoted by exprA or ¢'4 (cf. Example 6.11). Thus, the exponential of any
X € gl(n, R) can be expressed by means of the series (7.52) which only involves the
components of X, with respect to the natural basis (d/ 8x§):

exptXy4 =exptA. (7.53)

In particular, GL(1, R) is the group R \ {0} with the operation of multiplication, and
therefore for this group the exponential is precisely the usual exponential function.

This result can be applied to the calculation of the exponential for any Lie sub-
group of GL(n, R). For instance, the basis of the Lie algebra of the group SL(2, R)
given by (7.18) and (7.19), corresponds to the matrices (7.20), so that an arbitrary

1 2
linear combination a’X; corresponds to the matrix (“3 _“a,), which will be de-

noted by A as in Example 7.41. It can readily be seen that, for m =0, 1, 2,.
AP = (—=K)"I and A?"*! = (—K)™A, where K = detA = —[(a')? + a2a3].
Therefore, the series (7.52) becomes

0 t2m o t2m

o 2 U am
— A " — A"

B (— l)m Kmt2m S l)m Kmt2m+1
Z 2m)! g 2m + D!

k]

m=0

which coincides with the result (7.51), as can be seen making use of the series
expansions of the functions sin, cos, sinh, and cosh.

Exercise 7.43 Show that for R”, with the group operation being the usual sum,
expa'(0/9x") = (al Jaz, ..., a). Thus, in this case, the exponential map is one-to-
one and onto.
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Exercise 7.44 Using the notation and the results of Exercise 7.19, show that in the
case of the group SU(2) the exponential map is given by

Kt -a3 . Kt —ia'—a? . Kt
cos 5+ — 1% sin &~ =42 gin %~
expral Xo — 2 K 2 K 2
p a t 1 2 3
—ia_+a” . Kt Kt | ia” o Kt
©— sin = €08 5~ + 1% sin =
. 1_:2
Kt i . Kt a>  al—ia
=cos— I — —sin — L 3 (7.54)
2 K 2 \al+ia —a

with K = /(a!)2? + (a2)2 + (a3)2. Thus, for this group, the exponential map is onto
but not injective.

The results of Examples 7.40-7.42, and of Exercises 7.43 and 7.44 do not de-
pend on having considered left-invariant vector fields; the same results are obtained
employing right-invariant vector fields. For a given group, the value of exp X only
depends on X,.

Theorem 7.45 Let G and H be Lie groups, and let g and Y be their Lie algebras. If
¢ : G — H is a homomorphism of Lie groups, then for X € g, we have ¢ (exptX) =
expt(¢«X), where ¢, X is the left-invariant vector field on H such that (¢.X), =
PseXe.

Proof Let y; = ¢ (exptX); then y; is a one-parameter subgroup of H. Therefore,
according to the preceding results, y; = exptY, where Y € b is such that Y, is
the tangent vector to the curve 7 — y; = ¢ (exptX) at ¢ = 0, which amounts to ¢,
applied to the tangent vector to the curve ¢ > exptX at t = 0 [see (1.26)]. Therefore
Y, = ¢y Xe = (¢4 X)e, thus showing that Y = ¢, X. O

Applying this theorem and some of the results established above we have the
following proposition, which turns out to be very useful. Among the consequences
of the following theorem is that the exponential map in GL(n, R) can only yield
matrices with positive determinant and, therefore, is not onto.

Theorem 7.46 Let A be an arbitrary n X n matrix, then dete? = et4,

Proof For any n x n matrix, A, e? = expX, (see Example 7.42) and since
det: GL(n,R) — R\ {0} ~ GL(1, R) is a homomorphism of Lie groups, dete? =
det(exp X4) = exp(det, X4). On the other hand, det, X4 is a left-invariant vector
field on GL(1, R) and, according to the results of Example 7.42, exp(det, X 4) coin-
cides with the usual exponential of the component of (det, X4); with respect to
the natural basis (d/0x);. But, from Example 7.23, (det, X4); = dety.(X4)e =
dety, a.j.(a/axj.)e =trA (d/dx)1, and therefore, deted = elr4, O
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7.5 The Lie Algebra of the Right-Invariant Vector Fields

The set of the right-invariant vector fields on G forms a Lie algebra over R that will
be denoted by g. Each right-invariant vector field, X, is determined by its value at
the identity,

Xg = ReveXes (7.55)

therefore there exists a one-to-one correspondence between g and 7,G, and the
dimension of g is the same as that of 7, G. Making use of this correspondence we
can define a second bracket on 7, G, which will be denoted by [ , 1. If &, ¢ € TG,

[£,¢1" =X, Yl (7.56)
where X and Y are the right-invariant vector fields such that £ = X, and .= Y..

Example 7.47 In the case of the group of affine motions of R, with the coordinates
defined in Example 7.4, the right translations are given by

xloRgle(g)xl, )c2oRg=)c2(g))c1+x2

[see (7.2)]. Making use of (7.55) we find that the right-invariant vector fields X1
and X5, whose values at the identity are (3/dx'), and (3/ 9x2),, respectively, are
given by

. d ; 9 9 9
X1)g = (@)e[x oRg](@)g =x‘<g><ﬁ)g+x2<g><@)g

that is, X; = x!'3/dx! + x23/0x? and, similarly, X, = 9/dx>. Thus, [X, X;] =
—X and therefore [(3/9x")., (8/8x%),]" = —(3/9x2). (cf. Exercise 7.20).

The following theorem relates the bracket (7.56) with that induced by the left-
invariant vector fields, defined in Sect. 7.2.

Theorem 7.48 Let &£, € T,G; then [€,¢] = —[€,C].

Proof Let X and Y be the right-invariant vector fields such that Xe =&, Ye =<,
let X € g such that X, = &, and let g; be the one-parameter subgroup g; = exptX
defined in the preceding section. For g’ € G arbitrary, the tangent vector to the curve
y(t)=Lg (') =88 = Ry (gs) at t =0 satisfies

d

/ _ d _
W= flr®)| =1 (Fo R _

=E[f o Ryl= (Ryseb)[f1= X[ f]

0

[see (7.47) and (1.23)]. This means that X is the infinitesimal generator of the one-
parameter group of transformations L, (i.e., a right-invariant vector field is the
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infinitesimal generator of a group of left translations); hence, according to (2.27)

oo Le*Y —Y
X, Y]=£4Y =lim —— (7.57)
t—0 t
and, from the definition (7.56), equation (7.55), and the chain rule, we have
. . (Lgt*Y)e - . Lg_l*g,Ygt —¢
, =1 =1 !
[5 ¢l t1—r>r(1) 1 tl_I)I(l) t
— im Lgr—l*gt(Rgt*e{) —¢ — lim (Lg,_l o Rg,)*e{ —¢
t—0 t t—0 t
— lim (Rg, 0 Lgfl)*E§ —¢ — im Rgr*gFlYgfl —¢
t—0 t t—0 t
. (Rgt—l*Y)e -Y,
=lim —————— (7.58)
t—0 1

where Y is the left-invariant vector field such that { = Y,.
On the other hand, the tangent vector to the curve §(t) = qu €)=4g'g =
t

8'8—1 = Lg(g—) att =0 satisfies

! = d = i [e] / = —i (¢] /
§LF1= 2/ (60)| _ =3 (foL)e-| _ =—1-(FoLe)gn|

=—E[foLlyl=—(Lgx5f1=-Xg[f],

that is, —X is the infinitesimal generator of the one-parameter group of transforma-
tions Rg—l . Therefore, returning to the last expression in (7.58)
t

(R *I*Y)e -Y.
lim —8

Jim ; =(ExY)e=[-XY]le=—-[XY]le=—[5.¢]. (7.59)

O

Making use of part of the steps of the proof of the previous theorem it can readily
be seen that the following result also holds.

Theorem 7.49 The Lie bracket of a right-invariant vector field with a left-invariant
vector field vanishes.

Proof Let Xe gand Y € g; then, proceeding as in (7.57) we have

Ly*Y—-Y
— =

X, Y] =£4,Y = lim 0,
t—

since Y is left-invariant. O
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If G is an Abelian Lie group, a vector field on G is left-invariant if and only
if is right-invariant, then, according to the previous theorem, if X, Y € g, we have
[X,Y] =0, since Y also belongs to g. Thus, the Lie algebra of any Abelian group is
Abelian.

Theorem 7.50 If G is a connected Lie group and Y is a vector field on G such that
[X,Y]=0,forall X € g, then Y is right-invariant.

Proof Let X € g and let g; = exp X, then

* d * k k
(Rgr Y) ’ t ( 8s (Rgt S Y)) ’ 5= 0 g? d (Rgu Y)
= Ry, " (£xY) = Ry, *(IX, Y]) =0,

since X is the infinitesimal generator of the one-parameter group of transformations
R, and by hypothesis [X, Y] =0 for X € g. Hence, R, *Y does not depend on ¢,
but R, =id, so that Ry, *Y =Y or Rexpx*Y =Y, which means that Y is right-
invariant, at least under the transformations corresponding to elements of G of the
form exptX, but if G is connected, any g € G is a product of exponentials, g =
expX ---exp Xy [see, e.g., Warner (1983, Chap. 3)]. Therefore R,*Y =Y for all
g€G. O

Exercise 7.51 Shqw that if G is connected, a 1-form « is left-invariant if and only
if£ya=0forall X € g.

7.6 Lie Groups of Transformations

The Lie groups more commonly encountered arise as groups of transformations on
some manifold or some vector space. For instance, the isometries generated by the
Killing vector fields of a Riemannian manifold form a Lie group (see, e.g., Examples
6.12, 6.17, and Exercise 6.16). The orthogonal and the unitary groups correspond to
the linear transformations that preserve the inner product of a vector space. Further
examples are given below and in Sects. 8.5 and 8.6.

Definition 7.52 Let G be a Lie group and let M be a differentiable manifold. We
say that G is a Lie group of transformations on M or that G acts on the right on M,
if to each g € G there is associated a transformation from M onto itself in such a
way that if xg denotes the image of x € M under the transformation defined by g,
then the following conditions hold:

(1) The map from G x M in M given by (g, x) — xg is differentiable.
(2) x(g182) = (xg1)g2, for g1, 82 € G and x € M.

We say that G acts on the left on M when condition (2) is replaced by (g1g2)x =
g1(g2x) (now we write gx instead of xg for the image of x under the transformation
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defined by g). From (2) it follows that xe = x for all x € M. In some cases, we shall
also write Ry (x) for xg.

It is said that G acts freely on M if the existence of some x € M such that xg = x
implies that g = e; the group G acts effectively on M if xg = x for all x € M implies
that g = e. In other words, G acts freely on M if the only transformation with fixed
points is the one corresponding to e, whereas G acts effectively on M if the identity
transformation of M only corresponds to e.

Exercise 7.53 Show that G acts effectively on M if and only if distinct elements of
G define distinct transformations on M.

For x € M, the orbit of x is formed by the images of x under all the elements
of G, that is, the orbit of x is the set {xg | g € G}. The group G acts transitively on
M (or the action of G on M is transitive) if the orbit of any point x € M coincides
with the whole manifold M. For instance, the group SE(2) acts transitively on the
plane (see Example 7.7), while the orbits in R3 of the group of rotations about the
origin, SO(3), are spheres and the action is not transitive (however, SO(3) does act
transitively on each sphere centered at the origin).

Let G be a Lie group that acts on the right on a manifold M. Each x € M defines
a differentiable map @, : G — M, given by @, (g) = xg for g € G. For X € g,
g: = exptX is a one-parameter subgroup of G and, therefore, the transformations
Rg,, from M onto M, defined by R, (x) = xg;, form a one-parameter group of
transformations on M (see Sect. 2.1) whose infinitesimal generator will be denoted
by X*. Hence, X{ is the tangent vector at = 0 to the curve 7 > Rg, (x) =xg; =
D, (g1); therefore X;r is the image under @,,, of the tangent vector to the curve
t— g; att =0, which is X,. Thus [see (1.26)]

X =@,.X, (7.60)

[cf. (7.15)]. Since the Jacobian is a linear transformation, we have (X + bY)T =
aXt 4+ bYT, for X, Y € g and a, b € R. As we shall see, the mapping X > X7 is
not only linear, but also a Lie algebra homomorphism (Theorem 7.61).

It may be noticed that, by virtue of the definition of the vector field XT, its
integral curve starting at x € M is given by ¢ = @, (exptX).

Exercise 7.54 Show that if G acts freely on M and X vanishes at some point, then
X=0.

Exercise 7.55 Show that if G acts effectively on M and Xt = 0 (the vector field
whose value is zero everywhere), then X = 0.

Exercise 7.56 Let ¢ : G — H be a homomorphism of Lie groups. Show that for
h € H and g € G, the equation hg = h¢(g), where h¢(g) is the product of two
elements of H, defines an action of G on the right on H. Show that if X € g, then
the vector field X on H is the vector field ¢, X defined in Sect. 7.2.
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Exercise 7.57 Show that if a Lie group G acts on the right on a manifold M with
xg = ¢ (g, x), then G acts on the left on M by means of gx = ¢ (g, x). In other
words, the action of a group on the right can be turned into an action on the left,
replacing g by g~!. (Hint: show that ¢ (g1g2, x) = ¢ (g2, ¢ (g1, X)).)

Example 7.58 The group SO(3), formed by the orthogonal 3 x 3 matrices, with
determinant equal to 1, corresponds to the rotations about the origin in R3. The
natural action (on the right) of any element g € SO(3) on a point (a1, az,a3) =
a € R3, is given by the matrix product ag; that is, Rg(a) = ag. Since SO(3) is a
subgroup of GL(3, R), we can make use of the coordinates x} defined on the latter
to parameterize the elements of SO(3). Denoting by x; the usual coordinates of R3
(i.e., x; (@) = a;) we have (x; o ®,)(g) = x;(ag) = x,(a)x/ (g), that is,

Xi 0 @y = xj(a)x. (7.61)

The group SO(3) corresponds to the submanifold of GL(3,R) defined by the
equations

1 .
kels 5. cooplmn ik
X; xj(Skl =4ij, gsuks Xj XX, = 1.

Hence, if X, = a; 0/ Bx;'.)e is a tangent vector to SO(3) at the identity, from the
first of these equations it follows that 0 = Xe[xl(‘xéﬁkl] = (Sll‘aé&d + aféééki =
a + al.j (since x(e) = 8'), whereas from the second equation one obtains af =0
(see Example 7.23). Thus, so(3), the Lie algebra of SO(3), corresponds to the skew-

symmetric 3 x 3 matrices. A basis for the skew-symmetric 3 x 3 matrices is formed
by the matrices

0 0 O
S1;=10 0 —1],
01 O
0 0 1
S=|1 0 0 0], (7.62)
-1 0 0
0o -1 0
S3=|1 0 0],
0o 0 O
which satisfy the commutation relations
3
[Si.Sj1=Y_ ijiSk- (7.63)
k=1
The definition of the matrices S; is summarized by the formula (S,-),{ = —¢&jjk-

Hence, the value of an arbiprary elqment X € 50(3) at the identity can be ex-
pressed in the form X, = (b* Sk)’j (a/ 8x})e, where b!, b2, b3 are some real numbers.
Then, from (7.60) and (7.61) one obtains



7.6 Lie Groups of Transformations 195

; d : 0 ad
+ _ —_ (1K ! __ 1k
Xa = Dy Xe = (b Sk)j‘pa*e<ﬁ>e =b (Sk)lj (§>e['xm o ‘I’a]<—)a

} ) 0x
J J m

— preso (2 [x:(a)x],] o ——ibks oy
= k) oxl ). 1 I\ ox a— kimX1 ox ).

J I=1 a

Hence, X = b¥S", with
+ d
Si=->eumni—. (7.64)

and one can readily verify that [S?L, S}'] = Zi:l eiij,": [cf. (7.63)]. As shown in
Example 6.11, the vector fields (7.64) are Killing vector fields for the standard met-
ric of R3 [see (6.17)]. This is related to the fact that the rotations are isometries
of R3.

Example 7.59 An arbitrary point (a, b, ¢) € R? can be identified with the matrix

(bfc b_ tf) Making use of this one-to-one correspondence between the points of R?

and the real 2 x 2 matrices of trace zero, one can define an action on the right of the
group SL(2,R) on R? in the following way. For g € SL(2,R) and (a, b, c) € R3,
(a,b, ¢)g is the point of R corresponding to the matrix

1 a b+c
g <b—c _a>g. (7.65)

It can readily be seen that (7.65) defines an action on the right on R3 which is not
effective, because if g is the negative of the 2 x 2 identity matrix, one obtains the
identity transformation. Nor is it free, because (0, 0, 0)g = (0,0, 0) forall g € G. In
fact, this action is a linear representation of SL(2, R) on R? and any linear repre-
sentation is not a free action.

From the results of Example 7.41 we have exptX; = (e(; 69,) [see (7.51)] and
substituting g = exptX into (7.65) one obtains the matrix

e’ 0 a b+c\(e 0 _ a e 2 (b+c)
0 e )\b—c —a 0 e’ )7 \eXb-o —a

which corresponds to the point (a, b cosh 2t — ¢ sinh 2z, —b sinh 2t 4 c cosh 2¢) € R3
(and is, therefore, (a, b, ¢) exptX1). Now, in terms of the natural coordinates of R3,
the tangent vector to the curve ¢ — (a, b cosh2t — csinh2¢, —b sinh 2t + ¢ cosh 2t)

atr=0is
B 9
XDapo) = —ZC<—) - 2b(—) ;
Y/ (ab,c) 92/ (4,b,0)

hence, Xf‘ = —2z(9/9y) —2y(9/0z). As pointed out above, the procedure followed
in this example also gives us the integral curves of the vector fields Xf or, equiva-
lently, the one-parameter groups of transformations generated by these vector fields.
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In a similar way, using exptX; = ((1) 1’) and exprX3 = (t ?) [see (7.51)], one
finds that X3 = (z — ¥)(8/9x) +x(3/9y) + x(3/z) and XJ = (y +2)(3/x) —
x(9/9y) + x(a/ dz). It can readily be verified that the structure constants for
(X7, X;‘ X;‘} are equal to those of the basis of SL(2, R) given by (7.18) and (7.19).

The action on R3 defined by (7.65) is not transitive; in fact, each surface
x2+ y2 — 72 = const, is invariant under this action, which follows from the fact
that X;"[)c2 +y2—721=0, for i =1,2,3, or by noting that x4y -2 =
—det(,*, *7), and that the determinant is invariant under any similarity trans-
formation such as (7.65). (Cf. Example 6.17; note that the vector fields X;+ ob-
tained here are related with the vector fields (6.36) by means of XT = —21%3,

X;=I8 -T2 and X7 =12 +1))

As pointed out at the beginning of this section, the isometries generated by the
Killing vector fields of a Riemannian manifold can be associated with a Lie group
of transformations on this manifold.

Example 7.60 As claimed in Exercise 6.13, the group SL(2, R) acts isometrically
on the Poincaré half-plane. Taking into account that the inverse of the matrix g =
(;’f 5’3) e SL(2,R) is (_‘Sy ;ﬁ), we define an action of SL(2, R) on the right on M, the
Poincaré half-plane, by

8(a+1ib) — B

+ib)g = -
(a+ib)g —y(a+ib) +

[cf. (6.29)], identifying a point (a, b) € M with the complex number a 4 ib.
Since

Sla+ib)—B _ Sa+ib)—p —yla—ib)+a
—y(a+ib)+a —y(a+ib)+a —y(a—ib)+a

—y8(a +b%) + (a8 + By)a — af +i(ad — ﬂy)b
y2(a? + b?) — 2aya + a?

(a+ib)g =

expressing the transformation in terms of pairs of real numbers instead of complex
variables, with the aid of the condition «d — By = 1, one finds that the mapping
Dp): G— M is given by

1
y2(a? + b?) — 2aya + a?

D (g) = (—y8(a® +b%) + (1 +2By)a — ap, b).

Hence, using the natural coordinates (x, y) on the Poincaré half-plane (as in Exam-
ple 6.12) and the local coordinates (x!, x, x*) on SL(2, R), defined by x!(g) = «,
x2(g) =B, x3(g) =y, and 8 = [1 + x%(g)x3(g)]/x'(g) (as in Example 7.5), one
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finds that

ad
+ —
(Xl )(a,b) = cD(a,b)*e(@)g

= X O P@bl\ 72 YoLwnl\ 7=
dx! e ¢ dx (a,b) dx! e ¢ dy (a,b)

and, similarly,

X3) (@) E(D(a,b)*e<iz> =_<i> ,
0x=/, ox @5

d e o
X7 =o T3] = 2oy 2 ’
( 3 )(a,b) (a,b)*e<8x3>e <(x y ) 9x +2xy 3y @b

Comparing these expressions with (6.22) we find that the vector fields Xl+ coincide
with the Killing vector fields of the Poincaré half-plane obtained in Example 6.12
[cf. (6.22)]. The relations (6.23) show that the mapping X; XZJr is a Lie algebra
homomorphism.

Theorem 7.61 Let G be a Lie group that acts on the right on a manifold M and let
X,Y €g; then [XT,YT] = [X, Y]T.

Proof Since X7 is, by definition, the infinitesimal generator of the one-parameter
group of transformations on M denoted by R,,, we have

R, *Yt —YT
XT, YT =£x: YT = 111% gf
t—

The value of Rg[*Y+ at a point x € M is given by [see (2.24), (7.60), and (1.25)]

(Rgt*Y+)x = Rglfl Y/, = Rglfl*xgt(q)xg,*eYe) = (Rgl—l © (ng,)*eYe~

*Xg X8t
On the other hand, for g’ € G,
(Rt 0 Prg)(g) = Ry (xg18") = xgig'g; ' = (@10 Ry 0 L )(@),
hence
(Rg,"Y)x = (Px 0 Ryt 0 Ly )seYe = Prse(R -1, Ye,),
since Y is left-invariant [see (7.14)]. Thus
(Re,*Y)x — YT
t

= lim (px*e(Rgt_l*gthf) — PrseYe
t—0 P

[XT,Y"], = lim
t—0
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(R, *Y)e — Y
M} = (px*e(£XY)e

= Dyye| lim
t—0 t

= (px*e([X, Y])e = [Xs Y]j
[cf. (7.57) and (7.59)], that is,
XT, Y"1 =[X,Y]".

From the foregoing results one concludes that the map X — X, from g into X (M),
is a Lie algebra homomorphism. g

It can readily be verified in a similar way that if G is a Lie group that acts on
the left on a manifold M, then a proposition analogous to Theorem 7.61 holds: if
X, Y € g then [XT, Yt] = [X, Y], with X} = @, X, [cf. (7.60)], where now &,
is the map from G into M given by @, (g) = gx. The vector field X is the infinites-
imal generator of the one-parameter group of transformations L, , from M onto M,
defined by L, (x) = g;x, where {g,} is the one-parameter subgroup generated by X.

Exercise 7.62 Show that the group, G, of affine motions of R (see Example 7.4)
acts on the right on R? by means of

a+x%(g)

(a,b,c)g = <x1—@ [x'()]’, [xl(g>]3c>,

for g € G, (a,b,c) € R3, where (xl, x2) are the coordinates on G defined in Ex-
ample 7.4, and show that the vector fields on R3 induced by this action are linear
combinations of

d 0 ad
—x— +2y— +3z— d —,
x8x+ y8y+ Zaz a ox
where (x, y, z) are the natural coordinates of R>. (The 1-forms o! = dy — zdx and

=dz — (2y~'z? 4 y?) dx are invariant under the action of this group, in the sense
defined in Sect. 4.3.)

Further examples are given in Examples 8.29-8.32.

The Adjoint Representation Any Lie group acts on its Lie algebra (on the left)
by means of linear transformations in the following way. For g € G, the map from
G onto G, Lgfu oRy =Ry o0 qu is a diffeomorphism and for X € g, the vector
field (Lg-1 0 R¢)*X, denoted by Ad g(X), also belongs to g. Indeed,

Adg(X) = (Ly1 0 R)* X = Ry*(Ly1*X) = Ry*X;

therefore if g’ is an arbitrary element of G, using the fact that R, commutes with

L, we have
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Ly*Adg(X) = Ly (Rg*X) = R*(Ly*X)
= R,"X =Ad g(X).
Since
Adg(aX; 4+ bX5) = R, (aX| + bXp) =aR,*Xi + bR, "X,
=aAdg(X))+bAdg(Xy),

for all X1,X; e gand a,b € R, Ad g is a linear map of g into itself.
Considering now two arbitrary elements g1, g2 € G, and using Rg ¢, = Rg, 0 R,
we obtain

Ad(g182)(X) = Rglgz*X = Rgl*(Rgz*X)
=Adg(Adg:(X)), forXeg.

That is, Ad(g1g2) = (Adg1) o (Ad g2), for g1, g2 € G, which means that the map
g+ Adg from G in the set of linear transformations of g into itself is a linear
representation of G called the adjoint representation of G.

Exercise 7.63 Show that [Adg(X), Adg(Y)] = Adg([X,Y]), for X,Y € g and
g € G; thatis, Ad g is a Lie algebra homomorphism from g into itself.

Recalling that the Lie algebra of G can be identified with 7, G (identifying each
X € g with X, € T,G) we can find the effect of Ad g by expressing [Ad g(X)], in
terms of X,. Making use of the definition of the pullback of a vector field we have

[Adg(X)]e = [(Rg ° Lgfl)*X]e = (Rgfl ° Lg)*eXe-
Hence, Ad g is represented by the Jacobian (Ry—1 0 Lg)se.

Example 7.64 In the case of the group of affine motions of R, with the coordinates
employed in Example 7.4, we have

[x" o (Rg-10Lp)] () =x"(gg's™") =x"(ggx" (¢7") =x"(g).
[x* 0 (Ry-10Ly)](8) =x*(gg's7") =x"(gg)x*(g7") + x*(gg))
= —x*(9)x' () +x' (9)x*(g") + x*(9).

ie,xlo (Rg-10Lg)=x"and x2o (Rg-10Lg) = —x2(g)x! + x!(g)x? + x%(g).

Thus,
0 0 . 0
(Rg-10 Lg)*e(wl = <@)e[xl o (Rg-10Ly)] <@>e

(9 _ 2 (9
_<ax1)e x(g)<ax2)e
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a a
(Rg-10 Lg)*e(ﬁ)e =x1(g)<ﬁ>e.

Hence, with respect to the basis {(3/8x').} of T,G, Ad g is represented by the 2 x 2

matrix

and one readily verifies that Ad(g1g2) = (Adg1) o (Ad g2) amounts to the multi-
plication table of the group (7.2). It may be noticed that, in the present case, the
correspondence g — Ad (g) is one-to-one.

and, similarly,

In the case where G is an Abelian group, we have(R,-1 0 Lo)(g) = gdg =4,

thatis, R,-1 o Lg =1id, and therefore, Ad (g) is the identity map for all g € G.

Exercise 7'65. Let X be an element of the Lie algebra of GL(n, R) such that
X, = a;. @/ 8x})e, where the xj. are the natural coordinates of GL(n, R). Show that

i (o d
[Ad200), =@l ) (557 ) -

Hence, associating the matrix A = (a;) with X € gl(n, R), as in Example 7.15, the

matrix associated with Ad g(X) is gAg~!.

Exercise 7.66 Let G be a Lie group that acts on the right on M. Show that
[AdgX)|T = R*X T, forXeg, g€G.

Exercise 7.67 Show that g(exptX)g~! =exp[t Adg(X)], for X € g, g € G. (Hint:
show that y (¢) = g(exp X) g_1 is the integral curve of Ad g(X) starting at e.)



Chapter 8
Hamiltonian Classical Mechanics

In this chapter we start by showing that any finite-dimensional differentiable man-
ifold M possesses an associated manifold, denoted by T*M, called the cotangent
bundle of M, which has a naturally defined nondegenerate 2-form, which allows
us to define a Poisson bracket between real-valued functions defined on T*M. We
then apply this structure to classical mechanics and geometrical optics, emphasiz-
ing the applications of Lie groups and Riemannian geometry. Here we will have
the opportunity of making use of all of the machinery introduced in the previous
chapters.

8.1 The Cotangent Bundle

Let M be a differentiable manifold of dimension n. The cotangent bundle of M,
denoted by T*M, is the set of all covectors at all points of M, that is, T*M =
U pem Ty M. The canonical projection, , from T*M onto M is the mapping that
sends each element of T*M to the point of M at which it is attached; that is, if
ap € T;‘M, then 7 () = p, and therefore, Tl (p) = T;‘M.

The set T*M acquires, in a natural way, the structure of differentiable manifold
induced by that of M. If (U, ¢) is a chart on M and p € U, any covector «, €
T;M can be expressed as a linear combination of the covectors {d)c;;,}’.1 with real

i=1
coefficients, which depend on o, that is,

ap = pila,)dxh, (8.1)
with p;(ap) € R [cf. (1.27)]. Then, from (1.49),

d
pi(ap) :ap(<a7> > (8.2)
p

Let now ¢ : 7~} (U) — R?" be given by
Plap) = (x'(p), ., X" (), p1(@p), - -, Pal@)))
= (x"(w@p)), .o x (T (@p)), Prep), -\ Puletp)), (8.3)
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for ap € 7~ (U); it can readily be seen that (n_l(U),E) is a chart on T*M. If
{(U;, ¢i)} is a C™ subatlas on M, then {(x ~"(U;), ¢;)} is a C™ subatlas on T*M
that defines a structure of differentiable manifold for 7*M, in such a way that the
projection 7 is differentiable.

Exercise 8.1 A covector field « on M can be regarded as a mapping from M into
T*M, p — ayp, such that w o o =idy;. Show that the map p — «, is differentiable
if and only if « is differentiable (in the sense defined in Sect. 1.4).

The Fundamental 1-Form Let «, € 77 M. Since 7 is a differentiable map from
T*M on M, which sends o, into p, the Jacobian Txa, is a linear transformation of
Ty » (T*M) into T, M; hence, the composition o, o Tsa, is a linear transformation
from T, (T*M) in R; that is, o 0 T4a, € ij (T*M). Thus, the mapping 6 defined
by

O, =0p O Tsqr,, (8.4)

is a covector field on T*M.
If (U, ¢) is a chart on M, defining ¢' = x' o = *x*, from (8.3) we obtain

Blap)=(q"@p).....q" (@p). p1(@p)..... pulap)). (8.5)
Hence, (ql, ...»q", p1,--., pn) is acoordinate system on 7* M ; the tangent vectors

(8/3qi)ap, (B/Bpi)ap, i=1,2,...,n, form a basis of Tap(T*M) and the covector
field 6 is given locally by [see (1.50)]

0=0 9 dg' +6 9 dp;
- 3q’ q apl pl'

Using the definition of 6 we see that the real-valued functions appearing in the last
equation are given by

oGl =), ) = eremn((55),)

and using the expression for the Jacobian (1.24) and (8.2), it follows that

() e = (5 b))
(), 0(59),)
%((aii)p) = pilay),

that is, 0((3/9¢")) = p;.
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Similarly,
ad 0 ; 0
(o) Jen=es((5,), W1(505) ) = =0

6 =pidg'. (8.6)

Therefore
This expression shows that 0 is differentiable; that is, 6 is a 1-form on T*M, called
the fundamental 1-form of T*M.

Exercise 8.2 Show that, for f € C*°(M),

*<w>_Mﬂﬁ
| — )= .
ax! aq’

If M| and M are two differentiable manifolds and v : M} — M, is a diffeomor-
phism, we define v : T* M| — T*M> by

Y(ap)=ayo (1//—1)*1/,([,) for a, € T (M). (8.7)

Denoting by 7, the projection from T*M, on M, and similarly for my, since
(¥ "Dy (p) maps Ty ()M onto T, My, we have

w2 (V@) = ¥ (p) = ¥ (m1(ap). fora, e Ti(M),
that is,

ﬂzo%:lﬂo]‘[l. (8.8)

Exercise 8.3 Show that if_ Yy e _M 1 = M and v : M, — M3 are two diffeomor-
phisms, then (Y2 0 Y1) =¥, 0 Y.

Theorem 8.4 Let  : My — M3 be a diffeomorphism and let 0 and 6, be the
fundamental 1-forms of T* M and T* M,, respectively; then 6 = 1//*92.

Proof Taking v € Ty, (T*M)) and applying the chain rule to (8.8), we have

ﬂz*a(%)@*% v) = l,0*:11(otp)(ﬂl*azpv) = 'ﬁ*p(nl*apv)a (8.9

hence, using the definition (2.28) of the pullback, (8.4), (8.9), (8.7), and the chain
rule, (1.25),

(62, V) = 0,50 P, V)
= E(O‘p)[ﬂz*w(a,’)(W*aP U)]
= E(ap)[\”*p(nl*a,,v)]
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= (aP ° (w_l)*w(p))[W*p(”l*apv)]
= (051, © (1#_1 ° 1/’)*[,)(771*% v)
= (xp(ﬂ'l*oz,,v) = 910(,, (v),

that is, 0; = ¥ 6». O

The foregoing theorem can also be proved making use of the local expression
(8.6). Denoting by ¢', p; and ¢", p! the coordinates induced on 7*M; and T*M,
by systems of coordinates x’ and x* on M| and M,, respectively, making use of the
definition of the pullback of a function, (1.8), together with (8.2), (8.7), and (1.24),
we have for o, € T;,“Ml

. i 9
W phey) =pf(1/f<“p))=1/’(“”)<<ﬁ) )
Y

= (apo (W_l)*x/f(m)(<%)¢(p)>

GO CON

axkoy~h
= ax/i Pr(ap),
X ¥ (p)
that is,
— ,of R oyTh
Vv opi=m| ¥ or Pk (8.10)

hence, using (8.6), (8.8), and (8.10),
V=" (pjdg") = @ p) (¥ m*x") = @ p)d(m*y*x")

— . ) g
- @ phm (M dx’)

ax!

ko -1 (S
:m*<¢*8(x Yy)oa(x" oY)

ax’t ax!

>Pk dg' = (m1*8f) prdg' = 6.

If ¢; is a flow on M, then according to Exercise 8.3, ¢r o @5 = @7 0 @5 = Qr1s;
therefore, @; is a flow on T*M with 7w o g; = ¢; o 7. From this relation it follows
that if X and X are the infinitesimal generators of ¢; and @;, respectively, then

TiayXay = Xp,  ap€TEM, 8.11)

that is, X and X are 7-related (see Exercise 2.8).
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8.2 Hamiltonian Vector Fields and the Poisson Bracket

The exterior derivative of the fundamental 1-form of T*M is called the fundamental
2-form of T*M; from (8.6) we obtain the local expression

do =dp; Adq’, (8.12)

in terms of the coordinates ¢', p; induced by a chart of coordinates on M. The
fundamental 2-form of 7* M induces an identification between differentiable vector
fields and 1-forms on 7* M, associating to each vector field X € X(7*M) the 1-form
Xde6.

If the vector field X is locally given by X = A’ (3/d¢") 4+ B; (3/dp;), then

XJdo = XJ(dp; ndg') = (XJdp;)dg' — (XJdg') dp;
= B;jdg' — Al dp;. (8.13)

From this expression one concludes that the map from X(7*M) into ANT*M),
given by X +— Xd6, is C*°(T*M)-linear, one-to-one, and onto.

If X is a vector field on T*M, we say that X is Hamiltonian if the 1-form X 1dé
is exact; that is, X is a Hamiltonian vector field if there exists some real-valued
function f € C*°(T*M) such that

X do = —df (8.14)

(the minus sign is introduced for convenience); X is locally Hamiltonian if X1d6 is
closed. Since every exact differential form is closed, all Hamiltonian vector fields are
locally Hamiltonian. In order to emphasize the difference between the Hamiltonian
vector fields and the locally Hamiltonian ones, the former are also called globally
Hamiltonian.

Lemma 8.5 Let X be a vector field on T*M. X is locally Hamiltonian if and only
if £xd9 =0.

Proof The conclusion follows from the identity (3.39) and the fact that d2=0

£x do = XJd(dh) + d(XJdo) = d(Xdb). O

This result means that if ¢, is the flow generated by a vector field X on 7* M, then
@;(d9) = db if and only if X is locally Hamiltonian. Any map ¢ : T*M;| — T*M;
such that ¥*(d6,) = df; is referred to as a canonical transformation or symplec-
tomorphism. Hence, X € X(T*M) is locally Hamiltonian, if and only if it is the
infinitesimal generator of a local one-parameter group of canonical transformations.

According to Theorem 8.4, any diffeomorphism ¢ : M| — M, gives rise to a
canonical transformation 1, which satisfies the stronger condition 6; = E*Qz.

Exercise 8.6 Show that the set of canonical transformations of 7*M onto itself
forms a group with the operation of composition.
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Theorem 8.7 The locally Hamiltonian vector fields form a Lie subalgebra of
X(T*M). The Lie bracket of two locally Hamiltonian vector fields is globally Hamil-
tonian.

Proof Let X and Y be locally Hamiltonian vector fields; using Lemma 8.5, we have
£.x4pyd0 = afx d0 +bfydd =0, fora,beR,

therefore aX + bY is locally Hamiltonian. Furthermore, since [X, Y] = £xY, using
(2.27), (2.44), Lemma 8.5, and (3.39), we have

[X,Y]Jdo = (£xY)Jde
= £x(YJdo) — YJ£x do
= £x(YJdo)
= Xd(YJdo) + d(XJ(Yde))

= d(XJ(YJd9)). (8.15)
O

With each differentiable function f € C°°(T*M) there exists an associated
Hamiltonian vector field, X4, defined by

Xqrldo =—df. (8.16)

From the local expression (1.52), df = (3f/dq')dq’ + (8f/dp;)dp;, and (8.13), it
follows that

4

The set of the globally Hamiltonian vector fields is a Lie subalgebra of the Lie al-
gebra of locally Hamiltonian fields; in fact, if X4 and Xg, are two globally Hamil-
tonian vector fields, any linear combination of them, aXqy + bXq,, and their Lie
bracket, [Xqr, Xqg], are also globally Hamiltonian since

(aXqy + bXq,)1d0 = aXqrdO + bXggldO

= —adf —bdg=—d(af +bg), fora,beR,
and from (8.15) and (8.16),

[Xar, Xaglldo = d(Xq s (XagIdO))
= —d(deJdg)
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Definition 8.8 Let f, g € C>°(T*M); the Poisson bracket of f and g, denoted by
{f, g}, is defined by

{f. 8} =Xurg. (8.19)
By virtue of (8.16) and the definition (8.19), the relation (8.18) is equivalent to
[Xar, Xagl = Xagr.g)- (8.20)

From (8.17) and (8.19) one finds that the Poisson bracket is locally given by

af d af o
Uigt= o 8 %8 (8.21)
pi 9q"  9q' Opi

Exercise 8.9 Show that y : T*M| — T*M, is a canonical transformation if and
only if Y*{f, g} ={y¥* f, ¥*g}, for f, g € C¥(T*M>).

Theorem 8.10 The space C®°(T*M) is a Lie algebra over R with the Poisson
bracket.

Proof Let f,g € C®°(T*M), from (8.19) and (8.16) it follows that the Poisson
bracket of f and g is given by

{f, g} = deg = deJ dg = —deJ (ngJ d@) = 2d9(de, ng). (8.22)

From this expression it is clear that the Poisson bracket is skew-symmetric and
bilinear. Furthermore, for f, g, h € C°(T*M), from (8.19) and (8.20) we have

{{f. g}, h} =Xagpg1h = [Xay. Xaglh
= XarXagh) — XagXarh) =Xar{g, h} — Xggl f, b}
={f (e, m}} —{e. (£ n}}
=—{{g. h}, £} = {{n. f). g} O

Exercise 8.11 Making use of (8.19), (8.20), (8.22), (3.31), and the fact that the
fundamental 2-form is closed, show that the Poisson bracket satisfies the Jacobi
identity.

From the foregoing results we conclude that the map f +— X, from C°°(T*M)
into X(T*M) is a homomorphism of Lie algebras whose kernel is formed by the
constant functions.

The fundamental 2-form of T*M is analogous to a Riemannian metric in the
sense that both are non-singular tensor fields of type ((2)) with the only difference
that a 2-form is skew-symmetric, while a Riemannian metric is symmetric. The
globally Hamiltonian vector field Xqy is analogous to the gradient of a function f
[compare (6.7) with (8.16)], and for this reason the vector field Xq is also denoted
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by sgrad f. In the same way, according to Lemma 8.5, the locally Hamiltonian vec-
tor fields are the analog of the Killing vector fields. Another difference comes from
the fact that, while the gradient of a function f is orthogonal to the level surfaces
of f, Xqy is tangent to these surfaces (Xq7 f =0).

The Canonical Lift of a Vector Field to the Cotangent Bundle As shown at
the end of the preceding section (p. 204), any vector field X € X(M) gives rise to a
vector field, X, on T* M, which will be called the canonical lift of X to T*M. The
vector field X is globally Hamiltonian; in effect, if @; is the flow generated by X,
according to Theorem 8.4 we have p;*60 = 6 and, therefore, the Lie derivative of 6
with respect to X is zero. On the other hand, 50 = X_d6 + d(X_6); hence

X 1do = —d(X16), (8.23)

which shows that, indeed, X is globally Hamiltonian [cf. (8.14)].
We shall denote by fx the function of T*M in R appearing on the right-hand
side of (8.23), that is,

fx=XJ6. (8.24)

Then from the definition of 6 and (8.11) we have

fx(ap) = (XJ0)(p) =0y, (Xa,) = (@p © Txa,) Xa,
= 0 (e, Xa,) =p(X,), fora, e TiM. (8.25)

Hence, if X € X(M) is locally given by X = X! (8/3xi), and using (8.2) we obtain

: d
fX(Olp) =0dp <Xl (p)(ﬁ)p

= pi(op) X' ((ap)) = [pi(X o m)](ep).

) = pi(e) X (p)

that is,
fx=pi(X' om)=p;(n*X’), (8.26)

which shows that, in terms of a coordinate system (g 1 ..., q", pt, ..., pn) induced
by a coordinate system on M, fx is a homogeneous function of degree 1 in the p;
(the w* X" are functions of the ¢/ only).

Exercise 8.12 Show that if X € X(M) is locally given by X = X’ (3/dx"), then

- N X7\ 9
X:(rr*X’) - —pint — )| —, (8.27)
aq’ ’ ox' ) ap;
where (ql, ee s q", P1, ..., pn) is the coordinate system on T*M induced by the

coordinates (x!,...,x") on M.
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Exercise 8.13 Show that a vector field X on T* M satisfies £x6 = 0 only if X is the
canonical lift of some vector field on M.

Exercise 8.14 Show that if X = (3/dx’), then fx = p; and X = (3/94"). (In the
case where M = IE3 and the x’ are Cartesian coordinates, 9 / 9x! is the infinitesimal
generator of translations in the x’ direction.)

Exercise 8.15 Show that if X = x¥(3/9x’) —x!(8/8x%), then fx = ¢* p; —¢' px and
X =q*(3/3¢") — q'(3/3¢") + pr(d/dp1) — p1(3/3pk). (In the case where M = E3
and the x' are Cartesian coordinates, x* (8/8xl) — xl(a/ 9x%) is the infinitesimal
generator of rotations in the x*—x! plane; see Example 7.58.)

Let X and Y be vector fields on M and let X and Y be their canonical lifts to
T*M. Since X and Y are w-related to X and Y, respectively [see (8.11)], the Lie
bracket [X, Y] is m-related with [X, Y] (see Sect. 1.3); therefore, for ) € T;‘M s
making use of (8.25), we have

Sixvi(ep) =, (X, Y1) = o) (Tea, X, Yla,)
=0, (X, Yla,) = (X, YIJO) (ep).
ie.,
fixy1 =X, YLJ6. (8.28)

An alternative expression for the function f[x yj is obtained as follows, using the
properties of the Lie derivative (2.27) and (2.44), and using £56 = 0. From (8.28)
we have

fixy1 =X, YIJO = (5 Y)J0 = £5 (YJO) — YI£x0
=£5(YJ0) = £5 fy =X fv. (8.29)

On the other hand, comparing (8.16) and (8.23) one finds that X is the Hamiltonian
vector field corresponding to the function fx; hence, according to (8.19), X fy =
{ fx, fy}, so that (8.29) amounts to

fxy = U fyehs (8.30)

which together with (8.25) means that the map X + fx from X (M) into C*°(T*M)
is a Lie algebra homomorphism.
Furthermore, from (8.23) and (8.24) we have

[X,Y]Jdo = —d(1X, Y1J6) = —d fix v} (8.31)

and, since X is the Hamiltonian vector field corresponding to fx, from (8.18) and
(8.29) it follows that

[X, Y]Ud6 = —d(X fy) = —d fix.v]- (8.32)
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Comparing (8.31) and (8.32), and using the fact that df is non-singular, we conclude
that

X, Y]=[X,Y], (8.33)

which implies that the map X — X is also a Lie algebra homomorphism.

Exercise 8.16 Prove (8.30) and (8.33), making use of the explicit local expressions
(8.21), (8.26), and (8.27).

Symplectic Manifolds The cotangent bundle of a differentiable manifold is an
example of a symplectic manifold. A symplectic manifold is a differentiable man-
ifold M endowed with a closed nondegenerate 2-form w; that is, dw = 0 and for
each p € M, v, Jw, =0 implies v, = 0. The 2-form w is called a symplectic form
and it is said that it defines a symplectic structure on M. In the case of the cotangent
bundle of a manifold, the fundamental 2-form df is a symplectic form that is not
only closed, but exact.

In any symplectic manifold one can define the notion of a Hamiltonian vector
field and the Poisson bracket by simply substituting into (8.16) and (8.22) the cor-
responding symplectic form  in place of df. The fact that w is nondegenerate
requires that the dimension of a symplectic manifold be even, and the Darboux The-
orem ensures that in a neighborhood of any point of a symplectic manifold there is
a coordinate system (ql, .., q", pP1, ..., Pn), such that

w=dp; Adg’ (8.34)

[cf. (8.12)] (see, e.g., Crampin and Pirani 1986; Woodhouse 1997; Berndt 2001).
Any local coordinate system (¢, p;) in which the symplectic form w has the ex-
pression (8.34) is called a canonical coordinate system. A symplectic manifold pos-
sesses an infinite number of local canonical coordinate systems. A (passive) canoni-
cal transformation is a coordinate transformation that relates two systems of canon-
ical coordinates. According to (8.12), the coordinates defined on T*M by (8.5),
induced by any coordinate system (xl, ...,x™) on M, are canonical, considering
T*M as a symplectic manifold with the symplectic structure given by the funda-
mental 2-form; however, there is an infinite number of canonical coordinate systems
that are not obtained in this manner (see Examples 8.17, 8.20, and 8.34 below).

Example 8.17 A simple well-known example of a canonical transformation is given
by

p =+/2mawgP cos Q,

2p (8.35)
qg=.——sinQ,
mawo
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where m and w are constants. One readily verifies that

1
dp Adg = 2<—P‘/2sinQdQ + E1f>‘/2<:ostP)

1
A (Pl/z cos QdQ + 510—1/2 sin QdP)
=dP AdQ,

which means that (8.35) is a canonical transformation. (This canonical transfor-
mation is useful in connection with the problem of a one-dimensional harmonic
oscillator.)

Example 8.18 The area element of the sphere S? = {(x,y,2) € R3|x% +
y?> 4+ 72 = 1} is (locally) given in terms of the usual spherical coordinates by
sinf dd A d¢. This 2-form is closed (any 3-form on S? is equal to zero) and, as
can readily be seen, non-singular. With this 2-form, S? is a symplectic manifold in
such a way that all the rotations about the origin in R? are symplectomorphisms.
Since sin@dé A d¢ = d¢ A dcos6, the functions p; = ¢ and ¢! = cosé form a
local canonical coordinate system for this symplectic manifold. By contrast with
the canonical 2-form of a cotangent bundle, the area element of S2 is not exact.

8.3 The Phase Space and the Hamilton Equations

Now we will consider a mechanical system whose configuration space is a differ-
entiable manifold, M, of finite dimension (that is, we are considering a mechanical
system with a finite number of degrees of freedom, without constraints or with holo-
nomic constraints). According to Newton’s laws, the configuration of the system at
some instant is not enough to determine its configuration at some other instant;
however, usually, the evolution of the system is fixed by the configuration and the
momentum of the system at some instant.

The momentum of the system corresponds to a covector «, at the point p of M
that represents the configuration of the system at that instant; therefore, each point
of T*M determines a state of the system. When M is a configuration space, 7*M is
called the phase space. If o), € Ty M represents the state of the system, there exists
a unique curve in 7*M passing through o, describing the evolution of the state of
the system.

If the external conditions of the system do not vary with time, we define a map
¢; : T*M — T*M by the condition that ¢;(ct,) be the state of the system a time
t after the system was at the state o). Then, ¢, o ¢, = @1, © ¢, = @141, and
@o is the identity mapping. It will be assumed that the ¢, form a one-parameter
group of diffeomorphisms whose infinitesimal generator is a Hamiltonian vector
field Xqp, where H € C*°(T*M) is called the Hamiltonian of the system. Hence,
the curves in the phase space T*M that represent the evolution of the system are
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the integral curves of Xy and each ¢, is an active canonical transformation, that is,
¢;*(d9) = d6. From (8.17) we have

COH 9 0H
" 3pi 9" dq' ap;’

dH

and therefore the integral curves of Xgg are given by the equations [see (2.4)]

dg' 0H dp; OH
da _o" pi_ 97 (8.36)
dr api dr aq'

which are known as the Hamilton equations. (As in previous cases, by abuse of
notation, we have written ¢’ and p; instead of ¢’ o C and p; o C, respectively.)

Usually, the configuration space of a mechanical system is a Riemannian man-
ifold, with a metric tensor related to the kinetic energy. In many cases, the config-
uration space is a submanifold of a product of Euclidean spaces, and its metric is
induced by the usual metric of the Euclidean space. For instance, the configuration
space of the system formed by two point particles of masses m and m free to move
in the Euclidean plane is E? x IEZ, and the metric

¢ =mi(dx ® dx + dy ® dy) + m2(d¥ ® d¥ + df ® dF). (8.37)

where (x, y) and (x, y) are Cartesian coordinates of m| and my, respectively, is
such that Ex = % g(C;, C)) is the kinetic energy of the system if C is the curve in
M such that C () is the configuration of the system at time ¢.

In the case of a system formed by a block of mass m sliding under the influence
of gravity on a wedge of mass m that lies on a horizontal table, with both blocks
restricted to movement in a vertical plane, the configuration space, M, can be viewed
as the two-dimensional submanifold of E? x E? defined by y — (x — %) tan6 = 0, and
y =0, where 6 is the angle of the wedge, (x, y) and (¥, y) are Cartesian coordinates
of the block and the wedge, respectively (see Fig. 8.1). More precisely, if i : M —
E2 x E? denotes the inclusion map, then we have i*(y — (x — %) tan6) = 0 and
i*y = 0. Defining the coordinates (x', x*) on M by

xl=i*x, x2=i*%,

we have i*y = (x! —x?)tan6 and i*§ = 0. Thus, the metric induced on M by (8.37)
is given locally by

i*g=i*[m(dx ® dx +dy ® dy) + m»(d% ® d¥ + dy ® dj)]
=my[dx' ®dx' +tan?0(dx! — dx?) ® (dx' — dx?)]
+ mydx? ® dx?, (8.38)

so that the kinetic energy of this mechanical system is Ex = %(i* 2)(C;, C)), where
C is the curve in M such that C(¢) represents the configuration of the system at
time 7.
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Fig. 8.1 The block can slide on the wedge-shaped block, which lies on a horizontal surface

In many elementary examples, the Hamiltonian function corresponds to the total
energy (but not always) and is given by H = 3(7*g"/)p; p; + n*V, where (g") is
the inverse of the matrix (g;;) formed by the components of the metric tensor of M
with respect to a coordinate system (xl, ..., x") [see, e.g., (8.38)]. The p; are part
of the coordinates on T*M induced by the x', and V is some real-valued function
defined on M, which corresponds to the potential energy. The standard procedure
to find a Hamiltonian makes use of a Lagrangian, which can readily be constructed
provided that the forces are derivable from a potential. Alternatively, a Hamiltonian
can be proposed starting from the equations of motion (see Sect. 8.7).

Example 8.19 The cotangent bundle of a manifold may have various symplectic
forms, apart from the fundamental 2-form (8.12). In fact, the interaction of a charged
particle with a static magnetic field can be accounted for by making use of a suit-
able symplectic form on the cotangent bundle of the configuration space. We shall
consider a point particle of mass m and electric charge e in the three-dimensional
Euclidean space, in the presence of a static magnetic field, which is represented by
a vector field B on E3. If n is a volume element on IE3, the 2-form B 7 is closed
because the divergence of B vanishes, according to the basic equations of electro-
magnetism [see (6.107)]. Hence, the 2-form

w=do+ $x*Bly), (8.39)
C

where 6 is the fundamental 1-form of 7*E3 and c is the speed of light in vacuum,

is closed and, as can readily be verified, is always nondegenerate; therefore, w is a

symplectic 2-form. (The magnetic field is a pseudovector field; B is multiplied by a

factor —1 when the orientation is reversed, so that the last term in (8.39) does not

depend on which one of the two volume forms, or orientations, of E3 one chooses.)
Making use of the local expressions (8.6) and (6.102) we have

w=dp; Adg' + 2in*(Bk, [det(gi)) exij) dg' A dg’; (8.40)
c
hence, for any f € C*°(T*E?) the Hamiltonian vector field Xq £ is given locally by

af 8 of e . af
Xgr=L 2 9 9 Cox(BE [det(g;i) enii) ~ —— 8.41
V= opiagi aqiopi o ( et(8ij) Eiij )8}71' ap; ®4D
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and the Poisson bracket has the expression

af og of 9g e ., . af og
gl =—— — —— — -7 (B",/det(gij) &kij) — —
.8l ap; 9g*  0q' Op; cn ( © (g”)sk"/) op; Op;

[cf. (8.17) and (8.21)].

Since d(BJ 1) = 0, there exists, at least locally, a 1-form, «, on [E3, such that
Bn =do. Writing o = A; dx?, where the A; are some real-valued functions defined
on 3, locally, we have

w=dp; ndg' + En*(dA,» /\dxi) = d(p,' + f71"‘Al~> Adg,
c c

which shows that (qi , Di + fn*Ai) are canonical coordinates. The 1-form « is not
uniquely defined by B; if we define a’ = a + d&, where & is an arbitrary (dif-
ferentiable) real-valued function, we have da’ = d(a + d&) = da, and therefore,
Bl 7 =da =da’. Hence, if we write o' = A} dx', it follows that ¢, p; + $m*A] is
another system of canonical coordinates. (It is said that o’ and « are related to each
other by a gauge transformation.)

Thus, in the case of the interaction with a magnetic field, we can employ the
coordinates ¢', p; appearing in the equations above, which are not canonical (see
Example 8.30, below), or we can make use of the coordinates qi , P;, with P; = p; +
¢m* A;, which are canonical but depend on the choice of the vector potential A;. It
should be clear, however, that we are dealing with just one symplectic structure,
which can be expressed in terms of various coordinate systems [cf. Woodhouse
(1997, Sect. 2.6)].

The Hamiltonian function is given by

1 ..
H= 5(y'r*glf)p,-pj, (8.42)

as in the case of a free particle. Assuming that the x’ are Cartesian coordinates on
E3 (thus, gij =md;;j), substituting (8.42) into (8.41) one obtains

a

€ _xpk Ly 0
- - B")erii—§6 _—
C(T[ ) kljm Plapj

1
Xan = —8Y
m

and therefore the integral curves of Xqg are given by

dg 1 . dp; e 1

R X4 . e - ﬂ*Bke _._511

dr m Pi dr c( ) A pi

which are equivalent to the elementary expression of the Lorentz force, dp/dt =
(e/c)v x B, with p=myv.

Example 8.20 As pointed out in Example 8.19, the interaction of a charged particle
with a magnetic field can be accounted for by means of the symplectic 2-form v =
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dé + (e/c) m*(BIn) on T*M, where e is the electric charge of the particle. In the
case where the particle is moving in the three-dimensional Euclidean space in the
presence of a uniform magnetic field B = B (3/dx>), where the x’ are Cartesian
coordinates and B is a constant,

_ 1 2 3, ¢B 2
w=dp; Adg +dpr Adg”+dp3 Adg” + . dg” Andg

eB eB

=d( p1——=q* | Andg' +d( p2+ 5—¢" ) Adg® +dp3 Adg’.
2c 2¢

Hence, (¢!, 4%, ¢°, p1 — %qz, P2+ %ql , p3) is a system of ganonical coordinates.

A straightforward computation shows that the coordinates (¢”, p!) defined by

Cc
a'=q"+4%  @=—_pi-r),  ¢=4"

eB 2_1 , , eB l_eB n n .
Pr=5oq =5+, g —2c(q q").  p3=ps,

are also canonical, i.e., v = dp] A dg’ i In terms of these coordinates, the Hamilto-
nian (8.42) takes the form

He 2+ (2 2(q’l)erL(p’)2
2m ! 2 \mec 2m

The first two terms on the right-hand side of this last expression constitute the
usual Hamiltonian of a one-dimensional harmonic oscillator (of angular frequency
eB/mc) and, since the canonical coordinates g’2, p), and ¢ do not appear in H

(i.e., are ignorable or cyclic variables), pj, ¢'*, and p’ are constants of motion [see
(8.36)].

If f is a differentiable real-valued function defined on 7*M, the rate of change
of f along a curve C followed by the system in its time evolution is given by

d
E(f oC) = C; [f1= Xar) o Lf1= Kau £)(Clt0))

={H, [}(C(1)). (8.43)

Hence, f is a constant of motion if and only if {H, f} = 0. The Hamiltonian H is a
constant of motion since {H, H} = 0.

If f and g are both constants of motion, it is clear that {H, af + bg} = 0 for
a, b € R. By virtue of the Jacobi identity, we have, in addition,

{H7{f’g}}=_{fa {gaH}}_{gv{H’f}}ZO»

hence the set of constants of motion is a Lie subalgebra of C*°(T*M).
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Constants of Motion and Symmetries If f € C®(T*M) is a constant of motion,
then H is invariant under the (possibly local) one-parameter group of canonical
transformations generated by Xq ¢ since

£x,, H=XayH={f. HY=—(H, f} =0. (8.44)

Conversely, if H is invariant under a one-parameter group of canonical transforma-
tions then there exists, locally, a constant of motion associated with this symmetry.
In effect, if X is the infinitesimal generator of a one-parameter group of canonical
transformations, then d(£x6) = £x d6 = 0; hence, there exists locally a real-valued
function (defined up to an additive constant), F, such that

£x0 =dF,

that is, X1 d8 + d(XJ ) = dF or, equivalently, X |1d6 = —d(XJ 6 — F), which
explicitly shows that X is locally Hamiltonian [see (8.16)] and that it corresponds to
the function

x=X16 —F,

which is a constant of motion, as follows from 0 = XH ={x, H} = —{H, x} =
—Xa# x . The function F can be chosen equal to zero if and only if X is the canonical
lift of a vector field on M (see Exercise 8.13) and in that case the expression for
the function x reduces to (8.24). (Here we are restricting ourselves to constants of
motion that do not depend explicitly on the time; the most general case is considered
in Sect. 8.7.)

Example 8.21 Let us consider a system formed by two point particles of masses m1
and m; in the three-dimensional Euclidean space, whose positions are represented
by the vectors r; = (xl, x2, x3) and r; = (x4, X3, x6). The configuration space for
this system has dimension six and can be identified with R? x R3. Denoting by
(ql,...,q(’, P1,---, Pe) the coordinates on T*M induced by (xl,...,x6) in the
form defined in Sect. 8.1, the Hamiltonian has the expression

3 6
. 1 1
H= *ol\p.p. 4V = 2 2 v, 8.45
(s )pipi+V =5 - i§:1(pl> 3 i§:4(pl> + (8.45)

[\SR

where ( gi-/ ) is the inverse of the matrix (g;;) formed by the components of the metric
tensor of M with respect to the coordinate system (x', ..., x% [cf. (8.37)] and V is
the potential energy of the system.

If the particles do not interact with objects external to the system, in the absence
of velocity-dependent forces (such as the magnetic force), V must be a function
of |r; — r| only (more precisely, V = v(r), where v is a real-valued function of a
single variable and = [(¢* — ¢+ (¢° — ¢*)* + (¢° — ¢*)?1'/? is the distance be-
tween the particles). This means, for instance, that the Hamiltonian function (8.45)
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is invariant under the simultaneous translations of the particles in the x-direction,
that is, H is invariant under the one-parameter group of transformations

g =q"+1,  @lqt=q"+1,
ofq' =q', ifi#1,4,  ¢fpi=pi,

as can readily be verified. Clearly, this is a one-parameter group of canonical
transformations (in fact, ¢;*dg’ = dg’, ¢;* dp; = dp;) and its infinitesimal gen-
erator is 3/dg' + 9/dg*, which is globally Hamiltonian, (3/d¢' + 8/9¢*)Jd0 =
—d(p1 + pa). Therefore p; + p4 is a constant of motion, which is associated with
the invariance of H under translations in the x direction and corresponds to the x
component of the linear momentum of the system (in fact, (3/dq"' +9/9g*) H = 0).
In a similar way, p> + ps and p3 + pg are constants of motion that represent the y
and z components of the tofal linear momentum, respectively.

Since the distance between the two particles, |r, — ry|, is also invariant under
rotations of the system, it is to be expected that there exist constants of motion
associated with this symmetry; however, in order to find a constant of motion it is
necessary that H be invariant under a one-parameter group of transformations acting
on the phase space and that these transformations be canonical. The infinitesimal
generators of the rotations about the x, y, and z axes in the configuration space are

3
.0 . 0 .
Xizzgijk<x]ﬁ+xj+3w>, i=1.2.3. (8.46)
k=1

The canonical lifts X; to T7*M of the vector fields (8.46) are given by

3
a a a
2 : J+3 2 : " . .
gljk( +q k+3>+/_18uk(191 i +P1+3apk+3>

dq

(see Exercises 8.12 and 8.15). As shown in Sect. 8.2, these vector fields are globally
Hamiltonian and correspond to the functions [see (8.26) and (8.46)]

3
Li=) sijld’ pe+q' P piss), i=1,2,3.
k=1

One can readily verify that, in effect, X_iH = 0, and therefore the functions L; are
constants of motion, which represent the Cartesian components of the fotal angular
momentum. (Further examples are given in Sects. 8.4-8.6.)

Exercise 8.22 Consider the system formed by a block and a wedge discussed at the
beginning of this section (p. 212). Assuming that the potential energy is given by
V =i*(m1gy), where g is the acceleration of gravity, show that the Hamiltonian is
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given by

_ my(p1)? +mi[(p2)* +tan?0(p; + p2)?]

H
2mi[my + (my + my) tan? 0]

+mig tanf(q' —¢%).

Show that the canonical lift of 3/dx! 4 8/dx? is the infinitesimal generator of a one-
parameter group of canonical transformations that leave the Hamiltonian invariant,
and find the corresponding constant of motion. (Note that the one-parameter group
of diffeomorphisms generated by /dx! + 3/8x? corresponds to translations of the
mechanical system as a whole.) Show that (mlq1 + mzqz)mlg tan6 + %[(pl)2 —
(p2)?] is a constant of motion, but that it is not associated with the canonical lift of
a vector field on M (and therefore, it corresponds to a so-called hidden symmetry;
see also Sect. 8.5).

8.4 Geodesics, the Fermat Principle, and Geometrical Optics

If M is a Riemannian manifold, one can consider the Hamiltonian function
H(ap) = %(apkxp) [see (6.10)]. In terms of the coordinates (¢°, p;) of T*M, in-
duced by a coordinate system x’ on M, this Hamiltonian has the local expression

1 ..
H= E(7'[”‘g”)p,-pj, (8.47)

where (g%/) is the inverse of the matrix (g; j) formed by the components of the
metric tensor of M with respect to the natural basis induced by the coordinates x*
(hence, H is a differentiable function). There exist several examples where there
appear Hamiltonians of this form. In the theory of relativity (special or general),
if M represents the space—time, the Hamiltonian function (8.47) corresponds to a
particle subject to the gravitational field (represented by the metric tensor g). Other
important examples, to be considered below, are those of a free rigid body (see
Sect. 8.6), geometrical optics, and the Jacobi principle. Since the Hamiltonian (8.47)
is defined starting from the metric tensor, it is to be expected that it shows a simple
behavior under an isometry.

Theorem 8.23 Let M be a Riemannian manifold and let H € C*°(T* M) be defined
by H(ap) = %(a,,|oz,,); then the diffeomorphism v : M — M is an isometry if and
only if E*H =H.

Proof Let g = g;; dx’ ® dx/ be the metric tensor of M and let g’ = ¥*g; then
gy de' @ dx/ = (Y¥gi) d(¥*x) @ d(¥*x)
I(x' o) Bx/ oY)

axk ax!

= (*gij) dx*f @ dx!,
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which amounts to the relation

G oY) d(x/ o W).

*gl = 8.48
Vgl =g ™ o™ (8.48)
Using (8.47), (8.8), (8.10), and (8.48) we have
— 1 — L ~
VH = (o')W P p))
RN Wﬂ(xk oyh Wﬁ(x’ oyl
2 g dx’t Ax'J Prpi
e
=5 (=" &") peprs
which coincides with H if and only if g’ = g, thatis, ¥*g = g. 0

If X € X(M) is a Killing vector field, X is the infinitesimal generator of a local
one-parameter group of isometries ¢, of M; according to Theorems 8.4 and 8.23, the
transformations ¢; are canonical and leave invariant the Hamiltonian (8.47), which
is equivalent to the existence of a constant of motion associated with the vector field
X. Since the infinitesimal generator of @, is the Hamiltonian vector field associated
with the function fx [see (8.23) and (8.24)], the function fx = X6 (or, in local
form, fx = (w*X")p;, where the X’ are the components of X) is a constant of
motion.

Exercise 8.24 Show that, conversely, if X € X(M) and fx = X6 is a constant of
motion for the system with Hamiltonian (8.47), then X is a Killing vector field.

Exercise 8.25 Show that the Hamilton equations corresponding to the Hamiltonian
(8.47) yield the geodesic equations (more precisely: the projection on M of the
integral curves of Xqp are the geodesics of M) and that if X is a Killing vector
field, the value of fx along an integral curve of Xgp coincides with the value of
g(X, C’) on the corresponding geodesic C (see Theorem 6.28).

Jacobi’s Principle Many of the examples considered in classical mechanics cor-
respond to Hamiltonian functions of the form

H:%(n*gij)p,'pj +7*V, (8.49)
in terms of the coordinates (¢’, p;) on T*M, induced by a coordinate system x’ on
the configuration space M, where (g%/) is the inverse of the matrix formed by the
components of a metric tensor on M, and V is a function of M in R (this means that
the potential energy only depends on the configuration). The Jacobi principle states
that the orbits followed in M are the geodesics of the metric (E — V)g;; dx’! @ dx/,
where E is the (constant) value of H determined by the initial conditions.
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In effect, assuming that dH |- # 0, we define the auxiliary Hamiltonian

H—n*V

h = _axs’
E—a*V

(8.50)

and we find that dh = (E — n*V)2[(E — n*V)dH + (H — E) dn*V]; therefore,
dhlg—g = (E — 7*V) 'dH|g=p, and then we have Xug|g—r =
(E — n*V)Xdn|g=£- Thus, at the points of the submanifold H = E, the vector
fields Xgg and Xy, are collinear, and therefore their integral curves differ only in
the parametrization. (Note that H = E amounts to &7 = 1.) Whereas the integral
curves of Xyg are parameterized by the time, 7, the parameter of the integral curves
of Xgj, is another variable, t, which is related to ¢ as follows. If C is an integral
curve of Xqy on the hypersurface H = E, then t = I (¢) with

d1 i}
— =(E—-n*V)oC
dr

[cf. (2.14)]. Indeed, the curve o (v) = C(I~ (7)) is a reparametrization of C that is
an integral curve of Xy, since, for f € C*®(T*M),

Xan f)(0(0)) = [E_lwxdﬂf} (c(™' @)

1 d(foC)
TE-VCA ) A g

1 d(foool)
T @, A g

1 d(foo)dl _d(foo)

T @/, dr o di |, de

From (8.49) and (8.50) we obtain the equivalent expression

1. 8"

[cf. (8.47)], whose orbits in the configuration space are the geodesics corresponding
to the metric (E — V)g;j dx’ ® dx/ (see Exercise 8.25).

Combining the foregoing result with the findings at the end of Sect. 6.2
(pp- 140-141) we conclude that the orbits in the configuration space of a system
with a Hamiltonian function of the form (8.49) correspond to the intersections of
the hypersurfaces b* = const, where b* = W /da; and W is a complete solution of

gy AW aw

- —— = const
E —V ox! ox/
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which depends on the parameters ay, [cf. (6.73)]. This equation amounts to

oW oW
Y——— =const(E — V) (8.52)
dx! dxJ

and, choosing the arbitrary constant appearing in (8.52) as 2, equation (8.52) be-
comes the Hamilton—Jacobi equation for the Hamilton characteristic function, W,

1 ;;0W oW
J——+V=E 8.53
Zg doxt dx/ + ( )

[cf. (8.49)]. (Note that this equation involves quantities defined on M, noton T*M.)

Example 8.26 In terms of the parabolic coordinates (u, v) on E2, defined by x =
u? — 2, y = 2uv, with v > 0, where (x, y) are Cartesian coordinates, the usual

metric of the Euclidean plane is given locally by
dx ® dx +dy ® dy = 4(u? + v?)(du ® du + dv ® dv);

therefore, the Hamiltonian function for the two-dimensional Kepler problem, which
corresponds to the potential V = —k/r, where k is a positive constant and r is the
distance from the particle to a fixed center of force (placed at the origin), is

_ L plHpt ok
2m 4u? +v?)  u?40v?’

where, by abuse of notation, we are using the same symbols for the coordinates u, v
and for their pullbacks under 7. Thus, equation (8.53) takes the form

1 oW 2+ aw kg
8mu? +v2) [\ du v u 02

Using the method of separation of variables we look for a complete solution of
the form W = F(u) + G(v) and we obtain (cf. Example 6.33)

dF\? 5
— | —4mk —8mEu” =a,
du

dG\?
<—) —4mk—8mEv2=—a,
dv

where a is a separation constant. In this problem, the constant £, which represents
the total energy, can be positive, negative, or zero. The simplest case corresponds to
E =0, and we find that

W = Vdmk + au + v/4mk — av;

thus, equating d W/da to a constant b, say, we obtain

u v
_ —b
2J4mk +a  2/4mk —a




222 8 Hamiltonian Classical Mechanics

This equation corresponds to a two-parameter family of parabolas with foci at the
origin (the parameters a and b determine the orientation of the axis of the parabola
and its focal distance). The cases E < 0 and E > 0 are dealt with in a similar manner
and, as is well known, one obtains ellipses and hyperbolas, respectively, with one
focus at the origin.

Geometrical Optics The formalism of the Hamiltonian mechanics is applicable
to geometrical optics, in which it is assumed that the light travels along curves (the
light rays). At each point of an isotropic medium, which is assumed to be a Rie-
mannian manifold M (usually the three-dimensional Euclidean space), the speed of
light does not depend on the direction of the ray and is expressed as ¢/n, where c is
the speed of light in vacuum and 7 is a real-valued function defined on M, known
as the refractive index.

Since c/n is the velocity of the light at each point of M, if the curve C : [a, b] —
M represents a light ray, the time spent by the light going from point C(a) to C(b)
along C is

1 [ 1 [t
Z/ n(C(t))llCt/lldt:E/ \/nz(C(t))g(C’,C;)dt, (8.54)

where g is the metric tensor of M. The variable ¢ appearing in the last integral
does not need to be the time, since the integral (8.54) is invariant under changes of
parameter. This invariance is similar to that of the integral (6.1), which gives the
length of a curve. In fact, comparing (8.54) with (6.1), one finds that the integral in
(8.54) represents the length of C defined by the metric tensor n%g.

According to Fermat’s principle, given two points of M, the path followed by
the light going from one point to the other is that for which the time required is
minimum or a stationary value. This implies that the light rays are the geodesics of
the metric n?g. Hence, the light rays are the projections on M of the integral curves
of Xyp, with the Hamiltonian function, H, locally given by

¢ (g
H= En*<i—2>p,-p,- (8.55)

[cf. (8.47) and (8.51); the constant factor ¢ inserted in (8.55) is introduced for later
convenience]. From (8.55) and the Hamilton equations (8.36) one deduces that if o
is an integral curve of X4y,

dgt ij

equivalently, if C = o0, i.e., C is the projection of o on M,

dx (C(1))

ij
- C<i—2>(C(t))pj(o’(t)). (8.56)
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Hence, the square of the norm of le is

IC/I1* = gij (87 il

17 =i (C1)e p (C®)pi(a ) p (CO)pi(o®)
¢z 2H(o(®))

n%(C(1))

kl
_ c2<i—4> (CO)pe(o@)pi(o (1) = (8.57)

Since {H, H} =0, H(o(t)) is some constant and if ¢ represents the time, ||C/||
must be c¢/n; therefore, from (8.57) it follows that the constant value of H along
any integral curve of Xgg must be ¢/2 and, therefore,

(7Y pipj = n*n’. (8.58)

Thus, in order for the integral curves of X4y to be parameterized by the time,
the only possible value of the Hamiltonian function (8.55) is ¢/2; in other words,
any initial condition and any integral curve of Xqy must lie on the hypersurface
H=c/2.

The existence of a condition of the form (8.58), which implies that not any point
of T*M is acceptable as an initial condition, is not a unique feature of geometrical
optics; in the theory of relativity (special or general) a particle subject, at most, to
a gravitational field moves along a geodesic of the space—time, which is a pseudo-
Riemannian manifold M. Therefore, we can choose the Hamiltonian function H =
%(7[* g Hpip ;- Then, if the integral curves of Xqp are parameterized by the proper
time of the particle, we have |(*g'/) p; pjl= m?c?, where m is the rest mass of the
particle [cf. (8.58)].

As we shall show now, the Snell law follows from (8.55). Assuming that M
is the Euclidean space of dimension three, making use of Cartesian coordinates
(x,y,z), the components of the metric tensor are g;; = §;;; then, from (8.55) and
the Hamilton equations it follows that in a region where n is a constant, the light
rays are straight lines. If we assume that the plane z = 0 is the boundary between
two regions with distinct (constant) refractive indices n and ny; n =nj for z > 0
and n = ny for z < 0 (the function 7 is then discontinuous at z = 0, which can be
avoided, assuming that n changes smoothly from of n, to n around z = 0), then the
Hamiltonian function (8.55) does not depend on x nor y, therefore p, and p, are
constants of motion [see (8.36)]. From (8.56) it follows that if a light ray forms an
angle @ with the z axis then p,% + py2 =(pt+ py2 + p.2)sin?6 = (7*n?)sin’ 0,
where we have made use of (8.58). Since px2 + py2 is constant, it follows that

n1sinf; =nysin6,, (8.59)

where 01 and 6, are the angles made by the light ray with the z axis in the regions
z >0 and z < 0, respectively. The fact that p, and p, are constant implies that the
incident ray, the refracted ray, and the z axis are coplanar. Equation (8.59) is the
usual expression of Snell’s law.
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Making use again of the result of Exercise 6.32, the light rays in a homogeneous
medium can be obtained from a complete solution of the PDE

;; 85 38

o2l 30T = constn? (8.60)
xt 9x

[cf. (6.73) and (8.52)]. If the arbitrary constant that appears in this equation is set
equal to 1, the resulting equation is the eikonal equation (and S is called the eikonal).
The light rays are orthogonal to the surfaces S = const. (which represent the wave
fronts).

8.5 Dynamical Symmetry Groups

As we have shown, each constant of motion that does not depend explicitly on the
time corresponds to a possibly local one-parameter group of canonical transforma-
tions that leave the Hamiltonian invariant; now we shall study in some detail the ac-
tion of an arbitrary Lie group on a symplectic manifold that leaves invariant a given
Hamiltonian. Usually, attention is restricted to actions by symplectomorphisms; in
many elementary examples, one has a Lie group of transformations acting in an
arbitrary manner on a manifold M, which does not need to possess any additional
structure, and then this action is lifted to the cotangent bundle of M. In the other
cases, one has to consider directly the action by symplectomorphisms of a Lie group
on a symplectic manifold. We shall begin with the simplest case, assuming that we
have a Lie group that acts on a configuration space; we will only have to put together
several results obtained above.

Lifted Actions Let G be a Lie group that acts on the right on a differentiable
manifold M; that is, each g € G defines a diffeomorphism R, : M — M (with
R, (p) = pg, see Sect. 7.6). The diffeomorphism Ry, in turn, gives rise to a dif-
feomorphism R_g :T*M — T*M, defined by (8.7), which is a canonical transfor-
mation; moreover, R_g*e =0 (see Theorem 8.4). For p € M and «), € T*M, each
X € g defines a curve ¢ — exptX, in G; a curve t = Rexpsx(p), in M, and a curve
t = Rexprx(ap),in T* M. The tangent vectors to these curves at t =0 are X, X;‘,
and X_+a e respectively (with X+ being the canonical lift of X*) (see Sect. 7.6).

As a consequence of the fact that R_g*G =6 for all g € G, in particular,
Rexp,x*e =6, for all X € g; therefore, £X—+9 =0, which means that the vector field

X is globally Hamiltonian
X+1d0 = —d fx+, (8.61)

where

fx+ =XT16 (8.62)
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[see (8.23) and (8.24)]. This expression together with the relation (aX + bY) T =
aXt 4+ bY*t, for X, Yeganda,beR, imply that the mapping X — fx+, from g
into C*°(T*M), is R-linear (i.e., f,x4py)+ = afx+ + bfy+). By combining Theo-
rem 7.61 and (8.30) we also have

Syt = fixr ye = fyd ) (8.63)

and therefore the mapping X — fx+ is a Lie algebra homomorphism.
Summarizing, given the action on the right of an arbitrary Lie group G on M,

the mapping (g, o) = R, («)) defines an action of G on the right on T7*M so that

each R—g is a canonical transformation (or symplectomorphism); the vector fields

induced on T*M by this action are globally Hamiltonian, with Xt corresponding
to the function fx+ in such a way that the map from g into C°°(T*M) given by
X+ fx+ is a Lie algebra homomorphism.

Now, if a given Hamiltonian, H, is invariant under the transformations R_g (.e.,
R_g*H = H for all g € G), then Rexp;x*H = H for all X € g, which implies that
0=4£x7H = X+H = {fx+, H} [see (8.19)], i.e., each function fx+ is a constant
of motion. The constants of motion obtained in this manner are homogeneous func-
tions of first degree in the variables p; [see (8.26)]. However, in many cases of
interest, some constants of motion are not homogeneous functions of first degree in
the p;, and, therefore, are not associated with the action of a group on M ; their ex-
istence is a consequence of groups of canonical transformations on 7*M that leave
the Hamiltonian invariant, which do not come from a group that acts on M (see
Examples 8.29-8.32, below).

Hidden Symmetries Let G be a Lie group that acts on the right on T7*M in
such a way that for each g € G the transformation R, : T*M — T*M, given by
R, (x) =xg, is a canonical transformation, that is, R,*(d@) = df. Then the vector
field X on T*M associated with the vector field X € g is locally Hamiltonian (see
Lemma 8.5); hence, for each X € g there exists locally a function ux € C*°(T*M),
defined up to an additive constant, such that

XTJdo = —dux (8.64)

[cf. (8.16)]. As we shall see, under certain conditions, it will be possible to choose
the functions wx in such a way that the mapping X — ux is a Lie algebra homo-
morphism.

Starting from the relations (aX +b5Y)T =aX™ +bY" and [X, Y]" = [XT, Y],
valid for every pair of elements X,Y of the Lie algebra of G, with a,b € R, it
follows that

dpaxspy = —(@X +bY)T1d0 = —(@XT +bYT)IdO

=adux +bduy =d(aux + buy)
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and, similarly, using (8.18) and (8.19), we find

dux,y; = —I1X, YITJdo = —[X+, Yt]Jdo
=d{ux, ny}, forX,Yeg, a,beR.

This means that the functions w,x4+py — apux — by and ux,y) — {ux, wy} are
constant. Using the freedom in the definition of each of the functions ux, they can
always be chosen in such a way that u,x+py =apux +buy for X, Yeg, a,b eR.
In fact, if {Xy,...,X,} is a basis of g and ux; is a function such that X;“J do =
—duyx;, then for X € g, given by X = a'X;, we define ux by ux = Cli,l,LX[; then we
have

dux = d(a'pxi) =d dux, = —a"X;U do = —(aiX,-)—U do = —X*Jdo

and, as can readily be verified, u,x+py = apux + buy.

In what follows we shall assume that we have a set of functions ux satisfying
(8.64) with ugx+»y —aux — by equal to zero. However, it will not always be pos-
sible to simultaneously make w[x,y] — {ix, iy} also equal to zero for all X, Y € g.

As pointed out already, the difference [x,y] — {tx, iy} is a constant function
whose value, denoted by ¢(X,Y), depends on X and Y (hence, we can consider
¢ as a real-valued function defined on g x g, i.e., ¢ : g x g — R). Then we have
c(X,Y) =—c(Y, X) and since

WaX+bY,Z] — {HaX+bYs MZ} = Ma[X.Z]+b[Y,Z] — {aux + by, nz}
=aux,z) +bury,z) — alpx, uz) — biny, uz},
it follows that c(aX+bY,Z) =acX,Z)+bc(Y,Z),for X, Y,Z € g, a,b e R. In
other words, the map ¢, from g x g into R, is skew-symmetric and bilinear. [In the

language of cohomology of Lie algebras, ¢ is a cochain; see, e.g., Jacobson (1979,
Chap. I1I).]

Exercise 8.27 Show that ¢([X,Y],Z) + ¢([Y,Z],X) + ¢([Z,X],Y) = 0. (This
means that ¢ is a closed cochain.)

Theorem 8.28 There exists a set of functions p such that duy = —X*1d6,

Woxipy = altx + b,uY, and |/ X.] = {ux, ny}, for X,Y e gand a,b € R, if and
only if there exists h € g* such that c(X, Y)=h(X,Y]).

Proof 1f such a set of functions py exists, the condition duy = —X*_dé implies
that the difference ux — u;( is a constant whose value, denoted by /(X), may depend
on X. Then

h(aX + bY) — ah(X) — bh(Y)

= [LaX+bY — X — by — tox py +any +buy
=0,



8.5 Dynamical Symmetry Groups 227

for X, Y € g and a, b € R; that is, & is linear; hence, k € g* and

cX,Y) = pux,y; — {1x, ny}

iy + (X YT) — {1 +h(X). iy +h(Y))
/ﬂ[x — {ux, ny}+ (X, Y])
= h([X,Y]),

for X, Y eg.

Conversely, if there exists & € g* such that ¢(X,Y) = A([X, Y]), we define
wy = px — h(X), for X € g; since 2(X) € R and 7 is linear we have duy = dux =
—X"_dé. Furthermore,

Hax+py — aix — by
= UaX+bY — apux — buy — h(aX + bY) + ah(X) + bh(Y)

=0,
and
mixy) — (xs mny = mixoyy = (X, YD) = {ux = h(X), iy — h(Y)}
=c(X,Y) —h([X,Y])
=0,
forX,Yeganda,beR. O

A necessary condition for the existence of an /& € g* such that ¢(X,Y) =
h([X,Y]) is obtained making use of the Jacobi identity and the linearity of 4, i.e.,

(X, Y], Z) +c(Y, Z]. X) + ¢([Z, X], Y)
=h([[X,Y1Z] +[[Y. Z],X] + [[Z.X],Y])
=0,

which is always satisfied (see Exercise 8.27). For some Lie algebras (e.g., the
semisimple Lie algebras) this condition is also sufficient [see, e.g., Jacobson (1979,
Chap. III).].

Example 8.29 Let G be the additive group R? and let M = R?. For each g =
(a,b) € R? we define Ry :T*M — T*M by

R q¢"'=¢q' +a+ Kbpy,
1
* 2 _ 2 232

R*p1=p1 —b,
Rg*p2 = D2,
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where (q1 , qz, p1, p2) are the canonical coordinates on T*M associated with the
natural coordinates of R%, and K is an arbitrary real constant. These expressions
define an action of G on T*M such that each Ry is a canonical transformation. In
fact,

Ry*(dp1 Adg' +dps Adg?) =dpi A (dg" + Kbdps) +dpy Ad(g® + Kbdpy)
=dpi A dq1 +dpa A dqz.

In order to find the vector fields induced on T*M by the action of G, we note
that, according to (8.65), for «, € T*M, the mapping @y, : G — T*M, defined by
Py, (8) = Rg(ap), is given by the expressions

®a,*q" =q' (@p) +x' + Kpa(ap)x®,

1 2
Do, *q* = q*(ap) + K<p1 (@p)x? — E(xz) ) (8.66)
@y, p1 = p1(a,) — x7,

Do, p2 = pa(ap),

where (x] , xz) are the natural coordinates on G, that is, if g = (a, b), then x! (g)=a
and xz(g) = b. Making use of (7.60) and (8.66) we find that

o o\ (0
apxe 9xl . = 36]1 ap,
0 bl d ol
P — | =K — K — (= .
ozp*e(ax2)e Pz(ozp)(aql>a + Pl(ap)<8q2>ap (apl)%

)4

Thus, _if X; and Xj are the left-invariant vector fields on G such that (X;), =
(9/0x")., the corresponding vector fields on T*M are

= Xt = Ky 4 Kpy ?
- 2 p2aq1 plaq2 3p1
These vector fields turn out to be globally Hamiltonian; indeed, XTJ do = —dp;
and X;J do = —d(¢' + Kp1 p>). Hence,

ux, = pi+const,  ux,=q' + Kpips+ const,

and one finds that {ux,, ux,} = XT,uX2 = —1. (Note that px, is not a homoge-
neous function of degree 1 in the p; and, therefore, it cannot come from a group of
canonical transformations on 7*M induced by a group of transformations on M.)
However, [X1, X>] =0 (G is an Abelian group) so that if we want to have a linear
mapping X — ux, then px, x,] =0, which cannot coincide with {ux,, ux,}, no
matter how we choose the arbitrary constants contained in ux, and ux,. (Note that
c(X1,X2) = pxy, X, — (X, s X, = 1, but, since [Xy, X2] = 0, there does not exist
h € g* such that ¢(X1, X3) = h([X1, X2]), in accordance with Theorem 8.28.)



8.5 Dynamical Symmetry Groups 229

The Hamiltonian function

2 2
pi°+ p2 5,
H="—""" 1+ —4°
2m + mK i

which corresponds to a particle of mass m in a uniform field (e.g., a uniform grav-
itational field with acceleration 1/m?K), is invariant under the action (8.65). [In
fact, one can readily verify that X?‘pg =0 and X;"(q2 + %Kp12) =0,fori=1,2;
therefore any function of only ps and ¢* + %K p12 is invariant under the action
(8.65).]

Example 8.30 Now we shall start by specifying a Hamiltonian function and we
shall find a group of canonical transformations that leave the Hamiltonian invariant.
Taking M =R>, we shall consider the Hamiltonian function

H=——(p + p2? + p3?). (8.67)
2m

which corresponds to a particle of mass m and electric charge e in a uniform mag-
netic field B = B (3/dx>), where B is a constant, provided that we use the symplec-
tic 2-form w = dp; Adg’ + (eB/c)dg' Adg?, on T*M; (¢', 4%, ¢>, p1. p2. p3) are
the coordinates on 7* M induced by the natural coordinates of R, and ¢ is the speed

of light in vacuum (see Example 8.19).
The vector fields 3/dg’,i = 1,2, 3, on T*M satisfy d H/dg' = 0 and are globally

Hamiltonian since
d eB
o= —d(m - —qz),
c

dq
d eB
—Jo=-d —4'),
g <P2+ -4 )
—Jo=—dp3
q
Hence, the functions
eB , eB
K15P1—76], K25P2+7q, K3 =p3

are constants of motion. (Note that K; and K> are not homogeneous functions of

degree 1 in the p;.) The (globally) Hamiltonian vector fields corresponding to them

are

Xak, = 2 Xak, = i Xak; = —=
1 aq] ? 2 8 q2 ’ 3 a q3 ’

therefore [see (8.19)]

eB
(K1, K2} =Xak, K2 = —
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(K2, K3} = X4k, K3 =0,
{K3, K1} =Xug; K1 =0,

which implies that the Lie brackets of the vector fields Xk, are all equal to zero
[see (8.20)].
Proceeding as in Sect. 6.1, we can find the one-parameter group of diffeomor-

phisms, ¢, generated by an arbitrary linear combination

. d d 0

i _ 1 2 3

e T POl ey

The result can be expressed in the form ¢*q’ = ¢' + a's, ¢s*pi = pi (i =1,2,3).
Thus, the vector fields X4k, are induced by the action of the additive group R3 on
T*M given by

Riq'=q'+a', RSpi=pi (=123,

for g = (al,az,a3) € R3. One can readily verify that these transformations are
canonical (in fact, Rg*dg’ = dg' and R,*dp; = dp;; hence Ry;*» = w), give an
action of R3 on T*M, and leave invariant the Hamiltonian (8.67). As in Exam-
ple 8.29, if B #£ 0, it is impossible to find a Lie algebra homomorphism from the
Abelian Lie algebra of R? into C*°(T* M), associated with this action.

It may be noticed that the Hamiltonian (8.67) also satisfies

<q1 3 , 0 ) 3 , 3 )H 0
——q¢ —5+tpi——p—|H=0.
dg? dag! ap2 ap1

The vector field appearing on the left-hand side of the last equation is the canonical
lift of the infinitesimal generator of rotations about the x> axis (see Exercise 8.15)
and is globally Hamiltonian

9 d d d . eB

<q1—2 - 2371 g P28—pl>J<d[7i Adg' + %dql /\dq2>
=—d{g'p2— *p1 + B/20[(¢") + (4?)’]}.

Thus,

B
Ly=q'pr—q*p1+ ez—c[(ql)2 + (‘12)2]

eB eB
=q'(p2+—4q") —¢*| p1 — —4*
2¢ 2¢

is a constant of motion. Note that, as shown in Example 8.20, (ql,q2,q3,
pP1— %qz, P2+ %ql, p3) is a set of canonical coordinates for the symplectic
structure considered here, but the constants of motion K; and K, do not coincide
with p; — %qz and pr + %ql, respectively, for B # 0.
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Exercise 8.31 Show that
{L3, K1} =—K>, {L3, K7} =K, {L3, K3} =0.

Example 8.32 The Hamiltonian function

2
Z( 07+ mwo Z(qx")2 (8.68)

i=1

corresponds to an isotropic harmonic oscillator in n dimensions; m is the mass of
the oscillator and wy is its angular frequency. The ¢’ and p; appearing in (8.68)
are the canonical coordinates induced by a set of Cartesian coordinates x’ on the
n-dimensional Euclidean space. Defining the complex (row) vector

b= (—ip1 +mwoq’, ..., —ip, +mwoq"),

the Hamiltonian function (8.68) can be expressed in the form

H= "L, (8.69)
2m
where b' is the Hermitian adjoint of b (obtained transposing and conjugating the
row b).
Let SU(n) be the group of unitary complex n x n matrices with determinant
equal to 1; then for U € SU(n) the Hamiltonian function (8.69) is invariant under
the transformation

b +— bU, (8.70)

since by virtue of the unitarity of U, we have bb" = bU (bU)" =bUU b = bb'.
Furthermore, for each U € SU(n), the transformation (8.70) is canonical as can be
seen noting that

bi —bi
pi =1

. bi+b;
, == 8.71
2 4 2mwq ( )

where the b; are the components of b, the bar denotes complex conjugation, and

dp; ndg' = —— db; — db; db; +db;) = db; A db;.
pindg = Z( ) A (db; +db;) = mwoz A
Equation (8.70) amounts to Ry *b; =b; Ul.j, where U = (Uij), so that

Ry*(dp; Adg') =

ZRU db; A Ry*db; = ZU’U"db A dby

m a)o ma)o

= Zdb Adb; =dp; Adg'.
2mwo
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(As in previous examples, the use of complex quantities, such as the b;, simplifies
the computations, but is not essential.)

Thus, SU(n) acts on the right on the phase space by means of canonical transfor-
mations and, therefore, the fields Xl+ on the phase space, induced by this action, are
Hamiltonian, at least locally. In what follows we shall consider in more detail the
case with n = 2, showing that the vector fields X are actually globally Hamiltonian
and that, in contrast to Examples 8.29 and 8.30, the functions px can be chosen in
such a way that the map X + ux is a homomorphism of Lie algebras.

Substituting the matrix U = expta’X; given by (7.54) into (8.70) and using
(8.71) we find that (cf. Example 7.59)

(a3p1 + alpz)] l sin(Kt/2),

1
Repraix;"q' = q' cos(Kt/2) + [azqz +
mawo

>

1 1 .
Rexpraix; q° = q* cos(K1/2) — [aqu - m—w()(alpl — a3p2)] — sin(K1/2),

=

1.
Rexpraix; " P1 = p1cos(K1/2) + [a®p2 — mawo(a’q' + alqz)]E sin(K't/2),

1 .
Rexpraix; P2 = p2cos(Kt/2) — [a®p1 +mwo(a'q' — a3q2)]? sin(K't/2),

and calculating the tangent vector to the curve given by these expressions at t = (0
we obtain the vector field

icrt L[ 2o @pitap apl—apzi
(a Xl) 2 L R — mawo mag 9q?
1 d
+§[a p2—mao(a’q' +a'q )]8_
+ l[—az — mw, (al 143 2)]i (8.72)
B P1 ola g q s’ .

which is globally Hamiltonian; its contraction with d6 gives —d(a’ wx;), where

1
X, = 5 (P1P2+m *wo’q'q?),
1
Bx, = E(mq — p2q"), (8.73)
1
[, = M{(m)2 — (p)> +m?o0*[(¢")? - (¢%)*]}-

Recall that the functions px; are not uniquely defined by (8.72); as we shall show
below, with the choice (8.73) one obtains a Lie algebra homomorphism. Note also
that, out of these three constants of motion, only wx, is a homogeneous function
of degree 1 of the p;, and therefore it is the only one associated with a group of
transformations acting on the configuration space; see (8.26).
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It can readily be verified directly that these functions satisfy the relations

3

{ix;o x, ) =) Eijk 1ix,» (8.74)
k=1

which correspond to the relations [X;, X;] = Zi:l €ijk Xy satisfied by the basis of
su(2) given by (7.21).

A convenient way of calculating the Poisson bracket on the left-hand side
of (8.74) consists of employing the definition (8.19), which yields {ux;, ,u,xj} =
Xl+ ux;, noting that the vector field Xl+ is the coefficient of a’ on the right-hand
side of (8.72). For instance, from (8.72) and (8.73) we obtain

{ux,, ux,}
1 p 0 pr 9 ) 0 1 91 2 1
==+ 2 ~ _ _ _ R —
2<mw0 5ol T mon 3g2 "0 g T me0d' 5 5(P1a” = p2a’)
:/’LX3-

The results established in the preceding paragraphs, in connection with Lie
groups that act on the cotangent bundle of a manifold by means of canonical trans-
formations, also apply if in place of the cotangent bundle of a manifold one con-
siders any symplectic manifold, replacing the fundamental 2-form df by the corre-
sponding symplectic form.

Example 8.33 The rotations about the origin in R3, which form the group SO(3),
leave invariant the sphere S2 as well as its area element, which will be denoted
by w. The 2-form w defines a symplectic structure for S? (see Example 8.18) and,
by virtue of the invariances already mentioned, the vector fields X™ induced by
the action of SO(3) on R? are tangent to S? and are, at least locally, Hamiltonian. In
fact, expressing the vector fields S,‘: , given in Example 7.58, in terms of the spherical
coordinates one finds that

d a
ST = sinq)@ + cotf cosq)%,
SH = —cosd)i + cotf sincj)i (8.75)
2 90 A’ ’
a
ST =——,
d¢

which shows that these vector fields are tangent to the sphere and contracting them
with w = sin 6 d6 A d¢, we obtain —d(sin6 cos ¢p), —d(sin6 sin¢), and —d cos 6, re-
spectively [cf. (8.49)], thus showing explicitly that the S,j are locally Hamiltonian.
[Since the spherical coordinates are not defined globally on S?, from the previous
computations we cannot conclude that the S,'f are globally Hamiltonian. For in-
stance, in the domain of the spherical coordinates, w = d(¢ dcos ), but w is not an
exact 2-form.]
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In the present case, from (7.63) it follows that Sy = % Z?,j:l &kij[Si, S;], there-

fore, S,;L = %Zij:l Ekij [Si+, Sj], and since according to Theorem 8.7 the Lie
bracket of two locally Hamiltonian vector fields is globally Hamiltonian, the vector
fields S,j are globally Hamiltonian. It may be noticed that S;J w = —dx*, where
%X is the restriction of the Cartesian coordinate x* to S2 (that is, =i *xk, where
i : S — R3 is the inclusion map). Finally, making use of the expressions (8.75) one
finds that

[, 27} =S 2 = g k.

Example 8.34 The so-called Kepler problem corresponds to the motion of a parti-
cle in a central force field with potential energy V = —k/r, where k is a positive
constant and r is the distance from the particle to the center of force. Assuming that
the motion of the particle takes place in the three-dimensional Euclidean space, the
Hamiltonian function expressed in terms of the canonical coordinates induced by a
set of Cartesian coordinates is

k
V@2 + @2+ @372

The Hamiltonian (8.76) is invariant under the transformations on the phase space
induced by the rotations about the origin in the Euclidean space, which implies
the conservation of the angular momentum, L; = ¢; jkqj Pk, with summation over
repeated indices (see Exercise 8.15). But, as is well known, the so-called Runge—
Lenz vector

H=—(p? 2 2 8.76
2M(pl + p2* + p3?) (8.76)

mk
A=px (rxp) — —r, (8.77)
r

where r is the position vector of the particle, is also a constant of motion (that
is, the functions A; = p/-qui - qujpi — mkq' /\/q*q* are constants of motion).
Since the A; are not homogeneous functions of first degree in the p;, the existence
of these constants of motion is not related to transformation groups acting on the
configuration space M = E3.

Of course, in principle we can find the (possibly local) one-parameter group of
transformations generated by each vector field X44,, which must be formed by
canonical transformations that leave H invariant. However, it is possible to relate
the Kepler problem with other problems in such a way that the conservation of the
A; becomes obvious. In this example we shall restrict ourselves to the trajectories
in phase space on which H has the constant value £ = 0. In order to identify the
canonical transformations associated with the conservation of the A;, we introduce
the new coordinates

0 =ap-L— i=123,
DbjpPj
where ay is a constant with dimensions of linear momentum times length. Then we
obtain p; = aopQ'/(Q’ Q7), and a straightforward computation shows that
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i .
i

PidqizaijQj dg
ao ; ;. ;20kdo*
( Qfo) oY 40 HwQ'd s
( >+HdQ,

where
20%¢* Q" — Ok 0tq'
(Q1QJ)?

so that (Q', P;) are canonical coordinates [cf. (8.12)]. Then we have

P,' =dqp

20
pp=249
(Q707)
By combining the foregoing expressions we also have
1 k i
P = %(21%61 Pi — Pepiq')- (8.78)

We now introduce the auxiliary Hamiltonian

h=2mk%ag*(ao®> —2m Q' Q' H)

which satisfies
dh = 8m*k%ag* (ap® —2m Q' Q'H) 7 (Q' Q' dH + 2H Q' d Q).

Hence, on the hypersurface H =0,

242

8m 4mk

dhly—o = QQdﬂ

FrdH|
which means that on this hypersurface the integral curves of Xg, only differ in
parametrization from those of Xgz .

In terms of the new canonical coordinates, the auxiliary Hamiltonian /4 is given
by

1
h=—PP;, (8.79)
2m

which has the form of the usual Hamiltonian for a free particle of mass m moving in
the three-dimensional Euclidean space [cf. (8.49)] and therefore is invariant under a
group of canonical transformations isomorphic to the group of rigid motions of 3.
Equivalently, the six functions P; and &;j; QJ Py, are constants of the motion (but
only along the integral curves of Xqg lying on the hypersurface H = 0). Making
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use of (8.78) one readily verifies that, on the hypersurface H = 0, we have P; =
—2A;/ap and &;j; Q7 Pr = &ijiq’ pi, thus explaining the conservation of angular
momentum and of the Runge-Lenz vector.

A problem in geometrical optics closely related to the Kepler problem of classical
mechanics is the so-called Maxwell’s fish-eye, which is characterized by a refractive
index of the form

a

T b4rY
where a and b are real constants (with dimensions of length squared) and r is the
distance from a given point O. (As usual in this context, we assume that light prop-
agates in three-dimensional Euclidean space.) The spherical symmetry of the func-
tion (8.80) implies that the corresponding Hamiltonian (8.55) is invariant under the
canonical transformations induced on T*E3 by the rigid rotations about O. This
invariance leads to the conservation of the components of the “angular momentum”
L, =¢; jkqj Pk, Where the qi, pi are the coordinates induced by a Cartesian coordi-
nate system with origin O. (In fact, the L; are conserved if the refractive index is
any function of r only.)

(8.80)

Exercise 8.35 Show that the specific form of the refractive index (8.80) implies that
the Cartesian components of the vector

rx(pxr)—i— (8.81)

[cf. (8.77)] are also conserved, that is, the functions g¢/q’p; — q’/pjqi
—ap;/(2,/pjpj) are constants of motion.

Making use of the conservation of the vector (8.81) one can readily show that
the vector p traces a conic with one of its foci at the origin and that the light rays
are circles or arcs of circles. In a similar manner, making use of conservation of
the Laplace—Runge—Lenz vector (8.77), in the case of the Kepler problem one finds
that the orbits are conics with one of the foci at the origin and the momentum traces
circles or arcs of circles [see, e.g., Goldstein (1980, Chap. 3)].

8.6 The Rigid Body and the Euler Equations

A nice application of the formalism developed in this chapter and the previous ones
is found in the study of the rigid body motion. As we shall show, by restricting
ourselves to the motion of a rigid body with a fixed point, the configuration space
can be identified with the group of rotations in the three-dimensional Euclidean
space, SO(3).

In order to study the motion of a rigid body with a fixed point, it is convenient to
consider an orthonormal basis {€/, €}, €}} fixed in the body, with the orientation of
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the canonical basis {e;, e, €3} of R3. Then, the configuration of the rigid body can
be represented by means of a real 3 x 3 matrix whose columns are the components
of €|, ), e with respect to the canonical basis. This matrix is orthogonal, as a
consequence of the fact that the basis {e’l, e’z, e’3} is orthonormal, and its determinant
is equal to 1, by virtue of the assumed orientation of the basis. In this manner we
have a one-to-one correspondence between the configurations of the rigid body and
the orthogonal 3 x 3 matrices with determinant 1; thus, the configuration space of a
rigid body with a fixed point can be identified with the underlying manifold of the
group SO(3).
Using the definitions given in Example 7.58, one finds, for instance, that

cost —sint 0
exptS3=| sint cost O],
0 0 1

as can readily be verified by noting that the matrices

cost —sint O
yi=| sint cost 0
0 0 1

form a one-parameter subgroup of GL(3,R) and calculating y;; one obtains S3;
therefore y; = expS3 (see Sect. 7.4).

According to the definition given above, if the rigid body is initially at the con-
figuration represented by g € SO(3), then (exp?S3)g represents the configuration
obtained by rotating the body about the e3 axis through an angle 7. Note that if
the configuration of the rigid body is represented by the matrix whose rows are the
components of €|, €}, €} with respect to the canonical basis, then the configuration
obtained by rotating the body about the ez axis through an angle ¢ corresponds to
gexp(—tS3).

According to the results established in the proof of Theorem 7.48, the infinitesi-
mal generator of the one-parameter group of transformations ¢;(g) = (exptS3)g is
the right-invariant vector field whose value at the identity corresponds to the ma-
trix S3, which will be denoted by Sg. Hence, S3 is the infinitesimal generator of
rotations of the rigid body about the ez axis. In a similar way, the right-invariant
vector field Sk, whose value at the identity corresponds to the matrix S, is the in-
finitesimal generator of the rotations of the body about the e; axis.

On the other hand, for g € SO(3), the matrix g(exp#Sy) corresponds to the con-
figuration of the rigid body that, being originally in the configuration represented
by g, has been rotated through an angle ¢ about the €; axis fixed in the body. This
implies that the left-invariant vector field Sy, whose value at the identity corresponds
to the matrix Sy, is the infinitesimal generator of rotations about the e;( axis.

The vector fields Sy and Sion the configuration space M = SO(3) define Hamil-

tonian vector fields Sy and Sx on the phase space T*SO(3) (their canonical lifts),
which correspond to the functions

L;=S;J6 and K;=S$, 6, (8.82)
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respectively [see (8.24)]. In terms of the notation used in (8.24), L; = fs, and
K; = fSi' Then, according to (8.30) and (7.63), the Poisson brackets for the func-
tions L; are given by

{Li, LjY=1{fs;, fs;} = s,sl—Ze,,kfsk Zel,kLk (8.83)

Since the left-invariant vector field S; is the infinitesimal generator of rotations about
the e axis fixed in the body, the function L; corresponds to the ith component of
the angular momentum of the rigid body with respect to the axes fixed in the body.
Similarly, the function K; corresponds to the ith component of the angular momen-
tum of the rigid body with respect to the canonical basis of R? (the axes “fixed in
space”). From Theorem 7.48 and (7.63) it follows that [S, , S; il= Zk 1€ ijk,
and using again (8.30) it follows that the Poisson brackets for the functions K; are
given by

(Ki,Kj} == eijuKs. (8.84)
k=1
Finally, from Theorem 7.4}9 we see that the Lie bracket of each of the vector fields
S; with each of the fields S; vanishes; hence

{Li,K;}=0. (8.85)

If (x!, x2, x3) is a local coordinate system for SO(3), the vector fields Sy can be
expressed in the form
i 9
koxi
where the M, ,’( are real-valued functions defined on the domain of the coordinates x’.
From (8.82) one concludes that the components K; of the angular momentum of the

rigid body with respect to the axes fixed in space are given in terms of the canonical
coordinates ¢*, p; induced by the x' by means of

Si = , (8.86)

K= (7"M])p; (8.87)

[see (8.26)] (since ¢' =7 xl the only effect of 7* on the expressions for the M; J

is replacing the variables x’ by ¢'). The 1-forms &' that form the dual basis to {Si}
are right-invariant and have the local expression

of = MFdx', (8.88)

where (A;I;.) is the inverse of the matrix (Mj.) (.e., M}M,{ = 8,’;).
The functions M¥ relate the angular velocity of the body with respect to the

1

axes fixed in the space with the velocities dx/(g(r))/dt. If ¢ — g(¢) is a dif-
ferentiable curve in SO(3) that represents the configuration of a rigid body as
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a function of time ¢, then the tangent vector to that curve is given locally by
(dx? (g(t))/dt)(a/axi)g(,) and can also be expressed as a linear combination of the
tangent vectors (S,-) ¢(n) 1n the form ol (t)(Si) ¢(1)- Since S,- is the infinitesimal gen-
erator of rotations about e;, £2*(¢) is the angular velocity of the body about the e;
axis. From the equality (dx’(g(r))/d)(8/0x")¢() = 27 (1)(Si)¢(r) and (8.86), there
results

) - d t
Q') = Mi(g (:))m (8.89)
or, by abuse of notation,
. ~.dx/
Q=M —. 8.90
i dr (8.90)

In a similar way, the basis {S;} of s0(3) and its dual, {»'}, have expressions of
the form

Sk = ot = M'*dx’, (8.91)

k 8 i’
where the M", /i are real-valued functions defined on the domain of the coordinates

x and (M" ) is the inverse of the matrix (M": ) The components of the angular
momentum of the rigid body with respect to the axes fixed in the body are given by

Li=(z*M")p;, (8.92)
and
. dx/
Qi =M= 8.93
i ar (8.93)

is the component of the angular velocity of the body about the €] axis.

Exercise 8.36 Show that the relations (8.83) are equivalent to the Maurer—Cartan
equations for the left-invariant 1-forms «’.

Euler Angles A commonly employed coordinate system for SO(3) is that formed
by the Euler angles, though there are several slightly different forms of defining
them. Following the convention of parameterizing a rotation g € SO(3) by means
of the three angles ¢ (g), 6(g), and ¥ (g) in such a way that

= (exp#(g)$3)(exp0(g)S1) (exp ¥ (g)S3), (8.94)

the configuration corresponding to g is obtained rotating the body first about the ¢,
axis by an angle ¢ (g), continuing with a rotation by 6(g) about the e} axis and,
finally, with a rotation by ¥/ (g) about ;. Since these rotations are made about the
axes fixed in the body, according to the discussion at the beginning of this section,
each of these rotations multiplies by the right those applied first. In order to have
a coordinate chart, the values of the Euler angles are restricted by 0 < ¢ < 2,
0<0<m0<y <2m.
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The explicit form of the functions M ;., A;I;., M’ ’j and M’ ’] can be conveniently

obtained with the aid of Theorem 7.35. Calculating the product g~! dg, from (8.94)
we obtain

¢ ldg = (e—ws3e—951 e—¢S3) d(e¢s3e951 ews3)
=e VS5 51 5dgeS1e? S 467V S, doe? S + S3dy.  (8.95)
On the other hand, we can see that, for instance,
e V581e¥S = (cosy) S| — (siny)Ss. (8.96)

Indeed, denoting by R () the left-hand side of (8.96), differentiating with respect to
¥ and using (7.63) one finds that dR/dyy = —e ¥ 535351e¥5 4+ e V535, 53e¥5 =
—e ¥535,e¥53 . In a similar manner one obtains d2R/dy2 = e V53[S3, $h1e?S3 =
—e"”S3Sle‘”S3 = —R; therefore, R = (cos¥)A + (siny) B, where A and B are
matrices that do not depend on . Evaluating R and dR/dys at ¢ = 0 we have
R(0) =81 = A and (dR/dy)(0) = —S> = B, thus showing the validity of (8.96).

Now making use of (8.96) and the relations similar to it obtained by cyclic per-
mutations of the indices, from (8.95) one arrives at the expression

g 'dg =e V5 (cosh 83 +sinf $r)eV S dg + (cos ¥ Si — sinyr $2)dO + S3dyr
= [cos6 S3 +sinf(cos ¥ Sy + siny S1)]| d + (cosy S — sinyr $2) df
+ S3dy
= (sinf sin ¥ d¢ 4 cos 1 d9) S| + (sinf cos Y dp — sin d9) S»
+ (cos@d¢ + dyr)Ss, (8.97)

where the coefficient of the matrix S§; is the 1-form o' [see (7.46)] and comparing
with (8.91) we obtain the matrix (M’ ’j). Then, it is easy to calculate the dual basis

to {w'}, and the result is

d d a
S =csc€sinw£ +cosw£ —cot@sinww,

d 0 0
S, = csc@coswg — Sinl/fﬁ —cotf cosw@, (8.98)
0
Sz =—.
3 v

(The last of these equations also follows directly from the definition of the Euler
angles, taking into account that S3 generates rotations about the e’3 axis.) It should
be noticed that the expressions on the right-hand side of (8.98) are not defined at
6 =0, but 8 does not vanish in the domain of the coordinate system ¢, 6, ¥. In fact,
a straightforward computation gives w! A w? A @> = sinfdd A dg A dyr, but the
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left-invariant 3-form w! A @? A w3 is everywhere different from zero. Then, using
(8.91), (8.92), and (8.98) we find that

L1 =cscOsiny py + cosyr pg — cotd sinyr py,,
Ly =cscOcosyr py — sinyr pg — coté cos ¥ py, (8.99)
L3 = py,

where, by abuse of notation, the variables 7 *¢, 7*6, and 7 *y have been denoted by
¢, 0, and V¥, respectively; that is, in (8.99), the Euler angles are regarded as variables
defined on the phase space T*SO(3).

The 1-forms &' can readily be obtained by means of the relation &' = —*w' (see
Exercise 7.31) using the fact that «*¢ = —, 1*0 = —6, and "y = —¢ [see (8.94)];
in this way we obtain, for instance,

. 0 0 a
S| =csch sinq&w +cos¢£ — cotf sinqﬁ%,
S, = csch cos ¢ 9 + sin¢ 9 + cotf cos ¢ 9 (8.100)
2= v 90 90’ ‘
. 0
S3=_—,
d¢

and, therefore,

K1 =cscOsing py + cos¢ pg — cotfsing py,
K> = —cschcos¢g py + sing pg + cotf cos ¢ pg, (8.101)
K3 = py.

Dynamics of a Rigid Body If the curve  — g(¢) in SO(3) corresponds to the
motion of a rigid body with a fixed point, from the elementary definition of the
kinetic energy of a particle, it follows that the kinetic energy of the rigid body is
given by Ex = 51;;£2" 2"/, where 2" () is the component of the angular velocity
of the body about the eg axis and the constants I;; = I;; are the components of the
inertia tensor of the body with respect to the basis {e|, €}, e}}. From (8.93) and
(8.91) it follows that

L -1 L
Ex =1 (M ' @ M dx') (g], g = 5 (ljo' @) (gl 8, (8.102)

where g/ is the tangent vector to the curve ¢ > g(t).

The tensor field I,~A,~a)" ® w/, appearing in (8.102), is symmetric and positive
definite (excluding the case where the rigid body is formed by point particles
aligned on an axis passing through the fixed point of the body); therefore it is
a metric tensor for the manifold SO(3). Furthermore, since the I;; are constant
and the ' are left-invariant 1-forms, I;j0' ® o’ is a left-invariant metric, i.e.,
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Ly*(I;jo' ® w/) = I;j0' @ ’ for g € SO(3). In other words, for each g € SO(3),
the transformation L, from SO(3) onto itself, is an isometry and the right-invariant
vector fields on SO(3) are Killing vector fields for this metric, regardless of the val-
ues of the components of the inertia tensor /;;. Making use of the local expression
for the w* given in (8.91), we can also write the metric tensor in the standard form,

Lo @ = 1; M, M'] dx* © dx! = gy dx* @ d, (8.103)

where 8kl = Il‘jM/;‘(M/lj.

It should be stressed that all the rigid bodies with a fixed point possess the same
configuration space [the underlying manifold of the group SO(3)], but the metric on
this manifold is given by the inertia tensor of the body.

The vector fields S; form a rigid basis with respect to the metric I; jwi ® wl.
Comparing equations (7.63) and (6.62), and using (6.63) it follows that the con-
nection 1-forms for the corresponding Riemannian connection, with respect to this
basis, are

3
=
Fij = _5 E (Iimgmjk - Ijmgmik - Ikmgmij)wk-
m=1

(See also Appendix B.)

In the particular case where I;; = 1§;;, where [ is a constant (which corresponds
to the so-called spherical top), the left-invariant vector fields S; are also Killing vec-
tor fields. Indeed, we have £g, (18 0’ ® w*) = I8 ;[(£s,07) ® o* + @’ ® £5,0*];
on the other hand, from (3.39), (7.63), the Maurer—Cartan equations, and (3.27),
£Sia)j =S, Jdw’ +d(S;Jw’) =S, (—%sjkla)k Aol = s,-jla)l; hence,

£, (ISjka)j ® a)k) =1(ikm + €imp)0™ @ of =0.

In this case, the connection 1-forms for the basis formed by the S; are ri ji=
—%I & jka)k and from the second Cartan structural equations (5.18) one finds that
%ij = %Ia)" Awl, or, equivalently, R;jx = %I(Sikéﬂ — 8416 x), which corresponds
to a space of constant curvature [see (6.100)]. With this metric, SO(3) is locally
isometric to the sphere S3. (However, SO(3) and S> are globally distinct; whereas
S3 is simply connected, SO(3) is not.) Using, for instance, the expressions given
by (8.97) for the 1-forms ' in terms of the Euler angles one finds that the metric

I(Sijwi ® ' is
I[dg®d9+d¢®d¢+d1/f®dlﬂ+COS9(d¢®d1/f+dl//®d¢)].

Exercise 8.37 Show that if (/;;) = diag(l, I, I3) (a symmetric top), then S3 is a
Killing vector field of the metric Ii./w" Qwl.
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Going back to the general case, from (8.102) and (8.103) it follows that the ki-
netic energy of a rigid body with a fixed point can also be expressed in the form

1 ..
T:E(n*gu)pipj, (8.104)

where (g%) is the inverse of the matrix gij = Iklll;l/f?M/lj [cf. (8.47)]. (In contrast
to Ex, T is a function defined on the phase space.) According to (8.92), we also
have

1
T =21VLiL,, (8.105)

where (I'/) denotes the inverse of the matrix (/;;). The standard Hamiltonian func-
tion for a rigid body is the sum of its kinetic and potential energies. If the axes of
the coordinate system fixed in the body are principal axes of the inertia tensor [with
respect to which the matrix (/;;) is diagonal, (/;;) = diag(/1, I, I3) and, therefore,
(IVY) =diag(1/1;, 1/, 1/13)], the Hamiltonian is then

Ly’ + Ly’ + Ly’ Lty (8.106)
=—+—+——+7"V, .
21 2D 213

where [y, I>, I3 are the so-called principal moments of inertia [see (8.105)] and V
corresponds to the potential energy. From (8.43), together with (8.106), (8.83), and
the properties of the Poisson bracket that follow from the definition (8.19), we find
that

dLq
L
5 { 1)
1 1 1 .
=—{L,L1}Ly+ —{La, L1}Ly + —{L3, L1}L3 + {n™V, Ly}
I I I3

1 1
=——LsL3+ —LyL3+ {n*V,L;}.
163 I3

The functions L; appearing in (8.105) and (8.106) are generating functions of the
rotations of the rigid body about the axes fixed in the body [see (8.82)]. However,
according to its elementary definition, the angular momentum should depend lin-
early on the angular velocity. From the Hamilton equations (8.36) and (8.104) one
finds that

1
‘Li - (78" )p;.
t 9pi  Opi

Hence, making use of (8.92) and (8.93),

=n*(M'gM})R2" = 12"

P * i qu
Li=(m"M)pj=="(Mgjx) 5~
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Thus, with respect to the principal axes of the inertia tensor, L; = I; 2 (without
sum on i), and we have

/1

I — (L —B)R*2"¥ =N, (8.107)

where N{ = {7*V, L1}. In an analogous way we obtain

12

b= — (3 —1)R'"'2"7% =N},
d.Qt’3 (8.108)
I = — (L — L)R'"'2"?* =N},

with N l/ = {n*V, L;}. Since L; is a generating function of rotations about the e;. axis
(fixed in the body), the functions N/ correspond to the components of the torque
with respect to the axes fixed in the body. Equations (8.107) and (8.108) are known
as the Euler equations.

When V = 0, the torque is equal to zero and the Hamiltonian (8.106) reduces to
the kinetic energy 7', which is given by (8.105) or by (8.104); therefore, the Euler
equations (8.107) and (8.108) with Ni’ = (0 amount to the equations for the geodesics
of the metric /;;0' ® w’.

Finally, we consider the case of a symmetric rigid body with a fixed point in a
uniform gravitational field. Choosing, as usual, /1 = I and taking the fixed point of
the body as the origin of the coordinate systems fixed in space and in the body, from
(8.106) and (8.99) one finds that

1 2 (p¢ —cosf p¢)2i| p¢2
H=— + ———"— |+ —=—— +mglcosh, 8.109
21 [pa sin? 6 213 8 ( )

where m is the mass of the body and / is the distance from the fixed point to the
center of mass. Since H does not depend on ¢, ¥, and ¢, the Hamilton equations
(8.36) imply that

D¢ = const, Dy = const, H =const(=E) (8.110)

(i.e., K3 and L3 are constants of motion; cf. Exercise 8.37). On the other hand

dd O0H
C_om_pe (8.111)
dr apo I
therefore, from (8.109)—(8.111) one obtains the separated equation
L d9)2 (p¢—0059p,/,)2 , p¢2
—|—) + ——————— +mglcosb =E =FE — —, (8.112)
2 <dt 21 sin’ @ 8 213

which is usually obtained by means of the Lagrangian formalism [see, e.g., Gold-
stein (1980, Sects. 5-7)].
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8.7 Time-Dependent Formalism

In the foregoing sections we have restricted ourselves to the case where the Hamil-
tonian is a real-valued function defined on the phase space. The Hamilton equations
(8.36) then constitute an autonomous system of ODEs (that is, the right-hand sides
of the Hamilton equations (8.36) do not depend explicitly on ). However, the for-
malism can readily be extended to the more general case where the Hamiltonian
depends explicitly on time, and even in those cases where a given Hamiltonian does
not depend explicitly on time, it is convenient to consider canonical transformations
that lead to a new Hamiltonian that may depend on time.

Throughout this section, P will denote a 2n-dimensional differentiable manifold,
which in many cases will be the cotangent bundle of some n-dimensional differen-
tiable manifold. We begin by noticing that for a given 2-form £2 on P x R, of the
form 2 =dp; A dqi — dH A dt, where (qi , Di, 1) is a local system of coordinates
on P x Rand H € C*(P x R), there exists a unique vector field A € X(P x R)
such that At =1 and A1 = 0. In fact, a straightforward computation shows that
these two conditions imply that

oH 0 oH 0o d

op; dq°  dq' dp; Ot

and therefore the integral curves of A are determined by the Hamilton equations

d(g'oC) 0H c d(pi o C) OH d(t o C)
—_ = —0 y —_— = — =

- , 1. (8.113
ds api ds aq’ ° ds ( )

The last equation, which amounts to Az = 1, means that the integral curves of A
are parametrized by 7, which represents the time. In what follows ¢ will denote the
natural coordinate of R, but qi, pi need not be coordinates on P (for instance, the
functions x and r = \/x2 4 y2, where (x, y) are the natural coordinates of R2, form
a coordinate system on R x R (that covers, e.g., the half-plane y > 0); whereas x
is the natural coordinate on the first copy of R, 7 is not a coordinate on the second
copy).

The local expression of £2 considered above follows from d§2 = 0 and the con-
dition that at each point x € P x R, the linear mapping from 7, (P x R) into
T} (P x R), given by vy — v, §2,, has rank 2n. The kernel of this mapping has
dimension one and is generated by A,. (Actually, the Darboux Theorem guaran-
tees the local existence of 2n functionally independent functions, P;, Qi, such that
2 =dP; AdQ'. By means of a canonical transformation (see below) one can take
£2 to the desired form.)

Symmetries and Constants of Motion As shown in Sect. 8.3, in the case where
the time evolution of a mechanical system is defined by a Hamiltonian vector field,
Xqam, on T*M, a function f € C®°(T*M) is a constant of motion if and only if
the vector field Xy generates a one-parameter group of canonical transformations
that leave the Hamiltonian invariant (i.e., XqrH = 0). Even for such mechanical
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systems, there exist constants of motion that depend explicitly on time (see, e.g.,
Example 8.38 below), which therefore are not related with symmetries in the frame-
work developed in the preceding sections. As we shall show, whenever the evolution
equations can be expressed in the form of the Hamilton equations, any constant of
motion (that may explicitly depend on time) is associated with a one-parameter
group of symmetries.

We will say that the vector field X on P x R is a symmetry of §2 if £x£2 =0. As
a consequence of the formula £x 2 = X 1d$2 + d(XJ £2), and the fact that d2 =0,
we see that X is a symmetry of §2 if and only if the 1-form X £ is closed (cf.
Lemma 8.5). Thus, if X is a symmetry of §2 there exists, locally, a function x €
C°°(P x R) such that X |2 = —dy. Then, the function yx is a constant of motion,
i.e., Ax = 0. Indeed,

Ay =Aldy = —AJXI02) =XJAIR)=0.

The vector field A satisfies the symmetry condition £4 2 = 0, but no nontrivial
constant of motion is associated with A, since AJ2 =0.

Conversely, given a constant of motion, y, there exists a vector field X, defined
up to the addition of a multiple of A, such that X2 = —dy (then X is a symmetry
of £2). In fact, writing

the condition X_|£2 = —dx amounts to
—dy =XJ(dp; Adg' —dH Adt)
= (Xp)dg' — (X¢')dp; — (XH)dt + (Xt)dH
= B;dg' — A'dp; — (XH)dt + C dH,

that is,
0 oH d ; oH a 0H oH
X p—c, Ao qiclE K4l gt
dq’ dq' api api ot dq’ api
From the first two equations we find that
;0 oH 0 oH
ALy o g X 0
opi  Opi dq' g’
and substituting into the last equation we obtain
dx 9x0H dx dH
at — dp; 0q'  dq' dp;’
which is equivalent to the assumed condition Ay = 0. Thus, we have
ax 0 ax o
X=X 2 X 9 | A, (8.114)

dpi dq'  3q" dp;
where C is an arbitrary real-valued differentiable function [cf. (8.17)].
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Thus, any constant of motion (which possibly depends explicitly on the time) is
associated with a symmetry of £2, but, in contrast to the result derived in Sect. 8.3,
we do not necessarily have XH = 0 (cf. Example 3.17).

Example 8.38 The vector field

0 d d 0
A=t 2 20 e C 2 (8.115)
m dg!  m 3q? opy ot
where m and g are constants, is the only vector field that satisfies the conditions
At =1and AJ$2 =0, with £ given by

2 2
szzdplAqurdpzAdqz—d(plzﬂ +mgq2)/\dt, (8.116)
m

ie., H= (p12 + p22)/(2m) + mgq2 is a Hamiltonian function (which represents
the total energy of a particle of mass m in a uniform gravitational field, with g being
the acceleration of gravity) for the equations of motion defined by A.

Even though (3/d¢%)H = mg # 0, one can verify that £5/54282 = 0; in fact, one
finds that (3/98¢%)J 2 = —d(py + mgt), i.e., 3/dg? is a symmetry of £2. Hence,
according to the discussion above, x = p» 4+ mgt is a constant of motion, which
explicitly depends on time. (Note that H does not explicitly depend on ¢ in the
coordinate system employed here.)

If X is a symmetry of §2, then
(£xA) 12 =£x(A12) — AJ(£Ex2) =0,

and therefore £x A must be proportional to A.

For a given vector field A, the set of constants of motion is a vector space over R
(with the usual operations of sum of functions and multiplication by scalars) which
can be made into a Lie algebra by defining

{x1, x2} =Xix2, (8.117)

where X is a vector field such that X; 12 = —dy; [cf. (8.19)]. As we have shown,
the vector field X is defined up to the addition of a multiple of A, but this ambiguity
has no effect on the definition (8.117) since A x» = 0. The bracket {x1, x2} is indeed
a constant of motion because A{x1, x2} = AXix2 =[A, X1]x2 =0, since [A, X{] =
—[X1, A] is proportional to A.

Furthermore, if X is a vector field such that X, 12 = —dyx», [X, X3] is also a
symmetry of §2 (see Exercise 2.30) and
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[cf. (8.18)]. We also have
1, x2t =Xixe = -XiJ(X2J2) =22(X;, Xo),
which implies the skew-symmetry of the bracket [cf. (8.22)].
Exercise 8.39 Show that the bracket (8.117) satisfies the Jacobi identity.

From (8.114) and (8.117) one obtains the local expression

Ix19x2  9x19x2
dpi dq'  dq' Op;

{x1, x2} =
[cf. (8.21)].

Canonical Transformations The coordinates qi, pi, as well as the Hamilto-
nian H, in terms of which the 2-form £2 has the form dp; A dg’ — dH A dt, are
not defined uniquely by £2. There is an infinite number of sets {Q, P;, K} such
that (Q', P;, 1) is a coordinate system on P x R and 2 = dP; A dQ' — dK A dt
(which implies that the integral curves of A are determined by equations of the form
(8.113), with {Q*, P;, K, t} in place of {¢’, p;, H, t}). Indeed, the equality

dpi Adg' —dH Adt =dP; AdQ' —dK Adr
is equivalent, e.g., to
d(pidg' — Hdt — P;dQ" + K dr) =0.
In turn, this is locally equivalent to the existence of a function F' such that
pidg' — Hdr — P;dQ" + K dr =dF; (8.118)

cf. Example 3.16. (Note that we consider these transformations as coordinate trans-
formations, that is, as passive transformations that do not affect the points of the
manifold P x R.) If ¢/, Q', and r are functionally independent, they can be used as
local coordinates on P x R, and from (8.118) it follows that

oF oF oF
— K —

= =, =—. 8.119
EVE ' EYok ot ( )

Pi
The function F is a generating function of the canonical transformation.
Example 8.40 The coordinate transformation

C
¢'=0"+0%  ¢=—(Pi- P,
eB

1

eB, , 1
— (P P,), — ,
D1 2(1+ 2) D2 2C(Q—Q)
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with K = H, where e, B, and ¢ are nonzero constants, is canonical. In fact, one
readily verifies that

dpi Adg' +dpy Adg? =dPy AdQ' +dP, AdQ?; (8.120)

moreover,
eB
p1dg' + prdg? — PdQ' — P,dQ* = d[zqz(QZ - Ql)]

but the set {ql, q2, Ql, Q2, t} is not functionally independent and, therefore, the
relations (8.119) make no sense. However, (8.120) also follows from

prdg' —¢*dpr + Q'dP + Q*dP

—dl e P+1 1+2€ p
= Zq BPZ 1 2q eBp2 2

and (among other choices) the set {ql, p2, P1, Pp,t} is functionally independent.
Therefore, using (ql, P2, P1, P>, t) as local coordinates on P x R, the coordinate
transformation considered here can be reproduced from the generating function F =
%( I pz)Pl + 2(q + 25 P2) P2, appearing on the right-hand side of the last
equation One can readily Verlfy that the relations

OF , OF . OF , OF

Pl=@, q Z_S_pz’ =8—P1’ =3—P27

are equivalent to the given coordinate transformation.

Alternative Hamiltonians It is not widely known that for a given vector field
A € X(P x R), with Ar = 1, there exists an infinite number of closed 2-forms of
rank 2n, £2, such that A £2 = 0, which are not multiples of one another (except in
the case where dim P = 2; see below). For instance, one readily finds that the vector
field (8.115), considered in Example 8.38, contracted with the closed 2-form

Q' =dps Adg' +dp /\dqz—d(plpz +mgq > Adr, (8.121)

yields zero, but §2’ cannot be written as some real-valued function multiplied by the
2-form £2 given by (8.116). In fact, by means of a straightforward computation, one
readily verifies that £2 and £2’ can be expressed as

2 =dp /\d<q +M>+d(172+mgt)/\d< )
% (8.122)

2 2
+
=d(py +mgt) /\d<q + M) +dp; /\d(q2 + M)
’g 2m=g

Pl + P2
2m?g
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The vector field 8/d¢2, which is a symmetry of £2, is also a symmetry of £2’, but
now (3/d¢>)J 2’ = —dpy, which implies that p; is a constant of motion.

The only way in which the vector field A satisfies the relations A §2 =0 and
A2’ =0, considered in most textbooks on analytical mechanics [e.g., Goldstein
(1980, Sect. 9-1)], is the trivial one, where 2’ differs from £2 at most by a constant
factor.

For a given vector field A € X(P x R) such that Ar = 1, the local existence
of an infinite number of closed 2-forms of rank 2n, §2, such that AJ 2 =0
can be demonstrated in the following way. Let x', x2,..., x> be 2n function-
ally independent constants of motion (i.e., A)(i =0,i=1,2,...,2n); then 2 =
dy' Adx2+dy3 Ady*+ - +dx? ! Adx?" is closed, has rank 2n (as a conse-
quence of the assumed functional independence of the ), and we have

AlQ = (AXI) dX2 _ (AXZ) Xm 4t (AXZn—l) dX2n _ (AXZn)dXZn—l

since, by hypothesis, A Xi =0, fori=1,2,...,2n. The ordered set of constants of
motion {x!, x2,..., x*"} is not unique; we can simply make permutations of the
functions x' [as in (8.122)] or we can replace xLox2 by any functionally
independent set of functions of them.

Conversely, if £2 is a closed 2-form of rank 2n such that A £ = 0, according
to the Darboux Theorem, £2 is locally of the form dp; A dg’, with the set {g’, p;}
being functionally independent. Then, from AJ£2 = 0 it follows that the ¢’, p; are
constants of motion.

The Case dim P =2 In the special case where dim P = 2, locally there exist es-
sentially only two functionally independent constants of motion, x ', x?; any other
two functionally independent constants of motion, x’!, x>, must be functions of
Xl, X2 only, hence

a(X/l’ X/2)

d)(1 /\dxz.
axL x»

dX/l A dX/2 —
Furthermore, the Jacobian determinant appearing in the last equation must be a func-
tion of Xl and X2 only and, therefore, is a constant of motion (cf. Exercise 3.18).
Thus, when dim P = 2, the 2-form §2 is not unique, but is defined up to multiplica-
tive constant of motion (see Example 8.44, below).

We can give another proof of the assertion above, which allows us to find the
2-forms 2 explicitly, without assuming that we know explicitly all the constants of
motion.

In terms of an arbitrary coordinate system (x, y, ¢) on P x R, the vector field A
can be written as

R R
A=fr gl 2 8.123
Fox T8t (8.123)
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where f, g € C*°(P x R) are given, and any 2-form on P x R has the local expres-
sion

2 =281dx Ady +28213dx Adr +28223dy A dt,
for some £2;; € C*°(P x R).
The condition A_ £2 = 0 amounts to
0=AJR =2[(—gR12 — 213)dx + (f 212 — 223) dy + (f 213 + g223) dt ];
hence, §213 = —g$212 and §293 = f£212, that is,
2 =2Qpp[dx Ady + (fdy — gdx) Adt], (8.124)

where only the function £21; remains unspecified. The rank of £2 can only be 0 or
2; therefore, if 212 # 0, the rank of §2 is equal to 2. Finally, from the condition
d$2 = 0 one readily finds that the function £21, has to satisfy the linear PDE

9 9 9 af  dg
— — 4+ — |2 =— =+ =215 8.125
(f +g8y+8t> 12 <3x+3y> 12 ( )

The non-uniqueness of £2 comes from the fact that (8.125) has infinitely many solu-
tions; if £21, and .Q{z are two solutions of (8.125), setting v = 52{2/.(212, one finds
that Av =0, i.e., v is a first integral.

Once 21, satisfies (8.125), the 2-form (8.124) can be written in the “canonical
form” dp A dg — dH A dt, introducing two auxiliary functions ¢, ¥ € C*°(P x R)
such that

el
This condition guarantees the local existence of a function H € C*°(P x R) such
that

3
(f =]+ 5[@ —¢)212] =0. (8.126)

2912[(f —Y)dy — (g —¢) dx] = —dH + terms proportional to d¢.  (8.127)

Thus
2 =2821(dx — ¥ dt) A(dy — ¢pdt) —dH Adt.

Since £2 and dH A dt are closed forms, 28215 (dx — 1 df) A (dy — ¢ dt) is closed and
by virtue of the Darboux Theorem, there exist functions p, g such that 2621, (dx —
Ydt) A(dy —¢dt) =dp Adg, so that 2 =dp Adg —dH A dt. These results are
summarized in the following proposition.

Proposition 8.41 Let P be a differentiable manifold of dimension two. Given a
vector field A on P x R such that At = 1, locally there exist infinitely many rank 2,
closed 2-forms §2 such that AJ1§2 = 0. Any pair of such 2-forms, 2, $2', are related
by 2" = v§2, where v is a real-valued function satisfying Av =0 (i.e., v is con-
stant along the integral curves of A). For each §2, locally there exist coordinates
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(g, p,t) on P x R, where t is the natural coordinate of R, and some func-
tion H € C®°(P x R), defined up to canonical transformations, such that 2 =
dp Adg —dH Adt.

Example 8.42 The system of first-order ODEs

dx dy ty—x
a -1

corresponds to the linear second-order ODE

d%x t dx+ X
di2 t—1dr t—1

=0

and to the integral curves of the vector field

ad ty—x 0 a
A=y 2
Yox T 1oy T

[cf. (8.123)], thatis, f =y and g = (ty —x)/(t — 1). Therefore, the component £21,
must satisfy the PDE [see (8.125)]

8+ty—x8+89_ tQ
Yox r—1ay o) 27 1"

A solution to this equation is

1

Q=
=001

(the factor 1/2 is included for later convenience).

Condition (8.126) is satisfied choosing ¢ =ty/(t — 1), ¢ = 0, and substituting
these expressions into (8.127) we find that, up to an additive function of ¢ only,

e (2 )
(1—-1et\ 2 2(t—1)

and

2212(dx — ¥ de) A (dy — ¢ dr)

— U (dy+ ) Adx
T a-ne\ YT T

= d(*) Adx.
-1

Hence, we can take p = y/[(1 — t)e] and g = x. Further examples can be found in
Torres del Castillo and Rubalcava-Garcia (2006) and Torres del Castillo (2009).
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Exercise 8.43 Show that the vector fields

;0 ;0 0 0
e—+e —, t—+ —
ax dy dx  dy
are symmetries of the 2-form £2 found in Example 8.42. Find the first integrals
associated with these symmetries and their Poisson bracket. Show explicitly that £2
is proportional to the exterior product of the differentials of these two first integrals.
(Note that all this can be done making use of the original coordinates (x, y, ?).)

Example 8.44 In the case of a one-dimensional harmonic oscillator, the standard
Hamiltonian is
2 2.2
p mwo~q
H=—+
2m 2

where ¢, p are canonical coordinates induced by a coordinate x on the configuration
space, m is the mass of the oscillator and wy is its angular frequency. The expression
H = (p/~2m)* + (VmJ2Zwoq)? corresponds to the square of the distance from
the origin to the point (p/~/2m, /m /2 woq) of R%. Then, the analogs of the polar
coordinates are

)

vm/2
P=+vH, Q = arctan M = arctan mdoq
p/N2m p

and one finds that

PdP/\dQ—d( / )/\d( )—wod Ad
= _— — W, = — .
o ,/2 09 ) pNdq

Hence,

2
dp Adg —dH Adt = —PdP AdQ —d(P?) Adt
o

2P
= —([dP AdQ — wodP Adr).
wQ
The factor 2P /wy = 2+/H wq appearing on the right-hand side of the last equation
is a constant of motion and the function wg P is a Hamiltonian for the new canonical
coordinates (Q, P).
Thus, in accordance with Proposition 8.41, the 2-form £’ = dP A dQ —
wodP A dt differs from 2 =dp Adg — dH A dr by a factor which is a constant
of motion. Finally, it may be noticed that

Q' =dP Ad(Q — wot).

Hence, both P and Q — wyt are constants of motion.



Appendix A
Lie Algebras

Definition A.1 A Lie algebra, L, over a field K, is a vector space over K which
possesses a mapping from L x L into L, usually denoted by [ , ], such that
(i) itis bilinear
[u,av + bw] = alu, v] + blu, w], (A.1)
l[au + bv, w] = alu, w] + b[v, w], (A2)

foru,v,welL,a,bek,
(i) it is skew-symmetric

[u7 U] = _[v7 I/l], (A3)

for u, v € L (by virtue of (A.3), the linearity of the bracket on the second argu-
ment (A.1) implies its linearity on the first argument (A.2), and vice versa),
(iii) it satisfies the Jacobi identity

[u, [v, w]] + [v, [w, u]] + [w, [ut, v]] =0, (A4)

for u, v, w € L. A Lie algebra is Abelian if [u, v] =0 for u, v € L.

Let L be a Lie algebra of finite dimension (that is, L is a vector space of finite di-
mension), and let {e;}?_, be a basis of L. Owing to the bilinearity of the bracket, the
value of [u, v], for u, v € L arbitrary, is determined by the values of [e;, e;] (i, j =
I,...,n),forifu =u'e; and v =v’e;, we have [u, vl =[u'e;, v e =u'v/[e;, e;].

Since [e;, ej] must belong to L, [e;, e;] = cl{‘jek, where cf.‘j @i, j,k=1,...,n)are
n3 scalars, called the structure constants of L. The values of the structure constants
are not independent, since the bracket must be skew-symmetric, and it satisfies the

Jacobi identity, which imposes the following relations among the cl’fj:
cl’fj = —c’j‘.i and (A.5)
cf;cim + c;."kcf-m + c,’:;cljm =0. (A.6)
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Exercise A.2 Let V be a vector space and let gl(V) be the set of the linear maps
from V to V with the usual sum and multiplication by scalars, and with the bracket
given by [A, B] = AB — BA. Show that gl(V) is a Lie algebra. If V is of finite
dimension and {e;}7_, is a basis of V, the linear transformations qb’l defined by

¢! (ex) = 8, form a basis of gl(V). Show that [¢], ¢} 1= (8/5]6! — 6!587)¢;.

Definition A.3 Let L be a Lie algebra. A subalgebra, M, of L is a subset of L
which is a Lie algebra with the operations inherited from L.

Since most of the properties that define a Lie algebra are automatically satisfied
by any subset of a given algebra (for instance, the bilinearity and skew-symmetry
of the bracket), it suffices to employ the criterion given by the following theorem in
order to show that some subset is or is not a subalgebra.

Theorem A.4 Let L be a Lie algebra and let M C L. M is a subalgebra of L if and
only if for u,v € M and a € K, the elements u + v, au and [u, v] belong to M.

The proof of this theorem is immediate and is left to the reader.

Definition A.5 Let L be a Lie algebra and M a subalgebra of L. M is an ideal of L
ifforueMandvel,[uvleM.

L itself and {0} are ideals of L, and if L is Abelian, then any subalgebra of L is
invariant.

Definition A.6 A Lie algebra, L, is simple if it is not Abelian and does not possess
other ideals apart from L and {0}. L is semisimple if the only Abelian ideal contained
in L is {0}.

For example, the set of globally Hamiltonian vector fields of a symplectic man-
ifold is an ideal of the Lie algebra of the locally Hamiltonian vector fields (see
Sect. 8.2).

Definition A.7 Let L and L, be two Lie algebras over the same field K. A map
f L1 — Ly is a Lie algebra homomorphism if

(i) f is alinear transformation (i.e., f(au 4+ bv) =af (u) + bf (v), foru,v € L1,
a,b € K) and
1) f(u,vD) =[f @), f(v)], foru,v e L.

If, in addition, f is bijective we say that f is a Lie algebra isomorphism.

Exercise A.8 Let f: L1 — L be aLie algebra homomorphism. Show that Ker f =
{fueLy| f(u)=0}1is anideal of L.
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Invariant Metrics

Any Lie group can be turned into a Riemannian manifold in such a way that all
the left translations L, (or the right translations Ry) are isometries. Let G be a Lie
group and let {a)l, ..., "} be a basis for the left-invariant 1-forms; if (a;;) is any
(constant) non-singular symmetric n X n matrix, then

aija)i ®a)j (B.1)

is a metric tensor on G, which is a left-invariant metric since Lg*(a; ja)i Qwl) =
ajjo' @/, forall g € G.1If (a;;) is positive definite, the metric (B.1) is also positive
definite. If, in place of the 1-forms ' we employ right-invariant 1-forms, in an
analogous manner we obtain a right-invariant metric. A metric on G is bi-invariant
if it is left-invariant and right-invariant simultaneously.

From the results of Sect. 7.5 it follows that the right-invariant vector fields are
Killing vector fields for any left-invariant metric (see Exercise 7.51). For a bi-
invariant metric, the right-invariant vector fields, and the left-invariant vector fields
are Killing vector fields.

Example B.1 The 2 x 2 real matrices of the form ()(; f ), with x > 0, form a Lie
subgroup of GL(2, R). Making use of Theorem 7.35, from the equation

X y ! dx dy\  [(x7' —yx7'\ (dx dy
0 1 0 o0/ \o 1 0 O
_ x~ldx x~ldy
- 0 0

o 1 0 1 0 1
=X dx<00+x dy00

! Ex_ldx, a)zzx—ldy,

it follows that

form a basis for the left-invariant 1-forms. Using the fact that the inversion mapping,
1(g) =g~ is given by *x =x~!, *y = —yx~! [see (7.3)], one finds that the basis

G.F. Torres del Castillo, Differentiable Manifolds, 257
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of the right-invariant 1-forms &' = —*e', is
o' =xldx, d)zz—yx_ldx+dy,
and the dual basis is given by

d 0 . 0
X =x— X, = — B.2
1= x8x+y8 2 oy (B.2)

(cf. Example 7. 47) Thus, X; and X, are Killing vector fields for the metric
ajjo' Qwl =x~ [a“ dx®dx+ap(dx® dy+dy®dx) +azpdy ®dy] no matter
what the values are of the constants a1, a12, and az;. In particular, taking a;; = §;;,
we obtain the metric

x2(dx ® dx +dy ® dy), (B.3)

which is the metric of Poincaré’s half-plane [see (6.19)] and possesses three linearly
independent Killing vector fields (see Example 6.12).

Exercise B.2 Show that if G is connected, the metric a;jo’ ® / is also right-
invariant if and only if

aimCTk +ajuch =0, (B.4)
where the cii ¢ are the structure constants of G with respect to the basis {o'}.

Exercise B.3 Find a basis for the left-invariant 1-forms and its dual basis for the
group formed by the 3 x 3 matrices of the form

oo~
o -

Z
y)], x,y.zeR,
1

which is related to the Heisenberg group [see, e.g., Baker (2002), Sect. 7.7]. De-
termine the structure constants of the group in this basis. Is it possible to find a
bi-invariant metric?

Since the coefficients a;; in (B.1) are constant, the dual basis {X;} to {0} is a
rigid basis with respect to the metric a;;»' ® w/; thus, comparing [X;, X ;] = cl].‘ij
with (6.62) one finds that cf.‘j = iji — Fkij = 2Fk[ji], where the Fijk are the Ricci
rotation coefficients for the basis {X;}. Using the identity (6.63), we obtain

1
T = E(aimckmj —ajmcy — akmc;”i). (B.5)
The foregoing expression is simplified if the metric (B.1) is bi-invariant because in

that case the last two terms on the right-hand side of (B.5) cancel [see (B.4)], leaving

1
Lijk = Eaimcz;a (B.6)



B Invariant Metrics 259
so that the connection and curvature forms in this basis are
Fl"_ll' k d %i__lmi k/\l (B7)
ji= Eckj“’ an = chkcml“’ w, .

respectively [see (5.26), (7.34), and (A.6)]. Hence, the components of the curvature
with respect to the basis {X;} are

R 1 = (et — i) =~ gchyel B.3)

It may be noticed that in the expressions (B.7) the matrix (a;;) does not appear
and, furthermore, that they make sense independently of choosing a metric on the
group. It can be directly verified that, with respect to a basis for the left-invariant 1-
forms, {a)l, ..., "}, the connection 1-forms (B.7) define a connection with torsion
equal to zero. Hence, in any Lie group there exists a torsion-free connection, defined
in a natural way, without having to specify a Riemannian metric.

From (B.6) it follows that, if the metric (B.1) is bi-invariant, the coefficients I

are totally skew-symmetric, since, in general, I jx = —1Ij;x, while from the relation
c,’c’; = —c;."k it follows that Ijx = —Ij;. Combining these formulas one finds that
Iijx = —TI}j;. If the dimension of G is two, then the total skew-symmetry of the

Ricci rotation coefficients implies that they are equal to zero and, since (a;,,) must
be invertible, CZ1' = 0 and, therefore, G must be Abelian.

If the dimension of G is three, the skew-symmetry of ;i implies that I, =
b &;ji, where b is some constant. Then, from (B.6), we have

iy =2a"bejji, (B.9)
where (a'™) is the inverse of the matrix (a;,,); therefore

1 . . )
2 2 !
Zcinjc,':; =b“a’ epjmal™ eqx = b"a det(a”) (aipaxj — arjagp)

and from (B.8) we obtain
Riju = b*det(a”) (aixaji — anaji), (B.10)

which means that G is a constant curvature space (see Examples B.6 and B.8).
For any value of b, the structure constants (B.9) satisfy the Jacobi identity (A.6).
It can be noticed that in this case, if the six vector fields X; and X,- (i=1,2,3)
are linearly independent, then they form a basis for the Killing vector fields of G,
since the maximum dimension of the Lie algebra of the Killing vector fields of a
Riemannian manifold of dimension n is n(n + 1)/2.

Exercise B.4 Show that for any Lie group, G, the left-invariant vector fields X;,
and the right-invariant vector fields X; are linearly independent if and only if the
center of the Lie algebra of G is {0}; that is, if and only if zero is the only element
of g whose Lie bracket with all the elements of the algebra is equal to zero.
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Exercise B.5 Show that if g; ja)" ® w’ is a bi-invariant metric on G, where {w'}
is a basis for the left-invariant 1-forms, then VyZ = %[Y, Z] and R(Y,Z)W =
—%[[Y, 7], W], for Y,Z, W € g, where V denotes the Riemannian connection as-
sociated with the bi-invariant metric and R is its curvature tensor. Show that the
integral curves of any left-invariant vector field are geodesics.

If c; « denote the structure constants of an arbitrary Lie algebra, then the constants
L _koom B.11
8ij = —CimCik (B.11)

. . _ k .
form a symmetric matrix, g;; = — —cl %Cjm = &ij- Furthermore, making

ok

jm zk )
use of (B.11), and the identities c’”c kT c i T e m/ =0 and c c}(j [see
(A.5) and (A.6)] one finds that

.o L oam_

glmcjk+g]mcik_ Cl Cmscjk C Cmsczk
— _ a8 m
= Cir (Ckscmj + csj cmk) ercmscik

(s m
_( CkiCrs rkcts) m] +Czrcwcmk C Cmsczk

=0.

Hence, if G is a connected Lie group and {w'} is a basis for the left-invariant
1-forms, the tensor field g;;0' ® ’, with the g;; defined by (B.5), is bi-invariant (see
Exercise B.2). However, the matrix (g;;) can be singular, and therefore g;; o ®w
does not need to be a Riemannian metric on G. It can be shown that the matrix
(gij), defined in (B.11), is invertible if and only if the Lie algebra is semisimple
(that is, it does not have Abelian proper ideals) [see, e.g., Sattinger and Weaver
(1986, Chap. 9)].

It may be noticed that the components of the Ricci tensor associated with the
curvature tensor (B.8) are given by R;; = igij, with g;; defined by (B.11).

Example B.6 Let us consider the group G = SU(2) with the parametrization given
by the Euler angles, ¢, 6, ¥,

g = (exp9(9)X3)(expb(g)X1)(exp ¥ (9)X3), (B.12)

where {X1, X, X3} is the basis of su(2) given in Exercise 7.19 [cf. (8.94)]. From
(7.54) it follows that (B.12) is equivalent to

(920 cos/2 isin@/2\ (/2 0
8=\ 0 e2)\ising2 coso2 )\ 0 e

@ 2c0s0/2 1@/ 2562
T \iel=9/2ging 2 e~i0+)/2¢050/2 (B.13)

where, by abuse of notation, we have simply written ¢, 6, ¥, in place of ¢ (g), 0(g),
and v (g), respectively. As in Example B.1, we can make use of Theorem 7.35 to
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find the basis of the left-invariant 1-forms, dual to the basis {X;, X», X3}. Since
the structure constants for the basis {X;, X3, X3} are the same as those of the basis
{S1,S2, S3} of s0(3), equations (8.95)—(8.100) hold if S; is replaced by X;; hence
the set

o' =sinfsiny dp + cos ¥ do,

w2=sin90051/fd¢—sin1//d9, (B.14)

> =cosfdp + dy
is the dual basis to {Xi,X5,X3}. Making use of the fact that [X;,X;] =
Zi:lgijkxk = (Sklsiij;, we have cll./ = (Sklsijk; therefore, from (B.11), g;; =
—(Spksiml_,éq’"sjkq = —6_pk(8jp5k,~ — 8idkp) = 26;j, which is an invertible matrix
and g;j0' ® @/ =26;j0' ® /. From (B.14) we then have

gij® ®@w =2[dp ®d¢ +do ® df +dy @ dy
+cos€(d¢®d1ﬁ+d1//®d¢)]. (B.15)

According to the foregoing results, we may conclude that the metric (B.15) is bi-
invariant. As we shall show below, this metric is essentially the usual metric of the
sphere S3.

The underlying manifold of the group SU(2) can be identified with the sphere S*
in the following manner. All the elements of SU(2) are of the form

x+iy z+iw

where x, y, z, w are real numbers such that x4+ y2 + 72 + w? = 1. Hence, there
is a one-to-one correspondence between the elements of SU(2) and the points of
S3={(x,y,z, w) € R*|x? + y? + z> + w? = 1}. From the expressions (B.13) and

(B.16), separating the real and imaginary parts, one obtains a local expression for
the inclusion of SU(2), or 3, in R* (i : SU(2) — R*), namely

2 Lycossp+y), it Lo sin 2 (g +v)
X = COS —0 COS — . 1 = COS —¢ S1In — R
! 27%%5 Y 2785

i*z:—sinlesinl(qﬁ—w), i*w=sin1900sl(¢—1ﬂ)-
2 2 2 2
The pullback under i of the usual metric of R* is then
i*(dx @ dx +dy ® dy + dz ® dz + dw ® dw)
= i[d¢®d¢+d9 ®do + dy @ dy + cosO(d¢ ® dyr + dyr @ dg)].

which, except for a factor 1/8, coincides with the metric (B.15). This means that
the metric (B.15), which, as we have shown, is the metric of a constant curvature
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space, is essentially the standard metric of S> (which is, clearly, a constant curva-
ture space). Moreover, the left-invariant vector fields S; [given by (8.98)] and the
right-invariant vector fields S; [given by (8.100)] of SU(2), are Killing vector fields
for the metric (B.15) and, therefore, for S3. Thus, the Lie algebra of the Killing
vector fields of S3, which is so(4) [the Lie algebra of SO(4)], possesses the basis
{S1,S2,S3, —S1, =S5, —S3}, which satisfies the relations

3
[Si.S;] =28ijksk,
k=1

) ) 3 ) (B.17)
[(=80), (=8n] =D eijx(=Sw),
k=1
[Si. (=8)]=0:
hence, s0(4) is the direct sum of two copies of su(2):
50(4) = su(2) b su(2). (B.18)

Each g € SU(2) can be regarded as a point of S (by expressing g in the
form (B.16) and taking the corresponding x, y, z, w as the coordinates of a point
of S3), and for any g1 € SU(2), both Lg, and R, are isometries for the met-
ric (B.15). Hence, if (g1, g2) € SU(2) x SU(2), the mapping g > Lg Ry 8 =
81882 = Rg, L4, g, from SU(2) onto SU(2), can be seen as an isometric map from
S3 onto S3. In fact, it turns out that any isometry of S3 that does not change the
orientation is obtained in this manner, with g; and g, determined up to sign; if
(g1, 82) € SU(2) x SU(2), then (—g1, —g2) also belongs to SU(2) x SU(2) and
Lg Rg, = L_g, R_g,. From the preceding discussion it also follows that any rota-
tion about the origin in R* can be represented in the form

X' +iy 4w x+iy  z4iw

[cf. (7.65)] with g1, g2 € SU(2) determined up to sign. [This result is the counterpart
of (B.18).]

Exercise B.7 Show that from (B.19) it follows directly that the transformation
(x,y,z,w) = (x',y, 7/, w’) belongs to SO(4).

Example B.8 The functions «, 8, y : SL(2, R) — R defined by
1 1 1
8= (GXP Ea(g)Xl) (eXP Eﬂ(g)(Xz + X3)> <6Xp Ey(g)X1>, (B.20)

where {X1, X», X3} is the basis of s[(2,R) given in Example 7.16, form a local
coordinate system for SL(2, R), alternative to that defined by (7.4). From (B.20)
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and (7.51) we then have

(e 0 coshpB/2 sinhp/2\ (e’/? 0
8=\ 0 e2)\sinhp/2 coshp2)\ 0 e2
_ ( e@t/2cosh /2 e@)/25inh /2 )

e" @ /2sinhp/2 e @1/ cosh B/2 (B.21)

where we have written «, 8, y instead of a(g), 8(g), y(g) [cf. (B.13)]. The dual
basis to {X1, X7, X3}, expressed in terms of the coordinates «, 8, y, can be obtained
making use of (B.20) and Theorem 7.35, which leads to [see (7.20)]

1 1 1
g 'dg= 3 eXp<—5VX1> eXp<—§ﬁ(Xz + X3))

1 1
- A exp(zﬂ(Xz + X3)) exp(EyXl) do

1 1 1 1
+ Eexp(—iyxl>()»2 + k3)exp<§yX1) dg + Ekl dy

1 1
= E(cosh,B da +dy)r; + Ee_y(sinhﬁda +dB)Ar,

1
+ Eey(— sinh B da + dB)As,
and thus

1
o' = E(coshﬂda +dy),

1
W= 5e*V(sinh Bda +dB), (B.22)

3 1 .
1) :Eey(—smhﬁda—}—dﬂ).

On the other hand, from (7.20) we find that [Aq, A2] = 2A2, [A2, A3] = Aq,
[A3,A1] = 2A3 (i.e., the structure constants that are different from zero are given
by ¢2, =2=c3,, ¢}y = 1) and from (B.11) it follows that

-8 0 0
&jp)=10 0 —4]; (B.23)
0O -4 O

therefore, using (B.22) and (B.23),
g,-jw" Quwl = —4(2&)l Q'+’ ®@w’ + o’ ®a)2)
= —2[da ® da + dB ® dB + dy ® dy
+ cosh B(da ® dy + dy ® da)] (B.24)
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is a pseudo-Riemannian bi-invariant metric on SL(2,R) and, with this metric,
SL(2,R) is a constant curvature space. (Note that gija)i Qw = —-8w!' @ w —
20+ 03) @ (* + %) + 2(w? — ) ® (w? — w3), which explicitly shows that this
metric is pseudo-Riemannian.) In a similar manner to the case of SU(2), considered
in the foregoing example, SL(2, R) with the metric (B.24) can be identified with a
submanifold of R*, provided that in the latter we introduce a pseudo-Riemannian
flat metric [cf. Conlon (2001), Sect. 10.7].
Indeed, any element of SL(2, R) is of the form

x+w y+z (B.25)
z—y x—w)’ ’

where x, y, z, w are real numbers with x4+ y2 — 72 — w? = 1. This means

that the underlying manifold of SL(2,R) can be identified with the hyperboloid
N ={(x,y,z,w) € R*|x? 4+ y> — z2 — w? = 1}. Comparing (B.21) with (B.25),
one finds the following local expression for the inclusion of SL(2, R) in R*:

1 1 1 1
i*x:coshiﬂcoshi(a—i-y), i*yzsinhiﬂsinhi(a—y),

1 1 1 1
i*z:sinhE,BcoshE(oz—y), i*w:coshiﬂsinhi(a—l—y),

hence, the metric induced on SL(2, R), or on N, by the pseudo-Riemannian metric
dx @ dx +dy ® dy —dz ® dz — dw ® dw of R* is

i*(dx ®@dx +dy ®dy —dz ® dz — dw ® dw)
1
= —;[de ®do +dp ® dp +dy @ dy + cosh p(da @ dy +dy ® dar)]

and coincides, except for a factor 1/8, with the metric (B.24). Then, owing to the bi-
invariance of (B.24), the left-invariant vector fields of SL(2, R), together with the
right-invariant ones are Killing vector fields for the metric (B.24) and for the metric
induced on N. On the other hand, N and the metric dx @ dx + dy ® dy —dz ® dz —
dw ® dw are invariant under the linear transformations of R* into R* represented
by the real 4 x 4 matrices, A, with determinant equal to 1, such that

1 1
Al A= , (B.26)

which form the group SO(2, 2), whose dimension is six. Thus, in an analogous way
to (B.18), we have

50(2,2) =sl(2,R) @ sl(2, R). B.27)
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Since for any g € SL(2,R), the transformations Lg and R, are isometries
of the metric (B.24), if (g1,g2) € SL(2,R) x SL(2,R), the transformation
g+> Lg Rg, g = g1882, from SL(2, R) onto SL(2, R), is an isometry and can be
identified with an isometric transformation from N onto N. That is, using (B.25),

the expression
X +w o Y+ x+w y+z
(Z/_y/ X —w =81 -y x—w 82 (B.28)

gives an isometric transformation from N onto N, for any pair of elements g1, g2 €
SL(2,R), and it turns out that any transformation belonging to SO(2, 2) can be
represented in this manner with g1 and g, determined up to a common sign.

Harmonic Maps The harmonic mapping equations constitute a generalization
of the geodesic equations (5.7). In their general form, given two Riemannian
manifolds, N and M, of dimensions n and m, respectively, a differentiable map
¢ : N — M is harmonic if

. d(p*xk d(@*x)) d(@*x’
Wﬁ(mhaﬂ%)Jr@*rﬁ)haﬁ% (g’y;‘)zo, (B.29)

where (h*f) is the inverse of the matrix (hop), formed by the components of
the metric tensor of N with respect to a local coordinate system (yl, VR
h = det(hgp), (x!,...,x™) is a coordinate system on M and the Ffi are the
Christoffel symbols corresponding to the metric tensor of M in the coordinate sys-
tem x' [see, e.g., Hélein (2002)]. When N =R, with y1 =t and hy; = 1, equations
(B.29) reduce to the equations of the geodesics (5.7). When M = R, with its usual
metric, equations (B.29) reduce to the Laplace equation, V2¢ =0 [see (6.113)].

An interesting fact is that in the case of a harmonic map ¢ : N — G, where G is
a Lie group that admits a bi-invariant metric, equations (B.29) amount to

1 9 a
aff (4%, k —
—m_aya[‘/|h|h ( w)<_ayﬁ>]_0’ (B.30)

where the ¥ are left-invariant 1-forms on G. In effect, the 1-forms @* can be ex-
pressed locally in the form

of = MFdx', (B.31)
with each M} € C*°(G). Then

_ agk
o = MiX;. (B.32)

where the X}, are the left-invariant fields that form the dual basis to {¥}. Using the
properties of a connection [see (5.1)], from Exercise B.5 it follows that the Christof-
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fel symbols for the bi-invariant metric of G with respect to the coordinate system x'
are given by

jk gyt = MV, (M}X;)
= M,ﬁXS(M;)Xr + MM Vx X,

3 1
<8x M’)X +2MkM’[XS,Xr]

Since the Christoffel symbols F}k are symmetric in the indices j, k, while
MM ; [Xs, X;-] is antisymmetric in these indices, using (B.32), it follows that

0
i _ i r
rh =M=, (B.33)
where (M ;) is the inverse of the matrix (M ;), and the parentheses denote sym-

metrization on the enclosed indices [e.g., ) = %(tij +1i)].
Thus, from (B.31), (1.23), and (1.24) we have

o)

9 d(@*x")
— pob * gk
=h 8y°‘|:(¢ M) 97 }

9 d(p*xh) d(p*x) d(p*xl) , (IMF
__paf * M k op i
=h(¢*M )8 @« gyP +h ayf 9y ¢ <8xj )

Using the fact that (h*?) is symmetric, from (B.33) we then have

a0 5

d 9(p*x) d(¢*x") 3(¢*x’)
(A *kAgk 7} af

which shows the equivalence of (B.29) and (B.30) in the case where M is a Lie
group with a bi-invariant metric.

As pointed out previously, when N = R with the usual metric, the equations
for a harmonic map reduce to the geodesic equations. Hence, the equations for a
geodesic, C, of a group G with a bi-invariant metric, can be expressed as

ez

[see (B.30)]; therefore (C*a)k)(a/at) = a¥, where each a* is a real constant. That
is, @*(C}) = a*, which amounts to C, = akX;(C(t)). Thus, in this case, a geodesic
is an integral curve of some left-invariant vector field (cf. Exercise B.5).
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Taking into account that, when G is some subgroup of GL(p, R), a basis for the
left-invariant 1-forms can be found from the relation g_ldg = A% [see (7.46)],
where the A, are constant matrices that form a basis for a representation of the Lie
algebra of G, it follows that equations (B.30) amount to the matrix equation

9 (mhaﬂgl a_g) -0, (B.34)

1
VIh] 3y ayP

where it is understood that g is an arbitrary element of G, parameterized in terms of
the y* through the map ¢ : N — G.

Each Killing vector field of a Riemannian manifold, M, gives rise to a con-
served quantity, constant of motion, or first integral of the geodesic equations (The-
orem 6.28). This result can be extended to the equations for the harmonic maps:
with each Killing vector field of a Riemannian manifold M and each harmonic map
¢ : N — M one obtains a vector field on N whose divergence is equal to zero. (Such
vector fields are called conserved currents.)

This assertion can be proved using (B.29), (1.23), and (1.24), denoting by K' the
components of a Killing vector field with respect to the coordinate system x’ and by
gij the components of the metric tensor of M,

1 9 . 8(¢*xk)i|
—— — | VIh kP ¢* (gix K
0 aya[ |k h*P ¢ (i K") oy
W 0@ X0 8 | N N o g 0(9¥x7) 3 (*x*)
=h p ale W(p (gikK ) —¢ (gikK )(¢ F]kY)h 4 aya ayﬂ
Ay d@*x®) [k :
_ pnop * i, K]
=h dyp dyY ¢ |: oxs FessiiK i|
=0, (B.35)

where the last equality follows from (6.14) and (6.55), and the fact that the factor
P13 (p*x%)/ayP1[d(¢p*x*)/dy*] is symmetric in the indices k, s. The left-hand
side of this equality is the divergence of the vector field

A(p*xF) 9
ayB 9y

J=hP¢*(giK")

[cf. (6.108)].

As pointed out at the beginning of this appendix, the left-invariant and the right-
invariant vector fields are Killing vector fields for a Lie group with a bi-invariant
metric; therefore, the relation (B.35) holds if the K are the components with respect
to the coordinate system x' of a left-invariant or right-invariant vector field, when M
is a Lie group with a bi-invariant metric. In fact, the m relations (B.30), applicable
in the case where M is a Lie group with a bi-invariant metric, are particular cases of
(B.35).
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Exercise B.9 Show that for each value of the index p, the functions K! = g'/ M 11.7

are components of a Killing vector field with respect to the coordinate system x’,
where the M;. are the functions defined in (B.31). (In fact, they are components of a
left-invariant vector field.) Show that the relations (B.30) follow from (B.35), using
these m Killing vector fields.
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