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Preface

The aim of this book is to present in an elementary manner the basic notions related
with differentiable manifolds and some of their applications, especially in physics.
The book is aimed at advanced undergraduate and graduate students in physics and
mathematics, assuming a working knowledge of calculus in several variables, linear
algebra, and differential equations. For the last chapter, which deals with Hamilto-
nian mechanics, it is useful to have some previous knowledge of analytical mechan-
ics. Most of the applications of the formalism considered here are related to dif-
ferential equations, differential geometry, and Hamiltonian mechanics, which may
serve as an introduction to specialized treatises on these subjects.

One of the aims of this book is to emphasize the connections among the areas of
mathematics and physics where the formalism of differentiable manifolds is applied.
The themes treated in the book are somewhat standard, but the examples developed
here go beyond the elementary ones, trying to show how the formalism works in
actual calculations. Some results not previously presented in book form are also in-
cluded, most of them related to the Hamiltonian formalism of classical mechanics.
Whenever possible, coordinate-free definitions or calculations are presented; how-
ever, when it is convenient or necessary, computations using bases or coordinates
are given, not underestimating their importance.

Throughout the work there is a collection of exercises, of various degrees of
difficulty, which form an essential part of the book. It is advisable that the reader
attempt to solve them and to fill in the details of the computations presented in the
book.

The basic formalism is presented in Chaps. 1 and 3 (differentiable manifolds,
differentiable mappings, tangent vectors, vector fields, and differential forms), after
which the reader, if interested in applications to differential geometry and general
relativity, can continue with Chaps. 5 and 6 (even though in the definitions of a
Killing vector field and of the divergence of a vector field given in Chap. 6, the
definition of the Lie derivative, presented in Chap. 2, is required). Chapter 7 deals
with Lie groups and makes use of concepts and results presented in Chap. 2 (one-
parameter groups and Lie derivatives). Chapters 2 and 4 are related with differential
equations and can be read in an independent form, after Chaps. 1 and 3. Finally,
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for Chap. 8, which deals with Hamiltonian mechanics, the material of Chaps. 1, 2,
and 3, is necessary and, for some sections, Chaps. 6 and 7 are also required.

Some of the subjects not treated here are the integration of differential forms,
cohomology theory, fiber bundles, complex manifolds, manifolds with boundary,
and infinite-dimensional manifolds.

This book has been gradually developed starting from a first version in Spanish
(with the title Notas sobre variedades diferenciables) written around 1981, at the
Centro de Investigación y de Estudios Avanzados del IPN, in Mexico, D.F. The
previous versions of the book have been used by the author and some colleagues in
courses addressed to advanced undergraduate and graduate students in physics and
mathematics.

I would like to thank Gilberto Silva Ortigoza, Merced Montesinos, and the re-
viewers for helpful comments, and Bogar Díaz Jiménez for his valuable help with
the figures. I also thank Jessica Belanger, Tom Grasso, and Katherine Ghezzi at
Birkhäuser for their valuable support.

Gerardo F. Torres del CastilloPuebla, Puebla, Mexico
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Chapter 1
Manifolds

The basic objective of the theory of differentiable manifolds is to extend the appli-
cation of the concepts and results of the calculus of the R

n spaces to sets that do not
possess the structure of a normed vector space. The differentiability of a function
of Rn to R

m means that around each interior point of its domain the function can
be approximated by a linear transformation, but this requires the notions of linearity
and distance, which are not present in an arbitrary set.

The essential idea in the definition of a manifold should already be familiar from
analytic geometry, where one represents the points of the Euclidean plane by a pair
of real numbers (e.g., Cartesian or polar coordinates). Roughly speaking, a manifold
is a set whose points can be labeled by coordinates.

In this chapter and the following three, the basic formalism applicable to any
finite-dimensional manifold is presented, without imposing any additional structure.
In Chaps. 5 and 6 we consider manifolds with a connection and a metric tensor,
respectively, which are essential in differential geometry.

1.1 Differentiable Manifolds

Let M be a set. A chart (or local chart) on M is a pair (U,φ) such that U is a subset
of M and φ is a one-to-one map from U onto some open subset of Rn (see Fig. 1.1).
A chart on M is also called a coordinate system on M . Defining a chart (U,φ) on
a set M amounts to labeling each point p ∈ U by means of n real numbers, since
φ(p) belongs to R

n, and therefore consists of n real numbers that depend on p; that
is, φ(p) is of the form

φ(p) = (
x1(p), x2(p), . . . , xn(p)

)
. (1.1)

This relation defines the n functions x1, x2, . . . , xn, which will be called the coordi-
nate functions or, simply coordinates, associated with the chart (U,φ). The fact that
φ is a one-to-one mapping ensures that two different points of U differ, at least, in
the value of one of the coordinates.

G.F. Torres del Castillo, Differentiable Manifolds,
DOI 10.1007/978-0-8176-8271-2_1, © Springer Science+Business Media, LLC 2012
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2 1 Manifolds

Fig. 1.1 A coordinate system in a set M ; with the aid of φ, each point of U corresponds to some
point of Rn. The image of U under φ must be an open subset of some R

n

We would also like close points to have close coordinates, but that requires some
notion of nearness in M , which can be given by the definition of a distance be-
tween points of M or, more generally, by assigning a topology to M . We are not
assuming that the reader is acquainted with the basic concepts of topological spaces
and in most applications we will be dealing with sets possessing a natural notion of
nearness (see, however, the comment after Exercise 1.2). Hence, we shall not make
use of the concepts required for an adequate general discussion. For a more rigorous
treatment see, e.g., Crampin and Pirani (1986), Conlon (2001), Boothby (2002), and
Lee (2002).

These concepts have many applications in physics. For instance, if M is the con-
figuration space of a mechanical system with n degrees of freedom, a choice of the
so-called generalized coordinates is equivalent to the definition of a chart on M ;
when M is the set of equilibrium states of a thermodynamical system, the coordi-
nates associated with a chart on M are, typically, the pressure, the temperature, and
the volume of the system.

The coordinates associated with any chart (U,φ) must be functionally inde-
pendent among themselves, since the definition of a chart requires that φ(U)

(≡ {φ(p) |p ∈ U}) be an open subset of R
n. If, for instance, the coordinate xn

could be expressed as a function of x1, x2, . . . , xn−1, then the points φ(p) (p ∈ U)

would lie in a hypersurface of Rn, which is not an open subset of Rn.
Frequently, a chart (U,φ) on M will not cover all of M , that is, U will be a

proper subset of M ; moreover, it is possible that a given set M cannot be covered
by a single chart, as in the case of the circle or the sphere, where at least two charts
are necessary to cover all the points of M (see the examples below). Hence, in order
to cover all of M , it may be necessary to define two or more charts and, possibly,
some points of M will lie in the domain of more than one chart.

A function F : Rn → R
m given by F(q) = (f1(q), f2(q), . . . , fm(q)) is differ-

entiable of class Ck if the real-valued functions f1, f2, . . . , fm have kth continuous
partial derivatives; two charts on M , (U,φ) and (V ,χ), are said to be Ck-related (or
Ck-compatible) if U ∩V = ∅ (the empty set), or if φ ◦χ−1 : χ(U ∩V ) → φ(U ∩V )

and χ ◦ φ−1 : φ(U ∩ V ) → χ(U ∩ V ), whose domains are open in R
n, are dif-
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Fig. 1.2 Two coordinate systems whose domains have a nonempty intersection. A point p belong-
ing to U ∩ V corresponds to two points of Rn, φ(p) and χ(p); the charts (U,φ) and (V ,χ) are
Ck -related if the maps φ(p) �→ χ(p) and χ(p) �→ φ(p) are differentiable functions of class Ck

ferentiable of class Ck (see Fig. 1.2). If x1, x2, . . . , xn are the coordinates as-
sociated to (U,φ) and y1, y2, . . . , yn are the coordinates associated to (V ,χ),
the fact that (U,φ) and (V ,χ) be Ck-related amounts to the fact that, for all
p ∈ U ∩ V , y1(p), y2(p), . . . , yn(p) be differentiable functions of class Ck of
x1(p), x2(p), . . . , xn(p), and conversely.

A Ck subatlas on M is a collection of charts on M , {(Ui,φi)}, such that for any
pair of indices i, j , (Ui,φi) and (Uj ,φj ) are Ck-related and M = U1 ∪U2 ∪ · · · (so
that each point of M is in the domain of at least one chart). The collection of all the
charts Ck-related with the charts of a Ck subatlas, on M , form a Ck atlas on M .

Definition 1.1 A Ck manifold of dimension n is a set M with a Ck atlas; if k ≥ 1, it
is said that M is a differentiable manifold. If k = 0, it is said that M is a topological
manifold.

In the space R
n, the pair (Rn, id) (where id denotes the identity map) is a chart

that, by itself, forms a C∞ subatlas. The infinite collection of all the coordinate sys-
tems C∞-related with this chart form a C∞ atlas with which R

n is a C∞ manifold
of dimension n. When we consider Rn as a differentiable manifold, it is understood
that this is its atlas.

For instance, the usual polar coordinates of the Cartesian plane belong to the atlas
of R2; one can readily verify that the pair (V ,χ), with V = {(x, y) ∈ R

2 |x > 0} and

χ(x, y) = (√
x2 + y2, arctany/x

)

is a chart on R
2 with χ(V ) = (0,∞) × (−π/2,π/2), which is an open set in R

2.
Taking (U,φ) = (R2, id), one readily verifies that (χ ◦ φ−1)(x, y) = χ(x, y) =
(
√

x2 + y2, arctany/x) and (φ ◦ χ−1)(r, θ) = χ−1(r, θ) = (r cos θ, r sin θ) are dif-
ferentiable of class C∞ in φ(U ∩ V ) = V and χ(U ∩ V ) = χ(V ) = (0,∞) ×
(−π/2,π/2), respectively.

Let M be a manifold. A subset A of M is said to be open if for any chart (U,φ)

belonging to the atlas of M , the set φ(A ∩ U) is open in R
n.
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Fig. 1.3 The stereographic projection establishes a one-to-one correspondence between the points
of the n-sphere, excluding the “north pole” (0,0, . . . ,1), and the points of the plane xn+1 = 0. The
point (a1, a2, . . . , an+1) is a point of the n-sphere different from (0,0, . . . ,1)

Exercise 1.2 Show that the collection τ of open subsets of a manifold M is a topol-
ogy of M , that is, show that M and the empty set belong to τ , that the union of any
family of elements of τ belongs to τ , and that the intersection of any finite family
of elements of τ belongs to τ . We say that this topology is induced by the manifold
structure given in M .

When a given set, M , already possesses a topology and one wants to give it the
structure of a manifold in such a way that the topology induced by the manifold
structure coincides with the topology originally given, one demands that for each
chart (U,φ), in the atlas of M , the map φ be continuous and have a continuous
inverse; as a consequence, U must be an open set of M . (A map is continuous if and
only if the preimage of any open set is open.)

Example 1.3 Almost all the points of the n-sphere

Sn ≡ {(
a1, . . . , an+1) ∈R

n+1 | (a1)2 + · · · + (
an+1)2 = 1

}

(n ≥ 1) can be put into a one-to-one correspondence with the points of R
n by

means of the stereographic projection defined in the following way. Any point
(a1, . . . , an+1) ∈ Sn, different from (0,0, . . . ,1), can be joined with (0,0, . . . ,1)

by means of a straight line that intersects the hyperplane xn+1 = 0 at some point
(b1, . . . , bn,0) (see Fig. 1.3). The condition that the three points (a1, . . . , an+1),
(0,0, . . . ,1), and (b1, . . . , bn,0) lie on a straight line amounts to

(
b1, . . . , bn,0

)− (0,0, . . . ,1) = λ
[(

a1, . . . , an+1)− (0,0, . . . ,1)
]
, (1.2)

for some λ ∈ R. By considering the last component in the vector equation (1.2)
we have 0 − 1 = λ(an+1 − 1); hence, λ = 1/(1 − an+1). Substituting this value
of λ into (1.2) we find that the mapping φ : Sn \ {(0,0, . . . ,1)} → R

n defined by
φ(a1, . . . , an+1) ≡ (b1, . . . , bn) is given by

φ
(
a1, . . . , an+1)= 1

1 − an+1

(
a1, . . . , an

)
. (1.3)

The pair (U,φ), with U ≡ Sn \ {(0,0, . . . ,1)}, is a chart of coordinates, since φ is
injective and φ(U) = R

n (which is an open set in R
n).
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In a similar manner, joining the points of Sn with (0,0, . . . ,−1) by means of
straight lines, another projection is obtained, χ : Sn \ {(0,0, . . . ,−1)} → R

n, given
by

χ
(
a1, . . . , an+1)= 1

1 + an+1

(
a1, . . . , an

)
(1.4)

so that (V ,χ), with V ≡ Sn \ {(0,0, . . . ,−1)}, is a second chart of coordinates
which is C∞-related with (φ,U). In effect, from (1.3) and (1.4) we find that

φ−1
(
b1, . . . , bn

) = 1

1 +∑n
i=1(b

i)2

(

2b1, . . . ,2bn,−1 +
n∑

i=1

(
bi
)2

)

,

χ−1
(
b1, . . . , bn

) = 1

1 +∑n
i=1(b

i)2

(

2b1, . . . ,2bn,1 −
n∑

i=1

(
bi
)2

)

,

(1.5)

and therefore

(
χ ◦ φ−1)(b1, . . . , bn

)= (
φ ◦ χ−1)(b1, . . . , bn

)= (b1, . . . , bn)
∑n

i=1(b
i)2

.

We have U ∩ V = Sn \ {(0,0, . . . ,1), (0,0, . . . ,−1)}; hence φ(U ∩ V ) =
χ(U ∩ V ) = R

n \ {(0,0, . . . ,0)}, where the compositions χ ◦ φ−1 and φ ◦ χ−1

are differentiable of class C∞. Since Sn = U ∪ V , the charts (U,φ) and (V ,χ)

form a C∞ subatlas for Sn.

The Cartesian product of two differentiable manifolds, M and N , acquires the
structure of a differentiable manifold in a natural way. If {(Ui,φi)} and {(Vj ,ψj )}
are subatlases of M and N , respectively, one can verify that {(Ui × Vj ,ρij )} is a
subatlas for M ×N , with ρij (p, q) ≡ (x1(p), . . . , xn(p), y1(q), . . . , ym(q)), where
(x1(p), . . . , xn(p)) = φ(p) and (y1(q), . . . , ym(q)) = ψj (q).

Differentiability of Maps If f is a real-valued function defined on a differen-
tiable manifold M , f : M → R, and (U,φ) is a chart belonging to the atlas of M ,
the composition f ◦ φ−1 is a real-valued function defined on an open subset of Rn,
which may be differentiable or not (see Fig. 1.4). The differentiability of the com-
position f ◦ φ−1 does not depend on the chart chosen, since the charts of the atlas
of M are Ck-related (for some k ≥ 1). From the identities

f ◦ φ−1 = (
f ◦ χ−1) ◦ (χ ◦ φ−1), f ◦ χ−1 = (

f ◦ φ−1) ◦ (φ ◦ χ−1)

it follows that f ◦ φ−1 is differentiable if and only if f ◦ χ−1 is. Hence, it makes
sense to state the following definition. Let M be a differentiable Ck manifold.
A function f : M → R is differentiable of class Cr (r ≤ k) if f ◦ φ−1 is differ-
entiable of class Cr for every chart (U,φ) in the atlas of M .

For a fixed coordinate system (U,φ) belonging to the atlas of M , and a real-
valued function f : M →R, letting F ≡ f ◦ φ−1, we have [see (1.1)]

f (p) = (
f ◦ φ−1)(φ(p)

)= F
(
φ(p)

)= F
(
x1(p), x2(p), . . . , xn(p)

)
,
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Fig. 1.4 With the aid of a coordinate system on M , a real-valued function f defined on M is
represented by the function f ◦ φ−1 :Rn →R

for p ∈ U . Thus, we write f = F(x1, x2, . . . , xn); in this manner, the function f is
expressed in terms of a real-valued function defined in (a subset of) Rn.

Exercise 1.4 Let M be a Ck manifold. Show that the coordinates associated with
any chart in the atlas of M are differentiable functions of class Ck . (Hint: if
φ(p) = (x1(p), x2(p), . . . , xn(p)), then xi = πi ◦ φ where πi : Rn → R is defined
by πi(a1, a2, . . . , an) = ai .)

If M is a Ck manifold and N is a Cl manifold, a map ψ from M into N is differ-
entiable of class Cr (with r ≤ min{k, l}) if for any pair of charts (U,φ) on M and
(V ,χ) on N , the map χ ◦ ψ ◦ φ−1 is differentiable of class Cr ; that is, ψ : M → N

is differentiable if, for p ∈ M , the coordinates of ψ(p) depend differentiably on the
coordinates of p (see Fig. 1.5). In fact, if x1, x2, . . . , xn are the coordinates associ-
ated with the chart (U,φ) on M and y1, y2, . . . , ym are the coordinates associated
with the chart (V ,χ) on N , we have

(
y1(ψ(p)

)
, . . . , ym

(
ψ(p)

)) = χ
(
ψ(p)

)= (
χ ◦ ψ ◦ φ−1)(φ(p)

)

= (
χ ◦ ψ ◦ φ−1)(x1(p), . . . , xn(p)

)
.

A diffeomorphism ψ is a one-to-one map from a differentiable manifold M to a
differentiable manifold N such that ψ and ψ−1 are differentiable; two differentiable
manifolds M and N are diffeomorphic if there exists a diffeomorphism ψ from M

onto N .

Exercise 1.5 Show that the set of diffeomorphisms of a manifold onto itself forms
a group with the operation of composition.

Let M be a Ck manifold of dimension n. A subset N of M is a submanifold
of M , of dimension m (m ≤ n), if there exists a Ck subatlas of M , {(Ui,φi)}, such
that

φi(N ∩ Ui) = {(
a1, a2, . . . , an

) ∈ R
n | am+1 = am+2 = · · · = an = 0

}
.
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Fig. 1.5 The map ψ : M → N is locally represented by the map χ ◦ ψ ◦ φ−1. ψ is differentiable
if the compositions χ ◦ ψ ◦ φ−1 are differentiable for any pair of charts (U,φ) on M and (V ,χ)

on N

Let π be the canonical projection from R
n onto R

m given by π(a1, a2, . . . , an) =
(a1, a2, . . . , am). The collection {(N ∩ Ui,π ◦ φi)} is a Ck subatlas on N , and N

becomes a Ck manifold of dimension m with the atlas generated by this subatlas;
in other words, N is a submanifold of dimension m if there exist coordinate sys-
tems (U,φ) on M such that if U intersects N , then N ∩ U = {p ∈ U | xm+1(p) =
xm+2(p) = · · · = xn(p) = 0}, where x1, x2, . . . , xn are the coordinates associated
to (U,φ).

With the aid of the following theorem we can construct or identify many exam-
ples of submanifolds.

Theorem 1.6 Let f 1, f 2, . . . , f m be real-valued differentiable functions defined
on M . The set N ≡ {p ∈ M | f 1(p) = f 2(p) = · · · = f m(p) = 0} is a submanifold
of dimension n − m of M if for any chart (U,φ) of the atlas of M such that U

intersects N , the matrix with entries Di(f
j ◦φ−1)|φ(p) (1 ≤ i ≤ n,1 ≤ j ≤ m) is of

rank m for p ∈ N . (Di stands for the ith partial derivative.)

Proof Let p ∈ N and let (U,φ) be a chart on M with p ∈ U . Assuming that the
determinant of the square matrix Di(f

j ◦ φ−1)|φ(p) (1 ≤ i, j ≤ m) is different from
zero (which can be achieved by appropriately labeling the coordinates if necessary)
and denoting by x1, x2, . . . , xn the coordinates associated with (U,φ), the relations

y1 ≡ f 1, y2 ≡ f 2, . . . , ym ≡ f m,

ym+1 ≡ xm+1, . . . , yn ≡ xn
(1.6)

define a coordinate system in some subset V of U , that is, the xi can be written as
differentiable functions of the yi . In the coordinates yi the points p of N satisfy
y1(p) = y2(p) = · · · = ym(p) = 0. Therefore, N is a submanifold of M of dimen-
sion n − m. �
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Fig. 1.6 A curve in M and its image in a coordinate system. C is differentiable if φ ◦ C is differ-
entiable for any chart (U,φ) on M

Example 1.7 Let M = R
3 and N ≡ {p ∈ R

3 |f (p) = 0} with f = x2 + y2 − z,
where (x, y, z) are the natural coordinates of R3. The matrix (Di(f ◦ φ−1)|φ(p)),
mentioned in Theorem 1.6, is the row matrix (2x(p) 2y(p) − 1), whose rank is
equal to 1 at all the points of N (actually, it is equal to 1 everywhere). Thus, we
conclude that N is a submanifold of R

3 of dimension two. However, in order to
see in detail how the proof of the theorem works, we shall explicitly show that N

satisfies the definition of a submanifold given above.
It is convenient to relabel the coordinates, so that f takes the form f = y2 +

z2 − x, because in that way the first entry of the matrix (Di(f ◦ φ−1)|φ(p)) is al-
ways different from zero. Then, following the steps of the proof of the theorem, we
introduce the coordinate system (u, v,w) [see (1.6)],

u = f = y2 + z2 − x, v = y, w = z,

on all of R3. From these expressions and their inverses, x = v2 + w2 − u, y = v,
z = w, we see that the two coordinate systems are C∞-related, and in terms of the
coordinate system (u, v,w), each point p ∈ N satisfies u(p) = 0.

Exercise 1.8 Show that if x1, x2, . . . , xn are the natural coordinates of R
n

(that is, the coordinates associated with the chart (Rn, id) of R
n), then Sn−1 ≡

{p ∈ R
n | (x1(p))2 + (x2(p))2 + · · · + (xn(p))2 = 1}, is a submanifold of R

n of
dimension n − 1.

Definition 1.9 Let M be a Ck manifold. A differentiable curve, C, of class Cr ,
in M , is a differentiable mapping of class Cr from an open subset of R into M ; that
is, C : I → M is a differentiable curve of class Cr in M if I is an open subset of R
and φ ◦ C is a differentiable map of class Cr for every chart (U,φ) of the atlas of
M (see Fig. 1.6).

In what follows it will be assumed that all the objects dealt with (manifolds,
maps, curves, etc.) are of class C∞.
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The set of all differentiable functions from M to R will be denoted by C∞(M).
This set is a ring with the operations given by

(f + g)(p) ≡ f (p) + g(p)

(af )(p) ≡ af (p) (1.7)

(fg)(p) ≡ f (p)g(p) for f,g ∈ C∞(M), a ∈ R, and p ∈ M.

If ψ is a differentiable map from M to a differentiable manifold N and
f ∈ C∞(N), the pullback of f under ψ , ψ∗f , is defined by

ψ∗f ≡ f ◦ ψ. (1.8)

From the relation (ψ∗f ) ◦ φ−1 = (f ◦ χ−1) ◦ (χ ◦ ψ ◦ φ−1) it follows that ψ∗f ∈
C∞(M). That is, ψ∗ : C∞(N) → C∞(M) (ψ∗ is applied to functions defined on N

to produce functions defined on M ; hence the name pullback for ψ∗).

Exercise 1.10 Show that ψ∗(af + bg) = aψ∗f + bψ∗g and ψ∗(fg) =
(ψ∗f )(ψ∗g) for f,g ∈ C∞(N) and a, b ∈R.

Exercise 1.11 Show that a map ψ : M → N is differentiable if and only if ψ∗f ∈
C∞(M) for f ∈ C∞(N).

Exercise 1.12 Show that if ψ1 : M1 → M2 and ψ2 : M2 → M3 are differentiable
maps, then (ψ2 ◦ ψ1)

∗ = ψ1
∗ ◦ ψ2

∗.

1.2 The Tangent Space

If C is a differentiable curve in M and f ∈ C∞(M), then C∗f = f ◦ C is a dif-
ferentiable function from an open subset I ⊂ R into R (see Fig. 1.7). If t0 ∈ I , the
tangent vector to C at the point C(t0), denoted by C′

t0
, is defined by

C′
t0
[f ] ≡ d

dt
(C∗f )

∣∣∣
t0
= lim

t→t0

f (C(t)) − f (C(t0))

t − t0
. (1.9)

Hence, C′
t0

is a map from C∞(M) into R with the properties (see Exercise 1.10)

C′
t0
[af + bg] = d

dt

(
C∗(af + bg)

)∣∣∣
t0

= d

dt
(a C∗f + bC∗g)

∣∣∣
t0

= a C′
t0
[f ] + bC′

t0
[g], for f,g ∈ C∞(M), a, b ∈ R,
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Fig. 1.7 Composition of a curve in M with a real-valued function f . The derivative of f ◦ C,
which is a function from R into R, represents the directional derivative of f along C

and

C′
t0
[fg] = d

dt

(
C∗(fg)

)∣∣∣
t0

= d

dt

(
(C∗f )(C∗g)

)∣∣∣
t0

= f
(
C(t0)

)
C′

t0
[g] + g

(
C(t0)

)
C′

t0
[f ], for f,g ∈ C∞(M).

The real number C′
t0
[f ] is the rate of change of f along C around the point C(t0).

The properties of the tangent vector to a curve lead to the following definition.

Definition 1.13 Let p ∈ M . A tangent vector to M at p is a map, vp , of C∞(M) in
R such that

vp[af + bg] = avp[f ] + bvp[g]
vp[fg] = f (p)vp[g] + g(p)vp[f ], (1.10)

for f,g ∈ C∞(M), a, b ∈R.

For a constant function, c (denoting by c both the function and its value, i.e.,
c(p) = c for all p ∈ M), we have

vp[c] = vp[c · 1] = c vp[1] = c vp[1 · 1]
= c

(
1 · vp[1] + 1 · vp[1])= 2c vp[1] = 2vp[c];

therefore,

vp[c] = 0. (1.11)

The tangent space to M at p, denoted by TpM (or by the symbols Tp(M) and
Mp), is the set of all the tangent vectors to M at p. The set TpM is a real vector
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space with the operations defined by

(vp + wp)[f ] ≡ vp[f ] + wp[f ],
(avp)[f ] ≡ a

(
vp[f ]), (1.12)

for vp,wp ∈ TpM , f ∈ C∞(M), and a, b ∈ R. Hence, 0p , the zero vector of TpM ,
satisfies 0p[f ] = 0 for f ∈ C∞(M).

If (U,φ) is a chart on M , with coordinates x1, x2, . . . , xn and p ∈ U , the tangent
vectors, (∂/∂x1)p, (∂/∂x2)p, . . . , (∂/∂xn)p , are defined by

(
∂

∂xi

)

p

[f ] ≡ Di

(
f ◦ φ−1)∣∣

φ(p)
, for f ∈ C∞(M), (1.13)

where Di denotes the partial derivative with respect to the ith argument; that is,

(
∂

∂xi

)

p

[f ] = lim
t→0

1

t

[(
f ◦ φ−1)(x1(p), . . . , xi(p) + t, . . . , xn(p)

)

− (
f ◦ φ−1)(x1(p), . . . , xi(p), . . . , xn(p)

)]
. (1.14)

Using the definition (1.13) one readily verifies that, in effect, (∂/∂xi)p satisfies the
conditions (1.10) and therefore (∂/∂xi)p ∈ TpM .

Taking f = xj in (1.14) and noting that

(
xj ◦ φ−1)(x1(p), x2(p), . . . , xn(p)

)= (
xj ◦ φ−1)(φ(p)

)= xj (p)

and, similarly,

(
xj ◦ φ−1)(x1(p), x2(p), . . . , xi(p) + t, . . . , xn(p)

)=
{

xj (p) if i �= j ,

xj (p) + t if i = j

(for t sufficiently small, so that all the points belong to U ), we find that

(
∂

∂xi

)

p

[
xj
]= δ

j
i ≡

{
0 if i �= j ,

1 if i = j .
(1.15)

The set {(∂/∂xi)p}ni=1 is linearly independent since if ai(∂/∂xi)p = 0p (here
and in what follows, any index that appears twice, once as a subscript and once
as a superscript, implies a sum over all the values of the index, for instance,
ai(∂/∂xi)p =∑n

i=1 ai(∂/∂xi)p), then using (1.15) we have

0 = 0p

[
xj
]= ai

(
∂

∂xi

)

p

[
xj
]= aiδ

j
i = aj .
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Theorem 1.14 If (U,φ) is a chart on M and p ∈ U , the set {(∂/∂xi)p}ni=1 is a
basis of TpM and

vp = vp

[
xi
]( ∂

∂xi

)

p

(1.16)

for vp ∈ TpM .

Proof We only have to prove that any tangent vector to M at p can be expressed
as a linear combination of the vectors (∂/∂xi)p . Let f ∈ C∞(M). The composition
F ≡ f ◦ φ−1 is a real-valued function defined on φ(U), which is an open set of Rn.
For an arbitrary point q ∈ U , we have f (q) = (f ◦ φ−1) ◦ (φ(q)) = F(φ(q)) and,
similarly, f (p) = F(φ(p)). According to the mean value theorem for functions
from R

n in R, for a real-valued differentiable function, F , defined in some open
subset of Rn, given two points (a1, . . . , an) and (b1, . . . , bn) such that the straight
line segment joining them is contained in the domain of F , we have

F
(
b1, . . . , bn

)− F
(
a1, . . . , an

)= (
bi − ai

)
DiF |(c1,...,cn), (1.17)

where (c1, . . . , cn) is some point on the straight line segment joining the points
(a1, . . . , an) and (b1, . . . , bn) [i.e., (c1, . . . , cn) = (1 − t0)(a

1, . . . , an) +
t0(b

1, . . . , bn), for some t0 ∈ (0,1)]. Applying the formula (1.17) with
(a1, . . . , an) = (x1(p), . . . , xn(p)) = φ(p) and (b1, . . . , bn) = (x1(q), . . . , xn(q)) =
φ(q) we obtain

F
(
φ(q)

)= F
(
φ(p)

)+ [
xi(q) − xi(p)

]
DiF |(c1,...,cn). (1.18)

Taking p fixed, the real numbers DiF |(c1,...,cn) depend on q and will be denoted by
gi(q); then (1.18) amounts to

f (q) = f (p) + [
xi(q) − xi(p)

]
gi(q)

or, since q is an arbitrary point in a neighborhood of p,

f = f (p) + [
xi − xi(p)

]
gi. (1.19)

Using (1.10), (1.11), and the expression (1.19), taking into account that f (p) as
well as xi(p) are real numbers, while f , xi , and gi are real-valued functions defined
in a neighborhood of p, for any vp ∈ TpM we have

vp[f ] = vp

[
f (p)

]+ [
xi(p) − xi(p)

]
vp[gi] + gi(p) vp

[
xi − xi(p)

]

= gi(p) vp

[
xi
]
,

but gi(p) = DiF |φ(p) = (∂/∂xi)p[f ] [see (1.13)]. Therefore

vp[f ] = vp

[
xi
]( ∂

∂xi

)

p

[f ]
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and, since f is arbitrary, we obtain the expression (1.16). As a corollary of this result
we find that the dimension of TpM coincides with the dimension of M . �

According to (1.16), the tangent vector to a differentiable curve C in M

(C : I → M), at the point C(t0) is given by

C′
t0

= C′
t0

[
xi
]( ∂

∂xi

)

C(t0)

.

But, from (1.9), C′
t0
[xi] = d(xi ◦ C)/dt |t0 ; therefore

C′
t0

= d(xi ◦ C)

dt

∣∣∣∣
t0

(
∂

∂xi

)

C(t0)

. (1.20)

Exercise 1.15 Let vp ∈ TpM . Show that there exists a curve C such that vp = C′
t0

.

If (V ,χ) is a second chart on M with coordinate functions y1, y2, . . . , yn, and
p ∈ U ∩ V , then we have another basis for TpM given by {(∂/∂yi)p}ni=1. From
(1.16) we see that

(
∂

∂yi

)

p

=
(

∂

∂yi

)

p

[
xj
]( ∂

∂xj

)

p

.

It is convenient to write (∂f/∂xi)p instead of (∂/∂xi)p[f ], keeping in mind the

definition (1.13), so that (1.15) becomes (∂xj /∂xi)p = δ
j
i and the foregoing relation

can be expressed in the simpler form

(
∂

∂yi

)

p

=
(

∂xj

∂yi

)

p

(
∂

∂xj

)

p

(1.21)

and, similarly,
(

∂

∂xj

)

p

=
(

∂yi

∂xj

)

p

(
∂

∂yi

)

p

, (1.22)

which means that the two bases of TpM , {(∂/∂xi)p}ni=1 and {(∂/∂yi)p}ni=1, are

related by means of the matrix c
j
i (p) = (∂xj /∂yi)p , whose inverse is the matrix

c̃k
j (p) = (∂yk/∂xj )p .

Let M and N be two differentiable manifolds, and let ψ : M → N be a differ-
entiable map (see Fig. 1.8). The map ψ induces a linear transformation between
the tangent spaces TpM and Tψ(p)N called the Jacobian (or differential) of ψ at p,
denoted by ψ∗p (or by dψp). If vp ∈ TpM , ψ∗p(vp) is defined as the tangent vector
to N at ψ(p) such that for f ∈ C∞(N)

ψ∗p(vp)[f ] ≡ vp[ψ∗f ]. (1.23)



14 1 Manifolds

Fig. 1.8 If ψ : M → N is a differentiable mapping from M into N , its Jacobian, or differential,
maps tangent vectors to M into tangent vectors to N

Exercise 1.16 Show that if vp ∈ TpM , then ψ∗p(vp) ∈ Tψ(p)N and that ψ∗p is
linear.

If (x1, x2, . . . , xn) is a coordinate system on M about the point p and
(y1, y2, . . . , ym) is a coordinate system on N about ψ(p), since ψ∗p(∂/∂xi)p ∈
Tψ(p)N , using (1.16) we obtain the relation

ψ∗p

(
∂

∂xi

)

p

= ψ∗p

(
∂

∂xi

)

p

[
yj
]( ∂

∂yj

)

ψ(p)

.

But from the definitions (1.23) and (1.8), ψ∗p(∂/∂xi)p[yj ] = (∂/∂xi)p[ψ∗yj ] =
(∂/∂xi)p[yj ◦ ψ]; therefore

ψ∗p

(
∂

∂xi

)

p

=
(

∂(yj ◦ ψ)

∂xi

)

p

(
∂

∂yj

)

ψ(p)

. (1.24)

In other words, the matrix with entries (∂(yj ◦ψ)/∂xi)p represents the linear trans-
formation ψ∗p with respect to the bases {(∂/∂xi)p}ni=1 and {(∂/∂yj )ψ(p)}mj=1 (com-
pare with the usual definition of the Jacobian matrix in the calculus of several vari-
ables).

If ψ1 : M1 → M2 and ψ2 : M2 → M3 are differentiable maps between differen-
tiable manifolds, then, for vp ∈ TpM1 and f ∈ C∞(M3), using (1.23) and Exer-
cise 1.12, we have

(ψ2 ◦ ψ1)∗p(vp)[f ] = vp

[
(ψ2 ◦ ψ1)

∗f
]= vp

[
(ψ1

∗ ◦ ψ2
∗)f

]

= vp

[
ψ1

∗(ψ2
∗f )

]= ψ1∗p(vp)[ψ2
∗f ]

= ψ2∗ψ1(p)

(
ψ1∗p(vp)

)[f ],

i.e.,

(ψ2 ◦ ψ1)∗p = ψ2∗ψ1(p) ◦ ψ1∗p. (1.25)

This relation is called the chain rule.
If ψ : M → N is a differentiable map between differentiable manifolds and

C : I → M is a curve in M , the composition ψ ◦ C is a curve in N . According
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Fig. 1.9 The tangent vectors of the curve ψ ◦ C are obtained applying the Jacobian of ψ to the
tangent vectors of C

Fig. 1.10 The tangent bundle of M is formed by the union of the tangent spaces to M at all the
points of M . Each tangent space to M is represented here by a vertical line

to (1.9) and (1.23), the tangent vector to ψ ◦ C at the point (ψ ◦ C)(t0) = ψ(C(t0))

satisfies

(ψ ◦ C)′t0 [f ] = d

dt
(f ◦ ψ ◦ C)

∣∣∣
t0
= C′

t0
[f ◦ ψ]

= C′
t0
[ψ∗f ] = ψ∗C(t0)(C

′
t0
)[f ], for f ∈ C∞(N).

Hence

(ψ ◦ C)′t0 = ψ∗C(t0)(C
′
t0
), (1.26)

which means that the tangent vectors to the image of a curve C under the map ψ

are the images of the tangent vectors to C under the Jacobian of ψ (see Fig. 1.9).

The Tangent Bundle of a Manifold The tangent bundle of a differentiable man-
ifold M , denoted by TM, is the set of all tangent vectors at all points of M ; that
is, TM =⋃

p∈M TpM . The canonical projection, π , from TM on M is the mapping
that associates to each element of TM the point of M at which it is attached; that is,
if vp ∈ TpM , then π(vp) = p. Therefore, π−1(p) = TpM (see Fig. 1.10).
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Fig. 1.11 Each coordinate system on M , (U,φ), induces a coordinate system on TM, (π−1(U),φ)

The tangent bundle has the structure of a differentiable manifold induced by
the structure of M in a natural way. If (U,φ) is a coordinate system on M , each
vp ∈ π−1(U) is a linear combination of the vectors (∂/∂xi)p , with real coefficients
that depend on vp . Hence, we can write

vp = q̇i (vp)

(
∂

∂xi

)

p

, (1.27)

which defines n functions q̇i : π−1(U) → R. (This notation comes from that com-
monly employed in Lagrangian mechanics, when M is the configuration space of a
mechanical system.) From (1.15) we also have

q̇i (vp) = vp

[
xi
]
. (1.28)

Defining the n functions qi : π−1(U) → R, by qi ≡ xi ◦ π = π∗xi , the pair
(π−1(U),φ), with

φ(vp) ≡ (
q1(vp), . . . , qn(vp), q̇1(vp), . . . , q̇n(vp)

)
,

is a chart on TM (see Fig. 1.11). (The image of π−1(U) under φ is φ(U) × R
n,

which is an open subset of R2n, and the injectivity of φ follows from the injectivity
of φ and the fact that if two vectors have the same components with respect to a
basis, they must be the same vector.)

Two coordinate systems (U,φ) and (U ′, φ′) on M , Ck-related, induce the co-
ordinate systems (π−1(U),φ) and (π−1(U ′),φ′) on TM, which are Ck−1-related,
since from (1.27) [or from (1.21) and (1.22)] it follows that the coordinates q̇i and
q̇ ′i are related by

q̇i = q̇ ′j π∗
(

∂xi

∂x′j

)
, q̇ ′i = q̇j π∗

(
∂x′i

∂xj

)
,
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where xi denotes the coordinates associated with (U,φ), x′i those associated with
(U ′, φ′), while q̇i and q̇ ′i are the coordinates induced on TM by (U,φ) and (U ′, φ′),
respectively. Thus, if {(Ui,φi)} is a subatlas on M , {(π−1(Ui),φi)} is a subatlas on
TM that defines a differentiable manifold structure.

Since, by definition, π∗xi = qi , the projection π is differentiable. Moreover,
from (1.24) we obtain

π∗v

(
∂

∂qi

)

v

=
(

∂

∂xi

)

π(v)

, π∗v

(
∂

∂q̇i

)

v

= 0, (1.29)

for v ∈ π−1(U).

Exercise 1.17 With the notation employed above, show that

π∗
(

∂x′i

∂xj

)
= ∂q ′i

∂qj
and π∗

(
∂f

∂xj

)
= ∂(π∗f )

∂qj
,

for f ∈ C∞(M).

The tangent bundle and the cotangent bundle (defined in Sect. 8.1) of a mani-
fold are two examples of vector bundles and fiber bundles. We are not giving here
the definitions of these more ample concepts, since we will not make use of them.
However, the vector bundles and the fiber bundles are two very useful concepts
in manifold theory and topology. Some introductory presentations can be found in
Crampin and Pirani (1986), Lee (1997), Isham (1999), and Conlon (2001).

1.3 Vector Fields

A vector field X, on M , is a function that to each point p of M assigns a tangent
vector X(p) ∈ TpM . The tangent vector X(p) is also denoted by Xp . A vector field
may not be defined in all of M (for instance, its domain may be the image of a
curve); but when a vector field is defined in all of M we say that it is defined globally,
otherwise we say that it is defined only locally.

Since a vector field gives us a tangent vector at each point of its domain and a
tangent vector can be applied to real-valued differentiable functions to yield real
numbers, given a vector field X and f ∈ C∞(M), we can form a real-valued func-
tion Xf , defined by

(Xf )(p) ≡ Xp[f ]. (1.30)

Since Xp ∈ TpM , from (1.10) it follows that

X(af + bg) = aXf + bXg and X(fg) = f Xg + gXf, (1.31)

for f,g ∈ C∞(M) and a, b ∈R.
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A vector field X is differentiable (of class C∞) if for all f ∈ C∞(M), the func-
tion Xf also belongs to C∞(M). The set of all differentiable vector fields on M will
be denoted by X(M). Vector fields can be combined by means of the operations

(aX + bY)p ≡ aXp + bYp,

(f X)p ≡ f (p)Xp

(1.32)

for X,Y ∈ X(M), a, b ∈ R, and f ∈ C∞(M). Making use of the definitions above,
one verifies directly that aX + bY and f X are vector fields.

Exercise 1.18 Let X and Y be two vector fields on M . Show that

(aX + bY)f = aXf + bYf, (1.33)

(gX)f = g(Xf ), (1.34)

for a, b ∈R and f,g ∈ C∞(M).

If (U,φ) is a chart on M , we have n vector fields, (∂/∂xi), i = 1,2, . . . , n, on U

defined by (∂/∂xi)(p) ≡ (∂/∂xi)p . These vector fields are differentiable since from
(1.30) and (1.13) we see that, for any f ∈ C∞(M),

(
∂

∂xi

)
f = [

Di

(
f ◦ φ−1)] ◦ φ. (1.35)

Below (∂/∂xi)f will be also written as ∂f/∂xi , keeping in mind that these functions
are defined by (1.35).

Since the tangent vectors (∂/∂xi)p form a basis of TpM , any vector field X
evaluated at the point p must be a linear combination of the vectors (∂/∂xi)p with
real coefficients, which may depend on p. Therefore

Xp = Xi(p)

(
∂

∂xi

)

p

.

This relation defines n real-valued functions X1,X2, . . . ,Xn in the intersection of U

and the domain of X. Making use of the operations (1.32) we have

Xp = Xi(p)

(
∂

∂xi

)
(p) =

[
Xi

(
∂

∂xi

)]
(p),

hence

X = Xi

(
∂

∂xi

)
. (1.36)

(Strictly speaking, the left-hand side of this last equation is the restriction of X to the
intersection of U and the domain of X, denoted by X|V , where V is the intersection
of U and the domain of X.)
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Exercise 1.19 Let X = Xi(∂/∂xi). Show that the functions Xi are given by
Xi = Xxi and that X is differentiable if and only if the functions Xi are.

Exercise 1.20 Let (x1, x2, . . . , xn) and (x′1, x′2, . . . , x′n) be two coordinate sys-
tems. Show that if X = Xi(∂/∂xi) and X = X′j (∂/∂x′j ), then

X′j = Xi ∂x′j

∂xi
,

in the intersection of the domains of X and those of the two coordinate systems.
(This last expression is the definition of a contravariant vector field in the tensor
formalism.)

There is another operation between vector fields, called the Lie bracket, with
which X(M) becomes a Lie algebra over R (see Appendix A). If X and Y are vector
fields on M , their Lie bracket is defined by

[X,Y]f ≡ X(Yf ) − Y(Xf ) for f ∈ C∞(M). (1.37)

Then [X,Y] = −[Y,X].
Exercise 1.21 Show that if X,Y,Z ∈ X(M) then [X,Y] ∈ X(M) and [X, [Y,Z]] +
[Y, [Z,X]] + [Z, [X,Y]] = 0.

Exercise 1.22 Show that [f X, gY] = fg[X,Y] + f (Xg)Y − g(Yf )X, for
X,Y ∈ X(M) and f,g ∈ C∞(M).

If (U,φ) is a chart on M with coordinates x1, x2, . . . , xn, from (1.35) we have
[(

∂/∂xi
)
,
(
∂/∂xj

)]
f

=
(

∂

∂xi

){[
Dj

(
f ◦ φ−1)] ◦ φ

}−
(

∂

∂xj

){[
Di

(
f ◦ φ−1)] ◦ φ

}

= {
DiDj

(
f ◦ φ−1)− DjDi

(
f ◦ φ−1)} ◦ φ

= 0,

for f ∈ C∞(M); hence
[(

∂/∂xi
)
,
(
∂/∂xj

)]= 0. (1.38)

Exercise 1.23 Show that if X,Y ∈ X(M) are given by X = Xi(∂/∂xi) and
Y = Y j (∂/∂xj ), then [X,Y] = (XY i − YXi)(∂/∂xi). (Hint: use the result of the
first part of Exercise 1.19.)

Exercise 1.24 Compute the Lie brackets of the vector fields

X = (
1 + r2) sin θ

∂

∂r
+ 1 − r2

r
cos θ

∂

∂θ
,
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Y = −(1 + r2) cos θ
∂

∂r
+ 1 − r2

r
sin θ

∂

∂θ
,

Z = ∂

∂θ
.

As shown above, each coordinate system gives rise to a set of n vector fields that
can be used to express an arbitrary vector field in the local form (1.36), and that sat-
isfy the relations (1.38). Nevertheless, an arbitrary vector field can also be expressed
in a form analogous to (1.36) in terms of any set of n vector fields such that at each
point of their common domain forms a basis for the tangent space. The use of this
kind of set of vector fields, not necessarily associated with coordinate systems, may
be convenient when there exists some additional structure on the manifold (e.g.,
a connection, a metric tensor or a Lie group structure), as shown, e.g., in Sects. 5.3,
6.2, 6.3, 6.4, 7.2, and 7.5.

While any differentiable mapping from a manifold into another manifold allows
us to map tangent vectors to the first manifold into tangent vectors to the second
one (by means of the Jacobian of the map), not any differentiable map between
manifolds allows us to map a vector field on the first manifold into a vector field
on the second one. For instance, if a differentiable map ψ : M → N is not injective,
there exist two different points p and q , belonging to M , which have the same image
under ψ ; however, for a vector field X on M , the tangent vectors ψ∗pXp and ψ∗qXq

need not coincide.
Let ψ : M → N be a differentiable map between differentiable manifolds. If

X ∈X(M) and Y ∈ X(N), we say that X and Y are ψ -related if

Yψ(p) = ψ∗pXp, for p ∈ M. (1.39)

From (1.30) and (1.23) it follows that if f ∈ C∞(N), then

(Yf )
(
ψ(p)

) = Yψ(p)[f ] = ψ∗pXp[f ] = Xp[f ◦ ψ]
= (

X(f ◦ ψ)
)
(p), for p ∈ M,

that is

(Yf ) ◦ ψ = X(f ◦ ψ), for f ∈ C∞(N). (1.40)

For example, according to Exercise (1.17), the vector fields ∂/∂qj and ∂/∂xj are
π -related.

If X1,X2 ∈ X(M) are ψ -related with Y1,Y2 ∈X(N), respectively, then [X1,X2]
is ψ -related with [Y1,Y2], since, by hypothesis, (Y1f ) ◦ ψ = X1(f ◦ ψ) and
(Y2g) ◦ ψ = X2(g ◦ ψ), for f,g ∈ C∞(N) [see (1.40)]. Taking g = Y1f , we have

[
Y2(Y1f )

] ◦ ψ = X2
(
(Y1f ) ◦ ψ

)= X2
(
X1(f ◦ ψ)

)
,

and a similar relation is obtained by interchanging the indices 1 and 2. Then
([Y1,Y2]f

) ◦ ψ = (
Y1(Y2f ) − Y2(Y1f )

) ◦ ψ
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= X1
(
X2(f ◦ ψ)

)− X2
(
X1(f ◦ ψ)

)

= [X1,X2](f ◦ ψ).

Since a vector field on M , X, is a function that maps each point p ∈ M into an
element Xp ∈ TpM ⊂ TM, X is a function from M into TM such that π ◦ X = idM ,
where π is the projection of the tangent bundle TM onto M .

Exercise 1.25 Show that a vector field X on M is differentiable if and only if the
function p �→ Xp , from M into TM, is differentiable. (Hint: prove that if X is given
locally by (1.36), then X∗qi = xi and X∗q̇i = Xi , where the qi and q̇i are the
coordinates induced on TM by a system of coordinates xi on M .)

1.4 1-Forms and Tensor Fields

Let f ∈ C∞(M); the differential of f at the point p (p ∈ M), denoted by dfp , is
defined by

dfp(vp) ≡ vp[f ], for vp ∈ TpM. (1.41)

The map dfp is a linear transformation from TpM in R, since if vp,wp ∈ TpM and
a, b ∈R, from (1.41) and (1.12) we have

dfp(avp + bwp) = (avp + bwp)[f ]
= avp[f ] + bwp[f ]
= a dfp(vp) + b dfp(wp).

This means that dfp belongs to the dual space of TpM , denoted by T ∗
p M . By defi-

nition, the elements of T ∗
p M are the linear transformations from TpM in R, which

are called covectors or covariant vectors, while T ∗
p M is called the cotangent space

to M at p. The space T ∗
p M is a vector space over R with the operations

(αp + βp)(vp) ≡ αp(vp) + βp(vp), (aαp)(vp) ≡ a
(
αp(vp)

)
, (1.42)

for αp,βp ∈ T ∗
p M,vp ∈ TpM , and a ∈ R.

A covector field α on M is a map that assigns to each p ∈ M an element
α(p) ∈ T ∗

p M . The covector α(p) will also be denoted by αp . A covector field α

is differentiable (of class C∞) if for all X ∈X(M) the function α(X) defined by

(
α(X)

)
(p) ≡ αp(Xp) (1.43)

is differentiable (of class C∞).
The function α(X) is also denoted by X α (which allows us to reduce the re-

peated use of parentheses with various purposes) and by i(X)α, iXα, or 〈X, α〉. This
operation is called contraction or interior product.
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The set of all differentiable covector fields on M will be denoted by Λ1(M). The
set Λ1(M) is a module over C∞(M) with the operations given by

(α + β)p ≡ αp + βp,

(f α)p ≡ f (p)αp,
(1.44)

for α,β ∈ Λ1(M) and f ∈ C∞(M). The elements of Λ1(M) are called linear dif-
ferential forms or 1-forms.

If f ∈ C∞(M), the differential of f , denoted by df and given by df (p) ≡ dfp ,
is a differentiable covector field or 1-form [i.e., df ∈ Λ1(M)], since if X ∈ X(M),
then from (1.41) and (1.30) it follows that

(
df (X)

)
(p) = dfp(Xp) = Xp[f ] = (Xf )(p),

for p ∈ M ; that is,

df (X) = Xf (1.45)

(or, equivalently, X df = Xf ), which is a differentiable function for all X ∈ X(M),
thus verifying that df is, indeed, a differentiable covector field.

From (1.45), (1.31), (1.44), and (1.42) it follows that the map d : C∞(M) →
Λ1(M), which sends f into df , satisfies

d(af + bg)(X) = X(af + bg) = aXf + bXg

= a df (X) + b dg(X) = (a df + b dg)(X),

for X ∈X(M); therefore

d(af + bg) = a df + b dg, for f,g ∈ C∞(M) and a, b ∈ R. (1.46)

Similarly, from (1.45), (1.31), and (1.42),

d(fg)(X) = X(fg) = f Xg + gXf

= f dg(X) + g df (X) = (f dg + g df )(X), for X ∈X(M),

hence,

d(fg) = f dg + g df, for f,g ∈ C∞(M). (1.47)

If (U,φ) is a chart on M , then (1.41) and (1.15) imply that the differential of the
coordinate functions x1, x2, . . . , xn satisfies

dxi
p

((
∂

∂xj

)

p

)
=
(

∂

∂xj

)

p

[
xi
]= δi

j . (1.48)

This relation implies that {dxi
p}ni=1 is a basis of T ∗

p M , since if a linear com-
bination, with real coefficients, ai dxi

p , is equal to the zero covector, we have
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0 = (ai dxi
p)((∂/∂xj )p) = aiδ

i
j = aj . Furthermore, if αp ∈ T ∗

p M , for any tangent

vector vp ∈ TpM expressed in the form vp = vp[xi](∂/∂xi)p [see (1.16)], then we
find

αp(vp) = αp

(
vp

[
xi
]( ∂

∂xi

)

p

)
= vp

[
xi
]
αp

((
∂

∂xi

)

p

)
,

but, according to (1.41), vp[xi] = dxi
p(vp). Therefore

αp(vp) = αp

((
∂

∂xi

)

p

)
dxi

p(vp) =
[
αp

((
∂

∂xi

)

p

)
dxi

p

]
(vp),

and since vp is arbitrary, we have

αp = αp

((
∂

∂xi

)

p

)
dxi

p (1.49)

[cf. (1.16)].
If α is a covector field on M , using (1.49), (1.43), and (1.44) it follows that the

covector α(p) ∈ T ∗
p M is expressed as

α(p) = α(p)

((
∂

∂xi

)

p

)
dxi

p =
[
α

((
∂

∂xi

))]
(p)dxi(p)

=
[
α

((
∂

∂xi

))
dxi

]
(p);

that is,

α = α

((
∂

∂xi

))
dxi. (1.50)

Denoting the real-valued functions α((∂/∂xi)) by αi we conclude that any covector
field is locally expressed (i.e., in the domain of a local chart of coordinates) in the
form

α = αi dxi. (1.51)

Exercise 1.26 Show that α is a differentiable covector field if and only if the func-
tions αi are differentiable.

Exercise 1.27 Let (x1, x2, . . . , xn) and (x′1, x′2, . . . , x′n) be two coordinate sys-
tems. Show that if α = αi dxi and α = α′

j dx′j , then

α′
j = αi

∂xi

∂x′j

in the common domain of α and the two systems of coordinates (cf. Exercise 1.20).
(This relation is taken as the definition of a covariant vector field in the tensor for-
malism.)
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The local expression of the differential of a function f ∈ C∞(M) is, according to
(1.50), df = [df ((∂/∂xi))]dxi ; but, by virtue of (1.45), df ((∂/∂xi)) = (∂/∂xi)f ,
so that

df = ∂f

∂xi
dxi, (1.52)

which agrees with the expression for the total differential of a function of several
variables, as defined in textbooks on the calculus of several variables.

Example 1.28 The linear differential forms and the differential forms of degree
greater than 1, defined in Chap. 3, correspond to the integrands of the line inte-
grals, surface integrals, and so on, encountered in various areas of mathematics and
physics [see, e.g., Guillemin and Pollack (1974), do Carmo (1994), Lee (2002)]. If
C : [a, b] �→ M is a differentiable curve in M (that is, C is the restriction to [a, b] of
a differentiable map of an open subset of R containing [a, b] to M) and α is a linear
differential form on M , then the line integral of α on C is defined by

∫

C

α ≡
∫ b

a

αC(t)

(
C′(t)

)
dt, (1.53)

where the integral on the right-hand side is the Riemann integral of the real-valued
function t �→ αC(t)(C

′(t)). As is well known, the value of
∫
C

α depends on C only
through its image and the direction in which these points are traversed.

If α is the differential of a function f , according to the definitions (1.53), (1.41),
and (1.9) we have

∫

C

df =
∫ b

a

dfC(t)

(
C′(t)

)
dt =

∫ b

a

C′
t [f ]dt =

∫ b

a

d

dt
(C∗f )dt

= f
(
C(b)

)− f
(
C(a)

)
.

Hence, if C is a closed curve [that is, C(a) = C(b)],
∫

C

df = 0.

For instance, if M ≡ R
2 \ {(0,0)}, recalling that

(
dxi

)
C(t)

(C′
t ) = C′

t

[
xi
]= d

dt

(
xi ◦ C

)

[see (1.41) and (1.9)], the line integral of the 1-form

α = x dy − y dx

x2 + y2

on the closed curve C : [0,2π] → M , defined by C(t) = (cos t, sin t), has the value

∫

C

α =
∫ 2π

0

cos t cos t + sin t sin t

cos2 t + sin2 t
dt = 2π,
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which is different from zero and, therefore, α is not the differential of some function
defined on M [see also Guillemin and Pollack (1974), do Carmo (1994)].

Tensor Fields A tensor of type ( 0
k) (or covariant tensor of rank k) at p is a multi-

linear map tp : TpM ×· · ·×TpM (k times) → R. A tensor of type ( 0
1) is a covector.

The set of tensors of type ( 0
k) at p is a real vector space if for any pair of tensors of

type ( 0
k) at p, tp and sp , we define

(atp + bsp)(v1, . . . , vk) ≡ atp(v1, . . . , vk) + bsp(v1, . . . , vk), (1.54)

for v1, . . . , vk ∈ TpM and a, b ∈ R.
If tp is a tensor of type ( 0

k) at p and sp is a tensor of type ( 0
l ) at p, the tensor

product tp ⊗ sp is defined by

(tp ⊗ sp)(v1, . . . , vk+l ) ≡ tp(v1, . . . , vk) sp(vk+1, . . . , vk+l ), (1.55)

for v1, . . . , vk+l ∈ TpM . Then tp ⊗ sp is a tensor of type ( 0
k+l ) at p.

Exercise 1.29 Show that

(at1p + bt2p) ⊗ sp = at1p ⊗ sp + bt2p ⊗ sp,

tp ⊗ (as1p + bs2p) = atp ⊗ s1p + btp ⊗ s2p,

(rp ⊗ sp) ⊗ tp = rp ⊗ (sp ⊗ tp).

If tp is a tensor of type ( 0
k) at p and v1, . . . , vk ∈ TpM , making use of the multi-

linearity of tp , of the definition of the tensor product, and expressing the vectors vi

in the form vi = vi[xj ](∂/∂xj )p = dx
j
p(vi)(∂/∂xj )p (i = 1,2, . . . , k), according to

the definition (1.55) we have

tp(v1, . . . , vk) = tp

(
dxi

p(v1)

(
∂

∂xi

)

p

, . . . ,dxm
p (vk)

(
∂

∂xm

)

p

)

= dxi
p(v1) · · ·dxm

p (vk) tp

((
∂

∂xi

)

p

, . . . ,

(
∂

∂xm

)

p

)

=
[
tp

((
∂

∂xi

)

p

, . . . ,

(
∂

∂xm

)

p

)
dxi

p ⊗ · · · ⊗ dxm
p

]
(v1, . . . , vk);

therefore,

tp = tp

((
∂

∂xi

)

p

,

(
∂

∂xj

)

p

, . . . ,

(
∂

∂xm

)

p

)
dxi

p ⊗ dx
j
p ⊗ · · · ⊗ dxm

p . (1.56)

A tensor field of type ( 0
k) (or covariant tensor field of rank k), t , on M is a map

that associates with each point p ∈ M a tensor of type ( 0
k), t (p) or tp , at p. If t
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is tensor field of type ( 0
k) and X1, . . . ,Xk are k vector fields on M , t (X1, . . . ,Xk)

is the real-valued function given by [t (X1, . . . ,Xk)](p) ≡ tp(X1(p), . . . ,Xk(p)).
We say that t is differentiable if t (X1, . . . ,Xk) is a differentiable function for all
X1, . . . ,Xk ∈ X(M).

Exercise 1.30 Show that t is differentiable if and only if the functions tij ...m ≡
t (∂/∂xi, ∂/∂xj , . . . , ∂/∂xm) (the components of t with respect to the basis induced
by the coordinates xi ) are differentiable.

The sum, the product by scalars, the product by real-valued functions, and the
tensor product of tensor fields are defined pointwise:

(at + bs)p ≡ atp + bsp,

(f t)p ≡ f (p)tp,

(t ⊗ s)p ≡ tp ⊗ sp,

for a, b ∈ R, s, t tensor fields on M , and f : M → R. Using these operations, any
tensor field of type ( 0

k) has the local expression

t = t

((
∂

∂xi

)
,

(
∂

∂xj

)
, . . . ,

(
∂

∂xm

))
dxi ⊗ dxj ⊗ · · · ⊗ dxm. (1.57)

If t is a tensor field of type ( 0
k) on M and X1, . . . ,Xk are k vector fields on M ,

owing to the linearity of tp in each of its arguments, for any function f : M → R,
[
t (X1, . . . , f Xi , . . . ,Xk)

]
(p) = tp

(
X1(p), . . . , (f Xi )(p), . . . ,Xk(p)

)

= tp
(
X1(p), . . . , f (p)Xi (p), . . . ,Xk(p)

)

= f (p)tp
(
X1(p), . . . ,Xi (p), . . . ,Xk(p)

)

= f (p)
[
t (X1, . . . ,Xi , . . . ,Xk)

]
(p),

for p ∈ M , that is,

t (X1, . . . , f Xi , . . . ,Xk) = f t (X1, . . . ,Xi , . . . ,Xk), 1 ≤ i ≤ k.

Similarly, we conclude that

t (X1, . . . ,X1 + X′
i , . . . ,Xk) = t (X1, . . . ,Xi , . . . ,Xk) + t (X1, . . . ,X′

i , . . . ,Xk).

Note that, for instance, the Lie bracket is not a tensor since [X, f Y] = f [X,Y]+
(Xf )Y (see Exercise 1.22).

Conversely, if t is a map that to each set of k vector fields on M associates a
function of M in R with the property that for any pair of functions f,g : M →R,

t (X1, . . . , f Xi + gX′
i , . . . ,Xk)

= f t (X1, . . . ,Xi , . . . ,Xk) + gt (X1, . . . ,X′
i , . . . ,Xk),
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1 ≤ i ≤ k, then t is a tensor field of type ( 0
k). In effect, the property for t as-

sumed ensures that, locally, t is of the form t = t ((∂/∂xi), . . . , (∂/∂xm))dxi ⊗
· · · ⊗ dxm, since if X1, . . . ,Xk are vector fields on M , writing them in the form
Xi = dxj (Xi )(∂/∂xj ), i = 1, . . . , k, we have

t (X1, . . . ,Xk) = t

(
dxi(X1)

(
∂

∂xi

)
, . . . ,dxm(Xk)

(
∂

∂xm

))

= dxi(X1) · · ·dxm(Xk) t

((
∂

∂xi

)
, . . . ,

(
∂

∂xm

))

=
[
t

((
∂

∂xi

)
, . . . ,

(
∂

∂xm

))
dxi ⊗ · · · ⊗ dxm

]
(X1, . . . ,Xk).

A tensor of type ( k
0) (or contravariant tensor of rank k) at p is a multilinear

mapping tp : T ∗
p M × · · · × T ∗

p M (k times) → R. The set of tensors of type ( k
0) at

p forms a vector space defining the sum and the multiplication by real scalars in
an analogous manner to the operations for tensors of type ( 0

k). Similarly, if tp is a
tensor of type ( k

0) at p and sp is a tensor of type ( l
0) at p, the tensor product tp ⊗ sp ,

given by

(tp ⊗ sp)(α1, . . . , αk+l ) ≡ tp(α1, . . . , αk) sp(αk+1, . . . , αk+l ),

for α1, . . . , αk+l ∈ T ∗
p M , is a tensor of type ( k+l

0 ) at p.

If tp is a tensor of type ( k
0) at p and α1, . . . , αk ∈ T ∗

p M , expressing each covector

αi in the form αi = αi((∂/∂xj )p)dx
j
p [see (1.49)], we have

tp(α1, . . . , αk) = tp

(
α1

((
∂

∂xi

)

p

)
dxi

p, . . . , αk

((
∂

∂xm

)

p

)
dxm

p

)

= α1

((
∂

∂xi

)

p

)
· · ·αk

((
∂

∂xm

)

p

)
tp(dxi

p, . . . ,dxm
p ).

Defining vp(αp) ≡ αp(vp) for vp ∈ TpM and αp ∈ T ∗
p M (which amounts to the

identification of TpM with the dual space of T ∗
p M), we have

tp(α1, . . . , αk) =
[
tp
(
dxi

p, . . . ,dxm
p

)( ∂

∂xi

)

p

⊗ · · · ⊗
(

∂

∂xm

)

p

]
(α1, . . . , αk),

and therefore

tp = tp
(
dxi

p, . . . ,dxm
p

)( ∂

∂xi

)

p

⊗ · · · ⊗
(

∂

∂xm

)

p

.

A tensor field of type ( k
0) (or contravariant tensor field of rank k), t , on M is

a map that associates to each point p ∈ M a tensor of type ( k
0), t (p) or tp , at p.
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The tensor field t is differentiable if for any k 1-forms, α1, . . . , αk , the function
t (α1, . . . , αk), defined by [t (α1, . . . , αk)](p) ≡ tp(α1(p), . . . , αk(p)), is differen-
tiable. Any tensor field of type ( k

0) on M is expressed locally as

t = t
(
dxi, . . . ,dxm

)( ∂

∂xi

)
⊗ · · · ⊗

(
∂

∂xm

)
.

Again, it turns out that t is differentiable if and only if the functions t i...m ≡
t (dxi, . . . ,dxm) are differentiable. Furthermore, any map t that to each set of k

covector fields associates a function from M into R is a tensor field of type ( k
0) if

and only if for α1, . . . , αi, α
′
i , . . . , αk , covector fields on M ,

t (α1, . . . , f αi + gα′
i , . . . , αk) = f t (α1, . . . , αi, . . . , αk) + g t (α1, . . . , α

′
i , . . . , αk),

for f,g : M → R.
A mixed tensor of type ( k

l ) at p, is a multilinear map from the Cartesian product
of k copies of T ∗

p M and l copies of TpM in R. The tensors of type ( k
l ) at p form

a real vector space where the sum and the product by real scalars are defined in the
natural way. The tensor product of a tensor of type ( k

l ) by a tensor of type ( k′
l′ ) is a

tensor of type ( k+k′
l+l′ ). A basis for the vector space of the tensors of type ( k

l ) at p is
formed by the tensor products of k vectors (∂/∂xi)p and l covectors dxi

p; therefore,
this space has dimension nk+l .

A tensor field of type ( k
l ) on M is a map that to each point p ∈ M associates

a tensor of type ( k
l ) at p; a tensor field of type ( 0

0) on M is a function of M

in R. A tensor field, t , of type ( k
l ) is differentiable if for X1, . . . ,Xl ∈ X(M) and

α1, . . . , αk ∈ Λ1(M), the function of M into R that to each point p ∈ M associates
the value of tp on X1(p), . . . ,Xl(p),α1(p), . . . , αk(p) (taken in an appropriate or-
der) is differentiable.

The sum, the product by scalars, the product by real-valued functions, and the
tensor product of mixed tensor fields are defined pointwise:

(at + bs)p ≡ atp + bsp (when t and s are of the same type)

(f t)p ≡ f (p)tp,

(t ⊗ s)p ≡ tp ⊗ sp,

for a, b ∈ R, f : M → R, and t, s mixed tensor fields on M . The set of differen-
tiable tensor fields of type ( k

l ) on M , denoted by T k
l (M), is a module over the ring

C∞(M).



Chapter 2
Lie Derivatives

In this chapter several additional useful concepts are introduced, which will be ex-
tensively employed in the second half of this book. It is shown that there is a one-to-
one relation between vector fields on a manifold and families of transformations of
the manifold onto itself. This relation is essential in the study of various symmetries,
as shown in Chaps. 4, 6, and 8, and in the relationship of a Lie group with its Lie
algebra, treated in Chap. 7.

2.1 One-Parameter Groups of Transformations and Flows

Definition 2.1 Let M be a differentiable manifold. A one-parameter group of
transformations, ϕ, on M , is a differentiable map from M × R onto M such that
ϕ(x,0) = x and ϕ(ϕ(x, t), s) = ϕ(x, t + s) for all x ∈ M , t, s ∈R.

If we define ϕt (x) ≡ ϕ(x, t), then, for each t ∈R, ϕt is a differentiable map from
M onto M and ϕt+s(x) = ϕ(x, t + s) = ϕ(ϕ(x, t), s) = ϕ(ϕt (x), s) = ϕs(ϕt (x)) =
(ϕs ◦ ϕt )(x), that is,

ϕt+s = ϕs ◦ ϕt = ϕt ◦ ϕs

(since t + s = s + t). ϕ0 is the identity map of M since ϕ0(x) = ϕ(x,0) = x for all
x ∈ M . We have then ϕt ◦ ϕ−t = ϕ−t ◦ ϕt = ϕ0, which means that each map ϕt has
an inverse, ϕ−t , which is also differentiable. Therefore, each ϕt is a diffeomorphism
of M onto itself. Thus, the set of transformations {ϕt | t ∈R} is an Abelian group of
diffeomorphisms of M onto M , and the map t �→ ϕt is a homomorphism from the
additive group of the real numbers into the group of diffeomorphisms of M .

Each one-parameter group of transformations ϕ on M determines a family of
curves in M (the orbits of the group). The map ϕx : R → M given by ϕx(t) =
ϕ(x, t) is a differentiable curve in M for each x ∈ M . Since ϕx(0) = ϕ(x,0) = x, the
tangent vector to the curve ϕx at t = 0 belongs to TxM . The infinitesimal generator
of ϕ is the vector field X such that Xx = (ϕx)

′
0. In other words, the infinitesimal
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generator of ϕ is a vector field tangent to the curves generated by the one-parameter
group of transformations.

Example 2.2 Let M = {(x, y) ∈R
2 |x > 0} and let ϕ : M ×R → M be given by

ϕ
(
(x0, y0), t

)= (2x0,2y0 cos t + (1 − x0
2 − y0

2) sin t)

1 + x0
2 + y0

2 + (1 − x0
2 − y0

2) cos t − 2y0 sin t
. (2.1)

The map (2.1) is differentiable because it is the composition of differentiable func-
tions and the denominator does not vanish for x0 �= 0 (it can be verified that the de-
nominator in (2.1) is equal to 2[(x0 sin(t/2))2 +(y0 sin(t/2)−cos(t/2))2]). Further-
more, ϕ((x0, y0), t) ∈ M for any (x0, y0) ∈ M , t ∈ R, and ϕ((x0, y0),0) = (x0, y0).
Finally, a direct but lengthy computation shows that (2.1) satisfies the relation
ϕ(ϕ((x0, y0), t), s) = ϕ((x0, y0), t + s), and therefore we have a one-parameter
group of transformations on M .

For (x0, y0) ∈ M fixed, ϕ(x0,y0)(t) ≡ ϕ((x0, y0), t) is a differentiable curve in M

whose tangent vector at t = 0 can be obtained using (1.20), that is,

(ϕ(x0,y0))
′
0 = d

dt
(x ◦ ϕ(x0,y0))

∣∣∣∣
t=0

(
∂

∂x

)

(x0,y0)

+ d

dt
(y ◦ ϕ(x0,y0))

∣∣∣∣
t=0

(
∂

∂y

)

(x0,y0)

with

(x ◦ ϕ(x0,y0))(t) = 2x0

1 + x0
2 + y0

2 + (1 − x0
2 − y0

2) cos t − 2y0 sin t
,

(y ◦ ϕ(x0,y0))(t) = 2y0 cos t + (1 − x0
2 − y0

2) sin t

1 + x0
2 + y0

2 + (1 − x0
2 − y0

2) cos t − 2y0 sin t

(2.2)

[see (2.1)]. Calculating the derivatives of the expressions (2.2) with respect to t at
t = 0, one finds that the infinitesimal generator of the one-parameter group (2.1), X,
is given by

X(x0,y0) ≡ (ϕ(x0,y0))
′
0 = x0y0

(
∂

∂x

)

(x0,y0)

+ 1 − x0
2 + y0

2

2

(
∂

∂y

)

(x0,y0)

=
(

xy
∂

∂x
+ 1 − x2 + y2

2

∂

∂y

)

(x0,y0)

[see (1.32)]; thus,

X = xy
∂

∂x
+ 1 − x2 + y2

2

∂

∂y
. (2.3)

The (images of the) curves defined by the one-parameter group (2.1), to which
X is tangent, are circle arcs. In order to simplify the notation, we shall write x and
y in place of x ◦ ϕ(x0,y0) and y ◦ ϕ(x0,y0), respectively; then, from (2.2), eliminating
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the parameter t , we see that

(
x − 1 + x0

2 + y0
2

2x0

)2

+ y2 =
(

1 + x0
2 + y0

2

2x0

)2

− 1,

which is the equation of a circle centered at a point of the x axis.

Exercise 2.3 Show that the following families of maps ϕt : R2 → R
2 form one-

parameter groups of transformations and find their infinitesimal generators:

(a) ϕt (x, y) = (x cos t − y sin t, x sin t + y cos t).
(b) ϕt (x, y) = (x + at, y + bt), with a, b ∈ R.
(c) ϕt (x, y) = (eat x, ebt y), with a, b ∈R.

Exercise 2.4 Let ϕ be a one-parameter group of transformations on M and let
X be its infinitesimal generator. Show that if y = ϕx(t0), for some t0 ∈ R, then
(ϕx)

′
t0

= (ϕy)
′
0 and, therefore, (ϕx)

′
t0

= Xϕx(t0).

Given a differentiable vector field, X, on M , there does not always exist a one-
parameter group of transformations whose infinitesimal generator is X; it is said that
X is complete if such a one-parameter group of transformations exists.

Integral Curves of a Vector Field

Definition 2.5 Let X be a vector field on M . A curve C : I → M is an integral
curve of X if C′

t = XC(t), for t ∈ I . If C(0) = x we say that C starts at x. (Accord-
ing to Exercise 2.4, if ϕ is a one-parameter group of transformations and X is its
infinitesimal generator, then the curve ϕx is an integral curve of X that starts at x.)

If (x1, x2, . . . , xn) is a local coordinate system on M and X is expressed in the
form X = Xi(∂/∂xi), the condition that C be an integral curve of X amounts to the
system of ordinary differential equations (ODEs) [see (1.20)]

d(xi ◦ C)

dt
= Xi ◦ C. (2.4)

More explicitly, writing the right-hand side of the previous equation in the form
(
Xi ◦ C

)
(t) = (

Xi ◦ φ−1)(φ
(
C(t)

))

= (
Xi ◦ φ−1)(x1(C(t)

)
, x2(C(t)

)
, . . . , xn

(
C(t)

))

= (
Xi ◦ φ−1)((x1 ◦ C

)
(t),

(
x2 ◦ C

)
(t), . . . ,

(
xn ◦ C

)
(t)
)
,

one finds that equations (2.4) correspond to the (autonomous) system of equations

d(xi ◦ C)

dt
= (

Xi ◦ φ−1)(x1 ◦ C,x2 ◦ C, . . . , xn ◦ C
)

(2.5)
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for the n functions xi ◦ C of R to R. (Note that each composition Xi ◦ φ−1 is a
real-valued function defined in some subset of Rn.) According to the fundamental
theorem for systems of ODEs, given x ∈ M , there exists a unique integral curve of
X, C, starting at x. (That is, if D is another integral curve of X starting at x, then
D = C in the intersection of their domains.)

Let C be an integral curve of X starting at x, and let ϕ(x, t) ≡ C(t). The curve
D defined by D(t) ≡ C(t + s), with s fixed, is an integral curve of X, since for an
arbitrary function f ∈ C∞(M)

D′
t [f ] = lim

h→0

f (D(t + h)) − f (D(t))

h

= lim
h→0

f (C(t + h + s)) − f (C(t + s))

h

= C′
t+s[f ] = XC(t+s)[f ] = XD(t)[f ].

The curve D starts at D(0) = C(s) and by virtue of the uniqueness of the integral
curves, we have

D(t) = ϕ
(
C(s), t

)= ϕ
(
ϕ(x, s), t

)
.

On the other hand, from the definition of D,

D(t) = C(t + s) = ϕ(x, t + s);
therefore,

ϕ
(
ϕ(x, s), t

)= ϕ(x, t + s) (2.6)

(cf. Definition 2.1).
In some cases ϕ is not defined for all t ∈ R, and for that reason it is not a one-

parameter group of transformations. However, for each x ∈ M there exist a neigh-
borhood, U of x and an ε > 0 such that ϕ is defined on U × (−ε, ε) and is differen-
tiable. The map ϕ is called a flow or local one-parameter group of transformations
and X is its infinitesimal generator.

If X is the infinitesimal generator of a one-parameter group of transformations or
a flow, the transformations ϕt are also denoted by exp tX. Then, the relation (2.6) is
expressed as exp tX ◦ exp sX = exp(t + s)X.

Example 2.6 Let M = R with the usual coordinate system, x = id. The integral
curves of the vector field X = x2 ∂/∂x are determined by the single differential
equation [see (2.4)]

d(x ◦ C)

dt
= x2 ◦ C = (x ◦ C)2 (2.7)

[the previous equality follows from (1.7), which gives x2(p) = (x(p))2; hence,
(x2 ◦ C)(t) = x2(C(t)) = [x(C(t))]2 = ((x ◦ C)(t))2 = (x ◦ C)2(t)]. The solution
of (2.7) is (x ◦ C)(t) = −1/(t + a), where a is a constant or, simply, since
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x = id, C(t) = −1/(t + a). If the integral curve of X starts at x0, then C(0) =
−1/a = x0, i.e., a = −1/x0. Since ϕx0 is the integral curve of X starting at x0 (see
Definition 2.5), we have

ϕx0(t) = − 1

t − 1/x0
= x0

1 − x0t
,

and therefore

ϕ(x0, t) = x0

1 − x0t
(2.8)

is the local one-parameter group generated by x2 ∂/∂x.
The expression (2.8) is not defined for t = 1/x0, and therefore we are not dealing

with a one-parameter group of transformations, despite the fact that X is differen-
tiable. However, the flow (2.8) satisfies the relation (2.6), since, according to (2.8),

ϕ
(
ϕ(x0, s), t

) = ϕ(x0, s)

1 − ϕ(x0, s)t
= x0/(1 − x0s)

1 − tx0/(1 − x0s)
= x0

1 − x0(t + s)

= ϕ(x0, t + s),

whenever all the expressions involved are defined.

Example 2.7 Let M = R
2 and let X = y ∂/∂x + x ∂/∂y, where (x, y) are the usual

coordinates of R2. Equations (2.4) are in this case

d(x ◦ C)

dt
= y ◦ C,

d(y ◦ C)

dt
= x ◦ C.

By adding and subtracting these equations we obtain

d(x ◦ C + y ◦ C)

dt
= x ◦ C + y ◦ C,

d(x ◦ C − y ◦ C)

dt
= −(x ◦ C − y ◦ C),

whose solutions are (x ◦ C + y ◦ C)(t) = (x0 + y0) et and (x ◦ C − y ◦ C)(t) =
(x0 − y0) e−t , where x0 and y0 are the initial values of x ◦C and y ◦C, respectively.
Hence, (x ◦ C)(t) = x0 cosh t + y0 sinh t , (y ◦ C)(t) = x0 sinh t + y0 cosh t , and

ϕ(x0,y0)(t) = (x0 cosh t + y0 sinh t, x0 sinh t + y0 cosh t). (2.9)

Since (x ◦ C)2 − (y ◦ C)2 = x0
2 − y0

2, the (images of the) integral curves of X
are hyperbolas or straight lines. The expression (2.9) is defined for all t ∈ R, and
therefore it corresponds to a one-parameter group of transformations. Substituting
(2.9) into (2.6) one finds the well-known addition formulas

cosh(t + s) = cosh t cosh s + sinh t sinh s,

sinh(t + s) = sinh t cosh s + cosh t sinh s.



34 2 Lie Derivatives

Exercise 2.8 Let ψ : M1 → M2 be a differentiable map and let ϕ1 and ϕ2 be one-
parameter groups of transformations or flows on M1 and M2, respectively. Show that
if ϕ2t ◦ ψ = ψ ◦ ϕ1t , then the infinitesimal generators of ϕ1 and ϕ2 are ψ -related,
i.e., show that ψ∗xXx = Yψ(x), where X and Y are the infinitesimal generators of
ϕ1 and ϕ2, respectively.

Example 2.9 An integration procedure distinct from that employed in the preced-
ing examples is illustrated by considering the vector field X = 1

2 (x2 − y2) ∂/∂x +
xy ∂/∂y on M ≡ {(x, y) ∈ R

2 |y > 0}. (The one-parameter group generated by this
vector field is also found, by another method, in Example 6.12.) The system of
equations (2.4) is

dx

dt
= 1

2

(
x2 − y2),

dy

dt
= xy, (2.10)

where, in order to simplify the notation, we have written x and y in place of x ◦ C

and y ◦ C, respectively. Eliminating the variable t from these equations (with the
aid of the chain rule) we obtain the ODE dy/dx = 2xy/(x2 − y2). Noting that the
right-hand side of the last equation is the quotient of two homogeneous functions
of the same degree, it is convenient to introduce u ≡ y/x, so that du/dx = u(1 +
u2)/[x(1 − u2)], which by the standard procedures leads to

dx

x
= (1 − u2)du

u(1 + u2)
=
(

1

u
− 2u

1 + u2

)
du,

whose solution is given by x = cu/(1 + u2) = cy/[x(1 + y2/x2)], where c is some
constant. Hence x2 + y2 = cy, which corresponds to the circle centered at (0, c/2)

and radius c/2.
In order to obtain the parametrization of these curves, one can substitute x =

±√cy − y2 into the second of equations (2.10), which yields dy/dt = ±y
√

cy − y2,
or, putting v = 1/y, dv/dt = ∓√

cv − 1; hence 2
√

cv − 1 = ∓c(t − t0), where t0 is
a constant. Thus, from the foregoing relations we find that

y = 4c

4 + c2(t − t0)2
, x = − 2c2(t − t0)

4 + c2(t − t0)2
. (2.11)

For the integral curve of X starting at (x0, y0), from (2.11) we have y0 = 4c/(4 +
c2t0

2) and x0 = 2c2t0/(4 + c2t0
2), which imply that

c = x0
2 + y0

2

y0
, t0 = 2x0

x0
2 + y0

2

and, substituting these expressions into (2.11), we obtain

ϕ
(
(x0, y0), t

) = 2(x0
2 + y0

2)(2x0 − (x0
2 + y0

2)t,2y0)

[(x0
2 + y0

2)t − 2x0]2 + 4y0
2
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= (x0 − (x0
2 + y0

2)t/2, y0)

(1 − x0t/2)2 + y0
2(t/2)2

. (2.12)

From (2.12) we see that the integral curves of X are defined for all t ∈R, and there-
fore X is complete and (2.12) corresponds to a one-parameter group of transforma-
tions. Further examples are given in Examples 4.1, 6.11, 6.12, 6.20, 7.40, and 7.41.

Exercise 2.10 Find the integral curves of the vector field X = 1
x2+y2 (x ∂

∂x
− y ∂

∂y
)

on R
2 \ {(0,0)} and the one-parameter group of diffeomorphisms generated by X.

From equations (2.10) one notices that if one looks for the integral curves of f X,
where f is some real-valued differentiable function, on eliminating the variable t

the function f disappears and one obtains the same equation for dy/dx as obtained
in the preceding example. Therefore, the same circles are obtained. For any vec-
tor field X, the integral curves of X and f X, with f ∈ C∞(M), only differ in the
parametrization. If ϕt denotes the flow or one-parameter group generated by X and
σ is a function of some open subset of R in the domain of the curve ϕx , then the
tangent vector to the curve ψx ≡ ϕx ◦ σ satisfies, for g ∈ C∞(M),

(ψx)
′
t0
[g] = d

dt
g
(
ψx(t)

)∣∣∣
t=t0

= d

dt

(
(g ◦ ϕx) ◦ σ

)
(t)

∣
∣∣
t=t0

= d

dt
(g ◦ ϕx)

∣∣∣
σ(t0)

dσ

dt

∣∣∣∣
t0

= (ϕx)
′
σ(t0)

[g]dσ

dt

∣∣∣∣
t0

= dσ

dt

∣∣∣∣
t0

Xϕx(σ (t0))[g], (2.13)

where we have made use of the chain rule for functions from R into R and of the
result of Exercise 2.4. The expression (2.13) coincides with (f X)ϕ(σ (t0))[g] if we
choose σ in such a way that

dσ

dt
= f

(
ϕx

(
σ(t)

))
. (2.14)

Hence, if additionally we impose the condition σ(0) = 0, the curve ψx = ϕx ◦ σ is
an integral curve of f X starting at x.

Example 2.11 The integral curves of f X, where X is the vector field considered
in Example 2.9 and f is any function belonging to C∞(M), can be obtained by
solving equation (2.14) with ϕx given by (2.12), i.e.,

dσ

dt
= f

(
(x0

2 + y0
2)[4x0 − 2(x0

2 + y0
2)σ (t)]

[(x0
2 + y0

2)σ (t) − 2x0]2 + 4y0
2

,

4y0(x0
2 + y0

2)

[(x0
2 + y0

2)σ (t) − 2x0]2 + 4y0
2

)
. (2.15)
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If we take, for example, f (x, y) = y−1, equation (2.15) becomes

dσ

dt
= [(x0

2 + y0
2)σ (t) − 2x0]2 + 4y0

2

4y0(x0
2 + y0

2)

and with the change of variable (x0
2 + y0

2)σ (t) − 2x0 = 2y0 tanu we have
du/dt = 1/2. Hence u = (t − t0)/2, where t0 is some constant and

σ(t) = 2x0 + 2y0 tan 1
2 (t − t0)

x0
2 + y0

2
. (2.16)

The condition σ(0) = 0 amounts to 0 = x0 − y0 tan 1
2 t0, which, substituted into

(2.16), yields

σ(t) = 2 tan 1
2 t

y0 + x0 tan 1
2 t

= 2 sin 1
2 t

x0 sin 1
2 t + y0 cos 1

2 t
. (2.17)

Thus, the flow generated by f X = y−1[ 1
2 (x2 − y2) ∂/∂x + xy ∂/∂y] is given by

ψ((x0, y0), t) = ϕ((x0, y0), σ (t)), where ϕ is the one-parameter group generated
by X, given by (2.12), and σ is the function (2.17), i.e.,

ψ
(
(x0, y0), t

)

= 1

2y0

(
0, x0

2 + y0
2)

+ 1

2y0

(
2x0y0 cos t − (

y0
2 − x0

2) sin t,
(
y0

2 − x0
2) cos t + 2x0y0 sin t

)

(2.18)

[cf. (2.12)]. Even though the expression (2.18) is defined for all t ∈R, the variable t

has to be restricted to some open interval of length 2π where ψ((x0, y0), t) �= (0,0),
taking into account that the manifold being considered is M = {(x, y) ∈ R

2 |y > 0}.
It may be noticed that f X is differentiable on M because y does not vanish there.
Whereas X is complete, f X is not. The expression (2.18) shows that the images of
the integral curves of f X (and of X) are arcs of circles.

Second-Order ODEs A vector field X on the tangent bundle TM such that, for
v ∈ TM,

π∗vXv = v, (2.19)

where π is the canonical projection of TM on M , corresponds to a system of second-
order ODEs. (Equation (2.19) makes sense because v is a tangent vector to M at
π(v), that is, v ∈ Tπ(v)M , and π∗v applies Tv(TM) into Tπ(v)M .) In effect, using the
local expression X = Ai ∂/∂qi + Bi ∂/∂q̇i as well as (1.29) and (1.27), the relation
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(2.19) amounts to

Ai(v)

(
∂

∂xi

)

π(v)

= q̇i (v)

(
∂

∂xi

)

π(v)

,

that is, Ai = q̇i . Hence, any vector field on TM satisfying (2.19) locally is of the
form

X = q̇i ∂

∂qi
+ Bi ∂

∂q̇i

in a coordinate system induced by a coordinate system on M (see Sect. 1.2), where
the Bi are n arbitrary real-valued functions defined on TM. The integral curves of
X are determined by the equations

dqi

dt
= q̇i ,

dq̇i

dt
= Bi,

which are equivalent to the system of n second-order ODEs

d2qi

dt2
= (

Bi ◦ φ
−1)

(
q1, . . . , qn,

dq1

dt
, . . . ,

dqn

dt

)
.

Exercise 2.12 Let ϕ(x, y, t) = (F1(x, y, t),F2(x, y, t)) be a one-parameter group
of transformations on R

2 [which, among other things, implies that F1 and F2 are dif-
ferentiable functions from R

3 into R such that F1(x, y,0) = x and F2(x, y,0) = y],
and let

F3(x, y, z, t) ≡ D1F2 + zD2F2

D1F1 + zD2F1
, (2.20)

where Di represents partial differentiation with respect to the ith argument. Show
that ϕ(1)(x, y, z, t) ≡ (F1(x, y, t),F2(x, y, t),F3(x, y, z, t)) is a (possibly local)
one-parameter group of transformations on R

3 (known as the extension or first pro-
longation of ϕ). Show that if ξ (∂/∂x)+η (∂/∂y) is the infinitesimal generator of ϕ,
then the infinitesimal generator of ϕ(1) is

ξ
∂

∂x
+ η

∂

∂y
+ [

ηx + z(ηy − ξx) − z2ξy

] ∂

∂z
, (2.21)

where the subscripts denote partial differentiation (e.g., ηx ≡ ∂η/∂x). [Strictly
speaking, in (2.21), in place of x, y, ξ , η, their pullbacks under the projection of
R

3 onto R
2 should appear.] The prolongation of a one-parameter group of diffeo-

morphisms is employed in the study of the symmetries of an ODE; see, e.g., Hydon
(2000).

Canonical Lift of a Vector Field A differentiable mapping ψ : M1 → M2 gives
rise to a differentiable mapping ψ : TM1 → TM2, defined by

ψ(vp) ≡ ψ∗p(vp), for vp ∈ Tp(M1).
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Since ψ∗p(vp) ∈ Tψ(p)M2, we see that π2 ◦ ψ = ψ ◦ π1, where π1 is the canonical
projection of TM1 on M1 and, similarly, π2 is the canonical projection of TM2
on M2. Making use of the chain rule (1.25), one can readily verify that if ψ1 : M1 →
M2 and ψ2 : M2 → M3 are two differentiable mappings, then (ψ2 ◦ ψ1) = ψ2 ◦ ψ1.
Hence, if {ϕt } is a one-parameter group of diffeomorphisms on a manifold M , the
mappings ϕt form a one-parameter group of diffeomorphisms on TM.

The local expression of the transformations ϕt is given by the functions ϕt
∗xi ,

where the xi form some coordinate system on M . Then, in terms of the coordinates
qi , q̇i induced on TM by the xi , the transformations ϕt are locally given by the
functions ϕt

∗qi and ϕt
∗q̇i . Since π ◦ ϕt = ϕt ◦ π and, by definition, qi = π∗xi , we

obtain

ϕt
∗qi = (ϕt

∗ ◦ π∗)xi = (π ◦ ϕt )
∗xi = (ϕt ◦ π)∗xi = π∗(ϕt

∗xi
)

and, making use of the definitions of ϕt and of the coordinates q̇i [see (1.27)], we
find that

(
ϕt

∗q̇i
)
(vp) = q̇i

(
ϕt (vp)

)= q̇i
(
ϕt∗p(vp)

)= (
ϕt∗p(vp)

)[
xi
]= vp

[
ϕt

∗xi
]

= q̇j (vp)

(
∂

∂xj

)

p

[
ϕt

∗xi
]=

[
q̇j π∗

(
∂(ϕt

∗xi)

∂xj

)]
(vp),

i.e.,

ϕt
∗q̇i = q̇j π∗

(
∂(ϕt

∗xi)

∂xj

)
.

Recalling that the infinitesimal generator, X, of ϕt , is given by X = Xi ∂/∂xi

with Xi = (d/dt)(ϕt
∗xi)|t=0, from the expressions obtained above we find that the

infinitesimal generator, X, of ϕt is locally given by

X = (
π∗Xi

) ∂

∂qi
+ q̇j π∗

(
∂Xi

∂xj

)
∂

∂q̇i
. (2.22)

The vector field X is called the canonical lift of X to TM.

Exercise 2.13 Find the one-parameter group of diffeomorphisms on the tangent
bundle TR

2 induced by the one-parameter group of diffeomorphisms on R
2 defined

by ϕt (x, y) = (eat x, ebt y), with a, b ∈ R. Show that its infinitesimal generator is

aq1 ∂

∂q1
+ bq2 ∂

∂q2
+ a

∂

∂q̇1
+ b

∂

∂q̇2
,

where the qi and q̇i are the coordinates on TR
2 induced by the Cartesian coordi-

nates x, y.

Exercise 2.14 Show that [X,Y] = [X,Y], for X,Y ∈ X(M).
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Exercise 2.15 A (time-independent) Lagrangian is a real-valued function defined
in TM. A differentiable curve C in M is a solution of the Euler–Lagrange equations
corresponding to the Lagrangian L if, locally,

d

dt

[
∂L

∂q̇i

(
C(t)

)]− ∂L

∂qi

(
C(t)

)= 0, i = 1,2, . . . , n,

where C is the curve in TM defined by C(t) = C′
t . The vector field X on M rep-

resents a symmetry of the Lagrangian L if XL = 0. Show that if X represents a
symmetry of L, then

Xi
(
C(t)

) ∂L

∂q̇i

(
C(t)

)

is a constant of motion, i.e., it does not depend on t . (Note that π(C(t)) = C(t),
hence qi(C(t)) = xi(C(t)), and that, according to (1.28) and (1.20), q̇i (C(t)) =
C′

t [xi] = d(xi ◦ C)/dt = d(qi(C(t)))/dt .)

2.2 Lie Derivative of Functions and Vector Fields

Let ϕ be a one-parameter group of transformations or a flow on M . As pointed
out above, the map ϕt : M → M , defined by ϕt (x) = ϕ(x, t), is a differentiable
mapping. For f ∈ C∞(M), ϕ∗

t f = f ◦ ϕt also belongs to C∞(M); the limit

limt→0
ϕ∗

t f −f

t
represents the rate of change of the function f under the family of

transformations ϕt .
If X is the infinitesimal generator of ϕ, the curve ϕx given by ϕx(t) = ϕ(x, t) is

the integral curve of X that starts at x; therefore
(

lim
t→0

ϕ∗
t f − f

t

)
(x) = lim

t→0

f (ϕt (x)) − f (x)

t

= lim
t→0

f (ϕ(x, t)) − f (x)

t

= lim
t→0

f (ϕx(t)) − f (ϕx(0))

t

= (ϕx)
′
0[f ] = Xx[f ]

= (Xf )(x),

which shows that, for any differentiable function, the limit limt→0
ϕ∗

t f −f

t
exists and

depends on ϕ only through its infinitesimal generator. This limit is called the Lie
derivative of f with respect to X and is denoted by £Xf . From the expression

£Xf = Xf (2.23)

one can derive the properties of the Lie derivative of functions.
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Exercise 2.16 Show that if X,Y ∈ X(M) and f ∈ C∞(M), then £X(£Yf ) −
£Y(£Xf ) = £[X,Y]f .

Let M and N be differentiable manifolds and let ψ : M → N be a diffeomor-
phism. If X is a vector field on N , then there exists a unique vector field Y on M

such that Y and X are ψ -related. Indeed, since ψ−1 ◦ ψ is the identity map of M ,
using the chain rule (1.25) we find that (ψ−1)∗ψ(x) is the inverse of ψ∗x and, there-
fore, the condition that Y and X be ψ -related (i.e., ψ∗xYx = Xψ(x)) has a unique
solution, given by

Yx = (
ψ−1)

∗ψ(x)
Xψ(x).

The vector field Y is, by definition, the pullback of X under ψ and will be denoted
by ψ∗X, that is,

(ψ∗X)x ≡ (
ψ−1)

∗ψ(x)
Xψ(x). (2.24)

Note that since ψ∗X and X are ψ -related,

(ψ∗X)(ψ∗f ) = ψ∗(Xf ), (2.25)

for f ∈ C∞(N) [see (1.40)].

Exercise 2.17 Show that ψ∗(f X) = (ψ∗f )(ψ∗X) and that ψ∗(aX + bY) =
aψ∗X + bψ∗Y for X,Y ∈X(N), f ∈ C∞(N), and a, b ∈R.

Exercise 2.18 Show that if ψ : M → N is a diffeomorphism and ϕ is a one-
parameter group of transformations on N whose infinitesimal generator is X, then
χt ≡ ψ−1 ◦ ϕt ◦ ψ is a one-parameter group of transformations on M whose in-
finitesimal generator is ψ∗X (cf. Exercise 2.8).

Exercise 2.19 Show that if ψ1 : M1 → M2 and ψ2 : M2 → M3 are diffeomor-
phisms, then (ψ2 ◦ ψ1)

∗X = (ψ1
∗ ◦ ψ2

∗)X, for X ∈X(M3).

Let ϕ be a one-parameter group of transformations or a flow on M and let X be

its infinitesimal generator. For any vector field Y on M , the limit limt→0
ϕ∗

t Y−Y
t

, if
it exists, is called the Lie derivative of Y with respect to X and is denoted by £XY.

Proposition 2.20 Let X,Y ∈ X(M); then the Lie derivative of Y with respect to X
exists and is equal to the Lie bracket of X and Y.

Proof Let f be an arbitrary differentiable function, then, using (2.25),

£X(Yf ) = lim
t→0

ϕ∗
t (Yf ) − Yf

t

= lim
t→0

(ϕ∗
t Y)(ϕ∗

t f ) − Yf

t
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= lim
t→0

[
(ϕ∗

t Y)
ϕ∗

t f − f

t
+ ϕ∗

t Y − Y
t

f

]

= Y(£Xf ) + (£XY)f, (2.26)

but £Xf = Xf ; therefore

X(Yf ) = £X(Yf ) = Y(Xf ) + (£XY)f,

hence

(£XY)f = X(Yf ) − Y(Xf ) = [X,Y]f,

which means that

£XY = [X,Y]. (2.27)
�

As in the case of the relation (2.23), the formula (2.27) allows us to readily obtain
the properties of the Lie derivative of vector fields. Furthermore, the relation (2.27)
allows us to give a geometrical meaning to the Lie bracket.

Exercise 2.21 Show that if X,Y ∈ X(M) and f ∈ C∞(M), then £X(f Y) =
f £XY + (£Xf )Y [cf. (2.26)]. Also show that £X(Y + Z) = £XY + £XZ. (Hint:
use (2.23), (2.27), and Exercise 1.22.)

Exercise 2.22 Show that if X,Y,Z ∈ X(M), then £X(£YZ) − £Y(£XZ) = £[X,Y]Z
(cf. Exercise 2.16).

Example 2.23 The Lie derivative frequently appears in connection with symmetries.
The vector field Y ∈X(M) is invariant under the one-parameter group of diffeomor-
phisms ϕt if £XY = 0, where X is the infinitesimal generator of ϕt . For instance, in
order to find all the vector fields on R

2 invariant under rotations about the origin,
it is convenient to employ polar coordinates (r, θ), so that, locally, X = ∂/∂θ . The
condition £XY = 0 amounts to

0 = [
(∂/∂θ),Y 1(∂/∂r) + Y 2(∂/∂θ)

]= ∂Y 1

∂θ

∂

∂r
+ ∂Y 2

∂θ

∂

∂θ
,

where Y 1, Y 2 are the components of Y with respect to the natural basis induced by
the coordinates (r, θ). Hence, Y is invariant under rotations about the origin if and
only if Y 1, Y 2 are functions of r only.

Exercise 2.24 Show that if ϕt and ψt are two one-parameter groups of diffeomor-
phisms on M that commute with each other, i.e., ϕtψs = ψsϕt for all t, s ∈ R, then
the Lie bracket of their infinitesimal generators is equal to zero (cf. Exercise 2.18).
(The converse is also true: two vector fields X, Y on M such that [X,Y] = 0 gener-
ate (local) one-parameter groups that commute.)
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2.3 Lie Derivative of 1-Forms and Tensor Fields

Let ψ : M → N be a differentiable map. If t is a tensor field of type ( 0
k) on N , the

pullback of t under ψ , ψ∗t , is the tensor field on M such that

(ψ∗t)p(up, . . . ,wp) ≡ tψ(p)(ψ∗pup, . . . ,ψ∗pwp), (2.28)

for up, . . . ,wp ∈ TpM , p ∈ M . Given that ψ∗p is a linear transformation, it can
readily be verified that effectively ψ∗t is a tensor field of type ( 0

k) on M .

Exercise 2.25 Let ψ : M → N be a differentiable map and let α be a linear differ-
ential form on N . Show that

∫

C

ψ∗α =
∫

ψ◦C
α,

for any differentiable curve C in M (see Example 1.28).

If f ∈ C∞(N), the differential of f , df , is a tensor field of type ( 0
1). Therefore,

from (2.28)

(ψ∗ df )p(vp) = dfψ(p)(ψ∗pvp),

for vp ∈ TpM . But from the definitions of df and of the Jacobian [see (1.41) and
(1.23)], we have

dfψ(p)(ψ∗pvp) = ψ∗pvp[f ] = vp[ψ∗f ] = d(ψ∗f )p(vp).

Thus

ψ∗ df = d(ψ∗f ). (2.29)

If t and s are tensor fields of type ( 0
k) on N and a, b ∈R, we have

(
ψ∗(at + bs)

)
p
(up, . . . ,wp)

= (at + bs)ψ(p)(ψ∗pup, . . . ,ψ∗pwp)

= (atψ(p) + bsψ(p))(ψ∗pup, . . . ,ψ∗pwp)

= atψ(p)(ψ∗pup, . . . ,ψ∗pwp) + bsψ(p)(ψ∗pup, . . . ,ψ∗pwp)

= a(ψ∗t)p(up, . . . ,wp) + b(ψ∗s)p(up, . . . ,wp)

= (aψ∗t + bψ∗s)p(up, . . . ,wp),

for up, . . . ,wp ∈ TpM , that is,

ψ∗(at + bs) = aψ∗t + bψ∗s. (2.30)
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Similarly, if f : N → R

(
ψ∗(f t)

)
p
(up, . . . ,wp) = (f t)ψ(p)(ψ∗pup, . . . ,ψ∗pwp)

= f
(
ψ(p)

)
tψ(p)(ψ∗pup, . . . ,ψ∗pwp)

= (ψ∗f )(p)(ψ∗t)p(up, . . . ,wp)

= (
(ψ∗f )(ψ∗t)

)
p
(up, . . . ,wp);

hence

ψ∗(f t) = (ψ∗f )(ψ∗t). (2.31)

Finally, if t and s are tensor fields of type ( 0
k) and ( 0

l ) on N , respectively, we
have

(
ψ∗(t ⊗ s)

)
p

= (t ⊗ s)ψ(p)(ψ∗pup, . . . ,ψ∗pwp)

= tψ(p)(ψ∗pup, . . .) sψ(p)(. . . ,ψ∗pwp)

= (ψ∗t)p(up, . . .)(ψ∗s)p(. . . ,wp)

= (
(ψ∗t) ⊗ (ψ∗s)

)
p
(up, . . . ,wp),

for up, . . . ,wp ∈ TpM , and therefore

ψ∗(t ⊗ s) = (ψ∗t) ⊗ (ψ∗s). (2.32)

Exercise 2.26 Let ψ1 : M1 → M2 and ψ2 : M2 → M3 be differentiable maps. Show
that (ψ2 ◦ ψ1)

∗t = (ψ1
∗ ◦ ψ2

∗)t , for t ∈ T 0
k (M3).

Thus, if t is a tensor field of type ( 0
k) on N , given locally by t = ti...j dyi ⊗ · · · ⊗

dyj , the pullback of t under ψ is given by

ψ∗t = ψ∗(ti...j dyi ⊗ · · · ⊗ dyj
)

= (ψ∗ti...j )
(
ψ∗ dyi

)⊗ · · · ⊗ (
ψ∗dyj

)

= (ψ∗ti...j )d
(
ψ∗yi

)⊗ · · · ⊗ d
(
ψ∗yj

)
.

But d(ψ∗yi) = (∂(ψ∗yi)/∂xl)dxl , where (x1, . . . , xn) is a coordinate system on
M ; hence

ψ∗t = (ψ∗ti...j )
∂(ψ∗yi)

∂xl
· · · ∂(ψ∗yj )

∂xm
dxl ⊗ · · · ⊗ dxm. (2.33)

This expression shows that ψ∗t is differentiable if t is.

Example 2.27 In the standard treatment of ODEs one encounters expressions of the
form P dx + Qdy = 0. The left-hand side of this equation can be regarded as a
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1-form on some manifold, M , with local coordinates (x, y) (assuming that the func-
tions P and Q are differentiable) and the equality to zero is to be understood con-
sidering curves, C : I → M , such that C∗(P dx +Qdy) = 0. (That is, P dx + Qdy

is not equal to zero as a covector field on M ; it is only its pullback under C that van-
ishes.) Then, for one of these curves, using the properties (2.29), (2.30), and (2.31),
we have

(P ◦ C)d(x ◦ C) + (Q ◦ C)d(y ◦ C) = 0. (2.34)

Since x ◦ C and y ◦ C (as well as P ◦ C and Q ◦ C) are functions from I to R,
we can write [see (1.52)]

d(x ◦ C) = d(x ◦ C)

dt
dt and d(y ◦ C) = d(y ◦ C)

dt
dt,

where t is the usual coordinate of R. Hence, from (2.34), we get the equivalent
expression

(P ◦ C)
d(x ◦ C)

dt
+ (Q ◦ C)

d(y ◦ C)

dt
= 0.

This equation alone does not determine the two functions x ◦ C and y ◦ C. If, for
instance, d(x ◦ C)/dt �= 0 in I (which holds if Q does not vanish), using the chain
rule (regarding x ◦ C as the independent variable instead of t), one finds that

d(y ◦ C)

d(x ◦ C)
= −P ◦ C

Q ◦ C
.

In this manner, writing x in place of x ◦ C and similarly for the other functions, one
obtains the first-order ODE

dy

dx
= −P(x, y)

Q(x, y)
, (2.35)

where it is assumed that y is a function of x. According to the existence and unique-
ness theorem for the solutions of the differential equations, through each point of
M there passes one of these curves. In this way, equation (2.35) corresponds to the
expression P dx + Qdy = 0.

Now we want to find one-parameter groups of diffeomorphisms, ϕs , on M such
that, when applied to a solution curve of the differential equation expressed in the
usual form, P dx +Qdy = 0, they yield another solution curve. More precisely, this
corresponds to finding the one-parameter groups of diffeomorphisms such that if
C∗α = 0, where α ≡ P dx + Qdy, then (ϕs ◦ C)∗α = 0, for all s ∈ R. The previous
equality amounts to C∗(ϕs

∗α) = 0 (see Exercise 2.26), which is equivalent to the
existence of a function χs ∈ C∞(M) (which may depend on s) such that ϕs

∗α =
χsα. A one-parameter group of diffeomorphisms, ϕs , such that ϕs

∗α = χsα is a
symmetry of the equation α = 0. (As shown in Sect. 4.3, knowing a symmetry of the
equation α = 0, or its infinitesimal generator, allows us to find the solution of the
differential equation.)
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Let ϕ be a one-parameter group of transformations or a flow on M with in-
finitesimal generator X, and let t be a tensor field of type ( 0

k) on M . If the limit

limh→0
ϕ∗

ht−t

h
exists, it is called the Lie derivative of t with respect to X and is de-

noted by £Xt . The properties of the Lie derivative of tensor fields of type ( 0
k) follow

from the properties of the pullback of tensor fields. That is, given two tensor fields
of type ( 0

k) on M , s, and t , it follows from (2.32) that

£X(t ⊗ s) = lim
h→0

ϕ∗
h(t ⊗ s) − t ⊗ s

h

= lim
h→0

(ϕ∗
ht) ⊗ (ϕ∗

hs) − t ⊗ s

h

= lim
h→0

[
(ϕ∗

ht) ⊗ ϕ∗
hs − s

h
+ ϕ∗

ht − t

h
⊗ s

]

= t ⊗ (£Xs) + (£Xt) ⊗ s. (2.36)

If t and s are of type ( 0
k) and a, b ∈ R, by (2.30) we have

£X(at + bs) = lim
h→0

ϕ∗
h(at + bs) − (at + bs)

h

= lim
h→0

aϕ∗
ht + bϕ∗

hs − at − bs

h

= a£Xt + b£Xs. (2.37)

For f ∈ C∞(M), using (2.31) we have

£X(f t) = lim
h→0

ϕ∗
h(f t) − f t

h

= lim
h→0

(ϕ∗
hf )(ϕ∗

ht) − f t

h

= lim
h→0

[
ϕ∗

hf
ϕ∗

ht − t

h
+ ϕ∗

hf − f

h
t

]

= f (£Xt) + (£Xf )t. (2.38)

Furthermore, by (2.29), the Lie derivative of df with respect to X is

£X df = lim
h→0

ϕ∗
h df − df

h

= lim
h→0

d(ϕ∗
hf ) − df

h

= d(£Xf ). (2.39)
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Using these properties of the Lie derivative we can find the components of the
Lie derivative of any tensor field of type ( 0

k). If t is given locally by t = ti...j dxi ⊗
· · · ⊗ dxj , we have

£Xt = £X
(
ti...j dxi ⊗ · · · ⊗ dxj

)

= (£Xti...j )dxi ⊗ · · · ⊗ dxj

+ ti...j
(
£X dxi ⊗ · · · ⊗ dxj + · · · + dxi ⊗ · · · ⊗ £X dxj

)

= (Xti...j )dxi ⊗ · · · ⊗ dxj

+ ti...j
[
d
(
£Xxi

)⊗ · · · ⊗ dxj + · · · + dxi ⊗ · · · ⊗ d
(
£Xxj

)]
.

Expressing X in the form X = Xl(∂/∂xl) and using (2.23) we find that

£Xxi = Xxi = Xl

(
∂

∂xl

)
xi = Xi;

hence, d(£Xxi) = dXi = (∂Xi/∂xl)dxl , and

£Xt = (Xti...j )dxi ⊗ · · · ⊗ dxj

+ ti...j

(
∂Xi

∂xl
dxl ⊗ · · · ⊗ dxj + · · · + dxi ⊗ · · · ⊗ ∂Xj

∂xl
dxl

)

=
(

Xl ∂ti...j

∂xl
+ tl...j

∂Xl

∂xi
+ · · · + ti...l

∂Xl

∂xj

)
dxi ⊗ · · · ⊗ dxj . (2.40)

Example 2.28 According to the results of Example 2.27, if X is the infinitesimal
generator of a one-parameter group of diffeomorphisms that maps solutions of the
differential equation P dx + Qdy = 0 into solutions of the same equation, then
£X(P dx +Qdy) = ν(P dx +Qdy), where ν is some real-valued function. Writing

X = ξ
∂

∂x
+ η

∂

∂y
,

by means of the relation (2.40) we find that

ξ
∂P

∂x
+ η

∂P

∂y
+ P

∂ξ

∂x
+ Q

∂η

∂x
= νP,

ξ
∂Q

∂x
+ η

∂Q

∂y
+ Q

∂η

∂y
+ P

∂ξ

∂y
= νQ,

which can be conveniently expressed in the form (eliminating the unknown func-
tion ν)

ξ
∂f

∂x
+ η

∂f

∂y
= ∂η

∂x
+
(

∂η

∂y
− ∂ξ

∂x

)
f − ∂ξ

∂y
f 2, (2.41)
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where f ≡ −P/Q [cf. (2.35)]. This equation, for the two functions ξ and η, has
infinitely many solutions and turns out to be more convenient for finding the sym-
metries of the differential equation P dx +Qdy = 0 than the condition ϕs

∗α = χsα.
This is so since, whereas ϕ must satisfy the conditions defining a one-parameter
group of diffeomorphisms, the functions ξ and η only have to be differentiable.
A practical way of finding some solution of (2.41) consists in proposing expressions
for ξ and η containing some constants to be determined (see, e.g., Hydon 2000).

If t is a tensor field of type ( 0
k) on M and X is a vector field on M , the contraction

of t with X, denoted by X t , is the tensor field of type ( 0
k−1) on M given by

(X t)p(vp, . . . ,wp) ≡ k tp(Xp, vp, . . . ,wp), (2.42)

for vp, . . . ,wp ∈ TpM (the constant factor k appearing on the right-hand side is
introduced for later convenience). If t is a tensor field of type ( 0

0) on M , that is, t is
a function from M into R, we define X t ≡ 0. Note that if α is a 1-form on M , X α

is the function α(X) [see (1.43)].
The contraction commutes with the pullback under diffeomorphisms; for if

ψ : M → N is a diffeomorphism, t a tensor field of type ( 0
k) on N , and X a vec-

tor field on N , then, since ψ∗X and X are ψ -related, we have

[
(ψ∗X) (ψ∗t)

]
p
(vp, . . . ,wp) = k(ψ∗t)p

(
(ψ∗X)p, vp, . . . ,wp

)

= k tψ(p)

(
ψ∗p(ψ∗X)p,ψ∗pvp, . . . ,ψ∗pwp

)

= k tψ(p)(Xψ(p),ψ∗pvp, . . . ,ψ∗pwp)

= (X t)ψ(p)(ψ∗pvp, . . . ,ψ∗pwp)

= [
ψ∗(X t)

]
p
(vp, . . . ,wp),

for vp, . . . ,wp ∈ TpM , that is,

ψ∗(X t) = (ψ∗X) (ψ∗t). (2.43)

Hence, for X,Y ∈X(M) and t ∈ T 0
k (M), we have

£X(Y t) = (£XY) t + Y (£Xt). (2.44)

Thus, if t ∈ T 0
k (M) and X,Y1, . . . ,Yk ∈ X(M), repeatedly applying this relation,

we obtain

X
(
t (Y1, . . . ,Yk)

)

= £X
(
t (Y1, . . . ,Yk)

)

= 1

k!£X(Yk Yk−1 · · · Y1 t)
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= 1

k!
[
(£XYk) Yk−1 · · · Y1 t + Yk (£XYk−1) Yk−2 · · · Y1 t

+ · · · + Yk Yk−1 · · · (£XY1) t + Yk Yk−1 · · · Y1 (£Xt)
]

= t (Y1,Y2, . . . ,£XYk) + t (Y1,Y2, . . . ,£XYk−1,Yk) + · · ·
+ t (£XY1,Y2, . . . ,Yk) + (£Xt)(Y1, . . . ,Yk)

= (£Xt)(Y1, . . . ,Yk) +
k∑

i=1

t (Y1, . . . ,£XYi , . . . ,Yk),

that is,

(£Xt)(Y1, . . . ,Yk) = X
(
t (Y1, . . . ,Yk)

)−
k∑

i=1

t
(
Y1, . . . , [X,Yi], . . . ,Yk

)
. (2.45)

Exercise 2.29 Show that all the properties of the Lie derivative of tensor fields of
type ( 0

k) follow from (2.45).

Exercise 2.30 Show that if X,Y ∈ X(M) and t ∈ T 0
k (M), then £X(£Yt) −

£Y(£Xt) = £[X,Y]t .

Exercise 2.31 Show that if X ∈ X(M) and t ∈ T 0
k (M), then £X(X t) = X (£Xt).

Exercise 2.32 Let t be a differentiable tensor field of type ( k
l ) on M . Assuming that

the first k arguments of t are covectors and defining £Xt by

(£Xt)(α1, . . . , αk,Y1, . . . ,Yl)

≡ X
(
t (α1, . . . , αk,Y1, . . . ,Yl)

)

−
k∑

i=1

t (α1, . . . ,£Xαi, . . . , αk,Y1, . . . ,Yl)

−
l∑

i=1

t (α1, . . . , αk,Y1, . . . ,£XYi , . . . ,Yl),

for α1, . . . , αk ∈ Λ1(M), Y1, . . . ,Yl ∈ X(M), show that £Xt is a differentiable ten-
sor field of type ( k

l ) and that £X(t ⊗ s) = (£Xt)⊗ s + t ⊗ (£Xs) for any pair of mixed
tensor fields.



Chapter 3
Differential Forms

Differential forms are completely skew-symmetric tensor fields. They are applied in
some areas of physics, mainly in thermodynamics and classical mechanics, and of
mathematics, such as differential equations, differential geometry, Lie groups, and
differential topology. Many of the applications of differential forms are presented in
subsequent chapters.

3.1 The Algebra of Forms

Definition 3.1 Let M be a differentiable manifold. A differential form of degree k,
or k-form, ω, on M , is a completely skew-symmetric differentiable tensor field of
type ( 0

k) on M , that is,

ω(X1, . . . ,Xi , . . . ,Xj , . . . ,Xk) = −ω(X1, . . . ,Xj , . . . ,Xi , . . . ,Xk), (3.1)

1 ≤ i < j ≤ k, for X1, . . . ,Xk ∈X(M); a 0-form is a differentiable real-valued func-
tion on M .

Starting from an arbitrary tensor field, t , of type ( 0
k), one can construct a com-

pletely skew-symmetric tensor field of the same type. Let Sk be the group of all
permutations of the numbers (1,2, . . . , k) and let sgnσ be the sign of the permuta-
tion σ ∈ Sk (sgnσ = 1 if σ is even, sgnσ = −1 if σ is odd). We define A t by

A t (X1, . . . ,Xk) ≡ 1

k!
∑

σ∈Sk

(sgnσ) t (Xσ(1), . . . ,Xσ(k)), (3.2)

for X1, . . . ,Xk ∈ X(M). It can readily be seen that A t is completely skew-
symmetric, and that if t and s are tensor fields of type ( 0

k), then A (t +s) = A t +A s

and A (f t) = f A t , for f : M → R; furthermore if t is skew-symmetric, then
A t = t , so that A 2 = A .

G.F. Torres del Castillo, Differentiable Manifolds,
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The set of the k-forms on M , which will be denoted here by Λk(M), is a sub-
module of T 0

k (M), since the sum of two k-forms, the product of a k-form by a scalar
and the product of a k-form by a function f ∈ C∞(M) = Λ0(M) are also k-forms,
as can be verified directly from the definition of the operations in T 0

k (M). By con-
trast, the tensor product of a k-form by an l-form is skew-symmetric, separately,
in its first k arguments and in its last l arguments, but it is not necessarily com-
pletely skew-symmetric in its k + l arguments (except in the case where k or l is
zero); nevertheless, from the tensor product of two differential forms one can obtain
a completely skew-symmetric tensor field with the aid of the map A .

Definition 3.2 If ω is a k-form and η is an l-form on M , the exterior, or wedge,
product of ω by η, ω ∧ η, is defined by

ω ∧ η = A (ω ⊗ η). (3.3)

(Some authors employ the definition

ω ∧ η = (k + l)!
k! l! A (ω ⊗ η),

with which some numerical factors that appear in several expressions [e.g., (2.42),
(3.7), and (3.28)] are avoided, but it makes it necessary to introduce some factors
in other expressions. However, some important formulas, such as (3.27), (3.35), and
(3.39), are equally valid whether one makes use of the conventions followed here in
the definitions of the exterior product, the contraction, and the exterior derivative,
or in the alternative conventions.)

The exterior product of ω by η is then a (k + l)-form. (Note that if ω is a k-form
and f is a 0-form, we have f ∧ω = A (f ⊗ω) = A (f ω) = f A ω = f ω = ω∧f .)

From the properties of A it follows that if ω,ω1,ω2 ∈ Λk(M) and η ∈ Λl(M),
then

(aω1 + bω2) ∧ η = a(ω1 ∧ η) + b(ω2 ∧ η) (3.4)

and

(f ω) ∧ η = ω ∧ (f η) = f (ω ∧ η), (3.5)

for a, b ∈ R, f ∈ Λ0(M). The exterior product is associative but not always com-
mutative [see (3.23)]. If α, β , and γ are differential forms on M , it can be shown
that

(α ∧ β) ∧ γ = α ∧ (β ∧ γ ) = A (α ⊗ β ⊗ γ ). (3.6)

If α and β are 1-forms, applying the definition of the exterior product we have

(α ∧ β)(X1,X2) = A (α ⊗ β)(X1,X2)

= 1

2!
[
(α ⊗ β)(X1,X2) − (α ⊗ β)(X2,X1)

]
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= 1

2

[
α(X1)β(X2) − α(X2)β(X1)

]

= 1

2
(α ⊗ β − β ⊗ α)(X1,X2), for X1,X2 ∈X(M),

that is,

α ∧ β = 1

2
(α ⊗ β − β ⊗ α) = −β ∧ α, for α,β ∈ Λ1(M). (3.7)

Combining the definition of the contraction (2.42) with (3.7) one finds that if X is a
vector field on M , then for any vp ∈ TpM ,

[
X (α ∧ β)

]
p
(vp) = 2(α ∧ β)p(Xp, vp)

= (α ⊗ β − β ⊗ α)p(Xp, vp)

= αp(Xp)βp(vp) − βp(Xp)αp(vp)

= [
(X α)β − (X β)α

]
p
(vp),

which means that

X (α ∧ β) = (X α)β − (X β)α, for α,β ∈ Λ1(M). (3.8)

Let (x1, . . . , xn) be a local coordinate system on M . A k-form possesses the local
expression [see (1.57)]

ω = ωi1...ik dxi1 ⊗ · · · ⊗ dxik , (3.9)

with

ωi1...ik = ω

((
∂

∂xi1

)
, . . . ,

(
∂

∂xik

))
. (3.10)

As a consequence of the skew-symmetry of ω, its components ωi1...ik are completely
skew-symmetric in all their indices and ω = A (ω). Therefore, making use of the
properties of A we have

ω = A (ω)

= ωi1...ikA
(
dxi1 ⊗ · · · ⊗ dxik

)

= ωi1...ik dxi1 ∧ · · · ∧ dxik . (3.11)

Since the differentials of the coordinates are 1-forms, from (3.7) it follows that

dxi1 ∧ · · · ∧ dxij ∧ · · · ∧ dxil ∧ · · · ∧ dxik

= −dxi1 ∧ · · · ∧ dxil ∧ · · · ∧ dxij ∧ · · · ∧ dxik , (3.12)

and therefore dxi1 ∧ · · · ∧ dxik = 0 if one of the values of the indices i1, . . . , ik
appears more than once. Hence, if ω is a k-form with k > n then ω = 0, since
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ω = ωi1...ik dxi1 ∧ · · · ∧ dxik , and for k > n necessarily some value of the indices
i1, . . . , ik will appear more than once.

Example 3.3 Let M be a manifold of dimension two, with local coordinates (q,p).
Given a function H ∈ C∞(M × R), there exists only one vector field, X, on the
manifold M ×R, such that Xt = 1, where t is the usual coordinate of R, and

X (dp ∧ dq − dH ∧ dt) = 0. (3.13)

Indeed, the condition Xt = 1 is equivalent to X having the local expression

X = A
∂

∂q
+ B

∂

∂p
+ ∂

∂t
, (3.14)

where A and B are functions of M ×R in R. From (1.52) and (3.12) one finds that
(3.13) amounts to

X
(

dp ∧ dq − ∂H

∂q
dq ∧ dt − ∂H

∂p
dp ∧ dt

)
= 0, (3.15)

and making use of (3.8) one has

0 = dp(X)dq − dq(X)dp − ∂H

∂q
dq(X)dt + ∂H

∂q
dt (X)dq

− ∂H

∂p
dp(X)dt + ∂H

∂p
dt (X)dp

=
[

dp(X) + ∂H

∂q
dt (X)

]
dq −

[
dq(X) − ∂H

∂p
dt (X)

]
dp

−
[
∂H

∂q
dq(X) + ∂H

∂p
dp(X)

]
dt,

which means that the expressions inside the brackets must be separately equal
to zero. Then, making use of (3.14) and (1.45), one obtains A = ∂H/∂p, B =
−∂H/∂q , that is,

X = ∂H

∂p

∂

∂q
− ∂H

∂q

∂

∂p
+ ∂

∂t
, (3.16)

thus proving the assertion above. The integral curves of X are determined by the
equations

dq

dt
= ∂H

∂p
,

dp

dt
= −∂H

∂q
, (3.17)

which, in the context of classical mechanics, are known as the Hamilton equations.
According to this, if (Q,P, t) is a second coordinate system on M ×R such that

dp ∧ dq − dH ∧ dt = dP ∧ dQ − dK ∧ dt, (3.18)
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where K is some function of M × R in R [see (3.13)], then equations (3.17) are
equivalent to

dQ

dt
= ∂K

∂P
,

dP

dt
= −∂K

∂Q
,

that is, the form of the Hamilton equations is maintained if (3.18) holds. (Note that
Q,P need not be coordinates on M , in the same manner as the polar coordinates
(r, θ) on R

2, which can be identified with R × R, are not formed by one coordi-
nate function on the first copy of R and one coordinate on the second copy of R.)
The relationship between the coordinate systems (q,p, t) and (Q,P, t) is called a
canonical transformation. (See also Sect. 8.7.)

Exercise 3.4 Show that the relationship between two coordinate systems on P ×R,
(q,p, t) and (Q,P, t), is a canonical transformation if and only if

∂P

∂p

∂Q

∂q
− ∂P

∂q

∂Q

∂p
= 1. (3.19)

(Among other things, this means that if the condition (3.19) holds, then there exists a
function K ∈ C∞(P ×R) such that equation (3.18) is satisfied.) Usually, a canonical
transformation is defined as a transformation satisfying (3.19).

From (3.12) it follows that if n = dimM , then the exterior product of n differen-
tials of the coordinates satisfies

dxi1 ∧ · · · ∧ dxin = εi1...in dx1 ∧ dx2 ∧ · · · ∧ dxn, (3.20)

where

εi1...in ≡
⎧
⎨

⎩

1 if (i1, . . . , in) is an even permutation of (1,2, . . . , n),

−1 if (i1, . . . , in) is an odd permutation of (1,2, . . . , n),

0 if one of the values of the indices appears repeated.
(3.21)

Hence, if ω ∈ Λn(M), using the fact that the components of ω are totally skew-
symmetric and that there exist n! permutations for a set of n objects, we have

ω = ωi1...in dxi1 ∧ · · · ∧ dxin = n!ω12...n dx1 ∧ dx2 ∧ · · · ∧ dxn. (3.22)

Let ω ∈ Λk(M) and η ∈ Λl(M) be given locally by ω = ωi1...ik dxi1 ∧ · · · ∧ dxik

and η = ηj1...jl
dxj1 ∧ · · · ∧ dxjl , using the associativity of the exterior product and

its skew-symmetry for the 1-forms [see (3.7)], we have

ω ∧ η = ωi1...ik ηj1...jl
dxi1 ∧ · · · ∧ dxik ∧ dxj1 ∧ · · · ∧ dxjl

= (−1)klωi1...ik ηj1...jl
dxj1 ∧ · · · ∧ dxjl ∧ dxi1 ∧ · · · ∧ dxik

= (−1)klη ∧ ω. (3.23)
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This implies that a form of even degree commutes under the exterior product with
any form and that the exterior product of two differential forms of odd degrees is
anticommutative. The set of all the differential forms on M forms an associative
algebra with the exterior product.

Expression (3.11) shows that any k-form, with k > 1, can be expressed locally in
terms of the exterior products of the differentials of the coordinates of some chart;
however, from (3.12) it follows that such products are not independent among them-
selves, so that the equation ci1...ik dxi1 ∧ · · · ∧ dxik = 0 does not imply that the co-
efficients ci1...ik are equal to zero, but only that the totally skew-symmetric part of
ci1...ik , given by

c[i1...ik] ≡ 1

k!
∑

σ∈Sk

(sgnσ) ciσ(1)...iσ (k)
, (3.24)

is zero. This fact follows from the definitions (3.2) and (3.3); for if ci1...ik dxi1 ∧
· · · ∧ dxik = 0, then

0 = (
ci1...ik dxi1 ∧ · · · ∧ dxik

)( ∂

∂xj1
, . . . ,

∂

∂xjk

)

= [
A
(
ci1...ik dxi1 ⊗ · · · ⊗ dxik

)]
(

∂

∂xj1
, . . . ,

∂

∂xjk

)

= 1

k!
∑

σ∈Sk

(sgnσ) ci1...ik δ
i1
jσ(1)

· · · δik
jσ(k)

= 1

k!
∑

σ∈Sk

(sgnσ) cjσ(1)...jσ(k)
.

Since ψ∗(ω ⊗ η) = (ψ∗ω) ⊗ (ψ∗η) for any differentiable map ψ : M → N and
tensor fields ω,η on N [see (2.32)], from (2.30), (3.2), and (3.3) it follows that

ψ∗(ω ∧ η) = (ψ∗ω) ∧ (ψ∗η), (3.25)

for ω ∈ Λk(N), η ∈ Λl(N) and, therefore,

£X(ω ∧ η) = (£Xω) ∧ η + ω ∧ (£Xη), (3.26)

for ω ∈ Λk(M), η ∈ Λl(M), X ∈ X(M).
If ω is a k-form on M and X ∈X(M), the contraction X ω is a (k − 1)-form; in

other words, X is a map of Λk(M) into Λk−1(M). The operation of contraction is
also called interior product and X ω is also denoted by i(X)ω or by iXω. If Y is
another vector field on M , then we have Y (X ω) = −X (Y ω), by virtue of the
skew-symmetry of ω; therefore X (X ω) = 0, for ω ∈ Λk(M), X ∈ X(M).

By means of a lengthy computation it can be shown that if ω is a k-form and η is
an l-form, then

X (ω ∧ η) = (X ω) ∧ η + (−1)kω ∧ (X η), (3.27)
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for X ∈ X(M) [cf. (3.8)]. Owing to this relation it is said that the map
X : Λk(M) → Λk−1(M) is an antiderivation.

Exercise 3.5 Show that if ω = ωi1...ik dxi1 ∧ · · · ∧ dxik and X = Xj(∂/∂xj ), then
X ω = k Xjωji1...ik−1 dxi1 ∧ · · · ∧ dxik−1 .

3.2 The Exterior Derivative

Definition 3.6 Let ω be a k-form on M ; its exterior derivative, dω, is given by

(k + 1)dω(X1, . . . ,Xk+1)

≡
k+1∑

i=1

(−1)i+1Xi

(
ω(X1, . . . , X̂i , . . . ,Xk+1)

)

+
∑

i<j

(−1)i+jω
([Xi ,Xj ],X1, . . . , X̂i , . . . , X̂j , . . . ,Xk+1

)
, (3.28)

for X1, . . . ,Xk+1 ∈ X(M), where the symbol ̂ on Xi indicates that Xi is omitted.
The coefficient (k + 1) on the left-hand side of the definition has the same origin
as the coefficient appearing in the definition of the contraction; both are included in
order for the contraction and the exterior differentiation to be antiderivations of the
algebra of forms of M .

It is convenient to present in a more explicit way the definition (3.28) for the
degrees that will be encountered more frequently in what follows. When k = 0, the
definition (3.28) gives, for f ∈ Λ0(M),

df (X) = Xf. (3.29)

Comparing with (1.45), we see that the exterior derivative of a function f is just the
differential of f . In the case of a 1-form α we have

2 dα(X,Y) = X
(
α(Y)

)− Y
(
α(X)

)− α
([X,Y]), (3.30)

and for a differential form of degree 2, ω,

3 dω(X,Y,Z) = X
(
ω(Y,Z)

)+ Y
(
ω(Z,X)

)+ Z
(
ω(X,Y)

)

− ω
([X,Y],Z

)− ω
([Y,Z],X

)− ω
([Z,X],Y

)
, (3.31)

where we have made use of the skew-symmetry of ω.

Exercise 3.7 Show that the expressions (3.30) and (3.31) effectively define differ-
ential forms. Using (3.29)–(3.31), show that for f ∈ C∞(M), ddf = 0 and that if α

is a 1-form, then ddα = 0.
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Exercise 3.8 Show that the definitions (3.29)–(3.31) imply that £Xω = X dω +
d(X ω), if ω is a differential form of degree 0, 1, or 2, and X is a differentiable
vector field.

From the definition (3.28) it follows that dω is completely skew-symmetric and
R-linear in each of its k + 1 arguments [this is more easily seen in the specific
cases (3.29)–(3.31)]. In order to show that it is also a tensor field, it is sufficient
to show that dω is C∞(M)-linear in its first argument, dω(f X1,X2, . . . ,Xk+1) =
f dω(X1,X2, . . . ,Xk+1), since

dω(X1, . . . , f Xi , . . . ,Xk+1) = (−1)i−1 dω(f Xi ,X1, . . . , f̂ Xi , . . . ,Xk+1),

by virtue of the skew-symmetry of dω. Making use of the definition (3.28) we find
that, for f ∈ Λ0(M) (= C∞(M)),

(k + 1)dω(f X1,X2, . . . ,Xk+1)

= (f X1)
(
ω(X2, . . . ,Xk+1)

)

+
k+1∑

i=2

(−1)i+1Xi

(
ω(f X1, . . . , X̂i , . . . ,Xk+1)

)

−
∑

j>i

(−1)jω
([f X1,Xj ],X2, . . . , X̂j , . . . ,Xk+1

)

+
∑

1<i<j

(−1)i+jω
([Xi ,Xj ], f X1, . . . , X̂i , . . . , X̂j , . . . ,Xk+1

)
.

Using now (1.34), the fact that ω is a tensor field, and that [f X1,Xj ] = f [X1,Xj ]−
(Xj f )X1 (see Exercise 1.32), this expression becomes

(k + 1)dω(f X1,X2, . . . ,Xk+1)

= f
[
X1
(
ω(X2, . . . ,Xk+1)

)]

+
k+1∑

i=2

(−1)i+1Xi

(
f ω(X1, . . . , X̂i , . . . ,Xk+1)

)

−
∑

j>1

(−1)jω
(
f [X1,Xj ] − (Xj f )X1,X2, . . . , X̂j , . . . ,Xk+1

)

+
∑

1<i<j

(−1)i+j f ω
([Xi ,Xj ],X1, . . . , X̂i , . . . , X̂j , . . . ,Xk+1

)
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= f
[
X1
(
ω(X2, . . . ,Xk+1)

)]

+
k+1∑

i=2

(−1)i+1[f Xi

(
ω(X1, . . . , X̂i , . . . ,Xk+1)

)

+ (Xif )ω(X1, . . . , X̂i , . . . ,Xk+1)
]

−
∑

j>1

(−1)j
{
f ω

([X1,Xj ],X2, . . . , X̂j , . . . ,Xk+1
)

− (Xj f )ω(X1, . . . , X̂j , . . . ,Xk+1)
}

+
∑

1<i<j

(−1)i+j f ω
([Xi ,Xj ],X1, . . . , X̂i , . . . , X̂j , . . . ,Xk+1

)

= f (k + 1)dω(X1, . . . ,Xk+1).

From the definition (3.28) we also see that dω is differentiable, and we conclude that
dω is a (k + 1)-form or, equivalently, that d is a map from Λk(M) into Λk+1(M).

If ω1 and ω2 are k-forms and a, b ∈ R, from the definition of d we directly see
that

d(aω1 + bω2) = a dω1 + b dω2. (3.32)

On the other hand, for ω ∈ Λk(M) and f ∈ Λ0(M) we have

(k + 1)d(f ω)(X1, . . . ,Xk+1)

=
k+1∑

i=1

(−1)i+1Xi

(
(f ω)(X1, . . . , X̂i , . . . ,Xk+1)

)

+
∑

i<j

(−1)i+j (f ω)
([Xi ,Xj ],X1, . . . , X̂i , . . . , X̂j , . . . ,Xk+1

)

=
k+1∑

i=1

(−1)i+1[f Xi

(
ω(X1, . . . , X̂i , . . . ,Xk+1)

)

+ (Xif )ω(X1, . . . , X̂i , . . . ,Xk+1)
]

+
∑

i<j

(−1)i+j f ω
([Xi ,Xj ],X1, . . . , X̂i , . . . , X̂j , . . . ,Xk+1

)

= (k + 1)f dω(X1, . . . ,Xk+1)

+
k+1∑

i=1

(−1)i+1(Xif )ω(X1, . . . , X̂i , . . . ,Xk+1)
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= (k + 1)f dω(X1, . . . ,Xk+1)

+
k+1∑

i=1

(−1)i+1 df (Xi )ω(X1, . . . , X̂i , . . . ,Xk+1)

= (k + 1)f dω(X1, . . . ,Xk+1) + (k + 1)(df ∧ ω)(X1, . . . ,Xk+1),

that is,

d(f ω) = f dω + df ∧ ω. (3.33)

Expressing ω ∈ Λk(M) in local coordinates as ω = ωi1...ik dxi1 ∧ · · · ∧ dxik , with
ωi1...ik ∈ Λ0(M), from the properties (3.32) and (3.33) we find that

dω = d
(
ωi1...ik dxi1 ∧ · · · ∧ dxik

)

= ωi1...ik d
(
dxi1 ∧ · · · ∧ dxik

)+ dωi1...ik ∧ dxi1 ∧ · · · ∧ dxik .

The exterior derivative of dxi1 ∧ · · · ∧ dxik is equal to zero, as can be seen by apply-
ing the definition (3.28) to calculate d(dxi1 ∧ · · ·∧ dxik )((∂/∂xj1), . . . , (∂/∂xjk+1)),
using that [(∂/∂xi), (∂/∂xj )] = 0. Thus, dω is given locally by

dω = dωi1...ik ∧ dxi1 ∧ · · · ∧ dxik

=
(

∂

∂xl

)
ωi1...ik dxl ∧ dxi1 ∧ · · · ∧ dxik . (3.34)

Exercise 3.9 Derive the expression (3.34) for the components of dω without em-
ploying (3.33), directly from (3.10) and (3.28). Making use of (3.34), demonstrate
the validity of (3.33).

With the aid of the local expression (3.34) for d one can show that the exterior
differentiation is an antiderivation of the algebra of forms, that is, if ω ∈ Λk(M)

and η ∈ Λl(M), then

d(ω ∧ η) = dω ∧ η + (−1)kω ∧ dη. (3.35)

Indeed, expressing ω and η as ω = ωi1...ik dxi1 ∧ · · · ∧ dxik and η = ηj1...jl
dxj1 ∧

· · · ∧ dxjl , respectively, and using the expression for the differential of a product of
functions (1.47), from (3.34) we have

d(ω ∧ η) = d
(
ωi1...ik ηj1...jl

dxi1 ∧ · · · ∧ dxik ∧ dxj1 ∧ · · · ∧ dxjl
)

= d(ωi1...ik ηj1...jl
) ∧ dxi1 ∧ · · · ∧ dxik ∧ dxj1 ∧ · · · ∧ dxjl

= [
(dωi1...ik )ηj1...jl

+ ωi1...ik dηj1...jl

]

∧ dxi1 ∧ · · · ∧ dxik ∧ dxj1 ∧ · · · ∧ dxjl
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= (
dωi1...ik ∧ dxi1 ∧ · · · ∧ dxik

)∧ (
ηj1...jl

dxj1 ∧ · · · ∧ dxjl
)

+ (−1)k
(
ωi1...ik dxi1 ∧ · · · ∧ dxik

)∧ (
dηj1...jl

∧ dxj1 ∧ · · · ∧ dxjl
)

= dω ∧ η + (−1)kω ∧ dη.

(Note that (3.33) is a particular case of (3.35).)
A k-form whose exterior derivative is zero is called closed; a k-form is exact if it

is the exterior derivative of some (k − 1)-form. Any exact differential form is closed
since if ω = dη with η ∈ Λl(M), locally we have

ω = dηi1...il ∧ dxi1 ∧ · · · ∧ dxil =
(

∂

∂xj

)
ηi1...il dxj ∧ dxi1 ∧ · · · ∧ dxil ,

with the functions ηi1...il being the components of η; then

dω = d

[(
∂

∂xj

)
ηi1...il

]
∧ dxj ∧ dxi1 ∧ · · · ∧ dxil

=
(

∂

∂xm

)(
∂

∂xj

)
ηi1...il dxm ∧ dxj ∧ dxi1 ∧ · · · ∧ dxil ,

which is equal to zero since (∂/∂xm) and (∂/∂xj ) commute, whereas dxm ∧ dxj =
−dxj ∧ dxm. In other words, the exterior differentiation has the property that

d2 = 0 (3.36)

(see also Exercise 3.7). Note that there do not exist exact 0-forms and that any
n-form is closed because any (n + 1)-form is zero.

Example 3.10 According to the first and the second law of thermodynamics, for a
given thermodynamical system there exist two real-valued functions, U (the internal
energy) and S (the entropy) defined on the set of equilibrium states of the system,
such that

T dS = dU + P dV.

This is the case if the only way in which one can do mechanical work on the sys-
tem is by compression, where T , P , and V are the absolute temperature, pressure,
and volume, respectively. Using the properties of the exterior derivative we obtain
dT ∧ dS = dP ∧ dV and therefore, dP ∧ dV ∧ dT = 0, which implies that P , V ,
and T cannot be functionally independent; that is, there must exist an “equation of
state” expressing, e.g., P as some function of V and T . In a similar manner, com-
bining the expressions above, one finds that any set formed by three of the func-
tions T , S, U , P , and V is functionally dependent. (For instance, dU ∧ dS ∧ dV =
(T dS − P dV )∧ dS ∧ dV = 0.) Therefore, the manifold of the equilibrium states is
two-dimensional.
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Exercise 3.11 Compute the exterior derivative of the 2-form

ω = 1

(x2 + y2 + z2)3/2
(x dy ∧ dz + y dz ∧ dx + zdx ∧ dy) (3.37)

defined on R
3 \ {(0,0,0)}, where (x, y, z) are the natural coordinates of R3. Find

the local expression of this form in terms of the spherical coordinates (r, θ,φ) (with
x = r sin θ cosφ,y = r sin θ sinφ, z = r cos θ ).

Exercise 3.12 Consider the 1-forms ω1,ω2,ω3 defined by

ω1 = hdx1 − x1 dh − x2 dx3 + x3 dx2,

ω2 = hdx2 − x2 dh − x3 dx1 + x1 dx3,

ω3 = hdx3 − x3 dh − x1 dx2 + x2 dx1,

in terms of a local coordinate system (x1, x2, x3), with h ≡
√

1 −∑3
i=1(x

i)2. Show
that

dω1 = −2ω2 ∧ ω3, dω2 = −2ω3 ∧ ω1, dω3 = −2ω1 ∧ ω2.

(The forms ωi arise in connection with the group SU(2); see Sect. 7.3.)

If M and N are two differentiable manifolds and ψ : M → N is a differentiable
map, then we have

ψ∗(dω) = d(ψ∗ω), for ω ∈ Λk(N). (3.38)

In effect, expressing ω as ω = ωi1...ik dyi1 ∧ · · · ∧ dyik , where (y1, . . . , ym) is a
coordinate system on N , we have [see (3.25)]

ψ∗(dω) = ψ∗(dωi1...ik ∧ dyi1 ∧ · · · ∧ dyik
)

= ψ∗(dωi1...ik ) ∧ ψ∗(dyi1
)∧ · · · ∧ ψ∗(dyik

)
,

but ψ∗(df ) = d(ψ∗f ) for f ∈ Λ0(N) [see (2.29)]. Using the fact that d is an an-
tiderivation and that d2 = 0 on functions [see Exercise 3.7 or (3.36)], it follows that

ψ∗(dω) = d(ψ∗ωi1...ik ) ∧ d
(
ψ∗yi1

)∧ · · · ∧ d
(
ψ∗yik

)

= d
[
(ψ∗ωi1...ik )d

(
ψ∗yi1

)∧ · · · ∧ d
(
ψ∗yik

)]

= d
[
(ψ∗ωi1...ik )ψ

∗(dyi1
)∧ · · · ∧ ψ∗(dyik

)]

= d
[
ψ∗(ωi1...ik dyi1 ∧ · · · ∧ dyik

)]

= d(ψ∗ω).
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Exercise 3.13 Show that £X(dω) = d(£Xω), for ω ∈ Λk(M) and X ∈ X(M).

The Lie derivative is related with the exterior derivative in the following manner.
(Cf. Exercise 3.8.)

Proposition 3.14 For X ∈ X(M) and ω ∈ Λk(M) we have

£Xω = X dω + d(X ω). (3.39)

Proof Making use of the definitions of the contraction and of the exterior derivative,
for X,Y1, . . . ,Yk ∈ X(M) we obtain

(X dω)(Y1, . . . ,Yk) = (k + 1)dω(X,Y1, . . . ,Yk)

= X
(
ω(Y1, . . . ,Yk)

)

+
k∑

i=1

(−1)iYi

(
ω(X,Y1, . . . , Ŷi , . . . ,Yk)

)

+
k∑

j=1

(−1)jω
([X,Yj ],Y1, . . . , Ŷj , . . . ,Yk

)

+
∑

i<j

(−1)i+jω
([Yi ,Yj ],X, . . . , Ŷi , . . . , Ŷj , . . . ,Yk

);

on the other hand,

(
d(X ω)

)
(Y1, . . . ,Yk)

= 1

k

[
k∑

i=1

(−1)i+1Yi

(
(X ω)(Y1, . . . , Ŷi , . . . ,Yk)

)

+
∑

i<j

(−1)i+j (X ω)
([Yi ,Yj ],Y1, . . . , Ŷi , . . . , Ŷj , . . . ,Yk

)
]

=
k∑

i=1

(−1)i+1Yi

(
ω(X,Y1, . . . , Ŷi , . . . ,Yk)

)

+
∑

i<j

(−1)i+jω
(
X, [Yi ,Yj ],Y1, . . . , Ŷi , . . . , Ŷj , . . . ,Yk

)
.

By adding these two relations and using the expression for £Xω given at the end of
Chap. 2 [equation (2.45)] we obtain the proposed relation. (Another proof is given
in Sect. 4.1.) �
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Exercise 3.15 Compute the Lie derivatives of the 2-form (3.37) with respect to the
vector fields

y
∂

∂z
− z

∂

∂y
, z

∂

∂x
− x

∂

∂z
, x

∂

∂y
− y

∂

∂x
.

Poincaré’s Lemma Given a closed k-form, ω, there does not always exist a
(k − 1)-form η such that ω = dη. That is, not every closed form is exact. How-
ever, as shown below, such an η always exists locally, and this result is known as
the Poincaré Lemma. The global existence of η (that is, on all of M) depends on the
properties of M (see also do Carmo 1994).

A well-known, illustrative example is given by the 1-form

α = x dy − y dx

x2 + y2
(3.40)

on M = R
2 \ {(0,0)} (which is the analog of the 2-form (3.37), considered in Exer-

cise 3.11). One readily verifies that α is closed:

dα =
[

∂

∂x

(
x

x2 + y2

)
+ ∂

∂y

(
y

x2 + y2

)]
dx ∧ dy = 0,

but there does not exist a function defined on all of M whose differential coincides
with α (see Example 1.28).

However, on the simply connected set R2 \ {(x,0) |x ≥ 0} (the plane with the
positive x axis removed), α = dθ , where θ is the standard coordinate function
used in the polar coordinates, with its values restricted to the interval (0,2π).
(Substituting x = r cos θ , y = r sin θ into the expression for α one finds α =
r−2[r cos θ(r cos θ dθ + sin θ dr)− r sin θ(−r sin θ dθ +cos θ dr)] = dθ .) On M , the
angle θ is not a well-defined (single-valued) differentiable function.

In order to prove that a closed k-form, with k ≥ 1, is locally exact, we consider a
one-parameter group of diffeomorphisms ϕt on M ; then, for any k-form ω we have

d

dt
ϕt

∗ω = lim
h→0

ϕt+h
∗ω − ϕt

∗ω
h

= ϕt
∗ lim

h→0

ϕh
∗ω − ω

h

= ϕt
∗£Xω,

where X is the infinitesimal generator of ϕt . Making use of the relation
£Xω = X dω + d(X ω), if ω is closed

d

dt
ϕt

∗ω = ϕt
∗[X dω + d(X ω)

]

= ϕt
∗d(X ω)

= d
[
ϕt

∗(X ω)
]
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Fig. 3.1 The images in R
n of the orbits of the group (3.42) under φ are radial segments

and integrating on the parameter t , from t0 to 0, we find

d
∫ 0

t0

ϕt
∗(X ω)dt =

∫ 0

t0

(
d

dt
ϕt

∗ω
)

dt = ω − ϕt0
∗ω. (3.41)

(Note that in this last integral, t is only an integration variable; the product of the
differential form appearing in the integrand by dt is not an exterior product. See the
examples given below.) With the aid of the group ϕt given by

ϕt
∗xi = et xi , (3.42)

where (x1, . . . , xn) is some local coordinate system on M (see Fig. 3.1) [then
X = xi(∂/∂xi)], we have ϕt

∗ dxi = et dxi ; therefore, if

lim
t0→−∞ϕt0

∗ω = 0, (3.43)

then from (3.41) it follows that

ω = d
∫ 0

−∞
ϕt

∗(X ω)dt, (3.44)

assuming that the integrand is well behaved for t ∈ (−∞,0] (see the discussion
below). Thus we express ω as the exterior derivative of a (k − 1)-form.

For instance, one can verify that the 2-form ω = 5x dy ∧ dz − 3y dz ∧ dx −
(x2 + 2z)dx ∧ dy is closed. In order to apply (3.44) we start by computing the
contraction X ω

X ω =
(

x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z

) [
5x dy ∧ dz − 3y dz ∧ dx − (

x2 + 2z
)

dx ∧ dy
]

= 5x(y dz − zdy) − 3y(zdx − x dz) − (
x2 + 2z

)
(x dy − y dx)

= (
x2y − yz

)
dx − (

x3 + 7xz
)

dy + 8xy dz.



64 3 Differential Forms

Then,
∫ 0

−∞
ϕt

∗(X ω)dt =
∫ 0

−∞
dt
[(

e4t x2y − e3t yz
)

dx

− (
e4t x3 + e3t7xz

)
dy + e3t8xy dz

]

[note that the integrand satisfies the condition (3.43)] and, with the change of vari-
able s = et , we have
∫ 0

−∞
ϕt

∗(X ω)dt =
∫ 1

0
ds
[(

s3x2y − s2yz
)

dx − (
s3x3 + s27xz

)
dy + s28xy dz

]

=
(

1

4
x2y − 1

3
yz

)
dx −

(
1

4
x3 + 1

3
7xz

)
dy + 1

3
8xy dz.

A direct computation shows that, indeed, the exterior derivative of this 1-form coin-
cides with the 2-form ω originally given.

Note that the 2-form ω, defined in (3.37), and the 1-form α, defined in (3.40),
are both closed and satisfy X ω = 0, X α = 0, but they do not satisfy the condi-
tion (3.43) (in fact, both forms are invariant under the group (3.42), ϕt

∗ω = ω and
ϕt

∗α = α). Therefore (3.44) cannot be applied to them.
However, by simply making use of another coordinate system, we can locally

express these forms as exterior derivatives of some appropriate forms. For instance,
the 1-form α defined in (3.40) can also be expressed as

α = (x′ + 1)dy′ − y′ dx′

(x′ + 1)2 + y′2 ,

in terms of the coordinate system (x′, y′) related to (x, y) by x′ = x − 1, y′ = y.
Dropping the primes we have

X α = y

(x + 1)2 + y2
, ϕt

∗(X α) = et y

(et x + 1)2 + (et y)2
.

Now, condition (3.43) is satisfied and, putting s = et , we find

∫ 0

−∞
ϕt

∗(X α)dt =
∫ 1

0
ds

y

(sx + 1)2 + (sy)2
= arctan

(x2 + y2)s + x

y

∣
∣∣∣

1

s=0

= arctan
y

x + 1
,

provided that y �= 0, or that x > −1 if y = 0, so that the integrand does not become
singular for s ∈ [0,1] (in other words, (x, y) ∈R

2 \ {(x, y) |x ≤ −1, y = 0}).
Example 3.16 Using the properties (3.32), (3.35), and (3.36), the condition (3.18)
defining a canonical transformation can be expressed in the form

d(p dq − H dt − P dQ + K dt) = 0,
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which is locally equivalent to the existence of a function F such that

p dq − P dQ + (K − H)dt = dF.

If q and Q are functionally independent, then (q,Q, t) can be used as local coordi-
nates on P ×R and from the last equation we have

p = ∂F

∂q
, P = − ∂F

∂Q
, K = H + ∂F

∂t
.

Assuming that ∂2F/∂Q∂q �= 0, these expressions allow us to express P and Q in
terms of p, q , and t . For this reason, F is a generating function of the canonical
transformation.

Example 3.17 Using the notation and results of Example 3.3, if Y is the infinitesi-
mal generator of a one-parameter group of diffeomorphisms on P ×R which maps
any solution of the Hamilton equations (3.17) into another solution, then there exists
some function ν ∈ C∞(P × R) such that £Y(dp ∧ dq − dH ∧ dt) = ν(dp ∧ dq −
dH ∧ dt) (cf. Example 2.28). In particular, if £Y(dp ∧ dq − dH ∧ dt) = 0, making
use of the identity (3.39) and the fact that the form dp ∧ dq − dH ∧ dt is closed, we
have

d
[
Y (dp ∧ dq − dH ∧ dt)

]= 0,

which is equivalent to the local existence of a function, χ , such that

Y (dp ∧ dq − dH ∧ dt) = dχ. (3.45)

The function χ is a constant of motion, that is, its value is constant along the
curves in P ×R which are a solution of the Hamilton equations (3.17); this amounts
to Xχ = 0, where X is the vector field (3.16). In fact, making use of (3.13) and (3.45)
we have

Xχ = X dχ

= X Y (dp ∧ dq − dH ∧ dt)

= −Y X (dp ∧ dq − dH ∧ dt)

= 0.

Exercise 3.18 Using the definitions given in Example 3.17, show that the function
ν appearing in £Y(dp ∧ dq − dH ∧ dt) = ν(dp ∧ dq − dH ∧ dt) is a constant of
motion. (See also Sect. 8.7.)



Chapter 4
Integral Manifolds

We have met the concept of integral curve of a vector field in Sect. 2.1 and we
have seen that finding such curves is equivalent to solving a system of ODEs. In
this chapter we consider a generalization of this relationship defining the integral
manifolds of a set of vector fields or of differential forms. We shall show that the
problem of finding these manifolds is equivalent to that of solving certain systems
of differential equations.

4.1 The Rectification Lemma

As shown in Sect. 1.3, any vector field, X, on a differentiable manifold M can be
expressed locally in the form X = Xi(∂/∂xi), where (x1, x2, . . . , xn) is a coordinate
system on M [see (1.36)]. As we shall see now, for each point of M where X does
not vanish, there exists a local coordinate system, (x′1, x′2, . . . , x′n), such that

X = ∂

∂x′1 . (4.1)

This result, known as the rectification, or straightening-out, lemma, ensures that,
in some neighborhood of each point where X is different from zero, there exists a
coordinate system adapted to X, in which X has a very simple form.

Assuming that there exists a coordinate system (x′1, x′2, . . . , x′n) such that
X = ∂/∂x′1, the functions x′2, . . . , x′n must satisfy Xx′2 = 0, Xx′3 = 0, . . . ,

Xx′n = 0; that is, the coordinates x′2, . . . , x′n must be n − 1 functionally inde-
pendent solutions of the linear partial differential equation (PDE)

X1 ∂f

∂x1
+ X2 ∂f

∂x2
+ · · · + Xn ∂f

∂xn
= 0. (4.2)

Given n−1 functionally independent solutions of (4.2), the coordinates x′2, . . . , x′n
can be chosen as any set of n − 1 functionally independent functions of them. In
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contrast, x′1 must satisfy the (inhomogeneous) equation Xx′1 = 1, that is,

X1 ∂x′1

∂x1
+ X2 ∂x′1

∂x2
+ · · · + Xn ∂x′1

∂xn
= 1. (4.3)

Given a solution of this equation, one can obtain another solution by adding to it
any solution of (4.2).

The problem of finding the solutions of (4.2) is related to that of finding
the integral curves of X (see Sect. 2.1), because if X has the form (4.1), then
its integral curves are given by (x′1 ◦ C)(t) = t + const, x′2 ◦ C = const, x′3 ◦
C = const, . . . , x′n ◦ C = const. Therefore, if we have the integral curve of X =
Xi(∂/∂xi) that starts at an arbitrary point of some neighborhood, in the original
coordinate system (x1, x2, . . . , xn), then we have n functions xi ◦ C satisfying the
system (2.5), which must contain n arbitrary constants (which determine the starting
point of the curve C). Combining these n expressions to eliminate the parameter of
the curve [the variable t in equations (2.5)], one obtains n − 1 equations that are
equivalent to the n − 1 equations x′2 ◦ C = const, x′3 ◦ C = const, . . . , x′n ◦ C =
const.

The coordinate x′1 (which is defined up to an additive function of x′2, x′3,
. . . , x′n) can be found noting that the contraction of X with any of the 1-forms
dx1/X1, dx2/X2, . . . , and dxn/Xn, among many others, is equal to 1. Since any
1-form on a manifold of dimension one is locally exact and since the integral curves
of X are manifolds of dimension one, on these curves each of the 1-forms dx1/X1,
dx2/X2, . . . ,dxn/Xn, is, locally, the differential of a function that can be chosen as
x′1.

Example 4.1 Let us consider the vector field X given locally by

X = −x2 ∂

∂x
− xy

∂

∂y
+ (xz − y)

∂

∂z
, (4.4)

where (x, y, z) is a coordinate system on some manifold of dimension three. Its
integral curves are determined by the system of ODEs

dx

dt
= −x2,

dy

dt
= −xy,

dz

dt
= xz − y, (4.5)

where, as in the previous examples, we have written x, y, and z in place of x ◦ C,
y ◦C, and z◦C, respectively. The first of equations (4.5) is readily integrated, giving

1

x(t)
= t + 1

x0
,

where x0 is the value of the coordinate x at the starting point of the curve, or, equiv-
alently,

x(t) = x0

x0t + 1
. (4.6)
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Substituting this expression into the second equation (4.5) we find that

y(t) = y0

x0t + 1
, (4.7)

where y0 is the value of the coordinate y at the starting point of the curve. Substi-
tuting now (4.6) and (4.7) into the third equation (4.5) we obtain a linear equation
whose solution is

z(t) = z0 + (x0z0 − y0)t, (4.8)

where z0 is the value of the coordinate z at the initial point of the curve. Eliminating
the parameter t from (4.6)–(4.8) one finds that

x(t)

y(t)
= x0

y0
, x(t)z(t) − y(t) = x0z0 − y0,

which means that the (images of the) integral curves of X are the intersections
of the surfaces x/y = const, xz − y = const, and that the coordinates x′2 and x′3
can be chosen as x/y and xz − y. (One can readily verify that X(x/y) = 0 and
X(xz − y) = 0.)

According to the discussion above, on the curves x/y = const, xz − y = const,
the 1-forms −dx/x2, −dy/xy, and dz/(xz − y) (whose contractions with X are
equal to 1) are the differentials of possible choices for x′1. In fact, −dx/x2 =
d(1/x), so that we can choose x′1 = 1/x. Alternatively, by imposing the conditions
x/y = const, xz − y = const, we have, for instance,

dz

xz − y
= d

(
z

xz − y

)
,

which gives another acceptable choice for x′1, namely, x′1 = z/(xz − y). The func-
tions 1/x and z/(xz − y) differ by −(x/y)−1(xz − y)−1, which is effectively a
function of x/y and xz − y only, as stated above.

In order to find the images of the integral curves of a vector field X (and to iden-
tify a set of coordinates x′2, . . . , x′n) it is not necessary to integrate equations (2.5),
with the subsequent elimination of the parameter t ; the parameter can be eliminated
from the beginning (see, e.g., Example 2.9), which leads to a set of equations that is
usually expressed in the form

dx1

X1
= dx2

X2
= · · · = dxn

Xn
(4.9)

[see, e.g., Sneddon (2006, Chap. 2)].
The fact that a vector field can be expressed in the form (4.1) has several applica-

tions. For instance, it allows us to simplify the demonstration of some propositions
involving vector fields, as can be seen in connection with Proposition 3.14. If ω is a
k-form and X is a vector field, on some neighborhood of each point where X does
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not vanish, one can find a coordinate system (x1, x2, . . . , xn) such that X = ∂/∂x1,
using then the expression ω = ωi1...ik dxi1 ∧ · · · ∧ dxik and the properties of the
Lie derivative of differential forms, we have £X dxi = d(Xxi) = 0 [see (2.39) and
(2.23)], hence, according to (3.26)

£Xω = ∂ωi1...ik

∂x1
dxi1 ∧ · · · ∧ dxik .

On the other hand, using (3.34) and (3.27)

X dω = ∂

∂x1

(
∂ωi1...ik

∂xj
dxj ∧ dxi1 ∧ · · · ∧ dxik

)

= ∂ωi1...ik

∂xj

∂

∂x1

(
dxj ∧ dxi1 ∧ · · · ∧ dxik

)

= ∂ωi1...ik

∂x1
dxi1 ∧ · · · ∧ dxik − k

∂ω1i2...ik

∂xj
dxj ∧ dxi2 ∧ · · · ∧ dxik

and

d(X ω) = d
(
k ω1i2...ik dxi2 ∧ · · · ∧ dxik

)

= k
∂ω1i2...ik

∂xj
dxj ∧ dxi2 ∧ · · · ∧ dxik .

Thus, £Xω = X dω + d(X ω).
The form (4.1) is also useful in the solution of ODEs. In many cases it is possible

to find explicitly a vector field, X, that generates some symmetry of a given ODE,
which means that the image of any solution of the equation under the flow generated
by X is a solution of the same equation [see, e.g., Stephani (1989), Hydon (2000),
and Sect. 4.3]. The form of the ODE is simplified making use of a coordinate system
in which X has the expression (4.1).

It should be clear that the expression (4.1) is not valid at the points where X
vanishes. Whereas the rectification lemma establishes that all vector fields look the
same wherever they do not vanish, there exist several different behaviors for a vector
field in a neighborhood of a point where it vanishes [see, e.g., Guillemin and Pollack
(1974, Chap. 3)].

If Y is a second vector field, it is not always possible to find a coordinate system
(x′1, x′2, . . . , x′n), such that Y = ∂/∂x′2, simultaneously with X = ∂/∂x′1. A nec-
essary condition for this to happen is that [X,Y] = 0, since [∂/∂x′1, ∂/∂x′2] = 0
[see (1.38)]. This condition is also sufficient; in general, if X1,X2, . . . ,Xk ∈ X(M)

satisfy [Xi ,Xj ] = 0, for 1 ≤ i, j ≤ k, then, in a neighborhood of each point where
{X1, . . . ,Xk} is linearly independent, there exists a coordinate system x′1, . . . , x′n
such that X1 = ∂/∂x′1, . . . ,Xk = ∂/∂x′k . The proof is similar to that given in the
case with k = 1.
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4.2 Distributions and the Frobenius Theorem

As shown in Example 2.27, the solutions of the first-order ODE

dy

dx
= −P(x, y)

Q(x, y)

are the images of the curves C such that C∗(P dx + Qdy) = 0. A similar formu-
lation can be given in the case of an ODE of order m, making use of a set of m

1-forms on a manifold of dimension m+1. For instance, given a second-order ODE
of the form

d2y

dx2
= F(x, y,dy/dx), (4.10)

where F is a differentiable real-valued function of three variables, we introduce an
auxiliary variable z and define the two 1-forms

α1 ≡ dy − zdx and α2 ≡ dz − F(x, y, z)dx. (4.11)

Then, considering (x, y, z) as local coordinates of some manifold M , the solu-
tions of (4.10) are given by the images of the curves C in M such that C∗α1 = 0,
C∗α2 = 0 (see Sect. 4.3, below).

The 1-forms are also employed in classical mechanics to express constraints.
When a mechanical system is subject to a constraint represented by a 1-form α, the
possible curves in the configuration space must satisfy the condition C∗α = 0, and
a mechanical systems may have more than one of such constraints.

For instance, for a block sliding under the influence of gravity on a wedge of
angle θ , which lies on a horizontal table, there are two constraints, given by

α1 ≡ dy − tan θ(dx − dx̃),

α2 ≡ dỹ,
(4.12)

where θ is the angle of the wedge, (x, y) and (x̃, ỹ) are Cartesian coordinates of the
block and the wedge, respectively (see Fig. 4.1). The condition C∗α2 = 0, that is,
C∗dỹ = 0, means that ỹ has to remain constant along the admissible curves in the
configuration space.

Another well-known example of a mechanical system with constraints corre-
sponds to a vertical disk, of radius a, say, that rolls without slipping on a horizontal
plane (see Fig. 4.2). The constraints can be expressed by means of the 1-forms
α1 = dx − a cos θ dφ and α2 = dy − a sin θ dφ, where (x, y) are Cartesian coordi-
nates of the contact point of the disk with the plane, θ is the angle between the x

axis and the plane of the disk, and φ is the angle between a given radius of the disk
and the line joining the center of the disk with the point of contact with the plane.

A final example is given by a sphere of radius a that rolls without slipping on a
plane surface; there are two constraints represented by the 1-forms

β1 ≡ dx + a(sin θ cosφ dψ − sinφ dθ),

β2 ≡ dy + a(sin θ sinφ dψ + cosφ dθ),
(4.13)
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Fig. 4.1 The block remains in contact with the wedge, which lies on a horizontal table

Fig. 4.2 The disk rolls without slipping on a horizontal plane. θ is the angle between the velocity
of the disk and the positive x axis

where (φ, θ,ψ) are Euler angles (see, e.g., Sect. 8.6) and (x, y) are Cartesian coor-
dinates of the point of contact between the sphere and the plane.

An important difference between the sets of 1-forms (4.12) and (4.13) is that in
the first case the curves C in the configuration space satisfying C∗α1 = 0 = C∗α2

lie on a submanifold defined by y− tan θ(x− x̃) = const, ỹ = const (which is related
to the facts that α1 = d[y − tan θ(x − x̃)] and α2 = dỹ), whereas, as we shall be able
to show below, in the case of the 1-forms (4.13) the curves C satisfying the condi-
tions C∗β1 = 0 = C∗β2 are not contained in submanifolds of the form y1 = const,
y2 = const (see Exercise 4.8, below). Owing to this difference, the 1-forms (4.12)
constitute holonomic constraints and the 1-forms (4.13) represent non-holonomic
constraints (a precise definition is given below).

Now we shall introduce some definitions. Let α1, . . . , αk be 1-forms on M

and let p ∈ M such that {α1
p, . . . , αk

p} is linearly independent. Then, the set of

vectors vp ∈ TpM such that α1
p(vp) = α2

p(vp) = · · · = αk
p(vp) = 0 forms a vec-

tor subspace of TpM of dimension (n − k), with n being the dimension of M .
A distribution of dimension l on M is a map, D , that assigns to each point
p ∈ M a vector subspace, Dp , of TpM of dimension l. Thus, a set of k indepen-
dent 1-forms {α1, . . . , αk} defines a distribution of dimension (n − k) given by
Dp = {vp ∈ TpM | αi

p(vp) = 0, i = 1, . . . , k}. The sets of 1-forms {α1, . . . , αk} and

{β1, . . . , βk} define the same distribution if and only if there exist k2 real-valued
functions bi

j , i, j = 1,2, . . . , k, such that βi = bi
jα

j , with det(bi
j ) nowhere zero.

An integral manifold of the distribution D is a submanifold N of M such that the
tangent space to N at p is contained in Dp . If the distribution D is defined by the k
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1-forms α1, . . . , αk , as explained above, the submanifold N is an integral manifold
of D if and only if i∗α1 = 0, . . . , i∗αk = 0, where i : N → M is the inclusion map
(cf. Example 2.27). (If N is a subset of M , the inclusion mapping, i : N → M , sends
each point of N into the same point, considered as an element of M .)

In classical thermodynamics, a quasistatic adiabatic process is (the image of) a
curve C in the space of equilibrium states such that C∗(dU + P dV − μdν) = 0,
where U , P , V , μ, and ν are the internal energy, pressure, volume, chemical
potential, and mole number, respectively. In this case, the space of equilibrium
states is a manifold of dimension three and the distribution defined by the 1-form
dU + P dV − μdν (the heat 1-form) is of dimension two.

A distribution D of dimension l is completely integrable in U ⊂ M if each point
p ∈ U is contained in an integral manifold of D of dimension l. An integral mani-
fold N of the distribution D is maximal if any integral manifold N ′ of D , such that
N ⊂ N ′, coincides with N .

The second law of thermodynamics states that the distribution defined by the
heat 1-form is completely integrable; its integral manifolds are given by S = const,
where S is the entropy [see, e.g., Sneddon (2006, Chap. 1)].

Lemma 4.2 Let α1, . . . , αk be independent 1-forms on M . The distribution D de-
fined by {α1, . . . , αk} is completely integrable in U ⊂ M if there exist k functionally
independent differentiable functions yi defined in U such that

αi = ci
j dyj , (4.14)

where the ci
j are differentiable functions. (Note that the condition that the 1-forms

αi be independent implies that the matrix (ci
j ) be non-singular, that is, invertible.)

Proof The fact that the functions yi be functionally independent implies that the
set N , formed by the points p ∈ U such that yi(p) = ai , where a1, . . . , ak are fixed
real numbers, is a submanifold of M of dimension n − k (see Theorem 1.6). Let vp

be a tangent vector to N at p; then vp[yi] = 0, since at the points of N the yi are
constant. Therefore, using (4.14) and (1.41)

αi
p(vp) = ci

j (p)dy
j
p(vp) = ci

j (p)vp

[
yj
]= 0, (4.15)

that is, vp ∈ Dp . Thus, N is an integral manifold of D . �

In particular, a single 1-form, α, defines a distribution of dimension n − 1 at
the points of M where α does not vanish. According to the preceding lemma, the
distribution given by α is completely integrable if there exists a function, y, such
that

α = ν dy, (4.16)

where ν is some real-valued differentiable function. In the terminology employed
in the textbooks on differential equations, when a linear differential form α is of the
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form (4.16), it is said to be integrable (and one says that 1/ν is an integrating factor
for α).

Theorem 4.3 A 1-form α is locally integrable if and only if

α ∧ dα = 0. (4.17)

(It should be noticed that α ∧ dα is a 3-form and therefore is identically equal to
zero if the dimension of M is one or two.)

Proof If α has the local expression (4.16) then

α ∧ dα = ν dy ∧ (dν ∧ dy) = 0.

Let us assume now that α ∧ dα = 0; and let n = dimM . If n = 1, the assertion
is trivially true since any 1-form has the local expression α = α1 dx1. For n = 2, we
have α = α1 dx1 + α2 dx2. Making use of the functions α1 and α2 we construct the
first-order ODE

dx2

dx1
= −α1

α2
(4.18)

whose general solution must contain an arbitrary constant. Assuming that
F(x1, x2) = const represents the general solution of (4.18), differentiating implic-
itly with respect to x1 and using (4.18), we have

0 = ∂F

∂x1
+ ∂F

∂x2

dx2

dx1
= ∂F

∂x1
− α1

α2

∂F

∂x2
,

thus

dF = ∂F

∂x1
dx1 + ∂F

∂x2
dx2

= α1

α2

∂F

∂x2
dx1 + ∂F

∂x2
dx2

= 1

α2

∂F

∂x2

(
α1 dx1 + α2 dx2),

that is,

α =
(

α2

∂F/∂x2

)
dF.

Therefore, any 1-form in two variables is locally integrable.
Considering now an arbitrary value of n, the 1-form α has the local expression

α = αi dxi . On the submanifold N given by xn = const ≡ (xn)0, α becomes

α̃ =
n−1∑

i=1

α̃i dxi,
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where the real-valued functions α̃i depend only on x1, . . . , xn−1, with (xn)0 as a
parameter (see the example given below). More precisely, α̃ is the pullback of α

under the inclusion mapping i : N → M and, by abuse of notation, we denote by
x1, . . . , xn−1 the restrictions to N (or pullbacks under i) of the coordinates of M .

Since i∗(α ∧ dα) = (i∗α) ∧ d(i∗α) [see (3.25) and (3.38)], the 1-form α̃ satisfies
the condition α̃ ∧ dα̃ = 0; therefore, assuming, by induction, that the proposition
holds for manifolds of dimension n − 1, there exist real-valued functions μ and f

which depend parametrically on (xn)0, with

α̃ = μ
(
x1, . . . , xn−1,

(
xn
)

0

)
df
(
x1, . . . , xn−1,

(
xn
)

0

)
,

therefore, eliminating the restriction on xn,

α = μdf +
(

αn − μ
∂f

∂xn

)
dxn

≡ μdf + b dxn.

Substituting this expression into the equation α ∧ dα = 0 we find that

0 = (
μdf + b dxn

)∧ (
dμ ∧ df + db ∧ dxn

)

= dxn ∧ df ∧ (μdb − b dμ)

= μ2 dxn ∧ df ∧ d

(
b

μ

)
,

which is equivalent to the fact that b/μ is a function of xn and f only, b/μ =
g(xn, f ). Then

α = μ

(
df + b

μ
dxn

)

= μ
(
df + g

(
xn,f

)
dxn

)
. (4.19)

Since df + g(xn, f )dxn is a 1-form in two variables, it is integrable and therefore
α is integrable. �

Example 4.4 Let

α = 2z(y + z)dx − 2xzdy + [
(y + z)2 − x2 − 2xz

]
dz,

where x, y, z are local coordinates of a manifold of dimension three. One can verify
that

dα = 2(x + y + z)dy ∧ dz + 2(x + y + 3z)dz ∧ dx − 4zdx ∧ dy

and that α ∧ dα = 0; therefore, α is integrable, at least locally.
Following the procedure shown in the proof of the foregoing theorem, making

z = const ≡ z0, we obtain the 1-form in two variables

α̃ = 2z0(y + z0)dx − 2xz0 dy.
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Then, equation (4.18) is, in this case, the first-order linear (and also separable) ODE

dy

dx
= y + z0

x
,

whose general solution is given by F(x, y) = (y + z0)/x = const and, as can be
verified directly, α̃ = −2x2z0 dF . Taking now F(x, y, z) = (y + z)/x we find that

α = −2x2zdF + [
(y + z)2 − x2]dz

= −2x2z

{
dF +

[
1

2z
− (y + z)2

2x2z

]
dz

}

= −2x2z

(
dF + 1 − F 2

2z
dz

)

[cf. (4.19)]. The 1-form inside the parentheses in the last equality is, in effect,
a 1-form in two variables, which must be integrable. In this case, we can see di-
rectly that

dF + 1 − F 2

2z
dz = (

1 − F 2)
(

dF

1 − F 2
+ dz

2z

)

= (1 − F)2

2z
d

[
z(1 + F)

1 − F

]
.

Hence,

α = (y + z − x)2 d

[
(y + z + x)z

y + z − x

]
. (4.20)

Going back to the more general case of Lemma 4.2, we can see that a necessary
condition for the existence of the functions yi , appearing in (4.14), is obtained by
applying the exterior derivative d to the relations αi = ci

j dyj . Expressing dyj as

dyj = c̃
j
l α

l , where (c̃
j
l ) is the inverse of the matrix (ci

j ), we have

dαi = d
(
ci
j dyj

)

= dci
j ∧ dyj

= dci
j ∧ (

c̃
j
l α

l
)

= (
c̃
j
l dci

j

)∧ αl

≡ θi
l ∧ αl

with θi
l ∈ Λ1(M), i, l = 1, . . . , k. It turns out that this condition is also sufficient.
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Theorem 4.5 (Frobenius) Let {α1, . . . , αk} be a set of independent 1-forms. In
a neighborhood of each point there exist k independent functions yj such that
αi = ci

j dyj if and only if there exist k2 1-forms, θi
l ∈ Λ1(M), such that

dαi = θi
l ∧ αl. (4.21)

Proof (Sufficiency) If {α1, . . . , αk} is a set of k independent 1-forms on a manifold
of dimension k, the conclusion is trivial, since if (x1, . . . , xk) is any coordinate
system, then, αi = ci

j dxj , where (ci
j ) is a non-singular matrix.

We now consider the case n > k. If (x1, . . . , xn) is a local coordinate system
on M , the k 1-forms αi have the local expressions αi = ai

j dxj . Let us assume that

the 1-forms α̃i ≡∑n−1
j=1 ãi

j dxj , obtained from the αi on setting xn = const ≡ (xn)0,
are independent, which can be achieved by relabeling the coordinates if necessary.
Then the condition (4.21) implies that dα̃i = θ̃ i

l ∧ α̃l , considering xn as a parameter.
(Again, α̃i is the pullback of αi under the inclusion mapping i : N → M , where N is
the submanifold defined by xn = const ≡ (xn)0 and, by abuse of notation, we denote
by x1, . . . , xn−1 the restrictions to N (or pullbacks under i) of the coordinates of M .)

Assuming that the Theorem holds for n−1 dimensions, there exist k independent
functions, yj , which depend parametrically on xn, such that α̃i = bi

j dyj , where (bi
j )

is a non-singular k × k matrix. Hence,

αi = bi
j dyj + ai dxn = bi

j

(
dyj + b̃

j
l a

l dxn
)≡ bi

j

(
dyj + bj dxn

)
, (4.22)

where the ai are functions and (b̃
j
l ) is the inverse of (bi

j ). Substituting the expression

αi = bi
j (dyj + bj dxn) into (4.21), we obtain

d
(
dyi + bi dxn

)= θ ′i
l ∧ (

dyl + bl dxn
)
,

with θ ′i
l ∈ Λ1(M); hence,

dbi ∧ dxn = θ ′i
l ∧ (

dyl + bl dxn
)
. (4.23)

From this equation it follows that

dbi ∧ dxn ∧ dxn = θ ′i
l ∧ (

dyl + bl dxn
)∧ dxn,

and, since dxn ∧ dxn = 0 [see (3.12)],

θ ′i
l ∧ dyl ∧ dxn = 0,

which implies that θ ′i
l = Ai

lm dym +Bi
l dxn, with Ai

lm,Bi
l ∈ C∞(M) and Ai

lm = Ai
ml

(see (3.24) et seq.). Substituting into (4.23) we obtain

dbi ∧ dxn ∧ dy1 ∧ · · · ∧ dyk = θ ′i
l ∧ (

dyl + bl dxn
)∧ dy1 ∧ · · · ∧ dyk = 0,

which means that bi is function of xn, y1, . . . , yk ; bi = bi(xn, y1, . . . , yk).
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Now we consider the system of ODEs made out of the functions bi(xn, y1,

. . . , yk)

dyi

dxn
= −bi

(
xn, y1, . . . , yk

)
, i = 1,2, . . . , k. (4.24)

The general solution of this system must contain k arbitrary constants. Let
y′1, . . . , y′k be independent functions such that y′j (xn, y1, . . . , yk) = const (j =
1,2, . . . , k) is a solution of the system (4.24). Then (by implicit differentiation as
in the proof of Theorem 4.3) one finds that dyi + bi dxn = f i

j dy′j , where (f i
j ) is a

non-singular matrix; therefore we have, finally

αi = bi
jf

j
l dy′l ≡ ci

l dy′l . �

Exercise 4.6 Consider the distribution defined by the 1-forms α1 ≡ dy − zdx,
α2 ≡ dz − F dx, where (x, y, z) are local coordinates of some manifold M , with
F ∈ C∞(M) [cf. (4.11)]. Find explicitly a set of four 1-forms θ1

1 , θ1
2 , θ2

1 , θ2
2 , such

that dαi = θi
j ∧ αj . Hence, the distribution is locally completely integrable; its in-

tegral manifolds are one-dimensional submanifolds of M which represent the solu-
tions of the ODE y′′ = F(x, y, y′). (See, e.g., Example 4.15, below.)

It is convenient to notice that if the relations (4.21) hold, then, for i = 1,2, . . . , k,

α1 ∧ α2 ∧ · · · ∧ αk ∧ dαi = 0 (4.25)

[cf. (4.17)], since, frequently, for a given set of 1-forms {α1, . . . , αk}, it is simpler to
verify that this condition is satisfied than to show the existence of 1-forms θi

j satis-

fying (4.21). Conversely, if the 1-forms α1, . . . , αk satisfy (4.25), then (4.21) holds.
Indeed, locally there exist (n − k) 1-forms αk+1, . . . , αn such that {α1, . . . , αn} is
a basis for the 1-forms on M , hence, for 1 ≤ i ≤ k, dαi = f i

μνα
μ ∧ αν , where μ,ν

range from 1 to n and f i
μν = −f i

νμ are real-valued functions. Substituting this ex-
pression into (4.25) we obtain

∑n
μ,ν=k+1 f i

μνα
1 ∧ · · · ∧ αk ∧ αμ ∧ αν = 0, which

implies that f i
μν = 0 for μ,ν > k, provided that k+2 ≤ n (otherwise all the products

α1 ∧ · · · ∧ αk ∧ αμ ∧ αν are equal to zero); hence,

dαi =
k∑

j,m=1

f i
jmαj ∧ αm + 2

k∑

j=1

n∑

μ=k+1

f i
jμαj ∧ αμ

=
k∑

m=1

(
k∑

j=1

f i
jmαj + 2

n∑

μ=k+1

f i
μmαμ

)

∧ αm,

which is of the form (4.21). (In the cases where k = n or k = n − 1, the conclusion
follows trivially.)



4.2 Distributions and the Frobenius Theorem 79

Example 4.7 Let us consider the set of 1-forms

α1 = (xw − yz)dx − xzdy + x2 dw,

α2 = −z2 dy + (xw − yz)dz + xzdw,
(4.26)

where (x, y, z,w) are local coordinates of a manifold of dimension four. By a direct
calculation one finds that

dα1 = x dx ∧ dw + y dx ∧ dz + x dy ∧ dz,

dα2 = zdx ∧ dw + w dx ∧ dz + zdy ∧ dz.

Whereas it does not seem simple to determine if there exist 1-forms θi
j such that

equations (4.21) are satisfied, it can be seen that

α1 ∧ α2 = (xw − yz)
[−z2 dx ∧ dy + xzdx ∧ dw − xzdy ∧ dz

+ (xw − yz)dx ∧ dz − x2 dz ∧ dw
]
,

hence α1 ∧ α2 ∧ dα1 = 0 = α1 ∧ α2 ∧ dα2, and therefore the distribution given by
α1 and α2 is completely integrable, at least locally.

Following the procedure employed in the proof of the Frobenius Theorem, we
will start from the fact that a system of k 1-forms in k variables is locally com-
pletely integrable in a trivial manner; therefore, in this example, we have to reduce
the number of variables from four to three and, afterwards, from three to two. The
integration process will start, then, with two variables only.

Setting w = w0, z = z0 (constants), the 1-forms α1 and α2 reduce to the 1-forms
in two variables, denoted by ᾱ1 and ᾱ2, that in matrix form are expressed as

(
ᾱ1

ᾱ2

)

=
(

xw0 − yz0 −xz0

0 −z0
2

)(
dx

dy

)

. (4.27)

(This is already of the form αi = ci
j dyj .) With the aid of the matrix

−1

z0
2(xw0 − yz0)

(−z0
2 xz0

0 xw0 − yz0

)

,

which is the inverse of the 2 × 2 matrix appearing in (4.27), we find that, when only
w is kept constant (denoting by α̃1, α̃2 the corresponding forms), we have

(
α̃1

α̃2

)

=
(

xw0 − yz −xz

0 −z2

)(
dx − x

z
dz

dy − xw0−yz

z2 dz

)

(4.28)

[see (4.22)].
In order to express the column on the right-hand side of the foregoing equation

in terms of the differentials of two functions only, we now consider the auxiliary
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system [cf. (4.24)]

dx

dz
= x

z
,

dy

dz
= xw0 − yz

z2
.

The solution of the first equation is x = c1z, where c1 is a constant, and using this
expression in the second one we obtain the linear equation

dy

dz
+ y

z
= c1w0

z
,

whose solution is yz = c1w0z + c2, where c2 is a constant. Hence, the solution of
the system is given by u = const, v = const, where

u ≡ x

z
, v ≡ yz − xw0.

In fact, the 1-forms in the column on the right-hand side of (4.28) are

dx − x

z
dz = zdu, dy − xw0 − yz

z2
dz = w0 du + 1

z
dv,

then, substituting into (4.28),
(

α̃1

α̃2

)

=
(

xw0 − yz −xz

0 −z2

)(
z 0

w0
1
z

)(
du

dv

)

=
( −yz2 −x

−z2w0 −z

)(
du

dv

)

.

Finally, eliminating the condition that w be a constant, one finds that the original
1-forms are given by

(
α1

α2

)

=
(−yz2 −x

−z2w −z

)(
du

dv

)

,

without the presence, in this case, of additional terms. This final expression is of
the form (4.14) and the integral manifolds of the distribution defined by the 1-forms
(4.26) are locally given by x/z = const, yz − xw = const

The constraints of a mechanical system given by a set of 1-forms α1, . . . , αk

are holonomic if the distribution defined by {α1, . . . , αk} is completely integrable.
Otherwise, the constraints are non-holonomic.

Exercise 4.8 Show that the constraints (4.13), as well as those of a disk rolling on
a plane, are non-holonomic.
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Even though the distribution defined by the two 1-forms (4.13) is not completely
integrable, there exist one-dimensional integral manifolds of the distribution; a sim-
ple example is given by the curve C∗x = const, C∗y = at , C∗φ = 0, C∗θ = −t ,
C∗ψ = const, which therefore represents a possible motion of the sphere. The fact
that the distribution is not completely integrable means that it does not have three-
dimensional integral manifolds.

Involutive Distributions Given a distribution D , we shall denote by VD the set
of vector fields X such that Xp ∈ Dp for all p ∈ M ; one finds that if X,Y ∈ VD ,
then aX + bY and f X also belong to VD for any a, b ∈ R and any real-valued
differentiable function f . That is, VD is a submodule of X(M). Conversely, if B

is a submodule of X(M) such that Dp ≡ {Xp | X ∈ B} has dimension l for all p,
then D is a distribution of dimension l; we say that the distribution D is involutive
if [X,Y] ∈ VD for all X,Y ∈ VD .

For a distribution D defined by k independent 1-forms {α1, . . . , αk}, VD is
formed by the vector fields X such that αi(X) = 0, i = 1,2, . . . , k. If there exist
1-forms θi

l such that dαi = θi
l ∧αl [see (4.21)], then the distribution D is involutive

since, if X,Y ∈ VD , using the definition (3.30) we have

2 dαi(X,Y) = X
(
αi(Y)

)− Y
(
αi(X)

)− αi
([X,Y])

= −αi
([X,Y]).

On the other hand, from (3.7)

2 dαi(X,Y) = 2
(
θi
l ∧ αl

)
(X,Y)

= θi
l (X)αl(Y) − θi

l (Y)αl(X) = 0;

therefore, αi([X,Y]) = 0, that is, [X,Y] ∈ VD .
Conversely, given an involutive distribution, D , let X1, . . . ,Xl be independent

vector fields such that {X1p, . . . ,Xlp} is basis of Dp . If Xl+1, . . . ,Xn are n − l

vector fields such that {X1, . . . ,Xn} is a basis of X(M) and denoting by {α1, . . . , αn}
its dual basis, the distribution D is defined by the 1-forms {αl+1, . . . , αn}; that is,
Dp = {vp ∈ TpM | αi

p(vp) = 0, i = l + 1, . . . , n}.
Since D is involutive, for i > l and 1 ≤ j,m ≤ l, we have

2 dαi(Xj ,Xm) = Xj

(
αi(Xm)

)− Xm

(
αi(Xj )

)− αi
([Xj ,Xm])

= −αi
([Xj ,Xm])= 0,

which, substituted into the identity

dαi = [
dαi(Xj ,Xm)

]
αj ∧ αm = 2

∑

j<m

[
dαi(Xj ,Xm)

]
αj ∧ αm,
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yields, for i > l,

dαi = 2
∑

j < m
m > l

[
dαi(Xj ,Xm)

]
αj ∧ αm

=
∑

m>l

[
2
∑

j<m

dαi(Xj ,Xm)αj

]
∧ αm

≡
n∑

m=l+1

θi
m ∧ αm,

which means that the distribution is completely integrable. Putting together the fore-
going results, the Frobenius Theorem can be expressed in the following form.

Theorem 4.9 Let D be a distribution on M . The distribution D is completely inte-
grable in a neighborhood of each point if and only if D is involutive.

The l-dimensional integral manifolds of a completely integrable distribution of
dimension l defined by the l independent vector fields X1, . . . ,Xl are locally given
by yi = const, i = 1,2, . . . , n − l, where the yi are n − l functionally independent
solutions of the l linear PDEs

Xiy
j = 0, i = 1,2, . . . , l; j = 1,2, . . . , n − l. (4.29)

It may be noticed that these equations imply that [Xi ,Xj ]ym = 0, for i, j =
1,2, . . . , l, m = 1,2, . . . , n − l. On the other hand, any vector field Z such that
Zyj = 0 for j = 1,2, . . . , n − l must be a linear combination of the Xi , and there-
fore the Lie brackets [Xi ,Xj ] must be linear combinations of the Xs , which amounts
to saying that the distribution must be involutive, as we already knew. The Frobenius
Theorem ensures that the converse is also true; that is, if the distribution defined by
the l vector fields X1, . . . ,Xl is involutive, then there exist locally n− l functionally
independent solutions yj of (4.29), and the l-dimensional integral manifolds of the
distribution are given by yj = const.

Note that any distribution D of dimension one is involutive and, therefore, com-
pletely integrable, for if X is a vector field that at each point generates Dp , then
any pair of vector fields Y,Z ∈ VD is of the form Y = f X and Z = gX [with
f,g ∈ C∞(M)] and therefore

[Y,Z] = [f X, gX] = (
f (Xg) − g(Xf )

)
X ∈ VD .

The integral manifolds of D are the images of the integral curves of X. For ex-
ample, one finds that all the vector fields satisfying the condition αi(X) = 0 for
the two 1-forms (4.11) are of the form f (∂/∂x + z ∂/∂y + F ∂/∂z), where f is an
arbitrary real-valued function. Thus, the integral manifolds of the distribution de-
fined by these two 1-forms are the images of the integral curves of the vector field
∂/∂x + z ∂/∂y + F ∂/∂z.
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Exercise 4.10 Let ω ∈ Λ2(M) and let Dp ≡ {vp ∈ TpM | vp ωp = 0}. Show that
if there exists a θ ∈ Λ1(M) such that dω = θ ∧ ω, then D is completely integrable.

4.3 Symmetries and Integrating Factors

In the previous section we have seen how to find, in principle, the integral manifolds
of a completely integrable distribution. In this section we shall show how the knowl-
edge of one-parameter groups of symmetries of a distribution allows us to find its
integral manifolds.

Let ϕt be a (possibly local) one-parameter group of transformations on M and
let α be a 1-form on M . We shall say that α is invariant under ϕt if for each value
of t in the domain of ϕt there exists some function different from zero, χt , such that

ϕt
∗α = χtα. (4.30)

Then, ϕt maps each integral manifold of α into another integral manifold. For in-
stance, the one-parameter group of transformations on R

n given by ϕt (x
1, . . . , xn) =

et (x1, . . . , xn), i.e., ϕt
∗xi = et xi , leaves invariant any 1-form α = αi dxi whose

components are homogeneous functions of the same degree k [that is,
αi(λx1, . . . , λxn) = λkαi(x

1, . . . , xn)] since

ϕt
∗(αi dxi

)= e(k+1)tαi dxi.

Condition (4.30) implies that £Xα = να, where X is the infinitesimal generator of ϕ

and ν is the partial derivative of χt with respect to t , evaluated at t = 0.
On the other hand, applying the relation (3.39) and the properties (3.27) and

(3.23) we find that, for X ∈X(M) and α ∈ Λ1(M),

α ∧ £Xα = α ∧ [
X dα + d(X α)

]

= −X (α ∧ dα) + (X α)dα − d(X α) ∧ α

= −X (α ∧ dα) + (X α)2 d
[
(X α)−1α

]
,

where we have assumed that X α is different from zero; therefore if α is integrable
(which, according to Theorem 4.3, implies that α ∧ dα = 0), then

d
[
(X α)−1α

]= (X α)−2 α ∧ £Xα,

thus showing that (X α)−1 is an integrating factor of α if and only if X is the
infinitesimal generator of a (possibly local) one-parameter group of transformations
that leaves α invariant.

Hence, if an integrable 1-form, α, is invariant under the group generated by X
and X α �= 0, then there exists locally a function y such that

α = (X α)dy. (4.31)
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This result implies that a nonzero integrable 1-form on a manifold of dimension
greater than or equal to two possesses an infinite number of symmetries. For in-
stance, if X is the infinitesimal generator of a one-parameter group of transforma-
tions that leaves α invariant and Y is any vector field such that Y α = 0, then
[(X + Y) α]−1 = (X α)−1 is an integrating factor of α, and therefore X + Y is
the infinitesimal generator of another one-parameter group of transformations that
leaves α invariant.

Example 4.11 Since the components of the 1-form

α = 2z(y + z)dx − 2xzdy + [
(y + z)2 − x2 − 2xz

]
dz,

considered in Example 4.4, are homogeneous functions of degree 2, this 1-form is
invariant under the one-parameter group of transformations given by ϕt (x, y, z) =
et (x, y, z), whose infinitesimal generator is X = x ∂/∂x + y ∂/∂y + z ∂/∂z. Hence,
an integrating factor for this 1-form is given by

(X α)−1 = 1

z[(y + z)2 − x2]
and, in effect, one finds that

1

z[(y + z)2 − x2] α = d ln

∣∣∣∣
(y + z + x)z

y + z − x

∣∣∣∣

[cf. (4.20)].

Example 4.12 Another way of finding an integrating factor for the 1-form α con-
sidered in Example 4.11 consists of using a coordinate system adapted to the vector
field X = x ∂/∂x + y ∂/∂y + z ∂/∂z, which generates a symmetry of α.

Following the steps given in Example 4.1, or by inspection, one finds that y/x

and z/x are constant along the integral curves of X [i.e., X(y/x) = 0 = X(z/x)] and
that X ln |x| = 1; hence, in terms of the coordinates (u, v,w) defined by

u ≡ y

x
, v ≡ z

x
, w ≡ lnx,

we have X = ∂/∂w. In terms of the new coordinates, the 1-form α is given by

α = 2e2wv(u + v)dew − 2ewv d
(
uew

)+ e2w
[
(u + v)2 − 1 − 2v

]
d
(
vew

)

= ew
{[

(u + v)2v − v
]

dw − 2v du + [
(u + v)2 − 1 − 2v

]
dv
}

= e3wv
[
(u + v)2 − 1

][
dw + dv

v
− 2 d(u + v)

(u + v)2 − 1

]

= e3wv
[
(u + v)2 − 1

]
d

(
w + ln |v| + ln

∣∣∣
∣
u + v + 1

u + v − 1

∣∣∣
∣

)
,
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hence

α = z
[
(y + z)2 − x2]d ln

∣∣∣∣
(y + z + x)z

y + z − x

∣∣∣∣,

which coincides with the expression obtained above. (It should be pointed out, how-
ever, that if there exists an integrating factor for a 1-form α, then there exists an
infinite number of integrating factors.)

Exercise 4.13 Show that the 1-form α = αi dxi is invariant under the one-parameter
group of transformations generated by X = ∂/∂x1 if and only if (assuming α1 �= 0)

∂

∂x1

(
αi

α1

)
= 0 (i = 2,3, . . . , n).

If X = ∂/∂x1 generates a one-parameter group of transformations that leaves invari-
ant the 1-form α = αi dxi , then α1 = X α is an integrating factor of α. This means
that locally there exists a function y such that

α = α1

(

dx1 +
n∑

i=2

αi

α1
dxi

)

= α1 dy

(cf. Example 4.12).

In a more general way, the set of 1-forms α1, . . . , αk is invariant under a (possibly
local) one-parameter group of transformations, ϕ, if there exist k2 functions Λi

j such
that

ϕt
∗αi = Λi

jα
j ; (4.32)

therefore, there exist functions Ni
j such that

£Xαi = Ni
jα

j , (4.33)

where X is the infinitesimal generator of ϕ and Ni
j is the partial derivative with

respect to t of Λi
j at t = 0.

If the system is completely integrable, then there exist k2 functions ci
j such that

αi = ci
j dyj (4.34)

[cf. (4.14)]. By analogy with (4.31), the functions ci
j can be expressed in the form

ci
j = Xj αi, (4.35)

in terms of k vector fields X1, . . . ,Xk , which, however, are not uniquely deter-
mined by these relations. Combining (4.34) and (4.35) one finds that ci

j = Xj αi =
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ci
m(Xj y

m), which implies that

Xj y
m = δm

j . (4.36)

Hence, [Xi ,Xj ]ym = 0 or, by virtue of (4.34),

[Xi ,Xj ] αm = 0 (i, j,m = 1,2, . . . , k). (4.37)

Using several properties of the Lie derivative [(2.23), (2.38), and (2.39)] from
(4.34) and (4.36) one finds that

£Xj
αi = £Xj

(
ci
mdym

)

= (
Xj c

i
m

)
dym + ci

m d
(
Xj y

m
)

= (
Xj c

i
m

)
c̃m
r αr .

Comparing with (4.33), one concludes that each of the k vector fields Xj defined
by (4.35) is the infinitesimal generator of a one-parameter group of transformations
that leaves invariant the system α1, . . . , αk . Now, we shall show that the converse is
also true.

Theorem 4.14 Let α1, . . . , αk be a set of independent 1-forms that define a com-
pletely integrable distribution. Let X1, . . . ,Xk be vector fields that generate non-
trivial symmetries of the distribution, i.e., the matrix (ci

j ) with ci
j ≡ Xj αi is non-

singular, and let them satisfy the additional conditions [Xi ,Xj ] αm = 0. Then,
locally, αi = ci

j dyj , where y1, . . . , yk are real-valued functions.

Proof According to the hypotheses, there exists a set of 1-forms θi
j such that dαi =

θi
j ∧ αj and

£Xm
αr = Xm dαr + d

(
Xm αr

)

= Xm

(
θr
s ∧ αs

)+ dcr
m

= (
Xm θr

s

)
αs − cs

mθr
s + dcr

m

= Nr
msα

s, (4.38)

for some real-valued functions Nr
ms [cf. (4.33)]. The conditions [Xm,Xj ] αr = 0

amount to

0 = (£Xm
Xj ) αr = £Xm

(
Xj αr

)− Xj

(
£Xm

αr
)

= Xmcr
j − Xj Nr

msα
s = Xmcr

j − Nr
msc

s
j ,

hence

Nr
ms = c̃

j
s Xmcr

j , (4.39)
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where (c̃i
j ) is the inverse of the matrix (ci

j ). Thus, making use of (4.38) and (4.39)

d
(
c̃i
j α

j
) = dc̃i

j ∧ αj + c̃i
j dαj

= −c̃i
r c̃

m
j dcr

m ∧ αj + c̃i
j θ

j
m ∧ αm

= −c̃i
r c̃

m
j

[
Nr

msα
s − (

Xm θr
s

)
αs + cs

mθr
s

]∧ αj + c̃i
j θ

j
m ∧ αm

= −c̃i
r c̃

m
j

(
c̃l
s Xmcr

l − Xm θr
s

)
αs ∧ αj

= −c̃i
r c̃

m
j c̃l

s

(
Xmcr

l − c
p
l Xm θr

p

)
αs ∧ αj . (4.40)

On the other hand, from (3.30), we have

2 dαr(Xm,Xl ) = Xm

(
Xl αr

)− Xl

(
Xm αr

)− [Xm,Xl] αr = Xmcr
l − Xlc

r
m,

which must coincide with [see (3.7)]

2 dαr(Xm,Xl ) = 2
(
θr
p ∧ αp

)
(Xm,Xl) = c

p
l Xm θr

p − c
p
m Xl θ r

p.

Thus, the expression inside the parentheses in (4.40) is symmetric in the subscripts
m, l,

Xmcr
l − c

p
l Xm θr

p = Xlc
r
m − c

p
m Xl θ r

p,

and therefore, by virtue of the skew-symmetry of the exterior product αs ∧ αj , we
find that d(c̃i

j α
j ) = 0. �

Example 4.15 The distribution defined by the two 1-forms

α1 = dy − zdx, α2 = dz − (x − y)z3 dx,

is invariant under the one-parameter groups generated by Stephani (1989, Sect. 7.5)

X1 = ∂

∂x
+ ∂

∂y
, X2 = (x − y)

∂

∂x
+ z(z − 1)

∂

∂z
.

A direct computation shows that [X1,X2] = 0 and

(
ci
j

)= (
Xj αi

)=
(

1 − z −(x − y)z

−(x − y)z3 z(z − 1) − (x − y)2z3

)

.

Hence det(ci
j ) = −z[(z−1)2 + (x −y)2z2] and therefore, except at the points where

z = 0 or on the line x = y, z = 1, the conditions of Theorem 4.14 are satisfied.
A straightforward computation yields

(
c̃i
j

)= 1

z[(z − 1)2 + (x − y)2z2]

(
(x − y)2z3 − z(z − 1) −(x − y)z

−(x − y)z3 z − 1

)

.
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As shown in Theorem 4.14, the 1-forms c̃i
j α

j must be, locally, exact; indeed, we
find

c̃1
jα

j = 1

z[(z − 1)2 + (x − y)2z2]
× {

z2(z − 1)dx + [
(x − y)z3 − z(z − 1)

]
dy − (x − y)zdz

}

= 1

(z − 1)2 + (x − y)2z2

× [
z(z − 1)d(x − y) + (z − 1)2 dy + (x − y)2z2 dy − (x − y)dz

]

= d

[
y + arctan

(x − y)z

z − 1

]

and

c̃2
jα

j = 1

z[(z − 1)2 + (x − y)2z2]
[
(x − y)z3 dx − (x − y)z3 dy + (z − 1)dz

]

= z2

(z − 1)2 + (x − y)2z2

[
(x − y)d(x − y) + z − 1

z3
dz

]

= 1

2
d ln

[(
1 − 1

z

)2

+ (x − y)2
]
.

Thus, the integral manifolds of the distribution are given by

y + arctan
(x − y)z

z − 1
= const,

(
1 − 1

z

)2

+ (x − y)2 = const. (4.41)

Symmetries of a Second-Order Ordinary Differential Equation The results
derived above can be applied to the specific case of a second-order ODE.

The second-order ODE

d2y

dx2
= F(x, y,dy/dx) (4.42)

is equivalent to the system of first-order ODEs

dx

dt
= 1,

dy

dt
= z,

dz

dt
= F(x, y, z),

which, as shown in Sect. 2.1, determines the integral curves of the vector field

A = ∂

∂x
+ z

∂

∂y
+ F(x, y, z)

∂

∂z
(4.43)

on a manifold M with local coordinates (x, y, z).
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The vector field A is the only vector field on M that satisfies

A αi = 0, Ax = 1, (4.44)

where

α1 ≡ dy − zdx, α2 ≡ dz − F(x, y, z)dx. (4.45)

From the equation (£XA) αi = £X(A αi) − A (£Xαi) = −A (£Xαi) it follows
that the set formed by the two 1-forms α1 and α2 is invariant under the group gen-
erated by a vector field X if and only if

[X,A] = λA (4.46)

(that is, £XA = λA), for some real-valued function λ.
In some cases it is possible to find by inspection symmetry groups of a sys-

tem of the form (4.45). For instance, the 1-forms dy − zdx and dz − (3xz3/y2)dx

transform into multiples of themselves when x, y, z are replaced by ax, a−2y,
a−3z, for a ∈ R. This means that the system (4.45) with F(x, y, z) = 3xz3/y2

(which corresponds to the second-order equation y2y′′ = 3xy′3) is invariant un-
der the one-parameter group of transformations ϕt (x, y, z) = (et x, e−2t y, e−3t z),
whose infinitesimal generator is X = x ∂/∂x − 2y ∂/∂y − 3z ∂/∂z.

Writing

X = ξ
∂

∂x
+ η

∂

∂y
+ ζ

∂

∂z
, (4.47)

one finds that (4.46) amounts to two PDEs (for the functions ξ , η, and ζ ) whose so-
lution is difficult to obtain. However, by imposing the condition that the functions ξ

and η depend only on x and y (which corresponds to the so-called Lie point symme-
tries), a straightforward computation shows that the condition (4.46) is equivalent
to

ζ = ηx + z(ηy − ξx) − z2ξy (4.48)

where the subscripts denote partial differentiation [cf. (2.21)] and

ξFx + ηFy + ζFz = ζx + zζy + Fζz − (ξx + zξy)F (4.49)

[cf. (2.41)]. Substituting the relation (4.48) into (4.49), in order to eliminate ζ , one
obtains a PDE for the two functions of two variables ξ and η [see also Hydon (2000,
Sect. 3.2)].

Knowing one or several symmetry groups of the system (4.45) allows us to find
the solutions of the ODE (4.42). For instance, if we have two suitable symme-
tries satisfying the conditions of Theorem 4.14, we can readily find the solutions
of (4.42). Nevertheless, if we know only one vector field X that generates a nontriv-
ial symmetry group of (4.45) (that is, X satisfies (4.46) but is not proportional to A),
we can calculate the 1-form

β ≡ X
(
α1 ∧ α2) (4.50)
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which is proportional to the differential of a first integral of (4.42), that is, β = μdχ ,
where μ is some function and Aχ = 0. (If X is proportional to A, then β is equal to
zero.)

In order to demonstrate the preceding assertion it may be noticed that from (4.45)
we have

d
(
α1 ∧ α2)= Fz dx ∧ (

α1 ∧ α2)

(cf. Exercise 4.10), and from (4.33) it follows that

£X
(
α1 ∧ α2)= (

N1
1 + N2

2

)
α1 ∧ α2.

Hence, using (3.39) and the previous relations,

dβ = d
[
X

(
α1 ∧ α2)]

= £X
(
α1 ∧ α2)− X d

(
α1 ∧ α2)

= (
N1

1 + N2
2

)
α1 ∧ α2 − X

[
Fz dx ∧ (

α1 ∧ α2)]

= (
N1

1 + N2
2

)
α1 ∧ α2 − Fz(X dx) ∧ (

α1 ∧ α2)+ Fz dx ∧ β.

On the other hand, from (4.50) it follows that β is a combination of α1 and α2,
therefore β ∧ dβ = 0, which is equivalent to the local existence of two functions
μ and χ such that β = μdχ (Theorem 4.3). Thus, from (4.50) and (4.44) we have
A β = A (X (α1 ∧ α2)) = −X (A (α1 ∧ α2)) = 0, i.e., A (μdχ) = μAχ = 0,
as claimed above.

The condition Aχ = 0 means that each integral curve of A is contained in some
surface χ = const (that is, in one of the level surfaces of χ ). The definition (4.50)
and the expression β = μdχ give (X α1)α2 − (X α2)α1 = μdχ , therefore on
a surface χ = const, one of the 1-forms αi is proportional to the other, hence on
the submanifold χ = const, any nonzero 1-form, γ , combination of the αi , is inte-
grable because it is a 1-form on a manifold of dimension two. As in the case of β ,
the 1-form γ is proportional to the differential of a first integral of (4.42) (since
A αi = 0), which is functionally independent of χ and these two first integrals give
the integral curves of A or, equivalently, the solutions of (4.42).

Example 4.16 The second-order ODE y′′ = (x − y)y′3 corresponds to the system
of 1-forms

α1 = dy − zdx, α2 = dz − (x − y)z3 dx,

which is invariant under the one-parameter group of translations ϕt (x, y, z) =
(x + t, y + t, z), whose infinitesimal generator is X = ∂/∂x + ∂/∂y. The 1-form
(4.50) is in this case

X
(
α1 ∧ α2)= (1 − z)dz − (x − y)z3(dx − dy),
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which is indeed integrable and is equivalent to

−z3

2
d

[
(x − y)2 + 1

z2
− 2

z

]
= −z3

2
d

[
(x − y)2 +

(
1

z
− 1

)2]
.

Hence, we can take χ = (x − y)2 + ( 1
z

− 1)2.

On the surface χ = const we have 1/z = 1 ± √
c2 − (x − y)2, where we have

denoted by c2 the value of that constant, and on that surface, the 1-form α1 becomes

dy − dx

1 ±√
c2 − (x − y)2

= ±√c2 − (x − y)2

1 ±√
c2 − (x − y)2

[
dy ∓ d(x − y)

√
c2 − (x − y)2

]

= ±√c2 − (x − y)2

1 ±√
c2 − (x − y)2

d

[
y ∓ arcsin

(
x − y

c

)]
.

Hence, y ∓ arcsin(
x−y

c
) is another first integral of the equation, and therefore the

solution is implicitly given by y ∓ arcsin(
x−y

c
) = const.

The set of 1-forms considered in this example is the one already studied in Exam-
ple 4.15. One can verify that, by eliminating z from (4.41), one obtains the solution
given above.

An alternative procedure, applicable in the case where the symmetry is a Lie
point symmetry, consists of using the rectification lemma in order to find a new
coordinate system. This coordinate system frequently is denoted by (r, s), instead of
(x, y), and it is such that the vector field ξ ∂/∂x+η ∂/∂y takes the form ∂/∂r (which
amounts to say that, in the new coordinates, ξ is equal to 1 and η is equal to 0). In
that manner, from (4.48) one finds that ζ becomes equal to 0, while (4.49) reduces
to Fr = 0. As is well known, when F does not depend on one of the variables, the
order of the equation can be reduced.

Example 4.17 The vector field X = ∂/∂x + ∂/∂y employed in Example 4.16 corre-
sponds to a Lie point symmetry [i.e., it is of the form (4.47) with ζ given by (4.48)]
and a coordinate system adapted to X is (r, s,w) with

r = x, s = x − y, w = z

(in the sense that Xx = 1, X(x − y) = 0, and Xz = 0; hence, in the new coordinate
system, X = ∂/∂r). In terms of these coordinates, the ODE y′′ = (x − y)y′3 takes
the form d2s/d2r = s(ds/dr − 1)3, which does not contain the variable r . Hence,
using the standard procedures, this last equation can be transformed into a first-order
ODE, and finally one obtains the solution given above.



Chapter 5
Connections

5.1 Covariant Differentiation

The tangent space, TxM , to a differentiable manifold M at a point x is a vector
space different from the tangent space to M at any other point y, TyM . In general,
there is no natural way of relating TxM with TyM if x �= y. This means that if v and
w are two tangent vectors to M at two different points, e.g., v ∈ TxM and w ∈ TyM ,
there is no natural way to compare or to combine them. However, in many cases it
will be possible to define the parallel transport of a tangent vector from one point
to another point of the manifold along a curve. Once this concept has been defined,
it will be possible to determine the directional derivatives of any vector field on M ;
conversely, if we know the directional derivatives of an arbitrary vector field, the
parallel transport of a vector along any curve in M is determined.

A connection, ∇ , on M , is a rule to calculate the directional derivatives of the
vector fields on M . If X and Y are two vector fields, ∇XY denotes the vector field
whose value at each point x ∈ M is equal to the directional derivative of Y in the
direction of Xx . In the following definition we copy the properties of the directional
derivative of vector fields in R

n.

Definition 5.1 Let M be a differentiable manifold. A connection on M assigns to
each X ∈ X(M) an operator ∇X from X(M) into itself, such that for all X,Y,Z ∈
X(M), a, b ∈R, and f ∈ C∞(M),

∇X(aY + bZ) = a∇XY + b∇XZ,

∇X(f Y) = f ∇XY + (Xf )Y,

∇aX+bYZ = a∇XZ + b∇YZ,

∇f XY = f ∇XY.

The vector field ∇XY is called the covariant derivative of Y with respect to X.

If (x1, x2, . . . , xn) is a coordinate system in some neighborhood, U , of M ,
any pair of vector fields X,Y can be expressed in the form X = Xi(∂/∂xi),

G.F. Torres del Castillo, Differentiable Manifolds,
DOI 10.1007/978-0-8176-8271-2_5, © Springer Science+Business Media, LLC 2012

93
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Y = Y j (∂/∂xj ). Using the properties established in the definition it follows that

∇XY = ∇Xi(∂/∂xi )

(
Y j ∂

∂xj

)

= Xi∇∂/∂xi

(
Y j ∂

∂xj

)

= Xi

[(
∂Y j

∂xi

)
∂

∂xj
+ Y j∇∂/∂xi

∂

∂xj

]
.

The covariant derivatives ∇∂/∂xi (∂/∂xj ) must be differentiable vector fields, which
implies the existence of n3 differentiable real-valued functions on U , Γ k

ji , such that

∇∂/∂xi

∂

∂xj
≡ Γ k

ji

∂

∂xk
. (5.1)

This set of functions characterizes the connection ∇ in the coordinate system cho-
sen, since

∇XY = Xi

[(
∂Y j

∂xi

)
∂

∂xj
+ Y jΓ k

ji

∂

∂xk

]

= Xi

(
∂Y k

∂xi
+ Γ k

jiY
j

)
∂

∂xk
. (5.2)

This formula shows that in order to calculate (∇XY)x , the value of ∇XY at a point
x ∈ M , we only need to know the value of X at that point (since only the com-
ponents of X appear in (5.2), but not their partial derivatives) and the values of
Y in a neighborhood of x at the points of some curve to which Xx is tangent
(since the partial derivatives of the components Y k only appear in the combination
Xi(x)(∂/∂xi)xY

k = Xx[Y k]). Hence it makes sense to define the covariant deriva-
tive of a vector field Y with respect to a tangent vector vx ∈ TxM as the value at x of
the covariant derivative of Y with respect to a vector field X such that Xx = vx . The
expressions ∂Y k/∂xi + Γ k

jiY
j , appearing in (5.2), are the components of a tensor

field [of type ( 1
1)] traditionally denoted by Y k ;i and also by ∇iY

k .

Exercise 5.2 Show that if (x1, . . . , xn) and (x′1, . . . , x′n) are two systems of coor-
dinates on M , then the relation

Γ
′p
sr = ∂xi

∂x′r
∂xj

∂x′s
∂x′p

∂xk
Γ k

ji + ∂x′p

∂xk

∂2xk

∂x′r∂x′s , (5.3)

holds in the intersection of the domains of the two charts.

If a given manifold M can be covered by a single coordinate system (x1, . . . , xn)

(as in the case of R
n with its natural coordinates), a connection can be defined
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by simply choosing n3 arbitrary differentiable functions, Γ i
jk , by means of (5.1)

(see Examples 5.4 and 5.5), but if {(Ui,φi)} is a subatlas of M with more than
one coordinate chart, the functions Γ i

jk for each chart have to be related according
to (5.3). As shown in the following chapter and in Appendix B, when a manifold
has a metric tensor or the structure of a Lie group, there exists a naturally induced
connection on the manifold.

Parallel Transport Let C : I → M be a differentiable curve. If Y is a vector field
defined on the image of C, then its covariant derivative along C, ∇C′Y, is the vector
field on C such that (∇C′Y)C(t) = ∇C′

t
Y for t ∈ I .

Definition 5.3 A vector field is parallel (to itself) along C if ∇C′Y = 0 and a curve
C is a geodesic if ∇C′C′ = 0.

Since

C′
t = d(xi ◦ C)

dt

(
∂

∂xi

)

C(t)

[see (1.20)], making use of (5.2) we have

∇C′(t)Y = d(xi ◦ C)

dt

(
∂Y k

∂xi
+ Γ k

jiY
j

)∣∣∣∣
C(t)

(
∂

∂xk

)

C(t)

=
(

C′
t

[
Y k
]+ d(xi ◦ C)

dt
Γ k

jiY
j

)∣∣∣∣
C(t)

(
∂

∂xk

)

C(t)

;

hence, Y is parallel along C if and only if its components satisfy the system of ODEs

d(Y k ◦ C)

dt
+ d(xi ◦ C)

dt

(
Γ k

ji ◦ C
)(

Y j ◦ C
)= 0. (5.4)

For a given a curve C : I → M , these equations for Y k ◦C are linear; therefore there
exists a unique solution defined on I for any initial condition Y(C(t0)) (see Fig. 5.1).
Furthermore, the map Pt,t0 : TC(t0)M → TC(t)M , defined by Pt,t0(Y0) = Y(C(t)),
where Y is parallel along C and Y(C(t0)) = Y0, is an isomorphism (Hochstadt
1964, Sect. 2.8) called parallel transport along of C from C(t0) to C(t).

Example 5.4 Consider the connection on R
2 defined by Γ 1

12 = 1 and the other
Γ i

jk equal to zero, with respect to the basis associated with the natural coordinates

(x1, x2) = (x, y). The equations for the parallel transport of a vector field (5.4) are

dY 1

dt
+ dy

dt
Y 1 = 0,

dY 2

dt
= 0,

where, by abuse of notation, we have written Y 1, Y 2, and y, in place of Y 1 ◦ C,
Y 2 ◦ C, and y ◦ C, respectively. From the second of these equations it follows that
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Fig. 5.1 The tangent vector Y0 is transported along the curve C

Y 2 is constant along any curve, whereas the first equation implies that Y 1ey is a
constant; hence, under the parallel transport of a vector field Y along a curve C

from C(t0) to C(t), the components of Y with respect to the natural basis {∂/∂xi}
are related by means of

(
Y 1(C(t))

Y 2(C(t))

)

=
(

ey(C(t))−y(C(t0)) 0

0 1

)(
Y 1(C(t0))

Y 2(C(t0))

)

.

The 2 × 2 matrix appearing in this last relation represents the isomorphism Pt,t0

mentioned above. In this example, the vector obtained by means of the parallel
transport depends on the coordinates of the end-points C(t0) and C(t), but not on
the intermediate points. This is equivalent to the fact that under the parallel transport
of an arbitrary vector along any closed curve one obtains the vector originally given
at the initial point of the curve. (As we shall see, this corresponds to the fact that
the curvature, defined in the following section, of the connection considered in this
example is equal to zero.) (See Example 5.18.)

Example 5.5 Let us consider now the connection on M = {(x, y) ∈ R
2 |y > 0}

given by Γ 1
12 = Γ 1

21 = Γ 2
22 = −1/y = −Γ 2

11, with the other Γ i
jk being equal to zero.

Equations (5.4) read

dY 1

dt
− 1

y

(
dx

dt
Y 2 + dy

dt
Y 1
)

= 0,
dY 2

dt
+ 1

y

(
dx

dt
Y 1 − dy

dt
Y 2
)

= 0. (5.5)

This system can readily be solved employing the complex combination Y 1 + iY 2,
in terms of which we have

d(Y 1 + iY 2)

dt
= 1

y

(
dy

dt
− i

dx

dt

)(
Y 1 + iY 2),

and therefore
(

Y 1 + iY 2

y

)(
C(t)

)=
(

Y 1 + iY 2

y

)(
C(t0)

)
exp

(
−i
∫ t

t0

1

y(t)

dx

dt
dt

)
,

which means that the isomorphism Pt,t0 defined above is represented by
(

Y 1(C(t))

Y 2(C(t))

)

= y(C(t))

y(C(t0))

(
cosΘ − sinΘ

sinΘ cosΘ

)(
Y 1(C(t0))

Y 2(C(t0))

)

(5.6)
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with

Θ ≡ −
∫ t

t0

1

y(C(t))

d(x ◦ C)

dt
dt.

(It should be clear that the use of complex variables is not essential, but only a
convenience; one can verify directly that (5.6) is the solution of the system (5.5).)

Since Θ is the line integral of y−1 dx, which is not an exact 1-form, Θ not only
depends on the end-points of the curve, but on the entire (image of the) curve itself.
This fact is equivalent to that after the parallel transport of a vector along a closed
curve, the final vector may not coincide with the original one (see Example 1.28).
Indeed, if C is a simple closed curve, using Green’s theorem one finds that the angle
Θ can also be expressed as the surface integral − ∫∫

D
dx dy

y2 , where D is the region
enclosed by C. For a closed curve, (5.6) reduces to

(
Y 1(C(t0))

Y 2(C(t0))

)

final

=
(

cosΘ − sinΘ

sinΘ cosΘ

)(
Y 1(C(t0))

Y 2(C(t0))

)

initial

,

so that the only effect of the parallel transport is similar to that of a rotation in the
plane through the angle Θ (in this example, as in the rest of this chapter, we are not
assuming the existence of a structure that allows us to define lengths of vectors or
the angle between vectors). (Cf. Example 6.29.)

A geodesic C is a curve whose tangent vector field, C′, is parallel along C.
Hence, from (5.4), with Y j = d(xj ◦ C)/dt we obtain the geodesic equations

d2(xk ◦ C)

dt2
+ (

Γ k
ji ◦ C

)d(xj ◦ C)

dt

d(xi ◦ C)

dt
= 0. (5.7)

By contrast with the equations for the parallel transport of a vector field (5.4) along
a given curve, which are first-order linear equations for Y i ◦C, the equations for the
geodesics (5.7) are second-order equations for the functions xi ◦C, which regularly
are nonlinear.

Example 5.6 Considering the connection locally defined by

Γ 1
11 = − 2r

1 + r2
, Γ 1

22 = r(r2 − 1)

1 + r2
, Γ 2

12 = Γ 2
21 = 1 − r2

r(1 + r2)
,

with all the other functions Γ i
jk being equal to zero, with respect to the basis induced

by the polar coordinates (r, θ) = (x1, x2) of the Euclidean plane, equations (5.7)
take the form

d2r

dt2
− 2r

1 + r2

(
dr

dt

)2

+ r(r2 − 1)

1 + r2

(
dθ

dt

)2

= 0,

d2θ

dt2
+ 2(1 − r2)

r(1 + r2)

dr

dt

dθ

dt
= 0.

(5.8)
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The second of these equations amounts to d
dt

[ r2

(1+r2)2
dθ
dt

] = 0; therefore

dθ

dt
= L

(1 + r2)2

r2
, (5.9)

where L is a constant. If L = 0, then θ is constant, and the first equation (5.8)
reduces to

(
1 + r2) d

dt

(
1

1 + r2

dr

dt

)
= 0.

Hence 1
1+r2

dr
dt

= c, where c is another constant and, therefore, r = tan c(t − t0),
which means that the (images of the) geodesics with L = 0 are straight lines passing
through the origin.

When L �= 0, substituting (5.9) into the first equation (5.8), we have

d2r

dt2
− 2r

1 + r2

(
dr

dt

)2

+ L2 (r2 − 1)(1 + r2)3

r3
= 0.

Multiplying the previous equation by (1 + r2)−2dr/dt , the result can be written in
the form

d

dt

[
1

2

1

(1 + r2)2

(
dr

dt

)2

+ L2(1 + r2)2

2r2

]
= 0.

Thus we have

1

2

1

(1 + r2)2

(
dr

dt

)2

+ L2(1 + r2)2

2r2
= E, (5.10)

where E is a constant. Equation (5.10) is an equation of separable variables that
determines r ◦ C, which substituted into (5.9) leads to θ ◦ C.

The image of C can be obtained by combining (5.9) and (5.10), which yields

dθ = ± (1 + r2)dr

r2
√

2E

L2 − (1+r2)2

r2

= ± (1 + r2)dr

r2
√

2E

L2 − 4 − (1−r2)2

r2

and with the change of variable 1−r2

r
=
√

2E

L2 − 4 cosv, this equation reduces to
dθ = ±dv; hence,

1 − r2 =
√

2E

L2
− 4 r cos(θ − θ0)
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or, in terms of the Cartesian coordinates,

(
x +

√
E

2L2
− 1 cos θ0

)2

+
(

y +
√

E

2L2
− 1 sin θ0

)2

= E

2L2
,

which corresponds to a circle enclosing the origin.

Exercise 5.7 Considering the connection given in Example 5.4, show that the
geodesic starting at the point (x0, y0), with the initial velocity a(∂/∂x)(x0,y0) +
b(∂/∂y)(x0,y0), is given by x = x0 + a(1 − e−bt )/b, y = y0 + bt .

Covariant Derivative of Tensor Fields The covariant derivative of a tensor field
of type ( 0

k), t , with respect to a vector field X, denoted by ∇Xt , is defined by the
relation

X
(
t (Y1, . . . ,Yk)

) = (∇Xt)(Y1, . . . ,Yk)

+
k∑

i=1

t (Y1, . . . ,Yi−1,∇XYi ,Yi+1, . . . ,Yk), (5.11)

for X,Y1, . . . ,Yk ∈ X(M) [cf. (2.45)]. The covariant derivative of t with respect to
X is also a tensor field of type ( 0

k) since (see Sect. 1.4)

(∇Xt)(Y1, . . . , f Yi , . . . ,Yk)

= X(t (Y1, . . . , f Yi , . . . ,Yk))

−
k∑

j=1
j �=i

t (Y1, . . . , f Yi , . . . ,∇XYj , . . . ,Yk)

− t
(
Y1, . . . ,∇X(f Yi ), . . . ,Yk

)

= X(f t (Y1, . . . ,Yi , . . . ,Yk))

−
k∑

j=1
j �=i

f t (Y1, . . . ,Yi , . . . ,∇XYj , . . . ,Yk)

− t (Y1, . . . , f ∇XYi + (Xf )Yi , . . . ,Yk)

= f (∇Xt)(Y1, . . . ,Yi , . . . ,Yk), for f ∈ C∞(M).

When k = 0, that is, when t is a function of M in R, we define ∇Xt ≡ Xt . From the
definition of ∇Xt it follows that ∇f Xt = f ∇Xt and that ∇aX+bYt = a∇Xt + b∇Yt ,
for a, b ∈R and f ∈ C∞(M).
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Exercise 5.8 Show that

∇X(f t) = f ∇Xt + (Xf )t,

∇X(at + bs) = a∇Xt + b∇Xs,

∇X(t ⊗ s) = (∇Xt) ⊗ s + t ⊗ (∇Xs).

If (x1, . . . , xn) is a local coordinate system and Y = Y i(∂/∂xi) is an arbitrary
vector field, applying the foregoing definition we have

(∇∂/∂xi dxj
)
(Y) = ∂

∂xi

(
dxj (Y)

)− dxj (∇∂/∂xi Y)

= ∂Y j

∂xi
− dxj

((
∂Y k

∂xi
+ Γ k

miY
m

)
∂

∂xk

)

= ∂Y j

∂xi
−
(

∂Y j

∂xi
+ Γ

j
miY

m

)

= −Γ
j
miY

m

= −Γ
j
mi dxm(Y),

that is,

∇∂/∂xi dxj = −Γ
j
mi dxm. (5.12)

Exercise 5.9 Show that if X = Xi(∂/∂xi) and t = ti...j dxi ⊗ · · · ⊗ dxj , then

∇Xt = Xk

(
∂ti...j

∂xk
− Γ m

ik tm...j − · · · − Γ m
jkti...m

)
dxi ⊗ · · · ⊗ dxj .

(The components ∂ti...j /∂xk −Γ m
ik tm...j −· · ·−Γ m

jkti...m are denoted by ti...j ;k or by
∇kti...j .)

Exercise 5.10 Show that ∇X(Y t) = (∇XY) t + Y (∇Xt) for any tensor field t of
type ( 0

k) and X,Y ∈X(M).

5.2 Torsion and Curvature

The torsion, T , of the connection ∇ is the map from X(M) × X(M) into X(M)

given by

T (X,Y) = ∇XY − ∇YX − [X,Y], for X,Y ∈X(M). (5.13)

Clearly, T is skew-symmetric, T (X,Y) = −T (Y,X), and T is a tensor field since,
making use of the result of Exercise 1.22, if f ∈ C∞(M) we have
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T (f X,Y) = ∇f XY − ∇Y(f X) − [f X,Y]
= f ∇XY − f ∇YX − (Yf )X − f [X,Y] + (Yf )X

= f T (X,Y).

(The object T defined above does not satisfy the definition of a tensor field given in
Sect. 1.4 since T (X,Y) is not a function, but a vector field; however, T is equivalent
to a tensor field of type ( 1

2), T̃ , defined by T̃ (X,Y, α) ≡ α(T (X,Y)), for any pair
of vector fields X,Y, and any covector field α.) A connection ∇ is symmetric, or
torsion-free, if its torsion tensor is zero.

Exercise 5.11 Show that if X = Xi(∂/∂xi) and Y = Y j (∂/∂xj ) are two arbi-
trary differentiable vector fields, then T (X,Y) = XiY jT k

ij (∂/∂xk), where T k
ij =

Γ k
ji − Γ k

ij . Show that ∇ is symmetric if and only if Γ k
ij = Γ k

ji .

The curvature tensor, R, of the connection ∇ is a map that associates to each pair
of vector fields an operator from X(M) into itself, given by

R(X,Y) = ∇X∇Y − ∇Y∇X − ∇[X,Y], for X,Y ∈X(M). (5.14)

It can readily be seen that R(X,Y) = −R(Y,X), R(aX + bY,Z) = aR(X,Z) +
bR(Y,Z), and R(X,Y)(aZ+bW) = aR(X,Y)Z+bR(X,Y)W. The curvature ten-
sor is indeed a tensor field, since

R(X,Y)(f Z) = ∇X∇Y(f Z) − ∇Y∇X(f Z) − ∇[X,Y](f Z)

= f ∇X∇YZ + (Xf )∇YZ + (Yf )∇XZ + (
X(Yf )

)
Z

− f ∇Y∇XZ − (Yf )∇XZ − (Xf )∇YZ − (
Y(Xf )

)
Z

− f ∇[X,Y]Z − ([X,Y]f )Z
= f R(X,Y)Z

and

R(f X,Y)Z = ∇f X∇YZ − ∇Y∇f XZ − ∇[f X,Y]Z

= f ∇X∇YZ − f ∇Y∇XZ − (Yf )∇XZ

− f ∇[X,Y]Z + (Yf )∇XZ

= f R(X,Y)Z, for X,Y,Z ∈ X(M), f ∈ C∞(M).

(As in the case of the torsion, R does not satisfy the definition of a tensor field
given in Sect. 1.4; however, R is equivalent to the tensor field of type ( 1

3) R̃ defined
by R̃(X,Y,Z, α) ≡ α(R(X,Y)Z).) A connection ∇ is flat if its curvature tensor is
zero.
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Exercise 5.12 Show that if X = Xi(∂/∂xi), Y = Y j (∂/∂xj ), and Z = Zk(∂/∂xk),
then R(X,Y)Z = XiY jZkRm

kij (∂/∂xm), where

Rm
kij = ∂Γ m

kj

∂xi
− ∂Γ m

ki

∂xj
+ Γ m

piΓ
p
kj − Γ m

pjΓ
p
ki .

Exercise 5.13 Show that if R(X,Y)t ≡ ∇X∇Yt − ∇Y∇Xt − ∇[X,Y]t , for any tensor
field t of type ( 0

k), then

R(X,Y)(f t) = f R(X,Y)t,

R(X,Y)(t ⊗ s) = (
R(X,Y)t

)⊗ s + t ⊗ (
R(X,Y)s

)
.

Exercise 5.14 Show that for X,Y,Z,W ∈ X(M),

R(X,Y)Z + R(Z,X)Y + R(Y,Z)X

= ∇X
(
T (Y,Z)

)+ ∇Y
(
T (Z,X)

)+ ∇Z
(
T (X,Y)

)

+ T
(
X, [Y,Z])+ T

(
Y, [Z,X])+ T

(
Z, [X,Y]) (5.15)

and

∇X
(
R(Y,Z)W

)+ ∇Y
(
R(Z,X)W

)+ ∇Z
(
R(X,Y)W

)

= R(Y,Z)∇XW + R(Z,X)∇YW + R(X,Y)∇ZW

+ R
([Y,Z],X

)
W + R

([Z,X],Y
)
W + R

([X,Y],Z
)
W. (5.16)

The relations (5.16) are known as the Bianchi identities.

Parallel Transport in Terms of the Tangent Bundle Each curve C : I → M ,
where I is an open interval of the real numbers, gives rise to curves in the tangent
bundle of M , defined with the aid of the connection of M . Let p = C(t0), where t0
is some point of I , and let vp ∈ TpM . As discussed in Sect. 5.1, the existence of
a connection on M allows us to define an isomorphism Pt,t0 : TC(t0)M → TC(t)M

representing the parallel transport of tangent vectors to M along C. The curve Cvp

in the tangent bundle of M will be defined by Cvp(t) ≡ Pt,t0(vp), so that Cvp(t) ∈
TC(t)M and, therefore, π ◦ Cvp = C, where π is the canonical projection of TM

on M . Furthermore, Cvp(t0) = vp (see Fig. 5.2).
In terms of the coordinates (qi, q̇i) on TM, induced by a local coordinate sys-

tem xi on M (see Sect. 1.2), we have qi(Cvp (t)) = xi(C(t)) and the functions
q̇i (Cvp (t)) satisfy [see (5.4) and (1.27)]

dq̇k(Cvp (t))

dt
+ dqi(Cvp (t))

dt
Γ k

ji

(
C(t)

)
q̇j
(
Cvp(t)

)= 0,
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Fig. 5.2 The image of Cvp is formed by the tangent vectors obtained by parallel transport of vp

along C

with q̇i (Cvp (t0)) = q̇i (vp). According to the foregoing relations and (1.20), the tan-
gent vector to Cvp at t = t0 is

d(qi ◦ Cvp)

dt

∣∣∣∣
t0

(
∂

∂qi

)

vp

+ d(q̇i ◦ Cvp)

dt

∣∣∣∣
t0

(
∂

∂q̇i

)

vp

= d(xi ◦ C)

dt

∣∣∣∣
t0

[(
∂

∂qi

)

vp

− Γ k
ji(p) q̇j (vp)

(
∂

∂q̇k

)

vp

]
.

The n real numbers d(xi ◦ C)/dt |t=t0 , appearing on the right-hand side of the last
expression, are the components of the tangent vector of C at t = t0 and do not
depend on vp , while the n tangent vectors to TM at vp ,

(
∂

∂qi

)

vp

− Γ k
ji(p) q̇j (vp)

(
∂

∂q̇k

)

vp

(i = 1,2, . . . , n),

which do not depend on C, form a basis of an n-dimensional subspace of Tvp(TM),
which is called the horizontal subspace of Tvp (TM). A curve in TM is a horizontal
curve if at each point of the curve its tangent vector belongs to the horizontal sub-
space at that point. Thus, a horizontal curve σ in TM represents a parallel vector
field along the curve π ◦ σ in M . It may be noticed that defining a connection on
M is equivalent to defining the horizontal subspace of Tvp (TM) at each point vp of
TM. However, if vp and wp belong to TpM , the horizontal subspaces of Tvp(TM)

and Twp(TM) are not independent of each other.

Exercise 5.15 A differentiable curve C in M defines a curve t �→ C′
t in TM, such

that π(C′
t ) = C(t). Show that C is a geodesic if and only if the curve t �→ C′

t is
horizontal.
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The n vector fields Xi on TM locally given by

Xi ≡ ∂

∂qi
− (

π∗Γ k
ji

)
q̇j ∂

∂q̇k
(5.17)

generate an n-dimensional distribution on TM and one readily finds that

[Xi ,Xj ] = −q̇k
(
π∗Rm

kij

) ∂

∂q̇m
, (5.18)

where the Rm
kij are the components of the curvature tensor with respect to the basis

{∂/∂xi} (see Exercise 5.12); hence, according to Frobenius’ theorem, the distribu-
tion is locally integrable if and only if the curvature vanishes.

When the connection if flat, the integral manifold of the distribution defined by
the vector fields (5.17) passing through vp is formed by all tangent vectors to M

obtained by the parallel transport of vp along some curve in M passing through p.

Example 5.16 In the case of the connection considered in Example 5.4, the vector
fields (5.17) are

X1 = ∂

∂q1
, X2 = ∂

∂q2
− q̇1 ∂

∂q̇1
.

One can readily verify that the Lie bracket of these vector fields is equal to zero,
which implies that the connection is flat. One can also verify that the functions q̇2

and q̇1eq2
are two functionally independent solutions to the linear PDEs Xif = 0,

i = 1,2, and, therefore, the integral manifolds of the distribution generated by the
horizontal vector fields Xi are given by

q̇2 = const, q̇1eq2 = const.

According to the definition of the coordinates q̇i [see (1.27)], this means that
Y = Y i∂/∂xi is a parallel vector field if Y 2 = const, and Y 1ey = const, which agrees
with the result found in Example 5.4.

5.3 The Cartan Structural Equations

In order to represent a connection, or any tensor field, we can employ bases not in-
duced by some coordinate system. Let {e1, . . . , en} be a set of differentiable vector
fields defined on some open subset U of M such that, at each point x ∈ U , the tan-
gent vectors (ei )x form a basis of TxM , and let the set of 1-forms {θ1, . . . , θn} be its
dual basis (that is, θi(ej ) = δi

j ). If there exists a coordinate system (x1, . . . , xn) such

that ei = ∂/∂xi or, equivalently, θi = dxi , we will say that the basis {e1, . . . , en} is
holonomic. A necessary and sufficient condition for a basis {e1, . . . , en} to be locally
holonomic is that [ei , ej ] = 0 or, equivalently, dθi = 0. As shown in this section and
in the following chapters, when M possesses a connection, a metric, the structure of
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a Lie group, or some other structure, it is convenient to make use of nonholonomic
bases adapted to the structure present.

As pointed out in Chap. 1, in some manifolds there are no coordinate systems
covering all the points of the manifold (that is the case, e.g., of the circle S1 and of
the ordinary sphere S2) and therefore, in those manifolds there are no global holo-
nomic bases. For some manifolds, it may even be impossible to find nonholonomic
bases defined globally (e.g., the sphere S2; but in the case of the circle S1 one can
find a nowhere zero differentiable vector field). A manifold M is parallelizable if
there exists a set of differentiable vector fields such that at every point of M they
form a basis for the tangent space to M at that point. (As we shall see in Chap. 7,
every Lie group is parallelizable.)

In the rest of this chapter, {e1, . . . , en} will represent a local basis for the vector
fields, holonomic or not. If ∇ is a connection on M , the connection forms, Γ i

j , with
respect to the basis {e1, . . . , en}, are the n2 1-forms defined by

Γ i
j (X) ≡ θi(∇Xej ), (5.19)

for X ∈ X(M). From the properties that define a connection it follows that the Γ i
j

are, in effect, linear differential forms. The definition (5.19) is equivalent to

∇Xei = Γ j
i(X)ej , (5.20)

for X ∈X(M). Defining the n3 functions Γ i
jk by

Γ i
jk ≡ Γ i

j (ek) (5.21)

(i.e., Γ i
j = Γ i

jkθ
k), one finds that (5.19) and (5.20) amount to

∇ei
ej = Γ k

jiek, (5.22)

which is of the form (5.1), but now we are considering the possibility of dealing
with a nonholonomic basis.

Exercise 5.17 Show that ∇Xθi = −Γ i
j (X)θj .

The torsion 2-forms, T i , with respect to the basis {e1, . . . , en}, are defined by

T i(X,Y) ≡ 1

2
θi
(
T (X,Y)

)
. (5.23)

Since the torsion is a tensor field satisfying the condition T (X,Y) = −T (Y,X), for
X,Y ∈ X(M), each T i is a 2-form and making use of the definitions (5.13), (5.11),
(3.30), and (3.7) and the result of Exercise 5.17, we obtain

T i(X,Y) = 1

2
θi
(
T (X,Y)

)

= 1

2
θi
(∇XY − ∇YX − [X,Y])
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= 1

2

{
X
(
θi(Y)

)− (∇Xθi
)
(Y) − Y

(
θi(X)

)+ (∇Yθi
)
(X) − θi

([X,Y])}

= 1

2

{
2 dθi(X,Y) + Γ i

j (X)θj (Y) − Γ i
j (Y)θj (X)

}

= (
dθi + Γ i

j ∧ θj
)
(X,Y),

that is,

T i = dθi + Γ i
j ∧ θj . (5.24)

These equations are equivalent to the definition of the torsion tensor and are known
as the first Cartan structural equations.

In a similar manner, defining the curvature 2-forms, Ri
j , with respect to the

basis {e1, e2, . . . , en}, by

Ri
j (X,Y) ≡ 1

2
θi
(
R(X,Y)ej

)
, (5.25)

the properties of the curvature tensor imply that each Ri
j is a 2-form and from

(5.25), (5.14), (5.20), (5.19), (3.30), and (3.7) one finds that

Ri
j (X,Y) = 1

2
θi(∇X∇Yej − ∇Y∇Xej − ∇[X,Y]ej )

= 1

2
θi
(∇X

(
Γ k

j (Y)ek

)− ∇Y
(
Γ k

j (X)ek

))− 1

2
Γ i

j

([X,Y])

= 1

2

{
X
(
Γ i

j (Y)
)+ Γ i

k(X)Γ k
j (Y)

− Y
(
Γ i

j (X)
)− Γ i

k(Y)Γ k
j (X) − Γ i

j

([X,Y])}

= dΓ i
j (X,Y) + (

Γ i
k ∧ Γ k

j

)
(X,Y),

i.e.,

Ri
j = dΓ i

j + Γ i
k ∧ Γ k

j . (5.26)

These relations are known as the second Cartan structural equations.
If the components of the torsion and the curvature with respect to the basis

{e1, . . . , en} are defined by means of T (ei , ej ) = T k
ij ek and R(ei , ej )ek = Rl

kij el ,
respectively (cf. Exercises 5.11 and 5.12), then the definitions (5.23) and (5.25)
amount to

T i = 1

2
T i

jkθ
j ∧ θk and Ri

j = 1

2
Ri

jklθ
k ∧ θ l. (5.27)

In the domain of {e1, . . . , en}, knowing the torsion forms or the curvature forms
is equivalent to knowing the torsion tensor or the curvature tensor, respectively. As
can be seen in the following examples, the Cartan structural equations constitute a
very convenient way of calculating the torsion and the curvature of a connection
(further examples can be found in Chaps. 6 and 8, and in Appendix B).
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Example 5.18 The connection considered in Example 5.4 corresponds to the con-
nection forms Γ 1

1 = dy, Γ 1
2 = Γ 2

1 = Γ 2
2 = 0, with respect to the holonomic

basis ei = ∂/∂xi (hence θi = dxi ). From (5.24), (3.36), and (5.26) we have

T 1 = d(dx) + Γ 1
j ∧ dxj = dy ∧ dx = −θ1 ∧ θ2,

T 2 = d(dy) + Γ 2
j ∧ dxj = 0,

which shows that the only components of the torsion different from zero are T 1
12 =

−1 = −T 1
21. On the other hand, Ri

j = 0 and, therefore, the connection is flat (cf.
Example 5.16).

In a similar way, the connection forms in Example 5.5, with respect to the holo-
nomic basis ei = ∂/∂xi , are Γ 1

1 = −y−1 dy = Γ 2
2, Γ 1

2 = −y−1 dx = −Γ 2
1, so

that from the first Cartan structural equations one finds that

T 1 = d(dx) + Γ 1
j ∧ dxj

= −y−1 dy ∧ dx − y−1 dx ∧ dy = 0,

T 2 = d(dy) + Γ 2
j ∧ dxj

= y−1dx ∧ dx − y−1 dy ∧ dy = 0,

and

R1
1 = d

(−y−1 dy
)+ Γ 1

k ∧ Γ k
1 = 0,

R1
2 = d

(−y−1dx
)+ Γ 1

k ∧ Γ k
2

= y−2 dy ∧ dx + y−2 dy ∧ dx + y−2 dx ∧ dy

= −y−2θ1 ∧ θ2,

R2
1 = d

(
y−1 dx

)+ Γ 2
k ∧ Γ k

1

= −y−2 dy ∧ dx − y−2 dx ∧ dy − y−2 dy ∧ dx

= y−2θ1 ∧ θ2,

R2
2 = d

(−y−1 dy
)+ Γ 2

k ∧ Γ k
2 = 0.

(5.28)

Comparing (5.28) with (5.27) one finds that the only components different from
zero of the curvature tensor are determined by R1

212 = −y−2 = −R2
112.

Exercise 5.19 Compute the curvature of the connection given in Example 5.4 with
the aid of (5.18).

Applying the operator of exterior differentiation, d, to the first Cartan structural
equations and making use of the first as well as of the second structural equations
we find the identities

dT i + Γ i
j ∧ T j = Ri

j ∧ θj . (5.29)
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Hence, if the torsion of the connection is equal to zero,

Ri
j ∧ θj = 0. (5.30)

Similarly, applying d to the second Cartan structural equations we obtain the identi-
ties

dRi
j = Ri

k ∧ Γ k
j − Γ i

k ∧ Rk
j . (5.31)

Equations (5.29) and (5.31) are equivalent to (5.15) and (5.16), respectively; there-
fore (5.31) is an expression of the Bianchi identities.

Substituting the second equation (5.27) into (5.30) we obtain Ri
jklθ

j ∧
θk ∧ θ l = 0, which amounts to the conditions Ri [jkl] = 0 [see (3.24)] or, using
the fact that Ri

jkl = −Ri
jlk , it follows that when the torsion is equal to zero, the

components of the curvature satisfy

Ri
jkl + Ri

klj + Ri
ljk = 0. (5.32)

The fact that the connection ∇ is flat is equivalent to the local existence of n

linearly independent vector fields whose covariant derivatives are equal to zero. In
effect, if Y1,Y2, . . . ,Yn are vector fields such that ∇XYi = 0 for all X ∈ X(M),
then writing Yi = b

j
i ∂/∂xj , from (5.2) it follows that

∂b
j
i

∂xk
+ Γ

j
mkb

m
i = 0, (5.33)

where the Γ
j
mk are the components of the connection with respect to the holonomic

basis ∂/∂xj given by some coordinate system. Applying ∂/∂xl to the previous equa-
tion and using it again we find that

∂

∂xl

∂b
j
i

∂xk
= −Γ

j
mk

∂bm
i

∂xl
− bm

i

∂Γ
j
mk

∂xl
= Γ

j
mkΓ

m
rl br

i − bm
i

∂Γ
j
mk

∂xl
;

therefore, the integrability conditions of equations (5.33), given by

∂

∂xl

∂b
j
i

∂xk
= ∂

∂xk

∂b
j
i

∂xl
,

are (∂Γ
j
ml/∂xk − ∂Γ

j
mk/∂xl + Γ

j
rkΓ

r
ml − Γ

j
rlΓ

r
mk) bm

i = 0, or, simply, Rj
mkl b

m
i = 0

(see Exercise 5.12). The vector fields Y1,Y2, . . . ,Yn are linearly independent if
and only if det(bj

i ) �= 0, which means that the matrix (b
j
i ) has an inverse, so that

Rj
mkl b

m
i = 0 amounts to Rj

mkl = 0.
Conversely, if Ri

mkl = 0, equations (5.33) are integrable and the integration con-
stants appearing in the solution of this system of equations can be chosen in such a
way that det(bj

i ) is different from zero and, according to the preceding derivation,

the n vector fields given by Yi = b
j
i ∂/∂xj are covariantly constant, ∇XYi = 0.
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Thus, the curvature of a connection is equal to zero if and only if there exists
locally an invertible matrix (b

j
i ) such that

Γ i
jk = −b̃m

j

∂bi
m

∂xk
, (5.34)

where (b̃
j
i ) denotes the inverse of the matrix (b

j
i ) [see (5.33)] or, equivalently (not-

ing that 0 = ∂δi
j /∂xk = ∂(bi

mb̃m
j )/∂xk = bi

m ∂b̃m
j /∂xk + b̃m

j ∂bi
m/∂xk)

Γ i
jk = bi

m

∂b̃m
j

∂xk
. (5.35)

In terms of the connection 1-forms Γ i
j = Γ i

jkdxk for the holonomic basis ∂/∂xj ,
equations (5.33) and (5.35) are equivalent to

db
j
i = −bm

i Γ j
m, Γ i

j = bi
mdb̃m

j , (5.36)

respectively.

Exercise 5.20 Show that the matrix (b
j
i ) is defined by (5.33) up to a multiplicative

constant n × n matrix.

Example 5.21 With the aid of (5.26) one readily verifies that the connection 1-forms

Γ 1
1 = Γ 2

2 = udu + v dv

u2 + v2
, Γ 1

2 = −Γ 2
1 = v du − udv

u2 + v2
, (5.37)

where u,v is a coordinate system of a manifold M , correspond to a flat connection
[without having to specify which are the vector fields appearing in (5.22)]. Assum-
ing that these connection 1-forms correspond to the holonomic basis {∂/∂u, ∂/∂v},
the components, Y i , of a covariantly constant vector field Y = Y 1 ∂/∂u + Y 2 ∂/∂v,
are determined by dY i + Y jΓ i

j = 0 [see (5.33)], that is,

dY 1 = −Y 1 udu + v dv

u2 + v2
− Y 2 v du − udv

u2 + v2
,

dY 2 = Y 1 v du − udv

u2 + v2
− Y 2 udu + v dv

u2 + v2
.

By combining these equations one obtains

Y 1 dY 1 + Y 2 dY 2 = −[(Y 1)2 + (
Y 1)2]udu + v dv

u2 + v2
,

which implies that
(
Y 1)2 + (

Y 1)2 = const

u2 + v2
(5.38)
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and

Y 2 dY 1 − Y 1 dY 2 = [(
Y 1)2 + (

Y 1)2]udv − v du

u2 + v2
;

hence,

arctan
Y 1

Y 2
= arctan

v

u
+ const,

which leads to

Y 1

Y 2
= v − cu

cv + u
, (5.39)

where c is a constant.
From (5.38) and (5.39) one finds that

Y 1 = K(v − cu)

u2 + v2
, Y 2 = K(cv + u)

u2 + v2
,

where K is another arbitrary constant and therefore any covariantly constant vector
field is a linear combination (with constant coefficients) of the vector fields

1

u2 + v2

(
u

∂

∂u
− v

∂

∂v

)
,

1

u2 + v2

(
v

∂

∂u
+ u

∂

∂v

)
.

Hence, as a consequence of the vanishing of the curvature, there exists a basis for
the vector fields formed by covariantly constant vector fields.

5.4 Tensor-Valued Forms and Covariant Exterior Derivative

A k-form ω on M is a totally skew-symmetric C∞(M)-multilinear map of X(M)×
· · ·×X(M) (k times) in C∞(M). We can also define differential forms whose values
are vector or tensor fields. For instance, the torsion tensor of a connection can be
regarded as a 2-form whose values are vector fields, and the curvature tensor as a
2-form whose values are tensor fields of type ( 1

1).

Definition 5.22 A vector-valued or tensor-valued differential form of degree k is a
map, ω, from X(M) × · · · × X(M) (k times) in X(M) or in T r

s (M), respectively,
C∞(M)-multilinear and totally skew-symmetric:

ω(X1, . . . , f Xi + gX′
i , . . . ,Xk)

= f ω(X1, . . . ,Xi , . . . ,Xk) + g ω(X1, . . . ,X′
i , . . . ,Xk),

ω(X1, . . . ,Xi , . . . ,Xj , . . . ,Xk)

= −ω(X1, . . . ,Xj , . . . ,Xi , . . . ,Xk),

for X1, . . . ,Xi ,X′
i , . . . ,Xk ∈ X(M), f,g ∈ C∞(M).
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The vector-valued or tensor-valued k-forms can be added among themselves,
multiplied by real numbers, by functions and by l-forms in the obvious way. The
set of vector-valued k-forms will be denoted by X(M) ⊗ Λk(M), while the set
of the k-forms whose values are tensor fields of type ( r

s ) will be denoted by
T r

s (M) ⊗ Λk(M).
For instance, the map Π from X(M) into X(M) given by Π(X) = X for

X ∈ X(M) is a vector-valued 1-form as can be seen directly. The maps Θ and Ω

defined by Θ(X,Y) ≡ 1
2T (X,Y) and Ω(X,Y) ≡ 1

2R(X,Y), where T is the torsion
tensor of a connection ∇ on M and R is the curvature tensor, are 2-forms with val-
ues in X(M) and in T 1

1 (M), respectively. (Ω(X,Y) is the tensor field of type ( 1
1)

given by Ω(X,Y)(α,Z) ≡ 1
2α(R(X,Y)Z).)

If ω is a vector-valued k-form and {e1, . . . , en} is a set of independent vector
fields, defining ωi by

ωi(X1, . . . ,Xk) ≡ θi
(
ω(X1, . . . ,Xk)

)
, (5.40)

where {θ1, . . . , θn} is the dual basis to {e1, . . . , en}, we have

ω(X1, . . . ,Xk) = ωi(X1, . . . ,Xk) ei , (5.41)

for X1, . . . ,Xk ∈ X(M). From the definition it can be seen that each ωi is a k-form,
so that a vector-valued k-form can be represented by n ordinary k-forms.

Definition 5.23 Let X be a vector field and let η be a k-form; the tensor product of
X times η, denoted by X ⊗ η, is defined by

(X ⊗ η)(Y1, . . . ,Yk) ≡ η(Y1, . . . ,Yk)X, for Y1, . . . ,Yk ∈ X(M).

Clearly, X ⊗ η is a vector-valued k-form.

Any vector-valued k-form, ω, can be expressed in terms of the k-forms ωi defined
above by means of

ω = ei ⊗ ωi. (5.42)

Thus, for the vector-valued 1-form Π defined by Π(X) = X, from (5.40) we have,
Πi(X) = θi(Π(X)) = θi(X), and therefore Πi = θi and Π = ei ⊗ θi . Similarly,
Θi(X,Y) = θi( 1

2T (X,Y)) = T i(X,Y); therefore, Θi = T i and Θ = ei ⊗T i , where
the T i are the torsion 2-forms defined in (5.23).

In an analogous way, defining the tensor product of a tensor field t by a k-form
η by

(t ⊗ η)(X1, . . . ,Xk) ≡ η(X1, . . . ,Xk)t, (5.43)

for X1, . . . ,Xk ∈X(M), it follows that any tensor-valued k-form ω can be expressed
in the form

ω = (
ei ⊗ ej ⊗ · · · ⊗ θ l ⊗ θm ⊗ · · · )⊗ ω

ij...
lm..., (5.44)
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with

ω
ij...
lm...(X1, . . . ,Xk) ≡ [

ω(X1, . . . ,Xk)
](

θi, θj , . . . , el , em, . . .
)
. (5.45)

For instance, for the 2-form Ω with values in T 1
1 (M) defined above, using (5.25),

we have Ωi
j (X,Y) = Ω(X,Y)(θ i, ej ) ≡ 1

2θi(R(X,Y)ej ) = Ri
j (X,Y); hence,

Ω = (ei ⊗ θj )Ri
j .

The definition of the exterior derivative given in Chap. 3 cannot be applied for
a vector-valued or a tensor-valued k-form, since now ω(X1, . . . , X̂i , . . . ,Xk+1) is a
vector-field or a tensor field and the expression Xi (ω(X1, . . . , X̂i , . . . ,Xk+1)) is not
defined; in this case we can define the exterior differentiation in the following form.

Definition 5.24 Let M be a differentiable manifold with a connection ∇ . If ω is
a vector-valued or a tensor-valued k-form on M , its covariant exterior derivative,
Dω, is given by

(k + 1)Dω(X1, . . . ,Xk+1)

=
k+1∑

i=1

(−1)i+1∇Xi

(
ω(X1, . . . , X̂i , . . . ,Xk+1)

)

+
∑

i<j

(−1)i+jω
([Xi ,Xj ],X1, . . . , X̂i , . . . , X̂j , . . . ,Xk+1

)
,

for X1, . . . ,Xk+1 ∈X(M).

It can readily be seen that Dω is totally skew-symmetric and that its values are
of the same type as those of ω. The proof that Dω is a (k + 1)-form is completely
analogous to that given for the exterior derivative of an ordinary differential form in
Chap. 3. Clearly, D(aω1 + bω2) = a Dω1 + b Dω2 for a, b ∈R.

If t is a vector or tensor field η ∈ Λk(M), applying the definition above we have
[see Exercise 5.8 and (3.28)]

(k + 1)D(t ⊗ η)(X1, . . . ,Xk+1)

=
k+1∑

i=1

(−1)i+1∇Xi

(
η(X1, . . . , X̂i , . . . ,Xk+1)t

)

+
∑

i<j

(−1)i+j η
([Xi ,Xj ],X1, . . . , X̂i , . . . , X̂j , . . . ,Xk+1

)
t

=
k+1∑

i=1

(−1)i+1[η(X1, . . . , X̂i , . . . ,Xk+1)∇Xi
t

+ Xi

(
η(X1, . . . , X̂i , . . . ,Xk+1)

)
t
]

+
∑

i<j

(−1)i+j η
([Xi ,Xj ],X1, . . . , X̂i , . . . , X̂j , . . . ,Xk+1

)
t
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= (k + 1)dη(X1, . . . ,Xk+1) t

+
k+1∑

i=1

(−1)i+1η(X1, . . . , X̂i , . . . ,Xk+1)∇Xi
t .

Using the identity Xi = θj (Xi )ej , it follows that ∇Xi
t = θj (Xi )∇ej

t and therefore

k+1∑

i=1

(−1)i+1η(X1, . . . , X̂i , . . . ,Xk+1)∇Xi
t

=
k+1∑

i=1

(−1)i+1θj (Xi ) η(X1, . . . , X̂i , . . . ,Xk+1)∇ej
t

= (k + 1)
(
θj ∧ η

)
(X1, . . . ,Xk+1)∇ej

t;
hence,

D(t ⊗ η) = t ⊗ dη + ∇ei
t ⊗ (

θi ∧ η
)
. (5.46)

Applying this result, using the first and second Cartan structural equations,
(5.24), and (5.20), we find that

DΠ = D
(
ei ⊗ θi

)

= ei ⊗ dθi + ∇ej
ei ⊗ (

θj ∧ θi
)

= ei ⊗ (
θm ∧ Γ i

m + T i
)+ Γ m

i(ej )em ⊗ (
θj ∧ θi

)

= ei ⊗ (
θm ∧ Γ i

m + T i
)+ em ⊗ (

Γ m
i ∧ θi

)

= ei ⊗ T i,

i.e.,

DΠ = Θ.

In a similar way one finds that the Bianchi identities amount to

DΩ = 0.

By contrast with the usual exterior differentiation, if the connection is not flat,
D2 �= 0. In effect, making use of (5.46), (3.36), (3.35), (3.7), (5.24), and (5.14), we
find that

D2(t ⊗ η) = D
[
t ⊗ dη + ∇ei

t ⊗ (
θi ∧ η

)]

= t ⊗ d dη + ∇ei
t ⊗ (

θi ∧ dη
)+ ∇ei

t ⊗ d
(
θi ∧ η

)

+ ∇ej
∇ei

t ⊗ (
θj ∧ θi ∧ η

)
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= ∇ei
t ⊗ (θ i ∧ dη) + ∇ei

t ⊗ (
dθi ∧ η − θi ∧ dη

)

+ ∇ej
∇ei

t ⊗ (
θj ∧ θi ∧ η

)

= ∇ei
t ⊗ (

dθi ∧ η
)+ 1

2
(∇ej

∇ei
t − ∇ei

∇ej
t) ⊗ (

θj ∧ θi ∧ η
)

= ∇ei
t ⊗ [(

θj ∧ Γ i
j + T i

)∧ η
]

+ 1

2

(
R(ej , ∂i)t + ∇[ej ,ei ]t

)⊗ (
θj ∧ θi ∧ η

)
,

but [ej , ei] = ∇ej
ei − ∇ei

ej − T (ej , ei ) = [Γ m
i(ej ) − Γ m

j (ei ) − 2T m(ej , ei )]em

[see (5.13), (5.20), and (5.23)]. Therefore, we have

1

2
∇[ej ,ei ]t ⊗ (

θj ∧ θi ∧ η
)

= 1

2
∇emt ⊗ (

Γ m
i ∧ θi ∧ η − θj ∧ Γ m

j ∧ η − 2T m ∧ η
)

= −∇emt ⊗ [(
θj ∧ Γ m

j + T m
)∧ η

]
,

and, hence

D2(t ⊗ η) = 1

2
R(ei , ej )t ⊗ (

θi ∧ θj ∧ η
)
.

Exercise 5.25 Let ω be a vector-valued k-form given by ω = ei ⊗ ωi . Show that
Dω = ei ⊗ (dωi + Γ i

j ∧ ωj ).



Chapter 6
Riemannian Manifolds

In many cases, the manifolds of interest possess a metric tensor which defines an
inner product between tangent vectors at each point of the manifold. Some examples
are the submanifolds of an Euclidean space and the space–time, in the context of
special or general relativity.

6.1 The Metric Tensor

Definition 6.1 Let M be a differentiable manifold and let g be a symmetric tensor
field of type ( 0

2) on M , that is, gp(vp,wp) = gp(wp, vp) for vp,wp ∈ TpM . g is
positive definite if for all vp ∈ TpM , we have gp(vp, vp) ≥ 0, and if gp(vp, vp) = 0
implies vp = 0 (that is, gp(vp, vp) > 0 for all nonzero vp ∈ TpM); the tensor field
g is non-singular if gp(vp,wp) = 0 for all wp ∈ TpM implies that vp = 0.

If g is positive definite, then it is non-singular, for if gp(vp,wp) = 0 for all
wp ∈ TpM , we find, in particular, that gp(vp, vp) = 0, which implies that vp = 0.

Definition 6.2 A Riemannian manifold is a differentiable manifold M with a non-
singular, symmetric differentiable tensor field of type ( 0

2), called the metric tensor
or metric of M . When the metric tensor is not positive definite, we also say that the
manifold is pseudo-Riemannian (or semi-Riemannian).

In a Riemannian manifold, M , with a positive definite metric, gp is an inner
product on TpM . The norm or length of a tangent vector vp ∈ TpM , ‖vp‖, is defined
by ‖vp‖ =√

gp(vp, vp) and the length of a curve C : [a, b] → M is defined by

LC ≡
∫ b

a

‖C′
t‖dt. (6.1)

Let M be a Riemannian manifold and let (x1, . . . , xn) be a local coordi-
nate system on M . The metric tensor is given by g = gij dxi ⊗ dxj with
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gij = g(∂/∂xi, ∂/∂xj ). Since g is symmetric, we have gij = g(∂/∂xi, ∂/∂xj ) =
g(∂/∂xj , ∂/∂xi) = gji .

Example 6.3 The standard metric of the n-dimensional Euclidean space, En, ex-
pressed in terms of Cartesian coordinates, (x1, . . . , xn), is

g = dx1 ⊗ dx1 + dx2 ⊗ dx2 + · · · + dxn ⊗ dxn, (6.2)

that is, (gij ) = diag(1,1, . . . ,1). This amounts to saying that at each point p ∈ E
n,

the tangent vectors (∂/∂xj )p form an orthonormal basis of TpE
n.

Since {(∂/∂xi)p}ni=1 is a basis of TpM , the condition gp(vp,wp) = 0 for all
wp ∈ TpM is equivalent to gp(vp, (∂/∂xi)p) = 0, for i = 1,2, . . . , n; therefore, if
vp = ai(∂/∂xi)p is such that gp(vp,wp) = 0 for all wp ∈ TpM , we have

gij (p)ai = 0,

which is a homogeneous system of linear equations for the ai . The tensor field g

is non-singular if and only if ai = 0 is the only solution of this system. Thus, g is
non-singular if and only if the determinant of the matrix (gij (p)) is different from
zero for all p in the domain of the coordinate system.

If X is a vector field on M , the contraction of X with g, X g, is a tensor field of
type ( 0

1), that is, a covector field. If X is locally given by X = Xi(∂/∂xi), we have

X g = 2Xigij dxj .

Since the determinant of the matrix (gij ) never vanishes, the matrix (gij ) has an
inverse, whose entries are denoted by gij , that is,

gij g
jk = δk

i . (6.3)

Since the functions gij are differentiable, the functions gij are also differentiable.
Furthermore, the symmetry of the components gij implies that gij = gji .

Hence, if α is a covector field, locally given by α = αi dxi , there exists only one
vector field X such that

α = 1

2
X g. (6.4)

Indeed, in terms of the components of α and X, the condition α = 1
2 X g amounts

to

αi = Xjgji, (6.5)

therefore the components of X are determined by

Xj = αig
ij . (6.6)

Since the functions gij are differentiable, from (6.5) and (6.6) it follows that the
vector field X is differentiable if and only if α is. Hence, in a Riemannian manifold,
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there exists a linear one-to-one correspondence between differentiable vector fields
and 1-forms. (Owing to the form of expressions (6.5) and (6.6) this correspondence
is an example of the operations called raising and lowering of indices.)

Definition 6.4 Let M be a Riemannian manifold and let f ∈ C∞(M). The gradient
of f , gradf , is the vector field on M such that

df = 1

2
(gradf ) g. (6.7)

Then, from (2.42) and (1.45), for any vector field X, we have

g(gradf,X) = 1

2

(
(gradf ) g

)
(X) = df (X) = Xf. (6.8)

From the foregoing definition, (6.6) and (1.52) it follows that the gradient of f is
locally given by

gradf = gij ∂f

∂xi

∂

∂xj
. (6.9)

Exercise 6.5 Show that gij = g(gradxi,gradxj ).

Let t and s be two tensor fields of type ( 0
k) on M locally given by t = ti1...ik dxi1 ⊗

· · · ⊗ dxik and s = sj1...jk
dxj1 ⊗ · · · ⊗ dxjk ; the product (t |s) will be defined by

(t |s) ≡ k! ti1...ik sj1...jk
gi1j1 · · ·gikjk . (6.10)

Exercise 6.6 Show that the product ( | ) is symmetric, bilinear and non-singular.

Exercise 6.7 Show that gij = (dxi |dxj ).

If M is a Riemannian manifold with a positive definite metric tensor g and
ψ : N → M is a differentiable map from a manifold N into M such that for all
p ∈ N , ψ∗p has maximal rank, that is, if ψ∗pvp = 0ψ(p) implies vp = 0p , then ψ∗g
is a positive definite metric tensor in N since it is a symmetric tensor field of type
( 0

2) and if (ψ∗g)p(vp,wp) = 0 for all wp ∈ TpN , from the definition of ψ∗g, we
have gψ(p)(ψ∗pvp,ψ∗pwp) = 0 for all wp ∈ TpN ; in particular taking wp = vp

and using that g is positive definite it follows that ψ∗pvp = 0, and one concludes
that vp = 0p . A differentiable mapping satisfying the condition above is called an
immersion (that is, for all p ∈ N , the rank of the linear mapping ψ∗p is equal to the
dimension of N ).

Example 6.8 The inclusion map i : S2 → R
3 is locally given by i∗x = sin θ cosφ,

i∗y = sin θ sinφ, i∗z = cos θ , in terms of the usual coordinates (x, y, z) of R3 and
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of the spherical coordinates (θ,φ) of S2. As can readily be verified, the Jacobian
matrix of i with respect to these coordinate systems is given by

⎛

⎝
cos θ cosφ − sin θ sinφ

cos θ sinφ sin θ cosφ

− sin θ 0

⎞

⎠

and its rank is equal to 2 in the whole domain of the spherical coordinates
(0 < θ < π , 0 < φ < 2π ); therefore, the pullback of the Euclidean metric of R

3,
g = dx ⊗ dx + dy ⊗ dy + dz ⊗ dz, under i is a positive definite metric for S2. In
fact, a straightforward computation yields

i∗g = d(sin θ cosφ) ⊗ d(sin θ cosφ) + d(sin θ sinφ) ⊗ d(sin θ sinφ)

+ d(cos θ) ⊗ d(cos θ)

= dθ ⊗ dθ + sin2 θ dφ ⊗ dφ (6.11)

and, as can be directly verified, it is positive definite at the points in the domain of
the coordinate system.

Isometries. Killing Vector Fields Let M1 and M2 be two Riemannian manifolds
with metric tensors g1 and g2, respectively. A diffeomorphism ψ : M1 → M2 is an
isometry if

ψ∗g2 = g1. (6.12)

Two Riemannian manifolds M1 and M2 are isometric if there exists an isometry
ψ : M1 → M2.

Exercise 6.9 Show that the isometries of a manifold onto itself form a group under
the composition.

Let ϕ be a one-parameter group of transformations on a Riemannian manifold,
M , such that each transformation ϕt : M → M is an isometry; then, if X is the
infinitesimal generator of ϕ, we have

£Xg = lim
t→0

ϕt
∗g − g

t
= 0. (6.13)

The vector fields satisfying (6.13) are called Killing vector fields. The set of Killing
vector fields of M will be denoted by K(M).

Making use of the expression for the components of the Lie derivative of a tensor
field (2.40), one finds that the components of a Killing vector field must satisfy the
system of equations

Xk ∂gij

∂xk
+ gkj

∂Xk

∂xi
+ gik

∂Xk

∂xj
= 0. (6.14)
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Since the expression on the left-hand side of this equation is symmetric in the in-
dices i and j , equations (6.14), known as the Killing equations, constitute a system
of n(n + 1)/2 homogeneous, linear, PDEs for the n components Xi of a Killing
vector field, if n is the dimension of M . A solution of (6.13) is formed by n func-
tions X1,X2, . . . ,Xn of n variables. The linearity and homogeneity of the Killing
equations imply that any linear combination with constant coefficients of solutions
of these equations is also a solution (see the examples below).

From (6.14), it can be seen that if, for some specific value of the index m, the
functions gij do not depend on xm (i.e., ∂gij /∂xm = 0), then X = ∂/∂xm = δi

m∂/∂xi

is a Killing vector field and conversely.

Exercise 6.10 Show that the set of Killing vector fields of a Riemannian manifold
M , K(M), is a Lie subalgebra of X(M).

Example 6.11 Let us consider a Riemannian manifold, M , of dimension n such
that, in some coordinate system, the components of the metric tensor are constant.
(For instance, in Cartesian coordinates, the components of the metric tensor of an
Euclidean space are gij = δij and for the metric of the Minkowski space, (gij ) is the
matrix diag(1,1,1,−1) or its negative.) The Killing equations (6.14) then reduce to

∂ξj

∂xi
+ ∂ξi

∂xj
= 0, with ξj ≡ gjkX

k. (6.15)

Hence,

∂

∂xk

∂ξj

∂xi
= − ∂

∂xk

∂ξi

∂xj
= − ∂

∂xj

∂ξi

∂xk
= ∂

∂xj

∂ξk

∂xi
= ∂

∂xi

∂ξk

∂xj
= − ∂

∂xi

∂ξj

∂xk

= − ∂

∂xk

∂ξj

∂xi
,

and therefore ∂2ξj /∂xk∂xi = 0, which means that the components ξj must be of the
form

ξj = ajkx
k + bj , (6.16)

where the aij and bi are constant. Substituting this expression into (6.15) one only
obtains the condition aji + aij = 0; therefore, in a manifold of this class, locally,
any Killing vector field is of the form

X = Xk ∂

∂xk
= gkj ξj

∂

∂xk
= gkj

(
ajlx

l + bj

) ∂

∂xk

= 1

2
ajl

(
gkj xl − gklxj

) ∂

∂xk
+ bk ∂

∂xk
,

where bk ≡ gkjbj . This means that the n(n − 1)/2 vector fields

Ij l ≡ (
gkj xl − gklxj

) ∂

∂xk
, j < l, (6.17)



120 6 Riemannian Manifolds

together with the n vector fields

Mk ≡ ∂

∂xk
(6.18)

form a basis of K(M), which in this case has dimension n(n+1)/2. It turns out that,
for an arbitrary n-dimensional Riemannian manifold, M , dimK(M) ≤ n(n + 1)/2.

The integral curves of the Killing vector field 1
2ajlIj l are determined by the sys-

tem of linear ODEs

dxk

dt
= 1

2
ajl

(
gkj xl − gklxj

)= gkj ajlx
l,

where A ≡ (aij ) is an arbitrary real n × n skew-symmetric matrix. This system of
equations can be expressed in matrix form:

dx

dt
= (

g−1A
)
x,

where g ≡ (gij ) is a symmetric (constant) matrix and x is a column matrix with
entries x1, . . . , xn (or, more precisely, x1 ◦ C, . . . , xn ◦ C, where C is an integral
curve of 1

2ajlIj l). The solution of this matrix equation is (see, e.g., Hirsch and Smale
1974)

x(t) = exp
(
tg−1A

)
x(0),

where exp(tg−1A) = ∑∞
m=0(tg

−1A)m/m!. That is, the column matrix x(t) is re-
lated to x(0) by means of the matrix exp(tg−1A). One can readily verify that

(
Ag−1)mg = g

(
g−1A

)m
, m = 0,1,2, . . .

and therefore, denoting by B t the transpose of B , using the fact that At = −A and
gt = g, we have

[
exp

(
tg−1A

)]t
g exp

(
tg−1A

) = [
exp

(−tAg−1)]g exp
(
tg−1A

)

= g
[
exp

(−tg−1A
)]

exp
(
tg−1A

)

= g,

which means that, for all t ∈ R, the matrix exp(tg−1A) is orthogonal with respect
to g. (Note that g is symmetric, but not necessarily diagonal.)

Example 6.12 The tensor field

g = y−2(dx ⊗ dx + dy ⊗ dy), (6.19)

defines a positive definite metric on the Poincaré half-plane (or hyperbolic plane),
H

2 ≡ {(x, y) ∈R
2 |y > 0}. From (6.14), with x and y in place of x1 and x2, respec-
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tively, we obtain

− 2

y3
X2 + 2

y2

∂X1

∂x
= 0, (6.20a)

∂X2

∂x
+ ∂X1

∂y
= 0, (6.20b)

− 2

y3
X2 + 2

y2

∂X2

∂y
= 0. (6.20c)

The last of these equations amounts to ∂(y−1X2)/∂y = 0; hence, X2 = yh(x),
where h is some real-valued function of one single variable.

On the other hand, the equality of the second partial derivatives ∂2X1/∂x ∂y and
∂2X1/∂y ∂x, obtained from (6.20a) and (6.20b), is equivalent to d2h(x)/dx2 = 0;
hence, h(x) = ax +b, where a and b are two real constants. Therefore, X2 = axy +
by and using again (6.20a) and (6.20b) one finds that X1 = 1

2a(x2 − y2) + bx + c,
where c is another real constant. Thus, the general solution of the Killing equations
(6.14) for the metric (6.19) has the form

X = a

2

((
x2 − y2) ∂

∂x
+ 2xy

∂

∂y

)
+ b

(
x

∂

∂x
+ y

∂

∂y

)
+ c

∂

∂x
.

In other words, the vector fields

(
x2 − y2) ∂

∂x
+ 2xy

∂

∂y
, x

∂

∂x
+ y

∂

∂y
,

∂

∂x
, (6.21)

form a basis of K(M). (In this case, as in the preceding example, K(M) has the
maximum dimension allowed by the dimension of M .)

Instead of the vector fields (6.21), we can choose the set

X1 ≡ −2

(
x

∂

∂x
+ y

∂

∂y

)
,

X2 ≡ − ∂

∂x
, (6.22)

X3 ≡ (
x2 − y2) ∂

∂x
+ 2xy

∂

∂y
,

as a basis of K(M). The Lie brackets among these vector fields are given by

[X1,X2] = 2X2, [X2,X3] = X1, [X3,X1] = 2X3, (6.23)

which shows, in this particular case, that the Killing vector fields form a real Lie
algebra (of dimension three in this example). The choice given by (6.22) has been
made taking into account that with the group SL(2,R), formed by the 2 × 2 real
matrices with determinant equal to 1, there is associated a Lie algebra that possesses
a basis with relations identical to (6.23) (see Examples 7.16 and 7.60).
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In fact, in this case it is not difficult to find the isometries generated by an ar-
bitrary Killing vector field (that is, the one-parameter groups generated by these
vector fields) and show that they are related with the group SL(2,R). To this end, it
is convenient to make use of the complex variable

z ≡ x + iy. (6.24)

In the present case, any Killing vector field X can be expressed as

X = a1X1 + a2X2 + a3X3

= (−2a1x − a2 + a3(x2 − y2)) ∂

∂x
+ (−2a1y + 2a3xy

) ∂

∂y
,

where the ai are arbitrary real numbers. The integral curves of X are determined by
the system of ODEs

dx

dt
= −2a1x − a2 + a3(x2 − y2),

dy

dt
= −2a1y + 2a3xy,

which amounts to the single equation

dz

dt
= (−2a1x − a2 + a3(x2 − y2))+ i

(−2a1y + 2a3xy
)

= a3z2 − 2a1z − a2. (6.25)

The form of the solution of this equation depends on the nature of the roots of
the polynomial a3z2 − 2a1z − a2 or, equivalently, on the value of the discriminant
K ≡ −[(a1)2 + a2a3]. If K < 0, the polynomial a3z2 − 2a1z− a2 has two different
real roots, ζ1 = (a1 +√−K)/a3, ζ2 = (a1 −√−K)/a3 and from (6.25), according
to the partial fractions method, we obtain

∫ t

0
dt =

∫ z(t)

z(0)

dz

2
√−K

(
1

z − ζ1
− 1

z − ζ2

)
= 1

2
√−K

ln
z(t) − ζ1

z(t) − ζ2

z(0) − ζ2

z(0) − ζ1
,

which amounts to the expression

z(t) = αz(0) + β

γ z(0) + δ
, (6.26)

where
( α β

γ δ

)
is the matrix (dependent on the parameter t) belonging to SL(2,R)

given by

(
α β

γ δ

)
= cosh

√−K t

(
1 0
0 1

)
− sinh

√−K t√−K

(
a1 a2

a3 −a1

)
. (6.27)

Note that we can multiply the coefficients α, β , γ , and δ appearing in (6.26) by a
common nonzero, real or complex, factor λ, without altering the validity of (6.26).
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Taking advantage of this freedom, it is convenient to impose the condition that the
determinant of the matrix of the coefficients in the linear fractional transformation
(6.26) be equal to 1. Nevertheless, this condition does not specify completely this
matrix, because the determinant of its negative is also equal to 1. Thus, to each linear
fractional transformation (6.26) there correspond two real matrices with determinant
equal to 1.

In a similar way, in the cases where K is positive or equal to zero, one finds that
the solution of (6.25) can be expressed in the form (6.26), with

(
α β

γ δ

)
=

⎧
⎪⎨

⎪⎩

cos
√

K t
( 1 0

0 1

)− sin
√

K t√
K

(
a1 a2

a3 −a1

)
if K > 0,

( 1 0
0 1

)− t
(

a1 a2

a3 −a1

)
if K = 0.

(6.28)

These matrices are also real and have determinant equal to 1 and, therefore, they
also belong to SL(2,R). Note that, in all cases, the solution contains the traceless
matrix

(
a1 a2

a3 −a1

)
,

whose determinant is equal to K . One may notice that the expressions (6.28) can be
obtained from (6.27) making use of the relationship between the hyperbolic func-
tions of an imaginary argument and the trigonometric functions, or taking the limit
as K goes to zero.

Even though one could express the solution (6.26) in terms of the original vari-
ables, x, y, it is more convenient to employ directly the formula (6.26), in part be-
cause the composition of linear fractional transformations is represented by matrix
multiplication in the following sense. The composition of the linear fractional trans-
formation z �→ αz+β

γ z+δ
, which can be associated with the matrix

( α β

γ δ

)
, followed by

the map z �→ az+b
cz+d

, associated with
(

a b
c d

)
, is the linear fractional transformation

z �→ (aα+bγ )z+aβ+bδ
(cα+dγ )z+cβ+dδ

, which can be associated with the matrix product
(

a b
c d

)( α β

γ δ

)

(but also with any nonzero multiple of this product).

Not all the elements of the group SL(2,R) are of the form (6.27) or (6.28) (see
Example 7.41); however, it can be directly verified that all the elements of this group
give rise to isometries of (6.19).

Exercise 6.13 Show that if
( α β

γ δ

)
is any matrix belonging to SL(2,R), then

ψ∗z = αz + β

γ z + δ
, (6.29)

with z = x + iy, is an isometry of (6.19) [cf. (6.26)].
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Exercise 6.14 Find the Killing vector fields of the hyperbolic space H
3 ≡

{(x, y, z) ∈R
3 | z > 0}, which possesses the metric tensor

g = z−2(dx ⊗ dx + dy ⊗ dy + dz ⊗ dz).

Example 6.15 The metric induced on S2, expressed in terms of the spherical coordi-
nates (x1, x2) = (θ,φ), has components g11 = 1, g12 = 0, g22 = sin2 θ [see (6.11)],
and therefore the Killing equations are

2
∂X1

∂θ
= 0,

sin2 θ
∂X2

∂θ
+ ∂X1

∂φ
= 0, (6.30)

X1 ∂ sin2 θ

∂θ
+ 2 sin2 θ

∂X2

∂φ
= 0.

The first of these equations amounts to X1 = F(φ), where F is some real-valued
function of one variable. Substituting this expression into the last equation of (6.30)
we have ∂(−X2 tan θ)/∂φ = F(φ); hence, we have −X2 tan θ = H(φ) + G(θ),
where H is a primitive of F (i.e., F = H ′) and G is some real-valued function
of a single variable. Substitution of the expressions obtained above into the second
equation of (6.30) yields

− sin2 θ
d(G(θ) cot θ)

dθ
+ d2H

dφ2
+ H = 0.

Since the first term on the left-hand side of this last equation depends on θ only,
while the last two terms depend on φ only, d2H/dφ2 +H = k, where k is some con-
stant and sin2 θ d(G(θ) cot θ)/dθ = k. The solutions of these equations are H(φ) =
n1 cosφ +n2 sinφ +k and G(θ) = −k −n3 tan θ , where n1, n2, and n3 are real con-
stants; thus, X1 = H ′(φ) = −n1 sinφ+n2 cosφ and X2 = − cot θ(H(φ)+G(θ)) =
− cot θ(n1 cosφ +n2 sinφ)+n3. Therefore, the Killing vector fields of S2, with the
Riemannian structure induced by that of R3, are locally of the form

X = n1
(

− sinφ
∂

∂θ
− cot θ cosφ

∂

∂φ

)

+ n2
(

cosφ
∂

∂θ
− cot θ sinφ

∂

∂φ

)
+ n3 ∂

∂φ
. (6.31)

Exercise 6.16 By means of the stereographic projection, each point of S2 is put in
correspondence with a point of the extended complex plane; in terms of the spherical
coordinates of S2, this mapping is given by z = eiφ cot(θ/2) [see (1.3)]. Find the
integral curves of (6.31) making use of the complex variable z and show that the
isometries generated by the Killing vector fields (6.31) can be expressed in the form
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(6.26) with
( α β

γ δ

)
being a unitary complex matrix with determinant equal to 1 [that

is, an element of the group SU(2)].

Example 6.17 The space R
3 with its usual manifold structure and the metric tensor

dx ⊗ dx + dy ⊗ dy − dz ⊗ dz, (6.32)

where (x, y, z) are the natural coordinates of R3, is a pseudo-Riemannian manifold
denoted by R

2,1 (analogous to the Minkowski space, with two spatial and one tem-
poral dimensions). Even though the metric tensor (6.32) is not positive definite, the
metric tensor induced on the submanifold

M ≡ {
(x, y, z) ∈ R

2,1 |x2 + y2 − z2 = −1, z > 0
}

is. This can be seen by noting first that the points of M can be put into a one-to-one
correspondence with the points of the disk

D ≡ {
(X,Y ) ∈ R

2 |X2 + Y 2 < 1
}

by means of

X = x

1 + z
, Y = y

1 + z
(6.33)

[cf. (1.4)] or, equivalently,

x = 2X

1 − X2 − Y 2
, y = 2Y

1 − X2 − Y 2
, z = 1 + X2 + Y 2

1 − X2 − Y 2
. (6.34)

(The coordinates (X,Y,0) are those of the intersection of the plane z = 0 with the
straight line joining the point (x, y, z) ∈ M with the point (0,0,−1); see Fig. 6.1.)
Making use of this correspondence, the variables (X,Y ) can be used as coordinates
of M and, in terms of these, the metric induced on M has the expression

4

(1 − X2 − Y 2)2
(dX ⊗ dX + dY ⊗ dY). (6.35)

A simple form of finding the Killing vector fields for the metric (6.35) consists of
using the facts that the Killing vector fields of R2,1 are linear combinations of the six
vector fields (6.17) and (6.18), with (gij ) = diag(1,1,−1), and that the only Killing
vector fields of R2,1 tangent to the submanifold M are the linear combinations of
the first three,

I12 = y
∂

∂x
− x

∂

∂y
, I13 = z

∂

∂x
+ x

∂

∂z
, I23 = z

∂

∂y
+ y

∂

∂z
. (6.36)

(Since M is defined by x2 + y2 − z2 = −1 and that the derivative of x2 + y2 − z2

along the direction of each of the fields (6.36) is equal to zero, it follows that these
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Fig. 6.1 Stereographic projection. The points (x, y, z) ∈ M , (X,Y,0) and (0,0,−1) lie on the
same straight line

fields are tangent to M .) Using the relation (6.33) one finds that, on M ,

I12 = Y
∂

∂X
− X

∂

∂Y
,

I13 = 1

2

(
1 − X2 + Y 2) ∂

∂X
− XY

∂

∂Y
, (6.37)

I23 = −XY
∂

∂X
+ 1

2

(
1 + X2 − Y 2) ∂

∂Y
,

and by means of a direct computation it can be verified that these fields satisfy the
Killing equations (6.14) for the metric (6.35).

Expression (6.35) can be regarded as that of the metric tensor of M in terms of
the coordinates (X,Y ) or as that of a metric tensor on D. Formulas (6.33) and (6.34)
then represent an isometry between M and D. The vector fields (6.37) thus are also
a basis for the Killing vector fields of D.

On the other hand, the equation

x + iy = (X + iY) + i

i(X + iY) + 1
(6.38)

establishes a correspondence between each point (X,Y ) ∈ D and a point (x, y)

of the Poincaré half-plane; this correspondence is one-to-one and, furthermore, an
isometry. Consequently, there also exists a one-to-one correspondence between the
Poincaré half-plane and the submanifold M of R2,1 defined above, and this corre-
spondence is an isometry. Since all the Killing vector fields of the Poincaré half-
plane and the isometries generated by them have been found in Example 6.12, by
means of equations (6.33), (6.34), and (6.38) one can obtain all the Killing vector
fields of M and the isometry groups generated by them [see also Lee (1997)].

Exercise 6.18 Show that, effectively, (6.38) establishes a one-to-one relation be-
tween the points (x, y) of the Poincaré half-plane (that is, y > 0) and the points
(X,Y ) ∈ D (with X2 + Y 2 < 1) and that this relation is an isometry. Using the
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correspondence (6.38), show that the isometry of the Poincaré half-plane given by
(6.29) amounts to the linear fractional transformation

ψ∗Z = aZ + b

cZ + d
,

where Z ≡ X + iY and

(
a b

c d

)
= 1√

2

(
1 −i
−i 1

)(
α β

γ δ

)
1√
2

(
1 i
i 1

)
, (6.39)

which is, therefore, an isometry of D (or of M). Show that the matrix
(

a b
c d

)
belongs

to the group SU(1,1), which is formed by the complex 2 × 2 matrices, A, with
determinant equal to 1, such that

A†
(

1 0
0 −1

)
A =

(
1 0
0 −1

)
. (6.40)

(It can be verified that the relation (6.39) is an isomorphism of the group SL(2,R)

onto SU(1,1).)

Conformal Mappings Besides the isometries, the transformations that preserve
the metric up to a factor are also interesting. If M1 and M2 are two Riemannian
manifolds, a differentiable mapping ψ : M1 → M2 is a conformal transformation
if there exists a positive function σ ∈ C∞(M1), such that ψ∗g2 = σg1, where g1

and g2 are the metric tensors of M1 and M2, respectively.

Example 6.19 The inclusion mapping i : Sn → R
n+1 identifies each point of the

sphere Sn with the same point considered as a point of R
n+1. The stereographic

projection, φ : Sn\{(0,0, . . . ,1)} →R
n defined in Example 1.3 is a diffeomorphism

and the composition i ◦ φ−1 maps the points of Rn into the subset

{(
a1, . . . , an+1) ∈ R

n+1 | (a1)2 + · · · + (
an+1)2 = 1, an+1 < 1

}
,

i.e., the sphere with the north pole removed. In terms of the Cartesian coordinates
(y1, y2, . . . , yn) of Rn and (x1, x2, . . . , xn+1) of Rn+1, the composition i ◦ φ−1 is
given by

(
i ◦ φ−1)∗xj = 2yj

1 + y2
, for j = 1,2, . . . , n,

where y2 ≡ (y1)2 + (y2)2 + · · · + (yn)2 [see (1.5)], and

(
i ◦ φ−1)∗xn+1 = y2 − 1

y2 + 1
.
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Hence, making use of the properties (1.52), (2.29), (2.30), and (2.32), one finds that

(
i ◦ φ−1)∗

(
n+1∑

j=1

dxj ⊗ dxj

)

= 4

(1 + y2)2

n∑

j=1

dyj ⊗ dyj

or, equivalently,

(
φ−1)∗

(

i∗
n+1∑

j=1

dxj ⊗ dxj

)

= 4

(1 + y2)2

n∑

j=1

dyj ⊗ dyj . (6.41)

The expression
∑n

j=1 dyj ⊗dyj is the usual metric of Rn, while i∗
∑n+1

j=1 dxj ⊗dxj

is the metric induced on Sn by the usual metric of Rn+1 (see Example 6.8). Thus,
φ−1 (and φ) is a conformal map. (Note, however, that φ is not defined on all of Sn.)

If X is the infinitesimal generator of a one-parameter group of conformal trans-
formations of a Riemannian manifold M , then £Xg = 2χg, where χ is some func-
tion (the factor 2 is inserted for future convenience) and we say that X is a conformal
Killing vector field. In terms of the components with respect to the natural basis in-
duced by a coordinate system, X is a conformal Killing vector field if

Xk ∂gij

∂xk
+ gkj

∂Xk

∂xi
+ gik

∂Xk

∂xj
= 2χgij . (6.42)

When χ is a nonzero constant, X is called a homothetic Killing vector field.

Example 6.20 As in Example 6.11, we shall consider a Riemannian manifold such
that, in some coordinate system, the components of the metric tensor are constant.
Then equations (6.42) reduce to

∂ξj

∂xi
+ ∂ξi

∂xj
= 2χgij , with ξj ≡ gjkX

k (6.43)

[cf. (6.15)]. From (6.43) we obtain

∂

∂xk

∂ξj

∂xi
+ ∂

∂xk

∂ξi

∂xj
= 2gij

∂χ

∂xk
. (6.44)

By cyclic permutations of the indices i, j, k in (6.44) we obtain two equations equiv-
alent to that equation:

∂

∂xi

∂ξk

∂xj
+ ∂

∂xi

∂ξj

∂xk
= 2gjk

∂χ

∂xi
,

∂

∂xj

∂ξi

∂xk
+ ∂

∂xj

∂ξk

∂xi
= 2gki

∂χ

∂xj
.
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Adding these two equations and subtracting equation (6.44) one finds that

∂

∂xi

∂ξk

∂xj
= gjk

∂χ

∂xi
+ gki

∂χ

∂xj
− gij

∂χ

∂xk
. (6.45)

Applying ∂/∂xm to both sides of this equation we now obtain

∂

∂xm

∂

∂xi

∂ξk

∂xj
− gjk

∂

∂xm

∂χ

∂xi
= gki

∂

∂xm

∂χ

∂xj
− gij

∂

∂xm

∂χ

∂xk
.

Since the left-hand side is symmetric under the interchange of the indices i and m,
the same must happen with the right-hand side, that is,

gki

∂

∂xm

∂χ

∂xj
− gij

∂

∂xm

∂χ

∂xk
= gkm

∂

∂xi

∂χ

∂xj
− gmj

∂

∂xi

∂χ

∂xk
. (6.46)

Multiplying both sides of (6.46) by gmj we obtain

gki∇2χ + (n − 2)
∂

∂xi

∂χ

∂xk
= 0, (6.47)

where

∇2χ ≡ gmj ∂

∂xm

∂χ

∂xj

and n is the dimension of M . (The general definition of the Laplace operator, ∇2, is
given in Sect. 6.4 and it can be seen that the expression (6.113) derived there reduces
to the one employed in the present case.) Multiplying (6.47) by gki one finds

(n − 1)∇2χ = 0.

Thus, if n �= 1, ∇2χ = 0 and from (6.47) one concludes that, for n ≥ 3,

∂

∂xi

∂χ

∂xk
= 0.

Hence, for n ≥ 3, χ must be of the form

χ = cj x
j + d, (6.48)

where the cj and d are arbitrary constants. Substituting (6.48) into (6.45) one finds
that

∂ξk

∂xj
= gjkcix

i + gkicj x
i − gij ckx

i + hkj , (6.49)

where the hkj are constants. Using (6.48) and (6.49) it follows that (6.43) reduces
to the equation

hij + hji = 2dgij ,

which relates the symmetric part of hij with d .
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Finally, from (6.49) one finds that

ξk = gjkcix
ixj − 1

2
ckgij x

ixj + hkj x
j + bk,

where the bk are arbitrary constants. Defining

aij ≡ 1

2
(hij − hji),

which satisfies the condition aij = −aji , we have

hij = 1

2
(hij + hji) + 1

2
(hij − hji) = dgij + aij .

Hence, when the dimension of M is greater than or equal to three, the general solu-
tion of (6.43) can be expressed in the form

ξk = gjkcix
ixj − 1

2
ckgij x

ixj + dgkj x
j + akj x

j + bk, (6.50)

which contains n + 1 + 1
2n(n − 1) + n = 1

2 (n + 1)(n + 2) arbitrary constants and
reduces to (6.16) when χ = 0 (that is, when cj = 0 and d = 0). It can be verified
directly that for n = 1 or 2 the expression (6.50) is also a solution of equations
(6.42); however, when n is equal to 1 or 2, (6.50) does not contain all solutions of
(6.42). In fact, when n = 1 any transformation of M into M with positive Jacobian
is conformal (see also the comments at the end of this section regarding the case
n = 2).

According to the preceding results, taking n = 2 and gij = δij , with i, j = 1,2,
the vector fields given by (6.50) generate some conformal transformations of the
Euclidean plane onto itself (with x1, x2 being Cartesian coordinates). Fortunately,
the transformations of this restricted class can be found explicitly in a relatively
simple form making use of complex quantities. In fact, making z ≡ x1 + ix2 one
finds that in this case (n = 2, gij = δij ) the integral curves of the vector field (6.50)
are given by the equation

dz

dt
= 1

2
(c1 − ic2)z

2 + (d − ia12)z + b1 + ib2,

where c1, c2, d , a12, b1, and b2 are six arbitrary real constants [cf. (6.25)]. This
equation can be integrated following a procedure similar to that employed in Ex-
ample 6.12. The result is that z(t) is related to z(0) by means of a linear fractional
transformation,

z(t) = αz(0) + β

γ z(0) + δ
(6.51)

[cf. (6.26)], where

(
α β

γ δ

)
= cosh

(
1

2

√
�t

)
I + sinh( 1

2

√
�t)√

�

(
d − ia12 2(b1 + ib2)

−(c1 − ic2) −(d − ia12)

)
,
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with � ≡ (d − ia12)
2 − 2(b1 + ib2)(c1 − ic2) [cf. (6.27)]. This matrix belongs to the

SL(2,C) group, formed by the 2 × 2 complex matrices with determinant equal to 1.
As known from the complex variable theory, every analytic function, f : C →C,

is a conformal mapping; the linear fractional transformations (or Möbius transfor-
mations) (6.51) are distinguished because they are the only analytic one-to-one map-
pings of the extended complex plane (the complex plane plus the point at infinity)
onto itself [see, e.g., Fisher (1999)].

Exercise 6.21 Show directly that any linear fractional transformation

ψ∗z = αz + β

γ z + δ

given by a matrix
( α β

γ δ

)
belonging to the SL(2,C) group, with z = x1 + ix2, is a con-

formal transformation of the Euclidean plane and find the corresponding conformal
factor.

6.2 The Riemannian Connection

Theorem 6.22 Let M be a Riemannian manifold. There exists a unique connection,
∇ , the Riemannian or Levi-Civita connection, with vanishing torsion and such that
∇Xg = 0 for all X ∈ X(M); that is, there exists a unique connection on M such that

[X,Y] = ∇XY − ∇YX, (6.52)

X
(
g(Y,Z)

) = g(∇XY,Z) + g(Y,∇XZ), (6.53)

for X,Y,Z ∈ X(M).

Proof Let X,Y,Z ∈X(M). Assuming that such a connection exists, we have

X
(
g(Y,Z)

)+ Y
(
g(Z,X)

)− Z
(
g(X,Y)

)

= g(∇XY,Z) + g(Y,∇XZ) + g(∇YZ,X) + g(Z,∇YX)

− g(∇ZX,Y) − g(X,∇ZY)

= g(∇XY + ∇YX,Z) + g(Y,∇XZ − ∇ZX) + g(X,∇YZ − ∇ZY)

= g
(∇XY + ∇XY + [Y,X],Z

)+ g
(
Y, [X,Z])+ g

(
X, [Y,Z])

= 2g(∇XY,Z) + g
(
Z, [Y,X])+ g

(
Y, [X,Z])+ g

(
X, [Y,Z]),

that is,

2g(∇XY,Z) = X
(
g(Y,Z)

)+ Y
(
g(Z,X)

)− Z
(
g(X,Y)

)

− g
(
Z, [Y,X])− g

(
Y, [X,Z])− g

(
X, [Y,Z]). (6.54)
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Since g is non-singular, this relation defines ∇XY. By construction, this connec-
tion has a vanishing torsion and satisfies ∇Xg = 0 for all X ∈ X(M). The explicit
expression (6.54) shows its uniqueness. �

A connection, ∇ , is a metric connection if ∇Xg = 0 for all X ∈X(M). The Levi-
Civita connection is the only metric connection whose torsion vanishes.

Making use of the relations gij = g(∂/∂xi, ∂/∂xj ) and [∂/∂xi, ∂/∂xj ] = 0, from
(6.54) we obtain

2g

(
∇∂/∂xi

∂

∂xj
,

∂

∂xk

)
= ∂gjk

∂xi
+ ∂gki

∂xj
− ∂gij

∂xk
;

hence, writing ∇∂/∂xi ∂/∂xj = Γ l
ji∂/∂xl , it follows that

2Γ l
jiglk = ∂gjk

∂xi
+ ∂gki

∂xj
− ∂gij

∂xk
,

which leads to

Γ l
ji = 1

2
gkl

(
∂gjk

∂xi
+ ∂gki

∂xj
− ∂gij

∂xk

)
. (6.55)

This expression defines the so-called Christoffel symbols, which determine the Rie-
mannian connection with respect to a holonomic basis. From (6.55) we find that
Γ l

ji = Γ l
ij (cf. Exercise 5.11); therefore, in a manifold of dimension n, there exist

n2(n + 1)/2 independent Christoffel symbols.
From (6.55) and Exercise 5.12 it follows that if the components of the metric

tensor in some holonomic basis are constant, then the curvature of the Riemannian
connection is equal to zero.

Exercise 6.23 Show that if the gij are the components of the metric tensor with
respect to a holonomic basis and the Γ i

j are the connection 1-forms for the Rie-
mannian connection with respect to this basis, then dgij = gimΓ m

j + gjmΓ m
i and

show that gijRj
k = −gkjRj

i . (Note that this last equation amounts to gijR
j
klm =

−gkjR
j
ilm.)

A convenient way of computing the Christoffel symbols, especially in those cases
where (gij ) is diagonal, consists of using the fact that the geodesic equations (5.7)
amount to the Euler–Lagrange equations for the Lagrangian

L = 1

2
(π∗gij ) q̇i q̇j , (6.56)

where π is the canonical projection of the tangent bundle of M on M , the q̇i are
coordinates on TM induced by local coordinates xi on M [see (1.28)], and the gij

are the components of the metric tensor with respect to the holonomic basis ∂/∂xi .
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In effect, the Euler–Lagrange equations (see Exercise 2.15)

d

dt

[
∂L

∂q̇k

(
C̃(t)

)]− ∂L

∂qk

(
C̃(t)

)= 0, k = 1,2, . . . , n,

where C̃ is the curve in TM defined by C̃(t) = C′
t , yield

d

dt

[(
q̇i π∗gki

)(
C̃(t)

)]−
[

1

2
q̇i q̇j ∂(π∗gij )

∂qk

](
C̃(t)

)= 0.

Since π(C̃(t)) = C(t) and, according to (1.28) and (1.20), q̇i (C̃(t)) = C′
t [xi] =

d(xi ◦ C)/dt , these equations are equivalent to (see Exercise 1.17)

d

dt

[
d(xi ◦ C)

dt
gki

(
C(t)

)]− 1

2

d(xi ◦ C)

dt

d(xj ◦ C)

dt

∂gij

∂xk

(
C(t)

)= 0

and to [see (1.20)]

0 = d2(xi ◦ C)

dt2
gki

(
C(t)

)+ d(xi ◦ C)

dt

d(xj ◦ C)

dt

∂gki

∂xj

(
C(t)

)

− 1

2

d(xi ◦ C)

dt

d(xj ◦ C)

dt

∂gij

∂xk

(
C(t)

)

= d2(xi ◦ C)

dt2
gki

(
C(t)

)+ 1

2

d(xi ◦ C)

dt

d(xj ◦ C)

dt

(
∂gjk

∂xi
+ ∂gki

∂xj
− ∂gij

∂xk

)(
C(t)

)

= gkm

(
C(t)

)[d2(xm ◦ C)

dt2
+ Γ m

ij

(
C(t)

)d(xi ◦ C)

dt

d(xj ◦ C)

dt

]
.

These equations are equivalent to the geodesic equations, since (gij ) is non-singular.

Example 6.24 The tensor field

g = 1

1 − kr2
dr ⊗ dr + r2(dθ ⊗ dθ + sin2 θ dφ ⊗ dφ

)
, (6.57)

with k ∈R, is a positive definite metric on an open subset of a manifold of dimension
three defined by r > 0, 0 < θ < π , 0 < φ < 2π . In the case where k is positive, r is
restricted by 0 < r < 1/

√
k. The Lagrangian (6.56) becomes

L = 1

2

{
(q̇1)2

1 − k(q1)2
+ (

q1)2[(
q̇2)2 + sin2 q2(q̇3)2]

}
,
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where q1 ≡ π∗r , q2 ≡ π∗θ , q3 ≡ π∗φ. Substituting this expression into the Euler–
Lagrange equations, one finds, for example,

d

dt

[
q̇1

1 − k(q1)2

(
C̃(t)

)]−
{

kq1(q̇1)2

[1 − k(q1)2]2
+q1[(q̇2)2 + sin2 q2(q̇3)2]

}(
C̃(t)

)= 0,

that is,

1

1 − kr2

d2r

dt2
+ kr

(1 − kr2)2

(
dr

dt

)2

− r

(
dθ

dt

)2

− r sin2 θ

(
dφ

dt

)2

= 0,

where, in order to simplify the notation, we have written r , θ , and φ in place of
r ◦ C, θ ◦ C, and φ ◦ C, respectively. Comparing with the geodesic equations one
obtains at once six of the Christoffel symbols:

Γ 1
11 = kr

1 − kr2
, Γ 1

22 = −r
(
1 − kr2), Γ 1

33 = −r sin2 θ
(
1 − kr2),

and Γ 1
ij = 0 for i �= j .

Proceeding in this manner, one finds that the connection 1-forms Γ i
j = Γ i

jk dxk

are

Γ 1
1 = kr dr

1 − kr2
, Γ 1

2 = −r
(
1 − kr2

)
dθ, Γ 1

3 = −r sin2 θ
(
1 − kr2

)
dφ,

Γ 2
1 = 1

r
dθ, Γ 2

2 = 1

r
dr, Γ 2

3 = − sin θ cos θ dφ,

Γ 3
1 = 1

r
dφ, Γ 3

2 = cot θ dφ, Γ 3
3 = 1

r
dr + cot θ dθ,

(6.58)
and making use of the second Cartan structural equations one readily finds that the
nonzero curvature forms are given by

R1
2 = kr2 dr ∧ dθ,

R2
3 = kr2 sin2 θ dθ ∧ dφ,

R3
1 = k

1 − kr2
dφ ∧ dr,

and

R2
1 = k

1 − kr2
dθ ∧ dr,

R3
2 = kr2 dφ ∧ dθ,

R1
3 = kr2 sin2 θ dr ∧ dφ

(see Exercise 6.23), which can be summarized by the expression Ri
j = kgjm dxi ∧

dxm, that is,

Ri
jlm = k

(
δi
l gjm − δi

mgjl

)
(6.59)
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[see (5.27)]. (A Riemannian manifold of dimension greater than two whose curva-
ture is of the form (6.59) is said to be a constant curvature manifold.)

When k = 0, the curvature is equal to zero and (6.57) coincides with the usual
metric of the Euclidean space of dimension three, in spherical coordinates. For
k = 1, (6.57) coincides with the usual metric of the sphere S3 (which, perhaps, can
be more readily seen using, in place of r , the variable χ defined by r = sinχ ).

Rigid Bases Besides the holonomic bases, {∂/∂xi}ni=1, induced by coordinate sys-
tems, another important class of bases are the rigid ones. A set of basis vector fields
{e1, . . . , en}, not necessarily holonomic, is a rigid basis if the components of the
metric tensor, gij ≡ g(ei , ej ), are constant. From the property (6.53) and recalling
that ∇ei

ej = Γ l
jiel [see (5.20) and (5.21)] it follows that

0 = eigjk = ei

(
g(ej , ek)

)= g(∇ei
ej , ek) + g(ej ,∇ei

ek)

= g
(
Γ l

jiel , ek

)+ g
(
ej ,Γ

l
kiel

)= glkΓ
l
ji + gjlΓ

l
ki;

hence, defining

Γijk ≡ gilΓ
l
jk, (6.60)

we have

Γkji + Γjki = 0. (6.61)

In this case the functions Γ i
jk or, equivalently, Γijk , are called the Ricci rotation co-

efficients; owing to the skew-symmetry of Γijk in the two first indices, in a manifold
of dimension n, there are n2(n − 1)/2 independent Ricci rotation coefficients.

From the property (6.52) we see that

[ei , ej ] = ∇ei
ej − ∇ej

ei = (
Γ k

ji − Γ k
ij

)
ek, (6.62)

that is, the Lie brackets of the basis fields give the skew-symmetric part in the last
two indices of the Ricci rotation coefficients, Γ k [ij ] ≡ 1

2 (Γ k
ij − Γ k

ji). These re-
lations [alone or combined with the property (6.61)] allow us to calculate the Ricci
rotation coefficients; in effect, noting that 2g(∇ei

ej , ek) = 2g(Γ l
jiel , ek) = 2Γkji ,

from (6.54) we obtain

2g(∇ei
ej , ek) = −g

(
ek, [ej , ei]

)− g
(
ej , [ei , ek]

)− g
(
ei , [ej , ek]

)

= −g
(
ek,2Γ l [ij ]el

)− g
(
ej ,2Γ l [ki]el

)− g
(
ei ,2Γ l [kj ]el

)

= −2Γk[ij ] − 2Γj [ki] − 2Γi[kj ];

hence

Γkji = Γk[ji] − Γj [ki] − Γi[kj ]. (6.63)

(Note that (6.61) follows from (6.63).)
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Alternatively, from the first Cartan structural equations, owing to the fact that the
torsion of the Riemannian connection is equal to zero and that the exterior product
of 1-forms is skew-symmetric, we have

dθi = Γ i
jkθ

j ∧ θk = Γ i [jk]θj ∧ θk. (6.64)

Therefore, the computation of the exterior derivative of the 1-forms θi also yields
the skew-symmetric part in the last two indices of the Ricci rotation coefficients
and by means of the relation (6.63) the value of each of the coefficients Γijk can be
obtained (see Examples 6.25, 6.37, 6.39, and 6.47).

The skew-symmetry of the Ricci coefficients, (6.61), is equivalent to the skew-
symmetry of the connection 1-forms Γij ≡ gikΓ

k
j = Γijkθ

k , with respect to a rigid
basis, given by

Γij = −Γji, (6.65)

which implies that the curvature 2-forms Rij ≡ gikRk
j are also skew-symmetric

Rij = −Rji . (6.66)

Indeed, from the second Cartan structural equations, using (6.65) and the anticom-
mutativity of the exterior product of 1-forms, we have Rij = dΓij + Γik ∧ Γ k

j =
−dΓji − Γki ∧ Γ k

j = −dΓji − Γ k
i ∧ Γkj = −dΓji − Γjk ∧ Γ k

i = −Rji (cf. Ex-
ercise 6.23).

Example 6.25 By expressing the metric tensor (6.57) in the form

g = dr√
1 − kr2

⊗ dr√
1 − kr2

+ r dθ ⊗ r dθ + r sin θ dφ ⊗ r sin θ dφ,

it follows that the 1-forms

θ1 ≡ dr√
1 − kr2

, θ2 ≡ r dθ, θ3 ≡ r sin θ dφ (6.67)

form the dual basis of an orthonormal basis, that is, g = gij θ
i ⊗ θj , with

(gij ) =
⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠ . (6.68)

The exterior derivatives of the 1-forms (6.67) are

dθ1 = 0,

dθ2 = dr ∧ dθ =
√

1 − kr2

r
θ1 ∧ θ2,

dθ3 = sin θ dr ∧ dφ + r cos θ dθ ∧ dφ

=
√

1 − kr2

r
θ1 ∧ θ3 + cot θ

r
θ2 ∧ θ3,
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which, compared with (6.64) and using (6.68) lead to Γ2[12] =
√

1−kr2

2r
= Γ3[13],

Γ3[23] = cot θ
2r

, and the other Γi[jk] are equal to zero. Substituting into (6.63) one finds

that all the nonzero Ricci rotation coefficients are given by Γ122 = −√
1 − kr2/r ,

Γ233 = − cot θ/r , and Γ313 = √
1 − kr2/r . Hence,

Γ12 = −
√

1 − kr2 dθ, Γ23 = − cos θ dφ, Γ31 =
√

1 − kr2 sin θ dφ

(6.69)
[cf. (6.58)]. Employing now the second Cartan structural equations, one finds that

R12 = kθ1 ∧ θ2, R23 = kθ2 ∧ θ3, R31 = kθ3 ∧ θ1,

which can be expressed in the form [see (6.68)] Rij = k
2 (gilgjm − gimgjl) θ l ∧ θm.

Thus, we find again that the components of the curvature tensor of the metric (6.57)
are given by (6.59).

Exercise 6.26 Show that the curvature of the manifold H
n ≡ {(x1, x2, . . . , xn) ∈

R
n |xn > 0}, with the metric tensor

g = (
xn
)−2(dx1 ⊗ dx1 + dx2 ⊗ dx2 + · · · + dxn ⊗ dxn

)
,

called the hyperbolic space, is given by Rijlm = gimgjl − gilgjm.

Geodesics of a Riemannian Manifold If C : I → M is a geodesic (that is,
∇C′C′ = 0), then g(C′,C′) is constant, since

C′[g(C′,C′)
]= g(∇C′C′,C′) + g(C′,∇C′C′) = 2g(C′,∇C′C′) = 0. (6.70)

If M is a Riemannian manifold with a positive definite metric, g(C′,C′) is the
square of the length of the vector field tangent to C; therefore, in this case, the
length of the tangent vector field of a geodesic is constant. In the case of a Rieman-
nian manifold with a positive definite metric tensor, the geodesics are the curves that
locally minimize length [see, e.g., do Carmo (1992), Lee (1997)].

The following theorem gives an alternative way of defining a Killing vector field,
making use of the Riemannian connection [cf. (6.13)].

Theorem 6.27 X is a Killing vector field if and only if

g(∇YX,Z) + g(Y,∇ZX) = 0,

for Y,Z ∈X(M).

Proof Making use of (2.45), (2.27), (6.53), and (5.13) with T = 0 one finds that

(£Xg)(Y,Z) = X
(
g(Y,Z)

)− g
(
£XY,Z

)− g
(
Y,£XZ

)

= X
(
g(Y,Z)

)− g
([X,Y],Z

)− g
(
Y, [X,Z])
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= g(∇XY,Z) + g(Y,∇XZ)

− g(∇XY − ∇YX,Z) − g(Y,∇XZ − ∇ZX)

= g(∇YX,Z) + g(Y,∇ZX),

which leads to the desired result. �

Theorem 6.28 If C is a geodesic and X is a Killing vector field, then g(X,C′) is
constant along C.

Proof Making use of (6.53) and the definition of a geodesic we have

C′[g(X,C′)
]= g(∇C′X,C′) + g(X,∇C′C′) = g(∇C′X,C′),

which is equal to zero according to Theorem 6.27. �

Example 6.29 In order to find the geodesics of Poincaré’s half-plane we can take
advantage of the existence of the three Killing vector fields (6.22). Making use of
(6.19) and (6.22), according to Theorem 6.28 we obtain the three constants

c1 ≡ g(X1,C
′) = −2y−2

(
x

dx

dt
+ y

dy

dt

)
,

c2 ≡ g(X2,C
′) = −y−2 dx

dt
, (6.71)

c3 ≡ g(X3,C
′) = y−2

((
x2 − y2)dx

dt
+ 2xy

dy

dt

)
,

where, by abuse of notation, we have written x in place of x ◦ C, and so on.
By combining the first two equations one finds that 2c2(x dx/dt + y dy/dt) =
c1 dx/dt , that is, d(c2(x

2 + y2) − c1x)/dt = 0; hence c2(x
2 + y2) − c1x is a con-

stant that, if c2 �= 0, is conveniently expressed by c2[R2 − (c1/2c2)
2], so that we

have (x − c1/2c2)
2 + y2 = R2, which corresponds to the upper part of a circle

(since y > 0) whose center is on the x axis. When c2 = 0, from (6.71) we see that x

is a constant. Thus, the images of the geodesics for the metric (6.19) are half-circles
with center on the x axis or vertical lines.

The parametrization of these curves can be obtained making use again of (6.71),
which gives (for c2 �= 0)

dt = − 1

c2y2
dx = − dx

2Rc2

[
1

x − (c1/2c2) + R
− 1

x − (c1/2c2) − R

]

and, therefore,

x(t) = (x2 − x(0))x1 + (x(0) − x1)x2e−2Rc2t

x2 − x(0) + (x(0) − x1)e−2Rc2t
,
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where x1 ≡ (c1/2c2) − R, x2 ≡ (c1/2c2) + R. (Note that when t → ±∞, x tends
to x1 or x2.) Substituting the expressions obtained above into (6.71) one finds that
the radius R is related to the constants ci through R2 = (c1

2 + 4c2c3)/(4c2
2). The

expression for y(t) can be obtained from the second equation in (6.71).
In addition to the three constants (6.71), equation (6.70) yields a fourth constant,

E ≡ 1
2g(C′,C′), which turns out to be function of the ci . In fact, making use of

(6.19) and (6.71) one finds that

E = 1

2y2

[(
dx

dt

)2

+
(

dy

dt

)2]
= 1

8

(
c1

2 + 4c2c3
)

so that, if c2 �= 0, we have E = 1
2R2c2

2. Making use of the foregoing results, one
can readily see that each geodesic of this manifold has infinite length since LC =∫∞
−∞

√
gC(t)(C

′
t ,C

′
t )dt = √

2E
∫∞
−∞ dt , and from equations (6.71) one also finds

that given any point p of the half-plane y > 0 and any tangent vector at p, there
exists a (unique) geodesic passing through p, where its tangent vector coincides
with the given vector. For this reason, this manifold is geodesically complete [see
also, e.g., do Carmo (1992), Lee (1997), and Conlon (2001)].

Example 6.30 Starting from the three basis Killing vector fields for the metric
(6.11), given by (6.31), with the aid of Theorem 6.28 we have the three constant
quantities

c1 ≡ − sinφ
dθ

dt
− sin θ cos θ cosφ

dφ

dt
,

c2 ≡ cosφ
dθ

dt
− sin θ cos θ sinφ

dφ

dt
,

c3 ≡ sin2 θ
dφ

dt
.

By combining these equations one obtains c1 cosφ + c2 sinφ = −c3 cot θ or, equiv-
alently, c1 sin θ cosφ + c2 sin θ sinφ + c3 cos θ = 0. Taking into account the rela-
tion between the spherical and the Cartesian coordinates, one concludes that this
last equation corresponds to the intersection of the sphere with the plane passing
through the origin given by c1x + c2y + c3z = 0; that is, the geodesics of S2 are the
intersections of the sphere with the planes passing through the origin.

Exercise 6.31 Show that the connection considered in Example 5.6 is the Levi-
Civita connection corresponding to the metric tensor g = (1 + r2)−2(dr ⊗ dr +
r2 dθ ⊗ dθ). Since the components of the metric tensor in these coordinates do not
depend on θ , ∂/∂θ is a Killing vector field for this metric. Find the geodesics making
use of Theorem 6.28 and of the fact that g(C′,C′) is a constant for any geodesic C.
Find all the Killing vector fields and the constants associated with them.

Exercise 6.32 Show that if the vector field X is the gradient of some function and
g(X,X) is constant, then ∇XX = 0, i.e., the integral curves of X are geodesics.
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(Hint: assuming that X = gradf , make use of the definition [X,Y]f = X(Yf ) −
Y(Xf ) together with (6.8) to establish the equality g(X, [X,Y]) = X[g(X,Y)] −
Y[g(X,X)], and then employ (6.52) and (6.53).)

The result stated in Exercise 6.32 is especially interesting for it relates the prob-
lem of writing down and solving the equations for the geodesics (5.7) (which may
involve the computation of the functions Γ i

jk) with that of solving the PDE

g(gradW,gradW) = const. (6.72)

It turns out that, locally, any geodesic is an integral curve of the gradient of a solu-
tion of (6.72); what is more remarkable and useful is that if one knows a complete
solution of (6.72) (a concept defined in the next paragraph), then the geodesics can
be found without having to solve the differential equations for the integral curves of
gradW .

A complete solution of (6.72) is a function satisfying (6.72) that depends on n−1
parameters ai , where n = dimM , in such a way that the partial derivatives of W with
respect to the parameters ai are (functionally) independent. In terms of a coordinate
system xi , equation (6.72) is equivalent to [see (6.9)]

gij ∂W

∂xi

∂W

∂xj
= const. (6.73)

Differentiating this equation with respect to the parameter ak one obtains

2gij ∂W

∂xi

∂

∂xj

∂W

∂ak

= 0. (6.74)

Since gij (∂W/∂xi) ∂/∂xj = gradW , equation (6.74) means that each of the n − 1
partial derivatives ∂W/∂ak is constant along the integral curves of gradW ; that is,
if we define

bk ≡ ∂W

∂ak

(k = 1, . . . , n − 1), (6.75)

then the (images of the) integral curves of gradW (which are geodesics) are the
intersection of the n − 1 hypersurfaces given by bk = const. By suitably selecting
the values of the 2n − 2 parameters ak , bk , we obtain the geodesic passing through
a given point in any given direction (see Example 6.33).

Example 6.33 Considering again the Poincaré half-plane with the coordinates em-
ployed in Example 6.12, equation (6.73) takes the form

y2
[(

∂W

∂x

)2

+
(

∂W

∂y

)2]
= const. (6.76)

This PDE can be solved by the method of separation of variables, looking for a
solution of the form W = F(x) + G(y), substituting into (6.76) and denoting by c2
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the value of the constant on the right-hand side of the equation, one finds that

(
dF

dx

)2

= c2

y2
−
(

dG

dy

)2

.

This equation will hold for all values of x and y only if each side of the equa-
tion is equal to a constant, which will be denoted by a2; then (setting to zero
the integration constants), F(x) = ax and G = ∫ √

c2y−2 − a2 dy, so that W =
ax + ∫ √

c2y−2 − a2 dy is a solution of (6.76) depending on the parameter a and,
since ∂W/∂a �= 0, this is a complete solution. Then, using the fact that b ≡ ∂W/∂a

is constant along each geodesic one finds

b = x − a

∫
y dy

√
c2 − a2y2

= x +
√

c2

a2
− y2,

which represents a two-parameter family of arcs of circles.

Exercise 6.34 Making use of the procedure employed in the preceding example,
find the geodesics of the metric g = (1 + r2)−2(dr ⊗ dr + r2 dθ ⊗ dθ), considered
in Exercise 6.31.

Exercise 6.35 Show that the geodesics of the metric y−1(dx ⊗ dx + dy ⊗ dy) on
{(x, y) ∈ R

2 |y > 0} are cycloid arcs. (This problem corresponds to that of the
brachistochrone, that is, to the problem of finding the curve along which a body
slides in a uniform gravitational field to go from one given point to another, not
directly below the first one, in the least time.)

The eikonal equation,

g(gradS,gradS) = n2

or, in local coordinates,

gij ∂S

∂xi

∂S

∂xj
= n2, (6.77)

where n is a real-valued function called the refractive index, arises in the study
of geometrical optics. It can be derived from the Maxwell equations in the short-
wavelength limit [see, e.g., Born and Wolf (1999)]. According to Exercise 6.32, the
integral curves of gradS, which represent the light rays, are geodesics of the metric
tensor n2 g (with the gradient of S calculated with this metric). Taking into account
that the geodesics are the curves that locally minimize the length, defined by the
corresponding metric g, and that the refractive index is inversely proportional to
the velocity of light in the medium, it follows that the light rays are the curves that
locally minimize the time required to go from one point to another. This is known
as the Fermat principle (see also Sect. 8.4).
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6.3 Curvature of a Riemannian Manifold

The algebraic properties of the curvature tensor of a Riemannian connection, as
well as the definition of several tensor fields related to it, are more easily established
making use of their components with respect to some basis [see, e.g., (5.27)]. It is
convenient to define

Rijkl ≡ gimRm
jkl

[cf. (6.5)], so that the skew-symmetry Ri
jkl = −Ri

jlk [which is equivalent to
R(X,Y) = −R(Y,X)] amounts to

Rijkl = −Rijlk. (6.78)

We have already seen that when the torsion is equal to zero, Ri
jkl + Ri

klj +
Ri

ljk = 0 [see (5.32)], hence

Rijkl + Riklj + Riljk = 0, (6.79)

and from (6.66) we have

Rijkl = −Rjikl (6.80)

(see also Exercise 6.23). Given that R is a tensor field, its components with respect
to any basis satisfy (6.78)–(6.80).

As a consequence of the relations (6.78)–(6.80), the components of the curvature
tensor also satisfy

Rlkij = Rijlk. (6.81)

In fact, from (6.79) and (6.78) we have

Rijkl = −Riklj − Riljk = −Riklj + Rilkj . (6.82)

On the other hand, from (6.80),

Rijkl = 1

2
(Rijkl − Rjikl)

and expressing each of the terms on the right-hand side with the aid of (6.82), we
find

Rijkl = 1

2
(−Riklj + Rilkj + Rjkli − Rjlki).

Thus, exchanging i with k and j with l,

Rklij = 1

2
(−Rkijl + Rkjil + Rlijk − Rljik),

which coincides with Rijkl , by virtue of (6.78) and (6.80), as claimed above.
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Since an object skew-symmetric in two indices has n(n−1)/2 independent com-
ponents, relations (6.78) and (6.80) imply that, out of the n4 components Rlkij , at
most [n(n − 1)/2]2 are independent; while the relations (6.79), being totally skew-
symmetric in the three indices j, k, l, for each value of the first index, constitute
n( n

3) = n2(n − 1)(n − 2)/6 restrictions. Therefore the number of independent com-
ponents of the curvature tensor is

n2(n − 1)2

4
− n2(n − 1)(n − 2)

6
= n2(n2 − 1)

12
. (6.83)

Ricci Tensor, Conformal, and Scalar Curvature From the curvature tensor one
can construct other tensor fields which can be conveniently defined in terms of com-
ponents. The Ricci tensor is a tensor field of type ( 0

2) with components Rij , defined
by

Rij ≡ Rk
ikj = gklRlikj . (6.84)

(This definition is not uniform; some authors adopt the definition Rij = Rk
ijk ,

which amounts, by virtue of (6.78), to −Rk
ikj .) From (6.84) and (6.81) it follows

that the Ricci tensor is symmetric:

Rij = gklRkjli = glkRkjli = Rji.

The scalar curvature, R, is the real-valued function locally defined by

R ≡ gijRij . (6.85)

For a Riemannian manifold of dimension n ≥ 3, the Weyl tensor or conformal cur-
vature tensor is a tensor field with components defined by

Cijkl ≡ Rijkl − 1

n − 2
(gikRjl − gjkRil + gjlRik − gilRjk)

+ 1

(n − 1)(n − 2)
R(gikgjl − gilgjk). (6.86)

From (6.78)–(6.80), and the symmetry of Rij and gij it follows that the components
of the Weyl tensor (6.86) also satisfy the relations (6.78)–(6.80) and, additionally,

gklCkilj = 0. (6.87)

When n = 3, the Weyl tensor is identically zero, which amounts to saying that
the components of the curvature tensor can be expressed in the form

Rijkl = gikRjl − gjkRil + gjlRik − gilRjk − 1

2
R(gikgjl − gilgjk) (6.88)

[cf. (6.86)], so that the curvature tensor is completely determined by the Ricci ten-
sor. The Ricci tensor in a manifold of dimension three, being symmetric, possesses
six independent components, which coincides with the number of independent com-
ponents of the curvature [see (6.83)].
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Exercise 6.36 Show that for any Riemannian manifold of dimension three the com-
ponents of the curvature tensor can be expressed in the form (6.88). (Hint: show that
if the components Cijkl satisfy (6.78)–(6.80), and (6.87), then Cijkl = 0.)

When n = 2, the curvature has only one independent component [see (6.83)] and
the curvature tensor (and, therefore, the Ricci tensor) is determined by the scalar
curvature. In this case, the components of the curvature tensor are given by

Rijkl = 1

2
R(gikgjl − gilgjk). (6.89)

Example 6.37 In the context of general relativity, the Schwarzschild metric, given
locally by

g =
(

1 − rg

r

)−1

dr ⊗ dr + r2(dθ ⊗ dθ + sin2 θ dφ ⊗ dφ
)

−
(

1 − rg

r

)
c2 dt ⊗ dt (6.90)

in terms of a local coordinate system (r, θ,φ, t), where rg is a constant and c is
the velocity of light in vacuum, corresponds to the exterior gravitational field of
a spherically symmetric distribution of matter. The constant rg , called the gravita-
tional radius, is related to M , the mass of the matter distribution, by rg = 2GM/c2,
where G is the Newton gravitational constant. From (6.90) we see that the 1-forms

θ1 =
(

1 − rg

r

)−1/2

dr, θ2 = r dθ,

θ3 = r sin θ dφ, θ4 =
(

1 − rg

r

)1/2

c dt

(6.91)

form the dual basis to a basis such that

(gij ) = diag(1,1,1,−1);
therefore, e.g., Γ134 = Γ 1

34, but Γ412 = −Γ 4
12 [see (6.60)]. Calculating the exterior

derivative of each of the 1-forms (6.91), one finds that the connection 1-forms are

Γ12 = −
(

1 − rg

r

)1/2

dθ, Γ13 = −
(

1 − rg

r

)1/2

sin θ dφ,

Γ14 = rg

2r2
c dt, Γ23 = − cos θ dφ,

Γ24 = 0, Γ34 = 0.

The components of the curvature can be obtained making use of the second Car-
tan structural equations [cf. (5.26)]. One finds that the only nonvanishing compo-
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nents of the curvature 2-forms are given by [see (5.27)]

R1212 = − rg

2r3
, R1313 = − rg

2r3
, R1414 = − rg

r3
,

R2323 = rg

r3
, R2424 = rg

2r3
, R3434 = rg

2r3
.

With these expressions and the aid of the properties (6.78) and (6.80) we can now
compute the components of the Ricci tensor [see (6.84)]. Since in the present case
(gij ) = diag(1,1,1,−1) we have, for instance,

R11 = gijRi1j1 = R1111 + R2121 + R3131 − R4141 = R1212 + R1313 − R1414 = 0.

In a similar manner one finds that all the components of the Ricci tensor are equal to
zero (for r �= 0), i.e., Rij = 0, which are the Einstein equations for the gravitational
field in vacuum. Thus, for r �= 0, the Schwarzschild metric (6.90) is a solution of the
Einstein vacuum field equations.

Exercise 6.38 Calculate the Ricci tensor of the metric

g = [
f (r)

]−2 dr ⊗ dr + r2(dθ ⊗ dθ + sin2 θ dφ ⊗ dφ
)
,

where f is a differentiable real-valued function of a single variable. Show that the
Ricci tensor is proportional to the metric tensor, Rij = hgij , where h is some real-
valued function, if and only if

d

dr

(
f 2 − 1

r2

)
= 0

(cf. Example 6.24).

Example 6.39 The metric tensor of a Riemannian manifold of dimension two with
a positive definite metric has the local expression

g = E dx1 ⊗ dx1 + F
(
dx1 ⊗ dx2 + dx2 ⊗ dx1)+ Gdx2 ⊗ dx2,

where E, F , and G are real-valued differentiable functions with E > 0 and EG −
F 2 > 0, or, equivalently

g = E

(
dx1 + F

E
dx2

)
⊗
(

dx1 + F

E
dx2

)
+
(

G − F 2

E

)
dx2 ⊗ dx2.

Since in a manifold of dimension two any 1-form is (locally) integrable, there exist
functions, μ and x′1, such that

dx1 + F

E
dx2 = μdx′1;
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hence

g = Eμ2 dx′1 ⊗ dx′1 +
(

G − F 2

E

)
dx2 ⊗ dx2,

thus showing that it is possible to find locally systems of orthogonal coordinates.
That is, we may assume that the metric tensor can be written (at least locally) in the
form

g = E dx1 ⊗ dx1 + Gdx2 ⊗ dx2

= (√
E dx1)⊗ (√

E dx1)+ (√
Gdx2)⊗ (√

Gdx2), (6.92)

so that

θ1 = √
E dx1, θ2 = √

Gdx2 (6.93)

is the dual basis of an orthonormal basis.
The exterior derivatives of the 1-forms (6.93) are

dθ1 = − 1

2
√

E

∂E

∂x2
dx1 ∧ dx2 = − 1

2E
√

G

∂E

∂x2
θ1 ∧ θ2

and

dθ2 = 1

2
√

G

∂G

∂x1
dx1 ∧ dx2 = 1

2G
√

E

∂G

∂x1
θ1 ∧ θ2.

Comparing with (6.64) one finds that Γ 1
12 −Γ 1

21 = − 1
2E

√
G

∂E

∂x2 , but since the dual

basis of (6.93) is orthonormal (i.e., gij = δij ), we have Γ 1
12 − Γ 1

21 = Γ112 − Γ121
[see (6.60)]. This reduces to −Γ121, since the skew-symmetry (6.61) implies that
Γ112 is equal to zero, and hence we have Γ121 = 1

2E
√

G

∂E

∂x2 . In a similar way one

obtains Γ212 = 1
2G

√
E

∂G

∂x1 , and therefore the connection 1-forms for the rigid basis
(6.93) are determined by

Γ12 = Γ121θ
1 + Γ122θ

2 = Γ121θ
1 − Γ212θ

2

= 1

2
√

EG

(
∂E

∂x2
dx1 − ∂G

∂x1
dx2

)
. (6.94)

By virtue of the skew-symmetry Rij = −Rji [cf. (6.66)], the curvature is deter-
mined by R12 and, according to the second Cartan structural equations (5.26), we
have

R12 = R1
2 = dΓ 1

2 + Γ 1
1 ∧ Γ 1

2 + Γ 1
2 ∧ Γ 2

2 = dΓ 1
2 = dΓ12

= −1

2

[
∂

∂x1

(
1√
EG

∂G

∂x1

)
+ ∂

∂x2

(
1√
EG

∂E

∂x2

)]
dx1 ∧ dx2

= − 1

2
√

EG

[
∂

∂x1

(
1√
EG

∂G

∂x1

)
+ ∂

∂x2

(
1√
EG

∂E

∂x2

)]
θ1 ∧ θ2.
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On the other hand, R12 = 1
2 R12ij θ

i ∧ θj = R1212θ
1 ∧ θ2 = 1

2R θ1 ∧ θ2 [see (5.27)
and (6.89)], so that the scalar curvature is given by

R = − 1√
EG

[
∂

∂x1

(
1√
EG

∂G

∂x1

)
+ ∂

∂x2

(
1√
EG

∂E

∂x2

)]
. (6.95)

If, instead of the rigid basis (6.93), we employ the holonomic basis

θ1 = dx1, θ2 = dx2, (6.96)

the connection 1-forms can be obtained computing the Christoffel symbols (6.55)
(with g11 = E, g12 = 0, g22 = G), which turn out to be

Γ 1
11 = 1

2E

∂E

∂x1
, Γ 1

12 = 1

2E

∂E

∂x2
, Γ 1

22 = − 1

2E

∂G

∂x1
,

Γ 2
11 = − 1

2G

∂E

∂x2
, Γ 2

12 = 1

2G

∂G

∂x1
, Γ 2

22 = 1

2G

∂G

∂x2
.

(6.97)

Hence, the connection 1-forms for the holonomic basis (6.96), Γ i
j = Γ i

jk dxk , are

Γ 1
1 = 1

2E
dE, Γ 1

2 = 1

2E

(
∂E

∂x2
dx1 − ∂G

∂x1
dx2

)
,

Γ 2
2 = 1

2G
dG, Γ 2

1 = − 1

2G

(
∂E

∂x2
dx1 − ∂G

∂x1
dx2

) (6.98)

[cf. (6.94)]. The only independent curvature 2-form is then given by

R12 = g1iR
i
2 = ER1

2 = E
(
dΓ 1

2 + Γ 1
1 ∧ Γ 1

2 + Γ 1
2 ∧ Γ 2

2
)

= d
(
E Γ 1

2
)− 1

2E
dE ∧ E Γ 1

2 − 1

2G
dG ∧ E Γ 1

2

= √
EGd

(
1√
EG

E Γ 1
2

)

=
√

EG

2
d

[
1√
EG

(
∂E

∂x2
dx1 − ∂G

∂x1
dx2

)]

= −
√

EG

2

[
∂

∂x1

(
1√
EG

∂G

∂x1

)
+ ∂

∂x2

(
1√
EG

∂E

∂x2

)]
dx1 ∧ dx2. (6.99)

Taking (5.27) and (6.89) into account, we have

R12 = R1212 dx1 ∧ dx2 = 1

2
R g11g22 dx1 ∧ dx2 = 1

2
REGdx1 ∧ dx2,

so that from (6.99) we obtain again the expression (6.95) for the scalar curvature, as
we should.
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A constant curvature Riemannian manifold is a Riemannian manifold of dimen-
sion greater than two such that the components of the curvature tensor are of the
form

Rijkl = 1

n(n − 1)
R (gikgjl − gilgjk), (6.100)

where R is the scalar curvature (cf. Example 6.25). From (5.27) it follows that the
curvature 2-forms are Ri

j = R/[n(n − 1)]gjlθ
i ∧ θ l (no matter what type of basis

is used). Substituting this relation into the Bianchi identities (5.31) and using the
first Cartan structural equations (5.24) (with the torsion equal to zero) one obtains
dR ∧ θi ∧ θ l = 0 [the computation is simpler making use of a rigid basis, with the
aid of the relation (6.65)]; then, since n > 2, it follows that R is constant. (It may be
noticed that the curvature of a Riemannian manifold of dimension two is always of
the form (6.100), but dR∧θi ∧θ l is necessarily equal to zero, because it is a 3-form;
therefore, in this case, the Bianchi identities do not imply that R is a constant.)

Exercise 6.40 Show that the scalar curvature of the sphere [equation (6.11)] and of
the Poincaré half-plane [equation (6.19)] is constant.

Apart from the fact that in a Riemannian manifold of dimension two with a pos-
itive definite metric one can always find orthogonal coordinates, where the metric
tensor takes the “diagonal” form (6.92), it is also possible to find local coordinates
where the metric tensor has the form (6.92) with E = G, i.e., any metric tensor
of this class is locally conformally equivalent to a flat metric (and such a system
of coordinates is not unique). This assertion can readily be proved making use of
complex combinations of 1-forms. Writing

E dx1 ⊗ dx1 + Gdx2 ⊗ dx2

= 1

2

[(√
E dx1 + i

√
Gdx2)⊗ (√

E dx1 − i
√

Gdx2)

+ (√
E dx1 − i

√
Gdx2)⊗ (√

E dx1 + i
√

Gdx2)]

and taking into account that
√

E dx1 + i
√

Gdx2 is a (complexified) 1-form in two
variables, it is locally integrable; that is, locally there exist complex-valued func-
tions A,B such that

√
E dx1 + i

√
Gdx2 = AdB (though these functions are not

unique, see the example below). Letting B = y1 + iy2, with y1, y2 being real-valued
functions, we obtain

E dx1 ⊗ dx1 + Gdx2 ⊗ dx2 = 1

2
(AdB ⊗ AdB + AdB ⊗ AdB)

= |A|2(dy1 ⊗ dy1 + dy2 ⊗ dy2),

where the bar denotes complex conjugation, thus showing that the metric tensor is
proportional to the flat metric dy1 ⊗ dy1 + dy2 ⊗ dy2.



6.4 Volume Element, Divergence, and Duality of Differential Forms 149

For example, the standard metric of the sphere S2 is locally given by dθ ⊗ dθ +
sin2 θ dφ⊗dφ [see (6.11)], which is already of the form (6.92). An integrating factor
for the 1-form dθ + i sin θ dφ can be found by inspection, namely

dθ + i sin θ dφ = sin θ(csc θ dθ + i dφ)

= sin θ d

(
ln tan

1

2
θ + iφ

)
,

giving a possible choice for the local coordinates y1, y2 (that is, y1 = ln tan 1
2θ ,

y2 = φ). However, a more convenient choice is obtained on taking

dθ + i sin θ dφ = sin θ d ln

(
eiφ tan

1

2
θ

)

= sin θ

eiφ tan 1
2θ

d

(
eiφ tan

1

2
θ

)

= 2e−iφ cos2 1

2
θ d

(
eiφ tan

1

2
θ

)
;

hence dθ ⊗ dθ + sin2 θ dφ ⊗ dφ = 4 cos4 1
2θ [d(tan 1

2θ cosφ) ⊗ d(tan 1
2θ cosφ) +

d(tan 1
2θ sinφ) ⊗ d(tan 1

2θ sinφ)] (cf. Example 6.19).

6.4 Volume Element, Divergence, and Duality of Differential
Forms

Let {e1, . . . , en} ⊂ X(M) be an orthonormal basis for the vector fields on M , that
is, g(ei , ej ) = ±δij . There exists an n-form η on M , called a volume element, such
that η(e1, . . . , en) = 1/n!. In fact, if {θ1, . . . , θn} is the dual basis to {e1, . . . , en} we
have

η = θ1 ∧ θ2 ∧ · · · ∧ θn. (6.101)

If {e′
1, . . . , e′

n} is any other orthonormal basis of vector fields, then η(e′
1, . . . , e′

n) =
±1/n!. We say that {e′

1, . . . , e′
n} is positively or negatively oriented according to η,

if η(e′
1, . . . , e′

n) is greater or less than zero, respectively. The n-form −η is another
volume element defining the opposite orientation to that defined by η.

If the 1-forms θi are given locally by θi = ci
j dxj , then

η = (
c1
i dxi

)∧ (
c2
j dxj

)∧ · · · ∧ (
cn
k dxk

)

= c1
i c

2
j · · · cn

k dxi ∧ dxj ∧ · · · ∧ dxk

= c1
i c

2
j · · · cn

k εij ...k dx1 ∧ dx2 ∧ · · · ∧ dxn

= det
(
ci
j

)
dx1 ∧ dx2 ∧ · · · ∧ dxn.
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On the other hand, we have the matrix relation

±δij = (
θi
∣∣θj

)= ci
kc

j
l gkl;

hence, the determinants of these matrices are related by

[
det
(
ci
j

)]2 det
(
gkl

)= ±1,

i.e.,

det
(
ci
j

)= ±
√∣∣det(gij )

∣∣,

where the sign is positive or negative according to whether the basis {∂/∂x1, . . . ,

∂/∂xn} is positively or negatively oriented according to η. Thus,

η = ±
√∣∣det(gij )

∣∣dx1 ∧ dx2 ∧ · · · ∧ dxn. (6.102)

For some manifolds there does not exist a nowhere vanishing n-form defined on
all of M ; such manifolds are called non orientable. A manifold M of dimension n

is orientable if there exists a nowhere vanishing n-form defined at all points of M .
(This property does not depend on the existence of a Riemannian structure on M ,
but is a topological property of the manifold.) If M is an orientable Riemannian
manifold, then there exists a volume element defined at all points of M .

Example 6.41 As shown in Example 6.39, in a Riemannian manifold, M , of dimen-
sion two, with a positive definite metric, there exist systems of orthogonal coordi-
nates, in which the metric tensor has the diagonal form (6.92). Using the Christoffel
symbols (6.97) one finds that the equations for the parallel transport of a vector (5.4)
are

dY 1

dt
+ 1

2E

[
∂E

∂x1

dx1

dt
Y 1 + ∂E

∂x2

(
dx2

dt
Y 1 + dx1

dt
Y 2
)

− ∂G

∂x1

dx2

dt
Y 2
]

= 0,

dY 2

dt
+ 1

2G

[
∂G

∂x2

dx2

dt
Y 2 + ∂G

∂x1

(
dx1

dt
Y 2 + dx2

dt
Y 1
)

− ∂E

∂x2

dx1

dt
Y 1
]

= 0,

or, equivalently,

d

dt

(√
E Y 1 + i

√
GY 2)

= i

2
√

EG

(
∂E

∂x2

dx1

dt
− ∂G

∂x1

dx2

dt

)(√
E Y 1 + i

√
GY 2).
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Then,

(√
E Y 1 + i

√
GY 2)(C(t)

)

= (√
E Y 1 + i

√
GY 2)(C(t0)

)
exp

i

2

∫ t

t0

1√
EG

(
∂E

∂x2

dx1

dt
− ∂G

∂x1

dx2

dt

)
dt.

The value of the line integral appearing in the preceding formula only depends
on the endpoints of the curve, C(t0) and C(t), if and only if the 1-form

γ ≡ 1

2
√

EG

(
∂E

∂x2
dx1 − ∂G

∂x1
dx2

)

is exact [cf. (6.94)]. By means of a direct computation we see that

dγ = −1

2

[
∂

∂x1

(
1√
EG

∂G

∂x1

)
+ ∂

∂x2

(
1√
EG

∂E

∂x2

)]
dx1 ∧ dx2 = R

2
η, (6.103)

where R is the scalar curvature and η = θ1 ∧ θ2 = √
EGdx1 ∧ dx2 is a volume

element [see (6.95), (6.93), and (6.101)]. Hence, if R �= 0, the 1-form γ is not closed.
In particular, if C is a simple closed curve, with C(t0) = C(t1), then

(
(
√

E Y 1) (C(t1))

(
√

GY 2) (C(t1))

)

=
(

cosΘ − sinΘ

sinΘ cosΘ

)(
(
√

E Y 1) (C(t0))

(
√

GY 2) (C(t0))

)

, (6.104)

with

Θ ≡
∮

C

γ =
∫ t1

t0

1

2
√

EG

(
∂E

∂x2

dx1

dt
− ∂G

∂x1

dx2

dt

)
dt. (6.105)

The functions
√

E Y 1 and
√

GY 2 appearing in (6.104) are the components of
the vector field Y with respect to the orthonormal basis e1 = (1/

√
E)∂/∂x1,

e2 = (1/
√

G)∂/∂x2 [cf. (6.93)], and therefore (6.104) represents a rotation through
the angle Θ at TC(t0)M . That is, the parallel transport of any vector along a closed
curve C only rotates the original vector through the angle Θ , with Θ being in-
dependent of the vector chosen and of the point of the curve taken as the initial
point [see (6.105)]. (Example 5.5 is a particular case of the present example, with
E = G = 1/y2.)

The fact that the parallel transport of a vector along a closed curve corresponds to
a rotation is to be expected, because the Riemannian connection is compatible with
the metric tensor, so that during the parallel transport of a vector, its length does
not vary. The parallel transport of vectors along a curve is a linear transformation
(see Sect. 5.1) and the only linear transformations of a space with inner product into
itself that preserve the inner product are rotations or reflections.
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Divergence of a Vector Field If η is a volume element and X ∈ X(M), the Lie
derivative of η with respect to X is also an n-form and therefore there exists a real-
valued function, div X, the divergence of X, such that

£Xη = (div X)η. (6.106)

The definition of the divergence of a vector field does not depend on the orientation,
since, if η is substituted by −η into (6.106), the value of div X does not change.
Using (3.39) and taking into account that dη = 0, because it is an (n + 1)-form, the
definition (6.106) amounts to

(div X)η = d(X η). (6.107)

Using the local expression of the volume element (6.102) and equations (2.23),
(2.37)–(2.39), and (3.26), we find that

£Xη = ±
[
Xk

∂
√

det(gij )

∂xk
dx1 ∧ · · · ∧ dxn

+
√

det(gij )

(
∂X1

∂xk
dxk ∧ dx2 ∧ · · · ∧ dxn + · · · + dx1 ∧ · · · ∧ ∂Xn

∂xk
dxk

)]

= ±
(

Xk
∂
√

det(gij )

∂xk
+
√

det(gij )
∂Xk

∂xk

)
dx1 ∧ · · · ∧ dxn

=
[

1
√

det(gij )

∂

∂xk

(√
det(gij )Xk

)]
η

and, comparing with (6.106), we obtain the well-known expression

div X = 1
√

det(gij )

∂

∂xk

(√
det(gij )Xk

)
(6.108)

for the divergence of a vector field in terms of its components and those of the metric
tensor with respect to a coordinate system (x1, . . . , xn).

Exercise 6.42 Show that if {e1, . . . , en} is an orthonormal basis and X = Xiei is a
differentiable vector field, then

div X = ekX
k + Γ i

kiX
k, (6.109)

where Γ i
jk are the Ricci rotation coefficients for the basis {e1, . . . , en}. (Hint: em-

ploy (6.101), (3.39), (6.64), (3.27), and (6.61).)

Using the expression (6.108) or (6.109) it follows that for f ∈ C∞(M),
X ∈X(M),

div (f X) = f div X + Xf (6.110)
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or, equivalently [see (6.8)],

div (f X) = f div X + g(gradf,X). (6.111)

From (6.108) or (6.109) it also follows that div (X + Y) = div X + div Y.

Exercise 6.43 Show that div [X,Y] = X(div Y) − Y(div X).

The Laplacian of a differentiable function f ∈ C∞(M), denoted by ∇2f or by
�f , is defined as the divergence of its gradient

∇2f ≡ div gradf. (6.112)

From the expressions (6.9) and (6.108) it follows that

∇2f = 1
√

det(gij )

∂

∂xk

(√
det(gij ) gkl ∂f

∂xl

)
. (6.113)

Exercise 6.44 Show that under a conformal rescaling of the metric of a Riemannian
manifold of dimension two, g′ = e2ug, the scalar curvatures of g and g′ are related
by

R − 2�u = e2uR′. (6.114)

In the case of the sphere S2, with its standard metric, the scalar curvature is
R = 2; the existence of a solution to (6.114) with R′ = 0 would mean that the stan-
dard metric of S2 is conformally flat (that is, conformally equivalent to a flat metric).
However, the PDE �u = 1 has no solution on S2 (cf. Example 6.19 and the exam-
ple at the end of Sect. 6.3). This fact can be proved by integrating both sides of this
equation on S2, making use of the natural area element of S2, so that the integral
of 1 yields the total area of S2, i.e., 4π . Meanwhile the integral of �u, being the
integral of a divergence on a surface without boundary, is equal to zero.

Duality of Differential Forms Let α ∈ Λk(M) and β ∈ Λn−k(M); the exterior
product α ∧ β is an n-form and, therefore, there exists a function f ∈ C∞(M)

such that α ∧ β = f η. If (x1, . . . , xn) is a local coordinate system positively ori-
ented according to η, α, and β are given by α = αi1...ik dxi1 ∧ · · · ∧ dxik and
β = βjk+1...jn dxjk+1 ∧ · · · ∧ dxjn ; then we have

α ∧ β = αi1...ik βjk+1...jn dxi1 ∧ · · · ∧ dxik ∧ dxjk+1 ∧ · · · ∧ dxjn

= αi1...ik βjk+1...jnε
i1...ikjk+1...jn dx1 ∧ · · · ∧ dxn

= αi1...ik βjk+1...jnε
i1...ikjk+1...jn

∣∣det(gij )
∣∣−1/2

η,

that is,

f = ∣
∣det(gij )

∣
∣−1/2

εi1...ikjk+1...jnαi1...ik βjk+1...jn .
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Noting that

εi1...ing
i1j1 · · ·ginjn = det

(
gij
)
εj1...jn

= [
det(gij )

]−1
εj1...jn ,

we also have

f = ∣∣det(gij )
∣∣1/2

εl1...lng
i1l1 · · ·giklk gjk+1lk+1 · · ·gjnlnαi1...ik βjk+1...jn .

Therefore, there exists a unique (n−k)-form, denoted by ∗α, such that f = (∗α|β);
in fact, ∗α is given locally by

∗α = |det(gij )|1/2

(n − k)! εl1...lng
i1l1 · · ·giklkαi1...ik dxlk+1 ∧ · · · ∧ dxln .

The uniqueness of ∗α comes from the fact that the product ( | ) is non-singular.
The mapping ∗ : Λk(M) → Λn−k(M), given by α �→ ∗α, is called the star or

Hodge operator, and ∗α is called the dual form of α. From its local expression we
see that the Hodge operator is an isomorphism of Λk(M) onto Λn−k(M), that is,
any (n − k)-form is the dual of a unique k-form in such a way that

∗(f ω1 + gω2) = f ∗ ω1 + g ∗ ω2 for ω1,ω2 ∈ Λk(M) and f,g ∈ C∞(M).

Exercise 6.45 Let X be a vector field and let α = 1
2 X g. Show that ∗α = X η.

Note that if the orientation is reversed, that is, if η is replaced by −η, then ∗α

changes sign. Owing to this behavior ∗α is said to be a pseudotensor field.

6.5 Elementary Treatment of the Geometry of Surfaces

The theory of Riemannian manifolds started with the study of (two-dimensional)
surfaces in R

3. Here we shall present only an introductory study of surfaces, as an
example of the usefulness of the formalism already given. We shall be interested
mainly in two-dimensional submanifolds of a three-dimensional Riemannian mani-
fold, which may not be the Euclidean space. More detailed treatments can be found,
e.g., in do Carmo (1992), Oprea (1997), and O’Neill (2006).

Let M be a Riemannian manifold of dimension three, with a positive definite
metric and let Σ be a submanifold of M of dimension two, with the metric induced
by that of M . Among other things, we want to relate the intrinsic properties of Σ

(that is, the properties of Σ as a Riemannian manifold on its own) with the behavior
of a unit normal vector field to Σ .

Let p ∈ Σ and let n be a unit normal vector field to Σ defined in a neighborhood
of p. The shape operator (or Weingarten map) of Σ at p, Sp , is defined by

Sp(vp) ≡ −∇vp n, for vp ∈ TpΣ. (6.115)
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Roughly speaking, Sp(vp) measures how quickly Σ bends in the direction of vp .
It can readily be seen that, as a consequence of (6.53), Sp(vp) also belongs to

TpΣ , since

gp

(
Sp(vp),np

)= −gp(∇vp n,np) = −1

2
vp

[
g(n,n)

]= −1

2
vp[1] = 0.

By virtue of the properties of a connection, Sp is a linear map. The Gaussian cur-
vature and the mean curvature of Σ at p are defined as

K(p) = detSp and H(p) = 1

2
trSp,

respectively.
The shape operator Sp is also symmetric, in the sense that

gp

(
Sp(vp),wp

)= gp

(
vp,Sp(wp)

)
,

for all vp,wp ∈ TpΣ .
In order to prove that Sp is symmetric, we shall use the fact that for each point

p ∈ Σ one can find an orthonormal set of vector fields {e1, e2, e3}, defined in some
neighborhood of p, such that at the points of Σ , e1, and e2 span the tangent space
to Σ and, therefore, restricted to Σ we see that e3 is a unit normal vector field to Σ .
Then the vector fields e1 and e2, restricted to Σ , form an orthonormal basis for the
vector fields on Σ . Thus,

i∗θ3 = 0, (6.116)

where i : Σ → M is the inclusion map; therefore, i∗ dθ3 = d(i∗θ3) = 0, and the
equation dθ3 = Γ 3

ij θ
i ∧ θj = Γ3ij θ

i ∧ θj [see (6.64)] yields

i∗(Γ312 − Γ321) = 0. (6.117)

Making use of (5.22) and the skew-symmetry (6.61) we have, letting the lower-
case Greek indices μ,ν, . . . take the values 1, 2,

∇eμe3 = Γ i
3μei = Γ ν

3μeν + Γ 3
3μe3 = Γ ν

3μeν. (6.118)

By comparing this equation with the definition of the shape operator, (6.115), one
finds that, with respect to the orthonormal basis of TpΣ formed by (e1)p and (e2)p ,
Sp is represented by the 2 × 2 matrix

(−Γ ν
3μ

(
i(p)

))= (
Γ3νμ

(
i(p)

))
. (6.119)

Hence, (6.117) means that this matrix is symmetric and, therefore, Sp is symmetric,
as claimed above.

The symmetry of Sp implies the existence of two linearly independent eigenvec-
tors, whose directions are called the principal curvature directions of Σ at p and
the corresponding eigenvalues are called principal curvatures at p.
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The 1-forms

φμ ≡ i∗θμ (6.120)

constitute the dual basis of the orthonormal basis formed by the restriction of e1
and e2 to Σ . Making use of the properties of the pullback, the first Cartan structural
equations, and (6.116), we have

dφμ = i∗
(
dθμ

)= −i∗
(
Γ μ

i ∧ θi
)= −(i∗Γ μ

ν

)∧ φν,

which implies that the 1-forms i∗Γ μ
ν are the connection 1-forms associated with

the orthonormal basis (6.120).
In a similar manner, we can compute the pullback under the inclusion map of the

second Cartan structural equations. We start by computing i∗Rν
μ, for μ,ν = 1,2.

Owing to the skew-symmetry (6.66), this reduces to a computation, e.g., of i∗R1
2

and, making use of the fact that Γ 1
1 and Γ 2

2 are equal to zero by virtue of the
skew-symmetry (6.65), we find

i∗R1
2 = d

(
i∗Γ 1

2
)+ (

i∗Γ 1
j

)∧ (
i∗Γ j

2
)= d

(
i∗Γ 1

2
)+ (

i∗Γ 1
3
)∧ (

i∗Γ 3
2
)
.

(6.121)
On the other hand, applying the second Cartan structural equations to compute the
curvature of Σ , if we denote by Ωμ

ν the curvature 2-forms of Σ with respect to the
basis (6.120), we have Ω1

2 = d(i∗Γ 1
2) + (i∗Γ 1

μ) ∧ (i∗Γ μ
2) = d(i∗Γ 1

2). Hence,
(6.121) amounts to the relation

i∗R1
2 = Ω1

2 + (
i∗Γ 1

3
)∧ (

i∗Γ 3
2
)

(6.122)

or, equivalently [see (5.27) and (6.116)],

(
i∗R1

212
)
φ1 ∧ φ2 = Ω1

212φ
1 ∧ φ2 + [(

i∗Γ 1
31
)(

i∗Γ 3
22
)

− (
i∗Γ 1

32
)(

i∗Γ 3
21
)]

φ1 ∧ φ2.

Hence, taking into account (6.119),

i∗R1
212 = Ω1

212 − detS = Ω1
212 − K. (6.123)

When the curvature of M is equal to zero, as in the case of the Euclidean space
with its standard metric, equation (6.123) gives K = Ω1

212; that is, the Gaussian
curvature, K , defined above in terms of the (extrinsic) behavior of the unit normal
vector field to Σ , is equal to the intrinsic curvature of Σ , defined by the Rieman-
nian connection of Σ . This result is the famous Gauss’ Theorema Egregium, which
states that the Gaussian curvature of Σ depends only on the metric induced on the
surface. Thus, according to (6.95), if the metric induced on Σ is expressed in the
form E dx1 ⊗ dx1 + Gdx2 ⊗ dx2, the Gaussian curvature of Σ is given by

K = − 1

2
√

EG

[
∂

∂x1

(
1√
EG

∂G

∂x1

)
+ ∂

∂x2

(
1√
EG

∂E

∂x2

)]
.
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Since R3
3 identically vanishes, we are left with R3

μ only and we obtain

i∗R3
μ = d

(
i∗Γ 3

μ

)+ (
i∗Γ 3

j

)∧ (
i∗Γ j

μ

)

= d
(
i∗Γ 3

μ

)+ (
i∗Γ 3

ν

)∧ (
i∗Γ ν

μ

)

= d
[(

i∗Γ 3
μν

)
φν
]+ (

i∗Γ 3
νρ

)
φρ ∧ (

i∗Γ ν
μσ

)
φσ

= d
(
i∗Γ 3

μν

)∧ φν + (
i∗Γ 3

μν

)(
i∗Γ ν

ρσ

)
φρ ∧ φσ

+ (
i∗Γ 3

νρ

)(
i∗Γ ν

μσ

)
φρ ∧ φσ .

Denoting by {X1,X2} the dual basis of that formed by the 1-forms (6.120), the last
equation amounts to

i∗R3
μ12 = X1

(
i∗Γ 3

μ2
)− X2

(
i∗Γ 3

μ1
)

+ (
i∗Γ 3

μν

)(
i∗Γ ν

12
)− (

i∗Γ 3
μν

)(
i∗Γ ν

21
)

+ (
i∗Γ 3

ν1
)(

i∗Γ ν
μ2
)− (

i∗Γ 3
ν2
)(

i∗Γ ν
μ1
)
. (6.124)

These equations are known as the Codazzi–Mainardi equations [cf. Oprea (1997,
Sect. 3.4)].

Exercise 6.46 Assuming that the curvature of M is equal to zero, show that the
Codazzi–Mainardi equations (6.124) are equivalent to the symmetry

(∇X1S)(X2) = (∇X2S)(X1),

where ∇ denotes the Riemannian connection of Σ and S is considered as a tensor
field on Σ of type ( 1

1).

Example 6.47 The catenoid is a well-known example of a minimal surface, that is,
a surface with mean curvature equal to zero. This is a surface of revolution obtained
by revolving a catenary, and can be defined by means of the parametrization

x = coshu cosv, y = coshu sinv, z = u.

This means that u and v can be considered as local coordinates on Σ , so that the
inclusion, i : Σ → R

3, is given by

i∗x = coshu cosv,

i∗y = coshu sinv, (6.125)

i∗z = u,

where (x, y, z) is the natural coordinate system of R3.
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At each point p ∈ Σ , the tangent space TpΣ is generated by (∂/∂u)p , (∂/∂v)p ,
and, according to (1.24) and (6.125),

i∗p

(
∂

∂v

)

p

=
(

∂

∂v

)

p

[
i∗xj

]( ∂

∂xj

)

i(p)

= − coshu(p) sinv(p)

(
∂

∂x

)

i(p)

+ coshu(p) cosv(p)

(
∂

∂y

)

i(p)

=
(

−y
∂

∂x
+ x

∂

∂y

)

i(p)

and, similarly,

i∗p

(
∂

∂u

)

p

= sinhu(p) cosv(p)

(
∂

∂x

)

i(p)

+ sinhu(p) sinv(p)

(
∂

∂y

)

i(p)

+
(

∂

∂z

)

i(p)

=
(

x
√

x2 + y2 − 1
√

x2 + y2

∂

∂x
+ y

√
x2 + y2 − 1
√

x2 + y2

∂

∂y
+ ∂

∂z

)

i(p)

.

The latter equality is valid only where sinhu ≥ 0, that is, only for z ≥ 0.
One readily finds that the vector fields

−y
∂

∂x
+ x

∂

∂y
,

x
√

x2 + y2 − 1
√

x2 + y2

∂

∂x
+ y

√
x2 + y2 − 1
√

x2 + y2

∂

∂y
+ ∂

∂z

are orthogonal to each other and their norms are equal to
√

x2 + y2. Looking for a
vector field orthogonal to these vector fields one obtains the orthonormal basis

e1 = − y
√

x2 + y2

∂

∂x
+ x
√

x2 + y2

∂

∂y
,

e2 = x
√

x2 + y2 − 1

x2 + y2

∂

∂x
+ y

√
x2 + y2 − 1

x2 + y2

∂

∂y
+ 1
√

x2 + y2

∂

∂z
, (6.126)

e3 = x

x2 + y2

∂

∂x
+ y

x2 + y2

∂

∂y
−
√

x2 + y2 − 1
√

x2 + y2

∂

∂z
,

whose dual basis is

θ1 = −y dx + x dy
√

x2 + y2
,

θ2 =
√

x2 + y2 − 1

x2 + y2
(x dx + y dy) + dz

√
x2 + y2

, (6.127)
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θ3 = x dx + y dy

x2 + y2
−
√

x2 + y2 − 1

x2 + y2
dz.

The computation of the exterior derivative of these 1-forms is simplified by the fact
that d(x2 + y2) = 2(x dx + y dy). A straightforward computation yields

dθ1 = − 1

x2 + y2
θ1 ∧ θ3 −

√
x2 + y2 − 1

x2 + y2
θ1 ∧ θ2,

dθ2 = 1

x2 + y2
θ2 ∧ θ3, (6.128)

dθ3 = 1

(x2 + y2)
√

x2 + y2 − 1
θ2 ∧ θ3.

(Note that these equations imply that the three 1-forms θi are integrable or, equiva-
lently, that the pairs of vector fields {e1, e2}, {e2, e3}, and {e3, e1} generate integrable
distributions.)

Comparison with (6.64), using the fact that Γijk = −Γjik , shows that the only
nonzero Ricci rotation coefficients for the orthonormal basis (6.126) are given by

Γ121 =
√

x2 + y2 − 1

x2 + y2
,

Γ232 = Γ311 = − 1

x2 + y2
, (6.129)

Γ233 = − 1

(x2 + y2)
√

x2 + y2 − 1
.

Hence, with respect to the orthonormal basis {X1,X2}, dual to {φ1, φ2}, the shape
operator is represented by the matrix

1

cosh2 u

(−1 0
0 1

)
.

Therefore, the mean curvature of the catenoid is indeed equal to zero, while its
Gaussian curvature is K = −1/(cosh4 u).

Exercise 6.48 Consider the helicoid, which is a surface in R
3 that can be defined

by

i∗x = av cosu,

i∗y = av sinu,

i∗z = bu,

where a, b are positive real constants. Construct an orthonormal basis {e1, e2, e3}
such that, at the points of the surface, e1 and e2 span the tangent space. Find the
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shape operator making use of the first Cartan structural equations and show that the
mean curvature is zero.

Exercise 6.49 Let p ∈ Σ and let n be a unit vector field defined on a neighborhood
of p in M , such that at the points of Σ , n is normal to the surface. Show that

H(p) = 1

2
(div n)(p).

(Hint: the conclusion can readily be obtained making use of (6.109) and (6.119).)



Chapter 7
Lie Groups

7.1 Basic Concepts

A Lie group is a group that possesses, in addition to the algebraic structure of a
group, a differentiable manifold structure compatible with its algebraic structure in
the sense that the group operations are differentiable functions.

Definition 7.1 Let G be a group which is a differentiable manifold. We say that G

is a Lie group if the map from G × G into G given by (g1, g2) �→ g1g2 and the map
from G into G given by g �→ g−1, where g−1 is the inverse of g, are differentiable.
The dimension of the group is the dimension of the manifold.

Roughly speaking, if G is a Lie group, there exist locally coordinates labeling
the elements of the group in such a way that the coordinates of the product g1g2

are differentiable functions of the coordinates of g1 and g2. The coordinates of g−1

must be differentiable functions of those of g. In this context, the coordinates are
also called group parameters.

Example 7.2 The space R
n where the group operation is the usual sum of n-tuples,

with its usual differentiable manifold structure (see Sect. 1.1), is a Lie group of di-
mension n. In fact, if (x1, . . . , xn) is the natural coordinate system of Rn, we have
xi(gg′) = xi(g) + xi(g′) and xi(g−1) = −xi(g), which shows that the coordinates
of gg′ are differentiable functions of the coordinates of g and g′, while the coordi-
nates of g−1 are differentiable functions of the coordinates of g.

Example 7.3 Let GL(n,R) be the group of non-singular n × n real matrices, where
the group operation is the usual matrix multiplication. Each g ∈ GL(n,R) is a matrix
(ai

j ) and the n2 functions xi
j : GL(n,R) → R, defined by xi

j (g) = ai
j , can be used as

coordinates in all of GL(n,R). The atlas containing this chart of coordinates defines
a differentiable manifold structure for GL(n,R). Since xi

j (gg′) = xi
k(g)xk

j (g′) and
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xi
j (g

−1) is a differentiable function of the xi
j (g) (specifically,

xl
k

(
g−1)= 1

(n − 1)!detg
εki2...inε

lj2...jnx
i2
j2

(g) · · ·xin
jn

(g),

where

εi1i2...in = εi1i2...in

=
⎧
⎨

⎩

1 if (i1, . . . , in) is an even permutation of (1,2, . . . , n),
−1 if (i1, . . . , in) is an odd permutation of (1,2, . . . , n),
0 if one of the values of the indices appears repeated,

i.e., xi
j (g

−1) is a rational function of the xi
j (g) and the denominator in the preced-

ing expression does not vanish because g is a non-singular matrix), GL(n,R) is a
Lie group of dimension n2. The group GL(n,R) is Abelian only when n = 1 and
GL(1,R) can be identified with R \ {0} with the usual multiplication.

Example 7.4 Any pair of real numbers a, b, with a �= 0, defines an affine motion
of R, given by x �→ ax + b. One can readily verify that these transformations form
a group under the composition. It is convenient to note that

(
a b

0 1

)(
x

1

)
=
(

ax + b

1

)
,

which shows that the affine motions of R can be represented by the 2 × 2 real
matrices of the form

(
a b
0 1

)
, with a �= 0, which form a group with the usual matrix

multiplication. By associating the matrix
(

a b
0 1

)
to the transformation x �→ ax + b,

the composition of two transformations of this class is associated with the product
of the corresponding matrices.

The coordinate system (x1, x2) defined by

g =
(

x1(g) x2(g)

0 1

)

(7.1)

covers the entire group and, therefore, defines a differentiable manifold structure
(the image of the entire group under this chart of coordinates is {(x, y) ∈ R

2 |x �= 0},
which is an open subset of R2). The product of two matrices, g and g′, of the form
(7.1) is another matrix of the same form with

x1(gg′) = x1(g)x1(g′), x2(gg′) = x1(g)x2(g′) + x2(g) (7.2)

and

x1(g−1)= 1

x1(g)
, x2(g−1)= −x2(g)

x1(g)
. (7.3)

The differentiability of these expressions implies that we are dealing with a Lie
group (recall that x1(g) cannot be equal to zero). It may be noticed that this group is
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not connected (the set of matrices with x1 > 0 is separated from the set of matrices
with x1 < 0, but is simply connected (a closed curve is shrinkable to a point).

Example 7.5 The group SL(2,R) is formed by the 2 × 2 real matrices with deter-
minant equal to 1, with the usual operation of matrix multiplication. Any element of
this group in a neighborhood of the identity is of the form

( a b
c (1+bc)/a

)
, with a �= 0;

therefore we can define the local coordinate system (x1, x2, x3) by

g =
⎛

⎝
x1(g) x2(g)

x3(g)
1+x2(g)x3(g)

x1(g)

⎞

⎠ , x1(g) �= 0. (7.4)

Calculating the product of two elements of this group, g and g′, expressed in the
form (7.4), we find that

x1(gg′) = x1(g)x1(g′) + x2(g)x3(g′),

x2(gg′) = x1(g)x2(g′) + x2(g)
1 + x2(g′)x3(g′)

x1(g′)
, (7.5)

x3(gg′) = x3(g)x1(g′) + 1 + x2(g)x3(g)

x1(g)
x3(g′)

[assuming that x1(gg′) �= 0, so that gg′ is also of the form (7.4)]. Calculating the
inverse of the matrix in (7.4) one has

x1(g−1) = 1 + x2(g)x3(g)

x1(g)
,

x2(g−1) = −x2(g), (7.6)

x3(g−1) = −x3(g).

Taking into account that x1 does not vanish in the domain of the coordinate system
defined in (7.4), the expressions (7.5) and (7.6) are differentiable functions. The
coordinate system xi does not cover all of the set SL(2,R), but together with the
coordinates (y1, y2, y3) given by

g =
⎛

⎝
y1(g) y2(g)

y1(g)y3(g)−1
y2(g)

y3(g)

⎞

⎠ , y2(g) �= 0, (7.7)

it forms a subatlas that defines a differentiable manifold structure for SL(2,R). Con-
sidering the possible products of matrices of the form (7.4) by matrices of the form
(7.7), the result must be of the form (7.4) or (7.7), which leads to expressions sim-
ilar to (7.5), showing that the mapping (g, g′) �→ gg′ is differentiable. Similarly,
expressing the inverse of a matrix of the form (7.4) or (7.7) in the form (7.4) or
(7.7), one obtains differentiable expressions analogous to (7.6), leading one to con-
clude that SL(2,R) is a Lie group of dimension three.
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Example 7.6 The group SU(2) is formed by the complex unitary 2 × 2 matrices
with determinant equal to 1, with the usual operation of matrix multiplication. It can
readily be seen that any element of SU(2) is of the form

(
a+ib c+id

−c+id a−ib

)
, with a2 +b2 +

c2 + d2 = 1, which means that the set SU(2) can be identified with S3, the sphere
of radius 1 in R

4. In a neighborhood of the identity we can define the coordinate
system (x1, x2, x3) in such a manner that if g = (

a+ib c+id
−c+id a−ib

)
, then x1(g) ≡ −d ,

x2(g) ≡ −c, x3(g) ≡ −b, with a =
√

1 −∑3
i=1[xi(g)]2. That is,

g =
(

h(g) − ix3(g) −x2(g) − ix1(g)

x2(g) − ix1(g) h(g) + ix3(g)

)

, with h ≡
√√
√√1 −

3∑

i=1

(
xi
)2

> 0.

(7.8)
It may be noticed that x1(e) = x2(e) = x3(e) = 0, where e is the identity of the
group, and that the coordinate system (x1, x2, x3) covers almost one half of SU(2),
corresponding to a > 0.

Calculating the product of two matrices of the form (7.8), it can readily be seen
that

x1(gg′) = x1(g)h(g′) + h(g)x1(g′) + x2(g)x3(g′) − x3(g)x2(g′),

x2(gg′) = x2(g)h(g′) + h(g)x2(g′) + x3(g)x1(g′) − x1(g)x3(g′), (7.9)

x3(gg′) = x3(g)h(g′) + h(g)x3(g′) + x1(g)x2(g′) − x2(g)x1(g′),

and

xi
(
g−1)= −xi(g). (7.10)

These expressions are differentiable functions for h(g),h(g′) > 0. As in the previ-
ous example, it is necessary to consider additional coordinate systems in order to
cover the whole group and it can be verified that SU(2) is a Lie group of dimen-
sion three.

Example 7.7 Let SE(2) be the group of all the isometries of the Euclidean plane that
preserve the orientation (translations and rigid rotations), with the group operation
being the composition. Using Cartesian coordinates in the plane, each element g of
this group can be characterized by three real numbers x(g), y(g), and θ(g), where
(x(g), y(g)) are the coordinates of the image of the origin under the transformation
g and θ(g) is the angle between the new x axis and the original one. (Here we are
considering active transformations; the points of the plane move under the trans-
formation, with the coordinate axes fixed.) It can readily be seen that if gg′ is the
transformation obtained by applying g after having applied g′, then

x(gg′) = x(g) + x(g′) cos θ(g) − y(g′) sin θ(g),

y(gg′) = y(g) + x(g′) sin θ(g) + y(g′) cos θ(g), (7.11)

θ(gg′) = θ(g) + θ(g′)
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(these formulas can be obtained taking into account the fact that under the trans-
formation g, a point of the plane, with Cartesian coordinates (a, b), is mapped
into the point with coordinates (x(g) + a cos θ(g) − b sin θ(g), y(g) + a sin θ(g) +
b cos θ(g)) and then calculating the effect of the composition of two transformations
g and g′). Similarly, for g−1, the inverse transformation of g,

x
(
g−1) = −x(g) cos θ(g) − y(g) sin θ(g),

y
(
g−1) = x(g) sin θ(g) − y(g) cos θ(g), (7.12)

θ
(
g−1) = −θ(g).

In order for (x, y, θ) to be a coordinate system it is necessary to restrict the values
of θ , for instance, imposing the condition −π < θ(g) < π (so that the image of this
chart is an open subset of R3 and θ is single-valued); hence, this chart of coordinates
will not cover all of the group, but, as in the two previous examples, introducing
additional coordinate systems in a similar way, it can be verified that SE(2) is a Lie
group of dimension three.

Equations (7.11) and (7.12) can also be obtained associating with each g ∈ SE(2)

the matrix

ρ(g) ≡
⎛

⎝
cos θ(g) − sin θ(g) x(g)

sin θ(g) cos θ(g) y(g)

0 0 1

⎞

⎠ . (7.13)

Then it can be verified that ρ(gg′) = ρ(g)ρ(g′). By virtue of this relation, the map
g �→ ρ(g) is a matrix representation of the group SE(2). In general, if G is any
group, a matrix representation of G is a map, ρ, that assigns to each element g ∈ G

a non-singular square matrix, ρ(g), in such a way that ρ(gg′) = ρ(g)ρ(g′), for any
pair of elements g, g′ ∈ G.

Exercise 7.8 Let G be a group which is a differentiable manifold. Show that G is a
Lie group if and only if the map from G × G into G given by (g1, g2) �→ g1g

−1
2 is

differentiable.

Definition 7.9 Let G be a Lie group. A Lie subgroup of G is a subgroup of G which
is a submanifold of G.

Thus, in Example 7.7, the set H formed by the elements with θ = 0 is, clearly,
a submanifold of G. Using (7.11) and (7.12) it can readily be verified that H is a
subgroup of G; hence, H is a Lie subgroup of SE(2) (which corresponds to the rigid
translations of the plane).

Exercise 7.10 Show that the set SL(n,R), formed by the real n × n matrices with
determinant equal to 1, is a Lie subgroup of GL(n,R).
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7.2 The Lie Algebra of the Group

In this section we shall show that each Lie group possesses an associated Lie algebra
whose properties reflect those of the group.

Let G be a Lie group. For g ∈ G, Lg denotes the map from G onto G defined by

Lg(g
′) = gg′, for g′ ∈ G

(sometimes called the left translation by g). Similarly, Rg : G → G (the right trans-
lation by g) is defined by

Rg(g
′) = g′g, for g′ ∈ G.

From the definition of a Lie group it follows that Lg and Rg are differentiable maps
and, furthermore, are diffeomorphisms since (Lg)

−1 = Lg−1 and (Rg)
−1 = Rg−1

for all g ∈ G.

Exercise 7.11 Show that Lg1g2 = Lg1 ◦ Lg2 , Rg1g2 = Rg2 ◦ Rg1 , and Rg1 ◦ Lg2 =
Lg2 ◦ Rg1 for g1, g2 ∈ G.

Definition 7.12 Let X be a vector field on G. We say that X is left-invariant if
Lg

∗X = X for all g ∈ G; analogously, X is right-invariant if Rg
∗X = X for all

g ∈ G.

In other words, X is left-invariant if and only if X is Lg-related with itself for all
g ∈ G (see Fig. 7.1); therefore, X is left-invariant if and only if [see (1.40)]

(Xf ) ◦ Lg = X(f ◦ Lg), for all g ∈ G and f ∈ C∞(G).

From this expression we see that if X and Y are two left-invariant vector fields, then
the linear combination aX + bY, for a, b ∈ R, and the Lie bracket [X,Y] are left-
invariant (see Sect. 1.3). This means that the left-invariant vector fields form a Lie
subalgebra of X(G). Of course, something analogous holds for the right-invariant
vector fields. (Clearly, if G is Abelian, the left-invariant vector fields coincide with
the right-invariant ones.) The Lie algebra of G, denoted by g, is the Lie algebra of
the left-invariant vector fields on G.

If X ∈ g, then, for g ∈ G, we have X = Lg−1
∗X; hence, Xg = (Lg−1

∗X)g , that is
[see (2.24)],

Xg = Lg∗eXe, (7.14)

where e denotes the identity element of G. Therefore, a left-invariant vector field is
uniquely defined by its value at the identity.

From the foregoing formula it follows that each tangent vector ξ to G at the
identity (ξ ∈ TeG) defines a left-invariant vector field X, given by

Xg = Lg∗eξ. (7.15)
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Fig. 7.1 A left-invariant vector field on G

The vector field thus defined belongs effectively to g, since if f ∈ C∞(G) and
g,g′ ∈ G, using (1.30), (7.15), the chain rule (1.25), the fact that Lgg′ = Lg ◦ Lg′ ,
and (1.23), we find

(
(Xf ) ◦ Lg

)
(g′) = (Xf )(gg′)

= Xgg′ [f ]
= (Lgg′∗eξ)[f ]
= (

Lg∗g′(Lg′∗eξ)
)[f ]

= (Lg∗g′Xg′)[f ]
= Xg′ [f ◦ Lg]
= (

X(f ◦ Lg)
)
(g′).

Thus, there exists a one-to-one correspondence between the Lie algebra of G and
TeG. Using this correspondence the bracket of any pair of elements ξ and ζ ∈ TeG

is defined by means of

[ξ, ζ ] ≡ [X,Y]e, (7.16)

where X and Y are the left-invariant vector fields such that ξ = Xe and ζ = Ye.
With this bracket, TeG becomes a Lie algebra isomorphic to the Lie algebra of the
group.

Exercise 7.13 Show that, effectively, TeG is a Lie algebra.

The existence of this isomorphism between the left-invariant vector fields and
the tangent vectors at the identity shows that the dimension of the Lie algebra of G

coincides with the dimension of G.

Example 7.14 Let us consider Rn with the structure of Lie group defined in Exam-
ple 7.2, and let (x1, . . . , xn) be the natural coordinates of Rn. Then, (xi ◦ Lg)(g

′) =
xi(gg′) = xi(g)+xi(g′), for g,g′ ∈ R

n, that is, xi ◦Lg = xi(g)+xi . Any ξ ∈ TeR
n

is of the form ξ = ai(∂/∂xi)e with ai ∈ R. The left-invariant vector field corre-
sponding to ξ is given in these coordinates by [see (7.15) and (1.24)]



168 7 Lie Groups

Xg = Lg∗eξ = aiLg∗e

(
∂

∂xi

)

e

= ai

(
∂

∂xi

)

e

[
xj ◦ Lg

]( ∂

∂xj

)

g

= ai

(
∂

∂xi

)

e

[
xj (g) + xj

]( ∂

∂xj

)

g

= aiδ
j
i

(
∂

∂xj

)

g

= ai

(
∂

∂xi

)

g

,

that is, X = ai(∂/∂xi). For ζ = bi(∂/∂xi)e , the corresponding left-invariant vector
field is then Y = bi(∂/∂xi); therefore, [X,Y] = 0 and [ξ, ζ ] = [X,Y]e = 0, that is,
the Lie algebra of this group is Abelian. (In fact, as shown in Sects. 7.3 and 7.5, the
Lie algebra of a group is Abelian if and only if the group is Abelian.)

Example 7.15 Let GL(n,R) be the Lie group with the coordinates xi
j defined in

Example 7.3. We then have (xi
j ◦ Lg)(g

′) = xi
j (gg′) = xi

k(g)xk
j (g′), for g,g′ ∈

GL(n,R), that is, xi
j ◦Lg = xi

k(g)xk
j . Any tangent vector to GL(n,R) at the identity

is of the form ξ = ai
j (∂/∂xi

j )e , with ai
j ∈ R, and the corresponding left-invariant

vector field is

Xg = Lg∗eξ = ai
jLg∗e

(
∂

∂xi
j

)

e

= ai
j

(
∂

∂xi
j

)

e

[
xk
m ◦ Lg

]( ∂

∂xk
m

)

g

= ai
j

(
∂

∂xi
j

)

e

[
xk
p(g)x

p
m

]( ∂

∂xk
m

)

g

= ai
j x

k
i (g)

(
∂

∂xk
j

)

g

,

that is,

X = ai
j x

k
i

∂

∂xk
j

. (7.17)

Thus, the left-invariant vector fields on GL(n,R) are in a one-to-one correspondence
with the real n × n matrices. If A ≡ (ai

j ), we will denote by XA the vector field
(7.17).

If ζ = bi
j (∂/∂xi

j )e is another element of TeGL(n,R), then the corresponding left-

invariant vector field is XB = bi
j x

k
i (∂/∂xk

j ), where B ≡ (bi
j ). A direct computation

yields [XA,XB ] = (ai
mbm

j − bi
mam

j )xk
i (∂/∂xk

j ) and, since xk
i (e) = δk

i , we have

[ξ, ζ ] = [XA,XB ]e = (
ai
mbm

j − bi
mam

j

)( ∂

∂xi
j

)

e

.

Noting that ai
mbm

j − bi
mam

j are the entries of the matrix [A,B] ≡ AB − BA, we
conclude that [XA,XB ] = X[A,B].
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In other words, associating to each element of TeGL(n,R) the matrix formed by
its components with respect to the basis {(∂/∂xi

j )e}, the matrix associated with the
bracket of a pair of elements of TeGL(n,R), is the commutator of the corresponding
matrices. Furthermore, XaA+bB = aXA + bXB , for a, b ∈ R. For these reasons, the
Lie algebra of the group GL(n,R), denoted by gl(n,R), is identified with the space
of n × n matrices, where the bracket is given by the commutator.

Example 7.16 For SL(2,R) with the coordinates defined by (7.4), equations (7.5)
amount to

(
x1 ◦ Lg

) = x1(g)x1 + x2(g)x3,

(
x2 ◦ Lg

) = x1(g)x2 + x2(g)
1 + x2x3

x1
,

(
x3 ◦ Lg

) = x3(g)x1 + 1 + x2(g)x3(g)

x1(g)
x3;

hence, if the left-invariant vector fields X1, X2, X3 are such that (Xi )e = (∂/∂xi)e ,
then, for instance, taking into account that x1(e) = 1, x2(e) = 0 = x3(e),

(X1)g = Lg∗e

(
∂

∂x1

)

e

=
(

∂

∂x1

)

e

[
xj ◦ Lg

]( ∂

∂xj

)

g

= x1(g)

(
∂

∂x1

)

g

+ x2(g)

(
−1 + x2x3

(x1)2

)
(e)

(
∂

∂x2

)

g

+ x3(g)

(
∂

∂x3

)

g

= x1(g)

(
∂

∂x1

)

g

− x2(g)

(
∂

∂x2

)

g

+ x3(g)

(
∂

∂x3

)

g

,

i.e.,

X1 = x1 ∂

∂x1
− x2 ∂

∂x2
+ x3 ∂

∂x3
, (7.18)

and in a similar way one finds that

X2 = x1 ∂

∂x2
,

X3 = x2 ∂

∂x1
+ 1 + x2x3

x1

∂

∂x3
.

(7.19)

It should be noticed that these expressions are local [valid only in the domain of
the coordinates (x1, x2, x3)], but that, in all cases, the left-invariant vector fields are
globally defined (even if, as in the case of GL(n,R), G is not connected). Among
other things, this means that any Lie group is a parallelizable manifold.

Since SL(2,R) is a Lie subgroup of GL(2,R), the left-invariant vector fields
(7.18) and (7.19) must be expressible in the form (7.17), in terms of the coordi-
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nates xi
j . From (7.4) we find that the inclusion i : SL(2,R) → GL(2,R) is given

locally by

i∗x1
1 = x1, i∗x1

2 = x2, i∗x2
1 = x3, i∗x2

2 = 1 + x2x3

x1
,

and hence, using (1.24),

i∗e(X1)e = i∗e

(
∂

∂x1

)

e

=
(

∂

∂x1
1

)

e

−
(

∂

∂x2
2

)

e

,

i∗e(X2)e = i∗e

(
∂

∂x2

)

e

=
(

∂

∂x1
2

)

e

,

i∗e(X3)e = i∗e

(
∂

∂x3

)

e

=
(

∂

∂x2
1

)

e

.

Thus, the matrices associated with the vector fields (7.18) and (7.19), in the sense
defined in the preceding example, are

X1 �→
(

1 0
0 −1

)
, X2 �→

(
0 1
0 0

)
, X3 �→

(
0 0
1 0

)
. (7.20)

The matrices (7.20) have trace equal to 0 as a consequence of the fact
that SL(2,R) is formed by matrices with determinant equal to 1. The group
SL(2,R) corresponds to the submanifold of GL(2,R) defined by the equation
x1

1x2
2 − x1

2x2
1 = 1; therefore, if Xe = ai

j (∂/∂xi
j )e is tangent to this submanifold,

0 = Xe[x1
1x2

2 − x1
2x2

1 ] (see Sect. 4.2). Hence, taking into account that xi
j (e) = δi

j ,

we obtain a1
1 + a2

2 = 0, that is, tr (ai
j ) = 0.

Exercise 7.17 Show that if ξ = a(∂/∂x)e + b(∂/∂y)e + c(∂/∂θ)e is a tangent vec-
tor to the group of isometries of the plane at the identity, expressed in the coor-
dinates defined in Example 7.7, then X = (a cos θ − b sin θ)(∂/∂x) + (a sin θ +
b cos θ)(∂/∂y) + c(∂/∂θ) is the element of the Lie algebra of the group such that
ξ = Xe.

Exercise 7.18 Show that the Lie algebra of SO(n) ≡ {A ∈ GL(n,R) |
detA = 1,AAt = I } can be identified with the set of skew-symmetric n × n ma-
trices.

Exercise 7.19 Show that if X1, X2, and X3 are the left-invariant vector fields on
SU(2) such that (Xi )e = 1

2 (∂/∂xi)e , where the xi are the coordinates defined in
(7.8), then

Xi = 1

2

(

h
∂

∂xi
−

3∑

j,k=1

εijkx
j ∂

∂xk

)

. (7.21)
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(The factor 1/2 included in the definition of the Xi is introduced in order for them
to coincide with the elements of the basis of su(2) [the Lie algebra of SU(2)] com-
monly employed.)

Exercise 7.20 Making use of the formulas (7.2), find the left-invariant vector fields
on the group of affine motions of R, considered in Example 7.4, whose values at the
identity are (∂/∂x1)e and (∂/∂x2)e . Show that [(∂/∂x1)e, (∂/∂x2)e] = (∂/∂x2)e .

The Structure Constants Let {ξ1, ξ2, . . . , ξn} be a basis of TeG, since the bracket
[ξi, ξj ] belongs to TeG, and then there exists a set of real numbers ck

ij (i, j, k =
1,2, . . . , n) such that [ξi, ξj ] = ck

ij ξk . Denoting by Xi the element of g correspond-

ing to ξi , we have [Xi ,Xj ] = ck
ij Xk . The scalars ck

ij are called the structure con-
stants of G with respect to the basis {Xi}. The skew-symmetry of the bracket and
the Jacobi identity imply that the structure constants must satisfy the relations

ck
ij = −ck

ji (7.22)

and

cm
ij c

l
mk + cm

jkc
l
mi + cm

kic
l
mj = 0, (7.23)

respectively.

Exercise 7.21 Calculate the structure constants of Rn, the group of isometries of
the plane, SL(2,R), and SU(2).

The fact that the values of the structure constants depend on the basis of g cho-
sen means, among other things, that it is possible to obtain some simplification in
the expressions for the structure constants by conveniently choosing the basis of g.
A simple example is given by considering the Lie algebras of dimension two. If
{X1,X2} is a basis of g (or of any real Lie algebra of dimension two), we neces-
sarily have [X1,X1] = 0 = [X2,X2] and [X1,X2] = −[X2,X1], so that the only
relevant bracket is [X1,X2], which must be of the form aX1 + bX2 with a, b ∈ R.
(Note that when the dimension of the algebra is 2, the Jacobi identity is identically
satisfied as a consequence of the skew-symmetry of the bracket, and therefore there
are no restrictions on the values of a and b.)

It is necessary to analyze separately the following two cases:

(i) both coefficients are zero, a = b = 0,
(ii) at least one coefficient is different from zero.

In the first case the algebra is Abelian and ck
ij = 0 with respect to any basis. In

the second case, assuming, for instance, b �= 0, owing to the bilinearity and the
skew-symmetry of the bracket it follows that the set {X′

1,X′
2}, with X′

1 ≡ b−1X1,
X′

2 ≡ aX1 + bX2, is a basis of g such that [X′
1,X′

2] = X′
2 (cf. Exercise 7.20).

Thus, for any Lie algebra of dimension two we have ck
ij = 0 (the algebra is

Abelian) or it is possible to choose a basis for which the only structure constants
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different from zero are

c2
12 = 1, c2

21 = −1 (7.24)

[cf. Erdmann and Wildon (2006, Chap. 3)].

Lie Group Homomorphisms Let G and H be two Lie groups with Lie algebras
g and h, respectively, if φ : G → H is a Lie group homomorphism, that is, φ is dif-
ferentiable and φ(gg′) = φ(g)φ(g′), then to each X ∈ g there corresponds a unique
left-invariant vector field on H , which will be denoted by φ∗X, such that X and φ∗X
are φ-related, i.e.,

φ∗gXg = (φ∗X)φ(g), for g ∈ G. (7.25)

Indeed, the condition φ(gg′) = φ(g)φ(g′) can be written in the form φ(Lgg
′) =

Lφ(g)(φ(g′)), that is,

φ ◦ Lg = Lφ(g) ◦ φ, for g ∈ G; (7.26)

therefore, if φ∗X is the left-invariant vector field on H such that

(φ∗X)e ≡ φ∗eXe, (7.27)

then using (7.14), (7.27), the chain rule, and (7.26) we have

(φ∗X)φ(g) = Lφ(g)∗e(φ∗X)e = Lφ(g)∗eφ∗eXe = (Lφ(g) ◦ φ)∗eXe

= (φ ◦ Lg)∗eXe = φ∗gLg∗eXe = φ∗gXg.

Since X and φ∗X are φ-related, the map X �→ φ∗X from g into h is a Lie algebra
homomorphism.

Example 7.22 The mapping

(
a b

0 1/a

)
�→

(
a2 ab

0 1

)
,

from the group G formed by the upper triangular 2 × 2 real matrices with deter-
minant equal to 1 into the group H of the affine motions of R (see Example 7.4)
is a (two-to-one) Lie group homomorphism. In fact, making use of the coordinate
systems (y1, y2) and (x1, x2), on G and H , respectively, defined by

g =
(

y1(g) y2(g)

0 1/y1(g)

)
, g ∈ G

and

g =
(

x1(g) x2(g)

0 1

)
, g ∈ H
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(as in Example 7.4), the mapping φ : G → H defined above is given by

φ∗x1 = (
y1)2

, φ∗x2 = y1y2 (7.28)

and is differentiable.
Proceeding as in the examples above, one finds that a basis of g is formed by the

vector fields

X1 = y1 ∂

∂y1
− y2 ∂

∂y2
, X2 = y1 ∂

∂y2
(7.29)

on G. With the aid of (1.24), (7.28), and (7.29) one finds that, for g ∈ G,

φ∗g(X1)g = (X1)g
[
φ∗xi

]( ∂

∂xi

)

φ(g)

= 2
(
y1(g)

)2
(

∂

∂x1

)

φ(g)

=
(

2x1 ∂

∂x1

)

φ(g)

,

φ∗g(X2)g = (X2)g
[
φ∗xi

]
(

∂

∂xi

)

φ(g)

= (
y1(g)

)2
(

∂

∂x2

)

φ(g)

=
(

x1 ∂

∂x2

)

φ(g)

.

On the other hand, a similar, direct computation shows that the vector fields
x1 ∂/∂x1 and x1 ∂/∂x2 form a basis of h (see Exercise 7.20) and, therefore, in this
case the mapping X �→ φ∗X is an isomorphism of Lie algebras.

It may be remarked that the mapping φ considered in this example is not injective
nor surjective; however, the mapping φ∗ : g → h is one-to-one. Also note that even
in those cases where φ is not surjective, the vector field φ∗X, as any left-invariant
vector field on a Lie group, is defined at all the points of H .

Example 7.23 Since the determinant of a product of n × n matrices is equal to
the product of their determinants, the mapping det : GL(n,R) → R \ {0} is a Lie
group homomorphism, considering R \ {0} as a group with the multiplication; the
differentiability of the mapping is evident from its explicit expression in terms of the
coordinates x

j
i of GL(n,R), det = 1

n!εi1...inε
j1...jnx

i1
j1

· · ·xin
jn

. Any n × n matrix A =
(ai

j ) defines an element XA of gl(n,R) in such a way that (XA)e = ai
j (∂/∂xi

j )e (see

Example 7.15), and det∗e(XA)e = ai
j det∗e(∂/∂xi

j )e = ai
j (∂/∂xi

j )e(x ◦ det)(∂/∂x)1,
where x is the natural coordinate of R \ {0} (i.e., x = id). By means of a simple
calculation, taking into account that x

j
i (e) = δ

j
i , one obtains

(
∂

∂xi
j

)

e

(x ◦ det) =
(

∂

∂xi
j

)

e

det =
(

∂

∂xi
j

)

e

1

n!εi1...inε
j1...jnx

i1
j1

· · ·xin
jn

= 1

(n − 1)!εii2...inε
jj2...jnδ

i2
j2

· · · δin
jn

= δ
j
i ;
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thus,

(det∗XA)e = det∗e ai
j

(
∂

∂xi
j

)

e

= ai
i

(
∂

∂x

)

1
= trA

(
∂

∂x

)

1
.

Hence, just like XA is identified with the matrix A, its image under det∗ is iden-
tified with the trace of A. According to the previous results, it follows that the map-
ping A �→ trA is a Lie algebra homomorphism, which simply amounts to saying that
the trace of the commutator of any two matrices is equal to zero (the Lie algebra of
R\ {0}, as any Lie algebra of dimension one, is Abelian), tr [A,B] = [trA, trB] = 0
and that the trace is a linear mapping.

Two well-known examples of Lie group homomorphisms are the following. Let
G be the additive group of the real numbers and let H be the group of the complex
numbers of modulus equal to 1 with the usual multiplication (identifiable with the
unit circle S1). Then, the map x �→ eix is an infinite-to-one homomorphism (the
kernel of this homomorphism is formed by all the integral multiples of 2π ). The
second example corresponds to the two-to-one homomorphism between SU(2) and
SO(3). In order to give explicitly this homomorphism it is convenient to make use
of the Pauli matrices

σ 1 ≡
(

0 1
1 0

)
, σ 2 ≡

(
0 −i
i 0

)
, σ 3 ≡

(
1 0
0 −1

)
,

which form a basis for the real vector space formed by the traceless Hermitian 2×2
complex matrices. Furthermore, the Pauli matrices satisfy

σ iσ j = δij I + i
3∑

k=1

εijkσ k, (7.30)

where I denotes the 2 × 2 unit matrix.
If g ∈ SU(2), then, for i = 1,2,3, g−1σ ig is also a traceless Hermitian 2 × 2

complex matrix and therefore there exist real numbers, ai
j (which depend on g)

such that

g−1σ ig = ai
jσ

j , i = 1,2,3. (7.31)

As we shall show now, (ai
j ) belongs to SO(3), i.e., (ai

j ) is an orthogonal 3 × 3 real
matrix with determinant equal to 1. To this end, we calculate

g−1σ iσ jg = g−1

(

δij I + i
3∑

k=1

εijkσ k

)

g

= δij I + i
3∑

k=1

εijkg−1σkg
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= δij I + i
3∑

k=1

εijkak
mσm.

On the other hand,

g−1σ iσ jg = g−1σ ig g−1σ jg

= ai
kσ

ka
j
mσm

= ai
ka

j
m

(

δkmI + i
3∑

r=1

εkmrσ r

)

.

Using the fact that {I, σ 1, σ 2, σ 3} is linearly independent, it follows that

ai
ka

j
mδkm = δij ,

3∑

k=1

εijkak
r = εkmrai

ka
j
m.

The first of these equations means that (ai
j ) is an orthogonal matrix, and from the

second one we have

3∑

k=1

εijkak
r a

n
s δrs = εkmrai

ka
j
man

s δrs

and since ak
r a

n
s δrs = δkn, we obtain εijn = εkmrai

ka
j
man

r , which means that
det(ai

j ) = 1 (see Example 7.23). Thus, we have a map φ : SU(2) → SO(3) given

by φ(g) = (ai
j ), with (ai

j ) defined by (7.31).

Combining (7.31) and (7.30), making use of the fact that trσ i = 0 and tr I = 2,
and the linearity of the trace, we have

tr
(
g−1σ igσ k

)= tr
(
ai
jσ

jσ k
)= ai

j tr

(

δjkI + i
3∑

m=1

εjkmσm

)

= 2ai
k,

that is, ai
j = 1

2 tr (g−1σ igσ j ). In terms of the natural coordinates xi
j of GL(3,R),

ai
j = xi

j (φ(g)), hence

xi
j

(
φ(g)

)= 1

2
tr
(
g−1σ igσ j

)
. (7.32)

With the aid of the explicit expression (7.32) we can verify that φ is a group
homomorphism. Indeed, for g,g′ ∈ SU(2), making use of (7.32) we obtain

xi
j

(
φ(gg′)

) = 1

2
tr
(
g′−1g−1σ igg′σ j

)= 1

2
tr
(
g′−1xi

k

(
φ(g)

)
σkg′σ j

)

= xi
k

(
φ(g)

) 1

2
tr
(
g′−1σkg′σ j

)= xi
k

(
φ(g)

)
xk
j

(
φ(g′)

)
.
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The fact that φ is two-to-one is equivalent to saying that there exist only two ele-
ments of SU(2) that are mapped by φ to the identity of SO(3) (i.e., kerφ consists of
exactly two elements). If g ∈ SU(2) is such that φ(g) is the identity of SO(3), then
from (7.31) we have g−1σ ig = σ i , which amounts to σ ig = gσ i , for i = 1,2,3.
These equations imply that g is a multiple of I , and from the condition detg = 1
one concludes that g = ±I .

Lie Subgroups If H is a Lie subgroup of G, the left-invariant vector fields of H ,
being defined at e, can be extended to all of G as left-invariant vector fields on G,
using (7.14). In this manner, the Lie algebra of H can be regarded as a Lie sub-
algebra of the Lie algebra of G. Conversely, if h is a subalgebra of g, h defines
a distribution in G which is involutive and, according to the Frobenius Theorem,
completely integrable. Let H be the maximal integral manifold of this distribution
containing e. Since h is formed by left-invariant vector fields, for h ∈ H , Lh−1(H)

is also an integral manifold of the distribution that contains the identity; therefore,
Lh−1(H) ⊂ H , which implies that H is a Lie subgroup of G.

In particular, any X ∈ g different from zero generates a Lie subalgebra of dimen-
sion one, h = {Y ∈ g |Y = aX, a ∈ R}, and the integral manifold of the distribution
generated by X containing the identity (which in this case is the image of a curve)
is a one-parameter subgroup of G (see Sect. 7.4).

Example 7.24 The matrices

(
1 0
0 −1

)
,

(
0 1
0 0

)
,

form a basis of a Lie subalgebra of gl(2,R). Substituting these matrices into (7.17)
one obtains the two left-invariant vector fields on GL(2,R),

X1 ≡ x1
1

∂

∂x1
1

+ x2
1

∂

∂x2
1

− x1
2

∂

∂x1
2

− x2
2

∂

∂x2
2

, X2 ≡ x1
1

∂

∂x1
2

+ x2
1

∂

∂x2
2

.

It is convenient to simplify the notation, using (x, y, z,w) in place of (x1
1 , x1

2 , x2
1 , x2

2),
so that the vector fields above are

X1 = x
∂

∂x
+ z

∂

∂z
− y

∂

∂y
− w

∂

∂w
, X2 = x

∂

∂y
+ z

∂

∂w
.

In order to find the integral manifolds of the distribution defined by X1 and X2
in the underlying manifold of GL(2,R), we look for two functionally independent
solutions of the system of linear PDEs X1f = 0, X2f = 0.

Following the procedure employed in Example 4.1 [see also (4.9)] one finds that
the functions xy, xw, and yz satisfy X1f = 0 (that is, they are constant along the in-
tegral curves of X1). Similarly, by inspection, x and z are constant along the integral
curves of X2, and therefore xw − zy also satisfies X2f = 0. Hence, xw − zy and
z/x are two functionally independent solutions of the system of equations X1f = 0,
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X2f = 0, which means that the integral manifolds of the distribution under con-
sideration are given by xw − zy = const, z/x = const Since x(e) = 1 = w(e),
y(e) = 0 = z(e), the integral manifold passing through the identity of GL(2,R)

is given by xw − yz = 1, z = 0, which corresponds to matrices of the form
( x y

0 1/x

)
.

These matrices form, effectively, a subgroup of GL(2,R) (cf. Example 7.22).
Alternatively, one can find first two independent 1-forms that, contracted with X1

and X2, yield zero. A possible choice is given by the 1-forms

α1 = (xw − yz)dx − xzdy + x2 dw, α2 = −z2 dy + (xw − yz)dz + xzdw,

which can be written in the form

α1 = x d(xw − yz) + x2y d

(
z

x

)
, α2 = zd(xw − yz) + x2w d

(
z

x

)

(cf. Example 4.7). Hence, we find again that the integral manifolds sought for are
given by xw − yz = const, z/x = const

Exercise 7.25 Verify that the matrices

(
1 0
0 0

)
,

(
0 1
0 0

)
,

form a basis of a Lie subalgebra of gl(2,R) and identify the corresponding subgroup
of GL(2,R).

7.3 Invariant Differential Forms

In this section we shall see explicitly that from a given Lie algebra one can find a
Lie group. This process is simplified by the use of differential forms.

Let G be a Lie group and let ω be a differential form on G, we say that ω is left-
invariant if Lg

∗ω = ω for all g ∈ G. If ω is left-invariant, dω is also left-invariant,
since, according to (3.38), Lg

∗ dω = dLg
∗ω = dω. Given two left-invariant differ-

ential forms, ω1 and ω2, the combinations aω1 + bω2 and ω1 ∧ ω2 also are left-
invariant differential forms, for a, b ∈ R [see (2.30) and (3.25)]. Thus, the set of all
the left-invariant differential forms is a subalgebra of the algebra of forms of G,
which is closed under the operator of exterior differentiation.

Exercise 7.26 Show that a 0-form on G, that is, a differentiable function
f : G →R, is left-invariant if and only if f is constant.

As in the case of a left-invariant vector field, a left-invariant differential form is
determined by its value at the identity. Therefore, the set of left-invariant k-forms
forms a vector subspace of Λk(G) of dimension ( n

k).
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Exercise 7.27 Let α be a left-invariant 1-form. Show that αg = αe ◦ Lg−1∗g , for
g ∈ G.

According to the formula αg = αe ◦ Lg−1∗g , established in Exercise 7.27, if the
xi form a local coordinate system on a neighborhood of the identity, the value of
any left-invariant 1-form α at the identity can be expressed in the form αe = ai dxi

e,
where the ai are some real numbers. Hence, for any other point g in the domain of
the coordinate system we have [see (1.49) and (1.24)]

αg = αg

((
∂

∂xi

)

g

)
dxi

g = αe

(
Lg−1∗g

(
∂

∂xi

)

g

)
dxi

g

= (
aj dx

j
e

)[( ∂

∂xi

)

g

[
xk ◦ Lg−1

]( ∂

∂xk

)

e

]
dxi

g

= aj

[(
∂

∂xi

)

g

[
xj ◦ Lg−1

]]
dxi

g. (7.33)

Example 7.28 By combining (7.5) and (7.6) we find that

x1 ◦ Lg−1 = 1 + x2(g)x3(g)

x1(g)
x1 − x2(g)x3,

x2 ◦ Lg−1 = 1 + x2(g)x3(g)

x1(g)
x2 − x2(g)

1 + x2x3

x1
,

x3 ◦ Lg−1 = −x3(g)x1 + x1(g)x3.

Hence, according to (7.33) one readily sees that the left-invariant 1-forms ωi on
SL(2,R), whose values at the identity are dxi

e, are given locally by

ω1 = 1 + x2x3

x1
dx1 − x2 dx3,

ω2 = x2(1 + x2x3)

(x1)2
dx1 + 1

x1
dx2 − (x2)2

x1
dx3,

ω3 = −x3 dx1 + x1 dx3.

The exterior derivative of ωi is a left-invariant 2-form and therefore can be written as
a linear combination of {ω1 ∧ω2,ω2 ∧ω3,ω3 ∧ω1}. A straightforward computation
shows that

dω1 = −ω2 ∧ ω3, dω2 = −2ω1 ∧ ω2, dω3 = 2ω1 ∧ ω3.

As shown below, the coefficients in this linear combinations are related to the struc-
ture constants of the group with respect to the dual basis to {ω1,ω2,ω3} [see (7.35)].
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Note that these relations, being equalities between left-invariant 2-forms, hold glob-
ally on the whole group manifold, not only in the domain of the coordinate system
employed.

Exercise 7.29 Find a basis for the left-invariant 1-forms of Rn and of GL(n,R).

Exercise 7.30 Show that if φ : G → H is a homomorphism of Lie groups and ω is
a left-invariant k-form on H , then φ∗ω is left-invariant on G.

Exercise 7.31 A differential form ω on G is right-invariant if Rg
∗ω = ω, for all

g ∈ G. Show that if ι : G → G is the inversion mapping, ι(g) ≡ g−1, then ι∗ω is
right-invariant if and only if ω is left-invariant.

The Maurer–Cartan Equations Let {ω1, . . . ,ωn} be a basis for the 1-forms on
G and let {X1, . . . ,Xn} be a basis for the vector fields on G such that ωi(Xj ) = δi

j

(that is, these bases are dual to each other); then the elements of each of these bases
are left-invariant if and only if the elements of the other are. This follows from
Lg

∗[ωi(Xj )] = (Lg
∗ωi)(Lg

∗Xj ) and Lg
∗δi

j = δi
j , wherefore (Lg

∗ωi)(Lg
∗Xj ) =

δi
j . This relation and the fact that for a given basis there exists only one dual basis

prove the assertion above.
If {ω1, . . . ,ωn} is a basis of the space of left-invariant 1-forms, then the exterior

products ωj ∧ ωk with j < k form a basis for the left-invariant 2-forms. Since dωi

is a left-invariant 2-form, dωi should be a linear combination (with constant coeffi-
cients) of the products ωj ∧ ωk with j < k. In fact, if {X1, . . . ,Xn} is the dual basis
to {ω1, . . . ,ωn}, the components of dωi are given by [see (3.30)]

dωi(Xj ,Xk) = 1

2

{
Xj

(
ωi(Xk)

)− Xk

(
ωi(Xj )

)− ωi
([Xj ,Xk]

)}

= −1

2
ωi
([Xj ,Xk]

)= −1

2
ωi
(
cl
jkXl

)

= −1

2
ci
jk,

where the ci
jk are the structure constants of the group with respect to the basis

{X1, . . . ,Xn}; therefore

dωi = −1

2
ci
jkω

j ∧ ωk. (7.34)

These relations are known as the Maurer–Cartan equations. Taking into account
the skew-symmetry of the structure constants in the two subscripts [equation (7.22)]
and that of the exterior product of 1-forms, it follows that

dωi = −
∑

j<k

ci
jkω

j ∧ ωk. (7.35)
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Exercise 7.32 Show that d2ωi = 0 amounts to cm
ij c

l
mk + cm

jkc
l
mi + cm

kic
l
mj = 0.

Employing the Maurer–Cartan equations it is possible to determine locally the
group G starting from its structure constants. For instance, if ck

ij = 0, that is, if g

is Abelian, equations (7.34) give dωi = 0, which means that, locally, there exist n

functions xi such that ωi = dxi (that is, being closed, the ωi are locally exact). The
functions xi form a local coordinate system, since the ωi are linearly independent.
Since, in addition, the ωi are left-invariant, Lg

∗ dxi = dxi , but Lg
∗ dxi = d(Lg

∗xi);
therefore d(Lg

∗xi −xi) = 0, for g ∈ G, and this implies that Lg
∗xi −xi is a constant

(which may depend on g), ai(g). Thus

Lg
∗xi = xi + ai(g),

hence, for g′ ∈ G such that g′ and gg′ belong to the domain of the coordinates xi ,

xi(gg′) = (xi ◦ Lg)(g
′) = (Lg

∗xi)(g′) = xi(g′) + ai(g). (7.36)

In particular, if g′ = e, from the previous equation we obtain

xi(g) = xi(e) + ai(g),

so that ai(g) = xi(g) − xi(e) and substituting into (7.36)

xi(gg′) = xi(g′) + xi(g) − xi(e), (7.37)

and therefore xi(gg′) = xi(g′g), that is, G is Abelian.
If we define yi ≡ xi − xi(e), then equation (7.37) amounts to yi(gg′) = yi(g′)+

yi(g), which is identical to the relation found in the case of the additive group R
n

(see Example 7.8); however, since the coordinates xi (and the yi ) may not cover
all of G, this does not imply that G be isomorphic to R

n globally, but only locally.
As pointed out above, the structure constants determine the group G only locally.
However, the structure constants define a unique simply connected Lie group, which
is a covering group of any other Lie group with the given structure constants [see,
e.g., Warner (1983), Sattinger and Weaver (1986)].

A second example of the determination of the group from its structure con-
stants is given by the Lie algebra of dimension two given by (7.24); in this case
the Maurer–Cartan equations yield

dω1 = 0, dω2 = −ω1 ∧ ω2. (7.38)

The first of these equations implies that ω1 is locally exact, that is, there exists
locally a function x1 such that

ω1 = dx1. (7.39)

Substituting this expression into the second equation of (7.38) we have

dω2 + dx1 ∧ ω2 = 0,
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which amounts to d(ex1
ω2) = 0; therefore, locally, there exists a function x2 such

that

ω2 = e−x1
dx2. (7.40)

The functions x1 and x2 form a local coordinate system in some neighborhood in G

(dx1 ∧ dx2 = ex1
ω1 ∧ ω2 �= 0).

From the condition ωi = Lg
∗ωi , for g ∈ G, and equations (7.39) and (7.40) we

have

dx1 = Lg
∗ dx1 = d

(
Lg

∗x1)= d
(
x1 ◦ Lg

)
,

e−x1
dx2 = Lg

∗(e−x1
dx2)= e−(x1◦Lg)d

(
x2 ◦ Lg

)
,

which leads to

x1 ◦ Lg = x1 + a1(g), (7.41)

where a1(g) is a constant (which may depend on g), and d(x2 ◦ Lg) =
ex1◦Lg−x1

dx2 = ea1(g)dx2; therefore

x2 ◦ Lg = ea1(g)x2 + a2(g), (7.42)

where a2(g) is another constant. Evaluating both sides of (7.41) and (7.42) at e we
obtain

x1(g) = x1(e) + a1(g), x2(g) = ea1(g)x2(e) + a2(g),

so that a1(g) = x1(g) − x1(e) and a2(g) = x2(g) − ex1(g)−x1(e)x2(e). Substituting
these expressions into (7.41) and (7.42), and evaluating at g′, we then obtain

x1(gg′) = x1(g′) + x1(g) − x1(e),

x2(gg′) = ex1(g)−x1(e)
[
x2(g′) − x2(e)

]+ x2(g).
(7.43)

Equivalently, defining the coordinates

y1 ≡ e[x1−x1(e)]/2, y2 ≡ [x2 − x2(e)] e−[x1−x1(e)]/2,

equations (7.43) become

y1(gg′) = y1(g)y1(g′), y2(gg′) = y1(g)y2(g′) + y2(g)

y1(g′)
.

It can readily be seen that these equations correspond to the group formed by the
upper triangular 2 × 2 real matrices with determinant equal to 1, with the usual
matrix multiplication, if the elements of this group are expressed in the form

g =
(

y1(g) y2(g)

0 1/y1(g)

)

(cf. Example 7.24).
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Alternatively, we can make y1 ≡ ex1−x1(e), y2 ≡ x2 − x2(e), so that equations
(7.43) take the form

y1(gg′) = y1(g)y1(g′), y2(gg′) = y1(g)y2(g′) + y2(g), (7.44)

which coincide with the equations corresponding to the group formed by the 2 × 2
matrices of the form

(
y1(g) y2(g)

0 1

)
, y1(g) > 0, with the usual operation of matrix

multiplication (see Example 7.4).

Exercise 7.33 Verify that the structure constants c1
13 = −c1

31 = 1, c2
23 = −c2

32 = k,
with all the others being equal to zero, define a Lie algebra of dimension three, and
find the local expressions for the operation of the corresponding group or groups,
by integrating the Maurer–Cartan equations.

Exercise 7.34 Verify that the structure constants c2
12 = −c2

21 = 1, c2
13 =

−c2
31 = 1, c3

13 = −c3
31 = 1, with all the others being equal to zero, define a Lie

algebra of dimension three, and find the local expressions for the operation of the
corresponding group or groups, by integrating the Maurer–Cartan equations.

Invariant Forms on Subgroups of GL(n,R) In the case of the Lie subgroups
of GL(n,R), there exists a particularly simple form of finding a basis for the
left-invariant or the right-invariant 1-forms. As shown in Example 7.15, the vec-
tor fields xk

i (∂/∂xk
j ), where the xi

j are the natural coordinates on GL(n,R), form
a basis for the left-invariant vector fields of GL(n,R). Hence, if H is a Lie sub-
group of GL(n,R) and {X1,X2, . . . ,Xp}, where p = dimH , is a basis of h, the
Lie algebra of H , then there exist real numbers (λa)

i
j , with a = 1,2, . . . , p and

i, j = 1,2, . . . , n, such that

Xa = (λa)
i
j x

k
i

∂

∂xk
j

, a = 1, . . . ,dimH (7.45)

(see, e.g., Example 7.16) and the n × n matrices λa ≡ ((λa)
i
j ) satisfy the commuta-

tion relations [λa,λb] ≡ λaλb − λbλa = cr
abλr , where the cr

ab are the structure con-

stants of the basis {X1,X2, . . . ,Xp} (see Example 7.15). The 1-forms (ι∗xi
j )dx

j
k ,

where ι is the inversion map, ι(g) ≡ g−1, form the dual basis to {xk
i (∂/∂xk

j )} and,

therefore, are left-invariant on GL(n,R); hence, the restriction of (ι∗xi
j )dx

j
k to H is

equal to (λa)
i
kω

a , where the 1-forms ωa are left-invariant on H and form the dual
basis to (7.45).

In effect, from (7.45), using that (ι∗xi
j )x

j
k = δi

k , we have

[(
ι∗xi

j

)
dx

j
k

]
(Xa) = (

ι∗xi
j

)
(λa)

m
k x

j
m = (λa)

i
k

and, on the other hand,
[
(λb)

i
kω

b
]
(Xa) = (λb)

i
kδ

b
a = (λa)

i
k.
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Since at each point of H , the vector fields Xa form a basis of the tangent space to H ,
it follows that the restriction of (ι∗xi

j )dx
j
k to H coincides with (λb)

i
kω

b . Thus, we
have proved the following.

Theorem 7.35 If H is a Lie subgroup of GL(n,R) and j : H → GL(n,R) de-
notes the inclusion map, then j∗((ι∗xi

j )dx
j
k ) = (λa)

i
kω

a , where the ωa are the left-
invariant 1-forms on H that form the dual basis to (7.45).

Expressed in matrix form, this theorem shows that if g represents an arbitrary
element of H , then

g−1 dg = λaω
a, (7.46)

where dg is the matrix whose entries are the differentials of the entries of g.

Example 7.36 The basis of sl(2,R) [the Lie algebra of SL(2,R)] given by (7.18)
and (7.19) is of the form (7.45), where the λa are the matrices given in (7.20).
Making use of the expression (7.4) one readily finds that

g−1 dg =
⎛

⎝
1+x2x3

x1 −x2

−x3 x1

⎞

⎠

⎛

⎝
dx1 dx2

dx3 d( 1+x2x3

x1 )

⎞

⎠

=
(

1 + x2x3

x1
dx1 − x2 dx3

)
λ1

+
(

x2(1 + x2x3)

(x1)2
dx1 + dx2

x1
− (x2)2

x1
dx3

)
λ2 + (

x1 dx3 − x3 dx1)λ3.

According to (7.46), the coefficients of the matrices λa are the left-invariant 1-forms
that form the dual basis to (7.18) and (7.19), and they coincide with the left-invariant
1-forms obtained in Example 7.28. (See also Examples B.1, B.6, and B.8.)

Exercise 7.37 Find the basis of the left-invariant 1-forms for the group formed by
the real 2 × 2 matrices of the form

( x y

0 z

)
, with xz �= 0, dual to the basis of left-

invariant vector fields corresponding to the matrices

λ1 ≡
(

1 0
0 0

)
, λ2 ≡

(
0 1
0 0

)
, λ3 ≡

(
0 0
0 1

)
.

In a similar manner one finds that the vector fields

Ẋa = (λa)
i
j x

j
k

∂

∂xi
k

, a = 1, . . . ,dimH,

form a basis for the right-invariant vector fields on H and its dual basis, {ω̇a}, is
such that j∗(xi

j d(ι∗xj
k )) = −(λa)

i
kω̇

a or, equivalently, j∗((ι∗xj
k )dxi

j ) = (λa)
i
kω̇

a . In

terms of matrices, we have g dg−1 = −λaω̇
a , which amounts to (dg)g−1 = λaω̇

a .
Comparing with (7.46) it follows that ω̇a = −ι∗ωa (cf. Exercise 7.31).
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7.4 One-Parameter Subgroups and the Exponential Map

In any Lie group, the one-parameter subgroups are particularly important. A set of
elements of G, {gt }, with t ∈ R, is a one-parameter subgroup of G if gtgs = gt+s

and if gt depends differentiably on the parameter t . This implies that g0 = e and
that g−t = (gt )

−1. The map from R into G given by t �→ gt is then a (differentiable)
curve in G starting at the identity. The following result relates the one-parameter
groups of G with the left-invariant or right-invariant vector fields and is a particular
case of the relation between subgroups and subalgebras mentioned at the end of
Sect. 7.2.

Theorem 7.38 Let {gt }, with t ∈ R, be a one-parameter subgroup of G; then the
curve t �→ gt is the integral curve starting at e of some left-invariant (or right-
invariant) vector field.

Proof Let ξ be the tangent vector to the curve σ(t) ≡ gt at t = 0, ξ = σ ′
0, that is,

ξ [f ] = d

dt

(
f (gt )

)∣∣∣
t=0

for f ∈ C∞(G). (7.47)

Similarly, the tangent vector to this curve at t = s, σ ′
s , is such that

σ ′
s[f ] = d

dt

(
f (gt )

)∣∣∣
t=s

;

but gt = gsgt−s and making the change of variable u = t − s, we have

σ ′
s[f ] = d

dt

(
f (gsgt−s)

)∣∣∣
t=s

= d

du

(
f (gsgu)

)∣∣∣
u=0

= d

du

(
(f ◦ Lgs )(gu)

)∣∣∣
u=0

= ξ [f ◦ Lgs ] = (Lgs∗eξ)[f ]

that is, σ ′
s = Lgs∗eξ = Xgs = Xσ(s), where X is the left-invariant vector field such

that Xe = ξ [see (7.15)]. Thus showing that σ is an integral curve of X.
Alternatively, from the previous expressions we also have

σ ′
s[f ] = d

du

(
f (gugs)

)∣∣∣
u=0

= d

du

(
(f ◦ Rgs )(gu)

)∣∣∣
u=0

= ξ [f ◦ Rgs ] = (Rgs∗eξ)[f ],
which means that σ ′

s = Rgs∗eξ , which is the value at σ(s) of the right-invariant
vector field whose value at the identity is ξ . �

Conversely, given a left-invariant or right-invariant vector field on G (or, equiv-
alently, given ξ ∈ TeG) there exists a one-parameter subgroup of G, {gt }, such that
t �→ gt is the integral curve starting at e of the given vector field (or, equivalently,
ξ is the tangent vector to the curve t �→ gt at t = 0). Indeed, if X is any vector field
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on G, according to the existence and uniqueness theorems for systems of ODEs (see
Sect. 2.1), there exists an integral curve of X starting at e, defined in some neigh-
borhood Ie of 0 for which we have: if t �→ ϕ(g, t) is the integral curve of X starting
at g, then

ϕ(g, t + s) = ϕ
(
ϕ(g, t), s

)
, (7.48)

for all those values of t and s for which both sides of the equation are defined [see
(2.6)]. In the case of a left-invariant vector field on G, ϕ(g, t) is defined for all
t ∈ R. In fact, if C is an integral curve of X that starts at e [i.e., C(t) = ϕ(e, t)],
then, for g ∈ G, C̃(t) ≡ (Lg ◦ C)(t) is defined in the same neighborhood Ie of 0
as C and C̃(0) = Lg(C(0)) = Lg(e) = ge = g. The tangent vector to C̃ at t = 0 is
Lg∗eC

′(0) = Lg∗eXe = Xg , since X ∈ g [see (7.14)]; therefore C̃ is an integral curve
of X starting at g. Since g is arbitrary, from (7.48) we see that ϕ(g, t) is defined
for all t ∈ R. On the other hand, C̃(t) = ϕ(g, t), that is, ϕ(g, t) = (Lg ◦ C)(t) =
g C(t) = g ϕ(e, t). Taking g = ϕ(e, s) in this equation and using (7.48), we then
obtain

ϕ
(
ϕ(e, s), t

)= ϕ(e, s)ϕ(e, t) = ϕ(e, t + s), (7.49)

which means that the elements of G defined by gt = ϕ(e, t) form a one-parameter
subgroup of G. It can readily be verified, basically replacing Lg by Rg in the fore-
going derivation, that (7.49) also holds if X is right-invariant.

The element ϕ(e,1) is denoted by exp X and the map from g into G given by
exp X = ϕ(e,1) is called the exponential map. It can readily be seen that exp tX =
ϕ(e, t) and that exp(s + t)X = (exp sX)(exp tX). The element exp(X + Y) may not
coincide with (exp X)(exp Y) unless [X,Y] = 0. The exponential map, exp : g → G,
is not always injective or onto; in some groups there exist elements that are not
the exponential of some X ∈ g (see the examples given below). Nevertheless, any
element of a group G belonging to the connected component of the identity (that is,
it can be joined with the identity by means of a curve in G), can be expressed as the
product of exponentials, exp X1 exp X2 · · · exp Xk (see Example 7.41).

Exercise 7.39 Show that exp tX = ϕ(e, t). (Hint: consider the curve τ(s) ≡
ϕ(e, st), with t fixed, and calculate τ ′

0.)

Example 7.40 Consider again the group formed by the 2 × 2 real matrices of the
form g = (

x1(g) x2(g)

0 1

)
, x1(g) �= 0 (see Example 7.4). Each element of this group

can be identified with a point of R2 excluding the x2 axis, which allows us to see
that this group is not a connected set, but has two components (identified with the
right and left half-planes). Using (7.44), it can readily be verified that the vector
fields X1 ≡ x1 ∂/∂x1, and X2 ≡ x1 ∂/∂x2 form a basis of the Lie algebra of this
group (see Exercise 7.20). Any element of this algebra can be expressed in the form
X = ax1 ∂/∂x1 + bx1 ∂/∂x2, with a, b ∈R; then exp tX corresponds to the solution
of the system of equations [see (2.4)]
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Fig. 7.2 The matrix group considered in Example 7.40 is identified with the Cartesian plane with
the vertical axis removed. The point (1,0) corresponds to the identity and the one-parameter sub-
groups correspond to the intersections of the straight lines passing through (1,0) with the half–
plane x1 > 0

dx1

dt
= ax1,

dx2

dt
= bx1,

where, by abuse of notation, we have written xi in place of xi ◦ C, with the initial
condition x1(0) = 1, x2(0) = 0 (so that the integral curve of X starts at e). Then, it
can readily be seen that, if a �= 0, x1(t) = eat , then x2(t) = b(eat − 1)/a, that is,

exp tX =
(

eat b
a
(eat − 1)

0 1

)
, a �= 0.

When a = 0 one obtains x1(t) = 1, x2(t) = bt . Eliminating the parameter t from
the foregoing expressions, one finds that ax2 = b(x1 − 1), which is the equation of
a straight line passing through the point (1, 0), which corresponds to the identity
(see Fig. 7.2). Since x1(t) = eat > 0, in this case the image of the exponential map
is one half of G (the connected component of the identity).

Example 7.41 In terms of the parametrization of the group SL(2,R) given by (7.4),
in a neighborhood of the identity, any left-invariant vector field can be expressed in
the form X = aiXi , with ai ∈ R and {X1,X2,X3} being the basis of sl(2,R) given
by (7.18) and (7.19). The integral curve of X starting at e corresponds to the solution
of the system of equations

dx1

dt
= a1x1 + a3x2,

dx2

dt
= −a1x2 + a2x1, (7.50)

dx3

dt
= a1x3 + a3 1 + x2x3

x1
,

where, for simplicity, we have written xi instead of xi ◦C, with the initial condition
x1(0) = 1, x2(0) = 0 = x3(0). By combining equations (7.50) one finds that each
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of the functions xi and (1 + x2x3)/x1 satisfies the equation

d2f

dt2
= [(

a1)2 + a2a3]f,

whose solution is

f (t) =

⎧
⎪⎨

⎪⎩

a cos
√

Kt + b sin
√

Kt if K ≡ −[(a1)2 + a2a3] > 0,

a cosh
√−Kt + b sinh

√−Kt if K < 0,

a + bt if K = 0.

Hence, using again (7.50) and the initial conditions, one obtains

exp
(
taiXi

)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

cos
√

KtI + sin
√

K t√
K

A if K > 0,

cosh
√−KtI + sinh

√−K t√−K
A if K < 0,

I + tA if K = 0,

(7.51)

where I is the 2 × 2 identity matrix and A ≡ (
a1 a2

a3 −a1

)
[cf. (6.27) and (6.28)]. (Note

that K = detA.) Even though the foregoing expressions were obtained making use
of a local coordinate system, it turns out that equations (7.51) are globally valid [that
is, for any value of t and for any X ∈ sl(2,R)].

For any real number a < 0 and a �= −1, the matrix
( a 0

0 1/a

)
belongs to SL(2,R),

but cannot be expressed in the form exp X, as can be seen from (7.51), even though
the set SL(2,R) is connected.

In fact, noting that the trace of the matrix A is equal to zero, from (7.51) we
find that the trace of the exponential of any element of the Lie algebra of SL(2,R)

belongs to the interval [−2,2], if K > 0; to the interval [2,∞), if K < 0; and is
equal to 2, if K = 0. On the other hand, the trace of the matrix given above is equal
to a + 1/a, which is less than −2 for a < 0, and a �= −1.

Now,

(
a 0
0 1/a

)
=
(−1 0

0 −1

)(−a 0
0 −1/a

)

= exp
(
π(X2 − X3)

)
exp

(
ln |a|X1

)
.

Example 7.42 In the case of the group GL(n,R), any left-invariant vector field is
of the form xk

i ai
j (∂/∂xk

j ) [see (7.17)], where (ai
j ) is some n × n matrix; therefore,

denoting by A the matrix (ai
j ) and by XA the vector field xk

i ai
j (∂/∂xk

j ), as in Exam-
ple 7.15, exp tXA is the solution of the system of linear ODEs

dxk
j

dt
= xk

i ai
j ,
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with the initial condition, xk
j |t=0 = δk

j . Noting that this system of equations can be
written as the matrix equation

dg

dt
= gA,

where g ≡ (xi
j ), with g|t=0 = I (the n × n identity matrix), it can readily be seen

that the solution is given by

g(t) =
∞∑

m=0

(tA)m

m! .

Hence we have

exp tXA =
∞∑

m=0

(tA)m

m! . (7.52)

The series appearing in this equation is defined as the exponential of the matrix tA

and is denoted by exp tA or etA (cf. Example 6.11). Thus, the exponential of any
X ∈ gl(n,R) can be expressed by means of the series (7.52) which only involves the
components of Xe with respect to the natural basis (∂/∂xi

j ):

exp tXA = exp tA. (7.53)

In particular, GL(1,R) is the group R \ {0} with the operation of multiplication, and
therefore for this group the exponential is precisely the usual exponential function.

This result can be applied to the calculation of the exponential for any Lie sub-
group of GL(n,R). For instance, the basis of the Lie algebra of the group SL(2,R)

given by (7.18) and (7.19), corresponds to the matrices (7.20), so that an arbitrary
linear combination aiXi corresponds to the matrix

(
a1 a2

a3 −a1

)
, which will be de-

noted by A as in Example 7.41. It can readily be seen that, for m = 0,1,2, . . . ,
A2m = (−K)mI and A2m+1 = (−K)mA, where K = detA = −[(a1)2 + a2a3].
Therefore, the series (7.52) becomes

∞∑

m=0

tm

m!A
m =

∞∑

m=0

t2m

(2m)!A
2m +

∞∑

m=0

t2m+1

(2m + 1)!A
2m+1

=
∞∑

m=0

(−1)mKmt2m

(2m)! I +
∞∑

m=0

(−1)mKmt2m+1

(2m + 1)! A,

which coincides with the result (7.51), as can be seen making use of the series
expansions of the functions sin, cos, sinh, and cosh.

Exercise 7.43 Show that for R
n, with the group operation being the usual sum,

expai(∂/∂xi) = (a1, a2, . . . , an). Thus, in this case, the exponential map is one-to-
one and onto.
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Exercise 7.44 Using the notation and the results of Exercise 7.19, show that in the
case of the group SU(2) the exponential map is given by

exp taiXi =
⎛

⎝
cos Kt

2 − i a3

K
sin Kt

2
−ia1−a2

K
sin Kt

2

−ia1+a2

K
sin Kt

2 cos Kt
2 + i a3

K
sin Kt

2

⎞

⎠

= cos
Kt

2
I − i

K
sin

Kt

2

(
a3 a1 − ia2

a1 + ia2 −a3

)

(7.54)

with K ≡√
(a1)2 + (a2)2 + (a3)2. Thus, for this group, the exponential map is onto

but not injective.

The results of Examples 7.40–7.42, and of Exercises 7.43 and 7.44 do not de-
pend on having considered left-invariant vector fields; the same results are obtained
employing right-invariant vector fields. For a given group, the value of exp X only
depends on Xe.

Theorem 7.45 Let G and H be Lie groups, and let g and h be their Lie algebras. If
φ : G → H is a homomorphism of Lie groups, then for X ∈ g, we have φ(exp tX) =
exp t (φ∗X), where φ∗X is the left-invariant vector field on H such that (φ∗X)e =
φ∗eXe.

Proof Let γt ≡ φ(exp tX); then γt is a one-parameter subgroup of H . Therefore,
according to the preceding results, γt = exp tY, where Y ∈ h is such that Ye is
the tangent vector to the curve t �→ γt = φ(exp tX) at t = 0, which amounts to φ∗e

applied to the tangent vector to the curve t �→ exp tX at t = 0 [see (1.26)]. Therefore
Ye = φ∗eXe = (φ∗X)e , thus showing that Y = φ∗X. �

Applying this theorem and some of the results established above we have the
following proposition, which turns out to be very useful. Among the consequences
of the following theorem is that the exponential map in GL(n,R) can only yield
matrices with positive determinant and, therefore, is not onto.

Theorem 7.46 Let A be an arbitrary n × n matrix, then det eA = etrA.

Proof For any n × n matrix, A, eA = exp XA (see Example 7.42) and since
det : GL(n,R) → R \ {0} � GL(1,R) is a homomorphism of Lie groups, det eA =
det(exp XA) = exp(det∗ XA). On the other hand, det∗ XA is a left-invariant vector
field on GL(1,R) and, according to the results of Example 7.42, exp(det∗ XA) coin-
cides with the usual exponential of the component of (det∗ XA)1 with respect to
the natural basis (∂/∂x)1. But, from Example 7.23, (det∗ XA)1 ≡ det∗e(XA)e =
det∗e ai

j (∂/∂xi
j )e = trA(∂/∂x)1, and therefore, det eA = etrA. �



190 7 Lie Groups

7.5 The Lie Algebra of the Right-Invariant Vector Fields

The set of the right-invariant vector fields on G forms a Lie algebra over R that will
be denoted by ġ. Each right-invariant vector field, Ẋ, is determined by its value at
the identity,

Ẋg = Rg∗eẊe; (7.55)

therefore there exists a one-to-one correspondence between ġ and TeG, and the
dimension of ġ is the same as that of TeG. Making use of this correspondence we
can define a second bracket on TeG, which will be denoted by [ , ]·. If ξ , ζ ∈ TeG,

[ξ, ζ ]· ≡ [Ẋ, Ẏ]e (7.56)

where Ẋ and Ẏ are the right-invariant vector fields such that ξ = Ẋe and ζ = Ẏe.

Example 7.47 In the case of the group of affine motions of R, with the coordinates
defined in Example 7.4, the right translations are given by

x1 ◦ Rg = x1(g)x1, x2 ◦ Rg = x2(g)x1 + x2

[see (7.2)]. Making use of (7.55) we find that the right-invariant vector fields Ẋ1
and Ẋ2, whose values at the identity are (∂/∂x1)e and (∂/∂x2)e , respectively, are
given by

(Ẋ1)g =
(

∂

∂x1

)

e

[
xi ◦ Rg

]( ∂

∂xi

)

g

= x1(g)

(
∂

∂x1

)

g

+ x2(g)

(
∂

∂x2

)

g

that is, Ẋ1 = x1 ∂/∂x1 + x2 ∂/∂x2 and, similarly, Ẋ2 = ∂/∂x2. Thus, [Ẋ1, Ẋ2] =
−Ẋ2 and therefore [(∂/∂x1)e, (∂/∂x2)e]· = −(∂/∂x2)e (cf. Exercise 7.20).

The following theorem relates the bracket (7.56) with that induced by the left-
invariant vector fields, defined in Sect. 7.2.

Theorem 7.48 Let ξ, ζ ∈ TeG; then [ξ, ζ ]· = −[ξ, ζ ].

Proof Let Ẋ and Ẏ be the right-invariant vector fields such that Ẋe = ξ , Ẏe = ζ ,
let X ∈ g such that Xe = ξ , and let gt be the one-parameter subgroup gt = exp tX
defined in the preceding section. For g′ ∈ G arbitrary, the tangent vector to the curve
γ (t) ≡ Lgt (g

′) = gtg
′ = Rg′(gt ) at t = 0 satisfies

γ ′
0[f ] = d

dt
f
(
γ (t)

)∣∣∣
t=0

= d

dt
(f ◦ Rg′)(gt )

∣
∣∣
t=0

= ξ [f ◦ Rg′ ] = (Rg′∗eξ)[f ] = Ẋg′ [f ]
[see (7.47) and (1.23)]. This means that Ẋ is the infinitesimal generator of the one-
parameter group of transformations Lgt (i.e., a right-invariant vector field is the
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infinitesimal generator of a group of left translations); hence, according to (2.27)

[Ẋ, Ẏ] = £ẊẎ = lim
t→0

Lgt
∗Ẏ − Ẏ
t

(7.57)

and, from the definition (7.56), equation (7.55), and the chain rule, we have

[ξ, ζ ]· = lim
t→0

(Lgt
∗Ẏ)e − ζ

t
= lim

t→0

L
g−1
t ∗gt

Ẏgt − ζ

t

= lim
t→0

L
g−1
t ∗gt

(Rgt∗eζ ) − ζ

t
= lim

t→0

(L
g−1
t

◦ Rgt )∗eζ − ζ

t

= lim
t→0

(Rgt ◦ L
g−1
t

)∗eζ − ζ

t
= lim

t→0

R
gt∗g−1

t
Y

g−1
t

− ζ

t

= lim
t→0

(R
g−1
t

∗Y)e − Ye

t
, (7.58)

where Y is the left-invariant vector field such that ζ = Ye.
On the other hand, the tangent vector to the curve δ(t) ≡ R

g−1
t

(g′) = g′g−1
t =

g′g−t = Lg′(g−t ) at t = 0 satisfies

δ′
0[f ] = d

dt
f
(
δ(t)

)∣∣
∣
t=0

= d

dt
(f ◦ Lg′)(g−t )

∣∣
∣
t=0

= − d

du
(f ◦ Lg′)(gu)

∣∣
∣
u=0

= −ξ [f ◦ Lg′ ] = −(Lg′∗eξ)[f ] = −Xg′ [f ],
that is, −X is the infinitesimal generator of the one-parameter group of transforma-
tions R

g−1
t

. Therefore, returning to the last expression in (7.58)

lim
t→0

(R
g−1
t

∗Y)e − Ye

t
= (£−XY)e = [−X,Y]e = −[X,Y]e = −[ξ, ζ ]. (7.59)

�

Making use of part of the steps of the proof of the previous theorem it can readily
be seen that the following result also holds.

Theorem 7.49 The Lie bracket of a right-invariant vector field with a left-invariant
vector field vanishes.

Proof Let Ẋ ∈ ġ and Y ∈ g; then, proceeding as in (7.57) we have

[Ẋ,Y] = £ẊY = lim
t→0

Lgt
∗Y − Y
t

= 0,

since Y is left-invariant. �
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If G is an Abelian Lie group, a vector field on G is left-invariant if and only
if is right-invariant, then, according to the previous theorem, if X,Y ∈ g, we have
[X,Y] = 0, since Y also belongs to ġ. Thus, the Lie algebra of any Abelian group is
Abelian.

Theorem 7.50 If G is a connected Lie group and Y is a vector field on G such that
[X,Y] = 0, for all X ∈ g, then Y is right-invariant.

Proof Let X ∈ g and let gt = exp tX, then

d

dt
(Rgt

∗Y)

∣∣∣
t=s

= d

dt

(
Rgs

∗(Rgt−s

∗Y)
)∣∣∣

t−s=0
= Rgs

∗ d

du
(Rgu

∗Y)

∣∣∣
u=0

= Rgs

∗(£XY) = Rgs

∗([X,Y])= 0,

since X is the infinitesimal generator of the one-parameter group of transformations
Rgt and by hypothesis [X,Y] = 0 for X ∈ g. Hence, Rgt

∗Y does not depend on t ,
but Rg0 = id, so that Rgt

∗Y = Y or Rexp tX
∗Y = Y, which means that Y is right-

invariant, at least under the transformations corresponding to elements of G of the
form exp tX, but if G is connected, any g ∈ G is a product of exponentials, g =
exp X1 · · · exp Xk [see, e.g., Warner (1983, Chap. 3)]. Therefore Rg

∗Y = Y for all
g ∈ G. �

Exercise 7.51 Show that if G is connected, a 1-form α is left-invariant if and only
if £Ẋα = 0 for all Ẋ ∈ ġ.

7.6 Lie Groups of Transformations

The Lie groups more commonly encountered arise as groups of transformations on
some manifold or some vector space. For instance, the isometries generated by the
Killing vector fields of a Riemannian manifold form a Lie group (see, e.g., Examples
6.12, 6.17, and Exercise 6.16). The orthogonal and the unitary groups correspond to
the linear transformations that preserve the inner product of a vector space. Further
examples are given below and in Sects. 8.5 and 8.6.

Definition 7.52 Let G be a Lie group and let M be a differentiable manifold. We
say that G is a Lie group of transformations on M or that G acts on the right on M ,
if to each g ∈ G there is associated a transformation from M onto itself in such a
way that if xg denotes the image of x ∈ M under the transformation defined by g,
then the following conditions hold:

(1) The map from G × M in M given by (g, x) �→ xg is differentiable.
(2) x(g1g2) = (xg1)g2, for g1, g2 ∈ G and x ∈ M .

We say that G acts on the left on M when condition (2) is replaced by (g1g2)x =
g1(g2x) (now we write gx instead of xg for the image of x under the transformation
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defined by g). From (2) it follows that xe = x for all x ∈ M . In some cases, we shall
also write Rg(x) for xg.

It is said that G acts freely on M if the existence of some x ∈ M such that xg = x

implies that g = e; the group G acts effectively on M if xg = x for all x ∈ M implies
that g = e. In other words, G acts freely on M if the only transformation with fixed
points is the one corresponding to e, whereas G acts effectively on M if the identity
transformation of M only corresponds to e.

Exercise 7.53 Show that G acts effectively on M if and only if distinct elements of
G define distinct transformations on M .

For x ∈ M , the orbit of x is formed by the images of x under all the elements
of G, that is, the orbit of x is the set {xg |g ∈ G}. The group G acts transitively on
M (or the action of G on M is transitive) if the orbit of any point x ∈ M coincides
with the whole manifold M . For instance, the group SE(2) acts transitively on the
plane (see Example 7.7), while the orbits in R

3 of the group of rotations about the
origin, SO(3), are spheres and the action is not transitive (however, SO(3) does act
transitively on each sphere centered at the origin).

Let G be a Lie group that acts on the right on a manifold M . Each x ∈ M defines
a differentiable map Φx : G → M , given by Φx(g) = xg for g ∈ G. For X ∈ g,
gt = exp tX is a one-parameter subgroup of G and, therefore, the transformations
Rgt , from M onto M , defined by Rgt (x) ≡ xgt , form a one-parameter group of
transformations on M (see Sect. 2.1) whose infinitesimal generator will be denoted
by X+. Hence, X+

x is the tangent vector at t = 0 to the curve t �→ Rgt (x) = xgt =
Φx(gt ); therefore X+

x is the image under Φx∗e of the tangent vector to the curve
t �→ gt at t = 0, which is Xe. Thus [see (1.26)]

X+
x = Φx∗eXe (7.60)

[cf. (7.15)]. Since the Jacobian is a linear transformation, we have (aX + bY)+ =
aX+ + bY+, for X,Y ∈ g and a, b ∈ R. As we shall see, the mapping X �→ X+ is
not only linear, but also a Lie algebra homomorphism (Theorem 7.61).

It may be noticed that, by virtue of the definition of the vector field X+, its
integral curve starting at x ∈ M is given by t �→ Φx(exp tX).

Exercise 7.54 Show that if G acts freely on M and X+ vanishes at some point, then
X = 0.

Exercise 7.55 Show that if G acts effectively on M and X+ = 0 (the vector field
whose value is zero everywhere), then X = 0.

Exercise 7.56 Let φ : G → H be a homomorphism of Lie groups. Show that for
h ∈ H and g ∈ G, the equation hg ≡ hφ(g), where hφ(g) is the product of two
elements of H , defines an action of G on the right on H . Show that if X ∈ g, then
the vector field X+ on H is the vector field φ∗X defined in Sect. 7.2.
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Exercise 7.57 Show that if a Lie group G acts on the right on a manifold M with
xg ≡ φ(g, x), then G acts on the left on M by means of gx ≡ φ(g−1, x). In other
words, the action of a group on the right can be turned into an action on the left,
replacing g by g−1. (Hint: show that φ(g1g2, x) = φ(g2, φ(g1, x)).)

Example 7.58 The group SO(3), formed by the orthogonal 3 × 3 matrices, with
determinant equal to 1, corresponds to the rotations about the origin in R

3. The
natural action (on the right) of any element g ∈ SO(3) on a point (a1, a2, a3) ≡
a ∈ R

3, is given by the matrix product ag; that is, Rg(a) = ag. Since SO(3) is a
subgroup of GL(3,R), we can make use of the coordinates xi

j defined on the latter

to parameterize the elements of SO(3). Denoting by xi the usual coordinates of R3

(i.e., xi(a) = ai ) we have (xi ◦ Φa)(g) = xi(ag) = xj (a)x
j
i (g), that is,

xi ◦ Φa = xj (a)x
j
i . (7.61)

The group SO(3) corresponds to the submanifold of GL(3,R) defined by the
equations

xk
i xl

j δkl = δij ,
1

3!εijkε
lmnxi

l x
j
mxk

n = 1.

Hence, if Xe = ai
j (∂/∂xi

j )e is a tangent vector to SO(3) at the identity, from the

first of these equations it follows that 0 = Xe[xk
i xl

j δkl] = δk
i a

l
j δkl + ak

i δ
l
j δkl =

ai
j + a

j
i (since xi

j (e) = δi
j ), whereas from the second equation one obtains ai

i = 0
(see Example 7.23). Thus, so(3), the Lie algebra of SO(3), corresponds to the skew-
symmetric 3 × 3 matrices. A basis for the skew-symmetric 3 × 3 matrices is formed
by the matrices

S1 ≡
⎛

⎝
0 0 0
0 0 −1
0 1 0

⎞

⎠ ,

S2 ≡
⎛

⎝
0 0 1
0 0 0

−1 0 0

⎞

⎠ ,

S3 ≡
⎛

⎝
0 −1 0
1 0 0
0 0 0

⎞

⎠ ,

(7.62)

which satisfy the commutation relations

[Si, Sj ] =
3∑

k=1

εijkSk. (7.63)

The definition of the matrices Si is summarized by the formula (Si)
j
k = −εijk .

Hence, the value of an arbitrary element X ∈ so(3) at the identity can be ex-
pressed in the form Xe = (bkSk)

i
j (∂/∂xi

j )e , where b1, b2, b3 are some real numbers.
Then, from (7.60) and (7.61) one obtains
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X+
a = Φa∗eXe = (

bkSk

)i
j
Φa∗e

(
∂

∂xi
j

)

e

= bk(Sk)
i
j

(
∂

∂xi
j

)

e

[xm ◦ Φa]
(

∂

∂xm

)

a

= bk(Sk)
i
j

(
∂

∂xi
j

)

e

[
xl(a)xl

m

]( ∂

∂xm

)

a
= −

3∑

l=1

bkεklmxl(a)

(
∂

∂xm

)

a
.

Hence, X+ = bkS+
k , with

S+
k ≡ −

3∑

l=1

εklmxl

∂

∂xm

, (7.64)

and one can readily verify that [S+
i ,S+

j ] = ∑3
k=1 εijkS+

k [cf. (7.63)]. As shown in
Example 6.11, the vector fields (7.64) are Killing vector fields for the standard met-
ric of R

3 [see (6.17)]. This is related to the fact that the rotations are isometries
of R3.

Example 7.59 An arbitrary point (a, b, c) ∈ R
3 can be identified with the matrix

(
a b+c

b−c −a

)
. Making use of this one-to-one correspondence between the points of R3

and the real 2 × 2 matrices of trace zero, one can define an action on the right of the
group SL(2,R) on R

3 in the following way. For g ∈ SL(2,R) and (a, b, c) ∈ R
3,

(a, b, c)g is the point of R3 corresponding to the matrix

g−1
(

a b + c

b − c −a

)
g. (7.65)

It can readily be seen that (7.65) defines an action on the right on R
3 which is not

effective, because if g is the negative of the 2 × 2 identity matrix, one obtains the
identity transformation. Nor is it free, because (0,0,0)g = (0,0,0) for all g ∈ G. In
fact, this action is a linear representation of SL(2,R) on R

3 and any linear repre-
sentation is not a free action.

From the results of Example 7.41 we have exp tX1 = (
et 0
0 e−t

)
[see (7.51)] and

substituting g = exp tX1 into (7.65) one obtains the matrix
(

e−t 0
0 et

)(
a b + c

b − c −a

)(
et 0
0 e−t

)
=
(

a e−2t (b + c)

e2t (b − c) −a

)

which corresponds to the point (a, b cosh 2t − c sinh 2t,−b sinh 2t + c cosh 2t) ∈R
3

(and is, therefore, (a, b, c) exp tX1). Now, in terms of the natural coordinates of R3,
the tangent vector to the curve t �→ (a, b cosh 2t − c sinh 2t,−b sinh 2t + c cosh 2t)

at t = 0 is

(X+
1 )(a,b,c) = −2c

(
∂

∂y

)

(a,b,c)

− 2b

(
∂

∂z

)

(a,b,c)

;

hence, X+
1 = −2z(∂/∂y)−2y(∂/∂z). As pointed out above, the procedure followed

in this example also gives us the integral curves of the vector fields X+
i or, equiva-

lently, the one-parameter groups of transformations generated by these vector fields.
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In a similar way, using exp tX2 = ( 1 t
0 1

)
and exp tX3 = ( 1 0

t 1

)
[see (7.51)], one

finds that X+
2 = (z − y)(∂/∂x) + x(∂/∂y) + x(∂/∂z) and X+

3 = (y + z)(∂/∂x) −
x(∂/∂y) + x(∂/∂z). It can readily be verified that the structure constants for
{X+

1 ,X+
2 ,X+

3 } are equal to those of the basis of SL(2,R) given by (7.18) and (7.19).
The action on R

3 defined by (7.65) is not transitive; in fact, each surface
x2 + y2 − z2 = const, is invariant under this action, which follows from the fact
that X+

i [x2 + y2 − z2] = 0, for i = 1,2,3, or by noting that x2 + y2 − z2 =
−det

( x y+z
y−z −x

)
, and that the determinant is invariant under any similarity trans-

formation such as (7.65). (Cf. Example 6.17; note that the vector fields X+
i ob-

tained here are related with the vector fields (6.36) by means of X+
1 = −2I23,

X+
2 = I13 − I12, and X+

3 = I12 + I13.)

As pointed out at the beginning of this section, the isometries generated by the
Killing vector fields of a Riemannian manifold can be associated with a Lie group
of transformations on this manifold.

Example 7.60 As claimed in Exercise 6.13, the group SL(2,R) acts isometrically
on the Poincaré half-plane. Taking into account that the inverse of the matrix g =( α β

γ δ

) ∈ SL(2,R) is
( δ −β

−γ α

)
, we define an action of SL(2,R) on the right on M , the

Poincaré half-plane, by

(a + ib)g = δ(a + ib) − β

−γ (a + ib) + α

[cf. (6.29)], identifying a point (a, b) ∈ M with the complex number a + ib.
Since

(a + ib)g = δ(a + ib) − β

−γ (a + ib) + α
= δ(a + ib) − β

−γ (a + ib) + α
· −γ (a − ib) + α

−γ (a − ib) + α

= −γ δ(a2 + b2) + (αδ + βγ )a − αβ + i(αδ − βγ )b

γ 2(a2 + b2) − 2αγ a + α2
,

expressing the transformation in terms of pairs of real numbers instead of complex
variables, with the aid of the condition αδ − βγ = 1, one finds that the mapping
Φ(a,b) : G → M is given by

Φ(a,b)(g) = 1

γ 2(a2 + b2) − 2αγ a + α2

(−γ δ
(
a2 + b2)+ (1 + 2βγ )a − αβ,b

)
.

Hence, using the natural coordinates (x, y) on the Poincaré half-plane (as in Exam-
ple 6.12) and the local coordinates (x1, x2, x3) on SL(2,R), defined by x1(g) = α,
x2(g) = β , x3(g) = γ , and δ = [1 + x2(g)x3(g)]/x1(g) (as in Example 7.5), one
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finds that

(X+
1 )(a,b) ≡ Φ(a,b)∗e

(
∂

∂x1

)

e

=
(

∂

∂x1

)

e

[x ◦ Φ(a,b)]
(

∂

∂x

)

(a,b)

+
(

∂

∂x1

)

e

[y ◦ Φ(a,b)]
(

∂

∂y

)

(a,b)

= −2

(
x

∂

∂x
+ y

∂

∂y

)

(a,b)

and, similarly,

(X+
2 )(a,b) ≡ Φ(a,b)∗e

(
∂

∂x2

)

e

= −
(

∂

∂x

)

(a,b)

,

(X+
3 )(a,b) ≡ Φ(a,b)∗e

(
∂

∂x3

)

e

=
((

x2 − y2) ∂

∂x
+ 2xy

∂

∂y

)

(a,b)

.

Comparing these expressions with (6.22) we find that the vector fields X+
i coincide

with the Killing vector fields of the Poincaré half-plane obtained in Example 6.12
[cf. (6.22)]. The relations (6.23) show that the mapping Xi �→ X+

i is a Lie algebra
homomorphism.

Theorem 7.61 Let G be a Lie group that acts on the right on a manifold M and let
X,Y ∈ g; then [X+,Y+] = [X,Y]+.

Proof Since X+ is, by definition, the infinitesimal generator of the one-parameter
group of transformations on M denoted by Rgt , we have

[X+,Y+] = £X+Y+ = lim
t→0

Rgt
∗Y+ − Y+

t
.

The value of Rgt
∗Y+ at a point x ∈ M is given by [see (2.24), (7.60), and (1.25)]

(Rgt

∗Y+)x = R
g−1
t ∗xgt

Y+
xgt

= R
g−1
t ∗xgt

(Φxgt∗eYe) = (R
g−1
t

◦ Φxgt )∗eYe.

On the other hand, for g′ ∈ G,

(R
g−1
t

◦ Φxgt )(g
′) = R

g−1
t

(xgtg
′) = xgtg

′g−1
t = (Φx ◦ R

g−1
t

◦ Lgt )(g
′),

hence

(Rgt

∗Y+)x = (Φx ◦ R
g−1
t

◦ Lgt )∗eYe = Φx∗e(Rg−1
t ∗gt

Ygt ),

since Y is left-invariant [see (7.14)]. Thus

[X+,Y+]x = lim
t→0

(Rgt
∗Y+)x − Y+

x

t

= lim
t→0

Φx∗e(Rg−1
t ∗gt

Ygt ) − Φx∗eYe

t
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= Φx∗e

[
lim
t→0

(Rgt
∗Y)e − Ye

t

]
= Φx∗e(£XY)e

= Φx∗e

([X,Y])
e
= [X,Y]+x

[cf. (7.57) and (7.59)], that is,

[X+,Y+] = [X,Y]+.

From the foregoing results one concludes that the map X �→ X+, from g into X(M),
is a Lie algebra homomorphism. �

It can readily be verified in a similar way that if G is a Lie group that acts on
the left on a manifold M , then a proposition analogous to Theorem 7.61 holds: if
Ẋ, Ẏ ∈ ġ then [Ẋ+, Ẏ+] = [Ẋ, Ẏ]+, with Ẋ+

x = Φx∗eẊe [cf. (7.60)], where now Φx

is the map from G into M given by Φx(g) = gx. The vector field Ẋ+ is the infinites-
imal generator of the one-parameter group of transformations Lgt , from M onto M ,
defined by Lgt (x) = gtx, where {gt } is the one-parameter subgroup generated by Ẋ.

Exercise 7.62 Show that the group, G, of affine motions of R (see Example 7.4)
acts on the right on R

3 by means of

(a, b, c)g ≡
(

a + x2(g)

x1(g)
,
[
x1(g)

]2
b,
[
x1(g)

]3
c

)
,

for g ∈ G, (a, b, c) ∈ R
3, where (x1, x2) are the coordinates on G defined in Ex-

ample 7.4, and show that the vector fields on R
3 induced by this action are linear

combinations of

−x
∂

∂x
+ 2y

∂

∂y
+ 3z

∂

∂z
and

∂

∂x
,

where (x, y, z) are the natural coordinates of R3. (The 1-forms α1 ≡ dy − zdx and
α2 ≡ dz− (2y−1z2 +y2)dx are invariant under the action of this group, in the sense
defined in Sect. 4.3.)

Further examples are given in Examples 8.29–8.32.

The Adjoint Representation Any Lie group acts on its Lie algebra (on the left)
by means of linear transformations in the following way. For g ∈ G, the map from
G onto G, Lg−1 ◦ Rg = Rg ◦ Lg−1 is a diffeomorphism and for X ∈ g, the vector
field (Lg−1 ◦ Rg)

∗X, denoted by Adg(X), also belongs to g. Indeed,

Adg(X) = (Lg−1 ◦ Rg)
∗X = Rg

∗(Lg−1
∗X) = Rg

∗X;
therefore if g′ is an arbitrary element of G, using the fact that Rg commutes with
Lg′ , we have
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Lg′ ∗Adg(X) = Lg′ ∗(Rg
∗X) = Rg

∗(Lg′ ∗X)

= Rg
∗X = Adg(X).

Since

Adg(aX1 + bX2) = Rg
∗(aX1 + bX2) = aRg

∗X1 + bRg
∗X2

= a Adg(X1) + b Adg(X2),

for all X1,X2 ∈ g and a, b ∈R, Adg is a linear map of g into itself.
Considering now two arbitrary elements g1, g2 ∈ G, and using Rg1g2 = Rg2 ◦Rg1 ,

we obtain

Ad (g1g2)(X) = Rg1g2
∗X = Rg1

∗(Rg2
∗X)

= Adg1
(
Adg2(X)

)
, for X ∈ g.

That is, Ad (g1g2) = (Adg1) ◦ (Adg2), for g1, g2 ∈ G, which means that the map
g �→ Adg from G in the set of linear transformations of g into itself is a linear
representation of G called the adjoint representation of G.

Exercise 7.63 Show that [Adg(X),Adg(Y)] = Adg([X,Y]), for X,Y ∈ g and
g ∈ G; that is, Adg is a Lie algebra homomorphism from g into itself.

Recalling that the Lie algebra of G can be identified with TeG (identifying each
X ∈ g with Xe ∈ TeG) we can find the effect of Adg by expressing [Adg(X)]e in
terms of Xe. Making use of the definition of the pullback of a vector field we have

[
Adg(X)

]
e
= [

(Rg ◦ Lg−1)
∗X
]
e
= (Rg−1 ◦ Lg)∗eXe.

Hence, Adg is represented by the Jacobian (Rg−1 ◦ Lg)∗e .

Example 7.64 In the case of the group of affine motions of R, with the coordinates
employed in Example 7.4, we have

[
x1 ◦ (Rg−1 ◦ Lg)

]
(g′) = x1(gg′g−1)= x1(gg′)x1(g−1)= x1(g′),

[
x2 ◦ (Rg−1 ◦ Lg)

]
(g′) = x2(gg′g−1)= x1(gg′)x2(g−1)+ x2(gg′)

= −x2(g)x1(g′) + x1(g)x2(g′) + x2(g),

i.e., x1 ◦ (Rg−1 ◦ Lg) = x1 and x2 ◦ (Rg−1 ◦ Lg) = −x2(g)x1 + x1(g)x2 + x2(g).
Thus,

(Rg−1 ◦ Lg)∗e

(
∂

∂x1

)

e

=
(

∂

∂x1

)

e

[
xi ◦ (Rg−1 ◦ Lg)

]( ∂

∂xi

)

e

=
(

∂

∂x1

)

e

− x2(g)

(
∂

∂x2

)

e
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and, similarly,

(Rg−1 ◦ Lg)∗e

(
∂

∂x2

)

e

= x1(g)

(
∂

∂x2

)

e

.

Hence, with respect to the basis {(∂/∂xi)e} of TeG, Adg is represented by the 2 × 2
matrix

(
1 0

−x2(g) x1(g)

)

and one readily verifies that Ad (g1g2) = (Adg1) ◦ (Adg2) amounts to the multi-
plication table of the group (7.2). It may be noticed that, in the present case, the
correspondence g �→ Ad (g) is one-to-one.

In the case where G is an Abelian group, we have(Rg−1 ◦Lg)(g
′) = gg′g−1 = g′,

that is, Rg−1 ◦ Lg = id, and therefore, Ad (g) is the identity map for all g ∈ G.

Exercise 7.65 Let X be an element of the Lie algebra of GL(n,R) such that
Xe = ai

j (∂/∂xi
j )e , where the xi

j are the natural coordinates of GL(n,R). Show that

[
Adg(X)

]
e
= xk

i (g)ai
j x

j
m

(
g−1)

(
∂

∂xk
m

)

e

.

Hence, associating the matrix A = (ai
j ) with X ∈ gl(n,R), as in Example 7.15, the

matrix associated with Adg(X) is gAg−1.

Exercise 7.66 Let G be a Lie group that acts on the right on M . Show that
[Adg(X)]+ = Rg

∗X+, for X ∈ g, g ∈ G.

Exercise 7.67 Show that g(exp tX)g−1 = exp[t Adg(X)], for X ∈ g, g ∈ G. (Hint:
show that γ (t) ≡ g(exp tX)g−1 is the integral curve of Adg(X) starting at e.)



Chapter 8
Hamiltonian Classical Mechanics

In this chapter we start by showing that any finite-dimensional differentiable man-
ifold M possesses an associated manifold, denoted by T ∗M , called the cotangent
bundle of M , which has a naturally defined nondegenerate 2-form, which allows
us to define a Poisson bracket between real-valued functions defined on T ∗M . We
then apply this structure to classical mechanics and geometrical optics, emphasiz-
ing the applications of Lie groups and Riemannian geometry. Here we will have
the opportunity of making use of all of the machinery introduced in the previous
chapters.

8.1 The Cotangent Bundle

Let M be a differentiable manifold of dimension n. The cotangent bundle of M ,
denoted by T ∗M , is the set of all covectors at all points of M , that is, T ∗M =⋃

p∈M T ∗
p M . The canonical projection, π , from T ∗M onto M is the mapping that

sends each element of T ∗M to the point of M at which it is attached; that is, if
αp ∈ T ∗

p M , then π(αp) = p, and therefore, π−1(p) = T ∗
p M .

The set T ∗M acquires, in a natural way, the structure of differentiable manifold
induced by that of M . If (U,φ) is a chart on M and p ∈ U , any covector αp ∈
T ∗

p M can be expressed as a linear combination of the covectors {dxi
p}ni=1 with real

coefficients, which depend on αp , that is,

αp = pi(αp)dxi
p, (8.1)

with pi(αp) ∈R [cf. (1.27)]. Then, from (1.49),

pi(αp) = αp

((
∂

∂xi

)

p

)
. (8.2)

Let now φ : π−1(U) →R
2n be given by

φ(αp) = (
x1(p), . . . , xn(p),p1(αp), . . . ,pn(αp)

)

= (
x1(π(αp)

)
, . . . , xn

(
π(αp)

)
,p1(αp), . . . , pn(αp)

)
, (8.3)
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for αp ∈ π−1(U); it can readily be seen that (π−1(U),φ) is a chart on T ∗M . If
{(Ui,φi)} is a C∞ subatlas on M , then {(π−1(Ui),φi)} is a C∞ subatlas on T ∗M
that defines a structure of differentiable manifold for T ∗M , in such a way that the
projection π is differentiable.

Exercise 8.1 A covector field α on M can be regarded as a mapping from M into
T ∗M , p �→ αp , such that π ◦ α = idM . Show that the map p �→ αp is differentiable
if and only if α is differentiable (in the sense defined in Sect. 1.4).

The Fundamental 1-Form Let αp ∈ T ∗
p M . Since π is a differentiable map from

T ∗M on M , which sends αp into p, the Jacobian π∗αp is a linear transformation of
Tαp(T ∗M) into TpM ; hence, the composition αp ◦ π∗αp is a linear transformation
from Tαp(T ∗M) in R; that is, αp ◦ π∗αp ∈ T ∗

αp
(T ∗M). Thus, the mapping θ defined

by

θαp ≡ αp ◦ π∗αp (8.4)

is a covector field on T ∗M .
If (U,φ) is a chart on M , defining qi ≡ xi ◦ π = π∗xi , from (8.3) we obtain

φ(αp) = (
q1(αp), . . . , qn(αp),p1(αp), . . . ,pn(αp)

)
. (8.5)

Hence, (q1, . . . , qn,p1, . . . , pn) is a coordinate system on T ∗M ; the tangent vectors
(∂/∂qi)αp , (∂/∂pi)αp , i = 1,2, . . . , n, form a basis of Tαp(T ∗M) and the covector
field θ is given locally by [see (1.50)]

θ = θ

(
∂

∂qi

)
dqi + θ

(
∂

∂pi

)
dpi.

Using the definition of θ we see that the real-valued functions appearing in the last
equation are given by

[
θ

(
∂

∂qi

)]
(αp) = θαp

((
∂

∂qi

)

αp

)
= (αp ◦ π∗αp )

((
∂

∂qi

)

αp

)
,

and using the expression for the Jacobian (1.24) and (8.2), it follows that

[
θ

(
∂

∂qi

)]
(αp) = αp

((
∂

∂qi

)

αp

[
xj ◦ π

]( ∂

∂xj

)

p

)

= αp

((
∂

∂qi

)

αp

[
qj
]( ∂

∂xj

)

p

)

= αp

((
∂

∂xi

)

p

)
= pi(αp),

that is, θ((∂/∂qi)) = pi .
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Similarly,
[
θ

(
∂

∂pi

)]
(αp) = αp

((
∂

∂pi

)

αp

[
qj
]( ∂

∂xj

)

p

)
= αp(0) = 0.

Therefore

θ = pi dqi. (8.6)

This expression shows that θ is differentiable; that is, θ is a 1-form on T ∗M , called
the fundamental 1-form of T ∗M .

Exercise 8.2 Show that, for f ∈ C∞(M),

π∗
(

∂f

∂xi

)
= ∂(π∗f )

∂qi
.

If M1 and M2 are two differentiable manifolds and ψ : M1 → M2 is a diffeomor-
phism, we define ψ : T ∗M1 → T ∗M2 by

ψ(αp) ≡ αp ◦ (ψ−1)
∗ψ(p)

for αp ∈ T ∗
p (M1). (8.7)

Denoting by π2 the projection from T ∗M2 on M2 and similarly for π1, since
(ψ−1)∗ψ(p) maps Tψ(p)M2 onto TpM1, we have

π2
(
ψ(αp)

)= ψ(p) = ψ
(
π1(αp)

)
, for αp ∈ T ∗

p (M1),

that is,

π2 ◦ ψ = ψ ◦ π1. (8.8)

Exercise 8.3 Show that if ψ1 : M1 → M2 and ψ2 : M2 → M3 are two diffeomor-
phisms, then (ψ2 ◦ ψ1) = ψ2 ◦ ψ1.

Theorem 8.4 Let ψ : M1 → M2 be a diffeomorphism and let θ1 and θ2 be the
fundamental 1-forms of T ∗M1 and T ∗M2, respectively; then θ1 = ψ

∗
θ2.

Proof Taking v ∈ Tαp(T ∗M1) and applying the chain rule to (8.8), we have

π2∗ψ(αp)(ψ∗αp
v) = ψ∗π1(αp)(π1∗αpv) = ψ∗p(π1∗αpv), (8.9)

hence, using the definition (2.28) of the pullback, (8.4), (8.9), (8.7), and the chain
rule, (1.25),

(ψ
∗
θ2)αp (v) = θ2 ψ(αp)(ψ∗αp

v)

= ψ(αp)
[
π2∗ψ(αp)(ψ∗αp

v)
]

= ψ(αp)
[
ψ∗p(π1∗αpv)

]
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= (
αp ◦ (ψ−1)

∗ψ(p)

)[
ψ∗p(π1∗αpv)

]

= (
αp ◦ (ψ−1 ◦ ψ

)
∗p

)
(π1∗αpv)

= αp(π1∗αpv) = θ1αp (v),

that is, θ1 = ψ
∗
θ2. �

The foregoing theorem can also be proved making use of the local expression
(8.6). Denoting by qi , pi and q ′i , p′

i the coordinates induced on T ∗M1 and T ∗M2

by systems of coordinates xi and x′i on M1 and M2, respectively, making use of the
definition of the pullback of a function, (1.8), together with (8.2), (8.7), and (1.24),
we have for αp ∈ T ∗

p M1

(ψ
∗
p′

i )(αp) = p′
i

(
ψ(αp)

)= ψ(αp)

((
∂

∂x′i

)

ψ(p)

)

= (
αp ◦ (ψ−1)

∗ψ(p)

)(( ∂

∂x′i

)

ψ(p)

)

= αp

((
∂

∂x′i

)

ψ(p)

[
xk ◦ ψ−1]

(
∂

∂xk

)

p

)

= ∂(xk ◦ ψ−1)

∂x′i

∣
∣∣∣
ψ(p)

pk(αp),

that is,

ψ
∗
p′

i = π1
∗
(

ψ∗ ∂(xk ◦ ψ−1)

∂x′i

)
pk, (8.10)

hence, using (8.6), (8.8), and (8.10),

ψ
∗
θ2 = ψ

∗(
p′

i dq ′i)= (ψ
∗
p′

i )d
(
ψ

∗
π2

∗x′i)= (ψ
∗
p′

i )d
(
π1

∗ψ∗x′i)

= (ψ
∗
p′

i )π1
∗
(

∂(x′i ◦ ψ)

∂xl
dxl

)

= π1
∗
(

ψ∗ ∂(xk ◦ ψ−1)

∂x′i
∂(x′i ◦ ψ)

∂xl

)
pk dql = (

π1
∗δk

l

)
pk dql = θ1.

If ϕt is a flow on M , then according to Exercise 8.3, ϕt ◦ ϕs = ϕt ◦ ϕs = ϕt+s ;
therefore, ϕt is a flow on T ∗M with π ◦ ϕt = ϕt ◦ π . From this relation it follows
that if X and X are the infinitesimal generators of ϕt and ϕt , respectively, then

π∗αp Xαp = Xp, αp ∈ T ∗
p M, (8.11)

that is, X and X are π -related (see Exercise 2.8).
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8.2 Hamiltonian Vector Fields and the Poisson Bracket

The exterior derivative of the fundamental 1-form of T ∗M is called the fundamental
2-form of T ∗M ; from (8.6) we obtain the local expression

dθ = dpi ∧ dqi, (8.12)

in terms of the coordinates qi,pi induced by a chart of coordinates on M . The
fundamental 2-form of T ∗M induces an identification between differentiable vector
fields and 1-forms on T ∗M , associating to each vector field X ∈X(T ∗M) the 1-form
X dθ .

If the vector field X is locally given by X = Ai(∂/∂qi) + Bi(∂/∂pi), then

X dθ = X
(
dpi ∧ dqi

)= (X dpi)dqi − (
X dqi

)
dpi

= Bi dqi − Ai dpi. (8.13)

From this expression one concludes that the map from X(T ∗M) into Λ1(T ∗M),
given by X �→ X dθ , is C∞(T ∗M)-linear, one-to-one, and onto.

If X is a vector field on T ∗M , we say that X is Hamiltonian if the 1-form X dθ

is exact; that is, X is a Hamiltonian vector field if there exists some real-valued
function f ∈ C∞(T ∗M) such that

X dθ = −df (8.14)

(the minus sign is introduced for convenience); X is locally Hamiltonian if X dθ is
closed. Since every exact differential form is closed, all Hamiltonian vector fields are
locally Hamiltonian. In order to emphasize the difference between the Hamiltonian
vector fields and the locally Hamiltonian ones, the former are also called globally
Hamiltonian.

Lemma 8.5 Let X be a vector field on T ∗M . X is locally Hamiltonian if and only
if £X dθ = 0.

Proof The conclusion follows from the identity (3.39) and the fact that d2 = 0

£X dθ = X d(dθ) + d(X dθ) = d(X dθ). �

This result means that if ϕt is the flow generated by a vector field X on T ∗M , then
ϕ∗

t (dθ) = dθ if and only if X is locally Hamiltonian. Any map ψ : T ∗M1 → T ∗M2
such that ψ∗(dθ2) = dθ1 is referred to as a canonical transformation or symplec-
tomorphism. Hence, X ∈ X(T ∗M) is locally Hamiltonian, if and only if it is the
infinitesimal generator of a local one-parameter group of canonical transformations.

According to Theorem 8.4, any diffeomorphism ψ : M1 → M2 gives rise to a
canonical transformation ψ , which satisfies the stronger condition θ1 = ψ

∗
θ2.

Exercise 8.6 Show that the set of canonical transformations of T ∗M onto itself
forms a group with the operation of composition.
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Theorem 8.7 The locally Hamiltonian vector fields form a Lie subalgebra of
X(T ∗M). The Lie bracket of two locally Hamiltonian vector fields is globally Hamil-
tonian.

Proof Let X and Y be locally Hamiltonian vector fields; using Lemma 8.5, we have

£aX+bY dθ = a£X dθ + b£Y dθ = 0, for a, b ∈R,

therefore aX + bY is locally Hamiltonian. Furthermore, since [X,Y] = £XY, using
(2.27), (2.44), Lemma 8.5, and (3.39), we have

[X,Y] dθ = (£XY) dθ

= £X(Y dθ) − Y £X dθ

= £X(Y dθ)

= X d(Y dθ) + d
(
X (Y dθ)

)

= d
(
X (Y dθ)

)
. (8.15)

�

With each differentiable function f ∈ C∞(T ∗M) there exists an associated
Hamiltonian vector field, Xdf , defined by

Xdf dθ = −df. (8.16)

From the local expression (1.52), df = (∂f/∂qi)dqi + (∂f/∂pi)dpi , and (8.13), it
follows that

Xdf = ∂f

∂pi

∂

∂qi
− ∂f

∂qi

∂

∂pi

. (8.17)

The set of the globally Hamiltonian vector fields is a Lie subalgebra of the Lie al-
gebra of locally Hamiltonian fields; in fact, if Xdf and Xdg are two globally Hamil-
tonian vector fields, any linear combination of them, aXdf + bXdg , and their Lie
bracket, [Xdf ,Xdg], are also globally Hamiltonian since

(aXdf + bXdg) dθ = aXdf dθ + bXdg dθ

= −a df − b dg = −d(af + bg), for a, b ∈ R,

and from (8.15) and (8.16),

[Xdf ,Xdg] dθ = d
(
Xdf (Xdg dθ)

)

= −d(Xdf dg)

= −d(Xdf g). (8.18)
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Definition 8.8 Let f,g ∈ C∞(T ∗M); the Poisson bracket of f and g, denoted by
{f,g}, is defined by

{f,g} ≡ Xdf g. (8.19)

By virtue of (8.16) and the definition (8.19), the relation (8.18) is equivalent to

[Xdf ,Xdg] = Xd{f,g}. (8.20)

From (8.17) and (8.19) one finds that the Poisson bracket is locally given by

{f,g} = ∂f

∂pi

∂g

∂qi
− ∂f

∂qi

∂g

∂pi

. (8.21)

Exercise 8.9 Show that ψ : T ∗M1 → T ∗M2 is a canonical transformation if and
only if ψ∗{f,g} = {ψ∗f,ψ∗g}, for f,g ∈ C∞(T ∗M2).

Theorem 8.10 The space C∞(T ∗M) is a Lie algebra over R with the Poisson
bracket.

Proof Let f,g ∈ C∞(T ∗M), from (8.19) and (8.16) it follows that the Poisson
bracket of f and g is given by

{f,g} = Xdf g = Xdf dg = −Xdf (Xdg dθ) = 2 dθ(Xdf ,Xdg). (8.22)

From this expression it is clear that the Poisson bracket is skew-symmetric and
bilinear. Furthermore, for f,g,h ∈ C∞(T ∗M), from (8.19) and (8.20) we have

{{f,g}, h} = Xd{f,g}h = [Xdf ,Xdg]h
= Xdf (Xdgh) − Xdg(Xdf h) = Xdf {g,h} − Xdg{f,h}
= {

f, {g,h}}− {
g, {f,h}}

= −{{g,h}, f }− {{h,f }, g}. �

Exercise 8.11 Making use of (8.19), (8.20), (8.22), (3.31), and the fact that the
fundamental 2-form is closed, show that the Poisson bracket satisfies the Jacobi
identity.

From the foregoing results we conclude that the map f �→ Xdf , from C∞(T ∗M)

into X(T ∗M) is a homomorphism of Lie algebras whose kernel is formed by the
constant functions.

The fundamental 2-form of T ∗M is analogous to a Riemannian metric in the
sense that both are non-singular tensor fields of type

(
0
2

)
, with the only difference

that a 2-form is skew-symmetric, while a Riemannian metric is symmetric. The
globally Hamiltonian vector field Xdf is analogous to the gradient of a function f

[compare (6.7) with (8.16)], and for this reason the vector field Xdf is also denoted
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by sgradf . In the same way, according to Lemma 8.5, the locally Hamiltonian vec-
tor fields are the analog of the Killing vector fields. Another difference comes from
the fact that, while the gradient of a function f is orthogonal to the level surfaces
of f , Xdf is tangent to these surfaces (Xdf f = 0).

The Canonical Lift of a Vector Field to the Cotangent Bundle As shown at
the end of the preceding section (p. 204), any vector field X ∈ X(M) gives rise to a
vector field, X, on T ∗M , which will be called the canonical lift of X to T ∗M . The
vector field X is globally Hamiltonian; in effect, if ϕt is the flow generated by X,
according to Theorem 8.4 we have ϕt

∗θ = θ and, therefore, the Lie derivative of θ

with respect to X is zero. On the other hand, £X θ = X dθ + d(X θ); hence

X dθ = −d(X θ), (8.23)

which shows that, indeed, X is globally Hamiltonian [cf. (8.14)].
We shall denote by fX the function of T ∗M in R appearing on the right-hand

side of (8.23), that is,

fX ≡ X θ. (8.24)

Then from the definition of θ and (8.11) we have

fX(αp) = (X θ)(αp) = θαp (Xαp ) = (αp ◦ π∗αp )Xαp

= αp(π∗αp Xαp ) = αp(Xp), for αp ∈ T ∗
p M. (8.25)

Hence, if X ∈ X(M) is locally given by X = Xi(∂/∂xi), and using (8.2) we obtain

fX(αp) = αp

(
Xi(p)

(
∂

∂xi

)

p

)
= pi(αp)Xi(p)

= pi(αp)Xi
(
π(αp)

)= [
pi

(
Xi ◦ π

)]
(αp),

that is,

fX = pi

(
Xi ◦ π

)= pi

(
π∗Xi

)
, (8.26)

which shows that, in terms of a coordinate system (q1, . . . , qn,p1, . . . , pn) induced
by a coordinate system on M , fX is a homogeneous function of degree 1 in the pi

(the π∗Xi are functions of the qj only).

Exercise 8.12 Show that if X ∈ X(M) is locally given by X = Xi(∂/∂xi), then

X = (
π∗Xi

) ∂

∂qi
− pj π∗

(
∂Xj

∂xi

)
∂

∂pi

, (8.27)

where (q1, . . . , qn,p1, . . . , pn) is the coordinate system on T ∗M induced by the
coordinates (x1, . . . , xn) on M .
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Exercise 8.13 Show that a vector field X on T ∗M satisfies £Xθ = 0 only if X is the
canonical lift of some vector field on M .

Exercise 8.14 Show that if X = (∂/∂xl), then fX = pl and X = (∂/∂ql). (In the
case where M = E

3 and the xi are Cartesian coordinates, ∂/∂xl is the infinitesimal
generator of translations in the xl direction.)

Exercise 8.15 Show that if X = xk(∂/∂xl)−xl(∂/∂xk), then fX = qkpl −qlpk and
X = qk(∂/∂ql) − ql(∂/∂qk) + pk(∂/∂pl) − pl(∂/∂pk). (In the case where M = E

3

and the xi are Cartesian coordinates, xk(∂/∂xl) − xl(∂/∂xk) is the infinitesimal
generator of rotations in the xk–xl plane; see Example 7.58.)

Let X and Y be vector fields on M and let X and Y be their canonical lifts to
T ∗M . Since X and Y are π -related to X and Y, respectively [see (8.11)], the Lie
bracket [X,Y] is π -related with [X,Y] (see Sect. 1.3); therefore, for αp ∈ T ∗

p M ,
making use of (8.25), we have

f[X,Y](αp) = αp

([X,Y]p
)= αp

(
π∗αp [X,Y]αp

)

= θαp

([X,Y]αp

)= ([X,Y] θ
)
(αp),

i.e.,

f[X,Y] = [X,Y] θ. (8.28)

An alternative expression for the function f[X,Y] is obtained as follows, using the
properties of the Lie derivative (2.27) and (2.44), and using £X θ = 0. From (8.28)
we have

f[X,Y] = [X,Y] θ = (£X Y) θ = £X (Y θ) − Y £X θ

= £X (Y θ) = £X fY = XfY. (8.29)

On the other hand, comparing (8.16) and (8.23) one finds that X is the Hamiltonian
vector field corresponding to the function fX; hence, according to (8.19), XfY =
{fX, fY}, so that (8.29) amounts to

f[X,Y] = {fX, fY}, (8.30)

which together with (8.25) means that the map X �→ fX from X(M) into C∞(T ∗M)

is a Lie algebra homomorphism.
Furthermore, from (8.23) and (8.24) we have

[X,Y] dθ = −d
( [X,Y] θ

)= −df[X,Y] (8.31)

and, since X is the Hamiltonian vector field corresponding to fX, from (8.18) and
(8.29) it follows that

[X,Y] dθ = −d(XfY) = −df[X,Y]. (8.32)
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Comparing (8.31) and (8.32), and using the fact that dθ is non-singular, we conclude
that

[X,Y] = [X,Y], (8.33)

which implies that the map X �→ X is also a Lie algebra homomorphism.

Exercise 8.16 Prove (8.30) and (8.33), making use of the explicit local expressions
(8.21), (8.26), and (8.27).

Symplectic Manifolds The cotangent bundle of a differentiable manifold is an
example of a symplectic manifold. A symplectic manifold is a differentiable man-
ifold M endowed with a closed nondegenerate 2-form ω; that is, dω = 0 and for
each p ∈ M , vp ωp = 0 implies vp = 0. The 2-form ω is called a symplectic form
and it is said that it defines a symplectic structure on M . In the case of the cotangent
bundle of a manifold, the fundamental 2-form dθ is a symplectic form that is not
only closed, but exact.

In any symplectic manifold one can define the notion of a Hamiltonian vector
field and the Poisson bracket by simply substituting into (8.16) and (8.22) the cor-
responding symplectic form ω in place of dθ . The fact that ω is nondegenerate
requires that the dimension of a symplectic manifold be even, and the Darboux The-
orem ensures that in a neighborhood of any point of a symplectic manifold there is
a coordinate system (q1, . . . , qn,p1, . . . , pn), such that

ω = dpi ∧ dqi (8.34)

[cf. (8.12)] (see, e.g., Crampin and Pirani 1986; Woodhouse 1997; Berndt 2001).
Any local coordinate system (qi,pi) in which the symplectic form ω has the ex-
pression (8.34) is called a canonical coordinate system. A symplectic manifold pos-
sesses an infinite number of local canonical coordinate systems. A (passive) canoni-
cal transformation is a coordinate transformation that relates two systems of canon-
ical coordinates. According to (8.12), the coordinates defined on T ∗M by (8.5),
induced by any coordinate system (x1, . . . , xn) on M , are canonical, considering
T ∗M as a symplectic manifold with the symplectic structure given by the funda-
mental 2-form; however, there is an infinite number of canonical coordinate systems
that are not obtained in this manner (see Examples 8.17, 8.20, and 8.34 below).

Example 8.17 A simple well-known example of a canonical transformation is given
by

p =√
2mω0P cosQ,

q =
√

2P

mω0
sinQ,

(8.35)
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where m and ω0 are constants. One readily verifies that

dp ∧ dq = 2

(
−P 1/2 sinQdQ + 1

2
P −1/2 cosQdP

)

∧
(

P 1/2 cosQdQ + 1

2
P −1/2 sinQdP

)

= dP ∧ dQ,

which means that (8.35) is a canonical transformation. (This canonical transfor-
mation is useful in connection with the problem of a one-dimensional harmonic
oscillator.)

Example 8.18 The area element of the sphere S2 ≡ {(x, y, z) ∈ R
3 |x2 +

y2 + z2 = 1} is (locally) given in terms of the usual spherical coordinates by
sin θ dθ ∧ dφ. This 2-form is closed (any 3-form on S2 is equal to zero) and, as
can readily be seen, non-singular. With this 2-form, S2 is a symplectic manifold in
such a way that all the rotations about the origin in R

3 are symplectomorphisms.
Since sin θ dθ ∧ dφ = dφ ∧ d cos θ , the functions p1 = φ and q1 = cos θ form a
local canonical coordinate system for this symplectic manifold. By contrast with
the canonical 2-form of a cotangent bundle, the area element of S2 is not exact.

8.3 The Phase Space and the Hamilton Equations

Now we will consider a mechanical system whose configuration space is a differ-
entiable manifold, M , of finite dimension (that is, we are considering a mechanical
system with a finite number of degrees of freedom, without constraints or with holo-
nomic constraints). According to Newton’s laws, the configuration of the system at
some instant is not enough to determine its configuration at some other instant;
however, usually, the evolution of the system is fixed by the configuration and the
momentum of the system at some instant.

The momentum of the system corresponds to a covector αp , at the point p of M

that represents the configuration of the system at that instant; therefore, each point
of T ∗M determines a state of the system. When M is a configuration space, T ∗M is
called the phase space. If αp ∈ T ∗

p M represents the state of the system, there exists
a unique curve in T ∗M passing through αp describing the evolution of the state of
the system.

If the external conditions of the system do not vary with time, we define a map
ϕt : T ∗M → T ∗M by the condition that ϕt (αp) be the state of the system a time
t after the system was at the state αp . Then, ϕt1 ◦ ϕt2 = ϕt2 ◦ ϕt1 = ϕt1+t2 and
ϕ0 is the identity mapping. It will be assumed that the ϕt form a one-parameter
group of diffeomorphisms whose infinitesimal generator is a Hamiltonian vector
field XdH , where H ∈ C∞(T ∗M) is called the Hamiltonian of the system. Hence,
the curves in the phase space T ∗M that represent the evolution of the system are
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the integral curves of XdH and each ϕt is an active canonical transformation, that is,
ϕt

∗(dθ) = dθ . From (8.17) we have

XdH = ∂H

∂pi

∂

∂qi
− ∂H

∂qi

∂

∂pi

,

and therefore the integral curves of XdH are given by the equations [see (2.4)]

dqi

dt
= ∂H

∂pi

,
dpi

dt
= −∂H

∂qi
, (8.36)

which are known as the Hamilton equations. (As in previous cases, by abuse of
notation, we have written qi and pi instead of qi ◦ C and pi ◦ C, respectively.)

Usually, the configuration space of a mechanical system is a Riemannian man-
ifold, with a metric tensor related to the kinetic energy. In many cases, the config-
uration space is a submanifold of a product of Euclidean spaces, and its metric is
induced by the usual metric of the Euclidean space. For instance, the configuration
space of the system formed by two point particles of masses m1 and m2 free to move
in the Euclidean plane is E2 ×E

2, and the metric

g = m1(dx ⊗ dx + dy ⊗ dy) + m2(dx̃ ⊗ dx̃ + dỹ ⊗ dỹ), (8.37)

where (x, y) and (x̃, ỹ) are Cartesian coordinates of m1 and m2, respectively, is
such that EK = 1

2g(C′
t ,C

′
t ) is the kinetic energy of the system if C is the curve in

M such that C(t) is the configuration of the system at time t .
In the case of a system formed by a block of mass m1 sliding under the influence

of gravity on a wedge of mass m2 that lies on a horizontal table, with both blocks
restricted to movement in a vertical plane, the configuration space, M , can be viewed
as the two-dimensional submanifold of E2 ×E

2 defined by y−(x− x̃) tan θ = 0, and
ỹ = 0, where θ is the angle of the wedge, (x, y) and (x̃, ỹ) are Cartesian coordinates
of the block and the wedge, respectively (see Fig. 8.1). More precisely, if i : M →
E

2 × E
2 denotes the inclusion map, then we have i∗(y − (x − x̃) tan θ) = 0 and

i∗ỹ = 0. Defining the coordinates (x1, x2) on M by

x1 ≡ i∗x, x2 ≡ i∗x̃,

we have i∗y = (x1 −x2) tan θ and i∗ỹ = 0. Thus, the metric induced on M by (8.37)
is given locally by

i∗g = i∗
[
m1(dx ⊗ dx + dy ⊗ dy) + m2(dx̃ ⊗ dx̃ + dỹ ⊗ dỹ)

]

= m1
[
dx1 ⊗ dx1 + tan2 θ

(
dx1 − dx2)⊗ (

dx1 − dx2)]

+ m2 dx2 ⊗ dx2, (8.38)

so that the kinetic energy of this mechanical system is EK = 1
2 (i∗g)(C′

t ,C
′
t ), where

C is the curve in M such that C(t) represents the configuration of the system at
time t .
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Fig. 8.1 The block can slide on the wedge-shaped block, which lies on a horizontal surface

In many elementary examples, the Hamiltonian function corresponds to the total
energy (but not always) and is given by H = 1

2 (π∗gij )pipj + π∗V , where (gij ) is
the inverse of the matrix (gij ) formed by the components of the metric tensor of M

with respect to a coordinate system (x1, . . . , xn) [see, e.g., (8.38)]. The pi are part
of the coordinates on T ∗M induced by the xi , and V is some real-valued function
defined on M , which corresponds to the potential energy. The standard procedure
to find a Hamiltonian makes use of a Lagrangian, which can readily be constructed
provided that the forces are derivable from a potential. Alternatively, a Hamiltonian
can be proposed starting from the equations of motion (see Sect. 8.7).

Example 8.19 The cotangent bundle of a manifold may have various symplectic
forms, apart from the fundamental 2-form (8.12). In fact, the interaction of a charged
particle with a static magnetic field can be accounted for by making use of a suit-
able symplectic form on the cotangent bundle of the configuration space. We shall
consider a point particle of mass m and electric charge e in the three-dimensional
Euclidean space, in the presence of a static magnetic field, which is represented by
a vector field B on E

3. If η is a volume element on E
3, the 2-form B η is closed

because the divergence of B vanishes, according to the basic equations of electro-
magnetism [see (6.107)]. Hence, the 2-form

ω = dθ + e

c
π∗(B η), (8.39)

where θ is the fundamental 1-form of T ∗
E

3 and c is the speed of light in vacuum,
is closed and, as can readily be verified, is always nondegenerate; therefore, ω is a
symplectic 2-form. (The magnetic field is a pseudovector field; B is multiplied by a
factor −1 when the orientation is reversed, so that the last term in (8.39) does not
depend on which one of the two volume forms, or orientations, of E3 one chooses.)

Making use of the local expressions (8.6) and (6.102) we have

ω = dpi ∧ dqi + e

2c
π∗(Bk

√
det(gij ) εkij

)
dqi ∧ dqj ; (8.40)

hence, for any f ∈ C∞(T ∗
E

3) the Hamiltonian vector field Xdf is given locally by

Xdf = ∂f

∂pi

∂

∂qi
− ∂f

∂qi

∂

∂pi

− e

c
π∗(Bk

√
det(gij ) εkij

) ∂f

∂pi

∂

∂pj

(8.41)
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and the Poisson bracket has the expression

{f,g} = ∂f

∂pi

∂g

∂qi
− ∂f

∂qi

∂g

∂pi

− e

c
π∗(Bk

√
det(gij ) εkij

) ∂f

∂pi

∂g

∂pj

[cf. (8.17) and (8.21)].
Since d(B η) = 0, there exists, at least locally, a 1-form, α, on E

3, such that
B η = dα. Writing α = Ai dxi , where the Ai are some real-valued functions defined
on E

3, locally, we have

ω = dpi ∧ dqi + e

c
π∗(dAi ∧ dxi

)= d

(
pi + e

c
π∗Ai

)
∧ dqi,

which shows that (qi,pi + e
c
π∗Ai) are canonical coordinates. The 1-form α is not

uniquely defined by B; if we define α′ ≡ α + dξ , where ξ is an arbitrary (dif-
ferentiable) real-valued function, we have dα′ = d(α + dξ) = dα, and therefore,
B η = dα = dα′. Hence, if we write α′ = A′

i dxi , it follows that qi,pi + e
c
π∗A′

i is
another system of canonical coordinates. (It is said that α′ and α are related to each
other by a gauge transformation.)

Thus, in the case of the interaction with a magnetic field, we can employ the
coordinates qi,pi appearing in the equations above, which are not canonical (see
Example 8.30, below), or we can make use of the coordinates qi,Pi , with Pi ≡ pi +
e
c
π∗Ai , which are canonical but depend on the choice of the vector potential Ai . It

should be clear, however, that we are dealing with just one symplectic structure,
which can be expressed in terms of various coordinate systems [cf. Woodhouse
(1997, Sect. 2.6)].

The Hamiltonian function is given by

H = 1

2

(
π∗gij

)
pipj , (8.42)

as in the case of a free particle. Assuming that the xi are Cartesian coordinates on
E

3 (thus, gij = mδij ), substituting (8.42) into (8.41) one obtains

XdH = 1

m
δijpj

∂

∂qi
− e

c

(
π∗Bk

)
εkij

1

m
δilpl

∂

∂pj

,

and therefore the integral curves of XdH are given by

dqi

dt
= 1

m
δijpj ,

dpi

dt
= −e

c

(
π∗Bk

)
εkji

1

m
δilpl

which are equivalent to the elementary expression of the Lorentz force, dp/dt =
(e/c)v × B, with p = mv.

Example 8.20 As pointed out in Example 8.19, the interaction of a charged particle
with a magnetic field can be accounted for by means of the symplectic 2-form ω =
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dθ + (e/c)π∗(B η) on T ∗M , where e is the electric charge of the particle. In the
case where the particle is moving in the three-dimensional Euclidean space in the
presence of a uniform magnetic field B = B (∂/∂x3), where the xi are Cartesian
coordinates and B is a constant,

ω = dp1 ∧ dq1 + dp2 ∧ dq2 + dp3 ∧ dq3 + eB

c
dq1 ∧ dq2

= d

(
p1 − eB

2c
q2
)

∧ dq1 + d

(
p2 + eB

2c
q1
)

∧ dq2 + dp3 ∧ dq3.

Hence, (q1, q2, q3,p1 − eB
2c

q2,p2 + eB
2c

q1,p3) is a system of canonical coordinates.
A straightforward computation shows that the coordinates (q ′i , p′

i ) defined by

q1 = q ′1 + q ′2, q2 = c

eB
(p′

1 − p′
2), q3 = q ′3,

p1 − eB

2c
q2 = 1

2
(p′

1 + p′
2), p2 + eB

2c
q1 = eB

2c

(
q ′2 − q ′1), p3 = p′

3,

are also canonical, i.e., ω = dp′
i ∧ dq ′i . In terms of these coordinates, the Hamilto-

nian (8.42) takes the form

H = 1

2m
(p′

1)
2 + m

2

(
eB

mc

)2(
q ′1)2 + 1

2m
(p′

3)
2.

The first two terms on the right-hand side of this last expression constitute the
usual Hamiltonian of a one-dimensional harmonic oscillator (of angular frequency
eB/mc) and, since the canonical coordinates q ′2, p′

2, and q ′3 do not appear in H

(i.e., are ignorable or cyclic variables), p′
2, q ′2, and p′

3 are constants of motion [see
(8.36)].

If f is a differentiable real-valued function defined on T ∗M , the rate of change
of f along a curve C followed by the system in its time evolution is given by

d

dt
(f ◦ C)

∣∣∣
∣
t=t0

= C′
t0
[f ] = (XdH )C(t0)[f ] = (XdH f )

(
C(t0)

)

= {H,f }(C(t0)
)
. (8.43)

Hence, f is a constant of motion if and only if {H,f } = 0. The Hamiltonian H is a
constant of motion since {H,H } = 0.

If f and g are both constants of motion, it is clear that {H,af + bg} = 0 for
a, b ∈R. By virtue of the Jacobi identity, we have, in addition,

{
H, {f,g}}= −{f, {g,H }}− {

g, {H,f }}= 0,

hence the set of constants of motion is a Lie subalgebra of C∞(T ∗M).
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Constants of Motion and Symmetries If f ∈ C∞(T ∗M) is a constant of motion,
then H is invariant under the (possibly local) one-parameter group of canonical
transformations generated by Xdf since

£Xdf
H = Xdf H = {f,H } = −{H,f } = 0. (8.44)

Conversely, if H is invariant under a one-parameter group of canonical transforma-
tions then there exists, locally, a constant of motion associated with this symmetry.
In effect, if X is the infinitesimal generator of a one-parameter group of canonical
transformations, then d(£Xθ) = £X dθ = 0; hence, there exists locally a real-valued
function (defined up to an additive constant), F , such that

£Xθ = dF,

that is, X dθ + d(X θ) = dF or, equivalently, X dθ = −d(X θ − F), which
explicitly shows that X is locally Hamiltonian [see (8.16)] and that it corresponds to
the function

χ ≡ X θ − F,

which is a constant of motion, as follows from 0 = XH = {χ,H } = −{H,χ} =
−XdH χ . The function F can be chosen equal to zero if and only if X is the canonical
lift of a vector field on M (see Exercise 8.13) and in that case the expression for
the function χ reduces to (8.24). (Here we are restricting ourselves to constants of
motion that do not depend explicitly on the time; the most general case is considered
in Sect. 8.7.)

Example 8.21 Let us consider a system formed by two point particles of masses m1

and m2 in the three-dimensional Euclidean space, whose positions are represented
by the vectors r1 = (x1, x2, x3) and r2 = (x4, x5, x6). The configuration space for
this system has dimension six and can be identified with R

3 × R
3. Denoting by

(q1, . . . , q6,p1, . . . , p6) the coordinates on T ∗M induced by (x1, . . . , x6) in the
form defined in Sect. 8.1, the Hamiltonian has the expression

H = 1

2

(
π∗gij

)
pipj + V = 1

2m1

3∑

i=1

(pi)
2 + 1

2m2

6∑

i=4

(pi)
2 + V, (8.45)

where (gij ) is the inverse of the matrix (gij ) formed by the components of the metric
tensor of M with respect to the coordinate system (x1, . . . , x6) [cf. (8.37)] and V is
the potential energy of the system.

If the particles do not interact with objects external to the system, in the absence
of velocity-dependent forces (such as the magnetic force), V must be a function
of |r1 − r2| only (more precisely, V = v(r), where v is a real-valued function of a
single variable and r ≡ [(q4 −q1)2 + (q5 −q2)2 + (q6 −q3)2]1/2 is the distance be-
tween the particles). This means, for instance, that the Hamiltonian function (8.45)
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is invariant under the simultaneous translations of the particles in the x-direction,
that is, H is invariant under the one-parameter group of transformations

ϕ∗
t q1 = q1 + t, ϕ∗

t q4 = q4 + t,

ϕ∗
t qi = qi, if i �= 1,4, ϕ∗

t pi = pi,

as can readily be verified. Clearly, this is a one-parameter group of canonical
transformations (in fact, ϕt

∗ dqi = dqi , ϕt
∗ dpi = dpi ) and its infinitesimal gen-

erator is ∂/∂q1 + ∂/∂q4, which is globally Hamiltonian, (∂/∂q1 + ∂/∂q4) dθ =
−d(p1 + p4). Therefore p1 + p4 is a constant of motion, which is associated with
the invariance of H under translations in the x direction and corresponds to the x

component of the linear momentum of the system (in fact, (∂/∂q1 + ∂/∂q4)H = 0).
In a similar way, p2 + p5 and p3 + p6 are constants of motion that represent the y

and z components of the total linear momentum, respectively.
Since the distance between the two particles, |r2 − r1|, is also invariant under

rotations of the system, it is to be expected that there exist constants of motion
associated with this symmetry; however, in order to find a constant of motion it is
necessary that H be invariant under a one-parameter group of transformations acting
on the phase space and that these transformations be canonical. The infinitesimal
generators of the rotations about the x, y, and z axes in the configuration space are

Xi =
3∑

k=1

εijk

(
xj ∂

∂xk
+ xj+3 ∂

∂xk+3

)
, i = 1,2,3. (8.46)

The canonical lifts Xi to T ∗M of the vector fields (8.46) are given by

Xi =
3∑

k=1

εijk

(
qj ∂

∂qk
+ qj+3 ∂

∂qk+3

)
+

3∑

j=1

εijk

(
pj

∂

∂pk

+ pj+3
∂

∂pk+3

)

(see Exercises 8.12 and 8.15). As shown in Sect. 8.2, these vector fields are globally
Hamiltonian and correspond to the functions [see (8.26) and (8.46)]

Li ≡
3∑

k=1

εijk

(
qjpk + qj+3pk+3

)
, i = 1,2,3.

One can readily verify that, in effect, XiH = 0, and therefore the functions Li are
constants of motion, which represent the Cartesian components of the total angular
momentum. (Further examples are given in Sects. 8.4–8.6.)

Exercise 8.22 Consider the system formed by a block and a wedge discussed at the
beginning of this section (p. 212). Assuming that the potential energy is given by
V = i∗(m1g y), where g is the acceleration of gravity, show that the Hamiltonian is
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given by

H = m2(p1)
2 + m1[(p2)

2 + tan2 θ(p1 + p2)
2]

2m1[m2 + (m1 + m2) tan2 θ ] + m1g tan θ
(
q1 − q2).

Show that the canonical lift of ∂/∂x1 +∂/∂x2 is the infinitesimal generator of a one-
parameter group of canonical transformations that leave the Hamiltonian invariant,
and find the corresponding constant of motion. (Note that the one-parameter group
of diffeomorphisms generated by ∂/∂x1 + ∂/∂x2 corresponds to translations of the
mechanical system as a whole.) Show that (m1q

1 + m2q
2)m1g tan θ + 1

2 [(p1)
2 −

(p2)
2] is a constant of motion, but that it is not associated with the canonical lift of

a vector field on M (and therefore, it corresponds to a so-called hidden symmetry;
see also Sect. 8.5).

8.4 Geodesics, the Fermat Principle, and Geometrical Optics

If M is a Riemannian manifold, one can consider the Hamiltonian function
H(αp) ≡ 1

2 (αp|αp) [see (6.10)]. In terms of the coordinates (qi,pi) of T ∗M , in-
duced by a coordinate system xi on M , this Hamiltonian has the local expression

H = 1

2

(
π∗gij

)
pipj , (8.47)

where (gij ) is the inverse of the matrix (gij ) formed by the components of the
metric tensor of M with respect to the natural basis induced by the coordinates xi

(hence, H is a differentiable function). There exist several examples where there
appear Hamiltonians of this form. In the theory of relativity (special or general),
if M represents the space–time, the Hamiltonian function (8.47) corresponds to a
particle subject to the gravitational field (represented by the metric tensor g). Other
important examples, to be considered below, are those of a free rigid body (see
Sect. 8.6), geometrical optics, and the Jacobi principle. Since the Hamiltonian (8.47)
is defined starting from the metric tensor, it is to be expected that it shows a simple
behavior under an isometry.

Theorem 8.23 Let M be a Riemannian manifold and let H ∈ C∞(T ∗M) be defined
by H(αp) = 1

2 (αp|αp); then the diffeomorphism ψ : M → M is an isometry if and

only if ψ
∗
H = H .

Proof Let g = gij dxi ⊗ dxj be the metric tensor of M and let g′ ≡ ψ∗g; then

g′
ij dxi ⊗ dxj = (ψ∗gij )d

(
ψ∗xi

)⊗ d
(
ψ∗xj

)

= (ψ∗gij )
∂(xi ◦ ψ)

∂xk

∂(xj ◦ ψ)

∂xl
dxk ⊗ dxl,
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which amounts to the relation

ψ∗gij = g′kl ∂(xi ◦ ψ)

∂xk

∂(xj ◦ ψ)

∂xl
. (8.48)

Using (8.47), (8.8), (8.10), and (8.48) we have

ψ
∗
H = 1

2

(
(π ◦ ψ)∗gij

)
(ψ

∗
pi)(ψ̃

∗pj )

= 1

2
π∗
[(

ψ∗gij
)(

ψ∗ ∂(xk ◦ ψ−1)

∂x′i

)(
ψ∗ ∂(xl ◦ ψ−1)

∂x′j

)]
pkpl

= 1

2

(
π∗g′kl

)
pkpl,

which coincides with H if and only if g′ = g, that is, ψ∗g = g. �

If X ∈ X(M) is a Killing vector field, X is the infinitesimal generator of a local
one-parameter group of isometries ϕt of M ; according to Theorems 8.4 and 8.23, the
transformations ϕt are canonical and leave invariant the Hamiltonian (8.47), which
is equivalent to the existence of a constant of motion associated with the vector field
X. Since the infinitesimal generator of ϕt is the Hamiltonian vector field associated
with the function fX [see (8.23) and (8.24)], the function fX = X θ (or, in local
form, fX = (π∗Xi)pi , where the Xi are the components of X) is a constant of
motion.

Exercise 8.24 Show that, conversely, if X ∈ X(M) and fX = X θ is a constant of
motion for the system with Hamiltonian (8.47), then X is a Killing vector field.

Exercise 8.25 Show that the Hamilton equations corresponding to the Hamiltonian
(8.47) yield the geodesic equations (more precisely: the projection on M of the
integral curves of XdH are the geodesics of M) and that if X is a Killing vector
field, the value of fX along an integral curve of XdH coincides with the value of
g(X,C′) on the corresponding geodesic C (see Theorem 6.28).

Jacobi’s Principle Many of the examples considered in classical mechanics cor-
respond to Hamiltonian functions of the form

H = 1

2

(
π∗gij

)
pipj + π∗V, (8.49)

in terms of the coordinates (qi,pi) on T ∗M , induced by a coordinate system xi on
the configuration space M , where (gij ) is the inverse of the matrix formed by the
components of a metric tensor on M , and V is a function of M in R (this means that
the potential energy only depends on the configuration). The Jacobi principle states
that the orbits followed in M are the geodesics of the metric (E − V )gij dxi ⊗ dxj ,
where E is the (constant) value of H determined by the initial conditions.
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In effect, assuming that dH |H=E �= 0, we define the auxiliary Hamiltonian

h ≡ H − π∗V
E − π∗V

, (8.50)

and we find that dh = (E − π∗V )−2[(E − π∗V )dH + (H − E)dπ∗V ]; therefore,
dh|H=E = (E − π∗V )−1 dH |H=E , and then we have XdH |H=E =
(E − π∗V )Xdh|H=E . Thus, at the points of the submanifold H = E, the vector
fields XdH and Xdh are collinear, and therefore their integral curves differ only in
the parametrization. (Note that H = E amounts to h = 1.) Whereas the integral
curves of XdH are parameterized by the time, t , the parameter of the integral curves
of Xdh is another variable, τ , which is related to t as follows. If C is an integral
curve of XdH on the hypersurface H = E, then τ = I (t) with

dI

dt
= (E − π∗V ) ◦ C

[cf. (2.14)]. Indeed, the curve σ(τ) ≡ C(I−1(τ )) is a reparametrization of C that is
an integral curve of Xdh, since, for f ∈ C∞(T ∗M),

(Xdhf )
(
σ(τ)

) =
[

1

E − π∗V
XdH f

](
C
(
I−1(τ )

))

= 1

(E − π∗V )(C(I−1(τ )))

d(f ◦ C)

dt

∣∣∣
∣
I−1(τ )

= 1

(dI/dt)|I−1(τ )

d(f ◦ σ ◦ I )

dt

∣∣∣
∣
I−1(τ )

= 1

(dI/dt)|I−1(τ )

d(f ◦ σ)

dτ

dI

dt

∣∣∣
∣
I−1(τ )

= d(f ◦ σ)

dτ
.

From (8.49) and (8.50) we obtain the equivalent expression

h = 1

2
π∗
(

gij

E − V

)
pipj (8.51)

[cf. (8.47)], whose orbits in the configuration space are the geodesics corresponding
to the metric (E − V )gij dxi ⊗ dxj (see Exercise 8.25).

Combining the foregoing result with the findings at the end of Sect. 6.2
(pp. 140–141) we conclude that the orbits in the configuration space of a system
with a Hamiltonian function of the form (8.49) correspond to the intersections of
the hypersurfaces bk = const, where bk = ∂W/∂ak and W is a complete solution of

gij

E − V

∂W

∂xi

∂W

∂xj
= const
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which depends on the parameters ak [cf. (6.73)]. This equation amounts to

gij ∂W

∂xi

∂W

∂xj
= const (E − V ) (8.52)

and, choosing the arbitrary constant appearing in (8.52) as 2, equation (8.52) be-
comes the Hamilton–Jacobi equation for the Hamilton characteristic function, W ,

1

2
gij ∂W

∂xi

∂W

∂xj
+ V = E (8.53)

[cf. (8.49)]. (Note that this equation involves quantities defined on M , not on T ∗M .)

Example 8.26 In terms of the parabolic coordinates (u, v) on E
2, defined by x =

u2 − v2, y = 2uv, with v > 0, where (x, y) are Cartesian coordinates, the usual
metric of the Euclidean plane is given locally by

dx ⊗ dx + dy ⊗ dy = 4
(
u2 + v2)(du ⊗ du + dv ⊗ dv);

therefore, the Hamiltonian function for the two-dimensional Kepler problem, which
corresponds to the potential V = −k/r , where k is a positive constant and r is the
distance from the particle to a fixed center of force (placed at the origin), is

H = 1

2m

pu
2 + pv

2

4(u2 + v2)
− k

u2 + v2
,

where, by abuse of notation, we are using the same symbols for the coordinates u,v

and for their pullbacks under π . Thus, equation (8.53) takes the form

1

8m(u2 + v2)

[(
∂W

∂u

)2

+
(

∂W

∂v

)2]
− k

u2 + v2
= E.

Using the method of separation of variables we look for a complete solution of
the form W = F(u) + G(v) and we obtain (cf. Example 6.33)

(
dF

du

)2

− 4mk − 8mEu2 = a,

(
dG

dv

)2

− 4mk − 8mEv2 = −a,

where a is a separation constant. In this problem, the constant E, which represents
the total energy, can be positive, negative, or zero. The simplest case corresponds to
E = 0, and we find that

W = √
4mk + au + √

4mk − av;
thus, equating ∂W/∂a to a constant b, say, we obtain

u

2
√

4mk + a
− v

2
√

4mk − a
= b.
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This equation corresponds to a two-parameter family of parabolas with foci at the
origin (the parameters a and b determine the orientation of the axis of the parabola
and its focal distance). The cases E < 0 and E > 0 are dealt with in a similar manner
and, as is well known, one obtains ellipses and hyperbolas, respectively, with one
focus at the origin.

Geometrical Optics The formalism of the Hamiltonian mechanics is applicable
to geometrical optics, in which it is assumed that the light travels along curves (the
light rays). At each point of an isotropic medium, which is assumed to be a Rie-
mannian manifold M (usually the three-dimensional Euclidean space), the speed of
light does not depend on the direction of the ray and is expressed as c/n, where c is
the speed of light in vacuum and n is a real-valued function defined on M , known
as the refractive index.

Since c/n is the velocity of the light at each point of M , if the curve C : [a, b] →
M represents a light ray, the time spent by the light going from point C(a) to C(b)

along C is

1

c

∫ b

a

n
(
C(t)

)‖C′
t‖dt = 1

c

∫ b

a

√
n2
(
C(t)

)
g(C′

t ,C
′
t )dt, (8.54)

where g is the metric tensor of M . The variable t appearing in the last integral
does not need to be the time, since the integral (8.54) is invariant under changes of
parameter. This invariance is similar to that of the integral (6.1), which gives the
length of a curve. In fact, comparing (8.54) with (6.1), one finds that the integral in
(8.54) represents the length of C defined by the metric tensor n2g.

According to Fermat’s principle, given two points of M , the path followed by
the light going from one point to the other is that for which the time required is
minimum or a stationary value. This implies that the light rays are the geodesics of
the metric n2g. Hence, the light rays are the projections on M of the integral curves
of XdH , with the Hamiltonian function, H , locally given by

H = c

2
π∗
(

gij

n2

)
pipj (8.55)

[cf. (8.47) and (8.51); the constant factor c inserted in (8.55) is introduced for later
convenience]. From (8.55) and the Hamilton equations (8.36) one deduces that if σ

is an integral curve of XdH ,

dqi(σ (t))

dt
= c

[
π∗
(

gij

n2

)
pj

](
σ(t)

);

equivalently, if C ≡ π ◦ σ , i.e., C is the projection of σ on M ,

dxi(C(t))

dt
= c

(
gij

n2

)(
C(t)

)
pj

(
σ(t)

)
. (8.56)
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Hence, the square of the norm of C′
t is

‖C′
t‖2 = gij

(
C(t)

)
c2
(

gik

n2

)(
C(t)

)
pk

(
σ(t)

)(gjl

n2

)(
C(t)

)
pl

(
σ(t)

)

= c2
(

gkl

n4

)(
C(t)

)
pk

(
σ(t)

)
pl

(
σ(t)

)= c2

n2(C(t))

2H(σ(t))

c
. (8.57)

Since {H,H } = 0, H(σ(t)) is some constant and if t represents the time, ‖C′
t‖

must be c/n; therefore, from (8.57) it follows that the constant value of H along
any integral curve of XdH must be c/2 and, therefore,

(
π∗gij

)
pipj = π∗n2. (8.58)

Thus, in order for the integral curves of XdH to be parameterized by the time,
the only possible value of the Hamiltonian function (8.55) is c/2; in other words,
any initial condition and any integral curve of XdH must lie on the hypersurface
H = c/2.

The existence of a condition of the form (8.58), which implies that not any point
of T ∗M is acceptable as an initial condition, is not a unique feature of geometrical
optics; in the theory of relativity (special or general) a particle subject, at most, to
a gravitational field moves along a geodesic of the space–time, which is a pseudo-
Riemannian manifold M . Therefore, we can choose the Hamiltonian function H =
1
2 (π∗gij )pipj . Then, if the integral curves of XdH are parameterized by the proper
time of the particle, we have |(π∗gij )pipj | = m2c2, where m is the rest mass of the
particle [cf. (8.58)].

As we shall show now, the Snell law follows from (8.55). Assuming that M

is the Euclidean space of dimension three, making use of Cartesian coordinates
(x, y, z), the components of the metric tensor are gij = δij ; then, from (8.55) and
the Hamilton equations it follows that in a region where n is a constant, the light
rays are straight lines. If we assume that the plane z = 0 is the boundary between
two regions with distinct (constant) refractive indices n1 and n2; n = n1 for z > 0
and n = n2 for z < 0 (the function n is then discontinuous at z = 0, which can be
avoided, assuming that n changes smoothly from of n2 to n1 around z = 0), then the
Hamiltonian function (8.55) does not depend on x nor y, therefore px and py are
constants of motion [see (8.36)]. From (8.56) it follows that if a light ray forms an
angle θ with the z axis then px

2 + py
2 = (px

2 + py
2 + pz

2) sin2 θ = (π∗n2) sin2 θ ,
where we have made use of (8.58). Since px

2 + py
2 is constant, it follows that

n1 sin θ1 = n2 sin θ2, (8.59)

where θ1 and θ2 are the angles made by the light ray with the z axis in the regions
z > 0 and z < 0, respectively. The fact that px and py are constant implies that the
incident ray, the refracted ray, and the z axis are coplanar. Equation (8.59) is the
usual expression of Snell’s law.
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Making use again of the result of Exercise 6.32, the light rays in a homogeneous
medium can be obtained from a complete solution of the PDE

gij ∂S

∂xi

∂S

∂xj
= constn2 (8.60)

[cf. (6.73) and (8.52)]. If the arbitrary constant that appears in this equation is set
equal to 1, the resulting equation is the eikonal equation (and S is called the eikonal).
The light rays are orthogonal to the surfaces S = const. (which represent the wave
fronts).

8.5 Dynamical Symmetry Groups

As we have shown, each constant of motion that does not depend explicitly on the
time corresponds to a possibly local one-parameter group of canonical transforma-
tions that leave the Hamiltonian invariant; now we shall study in some detail the ac-
tion of an arbitrary Lie group on a symplectic manifold that leaves invariant a given
Hamiltonian. Usually, attention is restricted to actions by symplectomorphisms; in
many elementary examples, one has a Lie group of transformations acting in an
arbitrary manner on a manifold M , which does not need to possess any additional
structure, and then this action is lifted to the cotangent bundle of M . In the other
cases, one has to consider directly the action by symplectomorphisms of a Lie group
on a symplectic manifold. We shall begin with the simplest case, assuming that we
have a Lie group that acts on a configuration space; we will only have to put together
several results obtained above.

Lifted Actions Let G be a Lie group that acts on the right on a differentiable
manifold M ; that is, each g ∈ G defines a diffeomorphism Rg : M → M (with
Rg(p) = pg, see Sect. 7.6). The diffeomorphism Rg , in turn, gives rise to a dif-
feomorphism Rg : T ∗M → T ∗M , defined by (8.7), which is a canonical transfor-
mation; moreover, Rg

∗θ = θ (see Theorem 8.4). For p ∈ M and αp ∈ T ∗M , each
X ∈ g defines a curve t �→ exp tX, in G; a curve t �→ Rexp tX(p), in M , and a curve
t �→ Rexp tX(αp), in T ∗M . The tangent vectors to these curves at t = 0 are Xe, X+

p ,

and X+
αp , respectively (with X+ being the canonical lift of X+) (see Sect. 7.6).

As a consequence of the fact that Rg
∗θ = θ for all g ∈ G, in particular,

Rexp tX
∗θ = θ , for all X ∈ g; therefore, £X+θ = 0, which means that the vector field

X+ is globally Hamiltonian

X+ dθ = −dfX+, (8.61)

where

fX+ ≡ X+ θ (8.62)
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[see (8.23) and (8.24)]. This expression together with the relation (aX + bY)+ =
aX+ + bY+, for X,Y ∈ g and a, b ∈ R, imply that the mapping X �→ fX+ , from g

into C∞(T ∗M), is R-linear (i.e., f(aX+bY)+ = afX+ + bfY+ ). By combining Theo-
rem 7.61 and (8.30) we also have

f[X,Y]+ = f[X+,Y+] = {fX+, fY+}, (8.63)

and therefore the mapping X �→ fX+ is a Lie algebra homomorphism.
Summarizing, given the action on the right of an arbitrary Lie group G on M ,

the mapping (g,αp) �→ Rg(αp) defines an action of G on the right on T ∗M so that
each Rg is a canonical transformation (or symplectomorphism); the vector fields
induced on T ∗M by this action are globally Hamiltonian, with X+ corresponding
to the function fX+ in such a way that the map from g into C∞(T ∗M) given by
X �→ fX+ is a Lie algebra homomorphism.

Now, if a given Hamiltonian, H , is invariant under the transformations Rg (i.e.,
Rg

∗H = H for all g ∈ G), then Rexp tX
∗H = H for all X ∈ g, which implies that

0 = £X+H = X+H = {fX+ ,H } [see (8.19)], i.e., each function fX+ is a constant
of motion. The constants of motion obtained in this manner are homogeneous func-
tions of first degree in the variables pi [see (8.26)]. However, in many cases of
interest, some constants of motion are not homogeneous functions of first degree in
the pi , and, therefore, are not associated with the action of a group on M ; their ex-
istence is a consequence of groups of canonical transformations on T ∗M that leave
the Hamiltonian invariant, which do not come from a group that acts on M (see
Examples 8.29–8.32, below).

Hidden Symmetries Let G be a Lie group that acts on the right on T ∗M in
such a way that for each g ∈ G the transformation Rg : T ∗M → T ∗M , given by
Rg(x) = xg, is a canonical transformation, that is, Rg

∗(dθ) = dθ . Then the vector
field X+ on T ∗M associated with the vector field X ∈ g is locally Hamiltonian (see
Lemma 8.5); hence, for each X ∈ g there exists locally a function μX ∈ C∞(T ∗M),
defined up to an additive constant, such that

X+ dθ = −dμX (8.64)

[cf. (8.16)]. As we shall see, under certain conditions, it will be possible to choose
the functions μX in such a way that the mapping X �→ μX is a Lie algebra homo-
morphism.

Starting from the relations (aX+bY)+ = aX+ +bY+ and [X,Y]+ = [X+,Y+],
valid for every pair of elements X,Y of the Lie algebra of G, with a, b ∈ R, it
follows that

dμaX+bY = −(aX + bY)+ dθ = −(aX+ + bY+) dθ

= a dμX + b dμY = d(aμX + bμY)
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and, similarly, using (8.18) and (8.19), we find

dμ[X,Y] = −[X,Y]+ dθ = −[X+,Y+] dθ

= d{μX,μY}, for X,Y ∈ g, a, b ∈ R.

This means that the functions μaX+bY − aμX − bμY and μ[X,Y] − {μX,μY} are
constant. Using the freedom in the definition of each of the functions μX, they can
always be chosen in such a way that μaX+bY = aμX + bμY for X,Y ∈ g, a, b ∈R.
In fact, if {X1, . . . ,Xm} is a basis of g and μXi

is a function such that X+
i dθ =

−dμXi
, then for X ∈ g, given by X = aiXi , we define μX by μX ≡ aiμXi

; then we
have

dμX = d
(
aiμXi

)= ai dμXi
= −aiX+

i dθ = −(aiXi

)+ dθ = −X+ dθ

and, as can readily be verified, μaX+bY = aμX + bμY.
In what follows we shall assume that we have a set of functions μX satisfying

(8.64) with μaX+bY −aμX −bμY equal to zero. However, it will not always be pos-
sible to simultaneously make μ[X,Y] − {μX,μY} also equal to zero for all X,Y ∈ g.

As pointed out already, the difference μ[X,Y] − {μX,μY} is a constant function
whose value, denoted by c(X,Y), depends on X and Y (hence, we can consider
c as a real-valued function defined on g × g, i.e., c : g × g → R). Then we have
c(X,Y) = −c(Y,X) and since

μ[aX+bY,Z] − {μaX+bY,μZ} = μa[X,Z]+b[Y,Z] − {aμX + bμY,μZ}
= aμ[X,Z] + bμ[Y,Z] − a{μX,μZ} − b{μY,μZ},

it follows that c(aX + bY,Z) = a c(X,Z)+ b c(Y,Z), for X,Y,Z ∈ g, a, b ∈R. In
other words, the map c, from g × g into R, is skew-symmetric and bilinear. [In the
language of cohomology of Lie algebras, c is a cochain; see, e.g., Jacobson (1979,
Chap. III).]

Exercise 8.27 Show that c([X,Y],Z) + c([Y,Z],X) + c([Z,X],Y) = 0. (This
means that c is a closed cochain.)

Theorem 8.28 There exists a set of functions μ′
X such that dμ′

X = −X+ dθ ,
μ′

aX+bY = aμ′
X + bμ′

Y, and μ′
[X,Y] = {μ′

X,μ′
Y}, for X,Y ∈ g and a, b ∈ R, if and

only if there exists h ∈ g∗ such that c(X,Y) = h([X,Y]).

Proof If such a set of functions μ′
X exists, the condition dμ′

X = −X+ dθ implies
that the difference μX −μ′

X is a constant whose value, denoted by h(X), may depend
on X. Then

h(aX + bY) − ah(X) − bh(Y)

= μaX+bY − aμX − bμY − μ′
aX+bY + aμ′

X + bμ′
Y

= 0,
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for X,Y ∈ g and a, b ∈R; that is, h is linear; hence, h ∈ g∗ and

c(X,Y) = μ[X,Y] − {μX,μY}
= μ′

[X,Y] + h
([X,Y])− {

μ′
X + h(X),μ′

Y + h(Y)
}

= μ′
[X,Y] − {μ′

X,μ′
Y} + h

([X,Y])

= h
([X,Y]),

for X,Y ∈ g.
Conversely, if there exists h ∈ g∗ such that c(X,Y) = h([X,Y]), we define

μ′
X ≡ μX − h(X), for X ∈ g; since h(X) ∈R and h is linear we have dμ′

X = dμX =
−X+ dθ . Furthermore,

μ′
aX+bY − aμ′

X − bμ′
Y

= μaX+bY − aμX − bμY − h(aX + bY) + ah(X) + bh(Y)

= 0,

and

μ′
[X,Y] − {μ′

X,μ′
Y} = μ[X,Y] − h

([X,Y])− {
μX − h(X),μY − h(Y)

}

= c(X,Y) − h
([X,Y])

= 0,

for X,Y ∈ g and a, b ∈R. �

A necessary condition for the existence of an h ∈ g∗ such that c(X,Y) =
h([X,Y]) is obtained making use of the Jacobi identity and the linearity of h, i.e.,

c
([X,Y],Z

)+ c
([Y,Z],X

)+ c
([Z,X],Y

)

= h
([[X,Y]Z]+ [[Y,Z],X

]+ [[Z,X],Y
])

= 0,

which is always satisfied (see Exercise 8.27). For some Lie algebras (e.g., the
semisimple Lie algebras) this condition is also sufficient [see, e.g., Jacobson (1979,
Chap. III).].

Example 8.29 Let G be the additive group R
2 and let M = R

2. For each g =
(a, b) ∈R

2 we define Rg : T ∗M → T ∗M by

Rg
∗q1 = q1 + a + Kbp2,

Rg
∗q2 = q2 + K

(
bp1 − 1

2
b2
)

,

Rg
∗p1 = p1 − b,

Rg
∗p2 = p2,

(8.65)
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where (q1, q2,p1,p2) are the canonical coordinates on T ∗M associated with the
natural coordinates of R

2, and K is an arbitrary real constant. These expressions
define an action of G on T ∗M such that each Rg is a canonical transformation. In
fact,

Rg
∗(dp1 ∧ dq1 + dp2 ∧ dq2) = dp1 ∧ (

dq1 + Kb dp2
)+ dp2 ∧ d

(
q2 + Kb dp1

)

= dp1 ∧ dq1 + dp2 ∧ dq2.

In order to find the vector fields induced on T ∗M by the action of G, we note
that, according to (8.65), for αp ∈ T ∗M , the mapping Φαp : G → T ∗M , defined by
Φαp(g) ≡ Rg(αp), is given by the expressions

Φαp

∗q1 = q1(αp) + x1 + Kp2(αp)x2,

Φαp

∗q2 = q2(αp) + K

(
p1(αp)x2 − 1

2

(
x2)2

)
,

Φαp

∗p1 = p1(αp) − x2,

Φαp

∗p2 = p2(αp),

(8.66)

where (x1, x2) are the natural coordinates on G, that is, if g = (a, b), then x1(g) = a

and x2(g) = b. Making use of (7.60) and (8.66) we find that

Φαp∗e

(
∂

∂x1

)

e

=
(

∂

∂q1

)

αp

,

Φαp∗e

(
∂

∂x2

)

e

= Kp2(αp)

(
∂

∂q1

)

αp

+ Kp1(αp)

(
∂

∂q2

)

αp

−
(

∂

∂p1

)

αp

.

Thus, if X1 and X2 are the left-invariant vector fields on G such that (Xi )e =
(∂/∂xi)e , the corresponding vector fields on T ∗M are

X+
1 = ∂

∂q1
, X+

2 = Kp2
∂

∂q1
+ Kp1

∂

∂q2
− ∂

∂p1
.

These vector fields turn out to be globally Hamiltonian; indeed, X+
1 dθ = −dp1

and X+
2 dθ = −d(q1 + Kp1p2). Hence,

μX1 = p1 + const, μX2 = q1 + Kp1p2 + const,

and one finds that {μX1,μX2} = X+
1 μX2 = −1. (Note that μX2 is not a homoge-

neous function of degree 1 in the pi and, therefore, it cannot come from a group of
canonical transformations on T ∗M induced by a group of transformations on M .)
However, [X1,X2] = 0 (G is an Abelian group) so that if we want to have a linear
mapping X �→ μX, then μ[X1,X2] = 0, which cannot coincide with {μX1,μX2}, no
matter how we choose the arbitrary constants contained in μX1 and μX2 . (Note that
c(X1,X2) = μ[X1,X2] −{μX1,μX2} = 1, but, since [X1,X2] = 0, there does not exist
h ∈ g∗ such that c(X1,X2) = h([X1,X2]), in accordance with Theorem 8.28.)
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The Hamiltonian function

H = p1
2 + p2

2

2m
+ 1

mK
q2,

which corresponds to a particle of mass m in a uniform field (e.g., a uniform grav-
itational field with acceleration 1/m2K), is invariant under the action (8.65). [In
fact, one can readily verify that X+

i p2 = 0 and X+
i (q2 + 1

2Kp1
2) = 0, for i = 1,2;

therefore any function of only p2 and q2 + 1
2Kp1

2 is invariant under the action
(8.65).]

Example 8.30 Now we shall start by specifying a Hamiltonian function and we
shall find a group of canonical transformations that leave the Hamiltonian invariant.
Taking M = R

3, we shall consider the Hamiltonian function

H = 1

2m

(
p1

2 + p2
2 + p3

2), (8.67)

which corresponds to a particle of mass m and electric charge e in a uniform mag-
netic field B = B (∂/∂x3), where B is a constant, provided that we use the symplec-
tic 2-form ω = dpi ∧ dqi + (eB/c)dq1 ∧ dq2, on T ∗M ; (q1, q2, q3,p1,p2,p3) are
the coordinates on T ∗M induced by the natural coordinates of R3, and c is the speed
of light in vacuum (see Example 8.19).

The vector fields ∂/∂qi , i = 1,2,3, on T ∗M satisfy ∂H/∂qi = 0 and are globally
Hamiltonian since

∂

∂q1
ω = −d

(
p1 − eB

c
q2
)

,

∂

∂q2
ω = −d

(
p2 + eB

c
q1
)

,

∂

∂q3
ω = −dp3.

Hence, the functions

K1 ≡ p1 − eB

c
q2, K2 ≡ p2 + eB

c
q1, K3 ≡ p3

are constants of motion. (Note that K1 and K2 are not homogeneous functions of
degree 1 in the pi .) The (globally) Hamiltonian vector fields corresponding to them
are

XdK1 = ∂

∂q1
, XdK2 = ∂

∂q2
, XdK3 = ∂

∂q3
;

therefore [see (8.19)]

{K1,K2} = XdK1K2 = eB

c
,
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{K2,K3} = XdK2K3 = 0,

{K3,K1} = XdK3K1 = 0,

which implies that the Lie brackets of the vector fields XdKi
are all equal to zero

[see (8.20)].
Proceeding as in Sect. 6.1, we can find the one-parameter group of diffeomor-

phisms, ϕs , generated by an arbitrary linear combination

ai XdKi
= a1 ∂

∂q1
+ a2 ∂

∂q2
+ a3 ∂

∂q3
.

The result can be expressed in the form ϕs
∗qi = qi + ais, ϕs

∗pi = pi (i = 1,2,3).
Thus, the vector fields XdKi

are induced by the action of the additive group R
3 on

T ∗M given by

Rg
∗qi = qi + ai, Rg

∗pi = pi (i = 1,2,3),

for g = (a1, a2, a3) ∈ R
3. One can readily verify that these transformations are

canonical (in fact, Rg
∗ dqi = dqi and Rg

∗ dpi = dpi ; hence Rg
∗ω = ω), give an

action of R
3 on T ∗M , and leave invariant the Hamiltonian (8.67). As in Exam-

ple 8.29, if B �= 0, it is impossible to find a Lie algebra homomorphism from the
Abelian Lie algebra of R3 into C∞(T ∗M), associated with this action.

It may be noticed that the Hamiltonian (8.67) also satisfies
(

q1 ∂

∂q2
− q2 ∂

∂q1
+ p1

∂

∂p2
− p2

∂

∂p1

)
H = 0.

The vector field appearing on the left-hand side of the last equation is the canonical
lift of the infinitesimal generator of rotations about the x3 axis (see Exercise 8.15)
and is globally Hamiltonian

(
q1 ∂

∂q2
− q2 ∂

∂q1
+ p1

∂

∂p2
− p2

∂

∂p1

) (
dpi ∧ dqi + eB

c
dq1 ∧ dq2

)

= −d
{
q1p2 − q2p1 + (eB/2c)

[(
q1)2 + (

q2)2]}
.

Thus,

L3 ≡ q1p2 − q2p1 + eB

2c

[(
q1)2 + (

q2)2]

= q1
(

p2 + eB

2c
q1
)

− q2
(

p1 − eB

2c
q2
)

is a constant of motion. Note that, as shown in Example 8.20, (q1, q2, q3,

p1 − eB
2c

q2,p2 + eB
2c

q1,p3) is a set of canonical coordinates for the symplectic
structure considered here, but the constants of motion K1 and K2 do not coincide
with p1 − eB

2c
q2 and p2 + eB

2c
q1, respectively, for B �= 0.
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Exercise 8.31 Show that

{L3,K1} = −K2, {L3,K2} = K1, {L3,K3} = 0.

Example 8.32 The Hamiltonian function

H = 1

2m

n∑

i=1

(pi)
2 + mω0

2

2

n∑

i=1

(
qi
)2 (8.68)

corresponds to an isotropic harmonic oscillator in n dimensions; m is the mass of
the oscillator and ω0 is its angular frequency. The qi and pi appearing in (8.68)
are the canonical coordinates induced by a set of Cartesian coordinates xi on the
n-dimensional Euclidean space. Defining the complex (row) vector

b ≡ (−ip1 + mω0q
1, . . . ,−ipn + mω0q

n
)
,

the Hamiltonian function (8.68) can be expressed in the form

H = 1

2m
bb†, (8.69)

where b† is the Hermitian adjoint of b (obtained transposing and conjugating the
row b).

Let SU(n) be the group of unitary complex n × n matrices with determinant
equal to 1; then for U ∈ SU(n) the Hamiltonian function (8.69) is invariant under
the transformation

b �→ bU, (8.70)

since by virtue of the unitarity of U , we have bb† �→ bU(bU)† = bUU†b† = bb†.
Furthermore, for each U ∈ SU(n), the transformation (8.70) is canonical as can be
seen noting that

pi = i
bi − bi

2
, qi = bi + bi

2mω0
, (8.71)

where the bi are the components of b, the bar denotes complex conjugation, and

dpi ∧ dqi = i

4mω0

n∑

i=1

(dbi − dbi) ∧ (dbi + dbi) = i

2mω0

n∑

i=1

dbi ∧ dbi.

Equation (8.70) amounts to RU
∗bi = bjU

j
i , where U = (U

j
i ), so that

RU
∗(dpi ∧ dqi

) = i

2mω0

n∑

i=1

RU
∗ dbi ∧ RU

∗ dbi = i

2mω0

n∑

i=1

U
j
i Uk

i dbj ∧ dbk

= i

2mω0

n∑

j=1

dbj ∧ dbj = dpi ∧ dqi.
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(As in previous examples, the use of complex quantities, such as the bi , simplifies
the computations, but is not essential.)

Thus, SU(n) acts on the right on the phase space by means of canonical transfor-
mations and, therefore, the fields X+

i on the phase space, induced by this action, are
Hamiltonian, at least locally. In what follows we shall consider in more detail the
case with n = 2, showing that the vector fields X+ are actually globally Hamiltonian
and that, in contrast to Examples 8.29 and 8.30, the functions μX can be chosen in
such a way that the map X �→ μX is a homomorphism of Lie algebras.

Substituting the matrix U = exp taiXi given by (7.54) into (8.70) and using
(8.71) we find that (cf. Example 7.59)

Rexp taiXi

∗q1 = q1 cos(Kt/2) +
[
a2q2 + 1

mω0

(
a3p1 + a1p2

)] 1

K
sin(Kt/2),

Rexp taiXi

∗q2 = q2 cos(Kt/2) −
[
a2q1 − 1

mω0

(
a1p1 − a3p2

)] 1

K
sin(Kt/2),

Rexp taiXi

∗p1 = p1 cos(Kt/2) + [
a2p2 − mω0

(
a3q1 + a1q2)] 1

K
sin(Kt/2),

Rexp taiXi

∗p2 = p2 cos(Kt/2) − [
a2p1 + mω0

(
a1q1 − a3q2)] 1

K
sin(Kt/2),

and calculating the tangent vector to the curve given by these expressions at t = 0
we obtain the vector field

(
aiXi

)+ = 1

2

[
a2q2 + a3p1 + a1p2

mω0

]
∂

∂q1
+ 1

2

[
−a2q1 + a1p1 − a3p2

mω0

]
∂

∂q2

+ 1

2

[
a2p2 − mω0

(
a3q1 + a1q2)] ∂

∂p1

+ 1

2

[−a2p1 − mω0
(
a1q1 − a3q2)] ∂

∂p2
, (8.72)

which is globally Hamiltonian; its contraction with dθ gives −d(aiμXi
), where

μX1 ≡ 1

2mω0

(
p1p2 + m2ω0

2q1q2),

μX2 ≡ 1

2

(
p1q

2 − p2q
1), (8.73)

μX3 ≡ 1

4mω0

{
(p1)

2 − (p2)
2 + m2ω0

2[(q1)2 − (
q2)2]}

.

Recall that the functions μXi
are not uniquely defined by (8.72); as we shall show

below, with the choice (8.73) one obtains a Lie algebra homomorphism. Note also
that, out of these three constants of motion, only μX2 is a homogeneous function
of degree 1 of the pi , and therefore it is the only one associated with a group of
transformations acting on the configuration space; see (8.26).
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It can readily be verified directly that these functions satisfy the relations

{μXi
,μXj

} =
3∑

k=1

εijk μXk
, (8.74)

which correspond to the relations [Xi ,Xj ] =∑3
k=1 εijkXk satisfied by the basis of

su(2) given by (7.21).
A convenient way of calculating the Poisson bracket on the left-hand side

of (8.74) consists of employing the definition (8.19), which yields {μXi
,μXj

} =
X+

i μXj
, noting that the vector field X+

i is the coefficient of ai on the right-hand
side of (8.72). For instance, from (8.72) and (8.73) we obtain

{μX1,μX2}

= 1

2

(
p2

mω0

∂

∂q1
+ p1

mω0

∂

∂q2
− mω0q

2 ∂

∂p1
− mω0q

1 ∂

∂p2

)
1

2

(
p1q

2 − p2q
1)

= μX3 .

The results established in the preceding paragraphs, in connection with Lie
groups that act on the cotangent bundle of a manifold by means of canonical trans-
formations, also apply if in place of the cotangent bundle of a manifold one con-
siders any symplectic manifold, replacing the fundamental 2-form dθ by the corre-
sponding symplectic form.

Example 8.33 The rotations about the origin in R
3, which form the group SO(3),

leave invariant the sphere S2 as well as its area element, which will be denoted
by ω. The 2-form ω defines a symplectic structure for S2 (see Example 8.18) and,
by virtue of the invariances already mentioned, the vector fields X+ induced by
the action of SO(3) on R

3 are tangent to S2 and are, at least locally, Hamiltonian. In
fact, expressing the vector fields S+

k , given in Example 7.58, in terms of the spherical
coordinates one finds that

S+
1 = sinφ

∂

∂θ
+ cot θ cosφ

∂

∂φ
,

S+
2 = − cosφ

∂

∂θ
+ cot θ sinφ

∂

∂φ
, (8.75)

S+
3 = − ∂

∂φ
,

which shows that these vector fields are tangent to the sphere and contracting them
with ω = sin θ dθ ∧dφ, we obtain −d(sin θ cosφ), −d(sin θ sinφ), and −d cos θ , re-
spectively [cf. (8.49)], thus showing explicitly that the S+

k are locally Hamiltonian.
[Since the spherical coordinates are not defined globally on S2, from the previous
computations we cannot conclude that the S+

k are globally Hamiltonian. For in-
stance, in the domain of the spherical coordinates, ω = d(φ d cos θ), but ω is not an
exact 2-form.]
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In the present case, from (7.63) it follows that Sk = 1
2

∑3
i,j=1 εkij [Si, Sj ], there-

fore, S+
k = 1

2

∑3
i,j=1 εkij [S+

i ,S+
j ], and since according to Theorem 8.7 the Lie

bracket of two locally Hamiltonian vector fields is globally Hamiltonian, the vector
fields S+

k are globally Hamiltonian. It may be noticed that S+
k ω = −dx̂k , where

x̂k is the restriction of the Cartesian coordinate xk to S2 (that is, x̂k = i∗xk , where
i : S2 → R

3 is the inclusion map). Finally, making use of the expressions (8.75) one
finds that

{
x̂i , x̂j

}= S+
i x̂j = εijkx̂

k.

Example 8.34 The so-called Kepler problem corresponds to the motion of a parti-
cle in a central force field with potential energy V = −k/r , where k is a positive
constant and r is the distance from the particle to the center of force. Assuming that
the motion of the particle takes place in the three-dimensional Euclidean space, the
Hamiltonian function expressed in terms of the canonical coordinates induced by a
set of Cartesian coordinates is

H = 1

2M

(
p1

2 + p2
2 + p3

2)− k
√

(q1)2 + (q2)2 + (q3)2
. (8.76)

The Hamiltonian (8.76) is invariant under the transformations on the phase space
induced by the rotations about the origin in the Euclidean space, which implies
the conservation of the angular momentum, Li = εijkq

jpk , with summation over
repeated indices (see Exercise 8.15). But, as is well known, the so-called Runge–
Lenz vector

A ≡ p × (r × p) − mk

r
r, (8.77)

where r is the position vector of the particle, is also a constant of motion (that
is, the functions Ai = pjpjq

i − pjq
jpi − mkqi/

√
qkqk are constants of motion).

Since the Ai are not homogeneous functions of first degree in the pj , the existence
of these constants of motion is not related to transformation groups acting on the
configuration space M = E

3.
Of course, in principle we can find the (possibly local) one-parameter group of

transformations generated by each vector field XdAi
, which must be formed by

canonical transformations that leave H invariant. However, it is possible to relate
the Kepler problem with other problems in such a way that the conservation of the
Ai becomes obvious. In this example we shall restrict ourselves to the trajectories
in phase space on which H has the constant value E = 0. In order to identify the
canonical transformations associated with the conservation of the Ai , we introduce
the new coordinates

Qi = a0
pi

pjpj

, i = 1,2,3,

where a0 is a constant with dimensions of linear momentum times length. Then we
obtain pi = a0Q

i/(QjQj ), and a straightforward computation shows that
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pi dqi = a0
Qi

QjQj
dqi

= d

(
a0

Qiqi

QjQj

)
− a0

QjQj
qi dQi + a0Q

iqi 2Qk dQk

(QjQj )2

= d

(
a0

Qiqi

QjQj

)
+ Pi dQi,

where

Pi ≡ a0
2QkqkQi − QkQkqi

(QjQj )2

so that (Qi,Pi) are canonical coordinates [cf. (8.12)]. Then we have

PiPi = a0
2qiqi

(QjQj )2
.

By combining the foregoing expressions we also have

Pi = 1

a0

(
2pkq

kpi − pkpkq
i
)
. (8.78)

We now introduce the auxiliary Hamiltonian

h ≡ 2mk2a0
2(a0

2 − 2mQiQiH
)−2

which satisfies

dh = 8m2k2a0
2(a0

2 − 2mQiQiH
)−3(

QiQi dH + 2HQi dQi
)
.

Hence, on the hypersurface H = 0,

dh|H=0 = 8m2k2

a0
4

QiQi dH

∣∣∣
H=0

= 4mk

a0
2

r dH

∣∣∣
H=0

,

which means that on this hypersurface the integral curves of Xdh only differ in
parametrization from those of XdH .

In terms of the new canonical coordinates, the auxiliary Hamiltonian h is given
by

h = 1

2m
PiPi, (8.79)

which has the form of the usual Hamiltonian for a free particle of mass m moving in
the three-dimensional Euclidean space [cf. (8.49)] and therefore is invariant under a
group of canonical transformations isomorphic to the group of rigid motions of E3.
Equivalently, the six functions Pi and εijkQ

jPk are constants of the motion (but
only along the integral curves of XdH lying on the hypersurface H = 0). Making
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use of (8.78) one readily verifies that, on the hypersurface H = 0, we have Pi =
−2Ai/a0 and εijkQ

jPk = εijkq
jpk , thus explaining the conservation of angular

momentum and of the Runge–Lenz vector.

A problem in geometrical optics closely related to the Kepler problem of classical
mechanics is the so-called Maxwell’s fish-eye, which is characterized by a refractive
index of the form

n = a

b + r2
, (8.80)

where a and b are real constants (with dimensions of length squared) and r is the
distance from a given point O . (As usual in this context, we assume that light prop-
agates in three-dimensional Euclidean space.) The spherical symmetry of the func-
tion (8.80) implies that the corresponding Hamiltonian (8.55) is invariant under the
canonical transformations induced on T ∗

E
3 by the rigid rotations about O . This

invariance leads to the conservation of the components of the “angular momentum”
Li = εijkq

jpk , where the qi,pi are the coordinates induced by a Cartesian coordi-
nate system with origin O . (In fact, the Li are conserved if the refractive index is
any function of r only.)

Exercise 8.35 Show that the specific form of the refractive index (8.80) implies that
the Cartesian components of the vector

r × (p × r) − a

2

p√
p · p

(8.81)

[cf. (8.77)] are also conserved, that is, the functions qjqjpi − qjpjqi

− api/(2
√

pjpj ) are constants of motion.

Making use of the conservation of the vector (8.81) one can readily show that
the vector p traces a conic with one of its foci at the origin and that the light rays
are circles or arcs of circles. In a similar manner, making use of conservation of
the Laplace–Runge–Lenz vector (8.77), in the case of the Kepler problem one finds
that the orbits are conics with one of the foci at the origin and the momentum traces
circles or arcs of circles [see, e.g., Goldstein (1980, Chap. 3)].

8.6 The Rigid Body and the Euler Equations

A nice application of the formalism developed in this chapter and the previous ones
is found in the study of the rigid body motion. As we shall show, by restricting
ourselves to the motion of a rigid body with a fixed point, the configuration space
can be identified with the group of rotations in the three-dimensional Euclidean
space, SO(3).

In order to study the motion of a rigid body with a fixed point, it is convenient to
consider an orthonormal basis {e′

1, e′
2, e′

3} fixed in the body, with the orientation of
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the canonical basis {e1, e2, e3} of R3. Then, the configuration of the rigid body can
be represented by means of a real 3 × 3 matrix whose columns are the components
of e′

1, e′
2, e′

3 with respect to the canonical basis. This matrix is orthogonal, as a
consequence of the fact that the basis {e′

1, e′
2, e′

3} is orthonormal, and its determinant
is equal to 1, by virtue of the assumed orientation of the basis. In this manner we
have a one-to-one correspondence between the configurations of the rigid body and
the orthogonal 3 × 3 matrices with determinant 1; thus, the configuration space of a
rigid body with a fixed point can be identified with the underlying manifold of the
group SO(3).

Using the definitions given in Example 7.58, one finds, for instance, that

exp tS3 =
⎛

⎝
cos t −sint 0
sin t cos t 0

0 0 1

⎞

⎠ ,

as can readily be verified by noting that the matrices

γt ≡
⎛

⎝
cos t −sint 0
sin t cos t 0

0 0 1

⎞

⎠

form a one-parameter subgroup of GL(3,R) and calculating γ ′
0 one obtains S3;

therefore γt = exp tS3 (see Sect. 7.4).
According to the definition given above, if the rigid body is initially at the con-

figuration represented by g ∈ SO(3), then (exp tS3)g represents the configuration
obtained by rotating the body about the e3 axis through an angle t . Note that if
the configuration of the rigid body is represented by the matrix whose rows are the
components of e′

1, e′
2, e′

3 with respect to the canonical basis, then the configuration
obtained by rotating the body about the e3 axis through an angle t corresponds to
g exp(−tS3).

According to the results established in the proof of Theorem 7.48, the infinitesi-
mal generator of the one-parameter group of transformations ϕt (g) = (exp tS3)g is
the right-invariant vector field whose value at the identity corresponds to the ma-
trix S3, which will be denoted by Ṡ3. Hence, Ṡ3 is the infinitesimal generator of
rotations of the rigid body about the e3 axis. In a similar way, the right-invariant
vector field Ṡk , whose value at the identity corresponds to the matrix Sk , is the in-
finitesimal generator of the rotations of the body about the ek axis.

On the other hand, for g ∈ SO(3), the matrix g(exp tSk) corresponds to the con-
figuration of the rigid body that, being originally in the configuration represented
by g, has been rotated through an angle t about the e′

k axis fixed in the body. This
implies that the left-invariant vector field Sk , whose value at the identity corresponds
to the matrix Sk , is the infinitesimal generator of rotations about the e′

k axis.
The vector fields Sk and Ṡk on the configuration space M = SO(3) define Hamil-

tonian vector fields Sk and Ṡk on the phase space T ∗SO(3) (their canonical lifts),
which correspond to the functions

Li ≡ Si θ and Ki ≡ Ṡi θ, (8.82)
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respectively [see (8.24)]. In terms of the notation used in (8.24), Li = fSi
and

Ki = fṠi
. Then, according to (8.30) and (7.63), the Poisson brackets for the func-

tions Li are given by

{Li,Lj } = {fSi
, fSj

} = f[Si ,Sj ] =
3∑

k=1

εijkfSk
=

3∑

k=1

εijkLk. (8.83)

Since the left-invariant vector field Si is the infinitesimal generator of rotations about
the e′

i axis fixed in the body, the function Li corresponds to the ith component of
the angular momentum of the rigid body with respect to the axes fixed in the body.
Similarly, the function Ki corresponds to the ith component of the angular momen-
tum of the rigid body with respect to the canonical basis of R3 (the axes “fixed in
space”). From Theorem 7.48 and (7.63) it follows that [Ṡi , Ṡj ] = −∑3

k=1 εijkṠk ,
and using again (8.30) it follows that the Poisson brackets for the functions Ki are
given by

{Ki,Kj } = −
3∑

k=1

εijkKk. (8.84)

Finally, from Theorem 7.49 we see that the Lie bracket of each of the vector fields
Si with each of the fields Ṡj vanishes; hence

{Li,Kj } = 0. (8.85)

If (x1, x2, x3) is a local coordinate system for SO(3), the vector fields Ṡk can be
expressed in the form

Ṡk = Mi
k

∂

∂xi
, (8.86)

where the Mi
k are real-valued functions defined on the domain of the coordinates xi .

From (8.82) one concludes that the components Ki of the angular momentum of the
rigid body with respect to the axes fixed in space are given in terms of the canonical
coordinates qi , pi induced by the xi by means of

Ki = (
π∗Mj

i

)
pj (8.87)

[see (8.26)] (since qi = π∗xi , the only effect of π∗ on the expressions for the M
j
i

is replacing the variables xi by qi ). The 1-forms ω̇i that form the dual basis to {Ṡi}
are right-invariant and have the local expression

ω̇k = M̃k
i dxi, (8.88)

where (M̃i
j ) is the inverse of the matrix (Mi

j ) (i.e., M̃i
jM

j
k = δi

k).

The functions M̃k
i relate the angular velocity of the body with respect to the

axes fixed in the space with the velocities dxj (g(t))/dt . If t �→ g(t) is a dif-
ferentiable curve in SO(3) that represents the configuration of a rigid body as
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a function of time t , then the tangent vector to that curve is given locally by
(dxi(g(t))/dt)(∂/∂xi)g(t) and can also be expressed as a linear combination of the
tangent vectors (Ṡi )g(t) in the form Ωi(t)(Ṡi )g(t). Since Ṡi is the infinitesimal gen-
erator of rotations about ei , Ωi(t) is the angular velocity of the body about the ei

axis. From the equality (dxi(g(t))/dt)(∂/∂xi)g(t) = Ωi(t)(Ṡi )g(t) and (8.86), there
results

Ωi(t) = M̃i
j

(
g(t)

)dxj (g(t))

dt
(8.89)

or, by abuse of notation,

Ωi = M̃i
j

dxj

dt
. (8.90)

In a similar way, the basis {Si} of so(3) and its dual, {ωi}, have expressions of
the form

Sk = M ′i
k

∂

∂xi
, ωk = M̃ ′k

i dxi, (8.91)

where the M ′i
k are real-valued functions defined on the domain of the coordinates

xi and (M̃ ′i
j ) is the inverse of the matrix (M ′i

j ). The components of the angular
momentum of the rigid body with respect to the axes fixed in the body are given by

Li = (
π∗M ′j

i

)
pj , (8.92)

and

Ω ′i = M̃ ′i
j

dxj

dt
(8.93)

is the component of the angular velocity of the body about the e′
i axis.

Exercise 8.36 Show that the relations (8.83) are equivalent to the Maurer–Cartan
equations for the left-invariant 1-forms ωi .

Euler Angles A commonly employed coordinate system for SO(3) is that formed
by the Euler angles, though there are several slightly different forms of defining
them. Following the convention of parameterizing a rotation g ∈ SO(3) by means
of the three angles φ(g), θ(g), and ψ(g) in such a way that

g = (
expφ(g)S3

)(
exp θ(g)S1

)(
expψ(g)S3

)
, (8.94)

the configuration corresponding to g is obtained rotating the body first about the e′
3

axis by an angle φ(g), continuing with a rotation by θ(g) about the e′
1 axis and,

finally, with a rotation by ψ(g) about e′
3. Since these rotations are made about the

axes fixed in the body, according to the discussion at the beginning of this section,
each of these rotations multiplies by the right those applied first. In order to have
a coordinate chart, the values of the Euler angles are restricted by 0 < φ < 2π,

0 < θ < π,0 < ψ < 2π .
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The explicit form of the functions Mi
j , M̃i

j , M ′i
j , and M̃ ′i

j , can be conveniently

obtained with the aid of Theorem 7.35. Calculating the product g−1 dg, from (8.94)
we obtain

g−1 dg = (
e−ψS3 e−θS1 e−φS3

)
d
(
eφS3eθS1 eψS3

)

= e−ψS3 e−θS1S3 dφ eθS1eψS3 + e−ψS3S1 dθ eψS3 + S3 dψ. (8.95)

On the other hand, we can see that, for instance,

e−ψS3S1eψS3 = (cosψ)S1 − (sinψ)S2. (8.96)

Indeed, denoting by R(ψ) the left-hand side of (8.96), differentiating with respect to
ψ and using (7.63) one finds that dR/dψ = −e−ψS3S3S1eψS3 + e−ψS3S1S3eψS3 =
−e−ψS3S2eψS3 . In a similar manner one obtains d2R/dψ2 = e−ψS3 [S3, S2]eψS3 =
−e−ψS3S1eψS3 = −R; therefore, R = (cosψ)A + (sinψ)B , where A and B are
matrices that do not depend on ψ . Evaluating R and dR/dψ at ψ = 0 we have
R(0) = S1 = A and (dR/dψ)(0) = −S2 = B , thus showing the validity of (8.96).

Now making use of (8.96) and the relations similar to it obtained by cyclic per-
mutations of the indices, from (8.95) one arrives at the expression

g−1 dg = e−ψS3(cos θ S3 + sin θ S2)e
ψS3 dφ + (cosψ S1 − sinψ S2)dθ + S3 dψ

= [
cos θ S3 + sin θ(cosψ S2 + sinψ S1)

]
dφ + (cosψ S1 − sinψ S2)dθ

+ S3 dψ

= (sin θ sinψ dφ + cosψ dθ)S1 + (sin θ cosψ dφ − sinψ dθ)S2

+ (cos θ dφ + dψ)S3, (8.97)

where the coefficient of the matrix Si is the 1-form ωi [see (7.46)] and comparing
with (8.91) we obtain the matrix (M̃ ′i

j ). Then, it is easy to calculate the dual basis

to {ωi}, and the result is

S1 = csc θ sinψ
∂

∂φ
+ cosψ

∂

∂θ
− cot θ sinψ

∂

∂ψ
,

S2 = csc θ cosψ
∂

∂φ
− sinψ

∂

∂θ
− cot θ cosψ

∂

∂ψ
, (8.98)

S3 = ∂

∂ψ
.

(The last of these equations also follows directly from the definition of the Euler
angles, taking into account that S3 generates rotations about the e′

3 axis.) It should
be noticed that the expressions on the right-hand side of (8.98) are not defined at
θ = 0, but θ does not vanish in the domain of the coordinate system φ, θ,ψ . In fact,
a straightforward computation gives ω1 ∧ ω2 ∧ ω3 = sin θ dθ ∧ dφ ∧ dψ , but the
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left-invariant 3-form ω1 ∧ ω2 ∧ ω3 is everywhere different from zero. Then, using
(8.91), (8.92), and (8.98) we find that

L1 = csc θ sinψ pφ + cosψ pθ − cot θ sinψ pψ,

L2 = csc θ cosψ pφ − sinψ pθ − cot θ cosψ pψ, (8.99)

L3 = pψ,

where, by abuse of notation, the variables π∗φ, π∗θ , and π∗ψ have been denoted by
φ, θ , and ψ , respectively; that is, in (8.99), the Euler angles are regarded as variables
defined on the phase space T ∗SO(3).

The 1-forms ω̇i can readily be obtained by means of the relation ω̇i = −ι∗ωi (see
Exercise 7.31) using the fact that ι∗φ = −ψ , ι∗θ = −θ , and ι∗ψ = −φ [see (8.94)];
in this way we obtain, for instance,

Ṡ1 = csc θ sinφ
∂

∂ψ
+ cosφ

∂

∂θ
− cot θ sinφ

∂

∂φ
,

Ṡ2 = −csc θ cosφ
∂

∂ψ
+ sinφ

∂

∂θ
+ cot θ cosφ

∂

∂φ
, (8.100)

Ṡ3 = ∂

∂φ
,

and, therefore,

K1 = csc θ sinφ pψ + cosφ pθ − cot θ sinφ pφ,

K2 = −csc θ cosφ pψ + sinφ pθ + cot θ cosφ pφ, (8.101)

K3 = pφ.

Dynamics of a Rigid Body If the curve t �→ g(t) in SO(3) corresponds to the
motion of a rigid body with a fixed point, from the elementary definition of the
kinetic energy of a particle, it follows that the kinetic energy of the rigid body is
given by EK = 1

2IijΩ
′iΩ ′j , where Ω ′i (t) is the component of the angular velocity

of the body about the e′
i axis and the constants Iij = Iji are the components of the

inertia tensor of the body with respect to the basis {e′
1, e′

2, e′
3}. From (8.93) and

(8.91) it follows that

EK = 1

2
Iij

(
M̃ ′i

k dxk ⊗ M̃ ′j
l dxl

)
(g′

t , g
′
t ) = 1

2

(
Iijω

i ⊗ ωj
)
(g′

t , g
′
t ), (8.102)

where g′
t is the tangent vector to the curve t �→ g(t).

The tensor field Iijω
i ⊗ ωj , appearing in (8.102), is symmetric and positive

definite (excluding the case where the rigid body is formed by point particles
aligned on an axis passing through the fixed point of the body); therefore it is
a metric tensor for the manifold SO(3). Furthermore, since the Iij are constant
and the ωi are left-invariant 1-forms, Iijω

i ⊗ ωj is a left-invariant metric, i.e.,
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Lg
∗(Iijω

i ⊗ ωj ) = Iijω
i ⊗ ωj for g ∈ SO(3). In other words, for each g ∈ SO(3),

the transformation Lg , from SO(3) onto itself, is an isometry and the right-invariant
vector fields on SO(3) are Killing vector fields for this metric, regardless of the val-
ues of the components of the inertia tensor Iij . Making use of the local expression
for the ωk given in (8.91), we can also write the metric tensor in the standard form,

Iijω
i ⊗ ωj = Iij M̃

′i
kM̃

′j
l dxk ⊗ dxl = gkl dxk ⊗ dxl, (8.103)

where gkl ≡ Iij M̃
′i
kM̃

′j
l .

It should be stressed that all the rigid bodies with a fixed point possess the same
configuration space [the underlying manifold of the group SO(3)], but the metric on
this manifold is given by the inertia tensor of the body.

The vector fields Si form a rigid basis with respect to the metric Iijω
i ⊗ ωj .

Comparing equations (7.63) and (6.62), and using (6.63) it follows that the con-
nection 1-forms for the corresponding Riemannian connection, with respect to this
basis, are

Γij = −1

2

3∑

m=1

(Iimεmjk − Ijmεmik − Ikmεmij )ω
k.

(See also Appendix B.)
In the particular case where Iij = Iδij , where I is a constant (which corresponds

to the so-called spherical top), the left-invariant vector fields Si are also Killing vec-
tor fields. Indeed, we have £Si

(I δjkω
j ⊗ ωk) = Iδjk[(£Si

ωj ) ⊗ ωk + ωj ⊗ £Si
ωk];

on the other hand, from (3.39), (7.63), the Maurer–Cartan equations, and (3.27),
£Si

ωj = Si dωj + d(Si ωj ) = Si (− 1
2εjklω

k ∧ ωl) = εij lω
l ; hence,

£Si

(
Iδjkω

j ⊗ ωk
)= I (εikm + εimk)ω

m ⊗ ωk = 0.

In this case, the connection 1-forms for the basis formed by the Si are Γ i
j =

− 1
2Iεijkω

k and from the second Cartan structural equations (5.18) one finds that
Ri

j = 1
4Iωi ∧ ωj , or, equivalently, Rijkl = 1

4I (δikδjl − δilδjk), which corresponds
to a space of constant curvature [see (6.100)]. With this metric, SO(3) is locally
isometric to the sphere S3. (However, SO(3) and S3 are globally distinct; whereas
S3 is simply connected, SO(3) is not.) Using, for instance, the expressions given
by (8.97) for the 1-forms ωi in terms of the Euler angles one finds that the metric
Iδijω

i ⊗ ωj is

I
[
dθ ⊗ dθ + dφ ⊗ dφ + dψ ⊗ dψ + cos θ(dφ ⊗ dψ + dψ ⊗ dφ)

]
.

Exercise 8.37 Show that if (Iij ) = diag(I1, I1, I3) (a symmetric top), then S3 is a
Killing vector field of the metric Iijω

i ⊗ ωj .
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Going back to the general case, from (8.102) and (8.103) it follows that the ki-
netic energy of a rigid body with a fixed point can also be expressed in the form

T = 1

2

(
π∗gij

)
pipj , (8.104)

where (gij ) is the inverse of the matrix gij ≡ IklM̃
′k
i M̃

′l
j [cf. (8.47)]. (In contrast

to EK, T is a function defined on the phase space.) According to (8.92), we also
have

T = 1

2
I ijLiLj , (8.105)

where (I ij ) denotes the inverse of the matrix (Iij ). The standard Hamiltonian func-
tion for a rigid body is the sum of its kinetic and potential energies. If the axes of
the coordinate system fixed in the body are principal axes of the inertia tensor [with
respect to which the matrix (Iij ) is diagonal, (Iij ) = diag(I1, I2, I3) and, therefore,
(I ij ) = diag(1/I1,1/I2,1/I3)], the Hamiltonian is then

H = L1
2

2I1
+ L2

2

2I2
+ L3

2

2I3
+ π∗V, (8.106)

where I1, I2, I3 are the so-called principal moments of inertia [see (8.105)] and V

corresponds to the potential energy. From (8.43), together with (8.106), (8.83), and
the properties of the Poisson bracket that follow from the definition (8.19), we find
that

dL1

dt
= {H,L1}

= 1

I1
{L1,L1}L1 + 1

I2
{L2,L1}L2 + 1

I3
{L3,L1}L3 + {π∗V,L1}

= − 1

I2
L2L3 + 1

I3
L2L3 + {π∗V,L1}.

The functions Li appearing in (8.105) and (8.106) are generating functions of the
rotations of the rigid body about the axes fixed in the body [see (8.82)]. However,
according to its elementary definition, the angular momentum should depend lin-
early on the angular velocity. From the Hamilton equations (8.36) and (8.104) one
finds that

dqi

dt
= ∂H

∂pi

= ∂T

∂pi

= (
π∗gij

)
pj .

Hence, making use of (8.92) and (8.93),

Li = (
π∗M ′j

i

)
pj = π∗(M ′j

i gjk

)dqk

dt
= π∗(M ′j

i gjkM
′k
l

)
Ω ′l = IilΩ

′l .
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Thus, with respect to the principal axes of the inertia tensor, Li = IiΩ
′i (without

sum on i), and we have

I1
dΩ ′1

dt
− (I2 − I3)Ω

′2Ω ′3 = N ′
1, (8.107)

where N ′
1 ≡ {π∗V,L1}. In an analogous way we obtain

I2
dΩ ′2

dt
− (I3 − I1)Ω

′1Ω ′3 = N ′
2,

I3
dΩ ′3

dt
− (I1 − I2)Ω

′1Ω ′2 = N ′
3,

(8.108)

with N ′
i ≡ {π∗V,Li}. Since Li is a generating function of rotations about the e′

i axis
(fixed in the body), the functions N ′

i correspond to the components of the torque
with respect to the axes fixed in the body. Equations (8.107) and (8.108) are known
as the Euler equations.

When V = 0, the torque is equal to zero and the Hamiltonian (8.106) reduces to
the kinetic energy T , which is given by (8.105) or by (8.104); therefore, the Euler
equations (8.107) and (8.108) with N ′

i = 0 amount to the equations for the geodesics
of the metric Iijω

i ⊗ ωj .
Finally, we consider the case of a symmetric rigid body with a fixed point in a

uniform gravitational field. Choosing, as usual, I1 = I2 and taking the fixed point of
the body as the origin of the coordinate systems fixed in space and in the body, from
(8.106) and (8.99) one finds that

H = 1

2I1

[
pθ

2 + (pφ − cos θ pψ)2

sin2 θ

]
+ pψ

2

2I3
+ mgl cos θ, (8.109)

where m is the mass of the body and l is the distance from the fixed point to the
center of mass. Since H does not depend on φ, ψ , and t , the Hamilton equations
(8.36) imply that

pφ = const, pψ = const, H = const(≡ E) (8.110)

(i.e., K3 and L3 are constants of motion; cf. Exercise 8.37). On the other hand

dθ

dt
= ∂H

∂pθ

= pθ

I1
, (8.111)

therefore, from (8.109)–(8.111) one obtains the separated equation

I1

2

(
dθ

dt

)2

+ (pφ − cos θ pψ)2

2I1 sin2 θ
+ mgl cos θ = E′ ≡ E − pψ

2

2I3
, (8.112)

which is usually obtained by means of the Lagrangian formalism [see, e.g., Gold-
stein (1980, Sects. 5–7)].
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8.7 Time-Dependent Formalism

In the foregoing sections we have restricted ourselves to the case where the Hamil-
tonian is a real-valued function defined on the phase space. The Hamilton equations
(8.36) then constitute an autonomous system of ODEs (that is, the right-hand sides
of the Hamilton equations (8.36) do not depend explicitly on t). However, the for-
malism can readily be extended to the more general case where the Hamiltonian
depends explicitly on time, and even in those cases where a given Hamiltonian does
not depend explicitly on time, it is convenient to consider canonical transformations
that lead to a new Hamiltonian that may depend on time.

Throughout this section, P will denote a 2n-dimensional differentiable manifold,
which in many cases will be the cotangent bundle of some n-dimensional differen-
tiable manifold. We begin by noticing that for a given 2-form Ω on P × R, of the
form Ω = dpi ∧ dqi − dH ∧ dt , where (qi,pi, t) is a local system of coordinates
on P × R and H ∈ C∞(P × R), there exists a unique vector field A ∈ X(P × R)

such that At = 1 and A Ω = 0. In fact, a straightforward computation shows that
these two conditions imply that

A = ∂H

∂pi

∂

∂qi
− ∂H

∂qi

∂

∂pi

+ ∂

∂t

and therefore the integral curves of A are determined by the Hamilton equations

d(qi ◦ C)

ds
= ∂H

∂pi

◦ C,
d(pi ◦ C)

ds
= −∂H

∂qi
◦ C,

d(t ◦ C)

ds
= 1. (8.113)

The last equation, which amounts to At = 1, means that the integral curves of A
are parametrized by t , which represents the time. In what follows t will denote the
natural coordinate of R, but qi,pi need not be coordinates on P (for instance, the
functions x and r =√

x2 + y2, where (x, y) are the natural coordinates of R2, form
a coordinate system on R × R (that covers, e.g., the half-plane y > 0); whereas x

is the natural coordinate on the first copy of R, r is not a coordinate on the second
copy).

The local expression of Ω considered above follows from dΩ = 0 and the con-
dition that at each point x ∈ P × R, the linear mapping from Tx(P × R) into
T ∗

x (P × R), given by vx �→ vx Ωx , has rank 2n. The kernel of this mapping has
dimension one and is generated by Ax . (Actually, the Darboux Theorem guaran-
tees the local existence of 2n functionally independent functions, Pi,Q

i , such that
Ω = dPi ∧ dQi . By means of a canonical transformation (see below) one can take
Ω to the desired form.)

Symmetries and Constants of Motion As shown in Sect. 8.3, in the case where
the time evolution of a mechanical system is defined by a Hamiltonian vector field,
XdH , on T ∗M , a function f ∈ C∞(T ∗M) is a constant of motion if and only if
the vector field Xdf generates a one-parameter group of canonical transformations
that leave the Hamiltonian invariant (i.e., Xdf H = 0). Even for such mechanical
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systems, there exist constants of motion that depend explicitly on time (see, e.g.,
Example 8.38 below), which therefore are not related with symmetries in the frame-
work developed in the preceding sections. As we shall show, whenever the evolution
equations can be expressed in the form of the Hamilton equations, any constant of
motion (that may explicitly depend on time) is associated with a one-parameter
group of symmetries.

We will say that the vector field X on P ×R is a symmetry of Ω if £XΩ = 0. As
a consequence of the formula £XΩ = X dΩ + d(X Ω), and the fact that dΩ = 0,
we see that X is a symmetry of Ω if and only if the 1-form X Ω is closed (cf.
Lemma 8.5). Thus, if X is a symmetry of Ω there exists, locally, a function χ ∈
C∞(P × R) such that X Ω = −dχ . Then, the function χ is a constant of motion,
i.e., Aχ = 0. Indeed,

Aχ = A dχ = −A (X Ω) = X (A Ω) = 0.

The vector field A satisfies the symmetry condition £AΩ = 0, but no nontrivial
constant of motion is associated with A, since A Ω = 0.

Conversely, given a constant of motion, χ , there exists a vector field X, defined
up to the addition of a multiple of A, such that X Ω = −dχ (then X is a symmetry
of Ω). In fact, writing

X = Ai ∂

∂qi
+ Bi

∂

∂pi

+ C
∂

∂t

the condition X Ω = −dχ amounts to

−dχ = X
(
dpi ∧ dqi − dH ∧ dt

)

= (Xpi)dqi − (
Xqi

)
dpi − (XH)dt + (Xt)dH

= Bi dqi − Ai dpi − (XH)dt + C dH,

that is,

∂χ

∂qi
= −Bi − C

∂H

∂qi
,

∂χ

∂pi

= Ai − C
∂H

∂pi

,
∂χ

∂t
= Ai ∂H

∂qi
+ Bi

∂H

∂pi

.

From the first two equations we find that

Ai = ∂χ

∂pi

+ C
∂H

∂pi

, Bi = − ∂χ

∂qi
− C

∂H

∂qi
,

and substituting into the last equation we obtain

∂χ

∂t
= ∂χ

∂pi

∂H

∂qi
− ∂χ

∂qi

∂H

∂pi

,

which is equivalent to the assumed condition Aχ = 0. Thus, we have

X = ∂χ

∂pi

∂

∂qi
− ∂χ

∂qi

∂

∂pi

+ CA, (8.114)

where C is an arbitrary real-valued differentiable function [cf. (8.17)].
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Thus, any constant of motion (which possibly depends explicitly on the time) is
associated with a symmetry of Ω , but, in contrast to the result derived in Sect. 8.3,
we do not necessarily have XH = 0 (cf. Example 3.17).

Example 8.38 The vector field

A = p1

m

∂

∂q1
+ p2

m

∂

∂q2
− mg

∂

∂p2
+ ∂

∂t
, (8.115)

where m and g are constants, is the only vector field that satisfies the conditions
At = 1 and A Ω = 0, with Ω given by

Ω = dp1 ∧ dq1 + dp2 ∧ dq2 − d

(
p1

2 + p2
2

2m
+ mgq2

)
∧ dt, (8.116)

i.e., H = (p1
2 + p2

2)/(2m) + mgq2 is a Hamiltonian function (which represents
the total energy of a particle of mass m in a uniform gravitational field, with g being
the acceleration of gravity) for the equations of motion defined by A.

Even though (∂/∂q2)H = mg �= 0, one can verify that £∂/∂q2Ω = 0; in fact, one
finds that (∂/∂q2) Ω = −d(p2 + mgt), i.e., ∂/∂q2 is a symmetry of Ω . Hence,
according to the discussion above, χ ≡ p2 + mgt is a constant of motion, which
explicitly depends on time. (Note that H does not explicitly depend on t in the
coordinate system employed here.)

If X is a symmetry of Ω , then

(£XA) Ω = £X(A Ω) − A (£XΩ) = 0,

and therefore £XA must be proportional to A.
For a given vector field A, the set of constants of motion is a vector space over R

(with the usual operations of sum of functions and multiplication by scalars) which
can be made into a Lie algebra by defining

{χ1, χ2} ≡ X1χ2, (8.117)

where X1 is a vector field such that X1 Ω = −dχ1 [cf. (8.19)]. As we have shown,
the vector field X1 is defined up to the addition of a multiple of A, but this ambiguity
has no effect on the definition (8.117) since Aχ2 = 0. The bracket {χ1, χ2} is indeed
a constant of motion because A{χ1, χ2} = AX1χ2 = [A,X1]χ2 = 0, since [A,X1] =
−[X1,A] is proportional to A.

Furthermore, if X2 is a vector field such that X2 Ω = −dχ2, [X1,X2] is also a
symmetry of Ω (see Exercise 2.30) and

[X1,X2] Ω = (£X1X2) Ω = £X1(X2 Ω) = −£X1 dχ2 = −d{χ1, χ2}
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[cf. (8.18)]. We also have

{χ1, χ2} = X1χ2 = −X1 (X2 Ω) = 2Ω(X1,X2),

which implies the skew-symmetry of the bracket [cf. (8.22)].

Exercise 8.39 Show that the bracket (8.117) satisfies the Jacobi identity.

From (8.114) and (8.117) one obtains the local expression

{χ1, χ2} = ∂χ1

∂pi

∂χ2

∂qi
− ∂χ1

∂qi

∂χ2

∂pi

[cf. (8.21)].

Canonical Transformations The coordinates qi,pi , as well as the Hamilto-
nian H , in terms of which the 2-form Ω has the form dpi ∧ dqi − dH ∧ dt , are
not defined uniquely by Ω . There is an infinite number of sets {Qi,Pi,K} such
that (Qi,Pi, t) is a coordinate system on P × R and Ω = dPi ∧ dQi − dK ∧ dt

(which implies that the integral curves of A are determined by equations of the form
(8.113), with {Qi,Pi,K, t} in place of {qi,pi,H, t}). Indeed, the equality

dpi ∧ dqi − dH ∧ dt = dPi ∧ dQi − dK ∧ dt

is equivalent, e.g., to

d
(
pi dqi − H dt − Pi dQi + K dt

)= 0.

In turn, this is locally equivalent to the existence of a function F such that

pi dqi − H dt − Pi dQi + K dt = dF ; (8.118)

cf. Example 3.16. (Note that we consider these transformations as coordinate trans-
formations, that is, as passive transformations that do not affect the points of the
manifold P ×R.) If qi , Qi , and t are functionally independent, they can be used as
local coordinates on P ×R, and from (8.118) it follows that

pi = ∂F

∂qi
, Pi = − ∂F

∂Qi
, K − H = ∂F

∂t
. (8.119)

The function F is a generating function of the canonical transformation.

Example 8.40 The coordinate transformation

q1 = Q1 + Q2, q2 = c

eB
(P1 − P2),

p1 = 1

2
(P1 + P2), p2 = eB

2c

(
Q2 − Q1),
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with K = H , where e, B , and c are nonzero constants, is canonical. In fact, one
readily verifies that

dp1 ∧ dq1 + dp2 ∧ dq2 = dP1 ∧ dQ1 + dP2 ∧ dQ2; (8.120)

moreover,

p1 dq1 + p2 dq2 − P1 dQ1 − P2 dQ2 = d

[
eB

2c
q2(Q2 − Q1)

]

but the set {q1, q2,Q1,Q2, t} is not functionally independent and, therefore, the
relations (8.119) make no sense. However, (8.120) also follows from

p1 dq1 − q2 dp2 + Q1 dP1 + Q2 dP2

= d

[
1

2

(
q1 − 2c

eB
p2

)
P1 + 1

2

(
q1 + 2c

eB
p2

)
P2

]

and (among other choices) the set {q1,p2,P1,P2, t} is functionally independent.
Therefore, using (q1,p2,P1,P2, t) as local coordinates on P × R, the coordinate
transformation considered here can be reproduced from the generating function F =
1
2 (q1 − 2c

eB
p2)P1 + 1

2 (q1 + 2c
eB

p2)P2, appearing on the right-hand side of the last
equation. One can readily verify that the relations

p1 = ∂F

∂q1
, q2 = − ∂F

∂p2
, Q1 = ∂F

∂P1
, Q2 = ∂F

∂P2
,

are equivalent to the given coordinate transformation.

Alternative Hamiltonians It is not widely known that for a given vector field
A ∈ X(P × R), with At = 1, there exists an infinite number of closed 2-forms of
rank 2n, Ω , such that A Ω = 0, which are not multiples of one another (except in
the case where dimP = 2; see below). For instance, one readily finds that the vector
field (8.115), considered in Example 8.38, contracted with the closed 2-form

Ω ′ = dp2 ∧ dq1 + dp1 ∧ dq2 − d

(
p1p2

m
+ mgq1

)
∧ dt, (8.121)

yields zero, but Ω ′ cannot be written as some real-valued function multiplied by the
2-form Ω given by (8.116). In fact, by means of a straightforward computation, one
readily verifies that Ω and Ω ′ can be expressed as

Ω = dp1 ∧ d

(
q1 + p1p2

m2g

)
+ d(p2 + mgt) ∧ d

(
q2 + p1

2 + p2
2

2m2g

)
,

Ω ′ = d(p2 + mgt) ∧ d

(
q1 + p1p2

m2g

)
+ dp1 ∧ d

(
q2 + p1

2 + p2
2

2m2g

)
.

(8.122)
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The vector field ∂/∂q2, which is a symmetry of Ω , is also a symmetry of Ω ′, but
now (∂/∂q2) Ω ′ = −dp1, which implies that p1 is a constant of motion.

The only way in which the vector field A satisfies the relations A Ω = 0 and
A Ω ′ = 0, considered in most textbooks on analytical mechanics [e.g., Goldstein
(1980, Sect. 9-1)], is the trivial one, where Ω ′ differs from Ω at most by a constant
factor.

For a given vector field A ∈ X(P × R) such that At = 1, the local existence
of an infinite number of closed 2-forms of rank 2n, Ω , such that A Ω = 0
can be demonstrated in the following way. Let χ1, χ2, . . . , χ2n be 2n function-
ally independent constants of motion (i.e., Aχi = 0, i = 1,2, . . . ,2n); then Ω ≡
dχ1 ∧ dχ2 + dχ3 ∧ dχ4 + · · · + dχ2n−1 ∧ dχ2n is closed, has rank 2n (as a conse-
quence of the assumed functional independence of the χi ), and we have

A Ω = (
Aχ1)dχ2 − (

Aχ2)dχ1 + · · · + (
Aχ2n−1)dχ2n − (

Aχ2n
)

dχ2n−1

= 0,

since, by hypothesis, Aχi = 0, for i = 1,2, . . . ,2n. The ordered set of constants of
motion {χ1, χ2, . . . , χ2n} is not unique; we can simply make permutations of the
functions χi [as in (8.122)] or we can replace χ1, χ2, . . . , χ2n by any functionally
independent set of functions of them.

Conversely, if Ω is a closed 2-form of rank 2n such that A Ω = 0, according
to the Darboux Theorem, Ω is locally of the form dpi ∧ dqi , with the set {qi,pi}
being functionally independent. Then, from A Ω = 0 it follows that the qi,pi are
constants of motion.

The Case dimP = 2 In the special case where dimP = 2, locally there exist es-
sentially only two functionally independent constants of motion, χ1, χ2; any other
two functionally independent constants of motion, χ ′1, χ ′2, must be functions of
χ1, χ2 only, hence

dχ ′1 ∧ dχ ′2 = ∂(χ ′1, χ ′2)
∂(χ1, χ2)

dχ1 ∧ dχ2.

Furthermore, the Jacobian determinant appearing in the last equation must be a func-
tion of χ1 and χ2 only and, therefore, is a constant of motion (cf. Exercise 3.18).
Thus, when dimP = 2, the 2-form Ω is not unique, but is defined up to multiplica-
tive constant of motion (see Example 8.44, below).

We can give another proof of the assertion above, which allows us to find the
2-forms Ω explicitly, without assuming that we know explicitly all the constants of
motion.

In terms of an arbitrary coordinate system (x, y, t) on P ×R, the vector field A
can be written as

A = f
∂

∂x
+ g

∂

∂y
+ ∂

∂t
, (8.123)
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where f,g ∈ C∞(P ×R) are given, and any 2-form on P ×R has the local expres-
sion

Ω = 2Ω12 dx ∧ dy + 2Ω13 dx ∧ dt + 2Ω23 dy ∧ dt,

for some Ωij ∈ C∞(P ×R).
The condition A Ω = 0 amounts to

0 = A Ω = 2
[
(−gΩ12 − Ω13)dx + (f Ω12 − Ω23)dy + (f Ω13 + gΩ23)dt

];
hence, Ω13 = −gΩ12 and Ω23 = f Ω12, that is,

Ω = 2Ω12
[
dx ∧ dy + (f dy − g dx) ∧ dt

]
, (8.124)

where only the function Ω12 remains unspecified. The rank of Ω can only be 0 or
2; therefore, if Ω12 �= 0, the rank of Ω is equal to 2. Finally, from the condition
dΩ = 0 one readily finds that the function Ω12 has to satisfy the linear PDE

(
f

∂

∂x
+ g

∂

∂y
+ ∂

∂t

)
Ω12 = −

(
∂f

∂x
+ ∂g

∂y

)
Ω12. (8.125)

The non-uniqueness of Ω comes from the fact that (8.125) has infinitely many solu-
tions; if Ω12 and Ω ′

12 are two solutions of (8.125), setting ν ≡ Ω ′
12/Ω12, one finds

that Aν = 0, i.e., ν is a first integral.
Once Ω12 satisfies (8.125), the 2-form (8.124) can be written in the “canonical

form” dp ∧ dq − dH ∧ dt , introducing two auxiliary functions φ,ψ ∈ C∞(P ×R)

such that
∂

∂x

[
(f − ψ)Ω12

]+ ∂

∂y

[
(g − φ)Ω12

]= 0. (8.126)

This condition guarantees the local existence of a function H ∈ C∞(P × R) such
that

2Ω12
[
(f − ψ)dy − (g − φ)dx

]= −dH + terms proportional to dt. (8.127)

Thus

Ω = 2Ω12(dx − ψ dt) ∧ (dy − φ dt) − dH ∧ dt.

Since Ω and dH ∧dt are closed forms, 2Ω12(dx −ψ dt)∧ (dy −φ dt) is closed and
by virtue of the Darboux Theorem, there exist functions p,q such that 2Ω12(dx −
ψ dt) ∧ (dy − φ dt) = dp ∧ dq , so that Ω = dp ∧ dq − dH ∧ dt . These results are
summarized in the following proposition.

Proposition 8.41 Let P be a differentiable manifold of dimension two. Given a
vector field A on P ×R such that At = 1, locally there exist infinitely many rank 2,
closed 2-forms Ω such that A Ω = 0. Any pair of such 2-forms, Ω,Ω ′, are related
by Ω ′ = νΩ , where ν is a real-valued function satisfying Aν = 0 (i.e., ν is con-
stant along the integral curves of A). For each Ω , locally there exist coordinates
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(q,p, t) on P × R, where t is the natural coordinate of R, and some func-
tion H ∈ C∞(P ×R), defined up to canonical transformations, such that Ω =
dp ∧ dq − dH ∧ dt .

Example 8.42 The system of first-order ODEs

dx

dt
= y,

dy

dt
= ty − x

t − 1

corresponds to the linear second-order ODE

d2x

dt2
− t

t − 1

dx

dt
+ x

t − 1
= 0

and to the integral curves of the vector field

A = y
∂

∂x
+ ty − x

t − 1

∂

∂y
+ ∂

∂t

[cf. (8.123)], that is, f = y and g = (ty −x)/(t −1). Therefore, the component Ω12
must satisfy the PDE [see (8.125)]

(
y

∂

∂x
+ ty − x

t − 1

∂

∂y
+ ∂

∂t

)
Ω12 = − t

t − 1
Ω12.

A solution to this equation is

Ω12 = 1

2(t − 1) et

(the factor 1/2 is included for later convenience).
Condition (8.126) is satisfied choosing φ = ty/(t − 1), ψ = 0, and substituting

these expressions into (8.127) we find that, up to an additive function of t only,

H = 1

(1 − t) et

(
y2

2
+ x2

2(t − 1)

)

and

2Ω12(dx − ψ dt) ∧ (dy − φ dt)

= 1

(1 − t) et

(
dy + ty

1 − t
dt

)
∧ dx

= d

(
y

(1 − t) et

)
∧ dx.

Hence, we can take p = y/[(1 − t)et ] and q = x. Further examples can be found in
Torres del Castillo and Rubalcava-García (2006) and Torres del Castillo (2009).
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Exercise 8.43 Show that the vector fields

et ∂

∂x
+ et ∂

∂y
, t

∂

∂x
+ ∂

∂y

are symmetries of the 2-form Ω found in Example 8.42. Find the first integrals
associated with these symmetries and their Poisson bracket. Show explicitly that Ω

is proportional to the exterior product of the differentials of these two first integrals.
(Note that all this can be done making use of the original coordinates (x, y, t).)

Example 8.44 In the case of a one-dimensional harmonic oscillator, the standard
Hamiltonian is

H = p2

2m
+ mω0

2q2

2
,

where q,p are canonical coordinates induced by a coordinate x on the configuration
space, m is the mass of the oscillator and ω0 is its angular frequency. The expression
H = (p/

√
2m)2 + (

√
m/2ω0q)2 corresponds to the square of the distance from

the origin to the point (p/
√

2m,
√

m/2ω0q) of R2. Then, the analogs of the polar
coordinates are

P = √
H, Q = arctan

√
m/2ω0q

p/
√

2m
= arctan

mω0q

p

and one finds that

P dP ∧ dQ = d

(
p√
2m

)
∧ d

(√
m

2
ω0q

)
= ω0

2
dp ∧ dq.

Hence,

dp ∧ dq − dH ∧ dt = 2

ω0
P dP ∧ dQ − d

(
P 2)∧ dt

= 2P

ω0
(dP ∧ dQ − ω0 dP ∧ dt).

The factor 2P/ω0 = 2
√

H/ω0 appearing on the right-hand side of the last equation
is a constant of motion and the function ω0P is a Hamiltonian for the new canonical
coordinates (Q,P ).

Thus, in accordance with Proposition 8.41, the 2-form Ω ′ = dP ∧ dQ −
ω0 dP ∧ dt differs from Ω = dp ∧ dq − dH ∧ dt by a factor which is a constant
of motion. Finally, it may be noticed that

Ω ′ = dP ∧ d(Q − ω0t).

Hence, both P and Q − ω0t are constants of motion.



Appendix A
Lie Algebras

Definition A.1 A Lie algebra, L, over a field K, is a vector space over K which
possesses a mapping from L × L into L, usually denoted by [ , ], such that

(i) it is bilinear

[u,av + bw] = a[u,v] + b[u,w], (A.1)

[au + bv,w] = a[u,w] + b[v,w], (A.2)

for u,v,w ∈ L, a, b ∈K,
(ii) it is skew-symmetric

[u,v] = −[v,u], (A.3)

for u,v ∈ L (by virtue of (A.3), the linearity of the bracket on the second argu-
ment (A.1) implies its linearity on the first argument (A.2), and vice versa),

(iii) it satisfies the Jacobi identity
[
u, [v,w]]+ [

v, [w,u]]+ [
w, [u,v]]= 0, (A.4)

for u,v,w ∈ L. A Lie algebra is Abelian if [u,v] = 0 for u,v ∈ L.

Let L be a Lie algebra of finite dimension (that is, L is a vector space of finite di-
mension), and let {ei}ni=1 be a basis of L. Owing to the bilinearity of the bracket, the
value of [u,v], for u,v ∈ L arbitrary, is determined by the values of [ei, ej ] (i, j =
1, . . . , n), for if u = uiei and v = vj ej , we have [u,v] = [uiei, v

j ej ] = uivj [ei, ej ].
Since [ei, ej ] must belong to L, [ei, ej ] = ck

ij ek , where ck
ij (i, j, k = 1, . . . , n) are

n3 scalars, called the structure constants of L. The values of the structure constants
are not independent, since the bracket must be skew-symmetric, and it satisfies the
Jacobi identity, which imposes the following relations among the ck

ij :

ck
ij = −ck

ji and (A.5)

cm
ij c

l
km + cm

jkc
l
im + cm

kic
l
jm = 0. (A.6)
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Exercise A.2 Let V be a vector space and let gl(V ) be the set of the linear maps
from V to V with the usual sum and multiplication by scalars, and with the bracket
given by [A,B] ≡ AB − BA. Show that gl(V ) is a Lie algebra. If V is of finite
dimension and {ei}ni=1 is a basis of V , the linear transformations φi

j defined by

φi
j (ek) ≡ δi

kej , form a basis of gl(V ). Show that [φj
i , φl

k] = (δr
i δ

j
k δl

s − δl
iδ

r
kδ

j
s )φs

r .

Definition A.3 Let L be a Lie algebra. A subalgebra, M , of L is a subset of L

which is a Lie algebra with the operations inherited from L.

Since most of the properties that define a Lie algebra are automatically satisfied
by any subset of a given algebra (for instance, the bilinearity and skew-symmetry
of the bracket), it suffices to employ the criterion given by the following theorem in
order to show that some subset is or is not a subalgebra.

Theorem A.4 Let L be a Lie algebra and let M ⊂ L. M is a subalgebra of L if and
only if for u,v ∈ M and a ∈K, the elements u + v, au and [u,v] belong to M .

The proof of this theorem is immediate and is left to the reader.

Definition A.5 Let L be a Lie algebra and M a subalgebra of L. M is an ideal of L

if for u ∈ M and v ∈ L, [u,v] ∈ M .

L itself and {0} are ideals of L, and if L is Abelian, then any subalgebra of L is
invariant.

Definition A.6 A Lie algebra, L, is simple if it is not Abelian and does not possess
other ideals apart from L and {0}. L is semisimple if the only Abelian ideal contained
in L is {0}.

For example, the set of globally Hamiltonian vector fields of a symplectic man-
ifold is an ideal of the Lie algebra of the locally Hamiltonian vector fields (see
Sect. 8.2).

Definition A.7 Let L1 and L2 be two Lie algebras over the same field K. A map
f : L1 → L2 is a Lie algebra homomorphism if

(i) f is a linear transformation (i.e., f (au + bv) = af (u) + bf (v), for u,v ∈ L1,
a, b ∈K) and

(ii) f ([u,v]) = [f (u), f (v)], for u,v ∈ L1.

If, in addition, f is bijective we say that f is a Lie algebra isomorphism.

Exercise A.8 Let f : L1 → L2 be a Lie algebra homomorphism. Show that Kerf ≡
{u ∈ L1 | f (u) = 0} is an ideal of L1.



Appendix B
Invariant Metrics

Any Lie group can be turned into a Riemannian manifold in such a way that all
the left translations Lg (or the right translations Rg) are isometries. Let G be a Lie
group and let {ω1, . . . ,ωn} be a basis for the left-invariant 1-forms; if (aij ) is any
(constant) non-singular symmetric n × n matrix, then

aijω
i ⊗ ωj (B.1)

is a metric tensor on G, which is a left-invariant metric since Lg
∗(aijω

i ⊗ ωj ) =
aijω

i ⊗ωj , for all g ∈ G. If (aij ) is positive definite, the metric (B.1) is also positive
definite. If, in place of the 1-forms ωi we employ right-invariant 1-forms, in an
analogous manner we obtain a right-invariant metric. A metric on G is bi-invariant
if it is left-invariant and right-invariant simultaneously.

From the results of Sect. 7.5 it follows that the right-invariant vector fields are
Killing vector fields for any left-invariant metric (see Exercise 7.51). For a bi-
invariant metric, the right-invariant vector fields, and the left-invariant vector fields
are Killing vector fields.

Example B.1 The 2 × 2 real matrices of the form
( x y

0 1

)
, with x > 0, form a Lie

subgroup of GL(2,R). Making use of Theorem 7.35, from the equation
(

x y

0 1

)−1(dx dy

0 0

)
=
(

x−1 −yx−1

0 1

)(
dx dy

0 0

)

=
(

x−1 dx x−1 dy

0 0

)

= x−1dx

(
1 0
0 0

)
+ x−1dy

(
0 1
0 0

)

it follows that

ω1 ≡ x−1 dx, ω2 ≡ x−1 dy,

form a basis for the left-invariant 1-forms. Using the fact that the inversion mapping,
ι(g) = g−1, is given by ι∗x = x−1, ι∗y = −yx−1 [see (7.3)], one finds that the basis
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of the right-invariant 1-forms ω̇i = −ι∗ωi , is

ω̇1 = x−1 dx, ω̇2 = −yx−1 dx + dy,

and the dual basis is given by

Ẋ1 = x
∂

∂x
+ y

∂

∂y
, Ẋ2 = ∂

∂y
(B.2)

(cf. Example 7.47). Thus, Ẋ1 and Ẋ2 are Killing vector fields for the metric
aijω

i ⊗ωj = x−2
[
a11 dx ⊗dx +a12(dx ⊗ dy +dy ⊗dx)+a22 dy ⊗dy

]
, no matter

what the values are of the constants a11, a12, and a22. In particular, taking aij = δij ,
we obtain the metric

x−2(dx ⊗ dx + dy ⊗ dy), (B.3)

which is the metric of Poincaré’s half-plane [see (6.19)] and possesses three linearly
independent Killing vector fields (see Example 6.12).

Exercise B.2 Show that if G is connected, the metric aijω
i ⊗ ωj is also right-

invariant if and only if

aimcm
jk + ajmcm

ik = 0, (B.4)

where the ci
jk are the structure constants of G with respect to the basis {ωi}.

Exercise B.3 Find a basis for the left-invariant 1-forms and its dual basis for the
group formed by the 3 × 3 matrices of the form

⎛

⎝
1 x z

0 1 y

0 0 1

⎞

⎠ , x, y, z ∈ R,

which is related to the Heisenberg group [see, e.g., Baker (2002), Sect. 7.7]. De-
termine the structure constants of the group in this basis. Is it possible to find a
bi-invariant metric?

Since the coefficients aij in (B.1) are constant, the dual basis {Xi} to {ωi} is a
rigid basis with respect to the metric aijω

i ⊗ ωj ; thus, comparing [Xi ,Xj ] = ck
ij Xk

with (6.62) one finds that ck
ij = Γ k

ji −Γ k
ij ≡ 2Γ k [ji], where the Γ i

jk are the Ricci
rotation coefficients for the basis {Xi}. Using the identity (6.63), we obtain

Γijk = 1

2

(
aimcm

kj − ajmcm
ki − akmcm

ji

)
. (B.5)

The foregoing expression is simplified if the metric (B.1) is bi-invariant because in
that case the last two terms on the right-hand side of (B.5) cancel [see (B.4)], leaving

Γijk = 1

2
aimcm

kj , (B.6)
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so that the connection and curvature forms in this basis are

Γ i
j = 1

2
ci
kjω

k and Ri
j = 1

4
cm
jkc

i
mlω

k ∧ ωl, (B.7)

respectively [see (5.26), (7.34), and (A.6)]. Hence, the components of the curvature
with respect to the basis {Xi} are

Ri
jkl = 1

4

(
cm
jkc

i
ml − cm

jlc
i
mk

)= −1

4
ci
mj c

m
kl. (B.8)

It may be noticed that in the expressions (B.7) the matrix (aij ) does not appear
and, furthermore, that they make sense independently of choosing a metric on the
group. It can be directly verified that, with respect to a basis for the left-invariant 1-
forms, {ω1, . . . ,ωn}, the connection 1-forms (B.7) define a connection with torsion
equal to zero. Hence, in any Lie group there exists a torsion-free connection, defined
in a natural way, without having to specify a Riemannian metric.

From (B.6) it follows that, if the metric (B.1) is bi-invariant, the coefficients Γijk

are totally skew-symmetric, since, in general, Γijk = −Γjik , while from the relation
cm
kj = −cm

jk it follows that Γijk = −Γikj . Combining these formulas one finds that
Γijk = −Γkji . If the dimension of G is two, then the total skew-symmetry of the
Ricci rotation coefficients implies that they are equal to zero and, since (aim) must
be invertible, cm

kj = 0 and, therefore, G must be Abelian.
If the dimension of G is three, the skew-symmetry of Γijk implies that Γijk =

b εijk , where b is some constant. Then, from (B.6), we have

cm
kj = 2aimb εijk, (B.9)

where (aim) is the inverse of the matrix (aim); therefore

1

4
ci
mj c

m
kl = b2api εpjmaqm εqlk = b2api det

(
ars

)
(alpakj − alj akp)

and from (B.8) we obtain

Rijkl = b2 det
(
ars

)
(aikajl − ailajk), (B.10)

which means that G is a constant curvature space (see Examples B.6 and B.8).
For any value of b, the structure constants (B.9) satisfy the Jacobi identity (A.6).
It can be noticed that in this case, if the six vector fields Xi and Ẋi (i = 1,2,3)
are linearly independent, then they form a basis for the Killing vector fields of G,
since the maximum dimension of the Lie algebra of the Killing vector fields of a
Riemannian manifold of dimension n is n(n + 1)/2.

Exercise B.4 Show that for any Lie group, G, the left-invariant vector fields Xi ,
and the right-invariant vector fields Ẋi are linearly independent if and only if the
center of the Lie algebra of G is {0}; that is, if and only if zero is the only element
of g whose Lie bracket with all the elements of the algebra is equal to zero.
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Exercise B.5 Show that if aijω
i ⊗ ωj is a bi-invariant metric on G, where {ωi}

is a basis for the left-invariant 1-forms, then ∇YZ = 1
2 [Y,Z] and R(Y,Z)W =

− 1
4 [[Y,Z],W], for Y,Z,W ∈ g, where ∇ denotes the Riemannian connection as-

sociated with the bi-invariant metric and R is its curvature tensor. Show that the
integral curves of any left-invariant vector field are geodesics.

If ci
jk denote the structure constants of an arbitrary Lie algebra, then the constants

gij = −ck
imcm

jk (B.11)

form a symmetric matrix, gji = −ck
jmcm

ik = −cm
ikc

k
jm = gij . Furthermore, making

use of (B.11), and the identities cm
ij c

l
mk + cm

jkc
l
mi + cm

kic
l
mj = 0 and ci

jk = −ci
kj [see

(A.5) and (A.6)] one finds that

gimcm
jk + gjmcm

ik = −cs
irc

r
msc

m
jk − cs

jrc
r
msc

m
ik

= cs
ir

(
cm
ksc

r
mj + cm

sj c
r
mk

)− cs
jrc

r
msc

m
ik

= (−cs
kic

m
rs − cs

rkc
m
is

)
cr
mj + cs

irc
m
sj c

r
mk − cs

jrc
r
msc

m
ik

= 0.

Hence, if G is a connected Lie group and {ωi} is a basis for the left-invariant
1-forms, the tensor field gijω

i ⊗ωj , with the gij defined by (B.5), is bi-invariant (see
Exercise B.2). However, the matrix (gij ) can be singular, and therefore gijω

i ⊗ ωj

does not need to be a Riemannian metric on G. It can be shown that the matrix
(gij ), defined in (B.11), is invertible if and only if the Lie algebra is semisimple
(that is, it does not have Abelian proper ideals) [see, e.g., Sattinger and Weaver
(1986, Chap. 9)].

It may be noticed that the components of the Ricci tensor associated with the
curvature tensor (B.8) are given by Rij = 1

4gij , with gij defined by (B.11).

Example B.6 Let us consider the group G = SU(2) with the parametrization given
by the Euler angles, φ, θ , ψ ,

g = (
expφ(g)X3

)(
exp θ(g)X1

)(
expψ(g)X3

)
, (B.12)

where {X1,X2,X3} is the basis of su(2) given in Exercise 7.19 [cf. (8.94)]. From
(7.54) it follows that (B.12) is equivalent to

g =
(

eiφ/2 0
0 e−iφ/2

)(
cos θ/2 i sin θ/2
i sin θ/2 cos θ/2

)(
eiψ/2 0

0 e−iψ/2

)

=
(

ei(φ+ψ)/2 cos θ/2 i ei(φ−ψ)/2 sin θ/2
i ei(ψ−φ)/2 sin θ/2 e−i(φ+ψ)/2 cos θ/2

)
, (B.13)

where, by abuse of notation, we have simply written φ, θ , ψ , in place of φ(g), θ(g),
and ψ(g), respectively. As in Example B.1, we can make use of Theorem 7.35 to
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find the basis of the left-invariant 1-forms, dual to the basis {X1,X2,X3}. Since
the structure constants for the basis {X1,X2,X3} are the same as those of the basis
{S1,S2,S3} of so(3), equations (8.95)–(8.100) hold if Si is replaced by Xi ; hence
the set

ω1 = sin θ sinψ dφ + cosψ dθ,

ω2 = sin θ cosψ dφ − sinψ dθ, (B.14)

ω3 = cos θ dφ + dψ

is the dual basis to {X1,X2,X3}. Making use of the fact that [Xi ,Xj ] =
∑3

k=1 εijkXk = δklεijkXl , we have cl
ij = δklεijk ; therefore, from (B.11), gij =

−δpkεimpδqmεjkq = −δpk(δjpδki − δjiδkp) = 2δij , which is an invertible matrix
and gijω

i ⊗ ωj = 2δijω
i ⊗ ωj . From (B.14) we then have

gijω
i ⊗ ωj = 2

[
dφ ⊗ dφ + dθ ⊗ dθ + dψ ⊗ dψ

+ cos θ(dφ ⊗ dψ + dψ ⊗ dφ)
]
. (B.15)

According to the foregoing results, we may conclude that the metric (B.15) is bi-
invariant. As we shall show below, this metric is essentially the usual metric of the
sphere S3.

The underlying manifold of the group SU(2) can be identified with the sphere S3

in the following manner. All the elements of SU(2) are of the form
(

x + iy z + iw
−z + iw x − iy

)
, (B.16)

where x, y, z, w are real numbers such that x2 + y2 + z2 + w2 = 1. Hence, there
is a one-to-one correspondence between the elements of SU(2) and the points of
S3 ≡ {(x, y, z,w) ∈ R

4 |x2 + y2 + z2 + w2 = 1}. From the expressions (B.13) and
(B.16), separating the real and imaginary parts, one obtains a local expression for
the inclusion of SU(2), or S3, in R

4 (i : SU(2) → R
4), namely

i∗x = cos
1

2
θ cos

1

2
(φ + ψ), i∗y = cos

1

2
θ sin

1

2
(φ + ψ),

i∗z = − sin
1

2
θ sin

1

2
(φ − ψ), i∗w = sin

1

2
θ cos

1

2
(φ − ψ).

The pullback under i of the usual metric of R4 is then

i∗(dx ⊗ dx + dy ⊗ dy + dz ⊗ dz + dw ⊗ dw)

= 1

4

[
dφ ⊗ dφ + dθ ⊗ dθ + dψ ⊗ dψ + cos θ(dφ ⊗ dψ + dψ ⊗ dφ)

]
,

which, except for a factor 1/8, coincides with the metric (B.15). This means that
the metric (B.15), which, as we have shown, is the metric of a constant curvature
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space, is essentially the standard metric of S3 (which is, clearly, a constant curva-
ture space). Moreover, the left-invariant vector fields Si [given by (8.98)] and the
right-invariant vector fields Ṡi [given by (8.100)] of SU(2), are Killing vector fields
for the metric (B.15) and, therefore, for S3. Thus, the Lie algebra of the Killing
vector fields of S3, which is so(4) [the Lie algebra of SO(4)], possesses the basis
{S1,S2,S3,−Ṡ1,−Ṡ2,−Ṡ3}, which satisfies the relations

[Si ,Sj ] =
3∑

k=1

εijkSk,

[
(−Ṡi ), (−Ṡj )

]=
3∑

k=1

εijk(−Ṡk),

[
Si , (−Ṡj )

]= 0;

(B.17)

hence, so(4) is the direct sum of two copies of su(2):

so(4) = su(2) ⊕ su(2). (B.18)

Each g ∈ SU(2) can be regarded as a point of S3 (by expressing g in the
form (B.16) and taking the corresponding x, y, z, w as the coordinates of a point
of S3), and for any g1 ∈ SU(2), both Lg1 and Rg1 are isometries for the met-
ric (B.15). Hence, if (g1, g2) ∈ SU(2) × SU(2), the mapping g �→ Lg1Rg2g =
g1gg2 = Rg2Lg1g, from SU(2) onto SU(2), can be seen as an isometric map from
S3 onto S3. In fact, it turns out that any isometry of S3 that does not change the
orientation is obtained in this manner, with g1 and g2 determined up to sign; if
(g1, g2) ∈ SU(2) × SU(2), then (−g1,−g2) also belongs to SU(2) × SU(2) and
Lg1Rg2 = L−g1R−g2 . From the preceding discussion it also follows that any rota-
tion about the origin in R

4 can be represented in the form
(

x′ + iy′ z′ + iw′
−z′ + iw′ x′ − iy′

)
= g1

(
x + iy z + iw

−z + iw x − iy

)
g2 (B.19)

[cf. (7.65)] with g1, g2 ∈ SU(2) determined up to sign. [This result is the counterpart
of (B.18).]

Exercise B.7 Show that from (B.19) it follows directly that the transformation
(x, y, z,w) �→ (x′, y′, z′,w′) belongs to SO(4).

Example B.8 The functions α, β , γ : SL(2,R) → R defined by

g =
(

exp
1

2
α(g)X1

)(
exp

1

2
β(g)(X2 + X3)

)(
exp

1

2
γ (g)X1

)
, (B.20)

where {X1,X2,X3} is the basis of sl(2,R) given in Example 7.16, form a local
coordinate system for SL(2,R), alternative to that defined by (7.4). From (B.20)
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and (7.51) we then have

g =
(

eα/2 0
0 e−α/2

)(
coshβ/2 sinhβ/2
sinhβ/2 coshβ/2

)(
eγ /2 0

0 e−γ /2

)

=
(

e(α+γ )/2 coshβ/2 e(α−γ )/2 sinhβ/2
e−(α−γ )/2 sinhβ/2 e−(α+γ )/2 coshβ/2

)
, (B.21)

where we have written α, β , γ instead of α(g), β(g), γ (g) [cf. (B.13)]. The dual
basis to {X1,X2,X3}, expressed in terms of the coordinates α, β , γ , can be obtained
making use of (B.20) and Theorem 7.35, which leads to [see (7.20)]

g−1 dg = 1

2
exp

(
−1

2
γ X1

)
exp

(
−1

2
β(X2 + X3)

)

· λ1 exp

(
1

2
β(X2 + X3)

)
exp

(
1

2
γ X1

)
dα

+ 1

2
exp

(
−1

2
γ X1

)
(λ2 + λ3) exp

(
1

2
γ X1

)
dβ + 1

2
λ1 dγ

= 1

2
(coshβ dα + dγ )λ1 + 1

2
e−γ (sinhβ dα + dβ)λ2

+ 1

2
eγ (− sinhβ dα + dβ)λ3,

and thus

ω1 = 1

2
(coshβ dα + dγ ),

ω2 = 1

2
e−γ (sinhβ dα + dβ),

ω3 = 1

2
eγ (− sinhβ dα + dβ).

(B.22)

On the other hand, from (7.20) we find that [λ1, λ2] = 2λ2, [λ2, λ3] = λ1,
[λ3, λ1] = 2λ3 (i.e., the structure constants that are different from zero are given
by c2

12 = 2 = c3
31, c1

23 = 1) and from (B.11) it follows that

(gij ) =
⎛

⎝
−8 0 0
0 0 −4
0 −4 0

⎞

⎠ ; (B.23)

therefore, using (B.22) and (B.23),

gijω
i ⊗ ωj = −4

(
2ω1 ⊗ ω1 + ω2 ⊗ ω3 + ω3 ⊗ ω2)

= −2
[
dα ⊗ dα + dβ ⊗ dβ + dγ ⊗ dγ

+ coshβ(dα ⊗ dγ + dγ ⊗ dα)
]

(B.24)
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is a pseudo-Riemannian bi-invariant metric on SL(2,R) and, with this metric,
SL(2,R) is a constant curvature space. (Note that gijω

i ⊗ ωj = −8ω1 ⊗ ω1 −
2(ω2 +ω3)⊗ (ω2 +ω3)+2(ω2 −ω3)⊗ (ω2 −ω3), which explicitly shows that this
metric is pseudo-Riemannian.) In a similar manner to the case of SU(2), considered
in the foregoing example, SL(2,R) with the metric (B.24) can be identified with a
submanifold of R4, provided that in the latter we introduce a pseudo-Riemannian
flat metric [cf. Conlon (2001), Sect. 10.7].

Indeed, any element of SL(2,R) is of the form

(
x + w y + z

z − y x − w

)
, (B.25)

where x, y, z, w are real numbers with x2 + y2 − z2 − w2 = 1. This means
that the underlying manifold of SL(2,R) can be identified with the hyperboloid
N ≡ {(x, y, z,w) ∈ R

4 |x2 + y2 − z2 − w2 = 1}. Comparing (B.21) with (B.25),
one finds the following local expression for the inclusion of SL(2,R) in R

4:

i∗x = cosh
1

2
β cosh

1

2
(α + γ ), i∗y = sinh

1

2
β sinh

1

2
(α − γ ),

i∗z = sinh
1

2
β cosh

1

2
(α − γ ), i∗w = cosh

1

2
β sinh

1

2
(α + γ ),

hence, the metric induced on SL(2,R), or on N , by the pseudo-Riemannian metric
dx ⊗ dx + dy ⊗ dy − dz ⊗ dz − dw ⊗ dw of R4 is

i∗(dx ⊗ dx + dy ⊗ dy − dz ⊗ dz − dw ⊗ dw)

= −1

4

[
dα ⊗ dα + dβ ⊗ dβ + dγ ⊗ dγ + coshβ(dα ⊗ dγ + dγ ⊗ dα)

]

and coincides, except for a factor 1/8, with the metric (B.24). Then, owing to the bi-
invariance of (B.24), the left-invariant vector fields of SL(2,R), together with the
right-invariant ones are Killing vector fields for the metric (B.24) and for the metric
induced on N . On the other hand, N and the metric dx ⊗ dx + dy ⊗ dy − dz ⊗ dz −
dw ⊗ dw are invariant under the linear transformations of R4 into R

4 represented
by the real 4 × 4 matrices, A, with determinant equal to 1, such that

At

⎛

⎜⎜
⎝

1
1

−1
−1

⎞

⎟⎟
⎠A =

⎛

⎜⎜
⎝

1
1

−1
−1

⎞

⎟⎟
⎠ , (B.26)

which form the group SO(2,2), whose dimension is six. Thus, in an analogous way
to (B.18), we have

so(2,2) = sl(2,R) ⊕ sl(2,R). (B.27)
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Since for any g ∈ SL(2,R), the transformations Lg and Rg are isometries
of the metric (B.24), if (g1, g2) ∈ SL(2,R) × SL(2,R), the transformation
g �→ Lg1Rg2g = g1gg2, from SL(2,R) onto SL(2,R), is an isometry and can be
identified with an isometric transformation from N onto N . That is, using (B.25),
the expression

(
x′ + w′ y′ + z′
z′ − y′ x′ − w′

)
= g1

(
x + w y + z

z − y x − w

)
g2 (B.28)

gives an isometric transformation from N onto N , for any pair of elements g1, g2 ∈
SL(2,R), and it turns out that any transformation belonging to SO(2,2) can be
represented in this manner with g1 and g2 determined up to a common sign.

Harmonic Maps The harmonic mapping equations constitute a generalization
of the geodesic equations (5.7). In their general form, given two Riemannian
manifolds, N and M , of dimensions n and m, respectively, a differentiable map
φ : N → M is harmonic if

1√|h|
∂

∂yα

(√|h|hαβ ∂(φ∗xk)

∂yβ

)
+ (

φ∗Γ k
ji

)
hαβ ∂(φ∗xj )

∂yα

∂(φ∗xi)

∂yβ
= 0, (B.29)

where (hαβ) is the inverse of the matrix (hαβ), formed by the components of
the metric tensor of N with respect to a local coordinate system (y1, . . . , yn),
h ≡ det(hαβ), (x1, . . . , xm) is a coordinate system on M and the Γ k

ji are the
Christoffel symbols corresponding to the metric tensor of M in the coordinate sys-
tem xi [see, e.g., Hélein (2002)]. When N = R, with y1 = t and h11 = 1, equations
(B.29) reduce to the equations of the geodesics (5.7). When M = R, with its usual
metric, equations (B.29) reduce to the Laplace equation, ∇2φ = 0 [see (6.113)].

An interesting fact is that in the case of a harmonic map φ : N → G, where G is
a Lie group that admits a bi-invariant metric, equations (B.29) amount to

1√|h|
∂

∂yα

[√|h|hαβ
(
φ∗ωk

)( ∂

∂yβ

)]
= 0, (B.30)

where the ωk are left-invariant 1-forms on G. In effect, the 1-forms ωk can be ex-
pressed locally in the form

ωk = Mk
i dxi, (B.31)

with each Mk
i ∈ C∞(G). Then

∂

∂xi
= Mk

i Xk, (B.32)

where the Xk are the left-invariant fields that form the dual basis to {ωk}. Using the
properties of a connection [see (5.1)], from Exercise B.5 it follows that the Christof-
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fel symbols for the bi-invariant metric of G with respect to the coordinate system xi

are given by

Γ i
jk

∂

∂xi
= Ms

k∇Xs

(
Mr

j Xr

)

= Ms
kXs

(
Mr

j

)
Xr + Ms

kM
r
j ∇Xs

Xr

=
(

∂

∂xk
Mr

j

)
Xr + 1

2
Ms

kM
r
j [Xs ,Xr ].

Since the Christoffel symbols Γ i
jk are symmetric in the indices j , k, while

Ms
kM

r
j [Xs ,Xr ] is antisymmetric in these indices, using (B.32), it follows that

Γ i
jk = M̃i

r

∂

∂x(k
Mr

j), (B.33)

where (M̃i
j ) is the inverse of the matrix (Mi

j ), and the parentheses denote sym-

metrization on the enclosed indices [e.g., t(ij) = 1
2 (tij + tj i )].

Thus, from (B.31), (1.23), and (1.24) we have

hαβ ∂

∂yα

[
(
φ∗ωk

)
(

∂

∂yβ

)]

= hαβ ∂

∂yα

[
(
φ∗Mk

i

)∂(φ∗xi)

∂yβ

]

= hαβ
(
φ∗Mk

i

) ∂

∂yα

∂(φ∗xi)

∂yβ
+ hαβ ∂(φ∗xi)

∂yβ

∂(φ∗xj )

∂yα
φ∗
(

∂Mk
i

∂xj

)
.

Using the fact that (hαβ) is symmetric, from (B.33) we then have

hαβ ∂

∂yα

[(
φ∗ωk

)( ∂

∂yβ

)]

= (
φ∗Mk

s

)[
hαβ ∂

∂yα

∂(φ∗xs)

∂yβ
+ hαβ ∂(φ∗xi)

∂yβ

∂(φ∗xj )

∂yα
φ∗Γ s

ij

]
,

which shows the equivalence of (B.29) and (B.30) in the case where M is a Lie
group with a bi-invariant metric.

As pointed out previously, when N = R with the usual metric, the equations
for a harmonic map reduce to the geodesic equations. Hence, the equations for a
geodesic, C, of a group G with a bi-invariant metric, can be expressed as

d

dt

[(
C∗ωk

)( ∂

∂t

)]
= 0

[see (B.30)]; therefore (C∗ωk)(∂/∂t) = ak , where each ak is a real constant. That
is, ωk(C′

t ) = ak , which amounts to C′
t = akXk(C(t)). Thus, in this case, a geodesic

is an integral curve of some left-invariant vector field (cf. Exercise B.5).



B Invariant Metrics 267

Taking into account that, when G is some subgroup of GL(p,R), a basis for the
left-invariant 1-forms can be found from the relation g−1dg = λaω

a [see (7.46)],
where the λa are constant matrices that form a basis for a representation of the Lie
algebra of G, it follows that equations (B.30) amount to the matrix equation

1√|h|
∂

∂yα

(√|h|hαβg−1 ∂g

∂yβ

)
= 0, (B.34)

where it is understood that g is an arbitrary element of G, parameterized in terms of
the yα through the map φ : N → G.

Each Killing vector field of a Riemannian manifold, M , gives rise to a con-
served quantity, constant of motion, or first integral of the geodesic equations (The-
orem 6.28). This result can be extended to the equations for the harmonic maps:
with each Killing vector field of a Riemannian manifold M and each harmonic map
φ : N → M one obtains a vector field on N whose divergence is equal to zero. (Such
vector fields are called conserved currents.)

This assertion can be proved using (B.29), (1.23), and (1.24), denoting by Ki the
components of a Killing vector field with respect to the coordinate system xi and by
gij the components of the metric tensor of M ,

1√|h|
∂

∂yα

[√|h|hαβφ∗(gikK
i
)∂(φ∗xk)

∂yβ

]

= hαβ ∂(φ∗xk)

∂yβ

∂

∂yα
φ∗(gikK

i
)− φ∗(gikK

i
)(

φ∗Γ k
js

)
hαβ ∂(φ∗xj )

∂yα

∂(φ∗xs)

∂yβ

= hαβ ∂(φ∗xk)

∂yβ

∂(φ∗xs)

∂yα
φ∗
[
∂(gikK

i)

∂xs
− Γ i

ksgijK
j

]

= 0, (B.35)

where the last equality follows from (6.14) and (6.55), and the fact that the factor
hαβ [∂(φ∗xk)/∂yβ ][∂(φ∗xs)/∂yα] is symmetric in the indices k, s. The left-hand
side of this equality is the divergence of the vector field

J ≡ hαβφ∗(gikK
i
)∂(φ∗xk)

∂yβ

∂

∂yα

[cf. (6.108)].
As pointed out at the beginning of this appendix, the left-invariant and the right-

invariant vector fields are Killing vector fields for a Lie group with a bi-invariant
metric; therefore, the relation (B.35) holds if the Ki are the components with respect
to the coordinate system xi of a left-invariant or right-invariant vector field, when M

is a Lie group with a bi-invariant metric. In fact, the m relations (B.30), applicable
in the case where M is a Lie group with a bi-invariant metric, are particular cases of
(B.35).
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Exercise B.9 Show that for each value of the index p, the functions Ki = gijM
p
j

are components of a Killing vector field with respect to the coordinate system xi ,
where the Mi

j are the functions defined in (B.31). (In fact, they are components of a
left-invariant vector field.) Show that the relations (B.30) follow from (B.35), using
these m Killing vector fields.
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Adjoint representation, 199
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Bi-invariant metric, 257
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transformations, 53, 64, 65, 205, 210

Cartan’s structural equations, 106, 107, 136,
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transformation, 127
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Constant of motion, 215, 246, 267
Constraints, 71, 80
Contraction, 21, 47, 54
Contravariant tensor, 27
Cotangent

bundle, 201
space, 21

G.F. Torres del Castillo, Differentiable Manifolds,
DOI 10.1007/978-0-8176-8271-2, © Springer Science+Business Media, LLC 2012

271

http://dx.doi.org/10.1007/978-0-8176-8271-2


272 Index

Covariant
tensor, 25
vector, 21

Covariant derivative, 93
of a tensor field, 99

Covariant exterior differentiation, 112
Covector, 21

field, 21, 202
Curvature

2-forms, 106
Gaussian, 155, 156
mean, 155
scalar, 143, 151
tensor, 101

Curve, 8
arc length, 115

D
Darboux Theorem, 210, 250
Diffeomorphism, 6
Differential, 13, 21, 22, 24
Differential form, 49

closed, 59
exact, 59

Distribution, 72, 104
completely integrable, 73
involutive, 81

Divergence, 152
Dual form, 154

E
Eikonal equation, 141, 224
Einstein vacuum field equations, 145
Entry, 1

subentry, 1
Euclidean space, 116, 119
Euler angles, 239, 260
Euler equations, 244
Euler–Lagrange equations, 39, 132
Exact differential form, 59
Exponential, 185
Exterior

derivative, 55
differentiation, 55
product, 50

F
Fermat’s principle, 141, 222
Fiber bundle, 17
Flow, 32
Frobenius’ Theorem, 77, 82, 176

Fundamental
1-form, 203
2-form, 205

G
Gaussian curvature, 155, 156
Generating function, 65, 248
Geodesic, 95, 97, 103, 137–139, 219, 222,

244, 260
Geodesic equations, 97, 132
Geodesically complete manifold, 139
Geometrical optics, 141, 222
GL(n,R), 161, 168
gl(n,R), 169, 200
Grad, 117
Gradient, 117
Gravitational field, 144, 145, 218, 223

H
Hamilton equations, 52, 212
Hamilton–Jacobi equation, 221
Hamiltonian, 211

vector field, 205
Hamilton’s characteristic function, 221
Harmonic mapping, 265

equations, 265
Harmonic oscillator, 211, 215, 231, 253
Heisenberg group, 258
Helicoid, 159
Hidden symmetries, 218, 225
Hodge operator, 154
Holonomic

basis, 104
constraints, 72, 80

Homomorphism
of Lie algebras, 256
of Lie groups, 172

Homothetic Killing vector field, 128
Horizontal

curve, 103
subspace, 103

Hyperbolic
plane, 120
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Ideal, 256
Immersion, 117
Inclusion, 73, 75, 77
Inertia tensor, 241
Infinitesimal generator, 29
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manifold, 72, 81–83, 104

Integrating factor, 74, 83
Interior product, 21, 54
Inversion, 179
Isometry, 118, 123, 126, 127, 218, 262, 265
Isomorphism of Lie algebras, 256
Isotropic harmonic oscillator, 231

J
Jacobi identity, 171, 215, 227, 255
Jacobian, 13
Jacobi’s principle, 218, 219

K
Kepler problem, 221, 234
Killing

equations, 119
vector field, 118, 219, 242, 257, 267

Kinetic energy, 212, 241, 243

L
Lagrangian, 39, 132, 213
Laplace equation, 265
Laplacian, 153
Left-invariant

metric, 241, 257
vector field, 166

Left-invariant differential forms, 177, 183, 265
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Length of a curve, 115
Levi-Civita connection, 131
Lie algebra, 19, 166, 255
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semisimple, 256
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Lie bracket, 19
Lie derivative

of a function, 39
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of a vector field, 40

Lie group, 161
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Lie algebra of a, 166
of transformations, 192

Lie point symmetry, 89, 91
Lie subalgebra, 176, 256
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Line integral, 24
Linear differential forms, 22

Linear fractional transformation, 123, 130, 131
Linear momentum, 217
Linear representation, 195, 199
Local one-parameter group, 32
Locally Hamiltonian vector field, 205
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Manifold, 3

differentiable, 3
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symplectic, 210
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Matrix representation, 165
Maurer–Cartan equations, 179
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Mean curvature, 155
Metric, 115
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Metric connection, 132
Metric tensor, 115
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Minkowski space, 119, 125
Momentum, 211

N
Negative orientation, 149
Non-holonomic constraints, 72, 80
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extension, 37
local, 32
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matrix, 120
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Parabolic coordinates, 221
Parallel transport, 95, 150
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Pseudo-Riemannian manifold, 115
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of a function, 9
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Raising and lowering of indices, 117
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Representation
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differential form, 179
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Scalar curvature, 143, 151
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Schwarzschild metric, 144
Second-order ordinary differential equations,
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Semi-Riemannian manifold, 115
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Separation of variables, 140, 221
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Shape operator, 154
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SL(n,R), 165
Snell’s law, 223
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Space–time, 115, 218, 223
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Star operator, 154
Stereographic projection, 4, 124, 127
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SU(n), 231
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Submanifold, 6
Symmetric connection, 101
Symmetric top, 242
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Symplectic
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manifold, 210

Symplectomorphism, 205
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Tangent

bundle, 15, 21, 36, 102
space, 10
vector, 9, 10

Tangent bundle, 102
Tensor, 25

field, 25
product, 25

Tensor-valued differential form, 110
Theorema Egregium, 156
Thermodynamics, 59, 73

second law, 73
Topological manifold, 3
Torque, 244
Torsion, 100
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V
Vector bundle, 17
Vector field, 17

complete, 31
Hamiltonian, 205
locally Hamiltonian, 205
parallel, 95, 104

Vector potential, 214

Vector-valued differential form, 110
Volume element, 149

W
Wedge product, 50
Weingarten map, 154
Weyl tensor, 143
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