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Foreword to the Second Edition

The major contribution to this second edition is the addition of chapter ten which
emphasizes applications to atmospheric science including measurements and
probing instruments. As in the previous chapters the common thread is the Fourier
method. The pinnacle of this chapter is that the most definite quantitative
achievement in turbulence theory advanced by Kolmogorov is rooted in the sta-
tistical Fourier decomposition. The physical explanations and mathematics have
enough details to be self-sufficient. The chapter will be of particular interest to
atmospheric scientists and engineers.

Readers with experience in remote sensing will appreciate the discussion about
the speed of sound in air and its wave properties of propagation, refraction, and
reflection. The birth of atmospheric acoustics is attributed to men of peace (cler-
gyman, and scientists) utilizing the works of men of war; we learn from the past that
the firing of guns was used to make the first definitive measurements of the speed of
sound in the atmosphere. To this day warfare technology provides unexpected
benefits to society. Professor Prestini tells us that the field of radar meteorology
owes its spectacular successes to the radar developments during World War II and
thereafter. This can’t help but leave us wondering how much good would come to
humanity if its engagement in military compared to civilian sciences were recip-
rocal to what it is today. And what would ensue if we could eliminate conflicts
altogether? The freed resources could tackle the numerous problems facing
humanity including the enormous one of global warming. Speaking of which, the
chapter lucidly articulates the evolution of understanding the physical principles
that drive variations in climate. Milankovitch theory and its prediction of the three
principal cycles of maximum insolation is a vivid example of the simplicity and
predictive power rooted in Fourier analysis. Discussion of the discovery and sub-
sequent effect of greenhouse gasses reminds us that too much of a perceived good
(i.e., warming by CO2 to prevent the earth from being “held fast in the iron grip of
frost”) can produce a bad outcome. The scientific method evoked so many times by
the author points to the threat global warming poses to society.
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As in many examples throughout the first nine chapters, details about the
principal protagonists and their works are exposed and related to later developments
and present understandings of the subjects. We are informed that Galileo was the
first to recognize the wave nature of sound. Particularly striking is Leonardo da
Vinci’s brilliant conclusion that “the motion of the water, which resembles that of
hair, which has two motions, of which one is caused by the weight of the hair, the
other by the direction of the curls; thus the water has eddying motions.” This
partitioning of fluid motion into mean and turbulent flow predates Reynolds’s idea
by four centuries.

Sodars, radars, and lidars are the prime remote sensors that among other
parameters can measure winds via the Doppler effect. Considerable space is
devoted to these instruments and readers’ understanding is enhanced by contrasting
and/or comparing the nature of resulting measurements and the underlying prop-
erties of wind tracers.

The chapter provides well-articulated physical insights and explanations of
atmospheric phenomena with sufficient mathematical exposure to be understand-
able but not overbearing. Particularly cute is the example of turbulence creation due
to flow around a person and its capture followed by transport of odor, in this case
perfume. The material is not meant to be a substitute for a working knowledge
about the many subjects it touches upon, but informs about the essence and the
diverse paths science takes in its quest for truth. Those with previous experience
will be reminded about the complexities of atmospheric science and its interdis-
ciplinary character. Those with less experience will be enriched with the newly
acquired knowledge. To some, the chapter will serve as an excellent introduction
into various modern aspects of atmospheric science. Reading this chapter was a
pleasure to me and I hope you will enjoy it as much as I did.

Dr. Dušan Zrnić
Senior Scientist at the NOAA/National Severe Storms Laboratory

Affiliate Professor of Electrical Engineering and Meteorology
University of Oklahoma, Norman, OK, USA
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Foreword to the First Edition

Two hundred years ago Baron Jean Baptiste Joseph Fourier (1768–1830) cham-
pioned a mathematical idea that was to have a profound and enduring influence far
beyond what could be imagined at the time; understanding the significance of his
work requires some historical perspective.

Arithmetic and trigonometry were already well polished. For example, the
trigonometrical table published by Claudius Ptolemy (2nd c. A.D.) in the days
of the emperors Hadrian and Antoninus was more precise and more finely tabulated
than the four-figure table of sines used today in schools. Euclidean geometry was
thoroughly familiar. Calculus, starting with Archimedes (287–212 B.C.), who had
determined the volume of a sphere by the limiting process now familiar as inte-
gration, had been given its modern formulation by Gottfried Wilhelm Leibniz
(1646–1716) and Isaac Newton (1642–1727). Calculus became a mighty tool of
astronomy in explaining the movement of the Earth and planets and had an impact
on philosophy by its success in showing that numerous puzzling features of the
Universe were explicable by deduction from a few physical premises: the three laws
of motion and the law of gravitation. But integral and differential calculus had not
been brought to perfection; they suffered from limitations when confronted with
entities that were deemed nonintegrable or nondifferentiable and from difficulties in
handling certain notions involving infinity and infinitesimals.

Even today, in physics, as distinct from mathematics, one recognizes that the
infinitely small has not been observed, nor has the infinitely large. Would it not
therefore seem logical that finite entities, such as the integers, should suffice for
physical theory?

Nevertheless, as is well known, theoretical physicists expertly wield the power
of modern mathematical analysis, confidently canceling infinities and adding up
infinitesimals. Modern analysis, their indispensable and versatile tool, sprang from
Fourier’s “Analytical Theory of Heat,” published in 1822 (Fourier [1978]). It took
half a century and works by several mathematicians from Dirichlet to Cantor to
interpret Fourier’s method of representing a function as a sum of infinitely many
harmonics, laying the basis for modern analysis.
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Fourier’s idea was conceived while he was investigating the conduction of heat,
in particular the heat flow resulting from a spatially dependent distribution of
temperature along a metal bar. When the starting distribution is physically mea-
surable, functions that are not integrable, not differentiable, not continuous, or not
finite do not arise. But Fourier’s theorem seemed to be capable of wider interpre-
tation, and such proved to be the case as mathematicians, some of whom strongly
criticized Fourier for failing to supply a rigorous proof, refined the very concept of a
real function and lifted restriction after restriction on functions that could be ana-
lyzed by Fourier’s method.

The idea of adding together a finite number of components of simple form to
represent some previously observed phenomenon has a long history. It was used by
Ptolemy when he accounted for the observed motion of the planets around the
Earth. His system of deferents and epicycles was a geometrical device that added a
periodic (annual) correction to the position of a point in circular orbit around the
Earth to arrive at the longitude of a planet in the sky; the equant was another
geometrical device that incorporated a trigonometrically calculable periodic
correction for orbital eccentricity. Where further adjustment to improve agreement
with celestial appearances was warranted, the addition of another epicycle would
extend the trigonometric series to three terms. This procedure, in use for over a
thousand years, was a precursor to the Fourier series which, though nominally
infinite, are evaluated to a finite number of terms for practical purposes such as the
annual publication of planetary ephemerides.

Even earlier, Babylonian planetary positions were predicted by summing peri-
odic corrections that were triangular rather than sinusoidal (and therefore easier to
calculate). Fourier’s contribution called for successive sinusoids that were in a
harmonic relationship; for example, synthesizing the mean annual temperature
variation for a particular location would require the first sinusoid to have a period of
one year, the second to have a period of half a year, the third one-third of a year,
and so on. If only a few terms are to be summed this proposal has the same
pragmatic ring as the practices of the Babylonians and Greeks. But Fourier
provocatively implied that if the summing were continued forever, the final sum
would agree exactly with the original data. This is certainly not obvious. In spite of
that, another astronomical precedent was set, some years before Fourier, by Carl
Friedrich Gauss (1777–1855), who computed a cometary orbit as a sum of sinu-
soids. Not only did he observe the harmonic relationship of the periods chosen, but
he fixed the amplitudes and phases of the components by the numerical algorithm
now known in computing circles as the fast Fourier transform. In 1965
J. W. Cooley and J. W. Tukey brought the fast algorithm, now universally referred
to as the FFT, to the attention of a much wider audience than the few to whom it
was already known.

Harmonic analysis is a mathematical tool, but Professor Prestini interprets it in
its modern mature form in a variety of scientific and technological aspects so
diverse that any connection among them would hardly be suspected. Certainly it is
well known that radio and television broadcasting, and wireless telephony, are
conducted in frequency bands that are allocated by government, while music

x Foreword to the First Edition



produced by a piano is clearly composed of the approximately sinusoidal air
vibrations launched by the strings when hit by the hammers. It is by appeal to the
familiar vibrating string that Professor Prestini introduces the mathematical theory.

To understand the analysis of music, speech, television, and cell-phone trans-
mission into sinusoids and, conversely, the synthesis of the corresponding
time-varying signals from sinusoids is to possess the key to understanding how
astronomical images, medical images, and images of protein molecules are formed.
In these cases we are dealing with sinusoids in space instead of in time and with two
(or three) dimensions instead of one. However, once the temporal analysis and
synthesis are grasped, the transfer of the concepts to the spatial domain is facili-
tated. And in each such application this book explains how the traditional vocab-
ulary of each field is related to the terminology of vibrating strings. We learn that
what we called the resolution of a television image is analogous to the pitch of a
musical sound: Pitch is connected with the number of vibrations per second, while
spatial resolution has to do with the number of lines per centimeter. If you know
some property of a beep of a certain pitch and temporal duration, you know a
corresponding property of a patch of image of a certain resolution and spatial
extent.

Learning the analogies between the various fields treated confers powerful
knowledge, but each field also has its own distinctive and fascinating history of
development which the author incorporates into each chapter.

The final result is an impressive overview of a range of modern technologies, an
implicit lesson in the interplay between technology and one segment of mathe-
matics, and a stimulus to thinking about possible futures of the fields discussed and
about inventions in other fields that have not yet been made. Why exact mathe-
matics, a product of the human mind, should have proved so useful in science and
technology, remains a mystery. The book can be thoroughly recommended to any
reader who is curious about the physical world and the intellectual underpinnings
that have led to our expanding understanding of our physical environment and to
our halting steps to control it; and everyone who uses instruments that are based on
harmonic analysis will benefit from the clear verbal descriptions that are supplied.

September 2003 Ronald Bracewell
Stanford University
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Preface to the Second Edition

A unifying view of many fields of science is a main feature of this book. This is done
via Fourier analysis, a branch of mathematics that—with its dual stance of time and
frequency (or space and frequency)—happens to permeate most of modern science.

Following this first edition thread—besides some change and an update of
Section 3.12—a new chapter has been added. It deals with five intertwining topics:
turbulence, sodar, radar, lidar, and climate. They are described through their his-
torical developments, followed by some more technical considerations. Then
modern results, also providing images for the figures, are discussed.

From the point of view of harmonic analysis, wind is an interesting topic.
Among sections concerning remote sensing (Sections 10.6–10.18), a few are
dedicated to wind in order to describe different methods to determine wind velocity
and direction (Sections 10.11, 10.14, 10.15, 10.18). The important role played by
harmonic analysis in the theory of turbulence is mentioned in Section 10.5 and
shown in Section 10.9.

In a few instances this new chapter briefly outlines the life of scientists that, with
their intuition and dedication, made fundamental advances.

In the last section that deals with Earth temperature and climate, the time scale
changes. The values of astronomical parameters, such as Earth eccentricity and tilt,
are reconstructed hundred of thousand years back and predicted hundred of thou-
sand years hence. Moreover in two hundred years the temperature of the Earth, a
problem dear to Fourier, has become a matter of worldwide attention. This problem,
from which sprang the theory of harmonic analysis, opens the book and the
problem of the evolution of the temperature of the Earth closes the book.

I hope readers will find this book useful and enjoyable.

Acknowledgments

When my editor contacted me to suggest a second edition, my reply was not really
enthusiastic: the first edition has been so much work and took so long. Then a friend
Alberto Mugnai, a scientist at the Institute of Atmospheric Sciences and Climate
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(ISAC) of the National Council of Research (CNR) of Italy, mentioned a colleague
of him, Giuseppe Mastrantonio, very much interested in harmonic analysis and
went ahead to arrange a meeting. Mastrantonio is a historical scientist, having
collaborated with Giorgio Fiocco to the realization of the first sodar in Italy. I talked
to him on the matter, and my curiosity lit up again. I am grateful for his help during
all stages of this work, for providing much literature on sodar, as well as many
pictures. He also introduced me to his colleagues Luca Baldini, Gian Paolo Gobbi,
Davide Dionisi, and Fernando Congeduti.

Baldini is a radar expert; Gobbi, Dionisi and Congeduti are lidar experts. I like to
thank them all for generously devoting their time to answer my questions and
providing beautiful pictures as well. As for the lidar I was also in contact with
Alcide Di Sarra of the Italian Ente Nazionale Energie Alternative (ENEA). And I
like to thank Mariella Morbidoni, the head librarian of the Tor Vergata Area of
Research (CNR-ARTOV), for her help and kindness.

Regarding turbulence, combustion, and aerospace issues I wish to thank Claudio
Bruno at the time at United Technology Research Center (UTRC), in Connecticut.

Regarding climate I ought many thanks to André Berger of the Catholic
University of Louvain in Belgium, who never failed to kindly answer my several
e-mails. He also provided the image of a figure. I thank Eric A. Smith, Retired
Professor of Atmospheric Science, and Christos Efthymiopoulos of the Athens
Academy of Sciences for bibliographical information.

I thank Dušan Zrnić of the National Oceanic and Atmospheric Administration
for suggesting improvements in the radar Sections 10.13–10.15. Also I thank him
together with his colleague Richard Doviak, as well as Peyman Givi of the
University of Pittsburgh, and James M. McDonough of the University of Kentucky
for images that appear in the figures.

Finally I wish to thank Editors Allen Mann and Mitch Moulton for suggesting
this second edition, and Ben Levitt with whom I worked in close contact during the
latest stage of this publication.

Rome, Italy Elena Prestini
June 2016
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Preface to the First Edition

The suggestion to write a book on mathematics came from my Italian editor Ulrico
Hoepli Jr. during a Christmas party years ago, about the time I returned to the
University of Milano as an associate professor after being an instructor at Princeton
University.

The suggestion appealed to me but I could not work on it right away. Years later,
with a former colleague of mine Michele Sce, whom I wish to remember here, we
proposed the contents and set a general plan. To my sorrow we could not go much
further due to his sudden illness.

At that juncture the strongest input, which eventually shifted the topic of the
book, came from my students. Over the years many, majoring in physics, chem-
istry, biology, and computer science, had attended my courses on mathematics.
I wanted to write a book that would be easy for them to read and close to their
scientific interests so that their studies would be better motivated.

I also wished to write a book for a broad audience. On more than a few occa-
sions, after being introduced as a mathematician, I was told something like: “At
school I liked math but never understood what it was used for.” I wanted to meet
this understandable curiosity and show how my field of interest is put to good use.
Fortunately Fourier analysis has an extremely wide range of applications—reaching
the everyday lives of everyone—in line with the goal Fourier assigned to mathe-
matics: “the public good and the explanation of natural phenomena.”

From that background the first book Applicazioni dell’Analisi Armonica, which
appeared in 1996 in Italian, and the present book, double the size, were born. My
Italian editor generously released his rights to this English version. I wish to thank
him for that, for having accepted the change of topics, and for his original sug-
gestion as well.

I also wish to thank John Benedetto, series editor in chief of Birkhäuser’s
Applied and Numerical Harmonic Analysis book series, for encouragement and
support of this project.

An important contribution came from Ronald N. Bracewell of Stanford
University, himself the author of a standard text on Fourier analysis and applica-
tions and whose range of interests covers a good part of the topics dealt with here.
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He read my original book since, to my surprise, he knows Italian and kindly offered
to assist me with English. Actually he did much more. I thank him for his steady
support of the project, for his scientific advice, and for consultation on my English.
The result is a presentation of much of modern science, from the billions of years of
cosmic evolution to chemical reactions followed to the nanosecond, from the
cosmic world populated by gigantic galaxies to the atomic world, and up to the
ideal world of mathematics. Scientists, who are engaged in pushing ahead the
frontier of knowledge, appear to share the feelings expressed in the poetic words
of the ancient astronomer:

When I search into the multitudinous revolving spirals of the stars my feet no longer rest on
the earth, but, standing by Zeus himself, I take my fill of ambrosia, the food of gods.
(Claudius Ptolemy, 2nd century A.D.)

Overview

The opening chapter of this book is devoted to Fourier’s life, which was full of
adventures and misadventures and equally filled with scientific and public work.

The second chapter introduces the mathematics that is common to the different
applications. The historical introduction is followed by a presentation of basic
concepts such as the Fourier series and Fourier transform, fundamental theorems
such as the Dirichlet theorem and the inversion formula, and basic properties having
to do with dilations and translations. The mathematical introduction given in
Chapter 2 is as elementary as possible and illustrated by examples.

The enormous influence exerted upon science by Fourier’s idea of decomposing
a function into a sum of sinusoids or “waves”—influence that kept gathering power
throughout the century that followed Fourier’s work—is made apparent in the
remaining seven chapters. They are devoted to different applications, each chosen
for its significance and diversity. In all chapters the mathematical core is preceded
by a historical account and followed by a description of recent advances.

Chapter 3, which begins with the history of the great electrical revolution—from
Alessandro Volta to Alexander Bell and Guglielmo Marconi and up to satellite
communications—has as a main topic signal processing, probably the best-known
application of Fourier analysis. Filters, noise, quantization, sampling, and the
sampling theorem are dealt with. The discrete Fourier transform (DFT) and the
well-known algorithm for the fast Fourier transform (FFT) follow. The origin of
this algorithm is traced back to Gauss in his successful attempt to compute the orbit
of an asteroid. At this point the topic of space exploration appears as a natural link
and ends the chapter. Here the historical part is dominated by the figures of the
well-known German-born scientist Wernher von Braun and his Russian counterpart
Sergei Korolev, while the technical part deals with aspects of propulsion and
combustion.

In Chapter 4, after recalling how sound came to be understood and measured, the
attention shifts to music, computer music, and its history. The analysis of musical
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sounds is dealt with, beginning with a single note and ending with the dynamic
spectra of the performances of three tenors, which allows a quantitative and
comparative analysis of their styles. Finally musical synthesis and some of the
special effects it is used for are illustrated.

The topics in Chapter 5 are all interleaved with the long struggle to understand
the nature of light, from Newton to Einstein. The Fourier transform in two
dimensions, needed for the mathematical model of the so-called optical transforms,
is introduced. Diffraction at infinity is the underlying physical phenomenon, which
also lies at the heart both of radioastronomy, as illustrated in Chapter 9, and of x-ray
crystallography, as illustrated in Chapter 6. Also relevant to x-ray crystallography is
synchrotron radiation. With its unique features and the huge storage rings needed to
produce it, it is the final topic of the chapter.

Chapter 6 is dedicated to x-ray crystallography, to its history from Nicolaus
Steno to Max von Laue and Lawrence Bragg, and to the demanding task, so
essential to the understanding of life, of determining the spatial atomic structure of
human proteins, expected to number over a million. The first result, due to
molecular biologist Max Perutz, dates from the 1960s. It could take work extending
over a great deal of this century to see the end of it. The chapter would not be
complete without mentioning the revolutionary work of biochemist James Watson
and physicist Francis Crick on DNA, which was based on the experimental data
of the crystallographer Rosalind Franklin.

Chapter 7 introduces the Radon transform, which is closely connected with the
Fourier transform. Advanced in the early 1900s by the mathematician from whom it
takes its name, it found its most important application in the CT scanners first built
by the engineer Godfrey Hounsfield following the theoretical work by physicist
Allan Cormack.

Chapter 8 begins with the history of nuclear magnetic resonance (NMR). This
phenomenon, originally detected in the late 1920s by the physicist Isidore Rabin,
aroused the interest of scientists from different fields, such as physicists Felix Bloch
and Edward Purcell, chemists like Richard Ernst and Paul Lauterbur, and medical
doctors such as Raymond Damadian. Their work lies at the foundations of the
well-known magnetic resonance imaging (MRI). Also NMR spectroscopy, a
technique that, like crystallography, is employed to determine the spatial atomic
structure of proteins, is illustrated. The case of the prion protein, involved in the
dreaded BSE, provides an example.

Chapter 9 takes us back to space. Introduced by a brief history of one of the
oldest human activities, astronomical observations, this chapter focuses on
radioastronomy. From its beginning in the 1930s, radioastronomy has revealed new
celestial objects such as quasars and pulsars, led to the theory of the Big Bang, and
following very recent measurements, pointed to an endless expansion of our
universe.
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Aims and Scope

In times like ours in which scientists tend to have a restricted and focused point of
view, which is reflected in the scientific literature, I believe a book adopting a
generalistic approach may have some value.

The book offers a brief introduction to several fields that are active and central in
contemporary science together with the required Fourier analysis and landmarks in
their fascinating historic development. Numerous illustrations make the reading
easier, while the extensive bibliography may satisfy those in search of deeper
knowledge, both scientific and historical.

Who might be interested in this book? To my mind, among the primary readers
should be working scientists, particularly mathematicians and especially Fourier
analysts wishing to know more about the applications of their own field of
expertise, as well as scientists in one of the fields of application who want to know
what workers in other fields do. In Ronald Bracewell’s words: “To specialists
already equipped with basic knowledge it could represent a way of efficiently
building on their existing background, expanding their areas of expertise, and
perhaps qualifying them for other jobs. One has to bear in mind that mathematicians
are heavily outnumbered by people engaged in image engineering and in biome-
dicine. The rapid expansion of medical imaging will result in crystallographers,
radioastronomers, and others being drawn from these areas in order to fill the
immediate needs in medicine. Elena Prestini’s book could facilitate the transfer into
medical imaging of people whose primary exposure at graduate level was to one
of the less populated specialities.”

This book may also interest those concerned with history of science. I describe
the ancient origins of every topic, move quickly to modern times—the primary
focus—and finally reach the present.

The general reader might be interested in this work as well. I am thinking for
instance of young people in the process of deciding the course of their studies. They
might find useful information herein and derive inspiration from reading about the
work of celebrated scientists. I have paid a lot of attention to the organization of the
material and worked toward reaching clarity of exposition. This together with the
selection of topics, I hope, will keep the readers interested until the very end.

While significant parts of every chapter are accessible to the general reader,
some knowledge of calculus is required to understand the technical part. The book
can be used as a complement in teaching at both the undergraduate and graduate
levels, whenever the teacher feels comfortable with it. For instance I require my
students majoring in chemistry—the corresponding level in the U.S. would be
advanced undergraduate—to read it all (the original Italian version), and in my
lectures I go over the technical parts of the topics relevant to chemistry. Even
though it requires some extra effort from the students, I have found that it pays off
for them to know some of the outstanding accomplishments in which the mathe-
matical techniques that they are required to master are involved.

xviii Preface to the First Edition



Acknowledgments

A book of such a wide scope cannot be reasonably written by a researcher working
in isolation. It has been a pleasure of mine to discuss matters concerning the several
fields presented here sometimes by e-mail but more often in personal meetings with
the following scientists listed according to the order of the chapters:

Claudio Bruno, Scuola di Ingegneria Aerospaziale, Università di Roma “La
Sapienza,” Rome, Italy

Eugenio Gorgucci, Istituto di Fisica dell’Atmosfera, Consiglio Nazionale delle
Ricerche, Frascati, Italy

Claudio Zanotti, Centro Nazionale Propulsione e Materiali, Consiglio Nazionale
delle Ricerche, Milan, Italy

Giuseppe di Giugno, Scientific Director, Istituto Ricerca per Industria e Spettacolo,
Colleferro, Italy

Giorgio Adamo, Discoteca di Stato, Rome, Italy

Massimo Altarelli and Renzo Rosei, Elettra Sincrotrone, Trieste, Italy

Zahid Hussain and Keith H. Jackson, Advanced Light Source, Berkeley, California,
USA

Stephen G. Lipson, Department of Physics, Technion University, Haifa, Israel

Gianfranco Chiarotti and Sergio Tazzari, Dipartimento di Fisica, Università di
Roma “Tor Vergata,” Rome, Italy

Silvio Cerrini, Director of Istituto di Strutturistica Chimica, Consiglio Nazionale
delle Ricerche, Monterotondo Scalo, Italy

Adriana Zagari, Dipartimento di Chimica, Università di Napoli, Naples, Italy

Vukika Srajer, Department of Biochemistry and Molecular Biology, University of
Chicago, Chicago, Illinois, USA

Erik L. Ritman, Department of Biophysiology and Biophysics, Mayo Graduate
School of Medicine, Rochester, Minnesota, USA

Maurizio Paci, Dipartimento di Scienze e Tecnologie Chimiche, Università di
Roma “Tor Vergata,” Rome, Italy

Francesco De Luca, Dipartimento di Fisica, Università di Roma “La Sapienza,”
Rome, Italy

Johannes Zuegg, School of Medical Research, Australian National University,
Canberra, Australia

Ferenc A. Jolesz, Director MRI Division, Harvard Medical School, Cambridge,
Massachusetts, USA

Preface to the First Edition xix



Gary H. Glover and Laura Logan, Department of Radiology, Stanford University,
Stanford, California, USA

Alfonso Cavaliere, Dipartimento di Fisica, Università di Roma “Tor Vergata,”
Rome, Italy

Paolo De Benardis, Dipartimento di Fisica, Università di Roma “La Sapienza,”
Rome, Italy

Franco Scaramuzzi, Ente Nazionale Energie Alternative, Frascati, Italy.

To all of them go my thanks for their kind and generous collaboration in the
course of writing this book.

I also thank my colleague Francesco De Blasi for his comments, Renato Guidetti
of the University of Milan for his help with the bibliography, Paul Lyman for his
help with British history, David E. Bruno for some of the drawings, and Giancarlo
Baglioni for his help with the electronic pictures.

I wish to thank Ann Kostant, Elizabeth Loew, and Tom Grasso of Birkhäuser for
the care put into editing my original text.

Finally my thanks go to the Mathematical Sciences Research Institute in
Berkeley where I spent the month of July 2000, working hard while enjoying its
warm hospitality and the beautiful landscape.

Rome, Italy Elena Prestini
September 2003

xx Preface to the First Edition



Contents

1 Joseph Fourier: The Man and the Mathematician . . . . . . . . . . . . . . 1
1.1 An adventurous life. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The beginnings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 The revolutionary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 At the École Normale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 From imprisonment to the École Polytechnique . . . . . . . . . . . . 7
1.6 Fourier, Napoleon, and the Egyptian campaign. . . . . . . . . . . . . 9
1.7 The prefect of Isère and the Analytical Theory of Heat. . . . . . . 14
1.8 Fourier and the “Hundred Days”. . . . . . . . . . . . . . . . . . . . . . . . 19
1.9 Return to Paris . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Introduction to Harmonic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.1 How trigonometric series came about: the vibrating string . . . . 25
2.2 Heat diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3 Fourier coefficients and series . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.4 Dirichlet function and theorem . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.5 Lord Kelvin, Michelson, and Gibbs phenomenon . . . . . . . . . . . 39
2.6 The construction of a cellar. . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.7 The Fourier transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.8 Dilations and the uncertainty principle . . . . . . . . . . . . . . . . . . . 48
2.9 Translations and interference fringes . . . . . . . . . . . . . . . . . . . . . 50
2.10 Waves, a unifying concept in science . . . . . . . . . . . . . . . . . . . . 51

3 Telecommunications and Space Exploration . . . . . . . . . . . . . . . . . . . 53
3.1 The great electrical revolution. . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2 More and more hertz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.3 Tables of Fourier transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.4 The Dirac delta function and related topics . . . . . . . . . . . . . . . . 64
3.5 Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.6 Filters, noise, and false alarms . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.7 Sampling and the Nyquist frequency. . . . . . . . . . . . . . . . . . . . . 71
3.8 The discrete Fourier transform . . . . . . . . . . . . . . . . . . . . . . . . . 75

xxi



3.9 The fast Fourier transform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.10 Gauss and the asteroids: history of the FFT . . . . . . . . . . . . . . . 80
3.11 Unsteady combustion and space propulsion . . . . . . . . . . . . . . . 83
3.12 The Mars project. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4 Sound, Music, and Computers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.1 Understanding sound: some history. . . . . . . . . . . . . . . . . . . . . . 95
4.2 Bats, whales, and sea lions: ultrasonic reflections

in air and water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.3 Bels, decibels, and harmonic analysis of a single tone . . . . . . . 98
4.4 Sound processing by the ear: pitch, loudness, and timbre . . . . . 100
4.5 The tempered scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.6 Analysis of complex tones: cello, clarinet, trumpet,

and bass drum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.7 Three tenors in Verdi’s Rigoletto: dynamic spectra . . . . . . . . . . 105
4.8 The beginnings of the electronic music synthesizers . . . . . . . . . 108
4.9 Additive synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.10 Subtractive synthesis and frequency modulation . . . . . . . . . . . . 114
4.11 Bessel functions and drums: the vibrating membrane . . . . . . . . 117
4.12 Convolution and some special effects . . . . . . . . . . . . . . . . . . . . 119
4.13 Computer music and art music . . . . . . . . . . . . . . . . . . . . . . . . . 120

5 Fourier Optics and the Synchrotron Light . . . . . . . . . . . . . . . . . . . . 121
5.1 The long search on the nature of light . . . . . . . . . . . . . . . . . . . 121
5.2 Spectroscopy: a close look at new worlds. . . . . . . . . . . . . . . . . 124
5.3 The mathematical model for diffraction: the Fourier

transform in two dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.4 Optical transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.5 X-rays and the unfolding of the electromagnetic spectrum . . . . 134
5.6 Synchrotron radiation, first seen in the stars . . . . . . . . . . . . . . . 136
5.7 Unique features of the synchrotron light . . . . . . . . . . . . . . . . . . 139
5.8 Storage rings, among the biggest machines in the world. . . . . . 140
5.9 Spectrum of the synchrotron light . . . . . . . . . . . . . . . . . . . . . . . 142
5.10 Brightness and undulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
5.11 Applications and the futuristic free electron laser . . . . . . . . . . . 148

6 X-ray Crystallography: Protein Structure and DNA . . . . . . . . . . . . 151
6.1 Crystallography from Steno to von Laue . . . . . . . . . . . . . . . . . 151
6.2 Bragg’s law and the basic role of symmetries . . . . . . . . . . . . . . 156
6.3 How to see the invisible . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
6.4 The phase problem and the direct methods . . . . . . . . . . . . . . . . 165
6.5 Brief history of genetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
6.6 DNA through x-rays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
6.7 Protein structure: work for a century. . . . . . . . . . . . . . . . . . . . . 174
6.8 Seeing the hydrogen atom. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
6.9 Vision at the nanosecond: a time-resolved structure . . . . . . . . . 178

xxii Contents



7 The Radon Transform and Computerized Tomography . . . . . . . . . 181
7.1 Computerized axial tomography, a technique

from the 1970s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
7.2 Beyond classical radiology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
7.3 CT versus MRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
7.4 Projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
7.5 The Radon transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
7.6 Inverting the Radon transform by convolution and back

projections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
7.7 CT images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
7.8 Local tomography and microtomography . . . . . . . . . . . . . . . . . 195

8 Nuclear Magnetic Resonance: Imaging and Spectroscopy . . . . . . . . 199
8.1 “We are all radio stations” . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
8.2 Nuclear spin and magnetic moment . . . . . . . . . . . . . . . . . . . . . 205
8.3 The swing and the phenomenon of resonance. . . . . . . . . . . . . . 207
8.4 Driving a resonance: the Larmor frequency . . . . . . . . . . . . . . . 208
8.5 Relaxation process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
8.6 Relaxation times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
8.7 NMR spectroscopy: chemical shift and coupling constant. . . . . 214
8.8 Prion protein . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
8.9 Collecting NMR spectra: continuous wave versus pulses . . . . . 219
8.10 The road to NMR imaging in the work of Damadian . . . . . . . . 220
8.11 The principle of image formation . . . . . . . . . . . . . . . . . . . . . . . 222
8.12 MRI-guided interventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
8.13 Functional MRI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

9 Radioastronomy and Modern Cosmology . . . . . . . . . . . . . . . . . . . . . 231
9.1 Astronomical observations: “six thousand years for a

witness” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
9.2 How radioastronomy was born . . . . . . . . . . . . . . . . . . . . . . . . . 236
9.3 The most “mortifying” episode of English naval

history and radar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
9.4 Radio waves and radiotelescopes . . . . . . . . . . . . . . . . . . . . . . . 240
9.5 Resolving power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
9.6 Interferometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
9.7 The principle of image formation in a radiotelescope . . . . . . . . 245
9.8 Aperture synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
9.9 Synthesis by earth’s rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
9.10 Quasars, pulsars, and the Big Bang. . . . . . . . . . . . . . . . . . . . . . 252
9.11 A “flat” forever-expanding Universe . . . . . . . . . . . . . . . . . . . . . 257
9.12 Search for extraterrestrial intelligence . . . . . . . . . . . . . . . . . . . . 258

Contents xxiii



10 Our Friendly Atmosphere: Methods of Remote Sensing
and Climate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
10.1 Cannons, sirens, explosions, and atmospheric acoustics

is born. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
10.2 Tyndall, Arrhenius, and some surprising atmospheric

gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
10.3 The discovery of the stratosphere . . . . . . . . . . . . . . . . . . . . . . . 268
10.4 Our friendly atmosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
10.5 Turbulence: Navier–Stokes equations and Kolmogorov

theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
10.6 Princes of the clouds and lords of the winds. . . . . . . . . . . . . . . 280
10.7 The advent of sodar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
10.8 The refractive index of air to acoustic, radio,

and light waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
10.9 Acoustic scattering theory and the role of the Fourier

transform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
10.10 How the sodar works: thermal plumes, laminated

structures, and breaking waves . . . . . . . . . . . . . . . . . . . . . . . . . 288
10.11 The sodar, the wind, and the Doppler shift . . . . . . . . . . . . . . . . 292
10.12 Tracing the origin of radar meteorology . . . . . . . . . . . . . . . . . . 295
10.13 The radar for stormy and clear air observations . . . . . . . . . . . . 297
10.14 Target localization and radial velocity. . . . . . . . . . . . . . . . . . . . 306
10.15 The radar and the wind: Nyquist frequency

and range-velocity ambiguity . . . . . . . . . . . . . . . . . . . . . . . . . . 309
10.16 After laser came lidar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
10.17 Rayleigh, Mie, and Raman scattering . . . . . . . . . . . . . . . . . . . . 313
10.18 The lidar and the wind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
10.19 Milankovitch theory of climate and the temperature

of the Earth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343

Applied and Numerical Harmonic Analysis (74 volumes) . . . . . . . . . . . . 353

xxiv Contents



Chapter 1
Joseph Fourier: The Man
and the Mathematician

1.1 An adventurous life

Orphaned when still a child, Joseph Fourier went through the French Revolution,
the Napoleonic era, and the following Restoration as a high-ranking public servant.
He learned on his own “how hard the way up and down another man’s stairs is”1 by
experiencing directly how risky it is to please changing lords such as Robespierre,
Napoleon, andKingLouisXVIII.He started as a convinced Jacobin,maybe impulsive
at the time, and ended up as a cautious liberal.

He was a distinguished administrator and diplomat, but more than that he was a
scientist whose achievementswere truly revolutionary in character. Themost relevant
aspect of his life, the one for which he is still remembered, is the contribution he
made to the advancement of mathematics and physics. It is somewhat miraculous
that his most important and creative work took place when he was prefect of Isère, an
onerous administrative position he held with first class results. It suffices to mention
the construction of the French part of a spectacular road through the Alps from
Grenoble to Turin and the draining of twenty million acres of marshes around the
village of Bourgoin midway between Lyon and Grenoble, a century-old proposal
that nobody previously had been able even to start.

He ranks among the most important scientists of the nineteenth century for his
studies on the propagation of heat, the consequences of which reach down to the
present day. The question of terrestrial temperature was principally in his mind in
establishing the mathematical theory of heat, and the paternity of the expression
“greenhouse effect”— effet de serre—is attributed to Fourier. He was the first on
record to hint at it, writing back in 1827: “The problem of global temperatures,
one of the most important and difficult of the whole of natural philosophy, is com-
posed by rather different elements that ought to be considered from a unique general

1“come è duro calle lo scendere e ’l salir per l’altrui scale” The Divine Comedy, Paradise, XVII,
59–60, by Dante Alighieri (1265–1321).
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2 1 Joseph Fourier: The Man and the Mathematician

point of view.” The novelty of his method, at least initially, perplexed outstanding
mathematicians of his time, from Lagrange to Laplace and Poisson. The publication
of Fourier’s work was consequently delayed as many as 15 years during which he
tenaciously defended, explained, and extended it.

Moreover, it ought to be mentioned that Fourier is among the founders of modern
Egyptology: He followed Napoleon in his Egyptian campaign, spent 3 years there,
and organized an expedition to Upper Egypt that made important discoveries. They
form the basis of amonumental workDescription of Egypt—21 volumes—for which
he supplied a historical introduction.Much under Fourier’s influence, Jacques Joseph
Champollion-Figeac and his brother Jean François became important archeologists
and Egyptologists.

1.2 The beginnings

Jean Baptiste Joseph Fourier was born onMarch 21, 1768 in the ancient and beautiful
town of Auxerre, 150 kilometers south of Paris in a position dominating the river
Yonne, with beautiful churches, above all the ancient fifth century abbey St. Germain
and the Gothic cathedral of St. Étienne (Fig. 1.1). Joseph was the name of his father,
a master taylor of Auxerre, who had been born to shopkeepers in a small town in
Lorraine. Joseph might have been attracted to Auxerre by the rich and powerful

Figure 1.1 The Gothic cathedral of St. Étienne from the east bank of the river Yonne. (Photograph
by Jasette Laliaux)
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ecclesiastical establishment of the town, which had had its own bishop since Gallo-
Roman times. He probably expected some special consideration in memory of his
paternal great uncle Pierre Fourier, a leading figure of the Counter Reformation in
Lorraine in the sixteenth and early seventeenth centuries. Joseph Fourier married
twice. With his first wife he had three children and with the second one 12. Jean
Joseph was the ninth of these. His mother Edmie died in 1777 and his father the
following year.

Not yet ten years old, Jean Joseph was left an orphan. By all means the young
Fourier could have then been considered “lost.” It did not go that way thanks to
a certain Madame Moitton who recommended him to the bishop of Auxerre, thus
sparing him a life of apprenticeship and servitude. At 12 he entered the local École
Royale Militaire, run by the Benedictines.

The various military schools of the country, 11 in all, were placing special impor-
tance on the teaching of science and mathematics, due to the requirements of those
pupils who were going to enter the specialist corps of artillery and engineers. They
were periodically visited by a panel of inspectors, among them the académicien
and mathematician Adrien Marie Legendre (1752–1833). Fourier, an exceptionally
gifted student of happy nature and quickmind, soon showed a great passion for math-
ematics. He was only 13 when he got into the habit of collecting candle ends to use
at night during the long hours he spent studying mathematics in some sort of store
room. In so doing he succeeded in unintentionally scaring the deputy principal who,
one night while making his rounds of the school, saw a light through the keyhole and
rushed in, fearing a fire. Fourier’s overall excellence is confirmed by the prizes he
won during 1782 and 1783: in rhetoric, mathematics, mechanics, and even singing.
Then a year-long period of illness followed, perhaps due to the excessive intensity
of his studying.

His main ambition at the time was a military career. At the age of seventeen,
having completed his studies, he wished to enter the artillery or the engineers. In
spite of the support of the inspectors of the school, the minister of war rejected his
application. The fact that he was not a noble appears to have played a role.

As a second choice he decided to enter the Benedictines. To St. Benoît-sur-Loire,
seat of an ancient and splendid basilica—hosting the body and relics of St. Benedict,
which were transported there from Monte Cassino in the seventh century—Fourier
arrived in 1787. He stayed two years preparing for his vows while teaching other
novices.During this period of spreading riots and chaos, preparatory to the revolution,
Fourier remained indifferent to political news and obtained results in the theory of
equations. In 1789 he sent a paper to the Académie des Sciences in Paris. That was
the year of the French Revolution and Fourier’s paper was one of the casualties.

The monastic orders, combining great wealth and a steadily shrinking number of
inmates, had long been a strong temptation to a government continually on the verge
of bankruptcy. During October 1789, by decree of the Constituent Assembly, it was
forbidden to take any further religious vows. A few months later all religious orders
were suppressed and subsequently all belongings confiscated.

Fourier himself, who in the meantime had manifested some uncertainty about
the choice he had made, did not take his vows and returned to Auxerre to teach
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mathematics, rhetoric, history, and philosophy in his old school, now having as a
second title that of collège national. A commissioner of the local directory who
visited the college in October 1792 reported favorably on the health of the inmates
and the liberal atmosphere. He deplored only the tendency to drive out Latin to make
way for mathematics, so much in demand by the parents of the pupils. Fourier carried
out his duties there with dedication and remarkable success that earned him a fine
reputation.

1.3 The revolutionary

The town of Auxerre fortunately saw little or no bloodletting during the Revolution,
but the local Société Populaire, associated with the revolutionary Jacobin party, was
one of the most militant provincial clubs in the country. Fourier’s involvement in
politics did not occur officially until February 1793. The occasion seems to have been
a speech before the local assembly following a decree of the Convention for the draft
of 300,000 men. While the quotas of the various departments—the administrative
regions into which France was divided in 1790—were fixed, it was left to each
department through the vote of the citizens to decide how to meet its quota: by lot,
by volunteering, or byothermeans. This hot issuewas debated inAuxerre by a general
assembly. Fourier intervened and proposed a plan that was then adopted. In a letter
written later, in June 1795 from prison, he makes clear that he fully shared the ideals
of the Revolution (Hérivel [975]): “As the natural ideas of equality developed it was
possible to conceive the sublime hope of establishing among us a free government
exempt from kings and priests, and to free from this double yoke the long usurped
soil of Europe. I readily became enamored of this cause, in my opinion the greatest
and most beautiful which any nation has ever undertaken.”

In March 1793 he was invited to join the local Comité de Surveillance. It is not
knownwhether Fourierwished the invitation or, on the contrary,would have preferred
to decline it, after receiving it. Certainly, a refusal would not have been without risks,
since by and large the town of Auxerre shared the Republican ideals and a refusal
could have identified Fourier as an opponent of the patriot party. Fromwhat is known
of his later involvement in politics, it is more likely that he eagerly embraced the
chance to take part in the defense of the Republic, which was threatened by military
reverses in Belgium and by the rebellion in Vendée.

Events were moving fast due to the mounting of internal opposition, which
prompted the formation of the Tribunal Révolutionnaire, and the near famine con-
ditions of the population. Already by September of the same year the innocuous
committees of surveillance (for strangers and travelers) had been entrusted with uni-
versal surveillance and soon were to become an integral part of the Terror, having to
proceed by the Law of Suspects of September 17, 1793 to arrest “those who by their
conduct, relations or language spoken or written, have shown themselves partisan
of tyranny or federalism and enemies of liberty.” (During 1793–94 over 200,000
citizens were detained under this law and about 17,000 death sentences were handed
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down by the revolutionary tribunals andmilitary commissions.) At this point Fourier,
feeling “less suited than many others to execute this law,” attempted to withdraw and
submitted hiswritten resignation. It was notwell received. As Fourier relates (Hérivel
[1975]):

This move produced an opposite effect to what I had intended. In a reply sent to me I was
reminded of a law which forbade any official to abandon his post and my resignation was
rejected. At the same time other persons openly accused me of abandoning my colleagues
at a moment when my help was about to become the most useful to them. I was reproached
with the feebleness of my conduct and some even doubted the purity of my intentions.

Fourier was not a fanatic; he firmly believed in the ideals of the Revolution and to
that he devoted his intelligence, eloquence, and zeal but always retained an indepen-
dent judgment. This togetherwith his juvenile impulsiveness led him into a dangerous
situation. He was sent to the neighboring department of Loiret with the mission of
collecting horses for the war effort. He completed that “with every possible success.”

Unfortunately on his way throughOrléans, in the course of hismission, he became
involved in a local dispute. To Orléans, plagued by near starvation and declared in
a “state of rebellion,” a representative of the people was sent by the Convention.
Immediately upon arrival he “purged” the administrative corps of the city, made
numerous arrests, and threatened to bring in a movable guillotine like the one in
Paris. Thereafter he turned against members of the local Société Populaire, members
of his own party. It was at this point that Fourier, “behaving in conformity with the
principles of Revolution” took the defense “perhaps imprudent but at least disinter-
ested” of the heads of three local families. Fourier was immediately denounced to the
Convention, his commission revoked, and himself declared “incapable of receiving
such commissions [in the future].” This took place on October 29, thirteen days after
the execution of the queen.

Fourier, in fear, returned to Auxerre where he would have faced the greatest
possible danger if the Société Populaire and the Comité de Surveillance had not suc-
cessfully intervened on behalf of their “young and learned compatriot.” He remained
a member of the local revolutionary party and kept on teaching in his old school,
which was going to be closed down in August 1794. April of that year saw the
execution of Danton and of his associates amid the mounting Terror.

Nothing is known of Fourier’s feeling during this period except for what he wrote
afterward, when he claimed he had spoken out in Auxerre against the excesses of the
Revolution. By June 1794 he had become president of the Revolutionary Committee
in Auxerre and, therefore, the foremost representative of the Terror in town. This high
position is known from an entry in the local archives reporting his arrest: Fourier,
always feeling injustice at the decree of the Convention that declared him unfit for
“similar commissions” in the future, had gone in person to Robespierre in Paris to
plead his case. Perhaps he made a bad impression on him. Certainly upon his return
to Auxerre on July 4 he was arrested. Because of the high reputation he enjoyed in
town, many interceded in his favor and he was released, only to be rearrested a few
days later. Then an official delegation was sent to Saint Just in Paris to demand his
release, but salvation came from a totally different route: on July 27 (9 Thermidor)
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the Convention ordered the arrest of Robespierre and Saint Just. They were to be
promptly guillotined the next day without trial. The Terror was over. Fourier’s life
was saved and he regained his freedom.

1.4 At the École Normale

Fourier, back in Auxerre, was soon going to return to Paris for an event that would
have a great impact on his life: the opening of the École Normale.

The Revolution had rid itself of the existing educational system but failed to
replace it with anything new. That was not a good prospect for its civilian andmilitary
functions. To help repair the damage and remedy an acute shortage of elementary
school teachers, by a decree dated October 30, 1794, the Convention set up a national
college in Paris, the École Normale.2 There were to be 1500 students chosen and
financed by the districts of the Republic. Fourier was nominated by the neighboring
district of St. Florentin, since Auxerre had already made its choice while he was
in prison. He accepted after having requested and been granted authorization from
“the constituted bodies of the commune of Auxerre.” The view of one of his fellow
students is interesting (Hérivel [1975]):

When the pupils [of the École Normale] gathered together, France had only just emerged
from beneath the axe of Robespierre. The agents of this tyranny were everywhere regarded
with abhorrence: but the fear which they had inspired, joined to a fear of their return to power,
retained for them some vestige of credit. They profited from this, by seizing the opportunity
of quitting the scene of their vexatious act. Several had themselves named pupils of the
École Normale. They carried there with the ignorance proper to them the hate, distrust and
contempt which followed them everywhere. Beside them were men full of wisdom, talent
and enlightenment, men whose names were celebrated in all Europe.

Fourier was likely to have few regrets at the prospect of leaving Auxerre where, as
former president of the Revolutionary Committee, he was a marked man. Compared
to the violent whirlpools of the Revolution, at the École Normale must have felt
like paradise. The professors were chosen from among the foremost men in the
country: Joseph Louis Lagrange (1736–1813), Pierre Simon Laplace (1749–1827)
and Gaspard Monge (1746–1816) taught mathematics and for chemistry there was
Claude Louis Berthollet (1748–1822). All of them were going to play a role in
Fourier’s life in the years to come.

The school opened with impressive dispatch on January 20, 1795, amid great
enthusiasm. In a letter to J. A. R. Bonard, his former teacher of mathematics in
Auxerre, Fourier conveyed a vivid description of the early sessions of the school
(Hérivel [1975]):

The École Normale holds its sessions at the Jardin des Plantes, in a middle-sized place of
circular shape; the pupils who are very numerous are seated in rows on the tiers of a very

2The present day École Normale descends from the homonymous school established 16 years later
during the Napoleonic era, dedicated to training professors of secondary and higher education.
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high amphitheater; there is no room for everyone and every day there are a fair number who
find the door closed; if one is obliged to leave during the sessions, one cannot enter again. At
the back of the room, within an enclosure separated by a railing, are seated several Parisian
scientists and the professors. In front, on a slightly higher platform are three armchairs for
the professors who are to speak and their assistants. Behind them, and on a second platform,
are the representatives of the people in the uniform of deputies on detached service. The
session opens at 11 o’clock when one of the deputies arrives; there is much applause at this
moment and when the professor takes his place. The lessons are almost always interrupted
and terminated by applause. The pupils keep their hats on, the professor who is speaking is
uncovered; three quarters of an hour or an hour later, a second professor takes his place, then
a third, and the usher announces that the session is ended.

Fourier, an experienced teacher himself, gives an account of the lecturing habits
and idiosyncrasies of the professors. Lagrange, whom Fourier followed with eyes
full of admiration, as deserved by “the first among European men of science,” had a
“rather poor reception” from the students. Incapable of preserving order, he showed
his Italian origin by “a very pronounced accent” (he was born in Turin and spent his
youth there). He could make some rather comic sentences, such as “There are still
on this matter many important things to say, but I shall not say them.” Nevertheless
to Fourier “the hesitation and simplicity of a child,” that sometimes could be seen in
Lagrange, made only more apparent “the extraordinary man he is.”

Of Laplace, “among the first rank men of science,” Fourier writes that “he speaks
with precision, but not without a certain difficulty” and that “the mathematical teach-
ing he gives has nothing extraordinary about it and is very rapid.”Berthollet, acknowl-
edged as “the greatest chemist we have either in France or abroad,” Fourier continues,
“only speaks with extreme difficulty, hesitates and repeats himself ten times in one
sentence” to conclude that “his course is only understood by those who study much
or understand already.” Monge instead “speaks with a loud voice” and “the science
about which he lectures [descriptive geometry] is presented with infinite care and he
expounds it with all possible clarity.”

He reports on others including a certain Sicard, “well known as a teacher of deaf-
mutes, full of enthusiasm and patience” but “mad.” “His theory of grammar, which
is brilliant in certain respects, is one of the craziest I know of” (Hérivel [1975]).

On May 1795, a few months after inauguration, the school was closed due to
objective difficulties. In particular the seminars, which had been intended as the
backbone of the system, were a failure because so few students had learned enough
to be able to contribute. For the majority of the pupils the École Normale had been a
waste of time, but for Fourier it was a turning point of his career: At those seminars
he made his mark. Meanwhile disturbing rumors were coming from Auxerre.

1.5 From imprisonment to the École Polytechnique

The fall of Robespierre marked the beginning of the settling of scores with those
associated with him. Many had used their power to commit all sorts of injustices and
atrocities: It had been the “Terror.” In Auxerre, Fourier’s opponents wasted no time.
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On March 20, 1795 in an address to the National Convention, arguing that the pupils
at the École Normale were chosen under the reign of Robespierre and his protégés
and that Fourier “had long professed the atrocious principles and infernal maxims
of the tyrants,” they protested his preparations to become a teacher of their children.
They wanted to prevent him from securing a teaching position and the indemnities,
due to him as a pupil at the École Normale, suspended. On May 12, an order was
issued in Auxerre regarding the disarmament of a number of terrorists including
Fourier, followed on May 30 by a second-order commanding the detention of all
those terrorists who had failed to comply with the original order.

Fourier, in an attempt to disarm his enemies, wrote to the municipality asking to
which duly constituted authority he should present himself to be disarmed; he even
resigned a new position given to him at the École Centrale des Travaux Publiques
(Central School of PublicWorks). All in vain. On the night of June 7 hewas awakened
by armed guards and taken to prison without notification and having scarcely been
given the time to dress himself. The pretext was failure to present himself to be
disarmed; the true charge, that of having inspired terrorism in the years 1793–1794.

It is not known whether Fourier ever underwent trial or was even interrogated, but
we know his line of defense from letters, written from prison, to the representative of
the people and to the chairmanof theCommittee ofGeneral Security (Hérivel [1975]).
To the denunciation of terrorism and to the reproach of having been a member of
the Committee of Surveillance, he replied with eloquence, “I was entrusted by their
own votes with a surveillance determined by the law. I received this position without
soliciting it, I continued in it without the power ofwithdrawing from it and I exercised
it without passion.” As to the charge of terrorism, he continued, “I am unable here
to advance all the reasons that make these charges unfounded. I shall only insist on
the incontestable facts that no one in the commune of Auxerre was condemned to
death or judged by the Revolutionary Tribunal at Paris, that no revolutionary tax was
established of any kind whatsoever, that the property of those detained was never
confiscated, that no cultivator, artisan or merchant was arrested.” Moderation had
been the dominant feature of his doings. There remained something to be said about
those who underwent arrest and detention. Fourier does not avoid the issue:

There remain therefore those citizens who being nobles or priests or relations of émigrés
found themselves included under the law of September 17 and who experienced a temporary
detention when they showed themselves declared enemies of the Revolution. They accuse
me of not having opposed their arrest and never pardon me for having signed the warrants
for their arrests. They pretend to believe I could have released them and wanted me to make
use of the trust which had been placed in me. Being unable to accuse us of abusing powers
they reproach us with excessive rigor, but far from having merited this insult I believe that I
have accorded to humanity, friendship, generosity even, all that was allowed by the letter of
the law and the rigor of the times.

As an example of this he pointed to his early imprisonment under Robespierre and
added, “I have experienced terror more than I inspired it” and “I owed to 9 Thermidor
both life and liberty.” Finally, he wrote with anguish, “To exclude me from a school
of mathematics is to take away from me an entirely legitimate possession which I
have acquired by my work and which I retain by cultivating it daily.”
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By August Fourier was released, the reasons unknown. Perhaps it was an inter-
vention of Lagrange or Monge, or more likely the change in the Convention of the
political climate with the end of repression against the Jacobins in face of a mount-
ing royalist threat. Fourier resumed his teaching position at the École Centrale, soon
to be renamed École Polytechnique by a decree of September 1, 1795. The École
Centrale des Travaux Publiques had been instituted by a decree of the Convention
of March 11, 1794. It did not have the general aims of the École Normale since it
was a military academy: Its graduates, with 3 years training in science, engineering,
and applied arts, were intended to provide the military elite. It took only about 400
students annually. Opened in November 1794 with a trial run of fifty students, it was
converted into a full organization when the École Normale closed.

The directorwasMonge andwith his support Fourier was appointed to an assistant
teaching post, fromwhich he had resigned in vain to avoid arrest.Nowback, he helped
run the course in descriptive geometry—by Monge, mathematician and military
engineer — that dealt largely with the use of science and mathematics in military
contexts, the art of attack and defense, and the organization of simulated battle
situations.Alsohe taught courses inLagrange’s curricula in analysis andwas involved
with the selection of the entrants to the École. Fourier believed they should have
“outstanding talents regardless of how much they have actually been taught,” an
opinion similar to the one expressed by Monge at the time of the setting up of the
school. Among those entrants was Siméon-Denis Poisson (1781–1840) who was
to be Fourier’s pupil at the École, his deputy as professor of analysis during his
absence in Egypt, and finally Fourier’s opponent over some mathematical questions
concerning the analytical theory of heat. During this period at the École, Fourier once
again built up a fine reputation for his teaching and in 1797 succeeded Lagrange in the
chair of analysis and mechanics. While continuing his investigation into the theory
of equations he also began work on problems in applied mathematics and in 1798
published his first paper in the Journal de l’École Polytechnique.

1.6 Fourier, Napoleon, and the Egyptian campaign

The quiet days at the École Polytechnique ended abruptly and unexpectedly as a
result of a letter from the minister of the interior dated March 27, 1798:

The Minister of Interior to Citizen Fourier Professor at the École Polytechnique:

Citizen, the Executive Directory having in the present circumstances a particular need of
your talent and of your zeal, has just disposed of you for the sake of public service. You
should prepare yourself and be ready to depart at the first order. If you are actually charged
with any employment or if you occupy any place at the expense of the Republic you will
conserve it during your mission and the salary attached to it will be paid to your family.

The minister of the interior was obeying the orders of the Directory (a five-man
executive committee that gave the name to the new regime begun in October 1795)
instructing him to “put at the disposition of General Bonaparte engineers, artists and



10 1 Joseph Fourier: The Man and the Mathematician

other subordinates of your ministry together with the different things he will demand
of you for the purpose of the expedition to which he has been assigned.”

On May 19 Fourier sailed from Toulon, following Bonaparte, together with gen-
erals, officers, members of the scientific and literary commission, and about 30,000
soldiers and sailors, all stowed in some 180 ships. The destination, unknown to
most, was Egypt. (Once more it was Monge, in charge together with Berthollet of
the selection of the scientific commission, to choose Fourier.) Successfully avoid-
ing an encounter with the English fleet that was scouring the Mediterranean at the
orders of Admiral Nelson, the French armada captured Malta where 7,000,000 gold
francs were acquired from the suppression of the ancient order of the Knights of
Malta. On July 1, Alexandria was sighted and captured the following day. Fourier
temporarily settled down in the nearby town of Rosetta, north of Alexandria (Fig.
1.2), and took up a position in the provincial purchasing commission while the army
headed toward Cairo with a march through the desert. On July 24 the Mameluke
forces under Murâd Bey were defeated at the Battle of the Pyramids. The next day
Napoleon entered Cairo. This sequence of successes was halted and de facto canceled
by the destruction of the French fleet in Abukir Bay. The feelings of the soldiers are
well captured by the physicist and engineer Étienne Louis Malus [1892]: “From then
on we realized that all our communications with Europe were broken. We began
to lose hope of ever seeing our native land again.” On learning of the disaster the
Directory ceased to assist the expedition.

As nothing happened, Bonaparte kept on going and set up a council with the native
leaders in the hope of bringing their affairs under the ultimate control of the French.
Fourier was later to sit at the meetings of the council as French commissioner. Of the
many tasks that Bonaparte was engaged in, the foundation of the Institut d’Égypte,
dated August 20, 1798, is what concerns us most. Organized as the Institut de France,
of which Bonaparte was amember, it consisted of four classes: mathematics, physics,
political economy, and literature and fine arts. The class of mathematics was themost
distinguished, including Monge, Bonaparte, Fourier, and Malus. In the physics class
was Berthollet, in literature and fine arts the artist Dominique Vivant Denon (1747–
1825). This latter, who would initiate in the Napoleonic era the policy of enriching
the Louver with works of art from conquered lands, was to provide a pictorial record
of many aspects of the Egyptian expedition with his large collection of drawings. The
Institute was located in the former palace of the beys, the great room of the harem
serving for themeetings. Thefirst one tookplace on25August and hadMonge elected
president, Bonaparte vice president, and Fourier permanent secretary. Napoleon had
assigned to the Institute as tasks the progress and propagation of the sciences inEgypt,
the collection and publication of natural, historical, and other data on Egypt. Last,
but not least, he was expecting assistance in the civil and military administration of
the land. Right away at the first meeting he raised several issues such as improving
the army’s baking ovens, ways of brewing beer without hops, methods in use to
purify the Nile water, the choice between windmills and watermills, and the location
of resources for manufacturing gunpowder. Fourier kept busy writing notes on the
questions posed by Napoleon but also found time for an old love of his, the general
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Figure 1.2 Map of the Mediterranean sea and surrounding regions.

resolution of algebraic equations, and wrote four mathematical memoirs to be read
before the Institute.

In February 1799 Bonaparte launched an ill-fated campaign in Syria, in July he
stopped a Turkish invasion at the battle of Abukir, and in August he left for Paris
upon learning of a troubled situation there. He brought with him the trusted Monge
and Berthollet. Fourier was kept out of the plan until the very last moments. When
he finally learned of it, he became so agitated at the thought of being left behind that
he followed them into the street and could hardly be persuaded to let them go.

Before departing, Bonaparte found time to plan a mixed scientific and literary
expedition to Upper Egypt under the joint leadership of Fourier and the assistant
secretary of the Institute. The discoveries of the expedition, which spent about two
months in the fall of 1799 investigating the monuments and inscriptions in Upper
Egypt, would years later form the basis of the Description of Egypt (Fig. 1.3).

Bonaparte left behind a difficult situation, challenged by the English forces and
civilian unrest. General Jean Baptiste Kléber, the new commander in chief, was
assassinated in Cairo in June 1800 and was succeeded by General Jacques François
Menou. Under both commanders Fourier was given many important administrative
and judicial positions. By Menou he was put virtually in control of all nonmilitary
affairs and entrusted with a most relevant assignment, the conduct of the French side
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Figure 1.3 The opening pages of the Description of Egypt.

of the negotiations with the Egyptian beys. He was successful in persuading them to
sign an alliance with the French at a time when they were none too strong militarily.
At the negotiations the chief bey Mourâd was represented by his wife, the beautiful
and intelligent Sitty-Nefiçah with whom Fourier negotiated also the freedom of some
of her slaves who were of interest to the French generals.

The English forces that had never ceased to create difficulties for the occupation
were about to see the end of their efforts. On March 1801 they landed at Abukir Bay.
At this point the members of the Institute thought it was time to leave for France and
Fourier with them, in spite of General Menou having expressed himself as follows:
“Your departure in the actual circumstances appeared to me, and still appears to me,
and always will appear to me immoderate and ill-conceived.” They embarked at
Alexandria, were immediately arrested by the English, and returned to Alexandria.
The deterioration of the French position was soon going to forceMenou to surrender.
He signed the terms of capitulation on August 30, 1801. The French were allowed to
keep part of their scientific collections and findings they had put together with care
during the occupation but not the important and highly symbolic Rosetta stone. The
stone, which marks the beginning of modern Egyptology, is a perpetual reminder
of the scientific importance of the French expedition, while its collocation at the
British Museum is a memento of its military failure. The French forces, such as
remained, withdrew in the autumn of 1801. Fourier organized much of the departure
and returned to France in the middle of November 1801. They were transported on
English ships at the expense of the Sultan and his allies. Fourier resumed his teaching
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Figure 1.4 Fourier dressed as prefect. (Portrait by unknown artist, possibly Claude Gautherot,
Museum of Auxerre.)

post at the École Polytechnique and was able to give a few lectures before Bonaparte,
meanwhile established as First Consul, appointed him prefect of the Department of
Isère on February 1802 (Fig. 1.4). The adventures, abruptly terminated, made room
for the years of maturity, for high rank administrative duties, and for the Analytical
Theory of Heat.
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1.7 The prefect of Isère and the Analytical Theory of Heat

The Department of Isère, crossed by the river of the same name and bordering
Italian territory, had its center in Grenoble. It was one of the 83 regions into which
France had been divided by a decree of the Constituent Assembly of February 3,
1790. In 1799 the departmental directories were abolished and replaced by a single
person, the prefect, sole representative of the executive power. Fourier’s feelings
about the position, which Bonaparte presented as “an earnest of my confidence in
citizen Fourier,” are not known. He accepted it and departed for the remote town of
Grenoble. His tasks as prefect were varied and demanding, even though he could
count on administrative officers and in particular on three private secretaries. He
had to oversee the enforcement of the laws and the implementation of the directives
constantly issued from Paris, mainly pertaining to taxes and recruitment, first for the
consular and later the imperial armies. At the same time he had to put forward to the
central government the needs and requests of the area, backward in development but
independent in spirit. Also hewas supposed to keep the government in Paris informed
about the preservation of order. SoonBonaparte’s regime began to develop into a form
of police state and Fourier had to execute unpleasant orders concerning the opening
of letters, the suppression of antigovernmental pamphlets, and the supervision of the
local official news sheet Annals of the department of Isère, administrative, political
and literary journal to keep away scandals and revolution.

Much more pleasant it must have been for him to get to know the prominent
local people, even though he had to compile notebooks on them for the Ministry
of the Interior. Indeed the policy of Napoleon was to unite the greatest number of
Frenchmen, regardless of their original sympathies and status, in support of his policy
and person. From the beginning Fourier was on excellent terms with the nobility who
praised his old world manners, the charm of his conversation, and appreciated the
many services he did them like helping émigrés, returning from exile, in gaining back
their original properties and allowing immunity from the recruitment of the guards
of honor in exchange for money, to be used in raising a body of paid volunteers.
He was also popular among the wealthy middle class, the so-called bourgeoisie,
for his excellent administration and was on good terms with the local clergy. At a
ceremony in the cathedral of Grenoble in which Fourier received the oaths of the
curés nominated in the diocese, the bishop celebrated the mass while incense was
given to the prefect. On the other hand Fourier’s relations with the members of the
local Jacobin party are unknown.

The year 1804 was eventful. In February Bonaparte visited Grenoble and in the
following May crowned himself emperor. Fourier wrote to Napoleon to tell him that
82,084 of the electorate supported the plebiscite on hereditary descent, with twelve
dissenters, and he spent more than three months in the capital for the celebrations.
Then he became involved with the visit in November of Pope Pius VII to Paris, since
the route passed through Isère.

Besides political affairs Fourier attended to the development and welfare of the
department, which was much in need. He reopened schools and colleges and revi-
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talized the mining and craft industries. His major achievement was the draining of
the marshes around the village of Bourgoin midway between Lyon and Grenoble.
The huge area, covering some twenty million acres, was rather useless and at that
time responsible for annual epidemics of fever. There had been projects planned and
attempted many times over more than a century but agreement among the 37 com-
munes bordering the swamps was never achieved. Fourier succeeded where his pre-
decessors had failed, thanks to his persistence, patience, and diplomatic ability. The
negotiations stretched over a period of some four years duringwhich he visited all the
communes involved, one by one, and met individually most of the inhabitants to con-
vince them to temporarily give up their rights of pasture for the sake of a better future.
In 1807 a treaty was finally signed and in 1812 work was completed. The value of the
land greatly increased as well as the health of the inhabitants. During the drainage
archeological remains were found and Fourier instructed Jean Champollion-Figeac,
then librarian of Grenoble, to preserve them in the library. Fourier had Champollion
as a cultural friend in Grenoble, introduced him to Egyptology, and used the power of
his position to spare him conscription. In 1822 Champollion would do his celebrated
work on the decipherment of Egyptian hieroglyphics.

Another large scale project initiated by Fourier was the opening on the French
side of an important and spectacular road through the Alps, the Grenoble–Turin,
via Briançon and Pinerolo. Fourier overcame the opposition of the minister of the
interior, himself a native of the countryside in question, by appealing directly to
Napoleon. Knowing the man, Fourier had him presented with a map and a one page
memoir setting forth the advantages, not least the military ones. Two days later the
request was granted. In Fourier’s times, nevertheless, the road’s construction did not
go beyond Briançon, partly due to the fall of Napoleon in 1815, but when completed
it was the quickest and shortest route from Lyon to Turin. Later Fourier recorded that
of all his prefectorial assignments this one gave him the greatest satisfaction.

Another time-consuming accomplishment was his contribution to theDescription
of Egypt. Fourier had been chosen to unite and publish the collection of works—
which had to be done by another former member of the Institute, due to his many
prefectorial duties—and to write the general introduction. This was essentially a
survey of the history of the ancient civilization to the time of the French expedition
and renaissance under French patronage. Fourier took great care and for the final
polishing even isolated himself in a country residence, having to deny rumors of
illegal holidays to the minister of the interior. He knew how Napoleon would scru-
tinize it. Finally in the autumn of 1809 the preliminary discourse was submitted for
Napoleon’s approval. The emperor kept it for a long time and made corrections in
his own hand, to conform the description of the Egyptian campaign to his personal
view. The work was published in 1810. Fourier received the title of baron and an
annual pension.

Fourier must have enjoyed his achievements and the demonstrations of loyalty
and affection he received, but he always hoped to be allowed to resign from the job
and to return to an intellectual life. Monge and Berthollet in vain tried to persuade
Napoleon, and Fourier even thought of going into exile. In the end he stayed at his
post and tried to make life as interesting as possible for himself as well as for others.
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During those very same years in which he was intensively solicited by various
engagements, imposed on him by external factors, Fourier found the time to take up
a problem totally new with respect to his preceding research and was able to pursue
it in the silence of the mind to complete solution. This process peaked in the memoir
titled Analytical Theory of Heat, his masterpiece dated 1807. The reason for this
new scientific interest is not known, since Fourier never described how or when he
came to be motivated to address this problem. It is known nevertheless that he always
regretted the Egyptian heat and never quite got used to the chilling climate of the
Alps. Soon he suffered bad attacks of rheumatism. Thus he never went out, even in
the hottest weather, without his overcoat and was often accompanied by a servant
with another coat in reserve. In Grenoble, where the winters are more severe than
in Paris, his concern for adequate heating must have been even greater. From this to
the question of loss and propagation of heat in solids and radiation in space, to the
problem of conserving heat, the step can be short.

He started working on it already in the spring of 1802, when he just had arrived
in Grenoble, and had difficulties until 1804. Seemingly only in the second half of
1804 did he find a new approach. During the next 3 years Fourier obtained, in
the brief intervals of research time available, the main body of his contribution to
mathematical physics. Presumably he used some of the time of his retreat to work
on the introductory paper on the Egypt volumes to write a memoir Theory of the
Propagation of Heat in Solid Bodies (Fig. 1.5). He presented it to the Institut de
France, reading an abstract in front of the First Class. (The full text is reproduced in
Grattan-Guinness [1972].)

Fourier applied his method to two kinds of problems. The first was to find the
eventual steady distribution of temperature at all points of a body given a steady
supply of heat at some points of that body; an example of that kind of problem is
provided by a thin bar, heated by a furnace at one end and immersed in air held at
a given temperature at its surface. The second kind was to find the temperature of a
body, initially heated throughout to a given temperature distribution and then allowed
to cool in an environment of a given temperature at every point at all subsequent
times. An example of the second kind of problem, far more complex than the first,
is provided by the Earth, and apparently it was this very problem that stimulated
Fourier’s search for a general theory of the propagation of heat in solid bodies. Thus
in his Mémoire sur les Températures du Globe Terrestre (Oeuvres, 2, p. 114) he
states: “The question of terrestrial temperature always seemed to me one of the most
important objects of cosmological studies and I had it principally in my mind in
establishing the mathematical theory of heat.”

The permanent secretary for the mathematical and physical sciences of the Insti-
tute was the astronomer Jean Baptiste Joseph Delambre (1749–1822). He asked
Lagrange, Laplace, Silvestre François Lacroix (1756–1843), and Monge to examine
the paper. The members of the commission, if anything, had already formed a high
opinion of Fourier, but the memoir was not well received. Lagrange rejected the very
foundation of its mathematical side, namely the use of the trigonometric series (now
called Fourier series). He thought it was not rigorous and never changed his mind.
Also some criticism was directed against Fourier’s derivation of the equation of the
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Figure 1.5 The first page of the 1807 manuscript Theory of the Propagation of Heat in Solid
Bodies. To the left of the title: “Read on December 21, 1807. Members of the Committee Mrs.
LaGrange, LaPlace, Monge and LaCroix. Delambre Secretary.” (Library of the École Nationale des
Ponts et Chaussées, Paris.)
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motion of heat in a continuous solid. Laplace, who had carried out experiments on
the subject, seems to have taken that position. But the chief opponent here was Jean
Baptiste Biot (1774–1862), a protégé of Laplace, who had published in 1804 a short
paper containing not only experimental results but some efforts at a mathematical
formulation of heat diffusion. Fourier made a reference to it but confined himself
to its experimental results. While Biot did not derive the right equation and did not
attempt to solve the one he obtained, it appears that Fourier got some hint out of
Biot’s mathematical model. That must have been all the more evident to Biot who,
on top of everything, was aware that Fourier himself had written an equation in an
earlier draft of his memoir, possibly sent to him or to Poisson. Thus Biot became
transformed into an opponent.

Nothing has survived of the commission’s criticisms, except for Fourier’s replies
preserved in two letters to Laplace and Lagrange concerning the convergence of
trigonometric series, the most critical issue. Fourier also sent to the Institute addi-
tional notes and wrote to Delambre asking for the date of publication of his manu-
script. Nothing happened for the simple reason that the commission failed to report.
There only appeared in the Bulletin of the Philomathic Society an unenthusiastic
summary and review by Poisson who was interested in heat diffusion himself. A few
months after Fourier had presented his manuscript, in a report to Napoleon on the
development of science since the Revolution, Delambre wrote that in mathematics
the chances of progress were very slight, with insurmountable difficulties preventing
major breakthroughs and leaving only minor points of detail to be cleared up.

A new turn took place at the beginning of 1810 when the Institute announced
the subject of its grand prize in mathematics for the year 1811: The mathematical
theory of heat and its experimental verification. There appears to be no trace of the
decision process that led to setting the subject of the prize. Certainly the members of
the First Class of the Institute were divided on the ground that no report had yet been
made on the 1807 memoir, but in the end that was the decision. Fourier submitted the
old memoir, revised and extended by new sections on the cooling of infinite solids
and on terrestrial and radiant heat; in all it was 215 pages. The commission, made
up of Lagrange, Laplace, Lacroix, Malus, and René-Just Haüy (1743–1822), had to
examine another candidate also. The prize was awarded to Fourier, but themotivation
must have left him disappointed. There were no doubts about the importance of his
work but ambivalent feelings remained, which were clearly stated in the report: “This
theory contains the true differential equations of the transmission of heat both in the
interior of bodies and at their surface. The novelty of the subject combined with
its importance has made the class determined to crown this work, while observing
however that the manner in which the author arrives at these equations is not exempt
from difficulties and that his analysis to integrate them still leaves something to be
desired on the score of generality and even rigor.” (Hérivel [1975]).

Out of Fourier’s disappointment a letter to the Institute likely grew, for although
the letter disappeared,Delambre’s reply remained:The commissioners had full power
in such a matter. Fourier understood that the Institute was in no hurry to publish his
memoir (indeed only in 1815 on his return to Paris could he get Delambre started on
it). Thus he began to prepare a third version of his research in the form of a book and
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at the same time he obtained new results on other aspects of the problem. In spite
of his administrative duties he worked on this in the following three years and was
about to complete it when the political situation turned dramatic once more.

1.8 Fourier and the “Hundred Days”

After the disastrousRussian campaign of 1812 and the debacle of the battle of Leipzig
of 1813, in January 1814 France was being attacked at its frontiers for the first
time since 1795. Fourier, among other imperial officials, must have wondered about
Napoleon’s fate and his own. The extraordinary successes Napoleon achieved with
his army of young conscripts during the first 3 months of 1814 proved insufficient to
reverse the trend. The French people, tired of his interminable wars, were not behind
him any longer and on March 31 Paris surrendered to allied troops while Napoleon
had moved east to attack their rearguard. In the meantime Grenoble was besieged by
Austrian forces.

When the news of the surrender of Paris and the abdication of Napoleon were
learned, the Austrian forces occupied Grenoble on behalf of Louis XVIII, brother of
the executed Louis XVI, who had since become king of France. The return of the king
was unexpected and Fourier must have been concerned about his position and even
personal condition, but he was allowed to continue as prefect, certainly due to the
integrity of his conduct and the support he had among members of the old nobility.
The situation therefore became the more embarrassing when it was learned that, on
his way to exile in Elba, Napoleon was going to pass through Grenoble. Fourier let
him know, through the prefect of Lyon, that it would be dangerous to pass through
Grenoble owing to the excited condition of the population; at the same time, however,
he gave instructions to prepare for Napoleon’s stay in the prefecture. Then in a state
of extreme upset he waited. Suddenly, the day Napoleon was supposed to come, a
messenger arrived announcing that Napoleon would not pass through Grenoble after
all. Fourier retired for the rest of the day to recover.

Some time later he was confirmed in his position of prefect and even received
a visit by the king’s brother, Count d’Artois, later to become King Charles X. His
position secured, he just had to deal with some unrest on the issue of returning the
land, sold during the revolution, to their rightful owners, nobles, and clergy. Then on
March 1, 1815 a letter from the prefect of the neighboring department of Var reached
Fourier. It read: “Bonaparte at the head of 1,700 men disembarked yesterday at the
Gulf Juan, reached Grasse this morning and according to those soldiers who have
been questioned is heading for Lyon by Saint-Vallier, Digne, and Grenoble.” The
letter ended with assurances that the news, no matter how extraordinary it might
seem, was entirely true. This time there was no room for diplomacy. Fourier had to
take a clear stance. It was 4 p.m. By 7 p.m. he had worked out various contingency
plans for the defense of the department in collaboration with the major of Grenoble
and the commanding officer of the garrison. He also had started a letter to theminister
of the interior, which was completed by 7 a.m. the next day after a troubled night. He
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assured the minister that the inhabitants of Grenoble were firmly behind the king and
that no motive of fear would have turned him from his duty toward king and country.
He asked for instructions and added, “I know personally the audacious enemy who
threatens us and I do not doubt that before very long he will send us emissaries.”
That did not happen.

By the afternoon Fourier had a proclamation put up in town in which he reminded
the citizens of their duty to the king and those who might be inclined to forget the
severe punishments they would incur, in conformity with the law.

In spite of the sincere efforts of Fourier and other prefects, Napoleon’s advance in
the south of France proved to be irresistible. On March 7 the gates were forced open
and Napoleon entered Grenoble amidst the enthusiasm of the populace. Meanwhile
Fourier was leaving the town from another gate, with him the commanding officer
of the garrison. Before leaving he had a room prepared for Napoleon in the prefect’s
residence. Also he left a letter in which he expressed his feelings of obligation toward
the king and his wishes not to offend his old master.

It was the night of March 7 and Fourier was headed toward Lyon to join the
Count d’Artois. Napoleon, irritated by Fourier’s failure to greet him in Grenoble,
suspended him from office and required him to evacuate the territory of the 7th
military division within five days. Failure to do so meant arrest as an enemy of the
nation.On the evening ofMarch 8Napoleonwas alreadymoving towardLyonwith an
ever-increasing army. The Count d’Artois quickly retreated. Maybe it became clear
to Fourier that the king’s cause was lost in southern France or maybe he was told that
the worst was over after Napoleon had been presented with his letter, for on March
9 he turned back to Grenoble and on the morning of the 10th met with Napoleon in
Bourgoin. Helpless, he could only accept Napoleon’s wishes. The meeting did not
go badly: The next day he learned he had been made prefect of the Rhône and was
installed at Lyon on March 12. He carried out all reasonable administrative duties
requested by his position, such as recruitment for the imperial army and surveillance
of political suspects; at the same time he tried to reduce as much as possible the
injustice and suffering associated with the change of regime. But his new post did not
last long. Before the end ofMay he resigned, in disagreement with the harsh orders of
the new minister of the interior, the mathematician and French Revolutionary figure
Lazare Carnot. Apparently they had to do with a purge of administrators, some in his
own prefecture, suspected of royalist sympathies. Whatever the reason, his credits
were not entirely destroyed. On June 10 Napoleon granted him a retirement pension
of 6,000 francs.

1.9 Return to Paris

Fourier went to Paris where he could enjoy freedom from administrative duties and
opportunities to meet again with his old acquaintances such as Laplace, Monge, and
Berthollet. But on 18 June Napoleon was defeated at Waterloo. The Napleonic era
was over, the Bourbon monarchy back.
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Soon Fourier found himself in a desperate financial position. The retirement pen-
sion granted to him by Napoleon was totally lost, the first installment being due on
July 1. Also the 4,000 francs that went with his Napoleonic barony of 1809 was
annulled. He had little money when he came to Paris, due to his generosity and the
habit of living up to the top of his income. It seems that he thought of emigrating
to England, to be far from political persecution, when a friend came to help. It was
the prefect of the Seine, count of Chabrol, who had entered the École Polytechnique
in 1794 when Fourier taught there and also joined the Egyptian campaign. In disre-
gard of reactions from the extreme right, he offered Fourier the directorship of the
Statistical Bureau. Fourier accepted and held the position for the rest of his life. The
salary was modest, but Fourier must have considered himself fortunate. It went quite
differently for Monge, faithful and prominent Bonapartist: In spite of his merits for
having resurrected the French system of higher education, he was forbidden to enter
his beloved École Polytechnique, was forced out of the Académie des Sciences, and
died in poverty.

Now what Fourier cared about most was to firmly establish himself in the sci-
entific community and also to obtain a pension for his many services to the state
in teaching, in the Egyptian campaign, and as prefect of Isère. He applied to the
minister of the interior on November 20, 1815, recalling all the above, hoping that
his Jacobin activities of 1793–94 had been forgotten, justifying his action during the
Hundred Days as having preserved Lyon “from greatest disasters” and attributing
his dismissal to “unjust and arbitrary” measures required of him. Fourier’s appli-
cation was acknowledged and after considerable time refused. He did not give up
and wrote again suggesting that “no political motive should efface the memory of
so many services from which the State and many generations will receive real and
lasting advantages.” The reply addressed to “Baron Fourier” stated that “the King
had recently adjourned his decision on this matter.” Later in response to his insis-
tence, the technicality that he had retired before reaching the age of sixty backed
up a final refusal. Only years later was he granted a pension, curiously from the
minister of police, for “important services of information” that we may suppose to
be of statistical nature.

In the meantime on May 27, 1816 Fourier was elected “free académicien”—a
position different from the ordinary one that required the vacancy of a “chair”—to
the scientific class of the Institut de France. In vain, since King Louis XVIII did not
confirm the election. Shortly afterward the old academies were restored in place of
the classes of the Institut de France—with both Monge and Carnot excluded—and
already byMay 1817 a vacancy had arisen for physics in the Académie des Sciences.
Fourier was elected by an overwhelming majority of 47 votes out of 50. This time
he was better prepared and obtained the king’s approval, being supported by an old
friend of his from Grenoble, the viscount Dubouchage, now minister of marine. In a
letter of recommendation Dubouchage had stated, referring to Fourier’s activities as
prefect in Isère, that “his conduct has won him the especial gratitude of the families
most devoted to the royal cause who found themselves most exposed to oppressive
measures.” Fourier was now firmly established, had another source of income, and
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could throw himself into work. In the next 5 years he submitted to theAcadémie eight
memoirs, in mathematics and statistics, and sat on a large number of commissions.

In August 1822 Delambre, the permanent secretary of the Académie for the math-
ematical sciences, died and Fourier was elected in his place with 38 votes while his
opponent Biot had only 10. In this new position he was responsible for all the official
correspondence on the mathematical side, for composing éloges as he did for Delam-
bre and Laplace, and for producing the final reports on the state of mathematics. He
also found time to publish a number of papers, but although he extended his studies
to thermoelectric effects he did not show any interest in a pamphlet published by Sadi
Carnot (1796–1832). Lazare Carnot’s son was putting forth the idea that change of
heat could be a source of motive power: His theory of cyclic processes was a great
contribution to science indeed.

Life in Paris was not without scientific controversies, partly due to the fact that
Fourier’s work had not been published. Only in 1822 did his book Analytical Theory
ofHeat appear, soon followed by his 1811 prize paper in theMémoires de l’Académie
Royale des Sciences. By that time much more had been achieved on the subject by
Fourier and by others, so on the opening page he added a footnote pointing out that it
was an unaltered printing of his manuscript. It had happened that Poisson in a paper
of 1815, mentioning Fourier’s prize essay, echoed the criticisms of the commission’s
report and attempted to give an alternative treatment of the propagation of heat in
solids. Also Biot in his Traité de Physique of 1816 claimed to have been the first,
back in 1804, to enunciate and apply the equation for the steady state distribution
of the temperature in an iron bar heated at one end. Claims like these always cause
great resentment because of the strong emotional bonding that ties every researcher
to his own scientific contributions. Fourier reaffirmed the validity and priority of his
solution. Here is Fourier’s punch line: “One does not extend the bounds of science
by presenting in a form said to be different results which one has not found oneself
and, above all, by forestalling the true author in publication,” and with a double-sided
compliment to Poisson “M. Poisson has too much talent to exercise it on the work of
others. Science waits and will obtain from him discoveries of great superior order.”

With the great Lagrange dead and in 1827 Laplace, there was still much talent left
on the Parisian mathematical scene. Besides Poisson, their natural heir, and besides
the outsider Fourier there was another outsider of value Augustin Louis Cauchy
(1789–1857). His initial work appeared in the early 1810s and continued ceaselessly
for almost half a century. In Cauchy extraordinary scientific talent lived alongside
smallness of character: He was always ready to put down the work of others to prove
the superiority of his own, which in the great majority of cases was clear anyhow. In
1814 Cauchy wrote an important essay on using complex variables in the evaluation
of integrals that laid the foundation of his theory of complex variables. The paper
met with opposition from Legendre, remained with the secretariat of the Institut
de France, and received a poor summary from Poisson, who was interested in the
problem too. Then, very much like Fourier, Cauchy won a prize with a paper on the
motion of water waves that also remained with the secretariat. In this paper he began
to develop integral solutions to partial differential equations and two years later, in
1817, in another paper he found what is now called “Fourier’s integral theorem,”
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which was in Fourier’s unpublished prize manuscript. Cauchy did have access to
Fourier’s memoir, having been nominated the preceding year to one of the vacancies
of the Académie arising from the expulsion of Monge and Lazare Carnot. Fourier
did not wait to acquaint him with his priority and Cauchy acknowledged it.

Twoyoungand talentedmathematicians thenbriefly appearedon themathematical
scene: Galois and Abel. Évariste Galois (1809–1832), known for that part of algebra
named “Galois theory” after him, in 1829 submitted to the Académie a paper solving
what was a long-standing open problem on the solutions of algebraic equations.
Fourier was then permanent secretary. The paper was sent to Cauchy to examine but
got lost. Twice again Galois submitted it to receive three years later, and only six
months before his death in a duel, the assessment “unintelligible” signed by Poisson.
Things went only slightly better for the Norwegian Niels Henrik Abel (1802–1829).
In 1826 he submitted to the Académie his masterpiece on transcendental functions.
The paper, passed to Legendre and Cauchy, who never looked at it, got published
after various misadventures 35 years later, in 1841. Abel could not rejoice, having
died some ten years earlier.

In Paris Fourier added new acquaintances to the old ones. Devoted friends of
his were the engineer and mathematician Claude Louis Marie Henri Navier (1785–
1836) to whom Fourier’s papers passed on his death, Peter Gustav Lejeune Dirichlet
(1805–1859) who made important contributions to some of Fourier’s ideas in pure
mathematics, Joseph Liouville (1809–1882) who was interested in heat diffusion—
his first paper dealt with the case of the inhomogeneous bars—and Jacques Charles
François Sturm (1803–1855), later to work with Liouville on partial differential
equations. Fourier who never married, but was said to be fond of the company of
intelligent women, particularly cared about the friendship of Sophie Germain (1776–
1831), a self-taught mathematician of considerable talent who corresponded with
Gauss and Lagrange. Their friendship lasted from at least 1820 until Fourier’s death
and a number of his letters to her have survived. Maybe Sophie Germain, who died
of cancer, was the suffering woman that Fourier recommended to a certain Doctor
Herminier in an undated letter. He wrote “She is worthy of all your interest by reason
of the rarest and most beautiful qualities. For myself, who love her tenderly, I would
be most grateful for anything you could do for her.”

Fourier at last received many honors. In 1823 he was made a foreign member of
the Royal Society, in 1827 was elected to the Académie Française and the Académie
de Médecine, and on the death of Laplace, was made president of the Conseil de
Perfectionnement of the École Polytechnique. But in his last five years he suffered
increasingly, mainly from chronic rheumatism, which pushed him to wear heavy
woolen clothes and keep the stove in his apartment lit at all times. In addition he
developed breathing problems. To be able to work, in his last months, he had to
be placed in a boxlike chair from which only his head and arms protruded. He
worked relentlessly, producing almost illegible manuscripts: Now he finally had the
opportunity to devote himself to mathematics and he wanted to secure his fame by
working as long as he could. Things looked different from some forty years earlier
when, young and unknown, he had written in a letter to Bonard: “Yesterday was my
21st birthday, at that age Newton and Pascal had [already] acquired many claims to
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immortality.” But time was running out. On May 4, 1830 he was stricken by some
attack while descending stairs and died on the 16th in his apartment opposite the
Jardin du Luxembourg, now 73 Boulevard St. Michel.

It seems nice and truthful what Grattan-Guinness [1972] writes of Fourier: “He
preserved his honor in difficult times and when he died he left behind him a memory
of gratitude among those who had been under his care as well as important problems
for his scientific colleagues.”



Chapter 2
Introduction to Harmonic Analysis

2.1 How trigonometric series came about:
the vibrating string

“The eighteenth century stands out in mathematical history as an era of great genius.
Through the work of an astonishing array of masters the science was extended and
broadened by the opening of many new fields. Technical skill attained to extraordi-
nary high levels and new ideas were crowded one upon the other” (Langer [1947]).
The subject of trigonometric series received much attention: it was stated that they
could represent “any” function, and formulas were found, but agreement among the
masters of the time was not there. It must be said that the issues were far from simple.
The tricky one of computations dealing with infinitely many terms, around which
much of calculus revolves, was not being properly investigated and clearly regulated.
The notion of the sum of infinitely many terms was imprecise; as if no different from
the finite case, it was a common practice to rearrange terms infinitely many times as
well as to integrate and differentiate term by term infinitely many times.

(All these operations, as is well-known nowadays, might not produce the expected
results, unless specific conditions are met. We mention a couple of examples for
clarification. In most calculus books, it is proved that
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The second series is obtained by rearranging the terms of the first one: Every two
positive terms are followed by a negative one. This seemingly harmless modification
changes the sum of the series. As a second example, we mention the telescopic series
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∞∑

k=0

(xk+1 − xk).

All terms (xk+1−xk) are continuous on [0, 1]. However, the partial sum
∑n

k=0(xk+1−
xk), being equal to−1+xn , as n tends to infinity, converges to−1 for 0 ≤ x < 1 and
to 0 for x = 1. This is manifestly a discontinuous function at x = 1. Nevertheless,
under specific conditions, rearranging terms does not change the sum of the series
and similarly a series of continuous functions has a continuous sum.)

The context was that of power series, widely used to represent functions that
manifestly have to be differentiable infinitely many times. An example is

ex = 1 + x + x2

2! + x3

3! + · · · .

Then, functions like sines and cosines of multiples of an angle were introduced in
place of powers of x for the same purpose (Fig. 2.1). That a finite sum of such
terms represents a function is obvious (Fig. 2.2). The opposite — namely which
class of functions can be represented by a sum, possibly infinite, of such terms
with coefficients in the real numbers — proved to be a difficult issue. Clearly the
function must be periodic, but conditions more strict than that can be expected since,
conceivably, the trigonometric representability may attach only to functions of a
special class. Which one was it?

The issue was complicated by the very definition of function, not clearly stated.
This concept, which lies at the very heart of mathematical analysis, was imprecise to
the point that it had different meanings to different mathematicians. For instance, a
function was thought of as a graph by Leonard Euler (1707–1783); to Jean le Rond
d’Alembert (1717–1783) function and analytic formula were one. On top of that, a

Figure 2.1 The graphs of sin x, sin 2x , and cos x . The last one is obtained by translating the graph
of sin x by π

2 to the left.
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Figure 2.2 Periodic graph of the function 10 sin x + 3 sin 2x + 4 sin 3x .

function defined by different laws on different portions of an interval, such as the
one graphed in Figure 2.11, was regarded as a conglomerate of different functions.

No wonder that the question of representability in trigonometric series remained
controversially open for more than half a century, from the middle of the 1700s until
Dirichlet’s work of 1829. The restrictions on functions turned out to be so subtle that
in their pursuit a final clarification imposed itself.

At the beginning of the eighteenth century, near the close of Isaac Newton’s life
(1643–1727) and with Gottfried Wilhelm von Leibniz (1646–1716) just dead, the
effectiveness of calculus — their creation — as an instrument for the treatment of
problems in mechanics was generally recognized. Mechanics with its abundance
and variety of problems exerted a strong fascination on those interested in attaining
analytic mastery over the manifestations of nature.

Problems pertaining to the motions of single mass particles were solved to a
reasonable extent. Beyond them the forefront of advance dealt withmatters of greater
complexity: motions of bodies with many degrees of freedom, reactions of flexible
continuous mass distributions, vibrations of elastic bodies.

In particular, the motions of tautly stretched elastic strings of length l, held fixed
at its extremes, in response to a displacement from the state of equilibrium, received
a great deal of attention and these investigations are among the most important in the
eighteenth century development of the rational mechanics of deformable media. In
many cases, the response can be acoustically perceived, ranging from the hum of a
heavy structural wire to the notes ofmusical string instruments. It can also be visually
noticeable being sometimes marked by features such as the presence of nodal points
that maintain a state of rest while the string between them is in agitation (Fig. 2.3).

It was at this juncture that many divergent conceptions, which were to play a
crucial role in the development of mathematics and of mechanics as well, came in
to confrontation.
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Figure 2.3 The first four
modes of vibration of a
string held at the two
extremes: In the first one the
fundamental tone is emitted,
in the remaining ones the
first three overtones.

It was believed that continuousmaterial bodies could be approximated by a system
of discretemass particles of finite number n. These discrete systems could bemade to
merge into the continuous case by letting the size of the individual particles diminish
indefinitely and by letting their number go to infinity.

In the case of the homogeneous string, the natural approximation that presents
itself is that of a string of n beads of equal mass mounted at equally spaced points
along the string, which itself is assumed to be weightless (though strong), perfectly
flexible, and elastic. Friction is ignored, and if M is the total mass of the particles and
T is the tension, it is furthermore assumed that the ratio M/T is negligible for the
purpose of taking gravity out of the picture and concentrating attention on tension
alone. That is the case for musical strings. For example each string of a grand piano,
evidently of small mass, undergoes a tension that corresponds to a force from 75 to
90 kilos.

Clearly, the original problem has been replaced by an idealized abstract one. To
do so always requires deep understanding and sound judgment, for the subsequent
theory stands or falls according to results that at strategic points have to agree with
the data of observations.

As early as 1728, Johann Bernoulli (1667–1748) considered the case of loaded
strings in which at most eight particles were involved (Burkhardt [1908]). He derived
the equation of motion and focused his attention on special analytic solutions, those
giving rise to “normal” vibrations. In the simplest of such “normal” vibrations, the
string emits its fundamental tone; its motion has no nodes.

In 1747, by considering the general discrete case of n beads and by letting n tend
to infinity, d’Alembert deduced the partial differential equation of the motion y(x, t)
of the continuous string in the (x, y)-plane1

∂2y

∂t2
= c2

∂2y

∂x2

1J. le R. d’Alembert, “Recherches sur la courbe que forme une corde tendue mise en vibration,”
Mémoires de l’Académie Royale de Berlin, 3 (1747: publ. 1749), 214–219.
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where c = √
T/M has the dimensions of velocity and the value of l is assumed to be

1. The equation, states that the transverse acceleration at position x is proportional
to the curvature at time t . This result is still a standard. Then by an ingenious use of
familiar formulas from calculus he solved the equation, finding its functional solution

y(x, t) = �(x + ct) + �(x − ct)

where� and� are arbitrary functions with continuous second-order derivatives. The
above formula has an intuitive interpretation: The term�(x+ct) can be interpreted as
a uniformmotion of the initial state�(x) to the left with speed c; likewise�(x −ct)
can be interpreted as a similar motion of �(x) to the right.

Then the conditions for the fixed ends at x = 0 and x = 1, the initial displacement
of the string y = f (x), 0 ≤ x ≤ 1, at time t = 0, and the zero initial velocity imply

y(x, t) = f (x + ct) + f (x − ct)

2
(2.1)

provided f (x) is extended by the condition that it be odd and periodic of period 2
(Rogosinski [1959]).

Even though (2.1) makes sense under no regularity assumptions whatsoever,
d’Alembert’s critical mind saw no reason that all possible motions should conform
to his formula. He was unwilling to admit the applicability of his analysis to cases
in which the initial position f (x) was not twice differentiable, as in Figure 2.4. The
solution y(x, t), having to satisfy a second-order differential equation, must be twice
differentiable, he argued. Therefore, the same must be true of its position y(x, 0) at
time t = 0, that is f (x). (The issue was resolvedmuch later by admitting as solutions
displacement functions y(x, t) satisfying the equation everywhere except at isolated
points (Riemann–Weber [1927]) as in Figs. 2.4, 2.5, 2.6.) The case of a string set
into motion by plucking, as in “pizzicato” (Fig. 2.4), seems to have been Euler’s
motivation to the problem. Euler, guided by his physical intuition, thought that every
motion originating from a state of rest would necessarily stem from some initial
shape f (x) of the string. In a paper of 17482 he derived d’Alembert’s results by a
method of his own. Then, he stated that the case of “discontinuous” functions (at that
time “discontinuous” meant nondifferentiable, that is functions with corners) must
be encompassed to allow for the above situation. D’Alembert was not convinced and
kept on going his own way in a subsequent paper.3

There the disagreement rested until 1755 when Daniel Bernoulli resumed it.
Daniel — together with his father Johann and paternal uncle Jakob (1655–1705),
the most distinguished of the eight mathematicians that the Swiss family produced
in three generations—having interested himself in acoustics, recognized the relation

2L. Euler, “De vibratione chordarum exercitatio,” Nova Acta Eruditorum, (1749), 512–527. The
paper also appeared in Euler’s translation from Latin into French as “Sur la vibration des cordes,”
Mémoires de l’Académie Royale de Berlin, 4 (1748: publ. 1750), 69–85.
3J. le R. d’Alembert, “Addition au mémoire sur la courbe que forme une corde tendue mise en
vibration,” Mémoires de l’Académie Royale de Berlin, 6 (1750: publ. 1752), 355–360.
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Figure 2.4 The “plucked”
string at time t = 0, for
c = 1 and P = (1/3, 1/3).

P

Figure 2.5 D’Alembert’s
solution at time t = 1/6.

Figure 2.6 D’Alembert’s
solution at time t = 2/3.

between the “normal” vibrations and the overtones that the string could emit. Since
it was generally accepted at the time that a musical string ordinarily responds with a
combination of its fundamental and overtones, Bernoulli made a step, moderate only
in this framework, and published a memoir4 bluntly stating that every motion of the
string is expressible in the form

y(x, t) =
∞∑

n=1

An sin
nπx

l
cos

nπct

l

with appropriate coefficients An . This meant a representation in sine series for the
initial f (x). There it was

f (x) =
∞∑

n=1

An sin
nπx

l
. (2.2)

Euler, the most important mathematician of the century, placed the weight of
his authority against that formulation.5 The infinity of unknown constants in (2.2)
might seem to allow sufficient generality for representation in trigonometric series,
he argued, but in fact overriding reasons showed this could not be hoped for. “Since

4D. Bernoulli, “Réflexions et éclaircissemens sur les nouvelles vibrations des cordes exposées dans
les mémoires de l’Académie de 1747 et 1748,” Mémoires de l’Académie Royale de Berlin, 9 (1753:
publ. 1755), 147–172.
5L. Euler, “Remarques sur les mémoires précédents de M. Bernoulli,” Mémoires de l’Académie
Royale de Berlin, 9 (1753: publ. 1755), 196–222.
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the initial position of the string is absolutely arbitrary, it may happen, and it will
happen very often, that this initial position is not expressible by any equation be
algebraic or transcendental and that it does not satisfy any continuity law.” Such
initial curve will not be included in Bernoulli’s formula, “nice as it is.” “Bernoulli’s
solutions shall be regarded as very special ones,” Euler concluded. D’Alembert sided
with that opinion and moreover insisted that (2.2) implied differentiability properties
for f (x).

Bernoulli kept his stance. In his mind, trigonometric series were engraved into
the subject (Fig. 2.1, Fig. 2.3).

Later, in 1759, the then twenty-four-year-old Lagrange, in a long paper6 that estab-
lished his early reputation in the mathematical world, examined afresh the behavior
of theweightless loaded stringwith an unspecified number of particles and obtained a
proof for the continuous string that placed no restrictions upon the shape of the curve
marking the initial position. In that, following Euler, he supported the functional
solution and rejected trigonometric series. Nevertheless he came close to Bernoulli’s
formula, without realizing it.

Also it has to be mentioned that in a paper7 written in 1777 and published only
in 1798 after his death, assuming functions known upon some ground or other to be
representable in terms of cosine series of the type (2.2), Euler found the now standard
formula for the coefficients (see (2.3) in Section 2.3).

2.2 Heat diffusion

Then it was Fourier’s turn. He derived from physical fundamentals the partial differ-
ential equation diffusion of heat diffusion in continuous bodies such as a lamina, a
thin bar, an annulus, a sphere. In searching for solutions (see Section 2.6 for amodern
treatment), he started with the lamina and right away trigonometric series popped
up again. The particular lamina on which he was working was of finite width and
semi-infinite length. He centered it on the x-axis, starting at the origin. The width
ran from −1 to 1 along the y-axis (Fig. 2.7).

The choice of the boundary conditions was a separate issue. Fourier arranged for
himself very simple ones with the y-edge held at temperature 1 in a chosen unit of
measure (by supplying heat) and the x-sides held at 0 temperature (by a flow of cold
air). He was concerned with the steady state temperature at all points of the lamina.
In this case, characterized by temperature u(x, y), which is independent of time
(that is, ∂u/∂t = 0), the equation turned out to be

∂2u

∂x2
+ ∂2u

∂y2
= 0.

6J. L. Lagrange, “Recherches sur la nature et la propagation du son,” Miscellanea Taurinensia, 1
(1759), classe mathématique i-x and 1–112.
7L. Euler, “Disquisitio ulterior super seriebus secundummultipla cuiusdam anguli progredientibus,”
Nova Acta Academiae Scientiarum Petropolitanae, 11 (1793: publ. 1798), 114–132.
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Figure 2.7 The thin lamina
of Fourier’s memoir.

To solve it mathematically, Fourier looked for solutions u(x, y) that could be written
asϕ(x)ψ(y). Themethod, now called “separation of variables,” had already appeared
in d’Alembert’s paper of 1750 mentioned before. Upon substitution into the above
equation, it is found that ϕ and ψ satisfy ordinary differential equations

ϕ(x)/ϕ′′(x) = −ψ(y)/ψ′′(y) = A

that are easily solved. With A = 1/n2 he found the solutions u(x, y) = e−nx cos ny.
Then he claimed that the general solution was given by a combination of these with
arbitrary coefficients.

As for the vibrating string, when Fourier came to impose the boundary condition
u(0, y) = 1, for y in between −1 and 1, he found

1 = a1 cos
1

2
πy + a2 cos

3

2
πy + a3 cos

5

2
πy + · · · .

The next question was to determine the infinitely many coefficients that appeared
in it. Before doing that Fourier observed that one might doubt the existence of such
values since the right-hand side is evidently zero for y = −1 and “right afterwards”
(subitement) it has to take the value 1; but he promised that such difficulty was going
to be completely clarified in the sequel. He proceeded by differentiating the above
formula term by term infinitely many times and, by substituting y = 0, he obtained
a linear system of infinitely many equations in the infinitely many unknowns an with
n = 1, 2, 3, . . .. Then by a long and complicated method, which shows his iron
determination, he found the correct value 4/π of the first coefficient and subsequently
of all the others.

Next, Fourier explained what kind of function his series represented: It is periodic
of period 4; for y between−1 and 1 it takes the constant value 1; at y = ±1 it is zero;
and for y between 1 and 3 it is equal to−1. Speaking in modern terms, Fourier found
the “Fourier series” of the square wave (Fig. 2.8). He computed the Fourier series for
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Figure 2.8 The square
wave, first to be developed in
Fourier series.

other specific periodic functions, such as the sawtooth wave and the triangular wave
(Fig. 2.9), as well as the sine series of a “wave” that is constant, say 1, on the interval
(0, α) and zero on the interval (α, π). Euler had stated8 that functions of this kind
“no doubt will be very difficult, not to say impossible” to represent in trigonometric
series. Fourier did not mention Euler at this juncture. Rather he commented “these
results fully confirm Daniel Bernoulli’s opinion.”

This already shows how much Fourier had advanced in the understanding of the
nature of infinite sums; it is also apparent that Fourier had acquired a geometric
concept of “periodicity” — that of a graph that repeats itself forever, infinitely many
times—much wider than the old “algebraic” one, based on trigonometric functions.

Then Fourier went ahead with a first extension of the above, looking for the
representation of a general function f (x) by sine series, as in (2.2) in the case l = 1.
First he expressed an infinitely differentiable f (x), as well as the sine terms of
(2.2), by Taylor’s series. Then he equated the coefficients of the like powers of x .
Ingeniously he derived an integral expression for An , after establishing it as a solution
of a suitable ordinary differential equation of second order.

Fourier’s examination of the foundational aspects of his new result concerned the
generality of the function to which it applied. From physical considerations, he pre-
sumed that the resultwas true for “any” function, even those not differentiable. Indeed
his formula involved the computation of an integral which, having the geometrical
meaning of an area, does not require any differentiability at all.

Then, Fourier showed a much simpler method of obtaining the same formula,
which is the now standard one of multiplying (2.2) through by sin πnx and inte-
grating term by term. The formula and even the method was that used by Euler in
the mentioned paper of 1777, published posthumously in 1798. (Fourier, who was
reported to have learned of it later as indicated by Lacroix, did not let go without
comment the charge of his having failed to refer to earlier works on the subject. For,
in a letter, he wrote: “I am sorry not to have known the mathematician who first
made use of this method because I would have cited him. Regarding the researches
of d’Alembert and Euler could one not add that if they knew this expansion they
made but a very imperfect use of it.”)

About his last method he remarked that “it is just a useful abbreviation,” but it is
totally insufficient to solve all of the difficulties that his theory of heat presents: One

8L. Euler, “Sur le mouvement d’une corde, qui au commencement n’a été ébranlée que dans une
partie,” Mémoires de l’Académie Royale de Berlin, (1765: publ. 1767), 307–334.
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has to be directed by other methods too, “needed by the novelty and the difficulty of
the subject.”

Really none of his methods is conclusive; rather it appears that, just as with
Bernoulli, Fourier had acquired an intimate understanding of the physical meaning
of the problem. Over a period of two years before the writing of his 1807 memoir,
Fourier repeated all important experiments that had been carried out in England,
France, and Germany and added experiments of his own. They gave him a number of
striking experimental confirmations of his new theory, which went together with his
overcoming of the difficulties advanced by the old masters. Fourier mentioned the
motion of fluids, the propagation of sound and the vibrations of elastic bodies as other
applications. He was fully aware of having opened up a new era for the solution of
partial differential equations, having showed how discontinuous functions could be
introduced in them: It was the era of linearization that would dominate mathematical
physics for the first half of the nineteenth century and which has remained impor-
tant ever since. The diffusion equation is a linear equation: Linear combinations of
solutions are still solutions. It was not the first such equation to appear in history
by any means (the wave equation is another), but the method Fourier used to solve
it opened up enormous new possibilities. Before Fourier a differential equation was
linear or nonlinear according to circumstances, but after him an effort was made to
render a nonlinear physical problem into a linear model in order to exploit the power
and generality of the method Fourier developed in his 1807 memoir.

2.3 Fourier coefficients and series

Under the broad assumption of absolute integrability, usually satisfied in practice, a
function f (x) defined on (−π, π) can be developed in Fourier series

f (x) = a0

2
+ (a1 cos x + b1 sin x)

+ (a2 cos 2x + b2 sin 2x) + · · · + (an cos nx + bn sin nx) + · · · . (2.3)

The coefficients, named Fourier coefficients, are defined by

a0 = 1

π

∫ π

−π

f (x) dx

a1 = 1

π

∫ π

−π

f (x) cos x dx

b1 = 1

π

∫ π

−π

f (x) sin x dx
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a2 = 1

π

∫ π

−π

f (x) cos 2x dx

b2 = 1

π

∫ π

−π

f (x) sin 2x dx . . . ,

with a0/2 having the physical meaning of the average value of f over one period.
A heuristic way to obtain the above formulas, for instance in the case of a2, consists
in multiplying both sides of (2.3) by cos 2x and integrating term by term, making
use of the orthogonality relations

∫ π

−π cos 2x sin mx dx = 0 for all integers m and∫ π

−π cos 2x cos mx dx = 0, unless m = 2, in which case π is obtained. That the
right-hand side of (2.3), a periodic function of period 2π, coincides with f (x) over
(−π, π) is a theorem due to P. J. L. Dirichlet that holds under a mild hypothesis (see
next Section 2.4). Typical examples are the sawtooth and triangular wave in Figure
2.9 and the square wave in Figure 2.8.

A result that goes under the name of the Riemann–Lebesgue theorem proves that
the coefficients an and bn tend to zero as n tends to infinity. Thus an approximation
of f (x) can be obtained by summing finitely many terms. For a given function, how
good such an approximation is might vary from point to point (Fig. 2.14 and Fig.
2.15).

If f is either an odd or an even function, then only the sines or the cosines
appear in (2.3). Maybe just for fun, in his 1807 memoir, Fourier wrote the absolute
value of sin x — an even function indeed — as a cosine series, namely | sin x | =
4π−1( 12 − 1

1·3 cos 2x − 1
3·5 cos 4x − · · · ).

Fourier series can be written in two other equivalent ways. The first one makes
use of the exponential form of complex numbers

Figure 2.9 The sawtooth
and the triangular wave with
corresponding Fourier series.

π/2
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f (x) =
∞∑

n=−∞
cn einx (2.4)

where the complex Fourier coefficients are defined as

cn = 1

2π

∫ π

−π

f (x) e−inx dt.

The totality of Fourier coefficients is called the spectrum and the indices n that label
them frequencies. The second one remains among real numbers and it accounts for
the name, harmonic analysis, given to this theory

f (x) = A0

2
+

∞∑

n=1

An cos (nx + φn). (2.5)

The equivalence between (2.3) and (2.4) with cn = 1
2 (an − ibn) and c−n = 1

2 (an +
ibn), n a nonnegative integer, follows from Euler’s formula einx = cos nx + i sin nx .
For the equivalence between (2.3) and (2.5) it suffices to switch to polar coordinates
An and −φn by writing an = An cosφn and bn = −An sin φn and to use the addition
formula of the cosine.

The terms of the series in (2.5) are called harmonics. To n = 1 there corresponds
the fundamental harmonic having frequency 1/2π, the inverse of the period. To
greater values of n there correspond the higher harmonics having n/2π as frequency.
Over one period the fundamental makes one complete oscillation (one cycle) and the
higher harmonics n complete oscillations (n cycles). The numbers An and φn are
called, respectively, amplitudes and phases of the harmonics. Geometrically, to a
phase φ there corresponds a translation: The formula sin x = cos(x − 1

2π) means
that the graph of sin x can be obtained by translating the cosine’s graph by π/2 to
the right.

More generally for functions f defined over (− 1
2T, 1

2T ), for instance those
periodic of period T , the Fourier series corresponding to (2.3) reads

f (x) = a0

2
+

∞∑

n=1

an cos
(2πnx

T

)
+ bn sin

(2πnx

T

)
(2.6)

where the coefficients are defined by

an = 2

T

∫ T
2

− T
2

f (x) cos
2πnx

T
dx,

bn = 2

T

∫ T
2

− T
2

f (x) sin
2πnx

T
dx .
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Here, an stands for a2πn/T and similarly for bn . So it is seen that if f is defined on
a large interval the spectrum is denser; on the contrary if T is small. In any case it
remains a discrete spectrum. Similar considerations hold for (2.4) and (2.5).

2.4 Dirichlet function and theorem

In a short time the disputes raised by Fourier’s work reached a final clarification.
It was the dawn of modern mathematics when, in 1837, Dirichlet proposed the by
now standard concept of function y = f (x) that associates a unique y to every x .
Dirichlet gave the following striking example, named Dirichlet function after him:

D(x) =
{
0 if x is irrational,
1 if x is rational,

for x in the interval (−π, π). That D(x) it is not an “ordinary” function can be easily
perceived: Between any two rational numbers (where D takes the value one), as close
as they might be, there are always infinitely many irrational numbers (where D takes
the value zero). Similarly, between any two irrationals there are always infinitely
many rationals. This seeming word game has an implication: Due to the infinitely
many “jumps,” from zero to 1, the graph of D cannot be drawn, not even qualitatively.
In spite of that the Dirichlet function is well defined: At t = 0.5 it takes the value
1, at t = √

2 the value zero, just to give a couple of examples. More generally, for
every x in (−π, π) it suffices to establish whether x is rational or irrational to know
the value of D(x).

The example proposed by Dirichlet makes clear that the “graph” has no role to
play in the concept of function; rather it is an incidental feature.

It is interesting to check the applicability of the Fourier theory to D(x). Likely we
are bound to meet with some “weird” phenomenon. First of all, to write the Fourier
series all Fourier coefficients have to be computed; then the equality between the
series and original function has to be checked. With Riemann integration theory, not
even the first step goes through: Dirichlet’s function is not integrable so that even
a0 cannot be calculated. Much later, in 1901, a more powerful theory of integration
was proposed by Henri-Léon Lebesgue (1875–1941). (A modern presentation can
be found in Rudin [1966]; an old and more elementary one is given in de la Vallée-
Poussin [1950].) The Lebesgue integral “takes” the Dirichlet function and allows
its Fourier coefficients to be computed: They are all zero. (Indeed, in the theory of
the Lebesgue integral, the set of all rational numbers has measure zero and so it is
disregarded. Only the value D takes on the irrational numbers matters.) It remains
to note that the corresponding Fourier series is zero for all x’s and so it does not sum
to D(x).

Even less eccentric functions have to be ruled out, such as those that oscillate
infinitely many times. An example is in Figure 2.10 (note that the graph is only
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Figure 2.10 Graph of a
function that oscillates
infinitely many times in
proximity of the origin.

Figure 2.11 At the point of
discontinuity x0 = 1 the
Fourier series of f converges
to 2.

qualitative, for the infinitely many oscillations of y = x sin x−1 in proximity of the
origin cannot be rendered).

Nevertheless, Fourier’s intuition was correct overall due to the followingDirichlet
theorem.9 If a function f has at most a finite number of maxima and minima and of
discontinuities, then its Fourier series at all points x where f is continuous converges
to f (x); at a point of discontinuity x = x0 it converges to

f ∗(x0) = f (x0+) + f (x0−)

2

which is the average between the value from the right f (x0+) and from the left
f (x0−) (Fig. 2.11). Note that in the last case f ∗(x0) might be different from the
value f takes at the point of discontinuity x0.

The assumptions of the theorem are usually satisfied: They surely are by any graph
that might be drawn on a sheet of paper (Fig. 2.12), eventually subdivided in pieces
corresponding to functions y = y(x) and x = x(y).

9P. L. Dirichlet, “Sur la convergence des séries trigonométriques qui servent à représenter une
fonction arbitraire entre des limites données,” Journal für die reine und angewandte Mathematik 4
(1829), 157–169.
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Figure 2.12 Leonardo,
Portrait of Isabella d’Este.
(The Louvre, Paris.) The
profile, from the nose to the
chin, can be expressed as a
Fourier series.

It is worth mentioning that, under the broad assumption of absolute integrability
alone, convergence can fail at any x (Kolmogorov [1926]). Nevertheless, in a cele-
brated proof, Carleson [1966] showed that if | f |2 is integrable, then the Fourier series
converges almost everywhere, that is except possibly on a set of Lebesgue measure
zero.

2.5 Lord Kelvin, Michelson, and Gibbs phenomenon

Tides are an oscillatory phenomenon to which it is natural to apply Fourier analysis.
Being primarily due to the combined gravitational effects of the moon and of the sun
upon the oceans, the simplest model accounts only for these two forces, additionally
assumed to be periodic. The periods are that of the rotation of the Earth with respect
to the Moon and that of the rotation of the Earth with respect to the Sun. Take for
instance the solar tide, which is the least complicated of the two. The fundamental
harmonic (2.5) has a frequency of one cycle per day and the n = 2 harmonic —
which is stronger in any given month — has a frequency of two cycles per day.
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(Actually neither the solar tide nor the lunar tide are exactly periodic and so the
corresponding Fourier coefficients a1 and a2 are not exactly independent of time, as
periodicity would imply. Coefficients slightly varying over the course of the year are
used to obtain a better mathematical model. In Section 4.9 another example can be
found.)

Lord Kelvin (1824–1907), who began his scientific career with articles10 on
Fourier’s work — and was the first to advance the idea that Fourier’s mathemat-
ics could be used as well to study the flow of electricity in conductors — invented a
machine for the purpose of predicting tides that computed a periodic function h(t),
the tide at time t , from its Fourier coefficients as well as another machine, the har-
monic analyzer, that could compute the Fourier coefficients of a past height h(t) on
record (W. Thomson and P. G. Tait Treatise on Natural Philosophy (1867)). (A tide
machine can be seen at the Smithsonian Museum in Washington, D.C.)

Albert AbrahamMichelson (1852–1931), whose ability in building equipment to
new standards of accuracy is legendary, constructed one of Kelvin’s machines. It had
to involve many more terms than previous models to reach a higher accuracy. To test
it, Michelson fed in the first eighty Fourier coefficients of the sawtooth wave. To his
surprise the machine produced a graph very close to that of the sawtooth, except for
two blips on either side of the points of discontinuity. The effect of increasing the
number of Fourier coefficients fed in was to move the blips closer to the points of
discontinuity, but they remained there and their height remained about 18% above
the correct value. After making every effort to remove mechanical defects that could
account for the blips, their existence was confirmed by hand calculation (Michelson
[1898]).

Josiah Willard Gibbs (1839–1903), one of America’s greatest physicists, whose
main field of interest was theoretical physics and chemistry (his formulation of ther-
modynamics transformed a large part of physical chemistry from an empirical to
a deductive science) had spent almost three years in Europe and studied with Karl
Weierstrass (1815–1897). In two letters to Nature — the second, Gibbs [1899], a
correction of the first — showing an appreciation of mathematical fine points, he
clarified the above phenomenon that ever since has gone under his name.

A careful examination of Dirichlet’s theorem detects its pointwise nature: The
convergence of a Fourier series at any point, those of discontinuity included, is
described. The procedure is that of fixing a point and then summing all the infi-
nitely many terms of the series. If only a finite number of them is summed, then an
approximate value is obtained. Such an approximation will now be examined in a
neighborhood of a point of discontinuity.

10“On Fourier’s expansions of functions in trigonometric series,”Cambridge Mathematical Journal
2 (1839–1841), 258–262; “Note on a passage in Fourier’s Heat,” ibid., 3 (1841–43), 25–27; “On
the linear motion of heat,” ibid., 3 (1841–1843), 170–174 and 206–211.

http://dx.doi.org/10.1007/978-1-4899-7989-6_4
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Figure 2.13 Above, the
square wave. Below, its
Fourier coefficients bn .

Let us consider the simplest example, the (asymmetrical) square wave defined by

g(x) =
⎧
⎨

⎩

−1 if − π < x < 0,
0 if x = 0,
1 if 0 < x < π,

clearly discontinuous at x = 0,±π, . . . (Fig. 2.13). The coefficients having been
computed, the related Fourier series can be written. The following rather striking
equality, which Fourier calculated himself, holds

g(x) = 4

π
(sin x + 1

3
sin 3x + 1

5
sin 5x + · · · .) (2.7)

On the right only smooth functions appear; on the left there is a function with jumps.
Euler never believed it was possible. Trigonometric series do account for that, but as
shall be seen, it is not an easy job.Writing S1(x) = 4π−1 sin x, S2(x) = 4π−1(sin x+
1
3 sin 3x), andmore generally, Sn(x) for the sum of the first n terms of the series, let us
fix x0 as in Figure 2.14. There S1 and S2 take a small value, rather far from the value
of unity for the square wave. If many more terms are added, then the approximation
improves (Fig. 2.15).Nevertheless, independently of howmany terms onemight sum,
it is impossible to obtain a good approximation over an entire interval containing
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Figure 2.14 Superimposed
on the square wave: above
S1(x) and below S2(x), the
first and second partial sums.

x

x

the origin: There are always two blips next to the origin that are easily pinpointed,
being visibly different from the flat graph of the square wave. The height of the
blips is about y = 1.18 against y = 1 of the underlying wave. In other words the
approximation of the square wave, given by any partial sum, is not uniform over the
whole interval (0, π).

This phenomenon of overshooting, of practical relevance in automated computa-
tion of Fourier series, had originally been discovered by an English mathematician
Wilbraham [1848]. (The property in question, discussed by both Wilbraham and
Gibbs for a particular series, characterizes the behavior of the Fourier series of a
function in the neighborhood of a point of jump discontinuity. This was showed by
Maxime Bôcher [1906], who gave it the name the Gibbs phenomenon (see also H. S.
Carslaw [1930] for the history)). Computers were not around yet and Wilbraham’s
point, regarded as a mere curiosity, was likely forgotten fifty years later. Unfortu-
nately timing is important in scientific discoveries too.

2.6 The construction of a cellar

The problem of heat diffusion attracted Fourier’s attention as well as that of other
contemporary mathematicians. For instance Poisson published a large part of his
results, which originally appeared in the Journal de l’École Polytechnique, in the
book Théorie mathématique de la chaleur [1835] (Mathematical Theory of Heat).
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Figure 2.15 The partial
sum Sn(x), of the Fourier
series of the square wave, for
n = 15 above and n = 22
below.

The topic was interesting not only from a theoretical viewpoint, relative to the deter-
mination of the temperature in the interior of the Earth, but also from a practical
viewpoint, such as metal working.

To illustrate the principle in a simple way, suppose a cellar has to be built. It is
natural to ask what its depth should be in order for it to be cool and with only small
variations of temperature as the seasons change (ideally it ought to keep the same
temperature at all times).

As time goes by, heat propagates through the earth’s crust as a wave so that the
hottest day of the year at the surface is not the hottest day in the interior because
the peak of temperature there will occur with a delay (change of phase). Think for
instance of springs in the mountains: During summer their water is cool, often so
cool indeed that it can be drunk only in small sips, whereas during winter it is found
at an ideal temperature. Also it can be expected that both heat and cold, when they
reach deep inside, are attenuated (damping).

If the problem is formulated and solved mathematically, as below, the preceding
qualitative considerations can be quantified. It turns out that the heat wave reaches
4.5m below the Earth’s crust with a change of phase of π, which is equivalent to a six-
month delay: If at the surface summer is starting, at that depth winter is starting. The
damping factor is one sixteenth; that is, the winter cold in the cellar is one sixteenth
of the winter cold at the surface, and the same for the summer heat. Thus at 4.5m
summer and winter are switched around and if at the surface the temperature change
during an entire year is 40 degrees, in the cellar it is only two and half degrees (Fig.
2.16).
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Figure 2.16 Fourier descending into a cellar. (Drawing by Enrico Bombieri.)

The mathematical model that proves what is stated assumes a flat Earth. This is
a good approximation if one is not interested in knowing the temperature at great
depths. For the same reason, heat sources in the interior of the Earth can be disre-
garded. Depth will be denoted by x , time by t , and the unknown temperature by
u(x, t). Only at the surface is the temperature known, that is u(0, t) = f0(t) is
given (boundary condition). The partial differential equation of heat diffusion in this
case is

∂u

∂t
= K

∂2u

∂x2
(2.8)

where K is a constant depending upon the soil. The temperature is assumed periodic
in time, one year being the period. To a large period T there correspond densely
packed frequencies: the fundamental frequency 1/T accompanied by the multiples
n/T . It is useful to work with angular frequencies nω, with ω = 2π/T the funda-
mental angular frequency. The method for solving the problem begins by expanding
the unknown function u(x, t) in Fourier series with respect to time t . The Fourier
coefficients depend on the choice of x
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u(x, t) =
∞∑

n=−∞
un(x) eiωnt . (2.9)

Note that the time variable t and the space variable x are now separated and that
the dependency upon t is explicit. Differentiating term by term — assuming that is
permissible — and upon substitution, (2.8) becomes

∞∑

n=−∞
iωnun(x) eiωnt = K

∞∑

n=−∞

d2un

dx2
eiωnt .

By the uniqueness of Fourier series (that can be proved), the coefficients on both
sides have to be equal. Thus the heat equation gets transformed into infinitely many
equations, one for every coefficient

K
d2un

dx2
= i ω n un. (2.10)

Time t has disappeared: (2.10) is an ordinary differential equation in the x variable,
easy to solve, being linear with constant coefficients. The solution is

un(x) = Cn eαn x + Dn e−αn x (2.11)

whereCn and Dn are arbitrary constants andαn = (1±i)
√|n|ω/2K , depending upon

n > 0 or n < 0.Because the real part ofαn is positive,Cn = 0.Otherwise the solution
in (2.11) would go to infinity as x tends to infinity, whereas it has to be bounded for
lack of interior sources (boundary condition at infinity). Thereforeun(x) = Dn e−αn x .
Finally back to (2.9): When the boundary condition u(0, t) = f0(t) is imposed and
developed in Fourier series f0(t) = ∑∞

n=−∞ cn eiωnt , it is found that Dn = cn .
Therefore the problem is solved by

u(x, t) =
∞∑

n=−∞
cn eiωnt−αn x .

The result is easier to decode if it is written in real terms

f0(t) = A0

2
+

∞∑

n=1

An cos(nωt + ϕn)

and

u(x, t) = A0

2
+

∞∑

n=1

un(x) cos(nωt + φn(x))
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where

un(x) = An exp
(

−
√

nω

2K
x
)

,

φn(x) = ϕn −
√

nω

2K
x .

The amplitude un(x) of the nth harmonic decreases exponentially as the depth
increases. It suffices to consider the first harmonic, the least damped. Both phase
φ1(x) and damping exp(−√

ω/2K x) depend upon the quantity
√

ω/2K , which
is approximately 2π × 900−1cm−1, with T = 365 × 24× 3600 s and K =
2 × 10−3 cm2s−1 for ordinary soil. Therefore at the depth x = 450 cm the solu-
tion shows a change of phase with respect to the initial data of

√
ω/2K x , which is

approximately π: The heat wave gets there with a delay of T/2 (six months). The
damping factor is about e−π ∼= 1/16. The results are even more striking if the period
T is chosen to be one day. With T = 24× 3600 s, a change of phase of π — that is
midnight instead of midday — and 1/16 as the concomitant damping factor of the
first harmonic are found to take place at 23 cm. Thus, the daily temperature fluctua-
tions penetrate the ground with noticeable intensity only for a few centimeters (skin
effect).

2.7 The Fourier transform

In the general case of a function f defined over (− 1
2T, 1

2T ) the formula for the
complex Fourier coefficients,

cn = 1

T

∫ T/2

−T/2
f (x) e−i2πnx/T dx (2.12)

where cn stands for c2πn/T , can be formally extended to include functions defined
on the entire real line by letting T tend to infinity. Then the frequencies n/T invade
all the reals and give rise to a continuous spectrum. Thus the case of a nonperiodic
function is dealt with as a limiting case of periodicity, the period being infinite.
Accordingly the Fourier integral is defined by

F(ω) =
∫ ∞

−∞
f (t) e−iωt dt (2.13)

or alternatively by (2.15) or (2.16). (Note that the missing multiplicative factor 1/2π
in (2.13)will appear in the inversion formula (2.14).) F is called theFourier transform
of f and is also commonly denoted by f̂ . Under the assumption that f is absolutely
integrable, (2.13) is well defined.
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Figure 2.17 The
rectangular pulse r(t).

The Fourier transform of the rectangular pulse r(t), equal to 1 on the interval
(−1, 1) and zero otherwise (Fig. 2.17), is found by an immediate integration to be
equal to 2ω−1 sinω (Fig. 2.18). The geometric meaning of R(ω) = ∫ 1

−1 cos ωt dt for
a fixed ω is that of an area that varies continuously with ω. So R(ω) is continuous
even though r(t) is not. Continuity is a general property of the Fourier transform F ,
defined in (2.13), under the basic assumption that f is absolutely continuous.

Similarly, the Fourier series corresponding to the coefficients in (2.12) leads to
the so-called Fourier integral theorem or inversion formula

f (t) = 1

2π

∫ ∞

−∞
F(ω) eiωt dω, (2.14)

which holds under the assumption that f, F are absolutely integrable and continu-
ous. A more general statement that takes into account functions f showing a finite
number of “jumps” discontinuities holds (Körner [1988]). Thus, functions satisfying
the stated assumptions can be expressed as a “sum” of infinitely many harmonics

Figure 2.18 The surface r(t) cosωt sliced in one of two possible ways and the geometric interpre-
tation of the Fourier transform R(ω) of the rectangular pulse r(t), (R. N. Bracewell, The Fourier
Transform and Its Applications, McGraw Hill [2000]), with permission.
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F(ω) eiωt , where ω is any real number. The above (2.14) first appeared in a paper11

by Fourier that was a summary of his book yet to be published. It is common to find
(2.13) and (2.14) written in two other equivalent ways, one being

F(ω) =
∫ ∞

−∞
f (t) e−i2πωt dt,

f (t) =
∫ ∞

−∞
F(ω) ei2πωt dω (2.15)

and the other

F(ω) = 1√
2π

∫ ∞

−∞
f (t) e−iωt dt,

f (t) = 1√
2π

∫ ∞

−∞
F(ω) eiωt dω. (2.16)

The integrability hypothesis on the entire real line, both for f and F , is rather strict.
For instance sin x does not satisfy it and so it has no Fourier transform (but it has
a Fourier series, namely itself, being integrable on (−π, π)). Also R(ω) in Figure
2.18 is not absolutely integrable (it does not die off suitably fast at infinity) and the
inversion formula (2.14) does not hold for every t . These restrictions can be lifted to
include a larger class of functions and more, as in Section 3.4 where the notion of
Fourier transform will be defined on generalized functions.

It is worth mentioning that, even if f is real-valued, its Fourier transform might
be complex-valued. In other words it is characterized by modulus |F(ω)| and phase
φ(ω) and both have to be known to reconstruct f by the inversion formula (see
Chapter 6 where lack of information on the phase constitutes a major problem in
crystallography). Two basic properties of the Fourier transform follow.

2.8 Dilations and the uncertainty principle

With a any positive real number, fa(t) = f (at) turns out to be a dilation or a
contraction of f (t), depending upon a < 1 or a > 1 (Fig. 2.19). The Fourier
transform evaluated at the origin accounts for the area associated with the original
function, as in the formula f̂ (0) = ∫ ∞

−∞ f (t) dt , which follows directly from the
definition (2.13) by setting ω = 0. Then the transform of a dilated f (at) will
present a multiplying factor of a−1, as indicated by the formula

∫ ∞
−∞ f (at) dt =

a−1
∫ ∞
−∞ f (t) dt , to account for the change of area. Aside from that, to a dilation

there corresponds a contraction of the Fourier transform and vice-versa (Fig. 2.19).
Indeed

11J. B. J. Fourier, “Théorie de la chaleur,” Annales de chimie et de physique, 3 (1816), 350–375.

http://dx.doi.org/10.1007/978-1-4899-7989-6_3
http://dx.doi.org/10.1007/978-1-4899-7989-6_6
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Figure 2.19 a) The rectangular pulse contracted by 1/8, and dilated by 8 in b); in c) and d),
respectively, the Fourier transforms.

f̂a(ω) = a−1 f̂ (ω/a). (2.17)

This formula is proved by the change of variables u = at in the integral f̂a(ω) =∫ ∞
−∞ e−iωt f (at)dt = ∫ ∞

−∞ e−i(ω/a)u f (u)a−1du = a−1 f̂ (ω/a).
Formula (2.17) makes clear that a function and its Fourier transform cannot be

both of short “duration.” On the other hand, if details of f as small as a are to be
reconstructed (Fig. 5.6), then f̂ has to be known on an interval as big as 1/a. Formula
(2.17) is known as the uncertainty principle. Its various interpretations depend on the
context and the meaning of the term “duration.” For instance in quantum mechanics
this principle involves position and momentum.

http://dx.doi.org/10.1007/978-1-4899-7989-6_5
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2.9 Translations and interference fringes

To the multiplication of f (t) by the exponential eiω0t , with ω0 real, there corresponds
a translation of f̂ (ω), or a delay if ω stands for time. Indeed if g(t) = eiω0t f (t), then

ĝ(ω) = f̂ (ω − ω0). (2.18)

This formula can be checked immediately by writing ĝ(ω) = ∫ ∞
−∞ e−iωt eiω0t

f (t)dt = ∫ ∞
−∞ e−i(ω−ω0)t f (t)dt = f̂ (ω−ω0). The graphical illustration in Fig. 2.20

involves the rectangular pulse oncemore. The opposite holds too. If h(t) = f (t −t0),
then it can be proved, as easily as (2.18), that

ĥ(ω) = e−i t0ω f̂ (ω). (2.19)

Formula (2.19) matters in questions of interference. For instance a function like
the one in Figure 2.21 can be thought of as the sum of two rectangular pulses, one
translated to A and the other to−A. Hence, it is given by the formula r(t − A)+r(t +
A). The corresponding Fourier transform is r̂(ω)(ei Aω + e−i Aω) = 2r̂(ω) cos Aω,
where the oscillating factor cos Aω accounts for the so-called interference fringes
(Fig. 2.22). If A is very big, then cos Aω oscillates sharply making the fringes very
dense and difficult to distinguish one from the other; if on the contrary A is very
small, then the fringes are very sparse. In Figure 2.22, A is of the order of magnitude

Figure 2.20 The Fourier
transform of eiω0t r(t).

Figure 2.21 The
rectangular pulse translated
to A and −A.
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Figure 2.22 Graph of the Fourier transform of the function in Figure 2.21 with A=2.

of 1 — so A is comparable to the pulse duration — and the fringes stand out nicely
(see also Figures 5.7 and 5.8 pertaining to the same phenomenon in two dimensions).

The phenomenon of interference is relevant to many different fields. One example
is the principle of interferometry (Chapter 9), which greatly improved the resolving
power of radiotelescopes, so allowing the development of radioastronomy. This in
turn changed our conception of the universe.

2.10 Waves, a unifying concept in science

Since Fourier’s time the theory has been greatly extended in dimension 1 (Zygmund
[1968], Edwards [1967]), greater than 1 (Stein andWeiss [1971]), andmore generally
on groups and even on discrete structures. The decomposition in waves typical of
Fourier analysis finds applications to partial differential equations, which lie at the
origin of the theory. The wellknown mathematical physicist Arnold Sommerfeld
(1868–1951) opens his classical textPartial Differential Equations in Physics [1967]
with the statement “Fourier’s Théorie Analytique de la Chaleur is the bible of the
mathematical physicist. It contains not only an exposition of the trigonometric series
and integrals named after Fourier, but the general boundary value problem is treated
in an exemplary fashion for the typical case of heat conduction.”

Audrey Terras at the very beginning of her bookHarmonic Analysis on Symmetric
Spaces and Applications [1985] writes “Since its beginnings with Fourier (and as far
back as the Babylonian astronomers), harmonic analysis has been developed with the
goal of unravelling the mysteries of the physical world of quasars, brain tumors, and
so forth, as well as the mysteries of the nonphysical, but no less concrete, world of

http://dx.doi.org/10.1007/978-1-4899-7989-6_5
http://dx.doi.org/10.1007/978-1-4899-7989-6_5
http://dx.doi.org/10.1007/978-1-4899-7989-6_9
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prime numbers, diophantine equations, and zeta functions.” (As for the reference to
Babylonian astronomers, it was a discovery of Neugebauer [1952] that Babylonians
used a primitive kind of Fourier series for the prediction of celestial events.)

The role of harmonic analysis in quantummechanics has been hinted at in Section
2.8. Moreover the Fourier transform is one of the most widely used techniques in
quantum physics (Abrikosov et al. [1975], Dirac [1947], Walls and Milburn [1994])
from solid state physics to quantum optics and quantum field theory.

This book takes off in yet another direction that relies upon the waveform model
of the electromagnetic spectrum. This leads to major fields of contemporary research
that make use in a fundamental way of harmonic analysis in one dimension, such
as electrical signals and computer music, in two dimensions, such as Fourier optics,
computerized tomography, and radioastronomy, and in three dimensions, such as
crystallography and nuclear magnetic resonance.

In this we might be following Fourier’s own inclination, as reported in a letter by
Karl Gustav Jacob Jacobi (1804–1851) to Legendre. Jacobi — himself thinking that
“the only goal of science is the honor of the human spirit and in this respect a question
in the theory of numbers is as valuable as a problem in physics”— refers in the same
letter to a rather different belief, when he writes: “It is true that Fourier was of the
opinion that the chief end of mathematics is the public good and the explanation of
the natural phenomena” (Jacobi [1846]).



Chapter 3
Telecommunications and Space Exploration

3.1 The great electrical revolution

Technically speaking, signals such as the train’s whistle, the blinking of a car’s
beams,. . . are quantities, varying in time, towhich an informative content is assigned.
The signals of smoke by day and fire by night, used by American Indians in early
colonial times, are just another example, common to ancient civilizations fromChina
to Greece. In the play Agamemnon by the Greek dramatist Aeschylus, quantitative
information can be found: Nine relay points on natural prominences covered a dis-
tance of 800 km, by means of beacons of fires, to bring to Queen Clytemnestra in
Argos the news of the imminent homecoming—from the Trojan war—of her victo-
rious husband and to prompt her desire for vengeance. It was more than a thousand
years before Christ. These may be regarded as early forms of telegraphy, which
means “to write far” from the Greek. In telegraphy a message, consisting of a set of
words, is transmitted by ascribing to each letter a certain coded signal.

The alphabet can be encoded into a matrix. The 25 entries of a 5 by 5 matrix
suffice for the 24 letters of the ancient Roman alphabet. The ancient Greeks had a
somewhat similar idea already by 300 B.C., as recorded by the historian Polybius. By
ten vases, any letter could be identified: for instance omega, the 24th and last letter
of the Greek alphabet, was represented by five vases placed on a low left wall and
four on the right wall. Indeed (5,4) is the position in the matrix of its 24th element,
counting by rows.

The Italian Gerolamo Cardano (1501–1576)—physician of fame all over Europe
and major mathematician of his time—replacing space configuration by time con-
figuration, suggested in 1551 the use of five torches set on towers to spell out letters
and therefore messages. Each torch would figure in the code as “light” or “dark”
allowing 32 combinations.

After the invention of the telescope in the seventeenth century, two “optical
telegraphs,” based on Cardano’s idea, were built in 1794 and 1795. The first one
in France, under and for the government of the First Republic, consisted of relay
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stations equipped with operators and telescopes, placed on hilltop towers spaced five
to ten kilometers apart (3 to 6 miles). On the top of the tower a vertical timber sup-
ported a beam with an arm at both ends that could assume seven angular positions,
accommodating in all 49 letters and symbols. A first line, from Lille to Paris, was
built for the needs of the war against the Austrians. Under good visibility conditions,
it provided a way of communication tens times faster than mounted couriers. Its
inventor, the cleric Claude Chappe (1760–1829), gave it the name of telegraph and
within a decade variants appeared in Europe, in Russia, and eventually in India and
Egypt. The second such device was established for the Admiralty in England. Made
with six shutters that could be open or closed, it allowed 64 combinations. It spread
to the United States where a line, mainly used by merchants, connected New York
to Philadelphia until 1846.

At the University of Bologna the Italian physician and physicist Luigi Galvani
(1737–1798) held lectures on the anatomy of frogs and, in the late 1770s, on the
entirely new subject of electrophysiology. Hemade numerous ingenious experiments
and obtainedmuscular contraction in a frog by ametallic contact between legmuscles
and nerves leading to them.He held that as amanifestation of a new formof electricity
that he termed “animal” electricity, to be added to the known “natural” electricity
(lightning) and static electricity obtained from friction.

Alessandro Volta (1745–1827), professor of physics at the nearby University of
Pavia, on the one hand thought thatGalvani’swork “contains one of themost beautiful
and most surprising discoveries,” on the other hand held a different explanation,
thinking that the contact of dissimilar metals in a moist environment was the true
source of stimulation. While partisan groups were taking shape, the two scientists
went further ahead, each following his own line of thought. Galvani succeeded in
causing a muscle to contract by touching the exposed muscle of one frog with the
nerve of another, thus establishing for the first time the existence of bioelectric forces
within living tissues, while Volta provided a dependable source of continuous current
with his battery, named after him voltaic pile. The threshold of the great electrical
revolution was in sight.

In 1777 Volta proposed to string an iron-wire signaling line, supported on posts,
from Como to Milan, but the way to the true future telegraph was opened by the
Danish Hans Christian Ørsted who observed, in 1819, the deflection of a pivoted
magnetized needle by an electric current. In Göttingen the great mathematician
Carl Friedrich Gauss (1777–1855)—after whom the unit of magnetic induction is
named—and his friend, the physicist Wilhelm Eduard Weber (1804–1891)—after
whom the unit of magnetic flux is named—studied terrestrial magnetism. In 1833
they constructed a two-wire telegraph line of copper, carried 2.3 kilometers over
housetops, a small project for limited finances. Working alone Weber connected the
astronomical observatory, directed by Gauss, to the physics laboratory by a double
wire that broke “uncountable” times as he strung it over houses and two towers.

In 1835 Samuel F. B. Morse (1791–1872), American painter and inventor, drew
his Morse Code of dots and dashes. In connection he had a device, something like
a single typewriter key, which when depressed, sent an electric signal to a distant
receiver. This embossed a series of dots and dashes on a paper roll. In 1872 Jean
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Maurice Emile Baudot (1845–1903) made another major innovation by inventing a
device that could sendmanymessages altogether. By the end of the century numerous
telegraph lines and cables across the Atlantic Ocean were available for this purpose
and by about 1960 the receiver had developed into a machine, known as a teleprinter,
capable of typing almost a thousand characters per minute. The telegraph remained
the most important system of telecommunications until the advent of the telephone.

The English scientist Michael Faraday (1791–1867) stands at the origin of both
telephone and radio techniques. One of four children of a poor blacksmith, Faraday,
who could recall times in his childhood when he was given one loaf of bread that
had to last him for a week, received rudiments of formal education at church Sunday
school. At an early age he began earning money by delivering newspapers and at
fourteen became apprentice to a bookdealer and bookbinder: Faraday read the books
brought in for binding. In 1812 he became assistant of the prominent chemist Sir
HumphryDavy (1778–1829) and held the post until 1820. Then a series of discoveries
that astonished the scientific world followed, in chemistry first and then in physics
pertaining to electricity and magnetism.

Unlike his contemporaries, Faraday thought of electricity as a vibration or force
rather than a material fluid flowing through wires. Having worked on the theory of
sound, he was familiar with the patterns formed by light powder spread on iron plates
when these are thrown into vibration, for instance, by a violin bow, and impressed by
the fact that such patterns could be induced in one plate by bowing another near by, he
attempted a similar experiment—his most famous one—involving electricity. It had
been known for more than a decade that the flow of an electric current through a wire
produces a magnetic field around the wire when, on August 1831, Faraday wound
a thick iron ring, on one side with insulated wire connected to a battery and, on the
opposite side, with wire connected to a galvanometer (instrument for measuring a
small electrical current).When he closed the primary circuit the galvanometer needle
jumped, signaling that a current had been induced in the secondary circuit by a current
in the first one. That was what Faraday expected but, to his surprise, when he opened
the circuit he saw the needle jump in the opposite direction, providing evidence that
a changing magnetic field creates an electric field (Faraday’s law of induction). The
quantitative relation between the two was later formulated by the Scottish physicist
James Clerk Maxwell (1831–1879) by means of the classical equations named after
him.

In the preface to his A Treatise on Electricity and Magnetism (1873) Maxwell
stated that his major task was to convert Faraday’s physical ideas into mathemati-
cal form. His interest in Faraday’s work was already apparent in his first electrical
paper “On Faraday’s Lines of Forces” read to the Cambridge Philosophical Soci-
ety in December 1855. In his second paper “On Physical Lines of Forces,” which
appeared in 1861 in the Philosophical Magazine, he was lead to the theoretical con-
clusion that a changing electric field would induce a magnetic field—the converse of
Faraday’s experimental discovery—for it became apparent in his model that the two
were interchangeable. Furthermore he was to conclude that field changes could be
transmitted through dielectric media (insulators), including air and free space (which
Maxwell considered to be permeated by ether). Hewrote: “A conducting bodymay be
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compared to a porousmembranewhich opposesmore or less resistance to the passage
of a fluid, while a dielectric is like an elastic membrane which may be impervious to
the fluid, but transmits the pressure of the fluid on one side to that on the other.” Any
electrical disturbance would propagate in the form of transverse waves through his
model dielectric medium with finite velocity, which he calculated using electrical
measurements for air made by R. Kohlrausch andW.Weber. It turned out to be close
to the velocity of light. From this “he could scarcely avoid to infer that light consists
in transverse undulations of the same medium which is the cause of electric and
magnetic phenomena.” The discovery of the electromagnetic spectrum had started
(Fig. 5.9), even though in Maxwell’s time and for eight years after his death—until
Hertz’s famous experiment—no one ever detected electromagnetic waves.

In telephony, the human voice, which generates sound waves propagating in the
air, induces the vibration of a diaphragm located in the telephone mouthpiece. It is
the diaphragm, working as a microphone, that transforms the conversation into an
electrical signal: The diaphragm presses against an assembly of carbon particles and
causes their electrical resistance to vary, thus altering an electric current—flowing
through the particles—in accord with the pressure on the particles. At the receiver
the current flows through an electromagnet whose power of attraction, on an adjacent
steel diaphragm, varies accordingly. The vibrations of the diaphragm move the air
and reproduce the sound. The Italian inventor Antonio Meucci (1808–1889)—who
emigrated to the United States in 1850 and worked in Staten Island, New York—was
the first to believe electrical transmission of voice to be possible and commercially
practical as well. In December 1871 he submitted a patent caveat titled “Sound
Telegraph” to the U.S. Patent Office. After 1874 he could not maintain it, being led to
poverty by some fraudulent debtors. It was the Scottish born Alexander Graham Bell
(1847–1922)—whose family had migrated from London to Canada out of concern
for the health of their last remaining son after two others had died of tuberculosis—
to patent the telephone in March 1876 after settling in Boston. Then the dispute
and legal battles over whom was the inventor of the telephone—a device until then
regarded as a joke by most—started and went so far that the Canadian Parliament
even voted a motion on the issue in 2002.

A student of Hermann von Helmholtz, the German physicist Heinrich Hertz
(1857–1894) was the first in 1887 to generate, transmit, and receive electromag-
netic waves in the laboratory. He installed a spark gap at the focus of a parabolic
metal mirror and another spark gap placed at the focus of another parabolic metal
mirror placed at a distance of 1.5 meters, in line with the first one. A spark across
the first gap caused a smaller spark across the second gap 1.5 m away. Thus Hertz
showed that radio waves travel in straight lines and that they can be reflected by a
metal sheet, as light is by a mirror, proving Maxwell’s predictions at least over small
distances. In his honor the unit of frequency of electromagnetic waves is named hertz
(Hz), which corresponds to one cycle (complete oscillation) per second.

Electromagnetic waves are periodic both in space and time, just as waves in a
pond. In space the period is λ, the wavelength or distance between two crests, as it
would appear by freezing time as in a pond’s picture. In time the period is T , whose
inverse is frequency (Tab. 3.1). This last periodicity, in our comparison, would be

http://dx.doi.org/10.1007/978-1-4899-7989-6_5
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Table 3.1 Frequency terms 1 hertz (Hz) = 1 cycle per second

1 kilohertz (kHz) = 1,000 Hz

1 megahertz (MHz) = 1,000,000 Hz

1 gigahertz (GHz) = 1,000,000,000 Hz

that shown by the oscillations of a cork on the surface of the pond: The cork holds the
same location in the pond and just moves up and down as time goes by. The relation

λ = vT

holds with v denoting the velocity, which is 300, 000 km per second in vacuum for all
electromagnetic waves. Therefore the smaller the wavelength, the smaller the period
and the higher the frequency.

The Italian physicist GuglielmoMarconi (1874–1937) started experimentingwith
Hertz’s ideas as early as 1894 at his family estate near Bologna. He first increased
the range of signaling to about 2.4 kilometers using a vertical aerial. Receiving
little encouragement in Italy, he moved to England where he succeeded in sending
signals across the Bristol Channel (about 14 kilometers). That was still insufficient to
convince skeptics about the usefulness of this means of communication. Everything
changed in 1899 when Marconi equipped two ships to report to newspapers in New
York City the progress of the yacht race for the America’s Cup. In 1900 Marconi
filed his second patent, the famous No. 7777, for “Improvements in Apparatus for
Wireless Telegraphy.”

But his even greater success was still to come. In spite of the prevailing opinion
that theEarth’s curvaturewould limit communications bymeans of electricwaves to a
maximumof about 300 kilometers, in 1901Marconi succeeded in transmitting across
the Atlantic Ocean. That created a sensation in every part of the civilized world.With
Marconi—Nobel prize in 1909—playing an important role, radio communications
used in broadcasting and navigation services made phenomenal progress. In 1915 the
first significant demonstration of speech transmission by the American Telephone &
Telegraph Company took place between Arlington, Va., and Paris.

A simple radio echo device for use in navigation was first patented in 1904 by
the German engineer Christian Hülsmeyer, thus putting to work the principle of
radio reflection discovered by Hertz, which is at the base of the radar (from “radio
detecting and ranging”). After Marconi elaborated the principle of radio reflection
for detection in 1922, the height of the Earth’s ionosphere—whose existence had
been predicted as early as 1902—was measured in 1925 by Gregory Breit and Merle
Tuve by bouncing radio pulses off the ionized layers of air and determining the time
taken by the echoes to return. During the 1930s several countries started research on
radar systems whose design was perfected during World War II in England, spurred
by defensive needs.

The development of satellite communications is also linked to World War II.
Rockets were at first considered as a means to send humans into space by the Russian
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Konstantin E. Tsiolkovsky (1857–1935), a withdrawn schoolteacher with permanent
hearing problems due to scarlet fever, in the small town of Kaluga located two hours
south ofMoscow. Tsiolkovsky started laying the theoretical foundation of rocketry as
early as 1896, while the American university professor Robert H. Goddard (1882–
1945) was first in achieving a brief lift-off of a liquid-propelled rocket engine in
Auburn, Mass., on March 16, 1926. Then the war pushed the field ahead, with the
V-2 rockets used on air assaults.

Early proposals envisioned manned satellites. For instance in 1945 the British
scientist and author Arthur C. Clarke proposed three geostationary space stations
with living quarters for a crew—built of materials flown up by rockets—to provide
radio communications among all locations on Earth. He filed a patent that was denied
in 1946 by the U.S. Patent Office on the ground that the orbital rocket to test his
hypothesis did not then exist. Progress accelerated and ten years later the reason for
denying him the patent once more had changed to “eminent domain.”

Unmanned satellite communications, analyzed early in 1955 in a paper by the
U.S. engineer J. R. Pierce, were the ones to achieve success. The first experiment
was on December 18, 1958 when the U.S. government’s project SCORE launched a
satellite that was to function for thirteen days, until the batteries ran down.

3.2 More and more hertz

In telephony the electric signal is usually transmitted to the receiving site by cable,
that is by a couple of electrical wires, but it may also be transmitted by satellite, using
radio waves in part of the transmission. Figure 3.1 shows the signal associated with
the uttered vowels “a” and “e” and with “sc.” From these extremely simple examples
the complexity of the signal generated by a common conversation can be imagined.
It is well known that the telephone is not an example of high-fidelity transmission.
Even though the human voice, above all in the “cantato,” might reach rather high
frequencies and the human ear can perceive from about 30 Hz up to 18000 Hz, the
width of the range of frequencies—the bandwidth of the signal—used in telephony
is 4000 Hz. The band itself is referred to as a telephone channel. Higher frequencies,
which may be present in the initial conversation, are cut off by suitable filters for
economical reasons. At the same time the result is adequate since, for intelligible
speech, frequencies from 300 Hz to 3400 Hz are sufficient. If we were to imagine,
just for fun, that telephones were used by dogs, who can hear up to 38000 Hz, would
they need a larger frequency band to recognize their master’s voice?

A radio signal consists of a radio-frequency sine or cosinewave, called the carrier
wave, that has undergone modulation. In amplitude modulation (AM), the carrier
amplitude is varied by the modulating signal (Fig. 3.2 a)). In frequency modulation
(FM), it is the carrier frequency that is varied by the modulating signal (Fig. 3.2 b)).
Acceptable audio quality may be achieved with a bandwidth as small as 5 kHz, as in
AM radio, but when the modulating signal consists of musical sounds the frequency
bandwidth extends to about 10 kHz in commercial broadcasting. For the perfection
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Figure 3.1 To the left the waveform associated with the vowels “a” as in father (top), “e” as in get
(middle), and to “sc” as in scion (bottom); to the right an enlargement of the central part. (Courtesy
of P.E. Giua, Istituto di Acustica, CNR).

Figure 3.2 The carrier radio
wave modulated in amplitude
a) and in frequency b).

of high-fidelity music transmission, the range ought to be wider: from about 30 Hz,
which is the lowest frequency of a large organ pipe, to 15 kHz for cymbal and triangle
sounds. Frequency modulation is used in this case because wide band FM signals are
more effective than the equivalent AM signals in combatting noise and interference.

The television system has to take into consideration not only the ability of the ear
but also the ability of the human eye to distinguish the brightness, color, size, shape,
details, and position of objects. A picture can be broken up into elementary details
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by superimposing a fine grid. Thus a single picture, or frame, can be realized as a set
of lines each made by a string of elementary details and associated to each a shade
of gray, for black and white transmission.

Earlier ideas for the realization of television assumed the transmission of every
picture element simultaneously, each over a separate circuit. But in about 1880 W.
E. Sawyer in the United States and M. Leblanc in France proposed the principle
of rapidly scanning each element in the picture in succession line by line, thus
establishing the possibility of using only a singlewire or channel of transmission. The
elementary pieces are transmitted sequentially, one after the other, over the channel
and reassembled at the receiver end in their correct position on the screen to form the
electrical image. This is made possible by the persistence of vision. Indeed the brain
retains the impression of illumination for about 0.1 seconds after the source of light
goes off. If the process of image synthesis, described above, occurs within less than
0.1 seconds, the eye is unaware of the piecemeal reassembling. Commonly from 25
to 30 pictures per second are transmitted to depict rapid motion smoothly. Since each
picture is broken into 300, 000 or more elementary details, their transmission over
the television system exceeds the rate of 4, 000, 000 per second. The high frequencies
required for picture details are limited by the frequency-allocation authorities to 6
MHz; most of that signal is occupied by the picture signal, part by the color signals,
and part by the audio signal.

Also large is the band of frequencies used by radars, extending from about 400
MHz to about 40 GHz. To detect and localize a distant object the pulsed radar—
most widely used type of radar—usually transmits a short signal made by a carrier
wave, of frequency 1 GHz for instance, modulated by a train of rectangular pulses
with a low repetition interval (Fig. 3.3 a)). The target, hit by the signal, reflects
some of it back. The radar receiving apparatus calculates the distance of the tar-
get from the time interval between the transmitted signal and the detection of the

Figure 3.3 a) The
modulating pulse typically
transmitted by a pulsed
radar: τ is the pulse duration
and T is the pulse repetition
interval; b) the signal
reflected by the target (figure
not to scale).
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time-averaged reflected one (echo). The radar echo-ranging technique is also used at
optical frequencies—sometimes called “lidar” (li for Light).

A reasonable accuracy is obtained by employing very short pulses of the order
of microseconds or less. Here is an example in which the pulse duration is assumed
to be one microsecond and the repetition interval one millisecond. Thus the 1 GHz
carrier wave oscillates a thousand times during a single pulse duration and the pulse
duration itself is one thousandth of the pulse repetition period.

The usual rule of thumb is that a transmitter-pulse duration of one microsecond
requires a receiver bandwidth of one MHz, that is just the reciprocal. This is because
the frequency content of a rectangular pulse of one µs duration is mostly confined to
a oneMHz interval, centered on plus or minus themodulation frequency (see Section
3.5 for more details).

In one millisecond, radio waves travel 300 km. A reflecting aircraft 150 km away
will return an echo one millisecond after the pulse was emitted. This echo will return
to the receiver just as the next pulse is being emitted. If aircrafts are to be detected
out to say 50 km, then it is desirable that the transmitter-pulse power and antenna
gain be proportioned so that a plane as far away as 150 km should ordinarily be lost
in the receiver noise.

But suppose that an object 160 km away did return a detectable signal; then the
received echo could be interpreted as coming from a small plane only 5 km away
(Section 10.14). This would be a serious situation for airport traffic control. The
situation can occur under certain atmospheric conditions or with certain orientations
of a distant large reflecting object. In any case, these are the considerations that
determine the choice of repetition interval.

The signal received back by the radar is always disturbed by noise
(Fig. 3.3 b)) of various origins thatmight give rise to false alarms. This is a problem of
utmost importance for radar performance. Filters allow some noise to be eliminated,
but not all.

The International Telecommunication Union in Geneva allocates bands of the
radio spectrum on the basis of usage, including mobile radio (aeronautical, marine,
land), radio navigation (aeronautical,marine), broadcasting (AM,FM,TV), amateur
radio, space communications (satellite communications, communications between
space stations), and radioastronomy. For instance in the U.S., AM broadcasting is
allocated the 535–1,605 kHz band and FM the 88 – 108 MHz band, TV has four
bands, the first being the 54 – 72 MHz and the last being the 470 – 890 MHz.

The study of signals, those of electrical nature in particular, originated a field
rich both in theory and applications, used not only in telecommunications but also
in telemetry, astronomy, oceanography, optics, crystallography, geophysics, bio-
engineering, andmedicine tomention a few. Aswill be seen, there are several reasons
Fourier series and transforms are of fundamental importance for the mathematical
theory of signals.

http://dx.doi.org/10.1007/978-1-4899-7989-6_10
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3.3 Tables of Fourier transforms

In Section 2.3 it has been described the procedure by which a function f (t), periodic
of period 2π, may be realized as a sumof a Fourier series by three equivalent formulas
(2.3), (2.4), (2.5). In case of a generic period T , (2.3) reads

f (t) = a0

2
+

∞∑

n=1

an cos
(2πnt

T

)
+ bn sin

(2πnt

T

)
. (3.1)

The signal f (t) is realized as a sum of infinitely many harmonics whose frequen-
cies are integer multiples n of the fundamental frequency 1/T . The Fourier coef-
ficients measure the “weight” of the corresponding harmonic in the signal and
are given by the formulas a0 = 2

T

∫ T/2
−T/2 f (t)dt, an = 2

T

∫ T/2
−T/2 f (t) cos 2πnt

T dt , and

bn = 2
T

∫ T
2

− T
2

f (t) sin 2πnt
T dt .

In case of a signal the variable t denotes time, usually measured in seconds and so
frequencies are measured in s−1 or Hz. Thus a list of numbers, namely the amplitudes
an and bn of the harmonics, completely determine a periodic signal of known period
T . For, once this information is acquired, the signal can be fully reconstructed by
means of (3.1).

An element of simplicity can be added. Even though the spectrum (set of all
frequencies) can be infinite and generally is, it can be proved that the amplitudes an

and bn get small as n increases if f is absolutely integrable. So a finite number of
harmonics is sufficient to obtain the signal with good approximation, adequate for
communications. Consequently the use of the bandwidth (total range of frequencies)
in communication systems can be made effective and economical at the same time.
Figures 2.8, 2.9, and 2.13 show someof thewaves commonly used and their spectrum.
If the function is not periodic, as the rectangular pulse of Figure 2.17, then it can still
be interpreted as periodic with period T = ∞. The corresponding frequencies cover
the entire real axis, as seen by making T → ∞ in the discrete spectrum 2πn/T .
The formula for the Fourier coefficients and the inversion formula (3.1) melt into
(2.13) and (2.14), respectively the Fourier transform of f (t) and the inverse Fourier
transform (or equivalently (2.15) and (2.16), or (2.17) and (2.18)). Some signals and
their Fourier transforms can be found in Figure 3.4. The proof is immediate in the
first case and it amounts to an integration by parts in the second case, as follows:

2
∫ 1

0
(1 − t) cos(ωt) dt = (2/ω2)(1 − cos ω) = (4/ω2) sin2(ω/2).

In the fourth case, with F(ω) denoting the Fourier transform, an integration by parts
gives

F(ω) = 2
∫ ∞

0
e−t cos(ωt) dt = 2 − ω2F(ω).
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Figure 3.4 On the left from a) to g), signals; on the right, their Fourier transforms.
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Figure 3.5 Gauss and the gaussian on the former ten mark note of the Bundesbank.

In the third case, from the known formula
√

π = ∫ ∞
−∞ e−x2

dx follows

√
π =

∫ ∞

−∞
e(ω/2−i t)2 dt = eω2/4

∫ ∞

−∞
e−t2−iωt dt.

The first four examples on the left of Figure 3.4 show the rectangular pulse,
the triangular pulse, the gaussian e−t2 (Fig. 3.5), and the e−|t | (whose transform
goes by the name of Poisson kernel); on the right are the corresponding Fourier
transforms. All these tend to zero as ω tends to infinity—in analogy with the Fourier
coefficients—according to a property (Riemann–Lebesgue lemma) that holds under
the very general assumption that allows the Fourier transform to be defined, namely
integrability of the absolute value of f . In particular the Fourier transform of the
gaussian, in the fourth example, is a gaussian itself while the third example is central
in the theory of nuclear magnetic resonance (Chapter 7).

Of different nature are the last three cases—to be dealt with in the next section—
which also appear in Section 3.7 and in later chapters.

3.4 The Dirac delta function and related topics

Topics here, among which are the Dirac delta function and its Fourier transform, are
presented in a heuristic fashion. A rigorous presentation can be found for instance
in Gelfand, Shilov [1964].

The graph of ra(t) in Figure 3.6 is obtained from the rectangular pulse r(t) in
Figure 3.4 a) by a contraction and by changing its constant value in such a way that
the resulting underlined area is 1. Thus the value of the Fourier transform Ra(ω) at
the origin is 1 since, by the very definition (2.13), F(0) = ∫ ∞

−∞ f (t) dt .
To define heuristically the Dirac delta function, a has to be made smaller and

smaller, and in the limit as a tends to zero, ra(t) defines a generalized function or
distribution that is commonly denoted by δ(t), following the notation introduced by

http://dx.doi.org/10.1007/978-1-4899-7989-6_7
http://dx.doi.org/10.1007/978-1-4899-7989-6_2
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Figure 3.6 On the left, the rectangular pulse ra(t); on the right, its transform Ra(ω).

Paul Adrien Maurice Dirac (1902–1984) in The Principles of Quantum Mechanics
(4th. ed., 1958). The properties of the Dirac delta function show that it is not a
function: It is zero for every t with the exception of t = 0 where it is infinite and its
integral over the entire real axis is 1. Indeed this property, common to all the ra, is
inherited by the delta.

The computation of Ra(ω), the Fourier transform of the rectangular pulse ra , gives
(aω)−1 sin(aω). The corresponding graph is shown in Figure 3.6. As a tends to zero,
the abscissa π/a tends to infinity, and in the limit, Ra becomes identically equal to
1: the Fourier transform of the delta (Fig. 3.4 e)) has been reached.

The Dirac delta is used in electronics to represent the unit impulse and sampled
signals, but it is also employed to represent a unit mass ideally concentrated at the
origin. If concentrated elsewhere, for instance at the integer n, then it is denoted by
δn , the delta translated at n. Precisely δn(t) = δ(t − n). Its Fourier transform is equal
to e−inω , by (2.19).

Much more is true. A sequence of complex numbers {cn}∞n=−∞ can be represented
by

∑∞
−∞ cn δn(t) and its Fourier transform is

∑∞
−∞ cne−inω , going from “discrete”

to “periodic.”
On the contrary, a periodic function f (t) with Fourier series

∑∞
−∞ cne−int does

not have a Fourier transform for lack of integrability at infinity (unless f is identically
equal to zero), but considered as a distribution, it does. Its Fourier transform is equal
to

∑∞
−∞ cnδn(ω), going from “periodic” to “discrete.” In the space of distributions,

the notion of Fourier transform includes that of Fourier series. A unified theory is
thus derived.

For instance, from Euler’s formula sin t = [eit − e−i t ]/2i , it is easily calculated
that sin t has Fourier transform equal to (−i/2)δ−1(ω) + (i/2)δ1(ω). Other examples
follow.

A finite latticemade by unitmasses concentrated at the integers n, with−N ≤ n ≤
N , is represented mathematically by

∑N
n=−N δn(t) and graphically by a “comb” as in

Figure 3.4 f), where N = 2. The inverse Fourier transform
∑N

n=−N einω , manifestly
periodic of period 2π, is equal to

sin(N + 1
2 )ω

sin(ω/2)
.

http://dx.doi.org/10.1007/978-1-4899-7989-6_2
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Figure 3.7 The Dirichlet kernel DN for N = 11 and N = 22.

This can be seen by writing

N∑

n=−N

einω = e−i Nω[1 + eiω + ei2ω · · · + ei2Nω] = e−i Nω 1 − ei(2N+1)ω

1 − eiω
.

Then by collecting eiω/2 both at the numerator and denominator we obtain

e−i(N+ 1
2 )ω − ei(N+ 1

2 )ω

e−iω/2 − eiω/2

and using Euler’s formula sinω = [eiω − e−iω]/2i , the stated result. The Dirichlet
kernel DN (ω) = ∑N

n=−N einω is drawn for different values of N in Figure 3.7. Then
it is clear that the Dirichlet kernel focuses at the origin as N increases. Actually, due
to the observed periodicity, at 0,±2π,±4π, . . . it shows pronounced peaks of height
2N + 1 and width of the order of 2π(2N + 1)−1, so that their underlined area is
approximately 2π. It is worth remarking that the height of the peaks is equal to the
number of elements of the lattice.

To deal heuristically with the case of an infinite lattice it suffices to let N → ∞
in the above formulas. In the t variable

∑∞
n=−∞ δn(t) is obtained, graphically repre-

sented by an “infinite comb” (Fig. 3.4 g)). In the ω variable the periodicity is main-
tained, the peak heights tend to infinity, the width tends to zero, while the underlined
area keeps approximately the same value 2π for any N and therefore in the limit. This
explains the last case of Figure 3.4: to an “infinite comb” in time t (both periodic and
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discrete) there corresponds an “infinite comb” 2π
∑∞

n=−∞ δn(ω/2π) (periodic and
discrete) in the frequencies. A formal derivation can be found in Bracewell [1998]
or Papoulis [1987].

3.5 Convolution

The convolution of two absolutely integrable functions f and g, denoted by f ∗ g, is
itself an absolutely integrable function. Therefore h = f ∗ g has a Fourier transform.
The definition of convolution, to be given further below, might appear complicated
at first, but its action is simple on the Fourier transform side: It consists of pointwise
multiplication, according to the formula

ĥ(ω) = f̂ (ω)ĝ(ω).

From this, the importance of convolution can be inferred, for instance in describing
and dealing mathematically with filters (Section 3.6) or with the resolving power of
observing instruments, like radiotelescopes (Section 9.5).

Here comes the definition

h(x) =
∫ ∞

−∞
f (y)g(x − y)dy.

To compute the value of the above convolution at a point x one has to start by folding
g(y) to obtain its reflection g(−y), as in Figure 3.8, then proceed to translate such

Figure 3.8 Graphical description of convolution. Ten times the shaded area is 50a, the value of
f ∗ g(a).

http://dx.doi.org/10.1007/978-1-4899-7989-6_9
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a reflection at x obtaining g(x − y), at last to be integrated against f (y). If g is even,
then the above convolution is just an average of f , against g translated at x .

For instance, given a periodic function f of period 2π with Fourier coefficients
cn, −∞ < n < ∞, and given the function whose Fourier coefficients are 1 for
−N ≤ n ≤ N and zero otherwise, multiplication on the Fourier transform side gives
cn, −N ≤ n ≤ N , and zero otherwise or equivalently

∑n
n=−N cnδn(ω). Back in the

time domain we have
∑n

n=−N cneint which turns out to be equal to the convolution
f ∗ DN (t). It has been observed that DN focuses at the origin, therefore in the
convolution, evaluated at t, DN enters translated at t where it focuses. Hence it can
be expected that, as N tends to infinity, f ∗ DN (t) tends to f (t). This is actually
true, under some assumptions, namely those of the Dirichlet theorem (Section 2.4).

Convolution can be thought as a kind of multiplication in the class of absolutely
integrable functions, being commutative, associative, and distributive under the
pointwise addition. It is natural to ask whether there is a unit, that is an element
that plays a similar role to the number 1 for the multiplication of real or complex
numbers. The delta partially works that way: If f is continuous, in addition to being
absolutely integrable, then

f ∗ δ(x) = f (x).

For precision it has to be noted that the search ended up outside the class of absolutely
integrable functions. Indeed the delta is not a function (while 1 is a number among
numbers, in the preceding comparison).

Now the Fourier transform of a radar signal is going to be computed. We assume
for simplicity that the transmitted signal (Fig. 3.3) has unit power and moreover
that it is a pulse, repeated periodically infinitely many times (a true radar signal is
a pulse repeated only a few times, so it is a truncation of the one we are going to
consider. More on truncations and their effects on the Fourier transform can be found
in Section 3.8).

Let us assume the frequency of the carrier wave v = 1 GHz, the modulating
pulse to have duration τ = 1 μs and repetition period T = 1 ms. These figures can
be considered representative of airport surveillance radars with a range of about
100 km.

The Fourier transform of a rectangular pulse R(t) of width τ is given by R̂(ω) =
2ω−1 sin(τ/2)ω according to formula (2.17). If a periodic signal p(t) is obtained from
R(t) by repetition with a period of T , that is p(t) = ∑∞

n=−∞ δn(t/T ) ∗ R(t), then

p̂(ω) is discrete and given by the formula p̂(ω) = R̂(ω)ω0
∑∞

n=−∞ δ(ω − nω0) =
ω0

∑∞
n=−∞ R̂(ω − nω0), where ω0 = 2π/T (Papoulis [1987], p. 44).

The radar transmitted signal m(t), being cos 2πνt modulated by p(t) (Section
10.14), is given by m(t) = p(t) cos 2πνt . Thus, by Euler’s formula cos t = [eit +
e−i t ]/2 and formula (2.18), we have m̂(ω) = 0.5 p̂(ω + 2πν) + 0.5 p̂(ω − 2πν), that
is p̂(ω) translated by frequency shifts 2πν to both left and right.

http://dx.doi.org/10.1007/978-1-4899-7989-6_2
http://dx.doi.org/10.1007/978-1-4899-7989-6_2
http://dx.doi.org/10.1007/978-1-4899-7989-6_10
http://dx.doi.org/10.1007/978-1-4899-7989-6_2
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3.6 Filters, noise, and false alarms

Mathematically the action of a filter is a convolution. It is easily described if the
signal is given in terms of frequencies, that is by its Fourier transform. An ideal filter
stops certain frequencies and leaves unaltered all the others, as in Figure 3.9, which
describes the ideal high-pass, low-pass, and band-pass filters.

For instance if xi (t) denotes the input time function and xo(t) the output of an
ideal low-pass filter, then the relation between the corresponding Fourier transforms
Xi and Xo is stated in the formula

Xo(ω) = Xi (ω)H(ω).

Here H(ω) = e−i t0ωr(ω) where r(ω), named amplitude characteristic, is the char-
acteristic function of the interval [0,ω0], also called the rectangle function, which
takes the values 1 on the interval and 0 outside as shown in Figure 3.10. The factor
e−i t0ω deserves a few words of explanation. Every filter has a phase characteristic
ϕ(ω), assumed linear for simplicity in Figure 3.10, that isϕ(ω) = t0ω. Thus by (2.19)
the filtered signal shows a delay with respect to the original signal, as one naturally
expects. The true amplitude characteristic and phase characteristic are rather as in
Figure 3.11, providing a good approximation of the ideal case.

Multichannel operation is of general use in signal transmission. The most com-
mon type of multichannel operation is obtained by frequency division, but also time
division is employed. The frequency division multiplex system is made possible by
band-pass filters. Messages or channels, each with a band of frequencies allocated,
are mixed at the transmitting site to be sent together along the same communication
path. At the receiving site the frequency band of each channel can be singled out by
appropriate filters, thus ensuring a correct reception.

Noise, inevitably picked up during signal transmission and reception, is dealt with
by the theory of signals and of randomvariables. The purpose is to get rid ofmost of it,

Figure 3.9 Ideal high-pass,
low-pass, and band-pass
filters.

http://dx.doi.org/10.1007/978-1-4899-7989-6_2
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Figure 3.10 On the left the
amplitude characteristic and
on the right the phase
characteristic of an ideal
low-pass filter.

Figure 3.11 On the left the
amplitude characteristic and
on the right the phase
characteristic of a low-pass
filter.

for instance bymeans of suitablefilters or by improved systemdesign.Electrical noise
may be defined as a signal unwanted but always present in a communication system
that tends to impede the reception of the wanted signal and to limit its detection. It
is important, in the evaluation of the performance of a system to carry out a general
analysis of noise and in addition of interference, another kind of unwanted signal
(such as those from neighboring stations) that may be equally important. While
noise and interference have a similar effect on communication systems, their nature
is different: Usually noise is made of randomly occurring voltages, sometimes very
peaky in shape, while interference is usually periodic or regular in form. When
viewed on an oscilloscope, noise gives a spiky impression, as in Figure 3.3. The
peaks, continuously occurring, are about a microsecond in duration, on the average.
Thus, by (2.17), they have high-frequency components easy to filter if the signal
band is much lower. Therefore the importance of Fourier analysis, in conjunction
with the study of the statistical behavior of noise.

Natural forms of noise are those due to cosmic and atmospheric radiation, usually
entering the system via the receiving antenna. An example of the former type is the
largely studied solar radiation—whose effects on radio reception are well known and
may be reduced by modifying the directional properties of the antenna—as well as
radiation from other sources. For instance in our galaxy the radio source Cassiopeia
A in the Cassiopeia constellation emits a definite and regular amount of noise.

Atmospheric noise due to scattered radiation from vapor or snow has frequencies
of about 22 GHz, while radiation’s absorption by O2 in the atmosphere generates

http://dx.doi.org/10.1007/978-1-4899-7989-6_2
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noise of about 60 GHz. Sky noise is low only on a frequency range situated around
1 GHz (microwaves). Signals received from radiogalaxies or from space satellites
are generally small, thus knowledge of the background noise received from various
parts of the sky is required.

Another form of naturally occurring noise is the more troublesome circuit noise
generally known as thermal noise. Due to the random motion of free electrons in
a conductor and increasing with temperature, it is linked to the nature of electronic
components and cannot be completely eliminated. Thermal noisemakes up an impor-
tant part of communication systems and is well studied: Generally it covers a wide
range of frequencies in the receiver and it may be reduced by a proper choice of
components and use of low temperatures. A specific example is given by a radar:
Its antenna inevitably picks up cosmic and atmospheric radiation and inevitably is
affected by noise generated by the electrical circuits of the radar itself. Consequently
electric energy of the “right frequencies” might be occasionally present in the receiv-
ing circuits without having originated in a target, thus causing false alarms. Attempts
to eliminate them could end up eliminating the wanted signal, therefore efforts go in
the direction of keeping false alarms at an acceptable level. In case of a big radar, like
the one at Fiumicino airport in Rome, whose surveillance extends over more than 300
km in radius and that might detect in one second from a hundred to more than two
hundred airplanes (objects moving at 900 km per hour), an average number of false
alarms of one or two per second is acceptable. The number of possible false alarms
in a second being of the order of one million, it may be stated that the mentioned
radar has a probability of false alarms of 10−6.

3.7 Sampling and the Nyquist frequency

Tomake themost efficient use of time and frequency bands often, instead of transmit-
ting a continuous signal, samples of it are transmitted without degrading reception
significantly. Sampling and quantization are always present in a transmission system
that makes use of computers, whose large and increasing exploitation has brought a
revolution in the theory of signals and its applications.

When an airplane pilot speaks with the controlling tower, the acoustic pressure of
his voice is a continuous function of time. Technically speaking it is an analog signal.
Similarly for the electric signal generated in his transmitting radio. Computers though
deal with digital signals which are allowed to assume only a finite number of values.
Therefore one part of a transmission procedure, which makes use of computers,
deals with sampling: Signals are taken only at certain instants, for example every 0.5
microseconds (Fig. 3.12).

Every signal’s value, so obtained, is furthermore rounded off, that is restricted to
a certain finite set of possible values (discretization levels). This procedure is called
quantization. For instance if the signal at time t = 0 takes on the value 0.567, then the
quantized value could be 0.6. Every set of levels is designated by a decimal number
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Figure 3.12 To the left an analog signal; on the right the same signal sampled every 0.5 microsec-
onds.

0, 1, 2, . . . and then expressed in binary form using the binary digits (bits) 0 and 1,
the only digits appearing in the computer’s language.

A converter from analog to digital (A/D) at the transmission site is matched by an
opposite converter from digital to analog (D/A) at the receiving endwhere a sequence
of numbers has to be transformed back into an acoustic pressure, reproducing at best
the pilot’s voice. The fidelity of A/D and D/A conversion depends on the sampling
rate and on the number of discretization levels which have to be chosen adequately
to the purpose.

Unavoidably, quantization introduces errors while the former operation of sam-
pling poses a problem: What choice of sampling rate allows an accurate reconstruc-
tion of the original signal? The answer depends upon the signal: The more rapidly
the signal varies, the denser the sampling has to be, in technical terms the higher the
sampling rate. If the signal shows significant variation in a microsecond, samples
have to be taken every microsecond or fractions of it. Roughly speaking two or three
samples have to cover those parts of the signal that vary the most rapidly.

In Figure 3.13 a suitable sampling has been chosen for the given signal: The rate
of sampling is sufficiently high to allow a faithful signal reconstruction. If a lower
frequency was chosen, for instance one-fifth of the preceding one (in Figure 3.13 it
would amount to taking one sample from every five) then the ensuing reconstruction
could be grossly wrong (dashed curve in Figure 3.13).

In Figure 3.14 the opposite procedure is followed. The sampling is given and from
that the signal has to be reconstructed. Both signals x(t) and y(t) are compatible with
the given sampling. Which is the right one? Actually a moment of thought suggests

Figure 3.13 Signal,
adequate, and inadequate
sampling (see text).
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Figure 3.14 Sampling
compatible with the two
signals x(t) and y(t).

that infinitely many signals are compatible with the given sampling. This confusion
goes under the name of aliasing. Fortunately it is possible to recover the wanted
signal if it is known, beforehand, that all signals undergoing sampling are “slowly”
changing in the time interval between two successive samples. This restriction is
quite reasonable since a transmission system is always designed for a class of signals
that share common features. For instance the telephone is designed to transmit the
human voice, not the bat’s scream or the sound of the fog horn.

The preceding qualitative considerations are manifestly insufficient from an oper-
ational point of view. It is again Fourier analysis, with a fundamental result known
as the sampling theorem, that states quantitatively the assumptions that allow the
reconstruction of the signal and the formula that does it. The basic assumption is
for x(t) not to have components beyond a certain frequency B, which implies that
X (ω) = 0 for |ω| ≥ 2πB. Then the signal can be recovered uniquely by choosing as
sampling time T = 1/2B and by applying the formula

x(t) =
+∞∑

k=−∞
x(kT )

sin π(tT −1 − k)

π(tT −1 − k)
.

In Figure 3.14 we intentionally chose y(t) = x(t) + sin 2π Bt to have the Fourier
transform Y (2πB) �= 0, thus violating the stated assumption.

The sampling theorem is also called the Shannon theorem after ClaudeE. Shannon
of Bell Telephone Laboratories, who proved it in 1948. The sampling frequency
T −1 = 2B is known as theNyquist frequency (seeWhittaker [1915], Nyquist [1928],
Shannon [1948]).

The above theorem might appear incredible: The full values of x(t) are recovered
from the values of x(t) on a sequence of equidistant points. The values of a function
might change from point to point arbitrarily in size and sign, so it is manifestly
impossible to predict the values of x(t) on any interval, however small, from its values
on a given sequence of points. The above formula works, contrary to expectations,
because of the theorem’s rather strong assumption. For any signal x(t) starting at
an instant t0 and ending at an instant t1, like any conversation over the phone, it is
known that there is no B such that X (ω) = 0 for |ω| ≥ 2πB.

The technique of sampling therefore might require one to set X (ω) equal to zero
outside some interval that has to be chosen large enough not to destroy, in so doing,
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essential information. This is obtained by suitably filtering the signal. It is the filter’s
output that is to be sampled, transmitted, and finally reproduced at the receiving end.

Digital sound recording provides another relevant example of application of this
theorem. The range of frequencies audible to the human ear has an upper bound
at 20,000 Hz. Thus any audible sound can be exactly reproduced, no matter how
intricate, by taking40,000 evenly spaced samples for every second. Indeed a sampling
frequency of 41.5 kHz is used in compact discs where sample values are stored as
points of varying reflectance. The resulting sound fidelity is much better than in
analog recordings. Besides digital processing and reproduction, Shannon’s theorem
similarly underlies digital generation of sound as well.

Figures 3.15, 3.16, and 3.17 describe graphically the theorem on the Fourier
transform side. Figure 3.15 has the signal x(t) and its Fourier transform X (ω). The
next two paragraphs deal with the discrete Fourier transform and the fast Fourier
transform, routinely used in applications. Being of rather technical nature they can
be omitted in a first reading. It is enough to know that there exists a way to compute
the Fourier transform that involves a certain degree of approximation but, on the other
hand, it is very convenient since it can be implemented on a computer. If provided
with suitable software, the computer will show the graph of the Fourier transform,
with a certain approximation, just by punching a key. In case of adequate sampling
(Fig. 3.16) the Fourier transformof the sampled signal, on the interval [−2πB, 2πB],
is exactly the Fourier transform of the original signal; otherwise aliasing occurs (Fig.
3.17 and Fig. 10.33).

Figure 3.15 Signal and Fourier transform. (E. O. Brigham, The Fast Fourier Transform, Prentice
Hall, [1988])

Figure 3.16 Signal adequately sampled and its Fourier transform. (E.O. Brigham,The Fast Fourier
Transform, Prentice Hall, [1988])

http://dx.doi.org/10.1007/978-1-4899-7989-6_10
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Figure 3.17 On the left the signal; on the right the DFT. (Adapted from E. O. Brigham, The Fast
Fourier Transform, Prentice Hall, [1988])

3.8 The discrete Fourier transform

The Fourier transform deals with functions defined on the real line, so it cannot be
implemented on computers that handle a possibly enormous, but nevertheless finite,
number of data. Even experimental measurements, relative to a given function h(t),
are taken for a finite number of chosen values of the variable t .Moreover it is h(t) = 0
outside a finite interval—like the electric signal corresponding to a conversation—or
it is set h(t) = 0 outside a finite interval suitably chosen so as to make negligible the
error of the resulting approximation.

To meet the needs of both automated and experimental computations, the Dis-
crete Fourier Transform or DFT has been introduced. It involves only a finite num-
ber of additions and multiplications. Subsequently, to compute the DFT, a suitable
procedure has been found that reduces the number of operations and in turn saves
computing time. It is named Fast Fourier Transform, abbreviated as FFT.
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Going back to the DFT, which logically comes first, there are two goals: It has
to approximate at best the continuous Fourier transform and moreover it has to be
implementable on computers.

Figure 3.17—showing signals to the left and their Fourier transforms to the right—
describes graphically the procedure for computing the DFT in the specific case of
h(t) = e−|t |. (It is worth noting that the Fourier transform H(ω) = 2/(1 + ω2) is
never zero so that the assumption of the sampling theorem is not fulfilled.) The
procedure starts by

1) sampling h(t) with sampling rate T . This produces discrete data denoted by
hc(t) and a Fourier transform Hc(ω) periodic with period 1/T . In this specific case
aliasing occurs (Fig. 3.17 b)) that can be reduced by choosing a finer sampling.
Sampling can be described mathematically as the multiplication by a “comb,” made
of unit impulses equally spaced by T .

The number of samples at the moment is infinite and no computer can operate on
that. Thus there follows:

2) a truncation of length T0 in the time variable. A finite number of data arises
in this case, precisely N if T0 = N T . This has a slight drawback, since it implies a
degraded discrimination on the Fourier transform, shown by “ripples,” enhanced in
Figure 3.17 c). Indeed on theFourier transform sidewe arewitnessing the convolution
ofHwith the Fourier transformof a finite comb (Fig. 3.4 f)). Ripples can be attenuated
by increasing T0 and in turn the samples number.

The Fourier transform is still continuous; therefore the last step to define the DFT
consists of

3) sampling on the frequency variable. The spacing rate has necessarily to be
1/T0 to avoid aliasing when computing the inverse Fourier transform. The samples
number is N, given the periodicity of Hc.

In Figure 3.17 the upper left shows the graph of the signal, while the lower
right shows the DFT. To the left of the DFT there is its inverse Fourier transform,
recognizable as the truncation in Figure 3.17 c) made periodic. The discrete Fourier
transform H̃ of the function h is therefore given by the following formula, to which
we will always refer in the sequel:

H̃(n/T0) =
N−1∑

k=0

h(kT )e−2πink/N n = 0, 1, . . . , N − 1 (3.2)

for h(t) defined on [0, T0] and sampling rate T , such that N T = T0. Manifestly (3.2)
is the discrete analog of (2.15), which reads

H(ω) =
∫ ∞

−∞
h(t)e−2πiωt dt.

Similarly to the Fourier transform, the DFT has an inverse given by

http://dx.doi.org/10.1007/978-1-4899-7989-6_2
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h(kT ) = 1

N

N−1∑

n=0

H̃(n/T0)e
2πink/N k = 0, 1, . . . , N − 1

denoted by h̃(t) in Figure 3.17.

3.9 The fast Fourier transform

The number of operations required by the discrete Fourier transform is of the order of
N 2 if N is the number of samples. The fast Fourier transform (FFT) is an algorithm
that reduces the number of operations to the order of N log2 N . If calculations are
hand made, then N is necessarily small and the advantage is not that significant but,
in case N is large, the number of operations is drastically reduced.

The best-known algorithm that goes under the name of Fast Fourier transform
was introduced in 1965 by J. W. Cooley and J. W. Tukey (Cooley–Tukey [1965]) of
the IBM Research Center, Yorktown Heights, N.Y. The discrete Fourier transform is
written more conveniently as

X (n) =
N−1∑

k=0

x0(k)e
−2πink/N n = 0, 1, . . . , N − 1, (3.3)

with k in place of kT and n in place of n/T0 for simplicity, x0 and X in place of h
and H̃ . Then (3.3) is a system of N equations, each one presenting a power of the
complex number W = e−2πi/N with exponent nk.

In case N = 4, (3.3) reads as follows:

⎧
⎪⎪⎨

⎪⎪⎩

X (0) = x0(0)W 0 + x0(1)W 0 + x0(2)W 0 + x0(3)W 0,

X (1) = x0(0)W 0 + x0(1)W 1 + x0(2)W 2 + x0(3)W 3,

X (2) = x0(0)W 0 + x0(1)W 2 + x0(2)W 4 + x0(3)W 6,

X (3) = x0(0)W 0 + x0(1)W 3 + x0(2)W 6 + x0(3)W 9,

(3.4)

or, more synthetically, as

⎛

⎜⎜⎝

X (0)
X (1)
X (2)
X (3)

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

W 0 W 0 W 0 W 0

W 0 W 1 W 2 W 3

W 0 W 2 W 4 W 6

W 0 W 3 W 6 W 9

⎞

⎟⎟⎠

⎛

⎜⎜⎝

x0(0)
x0(1)
x0(2)
x0(3)

⎞

⎟⎟⎠ . (3.5)

A simple examination of (3.4) shows that, in order to compute X (0), four multipli-
cations and three additions of complex numbers are required, so that to, compute all
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Figure 3.18 Number of
multiplications required by
direct computations of the
discrete Fourier transform
and by the FFT algorithm, as
the number N of samples
increases up to 1024.

four components of the vector X, 16 multiplications and 12 additions are needed.
The FFT reduces all that to four multiplications and eight additions.

In case N is generic, the FFT involves (N/2) log2 N multiplications in place of N 2

and N log2 N additions in place of N (N − 1). Since computing timemainly depends
upon multiplications, in Figure 3.18 the number of multiplications required by direct
computations and by the FFT algorithm is shown up to N = 1024 = 210. For instance
in case N = 1024, it is N 2 = (1024)2= 1, 048, 576 and N log2 N = 10, 240 so that
the ratio (2N )−1 log2 N ≈ 1

200 . Therefore the saving in the number of multiplications
is about 99%. The efficiency of the FFT is immediately perceived since its advantage
over the direct method increases dramatically with N .

The algorithm of the FFT is easily described by going back to the case N =
4. The first simplification is based on the properties of the roots of unity in the
field of complex numbers. For W = e−2πi/4 is a fourth root of unit that is W 4 = 1.
ThenW 6 = W 4W 2 = W 2 andW 9 = W 4W 4W = W . BesidesW 3 = −W andW 2 =
−W 0. Obviously W 0 = 1, yet W 0 will be used for reasons of uniformity. Then (3.5)
becomes

⎛

⎜⎜⎝

X (0)
X (1)
X (2)
X (3)

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

1 1 1 1
1 W W 2 W 3

1 W 2 W 0 W 2

1 W 3 W 2 W

⎞

⎟⎟⎠

⎛

⎜⎜⎝

x0(0)
x0(1)
x0(2)
x0(3)

⎞

⎟⎟⎠ . (3.6)

The other idea ingrained in the FFT is the possibility of writing the matrix in (3.6)
as a product of two matrices with many null elements. Precisely
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X̄ =

⎛

⎜⎜⎝

X (0)
X (2)
X (1)
X (3)

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

1 W 0 0 0
1 W 2 0 0
0 0 1 W 1

0 0 1 W 3

⎞

⎟⎟⎠

⎛

⎜⎜⎝

1 0 W 0 0
0 1 0 W 0

1 0 W 2 0
0 1 0 W 2

⎞

⎟⎟⎠

⎛

⎜⎜⎝

x0(0)
x0(1)
x0(2)
x0(3)

⎞

⎟⎟⎠ , (3.7)

as can be easily checked by multiplying explicitly, row by column, in (3.7). A small
price has been paid: The second and third component of the vector X are switched
around. That is why the result has been denoted by X̄, to be distinguished from the
wanted X.

The total number of operations required to compute X can be inferred from (3.7).
The product of a matrix times a vector occurs twice. The first time, by two multipli-
cations and four additions the vector x1 is obtained, having components

⎛

⎜⎜⎝

x1(0)
x1(1)
x1(2)
x1(3)

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

1 0 W 0 0
0 1 0 W 0

1 0 W 2 0
0 1 0 W 2

⎞

⎟⎟⎠

⎛

⎜⎜⎝

x0(0)
x0(1)
x0(2)
x0(3)

⎞

⎟⎟⎠ .

Indeed only the multiplication W 0x0(2) is needed to compute the first and third
component

{
x1(0) = x0(0) + W 0x0(2),
x1(2) = x0(0) + W 0x0(2),

and only the multiplication W 0x0(3) is needed to compute the second and fourth
component

{
x1(1) = x0(1) + W 0x0(3),
x1(3) = x0(1) − W 0x0(3),

Similar steps are required to compute x2 = X̄, since

{
x2(0) = x1(0) + W 0x1(1),
x2(1) = x1(0) − W 0x1(1),

and
{

x2(2) = x1(2) + W 1x1(3),
x2(3) = x1(2) − W 1x1(3).

In all, four multiplications and eight additions had been performed as stated. There
remains to exchange the second and third component of x2 to obtain X.
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The procedure can be extended. For instance, in case N is a power of 2, say
N = 2v , the number of required steps becomes v = log2 N . For, the original matrix
can be written as a product of v = log2 N factors so that log2 N is the number of the
intermediate vectors x0, x1, . . . , xr , . . . , xν = X̄, with x0 denoting the initial data
and X̄ the wanted result (up to an exchange of components). The computation of
any intermediate vector xr , having N components xr (0), . . . , xr (N − 1), is based on
the preceding xr−1: For a fixed xr and fixed component xr (h) there exists a suitable
integer p such that

xr (h) = xr−1(h) + W pxr−1(h + 2−r N ).

The multiplication W pxr−1(h + 2−r N ) allows to compute another component,
namely

xr (h + 2−r N ) = xr−1(h) − W pxr−1(h + 2−r N ).

Therefore, to compute any intermediate vector xr , N/2 multiplications are required
and a total of (N/2) log2 N to compute X̄. Once the rule for p is given the whole
procedure can be automated.

3.10 Gauss and the asteroids: history of the FFT

The publication of the FFT algorithm by Cooley and Tukey in 1965 was a turning
point in digital signal processing and in certain areas of numerical analysis. The
algorithm was regarded as new by many and only little by little was its intriguing
history found out.

In response to the Cooley–Tukey paper, P. Rudnick [1966] of Scripps Institution
of Oceanography, La Jolla, Cal., proposed a similar algorithm. It was based on the
work of G. C. Danielson and C. Lanczos [1942] who had described their method in
the context of X-ray scattering problems. In this field, the calculation of the Fourier
transform (Chapter 6) was a serious bottleneck and kept being that way to researchers
unaware of the method for years after 1942.

TheRudnick paper prompted an investigation into the history of the FFTalgorithm
by Cooley himself, Lewis, and Welch [1967]. They pointed out that Danielson and
Lanczos, for the source of their method, referred to two papers by Carl David Tomé
Runge (1856–1927) dealing with trigonometric series in real form (2.3) and deriving
computational economy from the symmetries of the sine and cosine functions. The
papers, Runge [1903] and [1905], were apparently overlooked even though they had
been published by a well-read mathematician. Thus the roots of the FFT algorithm
were traced back to the early twentieth century.

Then Goldstine [1977] discovered that C. F. Gauss had an algorithm similar to the
FFT for the computation of the coefficients of finite Fourier series. Originally written
in the Theoria Interpolationis Methodo Nova Tractata, undated but likely written in

http://dx.doi.org/10.1007/978-1-4899-7989-6_6
http://dx.doi.org/10.1007/978-1-4899-7989-6_2
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late 1805, the treatise was published only posthumously in 1866 in Volume 3 of his
collected works (Gauss [1866]). This result by Gauss had remained hidden or went
unnoticed for almost two hundred years. Gauss’s motivation and the mathematician
himself are worth a digression.

Carl Friedrick Gauss (1777–1855) was born in Brunswick, Germany, into a poor
and unlettered family. He showed extraordinary precocity. Nothing like it is on record
in the history of mathematics. Without the help or knowledge of others the little Carl
Friedrick learned how to calculate—before he could talk, as he joked years later—
and taught himself how to read. At the age of three, he corrected an error in his
father’s wage calculations. At the age of eight he astonished his teacher by instantly
computing the sumof the first hundred integers and at fifteen, by an ingeniousmethod
of his own, he was able to rapidly calculate square roots to fifty decimal places. Later
in the 1820s, relative to the project of the triangulation of Hannover, he handled more
than a million numbers without assistance.

His interest and ability in computations, which he retained through his life,
extended first to the theory of numbers and then to algebra, analysis, geometry,
probability, and the theory of errors. The list of branches of science that have been
the object of his intensive empirical and theoretical investigations is even longer,
including observational astronomy, celestial mechanics, surveying, geodesy, capil-
larity, geomagnetism and electromagnetism (Section 3.1), mechanics, optics, and
design of scientific equipment. He also had an interest in actuarial science: Having
known poverty, he always maintained habits of frugality but succeeded well enough
to own an estate worth nearly two hundred times his annual salary. His method
was one: massive empirical investigations in close interaction with rigorous theory
construction.

At the University of Göttingen, which he entered in 1795, mathematical classics
and journals were finally available and he often found that his own discoveries were
not new. In 1796 Gauss obtained a criterion by which it can be decided whether a
regular polygon with any given number of sides can be constructed using only rule
and compass. These include the regular polygon with 17 sides, the first advance in
two millennia since the time of Euclid. This convinced him to abandon philological
studies, which also interested him, and concentrate on mathematics alone. During
the following years, from 1796 to 1801, mathematical ideas came to him so fast that
he could hardly write them down.

The year 1801 saw two extraordinary achievements, the Disquisitiones Arith-
meticae, pertaining to number theory, which quickly won Gauss recognition as a
first order mathematician, and the calculation of the orbit of the newly discovered
planet Ceres.

On January 1, 1801, Giuseppe Piazzi of the Palermo Observatory in Sicily dis-
covered a body, subsequently named Ceres and identified as a minor planet, that
seemed to be approaching the sun. This was the first success in the search for a new
planet, predicted by Bode’s law, in the region between Mars and Jupiter. It was to be
followed by a thousand others. Ceres was briefly observed during some forty days
and then lost. Where did it go? During the rest of the year astronomers tried, in vain,
to relocate it. In September with the Disquisitiones just printed, Gauss decided to
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take up the challenge. He did not use telescopes—everybody else had done that—
rather he set up some computations using a more accurate orbit, based on the ellipse
instead of the usual circular approximation, and methods of his own. By December
he had the result. And there was Ceres, found by the astronomer Franz von Zach in
the predicted position.

The extraordinary achievement of locating a heavenly body, distant and tiny—
Ceres, which revolves around the sun in 4.6 years and has a diameter estimated at
700 km (440 miles)—appeared to be almost superhuman, especially since Gauss
did not reveal his method. It was a triumph. He had a similar success with the
asteroid Pallas, detected in 1802, and second largest after Ceres. In 1809 Gauss
published his second masterpiece Theoria Motus Corporum Coelestium in which
he set the laws, at the basis of practical astronomical computations for many years
to come, including a difficult analysis of perturbations. It was in conjunction with
astronomical computations that Gauss hit upon the algorithm presently called Fast
Fourier Transform.

Gauss found some of the way already paved. Euler, who pushed on the use of
trigonometric series in analysis [1748], [1750], [1753], [1793], [1798], derived in
[1750] the formula for the coefficients of a periodic function, expressed as a finite
series of sines, given samples of the function. His work was followed by Alexis
Claude Clairaut (1713–1756) [1754] who used equally spaced samples and obtained
the first known explicit formula for the DFT for cosine series, and by Joseph Louis
Lagrange for sine series [1759], [1762]. Both Clairaut and Lagrange were concerned
with the problem of determining an orbit from a finite set of observations. Gauss
presumably knew the papers of Lagrange having borrowed from the library in Göt-
tingen, while he was a student, the volumes of Miscellanea Taurinensia containing
them (Dunnington [1955]).

In the mentioned treatise Theoria Interpolationis Gauss extended the work of
Lagrange. For general periodic functions normalized so to have period 1

f (t) =
N−1∑

n=0

Cne2πint ,

once the values fn = f (tn) at N equally spaced points tn = 2πk/N , n = 0, . . . , N −
1, are known, he showed that the coefficients Cn are given by

Cn = 1

N

N−1∑

k=0

fke−2πikn/N n = 0, . . . , N − 1 (3.8)

(see Goldstine [1977], pp. 249–253, for an English translation). The formula might
be easily verified by using the orthogonality relations

N−1∑

k=0

e2πink/N e−2πimk/N =
{

N if m = n,
0 if m �= n.
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The above (3.8) is the earliest known explicit formula for the general DFT (Heideman
et al. [1985]).

ThenGauss proceeds by amethod that “greatly reduces the tediousness ofmechan-
ical calculations, success will teach the one who tries it.” If the number N is com-
posite, namely N = N1N2, Gauss suitably writes

n = N1n1 + n2,

k = N2k2 + k1,

where n2, k2 = 0, . . . , N1 − 1 and n1, k1 = 0, . . . , N2 − 1. Then changing notation,
to adapt to the above decomposition of the n and k and writing fk = f (k1, k2) and
C(n1, n2) = NCn , (3.8) becomes

C(n1, n2) =
N2−1∑

k1=0

[ N1−1∑

k2=0

f (k2, k1)W
n2k2N2

]
W nk1 n = 0, . . . , N − 1. (3.9)

Here W = e−2πi/N is the N th root of unity so that the fundamental identity W N =
1 holds. For the computation of a single Cn , the formula (3.9) requires N1 + N2

multiplications, N1 for the inner sum and N2 for the outer one, versus N1N2 with
(3.8). Totally N (N1 + N2) multiplications are needed to compute all of the Cn’s
by (3.9). Then Gauss applies the algorithm to the orbit of Pallas, with N = 12 and
N1 = 4, N2 = 3 and also N1 = 3 and N2 = 4. He gives another example with N =
36 and N1 = N2 = 6. Finally he states, “Now the work will be no greater than the
explanation of how that division can be extended still further and can be applied to
the case where the majority of all proposed values are composed of three or more
factors, for example, if the number N1 would again be composed.” He just omits to
quantify the computational complexity to the now familiar expressions N

∑
Ni and

N log2 N in case N is a power of two.
Gauss’s algorithm, which uses real trigonometric series rather than the complex

exponential above, is equivalent to Cooley–Tukey’s one, being as general and power-
ful. His treatise though is difficult to read because of the Latin language and notation.
Gauss’swork predates Fourier’s and should have led to theDiscrete Fourier transform
and the fast Fourier transform being also named after him.

3.11 Unsteady combustion and space propulsion

Following the astronomical content of the preceding section now is space propulsion,
to end with space exploration, a field still in its infancy, which powerfully captures
the human mind. In space propulsion much scientific and technical knowledge is
involved. Examples of the contribution of signal analysis will be given.
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As statedby the inversion formula (2.14) a signal f (t), dependingupon time t ,may
be equivalently expressed by its Fourier transform f̂ (ω). In many cases, the Fourier
transform allows an easier interpretation and provides a better characterization of
the signal itself. For this reason, the FFT is commonly used to interpret experimental
data expressed under the form of a signal, be it analog or digital.

Remarkable examples will be presented in Chapter 8 relative to the phenomenon
of resonance, exploited both for diagnostic purposes (nuclear magnetic resonance
imaging) and to reconstruct the spatial atomic structure of matter (nuclear magnetic
resonance spectroscopy), after a preliminary identification of the resonant frequency.

The instance that follows also has to do with resonant conditions but investigated
with the opposite aim, that is, to avoid them. The context is a specific topic in com-
bustion—a wide area of research encompassing engineering, physics, and applied
chemistry—and a field strategically important in its own right. It suffices to consider
that between 70 and 80 percent of the energy produced in the industrialized countries
is generated by burning fossil fuel: gasoline or diesel fuel in automotive engines (cars
and trucks), natural gas or heating oil for heating purposes, kerosene in airplanes and
heavy oil fuel, among other fuels, in power stations. The remaining 20 to 30 percent
is divided between nuclear and hydroelectric power.

In most industrial applications fuel and oxidizer (air) are initially separated. They
are mixed and react in a certain container, called combustor or burner. Conventional
gasoline engines are an exception: Gasoline and air enter inside the engine cylinders
already mixed.

In rocket motors for space launchers (motors for air to air or air to ground missiles
may be somewhat different) so-called solid propellants are employed to generate
thrust. Fuel and oxidizer are both solid and have been thoroughly mixed. As both fuel
and binder, a polymer is used and as oxidizer, a salt is used, for example ammonium
perchlorate.

This kind of propellant is employed to accelerate, during the initial two to five
minutes of their trajectory, the huge space launchers used to orbit crew and payload—
as in the case of the space shuttle—or satellites. Satellites launchers are for instance
the European Ariane 5 and the U.S. Delta. In those initial minutes hundreds of tons of
solid propellant are burned to provide thrust. It is of vital importance for the purpose
of injecting the payload into the desired orbit that the thrust profile be exactly as
planned.

The solid propellant is located in the so-called boosters. For instance in the case
of the Shuttle they are the two big containers of cylindrical shape placed under the
Shuttle at each side of the tank containing oxygen and liquid hydrogen that feed the
three main engines (Fig. 3.19). The boosters are filled with grains (blocks) of solid
propellant, cast in cylindrical shape and stacked one on top of the other. Each grain
is hollow, forming a cavity (port). The propellant burns releasing hot gases from the
port toward the exhaust nozzle. The combustion gases reach temperatures of 3000◦C.
For a comparison it suffices to think that, at approximately 1500◦C, steel melts.

The boosters are perhaps in the memory of us all, due to the dramatic launch of the
Shuttle “Challenger” that took place on January 28, 1986. The intense cold (−8◦C
against a minimum temperature of 11◦C of the preceding launches) made the rubber
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Figure 3.19 Progression of
flame in the incident of the
Shuttle Challenger on
January 28, 1986. (Courtesy
of NASA/JPL/Caltech)

rings that sealed the different sections of the booster case hard and brittle and unable
to adapt in a few seconds to the pressure increase during the booster ignition. The seal
gone, the hot combustion gases reached the outer steel casing, not designed to stand
temperatures that high, and pushed against the rocket casing walls. A gap opened
through which hot gases were let out and burned, eventually causing the explosion
of the liquid propellant tank a few minutes after launching.
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More information can be found in Feynman [1989], where the physicist Richard
Feynman—Nobel prize in 1965 and member of the committee nominated by Pres-
ident Ronald Reagan to investigate the incident—recounts with usual frankness his
experience as a member of the investigating committee and the detailed reasoning
and conclusions he reached.

The cause of the Challenger failure was accidental but explosion or, for that
matter, extinction may also take place for fundamental physical reasons. Much of
the research on both steady as well as transient combustion (like motor ignition for
instance) is motivated by the problem of combustor instability in rocket motors.

The burning characteristic of early propellants was less than ideal and explosion of
motors, due to poor igniter design or unpredictable propellant burning, was common
in the late 1930s and early 1940s when intensive work on solid rocket motors began.
Even after propellant quality was improved, it was found that burning was often
erratic sometimes going out, as if ignited incompletely, or developing violent pressure
excesses.

Up to 1960, it was feasible to evaluate the performance of the relatively small
motors of the time by static firing full-size motors. So after motor design and pro-
pellant had been chosen, if troubles were found in firing static tests, changes were
made on a trial-and-error basis. This method became too costly for developing larger
motors. Therefore a better understanding of combustion instability had to be gained
and with it went along an awareness of its complexity. It became clear that small
changes (in geometry, size of the propellant’s particles,. . .) could cause a transition
from stable to oscillatory behavior. This helped to show that many motors were
operating near stability thresholds, beyond which severe oscillations were likely.
“The prospect of combustion instability troubles in development programs on big
solid rocket motors was a matter of real concern, because it was recognized in 1958
that it was not known what to expect in large motors, and the approach of remedial
measures based on trial-and-error methods would be prohibitively expensive, both
from the standpoint of cost of testing and of delays in development programs. As
a result of the urging by the Polaris program managers and a U.S. Department of
Defense (DOD) committee on large motors, a DOD ad hoc committee was set up
to review and recommend on the combustion instability problem” (Price [1992]).
Seriousness of the issue is shown by what is probably the most extreme example of
direct expenditures—estimated around 25 million dollars—for combustion instabil-
ity problems that arose in connection with the liquid propellant engines of the Saturn
vehicle.

The spontaneously oscillatorymodes of operation of a combustor that take place at
different frequencies (from a few hertz up to 15,000 Hz) are studied in a given design
and at a given ambient temperature, purposely to avoid them. Indeed it is of vital
importance in space propulsion to anticipate exactly the performance of a burning
solid propellant whose combustion cannot be modified, let alone extinguished, after
ignition.

Initially the boosters are pressurized at a pressure of the order of 10 atm, the
nozzle closed by a plug to be ejected as the pressure of the hot gases, produced at
ignition, rises. When combustion reaches steady conditions the pressure is about
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70 atmospheres. One of the causes of loss of performance, with eventual explosion
of the motor, is associated with the possibility that pressure waves (longitudinal,
tangential, and radial) couple with the combustion characteristic frequencies of the
propellant that depend on its gasification times. Experimental and theoretical studies
are made to determine if these characteristic frequencies, at operative conditions,
happen to be near one of the characteristic frequencies of the motor (Zanotti and
Giuliani [1993]).

Conditions of subatmospheric pressure are also investigated. This is the case of the
launch of a satellite by a flying airplane—as the “Pegasus” launcher of the Orbital
Sciences Corporation—and also of the upper stages (usually two) of the satellite
launchers. Among these the Japanese M-V, designed to orbit scientific satellites,
uses all solid propellant rocket motors stages. During ignition of the second and
third stage and extinction, the pressure inside the motor is close to zero.

The phenomenon of self-sustained oscillations at subatmospheric pressure is now
described quantitatively as an example of the systematic use of the FFT in this field’s
experimental studies (Zanotti [1992]). The combustion of a solid propellant in steady
state conditions is not always time invariant. Indeed for pressure values close to the
deflagration limit (that value of the pressure, above which fuel burns after ignition
and below which extinction takes place) combustion is characterized by oscillations
that are not imposed from the outside and therefore are called self-sustained. This
phenomenon has been discovered rather recently and, even if limited to a brief time
interval, might cause problems to the rocket engines, possibly followed by extinction
or engine explosion in the case of resonance.

In the mentioned article, self-sustained oscillations are studied—in particular
the dependency of their frequency upon the parameters involved and for different
propellants—by means of the radiation emitted by the burning surface or through
the variations of the temperature produced by the combustion. The laboratory exper-
iment uses ammonium perchlorate as propellant mixed to a binder and takes place
at ambient temperature (about 25◦C).

Figure 3.20 a) shows how the temperature changes in time for a deflagration
wave (the signal is amplified 500 times) as measured by a thermocouple located
inside the propellant near its burning surface, the pressure being 0.08 atm. It can be
seen that at a certain instant a change takes place: The phenomenon of combustion
starts and keeps going on in an irregular fashion with large oscillations in the face
of constant pressure and ambient temperature. A comparison could be made with a
candle flame that, instead of maintaining shape and dimensions about constant as it
usually happens, strongly oscillates going up and down.

The portion of the signal between 30 and 40 seconds is shown in Figure 3.20 b)
and its FFT in Figure 3.20 c). Figures 3.21 and 3.22 above show the amplitude of
the oscillation of the light emission as measured by a photodiode in the proximity of
the combustion’s surface. Pressure is 0.045 atm and 0.11 atm respectively. It can be
seen with one’s naked eye that the two signals are very different, but how to explain
the nature of the difference? To that purpose the FFT is systematically used: The first
signal has a narrow spectrum (Fig. 3.21), while the second one shows awide spectrum
(Fig. 3.22). The phenomenonof self-sustained oscillations is by nowwell understood.
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Figure 3.20 a) Temperature profile of the deflagration wave of a solid propellant at ambient tem-
perature of 25◦C and 0.08 atm; b) profile between 30 and 40 seconds; c) FFT of the signal in b).
(Courtesy of C. Zanotti, Centro Nazionale Propulsione e Materiali, CNR)
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Figure 3.21 Above, the amplitude of oscillation of the light emission of a solid propellant burning at
25◦C ambient temperature and 0.045 atm; below, its FFT. (Courtesy of C.Zanotti, Centro Nazionale
Propulsione e Materiali, CNR)

It takes place only for pressure p near the pressure deflagration limit which is 0.02
atm in the case under consideration. Precisely if the pressure is between 0.02 atm
and 0.3 atm then self-sustained oscillations take place: Their amplitude increases
and their frequency decreases as p approaches the deflagration pressure; the reverse
happens if p moves away. At the stated values of the pressure, the source of the
oscillations is the heat feedback between the gas phase (the gas produced by the
combustion) and the condensed phase of the propellant (solid propellant).
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Figure 3.22 Above, the amplitude of oscillation of the light emission of a solid propellant burning
at 25◦C ambient temperature and 0.11 atm; below, its FFT. (Courtesy of C.Zanotti, Centro Nazionale
Propulsione e Materiali, CNR)

3.12 The Mars project

The thread of space exploration is now picked up where it was left, with the dreams,
thoughts, and theoretical work of Tsiolkovsky and the initial success by Goddard
(Section 3.1). The field was greatly advanced by the German engineer Wernher von
Braun (1912–1977) who played a prominent role in all aspects of rocketry and space
exploration. A gifted man, a charismatic figure capable of motivating his collabora-
tors to work even under bombings, von Braun was born into an aristocratic family.
His mother, an amateur astronomer, spoke six languages and his father Baron Mag-
nus von Braun held high positions in the government. He was minister of agriculture
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in the government of the Weimar Republic headed by Franz von Papen and when the
Nazis seized power he retired to his estate in Silesia.

From Baroness Emmy von Braun’s recounts, Wernher’s childhood was happy,
extremely active, showing early signs of scientific interests. “His inclination toward
engineering andphysics found its expression in an endless production line of vehicles,
some small and powered by old clockworks, others large and driven by rockets, often
to the horror of our neighbors and to the dismay of his father who had to pay for the
damaged flower beds and windows” (Stuhlinger–Ordway [1994]).

Wernher’s doctoral thesis of 1934, at the University of Berlin, was titled “About
Combustion Test” and contained the theoretical investigation and developmental of
experiments on 300- and 600-pound thrust rocket engines. By the end of the year
von Braun and his group successfully launched two rockets that rose to more than
2.4 km. Soon after Hitler’s advent rocket tests were forbidden and handed over to
the military. von Braun became technical director of the giant military facility at
the village of Peenemünde on the island of Usedom in the Baltic sea. There he
developed the dreaded long range ballistic missiles A-4 (Aggregat 4) renamed by the
Propaganda Ministry as V-2—meaning Vengeance Weapon 2—after September 8,
1944, when they were first used in air assaults on Paris and London. von Braun, who
always retained his civilian status, had uneasy relations with the controlling SS: He
lamented with them the poor living conditions of the inmates working at his project,
resulting in faulty parts and poor assembly, and he himself was arrested and held in
a Gestapo jail for two weeks under the accusation of sabotaging the V-2 production
program by thinking too much of the future of rockets for space travel.

If, as in von Braun’s words, “until 1936 Goddard was ahead of us all,” by 1944
Germany with the group of Peenemünde—in the end working under allied bombs—
was way ahead of any other country. “Within a period of less than five years a
powerful and finely controllable rocket motor had come into existence; precision
guidance and flight control systems had been invented and built as well as radio
guide beams and communication links; electronic simulators—the forerunners of
modern computers—to handle lengthy mathematical procedures and to help solve
complicated equation systems had begun to take shape” (Stuhlinger-Ordway [1994]).

At the end of the war the highly desirable German know-how and hardware, like
the remaining V-2, was split between the U.S. and Russia. von Braun and a hundred
and twenty-six of his collaborators moved to the test site at White Sands, New
Mexico, where initially they lived almost secluded, being after all former enemies.
The scientists and technicians of his group who remained behind were soon seized
by the Russians and, by the fall of 1946, gently moved to work places outside of
Moscow, having being given no choice. It had all started long before with a KGB
informer witnessing the rocket tests of von Braun as early as 1937, followed in 1944
by the finding of remnants of A-4 at the front line in Poland (Harford [1997]). From
the nozzle dimensions the Russians calculated that the engine thrust was at least 20
tons (in fact it was 25 tons). They were shocked: At that time the limit of their dreams
was one and a half. The Germans worked under Russian supervision until 1953 when
it was judged that they could be let go.
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From that moment the Russians were on their own and they found their leader
in Sergei Pavlovich Korolev (1906–1966), a man totally dedicated to his ideas and
work, who had studied in Moscow under the celebrated airplane designer Andrey
N. Tupolev. One year of concentration camp in Kolyma, in far northeastern Siberia,
was followed by six years in a prison for engineers and scientists during Stalin’s
rule; under Khrushchev and Brezhnev when in charge of systems engineering for
Soviet launch vehicles and spacecraft, directing the design, testing, construction,
and launching of manned and unmanned spacecraft, he was forced to anonymity:
Chief Designer was his official title. At his death, signs of a feeling of gratitude from
the former Soviet Union could be seen as when his coffin was shouldered by the very
First Secretary Leonid I. Brezhnev, among others, to be hosted inside the Kremlin
wall.

The spectacular achievements by the Soviet Union—a country considered back-
ward in many ways—started with Sputnik 1, the first satellite to reach its orbit.
“October 4, 1957, the day when Sputnik appeared in the sky” von Braun said, “will
be remembered on this planet as the day on which the Age of Space Flight was ush-
ered in.” It was to be followed by Laika, first dog in space and crowned on April 12,
1961, by theVostok 1 spacecraft carryingYuri A. Gagarin (1934–1968), who became
the first men to travel into space. Then the gigantic mobilization of manpower and
money that the United States put into the Apollo program paid off: On July 16, 1969,
the Saturn V rocket designed by the NASA team, lead by von Braun, with a crew of
four astronauts blasted off and four days later Neil Armstrong (1930–2012) was the
first man to set foot on the Moon’s dusty surface.

Next is Mars, von Braun’s dream. von Braun outlined a Mars expedition in The
Mars Project, a booklet written during 1948 and 1949. It was first published in
Germany in 1952 and a year later in the United States. In the 90 pages of the original
German version all major phases of a manned round trip to Mars are dealt with to
make the point that the project could be accomplished with the existing technology.
In addition von Braun never lost one occasion to go public for, as he sometimes
reminded his coworkers, “if you want to accomplish something as big as travel into
space, you must win the people for your idea” (Stuhlinger-Ordway [1994]).

Marswas in themind ofKorolev too. Threemonths before dying of cancer surgery
he told a collaborator, “I have a short time before me, maybe ten years and I want to
send humans to the nearest planet” (Harford [1997]). He then promised him to double
his salary if he could cut by half the time of his assignment. Korolev’s plan was to
launch a cosmonaut around Mars, putting the space traveler in a closed-loop life
support system and an artificial low gravity environment for the lengthy round trip.

The decade 2020-2030 is presently the approximate deadline assigned to the
project of sending a manned spacecraft to Mars by those who believe it can be done
in the near future. It was actually President George Bush who took the initiative, back
in 1989, of setting the year 2019 as a deadline for sending astronauts to Mars. Of the
many problems involved, let alone the inescapable problem of the financial budget,
a major one is the duration of the trip—two to three years with present technology—
involving serious risks for the astronauts due to the radiation dose absorbed.
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In the fall of 1998 the Italian nuclear physicist Carlo Rubbia, Nobel prize in 1984,
advanced the idea for a new nuclear engine that could reduce to one year the time of
a mission to Mars and back. His engine is composed by modules, each consisting of
a cylinder where hydrogen is heated by the fission fragments emitted by the fission
of americium 242m. The amount of energy liberated by the fission reaction has no
known comparison, being about a million times greater than that obtained by chemi-
cal combustion.Rubbiaworked several years on the projectwith his teamat the Italian
Space Agency (ASI). Other projects are under way (Chang-Díaz [2000]). The alter-
native to conventional nuclear propulsion (including that of Rubbia type) is electric
propulsion. In electric propulsion a charged gas, for instance H2 or Xenon, is accel-
erated to high speed by electric or electromagnetic fields by means of solar panels or
by nuclear reactors. The electric thruster of Chang-Díaz has been recently refinanced
by NASA as announced on August 24, 2015 on Space.com (http://www.space.com/
30221-plasma-rocket-technology-nasa-funding.html). Time will tell which propul-
sion strategy will be chosen for a Mars mission.

http://www.space.com/30221-plasma-rocket-technology-nasa-funding.html
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Chapter 4
Sound, Music, and Computers

4.1 Understanding sound: some history

The understanding of the nature and propagation of sound has had important conse-
quences that affect everyday life. Telephone, radio, compact disks, and sound tracks
of films, often carrying spectacular sound effects, are just a few examples. Sound,
the stimulus to the hearing organs produced by vibrations propagating through an
elastic medium, like air, cannot be seen by observing the air. To “see” sound an
oscilloscope helps, but it takes harmonic analysis to understand its structure and a
repeated application of the FFT to follow in real time how it evolves (Fig. 4.6, 4.7,
and 4.8).

Pythagoras and his school (c. 550 B.C.) were already interested in sound and the
intriguing qualities that turn it into music. Music was part of mathematics then and
musical sounds produced by plucking strings of the same thickness, tension, and
material but different lengths were studied. It was discovered that strings of length 1,
3/2, 2, (C, G, C), when plucked at the same time or in succession, produce a pleasant
and harmonious sound. The connection between length and pitch was the beginning
of a quantitative knowledge of a complex subject that involves different fields of
science such as physics, physiology, and even psychology if some understanding of
why music arouses emotions is to be gained.

That motion of air is involved in sound, as a wave and not as a stream from the
sound source to the listener, was understood by the Roman architect Vitruvius, first
century B.C. In medieval times though, the prevailing theory explained sound as an
emission of very small invisible particles moving through the air. The speed of sound
being unknown and scientific method as yet unavailable, a deeper analysis could not
be carried out for a long time. Also lack of adequate clocks to measure small time
intervals cannot be underestimated.

Galileo (1564–1642) as well as the Abbé Marin Mersenne (1588–1648)—one of
his most distinguished French disciples, member of the mendicant Order of Minims
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in Paris—studied the effect of a string change of mass and tension on its frequency
of vibration. For a given length, an increase in mass or a decrease in tension was
found to produce lower notes. This was especially important for stringed instruments
such as the piano whose wide range of pitch cannot be practically obtained by just
varying the length of the strings. Mersenne is also remembered for publishing the
first qualitative analysis of a complex tone in terms of harmonics.

The French philosopher and mathematician Pierre Gassendi (1592–1655) who
belonged to the informal group in touch with Mersenne—together with René
Descartes (1596–1650), Pierre de Fermat (1601–1665), and Blaise Pascal (1623–
1662)—though wrong in sharing the medieval corpuscular theory on the transmis-
sion of sound, was one of the first on record attempting to determine the velocity of
sound in air. In 1635 he measured a value of 478 m/s, far too high as was recognized
by other observers. Only about 1750 under the direction of the Royal Academy of
Sciences in Paris a speed of 332 m/s at 0◦C was measured in open air using a can-
non as a sound source. Subsequent careful measurements did not change this figure
significantly. The speed of sound in water of 1,435 m/s at 8◦C was measured in the
year 1826 in the lake of Geneva. Through steel it is much higher, about 5,000 m/s,
and through the even more rigid cool glass it is about 5,500 m/s.

Galileo and Hooke (1635–1703) demonstrated that every sound is characterized
by a precise number of vibrations per second, but the full understanding of even
the simplest types of sound vibrators requires the power of calculus. Among the
best mathematicians of the seventeenth century, Leonard Euler, Daniel Bernoulli,
Jean le Rond d’Alembert, and Joseph Louis Lagrange all studied the vibrating string
(Chapter 2). In 1747 d’Alembert found themathematical expression for wavemotion
(thewave equation) and in 1753Bernoulli stated thefirst version of the decomposition
of every motion of a string as a sum of elementary sinusoidal motions. Then at the
beginning of the following century Fourier developed “harmonic analysis.”

The idea of applying the analytical method of Fourier to the phenomenon of sound
was advanced by the German physicist Georg Simon Ohm (1789–1854) in 1843 and
further elaborated by one of the greatest scientists of that century the well-known
German physician, physicist, and mathematician Hermann von Helmholtz (1821–
1894). In his monumental work of 1863On the Sensation of Tone as a Physiological
Basis for the Theory of Music (Helmholtz [1954])—in which he attempted to unveil
the complete mechanism of the sensation of sound, from the ear through the sen-
sory nerves to the brain—he also provided experimental evidence of the validity of
decomposition of every sound as a combination of simple sounds whose frequencies
are all multiples of one lowest frequency. He accomplished that by using special
pipes, called resonators, of different lengths to detect different frequencies. Further-
more he could duplicate a given sound by a proper selection of electrically driven
tuning forks, thus fully demonstrating experimentally the harmonic decomposition
of sound.

Finally with the publication in 1877 and 1878 of the first and second volume of
The Theory of Sound by John William Strutt (Lord Rayleigh) (1842–1919), modern
acoustic began. Questions of vibrations and resonance of elastic solids and gases
were studied as well as acoustical propagation in material media. In brief all aspects

http://dx.doi.org/10.1007/978-1-4899-7989-6_2
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of the generation, propagation and reception of sound were presented in a rigorous
fashion as well as experimental material. Pertaining more specifically to music, one
ought to mention The Physics of Music by Alexander Woods, a classic in the field
first published in 1913.

The physical response of the human ear to sound received attention before
Helmholtz. It is worth mentioning that the frequency limits of audibility—which
approximately cover the range from 20 Hz to 20,000 Hz, depending on the tone
loudness and varying from individual to individual and with age—was established
around 1830 by Félix Savart (1791–1841), who had received a medical degree at
the University of Strasbourg in 1816. His early interest in the physics of the vio-
lin led him to study many phenomena involving vibrations, in acoustics as well as
electromagnetism. In his earliest work he explained for the first time the function
of certain parts of the violin. He also built a new violin in the form of a trapezoid
with rectangular sound holes, thinking it would produce a better tone. When played
before a committee that included the composer Luigi Cherubini (1760–1842), the
tone was judged as extremely clear and even, but subdued. Antonio Stradivari (c.
1644–1737) still knew better.

Then in 1870 the threshold of audibility was measured for the first time. The
resulting value was much higher than the true one. Indeed the human ear has an
amazing sensitivity, being capable in the range between 500 to 4000 Hz—to which
it is especially sensitive—to respond to a change of pressure of the order of 10−10

of atmospheric pressure. At the other end, when the change reaches about 10−4 of
atmospheric pressure, the sensation of hearing becomes painful. In between these
extremes there is a normal conversation, which induces in the vicinity of the mouth
of the speaker a change of about one-millionth of the atmospheric pressure.

Inaudible sounds are of particular interest to modern physics: Infrasonic waves—
below 20 Hz—naturally occur in earthquakes and tidal motions, while ultrasonic
waves with frequencies above 20,000 Hz have well-known applications in medicine,
for example, besides being definitely present in the animal world.

4.2 Bats, whales, and sea lions: ultrasonic reflections
in air and water

Sound waves, like light waves, are spherical and propagate with a velocity v tied to
the period T , wavelength λ, and frequency ν by the standard formula

λ = vT = v/ν.

Sound waves are reflected by obstacles or targets in the same way that light waves
are and, more generally, electromagnetic waves (Sections 3.2, 3.6). The resulting
echoes are used by bats, toothed whales, and sea lions for blind hunting in the dark.
It is interesting to know more about the cries emitted toward this goal.

http://dx.doi.org/10.1007/978-1-4899-7989-6_3
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To detect an obstacle or target, wavelengths smaller than the dimensions of the
obstacle or target involved are needed. Bats are known to emit audible squeaks. These
turn out to be their low tones. Indeed their cries usually fall in the range between
30,000 Hz and 80,000 Hz and are totally inaudible to people. Most species emit
frequency-modulated pulses starting at a high frequency and dropping to half of that
in a fraction of a second. The greatest energy goes in the middle of the range. Such
extremely short and high frequency sound waves provide for the high resolution
and high directionality that allows small bats, in full flight, to locate and detect
the direction of motion of insects so as to catch them in dark caves or outdoors in
moonless nights. Similarly bats are able to fly in the dark through threads or wires
without getting entangled. This is certainly remarkable, the more so if attention is
paid to the small fraction of energy that goes with the reflected signal and to the
presence of disturbing noise such as the cries of many other bats and their relative
echoes.

The auditory system of bats is well targeted toward that. The external ear is
rather large, acting as an efficient collector and resonator of high frequency sounds.
The middle ear has a structure similar to that of humans but the auditory portion
of the nervous system is extraordinarily developed, a clear indication of the great
predominance in these animals of hearing over the other senses. The region of greatest
auditory sensitivity extends from 10,000 Hz to 70,000 Hz, the same range as for their
echolocation cries.

Other mammals equipped for echolocation are the toothed whales which make
use, for that purpose, of a rapid series of clicks containing many frequencies. Most
of the energy goes in the range from 50,000 Hz up to 200,000 Hz. As mentioned, the
speed of sound in water is about four times higher than in air and so the wavelength
corresponding to each frequency is four times as long and significantly higher fre-
quencies are needed to keep wavelengths small for effective echolocation. Dolphins
and sea lions too use echolocation and are able to change the patterns and frequen-
cies of their emitted clicks according to the size and distance of the prey they are
pursuing, avoiding sound interference both from other species and from themselves.
Sonar is ancient stuff and submarine life is not so silent after all.

4.3 Bels, decibels, and harmonic analysis of a single tone

Sound as detected by an instrument (a microphone, an oscilloscope) or perceived by
a human ear is a plane wave: Locally, in a small region, that is how a spherical wave
looks.

A simple sound is that produced by a tuning fork when struck around the middle
of the tines or even slightly closer to the tips (Fig. 4.1). The molecules of the air
in the immediate vicinity are subjected to a compression followed by an expansion
again and again, so as to oscillate around a rest position. The formula that describes
the movement of each molecule over time t , at a fixed point, is
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Figure 4.1 Oscillations of
the prongs of a tuning fork.

y = D sin 2πνt, (4.1)

where ν is the frequency, or number of oscillations (cycles) per second, and D is the
Amplitude of the oscillations, that is themaximum displacement of themolecule. The
oscillations take place in the direction of propagation; hence sound is a longitudinal
wave.

The intensity of the sound is proportional to the square of the amplitude. However
the intensity is usually not expressed in terms of displacements, which are extremely
small and difficult to measure, but rather in terms of pressure. Intensity turns out to
be proportional to the square of the pressure amplitude (pressure itself is a wave).

It is also common practice to measure the intensity in decibels (dB), the tenth
part of the bel. The bel was devised in the 1920s by electrical engineers of the
Bell Telephone Company to conveniently measure the attenuation of the telephone
signals transmitted over long lines. The name was chosen in honor of the inventor
of the telephone Alexander Graham Bell (1847–1922), who had just died the year
before. Zero decibels is chosen as the minimum audible sound intensity I0, as fixed
by international agreements. It corresponds to a pressure of 20 micropascal (one
atmosphere is about 105 pascal). A sound intensity I is compared to I0 through the
ratio I/I0, which is a pure number. The logarithm to base 10 of such a ratio —
another pure number—is the corresponding measure of the sound intensity I in bels.
Therefore a 10-fold increase in intensity means a gain of 1 bel or 10 decibels and
a 100-, 1000-, . . .fold increase means a gain of 2, 3, . . .bels or 20, 30, . . . decibels
(Tab. 4.1).

Formula (4.1) can be verified experimentally. If the sound of a tuning fork in C4
is converted to an electric current and fed to an oscilloscope, the graph in Figure
4.2 is obtained. It is a simple sinusoid whose frequency ν is 261.7 Hz, meaning that
there are 261.7 cycles in a second. If the same note is played by a violin, the graph
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Table 4.1 Sound intensity in decibel (dB).

0 dB: minimum audibility for intact hearing

50 dB: very quiet condition

65 dB: average conversation

80 dB: annoying sound level

95 dB: very annoying sound level

117 dB: discotheque at full blast

130 dB: limit of amplified speech

135 dB: painfully loud condition

140 dB: jet operations on an aircraft-carrier deck

Figure 4.2 Waveform of a
tone produced by a tuning
fork in C4.

in Figure 4.3 (top) is obtained representing six cycles of the waveform. The lowest
frequency, incorporated into the first harmonic and called fundamental because it
is the frequency of the whole sound, is 261.7 Hz. The other frequencies are integer
multiples of 261.7 Hz and correspond to the so-called higher harmonics or overtones
(Fig. 4.3 bottom). The waveform is then decomposed as the sum of as many as 36
harmonics each with appropriate amplitude. The presence of higher harmonics is
particularly noticeable in the spectrum of the violin. The procedure to obtain the
sound spectrum is known as harmonic analysis of sound and can be performed on a
computer with suitable software.

4.4 Sound processing by the ear: pitch, loudness, and
timbre

A topic of great complexity, which still awaits clarification in full detail, is encoun-
tered as one moves from the physical description of sound to the human perception
of it. It suffices to mention that the vibrations of the eardrum are picked up in the
inner ear by some 16,000 receptor units called hair cells and that at the final stage,
in the brain, hundreds of millions of cortical neurons, not even spatially contiguous,
are active at the same time as shown by recent NMR imaging techniques.
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Figure 4.3 Waveform (above) and sound spectrum (below) of C4 played on a violin. (Courtesy of
G. Di Giugno)

The considerations that follow are limited to the three essential qualities of pitch,
loudness, and timbre for simple sounds.

The psychophysical perception of pitch in the case of a pure tone, such as that gen-
erated by an electronic oscillator, depends mainly on the frequency of the vibrations
of the air (itmay deviate from that at very high frequencies or at high amplitudes). The
higher the frequency, the higher or sharper the perceived sound. A given frequency
activates the hair cells in a limited region of the basilar membrane—in the inner ear—
the so-called “resonance region.” If the frequency is multiplied by a given factor the
resonance region is shifted by a given amount. For instance the factor two associated
with the octave corresponds to a shift of 3.5–4 mm. A complex tone—made by the
superposition of different frequencies—activates hair cells in different regions but is
still perceived as one entity of definite pitch by a subsequent “sharpening” process
(Roederer [1979]).

Loudness, according to which sounds are described as loud or soft, is primarily a
function of the physical characteristic called amplitude. The larger the amplitude of
the oscillations of the sound source, the more acoustic energy is transmitted into the
air and the louder is the perceived sound. Clearly loudness depends on the frequency
too, since the human ear is most sensitive to a range of frequencies around 3500 Hz
and is completely insensitive to frequencies less than 20 Hz or higher than 20,000
Hz, regardless of amplitude.
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If two pure tones of the same frequency are played at the same time, the resulting
amplitude is not necessarily the sum of the two. It is so only if the two waveforms
are in phase (constructive interference), in which case a louder tone is perceived,
not twice as loud though, but approximately 1.3 times as loud as a single tone. At
the other extreme, when the phase difference is 180◦ the resulting amplitude is zero
(destructive interference) and no sound is heard.

With two pure tones of closely spaced different frequencies, one tone of intermedi-
ate pitch is heard but the amplitude is more or less deeply modulated, a phenomenon
referred to as beats. The two frequencies cannot be discriminated. If the spacing
is big enough — certainly if greater than 15 Hz — then two tones are heard, the
corresponding resonance regions in the ear being sufficiently separated. As far as
total loudness there are complications. For instance if the frequency difference is
very large, people tend to focus on one of the two tones, maybe the loudest or that
of highest pitch. All this is important in music and well known to composers.

Finally we arrive at the timbre, the aesthetic quality par excellence belonging to a
largely unknown domain. It determines whether a sound is pleasant or unpleasant. It
could be said that the timbre is the recipe of the vibration: Just as any person speaks
with the aid of a complex vibrating system that generates specific amounts of ele-
mentary vibrations and thereby produces a unique voice, so everymusical instrument
vibrates in its own unique way that makes it immediately identifiable. Broadly speak-
ing the timbre depends on the number of harmonics, on the relationships between
their amplitudes, and on the time evolution of the sound spectrum. The sounds of
the human voice, the violin, and the piano are rich in harmonics, whereas the sounds
produced by the recorder, the flute, and the tuning fork have few harmonics.

Special effects take place in the human ear. In the presence of a single very loud
tone of frequency a, the additional frequencies 2a, 3a, 4a, . . . (aural harmonics)
are perceived. If two high intensity tones of frequencies a and b are sounded together,
then the additional frequencies a + b, a − b, a + 2b, a − 2b, 2a + b, 2a − b, . . .
(combination tones) are perceived, due to a phenomenon of nonlinear distortion in
the ear. Of all these, only the first ones are loud enough to be actually heard. To
delve further into these fascinating topics which focus on the understanding of the
mechanical operation of the ear and on the functioning of brain in the presence of
sound, the interested reader is referred to Roederer [1979].

The variety of sounds is enormous, but Fourier analysis is a powerful instrument.
Every sound can be decomposed by analysis (Section 4.6, 4.7) and conversely con-
structed by Fourier synthesis (Section 4.9). The possibilities stagger the imagination.
This is what brings Davis and Hersh to write emphatically in Davis, Hersh [1981]
“To give a performance of Verdi’s opera Aida, one could do without brass and wood-
winds, strings and percussion, baritones and sopranos; all that is needed is a complete
collection of tuning forks, and an accurate method for controlling their loudness.” If
from a theoretical point of view this statement cannot be questioned, the path toward
a practical implementation is strewn with severe difficulties mostly due to the very
demanding ear of listeners of classical music and opera. Nevertheless instruments
exist that are able to produce music “artificially,” that is without acoustic instruments
and players. These devices are called synthesizers. They provide an experimental
proof of the validity of Fourier analysis and synthesis in acoustics.
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4.5 The tempered scale

In the following the scale of equal temperament will be used for reference. It is the
scale to which all pianos are tuned. Synthesizers, however, could be tuned to other
scales just as well.

A short digression, in part historical, is worthwhile. As late as 1939, in the course
of an international conference, the A above the middle C was assigned the current
frequency of 440 Hz. In the seventeenth century the A had been 402.9 Hz, Handel
in the eighteenth century adopted an A of 422.5 Hz, and in France in the nineteenth
century it took the value of 425 Hz. Naturally these variations caused problems both
to instrument players and singers. The present day uniformity is mostly theoretical.
Major recording companies use an A of higher frequency—445 Hz for instance—
and so do major orchestras when playing in a big concert hall. Even tuners of home
pianos might leave the A at a slightly higher or lower frequency if the keyboard is
mostly “in line” with that value. Indeed the ratio between frequencies is what matters
most.

The diatonic scale derives directly from the so called “Pythagoras’ law,” which
states that the ratios between the fundamental frequencies must be equal to simple
ratios of small integers for the corresponding sounds to be musical. An octave cor-
responds to the ratio of 2/1. A fifth (C-G), a fourth (C-A), and a third (C-E) have
frequency ratios of 3/2, 4/3, 5/4 respectively (Tab. 4.2). Then the frequencies of the
diatonic scale (Tab. 4.3) are uniquely defined.

The diatonic scale, however, suffers from a serious limitation. In music it is a
frequent practice to raise or lower all notes of a piece by, for instance, one tone. It is

Table 4.2 Ratios between the frequencies of the notes in the diatonic scale.

C D E F G A B C

1,000 1,125 1,250 1,333 1,500 1,667 1,875 2,000

1/1 9/8 5/4 4/3 3/2 5/3 15/8 2/1

Table 4.3 Frequencies of the diatonic and equal temperament scales.

Note Diatonic scale (Hz) Equal temperament scale (Hz)

C 264 261.7

D 297 293.7

E 330 329.7

F 352 349.2

G 396 392

A 440 440

B 495 493.9

C 528 523.3
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easily seen that the frequency ratios of the third, fourth,. . . intervals aremodified in the
process. For instance tomaintain the 3/2 ratio of the C-Gfifthwhile raising both notes
of one tone to the D-A fifth, given a D of 297 Hz, the A should have a frequency of
445.5Hz. If the transposed piecewere to be played as such, it would sound out of tune
since the human ear is very sensitive to the ratios between frequencies. Correcting
this problem by adding notes would entail a piano keyboard with more than 500
keys. Instead instruments like the violin and the human voice could theoretically be
able to cope.

Keeping the 2/1 ratio of the octave, as imposed by the ear, the problem has been
solved by making identical in all cases the ratio between consecutive keys—black
or white—on the piano keyboard. This ratio, called semitone, is obviously equal to
12
√
2 = 1.05946 . . . since there are 12 semitones in one octave. The result is the equal

temperament scale (Tab. 4.3). The price paid for this simplification is for instance
in the thirds that are slightly sharp and in the fifths which are slightly flat. This
dissonance is not too offensive to the human ear, possibly because it is intrinsically
“right,” or more likely because one gets used to it.

4.6 Analysis of complex tones: cello, clarinet, trumpet,
and bass drum

The tones ofmany orchestral instruments are customarily subdivided for convenience
into attack, steady state, and decay. Figure 4.3 shows six cycles of the steady state
of the C of a violin. Figures 4.4 and 4.5 show on top the full waveform of the E flat
above middle C (about 311 Hz) of a cello, a clarinet, and a trumpet (the white areas
in the middle are artifacts); at the center an enlargement of a 10 ms segment of the
waveform taken from the steady state portion and showing about three periods; at
the bottom the fast Fourier transform (FFT) of a sample taken again from the steady
state portion of the sound and lasting 80 ms.

It is seen that the clarinet places greater energy on the odd numbered harmonics,
has a more rapid attack, and a more complex steady state and that the trumpet tone
has a pulse-like waveform. All three of these are harmonic sounds.

The last plot in Figure 4.5 is an isolated tone of a bass drum. It is classified as
inharmonic. It has the most irregular waveform of all showing no steady state region.
To have a better time resolution, the FFT of a 160 ms segment taken in the middle
of the note has been computed.

Many of the characteristics of the sound of an instrument are found in the transient
regions of attack and decay, mostly the attack. The explanation is simple: Initially the
ear receives a complex sound made by all typical frequencies. The higher frequen-
cies, however, have a much faster decay than the lower ones and therefore after a
short time only the latter are heard. Church bells present a clear example of this phe-
nomenon. The initial sound is loud and can be even unpleasant— resulting from the
simultaneous excitation of all vibration modes of the bell—but it is quickly replaced



4.6 Analysis of complex tones: cello, clarinet, trumpet, and bass drum 105

Figure 4.4 On the left the E flat of a cello, on the right of a clarinet. On top the waveform, at center
an enlargement of the steady state, at the bottom the FFT (J. A. Moore [1977], “Signal Processing
Aspects of Computer Music — A Survey,” Computer Music J., (July), pp. 4–37, c©19xx IEEE.)

by a deep, harmonious and long lasting buzz generated by the fundamental mode
of vibration. Attacks are classified into families as clarinet-like, brass-like, string-
like attacks and so on since they share some characteristics that lead to this type of
grouping.

4.7 Three tenors in Verdi’s Rigoletto: dynamic spectra

Dynamic spectra allowquantitative analysis of the style of a singer or amusic director.
To characterize each performance, various aspects need to be analyzed such as timing
microstructures, dynamics, intonation, timbre, registers, and vibrato. Figures 4.6, 4.7,
and 4.8 show a few seconds of the interpretations by three tenors of Ella mi fu rapita
(She was stolen from me), an aria from Verdi’s Rigoletto.

To decode the pictures one has to keep in mind that the FFTs of the sound wave-
forms are calculated for every 16 ms segment and so many graphs are obtained.
As the time goes by, imagine the graphs of the FFTs set vertically, one below the
other. The resulting picture, rotated by 90◦ counterclockwise, is shown in the figures
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Figure 4.5 On the left the E flat of a trumpet. The waveform is on top, an enlargement of a portion
of the steady state is at the center, the Fourier transform is at the bottom. On the right the tone of
a bass drum (J. A. Moore [1977], “Signal Processing Aspects of Computer Music — A Survey,”
Computer Music J, (July), pp. 4–37, c©19xx IEEE.)

(dynamic spectra). Hence time goes left to right. The lower frequencies are at the
bottom and increase toward the top, just as with musical staff notation.

In Figure 4.6 is Luciano Pavarotti, in Figure 4.7 the Spanish tenor Alfredo Krauss,
and in Figure 4.8 Ferruccio Tagliavini. In all cases the tenor voices are seen to extend
over the high frequency range from about 2000 Hz to 4000 Hz, while the orchestra
takes up the bottom frequencies. The choice of separate ranges is, incidentally, the
reason the singing is not obscured by the sound of a full orchestra.

It may be observed that the vibrato, relative to the word “rapita,” is more agitated
and shorter with Krauss than with Pavarotti, while the sound of the orchestra lasts
longer. As with Tagliavini, a tenor of the 1950s, the whole sentence lasts longer—
eight seconds instead of seven—as does the sound of the orchestra.

Tagliavini’s interpretation expresses the ire of a master, Krauss shows a moderate
irritation, and Pavarotti reaches little by little the strongest irritation of the three. The
acoustical definition of these effects is found in the dynamic spectra (Födermayr,
Deustsch [1993]; Bengtsson, Gabrielsson [1983]).
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Figure 4.6 Spectrogram of a few seconds in the performance of Luciano Pavarotti [1989], Decca
425 864-2. (Courtesy of F. Födermayr, Institut für Musikwissenschaft, Universität Wien)

Figure 4.7 Spectrogram of a few seconds in the performance of Alfredo Krauss [1963], RCA GD
86506. (Courtesy of F.Födermayr, Institut für Musikwissenschaft, Universität Wien)
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Figure 4.8 Spectrogram of a few seconds in the performance of Ferruccio Tagliavini [1954], Dino
Classics LC 8410.1991. (Courtesy of F. Födermayr, Institut für Musikwissenschaft, Universität
Wien)

4.8 The beginnings of the electronic music synthesizers

Around 1875 two inventions took place that would radically expand the possibili-
ties of manipulating sound. First was the invention of the telephone by the Italian
Antonio Meucci and the Scottish-born Alexander Graham Bell (Section 3.1). Bell
was interested in sound because his profession—and that of his family since two
generations—was to teach speech to the deaf. Emigrating to Canada with his parents
(Section 3.1), he later moved to Boston where in 1872 he opened his own school to
train teachers of the deaf. Soon afterwards he became professor of vocal physiology
at Boston University. Attending to his institutional duties during the day, at night he
would work long hours building a device for transmitting sound by electricity, with
the help of an enthusiastic young repair mechanic. His health suffered from over-
work, but in March 1876 he patented the telephone, initially intended as a variation
of the telegraph.

In the summer of 1877 the American inventor Thomas Alva Edison (1847–1931)
started working on a machine that was meant to encode the telephone messages at
reception for later delivery, as done with telegraph messages. Edison built the first
automatic sound recording using a carbon transmitter (Section 3.1) that ended with
a stylus and left marks on a rolling strip of paper coated with paraffin. To his great
surprise the faint indentations, barely visible to the naked eye, reproduced a sound
that vaguely resembled the original when the strip of paper was pulled back beneath
the stylus. Ten years later this original invention, which quicklymade Edison popular
worldwide, had its first commercial realization in the phonograph.

http://dx.doi.org/10.1007/978-1-4899-7989-6_3
http://dx.doi.org/10.1007/978-1-4899-7989-6_3
http://dx.doi.org/10.1007/978-1-4899-7989-6_3
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After recording and reproduction came the generation of sound by electrical
means. This requires amplifiers and loudspeakers because at the origin there is no
acoustic sound but rather oscillations of electric currents. Possibly themost advanced
of the first electric instruments was the dynamophone, built by Thaddeus Cahill at
the turn of the twentieth century. A huge machine resembling a power plant used
dynamos to produce electric vibrations, as well as telephone receivers to convert
them into sounds (Risset [1991]). Complicated and impractical, it is the ancestor of
the modern synthesizers.

Electronics made the difference. Around 1920 the first electronic musical instru-
ments were realized: The electric vibrations could be shaped by modifying the ele-
ments of an oscillating circuit. The first musical work to exist solely as a recording
might be the 1939 composition Imaginary Landscape Number 1 by the American
John Cage.

After World War II, musical exploration through electroacoustic techniques
became more systematic. In Paris in 1948 the group Musique concrète, initiated
by Pierre Shaeffer, experimented with acoustically generated sounds recorded on
disk or tape, to be used in various ways by composers. In 1951 in Cologne the group
Electronic music, pioneered by Karlheinz Stockhausen among others, intended to
use exclusively electronically generated sounds to realize a given score.

The last revolutionary development took place with digital sound synthesis and
processing made possible by the advent of computers and by the invention, in the
1950s, of devices to convert analog signals into digital ones (Bode [1984]). Max V.
Mathews and John R. Pierce at the Bell Telephone Laboratories were among the first
to use computers systematically for signal processing and in particular to perform
digital synthesis of musical sounds (David et al. [1958], Mathews [1969]): “We were
originally drawn to the computer as a sound-analyzing and sound-producing device
while investigating the factors that contribute to the efficient transmission of speech
through telephone lines. It soon became clear to us that the quality of sound is of
great importance not only in speech but also in music, and we enthusiastically began
to study the production of musical sounds.”

The results were initially disappointing. Sounds were dull, without life and iden-
tity; the imitation of existing instruments (strings, brass,. . .) was a failure, their tim-
brical qualities not even remotely recognizable. In short, sounds of pleasing timbre
proved to be difficult to generate, also because the quantitative knowledge of musical
sounds was poor. Nevertheless the pioneers of computer music did not loose faith,
recognizing the infinite wealth of possibilities embodied in the new medium. And
eventually the first synthesizers were built: complex instruments, designed specifi-
cally for the generation of musical sounds and depending on computers, electronic
oscillators (analog or digital) and amplifiers.

In modern music synthesizers are a new element—application of modern technol-
ogy to one of the oldest human activities—that overcome the limitations of traditional
musical instruments and even dependency on performers. The endless mine of all
possible sound combinations lies there and the golden nuggets just have to be found.
Rather than the reproduction of sounds of existing instruments, it is the creation of
new sounds and the modification and extension of natural sounds in ways not easily
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achievable otherwise that makes synthesizers attractive for composers. Besides there
is awareness that the material provided by electronic media can lead to new musical
structures.

In Italy the section of musicology of the CNR (Consiglio Nazionale delle
Ricerche) in Pisa has to be counted among the pioneers. It was started in 1969
by maestro Pietro Grossi, professor of cello and electronic music at the “Conservato-
rio” in Florence. Grossi composed a musical piece, described by a program based on
random processes, that can be made to last indefinitely without ever repeating itself.
In 1972 the Center for Computational Sonology at the University of Padua followed.
It was part of the School of Engineering and its leading figures G. B. Debiasi and
Giovanni De Poli took the opposite track and strove towardsmaximum quality, preci-
sion, and repeatability of sound to allow the composer to achieve exactly the desired
effect. Finally, around 1974 the physicist Giuseppe Di Giugno, mainly interested in
real time (no appreciable delay must lapse between the commands and the sound),
started to build a system for the production of music at the Institute of Experimen-
tal Physics of the University of Naples. In 1976 he moved to the IRCAM (Institut
de Recherche et Coordination Acoustique/Musique) in Paris where he built the 4X,
a “music station” made by several hundreds of oscillators, filters, modulators, and
other units, all dynamically controllable by a computer program. In addition, at the
time of execution a certain number of parameters could be modified manually by the
performer.

Currently the fast paced evolution of the microprocessor industry is already mak-
ing it unnecessary to build the dedicated hardware embodied in the old synthesizers,
now replaced by suitable software for the analysis or the synthesis of sounds or by
inexpensive synthesizers.

In traditional music the instrument player reads the music from the score and acts
on the instrument to produce the sound. In this process two conceptual steps can be
identified, the first being some written, symbolic representation of the music—the
notes on the score—and the second one being the instrument that generates sounds
in a predictable way. In computer music the instrument is the technique used for the
synthesis, while the score is the collection of parameters used to identify the sound.

The synthesis technique is based on amathematical model of the soundwaveform.
It can be predetermined (additive, subtractive, . . .) and in this case the composer
is only allowed to choose the parameters, or it can be defined by the composer
itself to adapt it better to the requirements of the composition. Musical scores are
computer programs, written using Music V—the software developed by Mathews
in the early 1960s—or in the C language or other machine languages, with some
of the parameters possibly modifiable in real time to allow an interpretation by the
performing musician. It may be added that these languages, while suitable for sound
synthesis, are not really fitted for composition of high-level musical structures. In
other words there remains a question of notation and interface from the point of view
of the composer. No such universally accepted thing exists and personal solutions
flourish (Sica [1997]).

Synthesizers or softwares dedicated to synthesis are not purposefully employed
to reproduce the sound of traditional musical instruments, yet their reproduction of
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simple natural sounds—like a single note—can be tested in order to assess their
“quality.” This test, deceptively simple at first sight, requires a fine analysis of the
characteristics of musical notes (Section 4.6) which must be followed by an adequate
synthesis, if the richness and color of the natural sound have to be retained.

4.9 Additive synthesis

In 1965 the composer and physicist Jean-ClaudeRisset, working atBell Laboratories,
was able to produce, by additive synthesis, trumpet tones that an average listener
could not distinguish from recorded tones of a true trumpet. Risset’s method led to
a deeper understanding of the timbre of sounds produced by traditional instruments.
In particular it made clear that the steady state is insufficient to fully characterize the
tone’s timbre, attack and decay being critically important as well.

If the prime concern is efficiency, then many musical notes can be synthesized by
assembling an attack, a steady state of suitable duration and a decay. The problem
becomes much more difficult if high fidelity is sought. To this purpose, musical
sounds are classified as harmonic or quasi-periodic (Fig. 4.3 and 4.4) and inharmonic
or aperiodic (as the bass drum in Figure 4.5).

Harmonic sounds, if represented byFourier series,would require large periods and
so verymany significant Fourier coefficients. They aremore conveniently represented
as small variations of periodic sounds (Fig. 4.9) such as

X (t) =
M∑

k=1

Ak(t) sin{2πt[kν + Fk(t)]}. (4.2)

The amplitudes Ak(t) of the harmonics are not constant but change slowly with
time while the frequencies display small frequency deviations Fk(t) with respect to
the integer multiples of the fundamental ν, slowly changing with time. In particular
different overtones are allowed to follow different time courses and this turns out to
be important for the listener to recognize a timbre.

Aperiodic sounds are produced by a more limited range of instruments such as
bells and drums and have a more complicated structure. They could be represented
by (4.2), but the number of required spectral components would be very high. For this
reason Fourier analysis is not used as a basis for the synthesis and other techniques
are used that yield fairly convincing percussion instrument sounds.

After the mathematical model (4.2) has been selected, it is necessary to assign
proper values to all parameters involved. The waveform is therefore analyzed by a
bank of devices that detect the frequency and amplitude of each harmonic as functions
of time to yield the following discrete version of (4.2):
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Figure 4.9 A C4 violin tone. Each line corresponds to 25 ms. A careful examination shows that
the waveform gradually changes. (Courtesy of G. Di Giugno)

X (n) =
M∑

k=1

Ak(n) sin{2πnT [kν + Fk(n)]}, n = 0, . . . , N − 1 (4.3)

where T is the interval between subsequent samples and N is the number of samples.
In practice the isolated tone is first digitized; then the pitch v, which is assumed
to be about constant over time, is determined very accurately; subsequently the
amplitudes Ak(n) and the frequency deviations Fk(n) of the harmonics are computed.
The number M of the harmonics is implicitly determined by the Ak(n): When the
amplitudes become so small as to be negligible, the summation is terminated.

At this point formula (4.3) can be used to reproduce the sound by driving a
number of oscillators. It is immediately apparent the tremendous amount of data that
goes with the sampling rate of 25600 Hz for each of the about fifteen harmonics.
Figure 4.10 a), b) and c) show the amplitudes of the first harmonics — of the sounds
of cello, clarinet, and trumpet shown in Figures 4.4 and 4.5 and lasting about 0.4
s− “fitted” by piecewise-linear functions. This approximation compress the tens
of thousands of samples initially collected for each waveform to less than 200:
Namely fourteen amplitude functions (and asmany frequency deviations, not shown),
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Figure 4.10 The compressed amplitudes of the sounds of cello, clarinet, and trumpet in Figures 4.4
and 4.5. The reference frame shows time (left to right), amplitude (bottom to top), and frequency
(back to front). The amplitude of the fundamental frequency is in the background, while in the
foreground is the amplitude of the highest harmonic. ( J. A. Moore [1977], “Signal Processing
Aspects of Computer Music — A Survey,” Computer Music J., (July), pp. 4–37, c©19xx IEEE.)

each one represented by six points suitably chosen. This amount of information is
sufficient to synthesize the timbre of the three instruments, meaning that the sounds
so obtained are very similar to the originals and in no way can be described as
synthetic or electronic (Moore [1977]). The tones have been equalized in loudness,
pitch and duration by a perceptual matching experiment so as to leave timbre as the
only perceptual difference. The strong disparity in the amplitudes goes a long way
in showing how much our perceptions can differ from the physical data. Additive
synthesis, which is a powerful technique for computer music, and psychoacoustics as
well, leads naturally to modified tones. For instance Figure 4.11 shows the amplitude
functions of a cello slowly changing into those of a French horn. When the start and
end instruments are similar, this “interpolation” procedure gives rise to a sequence
of sounds that gradually change from one timbre to the other; when the instruments
are highly dissimilar the intermediate sounds are often new and very unusual. The
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Figure 4.11 The amplitude functions of a cello gradually changing into those of a french horn. (J.
A. Moore [1977], “Signal Processing Aspects of Computer Music — A Survey,” Computer Music
J , (July), pp. 4–37, c©19xx IEEE.)

method originally devised by Risset is more general, more powerful, and easier to
understand for the synthesis of timbres. Yet it is also heavy on computations; thus
musicians quickly started looking for short cuts that performed similarly but with
less toil.

4.10 Subtractive synthesis and frequency modulation

Subtractive synthesis is a technique in which a periodic signal is generated so as to
have many harmonics and then is filtered to eliminate unwanted components and
to emphasize others. Many musical instruments operate on this principle. In wind
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instruments the player’s lips or a vibrating reed generate a sound rich in harmonics.
Some of them are attenuated and others amplified by the resonating cavities or more
generally by the shape of the particular instrument. This happens for the human
voice too, made the richest and most interesting of musical instruments by the great
adaptability of the nose, throat, and mouth cavities.

While subtractive synthesis is frequently used for the human voice, frequency
modulation (FM) is among the most commonly used technique for music synthesis
because of its high computational efficiency and versatility. Starting in the 1930s
frequency modulation was used to transmit radio signals and as such it has been
taught to engineering students, but few people thought of listening to the modulated
waveform itself. At Stanford University John M. Chowning, among the first musi-
cians to make use of computers, had the idea of exploiting frequency modulation to
generate sounds (Chowning [1963]). For this innovation, a landmark in the evolu-
tion of electronic musical instruments, Chowning obtained a patent that was soon
bought and used commercially by Yamaha. Later Chowning himself used frequency
modulation in conjunction with additive synthesis to reproduce the singing human
voice, with notable results (Chowning, Bristow [1980]).

Frequency modulation (Fig. 4.12) consists in changing a simple sound sin ωct ,
called the carrier—of angular frequency ωc—by a modulating signal as in

Figure 4.12 Carrier (above)
and frequency modulated
waveform (below).
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s(t) = sin(ωct + I sinωmt).

The resulting soundhas a frequency sumof the carrier frequency and the continuously
varying contribution of the modulating signal. I is called the modulation index and
ωm themodulation frequency. By making use of some trigonometric identities, it can
be shown that

s(t) =
+∞∑

k=−∞
Jk(I ) sin[(ωc + kωm)t]

where Jk(t) is the Bessel function of order k (Section 5.3). So the modulated sound
is the sum of harmonics having frequencies ωc + kωm, k = 0, ±1, ±2 . . . centered
at ωc and spaced ωm .

Chowning chose the carrier and modulator to have frequencies that were identical
or of the same order of magnitude. This was avoided in FM radio transmission for it
spreads the signal over a very large frequency bandwidth with no purpose.

It takes quite a bit of acquaintance and intuition to have a feeling of what change
in the sound is induced by what change in the parameters. Examples help to clarify
somewhat this technique. In the trivial case I = 0 since all Jk(0) are zero, except
for k = 0 when J0(0) = 1, the modulated signal reduces to the carrier wave itself.
Now let I be different from zero. For instance if ωm = ωc, then a harmonic spectrum
is obtained. Indeed from sin(−θ) = − sin θ it follows that negative frequencies can
be turned into positive ones just by changing the sign of the amplitude. This done
it is easily seen that the frequencies (1 + k)ωc, for k greater than or equal to zero,
appear with an amplitude given by Jk(I )− J−k−2(I ) = Jk(I )+(−)k+1 Jk+2(I ) since
J−k(t) = (−)k Jk(t). It remains to take into account the value k = −1 that gives the
constant term.As I gets largermore energy goes into the higher harmonics (Fig. 4.13)
and the sound gets “tinnier.”Moreover, for a fixed I , the values Jk(I ) decrease rapidly
as soon as k becomes larger than the modulation index. The richness of the method
comes from changing the modulation index dynamically. This allows to imitate the
time variant aspect of natural spectra. For instance if themodulation index has a flatter
attack than the carrier, then the high frequency overtones raise slowly to their steady
state amplitude values producing a brass-instrument timbre. For a comparable sound
the additive synthesis would take ten times as many computations. If ωm = 2ωc only
the odd harmonics appear and clarinet-like sounds are obtained. Instead the choice
ωm = √

2ωc gives rise to inharmonic sounds useful to imitate bells, drums, and
gong-like tones.

More generally when the ratio of the carrier and modulation frequencies ωc/ωm is
a simple rational number, the resulting sound is harmonious, the simpler the ratio the
more pleasant to the ear. Otherwise the resulting sound is inharmonious and suitable
to imitate percussion instruments.

http://dx.doi.org/10.1007/978-1-4899-7989-6_5
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Figure 4.13 Spectrum of a frequency modulated sound, with ωm = ωc, as the modulation index I
increases. (G. De Poli et al. “Musica e calcolatore,”Quaderni dell’Istituto diMatematica, Università
di Lecce, no. 12, [1981])

4.11 Bessel functions and drums: the vibrating membrane

A surface of negligible stiffness, with respect to the restoring force due to tension,
is called a membrane. Taking stiffness into account clearly makes the theory of
vibrations more involved. If stiffness is an important factor the surface is called a
plate.
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The vibrating membrane is a natural two dimensional analogue of the vibrating
string (Section 2.1). Bessel functions play a major role in this theory, providing an
example of series expansions based on a different set of functions from the sines
and cosines of Fourier series. Wavelets (Section 4.12 and Appendix) are still another
example and the point is made that the technique of series expansions, essentially
begun by Fourier, is a far reaching one, provided the expansions are chosen so as to
“suit” the phenomenon.

The wave equation for the membrane is

c−2 ∂2u

∂t2
= ∂2u

∂x2
+ ∂2u

∂y2
,

where u(x, y, t) is the membrane displacement and c has the dimensions of velocity.
In Morse [1948], an extended analytical treatment can be found. The case of a
rectangular membrane is not that different from the string: The general solution can
be expressed as a double series involving sines and cosines. Instead in case of a
circular membrane it is natural to write the wave equation in polar coordinates (r, θ)

1

r

∂

∂r
(r

∂u

∂r
) + 1

r2
∂2u

∂θ2
= 1

c2
∂2u

∂t2

and then apply the method of separation of variables. If the membrane (Fig. 4.14) is
clamped along a boundary circle of unit radius r0 — so that u(r, t) = 0 for r = r0
and t ≥ 0 — and the initial conditions are

u(r, 0) = f (r), 0 ≤ r ≤ r0,

∂u

∂t
(r, 0) = 0, 0 ≤ r ≤ r0,

with f (r0) = 0 for consistency, then it is only natural to expect u to be independent
of θ, due to the circular symmetry of the equation and of the above constraints. In
Boyce, DiPrima [1969] it is proved that solutions can be expressed as

Figure 4.14 Radial vibrations of a circular membrane: shapes of the first three normal modes of
vibration. Arrows point at the nodal lines. (Reprinted with permission from P. M. Morse, Vibration
and Sound, The Acoustical Society of America, [1948])

http://dx.doi.org/10.1007/978-1-4899-7989-6_2
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u(r, t) =
∞∑

n=1

cn J0(λnr) cosλnct

whereλn ranges over the positive zeros of J0(λr0). These are tabulated (Jahnke, Emde
[1945]) and make up an infinite discrete set. The frequency λ1 is the fundamental. It
may be observed that none of the overtones is harmonic. For instance the frequency
ratio of the second and third mode with the fundamental is 1.593 and 2.135.

The above model has to be suitably changed in case the circular membrane is
stretched over one end of an airtight vessel, as for the kettledrum. This musical
instrument consists of a metal shell, usually copper, in the form of a hemisphere over
which a membrane of calfskin about 0.2 mm thick is mounted. The pitch is tuned by
adjusting the overall tension of the membrane. The reaction to the compressions and
expansions, which the motion of the membrane forces on the air in the vessel, has
to be taken into account. As a result the natural frequencies and general behavior of
motion change (Morse [1948], Benade [1990]).

4.12 Convolution and some special effects

Convolution, already presented in the mathematical description of filters, has a pro-
found acoustical significance: Sound waves convolve all around us, meaning that the
sounds we hear are the result of convolutions.

Convolution “marries” two signals. In the case of sounds, convolution combines
in a certain way the properties of two of them into a single one. Among the most
important effects, easily obtained by convolution, are echoes, time smearing, and
reverberation.

If a signal is convolved with the unit impulse, the result is the signal itself (Section
3.5). If a signal is convolved with two unit impulses, set one second apart, the result
is the original signal and an echo. For a multiple echo effect, several impulses spaced
at the desired delay times are needed. Lowering the amplitude of each successive
impulse results in a decaying multiple echo.

If several impulses are spaced close together and if the original signal is rather
long, then the multiple echoes, obtained by convolution, overlap with the result of
blurring every temporal landmark. This effect is called time smearing.

Equally interesting are room simulation and reverberation. When a signal is con-
volved to the response signal of a room to the unit impulse (in the terminology of
filtering this is called the “input response”), the result is as if the original sound has
been played in that room. In the case of large spaces with high ceilings and many
reflecting surfaces, like churches and concert halls, the impulse response is rather
long resulting in all the myriad of closely spaced signals bouncing off the ceilings,
walls, and floors that fuse together in a halo accompanying the original unit impulse.
This effect is called reverberation and can be obtained by convolving with the long
impulse response of the reverberant space.

http://dx.doi.org/10.1007/978-1-4899-7989-6_3
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More generally any two signals can be convolved, like a clarinet and the speaking
voice, but the result may not be musically interesting. More experience has to be
gained to map the full scope of this versatile technique (Roads [1997]).

Musical signal processing provides other techniques for sound transformation and
synthesis. Indeed there is a large variety of them. For instance granular synthesis is
another recent one. Dating from the 1970s and originating in the pioneering work of
Dennis Gabor [1946], [1947] connected with the wavelet transform (Appendix), it
has been employed experimentally by musicians both for analysis and for synthesis
of novel sounds, especially since 1990 (Cavaliere–Picciali [1997]).

4.13 Computer music and art music

Very broadly speaking classical music may be described as experimenting with pitch
and contemporary art music as experimenting with timbre. Presently “a new gen-
eration of composers, versed in signal processing techniques, are creating a highly
refined form of musical art” (Roads [1997]). Their work might be little known to
the public. This is not especially surprising. A historical comparison with the piano
can be drawn. Invented in 1709 by the harpsichord builder Bartolomeo Cristofori
the piano was subject to significant improvements until in 1855 when Henry Stein-
way designed the grand piano with a cast iron frame. Since then no fundamental
change, neither in the design nor in the construction technique, has taken place,
even though small improvements have been continually introduced. Considering
the Chopin sonatas as the most famous pieces written for piano one cannot fail to
notice that they were composed between 1827 and 1847, a hundred years after the
appearance of this instrument.

The limited impact of art music so far has hardly hampered the popularity of
computer music, which is now predominant in the production of sound tracks for
television and film works. Indeed it has many advantages to offer. To mention one it
is readily synchronized with the action depicted in a motion picture. Popular music
orchestras are by now a thing of the past, mainly for purely economical reasons.



Chapter 5
Fourier Optics and the Synchrotron Light

5.1 The long search on the nature of light

The nature of light, which has given rise to speculations since antiquity, proved to
be a difficult subject. The first on record is the Greek philosopher, Sicilian born,
Empedocles (c.490–c.435 B.C.) whose writings have survived only in fragments so
that his thinking is mainly known from citations in the work of Plato and Aristotle.
Apparently the originator of the long-standing notion that all things are made of four
elements — air, fire, water, and earth — Empedocles thought of light as a stream of
small particles, emitted from a visible body, that were to enter the eyes and return to
the originating body, traveling with finite speed. At other times he thought of light
as originating in the eyes and returning to the eyes after reaching the object.

The Greek astronomer Ptolemy (c. 150 A.D.) measured angles of refraction, for
angles of incidence from about 0◦ to 90◦, for both the air-glass and the air-water
interfaces and compiled tables accordingly.

WithGalileo (1564–1642) physicalmatters were put on solid ground by the exper-
imental method and mathematical language he introduced in mechanics. In 1621,
the law of refraction was discovered from experimental observations by the Dutch
Willebrord Snell (1580–1626). The phenomenon of diffraction — the minute devi-
ation from rectilinear propagation, caused by small apertures and revealed by the
presence of light in geometrical shadows — was first observed by the Italian priest
Francesco Maria Grimaldi (1618–1663), son of a silk merchant of a wealthy family.
His observations are to be found in De Lumine, a comprehensive treatise on light
— to which he worked from 1655 until the very end — published posthumously in
Bologna in 1665.

The English physicist Robert Hooke (1635–1703), known for the law of elasticity
that carries his name, marked a significant point by advancing a wave model in order
to explain diffraction, observed by him in 1672. In his model light consists of short
vibrations “exceedingly quick,” propagating every way by straight lines. Moreover
— in the samemanner as the waves on the surface of the water generated by a sinking
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stone — every vibration generates a sphere that continually increases and cuts the
rays at right angles. To explain “mechanically” what was vibrating, the existence of
some kind of elastic homogeneous medium pervading all space was postulated: the
ether.

Whether light propagated instantaneously or not was unknown until 1675. The
young Danish astronomer Olaf Römer (1644–1710), who was to become one of the
greatest practical astronomers of all times, whileworking in Paris for theRoyalAcad-
emy of Sciences discovered that light has a finite speed. The eclipses of Io, Jupiter’s
first moon, observed earlier by Galileo, to Römer’s surprise showed irregularity in
their occurrences that he was able to explain by the changed distance between the
Earth and Jupiter, if the velocity of light was finite. He then proceeded to calculate
such a velocity and obtained an estimate 25% too low, mainly due to an incorrect
value for the change in distance between the Earth and Jupiter. His achievement was
nevertheless impressive, for the great velocity had defeated many, including Galileo
who had made experiments over too short a distance.

Hooke’s work was continued by the Dutchman Christian Huygens (1629–1695)
who advanced a principle, named after him, according to which every point of a
wave front of light may be regarded as a new source of spherical waves (Fig. 5.1),
the envelope of which determines the wavefront at any subsequent time (Huygens
[1690]). In this framework, he was able to derive the law of reflection and, assuming

Figure 5.1 Huygens’s
construction in case of a
single aperture. Every point
of the aperture may be
regarded as a source of
spherical waves.
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the velocity of light to be slower in the densermedium, the law of refraction. Huygens
also discovered the phenomenon of polarization, but confessed his inability to explain
it. A first basic fact about the nature of light was established by Isaac Newton (1642–
1727) in 1664. He let light enter a dark room through a round hole in a shutter and
saw that, when the light emerged from a prism and was collected on a screen, it had
been split into the colors of the rainbow. He concluded that each color had its own
specific refraction index and gave the name of spectrum to this colored image of the
sunlight. As regards the mathematical model, Newton opposed the wave theory that
in his time meant longitudinal waves — vibrating in the direction of propagation
like those of a coiled spring — as inconsistent with experiments of polarization.
Though declining to be involved in “troublesome and insignificant disputes,” he
favored, as more acceptable, a “corpuscular theory” and on the basis of his authority
a century went by with only isolated dissenters, like Benjamin Franklin (1706–1790)
and Leonhard Euler (1707–1783).

It was the practicing physician Thomas Young (1773–1829) on the staff of St.
George’s Hospital in London, a man of diverse talents — being also a physicist,
a linguist, and an archeologist who participated in the deciphering of the Rosetta
stone — who revived the wave theory. After discovering the cause of astigmatism,
he turned his attention to light and explained the different spectral colors in terms of
different wavelengths that he was able to determine approximately for the first time
[1801]. Right afterwards Young [1802] enunciated his principle of interference and
demonstrated it before the Royal Society of London in 1803. He made two tiny holes
close together on a screen and allowed monochromatic light, coming from a distant
source, to pass through them to be collected on a second screen. There a pattern of
fine bands, alternatively light and dark, appeared (Fig. 2.22, 5.7, 5.8). He explained
the phenomenon in terms of the different routes followed by the light emerging from
the tiny holes: If the length of such a difference is a multiple of the wavelength the
two waves reinforce each other (constructive interference), if an odd multiple of half
wavelength they cancel out (destructive interference).

To fit with experiments on the interference of polarized light, Dominique François
Arago (1786–1853) pointed out in 1817 that the waves or vibrations of the light had
to be assumed transversal, that is at right angles with the direction of propagation.
Meanwhile a prize was set up by the Academy of Sciences in Paris on the subject of
diffraction. In spite of strong opposition, mainly by Laplace and Biot, the prize was
awarded in 1818 to Augustin Jean Fresnel (1788–1827) who put forward a theory
based on Young’s principle and Huygens’s envelope construction. Then Poisson
predicted, on the basis of Fresnel’s theory, a bright spot in the center of the diffraction
pattern of a small circular disk. Impressively enough it was confirmed by experiments
made by Arago.

To measure the relative velocities of light in air and water, an experiment was
carried out in 1850 by Jean Bernard Léon Foucault (1819–1868) and by Armand
Hippolyte Louis Fizeau (1819–1896) who had just determined the velocity of light
in air by the first nonastronomical experiment. The result was consistent with the
wave theory, namely a lower velocity in the denser medium. It was opposite to that
predicted by the corpuscular theory, which came out completely discredited.

http://dx.doi.org/10.1007/978-1-4899-7989-6_2
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The next leap forward came, at about the same time, from another branch of sci-
encewhen JamesClerkMaxwell, summing up all previous experiments on electricity
and magnetism, began to formulate his mathematical theory of electromagnetism,
which culminated in the celebrated equations named after him. They relate the elec-
tric and magnetic fields and the spatial and temporal derivatives of the electric charge
density and electric current density. In the special case of zero charge and current
density in a homogeneous medium, he could solve the equations. The solutions were
waves, propagating with finite velocity given by a formula that depended only upon
the electric and magnetic constants of the medium. These constants can be deduced
from results of electric measurements. When in 1856 such a speed was calculated for
the vacuum by Rudolph Kohlrausch (1809–1858) and Wilhelm Weber (1804–1891)
it turned out to be close to the speed of light. This led Maxwell to conjecture that
light waves are electromagnetic waves.

Starting from 1879 finer measurements conducted by Albert AbrahamMichelson
(1852–1931), in what turned out to be a passion for life, showed the speed of light to
be equal to the value calculated byKohlrausch andWeber within experimental errors.
When speaking of velocity one should say of course what the reference frame is. The
existence of an immobile medium, the ether, still believed in at the time, provided a
natural reference frame. Michelson set up in 1881 an experiment of interferometry
to prove the existence of the supposed “ether drift” caused by the motion of the
Earth. The result was negative and the experiment would be repeated several times
byMichelson and others as late as 1930, since the existence of this unique intangible
medium was believed regardless of the impressive list of properties that went with
it.

Only in 1887, eight years afterMaxwell’s death, wasHeinrichHertz able to gener-
ate, transmit, and receive radio waves in his laboratory thus proving experimentally
the existence of electromagnetic waves and the validity of Maxwell’s theory. His
achievement was immediately recognized.

With the main features of the phenomena connected with the propagation of light
explained by the electromagnetic theory, the wave model reigned supreme. The field
was to rest, but not for long.

5.2 Spectroscopy: a close look at new worlds

Well after the first spectroscopic observation made by Newton in 1664 and right
before Young’s approximate determination of the wavelengths of the seven colors
of Newton’s experiment, infrared and ultraviolet rays were discovered by a careful
analysis of the spectrum of sunlight.

Infrared radiation, standing between visible light and radiowaves, can be detected
as warmth by the body. It had been discovered by the German born self-taught
astronomer William Herschel (1738–1822). Herschel, who as a boy played as his
father did in the band of the Hanoverian Guards, moved to England after the French
occupation of Hannover of 1757. He became organist of the chapel in Bath, then
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turned to the theory of music and, led by his intellectual curiosity and boundless
energy, moved to optics, to telescope construction, and finally to night sky obser-
vation. Here he found an endless task that led him, through observations stretching
over 20 years, to catalog some 2,500 nebulae and star clusters starting from some
100 previously knownmilky patches. In 1781 during his third survey of the night sky
he came across an object that did not appear to be a star. It was a new planet, Uranus,
whose discovery made him famous. In 1800, while studying the solar spectrum with
the aid of thermometers he found that the greatest effect was taking place beyond
the red end.

Spurred by Herschel’s discovery of the infrared radiation, the German physicist
Johann Wilhelm Ritter (1776–1810) searched beyond the other end of the visible
spectrum and one year later, in 1801, found that the chemical effect of solar radia-
tion upon silver salts extended beyond the violet. He had discovered more invisible
radiation present in sunlight: the ultraviolet rays.

In 1814 Joseph von Fraunhofer (1787–1826) repeated Newton’s experiment with
improved apparatus. Then he could see that the continuous spectrum of the sun does
not vary smoothly from one color to the next but is interrupted by hundreds of dark
lines, named after him “Fraunhofer lines.” He proceeded to determine the wave-
lengths of the missing radiation corresponding to many of these. He also observed,
as did others, that certain bright lines in the spectra of flames looked as though
they coincided with dark lines in the solar spectrum. Nevertheless he failed in tying
together the two phenomena.

This was the contribution of Gustav Robert Kirchhoff (1824–1887). By using
carefully purified substances he demonstrated in 1859 that each chemical element
has a unique characteristic spectrum (emission spectrum) and also found that when
light passes through a gas, the gas absorbs those wavelengths that it would emit
if heated (absorption spectrum). He concluded that the Fraunhofer lines are due
to the absorption by different chemical elements present in the cooler outer layers
of the solar atmosphere. In collaboration with Robert Wilhelm Bunsen, he then
proceeded in 1861 to systematically compare the lines in the solar spectrum with
those in the flames (and spark spectra) of the purest elements available, thus making
the first chemical analysis of the Sun’s atmosphere. His discoveries opened up not
only the new field of spectrochemical analysis — which in laboratories adds to the
other traditional methods of chemical analysis — but also which the new field of
astrophysics. Indeed before spectroscopy was introduced there was no way to know
anything about the chemical composition of celestial bodies, except for analyzing
the occasional meteorites that fell to Earth.

Then, the Swedish physicist Anders Jonas Ångström (1814–1874) measured the
wavelength of about a thousand Fraunhofer lines and published in 1868 his great
map of the solar spectrum. He used as a unit of length 10−10 m, called after him
the angstrom. By this time, spectroscopy had evolved to such a level that “helium
was discovered in the chromosphere of the sun. . . as a series of unusual spectral
lines twenty-three years before it was discovered mixed into uranium ore on earth”
(Rhodes [1998]).
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Spectroscopy is also used to study properties of atoms andmolecules. In fact at the
beginning of the 1900s, by the theory of quantum mechanics it could be explained
how spectra are formed and why different elements have different spectra. Then
spectroscopy also became a tool to obtain clues on the atomic structure of matter.

The methods for dispersing spectra are more than one. Besides refraction through
a glass prism, as in Newton’s experiment, one can use diffraction gratings made
of closely packed parallel slits in a number that can vary from a hundred to a few
thousand per millimeter. The different wavelengths of the incident light exit the
gratings at slightly different directions and can be observed separately.

Other devices for dispersing spectra are called interferometers or Fourier spec-
trometers. They divide the incident beam into two beams (by the use of a semitrans-
parent mirror) which are made to traverse different paths before recombining and
giving rise to interference fringes. The Fourier transform has to be performed on
the data to obtain the spectrum. This method, started around the end of the 1960s in
advanced researches, underwent a great diffusion in the 1970s due to the increased
capability of powerful computers for the calculations of the FFT (Bell [1972]). More
on interferometric methods is found in Sections 9.8 and 9.9.

5.3 The mathematical model for diffraction:
the Fourier transform in two dimensions

Properties of light such as reflection, refraction, interference, and diffraction are
shared by the whole electromagnetic spectrum. In order to illustrate the general
phenomenon of diffraction at infinity, which plays a role in optical instruments such
as diffraction gratings (Section 5.2) and telescopes—aswell as x-ray diffractometers
(Chapter 6) and radiotelescopes (Chapter 9)—we shall define the Fourier transform
in two dimensions and work out a couple of examples, relevant for the next section.

The Fourier transform of a function of two variables f (u, v) is defined quite
naturally by the very same formula (2.13) suitably interpreted. If t = (u, v) and� =
(ξ, η), then t · � = uξ + vη is the scalar product of the two vectors and dt=du dv

so that the formula reads

f̂ (ξ, η) =
∫ ∞

−∞

∫ ∞

−∞
f (u, v)e−i(uξ+vη)du dv. (5.1)

In the special case in which f is the product of two functions, one depending only
upon u and the other only upon v, namely f (u, v) = h(u)g(v), then clearly

f̂ (ξ, η) =
∫ ∞

−∞
e−iuξh(u)du

∫ ∞

−∞
e−ivηg(v)dv = ĥ(ξ)ĝ(η) ,

that is f̂ is the product of the corresponding Fourier transforms of one single variable.

http://dx.doi.org/10.1007/978-1-4899-7989-6_9
http://dx.doi.org/10.1007/978-1-4899-7989-6_9
http://dx.doi.org/10.1007/978-1-4899-7989-6_6
http://dx.doi.org/10.1007/978-1-4899-7989-6_9
http://dx.doi.org/10.1007/978-1-4899-7989-6_2
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In particular if f = χQ is the characteristic function of the square Q = [−1, 1] ×
[−1, 1], and by this we mean the function that takes the value 1 on the square and
zero outside, then with the notation of Section 2.7 it is χQ(u, v) = r(u)r(v) and so
the Fourier transform χ̂Q(ξ, η) = 4(ξ−1 sin ξ)(η−1 sin η). It shows a large central
maximum surrounded by a regular pattern in the horizontal and vertical directions of
other maxima of decreasing value. Such a decrease is different in different directions.
The maxima diminishes rapidly as ξ−2 along the bisector η = ξ and less rapidly, as
|η|−1, along the η axis and similarly as |ξ|−1 along the ξ axis. Consequently, the
on-axis maxima are more prominent in pictures (Fig. 5.5).

If a dilation (Section 2.8) is applied in the y variable to obtain for instance the
rectangle R = [−1, 1] × [−4, 4] then the Fourier transform of χR is calculated as
(ξ−1 sin ξ)(η−1 sin 4η) by (2.17). This follows from the Fourier transform relative to
the square, by a compression of 1/4 in the η variable (Fig. 5.5). The cross nature of
the two figures, square and rectangle, is therefore reflected on the Fourier transform
side.

Relative to another geometrical property, namely radiality or circular symmetry,
it is easily proved that the Fourier transform of a radial function is radial too. In the
case of the unit disk D it is therefore natural to use polar coordinates (r, θ) and
(R, �) to see calculations drop to one dimension χ̂D(R, �) = χ̂D(R, 0). Setting
χD = χ for simplicity of notation, from

uξ + vη = Rr(cos θ cos� + sin θ sin�) = Rr cos(θ − �)

and du dv = rdrdθ it follows that

χ̂ (R, 0) =
∫ 1

0

∫ 2π

0
e−i R r cos θ d θr d r =

∫ 1

0

∫ 2π

0
eiRr sin θ′

dθ′r d r

by the change of variable θ = θ′ + π
2 . Therefore,

χ̂(R, 0) = 2π
∫ 1

0
J0(Rr)r d r

where J0 is theBessel function of order zero. Bessel functions of order k = 0, 1, 2, . . .
defined by

Jk(x) = (2π)−1
∫ 2π

0
eix sin θ e−ikθ dθ

make up an infinite family of smooth oscillating functions, largely tabulated and
studied due to their usefulness and special properties (Watson [1944], Whittaker and
Watson [1946]). For instance

d

dx
(x J1(x)) = x J0(x).

http://dx.doi.org/10.1007/978-1-4899-7989-6_2
http://dx.doi.org/10.1007/978-1-4899-7989-6_2
http://dx.doi.org/10.1007/978-1-4899-7989-6_2
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Moreover J1(x) ∼= x/2 for x tending to zero and J1(0) = 0. Hence by another change
of variables x = Rr and by the fundamental theorem of calculus,

χ̂ (R, 0) = 2π

R2

∫ R

0
J0(x)xdx = 2π

J1(R)

R
.

From this celebrated formula — first obtained in 1835 by the English astronomer
George Biddell Airy (1801–1892) — the properties of χ̂(R, 0) can be derived: It
is smooth, it takes the value π at the origin, and it decreases rather quickly being
dominated by R−3/2 for large values of R. The last property comes from the fact that,
for large values of R, all Bessel functions are dominated by R−1/2, namely

J1(x) =
√

2

πx
cos(x − 3π

4
) + negligible terms.

The formula shows that the decrease is not monotone but it has an oscillatory nature
and so does χ̂(R, 0). The qualitative graph of the positive function |χ̂(R, 0)|2 is in
Figure 5.2. By a rotation around the vertical axis, the graph of |χ̂(R, �)|2 can be
obtained (Fig. 5.4). The separation between two successive minima, corresponding
to the roots of J1(R) = 0, is not exactly π, but rather tends to π as R tends to infinity.
Similarly, for the maxima: the principal one at the origin has value π2 and the next
one at R = 5.136 has value 0.172 approximately.

As regards dilations and translations, formulas analogous to (2.17), (2.18), and
(2.19) hold. Similarly to (2.14), the double Fourier transform has an inverse equal to
the Fourier transform itself except for a sign change — denoting rotation through π
— and the multiplicative constant (2π)−2 Hence if the Fourier transform is applied
to f (u, v) twice in succession, f (−u, −v) is recovered except for a multiplicative
constant.

Figure 5.2 The graph of
(2J1(R)/R)2 The principal
maximum attained at the
origin has value unity, the
next one at R = 5.136 has
value 0.0175 approximately.

http://dx.doi.org/10.1007/978-1-4899-7989-6_2
http://dx.doi.org/10.1007/978-1-4899-7989-6_2
http://dx.doi.org/10.1007/978-1-4899-7989-6_2
http://dx.doi.org/10.1007/978-1-4899-7989-6_2
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5.4 Optical transforms

The phenomenon of diffraction, the seeming deviation of light from rectilinear prop-
agation — after passing through a small aperture — produces interference fringes
in regions otherwise belonging to an homogeneous shadow. Geometrical optics —
which describes light rays by intensity and direction of propagation — does not
account for diffraction since it disregards the oscillatory nature of light by making
its extremely small wavelength equal to zero.

Diffraction can be made evident in special conditions that become simpler if
one employs a parallel and monochromatic light beam, like that obtainable from a
laser. By Huygens’s envelope construction, every point of an aperture placed on the
path of the beam becomes a source of light of the same frequency and emits in all
directions. If the emerging rays are collected on a screen, three different situations
occur depending upon how far away the screen is set.

If the screen is very close to the aperture, the shape of the aperture is reproduced.
As the screen is moved away, a set of fringes appears approximately restricted to the
geometrical projection of the aperture (Fresnel diffraction). Finally if the screen is
moved very far away, relative to the dimensions of the experiment, then an extended
system of fringes appears that remains unaltered as the distance is further increased,
except for enlargements (Fraunhofer diffraction or diffraction at infinity).

The mathematical model of this limiting case is somewhat simpler and can be
found in Section 9.7. It shows that the electrical field on the screen is proportional
to the Fourier transform of the characteristic function χA of the aperture A, the
wavelength of the light taken as a unit of measure. Thus the intensity of the collected
light is proportional to |χ̂A|2 and so is the illumination on the screen that gives the
picture. Such a picture is called the optical transform of the aperture. As we shall
see, for the phenomenon to show itself conspicuously, the dimensions of the aperture
have to be very small, comparable to the wavelength of the light employed.

If the aperture is a circular one, like the disk D of the previous section, the screen
will show a bright central spot surrounded by rings, alternately dark and bright,
whose illumination decreases rapidly as in Figure 5.3. This is in accordance with the
calculations in Section 5.3 showing |χ̂D(R, �)|2 to have a principal maximum at the
center and secondary maxima of rapidly decreasing value set on concentric circles,
called Airy rings (Fig. 5.4). The rings are visible under normal circumstances, as
when a distant star is observed through a telescope with too small an aperture.

The optical transform of a rectangular aperture is in Figure 5.5. To a slim aperture
there corresponds a diffraction pattern with a large central maximum, as previously
calculated. The dimensions of the aperture are critical. If much larger than to the
wavelength of the light employed, the phenomenon of diffraction becomes imper-
ceptible, for the optical transform undergoes a contraction by (2.17). On the screen
only the central maximum shows since the secondary ones, very densely packed
together with the minima, are as a matter of fact indistinguishable. On the contrary if
the dimensions aremuch smaller, then again by (2.17), the centralmaximumbecomes
very large and at the same time very weak so that the screen appears dark as if it

http://dx.doi.org/10.1007/978-1-4899-7989-6_9
http://dx.doi.org/10.1007/978-1-4899-7989-6_2
http://dx.doi.org/10.1007/978-1-4899-7989-6_2


130 5 Fourier Optics and the Synchrotron Light

Figure 5.3 Optical
transform of a circular
aperture. (Courtesy of S. G.
Lipson, Department of
Physics, Technion
University)

Figure 5.4 Graph of
|χ̂D(R, �)|2 (see text).

were not illuminated at all. Only in the case where the dimensions are comparable
to the wavelength of the light does the phenomenon stand out clearly. An aperture
in the shape of a small duck, as in Figure 5.6 a), has its diffraction pattern as shown
in Figure 5.6 b).

If one wishes to reconstruct the shape of the aperture from the optical transform
— for a purely speculative reason in this case, the aperture being known to start
with — it would suffice to collect the light coming from the optical transform on a
screen placed on the focal plane of a lens. Indeed lenses have the ability to transform
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Figure 5.5 To the right the
optical transform of the
rectangular aperture shown
to the left. (Courtesy of S.G.
Lipson, Department of
Physics, Technion
University)

parallel rays — rays converging at infinity — into rays converging to a point of
the focal plane. This is equivalent to applying the Fourier transform a second time.
Mathematically, with χA(u, v) defining the aperture, χA(−u, −v) is reconstructed
and the shape of the aperture is therefore obtained.

Figure 5.6 shows two reconstructions d) and f) of the aperture, each using smaller
and smaller pieces c) and e) of the optical transform. A progressive loss of details,
or resolving power, is observed.

By this procedure, used in conjunctionwith x-rays, the atomic structure of crystals
could be recovered — the wavelength involved being comparable with the details of
interest — if it were not for unfortunate facts. The diffracted x-rays are scattered in
all directions, even backward, and moreover x-rays can only be slightly deflected. In
other words the diffracted x-rays cannot be focused. Only calculations are left to help.
By another unfortunate circumstance the intensity of the light alone can be measured
— that is the optical transform— not the full Fourier transform. Indeed the phase is
lost in themeasurements. As a consequence the reconstruction is not straightforward,
as it would otherwise be (Chapter 6). Figure 5.7 shows the optical transform of
two horizontally spaced circular apertures centered at (a, 0) and (−a, 0). The
Fourier transform in question is equal to 2 cos(aξ)χ̂D(ξ, η). The transform clearly
has extra zeros at the roots of cos aξ = 0 — namely the vertical lines ξ = kπ/2a
with k any integer (Fig. 5.7)–marking the appearance of interference fringes. In
the case of rectangular apertures centered at (−a, a) and (a, −a), the Fourier
transform in question is equal to 2 cos(aξ − aη)χ̂R(ξ, η) which has extra zeros at
aξ − aη = kπ/2. These are all lines parallel to the bisector η = ξ (Fig. 5.8).

http://dx.doi.org/10.1007/978-1-4899-7989-6_6
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Figure 5.6 a) aperture; b) optical transform; c) and e) smaller and smaller pieces of the optical
transform; d) and f) reconstructions of the shape of the aperture. (Taylor C. A., Lipson H., Optical
Transforms, Bell, [1964].) (Courtesy of S. G. Lipson, Department of Physics, Technion University)
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Figure 5.7 Optical transform of a system of two circular apertures spaced horizontally. (Courtesy
of S. G. Lipson, Department of Physics, Technion University)

Figure 5.8 Above, the
optical transform of the
system of two rectangular
apertures shown below.
(Courtesy of S. G. Lipson,
Department of Physics,
Technion University)
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5.5 X-rays and the unfolding of the electromagnetic
spectrum

That part of the electromagnetic spectrum that conveys shape and colors to our
vision, so wonderfully that it has inspired artists ever since, is a very tiny part of the
whole electromagnetic spectrum. It extends less than an octave, between 4 × 10−5

cm (violet) to 7 × 10−5 cm (red). Above and below in a feast of numbers, invisible
radiations extend with longer and shorter wavelengths, even thousands of billions of
times longer (radio waves) and even a million billion times shorter (gamma rays).

The virgin territory of the electromagnetic spectrum in the direction of the shorter
wavelengths, beyond the ultraviolet, was entered at the end of 1895 by the German
physicist Wilhelm Conrad Röntgen (1845–1923). He discovered x-rays and for that
was awarded in 1901 the first Nobel prize for physics.

Röntgenwas experimentingwith cathode rayswhenhenoticed that lightwas given
off by a fluorescent screen nearby, even when the tube was completely wrapped in
black paper. He studied the radiation and even took the first x-ray photograph that
showed the bones of his wife’s hand. Within a period of months x-rays started rev-
olutionizing medical diagnosis in orthopedics and dental medicine. Röntgen was
uncertain about the nature of the radiation, which appeared to lack the basic prop-
erties of reflection and refraction (indeed the path of x-ray beams can be deflected
only slightly). He called it x-radiation, but it also went under the name of Röntgen
radiation.

X-rays are produced by energetic electrons as they accelerate or decelerate: In x-
ray tubes electrons decelerate suddenly while hitting a metal target; in synchrotrons
they accelerate while bending their path. Almost a century later, a more sophisticated
use of x-rays will lead to remarkable imaging techniques, such as computerized
tomography, microtomography (Chapter 7), and contrast-phase imaging (Section
5.11).

A couple of years after Röntgen’s work, in 1897, the English physicist Joseph
John Thomson (1856–1940) discovered the electrons (“corpuscules,” as he called
them) while attempting to establish the nature of cathode rays themselves, until
then controversial. They were electrons indeed, for which he provided evidence.
Another fifteen years will have to go by to assess the nature of the very same x-
rays. The German physicist Max von Laue, thinking that the regular arrangement
of atoms in crystals might provide a natural grating to produce interference patterns
— if radiation of appropriate wavelength (about 10−8 centimeter) were employed
— suggested trying with the x-radiation. The experiment, carried out by Walter
Friedrich and Paul Knipping, was successful (Friedrich, Knipping, and von Laue
[1912]) and made the year of the announcement of their result a most important
juncture in physics: The electromagnetic nature of x-rays was established and, at the
same time, a way to study matter at the atomic scale was opened up (Chapter 6).

http://dx.doi.org/10.1007/978-1-4899-7989-6_7
http://dx.doi.org/10.1007/978-1-4899-7989-6_6
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Though harmful in large doses for living creatures, due to their penetrating power
and ability to ionize atoms, x-rays provide a unique experimental tool. As Mar-
garitondo [1988] points out, “x-ray experiments have produced more Nobel Prize-
winning results in different disciplines than any other kind of experimental tech-
niques.”

Following the discovery of radioactivity in 1896 byHenri Becquerel (1852–1908),
which earned him in 1903 the Nobel prize (shared with Pierre and Marie Curie),
came that of gamma rays. They first evidenced themselves as an even more penetrat-
ing radiation emitted in the decay of radioactive substances. Discovered by Ernest
Rutherford, their electromagnetic nature was assessed in the same year as Laue’s
experiment. Very harmful for living creatures, they are used to penetrate metal cast-
ings to show defects by means of radiographs and even to sterilize medical supplies.

Gamma rays and x-rays are present in the radiation coming from space but are
prevented from reaching the Earth by the atmosphere, which acts as a filter (Fig.
9.1). The first x-rays of solar origin were detected in 1949 by Herbert Friedman and
coworkers using a V-2 missile for high altitude research at the White Sands Proving
Ground in New Mexico. The V-2 nose cones “often carried at altitudes better than
160 kmmore than a ton of payload” of scientific instruments (Stuhlinger andOrdway
[1994]), so by the time the last V-2 was launched in the fall of 1952 a rich harvest of
information on cosmic rays and high altitude atmosphere had been obtained. The first
nonsolar x-ray source was discovered in 1962 by the Italian physicist Bruno Rossi,
at the time at MIT, in collaboration with Riccardo Giacconi (Morrison [1967]). The
best known sources are the Crab Nebula and Sco X-1 in the Scorpius constellation.
Gamma ray sources began to appear around 1978 in balloon observations (Bignami
and Hermsen (1983)). All recordings, at first, were of low signal-to-noise ratio and
controversial.

In Figure 5.9, the electromagnetic spectrum: the relation between thewavelengthλ
and frequency v is given by λv = c = 3 × 1010cm/s. As a unit of energy the electron
volt (eV) is used, which is the energy gained by one electron as it is accelerated
in a vacuum through a potential difference of one volt. Its multiples are shown in
Table 5.1.

Figure 5.9 Wavelengths of the radiations of the electromagnetic spectrum.

http://dx.doi.org/10.1007/978-1-4899-7989-6_9
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Table 5.1 Multiples of the
electron volt (eV).

kiloelectron volt keV = 103eV

megaelectron volt MeV = 106eV

gigaelectron volt GeV = 109eV

teraelectron volt TeV = 1012eV

The ionizing power of x-rays and gamma rays and more generally events of
interaction between light and matter occurring within the atom are not explained
by the wave theory. Historically the first occurrence, which came to be known as
the “photoelectric effect,” was already observed by Hertz in his famous experiment
of 1877. It consists of the emission of electrons by metals and a variety of other
materials, found to be photosensitive, when radiation of sufficiently high frequency
— depending upon the material — strikes them. One characteristic of the emission
was surprising and could not be explained: themaximumkinetic energy of the emitted
electrons was independent of the intensity of the light, which was expected, and
depended instead on the frequency.

To explain the photoelectric effect, Albert Einstein published in (1905) a theory of
light that revived the corpuscular one under a new form. Going back to a hypothesis
formulated by Planck a few years earlier, Einstein assumed light to be composed of
quanta, or photons, whose energy is proportional to the frequency of the light. The
assumption of an ether was dropped. For this work Einstein received the Nobel prize
in 1921.

It was only with quantum mechanics, whose main development took place
between 1925 and 1935, that the wave model and the corpuscular model would
be encompassed in one single theory that specifies their respective ranges of validity.

5.6 Synchrotron radiation, first seen in the stars

The brightest x-rays available are to be found in the so-called synchrotron radia-
tion produced at the several storage rings in operation worldwide (Fig. 5.10, 5.11).
An extremely broad continuous spectrum is among the main characteristics of the
radiation, which relies on the theory of special relativity for its mathematical model.

It was synchrotron radiation in the radiofrequencies that was observed by Grote
Reber in the late 1930s when he discovered the first radiogalaxies, originally called
radio stars (Section 9.10). The enormous energy output that went together with
enormous distances remained unexplained until 1950 when synchrotron radiation
was advanced as themechanismof emission by radio stars (Alfvén,Herlofson [1950],
Kiepenheuer [1950]). For astronomy it was the first nonthermal emission andmarked
the decade. The modern detailed development took place in the hands of the Russian
Iosif Samvilovich Shklovsky [1960].

Closer to us, Jupiter emits synchrotron radiation due to high-energy electrons
trapped in its Van Allen belts and located at a distance between 30 and 100 radii

http://dx.doi.org/10.1007/978-1-4899-7989-6_9
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Figure 5.10 The European Synchrotron Radiation Facility (ESRF) in Grenoble.

Figure 5.11 Third generation sources.
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of Jupiter’s surface. The space probe Pioneer 10 encountered Jupiter on Decem-
ber 4, 1973 and measured electron energies of about 5 MeV and a weak magnetic
field of about 10−4 tesla. Synchrotron radiation is also observed in conjunction with
sunspots. In a laboratory, it was first detected in 1946 by J. P. Blewett working at the
100 MeV betatron (beta particles is an old name for high-energy electrons) of the
General Electric Research Laboratories in Schenectady, New York. The next year it
was observed visually by F. Haber, a technician of the group of H. C. Pollock and col-
laborators, working in the same laboratories at the 70 MeV synchrotron. (From this
comes the name of the radiation.) Their announcement in the Physical Review read
as follows: “High energy electrons which are subject to large accelerations normal to
their velocity should radiate electromagnetic energy. The radiation from electrons in
a betatron or synchrotron should be emitted in a narrow cone tangent to the electron
orbit, and its spectrum should extend into the visible region. This radiation has now
been observed visually in the General Electric 70-Mev synchrotron” (Elder et al.
[1947]). The emotion that reverberates in the preceding sentence goes now hidden
under the technical description: “The radiation is seen as a small spot of brilliant
white light by an observer looking into the vacuum tube tangent to the orbit and
toward the approaching electrons. The light is quite bright when the x-ray output of
the machine at 70Mev is 50 roentgen per minute at one meter from the target and can
still be observed in daylight at outputs as low as 0.1 roentgen.” Their synchrotron
had an electron orbit radius of 29.3 cm and a peak magnetic field of 0.8 tesla.

The sources of electromagnetic radiation are oscillating electric charges and cur-
rents. For instance radio waves are generated by an alternating current in an antenna.

The phenomenon of emission of electromagnetic radiation by a charged parti-
cle whenever accelerated or decelerated was first considered by the Irish physicist
Joseph Larmor (1857–1942) who calculated the energy radiated by an accelerated
(nonrelativistic) electron while teaching at Cambridge (Larmor [1897]). This early
research by Larmor was followed by the work of A. Liénard in 1898 and G. H.
Schott in 1907 (Schott [1912]). It was shown that the acceleration was responsible
for an electromagnetic field decreasing as 1/R, whereR denotes the distance from the
accelerated charge, which for big values of R, is much larger than the field generated
both by a static charge and by a charge in uniform motion. The energy lost by the
circulating electrons was calculated as well as the angular and spectral distribution
of the radiation. The study of the radiation, emitted by electrons moving in circular
orbits, was driven by the desire to obtain atomic models. However, precisely the
atomic model failed since the electrons, radiating continuously, would lose energy
and spiral into the nucleus in no time, such as 10−15s. Soon after in 1913 Niels
Bohr (1885–1962), realizing that classical mechanics alone could never explain the
atom’s stability, proposed his model of quantized orbits and the preceding work was
forgotten only to be rediscovered forty years later.

In the early 1940s, what would become known as “synchrotron radiation” gained
attention in connection with electron accelerators. There was a loss of energy that
went together with a loss of speed, chiefly responsible for limiting the electron energy
achievable in an accelerator. This made it difficult and costly to push electrons to
higher energies.
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From a theoretical point of view the treatment, based on the theory of special
relativity due to the relativistic speed of the electrons, was developed by several
authors. First were D. Ivanenko and J. Pomeranchuk [1944] in the Soviet Union and
J. Schwinger [1946] in the United States. In 1946 Blewett calculated the shrinkage
in the electron orbit, in a betatron, due to radiation losses and his measurements were
in agreement.

The characteristics of the radiation were studied notably by Pollock and collabo-
rators in the late 1940s and by F. A. Korolev with his group working at the 250 MeV
synchrotron of the Lebedev Institute inMoscow in the 1950s. Others followed. These
investigations verified the basic theoretical predictions and provided experience in
the use of radiation.

A new course, which would start a revolutionary trend, was taken by
D. H. Tomboulian and P. L. Hartman [1956] who saw beyond the technical problem
for accelerator builders and put the synchrotron radiation to work. They used it in
connection with far-ultraviolet spectroscopy while working at the 320 MeV electron
synchrotron of Cornell University. A few years later L. G. Paratt [1959] realized its
relevance for x-ray experiments and predicted “a boom in many aspects of x-ray
physics.” Today synchrotron radiation is regarded as a unique scientific resource for
basic and applied research and technology.

5.7 Unique features of the synchrotron light

Before enteringmore technical aspects concerning the synchrotron radiation, itmight
be worthwhile to highlight the important features that go with it.

In the x-ray region, particularly interesting for applications, synchrotron radiation
offers a continuous band of wavelengths — while conventional sources make only
few wavelengths available — and also radiation of extremely high intensity and
collimation. Some advantages associated with these features can be anticipated, for
example, in the field of crystallography (Chapter 6).

To recover by x-ray diffraction methods the spatial atomic structure of crystals,
high intensity x-ray beams are needed especially in the case, often encountered, of
very small crystals, that is crystals thatmight have the smallest dimension of the order
of 10−2 mm. Indeed it is difficult to growwell-orderedprotein crystals (Section6.7) so
that the available samples are usually small. Small are also synthetic mineral crystals
and again small dimensions are found inmineral crystals extracted from polycrystals.
In the diffraction experiment, the intensity of the diffracted beam is proportional to the
intensity of the impinging beamand to the volumeof the crystal samples, amongother
parameters. So when samples are small, a high intensity impinging beam is needed
to have diffraction peaks noticeable against the background and hence measurable.

Collimation—meaning beams of rays highly parallel or equivalently beams with
small divergence— realizes optimal conditions to give rise to sharp diffraction peaks.
This feature is especially important when the diffraction peaks are densely packed
as in the case of macromolecular crystals (Section 6.7).

http://dx.doi.org/10.1007/978-1-4899-7989-6_6
http://dx.doi.org/10.1007/978-1-4899-7989-6_6
http://dx.doi.org/10.1007/978-1-4899-7989-6_6
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Synchrotron radiation has also a good degree of coherence but it does not have
complete coherence, which would be the case if all points of the source were to emit
radiation in phase. If a coherent source were available, experimental settings could
be devised to obtain information on the phase of the diffracted beam, presently lost
(Sections 6.4 and 6.7). For instance, after splitting the coherent beam into two beams,
one could be used for the diffraction experiment while the other could be kept intact
and then made to interfere with the diffracted beam. From the recorded intensities
of the interference experiment the needed information on the phase of the diffracted
beam could be obtained. Synchrotron builders are indeed improving coherence as
well as intensity (Section 5.11).

5.8 Storage rings, among the biggest machines in the world

Electrons moving in a circular path — and more generally changing the direction
of motion — experience an acceleration that points transversally in the centripetal
direction, if the scalar velocity is constant. (In the case of the radio waves generated
by an alternating current in an antenna both the velocity and the acceleration are in
the same direction.)

Synchrotrons and storage rings enable an electron beam to move at relativistic
speed on a closed circular orbit and in turn to produce extremely intense and short
bursts of radiation with a large spectrum of frequencies. Synchrotrons briefly accel-
erate the beam to speeds very near to the speed of light, while storage rings—which
are a specialized form of synchrotrons — keep a relativistic electron beam circu-
lating for many hours at constant speed. They usually work in sequence, with the
synchrotron functioning as a booster ring.

In the early years synchrotron radiation was not considered important enough
and could only be obtained from accelerators built, operated, and optimized for
elementary particle experiments and now called synchrotron radiation sources of the
“first generation.” In this “parasitic” way pioneering work was carried out in the
1960s at synchrotrons in Frascati (Italy), at the University of Wisconsin, in Hamburg
(Germany), Novosibirsk (Siberia) and Tokyo.

The switch to storage rings, whose emission has muchmore stable characteristics,
was initiated in 1961 in Frascati, Italy, with AdA (Anello di Accumulazione, the
Italian for storage ring) followed by the Tantalus ring at the University of Wisconsin
which, originally designed for studies of future high-energy physics machines, got
transformed into a storage ring in 1968 and served as a test case for the following
one in Brookhaven, New York. The modifications channeled some of the radiation
through beamlines to user end stations. In 1970 the first storage ring—380MeVSOR
ring — intended only as a light source was designed at the University of Tokyo and
started operation in the mid-1970s. Subsequently others were built in countries such
as Brazil and China besides Russia, the U.S., and Europe. Named storage rings of
the “second generation,” they usually carry a large number of tangential ports, called

http://dx.doi.org/10.1007/978-1-4899-7989-6_6
http://dx.doi.org/10.1007/978-1-4899-7989-6_6
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Table 5.2 Main facilities worldwide.

Facility ESRF European
Synchrotron Radiation

APS Advanced Photon
Source

SPring-8 Super Photon
ring-8 GeV

Energy 6.0 GeV 7.0 GeV 8.0 GeV

Circumference 844 m 1,104 m 1,436 m

Began Operation 1994 1996 1998

beamlines, that channel the radiation to experimental stations (Fig. 5.13) serving
some thousands of users per year.

The enormous productivity and significant technical advances (undulators) were
a stimulus to build a “third generation” of dedicated storage rings throughout the
world. They can be subdivided mainly into two categories: rings 30–60 meters in
diameter, designed primarily for ultraviolet and soft x-rays, and rings 300–500meters
in diameter, designed primarily for hard x-rays (Fig. 5.11). The cost is in the order
of several hundred million dollars each.

Synchrotrons as well as storage rings consist of a metal vacuum chamber in the
shape of a ring or a doughnut, with magnets distributed around it. The diameter of
the ring can be up to a few hundred meters and so the circumference can reach the
impressive size of more than one kilometer: It is 844 m in case of ESRF (Fig. 5.10)
and 1,104 m in case of APS and 1,436 m in case of SPring-8 (Tab. 5.2, Fig. 5.11). In
the vacuum chamber of the ring — whose cross sectional area is in the order of tens
of square centimeters — the pressure, starting from atmospheric, is brought down
to about one thousandth of one billionth of that, comparable to pressure in outer
space. Collisions of the circulating electrons with the residual gas molecules, which
primarily affect the average lifetime of the beam, are therefore rare, allowing the
beam intensity to decrease slowly, with a lifetime of many hours. Unfortunately the
synchrotron radiation itself liberates gases from the surface of the vacuum chamber.
This is monitored by vacuum pumps that keep the pressure at the indicated value: If
pressure rises above that the beam is lost.

Electrons, generated by an electron gun, are injected into the evacuated ring by a
suitable injection system based on a combination of accelerating devices, including
normally a linear accelerator briefly called linac.

The magnets surrounding the doughnut, in an arrangement called a magnetic
lattice, are the main elements controlling the basic features of the beam. They are
essentially of two types: bending magnets and focusing magnets. The first ones, as
the name says, are responsible for bending the path of the electrons which is made
by circular arcs — corresponding to the bending magnets — and straight lines in
between (Fig. 5.12). If only the bendingmagnets were used, the electron beamwould
progressively grow in transverse directions, the same as with a visible light beam.
Therefore the need for the so-called focusing magnets, which act as lenses and keep
the electrons confined to a tight beam of vertical and horizontal dimensions that can
be much less than one millimeter, comparable to the size of a human hair.

The straight sections—some tens in number—are available for insertion devices,
such as undulators, used to enhance the brightness of the light.
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Figure 5.12 Schematic
picture of a storage ring.
Straight sections alternate
with curved sections.

The energy lost in the emitted radiation must be restored. This is obtained by
applying, in the so-called radio frequency cavities, an oscillating electromagnetic
field that imparts longitudinal electrical kicks and makes the electrons go around in
bunches, like an enormous rotating pearl necklace. Therefore the radiation is emitted
in bursts.

Themagnet configuration and the parameters of the radio frequency system deter-
mine the length of the bunches, typically of the order of a centimeter. The length of
the bunches and their velocity v, essentially equal to the speed of light c, determine
the duration of the bursts. For a 3 cm long bunch and v = c it is 10−10s. The number
of bunches, usually in the hundreds or a few or just one depending upon the exper-
imental needs, together with the ring perimeter, determines the burst frequency or
repetition rate of the order of a hundred million times per second.

As we shall see the most important features of the synchrotron radiation are
determined by the electron speed.

5.9 Spectrum of the synchrotron light

The electrons in a storage ring travel from several hours to a few days at a speed
v near the speed of light c = 3 × 1010cm/s. To give an example, at the Advanced
Light Source facility (ALS) in Berkeley, the ratio v/c = 0.99999996. Every time the
electron bunches go through a bending magnet they emit radiation that is channeled,
via a beamline, to an experimental station (Fig. 5.13). The speed at which electrons
travel in a storage ring is a key point, since the angular pattern of the emission at a
distance (“far field”) strongly depends upon that (Fig. 5.14). If electrons were made
to change direction by the bending magnets while moving at a speed much less than
the speed of light, they would emit radiation in almost all directions. (The angular
distribution of the radiation pattern in three dimensions can be obtained from that in
Figure 5.14 (top) by a full rotation around the vertical axis which is the direction of
the acceleration (Tomboulian, Hartman [1956]).) The radiation would be very weak
and of low frequency.
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Figure 5.13 Advanced Light Source facility at Lawrence Berkeley National Laboratory, Berkeley,
Ca. The ring at the center is the booster synchrotron. The beamlines are updated to January, 2001.
(Courtesy of ALS)

If instead the electrons are accelerated while moving at a speed in the range of
the speed of light — and are observed in a laboratory frame, itself moving with
Earth at a small velocity compared to that of light — huge changes take place, in
accordance to the theory of special relativity. The radiation gains enormously in
intensity and frequency and strikingly in directionality (Fig. 5.14). At half the speed
of light the radiation appears already noticeably “pushed forward.” In the extreme
case of β = v/c very close to 1, the radiation turns out to be confined to a narrow
cone centered around the direction of motion, or instantaneous velocity vector, so
as to look like a well-focused searchlight beam sweeping around, as the electrons
describe their circular orbit (Fig. 5.15).

The radiation is made up of nearly parallel rays, since the aperture of the cone
might be even less than 0.0001 radians (about 0.006 degree). Given by

√
1 − β2,

it goes to zero as β tends to 1. The inverse of this important parameter is usually
denoted by γ, that is γ = 1/

√
1 − β2.

The pure number γ turns out to be a ratio involving the rest mass of the electronm0

and m, the mass of the electron moving at speed v. It is m = γm0, as assigned by the
theory of special relativity. Published in 1905 by Einstein, this theory establishes the
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Figure 5.14 Angular
radiation pattern drawn in
the orbital plane for different
values of β = v/c. In the
direction of the dotted line
the radiation intensity is
zero. To make evident the
backward lobes of the
radiation their intensities
have been multiplied by the
indicated factors. (A.
Balzarotti [1975], “Luce di
Sincrotrone,” Enciclopedia
delle Scienze Fisiche, Istituto
della Enciclopedia Italiana,
pp. 232–240.)

Figure 5.15 The narrow
cone represents the angular
distribution of the emitted
intensity from an electron
moving with a velocity close
to that of light. (D. H.
Tomboulian, P. L. Hartman
[1956], “Spectral and
angular distribution of
ultraviolet radiation from the
300-Mev Cornell
Synchrotron,”Phys. Rev. 102,
pp. 1423–1447, c©American
Physical Society)
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Figure 5.16 The geometry
involved in synchrotron
radiation emission.

equivalence of mass and energy through the famous equation E = mc2. The electron
energy at rest is calculated in m0c2 = 0.5 MeV. At ALS the energy of every circling
electron equals 1.5 GeV, corresponding to a value of about 3000 for γ.

The total power radiated by a single particle, that is the energy it emits per unit
time as electromagnetic radiation, increases as the fourth power of E and decreases
as the fourth power of its rest mass. This last property explains why electrons are
used and protons, which have a much larger mass, are not.

Finally, if the motion of the accelerated electrons were to be rectilinear instead
of circular, then the power emitted would become 1/γ2 smaller. This explains the
shape of the machines (Jackson [1975]).

To describe the spectrum of the radiation, we shall assume for simplicity to have
only one electron traveling in the ring. The narrowcone of radiation, emitted along the
instantaneous velocity vector, implies that the radiation will be visible or detectable
only when the particle velocity is directed toward the observer (detector). In Figure
5.16, the trajectory of the emission — as far as the fixed observer is concerned —
is the arc AB whose length is d = 2R/γ and 2/γ is the measure in radians of the
characteristic angle of emission. R denotes the local radius of curvature.

The electron describes the trajectory AB during an interval of time of length

�t = d/v = 2R/γv.

The duration of a burst of radiation, or pulse, detected by the observer will now be
estimated.

The small arc AB can be approximated by the segment AB. In time �t the front
edge of the pulse travels a distanceD = c�t, since it ismoving at the velocity of light.
In the same time �t the electron, moving at speed v, travels in the same direction
the distance d calculated above. Therefore the rear edge of the burst, which ends the
burst, is at the distanceD − d behind the front edge. This is the pulse length in space,
which makes

D − d

c

the pulse duration in time.
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Figure 5.17 Spectrum of a
single burst. The ordinate
gives the spectral intensity
(number of photons emitted
per second).

Since β = √
1 − 1/γ2 and 1/γ2 is close to zero, by series expansion β ∼= 1 −

1
2γ

−2 which makes 1/β ∼= 1 + 1
2γ

−2. Thus the pulse duration is

D − d

c
= 2R

γc
(
1

β
− 1) ∼= R

γ3c
.

Such an extremely short-lived pulse has a wide range of frequencies, extending
essentially up to the critical frequency ωc

∼= γ3c/R (Fig. 5.17) by the indeterminacy
principle (2.17). Since the electron keeps circulating, the burst will repeat every
2πR/c seconds (Fig. 5.18). In other words, the signal detected by the fixed observer
is periodic with period 2πR/c. Its Fourier transform is therefore discrete with fun-
damental frequency ω0 = c/2πR. The spectral intensity is that in Figure 5.17 sam-
pled at ω = nω0, n ≥ 1. Hence, the number of relevant harmonics is approximately
ωc/ω0

∼= γ3.
In the case of the ESRF in Grenoble 2R = 300m ∼= 104 cm, making the period of

the order of 10−6s, and ω0
∼= 1 MHz. Moreover γ ∼= 104 so that γ3 ∼= 1012. Hence

Figure 5.18 The short
bursts of detected radiation.

http://dx.doi.org/10.1007/978-1-4899-7989-6_2
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the number of harmonics is enormous, with the critical frequency ωc
∼= 1012 MHz

well into the region of x-rays.
Of the large spectrum, which for all practical purposes can be regarded as con-

tinuous, only the radiation from the far-ultraviolet to x-rays is normally used since
even brighter visible beams can be obtained by the more readily available lasers.

5.10 Brightness and undulators

The brightness of the radiation, an essential parameter for experiments, underwent
an exponential increase over the years. Its technical definition makes it proportional
to the number of photons emitted per second, in the given bandwidth, and inversely
proportional both to the cross sectional area the radiation originates from and to
the angle of emission. Thus brightness, measured in photons s−1mm−2mrad−2Hz−1,
takes into account not only the intensity of the radiation but also its concentration.
Indeed itmakes a big difference if a certain number of photons (per second) is radiated
in all directions, as the sun does, or is concentrated in a small cone of directions as
in the case of the synchrotron radiation.

The number of photons being large and the other two quantities of the definition
mentioned above being small, the synchrotron radiation has extremely high bright-
ness, millions of times higher than any other available source in the same range.
Storage rings of third generation allowed a dramatic increase of brightness through-
out the use of insertion devices called undulators.

Made by two rows of permanent magnets, undulators create magnetic fields per-
pendicular to the electron beam and alternating in polarity many times over a length
of one or two meters, in the straight sections of the storage ring. There the electron
path bends up and down like a sinusoid whose local radius of curvature changes
continuously. As the electrons swerve in their path they emit radiation that will be
reinforced in case of constructive interference and cancel out otherwise, depending
on thewavelength of the radiation. Hence the spectrum reduces to a certain frequency
and the first few harmonics. This is the price for enhancing brightness. The point is
that the frequency to be enhanced can be chosen, predetermined, for a given undula-
tor and a given energy by adjusting the magnetic field, that is the distance between
the upper and lower row of magnets. Then the desired harmonic can be selected by
the use of a monochromator. Hence radiation with a high degree of coherence is
made available.

Undulators were studied already during the 1950s both in the United States and
in the Soviet Union. They were not implemented for a long time because the elec-
tromagnets, going with them, could hardly be stacked in the necessarily short spatial
period required and moreover would quickly run into coil-heating problems.

In 1979, K. Halbach of the Lawrence Berkeley Laboratory overcame the problem
rather simply and economically by using arrays of permanent magnets, made from
rare earth elements and cobalt, which became available at about that time.
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In 1980, the first undulator to be used as an x-ray source was installed at Stanford
and another one at about the same time in Novosibirsk. The brightness produced by
an undulator increases as the square of the number of the undulator periods. Thus
100 periods result in a four order of magnitude enhancement in brightness.

5.11 Applications and the futuristic free electron laser

Replacing conventional x-ray angiography in the diagnosis of circulatory diseases
is the most direct application of synchrotron radiation in medicine. Soft tissues are
poor absorbers of x-rays and moreover detailed images of the coronary arteries have
to be taken necessarily while the heart is beating. Hence the need for a contrast agent
in the region of the heart. In conventional angiography this is achieved by injecting
the contrast agent directly into the arteries. The whole procedure is rather risky.

The tunability of synchrotron radiation allows one to choose frequencies just
above and just below the given absorption threshold of the contrast agent. The sub-
traction of the intensities of emerging x-rays increases the contrast and reduces the
need of the contrast agent to that obtainable by a peripheral venous injection. In the
mid-1980s, tests were performed at Stanford and since then several thousand patients
have taken advantage of this technique.

Other x-ray imaging techniques have been advanced and experimented with.
Indeed standard radiographs — an amplitude-contrast imaging — even though ade-
quate in many cases, produce images of a rather rough nature since they allow one
to distinguish only between tissues of significantly different density, such as bones
and soft tissues.

The high degree of coherence of the synchrotron radiation is exploited in the
technique called “phase-contrast imaging.” This method has produced remarkably
fine images independent of density, which might be about uniform and extremely
low as in Figure 5.19.

X-rays can only be slightly deflected since their refractive indexes in different
media differ by very little and are almost 1. Hence passing through a sample they
get out of step, only just a bit, with respect to the undeflected rays passing outside
the sample. Nevertheless, the radiation being highly coherent, this small phase dif-
ference suffices to produce at a large distance, compared to the dimensions of the
experiment, Fraunhofer interference fringes. An appropriate algorithm, implemented
on a computer from the data made available by the fringes, reconstructs the image
that is the contours of the regions with different refractive indexes. By taking sets of
data of the sample exposed from many different angles, it is possible to reconstruct
a slice of it as in the clinical scans of computerized tomography.

Of the many other applications in pure and applied research in physics, chemistry,
biology, and medicine some will be presented in later chapters, such as an experi-
mental type of tomography called microtomography (Section 7.8). Crystallographic
x-ray diffraction too takes advantage of the high brightness and high collimation
of the synchrotron radiation — as well as the wide spectrum of frequencies among

http://dx.doi.org/10.1007/978-1-4899-7989-6_7
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Figure 5.19 A mosquito knee and, to the right, cross sections of it obtained by the technique of
phase-contrast imaging. (Courtesy of A. Snigirev, ESRF)

which to choose the desired one — to reconstruct the spatial structure at the atomic
level of important molecules such as proteins and, following their changes in struc-
ture nanosecond by nanosecond, a glimpse of the way they perform their complex
biological functions (Section 6.9).

Synchrotron radiation has technological applications too in micromechanics
(Schmidt et al. [1996]) andmicroelectronics, among others. Inmicrofabrication tech-
nologies (Schmidt et al. [1996]), synchrotron radiation opens up a completely new
range of freedom in terms of shape, material, and production processes by using an
advanced type of photolithography called x-ray lithography (Fig. 5.20). With minia-
turization working for them engineers are already at work building extremely small
robots — with all their levers, gears, and correspondingly small electrical motors
and electronic controls— that could unclog arteries or fix microcircuitry in spots not
otherwise accessible. While users keep profiting from the very special features of
this radiation, synchrotron planners are taken by a new goal, the “fourth generation.”
In fact, present sources are far from fundamental limits. Experiments are in progress
to increase coherence and brightness by several orders of magnitude so as to realize
x-ray beams comparable in these respects to laser beams, that is complete coherence.
Two important projects are taking place, one in Hamburg (Germany) and the other
at Stanford (USA). The technical difficulties to be overcome are great but if success
greets this project — for the so-called free electron laser — completely coherent
x-rays will be available and moreover with a peak brilliance exceeding by 107 the
third generation sources. It will be the x-ray laser which — aside from its military
interest — will make possible experiments that presently can only be imagined.

http://dx.doi.org/10.1007/978-1-4899-7989-6_6
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Figure 5.20 Above, a micro gear wheel for a micro gear unit, and below, a planetary gear system.
(Courtesy of the Institut für Mikrotechnik Mainz)



Chapter 6
X-ray Crystallography: Protein
Structure and DNA

6.1 Crystallography from Steno to von Laue

Theworld contains a large number of chemically distinct substances, some biological
such as DNA and enzymes, and others geological such as mica or quartz. There are
millions of compounds in organic chemistry and thousands of metal alloys of interest
to metallurgists.

Substances occur in either the solid, liquid, or gaseous state. Solids find their
representatives in crystals, which have all molecules arranged in structures that are
totally ordered as far as spatial distribution, but also include amorphous substances
that do not exhibit any order in the spatial arrangement of the molecules and even
show intermediate cases such as fibers and polycrystals.

Thephenomenonof diffractionof visible light, illustratedby the images of the two-
dimensional apertures in Figures 5.3, 5.5, 5.6, 5.7, and 5.8, is used in crystallography
as a powerful tool to investigate the three-dimensional structure ofmatter. In this case,
a radiation of much shorter wavelength is needed as well as a model, based on the
Fourier transform, to interpret the experimental data.

Since ancient times crystals havebeen a fascinating enigma.That crystals cangrow
was noticed and ascribed, by analogywith animals, to food taken in and assimilated to
their substance.Onlywith time and recorded observations has the distinction between
growth of crystals and growth of living organisms become established knowledge.

Initially itwas attempted to classify crystals according to their shape,which is not a
simple matter because even crystals of the same compound can have different shapes
depending on the development of their faces (Fig. 6.1). The first basic observation
wasmade by theDanish anatomist and geologist Nicolaus Steno (1638–1686).When
cutting quartz crystals, he noticed that it was possible to arrange crystals in space so
that, certain (corresponding) faces being set parallel, the solid angles between them
were constant (Fig. 6.1). The same he observed in hematite crystals and published
these observations in 1669 in the treatise De solido intra solidum naturaliter con-
tento dissertationis prodromus (“Introduction to a Dissertation Concerning Solids
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Figure 6.1 Three quartz crystals with corresponding faces developed differently. (B. K.Vainshtein,
Modern Crystallography, Springer, [1981].)

Naturally Contained Within Solids”), mainly dedicated to his fundamental geolog-
ical studies. In the treatise, discussions are only outlined, but new insights can be
found in almost every paragraph. Guided by his observations—he had even explored
alpine grottoes at Lake Garda and Lake Como in Northern Italy—he concluded that
fossils were the remains of ancient living organisms and that many rocks were the
result of sedimentation, and contrary to the belief that mountains grow like trees, he
thought they were due to alterations of the Earth’s crust.

In the end, his deeply religious nature and ethical character led him to set aside his
revolutionary and controversial ideas and to abandon science for religion. Converted
fromLutheranism toCatholicism in 1667, hewasmade bishop in 1677 and appointed
apostolic vicar of northern Germany and Scandinavia. The general validity of the
observations, made by Steno for quartz and hematite, was recognized about a century
later in 1783 by the French scientist Jean Baptiste Louis Romé de l’Isle (1736–
1790) who measured many different crystal species (Romé [1783]). It is the law of
constancy of interfacial angles. The angles between corresponding faces are indeed
characteristic of the substance so that measuring them on a crystal of unknown
material might allow identification by comparison with records compiled for known
materials.

About the same time the idea took root that the regularity in the exterior appear-
ance of crystals was amanifestation at themacroscopic level of an inner order. Indeed
a second fundamental observation was made by the French mineralogist, the Abbé
René-Just Haüy (1743–1822), often called the father of crystallography.While teach-
ing in Paris at the Collège Cardinal Lemoine he became interested in mineralogy.
By examining the fragments of a piece of calcite accidentally broken, he observed
that they were in the shape of rhombohedra and cleaved themselves into smaller and
smaller rhombohedra. He concluded that calcite crystals are made by infinitesimal
elementary figures of that shape and in his Essai d’une théorie sur la structure des
crystaux of [1784] he laid the foundation of the theory of crystal structure. Then, in
his main work Traité de minéralogie of 1801 in four volumes, he applied his crys-
tal theory to mineralogical classification. He also became involved in a controversy
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with Berthollet who believed compounds to have a variable composition, while Haüy
recognized that heterogeneous materials might mix with the compound.

With this new understanding, the picture of crystal growth changed: It was from
the outside by deposition of little identical building blocks, side by side and one
on top of the other. Only the extremely small dimensions of the blocks—it was
thought—was on the way to detect the stair-step nature of the plane face of crystals.
The existence of a concrete polyhedron, filling completely the crystal by repetition,
nevertheless turned out to be untenable. It made it difficult to explain the phenomena
of elastic compression and thermal expansion, and with the advent of atomic and
molecular theories it was definitely dropped.

A weaker version of that remained, namely there exists a three-dimensional point
system (crystal lattice)—identified by the vertices of a unit parallelepiped (unit cell)
periodically repeated—that, when superimposed on the crystal structure, realizes the
periodicity of it. So the unit cell is an abstraction, extremely useful though since it
captures the three-dimensional periodic structure of ideal crystals, those extending
infinitely in three dimensions, containing no impurities and showing no defects.
Knowing a crystal is then reduced to knowing its unit cell.

The unit cell is required to be the smallest block containing arrangements of
molecules or groups of atoms that, by simple repetition, yield the structure and
properties of the crystal. While the crystal lattice is unequivocally identified by the
distance between neighboring lattice points along the three lattice axes, there are
several candidates for the unit cell, all with the same volume (Fig. 6.2). The choice
of the unit cell is made in order to take full advantage of symmetries of the crystal
under consideration and to simplify the mathematical calculations. The lengths of
the sides of the unit cell are called periodicities of the crystal lattice. These are of
the order of magnitude of the angstrom (10−8 cm) but can be even bigger than 100
angstroms, as in many protein crystals. Within the unit cell the position of each atom
is identified by one point. In the simplest crystals—such as copper, silver, and gold—
the unit cell contains a single atom, but it might contain up to about one hundred
atoms in inorganic crystals and several tens of thousands in protein crystals.

Figure 6.2 Example of a
periodic lattice in three
dimensions with three
choices for the unit cell. (B.
K. Vainshtein, Modern
Crystallography, Springer,
[1981].)
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Abetter picture can be obtained by thinking of an electronic cloud, surrounding the
nucleus of every atom of the crystal, quantitatively described by an electron density
function n(x) whose value at every vector position x is the number of electrons per
unit volume and whose maxima correspond to the positions of the atomic nuclei.

The existence of crystal lattices was definitely proved only in the spring of 1912.
The German physicist Max von Laue (1879–1960) had a familiarity with and prefer-
ence for optical problems, manifested also in his doctoral dissertation on the theory
of interference in plane parallel plates, directed by Max Planck at the University
of Berlin. His optical intuition led him to the crucial idea of sending x-rays through
crystals. Laue, then working at the Institute of Theoretical Physics inMunich, argued
that if the supposition that the radiation just discovered by Roentgen in 1895 con-
sisted of very short electromagnetic waves, and if the old standing supposition of the
regular structure of atoms in a crystal were both true, then x-rays passing through a
crystal should cause interference phenomena such as those observed and studied by
Fraunhofer using light and diffraction gratings (Fig. 6.3).

A young facultymember in the person ofWalter Friedrich—assistant to theDirec-
tor Arnold Sommerfeld—and Paul Knipping, a doctoral candidate, began experi-
ments in late April. On the second attempt, regularly ordered isolated points appeared
on a photographic plate placed behind the crystal (copper sulfate) on the other side
with respect to the impinging beam, proving beyond any doubt that x-rays were dif-
fracted out of the primary beam. ByMay 4 a letter was sent to the Bavarian Academy
of Sciences by Laue, Friedrich, and Knipping announcing their result, which proved
simultaneously the wave nature of x-rays and the periodic arrangement of atoms

Figure 6.3 One of the first
diffraction pictures (zinc
blende). The large central
spot is due to the incident
ray. (W. Friedrich, P.
Knipping, and M. Laue,
[1913],
“Interferenzerscheinungen
bei Rontgenstrahlen,” Ann.
Physik 41 (5), pp. 971–988.)
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within a crystal. For this work, which opened up in physics and chemistry the new
branch of structure of matter, Laue received the Nobel prize for physics in 1914.

Up to then the great part of solid matter was considered amorphous, crystals
looking like a rare exception among solids in nature. In the years following Laue’s
discovery it was found that amorphous solids are few. Materials like rocks, metals,
alloys, and cement are crystals or polycrystals. Wood, textiles as well as bones,
hair, and muscular fibers have molecules showing preferential orientations. The term
“amorphous solid” is therefore reserved for those few substances like certain glasses,
resins, and polymers that show no order in their spatial structure. Most solids we deal
with show little evidence of their crystalline nature, being composed of an aggregate
of minuscule crystals whose reciprocal orientation is random (polycrystals).

Before Laue’s discovery, crystals were studied almost exclusively with optical
instruments such as optical goniometers andmicroscopes. After 1912, crystals began
to be studied at the atomic level with x-rays and later with electronic microscopes.
Modern electronic microscopes can penetrate specimens up to 10−5 cm thick and
achieve enlargements of up to 1 million (Fig. 6.4). Nevertheless, x-ray diffraction is
the most commonly used technique. Interacting with the atoms of crystals, x-rays
originate a diffraction spectrum. This is due to their wavelengths being comparable
to the periodicities of the crystal lattice (tenths of an angstrom) and to the distances
between chemically bonded atoms (one or two angstroms). Radiation ofmuch longer
wavelength, such as solar light (Fig. 6.5), cannot resolve the structural details on
either the atomic scale or on the lattice scale. On the other hand, radiation of much
smaller wavelengths, such as gamma rays, is diffracted at angles that are too small
as codified by Bragg’s law. While electron microscopy is the most appropriate tool

Figure 6.4 The image of a gold crystal obtained by an electron microscope. (B. K. Vainshtein,
Modern Crystallography, Springer, [1981].)
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Figure 6.5 The wavelengths of the radiations of the electromagnetic spectrum.

for detecting possible defects in crystals (especially metal alloys), such as incorrect
lining up of adjacent grains and missing or extra atoms, x-ray diffraction usually
remains themeans of choice for the determination of the crystal structure of chemical
compounds.

6.2 Bragg’s law and the basic role of symmetries

Laue’s team experienced some difficulties in the detailed interpretation of the results
of their experiments. For example, they could not determine which lattice planes
produced which spots on the photographic plate. In the meantime in Cambridge
(U.K.) the Australian born Lawrence Bragg (1890–1971) was completing his studies
in physics and his fatherWilliam (1862–1942)was experimentingwith gas ionization
by means of x-rays. Without any doubt, the favorable scientific situation, combined
with the special knowledge in his family, played an important role in the discovery
by the younger Bragg. In late 1912, he gave a more detailed quantitative explanation
of the phenomenon just observed by Laue and the following year solved the structure
of rock salt NaCl as well as diamond, which were the first complete crystal structure
determinations ever made (Ewald [1962]). Lawrence Bragg was awarded, together
with his father, the Nobel prize for physics in 1915.

The atoms of a crystal, being arranged in a regular periodic pattern, can be thought
of as lying on families of parallel and equidistant planes, similar to the numerous
lines along which the trees of an ordered orchard appear to be arranged. Every plane
of a fixed family reflects a small part of the incident radiation through the electrons
of its atoms, while the greater part goes through and gets reflected over and over by
more inner planes of the family. The reflected rays show a difference in phase, having
gone along different paths (Fig. 6.6). Of all possibilities there are two extreme ones.
Constructive interference in case the path difference ABC in Figure 6.6 is an integer
multiple n of the wavelength λ: the rays reflected by two consecutive planes reinforce
each other. Destructive interference if the path difference is an integer multiple of
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Figure 6.6 Incident rays
and rays reflected by parallel
atomic planes.

half wavelength: the reflected rays annihilate each other (Fig. 6.7) and no radiation
is detected. The remaining directions show intermediate cases.

If d is the interplanar distance and 2θ the angle between the direction of the
incident rays and the chosen direction of observation then by simple trigonometry
AB = BC = d sin θ. Hence Bragg’s law for constructive interference is

2d sin θ = nλ (6.1)

It is right away observed that it requires λ ≤ 2d for diffraction to take place. Since
the distance between adjacent lattice planes in a crystal ranges from a few angstroms

Figure 6.7 Constructive interference (left) and destructive interference (right).
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to a few tens of angstroms, this explains why neither visible nor ultraviolet light can
give rise to diffraction phenomena in crystals (Fig. 6.5).

Most important, Bragg’s law relates the directions of maximum intensity of the
reflected waves (made known by the experiment) to the known wavelength of the
chosen x-rays and to the (unknown) interplanar distance. One single reflection deter-
mines the direction of the reflecting planes—since the normal to them is coplanar
with the incident beam and the reflected one—but it does not allow separate deter-
mination of d and n. Knowledge of all reflections—in the plane determined by the
incident and reflected beam just mentioned—does, since the minimum value of θ,
with the exclusion of θ = 0, which is the incident ray itself, corresponds to the first
reflection (n = 1). In a direction θ satisfying Bragg’s law the reflected waves add to
each other in a resulting wave that at infinity, that is at a great distance with respect
to the dimensions of the crystal, gives rise to one of the spots on the photographic
plate, or more modernly to one of the peaks of intensity detected by a counter. These
are named reflections of first, second, third,. . . order depending upon n = 1, 2, 3, . . .
the lattice planes, being bisectors of the angle 2θ between the incident rays and the
reflected rays (Fig. 6.6), play the role of a reflecting mirror. From this the name of
Bragg reflections is given to the peaks of intensity.

By changing the direction of the incident ray whilemaintaining the crystal fixed in
the same position, or alternatively by rotating the crystal and maintaining unchanged
the direction of the impinging x-rays (method of the rotating crystal), it is possible to
identify experimentally all the geometrical settings (orientations of the crystal with
respect with the incident beam) in which Bragg reflections occur and to measure the
angle between the incident and the reflected beams. These data allow the determina-
tion of families of lattice planes and of the distance d between them, through Bragg’s
law.

In the rotating-crystal method, the crystal is mounted with one of its axes—
or other important crystallographic direction found by inspection—normal to the
monochromatic x-ray beam and with a cylindrical film is placed around it. The axis
of the cylinder coincides with the chosen axis of the crystal which will also be the
axis of rotation. As the crystal rotates, specific sets of planes will make the correct
Bragg angle for reflection, at certain instants. The corresponding spots on the film are
distributed with certain regularities and symmetries due to the suitable choice of the
rotation axis and to the periodic structure of the crystal itself (Fig. 6.8). The crystal
being rotated only around one axis, not every set of parallel planesmeets the condition
to produce a Bragg reflection. For instance those perpendicular to the rotation axis do
not. By rotating the crystal about another axis the complete distribution of reflections
is gradually discovered. In place of a film, a counter can be used and the experiment
automated to keep a record of all the data involved.

Bragg’s law allows the determination of the crystal lattice and unit cell of the
crystalline compounds almost instantaneously.

The unit cell, having to fill up by repetition the entire space, leaving no voids
and showing no overlaps, cannot have just any shape. Indeed the requirement of
periodicity is so strong that there exists only one general type of unit cell, the triclinic,
described in Figure 6.9 (the symbol �=means that equality is not required but it might
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Figure 6.8 Rotating-crystal
method. (B. D. Cullity,
Elements of XRay
Diffraction, Addison-Wesley,
Addison-Wesley, [1978].)

occur). This type specializes into seven different ones. For instance, if all sides and
all angles are equal, the unit cell is a cubic. Each type of cell comes with an array of
symmetries, for the atomic distribution compatible with the periodicity. The case of
no symmetry is included and indeed there are crystalswith no symmetrieswhatsoever,
but most have them.

Symmetries play an important role in crystallography and it is easy to understand
why. For example, if a body is symmetric with respect to a plane, meaning that the
plane cuts the body into two halves such that the reflection of one half produces the
other one (mirror), then the whole body is completely determined once half of it is
known. Hence knowledge of symmetries reduces the task of the determination of the
electron density from the entire unit cell to a specific part of it.

Symmetries, compatible with periodicity of the crystal structures, are rotation
around one axis of 60◦, 90◦, 120◦, 180◦, 360◦ (the identity)—having order of
rotation n equal to 6, 4, 3, 2, 1 respectively—inversion with respect to a point and
rotoinversion. Let us observe that reflection with respect to a plane (mirror) is a
particular rotoinversion (Fig. 6.10). Each of these symmetries leave at least one
point fixed. The set of all symmetries has the mathematical structure of a group,
since the composition of any two of them, as well as the inverse of any of them, is
still a symmetry. By 1890 theGermanmathematicianArthur Schönflies (1853–1928)
had classified all symmetries that three-dimensional periodic structures can have—
simultaneously with Evgraph Stepanovich von Fedorov (1853–1919) (Schönflies
[1891], Fedorov [1885])—including thosewith a component of translation.These last
kind of symmetries generate plane glides (mirror reflection followed by a translation
in the plane of the mirror) and screw axes (rotation followed by a translation parallel
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Figure 6.9 Types of unit cells. The sides a, b, c and the angles α, β, γ are as shown. Triclinic:
a �= b �= c, α �= β �= γ �= 900; Monoclinic: a �= b �= c, α = γ = 900, β �= 900; Orthorhombic:
a �= b �= c, α = β = γ = 900; Tetragonal: a = b �= c, α = β = γ = 900; Rhombohedral:
a = b = c, α = β = γ �= 900; Hexagonal: a = b �= c, α = β = 900, γ = 1200; Cubic:
a = b = c, α = β = γ = 900.

Figure 6.10 Mirror
reflection. The asymmetrical
tetrahedron B, which is the
mirror reflection of A with
respect to the horizontal
plane, can also be obtained
by a 180◦ rotation of A into
C, followed by the inversion
with respect to the origin O.
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Figure 6.11 a) The simple and highly symmetrical structure of ordinary rock salt NaCl. A sodium
atom is at the center of each face and at each vertex, an atom of chlorine is at the center of each
side and at the center of the cube; b) structure of copper; c) structure of diamond. (B. K. Vainshtein,
Modern Crystallography, Springer, [1981].)

to the axis of rotation). In both cases, the translation can only be by an integral
fraction k/n of the lattice periodicities, where n is the order of rotation involved.

The work by Schönflies resulted in a list of groups of symmetries made by 230
entries, each ofwhich is called a space group. Each type of unit cell is compatible only
with a few space groups. There are only two space groups for the triclinic, 13 for the
monoclinic, 59 for the orthorhombic, 68 for the tetragonal, 25 for the rhombohedral,
27 for the hexagonal, and 36 for the cubic (International Tables for x-ray Crystal-
lography [1983], McLachlan [1957]). Meanwhile crystallographers found concrete
examples of all that. This body of knowledge, in the case of simple structures, allows
exclusion of all but a few possible configurations for the distribution of the atoms in
the unit cell. By numerical simulation of the diffraction experiment and by compari-
son with the measured intensities of the Bragg reflections, a unique configuration can
be selected. This is feasible for example with sodium chloride NaCl, ordinary rock
salt (Fig. 6.11), but also with copper, diamond, fluorite CaF2, pyrite FeS2, and calcite
CaCO3. As the number of atoms in each unit cell becomes larger and the complexity
of the structure increases (Fig. 6.12), this simple procedure becomes unwieldy and
does not generate conclusive results. Some experimental work is always required:
It is necessary to find the directions in which diffraction takes place and to record
the intensity of the diffracted ray, but more powerful procedures must be devised to
interpret the experimental data.

6.3 How to see the invisible

To find the electron distribution n(x)—whose maxima determine the position of the
atomic nuclei—amathematical model of the diffraction spectrum is needed since the
diffracted radiation cannot be focused (but only slightly deviated) either with lenses,
as in the optical microscope, or with magnetic fields as in the electron microscope.
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Figure 6.12 Projection on the (b, c) face of the primitive cell of an antibiotic. (Cellai L., Cerrini S.,
Lamba D. [1995], “30-Dechloro-30-methoxy-25-O-methyl-N-methylnaphthomicin A,” Acta Crys-
tallographica, Sect. C, pp. 2060–2064.) (Courtesy of S. Cerrini, Istituto di Strutturistica Chimica,
CNR)

Such a model involves not only the directions of the diffracted rays but also the
intensities, which are in an exact relation with the electron distribution.

In a coordinate system with the origin O set in one of the atoms of the crystal, the
incident radiation of wavelength λ is expressed by

F(x) = F0eik·x
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Figure 6.13 Radiation scattering by crystal electrons.

where x is a point of the crystal and k is a vector having the direction of the incident
radiation and length equal to the wave number k = 2π/λ. Since the time evolution
is of no interest, the time t has been set equal to zero and so it does not appear. An
electron placed at x scatters some of the incident radiation, as shown in Figure 6.13.
At a point R, placed outside the crystal at distance r from x, the scattered radiation
is expressed by F0eik·xeikr/r. The phase k · x+ kr is therefore a function of both the
phase of the incident radiation and of the length r of the path after the scattering. IfR
is at a large distance, compared to the dimensions of the crystal, the approximation

r ∼= R − x cos(x, R)

holds so that
kr ∼= kR − kx cos(x, R).

Denoting by k′ a vector with the same direction as R and same length as k, the
relation

kx cos(x, R) = k′ · x

holds and consequently

(k · x + kr) = (k − k′) · x + kR.

The scattering is caused by the electrons, not by the nuclei of the atoms in the
crystal. The oscillating electric field of the incident x-rays interacts with all charged
particles. In particular it sets into oscillation about its mean position every electron
of the crystal. An oscillating electron keeps accelerating and decelerating, hence
it emits an electromagnetic wave (Section 5.8) that has the same wavelength and

http://dx.doi.org/10.1007/978-1-4899-7989-6_5
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frequency of the incident beam but is changed in phase by λ/2 (the phase change
is the same for all electrons in the crystal and leads to a term of modulus 1 that is
dropped in the mathematical model). The beam scattered by an electron is just the
beam radiated by the electron. The nucleus too is charged, but its extremely large
mass, compared to that of the electron, does not allow any oscillation of appreciable
extent.

The scattering by an atombeing due only to its electrons, it is reasonable to assume
that the amplitude of the scattered radiation is proportional to the electron density
n(x). By making the approximation r ∼= R, the radiation in R is given by

eikR

R

∫

V
n(x)e−i(k′−k)·xdx (6.2)

where the integral is taken over the volume V of the crystal. Since k and k′ have
equal length but different direction (of the incident ray and of the scattered radiation
respectively), the vectorK = k′ − kmeasures the change of direction of the incident
ray, due to the blow of the reflection. With this notation and dropping the constant
factor eikR/R, (6.2) becomes ∫

V
n(x)e−iK·xdx (6.3)

which is recognized to be n̂(K), the Fourier transform of the electron density (Kittel
[1971], Stout, Jensen [1968]).

This very same mathematical model works in general, for liquids and gases as
well. It is natural to inquire why the Fourier image of a crystal contains hundreds
or even thousands of isolated peaks (Bragg reflections), while a liquid has only a
few and a monoatomic gas none at all (see the gaussian curve in Figure 6.14). It all
depends on the electron density function. In a crystal it is periodic. So its spectrum is
discrete and periodic (Section 3.4), itself defining a lattice named a reciprocal lattice.

If the dimensions of the unit cell—the so-called lattice parameters—are a, b, c,
then in the domain of n̂, the reciprocal lattice has periodicities given by2πa−1, 2πb−1,

2πc−1 by the indeterminacy principle (2.17). Therefore a large unit cell generates a
diffraction spectrum denser than a small unit cell.

It may be observed that in the above model K has maximum length 4π/λ, while
the reciprocal lattice is made by an infinite number of points. Nevertheless it is not
really indispensable to know the value of n̂ on all of them. Indeed n̂ tends to zero at
infinity (Section 3.3) andmoreover it can be set equal to zero outside a solid sphere of
radius equal to the reciprocal of the dimension of the smallest detail to be rendered.
This dimension is 1 to 1.7 Å if one wishes to “separate” atoms. Inside such a sphere,
n̂ is nonzero only at the points of the reciprocal lattice. Hence, to measure nonzero
values of it, precise circumstances have to hold. One has to identify an incident beam
k and a corresponding diffracted beam k′ such that the differenceK is a point of the
reciprocal lattice. This means that the coordinates of K must be integer multiples of

http://dx.doi.org/10.1007/978-1-4899-7989-6_3
http://dx.doi.org/10.1007/978-1-4899-7989-6_2
http://dx.doi.org/10.1007/978-1-4899-7989-6_3
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Figure 6.14 Fourier images
of a crystal, a liquid, and a
monoatomic gas.

2πa−1, 2πb−1, 2πc−1 Since k and k′ have fixed length 2π/λ, only their directions
can vary. Usually the direction of the incident radiation k is varied by keeping fixed
the incident beam and rotating the crystal (method of the rotating crystal).

6.4 The phase problem and the direct methods

The solution to the problem seems now readily provided by the inversion formula
(2.14). However the Fourier transform n̂(K) is in general a complex function, defined
by a couple of real-valued functions |n̂(K)| and φ(K), called modulus and argument
(or phase) respectively, as indicated by the formula

n̂(K) = |n̂(K)|eiφ(K)

The intensities of the diffracted x-rays can certainly be measured experimentally,
being proportional to the blackening of the photographic plate or to the area beneath
a peak of intensity such as measured by a counter. So |n̂(K)| is known. Unfortunately
there is no experimental technique to measure the phase. Half of the information
needed to reconstruct the crystalline structure is therefore unavailable. In this consists
the phase problem, of central importance in crystallography.

http://dx.doi.org/10.1007/978-1-4899-7989-6_2
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Ascribing arbitrary values to the phase, one could reconstruct amyriadof functions
n(x) by Fourier inversion formula, all consistent with the measured intensities. Note
that in the particularly simple case in which the choice is in between the + or −
sign, corresponding to the phases 0◦ and 180◦, the number of possible choices is 210,
with ten atoms in the unit cell, and 220, with 20 atoms. The number of all possible
combinations of signs is seen to grow exponentially with the number of atoms,
quickly reaching huge numbers.

This seemingly unsolvable problem found its first positive results at the begin-
nings of the 1950s in the pioneering work, by the chemist Jerome Karle and the
mathematician Herbert Hauptman, published in a series of papers in Acta Crys-
tallographica in the years 1950, 1952, 1953, and 1954 (see also Karle-Hauptman
[1953], McLachlan [1957]). With computers performing the many required calcula-
tions, their method could reduce the work of years to the work of days. The method,
only gradually accepted by crystallographers because of the unfamiliar mathematical
concepts and terminology, over time has been used to determine the structure of the
small molecules of many hormones, vitamins, and antibiotics. The two American
scientists shared the Nobel prize for chemistry in 1985.

The electronic density is a nonnegative function that takes on large values in the
immediate vicinity of the centers of the atoms,while in between atoms it is very small.
Moreover, for a given a molecule, the number of atoms (but not their positions) is
usually a known quantity. Already from these general considerations it is apparent
what severe restrictions the electron density must obey. Taking advantage of that and
introducing methods belonging to the theory of probability, it is possible to assign
phases probabilistically to the Bragg reflections by successive approximations start-
ing with the reflections of highest intensity (Karl-Hauptman [1953], Lipson-Cochran
[1966], Hauptman [1972], Giacovazzo et al. [1992]). These kinds of procedures are
known as “direct methods.”

The directmethods havemade the determination of the structure ofmoleculeswith
up to a few hundreds of atoms a matter of routine. Occasionally they have been used
for molecules of several hundred or even a thousand atoms. However, as the number
of atoms per molecule increases, the probability by which the phases are assigned
to the Bragg reflections decreases. The problem of strengthening these techniques to
solve complex biological structures, such as those of proteins and nucleic acids, is
still open. The method of “heavy atoms” (Section 6.7) is an alternative procedure.

6.5 Brief history of genetics

The determination of the structure of genetic material by James Watson and Francis
Crick [1953]—working at the Cavendish Laboratory in Cambridge (U.K.), Lawrence
Bragg director—is certainly one of the most imaginative discoveries of the twentieth
century and one of the salient points in the history of genetics.

The ability of living organisms to pass their qualities to offsprings—for instance
hair color, a large nose, big lips—is so obvious that it was quickly noticed by early
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researchers. Back in human history, the little knowledge of heredity that was acquired
led to the improvement of domestic animals and plants by inbreeding and crossbreed-
ing, while legends flourished about bizarre crossbreeds.

The great physician Hippocrates attempted an explanation, but it was the philoso-
pher Aristotle who got closer. Showing deep intuition Aristotle rejected the belief—
ingrained in such common expressions as “half blood,” “new blood,” “blue blood”—
of biological heredity as transmission from generation to generation of parts of the
body. In his use of the word dynamis (power) can be traced the idea that heredity is
due to transmission of information leading to the development of the embryo. In the
twenty-three centuries that followed, the Aristotelian insight was abandoned without
exception and more primitive ideas came back. Indeed heredity as a science did not
really begin until the second half of the nineteenth century.

The first to make experiments serving significantly as a basis for a theory was
the Abbot Gregor Mendel (1822–1884) of the Augustinian monastery in Brünn,
then Austro-Hungarian territory. Mendel began by growing 32 different types of pea
plants in the small garden of his monastery and studied them for two years, looking
for clearly defined contrasting traits. He selected seven such characteristics: seed
form smooth or wrinkled, seed color yellow or green, and so on. Then he proceeded
with experimental crossing of species, keeping track of the chosen traits through the
first, second, and successive generations of a species. His startling new idea was that
exact rules could be found in the reproduction of living organisms.

Relying on a large sample of data, he was led to the conviction that hereditary
characters are carried and passed on to subsequent generations by discrete factors,
the genes, which Mendel called “elements.” Furthermore he speculated that genes
come in pairs, one inherited from the ovule, the other from the pollen. In Mendel’s
records was the evidence that inheritance is not a blending of characteristics—as it
was thought—but consists in discrete units that are parceled out and reassorted in
each generation.

It was 1865 when Mendel presented his conclusions at meetings of the National
Science Society inBrünn—inwhich he used to take an active part—and the following
year his article Versuche über Pflanzenhybriden (Experiments with Plant Hybrids)
appeared in the transactions of the society. At least a hundred and twenty libraries,
and surely all major ones, had it on their bookshelves but the article went unnoticed
for the next 35 years.

Mendelwas fully aware of having broken newground, for no one had been able “to
determine the number of different forms under which the offspring of hybrids appear,
or to arrange these forms with certainty according to their separate generations, or
definitely to ascertain their statistical relations.” Yet the relevance and implications
of his discoveries were not grasped. Also his methods were unusual, relying on
mathematics. This might help to explain the poor reception.

Mendel’s extraordinary discovery escaped even his great contemporary Charles
Darwin (1809–1882) in spite of the difficulties met by his theory of evolution in
fitting in with the accepted theory of blending inheritance, thus hindering universal
acceptance of evolution. Indeed sexual reproduction would tend to rapidly produce
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uniformity making inexplicable resemblances that could skip one or several gener-
ations before suddenly reappearing.

In the years to follow, the studies of life underwent considerable changes that
made them more receptive to Mendel’s discoveries. Better microscopes and the use
of stains to bring out subcellular characteristics led to a central area (the nucleus)
being distinguished from the surrounding area (the cytoplasm) inside the cell, which
is the fundamental unit of living organisms. Studies on plants and animal embryos
made clear that cells are not formed by assembly of their constituents but by cellular
division of the fertilized egg. It was then speculated that the unfertilized egg and the
sperm contributed equally to hereditary characters. Since cytological analysis was
showing that the egg and the sperm had nuclei of similar dimensions, it was natural
to hold the nucleus responsible for heredity. Further studies revealed that inside
the nucleus there are rodlike objects, varying with the species under consideration,
grouped in homologous pairs (Fig. 6.15).

It was then thought that along these rods, called chromosomes, the hereditary
units were lined up and it was observed that at the formation of egg and sperm the
number of chromosomes splits in two, to recombine in the fertilized egg with half
of the material coming from the maternal side and half from the paternal side. These
experimental findings were pointing in the same direction as shown by Mendel. At

Figure 6.15 Chromosomes of a human male in metaphase of mitosis, the stage at which each
chromosome consists of two identical chromatids that will separate in later phases.Morphologically
similar chromosomes are grouped together, as shown. (Pediatric Research Unit, Guy’s Hospital
Medical School, London)
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the beginning of 1900, three European botanists, writing independently about some
experiments performed on peas or flowers similar to the ones carried out by Mendel,
found Mendel’s article while searching for the literature on the subject and gave this
author the deserved credit. The theory of genes was later recognized to apply not
only to plants but also to animals including man.

Genetic studies were further accelerated in 1910 by the experiments carried out by
the American embryologist Thomas Morgan (1866–1945) on the drosophila. This
small fruit fly had many advantages to offer being small, easy to raise, reaching
maturity in only two weeks, and finally having only four pairs of chromosomes,
compared to seven in the case of peas and 23 in man. Morgan’s studies identified the
chromosomes linked to sex—XX in the female and XY in the male—and backed the
abstract entities inMendel’s work by concrete material visible under the microscope.
Morgan showed that each gene could be assigned a precise chromosome region and
therefore had a physical basis on the chromosome structure. For his discovery of the
hereditary transmission mechanism in drosophila, he was awarded the Nobel prize
for medicine in 1933.

It is worth pointing out that already from these initial results great advances fol-
lowed in agriculture—allowing hybridization to be performed systematically—and
in medicine where the genetic cause of some diseases started to be recognized. How-
ever the concept of the gene—introduced in 1909 by the Danish botanist Wilhelm
Johannsen—remained an abstraction until the 1950s; nor did anyone understand the
mechanisms through which genes control the physiology of the cells or through
which they replicate themselves during cellular reproduction.

It was necessary to start again from the chromosomes, investigate their chemical
composition, and show them to be composed of genetic material. Already in 1869,
the same decade of Mendel’s contribution, at the University of Tübingen the chemist
of Swiss origin Friedrich Miescher had found in the nuclei of white blood cells a
substance showing unique characteristics. It was called nucleic acid in 1874 when
the sameMiescher separated it into a protein and an acidmolecule; it was later named
deoxyribonucleic acid (DNA) to distinguish it from the closely related ribonucleic
acid also isolated from cells. Then the DNA was shown to be present in all cells and
located precisely in the chromosomes.

After being separated from the proteins, nucleic acids can be broken down into
smaller units, the nucleotides. Each nucleotide in turn is composed by a sugar,
called deoxyribose, a phosphate group attached to the sugar at position 5, and nitro-
gen groups attached to each sugar molecule at position 1 (Fig. 6.16). The nitro-
gen groups, called bases, are of four different types: thymine, cytosine, adenine,
and guanine. Since each base characterizes the nucleotide that carries it, there are
four different deoxyribose nucleotides in the DNA. Such a small number led to the
assumption that the DNAmolecule was a simple one, unable to sustain the complex-
ity of biological heredity. Consequently DNA received little attention until 1940,
when some biochemists pointed out that DNA is not composed by a sequence of
four nucleotides that repeats itself unchanged, but it is a very long chain made by
hundreds or even thousands of copies of the four nucleotides, arranged in sequences
that differ according to the number of the nucleotides and the order they appear in
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Figure 6.16 Chemical
structure of deoxyribose.
Nucleotides consist of
deoxyribose, a phosphate
group attached to the carbon
atom at position 5, and a
nitrogen bearing group
attached at position 1 (single
hydrogen atoms have been
omitted).

depending on the species. The length and possible variations of DNA could indeed
account for the great biological diversity. To give an example, in human beings the
total number of nucleotides of the DNA of a single cell is more than three billion.

6.6 DNA through x-rays

Meanwhile some of Lawrence Bragg’s students had perfected the crystallographic
methods spearheaded by their teacher and were applying them already in the 1930s
to determine the spatial structure of organic molecules of increasing complexity.

The first big success in this field was achieved in 1951 by Linus Pauling, who
discovered the helical structure of an important protein (myoglobin). His work was
based on the construction of models and on his formidable intuition more than on
the analytical methods of crystallographers. At that stage it became reasonable to
wonder about the spatial structure of the DNA molecule.

Three teams began working on the project: in Cambridge the 23-year-old James
Watson, just arrived from the US—from the rigorous teaching of Salvador Luria—to
specialize in biochemistry and the physicist Francis Crick always in ebullience but so
far inconclusive; in London the experimentalist MauriceWilkins, physicist, and Ros-
alind Franklin, crystallographer; at Pasadena, in California, the very same Pauling.
Knowing that the genial Linus—“unquestionably the world’s most astute chemist,”
in Watson’s own words—was also working at the problem caused apprehension in
the competing teams.

Pauling askedWilkins to see the x-ray pictures ofDNA that Franklinwas obtaining
in his laboratory. Wilkins took his time. Even so Pauling was first in writing up a
paper for publication. His model was a three-chain helix with the sugar phosphate
backbone in the center and the bases on the outside. And the unforeseeable happened,
for the chemistry of the model was erroneous. Watson was to realize something was
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wrong with it as soon as he had the manuscript, for the location of the essential atoms
carried a superficial resemblance to an aborted model he and Crick had pondered
about fifteen months earlier. Watson and Crick were relieved and estimated it would
take anywhere up to six weeks before Linus was back in full-time pursuit of DNA,
calculating that as soon as the paper appeared the flaw in the chemistry of the model
would be pointed out.

Watson went to London to inform his contacts there. Franklin had never believed
in helices; in her mind not a shred of evidence permitted Linus, or anyone else,
to postulate a helical structure. Then Watson talked to Wilkins and learned that
Rosalind was about to leave the lab, that together with his assistant Wilkins was
quietly duplicating her x-ray work, and most interesting that she had evidence of a
new three-dimensional form of DNA, arising from an x-ray pattern she had recently
obtained from a highly oriented DNA fiber. When Watson asked what the pattern
was like, Wilkins went into an adjacent room to pick up a print of the new form
(Fig. 6.17). “The instant I saw the picture my pulse began to race. The pattern was
unbelievably simpler than those obtained previously. Moreover, the black cross of
reflections that dominated the picture could arise only from a helical structure” and
“conceivably, after only a few minutes’ calculations, the number of chains in the
molecule could be fixed” (Watson [1968]). Pressing Wilkins further Watson learned
that together with a colleague he had done some work with three-chain models, but
“nothing exciting had come up.”

On the one hand Watson became convinced that the two-chain rejection of
Wilkins’ group was not a full proof. On the other hand he was convinced that “impor-
tant biological objects come in pairs.” He returned to Cambridge to tell that to Crick.
Indeed it was not long before they worked out the structure: The helices were two
in number, the backbone on the outside and the bases inside (Fig. 6.18). The two

Figure 6.17 The diffraction
spectrum of a highly oriented
DNA fiber obtained by
Rosalind Franklin in 1952.
The fiber axis is vertical.
(Reprinted with permission
from Franklin R. E., Gosling
R. G. [1953], “Molecular
configuration in sodium
thymonucleate,” Nature 171,
pp. 740-741, © Macmillan
Magazines Limited)
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Figure 6.18 The
double-stranded helix
structure of DNA. (Reprinted
with permission from
Watson J. D., Crick F. H. C.
[1953], “Molecular structure
of nucleic acids,” Nature
171, pp. 737-738, ©
Macmillan Magazine
Limited)

ribbons in the picture symbolize the two phosphate sugar chains and the horizontal
rungs the pair of bases holding the chains together. The vertical line stands for the
fiber axis. The DNA molecules tightly packed inside the cells, once extracted, are
pulled and take on the shape of a fiber. One might think of a long and thin rod made
by DNAmolecules, rotated and offset one with respect to the other. Then the diffrac-
tion experiment can take place. The structure is not periodic in the three dimensions,
it is not a crystal and consequently the spectrum is not discrete (Section 3.4). The
phase problem becomes unsurpassable for the phase ought to be assigned on a con-
tinuum, like the extended dark area surrounding the central “cross” in Figure 6.17.
Themethod then consists in making an “educated guess” for a hypothetical structure,
relative to which the Fourier transform is computed. Finally the spectrum so obtained

http://dx.doi.org/10.1007/978-1-4899-7989-6_3
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has to be matched against the experimental data. This procedure is known as “trial
and error.”

Already in Cochran, Crick, and Vand [1952] the intensity distribution in the dif-
fraction pattern of a series of point masses, equally spaced along a helix, had been
computed and turned out to involve squares of Bessel functions (see also Wilkins,
Stokes, and Wilson [1953]). As Watson [1968] reports, of the two it was Crick who
knew the mathematics it takes to interpret diffraction spectra and even considered
writing up its simple rules under the curious title “Fourier Transforms for the Bird-
watcher.”

So from Franklin’s experimental data a few important numbers were drawn. If
one pictures the double helix as a spiral staircase, the diameter is about 20 Å and
the rungs are 3.4 Å apart, each one rotated by 36◦ with respect to the previous one.
Hence ten steps mark one complete turn. The structure is stiffened by an enormous
number of weak hydrogen bonds, each consisting of a positively charged hydrogen
atom that acts as a bridge between two negatively charged atoms, the first an oxygen
atom in a base and the second a nitrogen atom in the associated base.

In Watson and Crick [1953b], the authors cautiously write about their model, “So
far as we can tell, it is roughly compatible with the experimental data, but it must
be regarded as unproved until it has been checked against more exact results,” as it
was. Watson and Crick became famous all over the world and in 1962 were awarded,
together with Wilkins, the Nobel prize for medicine.

TheDNA structure immediately suggested “a possible copyingmechanism for the
genetic material” (Watson, Crick [1953b]). The DNA helix unzips down the middle
and divides into two separate helices, as the bases break apart at the hydrogen bonds.
Since bases bind in pairs only selectively—adenine goes only with thymine and
guanine only with cytosine—each filament acts as a template for an exact copy of
the original double helix, using the raw material (nucleotides) in the cell and through
the reforming of the hydrogen bonds.

It is truly a wonder to think that the DNA spirals, approximately one meter long,
are so thin and tightly packed to fit into a cell whose transverse dimension can be
even only a few microns and that the genetic material transmitted from generation to
generation consists of a few thousandths of a gram, to grow several billion times in
the adult organism. Indeed each cell has a complete copy of the genetic instructions of
the organism, even though different cells express different parts of the genome. This
means that a cell of the skin, of the bones, or of the nerves, even though endowedwith
about the same genes, have different functions as a result of a selective expression
or repression of certain genes.

This body of knowledge has been fundamental for the development of genetic
therapy. The first patients on which they were attempted—at the National Institutes
of Health in Bethesda—two girls were Ashanti De Silva and Cynthia Cutshall, who
were vulnerable to every type of infection because of a severe immunodeficiency
of genetic origin (Time International, June 7, 1993). Even though vital scientific
issues are still to be resolved—like possible immune reactions to viruses, used in
trials to convey genes into the patient’s cells—much hope for the treatment of genetic
disorders is tied to this therapy.
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6.7 Protein structure: work for a century

The human genome has been essentially deciphered. It is a recent achievement well
covered by the press. Next in line are proteins which are assembled according to
instructions set by the genes. All human proteins, expected to be over a million in
number, need to be identified and their spatial structure needs to be determined to
understand how they work. This has been achieved for only a small percentage of
the known proteins, so that the work that remains to be done is enormous. It might
easily take a century. As results are obtained, new drugs could be devised, ultimately
on an individual basis when needed.

Proteins are macromolecules, in the shape of a long chain or multiple chains,
composed by repeating blocks named aminoacids, which come in 21 most common
kinds. The total number of amino acids in a chain runs into the hundreds if not
thousands. Two proteins can be made by the very same amino acids and yet be
different—having different tasks—due to the different order the amino acids appear
in the chain. The amino acids sequence is being genetically determined. For instance
sickle-cell anemia is an inherited disease caused by the replacement of just two amino
acids among the about 600 that make up the four chains (subunits) of the hemoglobin
molecule.

Proteins regulate the metabolic processes in living organisms and for a long time
they were thought to be repositories of hereditary characters until experimental evi-
dence pointed in a different direction. Examples of proteins are collagen, protein
of the bones, tendons, ligaments, and skin; keratin, protein of the hair and nails;
hemoglobin, the oxygen-bearing protein of the blood; enzymes, which catalyze chem-
ical reactions in living organisms; hormones, true chemicalmessengers between parts
of the body; antibodies or immunoglobulins.

The protein diffraction spectrum is of fantastic complexity (Fig. 6.19). Remark-
able is the task of determining the spatial distribution of the thousands of their
atoms, actually impossible until quite recently. Take for example hemoglobin, the
most important protein of the red cells, each containing about 280 million molecules
of it. The single molecule is large even for today’s standards, being composed of
574 amino acids spatially arranged along four chains intertwining in a complicated
way, as M. F. Perutz discovered in 1960 (Perutz [1964]). Perutz solved the structure
even though not as finely as to indicate the positions of the approximately 10,000
atoms of hydrogen, carbon, nitrogen, oxygen, and sulfur in addition to four most
important atoms of iron. In particular he could not locate the about 4,000 hydro-
gen atoms. Their scattering, due to one electron only, is weak. Each chain enfolds a
heme group—the structure that binds oxygen to the molecule—carrying at its cen-
ter one of the four atoms of iron. The method of “heavy atoms”—now commonly
employed when the direct methods are inadequate—was developed by crystallog-
raphers to solve the phase problem in relatively simple structures. Perutz, working
in Cambridge (U.K.), discovered it could also be applied to proteins. The method
consists in modifying the molecule of the substance under investigation by attaching
atoms of heavy metals—such as mercury, gold, or platinum—to definite positions
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Figure 6.19 A recent image of the diffraction spectrum of a hemoglobin crystal. (Courtesy of M.
F. Perutz, MRC Laboratory of Molecular Biology, Cambridge)

in the structure. On this occasion Perutz used mercury. The presence of a few atoms
of mercury in various positions did not modify appreciably the way the molecule
organized itself in a crystal, precisely because of the molecule’s big size. So when
on his first x-ray photograph the diffraction spots appeared in the same position as
in the mercury-free protein but with intensities significantly altered—thus providing
information on the phase—Perutz in excitement rushed to Lawrence Bragg’s office
to tell him that the phase problem was solved and thus the structural problem. True,
but only in principle, for an unexpected further five years of work were ahead.

The diffraction spectrum of a protein crystal is made by tens of thousands of
reflections. Their intensities have to be measured from a crystal of the pure protein
and then again in the patterns of one or more compounds of the protein—properly
called derivatives—each with heavy atoms attached to different positions in the
molecule. In the end tens of millions of numbers must be handled. This would have
surely been an impossible task if computers—employed in crystallography from the
end of the 1950s—did not have adequate speed.

So, how much time did Perutz devote to the purpose? As he himself writes, “In
1937, a year after I entered the University of Cambridge as a graduate student, I
chose the x-ray analysis of hemoglobin, as the subject of my research.” At the time
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the most complex organic substance whose structure had yet been determined by
x-ray analysis was a molecule containing 58 atoms. Then Perutz adds, “Fortunately
the examiners of my doctoral thesis did not insist on a determination of the structure,
otherwise I should have had to remain a graduate student for 23 years.” He was
awarded the Nobel prize for chemistry in 1962.

Since then enormous advances have been made in automating the experiment
and in the data processing by computers. Software packages make extensive use of
the FFT, and specially developed graphics routines allow accurate images of the
molecules, to be displayed on the screen directly derived from computations. It is
also possible to rotate the images to observe themolecules from different viewpoints,
as in the usual visual exploration, and to enlarge details.

Going back to the structure determination it must be added that most of the time is
presently taken up by growing the crystal. Indeed one can claim that the true problem
of contemporary crystallography is the availability of crystals (McPherson [1989]).
Only a small fraction of the thousands of known proteins have been crystallized.
This process is not as simple a matter as in the case of common salt for which it
suffices to let sea water evaporate. Protein crystals do contain a large amount of
solvent, ranging from 30 to 80%. As a result they disintegrate in the absence of
mother liquor, they are soft and crush easily making them very difficult to handle.
In addition protein crystals exhibit weak optical properties and usually they diffract
the x-radiation poorly. Therefore the growth of high quality protein crystals, i. e.,
suitable for an x-ray analysis, is a time-consuming step. Protein crystals are grown
fromwater solutions in strictly controlled conditions (temperature, acid–base balance
(pH), etc.) because proteins, as well as nucleic acids, tend to lose their structure in
moderately hostile conditions. For this reason it may happen that the crystals turn
out to be not sufficiently “well ordered” because they include heterogeneous forms
of the protein. The diffraction pattern from such crystals usually extends to low-
medium resolution (2.0–3.0 Å). There are few experts in this field and the methods
are essentially empirical.

High quality crystals might require microgravity conditions for growth. This is
the case of the crystals of the collagen-like polypeptide that were grown on board
the Shuttle Discovery during the eight days space mission STS-95, which received
much public attention because the 77-year-old astronaut John Glenn was among
the crew members. This crystallization experiment was very successful and led to
well-diffracting space-grown crystals (Fig. 6.20) (Berisio et al. [2000]). The high
resolution (1.3Å) x-ray data collected from these crystals allowed the determination
of subtle structural details of the triple helix that are peculiar of collagen and other
fibrous proteins. This deeper insight contributed to the clarification of the reasons
collagen is so stable (Berisio et al. [2001]).

The understanding of the structure and interaction mechanisms of natural macro-
molecules is of fundamental importance for biotechnological industries aiming to
producemore effective drugs and to develop cerealsmore resistant to pest ormarginal
weather conditions. Other techniques come to the rescue, such as nuclear magnetic
spectroscopy (Chapter 8).

http://dx.doi.org/10.1007/978-1-4899-7989-6_8
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Figure 6.20 Crystals grown on board the Shuttle Discovery during the space mission STS-95 of
October 1998. The linear dimensions are of the order of a millimeter. The picture was taken at the
Kennedy Space Center the day after landing. (Courtesy of A. Zagari, Dipartimento di Chimica,
Università di Napoli)

6.8 Seeing the hydrogen atom

In recent last years, thanks to the use of synchrotron beamlines (Chapter 5), to fast
and accurate detectors, and improved crystallization procedures (Chayen [1997]),
protein structures have been reconstructed at extremely high resolution as well as
time-resolved, revealing features that can provide clues to protein function.

In Berisio et al. [1999] the process of deprotonation in a crystalline environment
is captured by a sequence of snapshots (Fig. 6.21). As the authors write, “Until quite
recently, there was a common belief that in protein x-ray structure determinations
hydrogen atoms could not be located and their positions had to be calculated from the
known coordinates of C, N andO atoms (Jeffery, Saenger [1981]).” The images show
a significant effect of pH∗ on a protein structure (bovine pancreatic Ribonuclease A)
in the crystalline state. The hydrogen linked to the Nδ1 atom is present over the whole
pH∗ range, from 5.2 to 8.8, while the hydrogen linked to the Nδ2 atom is released at
high pH∗ values. (The above crystals have been grown and manipulated in a water–
alcohol solution. While the commonly known pH refers to water systems, pH∗ refers
to water–alcohol systems. Yet pH and pH∗ measure essentially the same physical
entity, i.e., the level of acidity.)

http://dx.doi.org/10.1007/978-1-4899-7989-6_5
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Figure 6.21 Structural features of an enzyme. The balls indicate atoms, the sticks indicate atomic
bonds, and the surroundingweb are the electronic density’s level sets. The sequence of images shows
the release of the proton linked to the Nδ2 atom as the pH∗ increases; in contrast, the hydrogen
linked to the Nδ1 atom is present over the whole range. The resolution of the six structures falls in the
interval 1.05–1.15 Å. (Reprinted with permission from Berisio et al. [1999] “Protein titration in the
crystal state,” J. Mol. Biol. 292, pp. 845–854.) (Courtesy of R. Berisio, Centro di Biocristallografia,
CNR)

Approximately 1.0 mm ×0.5 mm ×0.2 mm are the dimensions of the crystals
used. The protein itself is medium size, being made of 124 amino acids. The unit cell
is 30.4 Å × 38.4 Å × 53.3 Å with angles α = 90◦, β = 105.7◦, and γ = 90◦. The
diffraction data were collected at the storage ring DESY in Hamburg (Germany).

6.9 Vision at the nanosecond: a time-resolved structure

The biological activity of macromolecules is accompanied by rapid structural
changes. From a femtosecond to a millisecond or longer is the lifetime of an interme-
diate. To elucidate the bases of biochemical mechanisms, structural studies of inter-
mediates are carried out. This may be done by artificially prolonging their lifetime
or by applying very fast x-ray crystallographic techniques to authentic short-lived
intermediates.
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Table 6.1 Submultiples of
the second (s).

millisecond ms = 10−3s

microsecond μs = 10−6s

nanosecond ns = 10−9s

picosecond ps = 10−12s

femtosecond fs = 10−15s

attosecond as = 10−18s

Time-resolved studies using x-rays, yet at the beginning, take advantage of
an intrinsic property of synchrotrons: generation of x-ray pulses 50–150 ps long
(Chapter 5). This feature could not be utilized before the synchrotron’s third gen-
eration, for single pulses were not sufficiently intense then. In Srajer et al. [1996]
structural changes that occur in the carbonmonoxide complex ofmyoglobin (MbCO)
at room temperature on CO photodissociation have been recorded with nanosecond
time resolution. Photolysis was initiated by a 7.5 ns laser pulse and monitored by a
150 ps x-ray exposure.

Fromx-raydiffractiondata collected at theEuropeanSynchrotronRadiationFacil-
ity in Grenoble, the pictures in Figure 6.22 have been obtained. They feature 1.8 Å
resolution and six time delays between laser and x-ray pulses: 4 ns (150 ps x-ray
exposure), 1 μs, 7. 5μs, 50.5μ s, 350μ s, and 1.9 ms. The pictures show difference
maps between the average structure, at the listed time delays, and the stable MbCO
structure. The prominent (negative) feature labeled CO corresponds to loss of CO
upon photolysis. The magnitude of this feature declines with time as dissociated CO
recombines.

The typical dimensions of the crystals were 0.4 mm ×0.3 mm ×0.07 mm. The
unit cell is monoclinic with dimensions a = 64.5Å, b = 30.8Å, and c = 34.8Å, and
angles α = 90◦, β = 105.8◦, and γ = 90◦.

Fast laser pulses are an essential tool for understanding biochemical mecha-
nisms. As pulses in the femtosecond range were produced, femtochemistry—for
which the Nobel prize in chemistry was awarded in 1999 to Ahmed Zewail—could
develop. Attosecond pulses were obtained recently, as announced in Corkum [2000]
(Table 6.1).

http://dx.doi.org/10.1007/978-1-4899-7989-6_5
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Figure 6.22 a) Reference difference map calculated from deoxy Mb and MbCO; b) 4 nanosecond
time delay after CO photodissociation; c) 1 μs (labeled); d) 7.5 μs; e) 50. 5μs; f) 350μ s. (Courtesy
of V. Srajer, Department of Biochemistry and Molecular Biology, University of Chicago)



Chapter 7
The Radon Transform and Computerized
Tomography

7.1 Computerized axial tomography, a technique
from the 1970s

The word tomography comes from the Greek “tomos” meaning cut or slice. Com-
puterized axial tomography (CAT), also referred to simply as computed tomography
(CT), has been a major event in diagnostic medicine and brought a revolution in
radiology together with MRI, which followed later.

It is based on a mathematical relation, called the Radon transform, advanced in
1917 by the Bohemian mathematician Johann Radon (1887–1956) in a paper titled
“On the determination of functions from their integrals along certain manifolds.”
Radonwas awell-knownandwell-readmathematician, yet the important applications
that were to come for the Radon transform were hardly foreseen at the time.

The first application due toRonaldBracewell [1956], who further pursued the sub-
ject togetherwithA.Riddle [1967], took place in radioastronomy.Bracewell obtained
images of the Sun in the microwave region although the available antennas could
only measure the total intensity along narrow strips. Using several measurements,
or “strip sums,” in different directions he produced an image of the sun determining
those regions that emit microwave radiation.

In medicine, early work on image reconstruction was done by William Olden-
dorf [1961] and jointly by D. Kuhl and R. Edwards [1963]. In particular Oldendorf
showed experimentally that smaller variations in x-ray absorption could be detected
if differences in numbers of photons rather than in film density were recorded.

The mathematical and physical foundations of CT scans were established by the
South African born physicist Allan MacLeod Cormack [1963, 1964] while at Tufts
University, Massachusetts. His main field of research was subatomic particles. A
part-time position as a physicist in a hospital radiology department was the occasion
that aroused his interest in the problemof x-ray imaging of tissues of different density.
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In 1970, the English electrical engineer Godfrey Newbold Hounsfield, member of
the Royal Air Force during World War II and expert in electronics and radar, devel-
oped a head scanner at the Center Research Laboratories of EMI Ltd., following an
idea originating in his work on pattern recognition. The scanner was later installed at
Atkinson Morley’s Hospital in Wimbledon, England, where in 1972 the first clinical
test of computerized tomography was performed successfully. Also in 1972 British
patent No. 1283915 was issued in London for: “Amethod of and apparatus for exam-
ination of a body by radiation such as x-ray or gamma radiation.” The Hounsfield’s
scanner by 1973 was the first tomographic equipment to give images sufficiently
accurate to be clinically useful and was perhaps the greatest single advance in the
field of radiology after the discovery of x-rays in 1895 (Section 5.5).

Since then different companies have developed head and whole body x-ray scan-
ners that have brought dramatic changes in the field of medical diagnosis radiology
by making available images of previously inaccessible parts of the body, particularly
the brain. Prior to the introduction of this technique, standard x-ray pictures of the
brain were generally of little use, being blurred beyond recognition by the skull.
A useful x-ray image of the brain’s vascular system required procedures involving
a few days of hospitalization. Such procedures included injection of a dye, or an
“air scan,” during which the lower spine was injected with gas that, flowing upward,
would fill, and outline the brain cavities. CT made available detailed cross sections
of the brain that eliminated the need of “air scans” and greatly reduced the use of
dyes. At the same time the amount of x-rays absorbed by the patient was reduced to
a fraction.

Cormack and Hounsfield shared the Nobel prize for medicine in 1979 for their
contributions to the development of this diagnostic technique.

In suitable units, the density of head tissues varies from 1 to 1.5 with the exception
of bone tissue which has density 2. Some features of medical interest are associated
with density changes that might be as small as 0.005. Therefore the problem is to
reconstruct the tissue density at a sufficient number of points with adequate accuracy.

For the reconstruction problem different approaches have been taken. Iterative
algorithms, as in Gordon et al. [1970], Herman, Rowland [1973], and Crowther,
Klug [1974], work without the Radon transform being introduced. The original EMI
machine used a type of iterative algorithm. To determine the density function, which
is assumed to be piecewise constant on the squares of a grid, a system of equations
is solved in the unknown values of the density, using the data (projections) obtained
from the x-ray experiment.

Bracewell’s original technique used the method of back projections and inverted
the Radon transform by convolution and Fourier transformation as most modern
machines do (Natterer [1986], Engl et al. [1996],Macovski [1983],Helgason [1980]).
This kind of method not only is faster but generally gives reconstructions with better
accuracy and spatial resolution. Besides these two major types of algorithms other
methods have been developed to address the reconstruction problem. An overview
can be found in Herman and Lewitt [1979].

http://dx.doi.org/10.1007/978-1-4899-7989-6_5
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7.2 Beyond classical radiology

The essence of classical radiology consists of taking advantage of the power of x-rays
to penetrate tissues. Depending on the density of the tissue, the radiation is absorbed
differently or equivalently transmitted differently. So when it emerges from the body
it produces on a photographic plate or film an image, a “shadow” of the structures
of different densities it went through.

The capability to distinguish between structures is limited by at least two factors.
First the x-ray absorption of adjacent structures or organs has to be significantly
different to produce a notable contrast in the image. Conventional radiology can reli-
ably distinguish only between the absorptions of air, “soft tissue” and “bone.” Bones,
absorbing much more than other tissues, are easily recognized; similarly normal and
abnormal structures in the lungs are outlined by the surrounding air. Regions with
similar x-ray transmittance, such as muscle, blood, organs, and generally most of the
“soft tissue” of the body, cannot be easily distinguished from one another. Second
the resulting x-ray image, being a projection of all the overlying structures superim-
posed on one another, turns out to be a kind of “multiple exposure” made by many
hypothetical pictures, each of a thin slice of the body (Fig. 7.1). As a consequence,
for instance, every detail lined up with the denser bone tissue tends to be excluded.
To overcome the limitation mentioned first, that is poor resolution in case of insuffi-
ciently different electronic densities, various “contrast agents” are employed. These
substances, like barium salts and iodinated compounds, are apt to enhance contrast,
having high electronic density. Chiefly used to evidence the hollow lumen of the
alimentary tract, or of blood vessels and arteries, they produce images that, in certain
cases, might still be of difficult interpretation. Instead, generally speaking, the brain
and other solid organs like the pancreas and liver, together with surrounding regions,
are particularly difficult to study radiologically.

The second limitation, due to the overlying structures, is addressed by the tech-
nique of stratigraphy. During prolonged exposures, the x-ray source is moved above
the patient along a straight line while it continues to emit radiation. At the same
time the photographic plate, below the patient, is moved in the opposite direction.
Most structures in the part of the body under examination are blurred in the image,
by motion. Only the shadow cast by a layer, containing the pivot points of the x-ray

Figure 7.1 In conventional
radiography all points lined
up on an x-ray path are
projected on the same point
of the photographic plate.
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path between the tube and the film, remains stationary and hence in sharp focus on
the plate.

Computerized tomography offersmajor advantages since the ability to distinguish
between regions with small differences in x-ray transmittance and the ability to
separate overlying structures are both greatly improved.By a completely novelwayof
processing x-ray absorption data (projections) obtained from many different angles,
CT scanners provide accurate images of the interior of the human body allowing a
convenient and quantitative localization of anatomical structures, lesions, or other
entities that would be difficult or impossible to determine otherwise.

ACTprocedure requires the x-ray source to rotate a full circle around the slice to be
imaged. Thus the slice is usually chosen transversely, that is on a plane perpendicular
to the long axis of the body. By a set of contiguous transverse images it is possible
to create two-dimensional images oriented in different directions as well as three-
dimensional images.

A typical CT scanner resembles a large doughnut (Fig. 7.2). The patient lies on
a table and the doughnut surrounds the part of the body to be examined. Mounted
on a gantry and housing the x-ray tube and detector, the doughnut rotates around
the patient. It describes a circle on a plane, at right angles with the main axis of the
body, that ideally cuts a slice out of the body. It is the slice that will be irradiated by
the x-ray tube in its circular motion, for the purpose of being imaged. The detector,
opposite the x-ray tube, records the intensities of the x-rays exiting the body that
provide the data for the reconstruction. The basic method, such as that embodied
in the first generation machines, employs an x-ray tube and opposing x-ray detector

Figure 7.2 A CT scanner schematically consists of a large doughnut, containing an x-ray tube and
detector, that rotates around the part of the body to be examined in order to reconstruct the image of
a slice at right angles with the main axis of the body. (M. Bertero [1999], Matematica e immagini:
alcuni esempi di applicazioni, Bollettino U.M.I ., (8) 2-A, pp. 47-67.)
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Figure 7.3 Principles of
first generation CT scanners.
(K. Kimura, S. Koga (Eds.),
Basic Principles and Clinical
Applications of Helical Scan,
Iryokagakusha, [1993].)

that translate linearly on a track. Hundreds of narrow beams of parallel x-rays (pencil
beams) cross the chosen section to have their attenuation recorded. The end of the
track having been reached, the x-ray tube and detector rotate to a new angle and the
linear motion takes place again (Fig. 7.3). Radon’s mathematics showed that if the
attenuation in all directions was measured, then the entire two-dimensional density
distribution of the section could be reconstructed unless the attenuation is complete.
Obviously in practice only a finite number of directions is tested. The x-ray tube
makes some 500–1500 equidistant stops on a full circle around the patient to detect
at each stop the intensities of some 700–1500 beams. In a standard procedure 10 to
20 sections are reconstructed so that the number of data to be processed per patient
might vary from 3.5 to 45 million. With this procedure the scanning time can be as
long as four or five minutes per slice, so this method may be conveniently applied
only to regions, such as the head, that can be kept motionless for that long time. In
place of the pencil beam the second generation uses a fan beam of slightly diverging
rays, from 3◦ to 15◦, and as much as 60 detectors to match the shape of the beam.
In this way projection data for several directions are obtained during a single linear
movement. The scanning time is reduced to 10–20 seconds.

The third generation uses a wider fan beam, from 30◦ to 60◦, to cover the entire
scanning field so that data acquisition is completed by rotation only. The scanning
time is brought down to 1–2 seconds.

In the fourth generation the detector array is set all around a circle and this remains
stationary. The x-ray tube might rotate inside it, as in the previous generation, or else
outside it allowing a higher spatial resolution due to the reduced diameter of the
detector array. In this last case the array must nutate to avoid blocking the fan beam.
The scanning time is one second.

Methods of avoiding themechanical rotation of the x-ray source have been devised
(Kimura, Koga [1993]) resulting in high speedmachines. The scanning time, reduced
to tens of milliseconds, makes it possible to scan the heart and other organs that
undergo rapid movements. Meanwhile the computer processing speed has increased
to the point that images can be displayed as soon as scanning is completed.
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As described, the history of CT has been a constant striving for shorter scanning
times, since this implies better image quality, in the presence of sufficient x-ray doses
and adequate sampling.

A major improvement was brought to the field by the helical scan, a technique
that dates back to the late 1980s (Katakura et al. [1989], Kalender et al. [1990]). The
name comes from the helical path traced around the patient by the x-ray beam. If the
x-ray tube keeps rotating continuously beyond 360◦ while the couchtop is moved at
constant speed in the longitudinal direction, then rather than working on one slice of
a certain thickness at a time, in a single 20–30 second operation, the data for a 30–70
cm thick region can be acquired. The width of the reconstructed slices is about two
mm for the head and ten mm in general.

A number of reconstruction problems were posed by the helically scanned projec-
tion data, like strong motion artifacts, increased slice thickness, position of the slice
being imaged not precisely known. Once solved by the development of dedicated
processing techniques and interpolated reconstructions, helical scans have provided
significantly shorter examination times and larger numbers of images, and moreover
they offered the choice of any desired sectional plane which is difficult to do with
conventional CT.Also the helical scan togetherwith the development ofmassive stor-
age memory and dedicated hardware allows high quality three-dimensional images
to be obtained during a single breath hold (Kimura, Koga [1993]).

The detection method is electronic in all cases so the analog signal has to be
converted to digital to be fed to the computer that reconstructs images by elaborate
calculations whose mathematical foundations are described in Section 7.4.

CT images are digital in nature and can be viewed only on a computer monitor
or on photographs made from it. The mathematical algorithm produces a numerical
description of the density as a function of position. The “computed” image is an
array of “CT numbers,” relative to a grid of discrete locations, scaled so that water has
zero CT number, less absorbing substances such as fat and air have negative numbers
(commonly air is set at–1000), andmore absorbing substances have positive numbers
(commonly bone is set at 1000). In particular the numerical data of the reconstruction
overcome the capability to render them by various scales of gray (and also the human
visual perception) so the best “window” can be chosen to evidence the structure under
examination.

7.3 CT versus MRI

While themachines appear externally similar, CT andMRI are entirely different. The
first one employs x-rays and a system that rotates mechanically around the patient,
making the scanning time inherently rather long. MRI instead is entirely electronic,
thus faster. In addition it does not use ionizing radiation and the magnetic fields
employed in clinical tests do not seem to have harmful effects.
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Moreover CT is essentially a two-dimensional technique while MRI is essentially
three-dimensional, with a reduction in the reconstruction time in case only two-
dimensional images are required.

Also while in CT scans the input signal is always the same x-ray beam, inMRI the
entering signal can be chosen depending on the object under examination. Similarly
the parameter on which to base the reconstruction is always the x-ray absorption with
CT, while it can be either one of the two relaxation times or the resonance signal
with MRI.

On the other hand, CT has an outstanding density resolution and offers detailed
anatomical information. It is superior in obtaining clear images of bony structures, in
particular fractures and tissue ossification, and generally speaking, in the examination
of the chest and solid organs such as liver and pancreas.

7.4 Projections

We shall consider simple density distributions to illustrate what their projections are
and what information they carry. Consider a distribution f (x, y) in the plane given
by a small mass centered at A, fully surrounded by a uniformly dense circular shell
as in Figure 7.4. At a fixed x0 along the x-axis, the projection P of the distribution
along the vertical is given by the integral of f along the vertical line x = x0 as in
the formula

P f (x0) =
∫ ∞

−∞
f (x0, y)dy.

Figure 7.4 Projections
along the vertical and
horizontal direction of a
density distribution. (R. N.
Bracewell, Two-Dimensional
Imaging, Prentice-Hall,
[1995].) (Courtesy of R. N.
Bracewell)
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Figure 7.5 Projections of a
density distribution
containing two compact
objects. (R. N. Bracewell,
Two-Dimensional Imaging,
Prentice-Hall, [1995].)
(Courtesy of R. N.
Bracewell)

As x0 varies along the x-axis, a function is obtained. It is the projection P f (x).
Similarly f (x, y) can be projected along the horizontal direction resulting in another
function Q f (y) (Fig. 7.4). The same can be done for any direction in the plane. By
assumption a single small mass, ideally a point mass, is known to be inside the shell
and the problem is to locate it. Clearly P f (x) signals the presence of amass along the
line RP but does not give any information whatsoever on the height. Nevertheless
if another projection, like Q f (y), is known, then the height too can be uniquely
determined.

If there were two masses, at A and B, then two projections would be insufficient
to the same purpose if the masses are comparable. For instance the projections P f
and Q f would be the same if A and B were at the marked vertices or at the unmarked
vertices of the rectangle in Figure 7.5. A third projection along any other direction
is needed to overcome the uncertainty. The question could be slightly more refined
if the masses at A and B had to be determined in addition to their location.

Radon, apparently carrying out mathematics for its own sake, established the
remarkable fact that the set of all projections along any line L of the plane uniquely
determines the distribution f under quite general assumptions, such as f continuous
and compactly supported, that always hold in practice. In addition he found an explicit
formula to calculate f , thus paving the way to computed tomography.

7.5 The Radon transform

The absorption and scattering of a narrow beam of x-rays directed into the body along
a direction L results in an attenuation �I of the beam intensity, which is assumed
to be proportional to the intensity I itself (measured in photon/s), to the length t the
beam went through the body, and to the density distribution f (x, y) as in formula
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�I = f I �t

In particular the denser the object the higher the attenuation is.
Then along L the following differential equation holds:

d I

I
= f dt.

Denoting by I0 the input intensity of the beam and by I the output, the equation is
solved by

log(I/I0) =
∫

L
f (x, y)dt, (7.1)

where t indicates length along L . The line integral
∫
L f (x, y)dt , or projection

or radiograph, can be calculated since I0 is known and I can be measured. As L
translates parallel to itself the projection PL f (s) is defined as a function on the line
passing through the origin and orthogonal to L .

In the simple case in which f (x, y) = α is a constant, which corresponds to a
uniform distribution, (7.1) gives

I = I0e
−αt

and the attenuation is said to decay exponentially.
Clearly (7.1) is only an approximation since it assumes the beam to be infinitely

thin and moreover strictly monochromatic, thus overlooking the important effect of
“beam hardening.” Low energy x-rays do not penetrate materials as well as high
energy ones and are considered “softer.” As the beam proceeds through the body,
the low energy rays are blocked and the fraction of high energy rays becomes larger
and larger with a net result of a more complicated signal. This can be avoided by
working with the x-rays obtained at synchrotrons or by passing the beam through a
filter to preharden it. The effects of the above simplifying assumptions — a slight
loss of resolution is a typical one — have been studied both theoretically and by
simulations and at least in principle they can be made as small as desired (Shepp,
Kruskal [1978]).

The next step is to invert (7.1) and to find a formula for the density f (x, y)
starting from the known values of the radiographs.

The transformation that associates the line integrals PL f = ∫
L f dt with a func-

tion f is known as the Radon transform. Radon [1917] proved, in great generality
since he worked with hyperplanes in n-dimensional Euclidean spaces, n ≥ 2, that
any function f continuous and compactly supported is uniquely determined by its
radiographs and gave a fairly simple inversion formula. To compute the value of f at
a point Q in the plane one has to consider the circleCq centered at Q of radius q (Fig.
7.6). At any point on the circumference there is a tangent line L , and relative to that,
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Figure 7.6 Geometry
involved in computing the
inverse Radon transform.

the projection PL f has a known value. First the average of PL f on the circumference
has to be computed as in

F(q) = 1

2πq

∫

Cq

P f (L)ds

where s is the arc length. Thus, as 0 < q < ∞ varies, a function is defined that also
depends on the fixed Q. Its differential is required by the inversion formula

f (Q) = − 1

π

∫ ∞

0

dF(q)

q
. (7.2)

If the value of f at another point Q̄ is required, then all circles centered in Q̄ of radius
q have to be considered, the corresponding F(q) computed, and (7.2) run again.

Radon went so far. His formula brilliantly solved the problem. For those who need
to perform the actual calculations a whole new list of relevant questions opens up.
Evidently in practice, projections can be calculated only for a finite number of direc-
tions. Then uniqueness fails. There are examples (Cormack [1963], Logan [1975],
Louis [1984]) of nonzero functions that nevertheless have zero projections in a finite
number of directions, however chosen (Fig. 7.7). These are functions that do oscillate
and have high frequencies. The problem they pose can be overcome and arbitrarily
small details can be rendered if the number of directions is correspondingly high and
well distributed (Faridani [2003]). Then there is the problem of the measurements
being made on strips rather than on lines. Also (7.2) shows an apparent singularity
at q = 0 (apparent since when the denominator is zero the numerator is too) and



7.5 The Radon transform 191

Figure 7.7 An example of a
nonzero function having zero
projections in each of the
four directions horizontal,
vertical, 45◦, and 135◦. The
function is constant in
absolute value, only the sign
changes as drawn.

moreover the problem of the stability of (7.2) under imprecise and rounded off values
of the measurements have to be addressed.

Finally the computations required by (7.2) are based on a “circular geometry” not
well fitted to the “parallel geometry” of the x-ray device. Indeed all modernmachines
work with another inversion formula based on the Fourier transform.

7.6 Inverting the Radon transform by convolution
and back projections

The reconstruction problem will be solved for the parallel beams of the first gen-
eration machines. This is a basic result. A modification works for the fan beams
(Scudder [1978]).

The idea that the Fourier transform might play a role comes from the relation

ĝ(0) =
∫ ∞

−∞
g(x) dx, (7.3)

which is elementarily obtained from the definition of the one-dimensional Fourier
transform (2.13) by substituting ξ = 0. Tomake use of this simple relation in the two-
dimensional setting of the Radon transform one is led to choose a suitable reference
frame for the projections and related computations (Fig. 7.9). If L is the direction
of the x-ray beam, emitted by the tube that translates along S to irradiate the section
under consideration (the circle in Figure 7.8), then let (x̃, ỹ) be the new frame, where
the x̃-axis is parallel to S and the ỹ-axis is parallel to L . Let θ denote the angle of
rotation with respect to the original frame (x, y).

In the new frame, the projection PL f (s) is a function of x̃ . As such it shall be
denoted by Pθ (x̃). Similarly the density f (x, y) as a function of x̃ and ỹ shall be
denoted by fθ . Formula (7.3) suggests that we compute the two-dimensional Fourier

http://dx.doi.org/10.1007/978-1-4899-7989-6_2
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Figure 7.8 The x-ray
source translates along the
line S and emits radiation in
the direction L .

Figure 7.9 The frames
(ξ, η) and (ξ̃ , η̃) in the
frequency domain.

transform of fθ for η̃ = 0, namely on the ξ̃ -axis. By the definition (5.1)

f̂θ (ξ̃ , 0) =
∫ ∞

−∞

∫ ∞

−∞
ei ξ̃ x̃ fθ (x̃, ỹ)dx̃d ỹ

=
∫ ∞

−∞

[∫ ∞

−∞
fθ (x̃, ỹ)d ỹ

]
eiξ x̃ d x̃ (7.4)

=
∫ ∞

−∞
eiξ x̃ Pθ (x̃)dx̃ = P̂θ (ξ̃ ).

The Fourier transform is invariant under rotation, as expressed by f̂θ (ξ̃ , η̃) =
f̂ (ξ, η), where the (ξ̃ , η̃) frame is rotated by the angle θ with respect to (ξ, η).
In this last frame f̂θ is f̂ by the preceding equality and the points (ξ̃ , 0) have
coordinates

ξ = ξ̃ cos θ η = ξ̃ sin θ

http://dx.doi.org/10.1007/978-1-4899-7989-6_5
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as Figure 7.9 clearly shows. Hence (7.4) becomes the key formula

P̂θ (ξ̃ ) = f̂θ (ξ̃ , 0) = f̂ (ξ̃ cos θ, ξ̃ sin θ). (7.5)

What is needed now is the Fourier inversion formula

f (x, y) = 1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
f̂ (ξ, η)ei(xξ+yη)dξdη

in polar coordinates (r, φ) in space and (R, θ) in the frequency domain, where

x = r cosφ,

y = r sin φ,

ξ = R cos θ,

η = R sin θ,

with 0 < r < ∞, −∞ < R < ∞ and 0 < φ < 2π, 0 < θ < π . Since
dξdη = |R|dRdθ is the relation between the infinitesimal areas, the change of
coordinates leads to the known formula

f (x, y) = 1

(2π)2

∫ π

0

∫ ∞

−∞
f̂ (R cos θ, R sin θ) eir R cos(θ−φ)|R|d Rdθ.

This formula becomes

f (x, y) = 1

(2π)2

∫ π

0
dθ

∫ ∞

−∞
P̂θ (R) eir R cos(θ−φ)|R|d R (7.6)

by (7.5), with ξ̃ replaced by R as far as notation. This is the new inversion formula of
the Radon transform. It recovers the density distribution f starting from the Fourier
transform of the known projections Pθ .

Most commercial machines work in the spatial domain, to which (7.6) shall now
be transferred. The inner integral of (7.6)

∫ ∞

−∞
P̂θ (R) eir R cos(θ−φ)|R|d R

is the inverse Fourier transform, evaluated at r cos(θ −φ), of the product of the func-
tions P̂θ (R) and |R|. As described in Section 3.5, it might be equivalently expressed
as the convolution

(Pθ ∗ K )(s) =
∫ ∞

−∞
Pθ (s

′) K (s − s ′)ds ′, (7.7)

http://dx.doi.org/10.1007/978-1-4899-7989-6_3
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where s = r cos(θ − φ) and K denotes the inverse Fourier transform of |R|. Note
that K is not a function but rather a distribution, seeing that the transform of |R| is
too big at infinity to be integrable. This means that the computation of K is more
involved and requires a limiting process as described in Section 3.5.

Now the outer integral in (7.6), known as backprojection, gives the density distri-
bution

f (x, y) = 1

(2π)2

∫ π

0
(Pθ ∗ K ) (r cos(θ − φ))dθ. (7.8)

Finally computers may calculate (7.7) and (7.8) in terms of finite sums, with an
approximation as good as desired.

7.7 CT images

Figure 7.10 shows an anterior view of the entire aorta from a CT chest–abdomen–
pelvis angiography. Obtained after injecting an iodinated contrast agent, it shows a
suprarenal aortic aneurysm as well as an aneurysmal dilation of the mid-descending
thoracic aorta. Figure 7.11 is a magnified view of the aneurysm. The 3D reconstruc-
tions of Figure 7.10 and 7.11 derive from a data set of 370 source images. In Figure
7.12 three source images of the chest, abdomen, and pelvis.

Figure 7.10 An anterior
view of the entire aorta.
(Courtesy of L. Logan,
Department of Radiology,
Stanford University)

http://dx.doi.org/10.1007/978-1-4899-7989-6_3
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Figure 7.11 A magnified
anterior view of the
aneurysmal dilation of the
suprarenal abdominal aorta
in Figure 7.10. (Courtesy of
L. Logan, Department of
Radiology, Stanford
University)

7.8 Local tomography and microtomography

It often happens that only part of an object needs to be imaged. For instance the
heart might be of interest, not the entire chest. In this case it would be advantageous
if only local data were needed, that is integrals over lines that intersect the region
of interest. In the case of the heart the x-ray tube would still have to rotate around
the patient to acquire data from all directions intersecting the heart, but it would not
need to translate to obtain data from the entire thorax section. This would imply a
significant reduction in x-ray absorption and time.

Unfortunately it has been shown that the reconstruction problem does not have a
unique solution in case of local data.While attempts to reconstruct the density f itself
had to be abandoned, an original idea was introduced independently by Vainberg et
al. [1981] and by Smith and Keinert [1985], that forms the basis of local tomography.
Their method reconstructs another function, strongly related to f though, having the
same singular set. This is a very significant set as far as imaging, being the set of
all points of abrupt changes, like those encountered in going from tissue to veins or
arteries. The contour between such regions is actually enhanced by local tomography
(Fig. 7.13, 7.14). Indeed local reconstruction is expected to increase spatial resolution
and to avoid reconstruction artifacts like streaks and shading. Direct information
about the size of the jumps of f is not given but in many cases the algorithm can be
modified to provide a reconstruction close to the electronic density (Faridani [2003]).

Using x-rays generated at the National Synchrotron Light Source of the
BrookhavenNational Laboratories (USA), Erik Ritman of theMayo School ofMedi-
cine in Rochester and collaborators obtained, in local reconstruction, images of a
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Figure 7.12 A source
image of the chest, abdomen,
and pelvis for Figure 7.11.
(Courtesy of L. Logan,
Department of Radiology,
Stanford University)
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Figure 7.13 The entire cross section of a rat’s heart reconstructed with global reconstruction. In
Fig. 7.14 the detailed region of interest is reconstructed with local reconstruction. (Ritman E. L.
et al. [1997],“Synchrotron-based micro-CT of in situ biological basic functional units and their
integration,” Proceedings of SPIE, Developments in x-ray Tomography 3149, pp. 13-24.) (Courtesy
of E. L. Ritman, Department of Physiology and Biophysics, Mayo Graduate School of Medicine)

rat’s heart with seven micron resolution (Fig. 7.14), a very significant improvement
with respect to the about one mm resolution of global tomography as well as MRI.
In Figure 7.14 note edge enhancement features of the local reconstruction and the
sharper outlines of the opacified microvessels. Also note the radial shading within
the global reconstruction, which is not found in the local reconstruction.

Figure 7.15 is a 3D reconstruction of a rat’s heart with 23 micron resolution. The
heart itself was about one cm in transverse diameter. Local tomography has also been
used in nondestructive testing, as in Sivers et al. [1993],Vainberg et al. [1985].

The future of CTwill surely bring further improvements concerning the reduction
of artifacts, image quality, and space resolution. Assuming a wider point of view, an
increasing use of CT scans for industrial purposes can be foreseen, for detailed
inspections of complex or critical parts in rocket motors, turbines, and nuclear
reactors.

Also the introduction of cardiovascular CT among clinical examinations can be
expected. The rapid heart beat — one every second on the average — requires
scanning times of the order of the millisecond to avoid artifacts. Since the beginning
of the 1980s, prototypes have existed with scanning times of 30–50 ms, further
reduced to ten ms in more recent ultrafast scanners. At the same time improvements
in space resolution would be greatly beneficial particularly for image reconstruction
of arteries. The inner diameter of an artery is on the average 2–4 mm, but smaller
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Figure 7.14 Details of the myocardial wall in a rat heart: local and global reconstruction side by
side. (Ritman E. L. et al. [1997], “Synchrotron-based micro-CT of in situ biological basic functional
units and their integration,” Proceedings of SPIE, Developments in x-ray Tomography 3149, pp.
13–24.) (Courtesy of E. L. Ritman, Department of Physiology and Biophysics, Mayo Graduate
School of Medicine)

Figure 7.15 3D reconstruction of a rat’s heart with 23 micron resolution. The heart had contrast
dye in the arteries. (Reprinted with permission from Faridani A., Finch D.V., Ritman E. L., Smith
K. T. [1997], “Local tomography II,” SIAM J. Appl. Math. 57, pp. 1095–1127.) (Courtesy of E. L.
Ritman, Department of Physiology and Biophysics, Mayo Graduate School of Medicine)

ones might be of interest. A higher resolution would reduce the need for invasive
procedures as well.

The speed of progress allows great hope: While in 1963, it took Cormack two
days to obtain 256 data on which to base a reconstruction, nowadays CT tests provide
reconstructions almost instantaneously.



Chapter 8
Nuclear Magnetic Resonance: Imaging
and Spectroscopy

8.1 “We are all radio stations”

After Maxwell’s radical work of synthesis, the discovery of the electron in 1897
by Joseph J. Thomson brought questions concerning electrical properties to the sub-
atomic level. The concept of quanta of energy, advanced by Planck in 1900, triggered
the development of quantum mechanics, also called wave mechanics for it describes
electrons bywave- functions. Investigations ofmagnetic propertieswent along.These
investigations will mark the history of nuclear magnetic resonance (NMR).

The starting point might be placed back in 1896 when the Dutchman Pieter Zee-
man (1865–1943) performed a spectroscopic experiment that would earn him the
Nobel prize for physics in 1902. Visible light spectroscopy had already taught sci-
entists that each element has its own spectroscopic pattern (Section 5.2) which, as
a signature, allows its identification. Zeeman wondered about the effect that a mag-
netic field would have on that signature. So he placed a Bunsen burner in a strong
magnetic field and recorded a substantial effect as he observed the spectral lines of
the yellow light, emitted by sodium, split into multiple narrow lines (Zeeman effect).
A year later in the very same paper in which he calculated the rate of energy radiated
by an accelerating electron (Section 5.6), Joseph Larmor advanced a first theoretical
analysis of the Zeeman effect (Larmor [1897]).

In Frankfurt, in the years 1921 and 1922, Otto Stern (1888–1969) and his collab-
orator Walther Gerlach (1889–1979) performed an experiment on an atomic beam
(molecular beams they are usually called) of silver atoms, with the goal of measur-
ing the magnetic moment of individual atoms (electronic magnetic moment) and to
test the theory of space quantization. According to this theory, advanced by Arnold
Sommerfeld (1869–1951), only certain quantized orientations are allowed. The two
scientists vaporized silver by heating it in a furnace. The electrons, being charged
and in motion, make the silver atoms behave like tiny compass needles. (The silver
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Figure 8.1 The set up of the Stern–Gerlach experiment.

atom has 47 electrons, 46 of which can be visualized as a symmetric electron cloud
whose magnetic moment is zero. Hence the electronic magnetic moment m is due
to the 47th electron only.)

The silver atoms were allowed to escape, through a series of small holes, to
be directed horizontally between the pole tips of a magnet (Fig. 8.1). Thus, going
through themagnet the atoms experienced amagnetic fieldBdirected vertically along
the z-axis. One of the tips, say the north tip, was very sharply edged to make the
magnetic field strongly nonuniform. Therefore the field gradient, a vector that points
in the direction of maximum variation of the magnetic field, was directed upward.
According to the theory, each atom was expected to be deflected by an amount
proportional to the component of its magnetic moment alongB, to be denoted bymz .
Precisely the formula has the atoms pulled by a force directed along the field gradient
and proportional to bothmz and the strength of the field gradient. (If Bwere constant,
the field gradient would be the null vector and no deflection would take place.) In the
classical model all directions are equally possible for the magnetic moments: Those
atoms with magnetic moment parallel to B (“up”) would be attracted upward, those
with antiparallel orientation (“down”) would be pushed downward, those at right
angle with the field would proceed unaffected, and so on. In other words the overall
effect was expected to be the widening of the narrow beam of heated atoms: In the
central region of a cold glass detector the experimental finding should have been a
condensed and deposited smear of silver in the shape of a continuous distribution
such as a vertical line segment. From the length of the segment the strength of the
magnetic moment could be calculated.

It came as a shock to see no continuous distribution on the glass (Gerlach [1922]).
Only two distinct traces showed and nothing in between, as if the initially randomly
oriented atomic moments were given by the superimposed magnetic field only two
choices, parallel or antiparallel (quantized orientations), leading to two separated
beamlets.

The Stern–Gerlach experiment did not allow precisemeasurements, the deflection
being very small. It was for the Hungarian born Isidore Isaac Rabi (1898–1988) to
obtain a much greater precision by his method of “magnetic resonance” that would
in essence provide the technique for all subsequent experiments in the field.

Magnetism is the main theme in Rabi’s work, starting with his dissertation at
Columbia University titled “On the principal magnetic susceptibilities of crystals”
(Rabi [1927]). Interest in the magnetic properties of certain crystals, with uncommon
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electrical properties (Tutton salts), was spurred by his attendance at a seminar by the
Nobel laureate Lawrence Bragg. The setup of the experiment was suggested to Rabi
by a passage in Maxwell’s Treatise on Electricity and Magnetism, where Maxwell
discusses the force of a nonuniform magnetic field on a magnetic body immersed in
a fluid with a magnetic salt dissolved in it. If the fluid has a greater susceptibility, the
immersed object will move in a certain direction; if fluid has a smaller susceptibility,
the object will move in the opposite direction; and if the susceptibilities are the same,
there will be no motion.

So Rabi measured the magnetic susceptibility of a crystal by suspending it in a
glass tube containing a saturated solution and by placing it between the poles of an
electromagnet. He changed the susceptibility of the solution by adding magnetic salt
until no motion was observed. (Beyond that, by adding more salt, the crystal would
have started turning in the opposite direction.) From the susceptibility of the solution
that of the crystal could be measured.

The years 1925–1927 were key in the development of quantum mechanics and
Rabi was eager to get over to Europe, right where it was being done. In 1927, when a
fellowship was granted to him, he resigned his teaching position at Columbia, having
been denied leave of absence, and left to spend 2 years in Europe. He visited all the
major centers where the new quantum theory was developed and in particular during
1927–28 in Hamburg he worked with Stern on molecular beams.

In 1929 he was back at Columbia, from where he spread the new physics in the
U.S. and helped put together one of the finest physics departments in the country.
Here he set about measuring the nuclear magnetic moment, a more difficult task than
measuring the electronic magnetic moment, for the first is about a thousand times
smaller than the second.

The existence of a small nuclear magnetic moment had been advanced in 1924 by
Wolfgang Pauli (1900–1958) to explain the hyperfine structure observed in atomic
spectra. The interaction of nuclear magnetic dipoles with unpaired electrons was
thought to produce the hyperfine multiplet (Fig. 8.11).

The principle of resonance was first the subject of a theoretical investigation by
P. Güttinger [1931], by E. Majorana [1932], in greater generality by I. Rabi [1937],
and the same year by J. Schwinger [1937]. The Dutch physicist Cornelius J. Gorter
[1936] was first to point out that the phenomenon could be used to detect nuclear
magnetism, however, his experiments in solid matter failed. It was for Rabi in 1939
to perform the first successful experiment, which earned him the Nobel prize for
physics in 1944. He had years of experience with nuclear spins and, with the help of
graduate student Sidney Millman and postdoctoral fellow Jerrold Zacharias, he had
built a sophisticated molecular beam apparatus. The idea of using a radiofrequency
oscillator in the setup of the experiment came from Gorter himself, during a visit at
Columbia in the fall of 1937.

Rabi’s experiment, performed with lithium, carries the same mark of precision
as his former experiment with crystals and can be used for measuring electronic
moments as well. The apparatus was in the spirit of Stern–Gerlach, but more refined,
employing three magnetic fields. First came an inhomogeneous field A, to split the
beam; last an inhomogeneous field B that deflected in the opposite direction asA and
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wasmeant for refocusing; in themiddle was imposed a homogeneous fieldH parallel
to A, and orthogonal to that a radiofrequency component was added. The beam was
detected by a coldwire that heated upwhen impinged upon. The refocusing condition
was fulfilled only if no reorientation occurred in going through H. The experiment
started by slowly increasing the radio frequency and showed no change up to a point
when a significant drop in the signal was detected. The frequency had reached a
critical value (Larmor frequency) at which many nuclei reoriented, having given the
right amount of energy to flip their magnetic moments from “up” to “down.” (The
same would occur by slowly changingH and holding the radiofrequency fixed.) This
led to their defocusing—in passing through the field B—and to the bottoming out
of the signal. Magnetic resonance had been achieved. By a simple calculation, the
nuclear magnetic moment of lithium could then be obtained (Rabi et al. [1939]).

Although Rabi had realized conditions of magnetic resonance just for atomic
nuclei streaming through an air-evacuated chamber, he knew that the phenomenon
was more general. On December 29, 1939 at a meeting of the American Association
for the Advancement of Science held in Columbus, Ohio, he said that all atoms,
whether part of the heart tissue of man or a piece of steel, may absorb or emit
radio waves. The article in the New York Post was titled “We’re All Radio Stations,
Columbia Scientists Report.”WhatRabi did not knowyetwas that one could discover
whether a living tissue is diseased or not through NMR. That would take some thirty
more years.

Meanwhile in Stanford the Swiss born Felix Bloch (1905–1983) was on the same
track. In Leipzig (Germany) he had been Heisenberg’s first doctoral student and
from Heisenberg, only four years older, Bloch “caught the spirit of research.” In
his dissertation “The quantum mechanics of electrons in crystal lattices,” (Bloch
[1928]) he explained why conduction electrons in a metal can indeed be dealt with
as an ideal gas of free electrons. This common view, which is equivalent to the
assumption that the electrons behave as a plane wave, had attracted his attention. He
began by considering a simplified model and “by straight Fourier analysis I found to
my delight that the wave differed from the plane wave of the free electrons only by a
periodic modulation” (Mattson-Simon [1996]). This work spearheaded the creation
of the modern quantum theory of solids and laid the foundations for the development
of semiconductors.

In 1932 the neutron was the last discovery, made by James Chadwick, to come
out of the Cavendish Laboratory in Cambridge (U.K.), following that of the electron
by Thomson in 1897 and of the proton by Rutherford in 1920. It helped to solve an
accounting problem— the nuclei were known to be about twice as heavy as could be
accounted for by the protons alone—but how electrons, protons, and neutrons fitted
inside the atom was a matter of study.

As Heisenberg was addressing this problem, Bloch began wondering about the
neutron’s magnetic properties. The magnetic moment of the electron is a direct
consequence of its charge; in the case of the neutron it had to have an entirely
different origin. Bloch was fascinated by the problem and originally believed this
neutral particle to have a magnetic moment equal and opposite to that of the proton.
When in early 1933 Otto Stern came up with a molecular beam experiment that gave
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a measure of the magnetic moment of the proton to be about 2.5 magnetons and that
of the deuteron nucleus (one proton and one neutron) to be between 0.5 and one
nuclear magneton, Bloch knew that the neutron had a negative magnetic moment but
not exactly equal to that of the proton.

As Hitler came to power, Bloch left Germany and in the spring of 1934 moved
to Stanford. Once there he decided to follow a casual suggestion made by another
physicist interested in the neutron, Enrico Fermi, whom he had just visited in Rome.
“You should sometimes do some experiments. It is really a lot of fun,” Fermi had
said and the magnetic moment of the neutron provided the right occasion.

In the summer of 1937, during Fermi’s visit to Stanford, Bloch came up with
the idea of using a technique closely related to the one Rabi would implement later
that September, at Gorter’s suggestion, to use a radiofrequency oscillator. Bloch
did not publish the idea but mentioned it to Fermi, so Rabi was first in tying his
name to nuclear magnetic resonance. The strong neutron beam, needed for direct
measurements, was obtained at the 37-inch Berkeley cyclotron and on May 1939
in collaboration with Louis W. Alvarez—a young faculty member at Berkeley—a
value of 1.935 ± 0.002 nuclear magnetons was measured by an experimental setup
much in the spirit of Rabi’s molecular beam apparatus.

Bloch’s plans to pursue his subject even further to achieve an accuracy of at
least three decimal digits were soon disrupted. The U.S. entered the war during
December 1941. After a brief stay at Los Alamos where he joined the group working
on the atomic bomb, in November 1943 Bloch moved to Harvard’s Radio Research
Laboratory in Cambridge. The work there was centered around microwave radars,
a new field opened up by the British. Under the direction of the Stanford engineer
Frederick E. Terman, Bloch had the opportunity, all-important for his subsequent
work, to get acquainted with radio techniques. Rabi too, who had joined MIT’s
Radiation Laboratory in 1940, was in Cambridge. The two scientists lived close by
and had many occasions to discuss scientific issues.

In early 1945 the end of thewarwas in sight. Still inCambridge, Bloch had the idea
for detecting nuclear induction in condensed matter by far simpler electromagnetic
methods. In the theoretical paper Bloch [1946], he dealt not only with the so-called
Bloch equations but also with two types of relaxation times, “longitudinal” T1 and
“transverse” T2, that would soon prove to be important for chemical analysis and
medical diagnosis as well.

Back to Stanford in the summer 1945, with the help of the graduate studentMartin
E. Packard and of the expert in radioengineering William W. Hansen, Bloch started
to build his experimental apparatus. Calculations had convinced him that a large
voltage signal would result; still he was concerned that the signal could be drowned
out by the approximately million times stronger random thermal vibrations.

A sample of 100 mg of water sealed in glass was used and a strong static field
of about 2,000 gauss was applied, oriented in the z direction, let us say. The nuclear
magnetic moment of the oxygen being zero, the effect was limited to the hydrogen
nuclei which aligned themselves parallel or antiparallel with the field, with a small
surplus in the parallel direction. This is what makes the magnetic method work, but
how long the processwould takewas amatter of concern. The samplewas surrounded
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Figure 8.2 Scheme of a nuclear magnetic resonance spectrometer. The sample is placed in a
magnetic field. As the radiofrequency transmitter is tuned to the resonance frequency, a signal
arises in the receiver. (Adapted from Ruffato C. et al., RMN in medicina, Piccin, [1986].)

by a transmitting coil producing flux in the x direction and by a receiver coil in the y
direction (Fig. 8.2). As a radiofrequency field in the x direction was superimposed,
the parameters were adjusted to meet the anticipated point of resonance. Then the
nuclei flopped, inducing a change of the magnetic flux that manifested as a small
voltage, at the same frequency, across the terminals of the receiver coil. Bloch’s
successful experiment dates to early January 1946. About that time he heard that
two weeks earlier Edward Mills Purcell (1912–1997) had done a similar experiment
with hydrogen rich paraffin. For these achievements they shared the Nobel prize for
physics in 1952.

During the war Purcell had also been working on microwave radar at the MIT
Radiation Lab and he too drew inspiration from that period for his immediate postwar
interests. The task at the Labwas to shorten the wavelength in order to reduce the size
of the antenna and to improve the target definition. This went together with a host
of technical problems. A curious one arose in reducing the wavelength from the 10
cm of the British to 3 and then to 1 cm: At 1.25 cm sometimes the waves got almost
no reflection back. People were very frustrated until the reason was found. The 1.25
centimeter wavelength, chosen for convenience, was actually very inconvenient due
to an absorption band of water vapor centered at 1.3 cm. When too much moisture
was in the air, all the radar energy was absorbed by the water molecules and little
reached the target, and even less came back to the receiver.

This piece of “bad luck” together with knowledge of the molecular beam experi-
ment, such as learned from Rabi’s people, suggested to Purcell the idea of an exper-
iment of nuclear magnetic resonance in condensed matter. Two colleagues of the
Radiation Lab, Henry Torrey and the electronic expert Robert Pound, joined his
project and together they set about building the experimental apparatus. The idea
was to place paraffin, 850 cm3 as they did, in a strong magnetic field so as to have
the nuclear magnetic moments align parallel or antiparallel to the field, reaching
the so-called thermal equilibrium. How long that would take was unknown: weeks,
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hours, or seconds?A few hourswas estimated—so they presoaked paraffin in a strong
magnetic field for ten hours, meant a wakeful night for Purcell on the experiment
premises—but it turned out to be of the order of 10−4s. The plan was to supply the
system with energy at the right frequency that, once absorbed by the lower energy
protons (parallel moments), would induce them to become temporarily higher energy
protons (antiparallel moments). The temporary imbalance would be detected by the
experimental setup and produce a signal, unless thermal equilibrium had not been
reached after all or else the relaxation effect was too feeble. In the process they
were informed by Rabi of a similar unsuccessful experiment attempted by Gorter,
years earlier. They went ahead nevertheless and, after quite a few unsuccessful tries,
they could briefly observe the expected signal due to nuclear magnetic resonance
absorption, as they called it (Purcell, Torrey, Pound [1946]).

While the principal feature of these two experiments in solidmatter was in Bloch’s
words “the observation of transitions caused by resonance of an applied radiofre-
quency field with the Larmor precession of the moments around a constant magnetic
field,” Purcell’s method “very closely connected to that of Gorter” looked for a “rel-
atively small reaction upon the driving circuit” while in Bloch’s experiment “in the
first place, the radiofrequency field is deliberately chosen large enough so as to cause
at resonance a considerable change of orientation of nuclear moments. In the second
place, this change is not observed by its relatively small reaction upon the driving
circuit, but by directly observing the induced electromotive force in a coil, due to the
precession of the nuclear moments around the constant field and in a direction per-
pendicular both to this field and the applied RF field. This appearance of a magnetic
induction at right angles to the RF field is an effect which is of specifically nuclear
origin and is the main characteristic of our experiment” (Bloch [1946]).

These first two experiments allowed an accurate measure of the magnetic moment
of the hydrogen nucleus, the proton. Soon after, the technique was employed to
obtain information on chemical compounds and about a few decades later had an
extraordinary impact in the field of medical radiology.

8.2 Nuclear spin and magnetic moment

The phenomenon of nuclear magnetic resonance is accounted for by the highly
technical theory of quantum mechanics, according to which atomic nuclei have a
quantized angular momentum, or spin angular momentum, given by a vector L. Its
magnitude L has the same unit as the Planck’s constant h = 6.63 × 10−34 kg m2/s,
according to the formula

L = √
I (I + 1)

h

2π

where the spin quantum number I—an invariant property of each nucleus—may
assume only integer values or half integer, typically 0, 1/2, 1, 3/2, 5/2.
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The simplest nucleus, that of the hydrogen atom, is made up of a single proton
whose mass (1.66 × 10−24g) and charge (1.60 × 10−19 coulomb) are taken as the
unit of atomic mass and charge respectively. The spin quantum number is 1/2.

A nucleus composed of p protons and n neutrons has total mass p + n atomic
units and total charge p, but the vector addition of the spin’s angular momentum
L of the protons involved, each of magnitude 1/2, cannot be predicted in general.
Observations show that an odd number of protons or neutrons or both (at least one
proton or neutron unpaired) is needed forL to be nonzero and for observingmagnetic
resonance. There are about a hundred such species, relative towhich the phenomenon
was indeed soon observed.

Also at least one unpaired electron is needed, in atomic species, to observe elec-
tronic resonance (electron spin resonance, also called electron paramagnetic reso-
nance). This is the case of a restricted class of substances called paramagnetic. By
applying an external magnetic field B such materials are magnetized. The resulting
magnetizationM, the net magnetic moment per unit volume, is parallel to B and the
ratio M/B is called magnetic susceptibility. For bulk matter it may be different. For
instance silver atoms have an unpaired electron in the last orbital and yet, in bulk
matter, the unpaired electron couples together with a neighboring one whose spin
direction is opposite, so as to make silver spin-free. Electron spins are about a thou-
sand times stronger and foreshadow nuclear spins, hence only spin-free substances
are suitable for experiments of nuclear magnetic resonance.

As every circular electric current produces a magnetic field, so every spinning
nucleus (I �= 0) does. The associated magnetic moment, or magnetic dipole, is
represented by a vector

m = γL

parallel to L (Fig. 8.3). The constantγ—termed gyromagnetic ratio—is characteristic
for each type of nucleus (Tab. 8.1) and implies a better sensitivity to detection when
large. Of all nuclei, those of the hydrogen atoms 1H have the largest γ among stable
isotopes (Tab. 8.1) and are of special interest since compounds containing hydrogen
form a major part of biological systems. In particular the human body is about 75%
water. In the water molecule all the electron spins are exactly balanced so that the

Figure 8.3 An atomic
nucleus has a spin angular
momentum L and also, being
charged, a magnetic moment
m parallel to L.
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Table 8.1 Properties of important atomic nuclei. (The resonance frequency is measured inMHz; T
stands for tesla.) (Hausser K. H., Kalbitzer H. R., NMR in Medicine and Biology, Springer, [1991].)

Isotope Nuclear Spin I Magnetogyric
ration γ [T−1s−1]

Resonance
frequency at
14.092 T

Natural
abundance [%]

1H 1/2 2.6752 × 108 600.0 99.985
2H 1 4.1065 × 107 92.1 0.015
3H 1/2 2.8535 × 108 640.0 —
12C 0 — — —
13C 1/2 6.7266 × 107 150.9 1.11
14N 1 −1.9325 × 107 43.3 99.63
15N 1/2 −2.7108 × 107 60.8 0.37
16O 0 — — 99.76
17O 5/2 −3.6267 × 107 81.4 0.04
18O 0 — — 0.20
19F 1/2 2.5167 × 108 564.5 100.00
23Na 3/2 7.0762 × 107 158.7 100.00
31P 1/2 1.0829 × 108 242.9 100.00

net molecular moment is zero. On the other hand the water molecule has a very tiny
nuclear magnetic moment due to the hydrogen nuclei, the oxygen (16O) having zero
nuclear spin.

A convenient unit of measure for nuclear magnetic moments is the nuclear mag-
neton, defined to be 1/1,836 times the Bohr magneton, itself the magnetic moment of
the electron of the hydrogen atom or equivalently 9.274 ×10−24 ampere per square
meter (Am−2).

8.3 The swing and the phenomenon of resonance

For an easier understanding, the general phenomenon of resonance is first presented
in the gravitational field. A rather common instance is that of a girl pushing a friend
on a swing. Obviously, she does not have the strength to lift a body weighing several
dozen pounds but knows how to push the swing higher and higher by applying small
pushes at the right moment, when the swing is at the lowest point of oscillation.
In other words the pushes have to be synchronized with the natural frequency of
oscillation of the swing.

Another common instance of resonance occurs with body noise—sometimes
heard when driving a car at certain speeds—due to resonance between the natural
oscillation frequency of some parts of the body and the frequency ofmotion of pistons
or wheels.



208 8 Nuclear Magnetic Resonance: Imaging and Spectroscopy

8.4 Driving a resonance: the Larmor frequency

Without an external magnetic field the small nuclear magnetic dipoles of a water
sample—we shall restrict ourselves to water from now on unless otherwise stated—
are randomly oriented, but when the sample is placed in a static magnetic field they
orient themselves in a direction parallel or antiparallel to the field (space quantiza-
tion), as all nuclei with spin 1/2 do. Two opposite energy levels, negative and positive
referred to as lower and higher, correspond to these two orientations.

At the absolute zero (–273 ◦C) all dipoles are parallel, this being the most stable
configuration. Rise of temperature might provide some nuclei with the right amount
of energy required to flip to the antiparallel orientation. At infinite temperature the
dipoles would split equally between parallel and antiparallel orientation. At room
temperature the populations of the two states are almost equal, with the lower state
slightly more populated than the upper. For every 108 protons with antiparallel spin
there are statistically 108+1 with parallel spin. This suffices to produce a magnetiza-
tionM0 detectable at the macroscopic level and directed as the static magnetic field
B0. Since the populations of the two states are in a fixed proportion—which depends
on the temperature T measured in degrees Kelvin and on the Boltzmann constant
k = 1.38× 10−6erg/◦C–the formula of the magnitude M0 is, to first approximation
(the high temperature approximation), given by

M0 = N0
m2B0

3kT

where N0 is the total number of nuclei per unitary volume in the sample (proton
density). This is a large number. It suffices to think that in a cubic centimeter of
water there are about 1022 hydrogen nuclei.

Consider a reference frame (x, y, z) such that the z-axis is directed along the
externalmagnetic fieldB0 andmagnetizationM0. IfM0 is dislocated from the vertical
to a position M (Fig. 8.4), then it starts to precess around the z-axis with an angular

Figure 8.4 Precession of
the magnetizationM.
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frequency ω0, called the Larmor frequency, which depends only on the nuclear
species and the magnitude of the field B0 according to the formula

ω0 = γB0. (8.1)

It is apparent that to a stronger magnetic field there corresponds a greater precession
frequency. A spinning top in a gravitational field could be mentioned as a similar
phenomenon in classical physics. The spinning top does not fall; rather it undergoes
a motion of precession: Its axis rotates around the vertical describing a cone. The
frequency of precession is proportional to the magnitude of the gravitational field:
The same top on the moon would precess with a frequency smaller by a factor of
6 since this is the ratio between the gravitational field on the Moon and that on
Earth. With a magnetic field B0 of magnitude 10,000 gauss (1 tesla), the Larmor
frequency of the hydrogen nucleus is 42.57 MHz (42.57 million cycles per second)
for the nucleus of phosphorus 31 is 17.24 MHz, and that of sodium 23 is 11.26 MHz,
all in the radiofrequency band of the electromagnetic spectrum (Fig. 9.1). With the
same B0 the Larmor frequency of the electron is 28,000 MHz, much lower than the
frequencies of x-rays and of the visible light too, indeed in the microwave region.

The dislocation of M0, mentioned above, can be effectively obtained by apply-
ing in the horizontal plane an additional magnetic field B1 rotating at the Larmor
frequency. (Otherwise the two rotating fields would be out of phase and M0 would
wobble only slightly.) An alternating horizontal field, say in the x-direction, oscil-
lating at the Larmor frequency, produces an effect similar to that of a rotating field.
It works as well, for the torque on the magnetic moment reverses at each half cycle.
In this condition, called resonance, a strong interaction takes place: The direction
of M0 suddenly changes. This effect induced by the oscillating field is sometimes
referred to as “driving a resonance.”

Hence to observe a chosen nuclear species in isolation from the other nuclear
species, it suffices to tune on the corresponding Larmor frequency. In the human
body hydrogen is present in water as well as in biological macromolecules. In par-
ticular water has a distribution often altered in pathological situations, thus making
it possible to distinguish between norm and pathology.

Another species important for NMR is phosphorus 31 which is more involved in
questions related to metabolism.

8.5 Relaxation process

In the beam method, each particle can be considered free. In the case of solids,
liquids, and gases (confined, as opposed to expanding beams) an interaction takes
place between the nuclei and their surroundings which is essential for dissipating
the absorbed energy. The temperature of the nuclear spin system otherwise would
rise and the surplus number in the lower state would consequently decrease, making
M0 smaller and smaller. When no surplus exists no net absorption can take place

http://dx.doi.org/10.1007/978-1-4899-7989-6_9
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(saturated system), upward and downward transitions being equally likely. At room
temperature at equilibrium, the populations of the two states are very nearly equal.
However the lower state is slightly more populated than the upper so that, the two
transitions having the same probability, globally upward transitions predominate
and a net, yet very small, absorption of energy occurs from the radiation beam.
As the populations become equal, upward and downward transitions become equal
and no absorption takes place. Only by losing energy may the original equilibrium
populations be reestablished.

As the radiofrequency (RF) field B1 rotating in the (x, y) plane at the Larmor
frequency ω0 is applied, the magnetizationM0 is dislocated from equilibrium by an
angle that increases with the time duration of the RF pulse and spirals down until
it lies in the (x, y)-plane. It proceeds until it points along the negative z-axis and
keeps turning around.

IfB1 is switched off as soon as themagnetization lies in the (x, y)-plane, then one
says that a 90◦ pulse has been applied. If the time duration of the pulse is doubled,
or the strength is doubled, then the magnetization points along the negative z-axis
when B1 is switched off and one says that a 180◦ pulse has been applied. In general
it is possible to turn M0 in any direction by a suitable duration of the pulse. In a
typical NMR experiment a 90◦ pulse is applied by turning on the RF field. As B1 is
switched off the magnetization returns to its thermodynamical equilibrium by two
relaxation processes, the spin-lattice and the spin-spin relaxation process. The first
one concerns the z-component of the magnetization, or longitudinal magnetization,
which returns to equilibrium by a process characterized by the so-called spin-lattice
relaxation time T1. The other concerns the component in the (x, y)− plane of the
magnetization, or transverse magnetization, which goes to zero at a rate of decay
determined by the so-called spin-spin relaxation time T2 (Fig. 8.6).

The two processes are independent, for T1 and T2 are unrelated. It only holds that
T2 ≤ T1 in all cases. In liquids the two relaxation times are about the same and of
the order of the second. In solids T1 could be hours and even days, while T2 could
be of the order of the microsecond.

The time-dependent magnetization induces a small voltage in a detection coil
surrounding the sample, which in turn generates an electromotive force oscillating
at the Larmor frequency. Amplified and visualized by an oscilloscope it generates
the so-called free induction decay signal or NMR signal (Fig. 8.5) which ends as the

Figure 8.5 The NMR signal
for one nuclear species.
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Figure 8.6 The longitudinal Mz and transverse component Mxy of the magnetizationM.

equilibrium position M0 is reached. The amplitude of the signal is proportional to
M0 and usually decays exponentially. The real part of its Fourier transform is the
Lorentzian curve in Figure 3.4, suitably dilated and translated at ω0.

8.6 Relaxation times

The relaxation process is described mathematically by the Bloch equations which
form a system of first-order differential equations, one for each component
Mx , My, Mz of the magnetization M (Bloch [1946]). For a system of identical
nuclei each experiencing the samemagnetic field (i.e., neglecting the shielding effect
of the electrons, or chemical shift, as described in Section 8.7), after a 90◦ pulse, the
magnetization longitudinal component Mz , which is zero at time t = 0, increases
with time and tends to M0 as indicated by the formula

Mz = M0(1 − e−t/T1) (8.2)

The constant T1 appearing in (8.2) is the longitudinal or spin-lattice relaxation time
(Fig. 8.7). It is the time required for the z-component of M to return to 63% of its
original magnitude (1− 1/e ∼= 0.63) following an excitation pulse. The spin-lattice
relaxation process dissipates energy from the spin system to the lattice (surround-

http://dx.doi.org/10.1007/978-1-4899-7989-6_3
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Figure 8.7 The amplitude
Mz of the longitudinal
component of the
magnetization tends to M0 as
time t increases.

ings), by lattice motion (e.g., atomic vibration in a solid lattice, molecular tumbling
in liquids and gases).

The transverse component Mxy rotates in the (x, y)-plane as time t goes by. In
complex notation it is given by

M0e
iω0t e−t/T2 . (8.3)

The amplitude Mxy , clearly equal to M0 for t = 0, goes to zero with time. Its
decay is exponential, being given by M0e−t/T2 . The constant T2 is the transverse or
spin-spin relaxation time. It is the time required for the amplitude of the transverse
component of M to decay to 37% of its initial value (1/e ∼= 0.37). As the system
returns to thermodynamical equilibrium, the individual spins become randomized or
dephased. This is the reason for Mxy to go to zero (Fig. 8.8).

In reality small imperfections, which are always present even in the best magnets,
make the transverse component and so the free induction signal decay faster than in
(8.3). In the literature the constant that controls the decay that follows a 90◦ pulse,
is denoted by T ∗

2 . So a single 90◦ pulse does not allow measurement of the true T2,
which can be determined though by suitable pulse sequences. The relaxation times
are of the order of the second in liquids and liquid-like materials. In the case of pure
simple liquids, T1 and T2 are approximately a few seconds. Instead in solid materials
T1 could be hours while T2 is usually very small, even only a few microseconds.
Indeed the spins become dephased very quickly making the signal decay so fast that
it is barely detectable. (In particular the magnetization vector M does not keep the
same amplitude, not even approximately, during the relaxation process.) By contrast,
in liquids the atoms are in continuous motion and the internuclear magnetic field

Figure 8.8 The exponential
decay of the amplitude Mxy
of the transverse component
of the magnetization.
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Table 8.2 T1 relaxation times (in seconds) at 100 MHz in normal and malignant human tissues.
Number of cases analyzed are in parentheses; errors are standard error of the mean. (Damadian R.
et al. [1974], “Human tumors detected by nuclear magnetic resonance,” Proc. Nat. Acad. Sc. U.S.A.
71, pp. 1471–1473.)

Tissue T1 tumor T1 normal

Breast 1.080 ± 0.08(13) 0.367 ± 0.079(5)

Skin

Muscle 1.047 ± 0.018(4) 0.616± 0.019(9)

Malignant 1.413 ± 0.082(7) 1.023 ± 0.029(17)

Benign 1.307 ± 0.1535(2)

Esophagus 1.04(1) 0.804 ± 0.108(5)

Stomach 1.238 ± 0.109(3) 0.765 ± 0.075(8)

Intestinal tract 1.122 ± 0.04(15) 0.641 ± 0.080(8)b

0.641 ± 0.043(12)c

Liver 0.832 ± 0.012(2) 0.570 ± 0.029(14)

Spleen 1.113 ± 0.006(2) 0.0701 ± 0.045(17)

Lung 1.110 ± 0.057(12) 0.788 ± 0.063(5)

Lymphatic 1.004 ± 0.056(14) 0.720 ± 0.076(6)

Bone 1.027 ± 0.152(6) 0.554 ± 0.027(10)

Bladder 1.241 ± 0.165(3) 0.891 ± 0.061(4)

responsible for the spin-spin relaxation tends to average out, so the free induction
signal decays more slowly.

Matter becomes more complicated in the case of water in living tissues. Nev-
ertheless T1 and T2 can be accurately measured by suitable techniques, generally
consisting of sequences of RF pulses over short periods of time. Numerous studies
have produced tables highlighting the differences of T1 and T2 for water depending
on the different tissues, both healthy and cancerous (Tab. 8.2). These formed the
basis of the development of MRI.

Variations from tissue to tissue are due to the different water content but also to a
different content of fat cells which are rich in hydrogen and that might be present in
high concentration. The corresponding resonant frequencies are only slightly differ-
ent in case a weak magnetic fieldB0 is employed but can be separated in a significant
way by applying a strong B0.

The differences between a normal and a cancerous state, such as discovered by
Raymond Vahan Damadian [1971] (Section 8.10), can be explained by the fact
that pathological states, in general, give rise to local inflammatory reactions that
go together with a higher water content and longer relaxation times.

The NMR signal and the relaxation times T1 and T2 are three parameters made
available by NMR imaging (Section 8.11). In case the image turns out to be homo-
geneous with respect to one of them it is possible to obtain contrast by switching to
another one.
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8.7 NMR spectroscopy: chemical shift and coupling
constant

The Larmor frequency being characteristic of the nuclear species, the NMR tech-
niques may be used to detect the presence of particular chemical nuclei in a com-
pound. Also the degree of absorption being proportional to the number of resonating
nuclei, it is possible to estimate them quantitatively.

A far greater potential of NMR techniques lies elsewhere. This was soon realized
and went together with the availability of highly homogeneous magnetic fields, so
that tiny effects are not covered up by the inhomogeneities of the static field. The
NMR spectrum of a compound can indeed serve as a “fingerprint” to identify the
compound due to a special effect called the chemical shift. According to Bloch,
Niels Bohr once explained the chemical shift this way: “What these people do is
very clever. They put little spies into the molecules and send radio signals to them,
and they have to radio back what they are seeing.” Indeed in Bloch’s own words,
“It was not anymore the protons as such. But from the way they reacted you wanted
to know in what kind of environment they are, just like spies that you send out”
(Mattson, Simon [1996]).

Purcell in his Nobel lecture phrased it this way, “The magnetic field of an atomic
nucleus differs slightly from the field externally applied because of the shielding
effect of the electron cloud around the nucleus. In differentmolecules the atom’s elec-
tron configuration will differ slightly, reflecting differences in the chemical bond.”
These differences “are interesting to the physical chemist because they reveal some-
thing about the electrons that partake in the chemical bond.”

This effect was studied theoretically for single atoms byWillis Lamb at Columbia
already in 1940. In the years 1949–1950 Norman Ramsey at Harvard further stud-
ied the “chemical effects”—as he called them at the time—in different molecules
(Ramsey [1950], [1951]).

About the same time these shifts began to be detected experimentally by a number
of researchers.Walter Knight [1949] observed them inmetals andArnold, Dharmatti,
and Packard [1951] in liquids. In this last paper is found the best known example of
the phenomenon: the NMR spectrum of ethyl alcohol CH3CH2OH (Fig. 8.9). The
hydrogen nuclei of the molecule of ethyl alcohol—protons—if observed in isolation,
would of course resonate at the same frequency. Instead because of the chemical

Figure 8.9 Spectrum of
ethyl alcohol CH3CH2OH as
a function of frequency and
of chemical shift.
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bonds in the molecule they resonate at three slightly different frequencies, all slightly
less than the expected one. The areas underlying the peaks are proportional to the
numbers 3, 2, 1. Themagneticmoments of 16O and 12C being zero, the effect can only
be due to the electronic cloud around the hydrogen nuclei of the groups CH3, CH2,
and OH. (In liquids molecular tumbling continually changes the orientations of the
molecules and the effects due to neighboring spins average to zero.) In nature all
nuclei are usually found associated with electrons in atoms and compounds. When
an external magnetic field is imposed, the surrounding electrons tend to circulate in
such a direction as to produce a field opposing the one applied. Thus the nucleus
can be said to be shielded from the applied field to an extent that is constant for
an isolated atom but varies with the electron density about an atom in a molecule.
For instance oxygen being a much better electron acceptor than carbon, the electron
density about the hydrogen atom in C–H bonds ought to be higher than that in O–H
bonds and weaker is the field experienced by the better shielded hydrogen nucleus
in the C–H bonds. Indeed the CH hydrogen nuclei precess with a smaller Larmor
frequency than that of OH.

Historically the NMR spectrum was produced and recorded by holding fixed the
frequency ofB1 and by slowly increasing the fieldB0 to observe the absorption peaks
at resonance. Equivalently one may increase the frequency of B1 at a fixed B0, as in
the modern procedure. In the first case the chemical shift δ is measured in milligauss,
in the second case in Hz. Nevertheless such a measure is not appropriate because δ is
directly proportional to the applied field B0 and changes as B0 is changed. Similarly
for the frequency of B1. Instead the chemical shift is conveniently measured with
respect to a standard substance by the formula

δ = ω − ωS

ωS

where ωS is the Larmor frequency of the standard, which therefore has δ set equal
to zero.

The frequencies ω and ωS are generally very close to each other in size. The pure
number δ is then expressed as a multiple of 10−6, that is as parts per million (p.p.m.),
the denominator ωS being of the order of 10−6. For instance in case of ethyl alcohol
the chemical shifts of CH3, CH2, and OH are respectively 1.15 p.p.m (meaning
δ = 1.15 × 10−6), 3.60 p.p.m., and 5.20 p.p.m., S being the standard reference
substance for liquids (Fig. 8.9).

Thus qualitative information is gathered by the fact that the chemical shift for the
same nuclei (1H nuclei) is different depending upon different chemical surround-
ings. Quantitative information comes from the area underlying each absorption peak,
which is proportional to the number of nucleiwith that resonant frequency. The chem-
ical shift can be up to 10 p.p.m. in the case of the hydrogen nuclei, but it can reach
300 with phosphorus 31 (31P) because of its higher electronic density.

In spite of being usually rather small, the chemical shift is a most important
parameter. Allowing to distinguish between nuclei of the same species in the same
molecule, as the spectrum in Figure 8.9 shows, it opened up a new field of research
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called high resolution NMR spectroscopy in liquids, which provides a powerful tool,
for the alternative to crystallography investigation (Chapter 6) of the structure of
organic molecules like proteins, polysaccharides, lipids, and nucleic acids and study
of the dynamics of chemical processes. Many NMR experiments in chemistry, biol-
ogy, and medicine belong to this area.

For spatial structure determination, which indicates which chemical groups are
near neighbors in the molecule, an even smaller effect has to be brought into the
picture. In the computation of the magnetic field, experienced by a dipole, the effect
of the neighboring dipoles has to be taken into account. This effect, called dipole–
dipole coupling, has been studied. In the case of liquids these effects average to zero
over time because molecular tumbling leads to a fast reorientation of the molecules
with respect to the direction of B0. In solids usually dipole–dipole coupling causes
a broadening of the absorption lines.

The “local” field associated with this effect has a small intensity and usually is
not directed in the same way as B0.

At a fixed dipole the local field, due to a neighboring dipole, depends on the
distance r between the two and strongly decreases with that distance, as 1/r3. Also
it depends on the angle θ between B0 and the vector connecting the two dipoles, as
can be seen for instance by drawing the lines of force in the two extreme cases θ = 0
and θ = π/2. In particular there exists an angle θ ≈ 55◦, called the magic angle, at
which the local field is zero. This is an angle the techniques of NMR in solids take
advantage of.

In the case of liquids, however, splitting is often observed, not due to the
direct coupling described above but rather to a coupling—mediated by the elec-
tron distribution—by which nuclei in the same molecule may influence each other.
The phenomenon is called spin-spin coupling and, being independent of the size
and direction of the external magnetic field B0, is expressed in terms of a constant
J measured in Hz. The simple case in Figure 8.10, where two hydrogen nuclei are
joined by a pair of bonding electrons, will be used as an example. If e, one of the
electrons, is close to the proton E at a given moment, then the most probable config-
uration has the magnetic dipole of the electron opposed to that of the proton. By the
Pauli exclusion principle the spin of the other electron d must be opposed to e. In
the end the dipole of the nucleus D has to be opposed to the one at E so the two are
indirectly coupled, that is locked in the paired configuration of Figure 8.10. Paired
and opposed configurations are almost equally probable, but not exactly. Hence the
resonant line of E is split into doublets centered at the chemical shift by the action
of D. Similarly the resonant line of D by the action of E . The equal spacing of the
doublets, the so-called coupling constant J , is usually measured in Hz. It can reach
a few hundred Hz. Its value decreases rapidly as the number of bonds between the
nuclei increases (Banwell [1966]).

Coupling between groups like CH3 and CH2 is more complicated. It can be shown
theoretically that the two nuclei of the CH2 group split the resonant line of the CH3

group into three states (a triplet) and the three nuclei of the CH3 group split the line
of CH2 into four states (a quartet), as verified experimentally. The coupling constant
is 7 Hz. When a “fine” structure like the triplet and the quartet (Fig. 8.11) with the

http://dx.doi.org/10.1007/978-1-4899-7989-6_6
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Figure 8.10 The coupling
of nuclear spins in the same
molecule via bonding
electrons.

Figure 8.11 The structure
of the NMR spectrum of the
hydrogen nuclei for ethyl
alcohol CH3CH2OH due to
spin-spin splitting.

right chemical shift appears in an NMR spectrum, one knows that it comes from
the CH3 and CH2 groups and moreover that they are near neighbors. No splitting
is observed in the resonant line of the OH group. Indeed the OH group is rapidly
exchanged and the replacing hydrogen nuclei do not necessarily have the same spin
direction, so the net coupling averages to zero.

Knowledge of the above effects concurs with the determination of the com-
plete three-dimensional structure of biological macromolecules. This is an involved
process that takes into account still another effect, the “nuclear Overhauser effect,”
so called after its discoverer in 1953 (Hausser, Kalbitzer [1991]).

8.8 Prion protein

Prionprotein (PrP)—madeupof 207 aminoacids—is associatedwith anunusual class
of neurodegenerative disease, which include scrapie in sheep, bovine spongiform
encephalopathy (BSE) in cattle, and Creutzfeldt–Jacob disease (CJD) in humans.

The normal PrP, whose function is still unknown, is a secreted cell surface protein
mainly present in brain cells. So far PrP has been found in a whole range of mam-
mals, marsupials, birds, and a turtle. The three-dimensional structure of the normal
form of PrP (Fig. 8.12) consists of three α-helices (Helix A, B, C) and a small flat
conformation, called a β-sheet (Strand A and B), made of four aminoacids (two
in each strand). The protein is anchored to the cell membrane by a sugar structure
(GPI) attached to its C-terminus. In addition the protein has two large sugar structures
labeled NGlyc181 and NGlyc197.

The three-dimensional structure of humans for PrP has been resolved by NMR
experiments made by Kurt Wüthrich and his group in Zurich working at ETH and
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Figure 8.12 Structure of the normal prion protein without and with sugar structures. (Courtesy of
J. Zuegg, School of Medical Research, Australian National University)

by the Nobel prize winner Stanley Prusiner and his group in San Francisco working
at UCSF (Zahn et al. [2000]). It has also been resolved in the case of mouse (Riek et
al. [1998]), hamster (Liu et al. [1999]), and bovine (Garcia et al. [2000]). All those
PrP show a highly similar structure with only little differences.

Starting from NMR data and using molecular dynamics simulations (Gun-
steren, Berendsen [1990]) the sugar structures (GPI and NGlyc) have been added
(Fig. 8.12) and their influence on the protein structure investigated (Zuegg, Gready
[1999], [2000]). In particular the simulation could show that the sugar structure
anchoring the protein to the cellmembranemaintains the protein at a distance between
9–12 Å from the membrane surface.

According to the current hypothesis (Prusiner [1982], [1998]) the disease is caused
by an abnormal form of the PrP that differs from the normal form only in its three-
dimensional structure. The structure of the pathogenic form, which can be precipi-
tated in a clumped form in the brain, has not been resolved yet, being highly insoluble
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(the resolution of NMR experiments in solids is insufficient to resolve the structure of
a protein). Nevertheless experiments showed an increased content of β-sheet struc-
ture.

X-ray crystallographic techniques (Chapter 6) have been of little help so far.
Crystals of the abnormal malign form are not high quality so that the diffraction
data collected from x-ray experiments are only low resolution (Inouye, Kirschner
[1997]). Crystallization of the normal prion protein has not been obtained so far.

8.9 Collecting NMR spectra: continuous wave versus pulses

The historical method for collecting spectra is also the most intuitive and the sim-
plest. When the sample is placed into a homogeneous magnetic field B0, the radio
frequency field B1 is continuously (CW) changed and the absorption lines recorded.
This happens onlywhen the scan passes through a resonant line. (Equivalently the RF
field B1 is held fixed and B0 is slowly changed.) It is a time-consuming procedure—
for instance it could take about half an hour to collect the spectrum of ethyl alcohol
(CH3CH2OH)—requiring an extremely stable magnetic field over time and heading
toward saturation. To make things worse, in the presence of a poor signal-to-noise
ratio (sensitivity) most of the time is spent collecting off-resonance noise. AsWeston
Anderson wrote in an article in Radiology Today of 1992: “Early work on practi-
cal applications was so disappointing that researcher Martin Packard quipped ‘You
could smell the cork on the bottle and almost make the same analysis as those early
systems.”’

The idea of using a broadband excitation was advanced and a patent was filed
already in 1956 by Russel Varian of Varian Associates in Palo Alto (California).
The idea was there but the procedure still took a long time, so long in fact as to
appear impractical. Ten years later Richard Ernst and Weston Anderson [1966], of
Varian Associates, used a pulse (it may be noted that pulsed NMR experiments
were already described in Bloch [1946] with the different purpose of measuring the
relaxation times), since a short pulse has a wide frequency band, according to the
indeterminacy principle (2.17). If a radiofrequency oscillator, operating at the Larmor
frequency ω0, is switched on and quickly switched off—typically the pulse duration
is 10−5s—the sample is exposed to a wide range of frequencies centered at ω0.

One nuclear species, in ideal conditions, produces a signal decreasing exponen-
tially (Fig. 8.5) and oscillating at the Larmor frequency. If many nuclear species
are present, the signal is the sum of many modulated exponentials. The problem of
disentangling them is solved by calculating the Fourier transform whose real part
is the sum of many Lorentzian curves each centered at the corresponding Larmor
frequency. At the time this was a long calculation that put the feasibility of the
method into question. Indeed in the same article mentioned above, Anserson wrote
“what good is a 10-second data collection if you couldn’t see the spectra for several
days?” The advent of cheap computers and the algorithm of the fast Fourier transform
(Section 3.9) of 1965 made the difference. The resulting signal, the so-called free

http://dx.doi.org/10.1007/978-1-4899-7989-6_6
http://dx.doi.org/10.1007/978-1-4899-7989-6_2
http://dx.doi.org/10.1007/978-1-4899-7989-6_3
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induction decay (FID), is sampled and the recorded values quantized. According to
the sampling theorem, the sampling time is chosen to be 1/2ωmax where ωmax is the
highest frequency to be observed.

A greater sensitivity is obtained by applying the time-averaging method, con-
sidered in Ernst [1965]. It consists of generating a sequence of n identical pulses
that give rise to n identical signals. The idea then is to average those signals, for
the true signal can be expected to add coherently, while the noise tends to average
out because of incoherence (Section 3.6). Indeed it can be shown theoretically that
the signal-to-noise ratio increases as the square root of the number n of successive
measurements or “scans.” All of the above accounts for the acceptance and almost
exclusive application of the pulsed NMR nowadays.

Ernst returned to his native Switzerland in 1968, to the Federal Institute of Tech-
nology (ETH) in Zurich from which he had graduated in chemistry in 1956, some 28
years after Bloch. There in the summer of 1974 his group made the first exper-
iment with a two-pulse sequence and produced a two-dimensional spectrum by
Fourier transform (5.1). This technique allows overlapping effects to be separated,
as explained in Ernst et al. [1987]: “In many circumstances resonances that over-
lap in conventional one-dimensional spectra can be unravelled in this manner.” To
explain why with an intuitive example, one can compare the profile of a chain of
mountains and the much more precise two-dimensional view that can be acquired
from an airplane flying above them.

At about the same time Ernst realized that the same principle could be applied
to the NMR imaging (MRI) method proposed by Paul Lauterbur of New York State
University at Stony Brook.

For his work on pulse Fourier transform methods, in the context of NMR high
resolution spectroscopy and MRI, Ernst was awarded the Nobel prize in chemistry
in 1991.

8.10 The road to NMR imaging in the work of Damadian

The idea of obtaining a signal fromhydrogen nuclei in biological tissues had occurred
early. “Soon after the first successful NMR experiments at Stanford, Bloch obtained
a strong proton NMR signal when he inserted his finger into the RF coil of his
spectrometer,” just as Purcell and Ramsey at Harvard in 1948 had inserted their
heads, with the only recorded sensation being the “EMFs generated in the metal
fillings of their teeth as their heads moved in and out of the magnet” (Andrews
[1988]). Nevertheless the idea, that an image as complicated as the interior of the
human body was in principle obtainable escaped the early researchers.

This idea came from amedical doctor Raymond V. Damadian. In September 1969
he felt confident enough towrite in a grant application at theHealth ResearchCouncil
of the City of New York, “To the best of my knowledge, it is generally true that all
malignant cells have been marked by elevated cell potassium values and depressed
Ca++ levels. I am very much interested in the potential of NMR spectroscopy for

http://dx.doi.org/10.1007/978-1-4899-7989-6_3
http://dx.doi.org/10.1007/978-1-4899-7989-6_5
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early nondestructive detection of internal malignancies.” He continued, “I will make
every effort myself and through collaborators, to establish that all tumors can be
recognized by their potassium relaxation times or H2O-proton spectra and proceed
with the development of instrumentation and probes that can be used to scan the
body externally for early signs of malignancies.”

Damadian, who had been uncertain before entering college between a career as a
professional violinist and a scientist, chose the latter and enrolled with a fellowship
at the University of Wisconsin to major in mathematics with a minor in chemistry.
After receiving his M.D. degree from the Albert Einstein College of Medicine of
Yeshiva University in the Bronx, he decided to be an internist and moreover to do
research. Even though he did not know if “anything would come out of it,” he knew
he wanted to try his hand “at an effort to relieve patient suffering on a broader scale,
through research, than would be possible as a practitioner” (Mattson, Simon [1996]).

His early research was centered around the balance between sodium and potas-
sium in the body which is critical for the maintenance of tissue electricity, hence for
life itself. In individual cells there is much more potassium than sodium, while for
extracellular material the opposite is true. This raises the question of the discrimi-
nating ability of the cell. It was assumed to be the work of an enzyme (a protein).
To search for it Damadian set up a plan in two stages. First he was going to develop
mutants of the E. coli bacteria lacking the ability to transport potassium across the
cell membrane; second he would compare one by one all proteins of the mutants and
the original strain to uncover the defective one. He succeeded with the first part and
concentrated on the second during two years as a drafter at the Aerospace Medical
Division of Brooks Air Force Base in Texas. He arrived in 1965—the time of escala-
tion of the Vietnam war with the bombing of North Vietnam below the 20th parallel
as ordered by President Lyndon Johnson—and brought with him the mutants. He
was allowed to care for them provided he also conducted experiments on hydrazine,
a liquid propellant of interest to the Air Force. His efforts with the mutants though
did not have success, for he did not come across any defective protein.

His research had him focused on cell metabolism which, as he was well aware,
is altered by cancer. How to detect that by direct chemical analysis was an obvious
question in his mind. Damadian, who had the habit of spending time in libraries
browsing through books, had his attention alerted when he chanced to read, in a
chemistry text, of experiments conducted by Nicolaas Bloembergen a couple of
decades earlier, showing a prolongation of the relaxation times T1 and T2 that were
associated with a decrease of viscosity in glycerin. The matter was not completely
new to him, since he had audited a course in quantumphysics taught by Purcell during
the academic year 1963–1964 when he was working at Harvard Medical School.
Right away he thought of comparing signals of cancerous tissues and normal tissues,
but his experiments with the only available CW machine to measure the relaxation
times indirectly failed, unhappily for him.

Then in April 1969 at a meeting of the Federation of American Societies for
Experimental Biology he met Freeman Cope, “who had made successful NMRmea-
surements of sodium in brain” and “wanted to measure potassium in biological
tissue.” Cope was concerned however that the weaker magnetic moment of potas-
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sium would make it difficult to detect in tissue. Damadian said he could provide
some bacteria from the Dead Sea “that contained 20 times the normal complement
of potassium” and so was asked to join the project. Indeed in late summer 1969 when
the two scientists operated the pulsed NMR spectrometer on the bacteria at NMR
Specialties in New Kensington (Pennsylvania), they obtained a signal immediately.
“It was the first time potassium had been measured in a biological tissue” (Mattson,
Simson [1996]).

Eleven days later Damadian wrote the proposal to the Health Research Council of
the City of New York already mentioned and in another ten months, in June 1970, he
had collected the data on the relaxation times of the hydrogen nuclei in normal and
cancerous rat tissues. The second ones were markedly prolonged. Damadian’s paper
“Tumor detection by nuclear magnetic resonance,” published in 1971 by Science,
provided the basis for image contrast between normal and pathological tissues. The
same paper carries data showing that even normal tissues differ markedly among
themselves in relaxation times and moreover states that “in principle, nuclear mag-
netic resonance techniques combine many of the desirable features of an external
probe for the detection of internal cancer.”

To accomplish that, he needed of a much larger spectrometer, large enough to
accommodate a human body. Also he needed some method for space localization,
unheard of in NMR spectroscopy where test tubes filled with chemicals spun at high
speed to achieve homogeneity. He had an idea and in March 1972 filed a patent,
issued in February 1974, the first U.S. patent of a new “shoe” called “Magnetic
Resonance Imaging or Spectroscopy.” Meanwhile he went ahead and by 1977 he
had built “Indomitable,” the first whole body MR scanner, and produced the first
human scan, which took 4 hours and 45 minutes. It consisted of a cross-sectional
view of a human thorax and was made by 106 picture elements, the values of which
were manually entered in a hand-drawn matrix.

Maybe then it could start healing the helpless feeling that must have gripped him
since an early age when his grandmother, living with his family, died of cancer after
a long suffering. He had understood this terrifying process and made “every effort”
to detect it early enough that it could possibly be stopped.

8.11 The principle of image formation

Damadian’s method of space localization was shortly superseded by a superior
method proposed by Paul Lauterbur, a chemist of the State University of NewYork at
StonyBrook.AfterwitnessingDamadian’s experiment repeated on rat tissue afflicted
by a different tumor, Lauterbur had the idea of achieving space localization by super-
imposing a nonuniform magnetic field on the static magnetic field, to make different
parts of the sample resonate at different frequencies. The idea of using a linear gra-
dient for space determination in one dimension was not new (Carr [1993]). It was
the first time though that it was proposed to obtain a 3D image as complicated as
the interior of the human body. Lauterbur [1973] demonstrated the validity of his
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idea by producing the first two-dimensional image: a map of two capillary tubes
1-millimeter in size, containing water. His method made use of the one-dimensional
Fourier transform applied repeatedly to obtain four backprojections on which the
reconstruction was based in the spirit of x-ray tomography.

A more efficient procedure (Kumar, Welti, Ernst [1975]), linked to a different
choice of the gradient and whose pivotal idea is attributed to Ernst, is based on the
three-dimensional Fourier transform. The gradient systemmakes use of a set of three
independent coils that generate spatially varying and time varying magnetic fields:
Gradients Gx , Gy , and Gz in the x, y, and z direction respectively are applied for
successive, consecutive times tx , ty , and tz .

Then there followed a contribution due to PeterMansfield [1977] of theUniversity
of Nottingham and embodied in his “echo-planar” method. After applying a gradient
for a time interval of suitable duration, the sign of the gradient is inverted for a time
interval of the same duration. This produces an echo in the signal that gives the name
to the entire method. Inherently three-dimensional like the preceding one, it reduced
the measuring time.

Many combinations of gradient and pulse sequences have been proposed since
then. The choice depends, among other considerations, on the tissue under study.
This might be the head, which can be held still during the entire scan procedure,
but it might also be the constantly beating heart, which presents a more complicated
task.

The principle of image formation will be illustrated in a form that is the simplest
both conceptually and for collecting data. For simplicity the hydrogen nuclei will be
assumed to be in ideal conditions, that is, isolated and in free space. In particular,
any effect coming from the presence of the host tissue is neglected (a reasonable
assumption in most cases except for fatty tissues). In this case the NMR signal
contains only the Larmor frequency of the hydrogen nuclei and decays exponentially
(Fig. 8.5). To within a constant factor it is given by the formula

s(t) = M0e
−t/T2eiω0t , t > 0. (8.4)

The real part of its Fourier transform is the Lorentzian curve in Figure 3.4, suitably
dilated and translated at ω0. The desirable situation calls for the protons in the prox-
imity of different points of the sample to resonate at different Larmor frequencies.
In this case indeed, if an RF pulse is chosen to contain those frequencies, then in
the NMR signal all and only those Larmor frequencies appear. This is evidenced by
the Fourier transform. For instance assume that at two points A and B of the sample
the proton density is the same but the Larmor frequencies ωA and ωB are different.
Furthermore assume that ωA and ωB are present in the RF pulse. The corresponding
NMR signal, even in this simple case, cannot be easily decoded (Fig. 8.13), were
it not for the fact that it is already known that s(t) = sA(t) + sB(t). Instead the
information offered by the Fourier transform (Fig. 8.13) is quite clear. If the proton
density in A is different than in B, this too is evidenced by the Fourier transform (Fig.
8.14). Hence to distinguish even the smallest regions one from the other it suffices
to use a suitable number of different pulses.

http://dx.doi.org/10.1007/978-1-4899-7989-6_3
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Figure 8.13 The signal
above does not have an
immediate interpretation,
whereas the information
offered by the Fourier
transform below does.

To have the hydrogen nuclei in the various parts of the body resonate at different
frequencies, a magnetic field B is superimposed on the static magnetic field B0.
Directed in the sameway asB0 it depends linearly upon the spatial coordinates x, y, z
and has a small magnitude compared to B0, since that suffices. For simplicity the
field gradient is assumed independent of time. IfG1, G2, G3 denote its components
along the x, y, and z axes, then the total magnetic field at a point (x, y, z) has
magnitude

B0 + G1x + G2y + G3z

and so the Larmor frequency at the point (x, y, z) is given by

ω(x, y, z) = γB0 + γ(G1x + G2y + G3z).

Following a 90◦ pulse, for a fixed field gradient G, the NMR signal, the sum of all
elements of the volume V under examination, depends only upon time and contains
all Larmor frequencies weighted according to the local magnetization m0(x, y, z)
as follows
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Figure 8.14 The NMR
signal having the Fourier
transform above allows
reconstruction of the proton
density below.

s(t) = M0

∫

V
m0(x, y, z)eiω(x,y,z)t dx dy dz.

Here for simplicity the exponential decay has been omitted or, equivalently, relax-
ation effects neglected. This in first approximation is correct since T2 is a long time
compared with the time duration of the field gradient, which are of the order of 10
ms, as well as that of the pulses, which is of the order of microseconds.

By choosing the reference frequency to be γB0 (“on-resonance” condition) the
Larmor frequencies become γ(G1x +G2y+G3z). WithK = (γG1t, γG2t, γG3t)
and x = (x, y, z) the above formula becomes

S(K) =
∫

V
m0(x)eiK·x dx. (8.5)

Equation (8.5) is the fundamental relationship of NMR imaging. It states that
functions S(K) and m0(x) are related by the inverse Fourier transform in three-
dimensional space. The K-domain is explored by changing the direction of G and
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sampling time t . This allows the local magnetization m0 to be determined with high
accuracy by the FFT algorithm.

Note that (8.5) is similar to the fundamental equation of x-ray crystallography
(6.2). In the present case though only radiofrequencies are involved and the phase
can be determined.

For instance ifG is set in the z-direction, that isG = (0, 0, G), then the recorded
signal is

s(k) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
m0(x, y, z)eikzdx dy dz

with K = (0, 0, k). Hence the Fourier transform is

ŝ(z) =
∫ ∞

−∞

∫ ∞

−∞
m0(x, y, z)dx dy (8.6)

and the spectral data ŝ(z) may be regarded as the “projection” of the local mag-
netization on the z-axis, that is the axis defined by the gradient’s direction. For this
reason (8.6) is referred to as the “projection profile,” following a terminology of x-ray
tomography (Fig. 7.5). However it has to be remarked that, unlike x-ray tomography
data, the NMR data are acquired in the Fourier transform domain in the first place.

The dependency of the signal upon NMR parameters like the two relaxation times
T1, T2 and the proton density, which is tied to local magnetization, can be changed
by choosing suitable pulse sequences. Consequently the parameter’s weight in the
image can be adjusted for optimal contrast.

Several techniques, notably sequences of impulses, havebeenproposed to improve
space resolution, signal-to-noise ratio, absence of artifacts, and recording time (Hin-
shaw [1983], Ru ato et al. [1986], Hausser, Kalbitzer [1991], Callaghan [1993])

8.12 MRI-guided interventions

Images of the brain are an important instance of MRI (Figs. 8.15, 8.16). On the
one hand the radiofrequency radiation goes through the skull, and more generally
the bone, undamped for all practical purpose. On the other hand T1 and T2 weighted
images provide optimum contrast resolution for soft tissues in general (Fig. 8.15).
It is an important fact that MRI does not require any mechanical movement of the
subject or of the apparatus. For instance to obtain heart images with good resolution
the periodic heart beat is a problem that requires synchronization with the EKG.
In the abdomen again peristaltic motions are a problem that may be overcome by
giving to the patient antiperistaltic substances. Moreover if there is a need to improve
contrast, ferromagnetic or paramagnetic substances (contrast agents) that modify the
relaxation times may be used.

http://dx.doi.org/10.1007/978-1-4899-7989-6_6
http://dx.doi.org/10.1007/978-1-4899-7989-6_7
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Figure 8.15 Axial T2 and sagittal T1 weighted images of the brain of a seven years old boy.
(Courtesy of M. Safilos, Department of Radiology, Stanford University)

Figure 8.16 Unfiltered and filtered coronal images of the head. (Courtesy of Surgical Planning
Laboratory, Harvard Medical School)

MRI appeared among the techniques for clinical examinations in the 1980s. By
1988 Ferenc Jolesz had the idea of an open configuration MRI system to provide
access to patient’s various anatomic regions so as to allow MRI guided interven-
tions (Fig. 8.17). The technology needed was not fully developed at the time, but
in only 2 years the first MRT (Magnetic Resonance Therapy) system operating at
0.5 tesla was built by General Electric in Schenectady, New York. The clinical trials
began in 1994 at the Brigham andWomen’s Hospital of the Harvard Medical School
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Figure 8.17 The open
magnet configuration allows
access to the patient while
the MRI test is performed.
3D models help surgeons to
determine the safest routes to
their target in presurgical
planning. Real time scans
help to check how far
surgery has advanced while
surgery is carried out.
(Courtesy of Surgical
Planning Laboratory,
Harvard Medical School)

Figure 8.18 With the patient’s head held still (left) the NMR image of the brain affected by a
tumor, indicated by arrows, is obtained (right). (Courtesy of Surgical Planning Laboratory, Harvard
Medical School)

(Jolesz [1995], Grimson et al. [1999]). The image in Figure 8.18 was obtained by a
combination of structural, functional MRI and MR angiography. Selected structures
can be highlighted by different colors. Also deserving mention is the first surgical
intervention on the brain using laser-induced interstitial thermotherapy (Vogl et al.
[1995]) without trepanation of the skull, which took place in October 1996 at the
University of Zurich.



8.13 Functional MRI 229

8.13 Functional MRI

MRI not only provides anatomic images possessing good soft tissue contrast but also
images depicting brain function. As such it is an important tool for neurosurgeons,
for the localization of the sensorimotor cortex for presurgical planning, as well as for
neuroscientists. Starting from the first demonstration by Belliveau and colleagues
[1990], MRI has been used to detect and assess cerebral pathophysiology and to
understand the neural basis of cognitive functions such as vision, motor skill, lan-
guage, and memory (Glover [1997], Mosely, Glover [1995]). Changes in activation
or metabolism are not directly observed. Rather regionally increased blood flow is
the key target to demonstrate sites of neural activity. Indeed it has been known for
more than a century that local cerebral blood flow increases in regions of the brain
that undergo different stimulation because of the increased neuronal metabolism:
local oxygen levels in capillaries and draining veins begin to decrease while carbon
dioxide levels increase. This triggers an increase of the blood supply to the affected
region that, within 1–2 seconds, results in an oversupply of oxygenated blood.

Local increase of blood flow and microvascular oxygenation produce small alter-
ations in the intensity of T1 and T2 weighted images of the order of a few percent.

Figure 8.19 Functional images of sections at increasing height, starting from the middle of the
head, depicting neuronal activation in the primary motor cortex and supplementary motor area
consequent to a bilateral finger tapping task (20 on/off sequence for 5 cycles). (Courtesy of G.
Glover, Department of Radiology, Stanford University)
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Proton density is less sensitive to the phenomenon of blood increase and therefore is
not used.

“In a typical brain activation experiment, the neuronal responses during two states
of stimulation (“A” and “B”) are compared by gathering images during both states
and estimating the difference between them. In a test, to map sensorimotor cortex
for example, the subject may perform finger apposition for approximately 25 sec-
onds, rest for 25 seconds, and then repeat the sequence while images are acquired
continuously for a total imaging time of several minutes (Fig. 8.19). In the difference
process, metabolic activity that is unchanged between the two states is eliminated and
only those brain regions that show differences from the stimulation are highlighted.”
(Moseley, Glover [1995]). Finally statistical tests are used to generate the activation
map because the very weak changes makes difficult to discriminate between real
differences and spurious ones. Acquisition of many images is therefore necessary.
This typically requires just a few minutes.

In closing this chapter one cannot avoid remarking that all this stemmed from the
desire to obtain precise measurements of nuclear magnetic moments.



Chapter 9
Radioastronomy and Modern Cosmology

9.1 Astronomical observations: “six thousand years
for a witness”

The electromagnetic radiation that comes from space covers all wavelengths from
gamma rays to radio waves (Fig. 9.1). Much is stopped by water vapor and by gases
like oxygen (O2), ozone (O3), and nitrogen (N2) in the atmosphere, Earth’s blanket
and umbrella, which extends more and more rarefied to at least 1000 km.

The atmospheric filter shows two “windows” throughwhich electromagnetic radi-
ation can reach Earth and be observed from it, the optical window and the radio
window. By the same token, only through these windows can radiation emanating
from the Earth’s surface escape.

The optical window covers wavelengths from 3,000 Å to 300,000 Å. It includes
the visible radiation, the closest ultraviolet, and part of the infrared with bands in
which the atmosphere is opaque (Fig. 9.2). The optical observations make use of
telescopes, photographic plates, other light detectors, and the human eye which is
sensitive only to radiation of wavelengths from 4,000 Å to 7,000 Å. This is light,
from violet to red. Observations in the visible range have existed since the dawn of
recorded civilization and before. No wonder since the view of the starry night sky
fills the heart with awe and curiosity even today.

Observations led to cosmological ideas. Very influential ones were advanced by
the ancient Greeks and are to be found in the Almagest, the encyclopedic work
divided in thirteen books written by the celebrated astronomer Claudius Ptolemy
(2nd century a.d.). He lived in Alexandria, Egypt, and enlarged Hipparchus’ star
catalogue of about 850 entries to about a thousand. The Earth’s centered view of the
solar system—Ptolemy’s main original contribution—predicted the motion of the
planets with good accuracy with respect to the observations and was accepted for
more than 1,300 years.
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Figure 9.1 The electromagnetic spectrum on a logarithmic scale and the atmospheric transparency.
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Figure 9.2 The optical window, the radio window and the atmospheric transparency.

Then came the revolutionary work of Nicolaus Copernicus (1473–1543). Born in
Poland he studied astronomy in Krakow, then in Bologna, Italy—where he made his
first recorded observations—and later medicine in Padua. In the Greek literature he
had found, advanced by Aristarchus of Samos as far back as the 3rd century b.c.,
the idea of the Sun as center of the Universe. The “absurdity” of a moving Earth
became convincing after many years of mathematical calculations. The system he
devised, assuming circular motion and constant speed, still retained complexity. He
exposed his heliocentric theory in De Revolutionibus orbium coelestium (“On the
Revolutions of the Celestial Spheres”). It was published in the year of Copernicus’
death due to his hesitation dictated by prudence.

In the framework of this theory Johannes Kepler (1571–1630), imperial mathe-
matician at the court of Rudolph II in Bohemia, published in 1609 Astronomia nova
orCommentarius de stellaMartis (“NewAstronomy” or “Commentary on the Planet
Mars”). He had been assigned to the theory of Mars by his predecessor in the post,
the Danish astronomer Tycho Brahe (1546–1601). Having tried to fit the naked eye
observations – painstakingly made and recorded over many years by Tycho Brahe
and his school—in every combination of circles he could think of and not succeeded,
Kepler abandoned the circular scheme and solved the enigma of the irregularities
of Mars’ orbit. He recorded “How intense was my pleasure from this discovery can
never be expressed in words. I no longer regretted the time wasted. Day and night I
was consumed by calculations.” Going through massive calculations he had come to
the conclusion that the orbit was an ellipse and not a circle. Extended to all planets
this is Kepler’s first law. In the same book the second law or “area law” is hinted
at. By 1619 with the publication of Harmonice Mundi (“The Science of the Har-
mony of theWorld”) he had stated all three mathematical laws, named after him, that
planetary motion obeys. An exhilarated Kepler could then write about the book, “It
can wait a century for a reader, as God himself has waited six thousand years for a
witness.”

At the appearance in 1632 of the persuasive Galileo Galilei’s Dialogo sopra i
due massimi sistemi del mondo, tolemaico e copernicano (“Dialogue Concerning
the Two Chief World Systems, Ptolemaic and Copernican”), written in Italian for
maximum diffusion, the matter exploded in controversies. Judged on the grounds
of faith, the “Dialogue” found its place in the Index of prohibited books—together
with those of Copernicus and Kepler—its author tried for heresy.

In 1609 Galileo (1564–1642), having heard news of a device that made distant
objects appear closer by means of lenses (refracting telescope)—ordinary binocu-
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lars are made with a pair of them—quickly constructed such a device himself and
improved it until it reached a magnification of about 30. Galileo pointed it to the sky
and made a series of astonishing observations, published in 1610 in Sidereus nuncius
(“The Starry Messenger”). He had seen mountains on the Moon and individual stars
in the Milky Way. He had discovered a host of new fixed stars and four satellites of
Jupiter, . . . and theGalilean telescopewas soon in demand all over Europe.Moreover
the Tabulae Rudolphinae, published in 1627 by Kepler, gave the planetary position
with unprecedented precision, bringing the error from the order of a degree down to
a minute of arc.

By 1663 the reflecting telescope, which uses a concave mirror to obtain the image,
was proposed. Newton built the first one in 1668. With such an instrument William
Herschel (1738–1822) made the first systematic survey of the sky, laying the foun-
dations of modern stellar astronomy.

Astronomical observations were made exclusively through the optical window
until the 1930s when the radio window was discovered. It spans wavelengths from
the millimeter to about 20 meters, depending upon the variable conditions of the
ionosphere. This is the upper part of the atmosphere, above 50 km, where the number
of ions—mainly due to the action of solar radiation on the air’s neutral atoms—is
large enough to affect radio waves. The radio window is much larger than the optical
one: thirteen octaves against six.

Radioastronomy allows the probing of regions of space where there is literally
nothing to see. Radio signals penetrate the clouds of dust, which obscure the view
of optical instruments, as well as clouds and bad weather on Earth. Moreover, this
science of long wavelengths reveals objects that are not an appreciable source of
light and emit only or mostly radio waves. Pulsars and radio galaxies are examples.
It must be said though that weak radiation can go undetected due to interference by
radio signals generated on Earth, like TV and radio broadcasting. Much care goes
into protecting the radiotelescopes from this, starting with the choice of the place of
installation.

Between light and radio waves is found the infrared radiation. This radiation too
allows dark regions to be probed, regions not hot enough to emit light. Having a
wavelength longer than the typical dimensions of dust particles in space, much of
it goes through the cosmic dust clouds. Some important observations can be made
from Earth-based instruments located on high mountains—such as Mauna Kea on
the island of Hawaii—the atmospheric absorption filter being much reduced in parts
of the band, as for example at wavelengths close to one micron.

Atmospheric attenuation is complete for the short ultraviolet and x-rays. From
Earth no observations can bemade in this range, not even from the highestmountains.
Gamma rays, though extremely scarce, become detectable at very high energies.

It was only in the 1960s, with the launch of the first spacecraft, that the whole elec-
tromagnetic spectrum was opened to observations. Noteworthy in those early times,
particularly for the X-ray band, was the High Energy Astronomical Observatory #2,
also named the Einstein Observatory (Fig. 9.3). This satellite started sending data in
1979, the centennial of the birth date of the famous scientist.
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Figure 9.3 The Einstein Observatory (HEAO-2) before launching from Cape Kennedy by an Atlas
Centaur rocket in November 1978 (NASA). (Source: Istituto di Astrofisica Spaziale, CNR)

X-rays, as well as gamma rays, cannot be focused by lenses or mirrors in the
conventional way. Due to their penetrating power they normally go straight through.
Consequently the X-ray telescopes differ radically in design from optical telescopes,
relying on highly polished metal surfaces mounted so as to make grazing incidence
at angles less than 4◦. Through a series of such reflections the radiation is guided to a
focus to be detected, converted into radio signals, and transmitted to radio telescopes
on the ground. “Detecting x-rays from objects which are so hot that almost all of
their radiation is in x-rays, not light, this satellite has done for x-ray astronomy what
Galileo’s small telescope once did for optical astronomy” (Field, Chaisson [1985]).
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9.2 How radioastronomy was born

The first half of the twentieth century has been a period of enormous and stimulating
progress for science, especially physics. The frontier of scientific knowledge was set
in motion in the realm of the extremely small as the working of atoms began to be
understood, but the frontier was advancing also on the side of the very large with the
discovery of the structure of our galaxy, of the existence of many more galaxies, and
of the expansion of the Universe.

Besides, in themiddle of the century a fantastic discovery wasmade in astronomy,
namely the existence in the electromagnetic spectrum of the radio window. To be
true, matters had started a little earlier, in 1931, but not by the work of astronomers.
It was the work of engineers attempting to identify, with a view to suppressing, the
annoying disturbances that affected their telecommunications.

Physicists and astrophysicists in particular had a good reason for that. Since the
time radio waves had been discovered in a laboratory by the German physicist Hein-
richHertz, several attempts had beenmade to detect possible solar emissions. Thomas
Edison had tried and also English, German, and French scientists had carried out
experiments but found nothing and drew the conclusion that the Earth’s atmosphere
was working as a shield.

Closer to the truth was Charles Nordmann, a French student of theMeudonObser-
vatory. In 1901 he made an attempt, again without success, in the area of Chamonix
on the slopes of Mont Blanc at a height of 3100 m, using an antenna 200 m long.
Knowing that the eleven year cyclical activity of the solar spots was at its minimum,
he suggested repeating the experiment in a period of maximum activity. Nothing
followed.

Planck’s radiation law of 1900 allowed calculation of the energy of the radiation
emanating from a body, once its temperature was known. In the case of radio waves
from the Sun, the emission was calculated to be so weak as to make the measurement
unthinkable. The calculation was based on the belief that the Sun’s temperature could
not be greater than 6000 K.

Radio emission from the Sun, generally scarce, is due to the corona, its outer
atmosphere. Made of sparse gases extending for millions of miles from the apparent
optical surface of the Sun, the corona is only visible during total solar eclipses. The
solar radio emission reaches values significantly higher from sunspot regions and
during the spectacular but brief solar “flares.” The temperature of the regions of the
corona involved has been calculated to be about 20 million K. Some of the emission
is nonthermal, being due to ejected relativistic electrons.

It was 1931 when a young American made the first important discovery about
radio emission of heavenly bodies. Karl G. Jansky (1905–1950) was working as
a radio engineer at the Bell Telephone Laboratories in New Jersey, a major world
center for industrial research. He was assigned the job of finding the origin of noise
in the recently inaugurated transatlantic radiotelephone. To that purpose he built a
rotating radio antenna array (Fig. 9.4), designed to operate at a wavelength of 14.6
m (20 MHz). In 1932 he ascertained that thunderstorms were the main cause of the
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Figure 9.4 The rotating radio antenna array used by Karl Jansky in the discovery of radio radiation
from the Milky Way. (NRAO/AUI)

disturbances, but he also encountered a hiss-like noise, weak and steady, that changed
direction progressively during the day, making a complete tour of the horizon in 24
hours and coming in strongest about four minutes earlier every successive day. “Just
as the stars,” noticed the astronomerMelvin Skellett, a bridge companion. Indeed the
Earth’s sidereal rotation period is four minutes shorter than a solar day. Jansky, who
had already ruled out the Sun, came to the conclusion that the source was located
outside the solar system and in 1933 published several articles on the subject (Jansky
[1933]). Given the precision of his measurements it could be in the direction of the
constellation Hercules or Sagittarius, toward the center of the Milky Way. He could
not determine though if the origin was inside our galaxy or not. (Subsequent studies
showed the source to be the central regions of the Milky Way.)

A press release from Bell Labs in the spring of 1933 made Jansky popular right
away. The cosmic hiss was broadcast and millions of people listened to it. The
New York Times devoted a front-page column to the discovery and the New Yorker
magazine noted that it was the first time a noise was searched for, that far away: “It
has been demonstrated that a receiving set of great delicacy in New Jersey will get
a new kind of static from the Milky Way. This is believed to be the longest distance
anybody ever went to look for trouble.”

Since the hiss did not have any influence on radio communications, Bell Laborato-
ries lost interest and Jansky too as a consequence. His last article on the subject dates
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from 1935. As for astronomers, under their silent domes, from their observatories not
yet entered by electronics, what interest could they have for radio hisses and crack-
lings due to who knows what, coming from who knows where? It can be said that,
with rare exceptions, the discovery that makes Jansky the father of radioastronomy
did not have any follow-up in the contemporary scientific community.

During the following ten years there was only one active radioastronomer in the
world, Grote Reber. He worked as a radio engineer during the day. At night he tended
to his passion, radioastronomy, building in 1937 on his own and at his own expense
a radiotelescope with a bowl-shaped antenna. Fifteen meters high and ten meters in
diameter it was the biggest of its kind in the world and was superior to Jansky’s for
angular resolution and for receiving on a wider frequency band. He placed it in his
backyard, at 212 West Seminary Avenue, Wheaton, Illinois, to the neighborhood’s
curiosity.

Reber, who got into the habit of making his observations between midnight and
dawn, to avoid unwanted interference, remained active in the field for more than 30
years. He confirmed Jansky’s conclusions and published in 1944, in theAstrophysical
Journal, the first contour map of the radio brightness of the Milky Way. He also
discovered intense regions of radio emission, later identified as the sourcesCassiopeia
A and Cygnus A and moreover detected radio waves from the Sun.

Reber believed in a thermal origin for the phenomenon even though this contrasted
with Planck’s law, the radiation being much more intense at low rather than high
frequencies.

9.3 The most “mortifying” episode of English naval
history and radar

Jansky and Reber’s discoveries did not fall on fertile ground. The radioastronomers
to comewould start all over again andwould owe to them little or nothing. They came
from the development of radar, one of the most important technical innovations of
World War II.

England had to face a terrifying escalation of air attacks by bombers, V1 buzz
bombs, andV2missiles. Itswell-structured community of physicistswas assigned the
task of finding a way to give the alert, in case of attack, in time to deploy the Spitfires
for the air defense of the British Islands. The episode that had the British double
their efforts dates from February 12, 1942 when the German cruisers Scharnhorst
and Gneisenau, covered by adequate noise, sailed from Brest to a safe harbor in the
North Sea, crossing the Channel without being detected. Referring to an episode of
June 4, 1667 the Times of London wrote, “Nothing more mortifying to the pride of
our sea power has happened in home waters since the seventeenth century” when
a fleet of Dutch warships, after bombarding Sheerness on the island of Sheppey,
proceeded up the Thames as far as Gravesend, 22 miles from London.
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A system of radars, the chain home, was operational by 1939. (Work on it had
begun in 1935 under the direction of Robert Watson–Watt.) It signaled the attacks
of the enemy and at times something else. On February 27 and 28, 1942 a dozen
radars signaled an intense noise, impossible to eliminate. It was correctly attributed
to the exceptional activity of solar spots, but the intensity of the signal—it had to be
remarked—was a 100 times higher than that predicted by Planck’s law for a body at
6000 K. In 1944, it was the turn of the latest radars. They gave rise to an impressive
number of false alarms due, as was discovered, to flying objects at an altitude of
about 100 km: meteors in the high atmosphere. Finally in an attempt to intercept the
V2’s, much more sensitive new receivers were installed. They did not distinguish
themselves from the preceding ones. This time the cause was found in the cosmic
hiss that Jansky had discovered.

The development of the two-antenna interferometer, which would become an
instrument of fundamental importance in radioastronomy, is also due to an Eng-
lishman, Martin Ryle (1918–1984). (The sea-interferometer, which antedates the
2-element arrangement, used only one antenna placed on a cliff overlooking the sea.
For there is a virtual antenna, namely the image of the real antenna in the sea, due
to the reflecting sea surface.) For this invention and astronomic research he was
awarded in 1974 the Nobel prize for physics together with Antony Hewish who had
discovered in 1967 the first pulsar, by analyzing the data of a powerful interferometer
that Ryle had just built.

During thewarRyleworked for theTelecommunicationsResearchEstablishment,
a research center on radars. (At that time the word radar did not exist in England. It
was a later American palindromic word, first noted in November 1942 in the New
York Times. Its inventor is apparently not known.) Subsequently he moved to the
Cavendish Laboratories in Cambridge where an excellent group of radio physicists
was already active. Around 1950, using an instrument with precision from 1◦ to 3◦,
he localized about 50 radio sources in the sky (Ryle, Hewish [1955]). None was
related to a star of good luminosity maybe because, as it would be discovered later,
the great part were due to noise. This led to the conjecture that a new kind of stellar
objects existed. They were named radio stars.

Then using a German antenna recovered at the end of the war, 7.5 m in diameter,
Ryle could determine positions in the skywith a precision, unparalleled at the time, of
one arc minute. The optical telescope of the Palomar Observatory (California) could
finally see the two most powerful radio sources: Cassiopeia A located inside our
galaxy and Cygnus A, an elliptical galaxy in the constellation Cygnus, about a billion
light years away. Both emitted far more in the radio band than in the optical one.
Virgo A, an elliptical galaxy and weak source of light, five million light years away
and third most powerful radio source in the sky, was discovered in Sydney, Australia.
Since the MilkyWay is a spiral galaxy whose main dimension is a hundred thousand
light years, the belief that point radio sources were nearby stars was seriously shaken.

These discoveries, which were bound to have a profound effect on the conception
of the Universe and on cosmological theories, began to attract astronomers to this
new field on a large scale.
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Radio waves were used to investigate the solar system as well. The first radio
echoes from another planet were obtained in 1958 from Venus, in spite of the dense
cloud cover surrounding it. They allowed an accurate measurement of its distance
from Earth and improved the value of the astronomical unit, the mean distance of
the Earth from the Sun. Radio studies also showed valleys and mountains on Venus’s
surface and revealed the sandy nature of our Moon’s surface before any landing took
place.

9.4 Radio waves and radiotelescopes

It is important to underline that radio waves have nothing to do with sound and
cannot be perceived by the ear. They are modulated during radio transmissions for
broadcasting purposes, but it is not sound that is transmitted. Indeed sound in air
requires a physical vibration of the air molecules. In the case of radio waves or light
waves or any other kind of electromagnetic radiation, no bulk movement of matter
is detected.

Besides infrared radiation, which is perceived as heat, light is the only kind of
radiation perceived by our senses. We are not aware that it propagates in waves
because of the extremely high frequency: some thousands of millions of millions of
oscillations per second, which is far too many, given the time of response of the eye.

Many astronomical objects emit electromagnetic radiation of various kinds: radio,
infrared, visible, ultraviolet, and so on.Radiowaves are characterized bywavelengths
from a few millimeters up. Neither the human eye nor photographic emulsion are
sensitive to them. So they are detected by other means, for instance with the aid of an
antenna where radio waves induce a weak current as in every conducting material.
Electrical filters in the receivers, connected to the antenna, may be employed to select
one frequency at the time so as to determine which frequencies—or equivalently
wavelengths—are present in the radiation.

A dipole antenna pointing toward the sky can detect radio waves but cannot
determine the direction they come from. For this purpose a telescope is needed. It
might consist of an array of dipoles or of a surface, made of conducting material, that
reflects radio waves following the same rules of the reflection of light by a mirror.
In the second case the radiotelescope consists of a paraboloid, called a “dish,” made
by solid metal or by a metallic fine mesh. Usually the dish is mounted so it can be
steered and pointed in any direction of the sky (Fig. 9.5), just as an optical telescope.
Paraboloids have the property of reflecting all rays coming in parallel to their axis
to a single point called the “focus.” Rays having directions close to the axis are
reflected to points in the focal plane near to the focus. A radiotelescope in the form
of a paraboloid differs from an optical telescope in that the focal plane device records
only one image pixel. So the focal plane must be scanned in two dimensions to build
up the radio image sequentially, instead of simultaneously as in optics where a film
or other two-dimensional detector is used.
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Figure 9.5 The radiotelescope in Effelsberg, Germany, 100 meters in diameter. (Courtesy of Max
Planck Institut für Radioastronomie, Bonn, Germany)

The current induced in the elements at the focus of the dish is conducted to a
receiver to be amplified, filtered, and recorded by instruments usually located in a
room at the base of the telescope. Following both the antenna and the bandpass filter
there is another detector that is a nonlinear device. In early times such a detector was
a point contact between a conductor and a crystal of galena. It was later replaced
by vacuum tubes. Now silicon p-n junctions are used, not very different in principle
from early crystal detectors. By analogy the detector in an optical system is a silver
iodide molecule suspended in a photographic emulsion, another nonlinear device.

9.5 Resolving power

The resolving power of a system—whether radio or optical—measures the ability
to resolve two close objects, meaning the ability to record separate images of them
(compare Figures 9.6 and 9.14).

The phenomena of diffraction and interference cause the image of a celestial
point source, made with a paraboloidal antenna, to be a tiny spot surrounded by faint
concentric rings. Such rings, clearly visible under good conditions in the case of an
optical telescope (Section 5.4), are not as pronounced in case the image is obtained
by a radio dish. The central spot is called the diffraction disk of the image. No details
smaller than that can be resolved.

http://dx.doi.org/10.1007/978-1-4899-7989-6_5
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Figure 9.6 Map of the source Cygnus A using the Cambridge Five-kilometer telescope at 5 GHz.
This map showed for the first time the radio nucleus associated with the central galaxy and the high
brightness at the outer edges of the radio lobes. The resolution is 2.0×3.1 seconds of arc. (Hargrave
P.J., Ryle M. [1974], “Observations of Cygnus A with the 5-km radio telescope,” Mon. Not. Roy.
Astr. Soc. 166, pp. 305–327. ©Blackwell Science Ltd.)

In the case of an extended source the diffraction patterns of various parts of the
image overlap, destroying the finest details. In the case of two stars whose images
are closer together than the size of the diffraction disk of either, a single spot perhaps
slightly elongated will show in the image. In astronomical practice the resolution
of a radiotelescope—the same holds for a lens or the reflecting mirror of an optical
telescope—is the smallest angle α between two stars for which separate images are
produced. It is given in seconds of arc by the formula

α = 2.1 × 105
λ

D
, (9.1)

which requires the wavelength λ and the aperture D of the paraboloid or lens to be
measured in the same units, for example centimeters.

In the case of the human eye, the resolution—almost 1 minute of arc—is not as
good as that of an ideal lens of the same size (λ close to 0.5 microns and D equal to
a few millimeters) due to the insufficiently fine structure of the retina.

Radio waves are much longer than light waves. For example radio waves of 20
cm are about 400,000 times longer, so to resolve the same angle a radiotelescope
ought to be 400,000 times larger than an optical telescope.

The largest radiotelescope (Fig. 9.7) is located near Arecibo on the island of
Puerto Rico. Made by a spherical mesh of fine wire, it stretches over a natural valley
in the mountains. With a diameter of 305 m (effectively illuminated 225 m) it is
unmovable and takes advantage of the Earth’s rotation, which brings into view of
the telescope a 40◦ belt of the sky at one time or another. It operates at wavelengths
from 3 cm to 1 m with resolving power from 0.45 to 15 minutes of arc. The largest
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Figure 9.7 The radiotelescope in Arecibo, Puerto Rico, 305 m in diameter, is part of the National
Astronomy and Ionosphere Center, which is operated by Cornell University under a cooperative
agreement with the National Science Foundation.

steerable radiotelescope, about 100m in diameter, is located inEffelsberg, nearBonn,
Germany (Fig. 9.5). Then comes the 91 m radiotelescope in Greenbank, Virginia
(USA), followed by the 76 m at Jodrell Bank, England and many smaller ones.

The radiotelescope in Effelsberg operates at wavelengths from 3.5 mm to 74 cm
with resolving power from 15 seconds to 25 minutes of arc. It is an engineering
masterpiece: the deformation due to movement of the dish pointing in different
directions of the sky, as well as that due to wind and heat, is very small, otherwise
the precision obtained by its large dimension would be significantly affected. To give
an example, it resolves points on theMoon 800 km apart. This may seem crude. Even
only the human eye does better, separating points 100 km apart while the best optical
telescope can resolve, always on the Moon, points 1.8 km apart due to atmospheric
turbulence and inhomogeneities. Unimpaired by that, the Hubble Space Telescope,
with a diameter of 2.4m, can separate points 40mapart. The limits of radioastronomy
appear evident, the more so since the construction of telescopes of even greater
dimensions is technically difficult and economically strenuous. Nevertheless, as will
now be described, the best resolution that can be achieved in radioastronomy is
several orders of magnitude superior to that of the best optical telescope.
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9.6 Interferometry

An ingenious techniquewas found for obtaining radio imageswith high resolution by
pioneer Martyn Ryle. Radio signals can be transmitted along electrical wires. This
allows elements kilometers apart to be connected. Starting with the signals from
two (or more) elements, the technique of interferometry generates a third signal
that shows a fine structure described as interference fringes. The resolution is that
of a single continuous antenna equal in length to the element spacing, therefore
potentially bounded only by the Earth’s diameter of 12,800 km or the separation of
satellite elements. In Section 9.8 the mathematical model will be described.

The most impressive radiotelescope array is the Very Large Array (VLA) located
near Socorro, NewMexico (USA), in the dry St. Augustin plain, the least polluted by
parasitic emissions (Fig. 9.8). Operated by the National Radio Astronomy Observa-
tory (NRAO), it is open to foreign researchers. The facility has been a workhorse of
contemporary astronomy since its opening in 1978 and greatly contributed to studies
of the fine structure of many cosmic objects. It is composed of 27 telescopes, each
of aperture 25 m, all of which can be moved along rails laid out in a “Y” configu-
ration, with a total span of about 36 km. It receives wavelengths from 90 to 1.3 cm
with resolving power from 3.6 to 0.05 seconds of arc, comparable to the best optical
telescopes.

Many arrays do not use separate parabolic dishes. For example the Molon-
glo Radio Telescope, built in 1963 near Canberra, Australia, consists of two wire

Figure 9.8 The Very Large Array near Socorro, New Mexico (USA), operated by the National
Radio Astronomy Observatory. (Source: Istituto di Astrofisica Spaziale, CNR)
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meshes—each a mile long and parabolic in cross section—that meet at right angles
at their centers. The incoming radio waves are reflected to a long antenna—one for
each arm—set at the focus of the parabolic cross section and running down the entire
length of the arm. This kind of configuration is known as a “Mills cross” after B. Y.
Mills who proposed it in 1958 and built the first one at Fleurs near Sydney, Australia.
Crosses of comparable dimensionswere built also in the northern hemisphere, in Italy
and the Soviet Union. Since 1969 at Medicina, near Bologna, a radiotelescope has
been operating, known as the Northern Cross after the original project that assigned
it the shape of a Mills cross with arms 1200 m long. It actually looks like a “T.”
The East-West arm is a semiparabolic cylinder 564 m long and 35 m wide while the
North-South arm, 640 m in length, is made by an array of 64 parabolic cylinders,
each 23.5 m × 8 m in size, set 10 m apart. It operates at the wavelength of 73.5 cm.

With two telescopes very widely spaced on Earth, a greatly superior resolution
could be obtained. If the distance were equal to the Earth’s diameter, very fine details
could be resolved, up to 0.0001 seconds of arc, comparable to the arc subtended
by a tennis ball on the Moon. This is actually feasible since time can be measured
with extreme precision by atomic clocks. The technique is called intercontinental
interferometry. Two radio telescopes very far away can “simultaneously”—that is
within a fewmillionths of a second—receive and record radio waves emanating from
the same source. The signals, recorded together with the receiving time, can then
be taken to a common facility and processed as if the whole procedure were taking
place in real time.

Italy built in the 1980s, mainly for observations of intercontinental interferometry,
two twin telescopes 32 m in diameter one located at Medicina and the other at Noto,
near Catania in Sicily. They operate at wavelengths from 1.3 to 20 cm.

9.7 The principle of image formation in a radiotelescope

By means of an aperture, such as the paraboloid of a radiotelescope, the two dimen-
sional distribution of the radiation intensity of a celestial body can be made into an
image with a resolution imposed by the aperture dimensions.

Due to the phenomenon of diffraction at infinity there is a Fourier transform
relation between the electric field that exists on a remote plane, parallel to the aperture
plane, determined by the 2D intensity distribution to be reconstructed and the electric
field on the aperture plane of the paraboloid. Then in turn there is a Fourier transform
relation between the electric field on the aperture surface and the field produced in
the focal plane of the paraboloid, after reflection from the curved surface. So, the
field on the focal plane constitutes an image of the radiating body. This is shown by
the mathematical model that follows which, being independent of the wavelength,
also holds for an optical telescope with a reflecting mirror. Hence the principle of
image formation rests upon the inversion formula of the Fourier transform in two
dimensions (Section 5.3).

http://dx.doi.org/10.1007/978-1-4899-7989-6_5
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For simplicity the mathematical model will be presented in the case of a one-
dimensional aperture and will depend upon an angle θ, through the function sin θ. In
reality the aperture is two-dimensional. It may be the object under observation in the
sky as well as the dish of the radiotelescope. The corresponding model then depends
upon two angles θ, φ through the functions sin θ and sin φ.

The one-dimensional aperture will be represented by a segment described by the
variable x , once the origin is fixed in O and the unit is conveniently chosen to be
equal to the wavelength λ of the observed radiation. The electric field at a point x
and time t is given by the formula b(x)eiωt where ω denotes the angular frequency
under reception and b(x), called the aperture function, is complex valued having an
amplitude and space phase.

At time t = 0 the infinitesimal element between x and x+dx induces at a far away
point Q—in the direction θ at a distance R from the origin (Fig. 9.9)—an electric
field, called the far field, proportional to CR b(x)dx . The constant CR , dropped in
the sequel, accounts for the fact that the radiation power is distributed over the entire
spherical surface of radius R and thus becomes fainter and fainter as R increases.
Moreover the electric field at Q shows a phase delay that depends upon the length
of the radiation path—denoted by r—by means of the wave cycles in it. Recalling
that the wavelength λ has been chosen as the unit of measure, the resulting formula
for the far field at Q due to the infinitesimal element dx is then

b(x)dx e−2πir .

Integrating over all the infinitesimal elements the instantaneous electric field in Q is
obtained.

A suitable approximation leads to the interpretation of the far field. Since Q is
placed at a great distance R, the approximation r ∼= R + x sin θ = R + xs holds
with s = sin θ (Fig. 9.9). Then e−2πir = e−2πi Re−2πi xs and so the far field E(s) at Q
is given with good approximation by

Figure 9.9 Construction to deduce the relation between the local electric field and the electric field
measured by instruments at a far away point Q.
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E(s) =
∫ ∞

−∞
b(x)e−2πi xs dx (9.2)

where the constant e−2πi R has been taken out of the integral and dropped, together
with CR . In (9.2) the domain of integration is extended to (−∞, +∞) having set
b(x) = 0 outside the aperture. Now it is easily recognized that the far field E(s) at
Q is the Fourier transform b̂(s) (2.15) and that it depends on the direction θ through
s = sin θ. Because of this, the far field E(s) is also called the angular spectrum. Its
square amplitude P(s) = |E(s)|2 is called the angular power spectrum.

The above model has shown that the electric field E impinging on the paraboloid
is proportional to b̂, the Fourier transform of the electric field b(x) on the far away
object under observation. The electric field on the paraboloid is then reflected to its
focal plane. The phenomenon “at infinity,” described mathematically above, takes
place again. So by the same argument the electric field recorded on the focal plane
is proportional to Ê . This is b by the inversion formula.

Let us test the above mathematical model in the simple case of a point source,
represented mathematically by the Dirac delta function. The radio waves, origi-
nally spherical and of constant amplitude, in reaching the telescope far away can be
regarded as planewaveswith good approximation.The electric field on the paraboloid
is therefore uniform and it is recognized to be the Fourier transform of the delta func-
tion (Section 3.4).

Now if the paraboloid were infinite, by the inversion formula, on the focal plane
there would be exactly the point source, mathematically the Dirac delta function. In
reality the telescope dishes have finite, yet large, dimensions. The electric field is
constant on the dish (always in case of a point source) and zero outside. Therefore
in the focal plane the amplitude of the electric field has a central maximum weakly
degraded by much weaker surrounding maxima, as in the optical case of Figure 5.3.
Hence the picture obtained by the telescope is an image slightly degraded. More
precisely it is a diffraction pattern.

In the description of the principle of image formation, certain ideal conditions
have been assumed. The electric field reflected by the paraboloid has been taken
equal to the impinging field. In reality the two are different due to phenomena of
distortion introduced, for example, by lack of uniformity of the very same reflecting
surface. To avoid a serious drawback of this nature the telescope in Effelsberg, when
operating at short wavelengths, makes use only of the central part of the dish, which
is more uniform.

Also it has to be considered that the signal may have a very small intensity. For
example, an extragalactic radio source of average power produces on Earth a signal
comparable to that of a 100 watt lamp located on the Moon. Consequently the signal
is easily plagued by noise in the receiver. For techniques devised to address this
problem as well as others, like “blurring,” see Bracewell [1995], Gonzales, Wintz
[1987], Andrews, Hunt [1977].

http://dx.doi.org/10.1007/978-1-4899-7989-6_2
http://dx.doi.org/10.1007/978-1-4899-7989-6_3
http://dx.doi.org/10.1007/978-1-4899-7989-6_5
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9.8 Aperture synthesis

In case two (or more) elements are available, their signals, recorded at the same time
and summed together, lead to an improved resolution, due to interference fringes
similar in nature to those obtainable in optics with a system of two apertures (Figs.
5.7 and 5.8). The technique that allows simulation of a full dish by two smaller dishes
is called aperture synthesis. It requires only two telescopes, movable along rails, and
longer observation times during which the radiosource is assumed not to vary.

With an interferometer made by two equal apertures set apart by u—measured
in multiples of the wavelength λ—let θ be the direction of observation with respect
to the line orthogonal to the axis of the instrument. In the case of the two equally
illuminated apertures, if the origin is chosen midway so that one is set at − u/2 and
the other at u/2, the total electric field is

b(x − u/2) + b(x + u/2)

where b(x) here denotes the field on one of the apertures placed at the origin (Fig.
9.10). Consequently the sum of the signals on the focal planes is

E(s) = b̂(s)(e−2πisu/2 + e2πisu/2) = 2b̂(s) cos�/2

where � = 2πus = 2πu sin θ. The corresponding intensity distribution or angular
power spectrum is

P(s) = |E(s)|2 = 4|b̂(s)|2(1 + cos�)/2.

Figure 9.10 A simple
interferometer.

http://dx.doi.org/10.1007/978-1-4899-7989-6_5
http://dx.doi.org/10.1007/978-1-4899-7989-6_5
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There it appears the factor 1 + cosψ, introduced by the geometrical setting. Such a
factor, which depends upon the direction of observation θ, is approximately a periodic
function in θ. The period, or separation between two maxima, can be calculated to
be 1/(u cos θ) by the approximations

1 = ��/2π = u sin(θ + �θ) − u sin θ

= 2u sin
�θ

2
cos

2θ + �θ

2
∼= u�θ cos θ.

Note that u cos θ is the projection of the baseline u on the direction orthogonal
to the direction of observation and equals u if the direction of observation is vertical
(θ = 0). As already calculated, in the case of a point source, b̂(s) is constant and
the fringes, described mathematically by 1 + cos�, clearly show (Fig. 9.11 a)). An
extended source, yet small enough to be considered uniform, can be thought of as
made up of many point sources. Each will contribute with its own cos(u sin θ), which
tend to annihilate each other, since the θ values are different. Hence, the fringes of an
extended source are expected to be weaker than those of a point source of equal flux
(Fig. 9.11 b)). The mathematical model confirms this and moreover it proves that the
modulation (fringes) disappears when the angular extension α of the source equals
the period 1/(u cos θ). Indeed the interferometric pattern reduces to the dotted line
in Figure 9.11.

Thus, the angular dimensions of a source can be calculated from the observations.
For example, assume the one-dimensional radiosource to be extended in the direction
of the baseline. With the two telescopes pointing toward the source so that θ = 0,

Figure 9.11 Radio interferometric pattern a) in the case of a point source, b) in the case of an
extended source.
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Figure 9.12 Optical interferometric pattern due to an extended source, as the angular dimension
increases. (H. Lipson, Optical Transforms, Academic Press, 1972)

their distance is augmented until the fringes are no longer visible. If u0 is the length
reached by the baseline, thenα = 1/u0 is the angular dimensionmeasured in radians.
The analogous phenomenon in optics is shown in Figure 9.12. Actually it ought to be
recalled that the first interferometric techniques in astronomy go back to 1890, to the
optical work of Michelson. Then in collaboration with F. G. Pease, Michelson was
able to measure the diameter of some large nearby stars such as α Orionis, Arcturus,
and Betelgeuse, starting from the interferometric data (Michelson, Pease [1921]).

A deeper understanding can be gained by pushing the mathematical model further
ahead. Two functions, the brightness B(θ) and the complex visibility V , need to be
defined. The brightness measures the power received per square meter of receiving
surface, per unit solid angle, and per unit of frequency band (centered at the frequency
under observation). It is a function of the direction of observation θ and it is measured
in W m−2 sterad−1Hz−1 Clearly nonnegative, brightness is a particular case of the
definition of intensity and is the function that has to be determined with the best
possible resolution.

The complex visibility V (u p) = |V |e2πiu p�θ is a complex-valued function that
can be calculated from the data obtained by the interference fringes: the amplitude
is

|V | = Imax − Imin

Imax + Imin

where Imax and Imin denote, respectively, the maximum and minimum intensity of
the fringes (Fig. 9.11), while the phase is determined by the shift �θ of the fringes
with respect to a reference position that the fringes would have if the source were
a point source. Both |V | and �θ depend upon u p = u cos θ, the projection of the
baseline on the direction orthogonal to the direction of observation.

The remarkable fact is that, up to a multiplicative constant, the complex visibility
evaluated at the “frequency” u p is the inverse Fourier transform of the brightness.
Therefore by formula (2.15)

http://dx.doi.org/10.1007/978-1-4899-7989-6_2
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B(θ) =
∫ ∞

−∞
V (u p)e

−2πiu pθdu p =
∫ ∞

−∞
|V (u p)|e2πiu p�θe−2πiu pθdu p.

Once a sufficient number of values |V | and �θ are measured by the interferometer,
that is once the complex visibility at a sufficient number of points is available, the
brightness follows by an FFT.

The procedure to measure the angular dimension α of a uniform radiosource
(defined for |θ| ≤ α/2), mentioned above, follows from the formula. The inverse
Fourier transform of the brightness, that is V, has its first zero at u p = 1/α (2.15).
Now V is zero precisely when Imax = Imin , which is the case of no fringes mentioned
above. The method is similarly extended to two-dimensional sources.

9.9 Synthesis by earth’s rotation

The Earth’s rotation provides variations of the u p in the aperture synthesis described
above. In the simple case of a one-dimensional source, its movement on the sky pro-
vides different values of u p and correspondingly of V (u p) for the synthesis without
any need to change the baseline. In the concrete case of a two-dimensional source
the method requires the antenna spacing to be varied in one direction only, along the
East-West line. For a source of high declination, the position angle of the baseline
projected onto a plane orthogonal to the direction of the source rotates 180◦ in 12
hours. By observing one day, holding fixed the distance between the antennas, and
by changing the distance from one day to another, a complete set of two-dimensional
data for the synthesis is obtained.

This procedure, proposed by Ryle (Ryle, Hewish [1960]) was implemented first
at the Cambridge One Mile telescope. The maps, obtained for the strong sources
Cassiopeia A and Cygnus A, exhibited an unprecedented degree of structural detail.

The exploitation of the Earth’s rotation was not a new idea, having been used
for years in solar studies (Christiansen, Warburton [1957]). A principle of image
reconstruction similar to the one used in CT scanners (Chapter 7) was proposed in
the radioastronomical context for the first time in 1942. A strong and variable radio
emission from the Sun in the wavelength of a meter was detected that year. The
question related to the source is: was it the entire solar disk or was it only parts of
the disk, such as the areas involved in the eruptions?

The angular diameter of the Sun is about 30 arcmin, so that a better resolution—
say 3 arcmin, approximately 10−3rad—was needed. At the wavelength of 1 m a
radiotelescope of 1 km was necessary, and at a wavelength of 10 cm, one of 100 m.
The biggest in existence was 5 m only.

Using an array of telescopes the issue was solved in favor of localized emissions
in conjunction with eruptions. As far as resolving power the array is equivalent to
the long and narrow antenna that envelopes it. Hence with an array 100 m long and
2 m wide, set along the East–West direction, the resolving power is approximately
3 arcmin in this very same direction and in the orthogonal one is approximately 3◦,

http://dx.doi.org/10.1007/978-1-4899-7989-6_2
http://dx.doi.org/10.1007/978-1-4899-7989-6_7
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Figure 9.13 A long and
narrow antenna laid in the
East–West direction provides
the integral of the
distribution of solar intensity
over a thin strip (in black)
that moves from West to East
and covers the whole solar
disk by effect of the Earth’s
rotation. (R. N. Bracewell
[1979], “Image
reconstruction in radio
astronomy,” article in Image
Reconstruction from
Projections, G. T. Herman
(Ed.), Springer.)

for a radiation of 10 cm wavelength. Inside such a strip on the celestial dome the
array does not separate points (Fig. 9.13). Therefore, it can only provide integrals of
the distribution of the solar intensity over such narrow strips that are approximately
line integrals. If the array is held fixed on the ground, then the strip crosses the solar
disk from West to East due to the Earth’s rotation and several line integrals can
be obtained. These data are similar to the projections made available by X-ray CT
scanners. Only the line of integration is not the direction of the radiation anymore
but rather orthogonal to it.

Different “projections,” in a sufficient number, provided the necessary data for
a reconstruction of the solar disk with the required resolution (Bracewell [1956],
[1979]).

9.10 Quasars, pulsars, and the Big Bang

Ordinary stars, such as the Sun, are grouped together in galaxies all formed 10 billion
years ago, as it is estimated. Stars are the seat of transformation ofmatter by a process
that takes place continuously so that some die and others are born. Now while radio
emissions are among the most spectacular manifestations of solar activity, especially
in conjunction with flares, it is a fact that the Sun and other stars in its class are not
strong radio sources but rather emit a large fraction of their energy in the visible
spectrum.

Nonetheless sources of energy much more powerful than stars are found in the
universe. In the visible range they might appear as stars but their energy emission,
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originating in a small volume—of the size of our solar system for example—is
comparable to that of a hundred or even a thousand galaxies.

From the beginning they appeared to be extraordinary heavenly bodies.Onlywhen
the radio source 3C 273 was located with high precision by Cyril Hazard (Hazard
et al. [1963]) was the optical telescope at Palomar Observatory successfully pointed
to one. Yet the light spectrum did not resemble anything known. Finally on February
5, 1963 Maarten Schmidt, working at the same observatory recognized in 3C 273
the classical lines of hydrogen and other known elements, but all very strongly red
shifted. From the shift the distance from Earth could be deduced, as well as the speed
of motion, by Hubble’s law. In one case the distance turned out to be two billion light
years. These objects, quasars and radiogalaxies, were the farthest ever detected. The
first were discovered in the 1950s; nowadays they are counted in the thousands. A
typical example is Cygnus A (Fig. 9.14) whose distance from Earth is estimated at
700 million light years. The distance placed them far outside our galaxy, and since
it took their light a billion years or so to reach Earth, the objects are being observed
as they existed when the Universe was much younger.

One thing remained to be explained, their enormous energy output, and the more
so in viewof the gigantic distance. This took a long time duringwhich several theories
were advanced. It is now explained by the existence of a black hole surrounded by
captured matter that forms a so-called accretion disk. The electromagnetic energy
originates from the fall of matter into the black hole. As the matter falls, converting
gravitational potential energy into kinetic energy, a lot of kinetic energy goes into
hot radiating plasma as the infalling particles collide.

In a number of these objects two jets are observed, in the direction orthogonal to
the accretion disk (Fig. 9.14, 9.15, 9.16). It is speculated that the inner regions, the
closest to the black hole, rotate at higher speed than the exterior ones. The rotation
could be so fast as to offer resistance to the fall of matter (just as the orbiting of the
Earth stops it falling into the Sun). The two jets, emitted violently in the direction of
minimum resistance, would serve the purpose of alleviating the enormous pressure.
The jets accumulate matter outside the galaxy in two symmetrical volumes where
the greatest part of the radio emission is generated.

The accretion disk is thought to be opaque in the exterior regions to the infrared,
optical, and X-ray radiation originating in the most inner regions. If the direction of
observation is close to the plane of the accretion disk, then the radiation is absorbed
and attenuated: This is the case of a radiogalaxy. If on the contrary the direction
of observation is orthogonal to the above plane or close to the orthogonal, then the
radiation of the central region appears very intense: This is the case of quasars. Only
one jet emanating from the central source is generally well evidenced in this case,
the opposite one being much weaker.

The reason the nucleus of a galaxy hosts a black hole is not well understood. Yet
it is believed that when two galaxies encounter one another and merge—not such
an exceptional occurrence as may be thought—phenomenal changes in the structure
take place that might lead to a great quantity of matter to fall on one of the nuclei,
thus giving rise to the described effect.
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Figure 9.14 On the left the radiogalaxy Cygnus A in the visible spectrum (Palomar Observatory).
On the right the same in the radio spectrum, made with the VLA at 6 cm wavelength (4.9 GHz),
shows two “clouds” fed by a radio nucleus (the bright spot at the center) that coincideswith the center
of the optical galaxy. The resolution is 0.4 arcsec (Perley, Dreher, Conwan [1984]). The display of
the image involves a nonlinear process to enhance contrast of the fine structure to emphasize the
jet from the central galaxy to the top right lobe and the filamentary structure in the main lobes.
(Source: Istituto di Astrofisica Spaziale, CNR)

Figure 9.15 The elliptical radiogalaxyM87, 40million light years away, shows a radio jet extending
for about 6000 light years. With this galaxy the correspondence between the image of the jet in the
radio, optical, and X-ray bands is extremely precise. (Source: Istituto di Astrofisica Spaziale, CNR)

Synchrotron radiation (Chapter 5) is the main mechanism of radio emission in
the universe. The observer does not receive a series of pulses but a continuum due
to the mixing of pulses generated by different electron trajectories.

http://dx.doi.org/10.1007/978-1-4899-7989-6_5
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Figure 9.16 Radio image of the quasar 2300-189 obtained at 20 cm wavelength (VLA). The point
source of radio waves at the center of the picture coincides with the object visible in optics. One
observes, looking above, a fine and irregular jet feeding a region of extended and weak emission.
The central object emits two symmetrical jets; the one directed toward us is much more visible.
(Source: Istituto di Astrofisica Spaziale, CNR)

Neutron stars are other extraordinary heavenly bodies. A year after the discovery
of the neutron, made in 1932 by James Chadwick, few physicists advanced the idea
that protons and electrons could fuse together and give rise to neutrons in the most
dense of the stars. The associated conditions were so strange though—for example
a thimble of neutron star matter would weigh a hundred million tons on Earth—that
many scientists ignored it all.

Thirty five years later, in November 1967, Jocelyn Bell, a graduate student at
the University of Cambridge, analyzing the data from the new telescope she had
seen under construction, noticed a regular sequence of rapid, sharp, and intense
radio pulses emanating from a precise spot in the constellation of Vulpecula. The
regularity of the pulses was amazing, one every 1.3373011 seconds. She reported
the phenomenon to her advisor Anthony Hewish. Could they be signals from an
intelligent civilization of extraterrestrials? Half jokingly, the source was dubbed
LGM for “little green men” by the astronomers of the group. Working in great
secrecy, they discovered four such objects in widely separated directions in the sky
and published in a short time two sensational articles carrying detailed properties.
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Figure 9.17 Images of the Crab nebula with a pulsar on and off, taken by the Einstein Observatory.
(Source: Istituto di Astrofisica Spaziale, CNR)

The authors advanced the idea that these stars had a mass comparable to our Sun’s
mass, were extremely small (e.g., 10 km in radii), and in rapid rotation. Conceivably,
neutron stars. If a relatively slow star such as the Sun, which makes a full rotation in
27 days, were to contract to a 10 km radius, then the period of rotation would become
a small fraction of a second by the law of conservation of momentum (the same law
an ice skater takes advantage of to spin faster). Moreover if it emitted radio waves
at one or more points on the surface, then the emission would be received on Earth
at regular intervals, in the same manner as the beam of a lighthouse is perceived
(Fig. 9.17). This is the case of pulsars, most of which are neutron stars. They are
clocks so precise as to allow studies of phenomena pertaining to general relativity
and otherwise inaccessible.

Besides continuous radiation, radiosources may produce spectral line radiation,
that is radiation of only one specificwavelength. The best-known example of this kind
is the radio emission by neutral hydrogen atoms present as clouds in the interstellar
medium and subject to inner turbulence and to movements in blocks. At rest with
respect to the observer, the hydrogen emits a faint radiation that, according to the laws
of quantummechanics, corresponds to a wavelength of 21 cm or 1420.405MHz. The
phenomenon, predicted in 1944 by the Dutch astronomer Hendrick C. van de Hulst,
was observed for the first time in 1951. It marked the beginning of kinematic studies,
inside as well as outside the Milky Way, up to then virtually forbidden in optics
by absorption in the galactic plane. By measuring the shift toward higher or lower
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values with respect to the 21 cm wavelength “at rest,” the displacement of clouds of
hydrogen atoms could be measured according to the radio analogue of the Doppler
effect. The Doppler spread within our galaxy reaches several hundred kilohertz.

In 1965, once more by chance, radioastronomy had revealed another important
phenomenon: the cosmic microwave background radiation (CMB), fossil relic of a
primeval age. It was discovered byArnoPenzias andRobertWilson at Bell Telephone
Laboratories in Holmdel, New Jersey. They were working at the 7 cm wavelength
with an experimental antenna—in the shape of a horn and originally designed for
satellite telecommunications—that had a receiver of exceptional quality. Plagued
by noise while taking careful measures of galactic radiation coming from certain
directions, they checked the Galaxy, the Sun, the atmosphere, the ground, and even
the equipment to find the source and ruled them all out. With a series of exceptional
measures they convinced themselves that this supplementary emission, the same in
all directions, was coming from the sky, but about the origin they had no idea.

Close by, at Princeton University, the physicist R. H. Dicke was of the opinion
that if the universe was expanding, an established fact since Hubble’s work, at the
beginning when it was very concentrated it had to be very hot. One could then
attempt to detect the residual radiation of that distant past. He calculated that it
ought to be found in the millimeter or centimeter wavelength and indeed had begun
construction of a suitable receiver on the roof of the Princeton biology building.
Attempts have been made even prior to that but the measurement were so difficult,
the values so uncertain, that interpretation of the data could not be brought into the
picture. Under discussion was the theory of the Big Bang, formulated before the war.
Penzias and Wilson had found the experimental evidence (Dicke overestimated the
strength, getting 30K, and also failed to mention that the calculation had previously
been done byGeorge Gamow) andwere awarded the Nobel prize for physics in 1978.

The “vanished brilliance of the origin of the worlds” that went together with the
explosive beginning of theUniverse—as postulated by theBelgian cosmologist Abbé
George Lemaître (1894–1966)—was really there.

9.11 A “flat” forever-expanding Universe

In December 1998 for ten days the balloon Boomerang (balloon observations of
millimetric extragalactic radiation and geomagnetics) flew over Antarctica at an
altitude of about 38 km and was able to take pictures of the background microwave
radiation at a time when the universe was in its infancy, denser and hotter and some
50,000 times younger than today. For the same purpose the balloon Maxima had
flown one night over Texas in August 1998 (Hanany et al. [2000]).

When the temperature dropped below 3,000 K—300,000 years after the Big
Bang—hydrogen atoms could form reducing the number of free electrons and mak-
ing it possible for the photons of light to escape and start their journey. The resulting
intense radiation traveled for more than ten billion years across the Universe and
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reached Earth red shifted. It is by and large of thermal origin and is detected as a faint
microwave background radiation with an average temperature of 2.7 K (–270◦C).

The measures by Penzias and Wilson showed a remarkable uniformity in all
directions in the sky: The cosmic background radiation was isotropic to within ±1.0
K. Soon after, at the StanfordRadioAstronomy Institute, R. N. Bracewell and student
E. K. Conklin made a search for departures from isotropy with an upper limit of 5
mK allowable variation over a 1◦ field (Conklin, Bracewell [1967a], [1967b]). It was
a remarkable result that endured for some years and was influential in cosmological
theory.

In 1991 the Cosmic Background Explorer (COBE) satellite revealed temperature
variations. With receivers 100 times more sensitive and resolution 35 times higher,
Boomerang could detect variations of 10−4 K (Fig. 9.19) with resolution of 22.5
arcmin. It allowed the drawing of the first high resolution maps of CMB at 90, 150
(Fig. 9.18), 240, and 400 GHz (wavelength 3, 2, 1.2, and 0.8 mm, respectively) over
3%of the sky (deBernardis et al. [2000]).While at 400GHz themap appears uniform
because the much stronger emission of our Galaxy is hiding the CMB, at the first
three frequencies the maps show temperature variations similarly located (Fig. 9.18).
Brighter (hotter) spots are areas of compression, darker (cooler) spots are areas of
rarefaction. Hence there appear the seed structures that in the next 10 billion years
would evolve into today’s stars, galaxies, and clusters of galaxies.

The quantitative analysis of the images gives much information, answering ques-
tions going back decades. For instance the radiation’s long trip could have taken place
along straight lines if the geometry of the cosmos were Euclidean (zero curvature),
as well as along curved paths if the geometry were like that of a sphere (positive
curvature) or else of a saddle (negative curvature). In the first case the spots in the
maps were expected to be about one degree in angular size. They would appear larger
for the most part, in the case of positive curvature and smaller in the case of nega-
tive curvature. Opening the era of precision cosmology (Hu [2000]), Boomerang’s
measurement point toward a “flat” Euclidean universe and consequent everlasting
expansion.

9.12 Search for extraterrestrial intelligence

In 1959, there appeared inNature a paper by physicists Giuseppe Cocconi and Philip
Morrison [1959] advancing the suggestion to search for extraterrestrial intelligence
(SETI) by detecting radio signals. Shortly thereafter Bracewell [1960] speculated
about the existence of civilizations incredibly advanced, linked in a chain of commu-
nications and with long experience in effecting contacts with emerging communities
like ours: “Their signals would have the appearance of echoes having delays of sec-
onds or minutes, such as were reported thirty years ago by Størmer and van der Pol
and never explained.”

The first search for extraterrestrial intelligence, Project Ozma, was indeed car-
ried out in 1960 at the National Radio Astronomy Observatory in Green Bank,
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COBE

Figure 9.18 Evidence of the structure in the cosmic microwave background was found in 1991
by NASA’s COBE satellite which mapped the entire sky (upper left). The Boomerang image (150
MHz) covers 3% of the sky with angular resolution 35 times that of COBE and reveals hundreds of
structures that are visible as tiny variations in the temperature of theCMB. (Courtesy of Boomerang’s
team)

West Virginia (USA), by Frank D. Drake. Since then a number of SETI experiments
have been performed (Sagan, Drake [1975]). Currently in progress is the SETI Insti-
tute program directed by Jill Tarter and the BETA project (Billion Channel Extrater-
restrial Assay) lead by Paul Horowitz at the Harvard-Smithsonian Observatory (Fig.
9.20). Started in October 1995 it covers with a radiotelescope, supported by a super-
computer, the band from 1400 to 1720MHz. It can be imagined as 250million radios,
all tuned to adjacent channels, all receiving simultaneously.

The most likely frequencies for such radio transmissions are thought to be
around 1420 MHz—the emission line of the most common element in the universe,
hydrogen—and have been thoroughly examined. Even though a number of signals
too strong to be noise have been recorded, they were never reobserved so that it can
be said that no signals from an extraterrestrial intelligent life has been identified so
far. This statement is not as strong as it may sound. As pointed out above, it is relative
to a certain range of frequencies and moreover to a certain power of transmitters and
up to a certain distance. Besides what is beyond the MilkyWay would go undetected
independently of power. Any signal originally inside the preferred band would be
shifted outside it, upon reception on Earth, by the motion of galaxies.

Thanks to radio astronomy, knowledge of cosmic phenomena in the last fifty
years made exceptional progress, bringing to light unsuspected phenomena. This
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Figure 9.19 A picture of
the inner refrigeration stage
that cooled the detectors of
Boomerang to 0.3 K,
reducing the intrinsic noise
of the sensors and thus
allowing the detection of the
CMB. The stainless steel
sphere, 12 cm in diameter,
contains the 3He used as a
refrigerating fluid. This stage
is mounted inside a larger
4He and nitrogen cryostat.
The cryogenic system
worked automatically for the
10 days of the flight.
(Courtesy of Boomerang’s
team)

Figure 9.20 Paul Horowitz
at the supercomputer for the
BETA project of the
Harvard–Smithsonian
Observatory. On the lower
right a portrait of Fourier.
(Planetary Report, Vol. XVI,
no. 2, 1996.) (Photograph by
Thomas R. McDonough)
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propulsive role is now shared with space astronomy and optical astronomy, which
is going through a period of considerable development thanks to the construction
of giant telescopes and interferometers. Astronomy has presently at its disposal
several tools—from the various observational techniques to numerical simulations—
to explore the universe and to try to reconstruct its origin and to foresee its evolution
scanned by cosmic times.



Chapter 10
Our Friendly Atmosphere: Methods
of Remote Sensing and Climate

10.1 Cannons, sirens, explosions, and atmospheric
acoustics is born

It was 1704 when men of church were still active on the forefront of science. A letter
was sent to the English clergymen W. Derham (1657–1735), Rector of Upminster in
Essex, claiming that “sound is seldom heard at Rome at such distances as in England
and northern climates.” In [1708] Derham, writing in Latin, published a long paper
that clearly speaks of the difficulty posed by sound and the “abstruse phenomena”
associated with it. He starts by the disagreement among best authors concerning the
velocity of sound, from Isaac Newton to Mersenne, to the Florentine Accademia
del Cimento, to finish with the French Observatory. It is clear to Derham that this
stems from experiments made over too short distances, which reached at most three
miles. He mentions as well inadequacy of instruments and wind as other possible
causes. His own experiments with guns at Blackheath, whose flashes he could see
from the turret at Upminster church and whose report he could hear almost in all
weather, proved “the motion of sound to be the same with what the Accademia del
Cimento had determined.” He goes on investigating echoes and the motion of sound
in different weather and time of the year and provides a “Table of Experiments on
Sound” according to the directions of the various winds such as transverse, favoring,
strong favoring, snow favoring, rather favoring. The section titled “Motion of Sounds
in Italy” is taken by the issue raised in the letter mentioned above. The letter was
written by Mr. Richard Townley who affirmed that, when he was in Rome and the
great guns of the Castle St. Angelo were fired, the report was much more weak
on Trinità dei Monti that at any other place of the same distance. His brother also
affirmed that, being once at the Castle Gandolfo which stands on a hill 12 miles from
Rome, the report of the same great guns was weak and subdued. About this issue
Derham, having contacted his Italian acquaintance S. Averrani working in Florence
at the order of theGrandDuke of Tuscany, goes on tomentionAverrani’s experiments
distinctly heard at some 55 miles away, as well as credible information that Averrani
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had about the sound of the great guns at the sieges of Messina as well as Genoa.
Derham concludes “From these observations Averrani is apt to think that there is no
difference in this matter between Italy and the northern climates.” The beginning of
atmospheric acoustics is placed by Brown and Hall [1978] with this very same letter
of 1704 to Derham.

In Chapter 4 it has been described the early history of acoustics when vibrating
strings attracted interest and string instrumentswere built. The nature of sound though
remained obscure for a long time. Did the sound proceed from the source as a particle
or as a wave? The first solid grip on the matter had been put in place by Galileo
(1564–1642) with his scientific method, followed by Mersenne—a French disciple
of him—and by a number of French mathematicians. Experiments to measure the
speed of sound in air had already been carried out in the middle of the sixteen
hundreds, though the correct value of 332 m/s in dry air at 0 ◦C was measured for
the first time in 1750 in Paris using a cannon.

Evangelista Torricelli (1608–1647), another of Galileo’s disciples, made the fun-
damental contribution of themercury barometer. Born of a very poor family, Torricelli
was raised at Jesuit and Benedictine Colleges. He stayed with Galileo, confined by
the Inquisition to his villa in Arcetri, during the last 3 months of Galileo’s life serving
as his secretary and assistant. After Galileo’s death, he succeeded him as professor
of mathematics at the Florentine Academy. Torricelli gave many contributions to
physics and mathematics but it is mainly for the invention of the barometer in 1643
that he is remembered (Fig. 10.1). The pump makers of the Grand Duke of Tus-
cany were experiencing difficulties in raising water above 10 m. Torricelli employed
mercury—14 times denser that water—filled with it a glass tube approximately 1 m
long and inverted the tube into a basin of mercury. The column fell at about 76 cm,
leaving above a “Torricelli vacuum.” (A similar experiment with water would require
a tube at least 11 m long). After much observation he concluded that the variation
of the height of the column of mercury from day to day was caused by changes in
atmospheric pressure. At that time the experiment created a sensation, for another
reason tough: nobody had ever entertained the thought that vacuum could exist. The
horror vacui was an established belief from Aristotle. Nevertheless Aristotle was
right: vapors of mercury were present in the Torricelli vacuum for, strictly speak-
ing, vacuum cannot be obtained. Blaise Pascal (1623–1662), informed of Torricelli’s
experiment, repeated it with wine and a glass tube about 14 m long, and further
pursued the topic of vacuum and atmospheric pressure. The “torr,” a unit of pressure
named after Torricelli (760 torr = one atmosphere), was replaced by the “pascal” in
the SI system of units starting in 1971 (one pascal = 7.5 · 10−3 torr).

The sustained development of atmospheric acoustics began in the second half of
the nineteenth century when the refraction of sound was investigated by G.G. Stokes
[1857] and O. Reynolds [1876]. Sound, just as light, undergoes reflection as well
as refraction while passing from a surface separating media of different properties.
Refraction obeys Snell’s law (10.6). When the two media—say air and water, or else
layers of air with different temperature and humidity—are in motion relative to each
other due to water currents or winds, models for the refraction of sound can be much
more complicated.

http://dx.doi.org/10.1007/978-1-4899-7989-6_4
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Figure 10.1 A postage stamp of the former Soviet Union commemorating Torricelli. (https://en.
wikipedia.org/wiki/Evangelista_Torricelli)

A different phenomenon takes placewhen sound, or light for thismatter, strikes an
obstacle of finite size. Then some sound may be reflected (echo), some of its energy
may be transmitted to the obstacle, and some sound might get around the obstacle
undergoing diffraction (Figs. 5.3, 5.5, 5.7, 5.8). In brief the original sound is said to
be scattered by the obstacle.

In 1874 the Irish born John Tyndall (1820–1893) attacked the problem of the
scattering of sound (Tyndall [1874]) by making experiments in the laboratory and
over the sea on the south coast of England, using a siren fitted with a huge horn

https://en.wikipedia.org/wiki/Evangelista_Torricelli
https://en.wikipedia.org/wiki/Evangelista_Torricelli
http://dx.doi.org/10.1007/978-1-4899-7989-6_5
http://dx.doi.org/10.1007/978-1-4899-7989-6_5
http://dx.doi.org/10.1007/978-1-4899-7989-6_5
http://dx.doi.org/10.1007/978-1-4899-7989-6_5
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Figure 10.2 Tyndall’s apparatus for studying sound propagation in the atmosphere. (Tyndall
[1875])

(Fig. 10.2). On occasion he obtained a long persisting echo, taking place in a clear
and apparently still atmosphere. He explained it as the effect of temperature fluctu-
ations (“flocculence” in Tyndall’s words, i.e., “turbulence” in modern words). His
conclusions were not accepted by his peers and this line of research went silent for
almost a century.

Tyndall started as a railway engineer in Ireland and later in England.When railway
construction slackened he accepted in 1847 a position as mathematician and survey-
ing teacher at a boarding school in Hampshire out of “desire to grow intellectually.”
In 1848 he moved to Germany, at the time ahead of Britain in experimental chem-
istry, and in 1850 received his doctorate from the University of Marburg. After his
return to England he was elected Fellow of the Royal Society and in 1853 was named
Professor of Natural Philosophy at the Royal Institution in London. As such he was a
colleague ofMichael Faraday,withwhomhe sharedmodesty and devotion to science,
and succeeded him at Faraday’s retirement. Following in Davy and Faraday steps,
Tyndall—since the 1860s one of the world’s most famous living scientists—spent a
significant amount of time disseminating science to the general public at hundreds
of public lectures in London and in 1872 even in the U.S. He drew large crowds
paying fees to hear him lecture on the nature of light. Tyndall was an experimenter
and laboratory apparatus builder. Among his realizations is an apparatus to measure
the radiant heat absorption by gases.
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10.2 Tyndall, Arrhenius, and some surprising
atmospheric gases

In 1859 Tyndall began investigating the radiative properties and absorptive powers
of gases such as water vapor, carbon dioxide (“carbonic acid” in Tyndall’s words),
ozone, and hydrocarbons. An important discovery of him was the vast difference
in the ability of “perfectly colorless and invisible gases and vapors” to absorb or
else transmit radiant heat. He noted that oxygen, nitrogen, and hydrogen are almost
transparent to radiant heat while water vapor, carbon dioxide, and ozone are best
absorbers (Fig. 10.3). The stronger absorber among these, and so the most important
gas controlling the Earth surface temperature, he claimed to be water vapor. Without
it, the Earth would be “held fast in the iron grip of frost.”

Perhaps Tyndall’s “iron grip of frost” was also in the mind of the Swedish Svante
Arrhenius (1859–1927), Nobel Prize for Chemistry in 1903, who—aside from elec-
trochemistry, his main scientific interest—attempted to find an explanation to the
onset of ice ages. His calculations and assumptions showed that with no CO2 in the
atmosphere the surface temperature of the Earth would fall by 21 ◦C. The resulting
cooler atmospherewould contain lesswater vapor, creating an additional temperature
decrease of approximately 10 ◦C.

Later hewas first to recognize that “the slight percentage of CO2 in the atmosphere
may, by the advances of industry, be changed to a noticeable degree in the course of
few centuries” stimulating plant growth and providing more food for populations, as
he speculated. At that time nobody believed that human activity could significantly
affect average global temperatures. Presently, it is on record that CO2 had risen
at a rate much faster that Arrhenius had predicted, followed closely by acid rains,
deforestation, and acid oceans.

Figure 10.3 Percentage of
radiation absorbed by some
atmospheric gases: CO
(carbon monoxide), CH4
(methane), N2O (nitrous
oxide), O3 (ozone), CO2
(carbon dioxide), H2O
(water vapor). (http://
earthobservatory.nasa.gov/
Features/Tyndall)

http://earthobservatory.nasa.gov/Features/Tyndall
http://earthobservatory.nasa.gov/Features/Tyndall
http://earthobservatory.nasa.gov/Features/Tyndall
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10.3 The discovery of the stratosphere

In 1902 Léon Teisserenc de Bort—having resigned his position of chief meteorolo-
gist at the Centre de la Météorologie Nationale in Paris—discovered the stratosphere
by measurements made with unmanned instrumented balloons, launched from his
private observatory in Trappes, near Versailles. He described the stratosphere as
an “isothermal” layer. Hence he was led to conclude that the atmosphere was
divided into two layers: up to about 11 km the troposphere, where temperature and
weather change, and above the stratosphere with constant temperature and unchang-
ing weather conditions. Observations of meteor trails showed instead that, in the
upper part of the stratosphere and up to 50 kmapproximatively, temperature increased
with height (a phenomenon due to absorption of solar radiation by ozone, as it was
later established). Researchers focused on it as well as on refraction, trying to explain
some anomalies of sound propagation during explosions.

Due to low atmospheric density research balloons cannot fly much higher than
30 km, so several experiments used explosions leading to the unexpected discovery
of sound waves of very low frequency (Gowan [1929]), now called infrasounds.
Finally an acoustic technique, using rocket grenades, was developed at the White
Sands Proving Ground (NewMexico) to obtain temperatures and winds up to 80 km
“by measuring the velocities of sound and the deflection of sound waves from seven
or nine grenades successively ejected and exploded from an Aerobee rocket (Fig.
10.4) along the nearly vertical upward leg of its trajectory” (Stroud et al. [1956]).

Meanwhile, starting with Taylor [1915], the theory of turbulence had been grad-
ually introduced to study the dynamics of the atmosphere at small scale.

10.4 Our friendly atmosphere

Our atmosphere is a rather thin shell that screens solar wind, harmful X-rays, and
gamma rays (Figure 9.1) coming from space. At the same time, it keeps the Earth
warm by preventing the energy reaching the Earth from the Sun to be mostly radiated
back to space. The atmosphere extends from the surface of the Earth to thousands
of kilometers. Up to 100 km its composition is approximately uniform and consists
mainly of nitrogen (N2) and oxygen (O2), traces of the important water vapor (H2O),

carbon dioxide (CO2), aswell as other gases. Above 100 km the atmosphere becomes
progressively thinner. Lighter gases are more abundant, like atomic oxygen (O)
between 100 and 600 km, helium (He) between 600 and 1000 km, and hydrogen (H)
above 1000 km. Further above only solar wind—the flux of particles, mainly protons
and electrons, of large enough velocity to escape from the solar corona—is found.

The energy, originating within the Sun by nuclear fusion, transfers to the solar
surface and from there radiates into space. An extremely small amount of such energy
is intercepted by the Earth. About one-third is then scattered back to space either
by clouds or by the surface itself. The remaining energy powers winds as well as
oceanic currents and sustains biospheric processes. While the source of the energy

http://dx.doi.org/10.1007/978-1-4899-7989-6_9
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Figure 10.4 Aerobee Rocket. (White Sands Missile Range Museum)

is ultimately the Sun, the resulting thermal processes in the atmosphere make up
a complex chain. Schematically the atmosphere is bathed in two radiation fields.
The first, originating in the Sun, has the majority of the spectrum in the visible and
ultraviolet (Fig. 9.1). The second one, emanating from the surface of the Earth and

http://dx.doi.org/10.1007/978-1-4899-7989-6_9
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its lower atmosphere is mostly infrared. This makes the atmosphere heated from
below by the moist radiating surface of the Earth and perturbed locally by the energy
of sunlight in daytime. The transfer of energy by infrared radiation—the dominant
mode of heat transmission between the different atmospheric layers—is mainly due
to trace constituents of the atmosphere like H2O, CO2, and O3 but also N2O and
CH4. They are able to absorb the infrared wavelength radiated by the surface of the
Earth, trap it and return it to the ground. In spite of being present only as traces, these
gases have a phenomenal effect. Without them the temperature at the surface of the
Earth would be about 40 ◦C colder. If in excess they are responsible for the so called
greenhouse effect.

The atmosphere can be subdivided into layers depending upon height and related
thermal structure. Up to an average of 13 km from the Earth surface lies the tro-
posphere. Here the air is rather unstable for the temperature rapidly decreases with
altitude. Colder air tends to sink, displacing warmer air upwards. Like a kettle heated
from below the troposphere turns over (from the Greek tropos meaning “turn over”).
Most of the weather of the planet is confined to the troposphere: clouds are generally
not found elsewhere. Above lies the stratosphere extending up to 50 km. Here the
temperature starts to increase with altitude, reaching back about that at the surface
of the Earth. The stratosphere appears to be stretched out in layers (strata means
“layers” in Latin). Here it is to be found an appreciable concentration of ozone that
protects the Earth surface by strongly absorbing ultraviolet radiation. Above lies the
mesosphere (in Greek mesos stands for “middle”), where the temperature resumes
decreasing with altitude. At about 85 km the mesosphere ends. Still above, where
the temperature rises again with altitude, lies the extremely rarified thermosphere.

The upper part of the troposphere is called free atmosphere. Its complementary
lower layer makes up the boundary layer (BL), defined dynamically as that part of the
troposphere directly influenced by the presence of the Earth surface. The thickness
of the BL is rather variable in time and space, ranging from few tens of meters at the
poles to 2–3 km at the equator. The point is that solar radiation, scarcely absorbed
by the BL, is almost completely absorbed by the ground. It is the ground that, by
warming and cooling, forces in the BL rapid changes—lasting about an hour or so—
via transport processes of heat and pollutants. The oceans absorb solar radiation as
well, about 90% of it. Evaporation results, involving approximately 1 m of water
per year over all the Earth’s oceans. The latent heat stored as water vapor in the
atmosphere accounts for 80% of the “fuel” that drives atmospheric motions. It is
mostly in the boundary layer that air flow—classified as mean wind, waves, and
turbulence—takes place, as well as transport processes like movements of water and
oxygen to and from life forms such as plants.

The mean wind is responsible for very rapid horizontal transport, commonly of
the order of 2 to 10m/s. Friction causes the mean wind to slow down near the ground.
Waves—generated by the mean wind flowing over an obstacle, or by thunderstorms,
or by explosions—transport energy. Turbulence, the gustiness superimposed on the
mean wind, churns and mixes the atmosphere distributing water vapor, smoke, and
other substances at all elevations. It takes place mostly within 3 km from the surface
of the Earth and reaches its maximum around midday when solar radiation heats up
the Earth surface. This, together with disturbances around surface obstacles, makes
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low level winds extremely irregular. At night the Earth surface cools rapidly. When
the air near the ground becomes cooler than the air above it, a stable temperature
inversion is created and the wind speed and gustiness decrease sharply.

In the free atmosphere insteadmotions are almost geostrophic (thewind is directed
parallel to isobars) and turbulence is only occasionally present. A thermal inversion,
that limits exchanges, is usually present between the BL and the free atmosphere.

10.5 Turbulence: Navier–Stokes equations and
Kolmogorov theory

The phenomenon of turbulence in all its manifestations is not completely understood.
In the following the main contributions by Navier and Stokes with their equations, by
Reynolds with his number (10.1) and decomposition (10.3), by Richardson with his
energy cascade, by Kolmogorov with his theory are presented. The topic is further
pursued in Section 10.9.

The first to use theword turbulence (“turbolenza”) in a scientific context appears to
be Leonardo daVinci (1452–1519) in the year 1500, in a report written for the Repub-
lic of Venice that had sought for his advice (Cod. Atlanticus f. 638dv). Leonardo
studied the motion of currents in rivers and made experiments placing obstructions
in water. With his discerning eyes he observed the results (Fig. 10.5) and, somewhat
anticipating the Reynolds decomposition (10.3), wrote: “Observe the motion of the
water, which resembles that of hair, which has two motions, of which one is caused
by the weight of the hair, the other by the direction of the curls; thus the water has
eddying motions, one part of which is due to the principal current, the other to the
incident and reverse motion.”1

With a hiatus ofmore that 300 years, quantitative analysiswas started. First in 1823
the French Claude L. Navier and subsequently the Irish George G. Stokes formulated
the equations, carrying their name, that describe fluid motion. Then in the 1880s the
British scientist Osborne Reynolds (1842–1912) introduced a pure number, later
named after him (Re), providing a criterion to establish whether the flow of a fluid
(liquid or gas) in a pipe is laminar or turbulent. In the laminar regime the fluid flows
in layers that slide one over another, so the streamlines do not cross. In the turbulent
case, fluctuations (eddies) are present and the streamlines are tangled, so turbulent
flows have the ability to mix fluids much more effectively than laminar flows. This
is important in many instances as in pollutants dispersal in the atmosphere as well
as to mix reactants in chemical processes. Reynolds observed that the transition
from laminar to turbulent regime in a pipe occurs for Re numbers between 2000
and 2500 (unless the tube surface is very smooth for, in such a case, Re could be
higher). Below this range the flow is laminar, and above turbulent. In between a

1“Nota il moto del vello dell’acqua il quale fa a uso de’ i capelli, che hanno due moti, dei quali
l’uno attende al peso del vello, l’altro al liniamento delle sue volte; così l’acqua ha le sue volte
revertiginose, delle quali una parte attende a l’impeto del corso principale, l’altra attende al moto
incidente e refresso.” (Cod. Windsor).
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Figure 10.5 Water striking water (1507–1509), 29x 20.2 cm. (Royal Library, Windsor Castle,
U.K.)

transition takes place from one regime to the other. For example, a laminar flow in a
pipe would experience perturbations from inlet flow pressure fluctuations. The flow
remains laminar if viscous forces damp out these perturbations. If the flow rate is
increased beyond a certain rate, viscous forces can no longer suppress perturbations
and sporadic bursts of turbulence start to appear. Eventually transition from laminar
to fully turbulent flow takes place. In Figure 10.6 Reynolds experiment is sketched:
a dye streak is injected into flow through a pipe having smooth transparent walls.

Later the Reynolds number was also used for types of flow involving moving
objects immersed in a fluid as, for instance, airplanes and also in atmospheric phe-
nomena like hurricanes. The Reynolds number is defined as

[some average flow velocity]x[some characteristic length]x[fluid density]
[fluid viscosity] (10.1)

In the case of a pipe the characteristic length is the diameter of the tube and
the velocity is the average velocity of the flow. In case of an airplane flying at a
cruise velocity of about 800 km/h the Reynolds number is of the order of 106, the
characteristic length being the length of the wing in the direction of motion (wing
chord) which is of order of a few meters. In case of a submarine moving at 50–60
km/h the Reynolds number is higher: it is of the order of 109, mainly due to the
higher density of water with respect to air. In case of hurricanes it is of the order of
1011. Indeed the typical dimension of hurricanes is of the order of 100 km and the
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Figure 10.6 (a) laminar flow, Re < 2000; (b) transitional flow (still laminar), 2000 < Re <

2300; (c) turbulent flow, Re > 2500, the instantaneous streamlines change direction “erratically.”
(McDonough [2007])

velocity—tangential in this case—could be in the range of 100–200 km/h. For a fly
the Reynolds number is of the order of 100.

Turbulence, strictly a three-dimensional phenomenon, can be visualized as con-
sisting of fluctuations, or vortices, or eddies, of many different sizes next to each
other. The atmospheric boundary layer is a collection of vortices. Examples of large
eddies are the thermal plumes of warmer air rising from the ground heated from the
Sun (Fig. 10.11). The largest among them range from 100 up to 3000 m in diameter,
reaching the depth of the boundary layer. Smaller size eddies are apparent when
looking at swirling leaves. The smallest atmospheric eddies are of the order of few
millimeter in size. The larger the eddy, the larger its kinetic energy and the longer it
lasts: large hurricanes can last a couple of weeks. In case of an airplane the small-
est eddies are the ones close to the wing surface. Their typical size is of order of
one-tenth of a millimeter.

Large vortices are unstable and break up into smaller vortices to which they
yield part of their kinetic energy. This process keeps taking place and goes under
the name of “energy cascade.” It ends when the smallest eddies die off, viscosity
being effective in dissipating all their kinetic energy to surrounding molecules. The
energy so transferred turns into an increase of the molecular velocity (heat). The
energy cascade, characterized by energy transfer to successive smaller scales and
by viscous dissipation, is an idea originally advanced by the British scientist Lewis
Richardson (1881–1953). He was also the first to apply mathematical techniques to
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obtain weather predictions (Richardson [1922]) by numerically solving the Navier–
Stokes equations. His method, once modified and improved, became practical in the
1960s with the advent of computers since until then about 3 months of computations
were needed to predict the weather in the next 24 hours.

With respect to a rigid body, the key features of a fluid are lack of own shape
and the pressure gradient as driving force. The Navier–Stokes equations describing
fluid motion are strictly a statement of conservation of momentum. They are the
fluid analogue of Newton’s second law of motion from which they are derived.
The unknown is the velocity v(x, t), where x = (x, y, z) denotes a point in space
and t denotes time. Indeed to describe a fluid motion velocity makes more sense
than position, the usual unknown in classical mechanics (e.g., the equations of the
vibrating chord in Section 2.1 and of the vibrating membrane in Section 4.11). Once
the velocity field is determined then trajectories can be visualized.

In case viscosity is neglected, Navier–Stokes equations become simpler and are
called Euler equations. They are the following set of equations, one for each com-
ponent v1, v2, v3 of the velocity v(x, t)
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where p = p(x, t) denotes pressure—an unknown as well—and ρ(x, t) density. If
density is constant then the fluid is said to be incompressible. An example is air
encountered by an airplane flying at a speed less that 600 km/h, for then air just
moves away. To close the system the equation of conservation of mass is added.

If viscosity must be taken into account then a linear term—the so-called stress
tensor—is added to the right-hand side of (10.2) which are then called Navier–
Stokes equations. Other terms might be added to the right-hand side. For instance,
in atmospheric physics another term is added to account for the gravity force, still
another one to describe theCoriolis effects that is the influence of theEarth’ s rotation.
To account for air humidity, added to the Navier–Stokes equations are the equation
of conservation of moisture and the equation of conservation of heat. Indeed water
vapor in air not only transports sensible heat associated with its temperature, but it
has the potential to release or absorb substantial heat during any phase change that
might occur (Stull [1988]).

The case of a compressible fluid—density ρ = ρ(x, t) not constant—makes the
problem more complicated and less is known about fluid dynamics. Examples are
flights in air at supersonic speed, or atmospheric reentry of capsules whose speed
may reach 8 km/s from low orbit and 11 km/s from the Moon.

On the right side of (10.2) is the driving force (pressure difference). The left-hand
side describes acceleration. In particular the last three terms, which are nonlinear,

http://dx.doi.org/10.1007/978-1-4899-7989-6_2
http://dx.doi.org/10.1007/978-1-4899-7989-6_4
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describe the so-called convective acceleration (Fig. 10.7). It is the presence of these
nonlinear terms, accounting for the convective transport of momentum, that makes
Navier–Stokes as well as Euler equations generally unsolved by analytical meth-
ods. Indeed existence, uniqueness and regularity of solutions of the Navier–Stokes
equations is a most important, long standing, open problem in mathematics. There-
fore, problems in fluid dynamics are usually treated by numerical methods and sim-
ulations that lead to approximate solutions. Figure 10.8 shows results of simulating
a jet flame with three methods: (a) Reynolds-averaged Navier–Stokes equations;
(b) large eddy simulation; (c) direct numerical simulation (Givi [1989], Kuo and
Acharya [2012]). This last one, the most accurate, is not feasible for most practical
problems being computationally too demanding even for modern computers. Yet
the advent of supercomputers, allowing finer and finer grids, made numerical fluid
dynamics progress steadily. Still further progress is needed to lead, for instance, to
better weather forecasts.

A complementary approach to the problems presented by fluid motion is based on
the theory of turbulence. It provides some guidance, stating conditions that must be
satisfied statistically by the flow. Reynolds [1895] had already advanced his decom-
position (10.3) when Geoffrey Taylor [1915] and others revived interest in the scat-
tering of sound at the root of which is turbulence, the “flocculence” in Tyndall [1874].
Taylor [1935] explicitly stated as assumption that turbulence is a random process and
therefore introduced statistical tools, as well as Fourier transforms and power spectra
in the turbulence literature. In 1941 Kolmogorov made a lasting impact on this topic.

AndreyN. Kolmogorov (1903–1987) was born just a few years before the Russian
revolution. His father Nikolai Kataev was an exiled agriculturalist. His unmarried
mother Mariya Kolmogorova died giving birth to him. He was raised by his mother’s
sister at the estate of his grandfather near Yaroslavl, about 300 km northeast of

Figure 10.7 An example of
convection. Even though the
single particles experience a
deceleration in time, the
fluid’s flow may be steady
(time independent) as it
decelerates with respect to
position while moving down
the diverging duct. (https://
en.wikipedia.org/wiki/
Navier-Stokes_equations)

https://en.wikipedia.org/wiki/Navier-Stokes_equations
https://en.wikipedia.org/wiki/Navier-Stokes_equations
https://en.wikipedia.org/wiki/Navier-Stokes_equations
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Figure 10.8 Simulations of a flame by three different methods (a) RANS; (b) LES; (c) DNS.
(Courtesy of P. Givi)

Moscow. Together they moved to Moscow in 1910, where Kolmogorov graduated
from high school in 1920. In 1922, at the age of 19, he gave an example of an
absolutely integrable functionwhoseFourier series diverges almost everywhere (Kol-
mogorov [1926]). This gained him international recognition and raised intense inter-
est among Fourier analysts, eventually leading to a result surprisingly in the positive
for closely related classes of functions. This result came more than 40 years later,
its celebrated proof due to the Swedish mathematician Lennart Carleson [1966].
(Kolmogorov and Carleson results deal with one-dimensional Fourier series. In sev-
eral dimensions open problems still persist Fefferman [1971], Prestini [2016].) Kol-
mogorov graduated in 1925 from Moscow State University where he also obtained
his Ph.D. in 1929. Interested in probability theory, in 1933 he published in Ger-
man his axiomatic theory of probability—based on measure theory—later to appear
in English as a book titled Foundations of the Theory of Probability. This work
established his reputation as leading expert in the field and, together with his contri-
butions to many other branches of mathematics, makes him one of the greatest and
most influential mathematicians of the last century.

Even though some studies were previously done in the West (Little [1969]) the
theory of turbulence is generally ascribed to the Russian school and especially
to Kolmogorov. In three brief papers in Russian (Kolmogorov [1941]), a mark of
Kolmogorov deep intuition, he dealt with turbulence for incompressible fluids at a
sufficiently high Reynolds number. They were followed by a refinement in [1962].
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His theory is built on the energy cascade advanced byRichardson in 1922, and already
mentioned. This qualitative description of turbulence marks an important point: vis-
cosity matters only at the smallest scales, whose size is the first quantitative question
that comes to mind. By introducing some hypotheses, Kolmogorov answered this
question and many more (Pope [2009], McDonough [2007], Lesieur [1987]).

Turbulent eddies can be described as a collection of molecules moving in mod-
erately coherent patterns characterized by several parameters, among which length
scale and velocity. As a whole vortices are generally very difficult to simulate and
predict, and may be highly asymmetric. Kolmogorov worked under ideal hypothe-
ses, he assumed turbulence to be locally homogeneous (meaning invariant under
translations) and locally isotropic. In his theory vortices, not precisely defined, are
subdivided into three categories depending on their scale length:

1) The largest scales or integral length scales L . Constrained by the character-
istic length of the apparatus (e.g., the diameter of the pipe), the largest scales have
higher velocity, last longer and contain most of the energy. This is called the energy-
containing range. The assumption that Re = Lv0/ν0 is large—where ν0 is the kine-
matic viscosity (viscosity divided by density)—means that the effects of viscosity
are relatively small.

2) The intermediate scales of lengths r in the range η << r << L . This is called
the inertial range. Kolmogorov hypothesis of “local isotropy” states that vortices at
the small scales r << L are statistically isotropic (invariant under rotations). The
possibly asymmetric geometry of the large scales is lost, hence the statistic of the
small scales vortices can be regarded as universal.

3) The smallest scales or Kolmogorov length scales η. Here vortices are short
lived. Their Reynolds number is small enough for dissipation to be effective, their
kinetic energy quickly transformed into heat by viscosity. This is called the dissipative
range.

Kolmogorov determined uniquely—in statistical sense—length, velocity, and
timescale of the vortices of the dissipative range, depending on the kinematic vis-
cosity ν and on the turbulent dissipation rate ε (average transfer of turbulent kinetic
energy per unit mass per unit time). Within a multiplicative constant, i.e., adopting
a normalized Re = 1, they are given in order by

η = (ν3/ε)1/4

vη = (εν)1/4

τη = (ν/ε)1/2

Furthermore in the range η << r << L vortices are independent of ν and uniquely
determined by ε (via the formula (v′)3/r = ε where v′ denotes the vortex tangential
velocity). This means that viscous effects are negligible, thus the name of inertial
range.

Kolmogorov inertial range energy spectrum determines how the turbulent kinetic
energy is distributed. Following the decomposition advanced by Reynolds [1895],
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the velocity vector is written as

v(x, t) = w(x) + u(x, t) (10.3)

where w is the mean velocity and u = v − w, associated to turbulence, is the
instantaneous difference. An important result of the theory is Kolmogorov’s 2

3 law.
It deals with ||u(x + l, t) − u(x, t)||2 that represents the square velocity increment
between two points at distance l = ||l|| assumed very small with respect to the
integral scale. It states that, in the inertial range, the so-called second order structure
function defined by

D(l) =< ||u(x + l, t) − u(x, t)||2 >

where < · > denotes ensemble averaging, satisfies the relation

D(l) = Cε2/3l2/3 (10.4)

with C a universal constant. The above result (10.4), involving the square of a veloc-
ity, is clearly related to kinetic energy and the following Kolmogorov k−5/3 energy
spectrum (10.5) can be derived from it.

A fundamental characterization of a turbulent flow is by kinetic energy distribution
(for fluids, such as air, kinetic energy per unit mass is more conveniently used)

1

2
||u(x, t)||2 = 1

2
u(x, t) · u(x, t)

For every fixed time t, u(x, t)may be represented via its inverse Fourier transform

u(x, t) =
∫

û(k, t)eik·xdk

By Plancherel theorem the following equality holds
∫ ||u(x, t)||2dx = ∫ ||û(k, t)||2

dk. In polar coordinates, the mean turbulence kinetic energy can be expressed as an
integral over the wave number k = ||k|| = 2π

r , that is in the form

∫ ∞

0
E(k)dk

where the spectral energy E(k) denotes the contribution to the mean kinetic energy
of all k lying on the sphere of radius k, corresponding to vortices of length r. Then
the law

E(k) = CK ε2/3k−5/3 (10.5)

describes the so-called Kolmogorov k−5/3 inertial range energy spectrum, where CK

is called theKolmogorov constant. Proved byObukov [1941], aKolmogorov student,
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Figure 10.9 Kolmogorov
energy spectrum in
logarithmic scale.
(McDonough [2007])

this result makes logE(k) to decrease as − 5
3 logk, a straight line with slope −5/3

(Fig. 10.9). This is one of the most famous results of Kolmogorov theory. Much
evidence has been found to support it. For instance, turbulent measurements, taken
from a submersible vehicle operating in the Knight Inlet on the western coast of
Canada, are described in Gargett et al. [1984]: the decay with slope −5/3 extends to
nearly three decades from−4 < logk < −1.Also from experimental measurements
the Kolmogorov constant CK has been estimated to be in between 1.53 and 1.68.

Another result, the so-called Kolmogorov 4
5 law, states that a third order structure

function (similar to the second order structure function D(l) but with a third power)
is equal to − 4

5εl. This result, confirmed by laboratory experiments, may be proved
to follow directly from the Navier–Stokes equations (Frisch [1995]).

Then in the 1960s another feature of turbulent flows, still governed by the deter-
ministic Navier–Stokes equations, was brought to attention: extreme sensitivity to
perturbations in the initial and/or boundary conditions, requiring unreachable preci-
sion to duplicate an experiment. This developed in the “strange attractor” description
of turbulence (Lorenz [1963], Ruelle [1989]).

Here is an example of an effect of turbulence that may occur in everyday life.
Imagine two friends conversing on a sidewalk when a girl (or boy), wearing a strong
perfume, walks by about ameter away. Theywould smell the perfume right away and
would turn quickly to check what is causing it. If the time for the perfume molecules
to reach them by molecular diffusion were to be computed it would be found to be
about an hour. This long time is due to molecular collisions. The explanation instead
is turbulence. Walking by, the girl creates a vortex—of diameter comparable to her
size—rotating at about the speed of the girl, say 3.5 km/h. Calculations show that
such a vortex reaches the two friends in about a second and that the girl Reynolds
number is indeed turbulent, of the order of 104.
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10.6 Princes of the clouds and lords of the winds

A web of about 800 balloons (radiosondes) floating in the air “covers” the globe.
Inflated with hydrogen or helium, the balloons carry small instrument packages to
measure the upper air rawdata needed for computer basedweather predictionmodels.
These in situ measurements, taken once or twice a day and recorded in a standard
format, are exchanged between countries through international agreements (www.
ua.nws.noaa.gov/factsheet.htm). The basic data of temperature, humidity, pressure,
wind velocity and direction at different heights (profiles) are also made available in
terms of averages by scientists operating with sodars, radars and lidars, dedicated
instruments that transmit and receive back sound, radio, and lightwaves, respectively.

In case of sodar (sound detection and ranging) targets are temperature fluctuations.
While most of the transmitted wave proceeds in the same direction, some is scattered
off in all directions by the target. For constructive interference, only temperature
inhomogeneities spaced λ/2 contribute to the backscattered wave (transmitter and
receiver colocated) where λ denotes the transmitted wavelength (Section 10.9). Pow-
erful pulses must be transmitted and very sensitive receivers must be designed to pick
up the echo. Sodar employs acoustic waves in the audible range: wavelengths are
in between 6–20 cm and the corresponding frequencies in the range of kHz. Hence
targets are temperature fluctuations at the decimeter scale at different heights. At this
scale the sodar is the right probe since the interaction of sound waves with the lower
atmosphere is much stronger than that of most part of the electromagnetic spectrum.
In addition, relatively simple and inexpensive electronics can be used. Indeed, in case
of radar, the same wavelengths are associated to much higher frequencies—in the
GHz range (Fig. 9.1)—and require more sophisticated electronics. Nevertheless the
strong attenuation of sound waves limits the sodar range to the height of 1.5 km. The
method of operation is based on the refractive acoustic index modifications caused
by atmospheric turbulence (Bragg scattering).

The radar signals travel long distances and penetrate clouds.Meteorological radars
(also called weather radars) operate at wavelengths from 1 millimeter to 1 meter, but
wavelengths of the order of the centimeter ([3–10] cm) are themost common. Targets
are water or ice droplets in clouds. For smaller particles, named cloud droplets,
shorter wavelengths (λ <3 cm) are used by the so-called cloud radars. The methods
of operation are based on Rayleigh scattering if the target dimension is smaller than
wavelength, otherwise on Mie scattering. To resolve turbulent structures in clear air
(cloud and precipitation free), it is Bragg scattering again.

At the even shorter wavelengths of lidar the target is aerosol, the system of liquid
or solid particles distributed in a finely divided state in the air (Fig. 10.10). Aerosol
particles play an important role in precipitation processes, providing the nuclei upon
which condensation and freezing take place. Radii of aerosol particles cover the wide
range from 10−8 to 10−4 meters and require the wavelength of light, or shorter as in
case of ultraviolet rays. Smoke accounts for most particles with radii smaller than
10−7m, while examples of particles larger than 10−7m are dust and ocean spray.

www.ua.nws.noaa.gov/factsheet.htm
www.ua.nws.noaa.gov/factsheet.htm
http://dx.doi.org/10.1007/978-1-4899-7989-6_9
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Figure 10.10 Diameter of atmospheric particles in micron (modified). (Reproduced from Pueschel
R.F. [1986], “Aerosol measurements in the boundary layer,” article in Probing the Atmospheric
Boundary Layer, (Ed. D.H. Lenchow) 57-86. © American Meteorological Society. Used with
permission.)

Furthermore, by Raman scattering molecular constituents of the atmosphere can be
targeted and detected.

From the delay between the transmitted pulsed wave—of sodar, radar, or lidar—
and the returned signal, the distance of target (range) can be determined. Via the
Doppler frequency shift, the radial velocity can be calculated as well, though by dif-
ferentmethods (as exemplified at the end of Section 10.11). The heterodyne detection
(radar, lidar) is linked to the so called range-velocity ambiguity (Section 10.15).

10.7 The advent of sodar

In the 1930s the radar was introduced and the atmosphere found another group of
scientists interested in it. In an attempt to discover the cause of a severe fading, in
some atmospheric conditions, of an experimental trans-horizonmicrowave radio link
(over the 64 kmdistance) betweenNewYork andNeshanic,New Jersey,G.W.Gilman
and collaborators—working for the Bell Telephone Laboratories in NewYork—built
a device acting like an acoustic radar. They named it sodar. The device was rather
rudimentary, with a detection range a little over 100 m. In spite of that intense
acoustic echoes taking place in presence of low-level temperature inversions were
detected. Since calculations showed that even a strong inversion could not account
for the strength of the signal, Gilman and collaborators stated: “it maybe that slight
turbulence and eddies even in seemingly calm air present significant discontinuities
by virtue of variations in temperature, humidity, air velocity and static pressure”
(Gilman et al. [1946]).

Interested in Gilman’s new creature—the sodar—Linday McAllister [1968],
working in Adelaide for the Australian Defense Scientific Service, built a greatly
improved one—that he called “acoustic sounder”—with the same antenna to transmit
and receive the signal. To record the signal McAllister introduced a key innovation:
he adopted the facsimile recorder, already in use since the 1920s in ocean sonars to
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Figure 10.11 Acoustic sounder record of thermal plumes, 15:00–16:00 C.S.T., April 2, 1971.
Height of range gate shown by parallel lines on record. (McAllister [1971])

image the bottom of the sea or fish schools crossing the acoustic beam. In this way
each pulse is recorded as a vertical trace whose darkness represent the strength of
the signal received from the atmospheric height marked on the ordinate of the chart.
Along the abscissa the time of successive pulses is recorded. The resulting picture
shows the evolution of atmospheric structures in time (Fig. 10.11). In McAllister
short and elegant paper the echoes were attributed to temperature discontinuities:
“The velocity of propagation of sound waves through the atmosphere is, to a first
approximation, a function of the absolute temperature of the air. Therefore, given an
acoustic sounding system (Gilman et al. [1946]) of sufficient sensitivity and an inte-
grated recorder, it is possible to obtain echoes from temperature discontinuities in the
lower atmosphere, and so to determine the structural characteristics of one of the key
atmospheric parameters as a continuous function of height and time.” Subsequent
meteorological records showed that a clearly detectable echo occurred in presence
of temperature fluctuations with a range of more than 0.05 ◦C at a frequency greater
than 1 Hz (McAllister et al. [1969]).

Meanwhile in Boulder, Colorado, at the Wave Propagation Laboratory of the
National Oceanic and Atmospheric Administration (NOAA), Gordon Little had
started a program for the study of optical propagation and remote sensing of the
atmosphere by means of laser beams. In the process Little became acquainted with
the work of the Russian school on the scattering of waves by turbulence, such as the
monograph by Tatarski [1961], as well as acoustic studies by Kallistratova [1961]
and Monin [1962]. In 1968, during a visit to Australia, Little shared his knowledge
of the results of the Russian school. Then, using turbulent acoustic scattering theory,
Little was first to obtain quantitative estimates of the strength of the received signal,
later confirmed by experimental results (Little [1969]). He foresaw the great poten-
tial of sodar and stated that “the acoustic sounding technique could be developed to
monitor to heights of at least 1500 meters: 1) the vertical profile of wind speed and
direction (by utilizing the Doppler technique); 2) the vertical profile of humidity; 3)
the location and intensity of temperature inversions; 4) the three-dimensional spec-
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trum of mechanical turbulence; 5) the three-dimensional spectrum of temperature
inhomogeneities.” Later research has followed up all these suggestions.

Next to Little’s paper there appeared the coordinated paper (McAllister et al.
[1969]), also adopting turbulent scattering theory as a mechanism for the produc-
tion of the returned signal and presenting as well facsimile recordings of various
atmospheric structures like thermal plumes (Fig. 10.11), inversions, and breaking
waves (Section 10.10). In his paper Little had acknowledged the “stimulation pro-
vided by McAllister experimental work.”

The first sodar by McAllister was followed by others: in 1969 by Little in U.S.,
in 1974 by G. Fiocco and G. Mastrantonio in Italy and by A. Spizzichino in France,
and then in other nations.

10.8 The refractive index of air to acoustic, radio, and light
waves

Refraction is the change of direction of a wave, due to its change in speed, as the
transmission medium changes (Fig. 10.12). In case of two different isotropic media
Snell’s law states that

sinθ1
sinθ2

= n2
n1

= v1

v2
(10.6)

where θ1 is the angle of incidence, θ2 the angle of refraction, n1 and n2 the cor-
responding indices of refraction, v1 and v2 the velocities of the wave in the two
media.

Variations of the refractive index lie at the origin of the scattering of acoustic
waves as well as electromagnetic waves. The acoustic refractive index na is defined
as the ratio of two velocities

na = Ca

ca

Figure 10.12 Left: Snell’s law of refraction with n1 > n2. Right: Since the atmospheric refractive
index typically falls with height, the refracted ray moves away from the vertical as it moves to
higher altitudes making possible trans-horizon radio transmissions.
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Table 10.1 Sound speed in
dry air. (Galati [2002])

T (◦C) Ca (m/s)

0 331.5

10 337.8

20 343.8

30 349.6

40 355.3

where Ca is the reference velocity of sound in a dry and stationary atmosphere at a
reference absolute temperature T0 (in kelvin) and ca is the velocity of the probing
wave. By the formula

Ca = 20.05T0
1/2[m/s]

with T0 = 288 ◦K, corresponding to 15 ◦C, it is obtained Ca = 340 m/s (Tab. 10.1).
In moist stationary atmosphere the velocity of sound is slightly higher (the more

so in water where is of the order of 1 km/s). To a good approximation it can be
calculated by the following formula

ca = 20.05

(
1 + 0.14

e

p

)
T1/2[m/s] (10.7)

where T denotes absolute temperature and e/p the ratio of water vapor pressure e to
total pressure p. So the velocity of acoustic waves is independent of the wavelength,
but depends on air temperature and, to a lesser degree, on humidity since the total
contribution of the atmospheric water vapor to the velocity of acoustic waves is
typically no more than 1 m/s. The same dependence holds for the refractive index.
Therefore variations of the above two parameters— to which wind must be added—
result in the scattering of acoustic waves. (For completeness it is mentioned that in
case of frequencies above 25 kHz—and so above the audible range (Chapter 4) —
the presence of CO2 makes the velocity of acoustic waves wavelength dependent,
thus changing sound during propagation).

The radio refractive index nr is similarly defined

nr = c0
c

(10.8)

where c0 is the speed of electromagnetic waves in vacuum and c is the velocity of
the probing wave. The radio refractive index of air varies with height and normally
falls with height in a standard atmosphere. Hence trans-horizon radio transmission
is made possible, since the refracted ray moves away from the vertical (Fig. 10.12)
by Snell’s law.

Typically (nr − 1) is very close to zero. Multiplied by 106 it gives the more
convenient refractive index Nr = (nr − 1)106 “expressed in N units”. To a good
approximation it holds

http://dx.doi.org/10.1007/978-1-4899-7989-6_4
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Nr = (nr − 1) 106 = 77.6T−1(p + 4810eT−1) (10.9)

with T absolute temperature, p total pressure and e water vapor pressure expressed
in millibar.2 So at radio wavelengths, the velocity c is strongly affected by water
vapor but it is not significantly wavelength dependent.

At optical wavelengths the opposite is true: c is not appreciably affected by water
vapor, but is strongly wavelength dependent. The formula for the refractive optical
index Nopt , expressed in N units, reads (Valley [1965])

Nopt = 77.6p

T
+ 0.584p

Tλ2
(10.10)

where λ is measured in microns. Typical example of refractive indices nopt for yel-
low light (λ = 5893 · 10−10 m) are: 1.00029 for air; 1.333 for water; 1.00045 for
carbon dioxide; 1.00013 for hydrogen; 2.417 for diamond at normal temperature and
pressure (Morgan [1953]).

Similarly the acoustic refractive index na is “expressed in N units” as follows
Na = (na − 1)106. Variations of 1 ◦C in temperature or 1 mb in water vapor give
rise, respectively, to variations of Nr of 1 and 4 and to variations of Na of 1700
and 140. Fluctuations of 1 m/s in wind velocity, assumed to be in the direction
orthogonal to the wave front, result in variations of Nr and Na , respectively, of 0 and
3000 (Ottersten et al. [1973]). These estimates show acoustic waves to be muchmore
sensitive to fluctuations of atmospheric parameters than radio waves. In the boundary
layer the refractive index of acoustic waves is about 1000 times more intense. Since
the scattered power is proportional to the square of the refractive index fluctuations,
the scatter of acoustic waves may be expected to be roughly a million times stronger
than for radio waves, as already observed in Little [1969]. Hence acoustic probes are
especially well suited for atmospheric studies.

Yet the strong attenuation of acoustic waves limits their scope to the height of
1.5 km. Indeed the intensity of an acoustic wave, measured in watt per square meter,
decays exponentially with distance: if I0 is the reference intensity that crosses a
reference plane, then the intensity I at a distance x is given by

I = I0e
−αx (10.11)

where α, that denotes the attenuation coefficient, has the dimension of m−1 and
is often measured in dB/m. The attenuation coefficient depends on temperature,
pressure, humidity and frequency. Figure 10.13 shows the strong dependence of
attenuation from air humidity as well as from frequency. Data at different
temperatures can be found on Table 1 at https://en.wikibooks.org/wiki/Engineering_
Acoustics/Outdoor_Sound_Propagation.

2The relation 1 atm= 1.013 · 103 mb makes the millibar slightly less than one-thousandth of a
standard atmosphere.

https://en.wikibooks.org/wiki/Engineering_Acoustics/Outdoor_Sound_Propagation
https://en.wikibooks.org/wiki/Engineering_Acoustics/Outdoor_Sound_Propagation
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Figure 10.13 The attenuation coefficient of acoustic waves as a function of percent relative
humidity—with air at 20 ◦C and standard atmospheric pressure—for frequencies between 2.0 and
12.5 kHz at 1/3 octave interval. (Reproduced from Harris C.M. [1966], “Absorption of sound in
air versus humidity and temperature,” J. Acoust. Soc. Amer. 40, 148–159, with the permission of
Acoustical Society of America)

10.9 Acoustic scattering theory and the role of the Fourier
transform

The physical process of the interaction of acoustic waves with turbulence depends
on the fluctuations of the refractive index which in turn depend on the fluctuations
of temperature, water vapor pressure, and wind. Measurements indicate that the
isotropic turbulence limiting microscale lm—the smallest scales at which turbu-
lence retains inertial range characteristics — varies from few millimeters to about
1 cm, whereas the outer scale L0—the largest scale for nonnegligible correlation
of isotropic turbulence—lies between few tens of a meter to about 10 m (Section
10.5). So, given the wavelengths involved, the corresponding wave numbers can be
assumed to belong to the inertial range of the turbulence spectrum. (However, in case
of anisotropic eddies, correlations may extend up to several hundred meters).

The scattered power (watt)—a fraction of the unit incident acoustic power—
depends on several parameters and in particular on the effective cross section σ0

(cm−1) which stands for the cross section per unit volume and per unit solid angle.
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Let θ denote the scattering angle—the angle between the direction of the incident
wave and the direction of the scattered wave (2θ is the different notation for the
scattering angle in Figure 6.6). In a dry atmosphere Margarita Kallistratova [1961]
and Monin [1962] stated σ0(θ) to be the sum of two terms, one involving �T(K)

and the other E(K)which are, respectively, the intensity of spatial Fourier transform
of the temperature and of the wind velocity mean square fluctuations. The formula
reads

dσ0 = 2πk4cos2θ
[ 1

ca2
E(K)cos2

θ

2
+ 1

4T2
�T(K)

]
dΩ (10.12)

where ca is the mean velocity of sound, T the mean absolute temperature of the
scattering volume, k = 2π/λ the wave number of the acoustic wave, K a three-
dimensional wave number such that ||K|| = 2k sin(θ/2), and where θ belongs to a
cone of solid angle dΩ. In particular no energy is scattered at θ = 90 ◦, a peculiarity
of acoustics-turbulence interaction. The above equation is not complete since it disre-
gards the effect of humidity. Nevertheless it is adequate for a first-order presentation
and calculation of the scattering by atmospheric irregularities. For a more general
theory the reader is referred to Brown and Hall [1978].

In case of locally homogeneous and locally isotropic turbulence (which can usu-
ally be assumed for acoustic, radio, and light scattering) only K = ||K|| matters.
Then in Kallistratova’s formula just �T(K) and E(K) appear with K = 2k sin(θ/2).
Hence σ0(θ) depends on the spectral intensities of temperature and wind velocity
fluctuations at scale l = 2π/K = λ/[2 sin(θ/2)], with θ �= 0. This is Bragg’s
diffraction law for periodic structures (6.1). So, once the turbulence field is decom-
posed by a spatial Fourier transform then, for any scattering angle θ, turbulence
can be interpreted as originating from a regular crystal lattice, with lattice spacing
l = l(θ) satisfying Bragg’s law. Hence turbulence scattering can be regarded some-
how as a “coherent” scattering or as a result of constructive interference. It is for
this reason that Fourier transforms, via the 3D spectrum of refractivity fluctuations,
“play such a major role in the theoretical analysis of the interaction of sound with
turbulence” (Brown, Hall [1978]).

In case of backscattering, that is θ = 180 ◦ so that the term cos2(θ/2)is zero, no
echo is received from “mechanical” turbulence and Kallistratova’s formula reads

σ0(180
◦) = 2πk4

�T(2k)

4T2
(10.13)

Only temperature fluctuations matter. The scale is l = λ/2, half the incident acoustic
wavelength, and the refractivity fluctuations can be dealt with as if they were orig-
inated by a set of partially reflecting parallel mirrors with spacing equal to λ/2.
Confirming Kallistratova’s experiments of 1959, McAllister et al. [1969] remarked:
“This is consistent with observations of the temperature records which showed the
strong echoes at a carrier frequency of 950 Hz (λ = 0, 36 m) were associated with
the existence of perceptible fluctuations with a scale l ∼= 0.2m within the scattering
region.”

http://dx.doi.org/10.1007/978-1-4899-7989-6_6
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From Kolmogorov theory of turbulence Tatarski [1961] derived

�T(K) = 0.033C2
TK

−11/3 (10.14)

with k0 < K < km (cm−1), where k0 = 2π/L0 and km = 2π/ lm . The structure para-
meter CT in (10.14), expressed in deg · cm−1/3, can be obtained from measurements
of the structure function of the temperature field

DT(r) =< |T(r1 + r) − T(r1)|2 > (10.15)

Here T(r1 + r) and T(r1) are the temperature at two points—where sensors are
located—separated by a distance r, and <> denotes average over the scattering
volume. Within the inertial subrange the structure function depends only on the
distance between the two points of measurements, not on their position in space, and
obeys the 2/3 law

DT(r) = C2
Tr

2/3 (10.16)

for lm < r < L0. With C2
T so determined, substituting (10.14) into (10.13) gives

σ(180 ◦) = 0.008
C2
T

T2
λ−1/3 (10.17)

showing a relative weak dependence on wavelength λ.Taking λ = 2π10−2m, CT =
4.6 · 10−2 (expressed in deg · m−1/3) and T = 300 ◦K, then

σ0 = 4.4 · 10−10 · m−1

Using σ0, the received power can be estimated and compared with the interfering
noise level existing at the input to the preamplifier (Little [1969]).

10.10 How the sodar works: thermal plumes, laminated
structures, and breaking waves

The sodar in its simplest monostatic configuration — colocated transmitter and
receiver—works even nowadays similarly to the one built by McAllister in 1968,
with a single antenna emitting strong acoustic tones (via a loudspeaker) and receiv-
ing the echoes. Thus the angle between the direction of transmission and the direction
of detection measures 180 ◦. The frequency of the audible tones belongs to the inter-
val [1.5–5] kHz, equivalently the wavelength λ belongs to the interval [0.06–0.2]
m. The time length τ of the transmitted pulse is usually fixed in between [0.01–0.1]
seconds. The repetition time depends on the height to be probed. If echoes up to 1000
m are of interest then the optimal repetition time is 6 s, for in about 3 s the probing
wave reaches height 1000 m and in about 3 s is back, assuming the velocity of sound
to be 340 m/s. Higher frequencies undergo a stronger attenuation (Fig. 10.13) and so
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only lower strata can be probed: up to 200 m in case of [4-5] kHz. Then the repetition
time is [1–2] seconds and the resolution in radial wind retrieving may be higher.

After a pulse emission the antenna is set in reception, hence sodars spend most of
their time in reception. The backscattered signal (echo), a function of time hence of
the height of provenance, is sampled (Fig. 10.14) and a single vertical trace is obtained
whose darkness represents the intensity of the echo from the different heights
(Fig. 10.16). For the correlation between the echo and the heights of provenance,
observe that at any fixed time t after emission (t > τ ) the antenna receives echoes
from all heights in the interval [(ca/2)/(t − τ ), (ca/2)/t], the round trip taken into
account. Thus the heights of provenance make up an interval of size caτ/2. Now
assume that at time t1 the strata involved are those between heights A and B, and at
time t2 those between C and D. Then in the time interval [t1, t2] all the strata between
A and D are involved, but only the strata between B and C are crossed by the whole
transmitted signal (Fig. 10.15). So the results of the analysis of the echo received
from time t1 to time t2 are associated to the interval centered at Z and thickness ΔZ
(range gate).

Themost characteristic of returns recorded by the sodar are those obtained on days
of light wind and cloudless sky (Fig. 10.16). Plumes are observed during the day from
11:00 to 16:00 involving a layer thicker than 500 m, and reaching a maximum rate
of occurrence of 30 to 40 per hour during the hottest part of the day (their number
depends on the speed of the wind carrying them over the sodar). On those hours the
air in contact with the ground heats up, reaching a temperature higher than in the
surrounding atmosphere. This increases internal turbulence and leads to the formation
of thermal plumes, that is columns of air that rise being hotter andmore turbulent than
the surrounding air. Between plumes the air that descend, closing the convective cell,
experiences a thermal turbulence much less intense. Thus, in the facsimile recording,
plumes are characterized by dark vertical lines separated by a lighter region. In these
conditions turbulence reaches the high strata where usually wind is stronger (and
capable of dispersing pollution eventually present). Plumes rapidly disappear as

Figure 10.14 First 2000 samples of an echo, sampled at 1600Hz, after analog-to-digital conversion
in the ordinate. (Mastrantonio [2002])
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Figure 10.15 An echo’s
range gate (see text).

Figure 10.16 A typical facsimile recording over 24 hours. (Courtesy of G. Mastrantonio, ISAC-
CNR)

ground temperature begins to decline toward the evening. Indeed usually half an
hour before sunset, convection rapidly ceases.



10.10 How the sodar works: thermal plumes, laminated structures, and breaking waves 291

After sunset the ground starts to lose heat by radiation and the air in close contact
becomes cooler leading to a nocturnal inversion (warm air above, cold air below) and
to the formation of stable strata that appear as horizontal structures whose height may
vary in time. They are due to air currents that shear on one another. Usually different
in temperature, speed and direction, such currents generate in the contact region
thermal turbulence and the resulting echo. Between 00:45 and 01:30, in presence of
stratified stability, a breaking wave is visible in Figure 10.16. Breaking waves may
occur in stable conditions (temperature increasing with height) when wind shear
is present. In this case every push upward or downward of air bubbles is followed
by a restoring force that tends to bring the air bubbles toward equilibrium. This
process leads to wavelike oscillations that sometimes may break. Characterized by
the sawtoothed line shape of their echo, they are the analogue of sea waves breaking
on the beach.

By a monostatic sodar with three antennas (Fig. 10.17) it is possible to determine
the wind profile in three dimensions. An example, of great complexity, of the wind
horizontal component is shown in Figure 10.18. Two air masses flowing one over
another, both coming from the Antarctic plateau, are seen to follow different paths:
from West and from North (Argentini, Mastrantonio et al. [1992]).

The continuous remote measurements obtained by sodars, describing the dynam-
ics of the lower strata of the troposphere, are of great significance to meteorolo-

Figure 10.17 A configuration of a sodar with three (synchronized) monostatic antennas in Antar-
tica. The penguins had to be gently moved away when the sodar was in operation, their noise
affecting sodar performances. (Courtesy of G. Mastrantonio, ISAC-CNR)
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Figure 10.18 Wind profiles for a 6 hours period on January 9, 1989, as observed by a 2 kHz sodar
on the Nansen Ice Sheet in Antarctica. Wind vector estimates correspond to 15 minutes averages.
(Courtesy of G. Mastrantonio, ISAC-CNR)

gists and to those concerned with atmospheric turbulence, diffusion, and pollution.
Besides, sodar techniques find application in the location of sites apt to the production
of wind energy.

10.11 The sodar, the wind, and the Doppler shift

The Doppler effect—named after the Austrian physicist who discovered it in 1842—
is the frequency shift that a wave undergoes in case source and/or observer are in
motion with respect to each other. It is a common experience that the sound of a siren
is higher in pitch as the siren approaches and is lower when it recedes, even though
the siren keeps emitting at a constant frequency. The motion of the approaching
siren gives rise to a compression of successive wave crests hence to an increase of
the detected frequency. The opposite occurs if the siren recedes from the observer.
The following formula

vr = −λΔω

2
(10.18)

where Δω = ωd − ω0 is the Doppler shift, ω0 the transmitted frequency and ωd the
detected frequency, will be proved in Section 10.14. It holds under the assumption
that vr , the radial velocity of the targetwith respect to the receiver (i.e., the component
of the velocity vector along the line of sight), is much lower than the speed of the
probingwave. It is seen that vr turns out to be negative if the target is approaching and
positive otherwise. If the antenna is pointing vertically the vertical component of the
wind can be determined. With other two antennas, pointing in different directions,
the horizontal components of the wind velocity vector can be determined.
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Figure 10.19 Time/height radar wind profile for a 12-h period as observed by the NOAA404-MHz
network wind profiler located in Bloomfield, CT. The wind velocities correspond to 1-h averages.
The barbs and solid triangles represent 5 m/s and 25 m/s wind speed increments, respectively.
(NOAA)

Figure 10.18 is an example of an horizontal wind profile showing a large variation
of directions depending on height. Note the relatively low minimum height (about
25 m) and the good height resolution (about 25 m) compared to radar (Fig. 10.19)
and lidar (Fig. 10.20). More on Clifford et al. [1994].

The method to calculate the Doppler shift for sodar, is different from that for radar
(Section 10.15). In case of sodar the Fourier transform of the echo is involved, in
case of radar it is the phase of the echo to undergo Fourier analysis. Here an example
will be given in case of sodar, and it will be seen why the same method is inadequate
in case of radar. Formula (10.18) requires the “center” frequency ωd of the echo to
be determined and compared to the known “center” frequency ω0 of the transmitted
signal. In absence of noise, ωd is defined via the spectral power density W (ω)—the
square magnitude of the fast Fourier transform of the echo—as follows
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Figure 10.20 Time/height lidar wind profile for a 24-h period as observed by NOAA’s Doppler
lidar located in Boulder, CO. The wind values correspond to a 15-min average. The dashed line
identifies ground level. (NOAA)

ωd =
∫
W (ω)ωdω∫
W (ω)dω

(10.19)

To provide frequency ωd relatively to a range gate via (10.19), the FFT is calculated
over consecutive samples of the echo (Fig. 10.14) in number of 128, 256, or 512
according to the range-gate thickness and to the spectral resolution required. Then
the process is repeated over the next 128 (256 or 512) consecutive samples of the
echo and so on. (Hence at the edge of each range gate there is a small overlap of the
order of cat/4 with the contiguous one (Fig. 10.15)). Formula (10.19), that involves
the first moment of W (ω), is recognized to be the formula of the coordinate of the
“center of gravity” ofW (ω). It may also be pointed out that the detected signal sd(t)
is always echo plus ambient and/or instrument noise. In Mastrantonio and Fiocco
[1982] a detailed procedure, to compute ωd with improved accuracy in case of a poor
signal-to-noise ratio, is presented.

To show that the above procedure is adequate observe that (10.18) becomes

vr ∼= −ca
2

Δω

ω0
(10.20)

being λ = ca/ω0, where ca stands for the speed of the probing sound. Now let Δω
be the Doppler shift due to a radial wind of velocity vr = 10m/s (a rather strong
wind). Then by (10.20)

Δω = ωd − ω0 = − 2

ca
vrω0 (10.21)

Assuming ω0 = 2000Hz and ca = 340m/s, then |Δω| ∼= 117Hz by (10.21). A
spectral resolution that leads to detect such a Doppler shift is easily obtained. It
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suffices to receive echoes lasting 0.1 s, whose inverse gives the spectral resolution
of 10 Hz. In 0.1 s the transmitted signal reaches 34 m height. The echo, detected at
time t = 0.1s from the beginning of transmission, comes from the height of 17 m:
indeed having started at time t = 0 it has reached a height of 17 m and it has come
back to the sensor after traveling 17 m on its way back, for a total of 34 m. Similarly
the echo that reaches the sensor at time t = 0.2s had traveled a total of 78 m and so
it comes from height 34 m and so on. Hence the measurements of vr are averages
over atmospheric layers of thickness roughly 17 m. For instance, to probe the layer
from 78 to 95 meters the reception time should be from 0.4 to 0.5 seconds.

In case of radar it is easy to see that the above direct method does not work. Indeed
for the same vr , with ω0 = 3GHz and the speed of radio waves c = 3 · 108m/s, it
turns out |Δω| = 200 Hz by (10.21). A spectral resolution that leads to detect such
a Doppler shift requires to receive echoes lasting at least 1/200 = 0.005 second. In
5 ms though the radar signal travels round trip 1500 km. The related atmospheric
thickness to which such a measurement would refer is 750 km: completely out of
scale, for the entire troposphere is only 13 km thick in the average.

10.12 Tracing the origin of radar meteorology

Aimed at detecting submarines, acoustic techniques were vigorously pursued mostly
afterWorldWar I. Radio detection tookmore time: the design of practical equipment,
such as pulsed transmitters and receivers, required considerable efforts.

The first patent for radio detection was issued both in Germany and England to
the German engineer Christian Hulsmeyer and the first public demonstration took
place on May 1904 in Cologne, Germany, where river boats were detected as they
crossed the beam of continuous waves (Fig. 2.1) of about 40–50 cm wavelength
(Swords [1986]). Hulsmeyer’s technique did not receive much interest from the
German Navy on the ground that it was only a little better than a visual observer. In
1922 Guglielmo Marconi (1874–1937) himself advanced the idea of radio detection
in a speech delivered at the U.S. Institute of Radio Engineers (Marconi [1922]):

“It seems to me that it should be possible to design apparatus by means of which a
ship could radiate or project a divergent beam of these rays in any desired direction,
which rays, if coming across ametallic object, such as another steamer or ship, would
be reflected back to a receiver screened from the local transmitter on the sending ship,
and thereby, immediately reveal the presence and bearing of the other ship in fog or
thick weather.”

Although Marconi had predicted and successfully demonstrated radio communi-
cations between continents raising a sensation in every part of the civilized world,
this idea of him did not gain support. Nonetheless it apparently stimulated A.H. Tay-
lor and L.C. Young of the U.S. Naval Research Laboratory to seek an experimental
confirmation. In the autumn of 1922 they detected a wooden ship using a (CW) con-
tinuous wave of 5 m wavelength, with separated transmitter and receiver. And there

http://dx.doi.org/10.1007/978-1-4899-7989-6_2
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the idea rested since no more funds were allocated to Taylor and Young’s project
(Skolnik [1962]).

Atmospheric studies provided the first demonstration of detection and ranging. It
took place in December 1924 in England, when E.W. Appleton of King’s College
in London and M.A.F. Barnett of Cambridge University measured the height (or
range) of a ionospheric layer from the beat frequency they observed using a (FM-
CW) frequency-modulated radio wave (Fig. 10.21). The first ranging with pulsed
radio waves (Fig. 10.29), commonly associated with radars, is due to G. Breit and
M.A. Tuve of the Department of Terrestrial Magnetism of the Carnegie Institution
in collaboration with the radio engineers of the U.S. Naval Research Laboratory. In
July 1925 they detected echoes from an atmospheric layer about 150 km above the
Earth where ion and free electron concentration reaches its maximum.

The true impetus for the development of radars though came about in the late
1930s and 1940s. It was due to the more urgent need to locate aircraft. To inquire
about the use of radio waves for detecting enemy aircraft, in January 1935 the British
Committee for the Scientific Survey of Air Defense approached Robert Watson-Watt
of theBritishMeteorologicalOfficewhohaddonework to provide a system for timely
thunderstorm warnings to World War I aviators. At the time engineers of the British
Post Office had already detected aircraft that crossed the beam of the Postal radio
transmitters (Sword [1986]) and published reports about it. Swiftly, in a memo dated
February 1935, Watson-Watt and colleague A.F. Wilkins proposed a radar system
to detect and locate aircrafts that, after substantial modifications and improvements,
led to the Chain Home (Section 9.3). Watson-Watt later acknowledged the work of
atmospheric scientists: “... without Breit and Tuve and the bloodstream of the living
organism of international science open literature, I might not have been privileged
to become ... the Father of Radar” (Watson-Watt [1957]). The looming of a global
conflict led to secret independent parallel efforts in radar development in Germany,
Italy, Japan, France, Holland, and Hungary.

The engulfing secrecy makes it difficult to trace the first radar detection of precip-
itation. The beginning of radar meteorology may be placed with the work of Ryde of
the General Electric Corporation Research Laboratory in Wembly, England. There,
beginning in July 1940, a 10 cm radar systemwas operating, likely out of concern for

Figure 10.21 A frequency-modulated wave.

http://dx.doi.org/10.1007/978-1-4899-7989-6_9
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the effects of precipitation on aircraft detection. In Ryde [1947] attenuation and echo-
ing properties of clouds and rain are estimated. Detection of echoes from the clear air
troposphere, by vertically pointing radio beams, dates back to 1935 (Colwell, Friend
[1936]). At first the echoes were thought to originate from ionized layers. That this
was not the case was proved both experimentally and theoretically by Englund et al.
[1938] workingwith wavelengths of about 5m at Bell Laboratories: they showed that
the echoes were due to dielectric boundaries of different air masses. Shortly after-
wards this was confirmed by in situ measurements made aboard an aircraft (Friend
[1939]).

Doppler effects are observed in radio receivers when echoes frommoving objects
are received simultaneously with the direct radiation of the transmitter, or with radi-
ation scattered from fixed objects. The mixing of the two signals produces a beat
or fluctuation of the echo intensity at a frequency equal to the Doppler shift. The
early observations mentioned above, that provided the incentive for the development
of the modern pulse radar, were based on the Doppler shift. Indeed the continuous
wave (CW) radar can only measure velocity, via the Doppler shift. The frequency-
modulated continuous-wave (FM-CW) radar can measure both range and velocity
but with some limitations and by a procedure more complicated with respect to the
pulsed radar in case of a distributed target (i.e., not a point target).

The first application of pulsed Doppler radar principles to meteorological mea-
surements is due to P. Barratt and I.C. Browne [1953]. They showed that the shape of
the Doppler spectrum, they had detected with a radar beam vertically pointing into a
rain shower, was in agreementwith the spectrum expected from raindrops of different
sizes falling at different speed except for a displacement consistent with a downdraft
of about 2 m/s (Rogers [1990]). The development into the modern pulsed Doppler
radar required a formidable amount of signal processing to extract and process data
of the Doppler shift at each of the thousands or more range locations that a radar
surveys. This took place only in the late 1960s and early 1970s. Radars devoted to
measurements of winds in all weather conditions are called profilers. They operate
with a vertical beam to measure vertical velocity and with two or more beam fixed
positions to measure the wind horizontal components.

10.13 The radar for stormy and clear air observations

Weather radars can “see” through conditions such as darkness, haze, fog, rain, snow.
By penetrating the storm clouds, radars can reveal in real time the storm internal
structure where tornados, hurricanes, or other hazards can be developing in case of
severe storms. Precipitation particles are common scatterers. Radar can determine
intensity and even type (rain, snow, hail,...) by use of dual polarization. In successive
scans, radar detects and continuously tracks the movement of a storm providing
range, angular position, and velocity. Short term forecast of weather phenomena,
made familiar by television broadcasts, is then obtained by dedicated software.

The weather radar emits a pulse of microwave radiation (Fig. 10.29) lasting about
a microsecond (pulse width) which is repeated with repetition time of the order
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Figure 10.22 The radar conical beam and a space resolution cell of thickness cτ/2. (Galati [2002],
modified)

of a millisecond (pulse repetition time). Right after each pulse emission, the radar
switches to detect the echo from target. Hence radar spends most of its time in
detection. Radar continuously scans in all directions. After each scanning rotation
the antenna elevation is changed and the same process of scanned rotation is repeated.
The elevation starts at around 0 ◦ to reach 25 ◦ or more. The lowest elevation angle
allows to sense precipitation as close as possible to ground in order to obtain estimates
of precipitation that can be referred to ground. However, to avoid obstacles such as
mountains or nearbybuildings, higher elevation angles are needed.Also higher angles
are needed to identify the inner structure of clouds.Themaximumrange—determined
by the pulse repetition time— could be several hundred kilometers. The beam width
could be 1 ◦. As the beam propagates in space, the volume covered during a pulse
width—the so-called resolution volume—grows larger (Fig. 10.22). The echo, that
reaches back the radar, is a superposition of returns from individual scatterers within
each resolution volume. The time delay between the transmitted pulse and the echo
determines the distance, hence the location of the volume. Distances are measured
in discrete increments which are referred to as range gates. The resolution volume,
growing larger and larger, at 150–200 km could be of the order of a cubic kilometer.
Thus the radar spatial resolution decreases with distance.

Each radar operates at a fixed wavelength λ. The term radio waves is a generic
term that refers to electromagnetic radiation of wavelength between a fraction of
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Table 10.2 Radar frequency bands according to IEEE standards. (https://en.wikipedia.org/wiki/
Radio_spectrum)

Band designation Frequency range

HF 0.003 to 0.03 GHz

VHF 0.03 to 0.3 GHz

UHF 0.3 to 1 GHz

L 1 to 2 GHz

S 2 to 4 GHz

C 4 to 8 GHz

X 8 to 12 GHz

Ku 12 to 18 GHz

K 18 to 27 GHz

Ka 27 to 40 GHz

V 40 to 75 GHz

W 75 to 110 GHz

mm 110 to 300 GHz

a millimeter to 100 km. The corresponding frequencies are divided in bands (Tab.
10.2) but do not cover the entire frequency region indicated in the table, rather they
are grouped into separate bands for historical reasons. In case of weather radars,
wavelength λ falls into the interval 3 mm–10 cm. The S band (10 cm) and the C band
(5 cm) are themost common and are used for detecting rain drops or ice particles. The
X band (3 cm) has emerged as a standard for cheaper systems to be used for short-
range (50–60 km) monitoring of storms. The higher frequencies of the W band (3
mm) andKa band (1 cm) are used to detect smaller particles such as cloud droplets by
the so-called cloud radars. Typically they do not scan, but operate at fixed orientation
such as the vertical to reveal the detailed vertical structure of clouds.

When an object is illuminated by an electromagnetic wave, such as radio or light
waves, a portion of the incident energy is absorbed as heat and the remainder is
scattered in all directions. The backscattered portion is of chief interest. If the energy
scattered in other directions is important then a bistatic radar — receiver and trans-
mitter not colocated—is used. Radar measures different characteristics of the echo:
first of all power, then phase involved in detecting velocity (Section 10.15), and polar-
ization for shape and orientation. Power depends on the precipitation intensity which
is determined by the meteorological target concentration (number of drops/volume),
diameter, density (mass/volume) measured in g/cm3 and approximately equal to
0.99 for water, 0.92 for ice, while for ice hydrometeors it can range from 0.90 (hail)
to 0.10 (snowflakes).

The radar fundamental equation has the power of the backscattered echo expressed
in terms of several radar parameters (transmitted power, wavelength and others) and
of the important radar cross section σ (cm2) that represents the scattering properties
of target (Fig. 10.23, Tab. 10.3). Targets of interest can be complex objects like

https://en.wikipedia.org/wiki/Radio_spectrum
https://en.wikipedia.org/wiki/Radio_spectrum
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Figure 10.23 The C-54, a military aircraft of the 1940s, was known for its long range and large
cargo capacity. Its cross section is in between 10 and 1000 m2 depending on the viewing angle.
(Wikipedia)

ground or sea surfaces in case of meteorological radar, ships and aircraft in case of
surveillance radar. Their cross sections are complicated functions that do not have
a simple relationship to the physical area of the target. Scatterers such as birds and
insects have sufficiently large backscattering cross section and therefore are visible
by radar as Figure 10.28 shows. For hydrometeors, with thousands of droplets in
a cubic meter, the cross section is defined per unit volume (cm−1) and is called
reflectivity in general radar terminology.

In case of a conductive sphere of diameter D, small compared to λ (i.e., D <

λ/10), and refractive index n the following formula provides a good approximation
of the cross section

σ ∼= π5

λ4

(n2 − 1

n2 + 2

)2
D6 (10.22)

This relation is called the Rayleigh approximation, after Lord Rayleigh who in the
early 1870s was the first to study the scattering of light by small particles. Indeed
(10.22) holds as well for the cross section of atmospheric molecules with diameter
small compared to optical wavelengths (Section 10.17). Relation (10.22) shows that
waves of shorter λ are more strongly scattered, a fact that Rayleigh used to explain
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Table 10.3 Backscattering cross sections at λ = 10cm. (Courtesy of R. Doviak and D. Zrnić)

Object σ
(
m2

)

C-54 aircraft 10 to 1000

Man 0.14 to 1.05

Weather baloon, sea gull 10−2

Small birds 10−3

Wingless hawkmoth 10−5

Bee, dragonfly 3 × 10−6 to 10−7

Water sphere (D = 2mm) 1.8 × 10−10

Free electron 8 × 10−30

why the is blue. Indeed the factor λ−4 implies that the scattering of blue light (λ =
0.47μm) is about six times larger than that of red light (λ = 0.72μm). This accounts
for the blue color of the sky at midday in clear air. At sunset instead, due to the longer
path in the atmosphere the ray has to cross, only the longer wavelengths (red) reach
the site where the observer is located.

In case of a simple object of small dimensions with respect to the resolution cell,
the radar cross section—also called equivalent area—is defined to be the area that,
intercepting the transmitted power density at the target and reradiating isotropically
in all directions, produces at the radar an echo equal to that produced by the target.
In case of backscattering it is given by the formula

σ = limR→∞4πR2 |E(R)|2
|Ei |2

where R is the distance between radar and target, E(R) the reflected field strength, Ei

the strength of the incident field, and where the term 4πR2 accounts for the decrease
in power density due to distance from the scatterer.

The radar cross section of themost simple target shape, namely the sphere, is given
in Figure 10.24 as a function of its circumference measured in wavelengths. The
region where 2πa/λ << 1 is called the Rayleigh region, with associated Rayleigh
scattering. The cross section of raindrops and other meteorological particles falls
within this region at the usual weather radar frequencies. Since the cross section
of objects within the Rayleigh region varies as λ−4, to observe raindrops shorter
wavelengths are preferable. Indeed rain and clouds are essentially invisible to radars
operating at longer wavelengths. Yet raindrop diameters can be as large as 8 mm, in
which case the simple formula (10.22) can be applied only for wavelengths about
10 cm or longer. On the other extreme is the optical region where the radius of the
sphere is much larger than wavelength: 2πa/λ >> 1. Here the radar cross section
approaches the optical cross section πa2. In between the Rayleigh and the optical
region lies the Mie region or resonance region with associated Mie scattering. Here
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Figure 10.24 Radar cross section of a sphere of radius a, normalized by πa2, as a function of
circumference/ wavelength (with asymptotes). (https://en.wikipedia.org/wiki/Mie_scattering)

the sphere cross section oscillates with λ, internal resonance being responsible for
the fluctuations (Probert-Jones [1984]).

Concerning shape, observe that large droplets may be far from spherical. It
depends on the terminal velocity: the higher the velocity the more flat and oblate
the shape. For example, drops of 8.00 and 2.70 mm diameter have terminal velocity
9.2 and 7.70 m/s (Prupacker and Beard [1970]). Ice particles pose a much more chal-
lenging task to radar experts as the about 80 types of snowflakes in the Magono and
Lee Classification of 1966 shows (Fig. 10.25). Besides it may be difficult to distin-
guish ice from liquid phase precipitation even with the help of temperature. Indeed
in convective storms liquid water can be present at temperature colder than 0 ◦C and
ice can be found at temperatures warmer than 0 ◦C. Nevertheless to accurately quan-
tify rain-, snow-, or hail-fall rates requires detailed knowledge of the precipitation
particle size distribution and shape. Radar may work jointly with raingauges for a
better rainfall estimate and with satellite instruments for a better discrimination of
hail from rain or other forms of frozen precipitation. Other improvements are needed
to sense, more accurately and reliably, events not so unusual such as flash floods,
large hail, or heavy snow fall.

https://en.wikipedia.org/wiki/Mie_scattering
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Figure 10.25 The Magono and Lee snowflakes classification of 1966. (NASA) (www.nasa.gov/
pdf/183515main_Magono_and_Lee_Snowflake.jpg)

www.nasa.gov/pdf/183515main_Magono_and_Lee_Snowflake.jpg
www.nasa.gov/pdf/183515main_Magono_and_Lee_Snowflake.jpg
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Figure 10.26 Reflectivity images at different times (17:10, 17:40, and 18:10 UTC) collected by
Polar 55C radar (ISAC-CNR) in Rome during October 15, 2012 (fixed elevation at 1.6 ◦). (Courtesy
of L. Baldini, ISAC-CNR)

Figures 10.26 and 10.27 refer to a convective event that occurred in Rome on
October 15, 2012 from 17:00 to 19:00 UTCwith a remarkable maximum rainfall rate
of 35 mm/h at 18:00 UTC. The spatial distribution and the evolution of precipitation
can be inferred from the radar reflectivity pattern (Fig. 10.26). Two intense convective
cells were present between 10 and 12 km and between 20 and 23 km from the radar
at 17:56 UTC (Fig. 10.27 left). The closest one is characterized by the presence of
graupel from ground to a height of 6 km, while the second one is characterized by
graupel up to 4 km as well as hail mixed with rain in proximity of the ground (Fig.
10.27 right). Images of the same event at different times can be found in Ferretti,
Baldini et al. [2014] and in Roberto, Baldini et al. [2016].

Although clear air does not contain extreme phenomena like tornados, hurricanes
or baseball-sized hail found in severe storms, nevertheless its structures can lead to the

Figure 10.27 Left: fixed azimuth at 293 ◦ and variable elevation to detect the vertical structure
of the hydrometeor observed in Rome on October 15, 2012 at 17:56 UTC. Right: color bar of the
hydrometeor classes identified bymultisensor analysis: white denotes no data, gray denotes data that
are not classified, light blue denotes rain, green denotes dry snow, yellow denotes wet snow, orange
denotes graupel and small hail, red denotes hail, and dark red denotes a hail/rain mix. (Courtesy of
L. Baldini, ISAC-CNR)
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Figure 10.28 FM-CW radar record showing low-level waves on October 20, 1992 (lighter shading
indicates a larger reflectivity). The continuous shading depicts waves features resulting from Bragg
scattering, the points echoes from insects, and the vertical streaks from bats and birds whose
reflectivity saturate the receiver. (Eaton et al. [1995])

development of these storms. Example are convective cells that spring from heated
surfaces and breaking waves generated by shear instability at higher altitude zones.
Bragg scattering (Section 10.9) provides the theoretical model for the backscattered
signal interpretation. With a wavelength of the order of the decimeter, structures
of the troposphere of comparable size are observed at different heights and over
distances approaching 100 km. The first studies in clear air were mainly focused on
determining whether radar returns were due to variations of the refractive index or
were caused by swarms of insects and flocks of birds. Then starting in 1966 the three
high-powered pulse radars with large steerable antennas atWallops Islands, Virginia,
were the first to be used intensively to sense and resolve turbulent structures in clear
air up to high altitudes (<35 km) and out to long ranges (∼100 km). In Eaton et
al. [1995] other images besides the one in Figure 10.28—taken by the FW-CW
radar at the White Sands Missile Range, New Mexico — can be found. Quoting this
paper “The FM-CW radar technique, with its ultrasensitivity and unequaled range
resolution, is ideal for examining fine details of wave activity in the atmospheric
boundary layer.”

The basic equations for calculations of Bragg scattered signal returns at 180 ◦ has
been treated by Tatarski [1961] and apply to sodar, radar and lidar.3 There are differ-
ences though. For instance, electromagnetic waves are unaffected by wind. On the
contrary the velocity of soundwaves is increased by the component of thewind veloc-

3 For scatter through other than 180 ◦ formulas for electromagnetic and acoustic scatter are slightly
different (Derr, Little [1969]).
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ity in the direction of the wave normal. Also, under normal atmospheric conditions,
the acoustic power scattered from the humidity field is about two orders of magnitude
below that from the temperature field so that the influence of water vapor may be usu-
ally neglected. For radar waves instead the scattered power from humidity is larger
than that from temperature fluctuations by about one order of magnitude. Hence
radar scattering depends primarily on fluctuations in water vapor and secondly on
temperature fluctuations (but in higher and drier parts of the atmosphere temperature
variations may dominate) while acoustic scattering depends mainly on temperature
and wind variability. In common the different waves have the feature to be sensitive
only to the three-dimensional spectral frequencies K such that l = 2π/||K|| meets
Bragg’s law of diffraction. So the scales of atmospheric structures, that interact most
strongly with the probing radiation from a remote sensor, are approximately one-half
the wavelength of the radiation itself, in case of backscattering. The clear air scatter-
ing mechanism (Bragg scattering) is usually not significant at wavelengths smaller
than 1 cm, because the refractivity scales contributing to the backscattered power
can be within the viscous dissipative range rather than the inertial subrange. More-
over at these short wavelengths particulate and molecular scatter (Rayleigh scatter)
dominate.

10.14 Target localization and radial velocity

Pulsed radars are the great majority of existing radars, being capable to determine
easily the target range. The pulse parameters are τ the pulse length (or pulse width),
and T the pulse repetition time (or pulse period). In Figure 10.29 three consecutive
pulses are represented.

The distance R of a target follows from the formula of the round trip—of length
2R—of the signal

2R = ct.

Here t is the delay from the pulse transmission and echo detection and c is the velocity
of the wave which is, to a good approximation, the velocity of light in vacuum in case

Figure 10.29 Three consecutive pulses of a radio wave. Each pulse oscillates about a thousand
times.
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Figure 10.30 A false alarm: target B is incorrectly “seen” in B ′ (see text).

of a radio wave traveling in the atmosphere. To determine the maximum distance
Rmax , that can be measured without ambiguity, observe that time t starts from zero
at the beginning of each pulse, hence 0 ≤ t ≤ T . Therefore

Rmax = cT

2
(10.23)

To illustrate this point a “false alarm” of air control traffic will be considered. In
relatively rare cases it is possible indeed for echoes from more distant targets—i.e.,
R > Rmax—of high reflectivity to be detected. In Figure 10.30 target A is located
within Rmax , the maximum unambiguous range. Target B is at a distance greater
than Rmax , but less than 2Rmax . Only the range measured for target A is correct. The
echo from target B is associated to time t ′2 = t2−T . Therefore target B is incorrectly
“seen” in B ′. Similarly, in weather radar, intense cells farther than Rmax can cause
weak echoes close to the radar.

As for radar resolution it is clear that two targets, close to each other ofΔR = cτ/2
or less, give rise to a unique echo (Fig. 10.15) usually of length bigger than τ . For
instance with an impulse of length τ = 1μs the corresponding ΔR = 150m. So
the radar cannot resolve — “see” as distinct—two targets less than 150 m apart.
(Similarly in case of sodar to τ = 300ms there corresponds ΔR = 4.5m). So τ
must be short to discriminate between echoes from different targets, yet τ must be
long for the energy of the echo to be high enough to give rise to detection. A suitable
compromise has to be worked out.

Angular localization requires spherical coordinates centered at the radar location
O as shown in Figure 10.31. Since two targets falling inside the radar beam cannot be
resolved, the antenna beam width is used to measure the angular resolution (Section
9.5). For radar it is typically 1 ◦.

Next the formula of the radial velocity (10.13.1) will be proved. It will be seen
that T is a fundamental parameter not only for Rmax (10.23), but for |vr |max as well
(10.29). Formula (10.18) will be derived under the usual assumption vr << c and in

http://dx.doi.org/10.1007/978-1-4899-7989-6_9
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Figure 10.31 Spherical
coordinates: R=distance of
the target, φ=elevation, θ=
azimuth, measured
clockwise from North.

a simplified setting namely for a point target located at distance R0 at time t = 0 and
moving at constant radial velocity vr (assumed to be positive if the target is moving
away and negative if approaching). The transmitted signal is assumed to be

s(t) = sin 2πω0t (10.24)

where ω0 is the transmitted frequency. This is the simple case of a CW radar. The
detected signal (echo) sd(t)—aside from a scaling factor (attenuation)—is a delayed
replica of the transmitted signal and is given by

sd(t) = s

(
t − 2R(t)

c

)
= sin

[
2πω0

(
t − 2R(t)

c

)]

where R(t) = R0 + vr t. Hence, with α = 1 − 2vr/c and t0 = 2R0/c,

sd(t) = s

[(
1 − 2vr

c

)
t − 2R0

c

]
= s(αt − t0) = sin [2πω0 (αt − t0)] (10.25)

It is seen that frequency ωd = ω0α. For a more general s(t), the argument goes as
follows. By (2.17) and (2.18) the relation between the Fourier transforms Sd(ω) and
S(ω) is the following one

Sd(ω) = 1

α
S

(ω

α

)
e−2πi ω

α t0

To illustrate this formula, first assume vr = 0. Then α = 1 and the echo
sd(t) = s(t − t0) shows a delay equal to t0. Correspondingly the Fourier trans-
form undergoes a phase shift t0 by (2.18): Sd(ω) = S(ω)e−2πiωt0 . Next assume that
target is approaching: vr < 0 and so α > 1. Then sd(t) undergoes a contraction
by α, followed by a translation as (10.25) shows. Correspondingly Sd(ω), besides

http://dx.doi.org/10.1007/978-1-4899-7989-6_2
http://dx.doi.org/10.1007/978-1-4899-7989-6_2


10.14 Target localization and radial velocity 309

the phase shift t0, undergoes a dilation by (2.17). So its frequency ωd satisfies the
relation ωd/α = ω0 and so it is higher then the emitted frequency ω0. Instead if the
target is moving away then α < 1. In this case Sd(ω), besides the phase shift t0,
undergoes a contraction and its frequency ωd/α = ω0 turns out to be smaller than
ω0.

Either way for the frequency shiftΔω, also called Doppler frequency and denoted
ωD, it holds

ωD = Δω = ωd − ω0 = ω0(α − 1) = ω0

(
−2vr

c

)
= −2vr

λ
(10.26)

and (10.18) proved.

10.15 The radar and the wind: Nyquist frequency and
range-velocity ambiguity

In Section 10.11 formula (10.18), proved above, has been applied in case of sodar.
At the same time it was pointed out that the direct method there does not work for
radar: the Doppler shift of meteorological phenomena is of the order of 100 Hz and
so it is about 1/10 of the carrier frequency (1 kHz) of sodar, but only 0.1 parts per
million that of radar (1 GHz). In this last case it is the phase shift Δ� to be sampled
in order to calculate, via the fast Fourier transform, its frequency to be denoted by
1/T0. Then vr is found since it holds

|vr | = λ

2T0
(10.27)

as proved below. The transmitted signal (wave1) and the echo signal (wave2) are
heterodyned at the mixer stage of the receiver. The mixed signal contains the sum
and the difference of the frequencies of the two waves. The sum-frequency is a
high frequency and is filtered out. The difference-frequency is a low frequency, so
the corresponding signal can be detected with great accuracy. Now to prove (10.27)
observe that in complex notations the transmitted wave of amplitude 1 is represented,
as a function of space and time, as follows

ei�(x,t) = e2πi(
x
λ −ω0t)

where λ is wavelength and ω0 frequency. If wave1 and wave2 are simultaneously
detected at the receiver at time t0, then their phases �1(x1, t0) and �2(x2, t0) will
be different only because of the different distances the two waves have traveled.
Precisely

Δ� = �2 − �1 = 2π
x2 − x1

λ
= 2π

2d

λ
(10.28)
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where d is the distance of target and 2d the round trip. If target is stationary thenΔ�

is constant. If target is nonstationary then d = d(t) and Δ� varies in time. In case
of weather radar, scatterer velocities typically are of the order of meters per second
and changes in the trigonometric functions of the phase are extremely small during
a pulse width τ ∼= 10−6s. Thus the phase is sampled with sampling rate equal to the
pulse repetition time T ∼= 10−3s.Now |Δ�| ≤ 2π since� takes values in the interval
[−π,π]. AssumeΔ� = 0 at time τs, the range time, i.e., the time delay between the
transmitted pulse and its echo, that specifies in units of time the scatterer’s location.
With vr constant, target travels equal spaces in equal times: if the values of Δ� are
acquired at times τs + (n − 1)T, with n = 1, 2, ... then Δ� will be seen increasing
(or decreasing) by a fixed small amount. After time T0 it will be found Δ� = 2π (or
Δ� = −2π). This will keep repeating, since Δ� is a periodic function of time with
period denoted by T0. When Δ� = 2π, target has moved away by λ/2 as (10.28)
shows. Target, moving at constant speed vr , travels distance λ/2 in time T0. Then
λ/2 = |vr |T0, and (10.27) is proved.

To determine frequency 1/T0 ofΔ�, the FFT ofΔ� is computed. Sampling time
is T, as motivated above. The Nyquist frequency—the maximum frequency that can
be determined without ambiguity—is 1/2T . Hence

∣∣∣
1

T0

∣∣∣
max

= 1

2T

and by (10.27)

|vr |(max) = λ

4T
(10.29)

Itmaybe interesting tomentionhow thephaseΦ is determined.Given a real valued
signal (of amplitude 1) I (t) = cos�(t) called in-phase signal, the quadrature signal
Q(t) = cos (�(t) + 90 ◦) = sin�(t) is provided by the instruments (quadrature
phase shifter). Then the phase Φ(t) = tan−1(Q(t)/I(t)) is known. In Figure 10.32
the amplitude of in-phase and quadrature components of three successive echoes of
a moving scatter are represented superimposed to make more evident the relative
changes. Observe that echoes from fixed targets remain constant from sweep to
sweep, while echoes from moving targets vary and produce, once superimposed,
a “butterfly effect”. The transmitted pulse width is τ = 1.2μs. Since the moving
scatterer gives rise to an echo that almost replicates the transmitted one, it may be
inferred that there is only one moving scatterer (at about 700 m) in the total range
interval of 1500 m, displayed in Figure 10.32, that corresponds to 10μs. (The echoes
of the stationary scatterers instead are not a replica of the transmitted pulse because
more than one scatterer lies in the range interval of size cτ/2). Now trace 1 has I1
small and negative, Q1 big and positive. Placing I1 and Q1 in the complex plane it
is seen that φ1 is slightly bigger than 90 ◦. Similarly locating φ2 and φ3 it is seen
that φ1 < φ2 < φ3 < 180 ◦. The increasing phase signals that the Doppler shift of
the moving scatterer is positive, corresponding to a negative radial velocity. Hence
target is approaching.

Finally by (10.29) the range/velocity ambiguity follows. It is expressed by the
relation
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Figure 10.32 Amplitude of in-phase and quadrature components, of three successive echoes of a
moving scatterer, are represented superimposed to show the relative change. (Courtesy of R. Doviak
and D. Zrnić)

Rmax · |vr |max = cT

2
· λ

4T
= λc

8
(10.30)

So Rvr ≤ λc/8 is required. This condition depends only on wavelength λ. With
λ of the order of the centimeter, for targets at distance of hundreds of kilometers,
ambiguity turns out to be unavoidable in case vr is larger than some tens of m/s.
This may even be the case in natural phenomena like clouds or rain and it is known
as the “Doppler dilemma”. If a pulse repetition interval is chosen to achieve a large
unambiguous range, then a small unambiguous velocity range will turn out. Methods
have been developed to extend the unambiguous velocity (Doviak and Zrnić [1993]).

In Figure 10.33 the wind is assumed to be uniform, blowing from West at 36
m/s at a particular height in the atmosphere. As the radar antenna rotates 360 ◦. in
azimuth, theDoppler velocity at a specified range-gate location varies as the sketched
sinusoidal curve. In this case spatial continuity permits to visually identify the pres-
ence of aliasing, but in general it is not possible to determine whether an individual
Doppler velocity data point has been aliased without additional information. Clearly
condition (10.30) becomes harder to satisfy by C band with respect to S band radar.
It may be interesting to point out that the prevailing type of weather radar in Europe
is the C band, while in the U.S. and tropical regions it is the S band, better suited to
locate and track extreme meteorological phenomena like hurricanes and tornadoes.
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Figure 10.33 Display of calculated Doppler velocity at a given range gate as a function of azimuth
when the antenna rotates at a fixed elevation angle. The sinusoidal curve represents true Doppler
velocity measurements. The thick solid curve represents Doppler velocity values within the Nyquist
interval [-30, 30] m/s. (NOAA) (www.nssl.noaa.gov/publications/dopplerguide)

10.16 After laser came lidar

Lidar principles, going back as far as the 1930s, predate laser times. This holds as
well for the acronym lidar that dates 1953 (Middleton, Spilhaus [1953]). Then in
1960 at the Laboratory of the Hughes Aircraft Company in Malibu, California, the
first laser was built (Maiman [1960]) and a technique for producing intense pulses of
optical radiation was introduced in 1962 (McClung, Hellarth [1962]). Applications
quickly followed. The lidar, initially called optical radar, is one of them.

Lidar was developed at the beginning of the 1960s at the Massachusetts Institute
of Technology by Louis Smullin and the Italian engineer Giorgio Fiocco to mea-
sure the Earth–Moon distance, for the first time via the echo of a pulsed laser light
(Smullin, Fiocco [1962]). The difficulty to identify and detect the minuscule number
of photons of the backscattered laser beam did not escape the two researchers. With
sense of humor they called the project “Project Luna See” (Luna is Moon in Italian).
Their successful experiment was reported in newspapers worldwide. Soon after the
lidar was used to observe the upper atmosphere (Fiocco, Smullin [1963]) and the
stratospheric layer of aerosols that had originated from the eruption in 1963 ofMount
Agung in Bali, Indonesia (Fiocco, Grams [1964]). Due to difficulties related to laser
technology as well as gaps in the theory of optical interactions with the atmosphere,
years went by before the lidar could become a reliable and accurate instrument. Yet
the richness of such interactions raised considerable interest in the lidar’s potential
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and about a decade later all basic lidar techniques had been advanced and demon-
strated (Hinkley [1976]). At present lidar is largely used in atmospheric studies to
determine aerosol concentration, wind profile, temperature profile, pressure profile,
water vapor content, and concentration of gases (ozone, methane, ...). The height of
the boundary layer itself can be measured. Indeed at the upper limit of the boundary
layer a discontinuity in aerosol concentration andwater vapor content—that had lifted
up from the Earth surface and mixed—is detected. As a technology to make high
resolution maps, lidar is employed in many fields such as agriculture, archeology,
forestry, geomorphology. Lidar is used as well in the laboratory for the diagnostics
of flames (Fig. 10.37).

Lidar operates in the visible as well as in the near infrared and ultraviolet (Fig.
10.34) bymeans of laserswhich are light sources of outstanding properties.Abeamof
laser light has a very narrow bandwidth (single frequency or single wavelength, also
named monochromaticity) which allows discrimination against background noise
by use of narrow-band filters. Moreover it is coherent (constant phase) over long
path lengths, and maintains its collimation (very low divergence angles). This last
characteristics makes it possible to lower the direction of the beam and measure
radial winds without the beam or parts of it interacting with obstacles present in the
immediate vicinity of the beam path.Wavelengths, depending on application, belong
to the interval [0.25–11]μm, pulse width could be as small as 10−8s, pulse repetition
time as small a fraction of 1 ms, range resolution as small as few meters and beam
width as small as few hundred μrad. The majority of lidars use mirror telescopes.
Lenses can be used only for small aperture receivers.

Bragg scattering, already described for acoustic and radio waves, applies to light
waves as well. Rayleigh and Mie scattering, at optical wavelengths, deliver infor-
mation on the presence and location of molecules, aerosol and cloud layers. These
two types of interaction, based on the wave model that holds for light as well as
radio waves (Section 10.13), are elastic scatterings: no energy exchange between
the incident light and the target takes place. Thus the incident and scattered light
have the same frequency. No energy exchange implies that the scattered signal is
not specific to any particular species and cannot be employed for measurements of
individual species concentrations, but only total density measurements. At optical
wavelengths a further type of interaction takes place, namely Raman scattering. This
is an inelastic scattering. It requires light and discriminates between species.

10.17 Rayleigh, Mie, and Raman scattering

Rayleigh scattering refers to particles much smaller than wavelength λ, typically
molecules whose dimension D is of the order of the angstrom (10−10m), so D/λ <<

1 (Fig. 10.24). Indeed, in the context of lidar, Rayleigh scattering is used as a synonym
for molecular scattering. Nitrogen (N2) and oxygen (O2) make up about 99% of the
Earth atmosphere. Hence these two gases aremain sources of Rayleigh backscattered
radiation which, having intensity proportional to λ−4, is more intense for shorter λ.
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Figure 10.34 A lidar beam at the Institute of Atmospheric Sciences and Climate in Frascati, Italy.
The transmitter operates at two wavelengths 532 nm (green) and 355 nm (ultraviolet). (Courtesy of
F. Congeduti, ISAC-CNR)
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Mie scattering is usually associated to particles of diameter bigger or comparable
to λ, typically aerosol. It consists of atmospheric particles, liquid or solid, whose
dimensions range from a fraction of micron to some hundreds micron (Fig. 10.10).
Chemical composition and shape vary. Scattering from particles very large with
respect to λ does not depend on λ. For particles of magnitude similar to λ, i.e., in the
radius range from 0.5μ to few μ, scattering intensity varies strongly with wavelength
(Fig. 10.24). In this last case Mie scattering can be used to obtain information on
the size of the atmospheric particles involved. The theory, developed by Gustav Mie
in 1908 (Mie [1908], Van der Hulst [1957]), gives the analytical solution for the
radiation scattered by a sphere of arbitrary radius and refractive index, so it includes
Rayleigh scattering from small particles.

Particles in the atmosphere have many different shapes, not only spherical. If
dimensions are small compared to λ then the actual shape does not play a signif-
icant role in scattering, but for large particles shape matters. In case of large non-
spherical particles—like ice crystal, mineral dust, sea salt—Mie theory does not
apply and more elaborate substitutes are used. The presence of such particles can
be easily detected by lidar: while spherical scatterers do not change the polarization
state of light (if scattered at 180 ◦) nonspherical scatterers lead to depolarization.
Polarization-sensitive light detection is particularly useful for investigating cirrus
clouds (made of ice crystals) (Fig. 10.35) and dust layers.

Elastic scattering lidar is used in the troposphere to measure the emission of fine
particulate, like PM 10 and PM 2.5. It is also widely used for an accurate detection
of the cloud base height, vertical extent and optical density. Indeed clouds have a
significant influence on the models of planetary atmospheric circulation, but their
characteristics and role are not known in detail. Finally, elastic backscattered lidars
are routinely used in traffic control at airports to measure visibility and cloud heights.

Figure 10.35 Cirrus (ice clouds) at 8–10 km are in red, mixed-phase clouds (ice and liquid water)
at 6–8 km are in yellow/red, particulate matter from 0 to 4 km are green-light blue. Vertical strips
are caused by increasing instrument and/or background noise due to thin clouds (August 14, 2015).
(Courtesy of G.P. Gobbi, ISAC-CNR)
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Figure 10.36 Atmospheric backscattered signal as a function of wavelength between 337 nm
(excitation wavelength) and 386 nm. (Inaba and Kobayashi [1972])

Raman scattering, an inelastic scattering that requires light, leads to a frequency
shift in the backscattered signal (Fig. 10.36). The usefulness of Raman scattering
is that this frequency shift does not depend on the excitation frequency and is char-
acteristic of the scattering molecule. It is named after the physicist Chandrasekhara
V. Raman (1888–1970) working in Calcutta, India, who discovered it in 1928 and
for it received the Nobel Prize for Physics in 1930. In Raman scattering, light is
modeled as consisting of photons of energy proportional to the light frequency via
the Planck’s constant. As photons strike the sample’s molecules most of the inter-
actions that occur are elastic. In a few cases though molecules take up from or give
up energy (vibrational and/or rotational) to the photons which are then scattered
with diminished or increased energy, i.e., with lower or higher frequency. With ω0

denoting the frequency of the incident photon and ωs that of the scattered photon, in
case the molecule absorbs energy the frequency of the scattered photon is decreased:
ωs = ω0 − |Δω| and the wavelength is redshifted. On the contrary if the molecule
transfers energy to the scattered photon then ωs = ω0 + |Δω| and the wavelength is
blueshifted.

Usually frequency ω = c0/λ and frequency shift Δω are measured in Hz. Nev-
ertheless in Raman spectroscopy, for consistency with the spectroscopic literature,
they are respectively replaced by the wavenumber ν = 1/λ (still called frequency)
and shift Δν measured in cm−1. The shift is given by the formula

Δν = 1

λ0
− 1

λs
= ν0 − νs

For instance, for N2 the shift equals 2331 cm−1 and for O2 equals 1556 cm−1.
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Figure 10.37 N2
vibrational Raman spectrum
as a function of temperature,
at constant density, in flames.
Spectral resolution is
5 cm−1. (NASA)

The overall Raman spectrum consists of two parts: the vibrational spectrum and
of the rotational spectrum (Long [2002]). The vibrational Raman spectrum, corre-
sponding to vibration–rotation transitions, has a band centered at νs—the frequency
shifted by Δν with respect to the excitation frequency ν0—and of sidebands. The
sidebands above νs are called anti-Stokes, while those below νs are called Stokes.
Stokes bands—such as those appearing in Figure 10.37 — are more intense than
anti-Stokes and more easily measured. Raman vibrational spectrum can be used to
identify the scatterer and measure its density (number of molecules per volume). The
density of atmospheric species—N2, O2, and H2O to mention some—as a function
of height (profile) can be obtained from the intensity of the echoes. Raman profiles of
water vapor (humidity profiles), very important for the dynamics of the atmosphere,
were first obtained in 1969 up to 2 km (Cooney [1969], Melfi et al. [1969]), in 1985
up to 5 km, and in 1988 for the whole troposphere. Temperature affects the popula-
tions of the molecular energy levels so that Raman spectrum as a whole depends on
temperature, but not the shift. In Figure 10.37 the peak at νs decreases as an increased
temperature makes higher energy levels more populated. Correspondingly additional
peaks appear in the spectrum. This remarkable picture has to do with the Space Shut-
tle (J.A. Shirley [1986], Eckbreth [1987]). Temperatures in the Space Shuttle Main
Engine were measured with diagnostics designed at UTRC (at the time the center
of excellence in combustion diagnostics) to verify experimentally the temperatures
predicted by the NASA thermochemical equilibrium code CEC-73. The accuracy of
the code had been questioned and, to set to rest the issue, gas temperature inside the
engine preburner was measured conveying the Raman scattering signal out of the
combustion chamber by means of cooled optical fibers. The measurements showed
that the NASA code produced indeed realistic temperature predictions.

Another application of Raman lidar is for atmospheric temperature profiles at low
altitude. They are obtained from the temperature dependent spectral bands in the
rotational spectrum of N2 and O2. Rotational Raman spectra, corresponding to pure
rotation transitions, have shift close to zero and bands more separated than those
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of the vibrational spectrum. At altitude Raman signal is too weak and a different
method, based on Rayleigh scattering and involving the gas equation, is followed.

The cross section in Raman scattering is at most 2% of the cross section for
Rayleigh scattering and the intensity of the backscattered signal might be only
1/100,000 that of the incident beam. So for a long time Raman lidars were mainly
used at night to avoid daylight background noise, until this effect was sufficiently sup-
pressed by improved transmitters and detection systems. Moreover since the wave-
length dependence of the Raman scattering cross section goes as λ−4, the shorter
wavelengths of the ultraviolet are preferred. Yet the low Raman scattering cross
section requires comparably high concentrations of the atmospheric components
under investigation. Nitrogen, oxygen, and water vapor, being the main constituent
gases in air, are of prime interest (Fig. 10.36).

Other major branches of lidar’s techniques are the high spectral resolution lidar
that, by employing an extremely narrow filter, removes the aerosol particles compo-
nent from themolecular component in the elastic backscattered signal; the differential
absorption lidar used for high-sensitivity detection of atmospheric gases; the reso-
nance scattering lidar used for detection of the remotemesopause atmospheric region
([80–110] km in height) where layers containing metallic atoms and ions such as Na,
K, Ca, Ca+, Li, and Fe are found; and the Doppler wind lidar (Weitkamp [2005]).

10.18 The lidar and the wind

Back to elastic scattering and to frequencies for wind velocity measurements. A well
known application of the optical Doppler effect has been the determination of the
shifts of light coming from distant stars. They were all toward longer wavelengths
(redshifted), signaling an expanding universe (Chapter 9). These measurements were
comparatively easy to make. Indeed the relative shift Δω/ω0 is proportional to v/c
and distant stars move away at high velocity v.Velocities of air masses in the Earth’s
atmosphere—that preemptively need to be illuminated in order to emit radiation—
range from 0.1 to 100 m/s. The corresponding ratios to the speed of light range from
3 parts in 1010 to 3 parts in 107, thus a highly sophisticated equipment is required
for detection.

With a monochromatic transmitted signal—i.e., a delta function on the Fourier
transform side—and in absence of wind, the backscattered signal would appear as
the solid line in Figure 10.38. The broad, bell-shaped spectrum is a Gaussian whose
width at half-height is approximately 2.5 GHz, in case λ = 532nm and absolute
temperature T=280 K (Di Sarra [2002]). Frequently called the Rayleigh component,
it has a molecular origin. It is mainly due to thermal motions, but it is also the effect
of molecular collisions. Typically the randommovement of molecules is much faster
than wind, the more so the higher the temperature. From the broad width of the
molecular spectrum it is possible to measure temperatures and obtain temperature
profiles as mentioned in the previous section. The first experiments were due to
Fiocco et al. [1971]. At the same temperature aerosol particles, because of their
higher mass, move more slowly than molecules.

http://dx.doi.org/10.1007/978-1-4899-7989-6_9
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Figure 10.38 Schematic
representation of the echo’s
frequency distribution in
absence of wind (solid line)
and in presence of wind
(dotted line) for a
monochromatic signal of
frequency ω0, set at 0. The
broad spectrum has a
molecular origin, the narrow
spike is due to aerosols.
(Werner [2005])

If aerosol is present then it appears, superimposed on the broad spectrum, a narrow
spike often called the Mie component. Its width at half-height is 3.8 MHz, in case
0.2μm is the particles diameter and λ = 532nm.

In presence of wind the echo is shifted and it would appear as the dotted line
in Figure 10.38. Since the transmitted frequency ω0 is shifted toward higher values
Δω is positive, so vr < 0 and the wind comes toward the lidar (10.18). The shift is
the same for molecules and aerosol but “by looking at the aerosol peak, it is seen
that the spectral range to be explored is smaller than in case of molecules, and it
is possible to increase the spectral resolution of the spectrum analyzer” (Benedetti-
Michelangeli et al. [1972]). Even minor aerosol concentrations suffice to assure an
accurate measurements. Nevertheless at high elevation, above 35-40 km, aerosol is
absent and only the echo of molecular origin is available.

The radial velocity of 3.18 m/s (Fig. 10.39) was obtained by formula (10.18) (at
λ = 0.4880μm and for vr = 1 m/s, shift Δω = 4.098 MHz). The very detailed
frequency analysis required was performed by passing the return signal through
narrow-band optical filters (direct detection Doppler lidar). The echoes obtained
were from layers some hundred meters thick around a height of approximately 750
m above ground. To measure wind velocity though the workhorse is the heterodyne
detection Doppler lidar, historically the first to offer accurate and dependable results
on a routine basis. It involves mixing the return signal with the signal from a local
optical oscillator (Section 10.15). The range-velocity ambiguity Rvr ≤ λc/8 (10.30)
is more stringent here since the wavelengths employed by lidar are much smaller.

An example of a profile obtained from a Doppler wind lidar is in Figure 10.20.
Examples of wind flows from the mountains and back on an area covering a half
circle of about 8 km, obtained by a Doppler lidar at NOAA Laboratory in Boulder,
Colorado, are given in Banta et al. [2004]. To measure air speed, not in the free
atmosphere but in the laboratory or wind tunnels, other methods are available.

A certain degree of overlapping exists between the Doppler lidar and the Doppler
radar (wind profiler), yet there are differences. The Doppler radar, whose wave-
length range between 6–30 cm, detects the signal backscattered from atmospheric
inhomogeneities. The need of a large antenna makes difficult to change the direction



320 10 Our Friendly Atmosphere: Methods of Remote Sensing and Climate

Figure 10.39 Doppler shift of the signal backscattered by aerosol (only narrower band peak) as
detected by the lidar in Frascati (Italy). Wavelength is 488 nm and the shift corresponds to a radial
velocity of 3.18 m/s. Observe the different scales of the photons count for reference (right) and
for the backscattered signal (left). (Reproduced from Benedetti-Michelangeli G., Congeduti F.,
Fiocco G. [1972], “Measurement of aerosol motion and wind velocity in the lower troposphere by
Doppler optical radar,” J. Atmos. Sci. 29, 906-910. © American Meteorological Society. Used with
permission.)

of orientation. Lidar employs mirror telescopes of smaller dimensions that make
selection of orientation easier. Moreover radar cannot target winds at low elevations
while lidar, with its narrow beam, is more apt to measure winds in regions close to
obstacles. Lidar operates only in presence of adequate optical transmission. Its beam
does not penetrate far into dense clouds and cannot provide meaningful data from
regions at a distance of many times the visual range.

To summarize, the choice of the remote sensor to detect natural atmospheric tracers
goes as follows: for molecules (water vapor, ozone,...) and particles less than 1μm
in diameter, short-wavelength lidar; for larger particles, from 1 to 20μm in diameter,
infrared lidar or very short wavelength radar; for rain and cloud droplets, radar;
for temperature fluctuations, sodar; for insects and birds, radar. Temporal resolution
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matters as well. An example for long range radar may be hurricanes. Having a spatial
scale of the order of 1000 km and temporal scale of the order of 1 day, they require
a horizontal scale of spacing of the order of 100 km and temporal scale of the order
of 1 hour or less.

10.19 Milankovitch theory of climate and the temperature
of the Earth

Back to the temperature of the Earth that aroused Fourier interest andmade himwrite
in [1827]: “The problem of terrestrial temperatures, one of the most important and
difficult of the whole natural philosophy, is composed by rather different elements
that ought to be considered from a unique general point of view” (Section 1.1).

The gravitational forces exerted by the other planets induce slow variations of
the Earth’s astronomical parameters. The first to compute the long-term variations
of the Earth’s elliptical orbit was Lagrange in [1781] and [1782]. Interest in the
ice ages was alive as well (Section 10.2). In Études sur les Glaciers of 1840 the
biologist and geologist of Swiss origin Louis Agassiz showed geological evidence
of the ice ages in the relatively recent past of the Earth. The search for a correlation
between geological evidence of large climatic changes and variations of the Earth’s
astronomical parameters could start. It led to the theory of the Earth’s insolation by
Milutin Milankovitch (1879–1958). Born of Serbian parents in the village of Dalj,
then in the Austria-Hungarian Empire and now in modern Croatia, he studied and
became doctor of Technical Sciences in Vienna. After working as chief engineer for
a large construction company, in 1909 was elected professor at the University of
Belgrade where he lectured on rational mechanics, theoretical physics, and celestial
mechanics. His papers, written in Serbian, were printed in Cyrillic characters by
the Serbian Academy of Sciences, but some he personally translated in German and
French (Milankovitch [1920]). He devoted his life to develop a mathematical theory
of climate (Milankovitch [1941]). Having recognized that the solar energy received
on the Earth surface (insolation) — and therefore the position of the Earth with
respect to the Sun—is at the origin of climatic changes, he stated the main factors
involved, namely
- elliptical orbit described by the Earth in its motion around the Sun (eccentricity);
- angle that the Earth’s axis of rotation makes with a perpendicular to the ecliptic
(tilt);
- spinning of the Earth’s axis of rotation (precession).
With their cyclical variations (Fig. 10.40) they create peaks in the amount of solar
energy striking the Earth.

Calculated long-term variations over million years in the past as well as in the
future can be found in Laskar [2004], who states: “The understanding of the climate
response to the orbital forcing has evolved, but all the necessary ingredients for the
insolation computations were present inMilankovitch work.” Variations of the above

http://dx.doi.org/10.1007/978-1-4899-7989-6_1
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Figure 10.40 Calculated long-term variations of eccentricity, precession, and tilt. (Courtesy of A.
Berger and Q. Z. Yin. Data from Berger [1978])

three parameters, in conjunction with insolation and data from ocean sediments and
Antarctic ice cores, can be found at Wikipedia (Milankovitch Cycles). Observe that
the eccentricity is defined by e = √

1 − (b2/a2) with a ≥ b, where a and b are
the semiaxes of the ellipse. So e=0 corresponds to the circle. The eccentricity of the
Earth’s orbit—at present 0.017 and decreasing—is always rather close to zero so that
the orbit varies from nearly circular to mildly elliptical. In the middle of Figure 10.40
is the precession index, defined by e sinω̄,where ω̄ is the longitude of the perihelion.
This is the main parameter for calculating insolation.

Since the pioneering work by Milankovitch the cronologies of the above orbital
elements and insolation have been recalculated several times. They point to peaks of
solar energy, striking the Earth, occurring at intervals of 100,000 years, 41,000 years,
and 23,000 years, respectively, since astronomers believe that patterns of orbital
variations did not change in any appreciable way over the last several million years.
From 1941, when Milankovitch published the final version of his theory, until the
early 1970s attempts were made to compare in time domain geological records with
climate curves predicted by this theory. Indeed deep-sea cores, transferring unknown
astronomical data of solar insolation into sedimentological data, are a geological
thermometer recording changes going back million years. These attempts clearly
presented substantial difficulties but in the mid 1970s, with improved geological
data and improved time scale for the Pleistocene marine deposits, this theory was
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revived by the seminal paper Hays et al. [1976]. (Pleistocene, from 2.59million years
ago to 12,000 years ago, spans the world’s recent period of repeated glaciations.
Holocene, the latest interglacial period, follows the Pleistocene and continues to the
present days). Tests in the frequency domain, comparing orbital and climatic spectra,
confirmed unambiguously that orbital variations significantly influenced the Earth’s
climate during the Pleistocene (Imbrie [1982]).

Milankovitch theory suggests that the Earth should begin to head into its next ice
age cycle, calculated to take place in about 10,000 years and to last for about 80,000
years. Indeed the dominant cycle over the past million years has been approximately
100,000 years long (Abe-Ouchi et al. [2013], where several examples of tests in the
frequency domain can also be found). Records from 1940 to 1970 showed a decrease
of about 0.3 ◦C. In spite of that in the 1960s Mikhail Budyko (1920-2001)—director
in Leningrad of one of the oldest Russian geophysical observatory and Lenin Prize in
1958—by calculations of radiative balance predicted that cooling would soon switch
to warming and the Arctic Ocean’s ice cap melted away as early as 2050 (Lindzen
and Farrel [1977], Walsh and Rackauckas [2015]).

The Earth temperature and climate have been shaped by natural phenomena,
independent of human activity, until the times — about 7,000 years ago—of early
man-made greenhouse gas emissions linked to forest clearance and related land
use. The cumulative effect of man-made greenhouse gases could become dominant
with respect to natural effects, or already is according to the paleoclimatologist Bill
Ruddiman [2013].

A question under much debate is whether or not human emissions of greenhouse
gases are helpful to prevent or postpone the next ice age. A study by Berger et
al. [2002], [2003] was pointing to an exceptional length of the present interglacial
period. Glacial inception represents a bifurcation between interglacial and glacial
climate states and, under the current low orbital eccentricity, the Earth is very close
to such a bifurcation. A recent model by Ganopolski et al. [2016], that replicates the
beginning of the past eight glacial cycles, “might anticipate future periods of glacial
inception.” This study shows that a glacial inception was narrowly missed before
the Industrial Revolution of the eighteenth century and also that, given the present
levels of CO2 concentration, a glacial inception will be postponed by at least 100,000
years.

Even though there is still uncertainty with regard to location and timing of early
glaciation within the North Atlantic, Arctic marine cores suggest that some North
Atlantic ice sheets could date back as early 5.4 million years ago and were fully
established about 2 million years ago. So the formation of the Arctic ice cap took at
least 2millionyearswith glaciers advancing to the sea during several intervals (Larsen
et al. [1994]). Climate had fluctuated greatly in the short term too, nevertheless
even these short trends were long, lasting thousand years, so the effect on climate
and vegetation could have been gradual: animals could have moved with trends,
competition arisingwhere resources became scarce. Instead in case of severe climatic
changes—living spaces and food supply drastically reduced—a tremendous stress
must have been experienced by animals and plants alike, accompanied by extinction
of species (Muzzolini [1993], Reader [1998]).
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Table 10.4 Global mean annual temperature averaged per decade. (Data by the Goddard Institute
for Space Studies (GISS) of NASA based in New York City.) (https://www.currentresults.com/
Environment-Facts/change-in-earth-temperature.php)

Decade ◦C ◦F
1880s 13.73 56.71

1890s 13.75 56.74

1900s 13.74 56.73

1910s 13.72 56.70

1920s 13.83 56.89

1930s 13.96 57.12

1940s 14.04 57.26

1950s 13.98 57.16

1960s 13.99 57.18

1970s 14.00 57.20

1980s 14.18 57.52

1990s 14.31 57.76

2000s 14.51 58.12

From 1880 the Earth mean global temperature has been calculated each year on
data gathered around the world at weather stations, on ships and by satellites for the
sea surface (Tab. 10.4). Most of the increase since the 1880s took place in the last
three decades, with the very last one—the first decade of the twenty-first century—
the warmest. This brought the Earth temperature to rise, during the last century, by
0.8 ◦C (1.5 ◦F) which is a lot for vegetation. It might be pointed out that the rise
has not been uniform. Land warms faster than the oceans, yet the global average
is dominated by the sea surface temperature since water covers 70% of the planet.
The Northern Hemisphere has warmed faster than the Southern Hemisphere, and
the Arctic faster than anywhere else in the world. Comprehensive data can be found
in the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report
(www.climatechange2013).

Following Paul Crutzen [2006], Nobel Prize for Chemistry in 1995 — who rela-
beled Antropocene the present era—some are looking for an escape route from
a global warming they foresee turning severe (Keith [2013]). Meanwhile, to curb
emissions of greenhouse gases, international conferences are held. The last one of
December 2015 in Paris saw the participation of the representatives of 195 nations
who agreed on actions to be taken in order to contain the rise in temperatures since the
1880s below 2 ◦C.Maybe we are witnessing the beginning of a new era of awareness,
restrain, and science.

https://www.currentresults.com/Environment-Facts/change-in-earth-temperature.php
https://www.currentresults.com/Environment-Facts/change-in-earth-temperature.php
www.climatechange2013


Appendix

Wavelets: a new frontier

The Fourier transform is not the most efficient tool to analyze transients like the brief
sound of a consonant or the sound of a gong (Chapter 4), or a detail in the corner of
a picture, to give an example in two dimensions. Indeed if f is supported on a very
small interval, then f̂ has a large spread by the uncertainty principle (2.17).

The Hungarian-born electrical engineer Dennis Gabor (1900–1979) inventor of
holography and recipient of theNobel prize for physics in 1971—proposed inGabor
[1946] to decompose signals using elementary waveforms well localized in time and
frequency. In Gabor [1947] he related such a decomposition to our sensitivity to
sound.

The human ear is a good frequency analyzer and does so by segmenting the sound
while it is in progress. When high frequency resolution is needed — as for a drawn
out note of a violin— long time segments are attended to.When high time resolution
is needed — as for recognition of the plosive consonant “p” — attention shifts to
shorter time segments.

Gabor used as a “window” the Gaussian g(t) = e−t2 . Even though nonzero for
every t it is well localized in space as well as in frequency (Fig. 3.7). By a translation
both in time and frequency domains he obtained “atoms”

gu,ξ(t) = e−(t−u)2 eiξt

concentrated in time in a neighborhood of u. InGabor’s approach theywere to replace
the oscillating term eiξt of constant amplitude that appears in the definition of the
Fourier transform. Note that the Fourier transform of Gabor’s atoms

ĝu,ξ(ω) = ĝ(ω − ξ)e−iu(ω−ξ)

is localized near the frequency ξ. Gabor proposed to analyze a function f by integrat-
ing f (t) against gu,ξ(t), thus obtaining “quanta of information” over time-frequency
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rectangles in the (u, ξ)-plane. The resulting Gabor transform, which will evolve in
the so-called windowed Fourier analysis, while customary for analysis, is not suited
for synthesis.

More recently the engineer Jean Morlet, working in reflection seismology for oil
prospect surveys (Elf-Aquitaine), used short waveforms of high frequency obtained
by scaling a single function called a “wavelet,” in order to analyze the subsurface
structure. Then in collaboration with the theoretical physicist Alex Grossman he
introduced the wavelet transform (Grossman, Morlet [1984]).

Awaveletψ is a smooth function supported on an interval, or else rapidly decaying
at infinity, of average zero,

∫ ∞

−∞
ψ(t)dt = 0.

This last condition means that ψ is somewhat oscillating. The wavelet is no longer
multiplied by an oscillating factor like eiξt but translated at u and dilated by a scaling
factor s,

ψu,s(t) = s−1/2ψ(
t − u

s
).

The Fourier transform is

ψ̂u,s(ω) = e−iuω
√
sψ̂(sω)

and the wavelet transform is defined by

W f (u, s) =
∫ ∞

−∞
f (t)ψ̄u,s(t) dt

where ψ̄ denotes the complex conjugate of ψ. One of the usual choices for ψ is the
second derivative of the Gaussian, also calledMexican hat.

The Grossman, Morlet paper acted as a catalyst and researchers from different
fields joined to pursue the subject. Some of the fields involved are acoustic and
psychoacoustic, visual psychophysics, signal and image processing, and turbulence.

The literature on wavelets grew rapidly. The discrete wavelet transformwas intro-
duced aswell as several fast wavelet algorithms and extensions to several dimensions.
We mention Daubechies [1992], Meyer [1993], Benedetto, Frazier [1994], Hernán-
dez,Weiss [1996],Mallat [1998], Bracewell [2000], andGröchenig [2001] for further
readings and references.
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