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Preface

The aim of this book is to elucidate the question of the interrelationship between
optics, vision and perspective before the Classical Age. In the Middle Ages and the
Renaissance, the concept of Perspectiva—the Latin word for optics—encompassed
many areas of enquiry that had been viewed since antiquity as interconnected, but
which afterwards were separated: optics was incorporated into the field of physics
(i.e., physical and geometrical optics), vision came to be regarded as the sum of
various psycho-physiological mechanisms involved in the way the eye operates
(i.e., physiological optics and psychology of vision) and the word ‘perspective’ was
reserved for the mathematical representation of the external world (i.e., linear
perspective).

However, this division, which emerged as a result of the spread of the sciences in
classical Europe, turns out to be an anachronism if we confront certain facts from the
immediately preceding periods. It is thus essential to take into account the way
medieval scholars posed the problem—which included all facets of the Latin word
perspectiva—when exploring the events of this period. What we now recognize as a
‘nexus’ between optics and perspective was at the time in fact seen as a single science.
I submit that the earliest developments in linear perspective cannot be elucidated
without reinserting them into the web of ideas that originally constituted perspectiva.

The central focus of this book is the theory of binocular vision, which has been
virtually ignored in the field of perspective studies. This theory generated one of the
most puzzling alternatives to linear perspective in the history of representation—
two-point perspective which could be regarded as a ‘heterodox system’ inasmuch as
linear perspective is taken to be the norm. However, linear perspective was not at all
the standard until the late sixteenth century (Cinquecento). Before then many other
systems were used, such that one would be justified in asking whether it would not
be better to admit that different, parallel systems of perspective existed as late as the
Renaissance. Since the norm was still to come, it was common to find painters and
architects testing new methods that lay at the margins of linear perspective. As a
result, there is no way to demonstrate that painters and architects as a whole were
applying the rules of perspective from Brunelleschi’s time onward. Up until the
end of the Cinquecento the word ‘perspective’ referred to a series of free and
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uncoordinated systems, with debates being conducted in scholarly and artistic
circles on the merits of each.1

In Chap. 1 we will seek to define more clearly the similarities and differences
between perspective and perspectiva, i.e., medieval optics. One of the main differ-
ences was the gradual trend to decouple linear perspective from medieval optics, the
course of which included an entire chapter on the formation of binocular images.

Errors—Chap. 2 investigates the emergence of perspective as a geometric sci-
ence and seeks to separate what is fact from what is fiction regarding the birth of
perspective in Quattrocento Italy. Events that were codified into what may be
regarded as the mythology of perspective are discussed, including Brunelleschi’s
untraceable tavoletta, Alberti’s costruzione legittima, and the perspective in
Masaccio’s fresco of the Holy Trinity in the Church of Santa Maria Novella in
Florence. This chapter will show how access to knowledge could change practices;
it establishes, for instance, that the solutions found by draftsmen to the problem of
how to draw the perspective view of a circle varied, depending on their degree of
familiarity with optics and geometry. Chapter 3 provides a classification of the
types of errors that may arise in perspective constructions, deepening our under-
standing of the problem by presenting several examples of works that depart from
the rules of perspective. Chapter 4 scrutinizes a blatant example of mistaken
judgment regarding the correctness of one specific case of perspective—the inter-
pretation by Erwin Panofsky of Masaccio’s Trinity. Although celebrated as a
milestone in the history of perspective, this fresco is not a correct example of central
perspective due to the many errors—both random and systematic—that can be
found in its geometric construction. These results undermine the commonly held
idea that linear perspective became the unspoken rule in Brunelleschi’s time, with
all other alternatives being gradually abandoned. Linear perspective was neither
clearly defined nor followed as a general rule in these early stages, and there was
not yet a sufficient consensus to limit alternative representational systems.

Theory—Chap. 5 outlines the theory of binocular vision presented by Ibn
al-Haytham in Kitāb al-manāẓir and discusses the innovations and limitations of
this medieval Arab scholar’s work in the light of modern physiological optics.
Chapter 6 seeks to retrace the impact of Ibn al-Haytham’s theory on Latin medieval
optics. There is evidence that the study of key sections of Kitāb al-manāẓir and the
commentaries written by European scholars ensured the wide dissemination of his
theory of binocular vision. Chapter 7 focuses on certain contemporary documents

1The present book includes revised content from several papers, mostly in French, published in
academic journals. Chap. 1: Nel Segno di Masaccio, ed. F. Camerota, Firenze, 2001, pp. 11–13.
Chap. 2: Les Espaces de l’homme, eds. A. Berthoz and R. Recht, Paris, 2005, pp. 333–354. Chap.
3: L’Hypothèse d’Oxford, Paris, pp. 62–85. Chap. 4: Nuncius 17 (2003): 331–344. Chap. 5: Arabic
Sciences and Philosophy 13 (2003): 79–99. Chap. 8: Oriens/Occidens 5 (2004): 93–131. Chap. 9:
Sciences et Techniques en Perspective 2-1 (1998): 3–23. Chap. 10: Zeitschrift für Kunstgeschichte
67/4 (2004): 449–460. Chap. 11: Physis 45 (2008): 29–55. Appendix A: L’Œuvre et l’artiste à
l’épreuve de la perspective, eds. M. Dalai Emiliani et al., Rome, 2006, pp. 411–430. The other
parts of the book are new.
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that explicitly condemned the practice of ‘two-point perspective.’ These texts,
which were written by members of the earliest Italian academies and of the
Académie Royale de Peinture in France, inform us that the theory and practice of
monocularity continued to encounter strong resistance during the Renaissance and
well into the classical period.

Sifting the Hypotheses—Applying standard techniques of error analysis, Chap. 8
and Appendix 1 address the methodological issue of how to eliminate or reduce the
errors that may be introduced during the ex post reconstruction of a perspective
view. An in-depth analysis is presented of The Saint Enthroned, a fresco by Giusto
de’ Menabuoi that illustrates the use of two-point perspective. The same method-
ology is then applied to 30 works produced in Italy between the Duecento and the
Cinquecento in which the use of two-point perspective has been identified. The
error analysis is supplemented by a reconstruction of the geometric plans and
elevations in these paintings, working backward from the perspective views. This
analysis based on a large number of works allows us to eliminate a series of
alternative forms of representation, and the sifting of the different representational
systems proves that binocular vision might have provided the foundations for the
construction of these medieval and Renaissance perspectives.

However, the hypothesis that early works of perspective were constructed on the
basis of binocular vision can be accepted only if all the competing assumptions are
successfully rebutted. We therefore carried out an evaluation, one by one, of the
various theses that currently dominate discussions of the history of perspective. In
Chap. 9 we demonstrate the inconsistency on both logical and empirical grounds
of the Hauck–Panofsky conjecture regarding ‘curvilinear perspective.’ Similarly in
Chap. 10 we disprove the White–Carter conjecture regarding ‘synthetic perspec-
tive’ by pointing out a mathematical property that renders this system unlikely.
Chapter 11 examines Andrés de Mesa Gisbert’s conjecture that medieval per-
spective was the result of an arithmetic method of construction, a solution that,
while elegant, poses some serious difficulties.

All the competing assumptions having been disproved, I conclude that binocular
vision and two-point perspective constituted a genuine alternative to linear per-
spective from the late Duecento onward. In this way a strong interdependence
between optics and perspective is established that accords with the original meaning
of the word perspectiva and opens up the possibility for a better understanding of
how perspectives were constructed in the early modern period. I submit that
binocularity represents a key juncture point between the history of art and the
history of science.2

2From this perspective, the binocular system makes a genuine difference with the foreshortening
rule, which could have been derived from Euclid’s Optica, postulate 5, as well as from practical
geometry, in particular the “Turris altitudinem metiri” section included in many treatises. See for
instance Stephen K. Victor, Practical Geometry in the High Middle Ages, Philadelphia, 1979;
Hubert L.L. Busard, “The ‘Practica geometriae’ of Dominicus de Clavasio,” Archive for the
History of Exact Sciences 2 (1965): 520–575; and Cosimo Bartoli’s Del modo di misurare,
Venezia, 1564.
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The intent of this book is to explore the various explanations and past modes of
rationalizing the phenomenon of vision that can be derived from the matrix of
Perspectiva, thus contributing to the rewriting of an important chapter in the history
of optics and perspective from an angle that takes into account the criticisms that
have been brought to bear on linear perspective in the past, and that is more
sensitive to the precarious balance that characterizes the early stages in any process
of innovation.

I express gratitude to Lisa C. Chien, who translated several chapters from the
French and diligently revised the whole text.

Saint-Martin Dominique Raynaud
June 2015
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Chapter 1
Perspectiva Naturalis/Artificialis

Abstract Perspective, as a system of visual representation, draws its name from
the medieval Latin term perspectiva which means ‘optics.’ We owe this linguistic
connection to the fact that certain principles of perspective developed from theories
of vision. Between the two sets of notions one can find relationships of both
continuity and discontinuity. A study of textual parallels has established this con-
tinuity. However, there are clear distinctions between perspectiva and perspective.
Apart from the close relationship between science and technique that characterized
them both, medieval perspectiva was a tripartite science embracing optica, catop-
trica and dioptrica, whereas perspective would focus exclusively on direct vision;
perspectiva postulated the binocular vision whereas linear perspective would adopt
the conditions of monocular vision. These were the two main bifurcations that led
to the development of perspectiva artificialis.

The system of representation that we call today “perspective” derives its name from
perspectiva, the term used in the Middle Ages to designate the science of optics
(ὀπτικη in Greek and al-manāẓir in Arab). This connection can be explained by the
fact that certain principles useful to painters and architects are based on geometrical
optics, beginning with the law that objects appear to diminish in size as a function
of distance:

Alhacen: Perception of size is due only to a correlation of the base of the visual cone
encompassing the size to the angle of the cone at the center of sight and to the length of the
cone, which represents the magnitude of the distance of the visible object.1

1“Comprehensio magnitudinis non est nisi ex comparatione basis piramidis radialis continentis
magnitudinem ad angulum piramidis qui est apud centrum visus et longitudinem piramidis, que est
remotio magnitudinis rei vise,” Opticae Thesaurus Alhazeni Arabi libri septem, New York, 1972,
p. 58; A. Mark Smith, Alhacen’s Theory of Visual Perception, Philadelphia, 2001, vol. I, p. 185.

© Springer International Publishing Switzerland 2016
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Bacon: There can be no determination of the magnitude of an object in accordance with the
size of the angle, but it is necessary that the angle be considered and the length of the
pyramid.2

Pecham: Perception of the size [of an object] derives from perception of the radiant pyramid
and comparison of the base to the length and to the size of the angle.3

These should not be viewed as isolated observations. A number of studies4

conducted over the past two decades have established the debt that perspectiva
artificialis owes to perspectiva naturalis. This chapter will discuss some of the
connections and divergences between these two sets of ideas.

1.1 Perspective in the Classification of the Sciences

The medieval classification of the sciences5 can help us to understand the links that
existed between perspective, geometry and arithmetic. According to the classifi-
cation by al-Fārābī, which was transmitted to the Latin world through the trans-
lations of Gerard of Cremona and Dominicus Gundissalinus,6 perspectiva is
three-fold, consisting of optica (direct rays), catoptrica (reflected rays), and diop-
trica (refracted rays). Pictorial perspective is tied only to optica. The relations
between the sciences were understood through the Aristotelian concept of

2“Non potest esse certificatio magnitudinis rei secundum quantitatem anguli, sed oportet quod
consideretur angulus et longitudo pyramidis,” The ‘Opus majus’ of Roger Bacon, ed. A.G. Little,
reprint, Frankfurt am Main, 1964, pp. 115–116.
3“Comprehensionem quantitatis ex comprehensione procedere pyramidis radiose et basis com-
paratione ad quantitatem anguli et longitudinem distantie,” David C. Lindberg, John Pecham and
the Science of Optics, Madison, 1970, p. 146.
4For example, Emma Simi Varanelli, “Dal Maestro d’Isacco a Giotto. Contributo alla storia della
‘perspectiva communis’ medievale,” Arte medievale 2. Ser. 3 (1989): 115–143; Luca Baggio,
“Sperimentazioni prospettiche e ricerche scientifiche a Padova nel secondo Trecento,” Il Santo, 34
(1994): 173–232; Francesca Cecchini, “Artisti, commitenti e perspectiva in Italia alla fine del
Duecento,” in La prospettiva. Fondamenti teorici ed esperienze figurative dall’Antichità al mondo
moderno, ed. R. Sinisgalli, Fiesole, 1998, pp. 56–74; Eadem, “Ambiti di diffusione del sapere
ottico nel Duecento,” in L’Œuvre et l’artiste à l’épreuve de la perspective, eds. M. Dalai Emiliani,
M. Cojannot Le Blanc, P. Dubourg Glatigny, Rome, 2006, pp. 19–42.
5James A. Weisheipl, “Classification of the sciences in medieval thought,” Mediaeval Studies 27
(1965): 54–90; Idem, “The nature, scope, and classification of the sciences,” ed. D.C. Lindberg,
Science in the Middle Ages, Chicago, 1978, pp. 461–482; Graziella Federici Vescovini,
“L’inserimento della ‘perspectiva’ tra le arti del quadrivio,” Actes du IVe Congrès international de
Philosophie médiévale, Montréal/Paris, 1969, pp. 969–974.
6Henri Hugonnard Roche, “La classification des sciences de Gundissalinus et l’influence
d’Avicenne,” in Études sur Avicenne, eds. J. Jolivet and R. Rashed, Paris, 1984, pp. 41–63; Jean
Jolivet, “Classification des sciences,” in Histoire des sciences arabes, ed. R. Rashed, Paris, 1997,
3, pp. 255–270.
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subalternation.7 There is subalternation when a superior science (scientia subal-
ternans) provides the propter quid of a fact presented by an inferior science (sci-
entia subalternata). Ever since Aristotle’s Posterior Analytics, optics has been
subordinate to geometry, which has led either to its outright absorption into
geometry, as in Boethius’ De Trinitate, or to its insertion among the geometrical
sciences, as in Dominicus de Clavasio’s Questiones super perspectiva.8

Many classification systems made a clear distinction between the theoretical and
the practical sciences, as in Isidorus of Seville’s Etymologiae or the Didascalicon
by Hugh of St Victor. In contrast, Arabic scholars saw a continuous gradation from
the speculative sciences to the practical sciences.9 Along the lines of al-Fārābī,
Dominicus Gundissalinus named seven mathematical sciences as having both
theoretical and practical aspects, including optics (de aspectibus), statics (de pon-
deribus), and engineering (de ingeniis). Drawing on this same tradition, Roger
Bacon devoted an entire chapter of Communia mathematica to “Geometria spec-
ulative et practica”10 and Fra’ Luca Pacioli expounded on the “parte principale de
tutta l’opera de Geometria, in tutti li modi theorica e pratica.”11 Such connections
explain why perspective was so heavily dependent on the geometrical sciences and
why, although a practical art, it benefitted from the contributions of speculative
geometry and perspectiva naturalis.

Last but not least, it must be mentioned that the mathematical sciences were
divided based on their subject matter—arithmetic was the science of discrete
quantities (πλῆθος) while geometry was the science of continuous quantities
(μέγεθος). This dichotomy remained in place from the time of Aristotle, Proclus,

7Aristotle rejects the mixing of genres during the course of a demonstration but admits the
subordination of the sciences under certain conditions; Aristotle, Posterior Analytics, ed.
H. Tredennick, Cambridge, 1966, I, IX, 66–69 and I, XIII, 88–90. He recognized, for example,
that optics was subordinate to geometry, I, XIII, 88–90. Later, metaphysical considerations
sometimes contributed to emancipate optics from pure mathematics. On subalternation scientiae in
the Middle Ages, see Steven J. Livesey, “Science and theology in the fourteenth century: the
subalternate sciences in Oxford commentaries on the sentences,” Synthese 83 (1990): 273–292.
8“It is known that the mathematical sciences are five—namely arithmetic, geometry, music,
astronomy and perspective—which differ, as was seen in the first conclusion/Est sciendum quod
quinque sunt scientiae mathematicae, scilicet arismetrica, geometria, musica, astrologia et per-
spectiva quae differunt secundum quod visum in prima conclusione,” Dominicus de Clavasio,
Quaestiones perspectivae, Florence, BNCF, San Marco, Conv. Soppr. J X 19, quaest. 1, ff. 44r-v;
Graziella Federici Vescovini, Studi sulla prospettiva medievale, Turin, 1964, p. 210.
9The inclusion of the practical sciences in the overall classification of the sciences seems to have
begun with the ancient Greeks. Pappus reports that Heron’s disciples divided mechanics into two
parts: (i) the theoretical, which included geometry, arithmetic, astronomy, and physics, and (ii) the
manual, which included architecture (οἰκοδομική), ironworks (χαλκευτική), carpentry (τεκτονική),
and painting (ζωγραφική), Pappi Alexandrini Collectionis quae supersunt, ed. F. Hultsch, Berlin,
1876–8, pp. 1022.3–1028.3 (VIII, praef. 1–3).
10Roger Bacon, Communia mathematica Fratris Rogeri, ed. R. Steele, Oxford, 1940 (I, 3, 2).
11Luca Pacioli, Summa de aritmetica, geometria, proportione et proportionalita, Venice, 1494,
fol. 75r.
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and Geminus12 up to the Italian Renaissance treatises that identified devices per
numero and per linea.13 In the light of these categories we can better understand
why optics as a geometrical science guided the earliest experiments on perspective.

1.2 The Phases in the Development of Optics

If one examines the literature on the history of the classification of the sciences,14

one finds that the boundaries of optics were particularly labile and the place it
occupied on the tree of scientific knowledge was subject to marked fluctuations.
The only scientific classification systems that even mention optics before the advent
of modern science were those of Aristotle in the Nicomachean Ethics (ca. 340 BC),
al-Fārābī in his work Kitāb iḥṣā’ al-‘ulūm (Opusculum de scientiis, ca. 950), and
the English friar Robert Kilwardby in De ortu scientiarum (ca. 1250).

If one compares the chronology of optical treatises to these milestones, one
immediately notes that the introduction of optics into the classification of the sci-
ences coincided with those periods in which research in this area was most prolific.
This correlation should not surprise us for it is when new knowledge emerges that
the need arises to assign it a place reflecting its importance. The first period of
intense activity was seen in antiquity, with the work of Euclid (ca. 300 BC), Hero of
Alexandria (ca. 70 AD), Damianus (ca. 100), Ptolemy (ca. 127), and Theon of
Alexandria (before 405).15 The second period corresponded to the study of optics in
the Arab world, which it would perhaps be more accurate to refer to as the science
of optics in the Arabic language, given the significant contributions of Greek,
Nestorian and Persian savants who expressed themselves in this language. The best
known texts are those of al-Kindī (ca. 846), Ḥunayn ibn Isḥāq (ca. 857), Qusṭā ibn

12Bernard Vitrac in Euclide, Éléments, vol. 2, pp. 19, 22.
13Luca Pacioli, Divina proportione, Venice, 1509; Pietro Cataneo, L’Architettura, Venice, 1567;
Andrea Palladio, I Quattro Libri de architettura, Venice, Domenico dei Franceschi, 1570. On the
devices per numero and per linea, see Samuel Gessner, Les Mathématiques dans les écrits
d’architecture italiens, 1545–1570, Paris, 2006, pp. 109–144.
14James A. Weisheipl, “Classification of the sciences in medieval thought,” Mediaeval Studies 27
(1965): 54–90; Graziella Federici Vescovini, “L’inserimento della ‘perspectiva’ tra le arti del
quadrivio,” Arts libéraux et philosophie au Moyen Âge, Paris/Montréal, 1969, pp. 969–974; Jean
Jolivet, “Classification des sciences” in Histoire des sciences arabes, eds. Roshdi Rashed and
Régis Morelon, Paris, 1997, vol. 3, pp. 255–270.
15Euclidis opera omnia, vol. VII: Optica… Catoptrica cum scholiis antiquis, ed. J.L. Heiberg,
Leipzig, 1895; Wilfred R. Theisen, “Liber de visu: The Greco-Latin Tradition of Euclid’s Optics,”
Mediaeval Studies 41 (1979): 44–105; Heronis Alexandrini opera quae supersunt omnia, vol. II.
Mechanica et Catoptrica, eds. L. Nix and W. Schmidt, Stuttgart, 1900; Damianos Schrift über
Optik, ed. R. Schöne, Berlin, 1897; Albert Lejeune, L’Optique de Claude Ptolémée dans la version
latine d’après l’arabe de l’émir Eugène de Sicile, Leiden, 1989; Euclidis opera omnia, vol. VII:
Opticorum recensio Theonis, ed. J.L. Heiberg, Leipzig, 1985.
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Lūqā (ca. 860), Aḥmad Ibn ‘Īsā (after 860), Ibn Sahl (ca. 985), and above all Ibn
al-Haytham, known in the Latin world as Alhacen (d. after 1040).16

The third great period in the history of optics was that of the thirteenth century in
Europe and the most significant contributions are associated with the names of
Robert Grosseteste (ca. 1235), Roger Bacon (ca. 1266), Witelo (ca. 1277), John
Pecham (ca. 1279), and their fourteenth-century epigones, including Egidius de
Baisiu (ca. 1300), Dietrich de Freiberg (ca. 1304), Dominicus de Clavasio (before
1362) and Biagio Pelacani da Parma (ca. 1390).17

Issuing from this intense activity, perspectiva could already lay claim to being a
synthesis of physical optics (treating such problems as the multiplication of species,
the instantaneous versus the temporal propagation of light), geometric optics (the
images reflected in mirrors, the source of the moon’s light, the theory of the
rainbow), physiological optics (the anatomy of the eye, the phenomenon of the
persistence of vision, the conflicting theories of intromission and extramission of
visual rays), and psychological optics (used, for example, to explain optical
illusions).18

1.3 The Similarities Between Perspectiva and Perspective

Before embarking on a discussion of the relationship between perspectiva and
perspective, it should be pointed out that this relationship falls into the category of
“a necessary but not sufficient condition.” Not sufficient because there were many
determining factors in the emergence of perspective—not only the development of
theories of vision, but also the support of medieval theologians for iconography and

16Elaheh Kheirandish, The Arabic Version of Euclid’s Optics: Kitāb Uqlīdis fi ikhtilāf al-manāẓir,
New York, 1999; Roshdi Rashed, Optique et mathématiques, Aldershot, 1992; idem, Géométrie et
Dioptrique au Xe siècle: Ibn Sahl, al-Qūhī et Ibn al-Haytham, Paris, 1993; idem, Œuvres phi-
losophiques et scientifiques d’al-Kindī: L’optique et la catoptrique, Leiden, 1996; idem, Geometry
and Dioptrics in Classical Islam, London, 2005; Abdelhamid I. Sabra, The Optics of Ibn al-
Haytham, Books I-III: On Direct Vision, London, 1989; idem, The Optics of Ibn al-Haytham,
Books IV-V: On Reflection and Images Seen by Reflection, Kuwait, 2002; A. Mark Smith,
Alhacen’s Theory of Visual Perception, Philadelphia, 2001; idem, Alhacen on the Principles of
Reflection, Philadelphia, 2006; idem, Alhacen on Image-Formation and Distortion in Mirrors,
Philadelphia, 2008; idem, Alhacen on Refraction, Philadelphia, 2010.
17Ludwig Baur, “Die philosophischen Werke des Robert Grosseteste,” Beiträge zur Geschichte
der Philosophie des Mittelalters 9 (1912): 1–778; David C. Lindberg, Roger Bacon and the
Origins of Perspectiva in the Middle Ages, Oxford, 1996; Witelo, Opticae Thesaurus; David C.
Lindberg, John Pecham and the Science of Optics, Madison, 1970; José-Luís Mancha, “Egidius of
Baisiu’s theory of pinhole images,” Archive for History of Exact Sciences, 40 (1989): 1–35; Maria
Rita Pagnoni-Sturlese, Rudolf Rehn and Loris Sturlese, Dietrich von Freiberg. Opera Omnia, IV.
Schriften zur Naturwissenschaft, Hamburg, 1985; Graziella Federici Vescovini, “Les questions de
‘perspective’ de Dominicus de Clivaxo,” Centaurus 10 (1964): 236–246; Blaise de Parme,
Questiones super perspectiva communi, eds. G. Federici Vescovini et al., Paris, 2009.
18Gérard Simon, Le Regard, l’être et l’apparence dans l’optique de l’Antiquité, Paris, 1988.
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the use of imagery as a mnemonic technique,19 the desire for social mobility on the
part of artisans (which motivated them to reduce the gulf between the mechanical
arts and the liberal arts by demonstrating that their work was based on knowledge
of the quadrivium),20 etc.

The number of underlying factors can be greatly reduced if one focuses on the
study of the textual parallels linking Renaissance treatises on perspective with the
treatises on optics written in previous epochs. These parallels, which sometimes
bordered on outright copying, can be found in the writings of Lorenzo Ghiberti,21

Leon Battista Alberti, Piero della Francesca, and Leonardo da Vinci. A passage
typical of such undeclared borrowings can be found in theCodex Atlanticus, fol. 543r:

English translation: Light produces an impression in the eye that is directed toward it. This
result is proved by an effect, for when the eye sees brilliant lights, it suffers and endures
pain. Also, after a glance [at bright lights], images of intense brightness remain in the eye,
and they cause a less illuminated place to appear dark until the traces of the brighter light
have disappeared from the eye.

Leonardo: La luce operando nel uedere le chose contra se conuerse alquanto le spezie di
quelli ritiene. Questa conclusione si pruoua per li effetti perche la uista in uedere luce
alquanto teme. Ancora dopo lo sguardo rimangano nel locchio similitudine della chosa
intensa e fanno parere tenebroso il luogo di minor luce per insino che dallocchio sia spartito
il uestigio de la impression de la magiore luce.22

Pecham: Lucem operari in uisum supra se conuersum aliquid impressiue. Hec conclusio
probatur per effectum, quoniam uisus in uidendo luces fortes dolet et patitur. Lucis etiam
intense simulacra in oculo remanent post aspectum, et locum minoris luminis faciunt
apparere tenebrosum donec ab oculo euanuerit uestigium luminis maioris.23

This is the literal translation of a paragraph from John Pecham’s Perspectiva
communis on which, however, Leonardo does not elaborate. Research that I have
devoted to these parallel texts allows me to formulate certain conclusions regarding
the history of perspective.24

19Alain Besançon, L’Image interdite. Une histoire intellectuelle de l’iconoclasme, Paris, 1994;
Emma Simi Varanelli, “Arte della memotecnica e primato dell’imagine negli ordines studentes,”
Bisancio e l’Occidente: arte, archeologia, storia, Rome, 1996, pp. 505–525.
20Robert E. Wolf, “La querelle des sept arts libéraux dans la Renaissance, la Contre-Renaissance et
le Baroque,” Renaissance, Maniérisme, Baroque, Paris, 1972, pp. 259–288.
21Klaus Bergdolt, Der dritte Kommentar Lorenzo Ghibertis. Naturwissenschaften un Medizin in
der Kunsttheorie der Frührenaissance, Weinheim, 1998.
22Leonardo da Vinci, The Notebooks of Leonardo da Vinci, ed. Jean Paul Richter, New York,
Dover, 1970, vol. I, p. 24.
23David C. Lindberg, John Pecham and the Science of Optics, p. 62.
24For a detailed study of the textual parallels, see Raynaud, L’Hypothèse d’Oxford, Paris, 1998,
pp. 163–209; idem, “L’ottica di al-Kindī e la sua eredità latina. Una valutatione critica,” in Lumen,
Imago, Pictura, Atti del convegno internazionale di studi (Rome, Bibliotheca Herziana, 12–13
April 2010), eds. S. Ebert-Schifferer, P. Roccasecca and A. Thielemann, Rome (in press); Idem,
“An unknown treatise on shadows referred to by Leonardo da Vinci,” in Perspective as Practice.
An International Conference on the Circulation of Optical Knowledge in and Outside the
Workshop, eds. S. Dupré and J. Peiffer, Max Planck Institut für Wissenschaftsgeschichte (Berlin,
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1. This research shows first of all that there was a marked continuity between the
study of optics and the study of perspective, thus greatly reducing the credibility
of the classic thesis that a major rupture took place during the Renaissance in
Italy. This was doubtless true on certain levels, but curiously enough the trea-
tises on perspective seemed to form an exception to the rule.

2. Another finding is that the treatises on optics most often cited during the
Renaissance were not those of antiquity but texts from the Arab and Latin
Middle Ages. This appears to be quite strange given the fact that the
Renaissance has been characterized by scholars as the period of the “rediscovery
of the antique.”

3. Among the medieval authors, the ones most frequently cited belong to the
tradition of the ‘Perspectivists,’ principally Alhacen and his Western successors.
But here again is another source of surprise: Witelo, who had close connections
with the papal court in Viterbo, is rarely quoted, and Biagio Pelacani da Parma
hardly more often.

4. In L’Hypothèse d’Oxford. Essai sur les origines de la perspective, I proposed
that these anomalies could be understood by introducing a socio-historic factor.
The texts on optics that the perspectivists of the Renaissance consulted were
likely to have been the ones that were most accessible in terms of the number of
manuscript copies in circulation. The hierarchy between these texts can be
reconstructed from their distribution: in libraries across Europe a total of 65
manuscripts by Bacon and 64 by Pecham can be counted, compared to 25 by
Witelo and 16 by Biagio Pelacani da Parma.25 Thus, the frequency with which
authors borrowed from Bacon and Pecham could be due to the exceptional
diffusion of their texts during the course of the thirteenth and fourteenth
centuries.

(Footnote 24 continued)

12–13 October 2012), Berlin (in press); Idem, “Application de la méthode des traceurs à l’étude
des sources textuelles de la perspective. Auteurs, traités, manuscrits,” in Vision and Image-
Making: Constructing the Visible and Seeing as Understanding, Actes du colloque international,
Centre d’Études Superieures de la Renaissance et Le Studium CNRS, Orléans (Tours, 13–15
September 2013).
25David C. Lindberg, A Catalogue of Medieval and Renaissance Optical Manuscripts, Toronto,
1975. With regard to the invention of perspective, links have also been drawn to the abacus, the
cartographic projections of Ptolemy, the use of the astrolabe, or a combination of all of these
sources, Birgitte Bøggild-Johanssen and Marianne Marcussen, “A critical survey of the theoretical
and practical origins of the Renaissance linear perspective,” Acta ad Archaelogiam et Artium
Historiam Pertinentia 8 (1981): 191–227. This knowledge probably contributed to the develop-
ment of the perspective system, but in the Quattrocento their influence remained secondary to that
of optics: (1) if perspective had been based on cartography, contemporaries would probably have
spoken of “the cartography of painters” rather than “the perspective of painters”; (2) the identi-
fication of certain sources appears to be conjectural because they are not supported by a study of
parallel texts (Raynaud, L’Hypothèse d’Oxford, pp. 165–167); (3) the notion of a “source” depends
on one’s point of view. Simply because knowledge appears to us on logical grounds to be
‘pertinent’ to a subject does not necessarily mean that it would have been utilized.
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5. A study of the holdings in Italian libraries sheds light on the context in which
these borrowings unfolded.26 For example, a comparative analysis of Florentine
inventories before the middle of the Quattrocento shows that there were no
treatises on optics in the Badia Fiorentina or the Medici library, but that they
could be found in convent libraries. While the Dominicans of Santa Maria
Novella had no manuscripts on perspectiva, the Augustinian order of the
Basilica of Santo Spirito possessed one (Perspectiva magistri Vitellonis) and the
Franciscans of Santa Croce no less than six (Robert Grosseteste, De luce seu
inchoatione formarum; Bartholomew of England, De proprietatibus rerum;
John Pecham, Tractatus de perspectiva and Perspectiva communis;
Bartholomeus de Bononia, De luce; and Petrus Aureolus, Scriptum in II
Sententiarum).

6. The large number of treatises on optics to be found in the libraries of the
Franciscan convents during the Middle Ages can be explained by the con-
junction of two factors: (1) a homophilic bias, that is, the preference of a
religious community for authors belonging to the same order (thus, Dominican
authors were over-represented in the libraries of Dominican convents,
Franciscan authors in the collections of Franciscan libraries, and so on),27 and
(2) the strong commitment of Franciscans to the writing and copying of
manuscript treatises on perspectiva. A tally beginning with the Catalogue of
Optical Manuscripts shows that among 310 manuscripts from the thirteenth and
fourteenth centuries preserved in European libraries, 92 % were redacted by
clerics and of these 80 % were written by friars belonging to the mendicant
orders. A total of 71 % (220 MSS) were the work of Franciscan friars, of which
66 % (205 MSS) were by just three authors—Grosseteste, Bacon and Pecham.28

The interest of the Franciscans in the subject of optics, joined to the principle of
homophily, properly explains the presence of Franciscan ‘best-sellers’ in Italian
libraries. In Optics and the Rise of Perspective I used this data to show that the
diffusion of optics was one of the pre-conditions for the development of linear
perspective during the Renaissance.

The purpose of this book is different. It will test the hypothesis that there were
close ties between optics and perspective, but from a different angle; that is, by
asking whether long-abandoned medieval notions of optics may have left traces in
the way perspective was envisaged in later epochs. From such traces—if they do
exist—it should be possible to furnish proof of how close the relationship was
between perspectiva and perspective. Since my aim here is more to lay out and
conduct a scientific test than a discourse on culture, I will begin by reviewing the
most salient differences between perspectiva and perspective.

26Raynaud, L’Hypothèse d’Oxford, pp. 301–349.
27See the statistical tables in Raynaud, L’Hypothèse d’Oxford, p. 329.
28Raynaud, Optics and the Rise of Perspective, Oxford, 2014, chapter 3, especially pp. 64–65.
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1.4 The Differences Between Perspectiva and Perspective

The existence of correspondences between perspectiva and perspective does not
negate the possibility that differences exist between medieval optics and
Renaissance perspective. In addition to the fact that their relationship was one of
theory to practice, or of science to technology, two other bifurcations marked the
passage from one to the other.

First of all, perspectiva as it was understood and taught during the Middle Ages
was a tripartite science that comprised the study of direct rays (optica), reflected
rays (catoptrica), and refracted rays (dioptrica).29 By comparison, Renaissance
treatises on perspective covered a much narrower field of investigation, ignoring for
example the study of burning mirrors and such natural phenomena as the rainbow,
the halo of the moon, and the apparent twinkling of the stars. An entire facet of
perspectiva thus disappeared as scholars concentrated on direct vision.

Secondly, all medieval treatises on perspectiva speculated at length on the
central conundrum of binocular vision—how do the separate images received by
the two eyes come to be fused?30 And yet modern summaries, as well as the sources
of the period, continually underline the close ties that link the invention of per-
spective and the postulate of monocular vision. These presuppositions have been
laid out by most historians of perspective. At the beginning of the twentieth century,
Erwin Panofsky observed that in order to construct a perspective it is necessary to
grant, “First, that we see with a single and immobile eye.”31 Thirty years later
Gioseffi declared in his turn that monocular vision was the condition that guaran-
teed the integrity of the system of perspective.32 In his account of the history of
perspective, Laurent expounded on this point: “The two eyes of binocular vision are
reduced to a single one (monocular vision) called the eye and placed at the summit
of the visual cone.”33 The historical sources are no less prolix. The postulate of
monocular vision figures prominently in Manetti’s Vita of Brunelleschi, in which
the tavoletta of the baptistery of San Giovanni in Florence is described: “It is
necessary that the painter postulate beforehand a single point from which his
painting should be viewed/Il dipintore bisognia che presuponga un luogo solo

29“Otherwise, vision is fundamentally triple, depending upon whether it is made of straight,
refracted or reflected rays/Aliter vero triplicatur uisio secundum quod fit recte, fracte et reflexe,”
The ‘Opus majus’ of Roger Bacon, ed. Little, p. 162.
30Alhacen, Opticae Thesaurus, pp. 76–87; Smith, Alhacen’s Theory of Visual Perception, vol. II,
p. 562–582; The ‘Opus majus’ of Roger Bacon, pp. 92–99; Lindberg, John Pecham and the
Science of Optics, pp. 116–118; Witelo, Opticae Thesaurus… Item Vitellonis Thuringopoloni libri
decem, pp. 98–108.
31Erwin Panofsky, “Die Perspektive als symbolische Form,” Vorträge der Bibliothek Warburg 4
(1924/5): 258–331, Perspective as Symbolic Form, New York, 1991, p. 29.
32Decio Gioseffi, Perspectiva artificialis, Trieste, 1957, p. 8.
33Roger Laurent, La Place de J.-H. Lambert (1728–1777) dans l’histoire de la perspective, Paris,
1987, p. 37.
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d’onde s’a a uedere la sua dipintura.”34 The same condition is formulated in the
commentary to De visu by Grazia de’ Castellani: “And you put a single eye at point
C where there is a small hole/E tu ponj un solo occhio al punto.c. doue è uno
picholo bucho.”35 As the vanishing point is the orthogonal projection of the eye
onto the picture plane, the monocular postulate imposes the uniqueness of the
vanishing point in a central linear perspective.

In contrast, the theory of monocular vision was much less developed in medieval
optics and, it seems, was always seen in relation to the size of an object. This was
illustrated by the classic experiment of the hand and the wall, which is cited in turn
by Alhacen, Pecham and Alberti:

Alhacen: For instance, if an observer looks at a wall that lies at a moderate distance from
the eye, and if he accurately determines the distance and size of that wall, and if he
accurately determines the magnitude of its breadth, then, if the observer places his hand in
front of one of his eyes between the center of sight and the wall and closes the other eye, he
will find that his hand will cover a considerable portion of that wall.36

Pecham: If a one eyed man looks at a large wall and, after certifying its size, places his hand
before his eye, the hand will appear under an angle equal to or larger than that under which
the wall is seen; nevertheless, the hand will appear to him smaller than the wall because it is
less distant.37

Alberti: I say that the part of the rod that lies between C and B goes as many times into the
distance that is between B and D, i.e., between your eye and the foot of the rod, as many
times as the height of the tower goes into the distance that is between your eye and the foot
of the tower.38

34Antonio di Tuccio Manetti, The Life of Brunelleschi, by Antonio di Tuccio Manetti/Vita di
Filippo di Ser Brunelleschi, eds. H. Saalman and C. Engass, University Park, 1970, p. 43.
35Gino Arrighi, “Un estratto dal ‘De visu’ di M° Grazia de’ Castellani,” Atti della Fondazione
Giorgio Ronchi 22 (1967): 44–58, p. 47; Filippo Camerota, “Misurare ‘per perspectiva’,” La
prospettiva. Fondamenti teorici ed esperienze figurative dall’Antichità al mondo moderno,
Fiesole, 1998, pp. 293–308.
36“Verbi gratia, quod quando visus aspexerit parietem remotum a visu remotione mediocri, et
certificaverit visus remotionem illius parietis et quantitatem eius, et certificaverit quantitatem
latitudinus eius, deinde apposuerit aspiciens manum uni visui inter visum et parietem et clauserit
alterum oculum, inveniet tunc quod manus eius cooperiet portionem magnam illius parietis,”
Alhacen, Opticae Thesaurus, p. 52; Smith, Alhacen’s Theory of Visual Perception, vol. I, p. 171.
37“Si monoculus aspiciat aliquem parietem magnum et quantitatem eius certificet deinde oculo suo
manum anteponat, ipsa manus uidebitur sub eodem angulo uel sub maiori quam paries uisus est,
nec tamen tanta ei apparebit quantus paries apparet quia minus distat,” Lindberg, John Pecham
and the Science of Optics, p. 146.
38“Dico che la parte del dardo quale sta fra C et B entra tante volte nella distanza quale sta fra B e
D cioè fra l’occhio vostro e il piè del dardo, quante volte l’altezza della torre entra nella distanza
quale è fra l’occhio vostro et il piè della torre,” Alberti, Ex ludis rerum mathematicarum,
Cambridge, Mass., MS. Houghton Typ 422.2, fol. 1v.
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Reducing the field of investigation to the study of direct vision (optica) and
substituting the postulate of binocular vision for that of monocular vision would
appear to be the two principal bifurcations—a consequence of the compartmen-
talization of the sciences—that set the seal on the continued evolution of per-
spectiva artificialis.

But there are just as many questions to be posed regarding the origins of the new
theory of perspective, because the differences between perspectiva and perspective
could have resulted from a lack of knowledge of the texts on optics, or a rejection of
theoretical optics in favor of other sources such as the use of the astrolabe or
practical geometry, or even the draconian selection from the textual sources of only
those elements that were compatible with the development of linear perspective.
The method used by Brunelleschi to depict the tavoletta of the baptistery could be
viewed as part of a historical continuum, a logical consequence of the dearth of
sources on monocular vision available during the Middle Ages. It could equally
well be seen as an application of practical geometry to the measurement of inac-
cessible sizes,39 thus favoring the discontinuity thesis. How might this issue be
resolved?

The path that I will follow in this book differs from the one adopted earlier in
L’Hypothèse d’Oxford and in Optics and the Rise of Perspective. If the origins of
perspective are to be found preponderantly in medieval optics, then one should be
able to identify some of its vestiges in the earliest experiments on perspective,
which were conducted between the end of the Duecento and the second half of the
Cinquecento. The uniformity of the procedure for creating perspective views was a
consequence of its being taught as a regular part of the curriculum in the academies,
beginning with the Accademia del Disegno (established in Florence in 1563) and
the Accademia di San Luca (founded in Rome in 1577).40 Before this time neither
the concepts of perspective nor its methods were fixed and perspectivists, not being
constrained to follow a definite set of rules, came up with a number of approaches
that would all be regarded as “heterodox systems” once the rules for the repre-
sentation of perspective were fixed and adopted. The period from the Duecento to

39This exercise was included by many authors in their treatises on geometry, from Euclid to
Johannes of Muris, and from Dominicus of Clavasio to Cosimo Bartoli; Euclid, Liber de visu, ed.
W. Theisen, p. 72; Stephen K. Victor, Practical Geometry in the High Middle Ages, Philadelphia,
1979, p. 295; Hubert L.L. Busard, Johannes de Muris. De Arte mensurandi, Stuttgart, 1998,
p. 145; idem, “The Practica Geometriae of Dominicus de Clavasio,” Archive for the History of
Exact Sciences 2 (1965): 520–575, p. 539; Cosimo Bartoli, Del modo di misurare le distantie, le
superfitie, i corpi, Venezia, 1564, fol. 19v, 24r.
40Marica Marzinotto, “Filippo Gagliardi e la didattica della prospettiva nell’accademia di San Luca
a Roma, tra XVII e XVIII secolo,” L’Œuvre et l’artiste à l’épreuve de la perspective, Rome, 2006,
pp. 153–177.
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the Cinquecento therefore offers an ideal field of investigation to explore whether
the medieval principles of optics inspired systems of representation other than linear
perspective.

We have characterized the passage from perspectiva to perspective in terms of
two bifurcations: (i) the reduction of tripartite perspectiva (optica, catoptrica,
dioptrica) to direct vision alone, and (ii) the adoption of the postulate of monocular
vision. As catoptrica and dioptrica do not seem to have left any mark on the new
system of perspective, the central axis of this book will consist in exploring whether
the postulate of binocular vision could have inspired the many and varied systems
of representation that were conceived beginning in the Duecento.
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Chapter 2
Knowledge and Beliefs Regarding Linear
Perspective

Abstract The aim of this chapter is to deconstruct the notion that linear perspective
formed a stable system of representation beginning in the Quattrocento. Doubts must
be raised because the history of perspective is in fact quite conjectural due to the
many lacunae scattered along its path; one crucial example is the exact nature of the
contributions of Brunelleschi, Alberti, and Masaccio. A second obstacle is the fact
that a multiplicity of approaches were in use from the end of the Duecento to the
Cinquecento, when the academies formally introduced the teaching of perspective
techniques. Between these two time points perspectivists explored numerous sys-
tems of perspective, introducing errors and variations that can be explained by the
uneven distribution of knowledge regarding the laws of optics and geometry.

The challenge facing the practitioner in representing space may be summed up as
follows: how can one apprehend and capture the three-dimensionality of a solid in
the two dimensions of a plane? Among the strategies commonly used, some consist
in decomposing the object into a series of partial views—the horizontal plane,
elevation, and profile—from which one can, with a little practice, mentally
reconstruct the spatiality of the object. Other strategies instead attempt to provide a
visual synthesis that is capable of immediately evoking the three-dimensionality of
the solid. Parallel axonometric projections (isometric, dimetric, trimetric) and
oblique projections (cavalier and military), both of which conserve the parallelism
of an object’s straight lines, fall into this category. Perspective itself rejects the
property of parallelism for the principle of a gradual reduction in size, reproducing
as closely as possible the conditions of natural vision: i.e., two straight lines that are
not confined to the frontal plane converge toward a vanishing point. Linear per-
spective is just one of the systems that respects this principle (since it holds true for
the curvilinear and synthetic perspectives as well), but it is the version that is
generally considered in discussions of perspective tout court. I will conform to this
usage by discussing only the case of linear perspective here.

The argument that can be advanced is that the characterization of perspective
space as a unitary, coherent and stable representation is not sufficient because it fails
to take into account the wide range of practices that are known to have existed.
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Linear perspective constitutes an open rather than a closed system, one that reflected
the mobilization over time of specific intellectual resources.

In the first part of this chapter, it will be shown that the work of Italian craftsmen
at the beginning of the Quattrocento did not lead to a codified and homogeneous set
of perspective practices (illustrating, in sociological terms, the effects of belief). In
the second part it will be shown that the diversity of perspective conceptions in
circulation can be explained differences in the optical-geometric resources available
to the perspectivists (the effects of knowledge).

2.1 The Myth of Perspective

To begin, it will be useful to examine the supposedly stable nature of the per-
spective system. It is true that one finds, from Euclid1 to Gibson,2 unvarying
expressions of the law of diminution in size as a function of distance. But the
solidity of this principle has sometimes served as a pretext to impose the uniqueness
of the perspective system and to reify it, particularly as far as the Renaissance is
concerned, when in fact research on perspective often took the form of disparate
and uncoordinated initiatives. Let us examine the contributions of Brunelleschi,
Alberti and Masaccio, to whom have been attributed the invention, codification, and
first major realization of the concept of perspective, respectively.

2.1.1 Filippo Brunelleschi

Filippo Brunelleschi (1377–1446) is usually credited with having realized the first
rigorous work of perspective, in Florence around the year 1413. The documentation
is scarce, but the artist apparently conducted an ingenious demonstration of the
accuracy of his construction. He stood at a distance of three braccia (arm’s lengths)
from the main portal of the cathedral of Santa Maria del Fiore facing the Baptistery
of San Giovanni, holding a mirror in one hand and a panel painting of the
octagonal-shaped building in the other in such a way that he could observe, through
a small hole pierced in the panel, the image of the painting reflected in the mirror.
From his position he could see at the same time the image and the actual building,
and thus judge the accuracy of his perspective drawing. The first difficulty regarding
this experiment is that no material trace of it has survived. In particular, the

1“Objects of equal size unequally distant appear unequal and the one lying nearer to the eye always
appears larger/Aequales magnitudines inaequaliter expositae inaequales apparent et maior semper
ea quae propius oculum adjacet,” Optica, ed. J.L. Heiberg, Leipzig, 1895.
2James J. Gibson, The Ecological Approach to Visual Perception, Boston, 1979.
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tavoletta (panel painting) has been lost and there is no way of knowing what
perspective method was used by the architect.

The only description that has come down to us is a second-hand account
attributed to Antonio di Tuccio Manetti, who was born a decade after the experi-
ment took place. What is more, his account does not grant Brunelleschi’s display
the status that is generally ascribed to it of an experiment in optics. In fact, Manetti
never employs the word “experiment” although the term is amply attested to both in
medieval Latin and in the Italian vernacular.3 He does couch his description in very
concrete terms: “[Brunelleschi] put into practice” (misse inatto), “he displayed a
panel” (mostro una tauoletta), “he made a painting” (fecie una pittura) … but from
this one cannot strictly speaking infer either an experiment of a public nature
conducted before eyewitnesses, nor the existence of an experimental set-up of any
kind. Hence, there is no concrete proof that Brunelleschi carried out a demon-
stration in the doorway of the cathedral of Florence. What Manetti’s biographical
account does offer is a fairly detailed description of his painting of the baptistery.

Let us identify the crucial points relating to perspective in this account, which
are conditions A (the vantage point of the viewer), B (the scene depicted) and C (the
size of the eyehole). These three conditions as described by Manetti in fact con-
tradict one another. It is a simple matter to calculate the theoretical field of vision
based on conditions A and B: the point of view chosen for the viewer (“some three
braccia inside the central portal of Santa Maria del Fiore/dentro alla porta del
mezzo di Santa Maria del Fiore qualche braccia tre”) and the painted scene (“up to
the arch and the corner of the sheep [market] … up to the corner of the straw
[market]/insino all uolta e canto de Pecori … insino al canto alla Paglia”) dictate a
theoretical field of vision of 54°. The actual field of vision can be calculated from
condition C: Manetti stated that the diameter of the eyehole at the end facing the
observer was 5 mm (“a lentil bean/una lenta”), widening to 30 mm at its posterior
end (“a ducat, or a bit more/uno ducato o poco piu”). For the eyehole to form a
truncated cone (“it widened conically like a straw hat/si rallargaua piramidalmente
come fa uno capello di paglia”), the minimal thickness of the panel must have been
about 15 mm. In this case the actual field of vision based on the distance of the
crystalline lens from the anterior end of the eyehole4 would have been between 13°

3One finds numerous references in the Latin and Italian translations of Ibn al-Haytham’s Kitāb al-
manāẓir (Alhacen’s De aspectibus/De li aspecti). The terms that are attested to in Arabic, Latin and
Italian are: i‘tibār > experientia-experimentatio > sperimento-sperimentatione; i‘tabara > exper-
imentare > sperimentare; mu‘tabir > experimentator > sperimentatore; cf. Abdelhamid I. Sabra,
“The Astronomical Origin of Ibn al-Haytham’s Concept of Experiment,” Actes du XIIe Congrès
International d’Histoire des Sciences, Paris, 1971, tome III.A, pp. 133–136.
4(A) “In order to paint it, it seems that he stationed himself some three braccia inside the central
portal of Santa Maria del Fiore/E pare che sia stato a ritrarlo dentro alla porta del mezo di Santa
Marie del Fiore qualche braccia tre…,” (B) “In the foreground he painted that part of the piazza
encompassed by the eye, that is to say, from the side facing the Misericordia up to the arch and
corner of the sheep [market], and from the side with the column of the miracle of St. Zenobius up
to the corner of the straw [market]/Figurandoui dinanzi quella parte della piaza che ricieue l’occhio
cosi uerso lo lato dirinpetto alla Misericordia insino alla uolta e canto de Pecorj cosi da lo lato della
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and 19°, i.e. only one-fourth to one-third of the expected theoretical value. When
Brunelleschi’s “experiment” was reproduced in situ in April 1995, it was found that
conditions A, B, and C were in fact mutually exclusive. The field of vision carves
out a square measuring 7–8 m on each side corresponding precisely to the door of
the Baptistery. Since all the lines lie in the frontal plane containing the façade, this
is not a perspective image.5 The results of a second experiment conducted in May
2001 as part of the 4th ILabHS were no more convincing as a demonstration of
perspective.6 Despite the many positive analyses of this episode that continue to
appear, all serious attempts to reconstruct Brunelleschi’s experiment have failed and
for one simple reason: it is physically impossible to reproduce the tableau based on
the conditions described by Manetti.

If one adds to this the fact that the only work of perspective extant that can be
attributed with any probability to Filippo Brunelleschi—an engraving on a silver
plaque of Christ Casting Out a Demon (Louvre)—does not follow the rules of
linear perspective,7 one is forced to conclude that Brunelleschi’s contribution has
been considerably overestimated. The doubts raised here do not concern his
involvement in the development of perspective, which is incontestable, but the
exact nature of this contribution, about which we know nothing. In truth only three
pieces of evidence exist on the role played by the artist.

The first is a letter written by Domenico da Prato to Alessandro Rondinelli on 10
August 1413, in which Filippo Brunelleschi is described as “an ingenious man on
perspective/prespettiuo ingegnoso uomo,” but this reference could simply attest to
the fact that the architect took a general interest in the subject of optics (perspectiva
in Latin); rigorously speaking it certainly does not allow a terminus ante quem to be
fixed for the invention of perspective.

(Footnote 4 continued)

colonna del miracolo di Santo Zanobi insino al canto alla Paglia…,” (C) “The hole was as tiny as a
lentil bean on the painted side and it widened conically like a woman’s straw hat to about the
circumference of a ducat, or a bit more, on the reverse side/El quale buco era piccolo quanto una
lenta da lo lato della dipintura et da rouescio si rallargaua piramidalmente come fa uno cappello di
paglia da donna quanto sarebbe el tondo d’uno ducato o poco piu…,” Antonio di Tuccio Manetti,
Vita di Filippo di Ser Brunelleschi, eds. H. Saalman and C. Engass, University Park, 1970, p. 43ff.
The first reassessment of this account was made by Martin Kemp, “Science, non-science and
nonsense: The interpretation of Brunelleschi’s perspective,” Art History 1 (1978): 134–161.
5The field of vision is fixed by the distance between the centre of the crystalline lens and the
anterior opening of the eyehole, that is, a0 � 15mm in the case of an exophthalmic eye and
a1 � 22:2mm in the case of a normal eye. This information allows us to calculate α = arctan
(d/a): 13° 05′ < α < 18° 54′; see Raynaud, L’Hypothèse d’Oxford, pp. 132–150.
6Filippo Camerota, “Brunelleschi’s panels,” The 4th International Laboratory for the History of
Science, Florence, 25 May 2001 and personal communication; Idem, “L’esperienza di
Brunelleschi,” Nel segno di Masaccio, Florence, 2001, pp. 32–33: “Ma date le dimensioni, non
consentiva di vedere tutto il dipinto, bensì solo una porzione piuttosto limitata della facciata del
Battistero” [that is, nothing else than the door].
7Raynaud, L’Hypothèse d’Oxford, pp. 73–75.
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Secondly, around 1461 Filarete wrote in his treatise on architecture, “I believe
this is the way that Pippo di Ser Brunellesco found this perspective, which had not
been used before,”8 a declaration that must be taken for what it is worth, as a
statement of belief rather than an assertion of fact.

Finally, around 1480 Manetti asserted that: “[Brunelleschi] himself put into
practice what painters today call perspective, because it is part of that science [i.e.
optics],”9 but this claim was based on an inappropriate interpolation of the text, and
he makes no mention of an “inaugural experiment” nor does he provide a method
that would permit the reconstruction of his perspective.

None of these references can be regarded as unambiguous and beyond them, the
rest remains conjecture. It is necessary therefore to retain a more nuanced picture of
the contribution of Brunelleschi; his role in the development of perspective is in fact
quite obscure.

2.1.1.1 Leon Battista Alberti

In De pictura, Leon Battista Alberti (1404–1472) sets out what is generally recog-
nized to be the first codified procedure for the representation of perspective. Even
today his method is often qualified as costruzione legittima, a term that gained wide
currency thanks to Erwin Panofsky, who wrote: “Trecento pictures after the
Lorenzetti became, so to speak, progressively more false, until around 1420, when
costruzione legittima was (as we may well say) invented.”10 The expression is
replete with meaning, because it implies the existence of a law for the representation
of space that is universally true. As a consequence, it imposes the notion of a unified
vision of perspective that formed at the beginning of the Quattrocento and still holds
today. And yet any law, to be legitimate, must meet two conditions: it has to be based
on a rational order, and it must be applied. Let us examine these two points.

With regard to the foundations of the rule of perspective, on re-reading De
pictura it becomes clear that Alberti’s only intention in this text is to describe a
series of empirical operations. He makes no attempt to justify these operations,
either in terms of their correspondence to reality (perspective as the tracing of a
visual experience) or their logical consistency (perspective as a system whose
validity could be demonstrated).11 The approach adopted by Alberti was strictly

8“Credo che Pippo di Ser Brunellesco trovasse questa prospettiva, la quale per altri tempi non s’era
usata,” Antonio Averlino detto Il Filarete, Trattato di architettura, eds. A.M. Grassi and L. Finoli,
Milano, 1972, p. 653.
9“Misse innatto luj propio quello che dipintorj oggi dicono prospettiua perche ella e una parte di
quella scienza…,” Manetti, Vita, p. 43.
10Erwin Panofsky, “Die Perspektive als symbolische Form,” Vorträge der Bibliothek Warburg 4
(1924/5): 258–331, Perspective as Symbolic, New York, 1991, p. 62.
11This question would not be raised in studies on perspective until much later. In 1585 Giovanni
Battista Benedetti demonstrated that Alberti’s construction was correct; Judith V. Field, “Giovanni
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procedural, and the rational foundations for a costruzione legittima cannot be
deduced from his text.

As for the eventual application of this rule, two facts must be pointed out. First,
the study of a large body of perspective paintings from the Quattrocento shows that
artists utilized various approaches in drawing their perspectives that were frequently
erroneous, and did not follow the principles laid out by Alberti.12 Secondly, recent
research has shown that the use of the expression costruzione legittima to describe
the pictorial representations of the Renaissance is in reality an anachronism. Not
finding any trace of this term in texts from the Quattrocento, scholars initially
believed that its first appearance could be identified in a treatise on perspective
published by Pietro Accolti in 1625.13 But in terms of occurrences this constitutes
an approximation, because Accolti qualified as legitimate only the “planes” or
“operations” that contribute to the construction of a perspective.14 Only recently has
it been discovered that costruzione legittima was in fact translated from the German
term legitime Verfahren, an interpolation by Heinrich Ludwig, who employed it for
the first time in 1882 in his edition of Leonardo da Vinci’s Trattato della pittura.
The expression was then taken up by Winterberg (1899), Kern (1915), and
Panofsky (1924), with the consequences that we now know.15 One cannot therefore
liken costruzione legittima to a rule that was “applied” by Alberti’s contemporaries.

Hence, as with Brunelleschi it is necessary to draw a more nuanced picture of the
contribution of Alberti to the development of linear perspective. Three points
emerge regarding the actual meaning that should be ascribed to the expression that

(Footnote 11 continued)

Battista Benedetti on the mathematics of linear perspective,” Journal of the Warburg and
Courtauld Institutes 48 (1985): 71–99.
12“There is not a single verified example of a painting done with the ‘construzione legittima’,”
James Elkins, The Poetics of Perspective, Ithaca, 1994, p. 86: “We should note that in a large
number of Renaissance paintings the perspective turns out to be incorrect in mathematical terms,”
Judith V. Field, “Alberti, the Abacus and Piero della Francesca’s proof of perspective,” p. 72;
Raynaud, L’Hypothèse d’Oxford, pp. 49–120.
13Luigi Vagnetti, “La posizione di Filippo Brunelleschi nell’invenzione della prospettiva lineare,”
Filippo Brunelleschi. La sua opera e il suo tempo, Florence, 1980, p. 305; Field, “Alberti, the
Abacus and Piero della Francesca’s proof,” p. 69.
14Pietro Accolti, Lo inganno degl’ occhi, Firenze, 1625, pp. 19, 57–58: “… to find, by means of
their legitimate respective plans, the true perspective design… among the two previous operations,
only this can be legitimate, in which we estimate ourselves to be deceived/trouare, mediante le loro
legittime respettiue Piante, il proprio, e vero prospettiuo disegno… delle due sudette operazioni,
questa sola poter essere legittima, nel che noi stimiamo ingannarsi.”.
15Leonardo da Vinci, Das Buch von Malerei, ed. H. Ludwig, Wien, 1882, vol. 3, p. 177. In
particular, consider Pietro Roccasecca, “Punti di vista non punto di fuga,” Invarianti 33/99 (1999):
41–49, who writes: “Finally, we would like to point out that the existence of a discussion of
different procedures… dispels the myth that perspective in the first half of the Quattrocento was the
work of a lonely hero/Vorremmo infine segnalare che l’esistenza di una discussione tra diverse
procedure… sfata il mito che la prospettiva della prima metà del Quattrocento sia l’opera di un
eroe solitario,” p. 48. See also Carlo Pedretti, “Leonardo ‘discepolo della sperientia’,” Nel segno di
Masaccio, Florence, 2003, p. 170.
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has been used, ever since Panofsky, to describe Alberti’s work: (1) costruzione
legittima did not exist in the Quattrocento; (2) the first attempts to codify per-
spective emerged in the sixteenth century, as a matter of course to meet the
requirements of academic teaching; and (3) the unitary conception of perspective
space probably dates to no earlier than the end of the nineteenth century.

2.1.1.2 Masaccio

The third milestone in this process—the first application in a large-scale work of the
laws of perspective invented by Brunelleschi and codified by Alberti—has been
attributed to Tommaso di Ser Giovanni, detto Masaccio (1401–1428). The Trinity
fresco, which was painted around 1425–1427 in the church of Santa Maria Novella
in Florence, has traditionally been viewed as an exemplary application of the laws
of perspective. It has formed the object of universal praise ever since the declaration
by Panofsky: “… at any rate, Masaccio’s Trinity fresco is already exactly and
uniformly constructed.”16 Modern studies have led to a reassessment of his con-
clusion, although a handful of scholars can still be found who assert that the fresco
conforms to the canons of true perspective.

Doubtful of judgments that were in reality impressions based on a simple visual
examination of thework, Field, Lunardi and Settle17 undertook the first rigorous study
in which the lines of perspective in the fresco were measured in situ. They presented
proof that in constructing his perspective Masaccio introduced some serious acci-
dental errors, beginning with the coffered barrel vault whose receding lines converge
only approximately toward a central vanishing point. In addition, the method used to
convey the perspective view of the abacuses above the corner columns was found to
be faulty. Finally, the positioning of the longitudinal ribs of the vault in relation to the
construction lines presents numerous irregularities. The authors concluded that
Masaccio probably drew on the conceptions of Brunelleschi, Alberti and Donatello,
but his work does not possess the mathematical rigor that some have ascribed to it.

Other studies of the fresco conducted using photogrammetry and computer
reconstructions18 have yielded varying results. Based on the analysis of a pho-
togrammetric outline, we recently showed that this fresco contains not only acci-
dental errors, as pointed out by Field, Lunardi and Settle, but also fundamental
errors of principle in the method of reduction applied. Many studies have attempted
to determine where the viewer was supposed to stand and look at the picture, based
on the assumption that the perspective line was correctly drawn. Such an exercise
can be contemplated because, once the depth scale has been calculated, there is a

16Panofsky, Perspective as Symbolic Form, p. 62.
17Judith V. Field, Roberto Lunardi, and Thomas B. Settle, “The perspective scheme of Masaccio’s
Trinity fresco,” Nuncius 4 (1989): 31–118.
18Volker Hoffmann, “Masaccios Trinitätsfresko: Die perspektivkonstruktion und ihr
Entwurfsverfahren,” Mitteilungen des Kunsthistorischen Institutes in Florenz 40 (1996): 42–77.
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single vantage point from which the painting should ideally be seen. An anomaly
that ought to have raised doubts much earlier is that among fifteen studies con-
ducted between 1913 and 1997, the calculated distance between the viewer and the
painting varied from 210.5 to 894.2 cm.19 How can such a dispersion of values be
explained? If the fresco by Masaccio adhered to the rules of linear perspective,
these values should have diverged only slightly, following a normal distribution and
being solely attributable to errors in the graphic reconstruction. Such is not the case,
which leads to the conclusion that the rules of linear perspective were not strictly
applied in the Trinity fresco. The error has since been identified in the receding lines
of the coffered vault, the only part of the fresco that allows an evaluation of the
reduction method used. Between the perspective drawn by Masaccio and the the-
oretically correct one there is a disparity of more than 12 cm in the positioning of
the orthogonals corresponding to the ribs of the vault. None of this can be ascribed
to an accidental error or to an “adjustment” in the line for purely aesthetic reasons; it
reflects instead an indifference to the principles of perspective reduction.

The conclusions that can be drawn at this point are: (1) the Trinity fresco does
not follow the rules of linear perspective; (2) it does not represent an application of
costruzione legittima; and (3) the search for the ideal vantage point, which only
makes sense in the case of a linear perspective, is therefore destined to remain an
exercise without a solution.20

The data as reviewed above regarding the work of Brunelleschi, Alberti and
Masaccio (and many other contributions of the same nature) expose the fact that the
modern interpretation of the development of perspective is founded, in the final
analysis, on ideological premises.21 The received version according to which linear
perspective was invented by Brunelleschi based on his initial experiment and
codified by means of costruzione legittima into a set of laws by Alberti, which were
then applied by Masaccio, all share a point in common: they accentuate the thesis of
a revolution (with its attendant components) that led to a complete change in the
method of representing three-dimensional space.

The divergence between the historical evidence and the modern reconstruction
of this process offers a case study in the sociology of knowledge, raising in a fresh
context the question of the nature of beliefs and why they are adhered to. Many
factors appear to be responsible for the firm attachment to the notion that per-
spective was codified and applied ab origine in a literal fashion:

– The “effect of authority,” which has long conditioned the reading of Vasari’s
Lives of the Most Excellent Painters, Sculptors, and Architects. But how much

19Hoffmann, “Masaccios Trinitätsfresko,” p. 75.
20See Chap. 4.
21If we set aside all adventitious hypotheses, there remain two possible inaugural dates: from a
practical point of view, the first correct perspective was the fresco in Assisi Christ among the
Doctors, attributed to the atelier of Giotto (ca. 1315); the first theoretical treatment was the
demonstration of perspective in Piero della Francesca’s De prospectiva pingendi (ca. 1475).
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evidential weight can be given to a work that was written to glorify the reign of
the Medici?

– The quest to define the pillars of Western civilization, which has led us to
identify (and, subconsciously, to venerate) the key milestones in its evolution;

– Economic interests in the art world, which may inadvertently be maintaining
mythologized or hagiographic versions of the history of art.

To these may be added factors specific to the Italian context:

– The historic rivalry between Florence and Rome for the title of cultural capital
of Italy, leading to centuries of contention between the two cities;

– A separate ministry for the conservation of Italy’s cultural heritage was not
established until 1998, before which time the Soprintendenze per i beni culturali
ed ambientali were subsumed under the Ministry of Tourism.

These are all elements that could help to explain the persistence of “the myth of
perspective” in the face of rational arguments and obvious lacunae in the chain of
evidence. The abiding belief in the centrality of the Renaissance has been ensured
up to now by a complex set of disposition and communication effects, in particular
what sociologists refer to as “relay effects.”

2.2 Perspective and Knowledge

Once it is allowed that the unitary vision of perspective is in fact a myth, it remains
to explain the many variations in the conception and techniques of perspective that
emerged during the course of two centuries. I will argue that these variations can be
linked to the specific notions of optics and geometry available to the individuals
concerned.

2.2.1 Geometry and the Perspective of the Circle

To show how a knowledge of geometry could influence conceptions of perspective,
it suffices to consider the case of the perspective of the circle. It is a simple matter to
extract from Apollonius of Perga’s Conics the property that the perspective view of
the circle is an ellipse (proposition I, 13).22 Nevertheless, the theory of conic

22Apollonii Pergaei quae graece extant cum commentariis antiquis, t. I–II, ed. J.L. Heiberg,
Leipzig, 1891–3. After showing in Book I, prop. 9, that no oblique section of a cone is a circle,
Apollonius sets out the three cases of the parabola (prop. 11), the hyperbola (prop. 12) and the
ellipse (prop. 13). He then demonstrates that the projection of a circle onto a plane that is not
parallel to the circle will be an ellipse or a conic section. Exact copies of the figure on which he
based his argument were used by Commandino, Benedetti and others in the sixteenth and sev-
enteenth centuries.
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sections would not be applied systematically to the problem of perspective until the
late sixteenth and early seventeenth centuries with the work of Commandino,
Benedetti, Guidobaldo del Monte and Aguilonius (Fig. 2.1).23

This explains the proliferation of empirical methods for depicting the circle in
perspective before this date—from gibbous to ovoid figures, from an oval with four
centers to a rectangle flanked by two semicircles, etc. Let us study the differences
between those who adopted such approximations and those who sought to draw a
true ellipse.

The application of the ellipse as the perspective view of a circle seems to have
been unknown to Masaccio; one need only examine the astragals of the capitals in
the Trinity. Lorenzo Ghiberti was equally unaware of this geometrical notion and in
the bas-relief Joseph on the Florence Baptistery’s Gates of Paradise he used a
semicircle (EG) and two gibbous forms (AB and CD) to create an ellipse (Fig. 2.2).

The case of Albrecht Dürer is more atypical, because he correctly identified the
ellipse (die linie ellipsis) but gave it an ovoid shape.24 In contrast, one finds the true
ellipse in certain works by Piero della Francesca25 (Chalice 1758A), in the notes of
Leonardo da Vinci (Ring, Codex Atlanticus, 263ra) and in the circle of Antonio da
Sangallo (Mazzocchi 830A, 831A, 832A) (Fig. 2.3).

What do these differences stem from? The response would not be the same for
all artists. Let us attempt to differentiate between them.

Piero della Francesca (1420–1492) can be distinguished from his predecessors
because of his mathematical approach to perspective; it was he who first demon-
strated that a perspective could be constructed based on the distance point using

23In his edition of Claudii Ptolomaei liber de analemnate, Rome, 1562, Francesco Commandino
studied the projection of the circle and showed that the perspective view often appeared in the form
of an ellipse. Giovanni Battista Benedetti, Diversarum speculationum mathematicarum et physi-
carum liber, Turin, 1585, proved the theorem that the intersection of a cone by two parallel planes
will produce similar conic sections. Guidobaldo del Monte, Perspectivae libri sex, Pesaro, 1600,
studied the projection of a circle on an inclined plane and the similar problem of the figure that
casts the shadow of a sphere on a plane. Franciscus Aguilonius, Opticorum libri sex, Anvers, 1613,
studied the shadow of the sphere and determined geometrically the position of the axes of the
elliptical projection of a circle.
24“The Ancients showed that one could cut a cone in three ways and obtain thusly three different
sections… The erudite called the first section an ellipse: it cut the cone obliquely and drew nothing
from the base of the cone,” Albrecht Dürer, Géométrie, ed. J. Peiffer, Paris, 1995, p. 174. Dürer
then described point by point the construction of the “egg line or ellipse” (sic) by means of a
double projection, that is, by transferring onto its face the points of intersection recorded on the
plane and profile.
25Mazzocchi 1756A, 1757A, 1758A has traditionally been attributed to Paolo Uccello, but there is
no evidence to support this apart from an inconclusive reference in Giorgio Vasari’s Vite de’ più
eccellenti pittori, stating that he possessed “… a mazzocchio drawn only with lines, so beautiful
that nothing save the patience of Paolo could have executed it/un mazzocchio tirato con linee sole,
tanto bello, che altro che la pacienza di Paulo non lo avrebbe condotto” (sic).
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similar triangles. Only three treatises by Piero della Francesca have come down to
us: Trattato d’abaco, Libellus de quinque corporibus regularibus and De
prospectiva pingendi.26 Libellus of course introduces the five regular polyhedra—
the tetrahedron, the cube, the octahedron, the icosahedron, and the dodecahedron—
but this material only takes up Book I. Book III also treats problems in stereometry
(how to measure the volumes of solid figures), including sixteen exercises
involving the sphere and the cone. These assume a knowledge of conics, which

Fig. 2.1 Perspective of the circle, Guidobaldo del Monte, Perspectivae libri sex, Pesaro, 1600,
IV, 24, p. 217

26Piero della Francesca, Trattato d’abaco, ed. G. Arrighi, Pisa, 1970; idem, De prospectiva pin-
gendi, ed. Nicco-Fasola, Florence, 1984; idem, Libellus de quinque corporibus regularibus, ed. F.
P. di Teodoro, Florence, 1995. On Piero della Francesca’s mathematics, see Marshall Clagett,
Archimedes in the Middle Ages, vol. 3, Philadelphia, 1978; Menso Folkerts, “Piero della Francesca
and Euclid,” Piero della Francesca tra arte e scienza, eds. M. Dalai Emiliani and P. Curzi, Venice,
1996, pp. 293–312; Judith V. Field, Piero della Francesca, A Mathematician’s Art, New Haven,
Yale University Press, 2005; Pietro Roccasecca, “Dalla prospettiva dei pittori alla prospettiva dei
matematici,” Enciclopedia italiana di scienze, lettere ed arti. Il Contributo italiano alla storia del
pensiero, Roma, Istituto della Enciclopedia italiana, 2013, pp. 137–144.
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Piero della Francesca must have possessed at least through Archimedes’ work On
Conoids and Spheroids, for it is known that he owned a copy of the treatise (which
subsequently passed into the possession of the dukes of Urbino).27

Fig. 2.2 The circle depicted as a gibbous figure, Lorenzo Ghiberti, Storia di Giuseppe, 1425–52
(Firenze, Museo dell’Opera di Santa Maria del Fiore), author’s reconstruction

27Archimedis de konoidalibus et speroidibus figuris (Urbinato latino 261, fol. 44v–45r).
Archimedes provides definitions at the beginning of his treatise that are comparable to those of
Apollonius: “If a cone be cut by a plane meeting all the generators of the cone, the section will be
either a circle or an ellipse… And if a cylinder be cut by two parallel planes meeting all the
generators of the cylinder, the sections will be either circles or ellipses,” De la sphère et du
cylindre, La mesure du cercle, Sur les conoïdes et les sphéroïdes, ed. Ch. Mugler, Paris, 1970,
p. 158. He then determined the area of the ellipse by comparing it to the area of a circle with the
same diameter as the long axis of the eclipse. The ratio between the two areas would be equal to
the ratio between the rectangle circumscribing the ellipse and the square circumscribing the circle
or, in what comes to the same thing, as the ratio of the short axis of the ellipse to the diameter of
the circle, pp. 166–170. The Divina proportione (1509) by Fra’ Luca Pacioli, a part of which was
copied from Libellus, also addresses the problem of the ellipse: if one takes a square and trans-
forms it into a rectangle of the same length, whose height is equal to the diagonal of the square,
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Fig. 2.3 The circle represented as an ellipse, Cerchia di Sangallo, drawing of a mazzocchio
(Florence, Gabinetto Disegni e Stampe degli Uffizi), inv. 832A, from Christoph L. Frommel and
Nicholas Adams, the architectural drawings of Antonio Da Sangallo the younger and his circle,
Cambridge, MIT Press, 1994, vol. I, p. 150

(Footnote 27 continued)

every point of the circle inscribed in this square will correspond to a point on the ellipse that is
inscribed in the rectangle. In this way Fra’ Luca Pacioli obtained the “proportioned circle/circulo
proportionato”. The same method was adopted by Dürer, who did not, however, link it to the
drawing of an ellipse, Dürer, Géométrie, p. 70.
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Leonardo da Vinci (1452–1519) understood that the ellipse must be used to
represent a circle in perspective. He sometimes resorted to the discontinuous
drawing of the ellipse by projecting horizontal chords obliquely across a circle and
transposing the lengths of these chords onto perpendiculars raised at each point of
intersection with the oblique line.28 But his perspective view of the circle also
sprang from his knowledge of conic sections, to which he devoted several notes in
the Codex Arundel. Two instruments designed by him for the continuous drawing
of a conic section should also be mentioned. The first was an ellipsograph (seste da
far l’ovato), which is known to us through a drawing by Benvenuto della Volpaia
preserved in the Biblioteca Marciana in Venice.29 The other was a parabolograph, a
sketch of which appears in the Codex Atlanticus30 (fol. 349ra, Fig. 2.4).

Fig. 2.4 Leonardo da Vinci, Parabolograph, 1478–1518 (Milan, Biblioteca Ambrosiana, Codex
Atlanticus, fol. 1093r, ed. Hoepli, Florence, 1894, olim 394ra)

28Codex atlanticus, fol. 115rb (ca. 1510), Carlo Pedretti, Léonard de Vinci architecte, Paris, 1983,
p. 302.
29Venice, Biblioteca Marciana, MS. It. 5363, fol. 18r.
30Pierre Sergescu, “Léonard de Vinci et les mathématiques,” Léonard de Vinci et l’expérience
scientifique, Paris, 1952, pp. 73–88; Otto Kurz, “Dürer, Leonardo and the invention of the
ellipsograph,” Raccolta vinciana 18 (1960): 15–25; Gino Arrighi, “Il ‘compasso ovale invention di
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On comparison one notes that these are in fact exact equivalents to mathematical
instruments described by al-Qūhī and al-Sijzī and by their twelfth-century suc-
cessors al-Baghdādī and al-Ḥusayn. In particular, Leonardo’s ellipsograph exactly
corresponds to al-Sijzī’s description of “the perfect compass.”31

The mazzocchi associated with Antonio da Sangallo and his circle provide
another interesting example of the application of geometric concepts to problems of
perspective. After detailed study of the material traces of these drawings, certain
historians have formulated the hypothesis that he used a method based on conic
sections. Their thesis is supported by a drawing (830A) from the Gabinetto Disegni
e Stampe of the Uffizi in which, to trace the outline of his mazzocchio, Sangallo
derives an ellipse from the section of a conical pyramid composed of thirty-two
faces (an admissible approximation of the cone). But the architect’s knowledge of
conics did not stop here, because drawing 1102A presents an ellipsograph (sesto
per fare avovati) that is equivalent in every way to the one utilized by Leonardo.32

The most striking trait in the work on the perspective representation of the circle
conducted by Piero della Francesca, Leonardo Da Vinci, and Antonio Sangallo is
that they all derived correct projections from the theory of conic sections, geometric
notions which their contemporaries were either ignorant of (Masaccio and Ghiberti)
or had misunderstood (Dürer). This demonstrates clearly how geometric concepts
could be applied to resolve problems of perspective.

(Footnote 30 continued)

Michiel Agnelo’ dal Cod. L.IV.10 della Biblioteca degl’ Intronati di Sienna,” Le Machine 1
(1968): 103–106; Paul L. Rose, “Renaissance Italian methods of drawing the ellipse and related
curves,” Physis 12 (1970): 371–404; Carlo Pedretti, Studi vinciani, Genève, 1957; Idem, Léonard
de Vinci architecte, p. 336; idem, “Leonardo discepolo della sperientia,” pp. 184–185; Pedretti
believed that Leonardo based his knowledge of conic sections on his reading of De rebus
expetentis by Giorgio Valla (1501). This was a possible source for the notes in Codex Atlanticus,
fol. 394va, dated 1513–1514. All the same, an identical diagram dated ca. 1480 appears on fol.
32ra, with the note “a youthful study”. Leonardo therefore drew on an earlier source that still
remains to be identified.
31Roshdi Rashed, “Al-Qūhī et al.-Sijzī: sur le compas parfait et le tracé continu des sections
coniques,” Arabic Sciences and Philosophy 13 (2003): 9–43. The close parallels that exist between
the seste da fare l’ouato of Leonardo and al-Sijzī’s compass cast doubt on the thesis that the
ellipsograph was an Italian invention. A borrowing by way of a Latin translation constitutes a
credible hypothesis, Raynaud, “Le tracé continu des sections coniques à la Renaissance.
Applications optico-perspectives, héritage de la tradition mathématique arabe,” Arabic Sciences
and Philosophy 17 (2007): 299–345.
32Pietro Roccasecca, “Tra Paolo Uccello e la cerchia sangallesca,” in La prospettiva. Fondamenti
teorici ed esperienze figurative dall’ antichità al mondo moderno, ed. Rocco Sinisgalli, Fiesole,
1998, pp. 133–144. A direct transcription from the Arabic cannot be excluded: Antonio da
Sangallo is known to have made a drawing of an astrolabe, “Strolabio egyptizio daritto e da
riverso” (Cabinet of Drawings and Prints of the Uffizi 1454A) in which the divisions on the limb,
mater and rete are marked in Arabic characters.
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2.2.2 Optics and Binocular Vision

The preceding discussion can be reproduced point for point with regard to the
influence that a knowledge of optics had on the practice of perspective.

Let us consider the case described in some texts as “two-point perspective”.
Such representations are similar to those with a central linear perspective, but rather
than receding towards a single vanishing point, the lines converge on two vanishing
points located on the same horizon. About thirty works whose perspective is based
on this principle are known,33 including The Trial of Pietro d’Abano, a fresco by
Altichiero in the Palazzo della Ragione in Padua (ca. 1270–1280). The groins of the
vault in this painting form two sets of converging lines, with the pencil on the left
extending toward point F′ on the right, and the pencil on the right extending toward
point F on the left. The vanishing points F and F′ have been correctly placed on the
same horizon line (Fig. 2.5).

These perspective traces admit a priori of more than one interpretation. The
lateral walls could be slightly convergent rather than parallel to each other, occa-
sioning two sets of lines that do not meet in a single, central vanishing point.34 If
the two pencil of lines, rather than continuing towards points F and F′, ended along
the central axis AF, the view would be similar to the “axial perspective” interpreted
by Panofsky and White in terms of a curvilinear or synthetic perspective.35 It is also
possible that Altichiero unintentionally introduced a deviation in the lines while
executing the drawing, creating two artificial vanishing points that in fact can be
resolved into one, which would mean that this fresco is an example of central linear
perspective.36

Various hypotheses may be proposed to interpret this drawing in perspective and
the correct one must be chosen based on credible criteria. Further on it will be
shown that such two-point perspectives do not correspond to any of the most widely
known forms of perspective and, even if they bear certain points of similarity to
linear perspective, they could in actuality be the result of an application of
binocular vision.

Two-point perspective was used from the end of the Duecento up to Classical
times. One can even find examples from the mid-seventeenth century. The approach
has attracted little attention up to now due to the prevailing belief that the rules of

33See for instance: Giusto de’ Menabuoi, Christ among the Doctors (1376–1378), Stefano di
Sant’Agnese, Madonna with Child (ca. 1390), Taddeo di Bartolo, The Last Supper (1394–1401),
Lorenzo Monaco, Adoration of the Magi (ca. 1421), Lorenzo Ghiberti, Christ among the Doctors
(ca. 1415), Niccolò di Pietro, St. Benedict Exorcising a Monk (ca. 1420), Gentile da Fabriano, The
Crippled and the Sick Cured at the Tomb of St. Nicholas (1425), Giovanni di Ugolino, Madonna
with Child (1436). A corpus of about thirty works displaying two-point perspective was identified
for study; the process by which they were selected is described in Chap. 8 and the results of the
analysis are discussed in subsequent chapters.
34This hypothesis is discussed in detail in Chap. 8.
35See Chaps. 9 and 10.
36See Chap. 8.
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linear perspective were codified and rigorously followed from the Quattrocento
onward. And yet, contrary to all expectations, references to two-point perspective—
which has been retroactively judged to be quite heterodox—can be found even at a
relatively late date. Vignola and Danti, for example, in 1583 refuted the notion that
a perspective could be constructed based on two vanishing points, arguing that
because visual sensations are fused to the optic chiasma they produce a single
image, which implies a single vanishing point.37 The very fact that these authors
felt it necessary to devote a long critique to the use of two-point perspective shows
that the construction was still in widespread use around 1583. However heterodox
they may have become, the foundations of two-point perspective were no less
rational than those of single-point perspective and deserve to be examined more
closely.

The text by the architect Vignola and the commentary provided by the mathe-
matician Danti furnish in this regard a promising path of investigation which this
book intends to pursue: the two-point construction of perspective could bear points

Fig. 2.5 Perspective drawing of Altichiero’s Trial of Pietro d’Abano, ca. 1370–80 (Padua,
Palazzo della Ragione), author’s reconstruction after Giampiero Bozzolato, Il Palazzo della
Ragione, Roma, 1992, plate XLIII

37Le Due Regole della prospettiva pratica di M. Iacomo Barozzi da Vignola, Roma, 1583, pp. 53–
54.
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of affinity with the principles of binocular vision (hauendo l’huomo due occhi …).
In fact the postulate of monocular vision imposed by linear perspective was reg-
ularly violated, both before and after its presumed invention by Brunelleschi.38

How can the fundamental principles of two-point perspective be retraced? One
strategy that will be adopted here is to systematically compare knowledge of the
science of optics with the perspective practices of the period. Ghiberti, for example,
who utilized the perspective construction based on two principal vanishing points
(Appendix B, No. 25), provides an invaluable first-hand source of information on
the knowledge of optics among perspectivists in fifteenth-century Italy. His
Commentario terzo is a compilation of the most widely read treatises of the period,
and includes the works of Ibn al-Haytham (known in the West as Alhacen), Bacon,
Pecham and (to a lesser degree) Witelo.39 In this compilation Ghiberti reproduces
Ibn al-Haytham’s chapter on binocular vision almost in its entirety. Following the
Arab scientist’s exposition40 of the conditions for the fusion of images, Ghiberti
utilized a similar experimental set-up to examine the case of diplopia, and came to
similar conclusions.41 As we will discover, the textual sources of the period provide
all of the necessary elements to construct a perspective with two vanishing points.
What follows is a question that will constitute a central theme in this book: Why did
Ibn al-Haytham and Egnatio Danti draw such different conclusions regarding how
binocular vision operates?

This difference appears to be the result of the assimilation of different sets of
knowledge. The response to the question of binocular vision and how two images
come to be fused into one is not the same if the problem is approached by way of
optics (as in the case of Ibn al-Haytham and his Latin successors) or anatomy (as
with Egnatio Danti, a mathematician who was in this case reasoning as an anato-
mist). The arguments in support of the constant unification of visual sensations
stem directly from anatomical studies of the optic tract—the chiasma or decussatio

38Although the painting by Brunelleschi has been lost, some information can be gleaned from
Manetti, who wrote in his biography: “It is necessary that the painter postulate beforehand a single
point from which his painting must be viewed/Il dipintore bisognia che presuponga un luogo solo
d’onde s’a a uedere la sua dipintura,” Manetti, Vita di Filippo di Ser Brunelleschi, fol. 207v. The
passages on the monocular postulate are quoted in Chap. 1.
39The most comprehensive study to date of the sources is provided by Klaus Bergdolt, Der dritte
Kommentar Lorenzo Ghibertis, Weinheim, 1988. See also Raynaud, “Le fonti ottiche di Lorenzo
Ghiberti,” pp. 79–81.
40Abdelhamid I. Sabra, The Optics of Ibn al-Haytham, Books 1–3: On Direct Vision, London,
1989, vol. 1, pp. 237–240.
41“All those things we have described can be demonstrated by experiment, and once the proof has
been seen, take a board of light wood… When therefore the experimenter has understood these
lines and individuals [the wax sticks], in fact if there is not one line down the middle [of the
board], but two appear… then the one and the other will appear to be doubled/Tutte quelle cose noi
abbiamo dette si possono sperimentare, e veduta la certificazione tragassi una tavola del legno
leggiero… Quando adunque lo sperimentatore arà compreso queste linee e gli individui, veramente
non è se non è una linea nel mezzo, ma paiono due… allora l’uno e l’altro apparirano due,”
Lorenzo Ghiberti, I Commentari, ed. O. Morisani, Naples, 1947, pp. 144–147; Bergdolt, Der dritte
Kommentar, p. 330.
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—whereas Ibn al-Haytham and his Latin commentators held the disparate images to
be normal and subscribed to the thesis of a conditional fusion of images depending
on their degree of disparity. As heirs to the geometric school of optics, the early
perspectivists clearly chose to ignore the teachings of the anatomists.42 This shows
that different pieces of optical knowledge could lead to different conceptions of
perspective space.

2.3 Conclusion

If one excludes a handful of general principles such as the law of the reduction in
size, a unitary conception of perspective does not exist. Perspective is an open
system reflecting the optical and geometric knowledge available at a given time.
This observation is not without importance to the socio-historical study of systems
of representation. An explanation for the birth of perspective has long been sought
in social factors such as the role played by the Florentine bourgeoisie, the rivalry
between Italian city-states, the humanist movement, and so on. However, stricto
sensu none of these factors is capable of providing a satisfactory explanation for the
development of perspective during the Renaissance. The rise of the bourgeoisie or
the competition between city-states could have contributed to the development of
the arts (through the bias of the art patron or of the type of work commissioned), but
it does not explain why artists focused their attention on perspective rather than
some other mode of representation. Likewise, the chronology of humanism and the
rediscovery of the texts of antiquity is not consonant with the facts regarding the
development of perspective. The study of the mathematical texts of the Greeks did
not begin until relatively late, in the sixteenth century.

An analysis of the textual parallels in the treatises of the Quattrocento demon-
strates that the optical-geometric sources most often cited were not the mathe-
maticians of ancient Greece but those of the Middle Ages; in general Euclid was
known only through medieval commentaries. In comparison to the traditional theses
regarding the invention of perspective, explaining such a disruptive innovation in
terms of the mobilization of the resources most pertinent to the development of this
innovation might appear to be somewhat bland. In point of fact, however, it opens
up fresh paths of investigation and raises fewer difficulties because it focuses
directly on the objective phenomenon to be explained, that is, on perspective rather
than on pictorial representation or the arts generally. It therefore provides a simple
(and verifiable) explanation for the variety of forms observed (for example, the
perspective view of a circle might be rendered as an ellipse or a gibbous figure
depending on the optical-geometric knowledge available in a certain milieu).

42See Chap. 5.
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The above reflections have led to a research study that lies at the intersection
between sociology and the history of the sciences, and whose objectives may be
summarized as follows:43

1. To understand the processes involved in the appropriation of knowledge. This
requires in particular that one pay greater attention to what the errors committed
by perspectivists can reveal about the development of that science. Such errors
often denoted a misunderstanding of the problem, or of the time that might be
required to master it. This is why a considerable number of false perspectives in
Renaissance art have been identified.

2. To assess the availability of knowledge at a given time, beginning with a study
of the networks through which knowledge spread. It is a fact that not all
knowledge is equally accessible and studying the inhomogeneous distribution of
resources as a function of distance and social milieu may help to clarify the
cognitive bases on which a disruptive innovation may have been conceived and
thus the relationship between the representation of perspective and its
optical-geometrical foundations.

All of this leads to the conclusion that no specific and unitary conception of
perspective space exists, precisely because so many variations can be found.

If one attempts to retrace the shared origins of the many and diverse solutions to
the problem of perspective that were being explored from the late Duecento
onward, two main blocks of knowledge can be identified that made possible the
gradual emergence of the perspective system:

– Euclidean geometry, which was rediscovered in Europe in the twelfth century
through translations of the Greek mathematician’s work from the Arabic (the
works of Adelard of Bath, Robert of Chester, Gerard of Cremona, etc.)44 and the
keen interest in practical geometry (for example, Abraham bar Ḥiyya
Savasorda’s Liber embadorum, Leonardo Fibonacci’s Practica geometrie, and
John of Muris’s De arte mensurandi);45

– the optics of Alhacen, which was introduced into Latin Europe through a
translation by the school of Gerard of Cremona, and in parallel the optics of the
Latin scholars Bacon, Pecham and Witelo.46

43These issues are addressed in L’oeuvre et l’artiste à l’épreuve de la perspective, eds. M. Dalai
Emiliani, M. Cojannot Le Blanc, and P. Dubourg Glatigny, Rome, 2006.
44See the works of Hubert L.L. Busard.
45Maximilian Curze, Der Liber Embadorum des Abraham bar Chijja Savasorda in der
Übersetzung des Plato von Tivoli, Leipzig, 1902; Baldassare Boncompagni, Leonardi Pisani
Practica geometriae, Roma, 1862; Hubert L.L. Busard, Johannes de Muris. De Arte mensurandi,
Stuttgart, 1998.
46Sabra, The Optics of Ibn al-Haytham; David C. Lindberg, Roger Bacon and the Origins of
Perspectiva in the Middle Ages, Oxford, 1996; Idem, John Pecham and the Science of Optics,
Madison, 1970; Opticae thesaurus… Item Vitellonis Thuringopoloni libri X, New York, 1972.
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This body of optical-geometric knowledge did not immediately coalesce into a
definitive conception, which seems to have been the result on the one hand of the
gradual acquisition of these texts and on the other to the codification brought about
by the academic teaching of linear perspective.47 As a result of these factors, it is
improbable that perspective contributed in any way to the modern conception of
space as infinite, homogeneous, and isotropic.48

If therefore, despite what has been shown by recent and more rigorous analyses,
the present conception of perspective—which is based on a mistaken interpretation
of the contributions of Brunelleschi, Alberti and Masaccio and completely ignores
the alternatives to linear perspective that were in widespread use until the
Cinquecento—remains so profoundly reified, it will be necessary first of all to
examine the errors in perspective that can be observed in the works of the period, in
order to be able to identify, characterize and classify these deviations in relation to
the canons of linear perspective.

47The Accademia—the seat par excellence for the codification of perspective—reduced the ple-
thora of uncoordinated initiatives to a single method. Therefore, the problem is not to justify the
existence of heterodox practices lying on the margins of the “pure type” of linear perspective, but
rather to explain the procedures by which distinct conceptions were gradually separated out and
evaluated in order to allow the rise of a single orthodox conception.
48In Perspective as Symbolic Form, p. 70, Panofsky proposed the thesis that a conception of space
as “infinite, homogenous and isotropic” emerged during the Renaissance. This thesis was sup-
ported by successive scholars, such as Manfredo Tafuri and Rudolf Wittkower, who transposed the
concept to architecture. The thesis runs up against various logical and empirical difficulties,
however. (1) The type of reasoning that characterizes perspective does not consist in working
within a space considered to be of unlimited extent, but in the manipulation of figures, i.e. finite
bodies. With regard to the projective geometry of Desargues, Michel Chasles wrote that it con-
sisted of an exercise in “reasoning on the properties of figures,” Aperçu historique sur l’origine et
le développement des méthodes géométriques, Bruxelles, 1837, p. 74. (2) The concept of “per-
spective space” itself was anachronistic in the fifteenth century because it assumed a codification
that had not yet been formulated. The notion was applied to architecture by August Schmarsow at
the end of the nineteenth century, and taken up again by Panofsky, Jantzen, Frey and Badt. For
more on this filiation, see Roland Recht, Le croire et le voir, Paris, 1999, pp. 44–45.
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Chapter 3
Understanding Errors in Perspective

Abstract This chapter examines the question of errors in perspective from the
viewpoint of the painter rather than the spectator, a distinction that significantly
modifies the way in which the problem is approached. Perspective is therefore
judged in terms of the methods used by the painter or architect who constructed it,
that is to say, in terms of the goals that he set for himself and the means he had at
his disposal to achieve them. We then explain the reasons why Renaissance painters
accepted the three main types of error in perspective: “accidental errors” (type I),
“ad hoc errors” (type II), and “systematic errors” (type III).

The evaluation of the correctness of a perspective is often based on the feeling of
“uneasiness” that is evoked when looking at certain paintings. Let us examine The
Wedding at Cana painted by Duccio di Buoninsegna around 1311. The disquiet here
arises from the fact that the table top is tilted at such an angle that we half expect the
plates and cutlery to slide off the tablecloth at any moment… Whatever the signifi-
cance of this typification—which may appear to be both immediate and effective—the
judgment that ‘something is wrong’with this scene originates with the spectator, for it
is he who feels uncomfortable and it is again he who expects to see the objects slide
off…However, alongside the viewer’s sensorial characterization of a painting another
is possible, which invites us to approach the problem of perspective through the eyes
of the painter or architect who constructed it. A given perspective is then judged in
terms of the method used by its creator, that is to say, in terms of the goals which he set
himself and—crucially—the means that he had at his disposal to achieve them.

These approaches reiterate the antique distinction between aesthetics1

(αἰσθάνομαι meaning “to feel” in Greek) and poietics (ποιέω meaning “to make” in

1Panofsky often engaged in this type of aesthetic evaluation: “The represented objects appear to
stand, for the most part, more above than on the floor”; “It is also an inconsistent space, in that
objects—for example, in our panel the table of the Last Supper—appear to stand in front of the
‘space box’ rather than in it”; “Space thus seems to extend forward across the picture plane;
indeed, because of the short perpendicular distance it appears to include the beholder standing
before the panel,” Erwin Panofsky, “Die Perspektive als symbolische Form” (1924/5), Perspective
as Symbolic Form, pp. 55, 56, 60 (italics mine). Panofsky notes that the feeling of correctness is
socially constructed, which suggests that one can only begin to evaluate a perspective by ques-
tioning the presuppositions that form the background to an axiological evaluation.
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Greek). The poietic evaluation raises a justifiable point regarding the aesthetic
evaluation of a work of art—if Western painting has undergone a transformation, it
is not because the eye of the spectator has changed, but because it has trained itself
to appreciate works of art that the painter has constructed differently. To declare that
the perspectives of the Renaissance are “correct” is no more satisfying than to assert
the “falseness” of medieval paintings. From a technical point of view, the various
errors in perspective are constructions—perhaps mistaken, but nonetheless delib-
erate operations.

3.1 The Classification of Errors

Whatever the apparent correctness of the final result, the only question that deserves
to be asked in all such cases is: How was this perspective constructed? Let us first
examine three types of error that were frequently made by painters: “accidental
errors” (type I), “ad hoc errors” (type II) and “systematic errors” (type III).

Type I errors. From an operating point of view, the accidental error is charac-
terized by the fact that it does not arise out of the artist’s adherence to a
logical-semantic network. For example, an isolated vanishing line that uninten-
tionally slips off at an angle should simply be interpreted as an accidental mistake.
On the other hand, if it extends to the point of concurrence with other vanishing
lines, it could represent an example of a type II or type III error.

Type II errors. The ad hoc error is a conscious error that can be understood from
the draftsman’s point of view as the solution to a practical problem. Let us take an
example: when the paving tiles in the floor of a painting are interrupted by one or
two steps, it is worthwhile for the artist to draw a single perspective network and to
alter the vanishing lines at the point of the steps—such a deviation from correct
perspective will go unnoticed. In this case, the error is comprehensible because it
obeys a pattern of logic that is instrumental, i.e., one designed to achieve a specific
end through means which are consistent with the draftsman’s technique.

Type III errors. The systematic error can be distinguished from accidental and ad
hoc errors because it forms part of a coherent logical-semantic network based on the
acceptance of certain rules of construction. Let us consider the Madonna and Child
painted by Fra’ Filippo Lippi around 1452, whose vanishing lines converge on a
centric point coinciding with the Virgin’s eye. Here we are faced with a systematic
error, for we can imagine that the painter saw a relationship between the eye and the
vanishing point. Each time we categorize a mistake as a type III error, we may view it
in terms of the analysis of false beliefs proposed by Boudon, who reiterates Pareto’s
observation: “Logic tries to discover why a thought process is false whereas soci-
ology tries to discover why it is so frequently adhered to.”2 The question is: What
might have been the reasons for a painter’s adherence to a given system of rules?

2Raymond Boudon, L’Art de se persuader, Paris, 1990, p. 7.
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Furthermore, was there a single and unanimous consensus regarding the rules of
linear perspective or were there several simultaneous consensuses that reflected the
divisions between various artistic schools and workshops?

The question “How are perspectives constructed?” should lead to a reconsid-
eration of our approach to the analysis of paintings. To construct a correct linear
perspective the artist must carry out two series of operations. The first consists in
setting the orthogonal lines, i.e. those whose direction is parallel to that of the
viewer’s gaze and will become vanishing lines in a perspective view. The second
involves appraising the transversal lines that are perpendicular to the viewer’s gaze.
The orthogonals force the painter to fix a vanishing point, of which there can be
only one in central perspective. The transversals force the painter to choose a
method of foreshortening that will determine the intervals between the transversals
(e.g., the receding horizontals of the floor plane).

Ever since Panofsky, historians of perspective have tended to view the posi-
tioning of the centric point as being more important than the method of fore-
shortening used, such that their evaluation of the correctness of a painting’s
perspective has been almost exclusively based on an examination of its system of
vanishing lines. An analysis of the foreshortening technique utilized is nevertheless
necessary in order to evaluate to what extent painters actually subscribed to the
rules of perspective. Let us embark on such an analysis now, based on the twofold
sequence of operations outlined above.

3.2 Methods of Foreshortening

While the tracing of the orthogonal lines leaves little room for imagination, the
same cannot be said for transversal lines. With regard to the treatment of dimin-
ishing intervals, Renaissance painters proposed a range of empirical solutions.

How is one to represent horizontal lines that are perpendicular to the viewer’s
gaze? In the floor plane, the spacing of the transversal lines is regular since the
paving squares are all of the same dimension. This is not so when they are depicted
in a perspective view and most painters subscribed to the notion that the further
away the squares are, the smaller they should appear to the naked eye. But what rule
of diminution were they applying? They could not resort to the theory of per-
spective, because this was only invented by mathematicians in the sixteenth cen-
tury. Such knowledge being unavailable to them at the time,3 artists devised various

3The situation of a heuristic search for solutions in a context of limited information is reminiscent
of the early attempts by individuals unfamiliar with mathematics to solve problems of probability;
see Amos Tversky and Daniel Kahneman, “Availability: a heuristic for judging frequency and
probability,” Cognitive Psychology 5 (1973): 207–232. We must not forget that most of the basic
concepts of perspective, beginning with the “vanishing point,” were unknown in the Renaissance
(for instance, Alberti speaks of a punctum centricus; the concept of punctum concursus still lay in
the future). We owe the conceptualization of this notion to seventeenth-century mathematicians
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tactics in order to apply the only concept of perspective they had ever known: the
qualitative principle of foreshortening the apparent size of objects based on dis-
tance, a principle that was presented in every medieval treatise on optics.4

The quantitative translation of this principle could follow one of several dif-
ferent paths. In his inventory of the methods used by Renaissance painters to
construct their perspectives, Panofsky distinguishes between a series of approaches
(with the exception of the reduced distance points method, which he does not
mention) that yield approximately the same geometric results even though they
represent the various stages in a process of progressive simplification.5 We find:
(a) Brunelleschi’s (hypothetical) method (1413); (b) Alberti’s section of the visual
pyramid (1435), which Panofsky mistakenly refers to as the principle of costruzione
legittima; (c) Vignola’s distance point method and his tracing of oblique lines
(published posthumously in 1583); (d) Viator’s simplified distance point method
and tracing of the diagonal line (1505); and (e) Pietro Accolti’s reduced distance
points method (1625). An analysis of paintings conducted today cannot be based on
this inventory, however, because a fundamental problem must first be resolved.
Panofsky’s list, however punctilious, only includes correct methods. It is quite
possible, therefore, that it does not contain all the solutions that were explored
during the Renaissance and it must be completed by a rational examination of all
the possibilities.

Imagine finding yourself in a room paved with identical square tiles. Now open a
door to the point at which it crosses a tile diagonally. You will note that the door is
lined up diagonally with all the tiles and—as trivial as it may seem—this diagonal
line is a straight one. What you have just experienced should also hold true in a
painting. For a perspective to be correct, the diagonal line crossing the tiles must be

(Footnote 3 continued)

such as Guidobaldo del Monte, who was one of the first to study methods of projection; see Martin
Kemp, “Geometrical perspective from Brunelleschi to Desargues,” Proceedings of the British
Academy, 70 (1985): 89–132; Judith V. Field, “Alberti, the abacus and Piero della Francesca’s
proof of perspective,” Renaissance Studies 11/2 (1997): 61–88.
4Here is a sample: “Objects of equal size unequally distant appear unequal and the one lying nearer
to the eye always appears larger/Aequales magnitudines inaequaliter expositae inaequales apparent
et maior semper ea quae propius oculum adjacet,” Euclid, Optica, sup. 5; “At distance, the same
object makes a small angle in the eye which it would make great when it is close/Eadem res distans
facit paruum angulum in oculo quae faceret magnum quando est propinqua,” Bacon, Perspectiva,
II, III, 3; “Among equal and equidistant sizes at unequal distances from the eye, the closer will
always appear greater, but they will not be seen in proportion to their distances/Aequalium et
aequidistantium magnitudinum inaequaliter ab uisu distantium propinquior semper maior uidetur,
non tamen proportionaliter suis distantiis uidetur,” Witelo, Optica, IV, 25; “Among objects of
equal size, that which is most remote from the eye will look the smallest/Infralle cose dequal
grandeza quella chessara piu distante dallochio si dimossterra di minore figura,” Da Vinci, MS.
SKM II, fol. 63r.
5Panofsky, Perspective as Symbolic Form, French edition, pp. 229, 232.
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straight;6 otherwise every door that opens diagonally will appear to be askew,
which is materially impossible. Yet this rule was often ignored, leading to two main
types of errors: the “diagonal line” might assume a concave or convex curvature.
Add to this the case of a true perspective where the diagonal remains straight and
one has a range of three different possibilities in terms of foreshortening.

3.2.1 Correct Foreshortening

There are a number of foreshortening methods that give rise to straight diagonals in
which the spacing between the horizontal lines diminishes correctly as the van-
ishing point is approached. The first perspective method to have been described in
written form—that by Alberti7—falls into this category. Referred to as the “inter-
section of the visual pyramid,” it begins with the formation of a pencil of visual rays
linking the eye to each of the divisions in the tiled floor. This makes up a visual
pyramid that is then ‘cut’ by the picture plane, and the intersection between the two
will fix the height of each of the receding transversal lines.

The originality of Alberti’s method lies in the fact that the side and perspective
views are drawn on the same sheet of paper, so that the intersection points of the
visual pyramid can be easily transferred.

3.2.2 Under-Foreshortening

Foreshortening can also generate concave diagonals when the spacing between the
horizontal lines does not diminish rapidly enough on approaching the vanishing
point.

Let us first examine the “zero degree” of foreshortening, which consists in
drawing a series of transversal lines that are equidistant from one another. This
method was only employed in a small number of paintings characterized by a very
shallow visual field, such as The Death of a Saint by Simone Martini, Confession of
the New-born Child by Donatello, The Last Supper by Andrea del Castagno, etc.

6Alberti verified the correctness of the perspective construction by applying this property, but was
unaware that the diagonals should converge at a distance point: “If the same line is extended in the
depicted floor, it will form the diagonal of the joined squares. Indeed, among mathematicians, the
diagonal of a square is a kind of straight line that is drawn from one corner to the opposite corner
of the square, which divides it into two parts so that to make two triangles of it/Qui quidem quam
recte descripti sint inditio erit, si una eademque recta continuata linea in picto pauimento coadi-
unctorum quadrangulorum diameter sit. Est quidem apud mathematicos diameter quadranguli recta
quaedam linea ab angulo ad sibi oppositum angulum ducta, quae in duas partes quadrangulum
diuidat ita ut ex quadrangulo duos triangulos fit,” De pictura, I, 20.
7Leon Battista Alberti, On Painting and On Sculpture, ed. C. Grayson, London, 1972; idem, De la
peinture/De pictura (1435), ed. J.-L. Schefer, Paris, 1992.
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The error in these cases is understandable, because the rule of diminishing intervals
would have necessitated a drastic intervention given the lack of depth in the scene
(Type II ad hoc error).

In this category we can also find the technique known as diminution by one-third.
Panofsky wrote, “If we are to believe Alberti, the erroneous practice of mechanically
diminishing each strip of the floor by one-third still held sway in his day.”8 Alberti in
fact mentioned the ratio vitiosa (De pictura, I, 19) before applying his own method.
There were a whole range of fallacies of this kind. The vertical line traced from
the vanishing point (F), could divide the central square at the ½ point (Lorenzetti),
the ⅓ point (van Eyck), or the ¼ point (Brunelleschi, Ghiberti). Nevertheless all of
these constructions, including the ratio vitiosa, belong to the same category as each
one is based on a division of the central square. Because this solution is justified in
operating terms, it falls into the domain of type III systematic errors. Two such
constructions were employed in the Renaissance, which we will analyze here.

The first (Fig. 3.1), consists in using the area of the triangle (A0B0F) to trace the
receding transversals. From point (A0), located on the same vertical as the vanishing
point (F), draw a diagonal using the square. The diagonal will intercept the first
vanishing line (B0F) at (B1). From that point, trace a horizontal line (A1B1) that will
determine point (A1) along the vertical line (A0F). Then move the square in order to
trace a parallel to (A0B1) from (A1). This line will intercept point (B2), which in turn

Fig. 3.1 Under-foreshortening, method 1. Author’s drawing

8Panofsky, Perspective as Symbolic Form, p. 62.
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will fix the height of the second horizontal (A2B2) and so on until the horizon is
reached.

This is actually a method of under-foreshortening and leads to the production of
concave diagonals. Why was such an error accepted by Lorenzetti, Rogier van der
Weyden, Carpaccio and other painters? Perhaps because for the Renaissance artist
trained in the abaco school of calculation,9 such proportional representations
recalled the “Golden Rule” whereby:

a : b ¼ c : d

Let us return to the perspective view and designate as AiBi and AiAj the apparent
width and height of a square. The application of the Golden Rule gives us:

A0B0 : A0A1 ¼ A1B1 : A1A2 ¼ � � � ¼ AiBi : AiAj ¼ � � � ¼ AmBm : AmAn

This relationship implies that the proportional ratio between the heights from the
first interval to the last can be directly estimated by the naked eye. But in comparison
to the foreshortening that a linear perspective would produce, the first intervals (A0A1

…) are too short and the last (… AmAn) are too long. Here the error stems from a bias
which consists of overweighting the sameness of the squares. Can it not be assumed
that if the ratio a:b applies to the first intervals, then (because all the squares are
identical) it should also hold true for the last ones? Despite the fact that linear
perspective does not tolerate the mechanical construction of intervals using the
square, painters had sound reasons to believe in the validity of the empirical rule.

Other paintings in which under-foreshortening has been identified made use of
different methods from the one described above. Let us suppose that the vertical line
traced from the vanishing point (F) divides the first square at the ¼ point in its
width (Fig. 3.2). In order to create the spacing of the transversal lines, the height of
the first square can be fixed arbitrarily by tracing the straight line (A0P). This line
will intercept the first vanishing line (B0F) at (B1). From this point, trace the first
horizontal (A1B1), which will intercept the vertical line (A0F) at (A1). Then, from
this point trace the diagonal (A1P), which will determine point (B2) by its inter-
section with the vanishing line (B0F). Point (B2) will fix the height of the second
horizontal (A2B2), and so on until the horizon is reached. Compared with the
previous system of construction, the diagonals are no longer parallel but converge
at point (P), which is situated above the horizon.10 This is why all the intervals

9Other connections between abacus—a term that encompasses arithmetic and algebra—and per-
spective have been proposed in order to understand the construction methods of Piero della
Francesca; Judith V. Field, “Alberti, the abacus …”.
10This construction point (P), which foreshadows the “distance point” of linear perspective as
codified in the seventeenth century, does indeed seem to have been used by painters, since we can
often find it in a conspicuous place in the architectural décor; for example, at the corner of a
pilaster (Brunelleschi) or on the edge of a building (Ghiberti) or on the shoulder of a figure
(Donatello).
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(A0A1), (A1A2), (A2A3)… are longer than the ones that would normally produce
exact perspective foreshortening. This method of under-foreshortening was used
quite frequently, particularly by Ghiberti, Jan van Eyck and Rogier van der
Weyden.

Painters who followed either one of these two (erroneous) methods did so
principally because it allowed them to represent intervals that diminish the closer
they are to the horizon. Within the constraints of the knowledge available to them,
the goal of the qualitative representation of diminishing intervals was thereby
achieved.

3.2.3 Over-Foreshortening

Finally, foreshortening can result in a network of convex diagonals. In this case the
spaces between the horizontal lines diminish too rapidly as the vanishing point is
approached.

We come across examples of perspective over-foreshortening (Fig. 3.3) when
the point of concurrence (P) of lines (A0B1), (A1B2)…, as constructed above, is
situated lower instead of higher than the horizon line. In this case the intervals of
the series … (A0A1), (A1A2), (A2A3) … will tend toward a limit (An) at the height of
(P). In a linear perspective, this point of concurrence (P) would correspond to a
distance point on the horizon. However, since (P) is situated below the horizon—
and assuming that the floor extends to infinity—there will always be an empty

Fig. 3.2 Under-foreshortening, method 2. Author’s drawing

44 3 Understanding Errors in Perspective



space between this limit and the true horizon. Hence, the opposite effect to that of
under-foreshortening is produced; the intervals (A0A1), (A1A2), (A2A3) … are too
short compared with those which an exact perspective foreshortening would
produce.

This type of diminution was not very common in the corpus of Renaissance
painting; it can be found on occasion in the works of Donatello and Masaccio. The
preference for the under-foreshortening methods described above can be easily
understood; although erroneous, they allowed the artist to fill the entire space
between (A0) and (F), which over-foreshortening does not permit.

3.3 Some Examples of Erroneous Foreshortening
in Renaissance Painting

The methods of correct foreshortening, and over- and under-foreshortening
described above are mutually exclusive categories. When we look for examples
of these constructions in the most representative paintings of the Renaissance, it is
surprising how few exhibit correct diminution apart from a handful of late works
such as Christ’s Flagellation by Piero della Francesca and The Reflection by the
Master of the Barberini Panels (both ca. 1450). Most works from the period fail to
respect the rules of linear perspective.

It is generally agreed that Filippo Brunelleschi (1377–1446) played a major role
in establishing the perspective system and yet only one perspective view is actually

Fig. 3.3 Over-foreshortening. Author’s drawing
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attributed to him, an engraved silver plate depicting Christ Casting Out a Demon
(ca. 1425) now conserved in the Musée du Louvre (Fig. 3.4).

Should we accept the opinion of Parronchi, according to whom, “… if one looks
carefully, the perspective construction of the buildings on this plate quickly reveals
the mathematical precision on which the law of proportions concerning ‘diminu-
tions’ and ‘augmentations’ is built”?11 It may be noted that the vertical line traced
from the vanishing point (F) crosses the square at the ¼ point in its width. Since the
network of diagonal lines on the floor is concave and point (D/4) is situated above
the horizon, this constitutes an example of under-foreshortening. Paradoxical as it
may seem, Brunelleschi—the supposed inventor of linear perspective—used a
construction here that departs from the rules of correct diminution.

Let us now examine the work of Lorenzo Ghiberti (1381–1455). Art historians
have often assumed that either Brunelleschi or Alberti played an advisory role in the
realization of the bronze bas-reliefs for the portals of the Baptistery of San Giovanni

Fig. 3.4 Filippo Brunelleschi (?) Christ Casting out a Demon, ca. 1425, Engraved silver plate,
7 × 11 cm (Paris, Musée du Louvre, Département des Objets d’Art), author’s reconstruction

11Alessandro Parronchi, “Le due tavole prospettiche del Brunelleschi,” Paragone 107 (1958),
p. 16.
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in Florence (1437). Thus Richard and Trude Krautheimer write: “In the Isaac and
Joseph panels, Ghiberti applied verbatim the perspective construction that Alberti
laid out in his text on painting.”12 John White is of the same opinion: “Here the
paving in perspective, whose construction is henceforth exact, allows the figures to
evolve on a platform which conforms to the new scientific principles.”13 If we study
the method of diminution adopted by Ghiberti, however, it becomes clear that these
conclusions do not stand up to scrutiny. The squares along the central axis are, as in
Brunelleschi’s engraved silver plate, shifted back by ¼ compared with the vertical
line traced from the vanishing point (F). As the series of diagonals on the floor are
concave, the system used was one of under-foreshortening. In fact, contrary to
various analyses,14 the lateral point of concurrence in both Isaac (Fig. 3.5) and
Joseph is situated above the horizon. These were not accidental errors because the

Fig. 3.5 Lorenzo Ghiberti, The Sacrifice of Isaac, 1437, Gilded bronze bas-relief, 79 × 79 cm
(Florence, Baptistery San Giovanni), author’s reconstruction

12Richard and Trude Krautheimer, Lorenzo Ghiberti, Princeton, 1956. p. 251.
13John White, The Birth and Rebirth of Pictorial Space, (London: Faber, 1967); trans. Catherine
Fraise, Naissance et renaissance de l’espace pictural (Paris: Adam Biro, 2003) p. 172.
14Martin Kemp, The Science of Art. Optical Themes in Western Art from Brunelleschi to Seurat,
New Haven, 1990, p. 25.
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construction is identical in both panels. We must therefore refrain from concluding
that Ghiberti engaged in “the strict use of artificial perspective.”15

Let us turn to the work of Donatello (1386–1466), whose talent for perspective
was praised by Cristoforo Landino: “Donato… was a great imitator of the Ancients
and knew a great deal about perspective.”16 Certain historians have defended the
correctness of Donatello’s perspective construction. Regarding the marble relief
entitled The Feast of Herod, now in the Musée des Beaux-Arts of Lille, Darr and
Bonsanti wrote: “He constructed an architecture that was painted according to the
rules of two-point perspective, which had just been codified by Leonbattista Alberti
in his De pictura of 1435.”17 The fact that the network of diagonals on the floor is
concave proves, however, that Donatello used a method of under-foreshortening
which was inconsistent with the rules of linear perspective. Moreover, this was not

Fig. 3.6 Donatello, The Feast of Herod, ca. 1427, Gilded bronze panel, 60 × 60 cm (Siena,
Baptistery San Giovanni), author’s reconstruction

15White, Naissance et renaissance de l’espace pictural, p. 162.
16“Donato sculptore… fu grande imitatore degl’antichi, et di prospectiva intese assai,” as quoted
by Pietro Roccasecca, “La finestra albertiana,” Nel segno di Masaccio, Florence, 2001, pp. 64–69.
17Alan P. Darr and Giorgio Bonsanti, Donatello e i suoi, Detroit, Firenze and Milano, 1986,
p. 141.
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an episodic error on his part; in a first version of The Feast of Herod (Fig. 3.6),
carved around 1427 for the baptistery of Siena Cathedral, Donatello had already
resorted to under-foreshortening; as can be seen, point (D/6) is clearly situated
below the horizon.

Moving on to a key figure in the history of perspective, was Giorgio Vasari
justified in attributing “the perfection of this art” to Paolo Uccello (1397–1475)? As
Vasari wrote:

Paolo devoted himself, without respite, to the most difficult artistic research; he perfected
the method of constructing perspective by the intersection of lines traced, using floor plans
and elevations of buildings, to the very summits of cornices and rooftops. After fixing the
point of view of the eye higher or lower, according to his desire, he foreshortened them and
made them diminish towards the vanishing point.

If we retrace the geometric lines of The Holocaust, a scene from the predella
decorated by Ucello with the story of the Profanation of the Host (1465–1469) and
conserved in the Palazzo Ducale in Urbino (Fig. 3.7), the diagonals form a network
of concave lines. One must therefore lay aside the judgment of Kemp18 and
acknowledge that Paolo Uccello used a method of under-foreshortening.

These brief observations regarding some of the greatest artists of the Italian
Renaissance allow us to draw a simple—if not entirely surprising—conclusion: Not
a single work produced during the first half of the Quattrocento applied the rules of
linear perspective to the letter, not even the plate depicting Christ Casting Out a
Demon attributed to Brunelleschi, who has been credited with the invention of

Fig. 3.7 Paolo Uccello, Profanation of the Host: Holocaust, 1465–9. Tempera on wood,
42 × 361 cm (Urbino, Palazzo Ducale), author’s reconstruction

18Kemp, The Science of Art, p. 39.

3.3 Some Examples of Erroneous Foreshortening in Renaissance Painting 49



perspectiva artificialis. The earliest example of the strict application of linear
perspective is a work by Piero della Francesca that was painted around 1450.

In the light of this critical analysis, it must be concluded that the rules of linear
perspective were only applied from the mid-fifteenth century onward and therefore
any study of the origins of perspective painting must continue well into the six-
teenth century. This lies beyond the scope of the present book, but it is possible to
show that scholars have overestimated the homogeneity of Renaissance pictorial
practices. As the ex post facto reconstruction of a number of paintings from the
period demonstrates, while the art academies may have played a role in the dif-
fusion of perspective methods, at the outset they did not standardize the operations
used. I will present just one example here to illustrate how the rules of perspective
were not uniformly followed by painters, even after 1450.

The paintings of Vittore Carpaccio (1460–1526) are noteworthy for their highly
architectonic composition, a characteristic that has been analyzed in detail. It is
enlightening to compare his methods with those applied in the Quattrocento. Should
we accept the judgment of scholars that “The geometric and perspective precision

Fig. 3.8 Vittore Carpaccio, The Birth of the Virgin, 1504, Oil on canvas, 126 × 129 cm
(Bergamo, Accademia Carrara), author’s reconstruction
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of the town planner and the architect is characteristic of Carpaccio’s way of
thinking”?19 Consider, for example, The Birth of the Virgin (Fig. 3.8), which forms
part of the Albanian Cycle (1504).

We discover not only that the system of orthogonals does not converge towards
a single vanishing point, but Carpaccio’s method of diminution was erroneous. If
we trace the diagonals of the squares, a concave network is obtained, which shows
this construction to be an example of under-foreshortening. The vertical line traced
from the vanishing point (1) cuts across the axial square at the ¼ point in its width.
The fact that the oblique lines (CD … EF) remain parallel shows Carpaccio used a
method in which the diagonals were constructed by moving the square. This
constitutes, I admit, an isolated instance of the transgression of the laws of per-
spective on his part, but Carpaccio may not have been the only sixteenth-century
painter to display such independence.

3.4 Conclusion

Let us set aside our working diagrams and step back for a moment. Some general
conclusions can be drawn from this examination of the methods of constructing a
perspective that were developed by artists over a period of two centuries (1297–
1504). The history of perspective was marked by three key moments: (1) the use for
the first time—by Giotto—of a correct method of diminishing intervals (his con-
tribution will be discussed in detail in Chap. 8); (2) the representation by
Brunelleschi of perspective based on the postulate of monocular vision, although he
applied an erroneous method of diminution; and finally (3) the use of both a single
vanishing point and a correct method of diminution by Piero della Francesca.
However, this interpretation of the history of perspective raises the question as to
what is truth and what is falsehood in painting.

Isolated examples of the application of true perspective techniques at the
beginning of the fourteenth century may be found in The Funeral of a Saint by
Simone Martini and Jesus Among the Doctors by the atelier of Giotto, both of
which were painted around 1315–1317 and in both of which a correct foreshort-
ening of the intervals is used. Brunelleschi, Ghiberti, Uccello, Fra’ Angelico,
Donatello and Masaccio were still applying erroneous procedures one and a half
centuries later. What is more, with regard to the supposed affinities between artists,
it is apparent that the community of architects, painters and sculptors of the
Quattrocento were not unanimous in their adherence to the rules of linear per-
spective. From a comparison of the foreshortening methods used, it emerges that no
unified conception of perspective existed. Every artist adopted the method that he
believed empirically to be the most correct, and knowledge was not shared.
Moreover, while Ghiberti and Masaccio displayed a certain consistency in their

19Vittorio Sgarbi, Carpaccio, Bologna, 1979, p. 17.
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approach, the same cannot be said of Donatello or Ucello, who experimented with
several different systems. During the Renaissance, therefore, the approach to
perspective was not singular but multifarious. This could provide the answer to the
question posed by Marisa Dalai Emiliani: “Are we faced [in the Quattrocento] with
the application of a single, unique discipline or rather of a discontinuity, of vari-
ations or mutations to such an extent that we could speak of a ‘personal’ use of
perspective on the part of each individual artist?”20

Perspective in the Quattrocento was characterized by a series of “uncoordinated
initiatives,” which is precisely what sociologists observe in the unfolding of most
social movements. This analysis also raises the question as to why we are so
reluctant to accept the possibility that artistic movements might exist in forms other
than that of social groups behaving in a uniform manner. Perhaps lingering vestiges
of Kunstwollen can be detected here—Alois Riegl’s theory of the will to
self-expression through art.21

20Marisa Dalai Emiliani, “La question de la perspective,” Perspective et histoire au Quattrocento,
Paris, 1979, p. 17.
21Early on Panofsky recognized the problems raised by the use of this holistic notion. He wrote:
“The term Kunstwollen usually refers artistic phenomena in their entirety, to the artworks of a
whole era … whereas the term ‘artistic intention’ is more often used to characterize an individual
work of art,” Panofsky, Perspective as Symbolic Form, French edition, p. 200.
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Chapter 4
Fact and Fiction Regarding Masaccio’s
Trinity Fresco

Abstract The present chapter discusses some new findings on the question of how
Masaccio constructed the perspective in his Trinity fresco. Some scholars have
attempted to reduce the anomalies in the work using photogrammetry and computer
analysis. On such grounds it has been argued that Masaccio used the normal
technique known as costruzione legittima. However, the aberrations discovered
in situ strongly suggest that Masaccio’s fresco is not a model of linear perspective.
The concurrence of the vanishing lines in one point is only approximate, and the
foreshortening of the intervals is flawed. Masaccio apparently used the lines of the
plane joining the abaci of the capitals as a guide when he drew the lines of the
coffered vault. But since the horizontal plane and the barrel vault are not coincident,
he adopted an erroneous method of foreshortening—a fact that has been disregarded
up to now. The thesis that Masaccio designed the fresco with the aid of a ground
plan and elevations is dubious, and the search for its ideal viewing point is destined
to remain an unending quest.

The Trinity fresco in the Basilica of Santa Maria Novella in Florence, painted by
Masaccio around 1425–1428, is a work of large dimensions (667 by 317 cm) that
allows one to make perspective tests under very good conditions. As a consequence
it has formed the subject of a wide range of publications in the areas of art history
and the history of perspective techniques.1 Many art historians, including Panofsky,
have assumed the correctness of the fresco’s perspective, probably following the
lead of Giorgio Vasari. In his Vite Vasari writes: “At Santa Maria Novella… there is
something even more beautiful than the figures: it is a barrel vault, drawn in
perspective and divided into coffers filled with rosettes whose proportions decrease

1Before 1989, the main works on the construction of perspective were: G.J. Kern, Das
Dreifaltigkeitsfresko von S. Maria Novella. Eine perspektivisch-architektur geschichtliche Studie,
Jahrbuch der königlich preussischen Kunstsammlungen 24 (1913): 36–58; P. Sanpaolesi,
Brunelleschi, Milan, 1962; H.W. Janson, “Ground plan and elevation of Masaccio’s Trinity
fresco” in F. Douglas et al., eds., Essays in the History of Art presented to Rudolf Wittkower,
London, 1967, pp. 83–88; J. Polzer, “The anatomy of Masaccio’s Holy Trinity,” Jahrbuch der
Berliner Museen 13 (1971) 18–59. Further references are given in the article by Field, Lunardi and
Settle cited in note 5 below.
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with foreshortening so that the wall appears to be hollowed out.” Panofsky believes
that this work is “exactly and uniformly constructed.”2 Parronchi considers
“Masaccio’s Trinity at Santa Maria Novella, which is a work of genius and well
ahead of its time” to be an example of the strict application of the rules of linear
perspective.3 John White agrees: “The foreshortening of the architecture, in
accordance with the principles of artificial perspective, is accurate both in the
diminution of the coffering and in the single vanishing point which lies slightly
below the plane on which the donors kneel.”4

The exacting studies on the geometric aspects of Masaccio’s fresco conducted
by Field, Lunardi and Settle led to somewhat unexpected conclusions. They noticed
many geometrical anomalies,5 in direct contrast to the judgment of previous art
historians.

4.1 Recent Research

Following the key publication by Field et al. in 1989, several other studies
appeared.6 In a remarkable paper presented to the 4th ILabHS in 2001, Volker
Hoffmann sought to analyze and compare all the major publications concerned with
the geometric analysis of the fresco. He then set out the results of his own analyses.

2E. Panofsky, “Die Perspektive als symbolische Form,” Vorträge der Bibliothek Warburg 4
(1924/5): 258–331; Perspective as Symbolic Form, p. 62.
3Alessandro Parronchi, “Le fonti di Paolo Uccello: I perspettivi passati,” Paragone 89 (1957), p. 7.
4John White, The Birth and Rebirth of Pictorial Space, London, 1967; transl. Naissance et
renaissance de l’espace pictural, p. 146.
5Judith V. Field, Roberto Lunardi, Thomas B. Settle, “The perspective scheme of Masaccio’s
Trinity fresco,” Nuncius 4/2 (1989): 31–118. They write (p. 34): “The very success of the Trinity
fresco in presenting space that seems as real as the figures that inhabit it may explain why so many
scholars have taken the perspective scheme for granted.” This observation has been reiterated on
many occasions, see note 7.
6Martin Kemp, The Science of Art. Optical Themes in Western Art from Brunelleschi to Seurat,
London, 1990, draws up an inventory of at least six errors but supports the idea of the use by
Masaccio of a ground plan and elevations. A sophisticated system has been proposed by Jane A.
Aiken in “The perspective construction of Masaccio’s Trinity fresco and medieval astronomical
graphics,” Artibus et Historiae, 31 (1995): 171–187. She postulates that Masaccio obtained the
diminution of the vault ribs with the help of an astrolabe and stereographic projection. Nevertheless,
it is highly questionable whether the orthographic and stereographic projections of the astronomers
were “readily available sources to Masaccio and Brunelleschi,” p. 173. The length and complexity
of the procedure shows an evident lack of proportion between the ends and the means, so that one
would be justified in wondering whether so sophisticated a technique had ever actually been used.
See Volker Hoffmann, “Masaccios Trinitätsfresko: Die perspektivkonstruktion und ihr
Entwurfsverfahren,” Mitteilungen des Kunsthistorischen Institutes in Florenz 40 (1996): 42–77.
Rona Goffen, ed., Masaccio’s Trinity, Cambridge, 1998. “The Trinity of Masaccio: perspective
construction—isometric transformation—coordinate system,” Art, Science and Techniques of
Drafting in the Renaissance, 4th ILabHS, working paper, Florence, 24 May-1 June 2001. Cristina
Danti, ed., La Trinità di Masaccio. Il restauro dell’anno duemila, Firenze, Edifir, 2002.
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In line with Field et al., Hoffmann was primarily concerned with the issue of the
foreshortening of the intervals, which has not received the same attention as the
convergence of the vanishing lines towards the vanishing point. The restoration of
the Trinity fresco undertaken in the year 2000 also yielded a wealth of information
on the perspective drawing, most notably about the incisions left in the intonaco.

Three issues are worthy of discussion here: (1) the convergence of the vanishing
lines, (2) the foreshortening of the intervals, and (3) the determination of the ideal
viewing point for the fresco.

The vanishing lines incised in the intonaco do not converge precisely in one
point, as confirmed by the 2000 restoration of Masaccio’s fresco. One-third of the
lines deviate appreciably from the vanishing point F. This can be checked by
superimposing the incised lines (broad lines) and their extensions (narrow lines)
over a photogrammetric image of the fresco. The lines that deviate most from the
correct perspective are lines 1, 2, 7, 8, 15, 19, 24 and 25 (Fig. 4.1). This confirms
the earlier conclusion by Judith V. Field that “There are serious departures from
mathematical correctness in Masaccio’s Trinity fresco,” a statement on which she
further expanded at the 4th ILabHS: “The lines of the edges of the ribs do not meet
so neatly… So the ribs do not really provide strong evidence for Masaccio having
understood the properties of what Alberti, writing about ten years later, was to call
the centric point”.7

But the major problem with Masaccio’s fresco is much more serious: none of the
authors who have attempted a perspective reconstruction agree on the distance from
which the work should be viewed, proposing values that range from 210.5 to
894.2 cm and which strictly speaking are baseless according to the rules of linear
perspective.

Hoffmann lays out the problem in these terms: “There are only two explanations
for such a chaotic scientific situation: [either] the fresco has not been constructed
with the help of linear perspective or the methods of analyzing the perspective are
not worth anything.”8 He then opts for the hypothesis that the reconstruction
methods were at fault, and carries out a scrupulous analysis of the Trinity fresco
based on photogrammetry and computer analysis. Using a four-point reconstruc-
tion, based on the assumption that Masaccio took the lines of the horizontal plane
joining the abaci of the capitals as his guide for the foreshortening of the coffered
vault, he claims to have obtained a good fit between the lines incised in the intonaco

7Danti, La Trinità di Masaccio, pp. 89–94 and, most importantly, plate VII. Judith V. Field, in The
Invention of Infinity: Mathematics and Art in the Renaissance, 1997, p. 72; “What mathematical
analysis can tell us about a fifteenth-century picture,” in Art, Science and Techniques of Drafting in
the Renaissance, 4th ILabHS, working paper, Florence, 24 May-1 June 2001.
8Volker Hoffmann, “Brunelleschi’s invention of linear perspective: The fixation and simulation of
the optical view,” Art, Science and Techniques of Drafting in the Renaissance, 4th ILabHS,
working paper, Florence, 24 May-1 June 2001, p. 2.
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(broad lines) and his perspective scheme (narrow lines). This result as well was
confirmed by the information gathered during the 2000 restoration (Fig. 4.2).9 For
that reason, Hoffmann reverts to the traditional judgment of the correctness of
Masaccio’s perspective: “All in all, he writes, there is enough reason to believe that

Fig. 4.1 Photogrammetric
image of Masaccio’s Trinity
fresco showing some of the
vanishing lines that deviate
most from the correct
perspective. Author’s drawing
adapted from Field et al. and
Danti

9After having unsuccessfully tested a three-point reconstruction (Entwurf/Dreipunkte-
Rekonstruktion), the author experiments with a four-point reconstruction (Ausführung/Vierpunkte-
Rekonstruktion) that corresponds to a superimposition of the photogrammetric and perspective
drawings based on a fixed congruence of the following points: F (vanishing point), A and B (the
upper corners of the abaci of the ionic capitals in the foreground) and C′ (the top corner of the
abacus of the ionic capital in the background on the left), Hoffmann, “Masaccios Trinitätsfresko,”
p. 45. Danti, La Trinità di Masaccio, plate VII.
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Masaccio constructed the perspective of the Trinity according to the normal case of
costruzione legittima.”10

What could have formed the basis for such a discrepancy of views between
Hoffmann and Field et al.? The present chapter will attempt to answer this question,
focusing on the issue of the method of foreshortening used by Masaccio, and the
ensuing question regarding the point from which the fresco should be viewed.
Approaching Masaccio’s fresco geometrically,11 Hoffmann maintains a threefold
thesis:

Fig. 4.2 Photogrammetric
image of Masaccio’s Trinity
fresco showing the partial
correspondence between the
incised lines and the
foreshortening of the barrel
vault. Author’s drawing
adapted from Field et al. and
Danti

10Hoffmann, “The Trinity of Masaccio,” p. 8 (italics mine).
11“As the construction of linear perspective first and foremost centers around questions of pro-
jective geometry… the demonstration will have to be of a geometrical nature,” Hoffmann in “The
Trinity of Masaccio,” p. 2.
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(1) We must rethink the problem and propose a new scheme to explain the
construction of the vault ribs in the fresco.

(2) This leads to the conclusion that Masaccio applied costruzione legittima.12

(3) Using plans and elevations, we can then calculate the viewing distance
(452 cm).

Let us examine each of these points in more detail.

4.2 The Construction of the Vault Ribs

Within this circumscribed context, the main contradiction between Hoffmann and
Field et al. concerns the geometric construction as such. In Fig. 4.3 we have
retraced Hoffmann’s diagram, using a different lettering system for the convenience
of discussion. Lines AF, JF, KF… BF (images of the orthogonals) converge at the
vanishing point F. Lines AB, A1B1, A1B1… C′D′ (images of the transversals) exhibit
perfect foreshortening, because the diagonal BC′ covers all of the intersections of
the orthogonals with the transversals.

Hoffmann’s results depart from those of Field et al., which were based on the
gathering of in situ measurements of the arch divisions and led to the conclusion:
“[Masaccio] seems to have changed his mind about the importance of this sim-
plification [i.e. equal arcs], because the lowest division… gives an arc that subtends
about 30° at the center of the circle. The three remaining arcs, which are equal to
one another, each subtend about 20°.”13 In Hoffmann’s reconstruction, the length of
the arcs AJ′, J′K′, K′L′, L′M′ depends on the perspective reduction of the inner
divisions of the square ABC′D′. It is then possible to calculate the values of the
angles subtending these arcs as a function of the perspective parameters. Consider
the orthogonal coordinate system (O, x, y). If we assume that F is the point with
coordinates (0, 0), M (i.e., the center of the circle of the front arch) is the point with
coordinates (311.2, 0), and R is the radius of the circle (R = 105.8), then the
equation of the circle is: (x − 311.2)2 + y2 = 105.82.

12Hoffmann understands by costruzione legittima either the “viewing beam method” of Alberti or
the “distance point method” of Piero della Francesca. It is common knowledge that both of these
approaches lead to the same results, but Hoffmann makes some attempt to show that the second
method fits in better with Masaccio’s perspective scheme. We will leave aside the semantic
difficulty that emerges when one applies the word costruzione legittima to an early Quattrocento
painting. Scholars have written at great length on this anachronism; for instance Field, The
Invention of Infinity, and Pietro Roccasecca, “Il ‘modo optimo’ di Leon Battista Alberti,” Studi di
Storia dell’Arte 4 (1993): 245–262.
13Field et al., “The perspective scheme,” pp. 49–50.
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On the other hand, given that A, J, K, L, M are equidistant points, the equations
for the straight lines FA, FJ, FK… are easy to determine. For instance, FJ is
y = 0.225x.

Since the points being searched for—J′, K′, L′…—lie both on the circle and on
straight lines, their coordinates represent the solutions to a system of two equations.
The point J 0ðxJ 0 ; yJ 0 Þ has to fit:

ðx� 311:2Þ2 þ y2 ¼ 105:82

y ¼ 0:255x

�

Fig. 4.3 Hoffmann’s scheme
for Masaccio’s Trinity fresco.
Author’s drawing
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Replacing y in the first equation, we obtain:

x�311:2ð Þ2 þ 0:255xð Þ2¼ 105:82

Then:

1:065x2�622:4xþ 85651:8 ¼ 0

The positive solution to this second-degree equation is:

xJ 0 ¼ 362:6

The second equation yields:

yJ 0 ¼ 92:5

Consequently:

J
0
362:6; 92:5ð Þ

We can arrive at the coordinates of the other points by the same method:

A (311.2, 105.8)
J′ (362.9, 92.5)
K′ (393.2, 66.8)
L′ (411.5, 33.7)
M′ (417.0, 0)

Knowing the coordinates of the points A, J′, K′… of the vault, we can calculate
the length of the chords AJ′, J′K′… using the formula for calculating Euclidean
distances. For instance, from the coordinates of A and J′ we obtain the formula:

dAJ 0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxA � xJ 0 Þ2 þðyA � yJ 0 Þ2

q
¼ 53:1 cm

Given the formula of a chord, we have in the case of α = ∠AMJ′:

a ¼ 2 arcsin
dAJ 0

2R

� �
¼ 29

�
040

We thus can fix with precision the angles subtended by all the chords according
to Hoffmann’s scheme. Let us now present the results in tabular form:
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Field et al. Hoffmann

α ∠AMJ′ *30° 29° 04′

β ∠J′MK′ *20° 21° 46′

γ ∠K′ML′ *20° 20° 36′

δ ∠L′MM′ *20° 18° 34′

We observe that the angular values calculated according to Hoffmann’s scheme
match quite closely the angular values thatwere independentlymeasuredbyField et al.
on the fresco itself. Given that the maximum difference between the theoretical and
observed values is one and a half degrees,14 and that Field et al. only cite their mea-
surements in approximate terms, e.g. “about 30°… about 20°,”15wehave every reason
to believeHoffmann is correct when hemaintains thatMasaccio used the linesFA, FJ,
FK… FB to set up the vault ribs.16 This is the most convincing part of his analysis.

4.3 Masaccio’s Use of the So-Called Costruzione Legittima

Hoffmann then moves towards the conclusion that Massacio used the costruzione
legittima in the composition of his fresco, a thesis that is highly questionable.

In order for the diagonal BC′ in Fig. 4.3 to make sense, the two sets of lines AB,
A1B1, A2B2… and J′F, K′F, L′F… should be located on the same plane, which is in
fact not the case. On this point Hoffmann’s thesis lacks consistency, because he
confuses the operations carried out on the horizontal plane and those carried out on
the cylinder. He writes: “The points created by the intersection of the lines running
parallel to AB with the vertical [MF] become the centers of semicircles, the end-
points of which rest on AC′ and BD′. Semicircles and orthogonals create curvilinear
trapezoids: these are the coffers of the barrel vault.”17

Let us suppose first that the transversals AB, A1B1, A2B2… C′D′ are placed on the
horizontal plane ABC′D′, while the orthogonals J′F, K′F, L′F… P′F belong to the
cylinder of the barrel vault. In that context the diagonal BC′ has neither a precise
geometrical meaning nor a specific spatial location.

14The mean difference between the four angular values, reported in situ, represents 22 mm on the
arch line.
15Field et al., “The perspective scheme,” pp. 49–50.
16So much so that we no longer need an “artistic” explanation for the difference between angle
AMJ′ and the three other angles: “The best explanation for the ‘incorrect’ positioning of the
outermost ribs would seem to lie in a consideration of the surface geometry of Masaccio’s picture.
As painted, the ribs link Christ’s hands with the volutes of the columns. Moreover, their closeness
to the receding edges of the front abaci allows the eye to run easily along these lines, whereas the
short receding edge might otherwise have been rather lost against the pattern of the vault,” Field
et al., “The perspective scheme,” pp. 50–51. Masaccio could have followed the simple pattern
enhanced by Hoffmann.
17Hoffmann, “The Trinity of Masaccio,” p. 6.
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Suppose now the diagonal BC′ to have a geometrical signification. Lines J′F,
K′F… P′F are then the same as lines JF, KF… PF on the horizontal plane ABC′D′.
In this context the lines JF, KF… PF are baseless, because they are not visible in
the fresco. We should note here that the transversal and orthogonal lines of the
coffered vault are the only visible lines of the fresco that can provide us with
information regarding Masaccio’s method of foreshortening.18 Other vanishing
lines being absent from both the fresco and its intonaco, one could draw the lines
more or less anywhere one chooses in order to demonstrate the correctness of the
perspective. Thus the reconstruction is more in line with an assumption than a
demonstration, and each of the possible alternatives leads to incongruities.

The curvilinear trapezoids that Hoffmann claims represent the coffers of the
barrel vault are arranged in a fashion that defies both common architectural patterns
and the rules of linear perspective in various ways.

On the one hand, if we assume that the perspective in the Trinity is correct, then
it must be concluded that the coffers of the vault are of variable width. Let the circle
be of perimeter C and radius R = 105.8 cm; then, given the angular values: α = 29°
04′, β = 21° 46′, γ = 20° 36′, δ = 18° 34′, we may deduce the length of all the
corresponding arcs by means of the relationship:

XY
_ ¼ a

2p
C; a ¼ \XMY

Beginning with the first arch, the arcs would measure:

AJ′ 53.6 cm
J′K′ 40.2 cm
K′L′ 38.0 cm
L′M′ 34.3 cm

But such a pattern is unheard of with respect to the models of Renaissance
architecture and others extending back in time to ancient Rome and forward to the
neo-classical period. The coffers that we come across throughout the history of
architecture are always of regular shape and indeed are almost always square.19

18With the exception of the lines drawn from the abaci of the capitals, but these run in a somewhat
erratic manner, so that the right and left abaci provide us with a distance point varying from simple
to double (see Sect. 4.5).
19Listed here are some examples of such coffered vaults. Type I (square-coffered barrel vault):
Thermae in Rome, Nympheaum of Cicero’s Villa in Formia, S. Andrea in Mantova by Alberti, S.
Pietro in the Vatican by Bramante and Maderno, Gesù in Rome by Della Porta. Type II (flat
ceiling with square coffering): Basilica of the Palace in Treves, S. Maria Maggiore in Rome.
Type III (dome with square coffering): Pantheon in Rome, S. Maria in Campitelli in Rome by De
Rossi, Library project by Durand. Type IV (other Baroque geometrical patterns): S. Carlo ai
Catinari in Rome (circles), S. Andrea al Quirinale in Rome by Bernini (hexagons), S. Carlo alle
Quattro Fontane in Rome by Borromini (hexagons, circles, ovals and crosses).
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Let us suppose, on the other hand, that the coffered vault in Masaccio’s Trinity is
regular (and, we would repeat, there is not a single example in architecture of
variable rectangular coffers). Then we must impute to Masaccio a serious error of
construction or—at the very least—a high degree of “independence” in the light of
how perspectives were usually composed. This discrepancy is probably the point
that most convincingly invalidates the idea that Masaccio designed his perspective
with the help of plans and elevations.20 If he had done so, he would never have
drawn the coffers of the barrel vault with a variable width. There is, in fact, only one
method (known from Euclid’s Elements, Book III, 30) of drawing the longitudinal
division of a vault in correct perspective: “Dividing a semicircular arc into eight
equal parts, or a quadrant into four, is a very simple mathematical task, merely
involving repeated bisections. Having divided his semicircle, or quadrant, Masaccio
could then have joined the points marking the divisions to the centric point, thus
obtaining the center lines of the longitudinal ribs.”21

As we can see in the comparison presented in Fig. 4.4, the above construction is
quite different from the one assumed by Hoffmann.

It is apparent that Masaccio did not use this basic—but nonetheless correct—
method. Indeed, in correct perspective the angles AMJ″, J″MK″, K″ML″ … P″MB
are all equal to p

8 ¼ 22
�
300:

Hoffmann Exact values

α ∠AMJ′ 29° 04′ 22° 30′

β ∠J′MK′ 21° 46′ 22° 30′

γ ∠K′ML′ 20° 36′ 22° 30′

δ ∠L′MM′ 18° 34′ 22° 30′

If C is the perimeter of the circle corresponding to the front arch, we may
calculate the length of an arc XY in correct perspective:

XY
_ ¼ 1

16
C ¼ 41:5 cm

The maximum difference between the measured values and the values calculated
using Hoffmann’s model is reached for the outermost points J′J″ and P′P″, for
which we have: J″J′ = P′P″ = 12.1 cm. This metric difference is far too great to be

20Hoffmann, “The Trinity of Masaccio,” pp. 11–12, admits that Masaccio used ground plans when
creating this perspective: “It is fairly obvious that one of those plans had to be the ground plan…
To this [Masaccio] added either the frontal elevation or the side elevation. But there is reason to
believe that Masaccio actually used both the frontal elevation and the side elevation.” Nothing is
obvious here, except the need to establish such an assumption.
21Field et al., “The perspective scheme,” p. 49.
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considered an accidental error; the method as such must be wrong. Therefore, by
ruling the coffers of the vault based on the inner divisions of the square ABC′D′,
Masaccio took an erroneous shortcut which was in a way much more complicated
than the method he actually should have applied to resolve the problem of per-
spective presented. And this is, in fact, the conclusion we are in a position to deduce
from Hoffmann’s most interesting analysis.

Fig. 4.4 Correct scheme for
Masaccio’s Trinity fresco.
Author’s drawing
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4.4 The Determination of the Viewing Distance

After he became convinced that Masaccio was applying the so-called costruzione
legittima, Hoffmann adopted a fresh approach to the difficult problem of how to
determine the viewing distance. To fix the viewing point for the fresco it is nec-
essary to assume that Masaccio used plans and elevations to construct his per-
spective, but this has not been established. Setting aside this fact, the pattern of the
coffered vault is the only way to calculate the distance from which one the fresco
should be viewed.22 Based on Hoffmann’s model, the viewing point would have to

Fig. 4.5 Discrepancy
between Masaccio’s
scheme and the true
perspective of the barrel
vault. Author’s drawing

22Field et al., “The perspective scheme,” pp. 42–43, nevertheless tried in Appendix 6 to determine
the viewing distance by another method, using the vanishing lines of the abaci of the capitals. But
they did not manage to achieve a viable result, because there is too great a discrepancy between the
distance obtained from the upper front abacus (594.4 cm) and from the lower back abacus
(345.7 cm).

4.4 The Determination of the Viewing Distance 65



be located exactly 452 cm from the picture plane. This intermediate value—re-
calling that previous determinations ranged from 210.5 to 894.2 cm—remains
dubious because it is based on the line BC′, which is the weakest point in his
demonstration.23

There is in fact only one geometrical method to determine the viewing point
from the visible lines of the fresco. Consider all the points that define the curvilinear
trapezoids of the barrel vault (Fig. 4.5). In order to replace the line BC′ by a
consistent diagonal, we first have to transfer all the points An; J 0n;K

0
n; L

0
n. . .—

whatever the indices—onto a horizontal plane that is tangent to the cylinder of the
vault by the segment M′M1.

24

For the sake of clarity, let us consider points A, J′, K′, L′, M′ belonging to the
frontal arch. We know the width of all the coffers—which corresponds to the
lengths of all the consecutive arcs XY of the vault. We now need to unroll the circle
onto the horizontal that is tangent to the circle AM′B at point M′. To the
source-points J′, K′, L′… correspond the image-points J‴, K‴, L‴… Nonetheless,
the above arc values are equal to the values of the corresponding straight segments
of the new diagram. So we have:

A‴J‴ 53.6 cm
J‴K‴ 40.2 cm
K‴L‴ 38.0 cm
L‴M‴ 34.3 cm

These points generate the orthogonals FA‴, FJ‴, FK‴… while the arc summits
M′, M1, M2… fix the heights of the transversals A000B000; A000

1 B
000
1 ; A

000
2 B

000
2 . . . We can

draw the grid resulting from the intersection of the two sets of lines and trace the
diagonals of all the squares. In so doing, we immediately notice that the network of
diagonals is convex (Fig. 4.5). The lines A000

2 K
000; A000

3 L
000. . . are not straight but

broken, which prevents us from fixing the viewing point.
If the only available method for determining the viewing distance fails, then the

problem has no solution. This supplies us with another reason to think that, once we
have solved the perspective problem, Masaccio’s fresco cannot be considered a
model of linear perspective. And this is why, when Hoffmann writes “There are
only two explanations for such a chaotic scientific situation: [either] the fresco has
not been constructed with the help of linear perspective or the methods of analyzing
the perspective are not worth anything,”25 we are forced to choose not the second,
but the first alternative.

23Hoffmann, “Masaccios Trinitätsfresko,” plates 1–6.
24Figure 4.4 has been traced from the previous photogrammetric reconstruction (Fig. 4.1) to avoid
any distortion of the image of the fresco.
25Hoffmann, “Brunelleschi’s invention of linear perspective,” p. 2.
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4.5 Conclusion

Taken together, the arguments laid out in this chapter strongly support the view that
Masaccio designed the vaulted space of the Trinity in a somewhat empirical
manner. As Hoffmann has noted, Masaccio apparently took the lines of the hori-
zontal plane joining the abaci of the capitals as a guide for drawing the vanishing
lines of the coffered vault. But in doing so, he followed an erroneous method of
perspective construction. The painting of course conveys a very convincing sense
of depth, but it is not a linear perspective whatsoever because the fresco was created
with very little mathematical rigor. Consequently, it is not necessary to assume that
the painter worked with plans and elevations. Moreover, the search for the viewing
point is destined to remain an unending problem, because it is definable only if the
rules of linear perspective are applied à la lettre.

The present analysis contributes further to—and at times go beyond—the
understanding of the Trinity fresco previously proposed by Field, Danti, and others.
In contrast, I think that some of the views defended by Hoffmann overestimate the
correctness of the Trinity fresco’s perspective. Attention should be drawn to this
fact before we take our next step forward in the rush to apply the latest technology.
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Chapter 5
Ibn al-Haytham on Binocular Vision

Abstract Early modern physiological optics introduced the concept of corre-
spondence to the study of the conditions for the fusion of binocular images. The
formulation of this concept has traditionally been ascribed to Christiaan Huygens
(in a work published posthumously in 1704) and to an experiment often attributed
to Christoph Scheiner (1619). Here it will be shown that Scheiner’s experiment in
fact had already been conceptualized, first in antiquity by Ptolemy (90–168 AD),
then in the Middle Ages by Ibn al-Haytham (Latinized as Alhacen) (d. after 1040),
and the extent of the latter’s knowledge of the mechanisms of binocular vision will
be analyzed. It will then be explained why Ibn al-Haytham, who was a mathe-
matician but addressed this problem as an experimentalist, succeeded in discovering
the theoretical horopter (the locus of points in space that yields single vision) and
yet failed to recognize that the horizontal line of the horopter could be described as
a circular plane around the viewer’s head, credit for which must instead go to Vieth
(1818) and Müller (1826). Nevertheless, through his experimental studies Ibn
al-Haytham established the notion of corresponding points, explored what the cases
of homonymous (direct) and heteronymous (crossed) diplopias could reveal about
the mechanisms of vision, and prepared the ground for the discovery by Panum of
the fusional area. The influence on Western science of al-Haytham’s pioneering
treatise Kitāb al-manāẓir (Book of Optics) is examined, beginning with his suc-
cessors in the Latin-speaking world, and in particular Italy.

A key chapter in the physiology of optics considers the conditions for the fusion of
the quasi- or displaced images generated by the two eyes. Interestingly, the ancient
Greeks did not explore the questions raised by binocular vision in any depth. Euclid
only devotes three propositions to this problem (Optica, prop. 26–28)1 and limits
his analysis to what is seen of a sphere in binocular vision. If the diameter of the
sphere is less than, equal to, or greater than the inter-pupillary distance, then the two
eyes will perceive a spherical cap that is greater than, equal to, or less than the

1Elaheh Kheirandish, The Arabic Version of Euclid’s Optics, New York, 1999, pp. 80–90;
Wilfred R. Theisen, “Liber de visu,” Mediaeval Studies 41 (1979), pp. 78–80.
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hemisphere, respectively. Nowhere does Euclid address the question as to how
disparate visual stimuli are integrated.

Galen attempted to rectify this lacuna by deriving a definition of the disparity
between the quasi-images produced by the two eyes from one of Euclid’s propo-
sitions (Optica, prop. 30). Unfortunately, Galen’s exposition on binocular vision is
extremely brief2 and its primary aim is to provide an anatomical description of the
ocular paths.

Ptolemy’s treatment of binocular vision is far more comprehensive (Optica, II,
27–46, III, 25–62),3 providing the framework for Ibn al-Haytham’s research on the
same subject. A comparison of the texts by the two savants confirms that many of
the results obtained by Ibn al-Haytham were based on the thorough study and
critical analysis of his predecessor’s work. Nevertheless, it would appear to be more
useful to take the work of Ibn al-Haytham rather than Ptolemy as our departure
point to study the development of the binocular theory of vision. This choice can be
justified on two grounds.

Firstly, while Ptolemy may have furnished the original matrix for Ibn
al-Haytham’s theory, his ideas are presented in Optica in anything but a systematic
manner, with the propositions regarding binocular vision straddling Books II and III.
What is more, certain results appear to be quite tentative, a fact that earned him the
criticism of Ibn al-Haytham: “[Ptolemy] said that when the eye gazes at the middle
object assumed in the middle of the ruler at the point intersection of the two
diameters, then the two lines or diameters representing the visual axes will be seen as
a single line that coincides with the common axis… But it is an error attested both by
reasoning and experience.”4 In the final analysis therefore, Ptolemy can contribute
little to our understanding of the history of binocular vision, because at each turn we
find ourselves having to explain elements that require modification or amendment.

Secondly, unlike his work Almagest, which circulated widely and was univer-
sally read between the Duecento and the Cinquecento, Ptolemy’s treatise on optics
never achieved the stature of an authoritative text in Europe. In contrast, it appears
to have been better known in the Arab world; we find it cited two times in Greek
and five times in Arabic compared to just twice in Latin treatises from the Middle
Ages. Historians have suggested that the eclipse of Ptolemy’s Optics can be
explained by the appearance of Ibn al-Haytham’s De aspectibus, which was read by

2De usu partium, X, 12–13; Oeuvres anatomiques, physiologiques et médicales de Galien, ed.
Charles Daremberg, Paris, 1854, pp. 638–645.
3Albert Lejeune, L’Optique de Claude Ptolémée dans la version latine d’après l’arabe de l’émir
Eugène de Sicile, Leiden, 1989, pp. 26–34 and 102–118. On the perspective derived from
Ptolemy’s optics, see the excellent article by Laura Carlevaris, “La prospettiva nell’ottica antica: il
contributo di Tolomeo,” Disegnare 27 (1989), pp. 16–29.
4Ibn al-Haytham, Al-Shukūk ‘alā Batlamyūs, p. 65. Ibn al-Haytham’s critique of Ptolemy has not
always been correctly assessed in the literature; see Craig R. Aaen-Stockdale, “Ibn al-Haytham and
psychophysics,” Perception 37 (2008), pp. 636–638, which criticizes Ian P. Howard’s appraisal of
the Arab scholar, “Alhazen’s neglected discoveries of visual phenomena,” Perception 25 (1996),
pp. 1203–1217.
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the Latin perspectivists and would orient their work. As Smith wrote: “With the
continued dissemination of Ibn al-Haytham’s treatise and the proliferation of
Perspectivist works during the late thirteenth and early fourteenth centuries,
Ptolemy’s Optics was bound to lose its status as a legitimate source in optics.”5 In
fact, another reason not to take Ptolemy as our reference point is because Latin
authors retained that the explanation of binocular vision was not to be found in
Ptolemy’s Optics but in Ibn al-Haytham’s De aspectibus.

It is therefore to the Arab world that we must turn in our search for the key to a
correct reading of the further development of the theory of binocular vision. As we
begin to re-trace this history, one of the first texts that deserves mention is the Book
of the Causes of the Diversity of Perspectives in Mirrors by the Melkite physician
and scientist Qusṭā Ibn Lūqā (820–912), who settled in Baghdad and translated
many ancient Greek texts into Arabic. Qusṭā Ibn Lūqā draws the distinction
between pathological diplopia and physiological diplopia and poses the question:

By what cause is one single thing seen twice or more? And in how many ways is this
possible? We have said earlier that the sense of sight perceives visible [things] if the visual
ray falls upon them. The visible will be seen as unique if only one ray falls upon it; if two
visual rays fall on it, it will be seen as double … If it happens that the two cones emerging
from the two eyes separate from each other, such that a radiant cone from each of the two
eyes falls on the same visible [thing], then the same thing will be seen as double.6

He then constructs a classification of the causes—both natural and artificial—
which could result in the separation of the visual cones and cause diplopia; among
these are strabismus and the image of two objects located at different distances:

It may happen that one single thing will be seen as double… when a man fixes his pupil on
a close thing and on another thing in the direction of that [thing] which he has fixed on but
which is further than it from the eye; it is then that he will see one single thing as two. In
effect, when he looks at the closer [thing] and fixes on it, one of the two rays [from the two
eyes] will bend in relation to the other, and the two rays will fall on the more distant visible
[object] in this manner; as a consequence he will see two things.7

The term “artificial cause” used by Qusṭā Ibn Lūqā, and the fact that he classifies
among these causes both pathological conditions (such as strabismus) and accidental
circumstances (e.g., pressure exerted on the eyeball) could give rise to confusion.
However, he clearly states that diplopia may occur under normal as well as abnormal
conditions. The disparity arising from the observation of objects situated at different
distances does not necessarily imply that there is a problem with the visual appa-
ratus; it is normal physiological diplopia and one cannot apply the theory of neu-
tralization here to explain the integration of two sets of visual sensations.

Ibn al-Haytham (d. after 1040) was the second Arab savant to turn his attention to
binocular vision. He is unanimously recognized for his work in three fields:

5A. Mark Smith, Ptolemy’s Theory of Visual Perception, Philadelphia, 1996, p. 60.
6Roshdi Rashed, Oeuvres philosophiques et scientifiques d’al-Kindī, vol. 1: L’Optique et la
catoptrique, Leiden, 1996, p. 584.
7Rashed, L’Optique et la catoptrique, p. 586.
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mathematics (Commentary on Euclid’s Premises; On the Completion of Conics;
Exhaustive Treatise on the Figures of Lunes; On the Regular Heptagon; On the
Measurement of the Paraboloid; andOn the Measurement of the Sphere, a short tract
on what came to be known in number theory as Wilson’s theorem, although
al-Haytham was the first to state it), astronomy (On the Determination of the
Meridian fromOne Solar Altitude; On the Visibility of Stars; Doubts on Ptolemy; The
Resolution of Doubts on the First Book of the Almagest; The Resolution of Doubts on
the Winding Movement), and optics (On Optics; The Discourse on Light; On Spheric
Burning Mirrors; On Parabolic Burning Mirrors; On the Burning Sphere; On the
Light of the Moon; On the Halo and the Rainbow; On the Formation of Shadows; On
the Shape of the Eclipse; etc.). His studies on binocular vision are less well known.

Ibn al-Haytham drew inspiration from Ptolemy,8 Ḥunayn Ibn Isḥāq9 and perhaps
also Qusṭā Ibn Lūqā,10 building on their work but approaching the same questions
with greater rigor.11 For example, he set up and conducted an experimental study on
the conditions for the fusion of the quasi-images generated by two eyes, as we will
describe below, producing an impressive series of results. Not only did he identify the
existence of corresponding points on the recipient surfaces of the two eyes and
differentiate between the cases of homonymous (direct) and heteronymous (crossed)
diplopia; he also conceived a credible model for the horizontal horopter and antici-
pated the discovery of Panum’s fusional area,12 despite the fact that the medieval
world was not yet in possession of the Keplerian concept of the “retinal image”.13

8Lejeune, L’Optique de Claude Ptolémée dans la version latine d’après l’arabe de l’émir Eugène
de Sicile, p. 109. We are certain of the existence of this link based on a passage in Doubts on
Ptolemy, in which Ibn al-Haytham explicitly mentions the experiments of his predecessor; Ibn
al-Haytham, Al-Shukūk ‘alā Batlamyūs (Dubitationes in Ptolemaeum), eds. A.I. Sabra and N.
Shehaby, Le Caire, 1971, p. 65. See the observations of Abdelhamid I. Sabra, “Ibn al-Haytham’s
criticism of Ptolemy’s Optics,” Journal of the History of Philosophy, 4 (1966): 145–149.
9Ḥunayn Ibn Isḥāq, The Book on the Ten Treatises on the Eye Ascribed to Hunain ibn Is-hâq
(809–877 AD), transl. Max Meyerhof, Cairo, 1928, p. 26. Cf. Pierre Pansier, Collectio ophtal-
mologica veterum auctorum, fasc. 7: Ḥunayn Ibn Isḥāq, Liber de oculi; Galen, Littere Galieni ad
corisium de morbis oculorum et eorum curis, Paris, 1909–1933.
10Roshdi Rashed, Oeuvres philosophiques et scientifiques d’al-Kindī, vol. 1: L’optique et la
catoptrique Leiden, 1997, p. 584.
11Ptolemy provides only a brief description of the instrument devised by him to study binocular
vision. In contrast, Ibn al-Haytham’s text allows us to reproduce the experiments and understand
his results without referring to other sources; Ibn al-Haytham, Al-Shukūk ‘alā Batlamyūs, p. 65f.
See also Abdelhamid I. Sabra, The Optics of Ibn al-Haytham, Books I–III: On Direct Vision,
London, 1989, II, p. 125. Ibn al-Haytham’s corrections to his Greek predecessor’s work were
passed on to successive generations, confirming that the medieval Latin authors followed his lead
rather than Ptolemy’s.
12I discovered the article by Ian P. Howard after publishing “Ibn al-Haytham sur la vision
binoculaire,” Arabic Sciences and Philosophy, 13 (2003): 79–99. The objectives of our two studies
were quite different, with Howard devoting three pages to Ibn al-Haytham’s studies of binocular
vision; Ian P. Howard, “Alhazen’s neglected discoveries of visual phenomena,” pp. 1210–1212.
13Johannes Kepler, Ad Vitellionem paralipomena, quibus astronomiae pars optica traditur,
Frankfurt, 1604. It should be recalled that the retinal image is not sharp on all parts. As with any
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The experiments conducted by Ibn al-Haytham on binocular vision are presented
in his seven-volume treatise on optics, Kitāb al-manāẓir (III, 2). Chap. 2 is divided
into six sections. In paragraphs 2.1–2.24 the author defines various terms and
concepts and the qualitative approach that he would adopt in analyzing the problem
of binocular vision. Paragraphs 2.25–2.50 present the results of a series of exper-
iments conducted using a board that he referred to as a ‘binocular ruler’ on which
small columns of wax could be positioned. Paragraphs 2.51–2.54 compare the
binocular and monocular perception of diagonal lines drawn on this tablet.
Paragraphs 2.55–2.61 describe similar experiments, in which the columns of wax
are replaced by words written on a piece of parchment. Paragraphs 2.62–2.85
explore the visual perception of objects whose direction is gradually displaced
further and further from the anterior-posterior axis. Paragraph 2.86 presents Ibn
al-Haytham’s conclusions, and states that an analysis of “visual errors”14 will be
carried out in Chap. 3.

5.1 The Cases of Homonymous
and Heteronymous Diplopia

There are two types of diplopia. The first is referred to as heteronymous or crossed
diplopia, and the second as homonymous or uncrossed diplopia. The following
experiment is often used to illustrate how the two forms of physiological diplopia
manifest themselves:

(Footnote 13 continued)

centered optical system, the eye is not subject to the conditions of strict stigmatism. The deviation
from the paraxial approximation, which is written as a sum of six factors, characterizes the various
types of geometric aberration (spherical aberration, astigmatism, coma, field curvature and
distortion). The two main factors that distort the image are spherical aberration and astigmatism. It
suffices to fix one’s gaze ahead to realize that an object seen through peripheral vision is indistinct;
therefore the retinal image only meets the conditions of approximate stigmatism.
14Deceptiones uisus can be translated as “visual illusions.” Ibn al-Haytham employed the term
aghlāṭ al-baṣar, which has the same root as ‘error’ (ghaliṭa: errare/decipi), but sometimes used
the word īhām (illusio) instead. He was not the only scientist to consider (physiological) diplopia
as normal. Bacon also did so; in his exposition of errors in vision, he mentioned only strabismus,
the effects of cold or warm temperatures, passion, nervous derangement, problems with the vit-
reous humor, compression of the eyeball, obstruction of the lens, and the double pupil. See
Perspectiva, II, I, 3, The ‘Opus majus’ of Roger Bacon, ed. by J.H. Bridges, Frankfurt am Main,
1964, p. 88–91; David C. Lindberg, Roger Bacon and the Origins of Perspectiva in the Middle
Ages, Oxford, 1996, p. 170–176. What occurs when one fixes one’s gaze on objects situated at
different distances is discussed elsewhere by Bacon. His study of physiological diplopia is entitled
“In quo ostenditur duobus diuersis experimentis et diuersis figurationibus, quomodo unum
uideatur duo,” Perspectiva, II, II, 2, ed. Bridges, p. 94. John Pecham no longer treated diplopia in
the context of errors in vision, Perspectiva communis, I, 80, David C. Lindberg, John Pecham and
the Science of Optics, Madison, 1970, p. 150.
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The phenomenon of physiological diplopia can be made to happen by means of an
experiment devised long ago by Scheiner. That is to say, [take] a small wooden ruler about
50 cm in length, one end of which is placed at the tip of one’s nose, and which has been
pierced by three pins at 30, 40 and 50 cm. If one gazes fixedly at the middle pin, the two
other pins will be seen as doubled.15

When the ruler is pricked with a black-headed pin and a white-headed pin and one fixes
one’s gaze on the black pinhead: (a) if the white pinhead is located closer to the eyes than
the black pinhead … there is crossed diplopia; (b) if the white pinhead is located further
from the eyes than the black pinhead … there is direct diplopia.16

This demonstration has traditionally been attributed to the astronomer and
mathematician Christoph Scheiner but it actually goes back much further17 because
both Ptolemy and Ibn al-Haytham devised similar experiments and came to the
same conclusions. This ignorance of the historical facts brings up the issue of tacit
borrowings.18 How was it that a seventeenth-century Jesuit came to be credited with
an experiment carried out long before by a scientist in ancient Alexandria and
another in medieval Cairo? Ptolemy’s work on binocular vision has been analyzed
in depth by Lejeune,19 so we will focus on the research of the Arab savant.

Ibn al-Haytham begins by describing the instrument that he designed for the
study of binocular vision. It consists of a flat, rectangular piece of wood ABCD
(lawḥ, tabula), one cubit in length (45–50 cm) and four fingers wide (6–7 cm.). At
one end (AB) is a shallow depression (MHN) which serves as a nose rest. Lines are
drawn across the ruler (in different colors to make them more visible); the median
lines HZ and KT (khaṭṭān, linee recte) bisect the length and width of the ruler, and

15Henry Saraux and Bertrand Biais, Physiologie oculaire, Paris, 1973, 2nd ed. 1983, pp. 390–391.
16Annette Spielmann, Les strabismes, Paris, 1991, p. 116. The only modern optician to mention
Ibn al Haytham’s contribution to the study of physiological diplopia was Yves Legrand, Optique
physiologique, tome 3: L’espace visuel, Paris, 1956, p. 210.
17Christoph Scheiner, Oculus, hoc est fundamentum opticum… Inspruck, 1619; London, 1652,
pp. 32–49.
18The question of the borrowing of ideas is always a delicate one, and for many reasons: (1) it is
difficult to conduct an exhaustive and systematic study of a specific discovery because it will
depend on the interest and expertise of the researcher in a given domain of knowledge; (2) it is
hampered by the fact that ideas stemming from certain key texts often spread through a multitude
of canals that may be almost indistinguishable to us today; (3) an exact appreciation is required of
the role that a borrowed element may have played in a scientific work. Research on the borrowing
of ideas can nevertheless contribute—and this is its principal interest—to our understanding of the
development of a science because it impacts on the question of scientific authorship. Overly hasty
attributions could efface the stratification that regularly characterizes the evolution of scientific
concepts. It suffices to consider the research of Ptolemy, Ibn Sahl, Ibn al-Haytham, Harriott, Snell
and Descartes on the nature of refraction or that of different schools of astronomy (Marāgha, Ibn
al-Shātir and Copernicus) which introduced tangent circles to explain the circular orbit of the
planets.
19Albert Lejeune, “Les recherches de Ptolémée sur la vision binoculaire,” Janus 47 (1958): 79–86.
This article was based on a communication delivered in 1957 to the 2nd Benelux Congress on the
History of Science.
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the diagonals AD and BC cross it (quṭrān, diametra).20 Ibn al-Haytham then
fashions three small columns of wax painted in different colors and positions them
at various points along these lines. With this instrument he conducts a series of
experiments on the conditions for the fusion of binocular images that would serve
as a model for the study of optics in the West for centuries.

5.2 The Notion of Corresponding Points
in Binocular Vision

Modern specialists in physiological optics date the introduction of the notion of
“corresponding points” as an explanation for binocular vision to the seventeenth
century and the research of Christiaan Huygens (1629–1695).21 As
Pigassou-Albouy observed:

The earliest notion of corresponding retinal points can be traced back to Huygens: “[…]
every point at the back of the eye has a corresponding point at the back of the other, such
that when one point of an object is painted in several pairs of these corresponding points,
then it will appear simply as it is.”22

To explain the unification of the two visual sensations, Huygens and Müller denominated
‘corresponding retinal points’ (CRP) the photoreceptors whose stimulus simultaneously
produces the sensation of a single source.23

The concept of “correspondence,” today defined as the association between the
nasal point of one retina and a temporal point in the other retina (see below Fig. 5.2,
points pL and pR) considerably antedates the work of Huygens. One already finds
the adjective consimilis applied by Ptolemy to visual rays. These were the “simi-
larly arranged rays” (radii ordine consimiles) translated by Lejeune as “corre-
sponding rays,”24 which accords with the modern usage of the term but was only
codified during the nineteenth century. As Helmholtz wrote:

We will assign to them the terms coincident or corresponding points; they have also been
referred to as identical points, in keeping with a particular theory. Since to each point in

20Ibn al-Haytham, Kitāb al-manāẓir, III, II, 26. Opticae thesaurus Alhazeni Arabi libri septem, ed.
Risner 1572, reprint New York, 1972, p. 81; The Optics of Ibn al-Haytham, Books 1–3: On Direct
Vision, ed. Abdelhamid I. Sabra, 2 vols., London, 1989, vol. I, pp. 237–238; A. Mark Smith,
Alhacen’s Theory of Visual Perception, Philadelphia, 2001, pp. 263–264.
21Christiaan Huygens, Opuscula posthuma quae continent Dioptricam… Leiden, 1704.
22Renée Pigassou-Albouy, Les strabismes, vol. 1: Les divergences oculaires, Paris, 1991, p. 27.
23Pigassou-Albouy, vol. 2: Les convergences oculaires, Paris, 1992, p. 7; Yves Le Grand, Optique
physiologique, 3, p. 208.
24Lejeune, L’Optique de Claude Ptolémée, p. 104 et passim.
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every visual field there corresponds a specific retinal point, one may refer to these inter-
changeably as coincident, correspondent or identical points in the two retinas.25

These historical differences in terminology, which are echoed in Helmholtz’s
text on corresponding retinal points, are simply the result of the difficulty of finding
an exact translation for the Latin word consimilis. Ptolemy limits his application of
this adjective to visual rays, but Ibn al-Haytham uses it explicitly in his discussion
of corresponding points:

So the two forms impressed on the two points that are correspondingly situated (fī
nuqṭatayni mutashābihatay al-waḍ’, in duobus punctis… consimilis positionis) with respect
to the surfaces of the two eyes reach the same point in the hollow of the common nerve, and
they will be superimposed on that point so as to produce a single form.26

The “surface of the eyes” (saṭḥ al-baṣar, superficies uisus) referred to here is not
the retinal surface,27 but the anterior surface of the crystalline lens (al-jalīdiyya,

25Hermann von Helmholtz, Optique physiologique, Leipzig, 1866; Paris, 1867, p. 880. Regarding
this terminology, we should specify that the expression “corresponding points,” the only term still
in use today, originally denoted an empirical approach to the problem (e.g., Helmholtz), in contrast
to the theory based on nativism (defended by Hering) which presupposes an innate process
involving the coupling of retinal points in the brain and uses instead the term “identical points.”
The hypothesis of corresponding points, which was first proposed by Galen in De usu partium IX,
12, was taken up by Johannes Müller, Zur Vergleichenden Physiologie des Gesichtssinns, Leipzig,
1826, who stated the “law of identity of the two retinas,” and then by Ewald Hering, Beiträge zur
Physiologie, Leipzig, 1861–1864, who outlined the “law of identical visual directions.” For a
discussion of these concepts, see Ch. Thomas, “La physiologie de la vision binoculaire,” Archives
d’Ophtalmologie (Paris) 31 (1971), pp. 191–192; David Stidwill and Robert Fletcher, Normal
Binocular Vision, Oxford, 2011, p. 75.
26Kitāb al-manāẓir, III, 2, 14, Opticae thesaurus, p. 79, Optics, vol. 1, p. 234. Smith, Alhacen’s
Theory of Visual Perception, p. 256. Ṣūra (form) designates here the sensory image rather than the
image produced by the eye, which Ibn al-Haytham denominated al-khayāl.
27Felix Platter, De corporis humani structura et usu, Basel, 1583, and Johannes Kepler, Ad
Vitellionem paralipomena, quibus astronomiae pars optica traditur, Frankfurt, 1604, were the first
scholars to understand the function of the retina. Kepler wrote in De modo visionis (Chap. 5,
p. 168): “I say that vision occurs when the image of the whole hemisphere of the world that is in
front of the eye, and a little more, is formed on the reddish white concave surface of the retina.”
The first description of the role of the crystalline lens in projecting visual images onto the retina
would be provided by Scheiner, Oculus, hoc est fundamentum opticum. Ibn al-Haytham lists the
parts of the eye (ruṭūba al-bayḍiyya: humor albugineus, r. al-jalīdiyya: crystallinus, r. al-zujājiyya:
humor vitreus, ṭabaqa al-‘ankabūtiyya: tela aranea, ṭ. al-multaḥima: consolidativa, ṭ. al-‘inabiyya:
uvea, ṭ. al- qarniyya: cornea), but says nothing of the retina. We may ask ourselves whether the
rectification of this lacuna would have been significant; in the Middle Ages the most authoritative
text on the anatomy of the eye was The Book on the Ten Treatises on the Eye, whose author,
Ḥunayn Ibn Isḥāq, limits the role of the retina (ṭ. al-shabakiyya) to that of providing nutrients to
the vitreous humor and the crystalline lens. On these matters, see Muṣṭafā Naẓīf, al-Ḥasan Ibn al-
Haytham (Cairo, 1942/3), 1, pp. 205–217; Abdelhamid I. Sabra, Optics, vol. 2, pp. 45–51; Gül
Russell, “The anatomy of the eye in ‘Alī Ibn al-‘Abbās al-Majūsī: A textbook case,” in
Constantine the African and ‘Alī Ibn al-‘Abbās al-Majūsī, eds. Charles Burnett and Danielle
Jacquart, Leiden, 1994, pp. 247–265; Idem, “La naissance de l’optique physiologique,” in Histoire
des Sciences Arabes, ed. Roshdi Rashed, Paris, 1997, 2, pp. 319–354 (in which they do not,
however, discuss the experiments of Ibn al-Haytham).

78 5 Ibn al-Haytham on Binocular Vision



anterior glacialis), which was thought to be the seat of sensory responsiveness and
which Ibn al-Haytham termed “the surface of the sensory body” (saṭḥ al-jism al-
ḥāss, superficies uisus sentientis).28 Thus, the role of the retina constitutes the
principal point of divergence between medieval and early modern theories of
physiological optics.

Setting aside this nuance, Ibn al-Haytham deserves credit for having formulated
the concept of correspondence, which would serve as the starting point for the
analysis of many aspects of binocular vision. It is possible that Huygens developed
his own theory of corresponding points after reading Ibn al-Haytham’s treatise,
which was well known in classical Europe through the edition published by Risner
in 1572 (Opticae thesaurus: Alhazeni Arabis libri septem).

5.3 The Study of Physiological Diplopia
(Experiments 1 and 2)

According to early modern physiological optics, the fusion of two images into one
in binocular vision takes place when the object points are ‘painted’ in corre-
sponding points on both retinas. The phenomenon of diplopia arises in cases where
the object points fall on disparate points on the two retinal surfaces. In homonymous
diplopia every object situated on the further side of the point of fixation is seen as a
double image, whereas in heteronymous diplopia every object situated on this side
of the point of fixation is seen as a double image. Neither Ptolemy nor Ibn
al-Haytham employed a scientific term when referring to diplopia (using instead
comprehendetur duo and yudraku ithnayni), but they nonetheless make a clear
distinction between the two types of physiological diplopia.29 Here we describe the
experiments conducted by Ibn al-Haytham using his binocular ruler.

Experiment 130 When columns of wax are situated along the same diagonal at
points L Q S with the eyes fixed on Q, double images of the columns at L and S are

28Opticae thesaurus, pp. 16–17. Since the crystalline lens is made up of denser tissue than that of
the cornea, light rays are in a way ‘absorbed’ as they pass through into this new medium; see
Abdelhamid I. Sabra, “Sensation and inference in Alhazen’s theory of visual perception,” in
Studies in Perception, eds. P.K. Machamer and R.G. Turnbull, Columbus, 1978, p. 164.
29Ptolemy writes: “If line HTK is drawn parallel to line EDZ while the two axes remain focused on
D, an object at point T [which is located below the point of fixation D] will appear at the two
locations H and K … But if we focus both axes upon point T, we will see point D [which is now
located beyond the point of fixation T] at points E and Z/Cum autem producta fuerit linea HTK
equidistans linee EDZ et fuerint duo axes oppositi puncto D, res que est super punctum T, videbitur
in duobus locis qui sunt H, K… Et si posuerimus utrosque axes oppositos puncto T, videbimus
tunc D super punctos E, Z,” Lejeune, L’Optique de Claude Ptolémée, p. 103, see Fig. 5.6. This
was also the opinion of Lejeune, “Les recherches de Ptolémée,” p. 82.
30Opticae thesaurus, p. 82; Optics, vol. 1, p. 239; Smith, Alhacen’s Theory of Visual Perception,
p. 265.
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seen (Fig. 5.1). As has already been said, the doubling of the column positioned at
S, beyond the point of fixation, illustrates the phenomenon of homonymous
diplopia, while the doubling of the column at L illustrates crossed diplopia.

Experiment 231 When columns of wax are situated along the same diagonal at
points I Q P and the eyes are fixed on Q, double images of columns I and P are
seen, and likewise if the columns are situated on this side of the fixation point, on I
J, or beyond the point of fixation, on O P (Fig. 5.2).

5.4 The Determination of the Horopter
(Experiments 3 and 4)

The concept of the horopter was introduced in 1613 by the Jesuit mathematician
and physicist Franciscus Aguilonius.32 He defined the horopter as the frontal plane
containing the point of fixation. Following Aguilonius, and principally in the
nineteenth century, the horopter formed the object of many studies, notably those of
Vieth, Müller, Hering and Helmholtz.33 Today the horopter is limited to the hori-
zontal plane and is defined by the locus of points in space received by

Fig. 5.1 Ibn al-Haytham, experiment 1. Author’s drawing

Fig. 5.2 Ibn al-Haytham, experiment 2. Author’s drawing

31Opticae thesaurus, p. 82; Optics, vol. 1, pp. 239–240; Smith, Alhacen’s Theory of Visual
Perception, p. 266.
32Franciscus Aguilonius, S.J., Opticorum libri VI, Antwerp, 1613, Lib. II, pp. 105–150.
33Gerhard Ulrich Anton Vieth, “Ueber die Richtung der Augen,” Gilbert’s Annalen der Physik, 58
(1818): 233–253. Johannes Müller, Zur Vergleichenden Physiologie, Ewald Hering, Beiträge zur
Physiologie, Leipzig, 1861–1864; Hermann von Helmholtz, Optique physiologique, Paris, 1867.
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corresponding points on the two retinas. Although both the name and the form of
this geometric locus based on the notion of corresponding points were unknown to
Ibn al-Haytham, his work led directly to its discovery.

Experiment 334 When the three columns of colored wax are situated at T Q K with
the eyes A B fixed on Q, single images of the columns are seen (Fig. 5.3).

Experiment 435 The same occurs if one takes T or K as the fixation point without
displacing the wax columns (Fig. 5.3).

This represents an early attempt to determine the horopter scientifically, which
according to Ibn al-Haytham corresponds to the frontal line T K (Aguilonius would
come to the same conclusion in the seventeenth century). The historian
Abdelhamid I. Sabra recognized clearly that Ptolemy and Ibn al-Haytham laid the
groundwork for the discovery of the modern horopter, through which object points
are re-composed as single images. He wrote:

It would have been easy for Ptolemy and Ibn al-Haytham to generalize this conclusion
further. For points in the plane of the axes, the stated conditions of single vision (taken
literally) are satisfied only by points on the circumference of the circle passing through the
centers of the eyes and the point of fixation (the so-called ‘horopter circle’ or ‘horizontal
horopter’)… But neither Ptolemy nor Ibn al-Haytham draws this consequence. (Note,
however, that Ibn al-Haytham’s account is not strictly geometrical)36

This simple observation invites us to re-examine Ibn al-Haytham’s experiments
in order to determine why he did not arrive at the true form of the horopter.

5.4.1 The Theoretical Horopter

First of all, let us retrace the genesis of the Vieth-Müller horopteric circle. We will
limit ourselves to a consideration of the horizontal plane of vision that allows us to

Fig. 5.3 Ibn al-Haytham, experiments 3 and 4. Author’s drawing

34Opticae thesaurus, p. 82; Optics, vol. 1, p. 239; Smith, Alhacen’s Theory of Visual Perception,
p. 264.
35Opticae thesaurus, p. 82; Optics, vol. 1, p. 239; Smith, Alhacen’s Theory of Visual Perception,
p. 265.
36Sabra, Optics, vol. 2, pp. 123–124.
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define the “longitudinal horopter”. What is the geometric locus of the object points
that are seen as a single image by the two eyes?

Let CL be the optic center of the left eye, CR the optic center of the right eye, and
F the fixation point. Let γ designate the angle FCLCR and δ the angle FCRCL. As
they fix on point F, the rotation of the two eyes will produce quasi-images of F on
the foveae fL and fR (Fig. 5.4). The object point M will be received in the retinas of
the two eyes by the corresponding points pL and pR, that is to say, by the corre-
sponding nasal and temporal sensory cells in the two eyes.37

Under these conditions the visual directions pLM and pRM will correspond as
well, and form equal angles (α) as they cross the arcs fLpL and fRpR. M then becomes
the point of intersection of the lines with an angle of γ + α and δ − α in relation to
the line connecting the optic centers. One may immediately deduce from this

CLFCR ¼ p� c� d ¼ p� c� a� dþ a ¼ CLMCR

CL CR

M
F

f
L p

L
f

R

p
R

Fig. 5.4 Vieth-Müller
horopteric circle. Author’s
drawing

37The fusion of images in binocular vision comes about as a result of the architecture of the optic
fibers; information from the temporal retinas is picked up by the corresponding cerebral hemi-
spheres, while the nasal retinas send information to the opposite hemispheres. The influx of nerve
impulses from homologous cells of the two RCPs fuse in the V area of the extrastriate visual
cortex.
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The theorem of inscribed angles teaches us that on a circle with a center O and
two base points CL and CR, a point M describing the circle will determine an
inscribed angle CLMCR that is constant and equivalent to one half of the center
angle CLOCR.

In the present case (Fig. 5.5), the object points that are seen as single images by
the two eyes are points F, M, N … such that

h1 ¼ h2 ¼ h3 ¼ � � � ¼ a
2

These are the grounds on which Vieth and Müller defined the theoretical hor-
opter as the circle passing through the two optic centers CL and CR and the fixation
point F. A given fixation point will be associated with a unique horopteric circle.
Let us now suppose that F is displaced along the line OF. The horopter will then be
modified and, as we continue to move F, all of the horopters will form a linear
pencil of circles with CL and CR as their base points (these points will have a zero
power in relation to all the circles of the pencil).

We now arrive at a question that is of great interest to the history of optics:
having come this far, why did Ibn al-Haytham fail to construct the horopteric circle?
A series of considerations may be raised in this regard.

(1) Did the Arab scholar have the mathematical knowledge necessary to realize
such a construction? Yes. The property of the geometric plane on which the

3
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M
F

O

N

2

Fig. 5.5 The theorem of
inscribed angles. Author’s
drawing
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horopter is based had been known since antiquity;38 it was expounded by
Euclid (Elements III, 20–21),39 Archimedes (Book of Lemmas),40 and al-Kindī
(Rectification of Errors).41 Ibn al-Haytham, who wrote a treatise entitled
Solution of the Difficulties and Explanation of the Notions of Euclid’s Book
(Kitāb fī Ḥall shukūk kitāb Uqlīdis wa sharḥ ma‘ānīh), was clearly aware of
the theorem of the inscribed angle.

(2) Did Ibn al-Haytham possess the concepts of physiological optics necessary to
trace the horopter? Müller drew upon Huygens’s notion of correspondence in
his construction of the horopteric circle, but there is no reason to date the
emergence of the concept to the seventeenth century because, as can be
demonstrated, Ibn al-Haytham was already using it in the early eleventh
century (fī nuqṭatayni mutashābihatay al-waḍ‘, in duobus punctis consimilis).
Müller’s only genuine innovation was to apply the concept of correspondence
to points in the retina, but this insight was in no way essential to the model of
the horopteric circle. The path of a ray entering the eye being determined by
the indices of refraction of the different media that it is crossing, the corre-
spondence applies to the entire length of the optic path. One is therefore
justified in using the term correspondence with regard to points in the retina,
the crystalline lens, the cornea, and other parts of the eye along the optic path.
Ibn al-Haytham, who placed the site of sensibility in the crystalline lens, could
have constructed the horopter beginning with the corresponding points in the
lens.

(3) Did Ibn al-Haytham rely on an authoritative argument in constructing the
horopter? He would have found, for example, in Ptolemy: “So too, [with the
two eyes located at points A and B, and the visual axes fixed to D], if we draw
a line EDZ through point D perpendicular to GD, any object place on this line
will appear single and at its true location as long as it is aligned with point
D”42 (Fig. 5.6).
This proposition is almost equivalent to the one advanced by Ibn al-Haytham,
but there is no reason to believe that he was merely repeating an authoritative
argument. As has been seen, in Doubts on Ptolemy Ibn al-Haytham rejected

38The architects of ancient Greece were equally aware of this property of the circle and realized
that, using a set square, they could apply it to produce the fluting of their Ionic columns. With a
slight rotation of the set square, the position of the two raised borders of the groove could be
marked; by repeating this step one was (in geometric terms) simply displacing the tangent rep-
resented by the right angle of the set square along the circumference of a circle.
39Euclid, Elements, vol. 1: Livres I–IV: Géométrie plane, ed. Bernard Vitrac, Paris, 1990, pp. 431–
433. Euclid’s Elements was known to medieval Arabic scholars through at least three translations
produced between the eighth and tenth centuries, all circulating under the title Kitāb al-uṣūl.
40Archimedes, Des corps flottants, Stomachion, La méthode, Le livre des lemmes, Le problème des
boeufs, trans. and ed. by Charles Mugler (Paris, 1971), p. 513. Archimedes’ works were translated
into Arabic by Thābit Ibn Qurra.
41Roshdi Rashed, L’Optique et la catoptrique, pp. 278, 312.
42Albert Lejeune, L’Optique de Claude Ptolémée, p. 103; Smith, Ptolemy’s Theory of Visual
Perception, p. 141.
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certain conclusions arrived at—supposedly on the basis of experimental evi-
dence—by his predecessor. Since Ibn al-Haytham made such a critique of
Ptolemy, it is difficult to admit that he would have borrowed another of the
latter’s propositions without having tested it.

(4) There is, all the same, another reason that could explain why Ibn al-Haytham
was not able to arrive at the demonstration of the horopteric circle: he
approached the problem as an experimentalist43 rather than a geometer. If
there was a marked gap between the theoretical and the experimental horopter,
there would no longer be any reason to judge the conclusions of Ptolemy and
Ibn al-Haytham as unsatisfactory in comparison to the horopteric circle of

Fig. 5.6 Ptolemy, Optics III,
26. Author’s drawing after
Lejeune, L’Optique de Claude
Ptolémée, p. 103

43On the notion of experimentation and the experimental approach of the author, see Naẓīf, Ibn al-
Haytham, 1, pp. 43–48, with comments by Roshdi Rashed, in Optique et mathématiques,
Aldershot, 1992, pp. 235–239; Matthias Schramm, Ibn al-Haythams Weg zur Physik, Wiesbaden,
1963; Abdelhamid I. Sabra, “The astronomical origin of Ibn al-Haytham’s concept of experiment,”
Actes du XIIe Congrès international d’histoire des sciences, Paris, 1971, vol. IIIA, pp. 133–136.
Roshdi Rashed, Entre arithmétique et algèbre (Paris, 1984), pp. 314–315, underlines that: “It was
essentially in the area of optics, with Alhazen, that one notes the emergence of this new [exper-
imental] dimension. Everyone knows that the arrival of Alhazen marked the definitive rupture with
the school that viewed optics as the geometry of vision or light.” Gérard Simon arrived at similar
conclusions; see “La psychologie de la vision chez Ptolémée et Ibn al-Haytham,” in Perspectives
arabes et médiévales sur la tradition scientifique et philosophique grecque, eds. Ahmad Hasnawi,
Abdelali Elamrani-Jamal and Maroun Aouad, Louvain, 1997, pp. 189–190.
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Vieth-Müller, the latter being the narrow interpretation adopted by Albert
Lejeune and Abdelhamid I. Sabra.44 And yet contemporary ocular physiology
continues to distinguish between the two models.45 For example, one finds in
the literature:

On a horizontal plane, the horopter corresponds roughly to the circle determined by the
nodal points of the two eyes and the fixation point.46

Different forms of the horopter have been proposed … The empirical horopter of the
horizontal correspondences appears to be more valid than the geometric horopter.47

The distinction that is regularly made between the ‘theoretical horopter’ and the
‘empirical horopter’ reflects the doubts that contemporary physiological optics
continues to raise with regard to the geometric model of Vieth-Müller.

5.4.2 The Experimental Horopter

It appears in fact that the geometrical construction of the theoretical horopter just
described is based on some significant simplifications:48

(1) The visual field in which the horopter can actually be tested is limited. First of
all, the binocular field of vision is framed by the temporal monocular fields of
the two eyes; in a normal subject the limiting nasal ray forms an angle α = 55°
with respect to the geometric axis of straight vision. Given a fixation point

44Lejeune, “Les recherches de Ptolémée,” p. 84, Sabra, Optics, vol. 2, p. 124.
45This distinction is due in part to the debate that sprang up between Hering and Helmholtz on the
form of the horopter. The latter, with the collaboration of his colleagues Berthold, Bernstein and
Dastich, repeated Hering’s experiments but was unconvinced by the results. He wrote: “As for me,
when I place myself at the distance indicated by Hering, the surface of the threads seems to me to
be distinctly concave [whereas they should appear flat],” Helmholtz, Optique physiologique,
p. 829.
46Spielmann, Les Strabismes, p. 117.
47Pigassou-Albouy, Les Convergences oculaires, p. 9.
48The analysis that follows will assume as given the following data regarding the anatomy of the
eye: (1) thickness along the longitudinal axis: cornea 1.34 mm, aqueous humor 3.1 mm, crys-
talline lens 4.0 mm, and vitreous body 16.3 mm; (2) refraction index: cornea 1.38 mm, aqueous
humor 1.34 mm, crystalline lens 1.42 mm, and vitreous body 1.34 mm; (3) radius of curvature:
anterior surface of the cornea 7.7 mm (49 δ), posterior surface of the cornea 6.8 mm (−4 δ),
anterior surface of the crystalline lens 10.0 mm (5 δ), posterior surface of the crystalline lens
6.0 mm (9 δ). The eye has a total refractive power of 59 δ, the greater part of which is furnished by
the anterior corneal surface (the refraction index of air and of the cornea are very different, the
anterior corneal surface is far from of the retina, and the radius of curvature of the cornea is small).
The horizontal axis xx′, the vertical axis yy′, and the anterior-posterior axis zz′ cross each other at
the center of rotation of the eyeball, which is located 13.5 mm behind the anterior corneal surface,
Yves Le Grand, Optique physiologique (Paris, 1948–1956, republished 1964–1972).
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located at a distance of 25 cm (as in Ibn al-Haytham’s experiment), the two
eyes can only perceive objects located in a sector of 2α = 110°, which rep-
resents a center angle of 190° on the horopter.
One must also take into account Mariotte’s blind spot, the physiological
scotoma discovered by Edme Mariotte in 1667, which results in two zones of
monocular vision within the full binocular field.
Finally, the iris does not lie in the median plane of the eye, but approximately
3.8 mm in front of the optic center. And since the iris has an average diameter
of 3.5 mm, rays that penetrate the eye at an angle of less than 27° in relation to
the direction of the fixation point will pass through the nodal points.49 The
more oblique incident rays will either be masked by the iris or refracted to the
periphery of the crystalline lens. Their path will then be subject to spherical
aberration. Under the same conditions, vision will be distinct for the points
contained within a sector of 69° (cutting a center angle of 108° on the
horopter).

(2) If one attempts to correct for this situation by inducing mydriasis (increasing
the diameter of the pupil to its maximum of 8 mm) the oblique incident rays
will pass through the nodal points, but because the pupil is dilated most of the
rays will be refracted to the periphery of the crystalline lens. In fact, the larger
the diameter of the pupil, the greater the confusion created by spherical
aberration.

(3) Physiological optics utilizes a geometric model of the eye in which the retinal
surface is likened to the portion of a sphere. But as Yves Le Grand
acknowledged, “This geometric schema is a fiction. In reality … the geometric
axis [the anterior-posterior zz′] is not an axis of rotation; in the equatorial
plane, the curvature of the ray is generally smaller on the temporal side than on
the nasal side.”50 Thus, when a point issuing from the horopter reaches the
retinas it will not strike two exactly corresponding points, because the cor-
responding rays will reach different retinal cells.

(4) Another difficulty lies in the fact that Listing’s law51—which states that the
ocular globes are subjected to a torsion that increases with the distance of the
fixation point from the horizontal or vertical axis—only holds in the case of a
line of sight focusing on infinity. When the eyes move from the primary
position and converge on a fixation point that is quite close, a simple move-
ment of intorsion around the axis yy′ should be produced.

49If we designate the nodal point object as N, the internal limits of the iris as I and I′, and the center
of the segment II′ as H, then angle 2β below which a visual ray can touch the nodal point is
determined by the relationship:

b ¼ arcsin HI
HN

� �
Since HI = 1.75 mm and HN = 3.8 mm, then β = 27° 25′.

50Le Grand, Optique physiologique, p. 36.
51Johann Benedikt Listing, Beitrag zur physiologischen Optik, Göttingen, 1845.
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And yet this does not take place; when the fixation point is nearer, the meridians are
displaced upward, which means that the convergence leads to the outward rotation of the
two eyes … The displacements in the horizontal gaze predicted by Listing’s law reach 1
degree for every 10° of convergence in the angle 2β of the lines of sight.52

For the left eye, the image of a horizontal segment will pivot in an anti-clockwise
direction; for the right eye, the image will pivot in a clockwise direction. The
distance separating the two stimulated visual cones is 4.5 µm; therefore images form
on corresponding retinal points only if the torsion around the axis zz′ is less than 1′ of
the arc. For a fixation point situated 25 cm from the eyes (as in Ibn al-Haytham’s
experiment) the combined torsion of the eyeballs will be 2α = 3° 8″.53 Being much
greater than a torsion of 1′ of the arc, it prevents the formation of closely corre-
sponding retinal points.

Taking into account all of these factors, the geometric locus of the object points
that gives rise to corresponding retinal points is not the horopteric circle of
Vieth-Müller. The horopter passes by the fixation point, but as the eccentricity of
the retina increases, the uncertainty regarding its position increases proportionally.
As Hermann von Helmholtz (1821–1894) noted in his visual analysis of frontality
in three pins arranged on a wooden ruler 50 cm from the eyes, “The most favorable
case is always that in which the direction of the line of pins corresponds to the
direction of the tangent to the horopteric circle.”54 The conclusion drawn by the
nineteenth-century physiologist was therefore identical to the one arrived at by Ibn
al-Haytham based on his experiments.

On these grounds one can understand more clearly why Ibn al-Haytham, who
was analyzing this problem from the perspective of an experimentalist rather than a
geometer, retained the frontal line TQK as the definition of the geometric locus of
object points that are seen as single images by the two eyes. The later construction
of the horopteric circle is therefore based on dubious hypotheses that do not stand
up on closer examination. Nevertheless, in order to grasp the rationality of Ibn
al-Haytham’s concept of the frontal horopter, it is necessary to study the history of
the works from which the determination of the experimental horopter sprang.

52Yves Le Grand, Optique physiologique, vol. 1: La dioptrique de l’oeil et sa correction, Paris,
1965, pp. 248–249. Saraux and Biais, Physiologie oculaire, p. 336. Taking as his departure point a
discovery by Volkmann, Helmholtz had already demonstrated that, as the fixation point is moved
closer to the eye, a torsion around the anterior-posterior axis occurs, such that “the convergence
leads to deviations of 2° to 2½° in the accidental image,” Optique physiologique, p. 609.
53The angle of convergence 2β corresponds to the angle CLFCF formed at the fixation point F by
the visual axes of the eyes CL et CF. If H is the point of intersection between the median axis and
the line connecting the optic centers CLCR, one has:

2b ¼ arcsin CLCR
FH

� �
For CLCR = 6.5 cm and FH = 25 cm, 2β = 15°4′.
Therefore, a � 2b

10 ¼ 1�300400; 2a � 3�00800.
54Helmholtz, Optique physiologique, p. 912.
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5.5 Panum’s Fusional Area (Experiment 5)

Taking as his departure point a critique of the Vieth-Müller circle, in 1858 Peter
Ludvig Panum proposed a new conception of retinal correspondence.55 The Danish
physiologist had set out to study the degree of disparity that could be tolerated when
two images are fused in binocular vision and he devised the following experiment.
Given the two eyes CL and CR and the fixation point F, one places two small
vertical bars B1 and B2 in proximity to F, in such a way that for one of the two eyes
(say, the left eye), they are aligned along the axis CLB1B2. By displacing B1 along
the visual axis CLB2, one searches for the interval in which the barrettes are seen as
single images by the other eye CR (Fig. 5.7).

One then determines the external and internal limits (corresponding to
homonymous and heteronymous diplopia, respectively) of the area containing the
object points that are seen as simple images in binocular fusion. This is Panum’s
fusional area, reflecting the fact that retinal points which do not correspond exactly
but are slightly disparate can nevertheless be fused into a single image.56

Kenneth N. Ogle57 took up where Panum left off, devising an experiment in
which the fixation point was situated 40 cm from the eyes. In this way he succeeded
in determining the position of Panum’s fusional area between the two arcs corre-
sponding to the thresholds of homonymous and heteronymous diplopia (Fig. 5.8).

Ogle’s abacus represents the averages of the internal and external limits—which
fix the thresholds of homonymous and heteronymous diplopia—together with the
Vieth-Müller circle (marked V-M in the figure) which diverges from Panum’s
fusional area with an eccentricity of more than 6°. The horopter, which from now
on would be defined as the arc situated midway between the external and internal
limits, satisfies the conditions for the conic section:

cotan u1 � cotan u2 ¼ H

(given u1 = FCLM and u2 = FCRM, using the same notation as in Fig. 5.4). As
Ogle writes, the real horopter is “a curve set halfway between the Vieth-Müller
circle and the tangent in F to this circle.”58 In other words, for distances on the same

55Peter Ludwig Panum, Physiologische Untersuchungen über das Sehen mit zwei Augen, Kiel,
1858. See the recent overview by Christian Corbé, Jean-Pierre Menu and Gilles Chaine, Traité
d’optique physiologique et clinique, Paris, 1993, pp. 100–102.
56Helmholtz, Optique physiologique, p. 937. An explanation for the phenomenon was found only
much later: “Because there is a convergence of the retinal impulses from many receptor cells
toward a single peripheral ganglion cell, and because a certain degree of disparity is compatible
with fusion, a point-by-point correspondence does not exist … So that the zone of direct vision
surrounding the fixation point is not just a line [i.e., the horopter], but a surface area that increases
the further one moves away from the fixation point,” Spielmann, Les strabismes, p. 117.
57Kenneth N. Ogle, Researches in Binocular Vision, Philadelphia, 1950, 2nd edition 1964.
58David Stidwill, Robert Fletcher, Normal Binocular Vision, London, 2011, p. 75.
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Fig. 5.8 The horopter and Panum’s fusional area. Author’s drawing after Ogle, Researches in
Binocular Vision, 1950
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Fig. 5.7 Panum’s experiment. Author’s drawing
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order of magnitude as the length of Ibn al-Haytham’s wooden ruler, the
Vieth-Müller circle provides an upward biased model of the retinal correspondence,
whereas the frontal line provides a downward biased model. The curvature of the
experimental horopter changes with the distance from the fixation point. For short
distances the horopter is concave. For the so-called “abathic distance,”59 which
varies from one to six meters as a function of the distance between the pupils of the
two eyes, the horopter coincides with the frontal line that passes through the fix-
ation point. Beyond the abathic distance, the experimental horopter becomes con-
vex and has only one point of tangency with the Vieth-Müller circle.

These elements allow us to formulate a last question regarding the horopter.
Could the frontal model chosen by Ibn al-Haytham simply be the result of the fact
that, if one uses a sufficiently narrow ruler for the experiment (TK = 6 or 7 cm), the
frontal line and the horopteric circle are virtually merged? The maximum distance
between the two appears along the edge of the ruler: TT′ = KK′ = 0.41 cm.60 Are
we therefore in Panum’s area, where the images of points K and K′ fuse? Ogle’s
abacus yields, for a fixation point located 40 cm from the eyes and an eccentricity
of 8° (angle QHK = 7° 28′), a tolerance of 4.6 mm (Fig. 5.8). However, the closer
the fixation point, the lower the tolerance. As a consequence, in Ibn al-Haytham’s
experiment the tolerance should be much less than 4.6 mm and the points K K′
should not be seen as fused. Repeating Ogle’s experiment using Ibn al-Haytham’s
binocular tablet shows that a pin K′ positioned at 4 mm in front of K is effectively
seen as doubled.61 One must therefore not accept the argument that the line TQK
represents an approximation of the theoretical horopter, because the two would be
virtually identical. For the observer, the circular horopter and the frontal horopter
are not identical.

It may be concluded that Ibn al-Haytham adopted the hypothesis of the frontal
line for a completely different reason than the one traditionally ascribed to him;
from an experimental point of view it was more convincing than the model based
on a circle. In fact, the object points of the frontal line TQK fall into Panum’s

59Le Grand, Optique physiologique, vol. 3, p. 215.
60On the experimental ruler of Ibn al-Haytham, Q is the point of fixation. The Vieth-Müller circle
passes through K′ near point K, and through T′ near point T. Q′ is the point of intersection of the
middle line HQ and the front line T′K′. QQ′, which is the sagitta of the circle, can be calculated:
TT′ = KK′ = QQ′ = R (1 − cos α). Since R = 12.75 cm and α = 14° 30′, it follows that
TT′ = KK′ = 0.41 cm.
61I reproduced these experiments with the replica of the instrument that was on display at the
Galleria degli Uffizi (Florence) during an exhibition from October 16, 2001 to April 7, 2002,
Dominique Raynaud, “Alhazen/Ibn al-Haytham, Tavoletta binoculare,” in Nel segno di Masaccio.
L’invenzione della prospettiva, ed. Filippo Camerota, Firenze, 2001, p. 14. In Helmholtz’s
experiment, which consisted of moving three sliding rulers to which pins were affixed, using the
middle pin as the fixation point, the author noted that it sufficed to move the lateral pin ‘a half-pin’s
width’ (0.25 mm) to see a double image; Helmholtz, Optique physiologique, p. 912. Without
attaining his degree of precision, we frequently observed a doubling of the image between 1 and
2 mm.
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fusional area, whereas the object points of the circle T′QK′ are seen as double
images.

Let us return now to Panum’s fusional area and the question of the approximate
correspondence of images. While the experiments designed by Panum and Ogle
were entirely original, the notion of measuring the degree of disparity tolerated in
fusion cannot be attributed to them. In fact, one finds a first expression of this in Ibn
al-Haytham’s Kitāb al-manāẓir.

Experiment 562 The columns of wax being lined up once again in positions T Q K
and with the eyes fixed on Q, take the column in position K and move it along the
side of the ruler KC. Close to K, at point S the column will still be seen as a single
image. Beyond this point, for example at F, the column of wax will be seen as
double (Fig. 5.9).

This observation—which remained qualitative in nature—did not allow Ibn
al-Haytham to determine the extent of the space within which the object points were
fused. Nonetheless it paved the way for Panum’s notion of the fusional area
because, by displacing the column of wax along KC, he clearly established that
fusion also operates for object points that are not strictly contained within the
horopter. It would have sufficed for Ibn al-Haytham to repeat the experiment,
moving the column of wax along KC, TD, QZ and many other parallels to these
lines, to arrive at a definition of the tolerances allowed by correspondence.

Ibn al-Haytham’s doctrine can be summarized as follows: (1) objects will be
seen as single images if they are arranged in corresponding or almost corresponding
directions, that is to say, if they lie in the frontal plane that passes through the point
of fixation (in modern terms, the horopter); (2) objects will be seen as single images
if their position does not deviate excessively from the frontal plane (in modern
terms, Panum’s fusional area). If these conditions are not met, the objects will be
seen as double images. Diplopia was therefore studied as a general physiological
process. Ibn al-Haytham’s conception of the fusion of binocular images contrasted

Fig. 5.9 Ibn al-Haytham, experiment 5. Author’s drawing

62Opticae thesaurus, p. 82; Optics, vol. 1, p. 240; Smith, Alhacen’s Theory of Visual Perception,
p. 266.
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markedly with the optical research subsequently initiated in classical Europe, where
one notes a tendency to oversimplify the problem. We will examine this in the next
chapter.
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Chapter 6
The Legacy of Ibn al-Haytham

Abstract Scientific ideas can have no lasting legacy unless they are accepted and
transmitted by a series of successors. Our investigation will therefore focus first of
all on the diffusion of texts regarding the optics of Ibn al-Haytham (known as
Alhacen in the Latin West) among his peers and subsequent generations of sci-
entists by studying the translations and commentaries that were available. Next, it is
necessary that his ideas should have been applied by his successors to problems that
they themselves were interested in. The conditions under which Ibn al-Haytham’s
theories were transferred to a new context will be examined by studying the
obstacles that hindered the application of the principles of binocular vision to
perspective. This analysis will provide a response to the question: Could Ibn
al-Haytham’s theory of binocular vision have given rise to a system of represen-
tation that was different from linear perspective?

The legacy of Ibn al-Haytham’s optics in the Latin world will be studied in two
parts. The first will focus on the diffusion of his work and on the availability to
scholars of manuscript copies and printed editions of his texts. Since the existence
of a text did not necessarily mean that it was read or its contents accepted, we will
seek in the second part to clarify the conditions under which the binocular theory of
vision might have provided an impetus for the work on perspective that took place
between the Duecento and the Cinquecento.

6.1 The Availability of the Texts of Ibn al-Haytham
in the West

As has been shown in the previous chapter, the research on optics that began in the
seventeenth century (on topics such as the theory of corresponding points, direct
and crossed diplopia, the construction of the horopter, and early notions of the
fusional area) cannot be understood without an assessment of the work of Ibn
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al-Haytham, which laid the foundations for many of the discoveries of modern
physiological optics. One can detect here a stratification of scientific concepts
comparable to that seen in the studies of refraction undertaken by Ptolemy, Ibn
Sahl, Ibn al-Haytham, Harriott, Snell and Descartes. Although the savants of the
classical period did manage to shed considerable light on how vision functioned by
explaining the role of the crystalline lens and the retina, it must be recognized that
their understanding of the conditions for the fusion of binocular images was still
rooted in medieval theories of optics. On this point there was no genuine break-
through before the discovery of the neuro-physiological foundations of binocular
vision.

To what may be ascribed the impression of a marked lack of scientific progress
before the seventeenth century? An examination of how the science of optics was
received allows us to formulate an explanation. In classical Europe, where trans-
lations and commentaries on most of Ibn al-Haytham’s work on optics were in
circulation and discussed,1 savants might have believed the study of binocular
vision to be so saturated with commentary that it was enough to cite the accepted
authorities with no need for further analysis. Herein no doubt lies one of the main
reasons for the mistaken perception that the problems of physiological optics were
discovered ex novo in the seventeenth century.

Let us now examine the revival of Ibn al-Haytham’s ideas on optics in more
detail. His work was known through a translation from the Arab to Latin that
provided the basis for the edition published by Risner in 1572. It also spread
through the many commentaries written by medieval and Renaissance scholars. In
particular, it is known that Ibn al-Haytham’s experiments on binocular vision were
repeated and abundantly discussed in the Latin world during the entire course of the
Middle Ages.

If Risner’s edition did not always provide a literal translation of the original text,
the essential elements of the theory laid out in Kitāb al-manāẓir could be found in
De aspectibus, a twelfth-century Latin translation of Alhacen’s work, whose author
is unknown but who probably belonged to the circle of Gerard of Cremona.2 This
text served as the source for a translation of Alhacen’s work into the vernacular, De
li aspecti, which was in all likelihood compiled in northern Italy in the middle of the

1For an overview of the influence of Ibn al-Haytham’s work on optics in medieval Europe, see
David C. Lindberg, “Alhazen’s theory of vision and its reception in the West,” Isis 58 (1967):
326–337; Idem, “Introduction to the reprint edition,” Opticae thesaurus, New York, 1972, pp. xxi–
xxx; A. Mark Smith, Alhacen’s Theory of Visual Perception, Philadelphia, vol. 1, pp. lxxx–cxi.
2The Latin text can be attributed to two successive hands. The translation is quite literal up to
Book III, Chapter 3, before becoming looser and sometimes resembling a paraphrase more than a
translation of the original Arabic. The passages on binocular vision appear in III, 2 and therefore
were the work of the first translator. Even if the presumption is that the Latin version came from
Spain because of the voiceless ‘c’ in Alhacen appearing in the earliest manuscripts (Lindberg,
Theories of Vision, pp. 209–210; Sabra, The Optics of Ibn al-Haytham, II, p. lxiv), its attribution to
Gerard of Cremona remains questionable; this is discussed by A. Mark Smith, Alhacen’s Theory of
Visual Perception, pp. ix, xx–xxi.
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fourteenth century.3 The Italian edition constituted a genuine milestone that is
crucial to our understanding of the spread of Ibn al-Haytham’s ideas in medieval
and Renaissance Italy. De li aspecti transmits in extenso the chapters dedicated to
diplopia and the fusion of quasi-images.4

Not only could Alhacen’s text be read in Latin or Italian; it also formed the
subject of many scholarly commentaries.5 Thus one finds extracts or paraphrases of
passages from his work on binocular vision in the most important medieval treatises
on optics: the Perspectiva of Roger Bacon;6 Witelo’s work of the same title;7

Tractatus de perspectiva8 and Perspectiva communis by John Pecham;9 and
Questiones super perspectiva communi by Biagio Pelacani da Parma.10 It may be
noted that the aims of each of these authors differed; Bacon elaborated a scholastic
interpretation of Alhacen’s theories, whereas Witelo presented a faithful para-
phrasing, and Pecham condensed his ideas into a succinct aide-mémoire.

3Philological analysis has shown that MS. London, British Library, Royal 12.G.VII served as the
Latin matrix for the Italian version, A. Mark Smith and Bernard R. Goldstein, “The medieval
Hebrew and Italian versions of Ibn Mu‘adh’s ‘On twilight and the rising of clouds’ Nuncius 8
(1993): 633–639. This text, discovered by Enrico Narducci, “Nota intorno a una traduzione
italiana fatta nel secolo decimoquarto del trattato d’ottica d’Alhazen,” Bollettino di bibliografia e
di storia delle scienze matematiche e fisiche 4 (1871): 1–40, was investigated in depth by Graziella
Federici Vescovini, “Contributo per la storia della fortuna di Alhazen in Italia: Il volgarizzamento
del ms. Vat. 4595 e il ‘Commentario Terzo’ del Ghiberti,” Rinascimento 5 (1965): 17–49; Eadem,
“Alhazen vulgarisé: Le ‘De li aspecti’ d’un manuscrit du Vatican (moitié du XIVe siècle) et le
troisième ‘Commentaire sur l’optique’ de Lorenzo Ghiberti,” Arabic Sciences and Philosophy 8
(1998): 67–96.
4Alhacen’s exposition of the principles of binocular vision takes up folios 57r–66r of MS. Vat. lat.
4595. I wish to thank Pietro Roccasecca for allowing me to examine this manuscript. Several
passages from the text are reproduced in Federici Vescovini, “Contributo per la storia della fortuna
di Alhazen in Italia,” pp. 31–49, and “Alhazen vulgarisé,” pp. 73–79.
5Alhacen’s Optics was also mentioned in treatises on other matters. Around 1230 Jordanus of
Nemore refers in De triangulis, IV, 20 to “19 [34?] quinti perspective”; see Marshall Clagett,
Archimedes in the Middle Ages, Philadelphia, 1964, vol. 1, pp. 668–669; and 1984, vol. 5,
pp. 297–301. Around 1230–1250 Bartholomaeus Anglicus cites Alhacen in his De proprietatibus
rerum, III, 17 as an “auctor pespective”; James Long, Bartholomaeus Anglicus, De proprietatibus
rerum, Books 3–4: On the Properties of Soul and Body, Toronto, 1979, pp. 39–45.
6The Opus maius of Roger Bacon, ed. J.H. Bridges, Frankfurt am Main, 1964, pp. 92–99, new
edition: David C. Lindberg, Roger Bacon and the Origins of Perspectiva in the Middle Ages,
Oxford, 1996.
7Witelo, Opticae libri X, ed. Risner 1572; reprinted New York, 1972, pp. 98–108. It is worth
noting that there were many more copies of the treatises on perspective by Bacon and Pecham in
circulation than that of Witelo.
8John Pecham, Tractatus de perspectiva, ed. D.C. Lindberg, St Bonaventure, 1972, pp. 56–57.
9David C. Lindberg, John Pecham and the Science of Optics, Madison, 1970, pp. 116–118.
10Blaise de Parme, Questiones super perspectiva communi, eds. G. Federici Vescovini and
J. Biard, Paris, 2009, pp. 178–190. Biagio’s treatment of binocular vision is incomplete. He poses
the question as to whether vision takes place at the chiasma, but makes no comment on the
proposition by Pecham in Perspectiva communis, I, 80 concerning the conditions for the fusion of
quasi-images.
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Nevertheless, they all copied Alhacen’s diagrams and arrived at the same conclu-
sions, albeit sometimes in more simplified form. These similarities become apparent
when one compares the texts and figures on some of the more important proposi-
tions regarding binocular vision.

Prop. III, 2.9. Here Alhacen distinguishes between the two cases of diplopia:

Heteronymous (crossed) diplopia: “When that other visible object lies nearer both eyes
than the visible object on which the two [visual] axes intersect/quando illud aliud visum
fuerit propinquius ambobus visibus viso in quo coniunguntur duo axes”;

Homonymous (direct) diplopia: “When that other visible object… lies farther from both
eyes than the visible object on which the two [visual] axes intersect/quando illud aliud
visum… fuerit remotius ab ambobus visibus viso in quo coniunguntur duo axes”.

Bacon and Pecham both copied Alhacen’s diagram (Fig. 6.1) and came to the
same conclusion: the fixation of a central point induces a doubling of the points in
front of or behind it. Even so, they differed in their understanding of the problem.
Roger Bacon was pursuing the same objective as Alhacen—In which it is shown…
how a single thing appears double/In quo ostenditur… quomodo unum videatur
duo—but he cut short the discussion of the figure in order to present the results of
his own experiments using a binocular ruler. For his part, John Pecham interpreted
binocular vision as a form of optical illusion (errore, deceptio) attributable to a
defect in the vision or to limitations in the visual conditions,11 which actually
constitutes a misinterpretation of Alhacen’s text.

Prop. III, 2.15. In this proposition Alhacen explains the fusion of two
quasi-images in terms of the existence of corresponding points: “So the two forms
impressed on the two points that are correspondingly situated with respect to the

Fig. 6.1 The legacy of De aspectibus, prop. III, 2.9: a Alhacen, Paris, BnF lat. 7319, fol. 116v;
b Roger Bacon, Perspectiva (ed. John H. Bridges, The ‘Opus majus’ of Roger Bacon, II, p. 95);
c Author’s drawing after John Pecham, Tractatus de perspectiva, ed. David C. Lindberg, p. 73;
Permission of the Bibliothèque nationale de France; Bacon, Opus maius, V, II, II, 2, ed. Bridges,
p. 95; Pecham, Tractatus de perspectiva, p. 57.)

11John Pecham, Tractatus de Perspectiva, ed. D.C. Lindberg, St. Bonaventure, 1972, p. 57.
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surfaces of the two eyes reach to that same point in the hollow of the common
nerve, and they will be superimposed at that point so as to produce a single
form.”12

Latin authors such as Witelo and Pecham copied this figure (Fig. 6.2). In his text
Witelo repeats Alhacen’s argumentation, paraphrasing essential passages such as
his notion of corresponding points (in two points correspondingly situated/in
duobus punctis consimilis positionis). John Pecham simplifies the Arab scholar’s
text, arguing that vision is actually quite straightforward because, barring anomalies
and accidents, the images in binocular vision are always fused at the level of the
optic nerve: “The duality of the eyes must be reduced to the unity/Oculorum
dualitatem necesse est reduci ad unitatem.”13 He schematicizes the argument by
discussing the propositions on binocular vision separately (Perspectiva communis,
I, 32 et I, 80). He does not in fact make a distinction between the two types of
physiological diplopia nor does he explain the disparity in the images stemming
from binocular vision and their non-corresponding positions in the two eyes until
proposition I, 80 (An object appears double when it has a sensibly different position
relative to the two axes/Ex variatio sensibiliter situ uisibilis respectu duorum axium
ipsum duo apparere). Recognizable here nevertheless—apart from a few

Fig. 6.2 The legacy of De aspectibus, prop. III, 2.15: a Alhacen, Paris, BnF lat. 7319, fol. 117r;
b Witelo, Perspectiva (ed. Frederic Risner, Opticae Thesaurus, p. 103); c John Pecham,
Perspectiva communis (Paris, BnF lat. 7368, fol. 15r). (Permission of the Bibliothèque nationale de
France; Witelo, Optica, III, 37, ed. Risner pp. 102–103; Lindberg, John Pecham and the Science of
Optics, p. 117.)

12“Et due forme qui infiguntur in duobus punctis que sunt consimilis positionis apud superficies
duorum visuum perveniunt ad illum eundum punctum concavitatis communis ipsius nervi, et
superponentur sibi apud illum punctum, et efficientur una forma,” Smith, Alhacen’s Theory of
Visual Perception, I, pp. 256–257.
13John Pecham, Perspectiva communis, I, 32; Lindberg, John Pecham and the Science of Optics,
p. 116.
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differences in terminology—is the same explanation that was provided by Alhacen,
according to which quasi-images will fuse if they reach corresponding points in the
two eyes (impressed on the two points that are correspondingly situated/infinguntur
in duobus punctis que sunt consimilis positionis), an argument that would be used
later by many authors, including Huygens and Müller.

Prop. III, 2.27. In this proposition Alhacen describes the wooden tablet that
served for his experiments on binocular vision. Witelo and Bacon copied his figure,
each adding the lines that illustrated the results of his experiments, whereas the
drawing in De aspectibus simply showed the ruler with its pins (Fig. 6.3).

Witelo used the same tablet (a board of one cubit… and four digits/tabula…
unius cubiti… quattuor digitorum…) and presented the same conclusions, slightly
condensed, as those laid out by Alhacen in Chap. 5 (then the experimenter
examines…, the experimenter fixes the visual axes… if the experimenter directs his
visual axes…/deinde experimentator inspiciat…, experimentator figat axes
uisuales…, quod si experimentator dirixerit axes uisuales…). Roger Bacon only
retained the results of Alhacen’s principal experiments (nos. 1, 3 and 5), which he
presented in a series of succinct propositions. He added that one could arrive at the
same conclusions without resorting to the experimental ruler (Even without such a
board, an experimenter can test many things relevant to these matters/Et experi-
mentator potest sine tabula experiri multa in hac parte).

While it is clear that the authors of the Latin Middle Ages broadly adopted the
teachings of Alhacen (with some modifications and distortions), it may be noted
that the influence of De aspectibus continued throughout the Renaissance.

Fig. 6.3 The legacy of De aspectibus, prop. III, 2.27: a Alhacen, Paris, BnF lat. 7319, fol. 121v;
b Witelo, Perspectiva (ed. Frederic Risner, Opticae Thesaurus, p. 165); c Roger Bacon,
Perspectiva (ed. John H. Bridges, The ‘Opus majus’ of Roger Bacon, II, p. 96). (Permission of the
Bibliothèque nationale de France; Witelo, Optica, IV, 108, ed. Risner, p. 164; Bacon, Opus maius,
V, II, II, 3, ed. Bridges, p. 96.)
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It appears that De aspectibus achieved such undisputed status that it could not be
ignored by any scholar embarking on the study of binocular vision, and many
authors continued to copy or paraphrase the same passages. One finds lengthy
extracts in the Commentario terzo of Lorenzo Ghiberti14 and in many of the notes
of Leonardo da Vinci.15 During the Cinquecento binocular vision was discussed by
Girolamo Cardano in Problematum medicorum16 and by Vignola in Due Regole
della prospettiva pratica. An edition of the latter with commentary was later
published by Egnatio Danti.17 On 23 December 1591 Christoph Grienbergen
delivered a lecture at the prestigious Collegio Romano18 in which he broached the
question of binocular vision beginning with a presentation of the theories of
Alhacen and Witelo. Alhacen was also cited by the eminent scholar Giambattista
della Porta in 1593.19

This collection of texts—from translations of Kitāb al-manāẓir into Latin and
thence into Italian, to Latin commentaries and supercommentaries—provides a
picture of the impact of the theories of Ibn al-Haytham on the conceptions of
binocular vision in the Latin world. With regard to the accessibility of his texts, it
can be taken for granted that the perspectivists had the opportunity to borrow
elements from the Optics of Ibn al-Haytham in either the Latin or Italian versions.
But did they do so? Before addressing this question, let us examine the compati-
bility of his theory with the problem of representations in perspective.

6.2 Obstacles to the Binocular Theory of Vision

When the theory of binocular vision was applied to perspective it met with
objections that we will now pass in review.

14Lorenzo Ghiberti reproduced Alhacen’s chapter on binocular vision almost in its entirety (that is,
props. 2.1–2.8, 2.8–2.13, 2.19–2.47, 2.51–2.65 and 2.71–2.86, as they appear in A. Mark Smith’s
edition), I Commentari, ed. Ottavio Morisani, Naples, 1947, pp. 133–136 and 139–149; K.
Bergdolt, Der dritte Kommentar Lorenzo Ghibertis, pp. 294–304 and 314–368. Experiments
performed using Alhacen’s ruler are described on pp. 330–348.
15For example, Libro di pittura, §§ 115 “Perche la pittura non può mai parere spicata come le cose
naturali,” and 811 “Di prospettiva,” ed. A. Borzello, Lanciano, 1924, pp. 76, 401.
16Girolamo Cardano, “Problematum medicorum. Sectio Secunda,” Hieronymi Cardani
Mediolanensis… Operum tomus secundus, Lugduni, 1663, pp. 636–642.
17Egnatio Danti, Le Due Regole della prospettiva pratica di M. Iacomo Barozzi da Vignola, Roma,
1583, pp. 53–55; Les Deux Règles de la perspective pratique, French transl. by P. Dubourg
Glatigny, Paris, 2003, pp. 222–226.
18Fieri posse… in aliquam mensa lumine. This text has been edited by Michael J. Gorman,
“Mathematics and modesty in the Society of Jesus: the problems of Christoph Grienberger,”
Mordechai Feingold, ed., The New Science and Jesuit Science. Seventeenth Century Perspective,
Dordrecht, 2003, pp. 41–48.
19Giovanni Battista della Porta, De refractione optices parte libri novem, Naples, 1593, Book VI,
“Cur binis oculis rem unam cernamus,” pp. 139–148.

6.1 The Availability of the Texts of Ibn al-Haytham in the West 101



In the literature one finds various misinterpretations of the functioning of
binocular vision, which tend to hierarchize fusion and diplopia, considering simple
vision to be the normal mode of seeing and diplopia a marginal condition that might
occasionally develop. Since fusion provided a more intuitively convincing expla-
nation of perspective than diplopia, the postulate of monocular vision appeared to
be justified. Closer analysis shows that this hierarchy, overtly affirmed in
eighteenth-century treatises on optics,20 is not consonant with the theories of Ibn
al-Haytham for it rests on anachronistic notions and simplifications that must be
understood if we are to reconstruct the context in which Ibn al-Haytham and his
Latin successors conducted their research.

As it is now known that Ibn al-Haytham’s theory of binocular vision circulated
widely in two versions—Latin and Italian—we will henceforth cite passages from
both as we review the development of optics in the Latin West.

6.2.1 Physiological and Pathological Diplopia

Since Book III of Ibn al-Haytham’s Optics was devoted primarily to the study of
optical illusions (deceptiones visus), one might be drawn into believing that the
theory of binocular vision could be reduced to a theory of pathological diplopia. But
Ibn al-Haytham’s treatment of this theory is limited to Chap. 2 of Book III, which
forms an introduction to the study of optical illusions presented in Chaps. 3–7. The
summary to Book III stipulates this clearly:

The second [concerns certain] things that need to be set forth for the analysis of visual
illusions/Secundum de eis que debent proponi sermoni in deceptionibus visus/El sicondo de
quelle cose che se debano propore sicondo tuto in le deceptione del uiso.21

The closing paragraph of the chapter (prop. 2.86) is no less explicit:

And now that these points have been explained, it is time to begin the discussion of visual
illusions and to describe their causes and their kinds/His autem declaratis, incipiendum est
de sermone de deceptione visus et declarare causes et species earum/Dechiarato questo e da
guadare in lo sermone dela deceptione del uiso e dechiarare de cagione e le spetie de esse.22

As a consequence, it was actually within a general framework that Ibn
al-Haytham undertook his study of the conditions for the fusion of quasi-images.
This point has not always been clearly grasped by historians of science, who have
tended to present the conclusions drawn by Ptolemy and Alhacen from their
binocular experiments as follows:

20See in particular the discussion of Alhacen’s theories in William Porterfield, A Treatise on the
Eye, Edinburgh, 1759, Vol. 2, Book V, pp. 279–328.
21Smith, Alhacen’s Theory, vol. 1, p. 245; MS. Vat. lat 4595, fol. 57rb.
22Ibid., p. 286; MS. Vat. lat 4595, fol. 66ra.
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In strabismus, most often one of the eyes plays a dominant role that for all practical
purposes overrides the contribution of the other; however, the paralysis of an oculomotor
muscle, or simply pressure on one of the eye globes, allows the formation of two inde-
pendent retinal images, thus causing double vision or diplopia.23

This reading does not distinguish between physiological and pathological
diplopia, and treats all cases of double vision as abnormal. In contrast, the examples
of diplopia discussed in chapter III, 2 represent illustrations of normal physiological
diplopia and have no particular relationship to strabismus, pathological diplopia, or
the phenomenon of optical illusions.24

6.2.2 Diplopia Is not an Unusual Phenomenon

The fact that chapter III, 2 opens with a discussion that takes simple vision as the
standard case allows one to deduce that diplopia occupied a secondary position in
Ibn al-Haytham’s theory of optics. For example, his first proposition poses the
question: “Since it is so, we must determine how a single, distinct object is seen
simultaneously by the two eyes as one image, most of the time and in most cases,
and how it happens that a unique object can be identically situated in relation to the
two eyes, most of the time and in most cases.”25 The Latin and Italian versions of
his text read:

Prop. 2.1: So we need to explain how a single visible object is generally perceived as single
by both eyes in many [different] situations, as well as how the situation of a single visible
object will generally be equivalent with respect to both eyes under various conditions/Unde
oportet nos declarare quomodo unum visum comprehenditur a duobus visibus unum in
maiori parte temporis et in pluribus positionibus, et quomodo positio unius visi ab
ambobus oculis in maiore parte temporis et in pluribus erit consimilis/Doue fia di bisogno
noi dechiarare como uno uiso zioe como una cosa ueduta si comprendre da dui uisi como el
uno in magiore parte di tempi e in piu dispositione e chomo la positio de uno seno (?) da
amedui lochij in magiore parte del tempo e in piu sera consimille.26

All the same, the phenomenon of diplopia is not rare. Ibn al-Haytham
acknowledges this, for example, in prop. 2.9, which introduces the two cases of
homonymous and crossed diplopia, and by prop. 2.44 and prop. 2.45, which
describe how the lines on his ruler are perceived by the two eyes:

23Gérard Simon, Le Regard, l’être et l’apparence dans l’optique de l’Antiquité, Paris, 1988,
pp. 131–132.
24Further confirmation is provided by three passages in De aspectibus which interpret mistaken
perceptions of size as a consequence of monocular vision; see prop. 2.51, 2.52 and 2.53.
25Optics, vol. 1, pp. 228–229 (italics mine).
26Smith, Alhacen’s Theory, vol. 1, p. 247. “In maiori parte temporis” should be translated as
“most of the time” since “generally” already translates universaliter (prop. 2.3); MS. Vat. lat 4595,
fol. 57vb. See also prop. 2.49.
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Prop. 2.9: Furthermore, the axes of both eyes often intersect on some visible object while
the two eyes perceive another visible object that is not correspondingly situated with
respect to the eyes in terms of direction…/Et multotiens coniunguntur duo axes amborum
visuum in aliquo viso, et cum hoc duo visus comprehendent aliam rei visam cuius positio in
respectu duorum visuum erit diversa in parte…/E molte uolte se congiungeno le axe de tuti
dui li uisi in alchuna cosa uisa e cun queste dui uisi comprendeno comprenderano laltra
cosa uisa dela quale la positione in rispecto de amedui i uisi sera diuersa in la parte….27

Prop. 2.44: Yet this line, and everything that lies on it, except for the peg that is placed in
the center, invariably appears double if the two [visual] axes intersect at the peg placed in
the center/Et ista linea et omnia posita super ipsam preter individuum positum in medio
semper videntur duo cum duo axes concurrerint in individuo posito in medio/E questa linea
e tute quelle cose che sono posite sopra quella ultra lindividuo posito in lo megio sempre
pareno due quando due asse serano concurse in lindividuo posito in lo megio.28

Prop. 2.45: On this basis it has been therefore been shown that a visible object that lies on
different sides of the two [visual] axes always appears double/Declaratum est igitur ex hac
dispositione quod visum cuius positio in respectu duorum axium est diversa in parte semper
videtur duo…/Dechiarato e adunche da quella dispositione che quello che si uede quando la
positione de esso in rispecto de due asse e diuersa in parte sempre pareno due….29

The adverbs “often” (multotiens) (2.9) and “always” (semper) (2.44, 2.45)
preclude limiting diplopia to exceptional cases of abnormal vision. Therefore, the
meaning of passages in which Alhacen describes cases of simple vision as “fre-
quent” must not be misinterpreted. Objects are seen as single images if they lie in
corresponding or almost corresponding directions. In all other cases they will be
seen as double images.

6.2.3 Images Are not Blurred in Diplopia

Another interpretation that permits the hierarchization of simple and double vision,
with simple vision being considered as normal and double vision as the exception,
is based on the argument that diplopic images would be out of focus. In fact, all
retinal images tend to be blurred around the edges because the conditions of stig-
matism are no longer met and the cones, which are more sensitive to light, are less
numerous toward the periphery. This argument cannot be found in Kitāb al-manāẓir
because the anatomical knowledge on which it is based was discovered much later.
Here, for example, is what the Latin and Italian versions of Alhacen’s text have to
say about those cases in which quasi-images are disparate:

Prop. 2.19: Nevertheless, its form will be indefinite rather than definite/Sed tamen forma
eius non erit verificata sed dubitabilis/Ma niente meno la forma de esso non sera certificata
seno dubitabile.30

27Smith, Alhacen’s Theory, vol. 1, p. 252; MS. Vat. lat 4595, fol. 59ra.
28Ibid., p. 268; MS. Vat. lat 4595, fol. 62va.
29Ibid., p. 269; MS. Vat. lat 4595, fol. 62va.
30Ibid., p. 259; MS. Vat. lat 4595, fol. 60va.
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Prop. 2.20: So the form of its extremities will be indefinite rather than definite/Quapropter
forma extremorum erit dubitabilis, non certificata/Per la quale cosa la forma degli estremi
essi dubitabili o uoi sera dubitabile, non certificata.31

Prop. 2.21: And so the form of such visible objects will be indefinite under all circum-
stances… /Et sic forma huiusmodi visibilium erit dubitabilis in omnibus positionibus…/
Cosi la forma de questi uisibili sera dubitabile in tute le dispositione….32

Although the fusion of corresponding points leads to “definite” vision in the sense
that it is certified by the organ of sight (certificata, verificata), diplopia does not
produce a blurred image. The entire argument here rests on the word dubitabilis
—“dubious, what may be doubted”—which brings one back to the duality of the
quasi-images produced by the two eyes. However imperfectly superimposed, these
quasi-images do not in the end merge in a synthesis that “glues together” their salient
traits. It is precisely because they are clearly distinct that the eye hovers in doubt as to
what it is seeing; that is, it does not know which of the two images it should choose.

6.2.4 Different Theories Regarding the Unification
of Binocular Images

The theory of the suppression of one of the two images in binocular vision and the
critique of this theory, which will be examined further below, can only be under-
stood within the framework of the notions that were conceived in order to account
for the unification of the visual sensations received by the two eyes.33These theories
can be divided into three groups: the theory of permanent fusion, the theory of
conditional fusion, and the theory of the absence of fusion.

(1) Permanent fusion
According to the earliest of all the theories, that of permanent fusion, the images
received by the two eyes are always associated and joined together. This was
proposed most notably by Pseudo-Aristotle (Problemata XXXI, 4, 7), who
retained that the functioning of the two eyes could not be disassociated, either in
terms of motor function or of perception. Is it not, as he asked, “[…] because the
eyes, although two in number, depend on one and the same principle?”34 This
theory would be adopted by John Pecham who, considerably simplifying the
text of Alhacen on this point, wrote: “The duality of the eyes must be reduced to
unity/Oculorum dualitatem necesse est reduci ad unitatem.”35

31Ibid., p. 261; MS. Vat. lat 4595, fol. 60vb.
32Ibid., p. 262; MS. Vat. lat 4595, fol. 61ra.
33On this point the best account is that of Nicholas J. Wade, “Descriptions of visual phenomena
from Aristotle to Wheatstone,” Perception 25 (1996): 1137–75; Idem and Hiroshi Ono, “Early
studies of binocular and stereoscopic vision,” Japanese Psychological Research 54 (2012): 54–70.
34Aristote, Problèmes, tome III, ed. P. Louis, Paris, 1994, p. 50.
35Lindberg, John Pecham and the Science of Optics, p. 116.
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The considerations of Galen (De usu partium X, 14) and Pseudo-Aristotle
(Problemata XXXI) survive in a question in Problematum medicorum by Girolamo
Cardano. The precise date of this text is not known because it was never published
during the author’s lifetime;36 all that can be affirmed is that the work was written
before the death of Cardano in 1576. Question 3 reads:

Why does the myopic see better with both eyes than with either one of the two eyes, while
those who have good vision see as much with a single eye?—the proof is that they close
one eye when they want to aim [their vision] in a straight line. But rather than aiming,
would it not be better just to see? Is it that, on closer inspection, the visual species of a
single eye is more concentrated in the cone? I also state that the myopic only sees a portion
[of the visual field] with each eye, the other part is not seen, and so the two [eyes] are
needed to see everything. The remaining [visual power] helps the operation of the other
eye. Suppose that K sees ABCD straight ahead and BDEF on the other side; that L sees
BDEF straight ahead and ABCD on the other side. Nevertheless K and L will perfectly see
all parts, and all the better the whole that K [will see] his half ABCD, and L his own BDEF.
But for perfect vision, the [visual] power of the closed eye combines with that of the other
[eye], and as a result, he sees clearly; and rather better when he looks with one eye rather
than two [eyes]. Why, when the organ is injured and corrupted, the strong (for example,
that having strong fire from a little water) is easily strengthened? Is it because he gathers his
power, or is this not always true? Where the light is lacking, as in old men, light added to
the other eye allows them to see better, while those who are filled with [light] are prevented
from doing so. This is why the same [old men], because they see better at a distance, as far
as they are brought by nature, see quite well with both eyes.”37 (Fig. 6.4).

This text is surprisingly anachronistic. Cardano revives the theory of extramis-
sion, which was abandoned by most medieval scholars after their exposure to the
work of Alhacen. It also illustrates the difficulty that Cardano had in choosing
between the conflicting theses of Pseudo-Aristotle; visual fixation is better using
one eye, but visual perception is clearer using two eyes (Problemata XXXI, 4 and
10). Cardano attempts to reconcile the two notions by proposing a less than

36Jean-Pierre Nicéron, Mémoires pour servir à l’histoire des hommes illustres dans la République
des Lettres, Paris, 1731, vol. 14, p. 267.
37“Cur lusciosi melius cernunt ambobus oculis simul quam alterutro oculo quovis qui autem acie
valida sunt perspiciendum uno tantum; indicio est quod ubi collimare velint alterum oculorum
claudunt? An quod collimare melius, non sit melius videre? at hoc sit ut rectius inspiciant cum in
unum oculum species visibilis in conum magis coangustetur? Vel dico quod lusciosi parte una
oculi vident alia non vident & ita utroque totum. Et reliqua adiuvant operationem alterius oculi,
velut K, inspiciat ABCD recte perfecte & BDEF contra: L, recte & perfecte BDEF contra ABCD:
ita K, L, utranque partem bene atque perfecte videbunt & aliquanto melius etiam totum quam K,
suam medietatem ABCD, & L, suam BDEF. At in oculo perfecto uno occluso tota vis & spiritus in
unum coeunt & ita optime videt, ac melius nec solum collimat quam ambobus. An quod membrum
laesum a quovis incommodo diversitur & offenditur; robustum (Exemplo praevalidi ignis ab aqua
pauca) corroboratur modo leve sit: ut quia suas vires colligat, vel quod non semper verum sit, sed
ubi lumen deficit, ut in senibus maxime, lumine addito ex altero oculo melius videant, contra illi a
superfluo impediuntur. Ad hoc videmus in iisdem qui ob hoc procul melius vident quamvis hoc
magis naturae aduersetur procul, quam duobus oculis bene videre,” Girolamo Cardano, Opera
Omnia, tomus secundus, Lyon, 1663, pp. 640–641.

106 6 The Legacy of Ibn al-Haytham



satisfactory compromise—allowing for fusion in the case of myopathy and
suppression in the case of normal vision.

The theory of permanent fusion would then be taken up by Egnatio Danti who,
citing Risner’s edition of the works of Alhacen and Witelo,38 kept nothing of the
theory of correspondence that formed the core of the analysis of binocular vision.
The doctrine of permanent fusion would reappear in Descartes’ Dioptrique.39

Published in Leiden in 1636, Dioptrique ignores the teachings of Aguilonius and
Scheiner which were published in 1613 and 1619. According to Descartes, the
unification of visual sensations is controlled by a small gland which he denomi-
nated the glandula pinealis or conarium. In reality this gland is responsible for the
synthesis of melatonin, but Descartes believed it to be “the seat of common sense.”
In the sixth Discourse he reiterates his thesis by drawing the famous parallel:

And as the blind man does not judge a body to be double although he touches it with his
two hands, so too, when both our eyes are disposed in the manner required to direct our
attention to one and the same place, they need only make us see a single object there, even
though a picture of it is formed in each of our eyes.40

Fig. 6.4 The theory of
binocular vision according to
Girolamo Cardano, Opera
Omnia, tomus secundus,
p. 640

38Danti, Le Due Regole della prospettiva, pp. 12, 33. Danti’s text is discussed below.
39René Descartes, Le Discours de la méthode suivi d’extraits de la Dioptrique, etc., Paris, 1966,
pp. 139–140.
40“Et comme cet aveugle ne juge point qu’un corps soit double, encore qu’il le touche de ses deux
mains, ainsi, lorsque nos yeux sont tous deux disposés en la façon qui est requise pour porter notre
attention vers un même lieu, ils ne nous y doivent faire voir qu’un seul objet, nonobstant qu’il s’en
forme en chacun d’eux une peinture,” Descartes, La Dioptrique, Sixième Discours, p. 149.
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(2) Suppression
Permanent fusion represents a single theory of vision, whereas the thesis of
non-fusion allows for two distinct types of vision in which a monocular image
may be generated by one eye or by the two eyes alternately. The sources of the
theory of suppression are quite ancient; they can be traced back to Galen (De
usu partium X, 14), who espoused the theory of extramission and believed that
the pneuma descended from the encephalon and was shared by the two eyes in
binocular vision, whereas it was transmitted integrally to one eye in monocular
vision. From this Galen drew the conclusion that monocular vision was more
acute than binocular vision.41Some of his successors took the argument to its
extreme and claimed that, the two eyes being intact, the processing of images
was conducted monocularly.

Case 1 The image is furnished by one of the two eyes. The best known version of
this thesis is probably the one proposed by the Jesuit scholar Giovanni Battista della
Porta of Naples, who wrote in De Refractione:

Nature has bestowed on us two eyes, one on the right, the other on the left, so that when we
are going to see something on the right, we see with the right eye, and on the left with the
left eye… Therefore we always see with a single eye… Hence the two eyes are not able to
see the same thing at the same time.42

In 1679 Sébastien Le Clerc, a French engraver who had taken up the study of
geometry, wrote a short treatise in support of the thesis of suppression.43 Mistaken
ideas are often slow to be abandoned; Le Clerc drew his principal argument not
from the works of Della Porta, but from the lines of investigation pursued by Ibn
al-Haytham and others. He based his thesis of suppression on the conundrum posed
by the disparity between images, finding himself unable to explain how they were
unified, even though Aguilonius had already presented a convincing geometric
analysis of the problem in 1613.

In the eighteenth century Porterfield44 would formulate, on anatomical grounds,
a critique of the ancient idea that the unification of visual sensations takes place at
the level of the chiasma. The role assigned by Descartes to the pineal gland (which
the optic nerves do not actually reach) is ascribed by Porterfield to this crossing
point between the two optic nerves. Being aware of the latest discoveries regarding

41Galien, Oeuvres anatomiques, physiologiques et médicales, ed. Ch. Daremberg, Paris, 1854, vol.
1, p. 648.
42“Oculos binos natura largita est nobis a dextris unum, a sinistris alterum, ut si a dextris aliquid
visuri sumus, dextro utamur, at si a sinistris sinistro, unde semper uno oculo videmus… Unde non
simul videre possunt rem eandem,” Della Porta, De refractione optices parte libri novem, Naples,
1593, pp. 142–143.
43Sébastien Le Clerc, Discours touchant le point de veuë, dans lequel il est prouvé que les choses
qu’on voit distinctement, ne sont veuës que d’un oeil, Paris, 1679. His ideas are discussed below.
44William Porterfield, A Treatise on the Eye. The Manner and Phænomena of Vision, 2 vols.,
Edinburgh, 1759, pp. 308–328.
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the horopter, Porterfield acknowledges that when images are disparate they are seen
as double. Even so, he sought to minimize the consequences of this by hypothe-
sizing that the soul possesses a ‘faculty of learning’ that allows it to reunify double
images.45 The following year Du Tour46 conducted experiments on binocular vision
and established that if two images are disparate they are not fused, but rather are
seen sequentially. This paved the way for the modern theory of retinal rivalry,
according to which two images are perceived alternately if there is a large disparity
between them in terms of form or color.

Case 2 The image is furnished by only one eye, generally the dominant one. This
thesis was defended by Francis Bacon in a short treatise published in 1627.47 One
encounters it again in the work of Giovanni Alfonso Borelli who, based on his
personal observations, concludes that the left eye is always dominant.48 These
notions would be criticized in La Vision parfaite by Chérubin d’Orleans, who
challenges the thesis of suppression—both alternate (case 1) and constant
(case 2)49—and then in the Physical Essay on the Senses by Le Cat, who observes
that vision can vary from individual to individual, with either one eye or the other
being dominant, and sometimes with no dominance at all (case 2).50

In French it became the custom to refer to these theories by the term “sup-
pression” in cases where inhibition involves only a part of the image seen in one
eye, and the term “neutralization” when this inhibition involves the entire image

45“That we have here given the true Account of this Phænomenon, will be further evident to any
one who considers that, when the Mind does not mistake the Situation of the Eye, as in those who
by Custom have, from their Infancy, contracted a Habit of moving their Eyes differently, all
Objects appear single as to other Men; and this likewise is the Reason why, in the Case before us,
all Things come in Time to be seen single; for, by repeated Experiences, the Mind becomes wiser,
and by Degrees learns to form a right Judgment concerning the Direction of the Eye,” Porterfield,
A Treatise on the Eye, pp. 314–315. See also p. 328.
46Étienne-François Du Tour, “Discussion d’une question d’Optique” with an “Addition,”
Mémoires de mathématique et de physique présentés à l’Académie royale des Sciences par divers
savans 3 (1760): 514–530; 4 (1763): 499–511.
47“We see more exquisitely with one eye shut, than with both open. The cause is, for that the
spirits visual unite themselves more, and so become the stronger,” Sylva sylvarum (1627), ed. by
J. Spedding et al., The Collected Works of Francis Bacon, London, 1857, 2, p. 628; quoted by
Nicholas Wade, “Early studies of eye dominances,” Laterality 3 (1998): 104.
48Giovanni Alfonso Borelli, “Observations touchant la force inégale des deux yeux,” Journal des
Sçavans 3 (1672): 295–298.
49“The man who has two healthy eyes naturally well-formed and jointly open, necessarily sees
with both eyes at the same time, and not with just one eye at a time or with the two eyes
alternately/L’homme qui a les deux yeux sains naturellement bien conformez, & conjointement
ouverts, voit necessairement des deux yeux au mesme temps, & non pas seulement d’un oeil à la
fois ou des deux yeux alternativement,” Chérubin d’Orleans, La Vision parfaite ou Le concours
des deux axes de la vision en un seul point de l’objet, Paris, Chez Sebastien Mabre-Cramoisy,
1677, Epitre au Roy.
50Claude-Nicolas Le Cat, Traité des Sens, Amsterdam, 1744, pp. 204–208.
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seen in one eye, whereas the English refer to suppression theory, which assumes the
partial or total inhibition of the summing of binocular images.51

(3) Conditional fusion
In comparison to the preceding theses of unconditional fusion and suppression,
the theories in the third group appear quite sophisticated. Here again one notes
the presence of two types of phenomena: fusion takes place if the direction of the
two eyes corresponds exactly or if they correspond approximately.

Case 1 On the condition that the direction of the two eyes corresponds exactly. It is
in this group that one finds once again the classic theories of Ptolemy and Ibn
al-Haytham which were examined in Chap. 5, and of their Latin successors men-
tioned at the beginning of this chapter. Geometry remaining the preferred paradigm
in ancient and medieval optics, the notion of correspondence was always interpreted
in the strict sense; that is, the images must appear in similar positions: fī nuqṭatayni
mutashābihatay al-waḍ‘, in duobus punctis… consimilis positionis, in two points
correspondingly situated. Ibn al-Haytham may have ventured slightly beyond this
limit by studying the admissible tolerances in the fusion of images, but his
observations were not, as we have already said, sufficient to challenge the empirical
definition of the fusional area. Therefore, while medieval Latin authors (such as
Bacon, Witelo and Pecham) may have been familiar with these problems, they
made no real contribution to the study of optics, which had to await the intuitive
discovery of the circular form of the horopter by Aguilonius and its systematic
definition by Vieth and Müller.52

Case 2 On the condition that the direction of the two eyes corresponds, but only
approximately. The development of experimental physiological optics led to the
adjustment of the theory of the horopteric circle without calling into question the
validity of the concept of “correspondence.” The first steps were taken by Charles
Wheatstone in 1838;53 with the aid of a stereoscope he showed experimentally that
the unification of visual sensations took place as long as the direction of the two
eyes diverged slightly, and that this slight discrepancy contributed to the perception
of relief or stereopsis (Fig. 6.5).

Wheatstone did not specify the fusion intervals and it was not until the work of
Panum54 that these conditions were defined. This would result in the abandonment
of the thesis of the Vieth-Müller circle and its replacement by Panum’s fusional area.

51The terminology has been clarified, especially by David Stidwill and Robert Fletcher, Normal
Binocular Vision, London, 2011, pp. 61–62.
52See Chap. 5.
53Charles Wheatstone, “Contributions to the physiology of vision.—Part the First. On some
remarkable, and hitherto unobserved, phænomena of binocular vision,” Philosophical
Transactions of the Royal Society of London 128 (1838): 371–394.
54Peter Ludwig Panum, Physiologische Untersuchungen über das Sehen mit zwei Augen, Kiel,
1858.
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With regard to this detailed classification of past optical theories, which we have
simplified in order to be able to regroup them, modern physiological optics (most of
whose theories fall into the third group) distinguishes between three fundamental
situations relative to the integration of visual sensations:

(1) an exact correspondence between the image points on the two retinas (the
theoretical horopter) results in the simple fusion of quasi-images;

(2) a slight disparity (of less than 1°) in the image points on the two retinas
(Panum’s area) triggers stereopsis, i.e., the fusion of the two images with the
perception of relief;

(3) a marked disparity triggers physiological diplopia, a complex phenomenology
that includes homotopic diplopia (the superpositioning of two distinct and
disparate images), retinal rivalry (disparate images are seen alternately at a
rhythm of 2 to 3 cycles per second), suppression (the partial effacement of one
quasi-image in favor of the other), and neutralization (the complete suppres-
sion of one of the two images).55

6.2.5 Neutralization Is not Constant

If we bring together all the historical texts dealing with binocular vision and
compare what they have to say on the unification of visual sensations, we find that:
(1) the cases of normal and pathological diplopia were regularly confused; (2) the
predominant explanation regarding how quasi-images become unified was the

Fig. 6.5 Binocular disparity according to Charles Wheatstone, “Contributions to the physiology
of vision,” p. 372, Plate XI, Fig. 15

55Henry Saraux and Bertrand Biais, Physiologie oculaire, Paris, 1983, pp. 393–394.
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thesis of neutralization. Such was the opinion of Albert Lejeune and Gérard Simon,
who wrote on the binocular experiments of Ptolemy:

We always focus on the object to which our attention is given and we unconsciously
neutralize everything that could damage the clear perception of what we wish to see. It is
true that the observation of double images is very difficult and is only achieved at the cost
of much practice.56

Such redoublings, which should greatly interfere with peripheral vision, generally escape
our notice; we often perceive only one of two unfused images, the other is neutralized.57

It suffices to consider their observations together with those of specialists in
physiological optics to grasp that their works must be read with prudence. Yves Le
Grand, who examined the hypothesis of the permanent neutralization of one of the
two retinal images, wrote:

One may have the neutralization of one of the retinal images, which would prevent one
from seeing double. This was the opinion of Porterfield (1759), who considered the per-
ception of double images as abnormal or at the very least artificial… Yet, with a little
practice, one can perceive very well these double images, as we will show shortly, and the
hypothesis of constant neutralization is therefore inadmissible.58

This thesis, which was probably drawn from past sources—including not only
Porterfield, but also Della Porta, Gassendi, Tacquet and Le Clerc—does not suffice
to explain the functioning of binocular vision for two principal reasons.

Primo, the thesis of constant neutralization would negate the very real benefits
associated with binocular vision. Specialists have listed at least ten positive effects,
which can be classified in two groups based on the contributions of binocular vision
to vision in general and to the perception of three-dimensional space in particular.59

Among its generic properties, it is known that binocular vision: (i) lowers the
threshold for the detection of light; (ii) shortens the reaction time to visual stimuli;
(iii) increases visual acuity; (iv) increases the threshold of sensitivity to contrast;
and (v) increases the sensitivity to spatial contrasts.

Among the properties directly involved in the perception of space, it is known
that binocular vision: (vi) facilitates the perception of relief by detecting the cur-
vature of objects in the frontal plane; (vii) allows for the localization of an object in
space by concentrating attention on the fixation point; (viii) is responsible for the
spatial arrangement of objects through depth perception (Euclid was aware that two
eyes could perceive a larger portion of a sphere than one eye alone);60 (ix) allows
one to infer the distance of an object from the fixation point based on the degree of

56Albert Lejeune, “Les recherches de Ptolémée,” p. 79.
57Gérard Simon, Le Regard, l’être et l’apparence dans l’optique de l’Antiquité, Paris, 1988,
pp. 131–132.
58Yves Le Grand, Optique physiologique, vol. 3, p. 209.
59These properties are expounded in all textbooks on physiological optics. See, for example,
Stidwill and Fletcher, Normal Binocular Vision, pp. 29–30.
60Euclid, Optica, prop. 28–30; Theisen, Liber de visu, pp. 78–80; Kheirandish, The Arabic Version
of Euclid’s Optics, pp. 88–99.
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binocular convergence; and (x) generates a mental image beginning with the
quasi-images produced by each eye, the most complex phenomenon discussed in
Chap. 5. And yet by making the assumption that we see through just one eye at a
time, the thesis of constant neutralization denies the existence of all of these
properties and in particular, by annulling binocular parallax, suppresses any pos-
sibility of the perception of relief and depth.

Secundo, if one accepts the notion that the phenomena of neutralization, sup-
pression and retinal rivalry can be merged, “neutralization” only manifests itself in
well-defined situations, as has been illustrated by experiments with black discs or
vertical and horizontal grids. One may then question the validity of an extrapolation
of the thesis of neutralization beyond these cases to the reduction of double images
to single ones.

What was Ibn al-Haytham’s position on this point? According to him, simple
images are seen when they are situated exactly or approximately in the same frontal
plane (the horopter), which corresponds to the case of the fusion of quasi-images.
Otherwise what one has is physiological diplopia, that is to say, stereopsis or true
diplopia. In the case of fusion, the form of the object is certified (certificata);
otherwise, the two images are superimposed (due forme erunt se penetrantes) and
the form of the object is open to doubt (forma eius non erit certificata sed dubit-
abilis). In the follow-up to this analysis, Ibn al-Haytham is led to specify the
conditions for the perception of these double images. According to him, we do not
notice the doubling of an image if the object is of a single color or texture. Here is
the relevant text in three languages:

Prop. 2.19: Rather, the form of every point that lies far from the point of intersection will be
impressed on two points of the two eyes that correspond… And if the visible object is of
one color, then the effect of doubling will hardly be noticed because of the correspondence
in color and the sameness of the form. If, however, what is seen is multicolored, or if there
is some design, or depiction, or [if there are] subtle features in it, then the effect of doubling
will be noticeable…/Sed forma cuiuslibet puncti remoti a puncto concursus figetur in
duobus punctis amborum visuum… Et si visum fuerit unius coloris, tunc illud fere nichil
operabitur in ipsum propter consimilitudinem coloris et ydemptitatem forme. Si autem
visum habuerit diversos colores, aut fuerit in eo lineatio, aut pictura, aut subtiles inten-
tiones, tunc illud operatur in ipsum…/Ma la forma de ziascheduno punto rimoto dal punto
del concorso se fichara in dui punti de amedui i visi… E sel viso fosse de uno colore alora
quello apena operarebe in esso e quasi nulla operarebe per la similtudine <dela forma e dela
identi> del colore e dela identita dela forma. Ma se el viso havesse havuto diversi colori o
pictura o intentione subtile alora questo opera in esso …61

The doubling of images is perceptible then, if at least one of the above condi-
tions is met: i.e., the object must be multicolored, or present a complex outline or
texture. In all other cases the doubling will pass unnoticed. Ibn al-Haytham’s
solution offers the advantage of not relying on the theory of constant neutralization
and therefore constitutes an important milestone in the development of modern
optical theory.

61Smith, Alhacen’s Theory, vol. 1, pp. 260–261; MS. Vat. lat 4595, fol. 60vb.
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6.3 Conclusion

A perusal of the literature on optics shows that the theory of Ibn al-Haytham formed
the subject of learned commentary from the Middle Ages to the classical period. It
can be concluded therefore that his work was generally accessible to the scientific
community in Latin Europe. Physiological diplopia was not regarded at the time as
an abnormal phenomenon.

Ibn al-Haytham explains the conditions under which objects will be seen as
simple images in binocular vision: they must lie exactly in the same frontal plane or
nearly so. Otherwise there will be a disparity, which may go unnoticed if the object
is a single color or its texture or pattern are uniform. By bringing a rigorously
constructed solution to bear on the problem of depth perception—the basis of the
theory being the distinction between the case of direct diplopia (the doubling of
images of objects located behind the fixation point) and the case of crossed diplopia
(the doubling of images of objects located in front of the fixation point)—could this
medieval theory of binocular vision have provided a valid foundation for the
development of perspective by offering a solution to the problem of how objects
located at different distances from the spectator could be depicted?

Ibn al-Haytham’s theories would have been accessible to scholars through the
many texts and commentaries then in circulation. Since the problems he was
studying corresponded to those that artists were seeking to resolve, his work could
have found direct applications in the representation of perspective.
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Chapter 7
The Rejection of the Two-Point
Perspective System

Abstract During the classical period many theoreticians (Vignola, Danti, Bassi,
Huret and Le Clerc) published detailed critiques rejecting the perspective system
based on two vanishing points located on the same horizon. A study of their texts
establishes unambiguously that the system, by then judged by the main theorists to
be unorthodox, was closely linked to the principles of binocular vision. The very
fact that these discussions were being carried on in the academies and in circles
close to them, in France as well as in Italy, shows that the postulate of monocular
vision, which was a prerequisite for linear perspective, met with considerable
resistance from painters and architects during the classical period. The validity of
drawing a perspective using just one eye was still being debated in 1679, two and a
half centuries after Brunelleschi.

There is ample documentation showing that the notion of “two-point perspective”
explicitly linked to binocular vision was rejected by the principal theoreticians of
perspective during the classical period. Various texts written between the middle of
the sixteenth and the end of the seventeenth centuries inform us as to the debates
that were being conducted between painters, architects and mathematicians who
adopted opposing positions on this topic. All of them drew a link between the
heterodox construction of two-point perspective and the assumption among its
practitioners that the system of monocular perspective attributed to Brunelleschi
and Alberti could not be used because man has two eyes rather than one. Hence the
experience of binocular vision was a permanent and non-contextual condition of
visual perception. This explains why one finds compositions based on the two-point
system of perspective so frequently in paintings from the classical period.
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With the exception of the notes of Lorenzo Ghiberti1 and Leonardo da Vinci2

which were discussed above, there are very few documents that present an appli-
cation of the principles of binocular vision. One finds instead a series of treatises
criticizing the perspective system based on two vanishing points situated on the
same horizon. These texts were written in the sixteenth century by scholars asso-
ciated with the first Italian art academies (Giacomo Barozzi da Vignola, Egnatio
Danti and Martino Bassi) and in the following century by theorists close to the
circles of the Académie royale de Peinture de Paris, such as Grégoire Huret and
Sébastien Le Clerc.3 We will now attempt to identify the practitioners who utilized
the two-point construction that was so uncompromisingly condemned by theorists.

7.1 In the Earliest Italian Art Academies

7.1.1 Vignola and Danti (1559–1583)

The first work testifying to this debate is Jacopo Barozzi da Vignola’s Due Regole
della prospettiva pratica, which includes a chapter entitled “That all things ter-
minate at a single point/Che tutte le cose vengano à terminare in un solo punto”. In
it he refutes the perspective system based on two principal vanishing points:

By the shared opinion of those who drew in perspective, it was concluded that all things
visible at the sight should tend at a single point. However some have thought that, the man
having two eyes, [Perspective] should end in two points… Who has studied the anatomy of
the head can have seen that the two optic nerves join together. Similarly, the thing seen,
though it enters both eyes, ends in a single point to common sense… Being unified, we see
only one view. So far as I have been trained in this art, I do not think we can operate
rationally by more than one point/Che tutto le cose vengano à terminare in un solo punto.
Per il commune parere di tutti coloro, che hanno disegnato di Prospettiua, hanno concluso,
che tutte le cose apparenti alla vista vadiano a terminare in un sol punto: ma per tanto si
sono trovati alcuni, che hanno havuto parere, che havendo l’huomo due occhi, si deve
terminare in due punti… & chi ha veduto l’annotomia della testa, puo insieme haver

1Ghiberti discusses binocular vision on two occasions, Bergdolt, Der dritte Kommentar Lorenzo
Ghibertis, pp. 294–304, 314–368. One also finds vestigial references in other texts, for example
when Ghiberti, going back to Roger Bacon, writes, “in due occhi si fanno due diuersi iudicij,”
p. 118.
2Paris, Institut de France, ms. A, fol. 1b, 70r, ms. D, fol. 5r, 9r; Windsor, Disegni anatomici, fol.
146r, 198r; British Museum, fol. 115a; Libro di pittura, §§ 115, 482, 811. See The Notebooks of
Leonardo da Vinci, ed. Jean-Paul Richter, New York, 1972, pp. 53, 77, 129.
3We will not consider here a passage by Andrea Pozzo which begins “Immaginatevi dunque
un’Uomo con due occhi…,” because it presents a simplified hypothesis in which the two eyes
could assume any position; Andrea Pozzo, Perspectiva pictorum et architectorum, vol. 2, Roma,
1698, Fig. 4.

116 7 The Rejection of the Two-Point Perspective System



veduto, che li due nervi de gli occhi vanno ad unirsi insieme, & parimente la cosa vista,
benche entri per due occhi, va a terminare in un sol punto nel senso commune… & stando
la vista unita non se ne vede se non una. Ma sia come si voglia, per quanto io mi sia
travagliato in tal’ Arte, non so trovare che per piu d’un punto si possa con ragione operare.4

In his commentary on Vignola’s text, the mathematician Egnatio Danti sup-
ported the position that two-point perspective should be excluded using an argu-
ment based on the physiology of vision. Since visual images fuse at the chiasma
(Fig. 7.1), only one-point perspective is possible:

[The optic nerves] join together at point H, where the species coming to the common sense,
blend together… It follows that, with two eyes, we see only one thing and that in per-
spective there is only one point where you draw what you see at a glance without changing
position. It is not possible to work in this art with two horizontal points placed on the same
plane, and you must operate with only one point which all major parallel lines meet/[I nervi
della vista] si congiungono insieme nel punto H, dove le specie, che da gli spiriti visuali
sono portate al senso commune, si mescolano insieme… ne segue, che con due occhi si
vegga une cosa sola, & che nella Prospettiua sia un punto solo, disegnandoci ella quel che si
vede in un’ occhiata, senza muoversi punto: & che non sia possibile operare in quest’ arte
con due punti orizontali posti nel medesimo piano… che non si possa operare se non con
un punto principale, al quale vanno tutte le linee parallele principali.5

This shift from a geometry-based theory of optics towards one based on the
physiology of vision reflects the fact that the author’s brother, Vincenzo Danti, was
a practicing anatomist and Egnatio himself had carried out numerous dissections in
Florence and Bologna.6 All the same, his assertion that his writings were based on
experiments and authoritative sources: “Et questa è la descritione dell’occhio tratta
da’ libri dell’annotomia di Vincentio Danti… Vessallio, e altri… Valverde…”7 has

Fig. 7.1 Diagram of the
optic tracts, after Egnatio
Danti, Le Due Regole della
prospettiva pratica, p. 54

4Le Due Regole della prospettiva pratica, Roma, 1583, p. 53, French translation by P. Dubourg
Glatigny, Paris, 2003, p. 222 (italics mine).
5Le Due Regole della prospettiva pratica, p. 54, French p. 225 (italics mine).
6Pascal Dubourg Glatigny, “La merveilleuse fabrique de l’oeil,” Roma moderna e contemporanea,
7 (1999), p. 374.
7Danti, Le Due regole, pp. 2–3.
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a rhetorical ring to it, for he was actually reproducing the Arab–Galenic conception
of optics as transmitted by Mondino dei Liuzzi (ca. 1270–1326), which he probably
learned of through the commentaries of Jacopo Berengario da Carpi published in
Bologna in 1522.8

In contrast, the influence of Vesalius appears unlikely:

1. Danti wrote that the optic nerves are “vacui come una picciola cannucia [hollow
like a tiny straw],” whereas Vesalius stated that they were solid and—in contrast
to Mondinus, Berengarius, Massa and Curtius—denied that they crossed at the
point of the chiasma (decussatio).9

2. Danti supported the thesis of intromission, which Vesalius rejected.10

3. According to Vesalius the crystalline lens is located in the center of the eye,
whereas Danti—in agreement with Realdo Colombo—placed it immediately
behind the pupil, at a point corresponding to one-fifth of the diameter of the
eye.11

4. With regard to the fusion of images in binocular vision, Danti’s argument was
exactly the same as that of Ḥunayn ibn Isḥāq as transmitted by Mondinus;
images are carried by the optic nerves as far as the chiasma, the point at which
they “return to unity”.12

Danti’s critique poses a historical problem. The passage “However some have
had the opinion that, since the man has two eyes, the [perspective] must terminated
at two points/Ma per tanto si sono trovati alcuni, che hanno havuto parere, che
havendo l’huomo due occhi, si deve terminare [la prospettiva] in due punti”
indicates that two-point perspective was in fact accepted and was being used at the
time. Otherwise neither Vignola nor Danti would have devoted an entire chapter in
their texts on optics to a refutation of the system. Their rejection of two-point

8David C. Lindberg, Theories of Vision from Al-Kindi to Kepler, Chicago, 1976, pp. 33–44.
9Vesalius, De humani corporis fabrica, Basileae, 1543, pp. 324–325: “However they do not cross,
but the right tends to the right eye, and the left tends to its left eye/Tamen non incruciantur, sed
dexter ad dextrum oculum, sinister ad suum sinistrum tendit,” Ruben Eriksson, Andreas Vesalius’
first public anatomy at Bologna, Uppsala, 1959, p. 220.
10“Then, consequently, the other couples of nerves appear to be bent to the eyes, by which the
visual spirit pass to the eyes/Deinde consequenter, ceteras coniugationes nervorum ostendebat
tendentes ad oculos, per quos spiritus visiui ad oculos transeant,” Vesalius’ first public anatomy,
p. 220, De fabrica, p. 324.
11“In his section on the eye, Vesalius discusses the point… and completely errs by considering that
the crystalline humor is precisely situated in the center of the eye/Vessalij in historia de oculo nullo
negotio deprehendes… et tota errat via, existimans cristallinum humorem in centro oculi exquisite
situm esse,” Realdo Colombo, De re anatomica libri XV, Venezia, 1559, p. 220.
12Max Meyerhof, The Book on the Ten Treatises on the Eye ascribed to Hunain ibn Is-hâq, Cairo,
1928; Ernest Wickersheimer, Anatomies de Mondino dei Luzzi et de Guido da Vigevano, Paris,
1926. The “spirito visivo” (Danti) as well as its Latin model in Mondinus derive from the Arabic
al-rūh al-bāṣir (Ḥunayn).
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perspective had the same authority as Alberti’s critique of the superbipartiens
method13 (De pictura, I, 19) and the firmness with which they presented their
arguments suggests that their condemnation was no mere rhetorical artifice. It was
aimed at discrediting heterodox practices then in use that have been completely
forgotten today.14

All that is known of this binocular perspective is that it was based on two
vanishing points located on the horizon (two horizontal points placed on the same
plane/due punti orizontali posti nel medesimo piano). The observation by Vignola
“Several have found/Si sono trovati alcuni” refers to traditional practices that
considerably pre-date the first edition of the text, which appeared in 1559.15 Can the
alcuni who were using this heterodox system of perspective well into the
Cinquecento be identified? Danti’s biography and his Carteggio16 provide the
names of painters with whom he was in contact during his lifetime. If one analyzes
the corpus of works by these artists at least two examples of two-point perspective
emerge. One is the Holy Virgin in Glory painted by Bartolomeo Passerotti in 1565
for the Church of San Giacomo Maggiore in Bologna (Fig. 7.2) and the other is the
Communion of Saint Jerome by Agostino Caracci (ca. 1592).

In these two paintings one can immediately recognize Vignola’s description of
two points (F and F′) lying on the same horizon (due punti orizontali posti nel
medesimo piano) and their chronology is extremely significant. Due Regole was
published in 1583 and Passerotti’s Virgin was produced two decades earlier, while
Caracci’s Saint Jerome appeared one decade later. Egnatio Danti dedicated his
commentary on Vignola’s work to Passerotti, who had collaborated with Vignola in
the past on various commissions.17 The finding of a direct link between such

13“Here some would draw a transverse line parallel to the base line of the quadrangle. The distance
which is now between the two lines they would divide into three parts… and they would add the
remaining lines, so that the space between the antecedent lines and the following lines would
always be, as the mathematicians say, superbipartiens. I can say those who would do thus, even
though they follow the good way of painting in other things, would err…/Hic essent nonnulli qui
unam ab divisa aequidistantem lineam intra quadragulum ducerent, spatiumque, quod inter
utrasque lineas adsit, in tres partes dividerent… ac deinceps reliquas lineas adderent ut semper
sequens inter lineas esset spatium ad antecedens, ut verbo mathematicorum loquar, superbipar-
tiens. Itaque sic illi quidem facerent, quos etsi optimam quandam pingendi viam sequi affirment,
eosdem tamen non parum errare censeo…” Alberti, De pictura, ed. J.L. Schefer, 1992, p. 116.
14The superbipartiens method is well documented historically: “Some painters of the time of
Alberti could have completed the method described… Finally we know that Pisanello was one of
those painters/Alcuni pittori dei tempi di Alberti avrebbero completato il metodo descritto…
Finalmente sappiamo che Pisanello era uno di quei pittori,” Pietro Roccasecca, “Punti di vista non
punto di fuga,” p. 42.
15Christoph Thoenes and Pietro Roccasecca, “Per una storia del testo de ‘Le due regole della
prospettiva pratica’,” R.J. Tuttle et al., eds., Jacopo Barozzi da Vignola, Milan, 2002, p. 367.
16Pascal Dubourg Glatigny, Il Disegno naturale del mondo, Milan, 2011.
17Danti, Le Due Regole, p. 97, French transl. p. 310.
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heterodox artists and the theorists Vignola and Danti sheds a completely different
light on the meaning of Danti’s dedication. Caracci had studied under Passerotti and
used the two-point construction in 1592 without taking into account Vignola’s
refutation of it in Due Regole. These examples underline the limited impact that
theoretical rules had on well-established practices.

Fig. 7.2 Bartolomeo
Passerotti, Madonna with
Saints, 1565 (Bologna, San
Giacomo Maggiore), author’s
reconstruction (Correggio Art
Home)
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7.1.2 Martino Bassi (1572)

The second important comment on two-point perspective can be found in Dispareri
in materia d’architettura by Martino Bassi, who faults the painter Pellegrino
Tibaldi of Bologna with using multiple vanishing points. Although there is no
record of Tibaldi’s defense of his approach, it can be inferred from Bassi’s critique
that the painter used the argument of binocular vision. What is more surprising is
that, to support his condemnation of the practice of two-point perspective, Bassi
evoked traditional optical theory but in a selective and biased manner. Completely
disregarding the theories of binocular vision, he claimed that optical theory in
antiquity and the Middle Ages was based on the functioning of one eye at a time:

If you think my discourse inappropriate, check what Euclid and Witelo say in their
demonstrations, i.e., ponatur oculus [the eye is placed] and never ponantur oculi [the eyes
are placed]; conum esse figuram quem habet verticem in oculo [the cone is the figure that
has its vertex in the eye], and not in oculis [in the eyes]; ponatur, radios ab oculo emissos
in rectam lineam ferri [the radius sent out from the eye is to be carried in straight line] and
not ab oculis [from the eyes]…”18

Bassi’s attack explicitly focused on a bas relief sculpted in Milan by Tibaldi
between 1561 and 1572. Tibaldi does not seem to have taken any notice of this and
continued to employ two vanishing points long afterwards, as for example when he
was summoned to the court of Philip II of Spain. In the library at the Escorial is a
fresco entitled The School of Athens painted by Tibaldi between 1590 and 159219

(Fig. 7.3).
The perspective lines marked by the receding rows of pedestals conform to the

two vanishing points F and F′ as defined by Vignola (due punti orizontali posti nel
medesimo piano). Thus, even though he had completed his apprenticeship in
Bologna and Rome where artists were fully conversant with the latest theories on
perspective, Tibaldi seems to have preferred to adhere to the older, now heterodox
tradition.

18“Ma se questo mio parlare non vi pare à proposito, notate in Euclide, & in Vitellione ciò, che essi
dicono nelle loro demostrationi, cioè, ponatur oculus, & non mai ponantur oculi, & conum esse
figuram, quem habet verticem in oculo, & non in oculis, & ponatur, radios ab oculo emissos in
rectam lineam ferri, & non ab oculis…” Martino Bassi, Dispareri in materia d’architettura, et
perspettiva, Brescia, 1572, p. 16 (italics mine).
19Michael Scholz-Hansel, “Las obras de Pellegrino Tibaldi en el Escorial,” Imafronte 8/9 (1992/3),
p. 391.
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7.2 In the Circles of the Académie Royale de Peinture

7.2.1 Grégoire Huret (1670)

Some years after his admission to the Académie royale de Peinture et de Sculpture,
on 7 August 166320 the draughtsman and engraver Grégoire Huret published
Optique de portraiture et de peinture, the third important text on two-point per-
spective to come down to us. A supporter of the theory of the unconditional fusion
of visual sensations (see Chap. 6), Huret carried the argument against binocular
perspective even further. Here are some of the most pertinent passages from his
text:

Secret: why architectures and other reduced topics, according to the geometrical rules of
perspective, can only be properly seen by one eye, and by a pinhole placed at the point
where the picture should be seen. Since every natural subject sends its appearance to each
of our eyes, and that such appearances form each a kind of cone, by the radiations of
vision… it follows that, since the Picture or transparency is interposed between the subject
and the viewer, it will be cut by each of the two cones, as is seen in projection, Fig. 33, to
which the only front line BC sends the rays BbO and CdO to the right eye O of the viewer,
which rays cut the transparency YFEZ at points b and d, moreover it sends to the left eye
A the rays BEA and CDA that will cut the same transparency to the said points E and
D. This shows that the said line BC sends to the two eyes, two appearances bd and ED on
the Picture… And likewise the other magnitude GH will send its appearance to the eye
O by means of the rays HLO and GIO, and to the eye A by means of the rays HKA and
GFA, which also receives a double interlaced appearance IL and FK. And likewise the

Fig. 7.3 Pellegrino Tibaldi, The School of Athens (Schola Atheniensium), wall painting, ca.
1592 (El Escorial, Library of the Monastery of San Lorenzo), author’s reconstruction after a
photography of themathematicaltourist.wordpress.com

20For biographical information on this artist, who also took a deep interest in the theoretical
problem of perspective, see: Emmanuelle Brugerolles and David Guillet, “Grégoire Huret,
dessinateur et graveur,” Revue de l’art 117 (1997): 9–35.
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squares CBN4 and HGM5, and the circles which are inscribed to them, will each send
similarly, for example on Picture gVSP, a double appearance… But here is the last point of
the secret why Geometry allows the Picture to be seen with one eye only: if it were seen by
both eyes together, it would have to subordinate its double cones of appearances, and thus
establish the direct two points O and A, with each his point of distance, such as y and a, as
you can see to the said perspective, Fig. 33.21 (Fig. 7.4).

Fig. 7.4 Binocular
perspective, Grégoire Huret,
Optique de portraiture et de
peinture, Plate V, Fig. 33

21“Secret pourquoy les architectures & autres sujets reduits, suivant les regles geometriques de la
Perspective, ne peuvent estre bien vûes que par un seul oeil, & par un pertuis posé au point d’où le
Tableau doit estre veu. Puisque chaque sujet naturel envoye son apparence en chacun de nos yeux
& que lesdites apparences forment chacunes suivant le rayonnement de la vûë côme une espece de
cone… il s’ensuit que puisque le Tableau ou transparence est interposé entre le sujet & le
regardant, il se trouvera coupé par chacun desdits deux cones, ainsi qu’il se voit au geometral
Fig. 33. auquel la seule ligne de front BC envoye les rayons BbO & CdO à l’oeil droit O, du
regardant, lesquels rayons coupent la transparence YFEZ aux points b & d, plus elle envoye encore
à l’oeil gauche A, les rayons BEA & CDA qui couperont la mesme transparence ausdits points E &
D, ce qui fait voir que ladite BC envoye pour venir aux deux yeux, deux apparences bd & ED sur
le Tableau… Et il en sera de mesme de l’autre grandeur GH, qui envoyera son apparence à l’oeil
O suivant les rayons HLO & GIO, & à l’oeil A suivant les rayons HKA & GFA qui porte aussi une
double apparence entre-lassée IL & FK. Il en sera encore de mesme des quarrez CBN4 & HGM5 &
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According to Huret the reason why the system of two-point perspective should
not be employed is that it requires the use of “two direct points” (the vanishing
points O and A) and “two distance points” (y and a).

More surprising is the qualitative judgment that he passes on this perspective:

Whereupon we can judge what confusion and deformity would affect a painting done in this
manner, though artificial and absolutely accurate. But if during this wonderful event the
said natural subjects had been seen by one single eye, the said appearances do not appear
duplicated, and therefore this painting would give precisely the same visual sensation as
that of the natural, but always with this great defect that it could be seen only with one eye
at a time …22

Instead of justifying monocular perspective on the basis of the conventions that
govern the art of representation, Huret embarks on an evaluation of the “super-
natural” nature of binocular perspective. On the grounds of symmetry he is
therefore forced to acknowledge the deffaut, by which he means the arbitrary and—
in the final analysis—unnatural nature of the convention on which monocular
perspective was based.

We will not attempt to identify the practitioners who were accused of applying
this ‘deformed’ type of perspective, because of the very short period of time that
separates this critique from the one published by Le Clerc, who belonged to the
same milieu of the Académie.

7.2.2 Sébastien Le Clerc (1679)

The last significant text on two-point perspective that will be discussed here was
written by Sébastien Le Clerc, dessinateur et graveur ordinaire du Roy and a
protégé of Charles Le Brun, who sponsored his admission on 16 August 1672 to the
Académie royale de Peinture. Le Clerc would later be appointed professor of
geometry and perspective at the Académie. His condemnation of two-point

(Footnote 21 continued)

des cercles qui leurs sont inscrits, qui envoyeront semblablement, par exemple sur le Tableau
gVSP, chacun une double apparence… Or voicy le dernier point du secret, pourquoy la Geometrie
ne permet la vûë du Tableau qu’à un seul oeil, qui est que s’il devoit estre vû par les deux
ensemble, il faudroit qu’elle fist travailler sur la sujetion de ses doubles cônes d’apparences, &
partant qu’elle établist les deux points directs O & A, ayant chacun son point de distance, comme
y & a, ainsi que vous voyez audit perspectif, Fig. 33,” Grégoire Huret, Optique de portraiture et
de peinture, Paris, 1670, pp. 59–60.
22“Surquoy on peut juger quelle confusion & quelle difformité auroit un Tableau fait de cette
maniere, quoy que surnaturelle & absolument precise, mais si lors de ce merveilleux évenement
lesdits sujets naturels n’avoient esté veus que par un seul oeil lesdites apparences ne se trou-
veroient pas doublées, & par consequent ce Tableau donneroit précisement la mesme sensation
visuelle que celle du naturel, mais toûjours avec ce grand deffaut qu’il ne pourroit estre bien veu
que d’un seul oeil à la fois…” Huret, Optique de portraiture et de peinture, p. 60.
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perspective appears in a short and somewhat eccentric tract on the relationship
between perspective and mathematics:

While I was in a company where the art of painting was the subject of conversation, and
where several questions about this art were agitated, this, among others, was put forward:
whether the Perspective, which is part of Painting, must have some rank in Mathematics.
There were some who said that there was not doubt, and the reason they alleged was that
Geometry produces its rules. Others said, however, that we should not attribute to
Geometry, which is the source of all mathematical truths, rules that were based only on
false principles, and therefore could only produce errors. And supporting this argument
with warmth, they argued a number of things, which mainly tended to show that Painters
could not by means of a single viewpoint reach their goal, which is to imitate nature. The
Painter, they said, considers the objects with his two eyes, and he professes to paint as he
sees them; thus the art of Perspective admitting only one point to represent the two eyes, its
rules can not meet the intention of the Painter… A very enlightened person who was there
spoke, and said that Mr. Huret, the author who most considered the secrets of Perspective,
had decided this question when he proved the necessity for the Painters to admit a single
point of view… and that it was a mockery to ask anyone to close one eye and deprive
himself from half the view to accommodate the failure of this art… and thereupon he asked
me to say what I thought of it.23

Le Clerc attempted to defend monocular perspective on physiological grounds,
arguing as follows. There are two opposing theses: either retinal images are fused or
they are not. The disparity of images has been established on experimental grounds
(Fig. 7.5) and therefore visual images cannot be fused. Adopting a somewhat
simplistic solution based on the thesis of suppression (in opposition to the con-
clusions of scholars from Ibn al-Haytham to Aguilonius), Le Clerc declares: “The
images in both eyes are dissimilar, so they cannot agree together; and if they cannot

23“M’estant trouvé dans une compagnie où l’art de peindre faisoit le sujet de la conversation, & où
plusieurs questions qui le concernent estoient agitées; celle-cy entre autres y fut proposée: sçavoir,
si la Perspective, qui est une partie de la Peinture, devoit avoir quelque rang dans les
Mathematiques. Il y en eut qui dirent qu’on n’en devoit pas douter, & la raison qu’ils alleguerent
estoit que la Geometrie en produisoit les reigles. D’autres dirent au contraire, qu’on ne devoit pas
attribuer à la Geometrie qui est la source de toutes les veritez Mathematiques des reigles qui
n’estoient fondées que sur de faux principes, & qui par consequent ne pouvoient produire que des
erreurs, & soûtenant cette proposition avec chaleur, ils avancerent plusieurs choses, qui princi-
palement tendoient à faire voir que les Peintres ne pouvoient par le moyen d’un seul point de veuë
arriver à leur but, qui est d’imiter la nature. Le Peintre, disoient-ils, considere les objets de ses deux
yeux, & il fait profession de les peindre comme il les voit; ainsi l’art de la Perspective n’admettant
qu’un point pour representer les deux yeux, ses reigles ne peuvent respondre à l’intention du
Peintre… Une personne, qui se trouvait là, fort éclairée prit la parole, & dit que Monsieur Huret
qui estoit l’Auteur qui avoit le plus examiné les secrets de la Perspective, avoit décidé cette
question lors qu’il avoit prouvé la necessité où estoient les Peintres de n’admettre qu’un point de
veuë… & que c’estoit une raillerie de vouloir que l’on fermast un oeil & que l’on se privast de la
moitié de la veuë pour s’accommoder au defaut de cet art… & là-dessus il me pria de vouloir dire
ce que j’en pensois,” Sébastien Le Clerc, Discours touchant le point de veuë, dans lequel il est
prouvé que les choses qu’on voit distinctement, ne sont veuës que d’un oeil, Paris, 1679, pp. 1–4
(italics mine).
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agree together, much less can they be merged… The soul necessarily perceives only
one of these two images.”24

But there is more: the nature of the subject and the terminology used might lead
one to conclude that Le Clerc wrote his booklet in order to counter the views
expressed by Chérubin d’Orleans in La Vision parfaite published just two years
earlier, in 1677. Essentially dedicated to “Oculaire binocle” (‘the binoculars’),
Chérubin’s treatise begins with a discussion of binocular vision in general and a
radical critique of the theory of suppression. Taking as his departure point the
axiom that we see better with two eyes than with one, Chérubin poses the problem
of the fusion of quasi-images with great clarity: “The challenge … is to see … the
composition of the homonymous parts of the two paintings of the object formed by
the optical beams … and how … the union of similar parts of these paintings is
done, so that the visual power … receives only a very simple and perfectly unique
idea of them.” However, he stopped short of drawing any conclusions: “So in any
place and in any way this composition, or meeting, of similar parts of the two

Fig. 7.5 Binocular disparity,
Sébastien Le Clerc, Discours
touchant le point de veuë,
p. 47

24“Les images des deux yeux sont dissemblables, donc elles ne peuvent convenir ensemble; & si
elles ne peuvent convenir ensemble, à plus forte raison ne se peuvent-elles réunir… Il faut que
l’ame n’ait que la perception d’une de ces deux images,” Le Clerc, Discours touchant le point de
veuë, pp. 50 et 53. The arguments of Le Clerc—most of which are fallacious—are included in his
later Système de la vision fondé sur de nouveaux principes, Paris, 1712.
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paintings of the object takes place in the brain; it can only be conjectured, not firmly
determined by Philosophy. As I am dealing with Optics here, I ignore it, because for
me it is enough to have shown its necessity.”25 It would be peremptory to ascribe
Le Clerc’s reversion to the theory of suppression to shortcomings in Chérubin’s
theory, but one thing is certain: the theory of the fusion of quasi-images casts doubt
on the unicity of the vanishing point in central perspectives, a concept that Le Clerc
was determined to defend.

In any event, Le Clerc’s argumentation shows that the validity of the monocular
and binocular postulates was still being debated at the end of the seventeenth
century and there was strong resistance to the rules of perspective in some quarters
(others … supporting this argument with heat/d’autres … soutenant cette propo-
sition avec chaleur). Whatever the validity of Le Clerc’s argument, he notes that
there were members of his entourage who continued to challenge the underlying
principles of a system that had been established two and a half centuries earlier.

Who were these individuals, not named by Le Clerc but described by him as
belonging to “a company where the art of painting was the subject of
conversation/une compagnie où l’art de peintre faisoit le sujet de la conversation”?
Knowing that the term compagnie was used to refer to the members of the
Académie, it seems likely that this point was debated during a session of the
academy sometime between 6 August 1672, when Le Clerc was admitted as an
academician, and 12 August 1679, when Discours touchant le point de veuë was
published. The author presented a copy of his work to the Académie on August
26th of the same year. By studying the procès-verbaux of the Académie for this
period,26 it can be determined who was present at the sessions in which Le Clerc

25“La difficulté… consiste à faire voir… le concours des parties homonymes des deux peintures de
l’objet qui sont formées par les pinceaux optiques… & comment… la réunion des parties sem-
blables de ces deux peintures se fait, en sorte que… la puissance visive n’en reçoive qu’une idée
tres-simple, & parfaitement unique”; “Donc en quelque lieu, & en quelque maniére que ce con-
cours, ou réünion des parties semblables des deux peintures de l’objet, se fasse dans le cerveau;
cela ne pouvant estre que simplement conjecturé, & non pas solidement déterminé par la
Philosophie, traitant icy de l’Optique, j’en fais abstraction, me suffisant d’en avoir démontré la
necessité,” Chérubin d’Orleans, La Vision parfaite ou Le concours des deux axes de la vision en un
seul point de l’objet, Paris, Chez Sebastien Mabre-Cramoisy, 1677, pp. 20–21.
26Anatole de Montaiglon, Procès-verbaux de l’Académie royale de Peinture et de Sculpture,
1648–1793, tome I: 1648–1672, Paris, 1875, p. 398 (August 6, 1672); tome II: 1673–1688, Paris,
1878, p. 5 (April 29, 1673), pp. 12–14 (October 6, 1673), p. 15 (October 10, 1673), pp. 59–60
(November 16, 1675), p. 67 (January 25, 1676), pp. 68–70 (February 1st, 1676), pp. 74–77 (March
31, 1676), pp. 121–123 (December 22, 1677), pp. 124–125 (January 4, 1678), pp. 126–127
(January 29, 1678), pp. 140–141 (December 31, 1678), p. 153 (August 26, 1679). The discussions
are not recorded in the minutes of the meetings of the Academy.
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participated. Scrutiny of the perspective methods of the academicians makes it clear
that Le Clerc’s book was in fact directed at some of his closest colleagues.

In 1680 a Histoire du Roy was published (in installments ‘chez Jeaurat’ between
1665 and 1680), which contains an etching that was signed by Charles Le Brun,
Pierre de Sève, Jean-Baptiste Nolin and Sébastien Le Clerc.27 With so many artists
involved it is somewhat problematic to determine which hand was responsible for
the perspective drawing, but the fact remains that the geometry of Renouvellement
d’Alliance entre la France et les Suisses fait dans l’église de Nostre Dame de Paris
par le Roy Loüis XIV, et les Ambassadeurs des XIII cantons et de leurs alliez le
XVIII novembre M.DC.LXIII was faulty, being based on the two-point system of
perspective. Moreover, the vanishing points F and F′ coincide with the candle rings
of the two chandeliers, which is no accident (Fig. 7.6).

Thus Sébastien Le Clerc, professor of geometry and perspective at the Académie
royale de Peinture, collaborated on an engraving in which it appears probable that
either Charles Le Brun or Pierre de Sève applied a traditional two-point con-
struction that fell outside the rules of correct perspective. The fact that such an

Fig. 7.6 Le Clerc, Renouvellement d’Alliance entre la France et les Suisses, etching, 1680, Paris,
Bibliothèque nationale de France, département Estampes et photographies, Réserve FOL-QB-201
(46)

27We can read in the lower left-hand corner of the border: Car. Le Brun inuen. Pet. Seue pinxit.; in
the lower right-hand corner of the scene: Io. Nolin sculpsit.; and in the lower right-hand corner of
the border: Sim Le Clerc sculps. 1680. In another version without a border (anterior or posterior),
the lower left-hand corner bears the words: Car. Le Brun inuen. and the lower right-hand corner: S.
Le Clerc sculps. These inscriptions attribute the preparatory drawing to Le Brun and the engraving
of the plate sometimes to Jean-Baptiste Nolin and sometimes to Sébastien Le Clerc.
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anomalous work could be produced by prestigious members of the Académie at the
end of the seventeenth century shows that the debate regarding binocular versus
monocular vision was still current and, as Le Clerc himself stated, provided the
impetus for Discours touchant le point de veuë.28

7.3 Conclusion

What is the common thread that runs through these three texts written between 1559
and 1679? Each of them attempts to justify the practice of monocular linear per-
spective by offering arguments against the two-point perspective, describing the
latter as a heterodox system lying outside the limits of sound perspective practice.
Why would this type of construction have formed the subject of such determined
attacks if it was not still being used at quite a late date, when the rules of perspective
were not only well known but had been taught for many years? What is perhaps
most striking is its survival in the very circles where the modern rules of perspective
were being applied and, on at least two occasions, in close proximity to the theorists
who had expressed these condemnations—Passerotti, to whom Danti had dedicated
his work Due Regole, and Le Brun and de Sève, who were close collaborators with
Le Clerc.

The aim of the chapters that follow will be to resurrect these systems of per-
spective and to reveal the mechanisms on which they were based, after explaining
the methodology that was used to reconstruct as closely as possible the geometric
lines of these works.

28“And thereupon he asked me to say what I thought of it… But because I have undertaken to
gradually meet many difficulties that have been proposed to me, I made a switch from a small
project to a larger one/Et là-dessus il me pria de vouloir dire ce que j’en pensois… Mais parce
qu’insensiblement je me suis engagé à respondre à beaucoup de difficultez qui m’ont esté
proposées, j’ay passé d’un petit projet à un plus grand,” Le Clerc, Discours touchant le point de
veuë, pp. 4–5.
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Sifting the Hypotheses



Chapter 8
The Properties of Two-Point Perspective

Abstract Thirty works painted between the end of the Duecento and the middle of
the Quattrocento using two-point perspective are reconstructed here using the
process of error analysis described in Appendix A. In terms of the classification of
different systems of representation, these constructions do not correspond to any
type of perspective recognized today. Notably, we show that they do not constitute
either orthogonal projections or linear perspectives. Nor do they meet the criteria of
the “bifocal perspective” that Parronchi believed could be identified in such rep-
resentations. We then examine these works in relation to the principles of binocular
vision laid out by Ibn al-Haytham and his Latin successors, and show that the
reconstruction of their plans and elevations based on the perspective view produces
coherent spaces that are in conformity with the architectural models of the period.
In addition, a qualitative relationship linking the distance between the vanishing
points and the position of the fixation point is brought to light.

The analysis of pre-perspectives—that is, the modes of representing
three-dimensional space in use before the introduction of linear perspective—poses
specific problems. The first stems from the great variety of perspective approaches
that characterize paintings produced before the Cinquecento. The second arises out
of the largely conjectural nature of the interpretations that have been proposed. Let
us examine these two points in detail.

1. Before the principles of linear perspective were adopted in the Renaissance,
painters and architects experimented with different systems of representation.
Some works from the Middle Ages were composed using an oblique perspective
(a form of parallel perspective that in reality has no connection with linear
perspective apart from its name) or different axonometric techniques. To cite
just one example, Giotto di Bondone did not hesitate to use more than one
system at a time. For the frescoes in the upper church of the Basilica of St.
Francis in Assisi, painted between 1296 and 1305,1 he and his assistants

1Giuseppe Basile, Giotto. Le storie francescane, Milan, 1996.
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employed an oblique perspective for Extasis, an exploded view for The Death of
the Knight of Celano and a two-fold exploded view for The Recovery of the
Wounded Man of Lerida, but also a dimetric perspective for The Founding of the
Order of Saint Clare, a central perspective for The Apparition to Gregorius IX,
and a two-point perspective for St. Francis Preaching Before Pope Honorius III.
This spectrum of approaches employed by the same atelier over the period of a
decade illustrates the broad range of techniques that were in use before a con-
sensus was reached and the preference for linear perspective took root. In any
case, it ought to come as no surprise to find a nascent artistic movement
accompanied by uncoordinated individual initiatives. In this context the history
of pre-perspective techniques was anything but linear.

Therefore, to study the pre-perspective compositions of the period we must
divide them into groups and focus on a homogenous ‘family’ of representations,
even if this family may have been quite heterodox in relation to the emerging
canons of perspective representation.

2. Another difficulty lies in the interpretation of the geometric constructions
underlying these perspectives. While it may be a relatively simple matter to
carry out a reconstruction ex post facto, we have almost no idea what meaning
was accorded in the Middle Ages to the lines and points used to construct
perspectives. Artists and architects relied on the mechanical arts and learned
mainly by example while working in the ateliers of master painters, a process
that remains poorly documented. We therefore know little about the theoretical
notions which were applied when composing a perspective and a fortiori the
exact signification that was assigned to them.

We must try as far as possible to avoid the mistake of projecting modern theories
of perspective onto the art of the period.2 Notions such as “horizon line,” “orthog-
onals,” “vanishing point,” “transversals,” the “reduction of intervals,” and so on did
not acquire a mathematical meaning until the sixteenth and seventeenth centuries
with the work of Danti and Guidobaldo del Monte. It would therefore be preferable
to employ neologisms. At the same time, the need to clearly describe the geometric
construction underlying a work recommends that we use modern terminology. In
this book we have sought to maintain a clear distinction between the different
functions of the concepts referred to. As a consequence, when we employ modern

2The notion of the vanishing point not having yet been clearly established in the Duecento and
Trecento, some have argued that painters in the Middle Ages did not use the vanishing point at all;
see Andrés de Mesa Gisbert, “El ‘fantasma’ del punto de fuga en los estudios sobre la
sistematización geométrica de la pintura del siglo XIV,” D’Art 15 (1989): 29–50. This ingenious
proposition, however useful in that it does not tempt one into the over-interpretation of early
examples of perspective, runs into various difficulties that will be examined in Chap. 11. An
analogous problem has long influenced our interpretation of the Renaissance concept of per-
spective; we now know that the term costruzione legittima used to designate Alberti’s method was
introduced quite recently, in the nineteenth century.
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terms, it should be understood that they are devoid of any semantic function and are
only being used to index the figures. This approach will hold for Chaps. 8–10.

The objective of the present chapter is: (i) to identify a corpus of works that
conform to the definition of two-point perspective laid out in Chap. 7; (ii) to
demonstrate that these representations do not correspond to any known type of
perspective; and (iii) to show that they are the result of a qualitative application of
the principles of binocular vision.

8.1 Typical Constructions

After identifying about fifty works that appeared to conform to the principle of
two-point perspective, a group of them was selected for study based on four criteria.
First, we eliminated those paintings whose geographic and cultural context differed
from the majority of the works.3 Second, we ruled out works that were not pro-
duced during the period in which this system of representation was most widely
used.4 Third, we excluded paintings whose architectural framework was not suffi-
ciently detailed to allow us to determine how the perspective was constructed.5

Finally, paintings that contained serious errors of perspective were eliminated.6 At
the end of this selection process we found ourselves left with thirty works produced
in central Italy during the period 1295–1450 whose architectural framework

3Works that were excluded from our analysis based on the criterion of geography: Jan van Eyck,
Portrait of Arnolfini and his Wife (1434); Jan van Eyck, Dresden Triptych (1437); Enguerrand
Quarton, Requin Altarpiece (ca. 1450); and Jos Amman von Ravensburg, Annunciation to the
Virgin (1451).
4Works that were excluded based on the historical criterion: Benozzo Gozzoli, St. Francis’ Death
and Ascent into Heaven (1452); Giovanni Bellini, The Coronation of the Virgin (1471–1474);
Benozzo Gozzoli, Joachim Driven from the Temple (1491); and Leonardo da Vinci, The Last
Supper (1495–1497). It seemed preferable to limit our corpus to a clearly defined geo-historic
context, allowing us to follow the diffusion of this system of representation (something that would
have been impossible if the corpus had involved a broader geographic distribution and time frame).
It is known, for example, that Giotto worked on a commission for the Palazzo della Ragione of
Padua some years previously to Giusto de’ Menabuoi, who also utilized a two-point construction
(Appendix B, Nos. 19 and 21).
5Works that were eliminated: Master of the Rebel Angels, Fall of the Rebel Angels (ca. 1340);
Bartolo di Fredi, Presentation to the Temple (ca. 1365); Giusto de’ Menabuoi, Annunciation
(1374–1378); Giusto de’ Menabuoi, The Seated Madonna (ca. 1380); Gentile da Fabriano,
Madonna with Child (ca. 1420); Fra’ Angelico, Birth of Saint Nicholas (1437); Paolo Uccello,
Scenes from the Life of Noah: The Flood (1446); and Fra’ Angelico, Ordination of St. Lawrence by
Saint Sixtus (1447–1449).
6Works that were eliminated: Giotto, The Approval of the Franciscan Rule (1301–1302); Giotto,
Marriage at Cana (1304–1306); Duccio di Buoninsegna, Christ Taking Leave of the Apostles
(1308–1311); Ambrogio Lorenzetti, Saint Nicholas (1327–1332); Maso di Banco, The Miracle of
the Bull (1340), Altichiero; Saint George Baptizing the King (1373–1379); Giusto de’ Menabuoi,
Dragon Hunted (ca. 1375); and Donatello, The Flagellation of Christ (1425).
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allowed us to reconstruct the geometric projections of their perspective views. Since
the intention in this chapter is to analyze how the perspectives were drawn, we will
not enter into questions of dating or attribution, instead endorsing—for the infor-
mation of the reader—the analyses and conclusions of experts (see Appendix B).

With regard to geographic provenance, we find that more than two-thirds of the
thirty works came from an area extending from Padua to Assisi and down to
Florence. As a comparison of their dates shows, artistic output during this period of
one and a half centuries was uneven. After a highly productive period between 1295
and 1320, a fall-off in activity can be detected beginning around 1350 and probably
attributable to the economic and social consequences of the Black Death
(1346–1353). A second period of reduced productivity around 1450 seems to have
been due to the introduction of new perspective techniques and the relative
reluctance of artists to adopt the procedures laid out by Alberti in his 1435 treatise.

Our decision to concentrate on works produced between 1295 and 1450 springs
from a simple observation: during this period an equivalent number of works that
adhered to the rules of linear perspective did not exist. Piero della Francesca’s
Flagellation was one irreproachable example, but other works—from Masaccio’s
Trinity and Donatello’s Feast of Herod to Ghiberti’s panels depicting the biblical
stories of Isaac and Joseph and Uccello’s Profanation of the Host—present false
perspectives, notably because the shortening of the parallel frontal lines resulted in
a distance point that was far removed from the horizon line. Since linear perspective
was not yet the dominant system, the two-point approach cannot be dismissed as a
minor and unimportant chapter in the history of perspective. It was used with such
regularity that it may be considered typical of the entire period from 1295 to 1450, a
fact that demands an explanation.

8.2 Perspectives in Which the Spectator Is not Placed
at Infinity

Let us begin by introducing a classification system for the different modes of
representation that emerge from an analysis of ten key paintings (Fig. 8.1).7

All parallel projections, in particular the axonometric projections (isometry,
dimetry, trimetry) and by extension the cavalier and military perspectives, place the
spectator at an infinite distance from the painting. This type of projection therefore
has an important property: two parallel object lines are represented by two parallel
object images.

An examination of the works in our corpus (Appendix B, Nos. 1–30; Appendix E,
Plates E.1-E.14) shows that this property is not respected. The orthogonals of the
architectural framework are always drawn as sets of lines receding toward two

7Jean-Claude Ludi, La Perspective “pas à pas”. Manuel de construction graphique de l’espace et
tracé des ombres, Paris, 1989, pp. 138–139.
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vanishing points. Since the property of parallelism is not conserved, these works
presuppose a finite distance between the spectator and the painting, which means
that they must be placed in the second class of representations.

8.3 Perspectives that Differ from Linear Perspective

Once we accept the kinship between the two-point construction and linear per-
spective, we must clarify the relationship between the two-point system and the
three known types of linear perspective: central, bifocal and trifocal.

8.3.1 Central Perspective

In a central linear perspective, all of the vanishing lines meet at one point located in
the center of the painting. A simple hypothesis that might allow us to place our
group of works within the framework of central perspective would be to suppose
that the two vanishing points are the result of an accidental duplication of the single
vanishing point. Indeed, such errors in construction can be calculated using the
method described in Appendix A.

Fig. 8.1 Classification of the different systems of representation, adapted from Jean-Claude Ludi,
La Perspective pas à pas, p. 139
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Assume that the vanishing point F is in alignment with the line segment AB. If
we draw a line of width e, the direction of the vanishing line may be changed at will
as long as it covers segment AB in its entirety. Where the deviation is maximal, a
linear error occurs at the level of the vanishing point that can be described by the
equation ϵ = ± e AF/AB. The linear errors are calculated for all the vanishing lines
originating on the left and for all of those originating on the right, and the larger one
is denominated “the maximal linear error.” We then can determine whether the
distance between the two vanishing points F and F′ falls within the margin of error.
If the ratio FF′/ϵmax is less than one, it could be considered that the duplication of
the vanishing point was accidental. If the ratio is greater than one, the two vanishing
points are not the result of an error in the drawing of the perspective.

By way of illustration, this methodology for the reconstruction of perspectives
was applied to the Saint Enthroned, a fresco on the north wall of the Palazzo della
Ragione in Padua which was probably painted by Giusto de’ Menabuoi around
1370–1380 (Appendix A). The reconstructed perspective of this work exhibits a
maximal error of 7 mm in situ, whereas the vanishing points are separated by a
distance that is thirty times greater than the maximal linear error. The reconstruction
of the fresco shows that the orthogonals recede to two vanishing points separated by
a distance that is thirty times greater than the maximal error of the reconstruction.
The existence of these two vanishing points is robustly confirmed and cannot be
contested on the grounds of errors in the perspective drawing. The two vanishing
points are therefore not accidental, a conclusion that is supported by two other
observations.

1. If one positions the two points in situ, they coincide with the centers of the
rosettes sculpted on the back of the cathedra; the center point of the right rosette
is perfectly visible (Appendix A, Fig. 4b). This observation casts into doubt the
hypothesis advanced by Andrés de Mesa Gisbert8 that artists in the Trecento
could have constructed their receding lines based on ratios of proportionality
(which would have made the use of the vanishing point unnecessary). But if this
was so, why would the vanishing points coincide with points so precisely
defined within the architectural framework?

2. The application of the construction based on two vanishing points was anything
but sporadic. If we return to the Palazzo della Ragione in Padua and analyze
other frescoes painted in the same period (ca. 1370–1380), we discover that the
same schema was used no less than twelve times:

North wall (5)
Saint Justine, lower register, panel LI
Seated saint, lower register, panel LXI

8Andrés de Mesa Gisbert, “El ‘fantasma’ del punto de fuga en los estudios sobre la sistematización
geométrica de la pintura del siglo XIV,” D’Art 15 (1989): 29–50. This question will be discussed
in Chap. 11.
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Saint enthroned, lower register, panel LXII
Seated saint, lower register, panel LXXIII
Seated saint, lower register, panel LXXIV

East wall (1)
The Coronation of the Virgin, upper register, panel 293

South wall (1)
Saint Antonio, lower register, panel VIII

West wall (5)
Saint Mark the Evangelist, upper register, panel 149
Bishop and saint, lower register, panel XXXIV
Seated saint, lower register, panel XXXVI
Seated saint, lower register, panel XLI
The trial of Pietro d’Abano, lower register, panel XLIII

The use of this method sheds new light on the chronology of perspective rep-
resentation. Every operator is free to adjust his reconstructed lines in such a way as
to achieve a priori a given perspective and this may be the main reason why so
many “correct” perspectives have been identified in Western art beginning in the
Renaissance. If no error calculation is carried out, the operator risks forcing his
reconstruction to fit a preconceived model.

Let us return to our group of thirty paintings based on the two-point perspective
(Appendix B). If the maximal linear error for each of the works is calculated, it
becomes clear that the two vanishing points cannot be interpreted as an error in the
drawing of the perspective either. The distance between the vanishing points F and
F′ is always greater—on average 48 times greater—than the value of the maximal
linear error. In none of the works does the polygon of error encompass the two
vanishing points. Therefore, these works are clearly not based on a central linear
perspective. Furthermore, since it is known that, far from following a codified
procedure, painters in the Quattrocento9 adopted a variety of approaches in con-
structing their perspectives, these observations would tend to eliminate the
descriptive value of the classical division between the periods ‘Middle Ages’ and
‘Renaissance,’ at least when it comes to the question of perspective.

9Raynaud, L’Hypothèse d’Oxford, pp. 72–120.
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8.3.2 Bifocal Perspective

Let us instead suppose that our paintings represent examples of a bifocal linear
perspective. In the case of central linear perspective, the object being depicted in
perspective is laid out parallel to the picture plane; in a bifocal (or angular) per-
spective, there is a single vertical edge of the object pointing towards the picture
plane (Fig. 8.2).

A simple hypothesis that would explain two-point perspective within the
framework of linear perspective consists in assuming that it derives from the
geometry of the space represented. Take a city square lined by two rectilinear
buildings whose facades are not parallel but converge in the opposite direction to
the observer. It is to be expected that the right and left vanishing lines would cross
and meet at two distinct points. One example is San Marco Square in Venice with
its Napoleonic wings; each of the two lateral facades of the square has its own
vanishing point (Fig. 8.3).

Under these conditions, could the two-point perspective that we find in so many
paintings represent spaces whose sides are not parallel? Various examples can be
cited that weaken this hypothesis.

Fig. 8.2 The construction of a bifocal perspective. Jean-Claude Ludi, La Perspective pas à pas,
p. 65
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1. The two-point construction was also used by artists to depict spaces whose sides
converge toward the observer. For example, in 1620 François de Nomé (an
artist from Metz who settled in Italy, where he was known as Monsù Desiderio)
painted San Marco Square as viewed across the piazza from the side along the
lagoon. A map of Venice shows unambiguously that the two lateral sides of the
square converge towards the sea; therefore, the lines projecting towards points
F and F′ in this painting should not have crossed (Fig. 8.4).

Fig. 8.3 The lines of the piazza S. Marco in Venice. Author’s reconstruction after a plate by Carlo
Naya, ca. 1850

Fig. 8.4 The lines of the Piazza S. Marco in Venice. Author’s reconstruction after François de
Nomé, A View of Venice, oil on canvas, ca. 1620 (private collection)
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2. We discover that François de Nomé used the same construction to depict
conventional rectangular spaces whose opposite sides were parallel in per-
spective paintings such as The Tomb of Solomon and S. Maria delle Grazie
(Figs. 8.5). If the same construction could be used to represent the sides of a
space that are parallel, divergent or convergent, we are forced to conclude that
artists regarded the technique as applicable independently of the objective
structure of the space they were representing.

3. The “scenographic hypothesis,” according to which parallel walls were repre-
sented spaced apart to better show the figures or objects arranged in them, poses
another problem. We find a large number of works in which this space is nearly
empty. There are only three figures standing in the nave of François de Nomé’s
S. Maria delle Grazie, three in the nave of his Tomb of Solomon, and just one in
the foreground of the painting Saint Enthroned by Giusto de’ Menabuoi (ana-
lyzed in Appendix A).

Let us now consider the possibility that the two vanishing points constitute the
lateral points of a bifocal perspective. We then observe that the attempt to recon-
struct the plans and elevations underlying the perspective views leads to aberrant

Fig. 8.5 François de Nomé, S. Maria delle Grazie, oil of canvas, 1619. Author’s reconstruction
(Courtesy of the Galerie Jean-François Heim, Basel)
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results.10 If we examine the space depicted in The Crippled and the Sick Cured at
the Tomb of St. Nicholas by Gentile da Fabriano (Appendix B, No. 27), whose
architectural frame echoes the typology of a basilica such as Saint Paul Outside the
Walls in Rome, we find that the plan reconstructed from the perspective view does
not meet a proper basilical plan (Fig. 8.6).

Primo, since the walls running down the nave are not parallel, the span of the
transverse ribs quickly becomes much longer than anything the medieval engineers
would have been able to achieve. There are only two elevations that might corre-
spond to such a perspective. In one the shape of the transverse ribs would have to
gradually change along the axis of the nave, the artist eventually resorting to
basket-handle arches, of which there are no examples in medieval architecture.
Alternatively, the shape of the transverse ribs may remain unchanged while the
ceiling increases in height as the walls recede from the choir, a solution that was
equally unknown in the Middle Ages.

Fig. 8.6 a Ground plan of the church of St. Nicholas in the painting by Gentile da Fabriano,
reconstructed in accordance with the principles of bifocal perspective and b Ground plan of the
Basilica di San Paolo fuori le Mura, Roma, from European Architecture, eds. George H. Chase
and al., Boston, University Prints, 1916, Plate G124

10Under certain conditions one can apply the rules of perspective in reverse to reconstruct the plans
and elevations of a space beginning with the perspective view. This method was used to study the
three-dimensional space in certain works by Leonardo da Vinci; see Giovanni degl’Innocenti,
“Restitutions perspectives: hypothèses et vérifications méthodologiques,” in Carlo Pedretti,
Léonard de Vinci architecte, Milan/ Paris, 1983, pp. 274–289.
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Secundo, the groin vaults are wider than they are long, a fact that architecturally
speaking runs counter to the purpose of a ceiling, which is to cover the greatest
possible area using the smallest number of stress-bearing points. In fact, examples
can be cited of medieval vaults constructed on a rectangular plan, but their width
and length are always of the same order of magnitude.

Tertio, the bases of the columns running down the nave are rhomboid, a form
that is not seen in medieval architecture.

These inconsistencies demonstrate that Gentile da Fabriano did not apply a
bifocal, linear perspective in The Infirm at the Tomb of St. Nicholas and the floor
plan associated with the perspective view does not conform to the typology of the
basilica.

In the majority of the works under examination the same difficulties are posed by
the bifocal hypothesis, the most frequent being: (1) the plan of the cathedra is
always rectangular, not trapezoidal (Appendix B, Nos. 5, 6, 13, 15, 17, 18, 19, 22);
and (2) we know of no example of a medieval building whose coffered ceiling (Nos.
7, 9, 12, 23, 29) or tiled floor (Nos. 10, 14) is made up of lozenge- or
trapezoid-shaped units.

Our findings therefore do not support Alessandro Parronchi’s thesis that there is
a connection between the bifocal and the binocular perspective constructions. In the
wake of Panofsky’s research on the various systems of representation devised by
artists, Parronchi studied solutions that did not coincide with the theory of per-
spective invented by Brunelleschi. He mistakenly saw in the sinopias of Paolo
Uccello’s Nativity “an attempt to find a solution to the problem of binocular vision”
(Fig. 8.7).11

This preparatory sketch has three vanishing points on the same horizon line: a
“principal vanishing point” in the center of the composition towards which the
vanishing lines of the tiles in the pavement converge, and two lateral “distance
points” towards which the respective sets of diagonals meet. We can identify in this
drawing the superimposition of a central and a bifocal perspective that does not in
any way infringe on the rules of a monocular linear perspective.

Parronchi resorted to some less than convincing arguments to support his thesis
that “the two distance points are based on a model of binocular vision”12 and we
present the principal ones here. Primo, he believed that according to medieval
optics, as argued notably by Roger Bacon, the visual axis was a kind of diaphragm
separating the visual field into two hemifields,13 an interpretation that renders null
and void the experiments on binocular vision conducted by Ibn al-Haytham and his
Latin successors. Secundo, Parronchi believed that the distance point perspective

11Alessandro Parronchi, Studi sulla dolce prospettiva, Milan, 1964, pp. 326–327.
12. Parronchi, “Prospettiva e pittura in Leon Battista Alberti,” Convegno internazionale indetto nel
V Centenario di Leon Battista Alberti, Rome, 1974, p. 215.
13Parronchi, “Prospettiva e pittura,” p. 215.
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stemmed from the merging of the figure as seen in binocular vision with its
“reflection in a plane mirror,”14 whereas medieval treatises on optics treated these
two problems separately. Tertio, according to Parronchi binocular vision could be
summed up as the ability of the eyes “to look in two diverging directions,”15

whereas in reality this is impossible because in normal vision the direction of the
two eyes is coupled together, a fact that was already known in antiquity
(Pseudo-Aristotle, Problemata XXXI, 7). Quarto, Parronchi retained that the
“horizontal movement of the eyes plays an integral role in binocular vision,”16

whereas the mobility of the eyes exists independently of binocularity and diplopia
occurs in the absence of any movement of the eyes.

These points of confusion prevent us from accepting Parronchi’s hypothesis that
there is a link between bifocal perspective and binocular vision (he cites the Nativity
by Uccello as an example). There is absolutely no connection between binocular
vision and the two distance points of a bifocal perspective. The conditions of
binocular vision produce diplopia, that is to say, two non-corresponding retinal
images and consequently two “principal vanishing points,” which have no rela-
tionship whatsoever with two “distance points.”

Fig. 8.7 Paolo Uccello, sinopia for the Nativity, 140 × 215 cm, ca. 1436–1437 (Florence,
Galleria degli Uffizi, formerly in the cloister of San Martino alla Scala). Author’s drawing after
Maria Clelia Galassi, Il disegno svelato, Nuoro, 1998, p. 24, Fig. 6 (thick lines show the incisions;
thin lines show the geometrically true construction)

14Ibid., p. 215.
15Ibid., p. 216.
16Ibid., p. 214.
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8.3.3 Trifocal Perspective

Finally, let us suppose that the works in our group respect the principles of linear
perspective with three vanishing points. In this case the vertical lines of the object
are no longer depicted as vertical lines in the painting. The lines representing the
frontal plane verticals of the object depicted must converge in a vanishing point
situated either below the horizon line (viewed from above) or above the horizon line
(viewed from below). A rapid examination of the works is sufficient to show that
they are just as extraneous to this class of representation as they are to the central
and bifocal perspectives, since the frontal plane verticals are always represented as
vertical lines (Appendix B, Nos. 1–30; Appendix E, Plates E.1–E.14).

Because there are only three types of linear perspective—central, bifocal, and
trifocal—the works in this corpus do not correspond to any known type of linear
perspective.

8.4 The Principles of Binocular Perspective

The use of two-point perspective in our group of paintings therefore still awaits
explanation. Here I will lay out the hypothesis that they stem directly from
propositions to be found in the optical treatises of the period under consideration.

8.4.1 The Vantage Point and the Vanishing Point

Contrary to the texts of the Middle Ages, which generally reasoned within the
framework of binocular vision and only rarely mentioned experiments involving
just one eye,17 Renaissance studies on perspective systematically adopted the
postulate of monocular vision.

In his account of the perspective experiment that Brunelleschi was reputed to
have carried out in Florence, Antonio di Tuccio Manetti observed: “It is necessary
that the painter postulate beforehand a single point from which his painting must be
viewed.”18 Brunelleschi’s panel has been lost, but the fact that he pierced a single
hole through which the observer was supposed to gaze with one eye indicates that
his experiment was based on the assumption of monocular vision. The same

17Only a few counter-examples can be cited. Pecham used the formula “If a one-eyed man looks/Si
monoculus aspiciat” once when describing the size of objects as a function of distance, Perspectiva
communis, I, 74, ed. Lindberg, John Pecham and the Science of Optics, pp. 146–147.
18“El dipintore bisognia che presuponga uno luogo solo donde sa a uedere la sua dipintura…,”
Antonio di Tuccio Manetti, Vita di Filippo di Ser Brunelleschi, fol. 207v.
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principle would be taken up by Alberti and Piero della Francesca. As the latter
wrote regarding the construction of a quadrilateral, “So let there be constructed in
proper form a square surface which is BCDE, then mark the point A which will be
the eye.”19 A linear perspective is therefore always constructed using one eye, and
should be viewed with one eye.

Each time that we encountered an example of two-point perspective we took the
liberty of calling the points F and F′ either “points of concurrence” or “vanishing
points.” The second term is inappropriate because the concept itself did not exist
before the Cinquecento, as can be seen from Alberti’s treatise: “Then I establish a
point in the rectangle [i.e. the picture] wherever I wish; and as it occupies the place
where the centric ray strikes, and I shall call it the centric point.”20 What is this
centric ray? Alberti describes it as follows: “Among these visual rays there is one
which is called the centric ray… because it meets the [visible] surface in such a way
that it makes equal angles on all sides.”21 The centric ray corresponds to the optical
axis when the visible surface lies in the frontal plane. According to Alberti this ray
is “the most keen and vigorous/acerrimum et vivacissimum/galliardissimo et
vivacissimo,”22 a quality that many authors, from al-Kindī to Bacon, have ascribed
to the axis of the visual pyramid.23 The point of concurrence of a set of orthogonals
is not conceived as a vanishing point in the modern sense of the term. In medieval
and Renaissance optics the “central vanishing point” corresponds rather to the point
of intersection between the axis of the visual pyramid and the picture plane.

8.4.2 Depth Gives Rise to Disparate Images

The treatises on optics of Bacon, Witelo and Pecham closely follow Ibn
Al-Haytham’s De aspectibus (III, 2), presenting the same commentary and figure
with few variations.

19“Adunqua facise in propia forma una superficie quadrata la quale sia �BCDE� poi se punga il
puncto �A� il quale sia l’occhio,” Piero della Francesca, De prospectiva pingendi, III, 1, ed.
Nicco-Fasola, p. 130.
20“Post haec unicum punctum quo sit visum loco intra quadrangulum constituo, qui mihi punctus
cum locum occupet ipsum ad quem radius centricus applicetur, idcirco centricus punctus dicatur/
Poi dentro questo quadrangolo, fermo uno punto il quale occupi quello luogo doue il razzo
centrico ferisce et per questo il chiamo punto centrico,” Alberti, De Pictura, I, 19; Della pittura, I,
fol. 124v. The translation is that of Cecil Grayson in Leon Battista Alberti, On Painting, London,
Penguin Books, 1991, p. 55.
21“Est quoque ex radiis mediis quidam… dicatur centricus, quod in superficie ita perstet ut circa se
aequales utrinque angulos reddat/Ecci fra i razzi uisiui uno detto centrico. Questo, quando giugnie
alla superficie, fa di qua et di qua torno ad sé gli angoli retti et equali,” Alberti, De Pictura, I, 5;
Della pittura, I, fol. 121v; On Painting, p. 40.
22Alberti, De Pictura, I, 8; Della pittura, I, fol. 122r; On Painting, p. 43.
23Bacon, Opus maius, IV, III, 3, ed. Bridges, p. 125–127.
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Witelo (Fig. 8.8) studied the process of the fusion of images using a schema
drawn from De aspectibus, III, 2.15. As he wrote: “The two forms, which enter two
corresponding points on the surface of the two eyes, arrive at the same point of
concavity of the common nerve, and are superimposed at that point to be reduced to
one form.”24 The re-composition of the quasi-images produced by the two eyes

Fig. 8.8 Witelo, Optica, III,
37, ed. Frederic Risner,
Opticae Thesaurus, Basel,
1572, p. 102

24“Due forme que infinguntur in duobus punctis consimilis positionis apud superficies duorum
uisuum perueniunt ad eundem punctum concauitatis nerui communis et superponuntur sibi in illo
puncto et erunt una forma,” Witelo, Optica, III, 37, ed. Risner, p. 102–103.

148 8 The Properties of Two-Point Perspective



occurs at the chiasma, the crossing point of the optic nerves. Fusion therefore takes
place internally and is a product of the nervous system.

One finds a similar treatment of these topics by Bacon and Pecham. Let us take,
for example, Pecham’s Perspectiva communis, prop. I, 32: “The duality of the eyes
must be reduced to unity”25 and prop. I, 80: “An object appears double when it has
a sensibly different position relative to the two [visual] axes.”26 His division of the
two propositions reflects the distinction that he made between the mental image,
which results from the combination of sensations at the point of the chiasma
(prop. I, 32), and the sensory stimuli of images received by the two eyes (prop. I,
80). Like his predecessors, Pecham distinguished between external quasi-images
and the internal image resulting from their fusion, and this had immediate conse-
quences in the area of visual representation. A scene viewed in perspective is an
external image and is therefore subject to the principles of binocular vision and the
composition of quasi-images. It remains to determine in what form.

8.4.3 The Determination of the Fixation Point

Let us return to Ibn al-Haytham’s experimental ruler—a strip of wood one cubit long
and four fingerbreadths wide, with a slight depression (MN) at the observer’s end to
serve as a nose rest, and the axes HZ and KT and the diameters AD and BC painted in
different colors.27 In his third experiment, which focused on diplopia, al-Haytham

25“Oculorum dualitatem necesse est reduci ad unitatem,” Lindberg, John Pecham and the Science
of Optics, p. 116.
26“Ex variato sensibiliter situ visibilis respectu duorum axium ipsum duo apparere,” Lindberg,
John Pecham and the Science of Optics, p. 150.
27“Take a smooth wooden plaque that is one cubit long and four digits wide, and let it be perfectly
flat, even, and smooth. Let the edges along its length, as well as those along its width, be parallel,
and let there be two diagonals intersecting one another at a point through which a straight line is
drawn parallel to the edges along the length. Then, through that [same] intersection-point let a
straight line be drawn perpendicular to the first line, passing through [the plaque’s] middle, and let
[each of] these [two perpendicular] lines be painted a different color, both colors being bright so
that they are readily visible, but let the two diagonals be painted the same color. Then, in the
middle of the bottom edge of the plaque, between the [endpoints of the] two diagonals, let a
rounded notch be cut, but one that narrows inward so that, when the plaque is brought up to it, the
bridge of the nose can fit into it in such a way that the two corners of the plaque almost touch, but
do not actually touch, the two midpoints of the surfaces of the two eyes/Accipiatur tabula lenis
ligni, cuius longitudo sit unius cubiti et cuius latitudo sit quattuor digitorum, et sit bene plana et
equalis, et lenis. Et sint fines sue longitudinis equidistantes, et sue latitudines equidistantes, et sint
in ipsa duo dyametri se secantes a quorum loco sectionis extrahatur linea recta equidistans duobus
finibus longitudinis. Et extrahatur a loco sectionis etiam linea recta perpendicularis super lineam
primam positam in medio, et intingantur iste linee tincturis lucidis diuersorum colorum ut bene
appareant, sed tamen duo dyametri sint unius coloris. Et concauetur in medio latitudinis tabule
apud extremum linee recte posite in medio, et inter duos dyametros, concauitate rotunda, et cum
hoc quasi piramidali tantum quantum poterit intrare cornu nasi quando tabula superponetur illi
quousque tangent duo anguli tabule fere duo media superficierum duorum uisuum, tamen non
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placed three wax columns at points L,Q and S. When the eyes (A and B) focus on the
wax column Q, the other two columns L and S are seen as double images. It follows
that “the object on which the two visual axes intersect always appears single… and
the object seen by rays differently located [with respect to the visual axes] appears
double.”28 The double image of L seen on the nearer side of the fixation point was the
result of heteronymous (crossed) diplopia, while the double image of S beyond the
fixation point was due to homonymous (direct) diplopia29 in modern terminology.

Given the fact that physiological diplopia operates under normal viewing con-
ditions at moderate distances, Ibn al-Haytham’s experiments can be applied to the
problem of representing what one sees. But what does one see? The scenes that
correspond to the case of two-point perspective are always composed of a central
figure placed in the foreground and an architectural frame, most of which appears in
the background. This spatial organization favors double vision, which is a regular
occurrence at distances of between 0 and 30 m. Under these conditions the two eyes
must select the object on which they will focus. Since the fixation point is generally
a conspicuous figure standing in the foreground, the architectural frame produces
two disparate images, in conformity with the case of homonymous diplopia.
Because the frame is made up of rectilinear edges, these lines are doubled and meet
at two lateral vanishing points. This can be shown through a simple experiment: if
one holds up a finger while gazing down a straight section of track, the rails will
appear to converge on two distinct vanishing points.30

(Footnote 27 continued)

tangent,” De aspectibus, III, 2.26, A. Mark Smith, Alhacen’s Theory of Visual Perception,
Philadelphia, 2001, pp. 263–264. Roger Bacon ascribed scant importance to the length of the ruler,
which might measure from four to six palms in length (about 30–46 cm): “An experimenter can
prove this by taking a board of a palm’s width, four or five or six palms in length, and with a
smooth surface/Nam hoc potest experimentator probare, accipiendo unum asserem latitudinis
unius palme et longitudinis quatuor, uel quinque, uel sex, et sit superficies eius leuis,” Perspectiva
II, II, 2, ed. Bridges, p. 95, ed. Lindberg, p. 186.
28“Ex hac igitur experimentatione et expositione declaratur bene quod uisum in quo currunt duo
axes semper uidetur unum… et quod uisum quod comprehenditur per radios diuerse positionis in
parte uidetur duo…,” De aspectibus, III, 2.48, ed. Smith, Alhacen’s Theory of Visual Perception,
pp. 269–270. Bacon’s exposition was more succinct: “For if the axes of the eyes A and B are fixed
with an attentive gaze on part O of visible object MON, visible point K inside the intersection of
the axes and visible point H outside this intersection will both necessarily appear double/Nam si
oculorum A et B axes figantur diligenti intuitione in O partem uisibilis MON, tunc K uisibile infra
concursum axium apparebit duo, et H uisibile ultra concursum similiter uidebitur duo necessario,”
Perspectiva, II, II, 2, ed. Bridges, p. 95; ed. Lindberg, pp. 184–186.
29Henry Saraux and Bertrand Biais, Physiologie oculaire, Paris, 1983, p. 391.
30According to Ibn al-Haytham, if when looking at an object the two eyes are focused in exactly or
approximately the same direction, a single image is seen; otherwise it is double, Sabra, Optics, vol.
1, p. 239. These results are striking in their clarity and in their consistency with the conceptions of
modern physiological optics, which state that the two images are amalgamated only when the
object lies in Panum’s fusional area, that is to say, if the retinal points correspond precisely or
approximately (creating a more or less focused image). Diplopia takes place when this condition is
not met.
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Like the Arab texts on which they were based, Latin treatises drew the reader’s
attention to the arrangement of quasi-images and how certain of their properties
could be studied quite easily through direct observation. Roger Bacon’s Perspectiva
provides an example in this regard. After reiterating the definitions of homonymous
and crossed diplopia31 and presenting the results of his experiments using Ibn
al-Haytham’s ruler (the phenomenon of diplopia, the reduction of the horopter to
the frontal plane, the tolerance of fusion), Roger Bacon then passes without any
transition from experimentation to observation, because: “Even without such a
board, an experimenter can test many things relevant to these matters. For at night
he can place his finger between himself and a candle; if he then fixes the axes of his
eyes on the candle, that finger will appear double.”32 This is an example of crossed
diplopia.

An observation corresponding to homonymous diplopia is described shortly
afterwards: when one focuses on distant objects such as the stars, which lie beyond
the fixation point, they appear to be doubled.33 One discovers here an idea that has a
direct bearing on the problem of perspective. Suppose an artist wishes to represent a
scene based on the principles of binocular vision. He cannot simultaneously fix his
eyes on the figures in the foreground and the architectural framework in the
background. It is natural that his gaze will focus on the most important element in
the scene, which will usually be a figure standing in the foreground (for example,
Saint Francis in Giotto’s Approval of the Rule). This produces a case of
homonymous diplopia. The doubling will involve all of the objects situated beyond
the fixation point, including the architectural frame that provides the orthogonals.
Being doubled, these will necessarily meet at two vanishing points.

8.4.4 The Crossing of the Orthogonals on the Axis
Communis

The fact that in the perspectives under examination here the vanishing lines orig-
inating on the right side converge at one point on the left and those originating on
the left side meet at one point on the right can be understood by referring once again
to Bacon’s Opus majus. Accompanying the passage cited above is a figure illus-
trating the phenomenon of crossed diplopia, where M designates the finger of the
experimenter, A the candle, and dexter and sinister the positions of the two eyes
(Fig. 8.9).

31Bacon, Opus maius, V, II, II, 2, ed. Bridges, p. 95; ed. Lindberg, p. 184.
32“Et experimentator potest sine tabula experiri multa in hac parte. Nam potest de nocte eleuare
digitum inter ipsum et candelam; si igitur figat axes super candelam, uidebitur unus digitus duo,”
Bacon, Opus maius, V, II, II, 3, ed. Bridges, p. 96; ed. Lindberg, p. 188.
33Bacon, Opus maius, V, II, II, 3, ed. Bridges, p. 97; ed. Lindberg, p. 188.
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Thus it is certain that when the axes of the eyes are fixed on visible object A, the
visual power nevertheless extends to visible object M, but the species coming from
the right proceeds to the left if it passes beyond [this point], and by the same token
the species of the left eye proceeds to the right. For these species intersect at point
M, and [afterwards] they separate so that the right-hand species crosses to the left
side and the left-hand species to the right side, as is evident to sense. Now since
M appears double, the image corresponding to the right eye extends to that side.34

In homonymous diplopia the outcome is the reverse. If the eye fixes on the finger
M, a double image of the candle A is produced.35 The quasi-image produced by the
left eye AL appears to the left of M, while the quasi-image produced by the right eye
AR appears to the right. The principal difference between objects in the background
as seen in these experiments and as depicted in perspective is that the candle flame
can be regarded as a single point whereas the architectural framework extends
backwards in space. Consequently it is not a limited image that is doubled, but a

Fig. 8.9 Homonymous and
crossed diplopia, after Roger
Bacon, Perspectiva, II, II, 3,
ed. John H. Bridges, The
‘Opus majus’ of Roger Bacon,
London, 1897, II, p. 97

34“Certum igitur est, quod axibus oculi fixis super A uisibile, nichilominus tamen uirtus uisiua
tendit in M uisibile, sed species ueniens ab oculo dextro tendit in sinistrum si procedatur ultra, et
similiter species oculi sinistri tendit ad dextrum, nam hee species intersecant se in M puncto, et
separantur ita ut dextra transeat ad sinistram partem et sinistra ad dextram, ut patet ad sensum,”
Bacon, Opus maius, V, II, II, 3, ed. Bridges, p. 97; ed. Lindberg, pp. 188–190.
35“Yet the right-hand image does not always disappear when the left eye is closed, nor the left
image with the closing of the right eye; rather it can easily happen that when the right eye is closed
the right-hand image disappears, and when the left eye is closed the left-hand image disappears/Et
tamen non semper disparet ymago dextra oculo sinistro clauso, nec sinistra ad clausionem dextri
oculi. Sed bene accidit quod clauso dextro oculo ymago dextra dispareat, et clauso sinistro ymago
sinistra disparebit,” Bacon, Opus maius, V, II, II, 3, ed. Bridges, p. 97; ed. Lindberg, p. 190.

152 8 The Properties of Two-Point Perspective



large area of the visual field. Following on from this is the question of determining
which of the two images imposes itself in each of the visual hemispheres.

Unlike modern optics, which offers no all-encompassing hypothesis, medieval
optics favored a form of cross-neutralization, because it was assumed that the rays
in a visual pyramid are not of equal power. The argument, drawn from Ptolemy,
was taken up by Alkindi and Alhacen, and then appeared in the Latin texts of
Bacon, Witelo, Pecham, Henry of Langenstein, and finally Alberti:

Ptolemy: “The objects that lie directly in front of, and at right angles to the rays are seen
more clearly than those that do not. For everything that falls orthogonally strikes its subjects
more intensely than whatever falls obliquely.”36

Alkindi: “A more powerful vision makes a complete transformation. It therefore produces a
perfect ray, that is to say, strong… As a result, an object on which falls a stronger ray will
be seen more clearly… Thus I say that the strongest ray falls on the center of vision.”37

Alhacen: “Furthermore, the effect of light arriving along perpendiculars is stronger than the
effect of light arriving along oblique lines… From this experiment it will therefore be clear
that vision [taking place] through the center of the eye, along the [visual] axis as defined by
us, is clearer than vision at the edge of the eye, along the lines surrounding the [visual] axis.
It has therefore been shown that vision [taking place] along the axis of the visual cone will
be clearer than the vision [taking place] along the other radial lines…”38

Bacon: “And Jacob [Alkindi] finds the cause of this beyond what has already been said…
And the reason for this is that the strength of the pyramid derives [especially] from this ray,
for it is shorter that all others… Thus it will have more of the virtue produced by the depth
of the agent, and therefore the axis of the pyramid is the product of greater virtue than any
other line”/“And therefore it is perpendicular to the body, and is the axis of the pyramid,
and therefore is stronger and has more force.”39

36“[…] Ea quorum situs directus est super radios ad angulos rectos, uidentur magis quam que non
ita se habent. Omnia enim quorum casus fit secundum perpendiculares lineas, habent incubitum
super subiecta magis quam ea quorum casus fit obliquus,” Ptolemy, Optica II, 19, ed. Lejeune,
pp. 19–20, ed Smith, pp. 76–77.
37“Potentior ergo uisus conuersionem efficit perfectam. Ipse igitur efficit radium perfectum, scilicet
fortem… Corpus ergo, super quod cadit radius fortior, comprehenditur manifestius… Dico ergo
quod super centrum uisus cadit radius fortior,” al-Kindī, De aspectibus 12, ed. Rashed, p. 471.
38“Et operatio lucis uenientis super perpendiculares est fortior operatione lucis uenientis super
lineas inclinatas… Manifestabitur ergo ex hac experimentatione quod uisio per medium uisus et
per axem quem distinximus est manifestior uisione per extremitates uisus et per lineas continentes
axem. Declaratum est ergo quod uisio per axem piramidis radialis manifestior quam uisio per
omnes lineas radiales,” De aspectibus I, 6.24 et II, 2.30, ed. Smith, Alhacen’s Theory of Visual
Perception, pp. 33 and 97.
39This property is stated in two different places: “Et huius causam preter dicta dat Iacobus
[Alkindi]… Et causa huius est quia fortitudo pyramidis est ab hoc radio, nam hic radius est brevior
omnibus… quare axis pyramidis a maiori uirtute causabitur quam alie linee,” De multiplication
specierum II, 9, ed. Lindberg, Roger Bacon’s Philosophy of Nature, pp. 164–166; “Et ideo est
perpendicularis super corpus, et axis pyramidis, et ideo est fortior, et plus habet de virtute,” Bacon,
Opus maius, IV, III, 3, ed. Bridges, p. 127.
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Witelo: “Distinct vision occurs only along perpendicular lines from a point of the thing seen
to the surface of the eye… It is thus clear that vision is made only by perpendicular lines.”40

Pecham: “Therefore only that perpendicular called the axis, which is not refracted, mani-
fests the object efficaciously, and other rays are correspondingly stronger and better able to
manifest [the object] as they are closer to the axis.”41

Langenstein: “The question is whether the perpendicular ray is the strongest.”42

Alberti: “The central ray is that single one which alone strikes the quantity directly, and
about which every angle is equal. This ray [is] the most active and the strongest of all the
rays…”43

Thus, according to Roger Bacon the centric ray of the visual pyramid “… is
stronger, and has more force/et ideo fortior, et plus habet de uirtute” than all the
others, which is to say that those objects located along the axis of the visual pyramid
are seen more distinctly and have greater visual force. The further the object lies
from the axis, the less visible it will be.44 In binocular vision the axes of the two
pyramids pass through the fixation point M. Beyond the axis communis, the ray
dexter-M extends to the left hemifield, which is seen more powerfully by the right
eye, and the ray sinister-M extends to the right hemifield, which is seen more
powerfully by the left eye. Medieval optics posited a form of cross-neutralization of
the images from the right and left hemifields. These images being of the architectural
frame, the edges of the frame will give rise to rectilinear vanishing lines. Those that
appear in the right hemifield will have their vanishing point on the left, while those
that appear in the left hemifield will have their vanishing point on the right. Herein
lies the explanation for the crossing of the vanishing lines on the axis communis.

To summarize, in homonymous diplopia the orthogonals projecting from the
right cross over to the left and the orthogonals projecting from the left cross over to

40“Visio distincta fit solum secundum perpendiculares lineas a punctis rei uise ad oculi superficiem
productas… Patet quod secundum solas perpendiculares lineas fit uisio,” Witelo, Optica III,17, ed.
Risner, p. 92.
41“Unde sola perpendicularis illa que axis dicitur, que non frangitur, rem efficaciter representat,
et alii etiam radii quo ei sunt propinquiores eo fortiores et potentiores in representando,” Pecham,
Perspectiva communis I, 38, ed. Lindberg, p. 120.
42“Queritur utrum radius perpendicularis sit fortissimus,” Henri de Langenstein, Questiones super
perspectivam, I, q. 6a (ca. 1397), Valencia, 1503.
43“Centricum radium dicimus eum qui solus ita quantitatem feriat ut utrinque anguli angulis sibi
cohaerentibus respondeant. Equidem et quod ad hunc centricum radium attinet uerissimum est
hunc esse omnium radiorum acerrimum et uiuacissimum,” Alberti, De pictura I,8, ed. Grayson,
p. 90.
44Modern physiological optics arrived at a similar conclusion by other paths, arguing that the
quality of central vision is due to the high concentration in the fovea of the cones that are
responsible for visual acuity. The fact remains that in the case of pathological diplopia (e.g.,
strabismus) the problem created by the disparity in images generally leads to the suppression of the
central zone of the image perceived by the skewed eye (neutralization scotoma), whereas the
uniform perception of the visual field would in theory lead to the neutralization of the entire image
in the skewed eye.
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the right. The “binocular perspective” defined by this rule corresponds exactly to
the perspective drawing in the works under consideration here.

8.4.5 Examination of the Plans and Elevations

The painters of the Duecento and Trecento are not likely to have applied exact
methods of projection to represent three-dimensional space. It is nevertheless useful
to retrace the vertical and horizontal projections that correspond to the perspective
views in order to test the coherence of the spaces represented. Such reconstructions
are generally based on the postulate of monocular vision, but can be extended to the
case of binocular vision. The procedure adopted here is the inverse of the usual one
that consists in constructing a perspective beginning with the plans and elevations.
The only difficulty lies in determining the dimensions of the frontal lines in relation
to those of the orthogonal lines, which requires that one identify an object whose
width to depth ratio is known (e.g., the homothetic figures in the foreground or
background, the tiles on the floor, the sunken panels in a coffered ceiling, or some
other standard architectural element). Once the ratio has been established, the
position of the eyes O and O′ can be determined. In this way the perspective view is
associated with its corresponding plan and elevations (Appendix E, Plate E.1). One
then calculates the scale of the geometric projection as a function of the position
and size of a figure, and measures the distance between the eyes O and O′.

The application of this method to our set of paintings led to two main
conclusions:

1. The distance between the eyes is always overestimated, varying between 12 and
440 cm, with an average of 128 cm (Appendix D, Nos. 21 and 30). This
observation suggests that the painters of the Duecento and Trecento sketched
their perspective drawings directly without relying on preparatory plans and
elevations.45

2. Reconstructing the plans and elevations based on binocular vision produces
coherent spaces that are consonant with the architectural models of the period
(Appendix E). This shows that the hypothesis being advanced is plausible.

8.4.6 An Exploration of the Relationship FF′ ∝ XP/HX

We can now use Ibn al-Haytham’s experimental ruler to examine the case of
homonymous diplopia corresponding to the situation of the paintings under study.

45Plans and elevations were nevertheless used in this period, as is attested to by Giotto’s Drawing
for the Campanile of the Cathedral of Florence, dated 1334 (Siena, Museo dell’Opera).
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By introducing variations in the initial conditions, it can be shown that the degree of
disparity in the quasi-images is a function of the distance separating the fixation
point from the background and the distance separating the spectator from the fix-
ation point.

Let us begin with two wax columns positioned at Q (the fixation point) and
Z (the background). The perceived distance between the quasi-images will be equal
to CD. If we reduce the distance between the two wax columns by moving the first
column from point Q to point S, the perceived separation between the quasi-images
will then be equal to PR, which is less than CD (Fig. 8.10). This demonstrates that
the disparity between quasi-images decreases as the distance between the fixation
point and the background (measured along the axis communis) decreases.

Let us once again place two wax columns at points Q and Z. The perceived gap
between the quasi-images remains equal to CD. If we move these columns to points
L and S, maintaining the distance between them constant, the separation between
the two quasi-images will be equal to UV, which is greater than CD (Fig. 8.11). In
this case the disparity between the quasi-images increases as the distance between
the spectator and the fixation point (measured along the axis communis) diminishes.

Since the vanishing point of a central perspective is located along the axis
communis, it is subject to the same phenomenon of disparity as the wax column Z
in the experiments just described. This explains why there are two vanishing points
in all of the paintings in our corpus. If the artists who painted them were aware of
the qualitative relationships between the disparity of the images and the respective
distances between the spectator, the fixation point and the background, there should
exist a valid statistical relationship between the parameters used to construct their
perspectives.

Fig. 8.10 The first relationship of disparity between the quasi-images. Author’s drawing

Fig. 8.11 The second relationship of disparity between the quasi-images. Author’s drawing
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Let us label the two eyes O and O′ and the two vanishing points F and F′. Along
the axis communis HP, one finds midway between the two eyes the cyclopean point
(H), the fixation point (X), and the point in the background (P) (Fig. 8.12).

This relationship can be expressed as FF0
OO0 ¼ XP

XH or, if the interpupillary distance
OO′ (a fixed datum) is disregarded:

FF0 / XP
XH

One can then compare the observed distance between the vanishing points
(FF′obs measured on the geometric projection) and the theoretical distance between
the vanishing points (FF′theo) calculated from the relationship given above. These
values, determined for all the works in our corpus (Appendix D), exhibited no
systematic correspondences. Therefore the painters did not fix the two vanishing
points based on a mathematical knowledge of this relationship. Nevertheless, if one

Fig. 8.12 The relationship FF′ to XP/HX. Author’s drawing

Fig. 8.13 A graph FF′obs ⊥ XP/HX. Author’s drawing
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plots FF′theo = XP/XH (abscissa) against FF′obs (ordinate), the graph reveals a
statistical relationship between the variables: R = 0.831 (Fig. 8.13).

This correspondence could signify that the painters and architects of the period,
who did not yet have a projection method capable of fixing the vanishing points
with precision, applied a purely qualitative relationship of the type: “The closer the
subject of the scene is to the observer and the further it is from the background, the
greater the distance between the two vanishing points.” Knowledge of this rela-
tionship, which was accessible to them through Alhacen’s binocular ruler, provides
a fresh argument in support of the hypothesis that two-point perspectives derived
from the medieval theory of binocular vision.

8.5 Conclusion

Let us return to the question of the classification of the different types of repre-
sentation described at the beginning of this chapter. As we have shown, two-point
perspectives are not parallel axonometric projections (isometry, dimetry or trimetry)
nor can they be considered oblique projections (cavalier or military) in which the
spectator is placed at infinity. Neither do they represent central, bifocal or trifocal
linear perspectives. Insofar as there exist three main types of projection in which the
distance of the spectator from the picture plane is finite—linear, curvilinear and
synthetic perspective—the interpretation of two-point perspectives based on
binocular vision cannot be entertained unless any association with curvilinear or
synthetic perspective is excluded. It therefore remains to examine various com-
plementary hypotheses in order to determine whether the works under examination
here bear any connection with the curvilinear perspective of Hauck and Panofsky,
or the synthetic perspective proposed by White and Carter, or De Mesa Gisbert’s
arithmetic perspective.

Inspired by previous research, Erwin Panofsky46 proposed that “axial con-
structions” be recognized as an application of curvilinear perspective. In this
construction the dimensions of an object would be measured on a spherical surface
with the eye of the spectator at its center. The visual rays that connect the object
points A, B, C … to the spectator O would intercept the image points a, b, c … on a
sphere with the center O. In a stereographic projection the center of the projection
O is the antipode of the point of tangency. The representation is therefore a
curvilinear perspective in which the entire segment on the right can be described by
an arc, the length of which is proportional to the visual angle that intercepts it.47

46Erwin Panofsky, “Die Perspektive als symbolische Form,” Vorträge der Bibliothek Warburg 4
(1924/5): 258–331, drew inspiration from Guido Hauck, Die subjektive Perspektive und die
horizontalen Curvaturen des dorischen Styls, Stuttgart, Wittwer, 1879. This idea was then taken
up by Miriam S. Bunim, Space in Medieval Painting and the Forerunners of Perspective, New
York, 1940; John White, The Birth and Rebirth of Pictorial Space, London, 1967.
47André Flocon and André Barre, La Perspective curviligne, Paris, 1968.
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The same property would hold for an orthographic projection, with the center of
projection being extended to infinity. All perspective drawings obtained on a plane
tangent to the sphere—except for the gnomonic projection which is equivalent to
linear perspective—satisfy the same property: the lines are rendered in the form of
curvilinear arcs. This condition is not met by any of the works in our corpus
(Appendix B), and they therefore cannot be classified as examples of curvilinear
perspective.48 Nor can any connection be drawn between them and Fouquet’s
attempts to construct curvilinear perspectives, as in The Arrival of Emperor
Charles IV at the Basilica of Saint Denis or The Banquet Held for the Emperor
Charles IV (Paris, BnF, ms. fr. 6465).49

Panofsky was employing the term “curvilinear perspective” in a broader sense
that lay midway between linear and curvilinear perspective. The measurements
made on the projection circle being transferred onto a picture plane, the object lines
are rendered by image lines. This case demands separate study.

John White and Bernard Carter50 provided a more specific formulation of
Panofsky’s concept, calling it “synthetic perspective” by which they meant a
combination of “artificial” and “natural” perspective. The dimensions of objects,
measured on a projection circle, are in this case transferred onto the picture plane by
means of parallel lines. White and Carter’s hypothesis rests on a mathematical
property that cannot be found in any of the thirty works under study. Since it is
known that receding lines converge in well-defined vanishing points, the property
which states that in a synthetic perspective three orthogonals do not allow for a
single vanishing point excludes the possibility that our works can be interpreted as
examples of such a construction.

A final, and more radical, objection was advanced by Andrés de Mesa Gisbert,
according to whom the pre-perspectives of the Duecento and Trecento were not
constructed using geometric methods but rather on the basis of ratios of propor-
tionality. As a consequence the historian would not even be able to trace the lines of
the perspective, and these lines could not be extended up to the vanishing points.51

The next chapters will be devoted to a critical examination of these hypotheses:
Panofsky’s “curvilinear perspective” in Chap. 9, White’s “synthetic perspective” in
Chap. 10, and De Mesa’s “arithmetic construction” in Chap. 11.

48With the exception of a few obscure and contentious mentions, serious study of curvilinear
perspective only began during the nineteenth century, William Herdman, A Treatise on the
Curvilinear Perspective of Nature, London, 1853.
49John White, “Developments in Renaissance Perspective: I,” Journal of the Warburg and
Courtauld Insitutes 12 (1949): 58–79, Plates 23B and 24B.
50White, The Birth and Rebirth of Pictorial Space, op. cit.; Bernard A.R. Carter, “Perspective,”
The Oxford Companion to Western Art, ed. by H. Osborne, Oxford, 1987, pp. 840–861.
51Andrés de Mesa Gisbert, “El ‘fantasma’ del punto de fuga en los estudios sobre la
sistematización geométrica de la pintura del siglo XIV,” D’Art 15 (1989): 29–50.
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Chapter 9
The Hauck–Panofsky Conjecture
Regarding Curvilinear Perspective

Abstract In the wake of Guido Hauck’s work on “subjective perspective,” Erwin
Panofsky concluded that perspectives based on what he referred to as a “vanishing
axis” could be interpreted as a form of curvilinear perspective. The present chapter
aims to refute this conjecture by demonstrating that such constructions do not
correspond either to the linear or the curvilinear perspective. They cannot be classed
as linear perspectives because the distance between their two vanishing points is
always greater than the maximum reconstruction error. Nor can they be considered
curvilinear perspectives, in which the vanishing lines always converge in two
well-defined vanishing points, because lines based on the mapping of projection
circles on the picture plane do not end in points of concurrence. The refutation of
the Hauck–Panofsky conjecture provides support for the interpretation set out in
Chap. 8. Panofsky’s erroneous reading stems from his failure to recognize that if the
vanishing lines taken from the same side of the axis are extended beyond this axis,
they will converge on a defined vanishing point.

Before adopting the principles of linear perspective, painters and architects utilized
a wide range of systems to represent perspective: axonometry, oblique perspective,
splayed views, etc. Among these systems was an axial form of construction that
dates back to antiquity and is still described today as “the fishbone perspective.”
Guido Kern,1 who identified it, initiated a line of research that during the course of
the last century explored the possible existence of a curvilinear alternative for the
representation of perspective. According to Kern, painters gradually advanced from
“an axial construction with parallel vanishing lines” to an “an axial construction
with convergent vanishing lines,” before finally conceiving an approach in which
the lines meet in a single vanishing point (central linear perspective).

1Guido J. Kern, “Die Anfänge der zentralperspektivischen Konstruktion in der italianischen
Malerei des 14. Jahrunderts,” Mitteilungen des Kunsthistorischen Instituts in Florenz 2 (1913):
39–65.
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Erwin Panofsky2 sought to extend the empirical basis of perspective painting by
adding the principles of the axial construction, and proposed a hypothesis that he
believed would take into account this construction. He claimed that a similar system
was already used by the artists of Pompeii working in the third and fourth styles, but
agreed with Kern that the construction was characteristic above all of the Middle
Ages. For example, in his analysis of a work by Duccio di Buoninsegna, Panofsky
wrote: “The orthogonals of the lateral sections of the ceiling at first run entirely
parallel with the brackets dividing the ceiling, thus in a pure vanishing-axis con-
struction.”3 He based his reconstruction on a brief, enigmatic passage in Vitruvius’
De Architectura: “Scenography is the illusionistic reproduction of the facade and
the sides, and the correspondence of all lines with respect to the center of the circle
[actually the ‘compass point’]/Item scaenographia est frontis et laterum absceden-
tium adumbratio ad circinique centrum omnium linearum responsus.”4

Influenced by Hauck’s notion that the curvilinear construction was a “natural”
form of perspective,5 Panofsky deduced that painters during antiquity and the
Middle Ages measured the objects they were depicting on a curved surface, which
he denominated the “projection circle” and whose center corresponded to the eye of
the viewer. He applied this hypothesis to the representation of a ‘space box’
(Raumkasten). The steps involved in the construction of the Raumkasten will be
described below.

While the distinction between linear and curvilinear perspective is clear today,
such was not always the case with the ancient texts, in which the curvilinear
alternative was sometimes acknowledged and sometimes not.

Maurice Pirenne6 was the first to challenge the notion formulated by Hauck and
then adopted by Panofsky that curvilinear perspective was more suited to the
subjective representation of space than linear perspective, because the former was
“natural” whereas the latter was “artificial.” Examining the alternatives:

2Erwin Panofsky, “Die Perspektive als symbolische Form,” Vorträge der Bibliothek Warburg 4
(1924/5): 258–331; Perspective as Symbolic Form, New York, 1991.
3Panofsky, Perspective as Symbolic Form, p. 121 (italics mine).
4From Panofsky’s own translation, Perspective as Symbolic Form, p. 100. Granger, who translates
circini centrum as “vanishing point” has instead interpreted the passage from Vitruvius as follows:
“Scenography (perspective) also is the shading of the front and the retreating sides, and the
correspondence of all lines to the vanishing point, which is the center of the circle,” F. Granger,
ed., De Architectura, I, I, Cambridge, 1956, vol. 1, p. 26.
5Guido Hauck, Die subjektive Perspektive und die horizontalen Curvaturen des dorischen Styls,
Stuttgart, 1879.
6Maurice Pirenne, “The scientific basis of Leonardo da Vinci’s theory of perspective,” British
Journal for the Philosophy of Science 3 (1952): 165–185; idem, Optics, Painting and
Photography, Oxford, 1970.
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A. A natural system of perspective exists that corresponds to what we see

Aa. This natural system coincides with the perspective system developed in the Renaissance
Ab. This natural system differs from the Renaissance system of perspective

B. This natural system does not exist; instead many different systems of perspective are
admissible

Pirenne demonstrates that linear perspective is just as well adapted to the per-
ception of space as the curvilinear perspective. His principal argument is based on
physiological optics—if, as Panofsky assumed, a rectilinear object is always per-
ceived as a curvilinear form, there is no need to employ a curvilinear perspective for
the object to conform to our perception of it, because the drawing itself is an object.
On the contrary, the use of the curvilinear convention would deform the object,
leading to representations that do not correspond to what one is attempting to
depict. “Renaissance perspective remains a fairly good approximation, and, more
important, it is probably the best possible approximation.”7

Other authors, including Decio Gioseffi,8 have attempted to refute on geometric
and physiological grounds Panofsky’s relativist thesis regarding the multiplicity and
the essential arbitrariness of the perspective systems available to artists. According
to Gioseffi, the equivalence between perspective representations in the art of
Pompeii and the perspectiva artificialis of the Renaissance remains to be proven.

James Elkins9 extended the critique of Panofsky’s theses by questioning the
notion that early intimations of a Renaissance form of curvilinear perspective are to
be found in Leonardo da Vinci’s notebooks. He argues that Leonardo’s comments
regarding the axiom of angles referred to natural vision rather than to perspective
representations.

Richard Tobin showed that Panofsky was only able to compare and contrast the
“axiom of angles” (curvilinear perspective) with the “axiom of distances” (linear
perspective) based on a misreading of theorem 8 in Euclid’s Optics.10 It might be
added that, far from sustaining the “axiom of angles” everywhere in his treatise,
Euclid sometimes resorted explicitly to the “axiom of distances,” e.g. in proposi-
tions 19–22.11 This shows to what degree research on the precursors to curvilinear
perspective was based on a subjective evaluation of the question.

7Pirenne, “The scientific basis of Leonardo da Vinci’s theory,” pp. 181, 183.
8Decio Gioseffi, Perspectiva artificialis, Trieste, 1957.
9James Elkins, “Did Leonardo develop a theory of curvilinear perspective?” Journal of the
Warburg and Courtauld Institutes 51 (1988): 190–196. See also The Poetics of Perspective,
Ithaca, 1994.
10Richard Tobin, “Ancient Perspective and Euclid’s Optics,” Journal of the Warburg and
Courtauld Institutes 53 (1990): 14–41. Different versions of theorem 8 (prop. 9) appear in Euclidis
Optica, ed. Heiberg, Leipzig, 1895, pp. 14–17; Elaheh Kheirandish, The Arabic Version of
Euclid’s Optics, New York, 1999, pp. 26–29; Wilfred R. Theisen, “Liber de visu,” Mediaeval
Studies 41 (1979), p. 67.
11Kheirandish, The Arabic Version of Euclid’s Optics, pp. 56–69; Theisen, “Liber de visu,”
pp. 72–74.
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This chapter will begin with a critical review of the passages that Panofsky
devoted to the system of perspective based on the vanishing axis, but it will follow
a different path from that of Pirenne, Elkins and Tobin, who sought to undermine
the foundations of Panofsky’s chain of reasoning rather than the conjecture itself
that axial compositions constitute examples of curvilinear perspective. It will then
remain to determine whether the paintings analyzed here conform to the system
imagined by Panofsky.

The two limitations to the present study are the following:

1. The question of true and false perspectives will not be explored. It appears in
effect that the evaluations one makes of modes of representation are in part
determined by aesthetic biases of a complex nature. It seems more useful to limit
the analysis to the operations involved in the construction of a perspective,
identified ex post facto beginning with the architectural framework of the
composition and the texts that render them intelligible.

2. The investigation will be limited to the question of vanishing lines, which is
certainly just one aspect of perspective constructions. This reduction in the
scope of the problem is justified from an analytical point of view, because two
distinct operations are involved in the construction of a perspective. The first
consists in mapping the vanishing lines (running parallel to the axis of the
viewer’s gaze) and the second in restoring the frontal lines (lying in a plane
perpendicular to the axis of the viewer’s gaze). The marking of a point any-
where in the composition is equivalent to the construction of a vanishing line
and a frontal line. Since the notion of the vanishing axis is connected to the
tracing of the vanishing lines, it is possible to analyze the latter without taking
into account operations involving a reduction in the depth intervals.

9.1 Compositions Based on a Vanishing Axis

What is a vanishing axis? It is, according to Panofsky, the ancestor of the “van-
ishing point” in modern linear perspectives. This notion is based on the observation
that the perspective lines in certain works do not converge towards a single point
but meet along a vertical axis. Panofsky also uses the term “fishbone construction”
to designate the arrangement of the various elements resulting from the use of a
vanishing axis in a perspective view. He wrote: “The extensions of the orthogonals
do not merge at a single point, but rather only weakly converge, and thus meet in
pairs at several points along a common axis… This creates a ‘fishbone effect’.”12

This description does indeed apply to many works produced during the Middle
Ages.

12Erwin Panofsky, “Die Perspektive als symbolische Form”, Vorträge der Bibliothek Warburg 4
(1924/5): 258–331, Perspective as Symbolic Form, p. 38.
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The relationship perceived by Panofsky between a curvilinear perspective and a
perspective with a vanishing axis is based on a short passage from Vitruvius’
treatise on architecture that we will examine below. I will first review the con-
struction hypothesis of “projection circles” and then present the arguments that can
be raised against the Hauck–Panofsky conjecture.

9.1.1 The Basis of Panofsky’s Interpretation

If one follows Panofsky’s reasoning, the representation of the vanishing axis is
based on a combination of the curvilinear and linear perspectives. The idea stems
from a passage in which Vitruvius states: “Scenography [that is, perspective] also is
the shading of the front and the retreating sides, and the correspondence of all lines
to the center of the circle.”13 From this Panofsky derives the notions that: (a) in
antiquity a “projection circle” centering on the eye of the observer (circini centrum)
was used, and (b) compass measurements along this projection circle could then be
transferred to the picture plane. The error regarding the convergence of the van-
ishing lines might result from this complex relationship, effectuated point by point
using the method outlined below.

Panofsky examines the following case: suppose that one wishes to depict “the
inside of a box” (Raumkasten). To points I, II and I′, II′ which define the anterior
and posterior faces of the box seen in elevation, correspond points 1, 2 and 1′, 2′ on
the vertical projection circle whose center is O. Corresponding to points A, B, C and
A′, B′, C′ … in the plane of the box are points a, b, c and a′, b′, c′ … on the
horizontal projection circle with its center O. There are two possible outcomes in
this case:

– the measurements made on the projection circles are transferred by the artist to
the picture plane by means of transfer lines, such that points 11′, 22′, aa′, bb′, cc′
… are situated along parallel lines. This construction, which provided the basis
for the White–Carter conjecture, will be examined in detail in Chap. 10.

– the measurements made on the projection circles are transferred to the picture
plane after the development of projection circles on a picture plane. It is this
construction, denominated the “Hauck–Panofsky conjecture,” that will be
examined in the present chapter.

Assume that the vertical and horizontal projection circles are developed on the
planes V and H. The points are transferred to the picture plane with point
I corresponding to point i, point A corresponding to point a, point B corresponding

13Vitruvius, De architectura, I, 2, 2: “Scenography [that is, perspective] also is the shading of the
front and the retreating sides, and the correspondence of all lines to the center of the circle
[literally, the center of the compass]/Item scaenographia est frontis et laterum abscedentium
adumbratio ad circinique centrum omnium linearum responsus”, Vitruvius, On Architecture, ed.
Granger, London, 1956, p. 26.
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to point b, and so on. In the geometric figure obtained, the lower left corner of the
box is formed from the intersection of lines 2′ and a; the upper left corner by the
intersection of lines 1′ and a; and so on. One can then note that the transfer of
measurements by means of the development of projection circles results in a per-
spective in which the vanishing lines corresponding to lines AA′, BB′, CC′ … do not
converge towards a single vanishing point as in a central perspective, but towards a
vanishing axis AF (Fig. 9.1).
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Fig. 9.1 The construction of a Raumkasten. Author’s drawing
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9.1.2 The Limitations of Panofsky’s Interpretation

One can raise various arguments against such an ingenious hypothesis. The first
concerns the many lacunae and insufficiencies in Vitruvius’ De architectura with
regard to this perspective construction. Panofsky admits that it is a somewhat
audacious interpretation on his part and even acknowledges: “It is not clear that such
an interpretation of the passage from Vitruvius can be sustained.”14 For example,
while Vitruvius refers to a circini centrum there is nothing to indicate that its center
corresponds to the eye of the observer (even if this free interpretation might corre-
spond to some of Euclid’s propositions on optics). Nowhere in De architectura is it
suggested that one should take compass measurements along this hypothetical
“projection circle.” Nothing indicates that these measurements should be transferred
to the picture plane. And there is no evidence either that medieval artists followed
Vitruvius’ De architectura in their practice of perspective. This speaks to the con-
jectural nature of Panofsky’s interpretation. If one adds that the construction is quite
complicated with regard to the operations that must be carried out in the case of a
linear perspective, it is difficult to imagine practitioners who were already reluctant
to follow the earliest canons of perspective spontaneously choosing to adopt a
geometric construction that was even more complex and tedious.

9.2 Our Methodological Approach

The Hauck–Panofsky conjecture raises a sufficient number of doubts and difficulties
to justify more thorough analysis. Can perspective representations from the Middle
Ages be identified that meet the conditions of this construction? Let us focus on
thirty works produced between 1295 and 1450 that approach the model of the
vanishing axis (see Chap. 8 and Appendices B–E). By carrying out a rigorous
reconstruction of the system of vanishing lines in these works, it can be determined
whether they corroborate Panofsky’s hypothesis or if instead compositions based on
a vanishing axis can be reduced to cases of the more well-known model of linear
perspective.

9.2.1 Errors in Panofsky’s Reconstruction

The perspective lines of all the works in our corpus were analyzed based on ex post
facto reconstructions. This methodology is subject to two broad types of error, one
linked to the vantage point of the viewer and the other to the graphic reconstruction
of the perspective.

14Panofsky, Perspective as Symbolic Form, p. 39.
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The analyses were conducted on photographs of the original works (including
certain frescoes that are more than 3 m in width), a measure which inevitably
results in a loss of information. Every system of optical representation will intro-
duce some geometric aberrations and it is important to verify that the perspective
representation is not modified as a consequence. Three forms of distortion—
spherical aberration, coma, and astigmatism—do not lead to a noticeable trans-
formation in the perspective image. In contrast, negative or positive distortions
(referred to as “barrel” and “pincushion” distortions) transform the tangential lines
into curves. A maximum curvature of 1 % in the outermost line of the perspective
image is admissible. In short, rarely will the point of view correspond to the central
axis of a painting. If the picture plane is rectangular, it will often be depicted in the
form of a more or less irregular quadrangle. This deformation does not invalidate
the conclusions, because the quadrilateral A′B′C′D′ is a linear transformation of the
rectangle ABCD.

Let us now examine the errors linked to the reconstruction of the vanishing lines.
Let AB represent the visible portion of a vanishing line in the painting, which
should continue as far as the eventual vanishing point C. If I draw a line of width e,
the entire vanishing line covering the visible segment AB of length d can be
retraced. The maximum deviation appears when A and B are located on opposite
sides of this line. The angular error a ¼ � arctan �=dð Þ and the metric error � ¼
d0 tan að Þ can then be calculated. Working from small-scale images with a reduction
coefficient of about K = 10 in relation to the original work, the metric error in situ is
generally about ±10 mm. The metric error for each work was calculated following
the methodology described in Appendix A.

9.2.2 The Criteria Used to Test Panofsky’s Hypothesis

Granting these conditions, one can test three concurrent hypotheses regarding
curvilinear perspective:

Hypothesis 1. The works examined corroborate Panofsky’s thesis of “projection
circles.”
Hypothesis 2. These constructions can be classified as examples of linear
perspective.
Hypothesis 3. These perspectives invalidate the Hauck–Panofsky conjecture, but
without showing any ties to the principles of linear perspective.

The best way to begin this analysis is to decide between the three hypotheses
based on geometric criteria.

Hypothesis 1. Geometric analysis of the “vanishing axis” perspective constructed
from Panofsky’s projection spheres shows that the vanishing lines lying on the
same side of the axis do not meet in a single point.
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The vanishing lines of the perspective in Panofsky’s Raumkasten have been
extended in Fig. 9.2. One observes that the vanishing lines ef, gh and ij do not
concur in a single point. The two vanishing lines ef and gh meet at point r, whereas
gh and ij meet at point s, and ef and ij meet at point t.

The absence of a point of concurrence for the vanishing lines ef, gh and ij is a
consequence of the geometric properties inherent in the Hauck–Panofsky
hypothesis.
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Fig. 9.2 Geometric diagram showing that the vanishing lines in Panofsky’s Raumkasten do not
end in a single point of concurrence. Author’s drawing
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The existence of a unique point of concurrence in the vanishing lines (Fig. 9.1)
would be equivalent to the condition:

ab=bc ¼ a0b0=b0c0

On the picture plane, the distance between two points issuing from the horizontal
and vertical circles, which we will call ab, is equal to the length of the homonymous

arc ab
_

. The ratio between the arcs is the same as the ratio between the angles
intercepting them (Euclid, Elements VI, 33). As a consequence, the angles inter-
cepting the arcs and distances measured in the painting correspond to each other.
One can therefore can study the convergence of the lines ef, gh and ij (Fig. 9.2)
beginning simply with the relationship between the angles (Fig. 9.1).

Segments AC and A′C′ are equal and lie an equivalent distance from the axis
AFO. Because segment AC is closer to the eye than segment A′C′ one has:

∠aOc > ∠a′Oc′ (Euclid, Optics, prop. 5)
Segment AB being further from the vanishing axis than segment BC,
∠aOb < ∠bOc
Analogously
∠a′Ob′ < ∠b′Oc′ (Optics, prop. 8)

However, since angles ∠a′Ob′ and ∠b′Oc′ are closer to the axis than angles
∠aOb and ∠bOc, the difference between ∠a′Ob′ and ∠b′Oc′ is smaller than the
difference between ∠aOb and ∠bOc. Consequently

∠aOb/∠bOc < ∠a′Ob′/∠b′Oc′

This relationship is equivalent to ab/bc < a′b′/b′c′ by virtue of Elements VI, 33. It
is incompatible with ab/bc = a′b′/b′c′, which is a necessary condition for the
vanishing lines to meet in a single point. Therefore, the lines ef, gh and ij … of a
curvilinear perspective can never converge in one point.

Thus, in order to refute the Hauck–Panofsky conjecture it is sufficient to
demonstrate that all of the vanishing lines lying either to the left or to the right of
the vanishing axis concur in a well-defined vanishing point. If all the vanishing
lines from both sides of the axis meet in one point, the composition is a central
perspective; if the vanishing lines on the right side of the axis concur in one point
and those on the left concur in another point, then we have a case that is distinct
from both the linear and the curvilinear perspective. The latter result is certain if the
vanishing lines cross each other within a zone defined by the maximum metric error
max(ϵ). Any perspective that satisfies this condition, which is incompatible with the
curvilinear system, would refute the hypothesis of projection spheres.

Hypothesis 2. Geometric analysis shows that in the case of a central linear per-
spective all the vanishing lines must meet in a single point, which has been
denominated the vanishing point (referred to by Alberti as the punctum centricus).
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To disprove this hypothesis, it must be established that the vanishing lines of the
painting do not converge in a single vanishing point (allowing for a slight margin of
error), but instead either fail to converge within a zone defined by the maximum
metric error or converge in more than one vanishing point separated by distances
considerably greater than max(ϵ).

Hypothesis 3. Any perspective can be assigned to one of the three categories
defined in the initial hypotheses. This hypothesis, being residual to hypotheses 1
and 2, is heterogeneous and does not require further qualification.

Such is manifestly the case with the perspective in the Saint Enthroned by
Giusto de’ Menabuoi (Appendix A). It does not meet the criteria of hypothesis 1
because all of the vanishing lines issuing from the same side of the axis concur in a
single point. It also fails to meet the criteria of hypothesis 2 as the ensemble of
vanishing lines on the right and left sides of the axis concur in two well-defined
points. It remains to be determined whether this property holds in general for all the
works in our corpus.

9.3 Analysis of a Corpus of Works

An analysis of paintings selected according to these test criteria identified thirty
works with a perspective construction that did not conform to Panofsky’s thesis of
projection circles nor to the principles of central linear perspective (Appendices B–
E). Artists working between 1295 and 1450, from Giotto, Martini, and Lorenzetti to
Gentile da Fabriano, Donatello and Uccello, all utilized this type of construction.
The traditional division of the broad arc of time under consideration into two
distinct periods—the Middle Ages and the Renaissance—is in fact inappropriate
when describing the construction of pictorial representations, because although the
rules of perspective were sometimes scrupulously applied during the Renaissance
(for example, in Piero della Francesca’s Flagellation), many compositions deviated
from the most elementary rules of linear perspective. The existence of constructions
with two vanishing points shows that more than one system for the representation
of perspective was used during this period.

Around 1447 Paolo Uccello painted A Scene from the Life of Noah. The Flood
for the chiostro verde of the Church of Santa Maria Novella in Florence (Fig. 9.3,
215 × 510 cm). This work was analyzed based on a reduced-scale version of the
original (54 × 366 mm; reduction coefficient K = 13.9). The reduction coefficient,
being greater than 10, does not compromise the validity of the results because the
visible sections of the vanishing lines here are quite long.

Our findings corroborate the observations made by art historians. John White
analyzed the fresco in detail and came to the same conclusion as Parronchi, who
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had already noted that Uccello’s work did not adhere to the rules of linear per-
spective.15 The ex post facto reconstruction of the vanishing lines demonstrates that
the horizontals of the side walls of the ark converge on two distinct vanishing
points, F1 and F2, a fact that in itself disproves the hypothesis of projection circles.
The maximal error max(ϵ) of the reconstruction is ±0.33 mm (in situ error
±5 mm). The distance separating the points of concurrence is 26 mm, which is 78
times greater than the max(ϵ), and means that the two points can never meet in a
single vanishing point. It has been proposed that the doubling of the vanishing point
may be due to a defect in the juxtapositioning of the cartoons, that is to say, to an
“accidental error.” Such a possibility can never be excluded, but fails to explain
why works based on a two-point perspective appeared with such regularity. Indeed,
we know of at least one other example of this construction in a work dating to the
same period as the fresco by Uccello.

Between 1445 and 1448 Donatello created a series of bronze bas-reliefs on
sacred themes, of which the Confession of the Newborn Child (Appendix B, No. 29,
57 × 123 cm) was chosen for analysis in the dimensions 94 × 201 mm (K = 6.12).
One might object that the surface of a bas-relief is too uneven to allow for a
geometric analysis, but in this case the section depicting the coffered ceiling is
sufficiently flat to permit a reconstruction (only the coffers have been sculpted in
shallow intaglio). The ceiling appears to conform to the rules of perspective based
on a vanishing axis AF, obtained by drawing the orthogonals of the ceiling coffers.
If these are extended, two vanishing points F1 and F2 symmetrically located on
either side of the axis are revealed. An ad hoc vanishing point (F3) can also be
observed, which in all likelihood was created by the artist to avoid having the

Fig. 9.3 Paolo Uccello, The Flood and the Receding of the Waters (Diluvio e Recessione delle
acque), fresco, 215 × 510 cm, ca. 1447 (Florence, Santa Maria Novella). Author’s reconstruction
after a Wikimedia Commons image

15White, The Birth and Rebirth of Pictorial Space, Faber and Faber (London, 1967); Alessandro
Parronchi, “Le fonti di Paolo Uccello: I perspettivi passati,” Paragone 89 (1957): 3–32.
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lowest vanishing lines extend below the ground line. The maximal metric error of
the reconstruction is ±2.4 mm (in situ error ±15 mm). The distance between the
points of concurrence is 12 mm, a gap that is five times greater than the max(ϵ) and
allows one to envisage their meeting in a single vanishing point. Clearly, the
drawing is composed of two pencils of lines.

Another work chosen for study was a large fresco, The Funeral of Saint Francis,
dating to 1315–1317, which was painted by Simone Martini (1284–1344) in the
Lower Basilica of Saint Francis of Assisi (Appendix B, No. 11, 270 × 230 cm).
The image was analyzed in a format measuring 185 × 158 mm (K = 14.6). Based
on the alignment of the capitals and bases of the columns sustaining the vault, a
fishbone construction with a series of points of concurrence along the vanishing
axis AF was revealed. Even so, if the vanishing lines are extended, they converge in
two points, F1 and F2. Thus, as in the preceding examples, the vanishing axis
resolves itself in two distinct points in a system that Martini applies in a coherent
and systematic manner (with the exception perhaps of the vanishing lines following
the base of the posts, which deviate slightly from the perspective). The maximal
error of the vanishing lines is ±1.7 mm and the in situ error is ±24 mm. The
distance (19 mm) between the points of concurrence is eleven times greater than the
maximal error and it is therefore not possible for them to merge in a single point.

In the Lower Basilica of Assisi there is also an earlier fresco, The Approval of the
Franciscan Rule by Innocent III (Appendix B, No. 2, 270 × 230 cm), thought to
have been painted by Giotto between 1296 and 1299, which was analyzed in a
reduced format 210 × 179 mm (K = 12.8). The lateral walls, sustained by the
interplay of the consoles and lintels of the side portals, seem to converge toward a
central vanishing axis AF in conformity with Panofsky’s hypothesis. However, if
these lines are extended they meet in two distinct vanishing points, F1 and F2,
which are symmetrical to the vanishing axis. The max(ϵ) of the vanishing lines is
±1.6 mm (in situ error = ±21 mm). The fresco also presents an irregularity; the
four consoles depicted in an end view by the artist produce construction lines that
cross at two new points, F3 and F4, lying on either side of the central axis. The
max(ϵ) of these vanishing lines is ±0.9 mm (in situ error = ±12 mm). They form
two pencils of lines, invalidating the thesis that a projection circle was used to draw
the perspective. The distance separating the points of concurrence is 179 mm, a gap
that is 112 times greater than the maximal metric error. It is therefore impossible for
the two vanishing points to be reduced to a single point and the central perspective
in this fresco is neither curvilinear nor linear.

The works just examined all conform to the same perspective scheme:

1. The vanishing axis always resolves itself in two vanishing points lying on the
same horizon line. Axial perspectives may therefore be classified as a form of
two-point perspective. Such a conclusion simultaneously refutes hypothesis 1
(that these axial perspectives represent projection circles), and hypothesis 2 (that
they can be interpreted as a form of linear perspective.
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2. The two pencils of lines cross along the central axis. The lines issuing from the
left side of the painting meet at an apex located on the right, while the lines
issuing from the right side of the painting meet at an apex located on the left.

These works exemplify a perspective scheme that was observed in thirty works
produced over a period of one and a half centuries in various parts of Italy. Since
the perspective has been drawn in precisely the same fashion in all cases, it seems
improbable that the final results were due to accidental errors in the perspective
drawing. We find ourselves instead in the presence of a system that was typical of
the entire period between 1295 and 1450.

9.4 Conclusion

The results of this study raise several questions, the main one being: What led
Panofsky to make such an error in judgment as to interpret works based on a
vanishing axis to be examples of curvilinear perspective? One can easily arrive at
the nature of this error by observing the partial equivalence of the two following
diagrams (Fig. 9.4).

Figure 9.4a shows the network of vanishing lines in an axial perspective, in
which the vanishing axis is AF. In Fig. 9.4b the same lines meet at points F F′. If—
like Panofsky—one does not extend the lines beyond their crossing points along the
axis AF, it cannot be conceived that the two pencils of lines will converge and meet
in two well-defined points beyond this axis. If instead the vanishing lines are
prolonged beyond the vanishing axis, the vanishing points will supplant in
importance the vanishing axis. As a consequence, we are justified in replacing the
term “axial perspective” with “two-point perspective.”

AF F1 F2

(a) (b)

Fig. 9.4 Resolution of the vanishing axis (a) into two vanishing points (b). Author’s drawing
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These diagrams are equivalent so long as one does not invoke the hypothesis of
projection circles, because the vanishing lines of a curvilinear perspective cannot
form pencils of lines. Here the error does not consist so much in the recognition of
the vanishing axis, as in the assumption that it is a consequence of the curvilinear
perspective. The visual equivalence of the two diagrams—apart from the property
that the vanishing lines of a curvilinear perspective never concur in a single point—
no doubt lies at the origin of Panofsky’s speculation about “projection circles.”

Perspectives in which two pencils of lines meet in two points, which Kern and
Panofsky termed “vanishing axis perspectives,” do not derive from the principles of
curvilinear perspective. This conclusion reinforces the doubts expressed by Elkins
and Tobin16 regarding whether the curvilinear system was ever used before the
nineteenth century.

Moreover, none of these perspectives with two principal vanishing points can be
linked—whatever intermediate transformations might be envisaged—to the usual
form of linear perspective. Do these constructions therefore circumvent entirely the
principles of linear perspective? Their only particularity in this regard is their use of
the postulate of binocular vision. It would be more precise to refer to this con-
struction as “binocular linear perspective,” analogous to the perspectiva artificialis
adopted by painters and architects during the Renaissance. It is this elementary
relationship that unites and at the same time distinguishes the two systems of
representation.

16Elkins, “Did Leonardo develop a theory of curvilinear perspective?” and Tobin, “Ancient
Perspective and Euclid’s Optics,” op. cit.
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Chapter 10
The White–Carter Conjecture
on Synthetic Perspective

Abstract In the wake of Panofsky’s work on perspective, John White and Bernard
Carter identified the “axial construction” as the product of a system (denominated
synthetic perspective) in which the measurements of an object on a projection circle
are transferred to the picture plane by means of transfer lines. While this con-
struction has been criticized for its complexity and therefore the limited possibility
of its being put to use, it has never been studied in detail although it is regularly
mentioned in discussions of perspective systems. We will show that none of the
works of art examined here satisfies the mathematical property exhibited by syn-
thetic perspective, namely, that three vanishing lines on the same side of the axis
cannot be parallel nor can they meet in a point of concurrence. This refutation of the
White–Carter conjecture should bring to a close the long succession of contradic-
tory evaluations that have appeared over the course of the years; it also reinforces
the explication presented in Chap. 8

In his celebrated essay “Die Perspektive als symbolische Form,” Erwin Panofsky1

retraced the history of studies on perspective and proposed that constructions based
on a “vanishing axis” could be classified as examples of curvilinear perspective.
This hypothesis was taken up by numerous art historians, notably Alan Little,
Miriam Bunim, and John White.2

1Erwin Panofsky, “Die Perspektive als symbolische Form,” Vorträge der Bibliothek Warburg 4
(1924/5): 258–331, Perspective as Symbolic Form, pp. 31–45.
2Alan M.G. Little, “Scaenographia,” The Art Bulletin 18 (1936): 407–418; idem, “Perspective and
scene painting,” The Art Bulletin 20 (1937): 487–495; Miriam S. Bunim, Space in Medieval
Painting and the Forerunners of Perspective (New York, 1940); John White, Perspective in
Ancient Drawing and Painting (London, 1956); idem, The Birth and Rebirth of Pictorial Space
(London, 1967). See also Gezienus ten Doesschate, Perspective. Fundamentals, Controversials,
History (Nieuwkoop, 1964), p. 85–99 and 105–118.
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Little3 supported Panofsky’s ideas, maintaining that many Romanesque paint-
ings were constructed around a vanishing axis with a clear geometric structure and
this geometric property served to demonstrate that synthetic perspective was being
used by the artists of the period. Others disagree, recognizing in these works only
the signs of empirically drawn perspective lines.

Miriam Bunim, while acknowledging certain objections to Panofsky’s hypoth-
esis,4 accorded some credit to the idea of a generalized usage of the axial
construction:

Panofsky’s arguments against the assumption of the existence in ancient painting of a
focused system of perspective… are derived from the ancient theory of optics itself and are
extremely convincing. The fact that the visual field was noted to be spherical, that the size
of objects was said to depend on the visual angle rather than on the proportional distance
from the eye [Euclid, Optica, 8], and that curvilinear distortions in straight lines were
observed, all tend to disprove the possibility of a focused system of perspective, for these
are the very factors disregarded in such a method… The need for an adequate method of
perspective which would give a convincing optical illusion of tridimensional space and at
the same time promote the compositional unity of the scene was met by the systematized
use of the vanishing axis.5

The British art historian John White places constructions based on a vanishing
axis in the category of attempts by artists to combine “artificial perspective” (linear
perspective) and “natural perspective” (which he identifies with curvilinear per-
spective).6 He calls such views “synthetic perspectives,”7 because transferring the
measurements of angles to a picture plane produces a representation that is a
combination of these two systems. In effect, if the construction of a synthetic
perspective implies the manipulation of a curvilinear picture plane, the final result
cannot be considered stricto sensu a curvilinear perspective, which is based on a
geometric exercise in which the vanishing lines are derived from the arcs of a
circle.8 Therefore, White’s construction hypothesis—like Panofsky’s—involves a
hybrid system in which angular measurements are made on projection circles before
being carried over to the picture plane (Fig. 10.1).

3Little, “Scaenographia” and “Perspective and scene painting,” op. cit.
4Miriam Bunim admits that, “In Giotto’s paintings, the vanishing-axis procedure for vertical
planes in depth was not used according to the clearly defined systematic form of converging pairs
of parallel receding lines,” Bunim, Space in Medieval Painting, p. 141. All the same, numerous
cases in favor of the theory of the vanishing axis were then given apropos of Simone Martini,
Barna da Siena, Bernardi Daddi and Italian painting in the Trecento generally; see pp. 148 and
154, 157, 166, 174, respectively.
5Bunim, Space in Medieval Painting, pp. 24–25.
6John White, Perspective in Ancient Drawing and Painting, London, 1956; idem, The Birth and
Rebirth of Pictorial Space, London, Faber and Faber, 1967, French transl., Naissance et renais-
sance de l’espace pictural, Paris, Adam Biro, 1992.
7White, Naissance et renaissance de l’espace pictural, p. 213.
8André Flocon and André Barre, La Perspective curviligne, Paris, 1968. These principles were
supposedly applied by Jean Fouquet in Entrée de l’Empereur Charles IV à Saint-Denis, ca. 1460.
With regard to the theoretical foundations of this construction, we can only formulate conjectures.
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As indicated previously, there are two ways of transferring projection circles
onto a picture plane. One can apply the process of developing projection circles, in
which case the length of segment ab in the figure will turn out to be equal to the
length of the homonymous arc ab (Chap. 9). Alternatively, one could transfer the
measurements onto the perspective view by means of transfer lines. In this case the
length of the segments and arcs will not be equivalent. Historically the second
alternative has been used due to difficulties associated with the first. Indeed, what
does the development of a projection circle signify in concrete terms? If the pro-
jection circle had a tangible reality, we could make our measurements by spreading
a strip of paper over its curved surface, marking it with the various lengths, and then
extending it over the panel or wall segment on which the image is to be depicted.
But it is difficult to imagine what such a circle would be made of. And if the
projection has no tangible reality, it is impossible to make measurements along its
surface. The construction based on transfer lines therefore appears to be better
suited to the practical requirements of artists,9 and it is to this that we will be
referring as we discuss the “White–Carter conjecture.”10
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Fig. 10.1 The construction of the Raumkasten after Panofsky, Perspective as Symbolic Form,
p. 74. Author’s drawing

9Bernard A.R. Carter presents the construction based on transfer lines in this light in the entry on
“Perspective” in The Oxford Companion to Western Art, ed. H. Osborne, Oxford, 1987, pp. 840–
861.
10The distinction between the conjectures of Hauck–Panofsky and White–Carter was made for the
purposes of convenience. Panofsky recognized his debt to Hauck, who “suggested a procedure
based on the projection of the object on a round cylinder with vertical generatrices emanating from
a point on the axis, and the development of the image thus obtained on a picture plane,” Marisa
Dalai Emiliani, “La question de la perspective,” introduction to Erwin Panofsky, La Perspective
comme forme symbolique, Paris, 1975, p. 22. White and Carter did not link their construction
hypothesis based on transfer lines to Hauck’s work on perspective. The difference between the two
conjectured constructions was based on no more than a detail, John White following Panofsky’s
lead regarding the signification of this alternative to linear perspective.
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While their interpretation has been much criticized,11 it is revived periodically in
discussions among scholars interested in the problem of perspective in medieval art.
I would like to cite two recent examples as evidence of this. In 1989 De Mesa
Gisbert published a paper on the ex post facto reconstruction of fourteenth-century
paintings, in which he concluded that the drawing of perspectives based on pro-
jection circles was “an unthinkable procedure, for both antiquity and the Middle
Ages.”12 On the other side of the argument, six years later Antonella Ballardini
endorsed the views of John White, noting “the perceptive intelligence and specu-
lative precision with which he highlighted the relationship that existed between the
theory of perspective and its different applications during the Middle Ages.”13 In
the face of such diametrically opposed opinions, it is clear that new and—if pos-
sible, definitive—arguments must be brought to the debate.

Anyone who has taken an interest in the problem of axial constructions knows
how difficult it is to evaluate whether the lines in a perspective drawing correspond
to the proposed White–Carter conjecture. Even Panofsky, finding himself unable to
identify lines that concurred with his own hypothesis, admitted the existence of a
“more schematic, but more practicable, form of a more or less pure parallelism of
oblique orthogonals.”14 If one follows this indication, there are in fact two types of
constructions that correspond to the principles of synthetic perspective: (1) repre-
sentations in which the vanishing lines are parallel; and (2) representations in which
the vanishing lines are convergent.

The geometric concept of parallelism is clear and the vanishing lines in certain
works, such as the Life of Saint Cecilia, do meet the condition of parallelism
(Fig. 10.4c).

The concept of convergence, which is not as clearly defined, is ambiguous when
applied to more than three vanishing lines. Two cases can be distinguished.
Convergence stricto sensu signifies that the vanishing lines aa′, bb′, cc′ … end in a
single point of concurrence M. Convergence lato sensu signifies a series of paired

11Hendrick G. Beyen, Die pompejanische Wanddekoration vom zweiten bis zum vierten Stil, 2
vols., Den Haag, 1938; idem “Die antike Zentralperspecktive,” Jahrbuch des deutschen
archäologischen Instituts 54 (1939): 47–72; Maurice Pirenne, “The scientific basis of Leonardo da
Vinci’s theory of perspective,” British Journal for the Philosophy of Science 3 (1952): 165–185;
Gezenius ten Doesschate, Perspective. Fundamentals, Controversials, History, Nieuwkoop, 1964;
Luigi Vagnetti, “De naturali et artificiali perspectiva,” Studi e Documenti di Architettura 9/10
(1979): 3–520; James Elkins, The Poetics of Perspective, Ithaca, Cornell University Press, 1994;
Gérard Simon, “Optique et perspective: Ptolémée, Alhazen, Alberti,” Revue d’Histoire des
Sciences 54 (2001): 325–350.
12Andrés de Mesa Gisbert, “El ‘fantasma’ del punto de fuga en los estudios sobre la
sistematización geométrica de la pintura del siglo XIV,” D’Art 15 (1989), p. 49.
13Antonella Ballardini, “Lo spazio pittorico medievale: Studi e prospettive di ricerca,” in Rocco
Sinisgalli, ed., La Prospettiva. Fondamenti teorici ed esperienze figurative dall’Antichità al mondo
moderno, Fiesole, 1998, p. 281. Like the views of Panofsky, those of White circulated widely; The
Birth and Rebirth of Pictorial Space was reprinted three times (1967, 1970, 1972, 1987) and was
translated into many languages.
14Panofsky, Perspective as Symbolic Form, p. 40.
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points of concurrence: aa′ and bb′ cross at point M, bb′ and cc′ cross at point N, and
so on. It may be noted that it is easier to construct a set of vanishing lines that meet
the conditions of strict convergence, because once the point of concurrence is
defined, all the vanishing lines will pass through that point. The lines of the per-
spective drawing in numerous works with an axial perspective clearly indicate the
type of convergence used by the painters. In all of the works examined by us,15 the
vanishing lines issuing from one side of the axis meet on the opposite side at a point
beyond the vanishing axis. This elementary property has been generally overlooked
due to the influence of Kern16 and Panofsky, according to whom vanishing lines
converge from the left and right in pairs along the “vanishing axis.” All the same, it
suffices to extend the vanishing lines beyond the axis to find the points of con-
currence. This is illustrated by the fresco Christ Among the Doctors by Giusto de’
Menabuoi (1376–1378), in which the vanishing lines concur in points F and F′ (see
Fig. 10.5 at the end of this chapter). The White–Carter conjecture should take into
account all constructions in which the vanishing lines issuing from the left meet in a
point of concurrence on the right and the vanishing lines issuing from the right meet
in a point of concurrence on the left.

In the present chapter we will attempt to bring to a close this long-running debate
with its concatenation of critical analyses and contradictory conclusions, by
establishing the mathematical impossibility of the axial construction. We will
demonstrate that the White–Carter conjecture does not allow parallelism in the
vanishing lines nor the convergence of vanishing lines in a point of concurrence.
Hence works viewed as examples of synthetic perspective must be linked to a
hitherto unrecognized principle of construction.

10.1 The Mathematical Properties of Synthetic
Perspective

Let us return to our construction and compare the perspective with its underlying
plan and elevation (see Fig. 10.3). Assuming that the ‘space box’ (Raumkasten) is
symmetrical, it suffices to examine the vanishing lines situated to the right of the
line of sight OK, O being the eye of the viewer.

Given that two non-parallel lines must eventually meet in a point of concurrence,
a minimum of three vanishing lines should be studied. Let us therefore take the
right side of the space box ABEF, of which three sides—AB, CD and EF—are
parallel to the line of vision OK. A line from a given point on this box (designated
C) intercepts the curvilinear surface IJ (called the “projection circle”) at a point c1

15The results depend on the errors in the perspective drawing. In order to reach clear conclusions,
we conducted a verification of possible errors following a procedure that is outlined in
Appendix A.
16Kern, “Die Anfänge der zentralperspektivischen Konstruktion.”
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which is then projected onto the picture plane GH at point c2. The rabatment of the
picture plane GH provides the actual perspective view, in which the line RS rep-
resents the upper, anterior edge BF of the box and the line PQ represents the image
of the upper posterior edge AE of the box. Since point C belongs to AE, the transfer
line issuing from c1 intercepts a point c associated with PQ. We have adopted a
uniform system of notation throughout: the quadrilateral abef is the image of the
upper face of the box ABEF.

Let us examine the conditions associated with the convergence or parallelism of
the vanishing lines. If the lines ba, dc, fe … are strictly convergent (and end in a
single point M) or alternatively are parallel to each other, Thales’ theorem states:

ac
ae

¼ bd
bf

ð1Þ

The cases of parallelism and convergence respect the same property. The pairs of
segments ac and bd, and ae and bf are proportional, where either df = ce (paral-
lelism) or df ≠ ce (convergence).

10.1.1 The Case of Linear Perspective

In a linear perspective, the lines CO, DO, EO and FO are directly intercepted by the
picture plane GH (Fig. 10.2). It follows that the ratio (1) is equivalent to:

Kc1
Ke1

¼ Kd1
Kf1

ð2Þ

Since OAC and OKc1 are similar triangles,

Kc1
OK

¼ AC
OA

ð3Þ

Similarly:

Ke1
OK

¼ AE
OA

;
Kf1
OK

¼ BF
OB

;
Kd1
OK

¼ BD
OB

The relationship (2) could therefore be expressed as:

AC=OA
AE=OA

¼ BD=OB
BF=OB

ð4Þ
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After simplification one has

AC
AE

¼ BD
BF

ð5Þ

This will always hold true, since by definition AC = BD and AE = BF. This
signifies that in a central linear perspective all the vanishing lines corresponding to
the orthogonals of the object converge toward a single vanishing point M.
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Fig. 10.2 Linear perspective. Author’s drawing
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10.1.2 The Case of Synthetic Perspective

For this property to hold true for synthetic perspective, it is necessary that the
vanishing lines ba, dc, fe… satisfy equivalent relationships. Here the lines CO, DO,
EO, FO are intercepted by the curvilinear surface IJ, on which there are a number of
ways of measuring the intercepted arcs (Fig. 10.3).
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Fig. 10.3 Synthetic perspective in which the measurements of an object are transferred to the
picture plane by means of transfer lines. Author’s drawing
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Panofsky made explicit that “the arcs of the circle are replaced by the corre-
sponding chords” (Panofsky 1991: 38). Panofsky’s choice of chords Kc1, Ke1, Kd1,
Kf1 … repeated by White and Carter must be rejected because it does not retain
segment additivity. If in the space box AE = AC + CE, on the curvilinear surface it
occurs that Ke1 < Kc1 + c1e1. The lenght of chord Ke1 is indeterminate. Strictly
speaking, White-Carter construction is impossible. For further analysis, the previ-
ous construction should be interpreted sensu lato. The simplest solution is then to
replace the chords by the sines Kc2, Ke2, Kd2, Kf2 … As the sines are measured on
the picture plane GH, segment additivity is kept. However this interpretation is not
better than the previous one, since it can be proved impossible (Raynaud 2004).
Since then, Michel Baillet, a mathematician from the University of Orléans, found a
demonstration shorter than mine, which I reproduce below with his permission.

Can condition (1 ≡ 6) be satisfied in a synthetic perspective? (Fig. 10.3).

ac
ae

¼ bd
bf

ð6Þ

Each term of condition (6) can be expressed as

ac ¼ ACffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AC2 þOA2

p

ae ¼ AEffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AE2 þOA2

p

bd ¼ ACffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AC2 þOB2

p

bf ¼ AEffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AE2 þOB2

p

ð7Þ

Values (7) are reintroduced into condition (6) which can, after simplification by
AC and AE and squaring, be written:

AC2 þOA2

AE2 þOA2 ¼
AC2 þOB2

AE2 þOB2 ð8Þ

We make the cross product:

AC2 þOA2
� �

AE2 þOB2
� � ¼ AE2 þOA2

� �
AC2 þOB2

� � ð9Þ

This expression can be developed:

AC2AE2 þAC2OB2 þOA2AE2 þOA2OB2

¼ AE2AC2 þAE2OB2 þOA2AC2 þOA2OB2 ð10Þ
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We simplify by AC2AE2 and OA2OB2:

AC2OB2 þOA2AE2 ¼ AE2OB2 þOA2AC2 ð11Þ

Factoring, we get:

AE2 � AC2� � � OA2 ¼ AE2 � AC2� � � OB2 ð12Þ

which includes the solution because, on the one hand, AC < AE, thus (AE2 − AC2) ≠ 0,
and on the other hand, OB < OA.

Therefore equality (12) never holds true.

10.2 Conclusion

As the synthetic perspective never fulfills condition (6 ≡ 12), there can be no strict
convergence of vanishing lines in this construction. This refutes the White–Carter
conjecture.17 The synthetic perspective only allows for an approximate convergence
of the vanishing lines (comparable in optics to the section of a caustic curve
produced by spherical aberration). The following theorems can therefore be
enunciated:

Theorem 1. In a synthetic perspective, the vanishing lines on either side of the
axis never meet in a point of concurrence and are never parallel to each other.

Reciprocally:
Theorem 2. Any perspective representation that has at least three vanishing lines

on the same side of the axis which are parallel or meet in a point of concurrence
cannot be considered a synthetic perspective.

Let us examine the consequences of these properties for practical perspective:
Corollary 1. There is no parallelism or focal point to facilitate the drawing of a

synthetic perspective; it must be constructed on the basis of geometric plans. (In
contrast, a perspective that has a vanishing point or parallel vanishing lines can be
constructed without a geometric projection).

If one considers the preparatory drawings for certain works, this corollary
indicates that the perspective lines could have been traced by the artist directly onto
the picture plane before he began painting, without resorting to a plan or elevation.
This only calls into question the application to perspective of geometric plans—
early examples of which can be found in works such as the Elevation for the
Campanile of the Florence Cathedral drawn by Giotto di Bondone in 1334 (Siena,

17The principles of synthetic perspective were therefore unknown in the Middle Ages and it is
highly unlikely that they were applied before the nineteenth century: Arthur Parsey, Perspective
Rectified, London, 1836; William G. Herdman, A Treatise on the Curvilinear Perspective of
Nature, London, 1853; Guido Hauck, Die subjektive Perspektive und die horizontalen Curvaturen
des dorischen Styls, Stuttgart, 1879.
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Cathedral Museum), or even in the distinction made by Vitruvius between ichno-
graphia (plan), orthographia (elevation) and scaenographia (perspective) in De
Architectura.18 But these examples do not in any way prove that geometric plans
were actually utilized to construct perspective views.

Corollary 2. Since the refutation of the White–Carter conjecture holds for the
two cases of convergence and parallelism, these constructions can no longer be
considered to be related. Parallel perspectives and two-point perspectives must be
interpreted separately.

The case of parallel vanishing lines. One could in the case of parallel vanishing
lines identify a construction that is much simpler than Panofsky–White’s. Let us
begin with the fact that in the Middle Ages some artists utilized the cavalier per-
spective—for example, Giotto in his fresco Extasis (Fig. 10.4a). By turning the
uppermost face of the object onto its posterior horizontal edge, one obtains a
splayed cavalier perspective comparable to the Death of the Knight of Celano
(Fig. 10.4b). In the same way, a two-fold splayed cavalier perspective is obtained if
one pivots the left face of the object onto its posterior vertical edge, as in the
Wedding of St. Cecilia and Valerian painted by an anonymous master in the
opening years of the Trecento (Fig. 10.4c). The result is a space box, all of whose
interior faces are splayed outward “so as to maximize visibility.”19 In none of these
cases did the artist rely on a mathematical construction; instead the perspective was
drawn directly on the picture plane.

The case of converging vanishing lines. All of the works in our corpus—such as
Giusto de’ Menabuoi’s Christ Disputing with the Doctors of the Temple (Fig. 10.5)
—exhibit vanishing lines that converge in two vanishing points. They cannot be
classified as “bifocal perspectives,” a term reserved for perspectives that utilize
distance points (as in the case of a box, none of whose faces are perpendicular to the
axis of vision). The two points that can be observed in the works in our corpus
correspond to two “principal vanishing points” with no link to the bifocal per-
spective. It was noted above that these constructions—which were quite heterodox
in view of the conventions adopted during the Renaissance—could have resulted
from a qualitative application of the principles of binocular vision. The distance
separating the architectural frame (the background) from the principal subject which
serves as the fixation point (the foreground), triggers in the viewer a “homonymous
diplopia” of the objects lying beyond the fixation point; that is to say, a diplopia

18“Ichnography (plan) demands the competent use of compass and rule; by these plans are laid out
upon the sites provided. Orthography (elevation), however, is the vertical image of the front, and a
figure slightly tinted to show the lines of the future work. Scenography (perspective) also is the
shading of the front and the retreating sides, and the correspondence of all lines to the center of the
circle [literally, the center of the compass]/Ichnographia est circini regulaeque modice continens
usus, e qua capiuntur formarum in solis arearum descriptiones. Orthographia autem est erecta
frontis imago modiceque picta rationibus operis futuri figura. Item scaenographia est frontis et
laterum abscendentium adumbratio ad circinique centrum omnium linearum responsus,” De
Architectura, I, II, ed. Granger, vol. 1, pp. 24–26.
19On this, Ian Verstegen, “A classification of perceptual corrections of perspective distortions in
Renaissance painting,” Perception 39 (2010), p. 689.
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(a)

(b)

(c)

Fig. 10.4 Alternative constructions: a Cavalier perspective by Giotto, Extasis, ca. 1296;
b Splayed cavalier perspective by Giotto, The Death of the Knight of Celano, ca. 1296;
c Two-fold splayed cavalier perspective by the Maestro della S Cecilia, Wedding of St. Cecilia and
Valerian, tempera on wood, ca. 1304
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with regard to the rectilinear edges that provide the vanishing lines of the per-
spective.20 The two principal vanishing points turn out to be the result of a doubling
of the two pencils of vanishing lines.

As we have seen in Chap. 6, the plausibility of this hypothesis depends on the
fact that the treatises on optics of Alhacen and his Latin successors allowed for such
an application: (1) all of these authors discussed the phenomenon of the fusion of
quasi-images, a point that is central to binocular vision; (2) none of them posited the
thesis of suppression, which was formulated for the first time by Giovanni Battista
della Porta in 1593; and (3) these treatises were widely read in Italy, circulating in
the same milieux as those in which the axial construction was utilized by artists.21

Fig. 10.5 Giusto de’ Menabuoi, Christ Disputing with the Doctors of the Temple, fresco, ca.
1376–1378 (Padua, Baptistery of the Cathedral). Author’s reconstruction

20Hermann von Helmholtz, Optique physiologique, Paris, 1867; Yves Le Grand, Optique physi-
ologique, 3 vols., Paris, 1948–1956.
21Luca Baggio, “Sperimentazioni prospettiche e ricerche scientifiche a Padova nel secondo
Trecento,” Il Santo 34 (1994): 173–232; Francesca Cecchini, “Artisti, committenti e perspectiva in
Italia alla fine del Duecento,” Rocco Sinisgalli, ed., La prospettiva. Fondamenti teorici ed espe-
rienze figurative dall’Antichità al mondo moderno, Fiesole, 1998, pp. 56–74; Dominique
Raynaud, L’Hypothèse d’Oxford, Paris, 1998.
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Chapter 11
De Mesa’s Hypothesis Regarding
the Arithmetic Construction of Perspective

Abstract Andrés De Mesa Gisbert proposes that the perspectives in paintings from
the Duecento and Trecento were drawn arithmetically, i.e. without resorting to
vanishing points. The most convincing argument for this hypothesis is that the
division of two parallel lines by straight lines intersecting each other at a vanishing
point (the geometric method) is equivalent to the division of these parallel lines into
proportional parts (the arithmetic method). If the arithmetic method was indeed
used by medieval artists, then the vanishing points exhibited ex post should be
purely fortuitous. There are sound objections to this assertion, however: the lack of
simple multiples and submultiples of the measurement units, the absence of pro-
portionality ratios, the lengths of the operating series, and the correspondence of the
vanishing points to visible loci in the pictures. The application of optics and the
geometric method is a more probative thesis, although it does not imply that
painters were using concepts of linear perspective, which would have been an
anachronism.

Perspective is a legitimate topic of investigation for historians of science when the
layouts of paintings are mathematically constructed. With the putative contributions
by Brunelleschi and Alberti as a preamble, the history of perspective as a science
actually starts with Piero della Francesca’s De prospectiva pingendi (1470).1 This
chapter considers the paintings of the Duecento and Trecento from the angle of the
history of science. We deliberately chose to focus on an example with little coeval
documentation: the frescoes in the nave of the Upper Church of the Basilica of Saint
Francis in Assisi. Here are the reasons justifying this choice:

1. Practically no contemporary documents exist concerning these mural paintings.
The names of the painters who were working on the site are only assumed. As in
the case of many early large-scale projects, numerous hands have been sug-
gested: Jacopo Torriti, Cimabue, the Master of the Capture, the Master of Isaac,
Giotto di Bondone, etc. For the scenes of The Legend of St. Francis the

1Judith V. Field, “Alberti, the abacus and Piero della Francesca’s proof of perspective,”
Renaissance Studies 11/2 (1997): 61–88.
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spectrum of attributions ranges from Giotto2 and the Master of Isaac (sometimes
identified as Arnolfo di Cambio),3 to an unknown Roman painter (perhaps
Pietro Cavallini or Filippo Rusuti).4

2. Equally little is known about the dating of this decorative cycle. The church rose
between 17 July 1228, when the foundation stone was laid by Pope Gregory IX
(17 July 1228) and 11 June 1253, the date of its consecration by Pope
Innocent IV. The period of its decoration cannot be pinpointed as accurately, but
ranges from about 1254 to 1338. According to Vasari,5 Giotto painted the
thirty-two scenes of the Legend of St. Francis in the lower register of the Upper
Church around 1296–1305. The terminus post quem (1296) coincides with the
election of Giovanni da Morrovalle as the general minister of the Franciscan
order. The terminus ante quem (1305) can be deduced from the fact that the
tower of the Palazzo del Capitano, which appears to be under construction in the
frescoes, was completed in that year. Some art historians have narrowed the
interval to 1296–1299 or even 1296–1297 on stylistic grounds.6

The present tendency is to antedate the paintings. The rationales for this are:
(1) Vasari’s well-known bias in favor of the contributions of Florence and the
Medici to the development of Renaissance art; (2) growing evidence of the influ-
ence of Roman art on the frescoes in Assisi; (3) the vacancy of the papal throne
between 1292 and 1294, which would not corroborate the handing down of any key
decisions regarding the papal church of Assisi in this period; and (4) the recent
discovery of a fourteenth-century Franciscan manuscript that documents the deci-
sion of Pope Nicholas IV to commission sumptuous, large-scale paintings for the
basilica of Assisi (“nec videmus in ecclesiis fratrum sumptuositatem magnam
picturarum nisi in ecclesia Assisii, quas picturas dominus Nicolaus IV fieri pre-
cepit…”). There are sound reasons therefore to date the initiation of the work to ca.
1290–1292.7

2Luciano Bellosi, Giovanna Ragionieri, “Giotto e le storie di San Francesco nella basilica supe-
riore di Assisi,” in Assisi anno 1300, edited by S. Brufani and E. Menestò, Assisi, Edizioni
Porziuncola, 2002, pp. 455–473.
3Angiola Maria Romanini, “Arnolfo pittore: pittura e spazio virtuale nel cantiere gotico,” Arte
medievale 11 (1997): 3–33.
4Hayden B.J. Maginnis, Andrew Ladis, “Assisi today: the upper church,” Source 18 (1998): 1–6.
5“Having finished these works [in Arezzo, Giotto] betook himself to Assisi, a city of Umbria,
being called thither by Fra Giovanni di Muro della Marca, then General of the Friars of St. Francis,
where in the upper church he painted a fresco, under the gallery that crosses the windows, on both
sides of the church, thirty-two scenes from the life and acts of St. Francis/ Finite queste cose [in
Arezzo, Giotto] si condusse in Ascesi città dell’Umbria, essendovi chiamato da fra’ Giovanni di
Muro della Marca, allora Generale de’ frati di san Francesco, dove nella chiesa di sopra dipinse a
fresco, sotto il corridore che attraversa le finestre, dai due lati della chiesa, trentadue storie della
vita e fatti di San Francesco,” Giorgio Vasari, Vite de’ più eccellenti Pittori Scultori e Architettori,
edited by R. Bertanini and P. Barocchi, Florence, 1967, II, p. 100.
6Elvio Lunghi, La Basilica di San Francesco di Assisi, Antella, 1996, pp. 66–67.
7Bellosi and Ragionieri, “Giotto e le storie di San Francesco,” op. cit.; Donal Cooper, Janet
Robson, “Pope Nicholas IV and the upper church at Assisi,” Apollo 157 (2003): 31–35.
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3. Knowledge is scant regarding the fresco techniques of the time. The only written
accounts we have are those by Vasari and Cennini,8 which date to several
centuries later. The material examination9 of the paintings themselves partially
compensates for this lacuna, but the many steps involved in the complex process
of fresco painting must be inferred from scattered clues. Nevertheless, three
principal stages can be identified: (1) sketching the drawing (disegno);
(2) squaring the pattern (gratta) onto the rough plaster underlayer (arricio); and
(3) transferring the pattern onto the layer of fresh plaster (intonaco), drawing the
straight lines with a ruler (and sometimes retracing them with a puntaruolo or
awl) and drawing the circles with a compass. Curves were sketched freehand on
the fresh plaster, while the figures’ faces were transferred by means of patroni
(drawings that served as a kind of template). In general, the preliminary
drawings were not conserved by the atelier.10

The geometric lines of the frescoes of the Upper Church at Assisi are scarcely
visible, but beneath the crumbling plaster the reddish brown underdrawing (sinopia)
on the left side of the scene depicting St. Francis Preaching Before Pope Honorius
III has been discovered.11 Examination under low-angled lighting has disclosed
signs of the line drawn in the fresh coating, the perforations left by nails to which a
cord was attached to trace the vanishing lines, and at times even the painter’s
fingerprints, as in the Extasis.12The fact that the disegno had to be transferred
twice—first in the form of the sinopia underdrawing and then onto the freshly laid
intonaco—creates a difficult problem for historians of perspective, because the
layout sketched in the first stage is partially effaced during the second transfer.

8Vasari, Vite, op. cit., p. 199; Cennino Cennini, Il Libro dell’arte, edited by Gaetano and Carlo
Milanesi, Florence, 1859, p. 60.
9Giuseppe Basile, ed., Pittura a fresco. Tecniche esecutive, cause di degrado, restauro, Florence,
1989; Bruno Zanardi, Chiara Frugoni and Federico Zeri, Il Cantiere di Giotto, Milan, 1996.
10Bernhard Degenhart, Annegrit Schmitt, Einleitung a Corpus der Italienischen Zeichnungen
1300–1450, I–1. Sud- und Mittelitalien, Berlin, 1968, p. xix.
11“Immediately above the aureola of Francis, one can see a very small, completely indecipherable
trace of a drawing in red sinopia. But, above and beyond this infinitesimal fragment of proof is the
vast complexity of the iconographic cycle that precludes the hypothesis of an execution a fresco of
the scenes without an extremely detailed preparatory drawing on paper (or parchment) that could
be transferred directly to the arriccio [the rough underlayer of plaster] in the form of a sinopia…
These material data as well confirm the fact that there must have been quite detailed preliminary
planning for the Franciscan fresco cycle, first with drawings on paper (or parchment) and then on
the arriccio/ Subito sopra l’aureola di Francesco è visibile una piccolissima traccia, del tutto
indecifrabile, d’un disegno in rosso sinopia. Ma, al di là di questa minima prova è l’enorme
complessità iconografica del ciclo a rendere impossibile l’ipotesi di una esecuzione a fresco delle
scene in assenza d’un detagliatissimo progetto su carta (o pergamena) da riportare al vere
sull’arriccio in forma di sinopia… Questi dati materiali impongono di nuovo di dar per certo un
assai dettagliato lavoro di progettazione del ciclo francescano, prima con disegni su carta
(o pergamena) e poi sull’arriccio,” Zanardi, Il Cantiere di Giotto, pp. 24, 32.
12Zanardi, Il Cantiere di Giotto, pp. 24–32.
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Under low-angled lighting what can be seen in the sinopia is generally limited to
the edges of the architectural elements that anchor the vanishing lines.13

4. Gaps in the documentation preclude a direct apprehension of the extent of the
artists’ understanding of perspective during this early period, which is why these
mural paintings have given rise to multifarious interpretations encompassing a
spectrum of approaches from intellectualism to empiricism. There is no single
best approach to adopt in the analysis of their perspectives. Intellectualism runs
the risk of anachronism by using concepts such as ‘horizon’ and ‘vanishing
point’, which were undefined at that time, whereas empiricism may underesti-
mate the overt or tacit knowledge that is necessary to draw in perspective.

Notwithstanding these considerations, the frescoes in the Upper Church at Assisi
can unquestionably be considered pioneering trials in the rationalization of the
visual space in painting. They await an interpretation that will reconcile the
empirical evidence with a convincing conceptual foundation.14

11.1 The Arithmetic Construction Hypothesis

To explain the advances made in the representation of depth in Duecento and
Trecento painting, historians at first assumed that artists were in possession even at
this early date of a basic knowledge of convergence, infinity, etc. Well-known
objections have been raised against this interpretation:15

(1) Little is known and therefore we can only hypothesize about the mathematical
knowledge to which the artists and artisans would have had access;

(2) There are scant examples of convergence on a defined vanishing point in
medieval painting. More often we find cases of convergence on a “vanishing
axis” or an even less precisely defined “vanishing region”;

(3) Experiments in the representation of pictorial space led to many competing
systems in the Duecento and Trecento, thus reducing the importance of linear
perspective as such. This undermines the credibility of Panofsky’s hypothesis
that painters such as Lorenzetti had a mathematical understanding of the

13Zanardi, Il Cantiere di Giotto, p. 29 (Figs. 18, 19, 20), p. 31 (Figs. 22, 23, 24).
14John White, The Birth and Rebirth of Pictorial Space, London, 1967, p. 32.
15See not only Panofsky’s groundbreaking “Die Perspective als symbolische Form,” Vorträge der
Bibliothek Warburg, 4 (1924/5): 258–331, Perspective as Symbolic Form, Zone Books, New
York, 1991, but also Guido J. Kern, “Die Anfänge der zentralperspektivischen Konstruktion in der
italianischen Malerei des 14. Jahrhunderts,” Mitteilungen des Kunsthistorischen Instituts in
Florenz 2 (1913): 39–65, and Decio Gioseffi, Perspectiva artificialis. Per la storia della
prospettiva, spigolature e appunti, Trieste, 1957. This thesis was amended by Rocco Sinisgalli,
Per la storia della prospettiva, 1405–1605, Rome, 1978.
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vanishing point, which the art historian saw as “the concrete symbol of the
discovery of infinity itself.”16

Empiricism is the very opposite of intellectualism. Among the empiricist posi-
tions, that of Andrés de Mesa Gisbert demands consideration because it combines
rigor with minimalism. The author proposes a hypothesis regarding the conver-
gence of vanishing lines in Trecento paintings17 which, in fact, constitutes a method
for building a perspective arithmetically.

Let two parallel lines be drawn at any distance from each other; if one of them is divided
into any number of parts and the second parallel is treated similarly, by keeping exactly the
same proportions that we used initially, the extension of the straight lines passing through
the corresponding points will generate a convergence of all lines on one single point with
no need of having operated with it.18

The author’s fundamental insight was that the convergence of segments AD, BE,
CF… may be obtained either by drawing the lines OA, OB, OC… whose visible
segments are AD, BE, CF… (the geometric method), or by drawing segments DE,
EF… in proportion to segments AB, BC…, the proportionality ratio between AB
and DE, between BC and EF…, being sufficient to ensure the existence of the
virtual vanishing point O (the arithmetic method). Among the geometric relation-
ships in similar triangles, craftsmen would have extracted relationship (1), setting
aside relationships (2), (3), etc. which would have required the inclusion of the
concurrence point O (Fig. 11.1).19

1ð ÞDE
EF

¼ AB
BC

2ð ÞOE
ED

¼ OB
BA

3ð ÞOE
EF

¼ OB
BC

The arithmetic hypothesis provides a simple explanation as to why ex post
layouts exhibit a point at infinity; this point would be the by-product of an analysis
that presupposes the use of geometric instruments. But in fact painters could instead
have used a proportionality rule to divide the frontal-horizontal lines and distribute
them in depth.

16Panofsky, Perspective as Symbolic Form, p. 57.
17Andrés de Mesa Gisbert, “El ‘fantasma’ del punto de fuga en los estudios sobre la
sistematización geometrica de la pintura del siglo XIV,” D’Art 15 (1989): 29–50. The author has
since specialized in architectural surveys.
18“Si disponemos dos rectas paralelas con cualquier distancia entre sí, y luego de dividir una de
ellas en un número cualquiera de partes lo hacemos en forma similar sobre la segunda paralela,
guardando exactamente las mismas proporciones con las que se lo ha hecho inicialmente, al unir
los puntos correspondientes con líneas rectas, en su prolongación obtendremos la convergencia de
todas ellas sobre un solo y único punto sin necesidad de haber operado con él,” De Mesa Gisbert,
“El ‘fantasma’ del punto de fuga,” p. 33 (italics mine).
19De Mesa Gisbert, “El ‘fantasma’ del punto de fuga,” pp. 33–34. This idea is discussed by Ian
Verstegen, “Viewer, Viewpoint, and Space in the Legend of St. Francis: A Viennese-Structural
Reading,” preprint 2011.
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In addition, de Mesa’s hypothesis resolves three problems associated with
pre-Renaissance paintings: (1) it accounts for the arbitrary behavior of certain lines
by stating that proportional ratios were not defined for all the lines (observe, for
example, the parallel edges of the abaci of the capitals in St. Francis Preaching
Before Pope Honorius III); (2) in the same way, it explains the additional presence
of a vanishing axis in works such as The Pentecost; and (3) the convergence on a
vanishing region is seen as a secondary effect of errors made during the transfer of
proportional segments (any inaccuracies in the positioning of points A, B, C will
induce a deviation in the vanishing lines AD, BE, CF). This arithmetic scheme is
often cited to emphasize the point that any attempt to trace the beginnings of linear
perspective to the Middle Ages would be an anachronism.20

Despite its obvious ingenuity and apparent applicability, the arithmetic method
gives rise to difficulties that have never been systematically explored. This is
understandable because when a conclusion appears to be correct, rarely do we
thoroughly examine its premises. Moreover, the arithmetic hypothesis is readily
acceptable, because nothing proves that medieval craftsmen made use of vanishing
points. However, the arithmetic method has up to now been a hypothesis rather than
a firmly established concept, and it needs to be subjected to careful scrutiny.

11.2 The Absence of Multiples or Submultiples
of the Measurement Units

In a perspective that has been composed using the arithmetic method, the frontal
lines should be divisible into multiples or submultiples of standard measurement
units. The choice of a unit of measurement is never arbitrary, whether it has a
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Fig. 11.1 The arithmetic hypothesis. Author’s drawing after De Mesa Gisbert, “El ‘fantasma’ del
punto de fuga,” p. 33

20The arithmetical method supports the idea that perspective was a Renaissance invention. De
Mesa speaks of Brunelleschi’s contribution in “El ‘fantasma’ del punto de fuga,” p. 35. For a
critique, see D. Raynaud, L’Hypothèse d’Oxford, Paris, 1998, pp. 4–9 and 132–150.
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symbolic or a practical significance. Many examples can be found in the history of
architecture. Take, for example, the hypothesized geometric scheme of the Cappella
Pazzi designed by the architect Brunelleschi.21 Konrad Hecht22 inaugurated the
critical approach by drawing attention to the discrepancies between the seventeen
different regulating layouts published between 1867 and 1957. In the same vein
Jean Guillaume23 has shown that the regulating layouts proposed to explain the
architectural design do not even match the actual measurements of the Cappella dei
Pazzi, to which Brunelleschi always assigned integer or simple values—for
example, he chose pilasters measuring 1½ braccia in width.

Transposed to the case of wall paintings, the discovery of unit multiples would
offer corroboration that the arithmetic method had been used because: (1) it is easier
to calculate proportional ratios on simple measurements; (2) it is also easier to
remember and apply the measurements required to construct the perspective. Do
early perspective paintings exhibit multiples or submultiples of specific measure-
ment units?

In Umbria two measurement systems were used in the late Middle Ages: the
braccio and the piede. In Perugia, Foligno, Orvieto, Spoleto and elsewhere, there
were two values for the braccio, i.e. the braccio lungo (0.668 m) and the braccio
corto (0.599 m). We decided to use the braccio corto, which was referred to as da
legname (for wood) and da muratori (for masons) rather than the braccio lungo,
which was the unit da lana (for wool), da panno (for cloth) and da seta (for silk).
The braccio corto system consisted of the braccio (599 mm), the oncia
(49.92 mm), and the soldo (29.95 mm). The Umbrian value for the piede da leg-
name e da fabbrica (piede for wood and for building) was equivalent to 0.363 m,
from which a second system of measurements can be deduced: the piede (363 mm),
palmo (90.75 mm), pollice (30.25 mm), and dito (22.69 mm).24

Let us now examine The Approval of the Franciscan Rule, which de Mesa
(op. cit., Figures 11–14) cites as an exemplary application of the arithmetic method.
The procedure that he followed is outlined here.

21A similar example may be found in Lescot’s façade for the Louvre, whose measurements are
multiples of the pied du Roi (326.6 mm) used in Paris ca. 1546, Jean-Paul Saint Aubin,
“Photogrammétrie et étude des ordres: le Louvre de Lescot,” in L’Emploi des ordres à la
Renaissance, ed. Jean Guillaume, Actes du colloque de Tours (9–14 juin 1986), Paris, 1992,
pp. 219–226.
22Konrad Hecht, “Maßverhältnisse und Maße der Cappella Pazzi,” Architectura 6 (1976):
148–174.
23Jean Guillaume, “Désaccord parfait: ordres et mesures dans la chapelle des Pazzi,” Annali di
Architettura 2 (1991): 9–23.
24“Brachium continet 12 vntias,” “Pes palmorum quattuor, pollicum seu vnciarum duodecim,
digitorum vero sexdecim.” We leave aside the quattrino, whose narrow step (9.98 mm) is not
sufficiently differential. Ronald E. Zupko, Italian Weights and Measures from the Middle Ages to
the Nineteenth Century, Philadelphia, The American Philosophical Society, 1981, pp. 47–48
(braccio), 197 (piede).
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First, draw the layout of the fresco,25 and record its principal measurements.
Then mark on the layout: above the line on the left side, the radius of the arch;
below this line, the diameter of the arch; and above the line on the right side, the
total length of the vaulted ceiling (underlined) (Fig. 11.2).

Braccio-soldi system

Horizontal dimensions (mm) Vertical dimensions (mm)

549.08 < 560 < 569.05 419.30 < 430 < 449.25 1856.90 < 1883 < 1886.85 119.80 < 143 < 149.75

269.55 < 280 < 299.50 209.65 < 215 < 239.60 1467.55 < 1482 < 1497.50

99.83 < 103 < 119.80 89.85 < 95 < 99.83

99.83 < 100 < 119.80 89.85 < 97 < 99.83

Number of concordances plus or minus the error: 2
Concordances: 99.83 mm = 2 o

Piede-palmi system

Horizontal dimensions (mm) Vertical dimensions (mm)

544.50 < 560 < 567.19 423.50 < 430 < 431.06 1875.50 < 1883 < 1883.06 136.13 < 143 < 151.25

272.25 < 280 < 294.94 211.75 < 215 < 226.88 1474.69 < 1482 < 1482.25

90.75 < 103 < 113.44 90.75 < 95 < 113.44

90.75 < 100 < 113.44 90.75 < 97 < 113.44

Number of concordances plus or minus the error: 3
Concordances: 431.06 mm = 1 br. 3 d., 1482.25 mm = 4 br. 1 po., 1883.06 mm = 5 br. 3 d

We discover that the values expressed in either of these units are quite cum-
bersome, making their use by artists unlikely. Only 2 of the 11 measurements
expressed using the braccio-soldi system are integer values ±3 mm and only 3 out
of 11 in the piede-palmi system. This fact raises doubts as to the existence of an
underlying system of measurements.

103 100280

215 95 97

430

560

143

1883

1482

Fig. 11.2 The Approval of the Franciscan Rule, fresco byGiotto in theUpper Church of the Basilica
of Assisi, ca. 1296–1299. Author’s reconstruction after Zanardi, Il Cantiere di Giotto, p. 128

25We have relied on the photographic survey by Zanardi, Frugoni and Zeri in Il Cantiere di Giotto,
p. 128. The survey scale can be deduced from the dimensions of the fresco (363 × 357 cm), the
height of the standing figure of St Francis (122 cm), the height of the other Figs. (122, 111,
123 cm), and the diameter of the saint’s halo (35.5 cm). We systematically checked the parallelism
and absence of distorsion in the fresco, following Raynaud, “La théorie des erreurs et son
application à la reconstruction des tracés perspectifs,” see Appendix A.
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Let us now apply the same analysis to the fresco St. Francis Preaching Before
Pope Honorius III, in which a space with a groined vault roof is represented.26

(Fig. 11.3).

Braccio-soldi system

Horizontal dimensions
(mm)

Vertical dimensions
(mm)

998.33 < 1005 < 1018.30 698.83 < 709 < 718.80 3174.70 < 3194 < 3194.67 658.90 < 675 < 688.85

958.40 < 977 < 988.35 658.90 < 685 < 688.85 2346.08 < 2351 < 2366.05 479.20 < 489 < 499.17

958.40 < 976 < 988.35 658.90 < 684 < 688.85 149.75 < 152 < 179.70

59.90 < 67 < 89.85 59.90 < 73 < 89.85

59.90 < 66 < 89.85 59.90 < 70 < 89.85

49.92 < 56 < 59.90 59.90 < 65 < 89.85

29.95 < 47 < 49.92 59.90 < 65 < 89.85

Number of concordances plus or minus the error: 3
Concordances: 49.92 mm = 1 o., 149.75 mm = 5 s., 3194.67 mm = 5 br. 4 o

Piede-palmi system

Horizontal dim. (mm) Vertical dim. (mm)

998.25 < 1005 < 1020.94 703.31 < 709 < 726.00 3176.25 < 3194 < 3198.97 665.50 < 675 < 680.63

975.56 < 977 < 998.25 680.63 < 685 < 695.75 2336.83 < 2351 < 2359.52 484.00 < 489 < 499.13

975.56 < 976 < 998.25 680.63 < 684 < 695.75 151.25 < 152 < 158.81

60.50 < 67 < 68.06 68.06 < 73 < 90.75

60.50 < 66 < 68.06 68.06 < 70 < 90.75

45.38 < 56 < 60.50 60.50 < 65 < 68.06

45.38 < 47 < 60.50 60.50 < 65 < 68.06

Number of concordances plus or minus the error: 7
Concordances: 45.38 mm = 2 d., 68.06 mm = 3 d., 151.25 mm = 1 pa. 2 po., 975.56 mm = 2 br. 2 pa. 3 d

Once again the values for the measurements of this space are improbably
complicated, with 3 out of 19 approaching an integer value ±3 mm using the
braccio-soldi system and 7 out of 19 using the piede-palmi system.
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Fig. 11.3 St. Francis Preaching Before Pope Honorius III, fresco by Giotto in the Upper Church
of the Basilica of Assisi, ca. 1296–1299. Author’s reconstruction after Zanardi, p. 242

26Zanardi, Il Cantiere di Giotto, p. 242.
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Consider now The Recovery of the Wounded Man of Lerida, whose flat-coffered
ceiling is similar to a checkerboard pattern drawn in perspective.27 In the recon-
structed perspective below (Fig. 11.4), each number in the first column on the left
records the width of the narrowest coffer in that horizontal row, while the second
column of numbers records the mean width of the coffers in the row; the column
closest to the central axis gives the height of the central coffers; the numbers in the
column on the right record the total width of each row of coffers; and finally the
number below the axis gives the total height of the ceiling.

Braccio-soldi system

Horizontal dimensions (mm) Vertical dimensions (mm)

99.83 < 111 < 119.80 99.83 < 118.23 < 119.80 1767.05 < 1773 < 1797.00 59.90 < 76 < 89.85

99.83 < 106 < 119.80 99.83 < 108.84 < 119.80 1617.30 < 1633 < 1647.25 59.90 < 66 < 89.85

89.85 < 98 < 99.83 99.83 < 100.09 < 119.80 1497.50 < 1501 < 1527.45 59.90 < 60 < 89.85

(continued)
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1185
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Fig. 11.4 The Recovery of the Wounded Man of Lerida, fresco by Giotto in the Upper Church of
the Basilica of Assisi, ca. 1296–1299. Author’s reconstruction after Zanardi, p. 332

27Zanardi, Il Cantiere di Giotto, p. 332. The Recovery of the Wounded Man is one of the earliest
works to present a correct foreshortening of the intervals, but it does not represent a case of linear
perspective because the correct perspective is limited to the coffered ceiling. (1) The side ceilings
are depicted in oblique perspective, while the main ceiling is depicted in a central perspective.
(2) The horizon is situated 722 mm above the level of the eye, with which it should instead
coincide. (3) There is a lack of consistency in the foreshortening. The most remote horizontal line
of the ceiling produces an interval that is as high as the one immediately preceding it, probably
because of some confusion between this line and the one that marks the boundary of the coffered
space. In perspective, however, two equal intervals ought to be of different heights. (4) The fresco
displays some minor errors of drawing. For example, the axis of the ceiling is shifted 12 mm to the
right compared to the axis of the composition.
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(continued)

Braccio-soldi system

89.85 < 90 < 99.83 89.85 < 91.99 < 99.83 1377.70 < 1380 < 1397.67 49.92 < 52 < 59.90

59.90 < 86 < 89.85 59.90 < 85.03 < 89.85 1257.90 < 1275 < 1287.85 29.95 < 43 < 49.92

59.90 < 79 < 89.85 59.90 < 79.00 < 89.85 1168.05 < 1185 < 1198.00 299.50 < 309 < 329.45

Number of concordances plus or minus the error: 8
Concordances: 49.92 mm = 1 o., 59.90 mm = 2 s., 89.85 mm = 3 s., 99.83 mm = 2 o., 119.80 mm = 4 s.,
1377.70 mm = 2 br. 5 s

Piede-palmi system

Horizontal dimensions (mm) Vertical dimensions (mm)

90.75 < 111 < 113.44 113.44 < 118.23 < 121.00 1769.63 < 1773 < 1784.75 68.06 < 76 < 90.75

90.75 < 106 < 113.44 90.75 < 108.84 < 113.44 1610.81 < 1633 < 1633.50 60.50 < 66 < 68.06

90.75 < 98 < 113.44 90.75 < 100.09 < 113.44 1497.38 < 1501 < 1512.50 45.38 < 60 < 60.50

68.06 < 90 < 90.75 90.75 < 91.99 < 113.44 1361.25 < 1380 < 1383.94 45.38 < 52 < 60.50

68.06 < 86 < 90.75 68.06 < 85.03 < 90.75 1270.50 < 1275 < 1293.19 30.25 < 43 < 45.38

68.06 < 79 < 90.75 68.06 < 79.00 < 90.75 1179.75 < 1185 < 1202.44 302.50 < 309 < 317.63

Number of concordances plus or minus the error: 8
Concordances: 45.38 mm = 2 d., 60.50 mm = 2 po., 68.06 mm = 3 d., 90.75 mm = 1 pa., 113.44 mm = 1 pa. 1 d.,
121.00 mm = 1 pa. 1 po., 1633.50 mm = 4 br. 2 pa

In the three frescoes just examined, none of the dimensions measured turn out to
be a simple combination of multiples or submultiples of the measurement units of
that time.

1. In The Recovery of the Wounded Man of Lerida, the mean dimensions of the
coffers (column 2), which are presumably a more reliable measure than the
individual values, are no closer to integer numbers than the most erroneous
values directly measured on the fresco (column 1).

2. For each series (width, mean width and height of the individual coffers, total
width of a row, total height of the ceiling), many of the measurements are far
from integer values (59.90 < 79 < 89.85; 299.50 < 309 < 329.45; 1257.90 <
1275 < 1287.85, etc.) and hence the dimensions of the perspective elements
cannot be expressed in either braccio-soldi or piede-palmi units.

3. Very few of the individual measurements expressed in medieval units approach
integer values. In The Approval of the Franciscan Rule, only 2 out of 11 in the
braccio-soldi system and 3 out of 11 in the piede-palmi system do so. In
St. Francis Preaching Before Pope Honorius III, 3 out of 19 in the braccio-soldi
system and 7 out of 19 in the piede-palmi system approach integer values. In
The Recovery of the Wounded Man of Lerida, there are 8 out of 24 in the
braccio-soldi system, and 8 out of 24 in the piede-palmi system. Taken together,
13 out of 54 (24 %) measurements are close to integer values in the first system,
and 18 out of 54 (33 %) in the second. The total number of values being greater
than 50, the rate is comparable to a random set of occurrences.

In the braccio-soldi system, integer values fall on every 29.95 mm and
49.92 mm ± 3 mm interval. One braccio (LCM of oncia and soldo) contains
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twelve oncie error intervals and twenty soldi error intervals, four of which
overlap. The probability of obtaining an integer value ±3 mm in the LCM interval

is therefore equal to 6 20þ 12�4ð Þ
599:00 ¼ 168

599 ¼ 28%.
In the piede-palmi system, integer values fall every 22.69 mm and

30.25 mm ± 3 mm. One palmo (LCM of pollice and dito) contains three pollici
error intervals and four dita minuti error intervals, among which one is in common.
The probability of measuring an integer value in the LCM interval is thus
6 3þ 4�1ð Þ

90:75 ¼ 36
90:75 ¼ 39%.

The occurrences of integer values for the theoretical and empirical measurements
are of the same order of magnitude: 24 % ≈ 28 % and 33 % ≈ 39 %. Therefore the
empirical concordances do not exceed the level of randomness. The slightly higher
result in the piede-palmi system is due to the fact that there is a narrower gap
between the pollici and the dita minuti.

4. Finally, let us hypothesize a variation in the historically documented standard
units used by craftsmen. It is necessary to introduce such a variation, because
the medieval units were not as precise as present measurement units. This
variation is the result of several factors:

(1) Historical fluctuations. For example, architectural surveys in the
Quattrocento set the braccio fiorentino at 0.5875, 0.5860 or 0.5836 m.28

(2) Differences between professions. Braccio and piede values were specific to
different crafts, as demonstrated by their names: agrimensorio, da leg-
name, da muratori, da panno, da mercatori, etc.

(3) Fluctuations within and between regions. In Tuscany alone, the braccio
took on the common value of 0.584 m in Arezzo, Florence, San Miniato,
Pistoia, Siena, Montepulciano, Lucca, Pisa, Volterra, etc., but shorter or
longer values were used in Fivizanno (0.486 m), Massa (0.4.95 m),
Montecarlo (0.593 m), and Pontremoli (0.692 m).29 The actual or sup-
posed presence of master artists from other parts of Italy (Cavallini, Rusuti,
Giotto, etc.) working at the site of the Upper Church prevents us from
excluding one or another of the units that we know were being used in
Assisi (br. 0.599 m; p. 0.363 m), Rome (br. 0.636 m; p. 0.298 m) or
Florence (br. 0.584 m).

In order to take into account these historical, professional and regional fluctu-
ations, let us produce a continuous variation of the braccio from 525.6 mm (br. fl.
−10 %) to 699.6 mm (br. rom. +10 %) and then study the fluctuation in the number
of integer values y as a function of this extensible braccio x. If the function

28These braccio values are given, for instance, by Konrad Hecht, “Maßverhältnisse und Maße der
Cappella Pazzi”; Leonardo Benevolo, Stefano Chieffi e Giulio Mezzetti, “Indagine sul S. Spirito di
Brunelleschi,” Istituto di Storia dell’Architettura. Quaderni 85/90 (1968): 1–52; and Christoph L.
Frommel, Der Römische Palastbau der Hochrenaissance, 3 Bde, Tübingen, 1973.
29Zupko, Italian Weights and Measures, p. 46.
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y = f (x) admits a maximum that is almost equal to the total number of fresco
measurements, this maximum will represent the value of the unit being searched
for. An optimization algorithm enables us to detect the maxima. The function
admits 10 values (550.01 ≤ br. ≤ 550.24) as a minimum minimorum, and 27 values
(652.40 ≤ br. ≤ 652.44) as a maximum maximorum.

The integer values plus or minus the margin of error range from 10
54 ¼ 18 to

27
54 ¼ 50%, i.e. less than one-half of the total. Consider now a continuous variation
in the value expressed in piede from 268.2 mm (p. rom. −10 %) to 399.3 mm
(p. umbro +10 %). The number of integer values fluctuates from 12
(375.34 ≤ p. ≤ 375.54) to 31 (273.30 ≤ p. ≤ 273.35). Thus, the range of integer
values plus or minus the margin of error extends from 12

54 ¼ 22 to 31
54 ¼ 57%. It

follows that neither of the medieval unit systems can convert the dimensions
measured on the frescoes into integer or simple values. The fresco dimensions
reveal no numerical consistency and in most cases they come to a standstill after
their division by the smallest subunit. This conclusion exhibits a significant dis-
crepancy with respect to the arithmetic hypothesis, which requires a unit to be
repeated at regular intervals.

11.3 The Absence of Simple Proportional Ratios

There is another possibility that could resolve the inherent problems and allow us to
salvage the arithmetic hypothesis. Let us imagine that painters relied on arithmetic
formulas but applied them using non-numerical instruments such as lengths of cord
that could be folded into equal parts to determine any given ratio. In this case the
arithmetic method would work even in the absence of any standard units. Suppose
that, like their predecessors in classical antiquity, Duecento and Trecento painters
used dimensionless modules. With the arithmetic method, homologous parts should
nevertheless stand in the simple proportional ratio an/an+1. This is what Andrés de
Mesa assumes when he takes a1/a2 = 2.30 But in fact the ratios are entirely random
in the frescoes examined by us. In The Approval of the Franciscan Rule, the ratios

430
560

¼ 0:7678. . .;
1482
1883

¼ 0:7870. . .

do not coincide with the elementary fractions 3
4 ¼ 0:75 or 4

5 ¼ 0:8.
Likewise, in St. Francis Preaching Before Pope Honorius III,

30De Mesa, “El ‘fantasma’ del punto de fuga,” pp. 34 (Fig. 8). The concept of proportional ratios
was repeated, without success, by Pietro Roccasecca, “La prospettiva lineare nel Quattrocento:
dalle proporzioni continuata e ordinata alla proporzione degradatta,” S. Rommevaux et al., eds.,
Proportions. Science—Musique—Peinture & Architecture, Turnhout, 2011, pp. 277–297.
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685
977

¼ 0:7011. . .;
709
1005

¼ 0:7054. . .
684
976

¼ 0:7008. . .
2351
3194

¼ 0:7360. . .

differs from 3
2 ¼ 0:6666. . . or 3

4 ¼ 0:75. . .
The result is even clearer in the third fresco. The Recovery of the Wounded Man

of Lerida allows us to calculate similar ratios from more accurate mean values.
However, the ratios

79:00
85:03

¼ 0:9290. . .;
85:03
91:99

¼ 0:9243. . .;
91:99
100:09

¼ 0:9190. . .

100:09
108:84

¼ 0:9196. . . and
108:84
118:23

¼ 0:9205. . .

fluctuate around 12
13 ¼ 0:9230. . ., which is an unlikely fraction owing to its

denominator. Therefore, craftsmen seem to have set aside elementary fractions as
well.

It is also necessary to examine de Mesa’s argument (op. cit., pp. 43–45) that
painters used the superbipartiens rule to plan their foreshortening. This propor-
tionality rule consists in tracing an interval two-thirds as high as the previous one.
Alberti had already criticized this method:

Here some would draw a transverse line parallel to the base line of the quadrangle. The
distance which is now between the two lines they would divide into three parts and, moving
away a distance equal to two of them, add on another line. They would add to this one
another and yet another, always measuring in the same way so that the space divided in
thirds which was between the first and second always advances the space a determined
amount. Thus continuing, the spaces would always be, as the mathematicians say, super-
bipartiens to the following spaces…31

This passage can be interpreted in several ways. The narrowest interpretation
consists in attaching more importance to the two-thirds rule than to the name—
superbipartiens proportion—that Alberti assigned to it. The broader interpretation,
in the contrary sense, considers the two-thirds rule as merely an instance of the
general case of superbipartiens proportions.

The narrow interpretation does not apply to the works studied in this chapter. Let
us return to The Recovery of the Wounded Man of Lerida with its 15 × 5
checkerboard ceiling. We can compare the intervals to two superbipartiens series
resulting either from the foreshortening of the largest interval:

31“Hic essent nonnulli qui unam ab divisa aequedistantem lineam intra quadrangulum ducerent,
spatiumque, quod inter utrasque lineas adsit, in tres partes dividerent. Tum huic secundae
aequedistanti lineae aliam item aequedistantem hac lege adderent, ut spatium quod inter primam
divisam et secundam aequedistantem lineam est, in tres partes divisum una parte sui excedat
spatium id quod sit inter secundam et tertiam lineam, ac deinceps reliquas lineas adderent ut
semper sequens inter lineas esset spatium ad antecedens, ut verbo mathematicorum loquar,
superbipartiens…” Leon Battista Alberti, De la peinture/De pictura (1435), eds. Schefer and
Deswarte-Rosa, Paris, 1992, pp. 116–117, commentary p. 242.
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76 2
3 ¼ 50:7 76 4

9 ¼ 33:8 76 8
27 ¼ 22:5 76 16

81 ¼ 15:0 series 1ð Þ
or the enlargement of the smallest interval:

43 3
2 ¼ 64:5 43 9

4 ¼ 96:7 43 27
8 ¼ 145:1 43 81

16 ¼ 217:7 series 2ð Þ
Neither of the two series corresponds to the intervals in The Recovery (series 0):

Series 1 76 50.7 33.8 22.5 15.0

Series 0 76 66 60 52 43

Series 2 217.7 145.1 96.7 64.5 43

The broad interpretation rests on the fact that the superbipartiens proportion
concept concerns a class of ratios. The concept itself stems from the medieval
theory of proportions.32

The superpartiens genus characterizes every proportion nþ p
q :1

� �
; n, p, and

q being natural integers, with n = 1, p < q, p ≥ 2. Among the species of this genus,
the superbipartiens33proportion meets the additional condition that p = 2. The
two-thirds rule 1þ 2

3 :1
� �

is then given for q = 3, which is a subspecies of the
superbipartiens species. It is thus possible to read in De Pictura a foreshortening

rule that extends to any proportional ratio ( 1þ 2
q : 1

� �
; q2N; q[ 2).

Unfortunately, no such ratios correspond to the intervals of The Recovery of the
Wounded Man. The series diverges as q increases, so the best match occurs for
q = 3, which is an unsatisfactory case.34 Consequently there is no proof that the
superbipartiens rule was used.

32The most influential texts were those by Boethius, De Institutione arithmetica, ed. by J.-Y.
Guillaumin, Paris, 1995; Jordanus de Nemore, De Elementis arithmetice artis. A Medieval Treatise
on Number Theory, ed. by Hubert L.L. Busard, Stuttgart, 1991; and Hubert L.L. Busard, “Die
Traktate ‘De proportionibus’ von Jordanus Nemorarius und Campanus,” Centaurus 15 (1971):
193–227. Correct definitions can also be found in less well-known treatises, such as an anonymous
Tractatus proportionum: “The first species of the superpartiens genus is the superbipartiens pro-
portion, which is produced when the greatest number contains the entire smallest plus two parts,
such as 5 to 3, 7 to 5. The second above-mentioned species is the supertripartiens proportion,
which is produced when the greatest number contains the entire smallest plus three parts, such as 7
to 4, 11 to 8, etc./ Prima species superpartienti generis est proportio superbipartiens, que fit quando
maior numerus continet totum minorem et insuper eius duas partes, ut 5 ad 3, 7 ad 5. Secunda
species supradicti generis est proportion supertripartiens, que fit quando maior numerus continet in
se totum minorem in se et insuper eius tres partes, ut sunt 7 ad 4, 11 ad 8, etc.,” Saint-Dié,
Bibliothèque municipale, MS. 42, fol. 119r.
33Supertripartiens, superquadripartiens, and superquinquepartiens proportions were formed on the
same pattern.
34To match the observed series to the superbipartiens series, a non-integer q would be required (the
optimal matching would be for q = 2.3 that provides the terms 43.45, 49.97, 57.47, 66.09, 76.00).
This, however, is impossible by definition.
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We can nevertheless imagine a latissimo sensu interpretation of the rule by
extending it to all cases in which a given term of the series is a constant ratio of the
previous one. The rule is thus widened to multiplex, superparticularis, superpar-
tiens, multiplex superparticularis and multiplex superpartiens proportions. This
interpretation fails to provide a better match to The Recovery’s intervals, because
they do not follow a constant ratio. The series 0.827 (43/52); 0.867 (52/60); 0.909
(60/66); 0.868 (66/76) can be compared to the corresponding ratios of a checkered
pattern in linear perspective. Let us establish first that constant ratios are incon-
sistent with linear perspective.

(1) Lines AB, CD, EF, GH… are horizontal, and points A, C, E, G… are collinear
(Fig. 11.5). Therefore, ∠BAC = ∠DCE = ∠FEG…

(2) By hypothesis, the intervals are in a constant ratio to each other; hence
AC/AB = CE/CD = EG/EF…

(3) As stated in Euclid’s Elements, Book VI, Prop. 7, it follows that
∠ABC = ∠CDE = ∠EFG…

(4) Since AB, CD, EF, GH… are parallels, the diagonals BC, DE, FG… are
parallel to each other and cannot intersect, whereas a linear perspective
requires a concurrent point (distance point). Consequently, successive equal
intervals in a linear perspective cannot be in a constant ratio. Reciprocally, the
perspective in which successive intervals stand in a constant ratio cannot be a
linear perspective.

Knowing that the intervals in The Recovery are not in a constant ratio, its ceiling
foreshortening should be analyzed and compared to a linear perspective. The
empirical values are already known and the theoretical values can be found by
means of analytic geometry. Let us begin with a simplified schema of the fresco, on
which the coordinates (x, y) of the points that can be used to obtain the theoretical
values are marked (Fig. 11.6).

Mark in system H1xy, the coordinates of points C1, D1, E1, F1 and G1; the
coordinates of the central point O; and the distance point T that should be used to
create a linear perspective. Find the ordinates of points C6, D5, E4, F3, G2 that set
the height of the intervals. Each point belongs to two lines: C6 = OC1 \ H1T;
D5 = OD1 \ H1T… Therefore each point solves a system of equations that

O

G

C

E

A B

D

F

H

Fig. 11.5 Foreshortening in
constant ratio. Author’s
drawing
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describe the lines to which the point belongs. For example, point G2 solves the
system

y ¼ 962
1305 x ð1 : eq:H1TÞ

y ¼ � 962
118þ 72 xþ 597:45 ð2 : eq:G1OÞ

�

By introducing the value x of (1) in (2), we obtain

� 962
118þ 72

1305
962

y

� �
þ 597:45� y ¼ 0

and after simplification and factorization

�y
1305

118þ 72
þ 1

� �
þ 597:45 ¼ 0

whence

y ¼ 597:345
1þ 1305

118þ 72

¼ 597:45
7:869

¼ 75:93

)T (1035; 962)

C1 (590;0) D1 (472;0) E1 (354;0) F1 (236;0) G1 (118;0) H1 (0;0)

G2

F3

E4

D5

C6

y

x

Fig. 11.6 Schema for The Recovery of the Wounded Man of Lerida. Author’s drawing

11.3 The Absence of Simple Proportional Ratios 207



The difference between the ordinates of points G1 (x; 0) and G2 (x; 75.93)
determines the height of the first interval, i.e. 75.93 mm. The ordinates of points C6,
D5, E4, F3 should be calculated in the same way. Now deduce the height of all the
intervals: 75.93; 64.44; 56.36; 48.84; 42.98 (series 3), and compare these theo-
retical values with the empirical values derived from the fresco. The values can be
fitted with a slight error �max = 3.64 mm:

Series 0 76 66 60 52 43

Series 3 75.93 64.44 56.36 48.84 42.98

To draw the ceiling in The Recovery of the Wounded Man of Lerida the artist
utilized a foreshortening method that is indistinguishable from the one required for
linear perspective. Consequently no superbipartiens method—understood in stricto
sensu, lato sensu or latissimo sensu—has been used in the layout of the fresco. This
fact disproves the arithmetic hypothesis. Why did the painters of the Upper Church
not use proportionality ratios to solve the problem of foreshortening? Could this be
because they approached the representational problem from the viewpoint of the
geometer, whose science is a study of continuous quantities?

11.4 The Length of the Operating Series35

The apparent simplicity of the arithmetic method is due in part to the fact that certain
operations are left deliberately vague. For instance, the proportionality of the
intervals is established on parallels lines, but the existence of these parallels is taken
for granted, whereas they need to be constructed. Many pre-perspective paintings,
such as The Approval of the Franciscan Rule, St. Francis Preaching Before Pope
Honorius III, or Christ among the Doctors, present an axis of symmetry. But to draw
an axis of symmetry based on proportional ratios is no easy matter. It is therefore
necessary to describe all the operations of the construction process in order to fairly
compare the geometric and arithmetic methods for creating a perspective.

Consider once again The Recovery of the Wounded Man of Lerida and, in order
to lay to rest all previous objections, suppose that the intervals obey the rule of
simple dimensions and proportions. Assume the layout to be a ruler-and-compass
construction, in accordance with the usual devices of geometry. The operating
series can be described on different scales. One should distinguish between macro-
operations (m.o.) (draw a perpendicular, divide a line into n equal parts…) and
elementary operations (e.o.) (take a given aperture of the compass, join two points
with a ruler…).

35For details, see D. Raynaud, “Las primeras perspectivas de los siglos XIII y XIV según el
enfoque del modus operandi,” in Magno Mello (ed.), Perspectiva: fundamentação teórica e cul-
tural, Belo Horizonte, 2009, pp. 41–62.
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For example, the m.o. “draw a perpendicular to a given line” contains five e.o.:
“fix the needle of the compass on a point of the given line,” “draw a circle of any
aperture,” “fix the needle on another point of the given line,” “draw a circle of same
aperture,” and “join the intersecting points of the circles with a ruler” (Elements, I,
11, Fig. 11.7).

Similarly, the m.o. “draw a parallel to a given line” contains 6 e.o. (Fig. 11.8).
We can compare the lengths of the different operating series by comparing the

minimum number of operations required (the m.m.o. and m.e.o., respectively).
Operating series using the arithmetic method (Fig. 11.9)

1. Draw the axis OS (take two marks, draw a vertical), 7 e.o.
2. Draw the first horizontal A1P1 ⊥ OS (draw a perpendicular), 5 e.o.
3. Draw the horizontal A2P2 at a distance A1P1 from H1H2 (draw a parallel), 6 e.o.
4. Calculate H2H3 = k. H1H2 (apply a proportional ratio), 2 e.o.
5. Draw the horizontal A3P3 at a distance A2P2 from H2H3, 6 e.o.

Repeat operations 4 and 5 three times to obtain lines A4P4 … A6P6, 24 e.o.
12. Calculate ½H1I1 (apply a ratio), 3 e.o.

1

3
2

4

5
1 3

2

4

5

Fig. 11.7 Steps of
construction of a
perpendicular to a given line.
Author’s drawing

1

2

4

5
6

3

Fig. 11.8 Steps of
construction of a parallel to a
given line. Author’s drawing

O

A1 B1 C1 D1 E1 F1 G1 H1 I1 J1

S

K1 L1 M1 N1 O1 P1

A2

A3

A4

A5

A6

P2

P3

P4

P5

P6

Fig. 11.9 The Recovery of the Wounded Man of Lerida. Author’s perspective reconstruction
based on the arithmetic method
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13. Draw H1I1 on A1P1 on both sides of axis OS (draw a circle of radius ½H1I1), 2
e.o.

14. Transfer the interval H1I1 gradually onto A1P1 using a compass, 15 e.o.
15. Calculate K = k5, 5 e.o.
16. Calculate ½H6I6 = K.½H1I1 (apply a ratio), 3 e.o.
17. Draw H6I6 on A6P6 on both sides of the axis OS, 2 e.o.
18. Transfer the interval H6I6 segment by segment onto A6P6 using a compass, 15

e.o.
19. Join A1A6 with a ruler, 1 e.o.

Repeat operation 19 fifteen times to obtain all the segments B1B6… P1P6, 15 e.o.

m.m.o. = 34, m.e.o. = 111

Operating series using the geometric method (Fig. 11.10)

1. Draw the axis OS (draw a vertical), 3 e.o.
2. Draw the first horizontal A1P1 ⊥ OS (draw a perpendicular), 5 e.o.
3. Calculate ½H1I1 (apply a ratio), 3 e.o.
4. Draw H1I1 over A1P1 on both sides of the axis OS (draw a circle of radius

½H1I1), 2 e.o.
5. Transfer the interval H1I1 gradually onto A1P1 using a compass, 15 e.o.
6. Draw the pencil lines A1O … P1O with a ruler, 16 e.o.
7. Draw the horizontal OT ⊥ OS (draw a perpendicular), 5 e.o.
8. Draw the diagonal H1T, 3 e.o.
9. Draw the horizontal A2P2 through the point H1T \ G1O …, 6 e.o.

Repeat operation 9 four times to obtain all of the lines A3P3 … A6P6, 24 e.o.

m.m.o. = 13, m.e.o. = 83

OT

A1 B1 C1 D1 E1 F1 G1 H1 I1 J1

S

K1 L1 M1 N1 O1 P1

A2

A3

A4

A5

A6

P2

P3

P4

P5

P6

Fig. 11.10 The Recovery of the Wounded Man of Lerida. Author’s perspective reconstruction
according to the geometric method
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A comparison of the two operating series shows that the arithmetic method is
less advantageous because it requires a larger number of operations than the geo-
metric method (34 vs. 13 m.m.o. and 111 vs. 83 m.e.o. respectively). Furthermore,
one should note that the present comparison has been limited to the devices of
classical geometry,36 which assumes that the perspective is constructed with the
ruler and compass alone. But practical geometry37 freed the operator from such
constraints by giving him recourse to many geometric instruments, a fact known
since earliest antiquity. Let us add to the ruler and compass three other instruments
whose use in the thirteenth century is well documented—the square, the level, and
the libella. Thus, the arithmetic method appears to involve twice as many steps as
the geometrical, instrument-based method (34 vs. 13 m.m.o. and 111 vs. 63 m.e.o.
respectively). This difference is not due to the complexity of the arithmetic method,
but rather to the fact that it includes many background operations. If one includes
these hidden operations, the method is much more burdensome.

11.5 The Coincidence of Points at Infinity with Visible
Loci

Since points at infinity (the central and lateral vanishing points) are useless
according to the arithmetic method, it follows from de Mesa’s thesis that painters
would not have used them. Consequently, there is no reason why our reconstructed
points at infinity should coincide with the visible loci of the pictorial composition.
In contrast, if a systematic and accurate correspondence is found between them, it
would support the thesis that Duecento and Trecento painters actually used geo-
metric devices instead of arithmetic ones.

36The most popular text was Adelard of Bath’s version of Euclid’s Elements; for the purposes of
our discussion see H.L.L. Busard (ed.), The First Latin Translation of Euclid’s Elements com-
monly ascribed to Adelard of Bath, Books I–VIII and Books X.36–XV.2, Toronto, The Pontifical
Institute of Medieval Studies, 1983. For a mathematical commentary, see Euclid, Les Éléments, ed.
by Bernard Vitrac, 4 vols., Paris, PUF, 1990–2001; also of interest is the commentary on Euclid’s
Elements by al-Nayrīzī, Anaritii in decem libros priores Elementorum Euclidis commentarii ex
interpretatione Gherardi Cremonensis, edidit M. Curze, Leipzig, 1899.
37See the treatises by Boethius (Menso Folkerts, « Boetius » Geometrie II: Ein mathematisches
Lehrbuch des Mittelalters, Wiesbaden, 1970); Abraham bar Ḥiyya (Maximilian Curze, Der Liber
Embadorum des Abraham bar Chijja Savasorda in der Übersetzung des Plato von Tivoli, Leipzig,
1902); the anonymous Artis cuiuslibet consummation (Stephen K. Victor, Practical Geometry in
the High Middle Ages, Philadelphia, 1979); Leonardo Fibonacci (Baldassare Boncompagni,
Leonardi Pisani. Practica geometriae, Roma, 1862); Abū al-Wafā’ al-Būzjānī (Kitāb fī mā yahtāju
ilayhi al-sāni‘ min a‘māl al-handasa, ed. by Svetlana Krasnova, “Abu-l-Vafa al-Buzdjani, Kniga o
tom, chto neobhodimo remeslenniku iz geometricheskih postroenij” in Fiziko-Matematicheskie
Nauki v Stranah Vostoka 1 (1966): 56–130 [text], 131–140 [commentary]); and Nicolas Chuquet
(La Géométrie. Première géométrie algébrique en langue française (1484), ed. Hervé L’Huillier,
Paris, 1979).
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The systematic correspondence of the vanishing points with visible loci was
already a feature of certain compositions from the period of Giotto. For instance, in
The Recovery of the Wounded Man the central point O and the lateral points T T′ are
aligned, thus forming a line: the so-called ‘horizon line’ of classical perspective.
But with the side ceiling being divided into four rows of six coffers, it appears that
this line coincides with a perfectly visible line that divides the lateral ceilings into
two equal parts. In addition, the checkerboard ceiling is marked by the diagonals
A1B2C3… B1C2D3… C1D2E3… on the left side, and by the diagonals P1O2N3…
O1N2M3… N1M2L3… on the right side. The diagonals converging on the lateral
points T T´ are precisely the ones that should be used to obtain the perspective
foreshortening. If medieval painters did ever follow the arithmetic method, why are
the horizon and diagonals lines so neatly visible? This correspondence is not
accidental. A squared coffer divided by a diagonal is quite usual in the Assisi
frescoes. It works as a spatial roofing pattern in several scenes: St Francis Honored
by a Simple Man, St Francis before the Sultan (Trial by Fire), The Death of the
Knight of Celano, and Christ among the Doctors. Thus we cannot exclude the
possibility that such diagonals could have served as an empirical rule to place the
receding lines in depth.

11.6 Reinterpreting Perspective Anomalies

A comparison of the arithmetic and geometric methods in early perspective painting
shows the widespread use of geometric devices in the Duecento and Trecento. This
is a somewhat counterintuitive finding. We must attempt to clarify the discrepancy
between the present results and generally accepted views on perspective in med-
ieval painting by interpreting afresh the main errors affecting medieval paintings.

1. The somewhat arbitrary representation of small architectural elements, such as
the abaci of capitals, does not particularly support the arithmetic method. Such
anomalies are understandable considering the material constraints imposed by
the process of fresco painting. The quick-drying plaster required the rapid
transfer of the drawing onto the intonaco. Consequently only the principal lines
were transferred, and not the smaller elements.

2. The convergence of edges on a vanishing region hardly offers better proof in
favor of an arithmetic formula. Methodological analysis shows that all per-
spectives—whether derived from an arithmetic or geometric formula—are
subject to error. An error of parallelism in the perspective is sufficient to cause
the vanishing lines to deviate.

3. The presence of a vanishing axis is not so easily attributable to errors of con-
struction. This pictorial scheme does indeed present a systematization that
departs from the purely random. As previously mentioned, the axial
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composition could have arisen from the theory of binocular vision expounded
by Ibn al-Haytham (De aspectibus, III, 2) and his Latin commentators; many
works whose edges converge on two central vanishing points correspond to the
case of homonymous diplopia identified by Ibn al-Haytham.38

38See Appendix A.
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Conclusion

The intention of this book was to test the interdependence between medieval
theories of optics and the practice of perspective. More particularly we chose to
examine the question of physiological optics, because the proof of a connection
between optics and perspective would be less probative if it took geometric optics
as its starting point (for example, it is not possible to separate the respective
influences of optics and geometry in the use of similar triangles, a method shared by
the two sciences). In contrast, the theory of binocular vision is critically dependent
on the particular way in which optics was addressed in the Middle Ages, combining
as it did geometric and physical optics with anatomy and ocular physiology.

It is within this framework that the differing interpretations of “axial perspective”
and “two-point perspective” were examined here. As has been seen, these forms of
representations do not correspond to any type of parallel projection that places the
spectator at infinity, therefore excluding the possibility that they might constitute
axonometric (isometric, dimetric, trimetric) or oblique (cavalier and military) pro-
jections. One could go even further in the critical analysis of the two-point system
of representation:

1. Two-point perspective is not a linear perspective, because the two vanishing
points are separated by distances that are many times greater than the maximal
metric error.

2. Two-point perspective bears no relationship to bifocal perspective (Parronchi’s
hypothesis).

3. Two-point perspective cannot be considered a form of trifocal perspective,
whose object verticals are always represented by parallel lines.

4. The two vanishing points are not the result of an absence of parallelism in the
side walls nor of an alteration in the parallelism intended to highlight the subject
of the scene.

5. Two-point perspectives do not fall into the category of curvilinear perspective, the
object lines being represented by lines rather than by the arcs of a circle (Chap. 8).

6. Two-point perspectives do not represent the application of a modified curvi-
linear perspective, since the development of projection circles prevents the
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vanishing lines from concurring in a single point (the Hauck–Panofsky con-
jecture, Chap. 9).

7. Two-point perspective cannot be categorized as a form of synthetic perspective,
because the latter precludes the strict convergence of vanishing lines in one
point (the White–Carter conjecture, Chap. 10).

8. Two-point perspectives are not based on the arithmetic method, because the
distances measured in the compositions studied here are not the multiples or
sub-multiples of any known units, nor can they be reduced to multiples of each
other (the conjecture proposed by De Mesa Gisbert, Chap. 10).

This critical review of the current interpretations of axial perspective supports
the thesis that the principles of binocular vision were applied in the early stages of
the development of artificial perspective. Two-point perspective was in general use
during the period 1295–1450, and the exact same construction can be found much
later, in the works of Passerotti, Caracci, Tibaldi, Le Brun and de Sève. In them we
find two pencils of lines that cross the central axis before concurring in two van-
ishing points, F and F′, on the horizon line.

Three concluding questions remain to be examined:

1. Who were the actors responsible for introducing the theories of optics to the first
practitioners of perspective?

2. To which disciplines does this cross between optics and perspective belong?
3. Why was the use of binocular perspective abandoned during the classical

period?

The Birth of the Optics–Perspective Nexus in the Late Duecento

It is useful to begin by asking who introduced optics to the earliest practitioners of
perspective, and notably including the artists commissioned to paint the fresco
cycles for the Basilica of Assisi beginning in 1296. The theory of optics could have
been transmitted in two ways:

1. A direct path through De aspectibus, the Latin translation of Ibn al-Haytham’s
treatise on optics that began to circulate at the beginning of the Duecento. An
Italian translation, De li aspecti, became available later in the Trecento.1

2. An indirect path, via the numerous Latin treatises and commentaries on Ibn
al-Haytham’s optics produced during the course of the Middle Ages. The

1Enrico Narducci, “Nota intorno a una traduzione italiana fatta nel secolo decimoquarto del trattato
d’ottica d’Alhazen,” Bollettino di bibliografia e di storia delle scienze matematiche e fisiche 4
(1871): 1–40; Graziella Federici Vescovini, “Contributo per la storia della fortuna di Alhazen in
Italia. Il volgarizzamento del ms. vat. 4595 e il ‘Commentario Terzo’ del Ghiberti”, Rinascimento
5 (1965): 17–49; Eadem, “Alhazen vulgarisé: Le ‘De li aspecti’ d’un manuscrit du Vatican (moitié
du XIVe siècle) et le troisième ‘Commentaire sur l’optique’ de Lorenzo Ghiberti,” Arabic Sciences
and Philosophy 8 (1998): 67–96.
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principal treatises—Roger Bacon’s Perspectiva,2 Witelo’s Perspectiva,3 and
two works by John Pecham, Tractatus de perspectiva4 and Perspectiva com-
munis5—dealt primarily with physiological optics. As we have shown in
Chap. 6, all of these texts refer explicitly to the experiments carried out by Ibn
al-Haytham using his binocular tablet and all differentiate between the cases of
homonymous and crossed diplopia.

One necessary condition for the transmission of this knowledge was that the
texts had to be accessible to the earliest perspectivists. And in fact works on optics
appear in the inventories of many libraries in Rome, Florence and Padua,6 intel-
lectual centers where optics was studied and taught in the late Middle Ages, and
where artists were beginning to use two-point perspective. The profusion of texts in
circulation would certainly have multiplied the opportunities to derive a system of
perspective from the laws of optics. This system—which appears unorthodox in the
light of the modern conventions of linear perspective—becomes perfectly intelli-
gible if examined in the context of the optical theories of Ibn al-Haytham and his
Latin commentators.

Access to authoritative texts is a necessary, but not sufficient condition for the
transfer of knowledge. Key works might have been available to craftsmen but
ignored for various reasons. In fact, one of the greatest obstacles to their trans-
mission was the fact that these texts were—with the exception of De li aspecti—
written in Latin, a language that was beyond the reach of artisans, who received
their training in the atelier rather than at university. Various hypotheses regarding
the actual processes of knowledge transfer have been advanced, ranging from
personal contacts between savants and artists (for example, between Toscanelli and
Brunelleschi), to the instruction lavishly dispensed in the scuole d’abaco by masters
such as Grazia de’ Castellani in Florence. Alongside these hypotheses must be
placed the rarely mentioned but central role of the art commission.7

Let us limit ourselves here to the earliest experiments in perspective—the
frescoes in the Basilica of Assisi realized between the end of the Duecento and the

2The Opus maius of Roger Bacon, ed. J.H. Bridges, Frankfurt am Main, 1964, pp. 92–99, new
edition: David C. Lindberg, Roger Bacon and the Origins of Perspectiva in the Middle Ages: A
Critical Edition and English Translation of Bacon’s Perspectiva with Introduction and Notes,
Oxford, 1996.
3Witelo, Opticae Thesaurus libri X, edited and published by Friedrich Risner, Basel, 1572; modern
edition published by David Lindberg, New York, 1972, pp. 98–108. It should be recalled that
many more copies of Bacon’s Perspectiva and Pecham’s Perspectiva were in circulation than
Witelo’s Perspectiva.
4John Pecham, Tractatus de perspectiva, ed. D.C. Lindberg, New York, 1972, pp. 56–57.
5David C. Lindberg, John Pecham and the Science of Optics, Madison, 1970, pp. 116–118.
6David. C. Lindberg, A Catalogue of Medieval and Renaissance Optical Manuscripts, Toronto,
1975.
7Dominique Raynaud, L’Hypothèse d’Oxford: Essai sur les origins de la perspective, Paris, p. 319
and passim; this hypothesis was taken up in some detail by Jean-Philippe Genet, “Revisiter Assise:
la lisibilité de l’image médiévale,” in Itinéraires du savoir de l’Italie à la Scandinavie (Xe–XVIe
siècle). Études offertes à Élisabeth Mornet, ed. Corinne Péneau, Paris, 2009, pp. 415–417.
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beginning of the Trecento in central Italy. During this period artists constructed
perspectives based on a vanishing axis (The Approval of the Franciscan Rule or St.
Francis Preaching before Honorius III) and worked out the correct reduction of
receding intervals (for example, in Christ among the Doctors and The Recovery of
the Wounded Man of Lerida).8 How can these significant advances, which took
place during the course of a single decade from 1296 to 1305, be explained?

We have shown elsewhere9 the direct contribution made by members of the
Franciscan order to the spread of the science of optics. To mention just a few
names, Bartholomew of England, Roger Bacon, and John Pecham, all of whom
cited Alhacen’s De aspectibus in their works, were Friars Minor. Within the order
many of them exercised the functions of Master Regent before becoming provincial
ministers or Ministers-General. In their shift from academic to administrative
duties, the friars were in no way required to repudiate the knowledge acquired
during their formation as scholars. Furthermore, one of the responsibilities of the
Ministers-General would have been to commission and supervise the work of
architects and artists in building and embellishing their churches.

Renato Bonelli10 has identified various inflections in the construction of the
Upper Church of the Basilica of Assisi introduced by architects working under
successive Ministers-General. In 1240–1244 a transept in the Angevin Gothic style
was commissioned by Aymon de Faversham. In 1247–1257 Giovanni da Parma
oversaw the construction of the primary walls and supporting structures of the
church. During his tenure as Minister-General between 1258 and 1273,
Bonaventure commissioned the building of the church’s Gothic-style groined vault.
Each of these ministers was a former academic: Aymon de Faversham first taught at
the universities in Tours, Padua and Bologna; Giovanni da Parma completed his
studies in Paris and served as Master Regent at the universities of Bologna and
Naples; and Bonaventure had been a celebrated professor at the studium in Paris.

Similarly, the Ministers-General were involved in supervising the decoration of
the order’s churches with fresco cycles by master artists. Matteo d’Acquasparta
(who had studied under John Pecham in Paris before becoming Master Regent in
Bologna and Paris and then lector Sacri Palatii) was appointed General of the
Franciscan Order at the Narbonne chapter and, while serving in this position
between 1287 and 1289, chose the iconographic program for the lower register of
the nave of the Upper Church in Assisi.11 Giovanni Minio da Morrovalle (formerly

8The correctness of the perspective in this fresco (single vanishing point, correct reduction in the
intervals) was first noted by Decio Gioseffi, Perspectiva artificialis, Trieste, 1957, pp. 60–73.
9Dominique Raynaud, Optics and the Rise of Perspective. A Study in Network Knowledge
Diffusion, Oxford, 2014.
10Renato Bonelli, “Basilica di Assisi: i commitenti,” Antichità Viva / Mélanges Luisa Becherucci
24 (1985): 174–179.
11Elvio Lunghi, La Basilica di San Francesco di Assisi, Antella, 1996, p. 63; Bruno Zanardi,
Giotto and Pietro Cavallini: La questione di Assisi e il cantiere medievale della pittura a fresco,
Milan, 2002; Donal Cooper and Janet Robson, “Pope Nicholas IV and the upper church at Assisi,”
Apollo 157 (2003): 31–35.
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Master Regent in Paris and then lector Sacri Palatii) served as Minister-General
during the period 1296–1304 and it was he who summoned Giotto to work on the
decoration of the Basilica of Assisi.12

Given these facts, the possibility cannot be excluded that a series of
Ministers-General, all academics with a thorough grounding and abiding interest in
optics—e.g., Bonaventure, John Pecham, and Pecham’s former students Matteo
d’Acquasparta, Bartolomeo da Bologna and Roger Marston13—may have made a
direct contribution to the development of perspectiva artificialis by encouraging
artists to experiment with the representation of depth based on the laws of optics.
These artists might then have propagated the new techniques in their own ateliers.

One central figure in this movement could well have been Matteo d’Acquasparta
(ca. 1237–1302), the socius of John Pecham and Master Regent of the studium in
Paris at the time that Roger Bacon happened to be sojourning there (1256–1280). In
Questiones disputate de anima XIII Matteo d’Acquasparta sustained, based on his
study of the work of Pseudo-Aristotle (Problemata XXXI, 4, 7), the thesis of the
fusion of visual sensations (Chap. 6), in which perception is a function of the
number of agents, rather than the number of instruments, of vision. If there is only a
single agent, the following integration can be derived:

For if you have one principal agent and two instruments, there is one agent but two
actions… And even if there is more than one eye, the sense of sight will nevertheless be
one, and there will be many visions but one seeing/Si enim fuerit unum principale agens et
duo instrumenta, est unum agens sed duae actiones… Si igitur fuerint aliquorum plures
oculi, tamen unus sensus visus erit, erunt quidem plures visiones, sed unus videns.14

12The commissioning of the frescoes for the Upper Church of Assisi is mentioned by Vasari:
“Having finished these works [in Arezzo, Giotto] betook himself to Assisi, a city of Umbria, being
called thither by Fra’ Giovanni di Muro della Marca, then General of the Friars of St.
Francis/Finite queste cose [in Arezzo, Giotto] si condusse in Ascesi città dell’Umbria, essendovi
chiamato da fra’ Giovanni di Muro della Marca, allora Generale de’ frati di san Francesco,” Vasari,
Vite, edited by R. Bertanini, p. 100.
13Bonaventura deals with the properties of light in his “Commentarium” in II Sententiarum, dist.
XIII, art. 2, qq. 1–2, art. 3, qq. 1–2, Opera Omnia S. Bonaventurae, vol. 2, Grottaferrata,1885,
pp. 323–326; Roger Marston was also the author of a scholastic Questio disputata de lux naturalis;
Bartolomeo da Bologna, who served as Minister Provincial of the Province of Bologna, wrote a
treatise entitled Tractatus de luce, of which a modern edition was published by Ireneo Squadrani in
Antonianum 7 (1932): 201–238, 465–494.
14Matteo d’Acquasparta, Quaestiones Disputatae de Anima XIII, ed. A.J. Gondras, Paris, 1961,
p. 132.
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A complete edition of the works of Matteo d’Acquasparta, of which only an
infinitesimal part has been published so far,15 could reveal much about his scientific
and artistic interests.

Optics and Perspective in the Institutional Context

Examining the earliest notions of perspective in the context of how techniques for
the representation of space were disseminated and taught allows us to test the
hypothesis that craftsmen incorporated mathematics into their workshop practices.
The departure point for perspective as a science can be traced to the middle of the
Quattrocento and Piero della Francesca’s first geometrical proofs. Before this date
there was—strictly speaking—nothing more than an ‘affinity’ between practical
perspective and the sciences.

1. It is generally assumed that, since painters and architects were not admitted to
the universities, the only training available to them was provided by the institution
of the abacus schools. This might appear to support the arithmetic hypothesis, since
abaco meant ‘arithmetic’ in medieval Latin, but a differentiation must be made
between abaco and scuola d’abaco. Arithmetic was not the only subject taught in
these schools. Arismetricha, geometria,16 edifichare and prospettiva17 also formed
part of the curriculum, as is known from the scuola d’abaco established by Paolo

15Still awaiting analysis are the manuscripts of the Commentarius in I–IV Sententiarum written in
1271–1272, Todi, Biblioteca comunale 122 (Book I), Assisi, S. Francesco, fondo antico 132
(Book II and parts of Book IV), together with the manuscript of the VI Quodlibeta composed in
1276–1279, Grottaferrata, Collegio San Bonaventura (Frati Quaracchi). For a commentary, see
Martin Grabmann, Die philosophische und theologische Erkenntnislehre des Kardinal Matthaeus
von Acquasparta, Vienna, 1906; Giulio Bonafede, “Il problema del ‘lumen’ nel pensiero di M.
d’Acquasparta,” Rivista rosminiana 31 (1937): 186–200; Helen M. Beha, “Matthew of
Acquasparta’s Theory of Cognition,” Franciscan Studies 20 (1960): 161–204 and 21 (1961): 1–
79, 383–465.
16On practical geometry, see Annalisa Simi and Laura Toti-Rigatelli, “Some 14th- and
15th-century texts on practical geometry,” in Vestigia Mathematica. Studies in Medieval and Early
Modern Mathematics in Honour of H.L.L. Busard, eds. M. Folkerts and J.P. Hogendijk,
Amsterdam/Atlanta, 1993, pp. 453–470; Annalisa Simi, “Problemi caratteristici della geometria
pratica nei secoli XIV–XVI,” in Scienze mathematiche e insegnamento in epoca medioevale, eds.
P. Freguglia, L. Pellegrini and R. Paciocco, conference proceedings, Chieti, 2–3 May 1996,
Naples, 2000, pp. 153–200; Dominique Raynaud, ed., Géométrie pratique. Géomètres, ingénieurs,
architectes, XVIe–XVIIIe siècle, Besançon, 2015.
17On practical perspective, see Gino Arrighi, “Un estratto dal “De visu” di M° Grazia de’
Castellani (dal Codice Ottoboniano latino 3307 della Biblioteca Apostolica Vaticana),” Atti della
Fondazione Giorgio Ronchi 22 (1967): 44–58; Filippo Camerota, “Misurare ‘per perspectiva’:
geometria practica e prospectiva pingendi,” in La prospettiva, ed. R. Sinisgalli, Fiesole, 1998,
pp. 340–378; Francesca Cecchini, “Ambiti di diffusione del sapere ottico nel Duecento,” M. Dalai
Emiliani et al., L’Artiste et l’Œuvre à l’épreuve de la perspective, Rome, 2006, pp. 19–42.
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Dagomari dell’Abaco close to the Church of the Santa Trinità in Florence. Hence,
there is some justification for thinking that medieval painters may have acquired the
basic notions of geometry and optics at such schools, which they could afterwards
have put into practice.

Opportunities for architecture (edifichare) and perspective to cross-fertilize each
other also arose from the dissemination of Vitruvius’ De architectura in the Middle
Ages.18 According to Vitruvius, the architect “must be well-read, expert in drawing,
learned in geometry [and not ignorant in optics]/peritus graphidos, eruditus
geometria [et optices non ignarus].”19 He explicitly treated the subject of per-
spective (scaenographia), referring to the work of Agatharcus, Democritus, and
Anaxagorus.20 With the exception of Agatharcus, who was a painter, his sources
were therefore savants in the fields of optics and geometry. Vitruvius attributed only
a minor role to arithmetic: “By arithmetic, the cost of building is summed up; the
methods of mensuration are indicated; while the difficult problems of symmetry are
solved by geometrical rules and methods/Per arithmeticen vero sumptus aedifi-
ciorum consummantur, mensurarum rationes explicantur difficilesque symmetri-
arum quaestiones geometricis rationibus et methodis inveniuntur.”21 Medieval
artisans seem to have understood the affinities between perspective, optics and
geometry in much the same way. For instance, an epigraph carved on the pulpit of
the church of Sant’ Andrea in Pistoia (Tuscany) states that the sculptor and architect
Giovanni Pisano was learned in optics: “Giovanni carved it… knowledgeable over
all visible things/Sculpsit Johannes… doctum super omnia visa.” Similarly, Villard
de Honnecourt used geometry to introduce the art of drawing: “Here begins the
method of representation as taught by the art of geometry, to facilitate work/Ci
comence li force des trais de portraiture si con li ars de iometrie les ensaigne, por
legierement ovrer.”22 On folios 203–21r Villard presents various devices to mea-
sure inaccessible heights or distances, a standard problem in perspective.

18“Le texte de Vitruve n’a cessé d’être connu (et donc recopié) de l’Antiquité à la Renaissance.
Aussi ne faut-il pas s’étonner du nombre relativement important (près d’une centaine) de manu-
scrits aujourd’hui recensés qui contiennent des extraits, des parties ou l’ensemble du De archi-
tectura,” Vitruvius, De l’architecture, Book I, edited by Ph. Fleury, Paris, 1990, p. liii. The editio
princeps dates back to the fifteenth century, L. Vitruuii Polionis ad Cesarem Augustum de
architectura libri decem, Rome, Johannes Sulpicius, 1487.
19Vitruvius, De l’architecture, p. 5 (I, 3). The portion enclosed in brackets may be found in a few
manuscripts.
20Vitruvius, De l’architecture, Book VII, op. cit., p. 5 (praef. 12).
21Vitruvius, De l’architecture, Book I, op. cit., p. 5–6 (I, 4). This passage renders arithmetic
thoroughly useless for the purposes of perspective if we translate symmetria as “modularity” or
“common scale of measures.”
22Villard de Honnecourt. Kritische Gesamtausgabe des Bauhüttenbuches, ed. Hans R. Hahnloser,
Vienna, 1935, Taf. 36 (fol. 18v). I have adopted the translation of Theodore Bowie.
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The End of Binocular Perspective in Classical Europe

Linear perspective—the only system that gained universal acceptance and remains
in use to this day—is firmly associated with the postulate of monocular vision.
Linear perspective makes use of the section of the visual pyramid whose rays
concur in a single point—the eye of the spectator. In this way it set itself apart from
medieval optics, which reserved—as we have seen—a prominent place for normal
binocular vision (i.e., physiological diplopia). How did linear perspective finally
manage to gain the ascendancy over a multiplicity of concurrent and competing
systems?

First reason. Linear perspective has often claimed for itself the status of an ideal
mathematical system, thus opposing any consideration pertaining to the physio-
logical functioning of the eye. Yet this status of mathematical perfection was
acquired only gradually, as is testified to by the numerous points regarding phys-
iological optics that were raised in treatises on perspective. Scholars themselves
exhibited an equal interest in optics and perspective until a very late date.23 If one
were to hazard a chronology, it might be suggested that perspective retained an
undefined and fluid status, oscillating between pure science and workshop practices
up until the groundbreaking treatises published by Commandino, Danti and
Guidobaldo del Monte at the end of the sixteenth century.24 It was only then that
perspective achieved the explicit status of a geometric science. The ineluctable
repercussion of this association was the embracing of a purified and essentially
mathematical conception of perspective to the exclusion of all questions relating to
the physiological foundations of vision.

Second reason. If one compares the construction of two paintings depicting the
same scene, the first in linear perspective and the second in binocular perspective,
one can immediately see that the latter requires a much larger number of geometric
operations than the first. Since in absolute terms a linear perspective is much
simpler to construct, pragmatic reasons may also have played a role in the ascen-
dancy of linear perspective. These reasons often surfaced as a result of the flawed
arguments against binocular vision made by Cardano, Della Porta, Danti, Bassi,
Huret and Le Clerc. How was it possible that authors such as Della Porta25 and
Danti,26 who were interested in optics and studied the works of the greatest
authorities on the subject, rejected out of hand the theory of binocular vision in

23See, for example, Edme Mariotte, “La scénographie ou perspective,” Procès verbaux de
l’Académie royale des Sciences, Registre de Mathématiques, vol. 4 (14 April to 24 December
1668), regarding the session held on 20th June 1668, fol. 62r–73r; Philippe De la Hire, “Traité sur
les differens accidens de la veüe,” (1694), Mémoires de l’Académie royale des Sciences 9 (1730):
530–634.
24Francesco Commandino, Claudii Ptolomaei liber de analemnate, Rome, 1562; Egnatio Danti, Le
Due Regole della prospettiva pratica di M. Iacomo Barozzi da Vignola, Roma, 1583; Guidobaldo
del Monte, Perspectivae libri sex, Pesaro, 1600.
25Giambattista Della Porta, De refractione optices parte libri novem, Naples, 1593, pp. 142–143.
26Egnatio Danti, Le Due Regole della prospettiva pratica, Rome, 1583, pp. 53–55.
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favor of more simplistic conceptions? The existence of pragmatic motives allows us
to conjecture that this discrepancy was not due to a misapprehension of the texts,
but to the preference for a simpler and more functional solution to the problem of
perspective.

Third reason. Finally, we must remind ourselves that the themes of mathe-
matical perfection and simplicity of construction would not have resonated to such
a degree and exerted such an influence on the history of perspective if every
practitioner had felt free to apply the procedure he thought most fit. The emerging
homogeneity was due to a codification of perspective practices stemming from the
manner in which they were taught. It is no accident that lessons on perspective were
introduced at the Accademia del Disegno in Florence and the Accademia di San
Luca in Rome (which were founded in 1563 and 1577, respectively) just as linear
perspective was consolidating its position among the geometric sciences. The
affirmation of perspective practices in the academies was the institutional factor that
made it possible for linear perspective—with its characteristics of operational
simplicity and mathematical clarity—to assume a position of supremacy and eclipse
all other systems. In the final analysis this may be the most plausible explanation for
the disappearance of two-point perspective and its anchor—the theory of binocular
vision which had dominated medieval optics.

By revealing the foundations of a system of perspective that spanned the period
from the end of the Duecento to the Cinquecento (Chaps. 5–7), and refuting past
interpretations that have linked this system to a classical form of perspective
(Chaps. 8–11), this book not only establishes the fundamental contribution made by
the medieval theory of binocular vision to the science of optics and the psychology
of visual perception, but also shows its impact on the conception of representational
systems. The theory of binocular vision being specific to optics, it may be con-
cluded that the main source of perspective theory lies in medieval optics rather than
other, more marginal fields such as practical geometry (with its exercises in ars
mesurandi, astronomy and the use of the astrolabe) or cartography (with its systems
for the projection of geographic data). The systematic use of two-point perspective
in works dating as fatback as the end of the Duecento suggests the existence of a
much earlier link between perspectiva naturalis and perspectiva artificialis than
had ever been imagined, signifying that the first experiments in artificial perspective
coincided exactly with the floruit of Latin optics.
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Appendix A
Error Analysis and Perspective
Reconstruction

Abstract Perspective reconstructions are not always reliable. Proof lies in the
variety of interpretations that have been proposed for the same work. A rational
method for reducing the number of interpretations by decreasing the number of
errors in the reconstruction will be presented here. It consists on the one hand of
following a rigorous protocol and on the other hand of proceeding with an error
calculation that allows one to choose the perspective scheme that minimizes the
error. The method will be applied to a fresco by the fourteenth-century artist Giusto
de’ Menabuoi, which presents two principal vanishing points that can be defined
with a very small error (4–7 mm in situ). The two vanishing points coincide with
elements in the architectural framework and since they are separated by a distance
that is thirty times greater than the error, this fresco can be used to formulate a
robust hypothesis on how to implement the principles of binocular vision.

The errors involved in the reconstruction of perspective lines is a question that has
been little addressed in the literature. It nonetheless deserves our attention because it
is not possible to draw valid conclusions regarding the use of perspective methods
without taking into account the errors that may be introduced by the operator.

This Appendix is organized as follows. First, the types of disparities that are
observable in the reconstruction of a perspective painting will be analyzed. The
fundamental principles of error theory that can be applied to such reconstructions
will then be reviewed. Finally, the perspective of a fresco by Giusto de’ Menabuoi
will be analyzed by way of illustration.

The exposition that follows will be limited to determining the vanishing point in
a painting, from which the foreshortening methods used should be extrapolated.
Other well-known principles of perspective will not be discussed. Since every
operation is a potential source of error, there is an advantage to be gained in
reducing the number of steps between the original work and the reconstructed
drawing. We therefore judged it useful to illustrate our methodology under the less
favorable condition in which the reconstruction is carried out manually based on a
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reproduction of the original work. The same methodology can easily be adapted to
different cases and working conditions:

(a) If the perspective is reconstructed in situ, certain sources of error and inter-
mediate verification steps can be eliminated, but other errors will be intro-
duced because the perspective lines are traced on a vertical plane and the
instruments handled by the operator have a discrete weight that may affect the
measurement;

(b) Photogrammetric techniques are no less subject to error. As was shown in
Chap. 4, even the most sophisticated analyses of Masaccio’s Trinity have
entirely ignored the accidental and systematic errors that may affect any
perspective lines. The same problems are encountered in the computer-based
reconstructions that are presently in vogue. These techniques efface certain
errors, but generate new ones. Many reconstructions are carried out using
digitized photographs. To the errors inherent to the photographs must be
added the fact that it is impossible to check an alignment precisely when the
entire work does not fit on the screen. In short, these new tools and approaches
do nothing to abolish the intrinsic errors, which mainly depend on judgments
made by the individual operator.

The Problem of Errors in Reconstruction

One often finds significant divergences in the reconstruction of the same perspec-
tive by different experts. This finding signifies that every reconstruction is operator-
dependent. Let us consider the example of The Miracle of the Profaned Host by
Paolo Uccello, a panel painting dated ca. 1468 (Urbino, Galleria Nazionale delle
Marche), and focus on three reconstructions of the scene of the Holocaust
(Fig. A.1a–c).27

1. Ennio Sindona assumed that there is a single vanishing point, whereas the two
other operators (Martin Kemp and myself) have identified an approximate zone
of convergence.

2. Kemp distinguished a pencil of lines converging on a distance point Z situated
on the horizon line, indicating that Uccello’s method of reduction was correct,
whereas Sindona deduced the existence of a diagonal, used by the artist to verify

27Ennio Sindona, “Una conferma uccellesca,” L’Arte 9 (1970): 67–107; Martin Kemp, The Science
of Art, New Haven, 1990, p. 50; Dominique Raynaud, L’Hypothèse d’Oxford, Paris, 1998, p. 87,
Fig. 24. Some of the best studies of Renaissance fresco underdrawings include: Roberto Bellucci
and Cecilia Frosinini, “Cum suis debitis proportionibus,” M. Israëls, ed., Sassetta: The Borgo San
Sepolcro Altarpiece, vol. 1. Florence, 2009, pp. 359–370; and more recently “Underdrawing in
Paintings,” A. Sgamellotti et al., eds., Science and Art: The Painted Surface, London, 2014,
pp. 269–286.
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(a)

(b)

(c)

Fig. A.1 Paolo Uccello, Miracle of the Profaned Host, painting on wood, ca. 1468 (Urbino,
Galleria Nazionale delle Marche). Author’s reconstructions after a Sindona, “Una conferma
uccellesca,” p. 83; b Kemp, The Science of Art, p. 50; c Raynaud, L’Hypothèse d’Oxford, p. 87
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the perspective, and the third operator identified a concave perspective network,
indicating an erroneous foreshortening of the intervals.

This brings us to the heart of the problem. The fact that different operators may
draw different, not to say contradictory, conclusions regarding the same work
strongly suggests that the question of perspective error has never received the
attention it deserves.

In the first place, some operators choose to analyze the final work, whereas
others have based their analysis on the preparatory drawing (visible in the form of
the incisions cut into the wood panel). In the second place, different operators have
chosen to work on different scales. To reduce this variance, the solution that comes
most naturally to mind is the direct inspection of the material evidence, working on
a one-to-one scale, but even this would not eradicate all of the difficulties. For
example:

1. In the end, Paolo Uccello did not utilize the vanishing lines converging towards
points V1, V2, V3 that can be made out in the underdrawing. Since the lines in the
preparatory drawing did not govern the final construction, it may be concluded
here that the artist abandoned his original idea. The problem is more tricky when
the final drawing interferes with the preparatory drawing. In this case, there is
nothing to indicate whether the analysis should be based on the incised lines or
the finished work. The discrepancy between the two stages lends itself to two
opposing interpretations: the artist may have freely followed the preparatory
drawing (in which case more weight should be given to it) or he may have
rectified the preparatory drawing (in which case the final drawing should be
assigned more importance). Since this phase in the production of a work is not
well documented, it is difficult to choose between the two options.

2. In the work by Uccello the perfect convergence of the diagonals at point
Z seems to indicate a correct reduction (Fig. A.1a, b). Nevertheless, more
attentive examination allows one to refute this diagnosis. It can be seen
(Fig. A.1c) that the diagonals converging to the left do not pass through the
corners of all the tiles. Given these conditions, the consistency of the perspective
lines is a projection of the operators.

The aim of the methodology presented here is to reduce the sources of dis-
agreement between operators on explicit rational grounds. This will provide the
occasion to examine the nature of errors in perspective28 and to explain the pro-
cedure by which its effects can be reduced.

In metrology and indeed in any science that relies on measurements, error is
defined as the difference between the measured value and the theoretical (or true)
value that would be obtained in an ideal world where the instruments and the
operator are perfect. The central principle of the theory of errors is that the

28This idea was first presented in L’Hypothèse d’Oxford, pp. 52–53.

228 Appendix A: Error Analysis and Perspective Reconstruction



operator, despite all his efforts, can never arrive at an ideal result. Error cannot be
eliminated from the quantification of any physical magnitude, because no mea-
surement—not even the most accurate—can achieve an infinite degree of precision.
Therefore the operator must integrate this error into his reasoning.

Let us designate the true value x0 and the approximate value x. An ideal mea-
surement would be x = x0. Since the measuring device is never perfect and the
operator will introduce an element of perturbation, it follows that x ≠ x0. If one
wishes to obtain a more precise result, one would have to make multiple mea-
surements that produce a series of values x1, x2, …, xn, with the final result being
expressed as a single value x ± Δx, where Δx denominates the uncertainty within
which the true value is asserted to lie with a given level of confidence. There are
two principal types of error.

Random or accidental error (unpredictable in a series of measurements) is an
error that can be attributed to faulty execution rather than to the measurement
protocol. Random errors can generally be traced to the operator and are identifiable
because they occur independently in either direction, producing a similar dispersion
of values above and below an average value. This type of error can be corrected for
by reiterating the measurement. Assuming the absence of any systematic error,
when a series of measurements is made the arithmetic average of the values
obtained is called the most probable value μ or �x. An estimate of the dispersion
around the true value is expressed by the mean deviation e or, most often, by the
standard deviation σ. Since the frequencies fi satisfy the condition

P
i fi ¼ 1, one

has:

�x ¼
X
i

fixi e ¼
X
i

fi xi � �xj j r ¼
X
i

fi xi � �xð Þ2

In error theory, one well known result is that if the data is plotted with the values
measured along the abscissa and the number of results comprised within a fixed
interval of values along the ordinates, a normal Laplace–Gauss distribution is
obtained. The most probable value l or �x is the abscissa or x-coordinate at the apex
of the bell curve. The error is generally described as Δx = ±2σ, because 95.4 % of
the values are comprised within the interval ð�x� 2r;�xþ 2rÞ (Fig. A.2).

+2 +3+1

f(x) =
1

σ
√

2π
e−(x−μ)2/2σ2

μ

Fig. A.2 The normal distribution of errors. Author’s drawing
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Systematic error (which is constant within a series of measurements) is the error
that stems from a permanent cause, i.e., one inherent to the methodology chosen or
the incorrect setting of the instruments used. Systematic errors can be recognized
because they always occur in the same direction. Unlike random errors, which can
be eliminated by making repeated measurements, systematic errors will persist even
in the most scrupulously determined values. The only known strategy to detect and
eliminate this type of error consists in reversing or inverting every possible element
in the experimental setup before repeating the measurement.

Precision of a measurement is defined in relation to the random error; the smaller
the deviation between the series of measurement results and the mean value, the
higher the precision.

Trueness is defined concurrently in relation to the systematic error, and
expresses the closeness of the mean of a set of results to the true value.

Accuracy of a measurement is the combination of its precision and trueness.

The Work Protocol

Many extrinsic errors can be avoided if the operator adheres to a strict set of
conditions, which must be adapted to the reconstruction techniques utilized. Here
we will examine the relatively unfavorable case of a perspective reconstructed using
a ruler. However, instead of listing all of the errors associated with this operating
context, it is assumed that the operator is working under ideal conditions that will
be laid out in the form of a working protocol.

Correction of Random Errors

1. If the operator is using a photographic reproduction, he must verify that it
contains no geometric (monochromatic) or chromatic29 aberrations.
There are five types of geometric aberrations, which may be defined by
the appropriate coefficients contained in the formula of the deviation from

29Chromatic aberration is produced by white (non-monochromatic) light when the blue wave-
lengths, which converge more rapidly than the red wavelengths, result in a spread of the focal point
along the optic axis. As a consequence one observes a dispersion of light as fringes of color around
the edges of objects. This aberration can be corrected by an achromatic system of crown and flint
glass lenses.
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Gaussian optics.30 The coefficient q30 characterizes spherical aberration.31 The
two r0q20 coefficients express the coma aberration.32 The two r20q0 coefficients
characterize astigmatism33 and the curvature of the field.34 Finally, the r30
coefficient represents the distortion of the image.35

2. The operator can then proceed to the reconstruction of the perspective, for which
he will require a well-lit worktable (receiving a nominal illuminance of E ≥
1500 lux).36

30An optical system is rigorously stigmatic if it transforms one homocentric beam into another
(their centers being conjugate points). From a practical standpoint, the condition of rigorous
stigmatism is of little interest. It suffices that the optical system transforms an object point into a
luminous spot with a diameter that is smaller than the resolution limit of the receptor. This is why
one can use spherical diopters that meet the condition of approximate stigmatism. The Gaussian
approximation is the set of conditions that allows one to obtain a high-quality image; a system is
approximately stigmatic if it receives paraxial incident light rays that are only a short distance
away from and form only a small angle with the optical axis. The deviation from Gaussian optics is
expressed as a sum of complex numbers involving r0 (the distance between the object and the
optical axis) and q0 (the angle of the incident light wave relative to the optical axis).
31Spherical aberration varies to the third power of the angle between the incident light ray and the
optical axis; it occurs when the angle is very large. The edge rays converge more rapidly than the
central rays, producing a caustic envelope around the focus. Before the point of concurrence of the
paraxial rays, the image of an object point is represented by a centered circle (the projection of the
tangential and sagittal layers of the caustic envelope on the image plane). Spherical aberration can
be reduced by the use of doublets in which a convergent lens is paired with a divergent lens.
32Coma aberration appears when the object is located at a considerable distance from the optic
axis and the incident light rays form a wide angle with the axis. It is the sum of two factors, which
are perceived as one because they operate on the same image plane. The object point takes the
form of the tail of a comet, hence the name.
33Astigmatism manifests itself when the incident rays are inclined relative to the optical axis and
the object is located far from the axis. The rays no longer meet at a single point, but instead
converge on two perpendicular segments (the sagittal focus and the tangential focus), which are
separated by the distance of the astigmatism. Based on the position of the image plane, an object
point will assume a more or less markedly elliptical form.
34The curvature of the field of vision occurs under the same conditions as astigmatism. It signifies
that the geometric image of a planar object is a curved surface that does not coincide with the focal
plane except at the point where it intercepts the optical axis. In this case the central part of the
image is focused while the marginal zone is blurred.
35The distortion in the Gaussian image is proportional to the distance, raised to the third power,
between the object and the optical axis, and will depend on the apparent size of the object. This
aberration becomes visible if one places a diaphragm along the optical axis that allows one to
observe the curvature of the tangential lines of the object, specifically either a negative ‘barrel’
distortion when the diaphragm is placed in front of the lens or a positive ‘pincushion’ distortion
when it is placed behind the lens. This aberration can be corrected by a combination of lenses
arranged on either side of the diaphragm.
36Insufficient lighting can be a significant source of error. It is known that only the cone cells of the
eye, which function in photopic vision, allow one to visualize details. Under photopic conditions,
strong lighting produces myosis and as a consequence the restricted use of the foveal retinal cells;
visual acuity is therefore enhanced. In parallel, the myosis causes a reduction in the visual field that
eliminates the spherical aberration.
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3. The lighting in the work area must be homogeneous, with shadows reduced to a
minimum and all sources of contrast, reflection and glare eliminated.

4. The operator should use a sheet of transparent plastic film to retrace the lines of
the perspective, because the opaque quality and sensitivity to humidity of
cellulose-based tracing paper makes it difficult to copy the original line accu-
rately and avoid its displacement from the true value.

5. The sheet should be securely fixed to the painting, and the operator’s hand
should not come into contact with the sheet.37

Correcting for Systematic Errors

1. Before beginning a reconstruction, the operator must make certain that his work
surface is flat and that his ruler is true.

2. He should work on a horizontal surface to avoid effects due to the weight of the
instruments.38

3. He must avoid using a printer or photocopier in his reconstruction.39

4. While tracing the perspective lines, the operator should maintain his line of sight
perpendicular to the work surface and to his ruler.40

5. He should hold his pen perpendicular to the work sheet.

37The hand is a source of heat that can influence the physical geometry of the transparent sheet on
which one is tracing the line.
38When working on an inclined surface, there is a tendency for the vanishing point to fall due to
the weight of the ruler. This error factor is proportional to the dimensions of the ruler and the
degree of inclination of the working surface and will limit, for example, the accuracy of the
reconstruction of a fresco in situ. The results of experimental studies support the notion that
reconstructions should be carried out on a horizontal surface.

Suppose (Figure App.6) that the operator must extend a segment AB (the visible edge of the
object) as far as F (the vanishing point) with the help of a ruler weighing 600 g (assuming a
uniformly distributed tare) and a pen with a normalized nib width e = 0.20 mm. Let AB = 40 mm
and AF = 1000 mm. The position of F is determined by aligning the ruler using the equal light gap
method (cf. infra. 3.1.1), marking the point F freehand, and removing the ruler after each mea-
surement. Carrying out two series of measurements—on the horizontal plane (A) and then on a
plane inclined at a 45° angle (B)—one notes that the measurements in the first series follow a
centered normal distribution (A), whereas those in the second series exhibit a bimodal distribution
(B): a significant group of values are subject to gravity, while by all appearances the values in the
other group reflect the tonic compensation of gravity (Figure A.10).
39The use of photocopiers and printers should be avoided, because the drive system can cause a
distension, in the direction of the roller, of the lines on the sheet of paper. The operator must at
least verify the geometry of the machine by copying a page with a diagonal line and a large square
and seeing whether the diagonal is reproduced as a straight line and the sides of the square are
equal.
40Otherwise a parallax error will occur.
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6. The vanishing lines should always be traced from the visible edge of the object
toward the vanishing point, and not the reverse.41

The Reduction of Simple Errors

Even when the operator follows an ideal working protocol, his drawing will be
affected by certain errors. These are intrinsic errors that cannot be avoided—no
matter which method is used—but they can be minimized.

(1) Systematic errors

1. A line drawn with a ruler will introduce a specific error: the width of the
pen point will cause a gap between the line drawn and the edge of the ruler
which is aligned with the perspective line in the work. Therefore, the only
property retained by the operator’s drawing is the parallelism between the
line in the original work and the line which is being retraced. Furthermore,
this error is dependent on the method followed, of which there are two. The
first consists in covering the line of the work with the edge of the ruler and
then displacing the edge by the smallest and most constant distance pos-
sible within the line’s thickness (the equal dark gap method; Fig. A.3a).
The second is to position the ruler alongside the line of the work, and then
to move the ruler close to this line, leaving the narrowest possible distance
between the edge and the line (the equal light gap method) (Fig. A.3b). In
both cases the width of the gap l depends on the separating power of the
eye—which is approximately 0.075 mm [cf. infra, Random errors].

equal light gap methodequal dark gap method(a) (b)

Fig. A.3 The two main methods of reconstruction: a the equal dark gap method and b the equal
light gap method. Author’s drawing

41If the operator works backward, drawing a line from the vanishing point, he runs the risk of
constructing a biased, although coherent perspective.
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2. The width of the pen nib results in a thickening of the line that could lead to
a misconstrual of the convergence of the vanishing lines. Using the equal
light gap method, the width of the line will not reduce the accuracy of the
alignment, but could influence the gap between the optical alignment and
the line being retraced. The precision can be increased by using a pen with
a very fine nib. Nevertheless, this problem will only appear under excep-
tional conditions (e.g., in works of large dimensions or when a broad pen is
used). In practice, a pen nib with a normalized width (0.10 ≤ e ≤ 0.20 mm)
will lead to an acceptable reconstruction.

3. Calculating the systematic error. If η is designated as the systematic error,
e the width of the normalized line, ϕ the thickness of the nib (ϕ > e), and e′
the width of the line in the work, the following relationships emerge:

ðAÞ g1 ¼
e0 þ/
2

� l ðBÞ g2 ¼
e0 � /

2
þ l

Since under typical operating conditions e′ = 0.15 mm, ϕ = 0.25 mm and
l = 0.075 mm, the systematic error will be: η1 = 0.125 mm, η2 = 0.025 mm.
Therefore, in order to minimize the systematic error one should employ the
equal light gap method.

(2) Random errors

1. The scale of the work being examined is another source of error. It is
obvious that details will be difficult to distinguish in small-scale pho-
tographs. But it is also true that large works requiring the manipulation of
cumbersome materials can give rise to specific errors linked to the size and
weight of the instruments used (cf. supra, Correcting for systematic errors)
or to the fact that the operator cannot simultaneously verify the optical
alignment of two points that lie a significant distance apart. Contrary to a
widely held notion, working on one-to-one scale does not eliminate all
possibility of error. If, on the other hand, the operator is obliged to use a
reproduction, he can calculate the scale of the reduction and take it into
account; the width of the line traced by his pen and the width of the line
in situ must be commensurate.
Suppose that the work being analyzed is a fresco whose lines have an
average width of e′ = 2.5 mm and that the width of the pen nib is e = 0.20
mm. One would accept a scale of reduction of K < 12.5 for which the width
of the retraced line is narrower than that of the line in the work itself (i.e.,
K< e′/e). Reciprocally, if one is working with a photograph reduced by
K = 15, one would select a pen nib whose thickness is e < e′/K, that is
e = 0.15 mm, to meet the same conditions.
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2. Another significant source of error is a deficit in visual acuity. Every
operator must be aware of the limits of his own visual acuity before
embarking on a reconstruction. For a person with normal emmetropia,42

the acuity will be on average 1 arc min. This can be measured using an
optotype chart, which must be carefully chosen because different factors
can cause variations in the results.43 Since parallels play a central role in
any reconstruction, the most suitable chart to test the visual acuity in an
observer would be a horizontal Vernier optotype.44 The distance between
the horizontal lines must be estimated in a photopic context and without
any stenopeic hole (Fig. A.4).
In my own case, for an interval d = 1.5 mm, ten successive measurements
produced an average separation distance D of 594 cm. Therefore α ≈ tan
α = d/D ≈ 52 arc sec. For a reconstruction in which the eyes are located
30 cm from the tracing sheet, this is equivalent to a separation between the
lines of 0.075 mm, which would fix the value of the gap l.45

3. Calculating the random error. Since estimating random error is difficult,
one will preferably proceed with a comparison of the theoretical and
experimental values for the error. One might adopt the following device.
Assume that the operator extends the segment AB = 40 mm to F, such that

D

dFig. A.4 The Vernier opto-
type. Author’s drawing

42We apply our reasoning to the case of an operator who is not affected by astigmatism, a
condition that is a significant source of error because perspective requires one to work with lines
that are inclined at various angles. In the case of regular astigmatism, the cornea does not present
meridians with an identical curvature and there is sharp vision only for the frontal lines in a given
direction. This direction is measured by the astigmatic dial, on which the astigmatic subject
distinctly perceives only the meridian corresponding to the focus that is closest to the retinal
surface.
43The factors of variation in acuity are both extrinsic and intrinsic. Visual acuity increases under
the following conditions: with increasing luminance, reaching a plateau towards +1.4 millilam-
berts; with increasing contrast between the test and the background; when the presentation distance
of the test diminishes, because the power of the eye increases during focusing; for yellow and red
radiation; and for vertical rather than horizontal lines. Visual acuity increases in the fovea with
myosis (minimizing the spherical aberration) and with binocular vision, but diminishes with age.
44The Foucault resolution target overestimates the scores, because it allows one to discriminate
between several lines simultaneously.
45In this case the value is an overestimate; when viewing things close up, visual acuity increases
slightly because the eye changes focus by increasing the curvature of the crystalline lens (in a
mechanism involving the ciliary muscle, the zonule and the capsular bag) and the refraction index
(through the centripetal movement of the crystalline micelles). The retinal image is enlarged by
about one-fifth at a presentation distance of 25 cm.
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AF = 1000 mm, the point F being traced blindly each time. Multiple
measurements could lead to an estimate of the error produced at the level
of point F on line D (Fig. A.5).

Let us first of all determine the theoretical value of the error according to the
equal light gap method. The gap l, which is based on the resolving power of the
eye, can be considered a minimum separabile, as the eye is not capable of seeing a
narrower interval. But because during the process of verifying the parallelism the
eye passes imperceptibly from one point to another along the segment AB, it may be
assumed that the maximal error will appear at the two extremes, A and B (Fig. A.6).

In this case the theoretical value of the reconstruction error will depend exclu-
sively on the width of the gap l and the ratio between the visible portion of the
vanishing line AB and its total length AF. The angular and metric errors α and ϵ can
be calculated from the equations:

a ¼ � arctanðl=ABÞ � ¼ �AF tan a ¼ l
AF
AB

For AB = 40 mm and AF = 1000 mm, α = 6′ 27″ and ϵ = ±1.87 mm.
Let us now determine the experimental value for the error. This can be calculated

beginning with about fifty measurements according to the protocol described above.
If the measurements for point F are plotted against the frequencies, the values will
follow a normal distribution (Fig. A.7). The histogram on the left can then be
transformed into the normal distribution on the right. A simple change in scale (0.95
mm = 1 unit) will provide the value of the random error: Δx = ±2σ = ±1.9 mm.

F?

D

B A

−Δx

+Δx + +

Fig. A.5 The production or random errors. Author’s drawing

B AF

l{

Fig. A.6 The metric and angular errors. Author’s drawing
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This value turns out to be an excellent approximation of the theoretical value
calculated above, and therefore demonstrates the concordance between the esti-
mates for the theoretical and experimental errors when the equal light gap method is
applied.

The most notable difference between the study of measurement errors in the
physical sciences and in perspective reconstructions is that in the latter the operator
proceeds one line at a time. In the most extreme of cases, the vanishing point may
be affected by a maximal deviation on the left or on the right. This is why one must
double the error of the reconstruction calculated from a series of measurements,46

resulting in:

Dx ¼ �2l
AF
AB

Consequently, it may be concluded that for an operator following a rigorous
protocol based on the equal light gap method and working on a small scale with a
fine-nibbed pen, if AB = 40 mm and AF = 1000 mm the systematic error will be η =
+0.025 mm and the random error will be ϵ = ±1.87 mm. The systematic error is
thus negligible. It follows that the main source of error is the angular deviation,
that is, the failure to assess the parallelism in the composition. Not being dependent
on the size of the work, this error will affect any reconstruction, whether realized
in situ or calculated from small-scale reproductions.

F

0.399/

0 0 +2 mm+2 mm
x = ± 2
± 1.9 mm

+1 +1

Fig. A.7 An histogram of errors. Author’s drawing

46This is a refinement of the estimate presented in my paper “Perspective curviligne et vision
binoculaire.” In the determination of F one can, using a pen with a nib thickness of e, redraw the
entire vanishing line covering segment AB as it recedes towards F. The error will be ϵ = ± e AF /
AB. This value is greater than the experimental value (ϵ = ± 5.0 mm > Δx = ± 1.9 mm), but since
the latter must be doubled (2Δx = ± 3.8 mm), either value can be retained.
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The Reduction of Combined Errors

When an operator retraces a perspective he finds himself working with not just one,
but several vanishing lines. Therefore he must also take into account the combi-
nations of errors that may arise.

(1) The error caused by the angle of the vanishing lines
When one searches for the point of concurrence of two vanishing lines, the
random errors ϵ and ϵ′ that are associated with them define an error quadri-
lateral in the picture plane. Since ϵ and ϵ′ are small in comparison to the length
of the vanishing lines AF, it can be assumed that ad ≈ cb and ca ≈ bd. The
error quadrilateral is therefore comparable to a parallelogram, the length of
whose sides and diagonals can be calculated (Fig. A.8a).

sides: ca � bd � �

cos a� p
2

� � ad � cb � �0

cos a� p
2

� �

diagonals: ab �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �02 � 2��0 cosðp� aÞp

cos a� p
2

� �
cd �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �02 � 2��0 cosðaÞp

cos a� p
2

� �

Since the length of the diagonals of the error quadrilateral will vary as a
function of the angle of the vanishing lines, the operator must seek to
minimize this combined error. It is easy to see that if one varies the angle α,
the minimum is obtained when the vanishing lines are perpendicular
(Fig. A.8b).

The problem amounts in fact to looking for the minima of ab and cd. When
α = π/2, the denominator is equal to 1 and the cosine term in the numerator is
cancelled out. The diagonals become equal:

ab � cd �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �02

p

(a) (b)

 = cad

 = cad

a a

b
b

c
c d

d

Fig. A.8 The composition of errors as a function of the angle of the lines. Author’s drawing.
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It follows that the determination of the vanishing point F—situated at the center
of the error polygon—is all the more precise when the two vanishing lines converge
to form a right angle. As the operator can do nothing to modify this angle, he will
reduce the error by choosing, two by two, the pairs of vanishing lines that form an
angle approaching 90°.

(2) The error caused by the length of the vanishing lines
There is another source of combined error, which depends on the length of the
visible edges from which the vanishing lines are traced. Consider the theo-
retical error:

Dx ¼ �2l
AF
AB

The error will vary as a direct function of the ratio AF/AB (or as an inverse
function of AB/AF). When reconstructing the perspective, the operator must regu-
larly ascertain whether a new vanishing line passes through the error polygon of a
known vanishing point. Yet if one began the construction using vanishing lines
with a small AB/AF ratio, this initial choice would distort the completed drawing. It
follows that the larger the ratio AF/AB between the first vanishing lines chosen, the
more precise the determination of the vanishing point F will be. From this stems the
necessity to arrange all of the vanishing lines in descending order based on the ratio
AB/AF and to reconstruct the perspective in that order.

The Tracing Procedure

From this examination of the simple and combined errors that may arise when
reconstructing perspective lines, one can draw up a procedure designed to minimize
these errors. The tracing of the lines is carried out in two stages; first, all the
measurements are made and the error is calculated, and then the drawing is
constructed.

The preparatory drawing (measurements)

1. Trace the visible portions AB … of the vanishing lines;
2. Make an approximate determination of the eventual vanishing point(s);
3. Calculate the ratio AB/AF … for each vanishing line;
4. Arrange the vanishing lines in descending order based on this relationship:

A1B1/A1F, A2B2/A2F …;
5. Calculate the random error at the level of the vanishing point F for each van-

ishing line.

The final drawing (the traced lines)

6. Choose vanishing line No.1 (the first in the series of AB/AF ratios);
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7. Take the optimal vanishing line, i.e. the line with the highest ranking and whose
angle in relation to line No.1 approaches 90°;

8. Determine the point of concurrence F1 of these two lines;
9. Choose vanishing line No.2. If it passes inside the error polygon of point F1,

join line No.2 to F1; otherwise, apply rules 7 and 8 to obtain a new vanishing
point F2;

10. Choose vanishing line No.3; repeat step 9, and continue this process until the
drawing is completed.

A Fresco by Giusto de’ Menabuoi

I will now apply this protocol to the study of a fresco attributed to Giusto de’
Menabuoi, The Saint Enthroned (110 × 126 cm), which was painted between 1370
and 1380 on the north wall of the Palazzo della Ragione in Padua, and of which
there is a photograph47 with a reduction coefficient of K = 7.

Using a pen with normalized nib width of e = 0.20 mm that produces a 1.4 mm
line in situ, the lines in the preparatory drawing can be constructed based on the
visible edges of the objects D1, D2, D3… (Fig. A.9a) and their extension to a
hypothetical vanishing point (Fig. A.9b). The potential error ϵ at the level of the
vanishing point being a function of the ratio AB/AF, the vanishing lines should be
arranged in descending order based on this ratio (Table A.1). The optimal lines for
the reconstruction can be deduced from this ranking (Table A.2). The vanishing
lines G5 (No.1) and D2 (No.10), which form an angle of 115°, allow one to
determine the vanishing point F′ with a combined error of 1.01 mm (which is the
diagonal of the error quadrilateral cd). In the same way the vanishing lines D5
(No.2) and G2 (No.6), which form an angle of 117°, result in a vanishing point
F with a combined error of 0.64 mm. These values fix the maximal errors in the
retracing of the perspective. Only the vanishing lines D3, D7 and G7, being affected
by errors of convergence, are to be rejected.

The operator will then specify and describe as far as possible the error affecting
the perspective reconstruction. The preparatory drawing for The Saint Enthroned
was traced with an error of 1.01 mm for the vanishing lines from the left and an
error of 0.64 mm for the vanishing lines from the right, which represent in situ
errors of about 7 and 4 mm at the level of the vanishing points (Fig. A.9b). The
distance between the two vanishing points is thirty times greater than the maximal
error of the reconstruction. The study therefore yields a result that is as robust as it
is surprising: the two vanishing points are not the result of inaccurate retracing.
They are not accidental.

47Giampiero Bozzolato, Il Palazzo della ragione a Padova. Gli affreschi, Roma, 1992, Plate LXII.
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(a)

(b)

Fig. A.9 a Preparatory drawing of the Saint Enthroned by Giusto de’ Menabuoi and b Final
drawing of the Saint Enthroned by Giusto de’ Menabuoi, fresco, ca. 1370–80 (Padua, Palazzo
della Ragione, north wall). Author’s reconstructions after Bozzolato, Il Palazzo della Ragione a
Padova, plate LXII
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The methodology that has been described in detail here could transform the
analytical study of perspective and our understanding of the human errors involved.
It also invites one to question the utility of representing irregularities in the per-
spective reconstruction, a solution that has sometimes been adopted by operators as
a proof of their good faith and objectivity. Such a practice inevitably casts doubt on
reconstructions that have a more regular appearance. And yet, for all scholars

Table A.1 The arrangement of the vanishing lines in Giusto de’ Menabuoi’s fresco The Saint
Enthroned, shown in descending order based on the error ratio AB/AF

Rank line AB/AF ϵ (mm)

1 G5 0.250 0.30

2 D5 0.223 0.34

3 G3 0.200 0.37

4 D3 0.184 0.41

5 D6 0.144 0.52

6 G2 0.139 0.54

7 G6 0.126 0.59

8 D4 0.124 0.60

9 G4 0.111 0.67

10 D2 0.100 0.75

11 G1 0.067 1.12

12 D1 0.065 1.15

0 0 +2 mm+2 mm+1 +1

(a) (b)

Fig. A.10 An histogram of errors with no gravity (left) and with gravity (right). Author’s
drawing.
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acquainted with the theory of errors, it is preferable to produce a regular draw-
ing accompanied by an error calculation rather than a drawing that simulates the
artist’s presumed errors, which in some cases are neither detected nor quantified.
In essence, the methodology proposed in this Appendix is aimed at eliminating any
element of rhetoric in the treatment of error.

Table A.2 The ordering of the pairs of vanishing lines in The Saint Enthroned (from most to least
optimal for the reconstruction of the perspective) based on their angle α

Step Combin. Point Angle α cd (mm)

1 (G5,D2) F′ 115° 1.01

2 (D5,G2) F 117° 0.64

3 (G3,1) F′ 132° 0.37 < 1.01

4 (D3,2) F 133° 0.41 < 0.64

5 (D6,2) F 114° 0.52 < 0.64

6 (G6,1) F′ 112° 0.59 < 1.01

7 (D4,2) F 125° 0.60 < 0.64

8 (G4,1) F′ 123° 0.67 < 1.01

9 (G1,1) F′ 180° 1.12 > 1.01*

10 (D1,2) F 180° 1.15 >0.64°

* allowed based on the alignment G1F2D2
° allowed based on the alignment G2FD1
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Appendix B
Catalogue of the Works

No. Author Title of the work Date Height
(cm)

Width
(cm)

1. Isaac Master The Pentecost ca. 1295 390 286

2. Giotto di
Bondone

The Approval of the
Franciscan Rule

1296–99 270 230

3. Giotto di
Bondone

St. Francis Preaching before
Honorius III

1296–99 270 230

4. Giotto di
Bondone

Christ before Annas and
Caiaphas

1304–06 185 200

5. Giotto di
Bondone

Virgin in Majesty ca. 1306 325 204

6. Giotto di
Bondone

Justicia ca. 1308 120 60

7. Duccio di
Buoninsegna

The Wedding at Cana 1308–11 43.5 46.5

8. Duccio di
Buoninsegna

The Appearance of Christ
behind Closed Doors

1308–11 39.5 51.5

9. Duccio di
Buoninsegna

The Last Supper 1308–11 100 53.5

10. Simone
Martini

The Death of St. Francis 1315–17 284 230

11. Simone
Martini

The Funeral of St. Francis 1315–17 284 230

12. Maestro
senesegiante

Christ among the Doctors 1315–20 230 270

13. Giotto di
Bondone

Madonna and Saints 1328 54 29

14. Pietro
Lorenzetti

The Nativity of the Virgin 1342 188 183

15. Giusto de’
Menabuoi

Madonna Enthroned 1349 — —

(continued)
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(continued)

No. Author Title of the work Date Height
(cm)

Width
(cm)

16. Barna da Siena The Kiss of Judas ca. 1350 259 236

17. Tommaso da
Modena

St. Romuald 1352 — —

18. Lorenzo
Veneziano

Madonna with Child 1372 124 50

19. Giusto de’
Menabuoi

Saint Enthroned ca. 1370 110 126

20. Altichiero The Council of King Ramiro 1374–79 — —

21. Giusto de’
Menabuoi

Christ among the Doctors 1376–78 190 310

22. Stefano di
Sant’Agnese

Madonna with Child ca. 1390 128 58

23. Taddeo di
Bartolo

The Last Supper 1394–01 45 31.5

24. Lorenzo
Monaco

The Adoration of the Magi ca. 1421 30 50

25. Lorenzo
Ghiberti

Christ among the Doctors ca. 1415 31 31

26. Niccolò di
Pietro

St. Benedict Exorcising a Monk ca. 1420 110 66

27. Gentile da
Fabriano

The Crippled Cured at the
Tomb of St. Nicholas

1425 36 35

28. Giovanni di
Ugolino

Madonna with Child 1436 40 26

29. Donatello Miracle of the Newborn Child 1447–48 57 123

30. Fra Angelico The Mocking of Christ 1450 38.5 37
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Appendix C
Errors of Reconstruction

No. Title of the work K FF′
(mm)

AB/AFleft

(mm)
AB/AFright

(mm)
ϵmax
(mm)

FF′/ϵmax

1. The Pentecost 15.0 15 9/54 8/53 1.3 11.5

2. The Approval of
the Franciscan
Rule

12.8 179 26/222 26/222 1.7 105.3

3. St. Francis
Preaching
before Honorius
III

12.0 16 29/105 30/107 0.7 22.8

4. Christ before
Annas and
Caiaphas

9.3 140 25/148 34/200 1.2 116.7

5. Virgin in
Majesty

15.9 72 8/84 8/84 2.1 34.3

6. Justicia 5.2 117 18/136 18/136 1.5 78.0

7. The Wedding at
Cana

2.2 72 12/108 12/120 2.0 36.0

8. The Appearance
of Christ behind
Closed Doors

2.5 71 8/81 8/80 2.0 35.5

9. The Last Supper 3.9 76 13/103 13/101 1.6 47.5

10. The Death of St.
Francis

15.5 6 10/52 7/57 1.6 3.7

11. The Funeral of
St. Francis

14.6 19 9/75 9/75 1.7 11.2

12. Christ among
the Doctors

14.3 4 9/47 10/51 1.0 4.0

13. Madonna and
Saints

2.4 73 11/92 12/89 1.7 43.7

14. The Nativity of
the Virgin

7.9 7 39/141 40/146 0.7 10.0

(continued)
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(continued)

No. Title of the work K FF′
(mm)

AB/AFleft

(mm)
AB/AFright

(mm)
ϵmax
(mm)

FF′/ϵmax

15. Madonna
Enthroned

c.4 67 7/103 13/107 2.9 23.1

16. The Kiss of
Judas

17.2 28 13/61 14/64 0.9 31.1

17. St. Romuald c.5 35 14/75 13/70 1.1 31.8

18. Madonna with
Child

5.7 20 21/77 20/77 0.8 25.0

19. Saint Enthroned 7.0 27 17/76 15/71 0.9 30.0

20. The Council of
King Ramiro

c.10 52 16/187 16/187 2.3 22.6

21. Christ among
the Doctors

14.1 77 30/125 41/144 1.0 77.0

22. Madonna with
Child

5.0 31 16/87 13/85 1.3 23.8

23. The Last Supper 1.8 58 25/138 23/137 1.2 48.3

24. Adoration of the
Magi

1.9 111 17/152 27/146 1.8 61.7

25. Christ among
the Doctors

1.7 31 10/46 9/45 1.0 31.0

26. St. Benedict
Exorcising a
Monk

4.6 116 37/119 30/104 0.7 165.7

27. The Crippled
Cured at the
Tomb of St.
Nicholas

1.7 143 50/174 57/190 0.7 204.3

28. Madonna with
Child

1.7 104 24/128 25/127 1.1 94.5

29. The Miracle of
the Newborn
Child

5.7 19 11/123 12/127 2.1 9.0

30. The Mocking of
Christ

1.6 6 28/187 16/97 1.3 4.6
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Appendix D
Distance Between the Vanishing Points

No. Title of the work XH
(cm)

XP
(cm)

XP/XH FF′obs
(cm)

1. The Pentecost 278 134 0.482 36

2. The Approval of the Franciscan Rule 219 165 0.753 376

3. St. Francis Preaching before
Honorius III

381 82 0.215 39

4. Christ before Annas et Caiaphas 312 245 0.785 331

5. Virgin in Majesty 158 41 0.259 108

6. Justicia 147 36 0.245 172

7. The Wedding at Cana 696 194 0.279 120

8. The Appearance of Christ behind
Closed Doors

581 127 0.219 122

9. The Last Supper 463 99 0.214 195

10. The Death of St. Francis 246 117 0.476 15

11. The Funeral of St. Francis 748 76 0.102 36

12. Christ among the Doctors 680 137 0.201 13

13. Madonna and Saints 231 25 0.108 65

14. The Nativity of the Virgin 317 69 0.218 16

15. Madonna Enthroned 193 37 0.192 100

16. The Kiss of Judas 540 92 0.170 56

17. St. Romuald 147 37 0.252 40

18. Madonna with Child 240 36 0.150 29

19. Saint Enthroned 213 45 0.211 42

20. The Council of King Ramiro 492 107 0.217 125

21. Christ among the Doctors 656 859 1.309 440

22. Madonna with Child 128 38 0.297 38

23. The Last Supper 380 210 0.553 106
(continued)
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(continued)

No. Title of the work XH
(cm)

XP
(cm)

XP/XH FF′obs
(cm)

24. Adoration of the Magi 412 116 0.282 198

25. Christ among the Doctors 355 53 0.149 75

26. St. Benedict Exorcising a Monk 494 384 0.777 278

27. The Crippled Cured at the Tomb of St.
Nicholas

738 597 0.809 429

28. Madonna with Child 458 202 0.441 166

29. The Miracle of the Newborn Child 783 96 0.123 72

30. The Mocking of Christ 558 64 0.115 12
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Appendix E
Plates

See Plates E1, E2, E3, E4, E5, E6, E7, E8, E9, E10, E11, E12, E13, and E14.
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1

Plate E1 (No. 1) Isaac Master, The Pentecost, ca. 1295, Perspective (author’s drawing)
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1R

Plate E2 (No. 1R) Isaac Master, The Pentecost, ca. 1295, Reconstructed plan (author’s drawing)
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2

Plate E3 (No. 2) Giotto, The Approval of the Franciscan Rule, 1296–9, Perspective (author’s
drawing)
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2R

Plate E4 (No. 2R) Giotto, The Approval of the Franciscan Rule, 1296–9, Reconstructed plan
(author’s drawing)
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8

Plate E5 (No. 8) Duccio di Buoninsegna, The Appearance of Christ behind Closed Doors, 1308–
11, Perspective (author’s drawing)
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8R

Plate E6 (No. 8R) Duccio di Buoninsegna, The Appearance of Christ behind Closed Doors,
1308–11, Reconstructed plan (author’s drawing)
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14

Plate E7 (No. 14) Pietro Lorenzetti, The Nativity of the Virgin, 1342, Perspective (author’s
drawing)
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14R

Plate E8 (No. 14R) Pietro Lorenzetti, The Nativity of the Virgin, 1342, Reconstructed plan
(author’s drawing)
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21

Plate E9 (No. 21) Giusto de’ Menabuoi, Christ among the Doctors, 1376–78, Perspective (au-
thor’s drawing)
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21R

Plate E10 (No. 21R) Giusto de’ Menabuoi, Christ among the Doctors, 1376–78, Reconstructed
plan (author’s drawing)
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24

Plate E11 (No. 24) Lorenzo Monaco, Adoration of the Magi, ca. 1421, Perspective (author’s
drawing)
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24R

Plate E12 (No. 24R) Lorenzo Monaco, Adoration of the Magi, ca. 1421, Reconstructed plan
(author’s drawing)
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29

Plate E13 (No. 29) Donatello, Miracle of the Newborn Child, 1447–8, Perspective (author’s
drawing)
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29R

Plate E14 (No. 29R) Donatello, Miracle of the Newborn Child, 1447–8, Reconstructed plan
(author’s drawing)
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