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Supervisor’s Foreword

There is nothing more gratifying for a Professor than being asked to prepare a pref-
ace for the dissertation research of his student whose work is of the caliber worthy 
of	being	published	in	the	Springer	Theses	Series.	The	dissertation	research	of	Ms.	
Nasrin	Nasrollahi	at	 the	University	of	California,	Irvine	exemplifies	the	best	one	
can hope for from a doctoral student.

In	a	nutshell,	her	research	dealt	with	the	issue	of	how	best	one	can	use	techno-
logical advances in observation systems and measure one of the key components 
of the global hydrologic cycle, namely precipitation, with the accuracy useful for 
various applications. The technology in this case is the availability of a variety 
of	advanced	 instruments	 (infrared	based	channels,	passive	and	active	microwave	
radars,	 etc.)	 aboard	a	number	of	 classes	of	 environmental	 satellite	 systems	 (Geo	
Stationary,	Polar	Orbiting).	Dr.	Nasrollahi’s	contribution,	which	 is	 the	subject	of	
this publication, is the integration of information from these multiple satellite sen-
sors	and	multiple	channels	into	the	current	precipitation	estimation	algorithms.	In	
her	work,	 she	 takes	 advantage	 of	 the	 recent	NASA	 satellite	CLOUDSAT	which	
observes clouds and precipitation in high resolution and infuses that information 
into the current algorithms in order to eliminate some of the errors in existing data. 
In	addition,	she	employs	some	of	the	recent	machine-learning	techniques	to	extract	
relevant information from large quantities of satellite data. Nasrin’s final algorithm 
leads to a significant reduction in false rain signals, hence improving the quality of 
satellite-based estimates of precipitation.

One may ask “why is this important?” The answer lies in the fact that informa-
tion about rainfall has become most important for two primary reasons. The first 
one is that changes in precipitation at the global scale hold clues about climate 
change with respect to its impact on the elements of the hydrologic cycle. Therefore 
having comprehensive estimates of precipitation in time and space covering the 
entire globe can give evidence about the shifting patterns of rainfall and how ex-
treme events are changing. The second of course is how we as humans experience 
precipitation	(rain	and/or	snow)	in	our	daily	lives.	This	could	be	simply	knowing	
tomorrow’s weather report i.e. if your area is getting rain or not or if you are going 
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to expect flooding in your region. Such information about precipitation is therefore 
crucial for a range of applications such as dealing with hazards or improving the 
science and understanding the changes in the hydrologic cycle. Nasrin’s dissertation 
is a research work contributing to this body of knowledge.

Department	of	Civil	&	Environmental		 Soroosh	Sorooshian
Engineering,	University	of	California,		
Irvine,	CA,	USA		 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
7/31/2014
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Preface

The	Moderate	Resolution	Imaging	Spectro-radiometer	(MODIS)	instrument	aboard	
the	NASA	Earth	Observing	System	(EOS)	Aqua	and	Terra	platform	with	36	spectral	
bands provides valuable information about cloud microphysical characteristics and 
therefore	precipitation	retrievals.	Additionally,	CloudSat,	selected	as	a	NASA	Earth	
Sciences	Systems	Pathfinder	(ESSP)	satellite	mission,	is	equipped	with	a	94	GHz	
radar	that	can	detect	the	occurrence	of	surface	rainfall.	The	CloudSat	radar	flies	in	
formation	with	Aqua	with	only	an	average	of	60	s	delay.	The	availability	of	surface	
rain	occurrence	based	on	CloudSat	observation	together	with	the	multi-spectral	ca-
pabilities	of	MODIS	makes	it	possible	to	create	a	training	data	set	 to	distinguish	
false	rain	areas	based	on	their	radiances	in	satellite	precipitation	products	(e.g.	Pre-
cipitation	Estimation	 from	Remotely	 Sensed	 Information	 using	Artificial	Neural	
Networks	(PERSIANN).	The	brightness	temperature	of	6	MODIS	water	vapor	and	
infrared channels are used in this study along with surface rain information from 
CloudSat	to	train	an	Artificial	Neural	Network	model	for	no-rain	recognition.	The	
results suggest a significant improvement in detecting non-precipitating areas and 
reducing false identification of precipitation.

The second approach to identifying no-rain regions, developed in this study, is to 
find the areas covered with non-precipitating clouds. The cloud type data available 
from	CloudSat	is	used	as	a	target	value	to	train	an	artificial	neural	network	model	
to identify non-precipitating clouds such as cirrus and altostratus. Application of 
the trained model on two case studies investigated in this research, show significant 
improvements	in	near	real-time	PERSIANN	rain	estimations.

In	addition,	a	cloud	type	classification	algorithm	was	developed	to	classify	clouds	
into	seven	different	classes	(cumulus	(Cu),	stratocumulus	(Sc),	altocumulus	(Ac),	
altostratus	 (As),	 nimbostratus	 (Ns),	 high	 cloud	 and	 deep	 convective	 cloud).	The	
classification model uses a self organizing features map to classify clouds based on 
multi-spectral	MODIS	data	and	CloudSat	cloud	types.	The	result	of	the	classifica-
tion model shows acceptable results for summertime. The winter season cloud clas-
sification is challenging due to dominance of low and middle level clouds. A better 
cloud classification algorithm for wintertime is achievable using active radar data 
and is beyond the capabilities of currently available remotely sensed multi-spectral 
information.
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Chapter 1
Introduction to the Current State of Satellite 
Precipitation Products

©	Springer	International	Publishing	Switzerland	2015
N. Nasrollahi, Improving Infrared-Based Precipitation Retrieval Algorithms Using 
Multi-Spectral Satellite Imagery, Springer	Theses,	DOI	10.1007/978-3-319-12081-2_1

1.1  The Importance of Precipitation in Water Resources

Floods cause more deaths than any other natural disaster around the world, with a 
death	toll	of	more	than	5000	individuals	per	year.	The	United	States	also	has	a	long	
history	of	catastrophic	flooding.	Most	flood	deaths	are	due	to	flash	floods	that	occur	
within a few minutes or hours of excessive rainfall over a region. Flash floods cause 
more deaths annually than any other weather phenomenon in the United States, with 
a	death	toll	of	more	than	1000	individuals	over	a	10-year	period	between	1983–1992,	
and	an	average	of	greater	than	$	2	billion	in	annual	losses	over	the	same	10-year	pe-
riod	(U.S.	Army	Corps	of	Engineers	1993).	In	the	period	between	1950	and	1997,	the	
National	Weather	Service	reported	an	average	of	110	deaths	per	year	in	flood-related	
accidents.	In	addition,	recent	major	flood	events	around	the	world	(e.g.	Aug	2010	se-
vere	flood	in	Pakistan,	Dec	2010	flood	in	Brazil)	emphasize	the	need	for	hydro-mete-
orological information to address natural hazards with major socio-economic impacts.

The two key elements that contribute to flash floods are rainfall intensity and 
duration. Other factors such as soil moisture, topography and land cover also play 
an	important	role	(Song	et	al.	2014).	Land	use	change	due	to	urbanization	is	also	a	
factor	that	increases	the	risk	of	flooding.	In	the	US,	urbanization	has	increased	the	
magnitude of floods during the twentieth century and many urban watersheds suf-
fered	from	greater	floods	(Hollis	1975).	In	addition,	human-induced	climate	change	
has	a	direct	impact	on	precipitation.	Increase	in	the	water	holding	capacity	of	the	
atmosphere due to a change in atmospheric temperature leads to increased water 
vapor in the atmosphere. Hence, in the future more intense precipitation events will 
be	observed	which	will	increase	the	risk	of	flooding	(Trenberth	2011).

Because	of	the	nature	of	flash	floods,	reliable	estimation	of	precipitation	is	im-
portant to predict and manage water resources, hazard preparedness and climate 
studies	(Ajami	et	al.	2008; AghaKouchak and Nakhjiri 2012; Anderson et al. 2008; 
Hao et al. 2014; Damberg and AghaKouchak et al. 2014; Tabari et al. 2014).	Avail-
ability of real-time rainfall data plays a major role in prediction of floods and affects 
decision making.
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1.2  Precipitation Observation

Rain gauge estimation is the traditional method of precipitation measurement. 
However, spatial and temporal variability of precipitation makes it difficult to rely 
on	gauge	point	measurements.	Gauge	distribution	is	uneven	around	the	world	and	
usually depends on the population of the area. Needless to mention, there are no 
gauges over the oceans, insufficient to capture regional precipitation variability. Ra-
dars, on the other hand, provide high resolution estimates of precipitation. However, 
radar	networks	are	not	available	everywhere	in	the	world.	In	addition,	radar	cover-
age	area	becomes	smaller	at	lower	altitudes	(e.g.,	1000	m	above	the	ground	level)	
in	comparison	to	higher	elevations	(e.g.,	3000	m	above	ground	level),	mainly	due	
to	blockage	problem	in	the	mountainous	regions	(e.g.	western	United	States,	Mad-
dox et al. 2002).	Therefore,	an	alternate	method	to	estimate	precipitation	globally	
with high spatial and temporal resolution and reliable accuracy is needed. Using 
satellite remote sensing technology helps to derive a better global coverage of pre-
cipitation.	Satellites	observe	the	Earth	from	the	space	and	are	able	to	gather	some	
information that cannot be made available from ground based instruments. The Na-
tional	Aeronautics	and	Space	Administration	(NASA),	National	Oceanic	and	Atmo-
spheric	Administration	(NOAA),	the	European	Organization	for	the	Exploitation	of	
Meteorological	Satellites	(EUMETSAT)	and	many	other	internationally	sponsored	
satellite missions have provided valuable information that can be used to estimate 
precipitation.	Global	precipitation	data	can	be	utilized	in	disaster	management	and	
decision making operations.

1.3  Satellite-based Precipitation Estimation

The	main	sensors	to	estimate	precipitation	from	space	are	visible	(VIS),	Infrared	
(IR)	and	Passive	Microwave	(PMW).	VIS	and	IR	data	are	available	from	Geosta-
tionary	Earth	Orbiting	(GEO)	and	Low-Earth	orbiting	(LEO)	satellites.	However,	
VIS	and	IR	channels	do	not	measure	precipitation	directly.	Instead,	they	measure	
cloud albedo and cloud top temperature that can be associated with the precipita-
tion	 rate	using	an	 indirect	 relationship.	One	 limitation	of	 IR-based	algorithms	 is	
that non-precipitating cold clouds at high altitudes are often falsely identified as 
precipitating	clouds,	resulting	in	false	precipitation	estimates.	Intense	precipitation	
is correlated with cold clouds. However, the converse relationship may not be true 
(Fig.	 1.1).	 In	 addition	 to	 this	 issue,	 orographically	 induced	 precipitation	 or	 pre-
cipitating	warm	clouds	(e.g.	stratiform)	may	cause	precipitation,	which	is	not	easily	
identified	with	current	algorithms	(Joyce	et	al.	2004).	The	misclassification	of	rain/
no-rain	clouds	is	one	of	the	major	issues	facing	IR-based	algorithms	(Arkin	and	Xie	
1994;	Turk	and	Miller	2005;	Behrangi	et	al.	2009).	Adding	information	about	vis-
ible	channels	helps	to	improve	rain	estimation	however,	VIS	data	are	not	available	
during the night time.
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In	addition	 to	 IR,	VIS	and	water	vapor	channels,	LEO	satellites	are	equipped	
with	 passive	microwave	 (PMW)	 sensors	 that	measure	 the	 thermal	 emission	 and	
scattering	of	 raindrops.	PMW	remote	 sensing	of	precipitation	 is	 recognized	as	 a	
more	reliable	source	of	precipitation	estimation	from	space	(Adler	et	al.	2001;	Ebert	
et al. 1996).	However,	LEO	satellites	have	low	temporal	resolution	of	only	one	or	
two	times	a	day	for	a	specific	location	on	earth	(Marzano	et	al.	2004).	Many	LEOs	
are	orbiting	the	Earth,	therefore	PMW	data	from	LEOs	are	operationally	available	
every	few	hours.	To	date,	PMW	sensors	are	not	carried	on	GEO	satellites	because	of	
technical	challenges	(Joyce	et	al.	2004).	In	addition	to	their	low	temporal	and	spatial	
resolution,	PMW	sensors	are	more	reliable	over	oceans	because	of	the	complexity	
of land surface emissivity.

1.4  Research Motivation

Reliable estimation of precipitation is important to predict and manage water re-
sources. However, spatial and temporal variability of precipitation makes it difficult 
to rely on sparse gauge point measurements for remote regions. Higher spatial and 
temporal resolutions of satellite observations are the main advantages of remotely 
sensed precipitation estimates over in-situ measurements. Since they are an indi-
rect method to estimate precipitation, they are also associated with uncertainties. 
Reducing	false	rain	in	IR-based	precipitation	algorithm	will	improve	the	quality	of	
satellite estimations significantly.

CloudSat	radar	has	the	ability	to	provide	a	3D	structure	of	clouds	from	space.	
CloudSat	data	can	be	used	to	add	additional	information	to	the	precipitation	algo-
rithm and to cloud detection. This additional source of information will improve the 
quality of rain estimation algorithms.

Fig. 1.1  Vertical	structure	of	clouds	and	corresponding	IR	brightness	temperature

 



4 1	 Introduction	to	the	Current	State	of	Satellite	Precipitation	Products

1.5  Objectives of this Dissertation

In	this	dissertation,	the	application	of	multi-spectral	data	and	statistical	classifica-
tion	techniques	in	improving	single	channel	IR	precipitation	algorithms	is	explored.	
Multi-spectral	data	available	from	Moderate	resolution	Imaging	Spectroradiometer	
(MODIS)	 images	 and	CloudSat	 are	 two	 sources	 of	 information	 that	 are	 used	 to	
improve	the	quality	of	rain	estimations	and	reduce	false	rain	detection.	CloudSat	
data	is	used	to	train	a	Neural	Network	model	using	MODIS	data	as	input	to	identify	
false rain locations.

Application	of	CloudSat	data	in	cloud	classification	model	is	also	investigated.	
The cloud classification model can be used to find precipitating clouds and run the 
precipitation algorithm only on those clouds.

The	objectives	of	this	dissertation	are:

1.	Using multi-spectral data in satellite precipitation algorithms will help improve 
precipitation algorithms. There is a need to move from single IR channel esti-
mations to multi-channel precipitation algorithms. The first objective of this 
dissertation is to show the effectiveness of using multi-spectral data in satellite 
precipitation estimation.

2.	 The second objective of this dissertation is to show that satellite precipitation 
algorithms will benefit from information on cloud structure and characteris-
tics. Clouds create precipitation, and adding information about different types 
of clouds will improve precipitation algorithms.

3.	 The main reason for false rain observations in satellite-based products is the 
presence of high cirrus clouds. These highly elevated clouds have cold cloud 
tops in IR imagery. Therefore, they show false rain signals in satellite-based 
estimations. The third objective is to show that by identifying and filtering cold 
cirrus clouds false rain reduces.

The answer to the above mentioned questions will be addressed in this dissertation.

1.6  Dissertation Outline

This	dissertation	is	organized	into	six	sections:	Chapter	2	explains	false	alarm	in	
satellite	 precipitation	 and	 how	we	 can	 identify	 false	 rain.	 Chapter	 3	 is	 devoted	
to	 explaining	 satellite	observations.	Chapter	4	 is	 about	 reducing	 false	 rain	using	
CloudSat	cloud	classification	data	and	Chap.	5	examines	false	rain	reduction	using	
CloudSat	surface	precipitation	presence	dataset.	A	cloud	classification	algorithm	is	
presented	in	Chap.	6	and	the	summary	and	future	works	are	described	in	Chap.	7.
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Chapter 2
False Alarm in Satellite Precipitation Data

©	Springer	International	Publishing	Switzerland	2015
N. Nasrollahi, Improving Infrared-Based Precipitation Retrieval Algorithms Using 
Multi-Spectral Satellite Imagery, Springer	Theses,	DOI	10.1007/978-3-319-12081-2_2

Evaluation	of	satellite	precipitation	algorithms	is	essential	for	future	algorithm	de-
velopment. This is why many previous studies are devoted to the validation of sat-
ellite-based	observations	(e.g.,	Tian	et	al.	2009; Amitai et al. 2009; AghaKouchak 
et al. 2010b; Zhou 2008;	Gochis	et	al.	2009;	Yilmaz	et	al.	2005; Shen et al. 2010; 
Dinku et al. 2008; AghaKouchak et al. 2009;	Liu	et	al.	2009; Sapiano and Arkin 
2009; AghaKouchak et al. 2012).	For	instance,	Tian	et	al.	(2009)	analyzed	the	error	
of six high-resolution satellite products versus a gauge-based estimate, and reported 
regional and seasonal variations of error patterns in the contiguous US. They con-
clude that satellite products tend to overestimate rainfall in the summer and under-
estimate	 it	 in	 the	winter.	Sapiano	and	Arkin	(2009)	also	confirmed	 that	satellites	
overestimate summertime convective storms over the US. Using Volumetric False 
Alarm	Ratio,	AghaKouchak	et	al.	(2011)	showed	that	several	satellite	products	ex-
hibit high false alarm rate for rainfall, especially at high quantiles of observation.

To investigate false alarms in satellite-based precipitation products, we con-
ducted	a	validation	study	to	compare	PERSIANN	and	TRMM	TB42	precipitation	
data	with	ground	based	measurements.	False	Alarm	Ratio	(FAR)	and	Probability	
of	Detection	(POD)	are	calculated	for	the	time	period	between	2005	and	2008	over	
the US. The FAR is the ratio of falsely identified rainy pixels to the total number of 
rainy pixels in satellite data, whereas the POD measures the fraction of observed 
precipitation	that	was	correctly	forecasted	(the	ratio	of	the	total	number	of	times	that	
rainfall	was	correctly	forecasted	to	the	total	number	of	observed	rainy	pixels	(Wilks	
2006)).	Figure	2.1 explains the definition of POD and FAR.

In	 the	 current	 study,	 the	Stage	 IV	 radar-based	multi-sensor	 precipitation	 esti-
mates	 (MPE),	 available	 from	 the	 National	 Center	 for	 Environmental	 Prediction	
(NCEP),	are	used	as	the	reference	data.	The	Stage	IV	precipitation	data	are	adjusted	
for	various	biases	using	rain	gauge	measurements	(Lin	and	Mitchell	2005)	and	are	
considered the best area approximation among the currently available area-average 
rainfall	datasets	(AghaKouchak	et	al.	2010a; AghaKouchak et al. 2010c, d).	Stage	
IV	data	is	aggregated	into	0.25	degree	spatial	and	3	hourly	temporal	resolutions,	
which	is	the	same	as	the	PERSIANN	precipitation	data.	Figure	2.2 shows the FAR 
and	POD	for:	(a)	 the	entire	period	of	4	years,	 (b)	 the	summer	and	(c)	 the	winter	
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seasons	for	the	PERSIANN	precipitation	product	(precipitation	threshold	is	consid-
ered	as	0.05	mm/h).	Figure	2.2 reveals very high FARs over the central and western 
US and a lower FAR over the eastern US on average. Higher FAR is associated 
with presence of high cirrus clouds, especially in the winter. As discussed by Tian 
et	al.	(2009),	PERSIANN	data	demonstrates	higher	FAR	over	the	western	US	in	the	
winter.	The	average	POD	is	about	60	%	over	the	central	US	and	very	low	over	the	
southwestern	region.	Low	POD	on	the	eastern	and	western	side	of	the	continent	is	
associated with missed precipitation over these regions.

The missed precipitation may be caused by snow cover on the ground at higher 
latitudes or over the Rockies, and by the inability to catch warm rain processes or 
short-lived convective storms at lower latitudes, or maritime precipitation along the 
west	coast	(Tian	et	al.	2009).

Generally,	probability	of	detection	of	satellite	precipitation	seems	 to	be	better	
during the summer seasons, perhaps due to a dominance of convective storms. On 
the other hand, the FAR is very high during the wintertime because of the presence 
of non-precipitating, high, cold clouds. Additionally, the presence of snow and ice 
on	the	ground	and	the	inability	of	Passive	Microwave	(PMW)	sensors	to	measure	
snowfall over snow or ice covered surfaces increase the error in satellite precipita-
tion estimations and result in higher FARs during the wintertime. Figure 2.3 shows 
the	same	results	for	Tropical	Rainfall	Measuring	Mission	(TRMM)	Multi-satellite	
Precipitation	Analysis	(TMPA)	3B42	precipitation	data.	Overall,	both	datasets	show	
higher false rain during the winter and better estimations during summertime. Fi-
nally, it is worth mentioning that radar coverage is limited over the western region 
of	the	US	(with	the	very	high	false	alarm	shown	in	Fig.	2.2 because of beam block-
age	in	mountainous	terrain).	The	Stage	IV	data	has	a	large	number	of	missing	data	
over the Pacific Northwest region therefore, the precipitation data for this region is 
not included in the analysis.

In	addition	to	calculation	pixel-based	false	alarm,	object-based	approaches	also	
show differences in precipitation estimations. For example, comparing different 
satellite-based	precipitation	patterns	with	the	stage	II	radar-based	precipitation	pat-
tern shows how the satellite estimations differ from radar observations. Figure 2.4 
shows	two	satellite	images	that	occurred	at	0900	UTC	24	September	2005	during	
Hurricane	Rita,	with	the	spatial	and	temporal	resolutions	of	0.25	×	0.25	and	3	h	[a:	
Tropical	Rainfall	Measuring	Mission	 (TRMM)	 3B42,	Huffman	 et	 al.	 (2007);	 b:	
PERSIANN,	Sorooshian	et	al.	(2000)].	Hurricane	Rita	was	one	of	the	most	intense	
tropical	cyclones	that	made	landfall	on	the	U.S.	Gulf	Coast.	Notice	that	in	panels	
a	to	c,	only	precipitation	values	above	the	50th	percentile	threshold	are	considered	

Fig. 2.1  The definition of 
Probability Of Detection 
(POD)	and	False	Alarm	Ratio	
(FAR)
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Fig. 2.4  The	TRMM,	PERSI-
ANN	and	stage	II	precipitation	
pattern for rainfall rates above 
the	50th	(a–c),	75th	(d–f),	90th	
(g–i) percentiles

 

to	 avoid	 small	 rainfall	 rates.	 Panel	 c	 displays	 the	 corresponding	 stage	 II	 image.	
The	stage	II	data	provide	estimates	of	precipitation	using	a	combination	of	radar	
and rain gauge measurements. The data is available on the Hydrologic Rainfall 
Analysis	Project	(HRAP)	grid,	with	a	spatial	resolution	of	approximately	4	km.	The	
stage	II	data	are	aggregated	in	space	to	match	the	spatial	resolution	of	TRMM	and	
PERSIANN	data.	Panels	d–f	and	g–i	present	similar	figures	for	precipitation	values	
exceeding	 the	 75th	 and	90th	 percentiles,	 respectively.	The	domain	of	 all	 figures	
includes	94	×	47	pixels,	each	being	0.25	×	0.25.	With	respect	to	the	shape	of	patterns,	
the	TRMM	seem	to	be	closer	to	the	stage	II	data.	However,	for	a	higher	threshold	of	
75th	and	90th	percentiles,	the	pattern	of	PERSIANN	precipitation	is	more	similar	
to	those	of	stage	II.	It	should	be	noted	that	the	above	example	is	provided	to	show	
differences in the pattern of precipitation and should not be considered as validation 
of satellite precipitation data.
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Satellite Observations
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3.1  MODIS

The	Moderate	resolution	Imaging	Spectroradiometer	(MODIS)	instrument	onboard	
NASA’s	Earth	Observing	System	(EOS)	Aqua	and	Terra	platforms	with	36	spectral	
bands	provides	valuable	information	about	atmosphere,	land	and	oceans	(Ackerman	
et al 1998).	The	low	earth	orbiting	satellite	at	the	altitude	of	705	Km	also	gives	us	
important insight into cloud micro-physical characteristics ranging in wavelength 
from	0.4	to	14.4	µm.

The	Terra	satellite	orbits	the	Earth	in	a	descending	orbit	passing	the	equator	in	
the	morning	(at	10:30	am	local	time),	while	the	Aqua	follows	an	ascending	orbit,	
passing	 the	equator	 at	1:30	pm	 local	 time.	The	 spatial	 resolution	of	 the	MODIS	
data	is	250	m	for	visible	channels	(channels	1	and	2,	0.6–0.9	µm),	500	m	for	chan-
nels	3–7	(0.4–2.1	µm),	and	1000	m	for	channels	8–36	(0.4–14.4	µm).	MODIS	has	
a	swath	width	of	2330	Km	and	can	span	the	entire	surface	of	the	Earth	every	1	to	
2	days.	Terra	launched	in	December	1999	and	Aqua	joined	the	EOS	PM-1	in	May	
2002.

Figure 3.1	presents	the	bandwidth	and	primary	usage	of	MODIS	multi-spectral	
channel	data	(source:	http://modis.gsfc.nasa.gov).	Visible	data	are	in	the	range	of	
400–700	nm	and	MODIS	channels	1	and	2	are	in	this	range.	Visible	channel	images	
show the reflected solar radiation from the earth and atmosphere during daylight. 
Thick clouds, such as deep convective clouds, as well as ice and fresh snow on the 
earth’s surface appear brightly on visible images. Water bodies such as lakes and 
oceans appear dark due to their low albedo. Surface features over land will be dark-
er than clouds and brighter than water, but it might be very difficult to distinguish 
between low warm clouds and surface. Visible images are not strong detectors of 
thin clouds, such as cirrus formations.

The reflective infrared region of the electromagnetic spectrum has the bandwidth 
of	0.7–3	µm.	Figure	3.1	presents	the	visible,	reflective	IR	and	thermal	IR	regions	
of the electromagnetic spectrum. The black shades on the Figure show regions that 
most of the energy is absorbed by the atmosphere. The white regions on the spec-
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trum	are	called	the	atmospheric	window	and	the	atmosphere	passes	part	of	the	IR	
from	the	terrain	to	the	satellite	sensor	(Jensen	2007).

A	water	vapor	channel	is	an	infrared	channel	in	the	range	of	6.5–7.5	µm.	Water	
vapor	absorbs	most	of	the	radiation	in	this	part	of	the	spectrum.	Most	of	the	radi-
ance received by the satellite in the water vapor channels comes from humidity that 
exists	in	the	mid-upper	troposphere.	In	these	channels,	surface	features	cannot	be	
detected and only high clouds are recognizable. Water vapor channels are relatively 
noise-free that can show the movement of moisture in the atmosphere. The water 
vapor absorption regions are marked with H2O in Fig. 3.1.	The	MODIS	channels	27	
and	28	are	water	vapor	channels.

The	wavelengths	from	10.5	to	12.5	μm	are	thermal	infrared	regions	that	most	
part of the emitted energy from the terrain will be passed to the sensor with very 
limited	absorption.	Channels	31	and	32	of	MODIS	are	sensitive	to	this	range	of	the	
spectrum.	Channel	31	centers	at	11.03	μm	and	channel	32	centers	at	12.02	μm.

In	this	study	a	set	of	7	MODIS	channels	are	used,	one	in	the	range	of	visible	
(channel	1),	2	water	vapor	channels	(channels	27	and	28)	and	the	rest	are	thermal	
infrared	channels	(channels	29,	30,	31	and	32).	The	details	of	microphysical	proper-
ties	of	cloud	and	electromagnetic	sensitivities	are	explained	in	Sect.	4.1	(Table	3.1).

For	 this	 study,	 the	MODIS	 level	 1B	 calibrated	 radiance	 data	were	 used.	The	
original	radiance	data	from	MODIS	have	the	units	watts	per	square	meter	per	stera-
dian	per	micrometer	(Watts/m2/micrometer/steradian).	Radiance	data	are	converted	
to	Brightness	Temperature	(BT)	in	Kelvin	using	the	following	equation	(Cohen	and	
Taylor 1993):
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Fig. 3.1  Atmospheric	windows	in	the	electromagnetic	spectrum.	(Source:	Jensen	2007)
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Table 3.1  Information	about	36	spectral	channels	of	MODIS	instrument
Primary use Band	number Central	wavelength	

[nm]
Bandwidth[nm] Spatial resolution 

[m]
Land/cloud/
aerosols/
boundaries

1 645 620–670 250
2 858.5 841–876 250

Land/cloud/
aerosols properties

3 469 459–479 500
4 555 545–565 500
5 1240 1230–1250 500
6 1640 1628–1652 500
7 2130 2105–2155 500

Ocean	color/
phytoplankton/
biogeochemistry

8 421.5 405–420 1000
9 443 438–448 1000
10 488 483–493 1000
11 531 526–536 1000
12 551 546–556 1000
13 667 662–672 1000
14 678 673–683 1000
15 748 743–753 1000
16 869.5 862–877 1000

Atmospheric water 
vapor

17 905 890–920 1000
18 936 931–941 1000
19 940 915–965 1000

Surface/cloud	
temperature

20 3750 3660–3840 1000
21 3959 3929–3989 1000
22 3959 3929–3989 1000
23 4050 4020–4080 1000

Atmospheric 
temperature

24 4465.5 4433–4498 1000
25 4515.5 4482–4549 1000

Cirrus	clouds/
water vapor

26 1375 1360–1390 1000
27 6715 6535–6895 1000
28 7325 7175–7475 1000

Cloud	properties 29 8550 8400–8700 1000
Ozone 30 9730 9580–9880 1000
Surface cloud 
temperature

31 11030 10780–11280 1000
32 12020 11770–12270 1000

Cloud	top	altitude 33 13335 13185–13485 1000
34 13635 13485–13785 1000
35 13935 13785–14085 1000
36 14235 14085–14385 1000
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Where:

h	=	6.6260755d	−	34;	Planck	constant	(Joule	second)
c	=	2.9979246d		+		8;	Speed	of	light	in	vacuum	(meters/second)
k	=	1.380658d	−	23;	Boltzmann	constant	(Joules/Kelvin)

3.2  CloudSat

CloudSat	(a	NASA	Earth	Sciences	Systems	Pathfinder	(ESSP)	mission)	is	designed	
to measure the vertical structure of clouds from space and provides the first di-
rect	observation	of	cloud	vertical	structure	(Weisz	et	al.	2007).	CloudSat	is	incor-
porated	into	the	EOS	satellites,	which	fly	in	a	sun-synchronous	orbit	at	a	705	Km	
altitude.	The	CloudSat	satellite	consists	of	a	94	GHz	Cloud	Profiling	Radar	(CPR)	
and	provides	a	rich	source	of	information	about	cloud	properties.	CloudSat	data	are	
available	at	resolution	of	1.1	Km	along	track	by	1.3	Km	across	track.	All	CloudSat	
data	products	are	available	to	download	from	the	CloudSat	Data	Processing	Center	
(http://cloudsat.cira.colostate.edu).	MODIS	 and	CloudSat	 onboard	Aqua	 are	 both	
part	of	the	afternoon	constellation	of	satellites,	called	the	A-Train	(Stephens	et	al.	
2002).	The	A-Train	formation	(Fig.	3.2)	currently	consists	of	a	set	of	4	satellites,	
starting	with	Aqua	and	followed	by	CloudSat	and	CALIPSO,	with	Aura	as	the	last	
satellite.	The	carbon-tracking	Orbiting	Carbon	Observatory	2	(OCO-2)	satellite	will	
be	 launched	in	2014	to	provide	space-based	global	measurements	of	atmospheric	
carbon	dioxide	(CO2).	The	PARASOL	(Polarization	&	Anisotropy	of	Reflectances	
for	Atmospheric	Sciences	coupled	with	Observations	from	a	Lidar)	moved	out	of	the	
A-Train	in	December	2009.	The	CloudSat	radar	flies	in-formation	with	Aqua,	with	
an	average	of	60	s	delay	between	them,	providing	almost	simultaneous	observations.

There	are	several	CloudSat	products	available	from	the	CloudSat	science	team.	
Among	them,	the	cloud	scenario	classification	(2B-CLDCLASS)	and	Precipitation	
Column	Algorithm	Product	(2C-PRECIP-COLUMN)	are	of	interest	to	this	research.

Different cloud types have different microphysical properties, frequency and 
dynamic	forcing.	Climate	change	can	alter	the	frequency	and	properties	of	clouds,	
resulting in changes in precipitation occurrence and intensity.

Using	space	based	observation	of	radar	reflectivity	from	CPR	and	lidar	obser-
vations	available	from	CALIPSO,	as	well	as	MODIS	radiances,	Sassen	and	Wang	
(2008)	developed	 the	cloud	classification	algorithm.	The	CPR	and	 lidar	data	are	
useful in identifying the vertical and horizontal extend of clouds, cloud temperature 
and	the	presence	of	precipitation	(Wang	and	Sassen	2007).

CloudSat	cloud-type	classification	product	is	able	to	identify	clear	sky,	as	well	as	
7	different	classes	of	clouds:	cumulus	(Cu),	stratocumulus	(Sc),	altocumulus	(Ac),	
altostratus	(As),	nimbostratus	(Ns),	high	cloud	(cirrus	or	cirrostratus)	and	deep	con-
vective	cloud.	In	the	latest	version	of	the	CloudSat	CLD_CLASS	dataset,	St	and	
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Sc clouds are combined in one group. The class of high cloud in the cloud scenario 
classification	 includes	 cirrus,	 cirrocumulus,	 and	 cirrostratus.	Cirrus	 is	 high-level	
cloud that mainly consists of single ice particles. These white or light gray color 
clouds	appear	in	elevations	higher	than	5	Km	and	their	thickness	changes	between	
100	to	8000	m.	Cirrocumulus	clouds	are	high	level	convective	clouds	and	cirrostra-
tus is extensive cirrus in high altitudes. High-level clouds have very cold cloud tops 
and	clearly	appear	in	the	IR	images.	Cirrus	clouds	are	very	thin	or	semi-transparent	
and	might	not	be	distinguishable	in	the	visible	imagery.	Cirrosratus	clouds	are	very	
large in horizontal direction and have homogeneous texture. High clouds are one of 
the non-precipitating cloud groups.

Middle-level	clouds,	such	as	altostratus	and	altocumulus,	can	be	distinguished	
in	IR	images	because	of	their	cold	tops.	They	can	be	homogeneous	(e.g.	As)	and	
inhomogeneous	(e.g.	Ac).	Winter	 time	detection	of	middle-level	clouds	might	be	
challenging in high or mid-latitude regions and also in high mountainous regions.

Low-clouds	are	typically	present	in	the	elevations	lower	than	3	Km,	such	as	cu-
mulus,	stratus	and	stratocumulus.	Cumulus	clouds	are	puffy	shaped	clouds	that	are	
vertically	expanded.	They	appear	lower	in	the	atmosphere	(lower	that	2	Km)	and	
have	flat	bases.	Cumulus	clouds	usually	produce	very	light	or	zero	precipitation,	but	
they can grow into cumulonimbus clouds that are precipitating cloud types. Stratus 
clouds in contrast have homogeneous texture and their horizontal extension is larger 
compared to cumulus clouds. Stratocumulus is another class of low clouds that are 
shallow,	inhomogeneous	and	large	horizontal	dimension.	In	general,	remote	sens-
ing detection of low clouds is challenging due to their warm cloud tops that appear 
close	to	surface	radiation	temperature	in	the	IR	channels.

Fig. 3.2  The	 A-Train	 constellation.	 (Source:	 http://cloudsat.atmos.colostate.edu/education/
satellites)

 

http://cloudsat.atmos.colostate.edu/education/satellites
http://cloudsat.atmos.colostate.edu/education/satellites
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The other group of clouds is deep clouds, such as nimbostratus and deep convec-
tive	clouds	(e.g.	cumulonimbus).	These	two	cloud	types	can	extend	from	near	the	
surface to the higher troposphere; however, their main difference is in their precipi-
tation	intensity.	DC	clouds	produce	heavier	precipitation	compared	to	NS	clouds	
and are formed after strong updrafts. Figure 3.3 represents common types of clouds 
and Table 3.2 provides characteristics of different cloud scenarios provided by the 
CloudSat	science	team.

Fig. 3.3  Common	 types	 of	 clouds.	 (Source:	 http://airlineworld.files.wordpress.com/2008/07/
cloud_types.gif)

 

http://airlineworld.files.wordpress.com/2008/07/cloud_types.gif
http://airlineworld.files.wordpress.com/2008/07/cloud_types.gif
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Table 3.2  Different	cloud	types	characteristics.	(Source:	Wang	and	Sassen	(2007))

	3.2	 CloudSat
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Because	 clouds	 play	 important	 roles	 in	 producing	 precipitation	 and	 in	 Earth’s	
radiative balance, they are a key element in studies of weather and climate, water 
and	energy	cycles,	and	hydrologic	analysis.	Low	clouds	have	an	important	effect	
on	cooling	the	Earth,	as	they	reflect	sunlight	back	to	space.	High,	thin	clouds	have	
the opposite effect, allowing incoming sunshine to pass through but trapping heat 
that	is	trying	to	escape	from	earth.	Improving	our	understanding	of	cloud	structures	
is the main step in global climate studies and precipitation algorithm development.

One	 of	 the	 unique	 observations	 available	 from	CloudSat	 is	 its	 vertical	 cloud	
structure.	CloudSat	 cloud	 classification	 data	 set	 is	 used	 in	 this	 study	 to	 classify	
non-precipitating	clouds	and	therefore	delineate	the	no-rain	regions.	By	delineating	
no-rain areas, the false rain estimations from satellite precipitation algorithm will 
be removed. After explaining the role of multi-spectral data in precipitation algo-
rithms, the classification methodology is discussed in detail.

4.1  The Role of Multi-spectral Data in Satellite 
Precipitation Algorithms

Many	 satellite-derived	 precipitation	 products	 take	 advantage	 of	multiple	 remote	
sensing	devices.	For	example,	 to	overcome	the	temporal	 limitations	of	PMW	es-
timates,	NOAA	CPC	Morphing	Technique	 (CMORPH)	uses	atmospheric	motion	
vectors	derived	from	GEO’s	IR	data	to	propagate	high	quality	PMW	precipitation	
estimates	when	 updated	 PMW	data	 are	 unavailable	 (Joyce	 et	 al.	 2004).	TRMM	
Multi-satellite	Precipitation	Analysis	(TMPA)	products	are	combined	precipitation	
products	that	use	GEO’s	IR	information	to	fill	 the	gaps	between	PMW	estimates	
(Huffman	 et	 al.	 2007).	Other	 precipitation	 products	 use	 PMW	adjusted	 IR	 data,	
such	as	the	PMW	calibrated	IR	algorithm	(PMIR;	Kidd	et	al.	2003),	the	Precipita-
tion	 Estimation	 from	Remotely	 Sensed	 Information	 using	Artificial	Neural	Net-
works	(PERSIANN)	algorithm	(Hsu	et	al.	1997; Sorooshian et al. 2000),	and	the	
Self-Calibrating	Multivariate	 Precipitation	 Retrieval	 algorithm	 (SCaMPR;	 Kuli-
gowski 2002).	In	addition,	the	Naval	Research	Laboratory	(NRL)	blended-satellite	
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precipitation	technique	uses	a	combination	of	MODIS/AMSR-E	sensors	to	detect	
cirrus	clouds	and	reduce	false	rain	estimations	in	 the	algorithm	(Turk	and	Miller	
2005).	More	 recently,	Rain	Estimation	using	 the	Forward-Adjusted	 advection	of	
Microwave	Estimates	(REFAME)	algorithm	(Behrangi	et	al.	2010)	uses	IR	images	
to advect microwave-derived rain rates along the cloud motion tracks. This algo-
rithm takes advantage of a local cloud classification method to adjust the rain rates. 
More	sophisticated	approaches	such	as	The	Lagrangian	Model	(LMODEL)	algo-
rithm, combine information from microwave calibrated data and morphing tech-
niques	using	a	 conceptual	modeling	 framework	 (Bellerby	et	 al.	 2009; Hsu et al. 
2009).

Several studies emphasize that more advanced methods are needed to improve the 
quality	of	satellite	precipitation	products,	including	reducing	their	FAR	(Sorooshian	
et al. 2011; AghaKouchak et al. 2009).	The	utility	of	multi-spectral	satellite	data	in	
capturing microphysical properties of clouds and improving precipitation estima-
tion	has	been	the	subject	of	many	investigations	in	recent	years.	For	instance,	Li	
et	al.	(2007)	showed	the	effectiveness	of	MODIS	channel	31	(11.03	µm)	in	identify-
ing	high	clouds	with	very	cold	brightness	temperatures.	Strabala	et	al.	(1994)	show	
that	for	high	ice	clouds,	a	difference	between	8.5	and	11	µm	brightness	temperatures	
(BTD[8.5-11])	is	greater	than	BTD[11-12].	Furthermore,	Wang	et	al.	(2009)	used	
the	near-infrared	(NIR)	2.19	µm	band	to	retrieve	cloud	particle	size	and	used	the	
water	vapor	absorption	channel	1.38	µm	band	to	screen	out	upper-level	ice	clouds.	
Turk	and	Miller	(2005)	show	that	significantly	positive	BTD[3.7-11]	provides	in-
formation for identifying cirrus clouds at night.

BTD[11-12]	is	also	useful	in	identifying	ice	clouds.	Inoue	(1987)	showed	that	
optically	thin	(τ	in	the	range	of	0.1	and	4)	cirrus	clouds	have	BTD[11-12]	values	
greater	than	2.5K.	Furthermore,	BTD[11-12]	values	less	than	or	equal	to	0K	cor-
respond	to	deep	convective	clouds	with	heavy	precipitation	(Kurino	1997).	More	
recently,	Setvak	et	al.	(2003)	showed	that	convective	storms	exhibit	a	significant	
increase	in	3.7	µm	cloud	top	reflectivity.

BTD[8.5-11]	also	has	been	shown	to	be	effective	in	identifying	high	ice	clouds.	
Since	ice	particles	absorb	much	less	radiation	at	8.5	µm	than	11	µm,	high	cirrus	
clouds	 are	 expected	 to	 have	 a	BTD[8.5-11]	 greater	 than	 one	 (Roskovensky	 and	
Liou	2003).	Thies	et	al.	(2008)	considered	BTD[8.7-10.8]	and	BTD[10.8-12.1]	to	
identify cloud phase.

Using	multi-spectral	data	for	rain/no-rain	(R/NR)	detection	was	also	a	focus	of	
many	studies.	A	combination	of	VIS	and	IR	channels	was	initially	used	by	Lovejoy	
and	Mandelbrot	(1985)	and	Austin	(1987)	to	identify	R/NR	occurrences.	Capacci	
and	Conway	(2005),	Behrangi	et	al.	(2010),	and	others	have	also	found	remarkable	
improvements	in	detecting	rainy	areas	when	using	multi-spectral	data.	Lensky	and	
Rosenfeld	(2003)	implemented	the	difference	between	a	thermal	IR	channel	and	a	
mid-IR	channel,	BTD[3.7-11],	into	a	night-rain	delineation	algorithm.	Kwon	et	al.	
2009 shows improvements in detecting deep convective cloud heights by using 
Ozone	channel	9.7μm	(MODIS	channel	30).
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4.2  Satellite Data

The proposed method will benefit from more reliable and detailed information on 
cloud	classes,	obtained	 from	CloudSat	 satellite,	 to	differentiate	precipitating	and	
non-precipitating	cloud	types.	Identifying	high	cold	clouds	helps	to	screen	out	non-
precipitating clouds, and therefore reduce FAR in current precipitation algorithms. 
Among	various	types	of	clouds,	cirrus	(high)	and	altostratus	clouds	are	non-precip-
itating clouds that are the interest of this study.

Not	all	36	channels	of	MODIS	are	beneficial	in	cloud	and	precipitation	studies.	
As	explained	in	Sect.	4.1	among	different	multi-spectral	channels	there	are	a	few	of	
them that are useful in precipitation and cloud detection algorithms. Those channels 
are	in	the	range	of	water	vapor	and	infrared.	In	this	study,	a	set	of	six	WV	and	IR	
channels	of	MODIS	(6.75,	7.325,	8.55,	9.7,	11.03	and	12.02	µm)	were	selected	as	
input to the ANN model. The availability of these channels during the day and night 
makes	it	possible	to	have	a	consistent	rain/no-rain	(R/NR)	detection	algorithm	for	
day and night retrieval.

4.3  Methodology

To give an example of how different datasets are used in this study, Fig. 4.1 is presented.
Figure 4.1a	demonstrates	 the	CloudSat	overpass	 through	a	precipitation	event	

(Stage	IV	data)	over	South	Carolina	and	neighboring	states	on	August	13th,	2008	
(05:45	UTC).	The	black	line	in	Fig.	4.1a	represents	the	track	of	the	CloudSat	radar,	
while the second panel in the figure shows the vertical profile of the clouds with dif-
ferent	cloud	types	obtained	from	the	2B-CLDCLASS	product.	The	X	axis	shows	the	
pixel	number	along	the	track	of	CloudSat	(each	pixel	is	approximately	1.1	Km).	The	
Y	axis	shows	the	cloud	height	in	Km.	As	demonstrated	in	this	figure,	high	clouds	
(blue	color)	have	cloud	tops	higher	than	12	Km	and	deep	convective	clouds	(shown	
in	brown)	are	very	thick	and	have	high	cloud	tops.	Furthermore,	the	figure	displays	
PERSIANN	(panel	c)	precipitation	estimates	and	radar	observations	(panel	d)	cor-
responding	to	the	CloudSat	track.	The	PERSIANN	and	Stage	IV	data	are	3	hourly	
data	and	CloudSat	has	instantaneous	observation.	In	this	example	the	data	are	cho-
sen	in	a	way	to	have	the	minimum	time	difference	between	CloudSat	observation	
at	5:45	and	PERSIANN	and	Stage	IV	most	probably	at	5:45	and	6:00	respectively.	
Considering	panels	c	and	d,	one	can	see	that	the	maximum	amount	of	precipitation	
estimated	by	PERSIANN	coincides	with	the	high	cirrus	anvil,	which	has	the	lowest	
brightness temperature. However, ground-based data indicates that the peak of the 
storm	is	in	the	center	of	the	deep	convective	tower	(about	15	mm/hr),	which	makes	
more physical sense. Radar data estimates zero precipitation in the presence of high 
clouds.	Panels	(e)	and	(f)	in	Fig.	4.1 display cloud brightness temperature converted 
from	MODIS	radiance	data,	which	are	informative	in	terms	of	different	cloud	types.	
Panel	(e)	shows	that	the	lowest	value	of	brightness	temperature	at	11	µm	appears	
at the location of high clouds, and coincides with high precipitation estimates from 
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the	PERSIANN	product.	As	discussed	earlier,	the	brightness	temperature	difference	
between	channels	31	and	29	of	MODIS	(BTD[8.5-11])	is	a	strong	positive	value	
(greater	than	2	K)	for	high	ice	clouds.	Panel	(g)	in	the	figure	presents	the	radar	re-
flectivity	observations	by	CloudSat	showing	the	vertical	structure	of	the	convective	
zone.	MODIS	BTD[8.5–11]	is	almost	zero	in	the	presence	of	deep	convective	cloud	

Fig. 4.1  Part	 a.	An	 example	 of	 the	CloudSat	 cloud	 classification	map	 and	MODIS	brightness	
temperature	data	on	August	13th,	2008	(05:45	UTC).	a	Track	of	CloudSat	passing	through	a	storm	
measured	by	Stage	IV	precipitation	data.	b	CloudSat	vertical	cloud	profile.	c	PERSIANN	precipi-
tation	data	(mm/hr).	d	Stage	IV	precipitation	data	(mm/hr).	e	MODIS	brightness	temperature	at	
11	µm	( Kelvin).	Part	b.	f	MODIS	BTD[8.5–11]	( Kelvin).	g	Radar	reflectivity	( dBZ)
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as	shown	in	panels	(f)	and	(g).	The	distinction	between	optically	thin	clouds	(i.e.	cir-
rus)	and	optically	deep	clouds	(i.e.	convective	clouds)	from	multi-spectral	channels	
helps	to	improve	the	IR	only	algorithms.	Underestimation	of	PERSIANN	algorithm	
in	 the	 presence	 of	 deep-convective	 clouds	 is	 one	 of	 the	 limitations	 of	 IR-based	
algorithms.

Figure 4.2	 presents	 how	 the	 false	 rain	 identification	 algorithm	works.	 In	 this	
method,	 the	 cloud	 classes	 obtained	 from	 CloudSat	 are	 assigned	 to	 textural	 and	
spectral	 features	 of	 clouds	observed	by	MODIS,	whenever	CloudSat	 retrieval	 is	

Fig. 4.1  (continued)

Fig. 4.2  False	rain	identification	algorithm	using	cloud	classification	data)
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available.	A	training	data	set	is	created	from	CloudSat	and	MODIS	data	over	the	
continental	United	States.	At	each	CloudSat	track,	pixels	with	single	layer	cloud	are	
identified	and	the	cloud	class	with	cloud	multi-spectral	information	from	MODIS	
is stored in the training data matrix. The target value in the target vector is in the 
binary	 format.	 If	 the	 cloud	 class	 is	 a	 non-precipitating	 cloud	 type	 (i.e.	 high	 and	
altostratus),	the	target	value	is	1,	and	if	the	pixel	is	associated	with	other	types	of	
precipitating	clouds,	the	target	value	is	0.	The	training	database	is	then	used	as	a	
reference	to	find	the	best	cloud	class	for	the	times	that	CloudSat	data	is	not	avail-
able.	In	the	following	section,	the	details	of	the	classification	method	are	explained.

4.4  Classification

Multi-spectral	image	classification	is	an	important	technique	in	the	application	of	
remote sensing and geo-sciences. Statistical classification is a multivariate analysis 
that takes advantage of simultaneous observations coming from images on different 
spectral	bands.	Analyzing	a	set	of	input	variables	for	a	set	of	known	classes	(i.e.	
labels),	a	statistical	connection	is	created	between	the	input	features	and	the	target	
response	(i.e.	training	data	set).	Among	different	classification	techniques,	Artificial	
Neural	Networks	(ANNs)	have	been	shown	to	be	an	effective	 tool	 in	classifying	
complicated	systems	(e.g.	Hsu	et	al.	1997;	Capacci	and	Conway	2005;	Behrangi	
et al. 2009; Hong et al. 2004; Farahmand and AghaKouchak 2013;	Bellerby	et	al.	
2000; Tapiador et al. 2004).

ANNs are pattern recognition tools usually used to model complex relationships 
between	a	set	of	inputs	and	corresponding	outputs	(Bishop	1996).	These	models	are	
composed of interconnecting artificial neurons, and are employed to find statisti-
cal correlations between multi-spectral information on cloud tops and binary target 
value	(see	Fig.	4.3	for	ANNs’	model	structure).	In	other	words,	ANN	is	simply	a	
nonlinear function from a set of input variables ( )x  to a set of output variables 

Fig. 4.3  Schematic	of	the	feed-forward	three-layer	perceptron	with	6	input	variables.	The	final	
output	layer	provides	the	rain/no	rain	detection)
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(target	values,	 y )	with	 a	vector	of	 adjusted	parameters.	 ( )ω  ANNs are capable 
of mapping multivariate functions and of extracting underlying rules from noisy 
data.	In	addition,	they	are	well	suited	to	problems	of	estimation	and	prediction	in	
hydrometeorology and remote sensing. They are popular for estimating and fore-
casting	precipitation	 (Hsu	et	 al.	1997, 1999; Sorooshian et al. 2000; Hong et al. 
2004;	Behrangi	et	al.	2010),	and	for	some	other	remote	sensing	image	classification	
and	applications	(Benediktsson	et	al.	1990; Hara et al. 1995;	Ji	2000; Aitkenhead 
and Dyer 2007).	ANNs	can	approximate	any	continuous	input-output	function,	and	
its	derivatives,	to	arbitrary	accuracy	(Hornik	et	al.	1990;	Gallant	and	White	1992).

In	this	study,	a	feed-forward	back-propagation	model	with	a	single	hidden	layer	
and a sigmoidal activation function was created. The ANN model calculates the 
errors between the calculated output and given output data, and by adjusting the 
weights, minimizes the error. The general equation for ANNs is in the form of a 
linear combination of fixed nonlinear basis functions, φj (x), with the weights ωj 
and	is	in	the	form	of:

Each	basis	function,	φj (x), itself is a nonlinear function of a linear combination of 
the	inputs	(i.e.	MODIS	data),	where	the	coefficients	in	the	linear	combination	are	
parameters to be adjusted during model training.

In	the	general	ANN	equation,	f	is	the	activation	function.	In	this	study	a	sigmoi-
dal activation function was associated with all the neurons in the model, and is in 
the	form	of:

The	target	values	 in	 the	ANN	model	are	a	binary	vector	of	no-rain	clouds	(1)	or	
possible	raining	clouds	(0).	The	ANN	computes	the	value	of	the	output	based	on	the	
series	of	inputs	entered	into	the	model.	If	the	output	is	equal	or	greater	than	0.5,	it	
assumed	to	be	a	no-rain	scenario,	while	values	less	than	0.5	are	possible	rain	pixels.

4.5  Training Data Set

Six	 MODIS	 infrared	 and	 water	 vapor	 channels	 (6.75,	 7.325,	 8.55,	 9.7,	 11.03,	
12.02	μm	wavelength)	are	set	as	 input	variables	 to	 the	ANN	model	 to	 recognize	
different pattern of rain and no-rain clouds. The training data set was created by 
obtaining	information	about	MODIS	multi-spectral	data	and	CloudSat	cloud	class	
data,	whenever	CloudSat	retrieval	was	available.	Training	data	consists	of	150,000	
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cloudy	pixels	in	summer	2008.	A	one	layer	feed	forward,	back	propagation	neural	
network model was employed to identify no-rain clouds. The target to the ANN 
model is a binary matrix, having one when there is a non-precipitating cloud and 
zero	otherwise.	For	the	times	that	CloudSat	is	not	available,	the	trained	model	is	
used	to	find	the	non-precipitating	cloud	coverage	in	each	MODIS	image.

4.6  Application of the Model on Precipitation Events

Figure 4.4a	shows	precipitation	estimation	by	Stage	IV	precipitation	for	Aug.	13,	
2008	 (0545	UTC).	Panel	 (b)	on	 the	 figure	 represents	corresponding	PERSIANN	
estimation	(mm/hr).	Figure	4.4c demonstrates the false alarm precipitation that can 
be	removed	using	the	proposed	method.	Data	in	panel	(c)	are	from	2	consequent	
MODIS	granules	with	about	5	min	delays	from	each	other	(region	between	solid	
black	lines).	Pixels	with	false	precipitation	are	shown	with	red	and	blue.	The	blue	
color highlights the no-rain pixels that are falsely identified as rain pixels in the 
PERSIANN	dataset;	however,	the	algorithm	identifies	them	as	associated	with	non-
precipitating	cloud	(cirrus).	The	red	color	shows	the	false	rain	pixels	not	identified	
with this algorithm. From the total number of pixels with false precipitation, more 
than	55	%	of	pixels	are	identified	with	the	current	method.	Figure	4.5 shows the re-
sults	for	the	event	on	Jul.	22,	2008	(0805	UTC).	The	false	rain	pixels	identification	
rate	is	43	%	in	this	event.

4.7  Results and Discussions

High	false	rain	in	IR-based	satellite	precipitation	algorithms	is	one	of	 their	well-
known	 shortcomings.	 Using	 the	 multi-spectral	 images	 of	 MODIS	 satellite	 and	
unique	capability	of	CloudSat	in	observing	vertical	structure	of	clouds,	a	new	level	
of	information	can	be	added	to	the	current	precipitation	algorithms.	By	identifying	
non-precipitating clouds, the regions of no-rain can be identified and therefore the 
false rain area in satellite precipitation algorithms will be determined.

A	training	algorithm	using	ANN	method	and	unique	observations	of	CloudSat	
and	 MODIS	 is	 created	 to	 identifying	 regions	 associated	 with	 non-precipitating	
clouds. The two examples presented in this research clearly show the improvements 
gained by adding new sources of information to the current rain algorithm.
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Fig. 4.4  False	alarm	detection	using	MODIS	6	spectral	bands	and	CloudSat	CLD-CLASS	August	
13,	2008	(0545	UTC))
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Chapter 5
Integration of CloudSat Precipitation Profile  
in Reduction of False Rain
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This	study	develops	a	no-rain	detection	algorithm	that	takes	advantage	of	CloudSat	
and	MODIS	observations	to	detect	no-rain	areas.	The	CloudSat	surface	precipita-
tion	occurrence	data	set	is	a	reliable	source	to	detect	rain	or	no-rain	based	on	Cloud-
Sat radar data. The backscatter of radar data due to presence of hydrometeors near 
the	surface	confirms	the	occurrence	of	rain.	In	this	chapter,	the	CloudSat	precipita-
tion occurrence is used as a reliable source for rain detection. After explaining the 
methodology and data sources, the model training and results are presented.

5.1  Classification

The ANN classification method is used to train the algorithm. Details of the ANN 
method	for	classification	are	explained	in	Sect.	4.4.	The	same	model	structure	 is	
used for this chapter. The main difference is the target value in the training algo-
rithm.	An	ANN	model	with	20	nodes	is	created	and	their	weights	for	each	of	the	
six	MODIS	window	and	infrared	channels	are	presented	in	Fig.	5.1. Higher weight 
values show stronger input on that specific node. Figure 5.1 shows that different 
channels have different weights for summer and winter seasons.

5.2  Satellite Observations

A	set	of	6	MODIS	infrared	and	water	vapor	channels	(6.75,	7.325,	8.55,	9.7,	11.03,	
12.02	μm	wavelength)	are	considered	as	the	input	variables	to	the	ANN	model.	The	
CloudSat	Level	2-C	Precipitation	Column	algorithm	(Haynes	et	al.	2011)	provides	
information about the presence of surface precipitation. The determination of sur-
face precipitation occurrence is based on the radar reflectivity data near the surface 
and the surface reflection characteristics. Higher radar reflectivity near the surface 
increases	the	probability	of	rain	near	the	surface.	The	CloudSat	Precip.	flag	data	set,	
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determines	the	surface	rain	occurrence	based	on	the	reflectivity	values	below	2	km	
altitude	(Haynes	et	al.	2011).

The	 flag	 categorizes	 precipitation	 into	 9	 different	 groups:	 no	 precipitation,	
uncertain, rain possible, rain probable, rain certain, snow possible, snow certain, 
surface mixed precipitation, mixed precipitation possible and mixed precipitation 
certain.	In	this	study,	only	instances	of	certain	no-precipitation	were	considered	as	
NR pixels.

5.3  Training Data Set

To have a better estimation of performance of the proposed technique, the analysis 
was done for summer and winter precipitation events. Separate training for sum-
mer and wintertime were considered to account for different climate conditions in 
different seasons and improve the accuracy of the model. As explained earlier, the 
spectral	information	from	MODIS	onboard	Aqua	and	the	corresponding	CloudSat	
estimation	of	R/NR	were	considered	in	the	training	data	sets.	Data	were	randomly	
divided	into	two	groups:	training	and	testing.	The	summer	training	data	included	
about	118,000	pixels	observed	on	 the	summer	of	2008,	with	16,000	rainy	pixels	

Fig. 5.1  The	ANN	model	weights	for	summer	( left)	and	winter	( right)	seasons
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(dry	to	wet	ratio	of	7.3:1).	Similarly,	winter	training	data	set	with	a	dry	to	wet	ratio	
of	2.8:1	embraced	around	130,000	pixels	in	total	from	the	winter	of	2010.

5.4  Application of the Model on Precipitation Events

After	 training	 the	 algorithm	 using	 collocated	MODIS	 and	 CloudSat	 pixels,	 the	
ANN	model	was	used	on	MODIS	multi-spectral	images	to	identify	the	NR	regions.	
At	each	MODIS	pixel,	the	ANN	model	estimated	if	that	pixel	is	a	NR	pixel,	and	
the	results	were	compared	with	CloudSat	detections.	The	model	performance	was	
investigated	over	the	continental	United	States	for	the	summer	and	winter	of	2007.

5.5  Results and Discussions

After	training	the	model	using	the	summer	of	2008	and	the	winter	of	2010	datasets,	
the	model	validation	was	performed	on	2007	data.	CloudSat	radar	data	is	consid-
ered	as	the	truth	to	validate	the	R/NR	classification	model	presented	in	this	study.	
The	2007	summer	results	were	evaluated	over	70,000	CloudSat	pixels	and	showed	
a	78	%	accuracy	in	the	detection	rate	of	NR	pixels.	The	2007	winter	data	validation	
on	50,000	pixels	showed	a	very	high	accuracy	of	93	%.	Figures	5.2 and 5.3 display 
the distribution of different cloud types for correct NR pixel classification, as well 
as the misclassified pixels for summer and the winter seasons, respectively.

Figure 5.2 shows high clouds and altostratus are two non-precipitation cloud 
types	based	on	the	CloudSat	cloud	classification	algorithm.	Most	of	the	misclassi-
fied	NR	pixels	are	from	the	cloud	types	of	altostratus	(As)	and	altocumulus	(Ac).	
Thirty nine percent of the pixels covered by altostratus clouds were misclassified in 
NR	detection	and	the	misclassification	was	around	34	%	in	the	case	of	altocumulus	
clouds	(5.1).	The	model’s	low	performance	in	the	case	of	middle	level	clouds,	con-
firms	the	limitation	of	IR	based	algorithms	in	detecting	warm	clouds.

The distribution of different cloud classes in winter are demonstrated in Fig. 5.3. 
The first panel in the figure shows that most NR pixels are associated with high 
clouds and stratocumulus. The algorithm has the poorest performance in the case of 
middle	level	clouds,	such	as	altostratus	and	altocumulus	(see	Table	5.1).	The	same	
result was observed in summer season classification. The misclassification rate is 
14	%	in	the	case	of	altostratus	clouds	and	the	error	is	less	than	6	%	in	the	remaining	
types	of	clouds.	Model	performance	also	depends	on	the	number	of	pixels	in	the	
training dataset. The very poor model performance in the presence of deep convec-
tive	clouds,	with	43	%	detection	error	in	the	winter	season,	is	most	likely	due	to	in-
sufficient	number	of	pixels	in	the	training	dataset.	In	summer	season,	nimbostratus	
and	deep	convective	clouds	have	the	least	occurrence.	Most	no-rain	pixels	that	are	
associated with deep convective clouds and nimbostratus in summer are misclassi-
fied as rainy pixel in both summer and the winter seasons.
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As	 discussed	 in	 the	 first	 section,	 the	 PERSIANN	 dataset	 shows	 higher	 false	
alarms	 in	 the	winter	 season	 (Sorooshian	et	 al.	2011).	Applying	 the	current	 algo-
rithm, one can see an improvement of precipitation estimation in the winter season.

During summertime NR pixels associated with high clouds are identified with 
high accuracy. As discussed earlier, high clouds account for the majority of false 
rain estimations in satellite rainfall algorithms. Therefore, using the proposed meth-
odology has a significant role in reducing false rain. We also acknowledge that the 
temporal	differences	between	different	datasets	(i.e.	MODIS	and	GOES	observa-
tions)	could	affect	the	results.

Fig. 5.2  Distribution	of	different	cloud	types	in	the	case	of	correct	NR	detection	( top)	and	mis-
classifications	( bottom),	for	the	summer	of	2007
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5.6  Case Study

Two case studies on summer and winter precipitation events are presented here to 
show the application of this technique to improving the quality of satellite rain es-
timation.	The	MODIS	level	1B	data	set	has	a	spatial	resolution	of	1	km	in	contrast	
to	 the	0.25°	 (~25	km)	PERSIANN	precipitation	product.	Therefore,	 the	MODIS	
images	were	re-gridded	to	the	0.25°	PERSIANN	grids	and	then	used	as	input	to	the	
ANN model.

Fig. 5.3  Distribution	of	different	cloud	types	in	the	case	of	correct	NR	detection	( top)	and	mis-
classifications	( bottom),	for	the	winter	of	2007
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The	temporal	resolutions	of	the	data	sets	are	also	different.	PERSIANN	data	are	
aggregated	 from	30	min	 rain	estimations	 into	hourly	accumulated	precipitations.	
In	contrast,	MODIS	provides	instantaneous	observations	twice	a	day.	In	this	study,	
MODIS	images	within	20	min	of	PERSIANN	estimations	are	mosaicked	together	
into	 one	 raster	 image	 and	 then	 compared	with	 corresponding	 PERSIANN	 data.	
Corresponding	Stage	IV	data	is	presented	for	comparison	of	model	performance.	
Figure 5.4	Panel	(a)	shows	the	Stage	IV	precipitation	data	(mm/h)	on	August	5th,	
2007	(05:00	UTC).	Panel	(b)	represents	the	corresponding	PERSIANN	data	for	the	
same	 time	step	 (mm/h).	By	 finding	 the	ANN	model’s	 results	on	 the	correspond-
ing	MODIS	 images	 (two	 images	 for	August	5th,	2007	 (04:40	and	04:45	UTC)),	
the false alarms were identified. A false rain pixel is defined as a NR pixel in the 
ground-based	observation	data	(Stage	IV	data)	that	contains	precipitation	from	the	
satellite	estimations	(AghaKouchak	and	Mehran	2013).	Figure	5.4c demonstrates 
the	current	algorithm’s	results	in	identifying	false	alarms	on	PERSIANN-derived	
precipitation.	Grey	pixels	on	the	image	show	the	location	of	correct	rain	detection	
from	the	satellite,	and	red	and	blue	pixels	are	false	rainy	pixels	from	PERSIANN	
estimations. The blue color identifies the accuracy of the model in identifying NR 
pixels, while the red color demonstrates a false rain pixel that the model could not 
detect	(here	to	define	a	false	rain,	the	Stage	IV	data	is	considered	the	reference).	
Table 5.2 presents the number of rainy pixels in each dataset as well as number of 
FAR	pixels	detected.	The	algorithm	was	able	to	identify	155	false	rain	pixels	(i.e.	
62	%	reduction	in	FAR	for	this	event).	Note	that	the	region	between	the	solid	blue	
lines	shows	the	MODIS	coverage.

Figure 5.5	 is	another	example	of	 false	 rain	detection	for	November	6th,	2007	
(03:00	UTC).	Panel	(c)	in	the	figure	shows	that	the	accuracy	of	the	model	is	about	
61	%	in	this	event.	PERSIANN	estimation	shows	a	large	area	of	false	rain	on	the	
southeast side of the event and the majority of FAR pixels could be removed using 
the current algorithm. Table 5.2 presents the number of rainy pixels in each dataset 
as well as number of FAR pixels detected.

Misclassification	error	percentage	(%)
Cloud	type Summer Winter	(%)
High cloud 9 6
Altostratus 39 14
Altocumulus 34 4
Stratocumulus 15 3
Cumulus 24 4
Nimbostratus 72 5
Deep convective 68 43

Table 5.1  NR misclassifica-
tion error percentage for sum-
mer and winter seasons
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5.7  Conclusion

Previous studies have highlighted the need to improve the quality of satellite pre-
cipitation data. High false alarm ratio is one of the problems that current satellite 
products	 are	 facing	 specially	 during	 cold	 seasons.	 In	 this	 study,	 the	 ability	 of	 a	
NR	classification	model	using	the	CloudSat	data	as	well	as	corresponding	multi-
spectral	data	from	MODIS	was	investigated.

Fig. 5.4  Performance	of	the	ANN	model	in	identifying	false	rain	locations	on	August	5th,	2007	
(05:00	UTC).	a	Stage	IV	precipitation	data	(mm/h).	b	PERSIANN	data	(mm/h).	c	Model	perfor-
mance in FAR detection

 

5.7	 		Conclusion	
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An artificial neural network model was developed to take advantage of accurate 
surface	 rain	detections	 from	 the	CloudSat	 satellite.	The	CPR	 radar	data	onboard	
CloudSat	can	detect	the	presence	of	hydrometeors	near	the	surface.	A	separate	train-
ing and validation dataset was considered to estimate the accuracy of the trained 
model.	Model	training	was	performed	on	CloudSat	and	MODIS	data	in	the	summer	

5	 Integration	of	CloudSat	Precipitation	Profile	in	Reduction	of	False	Rain

Fig. 5.5  Performance	of	the	ANN	model	on	November	6th,	2007	(03:00	UTC).	a	Stage	IV	pre-
cipitation	data	(mm/h).	b	PERSIANN	data	(mm/h).	c	Model	performance	in	FAR	detection

 

Table 5.2  Model	performance	presented	in	Figs.	5.4 and 5.5
Summer Winter

No.	of	precipitation	pixels	in	the	StageIV	estimate 449 1151
No.	of	precipitation	pixels	in	the	PERSIANN	estimate 562 717
No. of the false rain pixels corrected 155 300
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of	2008	and	the	winter	of	2010.	The	summer	and	winter	2007	data	sets	were	select-
ed	to	assess	the	performance	of	the	model.	Model	validation	showed	an	accuracy	
of	 93	%	 for	winter	 and	77	%	 for	 summer	 in	 identifying	 false	 rain	 pixels.	Differ-
ent	cloud	classes	were	available	from	the	CloudSat	CLD-CLASS	product,	and	the	
model performance was evaluated in presence of these different cloud classes. The 
model performance was the least accurate in case of deep convective and middle 
level	(e.g.	altostratus	and	altocumulus)	cloud	types.

By	reducing	false	rain,	the	quality	of	satellite	precipitation	products	for	practi-
cal	applications	(e.g.	flood	forecasting)	will	significantly	improve.	In	the	future,	it	
would	be	possible	to	include	multi-spectral	data	from	Advanced	Baseline	Imager	
(ABI)	sensor	aboard	the	future	GOES-R	satellite	in	order	to	overcome	the	limited	
retrievals	of	MODIS.

The proposed technique has the potential to be integrated into near real-time 
satellite precipitation data sets to reduce false alarms from the algorithms. Two case 
studies	presented	in	the	winter	and	summer	2007,	using	hourly	PERSIANN	data,	
showed	a	reduction	of	false	rain	in	comparison	with	Stage	IV	radar	data.
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Chapter 6
Cloud Classification and its Application  
in Reducing False Rain
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6.1  Introduction

Clouds	are	a	key	component	in	the	weather	and	climate	studies.	However,	their	rep-
resentations in climate models are associated with high uncertainty. For example, 
some studies show that compared to observations of real clouds, models signifi-
cantly enhance solar radiation reflected by low clouds. This finding has major im-
plications	for	the	cloud-climate	feedback	problem	in	models	(Stephens	et	al.	2008; 
Stephens 2010).	A	cloud	classification	scheme	would	be	a	valuable	tool	for	illumi-
nating the uncertainty of our models and algorithms and improving the accuracy of 
weather, climate, and precipitation studies. After classifying clouds into different 
classes, the precipitation estimation can be improved by integrating the classifica-
tion scheme into the precipitation algorithm.

Different cloud classification techniques can be either statistically or physical-
ly based, using different cloud textural, spectral, and physical features obtained 
from	 satellite	 observations	 (Rossow	 and	 Schiffer	 1999; Tian et al. 2000, Welch 
et al. 1992;	Luo	et	al.	1995; Tovinkere et al. 1993;	Bankert	1994; Wang and 2001; 
Bankert	and	Wade	2007).	Physically	based	cloud	type	identification	using	weather	
satellites	evolved	during	the	1980s	and	early	1990s	mainly	by	using	multi-spectral	
channel	 differences.	The	 brightness	 temperature	 differences	 (BTD)	between	 two	
or	three	channels	were	considered	to	identify	a	certain	type	of	clouds.	In	addition	
to	BTD,	VIS	and	IR	Channel	combinations	help	to	identify	different	cloud	phases	
such	as	liquid,	ice	or	mixed	phase	clouds	(see	Sect.	4.1	for	details).

More	sophisticated	techniques	include	cloud	microphysical	and	physical	char-
acteristics.	For	example,	the	International	Satellite	Cloud	Climatology	Project	(IS-
CCP)	(Rossow	and	Schiffer	1999)	uses	the	information	on	cloud	top	pressure	and	
cloud	optical	depth	to	classify	clouds	into	seven	groups:	cumulus	(Cu),	stratocumu-
lus	(Sc),	altocumulus	(Ac),	altostratus	(As),	nimbostratus	(Ns),	cirrus,	cirrostratus	
or deep convective clouds.

In	contrast,	statistical	classification	methods	can	be	a	more	effective	means	of	
including multichannel data and information to identify different cloud types under 
various surfaces and latitudes. Supervised and unsupervised statistical classification 
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techniques	such	as	 the	K-mean,	Maximum	Likelihood	and	Artificial	Neural	Net-
work	 (ANN)	have	been	used	 in	multi-spectral	 image	classification	 (Falcone	and	
Azimi-Sadjadi 2005).	In	a	supervised	training	of	a	model,	a	set	of	observations	with	
their “true” cloud classifications is assigned and after a training period, this model 
predicts the cloud class for unknown cloud scenarios.

Hong	et	 al.	 (2004)	 showed	application	of	 a	 feature-based	 cloud	 classification	
technique in satellite precipitation estimation. They classified clouds into a matrix 
of	20	×	20	based	on	cloud’s	coldness,	texture	and	geometry.	Then,	they	assigned	a	
rain rate to each pixel based on the brightness temperature-rain rate relationship for 
each group. The results of their technique show promising results in incorporating 
cloud data into precipitation algorithms.

In	 this	 study	a	cloud type classification algorithm is developed to distinguish 
different	clouds	based	on	their	multi-spectral	features	and	CloudSat	observations.	
After explaining the methodology and data, validation and application of the model 
is presented.

6.2  MODIS Cloud Mask

MODIS,	a	key	instrument	on	NASA’s	EOS	Terra	and	Aqua	satellites,	provides	a	
cloud	classification	scheme	(Cloud	Mask;	Platnick	et	al.	2003).	The	MODIS	cloud	
classification	 takes	 advantage	 of	 three	 datasets	 including	 radiances	 in	VIS,	 near	
infrared	and	IR	images	and	BTD	and	texture	(local	standard	deviation)	of	images.	
First, the mask identifies the likelihood of cloud cover for any given pixel by con-
sidering the reflectance in multi-spectral bands. The next step is identifying cloud 
top	pressure	by	either	a	CO2	slicing	 technique	or	emission	from	11	µm	channel.	
The third step is to determine the cloud’s thermodynamic phase, and the last step 
retrieves optical thickness and particle size.

There	are	a	 total	of	15	cloud	classes	 in	 the	MODIS	cloud	mask	(presented	 in	
Table 6.1).

However,	MODIS’s	physical	cloud	classification	methods	suffer	 from	clouds’	
high variability and the dependence of cloud radiance on the emissivity of the sur-
face	over	land.	In	addition,	MODIS	classification	does	not	identify	all	cloud	types,	
only cirrus and high clouds.

The	 cloud	 profiling	 radar	 onboard	CloudSat	 can	 penetrate	 deeply	 into	 nearly	 all	
cases	of	non-precipitating	clouds.	Using	a	CloudSat	profile	radar	cloud	map,	a	cloud	
classification model can be trained and then used for better rainfall estimation.

6.3  Image Classification Using Self Organizing Maps

A	nonlinear	mapping	Artificial	Neural	Network	(ANN)	system	is	developed	to	clas-
sify	cloud	images	into	seven	cloud	categories	using	CloudSat	and	MODIS	data	sets.	
The ANN architecture to be employed in this study is known as a Self-Organizing 
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Feature	Map	(SOFM)	network	(Kohonen	2006).	The	CloudSat	radar	images	show	
distinguishable features of different cloud types. The classification layer categoriz-
es	MODIS	images	into	a	number	of	characteristic	groups,	each	of	which	represents	
a specific cloud pattern in part of the input domain.

SOFM	is	an	unsupervised	classification	technique	that	represents	multidimen-
sional	 input	 data	 in	 a	 lower	 dimensional	 space.	 In	 this	 study	 the	 input	 data	 are	
mapped	into	a	2D	dimensional	space.	SOFMs	are	also	considered	a	dimension	re-
duction algorithm called vector quantization. Figure 6.1 shows the structure of a 
SOFM	model.	Inputs	are	fully	connected	to	a	two	dimensional	discrete	map	consist-
ing	of	hexagonal	nodes.	Each	vector	of	data	from	the	input	is	placed	onto	one	of	the	

Fig. 6.1  Structure	of	a	SOFM	model

 

Class	index Content
	 1 Confident	clear	water
	 2 Confident	clear	coastal
	 3 Confident	clear	desert	or	semiarid	ecosystems
	 4 Confident	clear	land
	 5 Confident	clear	snow	or	ice
	 6 Shadow of cloud or other clear
	 7 Other confident clear
	 8 Cirrus	detected	by	solar	bands
	 9 Cirrus	detected	by	infrared	bands
10 High	clouds	detected	by	CO2 bands
11 High	clouds	detected	by	6.7	mm	band
12 High	clouds	detected	by	1.38	mm	band
13 High	clouds	detected	by	3.7-and	12	mm	bands
14 Other clouds or possible clouds
15 Others

Table 6.1  Initial	classes	from	
MODIS	cloud	mask



6 Cloud Classification and its Application in Reducing False Rain46

grids of the map with the minimum distance between this vector and the map grid 
(closest	weight	vector).

Figure 6.2 schematically shows how the model structure is trained. The blue area 
shows	the	input	space	(training	dataset).	The	SOFM	nodes	(black	grids)	are	ran-
domly distributed in the space. The white dot shows the current training vector from 
the	training	dataset.	The	nodes	closest	to	the	input	vector	(highlighted	in	yellow)	
will be moved to have a minimum distance to the training vector. After introducing 
all the vectors in the training dataset to the model, the final map will be a represen-
tative of input data distribution. During the training, the distance between the input 
vector	(xi)	and	the	node	centers	will	be	calculated	(Equation	6.1)

 

(6.1)

the	best-matching	SOFM	cluster	c	(winning	node)	is	 the	one	corresponding	with	
the	minimum	distance	(dc)	between	the	input	feature	vector	and	the	SOFM	connec-
tion	weights	ωij	(Equation	6.2).	ωij is the weight matrix that represents the center of 
clusters.

	 (6.2)

A	SOFM	with	15	×	15	hexagonal	nodes	are	applied	in	this	study.

6.4  Data Pre-processing

Data Normalization	 Brightness	temperature	values	and	reflectance	data	have	dif-
ferent	 units	 and	 ranges	 of	 variability.	 By	 normalizing	 there	 data,	we	 reduce	 the	
effects of data range variations. Scaling all the values so that they fall in the range 
of	[0—1]	will	improve	the	model’s	training	accuracy	and	reduce	the	training	time.

Visible Data Correction Visible data should be normalized based on the sun’s 
direction	and	the	time	of	day.	Behrangi	(2009)	showed	the	effectiveness	of	normal-
izing	visible	data	by	 the	 sun	zenith	angle	 (SZA).	He	concluded	 that	multiplying	
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Fig. 6.2  A	 schematic	 diagram	 of	 the	 SOFM	 training	 (Source:	 http://en.wikipedia.org/wiki/
Self-organizing_map)
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by	cos(SZA)−1 resulted in a larger portion of visible data that can be used in the 
analyses. This study uses the same approach to normalize the visible channels. Only 
pixels with SZA <	60o are considered to minimize the uncertainty associated with a 
large SZA.

 
(6.3)

Uniform Distribution of Data One of the other methods to increase the accuracy 
of model’s training is to use a uniform distribution of data. Different cloud types 
have different distributions and that affects the results of the model outcome. The 
higher the number of samples in the training dataset, the more likely it is that model 
will	be	tuned	toward	a	given	specific	cloud	type	(Hsu	et	al.	2002).

6.5  Training and Validation Datasets, Summer Season

The training does not include clear sky conditions because they happen more often 
than	cloudy	scenes	and	influence	the	ANN	model	weights	(Capacci	and	Conway	
2005).	To	filter	out	clear	sky	pixels,	a	cloud	mask	is	applied	first.	To	identify	cloudy	
scenes,	pixels	with	the	highest	probability	of	cloud	presence	from	the	MODIS	cloud	
mask dataset are considered as cloudy pixels.

Figure 6.3 represents the variability in the input data. The red line in the middle 
of the box represents the median and two boundaries of the box are the twenty-fifth 
and seventy-fifth percentile of the data. The outliers are plotted separately by a red 
cross.	By	definition,	the	outlier	is	a	value	that	is	more	than	1.5	times	the	interquar-
tile	range	(length	of	the	box)	away	from	the	top	or	bottom	of	the	box.	The	outlier	
data plotted in the figure are included in the training of the model since they are rep-
resentative of upper and lower tails of distribution corresponding to extreme obser-
vation data. There is a large difference between the range of values in water vapor 
and	IR	channels	compared	with	visible	data	as	shown	in	the	figure.	Normalizing	the	
values	of	the	IR	and	VIS	channels,	confining	them	to	a	range	of	0—1	removes	the	
effects of different units in the dataset. Visible data are also normalized to account 
for	the	effects	of	sun	zenith	angel	using	Equation	6.3.

Figures 6.4 and 6.5 present the distribution of data used for training and valida-
tion	for	summer	2008	and	2007,	respectively.	Summer	2008	training	data	consist	of	
more	than	121,000	cloudy	pixels	and	summer	2007	covers	70,000	cloudy	samples.	
Cloud	classes	of	cumulus	and	nimbostratus	in	summer	datasets	have	very	limited	
samples	(occurrence)	and	were	removed	from	the	analysis.

The figures also show that high clouds are the dominant type of clouds during sum-
mertime.	Alto-stratus	and	altocumulus	clouds	have	almost	the	same	distribution.	Cloud	
type	distribution	for	2007	and	2008	are	quite	similar.	Note	that	distribution	of	different	
cloud types is not uniform. High clouds happen more often than any other cloud type. 
Using the original data distribution in the training algorithm will tune model parameters 
toward	high	clouds	(dominant	cloud	type).	As	explained	in	Sect.	6.4,	a	uniform	distribu-
tion of data is introduced to the model in the training phase.

Ref norm Ref SZA_ *cos( )= −1



6 Cloud Classification and its Application in Reducing False Rain48

6.6  Training and Validation Datasets, the Winter Season

Winter	2010	and	2007	data,	each	with	more	than	50,000	cloudy	pixels,	are	consid-
ered in the training and validation process. Figures 6.6 and 6.7 show the histogram 
of	2010	and	2007	datasets,	respectively.	Comparing	figures,	large	differences	can	
be seen in cloud type distributions. Nimbostratus, a thick cloud that causes precipi-
tation	with	prolonged	rain	events,	was	the	dominant	cloud	type	in	winter	2010.	On	
the	other	hand,	winter	2007	was	 relatively	drier	and	had	mainly	 inhomogeneous	

Fig. 6.3  A	box-plot	of	6	MODIS	channel	input	data,	summer	2008
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Fig. 6.4  Distribution	of	different	cloud	types	in	the	input	data,	summer	2008

Fig. 6.5  Distribution	of	different	cloud	types	in	the	validation	dataset,	summer	2007
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shallow	stratocumulus	clouds.	Many	pixels	were	associated	with	no-rain	clouds,	
such as high and altostratus clouds.

Because	of	large	differences	in	the	distribution	of	data	in	2010	and	2007,	and	
also to increase the sample size, both years’ data are combined and a subset with 
uniform distribution is considered for training.

Fig. 6.6  Distribution	of	different	cloud	types	in	the	training	dataset,	winter	2010

Fig. 6.7  Distribution	of	different	cloud	types	in	the	validation	dataset,	winter	2007
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Figure 6.8	shows	the	distribution	of	multi-spectral	data	for	7	MODIS	spectral	
channels	that	are	used	in	the	training	phase.	As	shown	in	the	figure,	channels	29,	
31	and	32	have	a	similar	range	of	data,	and	channel	27	(6.535–6.895	μm),	a	water	
vapor channel, has a slightly different range of brightness temperature values com-
pared to other channels.

Fig. 6.8  A	box-plot	of	7	MODIS	channel	input	data,	winter	2010
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6.7  SOFM Model for Summer Season

Using	a	uniform	distribution	of	input	data,	the	SOFM	model	is	trained	to	classify	
clouds into different groups. To select a uniform distribution, the cloud type with 
minimum occurrence was selected and the same number of pixels was randomly 
picked	from	other	cloud	types	in	the	training	dataset.	In	the	summer	dataset,	deep	
clouds occur less often and the same number of cloudy pixels was chosen from 
other	 cloud	groups.	After	 about	5000	 iterations,	 the	data	 samples	 are	distributed	
onto	a	15	×	15	map.	Figure	6.9	shows	the	sample	distribution	on	a	2-D	map.	The	
figure	also	 shows	 the	 structure	of	 the	SOFM	nodes.	Each	node	has	a	hexagonal	
shape connected to six neighboring nodes. The number in the middle of each node 
shows the number of samples located on each node. For example, a node labeled 
178	represents	178	cloudy	pixels	from	the	training	dataset.	Pixels	are	arranged	in	
correspondence to other pixels with similar properties. There are two areas on the 
map with larger distributions of samples, one on the right and the second one on 
the left. The size of the hexagons on the map is related to the number of samples on 
that particular node.

Figure 6.10	shows	the	weight	(cluster	center)	of	each	input	feature	on	the	SOFM	
map.	The	normalized	values	(ranging	from	0	to	1)	are	shown	with	corresponding	
colors	changing	from	blue	to	red.	Blue	represents	smaller	values	(colder	brightness	
temperature	or	lower	reflectance	on	VIS	data)	and	red	represents	warmer	pixels	or	
pixels	with	 higher	 reflectance.	Comparing	 subplots	 of	Fig.	 6.10 shows the clus-
ters located on the lower right corner of the map correspond to colder pixels with 
lower	brightness	temperature	(higher	elevated	clouds)	and	pixels	on	the	bottom	and	
left	corners	have	higher	reflectance	values	(most	likely	thicker	clouds).	Comparing	

Fig. 6.9  Distribution	of	different	samples	on	a	SOFM	map
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Figs. 6.9 and 6.10 reveals that most of the samples are located on the clusters with 
low	reflectance	and	medium	temperature	on	IR	(clusters	on	the	right	hand	side)	or	
warmer	tops	with	higher	reflectance	(left	hand	side).

After training the algorithm, we can check the distribution of cloud pixels on the 
SOFM	map.	Fig.	6.11	shows	the	number	of	cloudy	pixels	on	each	cluster.	Compar-
ing Figs. 6.11 and 6.10 shows some general characteristics of clouds. For example, 
deep convective clouds are positioned on the lower part of the map. This area cor-
responds to low brightness temperature and high reflectance in the visible channel. 
Deep convective clouds have the coldest top temperatures. As explained earlier, the 
total number of samples selected from each cloud group in the training dataset is 
the same.

Figure 6.12	 shows	 the	 probability	 of	 each	 cloud	 type	 on	 the	 SOFM	clusters.	
Equation	6.4	explains	how	to	calculate	the	probability	of	each	cloud	type	on	each	
node.

 
(6.4)

Where, ( )ijP x  is the probability of cloud type i on cluster j.
Sij is the number of cloud samples of type i on cluster j.i	changes	from	1	to	7	(7	

cloud	types)	and	j	changes	from	1	to	225	(total	number	of	clusters	on	a	15	×	15	map).	
Skj represents the total number of cloud samples on node j.
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Fig. 6.10  Weight	of	different	input	features	on	the	SOFM	map
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Fig. 6.11  Number	of	cloud	samples	on	each	SOFM	cluster

 

Fig. 6.12  Probability	of	various	cloud	types	on	SOFM	clusters
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After finding the probability of each class on every cluster, the dominant cloud 
class on each cluster can be determined. The dominant cloud type is the cloud type 
with the highest probability. After finding the most probable cloud type at each 
cluster,	the	decision	matrix	can	be	generated.	If	there	is	no	cloud	sample	located	on	
any particular cluster, there is no decision on that cluster. Figure 6.13 represents the 
decision matrix for the summer season. There are two no-decision clusters in the 
summer season decision map.

The confidence of each decision cluster can also be determined. The confidence 
is defined as the probability of the dominant cloud type on each cluster. The higher 
the probability, the better the confidence level of the classification.

Figure 6.14	 shows	 the	 confidence	 level	 of	 the	 classification	map.	Comparing	
Figs. 6.14 and 6.13 shows higher confidence in occurrence of high cloud and stra-
tocumulus. The decision confidence on the upper right corner clusters is low. The 
upper right corner corresponds to low reflectance on the visible channel and warm 
tops	(mainly	middle	level	clouds).

6.8  Validation of Cloud Classification Model, 
Summertime

To demonstrate the accuracy of the classification model, the model is calibrated 
against	the	summer	2007	dataset.	Knowing	the	original	cloud	types	from	CloudSat,	
the	2007	pixels	were	classified	using	the	created	model	and	then	compared	with	the	

Fig. 6.13  Decision matrix, summer season
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CloudSat	cloud	types.	The	results	are	presented	in	Fig.	6.15. High clouds and deep 
convective clouds have the highest accuracy and the classification accuracy is low-
est in the case of middle level clouds. As discussed earlier the miss-classification 
between	high	cirrus	and	deep	convective	is	one	of	 the	shortcomings	of	IR-based	
algorithms	that	leads	to	false	rain	detection.	Integrating	the	current	cloud	classifi-
cation model into the precipitation algorithm, reduces the false rain in presence of 
high clouds.

6.9  SOFM Model for the Winter Season

A	uniform	distribution	of	data	drawn	from	winter	2010	and	2007	data	is	considered	
to	train	the	SOFM	model.	After	5000	iterations,	the	distribution	of	samples	on	the	
SOFM	map	is	presented	in	Fig.	6.16.

Figure 6.17	shows	the	weight	(cluster	center)	of	each	input	feature	on	the	SOFM	
map	 in	winter	 classification	data.	The	X	and	Y	axes	 are	 the	15	×	15	cluster	map	
and	the	normalized	brightness	temperature	or	visible	reflectance	data	(ranging	from	
zero	to	one)	are	shown	on	the	map.	The	left	hand	side	and	bottom	clusters,	corre-
spond to high visibility and the upper right corner corresponds to pixels with lower 

Fig. 6.14  Decision confidence of summer classification

 



6.9	 SOFM	Model	for	the	Winter	Season 57

visibility. Higher brightness temperature samples are placed on the top part of the 
SOFM	map	(shown	in	red	on	Fig.	6.17).

Figure 6.18 shows the distribution of cloudy samples from each cloud type on 
the	2D	map.	Because	we	have	used	a	uniform	distribution	of	clouds	in	the	training	
(Hsu	et	al.	2002),	one	can	see	that	there	are	equal	numbers	of	samples	from	each	
cloud	type	distributed	on	the	SOFM	clusters.

Fig. 6.15  The accuracy of summertime cloud classification

 

Fig. 6.16  Distribution	of	training	samples	on	the	SOFM	map
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Fig. 6.17  Weight	of	different	input	features	on	the	SOFM	map

 

Fig. 6.18  Number	of	cloud	samples	on	each	SOFM	cluster
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Deep clouds, such as deep convective clouds, appear on the lower part of the 
map	that	corresponds	to	low	brightness	temperature	and	high	visible	reflectance.	In	
general, clouds with high albedo have a large optical depth and are thicker. On the 
other hand, high clouds correspond to low reflectance due to their shallow depth. 
Middle	level	clouds	fall	in	the	middle	of	the	2D	map.	NS	clouds	are	another	distinct	
type	of	cloud	that	are	located	near	deep	convective	clouds	on	the	SOFM	map	but	
appear	lower	in	the	atmosphere	(warmer	in	IR	channels)	and	have	lower	albedo.

Equation	6.4	is	used	to	find	the	probability	of	each	cloud	type	on	each	cluster.	
Fig. 6.19 shows the probability of each cloud type on every cluster. The figure 
shows low probability of cloud types and spread distribution of samples.

The decision matrix depicts the dominant cloud type on each cluster. After run-
ning the model three times, the decision matrix is created based on the results and 
is presented in Fig. 6.20.

Figure 6.21 shows the decision confidence for the winter season classification. 
The low confidence values represent poor performance of the model in the win-
ter	 season.	 In	 general,	 satellite	 observations	 have	 better	 results	 in	 summer	 com-
pared	to	the	winter	due	to	dominance	of	convective	storms.	(see	also,	Mehran	and	
AghaKouchak 2014;  Sorooshian et al. 2011;	AghaKouchak	and	Mehran	2013)

Fig. 6.19  Probability	of	various	cloud	types	on	SOFM	clusters
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Fig. 6.21  Decision confidence of winter classification

Fig. 6.20  Decision matrix, the winter season
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6.10  Validation of Cloud Classification Model, the Winter 
Season

Validation	of	the	winter	season	dataset	 is	performed	on	a	subset	of	the	2007	and	
2010	dataset	that	was	not	used	in	the	model	training.	The	validation	results	show	
low accuracy in the classification of cloud groups. Nimbostratus clouds have the 
highest	accuracy	that	is	37.2	%	(Fig.	6.22).

6.11  Conclusion

The poor result of cloud classification in the winter season is not surprising because 
satellite observations tend to have weaker observation accuracies in winter. Acker-
man	et	al.	(2009)	confirm	discrepancies	among	different	PMW	sensors	in	detect-
ing wintertime high latitude cloud properties because of similar spectral radiances 
between clouds and the background area. The same study highlights differences 
between	MODIS	sensors	onboard	Terra	and	Aqua	due	to	their	respective	instrument	
performances.

The shortcomings of wintertime satellite observations are not unique to cloud 
detection.	Aghakouchak	et	al.	(2012)	discusses	high	systematic	errors	in	wintertime	
satellite	observations	 in	detecting	precipitation.	Consistently	missed	precipitation	
in satellite products was also the dominant cause of error in winter observations as 
reported	by	Tian	et	al.	(2009).	McCollum	et	al.	(2002)	studied	PMW-based	satellite	
rainfall	data	over	the	United	States	and	showed	underestimations	in	wintertime.	In	

Fig. 6.22  The accuracy of winter season cloud classification
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addition,	Rozumalski	(2000)	showed	better	IR-based	satellite	estimations	in	sum-
mertime compared to winter season.

The main reason in better summertime estimation is the dominance of convec-
tive	clouds.	Because	of	their	high	altitude	and	ice	particles,	convective	clouds	are	
easier to be detected in satellite rain estimations. The probability of detection of rain 
is	very	high	in	summer	estimations	as	shown	in	Chap.	2.

Summertime distribution of clouds also shows significant presence of high cir-
rus	clouds.	The	base	of	high	clouds	is	located	in	elevations	higher	than	7	km.	They	
consist	of	ice	particles	and	appear	very	cold	in	IR	images.	In	contrast	to	deep	con-
vective	clouds,	high	clouds	are	thin.	Multi-spectral	data	are	shown	to	be	effective	in	
identifying cirrus clouds.

The distribution of clouds in wintertime is different. A large portion of cloudy 
pixels	 are	 associated	with	nimbostratus	 (winter	2010)	 and	 stratocumulus	 (winter	
2007).	Both	of	these	cloud	types	are	low	to	mid-level	clouds.	Ns	clouds	are	located	
at	elevations	lower	than	4	km	and	Sc	clouds	appear	lower	than	2	km	altitude.	Their	
low	altitude	makes	 them	appear	warm	in	 the	IR	brightness	 temperature	data	and	
challenging to be identified. Ns clouds sometime look similar to other middle level 
clouds such as stratus and stratocumulus or even altostratus clouds. The difference 
between Ns and the three mentioned clouds is that Ns clouds produce precipitation.

In	addition,	as	discussed	in	Sect.	3.2,	wintertime	detection	of	middle-level	clouds	
in cold winters in high and mid-latitudes is challenging. The snow-covered cold 
surface	might	not	be	distinguishable	from	low	and	middle-level	clouds.	It	is	also	
difficult to identify low or middle-level clouds in high mountainous regions since 
the surface elevation may be at the same elevation as clouds.

These results show that with the current sensor capabilities it is difficult to iden-
tify middle level clouds and there is a need for radar data. Radar can penetrate 
through the clouds to see the vertical structure of clouds. Having a three dimen-
sional observation, one can provide a cloud classification algorithm with the ability 
to identify middle and low level clouds in addition to high level clouds.
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False alarm is one of the shortcomings of satellite precipitation estimates that needs 
to	be	improved.	Many	studies	have	quantified	the	FAR,	bias	and	errors	of	satellite	
precipitation estimates. However, reducing the FAR is an essential step in improv-
ing	the	quality	of	satellite	data.	In	this	research,	three	techniques	are	proposed	to	
reduce the FAR by integrating information from multi-spectral satellite imagery as 
well	as	satellite	radar	observations.	MODIS,	a	multi-spectral	satellite	sensor,	ob-
serves	the	atmosphere	in	36	spectral	channels,	providing	a	special	source	of	infor-
mation	for	cloud	observation.	On	the	other	hand,	CloudSat	has	two	products,	Cloud	
Type	and	Precipitation	Occurrence,	that	can	add	a	new	dimension	to	the	IR-based	
precipitation	algorithms.	In	the	first	approach,	the	cloud	type	classification	dataset	
from	CloudSat	was	used	as	a	reference	to	find	the	non-precipitating	cloud	types.	
One of the reasons for FAR in satellite precipitation data is the presence of high 
non-precipitating	clouds	such	as	cirrus	or	cirrus	anvil.	Generally,	the	areal	coverage	
of satellite precipitation estimation is larger than that of ground observation, pri-
marily due to presence of cirrus anvil. Finding the pixels with anvil coverage, one 
can eliminate the false rain estimations from the satellite product. A trained neural 
network	model	using	six	MODIS	water	vapor,	window	and	infrared	channels	(6.75,	
7.325,	8.55,	9.7,	11.03,	12.02	μm	wavelength)	as	the	input	and	CloudSat	cloud	type	
as the target showed a remarkable improvement in elimination of false rain in the 
precipitation algorithm.

The second approach to identify false rain is to use the satellite radar observa-
tion	to	find	location	of	false	rainy	pixels.	CloudSat	is	equipped	with	cloud	profiling	
radar	 (CPR)	 that	 provides	 radar	 observations	 near	 the	 surface.	The	 precipitation	
column algorithm uses the radar data in addition to surface reflection characteristics 
to	identify	the	occurrence	of	rain	over	land.	The	main	advantage	of	the	CloudSat	
radar	compared	to	ground-based	radar	is	that	CloudSat	orbits	the	earth	almost	at	the	
same	time	as	MODIS.	Because	precipitation	processes	can	happen	in	short	period	
of time, having simultaneous observations is an important key to using multiple 
data	sources.	An	ANN	model	was	trained	based	on	six	MODIS	channels	to	make	a	
connection	between	MODIS	observations	and	rain	occurrence.	The	trained	model	
has	the	ability	to	estimate	rain	or	no-rain	regions	on	MODIS	imagery.
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In	addition	to	using	cloud	type	classification	data	from	CloudSat,	a	trained	cloud	
classification model was created in this research using a neural network model to 
find	no-rain	clouds	on	the	MODIS	image	and	filter	non-precipitating	regions.	The	
results show promising outcomes for the summer season data to classify high no-
rain	 clouds	with	 70	%	 accuracy.	The	winter	 season	 cloud	 type	 classification	 has	
some limitation that needs to be further improved.

The	following	objectives	mentioned	in	Chap.	1	were	tested	and	addressed	in	this	
dissertation:

1.	 Using	multi-spectral	data	in	satellite	precipitation	algorithms	will	help	improve	
precipitation	algorithms.	There	is	a	need	to	move	from	single	IR	channel	esti-
mations to multi-channel precipitation algorithms. The first objective of this 
dissertation is to show the effectiveness of using multi-spectral data in satellite 
precipitation estimation.

To	overcome	the	limitations	of	IR-based	observations	in	satellite	precipitation	es-
timation,	multi-spectral	data	can	be	used.	Moving	from	single	channel	to	multiple	
channels in satellite products has been a topic of current precipitation estimation 
research.	Multi-spectral	 data	 help	 to	 observe	 some	 information	 beyond	 only	 top	
cloud brightness temperature. High vs. low clouds and thin vs. thick clouds are 
distinguishable when considering brightness temperature in various spectral wave-
lengths. The distinction between high non-precipitating and deep convective clouds 
is	possible	using	multi-spectral	data.	In	this	research,	a	set	of	six	MODIS	WV	and	
IR	channels	are	used	in	combination	with	surface	rain	occurrence	data	to	find	the	
no-rain regions. Using an ANN model for summer and winter seasons, the perfor-
mance	of	more	than	77	and	93	%	accuracy	was	achieved	for	summer	and	winter	sea-
sons,	respectively.	In	addition,	the	same	model	was	used	on	real-time	PERSIANN	
precipitation	data.	Results	show	false	alarm	removal	of	62	and	61	%	for	two	case	
studies	of	summer	and	winter	season	PERSIANN	data	in	comparison	with	ground	
radar, respectively.

2.	 The	second	objective	of	 this	dissertation	 is	 to	show	that	satellite	precipitation	
algorithms will benefit from information on cloud structure and characteristics. 
Clouds	 create	 precipitation,	 and	 adding	 information	 about	 different	 types	 of	
clouds will improve precipitation algorithms.

IR-based	algorithms	are	indirect	rainfall	estimation	techniques	that	measure	the	top	
cloud temperature. The precipitation estimation algorithms use empirical relation-
ships between cloud top temperature and measured rainfall to estimate precipita-
tion.	In	addition	to	multi-spectral	data,	CloudSat	provides	a	unique	set	of	observa-
tion of cloud vertical profile that was shown to be an effective tool in satellite-based 
precipitation	estimation.	CloudSat	cloud	type	classifies	clouds	into	seven	different	
groups. Among different types of clouds, cirrus and altostratus are non-precipitat-
ing. A neural network model was trained to distinguish these cloud types. After 
identifying non-precipitating cloud coverage regions, the rain estimation from satel-
lite products can be eliminated.



677.1	 	Future	Work	

CloudSat	only	provides	cloud	type	classification	on	a	very	narrow	swath.	In	this	
research,	a	self	organizing	feature	map	(SOFM)	model	was	used	to	classify	clouds	
into	seven	types.	In	this	approach,	on	each	MODIS	image	the	clouds	are	classified	
into one of seven different types. Finding the non-precipitating clouds are of interest 
to this study to remove falsely rain pixels. The classification results showed promis-
ing results on summertime data.

3.	 The	main	 reason	 for	 false	 rain	 observations	 in	 satellite-based	 products	 is	 the	
presence of high cirrus clouds. These highly elevated clouds have cold cloud 
tops	 in	 IR	 imagery.	Therefore,	 they	 show	 false	 rain	 signals	 in	 satellite-based	
estimations. The third objective is to show that by identifying and filtering cold 
cirrus clouds false rain reduces.

A considerable portion of false rain pixels are associated with high cirrus clouds 
and cirrus anvil. These cloud types with high altitudes are composed of ice crystals. 
Because	of	their	very	cold	tops,	they	often	appear	as	rain	in	IR-based	algorithms.	
Larger	spatial	rain	coverage	on	the	ground	in	the	case	of	deep	convective	storms,	
confirms	the	false	rain	estimation	in	case	of	cirrus	anvil	cloud.	Integrating	multi-
spectral	MODIS	data	and	CloudSat	observations	showed	that	most	of	no-rain	pixels	
were associated with high clouds. The trained model was able to identify no-rain 
high	clouds	with	the	accuracy	of	91	and	94	%	in	summer	and	winter	season	valida-
tion studies, respectively.

7.1  Future Work

The following future research directions are suggested after completing this re-
search.

1.	Deriving various rainfall algorithms based on different cloud types.
	 In	this	study,	a	new	cloud	classification	algorithm	was	developed	that	showed	

promising results for summertime cloud type classification. After finding dif-
ferent types of clouds, separate rain estimation algorithms can be developed for 
each cloud type to achieve a better accuracy in rainfall detection. For example, 
the type of rainfall events from nimbostratus clouds is prolonged and not very 
heavy.	In	contrast,	deep	convective	clouds	usually	produce	intense	precipitation	
events. After finding the type of cloud system, a better estimation of rainfall is 
foreseeable.

2.	 Integrating shortwave infrared channels in the multi-spectral channel 
consideration.

	 In	this	study,	the	spectral	data	in	the	range	of	shortwave	IR	are	not	considered	
due to their solar contamination during daytime. The shortwave data can be used 
at	night	or	during	daytime	after	correction.	In	future	studies,	the	shortwave	IR	
data can be added to this study after reflectance correction.
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3.	 Adding textural information for cloud classification.
	 In	addition	to	multi-spectral	data,	 textural	 information	is	also	useful	 to	distin-

guish different cloud types. The degree of smoothness of the texture is one of 
the	valuable	information	that	can	be	used	to	identify	homogeneous	clouds	(e.g.	
stratiform)	vs.	non-homogeneous	clouds	(e.g.	convective	clouds).

4.	 A global cloud classification system is achievable using multi-spectral data 
available from future GOES-R satellite.

	 In	 the	 future,	 there	 is	 a	 possibility	 to	 include	 multi-spectral	 data	 from	 the	
Advanced	 Baseline	 Imager	 (ABI)	 sensor	 on	 board	 the	 future	 Geostationary	
Operational	Environmental	Satellite-R	Series	(GOES-R)	to	overcome	the	lim-
ited	 retrievals	of	MODIS.	GOES-R	 is	 the	next	generation	of	geosynchronous	
environmental	satellites	was	planned	to	launch	in	2015.	All	the	MODIS	multi-
spectral	data	that	are	used	in	this	study	will	be	available	from	GOES-R	and	the	
same	trained	model	is	ready	to	be	applied	on	GOES-R	images.	Since	GOES-R	is	
a geostationary satellite, it will provide higher temporal resolution data available 
every	couple	of	minutes	(Fig.	7.1).

Fig. 7.1  Availability	of	CloudSat,	MODIS	and	future	GOES-R	satellites
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