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To the memory of Res Jost, who was an
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(Hyperion by F. Hölderlin, Vol. 1, Part 1, 1797) translation
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Preface to the Third Edition

This book has its roots in a book on Leptons, Hadrons and Nuclei which I
published, under that title in 1983, and, naturally enough, in the lectures and
courses on elementary particle physics that I have given over the years, first at
the Eidgenössische Technische Hochschule in Zurich, and later at the Johannes
Gutenberg University in Mainz. Since 1983 – the year of the discovery of the
W and Z bosons – experimental tests of what is now called the standard model
of electroweak and strong interactions have made dramatic progress and, in fact,
have reached a qualitatively new level. It now appears that the standard model, in
its minimal version, is very well confirmed and, as yet, there is little hint of physics
at higher mass scales, going beyond the standard model. This consolidation of the
standard model concerns not only its building blocks and its general pattern but
also the radiative corrections it predicts. For the student and for the beginner in the
field of particle physics it is important to learn about the way to the standard model,
the experimental basis on which it rests, its predictive power and its limitations.
In particular, the novice in theoretical particle physics who sets out either to
find a better foundation for the model, or else to recklessly dethrone it, hence to
revolutionize our field, should know where he or she is sailing and what he or she
is searching for. This is the reason why I decided to concentrate on the foundations
and the phenomenology of electroweak and strong interactions rather than giving
yet another account of the intricacies of quantized gauge theory.

There are many excellent textbooks and monographs on quantized field theory
(for example, [ITZ80], [ZIJ94], [COL84], [DWS86]) and, more specifically, on
quantized gauge field theory ([CHL84], [HUA92], [OKU82], [BEB94] and many
more), but only few books covering in depth the phenomenology or the contact
to nuclear physics (noteworthy exceptions are [PER87], [NAC94], [POR95]). This
book is at the level of what might be termed advanced quantum mechanics; that
is, I assume that the reader is familiar with nonrelativistic quantum mechanics and
with the foundations of special relativity. In writing it I made every effort to define,
to explain and to illustrate the basic notions and to explicitly show the path from
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viii Preface to the Third Edition

them to the final physical results. Although the level is not elementary, with a little
effort and perseverance, the reader, whether experimentally or theoretically oriented,
should be able to follow the complete argument or derivation in every subject that
this book addresses, without having to resort to other sources. I do hope, of course,
that this aspect will contribute to the fun and the satisfaction in learning the topics
dealt with in this book. Sections marked with an asterisk contain more detailed
material that may be skipped in a first reading.

Being largely self-contained, the book can be read as an independent text by
anyone eager to learn this physics or to refresh his or her knowledge. As it originated
in graduate-level lectures it may also serve as an accompanying textbook for a one-
or two-semester course, perhaps with some cuts. Every chapter is followed by a set
of exercises, some of which are simple whereas others require a little more time and
effort. Solutions to selected exercises are given at the end of the book. All exercises
will help the reader to test his or her understanding, and some serve the purpose of
further illustrating the content of the corresponding chapter.

As compared to the second edition of 1996 various new developments and
experimental results in electroweak physics are brought to date. The sections on
deep inelastic scattering and QCD in Chaps. 2 and 3, as well as the discussion
of neutrino oscillations in Chap. 4 are revised and extended. In turn, the fields of
hadron scattering on nuclei and of hadronic atoms no longer are in focus of present-
day experimental and theoretical research. Therefore the two chapters dealing with
these topics were dropped here. If the need arises they may be consulted in the
earlier edition of 1996.

In a field as vast and rapidly expanding as particle physics, the bibliography
is bound to be incomplete, biased and to some extent unbalanced. I have adopted
the following compromise: Within each chapter and at its end I give a selection
of references, mostly on experimental results, which have direct bearing on the
content of the chapter. In addition, towards the end of the book, there is a list of
handbooks, textbooks and monographs to which I refer throughout all chapters using
the notation [ABCxy](author(s) and year). Anyone who wishes to delve deeper into
some topic dealt with in this book is advised to turn first to the review articles quoted
here which will be helpful in retracing the complete literature.

Theoretical physics is a synthesis of lonely work and lively interaction with
others. My colleagues and friends, my collaborators and students from whom I
learnt a great deal and who directly or indirectly contributed to the genesis of
this book, are too numerous to list here. I am very grateful to all of them for
much stimulation, fruitful criticism, lively discussions or simply for the pleasure
of collaborating with them.

Let me, quite presumptiously, adapt for my purpose the beautiful dedication that
Johann Sebastian Bach chose for his Well-Tempered Clavier in 1722,

“Zum Nutzen und Gebrauch der Lehr-begierigen Physicalischen Jugend, als auch derer
in diesem studio schon habil seyenden besonderem Zeit Vertreib auffgesetzet und verfer-
tiget. . . ”
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which means “Written and composed both for the benefit and use of young
physicists desirous of instruction and for the particular diversion of those already
advanced in this study. . . ”, (translation taken from British Library Music Facsimi-
les I, The British Library, 1980).

Mainz Florian Scheck
August 2011
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Notation and Conventions

To a large extent, the notation is explained in the text. Nevertheless it may be useful
to first look through this short section on notations and conventions, or to return to it
when one is not absolutely sure about a symbol or definition that is used in the text.

(i) Units. We use natural units
„ D 1; c D 1

throughout this book. Taking c D 1 means that coordinates and time have the same
dimension, [qnat] D [tnat], likewise, momenta and energy have the same dimension
[pnat] D [Enat]. As in a physical system of units (SI, Gauss, or other) „ has
dimension energy � time and as this is also the dimension of an action such as
p � q, taking this constant equal to 1 means that

Œpnat� D ŒEnat� D Œqnat�
�1 D Œtnat�

�1:

This convention is not sufficient to fix the units completely. What is needed, in
addition, is a unit of energy (or mass, or time). Following standard practice, we use
multiples of the electron Volt,

1 meV D 10�3 eV 1 keV D 103 eV

1 MeV D 106 eV 1 GeV D 109 eV 1 TeV D 1012 eV;

i.e., milli, kilo, mega, giga, tera eV, respectively.
It is easy to translate length l , cross section � , and time t from natural units back

to conventional units. Let l
ı

; �
ı ; t
ı be such quantities expressed in natural units, l, � ,

t the same quantities in standard units. Then

xv
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lŒfm�
�D„c � ıl ŒMeV�1�;

t Œs�
�D „c
c
� ıt ŒMeV�1�;

�Œfm2�
�D.„c/2 � ı�ŒMeV�2�;

with „c D 197.3270 MeV � fm, 1 fm D 10�13 cm, c D 2:99792458 � 1010 cm/s D
2.99792458 � 1023 fm/s. Cross sections are usually expressed in units of 1 b D
10�24 cm2 D 102 fm2. Thus, if

ı
� is found in GeV�2, for example, then it follows that

1 GeV�2 �D 0:3894mb.

Another example is the relationship between the width � and the lifetime � of
an unstable state,

� D
�„c
c

�
1

�
D 6:58212� 10�22MeVs

1

�
:

Momenta p are expressed in energy units if h and c are set equal to one, and are
given in (energy unit)/c when conventional units are used.

(ii) Experimental results and errors are generally quoted with the error of the last
digits in parentheses. For example,

0:7773.13/ means 0:7773˙ 0:0013;
0:51126.5/ means 0:51126˙ 0:00005:

The abbreviation ppm stands for “parts per million”. For example, a measurement
giving the result 0.510 999 06(15) MeV for the electron mass is a “0.3 ppm
measurement”.

(iii) Metric and normalization. The metric is explained in more detail in Chap. 1.
We use the form g00 D C1, gii D �1 (i D 1; 2; 3) for the diagonal metric tensor.
A contravariant vector is denoted by x� D (x0, x) so that x� D (x0, �x). One-
particle states appear with the covariant normalization

< p0jp >D 2Epı.p � p0/

for both bosons and fermions. In the case of particles with spin there is an additional
Kronecker ı-symbol for the spin indices.

(iv) Some symbols. T denotes the scattering matrix and is defined in App. B.
$5 and

$
@ � are short-hand notations for antisymmetric derivatives

f .x/
$5g.x/ D f .x/.rg.x// � .rf .x//g.x/;

f .x/
$
@ �g.x/ D f .x/.@�g.x// � .@�f .x//g.x/:
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A list of symbols is found below.
(v) Rotation matrices. For the representation coefficients of the rotation group we
use the definitions of e.g. [FAR59], that is

D
.j /
KM . ; 	; 
/ D eiK d .j /KM.	/e

iM


with Euler angles as defined in Fig. 1.1 (p.12). As explained in more detail in
Sect. 1.2, these are the matrices which transform the expansion coefficients. Basis
functions then transform according to D�.

(vi) Natural units for Maxwell’s equations. With E and H denoting the electric and
magnetic fields, respectively, and D and B the electric displacement and magnetic
induction, respectively, Maxwell’s equations read in any system of units

r �B D 0; r �E C f1 @B@t D 0
r �D D f2�; r �H � f3 @D@t D f4j :

With q denoting the electric charge, the Lorentz force is

F D q.E C f1v �B/:

As is well known from electrodynamics, the fundamental fields are E and B. In
vacuum the derived fields H and D are related to the former by

D D "0E ; B D �0H :

By convention the constants "0 and �0 are chosen in such a way that f1 D f3.
Furthermore, the continuity equation which follows from the two inhomogeneous
Maxwell equations, requires the relation f4 D f1f2, thus leaving three constants to
be fixed by a suitable choice of physical units: f1,f2, and "0. The reader will easily
verify that the SI system is based on the choice f1 D f2 D 1 and "0 D 107/(4�c2/,
while the Gauss system is characterized by the choice f1 D 1=c,f2 D 4� , "0 D 1.

The system of natural units that is used in elementary particle physics takes the
velocity of light c to be unity, (as well as Planck’s constant divided by 2� , „ D 1),
cf. (i) above, and is also designed such that the factors 4� disappear from Maxwell’s
equations. This means setting

f1 D f2 D 1; "0 D �0 D 1

and absorbing square roots of 4� into the fields and charges as follows,

Ejnat D 1p
4�
EjGauss; Bjnat D 1p

4�
BjGauss;

�jnat D
p
4��jGauss; j jnat D

p
4�j jGauss;
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Obviously, this is a convenient framework for doing calculations. When returning to
customary units such as Gauss’ system, and evaluating the results of a calculation,
all that remains to be done at the end is to multiply external fields by

p
4� and to

replace the squared elementary charge e2 by 4�˛, where ˛ is Sommerfeld’s fine-
structure constant. Indeed, from what we said above, we have

˛ D e2jGauss

„c D e2jnat

4�
� 1

137:036

(vii) All equations, figures, tables and sections are numbered beginning with the
number of the chapter in which they occur. They can thus easily be located when
they are mentioned elsewhere.



List of Symbols

A˛.x/ D ie
PN

k TkA
.k/
˛ .x/ W gauge potential taking its values in the Lie

algebra spanned by generators Tk
a˛.x/: weak axial vector current
aB: Bohr radius of atomic orbit
C: charge conjugation operator
C: field of complex numbers
D˛.A/ = 1@˛ C A˛: covariant derivative
@�: partial derivative with respect to x�, with x

a point in Minkowski space-time
@�: partial derivative with respect to x�, with x

a point in Minkowski space-time
"ijk : totally antisymmetric tensor in 3 real dimensions
"���� : totally antisymmetric tensor in 4 real dimensions

(convention "0123 D C1)
f .x/ �  .f /.x/: shorthand for Dirac field describing fermion f
F˛ˇ.x/ D ie

PN
k TkF

.k/

˛ˇ .x/: field strength tensor of Abelian (N D 1) or

non-Abelian gauge theory
f˛ˇ D @˛Aˇ � @ˇA˛: kinetic part of field strength tensor F˛ˇ
1F1 (a; b; x/: confluent hypergeometric function
Fi .q

2/: form factors in hadronic matrix elements of
electromagnetic and weak vector currents

FA.q
2/, FP.q

2/: axial and pseudoscalar form factors for weak
axial current

f� : decay constant of charged pion

a.x/, a D 1, 2: spinor field of first kind
A.x/, A D I, II: spinor field of second kind
G=
p
2 D g2=.8m2

w/: Fermi’s constant (G/ of weak interactions

xix
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g, g0 or e: (dimensionless) coupling constant in gauge theories
g�� , g�� : metric tensor in Minkowski space–time
GE.q

2/, GM.q
2/: electric and magnetic form factors of nucleon

H : Hamiltonian density
h.vf /: helicity of neutrino in lepton family f D e, � or �
1: unit matrix or, more generally, identity operation
L : lagrangian density
Lf : lepton family number for f D e, � or �
�: Lorentz transformation
L(v): special Lorentz transformation or boost
ı
M : diagonal form of a hermitean or symmetric matrix
P: space-reflection or parity operation
 L,  R: left- and right-handed components of Dirac field
 .x/ D  �.x/�0: conjugate Dirac field
R: rotation in four dimensions, R D diag.1;R/, where

R 2 SO.3/ is a rotation matrix
R: field of real numbers
S D 1CR: S -matrix, decomposed into the identity (“no scattering”)

and the reaction matrix R
SU.N /f: unitary group describing N flavours
SU(3)c: colour group of quarks and gluons
� D PCT: combined operation of space reflection, charge conjugation

and time reversal
	W: Weinberg, or weak interaction, angle. Note that only sin2 	w

is physical
T: time-reversal operation
T : scattering matrix which enters cross-section formulae.
Tk , k D 1; : : : N : abstract generators of Lie groupG, with N the dimension

of the Lie algebra Lie(G/
U.g/: unitary representation of group element g 2 G in a given

representation space
U.Tk/: representation of the generator Tk in a given representation

space
VCKM : mixing matrix of down-type quarks
�˛.x/: weak vector current



Chapter 1
Fermion Fields and Their Properties

The fundamental building blocks of matter, i.e. quarks and leptons, carry spin 1/2.
There are two formally different but in essence equivalent methods of describing
particles with spin: The representation theory of the Poincaré group, in the frame-
work of Wigner’s classification hypothesis of particles (see e.g. [QP07], Chap. 6),
and the Van der Waerden spinor calculus based on SL(2, C). In this chapter we
derive the Dirac equation in its natural framework: the spinor representations of
SL(2, C). The properties of this equation and of its solutions are discussed in detail.
The quantization of Dirac fields is developed in the light of covariance and causality,
and all important consequences of quantization are worked out.

Sections 1.1–7 contain the fundamentals while the remaining sections 8 to 10
deal with questions of practical importance in embedding fermions in a more
comprehensive theory of elementary particles: the description of masses in the
Lagrange density; the description of spin in the language of (covariant) density
matrices; and the coupling of a charged Dirac field to the electromagnetic field.
The case of the coupling to a non-Abelian local gauge field is treated in Chap. 3, in
the context of weak interactions.

1.1 Lorentz Group and SL(2, C)

The natural basis for the construction of a Lorentz invariant theory of free fermions
(i.e. particles with spin 1/2) is provided by the isomorphism that links the group
of proper, orthochronous Lorentz transformations to SL(2, C), the special linear
group in two complex dimensions. This connection is completely analogous to the
relation between the rotation group SO(3) and the special, unimodular group SU(2)
in two dimensions. It is not difficult to construct spinor representations of SL(2,
C). One then discovers, in fact, that SL(2, C) – in contrast to SU(2) – admits
two inequivalent spinor representations both of which are relevant for the Lorentz
covariant description of fermions. This connection is essential for the understanding
of the properties of Dirac theory, such as the space–time structure of Dirac fields, the

F. Scheck, Electroweak and Strong Interactions, Graduate Texts in Physics,
DOI 10.1007/978-3-642-20241-4
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1, © Springer-Verlag Berlin Heidelberg 2012



2 1 Fermion Fields and Their Properties

particle–antiparticle symmetry, and the relation between spin and statistics. These
matters are no more difficult to understand than the traditional, historical approach
to Dirac theory but from a logical point of view this approach is much more
satisfactory. The reader should not be frightened by the few group theoretical terms
that we will use and which are necessary for the understanding of these matters. The
text is sufficiently self-contained so that it should be understandable even with only
a rudimentary knowledge of group theory.

We begin by recalling the definition and some properties of the group of
Lorentz transformations, (for a more detailed, elementary, introduction see e.g.
Chap. 4 of [SCH10]). We then work out the precise relationship between the proper
orthochronous Lorentz group, denoted L�C, and the special linear group in two
complex dimensions, denoted SL(2, C).

1.1.1 Lorentz Transformations

Physical theories which obey the postulates of special relativity are formulated over
Minkowski space–time M4. This is a 4-dimensional Euclidean space R4 which is
endowed with the metric tensor

g�� D g�� D

0
BB@
1 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 �1

1
CCA (1.1)

Here, the indices � and v take the value 0 (referring to the time axis), and 1,2,3
(referring to the spatial axes), rows and columns in (1.1) are numbered in the order
0,1,2,3 for time and space1. When written in coordinates, a point x of M4 reads

x� D .x0; x/ with x0 D ct;

with x0 a point on the real axis R, x a point in R3. Note that by multiplying time t
by the velocity of light, x0 acquires physical dimension length.

Likewise, four-vectors a are called contravariant vectors if their coordinate
representation is a� D .a0; a/, the position of the indices indicating the behaviour
under Lorentz transformations. The covariant vector that corresponds to a�, that is
the vector which is contragredient to a� with respect to Lorentz transformations, is
defined by

1We have inserted a vertical and a horizontal line in order to emphasize the space–space
components in the lower right 3�3 block as opposed to the time–time, time–space, and space–time
components. We shall keep these auxiliary lines occasionally for the sake of clarity, but we shall
drop them later in the text.
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a� D g��av D .a0;�a/;

(summation over pairs of identical upper and lower indices is implied).
Let zDx � y be the vector joining the points x and y in M4, i.e. z�Dx��y�

with respect to an arbitrary inertial frame of reference, and let z0 be the same
vector, expressed with respect to any other inertial frame. The group of Lorentz
transformations is defined to be the group of all linear transformationsƒ

z 7! z0 D ƒz; i:e: z0� D ƒ�
vzv

which leave invariant the square of the generalized space–time distance

z2 D z�g�vzv D z�z� D .z0/2 � z2:

The requirement z02 D z2 yields the condition on ƒ

ƒT gƒ D g or g��ƒ�
˛ƒ

�
ˇ D g˛ˇ; (1.2)

from which one deduces the following properties of the 4 � 4 matricesƒ:

(i) By taking the determinant of (1.2), noting that ƒ is real and that det g D �1,
one finds .det ƒ/2 D 1, or,

det ƒ D ˙1: (1.3)

(ii) Equation (1.2) with ˛ D 0 and ˇ D 0 yields the equation�
ƒ0

0

�2 �P3
iD1

�
ƒi

0

�2 D 1, and hence leads to the conclusion

ƒ0
0 � C1 orƒ0

0 � �1: (1.4)

Lorentz transformations which have determinant C1 are called proper transfor-
mations and are denoted by a suffix C. Transformations which have the property
ƒ0

0 � 0 are called orthochronous (they map the time coordinate “forward”) and are
identified by an arrow pointing upward. The matricesƒ which have both properties
form a subgroup called the proper orthochronous Lorentz group, viz.

L"C D fƒjreal 4 � 4 matrices;ƒT gƒ D g; det ƒ D C1;ƒ0
0 � 1g: (1.5)

Analogously, Lorentz transformations with det ƒ D �1 are denoted by a suffix �,
those with ƒ0

0 � �1 by an arrow pointing downward, all combinations of˙ and "
or # being possible. Thus, the Lorentz group has four connected components,

(a) L"C as defined in (1.5). This component contains the identy 1 D diag.1; 1; 1; 1/.
Each of its elements can be deformed continuously into the unit element, i.e.
can be taken into 1 by continuous tuning of the parameters on which it depends.

(b) L"�: This component containsP D diag.1; �1; �1; �1/, the operation of space
reflection. Its elements cannot be deformed continuously into the unit element
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because they all have determinant equal to �1 while 1 has determinant equal to
C1. Similarly, the remaining two components are disconnected from 1, either
for the same reason, or because their time–time component is smaller than or
equal to �1, in contrast to 1. They are

(c) L#� which contains the operation of time reversal T D diag.�1; 1; 1; 1/, and

(d) L#C which contains the product PT D diag.�1; �1; �1; �1/.
While L"C is a group by itself and, hence, a subgroup of the Lorentz group, the
remaining three components clearly cannot be subgroups. They do not contain the
unit element, the product of any two elements of one branch lies in another, different,
branch. Note, however, that the elements of L"� are obtained from those of L"C by

multiplication with P . Similarly, L#� is obtained from L"C by multiplication with T ,

and L"C is obtained from L"C by multiplication with PT. Thus, the structure of the
entire Lorentz group is obtained from a knowledge of the proper, orthochronous,
Lorentz group L"C and of the discrete transformations P, T, and (PT).

For the sake of reference, we summarize some important properties of L"C, the
proper orthochronous Lorentz group, but refer to [SCH10] or one of the more
specialized treatises on special relativity for more details.

There are two types of transformation in L"C which are basic in the following

sense. Any ƒ 2 L"C can be written as a product of a rotation in space and a special
Lorentz transformation (also called boost). Indeed, rotations in three-dimensional
space have the form

R D
 

1 0
0 R

!
; with R 2 SO.3/: (1.6)

They fulfill condition (1.2) which reduces here to RTR D 1. As R0
0 D C1, and det

R D det R D C1, they belong to L"C.
A special Lorentz transformation taken along the direction O� D �=j�j and

characterized by the absolute value � D j�j of the velocity �, is given by

L.�/ D
 
� ��k

��i ıik C �2

1C� �
i�k

!
; (1.7)

where � D 1=
p
1 � �2. Like in (1.6) the first row gives the time–time and the

time–space components, respectively, the first column contains the time–time and
the space-time components, while the 3�3matrix in the right lower square contains
the space–space components. That L.�/ belongs to L"C is verified as follows.

Obviously, L00 � C1. As a preparation to verifying condition (1.2), we note that
(1.7) can be written in an appealing notation in terms of “ket” ji and “bra” hj which
makes obvious the action of L.�/ on a four-vector, i.e.
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L.�/ D
 

� �h�j
�h�j 13�3 C �2

1C� j�ih�j

!
:

Indeed, with h�jwi D � � w being the ordinary scalar product in space R3; L.�/
applied to a column vector with time component a0 and space part jai, again gives
such a vector.

First we verify that L.�/ fulfills relation (1.2). The time–time component of the
product LT .�/g L.�/ is �2.1 � �2/ D 1. The time–space components and the
space–time components contains the factor �2 � � � �3u2=.1 C �/ which is zero
by the relation �2 D .�2 � 1/=�2. The space–space components are �13�3 plus a
term in j�i h�j whose factor again vanishes. Thus LT gL D g. It remains to verify
that det L.�/ D C1. For this purpose we calculate the product RLRT , with R as
given in (1.6),

RLRT D
 

� �h�jRT
�Rj�i 1C �2

1C� Rj�ih�jRT

!
:

The determinant of this product is the same as the determinant of L.�/. As
R 2 SO.3/ can always be chosen such that v points along one of the coordinate
axes, say the 1-axis, we find

detL.�/ D det .RL.�/RT / D �
�
1C �2

1C � �
2

�
� �2�2 D 1;

where we have made use of the relation �2 D .�2�1/=�2. This proves the assertion.
The structure of the proper, orthochronous, Lorentz group L"C is clarified by the

decomposition theorem2 for Lorentz transformations:
Theorem (I): Every element ƒ 2 L"C can be written uniquely as the product of a
rotation followed by a special Lorentz transformation,

ƒ D L.�/R; (1.8)

with R as in (1.6), the parameters of the two transformations being given by

�i D ƒi
0

ƒ0
0

; Rik D ƒi
k �

1

1Cƒ0
0

ƒi
0ƒ

0
k: (1.9)

2Note that the rotations (1.6) are orthogonal matrices, i.e. R�1 D RT , while the boosts (1.7)
are symmetric matrices. The theorem writes an arbitrary ƒ 2 L"

C
as the product of a symmetric

and an orthogonal matrix. This is analogous to the decomposition of a complex number in its
(real) modulus and a (unitary) phase. This analogy will become even more striking for SL(2, C)
representations below.
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For a proof see e.g. [SCH10].
We close this subsection with a few remarks:

(i) Of course,ƒ may also be decomposed with a different order of the factors,

ƒ D RL.w/: (1.10)

One can easily show that the rotation is the same as with the order of factors
chosen in the decomposition (1.8), and that the velocities � and w are related
by � D Rw where R is the space part of R.

(ii) Another way of parameterizing the special transformations is the following. As
� , the absolute value of �, may take on any value between 0 (state at rest) and
1 (velocity of light, in natural units), the parameter � D 1=

p
1 � �2 varies

between 1 and infinity. Therefore, � and u may be parametrized by hyperbolic
functions of a real parameter � as follows

� D cosh�; �� D sinh�: (1.11)

The parameter � lies in the interval � 2 Œ0; 1� and is called rapidity
parameter. For � D 0 we have � D 1; � D 0, while for � ! 1 we have
� !1 and � ! 1. When written in terms of the rapidity parameter, the boost
(1.7) becomes

L.v/ D
�

cosh� O�i sinh�
O�k sinh� O�i O�kcosh�C .ıik � O�i O�k/

�
: (1.12)

(iii) Suppose the velocity v is the instantaneous velocity of an elementary particle
of mass m with respect to an inertial frame of reference. Its energy Ep and its
spatial momentum p are related by E2

p D p2 Cm2 and are expressed in terms
of its mass, its velocity v, and the corresponding parameter � byEp D �m and
p D �mv. Thus, the transformation (1.7) can be expressed in terms of Ep and
p as follows

L.p/ D

0
BB@
Ep

m

pk

m
pi

m
ıik C pipk

m.mCEp/

1
CCA D 1

m

0
B@
Ep hpj

jpi m1C 1

mC Ep jpi hpj

1
CA ;

(1.13)
the relation to the previous parameterization (1.11) being

cosh� D Ep

m
; sinh� D jpj

m
:

The form (1.13) is particularly well adapted for an interpretation. For instance,
L.p/, when applied to the 4-vector .m; 0/, gives the 4-vector p D .Ep; p/,
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L.p/.m; 0/ D .Ep;p/: (1.14)

This shows that L.p/ indeed “boosts” the particle from a state of rest (with
respect to an inertial frame of reference) to its instantaneous 4-momentum
p D .Ep; p/. Conversely, the inverse transformation is L.�p/ and takes the
particle from a state with 4-momentum p D .Ep; p/ back to the state of rest
.m; 0/. (This is the active interpretation of the transformation. In a passive
interpretation, i.e. one where the particle’s state of motion remains unchanged,
L.p/ and L.�p/ relate the instantaneous (co-moving) rest frame of the particle
and the inertial frame.) Of course, L.p/ may also be used to boost any other
Lorentz 4-vector that is needed in the description of an elementary particle.
For instance, if the particle is massive (i.e. m ¤ 0), and carries spin whose
expectation value is assigned the 4-vector .0; s/, in the particle’s rest frame,
that same vector, when expressed with respect to the inertial frame, is

L.p/.0; s/ D
�
1

m
p � s; sC .p � s/

m.Ep Cm/p
�
: (1.15)

Denoting the 4-vector that describes the expectation value of the spin by s, with
s D .0; s/ in the rest frame and s D L.p/.0; s/ as calculated in (1.15), it is
easy to verify the following, Lorentz invariant, properties

s2 D �1; s � p D 0: (1.16)

This follows from the fact that the scalar products s2 and s � p are Lorentz
invariant, and, indeed, have the values �s2 D �1 and 0, respectively, in the
rest system. Alternatively, one may wish to confirm by direct calculation from
(1.15), using p2 D E2

p �m2,

s2 D 1

m2
.p � s/2 �

�
sC .p � s/

m.Ep Cm/p
� 2

D .p � s/2
�
1

m2
� 2 1

m.Ep Cm/ �
p2

m2.Ep Cm/2
�
� s2 D �s2;

s � p D .p � s/
�
Ep

m
� 1 � p2

m.Ep Cm/
�
D 0:

Note that if the spin expectation value s is meant to describe a particle which is
only partially polarized then s2 < 1, or .�s2/ < 1.

(iv) Theorem (I) shows that every proper, orthochronous, Lorentz transformation
depends on six parameters: the rotation is characterized by three angles which
may be taken to be the angles of rotation about the three Cartesian coordinate
axes, or, alternatively, to be Euler angles (see below); the special Lorentz
transformation is determined by the three components of the velocity �, or,
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alternatively, by the direction Ov into which the boost acts (fixed by its two polar
angles) and the rapidity parameter�. Accordingly, the Lie algebra of L"C has six
generators, three for rotations, and three for special Lorentz transformations.

(v) Partial derivatives with respect to the components of the contravariant variable
x� D .x0; x/ are written as follows

@� WD @

@x�
D
�
@

@x0
;r
�
; (1.17)

with @0 D @=@x0; @i D @=@xi . Thus, @� is a generalization to the four dimensions
of Minkowski space of the well-known gradient operator, its spatial part being the
ordinary nabla operator. The notation @� with a lower index becomes clear (and also
easier to remember) if one considers the derivative of a Lorentz invariant such as
(x � p):

@�.x � p/ D @

@x�
.xvpv/ D p�:

The result is indeed a covariant vector.
The 4-divergence of a vector field A�.x/ D .A0; A.x// is

@�A
�.x/ D @

@x0
A0.x/Cr � A.x/: (1.18)

Note the relative plus sign in this expression. Likewise, the partial derivative with
repect to the covariant variable x� gives a contravariant result, so that it should be
written with an upper index, viz.

@� WD @

@x�
D g��@� D

�
@

@x0
; � r

�
; (1.19)

with a minus sign in its spatial part. Thus, if @� and @� are contracted, we obtain a
Lorentz invariant operator, the four-dimensional analogue of the Laplace operator,

� WD @�@� D @2

.@x0/2
��; (1.20)

that appears, e.g., in the wave equation

� .x/ D @2 .x/

.@x0/2
�� .x/ D 0 (1.21)

and in the Klein–Gordon equation

.�Cm2/
.x/ D 0: (1.22)
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1.1.2 The Relation Between L"
C and the Special Linear Group

in Two Complex Dimensions

We begin by working out the precise relationship between L"C, the proper
orthochronous Lorentz group, and SL(2, C). This we do by establishing the
following correspondence between the four-vectors x� in the space–time continuum
and the hermitean matrices in two complex dimensions.

To any four-vector x D fx0; xg � fx�g let there correspond a two-dimensional
hermitean matrix X which is constructed as follows:

Xik WD x0ıik C x.� /ik D
�
x0 C x3 x1 � ix2
x1 C ix2 x0 � x3

�
: (1.23)

The symbol ¢ denotes the three Pauli matrices3

� .1/ D
�
0 1

1 0

�
; � .2/ D

�
0 �i
i 0

�
; � .3/ D

�
1 0

0 �1
�
: (1.24)

Equation (1.23) can be written in a somewhat more compact notation if we define

� 0 WD 1 D
�
1 0

0 1

�
(1.25)

and introduce the contravariant or covariant set of four matrices, respectively,

�� W D f� 0;�� g: (1.26a)

�� W D g���� D f� 0; � g; (1.26b)

so that (1.23) reads

X D x01C x � � D x��� D x���: (1.27)

A first observation is that the invariant norm of x�; x2 D .x0/2 � .x/2, is identical
with the determinant of X .

det X D .x0/2 � .x/2: (1.28)

3We write the “number” of any Pauli matrix (1.24) in parentheses to avoid confusion with upper
and lower indices as in (1.26).
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The prescription (1.23) or (1.27) establishes an isomorphism between the space of
the vectors x� (Minkowski space) and the space of the two-dimensional hermitean
matrices H .2/.

Let us consider a Lorentz transformation ƒ 2 L"C, (i.e., a proper, orthochronous
Lorentz transformation) that takes vector x into vector y,

ƒ W x 7! y; y D ƒx:

The connection between the corresponding matrices Y D y�¢� and X D X�¢
�

must be of the form, recalling that X, Y are hermitean,

Y D AXA�; (1.29)

where A is a nonsingular complex 2�2matrix. A� denotes the hermitean conjugate
matrix. In order to ensure invariance of the norm y2 D x2, we impose the condition4

det A D 1: (1.30)

The 2 � 2 complex matrices with determinant 1 form a group: the special linear
group (or: unimodular group) in two complex dimensions, denoted by SL (2, C).
The matrix A, (1.29) is a function of the Lorentz transformation ƒ. Actually, if
A.ƒ/, is a representative of ƒ in H .2/ then so is �A.ƒ/, since the relation (1.29)
is invariant under this change of sign and since �A.ƒ/ belongs to SL(2, C), to.
The precise correspondence between the group of proper orthochronous Lorentz
transformations L"C and SL(2, C) is established by the following two theorems.

Theorem (II): For anyƒ 2 L"C there exists a matrix A.ƒ/ 2 SL(2, C) such that if

y D ƒx then Y D A.ƒ/XA�.ƒ/;

A is determined up to a sign.
Conversely,

Theorem (III): To any A 2 SL.2;C/ corresponds a unique ƒ 2 L"C. This ƒ is the
image of both A and �A.

These theorems express the fact that the mapping of SL(2, C) onto L"C is a
homomorphism. Furthermore, as the set of elementsZ D f1;�1g forms an invariant
subgroup of SL(2, C), i.e.

AZA�1 D Z 8A 2 SL.2;C/; (1.31)

4Equation (1.29) only requires jdet Aj D 1. However, as A.ƒ/ must be deformable continuously
into˙ the unit matrix, we must require condition (1.30).
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it is useful to introduce the factor group denoted SL(2, C)/Z. This is the group of the
cosets fAZg of the invariant subgroup Z. Here is a short reminder of these notions:
A given groupG has an invariant subgroupH if for all g 2 G one has gHg�1 D H .
That is to say, to every h1 2 H and every g 2 G there corresponds another element
h2 2 H such that h1g D gh2. One considers the cosets (gH) and shows that these
also form a group. This group is called the factor group and is denoted by G=H .
Indeed, the composition is defined to be multiplication of cosets,

.g1H/.g2H/ D g1.Hg2/H D g1.g2H/H D .g1g2/H I

Associativity is guaranteed by the associativity of group multiplication within G.
The subgroupH as a whole plays the role of the unity, viz.

H.gH/ D .Hg/H D .gH/H D g.HH/ D gH:

Finally, the inverse of the element gH is g�1H . Thus, theorems (II) and (III)
establish the isomorphism

L"C D SL.2;C/=f1;� 1g (1.32)

between the proper orthochronous Lorentz group and the factor group SL(2, C)/Z.
Theorem III is obvious from (1.29, 1.30). Indeed, any A 2 SL(2, C) induces a

transformation X ! Y such that y2 D x2. This means that x and y are related by
a Lorentz transformation ƒ.A/. As A can be deformed continuously into the unit
element,ƒ must belong to L"C.

The explicit calculation ofƒ from a given A is somewhat technical and shall not
be worked out here.5

The proof of theorem (II) proceeds by explicit construction of A.ƒ/ for given
ƒ 2 L"C. According to theorem (I) ƒ can be decomposed, in a unique way, into a
boostL.v/, followed by a rotationR; ƒ D R � L.v/. Thus it is sufficient to consider
these two kinds of transformations separately. In the following we denote the image
ofR in SL(2, C) by U.R/, the image of L.v/ byH.v/, in order to underline the fact
that U.R/ will turn out to be unitary, while H.v/ will be found to be hermitean.

(i) Rotations. It is useful to parametrize the rotation R by a set of Euler angles

; 	;  which we define as indicated in Fig. 1.1. One then verifies, through explicit
calculation, that the matrices

R$˙U.R/; (1.33)

with
U.R/ D e.i=2/ �.3/ e.i=2/	�.2/ e.i=2/
�.3/ (1.34)

5This construction can be found for example in [RUE70].
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Fig. 1.1 Definition of Euler’s angles. First a rotation by the angle 
 about the x3-axis, then a
rotation by the angle 	 about the �-axis, and finally a rotation by the angle  about the x03-axis

do indeed represent the rotation R. For instance, for a rotation about the 3-axis one
has

Y D AXA� D
�

ei
=2 0

0 e�i
=2

��
x0 C x3 x1 � ix2

x1 C ix2 x0 � x3
��

e�i
=2 0

0 ei
=2

�

D
�

x0 C x3 ei
.x1 � ix2/
e�i
.x1 C ix2/ x0 � x3

�
;

which can be rewritten in the more familiar form

y0 D x0; y1 D x1 cos
 C x2 sin 
;
y3 D x3 y2 D �x1 sin
 C x2 cos
:

Similarly, for a rotation about the 2-axis we use

e.i=2/	�.2/ D 1 cos 	=2C i�.2/ sin 	=2 D
�

cos 	=2 sin 	=2
� sin 	=2 cos 	=2

�

and verify that exp f.i=2/	�.2/g X exp f � .i=2/	�.2/g, when written out in terms
of Cartesian coordinates, does indeed yield the expected result:
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y0 D x0; y1 D x1 cos � � x3 sin �;
y2 D x2; y3 D x3 cos � C x1 sin �:

(The reader should verify this,)
As the composition of three Euler rotations R3. /R2.�/R3.
/ is the most

general case, we have thus shown that for any rotationƒ D R there exists a matrix
U.R/ 2 SL.2;C/. This matrix is given by expression (1.34).

In fact, U.R/ is unitary and, therefore, belongs to SU(2), the special group of
unitary transformations U in two dimensions. SU(2) is a subgroup of SL(2, C).
This is no surprise when one recalls that the rotation group SO(3) is a subgroup of
L"C. Thus we recover the well-known isomorphism

SO.3/ Š SU.2/=f1;�1g (1.35)

that is the basis for constructing the representations of the rotation group.6

(ii) Special Lorentz transformations. Let v be the velocity vector characterizing the
“boost” L.�/. Then O� WD �=j�j is the unit vector in the direction of the boost, and
according to (1.11)

� D O� tgh�; (1.36)

where � is the rapidity parameter. The image of L.�/ is

L.�/$˙H.�/ (1.37)

with
H.�/ D e.1=2/�� � O�

This can be seen as follows: By an appropriate rotation of the space coordinate,
choose the 3-direction to coincide withb� . Then

H.�/ D
�

e�=2 0

0 e��=2
�

and

Y D HXH� D
�

e�=2 0

0 e��=2
��

x0 C x3 x1 � ix2

x1 C ix2 x0 � x3
��

e�=2 0

0 e��=2
�

D
�

e�.x0 C x3/ x1 � ix2

x1 C ix2 e��.x0 � x3/
�
;

6See e.g. [HAM62].
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so that
y1 D x1; y0 D x0 cosh�C x3 sinh�;
y2 D x2; y3 D x0 sinh�C x3 cosh�;

as expected. So˙H.�/ of (1.37) is indeed the image of the given boost L.�/.
Using the known properties of the Pauli matrices we can also write

H.�/D 1 cosh.�=2/C� � O� sinh.�=2/: (1.38)

Note, in particular, that H.�/ is a linear combination of the hermitean matrices
f��g, with real coefficients, and, therefore, is hermitean.

In summary: Any Lorentz transformationƒ 2 L"C can be decomposed uniquely
into a rotation followed by a boost,

ƒ D L.�/ �R;

with R and � obtained as described in theorem (I). Its image under the isomorphism
(1.32) is˙A.ƒ/ 2 SL.2;C/, where

A.ƒ/ D H.�/U.R/; (1.39)

and whereU.R/ andH.�/ are given by (1.34) and (1.38), respectively. Note that we
have recovered the fact that any matrix of SL(2, C) can be written as a product of a
hermitean matrix with determinant 1 and a unitary matrix. This is the generalization
of the well-known decomposition of a complex number into its modulus (which is
a real number) and a phase factor.

1.2 Spinor Representations and Spinor Fields, “Dotted”
and “Undotted” Spinors

We can now proceed to an explict construction of spinor representations of SL(2, C)
and, thereby, spinor representations of the Lorentz group. By definition, a spinor is
a two component object which transforms under rotations of the space coordinates
with the unitary matrix D.1=2/. ; 	; 
/. More precisely, let m (m D C1=2 or
�1=2) denote the basis of an irreducible representation of the rotation group with
j D 1=2. Any state vector  in this space can be expanded in terms of this basis,

 D
X
m

cmm: (1.40)

In accordance with our conventions, the transformation law for the expansion
coefficients is
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c0� D
X
m

D.1=2/
�m . ; 	; 
/cm; (1.41)

while the base transforms with the transformation matrix .DT/�1, contragredient to
D7. As .DT/�1 D D�, we have

0� D
X
m

D.1=2/�
�m m: (1.42)

Thus, invariance of the physical state vector  (1.40) is guaranteed, as verified by
the explicit calculation,

X
c0�0� D

X
m;m0

X
�

D.1=2/
�m .D.1=2//

�

m0�cmm0 D ımm0cmm0 D cmm:

With respect to SL(2, C) we already noted that there are two inequivalent spinor
representations of SL(2, C). It is not difficult to construct these representations on
the basis of the results of the preceding paragraph. Let A.ƒ/ be the image of an
arbitrary Lorentz transformationƒ 2 L"C. One sees at once that there are four types
of spinors, whose behaviour under a given Lorentz transformation is indicated in
the following table8:

Spinors Transformation matrix under L.T.

fcag D fc1; c2g A.ƒ/ (1.43a)
fcag D fc1; c2g .AT /�1.ƒ/ (1.43b)
fcAg D fcI; cIIg A�.ƒ/ (1.43c)
fcAg D fcI; cIIg OA WD .A�T /�1 D .A�.ƒ//�1 (1.43d)

As is evident, spinors fcagwith the transformation law (1.43b) are contragredient
to spinors fcag with the transformation law (1.43a). Similarly, spinors fcAg with
transformation law (1.43d) and spinors fcAg with transformation law (1.43c) are
contragredient to each other.

7The term contragredience is a general term in linear algebra which helps to distinguish covariant
and contravariant objects. For example, in the decomposition v D P

v a
vev of a vector in terms

of the set of base vectors e D fevg, this set is covariant, while the set of expansion coefficients
a D favg is contravariant, i.e. in the example

e0 D Ae; a0 D .AT /�1a; so that
v D a0 � e0 D �

.AT /�1a
� � .Ae/ D a.A�1A/e D a � e

stays invariant. Expansion coefficients and base vectors are said to be contragredient to each other.
8We recall: AT is the transposed, A� the complex conjugate of A, and A� D AT� is the hermitean
conjugate.
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If we take ƒ to be a rotation R, i.e. if ƒ belongs to the subgroup SO(3) of L"C,
then A.ƒ D R/ � U.R/ is a unitary matrix. In this case we have OA D A, and
.AT/�1 D A�. Therefore, we find that with respect to rotations

fcag 	 fcAg; fcag 	 fcAg; (1.44)

where the symbol 	 means “transforms as”. Obviously, this is not true for those
Lorentz transformationsƒ which include boosts and for which OA is not equal to A.

From the theory of the rotation group9 it is known that any irreducible spherical
tensor of arbitrary rank k can be transformed to a contragredient one by applying to
it a rotation of an angle � about the 2-axis. With standard phase conventions for the
representation of angular momentum operators, the general transformation matrix
to contragredience is

.ei�J2/�m D D.�/
�m.0; �; 0/ D .�/���ı�;�m: (1.45)

For integer k this matrix is symmetric, for half-integer it is antisymmetric.
Specifically, for spinors .k D 1=2/ the relation is10

ca D .ei��.2/=2/ab cb D .i�.2//abcb: (1.46)

Let us introduce the notation

" D ei��
.2/=2 D i�.2/ D

�
0 1

�1 0
�
; (1.47)

and let "ab � ", so that ca D "abcb . Then evidently "ab D "�1 with

"�1 D "T D �": (1.48)

So far, the relationship (1.46) is proven only with respect to rotations. It is not
difficult, however, to show that it is true also for boosts, and therefore for any
ƒ 2 L"C (see exercise 1.12). In the case of SL(2, C) spinors there is another and
perhaps more direct way of seeing this, by noting that both

.b1c
1 C b2c2/ and .b1c2 � b2c1/ D det

�
b1 b2

c1 c2

�

9Se e.g. [FAR59] where this is called the “U -transformation”.
10Summation over repeated, contragredient indices is implied.
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are SL(2, C) invariants.11 From this observation we conclude that

c1 	 c2 and c2 	 �c1
under any ƒ 2 LC. Thus transition to contragredience is indeed effected by the
transformation (1.46).

It is clear that there must be analogous relationships for spinors of the second
kind, viz.

cA D "ABcB : (1.49)

As ca and cA have the same behaviour under rotations, it is convenient to fix relative
signs by taking

"AB D "ab � "; (1.50)

so that the inverse transformation is "AB D "ab D "�1 D "T D �". Using the fact
that the transposed of " is the same as its inverse, we note the relationships

.AT /�1 D "A"T ; (1.51a)

OA D "A�"T : (1.51b)

From these relations one derives, in particular,

" D A"AT ; " D A�"A�: (1.52)

These relations show explicitly that " is invariant under all SL(2, C) transforma-
tions. In fact, one verifies that " is the only tensor which is invariant under SL(2, C).
We shall make use of this important fact below, in connection with the quantization
of the Dirac field, cf. Sect. 1.7.

This spinor calculus was introduced by van der Waerden (van der Waerden,
1929). Following van der Waerden, spinors of the second kind are often denoted
thus: fc Pa D cP1; cP2g, i.e. by giving them dotted indices, in order to distinguish them
from spinors of the first kind which carry undotted indices. We find it less confusing
to label them with capital letters and roman numerals instead. Thus our notation
is: small indices and arabic numerals refer to spinors of the first kind (“undotted
spinors”); capital indices and roman numerals refer to spinors of the second kind
(“dotted spinors”).

The following rather obvious remarks are useful for the sequel.

(i) Indices of a spinor or, more generally, of a tensor carrying spinor indices, can
be “raised” or “lowered” in the standard manner, by multiplying the spinor (or
tensor) with (appropriate products of) " and "T, respectively.

11SL(2, C) is characterized by the invariant skew-symmetric scalar product ba"abcb and hence is
isomorphic to Sp(2, C), the symplectic group in two complex dimensions.
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(ii) Any equation containing spinors that is to be Lorentz invariant (more precisely:
invariant with respect to L"C) must contain the same number of small indices
and the same number of capital indices on either side.

(iii) Complex conjugation means exchanging small and capital indices (compare
(1.43a) with (1.43c), and (1.43b) with (1.43d)).

(iv) Only the summation over contragredient indices, either two small or two
capital (contraction or, in German, Verjüngung) is an invariant operation.
Summation over two unlike indices cannot be invariant. As a consequence
tensors of type tab���mI AB���M which are separately symmetric in their small as
well as in their capital indices, are irreducible. Indeed all tensors of the type
"ab t

ab���mI ABcM and "AB t
ab���mI AB���M vanish if t has the indicated symmetry.

For a tensor it is irrelevant in which order the group of small indices and
the group of capital indices are written, relative to each other. For example
taB D tBa; tab;C D tC;ab D taCb.

(v) Returning to the definition (1.27) we started from, it is clear that X D ��x� is
such a tensor with one small and one capital index. Indeed, when

x 7! x0 D ƒx then X 7! X 0 D A.ƒ/XA�.ƒ/;

which means that X , when written out explicitly, carries indices as indicated
here:

X � XaB D .��/aBx� D .��/aBx�: (1.53)

Equipped with this knowledge we can now define two classes of spinor fields12

by means of the transformation behaviour under SL (2, C).
Spinor fields of the first kind are denoted by


.x/ D
�

1.x/


2.x/

�
: (1.54a)

Underƒ 2 L"C they transform according to


.x/ 7! 
0a.x0 D ƒx/ D A.ƒ/a b
b.x/: (1.54b)

Spinor fields of the second kind are denoted by

.x/ D
�
I.x/

II.x/

�
(1.55a)

and transform according to the law

12A spinor field is a spinor with respect to SL (2, C) whose entries are complex functions instead
of complex numbers.
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.x/ 7! 
0A.x0 D ƒx/ D .A�.ƒ//A BB.x/: (1.55b)

(Note that .A
/AB D "AMA�NM "NB D .AT�/�1 � OA).
The spinor fields have identical transformation behaviour under rotations R.

Indeed, for ƒ D R they transform with the matrix D.1=2/ . ; 	; 
/, as indicated
by (1.41). They behave differently, however, under more general transformations
ƒ 2 L"C, for which .AT /�1 and A� are not the same.

For later purpose and in order to get some practice in working with SL (2, C)
spinor fields of first and second kind, we recapitulate the remarks (i) to (v) above and
write out some examples in applying them to spinor fields. According to remark (iii)
complex conjugation transforms small into capital, and capital into small indices, i.e.

.
a.x//
� D 
�A.x/;

.A.x//� D �a.x/: (1.56a)

This applies whenever the index has its normal position, i.e. is a lower, small index
(i.e., a spinor of first kind), or an upper, capital index (i.e. a spinor of second kind).
If that index was raised, or lowered, by means of the "-tensor (1.50), then there is
an extra minus sign which follows from the rules but should not be forgotten:

.
a/� D ."ab
b/� D "ab
�B D �"AB
�B D �
�A;

.A/
� D ."ABB/� D "AB�b D �"ab�b D ��a :

(1.56b)

This minus sign is a consequence of the convention (1.50), according to which
"AB D �"ab. [Had we chosen the convention "AB D "ab instead, there would be
no minus sign here but it would appear in other places; cf. the discussion of parity,
charge conjugation and time reversal in sect. 1.5 below].

Products of the kind 
a"ab
b; 
A"AB

B etc. are Lorentz invariant. One shows
easily that they can be written in several, equivalent ways, for instance,


a"
ab
b D 
a
a D �
b
b; A"AB

B D AA D �BB; (1.57a)

and similarly

a

�a D �
a�a ; 
�AA D �
�AA: (1.57b)

Before closing this section, we shall show that the two kinds of spinors can be related
by means of space reflexion P , or equivalently, by time reversal T . By definition
we have

P fx0; xgD fx0;�xg; (1.58a)

T fx0; xgD f�x0; xg: (1.58b)

Let X D �� x� D ��x� and XP D �� .P x/�, then it follows that

XXP D .x01C x � � /.x01 � x � � / D .x0/2 � x2 D x2: (1.59)
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One verifies easily that, if we define the set O�� in analogy to OA, (1.51)13, then

O�� D "���"�1 D �� D .1; � / (1.60)

and, therefore, that
"X�"�1 D XP :

Under a Lorentz transformation ƒA, we have Y D ��.ƒAx/
� D A X A�, and,

since OA D "A 
 "�1; Y P D OAXP OA�. This last relation, which can also be written
as follows (using P2 D 1).

��..PƒAP /Px/
� D OA��.Px/� OA�;

tells us that the Lorentz transformationƒ OA pertaining to OA, and the original Lorentz
transformationƒA are related by the equation

ƒ OA D PƒAP: (1.61)

Finally, by defining XT WD ��.TX/� and observing that XT D �XP , we find in a
similar manner

ƒ OA D TƒAT: (1.62)

An important remark is the following. These relations show that space reflexion and
time reversal relate spinors of the first kind to spinors of the second kind and vice
versa. On the other hand, we know that we can reach any homogeneous Lorentz
transformation by multiplying L"C by P, T and PT. Therefore, in order to construct
a spinor equation that is to be covariant under the full Lorentz group, we shall need
spinor fields of both kinds.

The exact relationship between 
a.x/ and B .x/ under space reflection, a priori,
is fixed only within a phase factor ei.�=2/n. This is so because we have always the
freedom to combine the operation of space reflection with a complete rotation by
2� . Whilst this makes no difference for integer spin, it yields an extra minus sign in
the case of half-integral spin. Therefore, space reflection applied twice to a spinor
field can be chosen to yield plus or minus that same field. The only restriction is that
the same phase convention must be chosen for all spinors, in order to ascertain the
correct transformation behaviour of bilinears in the spinor fields.

These remarks illustrate the fact that it is not meaningful to assign an absolute
intrinsic parity to a fermion. Only relative parities can be physically relevant. We
come back to this below.

13Note, however, that whilst �0 D 1 belongs to SL (2, C) the Pauli matrices ¢ do not.
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1.3 Dirac Equation for Free Particles

As a more technical preparation to what follows, we recall the definitions (1.25,
1.26, 1.60):

�� WD .�0;�� /; O�� WD "���"�1 D .�0; � /;
where �0 is the two-dimensional unit matrix and ¢ D f�.i/g is a shorthand notation
for the Pauli matrices (1.24). With the aid of the well-known relation

�.i/�.j / D ıij C i
X
k

"ijk�.k/ (1.63)

we verify the important relationship

.��/aB. O��/Bc C .��/aB. O��/Bc D 2g��ıca: (1.64)

Furthermore, we can define derivatives of spinors, in analogy to (1.53), by
introducing14

@aB WD .��@�/aB D .��@�/aB D 1@0 � � � r: (1.65)

The nature and position of indices are the same as in (1.53) since @� D @=@x�
behaves like x� under Lorentz transformations and, therefore, with x0 D ƒx,
we have

.��@0�/ D A.ƒ/.��@�/A�.ƒ/;
We can also construct the matrix O��@� by multiplying the complex conjugate of
(1.65) from the left by " and from the right by "�1. Complex conjugation converts
small into capital indices and vice versa, while " raises indices. As a result, it follows
that O��@� carries indices as indicated here:

@Ab WD . O��@�/Ab D 1@0 C � � r: (1.66)

Making use of relation (1.64) we note that

@Ab@bC D ıAC @�@� D ıAC� (1.67)

and similarly
@aB@

Bc D ıca�; (1.67’)

where � D @�@
� D .@0/2 � � is the d’Alembert or four-dimensional Laplace

operator (1.20).
Equipped with these tools we can now proceed to derive the Dirac equation.

14Note the minus sign in front of ¢ �r which is due to @� D .@0;r/ being the covariant derivative
(17).
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A relativistic wave equation (more precisely: a system of equations) that is to
provide a quantum-mechanical description of free spin-1/2 particles has to meet the
following conditions:

(i) The equation must be linear, homogeneous and of first order in the time
derivative. Linearity is imposed by the superposition principle; homogeneity
is relevant for the force-free case: the equation does not contain external
sources (inhomogeneous terms); first-order time derivatives are necessary if
a probability interpretation is to be possible.

(ii) The equation must be covariant under the full Lorentz group, including space
and time reversal. As we have noted above, this implies that it must contain
both spinor fields of the first kind 
a.x/ and, spinor fields of the second kind
A.x/.

(iii) In order to ensure the correct relativistic energy–momentum relation, both
kinds of fields must obey the Klein–Gordon equation for the mass m of the
particles

.�Cm2/
a.x/ D 0; (1.68a)

.�Cm2/B.x/ D 0: (1.68b)

The simplest system of linear homogeneous differential equations of first order
which meets these conditions reads

i.��@�/aBB.x/ D m
a.x/; (1.69a)

i. O��@�/Bc
c.x/ D mB.x/: (1.69b)

This set of four coupled differential equations constitutes what is called the Dirac
equation.s/ for the force-free case. It describes the free motion of spin-1/2 particles
of arbitrary massm, including the limit of mass zero, in which case (1.69) reduce to
what are called the Weyl equations.

Let us then verify that the Dirac equation does indeed obey the conditions listed
above. First, it is evident that (1.69) are covariant under L"C, by construction. They
are also invariant under parity P and time reversal T , as these operations transform
 into 
; .��@�/ into . O��@�/ and vice versa. (The details are worked out below in
Sect. 1.5.) Thus they are covariant with respect to the full Lorentz group.

Second, it is easily verified that each component 
a.x/ satisfies the Klein–
Gordon equation. Indeed, applying the operator i.��@�/ to (1.69b) we obtain for
the left-hand side, using (1.67’),

�.��@�/aB. O��@�/Bc
c.x/ D �ıca�
c.x/ D ��
a.x/:

For the right-hand side we make use of (1.69a),

mi.��@�/aB
B.x/ D m2
a.x/:
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Thus we obtain �
a.x/Cm2 
a.x/ D 0.
Similary, by applying the operator i. O��@�/ to (1.69a) we verify that the compo-

nents B.x/ also satisfy the Klein–Gordon equation.
It is customary and useful to group the two spinors 
a.x/ and xB.x/ together

into one four-component spinor, a so-called Dirac spinor,

 .x/ WD
�

a.x/

B.x/

�
D

0
BB@

1.x/


2.x/

I.x/

II.x/

1
CCA : (1.70)

Equations (1.69) can then be written in a more compact form, upon introduction of
a set of four 4 � 4 matrices called Dirac matrices,

�� WD
�
0 ��

O�� 0

�
; (1.71)

.i��@� �m14/ .x/ D 0; (1.72)

where 14 is now the four-dimensional unit matrix. For later purposes it will be
convenient to define one further matrix

�5 WD i�0�1�2�3 (1.73)

(which is also written �5, without distinction as to the position of the index 5).
With �� and O�� as defined before, we have

�0 D
�
0 1
1 0

�
; � i D

�
0 ��.i/
�.i/ 0

�
; �5 D

�
1 0

0 �1

�
: (1.74)

From (1.64) we obtain the important anticommutator relations for Dirac matrices

��� v C � v�� D 2g�v14; (1.75)

which imply, in particular, that

.�0/2 D 14; .� i /2 D �14 .i D 1; 2; 3/:

Writing out explicity the spinor indices, the matrices �� of (1.71) have the structure

�� D
�

0 .��/aA
. O��/Aa 0

�
: (1.71’)

In particular if we multiply the four � -matrices to form �5, as indicated in the
definition (1.73), we find
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�5 D i

�
.�0 O�1�2 O�3/ba 0

0 . O�0�1 O�2�3/AB

�
D
�
ıba 0

0 �ıAB

�
: (1.73’)

This explicit representation (1.73’) of �5 leads us to two important remarks:

(i) According to (1.73’) �5 maps the spinor .
a; A/T onto the spinor .
a;�A/T .
If we compare this to the action of the unit matrix

1 D
�
ıba 0

0 ıAB

�

we see that the combinations

1

2
.1C �5/ D

�
ıba 0

0 0

�
;
1

2
.1 � �5/ D

�
0 0

0 ıAB

�
(1.76)

project onto spinors of the first kind and spinors of the second kind, respectively.
(ii) From what we said above it is clear that it would not be meaningful to

distinguish between �5 with upper or lower index.
From (1.71’) and (1.73’) we see that the structure of a general matrixM that

maps the spinor  D .
b; B/T onto another spinor  0 D �
0a; 0A�T must be
the following:

M D
�
Ma

b MaB

MAb MA
B

�
:

This is important to know when we wish to form invariants, or Lorentz covariants
(i.e. vectors, tensors etc.), in terms of  and its hermitean conjugate  �. Actually,
 � is not the appropriate, conjugate spinor because of its spinorial structure which is

 �.x/ D .
�A.x/ �a.x//

and which cannot be contracted with M .x/. On the other hand, we know that, for
instance, �a
a and 
�A 

A are invariants, cf. (1.57). The correct position of the
indices is achieved if instead of  � we introduce

 .x/ WD . 
�A �a /
�
0 ıAB
ıba 0

�

D .�b.x/ 
�B.x//;
(1.77)

This can also be written as follows:

 .x/ D .
�A. O�0/Ac �a.�0/aC /
�

0 .�0/cB
. O�0/Cb 0

�

� .
�C �C /�0:
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We then see that

 .x/ .x/ D �a
a C 
�AA;
 .x/�5 .x/ D �a
a � 
�AA

are invariant under proper, orthochronous Lorentz transformations. We note that
 .x/ .x/ is even,  .x/�5 .x/ is odd under space reflection (see the discussion at
the end of the previous section), so that the first is a Lorentz scalar, the second a
Lorentz pseudoscalar. Similarly

 .x/�˛ .x/ D �a.�˛/aBB C 
 
A . O�˛/Ab
b;

is a Lorentz vector, etc. We shall elaborate on this in somewhat more detail in
Sects. 3.2, 4.1.

The form (1.71), or (1.74), of �� is just one possible representation of the Dirac
matrices – the so-called high-energy representation. This is a natural choice because
in this representation the reduction of the full Dirac field into irreducible (two-
component) spinors is complete, see (1.70). There are, of course, other, equivalent,
representations of the � -matrices two of which we now discuss.

Suppose we subject  .x/ to a linear, nonsingular substitution S :

 .x/!  0.x/ D S .x/;

so that the Dirac equation (1.72) becomes

.i�
0�@� �m14/ 

0.x/ D 0;

with � 0� D S ��S�1. Obviously, the anticommutators (1.75) are invariant under
any such substitution. For instance, the choice

S D 1p
2

�
1 1
1 �1

�
D S�1

leads to the representation

�
00 D

�
1 0

0 �1

�
; �

0i D
�

0 �.i/

��.i/ 0

�
; � 05 D

�
0 1
1 0

�
: (1.78)

This representation which is called the standard representation is particularly useful
for weakly relativistic situations in electron and muon physics.

Both representations (1.74) and (1.78) belong to the class of representations in
which the Dirac matrices have the following hermiticity properties,
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.�0/� D �0; .� i /� D ��i ; (1.79a)

�0.��/��0 D ��: (1.79b)

These may be verified by explicit calculation.
In this book we use only this class of representations; there are, however, other

representations in which these properties do not hold15.
The following relation is always true (and follows from (1.75)):

���5 C �5�� D 0: (1.80)

Thus �5 anticommutes with any product of an odd number of Dirac matrices, but
commutes with any product of an even number of Dirac matrices.

One other representation is useful in the discussion of relativistic single particle
problems such as bound states in an external potential, scattering of a particle in
external fields etc. We start from the standard representation (1.78) (omitting the
primes) and set

ˇ D �0 D
�

1 0

0 �1

�
;

˛.i/ D ˇ�i D
�
0 �.i/

�.i/ 0

�
:

(1.81)

Then �i D ˇ˛.i/ and, upon multiplication of the Dirac equation by ˇ, we obtain

i
@

@t
 .x/ D .�i˛ � r Cmˇ/ .x/: (1.82a)

When written in this form, the Dirac equation shows the closest formal resemblance
to the nonrelativistic Schrödinger (or Schrödinger–Pauli) equation, with the matrix

“H0” D �i˛ � r Cmˇ (1.82b)

playing the role of the force-free Hamiltonian. For this reason the form (1.82b) of
the equation may be called Hamiltonian form of the Dirac equation. This analogy
must, however, be understood with great care. IndeedH0, eq. (1.82b) does not have
the properties required by quantum mechanics of a single particle. Specifically,
the spectrum of H0 is not bounded from below; H0 has arbitrarily large negative
eigenvalues (see below). This is a first hint to the fact that Dirac theory is not a single
particle theory and can only be interpreted consistently in its second-quantized
form. It is true, however, that the operator (1.82b) appears in the Hamiltonian
density of the Dirac field. When integrated over all space, this density yields the

15More on representations of Dirac matrices can be found in [QP07], Sect. 9.1. For instance, in
the description of neutrinos the class of Majorana representations is particularly relevant, i.e. the
representations in which all �-matrices are pure imaginary.
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correct Hamiltonian of the Dirac field and does have the properties required by the
principles of quantum mechanics.

Before we turn to the derivation of explicit solutions of the Dirac equation,
we add a few further comments on these results. The explicit two-component
formulation (1.69) is essential in discussing the basic principles of Dirac theory.
In the literature on elementary particle physics one uses mostly the four-component
form (1.72) of the Dirac equation. This form is indeed useful for most practical
calculations of processes involving spin-1/2 particles and we make use of it in
many chapters of this book.16 It is not so useful, however, for questions about
the principles of the theory. For instance, the covariance of (1.72), if it is not
derived as done here, is not obvious and must be proven explicitly by making use
of a theorem of Pauli.17 Questions like: why do we have to describe relativistic
spin-1/2 particles by (at least) four-component wave functions? why do we have
to quantize Dirac theory by means of anticommuting field operators? etc., do not
have straightforward answers in the four-component theory. In the two-component
formulation the covariance of eqs (1.69) is evident.

In general, the answers to questions about fundamental properties of the theory
are obtained in a more direct and transparent manner than in the four-component
formulation.

1.4 Plane Wave Solutions of the Dirac Equation

In this section we derive plane wave solutions of the Dirac equation. For definite-
ness, we take (1.72) in the standard representation (1.78). We make the ansatz

 ˛.x/ D u.r/˛ .p/e
�ipx C �.r/˛ .p/eipx; (1.83)

where px D p0x0 � px with p0 D .m2 C p2/1=2; u and � are spinor amplitudes
characterized by three-momentum p and spin orientation r D 1 or 2 with respect
to some arbitrary quantization axis. The first term on the r.h.s. of (1.83) is called
positive frequency part of  .x/; its time dependence is e�iEt=„. The second term,
correspondingly, is called negative frequency part. This is in accord with the
Schrödinger equation, where stationary states have the time dependence e�iEt=„.
The physical interpretation of the latter will become clear in the context of the
quantization of the Dirac field.

16We note, however, that quantum electrodynamics and other field theories can equivalently be
formulated in the two-component formalism discussed above. This has been worked out, for the
case of QED, by L. M. Brown, Proc. of Colorado Theor. Physics Institute, Colorado (1961). In
some applications this formalism is simpler than the standard one, see also (Kersch et al., 1986).
17The theorem says that for any two sets of Dirac matrices which fulfill the anticommutation
relations (1.75) there is a nonsingular matrix S which transforms one set into the other.
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It follows from (1.72) that the spinors u and � obey the equations

.��p� �m1/u.r/.p/ D 0; (1.84)

.��p� Cm1/ D �.r/.p/ D 0; (1.85)

It is useful to consider also the equations which follow for the hermitean conjugate
spinors. These equations take a particularly simple form if the definition (1.77) is
introduced18

 .x/ D  �.x/�0; (1.86a)

u.p/ D u�.p/�0; �.p/ D ��.p/�0: (1.86b)

Note that both  � and N , as well as u�; Nu; ��; N� are “row vectors”, so that forms
like Nuu are simple numbers, while uNu etc. are four-by-four matrices. From (1.72,
1.84, 1.85) one easily derives

 .x/ .i��
 

@� Cm1/ D 0; (1.72’)

where the arrow is meant to indicate that the derivative applies to N on the left, i.e.
N �� �@ � � @� N �� . Furthermore,

u.p/.��p� �m1/ D 0; (1.84’)

�.p/ .��p� Cm1/ D 0: (1.85’)

Equations (1.84, 1.85), for the case of massive particles m ¤ 0, can be solved in
two steps:

1. Go to the rest system of the particle where p D .m; 0/. As p0 D m, (1.84)
reduces to

�
0 0

0 1

�
0
BB@

u1.0/
u2.0/
u3.0/
u4.0/

1
CCA D 0;

while (1.85) reduces to

�
1 0
0 0

�
0
BB@
�1.0/

�2.0/

�3.0/

�4.0/

1
CCA D 0;

18See the discussion in Sect.3.2.1.
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the solutions of which are

u.r/.0/ D
0
@

.r/

0

0

1
A ; and �.r/.0/ D

0
@ 0

0

.r/

1
A ;

respectively. Here .r/ is a two-component object which, in fact, must be a Pauli
spinor, well-known from nonrelativistic quantum mechanics.

2. The solutions for arbitrary momentum p can then be expressed in terms of the
rest-frame solutions by utilizing the relation

��p��
�p� D 1

2
p�p�.�

��� C ����/ D p�g��p� D p2;
which follows from (1.75). It is seen that

u.r/.p/ D N.��p� Cm1/u.r/.0/; (1.87)

�.r/.p/ D �N.��p� �m1/�.r/.0/ (1.88)

satisfy (1.84) and (1.85) respectively. The normalization constantN is conveniently
chosen so as to obtain

u.r/�.p/�.s/.p/ D �.r/�.p/�.s/.p/ D 2p0ırs: (1.89)

This is a covariant normalization of one-particle states.19 It is achieved by taking
N D .p0 C m/�1=2. Inserting the explicit representation of � -matrices into (1.87)
and (1.88) (here in the standard representation), we have

u.r/.p/ D
p
p0 Cm

0
@ .r/

� � p
p0 Cm

.r/

1
A ; (1.90)

�.r/.p/ D
p
p0 Cm

0
@

� � p
p0 Cm

.r/

.r/

1
A : (1.91)

One verifies by explicit calculation that

u.r/.p/ u.s/.p/ D 2mırs; (1.92)

�.r/.p/ �.s/.p/ D �2mırs; (1.93)

19In some textbooks the normalization of one-fermion states is taken to be p0=m instead of 2p0.
Our normalization is the same for fermions and for bosons.
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and also
u.r/�.p/�.s/.�p/ D 0: (1.94)

Obviously these spinors can be transformed to any other representation of the Dirac
matrices by applying the corresponding transformation matrix S to them. (Example:
Transformation to high-energy representation by means of S , see above).

Mass zero case: We have derived the spinors in momentum space (1.90, 1.91)
by “boosting” the Pauli spinors from the particle’s rest system to the appropriate
momentum p, see (1.87, 1.88). For a massless particle there is no rest system.
Nevertheless, we obtain the plane wave solutions describing the force-free motion
of a massless spin-1/2 particle by simply taking the limit m ! 0 of the solutions
(1.90) and (1.91).20 We then have, of course, p0 D jpj and the operator

� � p
p0
D � � p
jpj D h (1.95)

becomes the helicity operator.
For the sake of illustration, let us transform the m D 0 solutions back to the

“high-energy” representation (1.74), by means of the transformation matrix S . We
obtain from (1.90)

u.r/.p; m D 0/ D
r jpj
2

�
.1C h/.r/
.1 � h/.r/

�
: (1.96)

Taking for .r/ magnetic substates in the direction of p, or opposite to it, means
taking the eigenvalues of h to beC1 or �1, respectively. Thus, either the lower two
components or the upper two components vanish.

Obviously, these solutions can be obtained directly from our equations (1.69): In
the limit m D 0, these equations decouple. With the ansatz e˙ipxu.p/, they are seen
to lead to the eigenvalue equation of the helicity operator (1.95).

1.5 A Few More Properties of Dirac Spinors

We return to the two-component form (1.69) of the Dirac equation and derive a few
more properties of its solutions. First we note that if  .x/ D .
a.x/; A.x//T is a
solution then so is the spinor

 P .x/ D
�
a.Px/


A.Px/

�
D
�
.�0/aB B.Px/

. O�0/Ab 
b.Px/

�
D �0 .Px/; (1.97)

Here Px D .x0; �x/ is the parity transform of x, cf. (1.58a); �0 is given by (1.71).

20This limiting procedure is only applicable for spin 1/2. For higher spin J > 1=2 the limitm! 0

is discontinuous: Whilst a massive particle with spin J has .2JC1/magnetic substates, a massless
particle can have only two helicity states h D .J � p/=jpj D ˙J .
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Similarly, one shows that if  .x/ is a solution of the Dirac equation (1.69) then
also

 C .x/ D
�
�a .x/
�
�B.x/

�
D i�2 �.x/ (1.98)

is a solution.21  C .x/ is called the charge conjugate spinor of  .x/. For the
moment, of course, this is only a formal definition. Charge conjugation becomes
physically relevant only when the particle interacts, e.g. with an external electro-
magnetic field or with other particles. It can then be shown that the transformation
(1.98) does indeed lead to the wave functions of the corresponding antiparticle.

It is not difficult to prove that  C , as defined by (1.98) is a solution of the Dirac
equation. Take the complex conjugate of (1.69a), multiply with " from the left and
insert " � "�1 between the operators ��@� and  (remember rule (iii) above).

�i"AA
0

.���@�/A0b0"b
0b"bb00

�b00.x/ D m"AA0
�A0.x/:

From (1.60) and with our convention (1.50) we can write this as

i. O��@�/Ab�b .x/ D �m
�A.x/;

where B and 
a are defined according to the rules (1.49) and (1.46), respectively.
The second equation (1.69b) is treated in an analogous way:

�i"bb0. O���@�/b0A0"A0A"AA00
�A00.x/ D m"bb0�b
0

.x/;

which can be written as

i.��@�/bA.�
�A.x// D m�b.x/:

Thus, we have shown that

 C .x/ WD i�2 �.x/ D
�
0 �"
" 0

��

a
A

��

D
�

0 "ab
�"BA 0

��

�A
�b

�
D
�
�a
�
�B

�
D

0
BB@
�.II /�
.I /�
.
2/

�
�.
1/�

1
CCA

is also a solution of (1.69).
If one prefers to write the charge conjugate spinor in terms of N , cf. (1.86),

relation (1.98) reads

21Recall that complex conjugation converts small into capital, capital into small indices, .B/� D
�b; .
a/

� D 
�A , and that indices are lowered and raised by means of "-matrices.
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 C .x/ D i�2�0. .x//
T
: (1.98’)

That the matrix
C D i�2�0 D �C�1 D �C� D �CT (1.99)

does indeed convert particle wave functions into antiparticle wave functions and
vice-versa can be seen by considering the Dirac equation for a fermion with charge
e in presence of some external electromagnetic fields A�,

.i��@� � e��A� �m1/ .x/ D 0: (1.100)

Take the complex conjugate of this equation, transform the wave function according
to (1.98) or [equivalently (1.98’)] and observe that

.C�0/.��/�.C�0/�1 D ���: (1.101)

One thereby obtains from (1.100)

.i��@� C e��A� �m1/ C .x/ D 0; (1.102)

which is seen to be the Dirac equation for the antiparticle (charge – e) in the same
external fields.22

Note that applying the transformation (1.98) twice leads back to  .x/,

. c.x//c D i�2.i�2 �.x//� D �2�2� .x/ D  .x/:

Also, C could yield (1.98) multiplied by a phase �. Without loss of generality one
can impose the condition �2 D 1.

The class of spinors for which  C .x/ D  .x/, are called Majorana spinors.
Note that these are not real fields (as would be the case for a spin zero field). From
what we said above it is clear that such a spinor can only describe a neutral particle,
e D 0.

Finally, one proves by similar means that with  .x/ the time reversed spinor

 T .x/ WD
�
.�0/aA"

AA0
�A.TX/
. O�0/Bb"bb0�b0.TX/

�
D
�

�a .T x/
�B.T x/

�
D

0
BB@
�
�2 .T x/

�1 .T x/
��II .T x/
�I .T x/

1
CCA (1.103)

is also a solution of the Dirac equation (1.69).

22Note that here we apply charge conjugation C only to .x/, but not to the sources of the external
fields. Had we done so, we would have found (1.100) to be invariant under C . The electromagnetic
interaction is invariant under C .
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The relationship (1.103) thus reads

 T .x/ D
�

0 �0aA"
AB

O�0Bb"bc 0

��
�c.T x/

�B.T x/

�
� T

�
�c.T x/

�B.T x/

�
: (1:1030)

The spinor on the r.h.s. is nothing but the transposed of  .Tx/, see (1.77), while the
matrix T , in the high-energy representation, is equal to

T D �5.i�2/; (1.104)

One verifies that T WD i�5�2 has the properties

T D i�5�2 D �T �1 D �T � D �T T : (1.105)

1.6 Quantization of Majorana Fields

There are many indications for the fact that the Dirac field cannot be a classical
field. One indication for this is that a spinor field 
 or  changes sign when a
complete rotation by 2� is performed on it. Therefore, such a field cannot be a
classical observable. Such observables which, of course, must be invariant under
complete rotations of the coordinate system, can only depend on bilinear forms
in the spinor fields and their conjugates (so-called sesquilinear forms). Another
indication is this: when one computes the total energy, i.e. the Hamilton density of
the unquantized Dirac field integrated over all space, this energy is found to be zero.
(See exercise 1.13, for the case of Majorana spinors.) Furthermore, if one wants to
interpret the Dirac equation in the framework of a single particle theory, in a spirit
like in nonrelativistic quantum mechanics of one particle dynamics, one runs into
two major difficulties: The energy of a free fermion can assume arbitrarily large
negative values. Also, particle and antiparticle appear in an asymmetric way: while
free particles are states with positive energy, antiparticle states appear as “holes”
in particle levels of negative energy. The interpretation in terms of “particles” and
“holes” avoids the negative energies but does not repair the apparent asymmetry in
the treatment of particles and antiparticles.23

All these difficulties disappear if Dirac theory is interpreted in the framework of
second quantization. This is what we are going to show next. For the sake of clarity,
we start with the case of Majorana fields, but we will see that the case of more
general Dirac fields is no more difficult to treat.

A Majorana field of mass m is defined here by the condition

 C .x/ D  .x/;

23In a system of a finite number of fermions the hole theory is a prefectly consistent and useful
approach. This is not so in a field theory with infinitely many degrees of freedom and in which
genuine antiparticles occur.
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which implies


a.x/ D "ab.B.x//� D "ab�b.x/ D �a.x/: (1.106)

In this case the Dirac equation (1.69) reduces to

i.��@�/aBB.x/ D m�a.x/; (1.107a)

or, equivalently
i. O��@�/Bc
c.x/ D �m
�B.x/: (1.107b)

These equations could have been derived from the following Lagrangian density
(c.f. exercise 1.1):

LM D i

2

�B. O��

$

@�/
Bb
b C m

2
Œ
�A"AB
�B C 
a"ab
b�; (1.108)

where
 !
@ � acts on the right and (with a minus sign) on the left.

From this one derives the “momentum” canonically conjugate to 
a,

�a WD @LM

@.@0
a/
D i

2

�B. O�0/Ba: (1.109)

Therefore, in quantizing the Majorana field we should discuss commutation rules of
the operators 
 as well as 
�. However, as 
 and 
� are related by eq. (1.107b), it
is sufficient to discuss the commutation of 
a.x/ and 
b.y/. The commutation rules
for 
 and � can be derived from these by applying the operator on the left-hand side
of eq. (1.107b) to them.

Similary, the commutation rules for the  field and its conjugate will then follow
by means of the relation (1.106). Let us first consider the commutator of 
a.x/ and

b.y/, for which we write

Œ
a.x/; 
b.y/� D tabf .x � y/: (1.110)

Obviously, the conditions that the right-hand side of (1.110) must fulfill, are
these:

(i) tab must be an invariant tensor with respect to SL(2, C), i.e. tab D Aa mAb ntmn.
(ii) f .x � y/ must be Lorentz invariant and must satisfy the Klein – Gordon

equation for mass m, both in x and y.
(iii) The product tabf .x � y/ must be antisymmetric under the simultaneous

interchange of a with b, and x with y.

The only SL(2, C) invariant tensor is tab D "ab which, as we know, is anti-
symmetric in its indices. As for f .x�y/ we note that there are precisely two linearly
independent, Lorentz invariant solutions of the Klein–Gordon equation for mass
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m.24 These can be chosen as follows:

�0.zIm/ D � i

.2�/3

Z
d3k

2!k
.e�ikz � eikz/; (1.111)

�1.zIm/ D 1

.2�/3

Z
d3k

2!k
.e�ikz C eikz/: (1.112)

with !k D .k2 C m2/1=2 and z D x � y. We note, in particular, that �0.zIm/ is
antisymmetric when z is replaced by �z and vanishes for spacelike separation of x
and y. Thus, �0 is a causal distribution.
�1.zIm/ on the other hand, is symmetric in z and does not vanish for z2 < 0.

Thus,�1 cannot be a causal distribution.
We are now in a difficulty: The quantization rule should be causal, i.e. the

commutator Œ
a.x/; 
b.y/� should vanish whenever .x�y/ is spacelike. Therefore
we must take the right-hand side of (1.110) to be

"ab�0.x � yIm/: (1.113)

This, however, cannot be correct as this last expression is symmetric under
.a $ b; x $ y/. Therefore, if we insist on quantizing the theory by means of
commutators, we have no other choice than to take the commutator (1.110) to be

Œ
a.x/; 
b.y/� D c1"ab�1.x � yIm/: (1.114)

Such a theory is not acceptable on physical grounds: it is Lorentz invariant but
is in conflict with causality, and therefore, will necessarily lead to physically
unacceptable consequences (see also Sect. 1.8).

On the other hand, there is really no compelling reason why one should try
to impose commutators on fermion fields. Fermion fields are not observable.
Commutators are relevant only for quantum mechanical observables which, as we
said before, must be bilinear in fermion fields.

With this remark in mind, it is not difficult to resolve the puzzle. In contrast to
(1.114) the expression (1.113) is perfectly acceptable: It is Lorentz invariant and
vanishes for spacelike .x � y/. As it is symmetric under simultaneous interchange
of a and b, x and y, it is natural to consider the anticommutator

f
a.x/; 
b.y/g WD 
a.x/
b.y/C 
b.y/
a.x/ (1.115)

of these fields, instead of their commutator, and to require the quantization rule

f
a.x/; 
b.y/g D c0"ab�0.x � yIm/; (1.116)

24See Appendix A.



36 1 Fermion Fields and Their Properties

where c0 is a constant to be determined from (1.107). For this purpose, apply the

operation i
�
O��@x�

	Aa
onto (1.116) and sum over a. This gives

f
�A.x/; 
b.y/g D � ic0
m
. O��@x�/Aa"ab�0.x � yIm/:

If we take x0 D y0, then

f
�A.x/; 
b.y/gx0Dy0 D � ic0
m
ıAa"ab@

x
0�0.x � yIm/jx0Dy0

D ic0
m
ıAa"abı.x� y/:

Multiplying this equation with "BA, one obtains

f
�B.x/; 
b.y/gx0Dy0 D
ic0
m
ıBbı.x� y/:

The left-hand side is a positive hermitean operator. Thus, c0 must be negative, pure
imaginary. For dimensional reasons c0 must have the dimension of an energy. Thus
we take

c0 D �im: (1.117)

This quantization rule by means of anticommutators leads to a consistent interpre-
tation of the theory. This is shown below for the case of the general Dirac field of
which the Majorana field is a special case.

1.7 Quantization of Dirac Field

The reasoning of the preceding paragraph is readily applied to the more general
case of arbitrary Dirac fields. Here, the possibility of quantizing via commutators is
excluded for the following reason: Suppose we would require the causal commutator

Œ
a.x/; 
�
b.y/� D c3"ab�0.x � yIm/; (1.118)

where c3 is some number still to be determined. Applying the charge conjugation to
this equation25, we would obtain the following sequence of equations,

25Recall that C�1 D �C , so that

C
aC
�1 D �a; CBC�1 D �
�B ;

C�1 �a C D 
a; C�1
�BC D B:
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Œ�a.x/; 
b.y/� D c3"ab�0.x � yIm/
D �Œ
b.y/; �a.x/� D �c3"ba�0.y � xIm/
D �c3"ab�0.x � yIm/:

The last step follows from the symmetry of expression (1.113). Obviously, c3 D 0,
and the ansatz (1.118) is seen to be inconsistent. Here again, we could repair this
inconsistency by replacing the antisymmetric distribution�0 by the symmetric�1.
However, this would again lead to an acausal theory. Very much like in the case
of Majorana fields the only other possibility is to quantize the theory by means of
anticommutators. Thus we postulate

f
a.x/; �b.y/g D �im"ab�0.x � yIm/: (1.119)

This quantization rule leads to a consistent interpretation of Dirac fields in terms
of particles and antiparticles with the correct (positive) energy spectrum. These
particles obey Fermi–Dirac statistics, so that the Pauli principle is a consequence
of the theory.26

We could prove these statements right away by expanding the two-component
fields 
 and  in terms of plane wave solutions and in terms of the corresponding
creation and annihilation operators. In order to establish the connection with other,
more conventional presentations of this subject, we prefer instead to reformulate
first the quantization rule (1.119) in terms of four-component field operators  .x/,
as defined above in (1.70). We have

 .x/ D
�

a.x/

B.x/

�
;  �.y/ D .
�C .y/�d .y//;

their anticommutator being

f .x/;  �.y/g D
 
f
a.x/; 
�C .y/g f
a.x/; �d .y/g
fB.x/; 
�C .y/g fB.x/; �d .y/g

!
:

Each of the anticommutators of two-component fields is a two dimensional matrix.
All four of them can be derived from (1.119) by applying the "-tensors and/or by
making use of the Dirac equation (1.69). One finds

26This is a special case of the famous spin-statistics theorem (Fierz 1938, Pauli 1940).
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f
a.x/; 
�C .y/g D �
i

m

�
���@y�

	
Cb0
f
a.x/; �b0.y/g

D � i

m

�
���@y�

	
Cb0
"b
0b f
a.x/; �b .y/g

D
�
���@y�

	
Ca
�0.x � yIm/

D
�
��@y�

	
aC
�0.x � yIm/:

Similarly, we have

f
a.x/; �d .y/g D "db f
a.x/; �b.y/g
D "db"ab.�im/�0.x � yIm/ D ıda im�0.x � yIm/;˚

B.x/; 
�C .y/

 D ˚
c.y/; �b.x/
� D ıBC im�0.x � yIm/;

fB.x/; �d .y/g D i

m

�
O��@x�

	Ba
"db f
a.x/; �b.y/g

D �
�
O��@x�

	Bd
�0.x � yIm/;

so that we find for the anticommutator of  and  �,

f .x/;  � .x/g D i

 
i��@x� m1

m1 i O��@x�

!
�0 .x � yIm/;

where we have used that @y��0 D �@x��0.
The matrix that appears in this last expression can be written as follows, cf. (1.71)

.m�0 C i���0 @x�/:

By multiplying with �0 from the right we obtain, finally,

f .x/;  .y/g D i.m1 C i�� @x�/ �0 .x � yIm/: (1.120)

Thus we have arrived at a compact notation of the quantization rule (1.119),
formulated in terms of the field operator  .x/ and its adjoint.

Let us now derive a few consequences of the quantization of the Dirac field by
means of anticommutators. Firstly, let us look at (1.120) for the special case of equal
times, x0 D y0. With the aid of formulae (A.4) for the covariant causal distribution
�0, we find

f a.x/;  �ˇ .y/gx0Dy0 D ı˛ˇ ı.x � y/: (1.121)
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Secondly, we expand  .x/ and  .x/, as usual, in terms of “normal oscillations”,
i.e. in terms of plane wave solutions, very much like in (1.83),

 ˛.x/ D 1

.2�/3=2

2X
rD1

Z
d3p

2Ep
Œa.r/ .p/u.r/˛ .p/e�ipx

C b.r/� .p/�.r/˛ .p/eipx�; (1.122a)

 ˛.x/ D 1

.2�/3=2

2X
rD1

Z
d3p

2Ep
Œa.r/� .p/ u.r/˛ .p/ eipx

C b.r/ .p/�.r/˛ .p/ e�ipx�: (1.122b)

Here, u.r/.p/; �.r/.p/, are the force-free solutions in momentum space (1.90,
1.91) that we constructed above in sec. 1.4. r is the spin index, p the momentum
and Ep D .m2C p2/1=2 the corresponding energy. The inverse formulae expressing
the operators a.r/.p/ and b.r/.p/ in terms of the field operators are easily derived by
using the orthogonality relations (1.92–1.94). One finds

a.r/.p/ D 1

.2�/3=2

Z
d3 xeipx u.r/�˛ .p/ ˛.x/; (1.123a)

b.r/.p/ D 1

.2�/3=2

Z
d3 xeipx  ˛.x/ �

0
˛ˇ �

.r/

ˇ .p/: (1.123b)

In (1.122, 1.123) we have written out the Dirac spinor indices, for the sake of clarity.
Thus, in (1.122) the spinors u.p/ and �.p/ in momentum space carry the spinor
index of the field operators  .x/. In (1.123) one has to sum over the spinor indices
as indicated, the operators a.r/.p/ and b.r/.p/ carrying no such index.

In going over from two-component spinors to four-component spinors (1.70) we
lose the clear distinction between co- and contragredient spinor indices of first and
second kind. Also the covariance properties of the theory become less transparent
than in the two-component formulation. What we gain, however, is a very compact
notation that is useful for almost all practical calculations involving Dirac fields.
As long as the order of a product of Dirac spinors and Dirac matrices is respected,
we need not write out the spinor indices at all. The sum over first and second kind
spinors is automatically contained.

From (1.123, 1.121), making use of relations (1.92–1.94) one derives the
following anticommutation relations:

fa.r/ .p/; a.s/� .q/g D 2Ep ırs ı.p� q/; (1.124a)

fb.r/ .p/; b.s/� .q/g D 2Ep ırs ı.p� q/; (1.124b)

f.a.r/ .p/; a.s/ .p/g D fb.r/.p/; b.s/.q/g
D fa.r/.p/; b.s/.q/g D fa.r/ .p/; b.s/�.q/g D 0: (1.124c)
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These anticommutation rules show that we deal here with creation and destruction
operators for two kinds of particles that obey Fermi–Dirac statistics.27 In more
detail,

a.r/�.p/ creates a particle state with four-momentum p D .Ep; p/ and spin
projection r ,
b.r/�.p/ creates a antiparticle state with four-momentum p D .Ep; p/ and spin
projection r ,
a.r/.p/ and b.r/.p/ are the corresponding annihilation operators.

Thus, for example, applying a.r/�.p/ to the vacuum yields a one-particle state

a.r/�.p/j0i D jp; ri;

which is normalized according to the covariant prescription

hp0; r 0 jp; r i D 2Ep ırr 0 ı.p� p0/: (1.125)

Some of these statements are proven in the following section.

1.8 Lagrange Density of Dirac Field, Charge, Energy,
Momentum and Spin of Dirac Particles

It is not difficult to find a Lagrange density whose Euler equations are the Dirac
equation for  .x/ and its adjoint. In (1.108) we already found a Lagrange density
for the case of Majorana spinors. For the more general case of unrestricted Dirac
fields a Lagrangian is

LD D i

2
Œ
� C .x/ . O��

$

@�/
Ca 
a.x/C �d . O��

$

@�/dB 
B.x/�

�mD Œ

�
B.x/

B.x/C �d .x/ 
d .x/�;
(1.126)

where mD is a mass parameter and the quantity in square brackets is called Dirac
mass term.28 One verifies easily that LD leads to the correct equations (1.69). When
written in terms of four-spinors this Lagrangian takes a very simple form, viz.

LD D  .x/
�

i

2
��
$

@
�

�mD1

�
 .x/: (1:1260)

The field variables being  .x/ and N .x/, their conjugate momenta are

27See e.g. [SAK67].
28The most general case is treated below in Sect. 1.8.4.
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….x/ W D @LD

@.@0 /
D i

2
 �.x/; (1.127a)

….x/ D @LD

@.@0 N /
D � i

2
�0 .x/: (1.127b)

1.8.1 Charge of Particles and Antiparticles

The Lagrangian (1.126) is invariant under global gauge transformations, also called
gauge transformations of the first kind,

 .x/ ! ei˛ .x/;  .x/ ! e�i˛  .x/: (1.128)

Taking ˛ to be infinitesimal this means that LD is invariant with respect to variations
ı D i˛ ; ıLD D 0. When this is worked out (and making use of the equations
of motion) one obtains the conservation condition

@�j
�.x/ D 0 (1.129)

for the “current density” operator

j� .x/ D  .x/ ��  .x/: (1.130)

Note that, at this point, we do not know which physical current density is to be rep-
resented by the operator (1.130) nor do we know whether the divergence condition
(1.129) actually corresponds to a physical conservation law. These questions cannot
be answered until we know what the interactions of the fermion field are and how
these interactions behave under the same gauge transformations. For a world with
interactions we will have to consider simultaneous global gauge transformations of
all fields that enter the theory, possibly also local gauge transformations (i.e. gauge
transformations where ˛ becomes dependent on space and time coordinates).

For the moment it may suffice to say that for leptons, i.e. for particles which
have only electromagnetic and weak (and gravitational) interactions, the operator
(1.130) multiplied with e represents the electromagnetic current density. If the  
are taken to be free fields (1.122), then j�.x/ is the current operator in the sense
of perturbation theory, i.e. ej�.x/A�.x/ is the interaction with the Maxwell field,
represented by the potentialsA�. In this case we can compute single particle matrix
elements of j�.x/ and of the corresponding charge operatorQ. Indeed, if the fields
are sufficiently well-behaved such that j�.x/ vanishes at infinity,29 we conclude

29In fact the fields (1.122) are not well-behaved and, strictly speaking, we should smooth them out
with appropriate weight functions.
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from the divergence condition (1.129) that the integral of j 0.x/ over all space is a
constant of the motion:

Q W D
Z

d3xj 0.xI t/; d

dt
Q D 0: (1:1290)

This follows from

d

dt

Z
d3xj 0 .x/ D �

Z
d3 x

3X
iD1

@

@xi
j i .x/ D 0:

It is not difficult to computeQ using (1.122) and the relations (1.92–1.94). One finds

Q D
2X
rD1

Z
d3p

2Ep
Œa.r/� .p/ a.r/.p/C b.r/.p/ b.r/� .p/�; (1.131)

or, making use of the anticommutators (1.124b),

Q D
2X

rD1

Z
d3p

2Ep
Œa.r/� .p/ a.r/.p/ � b.r/� .p/ b.r/.p/�: (1:1310)

We now calculate one-particle matrix elements of Q, again making use of the
anticommutation rules (1.124).

For particles created by a.r/�.p/ we find

Qa.a/� .p/j0i D Ca.r/� .p/j0i: (1.132a)

Similarly, for “b”-type particles we have

Qb.a/� .p/j0i D �b.r/� .p/j0i: (1.132b)

These results show that “a”-type particles and “b”-type particles have opposite
“charge”. This “charge” can be the electric charge, but it can also be any other
charge-like quantum number that is respected by the fermion’s interactions (lepton
number, baryon number etc.) Thus, “a” and “b” particles are charge-conjugate to
each other, or, in other terms, they are antiparticles of each other. We note, however,
the complete symmetry of the theory in the two types of particles. It is only a matter
of convention which of them is called particle and which is called antiparticle. This
is in contrast to the old “hole theory” where particles are accepted as such but
antiparticles are doomed to live in the shadow world of “holes” in particle states
with “negative energy” (see also the remark at the end of this section).

The operatorQ can also be applied to a Fock-state of many free fermions, say N
particles and M antiparticles. Any such state is an eigenstate of Q with eigenvalue
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(“charge”) .N � M/. If in every reaction of these fermions the “charge” Q is
conserved, we say that Q is “additively conserved”. This means that

X
i

Q.i/ D
X
f

Q.f /;

where i counts the particles and antiparticles in the initial state, f counts the
particles and antiparticles in the final state.

1.8.2 Energy and Momentum

In classical field theory the energy–momentum tensor density is given by the general
expression

T ��.x/ WD
X
n

@L

@.@�
n/
@� 
n � g��L : (1.133)

It satisfies the continuity equation

@� T
��.x/ D 0 (1.134)

(use the equations of motion to verify this).
Specifically, the energy density of the Dirac field is given by

H .x/ � T 00.x/ D � .x/
�

i

2
� � $r �m1

�
 .x/ (1.135)

and the momentum density is given by

T 0m.x/ D i

2
 .x/ �0

$

@
m

 .x/ D � i

2
 �
$rm : (1.136)

The divergence condition (1.134) implies that the four-vector

.H;P/ W D
�Z

d3 x T 00;
Z

d3 xT 0i
�

is a constant of the motion. The operatorsH and P are easily calculated by inserting
the expansions (1.122) of the fields in terms of creation and annihilation operators.
Consider first H ,

H D
Z

d3 xH .x/ D
Z

d3 x �.x/.�i’ � r Cmˇ/ .x/;
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where we have integrated the derivative on N by parts and have inserted the
definitions (1.81). With (1.122) and making use again of the orthogonality properties
of spinors in momentum space one finds

H D
2X

rD1

Z
d3p

2Ep
Ep Œa

.r/� .p/ a.r/.p/� b.r/.p/ b.r/�.p/�: (1.137a)

Upon using the anticommutation rule (1.124b) this can be written, up to an infinite
constant,

H D
2X

rD1

Z
d3p

2Ep
Ep Œa

.r/� .p/ a.r/.p/C b.r/�.p/ b.r/.p/�: (1.137b)

The infinite constant should not worry us as only energy differences are physically
relevant. Whenever the differences of the energies of any two states is taken, this
constant drops out.

Applying the operatorH to a single particle state shows that Ep D .m2C p2/1=2

is the energy of this state, independently of whether the state contains an “a”-type
or “b”-type particle. For calculating the action of H onto a more general Fock state
the following commutators are helpful:

Œa.r/ .p/; H� D Epa
.r/.p/; (1.138a)

Œb.r/ .p/; H� D Epb
.r/.p/; (1.138b)

Œa.r/� .p/; H� D �Ep a.r/�.p/; (1.138c)

Œb.r/� .p/; H� D �Epb.r/�.p/: (1.138d)

They show that applying a�.p/ or b�.p/ to any eigenstate  0 of H increases its
energy by the amount Ep: Indeed, let  ˛ be an eigenstate of H with energy E˛,

H j ˛i D E˛j ˛i:

Then a.r/�.p/j ˛i is also eigenstate of H ,

Ha.r/� .p/j ˛i D Œa.r/� .p/H C Ep a.r/�.p/�j ˛i
D .E˛ CEp/ a.r/� .p/j ˛i:

Its energy is seen to be E˛ C Ep. Exactly the same argument applies to the state
b.r/�.p/j ˛i.

Similarly, application of a.p/ or b.p/ leads to a new eigenstate of H whose
energy is reduced by the amountEp .



1.8 Lagrange Density of Dirac Field, Charge, Energy, Momentum 45

Quite similarly, the total momentum operator may be calculated from (1.136)
and (1.122), and is found to be

P D
2X
rD1

Z
d3p

2Ep
pŒa.r/� .p/ a.r/.p/C b.r/�.p/b.r/ .p/� (1.139)

By using arguments completely analogous to the above, one shows that the
operators a.r/�.p/ or b.r/�.p/, when applied to a Fock state, add an additional three-
momentum p, independently of the type of particle. Similarly, the corresponding
annihilation operators take away three-momentum p, independently of the type of
particle.

To summarize, we have convinced ourselves that a.r/�.p/ and b.r/�.p/ [a.r/.p/
and b.r/.p/] must be interpreted as creation [annihilation] operators for free
fermions with four-momentum p D .Ep D .p2 Cm2/1=2; p/ and spin projection r .
The corresponding “wave functions” in momentum space are given by the spinors
u.r/.p/ and �.r/c .p/, respectively, see (1.90) and (1.91). The two kinds of particle
are distinguished through their “charge”, cf. (1.131) and (1.132). The two types
of particle are said to be antiparticles of each other. The formalism is completely
symmetric in the two kinds of particle.

Remark. Let us return, for a moment, to the Hamiltonian H of (1.137a) and note
the minus sign in front of the second term. In passing from (1.137a) to (1.137b)
it was essential that b and b� anticommuted, in order to obtain the integrand
of (1.137b) with the two plus signs. Had we taken commutators instead of the
anticommutators (1.121), the second term of (1.137b) would still be negative. This
would mean not only that antiparticle states had negative kinetic energies but also
that H , the total energy of the field, had arbitrarily large negative eigenvalues.
Both consequences, quite obviously, are not tenable on physical grounds: We
know that free electrons and positrons have positive energy, and we know that a
physical Hamiltonian must have a spectrum which is bounded from below. In many
introductions to Dirac theory these difficulties are quoted as the primary motivation
for rejecting commutators of fermion fields and for using anticommutators instead.
This procedure, although acceptable, is not satisfactory for it does not reveal the
real origin of the difficulty. As we have seen above, enforcing commutators leads
unavoidably into a theory which is in conflict with causality. This is the deeper
reason why the theory must be quantized by means of anticommutators. The
spectrum of H coming out unbounded from below, when commutators are used
instead, is a symptom rather than the fundamental cause of the difficulties.

1.8.3 Spin Properties of Dirac Particles

As is well-known relativistic motion mixes spin and orbital angular momentum
degrees of freedom in a complicated way. In general, when the total angular
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momentum (sum of spin and orbital angular momentum) is conserved in a reaction,
neither the total spin nor the total orbital momentum are conserved separately.
Therefore, for a massive particle, one must go to the rest frame if one wishes to
know its spin. In the rest system the orbital angular momentum is zero, so that when
we perform a rotationR in that system the particle state will transform withD.S/.R/

where S is its spin. From the very construction of force-free solutions of the Dirac
equation, we know that massive fermions carry spin 1/2.

Remark. The general case can be treated in several ways. The most transparent is
perhaps the method used above which consists in “boosting” the particle state back
to its rest system and perform a rotation there.30 Another approach makes use of the
Pauli-Lubanski four-vector which is defined by

W� D �1
2
"˛ˇ�� M

˛ˇ P �

and where P� and M˛ˇ are the generators of infinitesimal Lorentz transforma-
tions. This set of operators generates the little group (i.e. the set of all Lorentz
transformations that leave the eigenvalues of the energy–momentum operator P�

invariant) and yields a relativistic description of arbitrary spins. It is also very useful
in discussing the spin properties of massless particles. In this case one finds that
(excluding continuous spin) massless particles are characterized by helicity states
rather than spin states and that the helicity can only have two values ˙�:�, which
must be integer or half-integer is said to be the “spin” of the particle.

We do not go into these general matters here and refer the reader to the extensive
literature on this subject. Instead, we turn to the more practical question of how to
handle the spin and polarization properties of spin 1/2-particles.

(a) The case of massive fermions
Let us first recall the nonrelativistic description of spin and polarization of a massive
fermion (in other words we go to the rest system of the particle first). Consider
a statistical mixture of spin-1/2 particles polarized parallel or opposite to a given
direction

n D .sin 	 cos
; sin 	 sin 
; cos 	/

in space. The angles 	 and 
 specify the vector n with respect to a given frame of
referenceK0.

Had we used, instead, a frameK whose 3-direction coincides with n, the density
matrix describing this state would be given by

�jK D �Cjmn D C1
2
i hmn D C1

2
j C ��jmn D �1

2
i hmn D �1

2
j D

�
�C 0

0 ��

�
:

(1.140)

30See e.g. [OMN70]
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Here �C; �� are the statistical weights of the fraction of particles polarized along
the positive or negative n-direction, respectively. These weights have the properties

0 � �˙ � 1; �C C �� D 1:

The states with .�C D 1; �� D 0/; .�C D 0; �� D 1/ are pure states
corresponding to full polarization parallel and opposite to n, respectively. The same
density matrix, but written out with respect to the original frame, is obtained from
(1.140) through a rotation by the Euler angles . ; 	; 
/

�j�0 D D.1=2/� . ; 	; 
/ �j� D.1=2/ . ; 	; 
/; (1.141)

with

D.1=2/ . ; 	; 
/ D e.i=2/ �.3/ e.i=2/	�.2/e.i=2/
�.3/

D
�

cos.	=2/ e.i=2/. C 
/ sin.	=2/e.i=2/. �
/
� sin.	=2/e�.i=2/. �
/ cos.	=2/e�.i=2/. C
/

�
:

The angles 	; 
 are the same as before,  is arbitrary, but drops out in the density
matrix. One finds by straightforward calculation,

�j�0 D 1

2

��
1 0

0 1

�
C .�C � ��/

�
cos 	 sin 	 e�i


sin 	 ei
 � cos 	

��
;

which is, of course, the same as

� D 1

2
f1 C .�C � ��/ � � ng � �C PC C �� P�; (1:1410)

where P˙ are the projectors onto “spin up” and “spin down” states along the
direction n, respectively,

P˙ WD 1

2
.1C � � n/: (1.142)

It is convenient to define a polarization vector

— WD .�C � ��/n; (1.143)

so that

� D 1

2
.1C — � � /: (1.144)

This vector has the norm

—2 D .�C � ��/2 D .1 � 2��/2 � 1:



48 1 Fermion Fields and Their Properties

It lies within a sphere of unit radius, the so-called Poincaré sphere.31 Its direction
gives the direction of predominant polarization, its magnitude the degree of
polarization. Thus, if � lies inside the sphere, the state is a statistical mixture, if
� lies on the sphere, the state is pure. Indeed, if we compute the polarization P in
the state described by the density matrix (1:1410), we find

P D h� i D tr.�� / D .�C � ��/n � —: (1.145a)

The degree of polarization is given by

P � jPj D j—j D �C � ��
�C C �� D �C � ��: (1.145b)

Thus far, our description of polarization applies to the rest system of the particle,
or, in an approximate way, to weakly relativistic motion. How do these notions
generalize when we deal with truly relativistic motion of the particle?

For this purpose we must (i) transform the polarization vector � to arbitrary
Lorentz frames, (ii) find a covariant four-vector which is the generalization of
the spin operator ¢=2, by constructing the covariant form of the spin projection
operators (1.142), and (iii) find a covariant (Lorentz invariant) expression for the
density matrix.

Point (i) is easy to carry out: � being a classical quantity, we simply have to
“boost” the vector .0; �/ to the particle momentum p, cf.(1.15):

s D L.p/.0; �/ D
�
1

m
p � �; � C p � �

m.Ep Cm/p
�
: (1.146)

This four-vector has the following properties:

s2 D �—2; i:e: 0 � .�s2/ � 1; (1.147a)

s � p D 0: (1.147b)

This is verified as before, cf. (1.16), the case of maximal polaritation.
In particular, the degree of polarization (which obviously is a Lorentz scalar) is

P D p.�s2/. As � is a spin expectation value, cf (1.145a) it must be even under
parity operation in the particle’s rest frame. From this observation we see that s�,
(1.146) is an axial four-vector.

Concerning (ii): The construction of the covariant spin projection operators is
somewhat complicated by the fact that the Dirac equation admits solutions of pos-
itive and negative frequencies (particles and antiparticles) each of which can have

31This sphere is originally defined in the description of polarized or partially polarized light. The
formalism describing polarized electromagnetic waves (or photons) is the same as for spin-1/2
particles. The real quantities �1; �2; �3 are called Stokes parameters in electrodynamics.
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two polarization states. Therefore matrices like u.r/˛ .p/u
.r/

ˇ .p/ (or �.r/˛ .p/�
.r/

ˇ .p/),

which are the analogues of the non-relativistic projector Pr D j.r/ih.r/j, when
taken separately, will project out the spin direction r only for positive (negative)
frequency solutions. In other words, both uNu and � N� will contain the covariant spin
projection operator but multiplied by projectors onto solutions with positive and
negative frequency, respectively. With these remarks in mind we proceed as follows:

Let u.p/ be a particle spinor of momentum p, mass m, polarized along an
arbitrary direction n in the rest frame of the particle. Let �.p/ be the corresponding
antiparticle spinor with the same three-momentum and let it also be polarized along
the same direction n. n is a unit vector, n2 D 1. In the rest system of these particles
we have (using the standard representation),

u.0/u.0/ D 1

2

�
1C ¢ � n 0

0 0

�
;

�.0/�.0/ D 1

2

�
0 0

0 1 � ¢ � n
�
:

Expressing these matrices in terms of � -matrices one verifies easily that

u.0/u.0/ D 1

2
.1C �0/1

2
.1 � �5n � ”/;

�.0/�.0/ D �1
2
.1C �0/1

2
.1 � �5n � ”/:

We know from (1.87,1.88) that u.p/ D N.�pCm/u.0/ and �.p/ D �N.�p�m/�.0/
with N D .Ep Cm/�1=2. Using this we calculate the sum32

u.p/u.p/C �.p/�.p/ D 1

Ep Cmf.�pCm/u.0/u.0/.�pCm/

C .�p �m/�.0/�.0/.�p �m/g

D 1

4.Ep Cm/f.�pCm/.1C �0/.1 � �5n
i � i /.�pCm/

� .�p�m/.1� �0/.1 � �5ni � i /.�p �m/g

D 1

4.Ep Cm/fŒ4m�pC 2�p�0�pC 2m2�0� � �5ni Œ2m.�i�p

� �p�
i /� 2m2�0�i C 2�p�0�i�p�g:

32We use the “slash” notation, �a � a���.
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By commuting the � -matrices such as to move �p to the left in each term and using

�p�p D m2 this can be transformed to

D
�
�p � �5ni

�
��p�

i C �p�
0 pi

Ep Cm C
m

Ep Cmp
i

��

D �p
�

1C �5
�
�ni � i C nipi

�
1

Ep Cm�
0 C 1

m.Ep Cm/�p
���

D �p
�

1C �5
�

n � p
m
�0 �

�
ni C n � p

m.Ep Cm/p
i

�
�i
��

D �p.1C �5�n/;

where n is defined in analogy to (1.146) and is nothing but the four-vector (0; n)
“boosted” to the system where the particles have momentum p. In exactly the same
manner one computes the difference

u.p/u.p/ � �.p/�.p/ D m.1C �5 6n/:

From these results follow the important relations

u˛.p/uˇ.p/ D 1

2
f.�pCm1/.1C �5 6n/g˛ˇ; (1.148a)

�˛.p/�ˇ.p/ D 1

2
f.�p �m1/.1C �5 6n/g˛ˇ: (1.148b)

We recall the definition of n�:

n� D
�

p � n
m
;nC n � p

m.Ep Cm/p
�
; (1.149)

which satisfies n2 D �1; .np/ D 0.
Let us comment on these results. Obviously, the spin projection operator onto the

positive n direction is

�n D 1

2
.1C �5��n�/ (1.150)

for both particles and antiparticles. In the rest system it reduces to the familiar form

�njpD0 D 1

2

�
1C ¢ � n 0

0 1 � ¢ � n
�
: (1.151)

The second term in (1.150) is the scalar product of n� and �5��. We already know
that n� is an axial vector; �5��, when taken between Dirac fields, is also an axial
vector, so that . N �5�� /n� is a scalar.
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As to the other factor in (1.148) it should be clear that

�˙ D ˙ 1

2m
.�p˙m1/ (1.152)

are the projectors onto positive and negative frequency solutions, respectively. The
normalization follows from the requirement

�2˙ D �˙:

From �p �n D 2.pn/ � �n�p D ��n�p and from (1.80) we see that �p commutes with
�5�

�n� and, therefore, that

Œ�n;�C� D 0 D Œ�n;���;

which repeats our statement that �n is the spin projection operator, independently
of whether we deal with a particle or an antiparticle.

It is now easy to answer question (iii): The covariant density matrix that describes
an ensemble of particles with partial polarization P D �, cf. (1.145), is33

� D 2m�C 1
2
.1C �5�s/ D

1

2
.�pCm1/.1C �5�s/; (1.153)

where s is defined in (1.146) and has the norm

p
�s2 D j—j � P D �C � ��:

We verify that

�2 D 4m2�C
1

2

�
1C —2
2

1C �5�s
�
;

which is equal to 2m� only for j�j D 1, and that

tr

�
�2

4m2

�
D 1

2
.1C —2/ � tr

� �

2m

	
D 1: (1.154a)

Note that � is not hermitean but that instead

�0���0 D �: (1.154b)

In eq. (1.154a) the equality sign holds if j�j D 1, i.e. for a pure state. In that case
�2 D 2m�.

33We have normalized the density matrix in accordance with the covariant normalization
(1.92,1.89), i.e. tr � D 2m.
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Similarly, the density matrix describing antiparticles with polarization � is
given by34

� D �2m��
1

2
.1C �5�s/ D

1

2
.�p �m1/.1C �5�s/: (1.155)

It is easy to see that �� describes the parity-mirror state of �, i.e. p! �p but � ! �.
Since fermions always appear in bilinear forms in any observable, there is no harm
in having a non-hermitean density matrix (see exercise 1.9).

If one insists on having a hermitean density matrix one may use, instead of
(1.153):

P WD �0� D 1

2
.Ep1 � p � ’˙mˇ/.1C �5�s/: (1.156)

This matrix has the properties (for particles and antiparticles),

P� D P; tr.P / D 2Ep:

Thus, its trace is not a Lorentz scalar [the normalization is the covariant one of
(1.89)].

It is covenient to express the polarization vector � on (or inside) the Poincaré
sphere in terms of its component �l along the particle’s three-momentum p and its
components perpendicular to p,

— D —lp=jpj C —t with —l D
1

jpjp � —: (1.157a)

The four-vector s, (1.146), is then given by the components

s0 D 1

m
jpj—l; s1 D Ep

m
—l

p
jpj ; st D —t: (1.157b)

The special cases of longitudinal and transverse polarizations (with respect to the
momentum p) can be read off these formulae.

A case of special interest is the case of extreme relativistic motion which we
discuss separately.

(b) Extreme relativistic motion and the neutrinos
Suppose first that we deal with a massive particle whose energy is very large as
compared to its mass, i.e.

E � m; jpj ' E:

Let us take the 3-direction in the direction of the particle’s momentum p. Then from
(1.153, 1.155)

34Normalization and sign in agreement with (1.93).
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� ' 1

2
fE.�0 � �3/˙m1g

�
1C �5

�
E

m
�l.�

0 � �3/� �1t �1 � �2t �2
��

' 1

2
E.�0 � �3/f1C �5Œ��l � � l

t�
1 � �2t �2�g:

Here we have used .�0��3/2 D .�0/2C.�3/2�f�0; �3g D 0 and we have neglected
m1 against E.�0 � �3/. The result can also be written as follows:

� ' 1

2�
pf1 � �5Œ˙�1 C �1t �1 C �2t �2�gI (1.158)

the positive sign holds for particles, the negative sign for antiparticles.
The expression (1.158) which can be used to describe, for example, electrons

and positrons at ultra-relativistic energies, shows that such particles can have any
partial or full polarization, along their momentm or transverse to it. For instance,
a statistical mixture of electrons with positive helicity (statistical weight �C) and
electrons with negative helicity (statistical weight ��) at very high energy is
described by

� ' 1

2�pf1� .�C � ��/�5g:
Expression (1.158) is also applicable to massless fermions, i.e. to neutrinos.

However, there is one essential restriction. The only possible spin states are the ones
with positive or negative helicity h D ˙�. This can be understood very qualitatively
as follows: Massless particles have no rest system. For a massive particle we can
always go back to its rest system and rotate its spin into any direction we wish by
means of the full rotation group. For a massless particle, the particle’s momentum
p singles out a specific spatial direction; the only Lorentz transformations that may
remain “good” symmetries are the ones which leave this direction invariant (so-
called little group): rotations about the spatial direction p and reflections with respect
to any plane in the three- dimensional space that contains this direction. Regarding
the spin properties of photons, we know that “right”- and “left”-circularly polarized
plane waves are described by the polarization vectors (taking the photon momentum
q in the 3-direction)

e˙1 WD � 1p
2
.e1 ˙ ie2/:

Rotations about the three-axis leave these quantities invariant (except for multipli-
cation by a phase); while reflection with respect to the plane spanned by the 1-axis
and the 3-axis transforms one state into the other. As both kinds of transformations
are symmetries which leave the Maxwell equations invariant (in homogeneous and
isotropic space), also any other transverse photon polarization is possible: any linear
superposition of the two helicity states e˙1 is acceptable (linear polarization, elliptic
polarization).
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For neutrinos and antineutrinos the possible spin states are the states with helicity
� D ˙ 1

2
. It appears that neutrinos which are produced in weak interactions

at moderate energies always have negative helicity (they are said to be “left-
handed”), whilst antineutrinos always have positive helicity (they are said to be
“right-handed”). Thus, the density matrix for neutrinos [(1.158) with upper sign and
�1 D �1] as well as for antineutrinos [(1.158) with lower sign and �1 D C1] reads

�.v/ D 1

2�p.1C �5/: (1.159)

It describes a pure state: a neutrino state of negative helicity or an antineutrino
state of positive helicity. A priori there is no reason why the massless neutrino
(antineutrino) couples to other particles only in left-handed (right-handed) states.
In principle massless fermions could have either helicity, or could be in states which
are superpositions of the two helicities � D ˙ 1

2
. As we have seen above, the density

matrix

�.m D 0/ D 1

2�p.1 � 2��5/ (1.160)

describes particles with helicity �, or antiparticles with helicity ��. For electrons at
ultra-high energies these are indeed possible states.

The fact that for neutrinos and antineutrinos (1.159) is the only possibility, is
of dynamical origin: In connection with the photon’s helicity we have said above
that the symmetry operations relevant to a massless particle of a given momentum
p are rotations about p and reflections with respect to planes containing the vector
p. These reflections, in particular, convert positive into negative helicity and vice
versa (exercise 1.14). Whilst electromagnetic interactions are invariant under both
rotations and reflections, this is not so for weak interactions. Weak interactions are
invariant under rotations but not under parity or, for our purpose, under reflections
with respect to planes that contain p. Therefore, the two possible helicity states are
not degenerate dynamically. Actually parity violation in the leptonic sector is found
to be maximal: one helicity state (� D C1=2 for v; � D �1=2 for Nv) seems to
decouple completely from the physical world of particles.

As a consequence the parity transform (1.160) of �.m D 0/:

�P .m D 0/ D �0�.m D 0I p! �p/�0 D 1

2
p.1C 2��5/ (1.161)

describes states which do not couple in weak interactions. By the same token charge
conjugation cannot be a symmetry of weak interactions, for it transforms a left-
handed neutrino (right-handed antineutrino) into a left-handed antineutrino (right-
handed neutrino) which decouples from other particles.

As an exercise the reader is invited to show that the charge conjugate of (1.160)
is given by

�C .m D 0/ D 1

2�p.1C 2��5/: (1.162)
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If, on the other hand, we consider the combined operation of parity and charge
conjugation, PC, then we see from (1.161, 1.162) that �.m D 0/ and, more
specifically, �.v/ are invariant under PC. Thus the neutrino and the antineutrino are
PC-partners of each other.
Note. For spin-1/2 particles it is customary to denote the helicity states by h WD 2�,
i.e. h D ˙1 instead of � D ˙1=2. We shall adopt this convention in Chaps. 2 and 3.

1.8.4 Dirac and Majorana Mass Terms

In (1.108) and (1.126) we have encountered real mass terms for the case of one
single Majorana and one single Dirac field, respectively. These are special cases
of the most general mass term that is compatible with Lorentz invariance. As the
general case is instructive and provides further insight into the structure of the theory
we work it out in some detail.

Let 
a.x/ and A.x/ be spinors of first and second kind, respectively, without
any condition (such as, e.g., (1.106)) imposed on them. The most general, Lorentz
invariant and hermitean Lagrangian (without interaction terms) that can be con-
structed on the basis of these fields, is the following:

L D i

2

�

�A.x/.O¢�

$

@�/
Ab
b.x/C �a.x/.¢�

$

@m/aB
B.x/

�

C ˚mD
�
a"
ab
b �m�D
�A"ABB




C 1

2

˚
m1
a"

ab
b Cm�1 
�A"AB
�B



� 1
2
fm2

�a"ab�b Cm�2 A"ABBg: (1.163)

Here mD; m1; m2 are arbitrary, complex parameters with dimension of masses.
Each one of the three mass terms in curly brackets is hermitean by itself, as is
easily verified by means of relations (1.56, 1.57). The terms containing m1; m2

and their complex conjugates are generalizations of the mass term in the Majorana
Lagrangian (1.108), whilst the terms inmD; m

�
D generalize the Dirac case of (1.126).

In order to clarify the structure of the mass term in (1.163) we note first that it
can be rewritten in a way which eliminates the apparent asymmetry in the spinor
fields 
.x/ and .x/. Indeed, �a D "ab

�b is another spinor of first kind, having
the same transformation properties as 
a. Likewise 
�A D "AB

B is a spinor of
second kind, very much like A. It is convenient to introduce the following, more
symmetric notation:


.1/a .x/ WD 
a.x/; 
.2/a .x/ WD �a .x/; (1.164)
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as well as to define the following Majorana fields:

˚.1/.x/ WD
�


a.x/

�
�A.x/
�
�
 



.1/
a .x/

�
.1/�A.x/

!
; (1.165a)

˚.2/.x/ WD
�
�a.x/
A.x/

�
�
 



.2/
a .x/

�
.2/�A.x/

!
: (1.165b)

[The signs in (1.165) follow from the convention for "AB, from (1.98) for C .x/, via
the relations (1.56).] By making use of the defining relation O�� D ".��/ 
 "�1 and
of the hermiticity of the matrices �� one shows that


a.��
$

@�/aB

�B D 
�A. O��

$

@�/
Ab
b

and an analogous relation for the kinetic energy of the -field. Thus, the kinetic
energy in the Lagrangian (1.163) can be written in the following form:

Lkin D i

4

2X
kD1
f
.k/�A.x/. O��

$

@�/
Ab


.k/

b .x/ � 
.k/a.x/.��$@�/aB
.k/�B.x/g:
(1.166)

The mass terms in m1 andm2 have the structure

�1
2
mii


.i/a.x/
.i/a .x/;

with m11 � m1, m22 � m2. As to the term in mD we note that 
a�a � 
.1/a

.2/
a

is the same as �a
a � 
.2/a

.1/
a . Therefore all mass terms can be written in the

following notation:

Lmass D �1
2

8<
:

2X
i;kD1

mik

.i/a
.k/a C h:c:

9=
; ; (1.167)

where

mik D
�
m1 mD

mD m2

�
DWM: (1.168)

The mass matrix M , (1.168), is a symmetric, (in general) complex 2 � 2 matrix.
The physical fermion fields which are described by the free Lagrangian (1.167) are
obtained by a transformationW ,


.i/
0

a .x/ D
X
j

Wij

.j /
a .x/ (1.169)
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of the fields 
.i/ which leaves invariant Lkin and transforms Lmass to diagonal
form with real, positive semidefinite eigenvalues. If the kinetic energy Lkin is to be
invariant,W must be unitary,

WW � D 1: (1.170)

In order to diagonalize Lmass of (1.167), we must have

W �MW� D ı
M; (1.171)

with
ı
M D

�
�1 0

0 �2

�
and �1; �2 � 0:

It is easy to show that �1 and �2 can indeed be requested to be positive semidefinite,
without loss of generality. To see this, suppose that the eigenvalues �j D j�j jei j̨

were indeed complex. Let

P D
�

ei˛1=2 0

0 ei˛2=2

�

so that
ı
M D P

ı
M 0P with

ı
M 0 D

� j�1j 0
0 j�2j

�
;

Multiplying (1.171) by P�1, both from the right and from the left, and observing
that P�1 D P � D P�, we obtain

.PW/�M.PW/� D
ı
M 0;

Now, if W is unitary, so is W 0 WD PW, and our assertion is proved. Therefore,
from now on we shall assume �1; �2 � 0. As it stands, (1.171) is not a standard
diagonalization prescription becauseM is not hermitean (the equation is multiplied
by W �, not W , from the left). However, by taking its hermitean conjugate which is

WM�W T D ı
M; (1.1710)

by multiplying this equation with (1.171) from the right and using the unitarity of
W , we may transform this eigenvalue problem to

W.M�M/W � D
ı
M2; (1.172)

i.e. to the standard problem of diagonalizing the hermitean matrix .M�M/. This is
what we now proceed to do. We set

m1 D �1ei
1 ; m2 D �2ei
2 ; mD D �Dei
D
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with �1; �2; �D real and positive. By transforming, in a first step, the fields 
.i/a !


.i/
a ei
i=2, the matrix M becomes

M !M 0 D
�

�1 �Dei


�Dei
 �2

�
(1.168’)

with


 D 'D � 1
2
.'1 C '2/: (1.173)

This gives

M 0�M 0 D
�

�21 C �2D �D.�1ei
 C �2e�i
/

�D.�1e�i
 C �2ei
/ �22 C �2D

�
;

whose eigenvalues are easily calculated,

.� 1=2/
2 D 1

2

˚
�21 C �22 C 2�2D

˙
q�
�21 � �22

�2 C 4�2D ��21 C �22 C 2�1�2 cos.2
/
�


(1.174)

Let us now interpret these results. After diagonalization, as described above, the
mass term in the Lagrangian (1.167) becomes

Lmass D �1
2

2X
kD1

�kf
.k/0a
.k/0a C 
.k/0�A
.k/0�Ag: (1.175)

Here, 

0.i/
a is given by (1.169). When expressed in terms of four-component

spinors (1.165), the mass eigenstates are

˚
0.k/.x/ D

0
B@

P
l

Wkl

.l/
a .x/

�P
l

W �kl
.l/�A.x/

1
CA : (1.176)

When written in terms of these Majorana fields the mass term becomes simply

�1
2

2X
kD1

�k˚ 0.k/.x/˚ 0.k/.x/

and the transformed Lagrangian reads

L D 1

2

2X
kD1

�
i

2
˚ 0.k/.x/�˛

$

@˛˚
0.k/.x/ � �k˚ 0.k/.x/˚ 0.k/.x/

�
; (1.177)
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i.e. it has the familiar form (1:1260)
Cases of special interest are the ones where �1 and �2 are degenerate. From

(1.174) we see that this happens either

(i) if �1 D �2; �D D 0; or
(ii) if �1 D �2 DW � and


 D 'D � 1
2
.'1 C '2/ D .2nC 1/�=2:

The first case is trivial and gives �1 D �2 D �1 D �2. The second is particularly

interesting and has �1 D �2 D
�
�2 C �2D

�1=2
. In either case we can introduce a

Dirac field by combining ˚.1/ and ˚.2/:

 .x/ WD 1p
2
.˚.1/.x/C i˚.2/.x//: (1.178)

The orthogonal combination

1p
2
.˚.1/.x/ � i˚.2/.x// D  C .x/

is then the charge conjugate of . The Lagrangian (1.177) reduces to the Lagrangian
of a single Dirac field.

This discussion shows that, in some sense, Majorana fields are more fundamental
than Dirac fields. The general Lagrangian (1.163) describes two Majorana fields,
(1.176), with mass eigenvalues �1; �2, (1.174), respectively. Only if these eigen-
values are equal can the two fields be combined to a Dirac field and its charge
conjugate.35

The essential difference between these two cases is the following:

(1) If �1 ¤ �2, the basic fields are Majorana fields and, therefore, cannot carry any
additively conserved charge quantum number. In other words, if the theory with
interactions admits an absolutely and additively conserved charge Q, then the
two Majorana fields must belong to the eigenvalue zero of that charge. If this is
not so, then the mass terms conserve that chargeQ only modulo 2 because they
connect states which differ by �Q D ˙2.

(2) If �1 D �2 the basic fields are one Dirac field and its charge conjugate  C .
These fields being different,  can carry any nonvanishing chargeQ;  C then
carrying charge �Q.

35It is interesting to remark that these considerations can be generalized to an arbitrary number of
fields.
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1.8.5 Neutrino Masses: The Seesaw Mechanism

The analysis of mass terms of fermion fields as described by the Lagrangian (1.163)
has an interesting application in the physics of neutrinos. We have seen above that
charged leptons such as the electron can have only Dirac mass terms, i.e. terms of
type mD (or �D) in the formulae of the preceding section, unless one or the other
of the exceptional relations (i) or (ii) of Sect. 1.8.4 is fulfilled. As noted above,
this is due to the observation that a genuine Majorana mass term does not conserve
any additive property such as the electric charge of a fermion. In contrast to this, a
neutrino such as the electron’s partner ve, being electrically neutral, could well have
all three types of mass terms, including the Majorana terms �1 and �2. Experiment
tells us, however, that the upper limit for the mass of ve is very small as compared
to the electron mass me, say, of the order of 10�6 me, i.e. m.ve/ < 4 � 10�6 me.
A nontrivial mass matrix (1.168’) for the neutral partner(s) of the electron could be
the following. Assume the Dirac mass term �D to be of the order ofme W �D � me.
In order to keep track of the upper limit just quoted, assume �1  �D. In contrast
to this term the other Majorana mass term �2 could be very large, the idea being
that it is a signal for some new physics that would emerge at a high mass scale
�2 � �D � me. In this situation the eigenvalues (1.174) of the squared mass
matrix can be approximated by neglecting �1, as compared to �D and �2, i.e.

.� 1=2/
2 � 1

2
�22f1C 2"˙

p
1C 4"g; with " WD �2D

�22
:

Keeping only the lowest nonvanishing order in each case, one finds �21 � �22, and
�22 � �22"2. Taking the square roots, one has

�1 � �2; �2 � �2D
�2
: (1.179)

The result (1.179) is interpreted as follows. The mass matrix (1.168) with
�D � me and a large energy scale �2 � me gives rise to a heavy neutral particle
with mass �1 � �2, and a light neutral particle with mass �2 � m2

e=�2. Both are
Majorana particles. The first one is a new, heavy, neutrino-like particle; the second
is a candidate for ve, the light neutrino that accompanies the electron.

This way of generating a small but nonvanishing neutrino mass, m.ve/ me is
called seesaw mechanism (Gell-Mann et al., 1979): the higher up (in energy scale)
the object .�1/ is on one end of the plank, the further down is the second object .�2/
on the other end. Indeed, many models of massive neutrinos make use of this pattern
to explain the smallness of the measured upper limits on the masses of ve; v� and
v� . At the same time such models predict the existence of heavy neutrinos which
are partners of the light ones. The smaller the masses of ve; v�; v� , the larger the
masses of the partners.
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1.9 Charged Fermion Fields in Interaction
with Electromagnetic Fields

1.9.1 External Field Case

In many situations electromagnetic interactions of charged leptons with some other
charged system can be treated in the external field approximation. If the system
with which the lepton interacts is very heavy, it will be able to absorb or to
provide three-momentum in reactions with the lepton without altering its own state.
If, in adition, it is dynamically inert its internal structure will not intervene in
such reactions. In those cases the effect of the system on a charged lepton can
be represented, to a certain approximation, by classical external vector potentials
Aext
� .x/. A case of special relevance for atomic, nuclear and particle physics

is the electromagnetic interaction of electrons and muons with nuclei. As far as
the kinematics is concerned, the nucleus is so much heavier than the electron or
the muon that in a reaction with these leptons its recoil is usually not important.
The nucleons act like an external macroscopic source of electric and magnetic fields
which can absorb or produce any mismatch of three-momentum that there may be
in a given reaction. Well-known examples for such situations are: Bremsstrahlung
in matter; atomic bound states of electrons or muons; elastic and inelastic scattering
of electrons or muons on nuclei at intermediate energies.

Regarding the dynamics, the internal structure of the nucleus (other than its initial
and final state involved in the reaction) is usually unimportant. This is so because
the virtual intermediate excitation of higher states of the nucleus necessitates (at
least) a two-step process and, therefore, is of higher order in the fine structure
constant. Such effects, which are called nuclear polarizability shift in atoms, and
dispersion corrections in electron scattering, are generally small and may be added
as a correction to the results of the external field approximation from which on
started.

Let Aext
� .t; x/ be an external, classical four-vector potential describing a given

set of classical electric and magnetic fields. The coupling of a lepton of chargeQ to
these fields is found by the substitution

@� ! @� C iQAext
� (1.180)

in the particle’s equations of motion. This is the so-called “minimal coupling” rule
on which we shall comment below. If we apply this prescription to the free Dirac
equation (1.72), we obtain

.i��@� �Q��Aext
� �m1/ .x/ D 0: (1.181)

For example, let us take a stationary external electric field and let us consider
stationary solutions of this equation (positive frequency), viz.
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Aext
� .x/ D .
.x/I 0/;

 .x/ D e�iEt .x/;
Œ.E � V.x//�0 C i” � r �m1� .x/ D 0;

(1.181’)

where we have set V.x/ D Q
.x/.
For an electron or muon Q D �e, while for a point-like nucleus of charge

numberZ; 
.x/ D Ze=jxj, so that

Œ.E CZe2=jxj/�0 C i” � r �m1� .x/ D 0:

Equivalently, by multiplying (1.181’) with �0 � ˇ [in the standard representation
(1.78)] from the left, one has

E .x/ D Œ�i’ � r C V.x/Cmˇ� .x/; (1.182)

where, for a point-like nucleus,

V.x/ D �Ze2=jxj: (1.183)

If the spatial extension of the nuclear charge density �c.x/ cannot be neglected as
compared to the typical size of the electron or muon state, we have instead

V.x/ D �Ze2
Z

d3x0
�c.x0/
jx � x0j : (1.184)

We take the nuclear charge density �c.x/ normalized to unity,

Z
d3x�c.x/ D 1: (1.185)

In particular, if this density is spherically symmetric, the potential is also spherically
symmetric and is given by36

V.r/ D �4�Ze2
�
1

r

Z r

0

�c.r
0/r 02dr 0 C

Z 1
r

�c.r
0/r 0dr 0

�
: (1.186)

It is (1.182) that is the most convenient one in treating atomic bound states of
charged leptons as well as scattering off nuclei at low energies. The representation
(1.81) is particularly well adapted in this case as it divides the Dirac spinors naturally

36For a point-like nucleus, placed at the origin,

�c.x/ D ı.x/ D .1=r2/ı.r/ı.cos 	 � 1/ı.
/;
in which case both (1.184) and (1.186) go over into (1.183).
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into “large” (i.e. nonrelativistic) and “small” (i.e. relativistic) components. Also, in
this form, (1.182) comes closest to the nonrelativistic Schrödinger–Pauli equation.37

This is so because ˇ which multiplies the dominant mass term, is an “even” matrix,

that is, has the structure

�
x 0

0 x

�
, with entries in the diagonal 2 � 2 blocks, whilst

the ˛i which multiply the components of the three-momentum are “odd”, that is,

have the structure

�
0 x

x 0

�
. Thus, ˇ connects upper with upper, as well as lower with

lower two-spinors, whilst the ˛i connect upper with lower, and lower with upper
two-spinors. For particle solutions the lower two-spinor is of order p=m 	 �=c

relative to the upper. In the limit p ! 0 the upper two-spinor goes over into the
nonrelativistic Schrödinger wave function multiplied by a Pauli spinor.

The other extreme situation is the one where the particle’s motion is highly
relativistic, that is where E � m. In that case the mass term in eq. (1.181’) is
negligibly small. It is then more convenient to write eq. (1.181’) in a representation
where both �0 and the �i are “odd”38, as in this case the equations of motion of upper
and lower two-spinors decouple from each other. The “high-energy representation”
(1.74) has the required property. Writing

 .x/ D
�

.x/
.x/

�

in this representation, (1.181’) becomes

Œi¢ � r C .E � V.x//�
.x/ D m.x/; (1.187a)

Œ�i¢ � r C .E � V.x//�.x/ D m
.x/: (1.187b)

When the mass term is neglected, these equations decouple completely. Quite
obviously, they follow directly from the Dirac equation (1.69) if harmonic time
dependence e�iEt is introduced.

We shall encounter both situations below and shall make use of either represen-
tation in our treatment of bound state problems and of relativistic scattering.

1.9.2 Interaction with the Quantized Maxwell Field

We start from the combined Lagrange densities of the free Dirac field and the free
Maxwell field

L0.x/ D LD.x/CL� .x/; (1.188)

37See e.g. [SCH68].
38Obviously, �0 and �i cannot be even simultaneously.
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where LD.x/ is given by (1.126), whilst L� .x/ is

L� .x/ D �1
4
F��.x/F

��.x/; (1.189)

where F �v D f �v and

f ��.x/ WD @�A�.x/ � @�A�.x/ (1.190)

is the covariant electromagnetic field tensor,

F�� D f �� D

0
BB@
0 �E1 �E2 �E3

E1 0 �B3 B2

E2 B3 0 �B1

E3 �B2 B1 0

1
CCA ; (1.190’)

so that Ei D �f 0i ; Bi D � 1
2
"ijkf jk,

f lm D �"lmnBn;

A�.x/ is the quantized Maxwell field.
We remind the reader of the convention in numbering rows and columns of the

field tensor (1.190’). As in (1.1) and (1.7), to take an example, rows and columns
are numbered 0,1,2,3, with Greek indices standing for all four values, Latin indices
for the spatial components 1, 2, 3 only. For example, the element f lm with l D 1

and m D 2 of (1.190’) is �B3. We distinguish between the symbols F�v for the
field strength tensor and f �v as defined by (1.190), even though they are identical
in the case of Maxwell theory. We do this because in gauge theories based on non-
Abelian Lie groups the field strength tensor F �v contains a term bilinear in the
vector potential, in addition to the component (1.190) (Sect. 3.3.4). Maxwell theory
is based on U(1), i.e. an Abelian group, and no bilinear terms occur.

Note that we use here a system of natural units for electric charges, currents,
electric and magnetic fields (cf. Notation and Conventions p. XV) in which,
e.g., Enat D E=

p
4�; Bnat D B=

p
4� , so that the numerical factor in (1.189)

is 1/4 instead of the 1=16� which the reader may be used to. In contrast to this term
in the Lagrange density, there is no change in the product of a chargeQ and a vector
potential A�, or in the product of a current density j� and the vector potential, the
former being multiplied by

p
4� , the latter being divided by that same factor.

The minimal substitution rule,

@˛ ! @˛ C iQA˛ ; (1.191a)

@˛ N ! @˛ N � iQA˛ N ; (1.191b)

when introduced into L0.x/, (1.188), leads to the interaction Lagrangian
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L0 ! L .x/ D LD.x/CL�.x/ �Q .x/�˛ .x/A˛.x/: (1.192)

The interaction term is seen to be the scalar product of the four-vector potential and
the particle’s electromagnetic current

j ˛e:m:.x/ D Q .x/�˛ .x/; (1.193)

a result which is well-known from classical electrodynamics. As it stands the
Lagrangian density (1.192) implies that the free particle described by the field  .x/
has a “normal” magnetic moment

� D g Q
2m

1

2
D Q

2m
; (1.194)

so that its g-factor is equal to 2. Any deviation from this so-called Dirac value comes
about through radiative corrections and, therefore, is of orderO.˛/.

This is not difficult to prove. Consider the interaction of the particle with a
stationary magnetic field B, which we describe by a three-vector potential A. For
simplicity we consider scattering of the particle from an initial momentum p to a
final momentum p0, through the interaction

˝
p0jje:m:.0/jp

˛ � A.q/: (1.195)

We consider the matrix element in the Breit system which is defined by the
requirement

pC p0 D 0:
This system of reference is particularly convenient since the limit of taking the
squared four-momentum transfer q2 D .p0�p/2 ! 0 to zero leads us automatically
to the rest system of the particle. At the same time (1.195) gives the corresponding
nonrelativistic expression. It is not difficult to verify (in the standard representation)
the following: ˝�pjj ie:m:.0/jp

˛

D 1

.2�/3
Qu.�p/� iu.p/

D Q

.2�/3
u�.�p/

�
0 �.i/

�.i/ 0

�
u.p/

D 2Q

.2�/3
i"ijkpj .��k/:

Therefore, the scattering amplitude which describes magnetic back scattering is

T D i

.2�/3
2Q"ijkpj .C�k/Ai .q D 2p/:
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Let us compare this to the nonrelativistic scattering amplitude which we would
obtain from the well-known interaction of a magnetic moment � in a constant
external field B,

Tn:r: WD . �p;Hint p/

with

Hint D �� �B D �g Q
2m

S �B; Bi D "ijk@jAk.x/
and

 p D
s

2m

.2�/3
eip�x:

(The factor
p
2m is included in order to obtain the correct normalization when the

nonrelativistic limit hp0jpi is taken.) One finds by partial integration

Tn:r: D gQ1
2
.��i/"ijk2ipjAk

1

.2�/3

D igQ

.2�/3
"kj ipj .��i/Ak.2p/:

Comparing Tn:r: and T , we see that indeed g D 2. In very much the same way we
can show that the corresponding antiparticle has the opposite magnetic moment

�antiparticle D �Q=2m:

As it stands, the Lagrangian L .x/, (1.192), describes the quantum electrodynamics
of a fermion and its antiparticle of given physical mass m, charge Q and normal g
factor, g D 2. Of course, we can generalize it immediately to an arbitrary number
of fermions (of the same charge and g-factor but different masses),

LQED D
X

f

LD.x;mf/CL�.x/ D
X

f

Q.f/ N f�
˛ fA˛; (1.196)

so as to be able to describe electrons, muons, �-leptons etc. .Qe D Q� D Q� D
�e/. Appendix C summarizes the Feynman rules for quantum electrodynamics
(QED) of spin-1/2 fermions, as defined by the Lagrange density (1.192).

We note here in passing that predictions of this theory for all electromagnetic
properties of electrons and muons are in perfect agreement with experiment. In
particular, tests of low-energy properties of electrons and muons have been pushed
to the natural limit of quantum electrodynamics, i.e. up to the point where weak
and strong interactions start to interfere with the pure electromagnetic interactions.
We shall come back to this statement and quote some examples at various places in
this book.
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1.9.3 Some Remarks on These Results

(i) The result (1.194) says that the g-factor of electrons and muons is g D 2

(except for radiative corrections). This has always been considered a major success
of Dirac’s theory of electrons and muons. While this is certainly true, it is sometimes
said also that g D 2 is a consequence of the minimal substitution rule. Unfortunately
this latter statement is not correct. It is true that if we postulate the specific form
(1.196) for the Lagrangian of leptonic QED then g D 2 follows from it, as we
have seen above. However, there is nothing that forbids us to add an arbitrary four-
divergence @�M� to the free Lagrangian, as we know that this will not alter the
equations of motion (supposing M� sufficiently well-behaved). For instance, we
may wish to take L 0D D LD C @�M� instead of LD, with the choice

M� D �i
a

8m
 .x/���

$

@ v .x/:

For a free particle this does not make any difference. L 0D yields the same equations
of motion as LD. However, if we introduce the coupling to the Maxwell field
through minimal substitution, we find LQED of (1.196) but supplemented by the
term called the Pauli term,39

a

4m
Q .x/��� .x/f�� : (1.197)

This new term describes the interaction of an anomalous magnetic moment of
magnitude 2a. Thus, the new “minimal” theory describes fermions whose g-
factor is

g0 D 2.1C a/: (1.198)

In the light of this remark there does not seem to be anything special about the
value g D 2. The Dirac value g D 2 refers to the specific Lagrangian (1.196). The
minimal coupling prescription must be applied to the specific Lagrangian (1.126),
(1.188).

(ii) If a strongly interacting fermion (that is a baryon) couples to a photon the vertex

˝
p0jj ˛e:m:.0/jp

˛
is renormalized through strong interactions and must be analyzed in terms of electric
and magnetic form factors Fi .q2 D .p � p0/2/ (see below). However, if the
momentum transfer is sufficiently small, we may treat the baryon like a point-like
Dirac particle that carries a given anomalous magnetic moment a. In this case we
may use the theory sketched above by simply adding to it the Pauli term (1.197).

39This is worked out in [GAS66].
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Such a situation is encountered, for instance, in the atomic bound states of exotic
atoms with antiprotons or†� particles. In these baryonic atoms the fine structure is
determined by the term

Vls D 1

2m2
.1C 2a/l � s1

r

dVc

dr
; (1.199)

where Vc is the Coulomb potential created by the nucleus. The fine structure may in
fact be used to measure the anomaly a. This has been done for the case of the †�
with the result (Hertzog et al. 1983, 1988),

�.†�/ D �1:11˙ 0:04

(iii) One might wonder whether the choice of the plus sign in the minimal
substitution rule

@˛ ! @˛ C iQ.f/Aa (1.200)

is unique or not,Q.f/ being the charge of the particle,

Q.p/ D Cjej; Q.e/ D Q.�/ D Q.�/ D �jej:

Quite obviously this sign determines for example the sign of the potential term
in (1.182) and, therefore, is related to the fact that like charges repell, unlike
charges attract each other. In fact, the sign is fixed by two standard conventions
in electrodynamics: (i) it is customary to let the electric field E of a positive
point charge point outward; (ii) the sign of the four-potential is fixed such that
E D �rA0.
(iv) Minimal coupling and the requirement of gauge invariance of QED are
intimately connected. Suppose we subject a charged spinor field  .x/ to a local
gauge transformation,

 .x/! eiƒ.x/ .x/;  .x/! e�iƒ.x/ .x/: (1.201)

Whilst the mass term in the free Lagrangian LD is obviously invariant under this
transformation, the kinetic energy term

 
i

2
�˛
$

@˛ (1.202)

is not. It goes over into

N i

2
�˛
$

@˛ � N �˛ @˛ƒ.x/ (1.202’)
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If on the other hand we consider the “minimally substituted” kinetic energy instead,

i

2
. N �˛.@˛ C iQA˛/ � ..@˛ � iQA˛/ N /�˛ /; (1.203)

then we see that the extra term in (1.202’) can be absorbed into the four-vector
potential by the substitution

A˛ � 1

Q
@˛ƒ.x/ DW A0̨ : (1.204)

This, however, is a gauge transformation of the four-vector potential which leaves
invariant LM , the Lagrangian of the Maxwell fields. Thus, the transformations
(1.202) and (1.204), taken together, leave invariant the coupled system of Maxwell
and Dirac fields. For this it is essential that the modified kinetic energy contain what
is called the “covariant derivative”

!

Da WD
!

@˛ C iQA˛; (1.205)
 

Da WD
 

@˛ � iQA˛;

We have touched here upon a general feature of gauge fields .A�/ in interaction with
matter fields . / to which we shall return below in connection with gauge theories
of more general nature.

1.10 Global Symmetries and Fermion Fields

In this section we consider more general, global, gauge transformations (1.128)
acting on quantized fermion fields of the kind (1.122). While the transformations
(1.128) pertain to a one-parameter group, called U(1),

U.1/ D fei˛j˛ 2 R; 0 � ˛ � 2�g: (1.206)

hence an Abelian group, there are many situations in physics where the transfor-
mation groups are non-Abelian. Fermion fields are often classified by nontrivial
representations of these groups, say of dimensionM . A spinor field ‰.x/ is then an
object with 4 �M components

‰.x/ D

0
BBB@
 .1/

 .2/

:::

 .M/

1
CCCA; (1.207)
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where  .i/.x/ is an ordinary quantized Dirac field (1.122) describing particle
number i , itself member of an M -dimensional multiplet. This multicomponent
structure of the spinor (1.207) requires a few, though simple, modifications in
writing Lagrange densities such as (1:1260) for free fields, or more complicated
Lagrange densities for interacting fields. This is what we work out in Sect. 1.10.1.
While parity P and time reversal T apply to the multi-component spinor (1.207)
in essentially the same way as to any single Dirac field, cf. Sect. 1.5, the action
of charge conjugation C introduces nontrivial phases that depend on the multiplet
structure of (1.207). This is dealt with in Sect. 1.10.2.

1.10.1 Fermions in Representations of Non-Abelian Groups

Consider a compact Lie group G. Its Lie algebra Lie.G/ is spanned by the genera-
tors for infinitesimal transformations Ti ; i D 1; 2; : : : ; N , (also called, somewhat
inaccurately, infinitesimal generators, for short) which obey the commutation rules

ŒTi ; Tj � D i
NX
kD1

Cijk Tk; i; j D 1; 2; : : : ; N: (1.208)

The constants Cijk are the structure constants of the group. A priori, the structure
constants are antisymmetric only in the first two indices i and j . However,
through an appropriate choice of the generators the structure constants can be made
antisymmetric in all three indices. This will be assumed in what follows. Following
standard conventions in physics the generators are chosen to be hermitean, T �i D Ti ,
so that an element g 2 G of the group has the form40

g D exp

(
i

NX
kD1

˛k Tk

)
(1.209)

with ˛k being real constants. An example that we use for the purpose of illustration
below is G D SU.2/, the abstract group that is defined by the group of complex
2 � 2 matrices which are unitary and have determinant 1,

SU.2/ D fM2�2jM�M D 1; det M D 1g: (1.210)

Other examples relevant for the construction of local gauge theories will be given
in Chap. 3. SU(2) has three generators Ti D �.i/=2, with �.i/ the Pauli matrices
(1.24). Its structure constants are Cijk D "ijk where "ijk is the totally antisymmetric

40If G has several branches the formula (1.209) generates those elements which can be deformed
continuously into the identity element.
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Levi–Civita tensor in three real dimensions, "ijk D C1.�1/ if fijkg is an even (odd)
permutation of f123g, "ijkD 0whenever two of its indices are equal. SU(2) is closely
related to SO(3), the rotation group in three real dimensions (see e.g. [SCH10]). In
particular they have the same Lie algebra. The group parameters are (generalized)
angles of rotation and, therefore, belong to compact intervals Œ0; �� or Œ0; 2��.
Indeed, as we saw in Sect. 1.1.2, SU(2) is relevant for the description of how spinors
transform with respect to rotations. In many instances, however, SU(2), or some
other compact Lie group G, refers to some abstract, internal, “charge” space, i.e.
describes internal properties of fermionic fields which are independent of space
and time.

In this spirit, suppose that we are dealing with M fermions which span a unitary,
reducible or irreducible, representation of G. It is convenient to group the spinor
fields that describe them into a single column vector ‰.x/, cf. (1.207), of M Dirac
fields. In the representation space the generators Ti are represented by M � M
matrices

Ti ! U.Ti/; i D 1 ; 2; : : : ; N; (1.211)

or, more precisely, by the direct product 14�4 ˝ U.Tk/ where the first factor acts

on the Dirac indices of each individual field  .i/ D
�
 
.i/
1 ;  

.i/
2 ;  

.i/
3 ;  

.i/
4

	T
, while

the second factor acts on the multiplet index .i/. Similarly, a finite transformation
(1.209) acting on ‰.x/ is a unitary M �M matrix given by the exponential series
in the generators

U.g/ D exp

(
i
NX
kD1

˛k U.Tk/

)
;

or, more precisely, by 14�4 ˝ U.g/. (The letter U is a reminder of the choice of
a unitary representation, i.e. a representation in which U.g/ is unitary, U.Ti/ is
hermitean). In writing down the kinetic energy for the multicomponent field ‰.x/
as in (1:1260) we must keep track of the requirement that ��@� should act on each
spinor field  .i/.x/, irrespective of its place in the multiplet. Therefore, the correct
notation would be

‰.x/ �� ˝ 1M�M @� ‰.x/:

Whenever the context is unambigous, and in order to alleviate the notation, one often
omits the reference to the representation by writing g instead ofU.g/; Tk instead of
U.Tk/, and omits the tensor product of Dirac 4 � 4 matrices with M �M matrices
in the internal, “charge” space.

Let us illustrate these matters by the following examples. Take G D SU.2/
and  .nuc/.x/D. .p/;  .n//T the doublet representation .MD2/ of SU(2), called
nucleonic, to contain the proton and the neutron. Assume the proton and the neutron
to have the same mass m. (This is a reasonable assumption because the mass
differencem.n/�m.p/ D 1:29MeV is small as compared tom.p/ D 938:3MeV).
A Lagrange density describing protons p, neutrons n, and their antiparticles Np and
Nn, respectively, is



72 1 Fermion Fields and Their Properties

L .nuc/ D ‰.nuc/.x/

�
i

2
��
$

@� �m14�4
�
˝ 12�2 ‰.nuc/ .x/

D ‰.nuc/.x/

�
i

2
��
$

@� �m
�
‰.nuc/.x/;

(1.212)

the right-hand side being the shorthand notation mentioned above.
An operator describing the transition from a neutron to a proton, for instance, is

proportional to

‰.nuc/.x/ 14�4 ˝ 1p
2
.T1 C iT2/ ‰.nuc/.x/ � ‰.nuc/.x/ 1p

2
.T1 C iT2/ ‰.nuc/.x/

D ‰.p/.x/  .n/.x/:

Indeed,  .n/.x/ annihilates a neutron (or creates an antineutron),  .p/.x/ creates
a proton (or annihilates an antiproton), cf. (1.122a) and (1.122b), respectively.
A Lagrange density describing ˇ-decay of the neutron, n ! p C e C Nv, as an
example, could be given by

L D L .nuc/ CL .e/ CL .�/ CLint ;

with L .nuc/ as above, L .e/ and L .v/ being of the form (1:1260) for the
electron/positron field and for the v=Nv field, respectively, and the interaction being
given by41

L.int/ D �
�
‰.nuc/.x/�˛

1p
2
.T1 C iT2/‰.nuc/.x/

�
. .e/.x/�a 

.v/.x//C h:c:

(1.213)
In fact, if we decided to group the neutrino and the electron in a leptonic doublet of
SU(2), irrespective of their mass difference, ‰.lep/.x/ D . .v/.x/;  .e/.x//T ;L.int/

could be written in the form

L.int/ D �
�
‰.nuc/.x/ �˛

1p
2
.T1 C iT2/ ‰

.nuc/ .x/

�

�
�
‰.lep/.x/ �˛

1p
2
.T1 � iT2/ ‰.lep/ .x/

�
: (1.213’)

In this example it should be clear that in the first factor the operator .T1CiT2/ stands
for the matrix representation U .nuc/ .T1 C iT2/ in the space of proton and neutron,
while the operator .T1 � iT2/ in the second factor stands for U .lep/.T1 � iT2/.

41In fact, this ansatz for Lint conserves parity and is not in accord with experiment. A more realistic
description of ˇ-decay contains �˛.1 � �5/ instead of �˛ in both factors of (1.213), and � D
GF=
p
2 with GF the Fermi constant, cf. Chap. 3.
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In the first example the two representations had the same dimensionM D 2. This
need not always be so. For instance, let us consider a triplet of hermitean bosonic
field operators ˚.x/ D .˚1.x/; ˚2; .x/; ˚3.x// such that ˚˙1 D .˚1 ˙ i˚2/=

p
2

and ˚0 D ˚3 describe the three charge states of the pion. The triplet is the adjoint
representation of SU(2), that is, it has the same dimension M D N D 3 as the
Lie algebra. (The doublet representation, M D 2, is the fundamental, or defining,
representation.) A realistic Lagrange density describing the emission and absorption
of pions by nucleons is42

L
.ß;nuc/
int D � .‰.nuc/.x/ �5 T‰.nuc// � ˚ .x/; (1.214)

with � denoting the Euclidean scalar product T�˚ D †Ti˚i . The formal analogy to
the scalar product in ordinary space R3 suggests at once that the expression (1.214)
is invariant with respect to SU(2) transformations.

Note that in either example, (1.213’) or (1.214), the specific combination
of generators guarantees, among others, the conservation of electric charge. In
the example (1.213’) a neutron is converted into a proton .charge C jej/ with
simultaneous creation of an electron .charge�jej/ and an antineutrino (uncharged).
An analogous term ‰.nuc/.T1 C iT2/‰.nuc/ in the example (1.214) is accompanied
by the field ˚�1 D .˚1 � i˚2/=

p
2. The latter annihilates a positively charged

pion �C, or creates a ��, so that (1.214) describes the vertices n ! p C �� and
�CCn! p (as well as analogous, charge-conserving, vertices involving Np and Nn).

1.10.2 �Charge Conjugation for Fermionic Multiplets

Let us consider the action of charge conjugation C on a multiplet of fermions
described by a multicomponent spinor (1.207). The action of C on any individual
Dirac field  .i/ is given by (1.98) of Sect. 1.5. Note, however, that there could be an
additional phase factor �i whose square can be taken to be 1, viz.

 
.i/
C D �i i�2  .i/� D �i i�2�0 .i/

T
; with �2i D 1: (1.215)

At the same time C takes us from the world of particles to the world of antiparticles
whose additive quantum numbers are the opposite of those of their particle partners.

For example, the doublet .p; n/ belongs to the eigenvalues .C1=2; �1=2/ of T3
in SU(2) respectively. Their antiparticles . Np; Nn/ also fall in a doublet of SU(2) but
belong to the eigenvalues .�1=2; C1=2/ of T3, respectively. Hence, if in the basis
fp; ng T3 is given by the diagonal matrix U.T3/ D diag .1=2; �1=2/, its charge

42The nucleonic factor contains the matrix �5 because the pion field is pseudoscalar, not scalar,
with respect to Lorentz transformations and because the interaction is known to conserve parity
which means that (1.214) must be even under P .
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conjugate T C3 in the basis f Np; Nng is U
�
T C3

� D diag.�1=2; 1=2/. At the same time,
the ladder operators .T1 ˙ iT2/, through charge conjugation, will exchange their
roles, i.e.

T C3 D �T3; .T C1 ˙ iT C2 / D .T1 � iT2/: (1.216)

For a single Dirac field the phase factor �i is arbitrary because it is unobservable. In
case of a multiplet of the groupG such as (1.207), however, the requirement that C
take the Lie algebra spanned by .U.T1/; : : :; U.TN // acting on the space of particles
to the representation

�
U
�
T C1

�
; : : : U

�
T CN

��
in the space of the antiparticles may fix

some or all of the relative phases �i . For example, with G D SU.2/ and the doublet
representation, the requirement (1.216) will be seen to imply that the product of the
two phases in the charge conjugate of (1.207) be �1 �2 D �1.

Let � D diag .�1; �2; : : :; �M / denote the diagonal matrix of the charge
conjugation phases in (1.215). As before, let U.Tk/ be the generators of Lie.G/
in the basis of particle states, U

�
T C
k

�
the generators in the basis of the antiparticle

states. Then we have the following theorem:

Theorem The two representations of the Lie algebra in the space of particles and
of antiparticles, respectively, are related by

U.T Ck / D ��U � .Tk/�: (1.217)

Here U � denotes the complex conjugate of U (not the hermitean conjugate).

The proof goes as follows.
Consider a finite transformation U.g/ with g 2 G, acting on ‰, (1.207), ‰0 D

U.g/‰. The inverse transformation is ‰ D U.g/�‰0, or, written in components,
 .i/ D †MkD1U �ki .g/ 

0.k/. Applying charge conjugation to this equation we obtain

 
.i/
C D �i i�2  .i/� D i�2 �i

MX
kD1

Uki .g/  
0.k/�: (1.218)

Clearly, the matrix � of charge conjugation phases must not depend on the basis of
particle states, that is, it must be the same for ‰ and for ‰0. Thus, if we multiply
(1.218) by �iU �li .g/ from the left and sum over i , its right-hand side becomes, by

the unitarity of U.g/; i�2 0.l/� which is equal to �l 
0.l/
C . Its left-hand side is equal

to †MiD1 U �li .g/�i 
.i/
C . Multiplying the whole equation by �l we obtain

 
0.l/
C D �l

MX
iD1

U �li .g/ �i  
.i/
C or ‰0C D �U � .g/�‰C : (1.219)

This equation shows that if ‰ transforms with U.g/ then ‰C transforms with
�U �.g/�. In order to translate this result to the Lie algebra we return to (1.209).
Taking the compex conjugate of (1.209) in the representation U.g/ and multiplying
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with � from the left and from the right, we have

�U � .g/� D exp

(
�i

NX
kD1

˛k �U
� .Tk/ �

)
: (1.220)

Here, the phase matrix � can be taken inside the exponential series because its square
is the unit matrix, �2 D 1M�M . Finally, we note that in the space of antiparticles,
finite group transformations should be written with the same sign convention as
in (1.209), i.e. as the exponential series exp

˚
i†˛kU

�
T Ck

�

. Comparing with the

result (1.220) yields the relation (1.217) of the theorem.

Remarks: The phase factos �i need not be of square 1. It is not difficult to carry out
the analysis with phase factors whose square is not unity. For instance, the left factor
� in relation (1.217) will be replaced by its complex conjugate. On the other hand,
there is no loss of generality in imposing �2i D 1, as we did.

As an example let us apply relation (1.217) to G D SU.2/ and the case of a
doublet,M D 2. Without loss of generality we may take �1 D 1; �2 � N�. Then

���.3/� � D �
�
1 0

0 N�
��

1 0

0 �1
��

1 0

0 N�
�
D �

�
1 0

0 �1
�
D ��.3/;

independently of the value of N�. On the other hand, in order to fulfill the conditions
(1.216) on the ladder operators, we must have U

�
T C1

� D U.T1/ and U
�
T C2
� D

�U.T2/. Now,

���.1/� � D �
�
0 N�
N� 0
�
D �N��.1/;���.2/� � D �

�
0 i N�
�i N� 0

�
D CN��.2/:

The above conditions require N� D �1 which means that C converts the doublet
.p; n/ into the doublet . Np; �Nn/. It should be clear that we could have fixed �1
differently, by a common phase for the doublet as a whole. What is independent of
any such convention is the requirement �1�2 D �1 that follows from the theorem.
Thus, in this example, we obtain

C W
�
p

n

�
! �1

� Np
�Nn

�
: (1.221)

References

Fierz, M., 1938, Helv. Phys. Acta 12, 3.
Gell-Mann, M., Ramond, P., and Slansky, R. (1979) in Supergravity (Eds D. Freedman and P. von

Nieuwenhuizen) North-Holland, Amsterdam.
Hertzog, D. W., et al. (1983) Phys. Rev. Lett. 51, 1131.



76 1 Fermion Fields and Their Properties

Hertzog, D. W., et al. (1988) Phys. Rev. D37, 1142.
Kersch, A and Scheck, F. (1986) Nucl. Phys. B263, 475.
Pauli, W., 1940, Phys, Rev. 58, 716.
Van der Waerden, B. L., 1929, Göttinger Nachrichten, p. 100 See also O. Laporte and G. E.

Uehlenbeck, Phys. Rev. 37 (1931) 1380.

Exercises

1.1. Derive the Euler-Lagrange equations of LM, (1.108).
1.2. Verify that the matrices �� are both unitary and hermitean.
1.3. Prove equation (1.45) by explicit calculation of the exponential series for the

case � D 1
2
. Show that the transformation U � D.0; �; 0/ does indeed

effect the transition from cogredience (i.e. transformation behaviourD.	i // to
contragredience (i.e. transformation behaviour D�1 D D�), and vice versa.
Hint: First prove the relations

UJi C J �i U D 0 and Uei�J U�1 D e�i˛J�

(Note the dependence on the phase convention for the angular momentum
matrices).

1.4. Study plane wave solutions of (1.69) for the case m D 0 and show that they
are eigenstates of helicity.

1.5. Carry out the calculation that leads to (1.131). Do the same for (1.139).
1.6. Derive the Euler–Lagrange equations for the Lagrangian (1.163) and compare

with (1.69).
1.7. Study the behaviour of the Lagrangian (1.163) under parity P , charge

conjugation C , and time reversal T . Show that it is invariant under the
combined transformation‚ D PCT.

1.8. Prove the relation
.�˛/aB.�˛/cD D �2"ac"BD

1.9. Physical amplitudes are always bilinear functions of spinor fields. Show that
the fact that the density matrix � is not hermitean does not conflict with
observables being real.

1.10. For which orientation of � and in which basis is the density matrix (1.153)
diagonal? Interpret the answer. Write down the explicit form of � for
polarization along the momentum.

1.11. Choose a basis .n.0/; n.1/; n.2/; n.3// in four-dimensional momentum space
such that (i) n.0/� D .1=m/p�; (ii) the vectors n.i/˛ are spacelike; (iii)
.n.˛/ � n.ˇ// D g˛ˇ (orthogonality): (iv) n.˛/� g˛ˇn

.ˇ/
v D g�v (completeness).

For example:

n.1/ D .0; n1/; n.2/ D .0; n2/; n.3/ D
� jpj
m
;
Epp

mjpj
�
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with n1?n2?p. Calculate the polarization along the direction n1 for a state
that is characterized by a point � on or inside the Poincaré sphere.

1.12. Show that the relationship (1.46) holds true for boosts.
1.13. Construct the Hamilton density for a free Majorana field. Show that when

integrated over all space this density gives zero.
1.14. Show that reflections with respect to planes containing the momentum p

exchange positive and negative helicity states.



Chapter 2
Electromagnetic Processes and Interactions

The electron, the muon, and their neutrinos are important tools in testing the
structure of the fundamental electromagnetic and weak interactions. On the other
hand, if these interactions are known, they serve as ideal probes for the internal
structure of complex hadronic targets such as nucleons and nuclei. Although
electroweak interactions should in fact be discussed as a whole and on the same
footing, purely electromagnetic interactions play a distinctive role, for obvious
experimental reasons: At low and intermediate energies the effective electromag-
netic coupling is larger by many orders of magnitude than the weak couplings, so
that electromagnetic processes are measurable to much higher accuracy than purely
weak processes.

The fundamental aspects of unified electroweak (and strong) interactions are
discussed below, in Chap. 3. The present chapter deals primarily with applications
of charged leptons to problems of nucleon and nuclear structure, and to selected
precision tests of quantum electrodynamics (QED) at low momentum transfers.
In most of these applications the electromagnetic interactions effectively appear
in the form of external fields in the leptonic particle’s Dirac equation. This is the
domain where the physics of (electromagnetically) interacting leptons can still be
described in the framework of an effective, though relativistic, single particle theory.
In contrast to this, the topics discussed in Chap. 3 will make use of the full intrinsic
many-body nature of Dirac theory.

2.1 Electron Scattering from a Composite Target: Qualitative
Considerations

Electron scattering at high and very high energies is an important tool for the
investigation of the structure of various strongly interacting particles (hadrons).
Among these only proton, neutron and nuclei can be prepared as targets in scattering
experiments. Hence most of what we know about internal hadronic structure

F. Scheck, Electroweak and Strong Interactions, Graduate Texts in Physics,
DOI 10.1007/978-3-642-20241-4

79
2, © Springer-Verlag Berlin Heidelberg 2012
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concerns protons and neutrons. Nevertheless there is also some information on long-
lived hadrons such as pions from electron–positron colliding beam experiments in
which pairs of such hadrons are created.1

If electron scattering from a nucleon or a nucleus is to give more information on
the target than just its electric charge, the electron’s de Broglie wavelength � D 1=k
must have a magnitude comparable to the spatial size of the nucleon or nucleus,
respectively. The radius of the proton is about rp ' 0:86 fm; the charge radius of
nuclei is approximately

rc ' 1:1 fm A1=3 (2.1)

(A being the nuclear mass number). Thus � should be of the order of, or smaller
than, about 1 fm. Hence its momentum must be of the order of or greater than

k D „c=� ' 200 MeV.

Obviously, at these energies the electron is highly relativistic, its energy is very large
as compared to its rest mass

E D
p

k2 Cm2 � m:

In fact, in most cases we will neglect the mass altogether. We then deal with a
massless charged fermion which behaves in a way somewhat similar to neutrinos,
with the exception that the electron spin can assume any direction. The following
simple estimates may serve to illustrate qualitatively what one learns from the
study of elastic scattering and of inelastic scattering to discrete excited states in
a hadronic target (nucleon or nucleus). A more detailed and quantitative analysis of
these processes follows in the next sections.

Consider first elastic scattering of an electron by an extended object with
spherically symmetric charge density �.r/ and total charge Ze. �.r/ shall be
normalized to unity,

Z
�.r/d3r D 4�

Z 1
0

�.r/r2dr D 1: (2.2)

The corresponding electrostatic potential 
.r/ is related to the charge density
through Poisson’s equation (in natural units),

�
.r/ D �Ze�.r/:

We calculate the differential cross section for elastic scattering in Born
approximation and, for the moment, neglect the spin of the electron. In fact, in

1The essential difference between these two types of experiments is that in electron scattering the
invariant momentum transfer is spacelike while in electron–positron collisions it is timelike.
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electromagnetic scattering of electrons at very high energies, the spin of the electron
is not essential.2 We shall show below that for E � m, a spherically symmetric,
parity even, potential does not lead to polarization of an initially unpolarized
electron beam. This is in contrast to low energies of the order of the mass, E ' m,
where there is polarization through spin–orbit coupling (Mott scattering). With this
approximation the electron is then described by a Klein–Gordon equation with
external electrostatic potential

V.r/ D �e
.r/:

To order .Z˛/ the scattering amplitude is given by

f .p0; p/ ' � k

2�

Z
e�ip0r.�e
.r//eiprd3r (2.3)

(p; p0 being the initial and final momenta of the electron, respectively, k D jpj D
jp0j).

Introducing the momentum transfer q D p � p0, for which

q � jqj D 2k sin.	=2/ (2.4)

(	 being the scattering angle), the amplitude f .q/ can be expressed in terms of
the charge density �.r/ by integrating by parts twice and making use of Poisson’s
equation.3 One obtains

f .q/ ' Ze2k

2�q2

Z
eiqr�.r/d3r D 2Z˛k

q2

Z
eiqr�.r/d3r; (2.5)

where we have replaced e2=4� by ˛ (natural units).
Thus, the differential cross section is

�
d�

d�

�
no spin

D jf .q/j2 '
�
Z˛

2k

�2
1

sin4.	=2/
jF.q/j2;

with the charge form factor F.q/ defined as follows:

F.q/ D
Z
�.r/eiqrd3r: (2.6)

2This is true because electromagnetic interactions are invariant under parity.
3In order to do this in a mathematically correct manner the 1=r potential must be multiplied by a
convergence factor, say e�˛r , and the limit ˛! 0 must be taken at the end.
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When the electron spin in included, the scattering cross section for a spin zero target
just gets another factor cos2.	=2/, so that we obtain

d�

d�
D
�

d�

d�

�
Mott
jF.q/j2; (2.7)

with �
d�

d�

�
Mott
D
�
Z˛

2k

�2 cos2.	=2/

sin4.	=2/
: (2.8)

The Mott cross section (2.8) is derived below, including the necessary kinematics
if recoil of the struck target becomes important. However, already at this point, we
can read off a few qualitative physical features from these formulae.

(i) In the forward direction, q D 0, the form factor F.q/ is equal to one, by virtue
of the normalization condition (2.2): F.0/ D 1. The same result obtains for all
momenta q if the charge distribution is concentrated in a point,

�point.r/ D 1

4�

1

r2
ı.r/! F.q/ � 1 8q: (2.9)

Thus, the Mott cross section (2.8) describes the scattering from a point charge
Ze placed at the origin.

(ii) If the charge is not pointlike the cross section (2.7) is modulated by the form
factor F.q/. It is this form factor which contains information about the target
beyond its charge Ze. Hence, elastic electron scattering measures, in essence,
the spatial distribution of the charge density �.r/. In particular, if the Born
approximation is applicable, then (2.6, 2.7) show that the cross section is just
the square of the Fourier transform of �.r/.

(iii) If the region over which �.r/ is appreciably different from zero is characterized
by a radius R, the momentum transfer must be chosen such that

qR & 1: (2.10)

Indeed, if q is chosen too small, i.e. qR 1 the form factor does not yet deviate
much from unity and little information is obtained. If q is too large, i.e. qR� 1,
the exponential in (2.6) oscillates rapidly and F.q/ becomes unmeasurably
small. Thus q must be tuned to the size of the extended object that one wants
to map. The quantitative details and the nature of the information obtained by
means of elastic scattering are worked out in some of the following sections
(Sects. 2.4, 5).

(iv) A similar situation is encountered when we consider inelastic scattering to
discrete excited states. In that case the ground state charge density (which
we assumed spherically symmetric, for simplicity) is replaced by a transition
density �fi.r/ or more complicated functionals of charge and current densities
of the target particle. Equivalently, the elastic charge form factor is replaced



2.1 Electron Scattering from a Composite Target: Qualitative Considerations 83

by inelastic form factors. As in the case of elastic scattering, the cross section
depends on a leptonic part which is known and some kinematics, whilst the
hadronic structure is contained in the form factors.

In the simplest case (electric charge scattering from a nucleus to a discrete
excited state) the form factor for the transition from state i to state f, and with
multipolarity �, will be proportional to

Ffi.q/ /
Z 1
0

�fi.r/j�.qr/r2dr: (2.11)

This follows from expanding the exponential eiqr in terms of spherical harmon-
ics and from the selection rules for angular momentum imposed by the spins
and parities of initial and final target state. The expression (2.11) is reminiscent
of the transition amplitude for the corresponding photoexcitation of state f. In
that case q is replaced by the photon energy k� D Ei�Ef. For given energy this
is a fixed number. Furthermore, in many cases k�r is small compared to one
over the domain where �fi.r/ is appreciably different from zero. In this case
the Bessel function in (2.11) can be replaced by its limiting form for small
argument,

j�.k� r/ ' .k�r/�=.2�C 1/ŠŠ: (2.12)

Thus, the � -transition depends essentially only on one specific moment of the
transition charge density. The power behaviour .k�r/� with k�r  1 limits the
� -transition to the lowest possible multipolarity.

In electron scattering, in contrast, q is a variable momentum transfer which
can be chosen as large as one wishes. This means that a complete mapping
of Ffi.q/ and, thereby, of �fi.r/ can be obtained, at least in principle. Also,
all multipolarities compatible with the angular momentum and parity selection
rules can contribute on equal footing if q is chosen appropriately. For instance,
an E5 electro-excitation can have as large a cross section as an E2 transition.

(v) Finally, if both the momentum transfer and the energy transfer to the target are
chosen sufficiently large one reaches a new domain where the electron starts to
probe, in a rather general sense, the constituent structure of the target. In the
case of scattering from nuclei this is called quasi-free scattering, expressing
the fact that the energy transfer is much larger than the binding energy of the
nucleons in the nucleus so that the nucleus behaves like a cloud of almost free
nucleons.

In the case of nucleons the analogous domain is called the deep inelastic
region. Although there are essential differences to the case of nuclei, the
main idea is the same as in quasi-free scattering from nuclei: Deep inelastic
scattering, where both momentum and energy transfers are large, must be
sensitive to interactions within the target at very small distances.
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2.2 Elastic Scattering from a Spin Zero Target, Born
Approximation

The elastic scattering of an electron from a spin zero target is the simplest case. It can
be dealt with by means of standard Green function techniques of potential scattering
without having to invoke covariant perturbation theory and Feynman rules. The
result is the correct covariant cross section in the Born approximation and contains
many of the essential features of more complicated situations such as scattering on
spin-1/2 targets or similar. Because of this simplicity we consider this case first.

The “spin-zero target” may be a pion or any nucleus whose spin is zero. We start
with the kinematics of Fig. 2.1. Let

k D .EI k/; k0 D .E 0I k0/ (2.13)

be the four-momenta of the electron in the laboratory system before and after the
scattering. Similarly,

p D .M I 0/; p0 D
�p

M2 C p02I p0
	

(2.14)

denote the four-momenta of the target before and after the scattering process,
respectively, with M the target mass. As the electron energy is chosen large
compared to its rest mass, E ' jkj and E 0 ' jk0j and the square of the four-
momentum transfer is

q2 WD �.k � k0/2 D �.E � E 0/2 C .k � k0/2 ' 4EE 0 sin2.	=2/ (2.15)

[q2 is the same as �t , see below, (2.36)].
Setting me ' 0, energy–momentum conservation gives the relationship

E 0 D E 1

1C 2.E=M/ sin2.	=2/
: (2.16)

We note that the denominator of (2.16) is a typical recoil term. Whether or not
this recoil term is important depends on the mass of the target. For a nucleus, for
instance, M ' A � 940MeV will in general be large compared to E if the electron
energy is chosen to be a few hundred MeV.

Fig. 2.1 Kinematics of
electron scattering in the
laboratory system
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Suppose we can characterize the ground state of the target by a spherically
symmetric charge distribution. In the case of a nucleus of charge number Z this is

Ze�.r/ D
*
 0

ˇ̌̌
ˇ̌e

ZX
iD1

ı.r� ri /

ˇ̌̌
ˇ̌‰0

+

with ‰0 the (spherical) ground state wave function.4 The corresponding electrostatic
potential V.r/ is given by (1.186) and must be inserted into the Dirac equation
(1.187) in which we neglect the mass term on the right-hand side.

We wish to construct solutions of (1.187) which describe the scattering of
electrons whose incoming momentum is directed along the positive 3-axis. In order
to avoid the complications due to the infinite range of the Coulomb potential we
assume, as usual that limr!1 rV.r/ D 0. This means that we multiply the Coulomb
potential by a screening factor and that we take the correct limit at the end of
our calculation. As is well-known, using this mathematically incorrect procedure
we miss the typical constant and logarithmic phases of the Coulomb scattering
problem. However, very much like in the nonrelativistic case, these complications
are irrelevant for our discussion; they may be inserted in the final results.

For r ! 1 the two-component spinors 
.x/ and .x/ must be eigenstates of
helicity. Thus, in the centre-of-mass system they have the asymptotic behaviour


.x/ 	 uC.0; 0/eik�z C f .	; '/eik�r

r
uC.	; '/; (2.17a)

.x/ 	 u�.0; 0/eik�z C g.	; '/eik�r

r
u�.	; '/; (2.17b)

where k� D jkc:mj D
ˇ̌
k0c:m:

ˇ̌ ' E� and where

u˙.	; '/ D D.1=2/�.0; 	; '/u˙.0; 0/;

uC.0; 0/ D
�
1

0

�
; u�.0; 0/ D

�
0

1

�
;

(2.18)

cf. (1.141). f and g denote the scattering amplitudes whose squares give the
cross section in the c.m. system. u˙.0; 0/ are positive and negative helicity eigen-
states, respectively, of the incoming state whose momentum points in the positive
3-direction. Similarly

uC.	; '/ D
�

e�i'=2 cos.	=2/
ei'=2 sin.	=2/

�
; u�.	; '/ D

��e�i'=2 sin.	=2/
ei'=2 cos.	=2/

�
(2.19)

are the helicity eigenstates along the outgoing momentum.

4In the case of an elementary particle �.r/ is the Fourier transform of the form factor, see below.
This leaves open the question of whether or not �.r/may be computable from a constituent picture.
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Two important properties follow from the equations (1.187) with m set equal to
zero:

(i) Equations (1.187a) and (1.187b) are completely decoupled. The potential V.r/,
which is spherically symmetric, cannot change the helicity.

(ii) From invariance under parity and under rotations one shows that f .	; '/ and
g.	; '/ must be equal (see exercise 2.1). Thus, a fast electron cannot be
polarized by a spherically symmetric potential. [Note that this is not so for
energies comparable to the rest mass. At such energies the spin–orbit force can
indeed flip the spin of the electron (Mott scattering).] Therefore, it is sufficient
to solve one of the equations (1.187), for example the first one, which reads

.i¢ � r C k�/
.x/ D V.r/
.x/: (2.20)

We solve this equation with the aid of the appropriate Green function which
satisfies the equation

.i¢ � rx C k�/G.x� x0/ D ı.x � x0/; (2.21)

whereby


.x/ D uC.0; 0/eik�z C
Z
G.x � x0/V .r 0/
.x0/d3x0: (2.22)

The Green function with the correct asymptotic behaviour is given by

G.x� x0/ D .i� � rx � k�/ eik�jx�x0j

4�jx � x0j : (2.23)

This follows from the equations

.i¢ � rx C k�/.i¢ � rx � k�/ D �.�C k�2/;

.�C k�2/ eik�jx�x0j

4�jx� x0j D �ı.x� x0/:

First Born approximation means replacing 
.x0/ on the r.h.s. of (2.22) by the
incoming plane wave. Thus


.x/ ' uC.0; 0/eik�z C 1

4�

Z
d3x0.i¢ � rx � k�/eik�jx�x0j

jx � x0j V.r
0/uC.0; 0/eik�z;

from which we must now extract the scattering amplitude f .	; '/. For finite r 0, but
taking the limit r !1, we have
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.i¢ � rx � k�/eik�jx�x0j

jx � x0j D �.i¢ � rx0 C k
�/

eik�jx�x0j

jx � x0j

	
r!1�.i� � rx0 C k

�/
eik�r

r
e�ik� Ox�x0 :

If we set k0 WD k� � Ox D k�x=r , this gives for r !1


.x) 	 uC.0; 0/eik�z � eik�r

r

1

4�

Z
d3x0eiqxV.r 0/.¢ � k0 C k�/uC.0; 0/ (2.24)

with q WD k�k0. The r.h.s of (2.24) is to be identified with the general form (2.17a),
giving

f .	; '/ D � 1

4�

Z
d3x0eiqxV.r 0/u�C.	; '/.¢ � k0 C k�/uC.0; 0/:

The scalar product under the integral sign is easily worked out by making use of the
equation satisfied by the spinor uC.	; '/:

u�C.	; '/
�
¢ � k0 � k�� D 0:

One finds

u�C.	; '/.¢ � k0 C k�/uC.0; 0/ D 2k�u�C.	; '/uC.0; 0/ D 2k�ei'=2 cos.	=2/;

which then gives

f .	; '/ D � k
�

2�
ei'=2 cos.	=2/

Z
d3reiq�rV.r/:

Alternatively, we may integrate by parts and make use of Poisson’s equation
�V.r/ D Ze2�.r/ to obtain

f .	; '/ D �2Z˛k
�

q2
ei'=2 cos.	=2/

Z
d3reiq�r�.r/ (2.25)

�
˛ D e2=4� ' 1

137

�
. The differential cross section in the centre-of-mass system is

then given by �
d�

d�

�
c:m:
D jf .	; '/j2 D d�

d�

ˇ̌̌
ˇ
Mott

F 2.q/; (2.26)

where

d�

d�

ˇ̌
ˇ̌
Mott

D .Z˛/2 cos2.	=2/

4k�2 sin4.	=2/
(2.27)
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is the Mott cross section (2.8), 	 is the scattering angle in the c.m. system and F.q/
is the (real) charge form factor of the charge distribution �.r/ (Mott, 1929).

2.3 A Few Properties of Form Factor and Cross Section

Before we proceed to scattering from targets with nonvanishing spin we wish to
discuss a few properties of the results obtained in the previous section.

The order of magnitude of the Mott cross section is easily estimated. Take, for
instance, k� D 200MeV , .200=„c/ fm�1 D 1:01 fm�1; 	 D 90ı and Z D 82.
This gives

d�

d�

ˇ̌
ˇ̌
Mott
D .82/2 � 2:6 � 10�31 cm2 D 1:7 � 10�27 cm2:

A few properties of the form factor have already been mentioned above, in Sect. 2.1.
If the target is a nucleus the charge distribution can be calculated from the ground
state wave function‰0,

�.r/ D 1

Z

Z
d3r1

Z
d3r2 : : :

Z
d3rA

zX
vD1

ı.r� rv/j‰0.r1 : : : rA/j2;

so that

F.q2/ D 1

Z

Z
d3r1

Z
d3r2 : : :

Z
d3rA

zX
vD1

eiq�rv j‰0.r1 : : : rA/j2: (2.28)

We verify the propertyF.0/ D 1which expresses the fact that forward scattering
depends only on the total charge of the target. If �.r/ is spherically symmetric, the
form factor (2.6) can be written as follows. We make use of the expansion

eiq�r D 4�
1X
lD0

il jl .qr/
ClX

mD�l
Y �lm.Oq/Ylm.Or/ (2.29)

and of the orthogonality property of the spherical harmonics to obtain5

F.q2/ D 4�

Z 1
0

�.r/j0.qr/r2dr

D 4�

q

Z 1
0

�.r/ sin.qr/rdr: (2.30)

5If �.r/ is not spherically symmetric the formalism developed for inelastic scattering below may
be consulted.
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If (qr) is small over the domain where �.r/ is appreciably different from zero, one
may expand the form factor in powers of q,

F.q2/ D 4�
Z 1
0

�.r/r2dr � 1
6
q24�

Z 1
0

�.r/r4drjO.q4/

D 1 � 1
6
q2hr2ir:m:s CO.q4hr4i/: (2.31)

Here hr2ir:m:s: denotes the root-mean-square radius

hr2ir:m:s: D � 6@F.q
2/

@q2

ˇ̌
ˇ̌
q2D0
D 4�

Z 1
0

Œ�.r/r2�r2dr: (2.32)

As the momentum transfer increases, more and more moments hr2ni come into
play. Eventually, if the form factor is known for all momenta q2, all even moments
are determined. This is equivalent to saying that the charge distribution �.r/ has
been mapped completely and is obtained from the form factor by

�.r/ D 1

.2�/3

Z
d3qe

�iq�r
F.q2/; (2.33)

In the case of nuclei �.r/ is given by the wave functions of the protons in the nuclear
ground state. The r.m.s. radius is then the average r.m.s. radius of the protons (so-
called charge radius),

hr2ir:m:s: D 1

Z

ZX
iD1

˝
r2i
˛
: (2.34)

In the case of the nucleon it is not clear a priori what causes its finite charge
distribution. The finite extension of charge within the proton may be due to the
virtual meson cloud surrounding the proton, and/or to a bound state substructure
in which case the charge density reflects some properties of the ground state of
the proton’s constituents. In any event, the primary physical quantity is the form
factor, not the charge density. It is the form factor which describes the particle’s
coupling to the photon (Coulomb field) and which enters in the expressions for
scattering amplitudes and cross sections. Once the form factor is given, we may
define the charge density through (2.33) and, in particular, the r.m.s. radius through
the derivative of F.q2/, cf. (2.32).

In Sect. 2.2 we have calculated the cross section in the c.m. system. It is not
difficult to transform it to the laboratory system or any other system of reference.
For that purpose it is useful to write first the cross section in a Lorentz invariant form.
Let us introduce Lorentz-scalar variables (Mandelstam variables), s and t , and let us
write these, in the c.m. frame, in terms of k� and 	 (neglecting the electron mass).

s D .k C p/2 DM2 C 2k�pM2 C k�2 C 2k�2;
t D .k � k0/2 D �2k�2.1 � cos 	/ � �q2:
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Inverting these equations one obtains

k� D .s �M2/=2
p
s;

cos2.	=2/ D Œ.s �M2/2 C st�=.s �M2/2:

The invariant cross section d�=dt is calculated by means of

d�

dt
D
�

d�

d.cos 	/

�
c:m:

d cos 	

dt
D
Z 2�

0

d'

�
d�

d�

�
c:m:

d cos 	

dt
;

yielding
d�

dt
D 4�.Z˛/2

t2
F 2.t/

.s �M2/2 C st

.s �M2/2
: (2.35)

It is now easy to calculate the cross section in the laboratory system, where

s D M2 C 2ME;

t D �2EE0.1 � cos 	/ D �2E2 1 � cos 	

1C .E=M/.1� cos 	/
: (2.36)

Thus,
dt

d.cos 	/
D 2E2

Œ1C .E=M/.1� cos 	/�2
;

.s �M2/2 C st

.s �M2/2
D cos2.	=2/

1C .E=M/.1� cos 	/
:

Finally, knowing that

Z
d�

d�
d' D d�

dt

dt

d cos 	

we find

�
d�

d�

�
lab
D
�
Z˛

2E

�2 cos2.	=2/

sin4.	=2/
F 2.q2/

1

1C 2.E=M/ sin2.	=2/
: (2.350)

Thus, the cross section in the laboratory system contains the recoil factor
f1C 2.E=M/ sin.	=2/g�1 which we encountered earlier in (2.16).

Clearly, the method of transforming the cross section from one frame of reference
to another that we have developed here, is quite general. It consists in writing first
the cross section in Lorentz invariant form (2.35), and then in specializing to any
desired frame of reference. In this context, we also refer to the general formulae
collected in App. B.
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2.4 Elastic Scattering from Nucleons

2.4.1 Current Matrix Elements and Form Factors

The scattering cross section (2.26, 2.35) that we have derived in the last two sections
holds for any spin zero target, a nucleus, a pion or any other elementary or composite
particle with spin zero. The result is fully covariant and thus may also be derived
in the framework of covariant perturbation theory. In other words the same cross
section must be obtained from the Feynman rules for quantum electrodynamics
which are summarized in App. C (see exercise 2.2).

If a particle has no internal structure caused by interactions other than elec-
tromagnetic, we say it is pointlike. For example, to the best of our knowledge,
electron and muon seem to be such particles. In this case the Feynman rules apply
as they are given in App. C. In particular, at any photon–fermion vertex we have
to write a factor �˛ , the Lorentz index having to be contracted with the photon
polarization vector "˛.k/ for an external photon, or with one of the indices of the
photon propagatorD˛ˇ.k/ for an internal photon line. This is a reflection of the fact
that the photon couples to the electromagnetic current j em

˛ , and that for a pointlike
fermion (on its mass shell) the matrix element of j em

˛ leading from momentum state
p to momentum state p0 is given by

˝
p0 jj em

˛ .0/jp˛ D 1

.2�/3
Qu.p0/�˛u.p/: (2.37)

If, to the contrary, the particle does have internal structure due to other interactions
not described by QED,6 then the Feynman rules are incomplete. They cannot tell us
the explicit form of the particle’s coupling to an (external or internal) photon line.
Nevertheless, these couplings can be reduced considerably and can be expressed
in terms of a few real Lorentz scalar functions (form factors) which allow one
to parametrize the internal structure of the particle in a very condensed form.7

This is achieved by making use of some general properties of the electromagnetic
current, such as its behaviour under Lorentz transformations, time reversal, current
conservation, hermiticity, isospin content, etc.

We exemplify these matters for the case of proton and neutron, i.e. strongly
interacting particles of spin 1/2. The spin zero case is similar though somewhat
simpler. It is left as an exercise for the reader. The relevant matrix element of the
electromagnetic current is

6For example, hadrons are composite objects and, to some extent, they are also “dressed” by pion
clouds.
7Note that also a pointlike particle of QED builds up form factors i.e. internal structure by
interaction with the Maxwell field. These effects are calculable from QED in higher order
perturbation theory.
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˝
p0; s0 j j em

˛ .x/j p; s˛ ; (2.38)

where initial and final states are on-mass-shell states of given momentum and spin,
and p2Dp02DM2. Let us work out the restrictions on this matrix element that fol-
low from current conservation, from the space–time structure of the electromagnetic
current and hermiticity.
(i) Current conservation. Let x0� D x� C a� be an arbitrary translation, that
transforms a given field operator according to

F.x/ ! F 0.x0/ D U.a/F.x/U�1 .a/ D F.x C a/: (2.39)

Using the generalized Heisenberg equations of motion

� i@�F.x/ D ŒP �; F.x/�; (2.40)

where P� are the four energy–momentum operators, one shows that (see exercise
(2.3))

U.a/ D expfia� P�g: (2.41)

If we consider a matrix element of F.x/ between specific eigenstates of energy
and momentum, we can make use of (2.39) to transform F.x/ to any other point
x0 D x C a of Minkowski space, i.e.

hqfjF.x/jqi i D hqfjU�1 .a/F.x C a/ U.a/jqii
D hU.a/qfjF.x C a/j U.a/qii
D eia�.qi�qf/ hqfjF.x C a/jqii: (2.42)

In particular, we may take a� D �x� to obtain

hqfjF.x/jqii D e�ix�.qi � qf/ hqfjF.0/jqii: (2.420)

Thus, the x-dependence of any such matrix element between eigenstates of four-
momentum is a simple exponential; the remaining factor hqfjF.0/jqii no longer
depends on x. Formulae such as (2.42) or (2.420) in which space–time arguments
are shifted may be called translation formulae.

Suppose F.x/ is a current operator J˛.x/ and suppose that the divergence of J˛
is known, @˛J ˛.x/ D 
.x/. Then from (2.420)

hqfj@˛ J˛.x/jqii D .@˛e�i.qi�qf/�x/hqfjJ˛.0/jqii
D hqfj
.x/jqii D e�i.qi�qf/�x hqfj
.0/jqii:
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Thus, one finds the relation

.qi � qf/
˛ hqfj J˛ .0/ jqii D ihqfj
 .0/ jqii : (2.43)

If the current is conserved–which is the case for the electromagnetic current – we
obtain the condition

.qi � qf/
˛ hqfj j˛ .0/ jqii D 0 (2.44)

(we drop the superscript “em” for simplicity).
(ii) Covariance. As j˛ is a Lorentz vector, its matrix elements between nucleon
states must also transform as Lorentz vectors. For the construction of such vectors
we have at our disposal the vectors p 0̨ and p˛ as well as the � -matrices and
combinations thereof. The only vectors that can be formed are8

u.p0/ �˛u.p/; .p0 � p/ˇ u.p0/ �˛ˇu.p/;

.p C p0/˛ u.p0/ u.p/; .p � p0/˛ u.p0/ u.p/;

where we have defined

¢˛ˇ WD 1

2
i(�˛�ˇ � �ˇ�˛/: (2.45)

That the first two of these are indeed vector operators is not difficult to show.
Indeed ‰.x/�˛‰.x/ is a vector operator as should be clear from Chap. 1 Similarly,
‰.x/�˛ˇ‰.x/ is a tensor operator. Knowing that p˛ and p 0̨ are vectors and making
use of the expansion (1.122), the assertion is proved. Among these covariants only
three are independent. The external particles are on their mass shell and obey the
free Dirac equation. In this case one has the Gordon identity relating the first three
covariants (exercise 2.14).

Thus, the most general covariant decomposition must have the form (dropping
the spin indices s; s0, for the sake of clarity),

hp0j j˛ .0/ jpi

D 1

.2�/3
u.p0/

�
�˛F1 .q

2/C i

2M
�˛ˇq

ˇ F2 .q
2/C 1

2M
q˛F3.q

2/

�
u.p/;

(2.46)
where q is the momentum transfer

q WD p0 � p: (2.47)

(We have setQ D 1, taking out a factor jej to be inserted at each photon vertex). The
functions Fi must be Lorentz scalars and, thus, can only depend on Lorentz scalar
quantities such as p2; p02 and q2. Since p2 D p02 D m2, these are in fact constants,

8The same forms apply for antiparticle states, with u.p/ replaced by �.p/.
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so the only true variation must be in the variable q2. The divergence condition (2.44)
implies that F3.q2/ must vanish identically for q2 ¤ 0. The other two terms on the
r.h.s. of (2.46) fulfill this condition separately, as one easily verifies by means of the
Dirac equations (1.84,1.84’).

(iii) Hermiticity of electromagnetic current. By definition we have

˝
p
ˇ̌
j �˛ .0/

ˇ̌
p0
˛ D hp0j j˛ .0/ jpi�: (2.48a)

As j˛ is a hermitean operator this is also equal to

hpj j˛ .0/ jp0i : (2.48b)

The expression (2.48a), more explicitly, gives

�
u.p0/� �0

�
�˛F1 C i

2M
�˛ˇ .p

0 � p/ˇF2
�

u.p/

��

D u�.p/

�
.�0�˛/

��0 F
�
1 �

i

2M
.�0�˛ˇ/

� .p0 � p/ˇ F �2
�

u.p0/

D u.p/

�
�0�

�
˛�0 F

�
1 C

i

2M
�0�

�

˛ˇ�0 .p � p0/ˇ F �2
�

u.p0/;

where we have inserted .�0/2 D 1 between u�.p/ and the square brackets and have
interchangedp and p0 in the second term. We know from (1.79b) that �0�

�
˛�0 D �˛.

Using the definition (2.45) one sees that also �0�
�

˛ˇ�0 D �˛ˇ . As (2.48a) must equal
(2.48b) we conclude that the form factors F1 and F2 are real:

F �1 .q2/ D F1.q2/; F �2 .q2/ D F2.q2/: (2.49)

We add a few comments on these results: The form factor F2 has actually been
defined such as to make it real by the choice of the factor i in front of the second term
of (2.46). Without this factor F2 would have come out pure imaginary. Similarly,
the factor 1=2M is a matter of convention, chosen so as to give F2.q2/ the same
dimension as F1.q2/. In applying the divergence condition (2.44) we have used the
fact that the two spinors belong to the same mass. If the external fermions have
different masses the relations following from current conservation look different.
Similarly, if the electromagnetic current is taken between two different particles,
hermiticity does not suffice to derive reality properties of form factors. However,
if the interactions are invariant under time reversal, the combination of hermiticity
and time reversal invariance implies again reality conditions for the form factors.
Examples of this will be met below in the context of weak interactions.



2.4 Elastic Scattering from Nucleons 95

2.4.2 Derivation of Cross Section

The physical interpretation of the form factors F1 and F2 is discussed below. For the
moment, we note that F1.q2 D 0/ D 1 is the charge of the particle in units of jej,
see below. We first turn to the computation of the differential cross section,

d� =
.2�/2 ı.4/.p C k � p0 � k0/

Œ2Ek=.2�/3� Œ2Ep=.2�/3� j�12j
1

4

X
spins

jTfij2 d 3k0d3p0

2Ek0 2Ep0
: (2.50)

Tfi is the T -matrix element, to be obtained from Feynman rules for lowest order
perturbation theory. �12 is the relative velocity of electron and nucleon in the initial
state. It is useful to calculate d� first in the centre-of-mass system and then, in a
second step, to write it in a manifestly invariant form from which the cross section
in any system of reference can be obtained. In the c.m. system,

k D
�p

m2 C q�2 I q
	
; p D

�p
M2 C q�2 I �q

	
:

Introducing the invariant variables s, t, u one has

s D .p C k/2 D .p0 C k0/2 D m2 CM2 C 2.pk/ D m2 CM2 C 2.p0k0/;
(2.51a)

t D .k � k0/2 D .p0 � p/2 D 2m2 � 2.kk0/ D 2M2 � 2.pp0/; (2.51b)

u D .k � p0/2 D .p � k0/2 D m2 CM2 � 2.p0k/
D m2 CM2 � 2.pk0/ D 2m2 C 2M2 � t � s: (2.51c)

In particular, in the c.m. system

q� WD jqj =
1

2
p
s

p
.s �M2 �m2/2 � 4M2m2; (2.52)

t D �2q�2.1 � cos 	/: (2.53)

The Møller factor in the denominator of (2.50) is an invariant and can be written as

EkEpj�12j D
p
.pk/2 � p2k2

D 1

2

p
.s �M2 �m2/2 � 4M2m2 D q�ps:

As we are interested in d�=d� or, equivalently, d�=dt , all other variables in the
final state must be integrated over. The integration over p0 may be done first, giving
p0 D �k0 � q0:
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d� D .2�/10

16q�
p
sE 0k E 0p

1

4

X
jTfij2 ı.1/ .W � Ek �Ep/ q�02 dq�0 d�;

where

W WD
q
M2 C q�02 C

q
m2 C q�02:

q�0 is the modulus of the three-momentum in the final state. By the remaining
ı-function it becomes equal to q�. This leaves us with the integration over q�0 or,
equivalently, overW , provided we make the replacement

dq�0 D dq�0

dW
dW D Ep0 Ek0

q�0 W
dW:

This gives

d�

d�
D 1

16s
.2�/10

1

4

X
jTfij2: (2.54)

The invariant quantity d�=dt is obtained from this by integrating over the azimuth

 and by making the replacement

d�

d.cos 	/
D dt

d.cos 	/

d�

dt
D 2q�2 d�

dt
:

with the expression (2.52) for q�2, this gives

d�

dt
D .2�/11

8Œ.s �M2 �m2/2 � 4M2m2�

1

4

X
jTfij2: (2.55)

The next step is the construction of the T -matrix element and the calculation of
the spin summation. The Feynman rules give the R-matrix Rfi, which is related to
Tfi by (B2) of App. B. So we have

Rfi D �ie2

.2�/2

Z
d4 � u.k0/ �˛ u.k/.�2 C i"/�1 g˛ˇ hp0jjˇ.0/jpi

�.2�/3 ı.4/ .k � � � k0/ ı.4/ .p C � � p0/:

The integration over �, the momentum of the virtual photon, yields � D k �
k0 D p0 � p and leaves us with one ı-function for overall energy-momentum
conservation.
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Thus

Tfi D �e2
.2�/3

u.k0/ �˛u.k/
1

t
hp0jj˛.0/jpi:

For the actual calculation of the cross section it is useful to rewrite the nucleonic
matrix element by means of the Gordon identity

hp0jj˛.0/jpi D 1

.2�/3
u.p0/ f.F1 C F2/ �˛ � 1

2M
.p C p0/˛F2g u.p/: (2.460)

The spin summations are best carried out by means of the trace techniques of
App. C2. Here we have to calculate the expression

M W D 1

4

X
spins

ˇ̌
ˇ̌.u.k0/ �˛ u.k//

�
u.p0/

�
�˛.F1 C F2/� 1

2M
P˛F2

�
u.p/

�ˇ̌ˇ̌2

D 1

4
trf�˛.�k Cm/�ˇ .�k0 Cm/gtr

��
.F1 C F2/�˛ � P˛

2M
F2

�
.�p CM/

�
�
.F1 C F2/�ˇ � Pˇ

2M
F2

�
.�p
0 CM/

�
;

where we have set pCp0 D P . There are basically four expressions to be calculated,
namely

.a/
1

4
tr f�˛.�k Cm/�ˇ.�k0 Cm/g trf�˛.�p CM/�ˇ .�p

0 CM/g

D 8f2m2M2 �M2.kk0/�m2.pp0/C .pk/ .p0k0/C .pk0/.p0k/g;

which from (2.51) is equal to

D 2f2.s �M2 �m2/2 C 2stC t2g:

.b/
1

4
trf�˛.�k Cm/��P .�k

0 Cm/g trf�˛.�p CM/ .�p
0 CM/g

D 4M fm2P 2 C 2.Pk/ .Pk0/� P2.kk0/g
D 8M f.s �M2 �m2/2 C t.s �m2/g:

.c/
1

4
trf��P .�k Cm/��P .�k0 Cm/g

D m2P 2 C 2.Pk/ .Pk0/ � P2.kk0/

D 2f.s �M2 �m2/2 C t.s �m2/g:

.d/
1

4
trf.�p CM/ (�p

0 CM/g DM2 C .pp0/ D 2M2 � 1
2
t:
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All traces in M are reducible to these prototypes. We find

M D 4Œ.s �M2 �m2/2 C t.s �m2/�

�
�
.F1 C F2/2 � 2F1 F2 � F 2

2 �
t

4M2
F 2
2

�

C 2.t2 C 2m2t/ .F1 C F2/2:

Inserting this into (2.55) and replacing e2=4� D ˛, we finally obtain

d�

dt
D 4�˛2

t2
.s�M2 �m2/2 C t.s �m2/
.s �M2 �m2/2 � 4M2m2

�
(
F 21 .t/�

t

4M2
F 22 .t/C

t.t C 2m2/
2Œ.s�M2�m2/2Ct.s�m2/� .F1.t/CF2.t//

2

)
: (2.56)

This formula was first derived by Rosenbluth (1950). It applies to the scattering
of any charged lepton of mass m from a complex target with spin 1/2. The target
structure is contained entirely in the Lorentz scalar functions F1.t/ and F2.t/, the
significance of which will become clear below.

As an exercise let us use (2.56) to derive the differential cross section in the
laboratory system for electron scattering on the nucleon. The electron energy shall
be chosen so large that the electron mass can be neglected. Setting m D 0, the
variables s and t in the laboratory system are

s ' M2 C 2ME;

t ' �2EE0.1 � cos 	/ D �2E2 1 � cos 	

1C .E=M/.1� cos 	/

From this one obtains

t2

2Œ.s �M2/2 C ts�
' �tE2.1� cos 	/

2M2 E2 .1C cos 	/
D � t

2M2
tg2.	=2/;

dt

d.cos 	/
D 2E2

.1C .E=M/.1� cos 	//2
;

so that

�
d�

d�

�
lab
D
� ˛
2E

	2 cos2.˛=2/

sin4.	=2/

1

1C 2.E=M/ sin2.	=2/

�
�
F 2
1 .t/ �

t

4M2
F 2
2 .t/ �

t

2M2
ŒF1.t/C F2.t/�2 tg2.	=2/

�
: (2.57)

This is the generalization of formula (2.350) to a target with spin 1/2.
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2.4.3 Properties of Form Factors

The form factors F1.t/ and F2.t/ are defined through the covariant decomposition
(2.46) of the nucleonic one-particle matrix element of the electromagnetic current
operator j˛.x/. In this section we work out the physical interpretation of these form
factors. For this purpose it is convenient to consider the matrix element (2.46) in the
specific frame of reference where the sum of spatial three-momenta of initial and
final nucleon states vanishes, i.e. p C p0 D 0. In this frame the limit of vanishing
four-momentum transfer, q2 ! 0, leads us automatically into the rest frame of the
particle. It is in the particle’s rest frame that we are able to relate F1 and F2 to static
properties of nucleons.
(i) Electric form factor . From (2.46, 2.460) the charge density (fourth component of
j˛.x/) is given by

h pjj0.0/j � pi D 1

.2�/3
u.p/

�
.F1 C F2/�0 � EpM

F2

�
u.�p/:

Inserting the explicit form of the spinors (1.90) in the standard representation,
one finds

u. p/ �0 u.�p/ D u�.p/ u.�p/ D 2M;
u. p/ u.�p/ D 2Ep;

independently of the spin direction. Furthermore, q D 2p and t D .p0 � p/2 D
�4p2 D �4E2

p C 4M2. Thus

.2�/3 hpjj0.0/j � pi D 2M.F1 C F2/ �
2E2

p

M
F2 D 2M

�
F1 C t

4M2
F2

�
:

On the basis of this result it is natural to define

GE.t/ WD F1 .t/C t

4M2
F2 .t/ (2.58)

as the electric form factor of the nucleon. It is easy to verify that for the proton

F
.p/
1 .0/ D G

.p/
E .0/ D 1; (2.59a)

which expresses the fact that the proton carries one unit of the positive elementary
charge. Indeed, we know that


p0
ˇ̌̌
ˇ
Z

d3 x j0.x/

ˇ̌̌
ˇp
�
D 1hp0jpi D 2Epı.p� p0/:
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On the other hand, from the decomposition (2.46), and using translation invariance
as in (2.420),

R
d3 xhp0 j j0.x/jpi D .2�/3 ı.p� p0/ hp0jj0.0/jpi

D ı.p� p0/ F .p/
1 .0/u�.p/ u.p/ = 2EpF

.p/
1 ı.p � p0/:

Thus F .p/
1 .0/ D 1.

Similarly for the neutron

F
.n/
1 .0/ D G

.n/
E .0/ D 0: (2.59b)

The r.m.s. radii of F1 andGE, which are defined by (2.32) are not the same, however.
One finds the relationship

hr2iGE D hr2iF1 C
1

4M2
F2.0/: (2.60)

Here, F2.0/ is found to be the anomalous magnetic moment below.
(ii) Magnetic form factor. We know from Sect. 1.9.2 that the magnetic properties
are obtained from matrix elements of the spatial current density, i.e. from

hpjj i .0/j � pi D 1

.2�/3
.F1 C F2/u.p/� iu.�p/

[where we have used (2.460)]. With the explicit solutions (1.90) we have

u.p/ � i u.�p/ D u�.p/
�
0 �.i/

�.i/ 0

�
u.�p/

D �Œ��.i/.� � p/ + .� � p/ �.i/�
D �2"iklpk��.l/ D �"iklqk��.l/

hpjj i .0/j � pi D � 1

.2�/3
.F1 C F2/ "iklqk��.l/:

Comparing this to the formulae in Sect. 1.9.2 we see that the combination

GM.t/ WD F1.t/C F2.t/ (2.61)

may be interpreted as the magnetic form factor.9 In particular,GM.0/ is equal to the
total magnetic moment of the particle; F1.0/ gives the “normal” magnetic moment;
F2.0/ the “anomalous” magnetic moment. In the case of proton and neutron,

9GE.t/ and GM.t/ are also called Sachs form factors.
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F
.p/
1 .0/ D 1; F

.p/
2 .0/ � �p

an D 1:792847351.28/; (2.62a)

F
.n/
1 .0/ D 0; F .n/

2 .0/ � �n
an D � 1:9130427.5/ (2.62b)

When rewritten in terms of the Sachs form factors (2.58) and (2.61) the differential
cross section (2.57) reads

�
d�

d�

�
lab
D
� ˛
2E

	2 cos2.	=2/

sin4.	=2/

1

1C 2.E=M/ sin2.	=2/

�
�

1

1 � t=4M2
G2

E.t/ �
t

4M2

�
1

1 � t=4M2
C 2tg2.	=2/

�
G2

M.t/

�
:

(2.570)
Therefore, if one plots the quantity in curly brackets at fixed t and multiplied by
ctg2.	=2/, as a function of ctg2.	=2/, the data must fall onto a straight line with
slope and intercept, respectively, as follows

G2
E C �G2

M

1C �
and 2�G2

M

where � D �t=4M2.

2.4.4 Isospin Analysis of Nucleon Form Factors

Isospin invariance is an approximate symmetry of strong interactions. It is a spec-
trum symmetry in the sense that strongly interacting particles can be classified in
mass degenerate multiplets of the isospin group SU(2). While the strong interactions
are invariant under isospin transformations, the electromagnetic interactions are not.
That is, the strong interactions transform like scalars under isospin transformations,
the electromagnetic interaction j ˛A˛ does not. Nevertheless, it may be expanded in
terms of multipole operators in isospin space, viz.

j˛.x/ D j .0/˛ .x/C j .1/˛ .x/C � � � ; (2.63)

where j .0/˛ denotes an isoscalar operator, j .1/˛ denotes the third component of an
isovector operator. There are good indications that the electromagnetic current
operator contains only isoscalar and isovector operators, i.e. that the expansion
(2.63) ends with the second term, but a priori this is not known. The two terms
on the right-hand side carry the quantum numbers of the vector mesons !; 
 and �,
respectively, as summarized in Table 2.1.

In the case of nucleons it is easy to isolate the isoscalar and isovector parts
of the nucleon form factors. Proton and neutron form a doublet of isospin, the
proton is assigned I3 D C1=2, the neutron I3 D �1=2. Let O.�/

�D0 be any tensor
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Table 2.1 Properties of electromagnetic current.

Isospin Spin Parity Charge G-Parity Analogue vector
J � conjugation G meson states

I I3 C

j
.0/
˛ .x/ 0 0

�
0C

1�

�
� � !.782/


.1020/

J
.1/
˛ .x/ 1 0

�
0C

1�

�
� C �.770/

operator with isospin � and three component� D 0 in isospin, having nonvanishing
matrix elements between one nucleon states. Then from the Wigner–Eckart theorem,
we have

h1
2
I3jO.�/

� j
1

2
I3i D .�/1=2�I3

0
@ 1

2
�
1

2
�I3 0 I3

1
A�1

2
k O.�/ k 1

2

�
; (2.64)

where
�
1
2

��O.�/
�� 1
2

�
denotes the reduced matrix element. The first two 3j -symbols

with � D 0 are given by [EDM57, DST63]

0
@ 1

2
0
1

2
�I3 0 I3

1
A D .�/1=2�I3p

2

0
@ 1

2
1
1

2
�I3 0 I3

1
A D p

1=6:

All other such symbols for � � 2 vanish because the triangle rule is not
fulfilled. Thus
*
1

2
I3j
X
�

O
.�/
0 j

1

2
I3

+
D 1p

2

�
1

2
jjO.0/jj1

2

�
C .�/1=2�I3

r
1

6

�
1

2
jjO.1/jj1

2

�
:

(2.65)
As a consequence, we see that the isoscalar may be isolated by taking the sum
of matrix elements (2.65) over I3, while the isovector is isolated by taking the
difference. This leads to the following definitions of isoscalar and isovector nucleon
form factors

F
.s/
i D

1

2
.F

.p/
i C F .n/

i / (2.66a)

.i D 1; 2/:

F
.�/
i D 1

2
.F

.p/
i � F .n/

i / (2.66b)

Analogous definitions may be introduced for the electric and magnetic form factors
(2.58) and (2.61).
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Fig. 2.2 The ratio GP
E=GD in percentage deviation from 1, versus q2. Figure taken from Simon

et al. (1980)

It is customary to show the measured electric form factor Gp
E of the proton for

low momentum transfers, divided by the so-called dipole fit:

GD.q
2/ WD 1

.1C q2=q20/2
with q20 D 18:23 fm�2: (2.67)

This dipole dependence of the form factors Gp
E.q

2/ and Gp
M.q

2/=�p on q2 is only
of historical interest insofar as early data seemed to be in good agreement with this
simple ansatz. Better, empirical fits, useful for theoretical analyses, are found in the
literature (Borkowski et al. 1976). Nevertheless, it is customary to plot the data in
terms of this formula. From the data one deduces the following value for the r.m.s
radius of the proton (Simon et al. 1980). As an example we quote:

˝
r2E
˛1=2
P
D .0:862˙ 0:012/ fm.

Figures 2.2, 2.3 show the electric and magnetic form factors GP
E and GP

E=�
p of the

proton, in units ofGD, (2.67), and in the form of percent deviations from that ansatz.
Figure 2.4, finally, shows data for the electron-proton elastic cross section, again in
units of the dipole fit, i.e. in units of the cross section (2.570) with

G
p
E D Gp

M=�
p � GD.q

2/:
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Fig. 2.3 The ratio GP
M=�

PGD versus q2. Figure taken from Simon et al. (1980)

2.5 �Elastic and Inelastic Electron Scattering from Nuclei

In Sects. 2.2, 2.4 we have derived the cross section for elastic scattering of electrons
from spin zero and spin 1/2 targets. These formulae hold for any kind of target,
composite or “elementary”. The internal structure of the target is hidden in the
Lorentz invariant form factors whose definition is based only on Lorentz covariance
and current conservation.

We now extend these results to elastic scattering from nuclei of arbitrary spin,
as well as to inelastic scattering to discrete nuclear excited states. As we have seen,
elastic scattering from a target with spin zero depends on one single form factor, the
electric form factor. In case of a target with spin 1/2 there are two form factors: the
electric and the magnetic dipole form factor. For a target with spin J D 1 or higher
there are, in addition, electric quadrupole form factors or more generally, form
factors of multipolarity � up to �max D 2J . This is a consequence of conservation
of angular momentum which requires that nuclear initial and final state spins form
a triangle with �, the multipolarity of the form factor, viz. Ji C � C Jf D 0. In
addition, conservation of parity selects the kind of multipoles that can contribute to
elastic scattering, e.g. electric monopole, magnetic dipole, electric quadrupole.

In studying inelastic scattering to discrete excited states of the nucleus we
encounter a very similar situation. The initial state with spin and parity J �i

i (this
is generally the nuclear ground state), goes over into a final state with spin and
parity J �f

f through excitation by means of multipole fields with multi-polarity � and
�� such that

Ji C �C Jf D 0; �i�� D �f:
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Fig. 2.4 Ratio of electron–proton scattering cross sections to the dipole formula, as measured in
various laboratories, versus q2. Compilation taken from Borkowski et al. (1975)

Because of the close similarity of these two situations we treat them within the
same formalism. Everything that follows for inelastic scattering below can always
be specialized to elastic scattering by taking Jf D Ji and �f D �i.

In a first step we calculate the cross sections as before, using the Born approx-
imation in describing initial and final states of the electron. This approximation
is very good for the proton, Z D 1. Depending on the accuracy of experiments
one wishes to analyze, the Born approximation may still be acceptable for light
nuclei, up to about Z Š 10. With increasing charge number of the nucleus it
becomes less reliable; for heavy nuclei such as lead .Z D 82/ it fails badly, as it
neglects the strong distortion of initial and final electron waves due to the nuclear
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Coulomb field. In this case a complete partial wave analysis on the basis of exact
eigenstates in the nuclear electric field must be worked out. Nevertheless, it can
be seen that the cross sections calculated in the Born approximation contain all
relevant qualitative physical features of the scattering process. The exact cross
sections, obtained from partial wave analysis, differ quantitatively from the Born
cross sections but their structure carries the same (qualitative) physical information.
Thus, Coulomb distortion is a problem of purely technical nature, and we leave its
discussion to a later section.

2.5.1 Multipole Fields

The theory of electron scattering from nuclei leading to final states with definite
spin and parity is based on an expansion of the virtual photon interaction in terms
of multipole fields. In this subsection we collect a few results and formulae which
are needed in the sequel [ROS55, JAC75]: We start from Helmholtz’ differential
equation for vector fields on R3,

.r2 C k2/B.r/ D 0: (2.68)

This equation follows from the wave equation for any field B.r; t/ with harmonic
time dependence,

B.r; t/ D ei!tB.r/:

„! is the energy, „k the momentum, k the wave number of this field, and „! D „ck
or, in natural units, ! D k. B.r/ can be expanded in terms of a complete set of
solutions of the Helmholtz equation with definite angular momentum and definite
parity. These basic solutions are called multipole fields. They form a complete and
orthogonal set of vector functions in the radial variable r and on the unit sphere.

Let us begin with the definition of vector spherical harmonics. Let �m
.m D C1; 0; �1/ be spherical unit vectors, defined in terms of Cartesian unit
vectors by

�0 D e3;

�1 D � 1p
2
.e1 C ie2/;

��1 D 1p
2
.e1 � ie2/: (2.69)

These vectors obey the symmetry relation

��m D .�/m��m (2.70a)
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and the orthogonality relation

��m�m D ımm: (2.70b)

As defined in (2.69) the �m transform as a spherical tensor of rank one under
rotations. The vector spherical harmonics are then defined as follows:

T J lM WD
X
mlms

.lml ; 1msjJM/Ylml �ms ; (2.71)

where .lml ; 1msjJM/ denotes the Clebsch–Gordan coefficients that couple the
angular momenta l and 1 to J D l C 1; l; l � 1. By construction, TJlM transform
under rotations with the unitary rotation matrices D.J/�

MM0 .
; 	;  /, i.e. they are
spherical tensors of rank J . In addition they have vector character due to the fact that
they contain the spherical unit vectors �. Them-th spherical component is given by

.T J lM /m � .T J lM � �m/
D .�/m.lM Cm; 1�mjJM/YlMCm:

The index l indicates the behaviour of the TJlM under the parity operation. From
their definition (2.71) one sees that under space reflection

T J lM .� � 	; ' C �/ D .�/lT J lM .	; '/: (2.72)

It is easy to verify the orthogonality property

Z
d�.T�J 0l 0M 0TJ lM / D ıJJ 0ıl l 0ıMM 0 ; (2.73)

which follows from the orthogonality of the ordinary spherical harmonics and of the
vectors �, as well as from some known properties of Clebsch-Gordan coefficients.
Finally, we note that the vector harmonics also form a complete set of vector-
like functions on the unit sphere. (The completeness follows from completeness
of spherical harmonics). Some special cases are

T10M D 1p
4�
�M ;

T10M D � 1p
4�

r
jrj :

Returning to the Helmholtz equation (2.68), we now construct solutions with
definite angular momentum and definite parity. These have the form

BJ lM .r/ D fl .r/TJ lM .	; '/:
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Inserting this ansatz into (2.68) we are led to a differential equation for the function
fl.r/ alone which reads

�
1

r2
d

dr

�
r2

d

dr

�
C k2 � l.l C 1/

r2

�
fl .r/ D 0;

or, with z D kr,

�
d2

dz2
C 2

z

d

dz
C 1 � l.l C 1/

z2

�
fl.z/ D 0: (2.74)

This equation is well-known in the theory of Bessel functions. We choose the
following fundamental system of solutions,

f I
l .r/ D jl .kr/ spherical Bessel function;

f II
l .r/ D h

.1/

l .kr/ spherical Hankel function of first kind

D jl .kr/C inl .kr/ (2.75)

Œnl .kr/ is a spherical Neumann function]. This specific set is chosen in view of
the physical boundary conditions that we require for the multipole fields: f I

l is the
solution regular at the origin r D 0, whilst f II

l describes asymptotically outgoing
spherical waves,10

h
.1/

l .x/ 	x!1
1

x
exp

n
i.x � .l C 1//�

2

o
: (2.76)

Finally, the functions fl satisfy the completeness relation

Z 1
0

f �l .k0r/fl .kr/r2dr D
�

2k2
ı.k � k0/: (2.77)

Equipped with this knowledge we can now define a set of multipole fields

(i) magnetic multipole fields

Alm.M/ WD fl .kr/TjDl lmI (2.78)

(ii) electric multipole fields

10These and further properties of spherical Bessel and Hankel functions can be found in [ABS65]
and in other monographs on special functions.
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Alm.E/ D �
s

l

2l C 1flC1.kr/Tl lC1m C
s
l C 1
2l C 1fl�1.kr/Tl l�1mI (2.79)

(iii) longitudinal multipole fields

Alm.L/ WD
s
l C 1
2l C 1flC1.kr/Tl lC1m C

s
l

2l C 1fl�1.kr/Tl l�1m: (2.80)

The properties of these fields, as well as the reason for the nomenclature, are
discussed extensively in the literature on multipole fields [ROS55, JAC75]. In
particular, differential properties of them can best be discussed by means of
the techniques of angular momentum algebra for which we refer to standard
monographs [FAR59, EDM57, ROS57]. Especially useful is the “gradient formula”
which reads

rf .r/YlmD�
s
lC1
2lC1

�
df

dr
�l f
r

�
T l lC1mC

s
l

2l C 1
�

df

dr
C l C 1

r
f

�
T l l�1m:

(2.81)
By means of these techniques one shows that magnetic and electric multipole fields
are divergence free

r �Alm.�/ D 0; � D E;M: (2.82)

Both potentials vanish for l D 0. This is evident in the case of (2.79); in the
case of (2.78) it follows from (2.71) since .00; 1mj00/ vanishes. Thus, electric
and magnetic multipole fields are transverse, i.e. fulfill (2.82), and may be used to
describe photon states of definite angular momentum and parity. According to (2.72)
their parities are .�/l and .�/lC1, respectively. However, as the interaction with
matter always involves the product of such vector fields with the current operator
which is itself odd under parity, the rules for parity change in electromagnetic
transitions are

.�/lC1 in magnetic .Ml/ transitions,

.�/l in electric .El/ transitions.

The longitudinal fields (2.80) are not divergenceless (hence their name), and
they exist also for l D 0. Thus, while there are no transverse monopole fields, a
longitudinal field can carry total angular momentum zero.

On the basis of the orthogonality and completeness relations (2.73) and (2.77)
one shows easily that the multipole fields fulfill the orthogonality relations

Z 1
0

r2dr
Z

d�A�l 0m0.r; �
0/Alm.r; �/ D �

2k2
ı.k � k0/ı�� 0ıl l 0ımm0 : (2.83)

The importance of these results lies in the fact that a given vector field F.r/ which is
sufficiently regular, can be expanded in terms of orthogonal multipole fields whose
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parity and angular momentum properties are simple. Whenever matrix elements of
F between states of definite angular momentum and parity are to be calculated, only
one or a few terms of the multipole expansion give nonvanishing contributions.

Finally, using the techniques of angular momentum algebra, one can show that
the multipole fields can also be written in terms of the orbital angular momentum
operator applied to spherical harmonics, in terms of curl and gradient of such
functions. This provides equivalent representations that are sometimes useful.

Alm.M/ D fl .kr/ 1p
l.l C 1/ lYlm; (2.780)

Alm.E/ D � i

k
r � .fl .kr/T l lm/

D � i

k
p
l.l C 1/r � l.fl .kr/Ylm/;

(2.790)

Alm.L/ D 1

k
r.fl .kr/Ylm/: (2.800)

The notation (2.78–2.80) is more useful in calculating matrix elements between
states of good angular momentum and parity because one can then make use
of the Wigner–Eckart theorem and all the tricks of angular momentum algebra.
The representation (2.780–2.800) on the other hand, is very useful if one wants to
use identities of vector calculus in order to transform interaction terms to a more
convenient form.

2.5.2 Theory of Electron Scattering

There are several ways of deriving the Hamiltonian that describes the interaction of
(arbitrarily relativistic) electrons with a static target.

(i) One may analyze the scattering process in a semi-classical treatment, starting
from a retarded interaction between two given charge and current densities.

Hret D
Z

d3rn

Z
d3re

eikjrn�rej
jrn�rej f�n.rn/�e.re/ � jn.rn/je.re/g : (2.84)

One then expands the retarded Green function that appears in (2.84) in terms
of transverse and longitudinal multipole fields. The procedure is conceptually
simple but technically somewhat involved and we refer to the literature for
details [ROS61] (Scheck 1966).

(ii) Alternatively, one can calculate the interaction in the framework of quantum
electrodynamics, formulated in the Coulomb gauge. The interaction is then
given by the instantaneous electrostatic Coulomb interaction plus the terms
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arising from the exchange of virtual but still transverse photons between the
electron and the target [HEI63, SAK84]. In this case, instead of using plane
waves it is appropriate to expand and quantize the transverse photon field in
terms of the magnetic and electric multipole fields (2.78, 2.79).

In either case the scattering matrix element is found to be

˝
fI k0jHintjiI k

˛

D
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�n.rn/�e.re/ji; k

+
: (2.85)

In this expression i and f denote initial and final state of the target, respectively;
for example, i stands for initial total momentum p of the target and for all other
target quantum numbers such as angular momentum, parity and any other internal
quantum numbers as there may be. The notation r< and r> serves as a shorthand for
the requirement that

if re > rn; the combination jl .krn/h
.1/

l .kre/; and
if re > rn; the combination h.1/l .krn/jl .kre/

must be taken in the first two terms on the r.h.s. of (2.85). This reflects the correct
boundary conditions which are built into (2.85): It is always the smaller of the two
radial variables that is to be inserted into jl , the function regular at the origin, whilst
the larger of the two is to be taken in h.1/l , the function that describes outgoing
spherical waves.

Evidently, if we wish to explore the internal structure of the target, we have to
choose the momentum transfer and, therefore, the electron energy high enough so
that the electron penetrates sizeably into the target. In this case the integrations in
(2.85) are entangled in a nontrivial way. The matrix element does not factor into
a target structure function and a leptonic factor. This is unlike Coulomb excitation
where penetration is unimportant (and, in fact, often unwanted) and where the lowest
order cross section does factor into target and projectile properties.

The expression (2.85) is fairly general. It applies equally well to elastic and
inelastic scattering. It holds independently of what basis we choose for the initial
and final electron states. If we take plane waves we shall obtain the transition
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matrix element in the Born approximation. In this case k is the magnitude of the
three-momentum in the centre-of-mass system. If we wish to include the Coulomb
distortion in the electronic states, we have to evaluate (2.85) with eigenstates of
the electron in the static Coulomb field created by the target. In this case k is the
asymptotic wave number determined by the electron energy.

The charge and current densities which appear in (2.85) are still very general. For
the electron, we clearly have to set

�e.r/ D �e�0ı.r� re/ � �eˇı.r� re/; (2.86a)

je.r/ D �e�0	ı.r� re/ � �e˛ı.r� re/ (2.86b)

Concerning the target, however, there are many options. For example, let the target
be a nucleus treated in a nonrelativistic scheme. If we know the nuclear wave
function in terms of states of individual nucleons then

�n.r/ D
AX
i�1

eiı.r� ri /; (2.87a)

jn.r/ D
AX
iD1

h
eivi ı.r� ri /C e

2m
gis.r � si /ı.r� ri /

i
: (2.87b)

These operators are taken between nonrelativistic nuclear states (e.g. shell model
states). If the nucleus is to be described by some set of effective collective
coordinates (such as vibrator coordinates in case of collective matter oscillations,
or the set of Euler angles in case of rigid rotator motion, etc.) then the densities are
semi-classical functions containing the collective coordinates in a way determined
by the underlying model.

In the following two sections we present the essential steps of the derivation
of cross sections in the Born approximation (Sect. 2.5.3) and including Coulomb
distortion (Sect. 2.5.4).

2.5.3 Born Approximation

Before proceeding to the calculation of the matrix element (2.85) in the first Born
approximation it is useful to transform the interaction to a more convenient form.
The electric part of the interaction [first term on the right-hand side of (2.85)] is
transformed by means of a well-known relation for spherical Bessel and Hankel
functions [WAT58],

jl .kr</h
.1/

l .kr>/ D
2k

i�

Z 1
0

dq
jl .qr/jl .qr

0/
q2 � k2 C 1

ik

rl<r
�l�1
>

2l C 1 : (2.88)
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Likewise, the magnetic term (second term of eq. (2.85)) is transformed by means of
the relation [WAT58]

jl .kr</h
.1/

l .kr>/ D
2

i�k

Z 1
0

jl .qr/jl .qr
0/

q2 � k2 q2dq: (2.89)

Finally, the electric term that comes from the second term on the right-hand side of
(2.88), i.e.

*
fI k0j

Z
d3rn

Z
d3re jn � r � l

�
rl<
r�l�1>

Y �lm
�

je � r � l
�
r�l�1>

rl<
Ylm

�
jiI k

+

can be further transformed by means of the relation [ROS57]

r � l.r˛Ylm/ D i.lC1/r.r˛Ylm/; ˛ D l;�l � 1: (2.90)

Partial integration allows to shift the nabla operators onto the current densities so
that, eventually, the continuity equations11

hfjr � jnjii D �ikhfj�njii;
hk0jr � jejki D Cikhk0j�ejki

may by used. In this manner we obtain the equivalent expression for the scattering
matrix element (2.85):

hf;k0jH intjiI ki
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rlC1>

Y �lm.Orn/Ylm.Ore/�n.rn/�e.re/jiI k
+
:

(2.91)

In the last term of (2.91) the sum over l runs from zero to infinity; the terms from
one to infinity stem from the transformed electric term (see above), whilst the term
with l D 0 is the monopole term of (2.85). (Note that Y00 D 1=

p
4�). This last

term, summed over all l, is nothing but the instantaneous Coulomb interaction

11The factor k D !, the energy variable, should not be confused with the initial electron’s four-
momentum, see also (2.68).
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Z
d3rn

Z
d3re

1

jrn � rej�n.rn/�e.re/ (2.92)

expanded in a multipole series. Therefore, the first two terms on the right-hand side
of (2.91) must represent the contributions stemming from the exchange of transverse
virtual photons with momentum q0.

To calculate (2.91) in the Born approximation means taking

jki D u.k/eik�re and jk0i D u.k0/eik0�re :

Inserting this into (2.91) one can then perform the integration over the electron
coordinates re and over the (virtual photon) momentum q. These calculations are
somewhat lengthy and tedious. We therefore give only one example that shows the
technique but do not work out all the details. Take for example the instantaneous
interaction term (2.92) and use the relation (cf. exercise 2.4)

1

jrn � rej D
4�

.2�/3

Z
d3q0

eiq0 �.rn�re/

q02
: (2.93)

Integration over re gives, together with (2.86a),

hfI k0j
Z

d3rn

Z
d3re

1

jrn � rej�n.rn/�e.re/jiI ki

D �4�eu�.k0/u.k/
X
l;m

.�/mil
4�

q2
Ylm.Oq/ �

Z
d3rnhfj�n.rn/jiijl .qrn/Yl�m.Orn/;

where q is the three-momentum transfer, q D k� k0 and q D jqj. This last equation
suggests that one define a multipole form factor of the target

M.Cl; mI q/ WD .2l C 1/ŠŠ
ql

Z
d3r�n.r/jl .qr/Ylm.Or/: (2.94)

The factor in front of the integral has been chosen such that in the limit q ! 0,
M.Cl; mI q/ goes over into the static l-pole moment of the target charge density.

The transverse electric and magnetic terms in (2.91) are worked out in a similar
way. In analogy to (2.94) we are led to define

electric multipole form factors

M.El; mI q/ WD .2l C 1/ŠŠ
qlC1.l C 1/

Z
d3r jn.r/ � r � l.jl .qr/Ylm.Or//; (2.95)

and magnetic multipole form factors

M.Ml; mI q/ WD �i
.2l C 1/ŠŠ
ql .l C 1/

Z
d3r jn.r/ � l.jl .qr/Ylm.Or//: (2.96)
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Here again, the factors have been chosen so that for qr 1 the form factors
go over into the corresponding transverse electric and magnetic multipole terms
which describe the corresponding transition induced by photons [DST63] (in the
approximation of long wavelengths).

We are concerned here only with the scattering cross section for unpolarized
electrons and we do not discriminate the spin orientation of the electron in the final
state. Therefore, we have to calculate the incoherent sum of squared matrix elements
over all initial and final spin projections and have to divide by 2.2J C 1/; J being
the nuclear spin, in order to account for the average over spin orientations in the
initial state. The spin summation in the electronic part is done by means of the
trace techniques (see Appendix). This is a straightforward but somewhat lengthy
calculation that we do not wish to carry out here as the details can be found in the
literature. The result is, in the unpolarized case [UEB71] (De Forest et al. 1966),

d�

d�
D
1X
lD0

d�El

d�
C
1X
lD1

d�Ml

d�
; (2.97a)

where

d�El

d�
D ˛2 4�.l C 1/

lŒ.2l C 1/ŠŠ�2
q2l

E2

�
l

l C 1B.Cl I q/VL.	/C B.El I q/VT.	/

�
(2.97b)

d�Ml

d�
D ˛2 4�.l C 1/

lŒ.2l C 1/ŠŠ�2
q2l

E2
B.Ml I q/VT.	/: (2.97c)

Here the functions VL.	/ and VT.	/ stem from the summation over electron spins.
In the high-energy limit .E � me/ they are

VL.	/ ' cos2.	=2/

4 sin4.	=2/
; VT.	/ ' 1C sin2.	=2/

8 sin4.	=2/
: (2.98)

The functions B.�l I q/ are the spin-averaged, squared nuclear matrix elements of
the operators (2.94)–(2.96), viz.

B.�l I q/ D
X
Mf;m

jhJfMfjM.�l;mI q/jJiMiij2; (2.99)

with � � C (longitudinal Coulomb multipoles), � � E (electric multipoles), or
� � M (magnetic multipoles). As before, q is the magnitude of the three-momentum
transfer, while E is the initial electron energy. Strictly speaking, the expressions
(2.97) hold in the centre-of-mass frame. However, they may equally well be applied
in the laboratory system provided the typical recoil terms of order ofE=M , withM
the target mass, can be neglected.

We note that there are no interference terms in the cross sections (2.97). The
magnetic multipoles do not interfere with the electric and longitudinal multipoles
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because they have different parity selection rules. The interference terms between
electric and longitudinal multipoles disappear when the spin average is taken.
Equations (2.97b,c), which hold for elastic as well as for inelastic scattering,
demonstrate quite clearly the important new feature of electron scattering on an
extended target: The scattering cross section depends on the momentum transfer
q which can be chosen arbitrarily large. Thus, looking back at (2.94–2.96), the
electron probes the spatial structure of charge and current densities within the target.
In the case of elastic scattering, these are the charge, the electric and magnetic
current densities of the ground state. In the case of inelastic scattering, we are
probing off-diagonal matrix elements of these operators between the (initial) ground
state and some (final) excited states of the target. Because of the close analogy to the
elastic case one often calls these matrix elements transition charge and transition
current densities.

The selection rules that apply to elastic and inelastic electron scattering derive
from angular momentum conservation and from the behaviour of the transition
operators and of the nuclear states under parity and time reversal.

Let
.Ji; �i/ and .Jf; �f/

be the spins and parities of initial and final nuclear states, respectively, and let us
consider a given multipole operatorM.�l/, (2.94–2.96), taken between these states.
Angular momentum conservation implies that .Ji; Jf; l/ form a triangle jJi�Jfj �
l � Ji C Jf with l � 1 for transverse electric and magnetic multipoles. Parity
conservation implies that �i � �f D .�/l for longitudinal and transverse electric
multipoles, �i ��f D .�/lC1 for transverse magnetic multipoles. Finally, hermiticity
of the electromagnetic current and invariance under time reversal give the additional
relation for the nuclear reduced matrix element

.JijjM.�l/jjJf/ D .�/Ji�JfClC�.JfjjM.�l/jjJi/; (2.100)

with � D 0 for � D CI � D 1 for � D E or M (Donnelly et al. 1975). If the nuclear
states are also eigenstates of isospin with eigenvalues Ii; If, respectively, there is an
additional phase factor .�/Ii�If in (2.100). In this case the reduced matrix element
implies reduction with respect to both angular momentum and isospin (Donnelly
et al. 1975).

For elastic scattering, in particular, Ji and Jf are identical. From (2.100) we then
must have .�/lC� D C1; lC�must be even. Thus, only even longitudinal and only
odd transverse magnetic multipoles contribute to elastic scattering.

As an illustration let us consider some examples:

(i) Elastic scattering on 3He
�
J � D 1

2

C	
and 209Bi

�
J� D 9

2

��
. Only the following

multipoles give nonvanishing contributions

3He W C0,M1,
209Bi W C0,C2,C4,C6,C8;M1,M3,M5,M7,M9.
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(ii) Inelastic scattering from the ground state to the electric dipole giant resonance
in 16O

�
J
�i
i D 0C ! J

�f
f D 1�

�
. In this case only the multipoles E1 and C1

can contribute.

These selection rules for El and Ml transitions are the same as for the
corresponding photonic electric and magnetic multipole transitions. (There are
no Cl transitions in the case of real photons.) There is, however, one essential
difference betweeen photo- and electroexcitation: In the case of photonic processes,
the momentum transfer q is replaced by

k D Ef � Ei
�D .Ef � Ei/=„c;

the photon momentum (or energy). In most practical cases k � r is smaller than 1
for r of the order of, or smaller than, the typical size of the nucleus. Thus, as a
consequence of the behaviour of the spherical Bessel function for small argument
[see (2.12)], a transition of high multipolarity lH is suppressed relative to a transition
of low multipolarity lL by a typical factor

.kr/lH

.2lH C 1/ŠŠ
�

.kr/lL

.2lL C 1/ŠŠ : (2.101)

For example, an E3 � -transition amplitude is suppressed relative to an E1
transition by a factor of the order of 1

35
.kr/2. Thus, the lowest multipolarity which

is compatible with the selection rules will also be the dominant one.
No such ordering of successive multipoles occurs in electron scattering. Indeed,

the modulus of the momentum transfer q can become arbitrarily large and the
quantity q � r can assume any value, greater or smaller than one. So, in general,
high multipoles can be equally important as low multipoles. In the limit of
small momentum transfer only, q ! 0, we recover the ordering of photonic
multipole transitions. Actually, apart from the electonic kinematic factors, El and
Ml transition probabilities in electron scattering must go over, in the limit q ! 0,
into the corresponding � -transition probabilities. This is called the “photon point.”

Examples for the use of the Born approximation in the description of electron
scattering as well as an analysis of the information carried by elastic and inelastic
form factors are postponed until Sects. 2.5.5,6, where we have completed the
discussion of Coulomb distortion, so that we can compare the two methods of
analysis, at the same time. For the moment, it may suffice to stress that, whilst a
� -transition gives us just one moment of the transition charge density or current
density, the matrix elements of the multipole operators (2.94–2.96) which are
relevant for the cross sections for electron scattering (2.97) yield continuous
information on these quantities. As the momentum transfer is varied, these matrix
elements probe the spatial structure of nuclear charge and current density. If it were
possible to measure the cross sections up to very large momentum transfers we
would eventually obtain a complete mapping of �n.r/ and jn.r/.
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In practice, this is not possible, however. The scattering cross section to any
specific excited state falls off faster than q�4 with increasing momentum transfer
and, at some point, becomes unmeasurably small. Furthermore, as the energy
transfer and the momentum transfer increase (into what is called the “deep inelastic”
region), the number of possible final states increases so much that one may not
be able to follow up one particular excitation. One then measures instead fully
inclusive scattering (i.e. summing over all final states), or semi-inclusive scattering
(where some property of the final state is recorded). The cross section for inclusive
scattering quickly starts to dominate over all exclusive reaction channels.

In summary, only limited information on the spatial structure of the target
densities is obtained in practice. At low momentum transfer, one starts probing the
nuclear periphery, i.e. the charge density in the neighbourhood of the nuclear radius
(distance at which the density has dropped to about half its central value). As the
momentum transfer increases, more and more information on the nuclear interior
appears in the elastic scattering cross sections. The densities at the origin always
remain the least well known. Examples of practical analysis are given below.

2.5.4 The Problem of Coulomb Distortion

The Born approximation in the calculation of electron scattering has the great
advantage of being simple and transparent. The form factors are the Fourier
transforms of the nuclear matrix elements of charge and current densities and thus
provide us with a direct mapping of these important quantities. On the other hand,
the Born approximation also has serious deficiencies: It does not take into account
the distortion of the electron waves in the static Coulomb field of the nucleus.
Depending on the accuracy of the available data, the neglect of Coulomb distortion
may be tolerable for light nuclei, Z D 1 to 	 10. However, for larger values of the
nuclear charge these effects quickly become large and must be taken into account.
What are the most prominent effects of Coulomb distortion?

(i) It is not difficult to see that a form factor can have zeroes at physical values
of the momentum transfer q. These diffraction zeroes which reflect specific
properties of the charge and current densities in coordinate space will also
appear in the cross section12. The cross section will then exhibit a typical
diffraction pattern. The diffraction zeroes, strictly speaking, are not realistic
and do not appear in the exact expression for the cross section. This is easy
to understand in a qualitative manner. Suppose we describe the scattering
amplitude in terms of partial waves. Partial waves carry definite angular

12This is true if the cross section depends only on one form factor and, in the case of inelastic
scattering, if retardation effects are neglected. If it contains several form factors which have their
zeroes at different q2 then cross sections do not go to zero. Obviously, this does not invalidate our
discussion.



2.5 �Elastic and Inelastic Electron Scattering from Nuclei 119

momenta. Classically, the angular momentum, with respect to the center of
the nucleus, is proportional to the impact parameter b times the momentum
transfer q. Thus low partial waves penetrate into the nucleus, high partial waves
pass by far outside, whilst some intermediate partial waves graze the nuclear
edge. In the Born approximation the diffraction zeroes come about as a result
of destructive interference of partial wave amplitudes. On the other hand, if
the effect of the static Coulomb field is taken into account, low partial waves
are more distorted than intermediate partial waves, while very high partial
waves will be affected only very little. As a consequence, the interference
of the partial waves of the Born approximation is perturbed. The diffraction
zeroes disappear and are replaced with diffraction minima of the scattering
amplitude of nonvanishing value. Furthermore, the position of these minima
will be displaced from the positions of the Born zeroes.

(ii) A second important effect of Coulomb distortion may also be understood
qualitatively. The static field is attractive. Therefore, the exact partial waves
are attracted towards the nuclear interior. In terms of the Born approximation,
this means, effectively, that at least the low and intermediate partial waves are
scattered at a higher effective energy k. As the previous zero occurs at a fixed
value of the product

q �R ' 2kR sin.	=2/ D const:

(R being the nuclear size parameter), the diffraction minimum is expected at a
somewhat lower value of the scattering angle. As a simple example, consider elastic
scattering from a spinless nucleus whose charge density is taken to be

�.r/ D 3

4�R30
‚.R0 � r/ .homogeneous density/: (2.102)

It is not difficult to calculate the charge form factor from (2.6,2.30), for this density
(see exercise 2.5). One finds

F.q2/ D 3

z
j1.z/ D 3

z3
.sin z � z cos z/; (2.103)

where z D q �R0. The cross section in the Born approximation is given by (2.7), and
depends only on the variable

qR0 ' 2kR0 sin.	=2/:

Thus if we choose the energy such that k1R10 D k2R
2
0 for two different nuclei with

charges Z1; Z2 and radii R10; R
2
0, the quantity .k=Z/2 d�=d� will be the same
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Fig. 2.5 Differential cross section for elastic electron scattering on calcium .Z D 20; A D 40/

and lead .Z D 82; A D 208/. Curve 1: exact result for Ca; curve 2: exact result for Pb;
curve 3: cross section in the first Born approximation for Ca and Pb. The two cross sections for
Ca are multiplied by the factor .82 R0.Pb/=20R0.Ca//2, so that the cross sections in the Born
approximation of Ca and Pb coincide. In all three cases the nuclear charge density is assumed
to be homogeneous, cf. e.g. (2.102). The radius for lead is R0.Pb/ D 4:26 fm, the energy is
E D 300MeV, so that kR0 D 6:48

for the two cases. This is illustrated by Fig. 2.5 which shows the scaled Born cross
sections for Z D 20 (calcium) and Z D 82 (lead), with k R0 D 6:48 (curve
marked 3). The spherical Bessel function of order 1 has zeroes at z1 D 4:493;

z2 D 7:725; z3 D 10:904, etc.,13 that is, the form factor and the Born cross section
vanish at 	1 D 40:6ı; 	2 D 73:2ı; 	3 D 114:7ı; : : :. For comparison, the figure
also-shows the cross sections calculated by means of a full partial wave analysis.
(The cross section for calcium is multiplied by the same scale factor as in the Born
approximation.) We note that, even with the cross section on calcium being rescaled,
the exact cross sections do not coincide.

The zeroes are replaced with minima whose position is shifted towards lower
scattering angles. The shift is larger for Z D 82 than for Z D 20.

One may ask whether these strong distortion effects render useless the method of
Born approximation in electron scattering. Fortunately, this is not so. As will be seen
below, the physical information contained in specific features of the cross section
is the same, independently of whether the Born approximation or the more exact
partial wave analysis is used. Coulomb distortion is a technical complication which
does not obscure the connection between properties of the nuclear densities and the
cross sections. The technical and conceptual simplicity of the Born approximation
can be made use of in many systematic investigations. Only when comparison with
the data is made must the distortion be taken into account.

13See Table 10.6 of [ABS65].
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2.5.5 Partial Wave Analysis for Elastic Scattering

On our way to constructing the partial wave decomposition of electron scattering
amplitudes we need central field solutions of the Dirac equation carrying definite
angular momentum. According to the formulate of App. E these have the form

 �m.r; 	; '/ D
�
g�.r/'�m

if�.r/'��m

�
; (2.104)

where � is Dirac’s quantum number. The radial wave functions g� and f� obey the
system of differential equations

df�
dr
D � � 1

r
f� � .E � V.r/�m/g�;

dg�
dr
D �� C 1

r
g� C .E � V.r/Cm/f�: (2.105)

In the case of electron scattering at high energies we can neglect the mass term in
(2.105). In this case we have the following symmetry relations

g��.r/ ' f�.r/; f��.r/ ' �g�.r/; (2.106)

which can be read off from (2.105). Furthermore, it is appropriate to use the high-
energy representation (1.187) of the Dirac equation. Using the transformation matrix
S , p. 25, the central field solutions (2.104) now appear in the form

 �m D
�

�m
�m

�
D 1p

2

�
g�'�m C if�'��m
g�'�m � if�'��m

�
: (2.107)

For vanishing mass the symmetry relations (2.106) apply and thus

 ��m D � ip
2

�
g�'�m C if�'��m
�g�'�m C if�'��m

�
:

Furthermore, we know from (2.17,2.20) in Sect. 2.2, that the two asymptotic helicity
states have the same scattering amplitudes. Thus, it is sufficient to study two-
component spinors 
�m [e.g. upper two components of (2.107)] for positive �.
Replacing � > 0 by j D ��1=2 and introducingFj .r/ D rf �.r/; Gj .r/ D rg�.r/,
equations (2.105) (in the limit m D 0) transform into

dFj
dr
D j C 1=2

r
Fj � .E � V.r//Gj ;

dGj
dr
D �j C 1=2

r
Gj C .E � V.r//Fj :

(2.1050)
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As an example consider the case V.r/ � 0. From (2.1050) one derives

d2Gj
dr2

C
�
E2 � �.� C 1/

r2

�
Gj D 0 .� D j C 1=2/;

whose solutions can be expressed in terms of the spherical Bessel functions,

Gj D Nrj�.kr/ D NrjjC1=2.kr/

Fj is obtained from the second equation (2.1050) and the well-known relation

j 0l .z/ D
l

z
jl � jlC1 D � l C 1

z
jl C jl�1:

One finds

Fj .r/ D Nrj��1.kr/ D Nrjj�1=2.kr/;

so that, with � D j C 1=2


.V�0/�m D Np
2
fjjC1=2.kr/'�m C ijj�1=2.kr/'��mg: (2.108)

In deriving the partial wave decomposition of the scattering amplitude we
assume, at first, that the potential V.r/ decreases at infinity faster than 1=r ,
i.e. limr!1 rV.r/ D 0. (See discussion in Sect. 2.2) The modifications due
to the long range of the Coulomb potential are considered at the end of this
section.

Following (2.17) we require the solutions to have the following asymptotic form:


mD1=2 	
�
1

0

�
eikz C f .	; '/

r

�
e�i'=2 cos.	=2/
ei'=2 sin.	=2/

�
eikr: (2.109)

For the solution at all values of x we write the series expansion


mD1=2 D
1X

jD1=2
aj1=2
j1=2

in terms of the angular momentum eigenstates (2.107).
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The incoming part of 
, i.e. the first term of (2.109), is readily expanded in terms
of partial waves


in �
�
1

0

�
eikz D

�
1

0

� 1X
lD0

il jl .kr/
p
.2l C 1/4�Yl0

D p4�
1X

jD1=2

jC1=2X
lDj�1=2

il
p
2l C 1jl .kr/

�
l0; 1

2
1
2
jj 1

2

�
'jl1=2: (2.110)

Here we have expressed the product of the spin up state
�
1
0

�
and of the eigenstate Yl0

of orbital angular momentum in terms of states in which l and spin 1/2 are coupled
to total angular momentum j D l ˙ 1=2. Remembering the definition of the Dirac
quantum number �, we have for positive �

'�m � 'jDl�1=2;lD�;m

'��m � 'jDNlC1=2;NlD��1;m
.� > 0/

This allows us to rewrite (2.110) by inserting the explicit values of the Clebsch–
Gordan coefficients, as given in Table 2.2.

One finds


in D
1X

jD1=2
ij�3=2

q
4�
�
j C 1

2

� fjjC1=2 .kr/ '� 1=2 C ijj�1=2 .kr/ '�� 1=2g:

(2.1100)
[The reader may check that this is the same as the free solution (2.108).] For the
purpose of reference we note here the well-known asymptotic behaviour of spherical
Bessel functions

jl .z/ 	
z!1

1

z
sin .z � l�=2/: (2.111)

Indeed, if we make the following ansatz for the full solution:

Table 2.2 Explicit expressions for Clebsch–Gordan coefficients
�
lml D m�msI 12 msjjm

�
j ms D C 1

2
� 1
2

l C 1
2

 
l C 1

2
Cm

2l C 1
!1=2  

l C 1
2
�m

2l C l
!1=2

l � 1
2

�
 
l C 1

2
�m

2l C 1
!1=2  

l C 1
2
Cm

2l C 1
!1=2
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mD1=2 D 1

kr

1X
jD1=2

p
4�.j C 1=2/ ij�3=2 ei�j f Gj '� 1=2 C iFj '��1=2g:

(2.112)
the asymptotic behaviour of the radial functions can be taken to be

Gj 	 sin

�
kr � j C 1=2

2
� C �j

�
; (2.113a)

Fj 	 cos

�
kr � j C 1=2

2
� C �j

�
: (2.113b)

The asymptotic ansatz (2.113) makes sure that the incoming wave of 
, (2.112),
i.e. the piece proportional to e�ikr=r , is indeed equal to the incoming part of 
in,
(2.1100). �j is the phase shift caused by the potential V.r/ as compared to the force-
free situation where V � 0. In order to identify the scattering amplitude f .	; '/we
must isolate the outgoing spherical wave eikr=r in the asymptotic expansion of 
,
(2.112). We find


jout 	 � eikr

2ikr

p
4�
X
j

p
j C 1=2 e2i�j f'�1=2 � '��1=2g:

The asymptotic piece of 
in, (2.1100), which contains the outgoing spherical wave
is determined in exactly the same way. Obviously, it is of the same form, but with
�j D 0. Upon comparison of the difference .
 � 
in/outg:spher:wave to the asymptotic
form (2.109) we have

f .	; '/

�
e�i'=2 cos.	=2/
ei'=2 sin.	=2/

�
D � 1

2ik

Xp
4�.j C 1=2/ .e2i�j�1/ f'�1=2�'��1=2g:

(2.114)
By means of the Clebsch–Gordan coefficients of Table 2.2 we have, with l D � D
j C 1

2
,

f'�1=2 � '��1=2g D �
0
@
s

l

2l C 1 Yl0 C
r

l

2l � 1 Yl�1; 0
1
A�1

0

�

C
0
@
s
l C 1
2l C 1 Yl1 �

r
l � 1
2l � 1 Yl�1; 1

1
A �

0

1

�
:

Using the definition

Ylm D .�/m
s
.2l C 1/.l � 1/Š
4�.l C 1/Š pml ei' (2.115)
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and two recurrence relations for the associated Legendre functions

Pm
l � xPm

l�1 � .l Cm � 1/
p
1 � x2 Pm�1

l�1 D 0;
xPm

l � .l �mC 1/
p
1 � x2 Pm�1

l � Pm
l�1 D 0;

.x D cos 	/

from which we derive

P1
l � P1

l�1 D l
p
1 � x2
1C x .Pl C Pl�1/ D l tg.	 /2) (Pl C Pl�1/;

one finds

f'�1=2 � '��1=2g D �
r

l

4�
.Pl C Pl�1/

��
1

0

�
C ei' tg.	=2/

�
0

1

��

D �
r

1

4�

ei'=2

cos 	=2
. Pl C Pl�1/

�
e�i'=2 cos.	=2/
ei'=2 sin.	=2/

�
:

Comparing this to (2.114) and setting l D j C1=2 we obtain at once the final result

f .	; '/ D 1

2ik

ei'=2

cos.	=2/

1X
jD1=2

.j C 1=2/ .e2i�j � 1/ .PjC1=2 C Pj�1=2/:

(2.116)
The phase factor ei'=2 is the same as the one obtained in the Born approximation,
(2.25). As the potential V.r/ and hence the scattering process are axially symmetric
about the 3-axis we may set ' D 0 without loss of generality.

Extension to the Coulomb potential. For potentials which do not decrease faster
than 1=r , the asymptotic form (2.109) is not correct. Very much like in the analogous
nonrelativistic situation the phase factor eikr is modified by an additional phase
factor which depends on ln.2kr/, so that in (2.109) we should make the replacement

eikr ! ei.krCZ˛ ln.2kr//:

In the expression (2.116) the phases �j , so far, were the scattering phases due to the
potential relative to the force-free case. In the case of a potential decreasing like 1=r
a different procedure is indicated: The electrostatic potential created by a nucleus
with spherically symmetric charge density �.r/ is, cf. (1.186),

V.r/ D �4�Ze2
�
1

r

Z r

0

�.r 0/r 02dr 0 C
Z 1
r

�.r 0/r 0dr 0
�
: (2.117)
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As �.r/ vanishes (or becomes negligibly small) beyond some distance R of the
order of the nuclear radius, V.r/ approaches the pure 1=r potential

VC .r/ D �Ze2=r (2.118)

for r > R. Like in the nonrelativistic case, the radial Dirac equations (2.105) can
be solved analytically for the case of the potential (2.118) of point-like charges.
In particular, the scattering phases �C

j of this potential can be given explicitly and
the scattering amplitude fC be computed from (2.116). Therefore, the scattering
problem for the true potential (2.117) is solved most economically by computing
the additional phase shift due to V.r/

ıj WD �j � �C
j ; (2.119)

where �j is the full phase shift of the potential V.r/. The construction of the
continuum solutions gC

� and f C
k for the potential VC is straightforward but tedious

and we do not work them out here14. The solutions which are regular at the origin
have the asymptotic behaviour (in the mass zero limit),

rgC
� 	 sin

�
krC y ln.2kr/C ı0�

�
;

rf C
� 	 cos

�
krC y ln.2kr/C ı0�

�
;

(2.120)

where
ı0� � N�� � �� � .�� � 1/�=2; y D Z˛; (2.121)

with
�� D

p
�2 � .Z˛/2;

N�� .m D 0/ D �1
2

arctg
y

��
� �
2

1C sign�

2
;

�� D arg�.�� C iy/I
comparing this to the general form (2.113) we see that the Coulomb phase is
given by

�C
k D N�� � �� C .l � �� C 1/ �=2: (2.122)

(up to the logarithmic term Z˛ In 2kr), or

�C
j D N�j � �j C

�
j C 3

2
� �j

�
�=2: (2.1220)

In (2.1220) we have written the index j , not � since we need to consider only
positive �, here; equation (2.122) holds for all �, positive and negative. For the sake
of simplicity, we have neglected the mass of the electron. If one wishes to retain the

14See e.g. [ROS 61].
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mass terms then y D Z˛ E=� and N�� of (2.121) is replaced with15

N��.m/ D �1
2

arctg
y
�
1C ��

�
m
E

�
�� � 1

�
y2 m

E

� �
2

1C sign �

2
: (2.123)

All other formulae (2.120–2.122) remain unchanged provided k is now understood
to be the wave number k D pE2 D m2 � �C

j can therefore be obtained analytically
form (2.122). The additional phase shifts ıj , (2.119), which are caused by the
difference of the true potential (2.117) and the pointlike potential (2.118) may be
obtained as follows: One calculates solutions of the Dirac equations (2.1050), for a
given energy and for V.r/ as obtained from (2.117), which are regular at the origin.
As V.r/ goes over into VC.r/ at some finite radius R outside the nuclear charge
radius, we need the full solution (f, g) only in the inner region 0 � r � R. In the
outer region r � R the exact solution is a superposition of regular (R) and irregular
(I) solutions of (2.1050) with VC.r/, viz.

f� D af C;R
� C bf C;I

� ;

g� D agC;R
� C bgC;I

� : (2.124)

The phase differences ıj may be obtained by direct comparison of the exact
solution to the regular solutions

�
f C;R; gC;R

�
at some r > R at which an asymptotic

expansion of these functions is meaningful. In this case, however, rf C:R and rgC:R

must be expanded beyond the form (2.120), up to, say, terms of order 1=r2.
Alternatively, the phases may be obtained from the asymptotic form of (2.124),
expressing them as functions of b/a and �C

j (Ravenhall et al. 1954).
As an example, Table 2.3 shows the Coulomb phases �C

j for VC with Z D 82, as
well as the phase shifts ıj for the Fermi charge density (2.125) for lead, Z D 82,
c D 6:6475; t D 2:30. The electron energy is k D 300MeV. At this energy the
nine lowest partial waves are modified appreciably by the deviation of the actual
charge density from the point-like charge.

2.5.6 Practical Analysis of Scattering Data
and Information Content of Partial Waves

In the early stages of this kind of nuclear physics it was customary to analyze elastic
scattering data in terms of specific functional forms for the nuclear charge density.
An ansatz that was particularly popular is the so-called Fermi distribution,

�.r/ D N 1

1C exp Œ.r � c/=z�
; (2.125)

15Arctg is defined such that it goes to zero as the argument goes to zero.
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Table 2.3 Coulomb phases and phase shifts, equation (2.119) for electron scattering on 208
82 Pb.

The charge density is described by (2.125) with c D 6:6475 fm; t D 2:30 fm

j �Cj ıj
1

2
0:4441 �1:4779

3

2
�0:2401 �0:8046

5

2
�0:5491 �0:5137

7

2
�0:7512 �0:3367

9

2
�0:9017 �0:2181

11

2
�1:0218 �0:1361

13

2
�1:1217 �0:0801

15

2
�1:2072 �0:0434

17

2
�1:2820 �0:0214

19

2
�1:3485 �0:0095

21

2
�1:4083 �0:0039

where the normalization factor

N D 3

4�c3

"
1C

��z

c

	2 � 6 � z

c

	3
e�c=z

1X
nD1

.�/n
n3

e�nc=z

#�1

' 3

4�c3
1

1C .�z=c/2
(2.126)

is chosen such as to normalize �.r/ to one, cf. (2.2). The parameter c is called
the radius of half-density because �.r D c/ D 0:5 �.r D 0/. The parameter a
is a measure for the rate at which the density falls off in the nuclear surface. A
good measure for this fall-off is the so-called surface thickness t which is defined as
follows: Let �.r/ be a function which decreases monotonically for increasing r . Let
r.90/ and r.10/ be the radii at which the density is 90% and 10% of its value at r D 0,
respectively. Then

t WD r.10/ � r.90/:

In the case of the Fermi distribution (2.125) one has the relation t D 4z ln 3 '
4:394z. The shape of the Fermi density is illustrated by Fig. 6.7, curve marked �0.

As a matter of fact, the Fermi density (2.125) gives a surprisingly good
description of charge and matter densities in practically all spherical nuclei except
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the very lightest ones. It depends on two parameters, c and t , which have the typical
values

c ' 1:1 �Z1=3 fm, t ' 2:2–2:5 fm. (2.127)

There are, of course, deviations from this simple pattern, especially at, and close
to, magic shells but these deviations are never very large. (We shall come back to
this, in connection with muonic atoms, below.) Even though a functional form such
as the Fermi function (2.125) may be quite useful as a rough parametrization, it is
not adequate for the analysis of precise measurements of the elastic cross section
extending over many orders of magnitude, for several reasons: Assuming a specific
functional form implies a prejudice about possible shapes of the charge density and,
therefore, cannot be the basis of a model-free analysis of the data. Furthermore,
such an ansatz contains a finite number of parameters [two in the case of the Fermi
distribution (2.125)] which are then determined by a best fit to the data. What if
the data are so numerous and so precise that they contain more information on
the charge distribution than what can be described by these parameters? Finally, a
specific function such as (2.125) does not reflect the fact that different parts of �.r/
have different weights in the angular dependence of cross sections. In summary, one
would prefer a model independent way of analysis whose final result would be an
empirical density function �.r/, along with an error band that depends on r and
reflects the type of experimental input as well as its error bars.

Such methods of analysis which do not rely on specific model densities have
been proposed and have been applied successfully to high-precision experiments
(Lenz 1969, Friedrich et al. 1972, Sick 1974, Friar et al. 1973, 1975). Figures 2.6
and 2.7 show typical examples of nuclear charge densities as determined from
experiment. Instead of describing these specific methods here we prefer to discuss,
in a qualitative manner, the physical information carried by the various low,
intermediate and high partial waves.
Sensitivity of scattering phase to details of charge density. Obviously, the nature of
charge density moments and the number of them that can be obtained from elastic
scattering, depend on:

(i) the primary energy of the electron,
(ii) the range of momentum transfers, and

(iii) the experimental error bars of the differential cross section.

The essential features of such an analysis can be made transparent by studying
integral representations for the scattering phases. To this end, let us consider two
different charge densities �.1/.r/; �.2/.r/ which are both normalized to one, as
before, but which differ from each other over the domain of the nucleus. Both are
assumed to go quickly to zero for r & R. The corresponding potentials V .1/.r/ and
V .2/.r/, calculated from (2.117), then differ only for r . R and both go over into
VC.r/ outside the nucleus.

Let F .1/
j ; G

.1/
j and F .2/

j ; G
.2/
j be the solutions of (2.1050) for V .1/ and V .2/,

respectively, and let ı.1/j and ı.2/j be the corresponding phase shifts as defined in
(2.119). From (2.1050) and from the properties of the generalized Wronskian (see
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Fig. 2.6 Charge density distributions of doubly closed-shell nuclei. Thickness of solid lines
corresponds to experimental uncertainties. Dashed lines are calculated densities. Taken from Frois
and Papanicolas (1987)

Fig. 2.7 Difference of charges densities of 48Ca and 40Ca. The shaded band is the result of a quasi
model-independent determination from elastic electron scattering; its width reflects experimental
errors of the cross sections as well as the lack of knowledge of their behaviour at large momentum
transfers. Figure taken from Lect. Notes in Phys. 108 (1979), p. 58 (Proceedings of Conf. on
Nuclear Physics with Electromagnetic Interactions, Mainz 1979)

exercise 2.6),

W.r/ D F .1/
j .r/G

.2/
j .r/ �G.1/

j .r/F
.2/
j .r/; (2.128)
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one derives the relation

sin
�
ı
.1/
j � ı.2/j

	
D �

Z 1
0

dr.V .1/ � V .2//
�
F
.1/
j F

.2/
j CG.1/

j G
.2/
j

	
: (2.129)

The potentials are related to the charge densities through Poisson’s equation.
Inserting this into (2.129) and integrating by parts twice yields the final result

sin
�
ı
.1/
j � ı.2/j

	
D 4�

Z 1
0

r2dr.�.1/.r/� �.2/.r//j .r/; (2.130)

where j stands for

j .r/ D
Z r

0

dr 0

r
02

Z r 0

0

dr
00

�
F
.1/
j F

.2/
j CG.1/

j G
.2/
j

	
: (2.131)

What does (2.130) tell us about the sensitivity of the phase shifts to the charge
density? To answer this question it is useful to consider high, intermediate, and low
partial waves separately:

(a) High partial waves. Classically speaking, these partial waves correspond to
electron trajectories which pass by, far outside, and do not penetrate the
nucleus. The phases �.i/j coincide practically with the phases �C

j of a point-like

source. As �.1/ ' �.2/ these phases do not contain information on the nuclear
charge density other than its total charge. (In the example of Table 2.3:
j & 19=2).

(b) Intermediate partial waves. These partial waves start penetrating the nucleus
somewhat. However, the centrifugal potential terms in (2.1050) are still predom-
inant so that the radial functions can be approximated, over the entire nuclear
domain, by their power behaviour at the origin

F
.i/
j 	 rjC1=2; G

.i/
j 	 rjC3=2; (2.132)

Inserting this into (2.131) we find that j .r/ may be approximated by a simple
power behaviour too, j 	 r2jC1. Equation (2.130) then becomes

sin
�
ı
.1/
j � ı.2/j

	
	 4�

Z 1
0

r2dr.�.1/ � �.2//r2jC1: (2.1300)

Thus, intermediate partial waves are determined by even moments of the
charge density. Obviously, these depend primarily on the density at the nuclear
surface.

(c) Low partial waves. The low partial waves, finally, for which the approximation
(2.132) becomes invalid, contain information about the nuclear interior. If these
partial waves occur at all, i.e. if they are really distinct from the class b (in fact,
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this is only the case if the energy is high enough), then they cannot be expressed
in terms of simple moments

Z 1
0

r2dr �.r/r2jC1

and a full partial wave analysis must be carried out.

Summarizing, we may say that the type and quality of information that is
obtained from a partial wave analysis of electron scattering is very similar to
the information content of the form factor in the Born approximation. Therefore,
Coulomb distortion, even though important on a quantitative level, is not much more
than a technical complication that does not alter the physics of the process.

2.5.7 Miscellaneous Comments

We close this somewhat lengthy discussion of electron scattering with a few
comments and supplementary remarks, as well as some suggestions for further
reading. The first three supplements concern elastic scattering, the last one concerns
inelastic scattering.

Dispersion corrections to elastic scattering. In our treatment of elastic scattering
we have assumed the nucleus to be an inert system of stationary charge and current
densities. In other terms, we have calculated the fields created by the nuclear ground
state at the site of the electron and we have calculated the cross sections from a
one-particle wave equation for the electron, in the external field approximation.
In reality, the nucleus is a dynamical system and has its own internal degrees of
freedom which manifest themselves in its rich excitation spectra. These internal
degrees of freedom may play a role in elastic scattering if second-order processes
of the type sketched symbolically in Fig. 2.8 become important: In a first step the
electron excites the nuclear ground state A to some excited intermediate state A�
which deexcites again to the ground state in a second scattering process.

These dispersion corrections are notoriously difficult to calculate in a reliable
manner. Fortunately, they are not large and can be neglected in most practical
situations.

Fig. 2.8 So-called
disperision corrections to
electron scattering: a two-step
process in which the nucleus
is excited to a intermediate
state

e e’

A A

A*
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Elastic scattering on strongly deformed nuclei. So far we have considered only
spherically symmetric nuclear charge densities �.r/. This situation allowed us to
separate angular and radial motion of the electron. Obviously, this situation applies
only for nuclei with spin zero, J D 0. For nuclei with J D 1=2 we have
formally the same situation as for the nucleon: Here there is charge scattering from
a spherically symmetric charge density as before, plus scattering on a magnetic
moment density (M1 scattering). For nuclei with J � 1 the nuclear charge density
also has nonvanishing higher (even) moments, viz.

�.r/ D
*

JM D J
ˇ̌̌
ˇ̌
ZX
iD1

ı.r� ri /

ˇ̌̌
ˇ̌ J M D J

+

D �0.r/C
ŒJ �X
�D1

r
4� C 1
16�

�2�.r/Y2�;0.	/: (2.133)

In the case of strongly deformed nuclei the quadrupole term will, in general, be
predominant, i.e.

�.r/ ' �0.r/C
r

5

16�
�2.r/Y20.	/; (2.134)

where �2.r/ denotes the radial quadrupole density. The factors in (2.133) have been
chosen such that the nuclear spectroscopic quadrupole moment, by its traditional
definition, is given by the second moment of �2.r/

Qs D
Z 1
0

Œ�0.r/r
2�r2dr: (2.135)

While the calculation of the scattering cross section in the Born approximation is
straightforward (see above), the corresponding partial wave analysis is technically
more complicated, but still feasible. There may be a difficulty on the experimental
side; Such strongly deformed nuclei have rotational excitations of rather low energy,
50–200 keV. It then depends on the energy resolution of a given experimental set
up whether or not the truly elastic scattering from the nuclear ground state can be
distinguished from the excitation cross sections for these low-lying rotator states.
Thus, elastic scattering of electrons may not be the ideal tool for investigating the
charge density of deformed nuclei. We will see below that in this case muonic atoms
offer a more direct approach to this quantity.

Summation of partial wave amplitudes. There is a technical difficulty in summing
the partial wave series (2.116): As it stands this series converges very slowly. The
origin of this problem is not difficult to understand. For this purpose let us consider
first the scattering on a point charge in the nonrelativistic case. The potential
VC.r/ of a point charge introduces a 1=r singularity into the Schrödinger equation.
The corresponding scattering amplitude, which can be derived in closed form, is
proportional to 1= sin2.	=2/ and hence becomes singular at 	 D 0. This singularity
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can be “smoothed” and the convergence of the partial wave series accelerated by
means of the following procedure. Suppose we wish to sum an expression of the
form (Ravenhall et al. 1954).

F.	/ D
1X
lD0

alPl .cos 	/:

If this series converges only very slowly in practice, one may replace it by a so-
called reduced series which is defined by

.1 � cos 	/mF.	/ D
1X
lD0

c
.m/

l Pl .cos 	/;

and where m is some positive integer. Using standard recurrence formulae for
Legendre polynomials one derives the recurrence relations for the coefficients c.m/l

c
.mC1/
l D c.m/l �

l

2l � 1c
.m/

l�1 �
l C 1
2l C 3c

.m/

lC1;

c
.0/

l D al :

The modified series which is obtained after a few iterations converges more rapidly
than the original series.

Inelastic scattering and partial wave analysis. The problem of Coulomb distor-
tion in inelastic electron scattering is essentially the same as in elastic scattering.
For light nuclei the conceptually simple method of Born approximation may still be
adequate (depending, again, on the accuracy of the data). For medium and heavy
nuclei it is not. The inelastic form factors of the Born approximation, in general,
have zeroes in the physical domain of momentum transfers. Therefore, the cross
section, if it is dominated by one form factor, again exhibits the typical diffraction
pattern of the Born approximation. The diffraction zeroes are replaced with minima
and are shifted from their initial position if Coulomb distortion is taken into account.
Also the absolute values of the cross section can be widely different from what they
are in the Born approximation, depending on the value of the scattering angle.

The partial wave analysis of inelastic scattering is conceptually similar to the
case of elastic scattering but technically much more involved. The first such analyses
were carried out in the mid-nineteen-sixties16. (Griffy et al. 1963, Scheck 1966). A
good starting point is the interaction term in the form of (2.85). It is appropriate to
expand the electron wave functions in terms of the central field solutions (2.104).
The initial state jki is determined by the requirement that in the asymptotic
domain it contain the plane wave and incoming spherical waves. Similarly, the

16The much simpler case of monopole excitations was treated in Alder et al. (1963).
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final state is the analogous superposition of plane wave and outgoing spherical
wave. Inserting these (properly normalized) functions into the matrix element (2.85)
yields a multiple sum of matrix elements of the interaction between states of good
angular momentum and parity. This fact allows one to make use of the selection
rules due to angular momentum and parity conservation and to perform all angular
and spin integrals by means of standard angular momentum algebra. This leaves
one with a sum over radial integrals involving the radial functions fk .r/; gk.r/
and some nuclear radial quantity. We know from the analysis of elastic scattering
that for E ' 300MeV about the nine lowest partial waves penetrate into the
nucleus. Obviously, these are the ones which are sensitive to details of the transition
charge and current densities. Here, the radial integrals entering the expansion of the
scattering amplitude are obtained by numerical integration. For the higher partial
waves the eigenfunctions of the point charge may be used and, if one is lucky, the
radial integrals can be done analytically (Reynolds et al. 1964). The complexity
of such calculations lies in the high number of partial waves which contribute
and in the complicated pattern of terms allowed by the selection rules of angular
momentum.

2.6 Muonic Atoms – Introduction

Like any other long-lived negatively charged particle the muon can be captured
in the static Coulomb field of a nucleus and thus can form a hydrogen-like
exotic atom. This system has peculiar and unique properties, regarding both its
spatial dimensions and its dynamical time structure, which make it an important
tool both in exploring electroweak interactions and in probing properties of the
nucleus.

This section summarizes first the properties of the muon which are relevant for
the subsequent sections of this chapter. We then give a first qualitative picture of
the properties of the muonic atoms and their applications. The section closes with a
derivation of bound central field solutions in static Coulomb potentials.

Specific and quantitative applications of muonic atoms to quantum electrody-
namics and to the investigation of nuclear properties are treated in Sects. 2.7 and 2.8,
respectively.

2.6.1 Properties of Free Muons

The muon has all properties of a “heavy electron”. It appears in two charge states
�� and �C, which are antiparticles of each other. Its charge is equal to the charge
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of the electron17; its spin is 1/2; it carries lepton number (see Chap. 3). Its mass is
about 207 times larger than the electron mass. More precisely

m�=me D 206:768259.62/: (2.136)

This number is obtained by combining the measured values of

(i) the ratio of magnetic moments ��=�p of muon and proton;
(ii) the hyperfine splitting �E D E.F D 1/�E.F D 0/ of muonium;

(iii) the anomaly of the g-factor of the muon, a� D 1
2
.jg�j � 2/.18

[The same combination of data gives very precise information on the equality of the
charges of the muon and the electron].

The mass value is known to better than 1 ppm [RPP94]:

m� D 105:658367.4/MeV=c2: (2.137)

The fact that �� carries the charge Q D �jej means that it has exactly the same
coupling to the electromagnetic field as the electron. In Chap. 3 we shall see that also
the weak interactions of muons are exactly the same as those of electrons. Actually,
the same statements seem to apply also to the �-lepton with mass

m� D 1776:82.16/MeV=c2: (2.138)

In this sense the interactions of leptons are universal: The structure of the coupling
terms to the Maxwell field and to the bosons of weak interactions are identically
the same for the three kinds of “electrons” e�; ��; ��. Their coupling strengths
(i.e. their electric and weak “charges”, respectively) to photons and to weak bosons
respectively are the same.

All quantitative differences in physical properties of electrons, muons and
�-leptons (such as anomaly of magnetic dipole moments, scattering cross sections,
decay amplitudes) will be due solely to the difference in their masses. This can be
understood in a qualitative manner as follows. A specific physical situation is always
characterized by a typical spatial dimension (examples: Bohr radius aB D „2=e2m,
Compton wavelength � D „=mc) and typical momenta (examples: momentum in
a bound atomic state, momentum transfer in a scattering amplitude) which yield
the bulk of the quantity that one wishes to calculate. However, the scale of these
characteristic dimensions is set by the mass of the particle or, in some cases, by the
ratio or difference of masses of different leptons (examples: vacuum polarization
due to virtual electron-positron pairs in electronic and in muonic atoms, g-factor
anomaly for electrons and for muons). We shall encounter many examples below, in
this chapter and in Chap. 3.

17This is known to at least 2 ppm. Cf. the summary by H. Primakoff in “Muon physics” [MUP77].
18See e.g. Scheck (1978).
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The magnetic moment of the muon relative to the magnetic moment of the proton
is known very precisely from measurements in muonium:

j��j=�p D 3:18334547.47/ (2.139)

It is practically a normal Dirac moment,

�� D 1

2
g�

Q

2m�

.Q D �jej/; (2.140)

with jg�j ' 2, the deviation of jg�j from 2, the so-called anomaly a�, being
predictable on the basis of higher order radiative corrections. This anomaly is
defined as a� D 1

2

�jg�j � 2�. The measured value of this anomaly is (Bailey et al.
1979).

a� D 116592089.54/� 10�11 (2.141)

In the same experiment the equality of g�� and �g�C which is predicted by the
invariance of the muon’s interactions under the combined operation CPT (charge
conjugation C , space reflection P , and time reversal T ) has been tested with the
result

gC � g�
gaverage

D �0:11˙ 0:12 (2.1410)

In contrast to the electron, the muon is unstable. Its primary decay mode is

�� ! e� N�e�� .�C ! eC�e N��/I

its lifetime is
�� D 2:197034.21/� 10�6s (2.142)

(see Chap. 3). This time is very long compared to typical time scales of electromag-
netic processes of muons in a target.

2.6.2 Muonic Atoms, Qualitative Discussion

As the Pauli exclusion principle is not effective between muons and electrons, the
trapped muon runs through its Bohr cascade towards the 1s-state, irrespective of the
presence of the electronic shells of the host atom. Before we turn to the quantitative
analysis of muonic atoms let us first discuss their characteristic spatial dimensions,
energy scales and time scales.

Energy scales and spatial dimensions. Since the Bohr radius aB D 1=Z˛m is
inversely proportional to the mass of the charged lepton (more precisely: the reduced
mass of the lepton-nucleus system) the orbits of a muonic atom are smaller by a
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factor of about 207 [see(2.136)] than the orbits of the electrons of the host atom. If
the principal quantum number is smaller than n0, where

n20aB.m�/ . aB.me/;

the muonic orbits .n; l D n � 1/ lie inside the electronic 1s-orbit. This happens for

n . n0 '
q
m�=me ' 14:

Therefore, the states with n . n0 of the muonic atom are essentially hydrogen-like
up to screening effects by the electronic shells of the host atom. Screening will be
the smaller, the lower the orbit. Thus, for a first qualitative orientation we may use
the equations for the nonrelativistic hydrogen atom. The binding energy of a bound
state with principal quantum number n is

E.n:r:/
n D �m�.Z˛/

2=2n2: (2.143)

The first relativistic correction to this is of order .Z˛/4 but its magnitude relative
to (2.143) is independent of the mass. Thus, the relative importance of relativistic
effects in muonic atoms is approximately the same as in electronic atoms. The
relevant parameter is Z˛. For light nuclei these effects will be small, for heavy
nuclei such as lead .Z D 82/ where Z˛ ' 0:6 they will be important. For most
estimates and qualitative considerations the formulae of the hydrogen atom will be
adequate. The wave functions are [see (6.52)]:

 nlm.r/ D 1

r
ynl.r/Ylm.	; '/; (2.144)

ynl.r/ D
s

.l C n/Š
aB.n� l � 1/Š

1

n.2l C 1/Š z
lC1e�z=2

� 1F1.�nC l � 1I 2l C 2I z/; (2.145)

where
aB D 1=Z˛�; (2.145a)

� being the reduced mass, and z is the dimensionless variable

z D 2

naB
r: (2.145b)

The symbol 1F1 denotes the confluent hypergeometric function [ABS65].
Let us calculate the Bohr radius for a light, two medium weight and a heavy

nucleus, and let us compare it to the nuclear r.m.s. radius:
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Nucleus hr2i1=2Œfm� aB.m/Œfm�
4He.Z D 2/ 3:1 128
16O.Z D 8/ 2:6 32
40Ca.Z D 20/ 3:5 12:8
208Pb.Z D 82/ 5:5 3:12

We see from this comparison that from about Z D 20 upwards the low muonic
orbits start penetrating into the nucleus more and more. Accordingly, the low
muonic states must become more and more sensitive, as Z increases, to the
finite size of the nucleus and, in particular, to the deviation of the nuclear charge
distribution from a point charge. Of course, for largeZ the estimates for the binding
energies and the radii of low-lying orbits given above become unrealistic. Let us
illustrate this by comparing the 2p–1s transition energy in lead, for a point charge
and for a realistic charge distribution19:

.E2p1=2 � E1s/ point charge
.ZD82/

D .�5:38C 20:99/MeV D 15:61MeV,

.E2p1=2 � E1s/finite size D .�4:78C 10:52/MeV D 5:74MeV.

We note that the 1s state of this heavy atom shows a much weaker binding than in
the pure 1=r potential. The 2p state is also shifted upwards, but by a much smaller
proportion than the 1s state. At the same time the radial wave functions are also
affected by the finite extension of the nuclear charge density. As the states are less
bound than for a point-like charge, the radial functions are driven towards larger
values of r . Nevertheless, it is still true that the muon in a 1s state of a heavy atom
penetrates strongly into the nuclear interior.

Time scales in muonic atoms. The fate of the muon between the moment of its
creation, say, from pion decay,

�� ! �� C N�� (2.146)

in a continuum state until it is trapped in some high-lying Bohr orbit of a target
atom, i.e. the moderation of the muon from its initial positive energy down to
zero kinetic energy through ionization and inelastic scattering processes in the
target, is complicated and, in fact, not too well known. For our purposes it will
be sufficient to know that these early stages take a relatively short time, of the order
of 10�10–10�12 s. The muon eventually lands in some bound state with quantum
numbers .n; l/. The question as to what the initial distribution in n and l is, can be
(and has been) studied experimentally by looking at the intensities of � -transitions

19The point charge values are calculated from (2.162) below. The finite size values are taken from
Engfer et al. (1974).
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between these highest states of the cascade. There is, as yet, no satisfactory theory of
these initial distributions–a fact that may not seem so surprising if one realizes that
the initial .n; l/ distribution is a complicated function of the structure and chemical
composition of the target material.

The cascade proceeds predominantly through
Auger transitions, i.e. through emission of electrons in the host atom, and electric

dipole � -radiation.
Auger transitions are important mainly in the upper part of the cascade. They are

relatively more important for the lighter elements.20

In the lower part of the cascade the transition energies become large, and
E1 � -transitions quickly take over. The selection rules of Auger and of � (E1)-
transitions are

Auger W lf D li ˙ 1; �n D minimal; (2.147)

E1 W lf D li ˙ 1; �n D maximal: (2.148)

The selection rule for �l is a strict one, the rules for �n are somewhat empirical.
They arise from the energy dependence of the rates and from the n-dependence of
the transition matrix elements.

The selection rules have the effect of favouring circular orbits .n; l D n�1/; the
lower n, the higher are the relative intensities for transitions between circular orbits.
Transitions between inner, non-circular states have comparatively low intensities.

It is not difficult to estimate the time scale of these � -transitions. The transition
probability for an electric dipole transition is given by

T .E1/ D 8�c 2˛
9

�
�E

„c
�3

1

2li C 1.lf kY1 k li/
2 hnflfjr jnilii2 : (2.149)

Let us calculate T (E1) for a transition between circular orbits .ni � n; li D n � 1/
.nf D n � 1; lf D n � 2/ with the wave functions (2.144). We have

.lf kY1k li/ D .�/liC1
r

3

4�

p
.2li C 1/.2li � 1/

�
li 1 li�1
0 0 0

�

D �
r
3.n � 1/
4�

;

�E � En �En�1 D 2n � 1
2n2.n � 1/2 .Z˛/

2�c2;

hn; n� 1jr jn � 1; n� 2i D aB
22nC1nnC1.n � 1/nC2

.2n� 1/2np2.2n� 1/.n� 1/ :

20See Vol. I, Chap. III of [MUP77].
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Putting these results together, we find

hT .E1In! n � 1/ D 24nn2n�4.n � 1/2n�2
3.2n� 1/4n�1 ˛5�c2Z4;

or, expressing � in terms of the electron mass,

T .E1In! n � 1/ ' 5:355 � 109 2
4nn2n�4.n � 1/2n�2
.2n � 1/4n�1 � �

me
Z4Œs�1�: (2.150)

The transition probability is proportional to the reduced mass and to the fourth
power of the nuclear charge. For the sake of illustration let us calculate the
transition time

�.E1In! n0/ D 1=T .E1In! n0/

for the transitions f.n D 14; l D 13/! .n D 13; l D 12/g and f2p! 1sg:

�.E1I 14! 13/ ' 2:26.1C 0:113=A/10�7=Z4s; (2.150a)

�.E1I 2! 1/ ' 7:72.1C 0:113=A/10�12=Z4s: (2.150b)

[The correction factor stems from the reduced mass 1=� ' .1=m�/.1Cm�=AmN/].
These times must be compared with the lifetime (2.142) of the muon, � ' 2:2 �
10�6 S. In a very light system such as hydrogen .Z D 1/ the upper part of the
cascade is relatively slow, so that many muons will decay during the cascade before
they reach the 1s state. In a heavy atom such as lead .Z D 82/, however, the cascade
times are scaled down by the factor Z4. Rough interpolation between n D 14 and
n D 2 shows that the whole cascade (assuming E1 transitions only) will take about
10�14 s. This time is extremely short as compared to ��.

We conclude: For medium and heavy nuclei the trapping time and the cascade
are very short as compared to the muon lifetime. In these atoms the muon
behaves exactly like a stable heavy electron. In very light atoms such as muonic
hydrogen, however, the upper part of the cascade is affected appreciably by muon
decay, at the expense of the intensities of the cascade � -transitions. These qualita-
tive considerations are confirmed by detailed cascade calculations on computers.
A detailed knowledge of the cascade is important in many experimental situa-
tions. For instance, if one sets out to study properties of inner states such as
the metastable 2s state, these calculations are essential in predicting the relative
populations of these states.

After having reached the 1s state the muon either decays, or is captured by the
nucleus through the weak interaction process

�� C .Z;A/! .Z � 1;A/C ��:
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Fig. 2.9 Comparison of various lifetimes which are relevant for the dynamics in a muonic atom.
The lower part of the figure shows typical times for nuclear �-and particle decays. Taken from
[MUP77] Vol. I, Chap. III

The capture rate �cap, roughly, increases like Z4. In light elements decay width
and capture width are of similar magnitude. However, as Z increases, the capture
reaction becomes predominant. In the heavy atoms, the lifetime of the muon is
reduced, due to capture, to about 10�7 s.

These time scales of the muonic atom are illustrated in Fig. 2.9. They should
be compared to typical time scales in the electronic shell as well as in the nuclear
excitation spectrum. As to the former, we show, as an example, the lifetime of a
hole state in the K-shell. As may be seen from the figure this atomic lifetime is
comparable to cascade times of the muon. One consequence is this: If the muon,
in the upper part of the cascade, has created a hole in e.g. the K-shell, it will make
the rest of its cascade in presence of an incomplete electronic shell. This may be
relevant in precision measurements of muonic transitions if the screening of the
nuclear charge by the electrons has to be taken into account.

Regarding the nuclear excitation spectrum it can happen that due to accidental
(near) degeneracy between muonic transition energies and the energies of certain
nuclear excited states, the nucleus remains in an excited state when the muon has
reached the 1s orbit. Comparison of typical lifetimes of such nuclear states with
the lifetime �.1s/ of the muon in its 1s state (due to free decay and capture)
shows a remarkable fact: The nuclear lifetimes are generally much shorter than
�.1s/. Therefore, the nucleus can return to its ground state, through emission of
a � -ray, while the muon remains in the 1s orbit. This offers the unique possibility of
observing a nuclear transition in the presence of the muon in the 1s orbit which,
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as we know, penetrates strongly into the interior of the nucleus. The additional
charge – e leads to isomer shifts, the interaction of the nuclear magnetic moment
with the muon’s magnetic moment to magnetic hyperfine structure.

On the basis of these qualitative considerations we may group the information
obtainable from muonic atoms according to the spatial extension of the orbits in
question.

(a) For intermediate and heavy elements we distinguish
(a.1) High-lying orbits: These are the ones which overlap strongly with the

electronic cloud. These states are affected in an essential way by the state
of the host atom and by the chemical composition and physical structure of
the target.

(a.2) Very low orbits: As the muon moves well inside the lowest electronic shell,
screening effects are very small and often negligible. These orbits penetrate
into the nucleus and, therefore, are sensitive to the spatial structure of nuclear
charge, magnetization and current densities. As the transition energies are
comparable to nuclear excitation energies and as the overlap with nuclear
states is large, dynamical mixing effects between muonic and nuclear states
can occur. Also, instead of emitting � -rays the muon can transfer its energy to
the nucleus which then decays via fission or via emission of neutrons. These
radiationless transitions are especially important in heavy elements. Muon
induced fission is an important tool for the study of fission in transuranium
elements (fission barriers, fission isomers).

(a.3) Intermediate orbits .3 . n . 6/: These are the ones which are the most
hydrogen-like. Indeed, effects due to the finite size of the nucleus are small
and can be calculated to a high degree of accuracy. Likewise, the screening
effects due to the electronic cloud are small and under good control. Energies
and wave functions of these states can be calculated to very high precision.
These orbits are ideally suited for model-independent measurements of static
nuclear moments (especially electric quadrupole and hexadecapole moments),
and of radiative corrections.

Figure 2.10 shows the densitiesR2nl.r/�r2 of selected muonic circular orbits
in a heavy element (bismuth, Z D 83), in comparison to the nuclear charge
density and to the density of K and L electrons. The figure illustrates quite
clearly the three groups of orbits discussed above.

(b) In very light elements (such as hydrogen and helium) we have essentially
only orbits of type (a.3). The electrons of the host atom are completely
stripped off by the Auger effect so that the muon sees the bare charge of the
nucleus. On the nuclear side, the muonic orbit radii are such that penetration
effects are small. Thus, the study of energies of very light muonic atoms
concerns primarily tests of radiative corrections as predicted by quantum
electrodynamics.
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Fig. 2.10 Spatial structure of a heavy muonic atom. The scale in r (abscissa) is logarithmic; the
densities are not normalized. Take from [MUP77] Vol. I, Chap. III

2.6.3 Dirac Bound States in a Central Field

In a quantitative analysis of data on muonic atoms (i.e. transition energies and
X-ray intensities) we need the exact bound state solutions of the Dirac equation.
In the case of a spherically symmetric potential (central field) the total angular
momentum j D l C s commutes with the energy and can be chosen diagonal. The
problem is then reduced to the calculation of the radial wave functions f�.r/ and
g�.r/ of the central field solutions [QP07]


km.r/ D
�
g�.r/ 'km

if� .r/ '��m

�
: (2.151)

We recall the meaning of the symbols in (2.151):

� D ˙ 1; ˙ 2; ˙ 3; : : : .Dirac quantum number/;

j D j
j � 1
2

and

�
l D � for � > 0,
l D �� � 1 for � < 0,

'�m � 'jlm D
X
ml ;ms

�
lml

1

2
msjjm

�
Ylmms :

f .r/ and g.r/ satisfy a system of first-order differential equations, (2.105), which
contains the spherically symmetric potential V.r/, viz.
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df�
dr
D � � 1

r
f� � fE � V.r/�mgg�;

dg�
dr
D �� C 1

r
g� C fE � V.r/Cmgf�: (2.152)

g� is called the “large” component, f� the “small” component: in the nonrelativistic
limit m � jEj  1; f� vanishes, whilst g� goes over into the corresponding
Schrödinger wave function (see below).

Case (a): Potential of a point-like charge
As nuclei are well confined systems the electrostatic potential (2.117) around any
nucleus approaches rapidly the potential of a point charge, Vc D �Z˛=r , outside
the nuclear radius. Therefore, this potential is the reference case to which the actual
potential should be compared. The bound states of the true potential are shifted with
respect to the case of the point charge. The corresponding wave functions are more
or less distorted Coulombic wave functions. Information about the true potential is
primarily contained in the shifts of the energy levels, to some extent also in the wave
functions and in observables derived from them.

Technically, the bound state problem is different for the two cases and the
potential of the point charge must be considered separately. The reason for this
technical difference is easy to understand: The true potential of an extended charge
distribution is regular at the region, r D 0. (Consider, for instance, the homogeneous
density, for which V.r/ 	 C0CC1r2 is parabolic.)Vc.r/, on the contrary, is singular
at r D 0. In any relativistic wave equation, both Vc and its square enter. This is
obvious in the Klein–Gordon equation (6.36) where the term .E � Vc.r//

2 is added
to the kinetic energy. In the case of Dirac spinors we know that each component
also satisfies the Klein–Gordon equation. Alternately, this may be recovered directly
from (2.152) by deriving from them uncoupled second-order equations for f .r/ and
g.r/ separately (so-called “iterated form” of the Dirac equation).

In either case, the term Vc
2.r/, being proportional to 1=r2, has the same type of

singularity at the origin as the centrifugal potential l.l C 1/=r2. This singularity,
as is well-known, determines the behaviour of the radial wave functions at r D 0.
Thus, for a regular potential we expect the standard behaviour rl or r�l�1, while
for the 1=r potential the characteristic exponent is modified by terms of order Z˛.
At r ! 1, on the other hand, the two cases are obviously the same. So only the
solutions inside a suitably defined matching radiusR, where the two potentials differ
substantially, must be derived separately. After this long introduction we now turn
to the derivation of the bound Coulomb states.

For very large r the differential equations (2.152) give the approximate equation

g00 .r/� .m2 � E2/ g.r/ ' 0
f 0.r/ ' �.E �m/g.r/ ; .large r/
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For bound states E < m and � WD pm2 �E2 is real positive. Thus g.r/ behaves
like e��r ; f .r/ like

p
.m � E/=.E Cm/g.r/. For convenience we take out a

factor 1=r , in f and g, and we make the ansatz

g.r/ D 1

r
e��r

p
E Cm fy1.r/C y2 .r/g;

f .r/ D 1

r
e��r

p
m �E fy1.r/� y2 .r/g: (2.153)

The asymptotic behaviour of y1.r/ and y2.r/ must be such that the exponential
factor e��r is not compensated. Let x WD 2�r , then y1 and y2 satisfy the system

dy1
dx
D
�
1 � Z˛E

�x

�
y1 �

�
�

x
C Z˛m

�x

�
y2;

dy2
dx
D
�
��
x
C Z˛m

�x

�
y1 C Z˛E

�x
y2: (2.154)

The behaviour at r D 0 remains to be determined, keeping in mind the remarks
made before. For that purpose, we write

y1;2.x/ D x�
1;2.x/; (2.155)

with 
1;2.0/ ¤ 0 but finite and determine � from (2.154): For x D 0 we obtain the
linear system

�
1.0/ D �Z˛E
�


1.0/�
�
� C Z˛m

�

�

2.0/;

�
2.0/ D
�
�� C Z˛m

�

�

1.0/C Z˛E

�

2.0/ :

This homogeneous system has a nontrivial solution only if the determinant of the
coefficient matrix

�
� CZ˛E=� � CZ˛m=�
� �Z˛m=� � �Z˛E=�

�

vanishes. This gives �2 D �2 � .Z˛/2. The solutions regular at the origin require
the positive square root,

� D
p
�2 � .Z˛/2: (2.156)

With the ansatz (2.155), where � is given by (2.156), one derives easily the
differential equations satisfied by 
1.x/ and 
2.x/
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d
1
dx
D
�
1 �

�
� C Z˛E

�

�
1

x

�

1 �

�
� C Z˛m

�

�
1

x

2;

d
2
dx
D �

�
� � Z˛m

�

�
1

x

1 �

�
� � Z˛E

�

�
1

x

2: (2.157)

The functions 
i.x/ represent what remains of the radial functions f and g after we
have taken out the characteristic exponent .x� / near the origin and the exponential
factor .e�x=2/ at infinity. Our experience with analogous problems in nonrelativistic
quantum mechanics suggests that 
i.x/ are simple polynomials (they must be
orthogonal for fixed �). In fact, one can show that they can be written in terms
of the well-known confluent hypergeometric function. One way of seeing this is the
following: Starting from (2.157) derive a second-order differential equation for 
2
(or 
1) alone. One finds

x
d2
2
dx2
C .2� C 1 � x/ d
2

dx
�
�
� � Z˛E

�

�

2 D 0: (2.158)

This is, indeed, Kummer’s equation with a � � � Z˛E=�; b � 2� C 1. The
solution with the required properties is [ABS65, ART31]


2.x/ D 1F1

�
� � Z˛E

�
I 2� C 1I x

�
: (2.159a)


1 is found from the second equation (2.157) and the recurrence relation

x 1F
0
1 .aI bI x/C a 1F1 .aI bI x/ D a 1F1 .aC 1I bI x/

for the confluent hypergeometric function. Thus


1.x/ D Z˛E=� � �
� �Z˛m=� 1F1 .1C � �Z˛E=�I 2� C 1I x/: (2.159b)

The asymptotic behaviour of 1F1 is, to leading order in 1=x,

1F1 .aI bI x/ 	 �.b/

�.b � a/ .�x/
�a C �.b/

�.a/
exxa�b : (2.160)

Obviously, the second term of this must vanish if we do not wish to destroy the
exponential decrease of the bound state solutions, i.e. the factor e�x=2 in (2.153).
This can only be achieved if the parameter a is zero or a negative integer because in
that case 1=�.a/ vanishes. When applied to 
2, this gives the condition

Z˛E=� � � D n0; (2.161)
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with

� D
p
m2 � E2; n0 D 0; 1; 2; : : :

Does the same condition also make 
1.x/ of (2.159b) remain regular at infinity?
For n0 � 1 this is obvious. For n0 D 0, a little more care is necessary: The function
1F1 .1I 2� C 1I x/ is not regular but the factorZ˛E=�� � D 0 in front of it makes

1 vanish, provided the denominator .� � Z˛m=�/ does not vanish. This is what
has to be checked. With � D Z˛E=� we have

�2 D �2 C .Z˛/2 D .Z˛/2 �
2 C E2

�2
D
�
Z˛

m

�

	2

and therefore � D ˙Z˛m=�. The solution � D CZ˛m=� must indeed be
excluded, whilst � D �Z˛m=� is acceptable. Therefore, for n0 D 0 only negative
� is allowed.

For convenience, we set n0 D n � j�j with n D 1; 2; : : : Our results can then be
summarized as follows. From (2.161) we find

Enj�j D m
8<
:1C

 
Z˛

n � j�j C p
�2 � .Z˛/2

!29=
;
�1=2

; (2.162)

where the quantum numbers n; � and j�j � 1=2 assume the following values:

n D 1; 2; : : : ;
� D ˙ 1; ˙2; : : : ; ˙.n � 1/;�n;

j D j
j � 1
2
D 1

2
;
3

2
; : : : ; n � 1

2
: (2.163)

� D Cn, as we said above, is excluded. The integer n is the familiar principal
quantum number of the nonrelativistic hydrogen atom. This can be seen, for
instance, by expanding the energy eigenvalues (2.162) in terms of Z˛,

Enj�j ' m
�
1 � .Z˛/

2

2n2
� .Z˛/

4

2n4

�
n

j�j �
3

4

��
; (2.164)

the first term of which is the rest mass, whilst the second gives the binding energy
(2.143) of the nonrelativistic hydrogen atom. The third term is the first relativistic
correction. This term is independent of the mass (relative to the others) but depends
on the angular momentum j D j�j� 1

2
. For constant n it is relatively more important

for small values of j than for large values.
As may be seen from the exact formula (2.162) the dynamical l-degeneracy of the

nonrelativistic hydrogen atom is almost completely lifted. Only energy eigenvalues
of equal n and j�j are degenerate. As � can be positive and negative, except for the
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largest value of � where � D �n, all j -values except for the highest j D n� 1
2

have
a twofold dynamical degeneracy in addition to the usual directional degeneracy in
mj , the magnetic quantum number. Thus, the 2s1=2 and 2p1=2 states are degenerate,
the 3s1=2 and 3p1=2 states, the 3p3=2 and 3d3=2 states, and so on.

This remaining degeneracy of the relativistic atom is lifted eventually by radiative
corrections (Lamb shift).

The eigenfunctions are given by our equations (2.153, 2.155, 2.159). The nor-
malization to 1 is best performed by making use of well-known integrals involving
confluent hypergeometric functions, exponentials and powers. The result is

gn�.r/ D 2�N.n; �/
p
mC E x��1e�x=2

�
(
�.n � j�j/1F1.�nC j�j C 1I 2� C 1I x/

C
�
Z˛m

�
� �

�
1F1.�nC j�jI 2� C 1I x/

)
(2.165a)

fn�.r/ D �2�N.n; �/
p
m � Ex��1e�x=2

�
(
.n � j�j/1F1.�nC j�j C 1I 2� C 1I x/

C
�
Z˛m

�
� �

�
1F1.�nC j�jI 2� C 1I x/

)
: (2.165b)

The normalization constantN.n; �/ is given by

N.n; �/ D �

m

1

�.2� C 1/
�

�.2� C n � j�j C 1/
2Z˛.Z˛m=� � �/�.n � j�j C 1/

� 1=2
: (2.166a)

As before,

x D 2�r; (2.166b)

� D
q
m2 � E2

nj�j D
Z˛mp

n2 � 2.n� j�j/.j�j � �/ ; (2.166c)

� D
p
�2 � .Z˛/2: (2.166d)

Strictly speaking, the orbital angular momentum l is not a good quantum number.
However, in the limit of weakly relativistic motion, i.e. for Z˛  1;

p
m � E D

O.Z˛/ is small compared to
p
mC E ' p2m. This shows that the wave function

gn�.r/ is large compared to the wave function fn�.r/. Thus, the upper component
in 
n�m, (2.151), is large compared to the lower one, and its angular momentum l

can be used to label the state, even though the lower component carries a different
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angular momentum Nl D l ˙ 1. The nomenclature is approximate and refers to the
corresponding nonrelativistic situation. As an example let us consider all states with
n D 2. Here we have

n D 2; � D �1; j D 1

2
W
�
l D 0
Nl D 1

�
“2s1=2-state”;

n D 2; � D C1; j D 1

2
W
�
l D 1
Nl D 0

�
“2p1=2-state”;

n D 2; � D �2; j D 3

2
W
�
l D 1
Nl D 2

�
“2p3=2-state”:

The example shows that in the relativistic case (i.e. Z˛ not small compared to
1), the 2p1=2-state is a closer parent to the 2s1=2 than to the 2p3=2. We expect
relativistic effects in the 2p1=2 to be more important than in the 2p3=2.

The limit of the purely nonrelativistic case can be verified on the expressions
(2.165) for the wave functions. As

� ' Z˛m

n

�
1C .Z˛/2

2n2
n� j
j
j
j

�
;

this means calculating the wave functions to lowest nonvanishing order in Z˛.
In this limit m � E ' 0 and fn�.r/ ' 0. For � > 0 we have l D �,

x ' 2Z˛m

n
r D 2r

naB
DW z;

and

gn�Dl ' 2Z˛m
n

Z˛

n

1

�.2l C 1/

s
�.nC l C 1/

2Z˛.n � l/�.n � l C 1/
p
2mzl�1e�z=2

�.n � l/ f1F1.�nC l I 2l C 1I z/� 1F1.�nC l C 1I 2l C 1I z/g ;

which equation, by means of the recurrence relation

b f1F1.aI bI z/ � 1F1.a � 1I bI z/g D z 1F1.aI b C 1I z/ (2.167)

goes over into the nonrelativistic wave function .1=r/ynl.r/ of (2.145). For negative
k; Nl D �� � 1 D j�j � 1; gn�.r/ must go over into .1=r/yn;Nl .r/, since in the
nonrelativistic limit the states

�
n; j D i C 1

2

�
and

�
n; j D i � 1

2

�
have the same

radial wave function. That this is indeed so may be verified from (2.165), and the
recurrence relation

.1C a� b/ 1F1.aI bI z/� a 1F1.aC 1I bI z/C .b � 1/ 1F1.aI b � 1I z/ D 0 (2.168)

(see exercise 2.8).
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Case (b): Potential of a spherically symmetric charge distribution of finite size
For simplicity we consider a spherically symmetric charge distribution �.r/ of finite
size. (The more general case of an arbitrary density �.r/ is dealt with in Sect. 2.8)
Unlike the case of a point charge, �.r/ is assumed to be regular at the origin and to
admit a Taylor expansion around r D 0,

�.r/ D �0 C �1r C 1

2Š
�2r

2 CO.r3/: (2.169)

Inserting this series into the formula (2.117) for the potential this yields a similar
expansion for V.r/:

V.r/ D �4�Z˛2
�Z 1

0

�.r 0/r 0 dr 0 � 1
6
�0r

2 � 1

12
�1r

3 � 1

40
�2r

4 CO.r5/
�
:

(2.170)
This shows that V.r/ behaves like a parabola, V0 C V1r2, close to the origin. As a
consequence, the behaviour of the radial solutions f .r/ and g.r/ near the origin is
determined entirely by the centrifugal potential and not by the electrostatic potential.
For � > 0 the upper component of the spinor (2.151) carries the orbital angular
momentum l D �, whilst the lower component carries Nl D � � 1. We expect,
therefore, the solutions regular at the origin to behave according to

� > 0

(
g�.r/ 	 r�
f�.r/ 	 r��1

: (2.171a)

Similarly, for � < 0, the upper component has l D �� � 1, the lower component
has Nl D ��, so that we expect

� < 0

�
g�.r/ 	 r���1
f�.r/ 	 r�� : (2.171b)

It is not difficult to prove these assertions. The second-order differential equations
for f .r/ and g.r/ alone, which one derives from the system (2.152), contain the
centrifugal terms �.� � 1/=r2 and �.� C 1/=r2, respectively. The characteristic
exponents ˛ and ˇ in the ansatz f .r/ D r˛†anr

n and g.r/ D rˇ†bnr
n are found

to satisfy the equations

˛.˛ C 1/ D �.� � 1/; ˇ.ˇ C 1/ D �.� C 1/;

whose solutions are ˛1 D � � 1; ˛2 D �� and ˇ1 D �; ˇ2 D �� � 1. In fact,
the two cases of positive and negative �, can be written in a particularly simple and
compact form if we introduce the definitions:
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� > 0

�
g�.r/ D r�G�.r/;
f�.r/ D r��1F�.r/; (2.171c)

� < 0

�
g�.r/ D r���1F�.r/;
f�.r/ D �r��G�.r/: (2.171d)

The function F� and G� obey the system of first-order differential equations

dF�
dr
D fV.r/�E Cm sign �g rG�;

dG�
dr
D �1

r
f.2j�j C 1/G� C ŒV .r/ � E �m sign ��F�g: (2.172)

with initial conditions

F�.0/ D a0 ¤ 0; G�.0/ D �V.0/� E �m sign �

2j�j C 1 a0;

dF�
dr

.0/ D dG�
dr

.0/ D 0: (2.173)

The system (2.172) with the initial conditions (2.173) is well adapted for numerical
integration of the wave functions F and G, from which f and g are then obtained
by means of (2.171c or d), respectively. These solutions, which by construction
are regular at the origin, must also be regular at infinity. This condition fixes the
eigenvalues En� for given �. In order to achieve this, it is convenient to use the
following trick.

The density �.r/ has a finite extension, i.e. beyond a certain radiusRM the density
is zero or negligibly small. (In case of nucleiRM is typically 2 to 3 times the nuclear
radius.) Therefore, for r & RM the potential V.r/ is practically indistinguishable
from Vc D �Z˛=r , the potential of a point-like charge, and the true wave functions
(2.171c, d) must be linear combinations of two linearly independent solutions of the
system of differential equations treated above, case (a). One such set of independent
solutions for Vc could be the solution (2.165), regular at the origin, together with
another solution which is singular at the origin.

The trick now consists in constructing that specific linear combination which, for
arbitrary energy E, decreases exponentially at infinity (i.e. is regular at infinity),
irrespective of its behaviour at r D 0. Call this solution .f1; g1/. It then suffices
to vary E until the inner solutions f0; g0 which are regular at r D 0 and which
are obtained by numerical integration, match the outer solution continuously at the
point r D RM, i.e.

Œf1.r/g0.r/ � g1.r/f0.r/�rDRM D 0: (2.174)
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For the construction of .f1; g1/ we return to (2.158). It is not difficult to
verify that a solution independent of the regular one 
R

2 .x/ D 1F1.aI bI x/, where
a D � �Z˛E=�; b D 2� C 1, is this:


12.x/ D x1�b 1F1.1C a � bI 2� bI x/
D x�2� 1F1.�� �Z˛E=�I �2� C 1I x/:

According to the defining equations (2.153) and (2.155) 
R and 
I enter into f and
g with the factor x�e�x=2. Thus, rf and rg are linear combinations of the functions

M."; sI x/ D xse�x=2 1F1.s � "I 2s C 1I x/; (2.175)

where " WD Z˛E=� and s D ˙� .
The asymptotic behaviour of M."; s; x/ is determined by the asymptotic form

(2.160) of the confluent hypergeometric function. For real and positive x the second
term in (2.160) dominates and we have

M.";˙� I x/ 	
x!1

�.˙2� C 1/
�.˙� � "/ x

�"�1ex=2: (2.176)

We now combine the two solutions for positive and negative � in such a way as to
cancel out the exponentially increasing term (2.176). Noting that �.˙2� C 1/ D
˙2��.˙2�/, this is achieved by taking the combination

W."; sI x/ WD �.�2�/
�.�� � "/M."; � I x/C

�.2�/

�.� � "/M.";�� I x/: (2.177)

This specific linear combination is regular at infinity for all values " D Z˛E=�.21

Repeating some of the steps of case (a) it is straightforward to construct the radial
solution .f1; g1/ from (2.177). One finds, barring arbitrary normalization,

rf1.r/ D
p
m � E

� �
� C Z˛m

�

��
W."� 1; � I x/ �W."; � I x/

�
; (2.178a)

rg1.r/ D
p
mC E

� �
� C Z˛m

�

��
W." � 1; � I x/CW."; � I x/

�
; (2.178b)

Note that these solutions are indeed regular at infinity for any value of the energyE.
(This still remains true whenE becomes complex. This occurs if the Dirac equation
contains a complex optical potential.)

Remarks. (i) The functions (2.178) are, in general, not regular at the origin because
of the factor x�” in the second term of (2.177). (ii) If one imposes regularity at the

21W is a Whittaker function, except for an extra factor x1=2 on the right-hand side of (2.177).
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origin, too, this term must vanish and one recovers the eigenvalue condition of the
previous case (a), cf. (2.161).

2.7 Muonic Atoms and Quantum Electrodynamics

In a sense, vacuum polarization is the simplest and most fundamental radiative effect
in the quantized theory of photons in interaction with matter. What is this effect
and why is it fundamental? In the quantized Maxwell theory the electromagnetic
forces which act between charged particles are described by the exchange of photons
between these particles. The exchanged photon, through its quantum nature, can go
over into all possible intermediate states which are allowed by the conservation
laws of the theory. These intermediate states can annihilate and go over into the
same photon state again, as sketched in Fig. 2.11. In this diagram the hatched
loop stands for the sum of all many-particle and photon states which are allowed
by the rules of the theory. The net effect of these insertions is a modification of
the photon propagator or, in other words, of the classical forces between charged
matter particles. The range of these modifications, in coordinate space, is a function
of the masses of the particles in the intermediate states. The phenomenon occurs
in any local gauge theory (the photon being replaced by the vector gauge bosons
of the theory), and it reflects fundamental properties of the theory. This can be
understood qualitatively by cutting the diagram in Fig. 2.11 as indicated by the
broken line: If we change the external momenta such that the particle lines at the left
and at the right of this figure represent incoming and outgoing particle-antiparticle
pairs respectively, then the cut diagrams represent the total pair annihilation cross
sections.

In quantum electrodynamics (QED), to lowest order in the fine structure constant
˛, vacuum polarization is represented by the virtual creation and re-annihilation of
all possible pairs of one fermion and its antifermion, as shown in Fig. 2.12(a). This
diagram (and likewise all diagrams of higher order in ˛), when added to the single
photon exchange, leads to a modification of the photon propagator and has two basic
effects: The first effect is an infinite, logarithmically divergent, contribution which,
however, is the same in any diagram where the photon couples to a given particle
of charge e0. The presence of this divergent term indicates that the bare charge e0
(i.e. the coupling constant appearing in the original Lagrangian), is renormalized,
by an infinite amount, to the physical charge e. The infinity can be circumvented
formally by a redefinition of the coupling constant which means replacing the bare

Fig. 2.11 Vacuum
polarization in quantum
electrodynamics leading to
modification of the photon
propagator
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Fig. 2.12 (a) Modification of
a photon propagator to order
˛, due to a loop of virtual
charged particles (electron,
muon, etc). (b) Interaction of
a charged lepton (L) with an
external potential
(represented by the cross), (c)
Modification of the
interaction due to diagram (b)
through lowest-order vacuum
polarization

charge e0 everywhere by the physical charge e. This prescription is formal because
e0 is necessarily infinite and yet the replacement is to be made, order by order, to
the order ˛n of perturbation theory to which we work, as if everything were finite.
As the theory does not allow one to predict the magnitude of the charge e, this first
and divergent effect of vacuum polarization is not observable.

In contrast to this, the remainder of vacuum polarization is finite and unique, and
does have observable consequences. This second effect can be calculated uniquely,
in successive orders of ˛, and can be confronted with precision measurements, as a
test of QED. The physical effect of (finite) vacuum polarization is best understood
in the case of an external, electrostatic potential. In this case vacuum polarization
leads to a distortion of the given potential, over a distance which is characterized
by the Compton wavelength �.i/ D „=mic of the particle that runs along the loop
in the diagram of Fig. 2.12(a). Clearly, the longest range in this distortion effect is
due to the lightest particle, the electron. Thus, vacuum polarization due to virtual
electron–positron pairs is expected to distort the original potential over a distance
of the order

�.e/ ' 386fm: (2.179)

If we wish to see the quantitative importance of this effect in atoms we must
check whether the orbit radii are large as compared to �.e/ or whether they are
comparable to or smaller than �.e/. Hydrogen and muonium .�C e�/ have Bohr
radii 	 1=˛m ' 5 � 104 fm and belong to the first class. In those “dilute” systems
vacuum polarization is a small effect as compared to other radiative corrections
due to vertex modification and to the anomalous magnetic moments. In contrast to
these, muonic atoms have sizes which are indeed comparable to �.e/, eq. (2.179).
As a consequence, vacuum polarization is the predominant radiative correction in
muonic atoms. As far as tests of QED are concerned, weakly bound systems, such
as ordinary light atoms and muonium, and muonic atoms are complementary. They
test different and complementary predictions of QED. We discuss first the finite
and observable parts of vacuum polarization, in lowest order. We then say a little
more about higher orders and give some characteristic examples. The discussion
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of muonium (which is an example for the complementary situation, similar to
hydrogen) can be found e.g. in Scheck (1978).

2.7.1 Observable Part of Vacuum Polarization to Order O.˛/

For the sake of simplicity let us consider the case where the photon line in
Fig. 2.12(a) represents the interaction of a fermion (L) with an external electrostatic
potential of a point charge c. This potential is represented by a cross in Fig. 2.12(b)
and (c). According to standard Feynman rules the translation of this cross and the
photon line into a formula is

QA�.Q2/ D c

.2�/3
ı�0

1

Q2
; (2.180)

which is the Fourier transform of the usual 1=r-potential22

QA�.Q2/ D 1

.2�/3

Z
d3Qe

�iQx c

4�jxjı�0: (2.1800)

Consider now the vacuum loop of a charged lepton l illustrated by Fig. 2.12(c).
According to the Feynman rules the sum of diagrams b and c is given by

M D 2�ie0uL.p0/��uL.p/

�
�
g�� C 1

Q2

ie20
.2�/4

Z
d4k tr

�
��

1

�k �ml C i"
��

1

�k ���Q �ml C i"

�
QA�
�
;

(2.181)

where Q D p � p0. In the specific case of elastic scattering of the fermion L in an
external potential we have p0 D p00, so that Q2 D �Q2. In a more general diagram
Q is the momentum carried by the photon lines entering and leaving the closed
fermion loop (see Fig. 2.12(a)). In any such case the vacuum polarization loop of
order e2 is represented by the tensor

…�v .Q/ WD ie20
.2�/4

Z
d4 ktr

�
��

1

�k �m` C i"
� v 1

�k ���Q �m` C i"

�
: (2.182)

As it stands this integral is divergent and we must be very careful in performing
algebraic manipulations on it. It is well-defined and finite only in a regularized form
of QED. Methods of regularization are described in textbooks on quantum field

22In the standard formulation of Feynman rules one chooses natural units so that e2=4� D ˛.
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theory. They are essential in identifying the precise nature of the singularities of
divergent quantities and in isolating these from the finite parts. If the regularization
respects Lorentz invariance and gauge invariance of the theory, these latter, finite
parts are unique.

In what follows we assume that the tensor
Q��

.Q/ is already regularized. For
instance, using the method of Pauli and Villars, one finds

…�v
reg.Q/ D .Q�Qv �Q2g�v/ ŒC C….Q2/�; (2.183)

where the first term depends on a fictitious regulator mass M ,

C D ˛0

3�
ln

�
M

m`

�2
(2.184)

(and hence is logarithmically divergent), whilst the second term

….Q2/ D �2˛
�

Z 1

0

dz z .1 � z/ ln

�
m2
` �Q2z .1 � z/

m2
` � i"

�
(2.185)

is finite and independent of the method of regularization used. It can be shown that
the logarithmic divergence (2.184) represents a formal renormalization of the charge
and that it can be absorbed if the bare charge is replaced by the physical charge,23

e D e0
s
1 � ˛

3�
ln

�
M

ml

�2
: (2.186)

Finally, we note that the specific convariant form of …�� , (2.183), is a consequence
of gauge invariance which requires

Q�…
�v
reg.Q/ D 0 D …�v

reg.Q/Qv:

In order to understand the physical content of the finite part….Q2/ let us transform
the integral (2.185) somewhat so that it may easily be transformed to coordinate
space, by means of Fourier transformation. Let z D .1�y/=2 and, therefore, 1�z D
.1C y/=2. Then

….Q2/ D � ˛
2�

Z 1

0

dy.1 � y2/ ln

�
1 � Q2

m2 � i"

1 � y2
4

�
.m � m`/:

23As we work in second order here, it is consistent to insert ˛ D e2=4� , not ˛0 D e20=4� into
(2.185) and the square root in (2.186).



158 2 Electromagnetic Processes and Interactions

By partial integration we can get rid of the logarithm and obtain

….Q2/ D ˛

�
Q2

Z 1

0

dy
y2.1� y2=3/

4m2 �Q2.1 � y/2 � i"
: (2.187)

An equivalent representation is obtained by means of the substitution

�2 WD 4m2

1 � y2 ;

i.e.

y2 D 1 � 4m
2

�2
; d�2 D �4

2m2
ydy;

which gives

….Q2/ D ˛Q2

3�

Z 1
4m2

d�2
.1C 2m2=�2/

p
1 � 4m2=�2

�2.�2 �Q2 � i"/
: (2.188)

Let us now return to the example of scattering in an external electrostatic potential.
Inserting the result (2.188) into the amplitude (2.181), after having renormalized the
charge (to the order at which we work), we obtain

M D 2�ie uL.p0/ �� uL.p/

�
g�v C 1

Q2
.Q�Qv �Q2g�v/ ….Q2/

�
QAv

D 2�ie uL.p0/ � v uL .p/ Œ1 �….Q2/� QAv:

In this example Q2 D �Q2; QA� is given by (2.180), ….Q2 D �Q2) by (2.188).
The factor Œ1 �…� QA can be read as a modified external potential and may easily be
transformed to coordinate space. Let

QV .Q2/ WD �eŒ1 �….�Q2/� QA0.Q2/: (2.189)

The potential in coordinate space is the Fourier transform of QV ,

V.x/ D C

.2�/3

Z
d3QeiQx

(
1

Q2
C ˛

3�

Z 1
4m2

d�2
.1C 2m2=�2/

p
1 � 4m2=�2

�2.�2 C Q2 � i"/

)

(2.1890)
where we set �ce D C .

The integrals over Q can be performed by means of the formula

1

.2�/3

Z
d3 Q

eiQx

Q2 C a2 D e�ar=4�r .r D jxj/;
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taking a D 0 in the first term, a D � in the second term of (2.1890). This gives

V.r/ D C

4�

(
1

r
C ˛

3�

Z ˛

4m2
d�2

.1C 2m2=�2/
p
1 � 4m2=�2

�2
e��r

r

)
: (2.190)

Thus, the original 1=r potential is modified by a superposition of Yukawa terms
with ranges greater or equal 1=2m D 1

2
�.e/.

For practical use one may replace the variable �2 by a dimensionless integration
variable �2 D 4m2x2, so that (Uehling 1935)

V.r/ D C

4�r

(
1C 2˛

3�

Z 1
1

dxe�2mxr
�
1C 1

2x2

� p
x2 � 1
x2

)
: (2.1900)

Remember that C is the external charge. For instance, if this is a proton then C D
jej; if it is a point-like nucleus then C D CZjej. (The case of an extended charge
distribution is treated below).

There are two limiting situations where it is easy to estimate the integral in
(2.1900). If rm � 1, i.e. if r is very large compared to �.e/, the integrand is large
only close to the lower limit of the integral. We approximate

�
1C 1

2x2

� p
x2 � 1
x2

' 3

2

p
2.x � 1/

near x D 1 and substitute x � 1 D u, so that

Z 1
1

e�2mxr
�
1C 1

2x2

� p
x2 � 1
x

' e�2mr
Z 1
0

du e�2mru 3

2

p
2u

D 3
p
�

8

e�2mr

.mr/3=2
;

and therefore

V.r/ D C

4�r

�
1C ˛

4
p
�

e�2mr

.mr/3=2

�
: r � �.e/: (2.191a)

This limit is relevant in normal atoms whose orbital radii are indeed large compared
to �.e/. Because of the exponential the correction term is very small. This is in
contrast to muonic atoms whose orbital radii are comparable with or smaller than
�.e/. Here vacuum polarization is a large effect.

Similarly, if rm  1 i.e. if r  �.e/ the integral (2.1900) can be solved
approximately, too, and is found to be (Blomqvist 1972)
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V.r/ ' C

4�r

�
1 � 2˛

3�
Œln.mr/C CE C 5=6�

�
; (2.191b)

where CE D 0:577216 (Euler’s constant).

2.7.2 Illustration and Interpretation of Vacuum Polarization
of Order ˛Z˛

Figure 2.13 illustrates the 1=r potential and the vacuum polarization potential of
(2.1900): In order to get rid of dimensional quantities and of the numerical factors in
front of the integral, we have multiplied V.r/, (2.1900), by .�6�2=˛Cm/. Thus the
upper curve represents the reduced vacuum polarization potential

�vacpol.u/ D �1
u

Z 1
1

dxe�2ux

�
1C 1

2x2

� p
x2 � 1
x2

(2.192)

as a function of u D rm OD r=�.e/. The figure shows that �vacpol is small compared
to the uncorrected 1=r potential for distances r & �.e/, but becomes strong at small
distances r  �.e/. Furthermore, the potential due to vacuum polarization has the
same sign as the 1=r potential everywhere. Thus, in an attractive 1=r potential,
vacuum polarization leads to even more attraction. This result contradicts naive
expectations if we think of vacuum polarization in analogy to electric polarizability
of ordinary matter. Indeed, for a positive point charge, we would expect the virtual
positrons to be pushed away from the origin and the virtual electrons to be pulled
towards the origin. As the total induced charge is zero, this would mean that the
original positive point charge effectively is smeared out over a certain region of
space. However, this would lead to an effective screening of the charge and hence
to a reduction of its field, not to the increase seen in the figure.

Fig. 2.13 Potential due to
vacuum polarization, in
dimensionless form, as a
function of r=� where � is the
Compton wavelength of the
virtual particle in the loop of
Fig. 2.12(a). Also shown is
the l=r potential, scaled by
the same factor as the former.
The right-hand scale holds for
the latter
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This result becomes even more puzzling if we consider the induced charge den-
sity �Pol.r/ pertaining to the vacuum polarization potential: �Pol.r/ D ��VPol.r/

(for technical reasons we introduce a convergence factor into the integral),

VPol.r/ D C

4�r

2˛

3�
lim

M!1

Z 1
1

dxe�.m=M/xe�2mrx
�
1C 1

2x2

� p
x2 � 1
x2

:

Using the well-known formula

.� � �2/e��r

r
D �4�ı.r/

and taking � D 2mx, one finds

�Pol.r/ D C

4�

2˛

3�
lim

M!1

(
4�ı.r/

Z 1
1

dxe�.m=M/x

�
1C 1

2x2

� p
x2 � 1
x2

�4m
2

r

Z 1
1

dxe�.m=M/xe�2mrx
�
1C 1

2x2

� p
x2 � 1

�
: (2.193)

(The convergence factor is needed in the first term of this expression because
the integral diverges logarithmically; it is irrelevant in the second term.) This
polarization charge density has rather curious properties: For finite argument r ¤ 0
it has the same sign everywhere. At r D 0 it has two singularities, a ı-distribution
with a linearly divergent coefficient

4�ı.r/ ln.M=m/ (2.194)

and a 1=r3 pole which comes from the second term [see (2.197a) below] Yet, the
integral of �Pol over all space vanishes, as it should. This is seen by making use of
the formula Z 1

0

e��r

r
r2dr D 1=�2

with � D 2mx:

Z
�Pol.r/d

3r D 4� C
4�

2˛

3�
lim

M!1

(Z 1
1

dxe�.m=M/x

�
1C 1

2x2

� p
x2 � 1
x2

�
Z 1
1

dxe�.m=M/x

�
1C 1

2x2

� p
x2 � 1
x2

)
D 0: (2.195)
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Fig. 2.14 Induced
polarization charge density
(2.196) in dimensionless form
and as a function of r=�. Note
that this density is positive
(attractive) for all finite r , but
is singular at r D 0 so that its
integral over all space
vanishes

Figure 2.14 shows the polarization charge density for r ¤ 0. Again, in order to get
rid of dimensional quantities we have plotted the function

f .u/ D
�
� 6�2

˛Cm3

�
�Pol.r/

D 4

u

Z 1
0

dxe�2ux

�
1C 1

2x2

� p
x2 � 1 .r ¤ 0/; (2.196)

where u D mr OD r=�.e/, as a function of this variable. The connection to the
function (2.192) is

1

u2
d

du

�
u2

d�.u/

du

�
D �f .u/; u ¤ 0:

From the approximate expressions (2.191a, b) for the potential at large and small
r , respectively, we derive the corresponding limiting behaviour of the polarization
density (2.196), viz. .u D mr OD r=�.e//,

r  � f .u/ ' 1=u3; (2.197a)

r � � f .u/ ' 3
p
�

8
u�5=2e�2u: (2.197b)

Clearly, the polarization charge density is not very intuitive. It has the expected
property (2.195) but it is qualitatively different from a polarization density in
ordinary matter. The singular term (2.194) at r D 0 is reminiscent of the charge
renormalization (2.184). The only semi-physical statement one may make is this:
When a test charge or a photon probes the field of our point charge at large distances,
i.e. at low momentum transfers, then it sees what is called the physical charge. The
closer it approaches the point charge (i.e. the larger the momentum transfers), the
more the test particle sees of the bare charge. As the bare charge is larger than
the physical charge (see (2.186)) the test particle sees an enhanced field at short
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distances. The closer it comes the more enhanced the field. Unfortunately, the bare
charge is infinite. The phenomenon of vacuum polarization evades simple analogies
to classical polarization phenomena because infinite charge renormalization is not
intuitive.

2.7.3 Radiative Corrections in Muonic Atoms

The polarization potential of order O.˛C/, (2.1900), which we have discussed so
extensively, yields the dominant contribution to radiative corrections to the energies
of muonic atoms. In this section we give some illustrative examples. We then
discuss other radiative corrections such as the Lamb shift and vacuum polarization
of higher order.

It is not difficult to generalize the result (2.1900) for a point-like charge to the
case of the extended charge density of a nucleus. Here C D �Ze2 D �4�Z˛ and

V.r/ D �Z˛
Z

d3r 0
�.r0/
jr � r0j �

(
1C 2˛

3�

Z 1
1

e�2mjr�r0jx
�
1C 1

2x2

� p
x2 � 1
x2

dx

)
;

(2.198)
where �.r/ is the charge density normalized to one.

Clearly, the singular properties of the polarization potential and charge density
remain unchanged by the integration over the finite charge density.

If the charge density is spherically symmetric the expression (2.198) simplifies
somewhat. The first term on the r.h.s. transforms into the uncorrected spherical
potential (2.117). The integral over angular variables in the polarization potential
can be done by elementary means (exercise!) giving

Vvacpol.r/ D �Z˛ 2˛
3m

Z 1
0

dr 0
r 0

r
�.r 0/fI.jr � r 0j/� I.r C r 0/g (2.199)

with

I.z/ D
Z 1
1

e�2mzx

�
1C 1

2x2

� p
x2 � 1
x3

dx:

In a deformed nucleus, the multipole expansion (2.133) of the charge density should
be inserted into (2.198). (We see from this, in particular, that vacuum polarization
will also contribute to electric quadrupole hyperfine structure.)

Let us now illustrate the importance of vacuum polarization of order .O.˛Z˛/
by a few practical examples and let us compare this correction to the remaining
radiative corrections.

In the second column of Table 2.4 we give the transition energy 2p1=2 � 1s1=2
in four typical atoms. The third column shows the order ˛Z˛ vacuum polarization
whilst the fourth and fifth columns show vacuum polarization corrections of higher
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Table 2.4 Realistic 2p1=2 � 1s1=2 transition energies and radiative corrections in muonic atoms.
(The transition energies contain all corrections.) Numbers taken from Engfer et al. (1974)

Nucleus

Trans.
energy
[keV]

Vac. pol.
˛Z˛

[keV]

Vac. pol.,
higher
orders
[keV]

Lamb
shift

[keV]
12
6 C 75:25 0:372 0:002 �0:006
nat
20 Ca 783:79 6:049 0:044 �0:208
116
50 Sn 3418:99 25:455 0:109 �1:548
208
82 Pb 5778:01 34:804 �0:106 �2:683

Table 2.5 Lamb shifts in muonic hydrogen and helium. All energies in meV .D 10�3 eV/.
Calculated values from Borie and Rinker (1982). Experimental values from Carboni et al. Nucl.
Phys. A278(1977)381, Pohl et al. Nature 466 (2010) 213

1
1H

4
2He

Lamb shift 2p3=2 � 2s1=2 2p1=2 � 2s1=2 2p3=2 � 2s1=2 3d3=2 � 3p3=2
fine structure 8.4 0 145.7 0
vac. pol. ˛Z˛ 204.9 1665.8 1666.1 110.560
vac. pol., higher 1.5 12.0 12.0 0.925
vertex correction �0:6 �11:1 �10:8 �0:069
recoil � 0 �0:2 �0:2 0.005
finite size of nucleus �3:4˙ 0:1 �103hr2ia/ �103hr2ia/ � 0
polarizability � 2� 10�2 3:1˙ 0:6 3:1˙ 0:6 � 0
total theoretical 210:8˙ 0:1 1380.9(4.2) 1527.2(4.2) 111.42
experiment 206:295˙ 0:003 1381.3(0.5) 1527.5(0.3)
.a/hr2i1=2 D 1:674˙ 0:012 fm.

order and the remainder of the Lamb shift, respectively. Clearly, the O.˛Z˛/ term
is the dominant correction in all cases.

Table 2.5 shows the radiative corrections for muonic hydrogen and helium 4. The
second column contains the radiative and other contributions to the energy splitting
of the 2p3=2 and 2s1=2 states in hydrogen. The origin of individual contributions is
indicated in the first column. The correction labeled “polarizability” is explained in
the next section. The third and fourth column give the details of the Lamb shift in
the n D 2 states of muonic 4He. The last column, finally, shows an example for the
Lamb shift in the n D 3 levels of helium.

The bottom line shows the experimental results obtained for the n D 2 system
in helium. The agreement with the theoretical predictions is excellent. However,
the uncertainty on the theoretical numbers is about a factor of ten larger than the
experimental error bar. As may be seen from the table, this uncertainty stems almost
entirely from the finite-size correction, i.e. from the experimental error bar of the
r.m.s. radius of 4He. The polarizability shift is also sizeable but is believed to be
calculable to at least the accuracy indicated in the table. In this respect, the n D 3
states in helium and the Lamb shift in hydrogen are somewhat clearer tests of
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Fig. 2.15 (a) Vacuum polarization to order ˛2.Z˛/, Z being the charge of the external potential.
The double line represents the external, bound muon. (b) Vacuum polarization of order ˛.Z˛/2nC1

for n D 1 and higher

radiative corrections as both the finite size and polarizability corrections are small.
So far, these shifts have not been measured.

In the examples shown in Tables 2.4, 2.5 the corrections due to vacuum
polarization of order higher than ˛Z˛ are due primarily to

(i) the terms of order ˛2Z˛ which are depicted in Fig. 2.15(a),
(ii) terms of order ˛.Z˛/3 (more generally ˛.Z˛/2nC1/ which are illustrated by

Fig. 2.15(b). These latter terms, even though they are proportional to ˛4, appear
enhanced in heavy nuclei because .Z˛/ is no longer small compared to one.
For example, in lead we have Z˛ ' 0:6. Here the correction to the 2p � 1s
transition energy due to diagram (b) is as large as 40 eV. Other corrections
such as vacuum polarization due to a virtual muon loop are found to be
very small.

Finally, the remaining radiative corrections, i.e. the Lamb shift and the anoma-
lous magnetic moment interaction, can be represented by additional potentials in
the muon’s wave equation. The details and references to the literature are found in
Vol. I, Chapter III of [MUP77].

We may summarize this section by saying that vacuum polarization of order˛Z˛
is tested at a level of a few parts per million. The higher order terms of vacuum
polarization are tested to about 20%. This provides another piece of evidence
for the success of quantum electrodynamics, which is complementary to the very
impressive classical tests of QED in electronic atoms and in the g-factor anomaly
of electron and muon.
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2.8 Deep Inelastic Scattering

2.8.1 Inclusive Electron Scattering

Scattering experiments of electrons on hadronic targets may be designed in yet
another, qualitatively different, manner. Suppose the experimental arrangement is
such that, while the energy of the incident electronE � me is held fixed, the energy
E 0 and the angular distribution of the outgoing electron are measured, irrespective of
the final state into which the hadron has turned. This means, in other words, that the
experiment determines the doubly differential cross section for inclusive scattering

d2�.E �E 0; 	/
dE 0d�0

.eC h! e0 CX/; (2.200)

where h is a nucleon (proton or neutron), or a nucleus, X stands for the sum and
integral over all final hadronic states that can be reached by electro-excitation at the
energy transfer E � E 0 and momentum transfer q2 D �.k � k0/2 (corresponding
to the scattering angle 	). Both elastic scattering and inelastic scattering to specific
final states probe coherent properties such as (ground state or transition) charge
and current densities. If both the energy transfer and the momentum transfer are
chosen large enough, inclusive scattering becomes insensitive to coherent properties
such as wave functions describing the target h but, in turn, probes the “granularity”
of the target. As both nuclei and nucleons are made up of constituents whose
spatial size is smaller than the target’s size, this means that inclusive, deep inelastic
scattering probes the constituents rather than the hadron h which they form. This
is particularly interesting in the case of nucleonic targets because this is one of the
ways to study the nature of quarks, or, more generally, partons in hadrons. Neither
quarks nor gluons can exist as free particles. Only composite states with certain
well-defined quantum numbers describe physical hadrons. Indeed, historically, deep
inelastic scattering was essential in unravelling the constituent structure of proton
and neutron.

In the approximation which assumes that electro-excitation is due to the
exchange of one virtual photon, the cross section (2.200) can be expressed in
terms of a few Lorentz scalar, hadronic structure functions and some known
functions of energy and scattering angle. The structure functions which are extracted
from experiment, can then be analyzed in terms of the internal structure of the
target h.

For the sake of definiteness take h to be a proton of four-momentum p, and
let k and k0 denote the four-momenta of the electron before and after the scattering
process. In a first step we write down the cross section for the process eCp ! eCm
where m is a final state, containing m particles, which carries the right quantum
numbers and is in accord with conservation of energy and momentum. A process
of this type is sketched in Fig. 2.16. According to the Feynman rules for quantum
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Fig. 2.16 An electron of
momentum k converts a
proton (momentum p) to an
m-particle state, via exchange
of a virtual photon

k

q

P (m)p

k

electrodynamics, App. C, the transition amplitude corresponding to the diagram of
Fig. 2.16 reads

R.m/ D �i
2�e2

q2
u.k0/��u.k/hmjj�.0/jpiı.pC k � k0 � P .m//:

Here, P .m/ is the sum of four-momenta in the final state m, i.e. P .m/ D p1 C
p2 C : : :C pm; k � k0 is the momentum transfer delivered by the electron, j�.x/
denotes the electromagnetic current operator. Thus, in the approximation of one-
photon exchange q WD k � k0 is the four-momentum of the virtual photon. The
T -matrix element needed in the expression (B.3) for the cross section is obtained
fromR.m/ by the defining relation (B.2). In the laboratory system, the struck proton
is at rest, p D .M; 0/, while k D .E; k/, and k0 D .E 0; k0/. As the energy of the
incident electron is large compared to the rest mass,E � me, the electron mass can
be neglected in the kinematics so that

jkj � E; jk0j � E 0; and q2 D .k � k0/2 � �2EE 0.1 � cos 	/;

where q2 is the same as t , (2.51b). In the same approximation the flux factor (B.4)
is approximately ME. Thus, integrating over the momenta of the hadronic final state
and summing over all spin orientations,

d2�.m/ D .2�e/4

2MEq4

0
@1
2

X
spins

`��`v

1
A

1

2

X
spins

Z
d3p1
2E1
� � �
Z

d2pm
2Em

hpjj��.0/jmihmjj v.0/jpiı.pC k � P .m//

�k02d jk0jd�0
2E 0

:
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Here `� stands for the matrix element of the electromagnetic current taken between
electron spinors in momentum space, `� D u.k0/��u.k/; k02 � E 02, and djk0j �
dE 0. Summing over all final states which are allowed by the selection rules and
by energy-momentum conservation, one obtains the inclusive cross section (with
e2=4� D ˛, in natural units)

d2�

dE 0d�0
D ˛2 E

0

ME

1

q4
w��W

��: (2.201)

In this expression the Lorentz tensorsw��; W �� are defined as follows. The leptonic

contribution is contained in the tensor w�� WD
�
†spins`

�
�`�

	
=2, where the sum over

all spin orientations is taken. It is easily evaluated by means of the trace formulae
(C.2) and (C.4) of App. C2, viz.

w�� D 1

2
trf.�k Cme/��.�k0 Cme/��g � 2.k�k0� C k0�k� � .kk0/g��/; (2.202)

the second, approximate, equality holding ifme is neglected. The hadronic tensor is
defined by

W �� WD 2�2

0
@1
2

X
spins

1
AX

m

0hpjj�.0/jmihmjj �.0/pi.2�/4

� ı.P .m/ C k0 � p � k/; (2.203)

where P .m/ D p1 C � � � C pm, the
P0

m being shorthand for

X
m

0 D
X
m

Z
d3p1
2E1
� � �
Z

d3pm
2Em

; with Ei D p.i/0:

In (2.203) we have made use of the fact that the electromagnetic current operator
is hermitean. Note that W �� depends only on matrix elements of j� between on-
shell states. Owing to the delta distribution in the four-momenta, the sum †0m can
be understood to stand for the completeness relation for states with total energy–
momentum equal to P .m/ D .p C k � k0/ D p C q. As a consequence†0mjmihmj,
taken between hpjj� and j � jpi, can be replaced by unity. Furthermore, writing the
delta distribution as an integral and making use of a translation formula of the type
(2.420), we have

.2�/4ı.p C q � P .m//hpjj�.0/jmi D
Z

d4xei.pCq�P .m//hpjj�.0/jmi

D
Z

d4xeiqxhpjj�.x/jmi:
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Hence, an alternative way of writing (2.203) is the following

W �� D 2�2
0
@1
2

X
spins

1
AZ d4xeiq�xhpjj�.x/j �.0/jpi; .q D k � k0/: (2.204)

In this expression one can replace the product j�.x/j �.0/ by the commutator
of these operators because the extra term that is added vanishes due to energy–
momentum conservation. This is seen as follows: Making use again of a translation
formula,

Z
d4xeiq�xhpjj �.x/j�.x/jpi D

X
m

0 Z
d4xeiq�xe�i.p�P .m//�xhpjj �.0/jmihmjj�.0/jpi

D
X
m

0
.2�/4ı.4/.q C P .m/ � p/hpjj �.0/jmihmjj�.0/jpi:

The 0-component of the delta distribution takes care of energy conservation and
reads ı.1/.E � E 0 C P .m/0 �M/, in the laboratory system. As E � E 0 � 0 and
P .m/0 > M , the argument of this delta distribution can never be zero, hence the
whole expression vanishes. Thus, we find the following, general expression forW ��

W �� D 2�2
0
@1
2

X
spins

1
AZ d4xeiq�xhpjŒj �.x/; j � .0/�jpi: (2.204’)

This form of the hadronic tensor is often useful in deriving, for instance, general
properties of the hadronic contribution (such as crossing symmetry or Ward
identities).

The following result, although not needed in the definition of structure functions
and the derivation of cross sections which follows, is nonetheless of intuitive
interest.

Remark: One shows that the amplitude (2.204) is intimately related to the Compton
amplitude for the scattering of a photon with mass q2 ¤ 0, hence a virtual photon,
from a proton. The exact relation is

Im T .�.q/C p ! �.q/C p; 	 D 0/ D e2

.2�/5
"�"�W

��;

where "� denotes the polarization of the photon. Thus W �� is proportional to the
imaginary part of the Compton amplitude in the forward direction, for a photon that
is not on its mass shell. By the optical theorem (Sect. 6.1.3) this means that it is
proportional to the total cross section for scattering of virtual photons of mass q2 on
protons.
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2.8.2 Covariant Decomposition of W �� and Cross Section

Clearly, W �� is a Lorentz tensor in momentum space and, as such, must be
decomposable into covariants multiplied by Lorentz scalar functions, in close
analogy to the decomposition (2.46) of a current matrix element. Conservation of
the electromagnetic current, @�j�.x/ D 0, implies the relations

q�W
�� D 0; W ��q� D 0: (2.205)

The first of these follows if we make the replacement q�eiq�x D .@�eiq�x/=i and
shift the partial derivative to j�.x/ by partial integration. The second follows by
observing that the argument x in (2.204) can be shifted to the second operator
by means of the translation hpjj�.x/j �.0/jpi D hpjj�.0/j �.�x/jpi, and by
substituting x ! �x. An analysis of physical dimensions in (2.201) shows that
W �� is dimensionless. Indeed, the left-hand side of (2.201) has dimension E�3.
The kinematic factor on its right-hand side has dimension E�5, while the electron
tensor w�� has dimensionE2.

The only Lorentz tensors constructed from the available momenta and the
invariant tensors g�� and "���� which obey the conservation conditions above are

�
g�� � q

�q�

q2

�
;

�
p� � q� .pq/

q2

��
p� � q� .pq/

q2

�
; "����q

�p� :

While the first two of these are genuine Lorentz tensors (i.e. transform withƒ˝ƒ,
where ƒ is a Lorentz transformation), the third is a pseudotensor (i.e. transforms
with .det ƒ/ .ƒ˝ƒ/. As the two current operators in (2.204) both have the same,
definite parity, their product is even and W �� can depend only on the first two
tensors, not on the third. Therefore, the most general decomposition of the hadronic
tensor must have the form

W �� D �
�
g�� � q

�q�

q2

�
W1 C 1

M2

�
p� � q� .pq/

q2

��
p� � q� .pq/

q2

�
W2:

(2.206)
The functions W1 and W2 which are called structure functions are Lorentz scalars
and, as such, can depend only on scalar variables. In inclusive scattering the only
Lorentz scalar variables are

q2 D .k � k0/2 labD 2.m2
e �EE 0 C k � k0/ � �4EE 0 sin2.	=2/;

v WD .pq/

M
labDE � E 0: (2.207)

(The third kinematic invariant p2 is constant and equals M2.) The variable � is
defined such as to be equal to the energy loss of the electron in the laboratory
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system. The factor M2 in the denominator of the second term in the defining equa-
tion (2.206) is introduced in order to make both structure functions dimensionless.
In summary, the Lorentz scalar functions

W1.�; q
2/; W2.�; q

2/ (2.208)

contain all the information on the structure of the target that can be extracted by
means of electron scattering at any transfer of energy and momentum.

The cross section for inclusive scattering is computed as follows. Since q2 and �,
as defined in (2.207), are the relevant variables, it is convenient to derive the doubly
differential cross section with respect to these variables instead of E 0 and 	 . From
E 0 D E � v; cos 	 D 1C q2=.2E.E � v// the Jacobian @.E 0; cos 	/=@.v; q2/ is
found to be .2EE0/�1. Thus

d2�

d�q2
D �

EE 0
d2�

dE 0d�
:

Inserting the result (2.202) and the decomposition (2.206) into the expression
(2.201) one finds

d2�

d�dq2
D �

EE 0
2˛2E 0

q4EM

�
W1

�
.kk0/C 2

q2
.kq/.k0q/

�
� W2

M2

�
.kk0/

�
M2 � .pq/

2

q2

�

�2
�
.kp/ � 1

q2
.qp/.qk/

� �
.k0p/ � 1

q2
.qp/.qk0/

���
:

Indeed, to take an example, the term that multiplies W1 is

.k�k
0
� C k0�k� � .kk0/g�� /

�
q�q�

q2
� g��

�
D 2.qk/.qk

0/
q2

� 3.kk0/C 4.kk0/;

the last term following because g��g�� D 4.
Remembering that the electron mass is neglected we have

.kq/ � �.kk0/ � �.k0q/; q2 � �2.kk0/; .kk0/ � EE 0.1 � cos 	/;

so that W1 obtains a factor 2EE0.1 � cos 	/ while W2 appears multiplied with

�EE 0.1� cos 	/� 1
2
.E � E 0/2 C 1

2
.E CE 0/2 D EE 0.1C cos 	/:

This gives the final result

d2�

d�dq2
D 4�˛2E 0

q4EM

�
2W1.�; q

2/ sin2
	

2
CW2.�; q

2/ cos2
	

2

�
(2.209)
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It should be clear from the discussion above that this general formula contains all
scattering processes that occur if an electron with fixed energy E hits a proton.
For instance, in elastic scattering the kinematic variables (2.207) are related by
q2 C 2Mv D 0. This is easily verified: Energy–momentum conservation requires
p C k D p0 C k0. The process is elastic if p02 D M2 D p2. Thus, with
q D k � k0 we have p02 D .q C p/2 and, hence, q2 C 2.qp/ D q2 C 2Mv D 0.
As a consequence we expect the structure functions W1 and W2 to contain additive
contributions proportional to ı.vC q2=2M/which reproduce the expression (2.570)
for elastic scattering that we calculated in Sect. 2.4.2,3. Similarly, if the scattering
process leads to an isolated resonance, viz. e C p ! e C �; p02 D M2

� where
M� is the mass of that resonance. The structure functions should then contain terms
proportional to ı

�
vC q2=2M � �M2

� �M2
�
=2M

�
.

The general kinematic situation will be as sketched in Fig. 2.17: In the plane
spanned by the variables � and .�q2/ the kinematics of the elastic process is the
straight line q2 C 2Mv D 0 and the kinematics of production of a single resonance
is the straight line q2 C 2Mv � �M2

� �M2
� D 0. The threshold for the continuum

where more than one particle is produced at the hadronic vertex lies somewhere in
between. Figure 2.17 also shows typical kinematic lines which are obtained if the
energy loss is varied, while the scattering angle is held fixed, 	 D const.

The kinematic domain where both .�q2/ and � are large i.e. the domain far to
the right in Fig. 2.17, is called the deep inelastic region. It is this domain which is
the most revealing with regard to the constituent structure of the proton.

2.8.3 An Example: Elastic Scattering from the Proton

In the case of elastic scattering the final state is again the proton, the momentum
transfer is q D k � k0 D p0 � p. The sum over intermediate states †0m reduces to
m D 1 and to an integral over the momentum p0 of the proton in the final state. The
hadronic matrix element has the familiar decomposition (2.46) with F3.Q2/ � 0,
or, when transformed by means of the Gordon identity, the covariant form (2.460).
We consider first the integration over the delta distribution in (2.203). With f: : :g
denoting the remainder of the integrand, we have

Z
d3p0

2E 0p
ı.4/.k C p � k0 � p0/f� � � g D ı.1/.E CEp �E 0 � !0/ 1

2!0
f� � � gp0DpCq

labD 1

2!0
ı.1/.� CM � !0/f� � � g;

where we have set !0 D p
M2 C .k � k0/2 D p

M2 C v2 � q2. Since (2.209)
depends on �, not on !0, we must rewrite the argument of the delta distribution in
terms of the variable �. This is done by means of the formula
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Fig. 2.17 Kinematics of electron–proton scattering to any final state. For a given final hadronic
state the variables � and q2 are linearly dependent, as shown. Also, lines of constant scattering
angle are drawn

ı.f .x// D ı.x0/

jf 0.x0/j ; with x0 a single zero off .x/:

Thus, with d.� CM � !0.�//=d� D 1 � �=!0,

1

2!0
ı.� CM � !0/! 1

2!0
!0

!0 � � ı
�
� C q2

2M

�
! 1

2M
ı

�
� C q2

2M

�
:

The hadronic tensor for elastic scattering becomes

W
��

elastic D
1

4

2X
r;sD1

ı

�
�C q2

2M

�
1

2M
u.r/.p/

�
.F1CF2/�� � .pCp0/� F2

2M

�
u.s/.p0/:

u.s/.p0/
�
.F1 C F2/�� � .p C p0/� F2

2M

�
u.r/.p/:
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The traces are the same as in Sect. 2.4.2. and we do not repeat their calculation
here. However, instead of expressing the kinematic invariants in terms of s and t (as
we did in Sect. 2.4.2.) we write the result such as to conform to the general form
(2.206). Using .pq/ D �q2=2, and .pp0/ DM2 � q2=2 one finds

W
��

elastic D ı

�
� C q2

2M

�
1

2M

�
�
�
g�� � q

�q�

q2

��
�q

2

2
.F1 C F2/2

�

C 1

M2

�
p� � q� .pq/

q2

��
p� � q� .pq/

q2

�
2M2

�
�
F 2
1 �

q2

4M2
F 2
2

��
:

It is convenient to replace F1 and F2 by the electric and magnetic (Sachs) form
factors (2.58) and (2.61), with t D q2 as defined in (2.51b). Then

F 2
1 �

q2

4M2
F 2
2 D

1

1 � q2=.4M/

�
G2

E �
q2

4M2
G2

M

�
;

so that the structure functions describing elastic scattering are found to be

W elastic
1 D �ı

�
� C q2

2M

�
q2

4M
G2

M (2.210)

W elastic
2 D ı

�
� C q2

2M

�
M

1 � q2=.4M2/

�
G2

E �
q2

4M2
G2

M

�
: (2.211)

It remains to insert this result into (2.209) and to integrate over the variable �.
Finally, the resulting cross section d�=dq2 is easily converted to the form d�=d�0
through

d�

dq2
D d�

d�0
2�

d.cos 	/

dq2
:

q2 is the same as the variable t for which we derived the expression (2.36) in the
laboratory system (neglectingme). There we also calculated the derivative

dt

d.cos 	/
� dq2

d.cos 	/
D 2E2

Œ1C .E=M/.1� cos 	/�2
:

Using the relation (in the laboratory system) E 0 D E=Œ1 C E=M.1 � cos 	/�
and collecting results, one indeed rediscovers the formula (2.570) for the elastic
differential cross section due to Rosenbluth (1950).
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2.8.4 Counting Quark Generations

The annihilation of positrons on electrons in a colliding beam experiment, in
principle, is a simple and direct way of discovering new quark generations. Indeed,
at the level of the hadronic constituents, eCe�-annihilation into quark-antiquark
pairs may be compared to the well-known QED process eCe� ! �C��. For s
large as compared to m2

� the production cross section for the latter is calculated
to be

� tot.eCe� ! �C��/ ' 4��2

3s
:

(For a derivation of this formula see e.g. [QP07], Chap. 10.) All quarks carry
nonvanishing electric charge. Therefore, a pair of a quark f of mass Mi and
charge ei , and its antiquark Nf is created in eCe�-annihilation as soon as the squared
center-of-mass energy is larger than the corresponding threshold si D .2Mi/

2; s �
si . The ratio of the cross section for creation of all such pairs up to this threshold to
the cross section for creation of a �C��-pair is found to be (see, e.g., [QP07])

�tot.e
Ce� !P

.f Ci f �i //
�tot.eCe� ! �C��/

' 1C
X

e2i

q
1 � 12M2

i =s
2 � 16M4

i =s
3; (2.212)

ei being the electric charge of the quark fi . Thus, at every threshold for the
production of a new pair

�
f Ci f �i

�
the ratio (2.212) is expected to increase by an

amount roughly proportional to the square e2i of the charge. As an example, it may
be instructive for the reader to draw this ratio for the known quark generations, in
the order of increasing masses,

.Nss/ (mass 95 MeV, charge �1=3),

. Ncc/ (mass 1.27 GeV, chargeC2=3),

. Nbb/ (mass 4.68 GeV, charge �1=3), and

.Nt t/ (mass 171.2 GeV, chargeC2=3).

Indeed, this stepwise increase of the ratio (2.212) as a function of the variable s is
born out by experiment. Up to the inclusion of colour (see Sect. 3.5.1 below) and
of corrections that are calculable from Quantum ChromoDynamics (QCD), there is
good agreement between data and predictions.

2.8.5 Deep Inelastic Scattering and Parton Structure of Nucleons

The technique of deep inelastic scattering on protons and neutrons is very powerful
in unravelling the internal structure of these particles in terms of their constituents.
Historically the first empirical evidence for the fact that quarks were indeed genuine
constituents of nucleons, and not merely mathematical tools for classifying hadrons
in SU(3) multiplets, came from hadronic total cross sections such as �.pp/ and
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�.�p/ whose ratio seemed to be determined by the number of quarks or antiquarks
contained in protons and pions, respectively24. The amazing observation was that,
e.g., �.pp/=�.�p/ at sufficiently high energy was equal to 3/2, reflecting the
fact that a proton is made predominantly out of three quarks while a pion is
predominantly a quark-antiquark state. In analogy to atomic physics the three quarks
uud in the proton, and udd in the neutron are called valence quarks. This picture of
nucleons in an additive quark model, does not exclude the presence of other stuff
in a proton, depending on the momentum scale at which it is being probed. Once
the quark structure of nucleons was established, some obvious questions that came
up were: How to confirm the third-integral electric charges of quarks? How does
the spin of the nucleon arise, from the spins of the constituent quarks, from relative
angular momenta, or from other components of its ground state?

Remarkably, deep inelastic scattering of electrons, and also of neutrinos, after the
necessary generalization to the charged and neutral weak interactions (see below),
allows to probe the nucleon’s structure in much more detail. The information that
can be obtained by deep inelastic scattering of electrons is contained in the structure
functions W1; W2, cf. the definition (2.206), and a third such function if spin-
sensitive measurements are made. In (2.207) the invariants q2 D .k � k0/2 and
v D .pq/=M were defined. It is customary to use instead of these the variables

Q2 WD �q2; (2.213a)

defined such as to be positive everywhere in the physical region, and

x WD Q2

2M v
; (2.213b)

y WD .qp/

.kp/
; (2.213c)

both of which have simple physical interpretations. For example, with respect to the
nucleon’s rest frame,

y WD .qp/

.kp/
D v

E
D E � E 0

E

is the fraction of the energy of the electron lost in the collision. The variable x, in
turn, is the fraction of the nucleon’s momentum carried by the quark which is struck
in the process. This can be seen as follows.

The proton or neutron is assumed to be an ensemble of a small number of loosely
bound constituents. These constituents which are called partons, in the simplest
case, are just the quarks of the additive quark model. In this picture the quarks move
almost freely along the momentum of the proton so that quark number i carries a

24H.J. Lipkin, F. Scheck; Phys. Rev. Lett 16 (1965) 71; E.M. Levin, L.L. Frankfurt; JETP Letters
2 (1965) 65.
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fraction pi D Ÿp of the proton’s momentum with 0 < Ÿ < 1. Neglecting all masses
the Mandelstam squared energy variable of the electron-quark system is

s.i/ D .pi C k/2 ' 2.pik/ D 2�.pk/:

If s denotes the corresponding invariant for the electron-proton system, s D .p C
k/2 ' 2.pk/, then s.i/ D �s. It seems natural to assume that the scattering of the
electron on quark i is elastic, so that p0i D pi Cq. The mass of the quark in the final
state being negligible, too, one has

0 ' .pi C q/2 D 2.piq/C q2 D 2�.pq/ �Q2 D 2�M v�Q2 D 2M v.� � x/:

Therefore, in the limit of vanishing masses x D �, as was to be shown.
The invariant cross section is obtained from (2.56) above with F1 � 1 and

F2 � 0, and by neglecting the masses M andm,

d�

dt .i/
' 4�˛2e2i

t .i/2
s.i/2 C t .i/s.i/

s.i/2

�
1C t .i/2

2.s.i/2 C t .i/s.i//
�

D 2�˛2e2i
t .i/2

s.i/2 C .s.i/ C t .i//2
s.i/2

: (2.214)

The distribution of the proton’s momentump among the partons/quarks is measured
by a parton distribution function fi .�/ for each species i . These functions describe
the internal structure of the proton. Since there is no known method for calculating
them, they are usually taken from empirical fits to a set of scattering data.

With t .i/ D q2 D �Q2; s.i/ D Ÿs, and Ÿ D x the cross section for the proton is
obtained from (2.214) by integration over the distribution function and reads

d�

dQ2
D 2�˛2e2i

Q4

Z 1

0

dx fi .x/

(
1C

�
1 � Q

2

xs

�2)
;

from which one obtains the double-differential cross section

d�

dQ2dx
D 2�˛2e2i

Q4
fi .x/

(
1C

�
1 � Q

2

xs

�2)
; (2.215a)

This formula exhibits a remarkable feature: If one divides the cross section by the
factor (

1C
�
1 � Q

2

xs

�2)
;

which, obviously is of a purely kinematic origin, then there remains an expression
which depends on the variable x only,
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(
1C

�
1 � Q

2

xs

�2)�1
d�

dQ2dx
D 2�˛2e2i

Q4
fi .x/: (2.215b)

This result from a simple constituent model for the proton, is called Bjorken
scaling25. It rests on the assumption that during the time scale which is typical for
the scattering process the quarks in the proton behave as if they were free particles.
Interactions between them are neglected at this level.

The analysis of deep inelastic scattering on nucleons with electrons and neutrinos
as projectiles, is an important branch of modern elementary particle physics, both in
experimental high energy physics and in theory26. Here we restrict our summary to
electrons only, without terms depending on polarization.

There are many ways of defining the structure functions. A conventional choice
adopted in the Review of Particle Physics quoted above is the following. Instead
of the structure functions Wi , cf. (2.206), and without polarization dependence,
one uses

F1.x;Q
2/ WD W1.v;Q

2/; F2.x;Q
2/ WD .pq/

M2
W2.v;Q

2/; (2.216)

in terms of which the cross section becomes

d2�

dxdy
D 4�˛2

xyQ2

�
xy2F1.x;Q

2/C
�
1 � y � x

2y2M2

Q2

�
F2.x;Q

2/

�
: (2.217)

It is instructive to verify that this formula is the same as (2.209). The Jacobian of
the transformation from the variables .x; y/ to the variables .v; Q2/ is

@.x; y/

@.v;Q2/
D
ˇ̌
ˇ̌det

��Q2=.2M v2/ 1=.2M v/
y=v 0

�ˇ̌ˇ̌ D y

2M v2
;

so that
d2�

dxdy
D 2M v2

y

d2�

dvdQ2
:

For example, in the limit of large energy, neglecting the masses of the electron and
the quarks, one has in the laboratory system

v ' E � E 0; x ' EE 0

M.E � E 0/ .1 � cos 	/; y ' E �E 0
E

:

25J.D. Bjorken, E.A. Paschos; Phys. Rev. 185, 1975 (1969).
26A good summary is the review on structure functions by B. Foster, A.D. Martin, M.G. Vincter,
in K. Nakamura et al. (Particle Data Group), J. Phys. G 37, 075021 (2010), Reviews, Tables, and
Plots, p.188 where many recent references are given. The Review of Particle Physics can also be
found at http://pdg.lbl.gov/

http://pdg.lbl.gov/
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The cross section (2.217) is then given by

d2�

dxdy
' 4�˛2E 0

Q4
f.E � E 0/2.1� cos 	/F1.x;Q2/CM.1C cos 	/F 2.x;Q2/g;

so that, upon insertion of the definitions (2.216) with .pq/=M2 D .E �E 0/=M

d2�

dvdQ2
D y

2M v2
d2�

dxdy
' 4�˛2E 0

Q4

1

2ME

�
�
2.1� cos 	/F1.x;Q

2/C M

E �E 0 .1C cos 	/F2.x;Q
2/

�

D 4�˛2E 0

Q4EM
f2 sin2.	=2/W1.v;Q

2/C cos2.	=2/W2.v;Q
2/g:

This is what we obtained in (2.209).
In the case of longitudinally polarized electrons there is a third structure function

F3.x; Q
2/ whose contribution depends on the helicity œ D ˙1 of the electron.

If weak interactions are taken into account, i.e. instead of photon exchange there is
Z0� and/or W ˙–exchange, and if, alternatively, neutrino scattering is measured,
there are additional coupling terms and more structure functions (see reference
quoted above).
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Exercises

2.1. Show that (2.17b) can be transformed into (2.17a) by means of a rotation and
a reflection. If the interaction is invariant with respect to these operations, the
scattering amplitudes must be the same.

2.2. Derive the cross section (2.26,2.35) for electron scattering off a spin-zero
target, on the basis of Feynman rules.

2.3. Prove (2.41) starting from (2.39). Hint: Consider first the case of an infinites-
imal translation. Then make use of

ex D lim
n!1.1C x=n/

n:

2.4. Prove relation (2.93) and use this relation to calculate the interaction term
(2.92).

2.5. Derive the elastic form factor for a homogenous charge density (2.102).
Calculate the cross section and discuss the result.

2.6. Prove the representation (2.129). Hints: First derive an equation for
.d=dr/W.r/, with W.r/ as defined in (2.128), by combining the differential
equations (2.1050) for the two potentials. Calculate W.r D R1/ at some
large radius, making use of the asymptotic forms of the radial functions, and
let R1 go to infinity.

2.7. An unstable particle of lifetime � is produced with a given energy E on a
fixed target in the laboratory. Over which length can one reasonably hope to
transport a beam of such particles? Consider the example of muons and pions
at kinetic energies between 10 MeV and 200 MeV.

2.8. For � < 0; l D ���1, show that rgn�.r/ ' ynl.r/. This means that the states�
n; �; j D �� � 1

2
D l C 1

2

�
and

�
n; � 0 D �� � 1; j D �� � 3

2
D l � 1

2

�
have the same radial wave function in the nonrelativistic limit.

2.9. For circular orbits compare the fine structure splitting as predicted by (2.162)
with the one obtained in first-order perturbation theory from

Vls D 1

2m2

1

r

dV

dr
l � s:

and nonrelativistic wave functions.
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2.10. In a muonic atom consider two potentials V1 and V2 which differ only over
the nuclear domain. Expand the muonic density according to j‰j2 ' a C
br C cr2 and show that the eigenvalues of the energy for V1 and V2 differ
approximately by

�E D Ze2 2�
3
a

�
�
˝
r2
˛C b

2a
�
˝
r3
˛C 3c

10a
�
˝
r4
˛�
;

where �hrni is the difference in the corresponding nuclear charge moments.
Derive an approximate formula for E2p1=2 � E2s1=2 as compared to the value
of this difference in the case of the point charge.

2.11. Prove the following identity, starting from (1.84–1.84’):

.p C p0/˛u.p0/ u.p/ D u.p0/f2M�˛ C i�˛ˇ.p � p0/ˇgu.p/:



Chapter 3
Weak Interactions and the Standard Model
of Strong and Electroweak Interactions

This chapter gives an introduction to the phenomenology and the theory of weak
interaction processes involving leptons and hadrons. In Sects. 3.1, 3.2 we collect the
most prominent and characteristic properties of weak interactions as they follow
from the analysis of a set of key experiments, old and recent. The following
sections 3.3–3.5 deal with the elements of non-Abelian local gauge theories in
general, and with the unified theory of electroweak and strong interactions of
Glashow, Salam and Weinberg (GSW), in particular.

The GSW theory is a minimal theory in the sense that it incorporates all known
phenomenology and successfully describes all known electromagnetic and weak
interaction processes, including the masses and properties of the W-and Z0-bosons.
However, there are good reasons to expect that this minimal model is only an
approximation to some, more global, theory of leptons and hadrons. The underlying
theory could be a larger local gauge theory of all interactions, including the strong
interactions and gravitation. In any event, the minimal GSW theory needs to be
tested in precision experiments at all available energies. Sections 3.6, 3.7 are
devoted to a discussion of such tests and to specific possibilities of searching for
possible deviations from its predictions.

Weak interaction processes involving hadrons have another important aspect:
Assuming the structure of the weak couplings to be known and to be given by
the typical vector and axial vector current couplings, the matrix elements of such
currents, taken between hadronic states, can be used to extract information on
strong interaction quantities. This is analogous to the case of purely electromagnetic
interactions such as electron scattering which allow to determine hadronic form
factors, as described in Chap. 2. This aspect of weak interactions at medium
energies is dealt with in our discussion of various semileptonic decays of hadrons
in Chap. 4.

F. Scheck, Electroweak and Strong Interactions, Graduate Texts in Physics,
DOI 10.1007/978-3-642-20241-4
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3, © Springer-Verlag Berlin Heidelberg 2012
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3.1 Phenomenological Aspects of Weak Interactions

The theory of electroweak interactions of leptons can be formulated in terms of
elementary fermion fields and in terms of interaction Lagrangians and equations of
motion derived from them, whose solutions can be constructed in straightforward
perturbation theory. Weak processes involving hadrons are complicated by the fact
that any hadronic matrix element of weak interaction vertices is renormalized by
strong interactions and is not readily calculable in a perturbation series. In the first
place, however, it is not so much the absolute magnitude of weak hadronic matrix
elements that matters, but rather their Lorentz-structure, their quantum numbers and
selection rules.

The Lorentz structure and form factor decomposition of the hadronic matrix
element of a given Lorentz tensor operator T˛ˇ:::

hAjT˛ˇ:::jBi

is well defined as soon as the spins and the intrinsic parities of the hadronic states A
and B are known. Let us consider some examples: The matrix element of a vector
current between a one-pion state and the vacuum must vanish,

h0j�˛.x/j�.q/i D 0; (3.1)

independently of what that vector current is and of what the internal structure of the
one-pion state is. This is so because under rotations

�0 behaves like an object with spin/parity 0C;

� behaves like an object with spin/parity 1�: (3.2)

The vacuum state carries total angular momentum zero and is assigned positive
parity. The pion has no spin and carries negative intrinsic parity. Its orbital state
can be decomposed into states of good orbital angular momentum l D 0; 1; 2; 3; : : :
whose parity is .�/l . Combining the intrinsic and orbital properties one sees that
the states of good total angular momentum and parity of the pion are

.J p/� D 0�; 1C; 2�; ::: (3.3)

Obviously, none of these possibilities, when combined with the properties (3.2) of
the operator �˛, can yield the (JP /vac D 0C of the vacuum state. Hence the matrix
element (3.1) vanishes.

On the other hand, if instead of a vector operator we consider the same matrix
element of an axial vector operator,

h0ja˛.x/j�.q/i; (3.4)
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then this matrix element need not be zero because under rotations

a˛ behaves like f0�; 1Cg; (3.5)

which can indeed be coupled with (JP /� to form the vacuum state 0C. If the pion
state is a plane wave with four momentum q we can translate the operator a˛.x/ to
x D 0, or some other fixed point in space–time. From (2.42) we have

h0ja˛.x/j�.q/i D e�ixqh0ja˛.0/j�.q/i: (3.4’)

Whether or not this quantity is different from zero now depends on the internal
quantum numbers of a˛ . The current a˛.x/ must contain a piece proportional to an
interpolating pion field, i.e. a field that can indeed create or annihilate a one-pion
state. This field, therefore, must carry the quantum numbers of isospin, strangeness,
baryon number, etc. of one-pion states. If all this is fulfilled, then the matrix element
(3.4) must itself be a vector. Since q is the only vector available, the covariant
decomposition of (3.4) must be

h0ja˛.0/j�.q/i D F�.q2/q˛ 1

.2�/3=2
: (3.6)

However, q2 D m2
� , so the invariant form factor F� , in fact, is a constant. Finally,

from the behaviour of the pion state and of a˛.x/ under time reversal T and charge
conjugation one can show that F� is pure imaginary, F� D if� with f� real. This
will be shown below, in Sect. 4.2.

The selection rules which follow from charge conjugation C , G-parity and the
internal quantum numbers of the hadronic states and the relevant tensor operators
can be kept track of in a transparent manner by writing the weak interaction
covariants in terms of elementary quark fields and by making use of the constituent
quark model for mesons and baryons.1

Therefore we start our discussion of the phenomenology by a summary of the
properties of the leptons and of the quark families, for the sake of reference in the
following sections.

3.1.1 Basic Properties of Leptons and Quarks

(a) The lepton families
Three families of leptons are known to us: the electron e and its neutrino partner
ve, the muon � and its neutrino v�, and the �-lepton accompanied by yet another
neutrino v� : �

ve
e�
��

v�
��

��
v�
��
�
: (3.7)

1For an introduction see [KOK 69].
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The masses of the charged particles of these families are

me D 0:510998910.13/ MeV=c2; (3.8a)

m� D 105:658367.4/ MeV=c2; (3.8b)

m� D 1776:82.16/ MeV=c2: (3.8c)

Actually, the mass ratio of the muon to the electron mass is known to an accuracy
comparable to that of me from the measurement of the muon’s magnetic moment
and of its g-factor anomaly, viz. (Scheck 1978)

m�=me D 206:768259.62/: (3.9)

While the mass m.ve/ of the electron’s partner is known to be small, i.e. less
than about 2 eV=c2, the direct experimental upper limits for m.v�/ and m.v� /
are not very stringent and there is indeed the possibility that they have nonzero
and measurable masses. For example, for the muon neutrino we know only that
m.v�/ < 0:27MeV=c2. The current upper limit for m.v� / is 31MeV=c2. For most
of what we discuss in the following sections the neutrinos can be assumed to be
rigorously massless simply because m.ve/ and m.v�/ are definitely much smaller
than the energy released in the decay processes that we consider.

To the best of our knowledge, neutrinos seem to occur in states of definite helicity
(cf. Sect. 1.8.3), with vf having negative helicity and vf having positive helicity,

h.vf/ D �1; h.vf/ D C1: (3.10)

The density matrix describing the choice (3.10) is given in (1.159) above. Their
charged partners, in contrast, can occur in any polarization state of a spin-1/2
particle. Even in kinematical situations where their mass can be neglected they can
couple to other particles in states of positive and negative helicity: For instance,
a vertex (ee� ) of two external electrons to a real or virtual photon must involve
states of positive helicity and states of negative helicity with equal weight, because
electromagnetic couplings conserve parity.

Each of the three lepton families (3.7) seems to carry its own additive quantum
numberLf which is the only distinctive characteristic for the family (f, vf/ and which
is strictly conserved in all electromagnetic and weak reactions involving leptons.
The eigenvalues of these lepton family numbersLf D Le; L�, or L� are assigned as
follows:

Lf0.f�/ D ıff0 ; Lf0.vf/ D ıff0 : (3.11a)

so that for the antiparticles

Lf0.fC/ D Lf0.vf/ D �ıff0 : (3.11b)
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The total lepton numberL of a given particle `, which is then also strictly conserved,
is given by the sum

L D
X

fDe;�;�

Lf.`/: (3.12)

The dynamical origin of these conservation laws is not known; they are fulfilled to
a very high degree of accuracy. For instance, processes like

�C ! eC C �;
�C ! eCe�eC;

KC ! �CeC��;

KC ! �Ce��C;

in which L is conserved but Le and L� are not, have never been observed. They
are known to be suppressed at the level of nine to twelve orders of magnitude in
branching ratio, as compared to the main decay modes of the parent particle.

(b) The quark families
Except for some exotic states, all hadrons are believed to be composites of quarks
and antiquarks. The low-lying mesons, for instance, should be predominantly states
of one quark and one antiquark with definite relative orbital angular momentum L,
with spin S and total angular momentum J D LC S;LC S � 1; : : :; jL � S j,

.qq/L;S!J :

The spin of the meson is J , its intrinsic parity is P D .�/LC1. If it is an eigenstate
of charge conjugation C , then C D .�/LCS . If P D .�/J one says that the meson
has natural parity. In this case, and if the meson is an eigenstate of C , then one
shows easily that it must have P D C . This is a typical prediction of the quark
model.

The baryons are described by states of three quarks, with or without resulting
internal angular momentum L and coupled to a resulting spin S , so that the spin of
the particle J is the vector sum of L and S.

The quarks carry flavour quantum numbers which add up to the flavour properties
of the physical hadrons, such as baryon number B , isospin I , strangeness S , charm
C etc. All quarks are assigned baryon number B D 1

3
so that any state with three

quarks (qqq) indeed has B D C1. Since baryon number is an additive, charge-like
quantum number, and since quarks are fermions, a single antiquark q hasB D � 1

3
, a

state of three antiquarks (NqNqNq/ has B D �1, and the meson states (qq/ have B D 0.
[Baryon number conservation is an empirical conservation law which is derived
from the observation that in all known reactions or decay processes the number
of fermionic hadrons – with the correct counting of particles and antiparticles – is
conserved. For instance, the stability of the proton and the stability of the hydrogen
atom are very good indications of this conservation law. Note, however, that grand
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unified theories of all interactions as well as the cosmology of the big bang would
prefer not to have baryon number as an exact conservation law. In these theories the
proton is expected to be very long-lived but not absolutely stable. The present lower
limit on the proton’s mean life is of the order of 1029 years.]

The quarks are denoted u (“up”), d (“down”), s (“strange”), c (“charmed”), b
(“bottom” or “beauty”), t (“top” or “truth”). In the older literature on the constituent
quark model, u, d, s are sometimes also denoted p, n �, because, except for baryon
number and charge, they have the same properties as the physical states: proton,
neutron and lambda � (1116MeV=c2/. The quark s is the carrier of strangeness S ,
i.e. it is assigned strangeness �1 while all other quarks have S D 0,

S.s/ D �1; S.s/ D C1; S.q/ D 0 8q ¤ s:

Similarly, c is the carrier of charm, b the carrier of beauty, etc., all of which, like the
strangeness, are additive quantum numbers.

In constrast to these, isospin is an internal spectrum symmetry which has the
structure of SU(2). Thus, as for angular momentum, the physical hadrons are
eigenstates of total isospin .Is/2, with the same eigenvalue I s in a given mass-
degenerate multiplet. The members of such a multiplet are classified according to I s

3 ,
the projection of Is onto the 3-axis in isospin space, with I s

3 D �I s;�I sC1; : : : ; I s,
as usual. Let us call this symmetry the strong interaction isospin, in contrast to the
weak interaction isospin to be defined below. The two SU(2)-symmetries should
not be confused. This symmetry is indeed an almost exact spectrum symmetry at
the level of hadron physics, as may be seen by observing, for instance, that the
difference of the proton and the neutron masses

mn �mp D C 1:293318 .9/ MeV=c2 (3.13)

is very small compared to their absolute values and, similarly that

m�˙ �m�0 D 4:5936 .5/ MeV=c2 (3.14)

amounts to only about 3.3% ofm� . The strong isospin quantum numbers are carried
by the u and d quarks: Both have I s D 1

2
, with I s

3.u/ D C 1
2
, I s

3.d/ D � 12 . The
electric charges finally are

Q D C2
3

for u; c; t; (3.15a)

Q D �1
3

for d; s; b: (3.15b)

Quarks also carry colour quantum numbers with respect to the local gauge theory
SU.3/c which describes the strong interactions. In contrast to the flavour symmetries
mentioned above and in contrast to the local gauge theory of electroweak inter-
actions, this symmetry remains unbroken at all levels of the theory. Electroweak
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interactions couple only to the flavour degrees of freedom and are indifferent to
colour. In other words, even though each quark flavour state carries an additional
SU(3)-colour index,

ui ; dk; sl ; :::; i; k; l; ::: D 1; 2; 3 2 SU.3/c; (3.16)

the electromagnetic and weak coupling constants of the three colour states of the
up-quark u1, u2, and u3 are the same (and likewise for d1, d2, d3, etc.). Therefore, in
most of our discussion of electromagnetic and weak interactions we shall suppress
the SU(3) index describing the colour degrees of freedom. (See however Sect. 3.4.7b
below.)

It is not difficult to construct the wave functions of the mesons in flavour space.
Denoting the spin projectionsms ˙ 1

2
by arrows pointing up or down, respectively,

we have for instance

KC D 1p
2
.u " s # Cu # s "/; (3.17a)

�C D 1p
2
.u " d # Cu # d "/; (3.17b)

�0 D 1p
4
.u " u # Cu # u " �d " d # �d # d "/; (3.17c)

where qq, as written in (3.17), means a quark and an antiquark in a relative s-state,
coupled to spin 0 and to appropriate isospin, 1

2
for the kaon, 1 for the pion. Note that

we have coupled the spins and isospins according to the scheme

.�/j�m0.jm; j �m0jJM/.q/jm.q/jm0

characteristic for the coupling of particles and antiparticles (or particles and
“holes”).

For the baryons, the construction of the flavour wave functions is well-defined if
we require that (i) the three quarks be in a relative orbital s-state, and, (ii) the wave
function in spin and flavour degrees of freedom be totally symmetric. For example,
a � in the state with charge Q D C2 and maximal spin projection ms D C 3

2
is

described by
�CC
msD3=2 D u " u " u " : (3.18)

Likewise, the � (1116), having isospin zero, must contain a pair (ud – du). As the
state is required to be symmetric in all quarks, this pair must also be in a state of
spin zero. Finally, the strangeness �1 of � must be carried by an s-quark. Putting
these facts together we have

�ms D
1p
12

X
�

.u " d # �u # d "/ sms ; (3.19a)
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where the sum must be taken over all six permutations of the symbols u, d, s. The
proton and neutron states are obtained from (3.19a) by replacing simply s by u or d,
respectively. The normalization constant changes, however, because, with s replaced
by u or d, six permutations out of the twelve terms in (3.19a) are pairwise equal. One
obtains

pms D
1p
18

X
�

.u " d # �u # d "/ ums ; (3.19b)

nms D
1p
18

X
�

.u " d # � u # d "/ dms : (3.19c)

It is easy to verify that the states (3.17–3.19) reproduce the correct spin, parity
and interal quantum numbers of the corresponding mesons and baryons. However,
for the baryons there remains a problem: if the decomposition of baryon states in
terms of quark states is to make sense at all, we would expect the radial wave
functions of these states to be symmetric, too. [Unless the potential has a weird radial
dependence, ground states in quantum mechanics have symmetric spatial wave
functions.] This obvious clash with Fermi–Dirac statistics is repaired by introducing
the colour degrees of freedom: Indeed, it is assumed that all physical hadron states
are singlets with respect to SU.3/c. For the baryons this means that each product
(q1q2q3/ in (3.18, 3.19) is to be replaced by

1p
6

3X
iklD1

"iklq1iq2kq3l : (3.20)

This is a singlet with respect to SU.3/c. Obviously, it is antisymmetric in the three
quarks so that the complete baryon wave functions with symmetric orbital functions
are indeed antisymmetric.

3.1.2 Empirical Information on Weak Interactions

In this section we summarize some characteristic properties of the weak interactions.
In quoting experimental information on these properties we do not follow the
historical development. Instead, we mention those experiments which illustrate the
point under discussion in the simplest and most self-evident manner.

(a) Range of weak interactions
All purely leptonic and semileptonic weak scattering processes or decays that have
been observed in the laboratory up to now involve four external fermionic particles,
leptons and/or quarks. For purely leptonic processes such as

�� � e�vev�;

v� C e� ! e� C v�;
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or semileptonic processes involving baryons, such as

n! pe�ve;

�� C p! nC�C;

this is evident. For semileptonic decays of mesons, such as

�C ! �Cv�;

�C ! �0eCve;

KC ! �0�Cv�;

this is seen most easily by considering these processes in the framework of the quark
model, as discussed above. For instance, in the decay �C ! �Cv�, the fundamental
four-fermion process is

uC d ! �C C v�;

The quark and the antiquark of the pion annihilate at one vertex, the lepton pair is
created at another vertex. Thus a typical weak amplitude contains four fermionic
field operators.

There is clear experimental evidence that the weak interactions are of very
short range. All known weak amplitudes at low and intermediate energies contain
essentially only s- and p-waves in their partial wave decomposition. This indicates
that the interaction is very close to being a contact interaction, effective only
when the four particles are all at the same point of space and time. Indeed, if the
external particles had spin zero, then a contact interaction would yield only s-wave
amplitudes. As they carry spin one-half, such an interaction can also yield p-wave
amplitudes because of spin-orbit or spin-momentum coupling.

As an example, let us consider the scattering process

v� C e ! e C v�; (3.21)

Suppose, this process is due to the exchange of a heavy photon-like boson whose
mass MB is large as compared to the invariant momentum transfer, M2

B � jq2j. In
this case, its propagator can be approximated as

�g˛ˇ C q˛qˇ=M2
B

q2 �M2
B

' g˛ˇ

M2
B

(3.22)

We can make use of (2.56) provided we replace the photon propagator 1=q2 by
1=M2

B and replace 4�˛ by ge � g�, the product of the coupling constants of the boson
to the lepton pairs (e,e) and (v�; v�/ [we assume these to be equal up to factors of
order unity]. Let E� be the neutrino energy in the c.m. system, z� the cosine of
the c.m. scattering angle, and assume E� � me. From (2.56) with M D me,
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m � mv D 0, we have

s D 2E�2 Cm2 C 2E�
p
m2 C E�2 ' 4E�2;

t D �2E�2.1 � z�/:

Setting F1.t/ � 1, F2.t/ � 0, equation (2.56) gives

�
d�

d˝

�
c:m:
'
�
g2

M2
B

�2
E�2

4�2

(
1C t

s
C 1

2

�
t

s

�2)

D
�
g2

M2
B

�2
E�2

4�2

�
1 � 1

2
.1 � z�/C 1

8
.1 � z�/2

�
:

If this expression is integrated over all angles one obtains an expression for the total
elastic cross section of the form

� D
Z

d˝

�
d�

d˝

�
c:m:
D const: E�2 ' const:

s

4
; (3.23a)

i.e. proportional to the square of the c.m. energy of the neutrino. When expressed
in the laboratory system where s D m2 C 2mEv ' 2mEv this means that the cross
section is linear in the laboratory energy of the neutrino,

� D const:
1

2
m.Ev/lab: (3.23b)

This linear increase of neutrino cross sections is indeed verified experimentally up to
laboratory energies of the order several 100 GeV. It is found to hold also for neutrino
reactions such as v� CN ! N 0 C � etc. Up to energies of this order of magnitude
the weak interactions effectively behave like contact interactions of the form

a�
g2

M2
B

#.1/�˛#.2/#.3/�
˛#.4/ (3.24)

where �˛ denotes certain Dirac matrices such as �˛, �˛�5 etc. and a� is a
dimensionless constant of order unity. If this is so then the widths � of weakly
decaying states are proportional to .a� g2=M2

B/
2 which has the dimension E�4. As

the decay width has the dimension of an energy, for dimensional reasons, we expect
it to be proportional to the fifth power of the released energy. Except for some special
cases (such as the decay � ! eve/ in which there are additional hindrance factors
due to angular momentum conservation, this is indeed what one finds empirically.
The most striking proof is the great variety of lifetimes in nuclear ˇ-decay which
cover many orders of magnitude, from fractions of seconds to many thousands of
years.
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As an example, let us compare the lifetimes of the muon and of the neutron in
the processes

�! evv;

n! pev:

In the first case the energy release is (�E/� ' m�=2, in the second case it is
(�E/n ' mn � mp. If the widths are proportional to (�E/5, the lifetimes are
proportional to (�E/�5. The measured lifetimes are

�� D 2:2 � 10�6 s;

�n D 885:7 s;

their ratio being ��=�n D 2:5 � 10�9. This is to be compared to

�
mn �mp

m�=2

�2
D 8:7 � 10�9:

Additional remarks. More detailed expressions for neutrino cross sections as well
as their absolute magnitude will be given below. We note, in particular, that the
behaviour (3.23) cannot hold indefinitely since, from a certain energy on, it violates
unitarity. At which energy this will happen is worked out below. Finally, the
quantitative analysis will show that the actual range of weak interactions is of the
order of 10�16 cm.

(b) Charged current and neutral current vertices
We distinguish two classes of weak interactions:
(i) The charged current (CC) interactions which are described by the exchange of
heavy, charged bosons W˙. They are characterized by vertices of the kind shown
in Fig. 3.1 (a–c) at which either a lepton state f is converted into a neutrino state vf

of the same lepton number Lf, or a quark of charge Q is converted into a quark of
chargeQC 1. Examples are

�� C e� ! ��C�e;

where v� is converted to ��, through emission of a virtual W�, and where e� is
converted to �e, through absorption of the same W�. Similarly, in the reaction

�e C p! nC eC

the ve is converted into a eC, a u-quark into a d-quark. Clearly, the incoming
(outgoing) fermion can also be replaced by the corresponding outgoing (incoming)
antifermion. In these cases pairs of the type .f�; vf/, .fC; vf/.u; Nd/; .u; Ns/ etc. are
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Fig. 3.1 Charged current
vertices (a–c) and neutral
current vertices (d,e)
describing the coupling of a
fermion pair (quarks or
leptons) to vectors bosons
W˙ and Z0, respectively

created or annihilated with simultaneous absorption or emission of a WC or W�.
Examples are

��e�vev�; where �� ! v�W�; W� ! e�ve;

�! p��v�; where s! uW�; W� ! ��v�;

�C ! �Cv� where ud!WC; WC ! �Cv�;

K� ! ��v� where us!W�; W� ! ��v�:

(ii) The neutural current (NC) interactions which we describe by the exchange of
the neutral boson Z0. Typical vertices are shown in Fig. 3.1(d,e). These interactions
are somewhat analogous to electromagnetic interactions with the exchange of a
photon, except for the following differences: Unlike the photon which is massless,
the Z0-boson is massive and very heavy; the couplings at vertices of the kind shown
in Fig. 3.1 simultaneously involve vector and axial-vector currents; neutrinos which
have zero electric charge, have nonvanishing couplings to Z0-bosons. Because the
Z0 is electrically neutral, amplitudes due to exchange of virtual Z0 can interfere with
amplitudes due to photon exchange. This is discussed in more detail below.

Examples of pure NC reactions are

�� C e� ! e�C��;
�� C p! pC ��;

while the interference of NC couplings with electromagnetic vertices can be
detected in parity-violating spin-momentum correlations.

(c) Parity violation, vector and axial-vector currents
It is well known that the strong and electromagnetic interactions are both invariant
under the operation of space inversion (parity). In fact, the parity transformation
is defined in such a way that it leaves invariant the Lagrangian of strong and
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of electromagnetic interactions. The weak interactions, however, are not invariant
under this parity operation, defined with respect to strong and electromagnetic
interactions. Parity violation in weak interactions manifests itself, for instance, in
nonvanishing, observable correlations between a spin S and a momentum q, S �q, in
reactions and decay processes where there is no such correlation in the initial state.
We give some examples:
(i) In charged pion decay, �� ! ��v�, experiment shows that the muon is fully
polarized along its momentum. A measurement based on polarization studies in
muonic atoms (formed with muons from pion decay), as well as measurements
of polarization quantities in muon capture, show that the longitudinal polarization
P` � .¢ � q/=q is 1 within about 10% (Abela et al. 1982, Roesch et al. 1982).
(ii) The electron (positron) from ��.�C/ decay � ! evv is found to be fully
polarized along its momentum, even if the initial muon is unpolarized. The latest
result from �C-decay (Burkhard et al. 1985) is

P` D 1:00˙ 0:04: (3.25)

(iii) In the decay of polarized muons the electron is emitted anisotropically with
respect to the muon spin direction. If x denotes the electron energy E in units of
its maximum W; x D E=W , and if 	 is the angle between the muon spin and the
electron momentum, the double differential decay probability is proportional to [cf.
(4.58) below summed over the electron spin].

d2� .�� ! e�vev�/

d.cos 	/dx
/ x2f.3� 2x/� P��.2x � 1/ cos	g; (3.26)

where P� is the longitudinal polarization of the muon that stems from pion decay.
Thus, the parameter � measures the correlation between the muon spin and the

electron momentum. Experiment gives the value (Beltrami et al. 1987, Jamieson
et al. 2006)

� D 1:0007˙ 0:0035 (3.27)

Thus, for x close to 1, the electron is emitted preferentially in the direction opposite
to the muon polarization ��, but is never emitted along the direction ��. This is
in agreement with the observation (3.25) and with the fact that neutrinos are left-
handed and antineutrinos right-handed: For xD 1, i.e. maximal energy, the neutrinos
must emerge with parallel momenta but opposite to the electron momentum. This is
illustrated by Fig. 3.2 which holds for 	 D 180ı and which shows that conservation
of angular momentum favours this emission angle but forbids 	 D 0.
(iv) Analogous studies were performed with polarized � leptons for which the
formula (3.26) is applicable up to (small) mass corrections when there is a muon in
the final state. The analysis of the leptonic decays �� ! ��v�v� and the analogous
reaction with � replaced by e, v� replaced by ve also gave � equal to 1, with an error
bar of about 6%.
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Fig. 3.2 Decay of negative muon at maximal energy of the decay electron at 	 D 180. The
neutrino spins compensate, the electron takes over the spin projection �� of the decay muon

(v) Precise polarization data also comes from nuclear ˇ-decay. For instance, the
longitudinal polarization of ˇ-particles from Gamow-Teller transitions is found to
be (Koks et al. 1976)

P` D .1:001˙ 0:008/ �=c: (3.28)

All of these examples show not only that parity is violated, but that it is violated in a
maximal way: the longitudinal polarizations and correlation parameters assume their
maximal theoretical value. This is true for leptonic CC interactions. For hadrons,
maximal parity violation is sometimes hidden and attenuated by strong interaction
effects. The intermediate bosons W˙ and Z0, very much like the photon, carry
spin 1. In contrast to the photon, however, they couple to Lorentz vector as well as
axial vector currents. For a long time it was not possible to disprove the alternative
possibility that the CC weak interactions were due exclusively to Lorentz scalar,
pseudoscalar and tensor, pseudotensor couplings. We now have clear evidence that
such a pure situation is not realized in the weak interactions. There may be several
bosons with spin 1, of the kind of the W. There may even be, in addition to these,
bosons with spin 0 and, possibly, bosons with spin 2. However, the interactions
due to the exchange of W-bosons must be predominant over the spin 0 or spin 2
exchanges. The evidence for this comes from an experiment which measures the
transfer of leptonic helicity in the following inclusive reaction of v� on iron (Jonker
et al. 1979, 1983)

v� C Fe! XC �C; (3.29)

in which X stands for any final state that can be reached in this reaction. This needs
some explanation: A pair of external fermions f1, f2 couples to an intermediate boson
B with spin J , via a covariant of the form

#f1 .x/ �
.J /#f2 .x/: (3.30)

If the boson has spin zero J D 0, the matrix � .0/ is a linear combination of the unit
matrix and of �5,

� .JD0/ D x01C y0y5: (3.31)

This can also be written as follows:

� .JD0/ D .x0 C y0/1
2
.1C �5/C .x0 � y0/1

2
.1 � �5/

D PC.x0 C y0/PC C P�.x0 � y0/P�;
(3.31’)
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where we have denoted the projection operators (1.76) by PC, P� and have made
use of their property of being idempotent. In the experiment (3.29) the muon is
produced at an average, squared momentum around 4 GeV2. As this is large as
compared to m2

� the muon mass may be neglected in the analysis. However, the
matrices PC, P�, when applied to states of massless external fermions, project onto
eigenstates of helicity. Using, for example, the standard representation we have

P˙ WD 1

2
.14 ˙ �5/ D 1

2

�
1 ˙1

˙1 1

�
(3.32)

and, from the explicit spinor solutions (1.90–1.91),

P˙u.p/ D 1

2

p
p0
�
.1˙ h/.r/
.˙1C h/.r/

�
; (3.33a)

P˙ v.p/ D 1

2

p
p0
�˙.1� h/.s/
.1� h/.s/

�
; (3.33b)

where h D .¢ � p/=jpj and p0 D jpj. [In deriving (3.33b) one must remember that in

the spinor �.p/ the Pauli spinor .s/ D
�
0

1

	
represents “spin up”.] Thus,PC projects

onto incoming particle states with positive helicity, and onto incoming antiparticle
states with negative helicity. Likewise, P� projects onto particle states with negative
helicity and onto antiparticle states with positive helicity.

For outgoing states the same statements hold with the sign of the helicity
reversed. We prove this by way of an example

u.p/PC D 1

2
u�.p/�0.1C �5/ D 1

2
u�.p/.1� �5/�0 D .P�u.p//��0:

The action of the operator � .0/, (3.31’), on the helicities at a vertex with, say, an
incoming neutrino vf and an outgoing charged lepton f� is illustrated by Fig. 3.3a, b.
Specifically, we note that if the incoming neutrino is fully left-handed, the outgoing
charged lepton must be fully right-handed (in the limit of neglecting its mass mf/.

It is not difficult to see that the same situation applies to the case of an
intermediate boson with spin 2. In this case

� .JD2/ D x2�
˛ˇ C y2�˛ˇ�5

D .x2 C y2/�˛ˇPC C .x2 � y2/�˛ˇP�; (3.34)

where �˛ˇ D .i=2/.�˛�ˇ � �ˇ�˛/. As both PC and P� commute with a product of
two � -matrices, and hence with �˛ˇ , this is equal to

� .2/ D PC.x2 C y2/�˛ˇPC C P�.x2 � y2/�˛ˇP�: (3.34’)
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Fig. 3.3 Pattern of helicity
transfer at a vertex of two
massless fermions which
couple to a boson carrying
spin 0 or 2. (a): (hypothetical)
neutrino is right-handed,
(b): (physical) neutrino is
left-handed

� .2/ has the same structure as � .0/, (3.31’), and therefore, the transfer of helicity at
a vertex with a boson of spin 2 is the same as for the case of spin 0; see Fig. 3.3.

The situation is different for the case of an intermediate boson with spin 1. The
covariant (3.30) is now a linear combination of vector and axial vector terms, so that
the matrix � .1/ has the form

� .1/ D x1�˛ C y1�˛�5
D .x1 C y1/�˛PC C .x1 � y1/�˛P�: (3.35)

Again, we replace PC and P� by their squares (P˙/2 and then move one factor to
the left in both terms of (3.35). However, as �5 anticommutes with every �˛ , cf.
(1.80) one has now

�˛PC D P��˛; �˛P� D PC�˛;

so that
� .1/ D P�.x1 C y1/�˛PC C PC.x1 � y1/�˛P�: (3.35’)

Upon comparison with (3.31’) and (3.34’) one sees that the transfer of helicity
is different from the two previous cases, as indicated in Fig. 3.4. In particular, if
the incoming neutrino is fully left-handed, the outgoing (approximately massless)
lepton is also fully left-handed. For massive fermions the same reasoning applies
with helicity replaced by chirality, or handedness: PC projects onto righ-handed
(R/ states, P� projects onto left-handed (L) states.

Equipped with this knowledge let us now analyze the results of reaction (3.29).
The incoming v� beam originates primarily from �� and K� decays and, therefore,
is polarized along its momentum: h.v�/ is known to be C1 to within, say, 10%,
from the experiments mentioned above. In the experiment the average polarization
of the outgoing�C was measured. Integrating (3.26) over the variable x from 0 to 1,
and reversing the sign of the correlation term in cos 	 [(3.26) holds for ��-decay],
one obtains

Z 1

0

dx
d2� .�C ! eCvev�/

d.cos 	/dx
/ 1

2

�
1C 1

3
� cos 	

�
: (3.36)



3.1 Phenomenological Aspects of Weak Interactions 199

Fig. 3.4 Pattern of helicity
transfer at a vertex of two
massless fermions which
couple to a boson with spin 1

Fig. 3.5 Helicity transfer
from the incoming muonic
antineutrino to the positive
muon in the inclusive charged
current interaction (3.29). The
longitudinal polarization of
the outgoing �C is
determined from the decay
asymmetry in its decay

From the measured asymmetry (3.36) it was deduced that the �C has a longitudinal
polarization of C1, to within an error of about 20%. Thus, the helicity transfer was
found to be predominantly of the type shown in Fig. 3.5. This important result tells
us that the reaction must be due predominantly to exchanges of spin 1.

(d) Helicity transfer at weak and electromagnetic vertices:
Additional remarks

In the context of the discussion of helicity transfer in weak CC and NC reactions we
wish to add some further remarks of general interest.
(i) Our analysis holds strictly only for massless external fermions. If the mass of the
charged leptons is taken into account, then the helicities ˙1 are to be replaced by
longitudinal polarizations ˙�=c, respectively. In many situations, very much like
in the case discussed above, the kinematical situation is such that the mass may be
neglected to a good approximation.
(ii) The pattern of helicity transfer depends only on the spin of the exchanged
boson, and not on the parameters xi and yi in (3.31, 3.34, 3.35). Therefore, the
situations depicted in Figs. 3.3, 3.4 are independent of whether or not there is parity
violation in the interaction. As an example, consider (3.35) with x1 D 1, y1 D 0.
The covariant (3.30) is then a Lorentz vector #f1 .x/�

˛#f2 .x/ and may represent,
for f1 D f2, the electromagnetic current coupling to a photon line. The transfer
of helicity is still as described above. For example, in electron scattering at high
energies, the helicity of the incoming electron is transferred to the outgoing electron
according to the same pattern as shown in Fig. 3.4. The two situations have the same
coupling constants and, in case the incoming electron is unpolarized, they occur with
equal weights. There is no helicity flip. This is a result that we had already found in
Sect. 2.2 in the context of a somewhat different approach.
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(iii) Consider the decay of a particle with spin zero and mass M into two leptons
with masses m1 andm2. Examples are

�0.547/! �C��; �0.547/! eCe�;

�0 ! eCe�; (3.37)

�C ! �Cv�; �C ! eCve;

KC ! �Cv�; KC ! eCve:

In the rest system of the decaying meson the two leptons are emitted with equal
and opposite 3-momentum. Let the direction of this c.m. momentum be the
3-axis. The total angular momentum J as well as its projection J3 onto that axis
are conserved. As the outgoing particles are described by plane waves propagating
parallel to the 3-axis, the projection l3 of the relative orbital angular momentum
vanishes. Conservation of J3 then means that the projection S3 of the total spin is
also conserved. As J3 D 0 before the decay, the two leptons must emerge with the
same longitudinal polarization or helicity.

Suppose now that the interacion responsible for the decay is due to the exchange
of bosons with spin 1 (W˙ or photons, respectively) and that the leptons in the
final state are massless. From the analysis given above we know that they must be
emitted with opposite helicity, cf. Fig. 3.4. As this is in conflict with the conservation
of angular momentum we conclude:

A state of spin zero cannot decay into two massless leptons if the interaction is due
to bosons with spin 1.

In reality, the charged leptons f� are not massless and the decays (3.37) are not
strictly forbidden. For a massive particle the projection operators P˙, when acting
on the particle’s spinor wave function, yield nonvanishing components of either
longitudinal polarization. However, the component required by conservation of
angular momentum in the decays (3.37) is found to be proportional to mf, the mass
of the charged lepton. For example, if the W˙ boson couples with equal strength to
.e; ve/ and to .�; v�/, the ratio of the decay width � ! eve and � ! �v� is found
to be (see (4.93) below)

R D � .�C ! eCve/

� .�C ! �Cv�/
D m2

e

m2
�

�
1 � .me=m�/

2

1 � .m�=m�/2

�2

D 2:34 � 10�5 � 5:49 D 1:28 � 10�4: (3.38)

The second factor in (3.38) is the squared ratio of the c.m. momenta in the two
decays. It is larger than 1 reflecting the fact that from kinematics alone, the decay
into the lighter fermion is preferred over the heavier one. The first factor (me=m�/

2

is the suppression factor discussed above. It is due to the conflict between the helic-
ity transfer as required by the exchange of a boson with spin 1 and conservation of
angular momentum. We emphasize, in particular, that this result does not depend on
the specific form of � .1/, (3.35), and holds for any choice of the parameters x1, y1.
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The result (3.38) receives a small additional contribution from radiative correc-
tions, so that the theoretical prediction is

Rtheor D 1:233 � 10�4; (3.39)

to be compared with the experimental value

Rexp D .1:230˙ 0:004/� 10�4: (3.40)

(e) Universality of weak interactions and some properties of semileptonic
processes

There is good empirical evidence for the hypothesis that the weak interactions of
leptons and of hadrons are universal in the following sense: All weak interactions
are mediated by heavy, charged or neutral bosons carrying spin 1. External fermions
couple to them via Lorentz vector and axial vector currents with coupling constants
which are the same for leptons and quarks except for effects of state mixing and
possible renormalization effects from strong interactions in the quark sector. Up
to these modifications in the hadronic sector, a precise definition of which will be
given below, semileptonic processes are governed by the same effective interaction.
The decay widths for, say, a Fermi transition in a nucleus, for pion ˇ-decay �C !
�0eCve, and for muon decay, are all determined by the same effective coupling
constant. The exact relationship between charged interaction and neutral interaction
coupling constants for leptons and quarks will be formulated in some detail below,
in discussing the GSW unified theory.

Nevertheless, a few empirical properties of semileptonic weak processes can
already be formulated at this point without needing the formalism of a unified gauge
theory.

A semileptonic process, by definition, involves both hadronic and leptonic states.
The empirical selection rules and regularities that we now discuss, always refer
to the hadronic part of the process under consideration. Regarding the additive
quantum numbers of hadrons, the weak interactions conserve neither strangeness S ,
nor charm, nor any of the other, new quantum numbers associated with the
b-, t-quarks. Furthermore, they are not scalars with respect to isospin: the charged
weak currents which do not change the strangeness, �S D 0, carry isospin 1, as
demonstrated, for instance, by the decay modes

�C ! �Cv�; �C ! �0eCve: (3.41)

Weak neutral currents with �S D 0, contain both isoscalar and isovector pieces.
If the strangeness is changed, �S ¤ 0, the weak current carries isospin 1/2, as is
clear from the existence of the kaonic decay modes, analogous to (3.41),

KC ! �Cv�; KC ! �0eCve: (3.42)
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A most remarkable property of such interactions with �S ¤ 0 is this: the change
in strangeness is always equal to the change of electric charge in the hadronic states,

�S D .�Q/hadrons: (3.43)

As an example, the decays
˙C ! nfCvf;

where�S D �1 but .�Q/hadrons D C1, have never been observed, in contrast to

˙� ! nf�vf;

which are allowed by the selection rule (3.43) and which have indeed been seen.
The selection rule (3.43) implies, in particular, that there are no strangeness

changing processes with�Q D 0, or, in other words, that hadronic neutral currents
do not change the strangeness. For example, the decay processes

K0
L ! �C��; KC ! �CeCe� (3.44)

are found to be strongly suppressed as compared to the other kaonic decay modes.
The experimental branching ratios are

R.K0
L ! �C��=K0

L ! all/ D 6:84˙ 0:11 � 10�9; (3.45a)

R.KC ! �CeCe�=KC ! all/ D 3:00˙ 0:09 � 10�7; (3.45b)

[A more detailed analysis shows that the experimental results (3.45) can, in fact, be
described by processes of higher than first order.]

3.2 �Vector and Axial-Vector Covariants: Effective
Lagrangians with V and A Couplings

In this section we analyze the covariants (3.30) for the case of vector and
axial vectors in more detail. Although, historically, this analysis of the empirical
information about weak interactions provided the basis for the minimal (GSW)
standard model, this subsection is not essential for its actual construction and, hence,
may be skipped in a first reading. We construct the general effective four-fermion
Lagrangian for the case of vector (V) and axial vector (A) couplings, i.e. the limit of
the interaction due to exchange of bosons with spin 1, taken at momentum transfers
which are small compared to the boson masses. The behaviour of this Lagrangian
under parity P , charge conjugation C , and time reversal T is investigated. The full
fermion-boson interaction that leads to the effective Lagrangians will be derived
in Sects. 3.3.4 below, whilst the case of more general covariants is deferred to the
discussion of possible deviations from V and A couplings in Sect. 4.1.
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3.2.1 Vectors and Axial Vectors

Let us start by recalling the definition of #.x/ from (1.77):

#.x/ D .�b.x/
�B.x// D .
�a.x/�A.x//�0; (3.46)

where we had defined


�a.x/ WD 
�A.x/. O�0/Aa; (3.46a)

�A.x/ WD �a.x/.�0/aA; (3.46b)

and �0 was given by (1.71’). In the four-component formalism (3.46) is often
written, somewhat inaccurately, as

#.x/ D #�.x/�0 (3.47)

without explicit reference to the class of representations for the matrices �� that is
being used. Clearly, in the high-energy representation we may write this relation,
provided we keep in mind the correct position of indices in (3.46). If we wish to use
any other representation which is obtained from the high-energy representation via a
linear, nonsingular transformationS , then the relation (3.47) can only be maintained
if S is unitary. This is seen very easily by observing that with # 0 D S# and � 0� D
S��S�1, (3.47) transforms as follows

#.x/ D # 0�.S�1/�S�1� 00S:

This is equal to # 0.x/S only if S is unitary, in which case # 0.x/# 0.x/ D
#.x/#.x/.

In Sect. 1.3 we showed that under a proper, orthochronous Lorentz transforma-
tion x0 D �x, � 2 L"C the matrices ��@� and O��@� behave as follows:

.�˛@0̨ / D A.�/.�ˇ@ˇ/A�.�/; (3.48a)

. O�˛@0̨ / D A.�/. O�ˇ@ˇ/A�1.�/: (3.48b)

As the derivative transforms according to

@0̨ D �˛
ˇ@ˇ;

it is clear that both

�a.x/.�˛/aB
B.x/ and 
�A.x/. O�˛/Ab
b.x/ (3.49)
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transform like contravariant vectors with respect to L"C, i.e.

�a.�x/.�˛/aB
B.�x/ D �˛

ˇ
�c.x/.�ˇ/cDD.x/;

and similarly for the second covariant. Let us then see how these vectors transform
under the parity operation P . From (1.97) we know that under P


a.x/!
P
.�0/aB

B.Px/; (3.50)

A.x/!
P
. O�0/Ab
b.Px/:

Inserting this into the expressions (3.49) and observing that

O�0�˛ O�0 D
� O�0
�O�i

�
;

�0 O�˛�0 D
�
�0

��i
�
;

we find that the sum
��˛C 
� O�˛
 DW �˛ (3.51)

behaves like a Lorentz vector, i.e.

�˛.x/!
P
.�/1Cı˛0 �˛.Px/; (3.52)

while the difference
� ��aC 
� O�˛
 DW a˛ (3.53)

behaves like an axial vector, i.e.

a˛.x/!
P
.�/ı˛0a˛.Px/: (3.54)

It is easy to verify that the quantities �˛ and a˛ , when expressed in terms of Dirac
spinors, are given by

�˛.x/ D #.x/ �˛#.x/; (3.51’)

a˛.x/ D #.x/ �˛�5#.x/: (3.53’)

Having derived the behaviour of the currents (3.51) and (3.53) under proper,
orthochronous Lorentz transformations and parity, let us now investigate how they
transform under charge conjugation and time reversal.

The transformation properties of spinors under C was derived in Sect. 1.5, viz.
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a.x/!
C
�a .x/;

A.x/!
C
�
�A.x/;

and, therefore, �a ! 
a; 
�A ! �A. Thus

�a.�˛/aB
B ! �
a.�˛/aB


�B D C
a. O�˛�/aB
�B D �
�B. O�˛�/Ba
a; (3.55a)

where we have used relation (1.60) and have made use of the fact that 
a and 
�B
anticommute and that the matrices O�˛ are unitary. Similarly,


�A. O�˛/Ab
b ! �A. O�˛/Ab�b D CA.�˛�/Ab
�b D ��b.�˛/bAA: (3.55b)

This implies that �˛ is odd, a˛ is even under charge conjugation. We note, in
particular, that the field operators #.x/ and #.x/ in (3.53’,51’) are interchanged
in taking the charge conjugate of �˛ and a˛ .

Time reversal, finally, has the following effect:


a.x/!
T

�a .Tx/ D .�0/aB"

BD
�D.Tx/;

A.x/!
T
�A.Tx/ D . O�0/Ab"bd

�d .Tx/;

so that

�a.x/! B.Tx/"BD. O�0/Da;


�A.x/! 
b.Tx/"bd.�0/dA:

In applying T to a product of operators, the prescription is to reverse the order of
factors without regard to the fermion character of the fields. Thus we have

�a.x/.�˛/aA
A.x/! "BD. O�0/Da.�˛/aA. O�0/Ab"bd 

�d .Tx/B.Tx/

D "BD

� O�0
�O�i

�Db

"bd
�d .Tx/B.Tx/ (3.56a)

D �d .Tx/

�
�0

��i
�

dB

B.Tx/:

In the first step we inserted the relation mentioned above, in the second we used
.�˛�/Bd D .�˛/dB, i.e. the unitarity of �˛ . In a similar manner


�A. O�˛/Ab
b ! 
�B.Tx/

�
. O�0/Ba

.�O�i /Ba

�

a.Tx/: (3.56b)
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Thus, �˛ and a˛ behave as follows under T :

�˛.x/! .�/1Cı˛0�˛.Tx/; (3.57)

a˛.x/! .�/1Cı˛0a˛.Tx/: (3.58)

Note, however, that here again the fields #.x/ and #.x/ are interchanged.
[It is instructive to compare the behaviour of �˛ under P;C , and T , with the

behaviour of a classical vector current, given by the product of a charge and a four-
velocity, under the same transformations.]

Finally, from this discussion we can deduce the behaviour under parity, charge
conjugation and time reversal, of vector and axial vector currents which are
composed of two different fields, i.e.

�˛.xI i ! k/ WD #.k/.x/ �˛ #.i/.x/; (3.59)

a˛.xI i ! k/ WD #.k/.x/ �˛�5#
.i/.x/: (3.60)

The transformation behaviour of the current operators (3.59, 3.60) with respect
to proper, orthochronous Lorentz transformations �2L"C is the same as for the
operators (3.51’, 53’) where particle field i and particle field k were identical that is

� 0˛.�xI i ! k/ D �˛
ˇ �

ˇ.xI i ! k/

and similarly for a˛ .
Regarding parity we must keep in mind that the fields i and k may have different

intrinsic parities, in which case there is an extra minus sign in (3.52, 3.54). Intrinsic
parity of a particle field is always defined relative to the vacuum state which by
convention is assigned positive parity. The intrinsic parities of some particles in
nature are fixed and given by experiment (examples are the photon field, and the
neutral pion for which the intrinsic parity can be measured).

Similarly, if the intrinsic parity of a fermion is fixed then we know from the
theory of Dirac fields that the corresponding antiparticle has the opposite parity.
The comparison of relative intrinsic parities for two different particle fields i and k
is not possible whenever an absolute conservation law forbids the transformation of
one particle of type i into one particle of type k, via a parity conserving reaction.
For example, the relative parity of proton and neutron cannot be determined from
the parities of the vacuum, the �0 and the photon alone because charge conservation
forbids vertices such as (pn�0) or (pn� ). However, if, by convention, we define the
intrinsic parity of the charged pions �C, �� to be the same as for the neutral one,
experiments such as �� p ! �0n or�d! nn will show that p and n then have even
relative parity (or vice versa, the assignment of the same parity to p and n will fix the
relative parity of �˙ and �0). Similarly, the relative parity of electron and proton, or
even of electron and muon, is not fixed and cannot be taken from experiment as long
as electron and muon family numbers and baryon number are absolutely conserved.
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Thus, fixing the relative intrinsic parities of particle fields needs a certain number
of conventions (beyond the experimental information as in the case of �0 etc.). We
do not enter this discussion in any more detail but just mention that it is possible to
assign the same (positive) intrinsic parity to the lepton families (3.7) and the quark
families (3.15), without running into conflict with experiment. The intrinsic parity of
composite states such as (3.17)–(3.19), of course, then is determined by the parity of
the orbital quark–antiquark and three quark states, respectively. The physical current
operators that we shall consider, connect either leptons of the same family with one
another, our quarks within the flavour families (3.15). So, even though in the case
of two different fields the relations (3.52) and (3.54) must be multiplied by a factor

�
.k/�
P �

.i/
P ;

where �.i/P D ei�˛.i/ with ˛.i/ D 0 or 1, we can choose conventions such that this
factor is alwaysC1.

In a similar way, charge conjugation C and time reversal T , in general, will give
additional signs, or phase factors, when applied to the operators (3.59) and (3.60):

#.k/.x/ �˛ #.i/.x/!
C
��.k/�C �

.i/
C # .i/.x/ �˛ #.k/.x/; (3.61a)

#.k/.x/ �˛�5#
.i/.x/!

C
�
.k/�
C �

.i/
C # .i/.x/ �˛�5#

.k/.x/; (3.61b)

#.k/.x/ �˛ #.i/.x/!
T
�
.k/�
T �

.i/
T .�/1Cı˛0# .i/.x/ �˛#.k/.Tx/; (3.62)

the T -transformation of a˛.i ! k/ being the same as that of �˛.i ! k/. Again,
for the physical currents of interest in electroweak interactions the additional phase
factors

�
.k/�

C �
.i/
C and �

.k/�

T �
.i/
T (3.63)

can be chosen to be C1 by a suitable choice of conventions. If a composite state is
an eigenstate of C (or of G-parity GDC expfi�I 2g/, its charge conjugation phase
is completely determined by the properties of the bound state wave functions (see
exercises 3.1 and 3.2).

3.2.2 Effective Vector (V) and Axial-Vector (A) Interactions

On the basis of the empirical information discussed in Sect. 3.1.2 and equipped with
the technical tools of the preceding Sect. 3.2.1 we can now write down the most
general, effective Lagrangian for four external fermions interacting via vector and
axial vector currents. It reads

�LVA D Gp
2
f.# .k/.x/ �˛ #.i/.x//

� ŒCV.# .m/.x/ �˛#
.n/.x/C C 0V.# .m/.x/ �˛�5#

.n/.x//�
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C .# .k/.x/ �˛�5#
.i/.x//ŒCA.#.m/.x/ �˛�5#

.n/.x//

C C 0A.#.m/.x/ �˛#
.n/.x//�C hermitean conjugateg; (3.64)

where CV; : : : ; C
0
A are four complex constants. For the sake of convenience a real

constant G=
p
2 has been factorized in (3.64), so, that, in fact, CV (if it does not

vanish) can be chosen to be a simple phase, or if that phase is not relevant in the
interference of the interaction (3.64) with other interactions, to beC1. Even though
there is this redundance, we keep CV explicitly in order to preserve the symmetry of
(3.64) in the four types of couplings. Let us rewrite (3.64), in a more compact form
and omitting the space-time argument x which is the same in all current operators,

�LVA D Gp
2
f�˛.i ! k/ŒCV�˛.n! m/C C 0Va˛.n! m/�

C ŒC �V�˛.m! n/C C 0�V a˛.m! n/��˛.k ! i/

C a˛.i ! k/ŒCAa˛.n! m/C C 0A�˛.n! m/�

C ŒC �Aa˛.m! n/C C 0�A �˛.m! n/�a˛.k ! i/g: (3.64’)

Here we have used �0.�˛/��0 D �˛ and �0.�˛�5/��0 D �˛�5. By construction,
LVA is invariant under all �2L"C. In order to make it conserve electric charge
and all other, additively conserved, quantum numbers such as Lf and B , the fields
i; k;m; n must be chosen such that the net balance of these “charges” is zero.

For example, in the case of a charged current (CC) leptonic weak interaction we
have

k � f; i � �f; (3.65)

m � �f0 ; n � f0;

Indeed, the combination

.# .f/.x/ � ˛#.�f/.x// # .�f0 /.x/ � 0̨#.f0/.x//C h:c: (3.65’)

of charged leptons (f,f’) and uncharged leptons (vf, vf0/ preserves electric charge,
as well as the lepton family numbers Lf and L0f. In the case of neutral current
(NC) interactions, i and k must clearly be identical, as must m and n. For example,
leptonic NC interactions will have

i � k D f or i � kD�f;

and similarly, m � n D f0 or vf0 .
Let us then study the behaviour of (3.64’), under P;C and T .
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(a) Parity P: The parity operation leaves invariant the product of two like operators
(� � � or a � a) but changes the sign of the product of two unlike operators (� � a or
a � �), up to a common phase factor �P D �.k/�P �

.i/
P �

.m/�
P �

.n/
P . As pointed out before

this factor can be chosen to be C1 in all cases of interest here. Thus the terms with
unprimed coefficients Ci are even, the terms multiplied by primed constants C 0i are
odd, or, written symbolically,

fCi ; C 0i g!
P
fCi ;�C 0i g: (3.66)

(b) Charge conjugation C: From (3.61a) one sees that under C the terms � � � and
a � a are transformed into their hermitean conjugates without extra signs, whilst the
products � � a and a � � are transformed into minus their hermitean conjugates. In
all cases this holds up to the phase factor �C D �

.k/�
C �

.i/
C �

.m/�
C �

.n/
C which, however,

can be chosen to beC1. Thus, the action of C on LVA can be summarized by

fCi ; C 0i g!
C
fC �i ;�C 0

�

i g: (3.67)

(c) Time reversal T: As is evident from (3.62), all terms in LVA are transformed
into their hermitean conjugate, irrespective of whether they are products of like
or unlike current densities. This holds again up to a common phase factor �T D
�
.k/�
T �

.i/
T �

.m/�
T �

.n/
T . This phase factor can be taken to be C1 in all cases of interest.

Thus LVA transforms according to

fCi ; C 0i g!
T
fC �i ; C 0�i g: (3.68)

We conclude this section with some remarks on these results.

(i) Let us combine the three operators P;C , and T to their product

� WD PCT: (3.69)

From the results a)–c), equations (3.66–3.68), we see that the interaction (3.64)
is invariant under the combined operation (3.69),

�LVA�
�1 D �P �C �TLVA or fCi ; C 0i g!

�
�P �C�T fCi ; C 0i g: (3.70)

This is a special case of the PCT-theorem of Lüders and Jost (Lüders 1957,
Jost 1957, 1963). Thus, if L is not invariant under one of the three symmetries
P;C and T , it must break at least one more of them: For example, P and C
could be violated but T conserved.

Parity invariance is broken if simultaneously some Ci as well as some C 0i
are different from zero. On the other hand if LVA contains only unprimed
couplings, or primed couplings, it is invariant under parity. [In this case
parity could still be broken through interference with some other interaction
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Lagrangian whose behaviour under P is different from the behaviour of LVA

(3.64).]
For time reversal invariance to be broken at least some of the coupling

constants must be relatively complex, cf. (3.68). For violation of C -invariance
either of the two previous conditions, or both, must be fulfilled.

(ii) An important special case, relevant for leptonic CC interactions, is one where
all Ci and C 0i are relatively real and where C 0i D � Ci . In this case LVA

is invariant under time reversal while invariance under parity and charge
conjugation is violated in a maximal way: the P -odd terms in LVA have
the same magnitude as the P -even terms, the C -odd terms have the same
magnitude as the C -even terms.

(iii) In a contact interaction of the product form (3.65’) the order of the fields
is not fixed uniquely. For instance the fields #.vf/ and #.f/ in (3.65’) can
be interchanged by means of Fierz reordering (Fierz, 1936), at the price of
expressing the product of two specific covariants in one ordering by a sum over
S, P, V, A, and T covariants in the other ordering. For example (cf. Sect. 4.1.1d)

.# .1/�˛# .2//.# .3/ �˛#
.4//

D �.# .1/1#.4//.# .3/1#.2// � .# .1/�5#
.4//.# .3/�5#

.2//

C1
2
.#.1/�˛#.4//.# .3/�˛#

.2//C1
2
.#.1/�˛�5#

.4//.# .3/�˛�5#
.2//: (3.71)

A specific ordering is singled out only when the effective Lagrangian LVA is
the limiting form of an interaction due to the exchange of a heavy vector boson
which couples to specific and well-defined currents (3.59) or (3.60).

(iv) Finally, we note that the C;P and T transformations can also be applied to
interactions containing products of other covariants (3.30), such as scalars,
pseudoscalars or tensors. We retun to this in Sect. 4.1.

3.2.3 Charged Current and Neutral Current V and A Interactions
Due to Exchange of Heavy Vector Bosons

Suppose the CC leptonic weak interactions are due to the exchange of charged
vector mesons W˙ of mass mw. Write the complex fields describing these particles
as linear combinations of two mass degenerate real fields A.1/˛ and A.2/˛ , in the
spherical basis,

W ˙̨ D � 1p
2
.A.1/˛ ˙ iA.2/˛ /: (3.72)

If these fields couple exclusively to the left-handed current �˛ 1
2
.1 � �5/ D �˛P�,

and if the coupling constant is denoted by g, the exchange of a W˙ between two
pairs of leptons gives rise to amplitudes of the form
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.�ff jT j f0�f0/ / 1p
2
g.uf�

˛P�u�f/
�g˛ˇ C q˛qˇ=m2

w

q2 �m2
w

1p
2
g.u�f0

�ˇP�uf0/;

(3.73)
where q is the four-momentum transferred in the reaction. In the limit of small
momentum transfer, j q2 j  m2

w, the W-propagator may be replaced by g˛ˇ =m2
w.

In this approximation the amplitude (3.73) (as well as the analogous amplitudes
with the external particles replaced by antiparticles), may be viewed as being due to
the effective contact interaction

�L eff
CC D

g2

8m2
w
.# .f/.x/ �˛.1 � �5/# .�f/.x// .#

.�
f
0 /.x/�˛.1 � �5/# .f0/.x//C h:c:

(3.74)
This has the form of (3.64, 64’) with the identification (3.65) and the following
special values of the coupling constants:

G=
p
2 D g2=8m2

w; (3.75)

CV D CA D 1; C 0V D C 0A D �1: (3.76)

It follows from the general discussion in Sect. 3.2.2 that the interaction (3.74) is
invariant under time reversal but that it violates both parity and charge conjugation
invariance. The violation of invariance under parity, in fact, is maximal: the
interaction (3.74) produces neutrinos in purely left-handed states, antineutrinos in
purely right-handed states. The interaction (3.74) is generally referred to as the
effective V�A four-fermion interaction.

Suppose further that the NC weak interactions of leptons (and quarks) are due
to amplitudes in which a heavy neutral vector boson Z0 is exchanged between two
pairs of external fermions of like charge. In the simplest case the field Z˛ and the
photon fieldA˛ are orthogonal linear combinations of a fieldA.3/˛ , the neutral partner
of A.1/˛ and A.2/˛ , and still another neutral vector field A.0/˛ , viz.

A˛.x/ D 1p
g2 C g02 fg

0A.3/˛ .x/C g A.0/˛ .x/g; (3.77a)

Z˛.x/ D 1p
g2 C g02 fgA

.3/
˛ .x/ � g0A.0/˛ .x/g: (3.77b)

There is, of course, some arbitrariness in this ansatz. We have written these
equations in anticipation of the results of a local gauge theory of electroweak
interactions which is based on the gauge group U(2) ' SU(2) � U(1). The fields
A
.0/
˛ and fA.1/˛ ; A.2/˛ ; A.3/˛ g are then gauge fields and, therefore, fall into the adjoint

representations of U(1) and SU(2), respectively.
These gauge fields, which are defined with respect to the underlying group, are

not observable as such. The physical vector mesons with electric charge ˙1 are
defined by (3.72), whilst the electrically neutral photon and Z0 boson fields are
given by (3.77). In terms of the latter the gauge fields A.3/˛ and A.0/˛ are given by
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A.3/˛ .x/ D
1p

g2 C g02 fgZ˛.x/C g
0A˛.x/g; (3.78a)

A.0/˛ .x/ D
1p

g2 C g02 f�g
0Z˛.x/C gA˛.x/g: (3.78b)

At this stage and without having developed that theory, it is not possible to guess
the detailed form of physical couplings between fermions and the neutral vector
bosons except for the following input conditions:

(i) The coupling of the charged leptons and quarks to the photon must be of the
form #.i/�˛#

.i/A˛ , i.e. must conserve parity; the coupling constant must be
the electric charge of the external fermion.

(ii) The neutrinos, being electrically neutral, must not couple to the photon field.
(iii) If only lefthanded neutrinos couple in weak interactions, they must couple to

the Z0 via the V–A current #.vf/�˛.1 � �5/# .vf/.

Furthermore, if vf and f form an isopinlike doublet, (3.7), with respect to the
gauge group, we may guess that the field A.3/˛ couples to this doublet via pure
V–A operators �˛P� and via an operator of the type �3. The parameter g being the
coupling constant to A.1/˛ and A.2/˛ , this means that vf and f couple to A.3/˛ with equal
and opposite coupling constants,˙ 1

2
g. Let us first consider the neutrino couplings:

L
.�/

NC D f
1

2
gA.3/˛ .x/C �A.0/˛ .x/g#.�f/.x/ �˛P�#.�f/.x/: (3.79)

A glance at (3.78) shows that the curly brackets exclude the photon field if and only
if � D � 1

2
g0. In this case (3.79) becomes

L
.�/

NC D
1

2

p
g2 C g02Z0

˛.x/ #
.�f/ �˛P�# .�f/.x/: (3.79’)

The couplings of its charged partner f� to the neutral gauge fields must have the
form

L
.f/

neutral D #.f/.x/f�1
2

gA.3/˛ .x/�
˛P� � 1

2
g0A.0/˛ .x/.��˛PC C �˛P�/g#.f/.x/:

(3.80)
We have fixed the second term of the coupling to A.0/˛ on the basis of the following
consideration: A.0/˛ being a singlet field, we expect this field to couple to the left-
handed current #.f/�˛P�#.f/ with the same strength �D � 1

2
g0 as to the neutrino

field, cf. (3.79). The constant �, finally, must be chosen such as to meet the
requirement (i) above. This is guaranteed if and only if � D 2, as in this case the
terms with a �˛�5 coupling to the photon field A˛ cancel out. Setting � D 2, (3.80)
becomes
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L
.f/

neutral D
1p

g C g02 #
.f/.x/ �˛ f� gg0 .P� C PC/ A˛ .x/

C 1

2
Œg02.2PC C P�/� g2 P��Z0

˛.x/g#.f/.x/:

(3.80’)

Of course, PCCP� is unity. Therefore, the elementary charge is to be identified as
follows:

Qf D �j e j D gg0 =
p
g2 C g02: (3.81)

As e2 � g2, one can set

e2 = g2 D W sin2 	w; (3.82)

g0 D �g tg 	w: (3.83)

Equation (3.82) defines the Weinberg angle 	w.
With this parametrization the neutral interactions can be written as follows:

L .f/
neutral D �QfA˛ .x/#.f/.x/ �˛ #.f/ .x/

C g

cos 	w
Z˛ .x/f#.f/ .x/Œ�1

2
�˛ P� C sin2 	w �

˛� # .f/.x/

C#.vf/ .x/
1

2
�˛ P� #.vf/ .x/g; (3.84)

where e D jej and Qf D �e.
As in the case of the charged bosons W˙, the exchange of a Z0 with squared

momentum transfer small as compared to its mass, j q2 j  m2
Z, gives rise to an

effective current–current interaction of the form

�L eff
NC D

1

2

g2

16 cos2 	w

1

m2
Z

K�
˛ .x/K

˛ .x/; (3.85)

where

K.f/
˛ .x/ D #.f/.x/Œ��˛ .1 � �5/C 4 sin2 	w �˛� #

.f/ .x/ (3.86)

C#.vf/.x/�˛ .1 � �5/# .vf/ .x/;

(the factor 1
2

in (3.85) accounting for double counting).
The effective coupling strength in (3.85) can also be written in terms ofG, (3.75)

g2

16 cos2 	w

1

m2
Z

D 1

2
�
Gp
2
; (3.87)

with the definition
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� WD m2
W

m2
Z cos2 	w

: (3.88)

The effective interaction (3.85) is of V and A character with real coupling constants.
Therefore, it is invariant under time reversal but breaks both parity and charge
conjugation symmetry.

These semiempirical results constitute the leptonic sector of the Glashow–
Salam–Weinberg unified theory of electroweak interactions (Glashow 1963,
Salam 1967, Weinberg 1967). They will be derived below in the mathematical
framework of local gauge theories.

In anticipation of later results we note at this point that the phenomenological
analysis of the data yieldsGD 1:16639.2/�10�5GeV�2, sin2 	wD 0:2319.5/; �'1.
This suffices to estimate the masses of W˙ and Z0. From (3.75) we have

mW D
r

�˛

G
p
2

1

sin 	w
D 37:28= sin	w GeV; (3.89a)

and from (3.88)

mZ D mW

cos 	W
D 37:28= sin	W cos 	WGeV: (3.89b)

[These expressions hold up to radiative corrections.] Thus mw is found to be of the
order of 80 GeV, mz of the order of 90 GeV, or expressed in Compton wavelengths,
–�.W/ ' 2:5 � 10�16cm, and –�.Z0/ ' 2:2 � 10�16cm. This gives a measure for the
range of weak CC and NC interactions. Indeed, the experimental masses are found
to be

mW D .80:399˙ 0:023/GeV; mZ D .91:1876˙ 0:0021/GeV: (3.90a)

Their total widths are

�W D .2:085˙ 0:042/GeV; �Z D .2:4952˙ 0:0023/GeV (3.90b)

3.2.4 Difficulties of the Effective Current-Current Theory

The effective current–current interactions (3.74) and (3.85), as well as their hadronic
counterparts, are very useful in practical applications to weak processes at low and
intermediate energies, provided they are treated in lowest order perturbation theory.
However, if one applies them to weak scattering processes at high energies (say
� 100GeV/ or if one tries to compute higher order effects, one runs into two kinds
of difficulties. A contact interaction of the current–current form (3.74) or (3.85)
leads to neutrino cross sections which increase linearly with increasing neutrino
(laboratory) energy, cf. (3.23b). This linear increase cannot hold indefinitely and
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is in contradiction to unitarity. Furthermore, such a theory is not renormalizable,
that is higher order diagrams cannot be made finite by means of a finite number of
renormalization constants. Clearly, the two problems are intimately related. Since
we do not know how to handle a nonrenormalizable field theory, we cannot decide
whether or not a theory with contact interactions makes mathematical sense, in an
exact way. That lowest order diagrams (generalized Born terms) lead to conflict with
unitarity at high energies is not new, of course. In the frame of perturbation theory
unitarity of the S -matrix is restored by diagrams of higher orders. These, however,
cannot be computed in a theory which is not renormalizable.

In order to obtain a more quantitative feeling of where this conflict with unitarity
is to be expected let us work out the following very simple example: Consider the
elastic scattering process

ve C e� ! e� C ve (3.91)

on the basis of the CC contact interaction (3.74) [and neglecting the NC interaction
(3.85) that contributes to this process, too]. From the formulae in App. B we have

d� D .2�/10

4.pq/

1

2

X
jT j2 ı.p C q � p0 � q0/d3q0

2q00
d3p0

2p00
;

where p; p0 denote the initial and final neutrino momenta, respectively, q; q0 those
of the electron before and after the scattering.

Let s D .p C q/2 and d3q0 D x2dxd˝�, where x � jq0j. Integrating over d3p0
one finds

d�

d˝�
D .2�/10

16.s �m2
e/

Z 1
0

xdx
ı
�p

x2 Cm2
e C x �

p
s
	

p
x2 Cm2

e

X
jT j2:

The integral over x gives the integrand at x0 D .s � m2
e/=2
p
2 times a

factor
q
x20Cm2

e=
p
s which stems from the derivative of the argument of the

ı-distribution,
d�

d˝�
D 1

32s
.2�/10

X
jT j2:

The squared T -matrix element for the interaction (3.74), when summed over the
spins is

.2�/12
X
jT j2 D 1

2
G2tr.�˛.1 � �5/�p�ˇ.1 � �5/.�q0 Cme/g
� trf�˛.1 � �5/.�q Cme/�ˇ.1 � �5/�p0g
D 128G2 .pq/.p0q0/ D 32G2 .s �m2

e/
2;
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so that

d�

d˝�
D G2

4�2
.s �m2

e/
2

s
D 1:34 � 10�39 cm2 GeV�2

.s �m2
e/
2

s
(3.92)

and the integrated cross section is

� D G2

�

.s �m2
e/
2

s
: (3.93)

Let us now analyze these results in some detail. The differential cross section in
the c.m. system (3.92) as well as the integrated cross section (3.93), for s � m2

e ,
increase like s, i.e. like the square of the neutrino energy in the c.m. frame. This
same cross section (3.93) can also be evaluated in the laboratory system, where

s D .p C q/2 D m2
e .1C 2E lab

v =me/ � m2
e.1C 2!/

With ! WD E lab
v =me. This gives

� D 2G2m2
e

�

2!2

1C 2! D 8:8 � 10
�45 cm2 2!2

1C 2! : (3.93’)

For ! � 1 this cross section increases linearly with E lab
v . For E lab

v ' 400GeV it is
of the order of 7 � 10�39 cm2. Returning to the c.m. system, we can write (3.92) in
terms of the standard scattering amplitude f as

d�

d˝�
D 1

2

X
jf j2;

where the relation between the scattering amplitude and the T-matrix element is
f D .8�5=ps/T so that

X
jf j2 D

�
G

�
p
2

s �m2
ep

s

�2
:

This spin-average of the squared amplitude is isotropic and, therefore, behaves like a
scalar (i.e. spinless) s partial wave. On the basis of unitarity it must have the general
form of a scattering amplitude for l D 0

�X
jf j2

	1=2 	 flD0 D 1

2ik
.�e2i" � 1/;

where " is a real phase and � is the inelasticity bounded by 0 � � � 1I k is the c.m.
momentum and is given by k D .s �m2

e/=2
p
s. Unitarity implies an upper bound

on the cross section,
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d�

d˝�
� 1

8k2
.�C 1/2 � 1

2k2
D 2s

.s �m2
e/
2
: (3.94)

The calculated differential cross section (3.92) reaches the unitarity bound (3.94) at
a critical value s D sc which is so large that m2

e can be neglected as compared to sc,
viz.

sc ' 2�
p
2

G
D 7:62 � 105 GeV2: (3.95)

The value (3.95) corresponds to a c.m. energy of the neutrino of the order of
Ev ' p

s=2 ' 440GeV. This critical energy is very large indeed. Therefore,
at low and intermediate energies the effective current–current interaction (3.74)
and (3.85) is a very good approximation to the interaction due to exchange of
W˙ and Z0. The result (4.64) for muon decay below may serve as an example
to illustrate the magnitude of the correction due to a W -propagator. So in many
practical applications one can neglect the typical effects of W- and Z-propagators.
The full unified gauge theories are renormalizable, as was first shown by ’t Hooft
(’t Hooft 1971), and lead to unitary and calculable S -matrices. The current–current
contact interactions then appear as the effective interactions, valid at low and
intermediate energies.

3.3 Elements of Local Gauge Theories Based on
Non-Abelian Groups

The section deals with the principles of constructing field theories which, in
addition to being Lorentz covariant, are invariant under a group of local symmetry
transformations. Depending on whether the underlying symmetry group is Abelian
or non-Abelian, we talk about Abelian or non-Abelian gauge theories. Quantum
electrodynamics (QED) is an example of a Lorentz covariant theory which, in
addition, is invariant under local gauge transformations of the photon field, cf.
(1.204), and of the matter fields, cf. (1.202).

In this case, as is evident from (1.202), the group of transformations is a one-
parameter continuous group, i.e. it is an Abelian group and has the structure of
U(1). We develop the more general non-Abelian case in close analogy to QED.
We define generalized vector potentials A.k/� .x/, generalized field tensors F .k/

�v .x/,
and generalized covariant derivatives, (1.205), of matter fields. These notions and
definitions provide the tools for the construction of a rather general class of local
gauge theories. We develop these theories in a constructive but still elementary way.
Although we try to render the main properties and results as transpartent as possible
by invoking the geometrical interpretation of the basic elements of the theory, we do
not enter the mathematical properties of gauge theories in their full rigour. [These
form an important and rich topic by themselves; however, they go beyond the scope
of this book.]
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3.3.1 Groups of Local Gauge Transformations

Let G be a compact Lie group. We shall always assume that G is simple, or is
the direct product of a finite number of simple Lie groups. Examples of interest in
particle physics are the unitary unimodular groups SU(n) (i.e. the groups defined by
the unitary matrices with determinant 1 in n complex dimensions), such as

U.1/; SU.2/; SU.3/;

or direct products thereof

SU.2/ � U.1/; SU.3/ � SU.2/ � U.1/; etc:

The generators of infinitesimal transformations in G are written as Ti in abstract
notation, i.e. when no reference to a specific representation is made. They obey the
commutators

ŒTi ; Tj � D i
NX
kD1

Cijk Tk; i; j D 1; 2; : : : ; N; (3.96)

where Cijk are the structure constants. Definitions here are such that the generators
are hermitean. As is well known the structure constants Cijk can be chosen totally
antisymmetric and fulfill the identity [HAM 62, RAC 64]

X
l

fCikl Clmn C CkmlClin C Cmil Clkng D 0; (3.97)

which follows from the Jacobi identity for Ti ; Tk , and Tm. N finally, is the
dimension of the Lie algebra (3.96) of the group G;N D dim.G/2. Let us consider
some examples:

U(1): Here N D 1 and T1 is the unit element.
SU(2): Here we have N D 3 and Cikl D "ikl, the totally antisymmetric Levi-

Civita tensor in three real dimensions.
A concrete realization of U(1) and SU(2) is obtained by considering the group

U(2) of unitary matrices in two complex dimensions. Such matrices u 2 U.2/ have
the form

u D ei˛
�
a b

�b� a�
�

with jaj2 C jbj2 D 1;

so that uu� D 1. Any such matrix depends on four real parameters and can be written
as an exponential series

u D exp

8<
:i

3X
�D0

��h�

9=
;; (3.98)

2For SU(n), as is well-known, N D n2 � 1.
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in the hermitean matrices

h0 D
�
1 0

0 1

�
; hi D 1

2
�.i/; i D 1; 2; 3; (3.99)

�� being arbitrary real parameters. The commutators of these matrices are

Œh0; h�� D 0; � D 0; 1; 2; 3; (3.100a)

Œhi ; hj � D i
3X

kD1
"ijk hk; j D 1; 2; 3: (3.100b)

As h0 commutes with hi , we can write (3.98) equivalently as follows

u D expfi�0 h0g exp

(
i

3X
kD1

�k hk

)
: (3.98’)

The first factor of (3.98’) defines an Abelian subgroup of U(2) and, therefore, forms
a U(1) group. As to the second factor we note that H WD˙3

kD1 �k hk is not only
hermitean but also traceless, trfH gD 0. Therefore, the matrices expfiH g are unitary
and have determinant 1 (see exercise 3.3). Thus, the second factor in (3.98’) defines
SU(2), the group of all unitary, unimodular matrices in two complex dimensions.
In abstract notation we write the generators of U(2) as T� with � D 0; 1; 2; 3 and
obtain the commutators

ŒT0; T�� D 0; 8�; (3.101a)

ŒTi ; Tj � D i
X
k

"ijk Tk: (3.101b)

SU (3): Here we have N D 8 and the structure constants are Cijk D fijk with fijk as
indicated in the following scheme.

ikl 123 147 156 246 257 345 367 458 678

fikl 1 1
2

� 1
2

1
2

1
2

1
2

� 1
2

1
2

p
3 1

2

p
3

Those structure constants fstu for which stu is not an even or odd permutation of
the indices ikl as listed in this table vanish.

A concrete realization of SU(3) is obtained by considering all unitary, unimodu-
lar matrices in 3 complex dimensions. As for SU(2) we write

u D exp

(
i
8X

kD1
�khk

)
; u 2 SU.3/; (3.102)
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with

uu� D 1; det.u/ D 1;
hk D h�k; tr.hk/ D 0;

hk D 1

2
�k;

where �k are eight linearly independent matrices whose explicit form can be found
in the literature [GAS66], or in Appendix D. The constants �k are arbitrary real
parameters, as before. In abstract notation the generators of infinitesimal SU(3)
transformations are written as Tk; k D 1; 2; : : :; 8. They obey the Lie algebra

ŒTi ; Tj � D i
8X

kD1
fijk Tk; (3.103)

with fijk as defined above.
In all of these examples we are dealing with compact groups. The group

parameters�k are then generalized angles of rotation. If one wishes, one can choose
these angles such that their domain of variation is either the interval Œ0; �� or the
interval Œ0; 2��. For example, SU(2) can be parametrized by means of three Euler
angles, cf. (1.41, 1.141), with

0 �  � 2�; 0 � 	 � �; 0 � 
 � 2�;

Transformations of the kind of (3.98) or (3.102), are called global transformations.
These must be distinguished from local transformations where the group parameters
are allowed to be functions of space and time to which we now turn. A group element
ofG is said to be a local transformation or a gauge transformation if it has the form

g.x/ D exp

(
i
NX
kD1

�k.x/Tk

)
; (3.104)

where x � fx�g is a point in Minkowski space. In contrast to the case of global
transformations the group parameters are now taken to be (in general, infinitely
differentiable) functions�k.x/ of space and time.

This construction looks rather natural because gauge transformations act on
particle states which may be localized states in the sense that one is studying a set
of particles in a given finite space volume and within a certain finite time interval.
There is then no need to transform simultaneously other particles far away from that
volume and at times outside that time interval. Having the group parameters depend
on a space-time argument allows to restrict the gauge transformation to the localized
states at stake.
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The group of global transformations (i.e. not depending on space–time) is called
the structure group, while the local transformations belong to the gauge group.

It is easily verified that the local transformations (3.104), for fixed x, form a
group with respect to the group multiplication

g1.x/ � g2.x/:

Thus the definition (3.104) provides a copy G.x/ of the original Lie group G, for
every x in Minkowski space.

Consider now a set of M matter fields


.x/ WD f
n.x/g; n D 1; 2; : : : ;M; (3.105)

which form an M -dimensional representation of the group G. This representation
must be unitary but need not be irreducible. For simplicity we take the fields 
n to
be spin-zero boson fields, at least for the moment, but note that in the discussion
of their transformation under G the spin character is irrelevant. The transformation
properties underG apply equally well to fermion fields or fields with spin 1. Let Lk
denote the matrix representatives of the generators Tk in the space of the fields 
n,

.Lk/ij D Uij.Tk/: (3.106)

The action of a local transformation g.x/ on the fields is then given by


.x/ !
g.x/


0.x/ D exp

(
i
NX
kD1

�k.x/Lk

)

.x/: (3.107)

Of course, we can write this transformation in representation-free notation by
defining the abstract group element g.x/ as an exponential series in terms of the
generators Tk and the parameter functions�k.x/,

g.x/ D expfi�.x/g with �.x/ D
NX
kD1

�k.x/Tk: (3.108)

In the space of the functions 
.x/ the transformation (3.108) is represented by the
matrix

U.�.x// � U.g.x// D expfi˙�k.x/U.Tk/g
D expfi˙�k.x/Lkg:

Suppose we wish to construct a field theory which describes the equations of motion
of the fields 
.x/ and which is invariant under the symmetry transformations of the
structure groupG. The groupG defines an internal symmetry of this field theory and
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the indices n on the fields 
n.x/, with n D 1; 2; : : : ;M , refer to a “charge” space
which is given by unitary representations of G. As an example consider the three
pion fields 
m.x/;m D C1; 0;�1, which are distinguished by the projection I s3 of
the strong interaction isospin I s D 1. In this exampleG is the SU(2) of isospin, the
representation formed by the pion fields is three dimensional and irreducible. Under
a transformation g of G which is specified by three parameters (Euler angles), the
pion fields transform according to


0m.x/ D
3X

�D1
D.1/
m�.�1;�2;�3/
�.x/:

If G is to be a global symmetry then the Lagrangian of the pion fields 
m.x/ can
depend only on products of the fields and of their derivatives which are scalars
underG. The kinetic energy term, in particular, must have the Lorentz invariant and
G-invariant form

.@˛
; @
˛
/; (3.109)

where the parentheses (,) imply, symbolically, coupling of the bilinear 
m 
m0 to an
invariant. [In the present example (@˛
; @˛
/ � ˙m.�/1�m@˛
m@˛
�m:�

If G is to be a local symmetry, i.e. if the parameters �i depend on space and
time, then a new aspect emerges: As we said before the prescription (3.104) defines
an infinity of copies G.x/ of the original abstract group G, one for each point of
space–time. Regarding the matter fields 
 this prescription implies that each point
x in Minkowski space is endowed with a local charge space xH . As the derivative
@˛
 connects the fields in neighbouring points, x and x C dx, it relates at the same
time the charge space xH to the charge space xCdxH . A component 
n.x/ of 
.x/
with respect to a given basis in the charge space xH in x is not simply the same
component n with respect to xCdxH . Therefore, the kinetic energy term (3.109)
cannot be invariant under local gauge transformations and must be replaced by a
more general, G.x/-invariant form.

This problem can be solved in two steps: First, one derives the transformation
that carries 
n.x/ in the space xH into the same component 
n in xCdxH (parallel
transport). Second, one constructs the covariant derivativeD˛ which replaces @˛ in
(3.109) and which makes this form locally gauge invariant.

3.3.2 Vector Potentials and Their Transformation Properties

Let us consider a given component 
n.x/ of the representation formed by the fields

.x/. The field is taken at a fixed point x of space–time. The given index n, in fact,
refers to a basis in the internal symmetry space xH , in which case we write x
n.x/,
or the analogous basis in the symmetry space xCdxH attached to a neighbouring
point (x C dx), in which case we write xCdx
n.x/, for the sake of clarity. The
two fields are not the same. However, it must be possible to relate them by an
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infinitesimal local gauge transformation, for which we make the following ansatz

xCdx
n.x/ � x
n.x/ D �
X
m

Unm.A˛/ � dx˛ x
m.x/; (3.110)

with

Unm.A˛/ D ie
NX
kD1

A.k/˛ .x/.Lk/nm; (3.111)

or, in abstract notation,

A˛.x/ WD ie
NX
iD1

A.k/˛ .x/Tk: (3.112)

Note that the fields A.k/˛ carry both an internal symmetry index k and a Lorentz
vector index ˛. The Lorentz vector behaviour is needed in order to obtain a Lorentz
invariant form A˛dx˛ in (3.110). Thus, A˛ as defined by (3.112) has a dual nature:
on the one hand it transforms like an ordinary Lorentz vector field, on the other
hand, through its dependence on the generators Tk , it is an operator in the internal
symmetry space. In other words, A˛.x/ is an object which transforms like a Lorentz
vector field and takes its values in the Lie algebra of the structure group. Equation
(3.112) defines A˛ in abstract form, whilst (3.111) defines its matrix representation
in the space of the matter fields 
n.

Of course, we can apply an arbitrary local gauge transformation g.x/ and
g.x C dx/ to x
n and xCdx
n, respectively. Equation (3.110) describes the parallel
transport of the field 
n provided it commutes with the local transformation g,

U.g.x C dx//.1 � U.A˛.x//dx˛/x
n D .1 � U.A0̨ .x//dx˛/U.g.x//x
n:

We can derive the transformation behaviour of the vector fields A˛.x/, (3.111),
under g.x/ from this requirement: As it must hold in all possible representations we
can work it out in an abstract, i.e. representation-free form

g.x C dx/.1 � A˛.x/dx˛/ ŠD.1 �A0̨ .x/ dx˛/g.x/:

Writting g.xC dx/ ' g.x/C @˛g.x/dx˛ and collecting all terms linear in dx˛ , we
have

@˛g.x/ � g.x/A˛.x/ D �A0̨ .x/g.x/
or

A0̨ .x/ D g.x/A˛.x/g�1.x/ � .@˛g.x//g�1 .x/:
Since @˛.g.x/g�1.x// D .@˛g/g

�1 C g.@˛g�1/ D 0, this can also be written as
follows:

A0̨ .x/ D g.x/A˛.x/g�1.x/C g.x/@˛g�1.x/: (3.113)
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This fixes the transformation behaviour of the quantityA˛.x/, (3.111), under a local
gauge transformation g.x/ 2 G.x/.

Let us analyze in more detail the meaning of (3.113) and of the fields A.k/˛ .x/.
The transformation A˛ ! A0̨ , (3.113), contains two elements: the first term
is a conjugation, i.e. the familiar transformation behaviour of an operator with
respect to global transformations g in G. Indeed, if g does not depend on x, the
derivative @˛g�1 vanishes and A0aDgA˛g�1. The second term is a generalized
gauge transformation, as may be seen by considering the example of G being a
U(1) group. In this case

g.x/ D ei�.x/; g�1.x/ D e�i�.x/;

g.x/@˛g
�1.x/ D �i@˛�.x/;

so that (3.113) reduces to

A0̨ .x/ D A˛.x/ � i@˛�.x/:

Furthermore, the gauge group being U(1), the sum on the r.h.s. of (3.111) contains
only one term, A˛ D ieA.1/˛ 1, so that

A.1/0˛ .x/ D A.1/˛ .x/ �
1

e
@˛�.x/: (3.114)

This is precisely the expression for a gauge transformation in electrodynamics, cf.
(1.204). Thus, (3.113) provides the generalization of the familiar gauge transforma-
tions of electrodynamics to the case of non-Abelian local gauge groups.

At the same time this comparison suggests that the vector fields A.k/˛ .x/, of
which there are N D dim G types, are generalizations of the vector potential of
electrodynamics. In this context it is instructive to work out the transformation
behaviour of these fields under infinitesimal transformations g.x/,

g.x/ ' 1C i
X

�k.x/Tk:

This gives

gA˛g
�1 '

 
1C i

X
k

�kTk

!
ie
X
i

A.i/˛ Ti

0
@1 � i

X
j

�j Tj

1
A

' ie
X
i

(
Ti C i

X
k

�kŒTk; Ti �

)
A.i/˛ .x/

' ie
X
i

8<
:Ti �

X
k;l

�kCkilTl

9=
;A.i/˛ .x/
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and
g.x/@˛g

�1.x/ ' �i
X
j

Tj @˛�j .x/:

Inserting these formulae into (3.113) and comparing the coefficients of Ti on either
side, one obtains, with j�kj  1,

A.i/0˛ .x/ ' A.i/˛ .x/ �
X

kl

Cikl�k.x/A
.l/
˛ .x/ �

1

e
@˛�i .x/: (3.115)

For G D U.1/ this reduces to the result (3.114) above. For G D SU.2/ one has, in
an obvious vector notation,

A0̨ .x/ ' A˛.x/ ��.x/ � A˛.x/ � 1
e
@˛�.x/:

The constant e which appears in the definition (3.112), in principle, is arbitrary.
Like in electrodynamics it plays the role of a coupling constant of the matter fields

 to the vector bosons represented by the gauge fields A.i/˛ . For each irreducible
component Gi of G D G1 � G2 � � � � there is one such constant ei which can be
chosen arbitrarily (cf. exercise 3.4). We return to this arbitrariness in more detail
below.

We summarize the results of this section: The very definition of parallel transport
requires the introduction of a set of vector gauge fields fA.k/.x/I kD 1; : : : ; N g
which form the adjoint representation of the group G. Therefore, once G is
given, say

G D G1 �G2; (3.116a)

where Gi are simple, then

N D N1 CN2 with Ni D dim.Gi /: (3.116b)

With respect to infinitesimal local gauge transformations the fields A.k/˛ transform
according to (3.115) which behaviour is the generalization of the familiar gauge
transformations of electrodynamics to the non-Abelian case. In the expression for
the parallel transport, the gauge fields appear in the form of the operatorA˛, (3.112)
whose transformation behaviour under finite g.x/ is defined by (3.113) (equivalent
to (3.115) for infinitesimal gauge transformations). In those gauges which preserve
the manifest covariance of the theory, A˛ is a Lorentz vector. At the same time it is
an operator with respect to the groupG and takes its values in the Lie algebra of G.
Equation (3.111) gives its matrix representation in the space of a set of matter fields
which form a unitary representation of G.
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3.3.3 Covariant Derivatives

Our aim is to construct a generalized derivative of the matter fields D˛
n.x/ such
that bilinears of two such forms can be coupled to an invariant, generalized, kinetic
energy (D˛
;D

˛
). For this purpose let us consider the difference A
n.x C dx/�
A
n.x/ of the field 
n for two infinitesimally separated arguments but expressed
in the same symmetry space AH , attached to the point ADx in space–time. This
infinitesimal difference can be expressed as the sum of a term containing the
ordinary derivative and a parallel transport. Let

A � x and B � x C dx:

Then

A
n.B/ �A 
n.A/ D ŒB
n.B/�A 
n.A/�C ŒA
n.B/ �B 
n.B/�;

where the first term is given by3

B
n.B/�A 
n.A/ ' @˛A
n.A/dx˛;

while the second term is a parallel transport of B
n.B/ to the point A D B � dx.
This is obtained from (3.110) with dx replaced by – dx, viz.

A
n.B/�B 
n.B/ D
X
m

Unm.A˛/dx
˛ B
m.B/:

Thus, to first order in dx,

A
n.B/�A 
n.A/ '
X
m

fınm@˛ C Unm.A˛/gdx˛A
m.A/

� D˛.A/
A
.A/ dx˛;

which defines the covariant derivativeD˛.A/
 with

D˛.A/ WD 1@˛ C U.A˛/: (3.117)

Clearly, these considerations do not depend on the nature of the fields 
. In
particular, they hold equally well for fermion fields # . For example, specializing
again to electrodynamics by taking G D U.1/, we see that the definition (3.117)
reduces to the covariant derivativeD˛ of (1.205).

3Note that the x-dependence appears in the argument and in the basis.
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The generalized derivative D˛.A/
 is called covariant because under a local
gauge transformation g.x/ 2 G it transforms according to the law

D˛.A
0.x// D U.g.x//D˛.A.x//U

�1.g.x//; (3.118)

where U.g/ is the matrix representation of g in the space of the fields 
. Equation
(3.118) says thatD˛.A/ transforms like a tensor operator. Therefore, on the basis of
these tensors, it will be easy to form invariants under G.x/.

The transformation behaviour (3.118) follows from the construction given above.
It may also be verified by explicit calculation as follows:

D˛.A
0/
0.x/ D .@˛ C U.A0̨ // U.g.x//


D .@˛U.g//
 C U.g/@˛

CU.g/ŒU.A˛/U�1.g/C .@˛U�1.g//� U.g/


D U.g/.@˛
 C U.A˛//

Cf.@˛U.g//
 C U.g/Œ@˛.U�1.g/U.g//
�U�1.g/.@˛U.g//�
g:

As U�1U D 1 is independent of x, the term in curly brackets is zero, while the first
is precisely U.g/D˛.A/
. Thus we obtain

D˛.A
0/
0.x/ D U.g/D˛.A/
;

from which (3.118) follows immediately.

3.3.4 Field Tensor for Vector Potentials

The field tensor F�v in non-Abelian gauge theories which generalizes the field
strength tensor (1.190) of electrodynamics, is obtained, for instance, by studying
two successive, infinitesimal, parallel translations (3.110) from a point x to a point
z D xCdxCdy. This transformation can be effected in either of the two following
ways which are not equivalent:

.a/ x ! x C dx D y ! z D y C dy D x C dx C dy;

.b/ x ! x C dy D y0 ! z D y0 C dx D x C dx C dy:

Expanding A.x C dx/, A.x C dy/ around the point x, their difference to second
order in dxdy is found to be
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.1 �Aˇ.x C dx/dyˇ/.1 � A˛.x/dx˛/
�.1 �A˛.x C dy/dx˛/.1 � Aˇ.x/dyˇ/

D �f@˛Aˇ .x/ � @ˇA˛.x/C A˛.x/Aˇ.x/ � Aˇ.x/A˛.x/gdx˛dyˇg
DW �F˛ˇ.x/dx˛dyˇ;

where the tensor F˛ˇ.x/ is defined by

F˛ˇ.x/ WD @˛Aˇ.x/ � @ˇA˛.x/C ŒA˛.x/; Aˇ.x/�: (3.119)

F˛ˇ.x/ is a tensor with respect to Lorentz transformations. At the same time it has
the properties of a tensor operator with respect to the symmetry transformations g.
This is easy to see if we notice that F˛ˇ can be related to the commutator of the
covariant derivativesD˛ and Dˇ . In the space of the matter fields

ŒD˛.A/;Dˇ.A/� D @˛U.Aˇ/� @ˇU.A˛/C ŒU.A˛/; U.Aˇ/�
D U.@˛Aˇ � @ˇA˛ C ŒA˛; Aˇ�/ D U.F˛ˇ.x//: (3.120)

Thus the matrix representative of F˛ˇ in the space of the fields 
, transforms like
the commutator of D˛ and Dˇ whose transformation behaviour, in turn, is given
by (3.118). This proves the tensor character of F˛ˇ with respect to the gauge
transformations of G.x/.

Finally, in analogy to the decomposition (3.112) of A˛ , we can write F˛ˇ as a
linear combination of the generators Tk of G, viz.

F˛ˇ.x/ D ie
NX
kD1

TkF
.k/

˛ˇ .x/; (3.121)

where F .k/

˛ˇ .x/ are ordinary Lorentz tensor fields. Their explicit form is obtained
from the definition (3.119) by inserting the decomposition (3.112):

ie
X
kD1

TkF
.k/

˛ˇ .x/ D ie
X

Tk.@˛A
.k/

ˇ .x/� @ˇA.k/˛ .x//

C .ie/2
X
i;j

ŒTi ; Tj �A
.i/
˛ .x/A

.j /

ˇ .x/:

The commutator in this expression is given by (3.96). As the generators Tk are
linearly independent, we can compare the coefficients of Tk to find

F
.k/

˛ˇ .x/ D f .k/

˛ˇ .x/ � e
X
i;j

CkijA
.i/
˛ .x/A

.j /

ˇ .x/; (3.122)
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with
f
.k/

˛ˇ .x/ WD @˛A.k/ˇ .x/ � @ˇA.k/˛ .x/: (3.123)

Equation (3.122) is the direct generalization of the electromagnetic field-strength
tensor (1.190) to the case of non-Abelian gauge theories.

3.3.5 How to Construct Locally Gauge Invariant Theories

In the previous sections we have established three types of operators which have a
simple transformation behaviour under local gauge transformations: the generalized
vector potentials A˛.x/, the corresponding field tensors F˛ˇ.x/, and the covariant
derivative D˛.A/ of matter fields 
. As to the latter, we noted previously that the
spin content of the field 
 is irrelevant. Therefore, the covariant derivative of spinor
fields (or any other field) is given by exactly the same definition (3.117), where
U.A˛/ is now the matrix representation of the operatorA˛ in the space of the spinor
fields. These operators are the tools which we need to construct Lagrangians which
are invariant under local gauge transformations.

Suppose the theory is to contain a set of boson fields


.x/ D f
n.x/In D 1; : : : ;M g; (3.124a)

as well as a set of spinor fields

#.x/ D f#p.x/Ip D 1; : : : ; P g: (3.124b)

If we require the Lagrangian to be invariant under global transformations g 2 G
then it must have the form

L0 D 1

2
.@˛
; @

˛
/C 1

2
i.#; �˛

$
@ ˛#/� .#;m#/� .#; g 
 #/ � V.
/: (3.125)

The parentheses (X; Y ) are meant to indicate that X and Y are coupled to a scalar
with respect toG. In the third term of (3.125), in particular,m is a matrix in the space
of the #p (mass matrix). Likewise, the fourth term represents a G-invariant Yukawa
coupling of the fields # and 
, while the last term (“potential” term) denotes a
group-invariant self-interaction of the fields 
 as well as possible mass terms for
that field. The explicit form of these invariants depends on the nature of the Lie
algebra (3.96) and of the multiplets 
.x/ and #.x/. In particular, it may happen
that it is not possible to construct a group invariant mass term for the fermion fields.
[This case will be encountered in the GSW model].

On the basis of the results obtained in Sects. 3.3.2–4 it is easy to construct a new
version of the theory (3.125) which is invariant under local gauge transformations
g.x/ 2 G.x/ as well: Let U.A˛/ and V.A˛/ be the matrix representatives of the
operator A˛ , (3.112), in the space of the boson fields (3.124a) and in the space of
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the fermion fields (3.124b), respectively. In order to obtain gauge invariant kinetic
terms of these matter fields, the ordinary derivatives @˛
; @˛ # must be replaced by
the covariant derivatives

D˛
 D .1@˛ C U.A˛//
; (3.126a)
!
D˛# D .1@˛ C V.A˛//#; (3.126b)

#
 
D˛ D @˛#1C # V �.A˛/ D @˛#1 � #V.A˛/: (3.126c)

In addition, a term of the form (F˛ˇ; F ˛ˇ/ must be added to the Lagrangian which
generalizes the well-known kinetic energy term (1.189) of the Maxwell fields, viz.

�LA D c

4
.F˛ˇ; F

˛ˇ/

D e2 c
4

X
i;k

tr.TiTk/ F
.i/

˛ˇ F
.k/˛ˇ:

Now, with
tr.TiTk/ D �ıik (3.127)

c must be chosen to be
c D 1=�e2

for the derivative terms f .i/

˛ˇ f
.i/˛ˇ to obtain the same factor � 1

4
as in the case of

the Maxwell field, eq. (1.189). The mass terms, coupling terms and generalized
potentials which do not contain derivatives, remain the same as in the globally
invariant version of the theory.

The full Lagrangian describing the interacting matter fields 
 and # , in interac-
tion with the gauge fields A.i/˛ , is then given by

L D 1

4�e2
.F˛ˇ; F

˛ˇ/C 1

2
.D˛
; D

˛
/C i

2
.#; �˛

$
D˛#/

�.#; .mC g
/#/ � V.
/: (3.128)

Theories of this kind which are invariant under a non-Abelian group of local gauge
transformations have a number of remarkable general properties.

(i) As in the Abelian case of electrodynamics, the Lagrangian cannot contain a
mass termm2A

.i/
˛ A

.i/˛ for the gauge fields because such a term is not invariant
under gauge transformations. Therefore, if the gauge symmetry remains
unbroken or, if no additional unphysical fields are introduced (Stückelberg
fields), the gauge fields A.i/˛ describe massless vector bosons. In turn, if we
wish to give some of these bosons finite masses, the symmetry must be broken
to some extent. In fact, we shall see that it is possible to partially break the
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gauge symmetry while maintaining the global invariance of L with respect to
the structure group.

(ii) In the non-Abelian case the first term in L , (3.128), contains not only the
kinetic energy

�1
4

X
i

f
.i/

˛ˇ f
.i/˛ˇ

of the gauge fields, but also coupling terms of the kind

X
ijk

Cijkf
.i/

˛ˇ .x/A
.j /˛.x/A.k/ˇ.x/

and X
i ���q

CijkCipqA
.j /
˛ .x/A

.k/

ˇ .x/A
.p/˛.x/A.q/ˇ.x/;

i.e. cubic and quartic interactions of the gauge fields among themselves.
(iii) Owing to the dependence ofD˛.A/ on the fields A.i/˛ the generalized “kinetic”

terms of the boson and fermion fields also yield the couplings of the matter
fields to the gauge vector bosons. The gauge bosons are seen to couple to
currents of the type 
�U.Ti/i@

$

˛
 and #V.Ti /�˛# , respectively. In particular,
if Ti is diagonal in the boson multiplet or fermion multiplet, this implies that
the physical coupling constants of individual members of this multiplet, i.e.
their “charges”, are proportional to each other. They are given by the constant
e multiplied by the diagonal matrix elements of U.Ti/ or V.Ti /, respectively.
This is a new element of universality which does not occur in Abelian theories.

(iv) There is a beautiful geometric interpretation for each of the building blocks of
local gauge theories that we could not describe in any detail without rendering
this chapter exceedingly long. We refer to the more specialized literature on
this topic. While the structure of G.x/, for fixed x in space–time, is known as
soon as the structure group G is given, it needs the vector potential A˛.x/ to
connect two different copiesG.x/ and G.y/ ofG, for x ¤ y. In particular,A˛
is needed for the transport of geometric objects from the internal symmetry
space in x to the internal space in y, an operation which is very similar
to parallel transport of vectors in ordinary differential geometry. It turns out
that A˛.x/dx˛ is an explicit (coordinate) representation of what is called a
connection form in geometry. Furthermore, as we saw above, the field strength
tensor F˛ˇ.x/ appears if one compares the result of parallel transport from x

to z along two different paths. This is reminiscent of the notion of curvature in
differential geometry. Indeed, it turns out that F˛ˇ.x/dx˛dxˇ is the coordinate
representation of what is called the curvature form pertaining to the connection
form from which one started.



232 3 Weak Interactions and the Standard Model of Strong and Electroweak Interactions

3.4 Glashow–Salam–Weinberg Model for Leptons and Quarks

The GSW model whose phenomenology was summarized in Sect. 3.2.3 above, is
based on the gauge group

G D U.2/; (3.129)

whose algebra reduces to the algebras of SU(2) and U(1). More precisely, the
group U(2) is locally isomorphic to U(1)�SU(2) but such a decomposition is not
unique and, therefore, not canonical. In physics parlance this means that while U(2),
as a local gauge theory, provides two neutral vector fields A.0/˛ .x/ and A.3/˛ .x/,
associated to the generator of the U(1) one has selected and the neutral partner
of T˙, respectively, their association with the physical photon and Z0-fields is not
fixed automatically. The two physical vector bosons can be arbitrary mixtures of the
fields A.0/˛ .x/ and A.3/˛ .x/. Let T0 denote the generator of the Abelian factor U(1),
fT1; T2; T3g the generators of the SU(2) factor. The Lie algebra of these operators
is given by (3.101). As G has four generators, the theory contains four gauge fields
A
.�/
˛ .x/,

A˛.x/ D ie
3X

�D0
T�A

.�/
˛ .x/; (3.130)

where A.0/˛ is a singlet, while the fields fA.i/˛ ; i D 1:2:3g form a triplet with respect
to SU(2), i.e. the adjoint representation. The two W-bosons which are charged and
which are conjugates of each other, must be linear combinations of two of the triplet
fields, cf. (3.72),

W˙̨.x/ WD � 1p
2
.A.1/˛ .x/˙ iA.2/˛ .x//: (3.131)

The photon field A˛ and the Z0-boson field Z˛ must be linear combinations of the
third triplet field A.3/˛ and the singlet field A.0/˛ , as indicated in (3.77, 3.78).

The GSW Lagrangian is constructed on the basis of the following assumptions:

(I) There is no direct coupling between different lepton families, or between
quark and lepton families.

(IIa) The photon couplings must conserve parity and must have the form
Qf #.f/ �˛# .f/A˛ with Qf the electric charge of fermion f .

(IIb) In particular, neutrinos must not couple to the photon.
(III) The neutrinos that couple to weak interaction vertices are fully left-handed. In

particular, all CC interaction vertices (f, vf, W) are of the form V–A. In other
words, only the left-handed part of the massive fermion field #.f/ couples to
the W-bosons.

(IV) The theory shall exhibit lepton universality in the sense that the Lagrangians
describing the interaction of .�; v�/ and .�; v� / with the gauge bosons
W˙; Z0 and � simply are copies of the interaction Lagrangian for the .e; ve/

family.



3.4 Glashow–Salam–Weinberg Model for Leptons and Quarks 233

It is customary, for the sake of simplifying the notation to write the particle symbol
instead of the field operator, i.e.

f .x/ � #.f/.x/; q.x/ � #.q/.x/

for leptons f .f D e; �; �/ or quarks q. Furthermore, it is useful to define the left-
handed and right-handed parts of massive fields, viz.

fL.x/ WD 1

2
.1 � �5/f .x/ � P�f .x/; (3.132a)

fR.x/ WD 1

2
.1C �5/f .x/ � PCf .x/; (3.132b)

and analogously for the quark fields qL.x/ and qR.x/. As we saw in Sect. 1.3 PC
projects onto spinors of the first kind, P� onto spinors of the second kind, cf. (1.76).

Assumption (I) implies that the electroweak interaction Lagrangian can be con-
structed for each of the lepton families (3.7) and for each of the quark generations
separately. Since the case of the quark doublets is complicated by the mixing of d, s
and b states, we start with the simpler case of one lepton family .f; vf/.

3.4.1 GSW Lagrangian for One Lepton Family

The matter fields f .x/ � #.f/.x/ and v.x/ � #.v/.x/ [we suppress the index f on
vf, for simplicity], appear in three forms: fL.x/; fR.x/, and vL.x/. This means that
the massive, charged lepton f is described by a spinor of the first kind and a spinor
of the second kind. The neutrino, by virtue of the dynamic properties of the theory,
appears only in the form of a spinor of the second kind.

The simplest possibility of classifying these fields with respect to G is to group
them into a triplet

#.x/ WD
0
@ �L.x/

fL.x/

fR.x/

1
A : (3.133)

As fR does not couple to W˙, it must be a singlet with respect to the SU(2) factor
of G. The pair

L.x/ WD
�
�L.x/

fL.x/

�
(3.134)

on the other hand, forms a doublet of SU(2). Thus, the triplet (3.133) is a
reducible multiplet of SU(2). In the space of the triplet (3.133) the generators T�
are represented by the 3 � 3 matrices [the factor 1

2
in V.T0/ is introduced for

convenience],
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V.T0/ D 1

2

0
@�d 0 0

0 �d 0

0 0 �S

1
A; V .Ti / D 1

2

�
�.i/ 0

0 0

�
: (3.135)

Two of these are diagonal, V.T0/ and V.T3/, and have the eigenvalues

8̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂:

1

2
�d

1

2
�d

1

2
�s

9>>>>>>=
>>>>>>;

and

8̂̂
ˆ̂̂<
ˆ̂̂̂
:̂

1

2

�1
2

0

9>>>>>=
>>>>>;
;

respectively. The eigenvalues of V.T0/ which pertain to the doublet partners vL and
fL must be the same, while the eigenvalue �s for fR can be different from �d. Note
that the trace (3.127) is 1

2
for the generators T1; T2; T3, and is 1

4
.2�2d C �2s / for T0.

We analyze first the interaction terms which follow from the term

i

2
.#.x/; �˛

$
D˛#.x//

in the Lagrangian (3.128). With the definitions (3.117) and (3.112) these are

L
.f/
1 D �e

0
@#.x/

3X
�D0

V .T�/�
˛#.x/

1
AA.�/˛ .x/

D �e
3X
iD1

.L.x/
1

2
�.i/�˛L.x//A.i/˛ .x/ � e

1

2
�d.L.x/ 1�˛L.x//A.0/˛ .x/

�e 1
2
�s.fR.x/�

˛fR.x//A
.0/
˛ .x/: (3.136)

As it stands, this interaction contains three free parameters: e; �d, and �s. Our aim is
now to work out the restrictions on these parameters that follow from the conditions
(IIa) and (IIb), and to identify them with the phenomenological coupling constants
˛ and G of (3.75).4

(a) CC weak interactions
Rewriting the couplings to the gauge fields A.1/˛ and A.2/˛ in terms of the W-fields
(3.131) we have

NL1
2
.�.1/A.1/˛ C �.2/A.2/˛ /�˛L D

1p
2
. NLsC�˛L/W �̨ � 1p

2
. NLs��˛L/W C̨;

4This discussion follows closely the analysis of O’Raifeartaigh (1979), [O’R 86].
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where s˙ D 1
2
.�.1/ ˙ i�.2// are the usual step operators in the space of the doublet

fields L. Inserting the definitions (3.134) and (3.132a) the CC interaction in LI is
then found to be

L
.f/

CC D �
ep
2
�f.x/

1

2
�˛.1 � �5/f .x/W .�/

˛ .x/C h.c. (3.137)

Comparing this to formulae (3.74, 3.75) of our phenomenological discussion in
Sect. 3.2.3 we can identify –e with the constant g, and relate its square to the Fermi
constantG

� e � g; g2=8m2
w D G=

p
2: (3.138)

(b) Neutral couplings
From (3.136) we see that the couplings of the individual lepton fields to A.0/˛ and
A
.3/
˛ are as follows:

�L.x/ W 1
2
gfA.3/˛ C �dA

.0/
˛ g �L.x/ �

˛�L.x/; (3.139a)

fL.x/ W 1
2
g f�A.3/˛ C �dA

.0/
˛ g fL.x/ �

˛ fL .x/; (3.139b)

fR.x/ W 1
2
g �s A

.0/
˛ .x/ fR.x/ �

˛ fR .x/: (3.139c)

Let us work out the consequences of the assumption (IIa) and (IIb) on these
couplings. It follows from the condition (IIb) that the linear combination of A.3/˛
and A.0/˛ which appears in the curly brackets of (3.139a) must be proportional to the
Z0-field. Comparing this to the ansatz (3.77b) we find that g0 of (3.77) and �d must
be related by

�d D �g0=g; (3.140)

and that the NC coupling of the neutrino (3.139a) is indeed given by (3.79’).
Condition (IIa), in turn, implies that fL and fR couple to the photon field (3.77a)

with the same strength. This means that the photon components of (3.139b, c) must
be the same. With the transformation (3.78) we obtain the condition

�g0 C g�d D g�s;

hence
�s D 2�d D �2g0=g: (3.141)

Inserting the results (3.140, 3.141) and also (3.139b) into the equation (3.136)
for LI, the coupling of f to the photon field is

L .f/
� D �

gg0p
g2 C g02 f .x/ �

˛ f .x/A˛.x/;



236 3 Weak Interactions and the Standard Model of Strong and Electroweak Interactions

so that the electric charge of the lepton f is to be identified as indicated in (3.81).
Similarly, one easily verifies that the neutral coupling of the Z0 to the fields f and v
are indeed those of (3.80’, 79’) respectively, or, after introducing the parametrization
(3.82) in terms of the Weinberg angle, by (3.84).

(c) Weak isospin, weak hypercharge and the electric charge
Let us return to the general form (3.136) of the interaction and let us extract from it
the couplings to the photon field by means of (3.78)

L .f/
� D �

gg0p
g2 C g02 #.x/

�
V.T3/C g

g0
V.T0/

�
�˛ #.x/A˛.x/: (3.142)

From (1.192) we know that the interaction of a charged lepton with the photon field
has the general form �Q#�˛# A˛ . The factor in front of (3.142) is –e. Therefore,
the eigenvalues of the diagonal matrix V.T3/CV..g=g0/T0/ are the electric charges
of the members of the multiplet (3.133), in units of the elementary charge e.

Because of the close analogy to the Gell-Mann-Nishijima formula relating the
electric charge of a hadron to its strong isospin and hypercharge, the SU(2) factor
of G is called the weak isospin group, and the operator

Y WD 2 g
g0
T0 (3.143)

is called the weak hypercharge. In the space of the triplet we have

V.T3/ D

0
BBB@

1

2
0 0

0 �1
2

0

0 0 0

1
CCCA ; V .Y / D

0
@�1 0 0

0 �1 0

0 0 �2

1
A :

Denoting the eigenvalues by t3 and y, respectively, the electric charge of the member
m of the triplet (3.133) is

Q.m/=e D t3.m/C 1

2
y.m/: (3.145)

This indeed gives 0 for the neutrino and � 1 for the two chiral states of the charged
lepton field.

(d) Some remarks and open problems

We will not write down the kinetic energy and interaction Lagrangian of the vector
boson fields W ˙̨ and Z˛ because we do not need them for our discussion. It
should be clear, however, how to construct these terms from our general discussion
in Sects. 3.3.2–3.3.5. We note, in particular, that the electromagnetic properties
and interactions of W˙ -bosons are completely fixed, including their anomalous
magnetic moment [this used to be a problem in the older theories with W-bosons].



3.4 Glashow–Salam–Weinberg Model for Leptons and Quarks 237

The extension to all leptons families is simply effected by taking the sum of L .f/
I ,

(3.136), over all leptons,

X
fDe;�; �

L
.f/

I D LI .leptons/: (3.146)

The generalization to the quark families is slightly more complicated and will be
dealt with in the next section.

The unified theory that we developed thus far, is invariant under the entire group
(3.129), G D U.2/. As it stands, it is still far from a realistic theory for the
electromagnetic and the weak interactions because the weak bosons W˙ and Z0

remain massless, like the photon. Furthermore, the charged leptons f also remain
massless because it is not possible to construct an invariant mass term on the basis
of the fields fL.x/ and fR.x/ as they appear in the triplet (3.133).

Indeed, we know from our discussion in Sect. 1.8.4 that a particle which carries a
conserved charge can only have a Dirac mass term. Such a mass term is of the form
ffL.x/fR.x/C fR.x/fL.x/g. However, as fL belongs to a doublet of SU(2) whilst
fR belongs to a singlet, this term cannot be invariant.

As a consequence of leptons being massless, all particle currents of this theory
are conserved ones. While this conservation law is welcome for the diagonal vector
currents, it cannot hold for the axial currents and for the nondiagonal (CC) vector
currents. This discussion shows that the symmetry group (3.129) must be broken
very strongly and following a specific pattern: One of the gauge bosons, the photon,
must remain massless to all orders, while W˙ and Z0 must become massive and,
in fact, very heavy. Thus G must be broken down to the residual U(1) symmetry
of electrodynamics. A way to do this is provided by the mechanism of spontaneous
symmetry breaking, at the price of introducing further degrees of freedom into the
theory. At the same time this extension allows to give the charged fermions finite
masses, so that the model becomes realistic and can be compared to experiment.
Before we turn to a discussion of symmetry breaking (Sect. 3.5) we conclude the
present topic by extending our results to the quark families.

3.4.2 GSW Lagrangian for the Quark Families

For the sake of convenience let us introduce the following notation for the quarks
with chargeQ D 2

3
(in units of e),

fuf I f D 1; 2; 3g for u; c; and t (3.147a)

and similarly for the quarks with chargeQ D � 1
3
,

fbf I f D 1; 2; 3g for d; s; and b: (3.147b)
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These are the quark states with the quantum numbers (relevant to strong interac-
tions) that we discussed in Sect 3.1.1b. They are the constituents of the physical
meson and baryon states.

The weak interactions conserve neither the strong isospin nor the additive
quantum numbers introduced in Sect. 3.1.1b. In fact, they couple to new states df ,
with electric charge � 1

3
, which are related to the states (3.147b) by a unitary

transformation, viz.

df D
X
f 0

Vff 0 bf 0 ;withV V � D 1: (3.148)

These new states are referred to as the weak interaction eigenstates. A way to
visualize this relation is by assuming that the weak gauge bosons W˙ and Z0 couple
to quark currents which contain the fields uf .x/ and df .x/, but that the strong
interaction Lagrangian contains quark mass terms which are not diagonal in the
basis of the states df , i.e.

�Lmass D
X
f

m.f /uf .x/uf .x/C
X
f;f 0

Mff 0 df .x/df 0.x/: (3.149)

The mass matrix Mff 0 can be diagonalized by means of the unitary transforma-
tion V , X

a;b

V
�

f a Mab Vbf 0 D mf ıff 0 : (3.150)

These states bf 0 , (3.147b), are then the mass eigenstates whilst the states df are the
weak eigenstates.

In the case of two quark families, V can be taken to be the rotation matrix
D.1=2/.2 ; 2	; 2
/, cf. (1.141). The phases e˙i and e˙i
 are irrelevant for
any observable because they can be absorbed into the field operators. After this
redefinition of the fields we have

�
d1
d2

�
D
�

cos 	 sin 	
� sin 	 cos 	

��
b1 � d
b2 � s

�
(3.151)

The remaining mixing angle 	 (which is measurable) is called the Cabibbo angle.
In the case of three quark families the most general transformation matrix V

can be constructed, for example, by taking the product of three successive, two-
dimensional transformations of the same kind as above (see exercise 3.7). Some of
the resulting phases can be absorbed in the field operators, as before. The remainder
is a unitary matrix that depends on three real mixing angles 	1; 	2; 	3 and one phase
eiı (Kobayashi et al. 1973),

VCKM D
0
@ c1 s1 c3 s1 s3
�s1 c2 c1 c2 c3 � s2 s3 eiı c1 c2s3 C s2 c3 eiı

�s1 s2 c1 s2 c3 C c2 s3 eiı c1 s2s3 � c2 c3 eiı

1
A ; (3.152)
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where ci WD cos 	i ; si WD sin 	i . Clearly, if 	2 D 	3 D 0 this matrix reduces to
the previous case (3.151) with the b-quark decoupling from the (d,s) sector. The
real angle 	1, in particular, is seen to take over the role of the Cabibbo angle of the
previous case with only two families of quarks.

Before moving on we note the following
Remarks: (i) We have followed the convention that all the mixing is in the sector of
down-type quarks, i.e. of the quarks with electric charge -1/3. This is reflected in the
form of the mass Lagrangian (3.149) above where the mass matrix M.u/ of up-type
quarks (electric charge +2/3) is assumed diagonal. Furthermore, we have taken the
mass matrix M.d/ of down-type quarks to be hermitean. In fact, in the context of a
specific theory, it may well be that neither M.u/ nor M.d/ is diagonal in the basis
of the states which couple at weak CC vertices. Also, as we know from the analysis
of fermionic mass terms in Chap. 1, these matrices need not be hermitean. We shall
return to this more general situation and the necessary modifications in Sect. 3.4.6.
below.

(ii) The parametrization (3.152) of the Cabibbo-Kobayashi-Maskawa (CKM)
matrix is but one of many possibilities. One often writes, more generally,

0
@d1 � d0
d2 � s0
d3 � b0

1
A D

0
@Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

1
A
0
@d1 � d
d2 � s
d3 � b

1
A ; (3.152’)

the subscripts fu-type, d-typeg indicating the CC-vertex that appears multiplied with
the corresponding matrix element. For example, the quark vertex .ud/W responsible
for the decay of the neutron n! pC eC ve is multiplied by Vud, the vertex .su/W
which appears in the decay KC ! �Cv� is multiplied by Vus. If there were only
two generations, we would have Vud D cos 	 , cf. (3.151).

(iii) Note that CKM-mixing, in fact, describes a rotation of the weak CC inter-
action relative to the strong, electromagnetic and weak NC interactions. Therefore,
in the absence of CC interactions, the quark states d, s, b carry additively conserved
quantum numbers. Being separated from each other through the corresponding
selection rules, their relative phases are unobservable and, hence, can be chosen
at will. This statement applies to the basis of mass eigenstates. The weak interaction
states .di � d0; s0; b0/, too, are defined up to phases, one for each state. Therefore, if
V is a mixing matrix, the product

V 0 D diag .e�iˇ1 ; e�iˇ2; e�iˇ3 /V diag.ei˛1 ; ei˛2 ; ei˛3/; ˛i ; ˇi 2 Œ0; 2��

is also a mixing matrix, equivalent to the first. As a consequence, there is the
freedom to choose six phases, or, more precisely, five linearly independent phase
differences. The matrix V , being a unitary 3 � 3 matrix, depends on nine real
parameters. Taking into account the freedom in the choice of the phases, this shows
that V depends on four, physically meaningful, parameters. Another way to state this
result is to say that it needs at least four independent measurements to determine V
completely.
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(iv) One may ask the following question: Suppose one measures the absolute
values jVui dj j of all elements of the CKM matrix. What freedom is left in
reconstructing the full, unitary (hence complex) matrix V , taking due account of
the freedom to choose certain phases, as discussed above? The answer for two
generations is trivial. The case of three generations is also dealt with without too
much effort: Except for the freedom in choosing the phases ˛i ; ˇk above, the
solution is unique. Matters become a lot more complicated for the case of four or
more generations (Auberson et al. 1991).

We return now to the construction of the GSW-model for quarks. In analogy to
the case of the leptons, and on the basis of the phenomenological information on
hadronic weak interactions, the quark fields uf .x/ and df .x/ of a given family are
classified in the following reducible multiplet of G,

#qf D

0
BB@

uf .x/L
df .x/L
uf .x/R
df .x/R

1
CCA; (3.153)

where

Lf WD
�
.uf /L
.df /L

�

forms a doublet with respect to the SU(2) factor, while .uf /R and .df /R are singlets.
In order to obtain the correct charges from (3.145), the weak hypercharges must be
chosen as follows:

V.y/ D

0
BBBBBBBBBB@

1

3
0 0 0

0
1

3
0 0

0 0
4

3
0

0 0 0 �2
3

1
CCCCCCCCCCA

(3.154)

The choice guarantees the correct coupling of the quark currents to the photon

L .q/
� D

gg0p
g2 C g02

X
f

#qf .x/fV.T3/C
1

2
V.Y /g �˛ #qf .x/A˛.x/

D �ej ˛e:m:.x/ A˛.x/ (3.155)

with

j ˛e:m: D
3X

fD1

�
2

3
uf �

˛uf � 1
3
bf �

˛bf

�
: (3.156)
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The weak CC interactions are given by the analogue of (3.137)

L
.q/

CC D
gp
2

X
f

Lf .x/sC�˛Lf .x/W �̨.x/C h:c:

D g

2
p
2

X
f

uf .x/ �
˛.1 � �5/df .x/W �̨.x/C h:c: (3.157)

The neutral weak interactions, finally, are found by isolating the coupling to the
Z0-boson in the neutral interaction Lagrangian

X
f

#qf fgV.T3/ �˛A.3/˛ C g0
1

2
V.Y / �˛A.0/˛ g#qf :

Using the decomposition (3.78) this gives

L
.q/

NC D
X
f

1p
g2 C g02 #qf fg

2 V.T3/� 1
2
g
02 V .Y /g �˛ #qf Z˛.x/

D
q
g2 C g02

X
f

f#qf V .T3/ �˛ #qf �
g
02

g2 C g02 #qf V ..T3/

C1
2
V.Y //�˛ qf Z˛.x/

D g

4 cos 	w

(X
f

Œuf .x/ �
˛ .1 � �5/uf .x/ � bf .x/ �˛.1 � �5/ bf .x/�

�4 sin2 	w j
˛
e:m:.x/

)
Z˛.x/: (3.158)

We have rewritten the neutral current which couples to the Z0 in such a way
that it appears as a linear combination of the neutral partner of the CC current
in (3.157) and of the electromagnetic current. This form stresses the analogy to
the leptonic neutral current, (3.86). It is particularly useful when we wish to compute
matrix elements of these currents between physical hadron states: In this case these
matrix elements are “dressed” or renormalized by the strong interactions so that the

bare vertices
D
q.x/ �˛ q.x/

E
and

D
q.x/ �˛�5 q.x/

E
are replaced by vertex functions

containing the corresponding covariants and a set of invariant form factors which
parametrize these dressing effects.

The neutral current

K.q/
˛ .x/ W D

X
f

Œuf .x/ �˛ .1 � �5/uf .x/ � bf .x/ �˛ .1 � �5/ bf .x/�

�4 sin2 	wj
e:m:
˛ .x/; (3.159)



242 3 Weak Interactions and the Standard Model of Strong and Electroweak Interactions

which appears in the interaction (3.158), contains only terms which are diagonal in
flavour, i.e. which are of the form uu; dd; cc; ss; tt, and bb. This is because the fields
(3.148) appear in diagonal form in the neutral currentsK˛ and j e:m:

˛ , viz.

X
f

df �˛ df D
X
f

X
f 0;f 00

.V
�

CKM/f 0f .VCKM/ff 00 bf 0 �˛ bf 00 D
X
f

bf �˛ bf :

(3.160)
Thus, the interaction (3.158) does not contain neutral couplings of the type
d�˛s or s�˛d that would change the strangeness (Glashow et al. 1970). NC pro-
cesses with �S ¤ 0 can only come about in higher orders of perturbation theory.
This result is in accord with the empirical findings, see e.g. (3.45).

As in the case of the leptons, the quarks remain massless in this version of the
theory which still possesses the full internal symmetry G D U.2/. In particular, all
vector and axial-vector currents are exactly conserved at this stage.

3.4.3 Spontaneous Symmetry Breaking

The GSW unified theory as developed up to this point is gauge invariant with respect
to the group G, (3.129), of local gauge transformations. Very much like in the
case of QED (which is Abelian) gauge invariance is essential for the theory to be
renormalizable. At the same time, however, the theory is also invariant under G,
considered as a global symmetry. As a consequence, the vector bosons of the theory
are mass-degenerate, i.e. the W and the Z0 are massless like the photon.

As this is in conflict with observation it is clear that at least part of the internal
symmetry must be broken. More precisely, the symmetry should be broken in
such a way that the gauge invariance of the theory is preserved (in view of its
renormalizability) but that the mass degeneracy of the multiplets of gauge fields
is lifted. This can only be achieved if one succeeds in modifying the underlying
Lagrangian, while still preserving its full local gauge symmetry, in such a way that
the ground state of the theory, i.e. its physical realization, exhibits less symmetry
than the Lagrangian itself. The phenomenon which is well-known from the physics
of condensed matter (superconductivity, ferromagnetism, etc.) is called spontaneous
symmetry breaking or hidden symmetry.

Regarding the electroweak interactions there is the possibility that this sponta-
neous breakdown of the symmetry comes about in a dynamical way (as it does
in the theory of superconductivity, for instance), from elements which are integral
part the theory. As yet, there is no convincing scheme or theoretical proof for this,
and symmetry breaking is introduced by hand through what is called the Higgs
mechanism: One adds to the Lagrangian of the GSW model an appropriate set of
scalar fields 
 D f
1.x/; : : :; 
M .x/g, so-called Higgs fields, with a self-interaction
V.
/ that is chosen such as to induce spontaneous breakdown of the symmetry.

The phenomenon in itself is very interesting and deserves further detailed study.
However, in order not to leave the scope of this book, we concentrate on those results
which are relevant for gauge theories. We refer the reader to the excellent reviews
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in the literature (Bernstein 1974, O’Raifeartaigh 1979, [O’R 86]) for more detailed
presentations.

(a) Definition of spontaneous symmetry breaking
Let 
 be a set of scalar fields which form a representation of the symmetry group
G, and let V.
/ be a potential term, which satisfies the following conditions:

(i) V.
/ is invariant under the whole groupG;V.U.g/
/ D V.
/ for all g 2 G,
(ii) V.
/ has an absolute minimum at 
0 D f
01; : : : ; 
0M g,

(iii) this minimum of V.
/ is degenerate, i.e. 
0 is not invariant underG.

The degeneracy of the absolute minimum, condition (iii), implies that there is at
least one g 2 G for which

X
k

Uik.g/

0
k.x/ ¤ 
0i ; (3.161)

If we write U.g/ as an exponential series, expfi˙N
kD1 �k .x/ U.Tk/g, the condition

(3.161) says that there is at least one generator Ti of the Lie algebra of G for which
U.Ti/


0 is not zero. Therefore, it is useful to form independent linear combinations
Si D ˙N

kD1CikTk of the generators such that Si fall in either of the two classes

.A/ fS1; : : : ; SP g for which U.Si/
0 D 0; (3.162a)

.B/ fSPC1; : : : ; SN g for which U.Sk/
0 ¤ 0: (3.162b)

It is not difficult to convince oneself that class (A) generates a subgroup of G. All
transformations g 2 G which contain only generators of class (A), viz.

g D exp

(
i

PX
kD1

�k Sk

)
; (3.163)

leave the minimum 
0 invariant. In other words, these transformations (3.163) form
the little group H of 
0 with

dim H D P: (3.164)

Expanding the potential V.
/ around 
0, we have

V.
/ D V.
0/C 1

2

X
m;n

Mmn ı
mı
n CO..ı
/3/;

where the matrix

Mmn WD @2V

@
m@
n

ˇ̌

0

is positive semi-definite, and where the infinitesimal variation of the field 
n is
given by
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ı
n D i
MX
mD1

NX
kD1

Unm .Sk/ 

0
mı �k:

Let us define the following vectors

�.k/n WD
MX
mD1

Unm .Sk/ 

0
m: (3.165)

As the variations ı�k of the group parameters are linearly independent, the
condition for V.
/ to have a minimum in 
 D 
0 reads

X
m

�.i/n Mnm �
.k/
m D 0:

Furthermore, as M > 0, this is fulfilled provided

X
m

Mnm �
.k/
m D 0: (3.166)

The matrixM takes on the role of a mass matrix for the scalar fields 
. A numberP
of its eigenvectors are identically zero. These are the ones for which k 2 f1; : : :; P g,
cf. (3.162a), i.e. those which are formed with a generator of the little group H of

0. For all other values of k 2 fP C 1; : : : ; N g; �.k/ does not vanish. From this we
conclude that M has

NG WD dimG � dimH D N � P (3.167)

eigenvalues which are zero. This result is a consequence of a theorem by Gold-
stone5: A manifestly Lorentz invariant theory which has a hidden symmetry (i.e.
whose internal symmetry is spontaneously broken) contains a set of massless scalar
fields, the so-called Goldstone bosons. The number of Goldstone fields NG is given
by (3.167). It is the difference of the dimension of Lie algebras of the full symmetry
group G and of the little group H.
0/ of 
0, respectively. Clearly, NG cannot
be zero because, by the very definition of spontaneous symmetry breaking, the
class (B), (3.162b), is not empty. As is clear from our analysis above, NG , the
number of Goldstone fields, does not depend on the representation of the scalar
fields. It depends solely on the symmetry groupG and onH.
0/, i.e. on the residual
symmetry of the physical realization of the theory, after it has been spontaneously
broken.

There is no restriction on the remaining P eigenvalues of the mass matrix M
[corresponding to those �.k/, (3.162a), which vanish identically]. These eigenvalues

5See Bernstein (1974) for a complete list of references and a detailed exposition of this theorem
and its consequences.
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pertain to a set of .M � NG/ massive scalar fields. In contrast to the case of the
Goldstone fields their number depends on the representation spanned by the fields 
.

The massless Goldstone particles have a simple geometrical interpretation. By
assumption, the minimum of V.
/ in 
0 is degenerate. Thus there exist transforma-
tions g 2 G for which 
00 D U.g/
0 is not identical with 
0; 
00 ¤ 
0. The set of
all 
00 which can be reached by applying all possible group transformations to 
0,
form the group orbit of 
0. The Goldstone fields are proportional to those vectors
�.k/ D U.Sk/
0 which do not vanish identically. On the other hand, an infinitesimal
transformation of 
0 is given by


00 D U.g ' 1C i�k Sk/

0 D f1C i�kU.Sk/g
0; �k  1:

This shows that U.Sk/
0 is a tangent to the orbital of 
0. Thus, a Goldstone field
can be understood as an excitation of the system along the orbit of 
0. As this does
not lead out of the (degenerate) minimum of V.
/, a Goldstone excitation can have
arbitrarily small frequency. In other words, a Goldstone field describes a massless
particle.

(b) Spontaneous symmetry breakdown in the frame of a local gauge theory
The discussion of the previous section is incomplete insofar as the scalar fields 

cannot be discussed in isolation from the rest of the theory. For instance, the question
of whether or not the Goldstone fields correspond to physical, massless particles,
cannot be answered without knowing how these fields couple to other fields such
as spinor or vector fields. It is particularly interesting to investigate the role of the
Goldstone fields in the case where G is not only a global symmetry but is also a
local gauge symmetry of the Lagrangian. In this case the Goldstone fields do not
describe observable massless scalars. Instead, as we shall see, they decouple from
the other particles in the theory. At the same time some of the gauge bosons which
formerly were all massless, acquire finite masses. This happens for as many of them
as there are Goldstone fields.

Let us return to the Lagrangian (3.128) which describes a set of spinor fields #
as well as set of scalar fields 
, besides the gauge fields A˛ . Let us assume that the
potential term V.
/ is constructed such that it leads to spontaneous breakdown of
the symmetry of the Lagrangian (3.128). Thus, V.
/ fulfills the conditions (i) to
(iii) of Sect. 3.4.3a, i.e. it has a degenerate minimum at 
0. As 
0 is the position of
the absolute minimum of V.
/ we introduce new scalar fields by subtracting 
.x/
and 
0,

�n.x/ WD 
n.x/ � 
0n; n D 1 : : : ;M: (3.168)

Rewriting (3.128) in terms of these new dynamical fields we obtain

L 0 D � 1

4ke2
.F˛ˇ; F

˛ˇ/C 1

2
.U.Aa/


0; U.A˛/
0/C 1

2
.D˛�.x/;D

˛�.x//

CRe.D˛�.x/; U.A
˛/
0/ � V.�.x/C 
0/ � g.#.x/; 
0#.x//

C i

2
.#.x/;�˛

 !
D ˛ #.x// � .#; .mC g�.x//#/: (3.169)
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Note that in this Lagrangian the fields 
0 are constants whilst the role of the
dynamical scalar fields is taken over by the fields �.x/. Although its structure is
similar to the structure of L , (3.128), the modified Lagrangian (3.169) has two
remarkable new properties:

(i) The term �g.# ; 
0#/ yields a finite mass for the fermion fields, provided
the multiplets # and 
 are chosen such that #; 
0, and # can be coupled to
an invariant with respect to G. The mass term which is due to the spontaneous
symmetry breakdown is particularly relevant for the GSW model for which it
was not possible to construct an invariant mass term .#;m#/ on the basis of the
multiplet assignments (3.133) and (3.153).

(ii) Second, and perhaps more importantly, the term

1

2
.U.A˛/


0; U.A˛/
0/ (3.170)

provides mass terms for at least some of the gauge fields without destroying the
gauge invariance of the theory. This is what we now wish to analyze in more detail.

In the expression (3.170) only the generators of class (B), (3.162b), give nonva-
nishing contributions

1

2
.U.A˛/


0; U.A˛/
0/ D 1

2

NX
i;kDPC1

mikA
.k/
˛ .x/A

.k/˛.x/; (3.170’)

where
mik WD e2.U.Si/
0; U.Sk/
0/: (3.171)

The quadratic mass matrix has the dimension NG � NG , with NG as given
by (3.167). It has NG positive eigenvalues. The eigenvectors of this matrix are
orthogonal linear combinations of the original fields A.i/˛ . These new vector fields
now describe massive gauge bosons. Thus we obtain the following important result:
If G is the original full symmetry, H the residual symmetry (after the symmetry
is spontaneously broken), of the locally gauge invariant Lagrangian then a number
NG D dimG � dimH of the gauge bosons of the theory acquire finite masses. The
remaining P D dimH gauge bosons which correspond to the generators of the
residual symmetry groupH remain massless. The number of vector particles which
become massive is equal to the number of Goldstone scalar bosons. In fact, one can
show that these massless scalars decouple from the rest of the theory. Their role is
merely to provide the third independent polarization component that distinguishes
the massive vector particle from the massless one (which has only two components).

(c) Application to the GSW theory
The analysis of the preceding section provides a constructive principle of how to
give the W ˙ and Z0 finite masses while leaving the photon massless. The original
symmetry (3.129) whose Lie algebra has dimension N D dimG D 4, must be
spontaneously broken such that the residual symmetry isH D U.1/with dimension
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P D dimH D 1. If this is achieved, three of the gauge fields become massive and
one remains massless. In practice, this means that we add the following Higgs sector
to the Lagrangian of the GSW model:

1

2
.D˛
;D

˛
/ � V.
/:

The potential V.
/ shall have a degenerate minimum at 
 D 
0 such that the
residual symmetry is U(1). In fact, it is not necessary to write down an explicit
form for the potential V.
/. Indeed, it turns out that it is enough to arrange the
eigenvalues of T3 (weak isospin) and of Y (weak hypercharge) for the Higgs fields
such as to make one of them decouple from the photon field. This is seen as follows.

Let U.T�/ be the representation of the generators T� in the space of the Higgs
fields 
. If 
0 denotes the position of the degenerate, absolute minimum of V.
),
the mass matrix for the vector fields is given by

1

2
.D˛


0;D˛
0/ D 1

2
.U.Aa/


0; U.A˛/
0/; (3.172)

where

U.A˛/

0 D �i

(
g

3X
kD1

U.Tk/A
.k/
˛ .x/C

1

2
g0U.Y /A.0/˛ .x/

)

0: (3.173)

Here we have used the identification �e D g, (3.138), and the definition (3.143) for
Y in terms of T0. Replacing the fields A.�/˛ by the physical charged fields (3.72) and
neutral fields (3.78) we obtain

U.Aa/
0 D �i
�
1p
2
gŒU.TC/W .�/

˛ .x/ � U.T�/W .C/
˛ .x/�

C
p
g2 C g02U

�
g2

g2 C g02 T3 �
1

2

g02

g2 C g02 Y
�
Z0
˛.x/

C gg0p
g2 C g02 U.T3 C

1

2
Y /A˛.x/

)

0;

(3.173’)

where T˙ WD T1 ˙ iT2. Let t3 and y be the eigenvalues of T3 and Y for the fields

.x/, or 	.x/ D 
.x/ � 
0.x/, respectively. Equation (3.173’) shows that the
electric charge of the field 
0 is proportional to

Q� WD t3 C 1

2
y:
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The photon field remains massless if and only ifQ�

0 vanishes. Thus, if 
0m ¤ 0,

we impose the condition y D �2t3.6 With this condition we see from (3.173’) that
the coupling to the Z0 field is proportional to

g2

g2 C g02 t3 �
g02

2.g2 C g02/y D t3:

On the other hand, in order to make the Z0 massive we must require t3 to be different
from zero. Therefore, let us assume that 
.x/ belongs to an irreducible representa-
tion of SU(2) with total weak isospin t (different from zero) and projection quantum
number t3,

U.T2/
 D t.t C 1/
; U.T3/
 D t3
: (3.174)

Equations (3.172, 173’) then yield the following expressions for the gauge boson
masses:

m2
W D

1

2
g2
1

2
.
0; fU.TC/U.T�/C U.T�/U.TC/g
0/

D 1

2
g2Œt.t C 1/� t23 �.
0; 
0/; (3.175)

m2
Z D .g2 C g02/.
0; U.T3/U.T3/
0/
D .g2 C g02/t23 .
0; 
0/: (3.176)

In (3.175) we have made use of the relation

1

2
.TCT� C T�TC/ D T2 � T 23 :

Equations (3.175, 3.176) immediately give the mass relation

� � m2
w

m2
Z cos2 	w

D t.t C 1/� t23
2t23

; (3.177)

where we have used the relation cos2 	w D g2=.g2 C g02/. Note that (3.177) is
precisely the quantity � as defined in (3.88). The experimental information that �
is 1 with a rather small error bar [RPP10] is compatible with the assignment

t D 1

2
(3.178)

for the Higgs fields. This means that these fields form a doublet with respect to
SU(2). One of the fields is electrically neutral and has y D �2t3 D 1. This is the

6In other words, all components of 
0 vanish except the one for which y D �2t3.
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one that has a nonvanishing vacuum expectation value 
0 and which gives rise to
the vector meson masses (3.175, 3.176). Its partner in the doublet has the quantum
numbers .y D 1; t3 D C 1

2
/ and electric chargeQ D 1.

Finally, we can introduce a Yukawa coupling of the fermion fields to the Higgs
doublet without destroying the local gauge invariance of the theory,

gf f.Lf 
/fR C fR. Q
Lf /g; (3.179)

with Q
 the charge conjugate of 
.
This extra term gives rise to a genuine interaction of the fermion with the neutral

Higgs field. Its vacuum expectation value gives rise to a fermion mass term of the
form (we consider the example of a lepton doublet),

gf �ffRfL C fLfRg D gf �f .x/f .x/ (3.180)

with
� D

p
.
0; 
0/:

It is gratifying that in the spontaneously broken version of the theory it is possible
to construct fermion mass terms which do not violate the gauge symmetry of the
theory. On the other hand, (3.180) neither predicts the scale of the fermion masses
nor does it yield relations between the masses of different lepton families. In fact, for
every fermion family, the coupling constant gf must be adjusted such that (3.180)

yields the correct mass term, viz gf D mf =.

0; 
0/

1
2 . At the same time this implies

that the fermion coupling to the physical, neutral Higgs field, (3.179), is proportional
to mf and hence very small. This makes it difficult to subject such an interaction to
experimental verification.

Finally, we note that (3.175, 3.176) predict the W- and Z-masses in terms of
the unknown quantity (
0; 
0). The absolute values of mW and mZ , as yet, are
derived from the empirical coupling constants ˛; G and from the Weinberg angle
	W , as given in (3.89). These expressions are modified somewhat by corrections of
higher order. As the theory is renormalizable, these corrections are finite and can be
calculated in a unique way from perturbation theory.

The experimental values of the masses of W˙ and Z are given in (3.90a) above.
Without radiative corrections the parameters sin 	W , mW and mZ are related by
(3.88) and (3.89a). Furthermore, by (3.175, 3.176) mW and mZ are proportional to
(
0; 
0/, the square of the value 
0 where V.
) assumes its minimum, viz.

m2
w D

g2

4
.
0; 
0/ m2

Z D
g2

4 cos2 	w
.
0; 
0/:

Inserting (3.75) in the first of these formulae one finds

�2 D .
0; 
0/ D 1

G
p
2
D .246:2GeV/2: (3.181)
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The number � which in the quantized form of the theory is the vacuum expectation
value of the neutral Higgs field, may be regarded as the energy scale typical for the
weak interactions.

When radiative corrections are taken into account, some or all of these simple,
“tree-level” relations are modified to some extent. (They are called tree level because
they correspond to the lowest order in the interactions between the particles of the
theory. Pictorially they are described by diagrams which look like the trees we
drew when we were children. In contrast, any higher correction involves at least
one closed loop.) Unlike the case of quantum electrodynamics (QED) of electrons
and photons there is no natural, physically preferred, renormalization scheme and
different choices are possible, (for a thorough discussion and a guide to the literature
see the review 10 in [RPP10]). For example, one may adopt a so-called on-shell
scheme where the tree-level formula sin2 	w D 1 �m2

W=m
2
Z, i.e. the formula (3.88)

with � D 1, holds for the physical values of these parameters, that is, for the
renormalized quantities to all orders of perturbation theory. To get an impression
of the magnitude of the corrections let us make use of the fact that mZ, ˛, and G
are known very precisely, in contrast tomw which is not. The quantity sin 	w is then
obtained from the formulae

m2
W D

�˛

G
p
2

1

sin2 	w

1

.1 ��r/ ; m2
Z D

m2
W

1 � sin2 	w
; (3.182)

the first of which is (3.89) corrected by terms of higher order. The quantity �r ,
which is typical for the size of radiative corrections, is found to be of the order of
0.04, depending on the values of the masses of the t-quark and the Higgs particle
which appear in loop diagrams.

3.4.4 Summary of CC and NC Interactions in the GSW Theory

In this section we collect and summarize the leptonic and hadronic charged current
and neutral current interactions as they follow from the results in Sects. 3.2.3,
3.4.2 and 3.4.3. For convenience we express all coupling constants in terms of
the elementary charge in natural units e D p4�˛. The interaction Lagrangian
of leptons and quarks with the gauge bosons � , W and Z0 is given by

Lint D �e
�
j ˛e:m .x/A˛.x/C

1

2
p
2 sin 	w

ŒJ ˛.x/W �̨.x/C h:c:�

C 1

4 sin 	w cos 	w
K˛.x/Z0

˛.x/

�
: (3.183)

In this expression j ˛e:m: is the electromagnetic current, J ˛ is the charged current,
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J ˛.x/ D
X

fDe;�;�

�f�
˛.1 � �5/f .x/

C
3X

fD1
uf .x/�

˛.1 � �5/df .x/; (3.184a)

where uf denotes the quarks with electric chargeC 2
3
,

˚
uf

 D fu; c; tg

while df stands for the weak eigenstates

df D
3X

f 0D1
Vff 0bf 0 ;

given in terms of the strong interaction eigenstates d, s and b with electric charge
� 1
3
. We recall that Vff 0 is the mixing matrix (3.152). The neutral currentK˛ is given

by (3.86, 3.156, 3.159) as

K˛.x/ D
X

fDe;�;�

�f .x/�˛.1� �5/�f .x/

C
X

fDe;�;�

f .x/f��˛.1 � �5/C 4 sin2 	W�˛gf .x/

C
3X

fD1
uf .x/f�˛.1 � �5/� 8

3
sin2 	W�˛guf .x/

C
3X

fD1
bf .x/f��˛.1 � �5/C 4

3
sin2 	W�˛gbf .x/: (3.184b)

Note, in particular, that this current has the general form

#.i/.x/� .i/
˛ # .i/.x/;

where the matrix � .i/
˛ depends on the charge and weak isospin of the lepton or

quark i :
� .i/
˛ D 2t3.i/�˛.1 � �5/�Q.i/�˛4 sin2 	W: (3.185)

The exchange of W˙ and Z0 bosons, in processes where the momentum transfer
is small as compared to the gauge boson masses, gives rises to the effective four-
fermion interaction [cf. (3.74, 3.85)],
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�L eff
int D

Gp
2

�
J �˛ .x/J

˛.x/C 1

2
�K�

˛.x/K
˛.x/

�
; (3.186)

where
Gp
2
D e2

8m2
W sin2 	W

D �˛

2m2
W sin2 	W

(3.187a)

and

� D m2
W

m2
Z cos2 	W

: (3.187b)

Note that nondiagonal terms in the product K�
˛K

˛ must be counted only once
because they stem from the exchange of a Z0 between a vertex with one type of
lepton (or quark) and a vertex with another type. Alternatively, one may introduce
an extra factor 1/2 as we did in (3.85), in order to compensate for double counting.

[Equation (3.187a) holds for the uncorrected value of mw, to be distinguished
from the corrected value (3.182).] These formulae summarize the weak interactions
of leptons and quarks in the GSW theory.

It is instructive to recapitulate the number and the nature of the parameters of the
theory, none of which is predicted. These are

(i) Coupling constants and gauge boson masses: ˛; sin 	w, mW; mZ. The Fermi
constantG is determined in terms of the first three parameters by (3.187a),mZ

is fixed by (3.177) if the weak isospin of the Higgs field is given.
(ii) Quark masses and mixing matrix (3.152):mu; md; mc,ms; mt; mb, 	1; 	2, 	3; ı.

(iii) Lepton masses: me, m�, m� .

This list does not include the Higgs sector of the theory. Furthermore, if the
neutrinos are massive, then there are three more mass values as well as another
set of mixing angles because the weak neutrino states could appear to be mixtures
of their mass eigenstates in a way analogous to the quark mixing (3.148, 3.152).

3.4.5 The Higgs Sector of the GSW Model

Let us return for a moment to spontaneous symmetry breaking and the Higgs sector.
For the construction described in Sec. 3.4.3 it was not necessary to specify the
explicit form of the potential V.˚/. It was sufficient to require that V.˚/ have a
degenerate minimum at a value of the field not equal to zero and, for the specific
needs of the GSW model, that ˚ be a doublet with respect to that SU(2) of weak
isospin, with t D 1

2
, t3 D ˙ 1

2
, and weak hypercharge y D C1, cf. ( 3.178). In

fact, there is one further restriction related to quantization: In order not to destroy
renormalizability of the theory the potential V.˚/ should be polynomial in the
field, at most of order four. Taking account of these conditions the form of the
potential is fixed uniquely. Indeed, the most general SU(2)-invariant potential which
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is compatible with renormalizability must have the functional form

V.˚/ D 1

2
�˚�.x/˚.x/C 1

4
�.˚�.x/˚.x//2CC; with � � ��2 < 0; � > 0:

(3.188)
C is a constant and ˚.x/ is the doublet field with y D C1

˚.x/ D
�

.C/.x/

.0/.x/

�
.t D 1

2
; y D 1/: (3.189)

Note that if the constant � were positive, say � D m2
0, the term �˚�˚=2 would be

the mass term in the free Lagrangian for the field 
,

L
.Higgs

noSSB D
1

2
.@a˚

�@˛˚/ � 1
2
m2
0.˚

�˚/ � 1
4
�.˚�˚/2 � C: (3.190)

The potential term would then have its minimum at ˚ D 0 and there would be no
spontaneous symmetry breaking.

In turn, if � is negative, � D ��2, the potential has an absolute minimum for all
˚ which fulfill the equation

˚�˚ � .
0; 
0/ D �2 D �2

�
: (3.191)

It can then be written in the form

V.˚/ D �

4
Œ.˚�˚/2�2.
0; 
0/.˚�˚/�CC D �

4
Œ.˚�˚/��2�2��

4
�4CC: (3.192)

With this example at hand, it is instructive to verify, explicitly and step by step,
the phenomenon of spontaneous symmetry breaking whose general pattern was
described in Sect. 3.4.3a, b. As long as˚ is the dynamical field describing the Higgs
doublet, the potential V.˚/,(3.192), enjoys the full global and local invariance with
respect to SU.2/�U.1/. However, the configuration˚ D 0 is not the ground state,
i.e. the state of lowest energy of the theory, because V.˚/ has a local maximum at
˚ D 0. The true ground state(s) is (are) characterized by the value (3.191) for which
V.˚/ is minimal. If we think of the theory as a quantized field theory this means that
the ground state is such that ˚ develops a nonvanishing vacuum expectation value.
Because of charge conservation only the electrically neutral component 
.0/.x/ of
the doublet (3.189) can have an expectation value

˝
˝j
.0/.x/j˝˛ in the vacuum state

˝ which does not vanish. The dynamical field describing the physical neutral Higgs
boson is defined as in (3.168), i.e.

�.0/.x/ WD 
.0/ � ˝˝j
.0/.x/j˝˛ :
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It is not difficult to derive the following features: The original, full, gauge invariance
of the theory can be used to redefine the Higgs doublet by means of a local SU(2)
transformation expfi�.k/˛k.x/=2g, such that the transformed field is

˚ 0.x/ D
�

0

� C�.0/.x/

�
; (3.193)

with �.0/.x/ a real field. [A gauge in which the Higgs field has this form (3.193) is
called a unitary gauge.] Thereby the potential (3.192) becomes

V.˚/! V.�.0// D 1

2
m2�.0/2.x/

�
1C �.0/.x/

�
C �.0/2.x/

4�2

�
� m4

16�
C C;
(3.194)

where we have set 2��2 D m2. Obviously, m is the mass of the particle described
by the real field �.0/.x/. (The additive constant C is arbitrary and can be chosen
such as to compensate the term - m4=16�.)

The result (3.193) shows that the positively charged partner of the doublet (3.189)
does not couple explicitly to any other particle in the theory. The gauge can be
chosen such that the field 
.C/ disappears from the theory altogether. The real
field 
.0/.x/ was originally complex, 
.0/.x/ D 


.0/
1 .x/ C i
.0/2 .x/, and, hence,

represented two degrees of freedom. Equation (3.193) shows that only one of them,
the real part, is needed to describe the Higgs boson.

Of course, one need not adopt the unitary gauge for which (3.193) holds true.
It turns out, in fact, that other gauges are useful in practical calculations within the
quantized version of the GSW model. The Higgs doublet is then, more generally,

�.x/ D
�
�.C/.x/
�.0/.x/

�
D ˚.x/C � D

�

.C/


.0/.x/C �
�
; (3.195)

where � is the vector .0; �/T. The first term on the right-hand side of (3.192)
becomes

Œ.�� C �/.� C �/ � �2�2: (3.196)

Comparing this form to the original one Œ.˚�˚/ � �2� shows clearly that the
primordial symmetry SU.2/ � U.1/ of the theory that acts on ˚ by the affine
transformation (3.195) becomes a hidden symmetry: The expression (3.196) is
invariant under the U(1) transformations of electromagnetism which are generated
by the charge operator bQ D T3 C Y=2, cf. (3.145), but is not invariant if the field
�.x/ is subject to an SU(2) transformation or a U(1) transformation generated
by Y alone. The little group of 
0 which leaves the position of the potential
minimum invariant, is the U(1) known from electrodynamics. It is the gauge group
of electrodynamics and is intimately related to the conservation of electric charge.
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3.4.6 Note on Quark Masses and CKM Mixing

The Cabibbo–Kobayashi–Maskawa mixing of quark states, in the minimal standard
model, is intimately related to the structure of the mass matrices in the sectors of
up- and down-type quarks. Neither these mass matrices nor the CKM mixing matrix
are predicted by the model. Hence their understanding will need a new framework,
not known as yet, which goes beyond the minimal model. Nevertheless, if the mass
matrices are given in their most general form it is possible to derive the mixing
matrix from them. This is what we set out to show in this section.

Quarks carry electric charge, as well as further, additively conserved, quantum
numbers. Therefore they can only have Dirac mass terms but no Majorana mass
terms, as discussed in Sect. 1.8.4. Dirac mass terms connect spinors of the first
kind to spinors of the second kind, cf. (1.163), or, in the language of Dirac four-
component spinors, left-chiral to right-chiral fields. Recall that these are defined by
means of the projection operators (3.32) as

 R.x/ WD PC .x/ D 1

2
.1C �5/ .x/;  L.x/ WD P� .x/ D 1

2
.1 � �5/ .x/:

We again use the convention of writing the particle symbol for the corresponding
quantized field, i.e., for example, �.x/ for  .u/.x/. The weak interaction states (i.e.
the states which couple to W˙ at CC vertices) are denoted by

u.i/.x/ for states of chargeC 2
3
, d .i/.x/ for states of charge � 1

3
.i D 1; 2; 3/.

The mass eigenstates are denoted temporarily by
t .i/.x/ for states of chargeC 2

3
, b.i/.x/ for states of charge � 1

3
.i D 1; 2; 3/.

The general mass term in the Lagrangian, written in the basis of weak interaction
states, reads

Lmass D 1

2

0
@ 3X
i;kD1

u.i/L M.u/
ik u.k/R C d .i/L M.d/

ik d
.k/
R

1
AC h:c: (3.197)

As we know from Sect. 1.8.4 the matrices M.u/ and M.d/ need not be hermitean.
Therefore they are diagonalized by two independent unitary transformations, V.u/

L

acting on left-chiral fields, V.u/
R acting on right-chiral fields (and likewise for the

down sector), i.e.

VLMV�
R D

ı
M;

ı
M D diag.m1;m2;m3/;

where we have written the symbol M for either M.u/ or M.d/, and, likewise, VL=R for
either charge sector. A transformation of this kind is called a bi- unitary transfor-
mation. If M is not hermitean then VL is the (ordinary) unitary transformation that
diagonalizes the hermitean product MM� while VR is the unitary transformation
that diagonalizes M�M, viz.
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VRM�MV�
R D

o

M2 D VLMM�V�
L:

Clearly, the bi-unitary transformations which diagonalize M.u/ and M.d/, respec-
tively, take us to the basis of mass eigenstates,

t
.i/
L D

X
k

.V.u/
L /ikukL; b

.i/
L D

X
k

.V.d/
L /ikb

k
L;

for the left-chiral fields of up- and down-quarks, with analogous formulae for the
right-chiral fields. The weak interaction states follow by inverting these relations,

u.i/L D
X
k

.V.u/�
L /ikt

k
L ; d

.i/
L D

X
k

.V.d/�
L /ikb

k
L;

and analogous formulae for the right-chiral fields. The CC vertices of weak
interactions which are read off from (3.184a), involve only left-chiral fields. They

are proportional to u.i/L d
.k/
L and hence are multiplied by V.u/

L V.d/�
L when transformed

to the basis of mass eigenstates. Thus, the CKM mixing matrix is given by the
formula

V.u/
L V.d/�

L D VCKM: (3.198)

In this minimal version of the model all the complexity of the mixing matrix stems
from the mass matrices. In particular, the up- and down-matrices should not be
proportional to each other since in that case the CKM matrix, by (3.198), would be
unity, there would be no mixing. Another most remarkable feature of this analysis
is the fact that the right-chiral fields are not observable and, hence, may be chosen
at will. This is due to the empirical observation that CC weak interactions couple
exclusively to left-chiral fields.

Remarks:

1. The most general transformation of the mass matrices which leaves the mass
eigenvalues and the mixing matrix VCKM, eq. (3.198), invariant is

U�M.u/W.u/ and U�M.d/W.d/;

where U;W.u/, and W.d/ are arbitrary unitary 3�3-matrices. Note, that U which
acts on left-chiral fields must be the same for up- and down-quark states,
whereas W.u/ and W.d/ which act on the (unobservable) right-chiral fields, are
independent. As a consequence, the state mixing can be shifted entirely to one
of the two charge sectors, leaving the other one diagonal. This is conventionally
done by assuming the weak eigenstates of up-quarks to coincide with their mass
eigenstates, and to shift mixing to the down-quark sector only. Clearly, one may
as well shift all mixing to the up-sector, or choose bases such that mixing is
distributed over the two charge sectors.
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2. Once the mass matrices in (3.197) are given, the procedure outlined above
yields the CKM matrix (3.198) in a straightforward manner, up to the freedom
in choosing bases for right-chiral fields. This freedom explains why there are
many, in fact infinitely many, equivalent parametrisations for VCKM. The inverse
problem is more complicated: Suppose the four observables in VCKM and the six
mass eigenvalues are given. Can one reconstruct the mass matrices in the two
charge sectors and, if so, what is the remaining freedom? It turns out that one can
control the space of mass matrices which are admissible in the sense that they all
yield the same eigenvalues and mixing pattern7.

3.4.7 A Comment About Fermion Multiplets in a Unified Gauge
Theory of Electroweak Interactions

(a) Fermion multiplets in the language of SL (2,C) spinors
As we have noted in the introduction to Sect. 3.4 and in Sect.3.4.1, the GSW theory
is built on the assumptions that CC interactions (mediated by W˙ bosons) are fully
left-handed and that physical neutrinos carry negative helicity h.�/ D �1. As a
consequence the basic fermion fields of the theory are van der Waerden spinor fields.
This is seen, for instance, in the leptonic field operator (3.133) which contains two
spinor fields of the second kind, one spinor field of the first kind. Thus, the natural
language in formulating unified gauge theories that contain the weak interactions is
the one of SL(2, C) spinors developed in Chap. 1.

For the example of one lepton family (3.133) we should introduce a doublet of
spinors of the second kind

.m/A.x/; m D C1
2
;�1
2
;

describing the neutrino m D C 1
2

and the left-handed part of the charged fermion
field m D � 1

2
, as well as a spinor of the first kind, 
a.x/, which is a singlet with

respect to SU.2/ and which describes the right-handed part of the charged fermion
field. In terms of these spinors the generalized kinetic term reads

i

2
.#.x/; �˛

$
D˛ #.x// D i

2

(X
m

.m/�a.�˛/aB
$
D˛

.m/B C 
�A. O�˛/Ab
$
D˛ 
b

)
;

which contains, in fact, the genuine kinetic energy and the interaction with the gauge
fields. D˛ is the covariant derivative (3.117), as before.

The more standard formulation in terms of Dirac fields that we used in
Sects. 3.4.1–3.4.4, is completely equivalent, of course. However, the formula-

7An efficient solution is given in S. Falk et al., Phys. Rev. D65 (2002) 093011-1, including
reference to the earlier literature on this topic.
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tion in terms of van der Waerden spinors is very useful for the extension to
supersymmetries.

(b) Triangle anomaly and renormalizability of the GSW theory
We mention briefly a theoretical and somewhat technical point which is crucial
for the renormalizability of the GSW theory and which sheds some light on the
empirical symmetry between the leptons and quark families: the so-called triangle
anomaly of the axial current (Adler 1969). One can show that the axial vector part

a.0/˛ .x/ W D
X

fDe;�;�

#f.x/�˛�5V .Y /#f.x/

C
3X

qD1

3X
cD1

#q;c.x/�˛�5V .Y /#q;c.x/ (3.199)

of the current that couples to the gauge field A.0/˛ .x/ has an anomalous term in its
divergence @˛a.0/˛ .x/ which is proportional to S D Sleptons C Squarks with

Sleptons D
X
e;�;�

trfV.TmTmY /g; Squarks D
X
q;c

trfV.TmTmY /g:

m is a component of weak isospin. [It is to be contracted with bilinear and trilinear
products of vector fields A.m/˛ .x/.] The sums in (3.199) run over the three lepton
families and over the three, threefold degenerate quark families. However, as the
traces contain the weak isospin, only the doublets within the multiplets (3.133) and
(3.153) contribute to the anomaly. It suffices to consider the case m D 3. From
(3.144, 3.154) we find

Sleptons D 1

4
� 3 � .�2/ D �3

2
; Squarks D 1

4
� 3 � 3 � 2

3
D C3

2
;

so that their sum vanishes. In other words, the anomaly due to the quark fields
cancels the anomaly due to the leptons provided the quarks have the additional
colour degree of freedom.

The renormalizability of a local gauge theory rests on its internal symmetry, on
current conservation and on its specific Ward identities. An anomaly in the diver-
gence of a current that couples to a gauge boson would destroy renormalizability.
The minimal model avoids this disaster by arranging its fermion multiplets such as
to cancel the anomaly.

There are further chiral anomalies which may appear in local gauge theories,
depending on the structure group on which these are built. Such anomalies are called
chiral because they emerge in one-loop diagrams which involve fermionic states
of definite chirality. The anomaly mentioned above, historically the first that was
discovered, is particularly interesting because its hadronic part, i.e. the second term
on the right-hand side of (3.199), is responsible for the decay �0 ! �� . Indeed, up
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to corrections of higher order, the axial quark current of (3.199) yields the correct
amplitude for this decay. We return to this application in Sect. 4.2.5b.

3.5 Quantum Chromodynamics

Quantum chromodynamics is the local gauge theory which is obtained by gauging
the colour group SU.3/c that we introduced in (3.16). Taking SU.3/c to be the
structure group we construct a fully gauge invariant Lagrangian following the
prescriptions developed in Sect. 3.3. Curiously enough the construction of this
theory is considerably simpler than the construction of the electroweak Lagrangian.
Yet, its interpretation in terms of observable physics is considerably more difficult
because it is a highly nontrivial matter to make contact between the elementary
fields in terms of which the Lagrangian is written (i.e. quarks and gluons), on one
hand, and the physical hadrons and their interactions, on the other. In this section
we derive and describe the Lagrangian of quantum chromodynamics (QCD) and
discuss its use in describing the physics of strong interactions.

3.5.1 Construction of the Lagrangian

In the defining, three-dimensional representation an element u of SU.3/ is written as
an exponential series (3.102), i.e. in terms of eight linearly independent, traceless,
and hermitean elements of the Lie algebra Lie.SU.3//,

hk D 1

2
�k; k D 1; 2; : : : ; 8:

The matrices �k are called Gell-Mann matrices and are given in Appendix D. The
dimension of the Lie algebra and the rank of SU.3/ are, respectively,

dim SU.3/ D 8 rank SU.3/ D 2:

This is obvious from the explicit choice (D.2) of the matrices �k : Every 3 � 3
matrix which is traceless and hermitean can be written as a linear combination of
�1; : : : ; �8. Two of these, �3 and �8, are simultaneously diagonal. Using the defining
representation one verifies the trace formula

tr.TiTk/ D 1

4
tr.�i�k/ D 1

2
ıik: (3.200)

The fundamental representation, its conjugate, the adjoint representation as well as
the invariant tensors of SU.3/ are found in Appendix D.

There are four major reasons why quarks should carry a colour degree of
freedom, cf. (3.16), the first of which was already discussed in Sect. 3.1. They are
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(A) The problem of spin and statistics for baryons. As shown in Sect. 3.1, by
requesting all baryons to be in singlet states with respect to the structure group
SU.3/c of colour, it becomes possible, in the most natural way, to construct wave
functions for baryons from quarks obeying ordinary Fermi-Dirac statistics.

(B) The decay amplitude �0 ! �� is enhanced by a factor of 3 if every quark
state comes in three colours. The decay rate as observed in experiment supports that
factor, cf. Sect. 4.2.5b.

(C) The ratio R of hadron to muon production in eCe� collisions,

R WD �tot.eCe� ! hadrons/

�tot.eCe� ! �C��/
; (3.201)

at any given energy, provides a direct measurement of the number and squared
charges of quark fields which can be produced up to that energy. In the approxi-
mation of one-photon exchange, the total cross section for a fermionic particle and
its antiparticle is easily calculated. For instance, for the production of a muon pair
one finds

�tot.e
Ce� ! �C��/ � 4�˛2

3

Q2.�/

s

with Q.�/ D �1 the charge of the muon, s the square of the total energy in the
centre-of-mass system. (The approximate sign refers to the fact that we consider
electron-positron collisions at energies large compared to their rest mass.) This
formula is obtained from the expression (3.240) below for the differential cross
section d�=d˝�, by omitting all terms proportional to k, and by integrating over
the solid angle, viz.

�tot D 2�
Z C1
�1

d.cos 	�/
˛2

4s
.1C cos2 	�/ D 4�˛2

3s
:

The production of hadronic final states is thought to occur in two stages: first,
production of a pair of quark and antiquark by one-photon exchange, eCe� !
.�/ ! qq, then formation of hadronic, colour-neutral, final states through “dress-
ing” of the quark and antiquark lines by a sufficient number of additional qq states.
Independently of this hadronic final state interaction the energy dependence of the
total cross section is expected to be given by 1=s, in the same way as for muons. Its
magnitude should be proportional to the sum of (primordial) quark-antiquark pairs
which can be produced at the given energy, each term multiplied with the square of
the quark’s charge Q.q/. Although this model is rough because it neglects higher-
order corrections and ignores what happens in the final state for physical hadrons to
emerge in the end, it gives a valid indication for the ratio (3.201). For fixed value of
s the ratio is approximately

R.s/ �
X
A<A.s/

3X
kD1

Q2.A/ D 3
X
A<A.s/

Q2.A/; (3.202)
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where the sum over the flavours A, (u, d, s, c, b, t) in the order of increasing mass,
extends only over those species of quarks which can be produced at the given value
of the energy. For example, above the threshold for ss production but below cc
threshold, it should be

3

"�
2

3

�2
C
�
1

3

�2
C
�
1

3

�2#
D 2

for A D u, d, s, while beyond the cc threshold it should be 10=3. Indeed, both
the stepwise increase from below the kinematic threshold for production of a given
quark–antiquark pair to just above that threshold, and the colour factor 3 in (3.202)
are confirmed by electron–positron annihilation into hadrons [RPP10].

Note that this is a refinement of the analysis described in Subsect. 2.8.4,
eq. (2.212), by the colour quantum number.

The electric charge of each quark (in terms of the elementary charge e/ is related
to its eigenvalues of the 3-component of isospin and the other additive quantum
numbers by the formula

Q D I3 C 1

2
.B C S C C C BoC To/:

This is akin to the formula (3.145) and, historically, goes back to the relation Q D
I3 C Y=2 with Y D B C S relating the strong interaction isospin and hypercharge
to the electric charge. In the context of SU.3/, the “eightfold way”, it was called
Gell-Mann Nishina formula.

(D) Asymptotic freedom and scaling. Perhaps the most interesting consequence
of the introduction of colour as a new degree of freedom and of gauging the
structure group SU.3/c is the following prediction: The effective strong interaction
coupling constant ˛s.�/ which is characteristic for the energy scale �, tends to
zero as the energy scale � becomes large. This implies that strong interaction
processes, at large energy scales, are characterized by a small effective coupling
constant and, hence, may be amenable to a treatment within perturbation theory.
This asymptotic behaviour, in turn, explains certain scaling properties of nucleonic
structure functions which are observed experimentally.

Experiment seems to tell us that all physical hadron states are singlets with
respect to colour SU.3/c. While the rich spectrum of mesons and baryons reflects
in a beautifully simple pattern the flavours of quarks, no open colour has ever been
seen. Thus, with A;B;C , . . . denoting flavour, i; j; k, . . . denoting colour degrees
of freedom, meson and baryon states must be linear combinations of the colour
singlets, respectively,

3X
iD1

qA;iqB;i;

3X
i;j;kD1

"ijkqA;iqB;jqC;k; (3.203)
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the flavour quantum numbers being combined to their flavour wave functions. For
example, in the good old world of light quarks u, d, s these are multiplets of another
SU.3/f, the flavour group postulated long ago by Gell-Mann and Ne’eman. In this
case, more specifically, they are nonets 3 � 3 D 1 C 8 for mesons, and singlets,
octets, and decuplets 3 � 3 � 3 D 1 C 8 C 8 C 10 for baryons as observed in the
spectroscopy of light mesons and baryons. With the c-quark included, the flavour
group can be SU.4/f, while the b-quark would extend it to SU.5/f. At the level
of the quark interactions the flavour group is no good symmetry and, therefore, its
details are of no importance for the dynamics. It merely serves to classify meson
and baryon states at rest. Knowing that (most) mesons are quark–antiquark states
and that (most) baryons are three-quark states, one can construct these states, in a
rather elementary way, from quarks and/or antiquarks such as to obtain the correct
spin and internal quantum numbers.

For the sake of reference we summarize the additive flavour quantum numbers
of the six known quarks in the following table

u d c s t b

Q 2/3 �1=3 2/3 �1=3 2/3 �1=3
I3 1/2 �1=2 0 0 0 0
S 0 0 0 �1 0 0
C 0 0 C1 0 0 0
Bo 0 0 0 0 0 �1
To 0 0 0 0 C1 0

All quarks have baryon numberB D 1=3.Q denotes their electric charge, I3 the
3-component of (strong) isospin, S the strangeness,C the charm,Bo the bottomness
(or beauty), To the topness (also called truth).

While the flavour quantum numbers are relevant for the spectroscopy of mesons
and baryons, the colour group SU.3/c is the basis of the dynamics of strong
interactions. Indeed, strong interactions are described by the local gauge theory
which is built on the structure group SU.3/c. Unlike electroweak interactions this
gauge theory remains unbroken. Furthermore, it acts on quark fields only, not on the
lepton fields which, therefore, are said to be “colour-blind”.

It is not difficult to write down this gauge theory by following the general
principles developed in Sect. 3.3.5. The building blocks are

(i) the vector potential (3.112), written in abstract notation

Ax.x/ D igs

8X
kD1

TkA
.k/
˛ .x/:

When this potential acts in the representation space of the quark triplet the
generators are given by U.3�3/.Tk/ D �k=2. The bosonic sector of the
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Lagrangian, on the other hand, needs the adjoint representation U.8�8/.Tk/ DW
Lk which is given in terms of the structure constants: .Lk/mn D �ifkmn;

(ii) The covariant derivative (3.117) expressed in the representation space of the
quark triplet, which reads

ŒDx.A/�Bm;Cn D Œ1@˛ C U.3�3/.A˛/�Bm;Cn

D
 
ımn@˛ C igs

8X
kD1

.�k=2/mnA
.k/
˛ .x/

!
ıBC;

(iii) The field strength tensor (3.119) in abstract notation, which is given by

F˛ˇ D @˛Aˇ � @ˇA˛ C ŒA˛; Aˇ� � igs

8X
kD1

TkF
.k/

˛ˇ .x/;

with the tensor fields on the right-hand side given by

F
.k/

˛ˇ .x/ D @˛A.k/ˇ .x/ � @ˇA.k/˛ .x/ � gs
8X

m;nD1
fkmnA

.m/
˛ .x/A

.n/

ˇ .x/: (3.204)

Here we denote the coupling constant by gs instead of e.
With the experience of Sect. 3.3.5 we can write down at once a gauge invariant

Lagrangian based on the colour group SU.3/c. From (3.200), with gs instead of e,
and with k D 1=2 we find

LQCD D �1
4

8X
kD1

F
.k/

˛ˇ .x/F
.k/˛ˇ.x/C i

2

X
B

X
m;n

qB;m.x/�˛.
 !
D ˛ .A//mnq

B;n.x/;

(3.205)
with D˛.A/ as given above, the left-right arrow reminding us that this operator acts
on the right and on the left (consult list of symbols if you have forgotten the precise
definition.)

3.5.2 Discussion of QCD Lagrangian

Quantum chromodynamics, which was proposed for the description of strong
interactions in the early nineteen-seventies, has become a wide field of research in
elementary particle physics. A comprehensive discussion of this topic would fill a
monograph of its own and, therefore, goes far beyond the scope of this book. At first
sight, looking back at the simplicity of the underlying Lagrangian (3.205) and com-
paring to the complexity of electroweak interactions, this may seem somewhat sur-
prising. The following comments are meant to explain why this is so and, at the same
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time, to awaken the reader’s curiosity to learn more about the intricacies in interpret-
ing the QCD Lagrangian and about the difficulties in applying it to the observable
physics of hadrons. We group these comments into a number of remarks as follows.

(i) Gluons: As it stands the Lagrangian (3.205) describes eight massless vector
bosons, called gluons, and a number of massless quarks B D u; d . . . each of
which comes in three different states m D 1; 2; 3 called colours. The gluons are
photon-like particles which means that if it were possible to produce them as free
particles they would be massless and, like the photon, would come in two, not three,
helicity states. They are flavour-neutral but, in contrast to the photon, they carry
nonvanishing colour k D 1; 2; : : :; 8. The masslessness of gluons might lead one
to conclude that the interaction they mediate should be of infinite range (recall
the 1=r dependence of the Coulomb potential which follows from the exchange
of photons)–in sharp contrast to the empirical finding that strong interactions are
very short-ranged, typical ranges being of the order of –�� D �h=m�c � 1:41 fm,
the Compton wavelength of the pion, or less. This paradox is resolved by observing
that QCD is a theory which shows the phenomenon of confinement: The elementary
excitations of the theory described by the Lagrangian (3.205) are very different
from the fields it contains. All physical states are such that all colour degrees of
freedom are coupled to the singlet, the trivial representation of SU.3/c. Even in a
world containing only gluons, the physical hadron states are composite, two or more
gluon states, called glueballs, in which the colour quantum numbers are saturated
to form singlets. The observable interactions between such glueball states may
be thought of as analogues of Van der Waals forces between electrically neutral
atoms or molecules. Van der Waals forces which are due to mutual polarization of
electrically neutral, composite systems, are known to be of much shorter range than
the Coulomb force. Therefore, even though the dynamics of the underlying gauge
theory is different in the two cases, this analogy renders plausible the short range
nature of the effective force that acts between colour- neutral, composite systems.

(ii) Quark sector and chiral symmetry: A free one-particle state of any quark
field qB;m.x/ would carry not only the flavour quantum numbers B of that species,
hence, third-integral electric charge, but necessarily also non-vanishing colour m.
Again, like in the case of gluons, no states with open colour seem to exist. By the
mechanism of confinement quarks and antiquarks are bound to the colour-neutral
states (3.203) of mesons and baryons. Therefore, it is at once plausible that the
interactions of physical hadrons are very different from the interactions between
isolated quarks as described by the simple gauge theory (3.205).

The theory described by the Lagrangian (3.205) still possesses a high degree of
(global) symmetry. In order to simplify the discussion let us consider the first two
flavours u and d only. The extension to other flavours will be evident at the end. It is
easy to verify that the following vector and axial vector currents are conserved,

�.k/˛ WD
X
B;C

X
m

qB;m.x/�˛.�k/BCq
C;m.x/;

a.k/˛ WD
X
B;C

X
m

qB;m.x/�˛�5.�k/BCq
C;m.x/; (3.206)
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or, equivalently, that

�.k/˛ ˙ a.k/˛ D
X
B;C

X
m

q
B;m
R=L.x/�˛.�k/BCq

C;m
R=L.x/; (3.206’)

are conserved. If this were a genuine global symmetry of QCD the charges
corresponding to the currents (3.206) or (3.206’) would be conserved. Starting from
the currents in the helicity basis (3.206’), it is easy to verify that the symmetry group
would be SU.2/�SU.2/, the first of these corresponding to �.k/˛ Ca.k/˛ , the second to
�
.k/
˛ �a.k/˛ . (Had we included the next flavour s this would be SU.3/�SU.3/, and so

on). This symmetry is called chiral symmetry. In reality quarks are not really mass-
less and chiral symmetry is not an exact symmetry of the theory. In fact, it is not so
easy to give a precise meaning to a quark mass term because quarks cannot be pro-
duced as free particles and, hence, their mass cannot be measured by kinematics or
by way of a propagator. Perhaps the best answer to this question is to say that quark
mass terms, which are thought to be due to electroweak interactions, are merely
symmetry breaking parameters: their magnitude is a measure for the extent to which
the chiral symmetry is broken. The numbers quoted in the literature, say, typically,
mu D 2:5MeV; md D 5MeV, are also called current quark masses, for historical
reasons, and are very different from what are called constituent quark masses. The
latter would be the masses in a naive bound state model of hadrons where a proton or
neutron is made up of three quarks with weak binding forces so that the constituent
mass would be approximatelymp=3, hence of the order of 300 MeV.

(iii) The QCD ground state: While it is not difficult to formally introduce quark
mass matrices into the Lagrangian (3.205), cf. Sect. 3.4.6. above, a most important
observation is that the ground state of QCD is very different from the vacuum of
perturbation theory and that perturbation theory based on (3.205) is not of much use
for the analysis of the confinement regime. All indications are that the true ground
state is a highly correlated state which contains interesting internal structure and
that this state is close to a limit of exact chiral symmetry. In fact, the closeness
of strong interactions at low energy to a chirally symmetric situation was known
long before the development of QCD, one of the most prominent indications for
it being the existence of the pion which is so much lighter than all other hadrons.
Therefore, nonperturbative methods which can deal with QCD in the confinement
regime must meet a formidable challenge: they must cope with the spectrum of
hadronic resonances and the approximate chiral symmetry which are the salient
features of strong interactions at low energies.

(iv) Asymptotics, or how to make quarks and gluons visible: At large energy
scales, i.e. in processes involving large momentum transfers, it becomes possible
to factorize strong interactions into short-range and long-range contributions, and
thereby to separate the regime of large momentum transfer from the regime of small
momentum transfer. Due to the decrease of the effective coupling constant ˛s.�/

with increasing energy scale �, the former can be calculated by means of covariant
perturbation theory as applied to the Lagrangian (3.205), to one-loop, two-loop, or
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higher orders. The latter concerns the fragmentation of the hadrons in the initial
state into quarks and gluons as well as the reconstruction of final hadronic states,
called hadronization, from quark and gluon lines. This part of the physical reaction
amplitude is of non-perturbative nature and must be dealt with by parametrization
and fixing of parameters by experiment. With this caveat in mind, QCD processes
at high energies and large momentum transfers do indeed test the physics of quarks
and gluons as described by the simple Lagrangian (3.205). It is in this sense that the
existence of three and four-gluon vertices which are predicted by the first term on
the right-hand side of (3.205), can be tested experimentally. For example, a vertex
with four gluons, one of which is incoming and three of which are outgoing, will
give rise to an event with three well-defined, outgoing jets of hadronic particles.
This means that the three gluons produced in the final state will be “dressed” to
bunches of physical hadrons through addition of quark-antiquark pairs as well as
further gluons. The “soft”, long-range part of the processes cannot be calculated as
easily. It introduces a certain amount of model dependence and, hence, puts a limit
on the accuracy to which higher- order perturbation theory applied to the short-range
part can be tested. In spite of this limitation of principle, quantum chromodynamics
has convincingly passed all experimental tests at high energies and, after many years
of intense investigation we have a good phenomenological basis for our conviction
that it is indeed the correct theory of strong interactions.

3.6 Simple Applications of the GSW Model at Energies
Below the Vector Boson Masses

In this section we study three simple examples which illustrate the specific
predictions of the GSW theory for reactions due to Z0 exchange and, in particular,
to the interference between the exchange of a virtual Z0-boson and of a photon.
In the terminology introduced earlier these examples concern NC interactions for
which the GSW theory gives new and specific predictions. The CC interactions of
this model are the same as in the older, effective, theory. They are dealt with, in a
more general framework, in Chap. 4.

3.6.1 Scattering of Longitudinally Polarized Electrons
from a Nucleus with Spin Zero

In Sect. 2.2 we have learnt that the two helicity states of a fast electron (2.17) are
scattered in exactly the same way by a target with spin zero, provided the interaction
is invariant under rotations and under space reflection. This is indeed the case when
we consider the electromagnetic interaction only (as we did in Chap. 2).

The interaction Lagrangian (3.183) of the GSW model contains neutral interac-
tions which are not invariant under parity. This is due to the simultaneous presence
of vector and axial vector couplings of the fermion fields to the Z0 -boson. Thus,
very much like for the case of the CC weak interactions, one expects to find
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manifestations of parity violation in purely weak NC reactions, such as neutrino
scattering on leptonic or hadronic targets. In addition, amplitudes due to exchange of
a virtual Z0 can interfere with amplitudes due to exchange of a photon. Z0 -exchange
gives rise to effective VV, VA, AV, and AA couplings whilst one-photon exchange
gives rise to VV couplings only. As the VA and AV terms are pseudoscalars while the
VV and AA terms are scalars, the �–Z0 interference must also lead to observable,
parity violating effects.

Taking into account the interference with the weak NC interactions, the scattering
amplitudes f and g for the two helicity states of the incident electron are not equal
anymore. They differ precisely by the new parity-odd VA and AV terms. Thus, the
difference of the differential cross sections d�C and d�� for electrons with positive
and negative helicity, respectively, is a direct measure of the interference of vector
and axial vector amplitudes. This is what we now wish to work out in a simple case:
scattering on a nucleus with spin zero, using the first Born approximation.

The quantity of interest is the asymmetry in the cross sections

A WD d�C=d˝ � d��=d˝

d�C=d˝ C d��=d˝
D jf j

2 � jgj2
jf j2 C jgj2 : (3.207)

In computing the scattering amplitudes due to one-photon and to one-Z0

exchange we need the nucleonic and nuclear matrix elements of the weak neutral
current K˛ , (3.184b). This is complicated by the fact that nucleons are composite
states and that hadronic matrix elements are modified by the strong interactions.
Let us denote the vector currents by �˛, the axial vector currents by a˛ . The proton
contains two u-quarks and one d-quark. Thus by simply counting the quarks, the
matrix element of K˛, (3.184b), between two proton states with momenta p and p0
is given by

hp0jK˛.0/jpi D .1 � 4 sin2 	w/hp0j�˛.0/jpi � hp0ja˛.0/jpi: (3.208a)

Similarly, a neutron contains one u-quark and two d-quarks and the matrix element
of K˛ between two neutron states with momenta n and n0 is given by

hn0jK˛.0/jni D �hn0j�˛.0/jni C hn0ja˛.0/jni: (3.208b)

The vector matrix elements in (3.208a,b) have the same general decomposition in
terms of Lorentz invariant form factors as the electromagnetic current (2.46). In
particular, if �˛ is conserved (this is indeed the case from (3.184a), the third form
factor F3 must vanish identically. The matrix elements of a˛ may be decomposed,
in a similar fashion, in terms of axial vector covariants, viz.

hp0ja˛.0/jpi D 1

.2�/3
u.p0/

�
�˛�5FA.q

2/C 1

2m
q˛�5Fp.q

2/

C
P1
2m

�˛ˇq
ˇ�5FT.q

2/

)
u.p/: (3.209)
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[The third term in the curly brackets can be shown to vanish if the strong interactions
are invariant under G-parity, i.e. FT.q

2/ � 0.]
Let us now consider scattering of fast electrons on a nucleus with spin zero. Let

k; k0 be the four-momenta of the electron before and after the scattering, let p; p0
be the corresponding momenta of the nucleus and let

q W k � k0 D p0 � p

be the momentum transfer. The one-photon exchange amplitude is given by

T� D e2

.2�/3
ue.k0/�˛ue.k/

�g˛ˇ
q2
hp0jj ˇe:m:.0/jpi; (3.210)

and the one Z0-exchange amplitude is

TZ D � e2

.2�/3
1

16 sin2 	w cos2 	w
ue.k0/f��˛.1 � 4 sin2 	w/C �˛�5gue.k/

��g˛ˇ C q˛qˇ=m
2
Z

q2 �m2
Z

hp0jKˇ.0/jpi: (3.211)

The nuclear matrix element of the electromagnetic current has the form

hp0jj ˇe:m:.0/jpi D
1

.2�/3
.p C p0/ˇZF.q2/; (3.212)

where F is the electric form factor of the nucleus and is normalized to F.0/ D 1.
Regarding the nuclear matrix element of K˛ we note the following: Due to angular
momentum and parity conservation in the hadronic vertex, the nucleonic axial
currents a˛ do not contribute to elastic scattering, hp0ja˛jpi D 0. The vector current
of the protons is proportional to the electromagnetic current. Therefore, its nuclear
matrix element is proportional to the electric form factor F.q2/. If we assume the
neutron density to be the same as the proton density, �n.r/ D �p.r/, then the matrix
element of the vector current due to neutrons is also proportional to that same form
factor. In this case we have

hp0jKˇ.0/jpi D 1

.2�/3
.p C p0/ˇfZ.1 � 4 sin2 	w/ �N gF.q2/; (3.213)

where N is the neutron number.
It is easy to see that the terms q˛qˇ of the Z0-propagator in (3.211) do not

contribute. Thus both the photon and the Z0 exchange give an effective four-fermion
coupling, the first multiplied with the photon propagator 1=q2, the second with the
factor 1=.q2 �m2

Z/.
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Fig. 3.6 (a) One-photon
exchange in electron-nucleus
scattering. (b) Exchange of a
Z0-boson between electron
and nucleus

The two amplitudes (3.210, 3.211) are depicted in Figs. 3.6a and b. The leptonic
vector coupling in Fig. 3.6b gives a term which is analogous to the one-photon
exchange and whose magnitude depends on the squared momentum transfer.
Clearly, at intermediate energies jq2j is very small as compared to m2

Z and this term
is then negligible.

Using the following abbreviations:

�.q2/ WD 1C .1 � 4 sin2 	w/Œ.1 � 4 sin2 	w/�N=Z�
16 sin2 	w cos2 	w

q2

q2 �m2
Z

; (3.214a)

a.q2/ WD � Œ.1 � 4 sin2 	w/�N=Z�q2
16 sin2 	w cos2 	w.q2 �m2

Z/

,
�.q2/; (3.214b)

and writing the leptonic vectors and axial vectors in terms of �˛PC and �˛P�, with
P˙ as defined in (1.76), we then have

T� C TZ D � e2

.2�/6
Ze2

q2
F.q2/�.q2/.p C p0/˛u.k0/ �˛f.1C a.q2// PC

C .1 � a.q2//P�gu.k/: (3.215)

It is easy to calculate the differential cross section from the expression (3.215)
and, in fact, on the basis of experience in Chap. 2 we guess that we will obtain
the Mott cross section (2.27), multiplied by .1˙ a.q2//2 for positive and negative
helicity, respectively. For the calculation of the asymmetry (3.207), equation (3.215)
is entirely sufficient as it shows that

d�C / .1C a.q2//2 and d�� / .1 � a.q2//2:

Thus we find

A D 2a.q2/

1C a2.q2/ : (3.216)

At intermediate energies of a few hundred MeV q2 is small as compared to m2
Z, so

that
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A ' 2a ' 1 � 4 sin2 	w �N=Z
8 sin2 	w cos2 	w

q2

m2
Z

; (3.217)

or, with q2 ' �4E2 sin2 	=2,

A ' N=Z � .1� 4 sin2 	w/

2 sin2 	w cos2 	w

E2

m2
Z

sin2 	=2: (3.217’)

Assume E D 500MeV; mZ ' 92GeV; sin2 	w D 0:232, then A ' .N=Z/8:4 �
10�5 sin2 	=2. This asymmetry is small but may well be measurable. Obviously, it
is of interest to choose a target with a large neutron excess.

As it is evident from our derivation this asymmetry is a direct measure for the
leptonic axial vector times hadronic vector couplings to the Z0. Also noteworthy is
the fact that the nuclear form factor F.q2/ drops out of the ratio (3.207). This is a
special feature of first Born approximation.

The same asymmetry (3.207) may also be calculated for the case of scattering on
a proton or a neutron, along the same lines as in the example above. In this case there
is not only electric (charge) scattering but also magnetic dipole scattering. For small
and intermediate scattering angles the asymmetry is dominated by charge scattering,
near the backward direction it is given predominantly by M1 scattering.

3.6.2 Neutrino and Antineutrino Scattering on Electrons

As another example of a clean test of NC interactions we consider the following
elastic reactions

�� C e! eC ��; (3.218a)

�� C e! eC��; (3.218b)

�e C e! eC�e: (3.218c)

The first two of these are pure NC reactions. They are observable with the neutrino
beams of high-energy accelerators. Reaction (3.218c) has contributions from both
NC and CC interactions. It is observable in experiments at nuclear reactors which
produce intense ve beams.

The kinematics is the same as in reactions (3.21) and (3.91) that we discussed
in Sects. 3.1.2a and 3.2.4, respectively. Denoting the neutrino momenta before and
after the scattering by p and p0, those of the electron by q and q0, we have in the
c.m. system

s D .p C q/2 ' 4E�2; (3.219a)
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t D .p � p0/2 D �2E�2.1 � z�/ ' �1
2
s.1 � z�/; (3.219b)

u D .p � q0/2 D 2m2
e � s � t ' �

1

2
s.1C z�/: (3.219c)

Here E� is the neutrino energy, z� is the cosine of the scattering angle in the c.m.
system; the ' sign refers to our choosing E� very much larger than me so that me

can be set equal to zero in (3.219). In the laboratory system s is given by (cf. (3.93’))

s D m2
e.1C 2!/; ! WD E lab

� =me: (3.220)

So, forE lab
v � me; s ' 1:022�10�3 �E lab

v withE lab
v expressed in GeV. Of relevance

is the comparison of s to the W and Z0 masses:

s

m2
w
' .1:48 � 10�7 GeV�1/E lab

� ;

s

m2
Z

' .1:16 � 10�7 GeV�1/E lab
� :

The NC contributions to reactions (3.218) contain a denominator .t � m2
Z/ due to

the Z0-propagator, the CC contributions contain a denominator .s �m2
w/ due to the

W-propagator. In either case, s and t are very small as compared to m2
w and to

m2
Z, for neutrino energies of the order of 102–103 GeV. Therefore, it is a very good

approximation to use the effective contact interaction (3.186) instead of the full
Lagrangian (3.183).

The differential cross section in the c.m. system is given by the same expression
as for reaction (3.91) viz.

d�

d˝�
D 1

32s4�2
.2�/12

X
jT j2: (3.221)

In calculating reactions (3.218a,b) let us write the effective contact interaction in the
general form

�L eff
NC D �

G

2
p
2
.e.x/.cV�˛�cA�˛�5/e.x//.��.x/.�

˛���˛�5/��.x//: (3.222)

In the case of the GSW model, this is identical to the expression (3.85), so that we
must identify the parameters of (3.222) as follows:

cV D 1 � 4 sin2 	w; (3.223a)

cA D 1; (3.223b)

� D 1: (3.223c)
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Furthermore, let us assume that the incident v� in reaction (3.218a) carries
helicity h, the incident v� in (3.218b) carries helicity h. In laboratory experiments
these neutrinos stem primarily from pion and kaon decays, � ! ���; K ! ���.
As we saw in Sect. 3.1.2c (i), these helicities are known to be maximal, so that one
may assume

h D �1 and h D C1: (3.224)

The T -matrix element and the traces in ˙ jT j2 are worked out along the same lines
as in the example of sec. 2.4, except that the incident v�.v�/ is polarized along
its momentum with polarization h.h/. In calculating the traces this means that we
must set

u�.p/ u�.p/ D 1

2
.1C h�5/�p;

��.p/��.p/ D 1

2
.1 � h�5/�p:

These expressions are obtained from (1.148, 1.149) with n D hOp (or NhOp/, in the limit
m ! 0, or, equivalently, from (1.160), with the identifications h � �; h D ��,
respectively.

The differential cross section for reaction (3.218a) in the c.m. system is found
to be

d�

d˝�
.��e! e��/ D G2

64s � 4�2 f.s
2 C u2/.1C j�j2 � 2hRe�/.jcVj2 C jcAj2/

�2.s2 � u2/.hC hj�j2 � 2Re�/Re.cVc
�
A/g: (3.225)

The analogous cross section for reaction (3.218b) is obtained from (3.225) by
interchanging s and u, and by replacing h with � Nh. From these results it is now
easy to calculate the integrated elastic cross section. Integrating over d˝� and using
(3.219c) one finds

Z
.s2 C u2/d˝� D 16�

3
s2;

Z
.s2 � u2/d˝� D 8�

3
s2;

so that

�.��e/ D G2s

12�

1

4
f.1C j�j2 � 2hRe�/.jcVj2 C jcAj2/ (3.226a)

�.hC hj�j2 � 2Re�/Re.cVc
�
A/g;

�.��e/ D G2s

12�

1

4
f.1C j�j2 C 2hRe�/.jcVj2 C jcAj2/ (3.226b)

�.hC hj�j2 C 2Re�/Re.cVc
�
A/g:
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Let us now make the following assumptions:

(i) the incident neutrino v� is fully left-handed, so that h D �1 and, correspond-
ingly, Nh D C1,

(ii) cV and cA are both real.

With these assumptions (3.226) simplify to the following expressions:

�

�
�� e
�� e

�
D G2s

12�

j1C �j2
4
fc2V C c2A ˙ cVcAg: (3.227)

The integrated cross sections (3.227) show the increase with the square of the
neutrino energy in the c.m. system (or with the first power of its laboratory energy),
which is typical for the contact interaction. (As we noted in Sect. 3.2.4 this increase
cannot hold at arbitrarily large energies.)

Suppose that both �.��e/ and �.��e/ are measured and that we know that � D 1.
We may then use (3.227) to determine cv and cA: Writing cV D .1=

p
2/.xCy/ and

cA D .1=
p
2/.x�y/ we see that (3.227) defines two ellipses whose symmetry axes

are rotated by �=4 with respect to a coordinate frame .cv,cA/, as shown in Fig. 3.7.
If the two ellipses intersect, cv and cA are determined up to a fourfold ambiguity. To
this we add the information which comes from a measurement of reaction (3.218c).
The integrated cross section �.��e/ is given by an expression analogous to (3.226b)
supplemented by the contribution due to the CC interactions.

Assuming h.�e/ D C1; � D 1 and assuming that CC couplings are precisely the
ones of (3.74), one finds after some calculation

d�

d˝�
.�ee! e�e/ D G2

64s�2
fs2.cV � cA/

2 C u2..cV C cA/
2 C 8.2� cV � cA//g:

Intergration over d˝� yields the following expression for the total elastic cross
section:

�.�ee/ DG
2s

12�
.c2V C c2A � cVcA � 2cV � 2cA C 4g: (3.228)

Expressed in terms of the neutrino energy in the laboratory system we have s D
2meE

lab
� . The cross sections (3.227) have the order of magnitude

�0 D 2meG
2

12�
E lab
� D 1:44 � 10�42cm2GeV�1E lab

� :

Suppose that we had found, in these units,

�.��e/=�0 ' �.��e/=�0 ' 1;
�.��e/=�0 ' 3:
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Fig. 3.7 The elastic neutrino
reactions (3.218) determine
three ellipses in the plane of
the effective coupling
constants cv and cA of (3.222)

The three ellipses defined by (3.227, 3.228) would then be the ones shown in
Fig. 3.7. They intersect in the points .cV D 0, cA D 1/ and .cV D 1, cA D 0/, the
first of which would be compatible with (3.223a,b) and would imply sin2 	w D 1

4
.

All three reactions have indeed been measured in the laboratory, with error bars
of the order of 30 to 50%. The results are found to be consistent with the predictions
of the GSW theory but seem to favour a somewhat larger value of sin2 	w. Note that
for sin2 	w D 1

4
, the two cross sections (3.227) are exactly equal. For sin2 	w smaller

(larger) than 1
4
; �.��e/ is larger (smaller) than �.��e/. The comparison of these two

cross sections measures sin2 	w relative to the value 1
4
, at which they are equal.

One would think that relative phases of parity-even to parity-odd interactions
can only be obtained from a spin-momentum correlation or some other pseudoscalar
observable. Therefore, one might wonder why and how a measurement of total cross
sections can determine the relative strength and relative sign of vector to axial vector
NC couplings. The answer to this question can be derived from (3.226). If we restrict
our considerations to NC couplings only, we may assume cv to be real, without loss
of generality, and take this constant out of the curly brackets in (3.226a,b). In fact,
by redefining cA, cv may be taken to be unity. If indeed, h D �1 and h D C1 the
cross sections are proportional to

�

�
��e
��e

�
/ j1C �j2f1C jcAj2 ˙ Re.cA/g: (3.229)

On the other hand, if the incident �� and �� were unpolarized, i.e. if the beam
contained an equal amount of neutrinos of either helicity, we would obtain from
(3.226)

�

�
��e
��e

�
unpol

/ f.1C j�j2/.1C jcAj2 ˙ 2Re.�/Re.cA/g: (3.230)
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Clearly, (3.230) does not allow to determine Re cA, unless � is known and is
different from zero. Therefore, it contains less information than (3.229). (The two
are the same if and only if � D 1.) This analysis shows that in order to extract RecA,
some information on neutrino helicities must be given: In the first case (3.229),
we have assumed h.��/ D �1, and therefore h.��/ D C1. In the second, the
knowledge of � ¤ 0 implies that we know the longitudinal polarization of the
outgoing neutrino. In either of these cases, we make use of input information on a
pseudoscalar quantity, the neutrino helicity. (See also exercises 3.10 and 3.11.)

Finally, the assumption that both cV and cA are real was essential in determining
both of them (up to a twofold ambiguity) from the three cross sections discussed
above. [It is not sufficient that they only be relatively real because of reaction
(3.218c) for whose calculation we need to know the phases of cV; cA relative to
the CC couplings.]

3.6.3 Angular Asymmetry in eCe� ! �C�� and eCe� ! �C��

In the two previous examples one could not discriminate between the full GSW
theory (3.183), with large but finite masses of the gauge bosons, and the effective
contact interaction (3.186) (corresponding to the former with mZ; mW ! 1/.
This was so because these examples concerned reactions on fixed targets in which
case a major fraction of the projectile energy resides in the kinetic energy in the
centre-of-mass and only a small fraction goes into the momentum variable that
appears in the gauge boson propagators. The third example we choose is a colliding
beam reaction,

eCCe� ! FC C F�; F D � or �; (3.231)

in which the squared momentum of the gauge boson is equal to s D 4E�2, i.e. where
the virtual boson carries the full energy that is available in the reaction.

To lowest order in e, the amplitude for reaction (3.231) is given by the sum of the
one-photon and the one-Z0 diagrams of Fig. 3.8. The kinematics is as indicated in
Fig. 3.8a. For simplicity, we consider the case where s is large as compared to both
m2

e and m2
F. (For the more general case with m2

F ¤ 0 see exercise 3.12.) With

s D .pC C p�/2 D .qC C q�/2 ' 4k�2; (3.232a)

where k� is the magnitude of the c.m. three-momentum, we can express t and u in
terms of s and of 	�, the scattering angle in the c.m. system:

t D .p� � q�/2 ' � s
2
.1 � cos 	�/; (3.232b)

u D .p� � qC/2 ' � s
2
.1C cos 	�/; (3.232c)
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Fig. 3.8 One-photon (a) and
one Z0-exchange (b) in
electron–positron annihilation
and pair creation of muons or
� -leptons

The incident, colliding beams are taken to be unpolarized. Therefore, as the spins
are not discriminated, one might be tempted to conclude from the symmetry of
Fig. 3.8 that the differential cross section is left invariant if we interchange qC and
q�. Interchanging the final state momenta means interchanging t and u, or from
(3.232b,c), means replacing 	� by � � 	�. Thus, we would conclude that the cross
section d�=d˝� is a function only of cos2 	� and is symmetric about 	� D 90ı.
However, a closer examination of the diagrams, taking into account the helicity
transfer at the two vertices, shows that this is not true in general.

We know from the general analysis in Sects. 3.1.2c, d that vector and axial vector
vertices connect the helicities of massless particles as indicated in Figs. 3.4a,b.
Two examples of the helicity transfer at the photon and Z0 vertices are shown in
Figs. 3.9a, b. (Since the incident particles are unpolarized, we must add incoherently
the contribution of these two amplitudes and of the ones with all four helicities
reversed.) As can be seen from Fig. 3.9, the interchange of qC and q� effectively
means that diagram 3.9a goes over into diagram 3.9b, and vice versa. Therefore, the
cross section is t � u symmetric only if the two amplitudes have the same relative
weight. This happens if the sum of the diagrams, Fig. 3.9, contains either pure VV
or pure AA couplings, but not both. Let us calculate this in more detail.

The differential cross section in the c.m. system (this is the reference system in
the laboratory if the colliding beams have equal and opposite momenta), in the limit
s � m2

e ; m
2
F, is given by

d�

d˝�
' 1

16s
.2�/10

1

4

X
jT j2: (3.233)

In writing down the T -matrix element for the one-Z0 exchange we note that the term
Q˛Qˇ=m

2
Z in the propogator gives a negligibly small contribution: Q˛ is equal to

.pC C p�/˛ and to .qC C q�/˛ so that by virtue of the Dirac equations (1.84,85’)

�.pC/�˛u.p�/Q˛ D 0;
�.pC/�˛�5u.p�/Q˛ D �2me�.pC/�5u.p�/;

and analogously for Qˇ contracted with the .FCF�/ vertex. Thus, the axial-
couplings yield a negligible contribution of the order memF=m

2
Z, relative to the

term g˛ˇ . With this simplification the amplitudes in Fig. 3.9 are

T� D 1

.2�/6
e2

s
.�.pC/�˛u.p�//.u.q�/�˛�.qC//; (3.234)
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Fig. 3.9 Two examples of helicity transfers in reaction (3.231) as described by the diagrams of
Fig. 3.8. (a) (VCA)(VCA) coupling, (b) (VCA)(V�A) coupling

TZ ' 1

.2�/6
e2

16 sin2 	w cos2 	w

1

s �m2
Z

(3.235)

�.�.pC/fc.e/V �˛ � c.e/A �˛�5gu.p�//.u.q�/fc.F/V �˛ � c.F/A �˛�5g�.qC//;

where c.e=F/
V and c.e=F/

A are defined in (3.223a, b). [For electrons (e) and muons
.F D �/ they are the same. If F is a neutrino or a quark, the term 4 sin2 	w is
multiplied by the electric charge of these particles, see below.] Using the relation
m2

Z cos2 	w D m2
W and (3.187a), one can write the factor on the r.h.s. of (3.235) as

e2

s
�.s/ with �.s/ D Gm2

Z

8�˛
p
2

s

s �m2
Z

� 0:374 s

s �m2
Z

: (3.236)

Decomposing the V and A vertex factors in terms of �˛ multiplied by helicity
projection operators (3.32), that is

�˛ D �˛PC C �˛P�; �˛�5 D �˛PC � �˛P�;

and introducing the shorthand notation

A˛˙ WD �.pC/�˛P˙u.p�/;

B˛˙ WD u.q�/�˛P˙�.qC/;

the sum of the amplitudes (3.234) and (3.235) is

T� C TZ D 1

.2�/6
e2

s
f.AC � BC/Œ1C �.s/.c.e/V � c.e/A /.c

.F/
V � c.F/A /�

C .A� � B�/Œ1C �.s/.c.e/V C c.e/A /.c
.F/
V C c.F/A /�

C .AC � B�/Œ1C �.s/.c.e/V � c.e/A /.c
.F/
V C c.F/A /�

C .A� � BC/Œ1C �.s/.c.e/V C c.e/A /.c
.F/
V � c.F/A /�g: (3.237)
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The calculation of ˙spinsjT� C TZ j2 is greatly simplified by observing that an
amplitude that contains AC cannot interfere with an amplitude that contains A�.
Likewise BC cannot interfere with B�. Therefore, in the sum over the spins
all interference terms vanish. [Note, however, that this holds only in the limit
me D mF D 0. See exercise 3.12]. Furthermore, it is easy to see [from the explicit
expression (3.239a) below] that

X
j.AC � BC/j2 D

X
j.A� � B�/j2; (3.238a)

X
j.AC � B�/j2 D

X
j.A� � BC/j2: (3.238b)

Finally, as the amplitude .AC � BC/ corresponds to the diagram in Fig. 3.9a the
amplitude .AC � B�/ to that in Fig. 3.9b, the expression (3.238b) is obtained from
(3.238a) by the transformation t $ u. Therefore, we only need to calculate the term
(3.238a). Neglecting the masses we have

X
j.AC �BC/ j2 D 1

16
tr f�˛.1C �5/�p��ˇ.1C �5/�pCg

� trf�˛.1C �5/�qC�ˇ.1C �5/�q�g

D 1

4
tr f.1� �5/�˛�p��ˇ�pCgtrf.1� �5/�˛�qC�ˇ�q�g

D 4fp˛�pˇC � .p�pC/g˛ˇ C p˛Cpˇ� � i"˛�ˇ�p��pC�g
� fqC˛q�ˇ � .qCq�/g˛ˇ C q�˛qCˇ � i"˛�ˇ�q�Cq��g
D 16.pCq�/.p�qC/ D 4u2:

(3.239a)

By the t � u symmetry noted above we conclude

X
j.AC � B�/j2 D 4t2: (3.239b)

With the results (3.239) and keeping in mind the remarks made above, we obtain

.2�/12
X
jT� C TZj2 D 8e4

s
fu2Œ1C 2�.c.e/V c

.F/
V C c.e/A c

.F/
A

C �2..c.e/V c
.F/
V C c.e/A c

.F/
A /2 C .c.e/V c

.F/
A C c.e/A c

.F/
V /2/�

C t2Œ1C 2�.c.e/V c
.F/
V � c.e/A cF

A/

C �2..c.e/V c
.F/
V � c.e/A c

.F/
A /2 C .c.e/V c

.F/
A � c.e/A c

.F/
V /2�g:

Finally, inserting (3.232) and replacing e4 by .4�˛/2, the differential cross section
(3.233) is
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d�

d˝
 D
˛2

4s
f.1C cos2 	�/Œ.1C �.s/c.e/V c

.F/
V /2

C �2.s/.c.e/2V c
.F/2
A C c.e/2A c

.F/2

V C c.e/2A c
.F//2
A /�

C 4�.s/c.e/A c
.F/
A .1C 2�.s/c.e/V c

.F/
V / cos 	�g: (3.240)

The first term in the curly brackets of (3.240) is symmetric about the angle 90ı,
the second is not. The asymmetric term is present only if there is both a VV and
an AA interaction in the sum of the diagrams in Fig. 3.8. The forward–backward
asymmetry in the cross section

A WD
�

d�

d˝
 .0/�
d�

d˝
 .�/
���

d�

d˝
 .0/C
d�

d˝
 .�/
�

(3.241)

is found to be

A D 2�.s/c.e/A c
.F/
A

1C 2�.s/c.e/V c
.F/
V

.1C �.s/c.e/V c
.F/
V /2 C �2.s/.c.e/2V c

.F/2
A C c.e/2A c

.F/2
V C c.e/2A c

.F/2
A /

(3.242)
with �.s/ as defined in (3.236).

Let us now estimate the magnitude of the asymmetry as it is predicted by the
GSW model. With sin2 	w D 0:232 and mZ as given in (3.90a) we have

c2V � 0:0052 cA D 1
�.s/ � 0:374 s

s �m2
Z

At an energy of 18 GeV per beam,
p
s D 36GeV, the propogator effect is

about 17%,
1

1 � s=m2
Z

� 1:17 (3.243)

and � D �0:069. At this energy both �2c.e/A c
.�/
A and �2c.e/V c

.�/
V are very small so that

the asymmetry is
A.
p
s D 36 GeV/ � 2� D �13:8%:

Historically, long before the Z0 was discovered and later on produced in large
numbers, this forward–backward asymmetry was measured at DESY (Hamburg) at
this energy. This was an important test of the Z0–� interference in eCe� ! �C��,
confirming the sign and magnitude predicted by the minimal standard model. At the
same time this was a first announcement of the Z0 resonance and, one could say,
the experiment had “climbed” the first seventeen percent of the resonance peak. The
example also shows that at an energy of 36 GeV there is already a marked difference
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between the prediction of the standard model and the result one would have obtained
from the effective contact interaction .mZ !1/, see (3.243).

There are additional contributions to the asymmetry (3.241) which stem from
digrams with two virtual photons and from radiative corrections. These were cal-
culated and were taken into account in a quantitative comparison with experiment.
Finally, as the energy in the center-of-mass system approachesmZ one can no longer
neglect the finite width of the Z0 resonance. We return to this topic in the next
section.

3.7 Electroweak Physics at the Z Pole

Experimental tests of electroweak interactions changed qualitatively and quantita-
tively when the first large electron-positron colliders came into operation: The Large
Electron Positron collider (LEP) at CERN which was operated from 1989 until
2000, and the Stanford Linear Collider (SLC) which came into operation in 1989,
too. The energy in the center-of-mass system at these colliders was large enough
to allow for production of large numbers of Z0 bosons whose creation and whose
decays were studied in a number of highly sophisticated detectors. In fact, this was
an era of precision measurements at and around the Z0 pole in processes such as
eCe� ! FF with F a lepton or quark.

3.7.1 Cross Sections Near the Z0 Resonance

Let us consider the total cross section for the production of a fermion–antifermion
pair FF in eCe� collisions. Although radiation effects in the initial state and radiative
corrections to the production amplitude must be taken into account in a quantitative
analysis of the experiments, it is instructive to calculate the process in the Born
approximation, where it is given by the one-photon diagram, the one-Z0 diagram,
sketched in Fig. 3.8 above, and their interference term. Let us choose kinematic
variables as in Sect. 3.6.3, i.e. the four-momenta of the electron and the positron
of the initial state are denoted by p� and pC, the four-momenta of the outgoing
fermion F and its antiparticle F are denoted by q� and qC, respectively. For the
calculation of the total cross section and the forward–backward asymmetry we can
make use of our previous result (3.240) for the differential cross section in the
centre-of-mass system. The only modification we have to make is the following:
the discussion of Sect. 3.6.3 concerned an energy regime well below the mass of the
Z0 where the finite width of this resonance �Z � 2:5GeV could be neglected.
Indeed, for energies well below the Z0 resonance, the denominator of the Z0

propagator is dominated by .s � m2
Z/

2 � �Z. In the immediate neighbourhood
of the resonance position s D m2

Z, this approximation is not admissible. We shall
argue that this important effect is taken into account by the following replacement
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in the denominator of (3.236)

.s �m2
Z/! .s �m2

Z/C imZ�Z: (3.244)

The argument goes as follows: s is the square of the energy in the center-of-mass
system. Write m for the mass of the resonance, � for its width. In the vicinity of
the resonance we may write s–m2 D .E C m/.E � m/ � 2m.E � E0/ with
E0 � m and E � E0 D E �m the kinetic energy of the resonance. A resonance is
an energy distribution (or “energy packet”) which is centered at E D E0 and which
is described by a probability amplitude of the form

� =2

E � E0 C i� =2
dE:

The time dependence of this amplitude is given by

Z C1
�1

dE
e�i.E�E0/t

E � .E0 � i� =2/
D 2�ie�t� =2e�iE0t :

Therefore, the probability of finding the energy packet, in the center-of-mass system
and at its central position, decreases exponentially like e�� t . Thus, the resonance
behaves like an unstable state whose lifetime is the inverse of the width, � D 1=� .
This is the essence of what is called a Breit–Wigner description of an unstable
particle. (According to G. Breit and E. Wigner who developed the scattering theory
including resonances. The reader is invited to consult a treatise on collision theory
if she or he is not familiar with this topic.)

Thus, in the neighbourhood of the Z0 pole the function �.s/ of (3.236) is
replaced by

�.s/ D Gm2
Z

8�˛
p
2

s

.s �m2
Z/C imZ�Z

: (3.245)

Finally, going through the formulae (3.237–3.239) once more, it is clear that in the
result (3.240) �2 is replaced by j�j2, and the linear terms obtain the factor Re.�/
instead of �.

We return to the calculation of the total cross section �
�
eCe� ! FF

�
which we

write as the sum of the cross section due to the one-photon diagram, the Z0 diagram,
and the interference term,

�F D �.�/F C �.Z/F C �.int/
F : (3.246)

The first of these, �.�/F , is obtained from the differential cross section (3.240) by
dropping all terms in �, and by integrating over˝�. If the fermions in the final state
are quarks, the cross section must be multiplied withQ2.F/; Q.F/ being the electric
charge of the produced species of quark in units of the elementary charge, and by
the number of coloursNc D 3. The integration over˝� gives
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Z
d˝�.1C cos2 	�/ D 2� 8

3
;

so that the total photonic cross section is found to be

�
.�/
F D 4�˛2

3s
Q2.F/Nc: (3.247)

[For F a charged lepton set Nc D 1, Q2 D 1. For neutrinos (3.247) vanishes.]
The cross section which is due to the Z0 diagram of Fig. 3.8 is obtained from

(3.240) by collecting all terms proportional to �2, or more precisely j�j2:

d�
.Z/
F

d˝�
D ˛2j�j2

4s

n
.1C cos2 	�/.c.e/2V C c.e/2A /.c

.F/2
V C c.F/2A /

C 8c.e/V c
.F/
V c

.e/
A c

.F/
A cos 	�

o
:

Upon integration over the polar angles the first term gives 16�=3, as above, while
the second term gives zero. Thus we obtain

�
.Z/
F D G2m2

Z

96�
.c
.e/2
V C c.e/2A /.c

.F/2
V C c.F/2A /

sm2
Z

.s �m2
Z/
2 Cm2

Z�
2

Z

: (3.248)

Before we turn to the interference term let us rewrite the result (3.248) in terms of
partial decay widths of the Z0 into a given pair of a fermion and its antiparticle.
Thus, we calculate the process

Z0 ! FF:

From (3.183) the decay amplitude is given by

T .Z0! FF/
1

.2�/9=2
�"�.k; �/u.q�/.c.F/V �� � c.F/A ���5/�.qC/;

where k is the four-momentum of the decaying Z0; k D qCCq�; � its polarization,

� D e

4 sin 	w cos 	w
D g

4 cos 	w
; from which �2 D Gm2

Z

2
p
2
;

and the coupling constants are given by the values in the standard model8

8In the literature on electroweak physics a different definition of coupling constants is often
used, viz.

g
.F/
V D �12 C 2Q.F/ sin2 	w g

.F/
A D �12 :
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c
.F/
V D 1 � 4Q.F/ sin2 	w; c

.F/
A D 1: (3.249)

Averaging over the three polarization states of the Z0 gives 1/3 of the sum
˙�"

�.k; �/"�.k; �/ D .k�kv=m2
Z � g�v/. The decay width is given by equation

(B.7), with

1

3

X
�

X
sCs�

jT j2 D �2

3.2�/9

X
�

X
sCs�

�
k�k�

m2
Z

� g��
�

trf.c.F/V �� � c.F/A ���5/.�qC CmF/.c
.F/
V �� � c.F/A ���5/.�q� �mF/g:

If F is a neutrino, the mass mF is zero. In all other cases we may safely neglect
this mass as compared to mZ. Evaluating the trace in this limit, the latter expression
is found to be

4�2.c
.F/2
V C c.F/2A /

3.2�/9

�
2

m2
Z

fk � qCgfk � q�g C fqC � q�/
�
:

Inserting the kinematics of the Z0 rest frame, viz.

k D .mZ; 0/; q˙ D .E;˙q/; with E � mZ

2
� jqj;

and inserting the result into (B.7), we obtain finally

�F � � .Z0 ! FF/ � Gm3
Z

24�
p
2
.c
.F/2
V C c.F/2A /: (3.250)

Inserting the result (3.250) into (3.248) the cross section due to the Z0 diagram can
be expressed in terms of the partial decay widths �e into eC e� and �F into FF as
follows

�
.Z/
F D 12�

m2
Z

�e�F

� 2
Z

s� 2
Z

.s �m2
Z/
2 Cm2

Z�
2

Z

: (3.251)

Finally, the interference term is obtained from the linear term in � in the first
bracket on the right-hand side of (3.240), by integration over ˝�. With Q.F/
denoting the charge of the fermion F, Nc the colour factor as above, we find

�
.int/
F D �NcQ.F/

˛G

3
p
2
c
.e/
V c

.F/
V

m2
Z.s �m2

Z/

.s �m2
Z/
2 Cm2

Z�
2

Z

: (3.252)

It is, of course, no problem to convert our formulae to this convention wherever they depend
explicitly on the couplings.
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The interference term (3.252) is found to be small compared to the cross sections
(3.247) and (3.251), mainly due to the fact that the coefficients c.e/V and c.F/V of
(3.249) are small. Obviously, for neutrinos which are electrically neutral, only the
cross section �.Z/FDv, (3.251), is different from zero.

3.7.2 Forward-Backward Asymmetries and Polarizations

As we saw in the preceding section the differential cross section for eC e� ! FF
due to one-photon and one-Z0 exchange is given by an expression of the form

d�F

d˝�
D ˛2

2s
fA0.1C cos2 	�/C A1 cos 	�g (3.253)

with

A0 D 1C 2c.e/V c
.F/
V Re �.s/C .c.e/2V C c.e/2A /.c

.F/2
V C c.F/2A /j�.s/j2; (3.254a)

A1 D 4c.e/A c
.F/
A ŒRe �.s/C 2c.e/V c

.F/
V j�.s/j2�: (3.254b)

Here, the function �.s/ is given by (3.245) and the coupling constants by (3.249).
In practice, the angular distribution is measured for leptons in the final state, F D e,
�, or � , for which c.F/V D 1 � 4 sin2 	w; c

.F/
A D 1, and, therefore, the distinction of

the coupling constants in (3.254) is unnecessary.
In the neighbourhood of the Z-pole it is not exactly the forward–backward

asymmetry (3.241) that is being measured. Rather, one measures the asymmetry
between the integral over all particles scattered in the forward hemisphere .0 �
	� � �=2/ and that over all particles scattered in the backward hemisphere
.�=2 � 	� � �/. This means that one compares the piecewise integrated cross
sections

�
.f/
F D 2�

Z 1

0

d�F

d˝�
d.cos 	�/; and �.b/F D 2�

Z 0

�1
d�F

d˝�
d.cos 	�/:

Using (3.253) this forward–backward asymmetry is given by

Afb D �
.f/
F � �.b/F

�
.f/
F C �.b/F

D 3A1

8A0
: (3.255)

It is interesting to evaluate the result (3.255) at the resonance and away from the
resonance, and to compare the two situations. Right at the Z pole, s D m2

Z, �.s/

is pure imaginary, cf. (3.245). The total cross section is dominated by �.Z/F and the
third term on the right-hand side of (3.254a) is much larger than 1. Likewise, in
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the neighbourhood of the Z pole, the quadratic term in (3.254b) dominates over the
one proportional to Re �.s/. Hence, with c.F/V=A D c

.e/
V=A, the asymmetry (3.255) is

approximately

Afb.s D m2
Z/ � 3

c
.e/
V c

.e/
A c

.F/
V c

.F/
A

.c
.e/2
V C c.e/2A /.c

.F/2
V C c.F/2A /

D 3

4
AeAF: (3.256)

In the second part of this equation we have introduced the definitions

Ae WD �2c.e/V c
.e/
A

c
.e/2
V C c.e/2A

; AF WD �2c.F/V c
.F/
A

c
.F/2
V C c.F/2A

: (3.257)

These definitions are convenient and appropriate because Ae and AF, up to a sign,
describe the longitudinal polarization of the electron and the lepton F, respectively,
as they are produced by the weak neutral current.

Away from the Z pole we have js�m2
Zj � mZ�Z and �.s/ is approximately real.

The terms in j�.s/j2 can be neglected as compared to the linear terms and, therefore,
the asymmetry (3.255) becomes

Afb.�Z � 0/ � 3c
.e/
A c

.F/
A Re �.s/

2.1C 2c.e/2V Re �.s//
; (3.258)

with

Re �.s/ � Gm2
Zs

8�˛
p
2.s �m2

Z/
:

It is not difficult to calculate the polarization of the fermion in the final state, as
well as further polarization dependent observables. For this purpose let us return
to the expression (3.237) for the scattering amplitude: The amplitude contains
contractions of the covariants

A˛˙ D �.e/.pC/�˛P˙u.e/.p�/; and B˛˙ D u.F /.q�/�˛P˙�.F/.qC/

The operators P˙ project, respectively, onto positive and negative chirality states of
the electron e� and of the produced fermion F�. Let us denote these chiralities by

h.e�/ D �; h.F�/ D �; with �;�DC or � :

In (3.237) the product .A� � B�/; � D C or �; � D C or �, is multiplied by the
amplitude

S�� D 1C �.s/.c.e/V � �c.e/A /.c
.F/
V � �c.F/A /: (3.259)

From (3.238, 3.239) we know that j.A� � B�/j2 is proportional to u2 � s2.1 C
cos 	�/2=4 if � D � D ˙1, and is proportional to t2 � s2.1 � cos 	�/2=4 if
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� D �� . Thus, if we calculate the differential cross section for an incoming electron
with chirality �, and an outgoing F� with chirality � , the differential cross section
is obtained from the expressions

.2�/12jT� C TZj2 D 8e4

2s2
u2jS˙˙j2; or

8e4

2s2
t2jS˙�j2;

It is given by �
d�

d˝�

�
��

D ˛2

4s
.1C �� cos 	�/2jS�� j2: (3.260)

For example, if one averages over the chiralities in the initial state, the differential
cross section for producing a lepton F� with chirality � is obtained from the result
(3.260) as follows

�
d�

d˝�

�
�

D 1

4

X
�

�
d�

d˝�

�
��

D ˛2

16s
f.1C cos2 	�/.jS�� j2 C jS��� j2/

C 2 cos 	�.jS�� j2 � jS��� j2/g: (3.261)

The polarization of the lepton F� follows from this expression, viz.

APol.	
�/ D .d�=d˝�/C � .d�=d˝�/�

.d�=d˝�/C C .d�=d˝�/�
� a.1C cos2 	�/C b cos 	�

c.1C cos2 	�/C d cos 	�
: (3.262)

In the neighbourhood of the Z pole the terms in j�.s/j2 dominate. Neglecting all
other contributions the real constants a; : : : ; d are seen to be given by

a D jSCCj2 C jS�Cj2 � jS��j2 � jSC�j2 D �8c.F/V c
.F/
A .c

.e/2
V C c.e/2A /j�.s/j2

b D 2.jSCCj2 � jS�Cj2 � jS��j2 C jSC�j2/ D �8c.e/V c
.e/
A .c

.F/2
V C c.F/2A /j�.s/j2

c D jSCCj2 C jS�Cj2 C jS��j2 C jSC�j2 D 4.c.e/2V C c.e/2A /.c
.F/2
V C c.F/2A /j�.s/j2

d D 2.jSCCj2 � jS�Cj2 C jS��j2 � jSC�j2/ D 16c.e/V c
.e/
A c

.F/
V c

.F/
A j�.s/j2:

Finally, introducing the definitions (3.257) we obtain the simple result

APol.	
�/ D AF.1C cos2 	�/C 2Ae cos 	�

.1C cos2 	�/C 2AeAF cos 	�
: (3.263)

In practice, this quantity can and has been measured for �-leptons, F D � , in the
final state. Two alternative observables can be derived from this result:
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(i) The average polarization is obtained by integrating (3.261) over˝�,

�� D
Z

d˝�
�

d�

d˝�

�
�

;

and by calculating the ratio .�C � ��/=.�C C ��/. One finds

APol D AF � �Pl.F/; (3.264)

with Pl.F/ the longitudinal polarization of the lepton F.
(ii) The asymmetry between the cross sections for � D C and � D �, integrated

piecewise over the forward hemisphere and over the backward hemisphere, is found
to be

s 10 d.cos 	�/.d�C � d��/=d˝� � s 0�1 d.cos 	�/.d�C � d��/=d˝�

s 1�1 d.cos 	�/.d�C C d��/=d˝�
D 3

4
Ae:

(3.265)
The examples we have chosen show that there is a set of observables which are

sensitive to the detailed structure of the leptonic weak neutral current.
Radiative corrections, i.e. contributions of higher order than that of the tree-level

diagrams, are important and must be added to these results before a quantitative
comparison with the data is possible. One shows, however, that to a good approx-
imation these corrections are taken care of by replacing the coupling constants by
effective values without altering the form of the formulae obtained at tree level.
With this caveat, the experiments which determined these quantities as well as
further observables that follow from our formulae gave perfect agreement with the
predictions that follow from the standard model with the expressions (3.249) for the
coupling constants.

3.7.3 Precision Tests of Electroweak Interactions

Experiments at the large colliders near the Z pole have yielded impressive progress
in the task of testing the standard model of electroweak interactions. In fact, one of
the primary aims of LEP and SLC, which at the time were dubbed “Z0 factories”,
was to test the gauge theory describing electroweak interactions as a renormalizable
quantum field theory, i.e. to test it at the level of the radiative corrections that it pre-
dicts. In this section we illustrate the potential of these experiments by means of two
characteristic examples: (i) determination of the Lorentz structure of the leptonic
weak neutral current, i.e. the test of the formulae (3.249) for the vector and axial
vector couplings; (ii) counting of lepton generations from the knowledge of the total
width of the Z0, and its partial decay widths into charged leptons and into hadrons.

(i) In Sect. 3.6.2. we calculated the cross sections for the neutrino scattering
processes (3.218). As illustrated by Fig. 3.7, the simultaneous analysis of these
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Fig. 3.10 Determination of effective coupling constants from elastic neutrino reactions, including
experimental error bands

cross sections allows one to determine the couplings (3.249), at least in principle.9

Detecting neutrinos is much more difficult than detecting charged leptons or
hadrons. Therefore, the results are of limited accuracy regarding the determination
of cV and cA. Figure 3.10 shows the best result that was obtained in this way from
vee; vee; v�e, and v�e elastic scattering. Figure 3.11 shows the combined results for
leptons, as obtained by experiments at LEP. Here the leptonic branching ratios Rl ,
the forward–backward asymmetries (3.255), the average � polarization (3.264), and
its forward-backward asymmetry (3.265) were analyzed in terms of the couplings
(3.249). Note the different scales in Figs. 3.10 and 3.11. The improvement in
accuracy is indeed very impressive.

(ii) One of the most spectacular results of experiments at the Z pole was the
determination of the number of leptonic generations. The analysis goes as follows.
Suppose one has measured the total width �Z, the cross section into hadrons at the
pole position, as obtained from (3.251), viz.

9The remaining ambiguity between the solution .cV 	 0; cA 	 1/ and .cV 	 1; cA 	 0/ is
resolved in favour of the former if one adds the information obtained from the forward–backward
asymmetry in the process eCe�! �C��, cf. Sect. 3.6.3.
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Fig. 3.11 Determination of cA and cv from eCe� ! FCF� at the Z pole. Note the dramatic
improvement in precision over neutrino reactions (Fig. 3.10)

�0hadron.s D m2
Z/ D

12��e�hadrons

m2
Z�

2
Z

;

and the branching ratio Rl D �hadrons=�l of the decay width into hadrons and the
decay width into one species of charged lepton. These parameters may be replaced
by the equivalent set (�invisible; �hadrons; �l ) where �invisible is the decay width into
unseen, invisible, final states (i.e. into neutrinos),

�invisible WD �Z � �hadrons � �l : (3.266)

The invisible part of the Z0 width is due to neutrinos which remained undetected. Let
nv denote the number of (massless or light) neutrinos, �v the decay width (3.250)
into a neutrino–antineutrino pair. Then �invisible D nv�v. From (3.249) we know the
ratio of the partial widths into a charged lepton pair FC F �, and into a neutrino-
antineutrino pair as predicted by the standard model,

�
�l

�v

�
St:M:
D 1

2
Œ1C .1 � 4 sin2 	w/

2� � 0:5026;

where we have inserted the value sin2 	w D 0:2319. Inserting the measured values

�invisible D 499:8MeV; �l D 83:96MeV;
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as well as the ratio above, one obtains

nv D �invisible

�l

�
�l

�v

�
St:M:
D 2:99: (3.267)

Thus, the number of lepton generations is found to be 3 (the error bar on the result
(3.267) is less than 0.02).10

The simplified analysis given here is based on the assumption that the leptonic
couplings are independent of the lepton family (lepton universality). However,
the data have also been analysed without this assumption. The result was that
universality is well confirmed.

In practice, the following set of primary parameters is used for a combined fit of
the data around the Z pole

mZ; �Z; �0hadron; Rl ; Afb:

It turns out that this choice of parameters is optimal because they form the least
correlated set. This has the advantage that data from different experiments can be
combined into a general fit to the standard model including radiative corrections.

Finally, we note that experiments with Z0 bosons have many more direct and
indirect results. For instance, one determines partial widths for Z0 decaying into
bb and cc pairs. From these one obtains indirect information on the mass of the
t-quark which is surprisingly accurate and, luckily, is found to be in agreement
with the direct determination. Indeed, comparing all data for the Z0 with the full
standard model allows one to conclude that the mass of the t-quark is about 176 GeV,
with an error bar of about 25 GeV. This is in excellent agreement with the direct
determination of this mass which gavemt D 172:0˙ 1:2GeV.
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Exercises

3.1. A quark and an antiquark of the same flavour form a bound state .qq/Ll;s with
relative orbital angular momentum l and total spin S , coupled to angular
momentum J . Show that this is an eigenstate of P and of C and give
the corresponding eigenvalues. Apply the results to �0; �; �0; !; 
, and a02
mesons. What is the wave function of ! if 
 contains only strange quarks?
Hint: .j1m1j2m2jJM/ D .�/j1Cj2�J .j2m2j1m1jJM/.

3.2. A meson is said to have natural parity if P D .�/J . Show that in this case
the bound states of exercise 3.1 necessarily have P D C .

3.3. Show that the matrices exp fiH g where H D ˙3
iD1˛i�.i/ and ˛i real are

unitary and have determinant 1. Hint: First diagonalize the matrix H .
3.4. Show that in a local gauge theory built on the Lie algebra of G D SU.P/ �

SU.Q/ there are two constants eP and eQ which can be chosen independently.
3.5. From (3.313) it is clear that A˛ can be “gauged to zero”, i.e. be transformed

to A0̨ � 0, if and only if there exists a g.x/ for which

�.@˛g�1.x//g.x/ D A˛.x/:

This is a differential equation for g.x/ with a given inhomogeneity A˛.x/.
A condition of integrability for this equation is .@˛@ˇ � @ˇ@˛/g�1.x/ D 0.
Work this out and show that A0̨ � 0 can be obtained if and only if the field
tensor F ˛ˇ vanishes identically. What is the analogy to electrodynamics?

3.6. Work out the globally symmetric Lagrangian (3.125) as well as the locally
invariant version (3.128) for the case G D SO.3/ and with real boson and
fermion multiplets.

3.7. Derive the matrix (3.152) that describes state mixing of the quarks d,
s, b. Hints: The matrix V can be written as a product of three unitary
matrices, V1.2/V2.1/V1.3/, where Vi.k/ � Vi . k; 	k; 
k/ leaves invariant
the component i . Some of the resulting phases can be absorbed in the fields.
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3.8. Write out explicitly the generalized kinetic Lagrangian for the gauge boson
fields in the GSW theory. In particular, isolate the couplings of W˙ to the
photon field and compare to what one would have obtained from a Klein–
Gordon equation for the W-field supplemented by minimal substitution.

3.9. Starting from (3.172, 3.173) and the assignment y D �2t3 for the neutral
Higgs field, construct the mass matrix of the vector bosons in the basis of the
fields A.�/˛ . Diagonalize this matrix.

3.10. Consider neutrino-electron scattering as in Sect. 3.6.2. In the case dealt with
in (3.230) calculate the longitudinal polarization of the outgoing neutrino.

3.11. Suppose you had data on .vee/ scattering (integrated elastic cross section).
Analyze the cross section in the context (3.227, 3.228).

3.12. Consider the cross section

d�

d˝�
.eCe� ! �C��/

form� ¤ 0:BC and B� can now interfere. Calculate˙.ACB�/.ACB�/� and
the cross section noting that in (3.232) t and u are replaced by .t � m2

�/ and
.u�m2

�/, respectively.
3.13. Suppose the Z0 had only vector couplings to electrons and only axial vector

couplings to muons. What asymmetry would one predict?



Chapter 4
Beyond the Minimal Standard Model

The GSW theory is a great step forward in our understanding of electroweak inter-
actions because it allows the well-known extremely successful theory of quantized
electrodynamics and the theory of the weak CC and NC interactions to be cast into
one unified, renormalizable local gauge theory. Renormalizability, in particular, is
a very desirable property of the theory because it makes covariant perturbation
theory a reasonable and well-defined approximation method for calculating physical
quantities beyond the lowest order diagrams. Nevertheless, this model, very likely,
is not the corner stone of a final theory of weak and electromagnetic interactions. It
contains very many parameters which are not predicted and whose origin remains
unclear. The most prominent and specific properties of the weak interactions are
built into the model (see e.g. the discussion in Sects. 3.4.1 a,b) and are not predicted.
One of these is parity violation: The fact that QED conserves parity whereas (bare)
CC interactions as well as neutrino induced NC interactions break parity maximally,
is introduced into the theory by hand. There is not even a hint at an answer to the
question of why right-handed neutrino states decouple from the physical world.
Furthermore, the accuracy to which some of the empirical information on weak
interactions is known, is limited, and there is indeed room for deviations from this
minimal picture.

4.1 Leptonic Charged and Neutral Current Interactions

Encouraged by the success of the basic concepts of gauge theories, many authors
have proposed enlarged unified models of the elementary interactions which contain
the GSW model as a limiting case but exhibit specific deviations from its predic-
tions. While some of their features, such as the existence of further massive weak
gauge bosons, can be tested through direct search at very high energy accelerators,
others can be established (or disproved) by experiments of high precision at low
and intermediate energies. Without going into these generalized models, we provide
here the general frame of testing for specific deviations from the simple V–A picture

F. Scheck, Electroweak and Strong Interactions, Graduate Texts in Physics,
DOI 10.1007/978-3-642-20241-4

293
4, © Springer-Verlag Berlin Heidelberg 2012
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of CC interactions and the minimal neutral interactions of the GSW model. We
give some typical examples referring to muon decay and NC interactions in atomic
systems.

4.1.1 Effective SPVAT Interactions

As we saw earlier, weak interactions have very short ranges, of the order of 10�16cm.
For the application to processes at low and intermediate energies this means that the
interaction effectively acts like a contact interaction that connects four fermion fields
at the same point x in Minkowski space. In Sect. 3.2.2 we discussed the example
of effective V and A interactions, cf. (3.64) and studied their behaviour under the
discrete symmetries P , C , and T , in some detail. In this section we extend these
considerations to the case of scalar, pseudoscalar and tensor interactions which are
the only other Lorentz structures that can be formed on the basis of spinor fields.

a) Scalars and pseudoscalars

In analogy to the definitions (3.59, 3.60) let us introduce the following covariants

s.xI i ! k/ D  .k/.x/  .i/.x/; (4.1a)

p.xI i ! k/ D  .k/.x/ �5 .i/.x/; (4.1b)

When written in terms of spinors of first and second kind, the operators (4.1) have
the structure

s

p

�
D .k/�a.x/
.i/a.x/˙ 
.k/�A.x/.i/A.x/: (4.2)

With the aid of (3.50) it is easy to show that s is a scalar under Lorentz
transformations,

s.xI i ! k/ �!
P
s.PxI i ! k/; (4.3a)

whilst p is a pseudoscalar,

p.xI i ! k/ �!
P
�p.PxI i ! k/: (4.3b)

The transformation of s and p under charge conjugation is derived in the same way
as for (3.55). One finds

s.xI i ! k/ �!
C
s.xI k ! i/; (4.4a)

p.xI i ! k/ �!
C
p.xI k ! i/: (4.4b)

The behaviour of s and p under time reversal is derived along the same lines as for
the case of vector and axial vector covariants, cf. Sect. 3.2.1. For example,
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.k/�a.x/
.i/a .x/ �!
T
©BD. O�0/Da.�0/aF 
.i/�F .T x/.k/B.T x/

D 
.i/�B.T x/.k/B.T x/;

so that

s.xI i ! k/ �!
T
s.T xI k ! i/; (4.5a)

p.xI i ! k/ �!
T
�p.T xI k ! i/: (4.5b)

The transformation properties (4.3–4.5) hold to within the phase factors discussed
in Sect. 3.2.1. We can now formulate the most general Lagrangian built from scalar
and pseudoscalar covariants, which is invariant under proper orthochronous Lorentz
transformations. Dropping the common argument x in the covariants it reads

�LSP D Gp
2
fs.i ! k/ŒCSs.n! m/C C 0Sp.n! m/�

C ŒC �S s.m! n/ � C �S p.m! n/�s.k ! i/ (4.6)

�p.i ! k/ŒCPp.n! m/C C 0ps.n! m/�

�ŒC �P p.m! n/ � C 0�P s.m! n/�p.k ! i/g

For the sake of convenience, we have taken out a factor G=
p
2 such as to have the

CS; : : :; C
0
P dimensionless and to make (4.6) directly comparable to LVA, (3.64). The

minus sign in front of C 0�S and of C 0�P is due to hermitean conjugation,

.# .k/�5 #
.i//� D #.i/�0�5�

0 # .k/ D �#.i/�5 #
.k/

whereas the minus sign of the pseudoscalar terms (third and fourth term on the
r.h.s) is a matter of convention: It is useful (but not generally adopted) to define
pseudoscalar invariants with an extra factor i,

#.k/.x/�P#
.i/.x/ with�P WD i�5: (4.7)

The advantage of this choice is evident in calculating traces because

�0�
�

P �
0 D �p

and one need not worry about extra signs. Since we shall use this convention in the
sequel but do not wish to redefine CP and C 0P then, we introduce an i2 already at this
point.
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It is easy to verify that the behaviour of LSP with respect to the discrete
symmetries P , C , and T , is precisely as indicated in (3.66–3.68). In particular,
LSP obeys the PCT-theorem in the same form as LVA, equation (3.70).

b) Tensors and pseudotensors

A third type of covariants that can be defined by forming bilinears of two fermion
fields are the following

t˛ˇ.xI i ! k/ WD #.k/.x/
1p
2
�˛ˇ#.i/.x/; (4.8a)

t 0˛ˇ.xI i ! k/ WD #.k/.x/
1p
2
�˛ˇ�5#

.i/.x/; (4.8b)

where �˛ˇ stands for an antisymmetric product of � -matrices which is generally
defined by

�˛ˇ WD i

2
.�˛�ˇ � �ˇ�˛/: (4.9)

[The extra factor 1=
p
2 in (4.8) is a matter of convention, see below].

The operator t˛ˇ transforms like a Lorentz tensor, t 0˛ˇ transforms like a Lorentz
pseudotensor, i.e. like a tensor times the determinant of the homogeneous Lorentz
transformation. This can be seen most easily if we write these operators in terms of
spinor fields 
 and . For this purpose we decompose them as follows

t˛ˇ D 1p
2
.f ˛ˇ C g˛ˇ/; t 0˛ˇ D 1p

2
.f ˛ˇ � g˛ˇ/;

with

f ˛ˇ W D .k/�a i

2
f.�˛/aB. O�˛/Bd � .�ˇ/aB. O�˛/Bd g
.i/d ; (4.10a)

g˛ˇ W D 
.k/�A i

2
f. O�˛/Ab.�ˇ/bD � . O�ˇ/Ab.�˛/bDg.i/D: (4.10b)

Let us calculate the divergence @ˇ of these latter quantities. Making use of the
relation (1.64) and noting that f ˛ˇ vanishes if ˛ D ˇ, one obtains

@ˇf
˛ˇ D i

2
.k/�f2�˛ O�ˇ � 2g˛ˇg@ˇ
.i/ � i

2
.@ˇ

�/f2�ˇ O�˛ � 2g˛ˇg
.i/:

This expression can be simplified by means of the Dirac equations (1.69), giving

@ˇf
˛ˇ D mi

.k/��˛.i/ Cmk

.k/� O�˛
.i/ � i.k/�

$
@
˛
.i/:
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In a similar fashion one shows

@ˇg
˛ˇ D mi


.k/� O�˛
.i/ Cmk
.k/��˛.i/ � i
.k/�

$
@
˛.i/:

From these equations we obtain

@ˇt
˛ˇ D 1p

2
.mk Cmi/f.k/��˛.i/ C 
.k/� O�˛
.i/g

� ip
2
f.k/� $@ ˛
.i/ C 
.k/� $@ ˛.i/g; (4.11a)

@ˇt
0˛ˇ D 1p

2
.mk �mi/f�.k/��.i/.i/ C 
.k/� O�˛
.i/g

� ip
2
f.k/� $@ ˛
.i/ � 
.k/� $@ ˛.i/g: (4.11b)

Looking back to at our discussion of vector and axial vector operators in Sect. 3.2.1
the behaviour of t˛ˇ and t 0˛ˇ under (proper and improper) Lorentz transformations
is now obvious

t˛ˇ.�x/ D �˛
��

ˇ
� t
�� .x/; (4.12a)

t 0˛ˇ.�x/ D .det�/�˛
��

ˇ
� t
0�� .x/: (4.12b)

The divergences (4.11) contain the vector and the axial-vector operators (3.59) and
(3.60), respectively. This fact may be utilized to derive the behaviour of t and t 0
under charge conjugation. With respect to C; �˛.xI i ! k/ is odd. Therefore, from
(4.11a), t˛ˇ is also odd under C . The axial vector a˛.xI i ! k/, which appears on
the r.h.s. of (4.11b), is even. However, C also interchanges i and k and yields an
extra minus sign from the antisymmetric factor in (4.11b). Thus t 0˛ˇ is odd, too, and
we have

t˛ˇ.xI i ! k/!
C
�t˛ˇ.xI k ! i/; (4.13a)

t 0˛ˇ.xI i ! k/!
C
�t 0˛ˇ.xI k ! i/: (4.13b)

The behaviour with respect to T , finally, is contained in (4.12).
A rather useful relation in calculating matrix elements of tensor and pseudotensor

covariants is the following

�˛ˇ�5 D � i

2
"˛ˇ�����; (4.14)

where "˛ˇ�� is the totally antisymmetric tensor in four dimensions, with "0123 D C1.
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As for the case of V, A and S, P covariants, the general Lagrangian which is
invariant under proper orthochronous Lorentz transformations has the form

�LT D Gp
2
ft˛ˇ.i ! k/ŒCT t˛ˇ.n! m/C C 0Tt 0̨ˇ.n! m/�

C ŒC �T t˛ˇ.m! n/ � C 0�T t 0̨ˇ.m! n/�t˛ˇ.k ! i/g: (4.15)

In writing the hermitean conjugate of the first term on the r.h.s. of (4.15) we have
made use of the equations

�0.�˛ˇ/��0 D �˛ˇ; �0.�˛ˇ�5/
��0 D ��˛ˇ�5:

Here too, one verifies that the behaviour of LT under the discrete symmetries is that
one of (3.66–3.68), and that LT obeys the PCT-theorem (3.70).

Remark: The relation (4.14) shows that the pseudotensor can be expressed in terms
of another tensor term. Indeed, �5 is i times the product of four distinct � -matrices
two of which must be identical with the ones appearing in �˛ˇ . Therefore, one may
wonder why we distinguish the pseudotensor from the tensor and, in particular, why
there are two different coupling constants CT and C 0T in the effective Lagrangian
(4.15), or (4.20) below, not one. An easy way to understand this point is to note that
if one talks about tensor terms only, barring the pseudotensors altogether, then there
are two independent, Lorentz-invariant ways of coupling two tensor terms, i.e.

t˛ˇg˛�gˇ� t
˛� and t˛ˇ"˛�ˇ� t��

One verifies, making use of relation (4.14), that the second term can be written
alternatively in terms of the contraction of a tensor and a pseudotensor t˛ˇt 0̨ˇ . In
practice, either representation is useful and both of them are being used in actual
calculations.

There is a close analogy to electrodynamics where F�vF
�v and F�veF �� D

F��"
����F�� are independent invariants constructed from the field strength tensor

F and its dual QF . Only the first of them appears in the Lagrangian (1.189) because
electromagnetic interactions conserve parity.

c) General four-fermion contact interaction

With the tools of Sects. 3.2.2, 4.1.1a,b at hand we can now formulate the general,
effective interaction Lagrangian connecting four fermion field operators #.f1/.x/

to #.f4/.x/ at the same point of space-time. For this purpose let us introduce the
following, somewhat symbolic, notation.

�S � 1; �P � i�5; (4.16)

�V � �˛; �A � �˛�5; (4.17)

�T � 1p
2
�˛ˇ; (4.18)
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with �˛ˇ as defined by (4.9) above. Note, in particular, the factor i in our definition
of �P. This operator, like all others in (4.16–4.18), has the property

�0.�i/
��0 D �i ; i D S;P;V;A;T; (4.19a)

which is particularly convenient in practical calculations. Besides these operators,
also the products of �i�5 will appear in the Lagrangian. The analogous relation of
conjugation for these products is easily derived from (4.19a), viz.

�0.�i�5/
��0 D .�0�5�0/.�0� �

i �
0/ D ��5�i :

Depending on whether �5 commutes or anticommutes with �i , this is equal to minus
or plus �i�5. Thus

�0.�i�5/
��0 D �i�5; for i D V;A; (4.19b)

�0.�k�5/
��0 D ��k�5; for k D S;P;T: (4.19c)

Denoting the field operators by the symbol of the particles that they describe, the
most general effective Lagrangian (which does not contain derivative couplings)
reads

�L D Gp
2

X
i

f.f1.x/�if2.x//ŒCi .f3.x/� if4.x//CC 0i .f3.x/� i�5f4.x//�Ch:c:g:
(4.20)

It is understood that the fields f1; : : : ; f4 are selected such that L is electrically
neutral and is a scalar with respect to all internal symmetries for which one wishes
to impose a conservation law.

The Lagrangian (4.20) contains ten complex quantities, two for each Lorentz
structure, i.e. twenty real constants. Only nineteen of these are physically relevant
because an unobservable common phase can always be factored out. If all of these
constants are different from zero then L neither conserves parity, nor charge
conjugation, nor time reversal symmetry. If one of these discrete symmetries is
conserved the number of coupling constants is reduced by a factor of two as can
be seen from (3.66–3.68). For instance, if we impose T -invariance, (3.68) shows
that all Ci and C 0i must be real. From the PCT-theorem (3.70) we then see that
either P and C are both violated, in which case at least some unprimed and some
primed coupling constants are different from zero, or both are conserved in which
case there can be either unprimed or primed couplings, but not both.

Finally, it is instructive to convince oneself that the tensor and the pseudotensor
(4.15) are indeed independent couplings, even though the pseudotensor does not
appear in the set (4.16–4.18).
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d) Fierz transformations

Of the Lorentz structures S,. . . ,T that we considered above, the tensor is somewhat
exotic but the scalar and pseudo-scalar are not. Indeed, if all fundamental inter-
actions (except gravitation) are mediated by particles with spin 1 there cannot be
an effective interaction of the type (4.15). The vector particles couple to V and A
currents. So where do S and P covariants come in?

In order to see this, let us return to the general contact interaction (4.20). Once
we have ascertained that the theory fulfills the proper conservation laws by suitably
combining the quantum numbers of particles f1 to f4, we can write the field
operators in the ordering

.f 1 � � �f4/.f 3 � � �f2/

as well, without changing any of the invariances of the Lagrangian. However, the
specific linear combination of covariants in (4.20) is not the same combination when
written in the reordered form.

Let us write the same Lagrangian (4.20) in a form where the field operators f2.x/
and f4.x/ are interchanged, viz.

�L D Gp
2

X
i

f.f1 �if4/ŒDi .f3 �
if2/CD0i .f3 � i�5f2/�C h:c:g: (4.21)

This reordering of operators (first studied by M. Fierz, 1936) maps the constants
fCi ; C 0i g onto the constants fDi;D

0
i g according to the linear substitutions

0
BBBBB@

DS

DP

DV

DA

DT

1
CCCCCA
D 1

4

0
BBBBB@

�1 1 �4 4 �6
1 �1 �4 4 6

�1 �1 2 2 0

1 1 2 2 0

�1 1 0 0 2

1
CCCCCA

0
BBBBB@

CS

CP

CV

CA

CT

1
CCCCCA
; (4.22)

0
BBBBB@

D0S
D0P
D0V
D0A
D0T

1
CCCCCA
D 1

4

0
BBBBB@

�1 1 4 �4 �6
1 �1 4 �4 6

1 1 2 2 0

�1 �1 2 2 0

�1 1 0 0 2

1
CCCCCA

0
BBBBB@

C 0S
C 0P
C 0V
C 0A
C 0T

1
CCCCCA
: (4.23)

[These transformations contain an extra minus sign due to the interchange of the
two anticommuting fermion fields f2 and f4]. In a short-hand notation we shall also
write these as

Di D
X
k

M ikCk; D0i D
X
k

F ikC
0
k: (4.24)
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The matricesM and F have a number of important properties:

(i) The Fierz transformation from (4.20) to (4.21), of course, is the same as from
(4.21) to (4.20). Therefore,M and F are each equal to their own inverse:

M2 D 1; F 2 D 1:

(ii) It is remarkable that there is no matrix element connecting V, A and T. Thus, if
there are only V and A couplings in the Lagrangian (4.20), i.e. Ci D 0, C 0i D 0
for i D S, P, T, then (4.21) contains VA as well as SP couplings but no tensor
couplings, viz.

DS D DP D �CV C CA;

DV D DA D 1

2
.CV C CA/;

D0S D D0P D C 0V � C 0A;

D0V D D0A D
1

2
.C 0V C C 0A/;

DT D D0T D 0

(4.25)

(iii) In particular, if in the representation (4.20) the interaction is of the form “V˙
A”, by which we mean

C0.f 1�
˛.1˙ �5/f2/.f 3�˛.1˙ �5/f4/; (4.26a)

then
CV D CA D C0; C 0V D C 0A D ˙C0;

and, from (4.25),

DS D DP D 0; D0S D D0P D 0; DT D D0T D 0;
DV D DA D C0; D0V D D0A D ˙C0: (4.26b)

Thus, the reordered Lagrangian (4.21) has the same form “V ˙ A” as the original
(4.20), “VC A” is mapped onto “VC A”, “V� A” onto “V� A”.

If, on the other hand, the original Lagrangian is

C0.f 1.1˙ �5/f2/.f 3.1˙ �5/f4/; (4.27a)

that is Cs D �Cp D C0; C 0S D �C 0P D ˙C0 (all others vanishing), then there are no
V and A couplings in the reordered form (4.21),DV D DA D D0V D D0A D 0 and

DS D �DP D DT D �1
2
C0; D0S D �D0P D D0T D �

1

2
C0: (4.27b)
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[Clearly, these results have to do with the specific helicity selection rules of the
covariants, cf. Sect. 3.1.2c.]

We see from these examples that if the interaction is of V and A type in one
ordering, it contains S, P, V and A in the other, but no T, cf. (4.25). Only if it is
precisely “V � A”, or “V C A”, are there no S and P terms in the reordered form,
cf. (4.26). Thus, in a theory where all interactions are mediated by spin-1 bosons,
the effective contact Lagrangian will not contain tensor couplings, no matter in
which order the interaction is written. However, if the theory also contains genuine
scalar and/or pseudo-scalar interactions then tensor couplings do occur in a Fierz
reordering of the interaction Lagrangian, cf. (4.27).

e) *Proof of Fierz reordering relations

This section contains the proof of equations (4.22, 4.23). As this is somewhat
technical the reader may wish to skip it in a first reading and go directly to the
next section. However, even in passing, it may be worth noting relations (4.30, 4.32,
4.36) which are invariant linear combinations with respect to reordering.

There is a useful relation for the direct product of two �-matrices (1.26)
contracted over their Lorentz indices, which one derives by verification, (cf.
exercise 1.8):

.�˛/aB.�˛/dE D �2"ad"BE: (4.28)

As this equation is antisymmetric in B andE, one deduces immediately the relation

.�˛/aB.�˛/dE C .�˛/aE.�˛/dB D 0: (4.28a)

It is easy to derive analogous relations for the matrices O�˛ by means of eq. (1.60).
In particular, the analogue of (4.28a) reads

. O�˛/Ab. O�˛/De C . O�˛/Ae. O�˛/Db D 0: (4.28b)

Using the hermiticity of �˛ , by which .�˛/dE D .� �̨/Ed; and multiplying (4.28) by
"DE"df we obtain, finally,

.�˛/aB. O�˛/Df D 2ıfa ıDB : (4.29)

It is convenient to write the covariants S,. . . ,T in terms of two-component spinors
and to combine them such as to project onto spinor fields of first and second kind.
Thus, from (4.2)

.s C p/ki D 2.k/�a
.i/a ;
.s � p/ki D 2
.k/�A.i/A;

where s and p are defined by (4.1) (p still without the factor i). Similarly, from
(3.51, 3.53) we have
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.�˛ C a˛/ki D 2
.k/�A. O�˛/Ab

.i/

b ;

.�˛ � a˛/ki D 2.k/�a.�˛/aB
.i/B:

Finally, from (4.8, 4.10), one obtains

.t˛ˇ C t 0˛ˇ/ki D ip
2
.k/

�af.�˛/aB. O�ˇ/Bd � .�ˇ/aB. O�˛/Bdg
.i/d ;

.t˛ˇ � t 0˛ˇ/ki D ip
2

.k/

�

Af. O�˛/Ab.�ˇ/bD � . O�ˇ/Ab.�˛/bDg.i/D:

It is not difficult to show that interference terms between f ˛ˇ , (4.10a) and g˛ˇ ,
(4.10b), vanish, i.e. .f ˛ˇ/ki.g˛ˇ/nm D 0. Therefore, one has the relation

.t 0˛ˇ/ki.t
0̨
ˇ/nm D .t˛ˇ/ki.t˛ˇ/nm;

and, for instance

.t˛ˇ ˙ t 0˛ˇ/.taˇ ˙ t 0̨ˇ/ D 2t˛ˇ.t˛ˇ ˙ t 0̨ˇ/:

Consider first the symmetric combination

1

4
.�˛ C a˛/12.�˛ C a˛/34 D . O�˛/Ab. O�˛/Df


.1/�
A 


.2/

b 

.3/�
D 


.4/

f :

Commuting the operators 2 and 4, and applying (4.28b), this is equal to

�. O�˛/Af . O�˛/Dbf�
.1/�A
.4/f 
.3/�D
.2/b g D
1

4
.�˛ C a˛/14.�˛ C a˛/32:

A similar relation holds for the combination “V–A”, so that we have

.�˛ ˙ a˛/12.�˛ ˙ a˛/34 D .�˛ ˙ a˛/14.�˛ ˙ a˛/32: (4.30)

The combinations (� ˙ a)(� � a) are reorderd by making use of relation (4.29)

1

4
.�˛ C a˛/12.�˛ � a˛/34 D . O�˛/Ab .�˛/dF 


.1/�
A


.2/

b
.3/�d .4/F

D �2ıbaıAF 
.1/�A.4/F .3/�d
.2/b D �
1

2
.s � p/14.s C p/32:

The same relation holds with the plus and minus signs exchanged on either side,
so that we obtain

.�˛ ˙ a˛/12.�˛ � a˛/34 D �2.s� p/14.s ˙ p/32: (4.31)
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From this relation follows, in particular,

2.s ˙ p/12.s� p/34 � .�˛ � a˛/12.�˛ ˙ a˛/34
D 2.s˙ p/14.s � p/32 � .�˛ � a˛/14.�˛ ˙ a˛/32: (4.32)

Before we go on, let us apply (4.30) and (4.31) to the transformation of the most
general VA Lagrangian from the ordering (12) (34) to the ordering (14)(32):

CV.�
˛/12.�˛/34 C C 0V.�˛/12.a˛/34 C C 0A.a˛/12.�˛/34 C CA.a

˛/12.a˛/34

D 1

4
f.CV C C 0V C C 0A C CA/.�

˛ C a˛/12.�˛ C a˛/34
C .CV � C 0V � C 0A C CA/.�

˛ � a˛/12.�˛ � a˛/34
C .CV � C 0V C C 0A � CA/.�

˛ C a˛/12.�˛ � a˛/34
C .CV C C 0V � C 0A � CA/.�

˛ � a˛/12.�˛ C a˛/34g;

The first two terms on the r.h.s., by (4.30) go over into the same forms in the
ordering (14)(32). The remaining two terms are transformed according to (4.31) and
give scalar and pseudoscalar couplings. Inserting (4.30, 4.31) and remembering that
pki D �i. Nfk�P fi /, the comparison with the general form in the ordering (14)(32)
yields precisely (4.25), thus establishing the third and fourth columns of (4.22, 4.23).

In order to obtain the remainder of these equations, we need the transformation
behaviour of S, P and T terms. Clearly (4.31) can also be read from right to left, with
4 and 2 interchanged. Therefore, in order to cope with the most general SP term, we
also need relations for .s ˙ p/12.s ˙ p/34. These are obtained as follows. Using
(1.64), one has

.�˛ O�ˇ/da f.�˛ O�ˇ/bc � .�ˇ O�˛/bcg D .�˛ O�ˇ/da f2g˛ˇıbc � 2.�ˇ O�˛/bcg:

The sums over the Lorentz indices ˛ and ˇ are performed by means of (4.29), giving
eventually

D 8ıda ıbc � 16ıbaıdc : (4.33)

Multiplying this equation by

.1/�a
.2/b 
.3/�c
.4/d

or by �.1/�
.4/.3/�
.2/, depending on which pair of indices must be contracted,
this yields a relation for .s C p/12.s C p/34 in terms of .s C p/14.s C p/32 and
t14.t C t 0/32. Clearly, an analogous identity holds if � and O� are interchanged in
(4.33). Thus we obtain the formulae

.s ˙ p/12.s ˙ p/34 D �1
2
.s ˙ p/14.s ˙ p/32 � 1

2
.t˛ˇ/14.t˛ˇ ˙ t 0̨ˇ/32: (4.34)
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As one easily verifies, (4.34) and (4.31) with (4  ! 2), establish the first and
second columns of (4.22) and (4.23). [Note also that relation (4.34) is identical with
(4.27b).]

Regarding the tensor covariants, we now derive two more relations which, when
combined with (4.34), yield the full transformation formula for T couplings. Let us
return to (4.33) to which we add the term 8 ıbaı

d
c ,

.�˛ O�ˇ/da f.�˛ O�ˇ/bc � .�ˇ O�˛/bcg C 8ıbaıdc : (4.35a)

The first term in this expression can be reordered by means of (4.28a) to
�.�˛ O�ˇ/ba.�˛ O�ˇ/dc . The second and third term cancel against each other, as one
verifies by means of (4.29). Therefore, the combination (4.35a) is equal to

� .�˛ O�ˇ/da f.�˛ O�ˇ/bc � .�ˇ O�˛/dc g � 8ıda ıbc : (4.35b)

Multiplying this identity with .1/�a
.2/b .3/�c

.4/

d (or the combination with 
.2/ and

.4/ interchanged), one obtains the following relation with the upper sign:

.t˛ˇ/12.t˛ˇ ˙ t 0̨ˇ/34 � .s ˙ p/12.s ˙ p/34
D .t˛ˇ/14.t˛ˇ ˙ t 0̨ˇ/32 � .s ˙ p/14.s ˙ p/32: (4.36)

The corresponding relation with the lower sign is derived in a similar way. Equations
(4.36) and (4.34) are combined to yield the relations

.t˛ˇ/12.t˛ˇ ˙ t 0̨ˇ/34 D
1

2
.t˛ˇ/14.t˛ˇ ˙ t 0̨ˇ/32 �

3

2
.s ˙ p/14.s ˙ p/32 (4.37)

from which one reads off the fifth columns of (4.22) and (4.23). This completes the
proof. Note the particular linear combinations (4.30, 4.32, 4.36) which are (the only)
invariants under Fierz reordering.

4.1.2 Precision Tests in Muon Decay

Besides the nuclear ˇ-transitions the ordinary, most frequent decay mode of ��
(or �C)

�� ! e��e�� .�C ! eC�e��/ (4.38)

provides a very precise source of information on CC weak interactions. It is a purely
leptonic process and, therefore, is particularly well suited for testing the standard
theory and for identifying specific deviations from the simple “V– A” picture.
Restricting the analysis to the electron (or positron) in the final state there are at
least nine observables which are measurable realistically and all of which carry
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some characteristic information on the basic interaction: The rate ��, or its inverse
the lifetime ��, three parameters (�; �; ı) determining shapes of spectra, two strength
parameters (�; � 0) characterizing spin-momentum correlations, and four parameters
(˛; ˇ; ˛0; ˇ0) determining the transverse polarization of the electron in the final
state. [The spectrum parameter � is linearly dependent on ˛ and ˇ]. The precise
definitions are given below.

This analysis disregards the neutrinos as these are not readily observable. There
is, however, some information on the character of the neutrinos in the decay
(4.38). If muonic lepton number, instead of being conserved additively, were
some kind of parity quantum number, i.e. if instead of ˙iL�.i/ the “parity”

˘i.�/L�.i/ were conserved, then a �C could decay following either of the two
branches

�C ! eC�e��; (4.39a)

�C ! eC�e��; (4.39b)

In the additive scheme, on the other hand, the mode (4.39b) is forbidden. An
experiment which was designed to identify the ve through inverse ˇ-decay, gave
the following result for the decay width (Willis et al., 1980):

� .�C ! eC�e��/

� .�C ! all/
D �0:001˙ 0:061 .90% C:L:/: (4.40)

This important result shows that the decay mode (4.39b) is absent, at the level of a
few percent, and that the additive mode of conservingL� is strongly supported (see
also exercise 4.2).

In this section we analyze the differential decay probability of polarized muons
in a rather general manner. By way of example and in order to demonstrate the
sensitivity of the observables to specific types of couplings we discuss the case
of S, P, V, and A interactions. This is not quite the most general one as it leaves
out possible T couplings. We choose this example because it illustrates well the
information content of muon decay while still being manageable as far as practical
calculations are concerned. [The general case is found in the literature, see e.g.
Scheck (1978).] We also discuss briefly the reaction v�e� ! ��ve, so-called
inverse muon decay, and show in which respect it yields information which is
complementary to the information from the decay.

a) Muon decay: kinematics

Let q be the momentum of the muon, p the momentum of the electron, k1 and k2
the momenta of the neutrinos, respectively, and let Q be the sum of k1 and k2:

q D p C k1 C k2 D p CQ;
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where

Q D k1 C k2 D q � p: (4.41)

From the general formulae of App. B the differential decay probability, when
expressed in the muon’s rest frame, is given by

d3�

d3p
D .2�/7

4m�E

Z
d3k1
2E1

Z
d3k2
2E2

ı.Q � k1 � k2/jT j2; (4.42)

where E is the energy of the electron in the final state. The physical domain
of E is

me � E � W;

with

W D 1

2m�

.m2
� Cm2

e/: (4.43)

The direction of p, the three-momentum of the electron is understood to be taken
with respect to the direction of the muon spin (see Fig. 4.1).

Obviously, the kinematics is symmetric in the momenta of the two neutrinos.
As we integrate over them, only those covariants in jT j2 will contribute which
are symmetric in k1 and k2. Antisymmetric combinations do not contribute.
Furthermore, the result of the integration in eq. (4.42) can only depend onQ. For S,
P, V, and A couplings the pertinent integrals are

Fig. 4.1 Definitions of
kinematic variables in muon
decay. n0 is the direction of
the muon’s spin expectation
value, n1 the direction of the
electron’s spin expectation
value. The insert shows the
decomposition of the electron
polarization along its
momentum (Pl ), transverse to
the momentum and in the
plane spanned by n0 and
p.PT1/, and normal to that
plane (PT 2)
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Z
d3k1
2k01

Z
d3k2
2k02

.k1 � k2/ı.Q � k1 � k2/ D �

4
Q2; (4.44a)

Z
d3k1
2k01

Z
d3k2
2k02

.k˛1 k
ˇ
2 � .k1 � k2/g˛ˇ C k˛2 kˇ1 /ı.Q � k1 � k2/

D �

6
.Q˛Qˇ �Q2g˛ˇ/: (4.44b)

(See exercise 4.3)
Let �� D P�n0 be the expectation value of the spin of the decaying muon, where

n0 is a unit vector and P� is the muon polarization. In the muon’s rest frame where
q D .m�I 0/; p D .EI p/ and where the covariant spin vector is s0 D .0I ��/,
we choose polar coordinates such that p defines the z-axis and that n0 lies in the
xz-plane, see Fig. 4.1. Let n1 be another unit vector with polar coordinates (
; ),
as shown in the figure. Below we derive the probability of finding the electron spin
pointing in the direction n1; this means that we must calculate the decay amplitude
for a polarized electron state whose covariant spin vector (1.146) is

s1 D
�
1

me
p � n1In1 C p � n1

me.E Cme/
p
�
:

In the muon’s rest frame, according to Fig. 4.1, we have (setting P� D 1)

n0 D .sin 	; 0; cos 	/; n1 D .sin 
 cos ; sin 
 sin ; cos
/;

.s0 � p/ D �jpj cos 	 ' �E cos 	;

me.s1 � q/ D m�jpj cos
 ' m�E cos
; (4.45)

me.s0 � s1/ D �E cos 	 cos
 �me sin 	 sin 
 cos ' �E cos 	 cos
:

The ' sign refers to the case where E is large compared to the rest mass of the
electron.

b) Muon decay: interaction, decay probability and observables

The general, effective interaction responsible for muon decay has the form given in
(4.20), namely,

H D �L D Gp
2

X
i

fe.x/ �i�e.x/ŒGi ��.x/ � i�.x/

CG0i ��.x/ � i�5�.x/�C h:c:g: (4.46)

For the sake of simplicity, we consider only S, P, V and A interactions, but no
tensors, and refer to Scheck (1978) for the complete case. Furthermore, on the basis
of our experience gained in Sect. 4.1.1 d, e we rewrite the interaction in a helicity or
chirality projection form (Mursula et al. 1985)
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H D Gp
2
fhLR.s C p/e�e .s C p/��� C hLL.s C p/.s � p/

C hRR.s � p/.s C p/C hRL.s � p/.s � p/
C gRR.�

˛ C a˛/e�e .�˛ C a˛/��� C gRL.�
˛ C a˛/.�˛ � a˛/

C gLR.�
˛ � a˛/.�˛ C a˛/C gLL.�

˛ � a˛/.�˛ � a˛/C h:c:g (4.46’)

(we have written the field symbols only once for each class of covariants). The
notation for the coupling constants refers to the handedness, R (right) or L (left),
of the charged leptons, in accord with the selection rules discussed in Sect. 3.1.2c.
Keeping in mind the definition of �P in (4.7) and of p in eq. (4.1b) it is easy to
express the hik in terms of the Gi and G0i and vice versa:

hLR

hRL

�
D 1

4
ŒGS �GP/˙ .G0S �G0P/�; (4.47a)

hLL

hRR

�
D 1

4
ŒGS CGP/� .G0S CG0P/�: (4.47b)

In a similar way, the gik are linear functions of GV; : : : ; G
0
A:

gRR

gLL

�
D 1

4
ŒGV CGA/˙ .G0V CG0A/�; (4.47c)

gRL

gLR

�
D 1

4
ŒGV �GA/� .G0V �G0A/�: (4.47d)

The “V � A” interaction corresponds to

gLL D 1; gRR D gRL D gLR D 0:
hLR D hLL D hRR D hRL D 0: (4.48)

In view of the fact that the neutrinos are not detected it is appropriate to apply a Fierz
transformation to (4.460) to the effect of grouping the (observable) charged leptons
in one covariant, and the two (unobserved) neutrinos in the other. In Sect. 4.1.1e we
have learnt how to do this. Using (4.30, 4.31, 4.34), we find at once

H D Gp
2
f�1
2
hLR.s C p/e�.s C p/���e � 2gLR.s C p/.s � p/

�2gRL.s � p/.s C p/� 1
2
hRL.s � p/.s � p/

CgRR.�
˛ C a˛/e�.�˛ C a˛/���e �

1

2
hRR.�

˛ C a˛/.�˛ � a˛/

�1
2
hLL.�

˛ � a˛/.�˛ C a˛/C gLL.�
˛ � a˛/.�˛ � a˛/

�1
2
hLR.t

˛ˇ/e�.t˛ˇ C t 0̨ˇ/���e �
1

2
hRLt

˛ˇ.t˛ˇ � t 0̨ˇ/C h:c:g: (4.49)
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The form (4.46) or (4.460) of the Lagrangian is usually referred to as the charge
changing form. The same Hamiltonian is said to be given in charge retention form
if it is written as done in (4.49).

The calculation of the amplitude and of jT j2 is straightforward but rather lengthy.
It is simplified somewhat by the observation that due to the symmetric integration
over the neutrino momenta, all terms which are antisymmetric in k1 and k2 can be
skipped. One finds the following result for the decay of a negative muon:

d3�

d3p

��
�G2

8m�E.2�/5

�
D aQ2Œ.pq/�mem�.s0s1/�

C˛Q2Œmem� C .s1q/.s0p/ � .pq/.s0s1/� � a0Q2Œm�.s0p/ �me.s1q/�

C2
3
bŒmem�.s0s1/Q

2 � 2m�me.s1q/.s0p/C .pq/Q2 C 2.Qq/.Qp/�

C2
3
ˇŒ.s0s1/.2m

2
em

2
� � .m2

e Cm2
�/.pq//

C.m2
e Cm2

�/.s1q/.s0p/ � 3mem�Q
2�

C2
3
b0Œme.2.Qq/.s1q/CQ2.s1q//Cm�.�2.Qp/.s0p/CQ2.s0p//�

C2
3
cŒ4.Qq/.Qp/�Q2.qp/Cmem�.4.s0p/.s1q/CQ2.s0s1//�

C2
3
c0Œ4m�.Qp/.s0p/C 4me.Qq/.s1q/CQ2.m�.s0p/

�me.s1q//�� .˛0Q2 C 2

3
ˇ0.m2

� �m2
e//"˛ˇ��q

˛s
ˇ
0 p

�s�1 : (4.50)

In this expression the real constants a; : : :; ˇ0 are given by

a

a0
�
D 16.jgRLj2 ˙ jgLRj2/C jhRLj2 ˙ jhLRj2; (4.51a)

b

b0
�
D 4.jgRRj2 ˙ jgLLj2/C jhRRj2 ˙ jhLLj2; (4.51b)

c

c0
�
D 1

2
.jhRLj2 ˙ jhLRj2/; (4.51c)

˛

˛0
�
D 8

�
Re
Im

�
.gLRh

�
RL ˙ gRLh

�
LR/; (4.51d)

ˇ

ˇ0
�
D �4

�
Re
Im

�
.gLLh

�
RR ˙ gRRh

�
LL/ (4.51e)

We do not evaluate (4.50) in its full complexity but rather assume the energy E of
the electron to be large as compared to the rest mass. Then me may be set equal to
zero except where it appears multiplied with s1, in which case the equations (4.45)
apply. In this approximation
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W ' 1

2
m�; Q2 D .q � p/2 ' m�.m� � 2E/;

d3p D jpj2djpjd˝ ' E2dEd˝:

It is convenient to replace E with the dimensionless variable

x WD E

W
' 2E

m�

; (4.52)

whose range of variation is

x0 � x � 1 with x0 D me=W;

or, in the approximationme D 0 W 0 � x � 1.
The differential decay probability for emission of an electron with energy

between x and x C dx at an angle between 	 and 	 C d	 with respect to the muon
spin, is then found to be1

d2� .x; 	; 
;  /

dxd.cos 	/

' Am5
�G

2

210�36
x2fŒ6.1 � x/C 4

3
�.4x � 3/�C � cos 	Œ2.x � 1/C 4

3
ı.3� 4x/�

C� 0 cos
Œ6.x � 1/C 4ı0.3 � 4x/�C � 00 cos 	 cos
Œ2.1 � x/C 4

3
�0.4x � 3/�

C2 sin 	 sin


��
.3.1 � x/ ˛

A
C 2ˇ

A

�
cos C

�
3.1� x/˛

0

A
C 2ˇ

0

A

�
sin 

��
:

(4.53)

In this expression ˛; ˇ; ˛0; ˇ0 are as given above in (4.51 d,e). The other parameters
are appropriately chosen combinations of a; : : : ; c0, viz.

A D aC 4b C 6c; (4.54a)

� D 1

A
.3b C 6c/; (4.54b)

� D � 1
A
.3a0 C 4b0 � 14c0/; (4.54c)

ı D 1

A�
.�3b0 C 6c0/; (4.54d)

1This holds for a fully polarized muon. If the muon carries partial polarization P�, the terms in
cos 	 and sin 	 are multiplied by P�.
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� 0 D � 1
A
.a0 C 4b0 C 6c0/; (4.54e)

ı0 D � 1

A� 0
.b0 C 2c0/; (4.54f)

� 00 D 1

A
.3aC 4b � 14c/; (4.54g)

�0 D 1

A� 00
.3b � 6c/: (4.54h)

� is called the Michel parameter. It was introduced by L. Michel who gave the first
general analysis of muon decay. [As may be seen from (4.50) there are also spin-
independent terms in the spectrum which are proportional to me and which depend
on ˛ and ˇ. They are proportional to �x0.1 � x/ with � D .1=A/.˛ � 2ˇ/. As we
neglect me they do not appear in (4.53).] Equation (4.53) holds for �� decay. For
�C decay the signs of the terms � cos 	 and � 0 cos
 must be reversed.

What are the observables that can be determined in an experiment on muon
decay? The parameters that were measured in the past are the following: The
spectrum parameters � and ı are known to rather high precision (see below).
The Michel parameter �, for instance, determines the shape of the spectrum for
the decay of unpolarized muons, see Fig. 4.2. � is determined by a measurement
of the asymmetry of electron emission with respect to the muon spin direction.
� 0 determines the longitudinal polarization of the outgoing electron, f˛; ˇg the
transverse component PT1, and f˛0; ˇ0g the normal component PT2 of the electron
polarization, all of which have been measured (for definitions see Fig. 4.1 and next

Fig. 4.2 Michel spectrum, i.e. isotropic part of differential decay probability (4.53), for various
values of �. The spectrum is normalized such that it equals � at the maximal energy x D 1
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section (c)). The quantity A, finally, appears in the expression for the total rate. The
remaining parameters ı0 and �0 have not been measured.

c) Analysis and examples

As an example, let us analyze muon decay in terms of the interaction (4.460) and
compare the predictions for the lifetime and the decay parameters to their measured
values.

The total rate is obtained from (4.53) by integrating over x and 	 , and by
summing over the spin directions of the outgoing electron. One finds

� D Am5
�G

2

28�36

Z 1

0

x2
�
6.1� x/C 4

3
�.4x � 3/

�
dx

D m5
�G

2

192�3
A

16
(4.55)

Without loss of generality one can choose the normalization A D 16 because this
amounts to no more than fixing G in terms of the decay rate � .

Note that this result is independent of the value of �. In the limit of the exact
“V � A” interaction, gLL D 1 whilst all other constants gik and hik vanish. From
(4.51) we then have aD a0D 0; bD � b0D 4; cD c0D 0; ˛DˇD 0; ˛0Dˇ0D 0,
or, from (4.54),

A D 16; � D 3

4
D ı D �0; ı0 D 1

4
;

� D 1 D � 0 D � 00: (4.56)

� and ı are indeed found to be 3
4

within 0.3% and 0.5%, respectively [RPP94],

� D 0:7503.4/; ı D 0:7504.6/ (4.57a)

From (4.54 b, d) this means that a ' 2c and a0 ' 2c0 and ı0 D 1

4
; �0 D 3

4
, or, from

(4.51 a,c), gLR ' gRL ' 0. Let us assume that, indeed, gLR D 0 D gRL. Then, from
(4.51)

A D 4.aC b/ ' 16.jgRRj2 C jgLLj2/C 4.jhLRj2 C jhRLj2
CjhLLj2 C jhRRj2/ D 16;

1 � � D aC b � a0 C b0
aC b D 8

A
.4jgRRj2 C jhRRj2 C jhLRj2/;

1 � � 0 D aC b C a0 C b0
aC b D 8

A
.4jgRRj2 C jhRRj2 C jhRLj2/;

˛ ' ˛0 ' 0;

ˇ; ˇ0 as given by (4.51e).
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With these restrictions on the parameters, (4.53) reduces to

d2�

dxd.cos 	/
' 4m5

�G
2

286�3
x2
˚
.3 � 2x/.1 � � 0 cos
/ � .2x � 1/ cos 	.� � � 00 cos
/

C sin 	 sin 

1

4
.ˇ cos C ˇ0 sin /

�
: (4.58)

[If the initial polarization P� is not unity, the second and third term are to be
multiplied by P�].

The experimental values for � and � 0 are (assuming fully polarized muons from
pion decay)2

� D 1:0007.35/; � 0 D 1:00.4/: (4.57b)

The value of � 0, in particular, is obtained by measuring the longitudinal polarization
of the electron, cf. (3.25), which is given by

P` D d� .x; 	; 
 D 0;  D 0/� d� .x; 	; 
 D �; D 0/
d� .x; 	; 0; 0/C d� .x; 	; �; 0/

:

With � D ı D �0 D 3
4

and ı0 D 1
4

this is approximately

P` ' �� 0 C .2x � 1/ cos 	

3 � 2x C �.2x � 1/ cos	
.� 00 � �� 0/: (4.59)

ˇ and ˇ0, as well as ˛ and ˛0, can be determined, for instance, by measuring the two
transverse components of the electron polarization (cf. Fig. 4.1), viz.

PT1 D d� .x; 	; �=2; 0/� d� .x; 	; ��=2; 0/
d� .x; 	; �=2; 0/C d� .x; 	;��=2; 0/ ;

which, in the situation considered above, is

PT1 ' 4ˇ=A

3 � 2x C �.2x � 1/ cos 	
sin 	: (4.60)

Similarly,

PT2 D d� .x; 	; �=2; �=2/� d� .x; 	;��=2; �=2/
d� .x; 	; �=2; �=2/C d� .x; 	;��=2; �=2/ ;

2The general case is analyzed along these lines in the review by W. Fetscher and H.J. Gerber,
[RPP10, p. 521].
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which is approximately

PT2 ' 4ˇ0=A
3 � 2x C �.2x � 1/ cos 	

sin 	: (4.61)

PT2, the component perpendicular to the plane spanned by the muon spin and by the
electron momentum, is particularly interesting because it can only be different from
zero if the interaction (4.460) is not invariant under time reversal. Indeed, we see
from (4.51d,e) that ˛0 and ˇ0 are different from zero only if some of the coupling
constants are relatively complex.

The measurement of PT1 and PT2 gave values compatible with zero
(Corriveau 1983, Burkard et al. 1985) (with ˛ D ˛0 D 0),

ˇ=A D 0:0039.62/; ˇ0=A D 0:002.7/ (4.62)

[The measurement of PT1 also fixes the parameter � mentioned above].
In conclusion, the comparison of the experimental results with the theoretical

predictions shows that there is good evidence for the “V – A” interaction but that the
data do not exclude contributions of the order of a few percent, from other types of
interaction in the Lagrangian (4.49).

A case of special interest is the class of left-right symmetric unified gauge
theories which are extensions of the GSW theory and which aim at explaining
parity violation as a phenomenon typical for low energies. In such theories there
is a second charged gauge boson WR which couples to V C A currents. In order to
obtain the observed “V �A” interaction at low energies the massmR of WR must be
significantly larger than the mass mL of its sister boson WL. Since the two bosons
are gauge bosons of the same local gauge theory, they couple to the matter fields
with the same coupling constant g. Thus, the effective weak CC Lagrangian is

�
g2

8m2
L

.�˛ � a˛/.�˛ � a˛/C g2

8m2
R

.�˛ C a˛/.�˛ C a˛/
�
:

Setting

Gp
2
D
g2
q
m4

R Cm4
L

8m2
Lm

2
R

;

we have

gRR D m2
Lq

m4
R Cm4

L

; gLL D m2
Lq

m4
R Cm4

L

;

gRL D 0 D gLR. This is a special case of the analysis given above. All parameters
except � and � 0 have their standard “V – A” values. � and � 0 carry the same
information on the mass ratio mR=mL, i.e.
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� D 1 � 2m4
L

m4
R Cm4

L

:

Present data, (4.57), to which one must add the available information on � ! ���
and nuclear ˇ-decay (cf. (3.28)) yield a lower limit on the mass ratio mR=mL of
about 2.8, i.e. mR & 230Ge V. To see the sensitivity of muon decay to the right-
handed interactions induced by the existence of WR, let us assume that � is known
to be 1 with an error bar of 0.1%. From the result above one would then conclude
that mR=mL & 6:7 or mR & 550Ge V.

In addition, the two physical W-boson states W1 and W2 may be orthogonal
mixtures of the states WR and WL. This happens if the mass Lagrangian is not
diagonal in the basis of the states WR and WL. In this case the state mixture leads to
additional interaction terms of the type .�˛ ˙ a˛/.�˛ � a˛/ (Bég et al. 1977). It is
not difficult to show that, in our notation, gRL and gLR are proportional to

.m2
R �m2

L/tg


where 
 is the mixing angle. The limits on 
 come primarily from the Michel
parameter � and are of the order of j
j . 0:05.

d) Additional remarks

(i) Clearly, the expression (4.54) which is exact and quite general holds also for
the decays

�� ! ��v�v� ;

�� ! e�vev� ; (4.63)

or for semileptonic decays of bare quarks. In deriving (4.53) one must check,
of course, whether or not the mass of the daughter lepton can be neglected. We
have not written out the additional mass dependent terms in (4.53) for the sake
of economy, but it is easy to identify them in (4.50) and to insert them into
(4.53). In muon decay (4.38) they are negligible unless one measures decay
electrons with very low energies. The only exception is the rate for which a
very accurate experimental value is available and where the mass terms must
be taken into account, cf. (4.65, 4.66) below.

(ii) Radiative corrections to muon decay are important.3 For instance, in the spec-
trum they amount to about 6% in the determination of the Michel parameter.
[The experimental value quoted above was already corrected for this effect.] In
the rate, the radiative correction is of the order of 0.4%. One finds, to order ˛G,

3For a summary see Scheck (1978), T. van Ritbergen and R. E. Stewart (1999), Phys. Rev. Lett.
82, 488.
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� D � .0/

"
1C ˛

2�

�
25

4
� �2

�
C 3

5

m2
�

m2
w

#
; (4.64)

where � .0/ is the uncorrected expression.4 In the general case, and including the
electron mass terms, it is given by

� .0/ D m5
�G

2

192�3

(
1C me

m�

˛ � 2ˇ
4
� 8m

2
e

m2
�

C O

 
m3

e

m3
�

!)
: (4.65)

The lifetime is indeed known to very high accuracy

�� D 2:197034.21/� 10�6 sec : (4.66)

In the case of the “V – A” interaction we have ˛ D ˇ D 0, so that we can extractG
from this datum as

G D 1:16639.2/� 10�5 Ge V�2: (4.67)

Radiative corrections in the electron polarization P D fPT1; PT2; P`g are large at
low energies (of the order of 10%) but become very small for, say, x & 0:25 (Mehr
and Scheck 1979, Fischer et al. 1974, Kuznetsov, 1981).

e) Inverse muon decay

The scattering reaction (known as inverse muon decay)

v�e
� ! ��ve (4.68)

provides additional information about the weak CC Lagrangian responsible for
muon decay. This reaction was measured at high energies (Jonker et al. 1980,
Bergsma et al. 1983, Mishra et al. 1990, Geiregat 1990) and the cross section was
compared to its value as predicted by the pure “V – A” Lagrangian (3.74) and
(3.186). In the experiment certain integrals of the cross section over the kinematics
of the neutrino beam are determined and are compared to the same integrals over
the theoretical expressions.

In this section we give a somewhat simplified analysis of reaction (4.68) by
calculating the cross sections at fixed energy and by ignoring these integrations
(see however exercise 4.4). Let k and k0 be the initial and final neutrino momenta,
respectively, p the electron momentum and q the muon momentum. Neglecting the
electron and muon masses, the cross section in the c.m. system reads

d�

d˝�
' 1

64�2s

1

2
.2�/12

X
jT j2:

4The last term on the r.h.s. of (4.64) is a propagator effect taking into account the finiteness of the
W-mass. It is, however, negligibly small.
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v� is the incident particle, the muon is the outgoing particle which is detected, so
the invariant squared momentum transfer is t D .k � q/2 ' �.s=2/.1 � cos 	�/.
The invariant differential cross section is

d�

dt
D d�

d˝�
2�

d.cos	�/

dt
D 1

32�s2
.2�/12

X
jT j2:

The T -matrix element for the interaction (4.460) and the spin summations over jT j2
are calculated along standard lines. If h is the helicity of the incoming v�, the cross
section is found to be

d�

dt
D G2

8�s2

˚
4s2.jgRRj2.1C h/C jgLLj2.1 � h//

C 4.s C t/2.jgRLj2.1 � h/C jgLRj2.1C h// (4.69)

C t2.jhLRj2 C jhRRj2/.1 � h/C t2.jhRLj2 C jhLLj2/.1C h/


:

The muon neutrino in the laboratory stems from pion and kaon decays and,
therefore, h is �1, to a very good approximation. If one compares the result (4.69)
to the prediction of the standard interaction (3.186) one finds

d�

dt

��
d�

dt

�
V�A
D 16

A

�
jgLLj2 C .s C t/2

s2
jgRLj2 C t2

4s2
.jhLRj2 C jhRRj2/

�
;

(4.70)
with AD 16 as in Sect. 4.2.3. Remember that we had concluded gLR'gRL'0.
Reaction (4.68) therefore gives additional limits on the scalar couplings hLR

and hRR. Experimentally, the ratio (4.70), after integration over the experimental
spectrum, is indeed found to be 1 within about 5%. For the ratio of the total cross
sections one finds

S D 1:006˙ 0:048 (4.71)

(Mishra et al. 1990, Geiregat 1990).
The result (4.71) is particularly interesting because it can be used to place a lower

limit on the coupling constant gLL. This follows from the expression (4.70) for the
ratio of cross sections: the terms in the couplings gRL; hLR and hRR are known to be
small from the measurements of muon decay parameters discussed above. In turn,
the lower limit on gLL, through the normalization condition on the rate parameter
A D 16, (4.54a), yields an upper limit on hLL which is

jhLLj < 4.1 � S/:

As first pointed out by Fetscher et al. (1986) the combined analysis of muon
decay and inverse muon decay, in principle, allows a complete determination of
all coupling constants even though the number of observables is smaller than the
number of parameters (including the T -type couplings there are 19 real constants!).
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We do not work out the details here but give the essential argument. The specific
representation (4.460) [or, for that matter, the Fierz reordered form (4.49)] of the
interaction makes use of the projection operators onto states of definite chirality
(helicity for massless fermions). As a consequence, most of the observables depend
on absolute squares of coupling constants–as illustrated by the examples we gave
above. Now, if quantities such as .1��/ or .1�� 0/ etc. are found to be zero, within a
certain error bar, one concludes at once that several coupling constants must vanish
within these error bars. For example, one can calculate the total probability for a
muon with chirality � to turn into an electron with chirality ", (irrespective of the
helicities of the neutrinos). The result is (again omitting T -type couplings),

Q.�! "/ D 1

4
jh"�j2 C jg"�j2; �; " D R or L;

their sum being normalized to 1 by the rate parameter, viz.

Q.R! R/CQ.R! L/CQ.L! R/CQ.L! L/ D 1:

From muon decay alone, the first three of these are found to be small or zero, while
Q.L! L/ is 1 or close to that value. Obviously, this result, however accurate, does
not allow one to discriminate between the couplingsgLL and hLL, both of which give
the correct chirality/helicity transfer. If one adds the information from inverse muon
decay, then, as shown above, gLL is found to be the dominant coupling. Actual limits
on couplings other than gLL can be found in Fetscher et al. (1986) and in [RPP10]

f) neutrino helicity from muon decay

An interesting special case where a precision measurement was performed is
the following: In most experimental situations muons originate from pion decay
�� ! ��C v�.or �C ! �CC v�/ and carry longitudinal polarization P�. Taking
into account this polarization in the decay �� ! e�v�ve, (but summing over the
polarization of the electron in the final state), the decay asymmetry of the electron
with respect to the muon spin, close to the upper end of the spectrum is calculated
from (4.53) for x D 1, viz.

�
d2�

dxd cos 	

�
x!1
D m5

�G
2

144�3
�

�
1 � P� �ı

�
cos 	

�
: (4.72)

The expression in curly brackets must be positive-semidefinite. Therefore, without
returning to the explicit form of the decay parameters we know at once that the
specific combination jP��ı=�j cannot exceed 1. The experimental result (Jodidio
et al. 1986)

P�
�ı

�
> 0:99682 (4.73)

being very close to the maximal value 1, and noting that the longitudinal polariza-
tion, by definition, cannot be larger than 1, one concludes that both P� and �ı=�
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separately are very close to 1. The latter result is relevant for the determination of
coupling constants, the former has an immediate consequence for the muon neutrino
emitted in pion decay. Indeed, by conservation of angular momentum alone, the
helicity h.v�/ of the muon neutrino is equal and opposite to P�. Therefore, the
experimental result (4.73) implies (Fetscher 1984)

1 � jh.v�/j < 0:003 at90% C:L: (4.74)

This result may be converted to information on the helicity of v� from positive pion
decay. The sign of h.v�/ is known to be negative. Equation (4.74) then tells us that
the helicity of the v� is �1, within a very small error bar. This is by far the most
accurate information on a neutrino helicity.

4.1.3 Neutral Currents in Muonic Atoms

Muonic atoms provide a promising, but still largely unexplored, system for testing
parity-violating effects due to weak neutral currents. There are three main reasons
why precision tests of NC interactions in muonic atoms are superior, except for
problems of purely experimental nature, to tests in electronic atoms or even in
electron scattering:

(i) On atomic scales the range of the weak NC interaction is practically zero, so
that the effective lepton-nucleon interaction acts like a contact interaction. Due
to its larger mass the bound muon moves closer to the nucleus than a bound
electron, and, therefore, weak NC effects in muonic atoms are enhanced by
some power of the mass ratio m�=me over such effects in electronic atoms.

(ii) The muon, from pion decay, is fully polarized when it is captured in the
Coulomb field of the nucleus. The amount of depolarization (through hyperfine
interactions) during the cascade can be measured as well as calculated; the
residual polarization in the lowest states of the cascade is finite and is well
under control. This is important if one wishes to identify the NC effects by
means of some spin-momentum correlation such as the asymmetry of a cascade
X-ray with respect to the muon spin.

(iii) The muonic energies and wave functions are calculable to any desired accuracy
and the analysis of measured effects in terms of the elementary muon-nucleon
NC interaction is well defined. This is in contrast to the case of electronic atoms
where the analysis of measured effects (dichroism and optical rotation) is beset
with uncertainties about the atomic configuration.

The elementary effective Lagrangian is given by the neutral current part of
(3.186) (with � D 1),

�L eff
NC D

G

2
p
2
K�
˛.x/K

˛.x/; (4.75)
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where the cross product of the muonic neutral current and of the nucleonic current,
cf. (3.184b), is relevant here. The Lagrangian contains Lorentz scalar pieces which
stem from the product of leptonic vector V` and the nucleonic vector Vn, as well as
from the product of leptonic axial vector A` and nucleonic axial vector An. These
terms will hardly be observable, as they have to compete with the electromagnetic
interaction which is of the type V`Vn. It also contains Lorentz pseudoscalar pieces
which stem from the couplings V`An and A`Vn. These latter terms are parity-odd
relative to the electromagnetic interaction and give rise to observable, parity-
violating effects in the cascade of a muonic atom.

As an example, let us consider the n D 2 system in a light muonic atom.
Without the weak NC interaction, the 2p-state decays very quickly into the ls-state
through emission of an X-ray photon with the characteristics of an E1-field. The 2s-
state is metastable and it will disintegrate to the ground state primarily by emitting
two photons. As another possibility it can emit a single photon with the quantum
numbers of an M1-field. This latter possibility is due to the relativistic components
in the s-states, (remember that a state with � D �1; j D 1

2
contains a “large”

component with l D 0 and a small component with l D 1). Clearly, as a light
muonic atom is only moderately relativistic, this M1-transition will be very weak.

If we add the static, Lorentz pseudoscalar NC interaction to the electromagnetic
one, the atomic states are no more eigenstates of parity. In particular, the 2s-state will
receive a small admixture from the 2p-state, and vice versa. As a consequence, what
was a weak (2s–1s) M1-transition before will now have an admixture of the strong
(2p–1s) E1-transition, see Fig. 4.3a. The admixture coefficient � is proportional to
the matrix element of the parity-odd interaction between the 2s and 2p states divided
by an energy denominator which contains the difference of the real energies and the
sum of the radiative widths of the 2s and 2p states, respectively, i.e.

� '
˝
2pjHNCj2s

˛
E2s �E2p C .i=2/.�2s C �2p/

: (4.76)

Here HNC is an effective Hamiltonian which stems from the V`An and A`Vn

couplings in (4.75). An admixture of this kind is detectable by measuring the angular
distribution of the photon (with the characteristics of the M1-, E1- mixture), with
respect to the orientation of the muon’s spin.

Another example is provided by the n D 3 system in muonic atoms, cf. Fig. 4.3b.
The 3d-state decays preferentially via E1-emission to the 2p-state (and then on to
the 1s-state via another E1-transition). However, it also has a small but nonvanishing
probability of decaying directly to the 1s-state through emission of an E2 X-ray.
The neutral current interaction will cause a small admixture of the 3p- to the
3d-state (and vice versa), so that the weak E2 transition receives a small contribution
from the strong (3p-1s) E1 transition. Here again this admixture will show up in the
angular distribution of the photon relative to some spin orientation. [In fact, this
need not necessarily be the muon spin. It could as well be the spin of the nucleus
provided the atom is formed in a polarized target.]
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Fig. 4.3 Observable, parity-violating effects in the muonic atom cascade as caused by NC weak
interactions. (a) The 2p-2s state mixing causes a small admixture of E1 to the direct M1-transition
from 2s- to 1s-states. (b) The 3d-3p state mixing gives rise to a small admixture of E1 to the
dominant (3d-1s) E2-transition

These two examples, as well as many others which have been examined
(Missimer et al. 1984), have in common that one studies a weak transition T0 to
which HNC admixes some other, strong transition T1, such that the parity violating
effect in the resulting transition amplitude

T ' T0.1C �T1=T0/ (4.77)

is enhanced by the factor T1=T0. [Clearly, T0 must not be suppressed too much
because otherwise the transition will have no measureable yield.] Let us briefly
analyze HNC as it follows from the basic interaction (3.186). The motion of
the nucleons in the nucleus is essentially nonrelativistic. Furthermore, in first
approximation the bound nucleons have the same weak coupling constants as when
they are free. In the nonrelativistic reduction of the nucleonic vector current only the
time component hp0j�0.0/jpi survives, the space components hp0j�.0/jpi being of
higher order in (�=c). This is easy to see if one examines these matrix elements
in the standard representation and in the limit �=c ! 0. Therefore, the interaction
term due to the A`Vn-couplings becomes

H1 ' Gp
2

(
C1p

ZX
i�1

ı.ri � r�/C C1n

NX
kD1

ı.rk � r�/

)
�5; (4.78)

where the first sum runs over the protons, the second over the neutrons in the
nucleus, and where �5 acts on the relativistic bound state wave functions of the
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muon. The parameters in (4.78) are easy to identify from (3.186, 3.184, 3.208):5

C1p D 1

2
.1 � 4 sin2 	w/;

C1n D �1
2
:

Similarly, it is easy to see that the nonrelativistic limit of the nucleonic axial current
hp0ja˛.0/jpi vanishes if ˛ D 0, and gives a matrix element of the spin operator �.i/

for ˛ D i . Thus the interaction due to the V` An couplings is approximately

H2 ' Gp
2

(
C2p

ZX
iD1

� i ı.ri � r�/C C2n

NX
kD1

� kı.rk � r�/

)
� ˛ (4.79)

where the matrices ˛ are defined in eqs. (1.81) and act on the muonic wave
functions. The constants in (4.79) are found from (3.208, 3.209) to be

C2p D �1
2
FA.0/.1� 4 sin2 	w/;

C2n D 1

2
FA.0/.1� 4 sin2 	w/:

Without going into the detailed analysis of nuclear matrix elements of H1, (4.78)
and H2, (4.79), we can make the following general remarks. The expectation value
of H1 in the nuclear ground state is proportional to a linear combination of proton
and neutron densities,

ZC1p�p.r�/CNC1n�n.r�/

with C1P ' 0:04 (for sin2 	w ' 0:23 and C1n D �0:50. In a static situation where
the nucleus remains in the ground state, the nucleons contribute coherently, each
with its own weak neutral coupling (1� 4 sin2 	w/ for protons, 1 for neutrons.

In the same situation, the nuclear matrix element of H2 either vanishes, when
the nucleus has spin J D 0, or else, if J � 1

2
, is proportional to < � >, the

matrix element of the spin operator of the unpaired valence nucleon. Except for
the possibility of collective state admixtures, this matrix element is a typical one-
particle matrix element. Therefore, in the static situation, one expects the interaction
H1 to dominate over the termH2. This is indeed the result of detailed investigations
of this problem. Therefore, experiments with muonic atoms test primarily the A` Vn

couplings. The couplings of the type V`An which appear in H2 (4.79), should be
accessible, too, but will be more difficult to isolate.

5Here we are using the fact that the “charge” form factor of the vector current at zero momentum
transfer is not renormalized by strong interactions if CVC holds. See the discussion of CVC in
Sect. 4.2.2 below.
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In order to give a feeling for the order of magnitude, we quote the example
of muonic thulium 169

69Tm�: The forward-backward asymmetry of X-rays from the
3d-1s transition in this atom (with respect to the muonic or nuclear spin direction).
due to parity violating NC interactions is calculated to be �1:2 � 10�5.

Finally, we note and emphasize that the muonic atom is perhaps the best
possibility of testing muon-electron universality of the weak NC interactions.

4.2 Hadronic Charged Current Interactions

In this section we return to another facet of weak interactions that we mentioned
in the introduction to Chap 3: Assuming the Lorentz structure and selection rules
of hadronic weak interactions to be known, the weak currents can be regarded as
still another class of probes for the structure of hadronic targets. In close analogy to
the role of the electromagnetic current in electron scattering on hadrons, the weak
vector and axial vector currents give access to internal properties of mesons and
baryons, mainly through the characteristics of their weak decay modes. Nucleons
and nuclei, in particular, can also be probed in muon capture and in exclusive and
inclusive neutrino scattering.

While muon capture is touched upon briefly in Sect. 4.2.4b, we concentrate
primarily on semileptonic decays of mesons and nucleons for which we choose some
illustrative and instructive examples.

4.2.1 Semileptonic Interactions, Structure of Hadronic
Charged Current

Our starting point is the effective current � current interaction (3.186) with J˛.x/,
the weak charged current, as given by (3.184a). In the product of this current with
its hermitean conjugate there appear terms of the form

�L CC
semileptonic D

Gp
2

X
f;f0

f.f .x/�˛.1 � �5/vf.x//

�.uf0.x/�˛.1 � �5/df0x/ � h:c:g; (4.80)

which couple two lepton fields to two quark fields at the same point of space-
time. Equation (4.80), as well as its analogue with the neutral currentK˛, (3.184b),
defines and describes the so-called semileptonic processes. After the purely leptonic
weak interactions this is a second, simple class of interactions: A semileptonic
process involves one hadronic matrix element of the charged current multiplied by a
leptonic vertex which is assumed to be known and which, therefore, is perfectly
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calculable. In other words, semileptonic processes give information on matrix
elements of the hadronic pieces of J˛ , viz.

*
B

ˇ̌̌
ˇ̌
3X

fD1
uf.0/�˛.1 � �5/df.0/

ˇ̌̌
ˇ̌A

+
: (4.81)

Here A is a one-boson or one-baryon state, while B can be the vacuum, another
one-boson or one-fermion state, etc., depending on the selection rules which apply
to the matrix elements (4.81). Examples we shall encounter are

h0jJ˛.0/j�Ci; h0jJ˛.0/jKCi; h�0jJ˛.0/j�Ci;
h� jJ˛.0/j�Ci; hpjJ˛.0/jni; etc:

(4.81’)

All effective coupling constants in (4.80) are known combinations of G and the
elements of the mixing matrix V (3.152). What we do not know are the effects of
the strong interactions on the matrix elements (4.81) which originate in the nature
of hadrons being bound states of quarks and in hadronic corrections of higher order.
These effects are parametrized in the form of Lorentz scalar form factors which then
are purely hadronic objects, i.e. in some general sense are “structure functions” of
the hadronic system under investigation.

The charged current (3.184a) contains nine different terms

3X
fD1

3X
f 0D1

uf.x/	
˛Vff0bf0.x/; 	 ˛ � �˛.1 � �5/;

which have different selection rules as far as the internal quantum numbers of
hadronic states are concerned. In Table 4.1 we list the pieces Nud and Nus which
are relevant for the discussion in this section, together with their strong isospin,
spin/parity, and strangeness properties. Unlike the case of the electromagnetic
current, cf. Table 2.1, the Nud-current is not diagonal under charge conjugation:
Indeed, from the discussion in Sect. 3.2.1 we know that

u.x/ �˛ d.x/ �!
C
�d.x/ �˛ u.x/;

u.x/ �˛ �5 d.x/ �!
C
Cd.x/ �˛ �5 u.x/:

However, if we apply a rotation exp fi�I2g in isospin space to the fields u.x/ and
d.x/, the currents on the r.h.s. are mapped back onto the originals on the l.h.s. From
(1.45) we have

ei�I2 u.x/ D d.x/; ei�I2 d.x/ D �u.x/:

Thus, if one applies the combined operation of G-parity to the Nu d-currents
G D expfi�I2g C , the vector current is seen to be even, the axial current to be odd.
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Table 4.1 Quantum numbers of hadronic weak currents in the u, d, s-sector of the Lagrangian

Strong Isospin
Spin/Parity G-parity Analogue meson

Current I I3 J� S G states

Nu�˛d cos 	1 1 1

�
0C

1�

�
0 C �(770)

Nu�˛�5d cos 	1 1 1

�
0�

1C

�
0 � �(139), a1(1260)

Nu�˛s sin 	1 cos 	3
1

2

1

2

�
0C

1�

�
1 K�(892)

Nu�˛�5s sin 	1 cos 	3
1

2

1

2

�
0�

1C

�
1 K(494), K1(1270)

In the last column of Table 4.1, finally, we list a few meson states that have the
same quantum numbers as the currents listed in the first column. It is worth nothing
that the Nu d vector current has the same quantum numbers as the isovector part of
the electromagnetic current as shown in the second line of Table 2.1, p. 102.

4.2.2 Pion Beta Decay and Conserved Vector Current (CVC)

We noted above the close similarity of the Nud vector current, first line of Table 4.1,
and of j .1/˛ , the isovector part of the electromagnetic current, second line of
Table 2.1. In a world of free u- and d-quarks these currents are, respectively,

j .1/˛ .x/ D 1

2
fu.x/ �˛ u.x/ � d.x/ �˛ d.x/g D 1

2
N.x/ �˛ �3 N.x/; (4.82a)

where N �
�

u
d

�
, and

�.1Ci2/
˛ .x/ D u.x/ �˛ d.x/ D 1

2
N.x/ �˛ .�1 C i�2/N.x/; (4.82b)

where (4.82a) follows from (3.155). It is obvious that these currents are components
of one and the same triplet of isovector operators. If the masses of u and d quarks
are exactly equal then �˛ is conserved,

@˛ �.1Ci2/
˛ .x/ D 0: (4.83)

The hypothesis of the conserved vector current (CVC) states that these properties
hold for the strangeness-conserving vector current, even when it is “dressed” by the
strong interactions, viz.
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(i) �.1˙i2/
˛ is conserved,

(ii) �.1Ci2/
˛ and �.1�i2/

˛ are isospin components of a triplet of operators whose third
member is j .1/˛ , the isovector part of the electromagnetic current.

As an example let us consider pion ˇ-decay

��.q/ ! �0 .q0/C e .p/C N�e .k/; (4.84)

where we have written the momenta in parentheses. The T -matrix element reads

T .�� ! �0 e� N�e/ D Gp
2

cos 	1
1

.2�/3
ue .p/ �

˛.1 � �5/�v .k/

�h�0 .q0/ j �.1Ci2/
˛ .0/ j�� .q/i: (4.85)

A general form factor decomposition of the pionic matrix element is

h�0 .q0/ j�.1Ci2/
˛ .0/ j��.q/i D 1

.2�/3
f.q˛ C q 0̨ / fC.Q2/C .q˛ � q 0̨ /f�.Q2/g;

(4.86)

withQ2 WD .q�q0/2 D m2Cm2
0�2m

q
m2
0 C �2 and where � is the magnitude of

the 3-momentum of �0 in the rest system of the decaying �� �m denotes the mass
of the charged pion,m0 the mass of �0. If �˛ is conserved, we have the condition

.m2 �m2
0/ fC.Q2/CQ2 f�.Q2/ D 0:

The contribution of f� to T , (4.85), is multiplied by .q � q0/ D .p C k/ and,
therefore, by a factor me which is small compared to the term (q C q0) fC. In the
limitm D m0 (exact isospin symmetry), one has f�.Q2/ � 0. Nelecting the second
form factor one obtains the following expression for the decay width (see below)

� .�� ! �0 e� N�e / ' G2 cos2 	1 �5

60�3

�
1 � 3

2

�

m

�
K."/ f 2C .0/; (4.87)

Where � D m �m0 ' 4:6 MeV; " � m2
e =�

2I K."/ is a correction factor given
by

K."/ D p1 � ".1 � 9
2
"C 4"2/C 15

2
"2 ln

�
1Cp1�"p

"

	
' 1 � 5":

We have replaced fC (Q2/ by its value at Q2 D 0 because the domain of variation
is very small in this decay,m2

e � Q2 � �2:

The value of fC(0) is fixed by the second part of the CVC hypothesis. In order
to see this let us note that IC WD

R
d3 x �.1Ci2/

0 .x/ is a generator of infinitesimal
transformations in isospin space, provided isospin is an exact global symmetry. Thus

h�0
ˇ̌̌Z

d3 x �.1Ci2/
0 .x/

ˇ̌̌
��i D h�0j ICj��i D

p
2 2Eq ı.q � q0/:
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On the other hand, making use of the translation formula (2.42), the left-hand side
is equal to

Z
d3 x eix.q0 � q/ h�0j �.1Ci2/

0 .0/ j��i D .2�/3 ı .q � q0/
1

.2�/3
2EqfC.0/;

which gives the result fC.0/ D
p
2. Note that in this derivation we have used exact

isospin symmetry in the pion states and, consequently (except for the kinematics),
we have set m D m0.

The absolute square of the matrix element, summed over the spin is worked out
to be

.2�/12
X
jT j2 D 4G2 cos2 	1ff 2C .2.ap/.ak/� a2.kp//

Cf 2� m2
e .kp/C 2fCf�m2

e .ak/g; (4.88)

where we have set a D qCq0 D 2q�Q. The terms which contain the factorm2
e are

negligibly small, of orderm2
e=m

2
� , as compared to the others. For the calculation of

the total width we use the analogue of (4.42) above, viz.

d3�

d3q0
D 1

4mEq0.2�/5

Z
d3p

2Ep

Z
d3k

2Ek
ı.Q � p � k/ .2�/12

X
jT j2: (4.89)

The integrations over p and k are performed in the same way as the integration
over the neutrino momenta in the case of muon decay, except that here we
must keep the mass of the electron. Explicit calculation (exercise 4.5) shows
that (4.44b) is

Z
d3 p

2Ep

Z
d3 k

2Ek
.p˛kˇ � .pk/ g˛ˇ C k˛pˇ/ ı .Q � p � k/

D �

6

.Q2 �m2
e/
2

.Q2/2

��
1C 2m

2
e

Q2

�
Q˛ Qˇ �

�
1C m2

e

2Q2

�
Q2 g˛ˇ

�
: (4.90)

It is not possible to expand this expression in terms of m2
e because m2

e is not small
compared to Q2. In calculating

� D
Z

q02 djq0j 1
Eq0

: : :

it is useful to transform both jq0j and Eq0 to the variableQ2. From

Eq0 D 1

2m
.m2 Cm2

0 �Q2/
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we have
1

Eq0
q
02 djq0j D jq0j dEq0 D � 1

2m
jq0jd.Q2/

with

jq0j D 1

2m

q
.m2 C m2

0 �Q2/2 � 4m2m2
0

D 1

2m

p
.�2 �Q2/ .�2 �Q2 C 4mm0/

D 1

m

p
mm0

s
.�2 �Q2/

�
1C �2 �Q2

4mm0

�
:

The following relations are needed when (4.90) is contracted with a˛aˇ , as
prescribed by (4.88),

.aQ/ D �.mCm0/; a
2 D 2.m2 Cm2

0/�Q2:

Finally, it is convenient to introduce the dimensionless integration variable

z WD Q2=�2:

Neglecting small terms of the order of �2=m2 in the integrand one then has the
following expression for the total width:

� ' G2 cos2 	1 f 2C .0/
24�3m

.mCm0/
2

4m2

p
mm0 �

5

Z 1

"

dz
p
1 � z

.z � "/2
z2

�
1 � "

2
� zC 2"

z

�
:

The mass factors can be approximated as follows: With m0 D m �� one has

1

4m3
.mCm0/

2pmm0 ' 1 � 3
2

�

m
:

The integral over z can be performed by elementary means [KAL64], givingR 1
"

dz � � � D 2
5
K."/ with K."/ as given above. Thus, (4.87) is proven.

The experimental branching ratio of pion beta decay

� .�� ! �0 e� N�e/

� .� ! ���/

is found to be 1:036.6/�10�8 which is in a very good agreement with the theoretical
prediction of 1:035.5/ � 10�8 (which includes radiative corrections), and provides
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the most precise test of the CVC hypothesis at this time. The applications and
predictions of CVC in nucleonic currents are dealt with in Sect. 4.2.4 below.

4.2.3 The Strangeness-Conserving Axial Current

a) Pion decays �`2 and � ! �� decay

The decay modes

�� ! �� N��; �� ! e� N�e; (4.91a)

�C ! �C N�� ; (4.91b)

all involve a leptonic factor times a matrix element of the hadronic weak
current between a one-pion state and the vacuum. In reactions (4.91a) it is
h0j J .1Ci2/

˛ .0/ j��.q/i, in (4.91b) it is h�C.q/j J .1Ci2/
˛ .0/ j 0i. The discussion

in Sect. 3.1 showed that only the axial part of the current can contribute to this
matrix element, cf. (3.6). Furthermore, knowing the behaviour of the axial current
under time reversal and charge conjugation one shows that the factor F� in (3.6) is
pure imaginary (exercise 4.6) thus

h0j a.1Ci2/
˛ .0/ j��.q/i D i

.2�/3=2
f� q˛: (4.92)

The amplitude for the decays (4.91a) then reads

T��! f � N�f D
i

.2�/9=2
f� G cos 	1p

2
uf.p/�q.1 � �5/�� .k/

D i

.2�/9=2
f� G cos 	1p

2
mf uf.p/.1 � �5/�� .k/;

with f = e or �.
It is not difficult to calculate the decay width from this amplitude. One finds

� .� ! f�f/ D G2 cos2 	1 f 2
� m�

8�
m2

f .1 �m2
f =m

2
�/
2; (4.93)

from which one obtains the ratio of � ! e�e to � ! �v� that we anticipated in
(3.38) (see also the discussion there). Knowing that the mode � ! ��� amounts
to practically 100% of the pion decays, one deduces from the experimental lifetime
�� D 2:6030.24/� 10�8 s and from j cos 	1j D 0:974 a value for f� :

f� ' 0:944m�C ' 0:132GeV: (4.94)
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In a similar way the decay (4.91b) is described by the amplitude

T�C!�C N�� D
i

.2�/9=2
f�G cos 	1p

2
��.k/�q.1 � �5/�� .p/

D i

.2�/9=2
f�G cos 	1p

2
m���.k/.1C �5/�� .p/: (4.95)

In this case it is useful to keep the correlation term between the spin of the � and the
pion momentum. If the pion is emitted at an angle 	 with respect to the expectation
value of s� , the differential decay probability is found to be, from (4.95)

d� .�C ! �C N�� /
d.cos 	/

D � .� ! ���/
1

2
.1 � cos 	/; (4.96)

where

� .� ! ��� / D G2 cos2 	1f 2
� m

3
�

16�
.1 �m2

�=m
2
�/
2: (4.97)

The decay mode has a branching ratio of about 10% and is found in good agreement
with the prediction (4.97), (see exercise 4.7)

There are two different definitions of f� (4.92), in the literature on particle
physics. The first is the one we have adopted in (4.92), where a physical matrix
element of the isospin raising operator a.1Ci2/

˛ between a one-pion state and the
vacuum is decomposed in terms of covariants. We can write this current in terms of
Cartesian components, viz. a.1Ci2/

˛ D a
.1/
˛ C ia.2/˛ . If these were given in terms of

free quark fields they would read

a.i/˛ D N.x/�˛�5
�.i/

2
N.x/:

Obviously, the �� state can be written in Cartesian coordinates, too,

j��i D 1p
2
fj�1i � ij�1ig;

so that ˝
0ja.1Ci2/

˛ j��˛ D 1p
2

˚˝
0ja.1/˛ j�1

˛C ˝0ja.2/˛ j�2:˛


This implies that the Cartesian matrix elements are

˝
0ja.j /˛ .0/j�k.q/

˛ D i

.2�/3=2
ıjk

1p
2
f�q˛: (4.98)

On many occasions it is convenient to work with Cartesian, rather than spherical
coordinates. For example, in studying commutators of current densities �.i/˛ .x/ and



332 4 Beyond the Minimal Standard Model

a
.j /
˛ .x/ one usually makes use of the Cartesian notation which treats the three

isospin components in a symmetric (in fact, cyclic) way. For this reason some
authors perfer to use (4.98) as the defining equation for the pion decay constant,
but without the factor 1=

p
2 on the r.h.s. Thus, another definition (not used in this

book) is

Nf� D 1p
2
f� ' 0:667m�C ' 0:0933GeV: (4.99)

Additional remark. Unfortunately this is not the only point where confusion may
arise. In accord with standard phase conventions for the rotation group it would
seem appropriate to express a �C -state in the form

j�Ci D � 1p
2
fj�1i C ij�2ig; (4.100)

with the characteristic minus sign of the spherical basis. With this convention
the isospin rotation contained in the definition of G-parity is indeed ei�I2 whose
matrix representation in the space of a unitary irreducible multiplet is .�/I��ı��m.
This rotation (which effects the transition from cogredience to contragredience)
correctly transforms the generators of the strong isospin, see exercise 1.3. Unfor-
tunately, since the early days of analyzing pion-nucleon scattering it has become
customary to define the j�Ci state with a plus sign, in disaccord with the
spherical basis. In this latter convention the rotation factor in G must be chosen
to be ei�I1 .

There is no problem in adopting the spherical basis (4.100) provided it is
done consistently throughout the calculation. Attention to phases must be paid,
however, in handling matrix elements of isospin raising and lowering currents
j
.1˙i2/
˛ D j .1/˛ ˙ ij .2/˛ which neither are normalized nor are written in the spherical

basis.

b) Axial current and pion field: PCAC

It is remarkable that the axial currents a.3/˛ and a.1˙i2/
˛ .x/ carry the internal quantum

numbers of the pion states �0, and �˙, respectively. Their divergences @˛a.�/˛ , in
particular, define pseudoscalar fields which have the same behaviour with respect to
Lorentz transformations as the pion fields. For example, the pion-to-vacuum matrix
element of the divergence of the isospin raising component can be calculated from
(4.92). Using the translation formula (2.42) we have

@˛x
˝
0ja.1Ci2/

˛ .x/j��.q/˛ D i

.2�/3=2
f�q˛@

˛e�iqx D 1

.2�/3=2
f�q

2e�iqx

D 1

.2�/3=2
f�m

2
�e�iqx: (4.101)
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This equation shows clearly that the axial current cannot be conserved. If it
were then either f� would have to vanish, in which case pions would not decay,
or m2

� would have to be zero. [The second alternative is very interesting because it
shows that in models with a conserved axial current pions may appear as massless
Goldstone bosons.]

The divergence @˛a.�/˛ .x/ is a pseudoscalar field operator which has all properties
of a pion field 
.�/.x/, except for the normalization. Indeed, an interpolating pion
field must be normalized such that a one-pion matrix element is

h0j
�.x/j�.q/i D 1

.2�/3=2
e�iqx:

Thus (expressed in Cartesian coordinates) we can define


.i/� .x/ WD
p
2

f�m2
�

@˛a.i/˛ .x/ (4.102)

and use this operator as interpolating field for the pion. As it stands, this definition
is just one possible choice and contains no more than the statements that the
divergence carries the internal quantum numbers of the pion and that it is correctly
normalized.

By the assumption of PCAC (partial conservation of the axial current) it is
understood that typical one-particle matrix elements of the kind

˝
BI q0j.�Cm2

�/
�.x/jAI q
˛

(4.103)

are smooth functions of the invariant, squared momentum transferQ2 D .q�q0/2, in
the interval �m2

� < Q2 . m2
� . In other words, it is assumed that a vertex function

hBj
� jAi is dominated by the pion pole 1=.Q2 � m2
�/ whose residue is a slowly

varying function of Q2.
In the next section we shall discuss two examples of applying PCAC to pion-

nucleon vertices. Generally speaking, PCAC is a useful approximation whenever
one has to estimate simple matrix elements of weak axial currents, or combinations
of such currents with other currents. It is also useful when one wishes to take
external pions off their mass shell, replace their interpolating field by the divergence
@˛a˛.x/ and extrapolate to q2 D 0 (so-called soft-pion method). In practice, this
approximation is usually found to be a rather good one, in those examples where it
can actually be tested. This, presumably, is a reflection of the observation that the
physical world of hadrons is not very far from an idealized world in which the axial
current is strictly conserved, like the vector current, and in which pions are massless
Goldstone bosons of a spontaneously broken symmetry. This limit is called the limit
of chiral symmetry, (see also Sect. 3.5).
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4.2.4 CVC and PCAC as Applied to Nucleonic Currents

a) Nucleonic vector currents and CVC

The weak charged vector current, taken between a neutron state of momentum q

and a proton state of momentum q0 has the general decomposition into covariants,

˝
pI q0j�.1Ci2/

˛ .0/jnI q˛ D 1

.2�/3
up.q0/

�
�˛FV.Q

2/C i�˛ˇ
Qˇ

2mN
FM.Q

2/

C Q˛

2mN
F3.Q

2/

�
un.q/; (4.104)

with Q D q0 � q [see (2.46)]. The CVC hypothesis, when applied to this specific
case, has two consequences:

(i) Very much like in the case of the electromagnetic current, the conservation
condition (4.83) implies that F3.Q2/ vanishes identically.

(ii) The isotriplet character of �.1˙i2/
˛ and j .1/˛ implies that the form factors FV and

FM are identical with the nucleonic isovector form factors (2.66b), to within a
factor 2,

FV.Q
2/ D F .p/

1 .Q2/� F .n/
1 .Q2/; (4.105a)

FM.Q
2/ D F .p/

2 .Q2/� F .n/
2 .Q2/; (4.105b)

(see also exercise 4.8). In particular, CVC makes the important prediction

FV.0/ D 1; (4.106)

which implies that superallowed nuclear Fermi transitions have the strength
G cos 	1, without any renormalization by the strong interaction. Furthermore,
(4.105b) implies

FM.0/ D �p
an � �n

an ' 3:706; (4.107)

so that the “magnetic” terms in (4.104) are fixed at Q2 D 0. This latter
prediction is the basis of a famous test of CVC in the isotriplet of 1C -states
in 12B(g.s), 12 N(g.s.), and 12C�, which decay to the state 12C(0C g.s.) through
ˇ�, ˇC and M1-� -decay, respectively.

Finally, CVC predicts that the dependence of the form factors (4.105) on Q2 is
the same as that of the isovector, electric and magnetic form factors.

b) Nucleonic axial vector currents and PCAC

Let us consider the vertex pn� , Fig. 4.4, with the pion on or off its mass shell, and
carrying the momentumQ D q0 � q.
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Fig. 4.4 Strong interaction
vertex proton-neutron-pion

The pion’s source term j� is defined by the action of the Klein–Gordon operator
on the field 
�.x/:

j�.x/ WD .�Cm2
�/
�.x/: (4.108a)

j�.x/ is a complicated operator function which contains the couplings of the pion
to the other particles in the theory. Owing to this definition, a matrix element of the
type of (4.103) is

˝
BI q0j.�Cm2

�/
�.x/jAI q
˛ D .�Q2 Cm2

�/
˝
BI q0j
�.x/jAI q

˛
;

so that we have

˝
BI q0j
�.0/jAI q

˛ D 1

m2
� �Q2

˝
BI q0jj�.0/jAI q

˛
: (4.108b)

For the example of Fig 4.4, a decomposition in Lorentz covariants is

˝
pI q0jj�.0/jnI q

˛ D i
p
2

.2�/3
g.Q2/up.q0/�5un.q/: (4.109)

Here g.Q2/ is a Lorentz scalar form factor; at the point Q2 D m2
� it is the

conventional pion–nucleon coupling constant

g.Q2 D m2
�/ � g�NN with g2�NN=4� D 14:64: (4.110)

Making use of (4.102) and (4.108b) we can write

˝
pI q0jj�.0/jnI q

˛ D .m2
� �Q2/

˝
pI q0j@˛a.1Ci2/

˛ .0/jnI q˛

D .m2
� �Q2/

iQ˛

f�m2
�

˝
pI q0ja.1Ci2/

˛ .0/jnI q˛ :
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On the r.h.s. of this equation we insert the form factor decomposition (3.209) (with
FT � 0), and obtain

D i

.2�/3
m2
� �Q2

f�m2
�

up.q0/
�
��Q�5FA.Q

2/C Q2

2mN
�5FP.Q

2/

�
un.q/:

Upon comparison with (4.109), and making use of the Dirac equations by means of
which

up.q0/��Q�5un.q/ D .mp Cmn/up.q0/�5un.q/ ' 2mN Nup�5un;

we obtain the equation

p
2g.Q2/ D m2

� �Q2

f�m2
�

�
2mNFA.Q

2/C Q2

2mN
FP.Q

2/

�
: (4.111)

As such and without further knowledge about the form factors g, FA, and FP, this
equation is barely more than an identity because at least one of its two sides must
be off-shell: g.Q2/ is physical, i.e. measurable at Q2 D m2

� , whilst FA.Q
2/ and

FP.Q
2/ are measurable in the domain Q2 � 0 which does not contain the point

m2
� . It is precisely at this stage that the assumption of PCAC becomes effective:

According to this assumption the extrapolation of the form factors away from their
physical domain should be as smooth as possible.

Example 1. Goldberger–Treiman relation. As an application let us evaluate (4.111)
at Q2 D 0, and let us assume that g.Q2/ is essentially constant when extrapolated
from the physical point m2

� to the point zero, g.0/ ' g.m2
�/. In this approximation

we obtain the relation

f� '
p
2mNFA.0/

g�NN
(4.112)

(so-called Goldberger–Treiman relation), which now relates measurable quantities,
FA.0/ is determined in the decay n ! pe� Nve with the result FA.0/ D 1:2573.28/.
The r.h.s. of (4.112) then gives 0:880 m�C D 0:123GeV which is indeed rather
close to the measured value of f� , (4.94).

Example 2. Muon capture in nuclei. As a second application consider capture of
a muon from the 1s-state in a muonic atom via the reaction ��p ! nv�. For
the sake of simplicty let us assume that the muon (momentum p) and the proton
(momentum q) on which it is captured, are in a relative s-state and move with small,
nonrelativistic velocities, i.e. p ' .m�; 0/; q ' .mN; 0/. The energy of the neutron
in the final state is then approximately

Eq0 ' mNf1Cm2
�=2m

2
Ng;

and the squared momentum transfer isQ2 D .q0�q/2 D 2mN.mN�2E 0q/ ' �m2
�.

In the theory of muon capture it is customary to redefine the form factor FP as
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follows
GP WD m�

2mN
FP.�m2

�/:

At Q2 D �m2
� and assuming the extrapolations

FA.�m2
�/ ' FA.0/; g.�m2

�/ ' g.m2
�/;

equation (4.111) leads to the approximate equality

m�GP ' 2mNFA.0/� m2
�

p
2

m2
� Cm2

�

g�NNf�;

or, by making use of the relation (4.112),

GP

FA.0/
' 2m�mN

m2
� Cm2:

�

(4.113)

Thus, PCAC predicts GP ' 6:5 FA.0/ D 8:13, in good agreement with the results
of muon capture experiments.

Example 3. Adler–Weisberger relation. One can apply PCAC and the method of
soft pions to pion–nucleon scattering at threshold. With an additional input from
current algebra, stating, in essence, that the equal time commutator of an axial vector
charge Q.i/

A .x
0/ WD R

d3xa.i/0 .x/ with another axial vector current is proportional
to a vector current, viz.

ŒQ
.i/
A .0/; a

.k/
˛ .0/� D i"ikl�

.l/
˛ .0/;

one derives the following relation between FA.0/, g�NN and the isovector pion–
nucleon scattering length:6

F 2
A.0/ ' 6

g2�NN

4�

�
m�

2mN

�2
1

m�.1Cm�=mN/.a1 � a3/ : (4.114)

This relation predicts that .a3 � a1/ is negative; from the values of g�NN and FA

quoted above one finds .a3 � a1/ m� ' �0:27, in striking agreement with the
experimental value for this quantity.

6We omit the derivation of (4.114) and refer to the orignal literature (Adler 1965, Weisberger 1966,
Weinberg 1966).
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4.2.5 Another Example: Pion Radiative Decay

A further example which illustrates the properties of hadronic weak currents in a
transparent and instructive manner is the decay

�C ! eC�e� .�� ! e��e�/: (4.115)

This decay mode has a branching ratio of 1:61.23/� 10�7, and, therefore, is almost
as rare as pion beta decay. Although the analogous muonic mode

�C ! �C��� (4.116)

is much more frequent (branching ratio 1:24.25/� 10�4), it is less interesting than
the electronic mode (4.115) because, as well shall see, it is completely dominated
by internal bremsstrahlung (that is, by processes in which the photon is shaken off
by the external charged particles). In the decay mode (4.115), to the contrary, there
are sizeable contributions from genuine structure terms which are comparable to the
contributions from bremsstrahlung diagrams.

It is convenient to analyze this process in several steps, as follows.

a) Internal bremsstrahlung

The diagrams describing internal bremsstrahlung are shown in Fig. 4.5. In the
diagram 4.5a the photon is emitted by the outgoing positron, whilst in diagram 4.5b
it is emitted by the incoming pion. In either case the process contains the decay
amplitude �C ! eCve (on or off-shell) and an ordinary bremsstrahlung process.
Following standard rules, the diagram of Fig. 4.5a corresponds to the amplitude

T
.e/

IB D �
ief�G

.2�/6
p
2
"˛u�.p2/�q.1 � �5/

�.�p1 C �k/Cme

2.p1k/
�˛�e.p1/; (4.117a)

where q is the momentum of the decaying pion; p1, p2 and k are the momenta of the
positron, neutrino, and photon, respectively, whilst "˛ is the photon’s polarization
vector. The energy denominator in the propagator is

.p1 C k/2 �m2
e D 2.p1k/:

The amplitude 4.5b (the photon being emitted by the pion) reads

T �IB D
ief�G

.2�/6
p
2
"˛
.q CQ/˛Qˇ

.q � k/2 �m2
�

lˇ; (4.117b)

where
lˇ WD u�.p2/�ˇ.1 � �5/�e.p1/ (4.118)
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Fig. 4.5 Internal Bremsstrahlung in the decay �C! eCve� . In diagram (a) it is the positron, in
diagram (b) it is the pion that radiates. Diagram (c) is the contact term. Only the sum of the three
graphs is gauge invariant

is the leptonic vertex and where Q WD q � k is the momentum of the pion in the
intermediate state.

Equation (4.117b) deserves some more explanation and a word of caution. The
pion in the intermediate state is not on its mass shell. Therefore, at the weak vertex
we have to insert f�.Q2/ at a squared momentum transfer off the pion’s mass shell.
Furthermore, the electromagnetic vertex describes the transition from an external
pion to an offshell pion state and, therefore, must be described by a general form
factor decomposition of the form of (4.86), viz.

fC.Q2; k2/.q CQ/˛ C f�.Q2; k2/.q �Q/˛
D fC.Q2; k2/.2q � k/˛ C f�.Q2; k2/k˛; (4.119a)

where fC.Q2 D m2
�; k

2/ is the pion’s electric form factor, (with fC.0/ D 1), whilst
f� is a form factor that would not contribute ifQ2 were equal tom2

� . Indeed one can
show (see remarks at the end of this section) that fC and f� are linearly dependent
and are related by

.m2
� �Q2/fC.Q2; k2/C k2f�.Q2; k2/ D m2

� �Q2: (4.119b)

This relation (taken at k2 ¤ 0/ is instructive as it says that f� is proportional to the
squared r.m.s radius of the pion.

lim
Q2!m2�

�
1

m2
� �Q2

f�.Q2; k2/

�
D 1

k2
.1 � fC.m2

�; k
2// D �1

6

˝
r2
˛C O.k2/:

(4.119c)
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In the amplitude (4.117b) we have replaced f�.Q2/ by its on-shell value f�.m2
�/

and have set fC.Q2; k2/ � 1. In terms of physics this means that we have taken
the pion to be a pointlike particle which possesses no internal structure. This is
legitimate provided we lump the extra terms into what we shall call the structure
terms proper (see below).

The sum of the amplitudes (4.117a) and (4.117b) is not gauge invariant because,
if we replace "˛ by k˛ , we obtain

k˛uv.p2/

�
1

2.p1k/
�q.1 � �5/.me ��p1 � �k/�˛

C 1

2.qk/
.2q � k/˛.�q � �k/.1 � �5/

�
�e.p1/

D uvf.��q C �q � �k/.1 � �5/g�e D �uv�k.1 � �5/�e:

In this equation we substituted ��p1�k D �k�p1 � 2.p1k/, applied the Dirac equation
and used the mass shell condition k2 D 0. This calculation shows that gauge
invariance can be restored by adding the following amplitude to (4.117a, b):

T
.�e/

IB D � ief �G

.2�/6
p
2
"˛g

˛ˇlˇ: (4.117c)

Indeed, the sum of T .e/IB ; T
�

IB, and T .�e/
IB is now gauge invariant.

There is no arbitrariness in this procedure. This additional term, needed to make
internal bremsstrahlung gauge invariant by itself, is fixed uniquely to the order .k/0

in an expansion in terms of the photon momentum. Physically it represents a contact
term (see Fig. 4.5c) where the photon and the lepton pair emerge at the same point
of space–time. It arises naturally in models in which the pions remain structureless
such as the nonrelativistic quark model (Scheck et al. 1973), we leave this as an
exercise. Finally, having ascertained that the contributions from bremsstrahlung
are gauge invariant, the structure terms proper must also be gauge invariant by
themselves. This is a useful restriction in formulating form factor decompositions
of those structure terms. With the abbreviations

s WD .qk/; � WD � eG

.2�/6
p
2
; (4.120)

the sum of the three amplitudes (4.117) is

TIB D �if�"˛

��
g˛ˇ C 1

s
q˛.qˇ � kˇ/

�
lˇ

C 1

2.p1k/
uv.p2/ �q.1 � �5/.me ��p1 � �k/�˛�e.p1/

�
; (4.121)

with lˇ as defined by (4.118).
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b) Structure terms

Let us now turn to the structure terms which, by definition, describe all contributions
to the decay (4.115) which are not contained in the amplitude (4.121). In this
amplitude the pion was taken to be structureless and no other intermediate states
than those of Figs. 4.5a, b were admitted.

In the conversion of a pion into a photon via the weak hadronic currents both
the vector and the axial vector current can contribute. This is so because the photon
contains either G -parity, plus and minus (cf. Table 2.1). The pion has G.�/ D �1.
Therefore, in the matrix element h� j�˛.0/j�i it is the isoscalar part of the photon
that contributes (cf. Table 4.1),

h�.I D 0;G D �/j�ˇ.I D 1;G D C/j�.I D 1;G D �/i: (4.122a)

Similarly, in the matrix element h� ja˛.0/j�i it is the isovector piece that contributes,

h�.I D 1;G D C/jaˇ.I D 1;G D �/j�.I D 1;G D �/i: (4.122b)

In decomposing the matrix elements (4.122) in terms of Lorentz covariants, we have
to keep in mind the following points:

(i) Both expressions (4.122) must be proportional to "˛, the polarization vector of
the photon. "˛ is an axial vector.

(ii) The decomposition of either matrix element, (4.122a) or (4.122b), must be
gauge invariant on its own.

(iii) If "˛M˛ˇ is to be a vector (an axial vector), M˛ˇ must be a pseudotensor
(genuine tensor) constructed on the basis of g��; "���� , and the momenta k
and q.

The only pseudotensor we can form is "˛ˇ��k�q� . It is automatically gauge invariant
since its contraction with k˛ vanishes. Thus, the matrix element (4.122a) must be
proportional to

"˛.k/"
˛ˇ��k�q� :

Regarding proper tensors the only possible forms are g˛ˇ; q˛kˇ; k˛qˇ; k˛kˇ and
q˛qˇ , the first two of which can be combined to a gauge invariant form,

.qk/g˛ˇ � q˛kˇ:

The third and fourth give zero upon constraction with "˛, whilst the fifth is not gauge
invariant.

In conclusion, the structure dependent contribution to the process (4.115) can be
written in the following effective form:

Ts D � 1

m�

"˛fF.s/"˛ˇ��k�q� C ia.s/.sg˛ˇ � q˛kˇ/glˇ: (4.123)
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Here F.s D .qk// is an invariant form factor that describes the vector structure
(4.122a), a.s/ is the form factor that describes the axial vector structure (4.122b);
s and � are defined by eqs. (4.120). We have taken out a factor 1=m� in order to
make F.s/ and a.s/ dimensionless. [We note, but do not prove here, that from time
reversal and charge conjugation invariance F and a are real.]

The hypothesis of CVC implies that the vector form factor F.s/ is related to the
amplitude for the decay of the neutral pion into two photons,

�0 ! ��: (4.124)

This is seen as follows. In analyzing the properties of the matrix element h�1�2j�0i
with respect to internal quantum numbers we realize that the isopins andG -parities
contained in the photon states must occur in either of the two combinations

.photon1 W IG D 1C; photon 2 W IG D 0�/;

or

.photon 1 W IG D 0�; photon 2 W IG D 1C/; (4.125)

in order to match the quantum numbers IG D 1� of the pion. However, due to
their boson nature, the two photons are indistinguishable and therefore, these two
possibilities are identical. In other words, the decay (4.124) is characterized by
one single amplitude. Furthermore, the structure of the matrix element (4.122a) is
exactly as indicated in (4.125). With the CVC relation between the electromagnetic
current (the source of the photon field) and the weak vector current �˛ , it follows
that the form factor F.s/ must be proportional to the amplitude characteristic for
�0-decay.

The exact relationship is this: Let k; k0 be the momenta of the two photons,
respectively, "˛; "0ˇ their polarization vectors, and let q be the momentum of the
pion. For the same reasons as for (4.122a), the amplitude for the decay (4.124) must
have the form

T�0!�� D e2

.2�/9=2
1

m�

2a0"˛ˇ��"
˛"0ˇk0�k� : (4.126a)

[We have, arbitrarily, inserted a factor 2 because of the two identical possibilities
(4.125). The factor 1=m� is introduced in order to make a0 dimensionless.]

The decay width is easily worked out to be

� .�0 ! ��/ D ˛2�a20m�: (4.126b)

From the measured value � .�0 ! ��/ D 7:85.54/ eV one finds

ja0j D
p
� .�0 ! ��/

˛
p
�m�

D 1:865.64/� 10�2: (4.127)
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Using the Wigner–Eckart theorem we have

h�.IG D 0�/j j .1/˛ .0/ j�0 i D 1p
3
.0 jj j˛ jj 1/; (4.128a)

h�.IG D 0�/ j 1p
2
�.1�i2/
˛ .0/ j�0i D � 1p

3
.0 jj j˛ jj 1/; (4.128b)

where the factor on the r.h.s. is the reduced (isospin) matrix element of the triplet
current. The same matrix elements, when expressed in terms of the form factors
F.s/ and a0, read

h�.0�/ j j .1/˛ .0/ j�0 i D e

.2�/6
1

m�

2a0"˛ˇ�� "
ˇk0�k�

D e

.2�/6
1

m�

2a0"˛ˇ�� "
ˇq�k� ;

h�.0�/ j �.1�i2/
˛ .0/ j�Ci D e

.2�/6
1

m�

F.s/"˛ˇ��"
ˇk�q� :

Upon comparison with the isospin decomposition (4.128), and noting that in the
decay �0 ! �� the variable s has the value s D .qk/ D 1

2
q2 D 1

2
m2
� , one obtains

the CVC relation

F

�
s D 1

2
m2
�

�
D a0

p
2: (4.129)

One important aspect of this result is that pion radiative decay now depends on
only one unknown form factor, a.s/, defined in (4.123). Thus, assuming CVC, the
data can be analyzed in terms of the ratio

R WD a.s/=F.s/: (4.130)

The axial form factor is an interesting quantity for testing theoretical models of
chiral symmetry. We do not go into these more theoretical speculations and we just
note that, at the very least, it must contain the form factor effect that we discussed
in connection with (4.117b).7 Indeed, from (4.119c) we see that we must have

a D NaC 2m� f�
@fC
@k2

ˇ̌
ˇ̌
k2D0
D NaC 1

3
m�f�hr2�i; (4.131)

7The difference between f 2
� .Q

2/ and f�.q2 D m2
�/ is negligibly small since Q2 � q2 D �2s,

with s D .qk/ varying between 0 and m2
�=2. So when one expands,

f�.Q
2/ ' f�.q

2/� 2s@f�=@Q2jQ2
Dm2�

;

the derivative is multiplied by a small number.
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where Na describes other structure terms contributing to the axial matrix element.
We note that the second term in (4.131), with hr2�i D 0:46 fm2, would give
1
3
m�f� hr2�i ' 7:24 � 10�2. The curious observation is that the data seem to favour
a ' 0. this would imply a rather strong cancellation in (4.131). An analysis in the
framework of quantum chromodynamics based on sum rules (Nasrallah et al. 1982)
does indeed give a close to zero.

c) The differential decay spectrum

The calculation of the differential decay probability from the amplitudes (4.121,
4.123) is rather tedious and we skip its details. It is convenient to choose the energies
of the positron (Ee/ and of the photon .E�/ as the independent variables, rather
than one energy and the opening angle 	 between the photon and the positron. The
standard formulae of App. B give, in the pion’s frame,

d2�

d.cos 	/dE�
D .2�/9

8m�

Z
dEe

X
jT j2 j p1jE�

Ev
ı.Ev C E� C Ee �m�/:

Neglecting the electron mass, we have Ee ' jp1j and, from energy and momentum
conservation,

2EeE�.1 � cos 	/ � 2m�.Ee C E�/Cm2
� D 0: (4.132)

With me ' 0 the maximal energy of the positron as well as that of the photon is
Emax D m�=2. It is convenient to introduce the dimensionless variables

x WD E�

Emax
' 2E�

m�

; y WD Ee

Emax
' 2Ee

m�

; (4.133)

and to transform the differential decay rate accordingly. The Jacobian is

@.Ey; cos 	/

@.x; y/
D x � 1

xy2
m�:

Working out the traces and transforming to the variables x and y, one finds
eventually:

d2� .� ! ev�/

dxdy
D ˛

2�
� .� ! ev/fWIB.x; y/CWint.x; y/CWS.x; y/g; (4.134)

where � .� ! ev/ is the decay width (4.93), with f � e;WIB is due to the
bremsstrahlung diagrams, WS to the structure terms, whilst Wint contains the
interference terms:
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WIB.x; y/ D 1 � y
x2

.x � 1/2 C 1
x C y � 1 ; (4.135a)

Wint.x; y/ D m�

f�

1 � y
x

�
.F C a/.1 � x/ � .F � a/

�
2 � y C .1 � y/2

x C y � 1
��
;

(4.135b)

WS.x; y/ D
�
m�

f�

�2 �
m�

2me

�2
.1� x/f.F C a/2.x C y � 1/2 (4.135c)

C.F � a/2.1� y/2g:

Let us now discuss these formulae and add a few remarks on this decay. With
me ' 0 the kinematically allowed region for x and y is the triangle indicated
in Fig. 4.6. According to (4.132), which now reads

1

2
.1 � cos 	/xy � .x C y/C 1 D 0: (4.132’)

the outer boundaries correspond to 	 D 180ı, the lower side of the triangle
corresponds to 	 D 0ı. The dashed line corresponds to an intermediate opening
angle .	 D 120ı/.

If in an actual experiment one integrates the rates over the upper part of the
triangle, say from some x0 to 1 and from y0 to 1 with e.g. x0 ' y0 ' 0:7,
then it is not difficult to see that WIB and WS give contributions of comparable
magnitude, whilst Wint contributes much less. Actually, within WS and under
identical experimental conditions, the term with the factor .FCa/2 would contribute
about ten times more than the term term with .F � a/2. Therefore, it is primarily
the combination .F C a/2 which is determined by experiment; (see, however, note
at end of this section.)

As one sees from (4.134, 4.135a), the contribution from bremsstrahlung has the
same suppression factor m2

e which was characteristic for the decay � ! ev and

Fig. 4.6 The triangle indicates the domain of allowed photon and positron energies in the decay
�C ! eCve�: x is the reduced photon energy x D 2E�=m�; y is the reduced positron energy
y D 2Ee=m�: 	 is the opening angle between photon and positron momentum
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whose origin we discussed in Sect. 3.1.2d in terms of the helicity transfer at V and
A vertices. Clearly, the helicity selection rules do not depend on whether the pion
(or positron) is on or off its mass shell. In the structure term proper (4.135c), there
is no such suppression factor (the factor m2

e cancels out), because the helicity of
the photon can always compensate for the helicity mismatch at the leptonic vertex,
without any conflict with the conservation of total angular momentum.

The extra factor m2
� = 2m

2
e in WS compensates for the smallness of F D a0

p
2,

with a0 as given in (4.127). For example, at x D y D 0:7 we find WIB ' 1.67
while WS ' 1 � 103.F C a/2 ' 0:70 (assuming a D 0), so that the structure
terms are of the same order of magnitude as the bremsstrahlung. On the basis
of these results we can now comment on the muonic decay mode (4.116). The
structure terms are proportional to � .� ! ���/m

2
� = 2m

2
�, and are of the same

order of magnitude as in the electric mode (4.115). However, the bremsstrahlung
terms are larger by a factor .m� =me/

2 ' 4:3 � 104. The phase space available for
the branch (4.116) is smaller than for the branch (4.115) (see exercise 4.10), and
there are some additional mass terms in the decay probabilities. Nevertheless, the
estimate is essentially correct. The branching ratio for the decay (4.116) is about
four orders of magnitude larger than for the decay (4.115). In the muonic mode
internal bremsstrahlung predominates by about 103 over the structure terms.

Additional remarks on theory. Both the vector form factor F and the axial
vector form factor concern intrinsic properties of the pion and, therefore, are purely
hadronic properties. One can show, using PCAC, that the amplitude a0 for the decay
�0 ! �� is given by (Adler 1968)

a0 D g�NN

4�2FA.0/

m�

mN

S; (4.136)

where S is a pure number that depends on the charges Qf of the u- and d-quarks:

S D ˙iaiQ
2
i . The ai are the coefficients of the individual quark terms in a.3/˛ .x/,

the isospin partner of a.1˙i2/
˛ .x/, viz.

a.3/˛ .x/ D
X
iDu;d

ai

3X
cD1

qic.x/�˛�5qic.x/ D
X
c

.Nuc Ndc/�˛�5 �3
2

�
uc
dc

�

(c being the colour index), so that au D 1
2
; ad D � 12 ; as D 0, and S D 3f 1

2
. 2
3
/2 �

1
2
. 1
3
/2g D 1

2
. The prediction (4.136) gives a0 D 1:96�10�2, in good agreement with

the experimental number (4.127). This quantitative agreement rests on the threefold
degeneracy in the colour degree of freedom and is an important argument in favour
of QCD.

Regarding the axial form factor a.s/ of (4.123), one can show that the natural
scale which determines the orders of magnitude is the ratio of magnitude of f� m�

to the square of the mass of the �-meson (770)

f�m� =m
2
� ' 3:1 � 10�2: (4.137)
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This is plausible from (4.131) if one assumes the pion’s charge form factor to be
dominated by the �-meson, because in this case hr2�i is proportional to m�2� .

The remaining structure term Na (4.131), has the same scale (4.137) in all models
where it is expressed in terms of commutators of currents which are saturated with
�- and a1-vector meson states.

Finally we wish to comment on equations (4.119). If the pion in the intermediate
state is not on its mass shell, the matrix element of the electromagnetic current
hQjj˛jqi is to be replaced by the expression

i

.2�/3=2

Z
dxeiQx.�Cm2

�/ h0jT
�.x/j˛.0/jqi

D 1

.2�/3
ffC.Q2; k2/.q CQ/˛ C f�.Q2; k2/.q �Q/˛g: (4.138)

Making use of translational invariance the integral on the l.h.s. can also be written
as follows:

Z
dxe�ikx.�Cm2

�/h0 jT
�.0/j˛.�x/ j qi;

with k D q. Transforming x to �x, then multiplying with k˛ gives the divergence
of the integrand,

@˛h0 jT
�.0/j˛.�x/ j qi
D h0 j .@0	.x0//j0.x0; x/
�.0/C .@0	.�x0//
�.0/j0.x0;x/ j qi
D h0 j Œj0.0; x/; 
�.0/� j qiı.x0/

(noting that the divergence of j˛ vanishes). The commutator of j0 with 
� is

Œj0.0; x/; 
�.0/� D �
�.0/ı.x/:

Therefore, contracting (4.138) with k˛ we obtain for the l.h.s.

1

.2�/3=2

Z
dxeiQx.�Cm2

�/h0 j
�.x/ j qiı.x0/ı.x/:

Integrating the �-operator by parts this gives, finally,

1

.2�/3
.m2

� �Q2/;
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which is equal to the r.h.s. of (4.138) contracted with k˛ ,

1

.2�/3
ffC.m2

� �Q2/C f�k2g:

This completes the proof of (4.119b).
Remarks on experiments. Both the radiative decay �C ! eCve� and the

analogous kaon decay KC ! eCve� have been measured to high accuracy (for a list
of references see [RPP10]) and have been analysed in terms of the vector and axial
vector structure terms. In addition, the decay �C ! eCveeCe�, with the photon
replaced by an electron–positron pair, has also been measured. A detailed analysis
of this latter decay (Kersch et al. 1986) shows that it has a different sensitivity to the
form factors F and a, and that it also allows a separate determination of the term

R WD 1

3
m�f�hr2�i;

which depends on the mean square radius of the pion, cf. (4.131) above. Indeed, all
three terms were determined from the decay with an electron–positron pair in the
final state. The results are in fair agreement with the quantitative analysis sketched
above.

4.3 New Perspectives and Open Problems

There are many open questions in the present theory of the weak interactions
some of which were already mentioned in Sect. 3.4.4 and in the introduction. In
this section we touch on some topics where present and future experimentation is
likely to yield further insight and, perhaps, some clues for further progress in our
understanding of weak interactions.

In Sect. 4.1 we discussed some possibilities for precision tests of the Lorentz
structure of weak CC and NC interactions. In the present section we deal with
two topics which have some, though model dependent, relation to this problem, but
which are also of great interest in their own right: The question of neutrino masses
and the nature of the leptonic family numbers.

The present upper limits on possible neutrino masses are not very stringent. The
best mass limit for Nve comes from the ˇ-decay of the triton,

3H!3 HeC e� C Nve;

where one measures the spectrum of the electron near its kinematical endpoint. The
present upper limit is 2 eV. For the case of the muon neutrino v� the best limit comes
from a precision measurement of the muon momentum jpj in pion decay at rest,
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�C ! �Cv�:

Using the muon and pion masses as input, information on m.v�/ is deduced from
the kinematic relation

m2
v� D m2

� Cm2
� � 2m�

q
p2 Cm2

�: (4.139)

This method yields an upper limit of about 270 keV.
Regarding the �-neutrino direct mass limits are obtained from �� decays such

as, e.g., �� ! 3��2�Cv� which constrain, as much as possible, the phase space
available for the emerging neutrino. The weighted average over the results obtained
from � decay studies gives an upper limit of about 30 MeV.

Indirect and, to some extent, model-dependent limits on neutrino masses are
obtained from cosmological and astrophysical considerations, the latter concerning
the supernova SN 1987 A that was observed in 1987. It would take too much
space to discuss the details of these arguments and their implications for possible
nonvanishing neutrino masses. The result is that standard cosmology is compatible
with either very light neutrinos, the sum of the three neutrino masses being bound
to be smaller than 100–200 eV, or, sufficiently heavy neutrinos, with bounds larger
than the direct limits quoted above. One should note, however, that the experiments
at the Z-pole quoted in Sect. 3.7, seem to exclude additional, heavy, neutrinos up to
about 40 GeV.

In view of this state of affairs, one must be prepared to investigate two extreme,
in fact complementary, possibilities: if neutrinos are massive then either

(i) some of the masses are “large”, in the sense that m.v�/ and m.v� / could be of
the same order of magnitude as me and/orm�, respectively, or

(ii) Some or all masses are different from zero but small, say . l e V, and at least
one mass difference is small as compared to a typical experimental energy
resolution.

In the first case there is hope that it might be possible to find direct evidence for
a nonvanishing mass in the kinematics of a leptonic or semileptonic process. The
chances for this are even better, as well shall see, if there is neutrino state mixing. In
the second case, and if the leptonic family numbers are not conserved, oscillations
between different neutrino states become observable. If these occur, and if the state
mixing involves no more than two or three neutrino states, then it is possible to
extract information on masses and mixing matrix elements.

It is plausible that neutrinos which have finite, nondegenerate masses, will occur
as mixed states in the weak interactions. In other terms, the weak eigenstates “ve”,
“v�”, “v�”, which couple to CC vertices (i.e. vertices of the type .fvfW//may not be
identical with the mass eigenstates “n1”, “n2”, “n3”. For the case of the three lepton
families, we would have

.vf/L D
3X
iD1

Uf i .˛1; ˛2; ˛3; "/.ni /L; f D e; �; � (4.140)
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where Ufi is the leptonic analogue of the quark mixing matrix (3.152). More
precisely, this is true if the physical neutrinos are purely left-handed. If, in addition,
also right-handed neutrino states couple to other particles, then these can be mixed
states, too, viz.

.vf/R D
3X
iD1

Vfi .ni /R; (4.141)

with a mixing matrix a priori independent of Ufi , equation (4.140).
We emphasize that the ansatz (4.140) should not be analyzed in isolation and

disregarding the mass sector of the theory since it is the structure of the mass
Lagrangian that determines the mixing matrix elements. Particularly the limit of
all masses going to zero must be studied with some caution.

4.3.1 “Heavy” Neutrinos

a) Neutrino masses from two-body decays

Relation (4.139) shows that the momentum of the charged lepton in the final state
depends on the square of the neutrino mass. Therefore, the value of this momentum
is not very sensitive to masses in a range of masses small as compared to the
mass of the parent particle. On the other hand the two-body decay of a stopped
particle has the advantage that the charged lepton in the final state is monochromatic
and, therefore, provides a clear and unique signature for the number and masses
of companion neutrino states. Indeed, suppose that in the decay of a pseudoscalar
meson P

PC ! fCvf; (4.142)

the weak interaction state “vf” is a superposition of different mass eigenstates ni
with massesmi , as indicated in (4.140). For every mass state withmi in the interval

0 6 mi < mP �mf (4.143)

there is a monochromatic state of the charged lepton fC with momentum

jp.i/j D 1

2
mP

q
.1 � r2f /2 C .1 � r2i /2 � .1C 2r2i r2f /; (4.144)

where we have introduced the mass ratios

rf WD mf=mP; ri D mi=mP: (4.145)

In other words, the decay (4.142) in reality consists of several branches

P! f.p.i//C ni .mi/:
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The corresponding partial decay width is calculated as follows. According to App. B
we have

� D .2�/7�

2m2
P

jp.i/j
X
jT j2:

The T -matrix element being

T D i

.2�/9=2
�PGp
2
Uf iui .k/�q.1 � �5/�f.p/;

where �P � f� cos 	1 in the case of pions, �P D fK sin 	1 cos 	3 in the case of kaons
.fK being defined in analogy to (4.92)), and where q D p C k. Making use of the
Dirac equations (1.85, 1.84) this gives

T D � i

.2�/9=2
�PGp
2
Uf iui .k/fmf �mi C .mf Cmi/�5g�f.p/;

and therefore

X
jT j2 D 4�2PG

2

.2�/9
jUfi j2f.m2

f Cm2
i /.pk/C 2m2

i m
2
f g;

with .pk/ D 1
2
.m2

P �m2
f �m2

i /. The partial decay width is then found to be

� .P! f.i/vi / D �2PjUfi j2G2jp.i/jm2
P

4�
fr2f C r2i � .r2f � r2i /2g; (4.146)

where jp.i/j is given by eq.(4.144). [As one verifies easily, (4.146) with ri D 0; �P D
f� cos 	1 and U D 1 reduces to (4.93) for the decay � ! fvf. Note also the
complete symmetry of (4.146) in i and f.]

Let us discuss the result (4.146) in a little more detail. Possible reactions that can
be investigated in the laboratory are

�C ! �Cv�; (4.147a)

�C ! eCve; (4.147b)

KC ! �Cv�; (4.147c)

KC ! eCve; (4.147d)

A good starting point is the idea that the predominant states in ve and v�, respec-
tively, have rather small masses and that one (or several) heavy mass eigenstates
are mixed into them. This would imply that both jUe1j and jU�2j are large as
compared to jUe3j or jU�3j etc. The strengths of the heavy neutrino branches relative
to the dominant light neutrino branch is determined by jUe3=Ue1j2 or jU�3=U�2j2,
respectively (which is a small number), and by the mass factor in curly brackets on
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the r.h.s. of (4.146). This mass factor indicates to which extent the decay is inhibited
by the helicity selection rule. For this reason, the electronic modes (4.147b) and
(4.147d) are more sensitive to heavy neutrinos than the muonic modes: the dominant
mode is suppressed because both e and n1 are light, the heavy neutrino mode is not
because n3 is heavy. As an example consider the decay (4.147b) withm1,m2  me,
but m3 D 80 MeV. Then jp.1/j ' 1

2
m�; j jp.3/j ' 0:67 12m� and from (4.146)

� .� ! ev3/

� .� ! ev1/
D jUe3j2
jUe1j2 1:65 � 10

4:

Therefore, this mode allows detecting even very small admixtures of heavy neutri-
nos. Indeed, present limits are of the order of jUe3j2 < 10�5. In fact, information on
possible heavy neutrinos can be obtained both from a direct search for monochro-
matic charged leptons in the decays (4.147), and from a comparison of measured
e=� branching ratios

� .� ! eve/

� .� ! �v�/
;
� .K! eve/

� .K! �v�/

to the expected results (Shrock 1981). The different reactions (4.147) are com-
plementary insofar as they scan different mass regions, owing to their different
kinematics.

b) Neutrino masses from three-body decays

From a kinematic point of view decays of elementary systems into three bodies, one
of which is a massive neutrino, are more favourable than two-body decays because
the neutrino can be produced with arbitrarily small velocity. In this nonrelativistic
limit the energy of the neutrino is a function of its mass, and not of the square of
the mass. Therefore in the appropriate kinematic situation one expects measurable
effects which are linear in the mass of the neutrino. Examples of such decays are

3H!3 HeC e� C ve; (4.148a)

.e.Z;A//K�shell ! .Z � 1;A/C � C ve; (4.148b)

�C ! �C C � C v�; (4.149a)

.��6Li/s�state !3 HC3HCv�: (4.149b)

Similarly, if we suspect mv� to be much larger than mve, and mvT to be much larger
than mv�, the decays

�C ! eC C ve C Nv�; (4.150a)

�C ! �C C v� C Nv� ; (4.150b)

�C ! eC C ve C Nv� ; (4.150c)
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Fig. 4.7 Collinear decay of a particle where decay particle 1 has maximal energy

may also be suitable for detection of these masses. The difference being that in the
first group of decays (4.148, 4.149), there are two particles which can be detected,
in the second group (4.150), only one particle can be studied.

Here we analyze primarily the first group (4.148, 4.149). For the sake of
simplicity we neglect neutrino state mixing, i.e. we take the matrix (4.140) to be
(approximately) diagonal. It will be easy, however, to extend the results to the more
general situation with nontrivial mixing.

Let us consider the decay of a particle, or atomic system, of mass M into three
particles with masses m1;m2;m3, respectively, in a frame of reference where the
decaying system is at rest. Suppose that 1 and 2 are particles that can be detected
in an experimental arrangement, and that 3 is a neutrino whose mass we wish to
determine. We determine first the maximal energy of particle 1. At this kinematic
point the three momenta of the particles are collinear, as shown in Fig. 4.7, with
p1 D �kn; p2 D xkn, and p3 D .1� x/kn. x is a number between 0 and 1 that one
determines as follows. For E1 to be maximal, k D k.x/ must be maximal. From
energy conservation we have the condition

M D E1 C E2 C E3 D
q
m2
1 C k2 C

q
m2
2 C x2k2 C

q
m2
3 C .1 � x/2k2

DW F.x; k.x//: (4.151)

The maximum of the function k.x/ is found from the equation for its derivative

dk

dx
D �@F

@x

�
@F

@k
D �kE1 xE3 � .1 � x/E2

E2E3 C x2E1E3 C .1 � x/2E1E2 D 0;

which yields the condition
xE3 D .1 � x/E2: (4.152a)

By squaring this equation, one finds xm3 D .1 � x/m2 and, finally

x D m2

m2 Cm3

: (4.152b)

Inserting (4.152a) into (4.151), one hasM �E1 D E2=x D .m2 Cm3/E2=m2, the
square of which gives the desired result

Emax
1 D 1

2M
fM2 Cm2

1 � .m2 Cm3/
2g: (4.153a)
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The energy of particle 2 at this same kinematic point is easily calculated, viz.

E2jatEmax
1
D m2

2M.m2 Cm3/
fM2 �m2

1 C .m2 Cm3/
2g: (4.153b)

As in the last section it is convenient to introduce the mass ratios mi=M ;
similarly, it is useful to introduce dimensionless energy variables xi by dividing
each energy Ei by M=2, its maximal value in case the other two particles are
massless:

ri WD mi=M; xi WD 2Ei=M: (4.154)

Relation (4.151) then reads

x1 C x2 C x3 D 2; (4.151’)

while (4.153a, b) become

xmax
1 D 1C r21 � .r2 C r3/2; (4.155a)

x2jatxmax
1
D 1

1C r3=r2 f1 � r
2
1 C .r2 C r3/2g: (4.155b)

It is a simple matter to determine the kinematic point where particle 1 has its
minimal energy E1 D m1 or x1 D 2r1. One finds

xmin
1 D 2r1; (4.156a)

x2jatxmin
1
D 1 � r1 C 1

1� r1 .r
2
2 � r23 /: (4.156b)

Clearly, there is a cyclic symmetry in these equations so that all other extrema
can be obtained from them. Figure 4.8 shows the boundary of the kinematically
allowed domain of energies in the (x1; x2/-plane (for the arbitrarily chosen example
r1 D 1

1 6
; r2 D 1

2
; r3 D 1

8
/. Equations (4.155, 4.156) give the coordinates of

the points B1 and A1, respectively. The analogous extrema B2 and A2 for the
energy variable x2 are obtained from (4.155) and (4.156), respectively, by the
permutation 123! 231.

Of particular interest is the point R at which the neutrino (particle 3) comes to
rest. It is in the neighbourhood of this point that we expect effects linear in m3. Its
coordinates x3; x1 are found from (4.156) by the permutation 123! 312, i.e.

x3 D 2r3;
x1 D 1 � r3 C 1

1 � r 3.r
2
1 � r22 /; (4.157a)
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Fig. 4.8 Boundary of the
kinematic domain in the
plane spanned by the energies
of two particles which
emanate from a three-body
decay. Point R is the
projection of the kinematical
point where the third particle
(not visible in this plane) is
produced at rest

while its coordinate x2 is found by means of (4.1510)

x2 D 1 � r3 � 1

1� r 3.r
2
1 � r22 /: (4.157b)

Generally speaking, if we compare the shape of Fig. 4.8 to what it would be for a
massless neutrino, m3 D 0, we see that the coordinates of the points B1, R, and B2
depend on terms which shift linearly with m3. For example, the endpoint energy of
particle 1 is shifted as follows:

�Emax
1 D Emax

1 .m3 D 0/� Emax
1 .m3/ D m3

m2

M

�
1C m3

2m2

�
: (4.158)

The larger the ratio m2=M , the larger the shift. Readers may themselves wish to
discuss the specific examples (4.148, 4.149). We quote only one result for the decay
(4.149a), � ! �v�� . Here M D mC� ;m1 D 0;m2 D m�. Because the photon is
massless the points A1 and B2 coincide, while R is rather close to point B1. The shift
of the photon’s endpoint energy (4.158) is approximately

�Emax
� ' m��

m�

m�

D 0:757m��; (4.159)

a rather large effect indeed.
Unfortunately, a mass determination by simply establishing the exact boundary

of the kinematic domain of Fig. 4.8 is very difficult because the differential rates
which fill this figure become very small as one approaches the boundary from the
inside. In practice, one will only be able to determine partially integrated rates, by
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integrating over finite portions of the allowed domain. This raises the question to
which extent the differential rates are affected by the assumption that the neutrino
mass is different from zero. The answer is this: it can be shown that if the CC
coupling at the leptonic vertex is exactly V–A, the changes in the differential rates
are quadratic in mv (Missimer et al. 1981). As m2

� appears scaled with M2, or the
square of the energy release, this effect is generally negligible. In other terms, the
effect of a nonvanishing neutrino mass, to first approximation, is a purely kinematic
one. The differential rate is cut off by the shrinking boundary of the available phase
space.

Regarding the possibility of neutrino state mixing, we note that state mixing
of several neutrinos ni ; nj ; : : : with mi < mj < : : : means superimposing
several figures of the type shown in Fig. 4.8. The rates of individual decay channels
are added with relative weights jUfi j2. To first approximation the method will be
sensitive only to the lightest, most dominant neutrino component.

In the decays of (4.150), which are of the type

f C ! f 0C�f0 vf; (4.160)

the effects due to possible neutrino masses are even more difficult to identify
because only one particle in the final state can readily be detected. For simplicity,
let us assume that mvf is much larger than mvf0 so that, in fact, the latter may
be neglected. For the decays (4.150) this is certainly a very good approximation
because in the case of muon decay we know already that mve 	 me 	 m, whilst
in the case of the � -decaysmve andmv are certainly negligible as compared to m� .
In this approximation we have

M � mf; m1 � mf0 ; m2 � m�f0
' 0; m3 � m�f ¤ 0:

The maximum energy of the charged lepton in the final state is given by (4.153a)

Emax
1 � W ' 1

2mf
fm2

f Cm2
f0 �m2

�f
g;

which should be compared to (4.43). As in our discussion of muon decay with
vanishing neutrino masses, let us introduce the dimensionless variable, cf. (4.52),

y D E1=W:

The decay spectrum for a polarized initial state, but summing over the polarization
of f0, is calculated as in Sect. 4.1.2b. In particular, the integrals (4.44) are evaluated
in close analogy to (4.90). One finds for the “V–A” interaction
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1

�

d2�

dxd.cos 	/
D AF.y/

q
y2 � y20

�
3y � 2y2 � y20 C

6�2y

1 � y C 3�

�� cos 	
q
y2 � y20

�
2y � 1 � mf0

mf
y0C 2�.1 � y/

1 � y C 3�
��
; (4.161)

where y0 D mf0=W , as before, and

� WD m2
�f
=2mfW: (4.162)

The function AF.y/ stems from the integration over the phase space of the two
neutrinos and is given by

AF.y/ D .1� y/2.1 � y C 3�/
.1 � y C �/3 : (4.163)

The differential decay rate (4.161) has two new features as compared to the case
m2 D m3 D 0:

(i) The isotropic part of the spectrum vanishes at the endpoint y D 1, due to the
phase space factor (4.163).

(ii) The isotropic part of the spectrum has its maximum approximately at the
kinematic point (4.157a) where the sensitivity to m3 � mvf is greatest, i.e.
at

E1 ' mf

2

�
1 � m�f

mf
C m02f =m2

f

1 �m�f=mf

�
: (4.164)

The position of this maximum is indeed a linear function of mvf . However, for the
cases of practical interest (and taking into account the radiative corrections) this
shift is only measurable if mvf=mf is not smaller than, say, 0.05.8 With the present
limit on m2

��
, this excludes muon decay as a realistic possibility.

4.3.2 Neutrino Oscillations

In the preceding sections we considered the case of large neutrino masses, i.e. a
situation where at least v� and v� have masses of the same order of magnitude as the
electron and the muon mass. Although this possibility cannot be excluded on the
basis of extant, direct experimental information, it is in conflict with conclusions
from cosmology [RPP10], p.556. Indeed, stable massive neutrinos make a contribu-
tion to the total energy density of the Universe, viz. �.�/ D mtotn� , where

8For details see Missimer et al. (1981).
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mtot D 2
X
f

mvf for Dirac neutrinos,

mtot D
X
f

mvf for Majorana neutrinos.

The current upper limit to the matter density would yield the constraint
mtot < 11 eV. However, the the Cosmic Microwave Background (CMB) and
further observations in cosmology combine to an even lower limit of about 0.5 eV.
For unstable neutrinos the mass limits depend strongly on their lifetime and, in
fact, are then much less tight. The direct search for “large” masses, in laboratory
experiments, is of great importance not only as a fundamental question of lepton
physics on its own but also as input to astrophysics and cosmology.

In this section we consider the complementary situation of “small” neutrino
masses mentioned in the introduction and discuss some experimental possibilities
for determining finite masses and mass differences. We base our analysis on the
following assumptions:

(i) The weak eigenstates ve; v�; v� are nontrivial superpositions of mass eigen-
states n1; n2; n3, cf. (4.140).

(ii) One or several of the mass differences jmi �mj j are small as compared to the
typical resolution in energy of an actual experiment.

(iii) In particular, the mass differences are small also in comparison with the
momentum with which the neutrinos are produced in a given decay process.

a) Transition probabilities due to oscillations

For the sake of simplicity we consider first the case of two states. Let vf1 and vf2 be
the weak eigenstates, and let

j�f1i0 D jn1i cos˛1 C jn2i sin˛1; (4.165a)

j�f2i0 D � jn1i sin˛1 C jn2i cos˛1: (4.165b)

be the mixed states (4.140) with ˛2 D ˛3 D 0. We assume further that initially
the state jvf2i was produced with a given momentum k, e.g. in a two-body decay
P! f2Cvf2 in the system where particle P was at rest. Since n1 and n2 are the mass
eigenstates the state vf2 has the time evolution

j�f2it D � jn1i e�iE1t sin ˛1 C jn2i e�iE2t cos˛1; (4.166)

where

Ei D
q
m2
i C k2i ' jkj C

1

2
m2
i =jkj: (4.167)

Note that here we make use of assumption (iii), m2
i  k2, and, consequently, we

neglect the difference in momentum in the different mass eigenchannels. At the
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same time it is understood that the momentum resolution in detecting the charged
partner f2 in the two-body decay of particle P is not sufficient to distinguish the two
channels. If these conditions are met the state mixture (4.166) leads to observable
oscillations between the states vf2 and vf1.

In order to see this we recall that the only way of detecting neutrinos is by having
them induce another weak reaction. Whatever the experimental arrangement, it will
always measure either the probability of finding the initial neutrino after a time t ,

P.�f2 ! �f2I t/; (4.168a)

or of finding another neutrino state vf1, viz.

P.�f2 ! �f1I t/: (4.168b)

It is easy to calculate these probabilities from the overlap of the state (4.166) with
the initial states (4.165), viz.

P.�f2 ! �f2I t/ D j0 h�f2jvf2it j2
D 1 � 2 sin2 ˛1 cos2 ˛1f1� cos.E2 � E1/tg; (4.169a)

P.�f2 ! �f1I t/ D j0 h�f1jvf2it j2
D 2 sin2 ˛1 cos2 ˛1 f1 � cos.E2 � E1/tg: (4.169b)

In these formulae (E2 �E1) can be replaced by jE2 �E1j, where

jE2 � E1j ' jm
2
2 �m2

1j
2jkj ' jm

2
2 �m2

1j
2E�

:

In practice, the time of flight t is measured by installing the neutrino detectors at
a distance L from their source and, if possible, by varying that distance. As �=c
is practically 1, L ' t, in natural units. The oscillation pattern in (4.169) is then
determined by the quantity

jE2 �E1j
2�

t D L

L12
;

where the oscillation length L12 is defined by

L12 WD 2�

jE1 � E2j '
4�E�

jm2
1 �m2

2j
: (4.170)

Regarding the units, it is customary to express the length in meters, the neutrino
energyEv in MeV, the difference of squared masses in .eV/2, so that
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L12Œm� D � E�ŒMeV�

jm2
1 �m2

2jŒeV�2
(4.171a)

with

� D „c.in MeV �m/4� � 1012 D 4� � 0:19733' 2:48: (4.171b)

With these definitions we have (with ˛ � ˛1)

P.vf2 ! vf2I L/ D 1 � sin2 .2˛/ sin2.�L=L12/; (4.172a)

P.vf2 ! vf2I L/ D sin2 .2˛/ sin2.�L=L12/: (4.172b)

In a discussion of these results we have to distinguish three limiting situations:

(i) The greatest sensitivity to the phenomenon of neutrino oscillations is obtained
if L ' 1

2
L12, i.e. if the experimental conditions are chosen such that E�=L '

jm2
1 � m2

2j. For example, an experiment with Ev D 100MeV and L D 20m
would be most sensitive to a difference of jm2

1 �m2
2j ' 5 eV2.

(ii) If L=L12 � 1, that is if E�=L  jm2
1 � m2

2j, then the interference term
sin2.�L=L12/ oscillates very rapidly with L, so that only an average effect of
neutrino mixing will be visible,

hP.vf2 ! vf2/i D 1 � 1
2

sin2.2˛/:

This could be the case, for instance, for neutrinos coming from weak processes
in the sun, see below.

(iii) Finally, if L=L12  1, that is if E�=L � jm2
1 � m2

2j, there is practically no
observable effect at all.

The case of three (or even more) mass eigenstates mixed into the weak interaction
states is a little more complicated. Instead of going into all details we just mention
one case which may be relevant for astrophysics. In the case of three basis states,
eq. (4.140), and with a mixing of the form of (3.152), the average probability, for
a beam that was initially ve, of finding again ve after the beam has travelled for a
distance L� Lij, is given by

hP.ve ! ve/i D 1 � 1
2

sin2.2˛1/ � 1
2

sin4 ˛1 sin2.2˛3/: (4.173)

The minimum of this expression is reached for sin2 ˛1 D 2
3
, i.e. sin2.2˛1/ D 8

9
, and

sin2.2˛3/ D 1, in which case hP.�e ! �e/i D 1
3
. This result may be relevant for

the so-called solar neutrino problem to which we turn in the next section.
Finally, we mention that the nondiagonal probabilities hP.ve ! v�/i and

hP.ve ! v� /i depend also on ", the phase indicating CP violation. Here there is
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another though remote possibility of detecting violation of time reversal invariance
in the leptonic world.

b) The solar neutrino flux

There is a wealth of experiments on neutrino oscillations with solar, atmospheric
and terrestrial neutrino sources, too many to be described here, all of which provide
evidence for nonzero neutrino masses and state mixing, cf. [RPP10], review 13.

There is a longstanding problem in solar neutrino physics which may find its
solution in the existence of a nontrivial mass matrix of light neutrinos including the
electron neutrino. We first describe the problem and then turn to a possible solution.

The sun draws the energy it radiates from the fusion of four hydrogen atoms
to helium, 4He, by way of what is called the pp cycle. This cycle starts with the
reactions

pC p!2HC eC C ve pC pC e� !2HC ve
2HC p!3HeC �: (4.174)

It can then terminate by the reaction 3HeC3He!4HeC 2p, or it can produce 7Be
via the reaction 3He C4He !7Be C � . In the latter case there are two branches
leading to two helium-4 nuclei:

(i) Beryllium, through electron capture, converts to lithium which then reacts with
another proton to give the two helium nuclei, viz.

7BeC e� !7LiC �e;
7LiC p!4HeC4HeI (4.175)

(ii) Beryllium reacts with a proton and produces a boron-8 nucleus which under-
goes ˇ decay to beryllium-8. The latter is unstable and decays into two helium
nuclei, viz.

7BeC p� !8BC �; 8B!8BeC eC C �e;
8Be!4HeC4He: (4.176)

There are four stages in these cycles where electron neutrinos are produced. In
the pp reaction (4.174) the first reaction yields ve’s with an average energy of
0.263 MeV, while the second reaction yields monochromatic ve’s with energy
1.4 MeV. In the electron capture on 7Be (4.175), the average energy of ve

is 0.80 MeV, while in the ˇ decay of 8B, (4.176), the average ve energy is
7.2 MeV. Thus, there is a resulting neutrino spectrum whose “low- energy”
part stems from the pp cycle (4.174) and from electron capture on beryllium
(4.175), and whose “high-energy” part stems from the boron decay (4.176).

On the theoretical side, the sun has been studied in great detail and solar models
allow one to reliably calculate the neutrino flux from the sun (Bahcall et al. 1992
and earlier references therein). On the experimental side, the neutrino flux from the
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sun has been measured directly by means of inverse ˇ decay induced in chlorine
and gallium targets,

�e C 37
17Cl!37

18 ArC e� .threshold 0.814 MeV/; (4.177)

�e C 71
31Ga!71

32 GeC e�.threshold 0.233 MeV/: (4.178)

The first of these, which has been studied by Davis and collaborators for more than
25 years, is primarily sensitive to the high-energy neutrinos, i.e. those emanating
from the boron decay. The second one, which was studied by the GALLEX, GNO
and the SAGE groups, is also sensitive to the low-energy part where the flux is
highest. Results are traditionally expressed in terms of solar neutrino units (SNU),
defined as follows:

1 SNU WD 1 � 10�36 captures per atom s�1; (4.179)

Typical results are 2 SNU for the reaction (4.177), and 80 SNU for the reaction
(4.178). These rates are very small indeed, and large amounts of target material
and good screening against other neutrino sources are mandatory. The screening is
achieved by installing the experiments deep underground.

A third measurement of the solar neutrino flux makes use of a water MCerenkov
detector developed for the Kamioka Nucleon Decay Experiment KAMIOKANDE II
which allows one to record the elastic scattering process

�e C e! eC �e:

The threshold for the neutrino energy being 7.5 MeV, for experimental reasons, the
experiment is sensitive only to electron neutrinos from the boron-8 decay (4.176).

All these experiments are long-term projects which are being improved by stages
unless they were concluded. The reader is advised to consult the latest edition of the
review of particle properties for an up-to-date account of the experimental situation
(cf. [RPP10]).

When the results are compared to the theoretical predictions, then a sizeable
deficit is found in both cases. In the case of the 37Cl experiment the experimental
rate is only about 30% of the prediction, in the case of the 71Ga experiment it is
about 60% of the prediction. The flux of the 8B neutrinos observed in the
KAMIOKANDE II project, too, is smaller than expected: Depending on the
calculation one compares with, the measured flux is 50–70% of the expected flux.
Although the uncertainties are sizeable, in all three cases the conclusion seems
inevitable: The observed flux is significantly less than that which is predicted.

There is an interesting, although still unproven, solution to this longstanding
puzzle: The calculation of the flux is based on the assumption that neutrinos
essentially are massless and do not oscillate. Although the electron neutrinos are
produced everywhere over the entire volume of the sun, attenuation of their flux
within the solar medium is negligibly small. Therefore, the full intensity calculated
under these assumptions should be seen on earth. If, in turn, there is a mechanism
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which turns some of the ve, on their way out of the sun, into v� then the latter will
not be seen in the reactions (4.177, 4.178). This is so because v� cannot induce
inverse ˇ decay. A muon neutrino could make the reactions

�� CAZ X!A
ZC1 X0 C ��

which are analogous to (4.177, 4.178) provided its energy is larger than m� plus
the difference in nuclear binding energies. In the case of solar neutrinos, this is
obviously not the case.

Suppose ve and v� are linear combinations of two mass eigenstates n1(0) and
n2(0), cf. (4.175),

�
�e

��

�
D
�

cos˛0 sin ˛0
� sin ˛0 cos˛0

��
n1.0/

n2.0/

�
; (4.180)

or, in short, (ve; v�/T D V.˛0/.n1.0/; n2.0//
T . The states ve and v� are the weak

interaction eigenstates which are produced at vertices involving W˙ and Z0. The
states n1(0) and n2(0) are the mass eigenstates which propagate in empty space. The
squared mass matrix which in the basis of the states ni (0) is M2ı D diag .m2

1;m
2
2/,

when expressed in the basis (ve, v�/T , reads

M2 D V.˛0/
ı
M2 V �.˛0/; or

M2 D
�
m2
1 cos2 ˛0 Cm2

2 sin2 ˛0 .m2
2 �m2

1/ sin ˛0 cos˛0
.m2

2 �m2
1/ sin ˛0 cos˛0 m2

1 sin2 ˛0 Cm2
2 cos2 ˛0

�

D 1

2
.m2

1 Cm2
2/

�
1 0

0 1

�
C 1

2
.m2

2 �m2
1/

�� cos 2˛0 sin 2˛0
sin 2˛0 cos 2˛0

�
:

When a neutrino beam travels through matter instead of empty space, the masses
will be changed due to weak interactions with the electrons contained in matter
(Wolfenstein 1978). While ve and v� interact with electrons in exactly the same way
via the weak neutral current ve can also interact via the charged weak current, as
explained in Sect. 3.6.2 [equation (3.218)]. Thus the diagonal matrix elements of
M2 will be modified according to

M2!M 02 D
0
@m2

1 cos2 ˛0Cm2
2 sin2 ˛0CANCAC .m2

2 �m2
1/ sin ˛0 cos˛0

.m2
2 �m2

1/ sin ˛0 cos˛0 m2
1 sin2 ˛0Cm2

2 cos2 ˛0CAN

1
A;

where AN and AC are the additional interaction terms due to neutral and charged
current interactions, respectively. Note that the termAC contributes only to the ve�ve

diagonal element. As before this matrix can be written as the sum of a diagonal and
a nondiagonal matrix,
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M 02 D 1

2
.˙ C AC/

�
1 0

0 1

�
C 1

2

�
AC �� cos 2˛0 � sin 2˛0
� sin 2˛0 �AC C� cos 2˛0

�
; (4.181)

where
˙ WD m2

1 Cm2
2 C 2AN; � WD m2

2 �m2
1:

Obviously, the term AN which is due to the effective neutral current interaction
(3.85) is irrelevant because it may be absorbed in a redefinition of the unperturbed
masses m02i D m2

i C AN.
Before we turn to the discussion of the eigenvalues and eigenstates of this mass

matrix let us calculate the quantity AC. This term is obtained from the effective
CC interaction (3.74) as follows. With the sign as given by (3.74) the interaction
hamiltonian density is minus that expression, or, after a Fierz reordering according
to (4.30), and in momentum space,

H eff
int D C

Gp
2
.u.�e/ ��.1 � �5/ u.�e//.u.e/ ��.1 � �5/ u.e//: (4.182)

The electron being at rest, to good approximation, one can show that the space
components � D i of the expression (4.182) vanish. Indeed, using the standard
representation (1.78) and the solution (1.90) with p D 0, the second factor in
(4.182) is equal to�2me

.r/��.i/.r/ which, when summed over the spin orientation
r vanishes. For � D 0 the electron factor gives 2me. With � D 0 and knowing that
ve is left-handed, the neutrino factor gives 2u.v/�e u.v/e D 4Ev. Of course, the factors
2me and 2Ev are remnants of the covariant normalization (1.89). In calculating the
interaction Hamiltonian, states must be normalized to 1 and, therefore, these factors
are divided out. Thus, the interaction due to charged currents gives rise to a potential
energy for ve which is given by

V D C Gp
2
2Ne D G

p
2Ne;

where Ne is the number of electrons per unit volume. In presence of a potential the
energy–momentum relation for an electron neutrino reads

k2 Cm2 D .E � V /2 � E2 � 2EV;

V 2 being negligibly small. This means that the ve � ve entry of the mass matrix
receives the additive contribution

AC � 2EV D 2
p
2
G

2mn
�E: (4.183)

In this expression � is the matter density, mn is the nucleon mass. The number of
electrons per nucleon in matter is generally 1/2.
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The eigenvalues of M 02 are easily calculated. They are

�21=2 D
1

2
f.˙ C AC/˙

q
.� cos 2˛0 �AC/2 C�2 sin2 2˛0g: (4.184a)

In particular, the difference between them is

�22 � �21 D
q
.� cos 2˛0 � AC/2 C�2 sin2 2˛0: (4.184b)

Note that the corresponding mass eigenstates depend on the value of AC, hence
on the density � (for fixed value of the neutrino energy E). Therefore, we write
them as ni .�/, cf. also (4.180). Let us denote the transformation from the new
mass eigenstates (n1.�/; n2.�//T to the basis (ve; v�/T by V.˛�/, with the same sign
convention as in (4.180), i.e.V �.˛�/M

02 V .˛�/ D diag.�21; �
2
2/. Using (4.181) it is

not difficult to derive the relation between ˛� and ˛0:

cos 2˛� D � cos 2˛0 �ACq
.� cos 2˛0 �AC/2 C�2 sin2 2˛0

; (4.185a)

sin 2˛� D � sin 2˛0q
.� cos 2˛0 �AC/2 C�2 sin2 2˛0

: (4.185b)

Clearly, at any time ve and v� are given in terms of the mass eigenstates by (4.180),
and, conversely, the mass eigenstates are given by the inverse of (4.180)

�
n1.�/

n2.�/

�
D
�

cos˛� � sin ˛�
sin ˛� cos˛�

��
ve

v�

�
; (4.186)

Without restriction of generality we take ˛0 < 450. The difference � as well as
the interaction term AC are positive. Assume now the parameters to be such that in
the solar interiorAC is larger than� cos 2˛0. Then, as the neutrino moves out of the
sun it sees a decreasing density and, hence feels a decreasing potential until it has
left the sun where AC becomes equal to zero.

Suppose the neutrino ve is created somewhere inside the sun where AC >

� cos 2˛0. By (4.186), the mass eigenstate n1.�/ is populated with probability
cos2 ˛�, the state n2.�/ is populated with probability sin2 ˛�. In a first, adiabatic,
approximation and for the sake of simplicity we could assume the density to vary
smoothly as the neutrino moves outwards, such that the mass eigenstates propagate
independently. Once they have left the sun they have turned adiabatically into the
states n1(0) and n2(0), respectively. Using (4.180), the probability for the initial ve

that was created inside the sun, to remain an electron neutrino is

P.ve/ D cos2 ˛� cos2 ˛0 C sin2 ˛� sin2 ˛0; (4.187a)
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while the probability for it to have turned into a muon neutrino is

P.v�/ D sin2 ˛� cos2 ˛0 C cos2 ˛� sin2 ˛0: (4.187b)

Thus, on its way out of the sun the neutrino that was initially an electron neutrino,
partially turns into a muon neutrino. This mechanism which explains the reduction
of the solar neutrino flux was proposed by S. P. Mikheyev and A. Yu. Smirnov
(Mikheyev et al., 1985). In order to illustrate the effect let us consider two
examples:

(i) Assume AC to be just twice the quantity � cos 2˛0. Then, from (4.185) ˛� D
�=2� ˛0 and, from (4.187),

P.ve/ D 1

2
sin2 2˛0; P.v�/ D 1 � 1

2
sin2 2˛0:

Thus, if ve is very close to the mass eigenstate n1(0), the mixing angle ˛ is small
and the electron neutrino will turn predominantly into a muon neutrino.

(ii) The conversion of the initial electron neutrino is even more enhanced if AC �
� cos 2˛0. In this case (4.185a) has the solution ˛� � �=2, from which

P.ve/ D sin2 ˛0; P.v�/ D 1 � sin2 2˛0:

These results are also well illustrated by Fig. 4.9 which shows the eigenstates
(4.184a) as a function of the density � and which can be interpreted as follows
(Bethe 1986). For high values of the density, right-hand side of Fig. 4.9, the state
with the higher mass �21, must be predominantly an electron neutrino, because
only that component feels the CC interaction AC. As it moves outwards, the
density decreases (moving from right to left along the abscissa of Fig. 4.9), and
the initial state turns slowly into the state n2(0) whose predominant component
is the muon neutrino. At an intermediate point �c where AC D � cos 2˛0 there
is a resonance with ˛� D �=4, cf. (4.185). The two energy levels which would
cross at this point if � were zero, repel each other such that the corresponding
eigenstates exchange their roles. This is a well-known phenomenon of quantum
mechanics.

In reality, the transition from the interior of the sun to outer space is not adiabatic,
at least in the neighbourhood of the density �c where the resonance occurs. There
is a finite probability for a nonadiabatic transition from the state n1.�/ to the state
n2(0), and, likewise, for a transition from n2.�/ to n1(0), when passing through the
resonance point,

P12 D j hn1.�/jn2.0/i j2 D j hn2.�/jn1.0/i j2:
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Fig. 4.9 Eigenvalues of the mass matrix (4.181) as a function of the electron density in the sun. For
� D 0 the lower state is the electron neutrino, the higher state the muon neutrino. At high values
of the density, in turn, the heavier state is the electron neutrino (because it feels the additional
interaction), the lighter is the muon neutrino. If the density is such that the resonance (level
crossing) does occur then the initial ve, as it moves outwards, turns into a v�

The probability that the ve created inside the sun at time t0 remains a ve at a later
time t , after is has left the sun, is

P.ve; t0; t/ D j hve.t0; �/jve.t; 0/i j2 D j hn1.t0; �/jn1.t; 0/i cos˛� cos˛0

Chn1.t0; �/jn2.t; 0/i cos˛� sin ˛0

Chn2.t0; �/jn1.t; 0/i sin ˛� cos˛0

Chn2.t0; �/jn2.t; 0/i sin ˛� sin ˛0j2: (4.188)

Making use of the symmetries of the mass Hamiltonian one shows that

j hn1.t0; �/jn1.t; 0/i j2 D j hn2.t0; �/jn2.t; 0/i j2 D 1 � P12:

Well before (� > �c) and well after .� D 0/ the crossing of the resonance the mass
eigenstates do change adiabatically. Therefore, if one averages the result (4.188)
over the initial (production) region and over the final (detection) region, the cross
terms in (4.188) oscillate rapidly and, hence, cancel out, so that the average is
given by
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P.ve/ D hP.ve; t0; t/i D cos2 ˛� cos2 ˛0 C sin2 ˛� sin2 ˛0

�P12.cos2 ˛0 � sin2 ˛0/.cos2 ˛� � sin2 ˛�/: (4.189)

This result can also be rewritten in terms of .2˛�/ and .2˛0/:

P.ve/ D 1

2
f1C .1 � 2P12/ cos 2˛� cos 2˛0g: (4.189’)

The calculation of P12 is a little more complicated9 and we just quote the result. The
radial dependence of the density is assumed to be an exponential

�.r/ D �0e�r=RS with Rs D 0:092Rˇ;

where Rˇ is the Sun’s radius. The transition probability is found to be

P12 D expf��Rs.1 � cos 2˛0/�=2Eg: (4.190)

Finally, we note that the sign of the quantity AC, (4.183), is essential for
this mechanism to work. If AC were negative there would be no resonance. For
example, replace the ve by its antiparticle Nve. Going through the same analysis of
Nvee scattering, the antineutrino factor receives the opposite sign, and thereforeAC is
negative and no resonance occurs.

Of course, whether or not this mechanism does indeed explain the solar neutrino
puzzle requires a detailed comparison with the experimental information that is
available. Without going into a more detailed analysis, we mention that all three
results on the solar neutrino flux can be understood with the help of this conversion
mechanism if the difference of squared masses is of the order of 10�6�10�5 eV2 and
sin2 ˛0 � 0:006. Although very appealing, more tests will be necessary to confirm
that this explanation is the correct one.

c) Results from oscillations with three lepton families

Except for one somewhat controversial experiment (the so-called LSND data) all
oscillation experiments can be described in terms of three lepton families and a
unitary mixing matrix in the neutrino sector of the kind of (3.152). This matrix is
customarily written in the following suggestive way

U D
0
@ c12c13 s12c13 s13e�iı

�s12c23 � c12s23s13eiı c12c23 � s12s23s13eiı s23c13
s12s23 � c12c23s13eiı �c12s23 � s12c23s13eiı c23c13

1
A diagfei˛1=2; ei˛2=2; 1g;

where the abbreviations sik D sin 	ik and cjl D cos 	jl are used. The angles ı; ˛1, and
˛2 describe possible CP-violation. With this obvious notation for the mixing angles

9P. Pizzochero, Phys. Rev. D36 (1987) 2293.
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and using the abbreviation m2
ik D m2

i � m2
k for the differences of squared masses,

one finds typically

�m2
21 D .7:59˙ 0:20/� 10�5 eV2;

sin2.2	12/ D 0:87˙ 0:03;
�m2

32 D .2:43˙ 0:13/ � 10�3 eV2;

sin2.2	13/ < 0:25 CL D 90%:

Of course, this information is not enough for determining absolute values of any of
the masses. Therefore, the results must be discussed under various assumptions on
the hierarchy of the lepton families. A good introduction and a guide to the literature
is found in [RPP10], Review 13.

4.3.3 Processes Which Change Lepton Family Numbers

In this section we return to the question of lepton family numbers that we discussed
briefly in Sect. 3.1.1a. We sketch the various options that are conceivable in breaking
the conservation of the family numbers (3.11) and/or of total lepton number (3.12),
and we mention some of the most important consequences that one should be able
to test in experiments. We then discuss one class of processes which provide an
illustrative example of family number violation.

As this field is still open and our ignorance is great, our discussion is neither
exhaustive nor conclusive.

a) Internal quantum numbers of neutrinos

A basic problem of lepton physics is the question whether neutrinos carry any
additively conserved quantum numbers at all, and if they do, what the nature and
dynamical origin of those quantum numbers is. There is very good evidence from
astrophysics that neutrinos have no electromagnetic attributes such as electric charge
or magnetic moment. So the discussion concentrates upon the lepton and lepton
family numbers (3.11, 3.12).

The simple neutrino mixing scheme (4.140) is based on an assumed analogy of
the leptons to the quark families. It implies that weak CC interactions do conserve
total lepton number exactly but can change individual family numbers such that
only their sum (3.12) is conserved. The neutrino states vf (weak eigenstates) or ni
(mass eigenstates) belong to the eigenvalueC1 of L, (3.12). The weak Lagrangian
then possesses a global U(1)-symmetry. The neutrino states ni , being massive and
carrying nonvanishing eigenvalues of this symmetry, are Dirac fermions as defined
in Chap. 1. This option can be tested through the mass measurements discussed
above, Sects. 4.3.1, 4.3.2. It may also be testable in processes of the type � ! e�
provided the basic CC couplings are not strictly “V � A”. [Without interference
between V � A and V C A currents the rates, though finite, are hopelessly small.]
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Another possibility is that neutrinos are massive and are selfconjugate, i.e.
Majorana particles (cf. our discussion in Sect. 1.8.4). In this case they cannot
carry total lepton number L. This option opens up a number of very interesting
consequences some of which can be tested in experiment. The most direct signal
would be provided by positive evidence for processes with �L ¤ 0 such as
neutrinoless double ˇ-decay. Examples are

52Te!54 XeC 2e�.isotopes A D 128 and 130/;

82
34Se!82

36 KrC 2e�;
76
32Ge!76

34 Se C 2e�;

or, more generally,
.Z;A/! .Z C 2; A/C 2e�: (4.191)

The decays can be thought of as two-step processes involving the sequence n !
pC e� C vM and vM C n! pC e� with vM being a Majorana neutrino. As yet no
positive evidence for any of these reactions was found. Upper limits on neutrinoless
double ˇ-decay yield a correlated upper limit on

hmi D j
X
i

Ueim.vi /j (4.192)

where cancellations in the sum may occur. Present limits are of the order of
a few eV.

There are immediate consequences, although somewhat indirect, for � ! e�
and related processes. Regarding lepton decays such as �-decay (4.38), there are
consequences in principle but, with present limits on neutrino masses, they are too
small to be measurable with any kind of precision.

The central problem in this discussion is the leptonic mass sector about which
we know very little. It is the mass matrix which fixes the Dirac and Majorana nature
of neutrinos and which determines the mixing matrices in the weak interaction
eigenstates. We emphasize again that mixing angles should not be discussed without
considering the mass sector. In particular, as should be clear from the discussion in
Sect. 1.8.4, the difference between the Majorana and Dirac cases fades away when
the masses go to zero.

b) �! e� and related processes

In the framework of a discussion about lepton family numbers the processes

�˙ ! e˙�; (4.193a)

�˙ ! e˙e�e˙ (4.193b)

��.Z;A/! .Z;A/�e�; (4.193c)
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are of particular interest because they are amenable to experimental investigations
of extraordinary sensitivity. The present upper limits for the branching ratios

R�!e� WD � .�! e�/

� .�! all/
; (4.194a)

R�!3e WD � .�! eNee/

� .�! all/
; (4.194b)

R��!e�.Z;A/ WD � .��.Z;A/! .Z;A/�e�/
� .��.Z;A/! all/

; (4.194c)

are of the order of 10�11 to 10�12.
The processes (4.193), if they exist, are processes of second and higher order.

As their detailed analysis is technically complicated we restrict the discussion
to qualitative considerations here and refer the reader to the literature for the
technical details. The first decay mode (4.193a) is a purely electroweak one and,
independently of any model, depends on an effective (�e� )-vertex as shown in
Fig. 4.10(a). This vertex is a matrix element of the electromagnetic current j e:m:

˛

between interacting lepton states, “dressed” by the weak interactions, viz. (for
�� ! e� )

he.p/jj e:m:
˛ .0/j�.q/i D 1

.2�/3
ue.p/

�
G1.k

2/

�
�˛ � 1

k2
.m� �me/k˛

�

CG2.k2/
�
�˛ C 1

k2
.m� Cme/k˛

�
�5

C i

m�

ŒF1.k
2/C F2.k2/�5��˛ˇkˇ

�
u�.q/: (4.195)

The Lorentz covariants are combined such as to take account of current conserva-
tion, @˛j e:m:

˛ .x/ D 0. The decomposition (4.195) contains both parity-even and
-odd terms, allowing for an arbitrary amount of parity violation from the weak
interactions. The current operator j˛ is hermitean. If the weak interactions are
invariant under time reversal, then one can show that the form factors Fi and Gi , as
defined by (4.195), are real. Finally, for photons on the mass shell, k2 = 0, equation
(4.195) remains finite only if G1 and G2 vanish at least like k2,

G1.k
2/; G2.k

2/ 	 k2 for k2 ! 0: (4.196)

It is easy to work out the decay rate for process (4.193a). In the limitm2
e  m2

� one
finds (exercise 4.13)

� .�! e�/ D 1

2
˛m�fjF1j2 C jF2j2g: (4.197)
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Fig. 4.10 (a) Effective
�e�-vertex. (b) Photon
amplitude in �! e
conversion on nuclei

In the processes (4.193b, c) the contribution of Fig. 4.10(b), equation (4.195), with
k2 ¤ 0 constitutes what is called the photonic amplitude. The virtual photon
then couples to the eCe�-pair, or to the nucleus, respectively, via an ordinary
electromagnetic vertex. In addition to this there can also be contributions from
box diagrams in which two gauge bosons are exchanged between the four external
fermion legs, with various possibilities for the intermediate states. The sum of
these constitutes what is called the weak amplitude. The two amplitudes (weak and
photonic) are usually of comparable magnitude.

Specific models which provide nonvanishing rates for the process (4.193) can be
classified as follows.

(i) Lepton mixing models: These models start from the observation that both
the neutral weak eigenstates as well as the charged weak eigenstates may
be nontrivial mixtures of a set of mass eigenstates. Furthermore, in case the
weak interactions contain left- and right-handed couplings, the left-handed and
right-handed fields could be characterized by independent mixing schemes, cf.
(4.140, 4.141).

In the standard GSW model, supplemented by the neutral mixing matrix
(4.140), but no more, the amplitude for � ! e� is found to be proportional
to m2

i =m
2
w, the ratio of a typical squared neutrino mass to the square of the

W-mass. For example, in a model with two families one would find typically

R�!e� ' 75˛

128�
sin2.2˛1/

jm2
1 �m2

2j2
m4

W

; (4.198)

which can be at most 10�24 and hence remains far below any measurable
level. This strong, dynamic suppression comes about in the same way as
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the suppression of neutral current interactions with �S ¤ 0, cf. (3.160)
in Sect. 3.4.2, in the quark sector: Let U�ik be the mixing matrix of the
charged, left-handed leptons. The amplitude for � ! e� is proportional to
˙f .U

�
�f /
�.U�/ef , where the sum runs over all left-handed doublets 2 SU(2).

If the sum is complete, i.e. if there is no charged, left-handed lepton in a singlet
of SU(2), than this amplitude vanishes due to the unitarity of the matrix U�.

The situation changes dramatically if the model is extended by allowing for
more complicated lepton representations, for a larger Higgs sector and/or for
interference terms between left-handed and right-handed CC couplings (such
as are assumed in left–right symmetric models). In the latter case, for example,
the amplitude for �! e� is proportional to

mi

m�

tg
;

and also logarithmic terms in mi=mw, wheremi is a typical neutrino mass, 
 is
the mixing angle of WL and WR (see Sect. 4.1.2c). Even with the existing rather
low limits on 
, the rates for the processes (4.183) could come very close to the
present upper limits.

(ii) Horizontal symmetries: There is, of course, always the possibility of introducing
direct interfamily couplings

g0fe.x/.a�˛ C b�˛�5/�.x/X˛.x/C h:c:g

by means of some new very heavy vector bosons. Assuming coupling constants
of the same order of magnitude as in the GSW model, i.e. g0 	 e, we would
conclude from the present limit for the branching ratio (4.194a)

˛

�

�
mW

mX

�4
. 10�10;

or mX & 70mW ' 6TeV.

These superheavy bosons could be the gauge bosons of some new local gauge
theory GH whose particle multiplets are spread over different lepton and quark
families of the standard electroweak gauge theory SU.2/�U.1/. While the W˙ and
Z0, in the patterns of (3.7) and (3.15), couple only “vertically” within each family,
the gauge bosons of GH would mediate “horizontally” between the families.

In conclusion, the class of processes (4.193), as well as the related rare kaon
decays, bears on some fundamental problems of weak interactions: In the first
alternative discussed above one is testing the leptonic mass sector, the multiplet
structure of the theory, as well as certain aspects of the Lorentz structure of weak
CC interactions. In particular, there is a clear relationship to the other topics and
problems that we discussed in Sect. 4.1 and Sects. 4.3.1, 4.3.2 above: The Lorentz
structure of leptonic CC couplings and the question of neutrino masses. In the
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second alternative the rare decays open up a first window onto physics in the region
of energies of 1012 to 1013 eV, a virgin soil still open for our imagination.
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Exercises

4.1 Knowing the behaviour of �˛.x/ and a˛.x/ under the discrete symmetries P ,
C , and T . Sect. 3.2.1 derive the transformation properties of s and p, (4.1), by
studying divergences of �˛ and a˛ .

4.2 Predict the isotropic spectra of ve and of N�� in positive muon decay, for the case
of “V – A”, equation (4.56). Discuss the relevance of this result for reaction
(4.39b) and the experiment that led to the result (4.40).

4.3 Calculate the integrals (4.44). Hint: Go to a system whereQ D .Q0; 0/.
4.4 In the reaction (4.68) introduce the variable y D E lab

� =E
lab
� , transform the

cross section (4.69) to d�=dy, and integrate from some ymin to 1.
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4.5 Calculate the integrals (4.44) for one massive and one massless particle. Hints:
The integral (4.44a) can be done in a frame where Q D 0. The integral (4.44b)
can be written as A.Q2/.Q˛Qˇ�B.Q2/Q2g˛ˇ . Isolate and calculate A.Q2/

and B.Q2/.
4.6 Using the behaviour of the axial current a˛.x/ under T and C , show that F� ,

as defined by (3.6) is purely imaginary.
4.7 Compare the result (4.97) for the process � ! �v� , divided by the sum of the

rates for � ! �v�v� and � ! evev� to results in the Data Tables [RPP10]. In
turn, use the leptonic branching ratios to estimate the lifetime of � .

4.8 Prove equations (4.105) by making use of the Wigner–Eckart theorem.
4.9 Suppose the pionic axial current were simply

a.i/˛ D �
1p
2
f�@˛.


.i/
� .x//;

so that the semileptonic interaction were

L D �f�@˛.
.1/� .x/ � i
.2/� .x//
X
f

vf .x/�˛.1 � �5/f .x/C h:c:

Introduce the coupling to the photon through minimal substitution and study
the process �C ! eCve� .

4.10 Apply the result of Sect. 4.3.1b to the special case � ! �Cv�� . Perform the
integral over the surface of the allowed region of phase space and compare to
� ! ev� .

4.11 Consider the ˇC-decay from 14O.g:s:;0C/ to 14N.0C/, whose masses differ
by �E D 2:32MeV. As these states are members of an isotriplet one can
calculate the decay amplitude in the same way as for pion ˇ-decay. Calculate
the decay width

� ' .2�/7
Z

d3pe

2Ee

Z
d3pv

2Ev
ı.Ee C Ev ��E/

X
jT j2:

Show, in particular, that

� ' 1

�3
G2 cos2 	1

Z �E

me

dEeP.Ee/;

where P.E/ D Ep.�E � p/2 and p D .E2 � m2
e/
1=2. The integral can be

performed analytically giving

� D 1

�3
G2 cos2 	1m5

eF.�/;
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with

� D
p
.�E=me/2 � 1;

F.�/ D �1
4
� � 1

12
�3 C 1

30
�5 C 1

4

p
1C �2 ln.�C

p
�2 C 1/:

If an experiment gave the result �F.�/ ln 2 D 3075.10/ s and if G were the
same as in muon decay, what would cos 	1 be?

4.12 Draw the simplest Feynman diagram for the process �0 ! eCe� and estimate
� .�0 ! eCe�/ knowing that �.�0 ! 2�/ ' 10�16 s. Show that the unitarity
condition for the decay amplitude yields a lower bound for � .�0 ! eCe�/.

4.13 Work out the decay rate (4.197).



Appendix A
Lorentz Invariant Distributions

Theorem. There are precisely two, linearly indendent, Lorentz invariant distribu-
tions�i.zI m/ which obey the Klein–Gordon equation for mass m. These are

�0.zIm/ W D � i

.2�/3

Z
d3k

2!k
.e�ikz � eikz/; (A.1)

�1.zIm/ W D 1

.2�/3

Z
d3k

2!k
.e�ikz C eikz/; (A.2)

with !k � k0 D
p

k2 Cm2. These distributions have the following properties:

.i/ f�Cm2g�i.zIm/ D 0; i D 0; 1; (A.3)

.ii/ �0.z
0 D 0; zIm/ D 0; (A.4a)

.iii/
@

@z0
�0.zIm/

ˇ̌
ˇ̌
z0D0
D �ı.z/; (A.4b)

.iv/ �0.�zIm/ D ��0.zIm/; �1.�zIm/ D �1.zIm/; (A.5)

.v/ �0.zIm/ D 0 for z2 < 0: (A.6)

Note, however, that �1 .zI m/ does not vanish for spacelike argument, z2 < 0.

Proof. Part (i) is obvious because �i are linear superpositions of exponentials
which satisfy the Klein–Gordon equation. Part (ii) is also obvious by noting that,
with z0 D 0, the integrand is an odd function. Part (iii) gives minus the sum of the
integrals

R
d3k expf˙ik � zg divided by 2.2�/3. This is a representation of the three-

dimensional delta distribution. Part (iv) is again obvious by noting that the integrand
in (A.1) is antisymmetric while that in (A.2) is symmetric when z is replaced by �z.

To prove (v) we first note that �0, (A.1), can also be written as

F. Scheck, Electroweak and Strong Interactions, Graduate Texts in Physics, 377
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�0.zIm/ D � i

.2�/3

Z
d4qe�iqzı.q2 �m2/".q0/; (A.7)

where ".q0/ D q0=jq0j is the sign of the time component of the four-vector q. Note
that unlike the variable k in (A.1) and (A.2), the four-vector q is unconstrained,
i.e. has four independent components. That (A.7) and (A.1) represent the same
distribution is seen by using the equality

ı.q2 �m2/ D ı..q0/2 � .q2 Cm2//

D 1

2q0

n
ı.q0 �

p
q2 Cm2/C ı.q0 C

p
q0 Cm2/

o

and by doing the integral over the variable q0. This gives (A.1) with k D q; k0 �
!k D

p
q2 Cm2. Now, for time-like z, i.e. for z2 > 0, both z2 and the sign of z0,

sign z0 are Lorentz invariants. Thus, for time-like arguments the distribution �0,
being itself Lorentz invariant, must be a funtion of z2 and of sign z0. This is in accord
with the antisymmetry noted in the first equation (A.5). For space-like arguments,
however, the distinction between positive and negative values of z0 is not Lorentz
invariant. Therefore, for space-like z the distribution�0 is a function of the invariant
z2 only. From this observation one concludes that

�.�zIm/ D C�.zIm/:

As this is in contradiction with the antisymmetry (A.5), we conclude that part (v) of
the theorem is true. Regarding the distribution �1 we note that this argument does
not hold: Indeed, �1 is symmetric under the transformation z ! �z, and, hence,
does not vanish for space-like z.



Appendix B
S-Matrix, Cross Sections, Decay Probabilities

Write the scattering matrix (somewhat symbolically) as

Sfi D ıfi CRfi; (B.1)

where f and i are asymptotic free states. ıfi means “no scattering” andRfi is the reac-
tion matrix proper.Rfi necessarily contains a ı-distribution expressing conservation
of total energy and momentum. Besides this distribution it is convenient to take out
a factor i.2�/4 and to define the T -matrix by

Rfi D i.2�/4ı.Pf � Pi/Tfi: (B.2)

The differential cross section for the reaction

aC b! 1C 2C � � � CN

(all particles being described asymptotically by plane waves), is given by the general
expression

d�fi.aC b! 1C � � � CN/ D .2�/10ı.Pf � Pi/

2Ea2Ebjvabj jTfij2
NY
nD1

d3p.n/

2EN
: (B.3)

In this expression

Ea D
q

p.a/2 Cm2
a ; Eb D

q
p.b/2 Cm2

b; En D
q

p.n/2 Cm2
nI

Pi D p.a/ C p.b/; Pf D
NX
nD1

p.n/;
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and jvabj is the relative velocity of the incoming particles, d3p.n/=2En is the Lorentz
invariant volume element in the phase space of particle number n. This term as well
as the incoming flux factor in the first denominator is in accord with our covariant
normalization hp0jpi D 2Ep•.p0�p/. Formula (B.3) holds in all systems of reference
where the momenta p.a/ and p.b/ are collinear (e.g. the laboratory and centre-of-mass
systems). It can be extended to any system by replacing the flux factor (so-called
Møller factor) with the invariant on the r.h.s. of the following equation:

EaEbjvabj D
q
.p.a/ � p.b//2 � p.a/2p.b/2: (B.4)

(One should verify that this equation does indeed hold if the 3-momenta of particles
a and b are collinear.)

The observable cross sections are obtained from (B.3) by integration over those
momentum variables in the final state which are not observed. Similarly, depending
on whether or not particles a and b have nonvanishing spin and are polarized, the
appropriate average over spin projections must be taken. If the spin orientations in
the final state are not discriminated, (B.3) must be summed over them.

In a similar fashion the differential decay rate of a particle a, with mass ma and
momentum q, into a final state with N particles,

a! 1C 2C � � � CN;

is given by

d�fi D .2�/4ı.p.1/ C p.2/ C � � � C p.N/ � q/.2�/
3

2Eq
jTfij2

NY
nD1

d3p.n/

2En
: (B.5)

Again, depending on what shall be observed, integration over some of the momen-
tum variables and, possibly, sums over spin projections in the final state must be
performed. If the decaying particle has nonvanishing spin and if the spin orientation
is not known, the formula must be averaged over all spin projections.

From (B.5) one sees that the squared decay amplitude has the dimension
ŒjTfij2� D E2.3�N/. Thus, in a two-body decay the dimension is (energy)2, where-
as in a three-body decay T is dimensionless. This can be useful in checking
calculations.

Let us consider a few examples:

(i) Differential cross section for aC b ! 1C 2. The example of elastic scattering
of two massive particles (masses m and M , respectively) is worked out in
detail in Sect. 2.4.2. Examples of neutrino reactions are treated in Sects. 3.2.4
and 4.1.2e.

(ii) Two-body decay. In the rest system of the decaying particle the two particles
in the final state have the momenta

p.1/ D fE1;
g; p.2/ D fE2;�
g;
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with E1 C E2 D ma; Ei D
�
m2
i C �2

�1=2
, and � WD j
j. Integrating over the

3-momentum of particle 2 one obtains from (B.5)

d3� D .2�/7

8maE1E2
jT .a! 1C 2/j2ı.E1 C E2 �ma/d3p.1/;

where d3p.1/ can be expressed in polar coordinates, d3p.1/ D �2d�d�. Noting
than �d� D E1dE1 one can convert the integration over � into an integration
over E1. For this we need the derivative of the argument of the ı-distribution
with respect to E1, viz.

d

dE1
fE1 C E2 �mag D 1C dE2

d�

d�

dE1
D E1 C E2

E2
D ma

E2
;

one obtains

d2� D .2�/7�

8m2
a
jT .a! 1C 2/j2d�:

The decay probability is independent of the azimuth '. Integrating over this
angle we have

d� D .2�/8�

8m2
a
jT .a! 1C 2/j2d.cos	/; (B.6)

where 	 is the opening angle between the spin expectation value of the
decaying particle a and the momentum of particle 1. Equation (4.96) for the
decay of a polarized � into a pion and a neutrino provides an example for this
case. If the decaying particle is spinless, or if it has spin but is unpolarized,
jT j2 is isotropic. Integrating over d.cos 	/ one obtains the total decay rate

� D .2�/8�

4m2
a
jT .a! 1C 2/j2: (B.7)

(iii) Three-body decays. Here we distinguish several situations: If two of the
particles in the final state are not observed (cf. the example of � ! evNv) one
proceeds as described in Sect. 4.1.2a and obtains a differential decay rate

d2�=dEd.cos	/;

where 	 is the opening angle between the spin of the decaying particle and the
momentum of the observed particle in the final state. In other situations one
may proceed as follows. Integrate first (B.5) over d3p.3/ to obtain
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d6� D .2�/7

16ma

�1�2

E3
jT .a! 123/j2ı.E1 C E2 C E3 �ma/

� dE1 dE2 d�1 d�2;

whereE3 D
�
m2
3 C .p.1/ C p.2//2

�1=2
and �i WD jp.i/j. Then integrate over d�1

for particle 1 which is emitted isotropically, take p.1/ as the 3-axis and make
use of the axial symmetry around this direction, viz.

d3� D .2�/9

8ma

�1�2

E3
jT .a! 123/j2ı.E1 C E2 C E3 �ma/dE1 dE2d.cos	/;

(B.8)
where now

E3 D .m2
3 C �21 C �22 C 2�1�2 cos 	/1=2:

This formula may be transformed to the variables E1;E2;E3 by means of the
Jacobian

@.E1;E2; cos 	/

@.E1;E2;E3/
D E3

�1�2

and finally to the variables s WD E2 C E3 and t WD E2 � E3, giving

d2� D .2�/9

16ma
jT .a! 123/j2dE1dt; (B.9)

from which the total rate is obtained by integration over the kinematic range of
E1 and of t .

Note that T contains a factor .2�/�3=2 for each external particle. So
jT .a! 1C 2/j2 produces a factor .2�/�9; jT .a ! 123/j2 produces a factor
.2�/�12.



Appendix C1
Some Feynman Rules for Quantum
Electrodynamics of Spin-1/2 Particles f˙

The rules hold for the matrixR, as defined by (B.1). The T -matrix is obtained upon
comparison with the defining equation (B.2).

(i) Diagrams. One draws all connected diagrams of the process under consid-
eration, at the order n in the coupling constant that one wishes to calculate.
External and internal fermion lines are provided with arrows which point in
the direction of the flow of negative charge. The momenta of internal lines are
chosen such as to follow the arrow. All factors prescribed by the following
rules must be written down from right to left following the direction of the
arrows.

(ii) External lines. For each external, incoming f� write a spinor in momentum
space uf.p/, for each incoming fC write �f.p/. Similarly, for an outgoing f�
write uf.p/, for an outgoing fC write a �f.p/. For an incoming or outgoing
photon write a polarization vector "˛.k; �/ with the index ˛ to be contracted
with �˛ at the fermion vertex to which it couples. In addition, each external
particle obtains a factor .2�/�3=2.

(iii) Vertices. Each vertex .ff�/ has a factor e�˛ and a ı-distribution for energy–
momentum conservation at that vertex.

(iv) Internal fermion lines. An internal fermion line is represented by a propagator

�p Cmf

p2 �m2
f C i"

;

where the direction of p is chosen in accordance with rule (i).
(v) Internal photon lines. An internal photon line with momentum k connects

two vertices .ff�/ characterized by the Lorentz indices ˛ and ˇ [cf. rule (iii)]
and yields a factor

� g˛ˇ

k2 C i"
:

(vi) Integrations. All internal momenta must be integrated over. In all cases this
yields a ı-distribution ı.Pi�Pf/ for conservation of total energy–momentum.
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In orders of e which are higher than the lowest nontrivial order this rule
also gives rise to some nontrivial integrations over internal momenta. Such
integrals can turn out to be divergent and must then be analyzed in the
framework of regularization and renormalization.

(vii) Factors. Rfi has a factor .�/P where P is the permutation of the fermions in
the final state, as well as a factor .�/L if L is the number of closed fermion
loops. In addition, Rfi obtains the following factors:

inCfiCbi.2�/4.n�fi�bi/;

where n is the order of perturbation theory, fi the number of internal fermion
lines, bi the number of internal photon lines.

(viii) Closed fermion loops. Closed loops which couple to an odd number of photon
lines give a vanishing amplitude. This is a consequence of C -invariance
of QED.

(ix) External potentials. An external potential is an approximation for the inter-
action with a very heavy particle which therefore can absorb or provide an
arbitrary amount of 3-momentum. Therefore, for an external potential one
has to write a ı-distribution only for energy conservation, whilst the vertex
factor e�˛ must be replaced by

ı˛0
Ze

.2�/3
�.k/
k2

;

where Ze is the total charge that creates the potential, �.k/ is the form factor
of the corresponding charge distribution,

�.k/ D
Z

d3xe
�ik�x

�.x/;

with
R
�.x/d3x D 1.



Appendix C2
Traces

The following formulae are all derived from the equations (1.73–1.75):

tr 1 D 4; tr�˛ D tr�5 D 0: (C.1)

The trace of a product with an odd number of factors vanishes. For products with an
even number of � -matrices the following relations are useful:

trf�˛�ˇg D 4g˛ˇ; (C.2)

trf�˛�ˇ�5g D 0; (C.3)

trf�˛�ˇ����g D 4fg˛ˇg�� � g˛�gˇ� C g˛�gˇ� g; (C.4)

trf�˛�ˇ�����5g D 4i"˛ˇ�� ; (C.5)

trf�˛�ˇ��������g D g˛ˇ trf��������g � g˛�trf�ˇ������g
C g˛vtrf�ˇ������g � g˛� trf�ˇ������g (C.6)

C g˛� trf�ˇ������g:

In many cases the Lorentz indices of some of the � -matrices in a product have to be
contracted. The following formulae are then useful:

�˛�
˛ D 4; �˛�a�

˛ D �2�a; (C.7)

�˛�a�b�
˛ D 4ab; �˛�a�b�c�

˛ D �2�c�b�a; (C.8)

�˛�a�b�c�d�
˛ D 2.�d�a�b�c C �c�b�a�d/: (C.9)

Note that in our conventions �5 D i�0�1�2�3; "0123 D C1. Note also the relation

"˛ˇ��"˛ˇ�� D �2fı�� ı�� � ı�� ı��g: (C.10)
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Appendix D
The Group SU(3)

The group SU(3) is defined as the set of all complex 3�3matrices which are unitary
and have determinant 1,

SU.3/ D fU 2 M3.C/jU �U D 1; detU D 1g: (D.1)

A matrix U in n complex dimensions depends on 2n2 real parameters. The unitarity
condition U �U D 1 gives n2 real constraints (n conditions for the diagonal,
2n.n � 1/=2 conditions for the nondiagonal matrix elements), the determinant gives
one more real constraint. Therefore U 2 SU.n/ depends on n2 � 1 real parameters.
In particular, the elements of SU(3) depend on 8 real parameters. This is also seen
from their representation (3.102) as exponential series in terms of hermitean 3 � 3
matrices with vanishing trace,

U D expfiH g with trH D 0:

The condition on the trace ofH is seen most easily after diagonalization ofH , hence
of U , whereby U becomes U D diag

�
ei�

1; : : : ; ei�
3

�
. The constraint det U D 1

yields †�i D 0, hence tr H D 0. Now, any hermitean 3 � 3 matrix H can be
written as a linear combination of 8 linearly independent matrices as follows,

H D
8X

kD1
ƒk

�
�k

2

�
:

The matrices �k have a standard form, called Gell-Mann matrices after M. Gell-
Mann who constructed them in analogy to the Pauli matrices (1.24), viz.
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�1 D
0
@ 0 1 0

1 0 0

0 0 0

1
A�2 D

0
@ 0 �i 0

i 0 0

0 0 0

1
A�3 D

0
@ 1 0 0

0 �1 0

0 0 0

1
A

�4 D
0
@ 0 0 1

0 0 0

1 0 0

1
A�5 D

0
@ 0 0 �i
0 0 0

i 0 0

1
A�6 D

0
@ 0 0 0

0 0 1

0 1 0

1
A (D.2)

�7 D
0
@ 0 0 0

0 0 �i
0 i 0

1
A�8 D 1p

3

0
@ 1 0 0

0 1 0

0 0 �2

1
A

Apart from a factor 2, the matrices (D.2) are the generators in the three-dimensional
representation 3, called the fundamental representation,

U.Tk/ D
�
�k

2

�
with normalization tr

��
�k

2

��
�j

2

��
D 1

2
ıkj : (D.3)

SU(3) has rank 2. This is seen from eqs. (D.2) which show that two generators, T3
and T8, are simultaneously diagonal. Furthermore, from the explicit representation
(D.2) it is obvious that the generators .T1; T2; T3/ form an SU(2) subgroup of SU(3).
In the “eightfold way” where baryons and mesons made up of u, d and s quarks are
classified according to the flavour group SUf.3/, this SU(2) subgroup is the (strong)
isospin group. In a similar fashion one verifies that the sets

 
U1 D T6; U2 D T7; U3 D �1

2
T3 C

p
3

2
T3

!
and

 
V1 D T4; V2 D T5; V3 D 1

2
T3 C

p
3

2
T8

!

also generate SU(2) subgroups of SU(3). In analogy to the isospin they are called,
respectively, U -spin and V -spin.

In SU(3), i.e. when SUf.3/ is interpreted as the flavour group classifying light
mesons and baryons, the electric charge operator is

Qe:m: D T3 C 1

2
Y; with Y WD 2p

3
T8; (D.4)

Y denoting the operator of hypercharge with respect to strong interactions. One
verifies easily that Q commutes with the generators Ui . This means that U -spin
connects particles which carry the same electric charge.

Invariant tensors in SU(3) are ıki ; "ijk and "ijk. They are used in constructing
irreducible, unitary representations of SU(3) from the fundamental representation
3, where
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U.T3/ D diag

�
1

2
;�1
2
; 0

�
; U.Y / D diag

�
1

3
;
1

3
;�2
3

�
;

U.Q/ D diag

�
C2
3
;�1
3
;�1
3

�
;

and from its conjugate. The representation conjugate to 3 is the antitriplet N3 which
cannot be identified with the triplet 3–unlike SU(2) where the doublet and its
conjugate are equivalent to each other.

Important Clebsch–Gordan decompositions of SU(3) are

3 � N3 D 1C 8; 3 � 3 D N3a C 6s; 3 � 3 � 3 D 1a C 8C 8C 10s; (D.5)

where the subscripts ‘a’ and ‘s’ indicate that these states are antisymmetric or
symmetric, respectively, under exchange of any two of their constituents. In SUf.3/

the triplet 3 is used to classify quarks (u,d,s), its conjugate N3 then describes their
antiparticles .Nu; Nd; Ns/. The singlets 1, the octets 8 and the decuplets 10 serve to
classify physical hadrons, mesons made up of quarks and antiquarks and baryons
made up of three quarks.



Appendix E
Dirac Equation with Central Fields

The Hamiltonian form (1.82a) of the Dirac equation is well adapted for a discussion
of interactions with external fields. For the case of an external, spherically symmet-
ric potential V.r/ and for stationary states ./ e�iEt/ it reads

E‰.r/ D f�i˛ � r C V.r/1Cmˇg‰.r/; (E.1)

with ˛ and ˇ as given by (1.81). Using the vector identities

r D Or.Or � r/� Or � .Or � r/

D Or.Or � r/� i

r
Or � l

one has

˛ � r D ˛ � Or @
@r
� i

r
˛ � .Or � l/ D �5S � Or

�
@

@r
� 1
r

S � l
�
;

where �5 is given by (1.78), whilst the matrix S stands for

S D
�

� 0

0 �

�
:

Finally, upon introduction of Dirac’s angular momentum operator

K WD ˇ.S � lC 1/ �
�
K.0/ 0

0 �K.0/

�
(E.2)

with K.0/ D ¢ � lC 1, equation (E.1) takes the form

�
�i�5S � Or

�
@

@r
C 1

r
� ˇK

r

�
C V.r/1C ˇm

�
‰ D E‰ DW H‰: (E.3)
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392 E Dirac Equation with Central Fields

One verifies by explicit calculation that K commutes with H; ŒH;K� D 0, but that
H neither commutes with the orbital angular momentum nor with the spin. The
operator K contains the entire dependence on angular momenta so that (E.3) lends
itself to separation into radial and angular coordinates. To see this, we note first that
K.0/ can be written as

K.0/ D � � lC 1 D 2s � lC 1 D j2 � l2 � s2 C 1:

Its eigenfunctions are the coupled states

'jlm D
X
mlms

�
lml ;

1

2
msjjm

�
Ylml ms :

Denote the eigenvalues of K.0/ by ��, i.e.

K.0/'jlm D ��'jlm with � D �j.j C 1/C l.l C 1/� 1
4
:

Note also that .K.0//2 D 1 C ¢ � l C l2 D j2 � s2 C 1, from which one deduces

�2 D �j C 1
2

�2
. From these formulae one sees that

for � > 0 W l D �;
for � < 0 W l D �� � 1;
in all cases j D j�j � 1

2
:

(E.4)

Therefore, the eigenfunctions of total angular momentum j can be written in the
compact notation 'jlm � '�m, the modulus of � giving the value of j , the sign
giving the value of l D j ˙ 1

2
, according to the rules (E.4). As K.0/ '�m D ��'�m,

the eigenvalues and eigenfunctions ofK , (E.2), are

K

�
'�m
'��m

�
D ��

�
'�m
'��m

�
:

For the eigenfunctions ‰ of (E.1) or (E.3) one makes the ansatz

‰�m.r; Or/ D
�
g�.r/'�m.Or/

if�.r/'��m.Or/
�
; (E.5)

the factor i being introduced for convenience so that the resulting differential
equations for the radial functions f and g become real. As a last step one verifies by
explicit calculation that .¢ � Or/'�m D �'��m. With these tools at hand one deduces
from (E.3) the following system of differential equations:
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f 0� D
� � 1
r

f� � .E � V.r/ �m/g�;

g0� D �
� C 1
r

g� C .E � V.r/Cm/f�:
(E.6)

Clearly, this result does not depend on the specific representation (1.82a) of the
Dirac equation we started from. For example in the representation (1.74) we would
obtain

‰�m.r/ D 1p
2

�
g�'�m C if�'��m
g�'�m � if�'��m

�

[cf. (2.107)].
Equation (E.5) shows very clearly that the central field solutions are not

eigenfunctions of orbital angular momentum: For example for � D �1, the upper
component has l D 0, the lower has Nl D 1. Thus, the relativistic analogue of
an s-state has a component proportional to a p-state, cf. the discussing of the
M1-transition 2s! 1 s in Sect. 4.1.3.
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Exercises: Further Hints and Selected Solutions

Chapter 1: Fermion Fields and their Properties

1.1. The Lagrangian density for a Majorana field is given by (1.108). One takes the
partial derivatives with respect to, say, 
�B and with respect to @�
�B ,

@L

@
�B
D i

2
. O��@�/Bb
b Cm"BC
�C (1)

@L

@
�
@�


�
B

� D � i

2
. O��/Bb
b: (2)

The Euler–Lagrange equation which reads (1) – @�.2/ D 0 yields

i. O��@�/Bb
b Cm"BC
�C D 0:

This is (1.107b). Similarly, (1.107a) is obtained by taking the derivatives with
respect to 
b and to @�
b .

1.3. With J2 D �.2/=2 and noting that all even powers of �.i/ are equal to the unit
matrix, while all odd powers are equal to �.i/,

.�.i//2n D .�.i/2/n D 1; .�.i//2nC1 D �.i/;

one finds

ei	J2 D ei	=2�.2/ D 1 cos
	

2
C i�.2/ sin

	

2
:

With � D .1=2; �1=2/ counting the rows, m D .1=2; �1=2/ counting the
columns, one has

.ei�J2/�m D i.�.2//�m � .�/1=2��ı�;�m D
�
0 1

�1 0
�
:
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Let U denote the transformation that effects the transition to contragedience.
Regarding rotations, this simply means that U must be such that

UD.R/U�1 D .D.R/�1/T D D�.R/; (3)

for any rotation matrixD.R/. When expressed in terms of the generators, this gives
the condition

U ei˛kJkU�1 D ei˛k.U JkU�1/ D e�i˛kJ
�

k ; (4)

and, hence
UJkU

�1 D �J �k ; or UJk C J �k U D 0: (5)

The phase convention which is standard in the theory of angular momentum (and
which goes back to Condon and Shortley) yields J1 real and positive, J2 pure
imaginary, and, of course, J3 real and diagonal. Therefore the condition (5) is met
if we choose

U D D.0; �; 0/ D ei�J2 ;

because a rotation by � about the 2-axis leaves invariant J2 but transforms J1 and
J3 into �J1 and �J3, respectively. Applying U twice leads back to the original
representation.

1.4. For vanishing mass m D 0, and omitting the spinor indices, (1.69b) reads

i O��@�.e˙ipx Q
.p// D 0:

The wave function in momentum space obeys the equation

.�0p0 � � � p/ Q
.p/ D 0;

with p0 D jpj. Obviously, its solutions describe positive helicity, ¢ � p=jpj D C1. In
a similar way (1.69a) withm D 0 yields plane wave solutions with negative helicity.

1.6. With L as given in (1.163) we calculate the derivatives

@L

@
�A
D i

2
. O��@�/Ab
b �m�DA Cm�1 "AB
�B

@L

@
�
@�


�
A

� D � i

2
. O��/Ab
b:

Note that according to the rules (1.56) "AB
�B D �"ab.
b/
� D C
�A. Therefore,

the Euler–Lagrange equation reads

i. O��@�/Ab
b D m�DA �m�1 
�A:

Taking derivatives with respect to � and to @�� one obtains in the same way
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i.��@�/aBB D mD
a Cm�2�a :

1.7. The behaviour of the two-spinors 
a and A under P;C , and T is given
explicitly in Sect. 1.5. The transformation behaviour of the Lagrangian density
(1.163) is studied in the same way as in (3.50), (3.55), and (3.56), and we
recommend that the reader goes through these first. It then follows that (1.163)
transforms according to the pattern

P W fmD;m1;m2g ! fm�D;m2;m1g;
C W fmD;m1;m2g ! fm�D;m�2 ;m�1 g;
T W fmD;m1;m2g ! fmD;m

�
1 ;m

�
2 g:

Thus, if one combines the three discrete operations, L is indeed found to be
invariant

TCP W fmD;m1;m2g ! fmD;m1;m2g: (6)

1.8. The left-hand side is the direct product of the matrices (1.26) and is easily
calculated to be

1˝ 1 �
X
i

�.i/ ˝ �.i/ D

0
BB@
0 0 0 0

0 2 �2 0

0 �2 2 0

0 0 0 0

1
CCA : (7)

The right-hand side is also a direct product but with indices c and B interchanged.
As such it reads

�2"ac"BD D 2
�
0 "

�" 0
�
D 2

0
BBBBBB@

0 0

0 0

0 �1
1 0

0 1

�1 0
0 0

0 0

1
CCCCCCA
:

Interchanging c and B means interchanging the second half of the first row with the
first half of the second row, as well as interchanging the second half of the third row
with the first half of the fourth row. This gives indeed the result (7).

1.9. First verify that the trace of � is real, viz

.tr�/� D tr�� D tr.�20 �
�/ D tr.�0���0/ D tr�:

Now, let A be an observable expressed as an operator in the space of Dirac fields‰.
One verifies that its expectation value in a pure state jni, say hAin D hnj N‰A‰jni,
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is real only if �0 A� �0 D A. Thus, for a pure or a mixed state described by the
density matrix � one finds

.tr.�A//� D tr.A���/ D tr.�0A��0�0���0/ D tr.A�/:

Here, we have made use of the relation (1.154b) but we did not need � to be
hermitean.
1.10. First we work out the explicit form of �. Using the standard representation
(1.78) one finds

� D 1

2

 
.E Cm/.1C − � ¢/ �.p � ¢/� .p � −/C i.p � −/ � ¢

.p � ¢/� .p � −/C i.p � −/ � ¢ �.E�m/.1�� � ¢/ � 2
ECm.p � −/.p � ¢/

!
:

(8)
Then choose the 3-axis such that p D p Oe3. The answer is then read off from the
explicit representation (8).

1.12. The matrix A 2 SL(2,C) that represents the boost with rapidity parameter �
along the direction Ow is given by

A D e�=2¢ � Ow D 1C
�
�

2

�2n
.¢ � Ow/2n C

�
�

2

�2nC1
.¢ � Ow/2nC1

D 1 cosh.�=2/C ¢ � Ow sinh.�=2/:

(9)

(Cf. also the solution to exercise 1.3 above). With �.1/T D �.1/; �.2/T D ��.2/,
and �.3/T D �.3/, it is easy to find the transpose of the expression (9) as well as its
inverse. The latter is

.A�1/T D 1 cosh.�=2/� .�.1/ Ow1 � �.2/ Ow2 C �.3/ Ow3/ sinh.�=2/: (10)

(Verify that (10) is indeed the inverse of AT.) From (5), on the other hand, we have

UAU�1 D exp

�
�

2
Ow � U¢U�1

�
D exp

�
��
2
Ow � ¢�

�

D exp

�
��
2
. Ow1�.1/ � Ow2�.2/ C Ow3�.3/

�
:

The right-hand side, when expanded as in (9), is identical with (10).

1.13. The momenta conjugate to 
a and to 
�B are, respectively,

�a D @L

@.@0
a/
D i

2

�B. O�0/Ba;

��B D @L

@.@0

�
B/
D � i

2
. O�0/Ba
a:
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The Hamiltonian density is

H D i

2

�B. O�0/Ba@0
a �

i

2
@0

�
B. O�0/Ba
a �L ;

with L as given in (1.108). Making use of the equations of motion (1.107) and
taking the integral over 3-space, at constant time, one obtains

H D
Z
x0Dconst:

d3x H D i

2

Z
x0Dconst:

d3x
�B
$

@ 0ı
Ba
a:

It is not difficult to derive from the equations of motions that a plane wave solution
must have the form


a.x/ D
�

e�ipx'1.p/C eipx 1.p/

eCipx'2.p/C e�ipx 2.p/

�

and that the functions 'i and  i satisfy the equations

.p0 C p3/'1.p/C .p1 � ip2/ 2.p/ D m'�2 .p/

.p0 � p3/'2.p/C .p1 C ip2/ 1.p/ D m'�1 .p/

.p0 C p3/ 1.p/C .p1 � ip2/'2.p/ D �m �2 .p/

.p0 C p3/ 2.p/C .p1 C ip2/'1.p/ D �m �1 .p/:

The latter are seen to be invariant under the replacement

'1.p
0; p/! '�2 .p0;�p/;  2.p

0; p/! � �1 .p0;�p/:

Thus, j'1.p0; p/j2 D j'1.p0; �p/j2, and j 1.p0; p/j2 D j 2.p0; �p/j2. Insert now
the Fourier decomposition


a.x/ D 1

.2�/3=2

Z
d3p

2Ep

�
e�ipx'1.p/C eipx 1.p/

eCipx'2.p/C e�ipx 2.p/

�

of the field 
 and its hermitean conjugate into the expression for H and perform the
integral over d3x, giving a ı distribution in the momentum variables. The result is

H D
Z

d3p

2Ep
EpŒj'1.p/j2 � j'2.p/j2 � j 1.p/j2 C j 2.p/j2�:

Indeed,H vanishes because the integrand is odd.
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Chapter 2: Electromagnetic Processes and Interactions

2.1. Reflection with respect to a plane through the origin and perpendicular to
the 3-direction inverts the direction of the incident momentum but leaves the spin
orientation unchanged. A rotation by 180ı about, say, the 2-axis, brings back the
incident momentum to its initial configuration but interchanges the solutions uC
and u�. If the interaction is invariant the scattering amplitudes for the two spin
orientations must be the same.

2.2. Repeat the calculation described in Sect. 2.4.2., inserting the matrix element

˝
p0jjˇ.0/jp

˛ D Z

.2�/3
F.q2/;

instead of .2:460/, and use m � 0.

2.3. For an infinitesimally small translation four-vector " with
ˇ̌
"�
ˇ̌  1, (2.39)

gives
F 0.x0/ � F.x/C "�@�F.x/ D F.x/C i"�ŒP �; F.x/�:

On the other hand, using ŒP �; P v� D 0, and expanding the operator U."/ � 1 C
i"�P�, we find

U."/F.x/U�1."/ � F.x/C i"�ŒP
�; F.x/�:

Now choose " to be "� D a�=n for some large n and take the limit

lim
n!1

�
1C i

a�

n
P�
	n D eia�P� :

2.4. With x WD rn � re the integral over d3q can be calculated using spherical
coordinates in q-space, i.e. d3q D q2dqd.cos 	q/d
q . The integrand being even
in the modulus q of q we extend the integral over q to the interval .�1;C1/.
With z WD cos 	q and noting that the integral over the azimuth 
q gives a factor 2� ,
we find

Z
d3q

eiq�x

q2
D 2�

Z 1
0

dq
Z C1
�1

dz eiqxz D �

ix

Z C1
�1

dq

�
eiqx

q
� e�iqx

q

�
D 2�2

x
:

In the second step we extended the integral over q to the interval .�1; 1/, in the
last step we made use of Cauchy’s theorem.

2.7. Due to time dilation the effective lifetime that is recorded in the laboratory
frame is �lab D �� , with � D E=m. The average length over which a particle of
energyE can be transported is then estimated from �lab and its velocity � D p=.m�/
in the laboratory frame.

2.8. For negative � we have ` D �� � 1 and (2.105) read, dropping the index �,
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df

dr
D �` � 2

r
f � .E � V �m/g (11)

dg

dr
D `

r
g C .E � V Cm/f: (12)

By (12) f can be expressed in terms of g and of dg=dr . The derivative df=dr
can also be expressed in terms g and dg=dr , by means of (11) and the previous
result. We then take the derivative of (12) with respect to r to obtain a second- order
differential equation for the function g alone. One obtains

d2g

dr2
C
�
2

r
C dV=dr

E � V Cm
�

dg

dr

C
�
.E � V /2 �m2 � `.`C 1/

r2
� `
r

dV=dr

.E � V Cm/
�
g D 0:

Let " be the energy E from which the rest energy is subtracted, E D mC ". In the
limit of " and V being small as compared to the rest energym,

.E � V /2 �m2 � 2m."� V /:

In this limit the second order differential equation for g reduces to

d2g

dr2
C 2

r

dg

dr
�
�
`.`C 1/
r2

C 2m.V � "/
�
g D 0: (13)

The analogous analysis for �0 D �� � 1 gives the same value of ` and leads to the
same differential equation. The result (13) is identical with the nonrelativistic radial
equation for the wave function R`n.r/ D yn`.r/=r .

2.9. Making use of the identity

` � s D 1

2
.j 2 � `2 � s2/

the angular matrix element for the states ` D 1; j D 3=2 or j D 1=2, is easily
calculated,

h` � si D 1

2

�
j.j C 1/� `.`C 1/� 3

4

�
:

The former has � D �2, the latter has � D 1. In the nonrelativistic limit they have
the same radial function (2.145) which, for a circular orbit reads

yn;n�1 D 2n

nnC1
p
.2n � 1/ŠanC1=2B

rne�r=naB :



404 Exercises: Further Hints and Selected Solutions

The expectation value of 1=r3 is calculated in an elementary way,

˝
1=r3

˛
n;n�1 D

2

n4.2n � 1/.n � 1/
1

a3B
:

Thus, the fine structure splitting, when calculated in first order perturbation theory,
is found to be

�E D m.Z˛/4

2n4.n � 1/ : (14)

On the other hand, taking the difference of (2.164) for � D n � 1 and for � D �n
one finds the same expression (14). Thus, up to terms of higher order in Z˛ the
relativistic result agrees with the perturbative estimate.

2.10. The strategy for solving this exercise is to use partial integration in such a way
that the radial part of the Laplacian

�.V1 � V2/ D 1

r2
d

dr

�
r2

d.V1 � V2/
dr

�

appears in the integrand. By Poisson’s equation this is then replaced by the
difference of the corresponding charge densities. Accordingly, we transform the
integral

I W D
Z ˛

0

dr.ar2 C br3 C cr4/.V1 � V2/

D
Z ˛

0

r2dr

�
a

2
r2 C b

12
r3 C c

20
r4
�
�.V1 � V2/:

Making use of Poisson’s equation�.V1 �V2/ D �4�Ze.�1 � �2/, the difference of
the potentials is replaced by the difference of the charge distributions. The formula
for I now contains the moments �hrni D 4�

R
r2dr rn. This yields the desired

formula for �E,

�E D e
Z

d3xj j2.V1 � V2/ � 4�eI:

The coefficients a, b, and c for the 2p state and for the 2s state are obtained by
expanding the squared radial functions (2.145) in power of r , viz.

a.2p/ D b.2p/ D 0; c.2p/ D 1

12a5B
;

a.2s/ D 1

2a3B
; b.2s/ D � 1

a4B
; c.2s/ D 7

8a5B
:
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2.11. Using the equations in momentum space �pu.p/ D m u.p/ and u.p/�p D
m u.p/ we calculate

u.p0/ i�˛ˇ.p � p0/ˇu.p/ D �1
2

u.p0/ Œ�˛�p � �˛�p0 ��p�˛ C�p
0�˛�u.p/

D �u.p0/
�
�˛�p � p˛ C�p

0�˛ � p 0̨
�

u.p/

D �2m u.p0/ �˛u.p/C �p˛ C p 0̨ � u.p0/ u.p/:

In the second step we have used �˛�p
0 D ��p0�˛ C 2p 0̨ and �p�˛ D ��˛�p C 2p˛.

Analogous relations hold with u.p/ replaced by �.p/ and u.p0/ by �.p0/. In view
of weak interactions (Chaps. 3 and 4) it is instructive to derive analogous identities
which hold when �˛ˇ is multiplied by �5.

Chapter 3: Weak Interactions and the Standard Model
of Strong and Electroweak Interactions

3.1. Applying parity or charge conjugation to one of the indicated states obviously
reproduces the same state. The eigenvalues are determined as follows. The parity
of a quark–antiquark state contains a factor .�/` from the angular part Y`m of the
orbital wave function, ` being the relative angular momentum, and a factor �1 from
the relative intrinsic parity of quark and antiquark, thus P D .�/`C1.

Charge conjugation interchanges quark and antiquark, hence the spins must
be recoupled, giving a factor .�/1=2C1=2�S . Regarding the orbital wave function,
we note that interchanging q and Nq means relabeling coordinates in the relative
coordinate r1 � r2. While the radial part does not change, the angular part changes
by a factor .�/`. Finally, charge conjugation gives an extra minus sign when applied
to a doublet (with respect to an internal symmetry such as strong isospin); cf.
Sect. 1.10. Therefore, C D .�/`CS. If the ! meson is purely nonstrange, i.e., if
! D .uNu � d Nd/=p2, then 
 is a purely strange state, i.e., 
 D s Ns. This is so
because 
 is an isoscalar and must be orthogonal to !.

From the results above the P and C eigenvalues for low-lying mesons are as
follows:

�0; � .` D 0; S D 0/ W P D �1 C D C1
�0; !; 
 .` D 0; S D 1/ W P D �1 C D �1
a2 .` D 1; S D 1/ W P D C1 C D C1

3.4. The generators fall into two sets, say Tk for SU(P) and Sj for SU.Q/, which
commute for all k and j; ŒTk; Sj � D 0. Therefore, expressions such as (3.112) for
the gauge potential and (3.121) for the field strength tensor will read explicitly
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A˛.x/ D i
h
eP
X

B.k/
˛ .x/Tk C eQ

X
C .j /
˛ .x/Sj

i
;

F˛ˇ.x/ D i
h
eP
X

G
.k/

˛ˇ .x/Tk C eQ
X

H
.j /

˛ˇ .x/Sj

i
:

In fact, a more precise way of writing the generators would be Tk˝ 1 and 1˝Sj ,
where the first factor acts on the internal space spanned by representations of
SU.P /, the second acts on the internal space pertaining to SU.Q/. The construction
of the gauge theory for the group SU.P / � SU.Q/, along the lines of Sect. (3.3),
goes through for any choice of the coupling constants eP and eQ. For example,
one verifies that the Lagrangian for the pure gauge fields is just the sum of the
corresponding Lagrangians for the SU.P / fields B˛ and for the SU.Q/ fields C˛ ,

�1
4
F˛ˇF

˛ˇ D 1

4
G˛ˇG

˛ˇ � 1
4
H˛ˇH

˛ˇ:

Here we have used tr fTk ˝ 1g D tr Tk D 0 and likewise for Sj .

3.5. The equation
�.@˛g�1.x//g.x/ D A˛.x/

is interpreted as a differential equation for the gauge transformation g.x/, the
inhomogeneity being A˛.x/. Rewriting this equation

@˛g
�1.x/ D �A˛.x/g�1.x/; (15)

we obtain the integrability condition

.@ˇ@˛ � @˛@ˇ/g�1.x/ D 0:

Inserting (15) we find

@˛.Aˇ.x/g
�1.x// � @ˇ.A˛.x/g�1.x//

D .@˛Aˇ � @ˇA˛/g�1 C Aˇ@˛g�1 �A˛@ˇg�1

D .@˛Aˇ � @ˇA˛/g�1 C .�AˇA˛ CA˛Aˇ/g�1

D F˛ˇ.x/g�1.x/ D 0:

In the second step we have used (15) to replace @˛g�1, in the last step we have
inserted the definition of the field strength tensor. As g�1.x/ is not identically
zero we conclude: A˛.x/ is gauge equivalent to 0 if and only if F˛ˇ.x/ vanishes
identically. Thus, F˛ˇ is a measure which tells us to which extent the potential A˛
cannot be gauged to zero.

3.6. With G D SO.3/ the structure constants are Cijk D "ijk. For simplicity consider
a set of real scalar fields
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ˆ.x/ D f
1.x/; 
2.x/; : : : ; 
M .x/g

forming an M -dimensional representation of G. The invariant scalar product is

.ˆ;ˆ/ D
MX
kD1


k.x/
k.x/:

A globally invariant theory involving these fields could have the form

L0 D 1

2
.@˛ˆ; @

˛ˆ/ �m2.ˆ;ˆ/C �.ˆ;ˆ/2:

This is turned into a locally gauge invariant theory by introducing gauge fields
A˛.x/ D ie

P3
i�1 TiA

.i/
˛ .x/ in the adjoint representation of SO(3) and the covariant

derivativeD.A/ which acts on the scalar multiplet. Symbolically, we obtain

L D �c
4
.F ˛ˇ; F˛ˇ/C 1

2
.D˛ˆ;D

˛ˆ/�m2.ˆ;ˆ/C �.ˆ;ˆ/2; (16)

with c D 1=.e2�/ and tr.TiTk/ D �ıik. The second, third, and fourth terms are
obvious. We work out the first one explicitly, viz.

�LA WD c

4
.F ˛ˇ; F˛ˇ/

D 1

4

3X
iD1

f
.i/

˛ˇf
.i/˛ˇ � e

2

X
ijk

"ijkf
.i/

˛ˇ A
.j /˛A.k/ˇ

C e4

4

X
ikpq

X
i

"ijk"ipqA
.j /
˛ A

.k/

ˇ A
.p/˛A.q/ˇ

D 1

4
f˛ˇ � f˛ˇ �

e

2
f˛ˇ � .A˛ � Aˇ/

C e2

2
f.A˛ � A˛/.Aˇ � Aˇ/� .A˛ � Aˇ/.Aˇ � A˛/g:

(17)

Here the boldface notation stands for A˛ D
�
A
.i/
˛ ; i D 1; 2; 3

	
and, likewise, for

f˛ˇ D
�
f
.i/

˛ˇ D @˛A.i/ˇ � @ˇA.i/˛ ; i D 1; 2; 3
	

. (Remember that the gauge fields and

the field strengths belong to the adjoint representation of G D SO.3/. Thus, they
form a triplet and, therefore, are isomorphic to a vector in real, three-dimensional
space R3.) We have made use of the identity

X
i

"ijk"ipq D 2.ıjpıkq � ıjqıkp/;
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and have introduced the well-known scalar and cross products of R3. This theory
is perhaps the simplest, nontrivial example of a gauge theory. In the explicit form
(16) and (17) it is easy to interpret in terms of interactions between the three gauge
bosons and with the scalar fields. In the example studied here, G is both a spectrum
symmetry and the structure group from which the gauge group is constructed.
Without the gauge principle, i.e., without the geometric framework on which it rests,
it would be difficult to guess the specific form (17) of the Lagrangian.

3.7. A priori the mixing matrix between any two generations is a unitary matrixU 2
U.2/ and, hence, depends on four parameters: A common phase ' in U D ei'US
and three angles which parametrize the factor with determinant C1; US 2 SU.2/.
Clearly, the former is irrelevant and may be omitted from the start. In analogy to
D.1=2/, cf. Sect. 1.8.3.a, the latter must have the form, for the example of mixing
between the first and the third generation,

U
.1;3/
S D

0
@ cos˛13ei.ˇ13C�13 / 0 sin˛13ei.ˇ13��13 /

0 1 0

� sin˛13e�i.ˇ13��13 / 0 cos˛13e�i.ˇ13C�13 /

1
A

D
0
@eiˇ13 0 0

0 1 0

0 0 e�iˇ13

1
A
0
@ cos˛13 0 sin ˛13

0 1 0

� sin ˛13 0 cos˛13

1
A
0
@ei�13 0 0

0 1 0

0 0 e�i�13

1
A:

What remains to be done is to multiply the three mixing matrices,U .1;2/
S U

.2;3/
S U

.1;3/
S ,

and to realize that both the initial, unmixed, states, say b.m/ � .d; s; b/, and the
mixed states d .n/ can each be multiplied by an unobservable phase, such that the
mixing matrix

diag.ei
1 ; ei
2 ; ei
3/U .1;2/
S U

.2;3/
S U

.1;3/
S diag.ei 1 ; ei 2 ; ei 3/

is physically equivalent to U .1;2/
S U

.2;3/
S U

.1;3/
S . This freedom in the choice of 
i and

 i reduces the number of observable phases to four.

3.8. In this exercise, which we do not write out here, it is important to realize that
the coupling of the chargedW -bosons to the photon is fixed through the generalized
kinetic term .F˛ˇ; F

˛ˇ/, so that, in particular, the anomalous magnetic moment of
the W can be identified. If the coupling had been constructed from the minimal
coupling principle (1.200) of electrodynamics, the W would have obtained no
anomalous magnetic moment.

3.9. The neutral partner of the Higgs doublet has y D �2t3. The right-hand side of
(3.173) then becomes

�i
�
gA.3/˛ � g0A.0/.̨

	
t3 


0:

When this is inserted into (3.172) we obtain
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1

2
.
0; 
0/ t23

�
gA.3/˛ � g0A.0/˛

�
.gA.3/˛ � g0A.0/˛/ � 1

2
M2
ik A

.i/
˛ A.k/˛; i; k D 0; 3:

Thus the mass matrix for the neutral gauge bosons is given by

M2 D .
0; 
0/ t23
�
g
02 �gg0
�gg0 g2

�
: (18)

Diagonalization of this matrix gives m2
� D 0 and m2

Z D .
0; 
0/t23 .g
2 C g02/. The

result for m2
w is as given in Sect. 3.4.3c.

3.10. Return to (3.222) and write the second factor in terms of helicity projection
operators, viz.

�˛ � ��˛�5 D 1C �
2

�˛.1 � �5/C 1 � �
2

�˛.1C �5/:

The longitudinal polarization of the outgoing neutrino is easily obtained from this;

Pl D .1 � �/� .1C �/
.1 � �/C .1C �/ D ��:

3.12. The calculation, which is a little lengthy, may be done along the lines of our
calculation with m� D 0, as given in Sect 3.6.3. Alternatively, this might be a good
example to try out an algebraic program such as REDUCE.

3.13. Inserting c.e/A D 0 and c.F��/V D 0 into (3.242) gives a vanishing asymmetry.
Although the electromagnetic and the neutral weak (NC) couplings have negative
relative parity, this is not seen in the asymmetry. This interference could only be
seen by measuring a spin-momentum correlation.

Chapter 4: Beyond the Minimal Standard Model

4.2. A straightforward way of solving this exercise is to repeat the calculation
of the isotropic spectrum along the lines of Sect. 4.1.2. and for the coupling
.�˛ � a˛/.�˛ � a˛/, by singling out the electron neutrino and the muonic antineu-
trino, respectively, and integrating over the other two leptons in the final state. A
more elegant way is the following: First, realize that the parameter � determines the
intercept of the unpolarized spectrum at x D 1, cf. Fig. 4.2. Recall that eC and Nv�
are right-handed, while ve is left-handed.

Suppose it is the electron neutrino ve that is measured. The point x D 1

corresponds to the kinematic situation where ve moves in a given direction with
maximal energy, while eC and Nv� are parallel and move in the opposite direction.
The three helicities adding up to 3/2 in the final state, this configuration is
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forbidden by angular momentum conservation. Hence, the parameter � must be
zero, �.ve/ D 0.

Suppose now that one measures the Nv�. At x D 1 this neutrino moves in a given
direction, and carries positive helicity. The helicities of eC and ve who move in
the opposite direction, now add up to zero. Therefore, there is no obstacle for this
configuration to occur. In fact, up to charge conjugation, this is exactly the situation
drawn in Fig. 3.2. Regarding the weak couplings the electric charge of the leptons
participating in a four-fermion process does not matter. The “V–A” interaction is
invariant under Fierz reordering (possibly up to an overall sign) so that for the
interaction term that is relevant here, we have

. N��˛ .1 � �5/ ��/ . N�e �˛ .1 � �5/e/ D �. N��˛.1 � �5/e/ . N�e �˛.1 � �5/��/:

Thus, the calculation of the Nv� spectrum is exactly the same as the one of the
positron. As we know that � was equal to 3/4 there, we conclude �.Nv�/ D 3=4.

If the reaction (4.39b) did indeed occur, one would like to identify the electronic
antineutrino Nve through inverse ˇ-decay. Obviously, interpreting data for Nve in terms
of the branching ratio (4.40) rests on the knowledge of the isotropic decay spectrum.

4.3. Let

I WD
Z

d3k1
2E1

Z
d3k2
2E2

. k1 � k2/ ı .Q � k1 � k2/: (19)

As k1Ck2 D Q;k21 D k22 D 0 we have .k1 �k2/ D Q2=2. The integral over k2 takes
care of the spatial delta distribution. In a frame where Q D .0; 0; 0/ and introducing
polar coordinates for k1, i.e. d3k1 D E2

1dE1d� we find

I D Q2

2
�

Z 1
0

dE1 ı.Q0 � 2E1/ D �

4
Q2:

The integral (4.44b) is best decomposed into covariants which are then isolated by
taking various contractions as follows. The momentum Q being the only variable,
the integral must be a linear combination of the covariants g˛ˇ and Q˛Qˇ with
Lorentz invariant coefficients. We set

I ˛ˇ W D
Z

d3k1
2E1

Z
d3k2
2E2

n
k˛1 k

ˇ
2 � . k1 � k2/g˛ˇ C k˛2 kˇ1

o
ı .Q � k1 � k2/

� AQ˛Qˇ CBg˛ˇ Q2;
(20)

and calculate the invariant integrals

g˛ˇI
˛ˇ D .AC 4B/Q2; and Q˛QˇI

˛ˇ D .ACB/.Q2/2:

From the definition of the tensor integral I ˛ˇ we find its contraction with the
metric tensor g˛ˇI ˛ˇ D �2I , with I as calculated above. Inserting Q D k1 C k2
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in the integrand of Q˛I
˛ˇQˇ , the second combination is zero. Thus B D �A;

.AC 4B/Q2 D ��Q2=2, and, from these,

A D �

6
; B D ��

6
: (21)

4.4. Let k and k0 denote the initial and final neutrino four-momenta, respectively, p
the electron momentum, q the muon momentum. Neglecting terms quadratic in the
electron mass the invariant kinematic variables s and t are expressed in terms of the
laboratory energies as follows,

s D .k C p/2 � 2meE
lab
� ;

t D .k � q/2 D .k0 � p/2 � �2meE
0lab
� � �2me

�
E lab
� � E lab

�

	
� �s.1 � y/:

With dt=dy D s and the fact that the cross section (4.69) is a quadratic function in
the variable y, the integration is elementary. Note that it is the integral over y from
some value ymin (that depends on the experimental arrangement), to its maximum
y D 1 which is determined in the quoted experiments.

4.5. The calculation is similar to the one of exercise 4.3, except that now one of the
neutrinos is massive, say, k22 D �2. We first calculate the integral

I0 WD
Z

d3k1
2E1

Z
d3k2
2E2

ı .Q � k1 � k2/; (22)

say, in a frame where the spatial part of Q vanishes. The integral over d3k2
eliminates the spatial ı-distribution. In a frame where Q D .0; 0; 0/, this leaves
E2 a function of E1, so that we obtain

I0 D �
Z 1
0

dE1 E1
1

E2.E1/
ı.E1 C E2.E1/�Q0/;

with E2.E1/ D
q
�2 CE2

1 . The integral over E1 is calculated using the well-
known replacement rule for the delta distribution

ı.g/.E1// ! 1ˇ̌̌
g0
�
E
.i/
1

	ˇ̌̌ ı.E.i/
1 /;

where E.i/
1 is a simple zero of the function E2.E1/. This gives

I0 D �

2

Q2 � �2
.Q0/2

! I0 D �

2

Q2 � �2
Q2

:
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In the last step we returned to an arbitrary frame (where Q is possibly non-zero),
using our knowledge that the integral I0 must be a Lorentz scalar. As the neutrino
number 2 is massive, the scalar product of the neutrino four-momenta becomes
.k1 � k2/ D .Q2 � �2/=2 and the integral (19) is given by

I D �

4

.Q2 � �2/
Q2

:

The tensor integral (20) is calculated as in exercise 4.3., making use of the result
above. One finds

Q˛I
˛ˇ Qˇ D .Q2/2 .ACB/D �2I; g˛ˇI

˛ˇ D Q2.AC 4B/ D �2I;

and, from these relations,

A D �

6

.Q2 � �2/2 .Q2 C 2�2/
.Q2/3

; B D � �
12

.Q2 � �2/2 .2Q2 C �2/
.Q2/3

: (23)

Clearly, for � D 0 the result (23) goes over into the result (21) of exercise 4.3.

4.6. It is simplest to use a Cartesian basis in isospin space and to drop all real factors
such as .2�/3=2 so that the ansatz reads

˝
0
ˇ̌
A.i/˛ .0/

ˇ̌
�j .q/

˛ D F ıij q˛: (24)

Inserting first T �1T and then P�1P one obtains successively

˝
0
ˇ̌
A.i/˛ .0/

ˇ̌
�j .q/

˛ D ˝0 ˇ̌T �1 �TA.i/˛ .0/ T �1� T ˇ̌�j .q/˛
D .�/1Cı˛0 ˝0 ˇ̌A.i/˛ .0/ ˇ̌�j .q0 � q/

˛ ��T
D .�/1Cı˛0 ˝0 ˇ̌P A.i/˛ .0/ P

�1� P ˇ̌�j .q0 � q/
˛ ��T

D � ˝0 ˇ̌A.i/�˛ .0/
ˇ̌
�j .q0; q/

˛ ��T �P
D �F �ıij q˛�T �P

Here �P is the intrinsic parity of the pion, �T is an analogous phase which appears
when T is applied to a one-pion state. The pion has negative intrinsic parity. It
is even with respect to charge conjugation, i.e. �C D 1. With �P �P �C D 1 we
conclude that the product �P �T isC1. Thus, F , as defined in (24) is pure imaginary,
or, equivalently, f� is pure real.

4.9. It is not difficult to check that this model for the pionic axial current yields the
terms represented by the diagrams of Fig. 4.5 and, hence, that the structure terms
vanish.
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4.10. In the electronic decay mode � ! ev� the structure terms are found to be
comparable in magnitude to the contributions from internal bremsstrahlung. The
latter, however, contain the dynamic suppression factor / m2

e that we found in
comparing � ! ev to � ! �v. In the muonic decay mode � ! �v� , the
bremsstrahlung does not show this strong suppression while the structure terms,
up to kinematic differences due to the muon mass, are the same as in the electronic
mode. From this simple observation one draws two conclusions:

(i) as the contributions due to internal bremssstrahlung are dominant in the muonic
mode, the branching ratio

�.�C ! eCve�/

�.�C ! �Cv��/

must be practically the same as the branching ratio

�.�C ! eCve/

�.�C ! �Cv�/

(ii) the structure terms are very small, hence not easily detectable, in the muonic
decay mode. The integral over the available phase space for � ! �v� is easily
calculated using the formulae of Sect. 4.3.1 a for three-body decays. It is found
markedly smaller than the surface of the triangle of Fig. 4.6 for � ! ev� .

4.11. The calculation is analogous to the calculation of pion ˇ-decay; cf. Sect. 4.2.2.

4.12. This problem is a little lengthier. We give only a few hints and a reference
where further details will be found. A Feynman graph where the �0 first converts
to a single virtual photon which then decays via pair decay to the eC e� final state
gives no contribution because of conservation of C . Indeed, the neutral pion has
C.�0/ D C1 while the photon has C.�/ D �1. Therefore, the diagram of lowest
order is the triangular graph with �0 decaying into a pair of virtual photons, and
with the electron–positron pair being created via (virtual) Compton effect. It is not
difficult to write down the analytic expression that corresponds to this diagram. It
will contain the amplitude (4.126a) for �0 ! �� , with the two photons off-shell,
the electron and the positron as external legs, and the electron propagator joining
the two vertices where the photons are annihilated. A lower limit on the branching
ratio is obtained by means of the unitarity relation,

i.T � � T / D .2�/4T �T;

taken between the initial state j�0i and the final state heCe�j. It is important to
note that the product T �T , after insertion of a complete set of intermediate states,
contains only on-shell amplitudes. The dominant contribution stems from the two-
photon intermediate state,
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i.
˝
eCe�j�0

˛� � ˝�0jeCe�˛/ D .2�/4 ˝eCe�j�� ˛� h�� j�0i C � � � ;
with the two photons on their mass shell. This will be a lower limit because the
unitarity relation yields only the imaginary part of the �0 ! eCe� amplitude. If
this is worked out one finds the so-called unitarity limit

�.�0 ! eCe�/junitarity � 1

2
.˛me=m�/

2�.�0 ! � C �/:

This gives a lower limit on the branching ratio of 4:75 � 10�8 (cf., e.g., L.G.
Landsberg, Phys. Rep. 128 (1985) 301). Compare this to the present experimental
value for the branching ratio: .7:5˙ 2:0/� 10�8 (Deshpande et al., Phys. Rev. Lett.
71 (1993) 27, McFarland et al., ibid. p.31.)
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