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Understanding Complex Systems

Future scientific and technological developments in many fields will necessarily depend upon coming
to grips with complex systems. Such systems are complex in both their composition - typically many
different kinds of components interacting simultaneously and nonlinearly with each other and their
environments on multiple levels - and in the rich diversity of behavior of which they are capable.

The Springer Series in Understanding Complex Systems series (UCS) promotes new strategies and
paradigms for understanding and realizing applications of complex systems research in a wide variety
of fields and endeavors. UCS is explicitly transdisciplinary. It has three main goals: First, to elaborate
the concepts, methods and tools of complex systems at all levels of description and in all scientific
fields, especially newly emerging areas within the life, social, behavioral, economic, neuro and cognitive
sciences (and derivatives thereof); second, to encourage novel applications of these ideas in various fields
of engineering and computation such as robotics, nano-technology and informatics; third, to provide a
single forum within which commonalities and differences in the workings of complex systems may be
discerned, hence leading to deeper insight and understanding.

UCS will publish monographs, lecture notes and selected edited contributions aimed at communicat-
ing new findings to a large multidisciplinary audience.

Springer Complexity

Springer Complexity is an interdisciplinary program publishing the best research and academic-level
teaching on both fundamental and applied aspects of complex systems - cutting across all traditional
disciplines of the natural and life sciences, engineering, economics, medicine, neuroscience, social and
computer science.

Complex Systems are systems that comprise many interacting parts with the ability to generate a new
quality of macroscopic collective behavior the manifestations of which are the spontaneous formation
of distinctive temporal, spatial or functional structures. Models of such systems can be successfully
mapped onto quite diverse “real-life” situations like the climate, the coherent emission of light from
lasers, chemical reaction-diffusion systems, biological cellular networks, the dynamics of stock markets
and of the internet, earthquake statistics and prediction, freeway traffic, the human brain, or the formation
of opinions in social systems, to name just some of the popular applications.

Although their scope and methodologies overlap somewhat, one can distinguish the following main
concepts and tools: self-organization, nonlinear dynamics, synergetics, turbulence, dynamical systems,
catastrophes, instabilities, stochastic processes, chaos, graphs and networks, cellular automata, adaptive
systems, genetic algorithms and computational intelligence.

The two major book publication platforms of the Springer Complexity program are the monograph
series “Understanding Complex Systems” focusing on the various applications of complexity, and the
“Springer Series in Synergetics”, which is devoted to the quantitative theoretical and methodological
foundations. In addition to the books in these two core series, the program also incorporates individual
titles ranging from textbooks to major reference works.
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Preface

Scope and Purpose of this Book

This monograph arose from my significant confusion about how to understand
nervous systems as a physicist. Trying to provide a principled framework for
addressing this question led me to a formulation of what we call data assimilation
that has applications well beyond my initial inquiry. The point of view presented in
this monograph is to view as a communications and dynamical systems problem
the general challenge of transferring information in observed data to a physical
(or biophysical or geophysical or . . . ) model of the system producing those data;
this is data assimilation. The model, as the underlying processes, will be
nonlinear in some important aspects. This problem is fundamental to how we meld
experiments and observations to models, so it is hardly a new issue.

In a sense the problem is quite easy to state: over a period of time [0,T ] one
makes observations of some properties of a physical system at some discrete times
in that interval. Now we step back to think about this system and make a model of
its dynamics based on past experience or intuition or whatever. This model can be
expressed in differential equations or discrete time rules taking the state from one
time to another.

This model could be based on physical principles and basic force laws. We would
likely call this a “bottoms-up” approach to modeling the nonlinear dynamics of
the processes it seeks to represent. Usually the quantities entering the model are
transfer coefficients, viscosity, rate constants telling how one constituent interacts
with another, thermal conductivities, etc., and, as such, usually have a distinct
physical interpretation. The model could approach the problem from a “top-down”
viewpoint where broad phenomenological interactions among state variables are
represented by parameters with or without a more basic physical interpretation.

The methods we develop in this book do not help one create a model, except
to provide information to the model about the estimated value of its parameters
and a systematic method for completing the model through that estimation and to
validate (or invalidate) the model through using it to predict further experiments and
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observations. The methods here do not provide guidance or instruction on how to
improve models that are shown to be invalid. That is still the art of the scientist. We
find here a principled path to testing the consistency of a given model with given
data, and that path is broadly general, useful in many application areas, and has the
potential to be a tool of great use in the understanding of complex systems.

The model typically has a lot of state variables, not all of which we are able to
observe, and it has some physical parameters we may not know. We want to transfer
information from the measurements to that model to allow us to estimate the fixed
parameters and to estimate the unobserved state variables in the observation interval
Œ0; T �. If we can do a good job of this, then using the estimated parameters and using
the estimated full model state (observed and unobserved state variables) at T , we
can use the model to predict for t > T . To test this prediction, we require further
data for t > T .

The prediction can go wrong for a variety of reasons: (1) The data is very
noisy and the interference by the noise masks the behavior of the physical system
one is trying to describe. (2) The model is wrong because it operates in a noisy
environment and that masks the dynamics we want to uncover or it simply lacks
dynamical elements in the differential equation or discrete time map. (3) The method
used to extract information from the data and pass it along with the model is flawed;
one has an insufficient data assimilation procedure. (4) The model is incorrect.

Once one has noisy data and model errors in the mix, the overall task becomes
a statistical problem. There is a probability distribution for the state of the model,
conditioned on the observations. One must start at t D 0 with an initial condition
for the distribution of states. We may have some knowledge of this or may not. The
idea of solving initial value problems for probabilistic quantities is totally ingrained
in our physics education—think of the Schrödinger equation which produces
complex probability amplitudes or the Fokker–Planck equation for real probability
distributions—so this is not news. Then we must propagate this distribution function
using the dynamical rules of our model to the time 0 � tmeas�1 � T where we make
our first measurement. At tmeas�1 we require a rule letting us know how information
in the measurement at that time influences the state distribution function at that
time. Then we need to propagate that distribution to the next measurement time
tmeas�2 > tmeas�1 using the dynamics and apply our information transfer rule and so
forth until we reach the end of our observation window in time at T .

This set of tasks says “path integral” to contemporary physicists who have seen
this question raised in quantum mechanical and statistical physics contexts over and
over again. Indeed, precisely this question cast in quantum mechanical language
has been a core topic in quantum theory since the 1980s (Caves 1986). The starting
point for the classical version of the data assimilation problem is a path integral
giving the integral representation of the solution to the data assimilation problem.
The path integral is exact, as an exact statement of the information transfer at
each measurement comes from an identity on conditional probabilities. The exact
path integral is more or less useless for application to any specific question, so
approximations and, always, numerical evaluations are required.
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This book is about all of that with extensive examples from nonlinear circuits,
fluid dynamics, toy geophysical models, and neurobiological simulations and
experiments. The general principles are discussed both after some examples and
before other examples. Indeed, we start out with a kind of standard least-squares
“fitting” of a model to data and only later reveal it to be a saddle point (Laplace
1774; Debye 1909) approximation to the path integral. Since we have the integral
representation to the full statistical data assimilation problem, we can formulate
methods for evaluating the corrections to the saddle-point approximation, and we
can formulate methods for just directly evaluating the integrals involved. The latter
leads us to Monte Carlo methods and substantial optimism that contemporary
parallel processing techniques will permit large problems to be solved.

The path integral is an integral representation of the linear partial differential
equation for the conditional probability distribution. As such it gives the opportunity
for a global view of the solution to the underlying stochastic physical problem and
permits going beyond the local view of other data assimilation methodologies.

That might even permit one to investigate the stimulating questions about nervous
systems as well as many other problems in complex systems.

The path integral also points our attention to the fundamental quantity in data
assimilation, namely the paths of a stochastic system through its state space as they
are influenced by observations. Formulating the questions one wants to answer as a
path integral and focusing on performing the integrals that answer those questions
bypass the efforts in other methods of data assimilation to estimate auxiliary
quantities from which one might be able to extract the answers of interest. Other
books give excellent instruction on those other methods, for example (Evensen
2009).

The examples presented here emphasize the importance of using the dynamical
model in a series of what we call “twin experiments” to explore the requirements on
measurements to perform the desired transfer of information. Twin experiments, a
phrase borrowed from the geophysical literature, generate data with a given model,
then uses that model with “unknown” parameters to test data assimilation methods.
These twin experiments also provide a testing ground for the methods one selects
for performing the path integrals at hand. Further, they are very useful for estimating
the number of required measurements and identifying which measurements one
needs to carry out a data assimilation task. In this, they are very helpful in designing
experiments and observations.

The other theme in our formulation of statistical data assimilation is that of
potential instability in the communications channel between the data as a transmitter
and the model as a receiver. This is a feature of the nonlinearity of the models
we use to formulate the dynamics of the underlying physical processes. It is not
a feature of linear models, but it appears and has been recognized in excellent
monographs (Evensen 2009). An emphasis on its importance connects the need to
regularize the instabilities with the goal of using the model for predicting behavior
of the physical systems of interest.

The emphasis is also on the use of prediction as the testing ground for the quality
and consistency of the data, the model, and the assimilation methods. A good
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“fit” to a data set by a plausible model of the underlying dynamics can be rather
misleading. Stopping there and evaluating the outcome of the model representation
of unobserved states is rather subjective and avoids the scrutiny a model must face
in providing accurate predictions.

Returning to the nervous system questions that prompted the discussions given
here, one can make any model one wishes to give a quantitative dynamical
framework, and the methods in this book can be used to evaluate that model.
The viewpoint on constructing quantitative, predictive models one finds here is
“bottoms-up” (Rabinovich et al. 2006) starting with biophysical models and detailed
experiments at the neuron level, then building the nervous system networks from
that as a basis, along with further experiments, of course.

One may choose how to build a model, in this scientific arena or others, and
that is an essential ingredient in using statistical data assimilation tools. The tools
are indifferent to how the model is made or interpreted. It provides a path for testing
those models, completed by the estimation of any unknown parameters within them.

Returning to the problem which stimulated this inquiry, the path that was initiated
by the challenge of understanding functional nervous systems grew well beyond
that. I made an informal survey of fields in which the data assimilation methods
developed in this book are of importance and ended my survey at ten or so distinct
areas ranging from toxicology and genetics to numerical weather prediction and
predicting how coastal flows drive river-borne pollution dispersion. The material in
this monograph might well have implications for a such a diverse set of applications,
but we address only two. One is the motivating question of how one may understand
from a biophysical viewpoint how functional nervous systems are constructed and
operate. The other, touched upon in the chapter on twin experiments, encompasses
meteorological models of the interacting atmosphere and ocean, though what is
presented is only an initial study of the core ingredient for those, namely, shallow
water flows. Our hope, of course, is that readers will find the material here a stepping
off point for further numerical development of methods and interesting applications
across many disciplines.

While perhaps a sidebar to the flow of this book, I note that I am not a fan of
“punitive pedagogy” seen as the mode of presenting each idea once, and only once,
regardless of its importance. The reader will find, therefore, repetition without regret
presented in the hope that the pedagogy is more elevated in value.
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Chapter 1
An Overview: The Challenge of Complex
Systems

1.1 Introduction

Complexity is a paradigmatic word for twenty first century science. It pervades
contemporary scientific literature from regulating genetic networks to weather
prediction and from hydrology to the dynamics of social networks. The sources
of complex behavior as it manifests itself in the world we encounter may come
from the instability of small systems expressed as irregular, nonperiodic, or chaotic
space/time activity, and it may arise when one has a large numbers of degrees of
freedom in the description of the fundamental physics of a system—or both, of
course.

In addressing complicated trajectories in the state space of physical or other
systems one is interested in a quantitative assessment of the state of the system—
what does the ocean look like as seen through the lens of water flow rate or
temperature—and of the ability to predict the future state of the system. Qualitative
features of each, present state and predicted future state, while useful, remain
insufficient, but necessary stepping stones on the way to quantitative statements.

This is certainly the view of a physicist who wishes to translate qualitative
statements about interestingly rich behavior into quantitative, usually mathematical,
formulations. These formulations in the hands of a physicist, and the author is
certainly no exception, are not rigorous mathematical statements about the evolution
equations formulated by one principle or another but are estimates, often numerical,
of properties of these equations in noisy environments and in the situation where
the model equations have errors. Further, measurements carrying information to
the model are always noisy, so there is a degradation of properties of the observed
quantities, and statistical methods are unavoidable.

Given these comments the prospect of making a science of understanding com-
plexity sounds rather daunting, and it is. However, as new measurement instruments
are developed and as enhanced computing power becomes inexpensively widely
available, last year’s impossibility usually becomes next year’s routine. The spirit
of this book is that having precise tools to bring to bear, although typically only
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2 1 An Overview: The Challenge of Complex Systems

in approximations, to the analysis of complex systems is a productive approach to
answering questions posed about these complicated systems.

The other point of view in this book is that experiments are essential in
understanding and testing dynamical behavior of complex systems. Theoretical
constructions alone are not going to be able to answer the set of questions we
pose about such systems. While analytic solutions of simplified models of complex
dynamics may continue to play an important illuminating role, we have no reason
not to use available numerical tools to forge well beyond a nineteenth century
fixation on analytic solutions using available numerical tools.

The challenges in translating this high level view of complex systems include

(1) Acquiring enough accurate data from field or laboratory observations; “enough”
data means observations are made with sufficient frequency in time, and at each
observation time, a sufficient number of observations are performed

(2) Developing models that embody the dynamical principles governing the source
of the observations. Making models requires understanding of the physical or
biological processes acting during the observations. This is quite specific to the
scientific area under consideration, and we will make no general statements
about this aspect of the challenges

(3) Completing the model using information in the observations to estimate
unknown model parameters and unobserved model state variables. This is one
of the central arenas for this book

(4) Examining the outcome of the estimation procedure to assure that the properties
of the model correspond to one’s knowledge of the underlying dynamics. This
connects with item (2) and is reliant on the model-making ability of the user

(5) Validating the model through predicting the response of the observed system to
new forcing and its time development from new initial conditions. Verification
of a model, completed by the estimation of its unknown parameters and
unobserved states at the time prediction begins, through prediction is the key
metric for successful model building. In a philosophical sense, one can never
validate a model as all possible forcing or initial states cannot be explored;
however, if one is willing to work with scientific models which are “not
invalid”, progress awaits

We will address many of these challenges in this book, with a strong concentration
on the third and fifth items. In order to accomplish the last item, we must have
accurate estimations of the model parameters and the full state of the model
system when prediction begins.The overall task set here, from data collection to
model validation, goes under the name of data assimilation in geophysical
settings (Evensen 2009; Kalnay 2003; Lorenc and Payne 2007), and we adopt that
name here. Further, as errors in observations, errors in the models, and uncertainty in
the state space location all play a role, statistical data assimilation
will best describe the work ahead.
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1.1.1 Data Assimilation as a Communications Problem

The general issues explored in this book come from the broad scientific interest in
making quantitative models of observed dynamical systems. The goal is to use the
information in experimental and field observations to provide estimates for unknown
parameters in the model as well as to provide an estimate of the complete state of
the model system including all unobserved state variables. Systems of interest range
over many orders of magnitude of time and length scales, and the interpretation
of the dynamical variables in any particular scientific arena can differ completely
from one area to another. When we have accomplished the estimation of the model
parameters and the full model state at some time T , we can use the results to
examine properties of the estimated state to determine how it associates with our
physical picture of the processes involved, and we can use the model dynamical
equations to predict future development of the model for t > T .

The scientific challenges of the present century lie in large part in the under-
standing of systems complex enough to elude analytic solution and large enough to
elude measurements of more than a sparse subset of the dynamical variables. Large
nervous systems and the dynamics of weather systems are just two examples where
one seeks predictive, quantitative models. Testing these models through prediction
and examining the consistency of such models with the available data is a goal of
this book.

In a sense this effort is at the heart of contemporary scientific inquiry, and one
can trace the quantitative feature of this scholarship back to Newton’s choice of
interplanetary forces once he had taken those forces to be equal to the rate of
change of momentum. The hypothesis that those forces were proportional to the
inverse square of the distance between two massive objects was his model whose
(operational) verification came in its predictions. One’s ability to solve for orbits
in that force field in closed form remains a remarkable and unusual outcome of a
model choice for nonlinear dynamical systems.

This problem is so pervasive that methods for accomplishing it have arisen in
many communities under a variety of different names. Control theorists (Nijmeijer
and Mareels 1997) call it observer theory, geoscientists (Evensen 2009; Kalnay
2003; Lorenc and Payne 2007) label it data assimilation, and many others identify
it as state and parameter estimation. The core ideas and methods for accomplishing
the stated goals when the dynamics of the model system are taken to be globally
linear in model state space have been known for over 50 years.

The intent of this book is to address issues arising when the nonlinearity of
models of physical and biophysical systems is at the fore from the outset. Everything
considered here can be used in the case of globally linear dynamics. As instabilities
are often at the core of the discussions, if encountered, they may signal that an
assumption of global linearity is surely incorrect.

A broader view of the data assimilation task is to see it as a unidirectional
communications problem. In the sense of analogies that illuminate the issues, it
differs little from tuning your radio, television, smart phone, or other web device to
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the broadcast signal from the source of your choice. Information in the broadcast
signal may be of interest to you. It may be a song or a speech you wish to hear or a
sports match you wish to view.

The transmitter at the location of the singer or the speech or the match collects
audio and/or video information about the activity and modulates it onto a carrier
signal which is then broadcast for you to receive. Your receiver is enabled so it can
be “tuned” to the desired carrier signal through adjusting receiver characteristics
such as capacitances or inductances, and then the same device is adjusted so that
accurate demodulation of the information being carried can be understood at the
receiving site. If the information is further encoded for efficiency of the use of
transmission bandwidth or for protecting its utilization by unauthorized users, then
additional “knobs” must be adjusted to allow the information to be available to the
receiver.

The analogy, perhaps clear already, is that the collection of the data about a
system of interest is to be compared to the production of the song or the in situ
observation of the sports match. This information is packaged for transmission
by measuring instruments which produce transmitted signals depending on the
state of the song or match. The model, seen as a receiver, has “knobs” or
parameters that need to be tuned so that the model response accurately represents
the actions which were encoded by the measuring and transmitting instruments.
Once the knobs/parameters are set correctly, so the transmitter and the receiver are
synchronized, the output of the model will present the model builder with a clear
image of the processes at work during the measurements. The communication is
unidirectional as your response to the sports match, perhaps a sense of dismay if
your team is losing or excitement if it is ahead, is not communicated back through
the transmission channels to the players.

Of course, in the communications equipment we use on a daily basis, the
transmitters and receivers have been purposely built to be tunable so they may
easily and reliably be synchronized to optimize the desired communication.
In the case where the information signal is from the operation of a physical system,
the receiver—the dynamical model—must be built based on physical ideas and
intuition, and its ability to read clearly the information in the transmission is the
goal of building the model.

If the model is successful in reading one transmission with a particular setting of
its knobs, and upon being sent another transmission from the same source it is, with
the same setting of its knobs, able to accurately read the subsequent transmission,
we have reason to accept the model as a “good” receiver. If this circumstance occurs,
we may then examine the details of the model: the time dependence of its dynamical
variables or of quantities dependent on those dynamical variables providing an
interpretation of the processes acting to produce the data.

Further, in addition to surveying the state of the model as it represents the
physical system at the source of the data, we can use that model to predict the future
behavior of the dynamical system as we present it with new forcing or stimuli and
provide the “gold standard” test of the quality of the model.
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1.1.2 Outline of this Book

We go next to a set of examples drawn from fluid dynamics, nonlinear electrical
circuits, and neurobiology. The first and third are numerical simulations; the second
is accompanied by experimental data. These are selected to give a flavor of things
to come. From this beginning we move to a general formulation of the statistical
data assimilation problem where data are noisy, the model has errors, and the state
of the model at the beginning of measurements is not known precisely. This leads
directly to a formally exact solution to the overall problem in terms of a path integral
through the observation window in time. The role of measurements appears as a
“force” guiding the dynamical development of the model through state space. From
there we turn to methods for evaluating the path integral, and these draw on the many
decades of experience with the equivalent issue in statistical physics and field theory.
Next we turn to a discussion of many “twin experiments” where data is generated
by our model, and then the data assimilation framework is used to design forcing
or stimuli that explore the dynamical dimensions of the model. These also test the
methods for approximating the path integral. In a penultimate chapter we discuss
the analysis of laboratory data in a neurobiological setting where the lessons from
the earlier discussions are applied and realistic biophysical models are devised and
tested. We recognize that the tests of these models, based on their ability to predict
observed neuron voltage responses, leave us with models that are “not invalid” when
prediction works. Finally, lest one suspect all is completed, we turn to a discussion
of unfinished business, so far as we can identify tasks now.



Chapter 2
Examples as a Guide to the Issues

Prologue to the Chapter

Before we delve into the general structure of using information from measurements
to complete models of those measurements, we will illustrate many of the questions
involved by taking a look at some well-trodden ground. Completing a model means
that we have estimated all the unknown parameters in the model, allowing us
to predict the development of the model in its state space given a set of initial
conditions and a statement of the forces acting to drive it.

We will review an example from simple fluid dynamics, the Malkus/Howard
waterwheel, and then we discuss an example of a nonlinear electronic circuit, the
Colpitts oscillator, widely used in commercial products. A third example will be a
consideration of a Hodgkin–Huxley model of a neuron.

The first and third examples are done in computer simulation in what we call
“twin experiments”. In these we generate “data” from a model with known fixed
parameters. We show how we can estimate these parameters as well as the values
of the unobserved and observed state variables of the dynamics at the end of an
observation period, t D T . We then predict for times beyond T using the estimated
parameters and full set of estimated state variables. In later chapters we return to
the neurobiological example and use what we have learned to develop models for
experimental observations of neurons from a functional neuronal network. In the
second example, the Colpitts circuit, we have both numerical and experimental
ingredients, yet retain substantial control over the proposed equations modeling the
experiment.

The examples are quite revealing of the much harder problems we aim to address.
Their formulation requires some undergraduate physics while their solution requires
more demanding ideas. It is our hope that in the context of these quite simple
settings, the demanding ideas stand out. The material also introduces one of the
ways, a quite widely used method actually, for answering the questions of interest.
We will see after the next two chapters that the approach is an approximation to
the full answer to questions about estimating fixed parameters and state variables.

H.D.I. Abarbanel, Predicting the Future: Completing Models of Observed Complex
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8 2 Examples as a Guide to the Issues

Though the measurements are recognized as noisy, this approach takes the models
as having no errors. In that sense it is appropriate for the twin experiments covered
here, but it does not provide error bars or any statistical context to the overall
problem. Those important aspects will be available via the discussion upcoming
in future chapters.

2.1 The Malkus Waterwheel

We begin our discussion of completing models of complex systems with examples
that are only a “little bit complex”. The first example is from a fluid mechanical
system. This is the waterwheel devised by Malkus in the 1970s (Malkus 1972).
There are other detailed descriptions of this waterwheel primarily concentrating
on the lovely idea that a simple mechanical apparatus can exhibit chaotic motions
as described by Lorenz in 1963 (Strogatz 1994). An experimental study of the
waterwheel is available from Illing et al. (2012a,b) who also proceed in the spirit
discussed here. Their laboratory realization of the Malkus waterwheel is shown in
Fig. 2.1.

The waterwheel comprises a series of leaky buckets arrayed around the circum-
ference of a wheel of radiusR. The wheel is tilted with respect to the vertical along
which gravity acts. Looking at the wheel from above we associate a spatial location
on the wheel by an angle � I 0 � � � 2� . We describe the water in the buckets at
various � by a mass density m.�; t/, and we bring water into the buckets at a rate
Q.�/. The forces on the water in the buckets drive the wheel through the torque
associated with the weight of the water g0R

R 2�
0

d� m.�; t/ sin � . g0 D g sin.˛/
is the effective gravitational acceleration. We select the inflow of the water to be
symmetric around the top of the wheel at � D 0:

Q.�/ D
1X

nD0
qn cos.n�/: (2.1)

We also account for leakage from the buckets via a factor �km.�; t/ in the
continuity equation expressing conservation of water. With the water source Q.�/
and the loss term, conservation of water is expressed as

@m.�; t/

@t
C !.t/

@m.�; t/

@�
D Q.�/� km.�; t/; (2.2)

where the angular velocity of the wheel is !.t/. The second term on the left-hand
side of this equation represents advective transport of water from one angle � to
another as the wheel rotates at angular velocity !.t/.

An equation for !.t/ comes from equating the rate of change of the angular
momentum I!.t/, with I the moment of inertia of the wheel with water in the
buckets, to the frictional losses in the pivot of the wheel ��!.t/ plus the torque on
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Leakage with
rate:  k 

Magnetic brake

g

m(q ; t)

R

®

Rotational
Encoder

Inflow with
rate: Q(q )

q

Fig. 2.1 An experimental setup of the Malkus waterwheel from Lucas Illing and his students at
Reed college (Illing et al. 2012a,b). I am grateful to professor Illing for permission to use their
excellent graphics. Left The experimental setup. Right Illustration of the quantities used in the
Malkus dynamical equations. The effective acceleration of gravity in this experiment is g sin.˛/
where ˛ is the angle of tilt of the rotating wheel. Friction opposing the rotation is provided by a
magnetic brake

the wheel arising from water in the buckets. This leads to

I
d!.t/

dt
D ��!.t/C g0R

Z 2�

0

d� m.�; t/ sin �: (2.3)

Both Q.�/ and m.�; t/ are periodic in � , so the partial differential equation for
m.�; t/ may be simplified if we write

m.�; t/ D
1X

nD0
Œan.t/ cos.n�/C bn.t/ sin.n�/�: (2.4)

Comparing coefficients of cos.n�/ and sin.n�/, we have

dan.t/

dt
D �n!.t/bn.t/ � kan.t/C qn

dbn.t/

dt
D n!.t/an.t/ � kbn.t/

d!.t/

dt
D ��

I
!.t/C �g0R

I
b1.t/: (2.5)

These equations show that knowing !.t/; an.0/; bn.0/, and qn determines an.t/ and
bn.t/ for all n. Also we see that the three quantities fa1.t/; b1.t/; !.t/g form a
separate subset of the whole infinite-dimensional space labeled by the location �
on the wheel. Solving the set of three ordinary differential equations for n D 1

yields !.t/ which, along with qn, enables the determination of m.�; t/.
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For n D 0, we have
da0.t/

dt
D �ka0.t/C q0

db0.t/

dt
D �kb0.t/; (2.6)

indicating that a0.t/ ! q0
k

and b0.t/ ! 0 exponentially rapidly in time. These then
drop out of our consideration.

For n D 1, we have
da1.t/

dt
D �!.t/b1.t/ � ka1.t/C q1

db1.t/

dt
D !.t/a1.t/ � kb1.t/

d!.t/

dt
D ��

I
!.t/C �g0R

I
b1.t/: (2.7)

If we scale by constants f˛; ˇ; �; ıg and translate the dynamical variables as a1.t/ D
˛x.t/C q1

k
, b1.t/ D ˇy.t/, !.t/ D �x.t/, and t D ı� , we may choose the constants

to arrive at

dx.t/

dt
D �.y.t/ � x.t//

dy.t/

dt
D �y.t/C Ax.t/ � z.t/x.t/

dz.t/

dt
D �Bz.t/C x.t/y.t/ B D 1: (2.8)

2.1.1 A Physics Question About the Waterwheel

Most discussions of the Malkus waterwheel (Strogatz 1994) are concerned with
properties of the solutions for a1.t/; b1.t/; !.t/ and illustrating ideas about bifurca-
tions and chaos in nonlinear systems. Those are important issues.

We ask here the following, somewhat different, question:

• If we observe only the rotation rate of the wheel xdata.t/ (or !data.t/ D xdata.t/

�
)

over a time segment Œ0; T �, can we use the information in that time series along
with a model for the waterwheel flow to determine the constants �;A;B and the
values of the unobserved state variables y.t/ and z.t/ over that period of time?
Further, if we know �;A;B and fx.T /; y.T /; z.T /g, can we predict the flow for
t > T ?

This is the essential kind of question we pose about complex systems where the
inability to measure or observe all of the relevant variables is standard. Also present
in larger and more complex problems is the chaotic motion we encounter in the first
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two examples discussed here. These matters are easier to identify and diagnose in
our “only slightly complex” examples, so we will attend to them for a bit. Then
with the lessons in mind, we’ll turn to a general formulation of the data assimilation
problem. The observation of a subset of the variables, here we observe only !data.t/,
is meant to represent the realistic situation we face in larger complex dynamical
settings.

Returning to the simple waterwheel flow, we call estimating �;A;B comp-
leting the model. We denote evaluating fx.t > T /; y.t > T /; z.t > T /g
predicting the future of our model of waterwheel flow:

• The first part completes the formulation of our model by specifying the unknown
constants in the physical description of the flow.

• The second part, equally important, validates (or invalidates) our model of the
flow, by utilizing our estimates of fx.T /; y.T /; z.T /g as initial conditions for
the model to predict the state of the flow for t > T .

We will demonstrate explicitly that these two tasks can be accomplished, and along
the way, we will identify issues that arise even in this simple flow that make
it just a “little complex”. The overall task is called data assimilation as
information from the data is assimilated or incorporated into the model allowing
prediction (Evensen 2009).

To address the question, we generated a “data set” by solving Eq. (2.8) with
�data D 16:0; Adata D 40:2; Bdata D 1:0 using some randomly selected initial
conditions x.0/; y.0/; z.0/ within a cube in .x; y; z/ space 20 “units” on a side.
We integrated these equations using a standard fourth-order Runge Kutta method
with a time step 	t D 0:005. The first 90,000 points of the three time series were
discarded, and the remaining 216 data points were recorded and stored.

We call the observed data xdata.t/, and we also know ydata.t/ and zdata.t/, we store
them away for later comparison with our estimates; we treat them as unobserved
variables. We inform our waterwheel flow model only of the values of xdata.t/.

This kind of exploration of data assimilation in which we generate the data from
a known dynamical source and then investigate how well our methods work to
produce accurate estimates of the known (unobserved) orbits and known parameters
of the dynamical source is called a “twin experiment”, (Faragó et al. 2005). It is
always important to exercise a twin experiment on any model of observed data.

Our method for estimating the parameters and the state variables within and at
the end an data acquisition window Œ0 � t � T � is to create a model of the data

dX.t/

dt
D �.Y.t/ �X.t//

dY.t/

dt
D �Y.t/C AX.t/�Z.t/X.t/

dZ.t/

dt
D �BZ.t/ CX.t/Y.t/ (2.9)
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and for a selection of initial conditions X.0/; Y.0/;Z.0/ and parameters �;A;B
generate a solution X.t IX.0/; Y.0/;Z.0/; �; A;B/ to compare to our data set
xdata.t/. The comparison is made through a least-squares evaluation of the difference

1

N

NX

nD1
.xdata.tn/� X.tn//

2; (2.10)

tn D n	t . We then seek a minimum of this comparison metric as we vary
X.0/; Y.0/;Z.0/ and �;A;B . This choice of comparison metric assumes implicitly
that the errors in the model output X.t/ relative to the known data xdata.t/ are
Gaussian distributed.

When we try this comparison using the model we have in Eq. (2.9), this does
not work well, even though we know the actual model in this twin experiment.
To see the barrier to success, we fixed A;B to the values used in generating the
data, fixed X.0/; Y.0/;Z.0/ to be different from that used in generating the data,
and evaluated Eq. (2.10) for various values of � . In Fig. 2.2 the green curve labeled
with K D 0 is Eq. (2.10) with X.t/ directly from the model. It shows many local
minima in the � dependence of our comparison function. A search over the value
of � in producing the model output X.t/ is seen by eye to be very unlikely to yield
the correct value (� D 16:0) as among the many local minima; the region near
� D 16:0 would probably not be reached by a search algorithm unless we know
where to start it beforehand. Further, a search algorithm is quite likely to fall into
one of the numerous local minima, and usually it does.

The origin of the many local minima acting as an impediment to the estimation
of � is the incoherence between the model system outputX.t/ and the data xdata.t/:
both of them are chaotic and have different initial conditions. The instabilities in
the nonlinear dynamical system that give rise to the chaos of these orbits, also lead
these two orbits X.t/ and xdata.t/, to move differently around the same attractor of
the model dynamical system with no correlation between each other as they emanate
from different initial conditions, even if � is set equal to the correct value. The two
orbits X.t/ and xdata.t/ are not synchronized with each other.

In a manner we discuss in detail below, we can potentially tame the lack of
synchronization by adding to the model equations a term that induces the model
output X.t/ to move along with the data xdata.t/. We achieve this by changing the
model equations to

dX.t/

dt
D �.Y.t/ �X.t//CK.xdata.t/ � X.t//

dY.t/

dt
D �Y.t/C AX.t/CZ.t/X.t/

dZ.t/

dt
D �BZ.t/ CX.t/Y.t/I (2.11)
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Fig. 2.2 We display the cost function C.K; �/ Eq. (2.10) as a function of the parameter � in the
dynamical equations (2.11) for various values of K , the coupling strength of the data into the
model. Other parameters in Eq. (2.11) are held fixed. The minimization of C.K; �/ is expected
to allow the estimation of � , however, we see for small KI K D 0;K D 0:00043 the incoherent
interference of the ingredients ofC.K; �/, xdata.tn/, andX.tn/ yields many local minima with none
apparently at the known value � D 16. When the coupling of the data into the model is larger, here
K D 0:67, the data and the model output synchronize, and the � variation of C.K; �/ is now
smooth, allowing an accurate estimation of this parameter. The cost function C.K; �/ decreases
as � K�2, so the last curve here (in blue) is multiplied by 100 so it can be displayed on an equal
footing for the smaller values of K

K � 0. This connects information in xdata.t/ directly into the model equations.
In the red and blue curves in Fig. 2.2 we see that when K is very small, the
incoherence betweenX.t/ and xdata.t/ remains, while when we select a larger value
of K D 0:67, the picture changes completely and the dependence of Eq. (2.10) on
� is smooth with a clear, easy to reach minimum at the correct value of � . The key
here is that the two chaotic signalsX.t/ and xdata.t/ have synchronized for this value
of K , and the previous incoherence has transmuted into coherence.

This device of adding a term to drive the two time series together is known
in geophysics as “nudging” and has been used in nonlinear dynamics to analyze
synchronization between chaotic systems (So et al. 1994; Parlitz 1996; Parlitz
et al. 1996; Maybhate and Amritkar 1999; Sakaguchi 2002; Dochain 2003; Voss
et al. 2004; Parlitz and Yu 2011; Huang 2004; Konnur 2003). It is important to
note here that had we used this approach on the “z.t/” components, it would not
have worked (Pecora and Carroll 1990), a feature not recognized in the geophysics
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Fig. 2.3 The dependence of the synchronization error C.K; �/ between two solutions of the
dynamical equations (2.11) where all parameters are the same in the two solutions, but they differ
in their initial conditions. For K D 0 the two chaotic solutions develop independently in time.
They do not synchronize because of the instability in the “communications channel”. When the
solutions are coupled as in Eq. (2.11) strongly enough to reduce the positive conditional Lyapunov
exponent (CLE) atK D 0 below zero, the solutions synchronize, and as seen in Fig. 2.2, estimation
based on minimizing the synchronization error is possible

literature, but quite relevant to our discussion as we move through this book. The
new constant K we have introduced has no physical meaning, it is only a device to
force the model output to the observed xdata.t/.

To orient ourselves with respect to the idea of synchronization of two chaotic
time series, we plot in Fig. 2.3 a different characteristic of the function C.K; �/:

C.K; �/ D 1

N

NX

nD1
.xdata.tn/� X.tn//

2; (2.12)

and we ask when this metric goes to zero as a function ofK with � fixed along with
A and B while the initial conditions for the data and the model remain different. So,
we solve the Eq. (2.11) with � D 16 for variousK and plot this least-squares metric
of similarity of the model X.t/ time series and the data xdata.t/ times series. The
outcome of this is in Fig. 2.3 where C.K; �/ is displayed versusK; we see a region
without synchronization, C.K; �/ ¤ 0, followed by persistent synchronization for
largerK , C.K; �/ � 0.
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Fig. 2.4 Top Panel Estimation of the parameters and states for the chaotic Malkus waterwheel.
Using 6,000 data points separated by	t D 0:01 we minimized Eq. (2.13) subject to the dynamical
equations (2.14). The parameters were estimated very accurately. We display the observed angular
velocity comprising the data in black and the estimated angular velocity in red. The other two,
unobserved, dynamical variables were also estimated throughout the observation window, but
they are not displayed. Bottom Panel Using the estimates of the parameters and the observed and
unobserved state variables at the end of the observation window, we integrated the dynamical
waterwheel equations forward in time to predict the behavior of the waterwheel. The known
(black) and predicted solutions (blue) agree well until about time 11,500. The estimated states and
the known data at the beginning of prediction differ by small amounts, and this difference grows
because of the positive Lyapunov exponent in this system. This leads to an exponential separation
of the prediction and the data consistent with the value of the largest positive Lyapunov exponent

When we have synchronized the data with the appropriate function of the model
output, here simply xdata.t/ � X.t/, we expect to be more successful in our
estimation of the parameters �;A;B as well as the unobserved states y.t/; z.t/.
There is one more idea that is helpful to introduce into the discussion. In nonlinear
dynamical systems such as our waterwheel equations, the instability associated with
chaotic behavior of the orbits is inhomogeneous in the state space fX.t/; Y.t/; Z.t/g
location of the orbit (Abarbanel 1996; Kantz and Schreiber 2004). The magnitude
of the instability curing factor we call K may need to be larger or smaller in various
parts of the orbit. To accomplish this in a natural manner, we replace the constant
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K by a function of time K ! u.t/ � 0 and add a cost for the regularization
accomplished by u.t/ to the comparison function. u.t/ utilizes t as an indicator
where one is located in fX; Y;Zg space and allows the strength of the push on the
model toward the data to vary locally.

We then seek to minimize

C D 1

N

NX

nD1

�

.xdata.tn/� X.tn//
2 C u.tn/

2

�

; (2.13)

subject to our model equations as a constraint:

dX.t/

dt
D �.Y.t/ � X.t//C u.t/.xdata.t/ � X.t//

dY.t/

dt
D �Y.t/C AX.t/CZ.t/X.t/

dZ.t/

dt
D �BZ.t/CX.t/Y.t/; (2.14)

We have carried out this numerical optimization task, and the resulting estimates of
the fixed parameters are very accurate: f�est D 16:00002;Aest D 40:20018; Best D
0:999993g. In the Top Panel of Fig. 2.4 we display the estimated !est.t/ in red and
the known !data.t/ as a black line. In addition to the estimated parameters, we
estimate the unobserved variables Y.t/; Z.t/ over the observation window Œ0; T �.
This completes the model (2.9) as we now have estimates of the fixed parameters
f�;A;Bg.

Using the estimates of �;A;B andX.T /; Y.T /;Z.T / we integrated the dynami-
cal equations (2.9) with u.t/ D 0 forward for t > T . In the Bottom Panel of Fig. 2.4
the predicted !pred.t/ is shown in blue along with the known data still in black.

This dynamical system is chaotic, and the estimates of �;A;B;X.T /; Y.T /, and
Z.T / inevitably have errors, small though they may be in this example. This leads to
two solutions to the waterwheel equations with slightly different initial conditions:
one is the “data” here, and the other is the predicted !.t/ using the values estimated
at t D T . As in all chaotic systems these orbits with different initial conditions
diverge due to the intrinsic instability in the dynamics. This too we see in the
departure of !data.t/ and !pred.t/ from one another (Abarbanel 1996; Kantz and
Schreiber 2004).

We do not show the fact that the estimates of fY.t/; Z.t/g are also quite accurate
when we compare them to the known values in the “data” set. We could infer this
by the accuracy of the predictions. In an experimental setting, not twin experiment
simulations, we would not be able to make this comparison, and we would have to
rely on the quality of predictions for observed state variables as our sole metric for
success in estimations.

We turn now to a discussion of another “slightly complex” example drawn from
nonlinear electronic circuits. We will repeat many of the steps presented in the
waterwheel example and give some elaboration on the tools we utilized until now.
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We did not discuss the numerical methods used to perform the minimization of the
comparison function nor will we in the circuit example. We save this for the chapters
following the general formulation of the data assimilation problem. In this chapter
our goal is to provide a tempting sense of the flavor of the arguments and the issues
and save the full meal for later.

2.2 The Colpitts Oscillator

The mechanical example of the waterwheel is not isolated or special. The issues
raised in addressing data assimilation within it appear in numerous examples of
nonlinear model dynamics describing observed data. To illustrate many of the same
questions, we turn to an example from an electrical circuit which has a nonlinear
circuit element: a bipolar transistor. In this example, we have a quite different kind
of twin experiment as we generate the data from a laboratory analog circuit we built
for the purpose as well as the opportunity for a fully numerical simulation of the
circuit. The issues encountered in the mechanical example, which also has been
realized in experiments, are now seen to be associated with the actual response of a
physical system and not just a numerical simulation as before.

Our circuit is a nonlinear oscillator invented by Colpitts in the 1920s (Colpitts
1927). It has linear RLC elements, familiar from textbooks and undergraduate
laboratory sessions, as well as a bipolar transistor (not part of Colpitts’ original
design). There are three state variables and their associated nonlinear ordinary
differential equations describe this circuit; it expresses chaotic behavior (Abarbanel
1996; Kantz and Schreiber 2004; Kennedy 1994) when the forcing of the circuit
becomes strong enough.

The question we propose about the circuit is whether a measured time series
of one of its three independent dynamical variables can be passed to a model
of the circuit and used within the model to estimate unknown parameters in the
circuit model along with estimates of the remaining two unobserved model
state variables. In the case of the bipolar junction transistor, we have (at least) two
competing models of the nonlinear element in the circuit, and we ask if we can
differentiate between them in the same setting: one measured dynamical variable
passed to the model.

In practice, we are able to measure everything about the Colpitts circuit, so
it provides a welcome testbed where we can examine the efficacy of any data
assimilation method, and the key question is only to distinguish between two
relatively well-tested models of the nonlinear bipolar transistor (Ebers and Moll
1954; Gummel and Poon 1970).

The circuit is easy enough to build (Quinn et al. 2009; De Feo and Maggio 2003),
so we have the opportunity to examine it both experimentally and theoretically,
and find that standard methods of data assimilation in the geophysical
literature (Evensen 2009) cannot succeed when the oscillations of the Colpitts
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Fig. 2.5 Left The circuit diagram for the Colpitts circuit. The RLC circuit elements are well known
from linear circuit theory (Purcell 1965), so the model of the circuit is essentially a choice of model
for the bipolar transistor. Right The bifurcation diagram for the Colpitts circuit. As the resistance
R is decreased the circuit is driven more strongly and its behavior goes from a fixed point for
R � 60 ohms to periodic behavior and then chaotic oscillations for smaller values of R (Kennedy
1994). We operated this circuit with R � 35 ohms

circuit are chaotic. The techniques used to resolve this difficulty illuminate issues
encountered in more complicated settings of substantial interest.

The Colpitts oscillator circuit diagram is shown in Fig. 2.5, (Left). Using the
standard rules for analyzing electrical circuits (Purcell 1965), we determine there
are three independent dynamical variables for the Colpitts circuit, and we choose
them to be VCE.t/, the voltage at the collector relative to the emitter; VE.t/, the
voltage at the emitter relative to ground; and IL.t/, the current through the inductor.

Our goal in this data assimilation example is to use measurements of VE.tn/ taken
at the times tn D n	t I 	t D 10
s for n D 0; 1; : : : ; N D 1; 000 to estimate
the fixed parameters in the model of the circuit and to estimate the unobserved
VCE.tn/ and the unobserved IL.tn/ over the same observation period. We then
wish to employ the estimated fixed parameters and the estimated values of the state
variables fVE.T /; VCE.T /; IL.T /g at T D tN D N	t to predict the state of the
system for t > T using the model dynamics.

We know our estimates of the parameters and the state variables will not be
perfectly accurate; therefore, if there is chaos in the system, it will exhibit itself both
as inaccuracies in our prediction beyond T and as an impediment to our estimating
the parameters and states of the circuit. In this section we will examine the circuit
in an operating region where the driving forces are large enough to produce chaotic
oscillations.
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In thinking of the use of information in our data as a communications problem
we would naturally seek to synchronize the observations with VE.t/ from our
model of the circuit. As the only nonlinear element of the circuit is the bipolar
transistor, we can say our effort to estimate parameters and states, and predict with
that information, is in essence testing our choice of a model for the physics of the
transistor. In this regard, we will find that one standard model for bipolar transistors
does very well in allowing estimates for states and parameters using data from this
circuit, and another model does even better.

2.2.1 Colpitts Circuit Equations

The driving force in the circuit operation is the bias voltage across the circuit
(Fig. 2.5 (Left)). When that driving force is small, the circuit dynamics yields a fixed
point in state space. As that driving voltage is increased we encounter bifurcations
(Fig. 2.5 (Right)) to limit cycle periodic oscillations of the circuit. When that voltage
increases further, the circuit expresses chaotic oscillations.

The dynamics is described by three coupled first-order differential equations,
which can be obtained directly using Kirchoff’s laws. These are

C1
dVCE.t/

dt
D IL.t/ � IC.VE.t//;

C2
dVE.t/

dt
D IL.t/ � VE.t/ � Vee

Ree
C IB.VE.t//;

L
dIL.t/

dt
D VCC � VE.t/ � VCE.t/ � RIL.t/; (2.15)

where IC.VE.t// and IB.VE.t// are the currents going into the collector and base of
the transistor.

A key ingredient is the model specifying the transistor currents. We begin with a
simplified version of the Ebers–Moll equations (Ebers and Moll 1954):

IC.VE/ D Is exp.
�VE

VT
/; (2.16)

IB.VE/ D IC.VE/

ˇF
; (2.17)

where ˇF is the forward current gain and Is is the reverse saturation current; both
are properties of the particular transistor. VT D kT=e is the thermal voltage. These
equations are nonlinear, and this is what leads to interesting behavior of the circuit.

The RLC circuit, without the transistor, has a natural period of T0 D 2�
q

LC1C2
C1CC2 ,

and has a damping time of � D 2L=R. Changing the quality factor,Q D ��=T0 D
2�L=RT0, can change the circuit behavior. The other parameters also matter, but
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here we focus on only varying Q by changing the value of R and keeping all the
other parameters fixed. AsR decreases,Q increases as does the current flowing into
the circuit from the terminal at Vee.

The circuit was built out of common components. We used parts with the
following values: C1 D 7:44
F, C2 D 7:23
F, L D 11:74mH, and Ree D
0:392K ohms, and in the power supply, we took VCC D 5:03V, Vee D �5:10V.
We also chose a 100 ohm potentiometer in the circuit to adjust the parameter R. R
includes the resistance of the potentiometer plus the resistance of the inductor, which
was not negligible. For the bipolar transistor we selected a 2N2222 BJT small-signal
transistor. The fundamental frequency of this oscillator is around 700 Hz.

In Fig. 2.5 (Right) we display the bifurcation diagram for the Colpitts circuit.
We show the asymptotic (in time) values taken by the voltage VCE.t/ as a function
of the resistance across the inductor. From a fixed point near VCE � 4V above
R � 60 ohm, we see a transition to a periodic orbit and then to windows of
chaos. The chaotic oscillations used in the analysis were measured with R set
at R D 35 ohm. To construct this bifurcation diagram, we integrated the circuit
equations using a range of values for R, and plotted the value of VCE only at
the times t where both VE.t/ D Vth and dVE.t/

dt > 0. This defines a Poincare’
section (Abarbanel 1996; Kantz and Schreiber 2004; Strogatz 1994) of the three
dimensional state space. The threshold value of Vth D �0:6V was chosen because
that is about where the transistor switches smoothly from “on” to “off”.

We recorded all three dynamical variables VC.t/; VCE.t/; and IL.t/ from the
circuit when it was operating in a chaotic regime. These state variables were
measured every 	t D 10
s. The orbit traces out a strange attractor in the
three-dimensional state space. A two-dimensional projection of the experimental
attractor is shown in Fig. 2.6 (Top). This is compared to the model projected phase
space which is calculated by numerically integrating the circuit equations using
parameters from the actual circuit (Fig. 2.6 (Bottom)).

2.2.2 Estimation with Chaotic Signals

We return to the experimental circuit in a moment. By rescaling the circuit variables,
we can cast Eq. (2.15) into the dimensionless form

dy1.t/

dt
D ˛Dy2.t/

dy2.t/

dt
D ��D.y1.t/C y3.t// � qDy2.t/

dy3.t/

dt
D �D.y2.t/C 1 � exp.�y1.t///; (2.18)
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Fig. 2.6 Two-dimensional projection of the attractor: Top Panel Observed VE.t / versus IL.t /.
Bottom Panel VE.t / versus IL.t / from integrating the model equations. The signals were sampled
every 	t D 10
s
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in which the control parameter ˛D plays the role of the driving force. For small ˛D
we have a fixed point for the trajectories of the circuit. For ˛D � 5 we have chaotic
solutions.

Now we generate data fy1.t/; y2.t/; y3.t/g using the parameters .˛D D 5:0;

�D D 0:0797; q D 0:6898; �D D 6:2723/ and a selected set of initial conditions
fy1.0/; y2.0/; y3.0/g. Then we ask when we can accurately estimate the parameters
f˛; �; q; �g and the unobserved state variables fx2.t/; x3.t/g in a model of the circuit
given by

dx1.t/

dt
D ˛x2.t/

dx2.t/

dt
D ��.x1.t/C x3.t// � qx2.t/

dx3.t/

dt
D �.x2.t/C 1 � exp.�x1.t///: (2.19)

We want to perform this estimation when only the data from the state variable
y1.tn/I tn D n	t (	t D 10
s) is presented to the model.

If we observe y1.tn/ D y1.n/ atN points in time, we would expect that minimiz-
ing a distance between the data y1.n/ and the model output x1.tn/ D x1.n/ would
serve to allow estimation of the parameters f˛; �; q; �g and the initial conditions
fx1.0/; x2.0/; x3.0/g that produce a sequence of x1.tnI˛; �; q; �; x1.0/; x2.0/; x3.0//
best matched to the data y1.tn/. If the model is correct, the cost function should
become quite small as the model is “tuned” to the data seen as a transmitter. In
this situation, one would expect that predictions using the model equations with
estimated values of the parameters and the full complement of state variables would
be accurate until the chaotic nature of the orbits destabilized the predictions. If the
model is incorrect, we may see a small cost function, but predictions are certain to
be inaccurate. This emphasizes the role of predictions in establishing some validity
for a model developed to describe experiments.

To this end, we employ a least-squares comparison distance between the data and
the model output. This means we anticipate that minimizing the “cost function”

1

2N

N�1X

lD0
.y1.l/ � x1.l//2; (2.20)

subject to Eq. (2.19) should yield good estimates for parameters and state variables.
We examine a slightly different equation than Eq. (2.19) by injecting information

from the data directly into the model using

dx1.t/

dt
D ˛x2.t/C k.y1.t/ � x1.t//I k � 0

dx2.t/

dt
D ��.x1.t/C x3.t// � qx2.t/

dx3.t/

dt
D �.x2.t/C 1 � exp.�x1.t///; (2.21)
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Fig. 2.7 We expect that when the data y1.n/ presented to a model of the Colpitts circuit
synchronizes with the corresponding output of the model x1.n/, the ability to accurately estimate
parameters and all states in the model will be maximized. Here we display the synchronization
error C.�; k/ D 1

2N

PN�1
nD0 .y1.n/ � x1.n//

2 as a function of the coupling k between data and a
model of the Colpitts circuit (Eq. (2.21))

which becomes Eq. (2.19) when k D 0. If we fix the three parameters f˛; �; qg and
seek to estimate only �, then

C.�; k/ D 1

2N

N�1X

nD0
.y1.n/ � x1.n//2 (2.22)

should allow us to do that. The information on � and the unknown initial conditions
fx1.0/; x2.0/; x3.0/g is contained in x1.tn/ from the solution to the model equations.
The role of the coupling k � 0 is to convey information about the data y1.n/ to the
model equations. The term k.y1.t/ � x1.t// drives the model variable x1.n/ to the
data, and as k ! 1, jx1.n/ � y1.n/j ! 1

k
. C.�; k/ D 1

2N

PN�1
nD0 .y1.n/ � x1.n//

2

correspondingly decreases in magnitude as k�2.
In the spirit of our overview discussion about synchronizing the data and the

model, we ask for what values of k are the data y1.n/ and the model output x1.n/
synchronized, namely, x1.n/ � y1.n/. For such k the cost function (2.22) should
be very small. In Fig. 2.7 we show

C.�; k/ D 1

2N

N�1X

nD0
.y1.n/ � x1.n//

2; (2.23)
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Fig. 2.8 The cost function C.�; k/ Eq. (2.23) for the Colpitts oscillator, Eq. (2.21), when the
driving parameter is ˛ D 1:74. The circuit expresses limit cycle oscillations for this value of
˛. Left The coupling is k D 0. There is a global minimum at the value of the circuit parameter
� D 6:27 which was used in the generation of the data. There are many local minima as well
suggesting that knowledge of the correct value of � might be required to search the cost function
C.�; k D 0/ for an accurate estimate. Right The coupling is k D 1:043 where the data signal
y1.n/ and the model output x1.n/ are synchronized. Now there is a clear minimum for the cost
function C.�; k D 1:043/ allowing accurate estimation of �

as a function of k. Note that at k D 0 the model output and the data are not
synchronized, suggesting one might not be able to estimate � or other parameters in
that situation. The model and the data do synchronize for k � 0:25, and we might
anticipate that when the coupling between the data stream y1.n/ and the model is
large enough, good estimations will occur.

To further examine this, we now look at C.�; k/ for two different values of
˛ and two values of k: k D 0 and k D 1:043. This is one value, k D 0,
where synchronization does not occur, and one value, k D 1:043, for which
synchronization is present.

We first select ˛ D 1:74 which is in a region where a limit cycle (a periodic
orbit) is present. In Fig. 2.8 (Left) we see that at k D 0 there is a distinct minimum
at � � 6:27, though searching for it starting from an initial guess well away from
the correct value might be impeded by the local minima that surrounded the correct
minimum. If we increase k to k D 1:043, the local minima are absent (Fig. 2.8
(Right)), and the correct minimum where � D �D is visible and easily reached via
any standard search algorithm.

When ˛ D 5:0 and the orbits are chaotic, we see the outcome shown in Fig. 2.9.
In the Left Panel k D 0 and the two signals y1.n/, the data, and x1.n/ are not
synchronized. This produces a ragged interference pattern where multiple local
minima are present without any minimum indicating a value where � D �D can
be located. However, in the right panel when k D 1:043, and the orbits of the data
and the model output are synchronized, we see that the functionC.�; k/ has become
smooth, and the correct minimum is easy to locate by eye or with any sensible search
algorithm.
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Fig. 2.9 The cost function C.�; k/, Eq. (2.23), for the Colpitts oscillator, Eq. (2.21), when the
driving parameter is ˛ D 5:0. The circuit expresses chaotic oscillations for this value of ˛. Left The
coupling is k D 0 where the data signal y1.n/ and the model output x1.n/ are not synchronized.
There are many local minima of C.�; k D 0/ none of which appear to be at the value of the
circuit parameter � D 6:27 which was used in the generation of the data. Right The coupling is
k D 1:043 where the data signal y1.n/ and the model output x1.n/ are synchronized. Now there
is a clear minimum for the cost function C.�; k D 1:043/ allowing accurate estimation of �

2.2.3 Instability of the Synchronization Manifold

Autonomous Systems: Lyapunov Exponents

How are we to understand the transition from ragged multiple local minima in
C.�; k/ when k D 0 to the regularized, smooth C.�; k/ for larger k? The key lies
in the conditional Lyapunov exponents (CLEs) of the model dynamics (Pecora and
Carroll 1990). These are a generalization of the usual Lyapunov exponents for a
nonlinear dynamical system (Abarbanel 1996; Kantz and Schreiber 2004).

Lyapunov exponents are found by considering a discrete time tn D t0 C
n	t , x.tn/ D fx1.tn/; x2.tn/; x3.tn/g version of the D-dimensional dynamics,
dx.t/=dt D F.x.t/;p/,

x.tnC1/ D x.nC 1/ D f.x.tn/;p/ D f.x.n/;p/; (2.24)

and asking how x.n C 1/ varies with small changes in x.0/. The p are parameters
in the dynamics, and f.x;p/ is the discrete time version of the model differential
equation. Lyapunov exponents are usually defined for autonomous dynamics where
f.x;p/ is not explicitly dependent on time. In the present case this means k.y1.t/ �
x1.t// is absent, so k D 0.

We are interested in the response of an orbit fx.0/; x.1/; : : : ; x.M/; : : :g of the
discrete time dynamics to a perturbation at t0. The quantity we want to analyze is
the D-by-D-dimensional Jacobian matrix (a; b D 1; 2; 3; : : : ;D)

@xa.M C 1/

@xb.0/
; (2.25)
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as this tells us quantitatively how a small change in the state of a system at t0 leads
to a change in the orbit some time later. This Jacobian matrix satisfies the recursion
relation

@xa.M C 1/

@xb.0/
D @fa.x.M/;p/

@xc.M/

@xc.M/

@xb.0/

D Df.x.M/;p/ac
@xc.M/

@xb.0/
: (2.26)

Repeated indices are summed over. The solution to this time-iterated map for the
D �D matrix @xa.MC1/

@xb.0/
is

@xa.M C 1/

@xc.0/
D Df.x.M/;p/aa0Df.x.M � 1/;p/a0b0 � � � Df.x.1/;p/b0c

D DfM.x.0/;p/ac; (2.27)

noting that @xa.0/
@xb.0/

D ıab .
The Lyapunov exponents �aI a D 1; 2; : : : ;D associated with the dynamics

x.n/ ! x.nC1/ are given via the eigenvalues e�a I a D 1; 2; : : : ;D of the Oseledec
matrix (Oseledec 1968)

�

DfM.x.0/;p/T � DfM .x.0/;p/
�1=2M

; (2.28)

as M ! 1. Oseledec proved that as M ! 1, the �a

• Exist
• Are independent of x.0/
• Are independent of the coordinate system in which the matrix is evaluated

If any of the �a > 0, so the eigenvalue is outside the unit circle, the system orbits are
chaotic, and small perturbations to an orbit grow exponentially rapidly away from
the orbit. When one or more of the �a > 0, orbits are unstable to small perturbations
and move around the same system attractor but in a completely different order
than in the unperturbed system. No orbits go off to infinity as in linear systems.
Stability of the dynamical system requires

PD
aD1 �a < 0 (Abarbanel 1996; Kantz

and Schreiber 2004).

Driven Systems: Conditional Lyapunov Exponents

When k ¤ 0, the time-iterated map is not autonomous because of the presence
of y1.t/ in the dynamical equations. However, if we consider the unidirectionally
coupled data source and the model together as a whole system, the total dynamics
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is autonomous. The Lyapunov exponents of the receiver system are called CLEs as
they are conditional on the receipt of the driving signal y1.n/ (Pecora and Carroll
1990). The model system is now

xa.nC 1/ D fa.x.n/;p/C ıa1k.y1.n/ � x1.n//; a D 1; 2; 3; : : : ;D (2.29)

and has a Jacobian @xa.nC1/
@xb.n/

D Df.x.n/;p/ab � ı11k. This Jacobian is to be used in
the Oseledec formula, just as in the autonomous case, and for large k can lead to
positive Lyapunov exponents becoming negative.

If any of the CLEs is positive, the synchronization manifold x.n/ D y.n/ is
unstable. This leads to the multiple local minima in a comparison cost function such
as C.�; k/ (Eq. (2.23)). The ingredients of this cost function x1.n/ and y1.n/ are
both chaotic but incoherent with respect to one another when unsynchronized. We
see that their interference pattern, captured in the cost function, expresses multiple
local minima, none of which may lie at the correct value, when a positive CLE is
associated with this lack of synchronization. If one has a single unstable direction,
then the role of k is to move the positive CLE to a negative value and stabilize the
perturbations to the synchronization manifold introduced by the search procedure in
the minimization of the cost function.

The sensitivity to small changes in initial conditions x.0/ is also true for small
changes in the parameters p, and when one is searching about in .p; x.0// space for
a minimum of a cost function, these small perturbations lead, through the instability,
to large excursions in the value of the cost function. This is precisely what we see
in Figs. 2.8 and 2.9. As k is increased, the CLEs decrease and become negative
allowing synchronization and a smooth surface in the parameter or initial condition
dependence of a cost function. The fact that we can regularize the behavior of the
cost function with the coupling of a single data stream y1.n/ demonstrates that there
is only one unstable direction on the synchronization manifold when y1.n/ alone is
presented to the model.

2.2.4 Regularized Cost Function

We have just seen that when the data and the model output are chaotic, synchro-
nization does not happen when the two signals are simply compared directly. The
sensitivity to initial conditions means that searching for a set of x.0/ for the model
intrinsically destabilizes the search.

The remedy presented in the previous sections adds the global coupling k.y1.n/�
x1.n// to the model dynamical equations. This fails to recognize that the instability
on the synchronization manifold is not uniform over the orbits of the dynamics.
Also, when the estimation procedure is completed for a fixed value of k, there
is a nonzero term k.y1.n/ � x1.n// remaining in the equations. This term has no
physics in it. It was introduced to rid the search procedure of sensitivity to intrinsic
instabilities in the dynamics.
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Both issues can be addressed by making the coupling k dependent on time, k !
u.t/, and by adding a cost for nonzero values of the coupling to the cost function
itself. The first action recognizes that nonzero u.t/ maybe be needed in some parts
of the system attractor, while u.t/ D 0 may be adequate in others. The instability
on the synchronization manifold is not homogeneous across the manifold. The time
label in u.t/ serves to indicate one’s location on the attractor. The second action
allows us, as we achieve synchronization, to remove the time-dependent coupling
as part of the variational procedure. We see this as follows:

When we take k ! u.t/, the equations of motion become

dx.t/
dt

D F.x.t/;p/C u.t/.y.t/ � x.t// I u.t/ � 0; (2.30)

while we alter the cost function through

C.p/ D 1

2N

N�1X

nD0
.y1.n/ � x1.n//

2 ! 1

2N

N�1X

nD0
Œ.y1.n/ � x1.n//

2 C u.n/2�: (2.31)

When we minimize this cost function subject to the equations of motion, we see
that as synchronization is achieved, x1.n/ � y1.n/, the optimization procedure also
sends u.n/ ! 0.

2.2.5 Experimental Colpitts Oscillator Redux

Regularized Cost Function and Parameter Estimation

We return to the experimental setup for the Colpitts oscillator recognizing we must
regulate the search procedure by using the cost function

C.R0; u/ D 1

2N

N�1X

lD1
Œ.y1.n/ � x1.n//

2 C u.n/2�; (2.32)

subject to the model dynamical equations

C1
dVCE.t/

dt
D IL.t/ � IC.VE.t//;

C2
dVE.t/

dt
D IL.t/ � VE.t/ � Vee

Ree
C IB.VE.t//C u.t/.VE�data.t/ � VE.t//;

L
dIL.t/

dt
D VCC � VE.t/ � VCE.t/ � R0IL.t/; (2.33)

and y1.t/ D VE�data.t/; x1.t/ D VE.t/.
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First we examine the dependence of the cost function on the resistance R0 to
see if the regularization associated with stabilizing motion on the synchronization
manifold is present experimentally. We coupled our experimental Colpitts oscillator
to another “model” circuit, and we evaluated the cost functionC.R0; u/ as we varied
the resistance R0 across the inductor for four values of the coupling u.t/ D u in
Eq. (2.33), where u � 0 is constant. We see in Fig. 2.10 the same ragged set of
local minima observed in our numerical simulation of the model oscillator. As u is
increased, these local minima are smoothed out, allowing for the accurate estimation
of R0 whose value in the data-generating circuit was 35.

We estimated the unobserved state variable VCE.t/ and IL.t/ as well as the circuit
parameters, when the emitter to base voltage VE�data.t/ D y1.t/ was presented to a
model of the circuit. We minimized

1;000X

nD1
Œ.VE�data.tn/� VE.tn//

2 C u.n/2�; (2.34)

subject to the Colpitts model equations of motion, Eq. (2.33), where tn D n	t

and 	t D 10
s to estimate the parameters in the circuit and the values of
fVE.n/; VCE.n/; IL.n/g during the observation window 0 � t � T D 10ms.

We also measured the parameters in the model using standard methods (Quinn
et al. 2009). In Table 2.1 we show these parameters along with the estimated
values when we assumed the Ebers–Moll (Ebers and Moll 1954) model for the
bipolar transistor in the circuit. Except for the parameter ˇF the estimates and the
measured values are accurately in agreement with each other. In the estimation
of the parameters shown in Table 2.2 we used the Gummel–Poon (Gummel and
Poon 1970) model instead, and now we see that all the parameters are much more
accurately estimated.

What should we conclude from these results of data assimilation? Well, both
the Ebers–Moll and Gummel–Poon models estimate most of the parameters in
the Colpitts circuit quite well. The latter repairs the one flaw in the Ebers–Moll
representation of the bipolar transistor, the value of ˇF, yet that model yields very
good predictions. With the set of experiments we have performed, we cannot tell
from the analysis of the time series alone which model to select. The Gummel–Poon
model does give a slightly smaller numerical value of the cost function (Quinn et al.
2009). However, if we want to distinguish these models, we should design another
set of experiments which probe the nonlinear device in other ways. One idea could
be to allow the driving voltage to be time dependent in a rich manner. We will
see in other examples, especially with neuron data and models, that the design of
the experiment may be a critical factor in distinguishing models. Prediction will
continue to be the key metric.

State Variable Estimation and Prediction

The regularized numerical optimization method yields estimates of the unobserved
state variables VCE.tn/ and IL.tn/ in addition to estimates of the circuit parameters.
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Fig. 2.10 Colpitts oscillator circuit cost function C.R0/, Eq. (2.32), as a function of the coupling
strength in the dynamical equations for the circuit Eq. (2.33). Upper Panel The many local minima
for u D 0 and u D 0:001 arise because the voltage in the data y1.tn/ is not synchronized with the
voltage x1.tn/ in the model and each is chaotic. This lack of synchronization is characterized by
the CLEs: one is positive here. Lower Panel As we increase u to u D 0:01 and u D 0:1 the signals
synchronize as the largest CLE on the synchronization manifold is moved to negative values. For
the larger values of u, C.R0/ is now smooth and the search for its minimum becomes easy. C.R0/

decreases as 1
u2 for large u, and this effect is seen in the changed vertical scale between the upper

and lower panels in the figure

In Fig. 2.11 we display the three state variables in the observation window Œ0; T D
10ms�. The observed values of all three state variables are displayed in red, while
the values estimated using the regularized cost function are shown in black. Only
VE.t/ was presented to the circuit model.
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Table 2.1 Estimated
parameters and measured
values

Name Variational estimation Measured Units

C2 7:02 7:23 
F
L 12:2 11:74 mH
R 40:0 39:3 ohms
V0 0:661 0:63 V
VT 25:0 27 mV
ˇF 72:0 180 1

The Ebers–Moll (Ebers and Moll 1954) model of a bipo-
lar transistor was used for the model in the minimization
of the regularized cost function C.R0/. All parameters
except ˇF are estimated with high accuracy

Table 2.2 Parameters
estimated with the
Gummel–Poon
model (Gummel and Poon
1970) which includes the
emitter resistance RE along
with the measured values of
the parameters

Name Variational estimation Measured Units

C2 7:08 7.23 
F
L 12:00 11.74 mH
R 39:71 39.3 ohms
V0 0:637 0.63 V
VT 26:0 27 mV
ˇF 179:0 180 1
RE 0:23 Fixed value ohms

Now all parameters are accurately estimated by our regu-
larized procedure. RE was fixed during the estimation

We may use the estimates for fVE.T /; VCE.T /; IL.T /g at the end of the obser-
vation window and the estimated circuit fixed parameters to predict the behavior
of the Colpitts oscillator for t > T utilizing the model differential equations,
setting u.t/ D 0. The result of this calculation is displayed in Fig. 2.12 with known
values of the state variables in red and predicted values in black. Because the
oscillations of the Colpitts circuit are chaotic, we expect that errors in the estimated
state variables fVE.T /; VCE.T /; IL.T /g will grow in a manner associated with the
positive Lyapunov exponent of the dynamics. We see that this limits the prediction
horizon to about 8 ms here. This is consistent with the estimation of the positive
Lyapunov exponent for the Colpitts circuit.

We set u.t/ D 0 in making predictions with the model circuit equations as
u.t/ is not a physical quantity but has been introduced to regularize the numerical
optimization procedure. When the estimation is completed, we expect that u.t/ has
been driven to zero by the optimization procedure and that the estimates required for
prediction are independent of u.t/. This would tell us that the model we have used as
a nonlinear filter to pass information from the observations of VE.t/ to the estimates
of the parameters and the unobserved state variables fVCE.t/; IL.t/g is consistent
with the data. The validity of the model is examined in its ability to predict beyond
the observation window.

In the estimation of states and parameters for the Colpitts model we have the
values of u.t/ to determine whether this expectation is realized. In Fig. 2.13 we
display the values of u.t/ in the observation window Œ0; T �, and we see the values
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Fig. 2.11 The three Colpitts circuit dynamical variables in the observation window 0 � t � T D
10 ms. In the Top Panel we see the observed VE.t / in red and the estimated values of VE.t / in
black. In the Middle Panel we display VCE.t /: the known value is in red, and using the regularized
estimation method, we calculate the estimates of VCE.t / shown in black. VCE.t / is not presented to
the model for the Colpitts oscillator. In the Middle Panel we display the same for IL.t /: the known
value is in red, and using the regularized estimation method, we calculate the estimates of IL.t /

shown in black. IL.t / is not presented to the model for the Colpitts oscillator. The role of u.t / is to
locally regularize the surface over which we minimize the cost function (2.34). At the end of the
estimation procedure, we expect u.t / � 0

appear “small”. We can also examine the smallness of the control or regulatory
variable u.t/ in more detail by evaluating the following dimensionless ratio in

R.t/ D FE.t/
2

FE.t/2 C Œu.t/.VE�data.t/ � VE.t//�2
; (2.35)

through the observation window. FE.t/ is the portion of the vector field for the
Colpitts oscillator in the equation for dVE.t/

dt , namely,

FE.t/ D IL.t/ � VE.t/ � Vee

Ree
C IB.VE.t//: (2.36)

This tells us the relative importance of the control term u.t/.VE�data.t/ � VE.t//

compared to the dynamics element in the equations of motion. If R.t/ is near unity,
the role of the regularization by u.t/ is unimportant. We display R.t/ in Fig. 2.14
and note that the minimum value of R.t/ over the observation window is about
0.999995 in this experiment. This demonstrates that the data and the model are
consistent, and the role of the control u.t/ is not essential. Again, the validity of the
model is tested in its ability to predict.
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Fig. 2.12 Using the estimated values of the Colpitts state variables fVE.T /; VCE.T /; IL.T /g at
T D 10ms, along with the estimated parameters of the experimental circuit, we forecast the
behavior of the circuit into t > T . The measured values of each state variable is displayed in red,
while the predicted values are in black. These deviate from one another as expected because of the
chaotic behavior of the circuit and the model

This ends our introduction via an example chaotic circuit realized in a laboratory
setting. The estimation procedure has been to minimize a regularized cost function
subject to deterministic equations of motion for the nonlinear circuit. Developing
the model using Kirchoff’s rules and performing the estimation of the unknown
parameters and unobserved state variables are independent elements of the data
assimilation task. The methods show the consistency of the model with the data
and then demonstrate the ability of the completed model to predict beyond the
observation window.

In an experimental setting more complex than this one we expect higher noise
levels in the observations and errors in the models. Further, we anticipate that there
will be uncertainty in the values of the state of the model x.t0 D 0/ at the start of
the measurements. The use of deterministic dynamical equation constraints will not
be accurate generally, and we will not turn to the development of a data assimilation
framework that can account for all of these features.

2.2.6 Numerical Optimization Methods

There is no shortage whatsoever of well-developed, even very well-tested, numerical
methods for solving the variational problems associated with data assimilation.
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Fig. 2.13 The value of the control or regulation variable u.t / throughout the observation window
when the estimation procedure is completed. The dimensionless evaluation, R.t/, of the impor-
tance of u.t / is in Fig. 2.14

Many methods use the explicit equations to find x.n > 0/ from an initial condition
x.0/ leading to an action, often called an objective function or a cost function, which
varies in a complex manner on the initial conditions x.0/ and the parameters p. In
principle, one can use the same equations of motion and the estimated parameters p
to integrate forward from t0 at the beginning of the observation window, where
we have an estimate of x.0/ to the end of the observation window at tm D T

and beyond, t > T . If the model is nonlinear and has chaotic orbits in the basin
of attraction of x.0/ for the estimated parameters p, the sensitivity to x.0/ and
p is likely to produce quite inaccurate estimates for x.T / rendering prediction
problematic. Indeed, estimates of x.t/ within the observation window may suffer
from this inaccuracy as well.

In the opening chapter of this book we discussed two kinds of data assimilation
tasks. The first is comprised of “twin experiments” wherein one has generated
data fy.0/; y.1/; : : : ; y.m/g from a known model and known class of measurement
functions, and the purpose of exercising the data assimilation path integral, in
variational approximation or otherwise, is to test one’s numerical methods. This is
always important and is certainly necessary when one has new methods that estimate
only x.0/ and p but might be failing. The failure is likely to come from requiring
too large a time step tnC1 � tn or estimating states with uncertainties as to where
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Fig. 2.14 R.t/, Eq. (2.35), over the observation window after the estimation procedure has
completed. When R.t/ is near unity, the data and the model are consistent, and the role of u.t /
has been to regularize the search. We see here, in this twin experiment, that our model of the
bipolar junction transistor is consistent with the observed experimental data

they begin (errors in x.0/), and one can systematically correct the method for these
flaws.

The other task, clearly the goal of all the methodology, is to proceed accurately
when only a subset of state variables (L out of D) are known in the observation
window, and estimating all of them accurately at tm D T is required. In this situation
the metric of the quality of the dynamical model and its consistency with the data
comes from prediction for t > T . If the full state x.T / is badly estimated, we
may not know it from the data in the observation window as D � L of the states
are unobserved, and the L observed states may be well estimated. We will only
recognize the diminished quality of the model as we predict beyond T .

This reasoning may not be important if the dynamical model has only regular
behavior in state space, but nonlinear models may well have chaotic oscillations
in regions of parameter and state space encountered in the search procedures. This
cautions one to use the type of optimization approaches in SNOPT (Gill and Wright
1982; Gill et al. 2005) and IPOPT (Wächter and Biegler 2006).

The idea then is to use the measurements, their relation to the model state
variables, and the dynamical model to establish an objective function. This is the
objective function for use in the numerical packages. If the dynamics is to be used
as equality constraints, namely no model errors, we seek to minimize the objective
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function over the .m C 1/D values of the x.n/ plus the NP fixed parameters p,
subject to the mD equality constraints

ga.x.nC 1/; x.n/;p/ D 0I a D 1; 2; : : : ;DI n D 0; 1; : : : ; m � 1: (2.37)

This takes a problem with D C NP quantities to determine and enlarges it
into a problem with .m C 1/D C NP quantities to vary. The space in which
the numerical optimization operates can be and usually is much larger than the
D C NP -dimensional subspace. As explained in Gill et al. (2005) in the larger
space the searches involve sparse matrices allowing for speed and accuracy. From
the point of view of applying the outcome of the variational data assimilation to the
understanding and prediction of the properties of the model, indeed, the testing of
the model itself for consistency with the data, the apparent additional work pays off.
This is called the “direct method.”

In our formulations of this strong variational problem for use with SNOPT or
IPOPT, we use (Abarbanel et al. 2008) a Simpson rule integration method along
with a Hermite interpolation method (Strang 1986) for implementing the equality
constraints. The Simpson rule requires a midpoint evaluation, and the interpolation
to the midpoint uses the Hermite method.

2.3 A Hodgkin–Huxley Neuron Model

2.3.1 Biophysics of the Hodgkin–Huxley Model

Networks of neurons exhibit rich dynamical behaviors, including rhythmic bursting
and patterned sequence generation (Stein et al. 1997; Laurent et al. 2001; Johnston
and Wu 1995; Koch 1999). These dynamics derive from the intrinsic properties of
individual neurons and from the connections among them within the network. The
membrane voltage of a neuron depends on currents from a diverse collection of
ion channels, many of which have nonlinear voltage-dependent dynamics (Johnston
and Wu 1995). General forms for the dynamics of many of the major families of ion
channels have been characterized (ModelDB 2012; Graham 2002), but the kinetic
parameters vary according to the neuron where the ion channels are located.

Neurons, from the perspective of this discussion, are nonlinear oscillators with
competing feedback mechanisms associated with the flow of ions into and from a
cell’s interior across channels through the cell membrane. Such a neuron model was
described by Hodgkin and Huxley (Johnston and Wu 1995) some decades ago and
comprises a competition between inflow of NaC which has a higher concentration
outside than inside the cell and outflow of KC which has a higher concentration
inside the cell. Unstimulated, a neuron maintains a resting potential relative to its
exterior of about �65mV representing a balance between diffusion of differing
concentrations of ions and electrostatic forces on the charged ions. When the neuron
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is forced by a positive current, its voltage rises as NaC ions enter the cell through
a channel whose voltage-dependent permeability to NaC increases. As the potential
passes a threshold the neuron produces a spike in voltage, called an action potential,
which is tempered and turned off as the voltage-dependent permeability to KC ions
leaving the cell rises. Action potentials travel down axons from neuron to neuron,
one neuron’s output turning into another neuron’s input, providing the intercellular
communication as the basis of network operation.

We look at a neuron with NaC and KC channels as well as a “leak” channel that
is an adjustment factor representing leakage of charge through the cell membrane.
The equations of motion comprise conservation of charge in the form

C
dV.t/

dt
D intrinsic, voltage-dependent ion currents

C external stimulation currents: (2.38)

The intrinsic currents have the standard Hodgkin–Huxley form

gm.t/n1h.t/n2 .Erev � V.t//; (2.39)

where n1; n2 are integers, Erev is the Nernst potential (Johnston and Wu 1995)
coming from the balance of diffusion and electrostatic forcing, m.t/ and h.t/

satisfy linear kinetic equations with voltage-dependent coefficients, and g is the
maximal conductance of the ion channel. The dimensionless voltage-dependent
gating variables fm.t/; h.t/g lie between 0 and 1, representing the percentage of
ion channels of a particular type open or closed.

The neuron dynamics is determined with this current conservation equation along
with kinetic equations for each of the ai .t/ D fm.t/; h.t/g associated with each
channel:

dai .t/

dt
D ˛ai .V .t//.1 � ai .t// � ˇai .V .t//ai .t/: (2.40)

The original HH model has four degrees of freedom or four state variables: voltage
and three kinetic coefficients governing the permeability of a NaC channel and a
KC channel.

Stimulating currents of different signs can reveal much of a neuron’s response
properties, but due to the large variety of channels expressed in most neurons,
determining the contribution of specific channel types usually requires intracel-
lular or extracellular pharmacological manipulation to block all but the channel
of direct interest. This allows the determination of the parameters in the ion
current Eq. (2.39).

The efficacy and specificity of the pharmacological agents is often a concern, and
data typically have to be pooled from many neurons, possibly obscuring differences
among individual cells. Furthermore, such pharmacological manipulations require
numerous experimental steps and lengthy recording durations, which often has
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the practical implication of limiting analysis to exceptional recordings in which
the neuron is fortuitously maintained in a healthy condition for an extended
period of time. Further, there is no certainty that the cell membrane properties
are not affected by the pharmacological agents employed. Based on these results,
biophysical Hodgkin–Huxley models of the neurons can be constructed, with the
parameters fixed by experimental results or chosen based on simulation and iterative
search (ModelDB 2012).

Our approach to the question of estimating the parameters and states of an HH
neuron works directly with the measured V.t/ and the selected stimulating current.
Pharmacology is bypassed.

We consider the most common case, where the only measurement is the
membrane voltage when a selected stimulus current is applied to the cell. Measuring
a time series for ai .t/ directly is not presently possible. A stimulus current Iapp.t/

is applied through the same electrode recording the membrane voltage to probe
the responses of voltage-gated channels. A data set usually consists of the applied
current and the observed voltage over some observation window t D Œt0; tm D T �

with measurements made at times tn D ft0; t1; : : : ; tmg within that window.
Working solely with observations of the membrane voltage and a known stimulus

or driving function of the neuron, the goal is to estimate all of the fixed parameters
of the model, including maximal conductance, intracellular ion concentrations, and
channel-gating kinetics as well as the unobserved gating dynamics ai .t/ throughout
the observation window. Knowledge of the quantities V.T / and all of the ai .T /
along with estimates of all fixed parameters in the full model allow us to use the
model to predict the response of the neuron for t > T given Iapp.t > T /. If these
predictions are accurate for a broad range of biologically plausible stimuli, then
the estimates of the model parameters provide a parsimonious, biophysically inter-
pretable description of the neuron’s behavior. Furthermore, such results motivate the
hypothesis that the model neurons will respond accurately to a diverse set of stimuli
when used in models of interesting functional networks. This suggests that networks
of such neurons could be constructed in a two-stage process: (1) using stimulus,
response data to analyze the classes of individual neurons in the network using the
dynamical methods outlined here, and (2) determine the connections among such
neurons recognizing the connection strengths as parameters in a dynamical system
using data on the network as a whole.

These requirements raise a number of practical and theoretical questions:

1. How many measurements L � D are required? Typically for single neurons
L D 1 (voltage), and given that most of the states of the system will remain
unmeasurable, L << D. Equivalently, given that observations are generally
limited to V.t/, is there an upper limit to the complexity of the models that can
be completed from the data?

2. How often is it necessary to make measurements? Namely, given a fixed observa-
tion window Œt0; : : : ; tm D T �, how frequently should the measurable variables be
sampled? How large can one choose the intervals between observations, tnC1�tn?
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3. Given that measurements are noisy and models are always wrong in some
respect, how robust are the estimates of parameters and unobserved state
variables to these errors?

4. What kinds of stimuli lead to adequate exploration of the state space of the model
so that all the parameters and unobserved state variables can be estimated with a
similar degree of confidence?

5. What metrics are most appropriate for testing the validity of a neuronal model,
especially in light of the intrinsic variability of real neurons?

The model we address (Abarbanel et al. 2011; Toth et al. 2011) consists of the
dynamics of membrane voltage V.t/ driven by two voltage-gated ion channels, Na
and K, and a “leak” current and an external, applied current we call Iapp.t/. The
dynamics of the model comprise the equations for voltage

dV.t/

dt
D 1

C

˚
gNam.t/

3h.t/.ENa � V.t//C gKn.t/
4.EK � V.t//

CgL.EL � V.t//C IDC C Iapp.t/
�
;

D FV .V.t/;m.t/; h.t/; n.t// (2.41)

where the gX ’s indicate maximal conductances and theEX ’s reversal potentials, for
each of the Na, K, and leak channels. IDC is a DC current, and Iapp.t/ is an applied
time-dependent external current selected in an experiment. We refer to this as the
NaKL HH model.

The gating variables ai .t/ D fm.t/; h.t/; n.t/g are discussed in many textbooks
and reviews (Johnston and Wu 1995; ModelDB 2012; Graham 2002), and each
satisfies a first-order kinetic equation of the form

dai .t/

dt
D ai0.V .t// � ai .t/

�i .V .t//
: (2.42)

The kinetic terms ai0.V / and �i .V / are taken here in the form

ai0.V / D 1

2

�

1C tanh

�
.V � va/

dva

��

�i .V / D ta0 C ta1

�

1 � tanh2
�
.V � vat/

dvat

��

or

�i .V / D ta0 C ta1 tanh

�
.V � vat/

dvat

�

: (2.43)
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Fig. 2.15 NaKL Hodgkin–Huxley neuron model. Top Panel The “data” in this twin experiment.
The response membrane voltage. Bottom Panel The stimulating current. This is an observed state
variable

In the language used in our general formulation, the model state variables
are x.t/ D fV.t/;m.t/; h.t/; n.t/g, and the parameters are p D fC; gNa; ENa;

gK; EK; : : : ; dvatg. In a twin experiment, the data fVdata.t/;mdata.t/; hdata.t/; ndata.t/g
are generated by solving these HH equations for some initial condition x.0/ D
fV.0/;m.0/; h.0/; n.0/g and some choice for the parameters, the DC current and
Iapp.t/, and the stimulating current. The data y.t/ presented to the model consist of
only the voltage Vdata.t/ along with additive noise: y.t/ D Vdata.t/C noise.t/.

2.3.2 Estimating Parameters and Unobserved States
of the HH Model

We solved the HH equations (2.41) and (2.42) using the stimulating current shown
in the Bottom Panel of Fig. 2.15. The Top Panel of this figure displays the time
series of V.t/ resulting from the calculation. A fourth-order Runge Kutta method
was employed using a time step of 0.01 ms. This current was selected to probe the
dynamical range of the currents in the NaKL model including the spiking region for
high voltage and the subthreshold region. The current wave form was taken from
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Table 2.3 Parameters used
in the NaKL HH model to
generate data for a twin
experiment

Name Value Name Value

C 1.0
F/cm2 vh �60:0mV
gNa 120.0 mS/cm2 dvh �15:0mV
ENa 50.0 mV th0 1.0 ms
gK 20.0 mS/cm2 th1 7.0 ms
EK �77:0mV vht �60:0mV
gL 0.3 mS/cm2 dvht �15:0mV
EL �54:4mV vn �55:0mV
vm �40:0mV dvn 30.0 mV
dvm 15.0 mV tn0 1.0 ms
tm0 0.1 ms tn1 5.0 ms
tm1 0.4 ms vnt �55:0mV
vmt �40:0mV dvnt 30.0 mV
dvmt 15.0 mV IDC 7.3 pA/cm2

The model includes Na, K, and leak currents

the output of the Malkus waterwheel, but its essential ingredients are that it changes
slowly compared to the response of the neuron and causes the neuron response to
visit significant parts of the fV.t/;m.t/; h.t/; n.t/g state space. To the equations of
motion for V.t/, we added a regulating term u.t/.y.t/ � V.t//.

When the cost function

1

N

N�1X

nD0

�

.y.tn/ � V.tn//2 C u.tn/
2

�

(2.44)

was minimized subject to Eqs. (2.41) and (2.42), we determined the 18 fixed
parameters in the model along with the values of fV.t/;m.t/; h.t/; n.t/g at each
point in the observation window ft0 D 0; : : : ; tn D n	t; : : : ; tm D T D 90msg.
This involves a numerical minimization in 36,018 dimensional space. This was
accomplished in order of ten minutes on a commodity PC.

The parameters selected and the outcome of the numerical optimization are
shown in Tables 2.3 and 2.4. In Fig. 2.16, we show in the Left Panel the
known, “data”, membrane voltage along with the estimated V.t/ resulting from the
optimization procedure. In the Right Panel we display the known NaC activation
gating variable m.t/ along with the estimation of this resulting from the numerical
optimization. m.t/ is an unobserved state variable. Its estimation is achieved by
the nonlinear filtering performed by the dynamical equations of motion used as
constraints on the cost function as it is minimized. In treating experimental data,
m.t/ and any other gating variables are not observed, and we have no way to
examine the precision with which they are estimated. One of the important uses
of twin experiments is that it permits us to assess how well unobserved quantities
are being estimated and, in that manner, build confidence in our overall state and
parameter estimation effort.
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Table 2.4 Parameters in
generating the “Data” and the
estimated parameters in
NaKL HH model; IDC was
fixed in all calculations

Name Value in “data” Estimated value

gNa (mS/cm2) 120 118.79
ENa (mV) 50.0 49.99
gK (mS/cm2) 20 20.35
EK (mV) �77:0 �76:97
gL (mS/cm2) 0.3 0.2955
EL (mV) �54:4 �54:11
vm = vmt (mV) �40:0 �40:08
dvm = dvmt (mV) 15.0 14.90
tm0 (ms) 0.1 0.1009
tm1 (ms) 0.4 0.3982
vh = vht (mV) �60:0 �59:91
dvh = dvht (mV) �15:0 �14:88
th0 (ms) 1.0 1.004
th1 (ms) 7.0 7.047
vn = vnt (mV) �55:0 �54:91
dvn = dvnt (mV) 30.0 29.28
tn0 (ms) 1.0 1.012
tn1 (ms) 5.0 4.99

As the term u.t/.y.t/ � V.t// introduced the nonphysical terms u.tn/ into the
cost function, we would like to see that at the end of the numerical procedures it is
absent. To assess this we evaluated the dimensionless quantity

R.t/ D FV .V.t/;m.t/; h.t/; n.t//
2

FV .V .t/;m.t/; h.t/; n.t//2 C .u.t/.y.t/ � V.t///2
(2.45)

throughout the observation window using the final values for all quantities at the
termination of the estimation procedure. This is shown in Fig. 2.17. We see that
R.t/ is effectively united for all times in the observation window, showing the
unimportance of the unphysical control term at the final stage of the numerical
process.

2.3.3 Predicting the Response of the HH Model

A numerical optimization method solving the constrained optimization problem
“minimize this cost function subject to these equations as constraints” will always
produce numbers. In the case of twin experiments we can test the accuracy of those
numbers as we know them a priori. In the more interesting case of experiments
where only the stimulating currents and the response voltages are known to us, we
need to ask more of the numerical output.

We take as the primary goal of the data assimilation effort we describe through
this monograph the prediction of new response voltages when the model neuron
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Fig. 2.16 NaKL model. Top We display the known and estimated membrane voltage
Vdata.t /; Vestimated.t / from “data” generated in a twin experiment using the NaKL model as
a data source. Bottom We display the known and estimated NaC activation gating variable
mdata.t /; mestimated.t / from “data” generated in a twin experiment using the NaKL model as a data
source. In an experiment m.t/ would be an unobserved state variable. Here the unobserved
variables are known to us and comparison is possible
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Fig. 2.17 R.t/, Eq. (2.45), over the observation window after the estimation procedure has
completed. When R.t/ is near unity, the data and the model are consistent, and the role of u.t /
has been to regularize the search

encounters a different forcing function Iapp.t/. This is not universally agreed
on Wunsch and Heimbach (2007) using the methods described in this book or other
instantiations of the ideas here. It is argued that the goal is to establish that the state
of the system is well approximated by the data assimilation procedure. However, as
we will see as we proceed, that can be quite misleading.

Our metric for success in the data assimilation will be the ability of the completed
model to predict future response to different forcing. In order to accomplish this we
require all the parameters p in the model, thus completing it, and all of the state
variables at the end of the observation window so the dynamical equations, with
u.t/ D 0, may be used to predict forward in time. This gives a rationale to the
minimization algorithms we use, and which we will discuss in another section of the
book. These estimate the state at each point in the observation window, including
the endpoint t D T .

We have taken from our numerical optimization the estimation of the four
quantities fV.T /;m.T /; h.T /; n.T /g and the many fixed parameters and used the
dynamical equations to predict forward for t > T D 90ms. In Fig. 2.18 we show in
the Top Panel a repeat of the known voltage (black) and the estimated voltage (red)
in the observation window, and in the Bottom Panel, we display the known voltage
in black and the predicted voltage in blue. This is a twin experiment,R.t/ � 1, and
V.t/ is an observed variable appearing explicitly in the cost function, so we may not
be surprised at this juncture at the accuracy of this result.
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Fig. 2.18 NaKL model. Top Panel The “data” voltage was presented to the NaKL model. This
shows those “data” and the estimated output voltage from the model. Bottom Panel This displays
“data” voltage presented to the NaKL model and the predicted voltage after the observations are
completed. This is an observed state variable

To further inquire into the method, we display in Fig. 2.19 the same type of
result for an unobserved state variable. Here we show the KC gating variable
n.t/. In black is the known data generated using the model equations with known
parameters. Also displayed is the estimation (in red) of n.t/ in the observation
window Œ0; 90ms� and the prediction for t > 90ms in blue. The accuracy of the
results is consistent with the R.t/ test and speaks for itself.

2.3.4 Consequences of the Wrong Model

We address one last question of an introductory nature. If our procedure is so clever,
can it give us signals of the model being wrong? To make this inquiry, we presented
our NaKL model with membrane voltage “data” from a different neuron model
which we call the NaKLh model. The biophysical difference was that the “wrong”
data came from a neuron model with an additional voltage-gated current active
primarily in the subthreshold voltage region. Using this wrong data, we carried out
the same estimation procedure as above using 76.3 ms of “data”.
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Fig. 2.19 NaKL model. Estimating and predicting the KC gating variable n.t/. The “data”
ndata.t / are in black; the estimated values nest.t / are in red; the predicted values npred.t / using
the 18 estimated parameters and the values of fV .T /;m.T /; h.T /; n.T /g at T D 90ms and the
dynamical equations with u.t / D 0. This is an unobserved state variable

In Fig. 2.20 we see the estimated voltage (blue) as well as the known voltage
(black) presented to the model. The current stimulating the neuron model is
essentially the same as before. While this estimation appears rather accurate, we
take away a quite different conclusion when we examine the values of R.t/ in
the observation window. These are displayed in Fig. 2.21 in which we observe
significant deviations from R.t/ � 1. In this twin experiment, further evidence that
something is awry comes from examining the estimation of the NaC gating variable
m.t/ in the observation window (Fig. 2.22). The significant disagreement between
the knownm.t/ and the estimatedm.t/ is associated with the fact that the nonlinear
filter of voltage information, namely, the model neuron, is incorrect. Of course, this
indicator is not available for experimental data. Finally, though we do not display it,
the predictions of the model are also incorrect in this situation.

2.4 Synopsis and Perspectives: “Slightly Complex” Examples

The examination of three low-dimensional example problems from fluid dynamics,
electronic circuit,s and neurobiology has illustrated many of the issues addressed
in this monograph. We have been presented in each case with one time series of
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Fig. 2.20 The voltage data, black line, and the estimated voltage, blue triangles, when we present
the “wrong” voltage data to an NaKL neuron model. There is an additional current in the data
voltage and it is not represented in the simpler NaKL model. Nonetheless, the estimation procedure
appears to produce a good representation of the presented data

measured data y.t/ from a physical system, and recognizing that the state of the
system is represented by a model with a D-dimensional state variable x.t/ D
Œx1.t/; x2.t/; : : : ; xD.t/� D � 1, we sought to determine the fixed parameters p
of the model as well as the unobserved states of the model at some time T when
observations were completed. Using the information in the data we showed in each
case that selecting a metric to compare the data y.t/ with a physically motivated
function of the state h.x.t//, we could try to minimize the distance associated with
the metric, constrained by the dynamical equations of the model, and successfully
determine p and the unobserved states. We also demonstrated that for t > T , we
could predict the state of the model system.

When one has a measurement function hl.x/ expressing the relation between
the observed quantity and the model state, the cost function contains terms of
the form Œyl .t/ � hl.x.t//�, and in the use of variational principles as we used
in this chapter, one requires the derivatives of the measurement function itself.
This can be an issue when the measurement function has thresholds or very sharp
variations. However, when we arrive at the discussion of the direct evaluation of the
path integral representing the full answer to statistical data assimilation questions,
these derivatives of measurement functions are avoided, but more about that as we
proceed.
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Fig. 2.21 The dimensionless ratio R.t/ resulting when an NaKL model is presented with data
from a neuron model with an additional current, the NaKLh model. This shows that the NaKL
model is inconsistent with the data

In our discussion in this chapter we made the simplifying assumption that
h.x.t// D x1.t/ and that the metric to use is a least-squares distance between the
data and the corresponding model output

C.p/ D 1

T

Z T

0

dt .y.t/ � x1.t//2

D 1

mC 1

mX

nD0
.y.tn/ � x1.tn//2: (2.46)

In the second form we recognized that measurements were made at the m C 1

discrete times tn D n	t ; T D m	t . In addition to this standard formulation of the
problem of estimations of parameters and state variables, we encountered a difficulty
when the data time series and the model output were chaotic, and a regularization
procedure was suggested that smoothed out the irregular plethora of local minima
in C.p/ during the estimation period and then disposed of the regulation when the
estimation was completed.

A number of questions arise about the procedures we have employed in this
introductory chapter:
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Fig. 2.22 The known NaC gating variablem.t/, black line, and the estimatedm.t/, blue triangles,
when data from the “wrong” model (NaKLh) is presented to an NaKL model. Since this is a twin
experiment, we are able to compare the actual m.t/ in the data with the m.t/ estimated by the
variational principle. This type of comparison is absent in a real experiment where only membrane
voltage is observed

• We assumed that a least-squares metric to compare our data y.t/ to the model
output x1.t/ should transmit enough information to enable estimation of the
parameters and unobserved states in the models. What formulation replaces that
when the statistics of the data are not Gaussian?

• We more or less assumed that passing measurements from one of the system
state variables to the model would be enough to enable accurate estimation of the
model parameters and the model’s unobserved states. When does that remain true
for more complex systems? When are more observations at each measurement
time required?

• We estimated unobserved model states and model parameters using an optimiza-
tion principle with the model dynamical equations as equality constraints. What
is the correct rule when the model, as well as the observations, has errors?

• We more or less assumed that when we estimated the state values, in particular
the initial conditions x.t0/ when observations begin, those could be determined
precisely. Is this always so? What role does uncertainty in the initial conditions
play in the estimation task?
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• We regularized the instabilities on the synchronization manifold with the addition
of a control u.t/ which drives the model output to the data, then is itself driven to
zero by the optimization procedure. This appears ad hoc. What other approaches
can one use?

• We took prediction for times beyond the observation or assimilation window
t > T as the metric for a successful analysis of a model provided with data from
observations. This goes beyond a “good fit” of model output to observed data as
it requires the full state of the model to be accurately estimated at the completion
of observations, and it uses the nonlinear model as a filter of information in
the data to be utilized in determining the unobserved state variables. Are there
better metrics for model completion and correctness? Can one develop criteria
for testing the consistency of the model with the available data?

We do not have complete answers to these issues and many others that arise as we
proceed. Nonetheless, we now turn to the general formulation of data assimilation
questions and methods for answering them in a practical fashion.



Chapter 3
General Formulation of Statistical Data
Assimilation

Prologue to the Chapter

In this chapter we give the general formulation of the statistical problem of
transferring information from observations to a model of the observed system. This
is named data assimilation, and when the measurements are noisy, the models
have errors, and we know only a distribution of possible states of the model
when observations are initiated, the problem is statistical. The discussion begins
by assuming we have no observations, and this is the arena for us to discuss how we
propagate a model with errors forward in time. This is the classical analog of the
more familiar quantum mechanical problem and, as with the quantum question, is
answered via an integral representation for the statistical description of the model
state within some interval Œ0; T �. This is a path integral in both quantum and classical
considerations. In quantum theory it is the probability amplitude we seek, while in
classical statistical physics it is a real probability distribution we want.

We then permit measurements in the time interval Œ0; T � and using identities
on conditional probabilities uncover the precise rule entering the path integral
associated with a measurement at tnI 0 � tn � T . We illustrate this in some detail
with one, then two, then many measurements. Within this discussion we recognize
the importance of making quantitative the manner in which measurements are made.
This requires a statement of the relation between the state variables of the model and
the quantities reported in the observations.

The results of this chapter provide the general framework for answering all
questions associated with statistical data assimilation. Further chapters report on
various methods to evaluate the integral representation uncovered here.

H.D.I. Abarbanel, Predicting the Future: Completing Models of Observed Complex
Systems, Understanding Complex Systems, DOI 10.1007/978-1-4614-7218-6 3,
© Springer Science+Business Media New York 2013
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3.1 Data Assimilation Without Data

3.1.1 Deterministic Dynamics: Path Integral

We turn now to general questions about transferring information from measurements
to a quantitative model of the processes producing those data. The setting we
envision is that of experiments in a laboratory or in the field where the observations
are noisy, where our quantitative models have errors, and where the state of
the model system is uncertain when we begin observations. This means that all
questions are now statistical, and we must address probability distributions for states
and parameters. Observables are then the various expectation values of moments of
the states and variations about these moments.

Let’s begin without any acquisition of data. To proceed we need to choose a
state space for the description of the data through a quantitative model. If the data
describe the deterministic dynamics as a function of space as well as time, the
physical description would be of a field ˆ˛.r; t/I r D fr1; r2; r3gI ˛ D 1; 2; : : : :

Satisfying partial differential equations (PDEs)

@ˆ˛.r; t/
@t

D F˛.ˆ.r; t//; (3.1)

˛ is a vector index enumerating the components of the field.
Analysis of these equations may proceed by first discretizing space

ˆ˛.r; t/ ! ˆ˛.i	r1; j	r2; k	r3; t/: (3.2)

fi; j; kg are integers, and f	r1;	r2;	r3g are grid increments in three-dimensional
space. This results in ordinary differential equations for xa.t/ D ˆ˛.i	r1; j	r2;

k	r3; t/; a is the collection of labels fi; j; k; ˛g:

dxa.t/

dt
D Fa.x.t/;p/; a D 1; 2; : : : ;D (3.3)

with p a vector of time-independent parameters. If we also discretize time t !
ft0; t1; : : : ; tn; : : :g, this gives us dynamics in the form of relations between the state
at time tn and the state at time tnC1:

ga.x.tnC1/; x.tn/;p/ D 0: (3.4)

The time increments tnC1�tn need not all be identical. In a shorthand where x.tn/ D
x.n/, the deterministic dynamics is ga.x.nC 1/; x.n/;p/ D 0: If the dynamics can
be written in explicit form, ga.x.nC 1/; x.n/;p/ ! xa.nC 1/ � fa.x.n/;p/. The
function f.x.n.;p/ is often the algorithm for solving the differential equations (3.3)
in discrete time.
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Now we recognize that our knowledge of the state of the model at t0 could
also be uncertain, requiring us to introduce the probability distribution for x.t0/ W
P.x.0//. We wish to follow that distribution of initial states through a window
of time ft0; t1; : : : ; tn; : : : ; tm D T g, and for this purpose we want to propagate
the probability distribution function P.x.t// of the model with a state xa.tn/ D
xa.n/I a D 1; 2; : : : ;D from time t0 to time t1 to . . . and finally to time tm D T . At
the final time tm we want to know the distribution of states P.x.tm// D P.x.m//.

To move along this path in time, the basic quantity to address is the joint proba-
bility distribution inD.mC1/-dimensional space P.x.m/; x.m�1/; : : : ; x.n/; : : : ;
x.0// of the states x.tn/ at each discrete time tn in the interval. We are asking
about the outcome of an initial value problem where, given, P.x.0//, we seek
to determine P.x.m//. In continuous time, the equation governing this time
development is a PDE for the probability density involving only linear terms in
the time derivative (Lindenberg and West 1990), so P.x.0// suffices, along with a
statement of the dynamics, to give P.x.tn// D P.x.n// for n > 0.

We now assume that the temporal progress of the system is such that the state of
the system x.nC1/ at time tnC1 is determined completely by the state of the system
at time tn, x.n/. This is the situation described by the usual partial (or ordinary)
differential equations representing physical and biophysical processes and inherited
through the steps discretizing space and time. Dynamical systems where x.n C
1/ is established by x.n/ are known as Markov, and as they naturally arise when
differential equations describe dynamics, they are quite well studied.

When would we not encounter this Markov property in the discussion of physical
or biological processes? This might happen when we have started with a large space
of states and projected it down toD-dimensions in one way or another. One example
would be an active optical medium connected to itself via a length l of optical fiber.
The propagation of light from the active medium to itself via the fiber is that of
an electromagnetic wave moving along a glass waveguide. If it propagates without
substantial interaction with the fiber environment, we might replace the PDEs for
wave propagation in the fiber by examining the active medium as a device emitting
a signal into the fiber at some time t and receiving that signal back as input at a time
tCl=c. This replaces the fiber details by a time delay device, and now the dynamical
equations of the active medium alone connect its state x.t/ with the output of the
its earlier state x.t � l=c/. Such delay differential equations are formally infinite
dimensional as one requires all values of x between some initial time t0 and the
time t0 � l=c to integrate them forward in time. They are not Markov, but, of
course, we imposed that on ourselves by projecting out the infinite-dimensional
PDEs (Maxwell’s equations in this example) moving the light through the fiber.

We would also not have a Markov process if we encountered a situation where
the state x.nC 1/ depended on x.n/, as would be usual for a Markov process, and
also depended on x.n � 1/ and possibly the states at yet earlier times. By enlarging
the state space to include the finite number of such delays, we would again produce
Markov dynamics in the larger space. In the fiber cable example, there are an infinite
number of delays, but the setting becomes Markov again when we restore the PDEs
for moving light about.
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With these caveats, we proceed assuming that our model has the Markov
property. This means that the probability distribution inD.mC1/-dimensional space
may be written as

P.x.m/; x.m� 1/; : : : ; x.n/; : : : ; x.0//

D P.x.m/; x.m� 1/; : : : ; x.n/; : : : ; x.0//
P.x.m� 1/; : : : ; x.n/; : : : ; x.0//

P.x.m� 1/; : : : ; x.n/; : : : ; x.0//

D P.x.m/jx.m� 1/; x.m� 2/; : : : ; x.0// P.x.m � 1/; : : : ; x.n/; : : : ; x.0//
D P.x.m/jx.m� 1// P.x.m� 1/; : : : ; x.n/; : : : ; x.0//: (3.5)

We have used the common notation for a conditional probability: if the
distribution of a quantity q is conditional on a quantity �, P.qj�/, then one denotes
this as P.qj�/ D P.q; �/=P.�/, where P.q; �/ is the joint probability distribution
for q and �.

The distribution of the state x.m/ in the conditional probability P.x.m/jx.m �
1/; x.m� 2/; : : : ; x.0//, x.m/ is determined only by x.m� 1/ and is independent of
x.m� 2/; x.m� 3/; : : : allowing us to write

P.x.m/jx.m� 1/; x.m� 2/; : : : ; x.0// D P.x.m/jx.m� 1// (3.6)

in the third line of Eq. (3.5). This is the explicit consequence of the Markov property.
Continuing along the chain of Markov processes, we arrive at

P.x.m/; x.m� 1/; : : : ; x.n/; : : : ; x.0//

D P.x.m/jx.m� 1//P.x.m� 1/jx.m� 2//P.x.m� 2/; x.m� 3/; : : : x.0//

D
m�1Y

nD0
P.x.nC 1/jx.n// P.x.0//: (3.7)

The quantity P.x.nC 1/jx.n// is called the transition probability. It is
a D � D matrix in the space with time labels fixed, and it tells us how we move
along in time from state x.n/ to x.nC 1/. The transition probability is the dynamics
x.n/ ! x.nC 1/ D f.x.n/;p/ stated in a statistical setting.

The probability density for the state at the end of the Markov chain P.x.m//
results from integrating the joint distributionP.x.m/; x.m�1/; : : : ; x.n/; : : : ; x.0//
of the x.n/’s over all times beforem

P.x.m// D
Z m�1Y

nD0
dDx.n/P.x.m/; x.m� 1/; : : : ; x.n/; : : : ; x.0//

D
Z m�1Y

nD0
dDx.n/ P.x.nC 1/jx.n// P.x.0//: (3.8)
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This has the interpretation that the probability distribution for the final state
P.x.m// is reached by taking the distribution at t0, P.x.0// and first propagating it
forward one step to t1, yielding P.x.1//:

P.x.1// D
Z
dDx.0/P.x.1/jx.0// P.x.0//: (3.9)

We follow this action by moving along to time t2, where we encounter

P.x.2// D
Z
dDx.0/ dDx.1/P.x.2/jx.1// P.x.1/jx.0// P.x.0//; (3.10)

and then proceed in the same manner until we reach time tm. The probability
distribution at the end of this chain of Markov processes, P.x.m//, is now seen
as an integral along a path X D fx.0/; :x.1/; : : : ; x.m/g in theD-dimensional space
of the state of the system as it moves from time t0 to time t1, . . . , until it reaches the
end of the path at time tm. At each time step we propagate the state x forward by the
dynamics embodied in the transition probability P.x.nC 1/jx.n//.

For comparison to other well-studied path integral problems (Feynman and Hibbs
1965; Zinn-Justin 2002), we write this path integral, Eq. (3.8), as

P.x.m// D
Z m�1Y

nD0
dDx.n/ P.x.nC 1/jx.n// P.x.0//

D
Z m�1Y

nD0
dDx.n/ expŒ�A0.X/�;

D
Z
dDx.0/K.x.m/; x.0//P.x.0//; (3.11)

with X D fx.0/; x.1/; : : : ; x.m/g, a vector in .mC1/D-dimensional space.A0.X/ is

A0.X/ D �
m�1X

nD0
logŒP.x.nC 1/jx.n//�� logŒP.x.0//�; (3.12)

and the “kernel” is defined by

K.x.m/; x.0// D
Z m�1Y

nD1
dDx.n/

m�1Y

nD0
P.x.nC 1/jx.n//

D
Z

dX
m�1Y

nD0
P.x.nC 1/jx.n//: (3.13)
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We refer to A0.X/ as the “action”. The analogy with the classical action in the
quantum mechanical counterpart suggests this name.

Any function along the path Xfx.0/; x.1/; : : : ; x.m/g, G.X/, has the expected
value

< G.X/ > D
Z

dXG.X/
m�1Y

nD0
P.x.nC 1/jx.n//

D
R

dX expŒ�A0.X/�G.X/R
dX expŒ�A0.X/� : (3.14)

3.1.2 Relation to the Quantum Mechanical Path Integral

The argument for this kind of path integral is found most often in discussions
of quantum dynamics where the probability distribution P.x.n// is replaced by
a complex probability amplitude  .x; tn/ and the transition probability P.x.n C
1/jx.n// is replaced by the quantity

P.x.nC 1/jx.n// �! K.x.nC 1//; x.n// D e
i
„

SŒtnC1;tn�;

where

SŒtnC1; tn� D
Z tnC1

tn

dt L.q.t/; Pq.t/; t/ (3.15)

and L.q.t/; Pq.t/; t/ is the classical Lagrangian for the motion of the object with
coordinates fq.t/; Pq.t/g (Feynman and Hibbs 1965; Zinn-Justin 2002). In the
quantum mechanical case one has

 .x.m/; tm/ D
Z m�1Y

nD0
dDx.n/K.x.nC 1/; x.n// .x.0/; t0/: (3.16)

The direct analogy between the propagation of the real probability distribution
of the classical state x along a path moved along by the nonlinear dynamics
x.n/ ! f.x.n/;p/ and the evolution of a complex wave function arises because
each satisfies a linear PDE. For the wave function that is Schrödinger’s equation
and for the classical probability distribution, it is the master equation (Lindenberg
and West 1990).
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3.1.3 Noisy Dynamics

The probability distribution in noise-free, deterministic movement along the chain
of Markov processes is determined by the transition probability

P.x.nC 1/jx.n// D ıD.g.x.nC 1/; x.n/;p//

P.x.nC 1/jx.n// D ıD.x.nC 1/� f.x.n/;p//: (3.17)

The sharp delta function is broadened in the case of uncertain dynamics. There is
not a unique prescription for the broadening of the delta function. If we regard the
source of this broadening as loss of perfect resolution in the deterministic dynamics,
we probably should use one of the many representations of a delta function, each of
which as a width associated with the loss of resolution. However, if the replacement
of the delta function in representing the transition probability is due to terms simply
missing from our formulation of those dynamics, no easy rule is known.

Adding noise �.n/ to the dynamics at each time tn changes the deterministic
expression to

x.nC 1/ D f.x.n/;p/C �.n/: (3.18)

The transition probability for a given realization of � is ıD.x.nC 1/� f.x.n/;p/�
�.n//. When we average any function of X D fxa.0/; xa.1/; : : : ; xa.m/g, which
now depends on � through Eq. (3.18), over the distribution of � , P‚.�/, the
expectation value of a function on the path G.X/ is expressed as

< G.X/ >� D
Z mY

nD0
d�.n/ P‚.�.n//

m�1Y

nD0
dDx.n/P.x.nC 1/jx.n//P.x.0//G.X/

D
Z mY

nD0
d�.n/ P‚.�.n//

m�1Y

nD0
dDx.n/ıD.x.nC 1/� f.x.n/;p/ � �.n//P.x.0//G.X/

D
m�1Y

nD0
dDx.n/P‚.x.nC 1/� f.x.n/;p//P.x.0//G.X/: (3.19)

It has the same form as Eq. (3.14) but with

A0.X/ D �
m�1X

nD0
log

�

P‚.x.nC 1/� f.x.n/;p//
�

� logŒP.x.0//�: (3.20)



58 3 General Formulation of Statistical Data Assimilation

If the noise term is state dependent, one may change to dynamical variables in which
it becomes additive (West et al. 1979).

Path integrals without data acquisition (Feynman and Hibbs 1965; Zinn-Justin
2002) have an enormous literature. The path integral is an integral representation
of the solution to a PDE for P.x.t//, and as with other integral representations of
interesting quantities, it permits a global view of that probability distribution (or
wave function) and allows discussions of the transit along a whole path of states
x.t/. All the properties contained in the integral representation of P.x.t// are found
in the original differential equation, though the local view in space may not reveal
the same informative ways to approximate the solution.

3.2 Data Assimilation with a Little Bit of Data

The propagation of a probability distribution forward in time brings us part of the
way toward our goal. We want to formulate the same activity when observed data
are available to provide information to the distribution (or probability amplitude) at
a selected set of times within the interval Œt0; tm D T �. To identify how the Markov
rule for chains of events is altered through the presence of information transfer,
we begin with a consideration of a single piece of data y.t/. This is a vector of L
measurements at the time t W y.t/ D fy1.t/; y2.t/; : : : ; yL.t/g. In this consideration,
we will encounter the notion of conditional mutual information (Fano
1961), and we now take a step sideways to consider that.

3.2.1 Mutual Information

As explained in pedagogically useful detail in the book by Fano (1961), a measure
of information about the occurrence of an event ak which is an element of a set
of quantities A D fakg and its connection with the occurrence of an event bn
which is an element of a set of quantities B D fbng is given in terms of the
joint probability distribution of events ak and bn, PAB.ak; bn/, and the marginal
distributions PA.ak/ D P

bn
PAB.ak; bn/ and PB.bn/ D P

ak
PAB.ak; bn/ via the

mutual information MI.ak; bn/:

MI.ak; bn/ D log

�
PAB.ak; bn/

PA.ak/ PB.bn/

�

D log

�
PAjB.ak jbn/
PA.ak/

�

D log

�
PBjA.bnjak/
PB.bn/

�

D MI.bn; ak/: (3.21)

This quantity answers the question: how much (in bits with logarithms to base 2) do
we learn about the event bn if we observed the event ak? This is symmetric in the
ak and bn.
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The MI varies over the elements of the sets A and B , so it is a statistic over
these sets. The average over the elements of these sets is the average mutual
information:

AMI.A;B/ D
X

fak ;bng
PAB.ak; bn/MI.ak; bn/ � 0: (3.22)

AMI.A;B/ plays a central role in the discussion of the capacity of a statistical
communications channel (Fano 1961). It is often, in a relaxed fashion, itself called
the mutual information. However, when the distributions entering its definition are
multimodal or broad, averages or higher-order moments of MI.ak; bn/ may not
characterize the statistical elements MI.ak; bn/ very well.

Indeed, MI.ak; bn/ is not always positive, though its average AMI.A;B/ over
the sets A and B is positive or zero (Fano 1961). MI.ak; bn/ is zero only when the
sets A and B are independent and PAB.ak; bn/ D PA.ak/ PB.bn/.

When there are more than two relevant sets of variables, say A D fakg; B D
fbng and C D fcj g, then the conditional mutual information among
conditional probability distributions is given as

CMI.ak; bnjcj / D log

�
PABjC .ak; bnjcj /

PAjC .ak jcj / PBjC .bnjcj //
�

: (3.23)

This is the information about the observation of ak and bn conditioned on having
observed cj . It answers the question: how much is learned about the observation
bn upon making the observation ak conditioned on having observed cj ? If the
logarithm is taken to base 2, the answer is in bits. It is precisely the quantity we will
encounter in assessing the transfer of information from a data source to a dynamical
model of the source.

Both the MI and the CMI are functions varying over the sets of variables
fakg; fbng; fcj g; : : :, and they are well defined when the prescription that x log.x/ !
0 when x ! 0 is adopted. In most books, the variables are referred to as random,
but, in fact, the set of variables need only be a collection of varying quantities. If the
elements ak; : : : are drawn from locations on the attractor of a dissipative dynamical
system, they are deterministic, and that is not random at all. Nonetheless, these
information theoretic quantities are well defined and meaningful.

Mutual Information: A Symmetric Binary Channel Example

To illustrate some of these points, we use an example taken from Fano (1961). In
Fig. 3.1 we show a communications channel from a source that can take two values
fs0; s1g with probabilities ps and 1 � ps . This means the source is sending signals
through the channel, and the signal s0 occurs with a frequency ps , while the signal
s1 occurs with a frequency 1�ps . There is a transmission probability of the channel
called t , and this is the frequency with which a signal emitted fs0; s1g from the
source arrives at the receiver as fr1; r0g. The frequency with which the source signal
fs0; s1g arrives at the receiver as fr0; r1g is 1 � t .
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1-t

t

1-t

t

ps,s0 pr,r0

1 − ps, s1 1 − pr, r1

Fig. 3.1 Illustration of the binary symmetric information channel. There are two source states
fs0; s1g occurring with probabilities ps and 1�ps , respectively, and there are two response channels
fr0; r1g occurring with probabilities pr and 1� pr , respectively. The probability of the transition
s0 ! r1 during the transmission of information from source to response is t , as is the probability
of s1 ! r0. s0 ! r0 and s1 ! r1 each occur with probability 1� t

From the figure we conclude that the frequency with which r0 is seen at the
receiver given that s0 departed the source is P.r0js0/ D 1 � t . The frequency with
which r0 is seen at the receiver given that s1 departed the source is P.r0js1/ D t .
The frequency with which r1 is seen at the receiver given that s0 departed the source
is P.r1js0/ D t . The frequency with which r1 is seen at the receiver given that s1
departed the source is P.r1js1/ D 1 � t . From this and the definition of conditional
probability, we have

P.s0; r0/ D P.r0js0/P.s0/ D ps.1 � t/ P.s0; r1/ D P.r1js0/P.s0/ D tps

P.s1; r0/DP.r0js1/P.s1/Dt.1�ps/ P.s1; r1/DP.r1js1/P.s1/D.1�ps/.1�t/:
(3.24)

From these results we can evaluate the mutual information MI.sa; rb/I a; b D 1; 2

for pairs of signals sent from the source and registered at the receiver:

MI.s0; r0/ D log

�
1� t

pr

�

MI.s0; r1/ D log

�
t

1 � pr

�

MI.s1; r0/ D log

�
1

pr

�

MI.s1; r1/ D log

�
1 � t
1 � pr

�

; (3.25)

and finally we determine the frequency pr at which the signal r0 is seen at the
receiver: pr : pr D ps C t � 2pst D ps.1 � t/C t.1 � ps/.

Expanding on this example, let us suppose the transmission frequency is t D 1=5

and the frequency with which we send s0 from the source is ps D 4=7. We have then
pr D 19=35 and

P.s0; r0/ P.s0; r1/ P.s1; r0/ P.s1; r1/

16/35 4/35 3/35 12/35
MI.s0; r0/ MI.s0; r1/ MI.s1; r0/ MI.s1; r1/

log2Œ28=19� log2Œ7=16� log2Œ35=19� log2Œ28=15�
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One of the mutual information elements is negative, MI.s0; r1/ D �1:193;
nonetheless, the average mutual information (Fano 1961)

AMI.S;R/ D
X

fsDs0;s1g;frDr0;r1g
P.s; r/MI.s; r/ (3.26)

is positive.
This completes our excursion into the idea of conditional mutual information.

There are many books on information theory that provide further discussion and
often applications to the theory of communications.

3.2.2 One Measurement

So far we have considered propagation in time of Markov processes with no
measurements. Next we examine what happens to the conditional probability
distribution of the state of the model when we make one measurement. We will
require some identities on conditional probabilities as well as the Markov property
of the dynamics. We start with an example where we are concerned with the D-
dimensional state at three times only: fx.t0/; x.t1/; x.t2/g D fx.0/; x.1/; x.2/g. An
L-dimensional measurement is made at time t1 with outcome y.1/ D fyl.1/gI l D
1; 2; : : : ; L. We seek the probability distribution at time t2 conditioned on the
measurement at t1. That is, we look for a representation of P.x.2/jy.1//.

We first note that by the Markov property of the dynamics taking us along the
path x.0/ ! x.1/ ! x.2/, we may go from t1 to t2 via

P.x.2/jy.1// D
Z
dDx.1/ P.x.2/jx.1// P.x.1/jy.1//; (3.27)

as moving from time t1 to time t2 only requires the dynamics expressed in the form
of the transition probability P.x.2/jx.1//. No measurements are made between
those times. For clarity in placing measurements at a time location, we agree to
make the measurement y.tn/ at an infinitesimal increment in time before tn: namely,
at tn � �, letting � ! 0 after the calculation. Equation (3.27) is known as the
Chapman–Kolmogorov equation (Chapman 1928; Kolmogorov 1931) and is true
in general for Markov processes.

Using the properties of a conditional probability, we write

P.x.1/jy.1// D P.x.1/; y.1//
P.x.1// P.y.1//

P.x.1//

D P.x.1/; y.1//
P.x.1// P.y.1//

Z
dDx.0/P.x.1/jx.0// P.x.0//; (3.28)
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and putting this together with Eq. (3.27) we have for P.x.2/jy.1//

P.x.2/jy.1// D
Z
dDx.1/dDx.0/ P.x.2/jx.1//

� P.x.1/; y.1//
P.x.1// P.y.1//

P.x.1//jx.0// P.x.0//

D
Z
dDx.1/dDx.0/ P.x.2/jx.1//

� expŒMI.x.1/; y.1//� P.x.1//jx.0// P.x.0//: (3.29)

This tells us that one measurement made at time t1 with outcome y.1/ affects the
movement down the chain of Markov processes by a factor which is precisely the
exponential of the mutual information (Fano 1961)

log

�
P.x.1/; y.1//
P.x.1// P.y.1//

�

(3.30)

between the L-dimensional measurement y.1/ and the D-dimensional state x.1/ at
time t1. This result appears to have first been discussed by Lindley (1956).

As a result of the observations y.1/ the action, Eq. (3.12), acquires an additional
term

A0.X; y.1//D�MI.x.1/; y.1//�
m�1X

nD0

logŒP.x.nC1/jx.n//�� logŒP.x.0//�;

A0.X; y.1//D� log
�
P.x.1/; y.1//
P.x.1//P.y.1//

�

�
m�1X

nD0

logŒP.x.nC1/jx.n//�� logŒP.x.0//�;

in which the path through state space is X D fx.0/; x.1/; x.2/g.
Any function on the path X has a conditional expectation value

EŒG.X/jy.1/� D
R

dX exp �ŒA0.X; y.1//�G.X/R
dX exp �ŒA0.X; y.1//� ; (3.31)

conditioned on the observation y.1/ (Fig. 3.2).
The action can be slightly simplified in the evaluation of this ratio for any

expectation value. We note that

A0.X; y.1// D � log

�
P.x.1/; y.1//
P.x.1// P.y.1//

�

�
m�1X

nD0
logŒP.x.nC 1/jx.n//�� logŒP.x.0//�
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Fig. 3.2 Illustration of a
measurement at time t1 of the
L quantities y.1/ as the state
of a model moves from
t0 ! t1 ! t2. The result of
the measurement at t1 is the
introduction of a factor
expŒMI.x.1/; y.1//� into the
Markov chain result
associated with no
measurements

D � logŒP.y.1/jx.1//��
m�1X

nD0
logŒP.x.nC 1/jx.n//�� logŒP.x.0//�

C logŒP.y.1//�; (3.32)

and the last entry is independent of X, so it cancels between the numerator and
denominator of Eq. (3.31).

If we think of the unperturbed propagation of the model dynamics from time
tn to time tnC1 as given by P.x.n C 1/jx.n//, then the term MI.x.1/; y.1// in the
action acts as a guiding potential influencing the time development of the model
system through the transfer of information from the observation y.1/. The analogy
suggests that the unguided movement of the state acts like the unperturbed dynamics
of a nonlinear system, and the perturbation associated with a measurement guides
the unperturbed motion through the transfer of mutual information to the dynamics
through a subset of the full state at the time of a measurement. This information from
the measurement moves the distribution of the state toward the state space location
where y.1/ is possible. The same feature is found in the quantum mechanical
description of this sequence (Feynman and Vernon 1963), although probability
amplitudes are required, and the effect on the probability distribution is not as
dramatic.

The ingredients in the expression for P.x.2/jy.1//, Eq. (3.29), are identities
on conditional probabilities and the assumption of the Markov property for the
propagation of the state between measurements. No restriction was required on the
quality of the measurements or the distribution of errors in the measurements, nor
did we have to specify the model errors or noise sources in the dynamics that enter
P.x.nC 1/jx.n//. We will, naturally, be required to do all of that when we seek to
numerically evaluate such expressions.
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Fig. 3.3 Illustration of a measurement at time t1 and again at t2 of the L quantities y.1/ and y.2/
as the state of a model moves from t0 ! t1 ! t2 ! t3. The result of the measurement at t1 is
the addition of a factor expŒMI.x.1/; y.1//� to the Markov chain result when no measurements are
made. The result of the measurement at t2 is the addition of a factor expŒCMI.x.2/; y.2/jy.1/� to
the Markov chain result when no measurements are made. The factor MI.x.1/; y.1//� is here the
same as CMI.x.1/; y.1/jy.0// as no measurement is made at t0

3.2.3 Two Measurements

If we make two measurements at times t1 and t2 and wish to know the
distribution at time t3 � t2 � t1 conditioned upon these measurements, we seek
an expression for

P.x.3/jy.2/; y.1//: (3.33)

We expect that we must have propagators (transition probabilities) P.x.1/jx.0//
from t0 to t1, P.x.2/jx.1// from t1 to t2, and P.x.3/jx.2/ from t2 to t3 and some
additional factors associated with the measurements along the path (Fig. 3.3). For
this we first use the Markov property and the resulting Chapman–Kolmogorov
equation of the dynamics to write

P.x.3/jy.2/; y.1//D
Z
dDx.2/ P.x.3/jx.2// P.x.2/jy.2/; y.1//; (3.34)

then from the definition of conditional probabilities, we have

P.x.2/jy.2/; y.1// D P.x.2/; y.2/; y.1//
P.y.2/; y.1//

D P.x.2/; y.2/; y.1//
P.y.2/; y.1// P.x.2/jy.1//P.x.2/jy.1//

D P.x.2/; y.2/jy.1//
P.y.2/jy.1// P.x.2/jy.1//P.x.2/jy.1//: (3.35)
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From the result with one measurement, we then may write

P.x.3/jy.2/; y.1//

D
Z
dDx.2/dDx.1/dDx.0/ P.x.3/jx.2//

�
P.x.2/; y.2/jy.1//

P.y.2/jy.1// P.x.2/jy.1//
�

P.x.2/jx.1// expŒMI.x.1/; y.1//�

P.x.1//jx.0// P.x.0//; (3.36)

or

P.x.3/jy.2/; y.1//

D
Z
dDx.2/dDx.1/dDx.0/ P. x.3/jx.2//

expŒCMI.x.2/; y.2/jy.1//�P.x.2/jx.1// expŒMI.x.1/; y.1//�

P.x.1//jx.0// P.x.0//; (3.37)

and the conditional mutual information, of theD-dimensional state x.2/, and the L-
dimensional measurement, conditioned on the L-dimensional measurement y.1/, is
given as

CMI.x.2/; y.2/jy.1//D log

�
P.x.2/; y.2/jy.1//

P.y.2/jy.1// P.x.2/jy.1//
�

: (3.38)

In this expression we could have written

MI.x.1/; y.1// D CMI.x.1/; y.1/jy.0//; (3.39)

as there is no measurement at t0 on which to condition the mutual information.
As with a single measurement, two measurements transfer information from the

observations y.1/; y.2/ to the model dynamics constraining the allowed model state
space trajectory. The action now has the form, with X D fx.3/; x.2/; x.1/; x.0/g,

A0.X; y.1/; y.2// D �CMI. x.1/; y.1/jy.0//� CMI.x.2/; y.2/jy.1/; y.0//

�
m�1X

nD0
logŒP.x.nC 1/jx.n//�� logŒP.x.0//�: (3.40)

Any function on the path X has a conditional expectation value

EŒG.X/jy.1/; y.2/� D
R

dX exp �ŒA0.X; y.1/; y.2//�G.X/R
dX exp �ŒA0.X; y.1/; y.2//� : (3.41)
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As with one measurement, when one uses the action in evaluating the expected value
of a quantity along the path X, there is a useful simplification arising from factors in
A0.X; y.1/; y.2// that are independent of X. Dropping these X independent factors
as they cancel between the numerator and denominator, the effective form of the
action is then

A0.X; y.1/; y.2//effective in Eq. (3.41) D � logŒP.y.2/jx.2/; y.1//�� logŒP.y.1/jx.1//�

�
m�1X

nD0
logŒP.x.nC1/jx.n//�� logŒP.x.0//�:

(3.42)

“Collapse” of the Probability Distribution

It may be interesting to draw an analogy here to the observation process in quantum
theory (Auletta et al. 2009). Of course, in quantum mechanics one is discussing
complex probability amplitudes rather than real probability distributions. When an
observation is made in quantum theory, the eigenvalue of an Hermitian operator is
measured, and this informs the quantum system which eigenvalue of that operator
the wave function carries at the time of observation. In a sense that can be made
precise, information flows from the measurement to the future description of the
wave function. If the eigenvalue is discrete, then there is really no classical analogy.
However, if the quantum mechanical measurement is from a continuum, such as
position or momentum, then in the absence of noise, the wave function “collapses”,
and the analog here is that the classical probability distribution in state space is
constrained within the observed subspace. This is a direct analogy with the collapse
of the distribution, especially if the dynamics is chaotic.

When orbits of the dynamical system are chaotic, small errors in the location
of any state at some time t will lead to large deviations at later times. This can
lead, absent observations, to the state of the system moving as far away as the
“size” of the attractor. If one has an observation at a time tobs > t , then through
the conditional mutual information term in the path integral, information about the
appropriate location of the orbit is transferred to the dynamics, and the orbit is
moved, in the sense of the mass of a probability distribution toward the location
observed. In our general treatment we have allowed that the observation may well
be of an L-dimensional subset of the state variables, suggesting a sequence of
observations, rather than a single measurement, may be required to significantly
influence the orbit. Whether this occurs is a quantitative question of the magnitude
of the information provided by the measurement compared to the entropy generated
by the orbit as the dynamics moves forward on its own.
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3.3 The General Data Assimilation Problem

3.3.1 Differential Equations to Discrete Time Maps

Now we turn to the general problem of utilizing information from observed data for
the purpose of completing a model we have made of those observations. The model,
constructed on physical or biophysical principles, is comprised of two parts:

• A set of differential equations, stochastic or deterministic, ordinary or par-
tial, which gives the time dependence or dynamical rule on moving the D-
dimensional model state x.t/ forward from some time to a future time. Discrete
time dynamics, usually arising from a numerical form for solving the differential
equations, will appear at this step.

• A measurement rule that specifies how the L-dimensional observed quantities
y.t/ are related to the D-dimensional state variables x.t/ of the model. If the
measurements made are related to the state of the system x.t/ as hl.x.t//I l D
1; 2; : : : ; L, then we would seek to provide information from those measurements
to the model such that yl .t/ � hl.x.t//.

In each of these parts, one encounters unknown parameters, and the information in
the data must also be used to estimate these.

We begin with a differential equation or discrete time map for the model
dynamics. This is not formulated by any of the methods we discuss in this book,
but is constructed using physical and biophysical principles known to us about
the source of our data. The methods we attend to here require data related to the
model dynamics through measurement functions and a model constructed as a sound
guess based on physical ideas about the source of the data. The data assimilation
problem is to complete the model by specifying estimates for all unknown
fixed parameters in the model and the measurement functions as well as estimates
of all the unobserved model state variables at some time T . We will usually take
that time to be at the end of an observation window in time.

As addressed earlier, in practice we discretize space r and time if we begin
with PDEs. Discretizing space and collecting the degrees of freedom at each
grid point (or equivalent spatial label) along with the vector index ˛ into a label
a D 1; 2; : : : ;D, we arrive at a set of D ordinary differential equations for
x.t/ D fx1.t/; x2.t/; : : : ; xD.t/g

dxa.t/

dt
D Fa.x.t/;peq/; (3.43)

where peq is also a set of time-independent parameters.
Now we specify a discrete set of times ft0; t1; : : : ; tm D T g at each of which

measurements of L quantities y.tn/ D fy1.tn/; y2.tn/; : : : ; yL.tn/g could be made.
In the absence of errors in the measurements, we associate the measurements with
L functions of the state variables yl .tn/ D hl.x.tn/;pmeas/ where the pmeas are
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t={t0,t1,...tn,...,tm=T}

yk(tn)
k=1,2,...,L

xa(tn+1)=
fa(x(tn), p);
a=1,2,...,D

Data source:
Transmitter

Model:
Receiver

L≤D
yk(tn) = hk (x(tn))   k = 1,2,...,L

Fig. 3.4 Illustration of the data assimilation problem. At each time in an observation period
ft0; t1; : : : ; tm D T g, L measurements yl .tn/I l D 1; 2; : : : ; L are made. A dynamical
model in discrete time taking x.tn/ ! x.tnC1/ for the D-dimensional state variables x.tn/ D
Œx1.tn/; x2.tn/; : : : ; xD.tn/�I n D 0; 1; 2; : : : ; m is created, satisfying ga.x.n C 1/; x.n/; p/ D
0I a D 1; 2; : : : ; D. If the connection between x.tn/ and x.tnC1/ is explicit, we have x.tnC1/ D
f.x.tn/; p/. The p are time-independent parameters in the model. A measurement model indicating
the nonlinear function of the state variables hl .x.t /; pmeas/ corresponding to the observed yl .t/
is developed. Information is passed from the observations to the model with the goal of estimating
all the fixed parameters p and pmeas as well as the D � L unobserved state variables among
the x.t /. When the observation period is completed, knowledge of the whole set of x.T / and the
fixed parameters may be used to predict into t > T fixed parameters p and pmeas as well as the
D � L unobserved state variables among the x.t /. When the observation period is completed,
knowledge of the whole set of x.T / and the fixed parameters may be used to predict into t > T

using x.nC 1/ D f.x.n/; p/

fixed constants in the specification of the measurement functions. Discretizing the
continuous time ordinary differential equations, Eq. (3.43), by giving a rule that
takes the state at tn x.tn/ to the state at tnC1: ga.x.n/; x.tnC1/;p/ D 0I p D
fp1; p2; : : : ; pNP g. All fixed parameters, including those in the rule for discretizing
the time-stepping rule, are in p. If the rule for proceeding forward in discrete time
is explicit, we write it as x.tnC1/ D f.x.tn/;p/ or x.nC 1/ D f.x.n/;p/ (Fig. 3.4).

Now our problem is specified:

1. Measure L quantities at any (or all) of the m C 1 time locations tnI n D
0; 1; : : : ; m in an observation window: ft0; t1; : : : ; tmg.

2. Specify some model dynamics taking the state x.tn/ to the state x.tnC1/ through
that time interval. This is done by giving the transition probability P.x.n C
1/jx.n// which, in a deterministic model, is ıD.g.x.n C 1/; x.n/;p//. This is
the step where the physical properties of the measurements are considered.

3. Specify the connection between the observed quantities yl .t/ and the measure-
ment function of the model state variables hl .x.n/;pmeas/.
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We wish to use the information in the L.m C 1/ observations to estimate the
D.mC1/ observed and unobserved state variables through the observation window.
Use this information also to estimate theNP unknown time-independent parameters
in the dynamical model and the measurement functions. As L � D and usually
is much less than D, we have no guarantee that there is enough information in
the measurements to allow accurate estimation of the states, L observed D � L

unobserved, and of the parameters of the model plus the measurement functions.
When this is accomplished we will have two types of important information

about the model of the underlying physical dynamics:

• We will have a quantitative picture of the state of the experimental or field system
at all times in the observation window. This can be assessed for its physically
realistic and relevant structure. To make this assessment requires knowledge of
the physical system, and this is not discussed here. Usually this is specific to the
physics of the observed system.

• We will have an estimate of the unknown time-independent parameters of the
observed dynamics to use in assessing properties of the system.

• We will have an estimate of the full state and the full set of fixed parameters of
our model of the observed system. This allows us to use the completed model to
predict the future behavior of the observed dynamics.

3.3.2 Errors and Noise: Stochastic Data Assimilation

The idealized situation just outlined might seem to imply we have a perfect
knowledge of the dynamical model, noise-free measurements yl .tn/ to compare
with functions hl .x.tn;pmeas/ of the model state variables and accurate knowledge
of the state of the model when observations begin: x.t0/. In fact, we typically
have none of these. The measurements are inaccurate because of noise in the
environment, the instruments, and elsewhere; the model is in error as we do not,
in fact, know the detailed structure of the dynamics controlling the generation of the
data, and we typically have inaccurate knowledge of the state of the system x.t0/
when observations begin (Fig. 3.5).

Our attention is thus directed to a probabilistic description of the data assimila-
tion process within which distribution functions of the states of the model are the fo-
cus. The essential quantity of interest is the .mC1/.DCL/CNP -dimensional dis-
tribution function of the .mC 1/D states in the time interval Œt0; tm D T �, the .mC
1/L observations in the same time window, and theNP unknown time-independent
parameters. We’ll call this P.x.t0/; x.t1/; : : : ; x.tm/; y.t0/; y.t1/; : : : ; y.tm// where
we do not explicitly show the parameter dependence of this joint probability
distribution. This is a distribution over an often enormously high-dimensional
space and is the core of our inquiries. We look now at the slightly more re-
stricted quantity identified as the probability distribution of the state x.tm/ at
the end of the observation interval conditioned on the measurements up
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Fig. 3.5 A schematic of the acquisition of information fromL-dimensional measurements at times
tnI n D 0; 1; : : : ; m. At each measurement time, the conditional probability for the state x.tn/
is modified by a factor involving the conditional mutual information of the state x.tn/ and the
measurement y.tn/ conditioned on the previous measurements. If a measurement is not made, no
such factor is present. In this graphic we compare the measurement with the function of the model
output to which the measurement corresponds

to that time tm D T W P.x.tm/jY.m// D P.x.m/jY.m//, where Y.m/ D
fy.tm/; y.tm�1/; : : : ; y.t1/; y.t0/g D fy.m/; y.m� 1/; : : : ; y.0/g and

P.x.m/jY.m// D P.x.m/;Y.m//
P.Y.m//

: (3.44)

The conditional probability distribution P.AjB/ conveys a quantitative measure
of the information one learns about measurements of a set of quantities A when we
have knowledge of another set of quantities B .

• First, if the sets A and B are independent, P.A;B/ D P.A/P.B/, then
P.AjB/ D P.A/, and nothing has changed our knowledge of the set A by the
measurements of elements of the set B .

• Second, recalling that the overall information in a set A is Shannon’s entropy
(Fano 1961)

H.A/ D �
X

A

P.A/ logfP.A/g; (3.45)
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we see that

H.AjB/ D �
X

A;B

P.A;B/ logfP.A;B/g �
X

A;B

P.A;B/ logfP.B/g

D �
X

A;B

P.A;B/ logfP.A;B/g �
X

B

P.B/ logfP.B/g

D H.A;B/�H.B/; (3.46)

or the information in the conditional probability is the information in the joint
distribution of A and B reduced by the knowledge already acquired about B .
For P.x.m/jY.m// this tells us that the information we have about the state of
the model system at time tm is the information about the combined state and
previous observations Y.m/minus the information provided by the observations.
The increase in knowledge is due to the state moving from time tm�1 to tm and
exploring state space over a time tm � tm�1 and the knowledge gained by the
observation at tm.

Pesin’s Theorem

The connection of the information about a set A and the dynamics of nonlinear
systems are found in Pesin’s theorem (Pesin 1977) which relates the entropy in
the movement of the state of a dynamical system on an attractor to the positive
Lyapunov exponents �a > 0 for the time development of perturbations to a system
orbit. This relationship says the entropy, in bits per second, is given as

H.orbits on an attractor/ D
X

a

�aI �a > 0; (3.47)

and this has the intuitive sense that positive Lyapunov exponents, associated as
they are with instability and the departure of one orbit of a nonlinear system
from a perturbed orbit, reveals information about where the system lies in state
space (Abarbanel 1996).

The qualitative idea is that in physical systems, we always have a finite resolution
ball within which at some time t0 we cannot distinguish two or more distinct states,
say, x.1/.t0/ and x.2/.t0/. With some sense of distance giving the resolution ball a
radius Rres: jx.1/.t0/ - x.2/.t0/j < Rres. If the dynamics is chaotic, this distance
grows as exp�.t � t0/ with � > 0. At some time greater than t0, the distance will
be larger than 2Rres, and the two resolution balls about each state space point will
be nonoverlapping thus allowing one to distinguish between the two points. This
reveals information about the dynamical system not observable at t0 because of the
finite resolution.

The message of Pesin’s theorem is that there is a quantitative measure of the
information generated by a chaotic trajectory in a nonlinear system. The information
transferred from data to a dynamical model which has positive Lyapunov exponents
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must be equal or greater than the entropy generated by the system as it expresses the
realization of local instabilities giving rise to these positive Lyapunov exponents. In
the general formulation presented in the chapter we have a precise way to evaluate
the information in bits transferred along the model trajectory within the observation
window:

�
mX

nD0
logŒP.y.n/jx.n/;Y.n � 1/�: (3.48)

If we can transfer, through this part of the actionA0.X;Y/, more than the uncertainty
(entropy) generated by the dynamical instabilities of the model, then we stand in a
good place to provide accurate estimates of the full system state x.tm D T / at the
end of observations. We do not have a precise formula for how many observations
that requires at each observation time nor does it tell us which observations are to
be made. We explore this in a numerical, somewhat cut-and-try manner in a later
chapter.

General Result

We want to express the conditional probability distribution P.x.tm/jY.m// D
P.x.m/jY.m// in terms of the same quantity one step earlier in time P.x.tm�1/j
Y.m � 1// D P.x.m � 1/jY.m � 1//. Using the definition of the conditional prob-
ability we write

P.x.m/jY.m// D P.x.m/; y.m/;Y.m� 1//
P.y.m/;Y.m� 1//

D P.x.m/; y.m/;Y.m� 1//=P.Y.m � 1//
P.y.m/;Y.m� 1//=P.Y.m� 1//

D P.x.m/; y.m/jY.m� 1//

P.y.m/jY.m� 1//

D P.x.m/; y.m/jY.m� 1//

P.y.m/jY.m� 1//
P.x.m/jY.m� 1//

P.x.m/jY.m� 1//

D P.x.m/; y.m/jY.m� 1//

P.y.m/jY.m� 1// P.x.m/jY.m� 1//P.x.m/jY.m� 1//

D expŒCMI.x.m/; y.m/jY.m� 1//�P.x.m/jY.m� 1//: (3.49)

In writing this we have abbreviated x.tn/ D x.n/ and y.tn/ D y.n/ and
recognized the conditional mutual information

CMI.x.n/; y.n/jY.n � 1// D log

�
P.x.n/; y.n/jY.n � 1//

P.x.n/jY.n� 1// P.y.n/jY.n� 1//

�

(3.50)
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between the L-dimensional observation y.n/ and the D-dimensional model state
x.n/ conditioned on the measurements up to tn�1; Y.n � 1/ D fy.n � 1/; y.n �
2/; : : : ; y.0/g. This answers the question: how much information (in bits if the
logarithm is taken in base 2) do we learn about the state x.n/ by measuring y.n/
given the n earlier measurements fy.n� 1/; y.n� 2/; : : : ; y.0/g?

We have stated the model associated with our observed data as a rule taking the
state at time tn to the state one time step ahead

ga.x.nC 1/; x.n/;p/ D 0I a D 1; 2; : : : ;D; (3.51)

making the assumption that the state x.n C 1/ depends only on the previous state
x.n/ and some fixed parameters. This is the key property of a Markov model, and a
general property of these models is the Chapman–Kolmogorov relation. This comes
from the following identity:

P.x.m/jY.m� 1//

D
Z
dDx.m � 1/P.x.m/; x.m� 1/jY.m� 1//

D
Z
dDx.m � 1/

P.x.m/; x.m� 1/;Y.m � 1//
P.Y.m � 1//

D
Z
dDx.m � 1/

P.x.m/; x.m� 1/;Y.m � 1//
P.x.m� 1/;Y.m� 1//

P.x.m� 1/;Y.m� 1//

P.Y.m � 1//

D
Z
dDx.m � 1/P.x.m/jx.m� 1/;Y.m� 1//P.x.m� 1/jY.m� 1//;

and since the dynamics is Markov, then

P.x.m/jx.m� 1/;Y.m� 1// D P.x.m/jx.m� 1// (3.52)

and

P.x.m/jY.m� 1// D
Z
dDx.m � 1/ P.x.m/jx.m� 1// P.x.m� 1/jY.m� 1//:

(3.53)
The transition probability P.x.n C 1/jx.n// expresses the underlying dynamics of
the model processes taking the state x.n/ to the state x.nC 1/. It is a D.mC 1/ �
D.m C 1/ matrix in the space of states x.n/. If the process x.n/ ! x.n C 1/ is
deterministic,

P.x.nC 1/jx.n// D ıD.x.nC 1/� f.x.n/;p//: (3.54)

Combining Eq. (3.53) with the identities on conditional probabilities, we arrive
at the key recursion relation
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P.x.m/jY.m// D expŒCMI.x.m/; y.m/jY.m� 1//�
Z
dDx.m � 1/P.x.m/jx.m� 1//P.x.m� 1/jY.m� 1//;

(3.55)

which, applied along a Markov chain of states from the final time tm back to the
time observations are begun, results in

P.x.m/jY.m// D
Z m�1Y

nD0
dDx.n/ exp

"
mX

nD0
CMI.x.n/; y.n/jY.n � 1//

#

m�1Y

nD0
P.x.nC 1/jx.n//P.x.0//

D
Z

dX expŒ�A0.X;Y.m//; (3.56)

where X D fx.m/; x.m� 1/; : : : ; x.0/g, Y.m/ D fy.m/; y.m� 1/; : : : ; y.0/g and

A0.X;Y.m// D �
mX

nD0
CMI.x.n/; y.n/jY.n � 1//

�
m�1X

nD0
logŒP.x.nC 1/jx.n//�� logŒP.x.0//�: (3.57)

The conditional expected value of any quantityG.X/ along the path X is given as

EŒG.X/jY� D
R

dXG.X/ expŒ�A0.X;Y.m//R
dX expŒ�A0.X;Y.m// ; (3.58)

and evaluating this integral with various choices for G.X/ will allow us to address
all questions of interest in statistical data assimilation.

The expected path through the space of paths during the observation window
ft0; t1; : : : ; tm D T g comes from selecting G.X/ D X. The computation of the
RMS variation about this expected path is performed with the information contained
in G.X/ D fxa.0/2; xa.1/2; : : : ; xa.m/2g. Other moments about the expected path
are evaluated in the same way using different powers of the xa.n/. The marginal
distribution at time tj Pxc.j /.z/ for some component xc.j / comes from selecting
G.X/ D ı.z � xc.j //.

When used in evaluating Eq. (3.58) there is, as pointed out earlier, a simplification
in the form of the measurement term in the action. To identify this we note
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P.x.n/; y.n/jY.n � 1//

P.x.n/jY.n � 1// P.y.n/jY.n� 1//

D P.x.n/; y.n/;Y.n � 1//

P.x.n/;Y.n � 1// P.y.n/jY.n � 1//�1

D P.y.n/jx.n/;Y.n � 1// P.y.n/jY.n� 1//�1; (3.59)

and the final factor does not depend on the path X over which we integrate. This
then cancels between the numerator and the denominator, leaving us the residual
action when evaluating the expectation values of function on the path

A0.X;Y.m//residual for Eq. (3.58) D �
mX

nD0
logŒP.y.n/jx.n/;Y.n�1//�

�
m�1X

nD0
logŒP.x.nC1/jx.n//�� logŒP.x.0//�;

(3.60)

and the expected value of any function G.X/ on the path is

EŒG.X/jY� D
R

dXG.X/ expŒ�A0.X;Y.m//R�R
dX expŒ�A0.X;Y.m//R�

: (3.61)

3.4 Approximating the Action

The general expression for the expected value along a path Eq. (3.61) becomes
useful only when we specify the transition probability P.x.n C 1/jx.n// and the
model g.x.n/; x.nC1/;p/ as well as the measurement function relating observations
y.n/ to model output x.n/.

We start with the transition probability which we recall is

ıD.g.x.nC 1/; x.n/;p// (3.62)

when the propagation of the state in time is deterministic. When there is model error,
associated with fluctuations in the environment of the dynamical states x.n/ not
explicitly accounted for in the dynamical equations or associated with the absence
of all of the precise terms in the dynamical equations, we expect this error to appear
at minimum as reduced resolution in our ability to establish the present location
of the state. If the distribution ı.g.x.nC 1/; x.n/;p// is replaced by the smoother,
lower resolutionP‚.g.x.nC1/; x.n/;p//, then some parameters in this distribution
function reflect that loss of resolution. If the model errors are given by a Gaussian,
then we could write
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P‚.g.x.nC1/; x.n/;p//D exp

�

�
DX

a;bD1
ga.x.nC1/; x.n/;p/Rab.n/

2
gb.x.nC1/; x.n/;p/

�

;

(3.63)

in an unnormalized format. The normalization drops out of the integral Eq. (3.61).
By no means are we restricted to using Gaussian distributions here.

This effective form of the action Eq. (3.60) makes clear that in specifying
the relation between observations y.n/ and model output x.n/, we are asked to
represent P.y.n/jx.n/;Y.n � 1//. If the measurements at some tn are independent
of measurements made earlier than tn, the conditional mutual information term
becomes

P.y.n/jx.n//; (3.64)

and if the measurement function relates model output x.n/ to observations y.n/ by
an additive noise term

yl.n/ D xl .n/C �l .n/; l D 1; 2; : : : ; L; (3.65)

then

P.y.n/jx.n// D P‚.y.n/ � x.n//: (3.66)

This relationship holds for the components of the model state x.n/ that are observed.
If the observations yl .n/ correspond to richer measurement functions hl.x.n//, then
we will need P.y.n/jx.n// D P‚.y.n/ � h.x.n/// here.

Further, if the noise in the independent measurements is Gaussian distributed, we
have (again unnormalized)

CMI.x.n/; y.n/jY.n�1// D �
LX

l;kD1
.hl .x.n//�yl.n// ŒRm.n/�lk

2
.hk.x.n//�yk.n//;

(3.67)
and should there be no measurement at tn, we take the L � L matrix Rm.n/ to be
zero.

The structure of the action indicates how to proceed when the observations at
two time tn and tn�1, say, are not independent of each other. This can be important
in application (Hamill 2006), though it is hard to find a discussion of this matter
elsewhere in the literature.

For example, suppose the measurement model relates a linear combination of the
measurements y.n/ and y.n � 1/ to the function of the state variable x.n/, in the
following manner

xl .n/ D Ayl.n/C .1 � A/yl.n � 1/C �l .n/: (3.68)
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Also we assume y.n/ does not depend on y.n�2/; y.n�3/; : : :. Then we may write

yl.n/ D xl .n/

A
�

�
1

A
� 1

�

yl.n � 1/C 1

A
�l.n/I (3.69)

0 � A � 1. This means P.y.n/jx.n/; y.n� 1// is

P.y.n/jx.n/; y.n� 1// D P‚=A

�

y.n/ � x.n/
A

C
�
1

A
� 1

�

y.n� 1/

�

: (3.70)

3.5 The Value of a Measurement

The path integral structure allows us to answer the interesting question: what is
the value of one additional measurement to the receiving model? If we look at
Eq. (3.49), divide by P.x.m//, and take the logarithm of the result, we arrive at

log

�
P.x.m/;Y.m//
P.x.m// P.Y.m//

�

D CMI.x.m/; y.m/jY.m� 1//

C log

�
P.x.m/;Y.m� 1//

P.x.m// P.Y.m � 1//
�

I (3.71)

at each measurement time tn, the additional information is CMI.x.n/; y.n/jY
.n � 1//.

Now integrate this with P.x.m/;Y.m//. On the left-hand side we have the
average mutual information when m C 1 measurements Y.m/ are transmitted to
the model and the state x.m/ occurs. On the right-hand side, we have the term

Z
dDx.m/

mY

nD0
dLy.n/P.x.m/;Y.m// log

�
P.x.m/;Y.m� 1//

P.x.m// P.Y.m� 1//

�

D
Z
dDx.m/

m�1Y

nD0
dLy.n/P.x.m/;Y.m� 1// log

�
P.x.m/;Y.m� 1//

P.x.m// P.Y.m� 1//

�

:

(3.72)

This term is the average mutual information when m measurements Y.m � 1/ are
transmitted to the model and the state x.m/ occurs.

The difference between these

AMI.x(m) occurs; mC 1 measurements/� AMI.x(m) occurs;m measurements/

D
Z
dDx.m/

mY

nD0
dLy.n/P.x.m/;Y.m//CMI.x.m/; y.m/jY.m� 1//; (3.73)
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which is the average conditional mutual information conveyed by the .m C 1/st
measurement y.m/ from the transmitter (the data generating process) to the receiver
(the model). This tells us on the average how much information is gained by the
model via one additional measurement. If the logarithm is taken to base 2, this
quantity is in bits.

This permits the assessment of the value in bits of an additional measurement. It
depends on the measurements and on the model, and it tells us in the context of a
particular model for the processes generating the data whether the additional mea-
surement has enough value to do the work associated with making the observation.
If measurements are difficult or expensive yet yield a large information flow, they
may be worth pursuing. If the opposite is true, one knows from this calculation what
is being missed.

3.6 Predicting

In a broader situation than identified until now, one may have a combination of
observation windows of various temporal lengths, interspersed with windows where
no observations are made. In the latter, the conditional mutual information terms
are absent, and we utilize the results from the first part of this chapter to move the
dynamical system forward between observation windows. Both in the observation
window and outside of it, one may use different time steps for moving the model
forward in time than those associated with the observation times tn. This may be of
some value when the discrete time step algorithm x.n C 1/ D f.x.n/;p/ requires
smaller time steps to converge well.

Using an observation window we can “complete” the model instantiated in the
transition probability P.x.n C 1/jx.n// by determining the expected model states
x.t/ and all the model and measurement parameters p from information provided by
the observations. Putting the fixed parameters on the same footing as the states by
providing dp.t/=dt D 0 as a model equation is a device that works. The expected
values of functions on the path and moments about them as well as the full marginal
distribution for these quantities come from evaluating the path integral. Predictions
for the behavior of the completed model for times outside the observation windows
are now a matter of evaluations of the same category of path integral already
encountered in an observation window but, as in the beginning of this chapter,
without further observations.

We will return to predicting as we examine the various methods for evaluating
the path integrals in the coming chapters.

There is a circumstance we know in which predicting may not be of interest to
the user of statistical data assimilation. Suppose one has observations of a dynamical
system for which one has a well-established, well-known model. In the model there
may be a few unknown parameters, but the important unknown quantities are values
of the state variables hard or not possible to observe. Then under the assumption
that enough state variables have been measured (L is sufficient), estimating the
unobserved states could be all one wishes to extract from data assimilation. In this
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circumstance, examining the full state of the model may provide the understanding
of the dynamics one requires (Wunsch and Heimbach 2007). As is clear from the
examples in Chap. 2 and as will become clearer as we proceed, knowing how many
measurements are required is a question one can answer with some confidence, but a
bit of hard calculation. The issue is critical if the orbits of the dynamics are chaotic.
The situation we have outlined is, however, plausible. We call it “qualifying” a
model using data assimilation.

3.7 The Scientific Value of the Path Integral

As indicated earlier the path integral is an integral representation of the master
equation for the stochastic process represented by the differential equation

dxa.t/

dt
D Fa.x.t/;p; �.t// (3.74)

in discrete time with �.t/, a stochastic element. Once the information transfer
mechanism, namely, the measurement functions and their statistics, as well as
the dynamics P.x.n C 1/jx.n// and its statistics, is provided, we require reliable
numerical methods for evaluating high-dimensional integrals. Approximations to
these integrals in which the action is quadratic in the state variables represent linear
problems and ignores the nonlinearities in the dynamics.

As an integral representation of the solution to a master equation, the path
integral allows a global view of the solution going informatively beyond the local
view provided by the PDE or methods that focus on constructing the probability
distribution rather than physically interesting moments.

Approximations in which the action is not quadratic in X but there appear only
a finite number of moments around an expected path have a fundamental problem
pointed out by Marcinkiewicz in 1939 and independently by Pawula in 1967a, b:
the probability distributions will not be positive and the approximation is not self-
consistent. This kind of approximation is at the heart of any closure procedure, such
as the clever approach called “polynomial chaos.” This means one must have either
linear dynamics or always consider all moments about the expected path as finite.

Familiar numerical evaluation methods for path integral, which we will dis-
cuss and illustrate in coming chapters, avoid the Marcinkiewicz/Pawula theo-
rem (Marcinkiewicz 1939; Pawula 1967a,b). The path integral then represents a
consistent format into which one may introduce approximations to the description
of measurements and approximations for the nonlinear dynamics. It is the frame-
work in which one can consistently provide quantification of the uncertainty in
the estimation of model state variables, model parameters, and prediction using the
statistical model. Furthermore, the formulation has no Gaussian constraints on the
statistical properties entering the model.



80 3 General Formulation of Statistical Data Assimilation

It is interesting to note the role path integrals assume in statistical physics.
Chandler (1987) notes in his introductory volume on statistical mechanics from
25 years ago that “Path Integral Monte Carlo is the method of choice for studying
quantum systems at non-zero temperatures.”

3.8 Data Assimilation Path Integrals in Continuous Time

The path integrals considered until now have all been for discrete time. There is no
essential difficulty in porting the results, in a formal sense, to flows in continuous
time. The flow of the dynamics from a measurement time to the next measurement
time is what we need to attend to. Measurements are still made discrete times in
an observation window Œt0; tm D T �. If one wishes to evaluate the path integral for
utilization in a particular problem, with few exceptions, one will return to discrete
time in any case.

We recall that if one wishes to refine the transport of the dynamics from one time
to another through time steps much smaller than the time between measurements,
one can refine the grid in time for that solution to the underlying differential
equations as finely as one wishes. So the time steps for the dynamics can be
decoupled from the time steps for the measurements in a natural fashion. The job
then is to make the propagation of the dynamics from one measurement to the next
flow in continuous time while holding fixed the finite number of measurements one
makes in the interval Œt0; T �. To emphasize the difference between measurement
times and flows of the dynamics, let’s call the measurement times f�0; �1; : : : ; �Kg;
these lie in the observation window t0 � �0 < �1 < �2 : : : < �K � T .

There are two main issues we need to address: (1) transforming the transition
probability P.x.n C 1/jx.n// into a continuous time format and (2) transforming
the information transfer term into continuous time for the state variable but retaining
discrete time for the measurement.

The first is handled by the formal discussion of (Hochberg et al. 1999; Zinn-Justin
2002) and many others, though it is restricted to additive model errors. Suppose
we begin with a set of ordinary differential equations for the model state variables
xa.t/I a D 1; 2; : : : ;D

dxa.t/

dt
D Fa.x.t//; (3.75)

and to this we add some noise termQa.t/ acting in the D-dimensional space of the
states. The differential equation becomes

dxa.t/

dt
D Fa.x.t//CQa.t/: (3.76)
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Suppose we solve the differential equation for a specific realization of qa.t/.
Think of this as drawing a value for qa from a distribution PQ.Q/I Q D
fQ1;Q2; : : : ;QDg at each time. Having made the draws, the specific realization
is just a set of constants affecting the solution to the model differential equation
yielding the trajectory xQ

a .t/. The mean value over many draws is

< xa.t/ >D
Z
ŒDQ� xQ

a .t/ PQ.Q/: (3.77)

The integral is over the whole path of values of Q over the interval of time
considered. As Q.t/ is a function of time realized as a continuous variable, this is an
integral over functions. Generally, if we want the average of a function, G.xQ

a .t//,
of the xQ

a .t/’s, we write the expected value as

< G.xQ
a .t// >D

Z
ŒDQ� G.xQ

a .t// PQ.Q/: (3.78)

The idea is to now transform this from a functional integral over Q.t/, the vector
of noise to an integral over the state x.t/. The transformation from the Q.t/ integral
to the x.t/ integral as usual involves the Jacobian:

DQ D @.Q/
@.x/

Dx; (3.79)

and since Q.t/ D dx.t/
dt � F.x.t//, the Jacobian of the transformation is

@.Qa.t//

@.xb.t 0//
D det

�

.ı.t � t 0//
�

ıab
d

dt
�DF.x.t//ab

��

; (3.80)

where

DFab.x.t// D @Fa.x.t//
@xb.t/

: (3.81)

The elements in this determinant or transformation Jacobian are operators on
functions of x.t/.

Using this variable change, we arrive at

< G.x/ >D
Z

Dx det

�

I
d

dt
�DF.x.t//

�

G.x/PQ

�
dx.t/

dt
� F.x.t//

�

: (3.82)

Following the argument in Hochberg et al. (1999) and Zinn-Justin (2002) we can
express the determinant as

exp

"
1

2

Z
dt

DX

aD1

@Fa.x.t//
@xa.t/

#

;

D exp

�
1

2

Z
dt traceŒDF.x.t//�

�

(3.83)
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along with factors not involving the state variable. These additional factors cancel
in the mean value

< G.x/ >D
R Dx exp. 1

2

R
dt traceŒDF.x.t//�/G.x/PQ

h
dx.t/

dt � F.x.t//
i

<
R Dx exp. 1

2

R
dt traceŒDF.x.t//�/PQ

h
dx.t/

dt � F.x.t//
i :

(3.84)
The term PQŒ

dx.t/
dt � F.x.t//� is the continuous time analog of the model error

contribution to the action. As a reminder, it is given here only when there is additive
model noise, and there may be a more general replacement to the discrete time
transition probability P.x.nC 1/jx.n// in other cases of stochastic elements in the
model.

That addresses moving the system between measurement times. In such intervals
there are no conditional mutual information factors

logŒP.y.n/jx.n/; Y.n � 1/�; (3.85)

in the action associated with measurements, because there are no measurements.
This factor in the action appears only at times �n. We incorporate this by introducing
a function very peaked near the measurement time, achieving a value unity close to
and around each �n. If we call this function the measurement weighting function
MW.t � �n/, then an example is given by

MW.t � �n/ D 1

cosh2
	
.t��n/

wn


 ; (3.86)

and surely there are many more. The width wn indicates that physically, there is
some time interval over which the measurement is actually made and allows formal
derivatives of the action with respect to the path element x.t/ in the neighborhood
of �n to be defined. The term in the action

�
mX

nD0
logŒP.y.n/jx.n/; Y.n � 1/�; (3.87)

we now write as

�
Z T

t0

dt
KX

kD0
MW.t � �k/ logŒP.y.�k/jx.t/;Y.k � 1/�; (3.88)

in which we now have Y.k/ D fy.�k/; y.tk�1/; y.�k�2/; : : : ; y.�0/g, namely, all
measurements up to the time �k . This is the factor to be inserted into the action
for the continuous time general expectation value represented by Eq. (3.84).
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We can write the conditional expectation value for a functionG.x/ on the path in
the usual form

EŒG.x/jY.K/� D
R DxG.x/ expŒ�A0.x;Y.K//R Dx expŒ�A0.x;Y.K// ; (3.89)

where now

A0.x;Y.K// D �1
2

Z
dt traceŒDF.x.t//�

�
Z T

t0

dt
KX

kD0
MW.t � �k/ logŒP.y.�k/jx.t/;Y.k � 1/�;

� log

�

PQ

�
dx.t/

dt
� F.x.t//

��

: (3.90)

The factor traceŒDF.x.t//� is associated with the change in state space volume as
one moves around guided by the dynamics (Abarbanel 1996; Kantz and Schreiber
2004)

dx.t/
dt

D F.x.t//; (3.91)

and over a long orbit traversing the system attractor, it is negative. For Hamiltonian
systems it is zero. For most of the examples in this book it is zero or a negative
constant. The exception is the Hodgkin–Huxley neuron equations.

3.9 Earlier Work on Path Integrals in Statistical Data
Assimilation

The idea of a path integral for statistical physics problems certainly goes back to
the work of Osager and Machlup (1953) some decades ago. A good review and
survey of this work is found in Hochberg et al. (1999). The use of path integrals
for the statistical data assimilation problem has many sources (Pythian 1977; Jouvet
and Pythian 1979; Alexander et al. 2005; Apte et al. 2006; Restrepo 2008). Each of
them analyzes the continuous time problem from the outset. This has ambiguities
associated with the treatment of statistical quantities in the continuous time limit.
Further, only the case of Gaussian model errors or measurement errors is part of the
discussion.

Interestingly, in the analysis of statistical data assimilation using discrete time,
going back to the works of Cox (1964) Friedland and Bernstein (1966) and
Jazwinski (1970), the connection with path integrals was not made, and the
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consideration of the information theoretic interpretation of a measurement was
not drawn. The development of data assimilation when measurements at different
times are not independent was also not considered. Finally, almost all analyses
moved immediately to the use of Gaussian statistics for measurement, and model
errors and consideration of measurements correlated between measurement times
are uniformly absent.

3.10 Synopsis and Perspectives: Statistical Data Assimilation

The full answer to statistical data assimilation questions embodied in the conditional
expectation value of a functionG.X/ on the D D .mC1/D-dimensional model path
X D fx.0; x.1/; : : : ; x.m/g, given possible L-dimensional measurements Y.m/ D
fy.0/; y.1/; : : : ; y.m/g during the observation window

EŒG.X/jY� D
R

dXG.X/ expŒ�A0.X;Y.m//�R
dX expŒ�A0.X;Y.m//� ; (3.92)

gives a framework for many approximations which have been addressed over many
years. This general formulation gives a context to the variational approximations of
Laplace (1774) to the integral and gives a further setting for the evaluation of the
full integral using Monte Carlo or, perhaps other approximation methods.

In its construction we learned about the transfer of information from the data
fy.n/g to the model state x.n/ through conditional mutual information quantities.
This provides a method to evaluate the importance of this or that individual or group
of measurements to the stability and accuracy of the overall integral.

An integral representation of the solution to a master equation for the conditional
probability P.x.m/jY.m// is the classical analog to the much studied problem
in quantum mechanics. There one has a rule for the effect of a measurement on
the quantum development of the wave function from its value at the beginning
of an observation window  .r; t0/, and we have the analog of “data assimilation
without data” which uses the classical action as the core of the quantum propagator
of the system between observations. While each of these, classical and quantum
frameworks, provides a general context for approximations and for some broad
statements about characteristics of solutions, until the classical Lagrangian in the
quantum context and the deterministic equations of motion in the classical are
specified, answers of interest about this dynamics or that remain to be investigated.

There is a viewpoint that emerges from the general formulation which is of some
importance: the role of measurements is to act like a “forcing term” in the stochastic
time development of a nonlinear system guiding it to the regions of state space
where data tells it should occupy. The quantity which is transferred in this “forcing”
to the uninformed orbit is information in the precise sense of Shannon (Fano 1961)
through the conditional mutual information.



Chapter 4
Evaluating the Path Integral

Prologue to the Chapter

The path integral giving the integral representation of any physical question
encountered in statistical data assimilation is addressed in this chapter. We first
outline the three methods for evaluating the path integral. The first two are variants
on a stationary path approximation to the integral and its corrections presented as an
infinite series. The series is identical to perturbation theory corrections to statistical
physics and field theory estimations of path integrals encountered in those analyses.
We work solely in discrete time and discrete space, so the infinities of field theory
do not appear.

In the chapter we give some formal “loop” approximations to the effective action
for statistical data assimilation. To date these are not “useful” but they certainly
provide an untread path for data assimilation questions.

In the formulation of the path integral, it is certainly necessary to have data
to assimilate, a model into which to assimilate the information in the data.
Furthermore, we must specify the connection between the observed data and the
state variables of the model via a “measurement function”, and even further we must
make some precise statement on how model errors are represented. Typically that
is rather ad hoc, so we present a small sidebar on examining the self-consistency of
that choice.

4.1 Guide to Methods for Estimating the Path Integral

In the previous chapter we have seen that in statistical data assimilation the
quantities of physical interest are the expected values of functions G.X/ along the
state space path X D fx.0/; x.1/; x.2/; : : : ; x.m/g through an observation window
or during a prediction epoch outside of measurement windows. In an observation

H.D.I. Abarbanel, Predicting the Future: Completing Models of Observed Complex
Systems, Understanding Complex Systems, DOI 10.1007/978-1-4614-7218-6 4,
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window with possible measurements at times ft0; t1; t2; : : : ; tn; : : : tm D T g, these
conditional expectation values have the form

EŒG.X/jY.m/� D
R

dXG.X/ expŒ�A0.X;Y.m//R�R
dX expŒ�A0.X;Y.m//R�

; (4.1)

with Y.m/ D fy.0/; y.1/; : : : ; y.m/g. Terms involving y.n/ alone cancel in this
expectation value.

The “residual” action Eq. (3.61) A0.X;Y.m//R providing the distribution of
paths in D D .mC 1/D-dimensional space expŒ�A0.X;Y.m//R� is given as

A0.X;Y.m//R D �
mX

nD0
logŒP.y.n/jx.n/;Y.n � 1//�

�
m�1X

nD0
logŒP.x.nC 1/jx.n//�� logŒP.x.0//�: (4.2)

When measurements are absent at any tn, we remove the logŒP.y.n/jx.n/;Y.n�1//�
term for the missing measurement.

In the action, P.x.n C 1/jx.n// produces the dynamical propagation from one
measurement time tn to the next tnC1. For numerical stability reasons we may wish
to propagate the dynamics through many intermediate time steps between tn and
tnC1. If there are NI such time steps of length 	 between the observation times
tn D tn C 0	 and tnC1 D tn C NI	: ftnC	; tnC2	; : : : ; tnC.NI�1/	g, we use the
Kolmogorov-Chapman relation to represent the propagation over the time tnC1 � tn
segment as

P.x.nC 1/jx.n// D P.x.nCNI	/jx.nC 0	//

D
Z NI�1Y

kD0
dDx.tn C k	/P.x.nC .k C 1/	/jx.nC k	//;

(4.3)

with 	 D .tnC1 � tn/=NI . This adds NI terms to the action of precisely the
form discussed at the beginning of the previous Chapter when we considered data
assimilation without data. An adaptive time-stepping routine might add this form of
intermediate time step only at times where the dynamics has large variation in x.t/.

How are we to perform the D-dimensional integral involved in (4.94)? Analytic
evaluation is possible in the uninteresting situation where the measurement errors
are Gaussian and the dynamical model is linear. We will discuss three possible
approaches:

• An expansion about a stationary path S0, where

@A0.X;Y/
@X

jXDS0 D 0; (4.4)

when there are no model errors,
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• An expansion about a stationary path, S0, where

@A0.X;Y/
@X

jXDS0 D 0; (4.5)

when there are model errors
• A direct Monte Carlo evaluation based on approximating expŒ�A0.X;Y/�

4.2 Stationary Path Methods

Laplace’s Method

The saddle point method of Laplace (1774; Debye 1909) for performing integrals is
effectively utilized for integrals of the form

I.˛/ D
Z

dz e� f̨ .z/; (4.6)

as ˛ becomes large.
In this limit, one approximates the integral by seeking a saddle point z0 where

f 0.z0/ D 0I f 00.z0/ > 0 and expanding the integral in the vicinity of z0. Near

z0 f .z/ � f .z0/ C f .2/.z0/
.z�z0/2

2
C f .3/.z0/

.z�z0/3

6
C f .4/.z0/

.z�z0/4

24
: : :, and the

integral may be approximated as

I.˛/ � e� f̨ .z0/
Z C1

�1
dz e�˛Œf .2/.z0/ .z�z0/

2

2 Cf .3/.z0/ .z�z0/
3

6 Cf .4/.z0/ .z�z0/
4

24 � (4.7)

or

I.˛/ � e� f̨ .z0/

s
2�

f̨ .2/.z0/

�Z 1

�1
dup
�

e�u2 e�A3.z0/u3=p˛e�A4.z0/u4=˛
�

; (4.8)

with A3.z0/ D f .3.z0/
6
. 2

f .2/.z0/
/3=2 and A4.z0/ D f .4/.z0/

6f .2/.z0/2
, after changing variables to

u D
q

f̨ .2/.z0/
2

.z � z0/.
If there are many saddle points, this approximation is performed for each.
Expanding in ˛ leads to

I.˛/ � e� f̨ .z0/

s
2�

f̨ .2/.z0/

�

1C 1

8˛

�
5f .3/.z0/2

3f .2/.z0/3
� f .4/.z0/

f .2/.z0/2

�

CO.
1

˛2
/

�

: (4.9)
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Path Integrals

We have integrals of this general format in the conditional expectation value of
functionsG.X/ of the path X

EŒG.X/jY.m/� D
R

dXG.X/ expŒ�A0.X;Y.m//�R
dX expŒ�A0.X;Y.m//� ; (4.10)

and in the Laplace-like approximation to the integral, we seek a path S0 along which

@A0.X/
@X

jXDS0 D 0: (4.11)

The path is a vector in D D .m C 1/D-dimensional space. We drop the explicit
dependence on the measurements Y as they play only a passive role in the
integration. ˛ D 1 here, and we do not have an expansion parameter with which
to mimic Laplace’s expression, yet.

The extremum of the action defines a saddle path along which we might expect
the important contribution to the integral to be achieved. As with Laplace’s method
for the simpler integral (4.6), there are corrections to the term evaluating the
integrand along S0. We return to these corrections.

The statement of the extremum of the action along X D S0 is a standard uncon-
strained numerical optimization problem where A0.X/ is the objective function in
the space ofD state variables andNP parameters. There are many publicly available
numerical optimization routines. We do not intend to review the numerous methods.
That would be a monograph or two in itself.

We have found and extensively used two publicly available numerical opti-
mization programs, SNOPT and IPOPT. SNOPT (Gill and Wright 1982) (Barclay
et al. 1998) (Gill et al. 2002) (Gill et al. 2005, 1998) and IPOPT (Wächter and
Biegler 2006) are well adapted to the kind of variational problem posed by (4.11).
Each of these uses the direct method which varies all the parameters p and all
the state variables at each time in the observation window ft0; t1; : : : ; tm D T g,
X D fxa.0/; xa.1/; : : : ; xa.m/gI a D 1; 2; : : : ;D, subject to any equality or
inequality constraints present. The difference between the programs lies in the
details of the search methods they utilize in path space. These differences are
discussed in the documentation available for each program.

The advantage of these two methods relative to the many others in the vast
literature on numerical optimization is that the optimization procedure is done in
a sparse space, making various sparse matrix routines quite useful. Further when
the numerical optimization routine has completed according to its internal rules
and according to the accuracy dictated by the user, the full path X through the
observation window is reported. This enables us to look at the behavior of the
unobserved state variables as functions of time, and there may often be interesting
physical information revealed about the operation of the model as it is informed by
the data.
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We have determined that both of these optimization algorithms spend a large
fraction of their time performing linear algebra routines locally in state and
parameter space, and the availability of parallelizable linear algebra routines (Curtis
et al. 2010) offers real opportunities for acceleration of the searches involved.

The work required to translate the differential equations of the dynamics along
with the bounds on each state variable and each parameter is found in a series of
Python scripts written by Bryan Toth (2010). This reduces the creation of a CCC
program to solve the variational problem from weeks or more to a few minutes.

4.2.1 No Model Error

If there is no error in the model ga.x.nC 1/; x.n/;p/ D 0I a D 1; 2; : : : ;D, then
each transition matrix in the Markov dynamics is a delta function

P.x.nC 1/jx.n// D ıD.g.x.nC 1/; x.n/;p//: (4.12)

This means that in performing the path integral we have mD equality constraints
g.x.nC 1/; x.n/;p/ D 0. The search over X and p in the saddle path requirement

@A0.X/
@X

jXDS D 0; (4.13)

which is DCNP dimensional forNP parameters p, formally involves determining
only x.0/ and p and is D CNP dimensional when the constraints are imposed.

The path integral now reduces to an integration over P.x.0// and factors in the
action associated with each measurement

A0.X;Y.m// D �
mX

nD0
logŒP.y.n/jx.n/;Y.n � 1//� � logŒP.x.0//�; (4.14)

and x.n/ comes from iterating the dynamical rule starting from x.0/: g.x.1/;
x.0/;p/ D 0 gives x.1/ in terms of x.0/ and p; g.x.2/; x.1/;p/ D 0 gives x.2/
in terms of x.0/ and p; . . . ; g.x.m/; x.m � 1/;p/ D 0 gives x.m/ in terms of x.0/
and p.

The saddle path method for this case is the minimization of A0.X;Y.m//. If all
the iterations of the dynamics g.x.nC 1/; x.n/;p/ D 0 are carried out, then A0.X/
is an extraordinarily complex function of x.0/;p for any nonlinear system, and the
derivatives required to find S

@A0.X/
@X

jXDS D 0 (4.15)

are formidable. The direct method keeps the functional dependence on each
component of X and imposes g.x.nC 1/; x.n/;p/ D 0 as equality constraints. This
is the working mode of SNOPT and IPOPT, and it is the method we have used in
our examples.
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When the measurements at each time tn are independent and the measurement
error is Gaussian, then A0.X;Y.m// Eq. (4.14) is proportional to

�
mX

nD0

� LX

l;kD1
.hl .x.n//�yl.n// ŒRm.n/�lk

2
.hk.x.n//�yk.n//

�

�logŒP.x.0/�; (4.16)

and we have a constrained least-squares minimization problem. We have allowed
here for the measurements to be a known function of the model state variables:
hl.x.tn//. The reader will recognize this formulation of data assimilation as the one
we used in Chap. 2 in all the examples we discussed there.

In the geophysical literature (Evensen 2009; Lorenc and Payne 2007; Kalnay
2003) this formulation of statistical data assimilation is known as 4DVar, specifically
as strong 4DVar, indicating it is a variational principle with strong equality
constraints. The method itself may be as old as Newton, and it appears in numerous
scientific inquiries across vast bodies of literature.

While it is impossible to quote all papers that use this method to address
data assimilation, we give a few recent examples in neurobiology (Huys et al.
2006; Huys and Paninski 2009; Abarbanel et al. 2011), toxicology (Lyons et al.
2008), systems biology (Rodriguez-Fernandez et al. 2006), cell biology (Beard
2005) (Panning et al. 2008), biomedical engineering (Horva’th and Manini 2008),
chemical engineering (Xiong et al. 2006), wastewater treatment (Mueller et al.
2002), biochemistry (Dochain 2003), coastal and estuarine modeling (Yang and
Hamrick 2005), immunology (Swameye et al. 2003). This hardly represents the tip
of the iceberg in the use of the stationary path method in nonlinear problems.

The methods for solving such problems are also quite diverse, and while a
discussion and comparison of them is the subject of another monograph, there
is one classical method which we note (Kirk 1970). The idea is to enforce the
equality constraints of the dynamics using Lagrange multipliers. The multipliers
become time-dependent dynamical variables, called dual, and the combination
of the original state variables and the multipliers forms an overall Hamiltonian
dynamical system which may be solved by various methods. For dissipative
nonlinear systems, especially those with chaotic orbits, the numerical procedure can
be very sensitive as the multiplier (dual) variables must be solved backward in time,
and the negative Lyapunov exponents, harmless in forward time integrations, play a
destabilizing role.

As indicated in Chap. 2 in the examples involving the Colpitts oscillator and the
Malkus waterwheel, the problem stated as (4.15) can still be ill posed numerically if
there are chaotic orbits in the dynamics g.x.nC 1/; x.n/;p/ D 0. We return to this
matter in a later section.
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4.2.2 Model Errors

If there are errors in our model differential equations

dx.t/
dt

D F.x.t/;p/ (4.17)

or our discrete time maps coming from these differential equations

g.x.nC 1/; x.n/;p/ D 0; or x.nC 1/� f.x.n/;p/ D 0; (4.18)

then we require terms in the action to replace the delta functions.
The delta functions in the dynamics represent infinitely accurate resolution in the

state space x.t/. One form of model error is associated with recognizing we always
have finite resolution and broadening the delta function in some manner. If we do
that using the representation of the delta function as a Gaussian,

ıD.z/ D
s

det Rf

.2�/D
expŒ�z � Rf

2
� z�; (4.19)

in the limit that Rf goes to infinity. Choosing Rf large means taking the state space
resolution to be of order 1=

p
det Rf .

With this choice, the dynamical terms in the action take the form

m�1X

nD0
logŒP.x.nC 1/jx.n//� D

�
m�1X

nD0

� DX

a;bD1
ga.x.nC 1/; x.n/;p/

Rf .n/a;b

2
gb.x.nC 1/; x.n/;p/

�

Cconstants: (4.20)

The constants cancel in the conditional expectation valuesEŒG.X/jY.m/�. TheD�
D matrix Rf .n/ contains the information on the broadening of the delta function
for deterministic dynamics, this particular form for the broadening has independent
model errors at each time tn.

There are many, many ways to represent model errors associated with environ-
mental noise or loss of resolution. Gaussian broadening is not special, though a
common practice. Representing model errors associated with missing terms in the
dynamical equations does not have any universally useful expression.

In the same geophysical literature (Evensen 2009; Lorenc and Payne 2007;
Kalnay 2003) as above, this expression of model error is known as “weak 4DVar”
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as the influence of the dynamics is spread over regions of phase space inversely
proportional to the square root of the eigenvalues of the matrix Rf .n/. In a sense
strong 4DVar comes from weak 4DVar as “R00

f ! 1.
The import of the previous two sections is to demonstrate that the familiar

variational principles used widely across fields for the estimation of states and
parameters are approximations to a common formulation: the path integral. Within
the variational formulations, one derives a single path in state space, we have called
it S0, and no variations about that path are addressed. We should, as in the original
Laplace method on which the saddle path methods were formulated, be able to
evaluate, usually numerically and approximately, the corrections to the “leading”
order we have displayed. Not only will there be estimates of the variations about the
trajectory S0, but some estimate of the size of the corrections and the convergence of
the series of approximations ought to be available. Those variations are, of course,
fully represented in the path integral, and we will give methods in later sections to
evaluate these, systematically from the path integral.

4.3 Beyond the Stationary Path: Loop Expansions

4.3.1 The Effective Action: Numerical Optimization Reappears

The approximation to the path integral by a stationary path captures the sense of a
mean path through the observation window. In the discussion of Laplace’s method
we saw that it should be seen as the beginning of an expansion in a series of
approximations. Variations about this path are also present in the path integral, and
we consider now one method for evaluating those variations as a collection of further
approximations to the integral as a whole.

We proceed by recognizing that as ever with statistical problems, variations about
a mean value are contained in the moments about that mean or expected value. We
follow practice in field theory, statistical physics, and actually statistics generally
formulated (Feller 1971; Zinn-Justin 2002) by starting with the generating function
for the moments of a distribution. This involves introducing the generating function
C.K/ for cumulants of the distribution in the form

expŒC.K/� D EŒeK�XjY.m/� D
R

dX eK�X expŒ�A0.X;Y.m//�/R
dX expŒ�A0.X;Y.m//� ; (4.21)

in which K D fK�g D fka.0/; ka.1/; : : : ; ka.m/gI a D 1; 2; : : :D is a D-
dimensional constant vector. The D-dimensional index � D fa; ng stands for the
vector index a along with the time index n needed to label a full path X D
fxa.0/; xa.1/; : : : ; xa.m/g. With this definition C.K D 0/ D 0.
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The first derivative of C.K/ is

@C.K/
@K�

D S�.K/

D
R

dXX� eK�X expŒ�A0.X;Y.m/�/R
dX eK�X expŒ�A0.X;Y.m//� ; (4.22)

and we see that

S�.K D 0/ D
R

dXX� expŒ�A0.X;Y.m/�/R
dX expŒ�A0.X;Y.m//� D EŒX�jY.m/� (4.23)

is the expected value of the path through the measurement window.
The second derivative of C.K/ evaluated at K D 0 gives us the second moment

about S

@2C.K/
@K� @K


jKD0 D EŒ.X� � S�.K D 0//.X
 � S
.K D 0//jY.m/�: (4.24)

Further derivatives yield higher moments about the mean value S�.K/, namely, the
cumulants (Feller 1971).

The reader may notice that we have now made a distinction between the path S0
where the action is an extremum and the expected value of the path S. The former
indicates the mode of the distribution expŒ�A0.X;Y/�, while the latter is the mean
value.

4.3.2 The Effective Action

Taking hints from statistical physics, we are led via a Legendre transform of the
cumulant generating function C.K/ to an effective action A.S/ by defining

A.S/ D �C.K/C
X

�

K�S�.K/ D �C.K/C K � S.K/I (4.25)

repeated indices are summed over. Evaluating the derivative of the effective action
with respect to S, we find

@A.S/
@S�.K/

D � @K


@S�.K/
@C.K/
@K


C @K


@S�.K/
S
.K/CK�

@A.S/
@S�.K/

D � @K


@S�.K/
S
.K/C @K


@S�.K/
S
.K/CK�

@A.S/
@S�.K/

D K�; (4.26)
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so at K D 0, the expected value of the path < X� >D EŒX� jY.m/� is given by S
satisfying

@A.S/
@S�

D 0: (4.27)

We see from this that the effective action contains all of the information about the
complete version of the expected value of the orbit X through the measurement
window as well as the information about all the fluctuations about that expected
value. The orbit S� is the generalization of the saddle path .S0/� coming from the
raw action A0.X/

@A0.X/
@X�

jXDS0 D 0: (4.28)

The second derivative of A.S/ is given by

@2A.S/
@S�.K/ @S
.K/

D @K�

@S
.K/
D

�
@2C.K/
@K� @K


��1
; (4.29)

namely, the inverse of the second moment tensor of variation about the mean orbit.
If we are able to evaluate an interesting approximation to the effective action,

then the determination of the expected orbit once again becomes a numerical
optimization challenge, and all our experience and tools from the stationary path
approximation are required again.

4.3.3 Dyson–Schwinger Equations for Statistical Data
Assimilation

The cumulant generating functionC.K/ defined by the D D .mC1/D-dimensional
integral

expŒC.K/� D
Z

dX expŒ�A0.X/C K � X� (4.30)

is invariant under translation of the integration variable X D fX˛gI ˛ D
fa; ngI a D 1; 2; : : : ;DI n D 0; 1; : : : ; m by a constant displacement �.

The translation of any function f .X/ by the constant �: f .X/ ! f .X C �/ is
accomplished by the operation f .X C �/ D expŒ� � rX� f .X/. Therefore, we have

expŒ�A0.X/C K � X� ! expŒ� � rX� expŒ�A0.X/C K � X�: (4.31)
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When we integrate this over all X, there results
Z

dX expŒ� � rX�

�

expŒ�A0.X/C K � X�
�

D
Z

dX expŒ�A0.X/C K � X�

C
X

rD1

Z
dX
��1 � � � ��r

rŠ

@

@X�1
� � � @

@X�r

�

expŒ�A0.X/C K � X�
�

D expŒC.K/�C 0; (4.32)

as all terms with r � 1 vanish by partial integration when expŒ�A0.X/ C K � X�
vanishes rapidly enough as X ! 1, as it does here.

The r D 1 term in this expression reads

Z
dX
@

�

expŒ�A0.X/C K � X�
�

@X�
D 0

D
Z

dX
�

�@A0.X/
@X�

CK�

�

expŒ�A0.X/C K � X�

D expŒC.K/�
��

�@A0.X/
@X�

�

CK�

�

D 0: (4.33)

or
�
@A0.X/
@X�

�

D K� D @A.S/
@S�

; (4.34)

which are the “classical” (deterministic) equations of motion in discrete time but
including all statistical fluctuations associated with measurement errors, model
errors, and initial state uncertainty. These are also the statistical physics equiv-
alent of the Ehrenfest equations familiar from quantum theory. The additional
Schwinger–Dyson equations (Zinn-Justin 2002) come from derivatives of 4.33 with
respect to S˛.

If the dynamical equations are quadratic in the state variables, then when the
model errors are Gaussian, we have at most quartic terms in X appearing in A0.X/:

A0.X/ D
4X

rD0

a
.r/
�1;�2;:::;�r

rŠ
X�1 : : : X�r ; (4.35)

and

@A0.X/
@X


D
3X

rD0

a
.rC1/

;�1;�2;:::;�r

rŠ
X�1 : : : X�r : (4.36)
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The Dyson–Schwinger equation corresponding to (4.33) is then

expŒC.K/�a.1/
 C a.2/
;˛

Z
dXX˛ expŒ�A0.X/C K � X�

Ca
.3/


;˛;ˇ

2

Z
dXX˛Xˇ expŒ�A0.X/C K � X�

Ca
.4/


;˛;ˇ;�

6

Z
dXX˛XˇX� expŒ�A0.X/C K � X�

D expŒC.K/�K
; (4.37)

which can be expressed as

a.1/
 C a.2/
;˛ expŒ�C.K/�@ expŒC.K/�
@K˛

C a
.3/


;˛;ˇ

2
expŒ�C.K/�@

2 expŒC.K/�
@K˛ @Kˇ

C a
.4/


;˛;ˇ;�

6
expŒ�C.K/� @

3 expŒC.K/�
@K˛ @Kˇ @K�

D K
; (4.38)

The operator

expŒ�C.K/�@
n expŒC.K/�
@K�1 � � � @K�n

: (4.39)

acting on a function  .K/ yields

nY

rD1

�

S�r C @

@K�r

�

 .K/: (4.40)

Now recalling that

@C.K/
@K


D S
; (4.41)

and

@2C.K/
@K˛ @Kˇ

D
�
@2A.S/
@S˛ @Sˇ

��1
C S˛Sˇ; (4.42)
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along with

expŒ�C.K/� @
3 expŒC.K/�
@K˛ @Kˇ @K�

D S��.S/�1˛;ˇ C Sˇ�.S/�1˛;�S˛�.S/�1�;ˇ C S˛SˇS� C @3C.K/�
@K˛ @Kˇ @K�

(4.43)

and

@3C.K/�
@K˛ @Kˇ @K�

D ��.S/�1�;� �.S/�1˛;��.S/�1�;ˇ �.S/.3/�;�;�: (4.44)

We have written

�.S/˛;ˇ D @2A.S/
@S˛ @Sˇ

and

�.3/.S/˛;ˇ;� D @2A.S/
@S˛ @Sˇ @S�

; (4.45)

and this now gives an expression involving functions of S alone.
There are an infinite number of constraints on the effective action A.S/ and its

derivatives coming from the invariance of C.K/ under translations. The one usually
discussed is linear in the action A0.X/ (4.33); however, the remaining constraints,
starting with

Z
dX

@2

@X
 @X�
expŒ�A0.X/C K � X� D 0; (4.46)

is

�
@A0.X/
@X˛

@A0.X/
@Xˇ

� @2A0.X/
@X˛ @Xˇ

�

D K˛Kˇ; (4.47)

using
�
@A0.X/
@X�

�

D K�; (4.48)

are nonlinear in the action.
These relations among the “vertex functions”

�.n/.S/˛1;:::;˛n D @nA.S/
@S˛1 � � � @S˛n

; (4.49)
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are “closure” relations one could derive from the original deterministic dynamics.
If one is to use them for determining any of the �.S/, then it is important to
avoid the negative probability consequences of the Marcinkiewicz and Pawula
theorems (Marcinkiewicz 1939; Pawula 1967a,b).

There is another kind of Dyson–Schwinger equation which is of the form of a
sum rule on the vertex functions, thus setting a scale for them. This is illustrated by
the derivative of Eq. (4.34) with respect to the currents K rather than the familiar
derivatives with respect to S just explored.

The derivative of

K� D
R

dX @A0.X/
@X�

expŒ�A0.X/C K � X�
R

dX expŒ�A0.X/C K � X�
; (4.50)

with respect to K
, gives us

ı�;
 D
�
@A0.X/
@X�

X


�

�
�
@A0.X/
@X�

�

S
; (4.51)

which, as noted, sets a scale for the various expectation values of functions along
the path.

As a closing item for this complicated section, it should be noted that the
main use of these general relations among vertices has been to establish the
renormalization characteristics of the underlying statistical theory. We have not
addressed such issues here. As we deal with discrete space and time, the difficulties
arising when one goes to continuous space and time (Zinn-Justin 2002) are not
present. Whether these Dyson–Schwinger relations have interesting content remains
to be explored.

4.3.4 The Effective Action: Loop Expansion

The effective action is more than a pleasant analog to the original action. If we can
find a systematic manner in which to approximate A.S/, then to whatever order in
that approximation we know the effective action, we may find quite directly the full
orbit and fluctuations about that complete orbit by solving a variational problem. In
other words, A.S/ contains the full information contained in the path integral. We
follow the lead of statistical physics and field theory again (Zinn-Justin 2002).

To this end we introduce a parameter � which will count “loops” in the
diagrammatic representation of the expansion of the effective action. Using the
definition of A.S/ D �C.K/C K � S, we may write

expŒ�A.S/C K � S� D
R

dX expŒ�A0.X/C K � X�
R

dX expŒ�A0.X/� ; (4.52)
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suggestive of how fA0.X/;Xg ! fA.S/;Sg through the operation of the path
integral.

Now we introduce the loop parameter � through

expŒ.�A.S/C K � S/=�� D
R

dX expŒ.�A0.X/C K � X/=��
R

dX expŒ�A0.X/�=� (4.53)

and write

A.S/ D A0.S/C �B.S/; (4.54)

leading to

expŒ�B.S/� D
Z

dX expŒ�.A0.X/ �A0.S/ � .@A0.S/=@S/ � .X � S//=�

C .@B.S/=@S/ � .X � S/�;

D
Z

dX expŒ�.A0.X/ �A0.S/ � .@A0.S/=@S/ � .X � S//=�

C B 0.S/.X � S/�; (4.55)

recalling that

@A.S/
@S�.K/

D K� D @ŒA0.S/C �B.S/�
@S�.K/

; (4.56)

and denoting

B 0.S/� D @B.S/
@S�

: (4.57)

Next we expand .A0.X/� A0.S/ � .@A0.S/=@S/ � .X � S//=� in a Taylor series
in X � S finding

.A0.X/� A0.S/� .@A0.S/=@S/ � .X � S//=�

D 1

2�
.X � S/��0.S/�;
.X � S/
 C

X

rD3

A
.r/
0 .S/�1;�2;:::;�r

rŠ�
.X � S/.r/; (4.58)

where we designate the rth derivative of A0.S/ as

@rA0.S/
@S�1 @S�2 : : : @S�r

D A
.r/
0 .S/�1;�2;:::;�r ; (4.59)
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abbreviate

.X � S/�1.X � S/�2 : : : .X � S�r / D .X � S/.r/; (4.60)

and write the D � D matrix

@2A0.S/
@S2

D A.2/.S/ D �0.S/: (4.61)

This suggests the change of variables

� D
r
�0.S/
2�

.X � S/ �
s

2�

�0.S/
B 0.S/; (4.62)

giving us the expression

expŒ�B.S/� D e
�
2 B

0.S/�0.S/�1B0.S/

.detŒ �0.S/
2��

�/1=2

Z
d�

�D=2
e���� expŒ� X

rD3

2r=2�r=2�1A
.r/
0 .S/

rŠ

�

�0.S/�1=2�C p
�=2�0.S/�1B 0.S/

�r
�: (4.63)

Expressing B.S/ as B.S/ D P
kD0 �kBk.S/, we can expand this representation in

�.
The net result for the effective action to second order in � is derived in detail

by Zinn-Justin (2002), Appendix A7:

A.S/ D A0.S/C 1

2
trace Œlog �0.S/�

C1

8

X

�1;�2;�3;�4

A
.4/
0 .S/�1�2�3�4Œ�0.S/

�1
�1�2
�0.S/�1�3�4 �

� 1

12

X

�;
;�;�1;
1;�1

A
.3/
0 .S/�
� Œ�0.S/

�1
��1
�0.S/�1

1�0.S/

�1
��1
�A

.3/
0 .S/�1
1�1 : (4.64)

This is represented graphically in Fig. 4.1. Except for the matrix indices and the
combinatorial coefficients, this is the generalization of the expansion of the one-
dimensional integral that was treated by Laplace’s method at the beginning of this
Chapter.

The convergence of such a series is not an easy matter, and we refer to Zinn-
Justin (2002) for a discussion of this and other issues. One comment of a physical
nature is in order as we close this section: if one is dealing with problems in
fluid dynamics, say, weather prediction or climate dynamics, the vector field in the
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a

b

Fig. 4.1 The graphical representation of the order �2 contributions to the effective action. The
elements in the graph are the derivatives of the action A0.S/ with respect to S, Eq. (4.59). The
links in the graphs are the inverse of A.2/.S/ D �0.S/ and acts as the “propagator” of information
between nodes which are constructed using nonlinear terms in the action contributing to r D 3

and r D 4

nonlinear evolution equations x.n/ ! f.x.n/;p/ is often quadratic in components
of the path X, so only A.3/0 .S/ and A.4/0 .S/ will appear in the action, if the model
error is Gaussian.

4.4 Estimating the Path Distribution expŒ�A0.X/�

4.4.1 Langevin Equations: Fokker-Planck

Another view on evaluating integrals such as these recognizes that if we were able
to estimate the distribution of paths X and observations Y.m/, expŒ�A0.X/�, and
identify Npath paths X.j /I j D 1; 2; : : : ; Npath drawn from that distribution, then
we could use these to estimate conditional expectation values

EŒG.X/jY.m/� � 1

Npath

NpathX

jD1
G.X.j //: (4.65)

We can formally accomplish this by giving any path a “time” label s X.s/ and
an equation of motion in this time in the form of a Langevin equation, a stochastic
differential equation, satisfying

dX�.s/

ds
D �@A0.X.s//

@X�.s/
C p

2 �.s/; (4.66)

where �.s/ is Gaussian with mean zero and variance 1 and independent at each s.
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A Langevin equation for paths X.s/ that has Gaussian noise gives rise to a
distribution of paths P.X; s/ that satisfies a Fokker-Planck equation

@P.X; s/
@s

C @

@X�

�

�@A0.X.s//
@X�

P.X; s/
�

D @2 P.X; s/
@X� @X�

;

@P.X; s/
@s

D @

@X�

�

P.X; s/.
@A0.X/
@X�

C @ logP.X; s/
@X�

/

�

(4.67)

The s independent P.X/ satisfying this partial differential equation for large s
is precisely expŒ�A0.X/�, and this suggests that if we solve the Langevin equation
for a set of Npath initial conditions X.s D 0/, remove the transients on each path
starting from different X.s D 0/, and then we keep Npath paths for large s, we
may approximate the expectation values as indicated in (4.65) using these Npath
paths. There is no particular difficulty in this in principle; however, the gradient
in D-dimensional space @A0.X.s//

@X�
must be evaluated at each step in s, and the

accuracy of numerical methods familiar for deterministic equations when adapted
for stochastic differential equations is reduced (Burrage 1999; Burrage and Burrage
2002; Kloeden and Platen 1992). To achieve the same accuracy for the Langevin
equation (4.66) as for deterministic versions (�.s/ D 0) of the same equations thus
requires substantially more effort.

The large s behavior of P.X; s/ can also be analyzed in an elegant manner, as
discussed by Klauder and Petersen (1985). If one writes

P.X; s/ D expŒ�A0.X/=2�Q.X; s/; (4.68)

then it can be verified that

@Q.X; s/
@s

D �HQ.X; s/; (4.69)

with the s-evolution operator H given by

H D � @2

@X2
C 1

4
.
@A0.X/
@X�

/2 � 1

2

@2A0.X/
@X2

D �
�
@

@X�

� 1

2

@A0.X/
@X�

��
@

@X�

C 1

2

@A0.X/
@X�

�

(4.70)

The operator H is Hermitian and positive semi-definite. The eigenfunction with
eigenvalue 0 is expŒ�A0.X/=2�, which is not a surprise. Variational principles for
upper bounds for the next eigenvalue can be found in any textbook on quantum
mechanics, and variational principles for lower bounds are in Bazley and Fox
(1963); Sugar and Blankenbecler (1964). When the action increases as fast or faster
than X2, its spectrum is discrete.
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The same issues, plus another one, arise in so-called Hybrid Monte Carlo
methods where the Langevin equation is replaced by a Hamiltonian dynamics
version where a pseudo-canonical momentum P, conjugate to X, is added to the
problem, and orbits of the Hamiltonian

H.P;X/ D P2

2
C A0.X/ (4.71)

are evaluated. The canonical distribution of these orbits in fP;Xg space is

expŒ�H.P;X/�; (4.72)

and reducing out the “momentum” part of the distribution yields expŒ�A0.X/�.
Unfortunately, Hamiltonian problems may have residual KAM tori and thus un-
wanted periodic orbits complicating the phase space distribution, and these need to
be recognized and discarded by one device or another (Mackenzie 1989).

4.5 Monte Carlo Methods

Another approach to estimating the high-dimensional integrals is a direct evaluation
using Monte Carlo methods. This seeks paths distributed as expŒ�A0.X/�, and this
has been explored in various forms for well over fifty years. We can hardly give the
subject of Monte Carlo evaluation of integrals its full due in this book, but we’ll go
over the essentials.

4.5.1 Metropolis–Hastings (Rosenbluth) Methods

The most widely used approach for selecting points in X space with a specified
distribution, here expŒ�A0.X/�, is that pioneered by Rosenbluth and others in
1953 (Metropolis et al. 1953) and improved in Hastings (1970). It is one of a
class of Monte Carlo methods that search through state space with biased random
moves (Neal 1993; Rubin and Kroese 2008; Gamerman and Lopes 2006). The bias
is the way the method directs random moves toward the desired distribution.

We start with a path Xcurrent selected via a random choice or a more dynamical
method. A sensible dynamical method in practice is to solve the variational principle

@A0.X/
@X

D 0 (4.73)

and use the approximate path, the mode of the distribution (Lorenc and Payne 2007)
as a first selection of Xcurrent.
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Once we have settled on a first path Xcurrent, we generate a new path Xnew

from the current path Xcurrent in two steps. First, a candidate path Xproposed is
proposed by adding an unbiased random displacement to the current path Xcurrent.
The displacement may be to any subset of the components of Xcurrent and may
be drawn from any distribution, as long as it is unbiased. This assures that the
transition Xcurrent ! Xproposed is as likely as the transition Xproposed ! Xcurrent.
This implements a detailed balance between moving forward with this algorithm
and moving in the opposite direction.

Next the proposed path is either accepted (Xnew D Xproposed) or rejected (Xnew D
Xcurrent) with a certain probability. The probability for acceptance is

Pacceptance.Xproposed;Xcurrent/ D min.1; expŒ�	A0.Xproposed;Xcurrent/�/; (4.74)

where 	A0.Xproposed;Xcurrent/ D A0.Xproposed/ � A0.Xcurrent/ is the change in
the action. This says that if a proposed change lowers the action, accept it. If
the proposed change increases the action, it should be accepted with probability
expŒ�	A0.Xproposed;Xcurrent�. Only the change in action is required. Importantly,
no derivatives of the action need be explicitly evaluated.

The accepted paths are collected into a set until we have Npath paths in our
collection. Averages are now estimated using these paths.

4.5.2 Using GPU Parallel Processing

The Metropolis Monte Carlo method is simple and powerful, but it requires many
path updates to achieve accurate statistics. One way to deal with this is to take
advantage of parallel computing technology, using a graphics processing unit
(GPU) (Quinn and Abarbanel 2011). With GPU technology it is possible to execute
hundreds of threads of execution simultaneously on a single GPU. Typically each
thread will perform the same operations, but on different pieces of the data. Since
the paths are updated sequentially, the process cannot be run in parallel. Fortunately
the many computations needed on each iteration can be done in parallel by having
different threads work on different time steps. We will see some explicit examples
of this computing advantage. A parallel implementation of the Metropolis–Hastings
algorithm is sketched in Fig. 4.2.

First the current path Xcurrent is set as an initial guess, and the observed time
series Y is loaded from a file. This current path includes the state vector x.n/ at
every time step n D 0; 1; : : : ; m as well as the NP parameters p. The states and
parameters are treated differently since the parameters are time independent, but
the states vary in time. The current path, the observed time series, any external
forcing, and a running sum of moments of the path components are allocated in
GPU memory and initialized with the appropriate data.

The path update loop now begins. First the even time (n) states are updated
followed by an update of the odd n states. This is done to uncouple the state vectors:
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Fig. 4.2 Flow of the parallel computing, Metropolis Monte Carlo state update.U.a; b/ is a random
number between a and b drawn from a uniform distribution. ı.x.n// D y.n/� x.n/

to calculate the change in action due to perturbing x.n/, we need to know x.n � 1/

and x.n C 1/, but no other state vectors. This way each even n, and then each odd
n, can be updated independently, in any order or simultaneously.

Once all the states are updated, then each parameter pk is given a chance to
change in sequence, k D 1; 2; : : : ; NP . One parameter, pk , is perturbed, and then
m C 1 threads are launched to calculate the change in the action. Each thread is
assigned to one n, and it calculates the new vector field of the model differential
equation F.x.n/proposed/. From this the total change in the action is calculated. Now
a decision is made whether to accept the proposed change or reject it is made using
the Metropolis rule. If the change is accepted, then F.x.n/proposed/ ! F.x.n/new/

for all n and pproposed
k ! pnew

k .
After all the states and parameters have been updated, the current path can be

used to update the path statistics. This is skipped for the first Ninit path updates and
after that only done everyNskip-th path update. The statistics collection happens on
the GPU, also in parallel, and so the individual paths are not recorded. This avoids
costly data transfers between the GPU and CPU.
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4.5.3 Example Monte Carlo Problem: NaKL Neuron Model

We take the NaKL neuron model (2.41) as an example to illustrate the path integral
Monte Carlo method (PIMC). This is a twin experiment differing from earlier
discussions in that we now allow for both model error and measurement error. The
use of the path integral will allow the estimation of expected values for the fixed
parameters and the state variables as well as estimation of the RMS errors.

To perform the evaluation of the path integral we must specify how we represent
the action. We will use the approximations discussed in Eqs. (4.16) and (4.20)
in which we assume the noise in the measurements is Gaussian and the model
errors are represented as a Gaussian broadening of the delta function ıD.g.x.n C
1/; x.n/;p// in the deterministic (no model error) case. Further assuming ignorance
of any structure of the distribution of state variables at the beginning of observations
t0 D 0, we may write our approximation to the action as

A0.X;Y.m//DRm

2

� mX

nD0

LX

lD1
.yl .tn/�xl.tn//2

�

C
�m�1X

nD0

DX

aD1

Rf .a/

2
ga.x.nC1/; x.n/;p/ga.x.nC1/; x.n/;p/

�

;

(4.75)

where ga.x.nC1/; x.n/;p/ is the discrete form of the dynamics,Rm is proportional
to the inverse of the noise level in the observations, andRf .a/ is proportional to the
inverse of the error level on the model state variable xa.t/. We take the measurement
errors and the model errors to be independent at different times.

Some Details For the Monte Carlo Evaluation

All of our Markov Chain Monte Carlo calculations worked with 107 sample paths;
103 were retained for calculations of moments and covariances of the distribution.
The data assimilation window was comprised of m C 1 D 4096 points. The
model error quantity ga.x.nC1/; x.n/;p/ is a fourth-order Runge-Kutta integration
scheme (Press et al. 2007) using a time step of 	t D 0:01ms.

When the assimilation procedure was completed at the end of the observation
window, t D T , a prediction using a fourth-order Runge-Kutta scheme was
performed on each of the accepted paths using the state variables x.T / and the
parameters associated with that path. Independent predictions were made for each
accepted path. The predicted trajectories for t > T were averaged to determine
< x.t > T / >, and the RMS variation was evaluated about this mean. This gives
the predicted quantities reported in the figures.

In order to assign values for Rm, the normalized deviation of the noise was
estimated at 1 part in 103 for all dimensions of the model error. This normalized
deviation was then scaled by the full range of the state variable and squared to get
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the variance for that dimension, so for V 2 Œ�200; 200�, Rf D 6:25, while for the
gating variables, Rf D 106. We considered an experimental error of ˙1mV giving
Rm � 1.

We adjusted the size of the Monte Carlo step size using a scaling factor to achieve
an acceptance rate near 0.5. The time required to perform each of our reported
calculations with 107 candidate paths, each of dimension 16,402, took about an
hour to complete on a single NVIDIA GTX 470 GPU. In our experience, provided
that the dimension of the problem is roughly constant, the amount of time for a
calculation scales roughly linearly with the number of CUDA cores on an NVIDIA
GPU.

In practice, as the Metropolis–Hastings procedure seeks paths distributed about
the maxima of the probability distribution e�A0.X/, a statistical minimization of
A0.X/ occurs when paths are accepted and rejected. This makes it a natural
generalization of the variational procedure used in saddle path approximations
but now applicable when there is model error as well. As emphasized, the data
assimilation path integral approach also results in expected errors for estimations
and predictions.

Another important feature of the data assimilation path integral approach is
that no derivatives are required. This is a time-saving feature over the variational
principles associated with saddle path calculations. In problems where the model
may be specified with “switches” or step functions at thresholds, this is also a
distinct advantage.

Parameter Estimation and RMS Errors in the Estimates

We selected a set of parameters as given in the “Value in ‘Data”’ column in
Table 4.1. The selection of maximal conductances gNa; gK , the values of gL and
EL, along with the reversal potentials ENa;EK were taken from standard values
found in many textbooks. The parameters in the kinetic equations for the gating
variables fm.t/; h.t/; n.t/g came from a fit to standard expressions for the time
constants �i .V / and driving functions ai0.V / using the hyperbolic tangent functions
in Eqs. (2.41)—(2.43) which are repeated for convenience:

dV.t/

dt
D 1

C

�

gNam.t/
3h.t/.ENa � V.t//C gKn.t/

4.EK � V.t//

CgL.EL � V.t//C IDC C Iapp.t/

�

;

dai .t/

dt
D ai0.V .t// � ai .t/

�i .V .t//
ai0.V / D 1

2

�

1C tanhŒ
.V � va/

dva
�

�

�i .V / D ta0Cta1
�

1� tanh2Œ
.V � vat/

dvat
�

�

or �i .V /Dta0Cta1 tanhŒ
.V �vat/

dvat
�;

(4.76)

and a D fm; h; ng.
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Table 4.1 NaKL twin experiment: path integral Monte Carlo estimation. Membrane voltage
from an NaKL model with parameters specified in the “Value in ‘Data’ ” column was generated to
create our twin experiment “data”

Name Value in “data” Estimated value ˙RMS error

gNa 120 mS=cm2 113.443 mS=cm2 3.33732 mS=cm2

ENa 50.0 mV 49.78762 mV 0.18938 mV
gK 20 mS=cm2 19.48006 mS=cm2 0.7689 mS=cm2

EK �77.0 mV �77.23048 mV 0.2294 mV
gL 0.3 mS=cm2 0.27289 mS=cm2 0.03132 mS=cm2

EL �54.4 mV �54.32392 mV 0.85092 mV
vm = vmt �40.0 mV �37.99831 mV 0.95009 mV
dvm = dvmt 15.0 mV 15.40739 mV 0.34118 mV
tm0 0.1 ms 0.06095 ms 0.02714 ms
tm1 0.4 ms 0.64496 ms 0.15212 ms
vh = vht �60.0 mV �61.73112 mV 0.59728 mV
dvh = dvht �15.0 mV �16.83959 mV 0.68188 mV
th0 1.0 ms 0.77615 ms 0.08225 ms
th1 7.0 ms 6.78265 ms 0.0463 ms
vn = vnt �55.0 mV �54.79809 mV 1.15982 mV
dvn = dvnt 30.0 mV 30.00895 mV 0.30394 mV
tn0 1.0 ms 1.09374 ms 0.05155 ms
tn1 5.0 ms 4.86783 ms 0.05321 ms

It is then presented to an NaKL model with unspecified parameters and unknown state variables.
This is a “twin experiment” where the data and the model are known and the numerical experiment
tests the methods used to pass information from observations to a model. The data assimilation
path integral was used to provide the estimated parameter values, “estimated value”, and the RMS
error in the estimation. Gaussian noise with RMS variation 	V D ˙1mV and zero mean was
added to the voltage data presented to the NaKL model neuron

With some choice of initial conditions fV.0/;m.0/; h.0/; n.0/g we integrated the
NaKL HH equations with an input current Iapp.t/ consisting of a scaled waveform
taken from the solution to a chaotic dynamical system. The amplitude of the
waveform was selected so it stimulated the full dynamical range of the NaKL neuron
activity. The solutions to the NaKL equations provide the “data” for the PIMC twin
experiment. Gaussian noise of a level of ˙ 1mV was added to the NaKL voltage
output V.t/ to form the observations y.t/. With knowledge of the stimulating
current, these voltages constitute our data.

To construct A0.X;Y/ we took m+1 = 4096 data points with 	t D 0:01ms
writing g.x.n/; x.n C 1/;p/ D x.n C 1/ � 	tf.x.n/;p/, where f.x.n/;p/ is
represented as an explicit fourth-order Runge-Kutta integration scheme. Using the
methods described earlier, we evaluated expected values for the state variables <
xa.n/ > and parameters through the observation period, and also evaluated second
moments to yield RMS variations about these expected values. The dimension of
the integral we are approximating is 4(4096) + 18 = 16,402.

In Fig. 4.3 we display the estimated membrane voltage along with the estimated
RMS error (blue dot ˙ RMS error (red)) for the NaKL model between times
[0,40.96]ms. The noisy data for the membrane voltage is shown in the solid black
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Fig. 4.3 Estimated and predicted membrane voltage when NaKL model data for the membrane
voltage is presented to an NaKL model. The estimated membrane voltage in the observation
window Œ0; 40:96 D T �ms. Vest is a blue dot and the RMS errors are red. The known membrane
voltage is shown as a black line. For t � 41ms we display, with the same color scheme, the
predicted membrane voltage using the estimated parameters and the estimated state variables at
time T to initiate the predictions. The observation window and the prediction window are separated
by a vertical green line at t D 40:96ms. The observed voltage has a Gaussian error with zero mean
and RMS error 	V D ˙1:0 mV

line. For t > 40:96ms we show the predicted value of the membrane voltage, again
with RMS error as well as the known voltage data for t > 41ms. In Fig. 4.4, we
display the estimated and predicted values of the NaC activation variable, m.t/, an
unobserved state variable, along with the known data for m.t/.

The accuracy with which the path integral estimates track the observed and
unobserved states through the observation window is clear in these figures.

Bias in the Conditional Expected Values Arising from Model Error

While the errors are small in the estimates in Table 4.1 the expected or mean
value appears to be biased away from the known value. This bias comes from our
procedure and is associated with having model error as part of the action A0.X/.
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Fig. 4.4 Estimated and predicted NaC activation variable m.t/ when NaKL model data for the
membrane voltage is presented to an NaKL model. The estimatedm.t/ is shown in the observation
window Œ0; 40:96 D T �ms with a blue dot and the RMS errors with red. The known m.t/ is
shown as a black line. For t � 41ms we display, with the same color scheme, the predicted
m.t/ using the estimated parameters and the estimated state variables at time T to initiate the
predictions. The observation window and the prediction window are separated by a vertical green
line at t D 40:96ms. The observed voltage has a Gaussian error with zero mean and RMS error
	V D ˙1:0mV

The distribution of paths expŒ�A0.X/� is the solution to a Fokker-Planck
equation of the form

dX.s/
ds

D �@A0.X.s//
@X.s/

C p
2N.0; 1/; (4.77)

where X.s/ is the state space path as a function of “time” s and N.0; 1/ is Gaussian
white noise with zero mean and variance unity. An equivalent to our Metropolis–
Hastings Monte Carlo procedure is to solve this stochastic differential equation in
.mC1/D-dimensions. There one can show that as s ! 1, the distribution of paths
is precisely expŒ�A0.X/�. The Monte Carlo algorithm is seen as a search for extreme
of the action along with accounting for the fluctuations about these extreme. All of
this is guided by the observations as they enter the action.
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To demonstrate the issue of biases in the estimation, suppose we had two
measurements y1; y2 and two model outputs with the model taken as linear x2 D
Mx1. Then the action we associate with this, including model error, is

A0.x1; x2; y1; y2/ D 1

2


.y1 � x1/

2 C .y2 � x2/2 CR.x2 �Mx1/
2
�
; (4.78)

and this has its minimum at

x1 D .1CR/y1 CRMy2

1CR.1CM2/

x2 D .1CRM2/y2 CRMy1

1CR.1CM2/
: (4.79)

This clearly shows the bias we anticipated. As R ! 1, we see that the bias
remains, but x2 D Mx1 is enforced. IfR D 0, however, the minimum is at x1 D y1,
x2 D y2, and if the dynamics underlying the data source satisfies y2 D My1, the
same holds for the model.

Predicting Beyond the Observation Window

We now have a completed NaKL model as we have estimated the parameters
of the model and evaluated RMS errors in those estimates. In Table 4.1 we present
these estimates and the RMS errors of the biophysical parameters in the model.
Using the estimated values of the parameters and of the state variables at T , we use
the completed model to forecast the behavior of the model neuron for times t > T .
We will have a spread in values for the state variables for t > T as we have a spread
of initial conditions at t D T . The predictions for the expected values are displayed
with blue dots and the RMS error of the predictions with red lines. These are shown
along with the known values displayed as black lines. In this twin experiment we
are able to directly compare parameters and state estimates to the true values, but in
biological experiments this is not possible.

In Fig. 4.5 we indicate how one of the parameters, normalized to unity using
its known value in this twin experiment, behaves as a function of the number
of Metropolis–Hastings Monte Carlo iteration steps used in evaluating the path
integral. After some excursions while the Monte Carlo selection moves about
through the space of all parameters and the state space of all state variables X along
the entire path, we achieve a statistically stationary distribution of values for this
parameter. The expected value for this distribution should be 1.0, and the numerical
estimates produce 1.02.

To address the practical questions of how long such calculations take to perform,
precisely the same calculation was done over a range of time series lengths from
m D 100 up to m D 24; 000, with 1/10th as many iterations in the longer
calculation. The execution time, TGPU , was recorded. In all cases, the number of
threads per block was set to 100. For comparison a similar, but not exactly the same,
calculation was done on a single core of an Intel Core i3 CPU. A linear time scaling
of TCPU D m � .1:24 s) was seen from several trials on the CPU. In Fig. 4.6 the
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Fig. 4.5 The evolution of a NaKL parameter normalized to its known value as the PIMC path
update procedure runs. The first 1,250 samples were discarded. Simulated annealing was applied
during the first 250 iterations. Eventually the parameter fluctuates about a steady value having a
mean of 1.02

parallel speedup factor, TCPU =TGPU , is displayed. When m is small, the full capa-
bility of the GPU is not utilized as the threads on the chip are underused. This means
that larger problems will benefit from parallel evaluation on devices such as GPUs.

4.6 Consistency of Model Errors

If there are no model errors and the state space resolution of the state were perfect,
the transition matrix in which the dynamics resides would be

P.x.nC 1/jx.n// D ıD.g.x.n/; x.nC 1/;p//; (4.80)

where we denote the deterministic dynamics as g.x.n C 1/; x.n/;p/ D 0. If we
can write this as an explicit expression g.x.n/; x.nC 1/;p/ D x.n C 1/ � x.n/ �
f.x.n/; p/ D 0. In this section where we perform Monte Carlo calculations of our
path integral, we use

x.nC 1/ D x.n/C 1

2

�

F.x.n//C F.x.nC 1//

�

: (4.81)
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Fig. 4.6 The parallel speedup factor as a function of time series length m. The parallelspeed up
factor is defined as TCPU =TGPU . The speedup increases as the problem size grows until the full
resources of the GPU are being utilized. The maximum speedup appears to increase more or less
linearly as the number of cores on the GPU is augmented (Quinn and Abarbanel 2011)

Perfect state space resolution is not possible, so we must make an approximation
to P.x.nC1/jx.n//. If we assume the delta function is broadened by Gaussian noise
or errors in resolution, we can replace

ıD.x.nC1/�f.x.n/;p//!
�
Rf

2�

�D=2
exp

"

�Rf
2

DX

aD1

m�1X

nD0
.xa.nC 1/�fa.x.n/;p//2

#

;

(4.82)
which becomes the delta function as the inverse resolutionRf ! 1.Rf is a scalar
here. We recognize that its value might depend on the component a of the state
variable xa.n/, and it could connect model errors at different times. There are many
approximate forms of a delta function which become the delta function when the
width of the approximate distribution goes to zero, and the Gaussian case, though
in common use, is here as an illustration. This section is devoted to looking at the
self-consistency of this assumption about the distribution of model errors.

To use the general result for numerical estimation of < G.X/ >, we also require
an approximation for the conditional mutual information term in the action. Though
not necessary, it is common to assume that the measurements yl .n/ are independent
of each other at time n and independent of measurements at earlier times. As an
alert coming from the actual physical properties of measurement instruments, one
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should look at Hamill (2006). In the case the measurement errors are independent
at different observation times, we may represent the conditional mutual information
terms in the action as

Rm

2

LX

lD1

mX

nD0
.yl .n/ � hl.x.n///2; (4.83)

when the measurement errors are assumed to be distributed as a Gaussian with a
scalar variance R�1

m . If the errors for various state variables are different, Rm is a
matrix.

With these approximations, the action becomes

A0.X.m/;Y.m// D Rm

2

LX

lD1

mX

nD0
.yl .n/ � hl.x.n///2

CRf

2

DX

aD1

m�1X

nD0
.xa.nC 1/� fa.x.n/;p//2

� logŒP.x.0/�: (4.84)

When the dynamics f.x/ is not linear, this is not quadratic in the state variables, so
the integral for EŒG.X/jY.m/� requires numerical evaluation.

In this section we wish to examine the consistency of assumptions such as
Eq. (4.82). If the Gaussian assumption in Eq. (4.82) or any other specific assumption
about the stochastic model error is to be consistent, then the distribution of the model
error for a D 1; 2; ::;DI n D 0; 1; : : :

MEa.n/ D xa.nC 1/� fa.x.n// (4.85)

resulting from performing the integral withGME.X/ D MEa.n/ should be the same
as when evaluating the expectation of GME.X/ directly from the assumption on the
transition matrix P.x.nC 1/jx.n//.

This means that < GME.X/ > should numerically be the same as the expected
value from the assumed model error distribution

< GME.X/ >MED
Z

dX.m/
m�1Y

nD0
P.x.nC 1/jx.n//GME.X/: (4.86)

While demonstrating this would require comparing the quantities < GME.X/ >
and < GME.X/ >ME for arbitrary functions G.X/ or, perhaps, for all moments
assuming they exist, we cannot do that in practice, so we examine a much more
limited set of comparisons.
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The reader will have realized that the equality of < GME.X/ > and <

GME.X/ >ME is equivalent to

mX

nD0
CMI.x.n/; y.n/jY.n � 1// D 0 (4.87)

and is essentially a test of how well the model, along with assumptions of
representations of its stochastic errors, performs in matching the model output with
the observations Y.m/. This is also essentially the same as saying the model output
hl.x.n// at each measurement time tn is synchronized to the measurements yl .n/ at
those times. In the case of independent measurements with a Gaussian distribution
of measurement errors Eq. (4.82), it also represents maximal information transfer
from the observed data to the model.

4.6.1 An Example from the Lorenz96 Model with D D 100

To examine an assumption about the distribution of model errors, we turn, once
again, to the use of the Lorenz96 model. We look at two cases: one has D D 100

and the other utilizes D D 20.
The 1996 model of Lorenz (1996) has D degrees of freedom xa.t/I a D

1; 2; : : : ;D in a periodic sequence satisfying the differential equations

dxa.t/

dt
D xa�1.t/.xaC1.t/ � xa�2.t// � xa.t/C f; (4.88)

with x�1.t/ D xD�1.t/; x0.t/ D xD.t/, and xDC1.t/ D x1.t/; with some choice
of xa.0/. The “forcing constant” f is a control parameter for the bifurcations of the
solutions xa.t/ of these equations, and when f � 8 or larger, the solutions exhibit
chaotic behavior. We will encounter this model in the chapter on “twin experiments”
where we explore different aspects of the model than addressed here.

We selected D D 100 and f D 8:17 and generated a set of “data” yl .tn/
for tnC1 � tn D 0:01 and L D 40. L D 40 was chosen from considerations
of the smoothness of the action for this problem as a function of the number of
measurements or equivalently from the number of positive conditional Lyapunov
exponents on the synchronization manifold (Abarbanel et al. 2010; Quinn and
Abarbanel 2010). The measurement function was just hl .x.n// D xl.n/. We
used the Gaussian assumption of stochastic noise to approximate the action in
the data assimilation path integral, so we adopted Eq. (4.84) for the evaluation of
< GME.X/ >.

We generated “data” solving Eq. (4.88) for a time step 	t D 0:01 and evaluated
yl.n/I l D 0; 1; : : : ;D� 1 for tnC1 � tn D 0:05, namely, every fifth time step in the
development of the dynamics. Data for the 40 data time series
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l D f0; 2; 5; 7; 10; 12; 15; 17; 20; 22; 25; 27; 30; 32; 35; 37; 40; 42; 45;
47; 50; 52; 55; 57; 60; 62; 65; 67; 70; 72; 75; 77; 80; 82; 85; 87; 90; 92; 95; 97g

were presented to the model for an observation window 0 � t � 4. No observations
were presented in a prediction window Œ4; 6�. The integrals involved were of
dimension .m C 1/D D 60100, and we evaluated them approximately using a
standard Metropolis–Hastings Monte Carlo method (Quinn and Abarbanel 2010;
Neal 1993; Hastings 1970). In this implementation we selected starting paths
at random and performed 35,000 initialization path selections before recording
statistics on < GME.X/ > for another 310,000 paths. The recorded paths were
broken into blocks of 100 with 3,100 blocks evaluated to approximate the integrals.
These calculations were performed on a standard 2.5 GHz CPU.

In the calculations we averaged over each block of 100 paths to achieve NAP D
3100 accepted paths X.j / of length 60101 each including the parameter f . With
these paths we approximated< GME.X/ > as

< GME.X/ >� 1

NAP

NAPX

jD1
GME.X.j //: (4.89)

By the Metropolis–Hastings construction the accepted paths were distributed
according to expŒ�A0.X;Y/�. The expected error in this evaluation of< GME.X/ >
is a few parts in 10�3.

We evaluated the expected values of the set of functionsG.X/ fxa.n/q;MEa.n/g
for q D 1; 2; 3; 4 allowing us to estimate the expected mean path, the RMS variation
about that path, as well as the skewness and kurtosis about that mean. The latter
quantities allow us to examine whether the common assumption that the integrals
involved are approximately Gaussian is correct. From the collection of accepted
paths we are also able to estimate the marginal distributions of any element of
the path, and in particular we were interested in the distribution of MEa.n/. If the
assumption made in formulating the action Equation (4.84) that the stochastic model
errors are distributed as a Gaussian, then we expect the mean of MEa.n/ for any
index a and any time n to be zero. We expect the RMS error variation about this
mean to satisfy RMS.MEa.n//

p
Rf D 1 and the distribution P.MEa.n// for any

a and n to be Gaussian.
When we generated our “data” by solving the Lorenz96 D = 100 equations, we

added Gaussian noise with a signal-to-noise ratio of about 23 dB to the clean signal.
This translates toRm � 8:0, and we used that value in our Monte Carlo integrations.
We also selected Rf D 100 as our experience with these methods (Quinn and
Abarbanel 2010) suggests that Rf � 10Rm gives a sufficiently large Rf that the
imposition of the approximate equations of motion is accurate.

As examples of the outcome of these calculations, we report that for ME76.81/
(chosen at random from among all the MEa.n/), the mean value was 9:9 � 10�3
and RMS.ME76.81//

p
Rf D 0:97, and the skewness and kurtosis of this variable

were smaller than 0.01 in magnitude.
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Fig. 4.7 Left Distribution of the stochastic model error ME76.81/ from the D D 100 Lorenz96
model compared to a best-fit Gaussian distribution. Right Distribution of the stochastic model error
ME47.60/ from the D D 100 Lorenz96 model compared to a best-fit Gaussian distribution

Figure 4.7 shows the distribution of values of ME76.81/ over the 3,100 block
of paths along with the best-fit Gaussian to that distribution. As RMS.ME76.81//p
Rf D 0:97, it is clear to the eye that this distribution of this model error is

consistent with the assumed stochastic model error distribution. Figure 4.7 also
shows the distribution of ME47.60/ from the same set of calculations compared
again to the best-fit Gaussian distribution. In this case the mean value of ME47.60/
was 8:8 � 10�4 and RMS.ME47.60//

p
Rf D 0:9899; again the skewness and

kurtosis are quite small as would be expected for a nearly Gaussian distribution. We
can say for this case also that the output distribution of stochastic model error is
consistent with the assumed distribution.

In Fig. 4.8 Left we show the expected value of the observed variable x47.t/
and its RMS error through the observation window Œ0; 4� and into the prediction
region Œ4; 6�. In Fig. 4.8 Right we show the expected value of the unobserved
variable x76.t/ and its RMS error through the observation window Œ0; 4� and into the
prediction region Œ4; 6�. Figure 4.9 shows the skewness and kurtosis for the observed
variable x47.t/ through the window Œ0; 6�. We see that the skewness and kurtosis
are small in the observation window and then grow substantially after observations
are terminated. This is consistent with the chaotic orbits of the model. Figure 4.10
displays the skewness and kurtosis of the unobserved variable x76.t/, and we see
that the values both within and without the observation window are larger than for
the observed variable.

We noted above that the consistency of the assumed and the calculated distri-
bution is equivalent to the precision of the equality of model output as estimated
through the path integral and the observations presented to the model.
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Fig. 4.8 D D 100 Left Using noisy observed data (blue circles) in the observation window
Œ0; 4�, the expected value of the (observed) variable x47.t/ (black line) was estimated using the
data assimilation path integral discussed in the text. The RMS error (red error bars) around this
expected value was also estimated. Using the estimated value of all 100 state variables (40 observed
and 60 unobserved) along with the estimated parameter, predictions including RMS errors were
made into the prediction region Œ4; 6� as shown. Since the Lorenz96 D D 100 model is chaotic
for the chosen forcing, the error bars grow in the prediction interval. Right Using observed data in
the observation window Œ0; 4�, the expected value of the (unobserved) variable x76.t/ (black line)
was estimated using the data assimilation path integral discussed in the text. The RMS error (red
error bars) around this expected value was also estimated. Using the estimated value of all 100
state variables (40 observed and 60 unobserved) along with the estimated parameter, predictions
including RMS errors were made into the prediction region Œ4; 6� as shown. Since the Lorenz96 D
D 100 model is chaotic for the chosen forcing, the error bars grow in the prediction interval

4.6.2 An Example from the Lorenz96 Model with D D 20

For a second example we again use the Lorenz96 model, Eq. (5.28), but now with
D D 20. We selected f D 7:93; again this is a value leading to chaotic orbits. We
introduced noise into the dynamics and added noise to the observations presented to
the model yl .n/ for L D 8 choosing

l D f0; 2; 5; 7; 9; 11; 17; 18g: (4.90)

The noise was taken from the Gamma distribution (Feller 1971)

P�.x/ D xa�1e�x

�.a/
(4.91)

and added to each component of the model and to the “data” generated by the
model as

scale.P�.x/ � a/; (4.92)
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Fig. 4.9 D D 100 Left Skewness of the state variable x47.t/, one of the observed quantities
presented to the model though the data assimilation path integral. During the observation period
the skewness remains small suggesting the state distribution may be approximately Gaussian in
this interval. The skewness grows rapidly when observations no longer are available to guide the
trajectory of the model, and it moves rapidly to its attractor which is comprised of points in 100
dimensional state space which are not distributed as a Gaussian. Right Kurtosis of the state variable
x47.t/, one of the observed quantities presented to the model though the data assimilation path
integral. During the observation period the kurtosis remains small suggesting the state distribution
may be approximately Gaussian in this interval. The kurtosis grows rapidly when observations no
longer are available to guide the trajectory of the model, and it moves rapidly to its attractor which
is comprised of points in 100-dimensional state space which are not distributed as a Gaussian

noting that
Z 1

0

dx P�.x/ x D a: (4.93)

We selected a D 7 and scale D 0:05 in the dynamical equations and scale D 0:205

in the additive noise in the data yl.n/. Again we chose Rm D 8 and Rf D 100

using m D 410 with 	t D 0:02 in the integration to produce the data. The path
integrals were of dimension 8,220, and we used 25,000 initialization Monte Carlo
accept/eject steps to begin followed by 271,000 steps where statistics were recorded.

Selecting, again at random, the model errorME8.91/, we display the distribution
of this model error in Fig. 4.11 along with a best-fit Gaussian distribution. For this
model error term, the mean value was �0.064, while RMS.ME8.91//

p
Rf D

0:609 which is quite different from the unity required for consistency with the
assumption of Gaussian broadening of the deterministic P.x.n C 1/jx.n// as-
sumed in the path integral. One can see from Fig. 4.11 that the computed
distribution P.ME8.91// is significantly narrower than a Gaussian. The same
calculation but for the model error term ME11.104/ is shown in Fig. 4.11 again
along with a best-fit Gaussian. For this distribution the mean was 7 � 10�3 and
RMS.ME11.104//

p
Rf D 0:64. One can conclude that the assumption of Gaussian

broadening of the transition probability used in the path integral and of Gaussian
additive noise used in the conditional mutual information term of the action is not
consistent with the data and the noisy model.
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Fig. 4.10 D D 100 Left Skewness of the state variable x76.t/, one of the unobserved quantities
not presented to the model though the data assimilation path integral. During the observation period
the skewness remains small suggesting the state distribution may be approximately Gaussian in
this interval. The skewness grows rapidly when observations no longer are available to guide
the trajectory of the model, and it moves rapidly to its attractor which is comprised of points
in 100-dimensional state space which are not distributed as a Gaussian. Right Kurtosis of the
state variable x76.t/, one of the unobserved quantities not presented to the model though the data
assimilation path integral. During the observation period the kurtosis remains small suggesting the
state distribution may be approximately Gaussian in this interval. The kurtosis grows rapidly when
observations no longer are available to guide the trajectory of the model, and it moves rapidly to
its attractor which is comprised of points in 100-dimensional state space which are not distributed
as a Gaussian

If we examine Fig. 4.12 where the expected value of the observed model
variable x17.t/ through the observation window Œ0; 8:2� is displayed along with the
calculated RMS variation about that expected value and with the observed noisy
“data” points presented to the model, we see sizeable regions where the estimated
value < x17 > .t/ deviates from the observations. In Fig. 4.13 one sees very
large values of the skewness and kurtosis within the observation window for the
observed model variable x17.t/ showing the departure of its distribution from
a Gaussian. Figure 4.14 shows the same features for the unobserved model
dynamical variable x14.t/.

Certainly more precise statistical tests can be made to determine the deviation of
the distribution of the model errors selected here from Gaussians. As Gaussians were
assumed in formulating the path integral as described above, we can conclude with
confidence that the Gaussian assumption is inconsistent with the data. Of course,
we built this into our “twin experiment” calculation, so it is perhaps reassuring that
we are able to detect this inconsistency with essentially no more effort than already
required in evaluating the data assimilation path integral for our other purposes:
estimation of parameters and states within and at the end of an observation period,
prediction of the estimated states and their RMS errors beyond the observation
window, . . . . Once we have the accepted paths X.j /, evaluation of any F.X.j // is
quite straightforward.
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Fig. 4.11 Left Distribution of the stochastic model error ME11.104/ from the D D 20 Lorenz96
model compared to a best-fit Gaussian distribution. Right Distribution of the stochastic model error
ME8.91/ from the D D 20 Lorenz96 model compared to a best-fit Gaussian distribution. In this
calculation we assumed the model error was distributed as a Gaussian, when, in fact, it was drawn
from a Gamma distribution. The inconsistency exhibits itself here

Fig. 4.12 D D 20 Using observed data (blue triangles) in the observation window Œ0; 8:2�, the
expected value of the (observed) variable x17.t/ (black line) was estimated using the path integral
discussed in the text. The RMS error (red error bars) around this expected value was also estimated
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Fig. 4.13 Left D D 20 Skewness of the state variable x17.t/, one of the observed quantities
presented to the model though the data assimilation path integral. Right Kurtosis of the state
variable x17.t/, one of the observed quantities presented to the model though the data assimilation
path integral

Fig. 4.14 Left D D 20 Skewness of the state variable x14.t/, one of the unobserved quantities
not presented to the model though the data assimilation path integral. Right Kurtosis of the
state variable x14.t/, one of the unobserved quantities not presented to the model though the data
assimilation path integral

In the more interesting situation of data from field or laboratory observations, we
may make the same calculations of our assumed stochastic model error terms and
check equally straightforwardly for the consistency of these assumptions.

4.6.3 Comments on Consistent Model Errors

In assimilating information from measurements to a model of the observed system
when the data are noisy, the models have error, and the state of the model
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system uncertain when measurements begin, one must make assumptions both
about the way to represent stochastic model error and noisy information transfers
from the data. The latter are often known through knowledge of the sensors and
the environmental noise during measurements. Model error can be structural and
deterministic arising from physical processes unaccounted for in developing the
model or they can be stochastic representing limits on the spatial or temporal
resolution of the model or environmental noise representing fluctuations on any
scale not dynamically treated in the model. The stochastic model errors broaden
the manner in which the dynamics enters data assimilation. In the deterministic
case the transition probability to go from x.tn/ D x.n/ to x.tnC1/ D x.n C 1/ is
P.x.nC 1/jx.n// D ıD.x.nC 1/� f.x.n/;p//. This is broadened in the stochastic
data assimilation (or ensemble data assimilation) task, and an assumption on how
this is represented must be made.

By comparing properties of the stochastic model errors MEa.n/ D xa.n C
1/ � fa.x.n// in the assumed distribution for P.x.n C 1/jx.n// and the properties
emerging from the data assimilation procedure, we tested for the consistency of the
assumptions about the stochastic model errors.

Using two variants of the Lorenz96 model, we examined a case where there
was demonstrable consistency of the outcome of data assimilation and assumptions
about the distribution of model error, and we reported on another example where
there was no such consistency.

If the distribution of model error is consistent between these two situations,
this provides confidence in the precise formulation of the data assimilation tasks.
Similarly, when that consistency is absent, confidence is lost. We do not provide a
remedy in the case of inconsistency.

To execute this consistency test one requires basically the same numerical eval-
uations as in performing the overall data assimilation effort using the path integral
formulation of the problem (Abarbanel 2009), so carrying out the consistency check
is computationally quite inexpensive.

4.7 Synopsis and Perspectives: Evaluating the Path Integral

The data assimilation path integral permits us to address any question associated
with the information contained in the distribution function of the full path X along
with the contribution of information from measurements passed along to the model.
The conditional expected value

EŒG.X/jY� D
R

dXG.X/ expŒ�A0.X;Y/R�R
dX expŒ�A0.X;Y/R�

(4.94)

of the function G.X/ on the path X allows the formulation of any question about
information in the distribution expŒ�A0.X;Y/� in terms of a high-dimensional
integral we must try to evaluate.
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The various methods we have discussed for the evaluation of the integral have
their individual virtues. The Laplace, saddle path method permits the use of well-
established numerical optimization algorithm. It does not give corrections to the
extremum path S0 where

@A0.X/
@X

jXDS0 D 0; (4.95)

and although we avoided discussing it (Zinn-Justin 2002), the expansion of the
effective action, which does contain the statistical corrections to S0, may not
converge. Of course, retaining only a few terms in such a series may somehow avoid
this troublesome feature.

On the positive side of an expansion about the extremum path is the possibility
to determine where the saddle path approximation, or 4DVar in geophysics, fails.
Always good to know, if one can.

The attractive possibility that appears from our discussion is the notion that the
saddle path approximation might be bypassed altogether though the use of well-
developed Monte Carlo methods reaching back to the 1950s to directly estimate the
full path integral. Sometimes labeled the “Nike” method—“Just do it!”—this avoids
many of the problems with convergence of saddle path approaches. It also avoids
troubles in other methods (Evensen 2009) as linearizing is not required, inverting
measurement functions hl.x/ or even differentiating them is not required, and once
one has identified the particular path integral that answers the question at hand,
doing an integral is the issue. This actually fits well into the folklore viewpoint
that in numerical estimations, estimate only that quantity of interest for a scientific
reason. Do not approximate an auxiliary quantity first, for example, expŒ�A0.X/�,
then use it to calculate something else. Of course, even more important is the fact
that expected values, moments about them, and marginal distributions of interesting
parameters or state variables are all addressed within this context.

Nonetheless, while the “Nike” method is, from this author’s point of view, the
method of choice, algorithms to perform the integral require extensive parallelism,
substantial memory, and clever code development. The last word on this certainly
has not been heard, though the cost in time and resources for each of these items
drops annually. Another set of issues, not at all addressing in this book, are methods
to accurately estimate the tails of distributions, namely, rare events. There is much
to be done.



Chapter 5
Twin Experiments

Prologue to the Chapter

This chapter is devoted to the detailed discussion of several numerical simulations
wherein we use a model to generate data, and then we examine how well we can
use L D 1; 2; : : : of the time series for state variables of the model to estimate
fixed parameters within the model and the time series of the state variables not
presented to or known to the model. These are “twin experiments” and have often
been used to exercise the methods one adopts for approximating the path integral
for the statistical data assimilation problem.

We will look at three examples: (1) Hodgkin–Huxley neuron models, (2) the
Lorenz96 geophysical model, and (3) the more complex driven shallow water
equations on a rotating plane. We will find that the twin experiments serve not
only the “testing of methods” purpose, but they allow one to consider design of
experiments which may be utilized in testing the model one proposes for describing
the object of our observations.

From these considerations will come a strategy for developing a large, many
degrees of freedom, many intrinsic current neuron model that will be broadly useful
in analyzing electrophysiological data from many classes of neuron. The data used
via our data assimilation approach will prune away parts of the model not required
by the observations.

Further, and perhaps more broadly of significance, we show how one may use the
model, absent any observed data, in a twin experiment mode to establish how many
measurements at each observation time must be acquired to allow the estimation
procedures in approximating the path integral to work well. In evaluating the quality
of the model, prediction beyond the observation window used to complete the model
is the key metric. Using the method of “data assimilation without data” explored in
Chap. 3 then gives us the tool for that metric.

H.D.I. Abarbanel, Predicting the Future: Completing Models of Observed Complex
Systems, Understanding Complex Systems, DOI 10.1007/978-1-4614-7218-6 5,
© Springer Science+Business Media New York 2013
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5.1 The Roles of Twin Experiments

We have often used the idea of twin experiments in our considerations. At first
glance twin experiments, in which we generate the “data” using a known model, are
just ways of testing methods for statistical data assimilation. In a twin experiment,
we know everything about the model, and we know everything about the data. We
may wish to investigate how well our methods for estimation of the underlying
path integral work on the raw data produced by the model or on model generated
data contaminated by noise with some distribution or even on models similar to our
original selection but with some model errors introduced. We also know the data
for both the observed and unobserved state variables allowing comparisons both of
the quality of estimations for parameters and for estimates of the unobserved
states. Clearly the latter is unavailable in laboratory or field experiments.

Twin experiments are also very important as they allow us to address questions
such as how many measurements are required for the accuracy of state and
parameter estimations. They can be used to identify which measurements to make.
They permit us to ask how frequently in time this number of measurements should
be performed in order to make accurate estimations of model parameters and model
states. Twin experiments are also useful as a design tool for experiments as they may
indicate properties of the stimulus or forcing of the experimental system in order to
explore the full dynamical range of its response.

We will now discuss a series of twin experiments in several areas of interest.
In particular, we look at biophysical questions involving individual neurons and
networks of neurons. Then we have a look at geophysical problems where the
questions are similar and the analysis is also similar. One purpose of asking
essentially the same questions in two apparently vastly different arenas of scientific
inquiry is to illustrate the broad applicability of the methods and the questions.

Twin experiments can be used then as a design tool in selecting experiments
which probe the full dynamical range of the models we expect to use for those
experiments. In both lab and field observations when constraints on the instruments
or immutability of the available forcing functions restrict the stimuli one can
utilize, one can anticipate where the knowledge of parameters and states might be
inadequate or weak. In our exploration of twin experiments and subsequently in the
analysis of laboratory experiments in a neurobiological context we will see that the
design of the experiments is strongly assisted by twin experiments in simulation.

5.2 Neuron Models

Our first investigation of some twin experiments comes in the context of making,
testing, and validating biophysically based models, within the Hodgkin–Huxley–
Katz formulation of the dynamics of these systems (Johnston and Wu 1995).
This formulation was developed in the 1930–1950s by a group of investigators in
Cambridge in the UK. The core idea was to describe in a phenomenological manner
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the way ion currents are conducted by voltage dependent permeabilities across
the bi-lipid membranes of cells. The actual physical channels through which the
ions pass are complex proteins, of significant interest in themselves. These proteins
penetrate the cell membrane with physical extensions both into the intracellular and
the extracellular medium.

The key idea developed by the investigators some decades ago is that there is a
balance between the different concentration of ions within and without the neuron
cell associated with the diffusion of ions to lower concentrations and the electrostatic
forcing of the same ions associated with the difference in potential across the cell
membrane—a capacitor able to separate changes. This balance defines the Nernst
potential, known long before the Cambridge investigators, and is a consequence of
equilibrium statistical mechanics (Johnston and Wu 1995).

The innovative ingredient was to recognize that the voltage-dependent perme-
ability of the protein-based ion channels allowed the quantitative description of an
ion current as

Iion.t/ D gion activation.t/n1 inactivation.t/n2 .ENernst � Vcell.t//; (5.1)

where gion is a conductance identified as the maximum allowed when the ion
channels are open. Vcell.t/ is the potential across the cell membrane. n1 and n2
are integers.

The dimensionless time-dependent kinetic variables activation.t/ and inactivation
.t/ are phenomenological state variables describing the opening and closing of the
protein channel associated with the ion in question; they lie in the range Œ0; 1�. These
are taken to satisfy linear kinetic equations, as we will describe soon. The integer
powers p1; p2 are to be determined through experiment. The “reversal potential”
ENernst is where the diffusion and electrostatic forces on the ions are balanced
and from nineteenth century kinetic theory considerations is determined by the
intracellular ion concentration ŒIon�i and the extracellular ion concentration ŒIon�e
as

ENernst D RT

zF
log

�
ŒIon�e
ŒIon�i

�

; (5.2)

where R D 8.314 J/deg-K mol is the gas constant, T is the temperature in degrees
Kelvin, z is the charge of the ion in units of the electron charge, and F D
96485 C/mol is the Faraday constant. For z D 1 and T D 37ıC, RTzF D 26:15mV,
setting the scale of neuron electrical activity.

5.2.1 NaKL Hodgkin–Huxley Model

We return to the NaKL HH neuron model discussed in Chaps. 2 and 3 to illustrate
some of the ways in which twin experiments can be utilized in experimental design
as well as guiding statistical data assimilation in the analysis of experiments.
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The Hodgkin–Huxley (HH) dynamical equations for the NaKL neuron consist first
of a current conservation statement for the cross membrane voltage V.t/:

C
dV.t/

dt
D gNam.t/

3h.t/.ENa � V.t//C gKn.t/
4.EK � V.t//

CgL.EL � V.t//C Iapp.t/; (5.3)

where the gNa; gK, and gL are maximal conductances and the ENa; EK, and EL are
reversal potentials for the Na, K, and leak channels. Iapp.t/ is an applied external
current selected in an experiment.

The gating variables ai .t/ D fm.t/; h.t/; n.t/g are discussed in many textbooks
and reviews (Johnston and Wu 1995; ModelDB 2012; Graham 2002). Each satisfies
a first-order kinetic equation of the form

dai .t/

dt
D ai0.V .t// � ai .t/

�i .V .t//
: (5.4)

The kinetic terms ai0.V / and �i .V / are taken here in the functional form

ai0.V / D 1

2

�

1C tanh

�
.V � va/

dva

��

�i .V / D ta0 C ta1

�

1 � tanh2
�
.V � vat/

dvat

��

or

�i .V / D ta0 C ta1 tanh

�
.V � vat/

dvat

�

: (5.5)

The NaKL model has four state variables and 25 fixed parameters.
The applied current waveform was taken from the output of a chaotic system

which has a Fourier spectral content providing frequencies in a band approximating
50 % of the frequencies in the neuron model voltage output. The time scale of the
current relative to the time step for the integration of the model is called �I . When
�I is large, the frequency of variations in the stimulating current is large compared
to the voltage response of the neuron. In this case, much of the information in the
forcing signal Iapp.t/ is filtered out by the RC time constant of the cell membrane
acting as a capacitor. These dynamical equations are used, in a twin experiment, to
produce data fVdata.t/;mdata.t/; hdata.t/; ndata.t/g. Only Vdata.t/ is presented to the
model in our twin experiments.

In Sect. 2.3 we examined the accuracy with which one can estimate the model
parameters and unobserved states using a variational principle with no model errors.
There we also looked at the ability of the variational methods to accurately estimate
the full state of the neuron model at the end of observations by using the model to
predict. Here we wish to look at other aspects of the data assimilation procedure as
illustrated by twin experiments.
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5.2.2 The Importance of the Regularizing Variable u.t/

The variational principle for the NaKL neuron with no model error uses data y.t/ D
Vdata.t/ for the membrane voltage generated by the model itself. This “observed”
voltage was presented to the model dynamical equations by being introduced into
the voltage equation (5.3) using a coupling term u.t/.y.t/ � V.t//:

dV.t/

dt
D 1

C

�

gNam.t/
3h.t/.ENa � V.t//C gKn.t/

4.EK � V.t//

CgL.EL � V.t//C Iapp.t/

�

C u.t/.y.t/ � V.t//: (5.6)

At the same time a cost for the use of u.t/ was introduced into the cost function for
the deviation of the observations and the model output as

mX

nD0
.y.tn/� V.tn//

2 !
mX

nD0
f.y.tn/� V.tn//

2 C u.tn/
2g: (5.7)

The importance of the use of the control term u.t/ in the numerical accuracy of
the state and parameter estimations was assessed by performing the calculation that
led to Table 2.4 with precisely the same model, the same data, the same stimulus,
and the same algorithm for nonlinear estimation, but setting u.t/ D 0:0 throughout.
This result is presented in Table 5.1 where we see clearly that the overall quality
of the estimation is degraded. This suggests that the use of the control variable u.t/
during the data assimilation will prove a good strategy even when the impediments
of chaotic behavior are absent. The role of the added “control” term u.t/.y.t/ �
V.t// is to direct the solution to the differential equation for V.t/ to the values
observed in the data y.t/. This is seen to be helpful even when it is not necessary
when chaos is absent.

This is a good time to remind ourselves that u.t/ has no physical meaning. It is
used solely as a regularizing variable to address instabilities on the synchronization
manifold ydata.t/ � h.x.t// and as a numerical helper to direct the model output on
the observed states to the information provided by the observed data.

Since u.t/ is absent at the end of the calculation, as evidenced by the values of
R.t/ in Fig. 2.17, its utility in guiding the numerical optimization seems clear. There
is a computational cost as the values of u.tn/ are part of the search procedure. In
addition, though not shown here, one can track the values of u.tn/ as the numerical
optimization routine proceeds. In the initial stages of the optimization task, u.tn/
can become quite large, yet as the data synchronizes with the model output, V.t/ !
y.t/, one sees that the term u.tn/2 in the cost function efficiently drives the u.tn/ to
zero within machine roundoff error.

When u.t/ is absent altogether, there is no direct communication between the
data y.t/ and the corresponding model output V.t/ in the dynamical equations. The
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Table 5.1 NaKL model neuron parameters in data and estimated parameters in
NaKL HH model; �I D 0:5

Parameter name Parameter value in the data Estimated value of the parameter

gNa 120 mS/cm2 100.0 mS/cm2

ENa 50.0 mV 50.71 mV
gK 20 mS/cm2 10.0 mS/cm2

EK �77:0mV �115:0mV
gL 0.3 mS/cm2 0.262 mS/cm2

EL �54:4mV �75mV
vm = vmt �40:0mV �57:9mV
dvm=dvmt 15.0 mV 0.378 mV
tm0 0.1 ms 0.2368 ms
tm1 0.4 ms 7.34e�14 ms
vh=vht �60:0mV �58:13mV
dvh=dvht �15:0mV �0:47mV
th0 1.0 ms 0.48 ms
th1 7.0 ms 3.43 ms
vn=vnt �55:0mV �63:06mV
dvn=dvnt 30.0 mV 55.0 mV
tn0 1.0 ms 1.00 ms
tn1 5.0 ms 0.285e�12 ms

No coupling of observed data into the dynamical equations was used, so, u.t / D 0:0.
In all other aspects this is the same calculation as displayed in Table 2.4

search through the state variables x.t/ D fV.t/;m.t/; h.t/; n.t/g and parameter
space might indeed proceed to find excellent estimates for these state variables in
the observation window and for the parameters; however, the same calculation done
with u.t/ present and without u.t/ present results in much worse estimates in the
latter case as seen in Table 5.1. It seems clear that information about the data is
of significant value when it goes beyond that contained only in the cost function.
We have also argues that when the synchronization manifold is unstable, as in the
observation of chaotic data, the role of the regularizing variable u.t/ is actually
essential for the optimization when no model errors are assumed.

There are other regularization approaches. One idea introduces the data y.t/
into the dynamical equations of the model as V.t/ ! U.t/y.t/ C .1 � U.t//V .t/

with a similar addition to the cost function. In this format U.t/ is dimensionless
and 0 � U.t/ � 1. When U.t/ D 0, no regularization occurs. In the opposite
case, if we set U.t/ D 1, however, we would have eliminated the dynamical
variable V.t/ entirely from the model and reduced the dynamical equations to
D � 1 D 3, here. This is the strategy for synchronization introduced by Pecora and
Carroll (1990). It eliminates the observable from the model equations altogether and
injects measurement information into the remaining equations for the unobserved
variables.
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Table 5.2 Parameters in “data” and estimated parameters in NaKL HH model; �I D
10:0

Parameter name Parameter value in the data Estimated value of the parameter

gNa 120.0 mS/cm2 100.0 mS/cm2

ENa 50.0 mV 50.0 mV
gK 20.0 mS/cm2 14.6 mS/cm2

EK �77:0mV �115:0mV
gL 0.3 mS/cm2 1.23e�13 mS/cm2

EL �54:4mV �58:22mV
vm = vmt �40:0mV �47:78mV
dvm=dvmt 15.0 mV 30.0 mV
tm0 1.0 ms 0.636 ms
tm1 0.4 ms 3.1 ms
vh=vht �60:0mV �83:72mV
dvh=dvht �15:0mV �6:5mV
th0 1.0 ms 1.602 ms
th1 7.0 ms 12.0 ms
vn=vnt �55:0mV �52:04mV
dvn=dvnt 30.0 mV 13.80 mV
tn0 1.0 7.25 ms
tn1 5.0 ms 15.0 ms

In all other aspects this is the same calculation whose results are reported in Table 2.4

5.2.3 Frequency Content of the Stimulus Iapp.t/

Proper estimation of the parameters of the model will depend on providing a
stimulus current that adequately explores regions of the state space where different
subsets of the channels are opened or closed. If the frequency content of the stimulus
is such that it fails to spend sufficient time in these dynamical regions of model
variability, the assimilation results will be degraded. We examined this by increasing
the relative frequency of the stimulus current �I by selecting the same waveform for
Iapp.t/ and sampling it more frequently. In the estimations examined earlier �I was
0.5; namely, it was relatively slow compared to the dynamics of the model. Good
estimates hold for �I up to about 5.0. At �I � 10:0, these estimates became of low
quality, Table 5.2.

In a twin experiment we are also able to examine estimates of the voltage as well
as estimates of the gating variables over the observation window. In Fig. 5.1 Left,
the estimated membrane voltage is compared to the known Vdata.t/ when �I D
10:0. This alone is misleading; however, as seen when one of the unobserved state
variables, m.t/ is compared to its estimated values as shown in Fig. 5.1 Right. By
changing �I from 0.5, as used in Chap. 2, to 10.0, as used in this example, we have
lost the capability of the model to transfer information from the observations to an
unobserved state variable.
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Fig. 5.1 NaKL model. Left We display the membrane voltage Vdata.t / from “data” generated in a
twin experiment using the NaKL model as a data source. Also we display the estimated membrane
voltage Vestimated.t / using the saddle path variational method with no model errors. The frequency
scale of the stimulus relative to the neuron response is �I D 10:0. The apparent good estimation
of the voltage results from the large magnitudes of the control u.t /. Right We display the NaC

activation gating variable mdata.t / from “data” generated in a twin experiment using the NaKL
model as a data source. Also we display the estimated membrane voltage NaC activation gating
variablemestimated.t /. The mismatch between the estimatedm.t/ and the known m.t/ demonstrates
one of the uses of a twin experiment, here suggesting we have used a stimulus with too much high
frequency content. The frequency scale of the stimulus to the neuron response is �I D 10:0. In a
laboratory experiment, m.t/ would be an unobserved state variable

5.2.4 Additive Noise in the Observations

Until now we have allowed only numerical roundoff error to contaminate the
“observations” y.t/ D Vdata.t/. To assess the role of noise in measurements, which
will eventually degrade any state and parameter estimation procedure, we added
noise drawn from a uniform distribution to the data y.t/ generated from our NaKL
model. The noise level selected reduces the signal-to-noise ratio to 30 dB. As shown
in Fig. 5.2, the added noise does not compromise the data assimilation procedure.
In fact, the estimated voltage is much closer to the original “clean” data than to
the noisy data presented to the model. We observe that for modestly noisy data
our approach succeeds in resolving a clean signal contaminated by instrumental
or environmental addition of noise. Calculations suggested that until the signal-to-
noise ratio decreased to about 20 dB, the procedure remained successful.

In neurobiological experiments making intracellular recordings, a noise floor in
the range of 0:5mV is commonly achieved. Spiking activity results in signals of up
to 100 mV and certainly at least 40–60 mV so the signal-to-noise ratio required for
accurate modeling is easily achieved. Smaller potentials representing input to a cell
from other cells are often in the range of a few mV, however, so this may represent a
signal-to-noise ratio problem when we extend these ideas to modeling interactions
among neurons in a network.
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Fig. 5.2 Left panel Estimated membrane voltage (blue dots) along with original clean data (red
line) and the noisy voltage data (black line) presented to the NaKL model in the dynamical data
assimilation approach. Here the signal-to-noise ratio is 30 dB, and, as above, �I D 0:5. Right
panel A blowup of a section of the left panel showing how the estimation procedure has removed
much of the noise added to the original clean data. The model acts here as a nonlinear noise filter.
See Abarbanel et al. (2011) for a longer discussion of this effect

When noise levels grow too large, any estimation protocol will fail. To examine
how robustly the analysis of observed and unobserved state variables acts as noise
levels are increased, we evaluated the estimation error in each of the state variables
as the noise level in the voltage data was increased reducing the signal-to-noise ratio
from 50 to 10 dB. The correlation of the known data fy1.t/; y2.t/; y3.t/; y4.t/g with
the model output when additive noise of a specified level was presented to the model
is shown in Fig. 5.3. We evaluated the mean value of the data < ya > and the model
output < xa >

< ya�clean > D 1

N

N�1X

nD0
ya�clean.tn/

and

< xa�clean > D 1

N

N�1X

nD0
xa�clean.tn/; (5.8)

when no noise was added to the data ya�clean.tn/ and the model output was
xa�clean.tn/. We then evaluated the RMS difference between ya.tn/� < ya�clean >

and xa.tn/� < xa�clean > normalized by< xa�clean > for a D 1; : : : ; 4 as a function
of the signal-to-noise ratio in the data. The accuracy of the estimates for low noise,
signal-to-noise (S/N) levels of about 30 dB or more, is seen to be quite high. As the
S/N ratio falls below this, the quality of the estimates remains acceptable until one
reaches about S/N less than 10 dB below which (not shown) the estimation error
rises rapidly.
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5.2.5 An Additional Current: Ih

Neurons express many voltage-gated channels in addition to the Na and K channels
directly responsible for action potential generation (Graham 2002; Hille 1992;
ModelDB 2012). Determining which channels are expressed in a population of
neurons typically requires molecular or pharmacological data (Johnston and Wu
1995), but the data assimilation procedure we describe here has the potential
to infer which channels contribute to a neuron’s response properties without the
pharmacological procedures.

To explore this we expanded the NaKL model to include another current, the Ih
current (Huguenard and McCormick 1992), which has slower kinetics than the other
channels in the model and is activated by voltages near the rest voltage of the neuron,
namely, by hyperpolarization. We call this the NaKLh neuron model.

Including an additional current in the model allows us to address the interesting
questions:

• If data from a more complex model including Ih (NaKLh) is presented to a
simpler NaKL model, are the parameter estimates in the simpler model still
accurate?
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Table 5.3 Parameters for Ih
used in the NaKLh
Hodgkin–Huxley Model

Name Value Name Value

gh 1.21 mS/cm2 thc0 0.1 ms
Eh �40:0mV thc1 193.5 ms
vhc �75:0mV vhct �80mV
dvhc �11:0mV dvhct 21.0 mV

This neuron has these currents: Na, K, Leak,
and Ih. The parameters for the Na, K, and
Leak channels have been given earlier

• If data from a model that lacks an Ih or other current (NaKL) are presented to a
more complex model (NaKLh), will the dynamical data assimilation procedure
inform us that Ih is absent?

In the first instance as the Ih current and its degrees of freedom are absent in the
NaKL model of the data, one is projecting the state space of a more complex system
into the smaller space of the NaKL model. One is asking the smaller number of
states in NaKL to exhibit the dynamics of the larger data source. In this circumstance
we expect some signals of the inability of the model to represent the data.

In the second instance we know that the data from the NaKL model does not
include the state activity of the Ih current, so we would expect that the NaKLh
model would “shed” its Ih dynamics and respond only in the subspace of the overall
model space utilizing the NaKL degrees of freedom. The Ih current was represented
by an additional term in the Hodgkin–Huxley voltage equation,

Ih.t/ D ghhc.t/.Eh � V.t//; (5.9)

as well as an additional equation for the dynamics of the Ih gating variable:

dhc.t/

dt
D hc0.V .t//�hc.t/

�hc.V /
(5.10)

hc0.V / D 1

2

�

1C tanh

�
.V �vhc/

dvhc

��

and �hc.V /Dthc0Cthc1 tanh

�
.V �vhct/

dvhct

�

:

5.2.6 NaKLh Twin Experiments

Using the NaKLh model and the parameter values for Na, K, and Leak channels
given before and those in Table 5.3 for Ih, data for fV.t/;m.t/; h.t/; n.t/; hc.t/g
were generated. We now have five state variables and 26 unknown parameters in the
model, and we present only Vdata.t/ to the NaKLh model to achieve this goal.

We used two different stimulation currents, with the same �I and waveform shape
as earlier, but with different amplitudes. The “strong” stimulus was 1.85 times the
amplitude of the “weak” stimulus. The states and parameters of the NaKLh model
were estimated using the variational principle with no model errors separately for
the data from each of these stimuli. As shown in Table 2.4 the estimates for all the
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Fig. 5.4 NaKLh twin experiments: strong stimulus. Top left Estimated membrane voltage
(blue circles) along with original data (red triangles) as presented to the NaKLh model. The
stimulus current was taken as usual from a chaotic system. This result uses the “strong” stimulus
which excites both depolarized state variables and hyperpolarized state variables. Top right
Estimated NaC inactivation gating variable (blue circles) along with original data (black line) as
presented to the NaKLh model. The stimulus current was taken as usual from a chaotic system. This
result uses the “strong” stimulus which excites both depolarized state variables and hyperpolarized
state variables, as above. Bottom Estimated Ih activation gating variable (blue circles) along with
original data (black line) as presented to the NaKLh model. The stimulus current was taken as
usual from a chaotic system. This result uses the “strong” stimulus which excites both depolarized
state variables and hyperpolarized state variables �I D 0:5

parameters in the NaKL model are accurate using either stimulus, but only the data
for the strong stimulus gives good estimates of the parameters for the Ih current.
This suggests that the weaker stimulus did not adequately explore the dynamics
associated with the Ih current. As shown in Fig. 5.4, the estimated voltage and state
variables are good estimates for all the currents when the stimulus is strong. When
the stimulus is weak, the estimated voltage and state variables for the NaKL model
are still good, but the estimated state associated with the Ih current is represented
poorly (Fig. 5.4).
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Fig. 5.5 NaKLh twin experiments: weak stimulus. Top left Estimated membrane voltage
(black triangles) along with original data (red circles) as presented to the NaKLh model. The
stimulus current was taken as usual from a chaotic system. This result uses the “weak” stimulus
which excites polarized state variables. The “weak” stimulus provides sufficient excitation to the
Na and K channels to allow accurate estimation of their properties. Top right Estimated NaC

inactivation gating variable (blue circles) along with original data (black line) as presented to
the NaKLh model. The stimulus current was taken as usual from a chaotic system. This result
uses the “weak” stimulus which excites polarized state variables. The “weak” stimulus provides
sufficient excitation to the Na and K channels to allow accurate estimation of their properties.
Bottom Estimated Ih activation gating variable (blue circles) along with original data (black line)
as presented to the NaKLh model. The stimulus current was taken as usual from a chaotic system.
This result uses the “weak” stimulus which excites depolarized state variables. The h-current is not
well stimulated by this “weak” Iapp.t /. �I D 0:5

In an experimental setting, however, only the quality of the estimation of the
voltage trace (Fig. 5.5) and the R.t/ consistency test would be available. Neither
of these indicate that the weaker stimulus fails to excite one of the currents in the
model, though the latter may well indicate an inconsistency of the model with the
data. Thus, an additional test for model validity is needed, and we look to the ability
of the model to predict beyond the window where observations are made.
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Fig. 5.6 Left Prediction of the membrane voltage for times greater than the observation window
with state variables and parameters estimated with the strong stimulus. Right Prediction of the
Ih gating variable hc.t/ for times greater than the observation window with state variables and
parameters estimated with the strong stimulus. In both cases, the values of the current’s parameters
and state variables are accurately estimated

5.2.7 Model Testing Through Prediction

An important piece of a model investigation we have not yet covered in our
discussion is the ability of the model neuron with parameters and state variables
estimated in an observation window to predict the response of that neuron to new
stimuli. If this is successful for a class of stimuli that one expects when the neuron is
placed into a network, we can anticipate that it will respond properly in the network.
We examined this issue in the context of our two stimuli: weak and strong, knowing
the former was not giving sufficient stimulation of the h-current.

To validate the models’ consistency when presented with weak and strong
stimuli, we tested their ability to predict responses to the other stimulus. Using
the parameters estimated with data in the observation window, we employed the
estimated state variables fV.T /;m.T /; h.T /; n.T /; hc.T /g to predict the behavior
of the model neuron for t > T . When the model resulting from estimation on the
strong stimulus was tested on the weak stimulus, we found that the model was able
to predict the response of the neuron to the weak stimulus with a high degree of
accuracy (Fig. 5.6, Left). In this twin experiment we are also able to compare the
predicted values for the state variables against their true values (Fig. 5.6, Right),
which display a similar degree of accuracy.

Completing the NaKLh model using the weak stimulus left us unable to
accurately predict the response to the strong stimulus. Both the phase and amplitude
of the predictions are degraded, especially at times when the stimulus was strongly
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hyperpolarizing. Thus, because the weak stimulus did not give sufficient information
about Ih, the predictions are inadequate. Predictive experiments in a laboratory
setting are a useful way to test whether a candidate stimulus in conjunction with a
neuron model is capable of adequately probing the model in question. These results
also emphasize the importance of using model predictions to cross-validate them
against different kinds of stimuli.

Perhaps a word about the word validation is in order. There is a mathematical
sense in which it means prove. Perhaps it did just that to the Romans, but possibly we
can recognize another understanding. We are employing the notion of validation as
that of confirming or qualifying. We require a metric for the quality of a model, and
there is surely no single way we can achieve that. We adopt the idea that prediction
is the metric to stand for practical validity of a model. Given all models are wrong,
presumably we could never validate any model. It then makes some sense to let the
notion of validity represent confirmation or qualification of a model embodying the
dynamical action of the source of data.

5.2.8 Robustness to Model Errors; NaKL Model $ NaKLh
Model

We want to contrast what happens when we present data from the NaKLh model
first to itself, a now-familiar twin experiment, to what happens when we present
NaKLh voltage data to the NaKL model. The latter presents the data to a wrong
model, namely, a model missing the Ih degrees of freedom.

NaKLh Model ! NaKLh Model

First we take the NaKLh model with a strong stimulus and generate “data” without
added noise. We present this NaKLh model output voltage along with the same
injected current stimulus to an NaKLh model. Using our variational principle with
no model errors we are able to accurately estimate the parameters, as reported in
Table 5.4. As a further confirmation of the method in Fig. 5.7, Left, we also display
the voltage response in this circumstance. We confirm this consistency of the model
with the data by evaluating R.t/ as shown in Fig. 5.8. Recall that R.t/ � 1 means
the dynamical model is consistent with the data presented to it. We further examine
the accuracy of our estimation of an unobserved state variable m.t/ for the NaKLh
model. This is shown in Fig. 5.7, Right. As in the NaKL ! NaKL twin experiment,
we see that our assimilation methods using the variational approximation to the path
integral in the case of no model error works rather well.
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Table 5.4 Parameters in an NaKLh HH model where the maximal con-
ductance of the Ih current from two different amplitudes of the stimulus
current

Name “Data” Estimated value Estimated value
of parameter value strong stimulus weak stimulus

gNa 120 mS/cm2 120.273 mS/cm2 119.884 mS/cm2

ENa 55.0 mV 54.980 mV 54.9933 mV
gK 20 mS/cm2 20.1476 mS/cm2 20.1480mS/cm2

EK �77:0mV �77:01318mV �77:0192mV
gL 0.3 mS/cm2 0.306754 mS/cm2 0.298518 mS/cm2

EL �54:4mV �54:7061mV �54:1206mV
vm = vmt �34:0mV 33.98345 mV �33:9948mV
dvm=dvmt 34.0 mV 33.9958 mV 33.9847 mV
tm0 0.01 ms 0.010299 ms 0.010133 ms
tm1 0.5 ms 0.500221 ms 0.500495 ms
vh=vht �60:0mV �59:99098mV �59:9611mV
dvh=dvht �19:0mV �18:98205mV �18:9729mV
th0 0.2 ms 0.198847 ms 0.199929 ms
th1 8.5 ms 8.51632 ms 8.50784 ms
vn=vnt �65:0mV �64:83444mV �64:9436mV
dvn=dvnt 45.0 mV 44.9664 mV 45.1465 mV
tn0 0.8 ms 0.801366 ms 0.80155 ms
tn1 5.0 ms 5.012294 ms 4.99326 ms
gh 1.21 mS/cm2 1.22739 mS/cm2 1.000 mS/cm2

Eh �40:0mV �39:35869mV �32:745mV
vhc �75:0mV �76:1190mV �60:9958mV
dvhc �11:0mV �11:1223mV �7:6066mV
thc0 0.1 ms 0.096322 ms 0.12236 ms
thc1 193.5 ms 190.2612 ms 67.7495 ms
vhct �80mV �81:0633mV �59:6439mV
dvhct 21.0 mV 20.7812 mV 18.279 mV

The “strong” stimulus is 1.85 times in amplitude of the “weak” stimulus.
Only the “strong” stimulus hyperpolarizes the neuron sufficiently to
activate the Ih current. The “weak” stimulus only weakly activates Ih and
the reduced information on the activity of Ih leads to reduced accuracy in
estimating the parameters of Ih

5.2.9 NaKLh Data Presented to an NaKL Model

We contrast these results with those arising when we present the wrong data to
our NaKL model. This is an example of our asking a neuron model to reproduce
dynamical trajectories present in the five dimensional space of the NaKLh neuron
with the four dynamical degrees of freedom in a less complex model, NaKL,
of the neuron. Intuitively and mathematically, without a special circumstance in
which the extra degree of freedom was somehow suppressed, this would appear
impossible. It is.
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Fig. 5.7 Left Voltage estimated with a NaKLhHH model presented with data created from an
NaKLh model. This is a twin experiment. The stimulus used is our “strong” stimulus and has
�I D 0:5 which we determined earlier allows accurate estimations. Right Estimation of the NaC

activation variable m.t/ when NaKLh voltage data is presented to a NaKLh model. The high
quality of this estimation is consistent with the R.t/ values in Fig. 5.8

Again we generated data using our NaKLh model with a strong stimulus and
presented these data to our NaKL model. In Fig. 5.9, Left, we show that a rather
accurate, perhaps impressive “fit” to the data is achieved by the dynamical data
assimilation procedure: the variational principle with no model error. However,
when we evaluate R.t/ for this configuration, we see the result in Fig. 5.10 which
indicates the apparent success of the estimate comes from large values of the control
u.t/ because R.t/ makes significant excursions to values less than one, indeed to
values near zero.

In a twin experiment we are able to investigate further features of this failure
by examining the ability of the model to estimate unobserved state variables. In
Fig. 5.9, Right, we display the known and the estimated NaC activation variable
m.t/ associated with the rather good representation of the observed voltage in
Fig. 5.9, Left. The inaccuracy of the estimation of the unobserved gating variable
is clear. Though we do not display it here, this inaccurate result form.t/ is matched
in the behavior of h.t/ and n.t/ and in the estimation of the model parameters. If
we were to use the outcome of this data assimilation effort on NaKLh ! NaKL we
would see a failed result. On this basis we would say the NaKL model is invalid in
its attempt to represent the NaKLh data. We emphasize this because outside a twin
experiment, we have prediction as our only tool to establish the quality or validity
of the state of the model at the end of observations and the quality of the estimates
of the fixed parameters.
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Fig. 5.8 R.t/ for the situation represented in Fig. 5.7. The value of R.t/ does not deviate from
unity, indicating the model is consistent with the data

Fig. 5.9 Left Estimating the membrane voltage in the NaKL model when it is presented with
voltage output from an NaKLh model. The accuracy of the “fit” to the voltage data is misleading
as the voltage data is incorrect for this model. Right Estimation of the NaC activation variable
m.t/ when NaKLh voltage data is presented to a NaKL model. The low quality of this estimation
is consistent with the R.t/ value in Fig. 5.10
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Fig. 5.10 R.t/ for the situation represented in Fig. 5.7. The value of R.t/ deviates significantly
from unity, indicating the NaKL model is inconsistent with the data from a NaKLh neuron

5.2.10 NaKL Data Driving an NaKLh Model;
Pruning a Big Model

In building a model for an experimentally observed neuron, we face the following
problem: once we have selected an HH framework for the model, which currents
shall we include in the model? One rather straightforward idea is to include in the
model “all” the currents one can plausibly argue should enter the biophysics of that
neuron. All such currents will have the form (ModelDB 2012; Graham 2002) (5.1).
The kinetics of the gating variables mc.t/; hc.t/ must be selected as well. One
would expect that if any channel we have selected in this “inclusive” protocol is in
fact absent in the data from the experimental preparation, then gion will be zero
for that channel.

To examine whether the methods we have developed are able to identify which
currents in a model are absent in the data, and thus prune a larger model down to
one required by the data, we presented data from an NaKL model to a larger model
having an Ih current as well. The NaKL data was generated by the NaKLh model
where we eliminated Ih by selecting gh D 0. Constants for the Ih kinetics were



144 5 Twin Experiments

Table 5.5 NaKL data
presented to an NaKLh model

Name Value in “data” Estimated value

gNa 120 mS/cm2 120.4258 mS/cm2

ENa 55.0 mV 54.92950 mV
gK 20 mS/cm2 20.05503 mS/cm2

EK �77:0mV �77:01366mV
gL 0.3 mS/cm2 0.2990211 mS/cm2

EL �54:4mV �54:24781mV
vm = vmt �34:0mV 33.97316 mV
dvm=dvmt 34.0 mV 34.00498 mV
tm0 0.01 ms 0.009585590 ms
tm1 0.5 ms 0.5008398 ms
vh=vht �60:0mV �59:98665mV
dvh=dvht �19:0mV �18:97535mV
th0 0.2 ms 0.1998151 ms
th1 8.5 ms 8.525130 ms
vn=vnt �65:0mV �64:94673mV
dvn=dvnt 45.0 mV 45.01288 mV
tn0 0.8 ms 0.7997343 ms
tn1 5.0 ms 5.016256 ms
gh 0 mS/cm2 1.907150e�09 mS/cm2

Eh �40:0mV �60:57007mV
vhc �75:0mV �6:88913mV
dvhc �11:0mV 4.203612 mV
thc0 0.1 ms 3.589662 ms
thc1 193.5 ms 179.5280 ms
vhct �80mV �44:07163mV
dvhct 21.0 mV 55.30240 mV

Parameters in a NaKLh HH model where the maximal
conductance of the Ih current was set to zero, so only
the NaKL model was active. The dynamical estima-
tion procedure yielded a maximal conductance for Ih of
1.907150e�09mS/cm2. The other Ih parameters are badly
estimated, but they are not relevant as the Ih current was
absent in the data, though present as a possibility in the
NaKLh model

specified and estimated although the Ih contribution to the voltage equation was
absent. Table 5.5 displays the results for this situation.

We see that all the information about the NaC, KC, and leak currents was
accurately reproduced, the absence of the Ih current was recorded as a very small
gh, namely, gh D 1:9 � 10�9 mS/cm2, and the estimates for Eh and the parameters
in the kinetics for Ih are wrong. Because the h-current is, in fact, absent from the
data, though present in the model, the inaccuracy of an estimation of its parameters
is of no physical consequence. The idea that we could build a “large” model of all
neurons and use the data to prune off currents that are absent is both made plausible
and supported by this calculation.
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5.3 The Lorenz96 Model

We have explored examples from electrical circuits, fluid dynamics, and neurobiol-
ogy in various parts of this book. We now turn to an example which is widely used
in the geophysical literature to illustrate methods of statistical data assimilation.
It is a collection of ordinary differential equations first studied by Lorenz (1996)
with state variables set out on a ring, presumably representing equatorial locations.
After describing the model we examine it in the case of a variational principle data
assimilation with no model error, then we turn to Monte Carlo evaluation of the
full data assimilation path integrals. This example is illustrative both because the
solutions of the dynamical equations are chaotic but also because with some ease
we are able to study high dimensional versions of the equations.

From the rather simple set of Lorenz96 equations , we then turn to a widely
used component of numerical weather prediction models called the shallow water
equations. In each example we find that many measurements are required to allow
searches over fixed parameters and state variables to permit accurate prediction.

In a discussion of predictability in atmosphere and ocean models, Lorenz (1996)
introduced a model with K state variables located on a ring. The model is meant
to illustrate the forced westward flow of dynamical information transported by
an “advection” quadratic in the dynamical variables. It was subsequently used by
Lorenz and Emanuel (1998) to discuss strategies in selecting additional locations
for dynamical weather measurements for the greatest improvement in analysis and
forecasting. They asked, for a given number K of observation stations, whether
predictions would be improved by havingK C 1 stations.

The model has one fixed parameter, the “forcing” f , andK dynamical variables
xa.t/ a D 1; 2; : : : ; K on a ring. The dynamical equations are

dxa.t/

dt
D xa�1.t/.xaC1.t/ � xa�2.t// � xa.t/C f; a D 1; 2; : : : ; K (5.11)

with x�1.t/ D xK�1.t/; x0.t/ D xK.t/, and xKC1.t/ D x1.t/:

A fixed point solution of these equations is xa.t/ D f , and small perturbations
about this solution, xa.t/ D f C ıxa.t/ yield in linear order in ıxa.t/

dıxa.t/

dt
D f .ıxaC1.t/ � ıxa�2/� ıxa.t/: (5.12)

If we write ıxa.t/ D Ak.t/eika, then the amplitudes Aa.t/ satisfy

dAk.t/

dt
D Ak.t/

�

.eik � e�2ik/f � 1

�

; (5.13)

and when the real part of the quantity in square brackets is larger than unity, the fixed
point is unstable. The maximum of cosk � cos 2k is 9=8 for 0 � k � 2� , so when
f > 8=9 the fixed point is unstable. The solution then proceeds through a sequence
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of bifurcations including limit cycle (periodic) solutions, and when f � 6:5 chaotic
solutions appear.

It is our plan to use this model, with various values of K in a twin experiment
setting. We will hold the forcing fixed for much of our discussion and use a
variational principle with no model error to estimate the unobserved states of the
model at the end of an observation window, tm D T . Using the known parameters
and the estimated state x.T /, we will predict for t > T . The orbits of the model with
the forcing we select will be chaotic, so the prediction horizon will be limited by
this global instability. After this procedure we will turn to a Monte Carlo evaluation
of the path integral for this model.

5.3.1 Synchronization

We start with K D 5 and generate twin experiment “data” ya.t/I a D 1; 2; : : : ; 5

using a time step of	t D 0:01, which corresponds to about 6
5

h in the scales defined
by the original model (Lorenz and Emanuel 1998). Orbits generated with these
parameters are chaotic. Using the usual nonlinear time series analysis (Abarbanel
1996; Kantz and Schreiber 2004) for one of the signals from this data set, we deter-
mined that the Lyapunov dimension associated with these exponents is DL D 4:6.

Recall that we argued that proper “tuning” of the model as a receiver of
transmissions from data as a transmitter requires synchronization of the model
output corresponding to the measurements; yl.n/ � hl .x.n//.

We now ask if we are able to synchronize the model Eq. (5.11) for xa.t/ with
the same forcing parameter using information on y1.t/ alone. To address this we
required several calculations. We first coupled y1.t/ into the equation for x1.t/ in
the following manner:

dx1.t/

dt
D x5.t/.x2.t/ � x4.t// � x1.t/C f C k1.y1.t/ � x1.t//

dx2.t/

dt
D x1.t/.x3.t/ � x5.t// � x2.t/C f

dx3.t/

dt
D x2.t/.x4.t/ � x1.t// � x3.t/C f

dx4.t/

dt
D x3.t/.x5.t/ � x2.t// � x4.t/C f

dx5.t/

dt
D x4.t/.x1.t/ � x3.t// � x5.t/C f: (5.14)

We found that this did not result in synchronization, and we elaborate on this in a
moment.

We then coupled both y1.t/ and y3.t/ into the model equations for xa.t/
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dx1.t/

dt
D x5.t/.x2.t/ � x4.t// � x1.t/C f C k1.y1.t/ � x1.t//

dx2.t/

dt
D x1.t/.x3.t/ � x5.t// � x2.t/C f

dx3.t/

dt
D x2.t/.x4.t/ � x1.t// � x3.t/C f C k2.y3.t/ � x3.t//

dx4.t/

dt
D x3.t/.x5.t/ � x2.t// � x4.t/C f

dx5.t/

dt
D x4.t/.x1.t/ � x3.t// � x5.t/C f; (5.15)

introducing information into the model dynamics beyond that carried by y1.t/ alone.
In this case we find for either k1 D 0 and k2 ¤ 0 or k2 D 0 and k1 ¤ 0, there is
no synchronization of the data and the model. This is equivalent to the statement
with one coupling only. However, when both k1 and k2 � 3, the data and the model
synchronize.

The synchronization error given by

C.k1; k2/ D 1

2N

m�1X

nD0

�

.y1.tn/� x1.tn//
2 C .y3.tn/� x3.tn//

2

�

; (5.16)

is evaluated by solving Eq. (5.15) for initial conditions fxa.0/g which in general
are different than those in the data fya.0/g, and starting the sum (5.15) at t0 after
transients are discarded. In Fig. 5.11 we show a cut through the three dimensional
surface fk1; k2; C.k1; k2/g with k1 D k2 D k in the range Œ0; 20�. For k � 3 we see
that the synchronization error has gone to zero.

More information is in the full three-dimensional surface fk1; k2; C.k1; k2/g
shown in Fig. 5.12. Here we can see that when either k1 or k2 is 0, so only one piece
of information is coupled into the Lorenz96 model for xa.t/, synchronization does
not occur. When both k1 and k2 are larger than approximately three, synchronization
is achieved.

We have indicated throughout this book that synchronization is important for an
accurate estimation of the parameters and state variables of the model system. We
can see that in operation in our present example as well. We generated the solution
to the differential equation (5.15) with a value of xa.0/ different from that ya.0/
used in producing the data. If we wished to find one of the ya.0/, we would expect
that it may be estimated by searching for a minimum of the synchronization error as
a function of x2.0/. We evaluated the cost function

C.k1; k2; x2.0// D 1

2N

m�1X

nD0

�

.y1.tn/ � x1.tn//2 C .y3.tn/ � x3.tn//2
�

; (5.17)
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Fig. 5.11 Lorenz96 model; K D 5. We display the synchronization error C.k1; k2/ D
1
2N
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nD0

�
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�

C.k1; k2/ as a function of k with k1 D k2 D k

associated with coupling information from y1.t/ and y3.t/ into the equations for x1.t/ and x3.t/
as in Eq. (5.15). The two systems now synchronize for k larger than about 3

for four different selections of k1; k2 as a function of the choice of x2.0/. Our data
was generated using y2.0/ � 4:9. The variation of C.k1; k2; x2.0// in x2.0/ for
the sets of values fk1; k2g D f.0:0; 0:0/; .8:0; 0:0/; .0:0; 8:0/; .8:0; 8:0/g is shown
in Fig. 5.13. In the Upper Left Panel fk1 D 0:0; k2 D 0:0g; in the Upper Right
Panel fk1 D 8:0; k2 D 0:0g; and in the Bottom Left Panel fk1 D 0:0; k2 D 8:0g.
We see that for these choices of coupling, where the couplings can be zero, the
variation in x2.0/ is full of local minima which have little to do with the known
value y2.0/ � 4:9.

In the Lower Right Panel, however, when fk1 D 8:0; k2 D 8:0g and the model
output xa.t/ and the data ya.t/ are synchronized, the variation in x2.0/ of the cost
function has become smooth with an easy to locate minimum near the correct value.
We have seen this kind of behavior in earlier examples, and we repeat it here as this
is the first time we have required more than one dynamical piece of information to
be passed from the data to the model to achieve synchronization.

Later we will examine a larger model, a small grid approximation to geophysical
partial differential equations, and demonstrate that lack of synchronization is
directly connected to lack of predictability. The unobserved state variables are
inaccurately estimated leading to inaccurate state values from which prediction
proceeds.
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Fig. 5.12 Lorenz96 model; K D 5. We display the synchronization error C.k1; k2/ as a function
of k1; k2 associated with coupling information from y1.t/ and y3.t/ into the equations for x1.t/ and
x3.t/ as in Eq. (5.15). The two systems now synchronize for k1; k2 each larger than about 3. This is
an indication that two unstable directions are present on the synchronization manifold x.t / D y.t /.
Figure 5.11 is a cut along the k1 D k2 diagonal of this graphic

5.3.2 Lyapunov Exponents

We begin with a repeat of some material from Sect. 2.2.3, and then we enlarge
on it. To evaluate the Lyapunov exponents for a differential equations such as
the Lorenz96 model, we analyze perturbations about an orbit of the dynamical
system (Abarbanel 1996; Kantz and Schreiber 2004). The orbit is generated by
solving the differential equation for the Lorenz96 model (5.11) numerically from
a selected x.0/ by discretizing time and providing a rule guiding movement from
the state at time tnI x.n/ to x.nC 1/ D f.x.n/;p/. The stability of orbits when the
K-dimensional Lorenz96 model operates autonomously, that is, without external
forcing or information, is determined by the K eigenvalues e�a of the Oseledec
matrix Eq. (2.28). If any of the K values of �a is positive, the solution is chaotic.
One eigenvalue is always zero as we are discussing a flow in continuous time.

In Fig. 5.14 we show the computed values of the �a for K D 5 as a function of
the forcing strength f . The zero exponent is not shown. We have selected f D 8:17

and see that one Lyapunov exponent is positive leading to chaotic solutions of the
model equations.

When we wish to pass information from observations y.tn/ to the model, one
way to do it is by coupling them to the model via
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Fig. 5.13 Cross sections through the cost function C.k1; k2; x2.0// for the Lorenz96, K D 5

model through measurements of y1.n/ and y3.n/. We display the dependence of this cost
function, Eq. (5.15) on the initial value x2.0/ of one of the model state variables. We examine four
combinations of the couplings fk1; k2g D f.0:0; 0:0/; .8:0; 0:0/; .0:0; 8:0/; .8:0; 8:0/g. For the first
three of these, the model and the data are not synchronized. For the final value, the model and
the data synchronize. In the last case, we see that the search over values of x2.0/ for the value of
this initial state variable in the data, namely y2.0/ � 4:9 can be successful. In the unsynchronized
cases, such a search would be significantly impeded by the multiple local minima

xa.nC 1/ D fa.x.n//C
KX

bD1
Qab.yb.n/ � xb.n//I a; b;D 1; 2; : : : ; K; (5.18)

and theK�K coupling matrixQab has nonzero elements only where data is coupled
into the model. In the Oseledec result, one requires the Jacobian of the dynamics
iterated along the chaotic orbit, and with the coupling, the Jacobian is
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Fig. 5.14 Nonzero Lyapunov exponents for the Lorenz96, K D 5, model as a function of the
forcing f in the model. One Lyapunov exponent is always 0 (Abarbanel 1996), and it is not
displayed. The largest Lyapunov exponent becomes positive around f � 6:5, and for larger values
of f the system is chaotic. In the neighborhood of f � 18 a second positive Lyapunov exponent
appears. We selected f D 8:17, shown by the vertical violet line, for our discussion in the main
text (Kostuk 2012)

@fa.x; p/
@xb

�Qab: (5.19)

If all the conditional Lyapunov exponents (CLEs) of this quantity, evaluated
via the Oseledec matrix, are negative, then the solutions of Eq. (5.18) are stable.
There is no requirement that one among the collection of CLEs need be zero, unless
Qab D 0.

We have evaluated the CLEs (Kostuk 2012) for the case Qab D kıa1ıb1 and
f D 8:17, and we display the result in Fig. 5.15 as a function of k. As we expect,
at k D 0 one of the exponents is zero, and one is positive. This corresponds to
the values of the �a at the vertical violet line in Fig. 5.14. As k increases, four of
the CLEs become negative, while the largest one decreases but remains positive.
This tells us that providing information from the data to the Lorenz96 model from a
single data stream does not stabilize the synchronization manifold. This is consistent
with the message in Fig. 5.13. Indeed, as we have noted, the origin of the multiple
local minima in this figure is the incoherence of two chaotic time series: one from
the data and one from the model output.
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Fig. 5.15 Conditional Lyapunov exponents (CLEs) for the Lorenz96 model,K D 5, as a function
of the constant coupling k.y1.t/ � x1.t// in the dynamical equation for x1.t/. One CLE remains
positive indicating that the synchronization manifold on which y1.t/ D x1.t/ is unstable. At k D 0

one Lyapunov exponent is positive indicating the dynamical system yield periodic orbits. At k D 0

one Lyapunov exponent is 0, as we expect from a system of differential equations (Abarbanel 1996;
Kostuk 2012)

Taking a lesson from the Lower Right panel of Fig. 5.13, we now select

Qab D k1ıa1ıb1 C k2ıa3ıb3; (5.20)

and evaluate the CLEs as a function of k D k1 D k2. In Fig. 5.16 we now see that
at k D 0, we agree with the previous calculation as we must. As k increases, all
five CLEs decrease and between k D 2 and k D 3 the largest CLE moves from a
positive value to a negative value. The data sources y1.t/ and y3.t/ are sufficient to
stabilize the synchronization of the data and the model. In the Lower Right panel of
Fig. 5.13, we see that as a consequence we are now able to accurately estimate the
state variable x2.0/.

The synchronization of the data and the model should allow the estimation of
the three unobserved state values x2.t/; x4.t/; x5.t/, and we will show this to be
so. The discussion of such situations has been a long-standing topic in the control
theory literature wherein it is called observability (Nijmeijer and Mareels
1997). In defining observability one usually require synchronization in the form
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Fig. 5.16 Conditional Lyapunov exponents (CLEs) for the Lorenz96 model,K D 5, as a function
of the constant couplings k1.y1.t/ � x1.t// and k2.y3.t/ � x3.t// in the dynamical equations
for x1.t/ and for x3.t/. The largest CLE becomes negative near k � 3 indicating that the
synchronization manifold on which y1.t/ D x1.t/I y3.t/ D x3.t/ is stable. At k D 0 one
Lyapunov exponent is positive indicating the dynamical system yield periodic orbits. At k D 0

one Lyapunov exponent is 0, as we expect from a system of differential equations (Abarbanel
1996). This consistent with the information in Figs. 5.11 and 5.12 (Kostuk 2012)

jx.t/ � y.t/j ! 0 as t ! 1, which is a stronger form than our synchronization
criterion which is an average over segments of the orbits x.t/ and y.t/. In practice,
these do not appear to be different requirements. One can safely say that the notion
of observability, which goes back to the 1960s (Luenberger 1964, 1966, 1971,
1979; Nijmeijer and Mareels 1997), is, in essence, the same as the stability of the
synchronization manifold.

The calculation of the CLEs, or the Lyapunov exponents when kj D 0, requires
the determination of the eigenvalues of a product of Jacobian matrices evaluated
along an orbit of the dynamical system. This product enters the Oseledec matrix
and is a very ill-conditioned D � D matrix. If the eigenvalues of the matrix are
ordered so �1 > �2 > � � ��D , the condition number of the matrix is e2m.�1��D/ for
m steps along a trajectory. This can be a very large number, and diagonalizing such
a matrix requires substantial care. We use the recursive QR decomposition method
described in Abarbanel (1996) which is stable and accurate. It also takes a long time
to run, and as D increases it may not be an attractive procedure.
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5.3.3 CLEs for Lorenz96 Models

How can we know the number of required measurements to assure that the largest
CLE for the Lorenz96 model withD dimensions is negative? A direct way is to find
the eigenvalues of the Oseledec matrix (Oseledec 1968) for Eq. (5.18). This requires
the diagonalization of the product of D �D Jacobian matrices.

Another idea is to move onto the synchronization manifold (Kostuk 2012) where
L measured data time series yl .t/I l D 1; 2; : : : ; L are synchronized to functions
hl.x.t// and examine the Oseledec matrix for the problem where L components of
the model state x.t/ are replaced by the y.t/ (Kostuk 2012). We adopt our usual
simplification hl .x/ D xl.t/.

In the case L D 1, the dynamics is

xk.nC 1/ D fk.y1.n/; xk.n/;p/I k D 2; 3; : : : ;D; (5.21)

and with y1.n/ and y2.n/ passed to the dynamical rule, we require the Oseledec
matrix for

xk.nC 1/ D fk.y1.n/; y2.n/; xk.n/;p/I k D 3; : : : ;D; (5.22)

and so forth. If we analyze these equations for given yl.n/, we determine D � L

exponents using the Oseledec matrix as in the case of autonomous equations. These
exponents are CLEs as they are conditioned on the given y.n/. D�L CLEs will be
evaluated determining the stability of the synchronization manifold xl .n/ D yl.n/

for each L. In a formal sense, this procedure is equivalent to setting the couplings
k ! 1. It is also the synchronization scheme first explored by Pecora and Carroll
(1990).

CLE calculations for various D and L for Lorenz96 models are now presented.
The models are integrated for 105 time points; these initial values are discarded. The
Lyapunov exponents and CLEs are then evaluated with times series from subsequent
trajectories of 109 points. All integration is done using a fourth-order Runge-Kutta
integration with a time step of	t D 0:01. The Jacobians are numerically estimated
using the trajectory results based upon an averaged offset in state space ˙10�8 for
all directions.

We begin with D D 5. In Table 5.6 we report the results of this calculation for
the Lyapunov exponents whenL D 0, the autonomous model differential equations,
and the CLEs for L D 1 and L D 2 Other L D 2 coupling schemes are the same as
those reported by cyclic symmetry of the D D 5 model.

Next we move to the case D D 9 for the Lorenz96 equations. In Table 5.7
we have listed both the Lyapunov exponents of the autonomous D D 9 model,
as well as the CLEs that result from an L D 1 coupling. With a single coupling
there always remains a positive CLE, indicating that the synchronization manifold
remains unstable.
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Table 5.6 The Lyapunov
exponents of the autonomous
Lorenz96, D D 5 model
(L D 0) and the conditional
Lyapunov exponents of the
Lorenz96 D D 5 model with
f D 8:17 using various
coupling schemes; L D 1; 2

CLEs for Lorenz96 model D D 5 L D 0; 1; 2

L D 1 L D 2 L D 2

L D 0 y1 y1; y2 y1; y3

0.527 0.491 �0:117 �0:106
10�7 �0:298 �1:201 �1:089
�0:432 �0:832 �1:871 �2:183
�1:303 �3:550 – –
�3:793 – – –

Both L D 2 coupling schemes result in
stabilized synchronization manifolds (Kostuk
2012)

Table 5.7 The Lyapunov
exponents (L D 0) and singly
coupled CLEs (L D 1) for
the Lorenz96 D D 9 model
with f D 8:17

CLEs for Lorenz96 model
D D 9 L D 0; 1

L D 0 L D 1

1.268 1.012
0.585 0.447
10�6 �0:092
�0:208 �0:628
�0:759 �1:125
�1:245 �1:681
�1:815 �2:459
�2:573 �3:632
�4:252 –

The single coupling term re-
duces the positive Lyapunov
exponents; however, it is in-
sufficient to provide stable
motion on the synchroniza-
tion manifold (Kostuk 2012)

We next select L D 2. From Table 5.8, we see that none of the coupling schemes
that incorporate two observations into the Lorenz96 D D 9 model will result in
synchronization. It is not until three observations are used that this occurs. The CLEs
that result from some of theL D 3 possible coupling schemes are listed in Table 5.9.
We have left out some of the coupling possibilities that are redundant based upon
the cyclic symmetry of this model.

As seen in Table 5.9 some coupling schemes are more successful than others at
reducing the any positive CLEs to negative values. For example the y1, y2, and y3
arrangement does not lead to a completely negative spectrum of CLEs, whereas the
y1, y2, and y7 arrangement does accomplish this.

Table 5.9 displays the CLEs arising when L D 3 data streams are presented
to the Lorenz96 D D 9 model. When all CLEs are negative, the synchronization
manifold is stable. This is not the case for all possible coupling of three data streams
into the model. This is consistent with our formulation of the general problem of
statistical data assimilation where the information passed to the model depends on
the observation and on the model.
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Table 5.8 The CLEs of the
Lorenz96 D D 9 model with
two coupled observations

CLEs for Lorenz96 model D D 9 L D 2

y1; y2 y1; y3 y1; y4 y1; y5

0.162 0.789 0.638 0.799
�0:208 0.189 0.058 0.265
�0:581 �0:347 �0:458 �0:380
�0:909 �0:880 �0:953 �0:930
�1:281 �1:425 �1:449 �1:511
�1:794 �2:225 �2:087 v � 2:342

�2:543 �3:414 �3:061 v � 3:213

Each column represents a different coupling
scheme with two pieces of information y1.t/
and yi .t/, for i D 2; 3; 4; 5. The coupling
schemes not listed are equivalent to one that
is listed via symmetry. None of these coupling
schemes with only two data streams is capable
of synchronizing theD D 9 model output with
the data (Kostuk 2012)

Table 5.9 The CLEs of the Lorenz96 D D 9 model with three coupled
observations

CLEs for Lorenz96 model D D 9 L D 3

y1; y2; y3 y1; y2; y7 y1; y2; y8 y1; y3; y5 y1; y3; y7 y1; y4; y7

0.106 �0:070 �0:024 0.661 0.501 0.025
�0:308 �0:553 �0:471 0.013 �0:076 �0:421
�0:736 �0:837 �0:846 �0:618 �0:732 �0:986
�1:130 �1:207 �1:137 �1:226 �1:265 �1:257
�1:653 �1:517 �1:523 �2:083 �1:991 �1:625
�2:436 �2:128 �2:311 �3:216 �2:906 �2:202
Each column represents a different coupling scheme. The choice of observed
variables is important. Note that presenting y1; y2; y7 or y1; y2; y8 permit syn-
chronization. Other choices do not succeed in producing negative CLEs (Kostuk
2012)

As we increase D, the number of dimensions of the model, we increase
the potential for finding more positive Lyapunov exponents for the autonomous
dynamics and for finding more positive CLEs as well.

According to the results we have shown we would conclude that the D D 5

Lorenz96 model requires two observations in order to achieve synchronization, and
the D D 9 model requires three. We have also noted that not all coupling schemes
of L data streams for a D > L-dimensional model will lead to stabilization of the
synchronization manifold. We have examined the minimum number of observables
which we call the critical L, or Lc , required for Lorenz96 models with D as large
as 45. Table 5.10 shows the results. In an approximate sense Lc � 0:4D, but
this does not mean all sets of Lc observables will lead to synchronization. Not all
possible coupling schemes for largeD were examined as this quickly becomes very
computationally intensive for large D. One requires the construction of the product
of many .D � L/ � .D � L/ matrices and the determination of the largest CLE
for each selection of L. As D becomes large and L grows, there are many such
selections and most must be examined.
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Table 5.10 The minimum number of observations Lc of the D-
dimensional Lorenz96 model with forcing strength f D 8:17

required so that all the CLEs are negative Lc � 0:4D

D 4 5 9 10 11 13 15 20 45

Lc 2 2 3 4 5 6 6 8 21

This ensures synchronization of the model output with the ob-
served data (Kostuk 2012)

5.3.4 Lorenz96 Model: Variational Principle; No Model Errors

We seek now to use this knowledge on the stability of the synchronization manifold
to estimate the unobserved state variables in the Lorenz96 model for K D 5 and
predict beyond the time window of observations. To this end we present information
from two observed time series for y1.t/ and y3.t/ to the five dimensional dynamics.
As earlier, we replace the constant values of the couplings with k1 ! u1.t/
and k2 ! u2.t/ recognizing that the strength of the coupling to stabilize the
synchronization manifold may vary as we progress around the orbits of the system.

The dynamics of the D D 5 Lorenz96 model is now given as

dx1.t/

dt
D x5.t/.x2.t/ � x4.t// � x1.t/C f C u1.t/.y1.t/ � x1.t//

dx2.t/

dt
D x1.t/.x3.t/ � x5.t// � x2.t/C f

dx3.t/

dt
D x2.t/.x4.t/ � x1.t// � x3.t/C f C u2.t/.y3.t/ � x3.t//

dx4.t/

dt
D x3.t/.x5.t/ � x2.t// � x4.t/C f

dx5.t/

dt
D x4.t/.x1.t/ � x3.t// � x5.t/C f; (5.23)

and we recall we wish to have no trace of the coupling terms u1.t/ and u2.t/
when our estimation protocol is completed. They regularize the search for state
and parameters values on the synchronization manifold, but there is no physics
associated with their value.

Adding a cost for the controls fu1.t/; u2.t/g, the cost function takes the form

C.x;u/ D 1

2m

m�1X

nD0

�

.y1.tn/� x1.tn//
2 C .y3.tn/ � x3.tn//2 C u1.n/

2 C u2.n/
2

�

:

(5.24)
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Fig. 5.17 Lorenz96 (Lorenz 1996) model. The data y4.t/; y5.t/ (black down triangles) and the
estimated model state variables x4.t/; x5.t/ (red up triangles) are displayed. Both x4.t/ and x5.t/
are unobserved state variables

We now minimize this cost function using the direct method implemented via
IPOPT as discussed in earlier chapters. We found that we could also estimate the
parameter f quite accurately, but this did not change any essential part of the
calculations. We proceed with f D 8:17.

We generated a data set from the Lorenz96 model with K D 5 and f D 8:17:

This produced a chaotic time series on an attractor of dimension about 4.6. Using
m D 1; 635 data points from y1.tn/ and y3.tn/ we minimized Eq. (5.24) subject to
the dynamical Equation (5.23). This produced seven time series over the interval
Œt0 D 0; tm D T D 1; 635�: five model outputs xa.tn/ and two sequences
u1.tn/; u2.tn/.

In Fig. 5.17 we see that the unobserved state variables x4.t/ and x5.t/ are well
estimated over the observation window. We do not display the other estimated state
variables nor do we show values for the ul .tn/. The quality of the estimations of the
other xa.t/ is equally as good as the values shown, and the actual values of the ul .t/
are small. The analogue of the dimensionless consistency check Rl.t/I l D 1; 2

shows the Rl values to always be close to unity.
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We now took the values of the model state variables at tnI n D 1; 600, so a
few steps back into the observation region, and selecting these as initial conditions
predicted forward in time for t > 1; 600. The choice of t D 1; 600 rather than
the actual end of the observation window at t D 1; 635 was simply to provide
a bit of variety in our protocols. The outcome of this prediction for the observed
state variable x1.t/ and the unobserved state variable x2.t/ is shown in Fig. 5.18
where, for each state variable, it is compared to the known data y1.t/ and y2.t/.
The accuracy of the estimations is supported by the accuracy of the predictions as
one moves forward from the initial state at t D 1; 600. Because the orbits of the
Lorenz96 model are chaotic, we expect that errors at t0 D 1; 600 will grow in time
as error.t/ � error.t0/e�1.t�t0/. Using the calculated value of the largest Lyapunov
exponent �1 � 0:5 and the computed error from state estimates at t D 1; 600

where prediction begins, we find consistency. The same features are apparent in the
prediction for t > 1; 600 for the two unobserved state variables x4.t/ and x5.t/ as
shown in Fig. 5.19.

It might well go without saying, but we say it nonetheless: predicting using
estimates from minimizing the Lorenz96 D D 5 cost function with only one
allowed nonzero value of the controls u1.t/; u2.t/ results in quite inaccurate
predictions.

5.4 Monte Carlo Estimation of the Path Integral
for the Lorenz96 Model

We begin by recalling ideas from the general discussion in Chap. 3 of statistical data
assimilation path integrals. The conditional expectation value of a functionG.X/ on
the path X is given by

EŒG.X/jY.m/� D< G.X/ >D
R

dXG.X/ expŒ�A0.X;Y.m//�R
dX expŒ�A0.X;Y.m//� (5.25)

The contributions of fluctuations along the path X D fx.t0/; x.t1/; : : : ; x.tm/g with
measurements Y.m/ D fy.t0/; y.t1/; : : : ; y.tm/g are accounted for through choices
for G.X/.

In many, if not most, discussions of statistical data assimilation, a Gaussian
assumption about A0.X/ is made at some point. In using the path integral formu-
lation, we are able to directly test this notion. We can evaluate the first through
fourth moments of the components of X, by choosing G.X/ to be populated by
Œxa.n/�

� I a D 1; 2; : : : ;DI n D 0; 1; : : : ; mI � D 1; 2; 3; 4. This allows us to
estimate the conditional mean trajectory (� D 1), the RMS variation (� D 2)
about it, as well as the skewness (� D 3) and kurtosis (� D 4) of the conditional
distribution along the paths.
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Fig. 5.18 Lorenz96 (Lorenz 1996) model D D 5. The “data” for y1.t/ and y2.t/ (up black
triangles) along with the predictionfor t > 1600 from the model for x1.t/ and x2.t/ (red down
triangles) are displayed. The initial conditions of all state variables ya.t/ a D 1; 5 at t D 1; 600

were estimated using 1,635 points of y1.t/ and y3.t/ presented to the model. The predictions are
accurate for about 1,200–1,400 points beyond the new initial condition at t D 1; 600, and this
is consistent with the estimation of the largest Lyapunov exponent. x1.t/ is an observed state
variable; x2.t/ is an unobserved state variable

We can then address the common assumption about the Gaussian nature of the
conditional distribution. For a Gaussian distribution the skewness

< .xa.n/� < xa.n/ >/
3 >

< .xa.n/� < xa.n/ >/2 >3=2
(5.26)

and kurtosis

< .xa.n/� < xa.n/ >/
4 >

< .xa.n/� < xa.n/ >/2 >2
� 3 (5.27)

both vanish.
Using the model of Lorenz (1996; Lorenz and Emanuel 1998) with D D 20

degrees of freedom we have investigated the use of the path integral realized
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Fig. 5.19 Lorenz96 (Lorenz 1996) modelD D 6. The “data” for y4.t/; y5.t/ (up black triangles)
and the predictions for t > 1; 635 from the model for x4.t/; x5.t/ (down red triangles) are
displayed. The initial conditions at t D 1; 600 were estimated using 1,635 points of x1.t/ and
x3.t/ presented to the model. The predictions are accurate for about 1,200–1,400 points beyond
the new initial condition at t D 1; 600, and this is consistent with the estimation of the largest
Lyapunov exponent. Both x4.t/ and x5.t/ are unobserved state variables

numerically using Monte Carlo methods for the estimation of expected values for
state variables and parameters, RMS-errors about these expected values, as well
as third and fourth moments. The dynamical equations for this model are as given
earlier

dxa.t/

dt
D xa�1.t/.xaC1.t/ � xa�2.t// � xa.t/C f D F .96/

a .x.t/; f /; (5.28)

with a D 1; 2; : : : ;D, x�1.t/ D xD�1.t/; x0.t/ D xD.t/, and xDC1.t/ D x1.t/;

with D = 20 and some choice of xa.0/. We generated a solution w.t/ to the
dynamical equations and added Gaussian white noise to the wa.tn/ to act as our
measurements: y.n/ D w.n/C noise.

We use the approximation to the action discussed in earlier chapters with an
implicit Euler representation of the dynamics. We write
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A0.X/ D Rm

2

mX

nD0

LcX

lD0
.yl .n/ � xl .n//

2

CRf

2

m�1X

nD0

DX

aD1
.xa.nC 1/

�xa.n/ � 	t

2
ŒF .96/
a .x.n/; f /C F .96/

a .x.nC 1/; f /�/2: (5.29)

The time step was chosen to be 	t D 0:05 (Lorenz 1996; Lorenz and Emanuel
1998) corresponding to 6 h in physical time. We selected paths from a space of
dimension .m C 1/D C NP D D C NP with m D 80 time steps, D D 20 state
variables, and NP D 1 parameter so the path integral has dimension 1,621.

In a Metropolis-Hastings Monte Carlo evaluation of the integral we started from
an arbitrary initial path and ignored the first 3 � 105 paths generated, and then used
the next 1:2 � 106 paths for the evaluation of the moments of X. The computation
time per path generated is proportional to the number of function evaluations that
need to be done per path, proportional to .8CNP/.mC 1/D in this case, and also
proportional to the number of random numbers that are generated. We did not try
to optimize the Monte Carlo calculations here but used a conventional Metropolis-
Hastings with little regard for efficiency or speed of the calculations. We have been
concerned with whether the path integral method yields results interesting enough to
merit the additional investment in numerical methods to speed up the evaluations of
the path integral. In our example calculations with a dimension of D CNP D 81�
20C 1 D 1; 621 it takes about 3 ms to generate each path on a contemporary 2 GHz
CPU. There is potential for improvement by using more sophisticated algorithms
which aim to decrease correlations among paths, but usually with the expense of
additional computations (Alexander et al. 2005).

While we report on calculations withD D 20, we investigated other model sizes
and found little changes in the results except as D grows more observations are
needed, as discussed in the next section, and the computation time per path grows
linearly with D. For comparison we show below the results of a calculation for
D D 100.

5.4.1 How Many Observations Are Required?

When model errors are present we have effectively broadened the deterministic
delta function of the transition probability P.x.n C 1/jx.n// taking the model
state x.n/ to x.n C 1/. In lowering the resolution from being infinitely accurate
in state space, it has reduced the complicated structure of local minima we found in
variational principles with no model error. In performing the Monte Carlo evaluation
of integrals such as Eq. (5.25), we move around in a D-dimensional path space
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X D fx.t0/; x.t1/; : : : ; x.tm/g along with an NP -dimensional parameter space
seeking to sample the distribution expŒ�A0.X/�. It seems sensible that when this
distribution has a well identified set of maxima, associated with minima of A0.X/,
the Monte Carlo search with a finite number of iteration steps will best sample
paths near the maxima while sampling less well the paths far from the maxima of
the distribution.

We know that as Rf becomes very large, we reach the deterministic, no model
error, setting. In this limit the search over state and parameter values becomes a
constrained search in the space of initial conditions and parameters with dimension
D C NP and is impeded by complex surfaces with many local minima in A0.X/
associated with instabilities on the synchronization manifold (Abarbanel et al. 2008,
2009, 2010) xl .n/ � yl.n/I l D 1; 2; : : : ; L. In our case where Rf is finite, we
still see the remnants of this instability in the higher dimensional space of D CNP

dimensions, but it is much less of an issue.
We can turn this idea into a useful tool for estimating the number of observations

required to make accurate estimates of model states and parameters by looking at a
stochastic process whose limit as it acts multiple times has precisely the distribution
function we seek.

Such a stochastic process is given by the Langevin equation (Zinn-Justin 2002)

dX.s/
ds

D �@A0.X.s//
@X.s/

C p
2�.s/; (5.30)

where �.s/ is Gaussian white noise with zero mean and variance unity. s is a kind of
“time,” really a label for stepping through approximations to the Langevin equation.
We touched upon some of the properties of this equation in an earlier chapter. Here
we want to examine another aspect of interest.

The Fokker-Planck equation (Lindenberg and West 1990) for the probability
distribution P.X; s/ in X space at “time” s

@P.X; s/
@s

C @

@X

�

�@A0.X/
@X

P.X; s/
�

D @2P.X; s/
@X2

(5.31)

for this process describes how a distribution of paths will develop when each path is
evolved according to Eq. (5.30) and tells us that as s ! 1 the stationary distribution
expŒ�A0.X/� is approached.

This gives an intuitive way to think about how to generate paths to approximate
the path integral equation (5.25): starting from any initial path X.s D 0/ the
path is evolved in s by moving down the gradient toward local minima [first
term in Eq. (5.30)] and fluctuates around those minima [second term in Eq. (5.30)],
possibly escaping to other local minima, if the noise is large. In the no noise limit
where � ! 0 we address the deterministic equation

dX.s/
ds

D �@A0.X.s//
@X.s/

(5.32)
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Fig. 5.20 Lorenz96, D D 5. A0.Xfinal/ for 1,000 initial choices of X allowing the paths to evolve
through Eq. (5.32), with the number of observed variables L D 1; 2, or 3. For L D 1 A0.Xfinal/ is
distributed over a wide range of values. For L D 2 there are two clusters of values for A0.Xfinal/.
One is 100 times lager giving little contribution to the path integral. For L D 3 there is one cluster
of values for A0.Xfinal/ suggesting the critical value of L is Lc D 3

This equation has A0.X/ as a Lyapunov function, since

dA0.X.s//
ds

D �
ˇ
ˇ
ˇ
ˇ
dX.s/

ds

ˇ
ˇ
ˇ
ˇ

2

; (5.33)

As a function of s the solution X.s/ converges to paths X.s/ ! Xfinal at locations in
X space where @A0.X/

@X jXfinal D 0.
If we examine a set of solutions to Eq. (5.32) staring from different X.s D 0/, we

will find the collection of minima of A0.X/. Each X.s D 0/ will approach an Xfinal,
and we can develop a picture of the minima in the action by looking at the values of
A0.Xfinal/ for all of the starting paths.

We have followed this idea for the Lorenz96 equations with D D 5. In Fig. 5.20
we show the result of 1,000 random selections of X.s D 0/ as a function of the
number L of observations. For L D 1 we see a plethora of minima of A0.X/ with
values ranging from a few times 1,000 to a few time 10,000. This complicated set
of possible minima for A0.Xfinal/ is the reflection of the set of local minima we
found in the deterministic, no model error, synchronization error in earlier chapters.
When L D 2 we see two patterns of minima in A0.X/: one collection of minima a
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Fig. 5.21 Lorenz96, D D 20. A0.Xfinal/ for 100 initial choices of X allowing the paths to evolve
through Eq. (5.32), with the number of observed variables L D 6; 8; or 10. Left panel: Rf D 100.
Right panel: Rf D 500

bit less than 100, and another collection of minima with values 50–100 larger. The
latter contribute very little to the path integral as it is weighted by expŒ�A0.X/�.
This suggests a rather good estimate for the path integral will arise when L is 2
or larger. When we select L D 3, there appears only one sharp minimum near
A0.X/ � 300. This structure reflects the results we encountered in the deterministic
variational calculation both in the consideration of CLEs and the examination of the
synchronization error as a function of L.

Another example uses the Lorenz96 model again, but now with D D 20. We
start from 100 different randomly chosen initial paths X.s D 0/ in the D C NP -
dimensional path space. Each state variable component of the initial path was
chosen from a uniform distribution over the interval .�1; 3/. The component of the
path that represents the forcing parameter was chosen from a uniform distribution
over the interval .8; 12/. In Fig. 5.21 we display the action A0.Xfinal/ found by
integrating Eq. (5.32) for 100 different initial paths in the Lorenz96,D D 20model,
for L D 6; 8; and 10 observations, Rm D 50, with Rf D 100 in the left-hand
panel and Rf D 500 in the right-hand panel. Each initial path is followed using the
Langevin equation with no noise until

dA0.X.s/
ds

� 0; (5.34)

namely, the change in the action with respect to the number of “time” steps is small.
This gives us a final path Xfinal.

For the Metropolis-Hastings Monte Carlo approximation of the path integrals
of Eq. (5.25) to be efficient, it is helpful to start with a good approximation of the
proposed paths to paths that will be accepted. We will then consider perturbations
of these proposed paths to collect good samples of expŒ�A0.X/� required in doing
the high-dimensional path integral Eq. (5.25).
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From Figs. 5.20 and 5.21 we see that the surface where @A0.X.s//
@X.s/ � 0 can be

rather rough (Abarbanel et al. 2008, 2010). It also suggests two ways within the
path integral Monte Carlo approach to make the surface of A0.X/ smoother. One
way is to increase the number of observed variables. This causes the number of local
minima of A0.X/ to be reduced, because information from measurements reduces
the number of likely paths. The other way is to increase the uncertainty of the model,
by decreasing Rf . The model error is / R

�1=2
f . The figure shows that when D D

20, L D 6 observations are not enough, but L D 8 are enough to smooth the
surface. Even though there are still some local minima for L � 8, the action around
these minima is much larger than at the global minimum, so those paths contribute
a negligible amount to the path integrals.

5.4.2 Results of Monte Carlo Estimation of the Path Integral
for Moments of X and Model Parameters

In the deterministic case, we know that the minimum number of observations
required to remove the instabilities is equal to the number of positive CLEs
associated with the synchronization manifold (Abarbanel et al. 2008, 2009, 2010).
We have examined this for the Lorenz96 model and found that about 0:4D
observations (see Table 5.10) are needed to make all CLEs negative (Kostuk 2012).
For this reason we selected L D 8 for our analysis of the D D 20 dimensional
Lorenz96 system. In our calculations we chose to “observe” ya.n/ for a = 0, 3, 5, 8,
10, 13, 15, and 18. It is not necessary to have observations at every time step, and in
fact here we only provide observations for even n. The missing observation terms are
excluded from the conditional mutual information contribution to the action. This
is achieved by simply setting Rm D 0 at those possible, but unused, measurement
times.

We emphasize that this criterion for selecting the required number of observa-
tions depends on the model, which is very useful. It also depends on the accuracy
of the model, here represented by Rf . The more accurate the model, namely, the
largerRf , the more local minima there will be in A0.X/, because of instabilities on
the synchronization manifold of the deterministic problem (Abarbanel et al. 2008,
2009, 2010).

We report here on example calculations using the Lorenz96 model with D D 20

and eight observed variables. We used a data assimilation window of 80 steps
(0 � t � 4) with observations every other step, followed by a prediction window
(4 < t � 6) with no measurements. 	t D 0:05 as above. In most cases we
considered, the calculations of x.n/ in the prediction window were computed in the
deterministic limit (Rf ! 1) by integrating the model equation forward in time
using a fourth-order Runge-Kutta procedure. The integration was done by taking as
initial conditions x.tm/ D x.T / and parameter values from each sampled path at
the end of the assimilation window. This effectively evolves the whole conditional
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Fig. 5.22 In the Monte Carlo evaluation of the path integral we vary both state variables xa.n/
and parameters. For the Lorenz96 model, the only parameters is the forcing f . For a Lorenz96
model with D D 20, we display the marginal distribution of f associated with the Monte Carlo
evaluation discussed in the text. The value for the deterministic model was f D 8:17

distribution at the end of the assimilation window forward in time into the prediction
window. We also did a simpler type of prediction for comparison, where the model
equation is integrated forward using only the conditional mean values < x.tm/ >
and < p > at the end of the data assimilation window as initial conditions and
parameters respectively. These two methods give quite comparable results.

5.4.3 Prediction by Model Equations for t > tm

In performing the Monte Carlo calculation we vary both state variables and
parameters seeking paths distributed as expŒ�A0.X/�. In the Lorenz96 model, we
have a single parameter. In the calculation for a D D 20 Lorenz96 model, we
recorded the values of the parameter f for each of the accepted paths, and in
Fig. 5.22 we display the marginal distribution of this parameter. The value used in
the generation of the data was f D 8:17. The marginal distribution of one or more
state variables can also be easily extracted from the collection of accepted paths
(Figs. 5.23 and 5.24).
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Fig. 5.23 From the metropolis-hastings Monte Carlo procedure, we acquire a collection of
accepted paths. These contain the sampled distribution of all state variables at all times in the
assimilation window and the distribution of all parameters. Here we display for the D D 100

Lorenz96 model the marginal distribution of the state x75.t1/ at the time t1. Of interest is the non-
Gaussianity of the distribution

Using the values of x.T D 4/ and the parameters f associated with each
accepted path, we integrated the equations of motion forward to t D 6 using a
fourth-order Runge-Kutta procedure. In the Left Panel of Fig. 5.25 we display the
noisy data for the observed state variable x0.t/, the known clean data value for
x0.t/ along with the expected value of x0.t/ and its RMS error about the expected
value. These quantities are shown both in the observation or assimilation window
0 � t � 4 and in the prediction window 4 < t � 6. In the Right Panel we
display the skewness and kurtosis of the distributions in both the observation and
the prediction regions. For the unobserved state variable x19.t/, we display the
same quantities in Fig. 5.26, except there are no observations to show.

The two state variables we have displayed behave in the same manner as the
other 18 variables, observed and unobserved. We generated the “data” (solid black
lines) by integrating the model equations with f D 8:17 and some choice of initial
conditions. This gives us all the state variables of the observed system. We then
generated “observations” (blue circles) from eight of the state variables by adding
Gaussian noise with standard deviation �m D 0:353 to the true path. There is no
correlation in the noise at different time steps or among different variables. We
selected Rm D 1=�2m � 8 and Rf D 100 for these calculations.
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Fig. 5.24 From the metropolis-hastings Monte Carlo procedure, we acquire a collection of
accepted paths. These contain the sampled distribution of all state variables at all times in the
assimilation window and the distribution of all parameters. Here we display for the D D 5

Lorenz96 model the marginal distribution of the state x3.2/ at the time t2. Of interest is the non-
Gaussianity of the distribution

The expected state estimates track the known path quite well in both the
assimilation and the prediction windows for the observed as well as the unobserved
state variables. The uncertainties for the predicted states grow in time, because the
largest Lyapunov exponent of the model is positive, about 0.9 in units of inverse
time (Kostuk 2012). This means that at the end of the prediction period, t D 6, the
uncertainties should be about six times as large as the uncertainties at the end of the
assimilation window, t D 4.

The accuracy with which the expected state variables track the known data
indicates that both the eight observed states as well as the twelve unobserved states
have been accurately estimated at the end of the observation window. From the
displayed examples x0.t/ and x19.t/ we can also see that the estimations within the
observation window are also quite accurate.

In the example of Figs. 5.25 and 5.26, the skewness and kurtosis are both close
to zero in the assimilation window. They are slightly smaller in magnitude for
Rf D 100 than for Rf D 500 (not shown). This suggests that the conditional
distributions are nearly Gaussian during the assimilation window, probably because
of the influence of the measurements. The ratio Rm

Rf
is the determining factor.
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Fig. 5.25 Details of the estimation using the Monte Carlo evaluation of the data assimilation path
integral for the Lorenz96 model with D D 20. We display the estimation and prediction of the
observed variable x0.t/. Left panel: conditional mean (green line) and RMS errors (red) along
with Gaussian distributed noisy observations (blue solid circles) and the known x0.t/ (solid black
line). Right panel: skewness (blue up triangles) and kurtosis (red down triangles) of x0.t/. These
are Monte Carlo estimates from the path integral for the Lorenz96 model with D D 20; Rm D
8; Rf D 100. The assimilation window is 0 � t � 4, and the prediction window is 4 < t � 6.
There are no observations in the prediction window. The parameter estimate is f D 8:25 ˙ 0:09.
Predictions for t > 4 are made with a fourth-order Runge–Kutta procedure using information on
the estimated parameter and state variables at t D 4

Fig. 5.26 Details of the estimation using the Monte Carlo evaluation of the data assimilation path
integral for the Lorenz96 model with D D 20. We display the estimation and prediction of the
unobserved variable x19.t/. Left panel: conditional mean (green line) and RMS errors (red)
along with known x19.t/ (solid black line). No observations here. Right panel: skewness (blue up
triangles) and kurtosis (red up triangles) of x19.t/. These are Monte Carlo estimates from the path
integral for the Lorenz96 model with D D 20; Rm D 8; Rf D 100. The assimilation window is
0 � t � 4, and the prediction window is 4 < t � 6. The parameter estimate is f D 8:25˙ 0:09.
Predictions for t > 4 are made with a fourth-order Runge–Kutta procedure using information on
the estimated parameter and state variables at t D 4
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Fig. 5.27 Details of the estimation using the Monte Carlo evaluation of the data assimilation path
integral for the Lorenz96 model with D D 100. We display the estimation and prediction of
the observed variable x47.t/. Left panel: conditional mean (dashed line) and RMS error along
with Gaussian distributed noisy observations (open circles) and known x47.t/ (solid line). Right
panel: skewness (open triangles) and kurtosis (solid triangles) of x47.t/. In the action we selected
Rm D 8; Rf D 100. The assimilation window is 0 � t � 4, and the prediction window is
4 < t � 6. Predictions for t > 4 are made with a fourth-order Runge–Kutta procedure using
information on the estimated parameter and state variables at t D T D 4. The parameter used
in generating the clean data was f D 8:17, while the estimate from the Monte Carlo calculation
using noisy data is f D 8:32˙ 0:044

When this is sizeable, the Gaussian errors in the observations are important. When
this ratio goes to zero, in the deterministic or zero model error limit, the non-
Gaussian part of the action is dominant. When the assimilation window ends, the
distribution is evolved according to the nonlinear dynamics of the model, and so
it becomes much more non-Gaussian and less localized because of chaos. The
distribution can become quite complicated with the regions containing the most
probable paths no longer contiguous in path space.

This suggests that as the models of the observed process become better and better,
namely, as model error is reduced, the role of the nonlinear, non-Gaussian elements
of the action A0.X;Y.m// will be more and more important. Approximations to
the assimilation of information from measurements based on Gaussian assumptions
may become less valuable in this circumstance.

We performed calculations such as those reported here for a variety of values of
the dimension D of the model. The results were much the same as for D D 20

and for comparison we show for D D 100 the conditional expectation value of an
observed state x47.t/. This is in Fig. 5.27. We used 40 observations at each time
point where observations were made. The 60 unobserved states and the parameter
f were estimated using the Monte Carlo approximation to the path integrals. The
set of estimated values of the observed and unobserved states at T D 4 associated
with each accepted path along with the parameters associated with that path were
used as initial conditions and parameter values for prediction into t > 4 using a
fourth-order Runge-Kutta algorithm. The predicted paths were averaged to yield
an expected prediction, and the RMS error about this mean was evaluated. These
results are displayed in Fig. 5.27.
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5.4.4 Non-Gaussian Measurement Error

In the use of the path integral method, or any other data assimilation approach
actually, we do not know the statistics of the error in the measurements, and while
the assumption that they are Gaussian is common, it is by no means necessary.
To examine the implication of selecting another distribution of the errors, we
represented the measurement errors by a generalized Lorentzian distribution (also
known as a Cauchy distribution)

P.z/ / 1

.1C z2/4
: (5.35)

This replaces the conditional mutual information term in the action by

�
mX

nD0
CMI.x.n/; y.n/jY.n� 1// D 4

mX

nD0

LX

lD1
log

�

1C Rm

2
.yl .n/ � xl .n//2

�

:

(5.36)
We chose the generalized Lorentzian distribution as it, too, is an approximation to a
delta function that would here represent zero noise in the measurements. Selecting
the power 4 here was only to assure that many moments of the distribution were
finite while yielding a power law tail rather than the exponential tail of a Gaussian.
We tried other powers such as 6, and it appeared to make no difference.

Our goal was to select a wrong distribution for the noisy measurements and
determine if it mattered very much. We provided measurements with Gaussian
noise. The effect is a somewhat larger, though still small, skewness and kurtosis
in the assimilation window.

Figure 5.28 shows the results of this calculation, using the same measurement
data as the other two examples, and with Rf D 100;Rm D 8. This change does not
make a substantial difference for the values of Rm and Rf we used, except that the
conditional distributions of the observed variables in the assimilation window are
slightly less consistent with a Gaussian than before. The exploration of the effect of
non-Gaussian measurement noise distributions can be explored in a straightforward
manner through the use of path integral Monte Carlo methods.

5.4.5 How Often Should One Make Measurements?

Additionally, we addressed the question of how often observations are required
in the data assimilation window. The answer to this is likely to be model dependent,
but for the Lorenz96 model with D D 20, we addressed this question by doing
the Metropolis-Hastings Monte Carlo calculation for several different frequencies
of making observations in the assimilation window, ranging from observations at
all 80 time points down to observations at only three time points. In all cases eight
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Fig. 5.28 Details of the estimation and prediction using the Monte Carlo evaluation of the data
assimilation path integral for the Lorenz96 model with D D 20 when we take the error in the
measurements to be distributed as a Lorentzian; P.z/ / .1 C z2/�4. The noise added to the
clean data in this twin experiment was Gaussian. We display the estimation and prediction of
the observed variable x0.t/. Left panel: conditional mean (dashed line) and RMS error along
with Gaussian distributed noisy observations (open circles) and known x0.t/ (solid line). Right
panel: skewness (open triangles) and kurtosis (solid triangles) of x0.t/. These are Monte Carlo
estimates from the path integral for the Lorenz96 model with D D 20; Rm D 8; Rf D 100. The
assimilation window is 0 � t � 4, and the prediction window is 4 < t � 6. In these calculations
the conditional mutual information term in the action represents the measurement errors as the
generalized Lorentzian, Eq. (5.36). The actual distribution of errors is Gaussian. The parameter
estimate is f D 8:24 ˙ 0:08. Predictions for t > 4 are made with a fourth-order Runge–Kutta
procedure using information on the estimated parameter and state variables at t D 4

variables were observed; it is only the data sampling rate that is being changed. As
a diagnostic we compare the conditional mean < xa.n/ > with the true trajectory
wa.n/ by computing the RMS error and dividing by the RMS variation over time of
< xa.n/ >. We define the diagnostic

q
1
m

Pm
nD1.wa.n/� < xa.n/ >/2

q
1
m

Pm
nD1.< xa.n/ > � Nxa/2

; (5.37)

where Nxa D 1
m

Pm
nD1 < xa.n/ >. We plot this for one observed variable,

x8.t/, and one unobserved variable, x9.t/, in Fig. 5.29. The accuracy of the
estimations remains good for a wide range of number of measurements, then
degrades rapidly as the number becomes small. We have not made a systematic
study of this effect, but we suspect that as the time between measurements becomes
larger than the inverse of the largest Lyapunov exponent of the model, the quality of
these estimations will degrade.
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Fig. 5.29 RMS error of estimated state variables over the data assimilation window. The max-
imum on the x-axis, 80, means that there were eight observations at 80 different equally spaced
times in the data assimilation window 0 � t � 4. We report the diagnostic defined in Eq. (5.37) for
one observed variable, a D 8, and one unobserved variable a D 9. The up blue triangle shows the
error for the observed state variable x8(t). The down red triangle shows the error for the unobserved
state variable x9(t)

5.5 Shallow Water Equations

In this section we turn to the analysis of statistical data assimilation in a geophysical
flow, a one-layer shallow water equation described in detail below. Three fields
define the flow: horizontal velocity in the x and y directions and the height of
the fluid over a fixed base. We create an N � N grid and discretize the flow to
D D 3N 2 ordinary differential equation. We carry out a twin experiment by first
generating data in a chaotic flow regime and then asking how many and which
observations among the D we must observe to permit synchronization of the data
with the output of the model generated with different initial conditions then used
for generating the data. Once this critical number of observations Lc is established
and the identification of the particular observations comprising the required Lc , we
perform a statistical data assimilation using the path integral evaluated via the Monte
Carlo method already described. As all parameters are set, we seek to accurately
estimate the unobserved state variables in this. The accuracy of the state variable
estimation is tested, validated or invalidated, by predicting beyond the observation
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window, and we find that when the number of observations and the appropriate
observations are used, so that the data and the model output synchronize, the
predictions are very accurate. In other cases, when synchronization is absent, the
predictions are not accurate.

We display an example where the accuracy of estimation in the observation
window appears excellent though synchronization does not occur for that selection
of observations, and predictionis not good for that situation. We also show an
example where estimation in the observation window is inaccurate and predictionis
equally inaccurate. If one is using statistical data assimilation to establish a sense
of the state of the model at the termination of observations, that alone will not
be informative if the observations are not among the collections that exhibit
synchronization.

We first describe the physics of the fluid model, a shallow layer of fluid in a
rectangular section of a rotating earth, where the standard ˇ-plane approximation is
made to the local rotation around the vertical direction (Pedlosky 1987; Vallis 2006;
Gill 1982).

5.5.1 One-Layer Shallow Water Flow

In atmospheric and ocean models of flows related to weather and climate, there
is a natural simplifying approximation arising from the small scale of vertical
dimensions compared to horizontal spatial dimensions on the earth’s surface. The
vertical scale LV is order of 10 km in the atmosphere, and a bit smaller in the ocean,
while the horizontal scale LH is 100’s to 1000’s of kilometers. This results in large
horizontal velocities u.x; y; z; t/ Ox C v.x; y; z; t/ Oy relative to the vertical velocity
w.x; t; z; t/Oz in the shallow layer of fluid: w � LV

LH
u. This is illustrated in Fig. 5.30.

We proceed along with the detailed discussion presented by Pedlosky (1987; Gill
1982) of the dynamics of a shallow waterflow in a Cartesian .x; y; z/ D .r; z/ frame
rotating about the z-axis at a rate f .r/

2
. This is to be thought of as a patch, perhaps

a few 100 km on a side at mid-latitudes on the earth’s surface. The dynamics of
the flow are determined by the horizontal velocity u.r; z; t/ Ox C v.r; z; t/ Oy and the
time varying surface height h.r; t/. The density of the fluid is taken as a constant
� and gravity force is -�gOz. The momentum dynamics in the vertical direction is
dominated by hydrostatic balance

0 D �@p.r; z; t/
@z

� �g; (5.38)

where the vertical gradient of the pressure is balanced by the force of gravity. If
one has significant variation in density, this is usually represented by many shallow
layers in each of which the fluid density is taken constant.

The vertical momentum equations neglect accelerations associated with vertical
motion, and we have for the pressure
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Fig. 5.30 Illustration of the Ekman pumping of the interior, shallow waterflow which transfers

forcing from the wind stress ø.r/ at the surface. A boundary layer of thickness ıE D
q

2A
f

[see

Eq. (5.44)] in which the horizontal velocity u varies rapidly in z is formed. u decays exponentially
from its value at the surface z D h.r; t / and rotates its direction. z and h are measured in units of
the scale LV of vertical depths in the fluid

p.r; z; t/ D �g.h.r; t/ � z/; (5.39)

taking the pressure at the surface z D h.r; t/ equal zero.
We account for frictional forces in two different ways:

• Add Newtonian shear friction and bottom (z D 0) friction to the horizontal
momentum equations.

• Represent the forcing of the fluid as wind stresses �.r; t/ D �x.r; t/ OxC �y.r; t/ Oy
at the fluid surface z D h.r; t/. To meet the boundary condition at the surface
where pressure and stresses must be continuous (Batchelor 1967), a thin layer
near the surface is identified in which the flow in the interior transitions to that
dictated by the boundary conditions. This kind of boundary layer is familiar in
dissipative fluid flows (Schlichting and Gersten 2000).

In the interior flow we have the momentum equations (Batchelor 1967) (Navier-
Stokes equations) for u.r; t/ D u.r; t/ Ox C v.r; t/ Oy with r D .x; y/

@u.r; t/
@t

C u.r; t/ � ru.r; t/

D �rp.r; z; t/C u.r; t/ � Ozf .r/C friction C body forcing

D �grh.r; t/C u.r; t/ � Ozf .r/C friction C body forcing: (5.40)
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Mass conservation, when � is a constant, is

@w.r; z; t/
@z

C r � u.r; t/ D 0; (5.41)

which can be integrated in the z-direction to yield

w.r; z; t/ D �zr � u.r; t/CW.r; t/; (5.42)

and W.r; t/ will be determined by the vertical flow at the bottom of the thin layer
between the interior flow and the surface.

To represent the stress from wind above the fluid surface the stress tensor is
parametrized by an effective viscosity A

�x D �A
@u

@z
�y D �A

@v

@z
: (5.43)

In the thin layer where friction transports energy from the wind stress to the interior
flow, the horizontal velocity varies rapidly with z. Using these forms for the stress,
the horizontal velocities are found to vary in the vertical on a scale called the Ekman
thickness

ıE D
s
2A

f
; (5.44)

which is approximately 10’s of meters in ocean flows.
Integrating the flow through the thin layer results in a horizontal flux of mass

that requires a vertical flow at the surface. Combining this with the definition of
w.r; h.r; t// D dh.r;t /

dt when there is no forcing yields the dynamical equation for
h.x; t/

@h.r; t/
@t

C r � .u.r; t/h.r; t// D �Oz � curl

�
�.r; t/
�f .r/

�

: (5.45)

Summarizing these equations and making the bottom and interior friction explicit,
we have

@h.r; t/
@t

C r � .h.r; t/u.r; t// D �Oz � curl.
�.r; t/
�f .r/

/

@u.r; t/
@t

C u.r; t/ � ru.r; t/ D �gr.h.r; t/C Ar2u.r; t/ � �u.r; t/

Cu.r; t/ � Ozf .r/C body forcing: (5.46)
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This is a compact set of fluid flow equations with forcing both in the interior flow
and from wind stresses transferred through a thin upper boundary layer called the
Ekman layer. The flow through the Ekman layer pumps mass and momentum into
the interior layer adding forcing in the h.r; t/ equations to any intrinsic body forces
that could arise from other sources.

If the rotation rate is large enough so that the Rossby number (Pedlosky 1987;
Vallis 2006; Gill 1982)

Ro D U

fLH
; (5.47)

where U is the scale of the horizontal velocity, is small, then the dominant feature
of the interior flow is a balance between gravity forcing �grh.r; t/ and the Coriolis
force u.r; t/ � Ozf .r/ leading to geostrophic flow

ugeostrophic.r; t/ D gOz � rh.r; t/
f .r/

: (5.48)

Corrections to this can be expressed in an expansion in Ro which is about 0.1 in the
atmosphere and 0.01 in the ocean (Vallis 2006; Gill 1982).

Interestingly in one of those serendipitous connections these equations also
describe the flow of a beam of charged particles in strong crossed electric and
magnetic fields: the electric force is analogous to the gravity driving and the
magnetic force is analogous to the Coriolis force. Geostrophic flow is called “E�B”
drift in the charged particle motion (Northrop 1963).

5.5.2 Statistical Data Analysis for the Shallow Water Equations

Our interest in these equations arises with the question: how many measurements
on the three fields fu.r; t/; v.r; t/; h.r; t/g at each time tn in an observation interval
ft0; t1; : : : ; tm D T g are required to allow accurate estimation of the parameters in
the model and the full state of the model at t D T and then allow for accurate
prediction for t > T ?

We analyze the situation where there are no body forces in the interior, so the
fluid is forced solely by Ekman pumping from the surface wind stresses through the
boundary layer. We selected mid-latitude dynamics on a ˇ plane with coordinates
r D .x; y/ and rotating at f.r/=2 about the z-axis, which means f .r/ D f0 C ˇy.
We also chose as the forcing at the surface of the fluid a stress representing wind
in the East–West direction varying with the North–South coordinate: �x.r/ D
FW cos.2�y/. Finally we write h.r; t/ D H0 C �.r; t/. The parameters for the flow
are reported in Table 5.11. Most parameters are taken from the literature on shallow
water flows; however, the forcing strength FW was selected so the solutions to the
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Table 5.11 Parameters used in the generation of the shallow water
“data” for the twin experiment

Parameter Physical quantity Value in twin experiments

	t Time step 36 s
	X East–west grid spacing 50 km
	Y North–south grid spacing 50 km
H0 Equilibrium depth 5.1 km
f0 Rotation rate 5 �10�5 s�1

ˇ Coriolis parameter 2.0 �10�11 .s-m/�1

FW Wind stress 0.2 m2/s3

� Effective viscosity 10�4 m2/s
� Rayleigh friction 2 �10�8 s�1

shallow water equations on a 16� 16 grid were chaotic. We return below to how we
know the flow is chaotic.

If we place the flow on an N�N grid for rD.x; y/, we have DD3N 2 degrees
of freedom expressed in ordinary differential equations for fu.i; j; t/; v.i; j; t/;
h.i; j; t/g on the grid labeled by locations .x; y/ D fi	x; j	ygI i; j D
1; 2; : : : ; N g and .	x;	y/ the spatial step size on the grid.

To determine the number of required measurements for a selected flow regime,
we want to know how many observations Lc at each observation time are needed
to produce CLEs that are all negative, indicating the stability of the synchronization
manifold. We use Lc to indicate the critical number of observations leading to all
negative CLEs on the synchronization manifold.

We have identified three ways to determine Lc :

• Couple L D 1; 2; : : : ; Lc data time series into the shallow water flow model
through ual .yl .n/ � xl .n//. Then use the model data sets construct the D � D
Oseledec matrix for L D 1; 2; : : : ; Lc . Determine the largest CLE for the
Oseledec matrix for L D 1; 2; : : : ; Lc and establish when the largest CLE
becomes negative.

• IntroduceL D 1; 2; : : : ; Lc data time series into the action for the shallow water
flow model and using the model data sets construct the action A0.X;Y.m//. For
each L solve the Langevin equation

dA0.X.s//
ds

D �@A0.X.s//
@X.s/

(5.49)

for many X.s D 0/ going from this initial choice to Xfinal. By examining
A0.Xfinal/ determine when one or a few sharp minima appear.

• Couple L D 1; 2; : : : ; Lc data time series, as in the first method, into the shallow
water flow model and determine when the synchronization error between the data
time series and the equivalent model output goes to zero as a function of L. One
must establish not only how many data time seriesLc are necessary, but we must
also identify which data time series are required.
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Of these three methods the third is the most computationally efficient as D D
3N 2 becomes large. The first requires accurate handing of 3�N2 by 3�N2 matrices
which can be quite ill-conditioned. The second requires solving a differential
equation in 3 �N2 � .mC 1/ dimensions many times to exhibit the distribution of
minima ofA0.X/ for eachL D f1; 2; : : : ; Lcg. The third requires repeated solutions
of the dynamical equations for different values of L and the coupling strength. This
is the approach we pursue here.

Once one has established Lc and determined which Lc measurements at grid
points are needed, then one may check the utility and physical viability of the
answer by using those Lc measurements to determine the full state x.T / at t D T

and then predicting forward in time from x.T / as initial conditions. If L < Lc ,
predictions are likely to be inaccurate as the estimation of the full model state at T
is probably not very good. For L � Lc , predictions could be accurate within the
intrinsic limitations of a chaotic flow, if the model output is chaotic.

5.5.3 Generating the Data

We discretized the shallow water equations on a regular grid following (Sadourny
1975). We selected an enstrophy (Pedlosky 1987; Gill 1982) conserving shallow
water system on a staggered C grid. On this grid we locate the dynamical variables
as follows (see Fig. 5.31):

• Pressure (per unit mass) P.r; t/ and height h.r; t/ information is on gridpoints.
P.r; t/ D gh.r; t/.

• u.r; t/ is defined on lines connecting adjacent horizontal (East–West) gridpoints.
• v.r; t/ is defined on lines connecting adjacent vertical (North–South) gridpoints.

Using the parameters in Table 5.11 we generated data on a 16�16 grid using the
Sadourny (1975) enstrophy conserving discretization scheme. Periodic boundary
conditions were imposed on the flow. After integrating these equations for several
thousand model time hours and discarding the transient flow, we display in Fig. 5.32
a snapshot of the flow at the end of the assimilation window, t D 40 h.

The flow generated with these parameters is chaotic. We demonstrate this by
evaluating the largest Lyapunov exponent for the 3 � N2 D 768 dimensional
system. To accomplish this we selected two sets of very close initial conditions,
xset 1.0/ and xset 2.0/, and then we integrated the equations forward in blocks of
4,000 time steps of 0:01 h each. During each block of 40 h, we tracked the RMS
distance between the two slightly different solutions to the shallow water equations
and evaluated the largest Lyapunov exponents by approximating the growth of this
error as jxset 1.t/ � xset 2.t/j � jxset 1.0/ � xset 2.0/j expŒLE.t=1 h/�. We then
recorded LE for each block of time steps.

Eventually this difference, selected to be small at t D 0, grows quite large, so we
follow standard practice (Kantz and Schreiber 2004) and rescale the value at a later
time to be quite small again. Then we continue our integration once again. Since
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Fig. 5.31 Display of the location on the N � N grid (N D 16 in our calculations) of the
dynamical variables for the shallow water flow forced by Ekman pumping. The pressure (per
unit mass) P.r; t / and height h.r; t / information are located on gridpoints. P.r; t / D gh.r; t /.
The meridional velocity u.r; t / is defined on lines connecting adjacent horizontal (East–West)
gridpoints, and the zonal velocity v.r; t / is defined on lines connecting adjacent vertical (North–
South) gridpoints. �.r; t / D .curl u.r; t //3

the Lyapunov exponents are defined by a linearized flow on the tangent plane of the
dynamics, the rescaling causes no harm and enables numerical stability.

After rescaling we tracked the two orbits for another block of 40 h in time,
and we continued in this manner for 80 blocks of time each of 40 h of duration.
In Fig. 5.33 we present the estimated largest Lyapunov exponents LE from each
of the horizontal velocity and height fields. These estimates vary a small amount
from each other as the time window over which nearby orbits is tracked is only
40 h and also because each rescaling starts an orbit from different locations on the
system attractor, and the local Lyapunov exponents, for finite time segments, are
inhomogeneous on the attractor. The variation of the largest Lyapunov exponents
is seen to be relatively small, and the average over the variation shown in Fig. 5.33
for each field is LE � 0:122=h or LE � 1=.8:2 h/. From that we estimate that
predictions should be accurate, assuming we have accurately estimated the states
at the beginning of predictions, up to the order of 10 or 20 h after the start of
predictions.

The positive value for the largest Lyapunov exponent is the signal that the flow
is chaotic (Abarbanel 1996; Kantz and Schreiber 2004).
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Fig. 5.32 Display of h.i; j; t D 40 h/ and .u.i; j; 40 h/; v.i; j; 40 h// from initial value integration
of a 16 � 16 one-layer shallow water equation driven by surface Ekman pumping. The integration
was carried forward � 2,000 simulated hours with a time step of 0.01 h. This is the height and
horizontal velocity fields at the end of a 40 h observation period following that initial transient flow

5.5.4 Synchronization of the Data with the Model Output

Our model is now employed to generate the synchronization error for each of the
fields �i;j .t/ D fu.i; j; t/; v.i; j; t/; h.i; j; t/g by evaluating

RMS synchronization error D 1

Tmax

TmaxX

tD0

� X

observed i;j

.�i;j�data.t/ � �i;j�model.t//
2

�

(5.50)
as a function of Tmax for various configurations of the observed set of grid locations
.i; j /. As a notational remark, we use the integer labels .i; j / to indicate locations
on the grid, while the independent variables .x; y/ indicate continuous spatial field
labels. We want to know how many and which measurements are required to
synchronize the data and the model output. The number of data streams that must be
observed we call Lc . Which Lc observations are required will be, as we will soon
see, a matter of searching among the possibilities.
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Fig. 5.33 The largest Lyapunov exponents for the 16 � 16 Ekman pumped one-layer shallow
water equations. Two time series for the fields fh.r; t /; u.r; t /; v.r; t /g were evaluated with a small
change in initial conditions for the two time series. The growth in the RMS errors for the difference
in each field over 40 h segments of time were tracked and fit to expŒLE .t=1 h/� in each time block.
The exponent “LE” is the largest Lyapunov exponent for each field, and this varies slightly over
different segments of the attractor as shown. The average for each field over the 80 blocks of length
40 h is 0.122/h or 1/(8.2 h)

To couple the information from the observations into the model, we add a
term k.�ij�data.t/ � �i;j�model.t//I k � 0 to the right-hand side of the differential
equations for �ij .t/ that correspond to an observed field. For example, if we observe
h1;2�data.t/ then in the differential equation for h1;2�model.t/, we add the term
k.h1;2�data.t/ � h1;2�model.t//. In this calculation all observations are coupled into
the model equations with the same value for the constant k.

With different initial conditions for �i;j�model.0/ than were used in generating
the data �i;j�data.t/, we evaluate the RMS synchronization error for each field as
a function of Tmax for several values of k. In this we found that when k is larger
than approximately 0:25 synchronization appears. This means that as Tmax increases,
for k �� 0:25 the RMS synchronization error goes to very small values. This
can also be seen by choosing Tmax large and fixed and then evaluating the sum for
different values of k. Now using k D 0:4 for the first 40 h of integration, we can
examine various selections of Lc and observation locations numbering Lc to see if
synchronization occurs. For a second 40 h of integration, we reset k to 0. k D 0 is
the autonomous chaotic flow.
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Fig. 5.34 The RMS synchronization error RMS synchronization error D 1
Tmax

PTmax
tD0P

observed i;j .�i;j�data.t /� �i;j�model.t //
2 between two chaotic trajectories of the 16� 16, Ekman

pumped one-layer shallow water equations. In the first 40 h of calculation with time step 0.01 h,
the data was coupled via k.�i;j�data.t /� �i;j�model.t // into the differential equation for each field
in the model receiving information from the data. The coupling was k D 0:4 in this segment. k
was set to zero for the remaining 40 h of the calculation. We see that the RMS errors, Eq. (5.50),
between the two time series for t > 40 h increase as expected for chaotic trajectories. In this
calculation data from all 256 grid points for h.i; j; t /, all 256 grid points for u.i; j; t /, and the 16
grid points of the Northernmost row of v.i; j; t / were presented to the model equations. This
shows synchronization between the two time series is achieved with this selection of 528
(69 %) of the 768 independent fields of the total degrees of freedom

Since the data and the model output are chaotic, we expect the two trajectories in
the second time segment of 40 h to move apart across the attractor as they arise from
different initial conditions. The decorrelation between the trajectories associated
with their separation on the shallow water attractor increases the synchronization
error until it saturates near the size of the attractor.

In Fig. 5.34 we display the RMS synchronization error for each of the fields
�.i; j; t/. In this calculation data from all 256 grid points for h.i; j; t/, all 256
grid points for u.i; j; t/ and the 16 grid points of the Northernmost row of
v.i; j; t/ were presented to the model equations. For the first 40 h of integration
k D 0:4, and we couple the observed fields into the shallow water equations. We
see that the synchronization error for each of the fields u; v, and h decreases to
order 10�4 or smaller indicating the data and the model output are synchronized.
After we turn off the coupling at t D 40 h, so k D 0, the model is evolving
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Fig. 5.35 The RMS synchronization error RMS synchronization error D 1
Tmax

PTmax
tD0P

observed i;j .�i;j�data.t /� �i;j�model.t //
2 between two chaotic trajectories of the 16� 16, Ekman

pumped one-layer shallow water equations. In the first 40 h of calculation with time step 0.01 h,
the data was coupled via k.�i;j�data.t /� �i;j�model.t // into the differential equation for each field
in the model receiving information from the data. The coupling was k D 0:4 in this segment. k
was set to zero for the remaining 40 h of the calculation. We see that the RMS errors, Eq. (5.50),
between the two time series now increase as expected for chaotic trajectories. In this calculation
data from all 256 grid points for h.i; j; t /, all 256 grid points for u.i; j; t /, and the 16 grid points
of the Westernmost column of v.i; j; t / were presented to the model equations. This shows
no synchronization between the two time series

without information from the data; the chaotic model output and the chaotic data
become unsynchronized. This happens because at t D 40 h, the values of the
model state variables, though possibly very close to the data values, have residual
small errors when compared to the data, and this error grows as expŒLE.t=1 h/�
because each is chaotic. This absence of synchronization is associated with positive
CLEs on the synchronization manifold (Abarbanel 1996; Kantz and Schreiber 2004)
where data.t/ D model output.t/. The surfaces over which one must search for
unobserved state variables or unknown parameters is replete with local minima
when k D 0 and is smooth and easy to search for k D 0:4. In further examples
below, we will see that it is not only the number of observed state variables that
matters, but it also matters which ones are observed.

In Fig. 5.35 we perform the same calculation as before with data from all 256
grid points for h.i; j; t/, all 256 grid points for u.i; j; t/, and the 16 grid points
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Fig. 5.36 The RMS synchronization error RMS Synchronization Error D 1
Tmax

PTmax
tD0P

observed i;j .�i;j�data.t /� �i;j�model.t //
2 between two chaotic trajectories of the 16� 16, Ekman

pumped one layer shallow water equations. In the first 40 h of calculation with time step 0.01 h,
the data was coupled via k.�i;j�data.t /� �i;j�model.t // into the differential equation for each field
in the model receiving information from the data. The coupling was k D 0:4 in this segment.
k was set to 0 for the remaining 40 h of the calculation. We see that the RMS errors, Eq. (5.50),
between the two time series now increase as expected for chaotic trajectories. In this calculation
data from all 256 grid points for h.i; j; t /, all 256 grid points for v.i; j; t / and the 16 grid points
of the Westernmost column of u.i; j; t / were presented to the model equations. This shows
synchronization between the two time series

of the Westernmost column of v.i; j; t/ presented to the model equations. In
this instance, we see that synchronization did not transpire. Finally in Fig. 5.36
we once again perform the same calculation now using data from all 256 grid
points for h.i; j; t/, all 256 grid points for v.i; j; t/, and the 16 grid points of the
Westernmost column of u.i; j; t/ presented to the model equations. In this
third setting we see that synchronization of the data and the model output again
occurs. In each of the three examples, Lc D 528; however, we find that in one of
the choices of Lc observations we do not achieve synchronization. We now turn to
the ability to predict beyond a 40 h observation period for these selections.



5.5 Shallow Water Equations 187

5.5.5 Results for the Shallow Water Equations:
Synchronization Implies Predictability

Using the synchronization error calculations just outlined, we identified selections
of observations among the fu.i; j; t/; v.i; j; t/; h.i; j; t/g where we see synchroniza-
tion on the y.n/ � x.n/ synchronization manifold as well as some selections of
observations where synchronization does not occur. In each case we use Metropolis-
Hastings Monte Carlo methods to evaluate the path integral in order to estimate
the mean trajectory and the RMS variation about the mean from the beginning
of an observation window for 40 h with a time step 	t D 0:01 h or 3.6 min. The
action was approximated as coming from Gaussian noise in the measurements and
a Gaussian approximation to the transition probability for the model dynamics.

In our calculations we used 200,000 updates of the path. The first 100,000
updates were excluded from the statistics on the expectation values. To broaden the
basin in which the estimation procedure searched, we used the device of simulation
annealing wherein the measurement error and model error are scaled by a common
factor ˇ0 acting like an inverse temperature, then at selected times in the sequence
of Monte Carlo iterations, ˇ0 is increased—that is, the effective temperature is
decreased, until we arrive at ˇ0 D 1. Simulated annealing was done over the first
80,000 iterations, with various values for the rate at which a simulated annealing
factor ˇ0 was introduced. The targeted acceptance rate was facc D 0:4, and the step
size adjustment rate was ˛ D 0:1. The initial settings for Monte Carlo step sizes
were 	i D 0:1 for U.i; j /; V .i; j / and 	i D 0:875 for the P.i; j / state variables.
The scaling factor of 8.75 was used because the dynamical range of P.i; j; t/ was
about 8.75 times larger than the dynamical range of U.i; j; t/ and V.i; j; t/.

We used m D 4; 000 data points or 40 h of observations for the statistical data
assimilation. The integral estimated using Monte Carlo methods has dimension
about 2:8 � 106. The matrix Rf was taken to be diagonal with 12.8 on the diagonal
for the U.i; j /; V .i; j / entries and 0.17 on the diagonal for the P.i; j / entries. The
matrix Rm was also set to be a diagonal matrix with 100.0 on the diagonal for the
observed U.i; j /; V .i; j / entries and 1.0 for the observed P.i; j / entries. Rm.i; j /
is 0 for the times where no observations were made.

Each run of 200,000 iterations took 12.3 h on an NVIDIA GTX 580 which has
512 CUDA threads. The whole process was repeated five times, for a total of a mil-
lion iterations, each time starting off with the final path from the previous run. The
five runs differ by the initial cooling value ˇ0. It was set to 0:0001; 0:1; 0:1; 0:1; 1:0
in sequence. The runs were repeated until the total action stopped decreasing
significantly. Only the last 100,000 iterations of the final run were used in evaluating
the statistics.

Ten different observation configurations were all run simultaneously on a
CPU/GPU cluster running the Rocks Cluster Distribution software and the Oracle
Grid Engine queuing system. The cluster is made up of three compute nodes,
each with four NVIDIA GTX 580 GPUs installed, and a head node with two
additional GTX 580s and an interface to the user and a high bandwidth Infineon
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Fig. 5.37 A display of the comparison between the known value of an unobserved selected field
�i;j .t / during the observation period of 40 h and during the prediction period of an additional 60 h.
The expected value of an unobserved value of u.i; j; t / along with the RMS error in the estimate
for a case when all values of v.i; j; t / and all values of h.i; j; t / were observed and passed to the
model of the Ekman pumped shallow water flow. The Westernmost column of values for u.i; j; t /
were also observed; the data and the model output synchronize. The estimates are accurate and
the predictions are accurate for about 25–30 h after the end of the observation period. This is
consistent with the rate of divergence of the chaotic trajectories according to our estimate of the
largest Lyapunov exponents for this flow. There are no observations in the prediction window

communications node. Each of the configurations of observations was assigned to a
single GPU and was run independently.

We selected different subsets of the 768 fields �i;j .t/ to evaluate the ability of the
path integral method to accurately estimate the unobserved states during and at the
termination of the observation window at t D T D 40 h. Predictions were made by
using all of the accepted paths during the observation window as initial conditions
for the prediction from t D T D 40 h to t D 100 h. The mean prediction and the
RMS variation about that mean are shown in each of the following cases. In the Left
Panel for each selection of observed quantities, we show the expected values along
with the RMS errors about the mean, and in the Right Panel we display the same
quantities but remove the error bars for clarity of the display. The fixed parameters
in the shallow water equations were not estimated in these calculations.
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Fig. 5.38 The same calculation as in Fig. 5.37 without the error bars displayed. Removing these
is for convenience in viewing the expected values. There are no observations in the prediction
window

Our first example uses observations at each value of v.i; j; t/ and each value of
h.i; j; t/ and the Westernmost column of u.i; j; t/ during the observation period.
For this set of observations the data and the model output synchronize.
Removing any of the observations from this set leads to a lack of synchronization.
The results are displayed in Figs. 5.37 and 5.38. We show the time series for an
observed value of u.i; j; t/ both in the period 0 � t � 40 h and for the prediction
window 40 � t � 100 h. The estimates are quite accurate, and we conclude from
the accuracy of the predictions that all unobserved state variables were accurately
estimated using the path integral method. The predictions are accurate for about
twice the inverse largest Lyapunov exponent which is consistent with the chaotic
behavior of the dynamics and the estimation errors at the end of the observation
window. An error at time T of j	x.T /j grows to the size of the attractor, which we
call one here, as j	x.t C T /j � j	x.T /j expŒLE .t=1 h/�. We reported above that
LE � 1=8:2 h, and our estimates at T are accurate to a few percent of the known
value.

Our second example uses observations of all values of u.i; j; t/ and all values
of h.i; j; t/ along with the Northernmost row of values of v.i; j; t/. The results are
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Fig. 5.39 A display of the expected value of an observed value of u.i; j; t / along with the RMS
error in the estimate for a case when all values of u.i; j; t / and all values of h.i; j; t /were observed
and passed to the model of the Ekman pumped shallow water flow. The Northernmost row of values
for v.i; j; t / was also observed. Synchronization of the data and the model occurs. The estimates
are accurate and the predictions are accurate for about 25–30 h after the end of the observation
period. This is consistent with the rate of divergence of the chaotic trajectories according to our
estimate of the largest Lyapunov exponents for this flow

shown in Figs. 5.39 and 5.40. In this example we observe all values of u.i; j; t/,
all values of the height h.i; j; t/, and the Northernmost row of the y-velocities,
v.i; j; t/. This is a situation where we have synchronization between the data
and the model output. Indeed, as we expect by now, we see that the estimation
in this case is quite good, both for the displayed u.i; j; t/ and, as evidenced by the
good prediction, for all the unobserved values of v.i; j; t/.

The third example we present here is an unobserved value of u.i; j; t/ in the case
where we have observed all values of v.i; j; t/ and all values of h.i; j; t/, but no
values of u.i; j; t/. This is a situation where we do not have synchronization of
the data with the model output, and we are able to see this both in the observation
period because this is a twin experiment and in the prediction period where the
we can infer from the inadequate prediction that the unobserved states were not
well estimated. In a realistic situation where we do not have knowledge of the
“unobserved” state variables, that is, not a twin experiment, we could not know that
the unobserved variable we selected was badly estimated in the prediction window
t � 40 h. However, as we know there is no synchronization between the model and
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Fig. 5.40 The same quantities as in Fig. 5.39 without the error bars in order to allow a clearer view
of the divergence of the trajectories in the prediction window associated with the chaotic behavior
of the data and the model orbits. There are no observations in the prediction window

itself for this observation scenario, we would expect bad predictions as well. This
result is shown in Figs. 5.41 and 5.42.

Our penultimate example is displayed in Figs. 5.43 and 5.44 is similar to our
second example. Here we display an unobserved value of v.i; j; t/ when the
observations, all u.i; j; t/, all h.i; j; t/, and the Northernmost row of v.i; j; t/, are
sufficient to allow synchronization between the data and the model output. As we
have synchronization, we expect accurate estimates of the unobserved states at the
end of observations T D 40 h here, and from that knowledge of the full set of state
variables at T , we see that good predictions ensue. The chaotic behavior of the orbits
exhibits itself again by the divergence of the known (data) and the predicted values
of this variable after about 25–30 h after the end of observations.

The final example we display has another message. Here we have observations
of all values of h.i; j; t/ and various values of u.i; j; t/ and v.i; j; t/ but not
sufficient or appropriate observations to yield synchronization between the data
and the model output. However, as we see in Figs. 5.45 and 5.46 we have excellent
estimates of the observed u.i; j; t/ variable in the observation window, nonetheless,
we see quite inadequate predictions after the observations cease. This is the result
of the inability of the data and the model output to synchronize and efficiently
pass information from the data to the model. Estimations of the unobserved state
variables apparently fail in this circumstance.
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Fig. 5.41 A display of the expected value of an unobserved value of u.i; j; t / along with the RMS
error in the estimate for a case when all values of v.i; j; t / and all values of h.i; j; t /were observed
and passed to the model of the Ekman pumped shallow water flow. No values of u.i; j; t / were
observed. There is no synchronization of the data and the model output. Neither the estimates nor
the predictions are accurate with only these 512 fields observed. Display of the known values of the
unobserved u.i; j; t / along with the error bars in the estimation. The first 40 h is the observation
window. The second 60 h is the prediction window. There are no observations in the prediction
window

5.6 Synopsis and Perspectives: Twin Experiments

Twin experiments use no data but allow us to explore important issues about pro-
posed physical relevant to extracting information about model states and parameters
when data becomes available.

Addressing the number of measurements required to permit an accurate search
for parameters and unobserved states is an important use of twin experiments.
This is accomplished through examining synchronization of the model with data
generated by the model itself when 1; 2; : : : ; L measured quantities are available.
Further, using twin experiments one can explore which measurements should be
used.

When twin experiments reveal that the measurements required are not in the
toolkit of the laboratory providing the data to inform and test one’s model,
conversations should ensue on how to address that deficiency. This is a move away
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Fig. 5.42 The same quantities as in Fig. 5.41 without the error bars in order to allow a clearer view
of the divergence of the trajectories in the prediction window associated with the chaotic behavior
of the data and the model orbits. There are no observations in the prediction window

from a traditional view which provides data not particularly informed by the class
of models one wishes to investigate and that can lead to dead ends in many cases.

A familiar use of twin experiments is to explore new methods for performing
statistical data assimilation. This value remains.

If one can pass along advice to the reader, ours would be to use twin experiments
for a thorough examination of the model or models one has in mind. Answering
the kinds of question touched on in this chapter puts one in a good position to
understand when your models, presented with laboratory or field data, are shown
to be inconsistent with the data, where the inconsistency arises. In the more
favorable circumstance when the model is consistent with the data and predicts
model responses to additional forcing, one is in a good position to understand the
dynamics of that success.
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Fig. 5.43 A display of the expected value of an unobserved value of v.i; j; t / along with its RMS
error in the estimate for a case when all values of u.i; j; t / and all values of h.i; j; t /were observed
and passed to the model of the Ekman pumped shallow water flow. The Northernmost row of
values for v.i; j; t / were observed, and synchronization of the data and the model does occur.
The estimates are accurate and the predictions are accurate for about 25–30 h after the end of
the observation period. This is consistent with the rate of divergence of the chaotic trajectories
according to our estimate of the largest Lyapunov exponents for this flow. Display of the known
values of the unobserved v.i; j; t / along with the error bars in the estimation. The first 40 h is the
observation window. The second 60 h is the prediction window. There are no observations in the
prediction window
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Fig. 5.44 The same quantities as in Fig. 5.43 but without the error bars in order to allow a clearer
view of the divergence of the trajectories in the prediction window associated with the chaotic
behavior of the data and the model orbits. There are no observations in the prediction window
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Fig. 5.45 A display of the expected value of an observed value of v.i; j; t / along with the RMS
error in the estimate for a case when all values of h.i; j; t / and various values of v.i; j; t / and
u.i; j; t / were observed and passed to the model of the Ekman pumped shallow water flow.
Synchronization of the data and the model does not occur. The estimates are accurate but the
predictions are not. We display of the known values of the unobserved v.i; j; t / along with the error
bars in the estimation. The first 40 h is the observation window. The second 60 h is the prediction
window. There are no observations in the prediction window
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Fig. 5.46 The same quantities as in Fig. 5.45 but without the error bars in order to allow a clearer
view of the divergence of the trajectories in the prediction window associated with the chaotic
behavior of the data and the model orbits. There are no observations in the prediction window



Chapter 6
Analysis of Experimental Data

Prologue to the Chapter

All but two of the examples we have discussed in this book are twin experiments
where laboratory or field data is not available. The example of the Colpitts
circuit (Quinn et al. 2009) seen in Chap. 2 was a mixture of simulation and analysis
of experimental data. Also in the example of the Malkus waterwheel (Illing et al.
2012a), experimental data was available, but we did not use it.

The significant challenges of working with laboratory data include (1) noise in
the measurements and (2) uncertainty about the ingredients of quantitative models
of the physics underlying the observations. Indeed, one important aspect of the
statistical data assimilation procedures we have described can be viewed as tools
for determining the consistency of proposed models of the observations.

The remainder of this chapter is devoted to a somewhat detailed discussion of the
acquisition and analysis of experimental data sets from a neurobiology laboratory.
This is a serendipitous possibility because of the author’s connection with the
laboratory of Daniel Margoliash at the University of Chicago and the laboratory
of Timothy Gentner at UC, San Diego. Three important advantages of working
with these laboratories are that precise, insightful experiments can be performed
in them, the leaders of the laboratories are keenly interested in the outcomes of data
assimilation analyses for the development of their own fields, and finally a set of
basic neurobiological equations, the Hodgkin–Huxley equations (Johnston and Wu
1995; Koch 1999), are available as a quantitative starting point for model making.

These advantages may not yet be always fully available in other areas of scientific
inquiry, so we take advantage of this benefit now, expecting the reach of the analysis
tools and methods will be longer in the future.

The measurements on individual neurons presented here come from the neural
substrate of the avian song system. After giving a rapid introduction to the
issues within that biological system, we turn to stimulus/response experiments
performed on neurons extracted from a critical nucleus in the birdsong network. It is
important to dwell on some of the details of the measurements and the experimental
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preparation, and this is done. The full interpretation for biological understanding of
the birdsong system is left to (Meliza et al. 2013), but the reader should recognize
many of the important issues in working with noisy data and uncertain models in a
realistic and scientifically important setting.

6.1 The Avian Song System: Individual Neurons

Nervous systems are comprised of a few to very many individual nonlinear
oscillators, the neurons, connected by a variety of chemical and electrical links.
They differ from the improvised networks often studied as complex systems as they
have evolved to perform functions as have other networks in living systems. Some
biological networks are simple to describe, their function is simple to state, and their
description in biophysical terms is involved. One of these, the pyloric central pattern
generator (Stein et al. 1997) found in many crustaceans, has only fourteen neurons
and its function is to guide a muscle chamber through a three-phase motion used
to move shredded food to the animal’s digestive system. It is certainly a complex
system, hardly in league with the mammalian brain, yet as one of the very best
characterized networks of neurons, it has been both analyzed in depth and used as a
model for testing ideas about neural networks (Elson et al. 1998).

Of intermediate size is the avian song system which may be one of the
smallest networks which learn a function, vocalization in this case, from a previous
generation and then use it for functional needs. Here the song is utilized for
attracting mates and defending territory. The song is then passed along to another
generation (Zeigler and Marler 2004). The entire song system comprises perhaps a
collection of a million or so neurons organized in nuclei each of order 104 or 105

neurons forming pathways dedicated to producing song, learning the song from an
older male, maintaining the song, memorizing the song, and regulating the song.

Over fifty years much has been learned about the construction and function of this
network, and our interest here is the analysis of the detailed biophysics of the circuits
involved starting with the characterization of one of the key nuclei, HVC. This we
do with experimental data on individual neurons from the three general classes of
neurons in HVC. If this is successful, using the neuron models established by this
analysis, one would seek to construct a model of the network links that enable the
classes of neurons to exercise the functions required of HVC. Much is known about
those functions both in a qualitative and in a quantitative manner, and the results of
these excellent experiments constrain the quantitative, predictive models one seeks
to develop.

We turn now to the analysis of some laboratory neurobiology experiments on
the birdsong system performed by C. Daniel Meliza in the laboratory of Daniel
Margoliash at the University of Chicago. We will address only a very small
subset of the data collected in these experiments as our purpose here is primarily
illustrative rather than an exhaustive exposition of the biological issues illuminated
by the data collection protocols and the analysis of the biophysics of the neurons
involved (Meliza et al. 2013).
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The experiments were performed on individual neurons from an important
segment of the avian songbird brain. The song system nervous network is found
in brain areas “above” the brain stem. The brain stem neural activity directly
controls the musculature of the songbox, also known as the syrinx (Laje and Mindlin
2005). It is a more-or-less cylindrical column branched to the two lungs. Voltage
stimulation changes the tension of the muscles and the resulting frequency or pitch
changes. Expiration and inspiration involving the lungs create the vocalizations we
call song.

The neural apparatus shapes the signals to the syrinx and the lungs. It is
responsible for the instruction sets to create the vocalizations, for the memory
repository to remember the song from males of an earlier generation, for filtering
the self-produced song for its fidelity with remembered song, for the maintenance
and control of the song quality by internal neural feedback loops, and for the
external/internal auditory feedback from the bird’s beak to a central nucleus in
the brain named HVC. Juvenile birds have a genetically controlled vocal apparatus
which, species by species, appears to be generally tuned to the song of its species.
In its early sensory period the juvenile hears song from males in its vicinity and
remembers what is called a “template” of that song. At about 30 days of age the
juvenile begins singing to itself both audibly as produced vocalizations and via
neural activity in sleep periods. During this sensory-motor period, projections from
the HVC are “wired up” via plasticity of synaptic connections.

The experiments in the Margoliash laboratory were performed on neurons from
the HVC in the species zebra finch (Taeniopygia guttata) which appears to learn
only one sequence of syllables, each about 100–150 ms in length, to form a
vocalization motif about one second in length. This song is maintained and used
throughout the adult life of the finch.

We are very far from being able to represent in a quantitative model the full
range of activity of the avian song system, though that is an ambitious goal. The
experiments we discuss are performed on single, isolated neurons from the zebra
finch HVC. The framework for studying individual neurons is that the nervous
systems whose behavior we wish to understand are composed of the individual
neurons at the nodes of a network. In order to build a model of these networks
with a high level of biophysical realism, we start with the dynamics of the nodes.

However important the biophysics of individual neurons may eventually be in the
discussion of the song system network, the connectivity among the nodes will play
a key role in the functional activity of the song network. The analysis of the network
connections would follow what we will address about individual neuron cells.

To use the methods developed in this book, we need a biophysical model and we
need biophysical experimental data to complete that model by estimating the many
parameters in the model. The biophysical modeling framework we adopt is that of
the ion-current-based Hodgkin–Huxley (HH) models (Johnston and Wu 1995; Koch
1999) we have explored in many instances.

In designing the experiments and acquiring the data, we take many lessons
from the twin experiments explored throughout this book. For example, we select
our model to have a large number of intrinsic neuron currents driving the voltage
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response of the neuron. In twin experiments we saw that if a current is absent in the
data, it will be pruned from the model by our procedures. Of course, we may still
miss currents not included in the large model; however, the selection made appears
to work rather well.

The data we acquired in our experiments are the voltage V.t/ responses of
individual neuron cells across the cell membrane. These are associated with the
injection of an observer-selected time-dependent current Iapplied.t/ into the cell.
The HH model we select is certain to be “wrong” both in missing some aspect of
the biophysical processes determiningV.t/ in response to Iapplied.t/ and in having to
select a functional form for the HH model that is phenomenological and not derived
from any first principles of biological physics. The data also has noise, and as only
the state variable V.t/ is observable, we have little clue as to the full state of the
model, never mind the actual neuron, when measurements commence.

6.2 Experimental Procedures for HVC Neurons

We work with slices of the avian brain taken from the nucleus HVC. In vivo
experiments have the problem that the neurons whose properties we wish to estimate
and test are linked to the other neurons in the intact functional network. To
avoid having to represent those currents external to the neuron within our model,
we worked with a slice preparation where individual identified neurons could be
analyzed.

6.2.1 HVC Slice Preparation: Experimental Procedure

Slices were prepared from adult male zebra finches. Birds were deeply anesthetized
with isoflurane, decapitated, and the brain placed in ice-cold, oxygenated dissection
buffer. Parasagittal slices were cut (400� thick, vibratome) from both hemispheres
and placed in 37ıC oxygenated artificial cerebrospinal fluid (ACSF). Slices were
allowed to recover for at least 1 h, during which time the ACSF was allowed returned
to room temperature. For recording, slices were superfused with oxygenated ACSF
(23–26ı).

Current-clamp somatic whole-cell recordings were made from neurons in HVC
with an NPI SEC-05L amplifier (NPI Electronic, Tamm, Germany). Cells were
selected visually with differential IR optics for health but not for somatic size
or shape. Patch pipettes (3–5 M) were pulled from standard-walled borosilicate
glass (Model G150F-4, Warner Instruments, Hamden CT) with a Sutter P-97 (Sutter
Instruments, Novato, CA) and filled with an internal solution. Pipette capacitance
and series resistance were compensated on the amplifier. Voltage and injected
current (as reported by the amplifier) were high pass filtered at 20 kHz and digitized
at 50 kHz with a PCI-6052E (National Instruments, Austin, TX). Data collection
was controlled by custom MATLAB (The MathWorks, Natick, MA) software.
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6.3 Experimental Results and Analysis

Data on the voltage response of individual neurons presented with specific injected
currents were recorded and stored for analysis. Each neuron received a patch clamp
electrode (Hamill et al. 1981) through which current was injected and at which
voltage was measured every 0.02 ms. Neurons were individually held for some
hours during which a selection of injected current protocols were presented for
temporal epochs ranging from about two to about six seconds with rest periods
between epochs. The estimation window consisted of 1,500 ms of current injection
and observed voltage data. We recorded from some dozens of neurons with each
having a few tens of measured epochs. Sampling at 50 kHz is five to ten times
more rapid than is common in neuroscience; however, when performing twin
experiments (Abarbanel et al. 2011) we found that the details of the voltage
response, especially of subthreshold voltage variations, were missed at lower
sampling rates. Estimates of parameters and states were also inaccurate at sampling
rates below 20 kHz.

We used the path integral formulation whose solution was approximated by
a saddle point (Laplace 1774) method with a HH model comprising many ion
channels assumed to have no model errors. Only the stationary path was produced,
though as usual all parameters in the model and all unobserved state variables were
estimated. We chose a model with two Na channels, three K channels, two Ca
channels, a “leak” (passive) channel, and an Ih channel. We anticipated that some
of these channels might be absent in some of the neuron recordings; however, our
strategy was formulated on the basis of the numerical experiments which showed
that our procedures prune out ion channels in a model which are absent in the data
presented to it. Of course, we do not know what channels are present in the data;
that is one of the goals of the experiments. However, we found systematically that
two of our selected currents were absent and others, for some neurons, were small
indeed.

6.4 Model Details

Our biophysical model for the neurons is a single-compartment isopotential model
with the membrane voltage Vm given by the current conservation equation

dV.t/

dt
D 1

Cm

�
INaT.t/C INaP.t/C IK1.t/C IK2.t/C IK3.t/

CIh.t/C ICaL.t/C ICaT.t/C ILeak.t/ C Iinj.t/=ISA
�
; (6.1)

where Cm is the specific membrane capacitance. ISA is a parameter relating to the
surface area of the membrane; it sets the scale of the injected current actually seen
by the neuron. The IX 0s are channel currents. Each of the voltage-gated currents
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Table 6.1 Currents used in the Hodgkin–Huxley model of HVC neurons

Ion current name Ion current formulation

Transient sodium INaT.t / D gNaTm.t/
3h.t/.ENa � V .t//

Persistent sodium INaP.t / D gNaPm.t/.ENa � V .t//

Non-inactivating fast potassium IK1.t / D gK1m.t/
4.EK � V .t//

Inactivating potassium IK2.t / D gK2m.t/
4h.t/.EK � V .t//

Slow potassium IK3.t / D gK3m.t/.EK � V .t//

Hyperpolarization-activated cation Ih.t / D ghh.t/.Eh � V .t//

High-threshold L-type calcium ICaL.t / D m.t/2h.t/GHK.ŒCa�intra; V .t//

Low-threshold T-type calcium ICaT.t / D m.t/2GHK.ŒCa�intra; V .t//

Leak IL.t / D gL.EL � V .t//

depends on ion flow through channels whose permeability is controlled by activation
m.t/ and inactivation h.t/ gating variables. For a given ion channel, except Ca2C,
the current is represented as Iion.t/ D gm.t/n1h.t/n2.Ereversal � Vm.t// , where g is
a maximal conductance and n1; n2 are integers (Table 6.1).

For Ca2C channels we replace the ohmic voltage dependenceEreversal � V.t/ by
the GHK representation

GHK.ŒCa�intra; V / D �V .ŒCa�intra � ŒCa�extrae�2FV=RT /
1 � e�2FV=RT ; (6.2)

where the intracellular and extracellular Ca2C concentrations appear. The Faraday
constant F and gas constant R are such that at body temperature, RT

F
D 26mV.

Voltage-gated variables multiplying this GHK voltage dependence are for high-
threshold L-type calcium currents (ICaL; m.t/2h.t/) and for low-threshold T-type
calcium currents (ICaT; m.t/2).

The dynamics of the ion channel gating particles are given by voltage-dependent
opening and closing rates. To ensure numerical stability, we use a hyperbolic tangent
approximation to the Boltzmann barrier-hopping rate (Johnston and Wu 1995)

dm.t/

dt
D m0.V.t// �m.t/

�m.V .t//
; m0.V / D 0:5.1C tanh..V � V1=2/=�//;

�m.V / D �0 C �max.1 � tanh2..V .t/ � V1=2/=�//; (6.3)

where V1=2 is the half-activation voltage, � is the slope of the activation function,
�0 is the minimum relaxation time, �0 C �max is the peak relaxation time, and � is
the width of the relaxation time function. Equations for the inactivation variables
h.t/ have a similar form. The model has 12 time-varying state variables including
V.t/ and 72 parameters, including the kinetic variables, maximal conductances, and
reversal potentials for each of the channels, all of which were estimated during data
assimilation.



6.4 Model Details 205

The permeability of each voltage-gated channel species depends on one or more
gating variables whose rate of opening and closing is modeled by its differential
equation. For the K2 and CaT inactivation particles we used a more complex form
that allowed relaxation of voltage dependence to be asymmetric. The membrane
voltage along with the values for each of the gating variables forms a 12-dimensional
vector fx1.t/; x2.t/; : : : ; x12.t/g that describes the state of the neuron. The dynamics
of the neuron are defined by a set of differential equations that depend on a number
of unknown parameters. The complete set of model equations that are used for the
optimization procedure, including the regularization term, are given here:

dx1.t/

dt
D 1

p1

�

.p2x2.t/
3x3.t/Cp3x4.t//.p4�x1/C.p5x5.t/4Cp6x6.t/4x7.t/

Cp7x8.t//.p8�x1.t//C.p71x9.t/2Cp72x10.t/2x11.t//GHK.p11; x1.t//

Cp9.p10 � x1.t//C p12x12.t/.Eh � x1.t//C Iinj.t/=p13/

�

Cu.t/.Vdata.t/ � x1.t// (6.4)

dx2.t/

dt
D 0:5.1C tanh..x1.t/ � p14/=p15/� 2x2.t//=.p17

Cp18.1 � tanh2..x1.t/ � p14/=p16///

dx3.t/

dt
D 0:5.1C tanh..x1.t/ � p19/=p20/� 2x3.t//=.p22

Cp23.1 � tanh2..x1.t/ � p19/=p21/// (6.5)

dx4.t/

dt
D 0:5.1C tanh..x1.t/ � p24/=p25/� 2x4.t//=.p27

Cp28.1 � tanh2..x1.t/ � p24/=p26///

dx5.t/

dt
D 0:5.1C tanh..x1.t/ � p29/=p30/� 2x5.t//=.p32

Cp33.1 � tanh2..x1.t/ � p29/=p31///

dx6.t/

dt
D 0:5.1C tanh..x1.t/ � p34/=p35/� 2x6.t//=.p37

Cp38.1 � tanh2..x1.t/ � p34/=p36/// (6.6)
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dx7.t/

dt
D 0:5.1C tanh..x1.t/ � p39/=p40/ � 2x7.t//=.p42

Cp44 C 0:5.1 � tanh.x1.t/ � p39//
�.p43.1 � tanh2..x1.t/ � p39/=p41// � p44//

dx8.t/

dt
D 0:5.1C tanh..x1.t/ � p45/=p46/ � 2x8.t//=.p48

Cp49.1 � tanh2..x1.t/ � p45/=p47///

dx9.t/

dt
D 0:5.1C tanh..x1.t/ � p50/=p51/ � 2x9.t//=.p53

Cp54.1 � tanh2..x1.t/ � p50/=p52///

dx10.t/

dt
D 0:5.1C tanh..x1.t/ � p55/=p56/ � 2x10.t//=.p58

Cp59.1 � tanh2..x1.t/ � p55/=p57///

dx11.t/

dt
D 0:5.1C tanh..x1.t/ � p60/=p61/ � 2x11.t//=.p64

Cp65.1C tanh..x1.t/ � p60/=p62//

�.1 � tanh..x1.t/ � p60/=p63//.1 � tanh.x1.t/ � p60/
� tanh..1=p62 C 1=p63/.x1.t/ � p60///
=.1C tanh..x1.t/ � p60/=p62/ tanh..x1.t/ � p60/=p63///

dx12.t/

dt
D 0:5.1C tanh..x1.t/ � p66/=p67/ � 2x12.t//=.p69

Cp70.1 � tanh2..x1 � p66/=p68///: (6.7)

We do not search on the reversal potential for the Ih current, setting Eh D �43mV,
and we constrain ENa; EK, and EL near fENa � 50mV, EK � �77mV, and EL �
�65mV g, respectively.
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6.5 Details of the Numerical Evaluation

As we have suggested in several places in this book, one should check whether this
model synchronizes with itself when only the voltage V.t/ D x1.t/ is passed from
a data set created by the model to the model itself. This was checked, and as the
structure of the Hodgkin–Huxley models is such that voltage drives all of the other
state variables, synchronization occurs when we use parameters in a reasonable
biophysical range.

We use the saddle-point approximation on the path integral, and we assume
no model errors in this set of calculations; therefore, we have a constrained
optimization problem as has been discussed extensively before. The optimization
was accomplished using the open-source software IPOPT (Wächter and Biegler
2006) on standard desktop hardware. The data assimilation window over which the
model properties are estimated was 1,500 milliseconds long. The data were sampled
at 50 kHz, resulting in 75,000 time points of voltage data used in the observation
window for each calculation.

Common to “direct method” variational approaches, each component of fx1.t/;
x2.t/; : : : ; x12.t/g at each observation time tn was treated as an independent variable
in the optimization procedure with the model dynamical equations imposed as
equality constraints between neighboring time points. Gating particle variables were
constrained between 0 and 1, and each of the parameter was constrained between
biologically realistic bounds. The variational problem was 975,072 dimensional
including the 75,000 values of the regularization variable u.t/ at the temporal co-
location points.

The full or completed model, with estimated parameters and a full set of state
variables at the end of the assimilation window T D 1; 500ms, was then integrated
forward, with u.t/ D 0, for the remainder of the data epoch with the same injected
current that was presented to the real neuron. To generate predictions on other data
epochs for the same neuron, a 100 ms long section of data was used to find the initial
conditions for the forward integration of the state variables. The parameters were
fixed at their previously established values in the original epoch. With parameters
fixed in the model and initial conditions estimated in the new epoch, the model was
integrated forward with the corresponding injected current and u.t/ D 0.

We cannot overemphasize the importance of fully exercising the dynamical range
of the neuron’s dynamics during the data assimilation window. This is achieved by
subjecting the neuron to a current with a complicated waveform, exhibiting a broad
power spectrum, thus having many characteristic timescales, as well as regions
of constant (positive, negative, and zero) current to ascertain the neurons passive
response properties. It is also quite important that the frequency content of the
current be low enough as the neuron acts as a passive RC circuit low-pass filtering
signals. If the frequency content of the applied current is too high, information in
the current will be filtered out by the neuron itself.
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6.5.1 Estimation and Prediction of HVC Neuron Responses
to Injected Current

Whole-cell recordings were made from many HVC neurons stimulated by injection
of various complex current waveforms designed to drive the cell through its range
of biologically relevant states. The data assimilation procedure was successful for
about two-dozen neurons. The metric for success is the ability of the completed
model to predict the response of the neuron to current injections different from those
used in the observation window [0 ms, 1,500 ms].

6.6 Results from Data Acquisition and Analysis

From a large database of stimulating currents and voltage responses from individual
neurons in HVC, we have selected three to discuss. The neurons are known
by the year and date and the temporal epoch as well as the order in which a
particular neuron was studied during the given day. The names of the selected
neurons—20110413 4 1, Epoch 22; 20120517 1 1, Epoch 11 and Epoch 12; and
20120406 1 3, Epoch 19 and Epoch 15—are not informative about the type of
neuron within HVC: projection or interneuron.

Step currents are in common use among electrophysiologists and are interspersed
within the complex waveforms used in our stimulation protocols. We checked that
the models completed by the estimation of parameters in our HH models did respond
to step currents as well as the actual neurons. The response to step currents is not as
reliable as the neuron response to complex currents.

6.6.1 Neuron 20110413 4 1 Epoch 22

We show first the stimulating current and resulting voltage response for Epoch 22 of
neuron 20110413 4 1; this is in Fig. 6.1. The injected current is a combination of a
chaotic waveform, taken from the Malkus waterwheel equations (Malkus 1972), and
a series of step currents with chaotic “decoration” on the constant current segments.
This was selected on the criteria we have mentioned: all degrees of freedom of the
model neuron are stimulated by this current, the frequencies in its Fourier transform
are low enough not to be filtered out by the RC time constant of the neuron, and the
stimulus is applied long enough to excite all currents contained in the dynamical
model. We see that this neuron does not produce action potentials, spikes, very
frequently. We do not know what class of neuron within HVC we have selected
by our procedure of patch clamping neurons with no biophysical selection criterion,
but indications come from further biophysical analysis (Meliza et al. 2013).
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Fig. 6.1 Experimental data for neuron 20110413 4 1 during Epoch 22. Data was collected for six
seconds in this epoch. Top Panel Membrane voltage response to the injected current shown in the
Bottom Panel. The injected current is comprised of a complex waveform borrowed from a simple
chaotic oscillator interspersed with a section of nearly zero current, then concluded with a sequence
of nearly constant step currents with a small amplitude version of the chaotic waveform imposed.
These two panels are characteristic of the data collected from the many neurons in the experimental
efforts. The data for each epoch for each neuron comprises the forces imposed on the neuron by
the injected current and the cross membrane voltage observed during an epoch. Estimated errors in
the voltage measurements are ˙1mV or less

We use T D 1; 500ms of the combined V.t/ and Iapplied.t/ data to estimate the
72 parameters and all the gating variables over the time segment [0 ms, 1,500 ms].
The estimated time series for V.t/, the only observed state variable, is shown in red
in Fig. 6.2. It is followed in the same figure with a prediction for t > T using the
estimated parameters in the differential equations along with the estimated values
of V.T / and all of the m.T /; h.T / for all the currents. This result is shown in blue.
It clearly tracks the observed voltage data while producing one additional action
potential near t � 2; 600ms. Prediction errors leading to additional or missing
spikes are not uncommon in this procedure. The threshold for spike production,
dynamically for moving the state of the neuron to the vicinity of the instability
in state space leading to spiking, is quite sensitive to the particular values of
parameters.



210 6 Analysis of Experimental Data

Fig. 6.2 Experimental data, estimated membrane voltage and predicted membrane voltage for
neuron 20110413 4 1 during Epoch 22. The observed data is shown as a heavy black line. The
estimated voltage during the observation window [0, 1,500] ms is shown in red. It is during this
observation window that the fixed parameters in the model are estimated and the eleven unobserved
state variables, here the gating variables m.t/ and h.t/ for each ion current, are estimated. Using
these estimated parameters and all state variables at T D 1;500ms, the response of this neuron
was predicted through the end of the data set for this epoch at 6,000 ms. The predicted voltage
response for the remainder of Epoch 22 is shown in blue. With the exception of the “extra” spike in
the predicted voltage response at about 2,600 ms, the prediction matches the data remarkably well

We return to the interesting issue whether ingredients of the full model are
identified as not required by the data. Why would we care about this? Our longer-
term goal is to use the characterization of individual neurons in a model network
circuit for HVC, and if we are able to eliminate degrees of freedom in the
model neurons at each node, the overall description of the network model will be
simplified. This will make estimations of links in the network and predictions using
the network simpler and more efficient.

6.6.2 Neuron 20120517 1 1 Epochs 11 and 12

Next we turn to the stimulating current and resulting voltage response for Epoch 11
of neuron 20110517 1 1; this is in Fig. 6.3. The injected current is again a combina-
tion of a chaotic waveform, taken from the Malkus waterwheel equations (Malkus
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Fig. 6.3 Experimental data for neuron 20120517 1 1 during Epoch 11. Data was collected for
five seconds in this epoch but the last 1,500 ms had “zero” injected current. Top Panel Membrane
voltage response to the injected current shown in the Bottom Panel. The injected current is
comprised of a complex waveform borrowed from a simple chaotic oscillator with a few sections
of constant step currents. The firing rate of this neuron is much higher (Meliza et al. 2013). These
two panels are characteristic of the data collected from the many neurons in the experimental
efforts. The data for each epoch for each neuron comprises the forces imposed on the neuron by
the injected current and the cross membrane voltage observed during an epoch. Estimated errors in
the voltage measurements are ˙1mV or less

1972), and two-step currents embedded in the irregular current near time 500 ms.
This neuron spikes much more frequently than the previous neuron for the same
approximate amplitude of current presentation, � 0:3 nA. We do not know what
class of neuron within HVC we have selected by our procedure of patch clamping
neurons with no biophysical selection criterion (Meliza et al. 2013).

We again use T D 1; 500ms of the combined V.t/ and Iapplied.t/ data to
estimate the 72 parameters and all the gating variables over the time segment [0 ms,
1,500 ms]. This estimation for V.t/, the only observed state variable, is shown in
red in Fig. 6.4. It is followed in the same figure with a prediction for t > T using
the estimated parameters in the differential equations along with the values of V.T /
andm.T /; h.T / for all the currents. This result is shown in blue.

Data from the same neuron is now seen in Fig. 6.5 for the next epoch, Epoch
12. The stimulating current uses a different protocol, and we want to know if
the model we have completed through estimating its parameters using data in
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Fig. 6.4 Experimental data, estimated membrane voltage and predicted membrane voltage for
neuron 20120517 1 1 during Epoch 11. The observed data is shown as a heavy black line. The
estimated voltage during the observation window [0, 1,500] ms is shown in red. It is during this
observation window that the fixed parameters in the model are estimated and the eleven unobserved
state variables, here the gating variables m.t/ and h.t/ for each ion current, are estimated. Using
these estimated parameters and all state variables at T D 1;500ms, the response of this neuron
was predicted through the end of the data set for this epoch at 6,000 ms. The predicted voltage
response for the remainder of Epoch 11 is shown in blue

Epoch 11 will predict the voltage response here. To make that prediction, we
require as initial conditions V.tI / and m.tI /; h.tI / at some time within the epoch.
To find V.tI /;m.tI /; h.tI / we use the model completed by information in the
data from Epoch 11. Then fixing the parameters in the model, we determine
V.tI /;m.tI /; h.tI / by the same variational principle used in all these results over
an interval [0 ms, 100 ms] of Epoch 12.

We chose to use 100 ms of the 5,000 ms of data in Epoch 12 to estimate the 12
state variables and then used our completed model from Epoch 11 to predict the
remaining 4,900 ms; tI D 100ms. The result of this is displayed in Fig. 6.6. The
estimation of V.t/ is in the small segment of red; the prediction is shown in blue.
Where the predictions deviate from the observed V.t/ for Epoch 12, one is able to
see the data in black.

Prediction in another epoch is technically the same kind of test of validity for the
completed model within in one epoch assuming that the properties of the neuron
are unchanged between the epochs. Over the large data set we collected, we found
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Fig. 6.5 Experimental data for neuron 20120517 1 1 during Epoch 12. Data was collected for
five seconds in this epoch but the last 500 ms had “zero” injected current. Top Panel Membrane
voltage response to the injected current shown in the Bottom Panel. The injected current is
comprised of a complex waveform borrowed from a simple chaotic oscillator along with several
sections of constant step currents. The firing rate of this neuron is much higher than neuron
20110413 4 1 (Meliza et al. 2013). These two panels are characteristic of the data collected from
the many neurons in the experimental efforts. The data for each epoch for each neuron comprises
the forces imposed on the neuron by the injected current and the cross membrane voltage observed
during an epoch. Note that the waveform and the overall amplitude of the injected current differ
from that in Epoch 11, Fig. 6.3, while the neuron is the same. Estimated errors in the voltage
measurements are ˙1mV or less

that prediction from models completed in one epoch used to predict in nearby
epochs worked much better than epochs that were separated significantly in time.
This indicates that the neuron itself was not stationary between those more distant
epochs. By using step currents, we are able to estimate the membrane resistance of
the neuron from the RC characteristic on presentation of a step, and there is evidence
(not shown) that this quantity does change over many epochs.

As enticing as the successful predictions in nearby epochs seem, one should
be cautiously optimistic about implementing the network building plan alluded to
here of using identified completed neuron models at the nodes of the network. The
actual neurons in an experimental network may have different characteristics than
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Fig. 6.6 Experimental data, estimated membrane voltage and predicted membrane voltage for
neuron 20120517 1 1 during Epoch 12. The observed data is shown as a heavy black line. The
completed model established in Epoch 11 was used here for estimation and prediction. The
estimated voltage during the observation window [0, 100] ms is shown in red. (Look carefully, it is
a very short segment of data that is used.) It is during this observation window that the voltage V .t/
and the gating variables m.t/ and h.t/ for each ion current are estimated at T D 100ms. Using
these estimated parameters and all state variables at T D 100ms, the response of this neuron was
predicted through the end of the data set for this epoch at 4,000 ms. The predicted voltage response
for the remainder of Epoch 11 is shown in blue

the neurons used to complete the model, and the network neurons may have changed
because of biophysical events arising from its environment. The plan may yet work,
but the present pleasing success does not guarantee it.

It may be that the use of the full path integral to complete neuron models which
yields a statistical characterization of the observed neurons will be the appropriate
framework for making appropriate statistical predictions on networks.

6.6.3 Neuron 20120406 1 3 Epochs 19 and 15

Without repeating the discussion just completed about estimating and predicting for
neuron 20120517 1 1, we display the same kind of result for neuron 20120406 1 3.
In this sequence we complete the model in Epoch 19 and then predict both in that
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Fig. 6.7 Experimental data for neuron 20120406 1 3 during Epoch 19. Data was collected for
four seconds in this epoch. Top Panel Membrane voltage response to the injected current shown
in the Bottom Panel. The injected current is comprised of a complex waveform borrowed from a
simple chaotic oscillator along with several sections of nearly constant step currents with some
chaotic variation on each step. The firing rate of this neuron is much higher than that of neuron
20110413 4 1 (Meliza et al. 2013). These two panels are characteristic of the data collected from
the many neurons in the experimental efforts. The data for each epoch for each neuron comprises
the forces imposed on the neuron by the injected current and the cross membrane voltage observed
during an epoch. Estimated errors in the voltage measurements are ˙1mV or less

epoch and in Epoch 15. The data for Epoch 19 are in Fig. 6.7 where we show
the injected current and the membrane voltage response. In Fig. 6.8 we exhibit
the estimation window and the prediction window with Epoch 19. We display the
estimated membrane voltage for the first 1,500 ms of this epoch, and then using the
completed model and the estimated value of the state variables at T D 1; 500ms,
we predict through the rest of the epoch. Figure 6.9 displays the data in Epoch
15 for the same neuron. Figure 6.10 shows the predicted voltage within Epoch 15
using the model completed in Epoch 19. 100 ms of data within Epoch 15 was used
to determine the state variables for the Epoch 19 model thus allowing prediction
forward within Epoch 15.
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Fig. 6.8 Experimental data, estimated membrane voltage and predicted membrane voltage for
neuron 20120406 1 3 during Epoch 19. The observed data is shown as a heavy black line. The
estimated voltage during the observation window [0, 1,500] ms is shown in red. It is during this
observation window that the fixed parameters in the model are estimated and the eleven unobserved
state variables, here the gating variables m.t/ and h.t/ for each ion current, are estimated. Using
these estimated parameters and all state variables at T D 1; 500ms, the response of this neuron
was predicted through the end of the data set for this epoch at 4,000 ms. The predicted voltage
response for the remainder of Epoch 19 is shown in blue

Two comments are of value here:

(1) The current in Epoch 15 has higher maximum amplitude than in the learning
epoch 19. This means that the success in prediction can be associated with a
good model and not simply some kind of entrainment of the neuron response.

(2) In each prediction, within one epoch or across epochs, the success indicates that
the full state of the completed model was well estimated by the data assimilation
procedure. Prediction examines both the quality of the fixed parameter values
and the ability to accurately estimate unobserved state variables.

6.6.4 Estimated Currents and Channel Kinetics

How can we distinguish among the various classes of neuron within HVC using
the data we have collected and partially reported on here? One idea is to compare
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Fig. 6.9 Experimental data for neuron 20120406 1 3 during Epoch 15. Data was collected for
four seconds in this epoch. Top Panel Membrane voltage response to the injected current shown
in the Bottom Panel. The injected current is comprised of a complex waveform borrowed from a
simple chaotic oscillator along with several sections of nearly constant step currents with some
chaotic variation on each step. The firing rate of this neuron is much higher than that of neuron
20110413 4 1 (Meliza et al. 2013). These two panels are characteristic of the data collected from
the many neurons in the experimental efforts. The data for each epoch for each neuron comprises
the forces imposed on the neuron by the injected current and the cross membrane voltage observed
during an epoch. Note that the waveform and the overall amplitude of the injected current differ
from that in Epoch 19, while the neuron is the same. Estimated errors in the voltage measurements
are ˙1mV or less

the maximal conductances of each channel. Classifying neurons based upon their
collection of channel maximal conductances may not accurately reflect the dynam-
ical importance of the channels on driving the membrane voltage over a significant
time interval. It is not the maximal conductance alone but the strength of the ion
current that influences changes in the membrane voltage. Large driving currents may
result from small conductances for a channel which has a very slow time constant.

The ion currents, not just one or another constant parameters comprising those
currents, are the forces driving the neuron. This suggests that the sensitivity of
optimization procedures such as we used in the analysis of these data to particular
values of certain parameters may miss the core physical question about the forces
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Fig. 6.10 Experimental data, estimated membrane voltage and predicted membrane voltage for
neuron 20120406 1 3 during Epoch 15. The observed data is shown as a heavy black line. The
completed model established in Epoch 19 was used here for estimation and prediction. The
estimated voltage during the observation window [0, 100] ms is shown in red. (Look carefully, it is
a very short segment of data that is used.) It is during this observation window that the voltage V .t/
and the gating variables m.t/ and h.t/ for each ion current are estimated at T D 100ms. Using
these estimated parameters and all state variables at T D 100ms, the response of this neuron was
predicted through the end of the data set for this epoch at 4,000 ms. The predicted voltage response
for the remainder of Epoch 15 is shown in blue

acting on the neuron. The matter of sensitivity to time-dependent forces of numerical
procedures is the issue. One can recall that in the consideration of tidal forces on the
Earth’s ocean, even though Jupiter’s mass is much larger than the moon’s mass, it is
the larger force of the moon, because of the shorter distance, that is the determining
physical ingredient.

None of the models indicated a strong contribution from the Ih current, nor was
there a strong contribution from L-type Ca channels.

As we will use the biophysical characterizations of these individual neurons to
construct networks of these neurons in further analyses of the birdsong system,
surveying the important currents will allow us to reduce the size of the model
neurons used at these nodes and streamline the computations required for predicting
network behavior. This is a dynamical model reduction method (Meliza et al. 2013).
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6.7 Comments on the Analysis of These Data

Beyond the ability of the statistical data assimilation formulation to assist in the
development and completion of predictive, quantitative biophysical models, there is
substantial information in the actual parameters for the observed neurons and in the
specific ion currents captured within models for each neuron (Meliza et al. 2013).

Two broad questions about the results of the estimates arise:

• For a given neuron, multiple parameter sets might be able to produce models with
similar high-quality predictions. This is in part because the real, physical neuron
has many more degrees of freedom than the proposed model, and therefore, a
single parameter set from this or another approximation to the data assimilation
path integral simply may not exist. The projection from the “actual” high-
dimensional state space of the real neuron may lead to an apparent statistical
result of this kind.

• A second source of variability is that neurons may be able to achieve the same
physiological behavior through many different combinations and expression pat-
terns of channels (Prinz et al. 2004). Given the indeterminism of the models, it is
difficult to know to what extent neurons take advantage of this flexibility, though
studies of single-neuron gene expression suggest this may be the case (Schulz
et al. 2006). Further complicating this question is the existence of compensatory
mechanisms that allow at least some types of neurons to maintain specific
behaviors even when specific channels are absent (Swensen and Bean 2005).

6.8 Synopsis and Perspectives: Analysis
of Experimental Data

The particular example discussed in this chapter is likely to be representative of the
use of the methods developed in this book when one comes to examine laboratory
and field data for complex systems.

The use of twin experiments in identifying how many and which measurements
are required for any proposed model for the source of the observed data should
be a valuable tool over many different classes of problem. While no laboratory
or field data is required to make these estimates, as more and more complicated
models are explored for complex system behavior, these estimates will be a good
guide to how the measurement needs will play a role in establishing quantitative
aspects of models. Unfortunately, at this stage, if one finds that the number of
required measurements is insufficient, no remedies are presently available, except
more measurements, of course.

If one is in the advantageous position of having sufficient observations taken
often enough in time, then the statistical data assimilation procedure as exemplified
in this chapter provides a tool for establishing consistency between the proposed
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model and the available data. As in the discussion presented, details matter, and one
should focus on those details both about the experiments and field observations as
well as about the models themselves. The first are certain to be noisy and, even when
sufficient, sparse. The latter will have uncertainties that must be wished away—no
model errors, thank you—or quantified in some manner, perhaps by a consistency
argument.

Of course, it is possible to propose models and come away impressed with a “fit”
to selected data, but coming to grips with the details and predicting beyond existing
measurements is eventually the key one wishes to grasp. Attention to the biophysics
or geophysics or chemical physics of the processes at work in producing the data is
certain to be ever important.



Chapter 7
Unfinished Business

Prologue to the Chapter

There are many more questions raised for future investigation than are answered in
a monograph such as this. This final chapter is meant to suggest what is yet to be
addressed.

Perhaps the core result in this book is the exact formulation for evaluating
the conditional probability distribution P.x.m/jY.m// of the D-dimensional state
x.m/ of a model of a physical system at the end of an observation (or training
or assimilation) time interval Œt0; tm D T � when L-dimensional measurements
yl.tn/I l D 1; 2; : : : LIn D 0; 1; : : : ; m are made at times ft0; t1; : : : ; tmg. The
measurements until time tn are collected into Y.n/ D fy.0/; y.1/; : : : ; y.n/g. From
P.x.m/jY.m// we arrive at an expression for the expected value of any function
G.X/ along the path X D fx.t0/; x.t1/; : : : ; x.tm/g D fx.0/; x.1/; : : : ; x.m/g
traversed by the model

EŒG.X/jY.m/� D
R

dXG.X/ expŒ�A0.X;Y.m//�R
dX expŒ�A0.X;Y.m//� (7.1)

in which

�A0.X;Y.m// D
mX

nD0
logŒP.y.n/jx.n/;Y.n � 1//�

C
m�1X

nD0
logŒP.x.nC 1/jx.n//�C logŒP.x.0//�: (7.2)

By well-selected choices of G.X/ one can determine the mean trajectory, variations
about that mean, marginal distributions of states xa.tn/I a D 1; 2; : : : ;D, and
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whatever other information one wishes about the distribution of state variables
conditioned on measurements.

This formula places consideration of paths in state space at the center of ideas
about assimilating information from data into models of simple or complex systems.
It also focuses attention on the need to evaluate high-dimensional, .m C 1/D-
dimensional, integrals as the essential calculational problem. The necessity of doing
this integral does not inform us how to make a physical model of observed
phenomena nor does it inform us what to measure and how often.

In considering performing this integral by saddle path methods (4DVar and its
variations in the geophysical literature) or direct Monte Carlo methods of one sort
or another one must still address at least the following questions:

1. How many measurements at each observation time tn are required to allow
accurate estimation of the integral?

2. How often in time must those measurements be performed?
3. What are we to do in the absence of enough measurements?
4. What level of noise in the measurements allows accurate estimation of the path

integral?
5. What is the criterion for the quality of a completed model in which all fixed

parameters are now estimated? We have argued that quality of prediction using
the model under changed conditions of forcing is the metric to use. What precise
mathematical criterion should one adopt for that?

6. How does one quantify model errors in the specification of the transition
probability P.x.n C 1/jx.n//, especially when the error is the absence of a
term in the dynamical equations? What tests for consistency of one or another
assumption about model errors are relevant?

7. On what machines and with what massively parallel computing methods should
we take on compelling questions about big complex systems—weather predic-
tion, gene regulation, nervous system characterization, reactive fluid flow in
complex enclosures, . . . ?

This list, perhaps augmented by additions from the reader, could be the conclu-
sion of this overall discussion. However on the third item we have a suggestion, on
the first two items some comments.

On the first item, we note two ideas in this regard:

• When there are no model errors one can establish, how many measurements
Lc are required of a model using twin experiments to determine the value of
L through evaluating when two signals from the model with different initial
conditions synchronize? Within this question is also the need to determine which
measurements as well as how many.

• Within the path integral when model errors are present, how many measurements
are required to make the action A0.X;Y.m// have a single minimum?
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We have given examples of this, but what is required is an algorithmic production
code to evaluate these items given a proposed model.

On the second item, we suggest it may be enough to estimate the largest
Lyapunov exponent of the model incorporated into the transition probability
P.x.nC1/jx.n//. This will be a quantity which can differ in various regions of state
space x space. It may then be sufficient to assure that the largest value of tnC1 � tn
does not exceed the inverse of this largest Lyapunov exponent.

On the third item, we turn briefly to an idea from nonlinear dynamics.

7.1 “More Measurements”: The Use of Time Delay Phase
Space Reconstruction

The issue of adding measurements when the number of observations is not enough
to assure stability on the synchronization manifold or, equivalently, the action
does not have a clear stable minimum has been only touched on in the main part
of this text. Clearly one option is to make more measurements. Another option,
which we shall address here, is to use more information about the waveform of the
time series of the measurements. The ideas we discuss in this section come from
considerations of “embedding” that are quite common in the nonlinear dynamics
literature; naturally, they have their own issues.

The model dynamical system works in a D-dimensional state space with state
vectors at each time tn: x.tn/ D x.n/. The deterministic dynamics for the model
takes states x.n/ ! x.nC 1/ D f.x.n/;p/. The dynamics is Markov as only x.n/ is
required to know x.nC 1/ through our rule. p is a set of parameters. The dynamical
rule x.n C 1/ D f.x.n/;p/ is the discrete time version of a D-dimensional set of
ordinary differential equations that could have come from PDEs. The rule may well
be the implementation of an algorithm for solving the ODEs.

As we observeL state variable-related quantities at each tn,D�L state variables
remain unobserved, and our goal is to use the information in the measurements
Y.m/ D fy.0/; y.1/; : : : ; y.m/g to estimate the D � L unobserved state
variables and the NP fixed parameters p. These should be estimated throughout
the observation window and especially at the end tm D T . If we have estimates of
x.T / and p, we may use the rule to predict for t > T .

The situation we want to look at in this discussion arises when we have made
as many measurements as we are able, and this number is not enough to stabilize
the synchronization manifold, should we be considering deterministic (no model
error) dynamics or, equivalently, the number of observations to assure that the
action A0.X/ has a clear, isolated minimum. We need more information from the
observations we are able to extract from temporally isolated single measurements.

In the study of nonlinear systems it has long been recognized (Sauer et al. 1991;
Abarbanel 1996; Kantz and Schreiber 2004) that sampling the waveform of a time
series s.tn/ D s.n/ and recording not only s.n/ but also s.n � 1/ and other time-
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delayed values of s.n/ along the observed waveform provides useful independent
looks at the information in the measurement. What follows now arose in discussions
with Ulrich Parlitz.

While this is discussed at some length in the references, the basic idea is that we
characterize independent degrees of freedom in dynamics with derivatives in time
which could be higher and higher order. Since we cannot measure in continuous
time, we are restricted to approximating time derivatives by finite differences, and
for example, if we know s.tn/ and wish to approximate ds.t/

dt , we might start with
ds.t/

dt � s.tnC1/�s.tn/
tnC1�tn , and the only new information in this approximation, relative to

what we know at tn, namely, s.tn/, is s.nC1/ D s.tnC1/, so why not use s.nC1/ as
a coordinate in place of ‘ ds.t/

dt ’? In the examination of this basic idea, there follows
a discussion of what time delay to use and how many such time delays produce an
equivalent space to the original coordinates. We skip this discussion, accepting the
conclusions (Abarbanel 1996; Kantz and Schreiber 2004; Sauer et al. 1991).

Utilizing all of that, we have in mind that each of the L observations will be
of some scalar function of the state variables h.x/ evaluated at time tn and at K �
1 earlier times, namely, times tn � .k � 1/	t I k D 1; 2; : : : ; K . So when we
make the observations yl .n/ we have in mind to associate them with the values
fh.x.n//; h.x.n � 1//; h.x.n � 2//; : : : ; h.x.n � .K � 1///g. Here 	t is taken as
a unit of time. Given the observations we want to “tune up” the model so that it
produces values x.n/ at a time tn that yields h.x.n// � y1.n/, h.x.n�1// � y2.n/,
and so forth until h.x.n � .K � 1/// � yK.n/.

The discussion now proceeds with L D 1, namely, a situation where only one
measurement is made at each time. This is for simplicity of notation. If one makes
L measurements at each tn, the formulation here can be extended to each of the L
observed time series corresponding to the measurement functions hl .x.n// I l D
1; 2; : : : ; L.

The idea is now that this problem can be formulated in a convenient manner when
we use coordinates made out of the measurement function h.x/ by creating a new
space “equivalent” in the usual sort of way (Abarbanel 1996; Kantz and Schreiber
2004) to the original x space. We call vectors in that space S and they have K
components.

The vectors S are derived from the vectors x through a transformation Sk D
�k.x/I k D 1; 2; : : : ; K , and the �k.x/ are found from the definition S.n/ D
fs1.n/; s2.n/; : : : ; sK.n/g D fh.x.n//; h.x.n � 1//; h.x.n � 2/; : : : ; h.x.n � .K �
1//g D �.x/. One consequence of the discussion about time delay coordinates that
we note is that if K � 2DC 1, that is a sufficient, but not a necessary, condition for
the equivalence of the S and the x spaces.

Now we want to take the rule x.n/ ! x.nC 1/ D f.x.n// and create a rule for
S.n/ ! S.nC 1/. The S.n/ dynamics is where we will do the state and parameter
estimation for the unobserved x and the p. (We don’t always show p now.)

This dynamical rule for S.nC 1/ can be read from
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s1.nC 1/ D h.x.nC 1// D h.f.x.n///

s2.nC 1/ D h.x.n � 1C 1// D h.x.n// D s1.n/

s3.nC 1/ D h.x.n � 2C 1// D h.x.n � 1// D s2.n/

:::

sk.nC 1/ D sk�1.n/
:::

sK.nC 1/ D sK�1.n/: (7.3)

All this is good, but we have yet to deal with eliminating x.n/ in the expression
for s1.n C 1/. We have defined the “forward” change of variables x ! S D �.x/,
and now we want the reverse transformation S ! x D  .S/. How to find this and
even to establish if it exists needs to be thought about. If, however, all is well, then
we may write

s1.nC 1/ D h.f.x.n/// D h.f. .S.n//// D �.S.n//; (7.4)

and we are now in possession of a dynamical rule in our new space, namely: S.n/ !
S.nC 1/ D f�.S.n//; s1.n/; s2.n/; : : : ; sK�1.n/g D g.S.n//.

Our original problem in x space has now become the problem in S space: we
observe L time series over the observation window Œ0; T � and want to determine
the K � L unobserved states over this window and all fixed parameters in the rule
S.n/ ! S.nC 1/. If there are fixed parameters in the measurement function h.x/,
we throw them into the pot as well.

If we accomplish this and can then predict S.t/ for t > T , then we can extract
the answer to our original question in x space through the use of x.n/ D  .S.n//
and the knowledge (estimation) we now have of the p.

A long, interesting discussion of the inverse transformation S ! x could now
ensue, and it should include ideas, perhaps some practical ideas, on how we will
implement x D  .S/ in a stable numerical scheme.

The estimation procedure will ask that the output of the model dynamics in S
space be such that the L measurements yl.n/ at each measurement time tn should
approximate the values fs1.n/; s2.n/; : : : ; sL.n/g, and this can be done point by
point or by minimizing something like a metric (cost function)

mX

nD0

� LX

lD1
.yl .n/ � sl .n//

2

�

; (7.5)

subject to S.nC 1/ D known map.S.n// from above.
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Absent here is any discussion of noise in the measurements and errors in the
models. From all of the earlier presentation, however, we can formulate the required
path integral and its approximations in S space with no problem.

What did we gain with all this? More measurements with information about the
temporal development of the source of data without making more observations!
The key notion is that in the waveform of what we observe, there is much more
information that just the instantaneous values s.n/ D h.x.n//. The actual dynamics
takes place in a larger space than that of the L < D observations and is projected
down to the L-dimensional space in which we record data at each measurement
time tn. Embedding using time delays or other means reverses that projection
geometrically and unveils dynamical information (Abarbanel 1996; Kantz and
Schreiber 2004).
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