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Foreword

There are many excellent books on polymer physics. It therefore requires some

courage to write a new book on this subject. However, for the success of a book, the

courage of the author is less important than the novelty of the approach that the

book follows and, most importantly, it is crucial that this approach addresses an

existing need.

Polymer Physics: A Molecular Approach that Professor Wenbing Hu has written

aims to bring some of the key concepts of modern polymer physics to a readership

that is not familiar with this field. For this target audience, the present book will

provide the first, and in some cases, the only introduction to a very wide and active

field of research. In writing a book for this readership, Professor Hu had to make

choices. Systematically, he has decided to focus on underlying physical concepts

rather than on detailed mathematical descriptions, and he has tried to highlight the

links between the subject matter of the book and the (many) application areas. In

addition, as the title says, the book uses a “molecular” picture to explain concepts

and phenomena. This approach has proven to be very successful for the original

(Chinese) edition of this book and it is therefore fortunate that the publishers have

decided to publish an English translation.

I should add that, on some topics, Professor Hu’s book goes well beyond existing

textbooks—this is, in particular, true of Professor Hu’s own field of research:

polymer crystallization, demixing, and the interplay of the two. To my knowledge,

this is the first book that presents some of the new developments in this area

of research at a level accessible to undergraduate students. Hence, the book may

be of interest to a wider community than its original target readership.

Cambridge Daan Frenkel

March 2012
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Preface to the English Edition

Polymer physics covers all the physical aspects of macromolecular substances. If

we introduced the subject according to the current classifications of structures and

properties of polymers, the textbook would become thicker and thicker with the fast

expansion of our knowledge, and would look like an encyclopedia. Such a textbook

cannot meet the current demand for a more concise introduction within a time-

limited schedule of university courses on polymer-related subjects. In fact, the

published textbooks on polymer physics normally selected the content according

to the author’s personal taste or to the specific training subjects. On the other hand,

nowadays on the Internet, fragmental concepts of polymer physics are available.

However, the students still need the course training on the intrinsic correlations

among meaningful physical concepts of polymers as well as the useful theoretical

tools for a fundamental analysis. On the basis of the above challenges, this book is

intended to provide a concise entrance-level introduction on polymer physics. It

tries to avoid the complicated mathematic treatments of modern theories, the trivial

experimental techniques, the details of practical industrial processing, and the wide

applications of polymers. Rather, the attention is only focused on three basic

aspects of comprehensive principles of polymer physics, including molecular

structures, molecular motions, and phase transitions, in order to elaborate the

basic statistical thermodynamics and kinetics (the mean-field theory and the scaling

analysis) as well as their state-of-the-art applications. The book may help readers to

establish several key molecular-level pictures of polymer physics. The book targets

senior undergraduate students, graduate students, teachers, and researchers, who are

studying and working in the extensive fields of physical sciences, life sciences,

materials sciences, and engineering sciences relevant to physical aspects of

polymers. Through a systematic study, the readers are expected to grasp the basic

concepts of polymer physics as well as the theoretical tools for a fundamental

analysis of macromolecules.

The current English edition was basically translated from its recent Chinese

version (Science Publisher in Beijing, 2011), with minor expansion on the historical

aspects of some fundamental ideas and their original references. After the introduc-

tory chapter, the book has been split into three parts: chain structures, chain
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motions, and chain assembly. The first part introduces the relationships between

chemical structures of polymers and their physical behaviors, the Gaussian statistics

of ideal-chain conformation, the derivation of the equation of state for ideal

rubbers, as well as the scaling analysis of some non-ideal-chain conformations

(polymer solutions, polyelectrolyte, stretching, and spatial confinement). The sec-

ond part introduces the scaling analysis of chain dynamics, the relaxation behaviors

of polymer deformation, and the viscoelastic behaviors of polymer flows. The third

part introduces polymer assembly via phase transitions, which includes the statisti-

cal thermodynamics of polymer solutions (Flory-Huggins mean-field lattice theory

and its developments), phase separation (its thermodynamics and kinetics; in

addition, microphase separation of block copolymers), and polymer crystallization

(thermodynamics, kinetics, and morphologies). The book ends with an extended

reading material on the interplay of phase separation and crystallization in polymer-

based multi-component systems. Each chapter is complemented at the end with

several question sets to highlight some basic ideas.

The delivery of this English edition was decided in a nice conversation with

Dr. Stephen Soehnlen, the Springer editor. Prof. Daan Frenkel offered a perfect

foreword. Prof. Yifu Ding and Dr. Ran Ni made a thorough proofreading over the

original text, and Prof. An-Chang Shi and Dr. Jamie Hobbs made separate

proofreading on the first and second chapters. With their great help, the present

book became more readable as a textbook!

The content of this book is limited by the author’s academic background as well

as by the pedagogic style of a textbook. It could not completely cover all

the important academic ideas in the related fields or all the original references

in the historical aspects. The author is mainly reponsible for any mistakes in the

text. Friendly suggestions and comments are always most welcome!

Nanjing Wenbing Hu

July, 2012
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Chapter 1

Introduction

1.1 What Are Polymers?

Polymers are our molecular views on certain chemical substances. The views have

been established in our long-lasting exploration and exploitation of materials in

nature. The term “polymers” is commonly used to describe a broad range of

materials, from synthetic materials, such as plastics, rubbers, fibers, coatings,

filtration membranes, adsorption resins and adhesives; to natural materials, such

as cellulose, starches, natural rubbers, silks, hairs, and chitins; and even to the

prototypes of bio-macromolecules, such as DNA, RNA and proteins, which are the

basic substances for highly diverse creatures.

There is a long history for us to recognize polymers. Let us start with the early

evolution of our molecular views (Rupp 2005). As early as in the middle of 500 BC,

the Greek philosopher Leucippus and his follower Democritus suggested that, an

indivisible minimum substance called atoms constituted our world. Almost at the

same time, Empedocles proposed that the world was formed by four elements, i.e.,

water, air, fire, and earth. Later on, Plato set up the Academy at Athens, inherited

the atomic theory, and also advocated the four-element theory on the basis of the

formal logic system of geometries.

In the next 2,000 years, the alchemists discovered more and more elements. Till

to eighteenth century, Lavoisier named the elements of oxygen and hydrogen, and

proved the mass conservation in chemical reactions (Lavoisier et al. 1783). This

milestone delivered the birth of chemistry. At the beginning of nineteenth century,

Dalton proposed that each molecule contains a fixed ratio of atoms among several

elements (Dalton 1808). This theory was another milestone that opened the gate to

modern chemistry. Since then, the atomic and molecular theory became the main

stream of chemistry.

In the field of physics, in 1880s, Boltzmann invented statistical thermodynamics

according to the Maxwell’s theory of the motions of atoms (Boltzmann 1872). In

1905, Einstein elucidated that the stochastic Brownian motions of atoms are mainly

W. Hu, Polymer Physics, DOI 10.1007/978-3-7091-0670-9_1,
# Springer-Verlag Wien 2013
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responsible for their self-diffusion in the liquid (Einstein 1905). The epoch-marking

ideas above, along with the flourishing of quantum mechanics, created a solid

foundation for atomic and molecular views of chemical substances. The atomic

view has been reinforced by modern techniques, for example, scanning tunneling

microscopy, which is capable of visualizing and even manipulating individual

atoms (Binnig and Rohrer 1986). Nowadays, we define the molecules, including

ions and mono-atomic molecules, as the smallest units that maintain the chemical

properties of pure substances, and define the atoms as the smallest units that

represent the properties of elements in molecules and in chemical reactions.

Molecules, as the minimal units maintaining the chemical properties, imply that

their molar mass could not be too large. Therefore, when Staudinger proposed the

concept of “Macromolecules” in 1920 (Staudinger 1920), he met a strong objection

from the whole academic community. However, he unflinchingly fought for his

argument, and collected various concrete evidences to prove that the chemical

compounds in his hand contained more than 1,000 atoms, and their molar masses

reached more than 10 kilograms per mole. He eventually persuaded his colleagues

in the community and won the Nobel Prize in Chemistry in 1953 for his work on

macromolecules. Nowadays, it has been well known that the molar mass of

polymers could be so large that, removing several repeating units would not

significantly affect their chemical or physical properties. The concept of

“Macromolecules” has indeed challenged our common sense that molecules are

the smallest structural units maintaining the properties of pure substances.

In 1996, the International Union of Pure and Applied Chemistry (IPUAC)

published the recommendation of polymer terms (Jenkins et al. 1996). It provided

the definition below:

Macromolecule; polymer molecule

A molecule of high relative molecular mass, the structure of which essentially

comprises the multiple repetition of units derived, actually or conceptually, from molecules

of low relative molecular mass.

Notes:

(1) In many cases, especially for synthetic polymers, a molecule can be regarded as having

a high relative molecular mass if the addition or removal of one or a few of the units has

a negligible effect on the molecular properties. This statement fails in the case of

certain macromolecules for which the properties may be critically dependent on fine

details of the molecular structure.

(2) If a part or the whole of the molecule has a high relative molecular mass and essentially

comprises the multiple repetition of units derived, actually or conceptually, from

molecules of low relative molecular mass, it may be described as either macromolecu-
lar or polymeric, or by polymer used adjectivally.

The definition above is flexible enough to accommodate the diverse macromo-

lecular compounds encountered by chemists. But such a definition is not satisfac-

tory to physicists, because it does not reflect the basic molecular structure that

determines most of the unique physical behaviors of polymers.

2 1 Introduction



1.2 Polymers in the Eyes of Physicists

In 1990, the Nobel Physics Prize laureate P.-G. de Gennes delivered his Nobel

lecture titled with “Soft Matter” (de Gennes 1992). He used polymers as one of

examples of soft matter. Another commonly used term for soft matter is “complex
fluids”.

The hardness, or softness, of matter is normally characterized by their cohesive

energy density, i.e. the interaction energy of particles in each unit of volume,

E � e/a3, where e is the interaction energy between two particles and a is the

inter-particle distance.

The conventional hard matter includes metals, glasses and ceramics. The atoms

are connected by strong chemical bonds with the interaction energy of the order

of 10�18 J. The bond lengths or atomic spacing are at the level of angstrom,

a ¼ 10�10 m. Therefore, the cohesive energy density of hard matter is estimated

as 1012 N/m2, which is about the Young’s modulus of diamond.

In contrast, the soft matter includes polymers, liquid crystals, colloids, nano-

particles, self-assembled or hybrid materials, foams, foods (Fortunately our teeth

are some sort of hard matter!), and even the life systems (Our body is unfortunately

not as hard as the superman in science fictions!). The building blocks of soft matter

typically interact via the sub-valence bonds, with the interaction energy at the order

of magnitude 10�20 J that is much lower than the chemical bonds, and their spacing

ranges from nanometers to micrometers, a ¼ 10�8 ~ 10�6 m. Therefore, the cohe-

sive energy density of soft matter is as low as 10�2 ~ 104 N/m2, much lower than

that of hard matter! The connection between particles is liable to break as a

response to thermal fluctuations near room temperatures or to weak mechanical

disturbances. Therefore, the soft matter that we daily encounter can undergo a

gigantic structural change around the ambient conditions, and some of its phase

transformations are even driven by the entropic changes. From this perspective, soft

matter can be described as materials “comprising all physicochemical systems

which have large response functions.” (de Gennes’ words (de Gennes 2005)).

Current classification of chemical substances is also limited in reflecting the

structural characters of polymer compounds. Chemical substances can be divided

into pure substances and their mixtures. The pure substances can be further divided

into elements and compounds. Polymer compounds, as a typical soft matter, can

change their molecular shapes (conformations) to a large extent, and may contain

multiple chemical components in each macromolecule to behave like a mixture.

Accordingly, as pure substances, they are more complicated than normal small

molecular compounds. In 1990, Wunderlich proposed to divide all chemical

compounds into three classes (Wunderlich 1990):

Class I includes conventional small molecules. They stay in all three states of

gas, liquid and solid, reserving the integrity of chemical bonds. Examples of this

class are the molecules of oxygen, hydrogen, nitrogen and methane, respec-

tively. There are currently more than 107 kinds of small molecules.
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Class II includes flexible macromolecules. They stay only in the states of liquid

and solid, in order to reserve the integrity of chemical bonds. Evaporation of

such macromolecules requires so high level of thermal energy that the chemical

bonds are actually broken before reaching that level. The molecular flexibility in

the liquid mainly comes from the internal rotation of the main-chain C-C bonds.

This class includes structural materials of synthetic polymers such as Nylon,

PVC, PET, and PC, adhesives such as PVA, epoxy resins and Glue 502,

elastomers such as natural rubber, polyurethane, SBS and EPDM (rubber

could be regarded as the cross-linked liquid polymers.), biomaterials such as

celluloses, starch, silks and wools, and even bio-macromolecules such as DNA,

RNA and proteins. The class of flexible macromolecules corresponds to the soft

matter defined above.

Class III includes rigid macromolecules. They stay only in the solid states for

reserving the integrity of chemical bonds. Examples of this class include metals,

oxides, salts, ceramics, silicon glasses, diamond, graphite, and some conductive

polymers without any solvent or melting point. The class of rigid

macromolecules corresponds to the hard matter defined above.

In this classification, chain-like structures, as the major reason for polymers

belonging to the soft matter, have received a highlight.

In fact, chain-like structures are mainly responsible for those unique physical

behaviors of polymers in our study. This kind of structures exhibits anisotropic

properties, i.e. strong covalent bonds along the backbone of the chain, and much

weaker sub-valence interactions on the normal directions of the chain. In thermal

fluctuations and Brownian motions of condensed matter macromolecules, the

strong correlation along the chain dominates physical properties of polymers,

especially in their amorphous states. Polymer chemistry mainly concerns the

preparation of chain-like structures, or using them as building blocks to construct

more complicated macromolecules. In contrast, polymer physics mainly concerns

those physical behaviors brought by chain-like structures, although as building

blocks the latter may construct the more complicated topological architectures of

macromolecules.

Conventionally, we categorize the chain structures of polymers according to their

spatial length scales. The primary structures, also called the short-range structures on

the polymer chain, mainly characterize the chemical microstructures or the chemical

configurations (note that this configuration is different from that defined in the

physics of classical mechanics, where the configuration space means all the possible

combinations of spatial coordinates and momentums.). The primary structures can

only be modified by chemical reactions for making specific sequences of structural

units and their connections along the chain. The secondary structures, also called the

long-range structures on the polymer chain, mainly reflect the chain conformations,

such as the conventional random coils of polymers, the alpha-helices and the

beta-sheets of proteins, etc. The secondary structures are changed with thermal

fluctuations or phase transitions. The tertiary structures mainly describe the steric

assembly of secondary structures in the single protein molecules. The spontaneous
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assembly of macromolecules to form a (either intramolecular or intermolecular)

multi-level hierarchical structure via strong sub-valence interactions is often called

the molecular self-assembly process (Lehn 1995).

1.3 Role of Polymer Physics

Polymer physics is a multi-disciplinary subject derived mainly from polymer

chemistry and condensed matter physics, and pushed forward by the high demands

of materials, engineering and life sciences. It studies physical states and processes,

as well as their intrinsic correlations to the microscopic structures and molecular

motions of the macromolecules. A comprehensive understanding of the basic

principles governing the polymeric behaviors constitutes the main objective of

polymer physics. As a subject of macromolecular substances, polymer chemistry

evolved in the last century directly from organic chemistry that was the subject of

organic substances, while inorganic chemistry was the earliest subject of inorganic

substances evolved since the epoch of alchemy. Such an evolution sequence of

chemical subjects coincides with the creation of corresponding substances in

nature, following the common trend of evolutions from simple to complex.

Macromolecules, such as nucleic acids, carbohydrates and proteins acting sepa-

rately as the basic substances in genetic inheritance, energy storage and hierarchical

functioning in the living body, have exhibited admirable complexity and accuracy

by the use of their strong yet flexible chain-like backbones. Inspired by nature, our

knowledge of polymer chemistry has expanded extremely fast on making, measur-

ing and modeling of polymeric materials. The field of traditional condensed matter

physics also faces the new challenge of soft matter (sometimes called complex

fluids). Polymers are a typical kind of soft matter, featured with metastable states

and nonlinear viscoelasticity. Many basic theoretical tools of condensed matter

physics, such as the mean-field theory, the scaling analysis, the self-consistent-field

theory, the density functional theory, molecular dynamics simulations and Monte

Carlo simulations, have been commonly applied to investigate the behaviors of

polymers. In our daily life, polymer materials have become basic materials as

common as metals and ceramics. The early strategy to investigate polymer

materials was mainly based on the trial-and-error experiments, i.e. synthesizing a

series of polymer compounds with varing chemical structures and compositions, to

identify a proper range of useful properties. Nowadays, the molecular design of the

properties has given impetus to the development of new polymer materials. Such an

approach demands for our deep understanding of the relationships between the

molecular-level structures and polymer properties. Many engineering processes

involve macromolecules, such as the chemical engineering of polymer materials,

food processing, oil recovery and long-distance piping. The rapid progress of life

sciences also demands our approaches of physics and chemistry to elucidate the

microscopic mechanisms of living processes. As the vitally important substances,

macromolecules are often involved into the microscopic living processes.
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Integrated with the demands of the multiple disciplines above, polymer physics has

attracted a great deal of attention with the approaches often concerted with theory,

simulation and experiment.

The role of polymer physics can be elucidated, for a typical example, in the

interdisciplinary field of polymer science and polymer engineering. To make it

more explicit, let us look at the conventional procedure for the preparation of

synthetic polymer materials. The route starts from monomer synthesis, to polymer-

ization, molding, characterization, and then performance tests, as shown on the

central horizontal of Fig. 1.1. Above the central horizontal is the fundamental

research: polymer synthesis mainly covers the early stage from monomer synthesis

to polymerization; polymer structure covers the middle stage from polymerization

to characterization; and polymer property covers the final stage from molding to

performance test. Above this level, polymer chemistry concerns the early stage

from synthesis to structure, while polymer physics concerns the later stage from

structure to property. These two constitute polymer science at the top. Below the

central horizontal is the industrial development: polymer chemical engineering

covers the early stage frommonomer synthesis to molding, while polymer materials

science covers the later stage from molding to performance test. These two consti-

tute polymer engineering at the bottom. One can see that polymer physics occupies

almost the second half of this diagram.

The common polymers for plastics, rubbers and fibers have been produced at a

large industrial scale. It appears difficult to modify them from the early stage of the

preparation route. Currently, most of modifications either via physical methods or

via chemical treatments are based on their structure–property relationships. The

specific functional polymers for coatings, adhesives, adsorption resins and filtration

membranes occupy a relatively small market, and their modifications often start

from monomer synthesis.

Born as a multi-disciplinary subject of chemistry and physics, polymer physics is

also a bridge connecting materials sciences and life sciences. At the early history of

polymer science, many fundamental concepts of polymer physics were actually

Fig. 1.1 Diagram of the subjects along the conventional preparation route of synthetic polymers

to demonstrate the relationship between polymer science and polymer engineering
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invented in the study of natural polymers such as celluloses and natural rubbers.

The fast development of global science and technology in the middle of twentieth

century resulted in a broad application of these concepts in the research and

development of synthetic polymer materials. Entering twenty-first century,

materials sciences have been well established, while quantitative life sciences are

still developing fast. We speculate that polymer physics will continue to expand its

cutting-edge knowledge, by following the calls for advanced materials, new

energies and green environments of our society. It remains nourishing, and being

nourished by, the flourishing of life sciences. As already pointed out by Staudinger

in 1953 (Staudinger 1953), “In the light of this new knowledge of macromolecular

chemistry, the wonder of Life in its chemical aspect is revealed in the astounding

abundance and masterly macromolecular architecture of living matter.”

1.4 Focusing of this Book

Polymer physics covers a wide landscape of polymer structures and their physical

properties. The description of the relationships between structures and properties

evolves from the early-stage trial-and-error empirical equations to the currently

well-established statistical thermodynamic and kinetic theories.

Thomas Kuhn has pointed out in his well-known book “The Structure of Scientific

Revolutions” (Kuhn 1996) that, the scientific progress of each subject experiences

four phases: the pre-paradigm phase, the normal science, the anomaly and crisis, and

the revolutionary science. “Normal science means research firmly based upon one or

more past scientific achievements, achievements that some particular scientific com-

munity acknowledges for a time as supplying the foundation for its further

practice.”(P10) “These are the community’s paradigms, revealed in its textbooks,

lectures, and laboratory exercises. By studying them and by practicing with them, the

members of the corresponding community learn their trade.”(P43)

There are two statistical thermodynamic theories that can be regarded as the

basic theoretical paradigms in polymer physics. The first theory is the Gaussian

statistical treatment of ideal single-chain conformations, used to calculate the

conformational entropy. This theory allows us to apply the scaling analysis (as

well as the self-consistent-field theory) to treat more realistic single-chain confor-

mation and to describe chain dynamics based on Brownian motions. The first theory

and its extension cover the first half content of this book. The second theory is the

Flory-Huggins lattice statistical treatment of multi-chain conformations, used to

calculate the mixing entropy. This theory allows us to apply the mean-field treat-

ment to estimate the inter-chain attractions and then to understand the thermody-

namic processes of chain assembly, such as liquid-liquid phase separation and

polymer crystallization. The second theory and its extension cover the second

half content of this book. Both these theories are based on the assumption that

chain conformations can be modeled by the trajectories of random walks. In other

words, both theories rest on the framework of Brownian motion, which is the basic

dynamic feature for all types of soft matter particles.
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Polymer structures can be roughly divided into two categories, i.e. single-chain

structure and their assembled structures. In the first category, single-chain

structures include the chemical structures and the conformations of polymer chains.

The chemical structures can be described at two separate levels, i.e. intrinsic and

extrinsic levels, corresponding to their roles in the determination of polymer

behaviors. The intrinsic factors are common for the same species of polymer

samples, including the chain semi-flexibility and the complicated inter-chain

interactions. The extrinsic factors are specific for the individual cases of polymer

samples, including molecular weights and their distributions, molecular topological

architectures, and the regularities of chemical sequences and their connections

along the chain. The conformation of polymer chains focuses on the variations of

chain conformation under various circumstances. In the second category, the

assembly structures of polymer chains show both static and dynamic aspects. For

the single-component homopolymer systems, the static structures include amor-

phous states, oriented states, liquid crystal states and crystalline states, whose

domains can interwoven into the texture of materials. For the polymer-based

multi-component systems, the above states can co-exist even in the mixed or

separated phases of solutions, blends, copolymers and composites. The dynamic

structures can be separated into crystalline and non-crystalline states. Most of the

crystalline states are formed by the semi-crystalline textures that appear as hard

elastomers. The non-crystalline states can be treated as glasses, rubbers or fluids

according to the different length scales of molecular mobility.

The physical properties of polymers vary with the structures hierarchical from

chemical structures to chain conformations and their assembly structures. The

mechanical properties are characterized by the impact strength, the tensile strength,

the bending strength and the hardness of polymers. The thermodynamic properties

are characterized by the heat resistance (physical aging, deformation temperature

and degradation temperature) and the solvent resistance of polymers. The responses

to photonic, electronic, magnetic, phonon and microwave stimulations are sepa-

rately characterized by the transparency, the conductivity, the dielectric constants,

etc. The transport properties of polymers have been applied to characterize the

filtration membranes for their efficiency of water purification, as well as the drag-

reduction agents to reduce the barrier for the enhanced oil recovery, for the long-

distance oil-piping and for the fire-extinction water-piping. The surface properties

of polymers are characterized by the friction, the adhesion and the electrostatics.

The chemical properties of polymers are characterized by the chemical aging,

degradation and cross-linking. Most of the above physical properties of polymers

have been well exploited and been widely applied in our daily life.

The current book is intended to be a concise introduction to polymer physics. As

such, it will mainly focus on polymer structures as well as their relationships with

properties (as elucidated by statistical thermodynamic and kinetic theories of

polymers), and may not be able to provide an extensive survey on polymer

properties and their wide applications. For a complementary knowledge about

polymer properties, the readers are directed to other textbooks of polymer physics

or specialized monographs about certain polymer properties.
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Question Sets

1. Why do we say that polymer physics mainly focuses on the chain-like

structures?

2. Why do polymers belong to soft matter?

3. Try to summarize the importance of Brownian motions in polymer physics.
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Chapter 2

Structure–Property Relationships

2.1 Characterization of Chemical Structures

Polymer chain structures include the chemical structures (known as primary

structures) and conformation structures (known as secondary structures and further

assembly structures). We first introduce the characterization of chemical structures

of polymer chains, followed in the next chapters by the Gaussian treatment of their

ideal-chain conformations and by the scaling analysis of their non-ideal-chain

conformations, respectively. The conformations of self-assembled block copolymers

as well as the conformations of crystalline polymers will be introduced in Chaps. 9 and

10, respectively.

The relationship between chemical structures and their physical performance is

one of the central topics of polymer physics. IUPAC has recommended a whole set

of names to describe the detailed chemical structures of polymer chains and their

derivatives. However, in our daily communication, people prefer to use the popular

names of polymers reflecting their characteristic physical performances, such as

high-density polyethylene (HDPE), foamed polystyrene, thermoplastic elastomers,

liquid crystal polymers, conductive polymers, and polyelectrolyte. Such terminology

allows us to comprehend quickly the basic characteristics of chemical structures

responsible for their specific physical properties.

In fact, as long as we have obtained a polymer sample, we need first to determine

its basic physical properties. The determination mainly relies on the key informa-

tion about the chemical details of that sample. In other words, we need to carry out

the necessary characterization of the chemical structures of polymer chains. Here

rises a question, what are the essential factors characterizing the chemical structures

of polymer chains, from which we can make a proper speculation on the funda-

mental physical properties?

To answer the question above, we shall begin with an analogy to the characteri-

zation of a single crystal, for example, a piece of diamond. First, the single crystal

possesses intrinsic structural symmetry. For diamond, the sp3 hybrid orbits of the

carbon atoms lead to a tetrahedral structure for the most stable packing of carbon

W. Hu, Polymer Physics, DOI 10.1007/978-3-7091-0670-9_2,
# Springer-Verlag Wien 2013
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atoms in the diamond. The most stable geometric conformation of molecules often

determines the azimuths of the packing neighbors, i.e., the angles between two axes

of the unit cell. Second, the single crystal has an intrinsic periodicity for the

stacking of the structural units, characterized by, for diamond, the carbon-carbon

bond lengths. The interactions between the structural units determine the axial

lengths of the unit cell. Besides the above two intrinsic factors reflecting the

common properties of the same species of single crystals, the single crystal contains

some extrinsic characteristic features on its individual structure, i.e., the sizes, the
facets and the internal defects. For a piece of diamond, these extrinsic characteristic

factors mainly determine its market price. The diamond structure characterized

separately at the intrinsic and extrinsic levels facilitates a better understanding of its

relationship to performances.

One can describe polymer samples in a similar way. First of all, a polymer chain

possesses semi-flexibility, that characterizes the intra-chain interactions for the most

stable conformation persisting along the chain axis. Secondly, a polymer chain also

holds complex inter-chain interactions. These two intrinsic characteristic factors

dictate the basic physical behaviors of the same species of polymers. Besides these

two intrinsic factors, each individual polymer sample possesses certain extrinsic

characteristic factors, i.e., molecular weights and their distributions, topological
architectures, and sequence irregularities. These extrinsic characteristic factors are
also important in determining the physical behaviors of the polymer samples.

The separation of chemical factors of polymer chains into the intrinsic and

extrinsic levels allows us to understand their corresponding roles in determining

the physical behaviors of polymers. The intrinsic chain structures play a primary

role in determining physical behaviors. They often serve as the thermodynamic

driving forces for structural phase transitions. In contrast, the extrinsic chain

structures play a secondary role in determining physical behaviors. They usually

serve as the external restrictions for structural phase transitions. For instance, the

anisotropic attractions represent the compact packing of polymer chains, which

drive polymer crystallization. If polymer chains contain too many randomly

distributed irregular structural units along the sequence of the chain (see Sect. 2.6

for more details), the capability of polymer crystallization will be ruined. There-

fore, random copolymers often stay in the non-crystalline state and exhibit the

characteristics of amorphous polymers, such as atactic polystyrene (aPS) and

atactic poly(methyl methacrylate) (PMMA).

The following text will introduce five intrinsic and extrinsic chemical factors

above, as well as their relationships with physical properties of polymers.

2.2 Semi-Flexibility of Polymer Chains

Many factors may determine polymer semi-flexibility, such as internal rotation,

solvation, stretching, spatial confinement, surface adsorption, charge interactions,

hydrogen bonding along helix, and double helix of DNA, etc. The most common

factor is the internal rotation. One can understand the internal rotation from the
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ideal-chain model of a single polymer chain. In order for a simple statistical

estimation, a long-enough ideal chain has been assumed, and the long-range

interactions between the structural units along the chain have been neglected.

Such an ideal polymer chain is often referred as a phantom polymer, or an

unperturbed polymer. In the following, we start with the simplest freely-jointed-

chain model, and then consider the short-range interactions along the chain. The

first short-range interactions are the fixed bond angles along the backbone atoms, as

described by the freely-rotating-chain model. The second short-range interactions

are the hindrances of internal rotation as described by the hindered-rotating-chain

model. In this way, we progressively approach the description to the semi-

flexibility of real polymers.

2.2.1 Freely Jointed Chains

The freely-jointed-chain model considers only the chain connection of monomers

with no restriction on the connection angles. A common method to characterize the

semi-flexibility of polymer chains is to measure the size of a random coil consisting

of a single polymer chain. The end-to-end distance of a polymer chain is the first

quantity to characterize the coil size, which can be calculated by using the vector R
connecting one end to the other end of the chain. Assuming the length b of each

bond vector contributing to the contour length of the main chain, the vector for the

end-to-end distance is the sum of n bond vectors along the chain,

R ¼ b1 þ b2 þ � � � þ bn ¼
Xn
i¼1

bi (2.1)

For a large number of polymer chains, their random-oriented end-to-end vectors

cancel each other, and their summation approaches zero. Therefore, we need to use

a scalar to avoid zero result, for example, use the square end-to-end distances. The

sum of square end-to-end distances over a large number of polymer chains

represents the characteristic size of polymer coils.

R2 ¼
Xn
i¼1

bi �
Xn
j¼1

bj ¼ nb2 þ 2
XX

j>i

bi � bj (2.2)

Since the dot product of two bond vectors relies on the angle gij between them,

bi � bj ¼ b2 � cos gij (2.3)

The angles between any two bond vectors of the freely-jointed chain are

uniformly distributed between 0 and 2p, leading to a symmetric distribution of

positive and negative cosine values between 1 and�1. Thus, in the summation over

a large number of such independent dot products, the positive values cancel the

negative counterparts, and eventually
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XX
j>i

bi � bj ¼ 0 (2.4)

Accordingly, we obtain

<R2
f :j:> ¼ nb2 (2.5)

where < . . . > means the ensemble average over many polymer chains. This

quantity is referred as the mean-square end-to-end distance of polymer chains.

As an organic chemist, Staudinger regarded macromolecules initially as rigid

rods (Staudinger and Nodzu 1930). Later on, two excellent physical chemists, Guth

and Mark, recognized the free internal rotation of polymer chains (Guth and Mark

1934). Almost at the same time, Kuhn proposed more explicitly the random coil

model and made an analogy for the conformation of a freely jointed chain in the

trajectory of a random-walking particle in Brownian motion, provided that

the chain length corresponds to the walking time (Kuhn 1934). One can see that

the formula (2–5) is actually consistent with Einstein’s calculation on Brownian

motion in 1905 (Einstein 1905). The consistency implies that the random

conformations of polymer chains actually result from an integration of random

Brownian motions of monomers in the chain.

Another quantity to characterize the coil size, probably a more widely used one,

is the mean-square radius of gyration. This size appears to be more practical than

the mean-square end-to-end distance, since it can be measured directly by using

light scattering. The mean-square radius of gyration is defined as the summation of

mean-square distances of all the monomers relative to the mass center of the

polymer coil. Thus, if we define the square vectors r2 as the distances radiating

from the mass center of the whole polymer chain, their average over n þ 1 chain

monomers (each with the mass m) gives

<R2
g> �

Xn
i¼0

mir
2
i

Xn
i¼0

mi

,
(2.6)

When the polymer chain is long enough, we can derive that

<R2
g> ¼ 1

6
<R2

f :j:> (2.7)

2.2.2 Freely Rotating Chains

The carbon-carbon bonds constitute the backbone of a polyolefin chain. In princi-

ple, each carbon atom contains four bonds aligning along the tetrahedron sp3 hybrid
orbits with the bond angles fixed at 109�28´. In other words, the connection of
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monomers on a real polymer chain has a restricted bond angle. However, even if the

bond angle keeps fixed, the internal rotation of each bond around the previous bond

on the chain is still possible. Therefore, supposing no hindrance in the internal

rotation, we obtain the freely-rotating-chain model. As illustrated in Fig. 2.1, the

angle between the bond vector and its preceding is defined as y, and for the

backbone carbon chains, y ¼ 180�–109�28´. The mean-square end-to-end distance

of the freely-rotating-chain model can be derived by making a correction term for

the fixed bond angles, on the basis of the mean-square end-to-end distance of the

freely-jointed-chain model, giving by

<R2
f :r:> ¼ nb2 � 1þ cos y

1� cos y
(2.8)

2.2.3 Hindered Rotating Chains

When real polymer chains perform the internal rotation along the backbone bonds,

the substituted side groups will interact with each other, causing a hindrance to the

internal rotation. Therefore, the hindered-rotating-chain modelmust be considered.

As illustrated in Fig. 2.1, along the chain backbone, a bond can perform internal

rotation around the previous bond with a fixed bond angle. The trajectory made by

the end of this rotating bond forms a circle. On this circle, by making a reference to

the sectional line of the face formed by the previous two bonds along the chain, one

can define the angle of the projected line of the rotating bond as the rotation angle f.
When two hydrogen substitutes on two separate carbon atoms of ethane CH3–CH3

locate at the overlapping positions of internal rotation, their distance is 2.26 Å,

smaller than the sum of van der Waals radius of hydrogen atoms 2.40 Å. Thus, the

Fig. 2.1 Illustration of the

fixed bond angle y and the

internal rotating angle f
along the chain backbone
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potential energy of internal rotation will increase due to the strong volume exclusion

of two overlapping substitutes, which is unfavorable for the stability of the confor-

mation. When the hydrogen atoms locate at the interleaving positions with a rotation

angle of 60�, the potential energy of internal rotation can be effectively lowered, as

illustrated in Fig. 2.2.

On each middle carbon-carbon bond of the backbone polyethylene, the rest

chains at two ends can be regarded separately as two big groups, replacing the

two hydrogen atoms of an ethane discussed above. Thus, the strong interaction

between two rest chains will greatly raise the potential energy at the overlapping

positions, and make a big difference from their interleaving positions. As illustrated

in Fig. 2.3, the overlapping position exhibits the highest potential energy in the

internal rotation, the trans (denoted as t) conformation shows the lowest, and the

gauche conformations (separated into the left g+ and the right g-) are two metasta-

ble states. Therefore, three relatively stable states, i.e. one trans and two gauche
conformations, can be regarded as the representative states in the statistics of

polymer chain conformations. Such an ideal chain model is often called the
rotational-isomerism-state model (RISM, see Ref. (Volkenstein 1963; Birshtein

and Ptitsyn 1966)). This model can characterize well the semi-flexibility of real

polymer chains. Several examples for semi-flexibility of real polymer chains can be

found in Flory’s specialized text (Flory 1969).

The semi-flexibility of polymer chains due to the hindered internal rotation is

revealed by the correction from the contribution of the internal rotation in the mean-

square end-to-end distance, as

<R2
h:r:> ¼ nb2 � 1þ cos y

1� cos y
� 1þ< cosf>
1�< cosf>

(2.9)

where < cosf> ¼ Ð2p
0

e�EðfÞ kT= cosfdf
Ð2p
0

e�EðfÞ kT= df
�

and k is the Boltzmann’s

constant with T the absolute temperature.

From the potential energy curve of the internal rotation of polyethylene shown in

Fig. 2.3, one can recognize two potential energy differences with important

Fig. 2.2 (a) Illustration of the overlapping position (f ¼ 0�) and the interleaving positions

(f ¼ 60�) of the hydrogen atoms substituted on two carbon atoms of ethane. (b) The potential

energy curve of the internal rotation for ethane
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physical meanings: one is the potential energy difference De between trans and

gauche conformations, and the other is the potential energy barrier DE for the

transition from the trans to gauche conformations. The thermodynamic equilibrium

based on the energy potential De defines the static flexibility of polymer chains. We

know that the thermodynamic distributions in three conformation states are related

to the capability of local thermal fluctuations, which is at the energy level of 1 kT.
When kT >> De, the states t, g+, g- will occur with almost the same probabilities,

and polymer chains will exhibit random coils with a high flexibility. When kT <<
De, the trans conformation will be dominant, and polymer chains will exhibit the

fully extended conformation with a high rigidity. The extended chains mainly exist

in the ordered states, so the static semi-flexibility facilitates the ordering of polymer

chains. On the other hand, the transition kinetics based on the activation energy DE
defines the dynamic flexibility of polymer chains. When kT >> DE, it is easy for

polymer chains to change their conformation, so they are in the fluid state. When

kT << DE, polymer chains are unable to change their conformation, so they are in

the solid state, either in the glass states or in the crystalline state. Therefore, the

chain semi-flexibility provides an intra-molecular source of the activation energy to

the glass transition of polymers.

For a flexible polymer chain, if the internal rotation of each bond along the

backbone chain has three possible rotational isomerism states, 1,000 such bonds on

one chain imply that the random coil could have as many as 31,000 � 10477 ways to

arrange all the micro-conformations. Although compared to the real polymer chain

this chain is not very long, we could not count out one-by-one the astronomical

figures of conformations. Therefore, if we want to learn the conformational

properties and their variation laws, we have to employ the statistical method

introduced in the next chapter.

In practice, not all the combinations of three representative internal rotation

states can be accepted along the real polymer chain. For polyethylene chains, there

exists the so-called “pentane effect” (Flory 1993). We know that the summation of

two van der Waals radii of carbon atoms is 3.0 Å. Two consecutive gauche
conformations, g+g+ or g-g-, bring the end-to-end distance of the pentane segment

to 3.6 Å. Thus, these two chain ends interleave with each other, which can be

acceptable. However, the conformation g+g- or g-g+ bring the end distance to 2.5 Å,

Fig. 2.3 (a) Illustration of the overlapping, gauche and trans positions of polyethylene. (b) The
potential energy curve of the internal rotation of polyethylene

2.2 Semi-Flexibility of Polymer Chains 19



less than the sum of two van der Waals radii of the carbon atoms, which means that

the carbon ends of the pentane segment will overlap with each other. Therefore, due

to their volume-exclusion interactions upon overlapping, such kinds of

conformations cannot be accepted.

2.2.4 Characterization of Static Semi-Flexibility of Polymers

The static flexibility of a semi-flexible polymer chain is related not only to the

potential energy difference De, but also to the temperature T. The following

quantities are often used to characterize the conformational states of semi-flexible

polymer chains.

1. Persistence length

The persistence length is theoretically defined by the projection of the chain end

along the direction of the first bond vector (Flory 1969) as

bp � b0 exp

�
De
kT

�
(2.10)

where b0 is the projection of each backbone bond on the direction of chain exten-

sion. The persistence length represents the correlation length of the backbone-bond

orientations along the polymer chain. It is also used to describe the chain rigidity

from other sources besides hindered internal rotation, such as the charge interactions

along the polyelectrolyte chain, the double helix formation of DNA, microtubules,

and the conjugated covalent bonds in the liquid crystal polymers or conductive

polymers. This quantity originates from the worm-like-chain model describing the

semi-rigid polymer chains (Kratky and Porod 1949).

2. Length of Kuhn segment

The Kuhn segment is defined by the minimum freely jointed unit along the chain

(Kuhn 1936). Assuming that a chain contains n backbone bonds, and each bond

contributes b0 projection length, the projection length of the whole chain is thus

L ¼ nb0 ¼ nKbK (2.11)

where nK and bK are the number and the sequence length of Kuhn segments,

respectively. They make the mean-square end-to-end distance

<R2> ¼ nKb
2
K (2.12)

The polymer chain formed by nK and bK is also called the equivalently freely

jointed chain. Therefore, the Kuhn segment length bK is
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bK ¼ <R2>

L
(2.13)

3. Stiffness parameter or steric hindrance

The stiffness parameter, or steric hindrance, is defined by

s �
�

<R2>

<R2
f :j:>

�1=2

(2.14)

which reflects the degree of hindrance in internal rotations.

4. Unperturbed dimension

The unperturbed dimension of the polymer chain is defined by

A �
�
<R2>

M

�1=2

(2.15)

where M is the molar mass of the polymer. The unperturbed dimension reflects the

expansion of the polymer coil relative to that predicted by the freely-jointed-chain

model.

5. Characteristic ratio

The characteristic ratio Cn is defined by

Cn � <R2>

nb2
(2.16)

and when the number of chain units n approaches infinity, one can obtain the

limiting characteristic ratio C1.

2.3 Local Inter-Chain Interactions

Along a long polymer chain, each chain unit may carry specific chemical groups,

which bring various kinds of inter-chain interactions, either the common van der

Waals interactions, or some special supermolecular interactions, such as the hydrogen

bonding, Coulomb forces, p-p stacking, hydrophobic interactions, and coordination

interactions with metal atoms. Under proper conditions, one kind of inter-chain

interaction may play a dominant role in determining certain physical behaviors of

polymers. Therefore, we need to introduce multiple molecular energy parameters to

characterize the corresponding inter-chain interactions, especially when we study the
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hierarchical functions at different levels of polymer assembly. Protein folding can be

regarded as a typical example of this case. The chain simultaneously contains various

specific interactions, and adjusts its complex hierarchical self-assembly structure with

the change of the local environment for maintaining its living functions. Such a

function is also known as the “robust stability”.

One kind of inter-chain interaction can even play multiple roles in determining

the physical behavior of a polymer. The local anisotropy of chain-like structures

endows polymers a typical character. Along the backbone of the polymer chain,

each chain unit connects its two neighbors with strong chemical bonds. However, if

we look at the direction normal to the chain, each chain unit interacts with other

neighboring units with relatively weaker sub-valence bonds. For example, in the

fully-extended-chain polyethylene crystal, the theoretical tensile strength along

the chain direction originating from the covalent bonds is as high as 350 GPa;

while the theoretical tensile strength normal to the chain coming from the van der

Waals interactions is as low as 10 GPa. Such anisotropy also makes the thermal

conductivity of polymer crystals along the chain direction much higher than that

normal to the chain. Therefore, the local anisotropy of chain-like structures makes

the local inter-chain interactions behave as the interactions between rigid-rod

molecules. If the common van der Waals interactions can be separated into the

short-range strong repulsive interactions and the long-range weak attractive

interactions, we can further split each kind of interaction into isotropic and aniso-

tropic parts for such rod-like molecules.

The van der Waals interactions are one of the important driving forces for the

physical behavior in polymer assembly states. On the one hand, the packing

structure of molecules in the liquid phase is dominated by the isotropic part of

volume repulsive interactions between polymer chains, especially the combinato-

rial entropy for liquid mixtures. Such kind of inter-molecular spatial combination

can be well represented by the lattice model. This is the reason why the lattice

model can successfully describe the statistical thermodynamics of multi-component

systems containing polymers. The hydrodynamic volume-exclusion interactions of

rigid-rod molecules can be regarded as effective anisotropic interactions, which

result in an entropy change driving the lyotropic liquid crystal ordering. In addition,

the combinatorial entropy of bond orientations at the neighboring positions of each

chain unit can be employed to explain the screening effect of the repulsive

interactions along a polymer chain due to the interpenetration of other polymer

chains. The screening effect makes polymer chains exhibit the scaling behavior of

unperturbed chain conformations in the melt phase. On the other hand, the isotropic

contributions of attractive interactions play a determinant role in driving mixing or

demixing in multi-component polymer systems. The anisotropic attractive

interactions will drive the thermotropic liquid crystal ordering in the bulk phase

via the enthalpy change. In addition, the local anisotropic attractive interactions

between chains can be utilized to describe molecular driving forces for spontaneous

crystallization of polymers.
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2.4 Molecular Weights and Their Distributions

2.4.1 Molecular Weight Effects

With the increase of molar masses from the lower end, some common properties are

enhanced, such as the melting points, the mechanical properties, the glass transition

temperatures, etc. However, the enhancement of properties will soon saturate with

further increasing of molar masses, as illustrated in Fig. 2.4. A higher molar mass

leads to a larger viscosity, and as a result, the fluid processing becomes more

difficult. In most cases, the higher molar mass does not bring the better performance

of the product. Therefore, from the practical point of view, it is important to control

the molar mass in a proper range during polymer processing.

High or low molecular weights are also reflected in the concentration of chain

ends in the bulk phase. The chain ends often exhibit quite different behaviors from

those monomers locating in the middle of polymer chains. In the following are

listed the so-called chain-end effects.

1. High mobility

Short chains are viable to disentangle. The addition of plasticizer is actually adding

small compatible molecules for enhancing the high-mobility effect of chain ends.

The glass transition temperature will be lowered in this way.

2. Defects in the crystal

Short-chain crystals have lower melting points, which can be regarded as a result of

high content of chain-end defects in the large-size crystal. The defects bring an

effective depression in the melting points.

Fig. 2.4 Illustration for some

common properties P
increasing with the molecular

weight M, but the viscosity �
increasing as well
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3. Chemical activity

Polyoxymethylene (POM) and polycarbonate (PC) often start thermal degradation

from the chain ends. If their plastic products contain too many short chains, the

products are liable to turn yellow in color, losing their good quality.

4. Specific interactions

Poly(ethylene oxide) (PEO) contains -OH groups at its chain ends, which are able to

form association clusters via hydrogen bonding, leading to high apparent molecular

weights in the measurements.

5. Fixed chain ends

Vulcanization effectively fixes the ends of flexible polymer chains to form three-

dimensional networks. By this way, the stress relaxation of stretched polymer

chains can be avoided, and the high entropy elasticity of the rubber can be

produced. Moreover, the fixed chain ends also increase both melting points and

glass transition temperatures of short flexible chains.

In the synthesis process of polymer chains, polymerization is not able to

synchronize the initiation, the propagation and the termination steps in all

polymers, and therefore leads to a certain width of molecular weight distributions

in the product. Such a character is called the polydispersity of polymers.
The production of polymeric materials has to pay close attention to both higher

and lower ends of molecular-weight distributions, which often play important roles

in determining the processing technology as well as the product quality of polymers.

For examples, some lowmolecular weight fractions of poly(vinyl chloride) can help

the fluid processing of high molecular weight fractions, like the additives of

plasticizers. The low molecular weight fractions of PC could speed up chemical

degradation, causing air bubbles and darkening in the plastic product. Adding a

minute amount of ultra-high molecular weight fraction of iPP could significantly

improve the crystal nucleation behavior of polypropylene product. Due to the

heterogeneous character of Ziegler-Natta catalysts, the low molecular weight frac-

tion of the low-density polyethylene (LDPE) usually contains more short branches,

and thus exhibits a difficulty to crystallize with high molecular weight fractions.

2.4.2 Characterization of Molecular Weights

A polydisperse polymer exhibits a certain width in its molecular weight distribu-

tion. We assume the number of polymer molecules Ni in the fraction of the

molecular weight Mi, and the total weight of this fraction Wi ¼ Ni � Mi, then we

define the number-average molecular weight by

MN � SNiMi

SNi
(2.17)
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and the weight-average molecular weight by

MW �
P

WiMiP
Wi

¼
P

NiM
2
iP

NiMi
(2.18)

Here the molecular weight commonly means the molar mass of polymers, in

units of grams per mole (g/mol). In practice, the molecular weight is also used with

reference to the molar mass of C12 as divided by 12, given the units of Dalton (Da).

The index of polydispersity d can be used to characterize the width of molecular

weight distributions, which is defined by

d � MW

MN
(2.19)

For a monodisperse polymer sample, d ¼ 1. The ranges of d values change

drastically with the different mechanisms of polymerization. The values of d are

1.01–1.05 in living polymerization (anionic, cationic, living free radical, etc.),

around 1.5 in condensation polymerization or coupling termination of polymeriza-

tion, around 2 in disproportionation reactions on polymerization, 2–5 for

high-conversion olefins, 5–10 in self-acceleration on common free radical poly-

merization, 8–30 in coordination polymerization, and 20–50 in branching reactions

on polymerization.

Another often used characterization of molecular weight is the viscosity-average
molecular weight

M� �
�
SWiM

a
i

SWi

�1=a

(2.20)

which is obtained from the viscosity measurement of polymer dilute solutions

(according to Mark-Houwink equation, the intrinsic viscosity [�] ¼ KM�
a, where

K is constant. See (5.18) in Sect. 5.1). When a ¼ �1,

M� ¼
�

SNi

SNiMi

��1

¼ MN (2.21)

and when a ¼ 1,

M� ¼ SWiMi

SWi
¼ MW (2.22)

Conventionally, a ¼ 0.5 ~ 1, thus

MN <M� � MW (2.23)
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In the early history of polymer sciences, the measurement of molecular weights

was the key experimental evidence proving the presence of macromolecules. In the

following decades, many methods have been invented to measure the molecular

weights of polymers. The stoichiometric methods include the end-group titration.

The thermodynamic methods make use of the colligative properties of polymer

dilute solutions, such as the rise of solvent boiling points, the depression of polymer

melting points, the vapor-phase osmometry, the isothermal distillation, and the

osmotic pressure. The scattering methods include the small-angle scattering of

visible light (or enhanced with laser beams), X-ray and neutron beams. The

microscopy methods include the electron microscopy. The fluid mechanics

methods include the viscosity of dilute solutions, the melt index (MI, or melt flow

rate MFR, are often used in industry for a fast identification of molecular weights of

polymer products, and are defined as the grams of melt mass flowing through a hole

within 10 min under a specific pressure and a specific temperature. In recent years,

the melt volume flow rate MVR is also used with the unit of cm3/10 min), the

sedimentation equilibrium, the sedimentation diffusion, and the GPC method.

Some methods measure the molecular-weight distributions as well.

In the modern chemistry laboratories, the technology of gel permeation chroma-
tography (GPC) has been well commercialized for the characterization of polymer

molecular weights and their distributions. In principle, GPC is a kind of volume-

exclusion chromatography, because the molecular-weight fractionation is based

upon volume exclusion. The porous silica beads are filled in the column of

chromatography. In each pore, the low molecular weight fractions get into the

deeper region and stay longer upon fluid-washing, while the high molecular weight

fractions stay shorter upon fluid-washing, as demonstrated in Fig. 2.5a. Therefore,

under the detection of the ultraviolet spectroscopy, we obtain the adsorption curve

on the outflow volume. The first signal corresponds to the fraction of the highest

molecular weights. The adsorption strength H corresponds to the total weight of the

fraction, and the efflux volume Ve corresponds to the molecular weight of that

fraction. The latter is calibrated by a standard curve obtained from the standard

polystyrene samples, as demonstrated in Fig. 2.5b, c. Therefore,

MW ¼ SHiMi

SHi
(2.24)

Fig. 2.5 Illustration of the principle of GPC. (a) The volume exclusion chromatography for the

selection of chain lengths; (b) the efflux curve of a polydisperse polymer sample; (c) the standard

curve based on the standard polystyrene samples
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MN ¼ SHi

SHi=Mi
(2.25)

In recent years, the technology of mass spectroscopy has been well developed.

The matrix-assisted Laser desorption/ionization time-of-flight mass spectrometry

(MALDI-TOF MS) can be applied to measure the molecular weights of

macromolecules (up to one million Dalton) due to its high sensitivity and its wide

response range. In combination with the distribution of fragment lengths, it can be

used to characterize those bio- and synthetic macromolecules with complicated

molecular architectures.

2.5 Topological Architectures

Polymers are not only simply linear chains, but also the building blocks to construct

topologically more complicated three-dimensional macromolecules. Some typical

cases are listed below.

1. Linear polymers. Linear structure is the basic topological shape of polymer

chains, as shown in Fig. 2.6a. The assembly of linear polymers normally

contains a specific distribution of chain lengths.

2. Ring polymers. The ring contains no chain end, as shown in Fig. 2.6b. Since

ring polymers cannot make entanglement with each other, their mobility is much

higher than the linear polymers with the same chain lengths.

3. Branched polymers. There can be multiple branches on the linear chains,

characterized by the degree of branching. There are several typical cases. The

comb-like polymers contain all the branches derived from the same backbone

chain, as shown in Fig. 2.7a. If the branches of comb-like polymers are chemi-

cally different from the backbone chain, we have the graft copolymers. A

famous example for the random branching is the amylopectin (branched starch).

The hyper-branched polymers (more often called dendrimers) may contain

several levels of branching at the chain ends, like a Cayley tree, as shown in

Fig. 2.7b. Chain branching destroys the sequence regularity of polymer chains,

hindering crystallization and thus depressing the mechanical performance.

Fig. 2.6 Illustration of (a) linear polymers and (b) ring polymers
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Long-chain branching and tree-like polymers exhibit quite different flow

behaviors compared to linear polymers. They can be a good additive in the

bulk linear polymers to improve the rheological performance of polymers upon

processing.

4. Block copolymers. The multi-component systems are intramolecular, with each

component occupying a certain length of chain sequences, as shown in Fig. 2.8a.

They can be diblock, triblock or even multi-block copolymers. Upon the change

of composition, the microphase separation in block copolymers can fabricate

various geometries of regularly packed microdomain patterns with nano-scale

resolution, as will be introduced in Sect. 9.3.

5. Star polymers. Derived from the same center, the star arms may belong to the

same species, as shown in Fig. 2.8b, or to the different species. The arms with

different components can form the nano-scale microdomain patterns as well.

6. Polymer brushes. One end of each polymer chain is anchored on the same solid

surfaces of a rod or a flat-plate. When the graft density becomes high, polymer

chains will stretch out due to the overcrowding on the surfaces, as shown in

Fig. 2.9. Polymer brushes can change the surface properties and thus give solid

surfaces a responsive function.

7. Cross-linking networks. The degree of cross-linking is characterized by the

density of cross-linking points in the network, as shown in Fig. 2.10a. Examples of

low-density cross-linking are the vulcanized rubber and chewing gum, which

release the entropy elasticity of polymer chains, and only swell when in solvents.

Examples of high-density cross-linking are the phenol-formaldehyde resin, the

Fig. 2.7 Illustration of (a) comb-like polymers and (b) hyper-branched polymers

Fig. 2.8 Illustration of (a) diblock copolymers and (b) star polymers
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epoxy resin and the unsaturated polyester resin (commonly reinforced by the glass

fibers), which exhibit a good thermal resistance, and do not even swell in solvents.

8. Interpenetrated networks.We can first make the cross-linked polymer swell in

the monomer solvent, and then initiate polymerization of the solvent molecules to

form another cross-linking network, as shown in Fig. 2.10b. By this way, the

interpenetrated network (IPN) allows two thermodynamically incompatible

polymers to be mixed on the molecular level, and thus integrates their favorable

properties. The case for the solvent monomers to perform only polymerization

without further cross-linking, is called the semi-interpenetrated network.

The complexity of macromolecular architectures is limited only by our imagi-

nation and our chemical synthesis skills. As in the building blocks, the physical

behaviors of linear polymers are of essential importance in determining the physical

behaviors of high-level complex structures of macromolecules.

2.6 Sequence Irregularities

Crystallization is a compact-packing process of polymer chains, which is very

sensitive to any mismatch in the geometries of chain sequences. The

crystallizability of polymers is thus restricted by the high content of sequence

irregularities. Therefore, the sequence regularity is a very important chemical factor

to characterize polymer microstructures. There are commonly three kinds of

irregularities in chain sequences, i.e., chemical irregularities, geometrical

irregularities and spatial irregularities.

Fig. 2.9 Illustration of

molecular structures of

polymer brushes

Fig. 2.10 Illustration of (a)

cross-linking network and (b)

interpenetrated network (IPN)
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2.6.1 Chemical Irregularities

This kind of sequence defect occurs in the statistical copolymers, where the species

of monomers can crystallize. On the backbone of polyethylene chains, the short

branches can be regarded as the non-crystallizable comonomers. In high-density

polyethylene (HDPE), the branching probability is about 3 branches/1,000 back-

bone carbon atoms, and its crystallinity can reach levels as high as 90 %; while in

low-density polyethylene (LDPE), the branching probability is about 30 branches/

1,000 backbone carbon atoms, and its crystallinity reaches only 50 %. The most

common industry product is actually linear low-density polyethylene (LLDPE), and

its branching probability is determined by the copolymerization process of CH2 ¼
CH2 and CH2 ¼ CHR (R means side alkane groups for short branches).

Assuming an ideal free-radical copolymerization reaction, the reactivity ratios r1
and r2 are fixed by the single-site Ziegler-Natta catalyst, as shown in Fig. 2.11. The
product of r1 � r2 determines the sequence characters of statistical copolymers,

with the values between zero for alternating copolymers and infinity for diblock

copolymers. Different feeding styles such as the continuous loop reaction or the

intermittent batch reaction also make different characteristic distributions of chain

sequences. The continuous reaction keeps the feed composition F constant, and

consequently the comonomer distributions are homogeneous among copolymers.

The products can be referred to homogeneous copolymers. The intermittent reaction

shifts the feed composition upon the proceeding of batch reaction, so the comono-

mer distributions are heterogeneous among copolymers. The products can be called

heterogeneous copolymers. In extreme cases, the heterogeneous copolymers can be

regarded as a kind of binary blends.

2.6.2 Geometrical Irregularities

There may exist asymmetry in the structure of repeating units like –(CH2-CHR)-,

where R 6¼ H. Therefore, along a polymer chain, the repeating units can have head-

Fig. 2.11 Illustration of free-radical copolymerization with the statistical propagation of two

monomers along the chain. The sequences are thus determined by the reactivity ratios (r1, r2) and

the feed composition (F)
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to-head and head-to-tail connections, which are called the sequence isomerism. The
small amount of head-to-head connections can be regarded as defects if most of

connections are head-to-tail. Some unsaturated repeating units such as 1,4,-

polybutadine have cis- or trans-configurations in the sequences, as demonstrated

in Fig. 2.12, referred to the structural isomerism.

2.6.3 Spatial Irregularities

Each carbon atom on the backbone chain may contain four substitutes different

from each other, two of which are the rest parts of the chain at both sides with

different chain lengths. These carbon atoms exhibit chiral asymmetry, giving rise to

the optical activity labeled with R for the left-handed direction and with S for the

right-handed direction. Irregularities of chain sequences in optical activities are

called optical- or stereo-isomerism. A central mirror exists at the middle of the

sequence-regular chain (RRRRRRRR. . .. . .|. . .. . .SSS SSSSSSSS). Therefore, the

whole polymers are in the meso-form and will not show any optical activity.

However, in polypropylene, for example, if we stretch the backbone chain into

fully trans-conformations, we can see varying sequence regularities from the

orientations of the side methyl groups, as illustrated in Fig. 2.13. Three typical

cases are the isotactic, syndiotactic and atactic sequences. The examples of regular

Fig. 2.12 Illustration of the structural isomerism of double bonds on polymer chains with cis- and
trans-configurations

Fig. 2.13 Illustration of

sequence regularities of

stereo-isomers along polymer

chains with three typical

cases for isotactic,

syndiotactic and atactic

sequences
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sequences include isotactic polystyrene (iPS), isotactic polypropylene (iPP), iso-

tactic poly(methyl methacrylate) (iPMMA), and syndiotactic polypropylene (sPP),

which all belong to the crystalline polymers. The examples of irregular sequences

include aPS, aPP, aPMMA, poly(vinyl acetate), which all belong to the non-

crystalline polymers. Some hetero-nuclei polymers may contain different backbone

atoms in each repeating unit with intrinsic optical isomerism, such as in poly

(propylene oxide) and poly(lactic acid). They have D or L types, while the optical

activity can be completely compensated in the racemate with half-half

compositions.

Question Sets

1. Why are polymer chains still flexible although the angles between backbone

bonds are fixed?

2. Which factor is more important in polymer glass transition, the static flexibility

or the dynamic flexibility?

3. Try to analyze the usefulness of oriented polymers on account of the local

anisotropy of chain structures.

4. Why is the characterization of molecular weights important for polymers?

5. How can we mix two incompatible polymers on the molecular level?

6. Why do non-crystalline polymers often contain a high content of sequence

irregularities?
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Chapter 3

Conformation Statistics and Entropic Elasticity

3.1 Gaussian Distribution of End-to-End Distances

of Polymer Coils

If the internal rotation surrounding each backbone bond contains three possible

conformation states, the internal rotation of a long chain will generate an astronom-

ical amount of possible conformation states. In such a case, we could not count

them one-by-one, and thus have to make conformation statistics on the basis of a

simplified ideal chain model.

A real polymer chain can be modeled by the freely jointed chain that is consisted

of Kuhn segments. A freely jointed chain is analogous to the trajectories of random

walks. A random walk of a man who gets lost in the forest often turns back to the

starting point. Therefore for a polymer coil, one chain end exhibits a rather

stochastic location near another chain end. In mathematics, the stochastic

distributions of random events follow the central-limit theorem, i.e., the

distributions of large-enough amount of independent random events exhibit a

characteristics of Gaussian function around their mean value, as demonstrated in

Fig. 3.1. The one-dimensional distribution of the one-end locations for a polymer

coil follows the Gaussian function around another chain end, as given by

WðxÞ ¼ ðb
2

p
Þ1 2= e�b2x2 (3.1)

where

b2 � 3

2nb2
(3.2)

Here x is the end-to-end distance, n is the total bond number, and b is the bond

length. Since the fractions of three dimensions are independent to each other, we

obtain
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Wðx; y; zÞ ¼ WðxÞWðyÞWðzÞ ¼ ðb
2

p
Þ3 2= e�b2ðx2þy2þz2Þ (3.3)

As illustrated in Fig. 3.2, the radial distribution of the end-to-end distances can

be expressed as

WðRÞ ¼ Wðx; y; zÞ � 4pR2 (3.4)

Here, R2 ¼ x2 þ y2 þ z2. Accordingly,

WðRÞ ¼ ðb
2

p
Þ3 2= e�b2R2 � 4pR2 (3.5)

As demonstrated in Fig. 3.3, with the increase of R from zero, W(R) reaches a
maximum value, which is called the most probable end-to-end distance R*. From

@WðRÞ
@R

¼ 0 (3.6)

we obtain

R� ¼ b�1 (3.7)

Fig. 3.1 Illustration of a

Gaussian distribution

function

Fig. 3.2 Illustration of a

spherical surface formed by

the dots (x, y, z) with fixed

distances R from the same

starting point at the central
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The mean end-to-end distance is thus

<R> ¼
ð1
0

RWðRÞdR ¼ 2ffiffiffi
p

p
b

(3.8)

Similarly, one can derive the mean-square end-to-end distance <R2>¼3/2/b2.
In the following, we will apply the Gaussian chain above to interpret the entropic

origin of high elasticity of rubbers.

3.2 Statistical Mechanics of Rubber Elasticity

3.2.1 Mechanics of Elasticity

Rubbers are featured with their high elasticity. Let us look at an elastic cylindrical

body with a length l and a cross-sectional area A, as demonstrated in Fig. 3.4. A

stretching force f is applied at both ends of the cylinder with the initial sizes of A0

and l0. Under the engineering stress s ¼ f/A0, we obtain the engineering strain

e ¼ l� l0
l0

¼ l

l0
� 1 ¼ l� 1 (3.9)

For an ideal elastic deformation, there exists the well-known Hooke’s law,

s ¼ Ee (3.10)

where E is the elastic modulus.

3.2.2 Thermodynamics of Elasticity

According to the first law of thermodynamics, a small change in the internal energy

of the system dU contains two major contributions, i.e. the heat exchange dQ and

the external work dW.

Fig. 3.3 Illustration of the radial distribution of the end-to-end distances of a polymer coil. R* is

the most probable end-to-end distance
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dU ¼ dQþ dW (3.11)

When the total volume is kept constant, dV ¼ 0, we have

dW ¼ �P� dVþ f � dl ¼ f � dl (3.12)

According to the second law of thermodynamics, the reversible heat exchange is

proportional to the entropic change under constant temperatures and pressures,

dQ ¼ TdS (3.13)

while

dU ¼ TdSþ fdl (3.14)

Therefore, we have

f ¼ ð@U
@l

ÞT:V: � Tð@S
@l
ÞT:V: ¼ fE þ fS (3.15)

where

fE ¼ ð@U
@l

ÞT:V:

fS ¼ �Tð@S
@l
ÞT:V:

Here, fE is called the energetic elasticity, and fS is called the entropic elasticity.
For instance, the spring exhibits a high elasticity mainly contributed by the ener-

getic elasticity due to the metallic bonds for the strong interactions of iron atoms,

while the rubber exhibits a high elasticity mainly contributed by the entropic

elasticity due to the chain conformations for the large deformations of polymers.

Fig. 3.4 Illustration of the stretching force f imposed onto both ends of an elastic body with a

length l and a cross-sectional area A
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3.2.3 Entropic Elasticity of a Deformed Polymer Coil

From the viewpoint of chemistry, rubbers are formed by the cross-linked polymeric

networks. The cross-links release the entropic elasticity of polymer coils in-

between them. Based on the ideal-chain model, theoretical descriptions about the

entropic elasticity of rubbers have been well developed (Meyer et al. 1932; Guth

and Mark 1934, 1937; Kuhn 1939; Guth and James 1941; Treloar 1943; Flory 1944,

1961). Meyer et al. first assigned the high elasticity of the rubber to the capability of
large deformation of random coil polymers (Meyer et al. 1932). Guth and Mark

attempted to make a statistical theory on the spatial arrangement of polymer

conformations for such a high elasticity (Guth and Mark 1934, 1937). This

approach has been then developed by Kuhn (Kuhn 1939). The statistical theory

for the high elasticity of the ideal-chain network was eventually delivered under the

great efforts of Guth, James, Treloar, and Flory, et al. (Guth and James 1941;

Treloar 1943; Flory 1944, 1961.

In the three-dimensional network of long-chain molecules, the chain ends of

each single coil are separately fixed at (0,0,0) and (x,y,z). All the possible

conformations O of this coil with fixed end locations should be proportional to

the probability W(x,y,z) associated with this end-to-end distance. According to the

Boltzmann’s law, S ¼ klnO, where k is the Boltzmann constant, as well as to the

relationship in (3.3), we obtain

S ¼ B� kb2ðx2 þ y2 þ z2Þ (3.16)

where B is a constant. Assuming a deformation making x* ¼ l1x, y* ¼ l2y, and
z* ¼ l3z, we have

S� ¼ B� kb2ðl21x2 þ l22y
2 þ l23z

2Þ (3.17)

Accordingly, the conformational-entropy change of the polymer coil is

DS ¼ S� � S ¼ �kb2½ðl21 � 1Þx2 þ ðl22 � 1Þy2 þ ðl23 � 1Þz2� (3.18)

3.2.4 Statistical Thermodynamics of a Cross-Linked Polymer
Network

Let’s set up an ideal model for a three-dimensional network of the rubber. The

model is based upon the following assumptions.

1. The cross-links are well distributed in the elastic body;
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2. Each polymer coil connecting two neighboring cross-links follows the Gaussian

distribution regarding its end-to-end distances;

3. The total entropy change is a linear integration of conformational-entropy

changes of all the network chains;

4. The deformation ratio of the network is equal to that of each network chain.

For a sample system containing N network chains, according to the second and

the third assumptions, the total entropy change is then

DS0 ¼ �kb2 l21 � 1
� �XN

1

x2i þ l22 � 1
� �XN

1

y2i þ l23 � 1
� �XN

1

z2i

" #
(3.19)

According to the first assumption, we further have

Sx2i
N

¼ Sy2i
N

¼ Sz2i
N

¼ <R2
0>

3
(3.20)

In (3.20), the mean-square end-to-end distance of polymers < R0
2 >

corresponds to a bulk polymer phase. Thus

DS0 ¼ � 1

3
Nkb2<R2

0>ðl21 þ l22 þ l23 � 3Þ (3.21)

From b2 ¼ 3
2nb2 and the characteristic ratioC ¼ <R2

0
>

nb2 , we can simplify the above

equation into

DS0 ¼ � 1

2
CNkðl21 þ l22 þ l23 � 3Þ (3.22)

In the uniaxial stretching, l1 ¼ l. Since DV ¼ 0, we obtain l1l2l3 ¼ 1.

According to the fourth assumption, we have

l2 ¼ l3 ¼ 1ffiffiffi
l

p (3.23)

Equation (3.22) can be further simplified as

DS0 ¼ � 1

2
CNkðl2 þ 2

l
� 3Þ (3.24)

Therefore, the entropic elasticity contributed by (3.24) is

fS ¼ �T
@S

@l
¼ �T

@S

@l
� @l
@l

¼ � T

l0
� @S
@l

¼ CNkT

l0
ðl� 1

l2
Þ (3.25)
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If the number density of the network chains,

N0 ¼ N

V
¼ N

A0l0
(3.26)

we have

s ¼ CN0kT eþ 1� 1

ðeþ 1Þ2
" #

(3.27)

When a small deformation e <<1,

1

ðeþ 1Þ2 � 1� 2e (3.28)

we obtain

s ¼ 3CN0kTe (3.29)

Thus, small deformations of a cross-linked network follow the Hooke’s law,

with the elastic modulus

E ¼ 3CN0kT (3.30)

Under large deformations, the following equation is more applicable,

s ¼ CN0kT l� 1

l2

� �
(3.31)

Equation (3.31) is called the equation of state of the rubber. This equation was

firstly derived by Guth and James in 1941 (Guth and James 1941). We convention-

ally make an ideal-chain approximation with C ¼ 1.

The measured results of a stretching experiment are normally treated with the

empirical Mooney-Rivlin relation (Mooney 1940; Rivlin 1949), as given by

s ¼ 2C1 eþ 1� 1

ðeþ 1Þ2
" #

þ 2C2 1� 1

ðeþ 1Þ3
" #

(3.32)

where C1 and C2 are two fitting parameters. Commonly one can say that, at the

right-hand side of the equation above, the first term represents the contribution from

the entropic elasticity of an ideal network, while the second term represents those

non-ideal contributions during the deformation, such as energetic elasticity, strain-

induced crystallization, limited extensibility of chains, and various network defects,

3.2 Statistical Mechanics of Rubber Elasticity 39



as discussed in the Sperling’s book (Sperling 2006). Recent development about the

rubber elasticity theory has been well introduced in the textbook written by

Rubinstein and Colby (Rubinstein and Colby 2003).

In 1805, the blind philosopher Gough reported two experimental observations

(Gough 1805). In the first experiment, he found by his lips that the temperature rises

upon a fast stretching of a natural rubber. In the second experiment, he observed

that the stretched rubber strip retracts upon heating and elongates upon cooling.

After 50 years, Joule proved his observations (Joule 1859). Therefore, the above

phenomena are also called the Gough-Joule effect. The first observation is related to
the releasing of latent heat due to the crystallization of the rubber upon fast

stretching, while the second observation can be interpreted according to (3.30)

with the elastic modulus proportional to the temperature, revealing the entropic

nature of the rubber elasticity. The phenomenon of contraction-on-heating and

expansion-on-cooling in the stretched rubbers is right opposite to that of expan-

sion-on-heating and contraction-on-cooling in conventional materials. In Deutsches

Museum at Munich, there exhibited an experiment for such a phenomenon. As

demonstrated in Fig. 3.5, if you press the button at the bottom of the exhibition

window, the light will be switched on to heat the rubber strip. Then, the elastic

modulus of the rubber will increase, and the electronic balance at the bottom will

display a reduced weight compared to before. After a few seconds, the light is

automatically switched off, and then the previous display of the weight will be

gradually recovered.

Question Sets

1. Why do we need the statistical analysis to treat chain conformation?

2. Why is the Gaussian function successful in the statistics of chain conformation?

3. Why is the high elasticity of the rubber mainly sourced from the entropy change?

4. Why does the stretched rubber show the hot-retraction and cold-expansion

phenomena?

Fig. 3.5 Illustration of the

experiment demonstrating the

Gough-Joule effects. The

light will heat the rubber strip,

increases the latter’s elastic

modulus and then decreases

the displayed weight in the

electronic balance. Switched-

off the light, the displayed

weight will be gradually

recovered
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Chapter 4

Scaling Analysis of Real-Chain Conformations

4.1 What Is the Scaling Analysis?

We have discussed the ideal-chain model in Sect. 2.2 by incorporating short-range

restrictions into the freely-jointed-chain model: first the fixed bond angles, then the

hindered internal rotation. In this way, we reached the description of semi-

flexibility of the real polymer chains. The mean-square end-to-end distances of

chains in different models are given below.

Freely jointed chain: <Rf.j
2> ¼ nb2

Freely rotating chain: <Rf.r.
2> ¼nb2(1 + cosy)/(1 � cosy)

Hindered rotating chain: <Rh.r
2> ¼nb2(1 + cosy)/(1 � cosy) � (1 + <cosf>)/

(1 � < cosf>)

By using Gaussian statistics, the average coil sizes were also given by

<R2
0> / nb2 (4.1)

In summary, irrespective of the type of short-range restrictions that has been

considered, we always obtain a power-law relationship between the coil size and

the chain length. We refer such a power-law relationship as the scaling law with the
scaling exponent n, as given by

R � nn (4.2)

For ideal chains, n ¼ 0.5. In this book, we use the symbol “~” to describe the

proportional relationship without further consideration of the consistency in the

units/dimensions.

A simple example can elucidate the scaling law. Suppose that we measured the

area S of a square with a lateral length L, by using a small square with an area p and a
lateral length r as the ruler, as illustrated in Fig. 4.1. The resulted relationship S ¼ L2

is actually inherited from the corresponding relationship in the ruler, p ¼ r2.

W. Hu, Polymer Physics, DOI 10.1007/978-3-7091-0670-9_4,
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The exponent of two originates from the dimensionality of the geometries, which has

been defined as log10(S)/log10(L). Such a scaling law reflects the self-similarity of the

geometrical shape. Therefore, on the basis of the self-similarity and the scaling law,

scientists could estimate the size of the irregular geometry, such as the length of

British coast, or the volume of the floating cloud. In those cases, the dimensionality is

often fractional, and the corresponding subject is called the fractal (Mandelbrot 1983).

Similarly, the scaling law of the coil size with respect to the chain length reflects

the self-similarity nature of a random polymer coil constituted by the Kuhn segments.

In fact, irrespective of the length of the sub-molecules beyond the Kuhn segment, we

always have the scaling relationship of the coil size to the number of sub-molecules

as R0/n0.5. Such a scaling analysis of chain conformations is crucial for us to

understand the real-chain conformation statistics.

In the following sections, some examples will be introduced, which apply

scaling analysis in the conformation statistics of more realistic polymer chains. In

these chains, the inter-chain interactions (as well as the long-range monomer-

monomer interactions in the single chain) or the external restrictions are consid-

ered. In practice, on the basis of the ideal-chain model, we first consider the single

chain with the interactions of volume repulsion, followed by discussing its inter-

penetration into other chains in a concentrated solution. Subsequently, we will

consider the single chain with the effect of volume exclusion and the inter-chain

attraction. The effect of Columbic interactions and multi-chain interpenetration will

be discussed later on. Finally, we will introduce the conformation statistics of

polymer chains deformed under the external restriction.

4.2 Single-Chain Conformation in Polymer Solutions

4.2.1 An Introduction of Polymer Solutions

Polymer solutions are normally homogeneous mixtures of polymers and small

molecules. Most practically useful polymers are in a certain sort of mixtures, and

polymer solutions are the basic prototype to understand the polymer mixture.

Fig. 4.1 Illustration of the

measurement of the square

with an area S and a

corresponding length L via a

square ruler with an area

p and a length r
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One may imagine that, when the concentration of the polymers is extremely low,

polymer coils disperse in an ocean of solvent molecules, and form individually

isolated single-chain systems like jellyfishes. A further dilution of the polymer

solutions only increases the average distance between the isolated coils, without

changing the internal structures of coils. Accordingly, we call such polymer

solutions as dilute solutions.
The territory of an expanded single coil is much larger than the volume the

monomers actually occupy. Therefore, in comparison to the collisions of small

molecules, the probability of mutual collisions between two coils is significantly

enhanced. When such fluffy coils diffuse, the mutual friction yields a solution with

a high viscosity. In the early history of polymer science, the high viscous polymer

solution was misunderstood as a colloidal gel. However, polymer solutions are

actually the molecular dispersions of long chains in the solvent molecules. With the

increase of the polymer concentration, the coils start to interpenetrate into each

other. We can define an illusive critical overlap concentration C*, as illustrated in

Fig. 4.2. Then, polymer solutions with the concentrations beyond C* are called

concentrated solutions.
From the dynamic point of view, as illustrated in Fig. 4.3, polymer coils are

rather ellipsoids with their anisotropy depending upon chain semi-flexibility, and

their hydrodynamic radii are usually larger than their radii of gyration. Thus, a

dynamic overlap concentration C’ < C* exists, which is of practical importance for

characterizing the hydrodynamic property of the polymers in solutions.

The dissolution process of a solid linear polymer dissolves into a solvent is often

slow. With the continuous permeation of the solvent, the polymer first swells, and

then completely dissolves in the solution. Commonly, a semi-crystalline polymer

requires an extra heating up to its melting point, to accelerate the dissolution. This

process is generally an analogous to the cooking of rice. The rice grains first swell in

hot water. The addition of more water leads to a complete disappearance of the rice

grains, forming a transparent porridge consisted of amyloid solutions. Similarly,

heating of the polymer drives the swelling of chains towards a homogeneous solution.

A thin film of rice gel could be dried at the top surface of the hot porridge. The

formation of such a gel state, also known as thermoreversible gel, is crucial in some

polymer materials. For instance, PVC gel containing 30 % volume of plasticizers can

Fig. 4.2 Illustration of different concentrations of polymer solutions with respect to the critical

overlap concentration C*: the dilute solutions (C < C*, left) and the concentrated solutions

(C > C*, right)
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still maintain reasonable mechanical properties. If the polymer chains are slightly

cross-linked, they will only swell without dissolution. Such a state is normally

referred as gel. Proteins are viable to form hydro-gels in water, and one simple

example is human skin. The gel cannot swell unlimitedly, because the polymer

chains between the cross-linking points could not be stretched in too much extent.

The thermodynamic driving force of dissolution is actually balanced by the entropy

penalty of chain conformations, reaching a so-called equilibrium swelling state.
Section 8.3.1 will introduce the detailed theoretical treatment of equilibrium swelling.

In a solid of high cross-link density, polymer chains are rather short to release little

conformational entropy. Therefore, solvents cannot permeate such a solid, and no

swelling occurs.

Polymers are potentially mixed with solvents once the mixing free energy

DFmix ¼ DHmix � TDSmix<0 (4.3)

Conventionally, DSmix < 0. According to (4.3), the dissolution of polymers is

mainly determined by the temperature and the mixing enthalpy. In the microscopic

level, the latter mainly originates from the change of inter-molecular interactions.

Of course, the practical dissolution is determined by the critical condition of

thermodynamic equilibrium between two solution phases, as introduced in Sect. 9.1.

The inter-molecular interactions in the polymers include the overlapping repulsion

between atoms, the ion-ion interactions, ion-induced-dipole interactions, dipole-

dipole interactions, polar-nonpolar interactions, and nonpolar-nonpolar interactions,

etc. For the van derWaals interactions between the nonpolar polymers, about 70% of

the attractive interactions are sourced from the dispersion forces, which are instant

dipole-dipole interactions induced by the vibration of the substituted groups in the

chains. The frequency of vibration influences the refractivity, so the forces are named

with dispersion forces. The dispersion forces within a pair of neighboring groups can

be expressed as

B12 ¼ � 3

2

I1I2
I1 þ I2

� �
� a1a2

R6

� �
(4.4)

Fig. 4.3 Illustration of the

anisotropic polymer coils,

whose dynamic size is much

larger than the size of the

statically occupied coil
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where I1 and I2 are the ionization energies, R is the distance, a1 and a2 are the

polarizabilities. Normally, I1 and I2 are close to each other, and R does not change

significantly; therefore, they can be expressed collectively as a constant k. Then we
have

B12 ¼ �ka1a2 (4.5)

In polymer solutions, one can split a polymer chain into small monomers with

their sizes comparable to that of the solvent molecules. If we consider only the

contact pairs among monomers and solvent molecules, the dissolution process can

be expressed by

1� 1½ � þ 2� 2½ � ! 2 1� 2½ � (4.6)

where 1 represents the solvent, and 2 represents the monomer. Upon dissolution, the

pair interactions of monomers (Guggenheim 1952) and the pair interactions of

solvent molecules (Mandelbrot 1983) are disassembled, to form two pairs of mixing

interactions (Mandelbrot 1983; Guggenheim 1952) between the monomers and the

solvent. This process is similar to the reaction between H2 and Cl2 that one hydrogen

molecule reacts with one chlorine molecule to form two hydrogen chloride

molecules. The energy change in this process defines the mixing energy. In the

theory of solution thermodynamics, such a way to treat the mixing interactions is

known as quasi-chemical approximation (Guggenheim 1952). A mixing interaction

parameter B is used to describe the dissolution process, as given by

B � B12 � B11 þ B22

2
(4.7)

Mainly concerning the contributions of dispersion forces, one can have

B ¼ �kða1a2 � a21 þ a22
2

Þ ¼ k

2
ða1 � a2Þ2 ¼ 1

2
ðB1=2

11 � B
1=2
22 Þ2 � 0 (4.8)

Corresponding to (4.8), the macroscopic change of mixing energy is

DUmix

Vmix
¼ f1f2

DE1

V1

� �1=2

� DE2

V2

� �1=2
" #2

(4.9)

where V1, V2, and Vmix are the molar volumes of the solvent, monomer and the

mixtures, respectively; f1 and f2 are the volume fractions of the solvent and

monomer, respectively; DE1 and DE2 are the corresponding molar evaporation

heats. Assuming that the total volume remains constant during the mixing, i.e.,

DVmix ¼ 0, (4.9) is called the Scatchard-Hildebrand equation (Hildebrand 1936).

DE2/V2 represents the evaporation heat of unit volume of the liquid, and is defined
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as the cohesive energy density (CED), with the unit of cal/cm3 or J/cm3. Further-

more, Hildebrand defined the solubility parameter (Hildebrand 1936) as

d � ðDE
V
Þ1=2 (4.10)

Therefore, (4.9) can be simplified as

DUmix

Vmix
¼ f1f2ðd1 � d2Þ2 (4.11)

Only when DUmix/Vmix is smaller than TDSmix/Vmix can a polymer be potentially

dissolved in the solvent. For a given polymer, its solvent can be selected according

to the following empirical rules:

1. If the polymer and the solvent are both polar, their polarities should be close to

each other;

2. If the polymer and the solvent are both nonpolar, their solubility parameters d
should be close to each other.

In short, the rules above can be summarized into one sentence, “Like likes like”.

The solubility parameters of common solvents and polymers can be found from

the conventional handbooks for physical chemistry or polymers. It is also possible

to estimate the solubility parameter of polymers with the method of molar attractive

constants according to

d2 ¼ r � SFi

M
(4.12)

where r is the polymer density, M is the molar mass of the repeating units, and the

attractive constant for various chemical groups Fi can be found in the Hoy’s

Table (Hoy 1985). In practice, a convenient way to dissolve a solid polymer sample

is to use a mixture of different solvents. The effective solubility parameter of the

mixed solvents can be adjusted by changing their compositions according to

d1 	 dAfA þ dBfB (4.13)

For more general solution systems containing polar molecules, Hansen proposed

the concept of three-dimensional solubility parameter, as given by

d2 ¼ d2d þ d2p þ d2h (4.14)

which includes the contributions of dispersion forces dd, dipole-dipole interactions dp,
and hydrogen bonds dh (Hansen 1967). Recently, polymer dissolution in the solvents

has been reviewed by Miller-Chou and Koenig (Miller-Chou and Koenig 2003).
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Since B12, B11 and B22 are all negative values for nonpolar molecules, according

to (4.7), B > 0 implies that the absolute energy change for forming monomer-

monomer and solvent-solvent pairs is larger than the absolute energy change for

forming their corresponding mixing pairs, which is apparently unfavorable for the

formation of homogeneous mixtures. Therefore, a positive B often implies phase

separation in the polymer solutions. If we use the volume fraction of nonpolar

polymers f2 as the variable, the thermodynamic boundary conditions for phase

separation are called phase diagrams. Such a solvent (B > 0) is called poor solvent.
In cases of B ¼ 0 and B < 0, the solvent is called athermal solvent and good
solvent, respectively. Another demarcation between the poor and good solvents,

known as the theta solvent (Fig. 4.4), is also helpful for a theoretical analysis of

nonpolar polymer solutions. Furthermore, the traditional demarcation at athermal

solvent is useful for polar polymers, especially for the separation between hydro-

philic and hydrophobic polymers in aqueous solutions.

4.2.2 Single-Chain Conformation in Athermal Dilute Solutions

In dilute solutions, polymer chains are far apart, and hence each polymer chain

behaves like an isolated single coil. The surrounding molecules of athermal solvent

can compensate the attractive interactions among the chain units, leaving only the

volume-exclusion interactions between chain units for the single coil. In another

word, the conformation of a single chain in athermal dilute solutions is similar to

the trajectory of a self-avoiding random walk (SAW).

In an ideal model of single chains, the chain conformation can be treated in

analogy to a trajectory of random walks in a lattice space. For random walks of

certain steps, the total amount of possible paths is qn, where q is the coordination

number of the lattice, and n the number of steps along the walk path. For a real

single chain containing only the volume exclusion, the proper analogy becomes a

self-avoiding walk. The mathematical treatment to SAW turns out to be a big

Fig. 4.4 Illustration of the phase diagrams for phase separation in polymer solutions. The upside

is poor solvent, and the downside is good solvent. There are two kinds of demarcations: one is

athermal solvent with B ¼ 0, and the other is theta solvent
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challenge due to a path memory to avoid any self-intersection. Performing com-

puter simulations on powerful facilities, scientists have figured out a scaling

relationship of SAWs. With fixed step lengths n, SAW exhibits the total possible

path number as (q�1)nng�1, where q�1 is the connective constant (its practical

value is slightly smaller than q�1) and g is the critical exponent related only to the

dimensionality. The mean-square end-to-end distance of a self-avoiding chain

follows a scaling relationship

<R2
saw> � n2n (4.15)

where for 3D, n ¼ 3/5; for 2D, n ¼ 3/4; and for 1D, n ¼ 1 (Madras and Slade 1993).

For the three-dimensional self-avoiding walks, the critical exponent of the

polymer coil is 3/5, which is larger than the critical exponent of the ideal chain

(1/2). This implies that the volume exclusion of the polymer chain leads to coil

expansion. Such an expansion makes chain conformation deviate from its most

probable state, causing a recovery force originated from the conformational

entropy. Therefore, the single coil could not expand unlimitedly, and there exists

a thermodynamic balance between the energy gain of volume exclusion and the

entropy loss of chain conformation.

Flory proposed a mean-field treatment to calculate the above energy gain and

entropy loss. The repulsive energy Erep is mainly originated from two-body

interactions, and each chain unit in the single coil feels the repulsion from the

other chain units with an internal concentration

Cint � n

Rd
(4.16)

where R is the coil size of linear polymers, and d is the dimensionality. Since the

repulsive energy for each pair of chain units is comparable with the thermal

fluctuation kT, each chain unit contains the repulsive energy kTn/Rd, and the total

repulsive energy for n chain units is scaled as

Erep � kT
n2

Rd
(4.17)

On the other hand, according to the Boltzmann relationship and the Gaussian

distribution of chain conformations, the conformational entropy loss is proportional

to kT(R/R0)
2. The total conformation entropy loss of the single coil is thus scaled as

Eel � kT
R2

n
(4.18)

Under the thermodynamic balance, the total free energy change is

F ¼ Erep þ Eel (4.19)
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Taking the minimum with respect to the coil size R, one calculates

@F

@R
¼ 0 (4.20)

and one can have

R � n3=ðdþ2Þ (4.21)

This is the so-called Flory-Fisher scaling law (De Gennes 1979). The critical

exponent n ¼ 1 in (4.21) at the dimensionality d ¼ 1; n ¼ 3/4 at d ¼ 2; n ¼ 3/5 at

d ¼ 3; and n ¼ 1/2 at d ¼ 4. These critical exponents are consistent with that of

self-avoiding walks obtained above from the computer simulations. The scaling law

for the ideal chain model occurs only in 4D space of SAWs. In 3D space, the

renormalization group theory yields the critical exponent as n ¼ 0.588 
 0.001,

which is in good consistency with the computer simulation results (Le Guillou and

Zinn-Justin 1977).

Why is Flory’s mean-field estimation so successful? De Gennes provided an

explanation in his book (De Gennes 1979). On the one hand, the strong correlation

along the chain was underestimated by the average internal concentration, because of

an inhomogeneous distribution of chain units inside the coil. On the other hand, the coil

elasticity was also underestimated by the Gaussian distributions, because of volume

exclusions among the chain units. Both underestimations cancel each other, which

leads to a reasonable scaling relationship for the coil size in athermal dilute solutions.

4.2.3 Single-Chain Conformation in Athermal
Concentrated Solutions

In concentrated polymer solutions, although the overall distribution of chain units is

almost homogeneous over the space, the distribution of those chain units in a given

chain is still localized. The single-chain conformation appears like a coil. If we

label the chain ends with the fluorescent chemical groups, their correlation lengths

can be measured experimentally. Figure 4.5 demonstrates that there exists a

so-called ‘correlation hole’ in the radial distribution of fluorescent ends of other

chains (De Gennes 1979). This correlation hole implies that the nearest neighbors

of each chain unit belong very likely to the same polymer chain.

The high degree of penetration among polymer chains actually leads to an

effective attraction between the chain units, and this attraction screens out the

expansion effect due to the volume exclusion. This statement was first quantita-

tively described by Edwards (Edwards 1966). The screening effect can be attributed
to the anisotropic packing of local chains around each chain unit. To understand this

effect, let’s consider those solute molecules each of which is formed by two
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monomers consecutively occupying 2D lattice sites in athermal concentrated

solutions (De Gennes 1979). The bond of the solute molecules should have four

orientations in vacuum. One orientation is lost when it is the neighbor of a single

solvent site. Therefore, around one solvent site, the loss is integrated into four

orientations, as demonstrated in the left-hand side of Fig. 4.6. Around two individ-

ual solvent sites, the total loss of bond orientations is thus eight. If these two solvent

sites are neighboring with each other, the total loss of bond orientations becomes

six, as shown in the right-hand side of Fig. 4.6. This implies that the orientation

entropy of solute molecules will drive the neighboring of two solvent sites, foster-

ing an effective attraction between them. Now, by replacing the solvent sites with

two neighboring chain units that most likely belong to the same chain, we obtain an

effective attraction between these chain units due to the anisotropic aspect of

volume exclusions of polymer chains. This effective attraction will compensate

the isotropic aspect of volume exclusions of chain units within each chain when

their distances are beyond a certain characteristic length x. Therefore, beyond this

screening length x, the spatial distribution of single-chain units behaves like an

ideal single chain, as demonstrated in Fig. 4.7.

Fig. 4.5 Illustration of the radial distribution of fluorescent ends of other chains, demonstrating

the correlation hole

Fig. 4.6 Illustration of the isolated (left) and the neighboring (right) situations for the solvent site
(solid dot) surrounded by the ends of single bonds representing solute molecules (hollow dots)
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Due to the screening effect in the volume exclusion of polymer chains, single-

chain conformation in the concentrated solutions will exhibit the size scaling

similar to the ideal-chain model, as

R � n1=2 (4.22)

However, we wish to note that near the critical overlap concentration, the coil

size is actually dependent on the polymer concentration in the concentrated poly-

mer solutions.

We know that when the polymer volume fraction C < C*, the coil size in dilute
solutions exhibits

R � n3=5 (4.23)

At the critical overlap concentration, assuming that chain units are homo-

geneously distributed within each coil,

C� ¼ Cint / n

R3
� n1�3n (4.24)

For the expanded single coil, n ¼ 3/5, thus one can obtain

C� � n�4=5 (4.25)

When C > C*, the coils start to interpenetrate into each other. Daoud et al.
proposed a blob model to describe such states of polymer chains (Daoud et al.

1975). As demonstrated in Fig. 4.8, they treated the single chain as a string of liquid

droplets referred as blobs, which is similar to a pearl-necklace. The blob size is

Fig. 4.7 Illustration of the spatial distribution of single-chain units in the concentrated solutions

(solid curve). Below the screening length, the pair distribution behaves like a single chain in dilute

solutions (long dash curve); and beyond this characteristic length, it behaves like an ideal single

chain (short dash curve)
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defined as the screening length x. Each single chain contains a number of blobs g.
Within the length scale of x (r < x), the volume exclusion between chain units

dominates the interactions, and then

x � g3=5 (4.26)

Beyond the screening length x, the volume exclusions have been completely

screened out due to the interpenetration of polymer coils. Therefore, the chain can

be regarded as an unperturbed coil formed by blobs with the unit size x, and then

R � xðn
g
Þ1=2 (4.27)

where x is actually the correlation length of volume exclusions.

By substituting (4.26) into (4.27), one obtains

R � xn1=2x�5=6 ¼ n1=2x1=6 (4.28)

We know that the higher concentration C causes more interpenetration, leading

to the decrease of x. With the reference of the critical overlap concentration C*, we
assume

x
R� � ð C

C�Þ
a

(4.29)

where a < 0. Since R*/n3/5, and C*/n�4/5, one obtains

x � Can3=5þ4=5a (4.30)

x is a local property, irrelevant to the chain length n, thus

3

5
þ 4

5
a ¼ 0 (4.31)

Fig. 4.8 Illustration of the

blob model of a single

polymer chain in the

concentrated solutions. The

screening length defines the

size of each blob
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resulting in a ¼�3/4. This gives

x � C�3=4 (4.32)

and then

R � n1=2x1=6 � n1=2C�1=8 (4.33)

For polymer solutions with the coil size changing with polymer concentrations,

we normally call them semi-dilute solutions. With a further increase of C, x will

eventually decrease down to the size of chain units, then x no longer changes with C
when C > C**. We finally reach

R � n1=2 (4.34)

In summary, over the whole concentration range, we have

In dilute solutions, C < C*, R/n3/5.
In semi-dilute solutions, C* < C < C**, R/n1/2 C�1/8.

In concentrated solutions, C > C**, R/n1/2.

4.2.4 Single-Chain Conformation in Thermal Dilute Solutions

In dilute solutions, the single polymer coil expands in the athermal solvent. In a

good solvent, the coil will expand more significantly. In contrast, in a poor solvent,

the chain units and the solvent undergo a phase separation under a proper thermo-

dynamic condition. Consequently, the single chain will collapse drastically into a

condensed sphere. Therefore, the internal concentration reaches

Cint / n

R3
� 1 (4.35)

and

R � n1=3 (4.36)

with the scaling exponent of n ¼ 0.33

With the change of temperature or with the addition of a poor solvent, the

transition of the single chain from an expanded coil to a hard sphere is called

collapse transition. Meanwhile, the scaling exponent of the coil size reduces from

0.6 to 0.33. Therefore, n ¼ 0.5 exists during the collapse transition, representing a

scaling relationship for ideal coils. We defined the thermodynamic condition for

this transient pseudo-ideal state as the theta point.
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The behavior of the collapse transition of a single chain is also related to the

chain length. Figure 4.9a demonstrates the collapse transition of single chains in

dynamic Monte Carlo simulations (Hu 1998). The figure shows the curves of mean-

square radius of gyration < s2>/n as a function of the thermodynamic condition

B/kT (B is the mixing energy parameter) with various chain lengths. One can see

that the theta point locates right at the onset of the collapse transition for all the

chain lengths. With the increase of the chain length, the collapse transitions appear

sharper, approaching a first-order phase transition. Chi Wu and coworkers reported

the experimental observation on the molten-globule state of single chain during the

collapse transition (Wu and Zhou 1996). If we observe the internal structure of

single coil during this process, the radial distribution of the local-average

concentrations < q > of chain units will reveal a core-shell structure, as shown

in Fig. 4.9b (Hu 1998). In the range of B/kT around 0.05, there exists an intermedi-

ate state with two-phase coexistence. The core contains an enhanced density and the

shell behaves like an expanded coil. This implies that there exists a surface pre-

dissolution on the single collapsed coil. Partial release of the conformation entropy

at the surface will benefit the stability of the interface between the condensed chain

units and the solvent. Apparently, the shorter is the chain, the smaller is the core.

Therefore, the surface pre-dissolution of a shorter chain will be more significant,

and hence its collapse transition becomes less dramatic. The interesting point is

that, along with their folding into the native state, many protein molecules exhibit

such a molten-globule state driven by their hydrophobic interactions. The core-shell

structures are similar and appear as a key state on the fast path of protein folding, as

further introduced in Sect. 11.5.

At the theta state, the contributions of the intra-molecular attraction and repul-

sion to the coil size compensate with each other. Flory first gave a thermodynamic

treatment to the theta state (Flory 1953). He assumed that the solvent molar mass

was N1, and the excess chemical potential Dm1
e � ∂DFm

e/∂N1 contained two parts

of contributions, i.e., enthalpy and entropy

Fig. 4.9 Dynamic Monte Carlo simulation results of single-chain collapse transition. (a) The

curves of mean square radius of gyration <s2>/(N�1) vs. B/kT for varying chain lengths N as

labeled. (0.032, 0.26) is the theta point. (b) Radial distributions of local-average concentrations

< q > of chain units in 512-mer at various temperatures (Hu 1998) (Reprinted with permission)
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Dme1 ¼
@DHe

mix

@N1

� T
@DSemix
@N1

(4.37)

The excess mixing enthalpy

@DHe
mix

@N1

¼ kTK1f
2
2 (4.38)

The excess mixing entropy

@DSemix
@N1

¼ kC1f
2
2 (4.39)

where K1 and c2 are the empirical enthalpy and entropy parameters, respectively.

f2 is the volume fraction of polymers. Therefore, when

Dme1 ¼ kTf2
2ðK1 �C1Þ ¼ 0 (4.40)

K1 and c1 will compensate with each other, leading to the pseudo-ideal state of the

single-chain system. Flory defined the temperate y � K1/c1 � T. Accordingly,

K1 �C1 ¼ C1ðy
T
� 1Þ (4.41)

To approach the pseudo-ideal state, one can either adjust the temperature to the

theta temperature, or use the theta solvent.
Flory’s analysis focuses on the thermodynamic interactions between polymers,

and defines the theta point at the critical polymer concentration for phase separation

(equal to the critical concentration of chain units within a single chain upon collapse

transition), similar to the Boyle point of the non-ideal gas. We can perform Virial

expansion on the osmotic pressure of dilute polymer solutions, as

P ¼ kTðA1Cþ A2C
2 þ A3C

3 þ ::::::Þ (4.42)

Here, the first Virial coefficient is

A1 ¼ 1

MN
(4.43)

which reflects the colligative property of ideal solutions. The second Virial coeffi-

cient is

A2 ¼ C1ð1� y
T
ÞFðxÞ n

2

v1
(4.44)
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which can be obtained from Flory-Krigbaum theory on dilute polymer solutions

(see Sect. 8.3.3), where n is the specific volume of polymers r�1, v1 is the molar

volume of solvent, and F(x) is a chain-length-related function. When T ¼ y,
A2 ¼ 0. This implies the cancellation of two-body interactions between attraction

and repulsion. We can also call this state as unperturbed state, when the polymer

coils behave like that in an ideal solution.

According to (4.44) in the Flory-Krigbaum theory for dilute solutions, when the

solvent is the polymer (x ! 1), the molar volume of the solvent v1 ! 1 too, then

A2 ! 0. This implies that the bulk phase is the theta solvent of polymers. With this

approach, Flory had already recognized the unperturbed chain conformation in

concentrated polymer solutions (Flory 1953).

Extrapolating Flory-Huggins theory to the dilute limit (beyond the assumption of

the theory) also provides

Dme1 ¼ kTðw� 1

2
Þf2

2 (4.45)

where w is the Flory-Huggins interaction parameter (see Sect. 8.2.4). At the theta

point, w ¼ 1/2. This is exactly coincident with the critical point of phase separation

wC ¼ 1/2 for the infinitely long polymers (see Sect. 9.1). This coincidence implies

that at the theta point, the correlation length of concentration fluctuations diverges.

The strong correlation is normally conducted by the strong chemical bonds along the

chain, which will be truncated at two chain ends. Therefore, many physical properties

of polymers exhibit a scaling relationship with respect to the chain length. This

probably is the reason why de Gennes’ great effort to introduce the scaling analysis

into polymer physics becomes so successful. He first made analogue of the spin

correlation of a ferromagnet with zero-component limit of magnetization, to the

scaling exponents of self-avoiding random walks with zero approaching of the

inversed chain lengths (DeGennes 1972). The zero approaching endswith the infinite

chain length for the theta point, where the correlation length along the chain diverges,

and all the chain units lose their internal freedom in strong thermal fluctuations along

the chain. The strong correlation exhibits a structural self-similarity along the chain,

which legitimates wide applications of the renormalization group theory (Freed

1987) and the self-consistent-field theory (Edwards 1965; Helfand 1975) in polymer

systems. In summary, the critical point for collapse transition of a single chain reflects

the thermodynamic nature of the theta point, corresponding to the Boyle point, at

which the real gas behaves like an ideal gas. The physical states of amorphous

polymers are not so far away from their theta states; therefore, polymer properties

often exhibit a scaling relationship with respect to the chain length.

Near the theta point, the osmotic pressure of the dilute solution is closely related

to the chain length of polymers, as demonstrated in (4.43). In semi-dilute solutions,

however, the osmotic pressure is related to the degree of interpenetration of

polymer coils, no longer related to the chain length. Using the blob model, we have

x � C�3=4 (4.46)
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The repulsive energy between the blobs should be comparable with the energy

level of kT for thermal fluctuations. Accordingly, the osmotic pressure of the semi-

dilute solution at the theta point becomes

P � kT

x3
� kTC9=4 (4.47)

In practice, from the dilute solutions to semi-dilute solutions, the scaling law of

the osmotic pressure changes rather gradually, as roughly given by

P
kTC

� 1

MN
þ C5=4 (4.48)

This relationship has been well verified by experiments (Rubinstein and

Colby 2003).

When a long chain is mixed with middle-length polymer chains, one can imagine

that within a certain length scale, the volume exclusion of chain units in the long chain

will be screened out by the middle-sized “solvent”. Above this length scale, the long

chain exhibits the chracteristics of expanded coils. Theoretical estimation shows that

this length scale corresponds to the square of middle chain lengths. In other words, if

the length of the long chain cannot go beyond the square of the middle chain lengths,

its volume exclusion will be completely screened out by the solvent chains, and the

long chain will exhibit the ideal-chain characteristics (De Gennes 1979).

In thermal concentrated solutions, polymer chains in a good solvent behave

similarly to those in an athermal solvent, while in a poor solvent, polymer chains

experience a phase separation with the coexistence of polymer-rich and polymer-

poor phases. We will give more descriptions about the phase separation behaviors

in Chap. 9.

4.3 Single-Chain Conformation in Polyelectrolyte Solutions

In a polar solvent, a polyelectrolyte chain can dissociate the counter-ions on the side

groups, and becomes a macro-ion or a charged polymer, as demonstrated in

Fig. 4.10. The macro-ion chain is surrounded by small counter-ions. If the charge

valence of the counter-ions is larger than one, they can effectively cross-link the

macro-ions to form polyelectrolyte gels.

Bio-macromolecules such as DNA, RNA and proteins exhibit the properties of

polyelectrolytes in aqueous solutions. The migration of fragments hydrolyzed from

bio-macromolecules in the aqueous gel can be oriented by the weak electric field.

Long chains drift slowly, short chains drift fast, and their difference in the speed

results in a characteristic spectrum. This is the principle of gel electrophoresis. As a
fundamental method in gene engineering, gel electrophoresis has been widely applied

in the identification and analysis of DNA and protein characteristic sequences.
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The fraction of charged monomers p on the polyelectrolyte backbone is highly

sensitive to the environmental factors such as temperature, strength of the electric

field, ion concentration and pH value (Barrat and Joanny 1996). In the polyelectro-

lyte solutions, the Coulomb force on the polymer chain plays an important role in

determining the chain conformation. The Coulomb energy between two charge

units is

Eco � e2

4pe0el
(4.49)

where e0 is the dielectric constant of vacuum, e is the relative dielectric constant of
solvent, l is the distance between two charge units. At a certain distance, the

Coulomb energy between two charge units becomes comparable with the thermal

energy kT. This certain distance is called Bjerrum screening length, as given by

lB ¼ e2

4pe0ekT
(4.50)

This length scale characterizes the distance between two charges of the same

species allowed by the thermal fluctuations. In other words, when the charge

density p on the polymer chain becomes too high, for instance, p > e/lB, the
counter-ions will accumulate around the chain to maintain the effective charge

density at constant e/lB. Such a phenomenon is called Manning condensation of
counter-ions (Manning 1969).

The fraction of charged monomers on the chain determines the Coulomb energy

of single chain, as given by

Eco � kT
lBðnpÞ2

R
(4.51)

Here, n is the chain length, and R is the average coil size. The electrostatic

repulsion between the same species of ions on the repeating units leads to coil

expansion. This expansion energy is balanced with the entropy loss associated with

chain conformation Eel ~ R2/(nb2), then the total free energy change of the coil is

F ¼ Eco þ Eel ¼ kT½lBðnpÞ
2

R
þ R2

nb2
� (4.52)

Fig. 4.10 Illustration of a macro-ion and its surrounding counter-ions in polyelectrolyte solutions
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where b is the size of chain units. From the minimum of this free energy with

respect to R, i.e. let its first derivative to R equal to zero, we can obtain the scaling

law of polyelectrolyte coil sizes as (De Gennes et al. 1976)

R � np2=3ðlBb2Þ1=3 (4.53)

In much earlier time, Kuhn et al. have already obtained a more accurate

expression with a logarithmic correction (Kuhn et al. 1948), as

R � np2=3ðlBb2 ln nÞ1=3 (4.54)

Assuming that the electrostatic interaction potential around the chain follows the

Poison equation approximately,

@uðrÞ
@r

¼ �4plBcðrÞ (4.55)

where c(r) is the counter-ion concentration at a radial distance r from the chain, and

further assuming that the counter-ions locally follow the Boltzmann distribution,

cðrÞ ¼ c0expð�uðrÞÞ (4.56)

one can obtain the famous Poisson-Boltzmann equation, as given by

@uðrÞ
@r

¼ �l�2
DH exp ð� uðrÞÞ (4.57)

Here defines Debye-Hückel screening length

l�2
DH ¼ 4plBc0 (4.58)

Equation (4.57) can be solved under specific geometric conditions (Fuoss

et al. 1951).

When salts are added into the polyelectrolyte solutions, the effective interaction

potential between the ions becomes

UðRÞ ¼ kT
lB
R
e�R=lDH (4.59)

Here the Debye-Hückel screening length is

lDH ¼ ð4plBIÞ�1=2
(4.60)
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and the ionic strength for the salts in solution is

I ¼ Sz2i ri (4.61)

in which i represents ion species, zi represents the number density, and ri represents
the charge valence (Israelachvili 1985). The strong screening interactions of the

massive ions enable the polyelectrolyte chain in the salt-added solutions to behave

like a neutral polymer chain in a typical non-polar solvent.

Owning to the electrostatic repulsions along the chain, polyelectrolyte chains

obtain an additional semi-flexibility beyond the neutral polymers, appearing as the

additional persistence length lelec that has been called Odijk-Skolnick-Fixman
persistence length.

l ¼ l0 þ lelec (4.62)

and

lelec ¼ lBðlDH
2d

Þ2 (4.63)

where d is the average distance between the charged groups along the chain (Odijk

1977; Skolnick and Fixman 1977; Odijk and Houwaart 1978). In practice, lelec is
much larger than the Debye-Hückel screening length, suggesting that the polyelec-

trolyte chain mostly behaves like a rigid rod. Poly(acrylate acid) chains are flexible

neutral polymers in the weak acidic solutions. However, with the increase of pH

value, for instance, by adding sodium hydroxide, the polymer chains become

sodium Polyacrylate and behave like rigid polyelectrolyte chains. Such a pH-

responsive function can potentially be utilized in mimicking biological switches

or stretching of muscles.

The counter-ion concentrations around the polyelectrolyte chain may fluctuate,

which induces an attractive interaction between the chains sharing the same clouds

of counter-ions (Golestanian et al. 1999). Parallel stacking of polyelectrolyte chains

favors such kind of attractions, as demonstrated in Fig. 4.11. This effect will result

in the spontaneous liquid crystal ordering in polyelectrolyte solutions (Potemkin

et al. 2002; Potemkin and Khokhlov 2004). Such a tendency of liquid crystal

ordering actually stabilizes the parallel rolling of DNA long chains, and squeezes

them into the very limited space of cell nucleus.

In a poor solvent, a single polyelectrolyte chain will collapse into a sphere similar

to a charge-neutral chain. However, due to the existence of Coulomb interactions, the

collapse transition appears slightly more complicated. As demonstrated in Fig. 4.12,

the single chain containing high density of charges first collapses into a bead-string

structure. With further decrease of the temperature, lB will gradually rise up, and the

apparent charge density will decay. Correspondingly, the number of beads on the

string will decrease as well, causing the coil to shrink through several cascading steps

till reaching the size of a single condensed sphere (Dobrynin et al. 1996). Such a
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cascading phenomenon can be attributed to the Rayleigh instability of the charged

liquid droplets, which explains the splitting of the charged droplets due to the

overcrowding of surface charges (Rayleigh 1882). Several smaller droplets split

from a big one could effectively reduce the density of charges on the high-energy

surface of the droplets.

Assuming that each collapsed bead contains m chain monomers, with the linear

size R ~ m1/3, and the fraction of charged monomers is p, with one charged

monomer containing one charge, the surface free energy gR2 will be balanced

with the charge repulsive energy (epm)2/(eR) in each collapsed bead. By

minimizing their total free energy with respect to R, we obtain

R3 � ðpmÞ2 (4.64)

Fig. 4.11 Illustration of parallel stacking of polyelectrolyte chains (dark gray rods with negative

charges) favoring the sharing of counter-ion clouds (light gray positive charges) and hence

forming liquid-crystal-ordering structure

Fig. 4.12 Illustration of the cascading collapse transition of a charged polymer in a poor solvent,

with a bead-string structure that eventually collapses into a single sphere
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Substituting R ~ m1/3 into the equation above, the critical charge density on the

chain to stabilize each bead is thus,

pc � m�1=2 (4.65)

On the other hand, the surface free energy of the chain connecting two neigh-

boring beads glb2 (the chain length l with monomer size b) is also balanced by the

charge repulsive energy between two beads (epcm)
2/(el). Similarly, by minimizing

their total energy with respect to l, we obtain

l � pcm (4.66)

Inserting (4.65) into (4.66), we further obtain the chain length connecting two

consecutive beads along the chain

l � m1=2 (4.67)

Here the total amount of monomers on the chain is n. If we neglect the

monomers on the connecting chains, the total number of beads is roughly n/m. If
we further neglect the contributions of bead size, the contour length of the chain

becomes

L � n

m
l � pcn (4.68)

The hydrophobic polyelectrolyte chain appears rigid due to the electrostatic

repulsion along the chain. In the concentrated solutions, the electrostatic repulsion

will be gradually screened due to interpenetration of polyelectrolyte chains

(Dobrynin and Rubinstein 2001). According to (4.68), the critical overlap concen-

tration for the transition from the dilute solution to the concentrated solution is

C� � n

L3
� pc

�3n�2 (4.69)

When C > C*, similar to the treatment of neutral polymers in semi-dilute

solutions, we can use the blob model to describe the polyelectrolyte segment

holding the electrostatic repulsion in semi-dilute solutions. Assuming the blob

size as a characteristic length x to maintain the chain rigidity, with reference to

the critical overlap concentration C*,

x
L
� ð C

C�Þ
a

(4.70)

Substituting (4.68) and (4.69) into the equation above, we obtain

x � n1þ2a (4.71)
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Since x is a local property of the chain, irrelevant to chain length n, thus
1 + 2a ¼ 0, and we obtain a ¼ �1/2. Substituting again (4.68) and (4.69) into

(4.70), we have

x � LðC
�

C
Þ1=2 � ðpcCÞ�1=2

(4.72)

Polyelectrolyte chain of a length scale larger than x will appear as unperturbed

chain due to the screening of the electrostatic repulsion,

R � xðn
g
Þ1=2 (4.73)

Here each blob contains the number of monomers

g � Cx3 (4.74)

Substituting (4.72) and (4.74) into (4.73), one obtains

R � n1=2ðpc
C
Þ1=4 (4.75)

With the increase of concentrations, the electrostatic repulsion will be gradually

screened out, and the correlation length x will decay down to the segment length l
connecting two consecutive beads. When x ¼ l, the electrostatic repulsion between
two beads is completely screened, and the volume x3 can accommodate only one

bead. According to (4.65) and (4.67), we have l ~ pc
�1. From (4.72), we reach the

critical concentration

Cb � pc
�1l�2 � pc (4.76)

When C > Cb, the electrostatic repulsion between two beads is completely

screened, and the chain segment connecting two beads will disappear. According

to (4.74), we have

m � g � Cx3 (4.77)

From the charge balance on the bead surface, we have already obtained (4.65),

i.e. m ~ pc
�2. From (4.77), we further obtain

x � ðpc2CÞ�1=3
(4.78)

In the meantime, the polyelectrolyte chain formed purely by a string of blobs

without any in-between connecting chain segment will exhibit the unperturbed

chain conformation. Substituting (4.65) and (4.78) into (4.79), one derives
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R � xðn
m
Þ1=2 � n1=2ðpc

C
Þ1=3 (4.79)

Since the chain conformation appears as unperturbed in the concentrated

solutions, the coil sizes will not depend on the concentration any more. With further

increase of concentrations, C ! 1, x ~ m1/3, and eventually the electrostatic repul-

sion between charged monomers will be completely screened. In the end, the

polyelectrolyte chain will behave like a charge-neutral polymer chain in highly

concentrated solutions. Correspondingly, the coil sizes will increase in a sudden,

leading to an increase of characteristic relaxation time as well as the intrinsic

viscosity, and appearing as a “gelation” process, as demonstrated in Fig. 4.13

(Dobrynin and Rubinstein 2005).

4.4 Single-Chain Conformation Under External Forces

4.4.1 Stretching

If a stretching force is imposed on the two chain ends of a polymer in a good

solvent, the single chain will response with a deformation along the direction of the

force. On the other hand, thermal fluctuations tend to restore the local chain

conformation to the coil state without any stretching, as illustrated in Fig. 4.14.

Let’s assume the existence of N/g blobs, each with a linear size satisfying r ¼ bg3/5.
The overall end-to-end distance Rf has been homogeneously distributed in each

blob with a weak disturbance,

Rf ¼ r � n
g
� R5=3

r2=3
(4.80)

where the size R ¼ N3/5b corresponds to the original coil size without any

stretching. Then, we obtain

Fig. 4.13 Illustration of the

concentration-dependent

scaling laws for coil sizes of

the polyelectrolyte chain

shown as a bead string in a

poor solvent

66 4 Scaling Analysis of Real-Chain Conformations



r � R5=2

Rf
3=2

(4.81)

The total free energy

F ¼ kT � n
g
¼ kTðRf

R
Þ5=2 (4.82)

and the stretching force

f ¼ @F

@Rf
¼ kT

b
ðRf

nb
Þ3=2 (4.83)

with the condition Rf < Nb. Apparently, with the consideration of the volume

exclusion of the polymer, the Hooke’s Law based on the ideal chain model will

not be satisfied. The non-Gaussian distribution of the end-to-end distance is further

obtained with

PðxÞ � exp ½ � ðx
R
Þ5=2� (4.84)

where x > R (Pincus 1976).

4.4.2 Compression

Nano-materials of polymers are the important issue in many high-technology fields,

such as micro-electronics, drug delivery and device technology. If polymer chains are

compressed into various geometries of nanoscale compartments, such as ultra-thin

films, nano-pores and nano-spheres, their deformation causes an entropy loss of chain

conformation. Therefore, deformation of polymer chains often influences their phys-

ical performances. The blob model has been widely applied in the scaling analysis of

single-chain conformation under nano-confinement (Rubinstein and Colby 2003).

Fig. 4.14 Illustration of the blob model for a deformed single coil with its two ends imposed with

a stretching force
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If a single polymer chain is confined between two parallel plates with a distance

d, we can assume N/g blobs, each with the linear size d ¼ bg3/5, as illustrated in

Fig. 4.15a. Similar to Flory’s mean-field treatment, each blob has the volume

repulsive energy kTd2(N/g)/R//
2, and the overall volume repulsive energy kTd2(N/

g)2/R//
2. On the other hand, the entropic elasticity of chain conformations formed by

blobs still follows the Gaussian distribution, as kTR//
2/(d2N/g). In the thermody-

namic equilibrium, the total free energy change F ¼ Erep + Eel is minimized with

respect to R//, and we obtain the equilibrium size

R== � dðn
g
Þ3=4 ¼ n3=4bðb

d
Þ1=4 (4.85)

When the plate spacing approaches the monomer size, i.e. d ! b, we have

R== � n3=4b (4.86)

In this case, the extremely confined polymer chain follows the scaling relation-

ship of 2D SAWs, and exhibits the scaling law of the coil size for a 2D real chain.

If the single polymer chain is confined in a cylindrical tube with diameter d, the
calculation is straightforward, as

R== � dðn
g
Þ ¼ nbðb

d
Þ2=3 (4.87)

When d ! b,

R== � nb (4.88)

and the chain becomes fully stretched under the extreme 2D confinement.

The above cases are for isolated single chains. For polymer melt confined

between two parallel plates, the internal concentration of each coil

Cint � nb3

dR2
==

(4.89)

Fig. 4.15 Illustration of the blob models for the single polymer chain confined in (a) two parallel

plates and (b) a cylindrical tube
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and the coils are assumed unperturbed, as R//¼(nb2)1/2, then one obtains

Cint � b

d
(4.90)

which shows no dependence on the chain length. When d ! b, Cint ! 1. This

implies that with the decrease of d, the chain will be expelled from the other chains,

and the coils decrease interpenetration with each other. In the extreme case, the

polymer coil is actually expanded a bit from the 3D unperturbed coil into the 2D

non-interpenetrated coil.

For the melt polymer chains confined in a tube,

Cint � nb3

d2R==
(4.91)

and assuming again the unperturbed coils as R//¼(nb2)1/2, one obtains

Cint � n1=2ðb
d
Þ2 (4.92)

When Cint ~ 1,

R== � nb3

d2
(4.93)

When d ! b,

R== � nb (4.94)

and the chains are fully stretched.

Since Cint < 1, when the tube diameter

d> n1=4b ¼ ðR0bÞ1=2 (4.95)

polymer chains will maintain the unperturbed conformation states.

The above scaling analysis did not take interacting boundaries into account,

which has recently been studied via a semi-analytic theory by Freed et al. (2010).

4.4.3 Adsorption

Adsorption of polymers on a solid flat substrate is an important physical chemistry

issue in many applications of polymers, such as composites, coatings, adhesion,

lubricates, gel chromatography, wetting, colloidal stability, piping transportation,
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membrane translocation, and bio-compatibility. When a single polymer coil is

forced to form too many contacts with a flat substrate, the coil will be deformed,

which causes a loss of conformational entropy, as illustrated in Fig. 4.16. At the

same time, in order to minimize the entropy loss, the mass center of the coil tries to

keep a certain distance from the substrate, leading to a “depletion layer” at the

contacting surface (Joanny et al. 1979). The depletion zone becomes significant

near a mainly repulsive substrate surface.

A mainly attractive substrate with a contact-energy gain e will draw a polymer

chain closer to the surface, and such a condensation process causes a loss of

entropy. Therefore, there exists an equilibrium thickness d for the coil absorbed

onto the substrate surface (De Gennes 1976). The blob model can be used again to

estimate the chain length dependence of d for the absorbed single chain. Assuming

each blob has the size d and contains g monomers, then

d � bgn (4.96)

where the value of the exponent n depends upon solvent quality: n ¼ 3/5 in a good

solvent; n ¼ 1/2 in a theta solvent. In each blob, the entropy loss due to confinement

is balanced by the thermal fluctuation energy kT, thus the total entropy loss of the

absorbed single chain is

Eel � kT
n

g
� kTnðb

d
Þ1=n (4.97)

On the other hand, only the first contacting layer of the monomers contains the

adsorption energy, and the number of contacting monomers is nb/d (here supposing
very weak adsorption for the monomers homogeneously distributed over the thick-

ness d). Therefore, the total adsorption energy of the single chain is

Eads � �e � nðb
d
Þ (4.98)

Fig. 4.16 Illustration of the

entropy loss (left side, leading
to an elastic bounce for the

formation of “depletion

layer”) and the absorbing

conformation (right side) for
a single polymer chain near a

flat solid substrate
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The total free energy change becomes

F ¼ Eel þ Eads ¼ kTnðb
d
Þ1=n � en

b

d
(4.99)

By minimizing F with respect to d, ∂F/∂d ¼ 0, one obtains

d � bð e
kT

Þ�n=ð1�nÞ
(4.100)

Clearly, the absorbing thickness is irrelevant to the chain length n, and decreases
when the temperature decreases or with the absorbing-force increases.

The above free energy calculation considers only a local entropy loss of the single

coil due to the confinement of surface absorption equilibrated by the thermal energy,

but neglects the entropy loss of the global-chain conformation demonstrated in

Fig. 4.16. In addition, the contact to a flat substrate makes parallel deformation of

chain segments (called the train segments). The loops and tails connecting train

segments lose some of their conformation entropy as well, due to their ends anchoring

temporarily to the substrate surface. Therefore, there exists a critical energy ec > 0

for the desorption-adsorption transition to get over all the above-mentioned entropy

losses (Rubin 1965). With a high affinity of the surface (but not so high as in a

chemisorption), the entropy loss must be compensated by more enthalpy gains with

the surface contacts, leading to a richness of monomers at the contact layer in

accompany with a decay of monomer concentrations along the perpendicular direc-

tion of the surface. According to the consistent results fromMonte Carlo simulations

(Eisenriegler et al. 1982) and from the theoretical series expansions (Ishinabe 1982),

the monomer concentrations scale with the distance x from the substrate surface, as

C � ðb
x
Þm (4.101)

with m 	 1/3 in a good solvent. With this so-called proximity effect on a highly

affinitive substrate, the adsorption thickness for a single chain in a good solvent will

be updated as well (De Gennes 1983), as given by

d � bð e
kT

Þ�n=½1�nð1�mÞ� ¼ bð e
kT

Þ�1
(4.102)

which coincides to the roughly estimated result from (4.100) in a theta solvent (the

ideal-chain model discussed in the early history (De Gennes 1979)).

The self-consistent mean field model could elucidate the relative importance of

loops and tails along their distances from the substrate surface (Scheutjens and

Fleer 1980; Fleer et al. 1993). The chain ends are expelled away from the adsorbing

surface, probably due to their relatively high mobility to other monomers. There-

fore, the loops are rich in the region close to the adsorbing surface, and the tails are

mainly in the region away from there. Quantitative description can also be obtained

from the scaling arguments (Semenov and Joanny 1995).
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In the concentrated solutions, multiple chains are adsorbed on the substrate, and

the distances away from the substrate surface can be roughly separated into three

regions: the proximal region, x < d, which is basically similar to the single chain

adsorption in the dilute solutions; the central region, d < x < xb, which reflects the
hydrodynamic thickness of the adsorption layer beyond d, with the decay of

monomer concentrations in a scaling exponent of �4/3 to the distance x, where
xb is the correlation length in the bulk solution; the distal region, x > xb, which
exhibits an exponential decay of monomer concentrations down to the bulk solution

(De Gennes 1981). In the central region, de Gennes proposed the so-called “self-

similar grid” construction that the correlation lengths for a mesh size of the loops

were in the same scales of distances x away from the substrate, while the correlation

length x scaled with the concentration C in semi-dilute solutions with an exponent

of �3/4, see (4.32), and thus inversely derived the above exponent of –4/3

(De Gennes 1981).

Question Sets

1. What kind of polymer physics process roughly corresponds to the rice cooking?

2. Why does the scaling analysis work well in polymer physics?

3. Why can we say that polymer chains are their own theta solvent?

4. Why can the poly(acrylate acid) chain change its flexibility with the pH values in

aqueous solutions?

5. Why can long DNA chains be stored in a small room of cell nucleus?

6. Why does the collapse transition of a polyelectrolyte chain show the bead-string

structure?
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Part II

Chain Motion



Chapter 5

Scaling Analysis of Polymer Dynamics

5.1 Simple Fluids

In this part, we start with the basic laws of molecular motions in simple fluids, to

learn the scaling analysis of polymer dynamics, followed with polymer deformation

and polymer flow.

The trajectories of Brownianmotions of hard sphericalmolecules can be analogous

to random walks. As we have leant in Chap. 2, the mean square end-to-end distance

of a random walk is proportional to the number of steps, i.e. <R2 > ~ n. The three-
dimensional mean-square displacement of particles in Brownian motions is also

proportional to the motion time t, as

<½rðtÞ � rð0Þ�2> ¼ 6Dt (5.1)

where D is the diffusion coefficient. The discovery of such a law in the Brownian

motion of the molecular particles is actually one of Einstein’s milestone

contributions in 1905 (Einstein 1905). Accordingly, the characteristic time is

defined as the moving time of a particle through a distance of its own size, as

t � R2

D
(5.2)

In simple fluids, the external driving forces on a small particle are equilibrated

with the friction due to the collisions with its surrounding medium. Therefore, the

total frictional force f is proportional to the activated constant velocity v of the

moving particle with respect to its surrounding medium, as

f ¼ zv (5.3)

where z is the friction coefficient. This law of fluid dynamics is similar to the

Newton’s second law for the external force proportional to the acceleration.
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According to the fluctuation-dissipation theorem in Brownian motions (Nyquist

1928), both the driving forces and the frictional forces on a particle are initiated by

the collisions of the surrounding particles with the thermal energy kT. Accordingly,
we have the Einstein relationship (Einstein 1905)

kT ¼ Dz (5.4)

On the other hand, the frictional forces are induced by the viscosity of fluids. The

Stokes law reveals the relationship between the friction coefficient z and the

viscosity � (Stokes 1851), as given by

z ¼ 6p�R (5.5)

Therefore, one can obtain the Stokes-Einstein relationship as

D ¼ kT

6p�R
(5.6)

One can measure the viscosity and the diffusion coefficient to determine the

so-called hydrodynamic radius as

Rh � kT

6p�D
(5.7)

This quantity of sizes reflects the effective volume-exclusion range of the moving

particle interacting with its surrounding particles. For a single polymer chain in a

good solvent, the theoretical hydrodynamic radius Rh
theo can be defined as

1

Rtheo
h

� 1

n2
<
X
i 6¼j

1

rij
> (5.8)

where < . . . > is an ensemble average, and n is the number of monomers in the

polymer (Des Cloizeaux and Jannink 1990). Such a theoretical definition makes the

hydrodynamic radius close to the radius of gyration of the polymer coil. However,

as we have introduced for polymer solutions in the previous chapter, the hydro-

dynamic radius of an anisotropic coil could be larger than its static radius of

gyration. Thus from the dynamics point of view, the actual critical overlap concen-

tration appears smaller than the theoretical prediction.

In dilute solutions of hard spheres, Einstein has found that the viscosity

� ¼ �sð1þ 2:5cÞ (5.9)

where �s is the solvent viscosity, and c is the volume fraction of hard spheres

(Einstein 1911).
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We can regard the motion of polymer coils in a dilute solution as in the non-
draining mode of spherical particles, which means that a polymer coil moves

together with the holding solvent molecules, as shown in Fig. 5.1a. There is no

relative velocity for those holding solvent molecules to the polymer, and all the

frictional interactions for polymer motions only occur at the surface of the spherical

particle. We then have

c ¼ Vp

V
¼ c

cint
� cR3

n
(5.10)

where Vp is the volume of polymer coil, V is the total volume, c is the average

volume concentration of monomers, Cint is the volume concentration of monomers

inside each coil, Cint ~ n/R3, and n is the number of monomers in each chain. We

define the specific viscosity

�sp �
� � �s
�s

(5.11)

and further define the intrinsic viscosity

½�� � �sp
c

c!0j (5.12)

According to (5.9), we obtain the Fox-Flory equation (Fox and Flory 1948)

½�� � R3

n
(5.13)

According to the Fox-Flory equation, in a theta solvent, we can have

R � n1=2 (5.14)

from which we can further obtain the Einstein-Kuhn viscosity equation (Kuhn

1934)

½�� � n1=2 (5.15)

Fig. 5.1 Illustration of the flow profiles for the solvent to pass through the polymer coil with

(a) the non-draining mode and (b) the free-draining mode
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In a good solvent,

R � n3=5 (5.16)

and we can obtain the Kirkwood-Riseman equation (Kirkwood and Riseman 1948)

½�� � n4=5 (5.17)

Staudinger and Notzu considered the free-draining mode (Staudinger and Nodzu
1930), as shown in Fig. 5.1b. In this mode, the relative motion of each monomer

incurs the frictional force from its surrounding solvents, which is also quite

applicable to the situation of rigid polymer chains. Accordingly,

½�� � n (5.18)

A general equation summarizing all the cases above is known asMark-Houwink
equation

½�� ¼ KMa
� (5.19)

where a ranges from 0.5 to 1. From this equation, one can define the viscosity-

average molecular weight, as introduced in Sect. 2.4.2 (Mark 1938; Houwink

1940).

5.2 Short Chains

The characteristic feature for the motions of chain-like molecules is that, the

Brownian motion of the whole chain is integrated by the Brownian motion of all

the monomers. Since the motion of each monomer is restrained by the chain

connection of other monomers, the Brownian motion of the polymer as a whole

is slower than the small monomer molecules under comparable conditions. In other

words, the diffusion coefficient of polymers strongly depends on the chain length.

In 1953, Rouse proposed that the ideal chain without volume exclusion (i.e. in

the free-draining mode) could be treated as a coarse-grained bead-spring chain, as

shown in Fig. 5.2 (Rouse 1953). Each spring connecting two beads represents a sub-

molecule along the ideal chain. Its elasticity can be described by the Gaussian

distribution of the distances between two ends of sub-molecules. Therefore, the

total free energy contributed by the entropic elasticity is given by

Eel ¼ SEi;iþ1 � Sðriþ1 � riÞ2
<ðriþ1 � riÞ2>

(5.20)
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For each bead in the middle of the chain, the total elastic force results from the

springs of its two sides, as given by

fi ¼ � @Eel

@ri
� ðriþ1 � riÞ � ðri � ri�1Þ ¼ @2ri

@i2
(5.21)

In the case of simple fluids, the force above generates a constant velocity of the

bead, as given by

fi ¼ z
@ri
@t

(5.22)

Therefore, we obtain the so-called Rouse equation in the continuous limit,

@ri
@t

� @2ri

@i2
(5.23)

Under the boundary conditions of @ri=@ij0 ¼ @ri=@ijn ¼ 0, the analytical solution

of the equation above is in eigenmodes, as given by

ripðtÞ ¼ ap cosðppi
n
Þ expð� t

tp
Þ (5.24)

where the mode number p ¼ 1, 2, 3. . . and n. n is the total number of beads on the

chain and is proportional to the total amount of monomers (for the sake of

simplicity in the following scaling analysis, we will directly treat n as the number

of monomers). Equation (5.24) represents any term in Fourier series expansion,

provided that the random-coil conformation of polymers is equally parted into

p wave-lengths of a stochastic vibration holding amplitude ap. The relaxation

time tp is the characteristic time for each sub-molecule to contain n/p monomers

and to diffuse through its end-to-end distance Rp. Accordingly,

tp �
R2
p

Dp
(5.25)

For an ideal chain,

R2
p �

nb2

p
(5.26)

Fig. 5.2 An illustration of

the bead-spring model of the

Rouse chain
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We know the Einstein relationship

Dp ¼ kT

zp
(5.27)

and consider the free-draining mode,

zp ¼
zn
p

(5.28)

We substitute the three equations above into (5.25), and obtain

tp � ðn
p
Þ2 (5.29)

When p ¼ 1, the characteristic time for each chain diffusing through its coil size

is often referred as the Rouse relaxation time, i.e.

tR � n2 (5.30)

Therefore, the diffusion coefficient for the whole Rouse chain is

D � R2
1

tR
� n�1 (5.31)

which can also be derived directly from (5.27) and (5.28).

By definition, the mean-square displacement of monomers in the time period

of tp is comparable to the mean-square end-to-end distances of sub-molecules

(see (5.2)). From (5.29), we have

<½rðtpÞ � rð0Þ�2> � R2
p �

nb2

p
� t1=2p (5.32)

Therefore, within the time window between the monomer characteristic time

t0 and the whole-chain characteristic time tR, there exists following scaling

relationship.

<½rðtÞ � rð0Þ�2> � t1=2 (5.33)

Such a smaller scaling exponent (1/2) compared with the simple fluids (1) can be

attributed to the fact that the motions of monomers are slowed down due to their

chain connection. Below or above this time window, the monomers or the whole

chain exhibit the characteristics of simple fluids, following the scaling law

<½rðtÞ � rð0Þ�2> � t (5.34)
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as illustrated in Fig. 5.3. Both experiments and computer simulations on short

polymer chains in the melt phase have verified such a scaling relationship of the

Rouse chain.

Since polymer chains in the melt are in a highly interpenetrating state, the

volume exclusion effect between chain units has been well screened, and at

the meantime the hydrodynamic interactions have been screened as well. Thus,

the free-draining mode considered in the Rouse model is roughly applicable in the

melt of short polymer chains. In dilute solutions, however, the hydrodynamic

interactions could not be screened. In 1956, Zimm considered further the non-

draining mode for the dynamics of single chains in dilute solutions on the basis of

the Rouse model (Zimm 1956). He started with the definition of the characteristic

time t ¼ R2/D, and inserted it into the Einstein relation D ¼ kT/z. For the non-

draining mode, the friction coefficient of the single coil follows the Stocks law

(5.5). Then he obtained

tZ � R3 (5.35)

In a good solvent, the expanded coil sizes of single chains are R ¼ bn3/5, then the
Zimm relaxation time is

tZ � n9=5 (5.36)

The scaling exponent (9/5) appears smaller than that (2) for the characteristic

relaxation time of the Rouse chain. This implies that the Zimm chain diffuses faster

than the Rouse chain, because the non-draining mode of the single coil incurs

less frictional hindrance than the free-draining mode. Accordingly, the diffusion

coefficient of the Zimm chain is

DZ � R2

tZ
� n�3=5 (5.37)

Similar to the derivation of the scaling law of the Rouse chain, the mean-square

displacement of monomers within the time period of the characteristic time tpZ for
p-mode sub-molecules is

Lo
g 1

0<
[r

(t
)-

r(
0)

]2 >

Log10t

1

1/2

1

τ0 τR

nb2

b2

Rouse chain

Fig. 5.3 Double logarithmic

plot of the mean-square

displacement of monomers

versus the time, illustrating

the scaling laws of the Rouse

chain. Monomers are moving

slower than simple fluids due

to their chain connection
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<½rðtpÞ � rð0Þ�2>Z � R2
pZ � t2=3pZ (5.38)

Thus we can obtain that, in the time window of t0 < t < tZ, corresponding to

the size scale n6/5b2 within the single coil,

<½rðtÞ � rð0Þ�2>Z � t2=3 (5.39)

The exponent here (2/3) is slightly larger than that of the Rouse chain (1/2),

implying again a faster diffusion. This scaling law can well describe the diffusion of

a single polymer in dilute solutions.

In concentrated solutions, with the increase of the polymer concentration, the

screen effect of hydrodynamic interactions is enhanced due to the interpenetration

of polymer chains. We can assume that the hydrodynamic screening length xh is
close to the screening length of volume exclusion of monomers x, as given by

xh � x (5.40)

Employing the blob model for semi-dilute solutions, we define the size of the

blob as

x � g3=5 � C�3=4 (5.41)

The monomers inside each blob move in a range smaller than xh, where the

conditions for the non-draining mode are maintained. Therefore, the Zimmmodel is

applicable.

tx � x3 � C�9=4 (5.42)

In contrast, beyond each blob, the motion range of monomers is larger than xh,
where the conditions for the free-draining mode are restored due to the interpene-

tration of polymer chains. Therefore, the Rouse model is applicable.

tR � txðn
g
Þ2 � n2C1=4 (5.43)

The size of the blob ranges from the size of monomers to the whole chain,

depending upon polymer concentrations. Therefore, the dynamic scaling law for the

single short chain in the semi-dilute solutions is to insert tx between t0 and tR.
In other words, the 2/3 scaling segment is inserted before the 1/2 segment, as

illustrated in Fig. 5.4.
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5.3 Long Chains

When a long chain diffuses within its bulk melt phase, it remains a coil-like shape

containing many other interpenetrated chains. The other chains are not allowed to

diffuse together with this chain; rather, they block local vertical diffusion along the

contour length of this chain due to the volume exclusion effect, which is often

called the entanglement effect. Such entanglements force the chain to diffuse

mostly along its contour length, behaving like a snake. Edwards first proposed the

tube model (Edwards 1967). He regarded such entanglements around the primitive

path of the long chain to form an effectively dynamic network, and to trap the long

chain in a tube, as demonstrated in Fig. 5.5. De Gennes later-on proposed the

reptation model (De Gennes 1971). He assumed the tube diameter a (about 10 nm)

and n/ne blobs, each with the size of a, forming the tube length Z ~ an/ne, where ne
is the critical chain length for the effect of chain entanglement.

a2 � neb
2 (5.44)

The characteristic time for the chain to diffuse out of the tube is

tt ¼ Z2

Dt
(5.45)
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Fig. 5.4 Double logarithmic

plot of the mean-square

displacements of monomers

versus the time for the scaling

laws for a short chain in semi-

dilute solutions. The Zimm

chains are slightly faster than

the Rouse chains due to their

less frictional barrier in the

non-draining mode

Fig. 5.5 Illustration of the

tube model for a long chain

diffusing in the bulk phase
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Imagining that the frictional barrier for the motion of each blob is integrated into

that for the motion of the whole chain, thus

zt ¼ z
n

ne
(5.46)

From the Einstein relationship D ¼ kT/z, one obtains

Dt ¼ kT

zt
¼ kTne

zn
¼ Dne

n
(5.47)

Therefore, the characteristic time for the reptation model becomes

tt � n2

Dt
� n3 (5.48)

The reptation time exhibits stronger chain-length dependence than the Rouse

time (tR ~ n2). Accordingly, the diffusion coefficient is

Drep ¼ R2

tt
¼ nb2

tt
� n�2 (5.49)

The diffusion coefficient for the reptation chain shows weaker chain-length

dependence than that for the Rouse chain (DR ~ n�1). Both (5.48) and (5.49)

imply that the tube makes an additional confinement to the self-diffusion of the

polymer chains. Therefore, the long chains diffuse slower, and the diffusion

coefficient becomes more sensitive to the chain length.

The primitive path of the long chain reveals the characteristic feature of the

reptation model for the diffusion of an ideal chain. Since tR < tt, polymer chains

perform the Rouse-chain motions along the tube before they diffuse out of the tube.

Therefore, within the time window between the relaxation time of critically

entangled chain te and the relaxation time of the reptation tube tt, monomers

diffuse through a certain length of the tube. Meanwhile, the tube itself can be

regarded as a contour of an ideal chain, and the tube length is proportional to the

mean-square end-to-end distance, which corresponds to the total mean-square

displacement of each monomer. Note that the tube length is the sliding diffusion

distance of the Rouse chain, then

<½rðtÞ � rð0Þ�2>rep � tube length ¼ <rðtÞ � rð0Þ>R � <½rðtÞ � rð0Þ�2>1=2
R

(5.50)

In other words, within the time period from te to tt, the polymer chain diffuses

along the tube with the Rouse mode. Owning to the tube confinement, the scaling

exponent of the original Rouse chain has been reduced into half. Therefore, the
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reptation chain diffuses even slower than the Rouse chain. The overall scaling

relationships of the chain dynamics for the reptation chain can be summarized

below, as also demonstrated in Fig. 5.6.

<[r(t)-r(0)]2 > rep ~ t, if t < t0; (within the scale of b2)

~t1/2, if t0 < t < te; (within the scale of a2)

~t1/4, if te < t < tR; (within the scale of n1/2ab)
~t1/2, if tR < t < tt; (within the scale of nb2)
~t, if tt < t.

Similar to the scaling analysis for the short chains in concentrated solutions, we

can assume the screening length of hydrodynamic interactions for the long chains,

corresponding to the screening length of the volume repulsive interactions, as

xh � x (5.51)

Applying the blob model, one can obtain

x � g3=5 � C�3=4 (5.52)

At the motion length scale smaller than xh, the Zimm-chain model is valid. In

contrast, at the motion length scale above xh, there occur two different scenarios:

the Rouse-chain model is applicable at the scale smaller than the critical entangle-

ment length ne; and the reptation-chain model is applicable at the scale larger than

ne. The results are similar with the semi-dilute solutions of short chains, withtx
between t0 and te, i.e. inserting 2/3 scaling exponent before 1/2 scaling exponent.

In the following, we discuss two examples to demonstrate how the results of

scaling analysis facilitate our better understanding to the deformation and flow

behaviors of polymer chains.

A very small stress s working on the polymer melt will reveal the elastic

response of the fluid, and the strain

eðtÞ ¼ s � JðtÞ (5.53)
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Fig. 5.6 Double logarithmic

plot of the mean-square

displacements of monomers

versus the time for the scaling

law of a long chain in the bulk
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chains are slower (half-down

indexes) than Rouse chains

due to the tube confinement
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where J(t) is called the time-dependent creep compliance. When t < tt, polymer

chains are trapped in an elastic network of entanglements, and the compliance shows

a plateau as the time increases, which is characteristic for the long-chain melt.

JðtÞ ! J0 (5.54)

where J0 is the steady-state compliance, as demonstrated in Fig. 5.7. The

corresponding plateau modulus,

E0 ¼ 1

J0
(5.55)

and the corresponding equation of state for the transient rubber state is

E0 ¼ ckT

Ne
(5.56)

where c ¼ 1/a3, and a is the size of the monomers. The critical molecular weight of

polystyrene 1.13 � 104 g/mol corresponds to a plateau modulus of 2.24 � 105 Pa,

in agreement with the experimental observations, 2 � 105 Pa (Sperling 2006).

When t > tt, the chain eventually “reptates” out of the tube. Under the stress,

polymer melt can perform the steady-state flow with a permanent deformation, thus

JðtÞ ¼ J0
t

tt
(5.57)

From a Newtonian fluid

s ¼ �
deðtÞ
dt

(5.58)

Then we can obtain the melt viscosity

� ¼ dt

dJðtÞ ¼
tt
J0

¼ E0tt (5.59)

Fig. 5.7 Illustration of the

rubber plateau for the creep

compliance within the time

scale shorter than the

characteristic time of the

reptation chain in the melt

phase at a given temperature
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For the short chains in the melt phase, the whole chain could not relax within the

time scale of the Rouse time, but rather forms a dynamic network to display an

elastic response to the external stress. According to (5.56), we have

E0 ¼ ckT

n
(5.60)

Therefore,

�R � E0tR � 1

n
� n2 ¼ n (5.61)

For the reptation model,

E0 ¼ ckT

ne
(5.62)

Therefore,

�rep � E0tt � n3 (5.63)

The experimental observations on the zero-shear melt viscosity reveal that, for the

chain length below ne (more exactly 2ne), the scaling relation indeed follows the

prediction of the Rouse-chain model, while above ne, it shows an index of 3.4, quite

close to the 3.0 predicted by the reptation-chain model, as demonstrated in Fig. 5.8.

Doi proposed to consider the contour length fluctuations (CLF), which theoretically

corrects the scaling exponent to 3.5 (Doi 1983). The molecular-weight index of the

self-diffusion coefficient can be further corrected into�2.25, close to the experimental

observation �2.3 (Frischknecht and Milner 2000). Recently, Liu et al. reported that

the deviation of the exponent from 3.0 might be attributed to cooperative motion of

multiple chains (Liu et al. 2006). For flexible chains, experimental studies found that

when the molecular weight is higher than a critical value Mr, the scaling exponent

returns to 3.0 (Colby et al. 1987). The tube length is sufficiently long so that its length

fluctuations might not be important anymore.

Presently, the influences of polydispersity and chain branching on the dynamics

of polymers have been analyzed theoretically. The disentanglement along the

reptation of a long chain is accelerated by the surrounding short chains due to the

Fig. 5.8 Illustration of the

scaling relationship between

the zero-shear viscosity and

the molecular weight. Here ne
should be more precise as 2ne
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faster diffusion of the latter. Hence, the local constraint on the tube shape confining

the long chain is released, which is called thermal constraint release (TCR).

Therefore, in a polydisperse system, the diffusion coefficients of long-chain

fractions are highly related to the short-chain fractions, and the polydispersity

affects the chain motion of polymers (Graessley 1982). After the thermal constraint

release, the distance between two neighboring entanglement points along the chain

is increased. Therefore, the corresponding radius of the local tube is enlarged

(Milner and McLeish 1997). Such a situation is often called dynamic tube dilation
(DTD). The DTD model can be applied to the chain dynamics of long-chain-

branching polymers like star-shape polymers. Since the branching point diffuses

relatively slowly, the arm retraction (AR) can be further considered on the basis of
the Rouse-chain model. The characteristic relaxation time of long-chain branches is

extremely long, and the viscosity does not rely on the number of arms, but rather,

exponentially on the length of arms. Once the whole polymer is stretched,

its retraction becomes extremely difficult, which is a phenomenon known as

extensional-hardening (McLeish 2002). The details of theoretical treatments can

be found from the literature mentioned above. More challenges still remain,

regarding the influence of chain rigidity, nano-confinement, heterogeneous

phases and charge interactions on the chain dynamics, which are prevailing in

bio-macromolecules and playing important roles in various living processes.

Question Sets

1. Why do we say that the Rouse-chain model rests on the ideal-chain model?

2. Why does the Zimm chain run faster than the Rouse chain?

3. Why can the reptation-chain model describe the Brownian motions of long-

chain polymers?

4. Why do polymers have a rubber plateau between the glass state and the liquid

state?

5. What are the characteristics of branched-chain motions?
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Chapter 6

Polymer Deformation

6.1 Characteristics of Polymer Deformation

The Brownian motion of a polymer chain for self-diffusion is carried out by the

integration of Brownian motions of monomers. Therefore, the entropic elasticity of

chain conformation in a random coil allows a large-scale deformation, with its extent

subject to the external stress for polymer deformation and flow, and hence exposes

the characteristic feature of a rubber state in a temperature window between the glass

state and the fluid state.

As illustrated in Fig. 6.1, within different temperature regimes, the bulk phase of

non-crystalline linear polymers exhibits different characteristics of deformation as

a mechanical response to a small external stress. Below the glass transition temper-

ature Tg, the solid polymer can resist the external force without any large deforma-

tion. At the temperatures slightly above Tg, the polymer chain can experience a

large-scale deformation, and maintains the deformation temporarily, exhibiting a

rubber-like highly elastic behavior. At even higher temperatures, a rubber-fluid

transition occurs, and the bulk polymer becomes a viscous fluid, characterized by

large permanent deformations of flows under the external force. For most of the

synthetic plastics and fibers, their processing needs to be carried out at the fluid state

to achieve sufficient permanent deformations. The viscous fluid state of polymers is

easily available in the industry, since the rubber-fluid transition temperature for

non-crystalline polymers, or the melting temperature for semi-crystalline polymers,

are around 100 �C, one magnitude lower than 1,000 �C for the processing of steels.

This is also the reason why we give the name “plastics” to a typical sort of

applications of polymer materials.

Small molecules display both glass and fluid states, but not the rubber state. The

rubber state is a unique feature for non-crystalline or semi-crystalline polymers in

the intermediate temperature regime between the glass and the fluid states. With the

decrease of temperature from the fluid state, various modes of polymer motions will

be gradually frozen, corresponding to their different scales of length and time (a

dynamic structure). First, the fluid-rubber transition occurs, which freezes the

W. Hu, Polymer Physics, DOI 10.1007/978-3-7091-0670-9_6,
# Springer-Verlag Wien 2013
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motion of the whole chain via entanglement and hence drives molten polymers into

the rubber state. The ability of polymers to make permanent deformation has been

drastically reduced, and the highly elastic deformation begins. Second, the occur-

rence of the rubber-glass transition freezes the motion of chain segments, driving

the rubbery polymers into the glass state. Consequently, the chain conformation is

unable to make a large-scale elastic deformation. Finally, the cooling freezes

sequentially the motions of chain repeating units and side groups in the secondary
transitions.

The occurrence of various characteristic states of dynamic responses is related

not only to the molar mass, but also to the crystallinity and the degree of cross-

linking. Large molar mass is the prerequisite condition of the rubber state, while

high crystallinity and high degree of cross-linking will suppress the rubber state. As

illustrated in Fig. 6.2, an evident rubber state occurs only for non-crystalline or

semi-crystalline linear polymers with the large enough molar mass. Moreover,

semi-crystalline polymers will reach the fluid state above their melting points.

The polymers with low degree of cross-linking will not be able to enter the fluid

state. The high degree of cross-linking even eliminates the rubber state. Similarly,

the high crystallinity makes polymers directly change from the crystalline solid to

the viscous fluid around their melting points.

Since the rubber state is a characteristic property of the mechanical response of

polymers, the occurrence of such a state can sometimes be used to evidence the

existence of high polymers. We can define the average molar mass between entan-

glement points Me, corresponding to the number of bonds ne. Below Me, the

molecules can be regarded as short-chain polymers, while above Me, the molecules

can be treated as long-chain polymers. As illustrated in Fig. 6.3, Tf and Tg will merge

together in the region of low molar mass. Such a separation of molar mass implies

that an interaction mechanism between polymer chains, similar to the crosslink of

Fig. 6.1 Illustration of the characteristic deformation of non-crystalline linear polymers as a

function of temperature under a small external stress. The characteristic glass, rubber and fluid

states are separated by the glass-rubber transition Tg and the rubber-fluid transition Tf, respectively.
The dashed lines are drawn to guide the eyes
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real rubbers, exists in the rubber state, and the mechanism is sensitive to the molar

mass. Such an interaction mechanism is often defined as the entanglement of polymer
chains, which constitutes a 3D dynamic network to trap the polymer chain. In

common amorphous polymer fluids, the microscopic mechanism of entanglement

is mainly a geometric topological constraint, as illustrated in Fig. 6.4, rather than the

physical entanglement originated from inter-chain attractions, unless strain-induced

crystallization influences the mechanical response of global elasticity upon a large-

scale deformation.

Fetters et al. examined Me for a series of non-crystalline polymers (Fetters et al.

1999) and found that

Me ¼ rRT
E0

¼ n2t Narp3 (6.1)

Fig. 6.3 Illustration of polymer transition temperatures Tm, Tg and Tf as a function of the molar

mass M

Fig. 6.2 Illustration of deformation features of polymers in relation with the molar mass, the

crystallinity and the degree of crosslinking
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Here r is the density of the polymer, and nt is an empirical parameter that reflects

how many interpenetrated chains on average are required for displaying entangle-

ment effects, nt ¼ 21.3 � 7.5 %, Na is the Avogadro constant, and p is the packing
length, which is defined as

p � VðnÞ
R2
gðnÞ

(6.2)

Clearly, p is the ratio of the occupied volume of each chain to its radius of gyration.

Here, n is the number of chain units in each polymer. Using the simple freely-jointed-

chain model with a chain unit holding the length l and the width w, we can obtain

VðnÞ � nlw2 (6.3)

R2
gðnÞ � nl2 (6.4)

Therefore,

p � w2

l
(6.5)

which is actually the ratio of the cross-sectional area of a chain unit to its length. Here

l can be regarded as Kuhn segment length, reflecting the semi-flexibility of polymer

chains; w�2 can be regarded as the packing density of polymer chains, corresponding

to the interaction strength between polymer chains. Therefore, the value of p is an

integrated result of two intrinsic features for the basic chemical structures of polymer

chains. Before the chain length reaches the entanglement length ne, both the Kuhn

segment length and the packing density of short chains increase with the increase of

chain lengths, while the value of p will gradually decay to a constant. After the chain
length arrives at ne, the limit value of p reaches between 2 and 10 Å. The entangle-

ment length Me ~ p3, indicating that the entanglement effect is raised by the fixed

amount of interpenetrated chains nt (about 21 chains) in a characteristic volume p3 for
the molten chains. Therefore, such a scaling relationship reveals the topological

nature of chain entanglement (Lin 1987). In concentrated solutions, when the volume

Fig. 6.4 Illustration of

physical entanglement and

topological entanglement of

polymer chains
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fraction of polymers is lower, the interpenetrated chains in the unit volume become

fewer, hence a larger p is required to accommodate 21 interpenetrated chains,

resulting in a larger value of Me. The plateau modulus of polymer melt is

E0 � M�1
e � p�3 � ðlw�2Þ3 (6.6)

This relationship implies that when polymer chains are more rigid, or the

attractive interactions between chains are stronger, the rubbery plateau modulus

of their bulk phase should be larger.

Ueberreiter suggested to treat the rubber state of polymers as a liquid containing

crosslinking structures, as illustrated in Fig. 6.5 (Ueberreiter 1943). This idea

implies that the rubber-fluid transition of linear polymers might be an extrapolation

of glass transition temperatures from small molecules, both originated from inter-

molecular interactions, although the entanglement effect is an intermolecular inter-

action unique to long-chain polymers. Meanwhile, the glass-rubber transition

temperatures of linear polymers are not so sensitive to the molar mass, implying

its origin from intramolecular interactions. Therefore, this analogue might shade

light to the molecular nature of glass transition of polymers. The rubber-glass

transition of polymers involves the restrictions of chain mobility from both the

intramolecular semi-flexibility and the intermolecular interactions, with the length

scale much smaller than the chain entanglement, thus it happens in the temperature

region much lower than the rubber-fluid transition temperatures.

6.2 Relaxation of Polymer Deformation

6.2.1 Relaxation Via Molecular Motions

Large-scale deformation of polymers is realized by the integration of monomer

motions that is driven by the external forces. After the external force has been

removed, part of the deformation recovers quickly, while the rest may remain

Fig. 6.5 Illustration of

structured liquid proposed by

Ueberreiter, reflecting two

kinds of glass transitions

separately for small

molecules and for polymers
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permanent. However, both the generation and the recovery of deformation need

certain time periods to reach their stationary states. The mobility of polymers

determines the lengths of these periods.

If a small deformation Dx0 is generated on a piece of polymer materials by

employing a small external force for a time period, after the force has been

removed, a spontaneous recovery process of deformation can be regarded as the
relaxation process. The most common style of such a relaxation process is the

Debye relaxation process (Debye 1913), as demonstrated in Fig. 6.6, which exhibits

an exponential decay of deformation with time t, as given by

Dx ¼ Dx0 exp ð � t

t
Þ (6.7)

Here, t is the relaxation time, which reflects the mobility of polymers, like in the

previous chapter.

In practice, there exist many non-Debye relaxation processes, which can be

described by a stretched exponential function, namely the Kohlrausch-Williams-

Watts (KWW) equation (Kohlrausch 1854; Williams and Watts 1970), as given by

Dx ¼ Dx0 exp ð � t

t
Þb (6.8)

where b is the stretching exponent. For relaxation processes of polymer materials

near glass transition temperatures, we normally have b � 0.5.

Besides the relaxation time, the steady-state shear viscosity � is often used to

characterize the mobility of polymers in the fluid phase as well. The change of shear

viscosity with temperature reflects the viscous feature of the fluid. The most

common fluids appear as the Arrhenius type (Arrhenius 1889),

� / expðDE
kT

Þ (6.9)

where DE is the activation energy of relaxation.

Fig. 6.6 Illustration of the

exponential decay of

deformation Dx with time t
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The non-Arrhenius-type fluids widely exist. The typical cases include the Vogel-

Fulcher-Tamman (VFT) type (Vogel 1921; Fulcher 1925; Tammann and Hesse 1926),

� / expð Ta
T � TV

Þ (6.10)

where Ta and Tv are the activation temperature and the Vogel temperature, respec-

tively. Often, the temperature dependence of the viscosity can be expressed

according to the mode-coupling theory (MCT) (Götze 2009),

� / ðT � TcÞ�g
(6.11)

where g is a constant, as illustrated in Fig. 6.7.

Angell et al. proposed a demarcation of fluid characteristics between the strong

liquid and the fragile liquid (Angell et al. 1985; Angell 1985). Glass-formers that

display properties as illustrated by Curve 1 in Fig. 6.7 are often regarded as the
strong liquids, which exhibit b ~ 1.0. For example, silicone oxide (SiO2) and

germanic oxide (GeO2) are typical strong liquids that have a strong covalently

bonded network structure and often exhibit Debye-like relaxation. In contrast,

glass-formers that display properties as illustrated by Curve 2 are often called the
fragile liquids, which exhibit b ¼ 0.3 ~ 0.5. A typical example of those including

o-terphenyl contains a weak-interaction (van der Waals force) network structure.

Polymer fluids lie between these two extremes, and behave slightly more like the

fragile liquids. Often, the ratio Tv/Tg provides a rough estimation on the fragility

of the given liquid. More straightforward, the fragility parameter characterizes

Fig. 6.7 Illustration of the Arrhenius type (curve 1), Type A and the non-Arrhenius type (curve 2,
including VFT and MCT types) for the change of viscosity with temperature. In a general

experience, especially for small molecules, glass transition occurs when the viscosity reaches as

high as 1013 Pa·s
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a deviation from the linear temperature dependence (Arrhenius type) of logarithmic

relaxation time (or viscosity) at the glass transition temperature, as

m � dlog10t
dðTg=TÞ

���� T ¼ Tg
(6.12)

The fragility parameter is normally large for liquids that exhibit the non-

Arrhenius-type temperature dependence of the relaxation time. One extreme exam-

ple is glycerin. Its fragility parameter is as high as 200 (Boehmer et al. 1993;

Richert and Angell 1998).

6.2.2 Boltzmann Superposition Principle

The experiment we introduced at the beginning of the previous subsection is also

called the creep experiment. A small stress of s0 is imposed on a solid sample for a

time period of t0 at a constant temperature; after the stop of stress, the strain of e
changing with the time period of t monitors the relaxation curve. There are four

typical responses separately corresponding to viscous, elastic, anelastic and visco-

elastic responses, as illustrated in Fig. 6.8. The creep curve of polymer

viscoelasticity exhibits both instant and retarded elastic responses upon imposing

and removal of the stress, and eventually reaches the permanent deformation.

We define the creep compliance as given by

JðtÞ � eðtÞ
s0

(6.13)

Fig. 6.8 Illustration of four

typical strain responses upon

imposing the stress for a

time period of t0. 1 The

viscous response, 2 the elastic
response, 3 the

anelastic response, 4 the

viscoelastic response
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If we stepwise increase the stresses, as demonstrated in Fig. 6.9, the strain can be

estimated from a linear summation of the individual responses to the stresses,

eðtÞ ¼ s1Jðt� t0Þ þ s2Jðt� t1Þ þ s3Jðt� t2Þ þ :::::: (6.14)

This behavior follows the so-called Boltzmann superposition principle
(Boltzmann 1874).

The ideal elasticity can be modeled as a Hookean spring, as demonstrated in

Fig. 6.10,

s ¼ Ee (6.15)

While the ideal viscous behavior can be modeled as a Newtonian dashpot, as

also demonstrated in Fig. 6.10,

s ¼ �
de
dt

(6.16)

Fig. 6.9 Illustration of Boltzmann superposition principle for the strain response linearly

integrated with the stepwise increase of stresses

Fig. 6.10 Illustration of a series connection of the Maxwell model and the Kelvin model for the

four-element model to describe the viscoelastic creep behaviors of polymers
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The Maxwell model is a series connection of the two models above, representing

the linear viscoelasticity (Maxwell 1867), as given by

de
dt

¼ 1

E

ds
dt

þ s
�

(6.17)

Upon instantaneous application of a constant strain, the stress will gradually

relax down over time. This process is called the stress-relaxation experiment. From

the condition de/dt ¼ 0, the Maxwell model solves the stress decaying with an

exponential function, as given by

sðtÞ ¼ s0 expð� t

t
Þ (6.18)

where the characteristic relaxation time is defined as

t ¼ �

E
(6.19)

The Kelvin model (also called as the Voigt model or the Kelvin-Voigt model) is

a parallel connection of the spring and dashpot models (Kelvin, L. (Thompson, W.)

1875; Voigt 1892), representing the anealstic behavior, as given by

s ¼ �
de
dt

þ Ee (6.20)

Under the condition of a constant stress, the strain slowly increases over time,

e ¼ s
E
½1� expð� t

t
Þ� (6.21)

Similarly, the characteristic retardation time is defined as t ¼ �/E.
A series connection of the Maxwell and Kelvin models makes the four-element

model, known as the Burger’s model (Burgers 1935), which can describe the

viscoelastic creep behaviors of polymers, as given by

e ¼ s
E
þ s

�
tþ s

E
½1� exp ð� t

t
Þ� (6.22)

As illustrated in Fig. 6.10, a ! b represents the instant elastic response, b ! c

represents the anelastic response and permanent deformation made by the viscous

fluid, c ! d represents the instant elastic recovery, d ! e represents the gradual

recovery from the anelastic deformation in the viscous fluid, and the height of

e represents the permanent deformation of the viscous fluid that could not be

recovered. Here, the two springs are not necessary to be identical, and neither are

the two dashpots.
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6.2.3 Time–Temperature Superposition Principle

In the stress-relaxation experiment, we can often define the time-dependent

modulus

EðtÞ � sðtÞ
e0

(6.23)

This modulus is determined not only by time, but also by the temperature at which

the experiment is conducted. As illustrated in Fig. 6.11, the effect of increasing

temperature on the modulus of the polymer is equivalent to that of extending the

time scale at a given temperature. Examples of such widely exist in our daily life.

During the landing of an airplane, the mechanical responses experienced by the tire in

a very short instant is equivalent to that of the tires at a lower temperature over a

longer time. For the tires tomaintain a rubbery-like response and to absorb the impact,

a very low glass transition temperature is required. If a small piece of stone skips

across the water surface with a high-enough speed from a small-enough angle (about

20 degree in optimum), it will feel like hitting a solid and bounces back several times;

if with a low-enough speed and a high-enough angle, it will feel like dropping into a

liquid and incurs weak resistance. With an improper posture of the body, diving from

the high board is likely to cause a severe hurt by hitting the water surface. The above

time-temperature equivalence of effects is often called the time-temperature super-
position principle (Tobolsky and Andrews 1945). Therefore, there exists a master
curve, displaying the mechanical responses of polymers, i.e. the sequential occur-

rence of the glass, rubber and fluid states upon temperature rise or time extension.

There is no clear criterion to separate the liquid and the solid states, because it

matters with the time scale of our observations.When the imposing time of the stress

is shorter than the relaxation time of the liquid, the liquid will mainly show an elastic

response, exhibiting the feature of a solid. On the contrary, when the imposing time

of the stress is longer than the relaxation time of the solid, the solid will experience a

Fig. 6.11 Illustration of time-temperature superposition principle for the stress relaxation of

polymers. The right-hand-side master curve at a constant temperature is obtained by the parallel

shift of the left-hand-side curves at various temperatures. The shift factor used to construct the

master curve follows the WLF equation
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viscous response with permanent deformation, exhibiting the feature of a liquid. In

ancient Greek, Heraclitus (540–475 B.C.) held the philosophical view that “every-

thing flows”. In an Old Testament scripture (the Book of Judges Chap. 5, verse 5),

the prophetess Deborah sang: “The mountains flow before the Lord”, provided that

God’s observation time could be infinitely long.

When the solid feature dominates the mechanical response of a shear deforma-

tion, the shear stress s is proportional to the shear strain g, and the proportionality

coefficient is the shear modulus E. On the other hand, when the liquid feature

dominates the response, the shear stress s is proportional to the shear rate g0, the
proportionality coefficient is the shear viscosity �. Maxwell equation of linear

viscoelasticity can be applied to describe the continuous switching between the

solid and the liquid (Maxwell 1867),

g0 ¼ s
�
þ s0

E
(6.24)

When a constant stress is imposed (its time derivative s0 ¼ 0), this equation

describes the ideal Newtonian fluid under steady shear flow. When � ! 1, this

equation describes the ideal elastic solid. The instantaneous response of the solid to

an imposed stress is elastic, and the shear modulus E corresponds to the modulus

E1 at high frequency. Consequently, the shear stress will relax down to zero

exponentially. Under the condition of g0 ¼ 0, the exponential function (6.18) can

be solved from (6.24), which defines the characteristic relaxation time as

t ¼ �

E1
or t ¼ �J1 (6.25)

When E1 holds in constant, for instance, the glass modulus, or the rubbery

modulus exhibiting linear viscoelasticity,

t / � (6.26)

we obtain the shift factor

a1 ¼ t2
t1
¼ �2

�1
(6.27)

Here t1 and t2 represent different time instants, and a1 follows the Williams-

Landel-Ferry (WLF) empirical equation for polymers,

log a1 ¼ �C1ðT � TsÞ
C2 þ T � Ts

(6.28)

where Ts is the reference temperature, and C1, C2 are two constants (Williams

et al. 1955).
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The scenario above was called the thermorheological simplicity, which was first

conveyed by Ferry in 1950 under the protocol of linear viscoelasticity (Ferry 1950).

However, in the short-time (or high-frequency) region, the viscoelastic response of

molten polymers is much related to the energetic interactions between chain units;

while in the long-time (or low-frequency) region, the response is much related to

the entropy gain of chain conformation. Therefore, the temperature dependence of

the relaxation time in the short-time region is generally stronger than that in the

long-time region, making the shifting curves deviated from the time-temperature

superposition principle. Such a scenario is also called the thermorheological com-

plexity (Plazek et al. 1995), which allows the identification of different relaxation

mechanisms, especially in a picture of spatial dynamic heterogeneity for glass-

forming polymers (Ediger 2000; Lin 2011).

6.2.4 Dynamic Mechanical Analysis

Since the mechanical response of materials is related to the time or frequency of the

imposing stress, one can measure the hierarchical characteristic relaxation times of

the materials via continuous scan of imposing frequency. Often, the solid materials

are characterized by the dynamic mechanical spectroscopy or dynamic viscoelastic

spectroscopy, while the liquid materials are characterized by the rheometer. Nowa-

days, advanced instruments can measure the continuous change from liquid to solid.

In a typical case of dynamic mechanical analysis, a small stress oscillates

periodically in a sinusoidal mode with amplitude s and frequency o, and the

small strain e follows the modulation with a certain phase lag d. The sinusoidal

stress is the imposed stimulation, and in a complex form,

s	 ¼ sexpðiotÞ (6.29)

The sinusoidal strain is the detected response with a phase lag, as

e	 ¼ eexpðiot� idÞ (6.30)

Accordingly, the complex modulus can be obtained as

E	 ¼ s	

e	
¼ s

e
expðidÞ ¼ Eðcos dþ i sin dÞ ¼ E0 þ iE00 (6.31)

where E’ keeps pace with the stimulation, as the storage modulus, and E"misses the

steps with the stimulation, as the loss modulus. Their ratio is defined as the loss
factor, which is the tangent of the phase lag d,

E00

E0 ¼ tan d (6.32)
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The characteristic relaxation time t of the mobile units corresponds to a character-

istic frequency 1/t. If the external frequency o >> 1/t, the motion unit cannot catch

up the stimulation, no loss, E" � 0; ifo << 1/t, it completely synchronizes with the

stimulation, no loss either, E" � 0; while if o � 1/t, the mobile unit wants to catch

but with difficulty (makes resonance), loss happens. In the last case, E" exhibits a

maximum,which reflects a strong internal dissipation, as shown in Fig. 6.12. Onemay

measure the dynamicmechanical spectroscopy under various temperatures to obtain a

series of peaks for hierarchical internal dissipationwith characteristic relaxation times,

according to the time-temperature superposition principle. They reflect the hierar-

chical features of molecular motions at various time scales. For non-crystalline bulk

polymers, the a relaxation conventionally corresponds to the glass transition, and the

other relaxation peaks correspond to the secondary relaxation modes that freeze

sequentially the chemical repeat units and the side groups. For crystalline polymers,

the a relaxation conventionally corresponds to block-slip motions in the lamellar

crystals (Takayanagi 1978; Men and Strobl 2002). For PE and PEO, the a relaxation

splits into two, with additional one corresponding to the chain-slip motions in the

crystalline region (Schmidt-Rohr and Spiess 1991; Men et al. 2003a).

The dielectric relaxation spectroscopy can effectively measure the relaxation

processes of dipoles in the polymers. Like the dynamic mechanical spectroscopy,

the sinusoidal electric field is the imposing stimulation, and again in a complex form,

E	 ¼ E expðiotÞ (6.33)

and the polarizability is the detected response, as

D	 ¼ D expðiot� idÞ (6.34)

Fig. 6.12 Illustration of (a) the storage modulus, the loss modulus and the loss factor as a function

of frequency across the glass transition temperature of amorphous polymers; (b) the loss factor as a

function of temperature according to the time-temperature superposition principle. Below the

a peak for glass transition, there are secondary relaxation peaks
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Thus the complex dielectric constant can be obtained as

e	 ¼ D	

E	 ¼ D

E
expð�idÞ ¼ eðcos d� i sin dÞ ¼ e0 � ie00 (6.35)

Correspondingly, e0 is the storage dielectric constant, and e00 is the loss dielectric
constant. The dielectric loss factor is

tan d ¼ e00

e0
(6.36)

The re-orientation of the dipoles on the typical motion of the chain unit gives rise

to the peak of internal dissipation as its response to the external electric field.

Therefore, one obtains a characteristic relaxation spectrum as a function of either

the frequency or the temperature.

In the whole frequency range, the dynamic mechanical relaxation spectroscopy

for typical non-crystalline high-molecular-weight linear polymers is illustrated in

Fig. 6.13. The storage moduli show a rubbery plateau in the intermediate

frequencies or temperatures, while the loss moduli exhibit wide peaks separately

around the glass transition region and the fluid transition region. In the high

frequency (or low temperature) region, non-crystalline polymers are in the glass

state, exhibiting the elastic solid. Therefore, the storage modulus is higher than the

loss modulus. In the intermediate frequency (or temperature) region, there occurs

the rubber state, and the storage modulus is still higher than the loss modulus. In the

low frequency (or high temperature) region, polymers enter the fluid state, and

the loss modulus becomes higher than the storage modulus. In this region, since the

zero-shear viscosity

Fig. 6.13 Illustration of the whole-frequency spectroscopy for the dynamic mechanical relaxation

of the typical non-crystalline high-molecular-weight linear polymers
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�0 ¼ lim
e!0

E00ðoÞ
o

(6.37)

and the recoverable shear compliance

J0 ¼ lim
e!0

E0ðoÞ
o2�20

(6.38)

remain constant, both the storage and the loss moduli exhibit the scaling

relationships with respect to the frequency as shown in Fig. 6.13. The characteristic

time required for imposing stress to make a flow is

t0 ¼ �0 J0 (6.39)

For a typical solid that exhibits linear viscoelasticity, theMaxwell model applies as

EðtÞ ¼ E1 expð� t

t
Þ (6.40)

where E1 represents the elastic modulus at the infinitely high frequency. From

Fourier transform, one can obtain

EðoÞ ¼ �io
ð1
0

EðtÞeiotdt ¼ � iot
1� iot

E1 (6.41)

or

EðoÞ ¼ E0ðoÞ � iE00ðoÞ (6.42)

where the real part and the imaginary part are

E0ðoÞ ¼ o2t2

1þ o2t2
E1 (6.43)

E00ðoÞ ¼ ot
1þ o2t2

E1 (6.44)

respectively. For a typical viscous liquid, the real part and the imaginary part are

�0 ¼ E00ðoÞ=o (6.45)

�00 ¼ E0ðoÞ=o (6.46)
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respectively. Therefore, the complex viscosity is

�	j j ¼ ð�02 þ �002Þ1=2 (6.47)

Under high shear rates, the viscosity exhibits the empirical Cox-Merx rule

(Cox and Merz 1958) as

�	ðoÞj j � �ðg0Þ (6.48)

This empirical rule is practically useful, which allows an estimation of viscosity

in the practical processing with high shear rates, by using the high-frequency

rheometric study in the laboratory. The high shear rates of processing are quite

difficult to be realized directly in the laboratory.

6.3 Glass Transition and Fluid Transition

6.3.1 Glass Transition Phenomena

Glass transition widely exists in various condensed materials, such as the network

glass SiO2 þ Na2O formed by silicon oxide and sodium oxide, linear and branched

polymers like polystyrene, zinc chloride ZnCl2, the mixture KNO3 þ Ca(NO3)2
with potassium nitrate and calcium nitrate, HCl aqueous solution, metal aluminum,

2-methyl pentane, colloidal clusters due to volume exclusion or attractions, liquid

crystal rigid-rod molecules in orientational order or disorder, etc. Almost all the

materials can perform glass transition if the cooling rates are large enough to

suppress the crystallization.

The glass state is readily accessible for polymers by the following two reasons.

1. High content of irregular chain sequences suppresses the melting point mono-

tonically down to the glass transition temperature, like atactic polystyrene (aPS)

and atactic poly(methyl methacrylate) (PMMA). Therefore, no matter how large

the cooling rate is, one always gets the glass state of the polymer. Such kind of

polymers are called non-crystalline polymers;

2. The rigid-chain polymers crystallize very slowly. Therefore, they are very able

to vitrify into the glass state, like polycarbonate (PC) and PET.

In the semi-crystalline polymer solid, most of polymers trespass the crystalline

interfaces, and a restriction occurs to the mobility of non-crystalline part of

polymers near the crystalline-amorphous interfaces. The restricted portion of

polymers displays glass transition at the temperature higher than those non-

crystalline free polymers. Wunderlich named this non-crystalline part of polymer

near the crystalline surfaces as the rigid amorphous polymer (Wunderlich 2003).

Treating semi-crystalline polymers as formed by three parts (flexible amorphous far
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from the interfaces, rigid amorphous near the interfaces, and the crystalline) will

facilitate a better understanding to their mechanical properties.

Glass transition phenomenon depends on the methods of measurement.

1. Using dilatometer and thermal mechanical analysis (TMA), one can measure the

volume of polymers as a function of temperature, as illustrated in Fig. 6.14. The

step change in the slopes of the volume-temperature curve, i.e., the coefficients of

thermal expansion, determines the glass transition temperature of the polymer.

a ¼ 1

V

 dV
dT

Pj (6.49)

Below the glass transition temperature, the molecular motions are frozen.

Therefore, the corresponding volume dependence on temperature becomes less

dramatically, compared to that in the liquid state.

2. Using differential scanning calorimetry (DSC), one can measure the heat flow

rate curve of polymer solid changing with the temperatures, as demonstrated in

Fig. 6.15a. Heating (cooling) rates are constant,

q ¼ dT

dt
(6.50)

Therefore, the heat capacity

Cp ¼ dH

dT
¼ dH

dt

 1
q

(6.51)

The heat capacity exhibits a step change at the glass transition temperature.

Below the glass transition temperature, the motion and re-orientation of

molecules are restricted, appearing as the depression of the heat capacity.

With the decrease of heating (or cooling) rates, the glass transition temperature

decreases. This behavior reflects the dynamic nature of glass transition, because

the heating (or cooling) rates determine how much time available to relax any

Fig. 6.14 Illustration of (a) polymer volume and (b) thermal expansion coefficient as a function

of temperature, displaying the glass transition phenomenon
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local non-equilibrium states of polymers towards the equilibrium in the thermal

fluctuations of a liquid. If |qA| > |qB|, upon cooling, the liquid cooled with the rate
qAwill leave the equilibrium states earlier than the liquid cooled with the rate qB,
so it could not get enough time to relax; upon heating, the glass obtained with the

cooling rate qA will spontaneously relax back into the equilibrium states before

reaching the glass transition temperature. Therefore, the cooling and heating

curves display clear hysteresis, as illustrated in Fig. 6.15b. Such a relaxation

behavior below Tg is called the physical aging of glassy polymer solid.

3. The a relaxation peak in dynamic mechanical spectroscopy and dielectric

relaxation spectroscopy of non-crystalline polymers also reflect the glass transi-

tion phenomenon;

4. Solid-state NMR can also measure the glass transition phenomenon according to

the different signals of solid and liquid;

5. Glass transition phenomena can be influenced by multiple conditions, such as

the transition temperature, the pressure, the frequency, the composition of

copolymers, the mixing concentration, and even the molecular weight etc.

6.3.2 Glass Transition Theories

So far, theoretical interpretations on glass transition are still extremely controversial

in the research field. Some people intend to relate the glass transition phenomenon to

the well-investigated phase transitions. If one looks at the heat capacity Cp changing

with temperature T, for the equilibrium states under constant pressures, dH ¼ TdS,
Cp ¼ dH/dT ¼ TdS/dT, one obtains

DS ¼
ð
Cp

T
dT (6.52)

Fig. 6.15 Illustration of (a) the heat-flow rate curve changing with temperatures to reflect the

glass transition phenomenon; (b) the hysteresis of volume or enthalpy
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As illustrated in Fig. 6.16a, melting transition occurs at the high-temperature

region, and below the melting point, the entropy difference between the

supercooled liquid and the crystal is

DS ¼ Sl � Sc ¼ DSm þ
ðT
Tm

CpðlÞ � CpðcÞ
T

dT (6.53)

Melting is normally driven by an entropy gain, then DSm > 0. With the decrease

of temperatures from Tm, the integral at the right-hand side of (6.53) decays

gradually from zero to �DSm, as demonstrated in Fig. 6.16b. However, a linear

extrapolation to DS ¼ 0 reaches a finite temperature rather than zero absolute

temperature, which can be defined as Ts. This result implies that below Ts, Sl < SC.
Apparently, the amorphous liquid state could not be more ordered than the crystal-

line solid state, which is against the third law of thermodynamics. Early in 1931,

Simon pointed out this problem (Simon 1931). In 1948, Kauzmann gave a detailed

description, and proposed that there should exist a phase transition such as crystal-

lization before extrapolation to Ts to avoid this disaster (Kauzmann 1948). There-

fore, this scenario is also called the Kauzmann paradox.
In 1956, Flory introduced the energy parameter Ec of the chain semi-flexibility into

the lattice model of polymer chains, to explain the spontaneous crystallization behav-

ior of polymer chains (Flory 1956). He calculated the total numberW with combina-

torial methods from the conformational statistics of lattice polymers, and found that

when the volume fraction f2 of polymers approaches one, the disorder parameter f
decreases with temperature, and soon there occurs ln W < 0 (i.e. W < 1) (see the

definition in (8.55)). This result was named as “entropy catastrophe”. Gibbs thought
that the result corresponded exactly to the situation described by the Kauzmann

paradox, and defined T2 at the condition of ln W ¼ 0. When T < T2, W ¼ 1, and

the system will be vitrified with the disordered state at T2 (Gibbs 1956). Gibbs and
DiMarzio further applied Huggins approximation to calculate T2, and proved that at

T2, the system entropy continues but the heat capacity discontinues, appearing as a

typical second-order thermodynamic phase transition (Gibbs and DiMarzio 1958).

Fig. 6.16 Illustration of (a) heat capacity changes and (b) the entropy differences DS between the
liquid and the solid changing with temperature T
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However, the conformation statistics in Flory’s treatment gives the conformational

free energy, rather than the conformational entropy adapted in the Gibbs-DiMarzio

theory. In addition,Wwas calculated with respect to the fully ordered state; therefore,

ln W ¼ 0 simply implies the return to the fully ordered state, rather than frozen in a

disordered state. Furthermore, Ec reflects the static semi-flexibility, while the glass

transition should be related with the dynamic semi-flexibility of polymer chains.

Therefore, fundamental assumptions of the Gibbs-DiMarzio thermodynamic theory

are misleading.

A more proper theoretical consideration to interpret glass transition starts from the

dynamic point of view. Fox and Flory supposed that the motion of polymer chains is

realized via chain monomers entering the void sites of free volume, and the free

volume contains a relatively large thermal expansion coefficient above the glass

transition temperature; and thus they explained phenomenologically the slope change

of the volume-temperature curve at Tg (Flory and Fox 1951). The free volume is

Vf ¼ <V>� V0 (6.54)

where <V> is the average occupied volume of molecules in the liquid, V0 is the

van der Waals volume of molecules. When T � Tg, the free volume will be kept

as constant as the free volume of the glass state Vg, and polymers are in the glass

state as (Fig. 6.17)

Vf ¼ Vg (6.55)

When T > Tg, with respect to Tg, one has

Vf ¼ Vg þ ðT � TgÞ 
 ðdV
dT

� dV0

dT
Þ (6.56)

Around Tg, since Vf << V, approximately one has V � V0. From the thermal

expansion coefficient (6.49), one obtains

a0 ¼ 1

V0


 dV0

dT
Pj (6.57)

Therefore, the expansion coefficient of the free volume

af � 1

V

 ðdV
dT

� dV0

dT
Þ Pj (6.58)

Taking into the expression for Vf, one defines the fraction of free volume

f � Vf

V
(6.59)

fg � Vfg

V
(6.60)
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and obtains

f ðT>TgÞ ¼ fg þ ðT � TgÞaf (6.61)

The free volume is related to the polymer viscosity � according to Doolittle

empirical equation (Doolittle 1951), as given by

� ¼ A expðBV0

Vf
Þ � A expðB

f
Þ (6.62)

where A and B are constants, B ¼ 0.5 � 1. With respect to Tg,

ln½ �ðTÞ
�ðTgÞ� ¼ Bð1

f
� 1

fg
Þ ¼ B½ 1

fg þ ðT � TgÞaf �
1

fg
� (6.63)

Merging with the right-hand two terms, one obtains

log½ �ðTÞ
�ðTgÞ� ¼

�B

2:303fg

 T � Tg
fg
af

þ T � Tg

(6.64)

In another more general form,

log½ �ðTÞ
�ðTgÞ� ¼ �C1 
 T � Tg

C2 þ T � Tg
(6.65)

This is the well-known WLF equation. In the temperature range from Tg to

Tg þ 100 �C, most polymers obey the WLF equation. The averaged constants

C1 ¼ 17.44 and C2 ¼ 51.6. Normally B � 1, one may obtain fg ¼ 0.025.

fg appears to be independent of the molecular structures, thus the glass transition

is also referred as an equal-free-volume transition verified by the experiments. It

can be proved that WLF equation is actually a reflection of VFT-type liquids.

Fig. 6.17 Illustration of the

separation of polymer

volume-temperature curve

into the van der Waals

volume and the free volume
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The traditional dynamic theories treat the molecular motion as a relaxation process

reflected as a characteristic relaxation time t. The decrease in temperature causes the

increase of the relaxation time. For the Arrhenius-type liquids, one obtains

t � exp ð C
kT

Þ (6.66)

where C is the potential energy barrier for monomer motions (Goldstein 1969). For

fragile liquids, C changes with temperature, while for strong liquids,C remains rather

constant. If the cooling rate q is constant, the time interval for each step of the

temperature scan is |q|�1. When |dt/dT| < |q|�1, the fluctuations of the system can be

relaxed in time, and local regions can reach equilibrium. With the decrease of

temperatures, |dt/dT| increases. When |dt/dT| > |q|�1, the fluctuations of the system

are hardly relaxed in time, and the local regions stay in non-equilibrium states. The

transition from equilibrium to non-equilibrium states can be regarded as the glass

transition. Staying in the non-equilibrium states, the molecular motions cannot be

relaxed, as in the frozen states. This rationale can explain the heating/cooling rate

dependence of Tg. When |qA| > |qB|, one often observes TgA > TgB. This is because
the decrease of critical relaxation time corresponds to higher Tg, empirically one has,

d ln qj j
d
1

Tg

¼ �Dh
R

(6.67)

where R is the gas constant, Dh is the relaxation enthalpy. This implies that when

q ! 0, one should get Tg ! 0, i.e. no thermodynamic transition at the low-

temperature region.

Adams and Gibbs regardedC in (6.66) as the ratio of the free energy barrier for the

cooperative motion of each molecule to the total configuration entropy of cooperative

rearrangement (Adams and Gibbs 1965). This treatment facilitates the interpretation

to the chemical-structure dependence of the glass transition property, for instance,

evidencing the definition above in the Gibbs-DiMarzio theory

T2 ¼ Tg � 55� 10% (6.68)

According to WLF equation, when T ¼ Tg�51.6 K, � ! 1. DiMarzio and

Yang further proposed that C includes the configuration entropy of Helmholtz free

energy (DiMarzio and Yang 1997).

In the equilibrium liquid phase, the states of molecules can switch into each

other along any thermodynamic route in the phase space. Such a property is called

the ergodicity. The frozen glass state can be regarded as the situation of non-

ergodicity. Such a symmetry break can be theoretically treated by employing the

mode-coupling theory (Götze and Sjögren 1992), which derives the critical transi-

tion point close to

Tc � 1:2Tg (6.69)
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All those theories above consider the homogeneous freezing process of glass

transition in the liquid. In fact, fluctuations generate nano-scale heterogeneity in the

dynamic distribution of molecules, which contains the fast-moving liquid phase and

the slow-moving solid phase. There might be a critical temperature for the equiva-

lence in free energy between the solid phase and the liquid phase. Below this

temperature, there occurs first-order liquid–solid phase transition; while above

this temperature, there exists the inhomogeneous fluctuation. With the decrease

of temperature, the solid phase generated by dynamic fluctuations becomes large

enough to resist the load of the external stress and could not relax down in time,

then comes the glass transition (Fischer et al. 2002; Tanaka et al. 2010).

6.3.3 Chemical-Structure Dependence of Glass Transition

The factors of chemical structures that are related to polymer glass transition

behaviors can be classified into two categories, separately corresponding to the

intrinsic and extrinsic levels described in Chap. 2.

The first category is the dominant factor for the glass transition temperatures:

1. When polymer chains are more rigid, the values of Tg are higher;
2. When inter-chain interactions are stronger, the values of Tg are higher.

So far, how to make a feasible and unified interpretation to the structural

dependence of glass transition temperatures above is still a big challenge.

The second category contains the subsidiary factor for the glass transition

temperatures:

1. Molecular weight. In the high molar mass region, the glass transition appears

insensitive to the molecular weight of polymers, as illustrated in Fig. 6.3. In the

low molar mass region, the chain ends contain high mobility; then there are the

excess free volume y. According to the equivalence phenomenon of free volume,

one obtains

af ½Tgð1Þ � Tg� ¼ 2ryNa

MN

(6.70)

where Na is the Avogadro constant, r is the density, MN is the number-average

molecular weight. Therefore,

Tg ¼ Tgð1Þ � K

MN
(6.71)

where K is a polymer-specific constant. This equation is known as Flory-Fox

equation (Fox and Flory 1950).
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2. Diluent or plasticizer. The mixture of polymer (labeled with the subscript p)

and diluent (labeled with the subscript d) can be regarded as a polymer solution

system. The expansion coefficient of free volume is af. Assuming the

contributions of each component in the system to the free volume are propor-

tional to their volume fraction f, one can obtain according to the equivalence

phenomenon of free volume

afpðTg � TgpÞfp þ afdðTg � TgdÞfd ¼ 0 (6.72)

Two contributions compensate to each other, and fp þ fd ¼ 1; therefore

Tg ¼
afpfpTgp þ afdfdTgd

afpfp þ afdfd

(6.73)

If afp � afd, (6.73) can be simplified as

Tg ¼ fpTgp þ fdTgd (6.74)

Replacing the volume fractions above with weight fractions, one obtains the

so-called Wood Equation, which is often used for random copolymer systems

(Wood 1958).

If Tgpafp � Tgdafd, (6.73) can be simplified as

1

Tg
¼ fp

Tgp
þ fd

Tgd
(6.75)

Replacing the abovevolume fractionswithweight fractions, one obtains the so-called

Fox Equation, which is often used for polymer-diluent mixtures (Fox 1956).

3. Random copolymer. Considering the mass fractionsWA andWB proportional to

the contributions of free volume, according to the equivalence phenomenon of

free volume,

afAðTg � TgAÞWA þ afBðTg � TgBÞWB ¼ 0 (6.76)

Assuming K ¼ afB/afA,

Tg ¼ TgA þ ðKTgB � TgAÞWB

1þ ðK � 1ÞWB
(6.77)

This equation is known as Gordon-Taylor equation (Gordon and Taylor 1952).

4. Cross-linking. The cross-links restrict the mobility of network chains. Thus,

Tg rises with the crosslink density r (crosslink points per gram) (Ueberreiter and

Kanig 1950; Fox and Loshaek 1955),
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Tgx ¼ TgðlinearÞ þ Kxr (6.78)

or

Tgx ¼ TgðlinearÞ þ Kx

Mc
(6.79)

Here Kx is constant, and Mc is the average molecular weight of the network

chains.

5. Other external factors like heating rates, tension, pressure, frequency, etc.

6.3.4 Fluid Transition

The rubber-fluid transition is associated with the change in the global mobility of

molecules. This transition is practically important to the molding of polymer

materials, for it is a prerequisite condition of permanent deformation. In

1979–1981, Boyer suggested that Tf corresponds to a dynamic transition called as

Tll (a liquid-liquid transition above Tg), reflecting the frozen and de-frozen of the

whole polymer chain (Boyer 1979, 1980, 1981). From the molecular weight

dependence curve illustrated in Fig. 6.3, one may see that Tf appears as an

extrapolation from glass transition temperatures of small molecules. The properties

of Tll are quite similar to Tg:

1. Tll appears as general to non-crystalline polymers and their copolymers;

2. The chains are more rigid, Tll becomes higher; the interchain interactions are

stronger, Tll becomes higher as well;

3. When the molecular weight is large, the molecular weight dependence of

Tll becomes saturated, as

T ¼ ð1:2� 0:05ÞTg (6.80)

4. Tll has the equivalent-free-volume phenomenon, as well as of viscosity;

5. When the molecular weight is not large,

Tll ¼ Tllð1Þ � K

MN
(6.81)

Normally, polydisperse samples display not obvious but broadened

Tll transition;
6. Tll transition will be hindered by the crosslink of polymers or by high

crystallinity;

7. The dependence on the measuring methods, exhibiting the thermodynamic

characters of the third-order phase transition, while the glass transition exhibits

the thermodynamic characters of the second-order phase transition.
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From the scaling analysis of chain dynamics in the last chapter, the fluid

transition Tf can be understood as the temperature corresponding to the characteris-

tic reptation time. At Tf, the whole chain can diffuse out of the tube formed by the

dynamic entanglement of chains via spontaneous Brownian motions. So this tran-

sition is indeed a dynamic relaxation transition. According to the Ueberreiter’s

judgment for the extrapolation of the fluid transition to small molecules, glass

transition can be regarded as the temperature for molecular particles to be able to

diffuse out of a dynamic sticking network via spontaneous Brownian motions,

which in nature is a dynamic relaxation transition as well. Recently, it has been

believed that below Tf, a�b bifurcation is the origin of VFT-type non-Debye

relaxation of polymer fluids, and the same behaviors exist also below Tm for

semi-crystalline polymers (Rault 2000). Therefore, a relaxation is a cooperative

movement, while b relaxation is a non-cooperative movement.

6.4 Conventional Mechanical Analysis

The discussions above focus on the small strain as a response of polymer materials to

the small stress. Large stress brings large strain and even destroys the inherent

structure of the solid materials, causing permanent deformation. Under the constant

strain rates, the stress–strain curve reflects the structural and viscoelastic characteris-

tic features of materials. For polymer materials, there occur five typical curves, as

illustrated in Fig. 6.18: (1) hard and brittle, such as PS and PMMA, eventually brittle

failure; (2) hard and tough, such as Nylon and PC, most of semi-crystalline polymers,

Fig. 6.18 Illustration of five conventional stress–strain curves of polymer materials under con-

stant strain rates. 1 hard and brittle, 2 hard and tough, 3 hard and strong, 4 soft and tough, and 5 soft
and weak
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showing yielding, necking, strain hardening and eventually ductile failure; (3) hard

and strong, such as hard PVC and the blend of PS, eventually ductile failure; (4) soft

and tough, such as soft PVC and rubbers; (5) soft and weak, such as aqueous gels.

Shear yielding is the beginning of flow in the solid for permanent deformation,

which locates at the maximum point, i.e. at ds/de ¼ 0. Normally we use the

engineering stress s(�F/A0), with the reference to the initial sectional area A0.

Upon stretching deformation, the sectional area will be changed; therefore, the

more exact characterization is the true stress F/A ¼ s(1 þ e). On the true stress

versus strain curve, the point of tangency extrapolated from e ¼ �1 of the horizon-

tal axis corresponds to the yielding point, and the true stress at this point is the

yielding stress. The plot for the true stress versus the strain is called Considère
construction (Considère 1885).

For semi-crystalline polymers, the necking develops from a local area after shear

yielding, as illustrated in Fig. 6.19. This process eventually makes the ductile
failure after absorbing a great amount of energy. Men and coworkers pointed out

that, before shear yielding, the hard elastic network formed by polymer lamellar

crystals affords the dominant elastic strain, and the entanglement network of

amorphous polymers is released only after the lamellar crystals break into small

crystalline blocks (Men et al. 2003b). The yielding starts when this breaking

happens, and meanwhile polymer chains are drawn out of their folded states.

Since the folding length in the initial lamellar crystals is nearly constant, the

drawing process does not need larger stress after the yielding, and the sample

displays the necking behavior under almost constant stresses. After reaching

Fig. 6.19 Illustration of microstructure evolution upon cold-drawing of semi-crystalline polymers
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another critical strain, the drawn molecules will re-crystallize at low temperatures,

making thinner but highly oriented small crystalline blocks to assemble into nano-

fibrils. Therefore, the overall crystallinity can be maintained during stretching.

With the breaking of lamellar crystals, the dead entanglements locked between

lamellar crystals upon initial crystallization will be released, and the entanglement

network of amorphous polymers locating between fibrils can resist the external

stress at the later stage of deformation, inducing the strain-hardening phenomenon

till to the final breaking of the entanglement network. Therefore, the fracture

strength is highly dependent upon the molecular weight of polymers.

The fracture strength after strain-hardening determines whether the necking can

develop over the whole sample (the success of cold-drawing). It must be higher

than the shear yielding strength, as illustrated in Fig. 6.20. Thus the molecular

weight should be large enough to make the disentanglement between polymer

chains more difficult. Such a performance is called the drawability.
The shear yielding mostly happens in a homogeneous material. If the material is

inhomogeneous, such as containing impurity or structural defects, stress will be

concentrated on these defects. The local concentrating of stress leads to cracks that

eventually cause the sample to fracture. The fast inhomogeneous breaking often

occurs in the brittle fracture. If the local stress-concentrating area exhibits shear

yielding and necking, the microfibrils will form with their spacing comparable to

the wavelengths of visible lights, as illustrated in Fig. 6.21a, raising the crazing
phenomenon. The crazing will absorb a part of impact energy, and the huge amount

of crazing will absorb a significant amount of energy prior to fracture, turning the

materials into ductile failure.

The process for adhesives peeling from a solid substrate is quite similar to the

crazing. Both develop from a foam structure rich with air bubbles to an unstable

fingering structure upon splitting fibrils, before eventually breaking. This process

will absorb a great amount of energy, as illustrated in Fig. 6.21b. Such tackiness is

the main reason for polymers to be the good adhesive materials.

Fig. 6.20 (a) When the breaking strength is higher than the shear yielding strength, the necking of

semi-crystalline polymers can be developed over the whole sample; (b) otherwise, the sample will

immediately be broken at the narrow necking area
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Since the defects distribute quite inhomogeneous in the materials, the results of

mechanical measurement are often irreproducible. One can arbitrarily introduce the

defects at a specific location to make the measurement reproducible, for instance, to

measure the notched impact strength. The Charpy’s method makes two ends of the

sample fixed, and impact the middle part where the defect is notched. The Izod’s

methodmakes only one end fixed, and impact the other end, as illustrated in Fig. 6.22.

Assuming the weight of the hammer isW, the length of the hammer handle is l, so the
loss of impact energy depends on the loss of angles from a to b, as given by

A ¼ Wlðcos b� cos aÞ (6.82)

The sectional area at the notched place is S, so the impact strength

I ¼ A

S
(6.83)

with the unit of J/m2.

Blending polymer is similar to alloying metal, to obtain the complementary

advantages of two materials. For example, polystyrene (PS) appears hard and brittle,

while polybutadiene (PB) appears soft and tough. By adding amphiphilic

Fig. 6.21 Illustration of (a) the crazing initiated inside polymer solid materials; and (b) the

microstructure of adhesives peeling from a solid substrate

Fig. 6.22 Illustration of

Charpy method to measure

the notched impact strength
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compatibilizer in their blends, such as PS-graft-PB copolymer, Dow Chemical

Company has produced commercial hard-and-tough high-impact PS (HIPS),

exhibiting the advantages of both blend components. PB rubber particles are

distributed in the PS matrix, actively absorb the energy of stress concentration

upon imposing the external stress, and meanwhile generate a huge amount of crazing

surrounding the particles, inducing the effective toughening, as illustrated in Fig. 6.23

(Bucknall and Smith 1965). Souheng Wu found that the average distance between

rubber particles needs to be smaller than a critical value to achieve the brittle-ductile
transition (Wu 1985). Recently, the hierarchical complex structure containing small

plastic particles inside the discrete rubber particles via spontaneous two-step phase

separation can effectively realize such blend-toughening.

Question Sets

1. Why does polymer exhibit a significant feature of viscoelasticity?

2. Why could the soft rubber sheet not resist the bullet shooting?

3. Why can one say that the glass transition is a dynamic relaxation transition?

4. Why can some semi-crystalline polymer plastics be cold-drawn into single-axis

or double-axes oriented thin films, and the other not?

5. Why are most of adhesives made of polymer materials?

6. How can plastics and rubbers make blends to reach a better toughening effect?
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Chapter 7

Polymer Flow

7.1 Introduction to Rheology

7.1.1 What Is Rheology?

Large-enough deformation of solid materials causes fractures, while large-enough

deformation of fluid materials initiates flow. Rheology is a subject about the flow of

the matter (Morris 2001). More specifically, it studies the flow for permanent

deformation, in other words, the ‘molding’ process to re-shape the materials.

The conventional route to process synthetic polymers includes the mixing of raw

materials, molding, performance tests, storage, and applications. At each stage of

the route above, the rheology often takes a determinative role in the final perfor-

mance of polymer materials. In a broad sense, rheology is not only relevant to the

processing of plastics, fibers, rubbers, pigments, coatings, adhesives, lubricants,

composites, but also crucial for the oil pipe-transportation as well as for food

processing. Moreover, it applies in the life sciences of metabolism and blood

circulation, and even in the geological sciences on the formation process of

mountains and underground resources.

7.1.2 Classification of the Flow

The flow can be classified into three types according to their Reynolds numbers.

Assuming the flow in a pipe or a tube, the Reynolds number is defined as

(Reynolds 1883)

Re � Dvr
�

(7.1)

W. Hu, Polymer Physics, DOI 10.1007/978-3-7091-0670-9_7,
# Springer-Verlag Wien 2013

127



where D is the tube diameter, v is the average flow velocity, r is the density of

the fluid, � is the viscosity of the fluid. The Reynolds number actually reflects the

ratio of the inertial forces to the viscous drag forces under a given flow condition.

The flow with smaller Reynolds numbers (Re < 2,000) normally contains parallel

layers without mixing, which are called laminar flow. In this case, the influence of

the drag forces is larger than that of the inertia forces. Since the disturbance of

flow velocity in the flow field decays with the drag force, the laminar flow

remains stable. With the increase of Reynolds numbers, the streamlines start to

oscillate, and the frequency and amplitude of oscillations increase with the flow

velocity. This type of flow is called transition-region flow. When the flow

velocity rises up to some certain values (Re > 4,000), the streamlines are not

anymore stable. This is because many small vortexes are generated in the flow

field, which destroy the streamlines. In this case, the influence of the inertia

forces to the flow field is larger than that of the viscous drag forces, and a minute

change in the flow velocity is easy to be developed into chaos in an irregular flow

field. The drag force of the flow is then drastically enhanced. This type of flow is

called turbulent flow.

7.1.3 Laminar Flow

Due to the high viscosity, the flow of polymer fluids conventionally appears as

laminar flow with a small flow velocity. There are two basic approaches to realize

the laminar flow.

The first approach is shear flow, commonly due to the frictional drag forces near

a solid substrate, where the flow velocity varies along the latter’s normal direction.

Depending on the profile of velocity gradients, there are two types of shear flow.

One is the drag flow, known as the Couette flow, which is similar to the shear flow

under the grindstone. A linear velocity gradient develops from one side to the other,

as illustrated in Fig. 7.1a. The other is the pressure flow, known as the Poiseuille

flow, which is similar to the shear flow in the injection tube of syringes. Since the

tube boundaries make a frictional hindrance to the flow, the velocity distribution

appears as a parabolic curve, with the largest velocity gradient near the tube

boundaries and the smallest gradient in the middle, as illustrated in Fig. 7.1b.

In the shear flow, the shear stress s(�f/A) works on the shear plane along xz
directions, as illustrated in Fig. 7.2. When the shear stress s is proportional to the

velocity gradient dv/dy, the fluid can be called a Newtonian fluid, and the proportion
factor is defined as shear viscosity �. The unit of viscosity is thus Pa·s or N·s/m2. In

the centimeter-gram-second (CGS) unit system, the unit of viscosity is Poise (P)

with 1 Pa·s ¼ 10 P. The velocity gradient

dv

dy
¼ d

dy
ðdx
dt
Þ ¼ d

dt
ðdx
dy
Þ ¼ dg

dt
¼ g0 (7.2)
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where g is the shear deformation ratio, g0 is the shear rate. Accordingly, the equation
of motion for the Newtonian fluid can be obtained as

s ¼ �g0 (7.3)

This equation is similar to the second Newton’s law (total forces proportional to

the acceleration rate), because the shear rate reflects the acceleration rate generated

by the shear stress.

The second approach to realize laminar flow is the elongational or extensional
flow. In this approach, the flow velocity changes along the flow direction x, as
illustrated in Fig. 7.3. The longitudinal velocity gradient can be generated either by

the change in the diameter of the tube, or by the deformation under the external

pulling force. The tensile stress

s � f

A
¼ �e

dv

dx
(7.4)

Fig. 7.1 Illustration of the profiles of flow velocities in (a) Couette flow and (b) Poiseuille flow,

respectively

Fig. 7.2 Illustration of the definition to the Newtonian fluid in the shear flow field. f is the shear
force, and A is the shear area
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Here dv/dx is the extensional strain rate, and �e is the extensional viscosity. The
correlation between the ideal extensional viscosity and the shear viscosity for a

Newtonian fluid can be described by the Trouton’s ratio (Trouton 1906), as given by

�e
�
¼ 3 (7.5)

7.1.4 Non-Newtonian Fluids

In most practical applications, polymer fluids do not behave like ideal Newtonian

fluids. The occurrence of non-ideal viscoelastic behaviors of shear flow is often

associated with a dimensionless number, called the Weissenberg number We
(Weissenberg 1947; Dealy 2010),

We � tg0 (7.6)

which reflects the ratio between the relaxation time of the fluid t and the driven time

of the external field g0�1. When the value of We is relatively small, the relaxation

time of the fluid is short, and the fluid can relax itself immediately, exhibiting the

characteristics of a Newtonian fluid. When the value of We is relatively large, the

fluid cannot relax itself in a short time, and the flow becomes unstable, deviating

from the ideal Newtonian fluid.

According to the relationship between the shear stress s and the shear rate g0,
non-Newtonian fluids can be classified into the following conventional types, as

illustrated in Fig. 7.4. Curve d represents the dilatant fluid, whose viscosity � (i.e.

the slope of the curve) increases with the increase of shear rate g0. Such a

Fig. 7.3 Illustration of the profile of flow velocity in the extensional flow
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phenomenon is called shear thickening, which widely exists in the dispersing

systems like latexes, suspensions, filled polymers, flour/sugar solutions, etc.

Curve p represents the pseudo-plastic fluid, whose viscosity � decreases with the

increase of shear rate g0. Such a phenomenon is called shear thinning, which widely
exists in the oriented flows of most linear polymers, adhesives, lubricants, soap

fluids, paper pulp, coatings, etc. Curve B represents the Bingham fluid (Bingham

1916). A yielding stress sc is required to initiate the Newtonian-fluid behavior of a

Bingham fluid. The real Bingham fluids often contain a networking molecular

structure, and the viscosity changes with the initiation of flow, such as toothpaste,

grease, cement, coal pulp, etc.

If the shear rates are constants, the non-Newtonian fluids can also be classified

according to their viscosity dependence on time. This classification has been widely

applied to describe the rheological characteristics of coatings. For the development

of deformation, the time evolution corresponds to the effect of the increase of shear

rate. Three typical cases occur with the time evolution: the thixotropic fluids exhibit
the decrease of viscosity, corresponding to pseudo-plastic fluids; the rheopectic
fluids exhibit the increase of viscosity, corresponding to dilatant fluids; while the

viscoelastic fluids exhibit partial recovery of the deformation of pseudo-plastic

fluids after the removal of the stress. Since polymers can perform a large scale of

elastic deformation, this character appears extremely significant.

De Waele and Ostwald proposed a unified power-law equation, as

s ¼ Kg0n (7.7)

where K is the temperature-sensitive parameter, and n is the characteristic index

determined by the structure of the fluids: n ¼ 1 for the Newtonian fluids; n > 1 for

dilatant fluids, and n < 1 for pseudo-plastic fluids. The description to the complex

Fig. 7.4 Illustration of several conventional Non-Newtonian fluids deviating from the Newtonian

fluids. N represents Newtonian fluids, d represents dilatant fluids, p represents pseudo-plastic

fluids, and B represents Bingham fluids
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fluids similar to De Waele–Ostwald equation is often called the constitutive equa-
tion of the fluids (De Waele 1923; Ostwald 1925). Oldroyd proposed the constitu-

tive equation in another way (Oldroyd 1950; Bird et al. 1987), as given by

sþ t1
@s
@t

¼ Kðg0 þ t2
@g0

@t
Þ (7.8)

where t1 and t2 are the relaxation time of the stress and the strain rate, respectively,

K includes both solute and solvent viscosity, and ∂/∂t denotes the Oldroyd convec-
tive derivatives. In (7.8), either the left-hand-side derivative can be split into the

linear and nonlinear viscoelastic contributions, or the right-hand-side derivative can

be split into the inertia transport and the acceleration contributions. Oldroyd-A

model is used to describe the Newtonian fluids, while Oldroyd-B model is used to

describe the non-Newtonian fluids. For more accurate descriptions of the practical

fluids, the current rheology has developed many empirical and complicate consti-

tutive equations. Various mathematical tools and skills have been developed to find

proper solutions of these equations (Bird et al. 1987; Larson 1988).

7.2 Characteristics of Polymer Flow

The shear flow behaviors of polymer melts are quite complicated with various

topological architectures of polymers. For linear polymers, their shear flows can be

described by a universal curve (Fig. 7.5). After yielding at an initial stress, the bulk

polymer behaves as a pure viscous fluid in the first Newtonian-fluid region. In the

following pseudo-plastic region, the bulk polymer deforms and orients subject to

the stronger shear stress, and meanwhile the viscosity decreases with the increase of

shear rate (the shear-thinning phenomenon). The next is the second Newtonian-

fluid region, in which the polymer reaches their up-limit of entropic elasticity for

deformation, behaving again as a pure viscous fluid. The final stage is the dilatant

region, in which the polymer unsteadily retracts back upon excessive deformation.

The fluid structure becomes unstable, and therefore its viscosity increases with the

further increase of shear rates.

Upon a large shear rate, the polymer flow exhibits nonlinear viscoelasticity. In

this case, the Boltzmann superposition principle becomes invalid, and the fluid

appears as a non-Newtonian fluid. A typical treatment is to consider the nonlinear

response as separate processes at two different time scales: the first one is the rapid

elastic recovery in association with the shear rate, which can relax part of the stress

instantaneously; the second one is the slow relaxation of the rest stress in associa-

tion with time. Thus, the nonlinear relaxation modulus can be expressed as

Eðg; tÞ ¼ hðgÞEðtÞ (7.9)
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Such a behavior of stress relaxation is called time-strain separability (Larson

1988). The factor h(g) is called the damping function. The empirical damping

functions that are often used in polymer melts include the exponential function

hðgÞ ¼ expð�ngÞ (7.10)

and the reciprocal function

hðgÞ ¼ ð1þ ag2Þ�1
(7.11)

Here n and a are both positive constants. Doi and Edwards also derived a

complicated damping function from the tube model, which is close to the empirical

reciprocal function with a ¼ 0.2 (Larson 1988).

According to the interpretation of Doi-Edwards tube theory (Doi and Edwards

1986), the shear-thinning phenomenon of polymers under high shear rates is related

to the segment orientation in the region between shear rates separately corresponding

to the relaxation time tt and tR, as well as the extensional deformation being able to

perform contour length relaxation along the tube. However, that theory predicts a

maximum on the curve of shear stress with respect to the shear rate, and an over-

estimation of shear-thinning above 1/tt, leading to a negative shear viscosity and

instability of numerical solutions. Marrucci introduced a new mechanism of chain

motion to correct this theory, which is called convective constraint release (CCR)

(Marrucci 1996). This model suggests that the transverse velocity gradient brought by

the high shear stress facilitates disentanglement of polymer chains, and thus releases

some of chain entanglement around the tube, leading to a decay of the shear viscosity.

This shear-thinning mechanism suppresses the early deformation predicted by the

Doi-Edwards theory, and hence avoids an over-estimation. In addition, in combina-

tion with other models, it can predict the shear-thickening phenomenon when

polymer coils perform stable extensional deformation under higher shear rates.

Fig. 7.5 Illustration of the

universal curve for the shear

stress of bulk polymers over a

broad range of shear rates.

The labels are the same as in

Fig. 7.4
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The molecular dynamics theories need to make a proper combination to describe the

rheological behaviors of polymer melt in various regions of shear rates (Bent et al.

2003). Above 1/tt, the convective constraint release dominates the rheological

behaviors of polymers in shear flow, and thus explains the shear-thinning phenome-

non. Beyond 1/tR, the extensional deformation reaches saturation, and the shear flow

becomes stable, entering the second Newtonian-fluid region, as demonstrated in

Fig. 7.6.

From the practical viscosity with respect to the shear rate of polymer melts, the

shear-thinning phenomenon can also be observed, as illustrated in Fig. 7.7b. The

viscosity in the first Newtonian–fluid region is called zero-shear viscosity �0, while
the viscosity in the pseudo-plastic region is called apparent viscosity �a. The
unstable flow occurs often at the beginning of the second Newtonian-fluid region,

and the viscosity �1 at the end of this region is not easy to reach. The shear-

thinning phenomenon offers a larger flow velocity upon extruding and injection

molding process, and hence the efficiency of production can be raised, meanwhile

the energy cost can be reduced. Different processing methods operate within

various regions of shear rates. Figure 7.7a demonstrates the curve of viscosity

with respect to the shear rate of polypropylene at 230 �C, as well as the applicable
processing methods in various shear-rate regions, such as roto-molding, compres-

sion molding, blow molding & thermoforming, pipe & profile extrusion, film

extrusion, injection molding, fiber spinning, and coating (Gahleitner 2001). The

main factors that influence the viscosity of polymer are molecular weights and their

distribution, chain branching, temperature, pressure, additives and fillers. Fig-

ure 7.7b summarizes these factors and their corresponding effects. Higher molecu-

lar weights, filler addition and higher pressure lead to higher viscosities, while more

chain branching, more plasticizers and higher temperature favor lower viscosities.

Polymer melts with a broader distribution of molecular weights often show more

significant shear-thinning phenomenon.

Shear flow can be roughly separated into the inclined extensional flow brought

by the transverse velocity gradient, and the rotating flow, as illustrated in Fig. 7.8.

The extensional flow leads to the major deformation of polymer coils, while the

rotating flow makes tumbling of polymer coils upon flow. The latter realizes the

Fig. 7.6 Illustration of

convective constraint release

responsible for the shear-

thinning region between

tt and tR
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Fig. 7.7 (a) Viscosity versus shear rate curve of polypropylene (melting index 8 g/10 min under

2.16 Kg and 230 �C) at 230 �C, and the applicable methods in various regions (Gahleitner 2001)

(Reprinted with permission); (b) Illustration of polymer melt viscosity changing with shear rates

and various influence factors (see the text for the details)

Fig. 7.8 Illustration of the de-coupling of shear flow into extensional flow and rotating flow
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convective constraint release in the bulk phase, inducing disentanglement. There-

fore, the motion of single polymer coils in shear flow can be vividly described as

end-over-end tumbling. Chu and coworkers have observed such kind of motion by

means of fluorescence-labeled DNA macromolecules (Smith et al. 1999).

Apparently, the extensional flow causes the deformation of polymer coils. The

simplest dumb-bell model can be used to describe this deformation. As illustrated in

Fig. 7.9, two beads with a distance R, and the entropic elastic recovery force upon

deformation of polymer coils is

fe ¼ �KR (7.12)

where the modulus K / kT
R2
0

. The driving forces of the flow are balanced with the

frictional drag forces ff, bringing the deformation rate ∂R/∂t, with the proportion

factor as the frictional coefficient z,

ff ¼ B
@R

@t
(7.13)

From the force equilibrium,

fe ¼ ff (7.14)

one obtains

B
@R

@t
¼ �KR (7.15)

The solution of (7.15) gives

R ¼ R0 expð� t

t
Þ (7.16)

where the characteristic relaxation time t ¼ B
K .

De Gennes provided a scaling analysis on the deformation transition of polymer

coils under elongational flows (De Gennes 1979). Under one-dimensional

stretching, the strain rate of polymer chain

s ¼ @vx
@x

> 0 (7.17)

Fig. 7.9 Illustration of the dumb-bell model for the deformation of polymer coils
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where vx is the flow rate on the direction of x. Assuming that the strain happens

homogeneously, the frictional drag force on the flow length dx is

ff � Bvxdx � Bsxdx (7.18)

Therefore, the work made by the frictional force is

Ef � �ff x��
ðR=2

�R=2

Bsx2dx � �
ðR=2

�R=2

tKsx2dx � �stR3 (7.19)

The entropy elasticity of real polymer coils in a good solvent is

Eel � kTð R
R0

Þ5=2 (7.20)

Then the total free energy of the coil becomes

F ¼ Eel þ Ef � R5=2 � stR3 (7.21)

As illustrated in Fig. 7.10, there exists a critical value (st)*. When st < (st)*,
the free energy of the extended coil appears higher than the random coil, then the

random coil is more stable; when st > (st)*, the extended coil becomes more

stable. Therefore, the free energy barrier between the two coil states determines the

coil-stretch transition to be first-order like. Here the dimensionless value of st can
be named Deborah number (De),

De � st (7.22)

Similar to the Weissenberg number in shear flow, the Deborah number reflects

the competition between the relaxation time t of the polymer coil and the working

time s�1 imposed by the external field (Dealy 2010; Reiner 1964). The critical De*

R

F
sτ < sτ*

sτ = sτ*

sτ > sτ*

0 nb

Fig. 7.10 Illustration of the

free energy versus coil

dimension changing with the

product of extensional flow

rate s and the relaxation time t
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corresponds to a critical molecular weight for extensional deformation of polymer

coils. In the bulk polymer phase, such a critical situation makes a yielding-like

behavior of the viscous fluid, raising nonlinear viscoelasticity due to a large

stretching of the chain.

The spinning of polymers corresponds to uniaxial stretching, while the film

blowing/stretching corresponds to biaxial stretching. Three typical relationships

between extensional viscosity �e and extensional stress s exist in extensional flows,

as illustrated in Fig. 7.11. Type A, a typical Newtonian fluid, shows the indepen-

dence of � on s, which is often observed for short-chain polymers such as Nylon

6-6, POM, PMMA, etc.; Type B shows the viscosity increases with the increase of

stress when it is above a critical value, s > sc. This type of extensional thickening
is observed for branched chains like LDPE; Type C shows that the viscosity

decreases with the increase of stress when s > sc. Such a behavior of extensional
thinning is often observed for long linear chains like HDPE and PP. Interestingly,

the critical stress sc normally corresponds to the critical shear stress above which

the shear thinning occurs.

The molecular theory of extensional viscosity of polymer melts is again based on

the standard tube model. It considers the linear viscoelastic factors such as

reptation, tube length fluctuations, and thermal constraint release, as well as the

nonlinear viscoelastic factors such as segment orientations, elastic contraction

along the tube, and convective constraint release (Marrucci and Iannirubertok

2004). Thus, it predicts the extensional stress–strain curve of monodispersed linear

polymers, as illustrated in Fig. 7.12. At the first stage, the extensional viscosity of

polymer melts exhibits the Newtonian-fluid behavior, following Trouton’s ratio

�e ¼ 3�0; the second state begins at the reciprocal of the tube relaxation time, when

polymer chains are oriented but not yet stable in their deformation to display the

extensional-thinning phenomenon similar to that observed in shear flow. Since

there is no transverse velocity gradient, the role of convective constraint release

is not evident. The third stage begins at the reciprocal of the Rouse relaxation time,

when polymer deformation has been stable to display the strain-hardening phe-

nomenon. The fourth stage restores the Newtonian-fluid behaviors due to the

Fig. 7.11 Illustration of three

typical cases of extensional

viscosity of polymer melt

changing with extensional

stress
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saturation of chain deformation, similar to the second Newtonian-fluid region in

shear flow. The extensional-thinning phenomenon has been observed often in

polymer solutions. In polymer melts, the extensional-thinning region is quite

narrow. This phenomenon is not favored in the practical extension flow, because

the fiber-spinning and film-blowing often break down in this region. Therefore, the

practical processing directly enters the later stage of extensional thickening or strain

hardening. The break of stretching causes a constitutive instability even in shear

flows. Recently, by means of the particle-tracing experiments, Wang and his

coworkers observed shear-banding shortly occurring at the starting stage of shear

flow due to extensional break along the shear direction. In other words, the

transverse velocity gradient appears as discontinuous between high speed and low

speed regions, causing the sliding interface (Tapadia et al. 2006).

During fiber-spinning and film-blowing, one may expect the extensional viscosity

increases with the increase of dv/dx. As the local increase of dv/dx leads to the

reduction of the fiber diameter, the increase of viscosity could prevent further thinning

and thus makes the fiber more homogeneous in thickness and stronger. Such a

performance of polymer fluids has been described as spinnability (Petrie 2006).
Branching polymers are often called “magic polymers”, including LDPE, hyper-

branching, star-shapes, and grafted polymers. This class of polymers tends to

evolve into globules in shear flows, and thus their viscosity decreases with the

increase of shear rates, facilitating extrusion and injection molding. On the other

hand, they display strain-hardening during extensional flow, and thus their viscosity

increase with the increase of extensional rates, facilitating fiber-spinning and film-

blowing. Therefore, a certain amount of branching polymers as an additive in the

melt of linear polymers will benefit various molding processes of the latter.

Fig. 7.12 Illustration of extensional viscosity versus the extensional rate curve predicted by the

molecular theory based on the standard tube model for the stable extensional flow of linear

polymers. Starting from the low extensional rate, the viscosity first keeps in 3�0, then decays,

after deformation begins to increase, till to saturation (Marrucci and Iannirubertok 2004)

(Readapted with permission)
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7.3 Viscoelastic Phenomena of Polymer Flow

In shear flows, polymer melt experiences significant elastic deformations, and the

normal stress difference reflects its resistance to the shear stress. As illustrated in

Fig. 7.13, the direction of flow is labeled as “1”, the direction of velocity gradient is

labeled as “2”, and the direction of equal velocity (normal to the book) is labeled as

“3”. Since the deformation along direction 1 is large, part of the normal stress

initially along direction 2 will be added onto direction 1, resulting in the order of

normal stresses as

s11 > s33 > s22 (7.24)

Therefore, the first normal stress difference is defined as

N1 � s11 � s22 > 0 (7.25)

and the second normal stress difference is defined as

N2 � s22 � s33 < 0 (7.26)

Their common relations are

N1 � �5N2 (7.27)

N1;N2 / g02 (7.28)

Owning to large normal stress differences, the following-listed viscoelastic

phenomena are unique in polymer flows.

Fig. 7.13 Illustration of normal stress distributions (a) before and (b) after the shear flow acting

on the polymer fluid
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1. Weissenberg effect (rod-climbing effect)

When a spinning rod stirs a cup of Newtonian fluid, for example, water, a sunk-

curvature is normally observed at the surface region near the rotating rod because of

the centrifugal forces. In contrast, for concentrated polymer solutions or melts, a

convex curvature occurs at the surface region near the rotating rod, as illustrated in

Fig. 7.14. This effect of non-Newtonian-fluid behavior is namedWeissenberg effect
(Weissenberg 1947). This effect is because closer to the rotating rod, the shear rate

appears larger and correspondingly the normal stress s11 along the flow circle

becomes stronger. When polymer chains spin away from the rod under the work

of centrifugal forces, they cannot immediately release the normal stress along the

flow circle due to their entanglements. Therefore, similar to a rubber band

surrounding the wrist, the inter-hooked chains surrounding the rod make an inward

force to compensate the centrifugal forces and even more, to compensate the

gravitation force to raise the liquid surface. The flow that raises the liquid surface

is called the secondary flow, which is responsible for the vortex near the entrance

corner of the extrusion die.

2. Barus effect (die-swell or extrudate-swell effect)

The flow velocity of polymer melt is normally large within an extrusion die. Once it

exits the die, a significant transverse swell occurs, as illustrated in Fig. 7.15. If the

course of extrusion die is short, the extensional deformation has not yet completely

relaxed at the exit, and accordingly the die swell can recover the loss of the coil size

from the extensional deformation. This effect is also called the memory effect of

elasticity, appearing as a recovery of coil sizes upon the removal of the transverse

restriction at the exit. In fact, the slow-down at the exit of extrusion die is mainly

responsible for the die-swell effect, exactly in reverse to the acceleration at the

entrance causing extensional deformation. Note that the extensional deformation

can gradually relax back to the coil state upon further flow along the extrusion die.

Therefore, the die swell is not necessary due to a recovery of the coil state, but rather

due to slowing-down for a transverse deformation beyond the original coil size.

Fig. 7.14 Illustration of (a) the sunk-curved liquid surface when stirring the Newtonian fluids and

(b) the convex-curved liquid surface when stirring polymer melt or concentrated solutions
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3. Tubeless siphon

The siphon phenomenon is normally conducted by a tube. Polymer melt can suck

the liquid into the tube even if the tube end locates high above the liquid surface,

because of a significant viscoelastic effect. Such a flow is also called Fano flow

(Fano 1908). Another situation is the pouring of the viscous polymer melt from a

cup. Once the flow starts, the polymer melt can be continuously poured out, even if

the liquid surface inside the cup becomes lower than the cup edge, as illustrated in

Fig. 7.16. So far, a clear theoretical description of this phenomenon is still lacking.

4. Drag reduction

Adding a small amount of high molecular weight PEO or poly(acrylate amine) into

high-speed flows can effectively suppress the occurrence of turbulent flows, and

thus reduce the drag force. Application of such a drag-reduction agent can raise at

least one-fold exalting height of fire water, reduces the number of pumping stations

on the oil pipeline, or raises the efficiency of oil extraction by expelling the oil from

the leaks of rocks. So far, since we know little about turbulent flows, the mechanism

of drag reduction is still unknown.

Fig. 7.15 Illustration of Barus effect for the transverse swell due to the slow-down of the flow at

the exit of extrusion die

Fig. 7.16 Illustration of tubeless siphon and continuous pouring of polymer melt
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5. Flow instability and stick-slip transition

With the increase of flow velocity, polymer melt extruded in the tube will become

unstable due to the stick-slip transition near the tube wall, which makes the

extrudate shows wave-like, bamboo-like, or spiral-like distortions. All these phe-

nomena are known as melt-broken phenomena. In these cases, the shear rate

suddenly rises, as illustrated in Fig. 7.17, thus this behavior is also called

capillary-jet phenomenon. The string-like shark-skin phenomenon upon the extru-

sion of polyethylene melt can be attributed to the intermittent stick-slip transition

near the tube wall of the exit (Wang 1999).

Question Sets

1. What are the advantages of the shear-thinning phenomenon in polymer melt

processing?

2. Why are some polymers able to spin into fibers and the others not?

3. Why are the branched polymers “magic” additives for the processings of linear

polymers?

4. Why are the viscous polymer fluids viable to climb up along the stirring shaft?
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Chapter 8

Statistical Thermodynamics of Polymer

Solutions

8.1 Polymer-Based Multi-Component Systems

Polymer-based multi-component systems can be classified into two categories: one

is a miscible system, in which polymers are homogeneously mixed with other

molecules; the other one is a composite system, in which polymers are not mixed

with other molecules, except at interfaces.

Polymer-based composite systems normally consist of a continuous matrix and a

dispersed phase like particles. Polymers are the great candidates as matrix

materials. In the case where the matrix is an inorganic material and the particles

are polymeric materials, such a composite system is commonly regarded as an

organic/inorganic hybrid. In the composite system, the dispersed particles may have

a wide range of shapes and sizes, and play a dominant role in the functional

enhancement of the matrix, although never mixed with the matrix in their thermal

history, such as carbon black, liquid crystal droplets, high-strength fibers and their

textiles, inorganic fillers, carbon nanotubes and graphines. The interface properties

of composites are one of central issues in the investigation of high performance

polymer composites. However, we hereby focus our attention mainly on the

polymer-based miscible systems.

The polymer-based miscible systems can be either intermolecular mixtures, for

instance polymer solutions and blends, or intramolecular mixtures, such as block

copolymers, star-shape multi-arm copolymers, grafted copolymers, random

copolymers, and gradient copolymers with a composition gradient from one chain

end to the other. Polymer-based miscible systems can phase separate into

segregated phases with stable interfaces, or crystallize into crystalline ordered

phases. In other words, there are two types of phase transitions, phase separation

and crystallization. Under proper thermodynamic conditions, two phase transitions

may occur simultaneously. The interplay of these two transitions will dictate the

final morphology of the system. In the following, we will choose polymer solutions

as typical examples to introduce the polymer-based miscible systems.

W. Hu, Polymer Physics, DOI 10.1007/978-3-7091-0670-9_8,
# Springer-Verlag Wien 2013
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Polymer solutions display a typical phase diagram as illustrated in Fig. 8.1a, which

exhibits a highest critical phase separation temperature, called upper critical solution
temperature (UCST). Within the same temperature window, polymer solutions may

also crystallize below the solution-crystal coexistence line, as illustrated in Fig. 8.1b.

Two kinds of phase transitions will interplay with each other, so that an interception

point is observed in the corresponding phase diagrams. The interception point is a

three-phase-coexisting point, as illustrated in Fig. 8.1c, called the monotectic triple
point. At this point, a dilute solution, a concentrated solution and a crystalline phase
can coexist.

A single-component systemoften has three basic phases such as gas, liquid and solid.

If the conventional temperature-versus-pressure phase diagrams of the single compo-

nent are redrawn according to temperature-versus-density, as illustrated in Fig. 8.2, one

may recognize that the phase diagrams are quite similar with those drawn in Fig. 8.1c.

The UCST-type critical point and the triple point locate at parallel positions. Therefore,

we can make an analogue between single-component systems and polymer solutions.

The condensation process for the single component from gas to liquid resembles to the

Fig. 8.1 Illustration of typical phase diagrams of polymer solutions for (a) UCST phase separation,

(b) crystallization, and (c) monotectic triple point formed by the interception of two phase diagrams
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phase separation behaviors of polymer solutions, releasing the first stage of cohesive

energy of crystalline molecules by putting well-separated molecules into neighbors.

In parallel, the crystallization process of the single component from liquid to

solid resembles to polymer crystallization, releasing the second stage of cohesive

energy of crystalline molecules by assembling nearby molecules into crystalline

order. Such an analogue implies that, we need two energy parameters to describe the

molecular driving forces for phase separation and crystallization, respectively.

Free energy change is the deterministic factor to the behavior of phase transitions.

In this chapter, we first introduce the classic Flory-Huggins lattice statistical thermo-

dynamic theory of polymer solutions, mainly focusing on the calculation of free

energy change upon the mixing process. In the next chapter, i.e. Chap. 9, we will

introduce phase separation. The corresponding molecular driving force for phase

separation is the mixing interaction B between two species. After that, in Chap. 10,

we will introduce polymer crystallization. The corresponding molecular driving force

for crystallization is the parallel packing interaction Ep. Adjusting the contributions of

these two kinds of molecular interactions to the total free energy, we can control

the thermodynamic conditions for both phase separation and crystallization, and

furthermore control the kinetics of phase transitions, for the designed morphology

and assembly structures of polymers. In the last chapter of this book, wewill introduce

the interplay of phase transitions in the polymer-based miscible systems.

8.2 Flory-Huggins Lattice Theory of Polymer Solutions

8.2.1 Advantages of the Lattice Model

From the condensed matter physics of liquid states, the volume repulsive

interactions of molecules dominate the microscopic structure of the liquid, and

the attractive interactions just play a role of local perturbation (Rowlinson 1970).

The lattice model treats the distribution of molecules as “one hole for one radish”

Fig. 8.2 Illustration of basic

phase diagrams of gas, liquid

and solid of the single

component system separately

according to temperature

versus pressure (left) and
temperature versus density

(right)
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in the lattice space. It reflects the fact of volume exclusion between molecules. Such

a model facilitates the calculation of the combinatorial entropy between molecules

of various species, i.e. the number of ways to arrange the placements of the

molecules in the solution space (Guggenheim 1952; Flory 1953; Prigogine

1957a). Therefore, the lattice model has become the basic tool in classic statistical

thermodynamic theories of solutions. In 1939, Chang first investigated the combi-

national entropy of dimers in a lattice solution (Chang 1939). Later on, Flory 1942

and Huggins 1942 separately derived the currently well-accepted lattice theory for

long-chain polymers. On the other hand, the lattice model also facilitates the

calculation of molecular attractions that often drive phase transitions. For instance,

the Ising model has become the classic lattice model in the condensed matter

physics for a statistical mechanic analysis of phase transitions.

8.2.2 Basic Assumptions of Flory-Huggins Lattice Theory

8.2.2.1 Incompressible Mixture

Assuming polymer solutions are located in the lattice space, with each lattice site

containing the coordination number q, one can assign the solvent molecules to those

single sites with the number N1, and each polymer chain to occupy consecutive

connected sites with the number of r, as illustrated in Fig. 8.3. The number of polymer

chains isN2. Supposing that the size of each chain unit is comparable with one solvent

molecule, as given by

vmonomer ¼ vsolvent (8.1)

Fig. 8.3 Illustration of the

lattice model of a polymer

chain consecutively

occupying the sites in the

lattice space
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and the total solution volume is

N ¼ N1 þ rN2 (8.2)

Note that the actual size difference between the chain unit and the solvent can be

corrected later.

8.2.2.2 Concentrated Solution

Chain units are assumed to homogeneously distribute in the lattice space, which is

valid only for concentrated polymer solutions. In dilute solution, as we know,

polymer chain units are heterogeneously distributed in the solution as in the

relatively isolated coils.

8.2.2.3 Flexible Chain

In the lattice space, the bonds formed by the neighboring chain units orient

randomly, and the volume exclusion simply implies the next chain units cannot

overlap with the previous one. As illustrated in Fig. 8.4, in the coordination sites of

the second chain unit, the third unit along the chain sequence can choose anyone of

the coordination sites except for the one occupied by the first unit. Such a situation

is similar with the non-reversing random walks, with each step of walks containing

q�1 possible directions.

8.2.2.4 Mean-Field Assumption

According to the Helmhotz mixing free energy

DFmix ¼ DUm � TDSm (8.3)

The increase of entropy DSm due to the mixing of multiple components benefits

the decrease of free energy, favoring the mixing process.

Fig. 8.4 Illustration of a

flexible polymer chain with

2-3 bond randomly oriented

in the lattice space but the

third chain unit not

overlapping with the first one
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In order to calculate the system free energy, the statistical thermodynamics needs to

account for all the possible spatial arrangements of certain amount of molecules

distributed on various energy levels. This task appears to be an impossible mission

because of the huge amount of molecules involved, as high as on the order

of Avogadro constant. The mean-field assumption is often used to simplify the

calculation by assuming that each molecule experiences an averaged force field.

Therefore, the possible spatial arrangements for a molecule at each energy level are

presumably independent of the number of molecules experiencing that energy.

According to the Boltzmann’s relationship, the summation of the former corresponds

to the entropy, while the summation of the latter corresponds to the internal heat. One

can thus make separate statistics on the contributions of mixing entropy DSm and

mixing heat DUm to the total free energy change upon mixing.

In the following, we will start from the fully ordered and phase separated state as the

ground state of free energy, and aim at the randomly mixing state, to calculate first

themixing entropy and then themixing heat, as illustrated in Fig. 8.5.Wewill derive the

expression of mixing free energy, as the so-called Flory-Huggins equation.

8.2.3 Calculation of Mixing Entropy

The mixing entropy normally contains the contributions of translation, rotation,

vibration and combination, as

Sm ¼ Stranslation þ Srotate þ Svibrate þ Scombinate (8.4)

Since the fourth term is obtained from the combination of chain units and solvent

molecules, the first three terms for the whole chain are far less than the fourth one if

considering their global contributions in the lattice space. Therefore, only the

combination entropy Scombinate is calculated. According to the Boltzmann’s relation

Scombinate ¼ klnO, we only need to calculate the total amount of arrangement of

molecules in the lattice space.

Fig. 8.5 Illustration of the route to calculate the mixing free energy of polymer solutions
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Let us firstly pick j chains from the fully ordered initial state, and randomly put them

into the lattice space with a volume N, without any overlapping. Then we look at how
to put the representative (j þ 1)th chain. According to the incompressible mixing

assumption, the first monomer can be randomly put into any one of the rest N-rj vacant
sites, so there areN-rj possible ways; the second monomer can only be put into any one

of q coordination sites surrounding the first monomer, and according to the assumption

of concentrated solutions, the vacant probability of each coordination site is the

concentration of vacant sites 1�(rj þ 1)/N, thus the number of possible ways to put

the second monomer is q[1�(rj þ 1)/N]; according to the flexible chain assumption,

the third monomer can be put into any one of q�1 coordination sites surrounding the

second monomer, each with the vacant probability 1�(rj þ 2)/N, so the number of

possible ways to put the third monomer is (q�1)[1�(rj þ 2)/N]; so on so forth, the r-th
monomer can be put into any one of q�1 coordination sites surrounding the previous

monomer, each with the vacant probability 1�(rj þ r�1)/N, so the number of possible

ways to put this monomer is (q�1)[1�(rj þ r�1)/N]. Therefore, the total number of

ways to put the ( j þ 1)th chain is

Wjþ1 ¼ qðq� 1Þr�2ðN � rjÞ P
r�1

i¼1
ð1� rjþ i

N
Þ ¼ qðq� 1Þr�2

Nr�1
� ðN � rjÞ!
ðN � rj� rÞ! (8.5)

It should be noted that the probability of a vacant coordination site surrounding

ith monomer is pij ¼ 1�(rj þ i)/N, which is on the basis of assumption two, i.e. the

so-called random-mixing approximation. On this point, Flory and Huggins made

different treatments. Let’s consider the ith monomer that has been put into a

previously vacant site, the (i þ 1)th monomer has to be put into a vacant coordina-

tion site surrounding the previously vacant site. Therefore, Pij should be the fraction

of two consecutively connected vacant sites in the total pairs of two neighboring

sites containing one vacant site. The total vacant sites are N�rj�i, and their total

coordination number is q(N�rj�i), each with the vacant probability 1�(rj þ i)/N,
so the total number of two consecutively connected vacant sites is

Nvoid�void ¼ 1

2
qðN � rj� iÞð1� rjþ i

N
Þ (8.6)

Here 1/2 is the symmetric factor for estimating the vacant site pairs twice.

Similarly, the total amount of coordination site pairs in the lattice space is qN/2.
In 1942, Flory did not consider the consecutive occupation of vacant site pairs

(Flory 1942), and calculated only those neighboring site pairs containing one vacant

site, as

Nvoid ¼ 1

2
qNð1� rjþ i

N
Þ (8.7)
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He directly obtained

Pij ¼ Nvoid�void

Nvoid
¼ 1� rjþ i

N
(8.8)

Also in 1942, Huggins considered the doubly vacant case in the total amount of

coordination pairs qN/2 (Huggins 1942), as

1

2
qN ¼ Nvoid�void þ Nvoid�occupy þ Noccupy�occupy (8.9)

The part of double occupation pairs should be subtracted, because they contain

two consecutively connected monomers along the chain, and do not belong to

statistical events. The subtracted part is

Moccupy�occupy ¼ qðrjþ iÞ � r � 2

qr
(8.10)

Therefore, he adopted

Pij ¼ Nvoid�void

Nvoid
¼ Nvoid�void

qN=2�Moccupy�occupy
¼ qðN � rj� iÞ

qN � 2ðr � 2Þðrjþ iÞ=r (8.11)

This term looks like the probability of vacant sites on the surface of each site,

and thus has the name of “the surface fraction”. Equation (8.8) has been called “the

volume fraction”. Huggins consideration is more sophisticated, although for a large

coordination number it does not result in a significant difference from Flory’s

consideration.

The total ways in the arrangement of the solution system O is equal to the ways

to arrange N2 chains, and there is only one way to arrange solvent molecules in the

available single sites as they are identical. Therefore, we have

O ¼ 1

2N2N2!
P

N2�1

j¼0
Wjþ1 (8.12)

Inserting (8.5), we obtain

O ¼ qN2ðq� 1ÞN2ðr�2Þ

2N2NN2ðr�1ÞN2!
� P
N2�1

j¼0

ðN � rjÞ!
½N � rðjþ 1Þ�!

¼ qN2ðq� 1ÞN2ðr�2Þ

2N2NN2ðr�1ÞN2!
� N!

ðN � rN2Þ! ; ð8:13Þ

Here, 1/N2! is the symmetric factor resulted from double estimation of identical

chains: 1 for the first chain, 1/2 for the second chain, . . . 1/N2 for the last chain, then
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the integrated total 1/N2!. 1/2 is the symmetric factor for the double estimation

starting from either one of two chain ends. Introducing the Stirling’s approxima-

tion, when A >> 1,

lnA! � A lnA� A (8.14)

We then obtain

Sm
k
¼ lnO¼�N1 lnðN1

N
Þ �N2 lnðN2

N
Þ �N2ðr� 1Þ þN2 lnðq

2
Þ þN2ðr� 2Þ lnðq� 1Þ

(8.15)

For the purely disordered bulk phase of polymers, N1 ¼ 0, N ¼ rN2, we have

Sm
k

����
N1¼0

¼ �N2ðr � 1Þ þ N2 lnðqr
2
Þ þ N2ðr � 2Þ lnðq� 1Þ (8.16)

The mixing entropy of polymer solutions is the difference of entropy between

the disordered bulk phase and the disordered solution phase, as given by

DSm
k

¼ Sm
k
� Sm

k

����
N1¼0

¼ �N1 lnðN1

N
Þ � N2 lnðrN2

N
Þ ¼ �N1 lnf1 � N2 lnf2 (8.17)

where f1 and f2 are the volume fractions of small solvent molecules and polymers,

respectively.

8.2.4 Calculation of Mixing Heat and Free Energy

According to the mean-field assumption, the mixing heat

DUm ¼ BP12 (8.18)

Here, P12 is the number of pairs between solvent site 1 and monomer site 2, the

mixing interactions in each pair B ¼ B12�(B11 þ B22)/2. Each chain approxi-

mately holds (q�2)r coordination sites, and each coordination site contains the

probability of solvent occupation f1, thus for N2 chains,

P12 ¼ N2ðq� 2Þrf1 (8.19)

One can define

w � ðq� 2ÞB
kT

(8.20)
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This parameter has been called Flory-Huggins interaction parameter. Therefore,

DUm ¼ kTwN1f2 (8.21)

With the assumption of incompressible mixing in the lattice space, the mixing heat

corresponds to the mixing enthalpy, and the Helmhotz free energy is equivalent to the

Gibbs free energy.

Merging the mixing entropy and the mixing heat into the mixing free energy, one

can obtain

DFm

NkT
¼ f1 lnf1 þ

f2

r
lnf2 þ wf1f2 (8.22)

This equation is the well-known Flory-Huggins Equation. The power of a theory
is reflected by its capability for further applications in various situations. In the next

section, we will introduce how the assumptions of Flory-Huggins theory can be

amended for its broad applications.

8.3 Developments of Flory-Huggins Theory

8.3.1 Simple Additions

8.3.1.1 Polydisperse Polymer Solutions

The mixing free energy can be linearly integrated by the contributions according to

the volume fraction of polymers with each molecular weight, i.e.

DFm

kT
¼ N1 lnf1 þ

X
i> 1

Ni lnfi þ wN1

X
i> 1

fi (8.23)

8.3.1.2 Binary Blends

The binary blends are the mixture of two species of polymers. In the mixing free

energy, the term for small solvent molecules can be substituted by the term

for another specie of polymers with chain length r1 (Scott 1949; Tompa 1949), as

given by

DFm

NkT
¼ f1

r1
lnf1 þ

f2

r2
lnf2 þ wf1f2 (8.24)
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This equation is also called Flory-Huggins-Scott equation. If both r1 and r2 are
very large, the common mixing driving forces, i.e. the mixing entropy, will be

extremely small. Therefore, the common non-polar polymers are difficult to mix

with each other. One way to enhance compatibility is to introduce specific

interactions between two species of polymers, such as hydrogen bonding or polar

group interactions. Another way is to introduce highly repulsive comonomer C into

the component B, making the latter a random copolymer BxC1�x, which modifies

the Flory-Huggins interaction parameter into w ¼ xwAB þ (1�x)wAC�x(1�x)wBC.
When wBC is very large, the Flory-Huggins interaction parameter can change its

sign to favor the mixing (Kambour et al. 1983; ten Brink et al. 1984).

8.3.1.3 Shear Flow

For polymer solutions under shear flow, Wolf has considered the elastic energy of

polymer strain resulted from shear-induced deformation (Wolf 1984),

DFm

kT
¼ N1 lnf1 þ N2 lnf2 þ wN1f2 þ

N1v1 þ N2v2
RT

J0e�
2g02 (8.25)

where Je
0 is the steady shear compliance, � is shear viscosity under the shear rate g’,

v1 and v2 are the molar volumes of solvent and polymer, respectively.

8.3.1.4 Equilibrium Swelling of Network Polymers

The lightly cross-linked polymer network is known as the gel, which would not

swell into fully stretched chains in a good solvent, due to the conformational

entropy loss associated with polymer deformation, but rather, reaches an equilib-

rium swelling. The mixing free energy provides the driving force for the network

swelling, which can be calculated from the Flory-Huggins equation, as

DFm

kT
¼ N1 lnf1 þ N2 lnf2 þ wN1f2 (8.26)

The conformational entropy of the chain between the cross-linking points works

against the network swelling, which can be calculated from the classical elastic free

energy of cross-linked network, as

DFe

kT
¼ n0

2
ðl21 þ l22 þ l23 � 3� lnðl1l2l3Þ ¼ 3rV0

2Mc
ðf�2=3

2 � 1þ 1

3
lnf2Þ (8.27)

Here, n0 is the total number of network chains, the deformation ratio l1 ¼ l2 ¼
l3 ¼ l ¼ (V/V0)

1/3 ¼ f2
�1/3, V0 and V are the volume before and after the

swelling, respectively, and V/V0 ¼ Q is the swelling ratio. n0 ¼ W/Mc ¼ rV0/Mc,
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whereW is the weight of the network chains, r is the dry polymer density, andMc is

the average molecular weight of the network chains. The l1l2l3-fold increase of

each chain volume brings an additional translation entropy. The total free energy of

the swelling system is thus F ¼ DFm þ DFe. Taking the minimum of the total free

energy with respect to N1, one can obtain the equilibrium total chemical potential of

polymer chains, as given by

Dm ¼ Dmm þ Dme ¼ 0 (8.28)

where the molecular weight of the cross-linked polymer can be regarded as

infinity, then

Dmm ¼ @Fm

@N1

¼ kTðlnf1 þ f2 þ wf2
2Þ (8.29)

On the other hand, since

f2 ¼
V0

V0 þ N1v1
¼ ð1þ N1v1

V0

Þ�1
(8.30)

and v1 is the molar volume of the solvent, one further reaches

Dme ¼
@Fe

@N1

¼ @

@N1

�
3rV0kT½ð1þ N1v1

V0

Þ
2=3

� 1� 1

3
lnð1þ N1v1

V0

Þ�
2Mc

¼
rv1kTðf1=3

2 � f2

2
Þ

Mc
(8.31)

Then one obtains

lnð1� f2Þ þ f2 þ wf2
2 þ

rv1
Mc

ðf1=3
2 � f2

2
Þ ¼ 0 (8.32)

This equation is known as Flory-Rehner equation (Flory and Rehner 1943; Flory

1950). Given the mixing interaction parameter w and the bulk polymer density r, by
measuring the swelling ratioQ ¼ f2

�1 upon equilibrium swelling, one can calculate

the average molecular weight of the network chains according to the Flory-Rehner

equation.

For a polyelectrolyte gel, the charge interactions can be further added into the

total chemical potentials according to Donnan equilibrium (Donnan and

Guggenheim 1932), and one can obtain

lnð1� f2Þ þ f2 þ wf2
2 þ

rv1
Mc

ðf1=3
2 � f2

2
Þ � ff2 ¼ 0 (8.33)
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where f is the charge fraction of monomers on the polymer chain. This equation is

known as Flory-Rehner-Donnan equation. With the increase of f, the equation will

give two solutions of swelling ratios under a specific w, indicating a sudden volume

transition. This phenomenon is called volume phase transition, and has been

verified experimentally (Tanaka et al. 1980). It can be applied as the environmen-

tally responsive smart gels.

8.3.2 Compressible Fluids

The classical lattice statistical model only considers the mixtures of two incom-

pressible fluids. Flory recognized that the line of the actual mixing interaction

parameter versus the reciprocal temperature does not have zero intercept, i.e.

w ¼ Aþ B

T
(8.34)

Here, the term A includes the contribution of interaction entropy (Flory 1970).

Such a contribution can be understood from the concept of compressible free volume

in the fluids. When two fluids are mixed with each other, part of molecules of one

species enters the free volume of another species, and then the total volume is not a

simple addition of the two individual components. Yamakawa made an approximate

estimation from the expansion theory (Yamakawa 1971). Prigogine attributed this

contribution to a combinatorial contribution of molecular geometry and a

non-combinatorial contribution of molecular structures, and proposed an equation-

of-state theory (Prigogine 1957b). Flory, Orwell and Vrij further considered the

contribution of free volume, and employed separate parameters to describe the

hard-core volume and surface contacts of chain units (Flory et al. 1964; Flory

1965; Orwall and Flory 1967). This work makes the equation of state fit better to

the experimental results, and derives the so-called Flory-Orwell-Vrij equation of state

for pure polymers, as given by

P0V0

T 0 ¼ V01=3

V01=3 � 1
� 1

V0T0 (8.35)

where P’ ¼ P/P*, V’ ¼ V/V*, T’ ¼ T/T*, and P*,V* and T* are adjustable.

Sanchez and Lacombe supposed that in a binary polymer blend, free volume

occupied N0 lattice sites, and the bulk polymer density r � N/(N þ N0), where

N ¼ SNiri and riwas the chain length of ith fraction, then they developed the lattice
fluid theory to calculate Helmholtz free energy (Sanchez and Lacombe 1974;

Sanchez 1978), as given by

DFm

NkT
¼ f1

r1
lnðrf1Þ þ

f2

r2
lnðrf2Þ þ ð1� rÞ lnð1� rÞ=rþ wrf1f2 (8.36)
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One can see that when r ¼ 1, this equation can be reduced to the Flory-Huggins-

Scott equation for binary polymer blends. The lattice fluid theory can predict both

UCST and LCST (lower critical solution temperature) types of phase diagrams for

polymer blends, with further considerations of specific interactions (Sanchez and

Balazs 1989), see more introductions about LCST in Sect. 9.1.

8.3.3 Dilute Solutions

Apparently, the random-mixing approximation in the classical lattice statistical

theory is not applicable to the dilute solutions of polymers. In 1950, Flory and

Krigbaum treated the suspended polymer coils in dilute solutions as rigid spheres

with an effective excluded volume u (Flory and Krigbaum 1950). The combinatorial

entropy depends upon the total number of ways O to put N2 spheres in a big volume

V (supposed in the unit of u). The number of ways to put the first sphere is V, to put

the second sphere is V�u, to put the third V�2u, and so on so forth, then the total

number of ways

O ¼
YN2�1

i¼0

ðV � iuÞ (8.37)

The mixing heat can be neglected in dilute solutions, and then the mixing free

energy

DFm ¼ �TDSm ¼ �kT lnO ¼ �kT½N2 lnV þ
Xn2�1

i¼0

lnð1� iu=VÞ�

� �kT½N2 lnV � u

V

Xn2�1

i¼0

i� ¼ �N2kTðlnV � N2u

2V
Þ ð8:38Þ

The above simplified process omitted the higher order expansions of the logarithmic

term under the dilute condition of iu/V << 1. Therefore, the osmotic pressure of

solvent is

P ¼ �ðm1 � m01Þ=v1 ¼ �Na
@DFm

@N1

=v1 ¼ �Na
@DFm

@V
� @V
@N1

=v1 (8.39)

where Na is the Avgadro constant, and v1 is the molar volume of the solvent. Since

∂V/∂N1 ¼ v1/Na, one obtains

P ¼ �@DFm=@V � kT½N2=V þ ðu=2ÞðN2=VÞ2� (8.40)
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Assuming N2/V ¼ cNa/M, where c is the mass concentration of polymers, then

P
c
¼ RTð 1

M
þ Nau

2M2
cÞ (8.41)

One can see that the second Virial coefficient for the interactions between

polymer coils in dilute solutions is directly determined by the self-repulsion volume

u of each polymer coil.

The thermodynamic excluded volume u of each coil is related with the free

energy change DFo upon the overlapping of two coils, thus

u �
ð1
0

ð1� e�DFo=kTÞ4pa2da (8.42)

where a is the distance between mass centers of polymer coils. By assuming the

Gaussian distribution of monomers along the radius direction of the coil starting

from its mass center, the Flory-Krigbaum theory proved a linear relation between

DFo and 1�y/T. At the theta point, the excluded volume of coils will be zero, and

such an unperturbed state leads to zero second Virial coefficient between two coils.

The numerical result (4.44) derived from the Flory-Krigbaum theory has been

discussed in Sect. 4.2.4.

In a rough approximation, Flory-Huggins equation also gives the practical

expression for the measurement of molecular weight M, as

P
c
¼ RT

M
þ RTv2

v1
ð1
2
� wÞc ¼ C1 þ C2c (8.43)

where C1 and C2 are constants for a specific polymer solution. This implies that

under the limit of dilute solution, the mean-field theory seems to work well. When

w ¼ 1/2, polymers in solutions reach their unperturbed states.

In 1959, Maron considered polymer coils as a whole with an effective hydrody-

namic volume ef2 in dilute solutions (Maron 1959; Maron and Nakajima 1960).

Here e is a prefactor for the effective polymer volume, which exhibits an empirical

dependence on polymer concentrations as

1

e
¼ 1

e0
þ ðe0 � e1

e0
Þf2 (8.44)

where for infinitely diluted solutions, e0 ¼ [�]/2; when f2 increases till viscosity

� ! 1, e1 � 4. The total volume of the system also changes from V0 (before

mixing) to V (after mixing), and the mixing interactions are not independent of the

entropy. Accordingly, the Flory-Huggins equation has been developed into

DGm ¼ RTðX0 þ wN1’2Þ (8.45)
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DHm ¼ RT2lN1’2 (8.46)

DSm ¼ �R½X0 þ ðw� TlÞN1’2� (8.47)

where X0 ¼ N1 ln’1 þ N2 ln’2 þ ðN1 þ N2Þ ln V0

V þ N2 ln
e
e0

, and l ¼ ð@w@TÞf2;P .

Maron’s theory has been proved to be effective across the whole concentration

range of the solutions for natural rubber/benzene and polystyrene/benzene, toluene,

cyclohexane, methyl ethyl ketone, ethyl acetate, chloroform, acetone, ethylbenzene

and chlorobenzene solvents (Maron and Nakajima 1959).

8.3.4 Concentration Dependence of Interaction Parameters

The Flory-Huggins interaction parameter w ¼ (q�2)B/(kT), and w seems to be

independent of f2. However, from experiments (Flory 1953), w is found to vary

with f2. For the sake of convenience, we use

weff ¼ qeff
B

kT
(8.48)

In 1971, Koningsveld and Kleijens made the first-order correction (Koningsveld

and Kleijens 1971), as

wKK ¼ ðq� 2þ 2’2ÞB
kT

(8.49)

But this expression appears not enough precise in comparison to experimental

results.

In 1988, Bawendi and Freed considered the free-volume contribution, and made

the second-order correction (Bawendi and Freed 1988), as given by

wBF ¼ ðq� 2þ 2’2Þ
B

kT
� q’2ð1� ’2Þð

B

kT
Þ2 (8.50)

In principle, the expansion can be two dimensional in addition with respect to

1/q, and both go to higher order corrections.

8.3.5 Lattice-Cluster Theory Considering Molecular Geometry

In polymer blends, the chain-unit volumes of different species are often not

identical, for instance, propylene containing one more methyl than ethylene, and
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thus they are not geometrically identical in the lattice space. In 1991, Dudowicz and

Freed proposed a cluster of interconnected lattice sites to reflect the various

geometries of chain units (Dudowicz and Freed 1991), and the results gave

DFm

NkT
¼ f1

r1
lnf1 þ

f2

r2
lnf2 þ f1f2fð

g1 � g2
q

Þ2 þ B

kT
½q� 2� 2

q
ðh1f2 þ h2f1Þ�g

(8.51)

where g1 and g2 were determined by the structures of chain units, h1 and h2were the
combinatorial methods for three consecutive bonds passing through chain units of

the corresponding species. Such an equation can be reduced to the Flory-Huggins

equation. The asymmetry in the molecular geometries of two components in

polymer blends may lead to the LCST-type phase diagram, see more introductions

about LCST in Sect. 9.1.

8.3.6 Semi-Flexible Polymers

In 1956, Flory introduced the semi-flexibility into the classical lattice statistical

thermodynamic theory of polymer solutions (Flory 1956). From the classical lattice

statistics of flexible polymers, we have derived the total number of ways to arrange

polymer chains in a lattice space, as given by (8.15). The first two terms on the

right-hand side of that equation are the combinational entropy between polymers

and solvent molecules, and the last three terms belong to polymer conformational

entropy. Thus the contribution of polymer conformation in the total partition

function is

Zconf ¼ ½qðq� 1Þðr�2Þ

2eðr�1Þ �N2 (8.52)

Here, 1/2 is the symmetric factor for the two chain ends, i.e. the first putting

monomer can be either one of the two chain ends; putting the second monomer like

random walks, which has q choices; starting from putting the third monomer, there

are q�1 choices for non-reversing random walks; the natural number e can be

regarded as a correction to each step of random walks due to the coexistence of

other chains. The Huggins’ surface fraction (8.11) derives the correction term as

(1�2/q)1�q/2, which approaches the natural number when q!1 (Flory 1982). For

semi-flexible chains, Flory assumed that starting from putting the third monomer,

each step of random walks is no longer random, but rather, follows a partition

function according to Boltzmann’s distributions to assign the probabilities of

conformations to their conformational energy. Assuming a collinear connection

of the bonds corresponds to the trans-conformation at the ground state with

zero energy, and the non-collinear connection of the bonds corresponds to
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gauche-conformation with energy Ec raised, the partition function for each step of

walks is thus defined as

zc � 1þ ðq� 2Þ exp½�Ec=ðkTÞ� (8.53)

which can replace q�1 in (8.52). Here, the collinear connection has only one choice

due to the ground state, while the non-collinear connection can have q�2 choices.

Therefore, one can get the partition function with the conformation contributions of

semi-flexible chains as

lnO ¼ �N1 ln
N1

N
� N2 ln

N2

N
� N2ðr � 1Þ þ N2 ln

q

2
þ N2ðr � 2Þ ln zc (8.54)

The conformational states of semi-flexible chains can be represented by the

disorder parameter f, defined as

f ¼ ðq� 2Þ exp½�Ec=ðkTÞ�
1þ ðq� 2Þ exp½�Ec=ðkTÞ� (8.55)

In fact, f is the statistical average fraction of non-collinear connections along the
chain. f is close to one when T ! 1, corresponding to the flexible chain.

f approaches zero when the temperature is low enough, corresponding to the rigid

chain. In the latter case, zc approaches e, whichmakes the conformation contribution

Zconf in the total partition function close to one, implying the spontaneous return to

the ground state (the fully ordered state). Flory suggested that this case corresponds

to crystallization driven by the chain semi-flexibility. This spontaneous ordering

process has been verified by computer simulations. But in practical concentrated

solutions, semi-flexible polymer chains are often frozen into a disordered state at low

temperatures, similar to the glass transition induced by the random stacking of rigid

rods. In fact, for a better description of polymer crystallization, one may need to

further consider the parallel packing interactions between crystalline polymer

chains, as will be further introduced in Sect. 10.2.

Question Sets

1. Why can the lattice model calculate the mixing free energy of polymer

solutions?

2. What is the purpose of mean-field assumption?

3. Why are two species of non-polar polymer chains not easy to mix with each

other?

4. Why is the shear flow easy to induce phase separation in the multi-component

polymer systems?

5. How to make use of equilibrium swelling to measure the average molecular

weight of network polymers in the cross-linked polymer systems?

6. How to make use of volume phase transition of polyelectrolyte gels to design the

smart gel system?
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Chapter 9

Polymer Phase Separation

9.1 Thermodynamics of Phase Separation

Phase separation is a spontaneous process for polymer chains to segregate from a

mixture into a more concentrated phase with clear boundaries. The decrease of the

system free energy after mixing two components leads to stable homogeneous

polymer mixture. The Flory-Huggins equation for the mixing free energy of

polymer-based mixtures shows that, the mixing entropy is always positive and

favors mixing. Therefore, the total mixing free energy is mainly determined by

the sign and magnitude of the mixing heat. For non-polar polymers, the mixing heat

is always positive, as described by (4.9) (the Scatchard-Hildebrand equation) in

Sect. 4.2.1. The mixing heat can be so large that the polymer solution becomes

thermodynamically unstable, and spontaneously transforms into two coexisting

phases: a polymer-rich phase, and a polymer-poor phase.

The condition for a thermodynamic equilibrium between two coexisting phases is

the equivalence of chemical potentials with respect to each component. The mixing

free energy changes with concentrations in the homogeneous mixing states, as

illustrated in Fig. 9.1a. Assuming a lattice polymer blend with the total volume

N ¼ r1N1 þ r2N2, where two polymers with separate molecular weights r1 and r2
are blended with corresponding molecular numbers N1 and N2. The free energy

density Dfm ¼ DFm/N. If we draw a tangent line from a given point on the curve of

Dfm versus the volume fraction f2, its intercepts at f2 ¼ 0 and f2 ¼ 1 separately

correspond to the chemical potentialsDm1 andDm2 for two components, as defined by

Dm1 �
@Dfm
@f1

(9.1)

Dm2 �
@Dfm
@f2

(9.2)
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When the phase separation occurs, the curve of Dfm versus f2 exhibits a common

tangent line at two points of A and B, as illustrated in Fig. 9.1b. This implies that at

A and B states,

Dm1A ¼ Dm1B (9.3)

Dm2A ¼ Dm2B (9.4)

The common tangent rule above is the thermodynamic condition for the equilib-

rium between A and B phases. The temperature dependence of the concentrations at

A and B states outlines the phase coexistence curve, which is called the binodal line.
When temperature is high enough, A and B points will merge at the critical point

of phase separation. The thermodynamic condition for the critical point is that

partial derivatives of both the first and the second orders for the free energy with

respect to the concentration are equal to zero. From

f1 þ f2 ¼ 1 (9.5)

and

@3Dfm
@f1

3
¼ kTð 1

r2f2
2
� 1

r1f1
2
Þ ¼ 0 (9.6)

@2Dfm
@f1

2
¼ kTð 1

r1f1

þ 1

r2f2

� 2wÞ ¼ 0 (9.7)

Solve the above three simultaneous equations, we can obtain

f2c ¼
ffiffiffiffi
r1

pffiffiffiffi
r1

p þ ffiffiffiffi
r2

p (9.8)

Fig. 9.1 Illustration of mixing free energy as a function of polymer volume fractions. (a) The

mixing state are stable over all f2; (b) f2 are stable only at points A and B and the regions outside

of these two points
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wc ¼
1

2
ð 1ffiffiffiffi

r1
p þ 1ffiffiffiffi

r2
p Þ2 (9.9)

For a symmetric polymer blend, two components share the same molecular

weights, i.e., r1 ¼ r2 ¼ r, and the critical point becomes

f2c ¼
1

2
(9.10)

wc ¼
2

r
(9.11)

The extreme case of asymmetric blends is polymer solutions with r1 ¼ 1 and

r2 ¼ r. The critical point becomes

’2c ¼
1

r1=2 þ 1
(9.12)

wc ¼
1

2
þ 1ffiffi

r
p þ 1

2r
(9.13)

When r ! 1,

f2c ! 0 (9.14)

wc !
1

2
(9.15)

At w ¼ 1/2, the second Virial coefficient in (8.43) becomes zero. Therefore, it is

clear that the theta point of dilute polymer solutions locates in the vicinity of the

critical point of the phase separation. Similarly, polymers in the bulk phase are also

near the critical point. Owning to the strong thermal fluctuations near the critical

point, the long-range correlation could occur along the polymer chains. Therefore,

polymers in both melt and solution phases exhibit typical chain-length scaling laws

with regard to their conformations and motions.

According to (9.11) and (9.13), an increase in molecular weights of polymers

gives rise to the decrease of wC. In a concentrated solution of polydisperse

polymers, the interaction parameter can be gradually raised by either decreasing

temperatures or by adding droplets of a precipitant agent (a poor solvent to increase

the mixing interaction B). Accordingly, the high molecular weight fraction will

meet the critical condition of phase separation first, and precipitate from the

solution, as illustrated in Fig. 9.2. This is the principle of precipitation fractionation

of polydisperse polymers.

The critical point obtained from the Flory-Huggins equation can well explain the

critical condition for phase separation upon temperature drop. This critical point is
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called the upper critical solution temperature (UCST). Nevertheless, some polymer

solutions exhibit the critical point for phase separation upon temperature rise. The

latter is called the lower critical solution temperature (LCST), as illustrated in

Fig. 9.3.

With further consideration of the mixing entropy in the interaction parameter

w ¼ Aþ B

T
(9.16)

the LCST phenomenon occurs when A > 0 and B < 0. There might be various

mechanisms for the LCST phenomenon. One is the stable hydrogen-bonding

interactions formed between solute and solvent, and the phase separation occurs

at high temperatures that favor the strong thermal motions to suppress these specific

interactions (the lattice-fluid theory, see Sect. 8.3.2). Another more general mecha-

nism is the higher compressibility of the solvent with the increase of temperature

near its boiling point. Phase separation occurs due to the entropy constraint to

Fig. 9.2 Illustration of phase

diagrams for the sequential

precipitation of various

molecular weight fractions

M with the increase of the

interaction parameter w

Fig. 9.3 Illustration of LCST

and UCST phase diagrams
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polymer motion caused by the difference in the coefficients of thermal expansion

between the polymer and the solvent. This mechanism can be described by the

equation-of-state theories (the Flory-Orwoll-Vrij theory, see Sect. 8.3.2) based on

the compressibility of polymer solutions. Further, some LCST phenomena in the

blends of polar polymers can be explained by the lattice-cluster theory considering

the geometrical mismatch between the chain units of the two components

(see Sect. 8.3.5).

9.2 Kinetics of Phase Separation

The thermodynamic instability of a mixture does not mean immediate occurrence of

the phase separation (Gibbs 1961). The influence of minute concentration

fluctuations on the free energy dictates the dynamic instability of the mixture. The

thermal fluctuations cause local concentrations to deviate from the average concen-

tration f. When the local curvature of the free energy curve opens to the downside,

for instance, the CD segment on the curve shown in Fig. 9.1b, the average free

energy caused by local fluctuations appears lower than the initial Dfm. The decrease
of average free energy implies the dynamic instability of that state, which triggers an

immediate phase separation, as illustrated in Fig. 9.4a. In this case,

@2Dfm
@f2

¼ @m
@f

< 0 (9.17)

which implies that the two components at the interfaces spontaneously diffuse

towards the direction of higher concentrations (uphill diffusion). Any minute con-

centration fluctuation is thus enlarged, leading to large-scale phase separation. Such

a mechanism of phase separation is known as spinodal decomposition (SD) (Cahn

1968; Hilliard 1970). Therefore, zero second derivative of free energy with respect

to the change of concentration is the boundary condition between the metastable and

unstable states. In Fig. 9.4b, concentrations at the inflection points C and D are

changing with temperature, which constitute the critical curve called the spinodal
line, as illustrated in Fig. 9.5. The thermodynamic conditions of the spinodal line can

be obtained from the Flory-Huggins-Scott equation of binary blends, as given by

@2Dfm
@f1

2
¼ kTð 1

r1f1

þ 1

r2f2

� 2wsÞ ¼ 0 (9.18)

Thus

ws ¼
1

2
ð 1

r1f1

þ 1

r2f2

Þ (9.19)
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If the curvature of the free energy curve opens to the upside, for instance, the

metastable regions between A and C points and between B and D points shown in

Fig. 9.1b, the minute concentration fluctuation will not lead to phase separation, as

illustrated in Fig. 9.4b. In this case,

@2Dfm
@f2

¼ @m
@f

> 0 (9.20)

Fig. 9.5 Illustration of binodal and spinodal phase diagrams of the binary mixing systems. The

regions separated by these curves correspond to two different mechanism NG (nucleation and

growth) and SD (spinodal decomposition) for phase separation

Fig. 9.4 Illustration of mixing free energy changing with the local fluctuations of polymer volume

fractions. (a) The curvature opens to the downside, so fluctuations make lower free energy; (b) the

curvature opens to the upside, so fluctuations make higher free energy
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which implies that at interfaces the two components spontaneously diffuse towards

the directions of lower concentrations (downhill diffusion), resulting in sharper

interfaces, as illustrated at the left-hand side of Fig. 9.6. Only concentration

fluctuations with large enough amplitude can lead to the emergence of new

phase, as illustrated at the right-hand side of Fig. 9.6. Such a mechanism of the

phase separation is called nucleation and growth (NG) (Abraham 1974; Oxtoby

1998). The concentration regions of phase diagrams for different mechanisms of

phase separation are shown in Fig. 9.5.

Polymer blends are the ideal system for scattering experiments to study the

phase separation kinetics with spinodal decomposition. This is because the diffu-

sion rates of polymer molecules are small in the bulk phase, leading to slow phase

separation process and thus allowing time-resolved scattering experiments to trace

the structural evolution during phase separation. The kinetic process of phase

separation is normally initiated by the concentration fluctuations in the homoge-

neous mixture. For such a homogeneous mixture, the scattering experiments based

on the visible lights (by the differences in polarizability or reflective index), neutron

beam (by the difference in neutron scattering sectional areas between deuterium

and hydrogen atoms) and X-ray (by the difference in the electron densities) can

measure the scattering intensity, which corresponds to the structure factor of the

concentration fluctuations S(h) ¼ <Df2>. Here, the scattering vector

h ¼ 4p sin y
l

(9.21)

which reflects the length scale of scattering objects. De Gennes borrowed the

concept of random-phase approximation (RPA) from the discussion of electron-

density fluctuations (de Gennes 1970, 1979). He assumed that the scattering

intensity at a given h is linearly integrated over the independent contributions

from each polymer chains in a field of average concentrations, so

1

SðhÞ ¼
1

r1f1SDðh; r1Þ
þ 1

r2f2SDðh; r2Þ
� 2w (9.22)

Fig. 9.6 Illustration of concentration fluctuations under different mechanisms of phase separa-

tion. The left side shows the features of concentration distribution and diffusion for the nucleation

and growth (NG) and the spinodal decomposition (SD), respectively, and the right side shows the
results of free energy changes due to small and large fluctuations
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which is called RPA equation. SD(h, r) is the Debye function that describes the

structure factor of each ideal chain, as given by

SDðQÞ ¼ 2½expð�QÞ þ Q� 1�
Q2

(9.23)

Here, Q ¼ h2Rg
2 is related with the radius of gyration of the polymer coil Rg.

Based on the analysis above, the Flory-Huggins interaction parameter of the blend

can be directly derived from the experimentally determined scattering intensity.

When h ! 0, SD(h, r) ¼ 1, and then

1

Sð0Þ ¼
1

r1f1

þ 1

r2f2

� 2 w ¼ 2ðws � wÞ (9.24)

The extrapolation of scattering intensity to the lower limit of scattering angles gives

the Flory-Huggins interaction parameter. The experimental definition of this value is

wSANS ¼
1

2
ð 1

r1f1

þ 1

r2f2

� 1

Sð0ÞÞ (9.25)

According to (9.16), (ws�w) ~ (T�Ts), the divergence of S(0) indicates the

temperature approaching the spinodal line. At this moment, the sample quickly

becomes opaque. Therefore, the spinodal temperature at a specific concentration

can be measured by the scattering experiment.

At the very large scattering vector h,

SD � 2

Q
¼ 2

h2R2
g

(9.26)

In the normal situation, the simple addition of two extreme cases has been taken

as an approximation,

S�1
D ¼ 1þ h2R2

g

2
(9.27)

That means

SD ¼ 1

1þ h2R2
g

2

(9.28)

This equation is known as Ornstein-Zernike approximation (Ornstein and

Zernike 1914). Inserting Rg
2 ¼ rb2/6 into the RPA equation (9.22), one obtains

1

SðhÞ ¼
1

r1f1

þ h2b2

12f1

þ 1

r2f2

þ h2b2

12f2

� 2w ¼ 1

Sð0Þ þ
h2b2

12f1f2

(9.29)
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The Ornstein-Zernike approximation also exists in the relationship between S(h)
and S(0),

SðhÞ ¼ Sð0Þ
1þ ðhxÞ2 (9.30)

where x is the correlation length of the concentration fluctuation. Comparison

between (9.30) and (9.29), one obtains

x ¼ ð b
2Sð0Þ

12f1f2

Þ1=2 � ðT � TsÞ�1=2
(9.31)

This result implies that when the temperature approaches to the spinodal line, the

correlation length of concentration fluctuations diverges.

In the spinodal decomposition mechanism of phase separation, the modulation

of concentration distributions in the stochastic concentration fluctuations exhibits

multiple correlation wavelengths. The concentration modulation with a large wave-

length requires long-distance diffusion of chains, which is relatively slow. On the

other hand, the concentration modulation with a small wavelength is faster, but it

generates too many interfaces, which is energetically unfavorable. Naturally, an

optimized wavelength exists in the concentration modulation, which results in a

periodic distribution of polymer concentrations at the early stage of the spinodal

decomposition.

The optimized wavelength can be calculated from the Ginzburg-Landau free

energy functional considering concentration fluctuations (Ginzburg and Landau

1950). The functional adds the interfacial free energy onto the mean-field free

energy, i.e.

DF ¼
ð
fDfm þ kðrfÞ2�gd3r (9.32)

where k is called the gradient energy coefficient, reflecting the magnitude of

interfacial free energy density. The square term of concentration gradient can be

traced back to the van der Waals work on the non-ideal gas, which is sometimes

called the Ginzburg term or the Cahn-Hilliard term (Cahn and Hilliard 1958).

According to Fick’s first law of diffusion, the diffusion flux

Jm ¼ �D � rf (9.33)

According to Fick’s second law of diffusion, the diffusion equation

df
dt

¼ �r � Jm ¼ Dð f00r2f� 2kr4fþ :::Þ (9.34)

Its Fourier analytical solution gives
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Dfðr; tÞ ¼ f�<f> � exp½�Dh2ð f 00 þ 2kh2Þt� (9.35)

where t is the time,D is the effective diffusion coefficient, h is the wave number for the

concentration modulation (scattering vector), f 00 ¼ ∂2Dfm/∂f
2. One can see that

the concentration fluctuations will be amplified with an exponential function, and the

amplification factor

RðhÞ ¼ Dh2ð�f 00 � 2kh2Þ (9.36)

When f 00 < 0 (the system becomes unstable), R(h) can be larger than zero. The

critical condition is h < hc ¼ (�f 00/2k)1/2 (the fluctuation size must be large

enough), and the maximum occurs at hmax ¼ (�f 00/4k)1/2. The scattering factor

measured by experiments is S(h) ¼ <Df2>. Therefore

Sðh; tÞ � exp½2RðhÞt� (9.37)

The maximum of the scattering intensity measured in experiments first increases

with time evolution at hmax, and then shifts to smaller values of h (corresponding to

larger sizes of new phases), as illustrated in Fig. 9.7.

An optimized bi-continuous periodic structure occurs at the early stage of

spinodal decomposition. The small domains coalescence with each other at the

later stage, in order to minimize the total interfacial area and thus the total free

energy of the system. The structural evolution at the later stage is called Ostwald
ripening (Ostwald 1896). According to the Porod law,

Sðh ! 1Þ ¼ O

h4
(9.38)

The scattering experiment provides the interfacial density O (the interfacial area

per unit of volume), and thus observes the decay of O with t�1. Correspondingly,

the linear domain size of the new phase increases as

LðtÞ � ðDstÞ1=3 (9.39)

where D is the diffusion coefficient, s is the free energy density of interfaces.

Equation (9.39) is also called the Lifshitz-Slyozov law (Lifshitz and Slyozov 1961).

In the nucleation and growth mechanism of phase separation, large amplitude of

concentration fluctuation is necessary. Since each component diffuses towards its

low-concentration region (downhill diffusion), the interfaces between the separate

regions of the low and the high concentrations will be sharp. The interfacial

contribution to the free energy change is directly calculated with the interfacial

free energy density s, instead of using a concentration-gradient function as in the

case of spinodal decomposition. In the present case, not only a large enough

concentration gradient, but also a large enough new phase domain are required.
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Although the new phase contains a lower free energy, generating new phase

domains always brings an increase of interface free energy, which is unfavorable

in the system. Since a spherical shape has a minimum surface area, Gibbs assumed a

new phase domain as a sphere with the radius of r, and created the classical

nucleation theory to provide a phenomenological interpretation to the free energy

change on nucleation (Gibbs 1878), as given by

DF ¼ � 4p
3
r3Df þ 4pr2s (9.40)

Here the first term represents the decrease of body free energy, and the second

term represents the increase of surface free energy brought by the emergence of

new phase. When the domain size of the new phase is relatively small, the second

term dominates the free energy contribution, which is unfavorable for the decrease

of total system free energy. Therefore, the new phase will disappear quickly. Only

when the domain of new phase becomes large enough, the first term dominates the

free energy contribution, and the total free energy begins to decrease. As a result,

there exists a free energy barrier, as illustrated in Fig. 9.8. The top of free energy

barrier corresponds to the critical size of nucleus, as

r	 ¼ 2s
Df

(9.41)

Only when the size of new phase domains goes beyond that critical value, the

new phase can continuous to grow. At the early stage of the phase separation, the

morphology of new phases generated by a few sporadic nuclei is significantly

different from the periodic structure in the spinodal decomposition mechanism, as

illustrated in Fig. 9.9. At the later stage of phase separation, the small domains of

Fig. 9.7 Illustration of the

maximum scattering intensity

keeping constant with time

evolution as the early-stage

characteristics of spinodal

decomposition of phase

separation
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new phase merge into larger and more stable domains, and then the difference in the

morphology of new phase between spinodal decomposition and nucleation and

growth becomes negligible. In the next chapter, we will introduce more detailed

knowledge about the nucleation kinetics.

The later stage of the phase separation is dominated by the coalescence of the

new phase domains into larger ones to minimize the total interfacial area. Since

diffusion of the polymers is extremely slow, phase separation cannot reach the

equilibrium phase structure predicted by the phase diagram. Instead, one conven-

tionally obtains a metastable structure interweaving concentrated and diluted

phases of polymer chains. Such a metastable multi-component texture can be

solidified due to glass transition, crystallization or cross-linking in the subsequent

cooling process, which displays unique properties beyond the stable state of pure

components. One typical example is the commercialized high-impact polystyrene.

The interwoven texture of rubber-enhanced polystyrene has been prepared from the

mixture of liquid polybutadiene and polystyrene via a process of two-step phase

separation: the first step is cooling for phase separation to form the concentrated and

diluted phases with specific sizes, and the second step is further cooling for phase

separation to form the interwoven texture in the domains of concentrated and

Fig. 9.8 Illustration of free

energy change upon the

nucleation process

Fig. 9.9 Different morphologies of new phase generated at the early stage of (a) nucleation and

growth; (b) spinodal decomposition (Strobl et al. 1986) (Reprint with permission)
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diluted phases, as illustrated in Fig. 9.10. Such a hierarchical interweaving texture

in the matrix of polystyrene can induce a significant amount of crazes to absorb the

impact energy, which greatly raises the impact strength and harvests the advanta-

geous properties of both components.

9.3 Microphase Separation of Diblock Copolymers

Diblock copolymers can form only molecular-scale small domains of microphase
separation rather than macroscopic phase separation, because of the constraint of

the covalent bond between the two components. According to compositions, the

major component forms the continuous matrix, while the minor component forms

the microphase domains. The most common equilibrium geometric shapes of

microdomains can be lamellae, gyroids, cylinders and spheres, as illustrated in

Fig. 9.11, which pack orderly into a nano-scale periodic pattern and be used as

nano-scale templates for the fabrication of functional nano-materials (Bates and

Fredrickson 1990; 1999).

The long period of the regularly packed microdomains, as illustrated in

Fig. 9.12, can be determined by the small-angle X-ray scattering. One may make

a scaling analysis on the equilibrium domain sizes from the calculation of free

energy changes as follows. In comparison to the macrophase-separated polymer

blends, the microphase-separated diblock copolymer system contains mainly two

Fig. 9.10 AFM image for the composite texture formed by polybutadiene well-distributed in

polystyrene matrix via two steps of phase separation (Liu 2003) (Courtesy of Jiang Liu)
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additional free energy contributions. The first contribution is from each chain

crossing over the interfaces, as

DHint ¼ kTw
Adint
v

(9.42)

where v is the volume of each chain unit, dint is the interface thickness, the interface
area contributed from each coil is A ¼ rv/d, d is the long period, and r represents
the number of chain units on each chain. We know that at the critical phase

separation, symmetric polymer blends contain

wc ¼
2

rc
(9.43)

At the interfaces, the critical mixing coil sizes (proportional to the reciprocal of

the mixing interaction parameter) are comparable to the interface thickness.

Accordingly,

dint � v1=3rc
1=2 � v1=3w�1=2 (9.44)

Therefore,

DHint � kTw1=2v1=3
r

d
(9.45)

Fig. 9.11 Illustration of specific geometric shapes of microdomains formed by diblock

copolymers. From left to right are spheres, cylinders, gyroids and lamellae

Fig. 9.12 Illustration of microdomain sizes of symmetric diblock copolymers
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The second contribution is from the conformational entropy of deformed polymer

chains due to the separation of two blocks at the two sides of the interfaces.

Accordingly,

DSstr � �ð R
R0

Þ2 � �ð d
R0

Þ2 (9.46)

Here assume R/d and the ideal coil size R0
2 ¼ rv2/3. The total free energy

contribution

DF
kT

� w1=2v1=3
r

d
þ d2

rv2=3
(9.47)

Taking the minimum free energy with respect to d, one obtains

d � r2=3v1=3w1=6 (9.48)

The scaling relationship between d and the chain length r has been well verified

by the experimental observations. The total free energy after the phase separation in

diblock copolymers is scaled as

DF
kT

� ðwrÞ1=3 (9.49)

From the Flory-Huggins equation, the free energy of the homogeneous mixture

(denoted as the disordered state) of binary blends in parallel to diblock copolymers

is DFm ~ wr, while the free energy of microphase-separated state (denoted as the

ordered state) is DFm ~ (wr)1/3. Here wr is normally called the segregation strength.
With the increase of the segregation strength starting from zero, the disordered state

exhibits a relatively smaller free energy than the ordered state at the beginning, and

is more stable. There exists a critical condition (wr)c for the phase transition, above
which the ordered state exhibits a smaller free energy and becomes more stable, as

illustrated in Fig. 9.13. The critical segregation strength calculated from the self-

consistent-field theory is related only to the chain length (Fredrickson and Helfand

1987), as given by

ðwrÞc � 10:5þ 41r�1=3 (9.50)

The microphase separation of block copolymers is sometimes called order–disorder
transition (ODT). The self-consistent-field theory (SCFT) provides a mean-field

method to calculate various geometric shapes of microdomains. Edwards first

introduced the SCFT into polymer systems on the basis of making path integrals

along chain conformations (Edwards 1965). Helfand applied it to the mean-field

description of immiscible polymer blends on the basis of the Gaussian-chain model
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(Helfand 1975a). The theory was further developed by Hong and Noolandi (1981).

Helfand also applied this theoretical method to the study of microdomain structures in

block copolymer systems (Helfand 1975b), and tried to make precise computations of

the phase diagrams by numerical methods (Helfand and Wasserman 1976).

The microphase separation exhibits quite different behaviors at regions of wr
between near and far away (r!1) from the order-disorder transition. The former is

normally regarded as weak segregation, while the latter is called strong segregation.
Leibler proposed the weak segregation theory by using the expansion of free energy

near the homogeneous phase (Leibler 1980). Semenov proposed the strong segregation

theory by separating the free energy directly into the interface contribution and the

stretching contribution (Semenov 1985). Since the gyroid phase structures of diblock

copolymers contain quite a lot of curved interfaces, unfavorable to the lowering of the

total free energy in the system, they could not be stable in the strong-segregation region.

Furthermore, at the lower end of the gyroid phase region, the stable Fddd orthorhombic

network phase has been discovered (Tyler and Morse 2005).

In order to obtain the precise computational results of phase diagrams for various

geometric features of microdomain structures, Matsen and Schick proposed the

reciprocal-space method for the numerical solutions of the self-consistent mean-field

equations by the use of the crystal symmetry of the ordered phases (Matsen and Schick

1994). The results are shown in Fig. 9.14, which have been well identified by experi-

mental observations. However, this method can only be applied to the stability study of

the known symmetric structures, and cannot predict the microdomain structures with

un-known symmetries. Therefore, Drolet and Fredrickson proposed the so-called real-

space method that starts from the random initial field to obtain all the possible

symmetric structures of block copolymers via self-consistent iterations (Drolet and

Fredrickson 1999). Bohbot-Raviv and Wang proposed the similar but more efficient

method (Bohbot-Raviv and Wang 2000). But this approach cannot guarantee to obtain

the ordered phases with the minimum free energy, and the computation precision is not

superior to the reciprocal-space method. The more efficient method might be first to

obtain the ordered phase structures via the real-space method and then to evaluate their

thermodynamic stability via the reciprocal-space method according to their

Fig. 9.13 Illustration of the

disordered state and the

ordered state separated by the

critical segregation strength
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symmetries. The recent development is from the collaboration between Shi and the

research group of Yang and Qiu (Guo et al. 2008; Zhang et al. 2010). They searched for

all the stable symmetric phases of block copolymers from the solutions of SCF

equations in the reciprocal Fourier-space. This approach allows the search for more

complicated microdomain structures in triblock and multi-block copolymer systems,

more complicated than the diblock copolymer systems.

The theoretical methods to investigate the evolution kinetics of ordered

microdomain structures are those in the atomic-scale including molecular dynamics

simulations, Monte Carlo simulations, dynamic SCFT, dynamic density functional

theory (DDFT), and those in the meso-scale including dissipative particle dynamics

(DPD) simulations, etc. More details of these approaches can be found in the

literatures.

Multi-block copolymers can form a greater variety of ordered phase structures

than diblock copolymers, via self-assembly. Some of them have been widely

applied as the matrix materials, such as styrene-butadiene-styrene (SBS) thermal

elastomers, acrylonitrile-butadiene-styrene (ABS) copolymers and polyurethanes.

In a selective solvent, block copolymers with intramolecular multi-components

can even form various geometric shapes of micelles and vesicles. In particular in

aqueous solutions, the self-assembly of amphiphilic copolymers is neatly

associated with that of bio-macromolecules in the life systems. In the field of

macromolecular assembly, the research approach concerted with experimental

observations, theoretical calculations and molecular simulations harvests new

achievements. Jiang and his collaborators developed the “non-covalent connection”

route of macromolecular self-assembly, i.e. connecting different polymer chains

(either homopolymers or random copolymers) via specific interactions in the

supermolecular chemistry, such as hydrogen bonding, host-guest inclusion complex

interactions, etc. (Chen and Jiang 2005; Guo and Jiang 2009). In a selective solvent,

they can self-assemble into non-covalently connected micelles (NCCM), vesicles

Fig. 9.14 Illustration of phase diagrams for various ordered phase structures and their segregation

strengths changing with compositions in diblock copolymers
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and aqueous gels. For NCCM, the shell molecules of the micelles can be further

cross-linked, and after changed the solvent to dissolute the core component, the

hollow microspheres can be fabricated. Such micelles and hollow microspheres are

viable to realize the environmental-response function, reversible self-assembly and

disassembly, promising wide potential applications.

Question Sets

1. Try to explain the principle of precipitation fractionation of polydisperse poly-

mer solutions.

2. Why can we say that the cloud point when the mixing system turns into opaque is

close to the spinodal temperature?

3. What kinds of different morphological features occur at the early stages of

spinodal decomposition and nucleation?

4. Why do diblock copolymers (�10.5) contain the larger critical segregation

strength than the symmetric polymer blends (¼2)?
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Chapter 10

Polymer Crystallization

10.1 Thermodynamics of Polymer Crystallization

The phase transition from disordered states of polymer melt or solutions to ordered

crystals is called crystallization; while the opposite process is called melting.
Nowadays, more than two thirds of the global product volumes of synthetic

polymer materials are crystallizable, mainly constituted by those large species,

such as high density polyethylene (HDPE), isotactic polypropylene (iPP), linear

low density polyethylene (LLDPE), PET and Nylon. Natural polymers such as

cellulose, starch, silks and chitins are also semi-crystalline materials. The crystal-

line state of polymers provides the necessary mechanical strength to the materials,

and thus in nature it not only props up the towering trees, but also protects fragile

lives. Therefore, polymer crystallization is a physical process of phase transition

with important practical relevance. It controls the assembly of ordered crystalline

structures from polymer chains, which determines the basic physical properties of

crystalline polymer materials.

The crystallization and melting behaviors of polymers are conventionally

measured by the method of differential scanning calorimetry (DSC). One can obtain

the heat flow or compensation power dQ/dt as a function of temperature, which is in

principle proportional to the heat capacity of materials CP and the scanning rate q,
as given by

dQ

dt
¼ dQ

dT
� dT
dt

¼ Cpq (10.1)

At a constant heating rate, we will observe a curve containing a pronounced peak

for the first-order phase transition, as illustrated in Fig. 10.1a. The cooling curve

exhibits an exothermic peak Tc corresponding to the crystallization, while the

heating curve shows an endothermic peak Tm corresponding to the melting. For

small molecules, the onset temperature of the melting peak is normally taken as the

melting point, but for polymers, due to the existence of a broader melting range, the

W. Hu, Polymer Physics, DOI 10.1007/978-3-7091-0670-9_10,
# Springer-Verlag Wien 2013
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peak temperature is taken as the melting point Tm. In principle, when the crystal and
the melt are at thermodynamic equilibrium,

Tc ¼ Tm (10.2)

As illustrated by the crossover point of the curves in Fig. 10.1b, the isobaric free

energy change of the polymer bulk system at the melting point appears as

DFm ¼ DHm � TmDSm ¼ 0 (10.3)

Therefore,

Tm ¼ DHm

DSm
(10.4)

One can see that, as illustrated in Fig. 10.1a, the practical Tc is always lower than Tm.
The volume-temperature curves for crystallization/melting are roughly the same

results. Such a hysteresis loop is an important feature of first-order phase transitions.

If wemake a reference to the melting point of infinitely large crystals, we can define the

supercooling as

DT � T0
m � Tc (10.5)

The occurrence of supercooling also reflects the nucleation and growth mecha-

nism of polymer crystallization. For the initiation of polymer crystallization,

DT can be as high as 20 � 30 �K, much larger than that of common small

molecules. Such a large degree of supercooling for polymers is related to their

metastable chain-folding in the crystal nucleation.

Liquid crystalline polymers exhibit mesophases with various degrees of ordering

between the amorphous state and the crystalline state, i.e. the liquid crystalline

Fig. 10.1 Illustration of (a) DSC curves corresponding to crystallization Tc and melting Tm of

polymers upon cooling and heating processes, respectively; (b) free energy curves of amorphous

and crystalline states of polymers, with the equilibrium melting point given by the crossover of two

curves. The arrows indicate the phenomenon of supercooling
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ordering structures. The common liquid crystalline mesophases of small molecules

are nematic, smectic, cholestic and columnar liquid crystals, as illustrated in

Fig. 10.2. The nematic liquid crystal pocesses only long-range orientational order

without long-range positional order. The smectic liquid crystal shows long-range

positional order along the orientation of the nematic liquid crystal, and appears

close to the crystalline order, as suggested by its name. The cholestic liquid crystal

contains the nematic liquid crystal layers formed by the specific cholestic

molecules, but their orientations vary periodically along one normal direction.

The periodic size can approach the wavelength of visible lights, which causes

scattering. Therefore, the complementary color to the scattered wavelength

displays, which has been widely applied in display devices. The columnar liquid

crystal exhibits hexagonal structures formed by the stacking of disk-like molecules,

which allows one-dimensional motion along the long axis of the column.

The phase transitions of liquid crystals in solutions occur normally through two

mechanisms, i.e. lyotropic and thermotropic transitions. The lyotropic liquid crystal

occurs upon addition of solvent into the crystalline phase, while the thermotropic

liquid crystal occurs upon heating the crystalline phase, as illustrated by the two

arrows in Fig. 10.3, respectively. The phase diagrams for the transition from the

homogeneous solution to the liquid crystal are formed by two almost parallel

curves, reflecting the concentration gap between the two coexisting phases.

The liquid crystal molecules, for example, the rigid rod mesogens, exhibit

characteristic anisotropy of shapes, which is an essential feature in their driving

forces for the phase transition from the disordered state to the liquid crystalline

ordered state. In 1949, Onsager considered the anisotropic volume-exclusion

hydrodynamic interactions between rod-like molecules and thus explained the

lyotropic liquid crystal ordering in solutions (Onsager 1949). This transition occurs

when some rod-like molecules perform parallel compact packing to release a part of

their occupied space to gain higher translational entropy of the other molecules.

Such a situation is favorable to fill more rod-like molecules into limited space at

high concentrations. This effect is also called the entropy-driven ordering effect,

which is one of the characteristics of soft matter. In 1958 � 1960, Maier and Saupe

realized that most rod-like molecules contain a stable conjugated chemical struc-

ture, such as O2N–f–C¼C–f–NH2 (Maier and Saupe 1958, 1959). The electron

Fig. 10.2 Illustration of the structure characters of the nematic, smectic, cholestic and columnar

liquid crystals
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cloud in these molecules distributes non-locally along the long axis, and the

corresponding polarizability is strongly anisotropic. Therefore, the dispersion

forces also show anisotropic features, i.e. the parallel-packed rod-like molecules

display the lowest potential of the attractive interactions. Such strong anisotropic

dispersion attractions between rod-like molecules can explain the thermotropic

liquid crystal phase transition in concentrated and bulk systems.

Liquid crystal polymers conventionally carry anisotropic mesogen groups that

can form a liquid crystal phase. Depending on the locations of the mesogen groups

on the polymer chains, liquid crystal polymers can be categorized into two groups,

i.e. main-chain liquid crystal polymers and side-chain liquid crystal polymers, as

demonstrated in Fig. 10.4. The main-chain liquid crystal polymers often exhibit the

feature of rigid chains, and are suitable for high strength and high modulus

materials. The side-chain liquid crystal polymers often exhibit the feature of

flexible chains, suitable for soft functional materials, for instance liquid crystal

display. Zhou and his coworkers invented mesogen-jacketed liquid crystal

polymers (Zhou et al. 1987). They synthetically controlled the side-chain rod-like

mesogen groups to orient in parallel with the backbone chain. Thus, the semi-

flexibility of the main chains can be continuously adjusted by the length of the

spacers. When the spacers are rather short, the mesogen-jacketed polymers appear

similar to the rigid main-chain liquid crystal polymers. When the spacers are long

enough, the polymers appear as flexible side-chain liquid crystal polymers. Since

the common main-chain liquid crystal polymers are prepared by condensation

polymerization, their molecular weights are relatively low. The mesogen-jacketed

polymers can be prepared by other methods, which provide high strength and high

modulus materials with high molecular weights.

Fig. 10.3 Illustration of

typical phase diagrams of

liquid crystal solutions.

ISO means isotropic

solutions, LC means the

liquid crystal phase, and CR
means the crystalline phase.

The arrows indicate the
directions of lyotropic

(horizontal) and thermotropic

(vertical) liquid crystal phase

transitions
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Even without mesogen-groups, the anisotropic structure of some polymer chains

can form the liquid crystal phase under specific conditions. For instance, under high

pressures, the hexagonal phase of polyethylene is a condis crystal formed by the

flexible chains without any mesogen-groups, where the term “condis” comes from

first three characters of the words ‘conformational disorder’ (Wunderlich and

Grebowig 1984). The conformational-disordered chain can perform one-

dimensional motion along the column structure, similar to the structure of the

columnar liquid crystal. Further cooling can generate the common orthorhombic

crystal.

The mesophase state of liquid crystals is normally opaque due to relatively large

sizes of ordered domains. Its transition point to the isotropic melt state is called the

clear point Ti. The DSC scanning curves of liquid crystals can exhibit either

enantiotropic or monotropic phenomena. For the thermodynamically stable

mesophases of liquid crystals, they occur between the melt and the crystal states

during both cooling and heating processes, as illustrated in Fig. 10.5. When both the

cooling and heating curves show two symmetric consecutive phase transitions, it is

known as the enantiotropic phenomenon. In contrast, for the metastable mesophase

Fig. 10.4 Top-down illustration of the main-chain liquid crystal polymers, side-chain liquid

crystal polymers and mesogen-jacketed liquid crystal polymers

Fig. 10.5 Illustration of enantiotropic phenomenon on the cooling and heating curves of the stable

mesophases. (a) Free energy curves; (b) DSC heating and cooling curves
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liquid crystals, they occur before crystallization just because the latter requires a

large degree of supercooling, as illustrated in Fig. 10.6. When the cooling curve

shows two consecutive phase transitions and the heating curve shows only phase

transition for crystal melting, it is known as the monotropic phenomenon.

10.2 Statistical Thermodynamics of Polymer Crystallization

Statistical thermodynamics are the theoretical bridge connecting microscopic

molecular parameters to macroscopic thermodynamic properties (such as the

melting-point). This approach is mainly based on the calculation of the partition

function that is the sum of all the possible microscopic states mainly following the

Boltzmann distribution. However, the number of microscopic states is so huge that

we could not count them one-by-one, but rather treat the representative states with

appropriate statistical approximations. The most often used statistical approxima-

tion is the mean-field assumption, which uses an averaged field to treat the

interactions that each molecule experiences from all other molecules. Accordingly,

both the numbers of microscopic energy levels and the molecules on each level can

be separately calculated with certain simplifications.

Flory and Huggins have derived the statistical thermodynamic theory of polymer

solutions by using a lattice model and the mean-field assumption. They obtained the

equations for mixing entropy, mixing enthalpy and then the mixing free energy. The

Flory-Huggins theory assumes the polymer chains are flexible, i.e. the same

energies can be shared by different microscopic conformational states selected

via internal rotation. However in practice, most of polymers are not so flexible,

and various microscopic conformation states contain different energies. Therefore,

Flory modified the lattice statistical thermodynamic theory by introducing the

conformational energy parameter Ec (Flory 1956). Ec is the energy difference

between the collinear and non-collinear connections of two consecutive bonds

along the chain, and the magnitude of Ec reflects the semi-flexibility of polymer

chains. But this approach only considers the short-range interactions along the

Fig. 10.6 Illustration of monotropic phenomenon on the cooling and heating curves of the

metastable mesophases. (a) Free energy curves; (b) DSC heating and cooling curves
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chain, and neglects the long-range interactions along the chain as well as the inter-

chain interactions. Therefore, the theoretical prediction of melting points using this

approach could not agree with experimental observations.

Recently, on the basis of the classical lattice statistical thermodynamics and

Flory’s modification for semi-flexible polymers, a statistical thermodynamic theory

for the solutions of crystallizable polymers has been developed (Hu and Frenkel

2005). During the crystallization process, each polymer looks for its relatively

stable conformation, and meanwhile balances the compact packing tendency

between polymer chains. Therefore, polymers most often form helical chains

with parallel stacking within the compact packing structures. We can introduce

the local anisotropic parallel packing attraction parameter Ep between two bonds,

which characterize the potential energy rise for two neighboring bonds from

crystalline parallel packing to amorphous non-parallel packing. The mean-field

theory based on Ep could predict the properties of polymer melting points, which

have been verified by the molecular simulations of parallel systems (Hu and

Frenkel 2005).

Crystallization of amorphous polymers not only involves the compact packing of

chain units such as small molecules, but also improves the ordering of chain

conformation. The conformational entropy change of polymers also dictates the

critical thermodynamic ordering of crystalline polymers. The calculation of

the conformational entropy employs the lattice model of polymer solutions. In the

lattice model of polymer solutions, besides the potential energy rise B for mixing

between chain units and solvent molecules, and the potential energy rise Ec for the

semi-flexibility of the chain, the potential energy rise Ep for non-parallel packing of

polymer bonds at the neighboring positions should also be taken into account.

Starting from the fully ordered ground state, the total potential energy rise due to

non-parallel packing is

DUp ¼ EpQ22 (10.6)

where Q22 is the total pairs of non-parallel packed neighboring bonds. According to

the mean-field assumption, each chain is estimated to have the approximated amount

of bond sites potential for parallel neighbors as (q � 2)*(r � 1). Each bond site

contains the average occupation probability equivalent to the fraction of bond

occupation in the total volume, which is the total number of bond sites Nq/2 divided
by the total number of bonds N2(r � 1), as 2N2(r � 1)/(Nq). This fraction is the

probability for a parallel occupation on a neighboring bond site. Accordingly, the

probability for a non-parallel occupation of that bond site is 1�2N2(r � 1)/(Nq).
There are in total N2 chains in the solution system. Considering the symmetric factor

“2” for pair interactions between the bonds, we obtain the total amount of non-

parallel packing pairs as

Q22 ¼ 1

2
� N2 � ðq� 2Þ � ðr � 1Þ � ð1� 2N2

r � 1

Nq
Þ (10.7)
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Therefore, the partition function of polymer solutions can be expressed as

Z ¼ ðN
N1

ÞN1ðN
N2

ÞN2ðq
2
ÞN2zc

ðr�2ÞN2e�ðr�1ÞN2zp
ðr�1ÞN2zm

rN2 (10.8)

where

zc � 1þ ðq� 2Þ exp½�Ec=ðkTÞ�

zm � exp½�ðq� 2Þ � N1

N
� B
kT

�

zp � expf� q� 2

2
� ½1� 2ðr � 1ÞN2

qN
� � EP

kT
g

At the right-hand side of (10.8), the first five terms come from Flory’s semi-

flexibility treatment (8.55), the sixth term comes from the mean-field estimation for

the pair interactions of parallel bonds (10.7), and the last term comes from the

mean-field estimation for the mixing interactions between the chain units and the

solvent molecules (8.21). According to the Boltzmann’s relation F ¼ �kTlnZ,
the free energy of the solution system can be obtained as

F

kT
¼ N1 ln

N1

N
þ N2 ln

N2

N
� N2 ln

qzc
r�2

2er�1

þ N2ðr � 1Þ q� 2

2
½1� 2N2ðr � 1Þ

qN
� Ep

kT
þ N1N2rðq� 2ÞB

NkT

(10.9)

In the practical systems, the mixing free energy change is estimated with the

reference to the amorphous bulk phase of the polymer, so

DFm ¼ Fm � FmjN1¼0 (10.10)

From (10.9), one can obtain the expression of the mixing free energy consistent

with the Flory-Huggins equation, as given by

DFm ¼ DUm � TDSm ¼ kTðN1 lnf1 þ N2 lnf2 þ wN1f2Þ (10.11)

where f1,f2 are the volume fractions, and

w ¼
ðq� 2ÞBþ ð1� 2

q
Þ � ð1� 1

r
Þ
2

Ep

kT
(10.12)
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Although the mixing interaction parameter exhibits the same formulas with the

Flory-Huggins parameter, it contains contributions from both the mixing energy

and the parallel packing energy.

If one takes the approximations of long-chain polymer melt, with r ! 1,

N1 ! 0, N ! N2r, from (10.9), one obtains

DF
NkT

¼ 1� ln zc þ ðq� 2Þ2Ep

2qkT
(10.13)

At the equilibrium melting point, the crystallization and melting processes are

balanced with each other, so DF ¼ 0. From Zc � 1 þ (q�2)exp[�Ec/(kT)], one
can calculate the melting point Tm.

1þ ðq� 2Þ exp ð� Ec

kT
Þ ¼ exp ½1þ ðq� 2Þ2

2q
� Ep

kT
� (10.14)

When the coordination number q is large, one can omit the one at the left-hand

side, and obtain the semi-quantitative result as

Tm �
Ec þ ðq� 2Þ2

2q
Ep

k½lnðq� 2Þ � 1� (10.15)

One can see that, the larger Ec means the more rigid polymer chains, resulting in

higher melting points. On the other hand, the larger Ep means the more regular

sequences, or the smaller substitutes, or the symmetric substitutes, favoring the

compact packing of polymer chains, resulting in higher melting points as well.

Let us compare the equilibrium melting points in association with chemical

structures of some practical polymers. If polymer chains contain larger side groups

that make the internal rotation of the backbone chain more difficult, the chains will

appear more rigid, and their melting points will be higher. Such examples can be

found from the substituted polyolefins –(–CH2–CHR–)n–, where the substitute

R ¼ –H gives Tm ¼ 146�C, R ¼ –CH3 gives Tm ¼ 200�C, and R ¼ –CH(CH3)2
gives Tm ¼ 304 �C. If polymer chains contain rigid groups on the backbone, and the

conjugated rigid groups are longer, the chains appear more rigid, and the melting

points will be higher. Such examples can be found from Tm ¼ 146�C for polyeth-

ylene –(–CH2–)n–, Tm ¼ 375 �C for –(–CH2–f–CH2–)n–, and Tm ¼ 530 �C for

–(–f–)n–. Many conductive polymers even cannot be melted or dissolved, causing

significant difficulty for processing. On the other hand, if polymer chains contain

polar substitutes that cause stronger interactions between molecules, the melting

points of the polymers will be higher. Such examples can be found again from the

polymer –(–CH2–CHR–)n–, where the substitute R ¼ –H gives Tm ¼ 146 �C, R
¼ –Cl gives Tm ¼ 227 �C, and R ¼ –CN gives Tm ¼ 317 �C. Nylon has a high

melting point because of the hydrogen-bonding interactions between chains, while
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PTFE shows a high melting point because of the strong interactions between polar

CF2 groups.

The discussion above focuses only on the intrinsic level of chemical structures.

Some chemical factors at the extrinsic level affecting polymer melting points are

listed below.

1. Diluents

In 1949, Flory derived the equation for melting-point depression due to presence

or addition of diluents (with the volume fraction f1) (Flory 1949), as given by

1

Tm
� 1

T0
m

¼ R

DHu
� vu
v1

ðf1 � wf1
2Þ (10.16)

where vu and v1 are the molar volumes of repeating structural units and solvent,

respectively. Such a relationship has been well verified by the experiments

(Mandelkern 2002) and simulations (Hu et al. 2003a).

2. Molecular weights

In 1963, Flory and Vrij proposed the Flory-Vrij equation (Flory and Vrij 1963).

They assumed the melting of short chains to be two steps. In the first step, all the

short chains were regarded as belonging to a long chain, which melted with the free

energy change DG for each chain unit. In the second step, the long chain was cut

into short chains with even chain lengths, which brought the free energy contribu-

tion of chain ends DGe, in addition to the conformational entropy loss RTlnr.
Therefore, the melting free energy became

rDGu ¼ rDGþ DGe � RT ln r (10.17)

The low molecular weight fractions of polymers contain many chain ends, which

serve as lattice defects in the large crystal to lower their melting points. The Flory-

Vrij equation has also been well verified by the experiments (Mandelkern 2002) and

simulations (Hu and Frenkel 2005).

3. Comonomers (either chemical, geometrical or stereo-irregular sequences)

In 1955, Flory applied the ideal-solution approximation (Flory 1954), and

assumed that the comonomer B could not enter the crystalline phase of A. He

derived that

1

Tm
� 1

T0
m

¼ �R
lnXA

DHu
(10.18)

where XA is the mole fraction of the monomer A, R is the gas constant, DHu is the

melting enthalpy in each unit volume. This expression applies to those copolymers

with large comonomer units, so comonomers cannot enter the crystalline regions.
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In contrast, in 1966, Colson and Eby assumed that the comonomer B could enter

the crystalline phase of A, with the mole fraction XB, and caused a lattice defect

energy DHB (Colson and Eby 1966). They derived that

Tm ¼ T0
mð1� XB

DHB

DHu
Þ (10.19)

Equation (10.19) fits well for the experimental results on the parallel system of

copolymers with small comonomer units.

10.3 Crystalline Structures of Polymers

10.3.1 Hierarchical Crystalline Structures

Most of the crystallizable polymers contain good sequence regularities along the

backbones, such as HDPE, iPP, Nylon, PET and POM. Only a few of the crystal-

lizable polymers contain random sequences but with strong hydrogen bonding or

strong interactions between polar groups, such as PVA and PAN. So far, we have

devoted much more efforts on the study of the former systems than that of the latter.

Most of crystalline polymer materials exhibit multi-scale hierarchical structures.

At the scale of 0.1 nm, the polymer chains contain regular sequences. At the scale of

0.5 nm, they form stable helical conformations, which then pack together in a

compact parallel fashion to make the periodic lattice structure, with the unit cell at

the scale of 1 nm. At the scale of 10 nm, the folded-chain lamellar crystals are formed

for the flexible polymer chains. At the scale of micrometers or larger, the lamellae

further assemble into spherulites. Such hierarchical structural characteristics at

varying length scales of polymer morphologies are illustrated in Fig. 10.7.

Fig. 10.7 Illustration of multi-scale hierarchical structure of crystalline polymers (For instance,

polyethylene) forming folded-chain lamellae and spherulites
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10.3.2 Unit Cells of Polymer Crystals

Let us first look at the unit cell structure of polymer crystals. The periodic lattice

structure of crystalline polymers has been well characterized by the wide-angle

X-ray diffraction (WAXD) spectrum. Early in 1928, Meyer and Mark proposed that

a certain segment of polymer helix can form the size of the unit cell (Meyer and

Mark 1928), instead of having the whole chain in the unit cell. Such a breakthrough

strongly supported the macromolecular concept proposed by Staudinger at that

time. The unit cell is constituted by three axes (abc) and the angles between them

(abg), as illustrated in Fig. 10.8. Conventionally, the c-axis of the unit cell is defined
as being oriented along the chain direction, while a-axis and b-axis are oriented

along the parallel packing directions of polymer chains.

The packing of polymer chains into the unit cell normally follows two basic

rules:

Rule No. 1, crystalline polymers intend to form the most stable conformation,

although sometimes they are compromised with Rule No. 2. As illustrated in

Fig. 10.9, the most stable conformation of polyethylene is the all-trans conformation

TTTT, also known as the Zigzag conformation, with c ¼ 2.534 Å. In contrast, if

isotactic polypropylene forms the same all-trans conformations, their methyl-groups

would be overcrowding on the same sides, increasing the conformational potential

energy. By calculating the methyl-groups oriented with 120� angles, Natta and

Corradini first discovered the most stable TGTG helical conformation with c ¼ 6.50

Å, called the H3/1 helix (Natta and Corradini 1960). H3/1 helix means that the

substitutes turning around one circle back to the same places go through three

repeating units. Accordingly, the zigzag conformation of polyethylene can be

Fig. 10.8 Illustration of the unit cell of polymer crystals
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regarded as H2/1 helix. Therefore, the most stable internal rotation for a helical

conformation determines the symmetric structure of the unit cell, i.e. the azimuths for

the most stable packing, corresponding to the angles between two axes of the unit

cell.

Rule No. 2, the helix chains prefer the most compact packing. Note that the

compact packing is the main driving force for crystallization of small molecules.

Viewing along the chain axis, the zigzag conformation of polyethylene appears as

an oval. As illustrated in Fig. 10.10, the parallel packing of the chains with

alternating orientations determines the unit-cell structure in the orthorhombic

crystal series, with a ¼ 7.36 Å and b ¼ 4.92 Å, so the lowest parallel packing

potential between polymer chains can be reached.

The survey over about 150 polymer crystals shows their distribution among

seven crystal series. The number in the cubic crystal series is zero, because the

c-axis contains completely different interactions (covalent bonds along the chain

axis) from the other two axes (sub-valence interactions). The orthorhombic and the

Fig. 10.9 Illustration of all-trans TTTT conformation of polyethylene and TGTG 3/1 helix

conformation of polypropylene

Fig. 10.10 Illustration of polyethylene chains viewed as ovals along the chains, alternately

changing orientations to pack into the orthorhombic crystal structure, which determines the

quantity of cell parameter a and b
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monoclinic crystal series are the most common, occupying about two-third of the

total. The trigonal, the tetragonal and the hexagonal crystal series in sum occupy

about one-fourth. The remaining triclinic crystal series contains about one-seventh.

A careful reader may find that the sum of the above fractions has already been larger

than one. This is due to the presence of the phenomenon of crystal polymorphism.
For instance, isotactic polypropylene contains a crystal (monoclinic, the most

stable), b crystal (hexagonal) and g crystal (trigonal). The same species of polymers

exhibit different types of crystal structures because of either thermodynamics or

kinetics reasons. On the one hand, at higher temperatures, thermal motions can

change the effective shape of helical conformations, such as oval to circle in the

case of orthorhombic to hexagonal transition in PE at high pressures. On the other

hand, at lower temperatures, the crystallization kinetics may favor the metastable

crystal structures with a larger growth rate. Different types of crystal structures

exhibit different physical properties. Often, they can be controlled by adding

nucleation agents to initiate a specific form of crystal structures.

10.3.3 Folded-Chain Lamellar Crystals

According to Rule No. 1, polyethylene chains tend to form the most stable all-trans

conformation in the crystal. In practice, however, such an extending of chain

conformation could not easily be realized. The crystallization process often chooses

the metastable folded-chain conformation to form the lamellar crystals.

In 1930, Herrmann et al. proposed the fringed-micelle model showing that the

crystalline regions serve as physical crosslinking for high elasticity (Herrmann et al.

1930), as illustrated in Fig. 10.11, in order to explain the good elasticity of LDPE

(showing X-ray diffraction peaks).

In 1957, owning to the invention of Ziegler-Natta catalysts to produce sequence-

regular polyethylene, Keller prepared the lamellar single crystals of polyethylene

from dilute solutions, and observed that the lamellar thickness with its direction

Fig. 10.11 Illustration of the metastable polymer conformation in the crystalline regions. From

left to right are the fringed-micelle model, the lamellar crystal with adjacent chain folding, the

switchboard model and the variable-cluster model
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identical to the chain axis appears much smaller than the chain length, so he

proposed the adjacent chain-folding model to explain this structural feature of

lamellar crystals (Keller 1957). The idea of chain-folding in polymer crystals was

first discussed by Storks in 1938 in his analysis of electron diffraction data on gutta-

percha films (a natural rubber trans-polyisoprene) (Storks 1938), but it was incon-

ceivable at that time because the lamellar crystals had not yet been recognized as a

native structure. The wide observation of the native lamellar crystals formed by

chain-folding is a milestone discovery in the history of polymer science (Keller

1957; Till 1957; Fischer 1957). The lamellar crystals serve as the building blocks to

assemble into spherulites.

In comparison to the crystallization in dilute solutions, the melt crystallization

appears more complicated. In 1962, Fischer and Schimdt proposed the long period

of alternating amorphous and lamellar crystals as monitored by the X-ray scattering

of stretched polyethylene (Fischer and Schmidt 1962). Almost in the same period,

Flory suggested that polymer chains may not be able to fold up quickly into the

regularly adjacent chain-folding state in lamellar crystals, and many chains will

form loops and cilia (Flory 1962). In 1978, Fischer proposed the solidification
model (Erstarrungsmodell) for polymer chains to crystallize in the nearby regions

without a large-scale reorganization (Fischer 1978). In the mean time, Flory and

Yoon used the “telephone-switchboard” model to emphasize the coexistence of

loops, cilia and tie molecules at the lamellar surfaces (Flory and Yoon 1978), to

explain the observation from neutron scattering experiments. The explanation was

argued to reconcile both switchboard model and the adjacent folding model, into

the variable-cluster model to describe the single chain conformation in the lamellar

crystals formed in the melt-crystallization process (Hoffman et al. 1979, 1983), as

illustrated also in Fig. 10.11.

Why does polymer crystallization spontaneously select the adjacent chain fold-

ing? If one looks at the nucleus formation of polymer crystals, there are two basic

types: one is called the inter-chain nucleation, as described by the fringed-micelle

model, with a bundle of chains parallel stacked on the normal directions; another is

called the intra-chain nucleation, as described by the adjacent chain folding model,

with chains parallel packed and folded back in time to avoid overcrowding at the

lamellar surfaces. In the case of inter-chain nucleation, since a large fraction of

amorphous chains connected with the crystal stems on the lamellar surfaces, the

amorphous chains will lose the conformational entropy due to their overcrowding.

This raises the surface free energy, and the nucleation barrier will be very high. In

contrast, in the case of intra-chain nucleation, since a large fraction of adjacent

chain-folding on the lamellar surfaces, the amorphous chains are relatively free.

This selection lowers the surface free energy, and the nucleation barrier is thus

relatively low. According to this kinetic selection of nucleation mechanisms, the

intra-chain nucleation dominates not only the primary crystal nucleation but also

the secondary crystal nucleation at the lateral growth front of lamellar polymer

crystals. The latter process generates a large amount of adjacent chain-folds at the

surfaces of polymer crystals, which fabricates naturally the metastable lamellar

crystals as the native morphological structure of polymer crystals. The above
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kinetic selection is also called the chain-folding principle of polymer crystalliza-

tion, as illustrated in Fig. 10.12.

Since the lamellar thickness is limited by the fold length of polymer chains, the

melting point of lamellar crystal is much lower than the equilibrium melting point

of the infinitely large crystal of polymers. Let us estimate how much decrease in the

melting point of lamellar crystals. Assuming the lamellar crystal as in a rectangular

shape, with a, b and l as the length, width and thickness, respectively, and with s
and se as the lateral and fold-end surface free energies, respectively, as illustrated in
Fig. 10.13, the free energy of a lamellar crystal is

DGm ¼ ablDf � 2abse � 2als� 2bls (10.20)

Since the lateral sizes are much larger than the thickness (a,b > > l), from
DGm ¼ ablDf�2abse ¼ 0, one obtains

Df ¼ 2se
l

(10.21)

and

Df ¼ Dh� TmDs � Dhð1� Tm
T0
m

Þ (10.22)

Fig. 10.12 Illustration of the

kinetic selection of the

metastable chain-folding state

of polymer crystallization as

the conventional route for the

phase transition

Fig. 10.13 Illustration of the

sizes of polymer lamellar

crystals
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Here assumes that

T0
m � Dh

Ds
(10.23)

where Dh is the heat of fusion in each unit of volume, and Ds is the melting entropy

in each unit of volume, so one obtains the Gibbs-Thomson equation for the melting-

point depression due to limited lamellar thickness, as given by

Tm ¼ T0
mð1�

2se
lDh

Þ (10.24)

The thickness of lamellar crystals normally exhibits a broad distribution, so their

melting points also cover a broad temperature range, which is often called the
melting range. Note that the melting range usually occurs far below the equilibrium

melting point.

10.3.4 Morphology of Polymer Crystals

The morphologies of polymer crystals and their evolution provide important infor-

mation on the crystallization mechanisms as well as the relationships between the

crystalline states and their performances. The situations of polymer crystallization

can roughly be divided into three types: crystallization from quiescent amorphous

states of polymers, crystallization in company with polymerization, and crystalli-

zation induced by pre-orientation. In the quiescent solutions or melt phases of

polymers, the morphology of polymer crystals changes from simple to complex

with the increase of polymer concentrations or the decrease of temperatures. The

most basic morphology is the single lamellar crystals. They can branch into

axialites, or even into spherulites when the density of branching becomes high

enough. Crystallization in company with polymerization often results in the nascent

fiber crystals, for instance, the celluloses, or another example, PTFE whose fiber

crystals are obtained from the gas sedimentation polymerization. Under the shear or

elongational flow fields, shish-kebab crystals and fiber crystals are often observed.

In the following, we make an extensive introduction on various crystal

morphologies that are unique to polymers.

1. Single lamellar crystals

When slowly cooled from the melt or solutions, polymers tend to crystallize into

a single layer of lamellar crystals mainly constituted by the folded chains. Keller

et al.’s discovery of lamellar crystals in 1957 established the foundation for our

understanding to the morphology of polymer crystals. The lamellar single crystals

often display the regular geometric shapes reflecting its internal crystal symmetry in

the unit cell. According to the Bravais-Friedel law (Bravais 1849), the most

significant crystal facets of the single crystal often contain the largest spacing of
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crystal planes, and the minimum lattice energy can be obtained from the growth on

this crystal plane. Therefore, its advancing speed will be the lowest to survive as the

observable facets. At the beginning of lateral growth of the single-layer lamellar

crystal, many crystal faces may compete with each other. At the later stage, only the

facets with the slowest growth front can survive, which determine the symmetric

shape of the single crystal. Those faster growing facets will be removed by the

merging of their slower neighbors. For instance, the simplest orthorhombic poly-

ethylene crystals exhibit lozenge shapes in toluene, because the plane spacing along

110 diagonals appears larger than that along a and b lattice axes. As illustrated in

Fig. 10.14, because the adjacent chain folding spreads along the separate facets,

separate sectors with various orientations of fold ends develop, which suggests that

the single-layer lamellar crystals are actually a multiple twin crystal. If the single

crystal grown from the bulk thin film is decorated by the sprayed paraffin wax, the

paraffin crystallites will orient to follow the surface orientations of each sector,

revealing the existence of fold-end sectors with various orientations in parallel with

growth facets, as shown in Fig. 10.15. Dynamic Monte Carlo simulations also

reproduced four 110 sectors of fold-end orientations in the single lamellar crystal

grown from semi-dilute solution, as illustrated in Fig. 10.16.

2. Axialites

When polymers crystallize at high temperatures, due to the difficulty of sponta-

neous crystal nucleation, the practical crystal nucleation often utilizes the foreign

surfaces provided by the impurities. The sizes of the heterogeneous nuclei are

normally large, so they can induce the growth of multi-layer lamellar crystals.

One can see that the multi-layer lamellar crystals spread from the same center, just

like an opened book. Such morphology of multiple stacking of lamellar crystals is

called axialites, as illustrated in Fig. 10.17.

Fig. 10.14 Illustration of fold-end sectorization in the single polyethylene crystals (Bassett et al.

1959)
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3. Spherulites

If we take the radiation-growing axialites at high temperatures as the dominant

lamellae, and the empty spacing is filled with the subsidiary lamellae grown at low

temperatures, we can obtain the sphere-like crystals with dense filling, often called

the type-I spherulites. Besides this kind of spherulites obtained by sequential

formation of dominant and subsidiary lamellae during cooling, there exists another

Fig. 10.16 Surface

morphology of a lamellar

single crystal of 512-mers

grown from semi-dilute

solutions in the dynamic

Monte Carlo simulations. The

view angle favors the

exposure of the preferred

orientations of fold ends in

each sectors separated by the

black thick lines (Hu et al.

2003b)

Fig. 10.17 Illustration of lamellar stacking structure (from left to right are axialites, type-I

spherulites and type-II spherulites)

Fig. 10.15 Surface

morphology of paraffin wax

that was sprayed on the

polyethylene single crystal

grown in thin films

(Wittmann and Lotz 1985).

The epitaxial grown paraffin

wax with favorite orientations

clearly shows different fold-

end sectors (Permission

granted by Wiley)
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kind of spherulites obtained by direct branching growth at low temperatures, called

the type-II spherulites, as illustrated also in Fig. 10.17. The branching growth of

lamellar crystals at low temperatures is related to the Mullins-Sekerka instability of

crystal growth, which appears intrinsic for polymer crystallization. Inside the

spherulites, since the lamellar crystals grow along the radial direction, with the

chain axis perpendicular to the radial direction. Such an isotropic structure leads

to zero-amplitude extinction along the long and short axes of the optical

indicatrix (the indicatrix reflects the photodichroics of crystals) of lamellar

crystals. Under the cross-polarized light microscopy, it appears as Maltese-

cross extinction, as illustrated in Fig. 10.18. If the long axis of lamellar eclipse

is along the radial direction, the spherulite is defined as the positive spherulite;

while if along the direction perpendicular to the radial, it is defined as the

negative spherulite. In most of cases, the chain axis (the long axis of eclipse)

aligns along the perpendicular direction, thus polymer spherulites are mostly the

negative spherulites. Many aromatic polyesters and polyamides generate the

unusual spherulites at high temperatures, whose Maltese cross rotates 45 degree

under the cross-polarized lights.

4. Shish-kebab crystals and fiber crystals

From the thermodynamic point of view, if the stress imposed by an external field

causes the stretching and orientation of the amorphous polymer chains, the confor-

mational entropy will decrease. Accordingly, the entropy change of crystallization

from the oriented state will be reduced. From Tm ¼ DH/DS, the melting point will

increase, and hence the effective supercooling for the crystallization will be

enhanced, offering the priority to initiate crystallization. From the kinetic point of

view, the stretched and oriented state of polymer chains may not need to wait for a

large-scale rearrangement or long-distance diffusion to enter the crystalline phase.

Therefore, the crystallization can be greatly accelerated. Highly oriented polymer

chains will crystallize into the fiber crystal. The fiber crystal, as the crystal nuclei,

will further induce crystallization of other less oriented polymers (such as the low

molecular weight fractions), which form an array of parallel-oriented lamellar

Fig. 10.18 Illustration of (a) the lamellar crystal, (b) the optical indicatrix and (c) the Maltese-

cross extinction in polymer spherulites
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crystals. Such a shish-kebab-like crystal morphology is often called shish-kebab
crystals. As illustrated in Fig. 10.19, with an increase of strains in bulk polymers,

crystal morphologies ranging from spherulites, shish-kebab crystals to fiber crystals

can be obtained (Phillips 1990).

There are still hot ongoing debates about the formation mechanism of shish

structures in the oriented flow field. Recently, Hashimoto and his coworkers

proposed a new scenario for flow-induced phase transitions in polymer solutions

to form the hierarchical structures of shish-kebabs (Hashimoto et al. 2010; Murase

et al. 2011).

Sometimes, the shish fibers can be so thin that they are invisible under the

present microscopes, leaving an array of parallel-oriented lamellar crystals, called

the row-structure. The molecular simulations demonstrated that even a single pre-

aligned polymer chain can play the role of shish in inducing the growth of kebab

crystals, as demonstrated in Fig. 10.20.

Fig. 10.19 Illustration of

crystal morphologies of

polymers influenced by the

different degree of preload

strain rates (percentage in the

figure). The arrow indicates

the direction of stresses. The

right-hand schematic picture

for shish-kebab crystals is

adopted from Pennings et al.

(1970)

Fig. 10.20 Molecular simulations obtain the shish-kebab structure induced by single pre-aligned

chain (a) and its local enlargement (b) (Hu et al. 2002)
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The highly oriented polymer chains in the fiber crystal bring high strength to the

fiber materials. The famous Kevlar fiber is high strength aramid fiber produced by

oriented spinning from the liquid crystal phase, which is applied as anti-bullet

textiles. The ultra-high molecular weight polyethylene can be gel-spanned from the

semi-dilute solutions and then be further stretched tens to hundreds folds, to obtain

high strength PE fibers. Beyond the stretch ratio of 200, the Young’s modulus of PE

fibers can be stable at 210 � 220 GPa, and the tensile strength can be as high as

4 GPa.

10.4 Kinetics of Polymer Crystallization

10.4.1 Nucleation of Polymer Crystallization

Polymer crystallization is a typical first-order phase transition, following the nucle-

ation and growth mechanism. Therefore, when isothermal crystallization happens

slowly at high temperatures, one can observe a significantly long incubation period

for crystal nucleation, followed by a self-acceleration process for crystal growth.

This process is illustrated by the time-evolution curve of volume crystallinity in

Fig. 10.21.

The existence of an incubation period displays a difficulty to initiate crystalliza-

tion. Thermal fluctuations are demanded for generating crystal nuclei beyond a

critical size. The basic principle is analogous to the initiation of phase separation

from the metastable phase. The new phase is required to overcome the free energy

barrier brought by the rise of surface free energy around its boundary. At the early

stage, the free energy change for crystal nucleation with the change of crystal size

r is illustrated in Fig. 10.22. The total free energy change can be expressed as

Fig. 10.21 Illustration of the time evolution curve of volume crystallinity upon slow isothermal

crystallization at a high temperature
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DG ¼ � 4p
3
r3Dgþ 4pr2s (10.25)

This equation is similar with (9.43). One can derive the critical free energy

barrier for the critical size nuclei DG* as

DG	 / DT�2 (10.26)

where DT � Tm�Tc, closely proportional to Dg (see (10.22)). The critical size of

nuclei r* is

r	 / DT�1 (10.27)

There are three basic situations for crystal nucleation, as illustrated in Fig. 10.23.

The first situation corresponds to the genesis of new phase, supposed to generate a

cubic crystallite from the amorphous bulk polymer phase, which contains six square

interfaces. Such a genesis process is called primary nucleation. The second situa-

tion corresponds to the initiation of the growth of new layer on a smooth growth

front of the crystal, supposed to generate four additional square faces of the new

lateral interfaces. Such a two-dimensional nucleation process is called secondary
nucleation, which can be quite slow at the growth front and thus becomes a rate-

determining step. The third situation is not easy to be observed, as one-dimensional

nucleation at the edge of terrace for spreading on the growth front, supposed to

generate only two additional square faces at the top and down interfaces. Such a

one-dimensional nucleation process is called tertiary nucleation. Primary nucle-

ation generates the largest new interface, so its free energy barrier will be the

highest, and its initiation will be the slowest. This process requires the largest

supercooling to initiate crystallization. The free energy barrier for secondary

nucleation will be lower. After the incubation period for the initiation of crystal

nucleation, crystal growth appears to be a self-acceleration process. Tertiary

Fig. 10.22 Illustration of the free energy curve for crystal nucleation with the change of crystal

size. The highest position reflects the height of the critical nucleation barrier at the critical size of

nuclei. The left bottom is the amorphous bulk polymer and the right up is the emergence of an

ordered domain
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nucleation contains the lowest free energy barrier, and thus be the fastest, so it is not

easy to be observed as the rate-determining step at the crystal growth front.

Primary crystal nucleation can be further separated into two special scenarios.

The spontaneous crystal nucleation from homogeneous bulk polymer phase is

called homogeneous nucleation. In contrast, heterogeneous nucleation is the crystal

nucleation on a specific location of the foreign substrate, and thus does not require

the generation of a new surface on the contact plane. The foreign substrate can be

air bubbles, dusts, incompatible solid or liquid, incomplete molten crystallites,

walls of the vessel, or stirring sticks. As illustrated in Fig. 10.24, the total surface

free energy can be reduced by the use of the foreign substrate. The incomplete

molten crystallites of the same species can by-pass the primary nucleation process

and directly generate crystal growth. Such a process is called self-seeding process.
In the practical processing of polymer materials, the nucleation agent is added to

supply as many as possible nuclei, and thus to control the sizes of crystallites to be

smaller than the wavelengths of visible lights. Hence, the materials will not have

strong scattering of visible lights, and appear transparent. The typical example is

Fig. 10.23 Illustration of three basic situations of crystal nucleation. From left to right are primary

nucleation in the bulk polymer phase, secondary nucleation on the smooth growth front, and

tertiary nucleation at the terrace of the growth front

Fig. 10.24 Illustration of total surface free energy change in homogeneous nucleation and

heterogeneous nucleation
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the PET transparency and Coke bottles. High transparency does not mean that there

is no crystalline domain in materials. As a matter of fact, the crystallinity in PET

transparency can be as high as 50 %, but the crystallite sizes are smaller than the

wavelengths of visible lights. Two key factors characterize the efficiency of nucle-

ation agents: one is whether they can effectively decrease the interface free energy

of the crystallites, as the research has found that surface epitaxy is an effective way

to initiate crystal nucleation; another is whether they can provide large amount of

homogeneously dispersed foreign surfaces to initiate crystal nucleation on time.

In 1926, Volmer and Weber found that the nucleation rate shows a negative

exponential dependence on critical free energy barrier (Volmer and Weber 1926).

Becker and Döring further proposed that the activation energy for the short-distance

diffusion of molecules molecules to enter the crystalline phase should be considered

as well (Becker and Döring 1935). Turnbull and Fisher derived the prefactor for the

rate equation of crystal nucleation (Turnbull and Fisher 1949). The rate of polymer

crystal nucleation iwith the change of critical free energy barrier can be expressed as

i ¼ i0 exp ð� DU
kT

Þ exp ð� DG	

kT
Þ (10.28)

Here i0 is the prefactor, DU is the activation energy for short-distance diffusion

of molecules at interfaces. According to the VFT relaxation mode (6.10), DU/kT /
1/(T � TV). With the increase of crystallization temperatures, molecular diffusion

will be enhanced, and DU will be decreased. On the other hand, DG* is the critical

free energy barrier for crystal nucleation. For the primary nucleation, DG*/ DT�2.

With increase of the crystallization temperatures, DTwill become smaller, and DG*
will rise, accordingly the nucleation rate will be decreased. Thus, at high

temperatures, the nucleation rate is mainly dominated by the critical free energy

barrier for crystal nucleation, the higher the temperature, the smaller the nucleation

rate; at low temperatures, the nucleation rate will be mainly dominated by the

Fig. 10.25 Illustration of (a) the temperature dependence of two key factors controlling the

nucleation rate; (b) the resulting bell-shape nucleation rate versus temperature
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activation energy for short-distance diffusion of molecules at interfaces, the lower

the temperature, the smaller the crystal nucleation rate. The temperature depen-

dence of the overall nucleation rate will appear as a bell shape, as illustrated in

Fig. 10.25. The crystallization during the cooling from high temperatures is

called hot crystallization Tcc; the crystallization during the heating from the glassy

state is called cold crystallization Tch. The nucleation agent mainly accelerates hot

crystallization, while the nucleation acceleration agent mainly accelerates cold

crystallization.

10.4.2 Microscopic Mechanism of Polymer Crystal Growth

The crystal growth process follows after primary nucleation. The characterization of

crystal growth rates is mainly through the measurements on the radius R of the

spherulites or on the linear size of single-layer lamellar crystal as a function of time t,
using light scattering or microscopies. Correspondingly, the linear growth rate is

defined as v ¼ dR/dt. Normally, v appears independent to t, as illustrated in

Fig. 10.26a, reflecting the interface-controlled crystal growth mechanism. The cur-

rent theoretical consensus on the kinetics of polymer crystal growth mainly regards

secondary nucleation as the rate-determining step at the interfaces, which exhibits the

critical free energy barrier DG* / DT�1. Indeed, the bell-shape curve of the crystal

growth rate versus temperatures is observed, as illustrated in Fig. 10.25b. During hot

crystallization, three linear segments (according to (10.28)) with their slopes 2:1:2

occur on the curve of logarithmic linear crystal growth rates versus the reciprocal

supercooling, as illustrated in Fig. 10.26b, called the regime-transition phenomenon.

The linear growth rate actually reflects a net competition result between the

growth and the melting upon thermal fluctuations at the lateral surface of lamellar

crystals, as given by (Ren et al. 2010)

Fig. 10.26 Illustration of (a) the linear sizes of crystallites showing constant growth rates with the

time evolution; (b) the logarithmic linear growth rate exhibiting three regimes on its temperature

dependence
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G ¼ Ggrowth � Gmelting ¼ Ggrowthð1� Gmelting

Ggrowth
Þ ¼ Ggrowthð1� exp�DF

kT
Þ

� GgrowthDF � Ggrowthðl� lminÞDf
kT

ð10:29Þ

Here, the rate ratio can be further simplified under the assumption that the growth

and the melting share the opposite barriers of the secondary nucleation step. The net

free energy change is small and the further simplification can assign the free energy

gain to the excess lamellar thickness beyond the minimum thickness lmin necessary
for the thermodynamic stability of the crystal. lmin ¼ 2se/Df, as derived from the

minimum free energy with respect to a or b in (10.20).Ggrowth is named as the barrier

term, while (l � lmin)Df is named as the driving force term. When l > lmin at low
temperatures, the lamellar crystal grows; when l < lmin at high temperatures, the

lamellar crystal melts (Ren et al. 2010). The lateral growth profile appears as a

wedge-shape, with the secondary nucleation barrier at the wedge top and the instant

thickening at the wedge root to harvest the free energy, as demonstrated in Fig. 10.27.

Recently, with the advanced high-resolution atomic force microscopy, the wedge-

Fig. 10.27 Illustration of the

lateral growth profile of

chain-folding lamellar

crystals, with the secondary

nucleation barrier at the top

and the excess lamellar

thickness harvested instantly

at the root

Fig. 10.28 Height image of

torsional tapping atomic force

microscopy on a sheared PE

film with the shear direction

from down-right to up-left

(Mullin and Hobbs 2011).

The circle indicates the
wedge-shaped profile at the

growth front of lamellar

crystals (Courtesy of Jamie

Hobbs)
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shaped lamellar growth front of PE crystals can be directly observed in the bulk

phase, as shown in Fig. 10.28 (Mullin and Hobbs 2011).

In 1960, Lauritzen and Hoffman proposed a theoretical model (Lauritzen and

Hoffman 1960; Hoffman and Lauritzen 1961) that elucidated the secondary nucle-

ation barrier in the formation of the first stem on a smooth growth front. In 2003, the

intramolecular crystal nucleation model has been proposed (Hu et al. 2003c), which

assigned the secondary nucleation barrier to the two-dimensional intra-chain crystal

nucleation and thus explained the source of chain-folding. In the crystallization of a

single chain, regular folding can effectively minimize the surface free energy

barrier and maximize the parallel stacking of backbones, both favored by crystal

nucleation. The intramolecular nucleation model provides a better interpretation to

the regime phenomenon reproduced in molecular simulations (Hu and Cai 2008). In

addition, this model can explain the molecular segregation phenomenon, which

gives long-chain fractions a priority to crystallize, as the principle of crystallization

fractionation of polydisperse polymers (Hu 2005). To date, controversial arguments

on the crystal growth mechanism of polymers still remain, which demand further

experimental investigations and theoretical developments.

10.4.3 Overall Kinetic Analysis of Polymer Crystallization

The details of the polymer crystallization process can be quite complicated. Practi-

cally, one may not care about the details of crystal nucleation and the linear crystal

growth rates, but just want to characterize the overall crystallization kinetics. The

degree of crystallization process can be roughly defined as crystallinity, regardless
of their detailed crystal morphologies. The conventional methods to characterize

the crystallinity include DSC, X-ray diffraction and dilatometer. Depending on the

measured quantity, crystallinity is also separated into the weight crystallinity

f wc ¼ Wc

Wc þWa
� 100% (10.30)

and the volume crystallinity

f Vc ¼ Vc

Vc þ Va
� 100% (10.31)

The subscripts c and a represent crystalline and amorphous states, respectively. They

can be derived to each other with the densities of crystalline and amorphous states.

Since the crystallinity of polymers is commonly low, it is often convenient to

trace its time evolution using the relative crystallinity

Xc ¼ fcðtÞ
fcð1Þ (10.32)
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The latter is also called the kinetic crystallinity that can be measured by tracing

the crystallization process with dilatometer, depolarized light intensity, dynamic

X-ray diffraction and DSC. Polymer crystallization is a volume-contraction process.

When the dilatometer is used to measure the change of the sample volume with time

evolution at a constant crystallization temperature, one obtains the relative crystal-

linity as

Xc ¼ Vð0Þ � VðtÞ
Vð0Þ � Vð1Þ (10.33)

The results are summarized in Fig. 10.29. The characteristic time t1/2, the time

scale for the crystallinity to reach its half value, can be used as its reciprocal to

represent the total crystallization rate.

By use of the Poison distribution, Avrami derived the famous Avrami phenome-

nological equation to treat a kinetic process (Avrami 1939, 1940, 1941).

Kolmogorov first discussed the formulation of this equation (Kolmogorov 1937).

Johnson and Mehl also made similar derivation independently (Johnson and Mehl

1939). Evans proposed a very concise derivation as introduced below (Evans 1945).

The isokinetic condition was assumed in the derivation. Under isothermal crystal-

lization, the heterogeneous nucleation generates a fixed number of centers for

spherulite growth with a constant linear growth rate till the impingement. At the

early stage before any impingement happens, as illustrated in Fig. 10.30, the proba-

bility for any point locating outside of the ith spherulite in the space volume V can be

Pi ¼ 1� Vi

V
(10.34)

Here, Vi is the volume of the i-th spherulite. Then, the probability for any point

locating simultaneously outside of all the m number of spherulites is

P ¼ P1 � P2 . . . Pm ¼
Y

ð1� Vi

V
Þ (10.35)

Fig. 10.29 Illustration of the

time evolution of the relative

crystallinity
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When the number m is large, Vi < < V, one may approximately obtain

lnP ¼
X

lnð1� Vi

V
Þ � �

XVi

V
¼ �m

<Vi>

V
(10.36)

<Vi> is the average volume of the spherulites. Since P reflects the probability of

the amorphous phase volume, P ¼ 1�Xc, one derives

1� Xc ¼ expð�m
<Vi>

V
Þ (10.37)

For athermal nucleation (self-seeding nucleation as a special case of heteroge-

neous nucleation), the number of nuclei is fixed. Thus the number of spherulites is

fixed, with a density m/V, <Vi> ¼ 4pr3/3, r ¼ vt, and then

m
<Vi>

V
¼ 4pv3m

3V
t3 ¼ Kt3 (10.38)

Inserting the equation above into (10.36), one derives the general Avrami

equation as given by

1� Xc ¼ expð�KtnÞ (10.39)

The Avrami equation can be applied to treat the time evolution of crystallinity in

the self-acceleration process right after the incubation period t0 for the initiation of

crystallization. Here, K is the rate constant, which is related to the nucleation rate,

the linear growth rate as well as the number of nuclei; n is called the Avrami index,

which is related to the mechanism of crystal nucleation and the dimensionality of

crystal growth. When thermal nucleation generates new growth centers at a con-

stant rate, n ¼ 4. Linear regression to the relative crystallinity in the self-

acceleration stage measured by experiments gives the Avrami index as well as

the total crystallization rate, as

Fig. 10.30 Illustration of the

i-th spherulite induced to grow
in the space volume V. The
label a represents the

amorphous phase and the label

c represents the crystalline
phase
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t1=2 ¼ ðln 2
K

Þ1=n þ t0 (10.40)

It should be noted that the time evolution of crystallinity includes not only

crystal growth initiated by primary nucleation, but also by secondary crystallization

(including annealing, perfection, filling growth behind the growth front, etc.).

Concerning the complicated details in the crystallization process, it is not

recommended to learn the details of crystal nucleation modes and the dimensions

of crystal growth purely from the Avrami index. However, it is reliable to assign the

change of the Avrami index with crystallization temperatures to the change of

nucleation and growth mechanisms.

In the practical processing of polymer materials, the crystallization process is

often non-isothermal, especially in the processes of plastic extrusion, injection

molding and fiber spinning. The study of non-isothermal crystallization is still at

the experiment-oriented stage, and the theoretical treatment is limited to the level of

the Avrami equation.

Jeziorny directly applied Avrami equation to treat the non-isothermal crystalli-

zation peak in DSC scanning measurement (Jeziorny 1971). He obtained the

Avrami index n and made a correction to K with the cooling rate a, as

log Kc ¼ log K

a
(10.41)

He found that n has a linear dependence on the cooling rate a. When n changes

from 2 to 3 with the increase of cooling rate, crystallization may change from two-

dimensional lamellar growth to three-dimensional spherulitic growth, while

Kc keeps constant. Compared to the following methods, The Jeziorny method

lacks of a necessary theoretical basis.

Ozawa proposed to study the overall crystallization kinetics from several simple

DSC scanning experiments (Ozawa 1971). Assuming that when the polymer sam-

ple is cooled from T0with a fixed cooling rate a ¼ dT/dt, both the radial growth rate
v(T) of the spherulites and the nucleation rate I(T)will change with temperature. For

a spherulite nucleated at time t, its radius at time t will be

r ¼
ðt
t

vðTÞdt ¼ dt

dT
½
ðT
Tm

vðTÞdT�
ðT0
Tm

vðTÞdT� ¼ 1

a
½RðTÞ � RðT0Þ� (10.42)

Here, the initial temperature T0 corresponds to time t, and Tm is the melting

point. The density of crystal nuclei is thus

m

V
¼

ðT0
Tm

IðTÞdt ¼ 1

a

ðT0
Tm

IðTÞdT ¼ NðT0Þ
a

(10.43)
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Substituting (10.42) and (10.43) into (10.36) in the above derivation process for

Avrami equation, one obtains

lnP ¼ �m

V
<Vi> ¼ �

ðT
Tm

m

V
pr2dr

¼ �
ðT
Tm

pNðT0Þ½RðTÞ � RðT0Þ�2vðT0ÞdT0 � a�4

¼ �K0ðTÞa�4 ð10:44Þ

K0(T) is called the cooling function. Accordingly, the Ozawa equation is derived
as given by

1� Xc ¼ exp½�K0ðTÞa�q� (10.45)

Here, q is called the Ozawa index. Corresponding to one-dimensional growth,

q ¼ 2; two-dimensional growth, q ¼ 3; and three-dimensional growth, q ¼ 4. In

practical measurements, one may determine the values of crystallinity Xc(a) at a
constant temperature from a series of DSC crystallization curve with various

cooling rates a, and then plot lg[�ln(1�Xc)] versus lg(a), to obtain the Ozawa

index directly from the slope, as illustrated in Fig. 10.31a–c.

With a change of cooling rate, the temperature region for polymer crystallization

shifts. The Ozawa method may not be easy to provide enough data points exhibiting

a good linear relationship. Liu and Mo proposed a combination of Ozawa equation

Fig. 10.31 Illustration of the Ozawa method to treat (a) several DSC curves with various cooling

rates a. (b) A group of crystallinity data Xc are read at a constant temperature, then (c) the Ozawa

index can be obtained from the slope of lg[�ln(1 � Xc)] versus lg(a)
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with Avrami equation (Liu and Mo 1991; Mo 2008), to derive the relationship

under same crystallinity at the same time, as given by

log K þ n log t ¼ logK0 � q log a (10.46)

Therefore,

log a ¼ log ðK0

K
Þ1=q � n

q
log t (10.47)

Accordingly, on a series of crystallinity versus time curves (see Fig. 10.31b), one

can take the data points along the horizontal equal-crystallinity line, and then obtain

the ratios of the Avrami indexes and the rate constants separately from the slope and

the intercept of log(a) versus log(t). The experiments have verified that a better

linear relationship can be obtained in comparing this approach to the conventional

Ozawa method.

As a matter of fact, the above approach based on the changes in Avrami index or

Ozawa index to obtain the information about the changes of crystal nucleation

modes and of crystal growth dimension, is a scaling analysis to the time evolution

of crystal morphology from the phenomenological point of view. The similar

scaling analysis has also been widely applied in the other areas of polymer physics.

Question Sets

1. Why do we say that if polymer chains are more rigid, the melting points are

higher; if the inter-chain interactions are stronger, the melting points are higher

too?

2. Why do flexible polymer chains prefer to make chain folding upon polymer

crystallization?

3. Why does the melting of polymer crystals exhibit a wide temperature range?

4. What is the role of a nucleation agent?

5. Why do we say that the Avrami analysis is also a kind of scaling analysis?
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Chapter 11

Interplay Between Phase Separation and

Polymer Crystallization

11.1 Complexity of Polymer Phase Transitions

Soft matter is often called complex fluids. Polymers are one type of complex fluids.

Their complex behaviors in phase transitions appear in the spatial and temporal

evolution of multi-phase structures. Often, multiple phase transitions coexist and

interplay with each other, either in cooperation or in competition. Therefore, the

subject of complex systems may be helpful in our elucidation of the complex

formation mechanism of multi-phase structures.

The emergentism suggests that a complex system is featured as an integration of

its constituents becoming larger than their simple addition, while the traditional

reductionism suggests to splitting it into several simple parts for a separate analysis.

According to the emergentism, the complex sources from “1 þ 1 > 2”. Taking the

interplay between phase separation and polymer crystallization for an example, we

look at the emergent properties different from individual phase transitions. These

properties may reveal the complex formation mechanism of multi-phase structures.

Multi-component polymers range from solutions and blends to copolymers. Both

the phase separation and the crystallization processes hold a wide time window, and

their thermodynamic conditions are easy to achieve. These attributes make the

multi-component polymer system a good example in the study of the complex

formation mechanism of multi-phase structures.

The interplay of polymer phase transitions has been extensively studied in

solutions, dated back to Richards in 1946 (Richards 1946). Flory’s classical book

in 1953 introduced the complete set of phase diagrams (Flory 1953). Recently,

Cheng comprehensively reviewed the experimental progress on the interplay of

polymer phase transitions (Cheng 2008). Keller emphasized in a review paper that,

in the preparation of the thermoreversible gel, crystallization can freeze the gel

structure generated by the prior continuous phase separation (Keller 1995).

A practical example of such interplay of phase transitions is in the production of

W. Hu, Polymer Physics, DOI 10.1007/978-3-7091-0670-9_11,
# Springer-Verlag Wien 2013

223



porous membranes and foam materials via thermal stimulating process to control

their microscopic structures (Graham and McHugh 1998). The porous membranes

made of polypropylene and poly(vinylidene fluoride) have been widely applied as

filters in water purification.

Polymer phase separation and crystallization, as introduced separately in the

previous two chapters, have different molecular driving forces that can be simulta-

neously expressed by the use of the lattice model. Adjusting the corresponding

driving forces, the mean-field theory can predict the phase diagrams, and at the

meanwhile molecular simulations can demonstrate the complex phase transition

behaviors of polymers in the multi-component miscible systems.

Let us open the discussion on the thermodynamic interplay. In a 323 cubic lattice

space of polymer solutions, the mean-field statistical thermodynamic theory can

predict the complete set of phase diagrams combining both liquid-liquid binodal

curves and liquid–solid coexistence curves of polymer chains with length

32 monomers, as illustrated in Fig. 11.1a. Specifically, the binodal curve can be

calculated from the mixing free energy (10.11) with the chemical potential equiva-

lence between the dilute and concentrated phases (9.3) and (9.4). The coexistence

curve can be calculated from the absolute free energy (10.9) with the chemical

potential equilibrium between the solution and the crystalline phases. By the use of

the conformation energy Ec as a reference, the mixing interaction parameter B and

the crystallization interaction parameter Ep can be reduced into B/Ec and Ep/Ec,

respectively. One may see that, when Ep/Ec switches from zero to one, the binodal

curve only shifts up slightly; but when B/Ec changes from 0.25 to 0.1, one order of

magnitude smaller than Ep/Ec, the binodal curve shifts down significantly. This

result implies that the mixing interaction parameter dominates the binodal curve,

and the crystallization interaction parameter does not play a significant role.

Figure 11.1b shows the simulation results in parallel to Fig. 11.1a. The simulation

results are roughly consistent with the theoretical phase diagrams under the same
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Fig. 11.1 (a) Theoretical phase diagrams of temperature versus polymer volume fraction in

polymer solutions with the chain length 32 monomers. (b) Molecular simulation results under

parallel conditions. The reduced interaction parameter sets are labeled as Td (Ep/Ec, B/Ec) and the

liquid–solid coexistence curve Tm (Ep/Ec, B/Ec) (Hu et al. 2003a) (Reprinted with permission)
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parameter sets. Since the molecular simulations do not use the mean-field assump-

tion, the quantitative consistence between two approaches validates the mean-field

assumption applied in the statistical thermodynamic theory (Hu et al. 2003a).

Owning to the dilute effect of mixing entropy, the melting point of polymer

solutions will be depressed by the increase of solvent content. The depression speed

is related to the solvent quality. The solvent quality is reflected by the values of

mixing interaction parameters. The better the solvent quality is, the faster the

melting point drops down. Figure 11.2a demonstrates the theoretical phase

diagrams for the melting point depression of polymer solutions under various

solvent qualities, while Figure 11.2b is the simulation results under parallel ther-

modynamic conditions. One can see that, again under the same scales of

coordinates, the simulation results are roughly consistent with the parallel theoreti-

cal predictions, except the second focusing point of the simulation curves. The first

focusing point of melting point curves is located at the pure polymer side. The

second focusing point occurs only in simulation curves, implying an invalidity of

the theoretical assumption that the mixing interaction parameter is independent

with the concentration. In Sect. 8.3.4, we have introduced the theoretical efforts on

the correction of this assumption.

The interplay of phase separation and polymer crystallization in the multi-

component systems influences not only the thermodynamics of phase transitions,

but also their kinetics. This provides an opportunity to tune the complex morphology

ofmulti-phase structures via the interplay. In the following, we further introduce three

aspects of theoretical and simulation progresses: enhanced phase separation in the

blends containing crystallizable polymers; accelerated crystal nucleation separately in

the bulk phase of concentrated solutions, at interfaces of immiscible blends and of

solutions, and in single-chain systems; and interplay in diblock copolymers. In the

end, we introduce the implication of interplay in understanding biological systems.

Fig. 11.2 (a) Theoretical phase diagrams of melting point versus polymer volume fraction curves

of polymer solutions with the chain length 32 monomers. (b) Molecular simulation results under

parallel thermodynamic conditions. The reduced interaction parameter sets are labeled near the

liquid–solid coexistence curve Tm (Ep/Ec, B/Ec) (Hu et al. 2003a) (Reprinted with permission)
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11.2 Enhanced Phase Separation in the Blends Containing

Crystallizable Polymers

Crystallization is often component-selective in a multi-component system, causing

the same effect of component segregation as phase separation. Therefore, when

liquid-liquid phase separation happens at a temperature higher than the melting

point, molecular driving forces for crystallization are naturally a part of molecular

driving forces for phase separation, as expressed in (10.12). Assuming a binary

blend of two polymers with the same chain lengths of r, the numbers of polymer

molecules are separately N1 and N2, and the total volume N ¼ rN1 þ rN2. Again,

assuming only polymers labeled with 2 can crystallize, similar with the solution

system described in (10.8), the partition function of polymer blends is given by

Z ¼ N

N1

� �N1 N

N2

� �N2 q

2

� �N1þN2

zc
ðN1þN2Þðr�2Þe�ðN1þN2Þðr�1ÞzpN2ðr�1ÞzmN2r (11.1)
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kT

� �
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zp ¼ exp � q� 2
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qN
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� 	
;
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N

ðq� 2ÞB
kT

� �
:

Similarly, for the change of mixing free energy, one can get the formula

consistent with Flory-Huggins equation as

DFm

NkT
¼ f1

r
lnf1 þ

f2

r
lnf2

þ f1f2 q� 2ð Þ B

kT
þ 1� 2

q
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1� 1

r

� �2 EP

kT

" #
(11.2)

One can see from (11.2), the Flory-Huggins parameter w includes both

contributions from the mixing energy and the parallel packing energy. When the

chain lengths of both components are very large, the contribution of mixing entropy

in the mixing free energy will be very small. Furthermore, if the chemical structures

of two components are similar, such as the isotactic and atactic sequences of

polypropylene chains, their mixing interactions B will be minimal. We know that

in the blends of these different stereochemical compositions, isotactic
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polypropylene is crystallizable, while atactic polypropylene is non-crystallizable.

Such an asymmetry of crystallization driving force Ep between two components

makes a positive contribution to the mixing free energy, and results in the latter

larger than zero. Therefore, the mixing state becomes unstable, and the blend may

spontaneously perform phase separation. Indeed in reality, such blends have been

observed immiscible in their melt states (Hu and Mathot 2003).

The statistical thermodynamic theory makes a mean-field treatment to the

crystallization energy Ep. However, in practice, thermal fluctuations for parallel

ordering of local chains generally exist in the melt states of blends. Such an

additional anisotropic contribution of thermal fluctuations will make the practical

parallel-packing interactions larger than the mean-field estimation on the basis of

the isotropic liquid, which leads to a deviation from the theoretical predictions of

the phase separation binodals.

In Fig. 11.3, we made a comparison between the binodals obtained from

dynamic Monte Carlo simulations (data points) and from mean-field statistical

thermodynamics (solid lines). First, one can see that even with zero mixing

interactions B ¼ 0, due to the contribution of Ep, the binodal curve is still located

above the liquid–solid coexistence curve (dashed lines). This result implies that the

phase separation of polymer blends occurs prior to the crystallization on cooling.

This is exactly the component-selective crystallizability-driven phase separation, as

discussed above. Second, one can see that, far away from the liquid–solid coexis-

tence curves (dashed lines), the simulated binodals (data points) are well consistent

Fig. 11.3 Comparisons of phase diagrams of symmetric polymer blends (same chain lengths

32 monomers, only one component crystallizable) obtained from simulations (data point with the

same labeled sequences as the solid lines) and from mean-field theory (solid lines for binodals, and
dashed lines for liquid–solid coexistence lines) in the cubic lattice space 323. The x-axis is the

volume fraction of crystallizable component, and the y-axis is the reduced temperature. The data

labeled near the solid lines are the reduced energy parameter B/Ec, and all the curves have

Ep/Ec ¼ 1 (Ma et al. 2007) (Reprinted with permission)

11.2 Enhanced Phase Separation in the Blends Containing Crystallizable Polymers 227



with the theoretical predictions (solid lines); but once approaching to the coexis-

tence curves, the simulated binodals shift up. This shifting-up implies that, the

thermal fluctuations for crystallization are enhanced near the melting point, making

a more significant contribution to the driving forces for phase separation. As a

result, the phase separation is enhanced near the melting point (Ma et al. 2007).

11.3 Accelerated Crystal Nucleation in the Concentrated Phase

Let us switch our perspective to the other side, and see how the prior phase

separation affects polymer crystal nucleation. We know that polymer crystallization

normally needs a relatively large degree of supercooling. If liquid-liquid phase

separation happens before a polymer solution has reached a sufficient degree of

supercooling, the practical concentration for polymer crystallization will be

changed.

As demonstrated in Fig. 11.4, we designed three sets of energy parameters for the

solutions of polymers each containing 128 monomers in the cubic lattice space 643.

They display the same equilibrium melting points near the concentration 0.125 in the

semi-dilute solution region, but clearly different critical points for phase separation.

Fig. 11.4 Comparison in the theoretical phase diagrams of phase separation and polymer crystalli-

zation in polymer solutions, and the kinetic phase diagrams of crystal nucleation. The energy

parameters are set as Ep/Ec ¼ 1.0 and B/Ec ¼ 0.076 for the labeled C1 curves, Ep/Ec ¼ 1.072 and

B/Ec ¼ 0.03 for C2, and Ep/Ec ¼ 1.275 and B/Ec ¼ �0.1 for C3. Three solution series share the

samemelting points (solid lines) at polymer concentrationf ¼ 0.125, but different depths of critical

points for phase separation. The dashed lines are binodals, and the dotted lines are spinodals. The
data points are the onset temperatures for the uprising of crystallite numbers on isothermal crystalli-

zation. The straight lines are drawn to guide the eyes (Zha andHu 2007) (Reprinted with permission)
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The critical points of the C1, C2 and C3 systems correspondingly are close to the

melting point, in the region of spontaneous crystallization temperatures below the

melting point, and far below the melting point. Thus, when a homogeneous solution

with the concentration 0.125 is cooled from high temperatures, the C1 solution will

firstly perform phase separation, generating a two-phase coexisting structure.

Figure 11.4 also demonstrates the onset temperatures of crystal nucleation

obtained from simulations. One can see that the C1 solution performs crystal

nucleation at the highest temperature. This behavior is because the higher concen-

tration corresponds to a higher melting point, providing a larger supercooling for

the initiation of crystallization at the same temperatures. In this sense, the

concentrated phase resulted from phase separation contains the highest priority

for crystal nucleation. The data points obtained from simulations form the kinetic

phase diagrams for the onsets of crystal nucleation versus concentration curves,

which become horizontal below the theoretical spinodal lines. The horizontal lines

indicate that due to the prior phase separation, crystal nucleation in this region share

the same concentrations of the polymer-rich phases to meet the thermal fluctuation

energy for the spontaneous initiation of crystallization. At any specific concentra-

tion of this region, the onsets of crystal nucleation on the horizontal lines are higher

than the corresponding results extrapolated from the kinetic phase diagram in the

region above the crossover with the theoretical spinodal lines, indicating crystal

nucleation triggered by the prior spinodal decomposition. The horizontal region of

the C2 solutions is relatively narrow, while no horizontal region occurs in the C3

solutions. Above the crossover, the onsets of crystal nucleation increase with of

polymer concentrations, following the same trends in the curves of equilibrium

melting points (Zha and Hu 2007).

If the homogeneous C2 and C3 solutions with the concentration of 0.125 are

quenched to a low temperature of 1.5Ec/k for isothermal crystallization, their

structure factors as a function of time are shown in Fig. 11.5a, b. According to

the introduction in the Sect. 9.2, Fig. 11.5a shows the typical evolution of structure

Fig. 11.5 Simulation results for the time evolution of structure factors on the isothermal crystal-

lization of homogeneous C2 (a) and C3 (b) solutions with the concentration 0.125 at the

temperature 1.5Ec/k (Time periods are labeled in parallel sequences with the curves, in the unit

of Monte Carlo cycles). The dot segments represent the initial state (Zha and Hu 2007) (Reprinted

with permission)
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factors during spinodal decomposition: the maximum of the structure factors

increases with time but the peak location does not change at the early stage,

implying that C2 solution performs phase separation prior to crystal nucleation.

In contrast, Fig. 11.5b shows the typical evolution of structure factors during the

nucleation and growth: the maximum of structure factors is relatively small, and the

peak location shifts to smaller wave vectors with increase of time, implying that C3

solution performs a conventional crystal nucleation and growth. The spinodal

decomposition of C2 solution generates a bi-continuous morphology structure at

the early stage. Accordingly, the concentrated domains are much smaller and more

uniform in sizes, and meanwhile more spatially homogeneous for the formation of a

thermoreversible gel (see Fig. 11.6a), in comparison to the nucleation-dominated

C3 solution (see Fig. 11.6b). Such a structure can be frozen by the subsequent fast

crystallization. The micro-pore structures fabricated via two-step separate phase

transitions have been widely applied in the production of separation membranes

and foam materials of semi-crystalline polymers.

11.4 Accelerated Crystal Nucleation at Liquid Interfaces

Liquid interfaces are prevailing within the immiscible polymer blends and solutions.

The effect of interfaces to polymer crystallization cannot be overlooked, not only

because the practical system accumulates impurities at interfaces for heterogeneous

crystal nucleation, but also because the thermodynamic conditions for crystal nucle-

ation at interfaces are different from that in the bulk phase. The latter effect can be

revealed by the theoretical phase diagrams for immiscible polymer blends, as

Fig. 11.6 Snapshots of crystalline morphologies obtained from the simulations of isothermal

crystallization in homogeneous C2 (a) and C3 (b) solutions with the concentration 0.125 at the

temperature 1.5Ec/k. The cubic lattice space is 643, and each polymer chain contains

128 monomers (Zha and Hu 2007) (Reprinted with permission)
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calculated from (11.1) and illustrated in Fig. 11.7. Supposing polymer blends homo-

geneous although thermodynamically immiscible, the melting point of the crystalliz-

able component will increase with dilution, in contrast to the depression in

thermodynamically miscible blends. Since surface polymers are forced to contact

to the other component, their concentration is relatively lower than that of bulk

polymers. According to Fig. 11.7, their melting point appears higher than that of

bulk polymers. This result implies that crystal nucleation at interfaces will be

accelerated with a larger degree of supercooling than that in the bulk phase. Parallel

simulations have verified this interface effect, and such a thermodynamic effect does

not provide any orientation preference to crystal nuclei at interfaces (Ma et al. 2008).

In immiscible polymer solutions, the theoretical melting points behave differ-

ently from those in the immiscible blends above. In a poor solvent, the melting

point does not move monotonically upward upon dilution, but rather first downward

then upward due to the significant effect of mixing entropy, as demonstrated in

Fig. 11.8. This result suggests that, only in a sufficiently poor solvent, can polymer

crystal nucleation be accelerated at interfaces (Zha and Hu 2009). For instance at

T ¼ 4.5EC/k, when the mixing energy parameter is 0.3, polymer melting point at

the interface (determined by the melting point curve at the supposed polymer

concentration 0.5) is lower than that in the bulk phase (determined by the melting

point curve at the concentration crossing the binodal curve at T ¼ 4.5EC/k) in

Fig. 11.8. When the mixing energy parameter becomes 0.4, the melting point at

interfaces is higher than that of the bulk phase. Therefore, the interfaces can induce

crystal nucleation only in a sufficiently poor solvent of polymer solutions. This

Fig. 11.7 Theoretical melting points versus volume fractions of crystallizable polymers in

homogeneous symmetric polymer blends with chain length 16 monomers, showing melting

point risen-up on dilution under the immiscible thermodynamic conditions. The mixing interaction

parameters B/Ec are labeled near the curves, and Ep/Ec ¼ 1. The arrow is drawn to guide the eyes

(Ma et al. 2008) (Reprinted with permission)
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result has been verified by the parallel simulations (Zha and Hu 2009). The

interface-induced crystal nucleation in the precipitated polymer droplets explains

the special bowl-shape morphology of solution-grown crystallites observed at low

temperatures in a poor solvent. Interface-induced crystal nucleation may be useful

in the fabrication of a well-designed texture of multi-component systems in order to

realize an integration of the advantages in each component.

11.5 Accelerated Crystal Nucleation in the Single-Chain

Systems

When a polymer solution becomes extremely diluted, each polymer chain will be

surrounded only by solvent molecules, which constitutes an isolated single-chain

system. Since a flexible polymer chain contains a large number of monomers, and

each monomer may contain variable chemical structures with multiple interactions

such as hydrogen bonding, hydrophobic and hydrophilic interactions, the phase

transition behaviors of such a small system will be very complicated. A typical

example is the protein folding from a random coil to its native state. Various

interactions between monomers make diverse contributions to the self-assembly

behaviors of proteins. Such a single-chain system is often regarded as the smallest

complex system in the world.

Hsien Wu first proposed that the mechanism for a protein to lose its living

function is the unfolding of its native conformation (Wu 1931). Anfinsen pointed

Fig. 11.8 Theoretical melting points (solid lines) versus volume fraction of crystallizable

polymers in polymer solutions with chain length 128 monomers. The mixing interaction

parameters B/Ec are labeled near the curves, and Ep/Ec ¼ 1. The dashed lines are the theoretical
binodal curves, and the dotted lines are the melting points of the bulk phases in comparison with

those at interfaces with the concentration 0.5 (Zha and Hu 2009) (Reprinted with permission)
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out that the primary chemical structure of proteins decided their native tertiary

structure with minimum free energy (Anfinsen 1973). Protein molecules in the

random coil state contain very large conformational entropy, while at ambient

conditions their native states get quite little folding energy, normally the free energy

for a few of hydrogen bonds. How protein folding can find the sole native state from

all the possible random conformation states by overcoming large entropy barriers

has been a challenge question. The answer to this question is of essential impor-

tance for us to control the physic-chemical process of the living macromolecules.

To this end, Levinthal suggested a paradox: proteins should not have enough time to

search over all the possible kinetic paths during their folding process, and there

must be some fast paths (Levinthal 1968). Kauzmann proposed that the hydropho-

bic interactions of amino acid segments are the dominant thermodynamic driving

forces for fast folding of proteins (Kauzmann 1959). The hydrophobic residues tend

to assemble themselves in the inner core of native proteins. Even though the

sequences of proteins with similar functions could be different in various species,

their hydrophobic cores are similar. The hydrophobic interactions benefiting the

stacking of alkali-group pairs are also important to maintain the stability of DNA

double helix (the hydrogen bonding in each base pair is comparable with the

hydrogen bonding between the base groups and water molecules; therefore, its

free energy contributions to the stability is negligible.). In addition, the hydrophobic

interactions are crucial for the recognition between the antigen and its counterpart.

We can roughly separate the various interactions in the units of protein

molecules into two parts, according to their corresponding roles in phase

transitions: the first part plays a role analogous to the mixing interaction B, which
drives the hydrophobic collapse transition of the single chain, corresponding to the

liquid-liquid phase separation; and the second part plays a role analogous to the

parallel-packing interaction Ep, which drives chain packing in the beta-sheet,

corresponding to polymer crystallization. Thus, one can recognize that the

corresponding contributions of these two interaction parameters control the inter-

play of phase transitions in the prototypical single-chain system.

By employing the so-called biased sampling algorithm and the parallel temper-

ing method in dynamic Monte Carlo molecular simulations of single lattice chain,

we can compute the free energy change of a homopolymer chain during the process

of crystalline ordering (Hu et al. 2003b). Figure 11.9a demonstrates free energy

curves at the equilibrium melting points with varying strengths of mixing

interactions. One can see that the height of free energy barriers for crystallization

changes with the solvent quality, reflecting the relative difficulty in crystal nucle-

ation. Figure 11.9b summarizes the height of free energy barriers at the equilibrium

melting points, together with the simulated phase diagrams for collapse transition

and crystallization of the single-chain systems. One can clearly see that near the

triple point, the prior collapse transition can effectively decrease the free energy

barrier for intramolecular crystal nucleation, resulting in a significant acceleration

to the self-assembly of the single chain with chain folding (Hu and Frenkel 2006).
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The effect is similar with the prior phase separation for the acceleration of crystal

nucleation in the concentrated phase, as described in Sect. 11.3. Figure 11.10 shows

the snapshots of the single chains in the random coil state, the collapsed globule

state and the crystalline folding state, respectively, obtained in computer

simulations.

Such interplay of phase transitions in the single-chain system provides a logical

framework to the unified condensation-nucleation scheme for protein folding

(Daggett and Fersht 2003). If one describes the distributions of all the possible

states along the path of protein folding in analogy to a shape of funnel, the

intermediate molten globule states locate right in the vicinity of the small entrance

of the pipe: once the hydrophobic core forms, the speed for protein molecules to

reach their native states will be significantly accelerated (Wolynes et al. 1995). The

example shown here suggests that the complexity of protein folding may be

elucidated as the interplay of phase transitions.

Fig. 11.10 Snapshots of single 512-mers obtained in Monte Carlo simulations. (a) The random

coil state at B/EP ¼ �0.1, T ¼ 2.174 EP/k; (b) the collapsed globule state at B/EP ¼ 0.1,

T ¼ 3.289 EP/k; (c) the crystalline folding state at B/EP ¼ 0.1, T ¼ 2.289 EP/k (Hu and Frenkel

2006) (Reprinted with permission)

Fig. 11.9 (a) The free energy change versus the number of molten units (defined by the bonds

containing less than five parallel neighbors) for single 512-mers at equilibrium melting points with

various solvent qualities (B/Ep values as denoted); (b) heights of free energy barriers at relative

mixing interactions, in comparison with the phase boundaries for collapse transitions (Tcol) and for
crystal nucleation (Tcry) (Hu and Frenkel 2006) (Reprinted with permission)
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11.6 Interplay of Phase Transitions in Diblock Copolymers

The examples presented above are limited in the intermolecular multi-component

systems. For polymers, there are even many intramolecular multi-component

systems, such as diblock copolymers with one end containing different chemical

species than the other end, grafted copolymer, star-shape copolymers, and statisti-

cal copolymers. Complex self-assembly process of these copolymers can form

hierarchical structures with certain flexibility in their environmental responses. It

is not difficult to find such examples in the bio-functional macromolecular systems.

The role of block junction in the interplay between phase transitions of two

polymer blocks can be revealed by its comparison to the parallel polymer blends

(Ma et al. 2011). Figure 11.11 shows that in the symmetric binary blends of 16-

mers, the melting points keep constant when B/Ec > 0 due to phase separation, and

decrease when B/Ec < 0 with the decreasing of B/Ec due to homogeneous mixing.

The melting point lines are shifted down in parallel with the lower Ep/Ec values,

because the latter dominates the thermodynamic stability of the crystals. In the

symmetric dilbock copolymers of 32-mers, the critical segregation strength shifts to

0.1. This shift is relevant to the additional free energy penalty for microphase

separation of diblock copolymers, either due to the interface formation of

microdomains or due to the stretching of chain conformations. When B/Ec > 0.1,

the melting points increase slowly with B/Ec. This behavior can be attributed to the

significant amount of microdomain interfaces, at which the melting points are

raised as demonstrated in Fig. 11.7, and the extent of raising depends on the

segregation strength.

The microphase separation and crystallization of diblock copolymers can com-

pete with each other on cooling. If crystallization occurs first, we observe only

Fig. 11.11 Melting points of symmetric binary blends and diblock copolymers for three Ep/Ec

values. The blends contain the chain length 16 monomers in parallel to the block length of diblock

copolymers. The straight lines are drawn to guide eyes (Ma et al. 2011) (Reprinted with

permission)
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homogeneous crystal nucleation inducing random stacking of lamellar crystals. If

microphase separation occurs first, we observe crystallization confined in

microdomains. The microdomains not only provide a spatial template for crystal-

line ordering, but also guide crystal orientations (Hu and Frenkel 2005). Fig-

ure 11.12a, b demonstrate that the lamellar microdomains can induce parallel

stacking of lamellar crystals at high crystallization temperatures, while the homo-

geneous primary nucleation generates only random stacking of lamellar crystals

(Ma et al. 2011). Parallel stacking of lamellar crystals benefits the barrier properties

of semi-crystalline engineering plastics, applied in wrapping films, Coke bottles

and oil tanks (Lemstra 2009). Such a template-controlled growth actually widely

exists in the bio-mineralization process, such as the bio-fabrication of shells,

enamels and bones in Nature (Currey 2005).

11.7 Implication of Interplay in Biological Systems

There are wide implications of phase-transition interplay in the biological systems,

besides protein folding and bio-mineralization. Double-helix DNA constitutes a

single rigid chain and has to fold up in order to be stored into the cell nucleus. Since

the persistence length of DNA is as long as 50 nm, the local chain rigidity makes

DNA molecules to fold up into a toroid ring similar to a “doughnut”, with the help

of certain enzymes. As a result of interplay between chain extending and parallel

stacking, the folding speed follows a nucleation-controlled kinetics (Yoshikawa

and Matsuzawa 1996). The parallel packing interactions of DNA chains mainly

originate from the concentration fluctuations of counter-ions surrounding the poly-

electrolyte chains, as introduced in Sect. 4.3.

Fig. 11.12 Snapshots of diblock copolymers obtained after isothermal crystallization under the

conditions of (a) B/Ec ¼ 0.2, T ¼ 4.1Ec/k for prior microphase separation to crystallization; (b) B/
Ec ¼ �0.2, T ¼ 2.9Ec/k for crystallization first, with Ep/Ec ¼ 1 for the crystallizable yellow 16-

mer blocks, and 0 for the noncrystalliable blue 16-mer blocks. All the bonds are drawn as cylinders

in the cubic lattice of 643 with periodic boundary conditions (Ma et al. 2011) (Reprinted with

permission)
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It is worth mentioning that, besides the beta-sheet structure leading a chain-

folding of protein molecules, certain regular polypeptide sequences are viable to

form an alfa-helix structure, i.e. the oxygen atom on the carbonyl group of each

amino-acid residue forming a hydrogen bonding with the hydrogen atom on the

amino group of the fourth amino-acid residue along the chain. The coil-helix

transition, in principle, corresponds to one-dimensional Ising lattice model, imply-

ing no behavior of phase transitions. Higher temperatures favor the formation of the

alfa-helix, thus helix formation makes a positive contribution to the enthalpy

change, unfavorable to the decrease of total free energy. Even with a significant

conformational entropy loss, the driving force for helix formation may come from a

synergetic result of entropy gain by releasing the adsorbed water molecules,

corresponding to the LCST type of phase separations. The hydrophobic interactions

coming from the similar synergetic source also make unfolding of the native-state

proteins under lower temperatures, and thus losing their living activities. At further

higher temperatures, the helix structures make spontaneous unwinding, like the

denaturing of native-state proteins at high temperatures (Nelson 2004),

corresponding to the UCST type of phase separation.

In the living cells, the folding process of nascent polypeptides sometimes needs

the cooperative work of molecular chaperones to improve the local microscopic

environment. For instance, chaperones can temporarily screen off the exposure of

hydrophobic residues in the intermediate states of folding, to avoid the aggregation

of protein molecules under the environment of macromolecular crowding in the

cells (Ellis 1997). A misfolding of protein molecules may lead to their aggregation

to form an amyloid-fiber structure rich with beta-foldings and thus losing their

living activities. Many senile degenerative diseases of nervous systems are related

to the misfolding of protein molecules, such as Alzheimer’s disease, Parkinson’s

disease, Huntington’s disease, prion disease (including the famous mad-cow dis-

ease), and type II diabetes mellitus. Sicklemia is also caused by the hydrophobic

aggregation of misfolding hemoglobin molecules. Learning and controlling the

molecular mechanisms of these diseases are of essential importance for us to find

the effective curing methods. Protein aggregation also has its own positive side.

When the blood vessel is broken, the fibrinogen in the blood will be cut by a certain

enzyme to exposure its hydrophobic segments, and the segments can glue together

to form up a network structure, favoring the blood clotting at the wound and thus

stopping bleeding (Nelson 2004).

Protein unfolding is very sensitive to the pH values, temperatures, salt

concentrations and solvent types. Denaturation of food proteins is a common

phenomenon in our food processing. The casein in the milk performs unfolding

in the yoghurt, leading to the thickening of the yoghurt. The inorganic salts also

make the denaturation of egg proteins, which is the coagulation mechanism of

preserved eggs (also called century eggs). Egg white proteins exchange their

disulfide bonds after denaturation upon heating, and thus crosslink to network a

huge amount of water on the preparation of egg custard. The hydrophobic core of

proteins can also be dismissed at the surface of air bubbles in the water, making the

hydrophobic residues face towards the air, like a surfactant stabilizing the interfaces
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between air and water, and thus forming the cream with a relatively stable foam

structure. In recent years, the emergence of molecular gastronomy transplants the

lab physical chemistry into the food processing, to understand the molecular

mechanism and even to propose new recipes to meet the multiple functions of

food such as pretty, delicacy, tasty, hygiene, nutrition and healthy (This 2009;

Barham et al. 2010). In the near future, when a gastrologist elaborates on a specific

recipe, he may explain its physicochemical principles by using some knowledge of

polymer physics.

Question Sets

1. Try to find one more example of the complex system from the emergentism point

of view.

2. Why can short chains of isotactic and atactic polypropylenes mix homo-

geneously in the melt, while their long chains cannot?

3. In the preparation of porous membranes, if one makes use of phase separation

followed with crystalline solidification in polymer solutions to control the pore

sizes, whether does the longer time for phase separation make larger sizes of

pores?

4. Surf the literature to learn the thermodynamic mechanism of DNA unwinding,

and to list potentially important intramolecular and intermolecular contributions

of enthalpy and entropy.
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