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Preface

Plasmonics is a rapidly developing field that blends together fundamental research
and applications ranging across physics, chemistry, biology, medicine, engineering,
defense, environmental sciences, etc. It dates back to 1950s when surface plasmon
polaritons were discovered [1, 2]. Its development received a new impetus in
mid-1970s with the discovery of surface-enhanced Raman scattering (SERS) [3–5],
and again following the observation of giant single-molecule SERS [6, 7]. However,
it was during the past decade that plasmonics experienced a truly explosive growth.
This book is a snapshot of current developments in various areas of plasmonics
presented in several reviews written by leading researchers in the field.

The material is arranged in 15 chapters starting with an overview by one of the
Editors followed by topical reviews. It is assumed that the reader is familiar with
the fundamentals; a number of excellent recent introductory texts are available
[8–11]. Naturally, the included topics do not nearly cover the incredible breadth of
current plasmonics research and applications, but hopefully will give readers an
interesting summary of this exciting field.

Tigran V. Shahbazyan
Mark I. Stockman
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Chapter 1
Nanoplasmonics: From Present into Future

Mark I. Stockman

Abstract A review of nanoplasmonics is given. This includes fundamentals,
nanolocalization of optical energy and hot spots, ultrafast nanoplasmonics and control
of the spatiotemporal nanolocalization of optical fields, and quantum nanoplasmon-
ics (spaser and gain plasmonics). This chapter reviews both fundamental theoretical
ideas in nanoplasmonics and selected experimental developments. It is designed both
for specialists in the field and general physics readership.

Keywords Plasmon · Spaser · Stimulated emission · Generation threshold

1.1 Introduction

1.1.1 Preamble

This is a review chapter on fundamentals of nanoplasmonics. Admittedly, the selec-
tion of the included subjects reflects the interests and expertise of the author.

We have made a conscious decision not to include such important and highly devel-
oped subject as SERS (Surface Enhanced Raman Scattering). The reason is that this
subject is too large and too specialized for this chapter. There is an extensive liter-
ature devoted to SERS. This includes both reviews and original publications—see,
e.g., Refs. [1–5] and a representative collective monograph [6]. Another important
subject that we do not include in this review is the extraordinary transmission of light
through subwavelength holes—there are extensive literature and excellent reviews
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on this subject—see, e.g., [7–11]. Also, due to limitations of time and space we do not
cover systematically a subject of particular interest to us: the adiabatic nanoconcen-
tration of optical energy [12]. There are many important experimental developments
and promising applications of this phenomenon [12–22]. This field by itself is large
enough to warrant a dedicated review. We only briefly touch this subject in Sect. 1.4.5.

Another important class of questions that we leave mostly outside of this review
chapter are concerned with applications of nanoplasmonics. Among this applications
are sensing, biomedical diagnostics, labels for biomedical research, nanoantennas
for light-emitting diodes, etc. There exist a significant number of reviews on the
applications of nanopalsmonics, of which we mention just a few below, see also
a short feature article [23]. Especially promising and important are applications to
cancer treatment [24, 25], sensing and solar energy conversion to electricity [26],
and photo-splitting of hydrogen [27] and water [28] (“artificial photosynthesis” for
solar production of clean fuels).

Presently, nanoplasmonics became a highly developed and advanced science.
It would have been an impossible task to review even a significant part of it. We
select some fundamental subjects in plasmonics of high and general interest. We
hope that our selection reflects the past, shows the modern state, and provides an
attempt to glimpse into the future. Specifically, our anticipation is that the ultrafast
nanoplasmonics, nanoplasmonics in strong field, and the spaser as a necessary active
element will be prominently presented in this future. On the other hand, it is still just
a glimpse into it.

1.1.2 Composition of the Chapter

In Sect. 1.2, we present an extended introduction to nanoplasmonics. Then we
consider selected subfields of nanoplasmonics in more detail. Nanoplasmonics is
presently a rather developed science with a number of effects and rich applications
[23]. In the center of our interest and, in our opinion, the central problem of nanoplas-
monics is control and monitoring of the localization of optical energy in space on
the nanometer scale and in time on the femtosecond or even attosecond scale.

In Sect. 1.3, we consider ultimately small nanoplasmonic systems with size less or
on the order of skin depth ls where we employ the so-called quasistatic approximation
to describe in an analytical form the nanolocalized optical fields, their eigenmodes
and hot spots, and introduce the corresponding Green’s functions and solutions. This
section is focused on the spatial nanoconcentration of the local optical fields.

In Sect. 1.4 we present ideas and results of ultrafast nanoplasmonics and coherent
control of nanoscale localization of the optical fields, including control in time with
femtosecond resolution. We will describe both theoretical ideas and some experi-
mental results.

One of the most important problems of the nanoplasmonics, where only recently
solutions and first experimental results have been obtained, is the active and gain
nanoplasmonics. Its major goal is to create nanoscale quantum generators and
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amplifiers of optical energy. In Sect. 1.5, we present theory and a significant number
of experimental results available to date regarding the spaser and related polaritonic
spasers (nanolasers or plasmonic lasers). We also consider a related problem of loss
compensation in metamaterials.

1.2 Basics of Nanoplasmonics

1.2.1 Fundamentals

Nanoplasmonics is a branch of optical condensed matter science devoted to optical
phenomena on the nanoscale in nanostructured metal systems. A remarkable prop-
erty of such systems is their ability to keep the optical energy concentrated on the
nanoscale due to modes called surface plasmons (SPs). It is well known [29] and
reviewed below in this chapter that the existence of SPs depends entirely on the fact
that dielectric function εm has a negative real part, Re εm < 0. The SPs are well
pronounced as resonances when the losses are small enough, i.e., Im εm ∪ −Re εm .
This is a known property of a good plasmonic metal, valid, e.g., for silver in the most
of the visible region. We will call a substance a good plasmonic metal if these two
properties

Re εm < 0, Im εm ∪ −Re εm (1.1)

are satisfied simultaneously.
There is a limit to which an electromagnetic wave can be concentrated. We

immediately note that, as we explain below, nanoplasmonics is about concentration
of electromechanical energy at optical frequencies (in contrast to electromagnetic
energy) on the nanoscale.

The scale of the concentration of electromagnetic energy is determined by the
wavelength and can be understood from Fig. 1.1a. Naively, let us try to achieve the
strongest light localization using two parallel perfect mirrors forming an ideal Fabry-
Perot resonator. A confined wave (resonator mode) should propagate normally to the
surface of the mirrors. In this case, its electric field E is parallel to the surface of the
mirror. The ideal mirror can be thought of as a metal with a zero skin depth that does
not allow the electric field of the wave E to penetrate inside. Therefore the field is
zero inside the mirror and, due to the Maxwell boundary conditions, must be zero on
the surface of the mirror. The same condition should be satisfied at the surface of the
second mirror. Thus, length L of this Fabry-Perot cavity should be equal an integer
number n of the half-wavelengths of light in the inner dielectric, L = nλ/2. The
minimum length of this resonator is, obviously λ/2. This implies that light cannot be
confined tighter than to a length of λ/2 in each direction, with the minimum modal
volume of λ3/8.
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Fig. 1.1 a Localization of optical fields by ideal mirrors and b by a gold nanoparticle. c Schematic
of charge separation

One may think that it is impossible to achieve a localization of the optical energy
to smaller volume than λ3/8 by any means, because the ideal mirrors provide the
best confinement of electromagnetic waves. There are two implied assumptions:
(i) The optical energy is electromagnetic energy, and (ii) The best confinement is
provided by ideal mirrors. Both these assumptions must be abandoned to achieve
nanolocalization of optical energy.

Consider a nanoplasmonic system whose size is less than or comparable to the
skin depth

ls = λ

[
Re

( −ε2
m

εm + εd

)1/2
]−1

, (1.2)

where λ = λ/(2π) = ω/c is the reduced vacuum wavelength. For single-valence
plasmonic metals (silver, gold, copper, alkaline metals) ls ≈ 25 nm in the entire
optical region.

For such a plasmonic nanosystem with R � ls , the optical electric field penetrates
the entire system and drives oscillations of the metal electrons. The total energy of
the system in this case is a sum of the potential energy of the electrons in the elec-
tric field and their mechanical kinetic energy. While the magnetic field is present,
non-relativistic electrons’ interaction with it is weak proportional to a small para-
meter vF/c ∼ α ∼ 10−2, where vF is the electron speed at the Fermi surface, c
is speed of light, and α = e2/�c is the fine structure constant. Thus in this limit,
which is conventionally called quasistatic, the effects of the magnetic component of
the total energy is relatively small. Hence, this total energy is mostly electromechan-
ical (and not electromagnetic) energy. [At this point, it may be useful to refer to
Eq. (1.107), which expresses the Brillouin formula for total energy E of a system in
such a quasistatic case.] This is why the wavelength, which determines the length
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scale of the energy exchange between the electric and magnetic components of an
electromagnetic wave, does not define the limit of the spatial localization of energy.
Because the size of the system R is smaller than any electromagnetic length scale,
of which smallest is ls, it is R that defines the spatial scale of the optical energy
localization. Thus the optical fields are confined on the nanoscale, and their spatial
distribution scales with the system’s size. This physical picture is at the heart of the
nanoplasmonics.

Consider as an example a gold nanosphere of radius R < ls, e.g., R ∼ 10 nm,
subjected to a plane electromagnetic wave, as shown in Fig. 1.1b. The field penetrates
the metal and causes displacement of electrons with respect to the lattice resulting in
the opposite charges appearing at the opposing surfaces, as illustrated in Fig. 1.1c.
The attraction of these charges causes a restoring force that along with the (effective)
mass of the electrons defines an electromechanical oscillator called a SP. When the
frequency ωsp of this SP is close to the frequency of the excitation light wave, a
resonance occurs leading to the enhanced local field at the surface, as illustrated in
Fig. 1.1b.

This resonant enhancement has also an adverse side: loss of energy always asso-
ciated with a resonance. The rate of this loss is proportional to Im εm [30]. This leads
to a finite lifetime of SPs. The decay rate of the plasmonic field γ is ∝ (Im εm)−1. In
fact, it is given below in this chapter as Eq. (1.49) in Sect. 1.3.4. This expression has
originally been obtained in Ref. [31] and is also reproduced below for convenience,

γ = Im s(ω)

∂Re s(ω)
∂ω

≈ Im εm(ω)

∂Reεm (ω)
∂ω

, (1.3)

where

s(ω) = εd

εd − εm(ω)
(1.4)

is Bergman’s spectral parameter [29]. Note that γ does not explicitly depend on the
system geometry but only on the optical frequency ω and the permittivities. However,
the system’s geometry determines the SP frequency ω and, thus, implicitly enters
these equations. The approximate equality in Eq. (1.3) is valid for relatively small
relaxation rates, γ ∪ ω. Apart from γ, an important parameter is the so-called quality
factor

Q = ω

2γ
≈ ω

∂Reεm (ω)
∂ω

2Im εm(ω)
(1.5)

The quality factor determines how many optical periods free SP oscillations occur
before field decays. It also shows how many times the local optical field at the surface
of a plasmonic nanoparticle exceeds the external field.

Note that another definition of the quality factor, which is often used, is

Q = −Re εm(ω)

Im εm(ω)
. (1.6)
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Fig. 1.2 a Quality factor Q for silver and b for gold calculated according to Eq. (1.5) (red) and
Eq. (1.6) (blue) as a function of frequency ω

The SP quality factors Q calculated according to Eqs. (1.5)–(1.6) for gold and
silver using the permittivity data of Ref. [32] are shown in Fig. 1.2. The Q-factors
found from these two definitions agree reasonably well in the red to near-infrared
(near-ir) region but not in the yellow to blue region of the visible spectrum. The
reason is that these two definitions would be equivalent if metals’ permittivity were
precisely described by a Drude-type formula Re εm(ω) = −ω2

p/ω
2, where ωp is the

bulk plasma frequency; �ωp ≈ 9 eV for one-electron metals such as silver, copper,
gold, and alkaline metals. This formula is reasonably well applicable in the red and
longer wavelength part of the spectrum, but not in the yellow to blue part where the
D-band transitions are important. Note that silver is a much better plasmonic metal
than gold: its Q-factor is several-fold of that of gold.

The finite skin depth of real metals leads to an effect related to nanoplasmonic
confinement: a phase shift Δϕ for light reflected from a metal mirror deviates from
a value of Δϕ = π characteristic of an ideal metal. As suggested in Ref. [33], this
allows for ultrasmall cavities whose length L ∪ λ. While generally this is a valid
idea, there two problems with Ref. [33] that affect the validity of its specific results.
First, the Fresnel reflection formulas used in this article to calculate Δϕ are only valid
for infinite surfaces but not for the “nanomirrors” in a nanocavity. Second, Eq. (1.1)
of this article expressing Q is incorrect: it contains in the denominator a quantity
∂ [ωImεm(ω)]/∂ω instead of 2Im εm(ω) as in Eq. (1.5). The correct expression [30]
for Ohmic losses defining the Q-factor, which we reproduce as Eq. (1.108), is pro-
portional to Im εm(ω) as in Eq. (1.5) and not to ∂ [ωImεm(ω)]/∂ω, which constitutes
a significant difference.

The lifetime τ of the SPs is related to the spectral width as

τ = 1

2γ
. (1.7)

Note that the SP spectral width γ, quality factor Q, and lifetime τ depend explic-
itly only on frequency ω and the type of the metal (permittivity εm) but not on
the nanosystem’s geometry or surrounding dielectric. However, this geometry and
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Fig. 1.3 a Lifetime τ of SPs for silver and b for gold calculated according to Eq. (1.7) as a function
of frequency ω

the ambient-dielectric permittivity εd do affect the modal frequency and enter the
corresponding Eqs. (1.3), (1.5), and (1.7) implicitly via ω.

The dependence of the SP lifetime τ on frequency ω calculated for gold and
silver using permittivity [32] is illustrated in Fig. 1.3. This lifetime is in the range
10–60 fs for silver and 1–10 fs for gold in the plasmonic region. These data show that
nanoplasmonic phenomena are ultrafast (femtosecond).

However, the fastest linear response time τc of SPs, as any other linear response
system, depends not on the relaxation time but solely on the bandwidth. In fact, it can
be calculated as a quarter period (i.e., a time interval between zero and the maximum
field) of the beating between the extreme spectral components of the plasmonic
oscillations,

τc = 1

4

2π

Δω
, (1.8)

where Δω is the spectral bandwidth of the plasmonic spectrum. For gold and silver,
this bandwidth is the entire optical spectrum, i.e., �Δω ≈ 3.5 eV. If aluminum is
included among system’s plasmonic metals, this bandwidth is increased to �Δω ≈
9 eV. This yields this coherent reaction time τc ∼ 100 as. Thus nanoplasmonics is
potentially attosecond science.

While the characteristic size of a nanoplasmonic system should be limited from
the top by the skin depth, R ∪ ls , it is also limited from the bottom by the so called
nonlocality length lnl—see, e.g., [34, 35]. This nonlocality length is the distance that
an electron with the Fermi velocity vF moves in space during a characteristic period
of the optical field,

lnl ∼ vF/ω ∼ 1 nm, (1.9)

where an estimate is shown for the optical spectral region. For metal nanoparti-
cles smaller than lnl , the spatial dispersion of the dielectric response function and
the related Landau damping cause broadening and disappearance of SP resonances
[34, 35].
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Thus, we have arrived at the basic understanding of the qualitative features of
nanoplasmonics. Consider a plasmonic nanosystem whose size R satisfies a condition
lnl ∪ R ∪ ls . This nanosystem is excited by an external field in resonance. In this
case, the local optical field in the vicinity of such a nanosystem is enhanced by a
factor ∼Q, which does not depend on R. The spatial extension of the local field
scales with the size of the nanosystem ∝ R. This is because R ∪ ls , and ls is the
smallest electromagnetic length; thus there is no length in the system that R can
be comparable to. When the external field changes, the local field relaxes with the
relaxation time Q/ω that does not depend on R; the lifetimes of the SP are in the
femtosecond range.

In many cases of fundamental and applied significance, the size of a nanosystem
can be comparable to or even greater than ls but still subwavelength, λ � R � ls .
In such a case, the coupling to far-field radiation and radiative losses may greatly
increase as we will discuss below in Sects. 1.2.2 and 1.2.3. Another important sub-
field of nanoplasmonics that is related to extended systems is the surface plasmon
polaritons—see, e.g., a collective monograph [36]. We consider some polaritonic
phenomena relevant to coherent control below in Sect. 1.4.5.

1.2.2 Nanoantennas

Consider a molecule situated in the near-field of a metal plasmonic nanosystem. Such
a molecule interacts not with the external field but with the local optical field E(r)
at its location r. The interactions Hamiltonian of such a molecule with the optical
field is H ′ = −E(r)d, where d is the dipole operator of this molecule. Note that a
modal expansion of the quantized local field operator is given below in this chapter
by Eq. (1.64).

Consequently, the enhanced local fields cause enhancement of radiative and non-
radiative processes in which such a molecule participate. In particular, the rates
of both the excitation and emission are enhanced proportionality to the local field
intensity, i.e., by a factor of ∼Q2. This effect is often referred to as nanoantenna
effect [37–64] in analogy with the common radio-frequency antennas. For the recent
review of the concept and applications of optical nanoantennas see Ref. [65]. Cur-
rently, the term nanoantenna or optical antenna is used so widely that it has actually
became synonymous with the entire field of nanoplasmonics: any enhancement in
nanoplasmonic systems is called a nanoantenna effect.

General remarks about the terms “nanoantenna” or “optical antenna” are due. The
term “antenna” has originated in the conventional radio-frequency technology where
it is used in application to receivers for devices that convert the wave energy of far-
field radio waves into local (near-field) electric power used to drive the input circuitry.
For transmitters, antennas perform the inverse transformation: from the local field
electric power to that of the emitted radio waves. Due to the general properties of
time reversal symmetry there is no principal difference between the receiving and
transmitting antennas: any receiving antenna can work as a transmitting one and
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vice versa. The mechanism of the efficiency enhancement in the radio frequency
range is a combination of spatial focusing (e.g., for parabolic antennas) and resonant
enhancement (e.g., for a dipole antenna). In all cases, the size of the radio antenna is
comparable to or greater than the wavelength. Thus one may think that a receiving
antenna collects energy from a large geometric cross and concentrates it in a small,
subwalength area.

The receiving antennas in radio and microwave technology are loaded by matched
impedance loads that effectively withdraw the energy from them. This suppresses the
radiation by such antennas but simultaneously dampens their resonances and makes
them poor resonators.

In majority of cases, the optical antennas are not matched-loaded because they are
designed not to transduce energy efficiently but to create high local fields interacting
with molecules or atoms, which do not load these antennas significantly. (There
are exceptions though: for instance, the nanoantenna in Ref. [66] is loaded with an
adiabatic nanofocusing waveguide.) The unloaded antennas efficiently loose energy
to radiation (scattering), which also dampens their resonances.

A question is whether this concept of collecting energy form a large geometric
cross section is a necessary paradigm also in nanoplasmonics. The answer is no,
which is clear already from the fact that the enhancement of the rates of both the
excitation and emission of a small chromophore (molecule, rear earth ion, etc.) in
the near field of a small (R � ls) plasmonic nanoparticle is ∼Q2 and does not
depend on the nanoparticle size R. This enhancement is due to the coherent resonant
accumulation of the energy of the SPs during ∼Q plasmonic oscillations and has
nothing to do with the size of the nanoparticle. Thus such an enhancement does
not quite fit into the concept of antennas as established in the radio or microwave
technology.

Another test of the nanoantenna concept is whether the efficiency of a nanoantenna
is necessarily increased with its size. The answer to this question is generally no.
This is because for plasmonic nanoparticles, with the increase of size there is also
an increased radiative loss—see below Sect. 1.2.3. In contrast, for many types of
radio-frequency antennas (dish antennas or microwave-horn antennas, for instance),
the efficiency does increase with the size.

1.2.3 Radiative Loss

As we described above in conjunction with Fig. 1.1c, the interaction of optical radia-
tion with a nanoplasmonic system occurs predominantly via the dipole oscillations.
The radiative decay of SPs occur via spontaneous emission of photons, which is a
process that does not exist in classical physics and requires a quantum-mechanical
treatment. To find the radiative life time of a SP state quantum-mechanically, we need
to determine the transitional dipole matrix element d0p between the ground state |0〉
and a single-plasmon excited state |p〉. To carry out such a computation consistently,
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one needs to quantize the SPs, which we have originally done in Ref. [31] and present
below in Sect. 1.5.4.1.

However, there is a general way to do it without the explicit SP quantization, which
we present below in this section. We start with the general expression for polariz-
ability α of a nanosystem obtained using quantum mechanics—see. e.g., Ref. [67],
which near the plasmon frequency has a singular form,

α = 1

�

∣∣d0p
∣∣2

ω − ωsp
, (1.10)

where ωsp is the frequency of the resonant SP mode. This can compared with the cor-
responding pole expression of the polarizability of a nanoplasmonic system, which
is given below as Eq. (1.55), to find absolute value of the matrix element

∣∣d0p
∣∣.

Here, for the sake of simplicity, we will limit ourselves to a particular case of a
nanosphere whose polarizability is given by a well-known expression

α = R3 εm(ω) − εd

εm(ω) + 2εd
, (1.11)

where R is the radius of the nanosphere. The SP frequency ω = ωsp corresponds to
the pole of α, i.e., it satisfies an equation

Re εm(ωsp) = −2εd , (1.12)

where we neglect Im εm . In the same approximation, near ω = ωsp, we obtain from
Eq. (1.11),

α = −3R3εd

[(
ω − ωsp

) ∂Re εm(ωsp)

∂ωsp

]−1

. (1.13)

Comparing the two pole approximations of Eqs. (1.10) and (1.13), we obtain the
required expression for the dipole moment of a quantum transition between the
ground state and the SP state,

∣∣d0p
∣∣2 = �3R3εd

[
∂Re εm(ωsp)

∂ωsp

]−1

. (1.14)

Consider the well-known quantum-mechanical expression for the dipole-radiation
rate (see, e.g., Ref. [67]),

γ (r) = 4

3

ω3√εd

�c3

∣∣d0p
∣∣2 . (1.15)

Substituting Eq. (1.14) into (1.15), we obtain the desired expression for the quantum-
mechanical rate of the radiative decay of the SP state as
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γ (r) = 4ε
3/2
d

(
ωsp R

c

)3 [∂Re εm(ωsp)

∂ωsp

]−1

. (1.16)

Note that for losses not very large (which is the case in the entire plasmonic region
for noble metals), the Kramers-Kronig relations for εm(ω) predict [30] that

∂Re εm(ωsp)

∂ωsp
> 0, (1.17)

which guarantees that γ (r) > 0 in Eq. (1.16).
Comparing this expression to Eq. (1.3) [see also Eq. (1.49)], we immediately con-

clude that, in contrast to the internal (radiationless) loss rate γ, the radiative rate is
proportional to the volume of the system (i.e., the number of the conduction electrons
in it), which is understandable. Thus for systems small enough, the radiative rate can
be neglected. The quality factor of the SP resonance is actually defined by the total
decay rate γ (tot) [cf. Eq. (1.5)],

Q = ωsp

2γ (tot)
, γ (tot) = γ + γ (r). (1.18)

Therefore, Q is lower for larger nanoparticles, tending to a constant for small R. To
quantify it, we find a ratio

γ (tot)

γ
= 1 + 4

Im εm(ωsp)

(√
εdωsp R

c

)3

. (1.19)

We illustrate behavior of this rate ratio of the total to internal loss, γ (tot)
/
γ, in

Fig. 1.4. General conclusion is that the radiative loss for silver is not very important for
nanospheres in the true quasistatic regime, i.e., for R < ls ≈ 25 nm but is a dominant
mechanism of loss for R > 30 nm, especially in high-permittivity environments. In
contrast, for gold the radiative loss is not very important in the quasistatic regime
due to the much higher intrinsic losses, except for a case of a relatively high ambient
permittivity, εd = 5.

Though it is outside of the scope of this chapter, we would like to point out that
there is a general approach to combat radiative losses in relatively large nanoparticles.
This is related to the well-known Fano resonances originally discovered by Ugo Fano
in atomic spectra [68]. These resonances can be described in the following way. In
certain cases of optical excitation, when two quantum paths lead to the same final
quantum state of the system, the resonance peaks have specific asymmetric line
shapes due to the interference of these quantum paths.

An analogous phenomenon is also known in nanoplasmonics and metamaterials
[69–77]. It can be explained in the following way [77]. Apart from bright plasmonic
resonances with high transitional dipole moment, there are also dark ones [78],
which by themselves are not very prominent in optical spectra. However, if a bright
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Fig. 1.4 Ratio of the rates of the total to internal loss, γ (tot)
/
γ, for a nanosphere as a function of its

radius R for a silver and b gold. The blue, green, and red lines correspond to the embedding dielectric
with εd = 1, 2, and 5, respectively. The computations are made at the SP frequency ωsp, which
for these value of εd is for silver �ωsp = 3.5, 3.2, 2.5 eV, and for gold �ωsp = 2.6, 2.4, 2.0 eV,
correspondingly

resonance and a dark resonance coexist in a certain spectral range—which is not
unlikely, because the bright resonances are spanning relatively wide wavelength
ranges—then their optical fields interfere. This interference significantly enhances
the manifestation of the dark resonance: it acquires strength from the bright resonance
and shows itself as an asymmetric peak-and-dip profile characteristic of a Fano
resonance. An important, albeit counterintuitive, property of the Fano resonances
is that, exactly at the frequency of the Fano dip, the hot spots of the nanolocalized
optical fields in the nanosystem are strongest. This is because at this frequency the
nanosystem emits minimal light intensity and, consequently, it does not wastefully
deplete the energy of the plasmon oscillations. This leads to a decreased radiative
loss and a high resonance quality factor.

Thus at the frequency of a Fano resonance, the radiative loss is significantly
suppressed. The width of the Fano resonances is ultimately determined by the internal
(Ohmic) losses described by Im εm . Summarizing, the Fano resonances enable one
using relatively large nanoplasmonic particles or plasmonic metamaterials to achieve
narrow spectral features with high local fields. These can be applied to plasmonic
sensing and to produce spasers and nanolasers—see Sect. 1.5.

1.2.4 Other Important Issues of Plasmonics in Brief

There are other very important issues and directions of investigation in plasmonics
that we will not be able to review in any details in this chapter due to the limitations
of time and space. Below we will briefly list some of them.



1 Nanoplasmonics: From Present into Future 13

1.2.4.1 Enhanced Mechanical Forces in Nanoplasmonic Systems

The resonantly enhanced local fields in the vicinity of plasmonic nanoparticles lead to
enhanced nanolocalized forces acting between the nanoparticles, see, e.g., Refs. [79–
85]. A perspective application of plasmonically-enhanced forces is optical manipu-
lation (tweezing) of micro- and nanoparticles [86–92].

Another direction of research is opened up by the recently introduced theoretically
surface-plasmon-induced drag-effect rectification (SPIDER) [93], which is based on
transfer of the linear momentum from decaying surface-plasmon polaritons (SPPs)
to the conduction electrons of a metal nanowire. The SPIDER effect bears a promise
to generate very high terahertz fields in the vicinity of the metal nanowire.

1.2.4.2 Interaction Between Electrons and Surface Plasmons

The surface plasmonics, as it is called today, originated by a prediction of electron
energy losses for an electron beam in thin metal films below the energy of the bulk
plasmons [94]. This is how coherent electronic excitations called SPPs today were
predicted. Soon after this prediction, the SPP-related energy losses were experimen-
tally confirmed [95, 96]. Presently, the electron energy loss spectroscopy (EELS) in
nanopalsmonics is a thriving field of research. We refer to a recent review [97] for
further detail.

A distinct and original direction of research is control of mechanical motion of
metal nanoparticles using electron beams [98]. It is based on the same principles
as optically-induced forces. The difference in this case is that the SP oscillations
in nanoparticles are excited locally, with an angstrom precision, by a beam of fast
electrons—see also Sect. 1.2.4.1 above.

There are other important phenomena in plasmonics based on electron-SP inter-
action called nonlocality [99]. One of them is dephasing of plasmons causing their
decay into electron-hole pairs, which is called Landau damping, contributing to
Im εm . There is necessarily a related phenomenon of spatial dispersion contributing
to Re εm . These become important for plasmonics when the size of the nanosystem
become too small, R � lnl—see Eq. (1.9). The nonlocality and Landau damping
degrade plasmonic effects. The nonlocal effects lead to an increased decay rate of
dipolar emitters at metal surfaces [34] and limits resolution of plasmonic imaging,
making the so-called “perfect” lens [100] rather imperfect [35]. In aggregates, the
nonlocality of dielectric responses causes reduction of local fields and widening of
plasmonic resonances [101]. These broadening effects have initially been taken into
account purely phenomenologically by adding an additional contribution to the width
of plasmonic resonances ∼A/τnl , where A = const [102]. Practically, if the size of
a nanoparticle is less then 3 nm, the non-local broadening of the SP resonances is
very significant; otherwise, it can be neglected in a reasonable approximation.

The above-mentioned publications [34, 35, 99, 101] on the nonlocality phenom-
ena are based on a semi-phenomenological approach where the nonlocality is treated
via applying additional boundary conditions stemming from the electron scattering
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by the boundaries of the plasmonic system. A more advanced approach to nonlocality
in nanoplasmonics, albeit treatable only for very small, R � 1 nm, nanoparticles, is
based on an ab initio quantum-chemical approach of time-dependent density func-
tional theory (usually abbreviated as TD-DFT) [103–109].

It shows that while for larger particles and relatively large spacing between them
(�1 nm), the semi-phenomenological models work quite well; for smaller nanopar-
ticles and gaps the predicted local fields are significantly smaller. This is under-
standable because in ab initio theories there are phenomena that are important in the
extremely small nanosystem such as a significant dephasing due to the stronger cou-
pling between the collective plasmon and one-particle electron degrees of freedom,
discreetness of the one-electron spectrum, spill-out of the conduction-band electrons
(extension of their wave function outside of the lattice region) and the corresponding
undescreening of the d-band electrons, and simply the discreetness of the lattice.

In the latest set of publications, e.g., [108, 109], this approach is called quantum
nanoplasmonics. We would argue that this approach is traditionally called quantum
chemistry because what is found from the TD-DFT quantum-mechanically is the
dielectric response (susceptibility or polarizability) of the nanosystems. However,
even to calculate theoretically the permittivity of a bulk method, one has to employ
quantum-mechanical many-body approaches such as the random-phase approxima-
tion, self-consistent random-phase approximation (or GW-aproximation), or TD-
DFT, etc. The only difference from the above-sited works is that for bulk metals the
size effects are absent. Therefore permittivities can be adopted from experimental
measurements such as Ref. [32, 110].

Based on the arguments of the preceding paragraph, we would reserve the therm
“quantum plasmonics” for the subfields of nanoplasmonics studying phenomena
related to quantum nature and behavior SPs and SPPs. This term has been proposed
in our 2003 paper [31] introducing the spaser as a quantum generator of nanolocalized
optical fields—see Sect. 1.5 and references sited therein. A related field of studies
devoted to quantum behavior of single SPPs also can reasonably be called quantum
plasmonics as proposed later in Refs. [111, 112].

While the decay of SP excitations is usually a parasitic phenomenon, there are
some effects that completely depend on it. One of them is the SPIDER [93] mentioned
above in Sect. 1.2.4.1. It is based on the transfer of the energy and momentum from
SPPs to the conduction electrons, which microscopically occurs through the decay
of the SPPs into electron-hole pairs leading to production of hot electrons.

Yet another range of phenomena associated with a plasmon-dephasing decay into
incoherent electron-hole pairs (Landau damping) has come to the forefront recently.
This is the plasmon-assisted and enhanced generation of a dc electric current due to
rectification in Schottky diodes involving hot electrons [61, 113–115]. This phenom-
enon is promising for applications to photodetection and solar energy conversion.
Note that the use of the Schottky contacts between the plasmonic metal and a semi-
conductor permits one to eliminate a requirement that the photon energy �ω is greater
that the band gap. This is replaced by a much weaker requirement that �ω is greater
than a significantly lower Schottky-barrier potential [116].
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1.2.4.3 Nonlinear Photoprocesses in Nanoplasmonics

As became evident from the first steps of what now is called nanoplasmonics, the
enhanced local fields in resonant metal nanosystems bring about strongly enhanced
nonlinear responses [117–120].

Nonlinear nanoplasmonics is presently a very large and developed field. Some of
its phenomena related to coherent control and spasing are discussed in Sects. 1.4, and
1.5. Here we will give a classification of the nonlinear nanoplasmonic phenomena
and provide some examples, not attempting at being comprehensive.

Nonlinearities in nanoplasmonics can occur in the nanostructured plasmonic
metal, in the embedding medium (dielectric), or in both. Correspondingly, we clas-
sify them as intrinsic, extrinsic, or combined. As an independent classification, these
nonlinearities can be classified as weak (perturbative) or strong (nonperturbative).
The perturbative nonlinearities can be coherent (or parametric), characterized by non-
linear polirizabilities [121] and incoherent such as nonlinear absorption, two-photon
fluorescence, surface-enhanced hyper-Raman scattering (SEHRS) [122], nonlinear
photo-modification, two-photon electron emission [123], etc.

Here are some examples illustrating a variety of nonlinear photoprocesses in
nanoplasmonics.

• Second-harmonic generation from nanostructured metal surfaces and metal
nanoparticles [57, 124–132] is a coherent, perturbative (second-order or three-
wave mixing), intrinsic nonlinearity.

• Enhanced four wave mixing (sum- or difference frequency generation) at metal
surfaces [133] is a coherent, perturbative (third-order or four-wave), intrinsic non-
linearity.

• Another four-wave mixing process in a hybrid plasmonic-photonic waveguide
involves nonlinearities in both metal and dielectric [134] and, therefore, is classi-
fied as a coherent, combined, perturbative third-order nonlinear process.

• An all-optical modulator consisting of a plasmonic waveguide covered with CdSe
quantum dots [135] is based on a perturbative third-order, combined nonlinearity.
To the same class belongs a nanoscale-thickness metamaterial modulator [136].

• An ultrafast all-optical modulator using polaritons in an aluminum plasmonic
waveguide is based on perturbative third-order, intrinsic nonlinearity [137]. There
are arguments that this nonlinearity is incoherent, based on interband population
transfer of carriers [137].

• Nonperturbative (strong-field), coherent, extrinsic nonlinearity is plasmon-
enhanced generation of high harmonics [138] where the enhanced nanoplasmonic
fields excite argon atoms in the surrounding medium. Spaser [31] belongs to the
same class where the nonlinearity is the saturation of the gain medium by the
coherent plasmonic field [139]. The same is true for the loss compensation by gain
[140, 141].

• Intrinsic perturbative nonlinearities in nanoplasmonics stemming from a redistrib-
ution of the electron density caused by the ponderomotive forces of nanoplasmonic
fields have been predicted for surface plasmon polaritons [93, 142]. An intrinsic
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nonperturbative nonlinear process is the predicted plasmon soliton [143] where
strong local optical fields in a plasmonic waveguide cause a significant redistrib-
ution of the conduction-electron density.

• There are also relevant strongly-nonlinear processes in non-plasmonic materials
that are based on nanolocalized fields and are very similar to those in plasmon-
ics. Among them are near-field enhanced electron acceleration from dielectric
nanospheres with intense few-cycle laser fields [144]. Another such a process is
a strong optical-field electron emission from tungsten nanotips controlled with an
attosecond precision [145].

• Finally, a recently predicted phenomenon of metallization of dielectrics by strong
optical fields [146, 147] belongs to a new class of highly-nonlinear phenomena
where strong optical fields bring a dielectric nanofilm into a plasmonic metal-like
state.

1.3 Nanolocalized Surface Plasmons (SPs) and Their Hot Spots

1.3.1 SPs as Eigenmodes

Assuming that a nanoplasmonic system is small enough, R ∪ λ, R � ls , we employ
the so-called quasistatic approximation where the Maxwell equations reduce to the
continuity equation for electrostatic potential ϕ(r),

∂

∂r
ε(r)

∂

∂r
ϕ(r) = 0. (1.20)

The systems permittivity (dielectric function) varying in space is expressed as

ε(r) = εm(ω)Θ(r) + εd [1 − Θ(r)]. (1.21)

Here Θ(r) is the so-called characteristic function of the nanosystem, which is equal
to 1 when r belongs to the metal and 0 otherwise. We solve this equation following
the spectral theory developed in Refs. [29, 78, 148].

Consider a nanosystem excited by an external field with potential ϕ0(r) at an
optical frequency ω. This potential is created by external charges and, therefore,
satisfies the Laplace equation within the system,

∂2

∂r2 ϕ0(r) = 0. (1.22)

We present the field potential as

ϕ(r) = ϕ0(r) + ϕ1(r), (1.23)
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where ϕ1(r) is the local field.
Substituting Eq. (1.23) into (1.20) and taking Eqs. (1.21) and (1.22) into account,

we obtain a second-order elliptic equation with the right-hand side that describes the
external excitation source,

∂

∂r
Θ(r)

∂

∂r
ϕ1(r) − s(ω)

∂2

∂r2 ϕ1(r) = − ∂

∂r
Θ(r)

∂

∂r
ϕ0(r), (1.24)

where s(ω) is Bergman’s spectral parameter [29] defined by Eq. (1.4).
As a convenient basis to solve this field equation we introduce eigenmodes (SPs)

with eigenfunctions ϕn(r) and the corresponding eigenvalues, sn , where n is the full
set of indices that identify the eigenmodes. These eigenmodes are defined by the
following generalized eigenproblem,

∂

∂r
Θ(r)

∂

∂r
ϕn(r) − sn

∂2

∂r2 ϕn(r) = 0, (1.25)

where eigenfunctions ϕn(r) satisfy the homogeneous Dirichlet-Neumann boundary
conditions on a surface S surrounding the system. These we set as

ϕ1(r)|r∈S = 0, or n(r)
∂

∂r
ϕ1(r)

∣∣∣∣
r∈S

= 0, (1.26)

with n(r) denoting a normal to the surface S at a point of r. These boundary conditions
(1.26) are essential and necessary to define the eigenproblem.

From Eqs. (1.25)–(1.26) applying the Gauss theorem, we find

sn =
∫

V Θ(r)
∣∣ ∂
∂r ϕn(r)

∣∣2 d3r∫
V

∣∣ ∂
∂r ϕn(r)

∣∣2 d3r
. (1.27)

From this equation, it immediately follows that all the eigenvalues are real numbers
and

1 ≥ sn ≥ 0. (1.28)

Physically, as one can judge from Eq. (1.27), an eigenvalue of sn is the integral
fraction of the eigenmode (surface plasmon) intensity |∂ϕn(r)

/
∂r|2 that is localized

within the metal.
Because the SP eigenproblem is real, and all the eigenvalues sn are all real, the

eigenfunctions ϕn can also be chosen real, though are not required to be chosen in
such a way. Physically, it means that the quasistatic nanoplasmonic eigenproblem is
time-reversible.

For the eigenproblem (1.25)–(1.26), we can introduce a scalar product of any two
functions ψ1 and ψ2 as
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(ψ2 | ψ1) =
∫

V

[
∂

∂r
ψ∗

2 (r)
] [

∂

∂r
ψ1(r)

]
d3r, (1.29)

This construct possesses all the necessary and sufficient properties of a scalar product:
it is a binary, Hermitian self-adjoined, and positive-defined operation. It is easy
to show that the eigenfunctions of Eqs. (1.25)–(1.26) are orthogonal. They can be
normalized as

(ϕn| ϕm) = δnm, (1.30)

1.3.2 Inhomogeneous Localization of SPs and Hot Spots of Local
Fields

One of the most fundamental properties of eigenmodes is their localization. By
nature, the SP eigenmodes of small nanoplasmonic systems are localized and non-
propagating. This generally follows from the fact that the eigenproblem (1.25) is real
and has real eigenvalues, implying time-reversal invariance and, consequently, zero
current carried by any eigenmode.

From the early days of nanoplasmonics, there has been keen attention paid to
the localization of SP eigenmodes, because it was immediately clear that absence
of any characteristic wavelength of the localized SPs leads to the possibility of
their concentration in nanoscopic volumes of the space [117, 120, 149]. Many early
publications claimed that the SPs in disordered nanoplasmonics systems, e.g., fractal
clusters, experience Anderson localization [150–156].

However, a different picture of the SP localization, named inhomogeneous local-
ization, has been introduced [78, 157–160]. In this picture of inhomogeneous local-
ization, eigenmodes of very close frequencies with varying degree of localization,
from strongly localized at the minimum scale of the system to delocalized over the
entire nanosystem coexist. This phenomenon of inhomogeneous localization has
been experimentally confirmed recently [161]. The eigenmodes experiencing the
Anderson localization are dark, corresponding to dipole-forbidden transitions, and
thus can only be excited from the near field [78].

A related phenomenon is the formation of hot spots in local fields of nanoplas-
monic system that we introduced in Refs. [157, 158, 162, 163]. As characteristic of
the inhomogeneous localization, the energy is localized by different SP eigenmodes
at vastly different scales. However, it is the localization at the minimum scale that
gives the highest local fields and energy density; these tightly-localized modes are
the most conspicuous in the near-field intensity distributions as the hot spots. The
hot spots exist in all kind of nanoplasmonic system but they are especially strongly
pronounced in disordered and aperiodic systems [164].

We will illustrate the hot spots and the inhomogeneous localization of the SP
eigenmodes using the results of the original works that established the phenomena
[157, 158] using plasmonic-metal fractal clusters as objects. The model of these
fractals were the so-called cluster-cluster aggregates (CCA) [165, 166]. In Fig. 1.5,
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Fig. 1.5 Near-field intensity of eigenmodes computed for cluster-cluster aggregate (CCA) cluster.
Square of the eigenmode electric field |En|2 is displayed against the projection of the cluster for
two eigenmodes with close eigenvalues: a sn = 0.3202 and b sn = 0.3203. For silver embedding
medium with a permittivity εd ≈ 2.0, which is an approximate value for water, these modes
correspond to a blue spectral range with �ω ≈ 3.13 eV. Adapted from Ref. [157]

we show two representative eigenmodes with Bergman’s eigenvalues of sn = 0.3202
and sn = 0.3203, which are very close in frequency (the blue spectral range for the
case of silver in water). Both the eigenmodes are highly singular and are represented
by sharp peaks—hot spots—that may be separated by the distances from the mini-
mum scale of the system to the maximum scale that is on the order of the total size of
the entire system. These eigenmodes possess very different topologies but very close
eigenvalues and, consequently, have almost the same frequency �ω ≈ 3.13 eV. This
coexistence of the very different eigenmodes at the same frequency was called the
inhomogeneous localization [157, 158].

The formation of host spots by the SP eigenmodes and the inhomogeneous local-
ization of the eigenmodes are very pronounced for the fractal clusters. However, the
same phenomena also take place in all dense random plasmonic systems. Physically,
this phenomena is related to the absence of the characteristic length scale for SPs:
the smallest electromagnetic scale is the skin depth ls ≈ 25 nm, which is too large on
the scale of the system to affect the SP localization. The inhomogeneous localization
implies that eigenmodes can be localized on all scales but this localization is always
singular. The hot spots are the concentration regions of the optical energy: sharp
peaks on the minimum scale (“fine grain” size) of the system are most visible.

Note that there is a fundamental difference between the plasmonic hot spots and
their counterpart in the wave optics: speckles produced by scattering of laser light
from a random medium. In the speckle case, there is a characteristic size of the
speckles on the order of a character distance Ls between them that is determined by
diffraction:

Ls ∼ λD/A, (1.31)

where λ is wavelength of light, A is an aperture (cross-size of the coherent spot
of light on the scattering system), and D is the distance from the scatterer to the
observation screen.
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One of the plasmonic system models studied in significant detail is a random planar
composite (RPC) also called a semi-continuous metal film [78, 128, 148, 155, 161,
167–170]. This is a planar system where metal occupies a given fill fraction f of the
system’s volume. At a low f , the RPC is a system of remote randomly positioned
metal particles. For high values of f , it is an almost continuous film with rare holes in
it. For f ≈ 0.5, there are percolation phenomena: there is a large connected random
cluster of the metal extending between the boundaries of the system [171]. This
connected percolation cluster is known to possess a fractal geometry.

To consider statistical measures of the SP localization, we introduce the localiza-
tion radius Ln of an eigenmode, which is defined as the gyration radius of its electric
field intensity |En(r)|2, where

En(r) = − ∂

∂r
ϕn(r) (1.32)

is the eigenmode electric field, as

L2
n =

∫
V

r2|En(r)|2d3r −
(∫

V
r|En(r)|2d3r

)2

. (1.33)

We remind that due to Eq. (1.30), the eigenmode fields are normalized

∫
V

|En(r)|2d3r = 1, (1.34)

so Eq. (1.33) is a standard definition of the gyration radius.
In Fig. 1.6a, we show the smoothed, discretized nanostructure of one particular

sample of a RPC. This system is generated in the following way. We consider a
volume of size, in our case, 32 × 32 × 32 grid steps. In the central xz plane of this
cube we randomly fill a cell of size 2×2 grid steps with metal with some probability
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Fig. 1.6 For a planar random composite (in the xz-plane), the density of the metal component
(panel a) and all eigenmodes plotted in the coordinates of oscillator strength Fn versus localization
radius Ln (panel b)
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f (fill factor or filling factor). Then we repeat this procedure with other 2 × 2 cells
in that central xz plane. As a result, we arrive at a thin planar layer of thickness 2
grid steps in the y direction and fill factor of f in the central xz plane.

In Fig. 1.6b, we display all of the eigenmodes (SPs) of the above-described RPC
in a plot of oscillator strength Fn versus localization length Ln . These eigenmodes
are strikingly unusual.

First, there is a large number of eigenmodes with negligible oscillator strengths
Fn � 10−5. Note that the rounding-up relative error in our computations is ∼10−6,
so these eigenmodes’ oscillator strengths do not significantly differ from zero. Such
eigenmodes do not couple to the far-field electromagnetic waves, and they can be
neither observed nor excited from the far-field (wave) zone. We call them dark modes.
They can, however, be excited and observed by NSOM (near-field scanning optical
microscope) type probes in the near-field region. Such eigenmodes are also important
from the computational-mathematical point of view because they are necessary for
the completeness of the eigenmode set.

Second, in Fig. 1.6b, there also are many eigenmodes with relatively large oscilla-
tor strengths, Fn � 10−4, which we call luminous or bright modes. These do couple
efficiently to the far-zone fields.

Third, both the luminous and the dark modes have localization radii Ln with all
possible values, from zero to one half of the diagonal system size, and with very
little correlation between Fn and Ln , except for the superlocalized (zero-size) eigen-
modes that are all dark. This wide range of Ln shows that the Anderson localization
does not occur for most of the modes, including all the luminous modes. Similar to
these findings in certain respects, deviations from the simple Anderson localization
have been seen in some studies of the spatial structure of vibrational modes [172,
173], dephasing rates [174] in disordered solids induced by long-range (dipole- type)
interactions. A direct confirmation of this picture of the inhomogeneous localization
has been obtained in experiments studying fluctuations of the local density of states
of localized SPs on disordered metal films [161].

To gain more insight, we show in Fig. 1.7 the local electric field intensities |En(r)|2
for particular eigenmodes of four extreme types, all with eigenvalues very close to
sn = 0.2. As a measure of the eigenmode oscillator strength, we show a normalized
oscillator strength Fn . The data of Fig. 1.7 confirm the above-discussed absence of
correlation between the localization length and oscillator strength, and also show
that there is no correlation between the topology of the local field intensity and
the oscillator strength—compare the pairs of eigenmodes: sn = 0.1996 with sn =
0.2015, and sn = 0.2 with sn = 0.2011. Note that the large and random changes
of the intensities between the close eigenmodes evident in Fig. 1.7 is an underlying
cause of the giant fluctuations [175] and chaos [157–159] of local fields.

A fundamental property of the SP eigenmodes, whether localized or delocalized,
is that they may be thought of as consisting of hot spots. While the localized eigen-
modes possess a single tight hot spot, the delocalized ones consist of several or many
host spots. Note that the fields in the hot spots constituting a single eigenmode are
coherent. In a sense, the hot spots are somewhat analogous to speckles produced by
laser light scattered from a random system. However, such speckles are limited by
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Fig. 1.7 Hot spots: Local field intensities |En(r)|2 of eigenmodes at the surface of the system
shown in Fig. 1.6, versus spatial coordinates in the xz plane

the half-wavelength of light and cannot be smaller than that. In contrast, there is no
wavelength limitations for the SP hot spots. They are limited only by the minimum
scale of the underlying plasmonic system.

1.3.3 Retarded Green’s Function and Field Equation Solution

Retarded Green’s function Gr (r, r′;ω)of field equation (1.24), by definition, satisfies
the same equation with the Dirac δ-function on the right-hand side,

[
∂

∂r
Θ(r)

∂

∂r
− s(ω)

∂2

∂r2

]
Gr (r, r′;ω) = δ(r − r′), (1.35)

We expand this Green’s function over the eigenfunctions ϕn using the orthonor-
mality Eq. (1.30), obtaining

Gr (r, r′;ω) =
∑

n

ϕn(r) ϕn(r′)∗

s(ω) − sn
. (1.36)

This expression for Green’s function is exact (within the quasistatic approxima-
tion) and contains the maximum information on the linear responses of a nanosystem
to an arbitrary excitation field at any frequency. It satisfies all the general properties
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of Green’s functions due to the analytical form of Eq. (1.36) as an expansion over the
eigenmodes (surface plasmons). This result demonstrates separation of geometry of
a nanosystem from its material properties and the excitation field. The eigenfunctions
ϕn(r) and eigenvalues sn in Eq. (1.36) depend only on geometry of the nanosystem,
but not on its material composition or the optical excitation frequency. In contrast,
the spectral parameter s(ω) depends only on the material composition and the exci-
tation frequency, but not on the system’s geometry. One of the advantages of this
approach is in its applications to numerical computations: the eigenproblem has to be
solved only once, and then the optical responses of the nanosystem are determined
by Green’s function that can be found by a simple summation in Eq. (1.36).

This Green’s function is called retarded because it describes responses that occur
necessarily at later time moments with respect to the forces that cause them. (Note
that this name and property have nothing to do with the electromagnetic retardation,
which is due to the finite speed of light and is absent in the quasistatic approximation.)
This property, also called Kramers-Kronig causality, is mathematically equivalent
to all singularities of Gr (r, r′;ω) as a function of complex ω being situated in the
lower half-plane. Consequently, Gr (r, r′;ω) as a function of ω satisfies the Kramers-
Kronig dispersion relations [30]. By the mere form of the spectral expansion (1.36),
this Green’s function satisfies all other exact analytical properties. This guarantees
that in numerical simulations it will possess these properties irrespectively of the
numerical precision with which the eigenproblem is solved. This insures an excep-
tional numerical stability of computational Green’s function approaches.

Once the Green’s function is found from Eq. (1.36), the local optical field potential
is found as contraction of this Green’s function with the excitation potential ϕ0(r) as

ϕ1(r) = −
∫

V
Gr (r, r′;ω)

∂

∂r′ Θ(r′) ∂

∂r′ ϕ0(r′) d3r ′. (1.37)

From Eqs. (1.23) and (1.37) using the Gauss theorem, we obtain an expression for
the field potential ϕ(r) as a functional of the external (excitation) potential ϕ0(r),

ϕ(r) = ϕ0(r) −
∫

V
ϕ0(r′) ∂

∂r′ Θ(r′) ∂

∂r′ Gr (r, r′;ω) d3r ′. (1.38)

Finally, differentiating this, we obtain a closed expression for the optical electric
field E(r) as a functional of the excitation (external) field E(0)(r) as

Eα(r) = E (0)
α (r) +

∫
V

Gr
αβ(r, r′;ω)Θ(r′)E (0)

β (r′) d3r ′, (1.39)

where α, β, . . . are Euclidean vector indices (α, β, . . . = x, y, z) with summation
over repeated indices implied; the fields are

E(r) = −∂ϕ(r)
∂r

, E(0)(r) = −∂ϕ0(r)
∂r

, (1.40)



24 M. I. Stockman

and the tensor (dyadic) retarded Green’s function is defined as

Gr
αβ(r, r′;ω) = ∂2

∂rα∂r ′
β

Gr (r, r′;ω). (1.41)

One of the exact properties of this Green’s function is its Hermitian symmetry,

Gr
αβ(r, r′;ω) = Gr

βα(r′, r;−ω)∗. (1.42)

If the excitation is an optical field, its wave front is flat on the scale of the nanosys-
tem, i.e., E(0) = const. Then from Eq. (1.39) we get

Eα(r) = [
δαβ + gαβ(r, ω)

]
E (0)

β , (1.43)

where the local field enhancement (tensorial) factor is a contraction of the retarded
dyadic Green’s function,

gαβ(r, ω) =
∫

V
Gr

αβ(r, r′;ω)Θ(r′) d3r ′. (1.44)

1.3.4 SP Modes as Resonances

Each physical eigenmode is described by the corresponding pole of Green’s func-
tion (1.36). Close to such a pole, Green’s function and, consequently, local fields
(1.43) become large, which describes the surface plasmon resonance of the nanosys-
tem. A complex frequency of such a resonance can be found from the position of the
corresponding pole in the complex plane of frequency,

s(ωn − iγn) = sn, (1.45)

where ωn is the real frequency of the surface plasmon, and γn is its spectral width
(relaxation rate).

Note that we presume γn > 0, i.e., a negative sign of the imaginary part of the
physical surface frequency. This a presumption, which is confirmed by the solution
presented below in this section, is based on the standard convention of the sign of an
exponential in the field temporal evolution,

En(r, t) ∝ exp
[−i(ωn − iγn)t

] ∝ exp(−γnt), (1.46)

which decays exponentially for t → +∞, as should be. The wave functions of
physical surface plasmons are the familiar eigenfunctions ϕn(r), i.e., those of the
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geometric eigenmodes. However, their physical frequencies, of course, depend on
the material composition of the system.

For weak relaxation, γn ∪ ωn , one finds that this real surface plasmon frequency
satisfies an equation

Re[s(ωn)] = sn, (1.47)

and that the surface plasmon spectral width is expressed as

γn = Im[s(ωn)]
s′

n
, s′

n ≡ ∂Re[s(ω)]
∂ω

∣∣∣∣
ω=ωn

. (1.48)

In terms of the dielectric permittivity as functions of frequency

s′(ω) = εd

|εd − ε(ω)|2 Re
∂εm(ω)

∂ω
, γ (ω) = Imεm(ω)

Re ∂εm (ω)
∂ω

. (1.49)

This expression has been given in Sect. 1.2.1 as Eq. (1.3). Importantly, the spectral
width γ is a universal function of frequency ω and does not explicitly depend on
the eigenmode wave function ϕn(r) or system’s geometry. However, the system’s
geometry does, of course, define the plasmon eigenfrequencies ωn . This property has
been successfully used in Ref. [176] where a method of designing nanoplasmonic
systems with desired spectra has been developed. Note also that the classical SPs have
been quantized in Ref. [31] in connection with the prediction of spaser, a nanoscale
counterpart of laser (see Sect. 1.5).

As follows from Eq. (1.28), external frequency ω is within the range of the phys-
ical surface plasmon frequencies and, therefore, can be close to a surface plasmon
resonance [pole of Green’s function (1.36) as given by Eq. (1.45)] under the following
conditions

0 ≤ Re s(ω) ≤ 1, Im s(ω) ∪ Re s(ω). (1.50)

These conditions are equivalent to

εd > 0, 0 ≤ Re εm(ω) < 0, Im εm(ω) ∪ |Re εm(ω)| . (1.51)

These conditions, in fact, constitute a definition of a plasmonic system, i.e., a system
where a position of surface plasmon resonance can be physically approached: the
dielectric permittivity of the metal component should be negative and almost real,
while the permittivity of the second constituent (dielectric) should be positive, as
assumed.

It is useful to write down an expression for Green’s function (1.36) that is asymp-
totically valid near its poles, which can be obtained from Eqs. (1.47) and (1.48) as

Gr (r, r′;ω) = 1

s′(ω)

∑
n

ϕn(r) ϕn(r′)∗

ω − ωn + iγn
, (1.52)
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where γn is given above by Eqs. (1.48) or (1.49). This expression constitutes what
is called the singular approximation or pole approximation of the Green’s function.
When an excitation frequency is in resonance with an SP frequency, i.e., ω = ωn ,
the Green’s function (1.52) increases in magnitude by ∼ωn/γn ∼ Q times, where
the quality factor Q is given by Eq. (1.5).

Below, for the sake of reference, we give a modal expansion for the polarizability
α of a nanoplasmonic system as a tensor,

ααβ = − εd

4π

∑
n

1

sn(s − sn)
Mnα M∗

nβ, (1.53)

where the indexes α, β denote Cartesian components, and Mn is a coupling vector
defined as

Mn = −
∫

V
Θ(r)

∂ϕn(r)
∂r

d3r. (1.54)

Near a SP frequency, ω ≈ ωn , a singular part of the polarizability (1.53) acquires
a form

ααβ = − εd

4πs′
nsn

Mnα M∗
nβ

ω − ωn + iγn
. (1.55)

Also, for the reference sake, we give a general expression for the SP radiative decay
rate, γ

(r)
n . This can be obtained from Eq. (1.55) taking into account Eqs. (1.10) and

(1.15) as

γ (r)
n = ε

3/2
d ω3 |Mn|2
9πc3s′

nsn
. (1.56)

Note that |Mn|2 ∼ Vn , where Vn is the modal volume of the n-th eigenmode. Thus
Eq. (1.56) is consistent with Eq. (1.16) obtained earlier in this chapter.

1.3.5 Examples of Local Fields and Their Hot Spots

Let us give an example of local fields computed using Eq. (1.39). We start with
the results of the original publications Ref. [157, 158] where the hot spots of the
plasmonic local fields have been predicted. This prediction was made for fractal
clusters because the fractals were expected to possess highly inhomogeneous and
fluctuating local optical fields as was shown in pioneering papers in a subfield of
physical optics that today is called nanoplasmonics [117, 149, 177].

In Fig. 1.8 adapted from Ref. [157], we illustrate the local-field hot spots for a
silver CCA cluster of N = 1500 identical nanospheres embedded in water. We show
local field intensity I = |E(r, ω)|2 relative to the excitation field intensity I0 at
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Fig. 1.8 Spatial distributions of local field intensity I relative to the external intensity I0 for an
individual CCA cluster of N = 1500 silver nanospheres in water (εd = 2.0) for the frequency
�ω = 3.13 eV. The polarizations of the excitation radiation is x (a) and y (b), as indicated in the
panels. The projection of the cluster nanospheres to the xy plane is also shown. Adapted from
Ref. [157]

the surface of the silver nanospheres at a relatively high frequency �ω = 3.13 eV
corresponding to vacuum wavelength λ = 390 nm in the far blue end of the visible
spectrum. We can clearly see that the local intensity is highly non-uniform, exhibiting
pronounced singular hot spots. These hot spots are localized at the minimum scale
of the system (on the order of the radius of the nanospheres). The local intensity in
the hot spots is greatly enhanced (by a factor of up to ∼600) as one would expect
from an estimate I/I0 ∼ Q2—cf. Fig. 1.2.

This hot spotting is nothing else as random nanofocusing. It is similar in this
respect to the formation of speckles in the wave optics, as we have discussed above in
conjunction with Fig. 1.5. However, reflecting the properties of the corresponding SP
eigenmodes, there is no characteristic wavelength that limits this hot spot singularity
by defining the characteristic size Ls of the speckles, which is also a characteristic
separation between them—see Eq. (1.31).

Another property of the local fields of a great significance is the dramatic depen-
dence of the intensity distribution on the polarization: the local distributions or the
x-polarization (Fig. 1.8a) and y-polarization (panel b) are completely different. An
experimental observation of this effect has been obtained in Ref. [118] already at a
very early stage of the development of nanoplasmonics.

Note that the SP eigenmode geometry is also strongly dependent on its frequency—
see Fig. 1.5. However, in externally-excited local fields, this frequency dependence
is obscured by the resonance broadening due to the losses, as is evident from the
expression for the resonant part of the Green’s function

We will present below spectral and statistical properties of the local fields using
a model of random planar composite (RPC). A specific RPC system used in the
computation is shown in Fig. 1.9a. To improve numerical accuracy, we smooth the
unit-step characteristic function Θ(r) with a Gaussian filter with a radius of 1 grid
step: this dramatically improves numerical accuracy of a grid method that we use to
solve the eigenproblem. Such a smoothing is clearly seen in Fig. 1.9a.
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Fig. 1.9 a Geometry of nanostructured random planar composite (RPC): characteristic function
Θ(r) is displayed in the xz plane of the RPC. Axes unit is nm; thickness of the system in the y
direction (normal to its plane) is 2 nm. The fill factor is p = 0.5. Characteristic function Θ(r)
is smoothed by a Gaussian filter with a radius of 1 nm to improve numerical accuracy (shown in
the panel by the halftone density). b Local field intensity |E(r)|2 in the plane of the nanostructure
displayed relative to the excitation field intensity |E(0)|2; excitation frequency �ω = 1.55 eV;
computed using Eq. (1.38). The metal is silver embedded in the dielectric with εd = 2. c Same as
(b) but for �ω = 2.0 eV. Adapted from data computed for Ref. [178]

In Fig. 1.9b, c, we display the spatial distribution of the local field intensity |E(r)|2
in the plane of the nanostructure at the surface of the metal. These computations are
described in Ref. [178]. They are done for silver whose dielectric function is adopted
from Ref. [32]; the embedding dielectric has permittivity is set as εd = 2.0. This
intensity is plotted relative to the excitation field intensity |E0|2; thus the quantity
displayed is the enhancement factor of the local field intensity. Panel (b) shows the
intensity computed from Eq. (1.38). The maximum of the local intensity enhancement
of ≈6000 is in a reasonable agreement with the estimate ∼Q2 ∼ 104, where Q is
displayed in Fig. 1.2.

Dependence of the local fields on frequency is dramatic: cf. Figs. 1.9b, c. As
frequency increases from the near-IR (1.55 eV) to visible (2.0 eV), the distribution
becomes much more delocalized and its magnitude dramatically decreases, which
cannot be explained by some decrease of quality factor Q alone. Most importantly,
at all frequencies these near-field intensity distributions are dominated by the pro-
nounced hots spots. These are manifestation of the hot spots of the SP eigenmodes—
see Fig. 1.7.

Generally, the intensity distribution of local field intensity in Fig. 1.9b, c is highly
singular: it consists of relatively narrow peaks (hot spots [158, 163]) separated by
regions of a low intensity. This is a typical distribution of intensity in plasmonic
nanosystems, which is a reflection of the inhomogeneous localization of the SP
eigenmodes.
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1.3.6 Experimental Examples of Nanoplasmonic Hot Spots

There has been a significant number of experimental studies of near-field distributions
of optical fields in plasmonic nanostructures. In all cases, a pronounced picture
of the hots spots [157, 158] has been exhibited, see, e.g., Refs. [123, 155, 168].
The inhomogeneous localization of the SP eigenmodes (see Sect. 1.3.2), which is
inherently related to hot spots, has recently been confirmed experimentally [161].

The photoemission electron microscope (PEEM) is a powerful tool of analyzing
the distribution of the local field intensity without perturbing it in any way. In the
PEEM approach, the plasmonic nanosystem to be analyzed serves as a cathode and
an object of an electron microscope. The electron emission is caused by the local field
E(r, ω) of the plasmonic system. The photoelectrons are analyzed by the electron
optics of the PEEM that creates a magnified image of the system in “light” of the
photo-emitted electrons.

For silver, the work function W f (i.e., the minimum energy needed to excite an
electron from the Fermi surface to the zero energy that is the energy in vacuum out-
side of the metal) is approximately 4.2 eV. The highest energy of an optical quantum
(at the vacuum wavelength of 390 nm) is 3.2 eV, i.e., it is significantly less than W f .
Thus, a single optical photon cannot emit an electron from a silver surface. Such an
emission can, however, occur through two-photon absorption, leaving for the emit-
ted electron the kinetic energy at infinity of E∞ ≤ 2�ω − W f . Such a two-photon
electron photoemission is in the foundation of the so-called two-photon photoemis-
sion PEEM (or, 2PP-PEEM). On the other hand, for ultraviolet radiation (say, from
a Hg lamp), the energy of a photon is sufficient for the one-photon photoemission
PEEM (1PP-PEEM). The 2PP-PEEM electron intensity mirrors the distribution of
I2 = |E(r, ω)|4.

A model system to illustrate the hot spots used in a 2PP-PEEM experiment of
Ref. [123] is shown in Fig. 1.10a. This is a diffraction grating covered with a sil-
ver layer with roughness of a < 10 nm RMS grain size, as the scanning electron
micrograph (SEM) shows in the insert. The Hg lamp illumination (the energy of the
quantum �ω = 4.89 eV exceeds W f = 4.2 eV, thus allowing one-photon photoe-
mission, 1PP-PEEM) shows a smooth image of the underlying diffraction grating
with the resolution of the PEEM (�100 nm).

A dramatically different picture is observed in Fig. 1.10b. In this case, the irra-
diation is with femtosecond laser pulses of λ = 400 nm vacuum wavelength. The
corresponding energy of the quantum is below the work function, �ω = 3 eV <

W f = 4.2 eV. Thus the electron photoemission is two-photon. The corresponding
2PP-PEEM image in Fig. 1.10b exhibits a pronounced picture of the hot spots due
to the fact that in this case the optical frequency is in the plasmonic range. These
hot spots are localized SPs that are excited by the p-polarized radiation with a sig-
nificantly greater efficiency than by an s-polarized one. This suggests that SPPs
excitation may play a role as an intermediate process for the localized SP excita-
tion. In a full qualitative agreement with theory (see Sect. 1.3.2), these hot spots are
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Fig. 1.10 PEEM micrographs of the same region on the silver grating obtained with a 254-nm line
of a Hg lamp (1PP-PEEM) and b p-polarized 400-nm femtosecond laser excitation (2PP-PEEM).
A scanning electron micrograph (SEM) of the silver grating in (a) is superimposed with the 1PP-
PEEM image to show correspondence in the >100 nm scale topographical contrast. The surface
roughness with <10 nm RMS distribution in the SEM image, which is too fine to resolve with the
PEEM, gives rise to excitation of the localized SP modes seen as the hot spots in the 2PP-PEEM
image of (b). The blue rectangle locates the four hot spots that were used for a coherent control
experiment. Adapted from Ref. [123]

singular, highly localized, and randomly distributed in space. The local fields in these
hot spots are highly enhanced as witnessed by their dominance in the 2PP process.

Formation of the hot spots for random nanostructured plasmonic systems is a
universal phenomenon whose physics is defined by the absence of the characteristic
wavelength of the localized SPs, which localize at all available scales and whose
fields are highly singular and highest at the minimum scale [78, 157, 158, 179].

One of the most convincing and comprehensive studies of geometry and statistics
of the plasmonic hots spots is recently published Ref. [180] performed using PEEM
and semicontinuous gold film whose model is RPC. Adapted from this, in Fig. 1.11,
we show spatial distributions of the hot spots for a semicontinuous film with a fill fac-
tor (percentage of the area occupied by metal) f = 0.53. At this f , the film is close to
the percolation threshold for static conductivity. The connected clusters in such a film
have a fractal nature where we expect giant fluctuations and inhomogeneous localiza-
tion of the SP fields [157, 158]. In fact, the distributions in Fig. 1.11 do demonstrate

Au, 4 nm,  f=0.53 λ=800 nm λ=930 nm λ=970 nm

Fig. 1.11 Left column, scanning electron microscope images of the gold/glass films for the 4 nm
grain size (filling factor f = 0.53). Right, PEEM distributions corresponding to gold/glass films for
three different wavelengths. For each PEEM image, excitation wavelength λ is indicated. Adapted
from Ref. [180]
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pronounced hot-spot behavior with inhomogeneous localization, giant fluctuations
in space, where the distributions and intensities of individual hot spots strongly and
randomly change with frequency. These distributions are in a full qualitative agree-
ment with the theoretical predictions for the hot spots of local nanoplasmonic fields
[157, 158]—cf. above Figs. 1.8, 1.9.

We emphasize again that the PEEM-based observation of the plasmonic hot spots
is completely non-perturbing. The photo-emitted electrons that are used in the PEEM
fly away from the metal surface naturally, no matter whether they are used for imaging
or not.

There has also been a series of research dealing with the observation of the plas-
monic hot spots using the scanning near-field optical microscope (NSOM or SNOM)
[155, 162, 168]. In fact, the first experimental evidence of the nanoplasmonic hot
spots has been obtained [162] using an aperture-type NSOM, which is a based a
tapered optical fiber with the tip covered by a metal. A general concern about such
observation is that they are perturbative: the tip of NSOM (or nanoscope, as it is
often called) is typically much larger than a hot spot. Made of metal, it can, in prin-
ciple, modify the host spot by both shifting its resonant frequency and decreasing
the quality factor.

As an example, we present Fig. 1.12 adapted from Ref. [168]. This study is done
on the semicontinuous metal film (random planar composite, or RPC). At relatively
low values of the fill factor, f = 0.36 and f = 0.45, the local intensity distribution
I (r) shows relatively delocalized regions elongated normally to the direction of
propagation (vertical axis in the figure). These are analogous to the caustics of the
usual 3d optics. Relatively close to the percolation point, f = 0.66 and f = 0.73,
the distribution I (r) becomes highly localized exhibiting singular hot spots. The
behavior of I (r) at a relatively high fill factor of f = 0.83 again reminds that for the
low f showing delocalized caustics but not singular hot spots. This is understandable
because in this case the system is basically a smooth film with a few defects. This
film supports SPPs that are weakly scattered by the relatively few defects.

As we have discussed above in this section, NSOM measurements of hot spots are
inherently perturbative. While PEEM is nonperturbative, the spatial resolution so far
has been insufficient (due to aberrations in the electron optics and large spread of the

f=0.45 f=0.65 f=0.73 f=0.83f=0.36

Fig. 1.12 NSOM images of 4 × 4µm2 semi-continuous silver films with different metal filling
fractions f as indicated above the graphs. Local intensity distribution is displayed as a function of
the spatial coordinates in the plane of the film. The white areas correspond to higher intensities.
Adapted from Ref. [168]
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emitted electrons over their energies). Additionally, PEEM requires clean surfaces
in high vacuum.

A fundamentally different non-perturbing approach to studying nanoplasmonic
hot spots has been pioneered in Refs. [181, 182]. It is based on the so-called photon-
localization super-resolution far-field microscopy. This method of far-field super-
resolution has originally been developed in application to biological imaging [183].

This method’s fundamentals can be very briefly described as the following.
Assume that there is a single radiating chromophore (say, fluorescing molecule)
in the view field of an optical microscope. Alternatively, there may be a number of
such chromophores but their concentration should be low enough so they are resolved
separately by the microscope (i.e., the distance between these molecules are greater
than the microscope’s resolution). The center of the emission of such a single (or
separately resolved) emitter can be found with any precision that is only limited by
statistical fluctuations of the number of the recorded photons but not by the resolution
of the microscope provided that this microscope or the system under study does not
change in the course of the observation.

After the position and brightness of a given single molecule are recorded, this
molecule is naturally bleached. Then another molecule comes into the hot spot and
its position and brightness are recorded until it is bleached. The process is repeated
until the distribution of the brightness of emitters is built with a sufficient statistical
precision.

It is assumed that the emission brightness of a single chromophore is proportional
to the local field intensity of the hot spot at its position and that this chromophore
exerts a negligibly weak perturbation on the local field of the hot spot. Thus this
photon-localization nanoscopy is a non-perturbative method allowing one to find the
intensity distribution at the hot spot on the nanoscale limited only by the statistical
fluctuations (inversely proportional to the accumulation time) and the size of the
chromophore itself, which is negligible in realistic situations.

The results of the hot spot local intensity-distribution measurements for an alu-
minum surface are shown in Fig. 1.13a. This distribution is a narrow peak with the
width of ≈20 nm. The observed fine structure of this distribution is attributed to
statistical fluctuations [181]. The cross section through this distribution displayed in
Fig. 1.13b suggests an exponential decay of this distribution function in space with
the FWHM = 20 nm.

Very similar results are obtained for the silver colloid clusters as shown in
Figs. 1.13c, d. Note that the aluminum surface studied is nominally smooth and
contains only random roughness while the silver colloid clusters are fractals whose
density fundamentally possesses large and correlated fluctuations.
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Fig. 1.13 Hot spots at the surfaces of metals measured by the photon localization method (see the
text). a, b Distribution of the local intensity for a hot spot at the surface of aluminum. The kernel
window size is 2.1 nm; this small window size makes the image appear noisy. The dye is Chromeo-
542 with excitation at 532 nm and the emission centered around 580 nm. b An exponential decay
field profile is visible, and is more evident on a log scale, shown as almost a decade of straight
line (red solid line). The blue and green curves are two cross sections of the hot spot along x
and y directions through the peak. The FWHM of the spot is ∼20 nm. c and d is the same as (a)
and (b), respectively, but for the case of a silver metal colloid cluster precipitated on a surface. A
Chromeo-642 dye (Active Motif)—whose emission centers around 660 nm—is used. Adapted from
Ref. [181]

1.4 Ultrafast Plasmonics and Coherent Control on Nanoscale

1.4.1 Introduction

The nanoplasmonic processes can potentially be the fastest in optics: their short-
est evolution times are defined by the inverse spectral width of the region of the
plasmonic resonances and are on the order of 100 as [184], see also Sect. 1.2.1. The
relaxation times of the SP excitations are also ultrashort, in the 10–100 fs range [185–
189]. See also the SP relaxation times for gold and silver displayed in Fig. 1.3. The
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nanolocalization and such ultrafast kinetics make plasmonic nanostructures promis-
ing for various applications, especially for the ultrafast computations, data control
and storage on the nanoscale.

These and potentially many other applications require precise control over the
optical excitations of the nanostructures in time and space on the femtosecond-
nanometer scale. Such a control cannot be imposed by far-field focusing of the
optical radiation because the diffraction limits its dimension to greater than half
wavelength. In other words, the optical radiation does not have spatial degrees of
freedom on the nanoscale. There is a different class of approaches to control a system
on nanoscale based on plasmonic nanoparticles or waveguides brought to the near-
field region of the system. Among these we mention: the tips of scanning near-
field optical microscopes [190], adiabatic plasmonic waveguides [12], nanowires
[191, 192], plasmonic superlenses [193] or hyperlenses [194]. In all these cases,
massive amount of metal is brought to the vicinity of the plasmonic nanosystem,
which will produce strong perturbations of its spectrum and SP eigenmodes, cause
additional optical losses, and adversely affect the ultrafast dynamics and energy
nanolocalization in the system. This nanowaveguide approach also may not work
because of the excitation delocalization due to the strong interaction (capacitive
coupling) at the nanoscale distances for optical frequencies.

We have proposed [195] a principally different approach to ultrafast optical con-
trol on the nanoscale based on the general idea of coherent control. The coherent
control of the quantum state of atom and molecules is based on the directed interfer-
ence of the different quantum pathways of the optical excitation [196–205], which
is carried out by properly defining the phases of the corresponding excitation waves.
This coherent control can also be imposed by an appropriate phase modulation of
the excitation ultrashort (femtosecond) pulse [202, 206–208]. Shaping the polariza-
tion of a femtosecond pulse has proven to be a useful tool in controlling quantum
systems [209].

Our idea of the coherent control on the nanoscale by the phase modulation of
the excitation pulse can be explained with a schematic shown in Fig. 1.14. Phase
modulation of the excitation pulse can be thought of as changing the frequency (color)
of light as the pulse progresses in time. For the sake of argument, let us assume, as
shown in Fig. 1.14, that initially the pulse contains blue colors that gradually change
to red with the time progression. At earlier times, the dominating blue component of
the pulse will excite the SP eigenmodes with corresponding high optical frequencies.
As the pulse progresses, the lower-frequency eigenmodes are excited. It is assumed
that the total duration τp of the pulse is less than the decay (decoherence) time
τ = γ −1 of the SPs , i.e., τp � τ [for the decay rates and life times of the SPs
see Eq. (1.3) or (1.49) and Fig. 1.3]. In such a case, the SPs of different frequencies
will coexist simultaneously, and their fields will interfere. This interference depends
on the relative phases and amplitudes of the SPs of different frequencies which,
in turn, are determined by the relative phases of different spectral components of
the excitation pulse. The ultimate goal of the spatio-temporal coherent control on
the nanoscale is to have a hot spot of the local fields at a given nanosite at a given
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Fig. 1.14 Schematic of the fundamentals of the coherent control of nanoscale optical energy dis-
tribution. An excitation pulse is phase-modulated (shown by different colors changing with the
progression of the pulse), which may be qualitatively thought of as different frequencies (colors)
are incident on the nanosystem at different times, in a certain sequence. The system (a fractal cluster)
is indicated by its projection on the horizontal coordinate plane. In response to this pulse, different
SP eigenmodes are excited in a sequence. As time progresses, these eigenmodes interfere between
themselves leading to a hot spot appearing at a required position at a given time. This leads to a
large enhancement of the local field E relative to the excitation field E0

femtosecond temporal interval. Below in this chapter we show how this problem is
solved both theoretically and experimentally.

Another approach that we have proposed [210] invokes spatial modulation of the
excitation field on the microscale in a polaritonic system. This field excites SPPs
whose phases are determined by those of the original field. This determines the
wave fronts of the SPP waves that focus on the nanoscale at the targeted nanofoci at
the required times with femtosecond temporal resolution. The spatial-phase coher-
ent control of the SPPs has been demonstrated experimentally by different groups
[211, 212].

Our initial idea [195] has been subsequently developed theoretically [148, 209,
213, 214] and experimentally [123, 215–217]. In this coherent control approach, one
sends from the far-field zone a shaped pulse (generally, modulated by phase, ampli-
tude, and polarization) that excites a wide-band packet of SP excitations in the entire
nanosystem. The phases, amplitudes, and polarizations of these modes are forced by
this shaped excitation pulse in such a manner that at the required moment of time
and at the targeted nanosite, these modes’ oscillations add in phase while at the other
sites and different moments of time they interfere destructively, which brings about
the desired spatio-temporal localization.
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Theoretically, the number of the effective degrees of freedom that a shaped fem-
tosecond pulse may apply to a nanoplasmonic system can be estimated in the follow-
ing way. The number of the independent frequency bands is ∼Δω/γ, where Δω is
the bandwidth of the plasmonic system. For each such a band, there are two degrees
of freedom: amplitude and phase. Thus, the total number NDF of the degrees of
freedom for coherent control can be estimated as

NDF ∼ 2
Δω

γ
. (1.57)

For a plasmonic system with the maximum bandwidth Δω ∼ ω, and Eq. (1.57)
becomes

NDF ∼ 4Q, (1.58)

where we took into account Eq. (1.5). In the optical region for noble metals Q ∼ 100
(see Fig. 1.2), providing a rich, ∼100-dimensional space of controlling parameters.
The coherent control approach is non-invasive: in principle, it does not perturb or
change the nanosystem’s material structure in any way.

However, how to actually determine a shaped femtosecond pulse that compels
the optical fields in the nanosystem to localize at a targeted nanosite at the required
femtosecond time interval is a formidable problem to which until now there has been
no general and efficient approach. To compare, our original chirped pulses possessed
only two effective degrees of freedom (carrier frequencyω0 and chirp), which allowed
one to concentrate optical energy at the tip of a V-shape structure versus its opening
[148, 195]. Similarly, the two unmodulated pulses with the regulated delay τ between
them used in the interferometric coherent control [123, 213, 216] also possess only
two degrees of freedom (τ and ω0) and can only select one of any two local-field hot
spots against the other; it is impossible, in particular, to select one desired hot spot
against several others.

There exists another method based on the adaptive genetic algorithms [202]. How-
ever, its application to the spatial-temporal localization in nanosystem is difficult due
to the complexity of the problem. To date, the only example is the spatial concentra-
tion of the excitation on one arm of the three-pronged metal nanostar [215] where
the obtained controlling pulses are very complicated and difficult to interpret though
the nanosystem itself is rather simple. A general problem with this method is that the
adaptive genetic algorithms are actually refined trial-and-error methods; they do not
allow one to obtain the required controlling pulses as a result of the solution of a set
of deterministic equations or an application of any regular deterministic procedure
such as Green’s function integration.

1.4.2 Time-Reversal Solution for Coherent Control

Our solution of this major problem of the coherent control, which is proposed and
theoretically developed in Ref. [218], is based on an idea of time-reversal that has



1 Nanoplasmonics: From Present into Future 37

originally been proposed and used to control the focusing of acoustic waves and
microwave radiation [219–221]. Some of these studies required use of a reverberat-
ing chamber to cause multiple interactions of the waves with the system needed to
transfer the information to the far field. The electromagnetic subwavelength focus-
ing also required a subwavelength-scale metal structure (a metal wire brush) to be
positioned in the vicinity of the target system as a focusing antenna. In contrast, in
nanoplasmonics there is no need for the reverberating chamber or the metal brush
antenna, because the plasmonic nanosystem plays the roles of both of them. It con-
fines the plasmonic modes for long times relative to their oscillation periods and also
nano-localizes these modes.

1.4.3 Qualitative Description of Time-Reversal Coherent Control

The idea of the time-reversal solution of the nanoscale coherent control can be
described using a schematic of Fig. 1.15. Consider a metal plasmonic nanosystem,
indicated by blue in Fig. 1.15a, which may be embedded in a host dielectric (or
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Fig. 1.15 a Geometry of nanosystem, initial seed oscillating dipole and its oscillation waveform.
The nanosystem as a thin nanostructured silver film is depicted in blue. A position of the oscillating
dipole that initially excites the system is indicated by a double red arrow, and its oscillation in
time is shown by a bold red waveform. b Field in the far-field zone that is generated by the system
following the excitation by the local oscillating dipole: vector {Ex (t), Ez(t)} is shown as a function
of the observation time t . The color corresponds to the instantaneous ellipticity as explained in the
text in connection with c Same as in panel (b) but for a time-reversed pulse in the far zone that is
used as an excitation pulse to drive the optical energy nanolocalization at the position of the initial
dipole
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be in vacuum). The nanosystem is excited by an external ultrafast (femtosecond)
nanosource of radiation at its surface. As such we choose an oscillating dipole indi-
cated by a double red arrow. This dipole generates a local optical electric field shown
by a bold red waveform. This field excites SP oscillations of the system in its vicin-
ity. In turn these oscillations excite other, more distant regions, and so forth until the
excitation spreads out over the entire system. The relatively long relaxation time of
these SP modes leads to the long “reverberations” of the plasmonic fields and the
corresponding far-zone optical electric field. The latter is shown in Fig. 1.15b where
one can see that a complicated vector waveform is predicted. This waveform is time
reversed, as shown in panel (c), and send back to the system as an excitation plane
wave from the far-field zone. If the entire field, in the whole space including the
near-field (evanescent) zone, were time reversed and the system would have been
completely time-reversible, which would imply the absence of any dielectric losses,
then the system would have been compelled by this field exactly to back-trace its
own evolution in time. This would have lead to the concentration of the local optical
energy exactly at the position of the initial dipole at a time corresponding to the end
of the excitation pulse.

Indeed, the system is somewhat lossy, which means that it is not exactly time
reversible. Nevertheless, these losses are small, and one may expect that they will
not fundamentally change the behavior of the system. Another problem appear to
be more significant: the evanescent fields contain the main information of the nano-
distribution of the local fields in the system, and they cannot be time reversed from
the far zone because they are exponentially small, practically lost there. However, our
idea is that the nanostructured metal system itself plays the role of the metal brush of
Ref. [221] continuously coupling the evanescent fields to the far zone. Therefore the
fields in the far zone actually contain, in their reverberations, most information about
the evanescent fields that will be regenerated in the process of the time reversal.

We will illustrate this idea by considering a random planar composite (RPC) whose
geometry is shown in gray in the center of Fig. 1.16. In specific computations, as the
plasmonic metal, we consider silver whose dielectric permittivity εm we adopt from
bulk data [32]. This system has been generated by randomly positioning 2 ×2 ×2 nm3

metal cubes on a plane, which for certainty we will consider as the xz coordinate
plane. The random system shown in the center of Fig. 1.16 has filling factor of
f = 0.5.

The interaction of a nanosystem with electromagnetic pulses is described in
Green’s function approach using quasistatic approximation [148, 195, 222]—see
Sect. 1.3.3. It is known that the optical excitation energy in random plasmonic nanos-
tructures localizes in “hot spots” whose size is on the nanoscale and is determined
by the minimum scale of the system inhomogeneities [78, 158, 159, 223]—see
Sect. 1.3.5.

Initially, to find positions of these hot spots in our system, we apply an ultra-
short near-infrared (near-ir) pulse whose spectral width was very large, covering a
frequency band from 1.1 to 1.7 eV. The pulse polarization is along the z axis (the
incidence direction is normal to the plane of the nanostructure, i.e. along the y axis).
The resulting optical electric field E is expressed in terms of the external electric
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Fig. 1.16 Schematic of plasmonic-nanosystem geometry, local fields, and pulses generated in the
far field. Central insert The geometry of a nanosystem is shown by dark gray, and the local fields
in the region surrounding it are shown by colors. The highest local field intensity is depicted by
red and the lowest intensity is indicated by blue (in the rainbow sequence of colors). Panels A–
H: The excitation waveforms in the far fields obtained as described in the text by positioning the
initial excitation dipole at the metal surface at the locations indicated by the corresponding lines.
Coordinate vectors ρ of points A–H in the xz plane are (in nm): ρ A = (11, 22), ρB = (7, 16),
ρC = (7, 14), ρD = (7, 10), ρE = (9, 7), ρF = (18, 7), ρG = (20, 9), and ρH = (24, 11). The
instantaneous degree of linear polarization ε is calculated as the eccentricity of an instantaneous
ellipse found from an fit to a curve formed by vector {Ex (t), Ey(t)} during an instantaneous optical
period. The pure circular polarization corresponds to ε = 0 and is denoted by blue-violet color; the
pure linear polarization is for ε = 1 indicated by red. The corresponding polarization color-coding
bar is shown at the left edge of the figure

field of the excitation optical wave E0 and retarded dyadic Green’s function Gr , as
given by Eqs. (1.43)–(1.44).

The hot spots are always localized at the surface of the metal, predominantly at the
periphery of the system. Their intensities found as the result of these computations are
depicted by colors in the center of Fig. 1.16. The highest local intensity is indicated
by red, and the lowest by blue in the region surrounding the metal. We have selected
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eight of these hot spots for our computations as denoted by letters A to H in the
figure.

To generate the field in the far zone, we take a point dipole and position it at a
surface of the metal at point r0 at such a hot spot, as described in the discussion of
Fig. 1.15. The near-zone field EL(r, t) generated in response to this point dipole is
found from Green’s function relation

EL(r, t) = 4π

εd

∫
dt ′Gr (r, r0; t − t ′) d(r0, t ′). (1.59)

Knowing this local electric field, we calculate the total radiating optical dipole
moment of the nanosystem in the frequency domain as

D(ω) = 1

4π

∫
d3r [εm(ω) − εd ] Θ(r)EL(r, ω). (1.60)

Here and below, the frequency- and time-domain quantities, as indicated by their
arguments ω and t , are Fourier transforms of each other. The field in the far zone
produced by this radiating dipole is given by standard electrodynamic formula—see,
e.g. Sect. 67 in Ref. [224]. The time-reversed field is generated by time-reversed
dipole DT (t) that is complex-conjugated in the frequency domain, DT (ω) = D(ω)∗.

The dependence on time of the initial excitation dipole, d(r0, t) is set as an ultra-
short Gaussian-shaped pulse of 12 fs duration with the carrier frequency �ω0 =
1.2 eV. Following the procedure described above, the fields shown in Figs. 1.15 and
1.16 have been calculated for the radiation propagating in the y direction (normal to
the plane of the nanostructure). These fields simply copy the retarded time evolution
of the emitting dipole.

At the completing stage of our calculations, the time-reversed excitation pulse is
sent back to the system as a plane wave propagating along the y direction (normal to
the nanosystem plane). To calculate the resulting local fields, we again use Green’s
function Eq. (1.43) where the shaped excitation pulse substitutes for field E0.

1.4.4 Numerical Results for Time-Reversal Coherent Control

The electric field of the excitation wave is chosen as a modulated waveform (includ-
ing amplitude, phase, and polarization modulation) that has been computed as
described above in the previous subsection. The optical excitation energy can only be
concentrated at sites where SP eigenmodes localize. For the present system, these are
the hot spots shown by color in the central insert of Fig. 1.16, labeled A–H. The cor-
responding calculated excitation waveforms are displayed in panels as vector plots
shown as functions of time {Ex (t), Ez(t)}.

There are several important features of these waveforms deserving our attention
and discussion. First, these waveforms are rather long in duration: much longer than
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the excitation-dipole 12 fs pulses. This confirms our understanding that the initial
dipole field excites local SP fields that, in a cascade manner, excite a sequence of the
system SPs, which ring down relatively long time (over 200 fs, as shown in the figure).
This long ring-down process is exactly what is required for the nanostructure to
transfer to the far-field zone the information on the near-zone local (evanescent) fields
as is suggested by our idea presented above in the introduction. The obtained fields
are by shape resembling the controlling pulses for the microwave radiation [221].
However, a fundamental difference is that in the microwave case the long ringing-
down is due to the external reverberation chamber, while for the nanoplasmonic
systems it is due to the intrinsic evolution of the highly resonant SP eigenmodes that
possess high Q-factors (setting a reverberation chamber around a nanosystem would
have been, indeed, unrealistic).

Second, one can see that the pulses in Fig. 1.16 have a very nontrivial polarization
properties ranging from the pure linear polarization (indicated by red as explained
in the caption to Fig. 1.16) to the circular polarization indicated by blue, including
all intermediate degrees of circularity. The temporal-polarization structure of pulses
A–H in Fig. 1.16 is very complicated, somewhat reminding that of Ref. [215], which
was obtained by a genetic adaptive algorithm. However, in our case these pulses
are obtained in a straightforward manner, by applying the well-known, deterministic
Green’s function of the system, which is a highly efficient and fast method.

Third, and most important, feature of the waveforms in Fig. 1.16 is that they are
highly site-specific: pulses generated by the initial dipole in different positions are
completely different. This is a very strong indication that they do transfer to the far
far-field zone the information about the complicated spatio-temporal structure of the
local, near-zone fields. This creates a pre-requisite for studying a possibility to use
these pulses for the coherently-controlled nano-targeting.

Now we turn to the crucial test of the nanofocusing induced by the excitation
pulses discussed above in conjunction with Fig. 1.16. Because of the finite time
window (T = 228 fs) used for the time reversal, all these excitation pulses end and
should cause the concentration of the optical energy (at the corresponding sites) at
the same time, t = T = 228 fs (counted from the moment the excitation pulse starts
impinging on the system). After this concentration instant, the nanofocused fields
can, in principle, disappear (dephase) during a very short period on the order of the
initial dipole pulse length, i.e. ∼12 fs. Thus this nanofocusing is a dynamic, transient
phenomenon.

Note that averaging (or, integration) of the local-field intensity I (r, t) = |E(r, t)|2
over time t would lead to the loss of the effects of the phase modulation. This is due
to a mathematical equality

∫∞
−∞ I (r, t)dt = ∫∞

−∞ |E(r, ω)|2dω/(2π), where the
spectral-phase modulation of the field certainly eliminates from the expression in
the right-hand side. Thus the averaged intensity of the local fields is determined only
by the local power spectrum of the excitation |E(r, ω)|2 and, consequently, is not
coherently controllable. Very importantly, such a cancellation does not take place for
nonlinear phenomena. In particular, two-photon processes such as two-photon fluo-
rescence or two-photon electron emission that can be considered as proportional to
the squared intensity I 2(r, t) = |E(r, t)|4 are coherently controllable even after time
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averaging (integration), as we have argued earlier [148, 213]. Note the distributions
measured in nonlinear optical experiments with the detection by the PEEM [123, 215,
216, 225] and in the fluorescence upconversion experiments [226] can be modeled
as such nonlinear processes that yield distributions 〈I n(r)〉 = ∫∞

−∞ I n(r, t)dt/T ,
where n ≥ 2. Inspired by this, we will consider below, in particular, the coherent
control of the two-photon process averaged intensity

〈
I 2(r)

〉
.

Let us investigate how precisely one can achieve the spatio-temporal focusing
of the optical excitation at a given nanosite of a plasmonic nanostructure using the
full shaping (amplitude, phase, and polarization) of the excitation pulses found from
the time-reversal method. The results for the present nanostructure, targeting sites
A–H, are shown in Fig. 1.17. For each excitation pulse, the spatial distribution of the
local field intensity is displayed for the moment of time when this local intensity
acquires its global (highest) maximum. The most important conclusion that one can
draw from comparing panels (a)–(h) is that for each pulse A–H this global maximum
corresponds to the maximum concentration of the optical energy at the corresponding
targeted nanosite A–H. This obtained spatial resolution is as good as 4 nm, which
is determined by the spatial size of inhomogeneities of the underlying plasmonic
metal nanosystem. It is very important that this localization occurs not only at the
desired nanometer-scale location but also very close to the targeted time that in our
case is t = 228 fs. Thus the full shaping of femtosecond pulses by the time reversal
is an efficient method of controlling the spatio-temporal localization of energy at the
fs–nm scale.

Let us turn to the temporal dynamics of intensity of the nanoscale local fields at
the targeted sites A–H, which is shown in Fig. 1.18a–h. As we can see, in each of
the panels there is a sharp spike of the local fields very close to the target time of
t = 228. The duration of this spike in most panels (a–f) is close to that of the initial
dipole, i.e., 12 fs. This shows a trend to the reproduction of the initial excitation state
due to the evolution of the time-reversed SP packet induced by the shaped pulses.
There is also a pedestal that shows that this reproduction is not precise, which is
expected due to the fact that the time reversal is incomplete: only the far-zone field
propagating in one direction (along the y axis) is reversed. Nevertheless, as the
discussion of Fig. 1.17 shows, this initial excitation-state reproduction is sufficient to
guarantee that the targeted (initial excitation) site develops the global maximum (in
time and space) of the local-field intensity. Interesting enough, the trend to reproduce
the initial excitation state is also witnessed by almost symmetric (with respect to
the maximum points t = 228 fs) shapes of all waveforms, which occurs in spite of
the very asymmetric shapes of the excitation waveforms (cf. Fig. 1.16).

Apart from the ultrafast (femtosecond) dynamics of the nanolocalized optical
fields discussed above in conjunction with Figs. 1.17 and 1.18, there is a considerable
interest in its the time-integrated or averaged distributions, in particular, the mean
squared intensity

〈
I 2(r)

〉
. This quantity defines the nanoscale spatial distribution of

the incoherent two-photon processes such as two-photon electron emission or two-
photon luminescence. For example, in some approximation, the spatial distribution
of the two-photon electron emission recorded by PEEM [123, 215, 216, 225] is
determined by

〈
I 2(r)

〉
.
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Fig. 1.17 Spatial distributions of the local optical field intensities at the surface of the metal nanos-
tructure. Panels a–h correspond to the excitation with pulses A–H. Each such a distribution is
displayed for the instance t at which the intensity for a given panel reaches its global maximum in
space and time. This time t is displayed at the top of the corresponding panels. The corresponding
targeted sites are indicated by arrows and labeled by the corresponding letters A–H and the coordi-
nates (x, z). No special normalization has been applied so the distribution within any given panel
is informative but not necessarily the magnitudes of the intensities between the panels
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Fig. 1.18 a–h Temporal dynamics of the local field Intensity I (r, t) = E2(r, t) at the correspond-
ing hot spots A–H. The down-arrows mark the target time t = 228 fs where the local energy
concentration is expected to occur

Now we test the spatial concentration of time-averaged mean-squared intensity〈
I 2(r)

〉
for all sites, which is displayed in Fig. 1.19. As clearly follows from this

figure, in all cases, there are leading peaks at the targeted sites. Thus the two-photon
excitation, even after the time averaging, can be concentrated at desired sites using
the coherent-control by the time-reversed shaped pulses.

We point out that there has recently been an experimental demonstration of a
coherent spatiotemporal control on the nanoscale by polarization and phase pulse
shaping [217]. The optical energy concentration at a given site on a ∼50 nm spatial
scale at a given time on a ∼100 fs temporal scale has been demonstrated. Since this
time scale is comparable to or longer than the SP dephasing time, the time-reversal
method could not have been employed.
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Fig. 1.19 Spatial distributions of the time-averaged mean-squared intensity
〈
I 2(r)

〉
in the near-

field. This represents, in particular, the spatial distribution of the two-photon excited photocurrent
density. Panels a–h correspond to the excitation with pulses A–H. The corresponding targeted sites
are indicated by arrows and labeled by the corresponding letters A–H and coordinates (x, z). No
special normalization has been applied so the distribution within any given panel is informative but
not necessarily the magnitudes of the intensities between the panels can be compared
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Nanofocus
x1 µm

y

Light beams

Fig. 1.20 Schematic of spatiotemporal coherent control on nanoscale. Adapted from Ref. [210].
Independently controlled light beams (shown by blue cones) are focused on launch pads depicted
as silver spheres that are positioned on a thick edge of a wedge. SPP wavelets generated by the
launchpads are shown by black arcs. Normal to them are rays (SPP trajectories) that are displayed by
color lines coded accordingly to their origination points. These wavefronts and trajectories converge
at the nanofocus indicated by the red dot

1.4.5 Coherent Control by Spatiotemporal Pulse Shaping

For coherent control on the nanoscale, as we have described above in Sect. 1.4,
the phase of the excitation waveform along with its polarization provide functional
degrees of freedom to control the nanoscale distribution of energy [123, 148, 195,
209, 213–215, 217, 225, 227]. Spatiotemporal pulse shaping permits one to generate
dynamically predefined waveforms modulated both in frequency and in space to
focus ultrafast pulses in the required microscopic spatial and femtosecond temporal
domains [228, 229]. Here we follow Ref. [210] that has introduced a method of
full coherent control on the nanoscale where a temporally and spatially modulated
waveform is launched in a graded nanostructured system, specifically a wedge—
see schematic of Fig. 1.20. Its propagation from the thick (macroscopic) to the thin
(nanoscopic) edge of the wedge and the concurrent adiabatic concentration provide a
possibility to focus the optical energy in nanoscale spatial and femtosecond temporal
regions.

This method unifies three components that individually have been developed and
experimentally tested. The coupling of the external radiation to the surface plasmon
polaritons (SPPs) propagating along the wedge occurs through an array of nanoob-
jects (nanoparticles or nanoholes) that is situated at the thick edge of the wedge.
The phases of the SPPs emitted (scattered) by individual nanoobjects are determined
by a spatio-temporal modulator. The nanofocusing of the SPPs occurs due to their
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propagation toward the nanofocus and the concurrent adiabatic concentration [12,
230, 231].

The coupling of the external radiation to SPPs and their nanofocusing have been
observed—see, e.g., Refs. [232, 233]. The second component of our approach, the
spatio-temporal coherent control of such nanofocusing has been developed [228,
229]. The third component, the adiabatic concentration of SPPs also has been
observed and extensively studied experimentally [13–16, 18, 19, 22].

The adiabatic concentration (nanofocusing) is based on adiabatic following by a
propagating SPP wave of a graded plasmonic waveguide, where the phase and group
velocities decrease while the propagating SPP wave is adiabatically transformed
into a standing, localized SP mode. A new quality that is present in this approach
is a possibility to arbitrary move the nanofocus along the nanoedge of the wedge.
Moreover, it is possible to superimpose any number of such nanofoci simultaneously
and, consequently, create any distribution of the nanolocalized fields at the thin edge
of the wedge.

To illustrate this idea of the full spatiotemporal coherent control, now let us turn to
a wedge that contains a line of nanosize scatterers (say, nanoparticles or nanoholes)
located at the thick edge and parallel to it, i.e. in the x direction in Fig. 1.20. Consider
first monochromatic light incident on these nanoparticles or nanoholes that scatter
and couple it into SPP wavelets. Every such a scatterer emits SPPs in all directions;
there is, of course, no favored directionality of the scattering.

At this point, we assume that the excitation radiation and, correspondingly, the
scattered wavelets of the SPP are coherent, and their phases vary in space along
the thick edge, i.e., in the x direction. Then the SPP wavelets emitted by different
scatterers will interfere, which in accord with the Huygens-Fresnel principle leads
to formation of a smooth wavefront of the SPP wave at some distance from the scat-
terers in the “far SPP field”, i.e., at distances much greater than the SPP wavelength
2π/kS P P .

Such wavefronts are shown in Fig. 1.20 with concave black curves. The energy of
the SPP is transferred along the rays, which are the lines normal to the wavefronts,
shown by the colored lines. By the appropriate spatial phase modulation of the
excitation radiation along the line of scatterers (in the x direction) over distances of
many SPP wavelengths, these wavefronts can be formed in such a way that the rays
intersect at a given point, forming a nanofocus at the thin (sharp) edge of the wedge,
as shown schematically in Fig. 1.20. Diffraction of the SPP waves will lead to a finite
size of this focal spot.

By changing the spatial phase profile of the excitation radiation, this focal spot can
be arbitrarily moved along the thin edge. This focusing and adiabatic concentration,
as the SPPs slow down approaching the sharp edge, will lead to the enhancement
of the intensity of the optical fields in the focal region. This dynamically-controlled
concentration of energy is a plasmonic counterpart of a large phased antenna array
(also known as an aperture synthesis antenna), widely used in radar technology
(synthetic aperture radar or SAR) and radio astronomy [234].

Now we can consider excitation by spatiotemporally shaped ultrashort pulses
independently in space. Such pulses are produced by spatio-temporal modulators
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[228, 229]. The field produced by them is a coherent superposition of waves with
different frequencies whose amplitudes and phases can arbitrarily vary in space and
with frequency. This modulation can be chosen so that all the frequency components
converge at the same focal spot at the same time forming an ultrashort pulse of the
nanolocalized optical fields.

As an example we consider a silver [32] nanowedge illustrated in Fig. 1.20 whose
maximum thickness is dm = 30 nm, the minimum thickness is d f = 4 nm, and whose
length (in the y direction) is L = 5µm. Trajectories calculated by the Wentzel-
Kramers-Brillouin (WKB) method in Ref. [210] for �ω = 2.5 eV are shown by
lines (color used only to guide eye); the nanofocus is indicated by a bold red dot.
In contrast to focusing by a conventional lens, the SPP rays are progressively bent
toward the wedge slope direction.

Now consider the problem of coherent control. The goal is to excite a spatiotem-
poral waveform at the thick edge of the wedge in such a way that the propagating
SPP rays converge at an arbitrary nanofocus at the sharp edge where an ultrashort
pulse is formed. To solve this problem, we use the idea of back-propagation or time-
reversal [220, 221, 235]. We generate rays at the nanofocus as an ultrashort pulse
containing just several oscillations of the optical field. Propagating these rays, we
find amplitudes and phases of the fields at the thick edge at each frequency as given
by the complex propagation phase (eikonal) Φ(ρ), where ρ is a 2-d coordinate vector
in the plane of the wedge. Then we complex conjugate the amplitudes of frequency
components, which corresponds to the time reversal. We also multiply these ampli-
tudes by exp(2Im Φ), which pre-compensates for the Ohmic losses. This provides
the required phase and amplitude modulation at the thick edge of the wedge.

We show an example of such calculations in Fig. 1.21. Panel (a) displays the
trajectories of SPPs calculated [210] by the WKB method. The trajectories for dif-
ferent frequencies are displayed by colors corresponding to their visual perception.
There is a very significant spectral dispersion: trajectories with higher frequencies
are much more curved. The spatial-frequency modulation that we have found suc-
ceeds in bringing all these rays (with different frequencies and emitted at different x
points) to the same nanofocus at the sharp edge.

The required waveforms at different x points of the thick edge of the wedge are
shown in Fig. 1.21b–d where the corresponding longitudinal electric fields are shown.
The waves emitted at large x , i.e., at points more distant from the nanofocus, should
be emitted significantly earlier to pre-compensate for the longer propagation times.
They should also have different amplitudes due to the differences in the adiabatic
compression along the different rays. Finally, there is clearly a negative chirp (gradual
decrease of frequency with time). This is due to the fact that the higher frequency
components propagate more slowly and therefore must be emitted earlier to form a
coherent ultrashort pulse at the nanofocus.

In Fig. 1.21e we display together all three of the representative waveforms at
the thick edge to demonstrate their relative amplitudes and positions in time. The
pulse at the extreme point in x (shown by blue) has the longest way to propagate and
therefore is the most advanced in time. The pulse in the middle point (shown by green)
is intermediate, and the pulse at the center (x = 0, shown by red) is last. One can
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Fig. 1.21 a Trajectories (rays) of SPP packets propagating from the thick edge to the nanofocus
displayed in the xy plane of the wedge. The frequencies of the individual rays in a packet are indicated
by color as coded by the bar at the top. b–d Spatiotemporal modulation of the excitation pulses at
the thick edge of the wedge required for nanofocusing. The temporal dependencies (waveforms) of
the electric field for the phase-modulated pulses for three points at the thick edge boundary: two
extreme points and one at the center, as indicated, aligned with the corresponding x points at panel
a. e The three excitation pulses of panels b–d (as shown by their colors), superimposed to elucidate
the phase shifts, delays, and shape changes between these pulses. The resulting ultrashort pulse at
the nanofocus is shown by the black line. The scale of the electric fields is arbitrary but consistent
throughout the figure

notice also a counterintuitive feature: the waves propagating over longer trajectories
are smaller in amplitude though one may expect the opposite to compensate for
the larger losses. The explanation is that the losses are actually insignificant for
the frequencies present in these waveforms, and the magnitudes are determined by
adiabatic concentration factor.

Figure 1.21e also shows the resulting ultrashort pulse in the nanofocus. This is
a transform-limited, Gaussian pulse. The propagation along the rays completely
compensates the initial phase and amplitude modulation, exactly as intended. As a
result, the corresponding electric field of the waveform is increased by a factor of
100. Taking the other component of the electric field and the magnetic field into
account, the corresponding increase of the energy density is by a factor ∼104 with
respect to that of the SPPs at the thick edge.

To briefly conclude, an approach [210] to full coherent control of spatiotemporal
energy localization on the nanoscale has been presented. From the thick edge of a
plasmonic metal nanowedge, SPPs are launched, whose phases and amplitudes are
independently modulated for each constituent frequency of the spectrum and at each
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spatial point of the excitation. This pre-modulates the departing SPP wave packets
in such a way that they reach the required point at the sharp edge of the nanowedge
in phase, with equal amplitudes forming a nanofocus where an ultrashort pulse with
required temporal shape is generated. This system constitutes a “nanoplasmonic por-
tal” connecting the incident light field, whose features are shaped on the microscale,
with the required point or features at the nanoscale.

1.4.6 Experimental Demonstrations of Coherent Control
on the Nanoscale

The ideas of the coherent control of the nanoscale distribution of ultrafast optical
fields both space and in time, which have been introduced theoretically in Refs. [148,
195, 210, 214, 218, 236, 237], have been investigated and confirmed experimentally.
Using the full phase and amplitude modulation of the excitation-pulse wavefront in
both polarizations (the so-called polarization pulse shaping), the experiments have
achieved both spatial control [123, 215] and spatiotemporal control [217] on nm–fs
scale.

Recently spatiotemporal nanofocusing via the adiabatic concentration along the
lines of ideas presented above in Sect. 1.4.5 has been successfully demonstrated
experimentally [21]. In this work, a shaped femtosecond pulse has been coupled by
a grating to a TM0 SPP mode on the surface of an adiabatically-tapered nanocone.
The spatiotemporal concentration of optical energy in space to a ∼10 nm region and
in time to a 15 fs duration (Fourier-transform limited, i.e., the shortest possible at a
given bandwidth). Indeed the position of the nanofocus in Ref. [21] is always the tip
of the nanocone; so the possibility of moving the nanofocus in space is not available.

The ideas of employing the spatial modulation of the excitation wavefront [210]
described above in Sect. 1.4.5 have been experimentally tested and confirmed for
continuous wave (CW) excitation [211, 212]. We will present some of these experi-
mental results below in this section.

We start with experiments on polarization-shaping coherent control that we adapt
from Ref. [215]. The corresponding experimental approach is schematically illus-
trated in Fig. 1.22. Polarization-shaped ultrashort laser pulses illuminate a planar
nanostructure, with two-photon photoemission electron microscopy (PEEM) [238]
providing the feedback signal from the nanoscale field distribution that is essential
for adaptive near-field control.

The spatial resolution of two-photon PEEM (∼50 nm) is determined by its electron
optics and is, thus, independent of the electromagnetic light-field diffraction limit.
The sensitivity of the two-photon PEEM patterns to the optical field intensities arises
from the nonlinear two-photon photoemission process whose intensity is proportional
to the time-integrated fourth power of the local electric-field amplitude. With these
elements in place, a user-specified nanoscopic optical field distribution is realized by
processing recorded photoemission patterns in an evolutionary algorithm that directs
the iterative optimization of the irradiating laser pulse shape.
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Fig. 1.22 Schematic and experimental results of coherent control with polarization shaping.
Adapted from Ref. [215]. a Schematic of the experiment. A polarization shaper for ultrashort
laser pulses controls the temporal evolution of the vectorial electric field E(t) on a femtosecond
timescale. These pulses illuminate a planar nanostructure in an ultrahigh-vacuum chamber that is
equipped with a photoemission electron microscope (PEEM). The nanostructure consists of six
circular Ag islands on an indium-tin oxide (ITO) film and a quartz substrate. A computer-controlled
charge-coupled device (CCD) camera records the photoemission image and provides a feedback
signal for an evolutionary learning algorithm. Iterative optimization of the pulse-shaper settings
leads to an increase in the fitness value and correspondingly allows control over the nanooptical
fields. b, c The optimal laser pulses, as experimentally characterized, display complex temporal
electric-field evolution for the objectives of b minimizing and d maximizing the concentration of
the excitation on the lower branch. E1 and E2 indicate the two field components that are phase-
modulated in the polarization pulse shaper in the first and second LCD layer, respectively. They
are at 45◦ angles with respect to the p-polarization. The overall time window shown is 2 ps. c The
experimental PEEM image after adaptive maximization of the upper region intensity using com-
plex polarization-shaped laser pulses (fittest individual of the final generation) shows predominant
emission from the upper region. e Photoemission after minimization of the intensity in the upper
region is concentrated in the lower region

The basic idea of the experiment is that the measured PEEM pattern identifies the
origin of ejected photoelectrons and hence the regions of high local field intensity.
A controlled variation of the PEEM pattern then proves the spatial control over the
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nanoscopic field distribution. We have already discussed such an approach above—
see Fig. 1.10 [123] and the corresponding discussion in Sect. 1.3.6.

The nanostructure used consists of circular Ag disks with 180 nm diameter and
30 nm height, fabricated by electron-beam lithography on a conductive, 40-nm-thick
indium-tin oxide (ITO) film grown on a quartz substrate. The disks are arranged into
three dimers that form the arms of a star-like shape (Fig. 1.22a, lower right). The
whole nanostructure is about 800 nm across, while the gap between two of the dimer
disks is ∼10 nm wide. After inspection by scanning-electron microscopy (SEM),
the sample is mounted in the ultrahigh-vacuum PEEM set-up. The deposition of
a small amount of caesium (∼0.1 monolayers) reduces the work function of the
Ag nanostructure to about 3.1 eV, that is, just below the threshold for two-photon
photoemission with 790 nm photons.

The PEEM pattern obtained after maximization of the photoemission from the
upper two arms of the Ag nanostructure in shown in Fig. 1.22c. It shows strong
emission from these two upper arms and almost no emission from the bottom arm.
Analogously, the photoemission after minimization of the upper part PEEM bright-
ness (Fig. 1.22e) occurs mainly in the lower area while the contribution from the
upper two arms is extremely weak. The adaptively determined solution to each opti-
mization problem has been proven to be robust with respect to slight imperfections
in the experimental nanostructures. These successful optimizations demonstrate that
polarization pulse shaping allows adaptive control of the spatial distribution of pho-
toelectrons on a subwavelength scale, and thus of the nanoscopic optical fields that
induce photoemission.

The optimally polarization-shaped laser pulses after adaptive maximization and
minimization described above are shown in Figs. 1.22b, d, respectively, as deter-
mined by dual-channel spectral interferometry [239, 240]. In this representation, the
shape of the quasi-three-dimensional figure indicates the temporal evolution of the
polarization state of the electric field, with the color representing the instantaneous
oscillation frequency. Contributions from both transverse polarization components
are visible in each of the two cases. Whereas the upper-region photoemission maxi-
mization is achieved with a comparatively simple time evolution, the corresponding
minimization requires a more complex field with varying degrees of ellipticity, ori-
entation and temporal amplitudes.

Our idea [210] of the coherent control on the nanoscale by spatial modulation
(shaping) of the excitation waveform has been developed theoretically [237] and
experimentally [211, 212]. The coherent control of nanoscale distribution of local
optical fields based on CW excitation aimed at achieving a deterministic control of
plasmonic fields by using the spatial shaping of high order beams such as Hermite-
Gaussian (HG) and Laguerre-Gaussian (LG) beams has been carried out in Ref. [211].
It has been shown experimentally that the spatial phase shaping of the excitation
field provides an additional degree of freedom to drive optical nanoantennas and
consequently control their near field response.

An example of such a deterministic coherent control is illustrated in Fig. 1.23. It
shows a double gap antenna formed by three 500 nm aligned gold bars forming two
identical 50 nm air gaps separated by 500 nm. For reference, in panel (a) it displays
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Fig. 1.23 Experimental results on spatial coherent control of nanoantennas. Adapted from
Ref. [211]. Experimental two-photon luminescence (TPL) maps recorded for a a Gaussian beam
and b, c a Hermite-Gaussian (HG10) beam whom phase shift (indicated by the vertical dashed line)
coincides with (b) the right gap and (c) the left gap

a measured two-photon luminescence (TPL) map when driving the whole antenna
with a Gaussian beam linearly polarized along the x-axis. Note that similar to what
has been discussed above in Sect. 1.4.4, in particular, in conjunction with Fig. 1.19,
the TPL reflects the time-averaged distribution of the local field intensity

〈
I 2(r)

〉
.

As we see from Fig. 1.23a and as expected, a field concentration is observed in both
gaps. Figure 1.23b, c shows TPL maps recorded when the π -phase shift of a HG10
beam coincides, respectively, with the right and left gaps. These data demonstrate
how a suitable positioning of the phase jump over the double antenna enables us to
selectively switch on and off one of the two hot-spot sites.

Even closer to the original idea [210] that a plasmonic wavefront can be shaped
and focused at a predetermined spot by a spatial phase modulation of the excita-
tion waveform incident on optically-addressable launch pads is a recent publication
[212]. This article achieves controlled launching and propagation of SPPs by spa-
tially designing the amplitude and phase of the incident light. The chosen amplitude
profile, consisting of four bright (“on”) SPP launching platforms and one central
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dark (“off”) arena, fully separates plasmonic effects from photonic effects and in
addition is the necessary starting point for later focusing and scanning experiments.
Any intensity detected inside the arena is purely plasmonic.

Adapting from Ref. [212], we present the achieved SPP focusing in Fig. 1.24.
A phase optimization loop is used to focus SPPs at a pre-chosen target. This loop
yields the optimal phase for each launching pad (“superpixel”) as well as the relative
intensity to focus. The amplitude profile is the same in all cases including the bare
gold case, with four launching areas and a central dark arena where only SPPs can
propagate. The incident polarization is diagonal in relation to the grating lines so as
to have all available angles (2π range) contributing to the focus, thereby maximizing
the numerical aperture and resolution.

Successful focusing at the center of the SPP arena is shown in Fig. 1.24a. The
structured SPP wavefront produces an intensity in the designated target that is at least
20 times higher than the average SPP background of an unstructured wavefront. The
measured size of the plasmonic focus is 420 nm, consistent with the diffraction limit
of the SPPs. The flexibility of the method (scanning the focus) is demonstrated in
Figs. 1.24b, c, which shows the SPP focus relocated without mechanical motion to
controlled positions in the plasmonic arena.

Fig. 1.24 Experiment on coherent control (dynamic focusing) of SPPs. Adapted from Ref. [212].
a Relative phases of the superpixels are optimized to focus SPPs at the center of the SPP arena. The
intensity in the target spot is purely plasmonic and 20 times higher than the average background of
an unstructured plasmonic wavefront. The focus size is diffraction limited by the detecting optics.
b, c, Demonstration of SPP focusing on freely chosen targets in the SPP arena. d Background
reference of an unstructured SPP wavefront (uniform phase profile)
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The work of Ref. [212] has fully implemented the idea of Ref. [210] on the spatial-
phase-modulation control of the SPP wavefronts to position a SPP nanofocus at a
desired location at the surface. However, it employs only CW excitation and does
not exploit a potential femtosecond temporal degree of freedom to achieve such a
nanofocusing at a predetermined moment of time as in Ref. [210].

1.5 Quantum Nanoplasmonics: Spaser and Nanoplasmonics
with Gain

1.5.1 Introduction to Spasers and Spasing

Not just a promise anymore [241], nanoplasmonics has delivered a number of impor-
tant applications: ultrasensing [242], scanning near-field optical microscopy [190,
243], SP-enhanced photodetectors [53], thermally assisted magnetic recording [244],
generation of extreme uv [138], biomedical tests [242, 245], SP-assisted thermal can-
cer treatment [246], plasmonic enhanced generation of extreme ultraviolet (EUV)
pulses [138] and extreme ultraviolet to soft x-ray (XUV) pulses [247], and many
others—see also Ref. [23].

To continue its vigorous development, nanoplasmonics needs an active device—
near-field generator and amplifier of nanolocalized optical fields, which has until
recently been absent. A nanoscale amplifier in microelectronics is the metal-oxide-
semiconductor field effect transistor (MOSFET) [248, 249], which has enabled
all contemporary digital electronics, including computers and communications and
enabled the present day technology as we know it. However, the MOSFET is lim-
ited by frequency and bandwidth to �100 GHz, which is already a limiting factor
in further technological development. Another limitation of the MOSFET is its high
sensitivity to temperature, electric fields, and ionizing radiation, which limits its use
in extreme environmental conditions and nuclear technology and warfare.

An active element of nanoplasmonics is the spaser (Surface Plasmon Amplifi-
cation by Stimulated Emission of Radiation), which was proposed [31, 250] as a
nanoscale quantum generator of nanolocalized coherent and intense optical fields.
The idea of spaser has been further developed theoretically [139–141, 251]. Spaser
effect has recently been observed experimentally [252]. Also a number of SPP spasers
(also called nanolasers) have been experimentally observed [253–256].

Spaser is a nanoplasmonic counterpart of laser: it is a quantum generator and
nanoamplifier where photons as the generated quanta are replaced by SPs. Spaser
consists of a metal nanoparticle, which plays a role of the laser cavity (resonator),
and the gain medium. Figure 1.25 schematically illustrates geometry of a spaser
introduced in the original article [31], which contains a V-shaped metal nanoparticle
surrounded by a layer of semiconductor nanocrystal quantum dots.
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Fig. 1.25 Schematic of the spaser as originally proposed in Ref. [31]. The resonator of the spaser
is a metal nanoparticle shown as a gold V-shape. It is covered by the gain medium depicted as
nanocrystal quantum dots. This active medium is supported by a substrate

1.5.2 Spaser Fundamentals

As we have already mentioned, the spaser is a nanoplasmonic counterpart of the laser
[31, 251]. The laser has two principal elements: resonator (or cavity) that supports
photonic mode(s) and the gain (or active) medium that is population-inverted and
supplies energy to the lasing mode(s). An inherent limitation of the laser is that the
size of the laser cavity in the propagation direction is at least half wavelength and
practically more than that even for the smallest lasers developed [253, 254, 257]. In
the spaser [31] this limitation is overcome. The spasing modes are surface plasmons
(SPs) whose localization length is on the nanoscale [78] and is only limited by the
minimum inhomogeneity scale of the plasmonic metal and the nonlocality radius
[35] lnl ∼ 1 nm. So, the spaser is truly nanoscopic—its minimum total size can be
just a few nanometers.

The resonator of a spaser can be any plasmonic metal nanoparticle whose total
size R is much less than the wavelength λ and whose metal thickness is between lnl

and ls , which supports a SP mode with required frequency ωn . This metal nanopar-
ticle should be surrounded by the gain medium that overlaps with the spasing SP
eigenmode spatially and whose emission line overlaps with this eigenmode spec-
trally [31]. As an example, we consider a model of a nanoshell spaser [139, 251,
258], which is illustrated in Fig. 1.26. Panel (a) shows a silver nanoshell carrying
a single SP (plasmon population number Nn = 1) in the dipole eigenmode. It is
characterized by a uniform field inside the core and hot spots at the poles outside
the shell with the maximum field reaching ∼106 V/cm. Similarly, Fig. 1.26b shows
the quadrupole mode in the same nanoshell. In this case, the mode electric field is
non-uniform, exhibiting hot spots of ∼1.5 × 106 V/cm of the modal electric field
at the poles. These high values of the modal fields is the underlying physical reason
for a very strong feedback in the spaser. Under our conditions, the electromagnetic
retardation within the spaser volume can be safely neglected. Also, the radiation of
such a spaser is a weak effect: the decay rate of plasmonic eigenmodes is dominated
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Fig. 1.26 Schematic of spaser geometry, local fields, and fundamental processes leading to spasing.
Adapted from Ref. [139]. a Nanoshell geometry and the local optical field distribution for one SP
in an axially-symmetric dipole mode. The nanoshell has aspect ratio η = 0.95. The local field
magnitude is color-coded by the scale bar in the right-hand side of the panel. b The same as (a) but
for a quadrupole mode. c Schematic of a nanoshell spaser where the gain medium is outside of the
shell, on the background of the dipole-mode field. d The same as (c) but for the gain medium inside
the shell. e Schematic of the spasing process. The gain medium is excited and population-inverted
by an external source, as depicted by the black arrow, which produces electron-hole pairs in it.
These pairs relax, as shown by the green arrow, to form the excitons. The excitons undergo decay
to the ground state emitting SPs into the nanoshell. The plasmonic oscillations of the nanoshell
stimulates this emission, supplying the feedback for the spaser action

by the internal loss in the metal. Therefore, it is sufficient to consider only quasistatic
eigenmodes [29, 78] and not their full electrodynamic counterparts [259].

For the sake of numerical illustrations of our theory, we will use the dipole eigen-
mode (Fig. 1.26a). There are two basic ways to place the gain medium: (i) outside
the nanoshell, as shown in panel (c), and (ii) in the core, as in panel (d), which
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was originally proposed in Ref. [258]. As we have verified, these two designs lead to
comparable characteristics of the spaser. However, the placement of the gain medium
inside the core illustrated in Fig. 1.26d has a significant advantage because the hot
spots of the local field are not covered by the gain medium and are sterically available
for applications.

Note that any l-multipole mode of a spherical particle is, indeed, 2l + 1-times
degenerate. This may make the spasing mode to be polarization unstable, like in
lasers without polarizing elements. In reality, the polarization may be clamped and
become stable due to deviations from the perfect spherical symmetry, which exist
naturally or can be introduced deliberately. More practical shape for a spaser may
be a nanorod, which has a mode with the stable polarization along the major axis.
However, a nanorod is a more complicated geometry for theoretical treatment, and
we will consider it elsewhere.

The level diagram of the spaser gain medium and the plasmonic metal nanoparticle
is displayed in Fig. 1.26e along with a schematic of the relevant energy transitions
in the system. The gain medium chromophores may be semiconductor nanocrystal
quantum dots [31, 260], dye molecules [261, 262], rare-earth ions [258], or electron-
hole excitations of an unstructured semiconductor [253, 257]. For certainty, we will
use a semiconductor-science language of electrons and holes in quantum dots.

The pump excites electron-hole pairs in the chromophores (Fig. 1.26e), as indi-
cated by the vertical black arrow, which relax to form excitons. The excitons consti-
tute the two-level systems that are the donors of energy for the SP emission into the
spasing mode. In vacuum, the excitons would recombine emitting photons. However,
in the spaser geometry, the photoemission is strongly quenched due to the resonance
energy transfer to the SP modes, as indicated by the red arrows in the panel. The prob-
ability of the radiativeless energy transfer to the SPs relative to that of the radiative
decay (photon emission) is given by the so-called Purcell factor

∼λ3 Q

R3 � 1, (1.61)

where R is a characteristic size of the spaser metal core. Thus this radiativeless energy
transfer to the spaser mode is the dominant process whose probability is by orders
of magnitude greater than that of the free-space (far-field) emission.

The plasmons already in the spaser mode create the high local fields that excite
the gain medium and stimulate more emission to this mode, which is the feedback
mechanism. If this feedback is strong enough, and the life time of the spaser SP
mode is long enough, then an instability develops leading to the avalanche of the
SP emission in the spasing mode and spontaneous symmetry breaking, establishing
the phase coherence of the spasing state. Thus the establishment of spasing is a
non-equilibrium phase transition, as in the physics of lasers.
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1.5.3 Brief Overview of Latest Progress in Spasers

After the original theoretical proposal and prediction of the spaser [31], there has
been an active development in this field, both theoretical and experimental. There
has also been a US patent issued on spaser [250].

Among theoretical developments, a nanolens spaser has been proposed [263],
which possesses a nanofocus (“the hottest spot”) of the local fields. In Refs. [31,
263], the necessary condition of spasing has been established on the basis of the
perturbation theory.

There have been theories published describing the SPP spasers (or, “nanolasers” as
sometimes they are called) phenomenologically, on the basis of classic linear electro-
dynamics by considering the gain medium as a dielectric with a negative imaginary
part of the permittivity, e.g., [258]. Very close fundamentally and technically are
works on the loss compensation in metamaterials [264–267]. Such linear-response
approaches do not take into account the nature of the spasing as a non-equilibrium
phase transition, at the foundation of which is spontaneous symmetry breaking:
establishing coherence with an arbitrary but sustained phase of the SP quanta in the
system [139]. Spaser is necessarily a deeply-nonlinear (nonperturbative) phenom-
enon where the coherent SP field always saturates the gain medium, which eventually
brings about establishment of the stationary (or, continuous wave, CW) regime of
the spasing [139]. This leads to principal differences of the linear-response results
from the microscopic quantum-mechanical theory in the region of spasing, as we
discuss below in conjunction with Fig. 1.29.

There has also been a theoretical publication on a bowtie spaser (nanolaser) with
electrical pumping [268]. It is based on balance equations and only the CW spasing
generation intensity is described. Yet another theoretical development has been a
proposal of the lasing spaser [269], which is made of a plane array of spasers.

There have also been a theoretical proposal of a spaser (“nanolaser”) consisting
of a metal nanoparticle coupled to a single chromophore [270]. In this paper, a
dipole–dipole interaction is illegitimately used at very small distances r where it has
a singularity (diverging for r → 0), leading to a dramatically overestimated coupling
with the SP mode. As a result, a completely unphysical prediction of CW spasing due
to single chromophore has been obtained [270]. In contrast, our theory [139] is based
on the full (exact) field of the spasing SP mode without the dipole (or, any multipole)
approximation. As our results of Sect. 1.5.5 below show, hundreds of chromophores
per metal nanoparticle are realistically requited for the spasing even under the most
favorable conditions.

There has been a vigorous experimental investigation of the spaser and the con-
cepts of spaser. Stimulated emission of SPPs has been observed in a proof-of-
principle experiment using pumped dye molecules as an active (gain) medium [261].
There have also been later experiments that demonstrated strong stimulated emission
compensating a significant part of the SPP loss [262, 271–274]. As a step toward
the lasing spaser, the first experimental demonstration has been reported of a partial
compensation of the Joule losses in a metallic photonic metamaterial using optically
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pumped PbS semiconductor quantum dots [260]. There have also been experimental
investigations reporting the stimulated emission effects of SPs in plasmonic metal
nanoparticles surrounded by gain media with dye molecules [275, 276].

The full loss compensation and amplification of the long-range SPPs at λ =
882 nm in a gold nanostrip waveguide with a dyes solution as a gain medium has
been observed [277]. Another example of full loss compensation has recently been
obtained for thin (∼20 nm thickness) gold stripes (width ∼1µm) surrounded by a
gain medium containing donor–acceptor with a Fögrster energy transfer to increase
the Stokes shift and decrease absorption at the probe frequency.

At the present time, there have been a number of the successful experimental
observations of the spaser and SPP spasers (the so-called nanolasers). An electrically-
pumped nanolaser with semiconductor gain medium have been demonstrated [253]
where the lasing modes are SPPs with a one-dimensional confinement to a ∼50 nm
size. Other electrically-pumped nanolasers (SPP spasers) have recently been fab-
ricated and their lasing observed based on a diode with an intrinsic InGaAs gain
media and silver nanocavities as plasmonic cores [278–280]. The latest of these
nanolasers [280] operates at a room temperature and has a relatively small cavity
volume Vc ≈ 0.67λ3, where vacuum wavelength λ = 1591 nm. This volume is
still much larger than the modal volumes of the spasers with tighter confinement,
especially SP-mode spasers—see below.

A nanolaser with an optically-pumped semiconductor gain medium and a hybrid
semiconductor/metal (CdS/Ag) SPP waveguide has been demonstrated with an
extremely tight transverse (two-dimensional) mode confinement to ∼10 nm size
[254]. This has been followed by the development of CdS/Ag nanolasers gener-
ating a visible single mode at a room temperature with a tight one-dimensional
confinement (∼20 nm) and a two-dimensional confinement in the plane of the struc-
ture to an area ∼1µm2 [255]. A highly efficient SPP spaser in the communication
range (λ = 1.46µm) with an optical pumping based on a gold film and an InGaAs
semiconductor quantum-well gain medium has recently been reported [256].

Another class of spasers observed are random spasers comprised of a rough metal
nanofilm as a plasmonic component and a dye-doped polymeric film as a gain medium
[281]. The spasing in such systems competes with loss compensation for SPPs prop-
agating at the interface—see also Sect. 1.5.7.

Historically, the first spaser observed was a nanoparticle spaser [252]. This spaser
is a chemically synthesized gold nanosphere of radius 7 nm surrounded by a dielec-
tric shell of a 21 nm outer radius containing immobilized dye molecules. Under
nanosecond optical pumping in the absorption band of the dye, this spaser develops
a relatively narrow-spectrum and intense visible emission that exhibits a pronounced
threshold in pumping intensity. The observed characteristics of this spaser are in
an excellent qualitative agreement and can be fully understood on the basis of the
corresponding theoretical results described below in Sect. 1.5.5.
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1.5.3.1 Nanospaser with Semiconductor Gain Media

It is of both fundamental and applied importance to develop nanoscale-size spasers
(nanospasers) with semiconductor gain media. The photochemical and electrochem-
ical stability of the semiconductor gain media is the main attraction of such a
design. Belonging to this class, spasers have recently been fabricated and their oper-
ation observed, comprised of a InGaN-core/InN-shell semiconductor-nanorod gain
medium and silver film as a plasmonic component [282, 283]. They generate on
ocalized SP modes. One of these [283] is a nanospaser with a deeply sub-wavelength
mode size based on an epitaxial silver nanofilm [283]. Such a design bears a promise
of practical applications due to its stability and small modal volume leading to high
operational speed—see below Sect. 1.5.6.

In Fig. 1.27, we display geometry of this InGaN-core/InN-shell nanorod spaser
and properties of its spasing mode. The active region of the spaser (Fig. 1.27a, left
panel) is a core-shell nanocylinder with a 30-nm diameter core of InGaN surrounded
by think shell if GaN. The latter is a wide band-gap semiconductor that plays a
role of insulator. The active nanorod is separated by the metal by a 5-nm layer of
silica. The plasmonic component of this spaser is a flat layer of epitaxial silver.
The high monocrystalline quality of the silver film is instrumental in reducing the
threshold of the spaser and increasing its output. The calculated intensity for the
spasing eigenmode is shown in the right panel of Fig. 1.27a. Similar to the gap
modes introduced in Ref. [284], this eigenmode is concentrated in the thin layer of
a low-permittivity dielectric (silica) between the two high-permittivity media: GaN
and silver. The modal fields do penetrate sufficiently into the gain medium providing
the feedback necessary for the spaser functioning.

Under 8.3 kW/cm2 optical pumping with frequency above the band gap of InGaN,
a series of the emission spectra of a single spaser is displayed in Fig. 1.27b, At a
room temperature, T = 300 K, the emission is a spontaneous fluorescence in a wide
yellow–green spectral band near the band gap of InGaN. The first evidence of the
spasing appears at T = 120 K as a small notch at the green side of the spectrum.
As the temperature decreases to T = 8 K, the narrow line at λ ≈ 500 nm becomes
dominant and narrow. This change of the spectrum over the threshold is in a qualitative
agreement with theory—see below Sect. 1.5.5 and, in particular, Figs. 1.29d–f.

The light–line (L–L) line is the dependence of the light intensity out (the intensity
of the radiation emitted by the spaser within the linewidth spectral range) versus the
intensity of the pumping radiation. The theoretical prediction for the spaser is that
after reaching the spasing threshold, the L–L line becomes linear with universally
unit slope—see Fig. 1.29a and its discussion in Sect. 1.5.5.

The experimentally obtained L–L line of the nanorod spaser shown in Fig. 1.27c
is in an excellent agreement with this prediction. Note that this figure is presented
in the double-logarithmic scale. There are two curves in this figure taken at different
temperatures, which are similar though at a lower temperature the intensity out is
higher and the threshold is lower. The parts of the curves at lower pumping intensities
are also unit-slope straight lines corresponding to spontaneous fluorescence. With the
increased intensity, the curves enter a transitional regime of amplified spontaneous
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Fig. 1.27 InGaN nanospaser and its properties. a Schematics of geometry of InGaN/GaN core-
shell nanospaser (left) and theoretical intensity of its spasing eigenmode. b Series of emission
spectra: Temperature-dependent spasing behavior from 8 to 300 K. The spasing threshold at 140 K
is clearly visible. c The L–L (light–light) plots at the main lasing peak (510 nm) are shown with
the corresponding linewidth-narrowing behavior when the spaser is measured at 8 K (red) and 78 K
(blue), with lasing thresholds of 2.1 and 3.7 kW/cm2, respectively. d Second-order photon corre-
lation function g(2)(τ ) measured at 8 K. The upper curve is recorded below the spasing threshold,
and the lower above the threshold. Adapted from Ref. [283]

emission where the slopes are greater than one. The regime of developed spasing
takes place at high intensities where the L–L curves become unit-slope straight lines
without a saturation. As have already been mentioned above, this is a universal
behavior.
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This universal unsaturable behavior can be very simply understood qualitatively—
cf. Ref. [285]. The excitation rate Ṅe of the upper spasing level is linearly proportional
to pumping intensity Ip, Ṅe = σe Ip, where σe is the total excitation cross section into
the conduction band of the semiconductor gain medium. In the developed spasing
regime, plasmon population Nn of the spasing eigenmode becomes large, asymptoti-
cally Nn → ∞. Correspondingly, the stimulated decay rate, which is ∝ Nn , becomes
large and dominates over any spontaneous decay rate. Thus, all the excitation events
to the conduction band end up with the emission of a SP into the spasing mode
whose SP population becomes Nn = Ṅe/γn , where γn is the SP decay rate—see
above Eq. (1.48). Finally, radiation rate Ṅr for a spaser becomes

Ṅr = σeγ
(r)

/
γn, (1.62)

where γ (r) is the SP radiative decay rate, which for a plasmonic metal sphere is given
by Eq. (1.16) and in, general case, by Eq. (1.56). Of course. in reality the straight-line,
unsaturable L–L curves will end when the pumping intensities become so high that
the nonlinearity in the spaser metal develops (including, but not limited to, thermal
nonlinearity), or optical breakdown occurs, or heat production will physically damage
the spaser.

As theory shows (see below Sect. 1.5.6.1 and Fig. 1.30a), under steady pumping,
the generating spaser reaches its stationary regime within ∼100 fs. Correspondingly,
we expect that any fluctuation in the emission radiated by the generating spaser
relaxes back to the mean level within the same time. A measure of the fluctuations
of the spaser-radiation intensity I (t) with time t is the second-order autocorrelation
function

g(2)(τ ) = 〈I (t + τ)I (t)〉
〈I (t)〉2 , (1.63)

where τ is the delay time, and 〈· · · 〉 denotes quantum-mechanical (theory) or tem-
poral (experiment) averaging.

Experimentally, g(2)(τ ) has been measured for a single spaser in Ref. [283]. The
result is reproduced in Fig. 1.27d. The upper curve is recorded below the spasing
threshold; at the zero delay, it shows a peak, which is characteristic of incoherent
radiation. If such radiation is produced by many independent emitters, it has Gaussian
statistics, and the peak value should be g(2)(0) = 2—this effect was introduced
by Hanbury Brown and Twiss and used by them for stellar interferometry [286].
For the upper curve of Fig. 1.27d, g(2)(0) is significantly less. This may be due to
various reasons, in particular, insufficient temporal resolution of the photodetection
or partial coherence between the individual emitters of the gain medium induced by
their interaction via plasmonic fields.

In sharp contrast, above the spasing threshold, the autocorrelation function in
Fig. 1.27d is a constant at all delays. As we have already pointed out this is due to
the fact that after an emission of a photon, the number of plasmons in the spaser
is restored within ∼100 fs, while the temporal resolution of the photodetection in
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Ref. [283] is Δτ � 100 ps, i.e., three orders of magnitude coarser. The physical
reason for g(2)(τ ) = const is that the spaser under steady-state pumping tends to
keep a constant plasmon population. After the emission of a photon, this population
is decreased by one. However, very rapidly, within ∼100 fs, it restores to the pre-
emission level. This transitional restoration process is too fast and the photodetectors
of Ref. [283] miss it, producing g(2)(τ ) = const.

1.5.4 Equations of Spaser

1.5.4.1 Quantum Density Matrix Equations (Optical Bloch Equations)
for Spaser

The SP eigenmodes ϕn(r) are described by a wave equation (1.25) [31, 78]. The
electric field operator of the quantized SPs is an operator [31]

Ê(r) = −
∑

n

An∇ϕn(r)(ân + â†
n), An =

(
4π�sn

εds′
n

)1/2

, (1.64)

where â†
n and ân are the SP creation and annihilation operators, −∇ϕn(r) = En(r)

is the modal field of an nth mode, and s′
n = Re [ds(ωn)/dωn]. Note that we have

corrected a misprint in Ref. [31] by replacing the coefficient 2π by 4π .
The spaser Hamiltonian has the form

Ĥ = Ĥg + �

∑
n

ωnâ†
nân −

∑
p

Ê(rp)d̂(p), (1.65)

where Ĥg is the Hamiltonian of the gain medium, p is a number (label) of a gain
medium chromophore, rp is its coordinate vector, and d̂(p) is its dipole moment
operator. In this theory, we treat the gain medium quantum mechanically but the
SPs quasiclassically, considering ân as a classical quantity (c-number) an with time
dependence as an = a0n exp(−iωt), where a0n is a slowly-varying amplitude. The
number of coherent SPs per spasing mode is then given by Np = |a0n|2. This
approximation neglects the quantum fluctuations of the SP amplitudes. However,
when necessary, we will take into account these quantum fluctuations, in particular,
to describe the spectrum of the spaser.

Introducing ρ(p) as the density matrix of a pth chromophore, we can find its
equation of motion in a conventional way by commutating it with the Hamiltonian
(1.65) as

i�ρ̇(p) = [ρ(p), Ĥ ], (1.66)

where the dot denotes temporal derivative. We use the standard rotating wave approx-
imation (RWA), which only takes into account the resonant interaction between the
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optical field and chromophores. We denote |1〉 and |2〉 as the ground and excited
states of a chromophore, with the transition |2〉 � |1〉 resonant to the spasing plas-
mon mode n. In this approximation, the time dependence of the nondiagonal elements
of the density matrix is

(
ρ(p)

)
12 = ρ̄

(p)
12 exp(iωt), and

(
ρ(p)

)
21 = ρ̄

(p)∗
12 exp(−iωt),

where ρ̄
(p)
12 is an amplitude slowly varying in time, which defines the coherence

(polarization) for the |2〉 � |1〉 spasing transition in a pth chromophore of the gain
medium.

Introducing a rate constant Γ12 to describe the polarization relaxation and a dif-
ference n(p)

21 = ρ
(p)
22 −ρ

(p)
11 as the population inversion for this spasing transition, we

derive an equation of motion for the non-diagonal element of the density matrix as

˙̄ρ(p)
12 = − [i (ω − ω12) + Γ12] ρ̄

(p)
12 + ia0nn(p)

21 Ω̃
(p)∗
12 , (1.67)

where
Ω̃

(p)
12 = −And(p)

12 ∇ϕn(rp)/� (1.68)

is the one-plasmon Rabi frequency for the spasing transition in a pth chromophore,
and d(p)

12 is the corresponding transitional dipole element. Note that always d(p)
12 is

either real or can be made real by a proper choice of the quantum state phases, making
the Rabi frequency Ω̃

(p)
12 also a real quantity.

An equation of motion for n p
21 can be found in a standard way by commutating

it with Ĥ . To provide conditions for the population inversion (n p
21 > 0), we imply

existence of a third level. For simplicity, we assume that it very rapidly decays into
the excited state |2〉 of the chromophore, so its own populations is negligible. It is
pumped by an external source from the ground state (optically or electrically) with
some rate that we will denote g. In this way, we obtain the following equation of
motion:

˙̄n(p)
21 = −4Im

[
a0n ρ̄

(p)
12 Ω̃

(p)
21

⎛
− γ2

⎝
1 + n(p)

21

⎞
+ g

⎝
1 − n(p)

21

⎞
, (1.69)

where γ2 is the decay rate |2〉 → |1〉.
The stimulated emission of the SPs is described as their excitation by the coherent

polarization of the gain medium. The corresponding equation of motion can be
obtained using Hamiltonian (1.65) and adding the SP relaxation with a rate of γn as

ȧ0n = [
i (ω − ωn) − γn

]
a0n + ia0n

∑
p

ρ
(p)∗
12 Ω̃

(p)
12 . (1.70)

As an important general remark, the system of Eqs. (1.67), (1.69), and (1.70)
is highly nonlinear: each of these equations contains a quadratic nonlinearity: a
product of the plasmon-field amplitude a0n by the density matrix element ρ12 or
population inversion n21. Altogether, this is a six-order nonlinearity. This nonlinearity
is a fundamental property of the spaser equations, which makes the spaser generation
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always an essentially nonlinear process that involves a noneqilibrium phase transition
and a spontaneous symmetry breaking: establishment of an arbitrary but sustained
phase of the coherent SP oscillations.

A relevant process is spontaneous emission of SPs by a chromophore into a spasing
SP mode. The corresponding rate γ

(p)
2 for a chromophore at a point rp can be found

in a standard way using the quantized field (1.64) as

γ
(p)
2 = 2

A2
n

�γn

∣∣d12∇ϕn(rp)
∣∣2 (Γ12 + γn)2

(ω12 − ωn)2 + (Γ12 + γn)2 . (1.71)

As in Schawlow-Towns theory of laser-line width [287], this spontaneous emission
of SPs leads to the diffusion of the phase of the spasing state. This defines width γs

of the spasing line as

γs =
⎠

p

⎝
1 + n(p)

21

⎞
γ

(p)
2

2(2Np + 1)
. (1.72)

This width is small for a case of developed spasing when Np � 1. However, for
Np ∼ 1, the predicted width may be too high because the spectral diffusion theory
assumes that γs � γn . To take into account this limitation in a simplified way,
we will interpolate to find the resulting spectral width Γs of the spasing line as
Γs = (

γ −2
n + γ −2

s

)−1/2
.

We will also examine the spaser as a bistable (logical) amplifier. One of the ways
to set the spaser in such a mode is to add a saturable absorber. This is described by
the same Eqs. (1.67)–(1.70) where the chromophores belonging to the absorber are
not pumped by the external source directly, i.e., for them in Eq. (1.69) one has to set
g = 0.

Numerical examples are given for a silver nanoshell where the core and the exter-
nal dielectric have the same permittivity of εd = 2; the permittivity of silver is adopted
from Ref. [32]. The following realistic parameters of the gain medium are used (unless
indicated otherwise): d12 = 1.5 × 10−17 esu, �Γ12 = 10 meV, γ2 = 4 × 1012 s−1

(this value takes into account the spontaneous decay into SPs), and density of the
gain medium chromophores is nc = 2.4 × 1020 cm−3, which is realistic for dye
molecules but may be somewhat high for semiconductor quantum dots that were
proposed as the chromophores [31] and used in experiments [260]. We will assume a
dipole SP mode and chromophores situated in the core of the nanoshell as shown in
Fig. 1.26d. This configuration are of advantage both functionally (because the region
of the high local fields outside the shell is accessible for various applications) and
computationally (the uniformity of the modal fields makes the summation of the
chromophores trivial, thus greatly facilitating numerical procedures).
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1.5.4.2 Equations for CW Regime

Physically, the spaser action is a result of spontaneous symmetry breaking when the
phase of the coherent SP field is established from the spontaneous noise. Mathemat-
ically, the spaser is described by homogeneous differential Eqs. (1.67)–(1.70). These
equations become homogeneous algebraic equations for the CW case. They always
have a trivial, zero solution. However, they may also possess a nontrivial solution
describing spasing. An existence condition of such a nontrivial solution is

(ωs − ωn + iγn)−1 × (ωs − ω21 + iΓ12)
−1
∑

p

∣∣∣Ω̃(p)
12

∣∣∣2 n(p)
21 = −1. (1.73)

The population inversion of a pth chromophore n(p)
21 is explicitly expressed as

n(p)
21 = (g − γ2) ×

{
g + γ2 + 4Nn

∣∣∣Ω̃(p)
12

∣∣∣2 /
[
(ωs − ω21)

2 + Γ 2
12

⎛}−1

. (1.74)

From the imaginary part of Eq. (1.73) we immediately find the spasing frequency ωs ,

ωs = (γnω21 + Γ12ωn) / (γn + Γ12) , (1.75)

which generally does not coincide with either the gain transition frequency ω21 or
the SP frequency ωn , but is between them (this is a frequency walk-off phenomenon
similar to that of laser physics). Substituting Eq. (1.75) back into (1.73)–(1.74), we
obtain a system of equations

(γn + Γ12)
2

γnΓ12
[
(ω21 − ωn)2 + (Γ12 + γn)2] ×

∑
p

∣∣∣Ω̃(p)
12

∣∣∣2 n(p)
21 = 1, (1.76)

n(p)
21 = (g − γ2) ×

⎡
⎢⎣g + γ2 +

4Nn

∣∣∣Ω̃(p)
12

∣∣∣2 (Γ12 + γn)

(ω12 − ωn)2 + (Γ12 + γn)2

⎤
⎥⎦

−1

. (1.77)

This system defines the stationary (CW-generation) number of SPs per spasing mode,
Nn .

Since n(p)
21 ≤ 1, from Eqs. (1.76), (1.77) we immediately obtain a necessary con-

dition of the existence of spasing,

(γn + Γ12)
2

γnΓ12
[
(ω21 − ωn)2 + (Γ12 + γn)2] ∑

p

∣∣∣Ω̃(p)
12

∣∣∣2 ≥ 1. (1.78)
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This expression is fully consistent with Ref. [31]. The following order of magni-
tude estimate of this spasing condition has a transparent physical meaning and is of
heuristic value,

d2
12 QNc

�Γ12Vn
� 1, (1.79)

where Q = ω/γn is the quality factor of SPs, Vn is the volume of the spasing SP
mode, and Nc is the of number of the gain medium chromophores within this volume.
Deriving this estimate, we have neglected the detuning, i.e., set ω21 − ωn = 0. We
also used the definitions of An of Eq. (1.64) and Ω̃

(p)
12 given by Eq. (1.68), and the

estimate |∇ϕn(r)|2 ∼ 1/V following from the normalization of the SP eigenmodes∫ |∇ϕn(r)|2 d3r = 1 of Ref. [78]. The result of Eq. (1.79) is, indeed, in agreement
with Ref. [31] where it was obtained in different notations.

It follows from Eq. (1.79) that for the existence of spasing it is beneficial to have a
high quality factor Q, a high density of the chromophores, and a large transition dipole
(oscillator strength) of the chromophore transition. The small modal volume Vn (at
a given number of the chromophores Nc) is beneficial for this spasing condition:
physically, it implies strong feedback in the spaser. Note that for the given density of
the chromophores nc = Nc/Vn , this spasing condition does not explicitly depend on
the spaser size, which opens up a possibility of spasers of a very small size limited
from the bottom by only the nonlocality radius lnl ∼ 1 nm. Another important
property of Eq. (1.79) is that it implies the quantum-mechanical nature of spasing
and spaser amplification: this condition essentially contains the Planck constant �

and, thus, does not have a classical counterpart. Note that in contrast to lasers, the
spaser theory and Eqs. (1.78), (1.79) in particular do not contain speed of light, i.e.,
they are quasistatic.

Now we will examine the spasing condition and reduce it to a requirement for the
gain medium. First, we substitute all the definitions and assume the perfect resonance
between the generating SP mode and the gain medium, i.e., ωn = ω21. As a result,
we obtain from Eq. (1.78),

4π

3

sn |d12|2
�γnΓ12εds′

n

∫
V

[1 − Θ(r)] |En(r)|2 d3r ≥ 1, (1.80)

where the integral is extended over the volume V of the system, and the Θ-function
takes into account a simplifying realistic assumption that the gain medium occupies
the entire space free from the core’s metal. We also assume that the orientations of
the transition dipoles d(p)

12 are random and average over them, which results in the
factor of 3 in the denominator in Eq. (1.80). From Eqs. (1.27) and (1.34), it follows
that ∫

V
[1 − Θ(r)] |En(r)|2 d3r = 1 − sn . (1.81)
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Next, we give approximate expressions for the spectral parameter (1.4), which are
very accurate for the realistic case of Q � 1,

Im s(ω) = s2
n

εd
Im εm(ω) = 1

Q
sn (1 − sn) , (1.82)

where definition (1.6) is used. Taking into account Eqs. (1.47), (1.48) and (1.81),
(1.82), we obtain from Eq. (1.80) a necessary condition of spasing at a frequency
ω as

4π

3

|d12|2 nc [1 − Re s(ω)]

�Γ12Re s(ω)Im εm(ω)
≥ 1, (1.83)

For the sake of comparison, consider a continuous gain medium comprised of the
same chromophores as the gain shell of the spaser. Its gain g (whose dimensionality
is cm−1) is given by a standard expression

g = 4π

3

ω

c

√
εd |d12|2 nc

�Γ12
. (1.84)

Substituting it into Eq. (1.83), we obtain the spasing criterion in terms of the gain as

g ≥ gth, gth = ω

c
√

εd

Re s(ω)

1 − Re s(ω)
Im εm(ω), (1.85)

where gth has a meaning of the threshold gain needed for spasing. Importantly, this
gain depends only on the dielectric properties of the system and spasing frequency
but not on the geometry of the system or the distribution of the local fields of the
spasing mode (hot spots, etc.) explicitly. However note that the system’s geometry
(along with the permittivities) does define the spasing frequencies.

In Figs. 1.28a, b, correspondingly, we illustrate the analytical expression (1.85)
for gold and silver embedded in a dielectric with εd = 2 (simulating a light glass)
and εd = 10 (simulating a semiconductor), correspondingly. These are computed
from Eq. (1.85) assuming that the metal core is embedded into the gain medium with
the real part of the dielectric function equal to εd . As we see from Fig. 1.28, the
spasing is possible for silver in the near-ir communication range and the adjacent red
portion of the visible spectrum for a gain g < 3000 cm−1 (regions below the red line
in Fig. 1.28), which is realistically achievable with direct band-gap semiconductors
(DBDSs).

1.5.5 Spaser in CW Mode

The “spasing curve” (a counterpart of the light–light curve, or L–L curve, for lasers),
which is the dependence of the coherent SP population Nn on the excitation rate
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Fig. 1.28 Threshold gain for spasing gth for silver and gold, as indicated in the graphs, as a function
of the spasing frequency ω. The red line separates the area gth < 3×103 cm−1, which can relatively
easily be achieved with direct band-gap semiconductors (DBGSs). The real part of the gain medium
permittivity is denoted in the corresponding panels as εd

g, obtained by solving Eqs. (1.76), (1.77), is shown in Fig. 1.29a for four types of
the silver nanoshells with the frequencies of the spasing dipole modes as indicated,
which are in the range from near-ir (�ωs = 1.2 eV) to mid-visible (�ωs = 2.2 eV).
In all cases, there is a pronounced threshold of the spasing at an excitation rate
gth ∼ 1012 s−1. Soon after the threshold, the dependence Nn(g) becomes linear,
which means that every quantum of excitation added to the active medium with
a high probability is stimulated to be emitted as a SP, adding to the coherent SP
population.

While this is similar to conventional lasers, there is a dramatic difference for the
spaser. In lasers, a similar relative rate of the stimulated emission is achieved at a
photon population of ∼1018–1020, while in the spaser the SP population is Nn � 100.
This is due to the much stronger feedback in spasers because of the much smaller
modal volume Vn—see discussion of Eq. (1.79). The shape of the spasing curves of
Fig. 1.29a (the well-pronounced threshold with the linear dependence almost imme-
diately above the threshold) is in a qualitative agreement with the experiment [252].

The population inversion number n21 as a function of the excitation rate g is
displayed in Fig. 1.29b for the same set of frequencies (and with the same color
coding) as in panel (a). Before the spasing threshold, n21 increases with g to become
positive with the onset of the population inversion just before the spasing threshold.
For higher g, after the spasing threshold is exceeded, the inversion n21 becomes
constant (the inversion clamping). The clamped levels of the inversion are very low,
n21 ∼ 0.01, which again is due to the very strong feedback in the spaser.

The spectral width Γs of the spaser generation is due to the phase diffusion of the
quantum SP state caused by the noise of the spontaneous emission of the SPs into
the spasing mode, as described by Eq. (1.72). This width is displayed in Fig. 1.29c
as a function of the pumping rate g. At the threshold, Γs is that of the SP line γn

but for stronger pumping, as the SPs accumulate in the spasing mode, it decreases
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Fig. 1.29 Spaser SP population and spectral characteristics in the stationary state. The computations
are done for a silver nanoshell with the external radius R2 = 12 nm; the detuning of the gain medium
from the spasing SP mode is � (ω21 − ωn) = −0.02 eV. The other parameters are indicated in
Sect. 1.5.4. a Number Nn of plasmons per spasing mode as a function of the excitation rate g (per
one chromophore of the gain medium). Computations are done for the dipole eigenmode with the
spasing frequencies ωs as indicated, which were chosen by the corresponding adjustment of the
nanoshell aspect ratio. b Population inversion n12 as a function of the pumping rate g. The color
coding of the lines is the same as in panel (a). c The spectral width Γs of the spasing line (expressed
as �Γs in meV) as a function of the pumping rate g. The color coding of the lines is the same as in
panel (a). d–f Spectra of the spaser for the pumping rates g expressed in the units of the threshold
rate gth , as indicated in the panels. The curves are color coded and scaled as indicated

∝ N−1
n , as given by Eq. (1.72). This decrease of Γs reflects the higher coherence of

the spasing state with the increased number of SP quanta and, correspondingly, lower
quantum fluctuations. As we have already mentioned, this is similar to the lasers as
described by the Schawlow-Townes theory [287].
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The developed spasing in a dipole SP mode will show itself in the far field as an
anomalously narrow and intense radiation line. The shape and intensity of this line
in relation to the lines of the spontaneous fluorescence of the isolated gain medium
and its SP-enhanced fluorescence line in the spaser is illustrated in Figs. 1.29d–f.
Note that for the system under consideration, there is a 20 meV red shift of the
gain medium fluorescence with respect to the SP line center. It is chosen so to
illustrate the spectral walk-off of the spaser line. For one percent in the excitation rate
above the threshold of the spasing (panel d), a broad spasing line (red color) appears
comparable in intensity to the SP-enhanced spontaneous fluorescence line (blue
color). The width of this spasing line is approximately the same as of the fluorescence,
but its position is shifted appreciably (spectral walk-off) toward the isolated gain
medium line (green color). For the pumping twice more intense (panel e), the spaser-
line radiation dominates, but its width is still close to that of the SP line due to
significant quantum fluctuations of the spasing state phase. Only when the pumping
rate is an order of magnitude above the threshold, the spaser line strongly narrows
(panel f), and it also completely dominates the spectrum of the radiation. This is a
regime of small quantum fluctuations, which is desired in applications.

These results in the spasing region are different in the most dramatic way from pre-
vious phenomenological models, which are based on linear electrodynamics where
the gain medium that has negative imaginary part of its permittivity plus lossy metal
nanosystem, described purely electrodynamically [258, 265]. For instance, in a “toy
model” [265], the width of the resonance line tends to zero at the threshold of spasing
and then broadens up again. This distinction of the present theory is due the nature
of the spasing as a spontaneous symmetry breaking (nonequilibrium phase transition
with a randomly established but sustained phase) leading to the establishment of a
coherent SP state. This non-equilibrium phase transition to spasing and the spasing
itself are contained in the present theory due to the fact that the fundamental equations
of the spasing (1.67), (1.69), and (1.70) are nonlinear, as we have already discussed
above in conjunction with these equations—see the text after Eq. (1.70). The pre-
vious publications on gain compensation by loss [258, 265, 267] based on linear
electrodynamic equations do not contain spasing. Therefore, they are not applicable
in the region of the complete loss compensation and spasing, though their results are
presented for that region.

1.5.6 Spaser as Ultrafast Quantum Nanoamplifier

1.5.6.1 Problem of Setting Spaser as an Amplifier

As we have already mentioned in Sect. 1.5.1, a fundamental and formidable problem
is that, in contrast to the conventional lasers and amplifiers in quantum electronics,
the spaser has an inherent feedback that typically cannot be removed. Such a spaser
will develop generation and accumulation of the macroscopic number of coherent
SPs in the spasing mode. This leads to the population inversion clamping in the CW
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regime at a very low level—cf. Fig. 1.29b. This CW regime corresponds to the net
amplification equal zero, which means that the gain exactly compensates the loss,
which condition is expressed by Eq. (1.76). This is a consequence of the nonlinear
gain saturation. This holds for any stable CW generator (including any spaser or
laser) and precludes using them as amplifiers.

There are several ways to set a spaser as a quantum amplifier. One of them is
to reduce the feedback, i.e., to allow some or most of the SP energy in the spaser
to escape from the active region, so the spaser will not generate in the region of
amplification. Such a root has successfully been employed to build a SPP plasmonic
amplifier on the long-range plasmon polaritons [277]. A similar root for the SP spasers
would be to allow some optical energy to escape either by a near-field coupling or
by a radiative coupling to far-field radiation. The near-field coupling approach is
promising for building integrated active circuits out of the spasers. Another root has
been used in Ref. [288], which employed symmetric SPP modes in a thin gold strip.
Such modes have much lower loss that the antisymmetric modes at the expense of
much weaker confinement (transverse modal area ∼λ2). The lower loss allows one
to use the correspondingly lower gain and, therefore, avoid both spasing at localized
SP modes and random lasing due to back-scattering from gold imperfections.

Following Ref. [139], we consider here two distinct approaches for setting the
spasers as quantum nanoamplifiers. The first is a transient regime based on the fact
that the establishment of the CW regime and the consequent inversion clamping and
the total gain vanishing require some time that is determined mainly by the rate of
the quantum feedback and depends also on the relaxation rates of the SPs and the
gain medium. After the population inversion is created by the onset of pumping and
before the spasing spontaneously develops, as we show below in this section, there
is a time interval of approximately 250 fs, during which the spaser provides usable
(and as predicted, quite high) amplification—see Sect. 1.5.6.2 below.

The second approach to set the spaser as a logical quantum nanoamplifier is a
bistable regime that is achieved by introducing a saturable absorber into the active
region, which prevents the spontaneous spasing. Then injection of a certain above-
threshold amount of SP quanta will saturate the absorber and initiate the spasing.
Such a bistable quantum amplifier will be considered in Sect. 1.5.6.3.

The temporal behavior of the spaser has been found by direct numerical solu-
tion of Eqs. (1.67)–(1.70). This solution is facilitated by the fact that in the model
under consideration all the chromophores experience the same local field inside the
nanoshell, and there are only two types of such chromophores: belonging to the gain
medium and the saturable absorber, if it is present.

1.5.6.2 Monostable Spaser as a Nanoamplifier in Transient Regime

Here we consider a monostable spaser in a transient regime. This implies that no
saturable absorber is present. We will consider two pumping regimes: stationary and
pulse.
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Starting with the stationary regime, we assume that the pumping at a rate (per
one chromophore) of g = 5 × 1012 s−1 starts at a moment of time t = 0 and stays
constant after that. Immediately at t = 0, a certain number of SPs are injected into
the spaser. We are interested in its temporal dynamics from this moment on.

The dynamical behavior of the spaser under this pumping regime is illustrated in
Figs. 1.30a, b. As we see, the spaser, which starts from an arbitrary initial population
Nn , rather rapidly, within a few hundred femtoseconds approaches the same station-
ary (“logical”) level. At this level, an SP population of Nn = 67 is established, while
the inversion is clamped at a low level of n21 = 0.02. On the way to this station-
ary state, the spaser experiences relaxation oscillations in both the SP numbers and
inversion, which have a trend to oscillate out of phase (compare panels a and b). This
temporal dynamics of the spaser is quite complicated and highly nonlinear (unhar-
monic). It is controlled not by a single relaxation time but by a set of the relaxation
rates. Clearly, among these are the energy transfer rate from the gain medium to the
SPs and the relaxation rates of the SPs and the chromophores.

In this mode, the main effect of the initial injection of the SPs (described theo-
retically as different initial values of Nn) is in the interval of time it is required for
the spaser to reach the final (CW) state. For very small Nn , which in practice can
be supplied by the noise of the spontaneous SP emission into the mode, this time is
approximately 250 fs (cf.: the corresponding SP relaxation time is less then 50 fs). In
contrast, for the initial values of Nn = 1–5, this time shortens to 150 fs.

Now consider the second regime: pulse pumping. The gain-medium population
of the spaser is inverted at t = 0 to saturation with a short (much shorter than 100 fs)
pump pulse. Simultaneously, at t = 0, some number of plasmons are injected (say,
by an external nanoplasmonic circuitry). In response, the spaser should produce an
amplified pulse of the SP excitation. Such a function of the spaser is illustrated in
Figs. 1.30c, d.

As we see from panel (c), independently from the initial number of SPs, the spaser
always generates a series of SP pulses, of which only the first pulse is large (at or
above the logical level of Nn ∼ 100). (An exception is a case of little practical
importance when the initial Nn = 120 exceeds this logical level, when two large
pulses are produced.) The underlying mechanism of such a response is the rapid
depletion of the inversion seen in panel (d), where energy is dissipated in the metal
of the spaser. The characteristic duration of the SP pulse ∼100 fs is defined by this
depletion, controlled by the energy transfer and SP relaxation rates. This time is
much shorter than the spontaneous decay time of the gain medium. This acceleration
is due to the stimulated emission of the SPs into the spasing mode (which can be
called a “stimulated Purcell effect”). There is also a pronounced trend: the lower is
initial SP population Nn , the later the spaser produces the amplified pulse. In a sense,
this spaser functions as a pulse-amplitude to time-delay converter.
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Fig. 1.30 Ultrafast dynamics of spaser. a For monostable spaser (without a saturable absorber),
dependence of SP population in the spasing mode Nn on time t . The spaser is stationary pumped
at a rate of g = 5 × 1012 s−1. The color-coded curves correspond to the initial conditions with
the different initial SP populations, as shown in the graphs. b The same as (a) but for the temporal
behavior of the population inversion n21. c Dynamics of a monostable spaser (no saturable absorber)
with the pulse pumping described as the initial inversion n21 = 0.65. Coherent SP population Nn is
displayed as a function of time t . Different initial populations are indicated by color-coded curves.
d The same as (c) but for the corresponding population inversion n21. e The same as (a) but for
bistable spaser with the saturable absorber in concentration na = 0.66nc. f The same as (b) but for
the bistable spaser. g The same as (e) but for the pulse pumping with the initial inversion n21 = 0.65.
h The same as (g) but for the corresponding population inversion n21
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1.5.6.3 Bistable Spaser with Saturable Absorber as an Ultrafast
Nanoamplifier

Now let us consider a bistable spaser as a quantum threshold (or, logical) nanoam-
plifier. Such a spaser contains a saturable absorber mixed with the gain medium with
parameters indicated at the end of Sect. 1.5.4.1 and the concentration of the saturable
absorber na = 0.66nc. This case of a bistable spaser amplifier is of a particular inter-
est because in this regime the spaser comes as close as possible in its functioning
to the semiconductor-based (mostly, MOSFET-based) digital nanoamplifiers. As in
the previous subsection, we will consider two cases: the stationary and short-pulse
pumping.

We again start with the case of the stationary pumping at a rate of g = 5×1012 s−1.
We show in Figs. 1.30e, f the dynamics of such a spaser. For a small initial population
Nn = 5 × 10−3 simulating the spontaneous noise, the spaser is rapidly (faster than
in 50 fs) relaxing to the zero population (panel e), while its gain-medium population
is equally rapidly approaching a high level (panel f) n21 = 0.65 that is defined by the
competition of the pumping and the enhanced decay into the SP mode (the purple
curves). This level is so high because the spasing SP mode population vanishes
and the stimulated emission is absent. After reaching this stable state (which one can
call, say, “logical zero”), the spaser stays in it indefinitely long despite the continuing
pumping.

In contrast, for initial values Nn of the SP population large enough (for instance,
for Nn = 5, as shown by the blue curves in Figs. 1.30e, f), the spaser tends to the
“logical one” state where the stationary SP population reaches the value of Nn ≈ 60.
Due to the relaxation oscillations, it actually exceeds this level within a short time
of �100 fs after the seeding with the initial SPs. As the SP population Nn reaches
its stationary (CW) level, the gain medium inversion n21 is clamped down at a low
level of a few percent, as typical for the CW regime of the spaser. This “logical one”
state salso persists indefinitely, as long as the inversion is supported by the pumping.

There is a critical curve (separatrix) that divide the two stable dynamics types
(leading to the logical levels of zero and one). For the present set of parameters this
separatrix starts with the initial population of Nn ≈ 1. For a value of the initial Nn

slightly below 1, the SP population Nn experiences a slow (hundreds fs in time)
relaxation oscillation but eventually relaxes to zero (Fig. 1.30e, black curve), while
the corresponding chromophore population inversion n21 relaxes to the high value
n21 = 0.65 (panel f, black curve). In contrast, for a value of Nn slightly higher than 1
(light blue curves in panels e and f), the dynamics is initially close to the separaratrix
but eventually the initial slow dynamics tends to the high SP population and low
chromophore inversion through a series of the relaxation oscillations. The dynamics
close to the separatrix is characterized by a wide range of oscillation times due to its
highly nonlinear character. The initial dynamics is slowest (the “decision stage” of
the bistable spaser that lasts �1 ps). The “decision time” is diverging infinitesimally
close to the separatrix, as is characteristic of any threshold (logical) amplifier.

The gain (amplification coefficient) of the spaser as a logical amplifier is the
ratio of the high CW level to the threshold level of the SP population Nn . For this
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specific spaser with the chosen set of parameters, this gain is ≈60, which is more
than sufficient for the digital information processing. Thus this spaser can make
a high-gain, ∼10 THz-bandwidth logical amplifier or dynamical memory cell with
excellent prospects of applications.

The last but not the least regime to consider is that of the pulse pumping in the
bistable spaser. In this case, the population inversion (n21 = 0.65) is created by a
short pulse at t = 0 and simultaneously initial SP population Nn is created. Both are
simulated as the initial conditions in Eqs. (1.67)–(1.70). The corresponding results
are displayed in Figs. 1.30g, h.

When the initial SP population exceeds the critical one of Nn = 1 (the blue,
green, and red curves), the spaser responds with generating a short (duration less
than 100 fs) pulse of the SP population (and the corresponding local fields) within
a time �100 fs (panel g). Simultaneously, the inversion is rapidly (within ∼100 fs)
exhausted (panel h).

In contrast, when the initial SP population Nn is less than the critical one (i.e., Nn <

1 in this specific case), the spaser rapidly (within a time �100 fs) relaxes as Nn → 0
through a series of realaxation oscillations—see the black and magenta curves in
Fig. 1.30g. The corresponding inversion decays in this case almost exponentially
with a characteristic time ∼1 ps determined by the enhanced energy transfer to the
SP mode in the metal—see the corresponding curves in panel (h). Note that the SP
population decays faster when the spaser is above the generation threshold due to the
stimulated SP emission leading to the higher local fields and enhanced relaxation.

1.5.7 Compensation of Loss by Gain and Spasing

1.5.7.1 Introduction to Loss Compensation by Gain

A problem for many applications of plasmonics and metamaterials is posed by losses
inherent in the interaction of light with metals. There are several ways to bypass,
mitigate, or overcome the detrimental effects of these losses, which we briefly discuss
below.

(i) The most common approach consists in employing effects where the losses are
not fundamentally important such as surface plasmon polariton (SPP) propa-
gation used in sensing [23], ultramicroscopy [16, 19], and solar energy con-
version [26]. For realistic losses, there are other effects and applications that
are not prohibitively suppressed by the losses and useful, in particular, sensing
based on SP resonances and surface enhanced Raman scattering (SERS) [23,
178, 242, 289, 290].

(ii) Another promising idea is to use superconducting plasmonics to dramatically
reduce losses [74, 291–293]. However, this is only applicable for frequencies
below the superconducting gaps, i.e., in the terahertz region.
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(iii) Yet another proposed direction is using highly doped semiconductors where
the Ohmic losses can be significantly lower due to much lower free carrier
concentrations [294]. However, a problem with this approach may lie in the fact
that the usefulness of plasmonic modes depends not on the loss per se but on
the quality factor Q, which for doped semiconductors may not be higher than
for the plasmonic metals.

(iv) One of the alternative approaches to low-loss plasmonic metamaterials is based
on our idea of the spaser: it is using a gain to compensate the dielectric (Ohmic)
losses [295, 296]. In this case the gain medium is included into the metamate-
rials. It surrounds the metal plasmonic component in the same manner as in the
spasers. The idea is that the gain will provide quantum amplification compen-
sating the loss in the metamaterials quite analogously to the spasers.

We will consider theory of the loss compensation in the plasmonic metamaterials
using gain [140, 141]. Below we show that the full compensation or overcompensa-
tion of the optical loss in a dense resonant gain metamaterial leads to an instability
that is resolved by its spasing (i.e., by becoming a generating spaser). We further
show analytically that the conditions of the complete loss compensation by gain and
the threshold condition of spasing—see Eqs. (1.83) and (1.85)—are identical. Thus
the full compensation (overcompensation) of the loss by gain in such a metamater-
ial will cause spasing. This spasing limits (clamps) the gain—see Sect. 1.5.5—and,
consequently, inhibits the complete loss compensation (overcompensation) at any
frequency.

1.5.7.2 Permittivity of Nanoplasmonic Metamaterial

We will consider, for certainty, an isotropic and uniform metamaterial that, by def-
inition, in a range of frequencies ω can be described by the effective permittivity
ε̄(ω) and permeability μ̄(ω). We will concentrate below on the loss compensation
for the optical electric responses; similar consideration with identical conclusions
for the optical magnetic responses is straightforward. Our theory is applicable for
the true three-dimensional (3d) metamaterials whose size is much greater than the
wavelength λ (ideally, an infinite metamaterial).

Consider a small piece of such a metamaterial with sizes much greater that the
unit cell but much smaller than λ. Such a piece is a metamaterial itself. Let us subject
this metamaterial to a uniform electric field E(ω) = −∇φ(r, ω) oscillating with
frequency ω. Note that E(ω) is the amplitude of the macroscopic electric field inside
the metamaterial. We will denote the local field at a point r inside this metamaterial
as e(r, ω) = −∇ϕ(r, ω). We assume standard boundary conditions

ϕ(r, ω) = φ(r, ω), (1.86)

for r belonging to the surface S of the volume under consideration.
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To present our results in a closed form, we first derive a homogenization formula
used in Ref. [297] (see also references cited therein). By definition, the electric
displacement in the volume V of the metamaterial is given by a formula

D(r, ω) = 1

V

∫
V

ε(r, ω)e(r, ω)dV, (1.87)

where ε(r, ω) is a position-dependent permittivity. This can be identically expressed
(by multiplying and dividing by the conjugate of the macroscopic field E∗) and,
using the Gauss theorem, transformed to a surface integral as

D = 1

V E∗(ω)

∫
V

E∗(ω)ε(r, ω)e(r, ω)dV

= 1

V E∗(ω)

∫
S
φ∗(r, ω)ε(r, ω)e(r, ω)dS, (1.88)

where we took into account the Maxwell continuity equation ∇ [ε(r, ω)e(r, ω)] = 0.
Now, using the boundary conditions of Eq. (1.86), we can transform it back to the
volume integral as

D = 1

V E∗(ω)

∫
S
ϕ∗(r)ε(r, ω)e(r, ω)dS

= 1

V E∗(ω)

∫
V

ε(r, ω) |e(r, ω)|2 dV . (1.89)

From the last equality, we obtain the required homogenization formula as an expres-
sion for the effective permittivity of the metamaterial:

ε̄(ω) = 1

V |E(ω)|2
∫

V
ε(r, ω) |e(r, ω)|2 dV . (1.90)

1.5.7.3 Plasmonic Eigenmodes and Effective Resonant Permittivity
of Metamaterials

This piece of the metamaterial with the total size R ∪ λ can be treated in the
quasistatic approximation. The local field inside the nanostructured volume V of the
metamaterial is given by the eigenmode expansion [78, 148, 218]

e(r, ω) = E(ω) −
∑

n

an

s(ω) − sn
En(r), (1.91)

an = E(ω)

∫
V

θ(r)En(r)dV,
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where we remind that E(ω) is the macroscopic field. In the resonance, ω = ωn , only
one term at the pole of in Eq. (1.91) dominates, and it becomes

e(r, ω) = E(ω) + i
an

Im s(ωn)
En(r). (1.92)

The first term in this equation corresponds to the mean (macroscopic) field and the
second one describes the deviations of the local field from the mean field containing
contributions of the hot spots [158]. The mean root square ratio of the second term
(local field) to the first (mean field) is estimated as

∼ f

Im s(ωn)
= f Q

sn(1 − sn)
, (1.93)

where we took into account that, in accord with Eq. (1.34), En ∼ V −1/2, and

f = 1

V

∫
V

θ(r)dV, (1.94)

where f is the metal fill factor of the system, and Q is the plasmonic quality factor.
Deriving expression (1.93), we have also taken into account an equality Im s(ωn) =
sn(1 − sn)/Q, which is valid in the assumed limit of the high quality factor, Q � 1
(see the next paragraph).

For a good plasmonic metal Q � 1—see Fig. 1.2. For most metal-containing
metamaterials, the metal fill factor is not small, typically f � 0.5. Thus, keeping
Eq. (1.28) in mind, it is very realistic to assume the following condition

f Q

sn(1 − sn)
� 1. (1.95)

If so, the second (local) term of the field (1.92) dominates and, with a good precision,
the local field is approximately the eigenmode’s field:

e(r, ω) = i
an

Im s(ωn)
En(r). (1.96)

Substituting this into Eq. (1.90), we obtain a homogenization formula

ε̄(ω) = bn

∫
V

ε(r, ω) [En(r)]2 dV, (1.97)

where bn > 0 is a real positive coefficient whose specific value is

bn = 1

3V

(
Q
∫

V θ(r)En(r)dV

sn (1 − sn)

)2

(1.98)
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Using Eqs. (1.97) and (1.27), (1.34), it is straightforward to show that the effective
permittivity (1.97) simplifies exactly to

ε̄(ω) = bn [snεm(ω) + (1 − sn)εh(ω)] . (1.99)

1.5.8 Conditions of Loss Compensation by Gain and Spasing

In the case of the full inversion (maximum gain) and in the exact resonance, the host
medium permittivity acquires the imaginary part describing the stimulated emission
as given by the standard expression

εh(ω) = εd − i
4π

3

|d12|2 nc

�Γ12
, (1.100)

where εd = Re εh , d12 is a dipole matrix element of the gain transition in a chro-
mophore center of the gain medium, Γ12 is a spectral width of this transition, and nc

is the concentration of these centers (these notations are consistent with those used
above in Sects. 1.5.4.1–1.5.6.3). Note that if the inversion is not maximum, then this
and subsequent equations are still applicable if one sets as the chromophore concen-
tration nc the inversion density: nc = n2 −n1, where n2 and n1 are the concentrations
of the chromophore centers of the gain medium in the upper and lower states of the
gain transition, respectively.

The condition for the full electric loss compensation in the metamaterial and
amplification (overcompensation) at the resonant frequency ω = ωn is

Im ε̄(ω) ≤ 0 (1.101)

Taking Eq. (1.99) into account, this reduces to

snIm εm(ω) − 4π

3

|d12|2 nc(1 − sn)

�Γ12
≤ 0. (1.102)

Finally, taking into account Eqs. (1.28), (1.47) and that Im εm(ω) > 0, we obtain
from Eq. (1.102) the condition of the loss (over)compensation as

4π

3

|d12|2 nc [1 − Re s(ω)]

�Γ12Re s(ω)Im εm(ω)
≥ 1, (1.103)

where the strict inequality corresponds to the overcompensation and net amplifica-
tion. In Eq. (1.100) we have assumed non-polarized gain transitions. If these transi-
tions are all polarized along the excitation electric field, the concentration nc should
be multiplied by a factor of 3.
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Equation (1.103) is a fundamental condition, which is precise [assuming that the
requirement (1.95) is satisfied, which is very realistic for metamaterials] and general.
Moreover, it is fully analytical and, actually, very simple. Remarkably, it depends
only on the material characteristics and does not contain any geometric properties
of the metamaterial system or the local fields. (Note that the system’s geometry
does affect the eigenmode frequencies and thus enters the problem implicitly.) In
particular, the hot spots, which are prominent in the local fields of nanostructures
[78, 158], are completely averaged out due to the integrations in Eqs. (1.90) and
(1.97).

The condition (1.103) is completely non-relativistic (quasistatic)—it does not
contain speed of light c, which is characteristic of also of the spaser. It is useful to
express this condition also in terms of the total stimulated emission cross section
σe(ω) (where ω is the central resonance frequency) of a chromophore of the gain
medium as

cσe(ω)
√

εdnc [1 − Re s(ω)]

ωRe s(ω)Im εm(ω)
≥ 1. (1.104)

We see that Eq. (1.103) exactly coincides with a spasing condition expressed by
Eq. (1.83). This brings us to an important conclusion: the full compensation (over-
compensation) of the optical losses in a metamaterial [which is resonant and dense
enough to satisfy condition (1.95)] and the spasing occur under precisely the same
conditions.

We have considered above in Sect. 1.5.4.2 the conditions of spasing, which are
equivalent to (1.104). These are given by one of equivalent conditions of Eqs. (1.83),
(1.85), (1.103). It is also illustrated in Fig. 1.28. We stress that exactly the same
conditions are for the full loss compensation (overcompensation) of a dense resonant
plasmonic metamaterial with gain.

We would like also to point out that the criterion given by the equivalent conditions
of Eqs. (1.83), (1.85), (1.103), or (1.104) is derived for localized SPs, which are
describable in the quasistatic approximation, and is not directly applicable to the
propagating plasmonic modes (SPPs). However, we expect that very localized SPPs,
whose wave vector k � ls , can be described by these conditions because they are,
basically, quasistatic. For instance, the SPPs on a thin metal wire of a radius R � ls
are described by a dispersion relation [12]

k ≈ 1

R

[
− εm

2εd

(
ln

√
−4εm

εd
− γ

)]−1/2

, (1.105)

where γ ≈ 0.57721 is the Euler constant. This relation is obviously quasistatic
because it does not contain speed of light c.
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1.5.8.1 Discussion of Spasing and Loss Compensation by Gain

This fact of the equivalence of the full loss compensation and spasing is intimately
related to the general criteria of the thermodynamic stability with respect to small
fluctuations of electric and magnetic fields—see Chap. IX of Ref. [30],

Im ε̄(ω) > 0, Im μ̄(ω) > 0, (1.106)

which must be strict inequalities for all frequencies for electromagnetically stable
systems. For systems in thermodynamic equilibrium, these conditions are automati-
cally satisfied.

However, for the systems with gain, the conditions (1.106) can be violated, which
means that such systems can be electromagnetically unstable. The first of conditions
(1.106) is opposite to Eqs. (1.101) and (1.103). This has a transparent meaning: the
electrical instability of the system is resolved by its spasing.

The significance of these stability conditions for gain systems can be elucidated
by the following gedanken experiment. Take a small isolated piece of such a meta-
material (which is a metamaterial itself). Consider that it is excited at an optical
frequency ω either by a weak external optical field E or acquires such a field due to
fluctuations (thermal or quantum). The energy density E of such a system is given
by the Brillouin formula [30]

E = 1

16π

∂ωRe ε̄

∂ω
|E|2 . (1.107)

Note that for the energy of the system to be definite, it is necessary to assume that the
loss is not too large, |Re ε̄| � Im ε̄. This condition is realistic for many metamaterials,
including all potentially useful ones.

The internal optical energy-density loss per unit time Q (i.e., the rate of the heat-
density production in the system) is [30]

Q = ω

8π
Im ε̄ |E|2 . (1.108)

Assume that the internal (Ohmic) loss dominates over other loss mechanisms such
as the radiative loss, which is also a realistic assumption since the Ohmic loss is very
large for the experimentally studied systems and the system itself is very small (the
radiative loss rate is proportional to the volume of the system). In such a case of the
dominating Ohmic losses, we have dE /dt = Q. Then Eqs. (1.107) and (1.108) can
be resolved together yielding the energy E and electric field |E| of this system to
evolve with time t exponentially as

|E| ∝ √
E ∝ e−Γ t , Γ = ωIm ε̄

/
∂(ωRe ε̄)

∂ω
. (1.109)
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We are interested in a resonant case when the metamaterial possesses a resonance
at some eigenfrequency ωn ≈ ω. For this to be true, the system’s behavior must be
plasmonic, i.e., Re ε̄(ω) < 0. Then the dominating contribution to ε̄ comes from a
resonant SP eigenmode n with a frequency ωn ≈ ω. In such a case, the dielectric
function [78] ε̄(ω) has a simple pole at ω = ωn . As a result, ∂ (ωRe ε̄) /∂ω ≈
ω∂Re ε̄/∂ω and, consequently, Γ = γn , where γn is the SP decay rate given by
Eqs. (1.3) or (1.48), and the metal dielectric function εm is replaced by the effective
permittivity ε̄ of the metamaterial. Thus, Eq. (1.109) is fully consistent with the
spectral theory of SPs—see Sect. 1.3.4.

If the losses are not very large so that energy of the system is meaningful, the
Kramers-Kronig causality requires [30] that ∂(ωRe ε̄)/∂ω > 0. Thus, Im ε̄ < 0 in
Eq. (1.109) would lead to a negative decrement,

Γ < 0, (1.110)

implying that the initial small fluctuation starts exponentially grow in time in its field
and energy, which is an instability. Such an instability is indeed not impossible: it
will result in spasing that will eventually stabilize |E| and E at finite stationary (CW)
levels of the spaser generation.

Note that the spasing limits (clamps) the gain and population inversion making the
net gain to be precisely zero [139] in the stationary (continuous wave or CW) regime
see Sect. 1.5.6 and Fig. 1.29b. Above the threshold of the spasing, the population
inversion of the gain medium is clamped at a rather low level n21 ∼ 1 %. The
corresponding net amplification in the CW spasing regime is exactly zero, which is
a condition for the CW regime. This makes the complete loss compensation and its
overcompensation impossible in a dense resonant metamaterial where the feedback
is created by the internal inhomogeneities (including its periodic structure) and the
facets of the system.

Because the loss (over) compensation condition (1.103), which is also the spasing
condition, is geometry-independent, it is useful to illustrate it for commonly used
plasmonic metals, gold and silver whose permittivity we adopt from Ref. [32]. For
the gain medium chromophores, we will use a reasonable set of parameters: Γ12 =
5 × 1013 s−1 and d12 = 4.3 × 10−18 esu. The results of computations are shown
in Fig. 1.31. (Note that this figure expresses a condition of spasing equivalent to
that of Fig. 1.28). For silver as a metal and nc = 6 × 1018 cm−3, the corresponding
lower (black) curve in panel (a) does not reach the value of 1, implying that no
full loss compensation is achieved. In contrast, for a higher but still very realistic
concentration of nc = 2.9 × 1019 cm−3, the upper curve in Fig. 1.31a does cross
the threshold line in the near-infrared region. Above the threshold area, there will be
the instability and the onset of the spasing. As Fig. 1.31b demonstrates, for gold the
spasing occurs at higher, but still realistic, chromophore concentrations.
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Fig. 1.31 Spasing criterion as a function of optical frequency ω. The straight line (red on line)
represents the threshold for the spasing and full loss compensation, which take place for the curve
segments above it. a Computations for silver. The chromophore concentration is nc = 6×1018 cm−3

for the lower curve (black) and nc = 2.9 × 1019 cm−3 for the upper curve (blue on line). The black
diamond shows the value of the spasing criterion for the conditions of Ref. [262]—see the text.
b Computations for gold. The chromophore concentration is nc = 3 × 1019 cm−3 for the lower
curve (black) and nc = 2 × 1020 cm−3 for the upper curve (blue on line)

1.5.8.2 Discussion of Published Research on Spasing and Loss Compensations

Now let us discuss the implications of these results for the research published recently
on the gain metamaterials. To carry out a quantitative comparison with Ref. [267],
we turn to Fig. 1.31a where the lower (black) curve corresponds to the nominal value
of nc = 6 × 1018 cm−3 used in Ref. [267]. There is no full loss compensation and
spasing. This is explained by the fact that Ref. [267] uses, as a close inspection
shows, the gain dipoles parallel to the field (this is equivalent to increasing nc by a
factor of 3) and the local field enhancement [this is equivalent to increasing nc by
a factor of (εh + 2)/3. Because the absorption cross section of dyes is measured
in the appropriate host media (liquid solvents or polymers), it already includes the
Lorentz local-field factor. To compare to the results of Ref. [267], we increase in
our formulas the concentration nc of the chromophores by a factor of εh + 2 to
nc = 2.9×1019 cm−3, which corresponds to the upper curve in Fig. 1.31a. This curve
rises above the threshold line exactly in the same (infra)red region as in Ref. [267].

This agreement of the threshold frequencies between our analytical theory and
numerical theory [267] is not accidental: inside the region of stability (i.e., in the
absence of spasing) both theories should and do give close results, provided that the
gain-medium transition alignment is taken into account, and the local field-factor is
incorporated. However, above the threshold (in the region of the overcompensation),
there should be spasing causing the population inversion clamping and zero net gain,
and not a loss compensation.

The complete loss compensation is stated in a recent experimental paper [298],
where the system is actually a nanofilm rather than a 3d metamaterial, to which
our theory would have been applicable. For the Rhodamine 800 dye used with
extinction cross section [299] σ = 2 × 10−16 cm2 at 690 nm in concentration
nc = 1.2 × 1019 cm−3, realistically assuming εd = 2.3, for frequency �ω = 1.7 eV,
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we calculate from Eq. (1.104) a point shown by the magenta solid circle in Fig. 1.31a,
which is significantly above the threshold. Because in such a nanostructure the local
fields are very non-uniform and confined near the metal similar to the spaser, they
likewise cause a feedback. The condition of Eq. (1.95) is likely to be well-satisfied
for Ref. [298]. Thus, the system may spase, which would cause the clamping of
inversion and loss of gain.

In contrast to these theoretical arguments, there is no evidence of spasing indicated
in the experiment [298], which can be explained by various factors. Among them,
the system of Ref. [298] is a gain-plasmonic nanofilm and not a true 3d material.
This system is not isotropic. Also, the size of the unit cell a ≈280 nm is significantly
greater than the reduced wavelength λ, which violates the quasistatic conditions and
makes the possibility of homogenization and considering this system as an optical
metamaterial problematic. This circumstance may lead to an appreciable spatial
dispersion. It may also cause a significant radiative loss and prevent spasing for
some modes.

We would also like to point out that the fact that the unit cell of the negative-
refracting (or, double-negative) metamaterial of Ref. [298] is relatively large, a ≈
280 nm, is not accidental. As follows from theoretical consideration of Ref. [300],
optical magnetism and, consequently, negative refraction for metals is only possible
if the minimum scale of the conductor feature (the diameter d of the nanowire)
is greater then the skin depth, d � ls ≈ 25 nm, which allows one to circumvent
Landau-Lifshitz’s limitation on the existence of optical magnetism [30, 300]. Thus,
a ring-type resonator structure would have a size �2ls (two wires forming a loop)
and still the same diameter for the hole in the center, which comes to the total
of �4ls ≈ 100 nm. Leaving the same distance between the neighboring resonator
wires, we arrive at an estimate of the size of the unit cell a � 8ls = 200 nm, which is,
indeed, the case for Ref. [298] and other negative-refraction “metamaterials” in the
optical region. This makes our theory not directly applicable to them. Nevertheless,
if the spasing condition (1.83) [or (1.85), or (1.104)] is satisfied, the system still may
spase on the hot-spot defect modes.

In an experimental study of the lasing spaser [260], a nanofilm of PbS quantum
dots (QDs) was positioned over a two-dimensional metamaterial consisting of an
array of negative split ring resonators. When the QDs were optically pumped, the
system exhibited an increase of the transmitted light intensity on the background of a
strong luminescence of the QDs but apparently did not reach the lasing threshold. The
polarization-dependent loss compensation was only ∼1 %. Similarly, for an array of
split ring resonators over a resonant quantum well, where the inverted electron-hole
population was excited optically [301], the loss compensation did not exceed ∼8 %.
The relatively low loss compensation in these papers may be due either to random
spasing and/or spontaneous or amplified spontaneous emission enhanced by this
plasmonic array, which reduces the population inversion.

A dramatic example of possible random spasing is presented in Ref. [262]. The
system studied was a Kretschmann-geometry SPP setup [302] with an added ∼1µm
polymer film containing Rodamine 6G dye in the nc = 1.2 × 1019 cm−3 concen-
tration. When the dye was pumped, there was outcoupling of radiation in a range
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of angles. This was a threshold phenomenon with the threshold increasing with the
Kretschmann angle. At the maximum of the pumping intensity, the widest range of
the outcoupling angles was observed, and the frequency spectrum at every angle
narrowed to a peak near a single frequency �ω ≈ 2.1 eV.

These observations of Ref. [262] can be explained by the spasing where the
feedback is provided by roughness of the metal. At the high pumping, the localized
SPs (hots spots), which possess the highest threshold, start to spase in a narrow
frequency range around the maximum of the spasing criterion—the left-hand side of
Eq. (1.103). Because of the sub-wavelength size of these hot spots, the Kretschmann
phase-matching condition is relaxed, and the radiation is outcoupled into a wide
range of angles.

The SPPs of Ref. [262] excited by the Kretschmann coupling are short-range SPPs,
very close to the antisymmetric SPPs. They are localized at subwavelength distances
from the surface, and their wave length in the plane is much shorter the ω/c. Thus
they can be well described by the quasistatic approximation and the present theory
is applicable to them. Substituting the above-given parameters of the dye and the
extinction cross section σe = 4×10−16 cm2 into Eq. (1.104), we obtain a point shown
by the black diamond in Fig. 1.31, which is clearly above the threshold, supporting our
assertion of the spasing. Likewise, the amplified spontaneous emission and, possibly
spasing, appear to have prevented the full loss compensation in a SPP system of
Ref. [274]. Note that recently, random spasing for rough surfaces surrounded by dye
gain media was shown experimentally in two independent observations [281, 303].

Note that the long-range SPPs of Ref. [277] are localized significantly weaker (at
distances ∼λ) than those excited in Kretschmann geometry. Thus the long-range
SPPs experience a much weaker feedback, and the amplification instead of the
spasing can be achieved. Generally, the long-range SPPs are fully electromagnetic
(non-quasistatic) and are not describable in the present theory. Similarly, relatively
weakly confined, full electromagnetic are symmetric SPP modes on thin gold strips
in Ref. [288] where the amplification has been demonstrated.

As we have already discussed in conjunction with Fig. 1.28, the spasing is readily
achievable with the gain medium containing common DBGSs or dyes. There have
been numerous experimental observations of the spaser. Among them is a report of a
SP spaser with a 7-nm gold nanosphere as its core and a laser dye in the gain medium
[252], observations of the SPP spasers (also known as nanolasers) with silver as a
plasmonic-core metal and DBGS as the gain medium with a 1d confinement [253,
256], a tight 2d confinement [254], and a 3d confinement [255]. There also has been a
report on observation of a SPP microcylinder spaser [304]. A high efficiency room-
temperature semiconductor spaser with a DBGS InGaAS gain medium operating
near 1.5µm (i.e., in the communication near-ir range) has been reported [256].

The research and development in the area of spasers as quantum nano-generators
is very active and will undoubtedly lead to further rapid advances. The next in line
is the spaser as an ultrafast nanoamplifier, which is one of the most important tasks
in nanotechnology.

In contrast to this success and rapid development in the field of spasing and
spasers, there has so far been a comparatively limited progress in the field of loss
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compensation by gain in metamaterials, which is based on the same principles of
quantum amplification as the spaser. This status exists despite a significant effort
in this direction and numerous theoretical publications, e.g., [267, 305]. There has
been so far a single, not yet confirmed independently, observation of the full loss
compensation in a plasmonic metamaterial with gain [298].

In large periodic metamaterials, plasmonic modes generally are propagating
waves (SPPs) that satisfy Bloch theorem [306] and are characterized by quasi-
wavevector k. These are propagating waves except for the band edges where
ka = ±π , where a is the lattice vector. At the band edges, the group velocity
vg of these modes is zero, and these modes are localized, i.e., they are SPs. Their
wave function is periodic with period 2a, which may be understood as a result of
the Bragg reflection from the crystallographic planes. Within this 2a period, these
band-edge modes can, indeed, be treated quasistatically because 2a ∪ ls, λ. If any
of the band-edge frequencies is within the range of compensation [where the condi-
tion (1.83) [or, (1.85)] is satisfied], the system will spase. In fact, at the band edge,
this metamaterial with gain is similar to a distributed feedback (DFB) laser [307].
It actually is a DFB spaser, which, as all the DFB lasers, generates in a band-edge
mode.

Moreover, not only the SPPs, which are exactly at the band edge, will be localized.
Due to unavoidable disorder caused by fabrication defects in metamaterials, there
will be scattering of the SPPs from these defects. Close to the band edge, the group
velocity becomes small, vg → 0. Because the scattering cross section of any wave is
∝ v−2

g , the corresponding SPPs experience Anderson localization [308]. Also, there
always will be SPs nanolocalized at the defects of the metamaterial, whose local
fields are hot spots—see Fig. 1.10 and, generally, Sect. 1.3.5 and the publications
referenced therein. Each of such hot spots within the bandwidth of conditions (1.83)
or (1.85) will be a generating spaser, which clamps the inversion and precludes the
full loss compensation.

Note that for a 2d metamaterial (metasurface), the amplification of the spontaneous
emission and spasing may occur in SPP modes propagating in plane of the structure,
unlike the signal that propagates normally to it as in Ref. [298].
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Chapter 2
Plasmonics for Enhanced Vibrational Signatures

Katrin Kneipp, Harald Kneipp and Janina Kneipp

Abstract Vibrational signatures provide key information on the molecular com-
position of matter and on molecular structure and structural changes. Vibrational
transitions in molecules can be probed optically by infrared absorption (IRA) and
Raman scattering (RS). Exploiting local optical fields in the vicinity of plasmonic
nanostructures has revolutionized optics and spectroscopy and opens up exciting new
capabilities, particularly also for vibrational spectroscopy. The basic prerequisites
for plasmon-supported spectroscopy are strongly enhanced and highly confined local
optical fields in the wavelength range applied in the respective spectroscopic method.
Here, we review plasmon supported linear and non-linear vibrational spectroscopies.
Our discussion includes incoherent effects such as surface enhanced Raman scatter-
ing (SERS), surface enhanced pumped anti-Stokes Raman scattering (SEPARS),
surface enhanced hyper Raman scattering (SEHRS), and surface enhanced infrared
absorption (SEIRA), as well as coherent Raman techniques such as surface enhanced
coherent anti-Stokes Raman scattering (SECARS) and surface enhanced stimulated
Raman scattering (SESRS). Emphasis will be placed on materials and nanostructures
that efficiently support various vibrational spectroscopic methods. Selected applica-
tions of surface enhanced vibrational spectroscopy for chemical probing and sensing
will be discussed.
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2.1 Introduction

Building blocks of matter such as atoms in a molecule are in periodic motion
and exhibit intrinsic vibrational modes. Typical vibrational frequencies range from
approximately 1014 Hz (∼3,000 cm−1) for vibrations involving light atoms such as
C-H groups down to the THz range (<100 cm−1) corresponding, for example, to
motions of sub-domains in proteins [1, 2]. Spectroscopic observation of vibrational
modes provides a non-invasive key to the chemical composition and structure of mat-
ter. Applying vibrational spectroscopies to small quantities of matter at nanoscale
dimensions and at single molecule level is a great challenge [3]. It can be met by com-
bining vibrational spectroscopy with plasmonics and performing vibrational spec-
troscopy in enhanced local fields in the vicinity of plasmonic structures [4–7].

Figure 2.1 shows different processes that can be employed in vibrational spec-
troscopy. Molecular vibrations accompanied by changes of a dipole moment can be
directly accessed by the absorption of infrared photons at the energy of the molecular
vibration hvM. Alternatively, photons can be scattered inelastically on the vibrational
quantum states. As a consequence of this so-called Raman scattering process inci-
dent photons hvL lose energy by exciting vibrational quanta at energy hvM, and the
scattered light appears at a lower (Stokes) frequency vS = vL − vM. By interacting
with a molecule in an excited vibrational state, incoming photons gain energy from
molecular vibrations, and the scattering signal appears at higher (anti-Stokes) fre-
quency vaS = vL + vM. Probing of vibrational modes by Raman scattering requires
changes of polarizability α with the vibrational coordinate Q. At extremely high
intensities, two photons can be simultaneously scattered by a molecular vibration.
This scattering process, called hyper Raman scattering (HRS) results in an incoher-
ent Raman signal vhS shifted relative to the twice of the excitation frequency vL with
vhS = 2vL − vM or, for anti-Stokes hyper Raman scattering vhaS = 2vL + vM
[8, 9]. Following one- and two-photon excitation, respectively, the spontaneous
Raman- and hyper Raman scattering processes generate an incoherent Raman signal.

Fig. 2.1 Spectoscopic methods for probing vibrational transitions displayed in an energy level
diagram, v= 0 and v= 1 are vibrational ground and first excited vibrational states
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In addition to incoherent, spontaneous Raman scattering, vibrational modes can
be probed by coherent Raman processes, also called stimulated, Raman scattering.
There, molecular vibrations are coherently driven by two interacting fields at fre-
quency differences that match vibrational transitions [10, 11]. In coherent Raman
probing, vibrational information appears in strong and directed coherent optical sig-
nals. This makes coherent Raman scattering attractive for fast collection of vibra-
tional information and for vibrational imaging [12]. Moreover, time resolved coherent
Raman techniques, such as impulsive stimulated Raman spectroscopy or femtosec-
ond stimulated Raman spectroscopy can provide information on the pathways and
dynamics of chemical reactions, as they allow to monitor vibrational signatures of
intermediate structures with ultrafast time resolution [13–16].

In this article, we focus on surface enhanced vibrational spectroscopy exploiting
enhanced local fields of plasmonic structures. In Sect. 2.2, we introduce the incoher-
ent effects of surface enhanced Raman scattering (SERS), surface enhanced infrared-
absorption SEIRA, surface enhanced pumped anti- Stokes scattering (SEPARS),
and surface enhanced hyper Raman scattering (SEHRS). There, we also explain
the coherent Raman techniques of surface enhanced coherent anti-Stokes Raman
scattering (SECARS) and surface enhanced stimulated Raman scattering (SESRS),
and summarize some important features of these plasmonic supported optical
effects. In Sect. 2.3, we discuss important properties of plasmonic nanostructures and
conditions suitable for enhancing different vibrational spectra obtained in different
wavelength ranges. In Sect. 2.4, we illustrate the capabilities of plasmon supported
vibrational spectroscopy by selected applications, in particular ultrasensitive SEIRA
of protein monolayers, monitoring of catalytic reactions on composite nanostructures
with SERS, and a new class of nanosensors and labels based on SERS-, SEHRS- or
SECARS signals. These examples illustrate how plasmonics transforms vibrational
spectroscopy from a method for chemical structure analysis to a versatile tool pro-
viding information on chemical structures and processes along with ultrasensitive
detection limits and nanoscale confinement of spectroscopic information. Section 2.5
gives a brief summary and outlook to potential future developments in the field.

2.2 “Normal” and “Surface-Enhanced” Vibrational
Spectroscopy

Vibrational modes can be probed based on absorption and inelastic scattering of
photons, as discussed above. Due to the Raman scattering process, vibrational infor-
mation occurring in the infrared range of the spectrum is transferred to the visible,
NIR, or UV range, respectively, depending on the excitation wavelength applied.
Figure 2.1 illustrates some of the different spectroscopic methods for vibrational
probing in an energy level diagram. Usually, in Raman scattering, excitation and/or
scattered photons are not in resonance with any real molecular electronic transition
(see Fig. 2.1). In contrast, in resonance Raman scattering (RRS), the excitation laser,
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and often also the Raman scattered photons, match electronic transitions in the mole-
cule. This gives rise to a stronger Raman signal for those vibrational modes which are
related to the electronic transition. But, fluorescence may be excited at the same time,
together with the Raman scattering, and the strong fluorescence signal can interfere
with the Raman Stokes light.

A critical parameter that determines the applicability of a spectroscopic effect
for structural probing is its cross section. Raman cross sections range from 10−31 to
10−29 cm2 per molecule. In the case of RRS, cross sections become typically 2–6
orders of magnitude larger. Infrared absorption appears at cross sections from 10−22

up to 10−20 cm2, i.e. about 10 orders of magnitude larger than non-resonant Raman
cross sections. Overall, even the best cross sections achievable for vibrational spec-
troscopy are still orders of magnitude below those used in electronic absorption and in
fluorescence which can be typically obtained at cross sections of 10−17–10−16 cm2.
Despite the high molecular structural information content in vibrational spectra, the
low cross sections, particularly those of Raman scattering, represent a considerable
disadvantage for all applications of vibrational spectroscopy. This applies particu-
larly for two-photon excitation. Cross sections on the order of 10−65 cm4 s/photon
for HRS—compared to 10−50 cm4 s/photon typical of two-photon fluorescence—
make the utilization of HRS as a practical spectroscopic tool nearly impossible. This
situation has changed dramatically during the last 15 years. Exciting opportunities
for gaining and improving vibrational signals arise, when spectroscopy takes place
in strongly enhanced local optical fields of plasmonic nanostructures [4, 17, 18].
Field enhancement in such metal structures can be understood in terms of resonant
excitation of high-Q-factor surface plasmon polaritons or/and by field concentra-
tion due to the lightening rod effect [19]. Some effects and observations exploiting
enhanced optical fields, can be explained by looking at metal nanostructures as opti-
cal nanoantenna which can direct and further enhance local optical fields. [20, 21].
We discuss “surface enhancement” for different vibrational spectroscopic methods
in more detail in the following sections.

2.2.1 Surface Enhanced Raman Scattering

Surface-enhanced Raman scattering (SERS) is probably the most prominent
observation to demonstrate the capabilities of plasmon supported spectroscopy.

In analogy to normal, non-surface–enhanced Raman scattering, the number of
Stokes photons per second nSERS

S in surface-enhanced Raman scattering can be
calculated as

nSERS
S = N0σ

SERSnL (2.1)

where σ SERS
S describes an effective cross section of the surface enhanced Raman

process, S denotes the Stokes scattering. nL is the Photon flux density of the exci-
tation laser. N0 is the number of molecules in the vibrational ground state, which
are involved in the SERS Stokes process. The cross section for Raman scattering is
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proportional to the square of the change of polarizability α with the vibrational coor-
dinate Q. It is generally agreed that both so-called “electromagnetic” field enhance-
ment effects and “chemical first layer” effects contribute to surface enhanced Raman
signals [22]. The chemical effects include enhancement mechanism(s) of the Raman
signal that can be explained in terms of specific interactions, i.e. electronic coupling
between molecule and metal [23–25], resulting in a larger Raman cross section of
the adsorbed molecule σRS

ads compared to that of the molecule without coupling to
the metal σRS

free. The electromagnetic field enhancement arises from the enhanced
local optical field at the location of the molecule in the vicinity of a plasmonic nanos-
tructure [18, 26, 27]. It can be described by field enhancement factors A(v). Using
these field enhancement factors for the excitation and scattered fields, an effective
SERS cross section can be written as

σ SERS = σ RS
ads |A (νL)|2 |A (νS)|2 (2.2)

with

|A (ν)|2 = |E (ν)|2∣∣E (0) (ν)
∣∣2 (2.2a)

where E(v) is the local optical field (laser and the scattered field, respectively), and
E(0)(v) are the same fields in the absence of the metal nanostructures.

The SERS enhancement factor GSERS for Stokes scattering is determined by the
ratio of the effective SERS cross section σ SERS to the normal Raman cross section
σRS

free

GSE RS = σ RS
ads

σ RS
f ree

∣∣∣∣A

(
νL

)∣∣∣∣
2 ∣∣∣∣A

(
νS

)∣∣∣∣
2

(2.3)

The first term in formula (2.3), σRS
ads/σ

RS
free , describes the chemical enhance-

ment effect. Chemical SERS enhancement factors may contribute to the total SERS
enhancement at a factor of 10 to 1,000. The second two terms describe the local
field enhancement effect for the excitation and scattered fields, respectively. Both
incoming excitation light and scattered light are enhanced, and—assuming the field
enhancement being roughly the same for the excitation and scattering frequency—
the electromagnetic enhancement scales roughly with the field enhancement factor
to the power of four. Numerous experimental and theoretical studies show that local
field enhancement constitutes the major contribution to the SERS effects by provid-
ing enhancement factors up to 1012. With a contribution of an enhancement factor
of ∼102 due to a chemical SERS effect, total SERS enhancement factors can be on
the order of 1014. This brings typical non-resonant Raman cross sections to effective
SERS cross sections on the order of 1016 cm2.
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2.2.2 Surface Enhanced Infrared Absorption

In principle, all photon-driven processes should benefit from enhanced local optical
fields, and in fact, successful attempts to increase IR absorption signals were reported
only a few years after the discovery of SERS [28]. The sensitivity of infrared (IR)
vibration spectroscopy can be enhanced by several orders of magnitude if plasmonic
electromagnetic nearfield enhancement is exploited. In contrast to scattering, where
at least two photons are involved, SEIRA signals, as the result of a one-photon
absorption process, benefit from local field enhancement A(v) only to the power of
two. The enhancement factor for infrared absorption can be written as

GSE I R A = σ abs
ads

σ abs
f ree

∣∣∣∣A

(
νM

)∣∣∣∣
2

(2.4)

with infrared absorption cross sections σ abs
ads and σ abs

free for the free and adsorbed
molecule, respectively. A(vM) describes the enhancement of the infrared optical field
at the frequency of the vibrational transition. The cross section of IR absorption is
proportional to the square of the change of the dipole moment μ with the vibrational
coordinate Q. By analogy with Raman scattering, we take into account that also IR
absorption cross sections may differ for adsorbed and free molecules, i.e. there may
exist also a chemical contribution to SEIRA. The key prerequisites for exploiting
SEIRA in practical spectroscopy are structures which provide field enhancement
also in the IR range. With the concept of a novel resonant mechanism involving the
interference of a broadband plasmon with the narrowband vibration from molecules,
enormous enhancement of the vibrational signals from less than one attomol of
molecules on individual gold nanowires was experimentally demonstrated [29, 30].
The tailored gold nanowires act as plasmonic nanoantennas in the infrared. It was
demonstrated that field enhancement in the IR range can be generated by nanoparticle
arrays that display shifted and broad plasmon resonances in the near to mid-IR [7,
31, 32]. Best SEIRA enhancement factors have been reported to be 104 − 105 [7,
30]. Another approach for generating enhanced and confined local fields in the IR
range exploits resonances with phonon polaritons [33, 34]. Enhancement factors of
100 for IR absorption on polar dielectric silicon carbide nanoparticles have been
reported [34].

2.2.3 Surface Enhanced Raman Scattering Using Two-Photon
Excitation: Surface Enhanced Hyper Raman Scattering

Hyper Raman scattering results in incoherent Raman signals shifted relative to twice
the excitation frequency (see also Fig. 2.1). Hyper Raman scattering is related to
higher order terms in the induced dipole moment which become operative at high
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optical field strength
Pind = αE + βE E + · · · (2.5)

with β as hyper polarizability. The first linear term including α describes linear
Raman and Rayleigh scattering, the second term describes hyper Rayleigh and hyper
Raman scattering. Hyper Raman scattering follows symmetry selection rules differ-
ent from Raman scattering. Therefore, it can probe vibrations hat are forbidden in
Raman scattering [8, 9].

As a non-linear, two-photon excited process, HRS depends on the excitation pho-
ton flux density nL to the power of two. In analogy to Eq. (2.1) , the number of
surface-enhanced hyper Raman Stokes photons nSEHRS can be calculated as

nSEHRS = N0σ
SEHRSn2

L (2.6)

where σ SEHRS is the effective cross section of the surface-enhanced hyper Raman
process.

HRS can be enhanced in an analogous fashion to normal Raman scattering by
a chemical effect and by enhancement of the optical fields when the molecule is
in close proximity of metallic nanostructures. The effective surface-enhanced hyper
Raman cross section can be written as

σ SEHRS = σHRS
ads |A (νL)|4 |A (νhS)|2 (2.7)

where σHRS
ads describes an “chemically” enhanced hyper Raman cross section com-

pared to that of a “free” molecule, A(v) describe the enhancement of the optical fields
at the excitation and hyper Raman scattered wavelengths, respectively. We can write
an enhancement factor for SEHRS as

GSE H RS = σHRS
ads

σHRS
f ree

|A(νL)|4 |A(νH S)|2 (2.8)

Strong surface enhancement corresponding to the field enhancement factor to the
power of six can overcome the inherently weak nature of hyper-Raman scattering
and enable to measure hyper Raman spectra also at the anti-Stokes side [35].

Figure 2.2 displays Stokes and anti-Stokes hyper Raman spectra and illustrates
the dependence of non-linear SEHRS signals on the excitation intensity to the power
of two. Effective cross sections of SEHRS have shown to be on the order of 10−46 −
10−45 cm4 s, comparable or even better than the best cross sections for two-photon
fluorescence obtained so far. These cross sections enable the measurement of SEHRS
spectra at excitation intensities of 106 − 107 W / cm−2, conditions that can be easily
achieved with mode-locked picosecond lasers under weak focusing conditions [36],
and also in tightly focused continuous wave (cw) [37] or low-energy pulsed lasers
[38].
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Fig. 2.2 a SEHRS Stokes and anti-Stokes spectra of crystal violet attached to silver nanoaggregates.
The spectra were measured using 1,064 nm mode locked ps pulses at an average power of 40 mW.
Anti-Stokes HRS can be observed because of the extremely high effective cross section of SEHRS.
b The square-law dependence of the hyper Raman scattering signal on the excitation intensity
verifies the two-photon process. cps counts per second (Reprinted with permission from [35])

2.2.4 Surface Enhanced Pumped Anti-Stokes Raman Scattering

Anti-Stokes Raman scattering starts from the first excited vibrational levels (see
Fig. 2.1) and is proportional to the number of molecules in the first excited vibra-
tional state N1. This number N1, relative to the number of molecules in the vibrational
ground state N0 is determined by the Boltzmann factor. This results in much weaker
anti-Stokes Raman signals than Stokes signals. A strong surface-enhanced Raman
Stokes process with an effective cross section σ SERS populates the first excited vibra-
tional levels in addition to thermal population [39–42], and results in an increase of
anti- Stokes signals. Under stationary conditions and in a weakly saturating intensity
regime (exp(−hvM/kT) ≤ σ SERS

S τ1 nL << 1), the anti-Stokes signal nSERS
aS can be

estimated according to

nSERS
aS = N0e− hνM

kT σ SERSnL + N0
(
σ SERS)2

τ1n2
L (2.9)

The first term describes anti-Stokes scattering related to thermal population of
the first excited vibrational state. The second term describes an anti-Stokes signal
related to a population of the first excited vibrational state due to “pumping” by a
spontaneous Raman Stokes process, τ1 is the lifetime of the excited vibrational state.
Pumping of vibrational levels by a surface-enhanced Stokes process in the weakly
saturating intensity regime gives rise to a quadratic dependence of the anti-Stokes
signal on the excitation intensity. This nonlinear pumped anti- Stokes scattering can
be described by an effective two-photon cross section σ SEPARS.

σ SEPARS = (
σ SERS)2

τ1 (2.10)

Assuming a SERS cross section of approximately 10−16 cm2 and a vibrational life
time on the order of 10 picoseconds, effective two-photon cross sections can be up
to 10−43 cm4 s. This is about seven orders of magnitude larger than typical cross
sections for two-photon excited fluorescence. Moreover, anti-Stokes spectra provide
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vibrational information at the high energy side of the excitation laser, which is free
from disturbing fluorescence.

SEPARS generates an incoherent anti-Stokes signal. The large effective cross
section can be explained by the nature of the process, which is a two-photon process
using the vibrational level as a real intermediate state. The effective Raman cross
section strongly benefits from enhanced local fields. In an analogous fashion to
formula (2.2), we can split chemical and electromagnetic enhancement and write the
effective surface-enhanced cross section for pumped anti-Stokes scattering as

σ SEPARS =
(
σ RS

ads

)2
τ1 |A (νL)|4 |A (νS)|2 |A (νaS)|2 (2.11)

Pumped anti-Stokes Raman scattering benefits from enhanced local fields to the
power of eight. Observing the effects of vibrational pumping without support of
plasmonics means dealing with an effective cross section of 10−71 cm4 s. Excita-
tion intensities on the order of 1020 W/cm2 would be required in order to bring the
pumped anti-Stokes signal to the level of anti-Stokes scattering from thermally (room
temperature) populated vibrational modes.

2.2.5 Surface Enhanced Coherent or Stimulated Raman
Scattering Methods

The development of lasers has triggered the field of stimulated or coherent Raman
spectroscopy, also called “active Raman spectroscopy” , in the seventies of the last
century [43]. Coherent Raman methods came back to the focus of interest during the
recent decade [10, 11, 44].

In stimulated or coherent Raman probing, two optical fields coherently drive a
vibrational mode while one of these fields, or another third one, probes this coherent
molecular vibration. The third-order non-linear susceptibility X(3), which enables
the process, has resonances at the vibrational frequencies and therefore, by tuning
the frequency differences between the lasers, on can probe the vibrational spectrum
of a molecule.

There are different ways to perform coherent nonlinear Raman probing. The two
mostly prominent coherent Raman methods are coherent anti-Stokes Raman spec-
troscopy (CARS) and stimulated Raman spectroscopy (SRS): During CARS, an
excitation laser (vL) and a Stokes laser (vS) generate a coherent molecular vibra-
tion. The excitation laser is scattered again on this vibration and produces a coherent
anti-Stokes signal. The nonlinear polarization, which is responsible for CARS can
be written as

PCARS ∝ X(3)EL (νL) EL (νL) E∗
S (−νS) (2.12a)

In contrast, so-called stimulated Raman spectroscopy (SRS) measures changes
in the signal levels of the two lasers which occur due to their non-linear interaction.
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The nonlinear polarization, which generates SRS is

PSRS ∝ X(3)EL (νL) E∗
L (−νL) ES (νS) (2.12b)

Stimulated Raman spectroscopy can be used in an enhancing or depletion modus
by measuring an enhancement in the lower frequency “Stokes” laser field (stimulated
Raman gain), or a depletion in the higher frequency “anti-Stokes” laser field (stimu-
lated Raman loss or inverse Raman scattering), respectively [11, 14]. Whereas CARS
requires additionally phase matching conditions between the interacting lasers, stim-
ulated Raman spectroscopy always fulfills this momentum conservation automati-
cally.

In the discussed coherent Raman processes, four interacting coherent optical fields
can benefit from plasmonic enhancement. The enhancement factor for the coherent
non-linear Raman processes can be written as

GSECARS = (X(3)
ads)

2

(X(3)
f ree)

2
|A (νL)|4 |A (νS)|2 |A (νaS)|2 (2.13a)

GSESRS = |X(3)
ads |2

|X(3)
f ree|2

|A (νL)|4 |A (νS)|4 (2.13b)

Here we consider that also the non-linear susceptibility can be different for
adsorbed and “free” molecules.

There are some reports on experimental demonstration of surface enhanced coher-
ent Raman spectroscopy (SECARS) [45–50]. Silver nanoparticle aggregates, silver
films and nanostructured gold surfaces were used as plasmonic enhancing struc-
tures. SECARS enhancement factors exceeding five orders of magnitude have been
observed [49]. Recently, surface enhanced femtosecond stimulated Raman spec-
troscopy has been reported exploiting gold nanoantenna with embedded Raman
molecules. Using a picosecond Raman and femtosecond probe pulse, the time- and
ensemble averaged enhancement factor was estimated in the range from 104 − 106

[51].
Figure 2.3 summarizes different plasmon supported spectroscopic methods for

vibrational probing. Note that in incoherent probing, spectroscopic signals linearly
depend on the number of molecules while coherent Raman signals show a quadratic
dependence. In general, field enhancement factors A(v) depend on frequency. How-
ever, Raman shifts are relatively small and therefore, we can assume for SERS,
SEPAS and SECARS that A(vL) ∼ A(vS) ∼ A(vaS) = A(v). SEIRA, SERS and
SEHRS depend on field enhancement factors A(v) to the power of two, four and six
respectively, while SEPARS, SECARS, and SESRS benefit from A(v) to the power
of eight.

For supporting different vibrational spectroscopic methods, field enhancement is
required within very different wavelength ranges including IR and THz frequencies
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Fig. 2.3 Surface enhanced vibrational spectroscopies and their dependence on field enhancement
factors A(v)

for SEIRA and near infrared, visible or near ultraviolet frequencies for linear and
non-linear (resonance) Raman scattering. For SEHRS, optimum structures should
provide high enhancement in two relatively widely separated ranges of the electro-
magnetic spectrum. In the Sect. 2.3, we discuss basic requirements for plasmonic
nanostructures suitable for surface enhanced vibrational spectroscopy.

2.3 Plasmonic Nanstructures for Supporting Vibrational
Spectroscopy

The basic property of enhancing plasmonic structures is their capability to generate
spatially confined and enhanced fields due to resonances with the collective oscil-
lations of the free conduction electrons in the metal, so-called surface plasmons.
This requires nanostructures with plasmon resonances in different ranges in the elec-
tromagnetic spectrum. Moreover, in order to achieve high enhancement levels, the
plasmonic elements should have high Q-factors. For a modern summary about the
field of nanoplasmonics, see e.g. [19, 52–55]. The existence of surface plasmons
strongly depends on the dielectric constants of the metal εm and requires negative
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real part of the complex dielectric constant, Re εm < 0. High Q-factors, i.e. small
damping requires small imaginary parts of εm. Gold, silver and also copper fulfil
these requirements in the visible and near infrared range. Silver and gold are the
most common materials in plasmon supported optics and spectroscopy. There is a
strong interest in extending the working range of plasmonics by looking for new
materials. For an overview of plasmonic materials see [56].

Properties of surface plasmons and related local optical fields in the vicinity of
plasmonic structures are not only determined by their material properties, but also
by the morphology of the structures. For example, so-called hot spots which provide
extremely strong SERS enhancement always exist for aggregates formed by silver
or gold nanoparticles but not for isolated particles [57, 58]. For illustration, Fig. 2.4
compares SERS experiments performed on isolated gold nanospheres and on small
aggregates formed by these spheres.

In agreement with theory, enhancement factors for isolated gold spheres have
been inferred to be 103 − 104 by comparing surface enhanced Raman signals with
non-surface enhanced standards. These SERS enhancement factors are too small
to measurably populate the first excited vibrational state and the anti-Stokes spec-
trum appears at the expected relatively low signal level (Fig. 2.4b). In particular, the
high frequency modes are not seen on the anti-Stokes side due to their low ther-
mal population. This situation changes when the particles form aggregates. Now a
strong anti-Stokes signals appears, in particular also for higher frequency Raman
modes. This is an indication of a very strong Raman process that populates the first
excited vibrational state. The difference in SERS enhancement levels for isolated

Fig. 2.4 Stokes and anti-Stokes SERS spectra of crystal violet attached to isolated and aggregated
gold nanospheres. Strong anti-Stokes signals for aggregated spheres indicate population of first
excited vibrational states beyond Boltzmann distribution. This population pumping due to a very
strong SERS Stokes process indicates a dramatic increase in local field enhancement for nanoparticle
aggregates versus isolated particles (Reprinted with permission from [58])
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gold nanoparticles and aggregates can be up to 10 orders of magnitude. Isolated sil-
ver nanoparticles and silver nanoaggregates show basically the same behavior [59,
60]. The dramatic increase in field enhancement level can be explained by the inter-
action and hybridization of plasmons in adjacent nanoparticles [55]. Plasmonic field
enhancement exhibits particularly exciting properties for fractal metallic nanostruc-
tures [61–64].

Surface plasmon resonances for isolated particles strongly depend on their shape
and size. Advances in a controlled production of gold and silver nanoparticles make
it possible to tune their plasmon resonances over wide ranges in the visible and NIR.
Figure 2.5 summarizes representative tuning ranges for selected gold- and silver
nanostructures [65].

While plasmon resonances mainly cover the range between near ultraviolet (UV)
and near IR, further developing of SEIRA as a spectroscopic tool requires nanos-
tructures which provide high field enhancement in the IR range. Nanoshells are very
interesting “single-particle” plasmonic structures exhibiting well-defined tunable
plasmon resonances over wide energy ranges down to the IR [66]. These structures are
of particular interest for the design of enhancing structures for SEIRA experiments
[31, 55, 67]. Also metal nanowires provide sufficiently strong antenna-like plas-
monic resonances in the IR [29]. The resonance of the antenna can be adjusted to the
molecular vibration frequencies by changing the wire length. Arrays where antennae
can couple via nanogaps have been suggested and demonstrated as structures which
provide strong electromagnetic enhancement in the IR range [7, 30]. Vibration-signal
enhancement up to 500,000 have been obtained for molecular monolayers adsorbed
on gold nanowires.

Another methodological challenge in vibrational spectroscopy is plasmonic sup-
ported (resonance) Raman scattering using ultraviolet light for excitation. The exten-

Fig. 2.5 Spectral dependence of the plasmon resonance of differently shaped silver and gold
nanoparticles (Reprinted with permission from [65])
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sion of SERS studies to the ultraviolet region, i.e. UV-SERS would offer interesting
capabilities, particularly for supporting UV resonance Raman studies in biosciences
[68, 69]. Aluminium has been considered as one of the best candidates for enhanc-
ing local fields in the UV region [70]. It has been experimentally demonstrated that
Al triangular nanoparticle arrays can support plasmon resonances that are tunable
throughout the visible and into the UV portion of the spectrum [71]. UV-SERS using
ordered Al nanohole arrays are theoretically proposed and simulated by using FDTD
method [72]. SERS spectra observed from crystal violet on aluminium using 244
nm excitation have been reported [73]. Surface-enhanced Raman scattering in the
ultraviolet spectral region was also observed on rhodium and ruthenium electrodes
[74].

Non-linear vibrational probing, such as hyper Raman spectroscopy can require
plasmonic support in very different frequency ranges since the scattering signals
appears shifted relatively to the second harmonic frequency of the excitation laser.
The problem can be addressed by using enhancing structure that exhibit plasmon
excitations over a wide spectral range. For example, silver aggregate structures can
show a broad plasmon spectrum from 400 to 1,200 nm which covers all optical fields
participating in the non-linear Raman effect [75, 76]. Another approach for dealing
with different optical frequencies in non-linear effects employs antenna elements
with different resonance wavelength matching the interacting optical fields [77].
The application of multifrequency gold nanowire antennas has been demonstrated
in frequency conversion experiments.

2.4 Selected Applications of Surface Enhanced Vibrational
Spectroscopy

2.4.1 SERS for Probing Catalytic Reactions

High molecular structural selectivity along with high detection sensitivity suggests
surface enhanced vibrational spectroscopies as powerful methods for monitoring
chemical processes and reactions.
Application of SERS for insight into catalytic processes requires bifunctional nanos-
tructures that provide both plasmonic properties and the ability to act as catalyst.
Direct observations of catalytic reactions have been reported by using composite
nanoparticles with gold for plasmonic and Pt or Pd for catalytic function [78, 79].

In another experiment, gold nannoparticles and catalytic active Pt nanoparticles
have been simultaneous immobilization on a glass surface, see schema a in Fig. 2.6
[80]. This approach combines the advantages of easy preparation without the need
for synthesis of composite nanoparticles and high versatility regarding the choice
of catalyst. The proximity of both types of nanoparticles enables interaction of the
molecules with the platinum nanoparticles while they reside in the local optical
fields provided by the localized surface plasmons of the gold nanoparticles. The
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Fig. 2.6 SERS for probing the kinetics of nanoparticle-catalyzed reactions. a Schematic of a mix-
and-match surface with immobilized gold and platinum nanoparticles. The reaction is catalyzed by
the platinum nanoparticles, while the surface-enhanced Raman scattering (SERS) signal is brought
about by local optical fields of the gold nanoparticles b SERS spectra for monitoring the reduction
of p-nitrothiophenol (PNTP) by sodium borohydride to p-aminothiophenol (PATP), spectra were
measured at different time points after the addition of sodium borohydride c Determination of rate
constants for the reduction based on the intensity ratio of the band of PNTP at 724 cm1 and of 2-NT
at 599 cm1 (Reprinted with permission from [80])

chemical species involved in the catalytic process can be characterized by their SERS
features, see also Fig. 2.6b. To monitor the reaction over time, the relative intensity
of typical SERS bands of the starting compound and the end product can be used for
quantification, see Fig. 2.6c. Structural characterization of the species in the reaction
and the rate constants are thus determined in the same experiment.
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2.4.2 Vibrational Spectroscopy of Protein Monolayers Using
SEIRA

Compared to SERS and particularly also compared to non-linear Raman methods,
the electromagnetic contribution for SEIRA signals is “modest” since the effect is
only proportional to the square of the field enhancement (see Fig. 2.3). However,
IR absorption and Raman scattering follow different symmetry selection rules and
can therefore probe different vibrational modes. For a comprehensive vibrational
characterization, Raman scattering and IR absorption spectra are of interest.

As we have discussed, infrared absorption can be efficiently supported by nanoan-
tenna arrays. The collective resonant excitation of the nanoantenna ensemble results
in signal enhancement factors of 104 − 105. This “collectively enhanced IR absorp-
tion” (CEIRA) spectroscopy technique allows direct identification of vibrational
signatures of single protein monolayers of silk fibroin, see Fig. 2.7a. The ability
to control the thickness of the silk protein films from several nanometers to sev-
eral micrometers provides an opportunity to probe the near field behavior of the
nanorod antenna by varying the film thickness. Due to the rapid decaying of the
strongly enhanced near fields with distance from the nanorod surfaces saturation of
the enhancement is expected to occur for films as thin as 40 nm. Figure 2.7b illustrates
Amide-I and II vibrational modes of the protein back bone. These two vibrations also
appear in the reflectance spectra shown in Fig. 2.7c. CEIRA is based on collective
plasmonic excitations created by tailoring of the dipolar interactions in engineered
nano-antenna arrays. The method allows detection of 300 zeptomoles of proteins for
the entire array, corresponding to 145 molecules per antenna.

Fig. 2.7 Surface enhanced IR reflection absorption spectroscopy (IRRAS) of a single silk protein
monolayer a Silk film thickness is measured by atomic force microscope for a 4 nm thick film.
b Amide-I and II vibrational modes of the protein back bone. c Reflectance spectra from the
nanoantenna array before (dashed line) and after coating of 2 nm thick protein film (solid line).
Dashed vertical lines indicate the positions of the protein amide-I and II absorption peaks (Reprinted
with permission from [7])
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2.4.3 New Labels for Linear and Non-Linear Vibrational Probing
and Imaging

During recent years, it has been demonstrated that surface-enhanced Raman scatter-
ing opens up exciting capabilities for creating new labels particularly for biosciences.
Applications of SERS tags have been demonstrated for labeling DNA strands and
proteins [81, 82], for in vivo imaging in a mice [83] and for probing and imaging in
life cells [84, 85].

SERS labels consist of gold or silver nanoaggregates with an attached reporter
species, e.g. a dye, see also Fig. 2.8. The labels are detected based on the SERS
signature of the reporter molecule. Distinguishable spectral signatures even for sim-
ilar reporter molecules enable a large pool of spectrally non-overlapping labels [3].
Since SERS works well with molecular non-resonant excitation, all labels can be
used at the same excitation wavelength. Therefore, SERS labels benefit from real
multiplexing capabilities.

As a particular advantage, SERS labels do not only highlight targeted structures
through the specific reporter spectrum, SERS in the local optical fields of the gold
or silver nanostructures also provides sensitive and spatially localized molecular

Fig. 2.8 Schematic of a multifunctional SERS label built from gold or silver nanoaggregates with
an reporter molecule attached along with its one and two-photon excited spectral signature. The
example shows SEHRS and SERS spectra from a label built from silver nanoaggregates with rose
bengal as reporter molecule. Two-photon excited SEHRS spectra were measured using 1,064 nm
mode locked ps pulses, one-photon excited SERS spectra were collected using 785 nm cw light
(Reprinted with permission from [35])
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structural information on the environment of the label [86]. Moreover, the SERS
signature of a reporter molecule, attached to the gold nanoparticle, which exhibits
a pH-sensitive Raman spectrum, can deliver information on the local pH-value in
the surrounding of the label [87]. SERS labels can be functionalized (targeting unit)
using specific linker in order to address specific molecules or structures.

Due to the plasmonic support, SERS appears at high signal level. This suggests
SERS signatures for vibrational imaging.

Two-photon excitation is gaining rapidly in interest and significance in spec-
troscopy and optical imaging. The development of optical labels that are suitable also
for two-photon excitation and non-linear imaging is an important task in advanc-
ing methods for vibrational probing and imaging. Effective plasmonic supported
cross sections of SERS and SEHRS can be on the order of 10−17 − 10−16 cm2 and
10−46 − 10−45 cm4 s, respectively. This suggests versatile optical SERS/ SEHRS
labels suitable for both one- and two-photon probing and imaging. Figure 2.8 shows
the schematic of a SEHRS/SERS label along with its spectral signatures, for this
label, SEHRS and SERS spectra of the reporter molecule rose bengal. Plasmonic
supported Raman labels have also been employed in CARS imaging for immuno-
histochemistry [50].

2.5 Brief Summary and Outlook

Plasmonics supported vibrational spectroscopy can transform vibrational spec-
troscopy from a method for chemical structural analysis requiring relatively large
amounts of matter to a tool for nanosciences providing at the same time high
molecular structural selectivity and ultrasensitive detection limits. Vibrational spec-
tra collected by surface enhanced Raman scattering (SERS), by surface enhanced
infrared absorption (SEIRA), and by surface enhanced two-photon excited hyper
Raman scattering (SEHRS) allow a comprehensive structural characterization of
matter and monitoring of chemical processes. Sophisticated nanoantenna structures
and arrays advance the field of surface enhanced IR absorption. Here, the extension
to the THz range might be of particular interest. A combination of the confined
probed volumes and the enhancement of vibratinal signatures in plasmonic fields
with scanning probe capabilities of an atomic force microscope as it is employed in
tip enhanced Raman spectroscopy enables simultaneous morphological-topological
and molecular structural information at the nanoscale.

In particular, non-linear coherent and incoherent Raman scattering benefits from
plasmonic support. Further progress in theoretical understanding of plasmonic
enhancement as well as advanced technologies for making taylored plasmonic nanos-
tructures will allow us to take advantage of all the potential capabilities of plasmonic
supported non-linear vibrational spectroscopy. First observation of surface enhanced
femtosecond stimulated Raman scattering opens up exciting new ways for probing
ultrafast processes that might occur in plasmon-mediated interaction between mole-
cules and light. Methods such as SEHRS, SEPARS and SECARS combine structural
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sensitivity and selectivity of vibrational spectroscopy, methodological advantages
of multiphoton and coherent spectroscopy, as well as high signal levels and con-
fined probed volumes inherent to plasmon supported spectroscopy. Employing these
advantages opens up exciting capabilities for vibrational probing and imaging.
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Chapter 3
Plasmonically Enhanced Dye-Sensitized
Solar Cells

Michael B. Ross, Martin G. Blaber and George C. Schatz

Abstract The unique absorption and scattering properties of metallic (typically
silver or gold) nanoscale structures are dominated by their localized surface plasmon
resonances, leading to strongly confined electromagnetic fields and unprecedented
control over light at the nanoscale. The scattering properties of metal nanoparticles
have recently been used to trap light within thin film inorganic solar cell devices to
increase the effective optical density of the absorbing layer. Enhanced local fields
have been utilized to enhance the photo-absorption cross-section of dye molecules
in dye-sensitized solar cells. Here we will review the current state of the art in
plasmon-enhanced dye-sensitized solar cells and comment on the challenges that
must be addressed for the realization of next generation devices.
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3.1 Introduction

Increasing population and economic growth continue to drive global energy
consumption. Though fossil fuels, including natural gas, coal, tar sands, and oil,
could meet these demands; increasing concern about the sustainability of these en-
ergy sources has led to the invigoration of support for renewable energy sources.
Solar energy provides an alternative and abundant source of energy. More solar en-
ergy is transferred to the surface of the earth each hour than is consumed globally
each year [1]. However, module costs for solar cells must decrease to approximately
US$ 0.50 per peak Watt without subsidies for solar to be competitive with traditional
fossil fuels [2].

The efficiency of single-junction photovoltaic (PV) cells is intrinsically limited
by the band gap of the absorbing medium. In the case of silicon, with a band gap of
1.1 eV, much of the energy of ultraviolet (UV) and visible wavelength photons is lost
to the mismatch between photon energy and the band gap, limiting the maximum
efficiency to about 34 % [3]. Multi-junction cells can be used to improve the match
between photon energy and the band gap of the absorber. The efficiency record as of
2012 for a multi-junction p-n photovoltaic is 43.5 % for a 3-junction InGa cell with
a 306× solar concentrator [4].

An alternative to increasing efficiency is a dramatic reduction in manufacturing
cost for low efficiency devices; this has led to a steady increase in thinfilm PV
research, with recent devices utilizing hydrogen ion implantation and annealing to
produce 20 µm thick single crystal silicon substrates. The optical density of thin
film PV systems is low and efficiency drops with reduced thickness. Both localized
surface plasmons and surface plasmon polaritons have been utilized in thin film
PV devices to scatter light into the absorbing semiconductor and confine it there,
thereby increasing the path length of light in the cell, increasing the optical density
and photoelectron generation [5].

Dye-sensitized solar cells (DSSCs) present an attractive alternative to traditional
inorganic devices because the components can be of low purity and the manufacturing
process is conducive to high throughput printing. The basic components of a DSSC
are presented in Fig. 3.1. A sensitizing dye is chemisorbed to a mesoporous film
of wide band gap semiconductor, usually TiO2, which is attached to a transparent
conducting oxide film. Light is absorbed by the dye and a photoexcited electron is
transferred to the semiconductor and then to the electrode. A redox couple (usually
iodide/tri-iodide) then reduces the dye to the ground state and carries the hole to the
counter electrode.

Since the first DSSC by O’Regan and Grätzel in 1991, the field has expanded
greatly; however, until recently, efficiencies had stalled at around 9 % [6]. This is
in part due to the complexity of having separate materials responsible for the light
absorption and the electron/hole transport. However, the diversity of components
is attractive because novel materials can easily be incorporated into a variety of
photo-collection systems to understand and maximize their effect. For a review of
the diversity of dyes and electron/hole transport materials, see Ref. [4]. Recent ad-
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Fig. 3.1 Scheme of a
dye-sensitized solar cell.
The transparent electrodes
are generally composed
of fluorine-doped tin oxide
(FTO)

vances in nanotechnology and robust dyes have boosted efficiencies of DSSCs to
over 12 % [7].

Substantial progress has been made in understanding the chemistry and physics of
DSSCs, with most suggesting that the primary way to increase DSSC efficiency is by
increasing the photo-voltage.[4, 8] Recent work on alternatives to the iodide/trioidide
redox mediator has vetted increases in cell efficiency by decreasing the dye regenera-
tion overpotential. Dye engineering can be used to reduce the injection overpotential
(which is the energy difference between the molecule excited state and the TiO2
conduction band). The other way to increase the photovoltage is by decreasing the
dark current of the cell, which is a measure of the electron-hole recombination path-
ways in the DSSC. Even in cells with high charge-collection efficiencies, significant
photocurrent density loss is seen due to resistance in the cell and charge exchange at
the TiO2/electrolyte interface [9].

The total resistance is dependent on the electron-transport resistance and the rate
of recombination. Recombination comes in three forms: decay of the excited state
of the dye prior to electron injection, recombination of electrons in the mesoporous
semiconductor with oxidized dyes, and recombination of electrons with the redox
mediator. Fewer recombination events and faster electron transport in TiO2 would
reduce loss. The charge recombination rate in DSSCs is proportional to the surface
area of the mesoporous titania network [10], and therefore, the thickness of the
film [9]. Ideally, the film thickness should be ten times shorter, ∪100 nm, than the
electron diffusion length in TiO2 [9]. Thus, decreasing the thickness of the oxide
layer and/or increasing the carrier length will increase photocurrents in DSSCs. As
the film thickness is decreased, the optical density decreases and hence there is a
reduction in photon capture, which subsequently reduces photocurrent generation.
To offset the decrease in optical density, plasmonic nanoparticles can be incorporated
into the DSSC to provide increased dye absorption.

More importantly, a thinner cell greatly decreases carrier recombination in the
oxide layer. As seen in Fig. 3.2, the carrier recombination efficiency varies inversely
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Fig. 3.2 Comparison of
carrier paths in DSSCs
without(left) and with (right)
plasmonic nanoparticle
inclusions

with the length of the oxide layer. The further an electron has to travel, the more likely
it is to encounter an oxidized dye and be lost. Each electron that does not reach the
Pt electrode can be considered a wasted photon absorption event. Thus, plasmonic
nanoparticles can lead to lower recombination frequencies via shorter path lengths
in the cell. This can also allow the use of cheaper materials with shorter carrier mean
free paths [11]. Solar conversion efficiencies could increase with diminished material
needs in terms of both scarcity and cost. DSSCs would become easier to implement
on larger scales as they became more economically feasible.

3.2 Plasmon Enhanced Dye-Sensitized Solar Cells

Localized surface plasmon resonances (LSPRs) are characteristic excitations of the
conduction electrons in small metal nanoparticles. They are seen when a, the dimen-
sion of the particle, is less than the excitation wavelength, when a < ε. Photons
travelling in media with a positive dielectric constant (λd > 0) couple with LSPRs
with varying efficiencies based on the nanoparticle shape, size and the relationship
between the medium dielectric constant and the dielectric function of the metal
(λm(π) = λr(π) + iλi(π) ) [12]. The coupling efficiency between photons and the
LSPR is described by the absorption and scattering cross-sections (Cabs and Csca re-
spectively) of the nanoparticles. The values of Cabs and Csca can be many times larger
than the geometric cross-section of the nanoparticle, indicating in the case of Cabs
that the electric field in and around the nanoparticle can be many times the strength
of the incident field. This strong localization of electromagnetic energy around metal
particles is of primary importance to increasing the absorption cross-section of dyes.

In the following, we will discuss the mechanism of enhanced dye absorption due
to LSPRs: including ways to enhance dye absorption over the solar spectrum by
utilizing nanoparticles of various shapes, mitigating Ohmic losses in the metal due
to surface plasmon excitation, and coupling of the particle electromagnetic fields
with the dye.
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3.2.1 Mechanism of Enhanced Dye Absorption

In contrast to inorganic p-n junction type cells where plasmonically active metal
nanostructures are used to scatter light into the photoabsorbing layer [5], metal
nanoparticles directly increase photoabsorption of the dye in DSSCs by near-field
coupling [13]. The local electric field felt by a dye molecule absorbed on or near
a metal nanoparticle can be hundreds (or even thousands) of times the strength of
the incident field [14]. The strength of the near-field around a nanoparticle depends
upon the energy stored in the plasmon mode and the number and placement of
sharp features in the nanostructure. The stored energy is approximately related to
the absorption cross-section of the particle, which in the quasi-static limit (where the
particles are very small compared to the incident photon wavelength) is given by:

Cabs = kIm(ω), (3.1)

where k is the free space wavevector (2α/ε) and ω is the polarizability of the nanopar-
ticle. The polarizability of a sphere is given by:

ω = 4αa3 λm − λd
λm + 2λd

, (3.2)

where a is the radius of the sphere and λm and λd are the dielectric constants of
the metal and surrounding dielectric, respectively. When the real part of the metal
dielectric constant is equal to −2λd, the denominator of (3.2) approaches zero and
the system is resonant. Increasing the dielectric constant of the surrounding medium
causes the resonance to move to a higher wavelength, or ‘red-shift’. For metals such
as silver and gold, the red-shift moves the resonance away from interband transitions
in the metal. If a plasmonic structure is designed such that the LSPR is near the
interband transitions, the LSPR will be heavily damped due to decay into electron-
hole pairs. Thus, red-shifting the resonance from interband transitions increases the
polarizability and hence the absorption cross-section of the nanoparticle.

Although the introduction of bare Au nanoparticles into a DSSC has been shown
to increase the cell photocurrent [15], in most DSSCs the use of corrosive redox
mediators such as the iodide/triiodide redox couple requires that the nanoparticles be
protected with a capping layer. Both TiO2 [16] and SiO2 [17] capping layers have been
investigated on gold and silver nanoparticles incorporated into DSSCs. Depending
on the thickness of the capping layer, the particle experiences an effective dielectric
environment in between the value of λc for the capping layer and the value of λd for
the solution. As the thickness increases the proportion of effective medium dielectric
constant tends towards λc, and the resonance red-shifts (if λc is greater than λd) in
accordance with Eq. 3.2. Additionally, as the thickness of the capping layer increases,
the distance between the adsorbed dye and the metal particle increases. Because
the electric field associated with the plasmon resonance on the nanoparticle decays
exponentially away from the metal surface, the observed photocurrent decreases. For
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example, Standridge, et al. showed that the observed overall cell efficiency decreased
by 40 % when the thickness of the TiO2 capping layer was increased from 2.0 nm to
4.9 nm [18].

To demonstrate the effect of capping layer thickness, Mie theory [19] can be used
to calculate the optical properties of a spherical nanoparticle with a 20 nm radius silver
core and a TiO2 shell of varying thickness (Fig. 3.3). The absorption efficiency of the
bare silver particle has a maximum value of nine, indicating that the absorption cross-
section of the particle is nine times larger than the area of the particle (Fig. 3.3a). To
put this in perspective, typical DSSC dye molecules have absorption cross-sections
which are smaller than their geometric cross-sections [20], generally of the order
of one Å2. The typical density of molecules on the surface of the titania is between
0.5 and 1 dye molecule per nm2 [21]. The effective cross-section of a dye molecule
adsorbed to the nanoparticle surface is approximately:

Ceff =
〈
|E|2

〉
Cdye, (3.3)

where ≈ ∼ indicates averaging over the surface of the nanoparticle and Cdye is the
absorption cross-section of an isolated dye molecule. The surface-average fields
for silver/titania nanoparticles are shown in Fig. 3.3b, it is clear that the surface-
averaged fields decrease dramatically with increased TiO2 thickness which, alongside
experimental observations [18], suggests that near-field enhancement is the primary
enhancement mechanism.

To demonstrate the increase in the effective dye cross-section due to the near-
field, Fig. 3.3d shows the result of Eq. (3.3) for a dye with a frequency independent
absorption cross-section of 0.01 nm2 multiplied by the number of dye molecules
on the surface Ndye (assuming one molecule per nm2). For the bare silver particle,
Ndye is 5,000 and the total cross-section of all of the dye molecules increases from
50 nm2 to 7,500 nm2, in line with the 150× increase predicted by the strong local-
field. The reduction in field enhancement with increasing TiO2 thickness is partially
compensated by the increase in the surface area of the nanoparticle, which increases
with radius. For a 12 nm layer of TiO2, Ndye is 13,000 and the total dye absorption
cross section increases from 130 nm2 to 2,500 nm2.

3.2.2 Calculating Solar Enhancement

Above, we note that the cross-section of a plasmonically enhanced dye is just the
product of the surface-averaged near-field on the plasmonically active component
and the non-enhanced dye cross-section. To calculate the solar-weighted dye en-
hancement factor, the product of the dye absorption spectrum, the solar spectrum
and the local-field strength must be integrated over a relevant fraction of the solar
spectrum:
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Fig. 3.3 Optical Response of a Ag nanosphere coated with a TiO2 capping layer of varying
thickness (0 nm – 12 nm). a The absorption efficiency (total particle cross-section divided by the
cross-sectional area of the silver core) showing the red-shift of the resonance. b The surface-
averaged electric field enhancement (measured 0.25 nm from the TiO2 surface). c The electric field
enhancement around the Ag/TiO2 structure showing that the field enhancement around the particle
is lower for increased TiO2 thickness. Light is polarized in the vertical direction and propagates left
to right in the figure. d The total cross-section of a monolayer of dyes absorbed to the structures in
(a) and (b). The cross-section of the isolated dye is 0.01 nm2

CEF =
4.1eV∫

1.5eV

D(π)S(π)
〈
|E(π)|2

〉
dπ. (3.4)

With D and S as the dye absorption cross-section and AM 1.5 G solar spectrum,
respectively, normalized according to:

4.1eV∫
1.5eV

f (π)dπ = 1. (3.5)

An example calculation of CEF is presented in Fig. 3.4. The normalized absorption
cross-section for the N3 dye was used for D, and the nanoparticle was a 30 nm
radius silver sphere coated with 10 nm of AgO and 2 nm of amorphous TiO2. The
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Fig. 3.4 Method for calculating solar integrated N3 dye absorption enhancement factor CEF.
The solar spectrum and N3 dye absorption spectra are normalized according to Eq. 3.5, and then
multiplied by the surface-average field, the result is then integrated (purple hatched area, bottom
panel). For this example (30 nm radius silver sphere coated with 10 nm of AgO and 2 nm amorphous
TiO2), CEF = 12.9

result is an integrated cross-section enhancement of CEF = 12.9. Silver is readily
oxidized at ambient conditions and thus this layer of oxide must be considered as it
changes the dielectric environment of the particle. Figure 3.5 shows the results of the
same analysis for a wide range of silver particle sizes and AgO coating thicknesses.
The AgO has a dielectric constant of 6.25, and so increasing the thickness causes a
dramatic red-shift in the plasmon resonance as is expected (Eq. 3.2). For example, for
the rAg = 5 nm case, when no AgO is present, the LSPR peaks at 366 nm, whereas for
20 nm of AgO it peaks at 550 nm. For a particle of this size, the field enhancement
drops off rapidly with increased oxide layer thickness. When the silver radius is
increased to 30 nm, this tunability causes the resonance to cross the maximum dye
absorption cross-section (around 400 nm), and the reduction in the field enhancement
is not as severe as in the small particle case. These factors combine to form a region
of optimum geometry when the silver radius is 30 nm and the oxide coating is about
10 nm. Although this enhances the dye absorption by a factor of almost 13, the
enhancement covers only a small fraction of the solar spectrum.

3.3 Enhancing the Solar Spectrum

A majority of the energy in the solar spectrum resides in the spectral range 300 nm–
1,750 nm. Capturing the largest possible fraction of this spectrum is essential for
any solar application. The tunability of the absorption efficiency of metal nanoparti-
cles with size, shape and composition is particularly important for dye-based cells;
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Fig. 3.5 Dye absorption enhancement factor as a function of silver sphere radius and AgO
thickness. The Ag/AgO particle has a constant 2 nm amorphous TiO2 coating. The N3 dye was
used in Eq. 3.4

especially considering the difficulty in developing strongly absorbing dyes approach-
ing and reaching into the near-infrared [22, 23]. In the following section, we will
discuss the properties of the LSPR in terms of nanoparticle composition, shape,
and size.

3.3.1 Metal Composition

The strength and wavelength position of the LSPR depends on the dielectric function
of the metal, which can be split into two terms:

λm(π) = 1 − π2
p

π(π + iγ )
+ λIB(π). (3.6)

The first term is the so-called ‘Drude’ contribution, which describes intraband
processes unique to metals. The Drude contribution is described by the density of
free electrons in the metal via the plasma frequency, πp = ((Ne2)/(meλ0))

1/2, where
N is the free electron density e is the charge on the electron, me is electron mass,
and λ0, the dielectric function of free space. The damping constant, γ , describes the
electron relaxation processes in the metal, which at room temperature is dominated
by electron-phonon scattering. The second term is the interband contribution, which
describes quasiparticle excitations from the occupied to unoccupied bands in the
metal. As mentioned previously, in metals such as silver, gold and copper, interband
transitions become allowed for frequencies above the band edge of the metal and in
these regions the LSPR is severely damped. Figure. 3.6a shows the regions where
interband transitions occur in these three metals, as well as aluminum.

The strength of interband transitions in the noble metals follows the trend Cu >

Au > Ag, and the band edge follows the inverse trend with Ag > Au > Cu. Because
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Fig. 3.6 Dielectric functions of plasmonics metals. a The imaginary part of the dielectric functions
of Al, Cu, Ag and Au with shaded sections indicating the presence of interband transitions. b The
energy flux AM 1.5 G solar spectrum (gray) overlayed with the regions where the metals have
good plasmonic properties. c The real part of the dielectric function. The dashed line indicates the
resonance condition for a sphere at -2

of these trends, copper is not a widely used plasmonic material. Conversely, both
silver and gold are both excellent plasmonic materials, with silver having slightly
lower loss ( iλi(π)), and gold having lower reactivity. In Fig. 3.6b, the spectral range
of the metals is considered: i.e. over what range of the solar spectrum can they be
expected to be strong absorbers.

The band structure of aluminum is such that the frequency of the band edge is
small (0.8 eV), and interband transitions occur both in the visible and the near in-
frared (NIR). However, there are no interband transitions in the 100–500 nm regime,
indicating that aluminum nanoparticles may be of some utility in the 300–400 nm
wavelength range that is only partially covered by silver. Because of interband tran-
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sitions, copper and gold are poor plasmonic materials in the wavelength range of
300–550 nm; silver is poor below about 350 nm. This suggests that a combination
of silver, gold, and aluminum particles of various sizes could allow for LSPRs from
the UV to the NIR whilst minimizing the interference of interband transitions.

In light of recent methods to cap metal nanoparticles with protective layers, it is
clear that silver is the optimum choice for plasmon enhanced DSSCs. Local surface
plasmon resonances can be excited on silver nanostructures over a majority of the
solar spectrum.

3.3.2 Shape

The variety of shapes available via recent wet chemistry synthetic methods is large
and includes spheres [24], dielectric core-metallic shell particles [25], rods [26–30],
cubes [31, 32], concave cubes [33], octahedra [31], hollow octahedra [34], rhombic
dodecahedra [35], disks [36, 37], triangular prisms [38] and hollow triangular prisms
[39] to name but a few. Of these myriad shapes, only a small fraction have been
incorporated into DSSC devices. Here we will discuss the general properties of these
shapes as they apply to DSSCs and review current progress in incorporating these
structures into DSSCs.

3.3.3 Polarization-Independent Resonances

Spheres, core-shell particles, and, to some extent, cubes exhibit polarization-
independent resonances because of their high symmetries. This is ideal for DSSCs, as
the particles can be readily combined with the semiconductor and deposited onto the
conducting oxide with no regard for the orientation of the nanoparticles in the struc-
ture. Lower symmetry structures, such as rods and prisms, have polarization- and
orientation- dependent resonances and care must be taken to optimize the deposition
mechanics to ensure that the long axis of the structures is perpendicular to the incident
sunlight. The inclusion of spherical metal nanoparticles has so far been the dominant
method to investigate the effect of plasmons on the photovoltage and photocurrent
of DSSCs. A summary of DSSC device setups presented in the literature is shown
in Fig. 3.7.

The first example of plasmonically enhanced DSSCs in the literature was in 1997,
where it was shown that 0.3 and 1 % by volume of silver spheres could increase the
photocurrent in a Rose bengal dye-sensitized TiO2 cell. Here the majority of the
photocurrent comes from direct electron injection from the silver into the TiO2 (type
A cell, Fig. 3.7) [40]. The same cell showed a decrease in photocurrent upon inclusion
of 3 % by volume gold spheres. This was explained by noting that a majority of the
photocurrent in the silver case arose from UV in the irradiation source, where gold
exhibits interband transitions.
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Dye

TiO2

FTO

MO2

Ag/Au

(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 3.7 Summary of plasmonically enhanced DSSC geometries that have been investigated in the
literature. Each geometry is discussed in detail on the subsequent few pages

Another type A cell was the first to report that there exists an optimum concen-
tration of metal inclusions in the DSSCs; they showed that a silver island film with
an effective thickness of 3.3 nm gave enhanced photocurrent compared to an island
film with effective thickness of 6.0 nm [41]. They attribute the difference in cell per-
formance to fluctuations in the surface states of the TiO2 and increased trapping of
carriers with increased silver concentration. Many variations on the type A style cells
have been made, with many of them relying purely on direct electron injection from
the nanoparticle to the TiO2; from here we will focus on dye-mediated absorption
processes.

As mentioned earlier, silver nanoparticles are susceptible to oxidation and thus
need to be protected to maintain their plasmonic properties. The formation of an
oxide layer has been shown to affect the metal dielectric response at the interface
[42, 43]. Type B cells were made using atomic layer deposition (ALD) to coat 36 nm
silver nanoparticles in a layer of either amorphous or anatase TiO2 in order to study
the effect of the TiO2 thickness on the enhancement of dye absorption [18]. Anatase
is TiO2’s most conductive crystalline form, but it requires a minimum thickness
of 6.5 nm to prevent oxidation of coated silver particles. Amorphous TiO2 can be
deposited at lower thicknesses but the cells degrade over time. Depositing 7.7 nm
of TiO2 was shown to fully protect the nanoparticles [18]. However the near-field
coupling decays with distance from the surface, resulting in low plasmon-enhanced
dye absorption at 7.7 nm (see Fig. 3.3). Adding a more chemically robust intermediary
between the metal and the semiconductor can decrease the thickness of the TiO2
coating needed. Depositing 0.2 nm of Al2O3 (sapphire) was shown to reduce the
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necessary TiO2 thickness to ∪5 nm [16], and allowing for higher coupling, and
absorption, by the dyes.

A comparison of the position of unprotected gold particles (type C, D and E)
showed that cells of type C exhibit twice the photocurrent of a metal-free cell, and
types D and E have reduced photocurrent compared to metal-free cells [44].

Du et al. [45] note that the size of the TiO2 particles affects the electron injection
dynamics in a Au sphere/TiO2 type D system, with larger TiO2 particles reducing
recombination due to a longer diffusion length. Additionally, charging of the Ag in
a Ag/TiO2 cell was shown to prevent recombination of the charge carriers due to a
large screening effect by the metal [46]. But the same effect also doubles the time
for the redox mediator to regenerate the dye [46].

Recent advances in growing the TiO2 directly on the metal nanoparticles using
wet chemistry has allowed for the creation of type F cells [47]. It was found that as
little as 0.1 wt. % of core-shell particles improved efficiency from 7.8 to 9 % while
decreasing the thickness of the cell by 25 %. This decreased carrier distance is one
of the main appeals of incorporating plasmonic nanoparticles into photovoltaics.

Choi et al. performed measurements on DSSCs including both TiO2 and SiO2
coated Au nanospheres (type D) and noted that the TiO2 coated particles increased
the overall cell efficiency from 9.29 % without Au to 9.78 % with Au, whilst the SiO2
coated Au increased the cell efficiency to 10.21 % [17]. The difference was caused by
charge accumulation on the Au cores in the Au/TiO2 case, which modifies the Fermi
level of the composite film [48]. This did not, however, explain the observation that
the Au/SiO2 only increases the cell efficiency for particle loadings of less than 0.70
wt. %, above which the cell efficiency decreases.

The optimum particle loading that has been reported by reference [17] can be
explained by noting that a majority of light absorption in a metal loaded cell occurs
at the top of the cell, even for modest particle loadings. Take for example a 1 µm
thick cell loaded with 20 nm radius silver spheres. The cross-section of such spheres
is 0.013 µm2. Beer’s law relates the absorption cross-section, optical path length (l)
and number density of absorbers (N) to the transmission through the cell via T =
exp(−Cabsl N ). For a 1 µm thick cell, a particle loading of N = 400 µm−3 is required
to achieve an optical density ( 1-T ) of 99 %. There are therefore 7.4 layers of silver
spheres in the cell with an areal density of 55 particles per square micron. The top
layer of spheres absorbs 49 % of the initial intensity of the incident light, which
is approximately 5 × 105 photons µm−2s−1, with each subsequent layer absorbing
49 % of the remaining light, i.e. the first layer of spheres absorbs 49 % of the photons,
and the remaining 6.4 layers absorb the remaining 50 %. It is easy to imagine that
the top layer of particles excites many more dye molecules than the redox couple can
reduce per second, resulting in lost photon absorption opportunities. This highlights
the importance of varying the density of the particle loading through the thickness
of the cell. It is vital that no single layer absorbs dramatically more photons than
the other layers, and therefore the particle positions in the cell must be optimized to
follow an exponential loading density that minimizes bleaching.
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3.3.4 Dielectric Core—Metal Shell Particles

So far we have only discussed essentially spherical metal particles with various
dielectric coatings. In order to cover a large fraction of the solar spectrum, geometries
that allow for large shifts in the LSPR wavelength must be used. One example of this
is the dielectric core—metal shell geometry. The polarizability of this geometry is
given by:

ω = V
(λm − λd)(λc + 2λm) + f (λc − λm)(λd + 2λm)

(λm + 2λd)(λc + 2λm) + 2 f (λm − λd)(λc − 2λm)
, (3.7)

where λc, λm and λd are the dielectric functions of the core, metal and surrounding
dielectric respectively. The fill fraction, f, is the fraction of the volume occupied by
the core: f = (rc/rm)3. As the fraction approaches one, the resonance condition in
terms of λm moves to more negative values, and the LSPR red-shifts.

SiO2-core-silver-shell, type G, particles have been introduced into DSSCs, where
they show a broad absorption band from approximately 450–700 nm [49]. Incorpo-
rating 22 vol. % of these core-shell particles resulted in an increase in overall cell
efficiency from 2.7 to over 4 %. The authors note that the core-shell particles reduce
the dye available surface area by 21 % and dye adsorption by the same amount. With
this considered, the near-field enhancement of dye absorption for the 22 vol. % is
over 1.8 [49]. Upon inclusion of 33 vol. % core-shell particles, the efficiency of the
cell decreased, possibly due to a reduction in the dye accessible surface area [49].

3.3.5 Polarization-Dependent Resonances in Anisotropic Particles

Asymmetry in the geometry of a nanoparticle gives rise to polarization-dependent
resonances. These can vary from highly anisotropic particles, such as prisms and
rods, to more isotropic ones, like cubes and dodecahedra. As a simple example,
let us consider a rod, which typically has two distinct resonances. The longitudinal
resonance occurs when the polarization of light is parallel to the long axis of the
particle, and is always red of the sphere resonance. The transverse resonance occurs
when the polarization is parallel to the short axis and occurs at approximately the
same frequency as the sphere resonance. The polarizability of a rod-like prolate-
spheroid is given by:

ω = V
λm − λd

λd + L(λm − λd)
, (3.8)

where L is a depolarization factor that takes the form:

LLong = 1 − e2

e2

(
−1 + 1

2e
ln

1 + e

1 − e

)
, (3.9)
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for the longitudinal resonance and

LTrans = 1 − LLong
2

, (3.10)

for the transverse resonance. The eccentricity, e, of the spheroid is:

e =
√

1 − (b2/a2), (3.11)

where a and b are the radii of the long and short axes, respectively.
Hägglund et al. directly showed increased carrier generation rates in dyes from

polarization-dependent LSPR’s in rod-like gold particles [50]. This was done by
lithographically patterning an array of particles onto a TiO2 film (type H, note the
green layer, Al2O3, separating the gold from the TiO2, thereby preventing modifica-
tion of the Fermi level and direct electron injection). By changing the polarization
of incident light, one can excite two different resonances in the particle, allowing for
discrimination of the LSPR enhancement. Photocurrent enhancement shows a strong
dependence on the polarization of incident light; both axes show positive enhance-
ment with the transverse resonance showing a more pronounced effect due to better
overlap with the dye absorption spectrum. This led the authors to conclude that the
dye injection rate is increased by the LSPR.

3.3.6 Other Geometries

Most methods of incorporating plasmons into DSSCs involve discrete nanoparticles.
In light of advances in optical trapping in p–n junction cells, it is worth noting work
has been done on incorporating nano-patterned silver back reflectors into solid-state-
DSSCs [51]. The intent of the study was to illustrate that even cells with strongly
absorbing dyes, such as the state-of-the-art Z907-Ru dye, can be enhanced.

3.4 Challenges and Outlook

This young field has seen a variety of creative geometries and materials advances
needed to increase efficiencies and decrease the materials used in dye-sensitized
solar cells. Some have simply involved changing the placement of the plasmonic
nanoparticles relative to the mesoporous oxide carrier. Others involve more intricate
fabrication, coating, and particle geometries chosen to minimize loss and scattering
while maximizing absorbance and thus enhancement.

Because the solar spectrum spans a broad wavelength range, it is unlikely that a
single size or shape of nanoparticle will offer optimal broadband absorption. Thus,
creative combinations of sizes, shapes, and nanoparticle compositions are likely to
give the best absorption enhancements. In thin film silicon cells, ∪95% absorption
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efficiencies have been reached with a combination of Al substrate and Au nanopar-
ticles [52]. Additionally, nucleated silver nanoparticles showed a large increase in
scattering resulting in a ∪5 % increase in photocurrent [53]. The nucleated large
particles were essentially 200 nm Ag particles covered in many smaller 20–40 nm
particles. The small particles scatter red light and the large particles scatter blue light,
maximizing the total scattered radiation into the cell. Though this study was formu-
lated for thin film silicon cells, similar principles with different particles involving
absorption and field concentration could be incorporated into DSSCs.

To elucidate some of possibilities for local field enhancement offered by various
nanoparticle shapes (Fig. 3.8), we have calculated the optical response of silver cubes,
prisms and rods within the discrete dipole approximation (See [54, 55] for details
and [56] for an overview). For simplicity, the particles were not coated in a capping
layer in the simulation. The cubes have a rounding on the corners of 10 % of the
edge length, which is comparable to what is seen experimentally. They offer strong
enhancement in the UV for particles with an edge length of less than 60 nm, with
the 40 nm edge length cubes offering field enhancements above 200. The prisms also
have a radius of curvature on the corners of 10 % of the edge length. Increasing the
aspect ratio of the prism (edge length: thickness) rapidly red-shifts the resonance and
causes a large increase in the field enhancement from approximately 1,000 for 5:1
prisms, to 4,500 for 15:1 and larger. The enhancement for rods is even more dramatic,
reaching nearly 20,000 for 8:1 (length:width) aspect ratio rods. It is clear from these
brief calculations that massively-enhanced fields can be observed across the entire
solar spectrum by modifying the geometry of the nanoparticles in a system.

3.4.1 Ensembles

Thus far we have only discussed nanoparticle attributes on a single particle level.
However, nanoparticles are usually implemented in ensembles where proximity al-
lows for optical-mode coupling. The coupling of these modes leads to very large field
enhancement in the gaps between particles. Many applications have arisen because
of this strong enhancement, particularly in the field of surface enhanced Raman scat-
tering (SERS), where the Raman scattering scales with the fourth power of the local
electric field (

〈
E4/E4

0

〉
). This has resulted in reports of enhancement factors of up

to 1010 [57, 58]. As of yet, there have been no reports of particle dimers or aggre-
gates being used systematically to enhance absorption in DSSCs. To demonstrate
the possible increase in dye absorption provided by dimerized particle structures, we
have calculated the electric field enhancement around a dimer of 20 nm radius silver
spheres with a 2 nm TiO2 capping layer. Even with the presence of the capping layer,
the field enhancement can be increased from 160 in the case where the particles
are separated by 5 nm, to 360 when they are separated by 1 nm. The approximate
factor of two change in enhancement due to the gap is much smaller than arises
in Raman scattering, which means that dimers with small gaps are less important
in solar energy than in Raman, however the results in Fig. 3.9 suggest that dimer
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Fig. 3.8 Surface-averaged electric fields for a variety of silver nanoparticles. The bottom panel in
gray is the AM 1.5G solar spectrum

Fig. 3.9 The effect of
interparticle gap on the
surface-averaged fields. The
system is a dimer of 20 nm
radius silver spheres coated
with 2 nm of TiO2. A 0.5 nm
layer of dye is included in
the images to scale, but was
not present in the simulation,
which was performed using
generalized Mie theory [59]

structures and other small aggregates can be useful if easily fabricated. The result for
1 nm separation probably represents a limit on how small the interparticle gap can
be assuming that the TiO2 is uniformly covered by dye molecules. The possibility
arises in this case that the redox couple may not have access to molecules in the con-
fined region between particles, resulting in lost photocurrent. The high enhancement
in nanoparticle gaps is markedly more pronounced with anisotropic structures, thus
similar enhancement could be gained with larger gaps that still allow for diffusion
of the redox electrolyte.
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3.4.2 Excited State Lifetime of Plasmons

The utility of plasmonically enhanced DSSCs relies on the premise that electron
injection from the dye to the TiO2 occurs on a timescale that is more rapid than the
lifetime of the plasmon. There have been many studies on electron injection dynamics
(see [60] for a review), with many reports suggesting that the charge injection occurs
on the sub-100 fs timescale. However, there have been reports of injection half-times
ranging from sub-3 fs [61] to 200 ps [62]. For small nanoparticles (in the quasi-static
limit, where there is minimal scattering), the excited state lifetime of a LSPR is
related to the full-width at half-maximum (∂) via

T = 2�/∂, (3.12)

the minimum non-radiative contribution to ∂ depends on the frequency of the LSPR
and is given by:

∂(π) = 2λi(π)

(
dλr(π)

dπ

)−1

(3.13)

In Eq. 3.13, λr and λi are the real and imaginary parts of the dielectric function
of the metal. Dephasing times calculated using Eqs. 3.12 and 3.13 for silver and
gold are shown in Fig. 3.10. For particles that cannot be considered in the quasi-
static regime (for spheres, a radius of about 30 nm) there is a contribution to ∂ from
radiative effects, such as scattering, which reduces the lifetime of the state. There
are several noteworthy features of Fig. 3.10, the first is that the lifetime of LSPRs on
silver particles is at least twice that of gold across all frequencies, and the second is
that interband transitions result in very low lifetimes at high frequencies.

There have also been reports that the injection dynamics depend on the nature of
the excited state of the dye, with singlet injection dynamics on the N719 dye occurring
on time scales almost two orders of magnitude faster than triplet injection [63]. In
this case, a combination of finely tuning the plasmon resonance of nanoparticles and
dye engineering could assist in promoting singlet excitation to aid electron injection
dynamics.

3.4.3 Metal Losses

It is well known that metal nanoparticles get hot under irradiation, a characteristic
that has resulted in their use in fields as diverse as tumor therapy [64]. The rate of
energy loss inside a metal particle (due to scattering of the electrons on phonons)
is the product of the imaginary part of the dielectric constant of the metal and the
volume integral of the internal electric field strength (see [65, Sect. 80]):

dq

dt
= π

2
λi(π)

∫
E(π)2dV (3.14)
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Fig. 3.10 Lifetime of plasmonic states. a A typical plasmon resonance showing the strength of
the electric field and the full width at half maximum of the resonance. b The Fourier transform of
(a), showing the decay of the field strength with time. The dephasing time of 4.38 fs is related to
the FWHM of 0.3 eV via Eq. 3.12. c Dephasing times of silver and gold calculated using Eqs. 3.12
and 3.13.

This loss poses the immediate problem that the larger the strength of the internal
field (which to a first approximation is proportional to the surface field) the larger the
energy loss to the metal. Additionally, as particle size increases, the ratio of volume
to surface area increases, indicating that a larger fraction of the field will reside in
the metal than at the surface, compounding energy loss. There are two reasonably
straightforward remedies to this issue. The first is to keep the volume of individual
particles reasonably low. The second is to observe that the dye molecules obey the
same expression as the metal, except the internal field of the dye molecule is entirely
due to the surface field of the particle, and the obvious solution becomes to increase
the imaginary part of the dielectric constant of the dye to compensate for the lack of
field strength. This idea has been investigated [66], and it was noted that, although the
relationship between loss in the dye versus loss in the metal is geometry-dependent,
if the imaginary part of the dielectric function of the dye is above two, the fraction
of energy loss to the dye can approach 90 % of the total energy loss [66]. Despite
these results, dyes with low absorption cross sections (such as the N3 dye) have
been shown to be enhanced by metal nanoparticle inclusions. Some progress has
been made using hybrid electrodynamics/quantum mechanics techniques to study
plasmonically enhanced dye absorption [67], but as of yet, the dynamics of energy
transfer between nanoparticles and dye molecules remains largely unexplored.
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3.5 Conclusion

Plasmonic enhancement of dye sensitized solar cells is a young field with a promising
future; only a handful of cells have been built and tested, with those incorporating
only a small selection of the available dyes and nanoparticle shapes. We have shown
that there is a bright future for enhancing dye absorption across the entire solar
spectrum. Coupled with research into the energetics and dynamics of particle-dye
interactions, we expect that plasmon-enhanced dye-sensitized solar cells will help to
reduce the cost and improve the efficiency of next generation solar cells.
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Chapter 4
Silicon Plasmonics

Ilya Goykhman, Boris Desiatov and Uriel Levy

Abstract The implementation of plasmonic components using silicon platform
holds a great promise for the development of advanced nanoscale on-chip photonic
functionalities. The combination of high optical mode confinement offered by plas-
monics together with mature and well established CMOS technology makes the field
of silicon plasmonics a promising technological solution for intra-chip integration
of nanoscale optical and opto-electronic devices operating side by side with mod-
ern electronics. The great opportunity of the silicon plasmonic platform resides in
bridging the dimensionality gap between the photonic and electronic components
on-chip, while moderating the loss-confinement limitation of plasmonic structures.
In this section we refer to the fundamental problems of silicon-plasmonic integra-
tion and review the current state of the art demonstrations in the field with special
emphasis on the advantages of using plasmonics for the purpose of constructing of
novel nanoscale devices such as modern plasmonic modulators, concentrators and
photodetectors for on-chip applications.

Keywords Silicon · Plasmonics · Integrated devices · Nanotechnology

4.1 Introduction

In the past few decades we have been witnessing a revolution in electronics, in
which computation capacity has been increasing very rapidly, following Moore’s
law that was originally declared over 45 years ago. However, the improvement in
performance of VLSI circuits is now saturating, primarily because of fundamental
limitations in device scaling, signal delay, signal distortion and heat dissipation. In
order to allow further growth in data rates, there is an urgent need for a paradigm
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shift from present integrated circuit technology towards what is coined “post CMOS
era”. The need for future emerging technologies that could play a role in shaping
this post CMOS era is now well recognized by the electronics industry. For example,
the report of the international technology roadmap for semiconductors indicates the
following: “Proposed post-CMOS replacement devices are very different from their
CMOS counterparts, and often pass computational state variables (or tokens) other
than charge. Alternative state variables include collective or single spin, excitonic,
plasmonic, photonic,… ” [1].

Among the variety of potential technological solutions, photonics seems to be a
promising candidate since it offers advantages in bandwidth, delay, cross-talk and
power. Indeed, optics is already being used for long range communication, and is now
being considered for shorter range applications including board-to-board and even
chip-to-chip level [2]. In particular, the challenge of constructing short range photon-
ics based communication can be mitigated by the use of the technology of silicon pho-
tonics. Over the years, large variety of silicon photonics based devices were demon-
strated, including waveguides, splitters, combiners, filters, modulators, switches, and
more. The wealth of silicon photonics devices and components, together with the
mature CMOS compatible fabrication technology makes the field of silicon photon-
ics an excellent candidate for being integrated in short range communication systems
already in the very near future.

Side by side with the great promise of silicon photonics, it has also several lim-
itations one needs to overcome in order to facilitate on chip integration of photonic
and electronic systems. In particular, a major concern is the dimensionality mismatch
between silicon photonics based devices and electronics components. A fundamental
reason for this mismatch is the concept of diffraction limit. While electronic struc-
tures are nowadays much below 100 nm in size and are not limited by the wavelength
of electron, being orders of magnitude smaller, the photonic mode size in dielectric
structures cannot be scaled down much below the wavelength of light in the material.
Indeed, typical dimensions of modern silicon waveguides are in the order of 500 nm
wide and about 250 nm thick. This size mismatch between photonics and electron-
ics is a major barrier, preventing the integration of silicon photonic devices such as
waveguides, optical switches and optical modulators with electronic components on
the same chip.

Recent progress in plasmonics may allow circumventing this obstacle. Plasmonic
modes (either surface plasmon polaritons, or localized plasmons) can be confined
at the nanoscale owing to the possibility of having short effective wavelength (in
the U.V and even in the X-ray) at optical frequencies. An example for high mode
confinement is the use of metal-insulator-metal (MIM) structures, which does not
exhibit a cutoff for the fundamental mode. Therefore, by reducing the width of the
insulator section high mode confinement is obtained because the metal does not allow
the mode to extend much beyond its boundary with the insulator. The combination
of nanoscale confinement and high frequencies makes the field of plasmonics an
attractive candidate for “bridging the gap” between photonic components and modern
electronics.
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While plasmonics may become an attractive platform for supporting the operation
of CMOS electronics, it is not expected to fully replace the silicon integrated circuits
in the foreseeable future. The maturity, reliability, and wealth of electronic devices
as well as the massive accumulated know-how in silicon science and technology—
these are all clear indicators that silicon is here to stay, at least to some degree.
Therefore, a growing effort is recently devoted for the development of a new platform,
combining the concepts of silicon photonics with the advantages offered by the use
of plasmonics. This hybrid approach, now coined as “silicon plasmonics” is the focus
of this chapter. Along the text we review the recent achievements in the field and
provide a forecast for future progress.

4.2 Silicon Plasmonics Components

4.2.1 Motivation

A modern optoelectronic circuit consists of passive and active devices (e.g. opti-
cal on chip waveguides or fibers, splitters, combiners, couplers, filters, modulators,
switches, light sources and detectors). The great challenge of the silicon plasmonic
platform is to facilitate the realization and the integration of such components on a
chip, while mitigating challenges as loss and nanoscale confinement. In the following
sub sections we review the current state of the art in this field with special emphasis
on our work at the Hebrew University of Jerusalem.

4.2.2 Passive Devices

A major passive building block in an on chip optoelectronic circuit is obviously
the optical waveguide linking between the various on chip components. Over the
years, there has been a tremendous progress in the field of silicon based waveguides.
It is now possible to routinely demonstrate light guiding such silicon waveguides
having a submicron cross sectional dimensions. Typical propagation loss values are
in the range of 2 dB/cm although it is possible to reduce loss even further e.g. by
defining a waveguide structure by local oxidation of silicon (LOCOS) rather than
using aggressive reactive ion etching (RIE) [3, 4]. While propagation loss of silicon
waveguides is no longer a major concern, mode size is still far too large compared
with typical dimensions of on chip electronic components. To further reduce the
mode size, plasmonic guiding should be considered. Naively, one would think of
constructing a silicon plasmonic waveguide by depositing a metal layer on top of
a silicon waveguide. Unfortunately such a structure does not provide a satisfactory
solution. Figure 4.1 (top) shows the dispersion diagram of an SPP mode propagating
along a single silver-silicon interface, whereas Fig. 4.1 (bottom) shows corresponding



152 I. Goykhman et al.

Fig. 4.1 Top Dispersion diagram, bottom mode size and propagation length of a single interface
silicon-Ag plasmonic waveguide. Mode size is defined as the distance in the transverse direction
(into the silicon) in which the intensity decays to 1/e compared with its value on the interface.
Propagation length is defined as the distance along the propagation direction in which the intensity
decays to 1/e of its original value

penetration depth into the silicon layer and the propagation length as a function of the
excitation wavelength. As can be seen, in the case of high index dielectric (e.g. silicon)
the propagation length of the SPP mode at telecom wavelengths is only few microns.
At the same time, the mode size still extends few hundreds of nanometers into the
silicon. This is due to the fact that in telecom regime the operation frequencies are
significantly lower than the plasma frequency of electrons in the metal, and therefore
the dispersion curve the SPP mode at this spectral range is very close to the silicon
light line, thus offering very little advantage in terms of mode confinement.

According to data presented in Fig. 4.1, the challenge of deep nanoscale con-
finement cannot be achieved by constructing a single interface of silicon and metal.
Indeed, it is possible to further reduce the mode size by using a symmetric double
interface structure in which a thin layer of silicon is sandwiched between two layers
of metal. Yet, while providing high confinement, the propagation loss of this struc-
ture is even worse than its single interface counterpart. Although the fundamental
mode of such structure does not exhibit a cut off [5, 6], ohmic loss plays a major role
due to the increased interaction of the mode with the metal. Therefore, such struc-
tures can be considered only for very short propagation length, with the goal of deep
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Fig. 4.2 a Schematic representation of nano-tip focusing device, with metal surrounding the silicon
tip and the calculated electric field intensity distribution in the device. The confinement of energy at
the apex of the silicon tip is clearly evident. b 3D representation of the near-field signal measurement
results, showing strong field enhancement at the apex of the tip

subwavelength confinement of electromagnetic energy distribution. Applications of
these devices are primarily in the area of enhancing light matter interactions, e.g.
enhancing non-linearities, spontaneous emission and detection of light via the mech-
anism of enhancement in Purcell factor. Very recently, such high mode confinement
in a silicon tip surrounded by metal was demonstrated by Desiatov et al. [7]. In this
work, light was coupled from a silicon waveguide into a metal-silicon-metal structure
where the silicon was tapered down to about 20 nm in size. A schematic drawing of
the device, together with a full wave simulation showing the field enhancement at
the apex of the tip is presented in Fig. 4.2. Using a near field scanning optical micro-
scope (NSOM), the authors demonstrated the confinement of plasmons excited at
the wavelength of 1.55 μm into dimensions smaller than 50 nm, i.e. more than 30
times smaller than the excitation wavelength.

While the direct interface between metal and silicon does not allow surface plas-
mons to propagate a substantial distance of over few microns before decaying, prop-
agation length can be significantly enhanced by placing a thin layer of low index
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Fig. 4.3 Calculated propagation length as a function of the oxide thickness in a layered structure
consisting of silver-silicon dioxide-silicon

dielectric material in between the metal and the high index dielectric (e.g. silicon).
This way, the photonic mode in the high index dielectric and the plasmonic mode
resides at the metal-low index dielectric interface are coupled, forming a hybrid mode
which is mostly confined at the thin low index layer. This approach, now known as the
“hybrid waveguide”, was first proposed by Oulton et al. [8] and later demonstrated for
guiding and nanolasing in a Ag-MgF2-CdS platform [9]. Recently, several structures
consisting of metal-oxide-silicon were demonstrated [10–12]. Varieties of config-
urations with different oxide thickness as well as several metals, including CMOS
compatible metals (e.g. Cu and Al) were investigated. Similar to other plasmonic
structures, typical trade-off between high confinement of the hybrid mode and the
unavoidable propagation loss is observed in these devices. Figure 4.3 shows the cal-
culated propagation loss of a strip silver-oxide-silicon waveguide as a function of
the oxide layer thickness. As expected, a thinner oxide spacer which provides higher
confinement of the electromagnetic mode gives rise to enhanced interaction of elec-
tromagnetic field with the metal resulting in a lower propagation length. Therefore,
one can control the loss and the confinement by tuning the oxide layer thickness. This
capability to compromise between nanoscale confinement and low loss characteristic
makes the hybrid structure an attractive tool for future design of dense opto-electronic
circuitry on-chip. In addition, owing to the presence of low index spacer layer in the
hybrid configuration, the propagation loss can be also compensated by introducing
a gain medium in the low index material see e.g. [13].

To date, the longest propagation length of a hybrid silicon plasmonic waveguide
was demonstrated by Goykhman et al. [14], where a self aligned approach for the
fabrication of hybrid waveguide based on the LOCOS technique was demonstrated.
The fabrication process is depicted in Fig. 4.4. Starting with silicon on insulator
(SOI) substrate consisting of 360 nm-thick crystalline silicon layer on top of a 2μm
thick buried oxide, a 100 nm thick silicon nitride layer (SiN) was deposited by low-
pressure chemical vapor deposition (LPCVD). Next, the mask defining the optical
structure consisting of the a hybrid plasmonic waveguide, the input/output photonic
waveguides and a 1μm length tapered couplers for adiabatic conversion between the
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Fig. 4.4 Fabrication process flow of the locally-oxidized hybrid plasmonic waveguide. a Planar
substrate; b Nitride layer deposition; c Nitride patterning; d Local oxidation; e Nitride strip; f
Formation of thin oxide gap and metal deposition. Reprinted with permission from [14]. Copyright
2010 American Institute of Physics

photonic and the hybrid mode was patterned in protective SiN layer using standard
electron-beam lithography followed by inductively coupled reactive ion etching. To
transfer the defined pattern into the silicon, the chip was oxidized where the nitride
layer serves as a mask preventing the oxygen diffusion. After local oxidation, the SiN
mask was etched out and a 75 nm thick silicon oxide was thermally grown to serve as
low index spacer between the silicon waveguide and the metal. Finally, after second
lithographic step of opening a metallization window, a 50 nm-thick gold layer was
deposited onto the chip followed by a lift-off process to lay down the metallic strip
of the hybrid plasmonic structure. It should be noted, that the metal surface is self-
aligned with respect to the thin oxide layer and the silicon waveguide underneath,
because the hybrid region is isolated and separated from the rest of the structure by
thick oxide spacers defined with the LOCOS process.

A scanning-electron microscope (SEM) micrograph of this hybrid plasmonic
waveguide prior the metal deposition, is shown in Fig. 4.5a. The structure consists of
a silicon rib waveguide (310 nm width, 325 nm height) with a thin oxide gap of 75 nm.
The height of the rib is 150 nm. A calculated mode profile of the device is shown in
Fig. 4.5b. According to the simulation, the effective index of the hybrid mode and its
propagation loss parameter were found to be 2.58 and 102 cm−1 respectively. The
reported measured propagation length was very similar, 105±5 cm−1. Additionally,
the coupling loss between the silicon photonic waveguide and the hybrid waveguide
was found to be 1.7 ± 0.2dB.
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Fig. 4.5 a SEM image of the hybrid plasmonic structure with highlighted different material layers.
b Electromagnetic simulation showing the intensity profile of the mode in the hybrid plasmonic
waveguide. Reprinted with permission from [14]. Copyright 2010 American Institute of Physics

In addition to its application for plasmonic guiding, the hybrid approach can be
used for the construction of hybrid plasmonic-photonic passive devices such as cou-
plers, splitters and filters [15–19]. Very recently, this platform was also used for the
demonstration of a micro ring resonator with a very small radius of 1–2μm, having Q
factor of ∼275 [20]. While significant progress has been demonstrated in the design
and the experimental demonstration of silicon plasmonic passive devices, there is
still a room for further improvement. Advanced designs should be implemented such
that trade off between confinement and loss will be optimized depending on the spe-
cific application. This will provide on chip system designers with a complete toolkit
of passive components to choose from.

4.2.3 Active Devices

In parallel with the growing work on passive devices, we are experiencing a substan-
tial progress in the field of active silicon plasmonic devices. As mentioned earlier,
the major active devices of interest include lasers, modulators and detectors. The
plasmonic laser (SPASER) attracts significant research efforts starting from the pio-
neering work of Bergman and Stockman [21]. Unfortunately, as of this date there
is no clear path towards the construction of silicon based SPASERS. Not only the
demonstration of SPASERS and other nano lasers is still challenging, primarily owing
to high ohmic loss in the metal [22], selecting silicon which is a bad gain material
by itself further jeopardizing this effort. This is because of the indirect energy band
of silicon, resulting relatively low radiation recombination rate compared with non
radiative processes.

While the realization of a silicon plasmonic laser seems to be out of reach, at least
in the near future, there has been a significant progress towards the realization of the
two other active plasmonic devices, namely silicon plasmonic modulators (SPMs)
and silicon plasmonic detectors (SPDs). These last two devices are the focus of the
following sections.
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4.2.3.1 Silicon Plasmonic Modulators

Similarly to their silicon photonics counterparts, advanced SPMs need to satisfy a
long list of features, such as low power consumption (typically measured as energy
per bit), high rate, high extinction ratio, relatively low loss, small foot print, linear
transfer function and more. However, unlike silicon photonic modulators, where
the required phase modulation can be achieved over a long propagation distance
(typically few millimeters, [23–26]), or alternatively via the use of resonators with
decent Q factors [27–32], the SPMs cannot rely on accumulating phase over a large
distances owing to the large propagation loss of the optical signals. Moreover, to
support on chip communication functionalities, the foot print of such SPMs should
not go beyond few microns.

A step towards the realization of SPMs is the demonstration of the PlasMOStor
[33]. The PlasMOStor is based on field-effect modulation of plasmon waveguide
modes in a metal-oxide-semiconductor (MOS) geometry, which is very similar to that
of the hybrid silicon plasmonic waveguides discussed in the previous section. In the
PlasMOStor configuration, near-infrared optical transmission between a source and
a drain is controlled by a gate voltage that drives the device into accumulation mode.
Using the gate oxide as an optical channel, electro-optic modulation is achieved in
device volumes of half of a cubic wavelength. A schematic drawing of the device is
shown in Fig. 4.6.

Fig. 4.6 Schematic drawing of the PlasMOStor configuration. Reprinted with permission from
[33]. Copyright 2009 American Chemical Society
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The device consists of a silicon waveguide covered by a thin silicon dioxide
layer. A metal electrode is positioned on top of the oxide. Two modes (photonic and
plasmonic) are supported by the structure. By properly designing the dimensions
of the structure, the photonic mode can be brought to a near cut-off condition for
the wavelength of operation around 1550 nm. If no voltage is applied, both modes
propagate in the waveguide and can interfere destructively if the length of the device
is chosen such that both modes are in anti-phase at the output. Due to the destructive
interference, a small output signal is measured. Upon the application of voltage to the
gate, the photonic mode is brought to cut-off such that it can no longer interfere with
the plasmonic mode. As a result, higher output signal is obtained. Using this approach,
a substantial modulation was obtained with very low power consumption, in the
range of femtojoules per bit. Although high speed operation was not demonstrated,
the device has the potential for gigahertz modulation frequencies owing to its small
dimensions allowing the obtaining of small RC time constants.

While the PlasMOStor concept has the potential for becoming a viable candidate
as an SPM, there is still a long way to go before it can replace current technolo-
gies. First, on chip coupling schemes need to be employed in order to facilitate the
demonstration of a low loss device. Additionally, the coupling of signals to both
modes needs to be precisely controlled such that the extinction ratio of the device
will be high under varying operation conditions. Finally, in spite of the low power
consumption, heat issues related to generating power within a very small volume
need to be addressed.

Another approach for demonstrating SPM devices is by using the hybrid structure
of metal - oxide-silicon (MOS) and exploring accumulation or inversion operation
of this MOS capacitor for the realization of an electro-absorption SPM. This con-
cept was demonstrated by several authors [34–37]. For example, Kwong et al. [34]
demonstrated about 6 dB attenuation under the application of 7 V for a device length
of about 3μm. The demonstration by Leuthold et al. [36] is based on integrating
an active section consisting of a stack of silver (Ag), indium tin oxide (ITO), and
SiO2 layers into a silicon waveguide platform. This structure supports a strongly
confined asymmetric SPP in the 1.55μm telecommunication wavelength window.
The absorption coefficient of the SPP is modulated by applying a voltage between
the two silver electrodes, generating free carriers in the ITO layer. This configuration
is expected to operate at rates faster than 100 Gbit/s owing to the ultra small RC time
constant. Finally, SPM which is based on all optical modulation was demonstrated as
well [37]. In this work, a gold-silicon grating coupler is used to couple pump pulses
(800 fs pulse width, central wavelength around 775 nm). The pump signal generates
free carriers in the silicon which in turn modifies the effective refractive index of
the silicon. As a result, the coupling of a probe signal (in the spectral regime of
1300–1700 nm) into SPP mode on the gold-silicon interface can be controlled. The
authors demonstrate resonance shift larger than the resonance linewidth by using a
pump energy density of 2.2 mJ/cm2, with time response of about 100 ps, practically
limited by the recombination time of the free carriers in silicon. Time response can be
further enhanced by generating free carriers in the metal, as previously demonstrated
by Zheludev et al. [38].
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4.2.3.2 Silicon Plasmonic Detectors

At the end of each photonic/plasmonic communication link there is a need for a
detector which “converts” photons to electrons. While silicon detectors are widely
used in everyday life, they are not efficient for the detection of near-infrared signals
in the telecom regime. This is because the energy band gap of silicon is in the order
of 1.1 eV, whereas the energy of a photon in the telecom regime is only about 0.8 eV.
In other words, while the transparency of silicon at the telecom frequency band
allows its deployment as the material of choice for guiding, modulation and other
manipulations of light, its very same property prohibit silicon from being used as an
active absorbing material for detection of infrared optical signals. Over the years, the
silicon photonics industry developed approaches for circumventing this deficiency
by considering solutions such as the integration of germanium active layer with sili-
con platform [39–41], and fabrication of InGaAs/Si avalanche photodetectors using
wafer bonding technology [42, 43]. While these approaches provide a path towards
detection of light at the telecom wavelength regime, there is still a clear advantage in
developing monolithic CMOS compatible devices for the detection of light in silicon,
without the need to rely on other material systems. Recently, several approaches were
proposed and demonstrated along these lines including two-photon absorption [44,
45], insertion of midbandgap defect states into silicon lattice [46], using a polysil-
icon active layer [47] and cavity enhanced photocurrent generation [45, 47, 48].
Yet, another promising approach to detect infrared sub-bandgap optical radiation
in silicon is to employ the internal photoemission (IPE) process using a Schottky
barrier (SB) photodetector [49, 50]. In its simplest form, such a detector consists of
metal film on a lightly doped semiconductor (e.g. silicon) forming a Schottky contact
at metal-semiconductor interface with potential barrier εB and rectifying electrical
characteristics. Typically, the obtained Schottky barrier (εB ) is lower than the energy
bandgap of silicon [50], thus allowing detection of long-wavelength (infrared) pho-
tons via the internal photoemission process. More specifically, when optical radiation
below the bandgap is applied to the metal-silicon contact by top (trough the metal)
or back (through the semiconductor) illumination, the conduction electrons in the
metal absorb infrared photons with energy hλ exceeding the potential barrier at the
interface εB (see Fig. 4.7). Gaining sufficient energy, these excited (hot) electrons
are able to cross over the SB [50], sweep out the depletion region of the semiconduc-
tor and be collected as a photocurrent under reverse bias (photoconductive mode)
operation.

A fundamental deficiency of the conventional SB based photodetector is related
to the fact that the volume in which the photons interact with electrons in the metal
is very small, namely only a small fraction of the incident photons actually causes
photoemission. Clearly, there is a need to confine the optical power at the boundary
between the materials forming the Schottky contact, thereby increasing the interac-
tion of light with the metal in the vicinity of the interface where the photoemission
process takes place. This light localization could significantly improve the detection
capability of the system and potentially pave the way for device miniaturization and
realization of on-chip photodetectors on the nanoscale. As early as in 1970s the con-
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Fig. 4.7 Energy band
diagram of metal-
semiconductor Schot-
tky contact. The red
arrow corresponds to the
transition of a hot electron
from the vicinity of the
Fermi level in the metal to
the conduction band of the
semiconductor. Reprinted
with permission from [51].
Copyright 2011 American
Chemical Society Bh -
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cept of using SPPs on the metal-air interface for improving the efficiency of external
photoemission in photo-cathodes has been explored [52, 53] and recently, it had
been successfully applied to the enhancement of internal photoemission for infrared
photodetection in silicon-based plasmonic structures [54–57, 51].

Two major configurations are being developed in recent years. One is geared
towards the construction of photodetectors in guided mode configuration, where the
other relies on free space illumination. The efficiency of the latter configuration can
be enhanced by the use of a nanoantenna array in order to confine the electromagnetic
energy at the interface between the metal and the silicon, as was recently demon-
strated by a research group from Rice University [58]. By illuminating their structure
from the top in free space configurations, responsivity in the order of few nA/mW
for operation wavelength of 1.55μm was reported. Another option for improving the
efficiency of SB based photodetectors in free space configuration is by using the con-
cept of cavity enhanced photodetection, where light at the wavelength of resonance
travels several times across the Schottky interface [59].

Guided mode configuration, on the other hand, offers long interaction length
between the propagating SPP signal and the Schottky photodetector. As such, it can
provide higher efficiency because most of the signal is absorbed and excite hot elec-
trons, some of which can cross over the SB and be collected as a photocurrent. This
guided wave configuration in silicon plasmonic platform was first demonstration by
the group of Berini [56, 60]. Their device consists of a metal stripe on silicon form-
ing a Schottky contact thereon and supporting a surface plasmon polariton mode that
is strongly confined and localized to the metal–semiconductor interface. Detection
of optical radiation below the bandgap of silicon (at infrared wavelengths) occurs
through internal photoemission. Responsivities of 0.38 and 1.04 mA/W were mea-
sured at a wavelength of 1280 nm for gold and aluminum stripes on n-type silicon
respectively. A later work reported even higher responsivity by the use of metal
nanodisks embedded in the silicon [61].
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A different geometry was developed by our group at the Hebrew University [51].
Our approach is based on a self-aligned fabrication approach of local-oxidation of
silicon (LOCOS) on SOI substrate, where nanoscale waveguide structure is defined
by oxide spacers. Implementation of the LOCOS process provides compatibility
with standard CMOS technology and permits a precise control over the shape and
the dimensions of the waveguide [4]. Additionally, the LOCOS technique enables
the fabrication of low-loss bus photonic waveguide (ca. 0.3 dB/cm) and the detector
in the same process step, where the oxide spacers effectively define the area of metal-
silicon interface and thus allow avoiding lateral misalignment between the silicon
surface and the metal layer to form a Schottky contact.

Our device was fabricated by depositing a 100 nm of silicon nitride (SiN) on top
of a 340 nm-thick, silicon device layer which is separated from the handle wafer
by a 2μm-thick buried oxide. Next, the mask defining the optical and electrical
structures including the photonic bus waveguide, the detection region and the con-
tacts area were patterned into the protective SiN layer using standard electron-beam
lithography (EBL) followed by reactive ion etching (RIE). The defined pattern was
next transferred to the silicon layer by wet oxidation process where the nitride layer
serves as a mask preventing the oxygen diffusion. After oxidation the nitride mask
was removed by an additional RIE step. To make the Schottky plasmonic photode-
tector we firstly realized an ohmic contact to the silicon layer by evaporating an
aluminum pad and alloying the structure at 450 ◦C. Finally, a 50 nm-thick Au layer
was deposited onto the chip followed by a lift-off process to lay down the metallic
strip of the plasmonic structure to form a Schottky contact.

The cross sectional profile of the structures following the LOCOS process is
shown by an SEM image of the photonic waveguide prior to metallization (Fig. 4.8),
indicating waveguide dimensions of 310 nm width by 340 nm height. Such a structure
supports the fundamental TM polarized (out of plane) optical mode. A thin rib (60 nm
thickness) was kept to facilitate electrical contact to the silicon. According to Fig. 4.8,
the oxide spacers formed by the LOCOS process smooth the profile of the waveguide

Fig. 4.8 SEM micrographs of the photonic bus waveguide after local-oxidation process before the
metallization step and of Schottky contact. Reprinted with permission from [51]. Copyright 2011
American Chemical Society
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Fig. 4.9 a I-V curve in reverse bias for three different wavelength in the near infrared regime.
b Representative result of responsivity measurement for wavelength of 1.55μm. The current is
measured under reverse bias of 0.1 V as a function of optical power in the Schottky detector.
Reprinted with permission from [51]. Copyright 2011 American Chemical Society

and provide an electrical isolation between the regions of high electric field generated
at the sharp edges of metal and silicon, thereby minimizing the leakage current of the
device. Based on Fig. 4.9, we found the effective width of the detector to be 60 nm.

Using finite element mode solver (COMSOL) the modes in both the photonic and
the plasmonic waveguide were calculated. According to the simulation results the
effective refractive index of the photonic and plasmonic modes were found to be 2.29
and 3.25 + 0.02i respectively, indicating absorption loss of 0.7/μm in the plasmonic
waveguide. The length of the Schottky detector was chosen to be 30μm, practically
ensuring the absorption of the optical signal within the structure.

By measuring the I-V characteristics of the device for different temperatures the
barrier height (εB) and the effective Richardson constant (A∗∗) were found to be
εB = 0.315 V and A∗∗ = 32 A/cm2K2, very similar to the values presented in the
literature [52] for p-type silicon-Au Schottky contact.

The detection functionality of the device at different telecom wavelengths was
demonstrated by measuring the I-V characteristics of the Schottky diode at the pres-
ence of an optical signal. Figure 4.9a represents the measurement results of the Schot-
tky photodetector for optical signals at several wavelengths under constant incident
optical power. The observed spectral response reveals an increased responsivity for
shorter wavelengths. This is expected due to the enhanced quantum efficiency of
the internal photoemission process for energetic incident photons according to the
modified Fowler equation [61, 62]:

ηe = C
(h λ − εB)2

hλ

where ηe is the quantum efficiency of photoemission process (number of carriers that
contribute to the photocurrent per incident photon) and C is the photoemission coef-
ficient. The obtained voltage dependence of the current in reverse bias can be related
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to the combined effect of SB lowering due to the image force and the space-charge-
limited nature of the photocurrent [52]. Responsivity was extracted by measuring the
current across the Schottky contact under weak reverse bias of 0.1 V as a function of
the incident optical power. A representative measurement result at the wavelength
of 1.55μm is shown in Fig. 4.9b. Indeed, the measured photocurrent showed linear
dependence in the incident optical power. The obtained internal responsivity of the
device was found to be 0.25, 1.4 and 13.3 mA/W for optical wavelengths of 1.55, 1.47
and 1.31μm respectively. External responsivity was actually lower due to fiber to
photonic waveguide and photonic waveguide to plasmonic waveguide coupling loss.
Very recently, quantum efficiency was improved by nearly two orders of magnitude
using the concept of roughness engineering, suppressing the reflection of electrons
from the metal-silicon boundary [63].

4.3 Concluding Remarks

Being compatible with CMOS technology on one hand and allowing true subwave-
length confinement on the other, the field of silicon plasmonics holds a great promise.
Currently, the integration between plasmonics and silicon technology is still at its
infancy. Keeping in mind that silicon plasmonic based devices have been emerged
only over the last five years it would be reasonable to believe that plenty of oppor-
tunities for exploring advanced components, functionalities and configurations are
available. However, in order to make a significant breakthrough in the field one should
first be aware of the opportunities and not of lesser importance—the limitations of
this platform.

To start, it is unlikely that silicon plasmonics will be used for guiding of signals
over long distances, owing to the large propagation loss involved. The attempts to
compete with dielectric guiding for centimeters scale range do not show a great
promise. If silicon plasmonics is to be used for guiding, it is most likely be in
the local interconnect level (micrometers length scale), interfacing between single
elements and units on a chip. On the other hand, this very same nature of high
propagation loss makes the silicon plasmonic platform an attractive choice for the
construction of advanced photodetectors with enhanced wavelength photo response,
as was shown for example by the several demonstrations of plasmonic enhanced
Schottky detectors. The strong absorption and the high confinement may also play
a positive role in the construction of silicon plasmonic modulators based on the
effect of electro absorption, owing to the small device footprint and the relatively
low number of carriers required to achieve a significant modulation. This may lead
to ultra low energy per bit modulations at high rates.

Another promising direction is related to light matter interactions. The capabil-
ity of plasmonics to concentrate electromagnetic energy into deep subwavelength
scale volumes makes it attractive for enhancing spontaneous emission from silicon.
While silicon based SPASERS are not expected to emerge in the near future, it may
be sufficient to replace some of their functionalities using nanoscale silicon based
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incoherent light emitting devices. This may be turn true if extraction efficiencies in
the range of few percents will be achieved, together with modulation rates in the
gigahertz regime.

Finally, from nowadays perspective, silicon plasmonics is probably the only tech-
nologically compatible platform which can provide the need integrate between optics
and electronics at the level of a chip scale. Will it actually be the case or would it
remains another unrealized promise? It is probably too soon to tell. One thing is for
sure—it is surely worth trying.
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Chapter 5
Ultrafast Nonlinear Plasmonics

Fabrice Vallée and Natalia Del Fatti

Abstract The mechanisms at the origin of the ultrafast third-order optical nonlin-
earity of metallic and plasmonic materials are described focusing on the dominant
resonant processes associated to energy absorption. Optical nonlinearity is discussed
in terms of ultrafast modifications of the dielectric function of the constituting metal
as a consequence of electron and lattice heating, using a bulk-like model. Based on
this description, the time- and spectral-dependent nonlinear changes of the optical
response of plasmonic materials due to interaction with a femtosecond light pulse
are modeled. The results are illustrated in the case of an individual gold nanopar-
ticle for different shapes (sphere, ellipsoid, and rod), and for an ensemble of gold
nanoparticles dispersed in a dielectric matrix. The same approach can be extended
to more complex plasmonic materials or meta-materials.

Keywords Surface plasmon · Nonlinear optics · Ultrafast dynamics

5.1 Introduction

Experimental and theoretical investigations of the new properties of nanoobjects
and nanomaterials have been an intense field of researches during the last decade.
They are motivated by the possibility of modifying and controlling the physical
and chemical properties of nanomaterials, playing with the size, shape, structure
or composition of the nanoobjects they are formed of, and with their organization
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and interactions in the material. This versatility opens a broad field of technological
applications but also raises many fundamental questions on the involved processes
at the origin of the observed properties. In the optical domain, a large interest has
been devoted to plasmonic effects in metallic nanoparticles or nanomaterials. They
show-up by the appearance of new optical resonances in their linear and nonlinear
optical responses [1–6]. These are associated to localized or propagating surface
plasmon resonances (SPR) depending of the system dimensionality, e.g., in metal
nanoparticles or in nanowires and at surfaces, respectively. SPR are concomitant
with strong enhancement and spatial localization of the electromagnetic field in and
around metallic nanostructures due to dielectric confinement or local field effect.
Their spectral properties, wavelength, width, and amplitude reflect the characteristics
of the nanoobjects (composition, size, shape), of their environment, and of their
coupling in a nanomaterial [3, 5, 7–11]. They have been exploited to design new
optical devices, with many applications, as in sensing [12, 13], and also offers a
large potential for sub-wavelength light manipulation and guiding in plasmonic meta-
materials [14–17].

The optical response of a plasmonic material being directly connected to those
of its nano-components, it can be actively modified and controlled modifying their
dielectric function. This can be done optically with a light pulse exploiting the optical
nonlinearities component materials, and in particular the large nonlinearity of metals.
Using femtosecond pulses, it opens the way to ultrafast active control of light prop-
agation or transmission [18–24]. The ultrafast optical nonlinearity of metal nanos-
tructures also provides a unique way to investigate their electronic and vibrational
properties. Time-resolved spectroscopy has been extensively used in this context, first
in metal films [25–31], and, subsequently, in metal nanostructures [32–37], and in
single nanoparticles [38–45]. It has provided information on electronic motion coher-
ence losses or SPR polarization decay [46–49], on electron energy redistribution in
nanoobjects (electron-electron scattering and electron-lattice energy transfer) [33,
50–53], on their acoustic vibrations [33, 37, 44, 54–57] and on metal-environment
energy exchanges [58, 59]. These studies also yield information on the physical ori-
gins of the third order nonlinearity of metallic materials, disentangling them using
their different spectral and temporal signatures [60].

Fully exploiting the potentialities offered by the optical nonlinearities of metallic
nanomaterials requires modeling of their nonlinear optical response at a nanoscale
including plasmonic effects. In this chapter we describe ultrafast third order Kerr-
type nonlinearity of metallic nanomaterials and its impact of their observable optical
response, e.g., light absorption, transmission, or reflection. It is based on modeling
ultrafast modification of the dielectric function of metal due to its interaction with
a short light pulse. Even for pulses as short as 20 fs, this is dominated by resonant
incoherent processes associated to energy absorption by the electrons of the metal
[26, 37, 43, 47, 61]. Note that it is not the case for optical nonlinearity leading to
creation of new frequencies, such as second, third or high-harmonic generations,
that mostly involves coherent processes [48, 62–64]. The nonlinear mechanisms
considered here are associated to energy absorption by the material and show a
time dependence following its electronic, vibrational and thermal relaxation. The
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impact of the different mechanisms on modification of the metal dielectric function
on different time-scales will be first introduced, based on a modeling developed for
bulk metals [26, 29, 52, 61, 65]. The induced changes of the observable optical
properties of the material will then be discussed, focusing to the case of single metal
nanoparticles and composite nanomaterials formed by an ensemble of nanoparticles
dispersed in a dielectric matrix.

5.2 Dielectric Function of Metals and Metal Nanoparticles

The response of a bulk or nanostructured system in the optical domain directly reflects
interaction of the electrons of the constituting material with the electromagnetic
field. It is described via the dielectric functions of the material components, possibly
modified by quantum confinement effects and material coupling. In the case of a bulk
metal, the dielectric function εbulk can be separated into two types of contributions: a
quasi-free electron one due to electrons in the conduction band and an interband one
due to transitions between electronic bands. The former, related to intraband optical
absorption, is well described by a Drude expression (free electron response), so that
εbulk can be written [66]:

εbulk(ω) = εib(ω) − ω2
p

ω
[
ω +iλbulk(ω)

] , (5.1)

where ωp is the plasma frequency (ω2
p = nee2/ε0me, with ne the density of conduc-

tion electrons and me their mass). The intraband contribution is associated to optical
transitions in the conduction band (i.e., without modification of ne). Absorption of a
photon by a conduction electron has to be assisted by a third particle, e.g., a phonon
or another electron, or by a defect to conserve energy and momentum. The imaginary
part of the Drude part of εbulk is thus proportional to the electron optical scattering
rate λbulk(ω). It is determined by electron-phonon and electron-electron scattering
(neglecting electron-defect scattering) with simultaneous exchange of the energy � ω

of a photon [67–69]. It a priori depends on the frequency ω, on the lattice temperature
TL and on the electron temperature Te (or more generally on the electron distribution
function f in a non-equilibrium situation). It can thus be written:

λbulk(ω, Te, TL) = λe−ph(ω, TL , Te) + λe−e(ω, Te). (5.2)

The electron-phonon contribution λe−ph has been computed modeling electron-
phonon interaction via deformation potential interaction [68, 70]. A simplified
expression is obtained assuming a parabolic conduction band and � ω much smaller
than the Fermi energy EF :
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λe−ph(ω, TL , Te) = G ph

� ω

∫ ∞

0

√
E

√
E + � ω f (E) (1 − f (E + � ω))d E, (5.3)

where Gph depend on the lattice temperature TL via the occupation number of the
phonon states. If TL is much larger than the Debye temperature, Gph and thus λe−ph

are proportional to TL .
As for DC scattering describing metal conductivity (i.e., ω = 0 case), only umk-

lapp electron-electron scattering contribute to λe−e. Its expression has been computed
for thermalized conduction electron and is given by [67]:

λe−e(ω, Te) = ω2

4π2 ωp

[
1 +

(
2πkB Te

� ω

)2
]

. (5.4)

Note that the amplitudes of λe−ph and λe−e are not precisely reproduced by these
expressions (Eqs. 5.3 and 5.4), that will be further used only to discuss their relative
changes with the electron and lattice temperature (Sects. 4.1.2 and 4.2.2).

For particles smaller than the electron mean free path, 20–40 nm in noble metals,
the presence of surfaces cannot be neglected. For not too small particles (larger than
about 2 nm), the impact of confinement on the interband contribution is weak [71].
Its main consequence is modification of the collision rate of the conduction electrons
[3, 60, 72]. The dielectric function of the metal in a nanoparticle takes a similar form
as in the bulk:

ε(ω) = εib(ω) − ω2
p

ω
[
ω +iλn(ω)

] , (5.5)

where λn is the electron scattering rate in the confined metal. Its correction as com-
pared to the bulk rate λbulk is due to modification of the intrinsic electron collision
rates [42, 50, 51] and, in a classical model, to additional electron scattering off the
particle surfaces. Both effects are consequences of electron quantum confinement in
the nanoparticles and depend on its size and geometry [2, 3, 6, 33, 73–75]. For a
sphere of diameter D, one can simply write:

λn(ω, TL , Te) = λnano(ω, TL , Te) + 2g(ω, Te)vF/D, (5.6)

vF being the Fermi velocity. λnano is the intrinsic optical scattering rate of the elec-
trons in a nanoparticle, due to electron–electron and electron–vibration interactions
[73, 75]. From a classical standpoint, the last term introduces electron–surface colli-
sions which provide a new way of conserving momentum during photon absorption.
From a quantum standpoint, it is due to the appearance of allowed optical transitions
between confined states, k no longer being a good quantum number. Its amplitude,
given by the g value in Eq. 5.6, thus depends on the confinement potential of the
conduction electrons in the particle [2, 3, 6, 74, 75]. In the simplest model, the
electrons are assumed to be in the periodic potential of the crystal, bounded by an
infinite spherical potential well corresponding to the outer surface of the sphere. For

http://dx.doi.org/10.1007/978-94-007-7805-4_4
http://dx.doi.org/10.1007/978-94-007-7805-4_4
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not too small particle, a continuum of conduction band states is recovered and one
obtains [26, 76]:

g(ω, Te) = 1

� ω E2
F

∫ ∞

0
E3/2

√
E + � ω f (E)[1 − f (E + � ω)]d E . (5.7)

For noble metals, g ≈ 0.7 at room temperature in the optical domain (g varies
weakly with frequency), consistent with experimental results obtained in single
nanoparticles [73]. Note that, for not too small particles, λnano shows a 1/D cor-
rection as compared to λbulk [73]. This is the same size dependence as the surface
term (Eq. 5.6) and the two effects cannot be distinguished so that λn can be rewritten:

λn(ω, TL , Te) = λbulk(ω, TL , Te) + 2gef f (ω, Te)vF/D, (5.8)

where gef f is a modified g factor lumping all confinement effects.
In noble metal, in the visible range, εib is associated to interband transitions from

the full d-bands to empty states, above the Fermi energy, EF , in the conduction
band, and to absorption from latter to empty band states of higher energy. The for-
mers dominate with a threshold at � ωib ≈ 4.1eV and 1.9 eV in silver and gold,
respectively, interband absorption increasing more importantly above about 2.3 eV
in gold (Fig. 5.1). The absorption rise in the vicinity of ωib can be well reproduced in
gold and silver using the models developed for thermomodulation studies [77–79].
In gold, only d-band to conduction band (d → c) transitions are taking place close
to ωib, with a dominant contribution around the L point of the Brillouin zone and a
weaker one at lower energy around the X point. In the constant transition matrix ele-
ment approximation and neglecting the width of the electronic states, the interband
contribution to the imaginary part of the gold dielectric function can then be written:

εib
2 (ω) = A

ω2

[∫ E M
dc,L

Em
dc,L

DL
d→c(E, ω) f (E)d E − K 2

X L

∫ E M
dc,X

Em
dc,X

DX
d→c(E, ω) f (E)d E

]
.

(5.9)

DL ,X
d→c(E,ω) is the energy dependent joint density of state for the d → c transition

around the L and X points as given in [78] using band structure calculations [80].
K X L is their relative amplitude. The two parameters, K X L and the amplitude A, are
obtained by fitting the experimental εib

2 values deduced by subtracting the Drude
contribution to the measured εbulk

2 , Eq. 5.1 [38, 65, 81, 82]. Different value of K X L

are obtained using different set of measured εbulk
2 . For the data of [81] one obtains

K X L ≈ 0.37 (Fig. 5.1), while for the data of [83] K X L ≈ 0.84 (note that these
different values yield similar nonlinear spectra, the X point influence on ωεib being
weak). A similar approach can be used for silver, absorption mostly taking place
around the L point of the Brillouin zone, with a main contribution due to transitions
from the d-bands to the conduction band and, a weaker one, due to transition from
the conduction band to a higher energy empty s-band [77, 79] as shown by band
structure modeling [84].
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Fig. 5.1 a Experimental and computed interband contributions to the imaginary part of the gold
dielectric function ε2. The experimental values are obtained from [81] after subtracting the Drude
contribution (obtained by fitting the near infrared part of ε2). The dashed and dash-dotted lines
show the contributions around the L and X points of the Brillouin zone (Eq. 5.9). The inset shows
a schematic band structure of noble metals. b Relative change of the electron-electron scattering
rate ge−e (Eq. 5.4) and electron-surface scattering coefficient g (Eq. 5.7) in gold as a function of the
electronic temperature Te (the initial temperature is T0 = 295 K)

5.3 Electron-Light Interaction and Electron Kinetics

When a light pulse is incident on a metal coherent interaction with the electron
first takes place followed by electron excitation and relaxation with lattice heating.
The different time-scale of the excitation and relaxation processes are illustrated in
Fig. 5.2. The created coherent polarization decays on a sub 10–20 fs time scale leading
to light-metal energy transfer [46, 47, 49]. As it is much faster than electron-electron
and electron-lattice energy redistributions, a strongly nonequilibrium electron dis-
tribution is thus created [29, 37]. The injected energy is subsequently redistributed
among the electrons by electron-electron (e-e) scattering establishing a Fermi-Dirac
distribution in few hundred femtoseconds [26, 29], transferred to the lattice by
electron-phonon (e-ph) interaction on a slightly longer time scale, typically one
picosecond [26, 29, 85], and eventually damped to the environment in few to few
hundred picoseconds [58, 59]. Material acoustic vibration (Lamb mode vibration,
shock waves, acoustic echoes, …) are indirectly launched and are observed in the
time domain on picosecond to few hundred picosecond time scales [55, 86–88,
56]. These different processes all translate in time-dependent changes of the metal
dielectric function on different time scales. Their relative importance depends on the
pulse duration (relative to the kinetics of the considered process in the investigated
material), and will be described in the following assuming femtosecond pulses.
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Fig. 5.2 Time scale of the different nonequilibrium electron relaxation processes in a metal film
or nanoparticle after excitation by a femtosecond pulse: coherent polarization decay (few to 10 fs),
electron-electron energy exchanges (establishment of the electron temperature in few hundred fs),
electron-lattice energy transfer (on a picosecond scale) and damping of the nanoparticle energy to
its environment (in few to few hundred ps). Acoustic vibrations take place on a picosecond to few
tens of picosecond scale depending on the film thickness or nanoparticle size and geometry

5.3.1 Coherent Electron-Light Coupling

In a bulk metal, the optical electric field couples with the electrons in the conduc-
tion band inducing their forced oscillation at the optical frequency ωe. The electron
motion generates a polarization (or equivalently a current) that radiates an electro-
magnetic field, this simple picture leading to the Drude expression for the quasi-free
electron dielectric function (Eq. 5.1). Light absorption takes place with polarization
decay due to electron scattering, leading to excitation of single electron-hole pairs
in the conduction band (Landau damping, where an electron is excited in a E energy
state above the Fermi energy, EF , leaving a hole in the E − � ωe energy state below
EF ). It can be globally interpreted in the quasi-particle interaction model of the free
electron absorption: one photon is absorbed by one conduction band electron with
assistance of a third quasi-particle [66], the time scale for this process being then the
electron scattering time αbulk = 1/λbulk (Eq. 5.1).

In metal nanoparticles a similar process takes place, taking into account nanoscale
electron localization. The optical field induces oscillation of the electron density at
the optical frequency ωe in the nanoparticles. This electron movement generates an
oscillating dipole in each particle that radiates at the same frequency (which is at
the origin of the particle Rayleigh scattering). A coherent superposition of material
polarization and electromagnetic field is created, light absorption taking place with
decay of the induced material polarization. As discussed by Kawabata and Kubo,
this decay takes place with single electron excitation, which is similar to Landau
damping of the collective plasmon mode in a plasma [2]. As in bulk metal, decay
is induced by electron scattering in each nanoparticle, the relevant time being then
αn = 1/λn (Eq. 5.5).
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This polarization decay, frequently discussed in terms of surface plasmon reso-
nance dephasing in nanoparticles has been investigated using time-resolved second
and third harmonic generation in large noble-metal plasmonic objects [46, 48, 49,
89]. Sub-10 to -20 fs decay times have been deduced, consistent with the estimated
bulk scattering times αbulk in noble metals (confinement effects are negligible for
the investigated sizes). In the spectral domain hole burning measurements have been
performed to estimate the homogeneous SPR linewidth as a function of the size,
shape and environment of oblate particles. Dephasing times in the same ranges are
inferred by these spectral results [90–92]. More generally, for optical pulses down
to 15–20 fs, no deviation from “instantaneous” single electron excitation has been
observed in metal film consistent with polarization decay with the electron scatter-
ing time αbulk [26]. Similar results were obtained in metal nanoparticles, where this
decay is expected to be even faster, due to increase of the intrinsic scattering rates
and additional electron surface scattering (Eq. 5.5). In particular, ultrafast sub-10 fs
Landau decay has been confirmed probing the induced depopulation of electronic
states well below the Fermi energy in few nanometer silver nanoparticles [47]. For
optical frequencies larger than the interband threshold, ωe ≥ ωib, interband interac-
tion with light also takes place. It corresponds mostly to excitation of an electron from
the d-band to the conduction band. Ultrafast dephasing of the conduction electron-d
band hole pair is also expected due to ultrafast few-fs dephasing of carriers in metal
[93, 94].

Electronic nonlinear coherent polarization due to interaction with an intense elec-
tromagnetic pulse is at the origin of the observed nonlinearity of metal nano-materials
leading to emission of new frequencies radiated by the nonlinear dipoles, such as
in harmonic generation [48, 62–64]. It also contributes to excitation of high energy
states leading to new frequency creation by anti-Stokes photoluminescence [95, 96],
multi-step nonlinear absorption due to electronic state excitation also taking place.
However, its damping involves similar processes as for the linear coherent polariza-
tion and is thus expected to also take place on a few to a few tens of femtoseconds.
Due to this ultrafast damping, this coherent contribution is usually weaker than inco-
herent ones when they are involved. This is the case in nonlinear processes where
no new frequency is created such as those leading to optical Kerr effect. This has
been confirmed by the absence of coherent response in pump-probe experiments with
pulses in the 20 fs range [26, 52, 53]. In the following only resonant incoherent con-
tributions due to metal absorption, and the associated electron and lattice relaxation
kinetics, will thus be considered.

5.3.2 Ultrafast Electron Kinetics

If only intraband excitation is considered, in both bulk and confined metallic materials
optical absorption leads to excitation of single electrons, each of them increasing its
energy by � ω (i.e., an electron hole-pair is created in the conduction band). Electrons
with an energy E between EF − � ωe and EF are excited above the Fermi energy
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Fig. 5.3 a Schematic band structure of gold with a parabolic conduction band and undispersed
d-bands. The left and right arrows indicate interband and intraband transitions. b and c Change of
the distribution function f of the conduction band electron in gold after absorption of a light pulse
with �ωe = 1.5 eV and duration tp = 25 fs b and 250 fs c. The dash-dotted, full and dashed lines
correspond to time t = 0 fs, 500 fs and 3 ps, respectively, after the maximum of the excitation pulse
at t = 0 fs). The same energy is absorbed by the electrons: ωT me

e = 100 K

with a final energy between EF and EF +� ωe (Fig. 5.3). Describing the conduction
electron distribution by a one-particle function f and assuming an isotropic parabolic
conduction band, the induced distribution change ω f (E) = f (E) − f0(E) in the
constant transition matrix element approximation and weak excitation limit, is given
by [26, 29]:

ω f exc(E) =A
{√

E − �ωe f0(E − �ωe) [1 − f0(E)]

− √
E + �ωe f0(E) [1 − f0(E + �ωe)] , (5.10)

where f0 is the electron distribution before optical excitation (Fermi-Dirac distribu-
tion at temperature T0) and A a constant defining the injected energy. Electron energy
relaxation during the excitation process has been disregarded.

When interband absorption takes place, d-electron excitation leads to an excess
electron population of conduction band states with energy around EF +� ωe −� ωib.
The created d-band holes recombine in a few tens of femtoseconds via an Auger
process leading to indirect excitation of electron-hole pairs in the conduction band
[93, 97]. This translates into a increase of f in the energy range [EF , EF + � ωe]
and a decrease in the range [EF − � ωe, EF ]. The difference between the created
nonequilibrium distributions for intra and interband absorptions has to be taken
into account only when processes taking place on the first tens of femtoseconds are
studied, the subsequent electron kinetics being very similar. For the sake of simplicity,
only intraband excitation will be considered in the following.

In bulk noble metals, the time evolution of the conduction electron energy dis-
tribution function f can be described by the Boltzmann equation [26, 29, 98, 99].
Assuming an isotropic conduction band it reads:
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d f (E, t)

dt
= γ f (E, t)

γt

∣∣∣∣
e−e

+ γ f (E, t)

γt

∣∣∣∣
e−ph

+ γ f (E, t)

γt

∣∣∣∣
exc

. (5.11)

Homogeneous excitation has been assumed, which corresponds to optically thin
samples (note that spatial homogeneity can also be assumed in thicker metal film
due to fast electron transport in metal [100, 101]). Coupling with the surrounding
environment has also been neglected as it usually takes place on longer time scales
(few tens to few hundred picoseconds) as compared to electron kinetics processes
described by Eq. 5.11 (up to few picoseconds). The first term describes e-e scattering,
which, taking into account energy and momentum conservations reads [26, 29, 102]:

γ f (E(k))

γt

∣∣∣∣
e−e

= 2π

�

∑
k1,k2,k3

|Mee (|k − k2|)|2 F(E, E1, E2,E3)∂k∂E (5.12)

where ∂k and ∂E stand for electron momentum and energy conservations: k + k1 −
k2 − k3 = 0 and E(k) + E1(k1) − E2(k2) − E3(k3) = 0. F includes the Pauli
exclusion effect for electron scattering in and out the E state:

F = − f (E) f (E1) [1 − f (E2)] [1 − f (E3)] + [1 − f (E)] [1 − f (E1)]

× f (E2) f (E3) . (5.13)

Assuming statically screened Coulomb electron interaction, the e-e scattering
matrix element is:

Mee(q) = e2

ε0εib(0)

1

q2 + q2
S

. (5.14)

The static description of screening overestimating reduction of the e-e scattering
amplitude, a phenomenological screening reduction has been introduced using a
screening wave vector qS = ΔqT F , instead of the Thomas Fermi one qT F (with
Δ = 0.73 in bulk silver and gold) [26, 29, 103].

The second term on the right hand side of Eq. 5.11 is the e-ph scattering rate
[26, 99]:

γ f (E(k))

γt

∣∣∣∣
e−ph

= 2π

�

∑
q

∣∣Meph
∣∣2

F−(k, q) · ∂(E(k) − E(k − q) − �ωq)+

+ 2π

�

∑
q

∣∣Meph
∣∣2

F+(k, q) · ∂(E(k) − E(k + q) + �ωq),

(5.15)

where � ωq is the energy of the q wave vector phonon and:

F−(k, q) = − f (E(k))[1 − f (E(|k − q|))][1 + N (�ωq)]+
+ [1 − f (E(k))] f (E(|k − q|))N (�ωq), (5.16)
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and F+(k, q) = −F−(k +q, q). N (� ωq) is the occupation number of the q phonon.
Assuming deformation potential coupling the e-ph interaction matrix element is:

∣∣Meph(q)
∣∣2 = �

2ϕ2

2τV

q2

� ωq
, (5.17)

where ϕ is the deformation potential and τ the material density. Though it is a rough
approximation in metal, it has been shown that the exact nature of the e-ph coupling
does not influence the computed electron dynamics for a lattice at room temperature.
This is a consequence of the fact that TL being then larger than the Debye temperature
ΘD [66], electron distribution changes on the energy scale of a phonon has a minor
influence on the overall dynamics. The Debye model for the phonon dispersion is
used: ωq = vsq, vs being the material sound velocity, the exact phonon dispersion
having no impact on the computed f kinetics for TL much larger than ΘD .

The last term in Eq. 5.11 describes incoherent single electron excitation. It is
identical to ω f exc (Eq. 5.10, with replacing f0 by f and A by BI(t) to take into the finite
duration of the excitation pulses (B is a constant and I(t) is the time dependent incident
pulse intensity). An important parameter to describe excitation of the electrons is their
transient excess energy density ωue, i.e., their total energy at time t minus the one
before excitation:

ωue(t) =
√

2m3/2
e

π2�3

∫
E3/2ω f (E, t)d E = a

2

[
T 2

e (t) − T 2
0

]
, (5.18)

the second equality being only valid when the electron temperature Te is estab-
lished. The temperature dependence of the electron heat capacity has been taken
into account assuming a quasi-free electron behavior Ce(Te) = aTe, a being a con-
stant (a = π2nekB/2TF for a free electron gas, TF is the Fermi temperature,) [66].
This expression for Ce is valid in noble metals as long as electron heating involves
only conduction band electrons, with an assumed parabolic band. This is valid for
ωTe = Te − T0 ≤ 3, 000 K, Ce increasing for larger ωTe due to thermal depopu-
lation or population of other bands [104], an effect that will not be considered here
assuming moderate electron heating.

It is convenient to define the parameter B via the total energy density injected by the
pump pulse uabs

e = ∫
ωuexc

e (t)dt where ωuexc
e (t) is given by Eq. 5.18, replacing ω f

by ω f exc or equivalently, by defining a maximum equivalent electron temperature
rise, ωT me

e , as the temperature rise of a thermalized electron gas for the same energy
increase:

ωT me
e =

[
T 2

0 + 2uabs
e /a

]1/2 − T0 (5.19)

where T0 is the initial temperature of the system. In a nanoparticle, electron excitation
being usually much faster than energy transfer to the surrounding matrix (few tens
to few hundred picoseconds [58, 59], a minimum ωT me

e is induced in each excited
particle, corresponding to absorption of a single photon. This can be fairly large for
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small sizes, reaching for instance about 450 K for a 3 nm diameter gold sphere and
� ωe = 1.3 eV, an effect that must be taken into account in interpreting experimental
data [37].

5.3.2.1 Electron Gas Thermalization

The computed time dependent electron distribution function is illustrated in Fig. 5.3
in the case of gold for weak excitation, ωT me

e = 100 K, and pulse duration tp = 25 fs
and 250 fs. In both cases, an athermal electron population is created, reflecting in
a broad energy extension of the distribution change ω f (E, t) = f (E, t) − f0(E).
Fast electron-electron energy redistribution subsequently leads to build up of ω f
around EF as the electron gas internally thermalizes, i.e., f reaches a Fermi-Dirac
distribution with temperature Te. This takes place concurrently with excitation by the
pulse leading to a narrower athermal distribution when using longer pulses (Fig. 5.3).
Internal thermalization kinetics takes place with characteristic thermalization times
of about 500 fs and 350 fs in gold and silver respectively, this slow kinetics being
determined by e-e collisions around the Fermi surface. Their probabilities are strongly
reduced by the Pauli exclusion principle effects, making them the slowest scattering
processes involved in the internal thermalization process [26, 29]. Experimental
results have been found to be in quantitative agreement with the computed ones
the reduced thermalization time in silver as compared to gold being due to larger
screening by the bound electrons in the latter [26]. This kinetics is almost independent
of the injected energy in the weak perturbation regime, i.e., for ωT me

e ≤ 200 −
300 K and becomes faster for larger excitations due to weakening of the effects of
Pauli exclusion increased smearing of the electron distribution around the Fermi
energy [26].

Internal electron gas thermalization has been shown to be faster in nanospheres
with diameter smaller than 10 nm (the thermalization time being about 300 fs in 5
nm gold spheres) [51, 52]. Using a bulk-like model, this size dependence has been
ascribed to confinement induced fastening of the electron-electron energy exchanges,
due to less efficient screening of the e-e Coulomb interactions close to a surface [52].
However, other processes associated to quantum confinement of the electrons, such
as relaxation of momentum conservation or electron state quantization, can play a
role, especially in the very small size regime. For large excitation, other effects can
also influence the observed kinetics, as resonant dynamic screening modification
[105–107].

5.3.2.2 Electron-Lattice Energy Exchanges

Light being selectively absorbed by the electrons, they are out of equilibrium with
the lattice and cools down by electron-lattice energy transfer. After establishment
of an electronic temperature, the electron cooling kinetics can be simply described
using the electron temperature and using the two-temperature model [25, 70, 108].
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It is based on the assumption that both the electron and lattice are thermalized at
different temperatures Te and TL , assumed to be homogeneous over the metal sample
(note that the assumption that the lattice temperature is always maintained by phonon
anharmonic interactions can certainly be questioned). This model can be generalized
to include non-homogeneous metal heating using spatial dependent temperatures and
adding a diffusion term in the metal. These extensions will not be considered here,
where the same assumption of spatial homogeneity and slow metal-environment
energy transfer will be assumed as for Eq. 5.11. The electron gas cooling dynamics
can then be simply modeled using the rate equation system:

Ce(Te)
γTe
γt = −G(Te − TL)

CL
γTL
γt = G(Te − TL)

(5.20)

where G is the electron-phonon coupling constant. As Ce, G can be assumed constant
for sufficiently small electron temperature rise ωTe ≤ 2,000 − 3,000 K, i.e., as
long as only conduction band electronic states are involved. It increases for larger
ωTe with increasing the density of available states for electron scattering due to
intervention of other electronic states [104]. As before, only moderate excitation will
be considered including only the conduction band electrons. The above equations are
then a consequence of the Boltzmann equation Eq. 5.11, and are obtained computing
the electron energy loss rate to the lattice in the thermalized regime (with Te, TL >

ΘD):

Ce
γTe

γt
= γωue

γt
= m3/2

e
√

2E

π2�3

∫
E

γ f (E)

γt

∣∣∣∣
e−ph

d E = −G(Te − TL), (5.21)

with

G = ϕ2 kBm2
eq2

D

16τπ2�3 , (5.22)

where qD is the Debye wave vector [26, 66]. The above rate equation system can be
solved analytically [109]:

Teq ln

[
Te − Teq

Texc − Teq

]
+ T̃ ln

[
Te − T̃

Texc − T̃

]
= −G

T̃ + Teq

2CL
t. (5.23)

Texc is the temperature at time tth after which Te can be defined. For the sake of
simplicity tth = 0 has been used, i.e., instantaneous internal electron thermalization
is assumed and Texc = T0 + ωT me

e . The final temperature, Teq , of the thermalized
electron-lattice system is then given by:

Teq =
[
T 2

s + T 2
exc + 2Ts T0

]1/2 − Ts ≈ T0 + T 2
exc − T 2

0

2Ts
, (5.24)
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where T̃ = Teq + 2Ts ≈ 2Ts , and Ts = CL/a is a metal dependent constant.
The lattice heat capacity CL being much larger than the electronic one, Ts is large
(Ts ≈ 120T0 in gold). The final temperature rise Teq − T0 is thus much smaller
than Texc (Fig. 5.4). For moderate heating, i.e., for Te, TL << Ts , the approximated
expression of Teq and T̃ can be used as well as a simplified expression of Eq. 5.23:

Texc − Te

Teq
− ln

[
Te − Teq

Texc − Teq

]
= G

aTeq
t. (5.25)

For weak electron heating, ωT me
e << T0, the first term on the left hand side can

be neglected and Teq identified with T0. The electron temperature rise then decays
exponentially (Fig. 5.4):

ωTe = Te(t) − TL(t) = (Texc − T0) exp
[−(t − tth)/αe−L

]
(5.26)

with the intrinsic electron-lattice energy exchange time [26, 29]:
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Fig. 5.4 Computed time dependence of the temperature rises of the conduction electrons (full lines)
and lattice (dashed lines), ωTe and ωTL , and of their excess energy densities, ωue (Eq. 5.18) and
ωuL = CLωTL , normalized to the total energy uabs

e absorbed by the electrons in gold from a
25 fs pulse for ωT me

e = 100 K. (a) and (b), and 2,000 K (c) and (d). Calculation are performed
using Eq. 5.11 including lattice heating, identical results being obtained for long times with the two-
temperature model Eq. 5.20 after internal thermalization of the conduction electrons (t ≥ 500 fs)
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αe−L = Ce(T0)CL

G(Ce(T0) + CL)
≈ Ce(T0)/G = aT0/G (5.27)

In this regime, the electron excess energy is proportional to ωTe: ωue ≈ 2aT0ωTe

(Eq. 5.18), and thus exhibits the same time-dependence (Fig. 5.4). The energy
exchange time αe−L has been measured in different metal monitoring electron cool-
ing in femtosecond pump-probe experiment [26, 28, 29, 110]. Values of about 1.1 ps
in bulk gold and 850 fs in bulk silver were obtained. As for the electron thermalization
time, acceleration of the electron-lattice energy exchanges has been demonstrated
in metal nanospheres smaller than about 10 nm [33, 50]. It has to be noted that,
on a short time scale, the electron distribution is athermal and the two-temperature
model, Eq. 5.20, cannot be used. The electron energy loss rate to the lattice has been
found to be slower in the athermal situation and to increase over a time scale of a
few hundred femtoseconds (i.e., the internal thermalization time of the electrons),
to reach the thermal regime value αe−L [26]. This evolution from a quasi-individual
to a collective electron behavior leads to deviation from an exponential decay of the
electron excess energy that has been observed experimentally [47, 110, 111].

For larger excitation, the Te dependence of Ce has to be taken into account (the
assumption leading to Eq. 5.26 being equivalent to neglect the temperature depen-
dence of Ce over the Te excursion and to identify it to Ce(T0)). The electron tem-
perature rise ωTe then decay non-exponentially, with a large perturbation dependent
slowing down of its short time delay dynamics (Fig. 5.4). Exponential decay with
the time constant αe−L TL/T0 ≈ αe−L is eventually recovered as the electron gas
cools-down, in agreement with experimental results [26, 109, 112, 113].

In both cases, electron cooling is accompanied to lattice temperature rise to Teq

with the same kinetics (Fig. 5.4). Because of its large heat capacity as compared
to the electronic one, energy is eventually mostly stored in the lattice as the metal
reaches thermal electron-lattice equilibrium, with ωue << ωuL = CLωTL in ther-
mal equilibrium (Fig. 5.4). In nanoparticles the electron energy can also be damped
to the surrounding solvent or matrix either directly or via the metal lattice, possi-
bly modifying the observed relaxation. This coupling is frequently assumed to be
sufficiently slow to be neglected on the scale of the metal electron-lattice energy
exchange. However, it strongly increases with size reduction and may play a role in
the observed electron cooling for large excitation [114–116].

The above approach describes the different steps of internal relaxation of a metal
driven out of equilibrium by a light pulse. Though in nanoparticles, the electron
kinetics is modified, this only shows-up for sizes smaller than about 10 nm. For larger
sizes, the bulk like model can thus be directly used to describe electron relaxation,
with a possible extension to smaller sizes taking into account increase of the electronic
interactions [52].
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5.3.2.3 Nanoparticle Cooling

After electron-lattice thermalization, the metal temperature Teq is larger than the
initial one. It subsequently cools-down by damping its energy to its environment via
its interface, making Teq time dependent on this time-scale. This effect is particularly
important for small size nanoparticles which exhibit a large surface over volume ratio,
increasing their interaction with their environment. The rate at which heat dissipates
from a nanoparticle depends both on the thermal interface resistance which governs
energy transfer at the interface between the nanoparticle and its surrounding, and on
heat diffusion in the surrounding medium [58, 59, 117, 118]. Nanoparticle cooling
can be described introducing the time and space dependent temperature Tm of its
surrounding matrix, whose evolution is described adding a third rate equation to the
two-temperature model, Eq. 5.20 [114]. Assuming electron-lattice thermalization in a
nanoparticle is much faster than its cooling to its environment, Te and TL can be taken
as identical (to Teq , an assumption valid only after particle thermalization, i.e., after
a few picoseconds). Teq is also assumed to be uniform over the nanoparticle, which
is justified by the high thermal conductivity of metals. In the case of nanospheres, Tm

depends only on the distance from the particle centre r, assuming sufficient dilution
to neglect matrix heating by other particles. Heat dissipation from a nanosphere of
diameter D is then governed by a set of two equations describing heat flux at the
particle-matrix interface and heat diffusion within the glass matrix [58, 59]:

γTeq (t)
γt = − 6H

Dcp

(
Teq(t) − Tm(D/2, t)

)
,

cm
γTm (r,t)

γt = ψm
1
r

γ2

γr2 (rTm(r, t))
(5.28)

where cp,m is the particle and matrix specific heat per unit volume, ψm the thermal
conductivity of the matrix, and H the interface thermal conductance. Solving the
above equations, one obtains the following expression for the particle temperature
[59, 119, 120]:

ωTeq(t)=k D2b2ωT 0
eq

2π

∫ +∞

0

u2 exp(−4δu2t/D2)[
u2(1+Db/2) − k Db/2

]2 + (u3 − k Dbu/2)2
du,

(5.29)
where ωTeq(t) = Teq(t) − T0, ωT 0

eq being the initial temperature increase of the
particle (after electron-lattice thermalization), δ = ψm/cm , k = 3cm/cp and b =
H/ψm . If one of the involved mechanisms, i.e., interface-resistance or heat-diffusion,
limits the nanoparticle cooling kinetics, a much simpler expression is obtained. The
former dominates in small nanoparticles and the latter in large ones, leading to
exponential or non-exponential ωTeq decay, respectively. A similar approach can
be used in 2D systems, i.e., a metal film, the problem being then unidimensional
[58, 121].
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5.4 Time Dependent Metal Dielectric Function Change

Modification of the distribution f (or temperature) of the electrons in the conduction
band and subsequent lattice heating translate into modifications of the dielectric
function ε of the metal and thus of its optical absorption [26, 29, 52, 61, 65].
These can be computed provided the induced change ωε is connected to the electron
distribution change ω f (or ωTe) and to the lattice temperature rise ωTL . This is done
analyzing their impacts on the interband (bound electrons) and intraband (quasi-free
electrons) contributions to ε (Eqs. 5.1 and 5.5). The dominant mechanisms involved
in modification of the former, ωεib, and latter, ωεin , contributions are associated to
electron and lattice heating, respectively. ωεib, thus usually dominates when most
of the excess energy is stored in the electrons, i.e., on a short time scale, while ωεin

is dominant on a long time-scale when energy has been transferred to the lattice,
i.e., after electrons-lattice thermalization (Fig. 5.4). These different contributions are
discussed in the following.

5.4.1 Electronic Contribution

The electronic contribution due to energy injection in the electrons is important only
if energy is in the electron gas. It mostly impacts the interband term ωεib, with a
smaller intraband contribution due to the change of the electron scattering rates, both
effects thus decaying with electron cooling to the lattice (Fig. 5.4).

5.4.1.1 Interband Dielectric Function

Change of the interband contribution ωεib is a consequence of modification of the
interband absorption spectrum due to electron distribution smearing (Fig. 5.3), [26,
29, 110]. Its calculation requires connection of ωεib

2 (ω) to ω f , which can be done in
gold and silver, using the band structure models of Rosei and co-workers (Eq. 5.9). In
these models, the spectral width of the electronic states is neglected [122]. Estimation
of its impact on ωεib is difficult, since its inclusion introduces an additional parameter
when comparing experimental and theoretical results, which could compensate for
deviation between the real and model band structures. As a first approximation we
have neglected it, an approximation justified by the good agreement between the
calculated and measured transient optical property spectra [26, 32, 52]. One has also
to keep in mind that the Rosei models are valid for frequencies ω close to ωib and a
quasi-thermalized electron gas. For strongly nonequilibrium electrons and frequency
away from ωib significant deviations can take place and have to be taken into account
to quantitatively compare the experimental and theoretical results. In this regime, the
simple model of a parabolic conduction band and undispersed d-bands can be used,
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where, in contrast to the Rosei’s description, ωεib
2 (ω) is sensitive only to electron

states with energy: E = � ω +(EF − � ωib) [26].
Using these models (Eq. 5.9 for gold), ωεib

2 can be calculated as a function of time
t, frequency ω, and electron excitation amplitude ωT me

e using the computed ω f . As
an example, the ωεib

2 spectra and amplitude computed after intraband absorption of
25 fs pulse are shown in Figs. 5.5b and 5.6b at the time t = 0 (maximum of the pulse)
and after 500 fs and 3 ps, for low and high excitation temperatures (ωT me

e = 100 K
and 2,000 K) in bulk gold. ωεib

1 (ω) is subsequently calculated by Kramers-Kronig
transformation (Figs. 5.5a and 5.6a, note that this approach is valid as ωεib

2 (ω) is
non-zero only over a limited range around ωib). The short time ωεib

2 (ω) and ωεib
1 (ω)

exhibit very broad almost featureless spectra, reflecting change of f over a broad
electron energy range (Fig. 5.3). The ωεib

2 (ω) and ωεib
1 (ω) amplitudes increase

with time around ωib as electrons internally thermalize, and ω f mostly concentrates
around EF (Fig. 5.3). They show two distinct features associated to contribution
around the X and L points of the Brillouin zone (Fig. 5.1, with maxima around 1.9
and 2.3 eV, respectively, for ωεib

2 (ω)), the latter yielding as expected the largest
contribution. These structures are much broader for large excitation as a consequence
of increased smearing of the electron distribution around EF with increasing Te. The
rise of ωεib as the electrons internally thermalize has been used to optically monitor
this process in noble metal films and nanoparticles [26, 29, 52]. When the electrons
are internally thermalized, after about 500 fs for weak excitation in gold, and faster
for large excitation, their amplitudes, are mostly related to the electron excess energy
ωue(t) and subsequently decrease as electron energy is transferred to the lattice (with
the time αe−L for weak excitation, and a longer time for large excitation, Fig. 5.4).

5.4.1.2 Intraband Dielectric Function

The intraband contribution to ε is also modified by electron excitation. It is a con-
sequence of the dependence of the rate of all electron scattering processes on the
electronic distribution (or temperature Te when it is established), Eqs. 5.2 and 5.6.
In the case of nanoparticles, taking into account electron-surface ωλn can be written
(Eqs.5.2 and 5.6):

ωλn(ω, Te, TL) = ωλe−ph(ω, Te, TL) + ωλe−e(ω, Te) + ωλS(ω, Te) (5.30)

with a similar expression for ωλbulk . In a sphere: λS = 2g(ω, Te)vF/D and for not
too small particles (larger than about 10 nm), ωλe−ph and ωλe−e can be identified
to their bulk values.

Using Eq. 5.1 or 5.5, the real and imaginary parts of ωεin are then given by:

ωεin
1 ≈ 2λ ω2

p

ω4 ωλ ; ωεin
2 ≈ ω2

p

ω3 ωλ, (5.31)
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Fig. 5.5 Computed absolute values of the changes of the real (left) and imaginary (right) parts of
the interband, εib, and intraband, εin , contributions to the gold dielectric function after excitation
with a 25 fs pulse with �ωe = 1.5 eV and ωT me

e = 100 K and time t = 0 fs (dash-dotted line), 500
fs (full line) and 3 ps (dashed line) after the maximum of the excitation pulse. Different mechanisms
are considered: a and b: effect of electronic distribution change on εib for t = 0 fs, 500 fs and 3
ps (Sect. 4.1.1); c and d: effect of the volume change on εib for t = 500 fs and 3 ps (Eq. 5.33);
effect of the volume change on εin e: for t = 500 fs and 3 ps (Eq. 5.35); f: effect of increase of
electron-electron scattering λe−e for t = 0 fs (lower dashed line) and 500 fs (upper full line, almost
overlapping that due to ωλe−ph) (Eqs. 5.31 and 5.32) and of electron-phonon scattering λe−ph for
t = 500 fs (lower full line, almost overlapping that due to ωλe−e) and 3 ps (upper dashed line)
(Eq. 5.34); insert of f: effect of the electron surface contribution for a 10 nm gold nanosphere for
t = 500 fs and 3 ps (Eqs. 5.7 and 5.31). All the ωε amplitudes associated to mechanisms due to
electronic or lattice heating decrease or increase with time, respectively. Note the different ωε scales
for the different mechanisms

where ωλ stand for ωλbulk or ωλn in film and nanoparticles, respectively. ωεin
2 is

thus much larger than ωεin
1 (ωεin

1 /ωεin
1 ≈ 2λ /ω << 1). Only the former gives a

significant contribution and will be considered in the following.

http://dx.doi.org/10.1007/978-94-007-7805-4_4
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Fig. 5.6 Same as Fig. 5.5 for ωT me
e = 2, 000 K

The electron-phonon contribution ωλe−ph varies very weakly with Te (Eq. 5.3)
conversely to the DC rates λe−ph(ω = 0) [123]. The electron-electron and electron-
surface terms ωλe−e and ωλS rise and decay with the electron temperature change,
or more generally with the changes of the electron distribution f (Eqs. 5.4 and 5.7).
Using Eq. 5.4, the relative change of λe−e is given by (Fig. 5.1):

ωλe−e

λe−e
≈

(
2πkB

� ω

)2 (
T 2

e − T 2
0

)
. (5.32)

Using Eqs. 5.31 and 5.32 and the computed time dependence of Te (Fig. 5.4), one
obtains ωεin

2 (Fig. 5.5f, with �λe−e ≈ 15 meV [68]). For weak excitation, it only
yields a small contribution as compared to the interband electronic one and to the
lattice heating one (showing-up on for longer time). It becomes more significant
for high electronic temperature rise (Fig. 5.6) as a consequence of the quadratic
dependence of λe−e on Te (Eqs. 5.4 and 5.32, Fig. 5.1).
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The change of the surface term ωλS is due to the electron temperature depen-
dence of g that can be estimated using Eq. 5.7 (Fig. 5.1). It yields a relatively small
contribution to ωεin

2 for not too small nanoparticles, as illustrated for 10 nm diam-
eter gold nanospheres (inset of Fig. 5.5f, using Eqs. 5.6 and 5.31). As it increases
with the particle size (Eq. 5.6), it can play a significant role in small nanoparticles as
shown in the case of gold nanospheres [60]. It is the first manifestation of quantum
confinement in their nonlinear optical response.

5.4.2 Lattice Contribution

In the equilibrium regime (Te = TL = Teq), the electronic mechanisms are almost
negligible, as ωTeq << ωT me

e and most of the energy is in the lattice (Fig. 5.4).
ωε then reflects lattice temperature rise and the concomitant metal dilation. Note
that the latter effect, that impacts both the interband contribution, via electronic band
shifting (i.e., deformation potential coupling), and the intraband one, via change of
the electronic density, has permitted detection of coherent vibration of metal films
and nanoparticles following the concomitant modulation of their volume [33, 86,
88, 124]. All the induced changes are proportional to ωTL and thus rise with lattice
heating by the electrons (Fig. 5.4) and decay with metal cooling to its environment.

5.4.2.1 Interband Dielectric Function

Due to lattice anharmonicity, lattice heating leads to increase of the equilibrium
inter-atomic distance aL and to shift of the Fermi energy. This induces modification
of the electronic band structure, shifting the energy position of the electronic bands
and their filling, and thus of the metal interband absorption spectrum. εib is thus
modified, proportionally to ωTL . Assuming rigid band shift one gets:

ωεib(ω) = −γεib

γ ω

∣∣∣∣
ω

γ ωib

γTL

∣∣∣∣
T0

ωTL . (5.33)

Displacement of the interband transition threshold ωib with the TL can be esti-
mated from calculation of the Fermi energy and the electronic band structure of
metal [80, 84]. For gold, one obtains around the L point of the Brillouin zone
(γ� ωib /γTL)T0 ≈ −5 × 10−5eV/K comparable but smaller than the experimen-
tally estimated value: (γ� ωib /γTL)T0 ≈ −1.7 × 10−4eV/K [82]. A different shift
is estimated for the X point threshold, an effect that will not be included here as
contribution of the X point transitions to εib and ωεib is smaller than for the L point.
The estimated changes of εib are shown in Fig. 5.5c,d using the above experimental
(γ ωib /γTL)T0 and the (γε/γ ω) values computed from the ε data of Johnson and
Christy. As expected, they show structures around the interband transition threshold
and rise with the lattice temperature.



188 F. Vallée and N. Del Fatti

5.4.2.2 Intraband Dielectric Function

Lattice heating modifies the intraband contribution to ε both via increase of the
electron scattering rate λe−ph and by reduction of the plasma frequency ωp. The
former effect is a direct consequence of increase of the phonon occupation number
with the lattice temperature (Eq. 5.3). As for the electron temperature induced change
of λ , it mostly affects the imaginary part of ε (Eq. 5.30).

ωεin
2 ≈ ω2

p

ω3 ωλe−ph ≈ ω2
p

ω3

γλe−ph

γTL
ωTL . (5.34)

Its contribution obtained using the lattice temperature dependence of λe−ph esti-
mated in gold films γ�λe−ph/γTL ≈ 0.11 meVK−1 [125], is shown in Fig. 5.5f. It
increases as ω decreases (Eq. 5.34), γλe−ph/γTL being almost frequency indepen-
dent, and gives the dominant contribution to ωε2 on a few picosecond time-scale,
after electron-lattice thermalization [26, 38].

Increase of the metal volume due to lattice dilation reduces the electronic density
ne, and thus ωp. It thus translates in increase of the Drude contribution to ε yielding
for its real part:

ωεin
1 ≈ −ω2

p

ω2

ωne

ne
= ω2

p

ω2

ωV

V
= ω2

p

ω2 3βLωTL , (5.35)

where βL is the linear dilation coefficient of gold (βL ≈ 1.42 × 10−5K−1). The
corresponding change of the imaginary part is much smaller than the contribution
due to λe−ph , Eq. 5.34 (the relative contribution being of the order of 3βL TL), and will
be disregarded. Volume change induce comparable amplitude for the interband and
intraband contributions (Eqs. 5.33 and 5.35), the former showing-up mostly around
the interband threshold ωib, while the latter increase in the red part of the spectrum
(Figs. 5.5 and 5.6). Note that these two contributions permit detection of the vibration
modes of metal nanoobjects associated to volume changes, an oscillatory behavior,
signature of the volume change being thus obtained [33, 37, 55, 56, 126]. The direct
impact of lattice temperature rise is more difficult to disentangle from other effect as
environment heating [59], or other modifications of the electron band structure not
included here as change of the electronic mass [61].

5.5 Ultrafast Nonlinear Optical Response

The changes of a metal dielectric function induced by electron excitation by a light
pulse translate into changes of the optical properties of the system, i.e., its, absorption,
scattering, transmission T, or reflection R, which are observed experimentally. Quite
generally, the optical transmission or reflection of a sample for a light pulse of
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frequency ω, T (ω) and R(ω), are determined by its geometry and dielectric function
ε(ω). Their time-dependent changes after excitation by a short pulse of frequency
ω0 thus reflects that of ε. If the optical property changes are sufficiently weak, the
relative transmission and reflection changes can be connected to those of the real,
ωε1, and imaginary, ωε2, parts of ωε, using a lowest order development:

ωT
T (ω, t) = t1(ω)ωε1(ω, t) + t2(ω)ωε2(ω, t)

ωR
R (ω, t) = r1(ω)ωε1(ω, t) + r2(ω)ωε2(ω, t)

(5.36)

where ωT (ω, t) = T (ω, t) − T (ω) and ωR(ω, t) = R(ω, t) − R(ω), t being the
time delay after the maximum of the excitation pulse. The coefficients t1,2(ω) =(
γ ln T/γε1,2

)
ω

and r1,2(ω) = (
γ ln R/γε1,2

)
ω

can be analytically or numerically
computed from the dependence of T (ω) and R(ω) on the sample dielectric function.
These general expressions will be used below for discussing the nonlinear response
of different metal materials.

In the following, weak metal excitation will be assumed (ωT me
e = 100 K), and

only the dominant contributions to ωε due to modification of the interband term by
electron heating (Sect. 4.1.1) and of the intraband one by lattice heating (Eq. 5.34)
will be included. In particular, dilation effect will be disregarded, their inclusion also
requiring to take into account the direct dependences of T or R on the metal object
size, e.g., film thickness or nanoparticle volume (Eq. 5.44 or 5.46, for instance).

5.5.1 Metal Film

In the case of a homogeneous metal film deposited on a substrate, the coefficient
linking ωT/T and ωR/R to ωε can be analytically computed using the expression
T (ε) and R(ε) for a thin film of thickness L [127], ε being the metal dielectric
function, assumed to be identical to the bulk one [83]. The dispersion of T, R, t1,2,
and r1,2 are shown in Figs. 5.7a and b, in the case of an optically thin gold film
(L = 20 nm). The temporal and spectral dependences of ωT (ω, t) and ωR(ω, t)
calculated from the computed ωε (Fig. 5.5a, b and f) are also shown. They exhibit
similar amplitudes with extrema for frequencies ω close to the interband threshold
ωib, around the L point of the Brillouin zone (the X point yields smaller structures
as for ωεib, Fig. 5.5a and b). The spectral shapes are mostly set by the ωεib spectra
modified by t1,2 or r1,2, the ωεin contribution being weaker.

The computed spectral profiles have been found to be in excellent agreement with
the measured ones in optically thin films when the electronic response dominates
[26, 29, 30, 61, 65]. Note that simultaneous measurement of ωT (ω, t) and ωR(ω, t)
also permits experimental estimation of ωεbulk

1 (ω, t) and ωεbulk
2 (ω, t) using Eq. 5.36

[26]. Though this agreement validates the above theoretical modeling, one has to keep
in mind that quantitative comparison, i.e., of the ωT/T and ωR/R amplitudes, is
however limited by the experimental difficulty in estimating the temperature rise of
the metal film.

http://dx.doi.org/10.1007/978-94-007-7805-4_4
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Fig. 5.7 a and b; Transmission T and reflection R of a 20 nm thick gold film deposited on silica,
and corresponding coefficient linking ωT and ωR to ωε1,2 (Eq. 5.36). c and d; Computed relative
change of transmission and reflection of the same film for t = 0 fs (dash-dotted line), 500 fs (full
line)and 3 ps (dashed line) after excitation with a 25 fs pulse withΦ ωe = 1.5 eV andωT me

e = 100 K.
The results are obtained using Eq. 5.36 and the ωε values shown in Fig. 5.5, considering only
the electron induced interband contribution (Fig. 5.5a and b) and increase of the electron-phonon
scattering (Fig. 5.5f)

Though consistent results have also been obtained on longer time-scales, for
thermalized electron-lattice films, different results have been obtained in different
films, stressing the important role played by the film structure and the film-substrate
interaction in this regime. These variations are probably of similar origins as those
observed in measurement of the dielectric function of thin metal films [83].

For optically thick films, only ωR(ω, t) can be measured and excitation cannot
be assumed homogeneous anymore. Fast electronic energy transfer in the metal has
to be included, lowering the actual sample excitation, i.e., signal amplitude, and
modifying the short time scale kinetics as demonstrated comparing the responses in
20 nm and 1μm thick gold films [29, 113].

5.5.2 Single Plasmonic Nanoparticle

Interaction of a single nanoparticle with a light pulse leads to absorption and scatter-
ing of the incident optical power. These effects are described by the absorption and
scattering cross-section η i

abs(ω) and η i
sca(ω) of the nanoparticle for light polarized

along one of its main axis i. For light polarized along i with power Pi incident on a
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particle of size much smaller than the beam diameter, the transmitted power Pi
t is,

using the optical theorem [1]:

Pi
t = Pi − η i

ext I i (x, y) + ∂Pi
sca . (5.37)

where I i (x, y) is the beam intensity at the particle position (x, y) (z being the prop-
agation direction). η i

ext (ω) = η i
abs(ω)+η i

sca(ω) is the nanoparticle extinction cross
section and ∂Pi

sca the power scattered in the forward direction in the solid angle
collected by the optical detector. Reflection or possible absorption by the substrate
has been neglected. For a weak scattering and a small collecting solid angle, the last
term can be neglected, Pi

t being then only set by the particle extinction. Assuming a
Gaussian intensity profile I i (x, y) with a full width half maximum d, at the position
of the nanoparticle, one can define the power transmission for a particle at the center
of the beam:

T i (ω) = 1 − 4Ln(2)

πd2 η i
ext (ω). (5.38)

The relative change of transmission can thus be connected to ωε using either the
general expression (Eq. 5.36) or the above expression (Eq. 5.38), yielding:

ωT i

T i
(ω, t) = −4Ln(2)

πd2 ωη i
ext (ω, t), (5.39)

and:
ωη i

ext (ω, t) = ai
1(ω)ωε1(ω, t) + ai

2(ω)ωε2(ω, t) (5.40)

where the coefficients ai
1,2(ω) = γη i

ext/γε1,2
∣∣
ω

are determined by the linear optical
extinction of the nanoparticle for the incident beam polarization. Knowing the beam
size d and the dielectric function change ωε of the metal forming the nanoparticle,
nonlinear modification of its optical extinction ηext or transmission T i can thus be
fully computed and compared to experimental data [38]. Note that the substrate and
environment nonlinearities are neglected.

Similarly the induced change of the scattering cross-section leads to a relative
change of the scattering power Ps . For instance assuming the same incident and
scattered light polarization, and light collection along the ŝ direction:

ωPi
s

Pi
s

(ω, t) = ωη i
sca(ŝ,ω, t)

η i
sca(ŝ,ω)

. (5.41)

This can be observed experimentally monitoring change of light scattering by a
single nanoparticle [43].

The above approach can be generalized to individual nanoparticle of any shape
or size, and formed by a single material or different ones, using the connection
between its extinction or scattering cross-section with the dielectric function of the
constituting materials. The simple cases of a small nanosphere and nanoellispoid
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whose optical response can be computed analytically, as well as that of a nanorod,
are illustrated below.

5.5.2.1 Small Metal Nanosphere and Nanoellipsoid

The optical response, absorption or scattering, of a sphere of dielectric constant
ε and diameter D embedded in a dielectric medium of dielectric constant εd has
been described by Mie using a multipolar expansion [1, 3]. For a nano-sphere much
smaller than the optical wavelength σ only the dipolar term has to be retained [1,
128]. The sphere response can then be described as that of a dipole pL at its center
and oriented along the electric field E of the incident electromagnetic wave:

pL(ω) = ε0εdβL(ω)E(ω). (5.42)

where βL is the nanosphere linear polarizability:

βL(ω) = 3Vnp
ε(ω) − εd

ε(ω) + 2εd
(5.43)

Its extinction cross-section can be identified with its absorption cross-section in
this regime, scattering being negligible as compared to absorption in the dipolar
approximation, ηext ≈ ηabs . >> ηsca . It is given by the imaginary part of βL and is
independent of the polarization direction:

ηext (ω) ≈ ηabs(ω) = ω ε
1/2
d I m(βL)/c = 9 ω Vnpε

3/2
d

c

ε2(ω)

|ε(ω) + 2εd |2 , (5.44)

where Vnp is the nanoparticle volume. Similar calculations were performed for ellip-
soidal shapes, yielding similar simple expression in the small size limit [1]. For light
polarized along one of the ellipsoid main axis i the optical response is equivalent to
that of a i direction dipole pi

L(ω) = ε0εdβi
L(ω)Ei (ω) at the ellipsoid center with:

βi
L(ω) = Vnp

Li

ε(ω) − εd

ε(ω) + (1/Li − 1)εd
, (5.45)

yielding the extinction cross section for light polarized along the i direction

η i
ext (ω) ≈ η i

abs(ω) = ω ε
1/2
d I m(βi

L)/c = ω Vnpε
3/2
d

cL2
i

ε2(ω)

|ε(ω) + (1/Li − 1)εd |2 ,

(5.46)
where Li are geometrical factors. For instance, for a prolate spheroid of length lx

along its long axis direction x, and ly = lz , along its short axis directions y,z, they
are given by:
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Lx = 1 − e2

e2

(
−1 + 1

2e
ln

(
1 + e

1 − e

))
, (5.47)

where e is the ellipsoid eccentricity: e2 = 1 − (ly/ lx )
2, and L y = Lz = (1 − Lx )/2.

The extinction cross-sections take similar forms in both types of nanoparticles,
(with Li = 1/3 for a sphere). For a weakly dispersed ε2, it is enhanced close to the
frequency minimizing the denominator in Eq. 5.44 or 5.46, which corresponds to the
condition for the localized surface plasmon resonance (SPR). This is concomitant
with enhancement of the electromagnetic field in the particle and its close environ-
ment as compared to the applied one, i.e., corresponds to a local field or dielectric
confinement effect [5]. For a sphere, the field is uniform in the particle and enhanced
as compared to the applied field by the plasmonic factor:

f pl(ω) = 3εd

ε(ω) + 2εd
. (5.48)

For a nanosphere, the resonance condition is independent of the light polarization
direction (Eq. 5.44) and is associated to resonant collective oscillation of the electrons
driven by the electromagnetic field along its polarization direction. This degeneracy
is lifted in an ellipsoid, three different resonance conditions being obtained along
its three main axis (Eq. 5.46). It reduced to two in a spheroid, two SPR showing-up
associated to electron oscillations along its long and short axis. The SPR frequency
splitting depending of its aspect ratio Φ = lx/ ly [1, 5, 128].

The extinction cross-sections of a gold nano-sphere and of a gold prolate spheroid
of long axis x and short axis y, z are shown in Figs. 5.8a and 5.9a and d, respectively
(the bulk ε data [83] were corrected for surface effect in the sphere case using gef f =
0.7, Eq. 5.8). The SPR of the sphere overlap the interband transition (Fig. 5.8a), while
the longitudinal SPR (along its x axis) of the spheroid is strongly red shifted away
from ωib, (Fig. 5.9a). Its transverse one (along its y or z axis) is slightly blue shifted (as
compared to the sphere SPR) and overlaps with the interband transitions (Fig. 5.9d).
The corresponding coefficients ai

1,2(ω) computed using Eqs. 5.40, 5.44 and 5.46 are
shown in Figs. 5.8b and 5.9b and e. The plasmonic effect is at the origin of their
large amplitude and dispersion around the longitudinal SPR frequency ωx

R . As for
the linear response, it reflect local field effect enhancement. Similar effects show-up
around the transverse SPR, but with weaker amplitude as expected because of smaller
amplitude of this SPR.

Using these coefficients together with the computed changes of ε (Fig. 5.5a, b,
and f), one obtains the amplitude and time and spectral dependence of the extinction
cross-section change ωη i

ext (ω) for a given excitation ωT me
e (Figs. 5.8c, and 5.9c and

f). Modification of the surface scattering term has been disregarded for the considered
sizes [60]. For the gold nanosphere, the SPR being around ωib, the plasmonic effect
only leads to modification of the spectral shape and enhancement of the amplitude
of the nonlinear response as compared to the film one around ωib (Figs. 5.7 and 5.8).

These two effects are separated in a prolate spheroid for light polarized along
its long axis. Two distinct spectral features around ωib and ωx

Rare thus obtained.
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Fig. 5.8 Computed spectra of the absorption cross-section of a 20 nm diameter gold sphere in water
around its SPR at 2.37 eV (a), and of a 43 nm long and 12 nm diameter gold nanorod only around its
longitudinal SPR at about 1.52 eV (d)—note the different photon energy scales. The corresponding
coefficient linking ωηext to ωε1,2 (Eq. 5.40) are shown in (b) and (e). They are computed using
Eq. 5.44 for the sphere and numerically for the nanorod [38]. The computed absolute changes of
the extinction cross-section are shown in (c) and (f) for the two individual particles for t = 0 fs
(dash-dotted line), 500 fs (full line) and 3 ps (dashed line) after excitation with a 25 fs pulse with
�ωe = 1.5 eV and ωT me

e = 100 K. The results are obtained using Eq. 5.40 and the ωε values
shown in Fig. 5.5, considering only the electron induced interband contribution (Fig. 5.5a and b)
and increase of the electron-phonon scattering (Fig. 5.5f)

The former is similar to that in bulk gold and reflects modification of the electron
distribution around the Fermi energy (Fig. 5.5a and b). In this spectral region, ax

1
and ax

2 are small and almost undispersed and the ωη x
ext spectral shape reflects the

dispersion of ωε1,2. As the latter, it rises with internal electron thermalization and
decay with electron cooling (Fig. 5.4) [37]. In contrast, the structure around ωx

R
is specific to plasmonic systems. It is much larger than the one around ωib as a
consequence of plasmonic enhancement of the nonlinear optical response around the
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Fig. 5.9 Computed spectra of the absorption cross-section of a gold prolate spheroid with long
and short axis lengths: lx = 40 nm and ly = lz = 10 nm in water, for light polarized along its
long axis (a) and short axis (d). The longitudinal SPR (along the long x axis) shows at about 1.6
eV and the transverse one (along the short y or z axis) at about 2.43 eV, overlapping with the
interband transitions. The corresponding coefficient linking ωη

x,y
ext to ωε1,2 (Eq. 5.40) computed

using Eq. 5.45 are shown in (b) and (e). The computed absolute changes of the extinction cross-
section for the two light polarizations are shown in (c) and (f) for t = 0 fs (dash-dotted line),
500 fs (full line) and 3 ps (dashed line) after excitation with a 25 fs pulse with �ωe = 1.5 eV
and ωT me

e = 100 K. The results are obtained using Eq. 5.40 and the ωε values shown in Fig. 5.5,
considering only the electron induced interband contribution (Fig. 5.5a and b) and increase of the
electron-phonon scattering (Fig. 5.5f). The same results for an ensemble of randomly oriented
identical nanoellipsoids are shown in (g)–(h)–(i). Identical excitation of the particles has been
assumed for computing their nonlinear response (Eqs. 5.63 and 5.64). The different mean values are
normalized to the number density of nanoellipsoids, i.e., correspond to a mean particle (Eqs. 5.56
and 5.63)

SPR [76, 129, 130]. Actually, ωx
R being much smaller than ωib, ωεib

2 (ω ≈ ωx
R, t)

is nonzero only for very short times t and (for strongly out of equilibrium electrons,
typically for t ≤ 50 fs, Fig. 5.5b). For the short excitation pulse assumed here (25 fs),
it however give a significant contribution for very short times, leading to different
spectral shapes for t = 0 fs and t = 500 fs (Fig. 5.9b, this effect almost washing
out when longer pulses are assumed [38])). For longer delays, only ωεib

1 is nonzero
around ωx

R and the ωη x
ext spectral shape reflects that of ax

1 (ωεib
1 being almost

undispersed away from ωib, Fig. 5.5a). Its time behavior essentially follows that
of ωεib

1 (ωx
R, t) which is almost identical to the time evolution of the electron gas

excess energy (Fig. 5.4) [131, 37]. Consequently, in this spectral range ωη x
ext rises
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with energy injection in the electrons and decays with the electron energy losses to
the lattice. On a longer time scale, after electron-lattice thermalization, the spectral
profile of ωη x

ext is strongly modified. The ωεib
1 (ωx

R, t) contribution is then negligible
as compared to the ωεin

2 (ωx
R, t) one due to heating of the lattice (Fig. 5.5f). ωη x

ext then
essentially reflects modification of the electron-phonon scattering rate (Eq. 5.34). Its
spectral shape is set by the dispersion of ax

2 (Fig. 5.9b and c), ωεin
2 (ωx

R) being weekly
dispersed on the relevant spectral range around ωx

R (Fig. 5.5f).
For light polarized along the short direction of a prolate spheroid, the transverse

SPR and interband transitions overlap leading to a small SPR amplitude (Fig. 5.9d).
The situation is very similar to the gold sphere one, and ωη

y,z
ext around the transverse

SPR frequency ω
y,z
R shows similar spectral and temporal features as ωη x

ext in gold
nanosphere (Figs. 5.9f and 5.8c).

It is interesting to note that the characteristic spectral shape of ωη x
ext imposed by

the ax
1 and ax

2 dispersion closely corresponds to that obtained for a SPR spectral shift
and broadening, respectively (assuming ωε undispersed). This is simply related to
the fact that the longitudinal SPR exhibits a quasi-Lorentzian shape with a frequency
determined by ε1(ω

x
R) and a width by ε2(ω

x
R). The full approach used here, can then

be reduced to a simple analysis in term of SPR frequency shift (for t ≈ 500 fs) and
broadening (for t ≥ 500 fs), related to ωε1(ω

x
R, t) and ωε2(ω

x
R, t), respectively.

This approach can be used as long as the SPR is away from the interband transitions,
as for the longitudinal SPR of a prolate spheroid or nanorod or for the SPR of silver
nanospheres [37, 60, 132]. In contrast, it cannot be used when the SPR overlap
the interband transition as in gold or copper nanospheres or for the transverse SPR
of a prolate spheroid, ωεib

1,2 showing a large dispersion on the relevant frequency

range around their SPR (Fig. 5.5, note that similarly because of the dispersion of εib,
Fig. 5.1a, the SPR width can also not be correctly defined). The ωηext spectral profile
is then related to both ωε1 and ωε2 with contributions weighted by the enhancement
of the nonlinear response around the SPR (Figs. 5.8c and 5.9f).

The above simulations have been performed assuming a given excitation of the
nanoparticles, imposing the maximum electron temperature rise ωT me

e or, equiva-
lently, the injected total energy uabs

e (Eq. 5.19). More generally, ωT me
e or uabs

e are
imposed by absorption of the exciting pulse of frequency ωe. Assuming it is polarized
along the j direction with a time-dependent intensity I j

p (t), it is given by:

uabs
e = η

j
abs(ωe)

Vnp

∫ +∞

−∞
I j

p (t)dt = η
j

abs(ωe)

Vnp
F j

p (ωe), (5.49)

where F j
p (ωe) is the pulse fluence. Assumingωε linearly depends on uabs

e , an approx-
imation verified in the weak excitation regime, ωT me

e ≤ 200−300 K, ωη i
ext (ω) can

thus be written:

ωη i
ext (ω, t) =

[
ai

1(ω)ωε̄1(ω, t) + ai
2(ω)ωε̄2(ω, t)

]
η

j
abs(ωe)F j

p (ωe)/Vnp.

(5.50)
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where ωε̄1,2 = ωε1,2/uabs
e . This expression yields the amplitude, spectral, and

temporal dependence of the extinction cross section of a metal nanoparticle, i.e., its
nonlinear response, in the presence of an excitation pulse of frequency ωe.

For a small particle the nonlinearity can also be described in term of change of its
dipolar response, introducing modification of its polarizability βL due to that of the
metal dielectric function. Retaining only the lowest order nonlinear term, one can
write:

pi = pi
L + pi

N L = ε0εd(βi
L + βi

N L)Ei , (5.51)

with:

βi
N L(ω, t) = γβi

L

γε1

∣∣∣∣∣
ω

ωε̄(ω, t)η j
abs(ωe)F j

p (ωe)/Vnp, (5.52)

which yields the same expression as Eq. 5.50 using ωη i
abs(ω) = ω ε

1/2
d I m(βi

N L)/c.
Using Eq. 5.51 one can define a time-dependent third-order hyperpolarizability char-
acterizing the optical nonlinearity of a single nanoparticle (note that hyperpolariz-
ability is correctly defined only in the frequency domain [133]). Plasmonic effects
on the nonlinear response shows-up in the amplitude and spectral dependence of
γβi

L/γε1 and η
j

abs . In the case of a sphere, the former term is enhanced proportion-
ally to the square of the local field enhancement factor at ω, f 2

pl(ω), and the latter to

its modulus square at ωe,
∣∣ f pl(ωe)

∣∣2 (where f pl is given by Eq. 5.48). This yields the

usual dependence on the field enhancement factor f 2
pl(ω)

∣∣ f pl(ωe)
∣∣2 of the nonlinear

response for a Kerr-type of nonlinear interaction ω = ω +ωe −ωe [5, 130, 133].

5.5.2.2 Other Shapes and Sizes

Conversely to the case of small nanospheres and nanoellipsoids, simple expressions
of the nanoparticle extinction or scattering cross-section are not available for other
shapes or for large nanoparticles. Calculation of the nonlinear response then requires
numerical computation of the coefficients linking their changes to that of ωε, e.g.,
of ai

1and ai
2 (Eqs. 5.40 and 5.50). This is done using:

ai
1 =

[(
η i

ext (ε + ∂) − η i
ext (ε)

)
/∂

]
∂→0

; ai
2 =

[(
η i

ext (ε + i∂) − η i
ext (ε)

)
/∂

]
∂→0

.

(5.53)

In the case of large nanospheres or nanoellipsoids, ωη i
ext is computed using higher

order expansion of the Mie theory [1] or of its generalization to ellipsoid [134]. For
other shapes it is calculated with the fully numerical models, as Discrete Dipole
Approximation (DDA) or Finite Element Method, used for computing their linear
properties [38, 135]. It is illustrated in Fig. 5.8d and e using FEM in the case of a gold
nanorod modeled by a cylinder end-capped by hemispheres [38]. As before, ωη i

ext
can then be computed from ωε, as shown in Fig. 5.8f along its long axis x. It exhibits
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similar features as that for a spheroid Fig. 5.9c, showing in particular the same time-
dependent spectral features due to change with time of the dominant nonlinearity
around its longitudinal SPR.

The spectral shape, temporal behavior, and amplitude of the nonlinearity are in
excellent agreement with measurements performed in individual gold nanorod using
time-resolved spectroscopy [38]. In these experiments, the investigated nanorod
extinction cross-section and orientation on a substrate is first quantitatively deter-
mined monitoring the loss of energy of a tightly focused light beam while modulat-
ing the nanoparticle position (Spatial Modulation Spectroscopy, SMS) [131, 136].
The amount of energy absorbed by the particle, or equivalently the peak electron
temperature rise ωT me

e , can thus be precisely determined, permitting quantitative
comparison of the experimental and theoretical results using Eq. 5.50 [38].

5.5.3 Plasmonic Material: Ensemble of Metal Nanoparticles

Many plasmonic materials are formed by metal nanoparticles dispersed in a solid or
liquid dielectric matrix. Assuming homogeneous properties over a size smaller than
the optical wavelength, the linear optical response of the composite material can be
described defining an effective linear dielectric function ε̃L(ω) taking into account
the polarizability of the nanoparticles and host material. The main difficulty is to
properly define this connection, i.e., to link ε̃L to ε, εd , Vnp and to the density of
nanoparticle Nnp. This can be easily done if Nnp is sufficiently small to neglect parti-
cle interactions. For small nanoparticles whose individual response can be described
in the dipolar approximation, the total polarisation P of the composite medium is the
sum of the polarisation Pnp due to the metallic particles and the polarisation Pd due
to the dielectric matrix:

P = Pd + Pnp = (1 − Fnp)ε0(εd − 1)E + 1

V

∑
j

p j . (5.54)

where p j is the dipole moment of the j particle and summation run over the nanopar-
ticles in a unit volume. Fnp = 1

V

∑
j Vnp, j is the volume fraction occupied by the

nanoparticles. If the particles are identical and randomly oriented in the matrix, the
above expression simplifies into:

P = (1 − NnpVnp)ε0(εd − 1)E + Nnpε0εd β̄L E . (5.55)

β̄ is the orientationally averaged polarizability of the particles:

β̄L = 1

3

∑
i

βi
L , (5.56)
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where βi
L is the linear polarizability of one particle along its main axis i (Eq. 5.51).

The effective dielectric constant ε̃ is then obtained using ε̃Lε0 E = ε0 E + P yielding
for small metal volume fraction [5]:

ε̃L(ω) = εd
[
1 + Nnpβ̄L(ω)

]
. (5.57)

The nonlinear response can be calculated using the same approach introducing the
nonlinear component of the polarizability βN L of each particle (Eqs. 5.51 and 5.52).
Taking into account the lowest order nonlinearity, one can define a time dependent
effective dielectric constant ε̃ [38]:

ε̃(ω, t) = ε̃L(ω) + ε̃N L(ω, t), (5.58)

in the same approximation as for Eq. 5.57. Neglecting the third order nonlinear
response of the matrix and depletion of the excitation pulse during its propagation
in the material, averaging βN L over the particle orientation yields:

ε̃N L(ω, t) = εd Nnp

15

∑
i

γβi
L

γε1

∣∣∣∣∣
ω

ωε̄(ω, t)
[
3η̄abs(ωe) + 2η i

abs(ωe)
]

Fp(ωe)/Vnp,

(5.59)
for identical polarization of the exciting pulse and ω pulse, and

ε̃N L(ω, t) = εd Nnp

15

∑
i

γβi
L

γε1

∣∣∣∣∣
ω

ωε̄(ω, t)
[
6η̄abs(ωe) − η i

abs(ωe)
]

Fp(ωe)/Vnp,

(5.60)
for perpendicular polarizations. η̄abs = ω ε

1/2
d I m(β̄L)/c is the mean absorption of

one particle. The above expressions permit to describe the nonlinearity of the compos-
ite material introducing time-dependent modification of its dielectric function. Note
that it is defined in the time domain which does not permit proper definition of a third-
order susceptibility (defined in the frequency domain as the hyper-polarizability of
a single nanoparticle [133]).

The change of transmission or reflection of a sample can then be simply computed
using Eq. 5.36, replacing ωε by ε̃N L . The t1,2 and r1,2 coefficients are computed
using the expression T (ε̃L) and R(ε̃L) for a thin film of thickness L and dielectric
constant ε̃L [127]. For a diluted material ωT/T essentially reflects modification of
the imaginary part of ε̃, or, equivalently, that of the sample absorption [37].

For polarization independent absorption of the excitation pulse (case of
nanospheres or interband excitation of nanoellipsoids or nanorods, for instance [38]),
Eqs. 5.59 and 5.60 are identical. This reflects the fact that all the particles are iden-
tically excited and one can then simply write:

ε̃L(ω, td) = εd
[
1 + Nnpβ̄L(ω) + Nnpβ̄N L(ω, td)

]
, (5.61)
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with

β̄N L = 1

3

∑
i

βi
N L . (5.62)

The transmission change of a sample of thickness L is then given by:

ωT

T
(ω, t) ≈ −ω ε

1/2
m Nnp I m {β̄N L(ω, t)} L/c = −Nnpωη̄abs(ω, t)L , (5.63)

where ωη̄abs is the mean absorption change per particle. It can be rewritten:

ωT

T
(ω, td) ≈ a1(ω)ωε1(ω, t) + a2(ω)ωε2(ω, t), (5.64)

where the coefficients a1 and a2 are directly related to the equilibrium absorption
coefficient of the sample: A(ω) = Nabs η̄abs(ω):

a1,2 = − γ A

γεi
(ω)L , (5.65)

and are entirely determined by the linear absorption properties.
Knowing the dielectric function change of a metal, the transmission change can

thus be computed for different composite nanomaterials made of nanoparticles of
different shapes dispersed in different environment using the relevant a1 and a2
coefficients (at least for not too small objects so that the bulk electron kinetics can
be used). It is illustrated in Fig. 5.8f, in the case of an ensemble of randomly oriented
identical gold ellipsoids (prolate spheroids with long and short axis 40 nm and 10 nm,
respectively) dispersed in water. The same excitation temperature has been assumed
in each particle with ωT me

e = 100 K. The computed features are similar to those
observed in single nanoellipsoids, the main difference lying in the absence of light
polarization effect.

This approach permits comparison of the experimental and theoretical data
obtained in ensemble of metal nanoparticles. In particular it has been extensively
used in the case of nanospheres for which excellent agreement between the measured
and computed spectral shapes have been obtained both for low and high excitation
of the electrons [37, 52, 60, 137]. Note that in very diluted samples, the nonlinear
response of the matrix can also contribute, yielding additional non-resonant contri-
bution to the observed nonlinearity. Comparison of the amplitude of the signals are
however more difficult as it requires taking into account the size and shape disper-
sions of the particles and to determine their absorbed energy. Though this can be
done summing up the nonlinear contribution of the different particles, taking into
account their possibly different absorption, the precision is limited by the knowledge
of these dispersions. This problem is overcome performing experiments in single
nanoparticle, whose morphology and size can be either optically characterized [136]
or independently measured by electron microscopy [138, 139].
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5.6 Conclusion

The third order nonlinear optical response of metals and plasmonic nanomaterials has
been described focusing on the resonant incoherent mechanisms associated to energy
absorption. Because of ultrafast dephasing of coherent electron-light polarization and
of the presence of electronic absorption over a very broad spectral range, these mech-
anisms usually dominate the Kerr-type nonlinearity of metals. They are directly con-
nected to electronic and vibrational excitation and relaxation of the material and are
thus more conveniently modeled in the time-domain, describing the time-dependent
changes of the metal dielectric function due to electron excitation and lattice heating.
This time dependence reflects electron excitation and energy redistribution processes
within the metal (i.e., between the electrons and between the electrons and the lattice)
and to its environment (metal cooling). These processes can be reliably modeled in
noble metals, of key interest for plasmonic applications, using an approach devel-
oped for bulk metals. After computing modifications of the metal dielectric function,
the observable nonlinear optical response is obtained connecting the material linear
optical responses to the constituting metal dielectric function and analyzing impact
of its modification.

This modeling of the ultrafast nonlinear response has been successfully applied to
nanoparticles and nanomaterials. For not too small particles, down to about 10 nm,
the time and spectrally dependent nonlinear response can be fairly well reproduced
using the computed nonlinearity of bulk metals and taking into account the plasmonic
effects. Excellent agreement has also been found for individual metal nanoparticles,
for which both the spectral shape and amplitude of the nonlinear response have been
reproduced. As for their linear absorption, the fundamental mechanisms at the origin
of the optical nonlinearity are identical in bulk and confined metals, the main dif-
ferences lying in enhancement effects around specific wavelength due to plasmonic
resonances. The dominant nonlinear mechanism depends on the investigated time
scale. It is mostly due to modification of the interband transition when the electrons
are out of equilibrium with the lattice, i.e., one to a few picoseconds, depending on
the transient temperature of the electron gas. Modification of the lattice temperature
yields the dominant contribution on a longer time-scale. These nonlinear mechanisms
are associated to metal heating and thus to losses for the incident pulse.

For smaller sizes, down to 2-3 nm, a similar model can be used introducing
modification of the electronic and vibrational kinetics [52]. Quantum effect and
increased interaction with the environment are expected to deeply modify the above
picture for even smaller sizes, with a transition from a solid state to a molecular type
of behavior in the 2-3 nm size range as reported in thiol stabilized clusters [140].

Though we have focused on description of the nonlinear response of simple plas-
monic systems, i.e., individual metal nanoparticle and diluted ensemble of nanopar-
ticles, the above model can be extended to any kind of plasmonic materials and meta-
materials, such as dense ensemble of nanoparticles, arrays of particles or holes, or
waveguide stripes. The main point is then to properly connect the observable optical
properties of the plasmonic system with the dielectric functions of the constituting
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materials, i.e., calculate its linear optical response taking into account plasmonic
effects.
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Chapter 6
Second-Order Nonlinear Optical Properties
of Plasmonic Nanostructures

Martti Kauranen, Hannu Husu, Jouni Mäkitalo, Robert Czaplicki, Mariusz
Zdanowicz, Joonas Lehtolahti, Janne Laukkanen and Markku Kuittinen

Abstract We review our work on second-order nonlinear optical properties
of plasmonic nanostructures. In order to achieve the required non-centrosymmetry
of the structures, our samples consist of arrays of L-shaped nanoparticles and
T-shaped nanodimers. The samples are investigated by polarization-dependent
second-harmonic generation to address the tensorial nonlinear response. We show
that the response can be strongly modified by symmetry-breaking defects and other
deviations of the samples from ideal. Nonlinear sources localized to defects can
also give rise to higher-multipolar emission. The defect problem is overcome with
a recent and significant improvement in sample quality, allowing the dipole limit
of the nonlinear response to be reached. This achievement opens the path towards
plasmonic metamaterials with tailorable nonlinear properties. As a demonstration of
this possibility, we modify the nonlinear response by the mutual arrangement of the
L-shaped particles in the array. We will also summarize our numerical boundary-
element method to describe the nonlinear response of nanoparticles.

Keywords Surface plasmon · Nonlinear optics · Second harmonic generation

M. Kauranen (B) · H. Husu · J. Mäkitalo · R. Czaplicki · M. Zdanowicz
Department of Physics, Tampere University of Technology, P.O. Box 692,
33101 Tampere, Finland
e-mail: martti.kauranen@tut.fi

H. Husu
Centre for Metrology and Accreditation (MIKES), P.O. Box 9, 02151 Espoo, Finland

M. Zdanowicz
National Institute of Telecommunications, Szachowa 1, 04894 Warsaw, Poland

J. Lehtolahti · J. Laukkanen · M. Kuittinen
Department of Physics and Mathematics, University of Eastern Finland, 80101 Joensuu, Finland

T. V. Shahbazyan and M. I. Stockman (eds.), Plasmonics: Theory and Applications, 207
Challenges and Advances in Computational Chemistry and Physics 15,
DOI: 10.1007/978-94-007-7805-4_6, © Springer Science+Business Media Dordrecht 2013



208 M. Kauranen et al.

6.1 Introduction

The optical response of metal nanoparticles is dominated by particle plasmons, which
are collective oscillations of the metallic conduction electrons in the particles [1, 2].
The resonance wavelengths of the particle plasmons depend on the size and shape
of the particles as well as their dielectric environment [3]. When the particles are
arranged in an array, as is often the case for metamaterials [4, 5], near-field or long-
range coupling between the individual particles can further modify the resonances,
giving rise to sharp spectral features [6–12]. All these mechanisms provide several
degrees of freedom for tuning the resonances and optical properties of metal nanos-
tructures over broad wavelength ranges [13–16].

The plasmon resonances are associated with strong local electromagnetic fields
near the particles [17, 18]. Such “hot spots” can be used to enhance optical inter-
actions, allowing for example surface-enhanced Raman scattering from individual
molecules [19, 20]. The local-field enhancement is of particular interest for nonlinear
optical effects, which scale with a high power of the local field. The nonlinear effects
are therefore expected to be locally enhanced at the hot spots and, with judicious
design, even when the response is averaged over the whole sample volume.

In this Chapter, we focus on second-order nonlinear optical properties of plas-
monic nanostructures. Relatively strict symmetry rules constrain second-order effects
to non-centrosymmetric material systems [21]. Such effects are therefore sensitive
probes of symmetry breaking in the material structure. A well-known example of this
is the fact that the symmetry of bulk materials is necessarily broken at surfaces, which
justifies second-order techniques as probes of surfaces, interfaces, and molecular or-
der in thin films [21–24]. Such responses can only be accessed when the optical fields
couple with the direction of the sample normal. In the plane wave limit and planar
samples, the experiments therefore need to be performed at oblique angle of inci-
dence. In the context of metal nanostructures, possible sources of symmetry breaking
are deviations of the overall features of the sample from design and nanoscale defects
that can support their own highly-localized plasmonic modes [18, 25].

In our work, we have studied second-harmonic generation (SHG) from arrays
of metal nano-objects on a dielectric substrate. SHG is the most common second-
order process, which is easy to implement experimentally. In order to break their
centrosymmetry, our objects have consisted of L-shaped nanoparticles and T-shaped
nanodimers. More specifically, such objects look non-centrosymmetric even when
investigated at normal incidence to avoid the coupling of the optical beams with
the traditional surface nonlinearity with the out-of-plane character. Our work there-
fore addresses the nonlinear response arising from the shape of the particles, rather
than uses the nanoparticles to enhance the coupling with the traditional surface
nonlinearity.

The role of various multipole effects in the optical responses is an important
aspect that needs to be considered when nanostructures are discussed. In addition to
the traditional electric-dipole interaction, higher-multipole interactions, magnetic-
dipole and electric-quadrupole interactions in particular, can become important in
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the second-order nonlinear response, and they can arise from two complementary
mechanisms. First, higher-multipole interactions on the atomic level give rise to
new types of nonlinear responses that allow second-order effects even in the bulk of
centrosymmetric materials [21]. Second, field retardation across nanoparticles may
give rise to effective multipole effects, similar to the various multipole terms in the
Mie scattering theory [26, 27].

To theoretically understand the optical properties of nanoparticles, one usually
needs to solve an electromagnetic scattering problem. The geometry of the particles
is often so complicated that closed form solutions cannot be found and approximate
solutions must be sought numerically. Plasmonic structures pose challenges for nu-
merical schemes, as resonances can make the problem sensitive to its mathematical
formulation and the structures tend to give rise to sub-wavelength features in the local
fields. Modeling nonlinear effects in nanoparticles can make these issues even more
pronounced, as multiple frequencies are present and the associated wavelengths can
be very short. The early approaches on modeling have focused on SHG in spheres
or other simple geometries that can be treated analytically [24]. Recently, various,
more general methods have been considered to address particles of arbitrary shapes.

This Chapter is structured as follows. In Sect. 6.2, we introduce a theoretical for-
malism based on effective multipole nonlinearities, which provides a convenient
way to describe the experimental results. The sample fabrication and experimental
setups for SHG measurements are described in Sect. 6.3. Section 6.4 then summa-
rizes the early results on SHG from metal nanostructures where fabrication related
defects were found to play a disproportionate role in the nonlinear response, giving
rise to symmetry-forbidden signals and effective multipole effects in the response.
Section 6.5 discusses the role of the local-field distribution and its symmetry in the
nonlinear response. In Sect. 6.6, we show that recent progress in nanofabrication has
led to a significant improvement in the sample quality, allowing the desired dipole
limit in the nonlinear response to be reached. This result is an important milestone
for the development of metamaterials with tailored nonlinear properties, an example
of which is discussed in Sect. 6.7. We then discuss recent progress in the numerical
modeling of the nonlinear response in Sect. 6.8 and provide an outlook for the future
in Sect. 6.9.

6.2 Theoretical Background

6.2.1 Nonlinear Response Tensor

On the fundamental level, SHG arises from the interaction between light and matter
characterized by the second-order susceptibility tensor, which is a material quan-
tity that can be derived using microscopic theories of the light-matter interaction.
In homogeneous media, the susceptibilities are spatially invariant over macroscopic
length scales. Metal nanostructures, however, have spatial variations of the mater-
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ial parameters in a scale that typically varies in the range of a few nm to 100s of
nm. Hence, the susceptibility is a locally varying quantity. Furthermore, the local
electromagnetic fields at the fundamental frequency are strongly varying in space
in metal nanostructures. A detailed approach would therefore require taking into
account the local-field variations, the spatially varying susceptibility tensors, the
locally-generated nonlinear sources, and also, the coupling of the incoming and out-
going radiation fields to the local quantities. Such an approach would give detailed
knowledge on the nonlinear response of the nanostructures, but it is very challenging
even computationally.

We therefore use a simplified approach that allows us to treat the experiments in
a convenient way. The sample is treated as a “black box”, and only the input and
output fields are considered. The relation between the incoming and outgoing fields
is described by the nonlinear response tensor (NRT) components A jkl defined as [28]

E j (2ω) =
∑

kl

A jkl Ek(ω)El(ω), (6.1)

where E j (2ω) is the outgoing field at the second-harmonic (SH) frequency, and
Ek(ω) and El(ω) are the incoming fields at the fundamental frequency. The fields
are assumed to be plane waves, which is the case also in all our experiments.

The nonlinear response tensor is a macroscopic parameter, which implicitly takes
into account all the effects in the nanoscale, while avoiding the difficulties in their
explicit treatment. The main disadvantage is that the tensor components can depend
significantly on the experimental setup, however, even this can be used to advantage.
Comparison of NRTs under different experimental conditions provides important
insight to the nanoscopic origin of the nonlinear response of the sample. Another
benefit is that, due to its macroscopic character, NRT includes implicitly contributions
from different multipolar sources.

The nonlinear response tensor has in total 33 = 27 complex valued components.
In our measurements, the sample is always characterized at normal or near-normal
incidence using plane waves. In consequence, only the in-plane field components
need to be included in the analysis, which significantly reduces the number of com-
ponents. The coordinate system is chosen so that the fields are polarized in the
(x, y)-plane and the propagation is in the z direction. By using the described coordi-
nate system, the x- and y-polarized second-harmonic fields can be written in terms
of the fundamental field components as

E j (2ω) = A j xx E2
x (ω) + A jyy E2

y(ω) + 2A j xy Ex (ω)Ey(ω), (6.2)

where j is either x or y and the factor of two comes from the fact that for
second-harmonic generation the latter two indices are interchangeable. Only six
tensor components therefore need to be considered.

Second-harmonic generation, as well as other even-order processes, is very
sensitive to the symmetry of the nanostructures [29]. A typical example is a
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(a) (b) (c)

Fig. 6.1 a An ideal T-shaped and b L-shaped particle with a symmetry plane in y direction (dashed
gray line). c An L-shaped particle with a defect breaking the symmetry

centrosymmetric particle, like a sphere, which does not produce any second-harmonic
generation in the forward direction. Note, however, that second-harmonic signals
can be generated to sideways directions even from a sphere [24, 30–32]. For
non-centrosymmetric particles, electric-dipole-type selection rules can be applied to
NRT in order to deduce the vanishing tensor components. The investigated L-shaped
and T-shaped particles have a mirror plane along the y axis (Fig. 6.1a, b), which for-
bids half of the remaining tensor components. However, the ideal symmetry is easily
broken by sample defects (Fig. 6.1c).

6.2.2 Extension to Multipole Effects

The NRT approach can be extended to account for effective electric-dipole and
higher-multipole interactions. In the response of nanostructured materials, multipole
effects arise from the light-matter interaction Hamiltonian [33] or are described by
Mie scattering theory [3, 26, 27]. In order to take the higher multipoles into account
more explicitly than in Eqs. (6.1) and (6.2), yet on the level of the measured far-
field signals, we introduce three effective NRTs. The first includes electric-dipole
interactions only, whereas the other two account for magnetic-dipole interactions at
the fundamental frequency or the second-harmonic frequency. The magnetic tensors
include both magnetic and quadrupole effects due to difficulties in their separation
in coherent signals [34]. Emphasis on magnetic, rather than quadrupole effects, is
beneficial because they are local with respect to magnetic quantities.

It is important to note that the components of the three tensors contribute in dif-
ferent ways to the total NRT components of Eqs. (6.1) and (6.2) that can be measured
under different experimental conditions [35]. More specifically, the contributions of
each tensor to the total components can be separated by comparing SHG signals in
the reflected and transmitted directions and for metal- and substrate-side incidence
of the fundamental beam. A consequence is that if the SHG response is dominated by
the electric-dipole-only part, all four signals should behave identically. Any differ-
ences between the signals, on the other hand, provide evidence of higher-multipole
effects, which can be quantified by a detailed tensor analysis of the response.
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Independent of which multipole effects play a role, the tensor components for-
bidden by symmetry vanish for a perfectly ideal particle. The real samples, however,
always have imperfections, which leads to nonvanishing of these ideally forbidden
components. For high-quality samples, those components are expected to remain
weak. The magnitude of the forbidden components can thus be used as a measure of
sample quality.

6.3 Experimental Techniques

6.3.1 Samples and Fabrication

The samples studied in our work consist of square arrays of T- and L-shaped gold
nanoparticles or nanodimers fabricated on a fused silica substrate by the common
electron-beam lithography and lift-off techniques. The thickness of the nanoparticles
is 20 nm and there is a thin (typically 5 nm) adhesion layer of chromium between the
substrate and gold. In addition, the samples are covered by a 20 nm thick protective
layer of silica. The other sample dimensions, such as the length and width of different
parts of the particles, are varied between different samples, and the array period is
either 400 or 500 nm.

The T-shaped gold nanodimers (Fig. 6.2a, b) consist of a horizontal and a vertical
bar with the width of 125 nm and length of 250 nm. The gap separating the bars is
varied in order to investigate its effect on the optical response of the dimers. The L-
shaped gold nanoparticles (Fig. 6.2c, d) have two different arm widths: 50 or 100 nm.
The arm length is varied from 100 to 300 nm.

(a) (b) (c) (d)

Fig. 6.2 a The geometry and dimensions of T-shaped nanodimers. b Scanning electron micro-
scope image of T-dimers and the coordinate system. c The geometry of L-shaped nanoparticle and
the definitions for the dimensions. d Scanning electron microscope image of L-particles and the
coordinate system
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6.3.2 Experimental Setup

The linear optical properties of the samples were determined by measuring their
extinction spectra. These measurements were performed at normal incidence using
a fiber-coupled halogen lamp as a light source. Microscope objectives were used
to collimate light from the fiber and to focus the light into the pick-up fiber of the
spectrometer. A calcite polarizer was used to set linear polarization state and a pinhole
was placed in order to illuminate the desired sample area. Two spectrometers were
used to cover a spectral range from 400 to 1700 nm.

In order to address the nonlinear properties of the samples, several different mea-
surements were performed. All measurements are based on measuring polarization-
dependent SHG from the samples, where the fundamental beam is applied to the
sample, and transmitted only or transmitted and reflected second-harmonic signals
are detected (Fig. 6.3). As a source of fundamental light, a Nd:glass laser (Time-
Bandwidth Products GLX-200) was used, with 200 fs pulses at 1060 nm, 150 mW
average power and 82 MHz repetition rate. The polarization state of the fundamental
beam was cleaned with a high-quality Glan polarizer and modulated continuously
during the experiments by rotating a half- or quarter-wave plate. For some experi-
ments a Glan polarizer was used before the detector as an analyzer in order to select
the measured SHG polarization. Before the sample, a long pass filter was used in or-
der to block any second-harmonic radiation coming from optical components. Other
filters, to block the fundamental wavelength, were placed after the sample in the
transmission and reflection detection arms. For the detection, two photomultiplier
tubes were used with a photon counting system.

When measurements in both transmission and reflection were performed, the
sample was tilted off-normal with respect to the fundamental beam. However, the
angle was sufficiently small (less than 1◦) not to affect the results.

Fig. 6.3 Setup used for second-harmonic measurements. L lens, P polarizer, HWP half-wave
plate, QWP quarter wave plate, VISF visible blocking filter, S sample (at normal incidence or tilted
off-normal, θ less than 2◦) IRF1, IRF2 infrared blocking filters, A1, A2 analyzers, PMT1, PMT2
photomultiplier tubes
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6.4 Early Work

6.4.1 Basic Results

The L-shaped nanoparticles for SHG were originally introduced for autocorrelation
measurements of the plasmon dephasing time in metal nanoparticles [36]. The moti-
vation for our studies, on the other hand, has been to prepare arrays of nanoparticles
with tailorable nonlinear properties. Our very first results already showed that the
efficiency of SHG depends sensitively on how the individual particles are ordered in
the array [37].

Subsequent work, however, soon showed that the expected selection rules between
the allowed and forbidden signals are not well obeyed. The forbidden signals were
then traced to the broken symmetry of the actual samples compared to the ideal,
which could arise from small-scale defects or the deviations of the overall shape
from the ideal. The broken symmetry was found to lead to relatively strong SHG
responses for tensor components forbidden by the ideal symmetry [25, 38, 39]. This
was explained by the fact that small defects can attract very strong spatially confined
fields which can modify local electric-field distribution and significantly affect the
second-order response [40, 41]. In most cases, the forbidden signals were related
to chiral symmetry breaking, i.e., the loss of mirror symmetry with respect to y
axis (Fig. 6.1). More specifically, the SHG signals from nanoparticles with defects
revealed strong chirality even from an array designed to be achiral [25].

6.4.2 Multipole Effects

Various multipole sources of radiation can be distinguished in the far-field by mea-
suring their polarization dependent angular emission patterns. In the case of coher-
ent SHG, however, strong signals are detected only in the transmitted and reflected
directions, preventing the measurement of the full radiation pattern. The radiative
properties of the various multipoles in the two opposite directions lead to differ-
ences in interference between electric dipoles and higher multipoles. In particular,
the polarization-dependent SHG response allows different multipolar contributions
to SHG signal to be distinguished [42].

Experimental evidence of multipole interference in the second-harmonic radiation
from an array of metallic L-shaped nanoparticles (length 200 nm, width 100 nm,
period 400 nm) suggested that the contribution of higher multipoles was up to 20 %
of the total emitted SH field amplitude [42]. The NRT approach was used in order
to confirm previous results and to separate the dipolar and higher multipole parts of
all in-plane tensor components. The results showed that the nonlinear response was
dominated by a tensor component associated with chiral symmetry breaking of the
sample [41]. The same tensor component exhibited strong multipole character. The
relation between chiral symmetry breaking and strong multipole effects was due to



6 Second-Order Nonlinear Optical Properties of Plasmonic Nanostructures 215

Fig. 6.4 Measured polarization line shapes for an array of L-shaped gold nanoparticles. The pres-
ence of higher multipoles leads to differences in the detected signals. The labels refer to metal
incidence (M-), substrate incidence (S-), transmission (-T ) and reflection (-R). Adapted with per-
mission from Ref. [35]. Copyright 2011, Institute of Physics

defects located at two opposite sides of the particle, and dipolar and quadrupolar
SH emission arising from interference between the retarded SH wavelets emitted by
these small features.

More detailed tensor analysis, where electric and magnetic effects at the funda-
mental and second-harmonic frequencies were addressed, confirmed the important
role of higher multipoles (see differences in the SH signals in Fig. 6.4) especially at
the fundamental frequency [35]. The importance of higher multipole effects at the
fundamental frequency was suggested to be related to plasmon resonances, and thus
strong local fields, at the fundamental frequency. Furthermore, the tensor components
related to higher-multipole effects were up to 50 % larger in magnitude compared to
the dominant electric-dipole component.

6.4.3 Related Work

The nonlinear studies of metal nanostructures, of course, are not limited to our work.
The early work on SHG from rough metal surfaces was motivated by the open
questions regarding the possible enhancement mechanisms of SERS [43]. This work
was subsequently extended to near-field [44, 45] and far-field microscopy [46]. These
and more recent studies have confirmed the incoherent and depolarized character
of SHG from rough surfaces [18, 47]. Related studies have also been extended to
investigate the role of nanoparticle morphology on the SHG response [48, 49].

Individual nano-objects have also been investigated by SHG. Sharp tips can
strongly influence the local-field enhancement, especially, when the field is polarized
along the tip axis [50–53]. Furthermore, individual nanostructures and particles have
been designed to give rise to an enhanced SHG response, including nanoapertures
surrounded by a circular grating [54] and nanocups [55].
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A large body of work also exists for arrays of nanoparticles and nanoapertures.
Arrays of split-ring resonators (SRRs) were found to give rise to particularly strong
SHG when the fundamental wavelength matched the magnetic resonance of the SRR
[56–58]. However, more recent results suggested that the excitation of the magnetic
resonance is not a prerequisite for a strong response [59]. These results have been
interpreted by models based on free-electron approaches to the optical response of
metals [60]. Finally, the role of resonance enhancement in SHG from SRRs has
been addressed [61]. The interpretation was that a resonance at the fundamental
frequency is advantageous, whereas a resonance at the harmonic frequency is just a
loss mechanism, reabsorbing the generated SHG light.

Nanoapertures are interesting, because they can enhance light transmitted through
them [62]. SHG has been used to investigate holes with high [63, 64] and low
symmetry [65] as well as dimers consisting of two holes [66]. Careful inspection of
these results on apertures and particles as well as other work [67, 68] reveals that the
expected symmetry rules of SHG are only approximately fulfilled, suggesting that the
results have also been influenced by defects and imperfections of the nanostructures.

Beyond results regarding nonlinear effects in coherent SHG, incoherent
Hyper-Rayleigh scattering (HRS) has been used to characterize nanoparticles, in-
cluding their multipolar nonlinear responses. For small (diameter below 50 nm)
spherical gold and silver nanoparticles, imperfections in the particle shape give
rise to a dominant dipolar contribution in HRS. For larger particles, the response
has strong quadrupolar contribution due to retardation effects in the interaction of
the electromagnetic fields with the particles [30, 69, 70]. These results were sup-
ported by theoretical calculations, using finite element method, for particles with
noncentrosymmetric shape [31]. By using long acquisition times and signal statis-
tics, single nanoparticle sensitivity has also been achieved [71, 72]. The technique
has also been used for the discrimination of single particles from their aggregates
[73]. Furthermore, the octupolar contribution to HRS has recently been observed
[32], which can also be used to separate the surface and bulk contributions to the
signal [74]. Recently, polarization resolved SH intensity measurements on arrays
of gold nanocylinders showed that the incoherent SHG response arises from small
defects present at the surface of nanocylinders [75, 76].

6.5 Local-Field Issues

6.5.1 Gap Dependence

The optical response of individual metal nanoparticles can be significantly modified
by bringing the particles close to each other. Due to charge accumulation close
to surfaces within each particle, a very strong local field can exist within the gap
between the particles [77–80]. The consequences of this for nonlinear responses
were first tested using a dimer consisting of two gold nanospheres and four-wave
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mixing, a third-order process with no symmetry constraints [81]. One of the spheres
was attached to a scanning arm, allowing the gap size to be varied. The four-wave-
mixing signal was found to increase with decreasing gap size down to the ångstrom
regime where quantum effects start limiting the local-field enhancement for nearly
touching particles. For SHG, it has been predicted that a self-similar chain of nanodots
of decreasing size, which results in a noncentrosymmetric structure, can channel
the optical energy to the gap between the two smallest spheres, thereby enhancing
SHG [82].

In order to test these ideas for SHG, we investigated T-shaped gold nanodimers
(Fig. 6.2a, b) made of two bars, a vertical and horizontal, separated by a small gap
[83]. In contrast to four-wave mixing, we observed a more complex gap dependence
of the SHG signal. The smallest gap size did not always lead to the strongest response
and a sample with a certain gap size gave rise to almost vanishing second-harmonic
signal followed by an increase in the response for increased gap size (Fig. 6.5).

The counterintuitive behavior of the second-harmonic response could be explained
by considering the symmetry of the local electric field distributions in the middle layer
of the dimers (Fig. 6.5b, c). The local fields were calculated using the Fourier modal
method (FMM). According to the simulations, the local fields were clearly affected
by the coupling between the bars, and the symmetry properties of the local fields
correlated qualitatively very well with the measured second-harmonic response. The
main observation was that even very small structural differences in the dimer can
lead to significant changes in the details of the local electric fields and thereby in the
SHG response.

6.5.2 Chiral Symmetry Breaking of Dimers

It is evident from Fig. 6.6 that our T-dimers are not ideal either. More specifically,
their mirror symmetry is broken by the non-orthogonal mutual orientations of the

(a) (b) (c)

Fig. 6.5 a Gap dependence of the SHG signals for the allowed tensor components yyy and yxx from
dimers of the type shown in Fig. 6.2. b An example of asymmetric field distribution for the sample
with 2 nm gap. c An example of more symmetric field distribution for the sample with 25 nm gap.
The distributions correspond to the local field y-component and for x-polarized excitation, which
thus can explain the gap dependence of the yxx tensor component (red plot in Fig. 6.5a). Adapted
with permission from Ref. [83]. Copyright 2007, American Chemical Society
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vertical and horizontal bars [84]. This gives rise to chirality of the dimer, which can
be addressed by SHG with circularly-polarized fundamental light. More specifically,
chirality is expected to lead to different SHG responses for left- and right-hand
circularly-polarized fundamental beams [34, 85]. This can be quantified by the SHG
circular-difference (CD) response defined as

C DR = 2
IL HC (2ω) − IR HC (2ω)

IL HC (2ω) + IR HC (2ω)
, (6.3)

where LHC and RHC refer to the circular polarizations of the fundamental beam.
In the experiments, we observed a general trend that the CD response decreases as

the gap size increases, which is due to less coupling between the more separated bars
(Fig. 6.6a). However, the sample with the smallest gap size did not fit to the trend as its
CD-value was close to zero. The experimental results were explained by comparing
the symmetry of the local field distributions for the two circular polarizations. It is
important to note that for ideal structures, the local-field distributions for the two
cases should be mirror images of each other.

For the sample with 2 nm gap, the distributions are very similar leading to small
chiral signature (Fig. 6.6b,c). The field distributions for the sample with 15 nm gap, on
the other hand (Fig. 6.6d,e), are clearly different for the two circular polarizations,
which is experimentally observed as a large CD-value. According to our investi-
gations even very small symmetry breaking can significantly affect the local-field
distributions in the structure, which leads to a remarkable circular-difference in the
second-harmonic response. Note that such an effect is not observable in the linear
response.

(a) (b)

(c)

(d)

(e)

Fig. 6.6 a The gap dependence of the circular-difference response. The inset shows the scanning
electron microscope image of the T-nanodimer with dashed lines illustrating the slant of the vertical
bar. b–e The distribution of the local field y-component for left- and right-hand circular polarizations
of the fundamental beam for samples with gap sizes of 2 and 15 nm. Adapted with permission from
Ref. [84]. Copyright 2008, American Institute of Physics
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6.6 Improved Samples

6.6.1 Key Improvement in Fabrication

It is evident from the results discussed so far that SHG is extremely sensitive to
the nanoscale morphology and defects of metal nanostructures even when the linear
response behaves as expected. In order to design nanostructures with the desired non-
linear response, samples with higher quality are needed. It is therefore quite fortunate
to note that during the last few years, a huge improvement in fabrication methods has
been achieved [86], resulting in high-quality nanostructures with parameters pushed
up to the fabrication limit [87]. Such an improvement is also evident for our samples.
Figure 6.7 shows two samples from different years. Both low- (Fig. 6.7a) and high-
quality (Fig. 6.7b) samples were fabricated with the same method. The improvement
in the fabrication process is mainly due to a new electron-beam lithography system
with better accuracy and stability than the old one. The line quality is improved by
smaller beam step size and the improvement of the shape control is due to higher
acceleration voltage (100 kV) of the new system.

The effect of the sample quality is seen not only by comparing the scanning
electron microscope images (Fig. 6.7), but also in the linear extinction spectra of the
plasmon resonances. For the new samples, the extinction peaks are enhanced and
their linewidths are narrowed compared to the old samples (Table 6.1). Such results
are due to smaller variation in the sample dimensions, leading to less inhomogeneous
broadening of the resonance for the new samples.

Fig. 6.7 Scanning electron microscope images of arrays of L-shaped nanoparticles of a low-quality
(from 2004) and b high-quality samples (from 2009)

Table 6.1 The details of resonances for low and high-quality samples

Sample Resonance wavelength (nm) FWHM (nm)

Low-quality 1060 260
(length 200 nm, width 100 nm, period 400 nm) 1490 420
High-quality 1031 88
(length 250 nm, width 100 nm, period 500 nm) 1555 203
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6.6.2 Dipole Limit

We have characterized the new samples of L-shaped particles using the technique
described in Sect. 6.3, where the polarization-dependent SHG responses are com-
pared in reflection and transmission and for the metal- and substrate-side incidence
of the fundamental beam. The results for a given sample (arm length 250 nm, arm
width 100 nm, array period 500 nm) are shown in Fig. 6.8. The four signals are seen
to overlap almost completely, which suggests that the response is dominated by
the electric-dipole-only part of the nonlinear response tensor [88]. This is in strong
contrast to the results of the old samples shown in Fig. 6.4 [35].

Detailed tensor analysis of the results of Fig. 6.8 shows that all multipolar com-
ponents are suppressed to below 2 % of the dominant electric-dipole component of
NRT. Furthermore, due to sample improvement, the SH signals obey the selection
rules extremely well and the forbidden signals are much weaker than the allowed
ones. The quality of the sample also influences the strength of the second-harmonic
radiation, which is enhanced for the case of high-quality samples compared to the
low-quality ones.

6.7 Tailored Nonlinear Response

6.7.1 Resonance Domain Effects

The improved sample quality allows fabricating metal nanostructures with designable
optical properties, which is a prerequisite for many nanophotonics applications of

Fig. 6.8 SHG signals from an array of L-shaped gold nanoparticles as function of rotation angle
of QWP. Reprinted with permission from Ref. [88]. Copyright 2011, Optical Society of America
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the future. As a first demonstration of this possibility, we have utilized arrays of
high-quality L-shaped gold nanoparticles and introduced a new concept for tuning
the optical properties of plasmonic samples.

Our approach is based on so-called resonance-domain effects, where the period of
the structure is of the order of wavelength. In contrast to effective medium samples,
where the period must be much smaller than wavelength, the resonance-domain ef-
fects allow diffractive coupling between the individual units even when no diffraction
orders propagate in free space. By proper design, such effects can be very useful as
an additional parameter for tailoring the optical properties of plasmonic arrays. They
can lead to spectral narrowing and enhancement of the plasmonic resonances [6–12].
Similar effect has been observed also for purely dielectric structures [89, 90].

We have taken the approach even further by introducing metamolecular samples,
where the diffractive coupling between the unit cells depends on the relative orienta-
tion of the individual L-shaped gold nanoparticles in a 2 × 2-particle unit cell [91],
as shown in Fig. 6.9. Sample A acts as a reference sample with all the L particles
oriented in the same way (Fig. 6.9a inset). The coordinate system is based on the (x,
y) coordinates of the individual particles. In Sample B, the particles in every other
column are rotated by 90◦ (Fig. 6.9b inset), which implies new eigenpolarizations in
a new (u, v) coordinate system. From Sample B to Sample C, the adjacent particles in
every other row are interchanged, which appears as an inconsequential modification
that does not change the symmetry properties of the sample (Fig. 6.9c inset).

The modifications in the sample layout, however, double its period in one or two
directions, opening diffraction orders that match the wavelengths of the plasmon
resonances. This is seen to affect the resonances in a significant way leading to either
very narrow (Fig. 6.9c) or very broad (Fig. 6.9b) resonances. This approach therefore
offers a new degree of freedom in the design of plasmonic arrays.

6.7.2 Tailored SHG Response

The modified properties of samples B and C also strongly influence their SHG prop-
erties. There are two reasons for this. First, the change in the mutual orientation of the

Sample A Sample B Sample C

(a) (b) (c)

Fig. 6.9 The linear spectra of a Sample A, b Sample B and c Sample C. The insets show the layout
of the particles in the 2 × 2-particle cells. The coordinate systems are also shown. Adapted with
permission from Ref. [92]. Copyright 2012, American Chemical Society
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particles is expected to modify the tensorial properties of the SHG response, which
is obtained as the orientational average of the response of individual particles. By
this approach, one should be able to predict the SHG response of samples B and C
from that of the reference sample A.

However, the second reason proved to be even more important than the orienta-
tional distribution [92]. This arises from the fact that the efficiency of SHG depends
strongly on the existence of a resonance close to the fundamental laser wavelength.
The second-harmonic signal therefore depends both on the location of the resonance
peak and the width of the resonance. Sample C with a very narrow resonance thus
significantly enhances the second-harmonic signal, whereas the broadened resonance
of Sample B leads to decrease in the signal (Fig. 6.10).

The difference between Samples B and C is quite significant, because the maxima
of the black curves in Figs. 6.10a, b differ by a factor of 50. By combining the
orientational issues and the resonance-domain effects, we have thus been able to
significantly tailor the tensorial SHG properties of the samples by a minor change in
the sample layout.

6.8 Numerical Modeling

6.8.1 Challenges in Modeling

Numerical simulations and modeling have become an indispensable aid in the study
of optical properties of nanoparticles and metamaterials. Although the optical prop-
erties of plasmonic particles can often be modeled as a classical electrodynamical
scattering problem, this must be done with extreme care in order to get reliable results
[93, 94].

For the case of a spherical or an infinite cylindrical particle, the scattering problem
can be solved in closed form as a series expansion of multipoles [27]. For SHG,

(a) (b)

Fig. 6.10 Second-harmonic intensity from a Sample B and b Sample C as a function of the
linear input polarization state for u- and v-polarized outputs. The polarization rotation starts from u
polarization reaching the v-polarized input at 90◦. Insets show the layouts of the samples. Adapted
with permission from Ref. [92]. Copyright 2012, American Chemical Society
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however, the particle geometry is usually more complicated [41, 59, 83] and such
methods, relying on the separation of variables, are not feasible. Most numerical
methods then divide the solution domain into simple primitives, such as n-simplexes,
and represent the fields by some low-degree polynomials [95]. In addition, plasmon
resonances usually lead to field variations on a sub-wavelength scale, which makes
accurate field representation a necessity [83]. The resonances can also render the
problem sensitive, so that small variations in the excitation (also due to round-off
errors) can give rise to abrupt changes in the solution.

In plasmonic scattering problems, the division of methods into time-domain and
frequency-domain methods is also crucial. This is because the material properties
are highly frequency-dependent [1] and taking into account the dispersive material
response in the time-domain requires either time-consuming evaluation of the re-
sponse convolution or the use of simplified models obtained from first-principles
description of the response. Most often, frequency-domain descriptions are more
convenient, because they offer more flexibility. If desired, the frequency-dependent
material parameters can be calculated from first principles. On the other hand, the
parameters can also be described phenomenologically or obtained directly from ex-
periments.

These challenges are further augmented for nonlinear problems. The second-order
response can originate from the dipolar response at material surfaces [96], requiring
accurate representation of the surfaces. The response, however, can also arise from
the atomic-level higher multipoles in the bulk medium [97]. Consequently, a volume
source may exist also in the case where the solution domain is divided into parts
homogeneous in material properties. This source involves derivatives of the fields,
which can be problematic for numerical schemes near the interfaces between different
materials.

6.8.2 General Approach for Nonlinear Problems

The three-dimensional electromagnetic scattering problem is described in the
frequency-domain by the vectorial Helmholtz equations for the electric and mag-
netic fields and by the Silver-Müller radiation conditions [98]. To study SHG in
the undepleted-pump approximation, one can then first solve the fundamental fields
described by source-free Helmholtz equations, and then solve the second-harmonic
fields described by Helmholtz equations with a polarization source, which is related
to the fundamental fields by the second-order susceptibility.

The nanostructure is often composed of piece-wise homogeneous media and it is
most convenient to divide the domain of the boundary value problem accordingly. The
electromagnetic interface conditions are posed at the resulting domain interfaces. In
traditional linear problems, the tangential components of the electric and magnetic
fields are continuous at the interfaces. In the presence of a dipolar second-order
surface source, the tangential fields have jump discontinuities [24]. The nonlinear
source is then invoked via the interface conditions.
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In geometries, where the Helmholtz equation is not separable, more general, but in
certain sense approximate, methods must be employed. The numerical methods can
be divided into differential-operator and integral-operator methods. In the latter, the
Helmholtz equations are first transformed into integral equations by the use of Green’s
functions [99, 100]. This allows one to impose the radiation conditions analytically
and the solution can be represented in a compact subset of the original domain.
Although the integral-operator approach is not generally applicable to nonlinear
problems, it can be used to model harmonic generation within the undepleted pump
approximation.

6.8.3 Recent Approaches for Modeling SHG

The second-harmonic scattering problem has been addressed only recently in gen-
eral geometries, although it has been treated in simple geometries for a long time.
SHG from plane surfaces and stratified media has been done using the plane-wave
Green’s function formalism [101]. Recently, SHG from nanodefects on a planar sur-
face has also been modeled [102, 103]. Multipole solution of SHG from spherical
particles has been derived for arbitrary size parameters and especially the properties
of spheres with a small size parameter have been studied [104–106]. Multipole expan-
sion has also been used to model sum-frequency generation in spheres [107] and to
model SHG from collections of spheres [108]. The multiple scattering matrix method
has been applied for modeling SHG from cylindrical nanowires and from photonic
crystals [109, 110]. For particles whose permittivity is close to that of the surrounding
medium, the Rayligh-Gans-Debye approximation provides a good approximation,
also for modeling SHG [111].

SHG from metal nanostructure arrays has been modeled by using the finite-
difference time-domain method [60, 112] and the Fourier modal method [113, 114].
The finite element method has been used to study second-harmonic scattering and
multipolar response from particles that slightly differ from spheres [31, 32].

In recent years, the integral-operator methods have gained popularity due to rapid
developments in the theory and since computational power has increased. The vol-
ume integral method has been applied to model second-harmonic microscopy of
nanoparticles [115]. Recently it has also been applied to model SHG from nanowires,
nanoantennas and from nano-resonator chains [116, 117]. We have recently applied
the surface integral-operator boundary-element method (BEM) for modeling SHG
from arbitrary nanoparticles [118], which will be described in the following section.

6.8.4 Boundary-Element Method

BEM has been widely used for modeling scattering from ideally conducting and
dielectric bodies as well as in antenna problems. More recently, it has also gained
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popularity in modeling the linear response of plasmonic structures [79, 119–122]. In
our use, BEM has proven to be excellent in terms of accuracy, efficiency and versa-
tility. For our present implementation, we assume that the local nonlinear response
of the metal can be described by the surface susceptibility.

If a bounded domain consists of a homogeneous electromagnetic medium, it turns
out that the electric and magnetic fields are uniquely determined by their tangential
components on the domain boundary surface. Further, a linear mapping from these
surface fields to fields in the whole domain exists. This is facilitated by the Stratton-
Chu equations [123]. The mapping is given by integro-differential operators, which
involve weakly and strongly singular kernels. The result holds even for unbounded
domains, if the fields are required to satisfy the Silver-Müller radiation conditions.
This motivates the use of these integral operators as a base for a numerical method
for obtaining approximate solutions to the scattering problem. The operators are
then used for each domain separately to formulate the problem entirely on compact
boundary surfaces (Fig. 6.11a).

By using the integral operators for representing the fields, the Helmholtz equations
and the radiation conditions are implicitly satisfied and we need to enforce a set of
integral equations explicitly. This is usually done approximately by using, e.g., the
Rao-Wilton-Glisson triangular patch basis functions illustrated in Fig. 6.11b [124]
and the method of moments [125]. In the second-harmonic scattering problem, the
representation of the fields remains the same as in the linear problem, but we then
enforce the interface conditions involving the surface polarization source.

The most significant advantages of BEM are that the unknowns only appear over
a compact surface and the surface is conveniently described for the SHG problem. It
is possible to use any time-harmonic excitation source, such as a focused Gaussian
beam or an electric dipole. Spatially periodic problems can be modeled by using
the periodic Green’s function, whose evaluation can be performed efficiently by the
Ewald’s method [126].

(a) (b)

Fig. 6.11 a The solution domain decomposition characteristic to BEM. The dashed line represents
the outer boundary, which can be taken infinitely far away from the scatterers. The solid lines
represent interfaces between different subdomains, where material properties are homogeneous.
Unknown fields appear only over the solid lines. b Illustration of a typical triangulated surface
used in BEM. A Rao-Wilton-Glisson function, supported by a triangle pair, is shown, with arrows
representing surface current density
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A drawback of BEM is that the scheme results in a dense and, in general, non-
Hermitian system matrix, which then leads to quadratic scaling in memory require-
ments and in the large electrical size limit to cubic scaling in solution time if direct
solvers are used. These scalability issues can be well mitigated by the use of the fast
multipole method [127] or the adaptive cross-approximation method [128], which
can lead to nlog(n) or even linear scaling with respect to the number of unknowns.
A practical difficulty of BEM is that the singular integral kernels require special
treatment, such as singularity subtraction or some regularization such as the Duffy
transform, before the matrix elements can be evaluated accurately by numerical in-
tegration.

To illustrate second-harmonic scattering from plasmonic nanoparticles, we con-
sider an L-shaped gold particle illustrated in Fig. 6.12a. The arm length is 250 nm,
arm width is 100 nm and the particle thickness is 20 nm. As excitation, we use a
plane wave propagating in the z-direction and polarized in x- or y-directions in the
coordinate system of Fig. 6.12a. In Fig. 6.12b the extinction spectra are shown, and
we can see two resonances for both polarizations. The long wavelength resonances
at λ1 and λ3 are related to plasmon oscillations along the arms and the common res-
onance is related to plasmon oscillations along the width of the arms. In Fig. 6.12c
the total scattered second-harmonic power is shown as a function of the fundamental
wavelength. It shows that we always get some resonance enhancement. The field
enhancement is strongest at resonances of high extinction and thus it is a rather
non-trivial fact that we actually predict more second-harmonic signal at the weak-
est resonances. A similar behavior is observed for the second-harmonic intensity in
the forward direction, although it is not shown. In this example, the enhancement
results primarily from resonances at the fundamental wavelength, although slight

(a) (b)

(c)

Fig. 6.12 a L-shaped gold nanoparticle with its coordinate system, b x- and y- polarized extinction
spectra, c corresponding second-harmonic signal
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Fig. 6.13 Second-harmonic radiation patterns at resonance wavelengths λ1, λ2, λ3and λ4 for both
incident wave polarizations (see Fig. 6.12)

enhancement due to resonances at the second-harmonic frequency can be seen in the
logarithmic scale. To illustrate the multipolar nature of the second-harmonic scatter-
ing, the radiation patterns from a single particle are shown for different resonance
wavelengths in Fig. 6.13.

6.9 Outlook

During the past 10–20 years there has been a growing interest in the optical proper-
ties of metal nanostructures and metamaterials, [5, 129], resulting in the birth of the
field of nanoplasmonics. This development has been largely motivated by the possi-
bility of enhancing local electromagnetic fields in the nanostructures and their future
prospects in nanophotonics applications. It is therefore evident that after the great
progress in understanding the linear optical properties of nanoplasmonic structures,
their nonlinear properties will receive more and more attention.

In this Chapter, we have presented a comprehensive overview of our own
work regarding second-order nonlinear properties of arrays of non-centrosymmetric
nanoparticles. We have shown that the nonlinear response of such structures can
exhibit extreme sensitivity to the smallest details of the structure, including surface
defects and deviations of the shape from the ideal. However, recent improvements in
sample quality have brought us to the point where the response can be described by
effective electric-dipole nonlinearity with the expected symmetry rules fulfilled to
a very good accuracy. We consider this achievement a significant milestone, which
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opens the path towards metamaterials with truly tailorable nonlinear properties. We
have also presented the first example of this possibility by modifying the nonlinear
response by the detailed arrangement of the particles in the array.

In spite of this experimental progress, there are still several theoretical challenges
in the understanding of the nonlinear properties of plasmonic metal nanostructures.
For a proper approach, one would have to account for the locally varying fields,
nonlinear responses, and nonlinear sources. However, it is not clear at present as
to what the relative importance of the surface and bulk effects in the local second-
order response are. Our experiments on planar metal films suggest that surface terms
dominate [130]. Some theoretical approaches, on the other hand, have emphasized
bulk terms [59, 131], whereas others indicate that the weight of surface and bulk
effects depends on the experiment [117]. It is not even clear whether the various
approaches are mutually compatible, representing different limiting cases of the
same underlying approach.

The role of surface and bulk effects in the local nonlinear response may have
significant implications for the optimization of the local-field distribution in the metal
structure. The plasmonic resonances typically confine the strongest fields into small
volumes at the ends of the nanoparticles. If the local response mainly arises from the
local surface response, the present approaches poorly utilize the total surface area
of the metal particles. It will be interesting to see whether completely new sample
designs can be conceived, where the strong fields are spread over larger surface areas.

The role of resonance enhancement as such is better understood. As usual, a non-
linear response is enhanced when any combination of the interacting frequencies is
resonant with the nonlinear material. In contrast to traditional atomic, molecular, and
crystal systems, where resonant transition between the energy levels of the system
play a role, the resonances of plasmonic systems arise mainly from the local-field fac-
tors [132]. It has recently been suggested that, for harmonic generation, a resonance
at the fundamental frequency is beneficial, whereas a resonance at the harmonic fre-
quency is just a loss mechanism [61]. However, this may also be due to fact that the
strong local fields at the fundamental and second-harmonic frequency do not overlap
spatially. In principle, a resonance at the harmonic output frequency should also be
beneficial, as is the case for other cases where plasmonic systems are used to enhance
radiation. It therefore remains to be seen whether the nonlinear responses could be
further enhanced by simultaneous resonances at multiple wavelengths.

Losses are nevertheless a significant challenge for plasmonic systems. For now,
the strongest nonlinear responses have been obtained at resonances with high losses.
One approach to mitigate this may be to utilize diffractive coupling between the
particles. It can lead to sharper resonances, which may allow optimizing the losses
and resonance enhancement in an attractive way. Another possibility is to use the
higher-order plasmon resonances, which can also enhance the nonlinear response
without significantly increasing the losses.

Additional routes for optimizing the nonlinear optical properties of metal nanos-
tructures can be found by combining several particles into more complex structures.
We have demonstrated this by the T-nanodimers, where the coupling between the
bars significantly affected the nonlinear response. In the future, the dimensions of
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the bars need to be optimized for stronger coupling than so far. Also, completely
new oligomeric structures provide unexplored avenues for optimizing the plasmonic
resonances [129], which have not yet been explored for nonlinear optics.

It is fair to say that our recent achievements on the dipole limit of the second-
harmonic response and on tailoring the nonlinear response by particle ordering rep-
resent only a starting point for future work on nonlinear plasmonics. Only now do
the improved techniques allow the fabrication of nanostructures whose nonlinear
properties can be designed by the structural features of the samples. Such control
will be paramount when various new approaches are explored for the optimization
of the nonlinear responses for various applications.
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Chapter 7
Ultrafast and Nonlinear Plasmon Dynamics

Markus B. Raschke, Samuel Berweger and Joanna M. Atkin

Abstract The interaction of light with a metal mediated by surface plasmon
polaritons provides for sub-diffraction limited optical confinement and control. While
the relationship of the linear plasmon response to the underlying elementary elec-
tronic excitations of the metal is well understood in general, the corresponding
ultrafast and nonlinear plasmon interactions could provide further enhanced func-
tionalities. However, while the ultrafast and nonlinear optics of metals is an advanced
field, the understanding of the related plasmonic properties is less developed. Here
we discuss ultrafast and nonlinear wave-mixing properties of metals and metallic
nanostructures in terms of the elementary optical interactions related to electronic
band structure, plasmon resonances, and geometric selection rules. These properties
form the fundamental basis of the nonlinear plasmonic light-matter interaction. The
understanding of these fundamental properties, together with the ability to measure
and control the typically fast femtosecond intrinsic and extrinsic dephasing times,
is important for the development of applications such as enhanced nano-imaging,
coherent control of individual quantum systems, strong light-matter interaction and
extreme nonlinear optics, and nano-photonic devices.

Keywords Nonlinear optics · Metal optics · Plasmonics · Ultrafast dynamics

7.1 Electronic Excitation at Metal Surfaces: Surface Modes

7.1.1 Introduction

Optical excitations of electrons at metal surfaces play an important role in a wide
range of fundamental and applied science applications. The elementary electronic
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excitations determine carrier and thermal transport, and surface photo-chemistry
including photocatalysis, with distinct characteristics for planar and nanostructured
metal surfaces. Collective excitations in the form of surface plasmon polaritons
(SPPs) at the boundaries of metallic media permit the tailoring of optical fields
for surface-enhanced spectroscopy and sub-wavelength resolution microscopy, and
have attracted wide attention for their potential for the design of new micro- and
nano-scale photonic devices. The near-field and optical antenna properties of sur-
face plasmon polaritons, in particular, may even open the door for qualitatively new
optical physics in the near-field. This includes new ways to control the light-matter
interaction in quantum systems, negative-index and related meta-materials, or new
nonlinear optical phenomena.

The possibilities and fundamental limitations associated with several of these pro-
posed ideas are linked to the fundamental properties of surface plasmon polaritons.
Excellent books have been devoted to their linear optical properties [1–3]. Here we
will discuss in particular the ultrafast and nonlinear optical properties of surface plas-
mon polaritons, and how they relate to the elementary electronic properties of metals
that ultimately determine the radiative and non-radiative evolution of the plasmon
excitation.

We start with a brief overview of the basic properties of surface waves and plasmon
polaritons and the relevant underlying physics. We then focus on the ultrafast and
nonlinear behaviour, which just as for linear SPPs is a convolution of the intrinsic el-
ementary electronic properties of metals with extrinsic size and geometry-dependent
structural resonances. Ultrafast and nonlinear optics involving SPPs are particularly
sensitive to the combination and relative roles of intrinsic and extrinsic effects. The
goal here is to provide a microscopic discussion of the dynamic processes of SPPs
and the parameters that govern their spectral, spatial, and temporal characteristics
linked to the ultrafast electron dynamics of metals.

The nonlinear SPP response is of interest for the generation of optical frequency
components by parametric generation or nonlinear wave-mixing, optical saturation
and gain, and strong light-matter interaction, taking advantage of the nonlinearity
of the medium in combination with resonant or non-resonant field enhancement
and optical antenna effects. The study of the ultrafast dynamics of SPPs also
opens new experimental approaches for controlling the light-matter interaction and
super-resolution microscopy simultaneously on femtosecond time and nanometer
length scales as determined by the elementary processes in (homogeneous and
heterogeneous) media.

7.1.2 Linear Optical Polarization

We first discuss some basics of the light-matter interaction to define the relevant
nomenclature. The induced optical polarization of a (nonmagnetic) medium subject
to an incident electromagnetic field is given by

P(ω) = ε0χ(ω)E(ω) (7.1)
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in the frequency domain, where χ(ω) is the dielectric susceptibility, with the
frequency-dependence in general arising from material resonances. χ(ω) is related
to the relative dielectric permittivity by ε(ω) = 1 + χ(ω), and the complex index
of refraction ñ(ω) = n(ω) + iκ(ω) = ∪

ε(ω). Both χ(ω) and ε(ω) are tensor
properties, but we will initially consider the medium to be isotropic.

Alternatively, the optical response can be described by an induced electrical
current j(ω) as

j(ω) = σ(ω)E(ω) (7.2)

with electrical conductivity σ(ω). The relationship between the typically complex
σ(ω) = σ1(ω) + iσ2(ω) and ε(ω) = ε1(ω) + iε2(ω) is given by

σ(ω) = −iε0ω[ε(ω) − 1]. (7.3)

7.1.3 Time Domain Description

The standard frequency domain description of linear optics and the induced
polarization from above has an equivalent time domain formalism. In this case the
optical polarization at time t and location r is the result of the interaction of the
optical electic field E(r, t) with the medium at earlier times and possibly different
locations (non-local response):

P(r, t) = ε0

∫ ≈∫
−≈

R(r, r ∼, t ∼)E(r ∼, t − t ∼)d3r ∼dt ∼ (7.4)

where R(r, r ∼, t ∼) is the response function of the system. The response function
encodes the memory of the system, with causality dictating that for t < 0,
R(r, r ∼, t) = 0. Additionally, time invariance means that the dynamical response
of the system is unchanged by a time offset. For most situations discussed in this
chapter, we can neglect the spatial dependence of the response function.1 The lin-
ear susceptibility in the frequency domain can then be derived from the response
function as

χ(ω) =
≈∫

−≈
R(t ∼)eiωt ∼dt ∼. (7.5)

1 In general the dielectric function is wave vector dependent, ε(k, ω). However, for the regime
discussed here, we can apply the local approximation ε(k = 0, ω) = ε(ω). Non-local effects and
the associated spatial dispersion become significant for ω = vF k, where vF is the Fermi velocity.
This corresponds to k > 1 nm−1, i.e. structure sizes of a few nanometers at optical frequencies
[4]. Note, however, that this effect is different from the finite-size effect, which can also alter the
dielectric function when structure sizes become less than the characteristic scattering length or the
onset of quantum confinement.
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The well known Kramers-Kronig relationship relates real and imaginary parts of the
susceptibility to each other.

A medium is considered instantaneously responding when the excitation is far
off-resonant, meaning that the polarization at t = t0 depends only on the electric
field at that point in time. Resonant interactions are associated with memory effects,
and relaxation processes following the excitation.

The usual Fourier transform relationships hold between the time and frequency
domains and the two descriptions are complementary. While the frequency-domain
description is typically employed for monochromatic optical interactions, the time-
domain provides a more convenient way of analyzing problems where the excitation
is induced by a short optical transient. The time domain analysis is therefore useful
in particular for the dynamical properties of SPPs.

7.1.4 Electronic Properties of Metals

The spectral and temporal characteristics of SPPs for a metal are ultimately de-
termined by the intrinsic electronic structure of the supporting metal. Most typical
metals have hybridized sp bands that are parabolic to first order, with a density of
states (DOS) that varies weakly within the range of a few eV above and below the
Fermi level. sp bands resemble the free electron behavior typical for an s-metal [4].
In the absence of other electronic states or for sufficiently small photon energies, the
optical response of the metal is determined by indirect intraband excitations.

Transition metals are characterized by an occupied d-band a few eV below the
Fermi level, and weak dispersion with high DOS. Figure 7.1 shows a schematic of the
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Fig. 7.1 Schematics of the calculated density of states, band structure, and Fermi surface of gold.
Gold displays free-electron behavior for low photon energies. The absorption and color of the metal
arise primarily due to the interband transition, from the occupied d band to the unoccupied sp band
above the Fermi level. The onset is at ∝1.9 eV near the X-point, which leads to a long tail in the
experimentally observed absorption spectrum, and approximately 2.4 eV for the L-point, producing
a sharp transition. The resulting dielectric function spectral response is shown in Fig. 7.2. DOS and
band structure adapted from Ref. [5], and Fermi surface based on Ref. [6]
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band structure for Au ([Xe] 4 f 145d106s) as an example, near the high-symmetry X
and Γ points. The dominant contributions to the interband d-sp transition are shown,
with onset at ∝1.9 eV and sharp rise at 2.4 eV.

The topology of the Fermi surface resembles the free electron sphere within
the first Brillouin zone, except for the 〈111〉 direction (L neck). Near the Fermi
level EF the optical absorption is weak due to the absence of direct transitions,
but is allowed for finite ω if translational symmetry is broken. This is the case
for electrons with momenta 2π/ l, where l is the electron scattering length. With
increasing wavelength this gives rise to an increase in absorption. The effect of the
d band on the optical properties is discussed further in Sect. 7.1.6 after introducing
the free electron response.

7.1.5 Drude-Sommerfeld Model

Classically the motion of carriers in a metal can be described as ballistic under
the assumption of negligible Coulomb interaction. This is the so-called free electron
response of metals, described by the Drude-Sommerfeld model [7]. Damping, which
gives rise to ohmic resistance, can be introduced via the assumption of inelastic
and instantaneous collisions with unspecified scattering centers. This leaves as the
only key parameter the time τD between collision events, defining a relaxation rate
Γ = 1/τD . The equation of motion describing that relaxor behavior then corresponds
to that of a damped harmonic oscillator without a restoring force term, giving rise to
an apparent resonance at ω = 0 s−1. This is the Drude peak, describing the increasing
absorption with decreasing frequency as mentioned above.

It is instructive to first consider the ideal Drude response without damping. From
the equation of motion of free carriers of density n subject only to a driving external
optical field E(t), the induced optical polarization is given by

P(t) = −nex(t) = − ne2

mω2 E(t), (7.6)

with x(t) the separation of electrons from the ions under the influence of the driving
field, and m and e the electron mass and charge, respectively. Based on that expression
the dielectric function of the charge plasma can be derived as

ε(ω) = 1 − ω2
p

ω2 , with ωp =
√

ne2

ε0m
(7.7)

termed the volume plasma frequency. This dielectric function is purely real, reflecting
the absence of an energy dissipating term. The conductivity σ(ω) is then purely
imaginary, indicating a 90◦ phase shift between an applied field and the induced
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current. This reflects the hypothetical picture of a current that will persist infinitely
long after a field is no longer applied.

Including damping in the form of scattering to describe the relaxation of the
electron momentum with rate Γ = 1/τD , the resulting dielectric function takes the
form

ε(ω) = 1 − ω2
p

ω2 + iωΓ
, (7.8)

that gives rise to an imaginary component of ε(ω), which describes the ohmic
resistance.

At low frequencies ω √ 1/τD , in the so called Hagen-Rubens regime, the polar-
ization (current) is in phase with the driving field, hence real and purely dissipative.
The conductivity is mostly real and frequency independent, and for ω ∈ 0 converges
to σDC = ne2τD/m. This conductivity is also used to describe radio frequency an-
tenna resonance behavior. At intermediate frequencies, with the optical cycle period
becoming comparable to τD at mid-infrared frequencies, the imaginary conductiv-
ity Im(σ (ω)) peaks at ω = 1/τD and is equal to the real part Re(σ (ω)). Here, a
phase lag appears between the applied field and current response due to the inertia
of the electrons. Above ω = 1/τD (into the near-IR) is the relaxation regime, where
the response is characterized by decreasing real and imaginary parts with Re(σ (ω))

remaining larger than Im(σ (ω)), leading to large ohmic loss and phase lag, and
consequently high damping of SPPs.

7.1.6 Interband Transition and Hybridization

Despite the fact that the electrons obey quantum statistics, the Drude model provides a
satisfactory description for the observed dielectric function over a wide energy range
well below the interband transitions.2 However, as a purely phenomenological model
it does not provide any physical insight into the damping mechanism, and requires
modification for frequencies in the visible and near-IR as the optical frequencies
approach d-band resonances.

Table 7.1 summarizes typical Drude and other parameters for Cu, Ag, and Au as
representative free electron d-metals. From the Fermi velocity vF and τD an effective
electron mean free path l = vFτD can be estimated between successive scattering
events. To account for electron correlation effects in a heuristic manner, a correction
to the electron rest mass via an effective mass m≥ can be introduced.

The contribution of the positive ion cores to the dielectric function, which is not
included in the Drude model, can be corrected for through an empirical, largely
frequency independent term ε≈, with typical values between 1 and 10 depending

2 A quantum mechanical treatment of the electromagnetic response is provided in the form of the
Kubo model. It is based on the fluctuation-dissipation theorem, and an interaction Hamiltonian to
describe the interaction of the electromagnetic field with the charge carriers [8].
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Table 7.1 Free carrier density n, plasma frequency ωp , Drude relaxation time τD , effective mass
m≥, correction term ε≈, Fermi velocity v f , band edge Eg , skin depth at 1 eV δ, and mean free path
l for Cu, Ag, and Au. n and vF from Ashcroft and Mermin [4], τD , ε≈, and band edge from fitting
to NIR-vis data in Johnson and Christy [9], and ωp calculated from Eq. 7.9.

n [cm−3] �ωp (eV) τD = 1/Γ0 (fs) vF (nm/fs) Eg (eV) l (nm) m≥/m ε≈ δ (nm)

Cu 8.47 × 1022 8.85 6.9 ± 0.7 1.57 ∝2.4 ∝11 1.49 1.6 24
Ag 5.86 × 1022 9.17 31 ± 12 1.39 ∝3.8 ∝43 0.96 3.7 22
Au 5.90 × 1022 9.07 9.3 ± 0.9 to 14 ± 3 1.40 ∝2.15 ∝13 0.99 9.84 24

For Au, τD = 14 fs extracted from true Drude free electron behavior [10], with (9.3 ± 0.9) fs
reflecting modifications in behavior due to polarization of core electrons at shorter wavelengths [9].
(Values for 300 K.)
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Fig. 7.2 Dielectric function ε(ω) for Au for ideal Drude behavior with (red) and without damping
(green), in the near-IR to visible spectrum (a). The experimentally measured dielectric function
for Au [9] (blue) shows the deviations at high frequencies, due to the contributions from interband
transitions. b shows the corresponding conductivities Im(σ ) and Re(σ )

on, e.g., the degree of sp electron hybridization with ion core states (see Table 7.1).
The dielectric function ε(ω) then takes the form

ε(ω) = ε≈ − ω2
p

ω2 + iωΓ
, with plasma frequency ωp =

√
ne2

ε0m≥ . (7.9)

The theoretical Drude behavior of Au for the parameters from Table 7.1, with and
without damping Γ , in comparison with experimentally measured values [9, 10],
are shown for ε(ω) and σ(ω) at visible frequencies in Fig. 7.2a, b, respectively. The
Drude model provides a good fit to the data for energies below ∝2 eV, but diverges
above that energy due to the onset of sp − d interband transitions.

The absorption spectrum of d-electron metals is characterized by the direct inter-
band transition from d to sp bands (Fig. 7.1), with the absorption proceeding largely
from the top of the d-band due to its high DOS. The excitation of free carriers via
intraband sp band absorption is weak in comparison, since it requires additional
momentum scattering, primarily through phonon scattering, but also scattering with
impurities, defects, the surface, or other electrons. However, even the behavior below
the interband transition is strongly affected by the d-bands through the hybridization
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of sp and d bands (copper (3d −4sp), silver (4d −5sp), and gold (5d −6sp)), which
gives rise to mutual polarization of the s and d electrons and deviations from the
ideal free electron behavior. The d-band is therefore an integral part of the collec-
tive electron excitation, even in the regime where the free electron model effectively
describes the optical response.

The contribution of the d-bands can empirically be accounted for by writing ε(ω)

in the form ε(ω) = εDrude(ω) + εd(ω). The Drude term is well described by the sp
electron density behavior. The d-bands can then be described in an extended Drude
or Drude-Lorentz type model, with the d-electrons assigned an effective Coulomb
restoring force, and with a certain density of oscillators, to parametrize the response.

7.1.7 Optics at Metal Interfaces

Following the general discussion of the optical properties of basic metals expressed
through their dielectric function, we proceed to the description of surface plasmon
polaritons (SPPs) as a collective excitation. A unified description of optical surface
wave phenomena, in particular the notion of SPPs, was developed from the work of
Sommerfeld, Zenneck, and Wood at the beginning of twentieth century, with sub-
sequent experimental studies by Ritchie, Stern, Kretschmann, and Raether, together
with related work by Mie. The optical excitation of the free electrons at the interface
of a metal with vacuum or a dielectric medium gives rise to a collective oscillation of
the carriers. This surface charge density oscillation is associated with a time varying
optical field, hence the notion of a surface plasmon polariton.3

The electron charge density at a metal surface decays to zero on a scale comparable
to the Fermi wavelength λF (the de Broglie wavelength of electrons at the Fermi
energy, ∝0.5 nm for Au and Ag) (Fig.7.3). Despite being a dynamic surface response
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Fig. 7.3 Bulk normalized electron density ne along the surface normal direction across the metal-
vacuum interface, with distance. Friedel oscillations due to electron wavefunction scattering at
the interface characterize the density behavior inside the metal, with decay into the vacuum. The
decaying electron density can extend several tenths of a nanometer beyond the geometric interface

3 Instead of an electronic excitation underlying a surface plasmon polariton, collective excitation of
lattice vibrations can give rise to a surface phonon polariton. The scope of this chapter is limited to
surface plasmon polaritons, but the concepts discussed can readily be extended to phonon polaritons.
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the SPP is determined by the local dielectric properties of the bulk (for structures
with dimensions above the onset of finite size effects).

This surface wave phenomenon manifests itself in two dis tinct ways: either in
the form of propagating SPP modes, or as localized SPP oscillations.The former
surface-bound wave allows for energy propagation and transport over distances at the
dielectric-metal interface. In the latter, the additional restoring force introduced to the
electron motion by geometric constraints of, for example, noble metal nanoparticles,
results in spatially localized resonant charge density oscillations.These can lead to
large optical polarizabilities and local optical field enhancement. Signatures of both
propagating and localized SPP modes can be observed in random, percolated, or
clustered media.

7.1.8 Propagating Surface Plasmon Polaritons

From the wave equation with appropriate boundary conditions at a metal/dielectric
interface, the dispersion relationship for propagating SPPs is given by

k2∗(ω) = ω2

c2

εm(ω)εs

εm(ω) + εs
(7.10)

with dielectric permittivity of the metal εm(ω) and its surrounding εs (assumed
to be frequency independent in the spectral range of interest).4 Specifically for
the metal/vacuum interface the resonant condition ε(ω) = −1 results in ωsp =
ωp/

∪
1 + ε≈ for the surface plasmon resonance for a Drude metal.5

Figure 7.4 shows the ω versus k dispersion relationship for the ideal Drude surface
plasmon polariton with and without loss. The SPP is characterized by surface parallel
wave vectors that are large compared to light at optical frequencies. Only in the
region near k∗ → ω/c does the surface plasmon couple to free-space electromagnetic
radiation. For higher frequencies, the excitation requires additional momentum via,
for example, direct evanescent excitation, grating coupling, or increased index of
refraction of the adjacent medium.

Momentum conservation relates the propagating in-plane and evanescent out-
of-plane wavevectors to the incident free space wavevector via k2∞,i + k2∗,i = εi k2

0
for both the metal (i = 1) and adjacent dielectric (i = 2). Im (k∗) describes the
finite propagation length along the interface. Unlike localized SPP resonances dis-
cussed below, due to the large electric field component of propagating SPPs that
penetrates into the dielectric medium, lifetimes generally exceed the Drude damping
time. k∞,i governs the spatial extent of the evanescent field in the surface normal

4 A wide range of interesting phenomena result for the case of frequency dependent or resonant
surrounding media, but are beyond the scope of this chapter.
5 In treatments of this subject the contribution of core electrons is frequently neglected, using
ε≈ = 1. This results in εsp = ωp/

∪
2 and a plasmonic bandgap in the range of ωsp < ω < ωp .
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(green), and additional interband damping from experimental values (blue) [9, 10]. The frequency
is normalized with respect to the plasma frequency ωp

direction. The characteristic length l∞,i is defined as the distance from the surface
where |E(z)/E(z = 0)| = 1/e. For medium i with complex dielectric function
εi = ε∼

i + iε∼∼
i , l∞,i is given by

l∞,i = 1∣∣k∞,i
∣∣ = λ0

2π

(
ε∼

1 + ε2

ε2
i

)1/2

. (7.11)

The penetration depth into the metal is related to the skin depth (the 1/e penetration
depth of the optical field into the metal) δ = c/κω, with κ the imaginary part of
refractive index N = n + iκ . For gold, δ ∝ 22 − 25 nm throughout the mid IR
to visible spectral range (0.1–2 eV) [10]. The weak frequency dependence in that
regime is due to the near linear dependence of 1/κ with ω.

The SPP is sensitive to a wide range of which affect surface modifications, includ-
ing charge, contact to dielectrics, adsorbates, etc. which affect the surface dispersion
relation through the modification of the dielectric function. This is closely related
to the size and shape dependence of local SPPs in confined geometries (Mie and
Rayleigh resonances) as discussed in the following section.

7.1.9 Localized SPP in Small Metal Particles

Localized SPPs are non-propagating modes that can be excited in structurally inho-
mogeneous environments of dimensions comparable to or smaller than the optical
wavelength, i.e. where the translational invariance of the medium is lost on the length
scale of the SPP wavelength. With R defining a characteristic structural dimension
the parameter 1/R plays a role analogous to the parallel SPP wavevector for the case
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of a flat surface. For a spherical particles discussed here as an example, R is the ra-
dius. In analogy to the wavelength of a surface wave of λ = 2π/k, with wavevector
k, for a spherical particle the local mode can be described by an effective wavelength
λeff given by the circumference as λeff = 2π R. This analogy implies k ∝ 1/R.6

The optical response of a sphere of arbitrary radius can be solved exactly using
(the albeit computationally intensive) Mie theory [11, 12], discussed here and also
further below in the context of damping. Analyzing the limiting case of a spherical
particle provides insight into the basic mechanisms underlying the particle response
and its dependence on different input parameters. Many of the conclusions can be
generalized to other simple geometries, such as rods, discs, etc.

For particles which are small compared to the wavelength, the response can be
more simply described by an induced optical dipole in the lowest order approxima-
tion, when neglecting retardation. In that quasistatic limit (R √ λ), provided the
particle is still large enough to avoid finite size effects on the intrinsic dielectric
properties,7 the field distribution of the particle follows from the Laplace equation
in spherical polar coordinates. The field outside the sphere is equivalent to the field
of a point dipole at the center of the sphere with dipole moment p = ε0εsαE. The
(complex) polarizability α is given by the Clausius-Mossotti relation:

α(ω) = 4π R3 εm(ω) − εs(ω)

εm(ω) + 2εs(ω)
, (7.12)

with εm(ω) the dielectric function of the metal and εs(ω) the dielectric function of
the surrounding medium. The corresponding absorption cross section is given by
σ(ω)abs = kImα(ω). Since σ(ω)abs scales as R3, it dominates for small radii over
the scattering cross section σ(ω)scat = (k4/6π)|α|2, which scales as R6.

As seen from Eq. 7.12, for a particle in vacuum or air the Fröhlich resonance con-
dition is given by Re(εm(ω)) = −2εs , provided Im (εm) has a negligible frequency
dependence. In a Drude metal the localized SPP resonance frequency is then given
by ωres = ωp/

∪
2 + ε≈. The resonance frequency redshifts with increasing index of

refraction of the environment. Above R ∝ 50 nm the onset of retardation and mul-
tipole excitation gives rise to spectral broadening and decrease in peak amplitude,
which necessitates the application of the full Mie treatment.

The different dielectric properties of Au and Ag lead to pronounced differences
in the spectral behavior close to the SPP resonance. For small spherical Au particles
the plasmon resonance at λSPP ∝ 530 nm is already superimposed on a pronounced
increase in scattering and absorption due to the interband transition. In contrast, for
Ag with the interband transition at ∝4 eV, the SPP peak at 350 nm is dominated by

6 k ∝ 1/R also describes to first order the wavevector distribution cut-off of the near-field modes of
a structural element with characteristic dimension R, and their corresponding spatial localization.
7 For particle size with radius R ≡ λTF with λTF the Thomas-Fermi screening wavelength, the
response can be treated as that of the homogeneous bulk electron density. However, electron spill-
over, as depicted in Fig. 7.3, may become significant in sub-nanometer particles [12, 13]. In addition,
surface scattering becomes relevant when particle sizes approach the effective mean free paths of
the excited electrons. (See also footnote 1.)
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Fig. 7.5 Schematic of local SPP for a prolate spheroid with a/b for the aspect ratio of long to short
principal axis (a). Normalized polarizability squared (|α|2) calculated using using experimental Au
dielectric function [9] (b). The SPP resonance red-shifts with increasing aspect ratio starting with a
spherical particle (a = b) with fixed major axis length. The interband continuum response increasing
to high energies, has been subtracted for clarity. Fourier transform showing the underlying time
domain evolution of the plasmon dynamics (c). SPP dephasing time as a function of aspect ratio
and thus SPP energy exhibits a decrease from T2 ∝ 20 fs for the free electron behavior for energies
above ∝ 2 eV due to the interband contribution (d). Dotted lines in panel (c) show exponential fits
for extracting dephasing times shown in (d)

the free electron response. Under otherwise identical conditions, the cross sections
for Ag spheres are about one order of magnitude larger than those for Au.

A useful extension of the sphere model, also in the discussion of the damp-
ing of the plasmon response, is the SPP of an ellipsoid (a ≤= b ≤= c) or spheroid
(a = b ≤= c) shaped particle, treated in the quasistatic approximation. The longitudi-
nal polarizability for a prolate spheroid (see Fig. 7.5a) with aspect ratio a/b is given
by

α(ω) = 4πab2

3

εm(ω) − εs(ω)

εs + L(εm(ω) − εs)
, (7.13)

where L is the so-called depolarization factor, an integral reflecting the particle
aspect ratio. As shown in Fig. 7.5b the plasmon resonance shifts to lower energies
with increasing aspect ratio. The red-shift can be viewed as a result of the increase
in spatial charge separation and thus a decrease in effective restoring force. As we
will see below this allows us to predict the frequency dependence of the plasmon
dephasing and its correlation with the damping of the underlying dielectric function.
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7.2 Damping of Surface Plasmon Polaritons

7.2.1 Theory of Radiative and Nonradiative Decay

The coherent electronic excitation of a medium is followed by fast electronic de-
phasing and the subsequent absorption and decay of the polarization into electron
hole pairs.8 Here we will discuss the radiative and non-radiative relaxation dynam-
ics of SPPs as the fastest initial processes describing the light-matter interaction. We
will restrict the discussion to the homogeneous SPP response, i.e., in the absence of
ensemble effects and different inhomogeneities. We will discuss the basic physics
of plasmon dephasing in this section, followed in subsequent sections by different
frequency- and time-domain experimental linear and nonlinear spectroscopic results
for its experimental determination.

Of primary interest is the electronic dephasing, that is, the eventual loss in phase
coherence of the collective and initially phase coherent oscillation of the free electron
gas (plasma oscillation). In contrast to semiconductors, which allow for a low and
variable carrier density through controlled doping, the carrier density in metals is
comparatively high and fixed (Table 7.1). Those high carrier densities immediately
imply a high scattering and thus high dephasing rate. The SPP decoherence time is
therefore fundamentally linked to the effective relaxation time in the Drude dielec-
tric function as the response function that determines the temporal evolution of the
induced optical polarization in response to an applied optical field. Consequently, to
first order, the Drude relaxation time τD sets an upper limit for the dephasing time
T2 for a localized SPP.

The macroscopic optical response of metals in general, including the SPP reso-
nance for plasmonic metal nanostructures, reflects the underlying elementary electron
dynamics of the bound and conduction electrons involved. Specifically, the linewidth
and shape of the SPP resonance in the frequency domain, or its Fourier transform
in the form of the free-induction decay in the time domain, describes the loss in
phase coherence, which in turn is directly linked to the dielectric function. In the fol-
lowing we discuss the ultrafast electron dynamics of spherical and spheroidal metal
nanoparticles as model systems using analytical treatments. The results can readily
be generalized for more complex geometries using numerical techniques. For small
enough particles (R √ λ) the excitation is dominated by the dipolar SPP response,
with polarizability given by Eq. 7.12 for a sphere or Eq. 7.13 for a spheroid.

8 Following the typically up to 10s fs coherent evolution of electronic excitations, different processes
govern the incoherent carrier cooling and equilibration. The decay of the coherent excitation into
electron-hole pairs gives rise to hot non-equilibrium and non-thermal carrier distributions. Electron–
electron scattering leads to thermalization of the hot electrons within at most a few hundred fs and
can often be described by the Fermi liquid theory. Electron–phonon interaction on 100 fs to ps time
scales leads to the subsequent equilibration with the lattice degrees of freedom. Although not the
subject of this review, these processes lead to transient variations of the dielectric function and its
frequency dependence, ultimately due to the deposited energy in the form of heat. The processes
need to be considered in time resolved experiments, especially with high pump intensities and large
excitation densities, giving rise to a nonlinear response.
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From the calculated spectra for a Au sphere or spheroids with different aspect
ratios as shown in Fig. 7.5b, the corresponding time traces for the polarization decay
are obtained by Fourier transform as shown in Fig. 7.5c. The associated SPP lifetimes
can then either be directly deduced from the 1/e value of the maximum amplitude,
or obtained from the FWHM (Γ ) spectral line width by T2Γ = 2�. Note that the
deviation from an ideal Lorentzian spectral or exponential time behavior in this model
calculation is due to the use of the experimentally measured dielectric function ε(ω)

as an input parameter and associated deviations from the ideal Drude behavior. The
resulting plasmon lifetimes are then shown in Fig. 7.5d as a function of resonant
energy (or aspect ratio). The dephasing times are found to be in the range of 18–
22 fs for energies between 1.0 and 1.7 eV, i.e., the free electron regime. The dramatic
decrease in lifetime at 2 eV is associated with the onset of the interband transition.

The interpretation of the dephasing time is complicated by the various possible
mechanisms contributing to the loss of phase coherence in the plasmon oscillation.
In general, the measured dephasing time T2 is related to a population relaxation time
T1 of participating quantum states, and pure dephasing T ≥

2 by 1/T2 = 1/2T1 +1/T ≥
2 .

The pure dephasing contribution T ≥
2 corresponds to elastic collisions of electrons,

which destroy only the phase coherence. Because of the high carrier density and
high electron scattering rate, this is expected to be negligible for SPPs. However,
this relation has limited applicability in this case. The SPP classical polarization
is described in terms of T2, i.e. the polarization decay through inelastic electron
scattering processes, but there is no associated population prior to the decay into
electron-hole pairs after decoherence. Instead, the underlying momentum scattering,
which gives rise to the loss in phase coherence, can be associated with the Drude
scattering τD , with T2 ∝ 2τD .

Drude scattering leads to electron-hole excitation and corresponding absorption
effects, alternatively described via ohmic loss. It competes with radiative decay. The
larger effective oscillator size and polarization with increasing particle size leads to an
increase in the radiation damping contribution. For particles larger than ∝20 nm this
produces a monotonic trend of decreasing dephasing time with increasing particle
diameter.

The quasistatic ellipsoid model discussed above and shown in Fig. 7.5 neglects
radiative decay and thus provides only an upper limit for the dephasing time. In order
to account for radiation damping, we use the rigorous solution for the scattering of
a particle given by Mie theory [14, 11]. The scattering and extinction efficiencies
for the m-th multipole order is related to the scattering and extinction cross sections
σsca,m and σext,m , and the geometrical cross section G = π R2, by

Qsca,m = σsca,m
G = 2

x2 (2m + 1)(|am |2 + |bm |2), and

Qext,m = σext,m
G = 2

x2 (2m + 1)Re(am + bm), (7.14)

with x = k R = ωnd(ω)R/c. The scattering coefficients an and bn are given by
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am = Nψm(N x)ψ ∼
m(x) − ψm(x)ψ ∼

m(N x)

Nψm(N x)ξ ∼
m(x) − ξm(x)ψ ∼

m(N x)

bm = ψm(N x)ψ ∼
m(x) − Nψ(x)ψ ∼

m(N x)

ψm(N x)ξ ∼
m(x) − Nξ(x)ψ ∼

m(N x)
(7.15)

with the relative refractive index N = n p(ω)/nd(ω) of the particle (n p) and the
dielectric medium (nd ), and the Ricatti-Bessel functions ψm and ξm .

Shown in Fig. 7.6 is the result of the calculated spectral dependence of the scatter-
ing cross sections for spherical Au particles with increasing radius from Mie theory,
using the Drude model parameters with (a) and without (b) damping (based on
Eq. 7.9), and the resulting variation in dephasing times (c) [15]. The finite linewidths
in the hypothetical absence of material damping (b) reveal the radiation contribution
to the plasmon dephasing. The broader linewidths when including material damping
(a) are due to contributions from both radiative and nonradiative dephasing, i.e.,

1

T2
= 1

T rad
2

+ 1

T non−rad
2

, (7.16)

with T non−rad
2 ∝ 18 − 22 fs as discussed above. The increasing dephasing rate for

larger particles is a result of the increasing contribution of radiation damping. As a
result, the dephasing times for the damped and undamped Drude models converge
for the case of large particles where the radiation damping due to the increasing
dipole moment dominates over Drude scattering.

As SPPs oscillate in the visible spectral range with periods in the ∝ 2−4 fs range,
radiative decay times for electronic excitations in the 10 s of fs to sub 10 fs range thus
imply a very good coupling of the optical dipole to the electromagnetic density of
states in the far-field. The results can be compared to the emission of radiation from
a classical dipole or the spontaneous emission from a quantum two level system.
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In order to describe the radiative emission of a oscillating charge it must be
recognized that the radiation field in turn influences the motion of the charge itself,
termed radiation reaction. Assuming the radiation reaction force Fr as the only
damping term, the equation of motion can be written as:

m
d2r
dt2 + ω2

0mr = Fr = −mΓ0
dr
dt

= q2

6πε0c3

d3r
dt3 , (7.17)

with the Abraham-Lorentz equation to describe the reaction force coefficient:

Γ0 = 1

4πε0

2q2ω2
0

3mc3 . (7.18)

This gives rise to radiative lifetimes τ = 1/Γ0 � 20 ns for optical frequencies. An
additional term, conventionally introduced to describe the damping of a Lorentzian
oscillator of the form Γ dr/dt , contains both radiative and non-radiative contribu-
tions.

Similarly to Eq. 7.17, one can start with the induced optical polarization of the
form:

P(ω) = χ(ω)

(
Einc + i

2k3
0

3
P(ω)

)
(7.19)

with particle susceptibility χ(ω). The second term corresponds to the radiation re-
action field with:

Fr = eErad = 2

3

e2

c3 v̈ = i
2

3

ω3

c3 ex = i
2

3
k3 P, (7.20)

using x = e−iωt and v̈ = iω3x for the harmonic oscillator. Hence, both approaches
are equivalent, with the difference that the damping for the resonant denominator
for χ(ω) already contains the a priori indistinguishable radiative and non-radiative
terms.

Interestingly, the quantum description for the spontaneous emission of a two level
system provides a qualitative intuition for the high radiative emission rate as derived
from Mie theory in the femtosecond regime. The transition rate follows from Fermi’s
golden rule as

Γsp = πω0

3ε0�
|〈a|μ̂|b〉|2ρμ(r0, ω0), (7.21)

with transition dipole moment operator μ̂ and ρμ the partial local density of states
(LDOS) at the location r0 of the system, given by ρv(ω) = ω2

0/π
2c3 in vacuum.

With μba
2 = |〈a|μ̂|b〉|2 = q2r2

21 the spontaneous emission rate becomes:

Γsp = ω3
0

3πε0�c3 μba
2. (7.22)
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For an atomic emitter with typically μba = (1 electron charge)·(0.1 nm) (or 1.602
×10−29C·m), and ω0 = 2 eV/� = 3.04×1015 rad/s, the corresponding spontaneous
emission lifetime is τ = 1/Γsp = 33 ns. Since the results in the weak perturbation
regime are similar for the classical and quantum treatment (oscillator strength ∝1),
we can rewrite Eq. 7.22 in the following semi-classical form:

Γsp = 8e2π2

3ε0�

(
r

λ0

)2 1

λ0
. (7.23)

This equation highlights the size mismatch r/λ0 giving rise to the long ns radiative
lifetimes for atomic emitters. Considering the SPP nanoparticles as an optical dipole
with r = 10...100 nm, compared to the 0.1 nm of atomic dimensions, will increase
the effective size of the dipole moment and thus reduce the radiative impedance
mismatch. For a one-electron oscillator of that size the radiative rate would increase
by 102 − 106 and with that the dephasing time would decrease from the ns into
the fs regime as seen for a localized SPP of a metal nano-particle. Note that this
model merely qualitatively describes the general trend of an increase in radiative
rate with increasing oscillating charge separation, with details depending sensitively
on geometry.

7.2.2 Experimental Studies of Plasmon Lifetimes

A range of studies have investigated dephasing times from both time resolved and
spectral line width analysis (see, e.g., [16, 17] and references therein). Here we dis-
cuss frequency-domain measurements of T2, with further time-resolved experiments
provided in Sect. 7.4. Since the time scales for plasmon dephasing are in the few fem-
tosecond regime and the relative contributions of radiative and nonradiative decay
pathways are size-dependent, accurate measurements of the intrinsic dephasing time
usually require either a homogeneous sample or individual nanostructure, and var-
ious model assumptions are employed. Dark field scattering of individual particles
or persistent spectral hole burning give access to the homogeneous sub-ensemble
of an inhomogeneous sample. In hole burning, for example, the sub-ensemble with
resonance close to that of the exciting laser frequency is bleached, and the linewidth
of the spectral hole at different fluences is extrapolated to zero fluence to establish
the dephasing time.

As shown in Figs. 7.5 and 7.6, the linewidth and related quality factor Q =
ω0/Γ can be derived with a particle SPP calculation using either the Drude model
or experimental dielectric values. Most experimental results indicate 5–10 fs for
dephasing time T2, i.e. reduced from the theoretical maximum nonradiative value
of ∝18 fs. While the limiting nonradiative case has been demonstrated [18], the
shorter dephasing times often reported may result from structural inhomogeneities,
surface scattering, and radiation damping. Measurements of the dephasing times of
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Ag and Au particles as a function of their geometrical aspect ratio found that the
dephasing times for higher aspect ratios are longer than for similarly sized spherical
particles. Larger particles have shorter radiative dephasing times, consistent with
observations from Mie theory and the quasistatic approximation. The SPP decay
time for long rods approaches 20 fs, indicating that dephasing for these geometries
is dominated by nonradiative Drude relaxation τD .

The different geometric behavior is important for applications of plasmonic struc-
tures. For mediating the coupling of nanoscopic emitters to far-field emission, in-
creased radiation rates and spherical particles are preferred. However, the dephasing
time is directly related to the field enhancement T2 ◦ F , so for many applications it
is desirable to instead maximize the plasmon lifetime.

There are various momentum scattering contributions to the T2 SPP dephasing
discussed above. Electron–electron, electron–phonon, electron-defect, impurity, and
surface scattering can all contribute, so that the total decay rate is the sum of these
different contributions,

Γ =
∑

i

τ−1
i = τ−1

e−e + τ−1
e−ph + τ−1

e−de f ect (7.24)

All of these processes have been found to be largely temperature independent with
the exception of electron–phonon scattering, which shows a linear increase with
temperature, explained with a Debye model for the material-dependent electron–
phonon interaction [19].

In addition to the extrinsic dependence of particle plasmon properties on size,
with dielectric constant ε = εbulk, intrinsic size effects occur for particles where the
size approaches the mean free path of the conduction electrons. This regime, relevant
for few nanometer sized particles, is characterized by increased electron scattering
from the particle surface and ε ≤= εbulk. A radius-dependent correction to the Drude
damping can be introduced empirically [12, 20]:

Γ (R) = Γ≈ + AvF

R
(7.25)

with the bulk Drude damping Γ≈ and Fermi velocity vF . A has a value near unity
depending on particle geometry and the 1/R-dependence follows from the ratio of
the surface area to particle volume.

The short timescales and multiple relaxation processes involved in SPP dephasing
lead to difficulty in interpreting results and separating the various effects in both fre-
quency and time domain measurements. For time domain measurements, a challenge
arises that for plasmon resonances in the visible to near-IR, the SPP dynamics on few
femtosecond timescales are comparable to the shortest possible laser pulses in that
energy range (e.g. ∝2 fs optical cycle period at λSPP = 600 nm). In the following
section as an application of the nonlinear SPP response we will also discuss non-
linear optical time-resolved techniques for the investigation of the ultrafast plasmon
dynamics.
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Fig. 7.7 a Interaction potential experienced by a bound electron in a medium. The deviation from
a purely harmonic potential leads to a nonlinear optical polarization response under high driving
fields. b The far off-resonant linear polarization P(t) (red) in response to a weak driving field
E(t) (black). c The corresponding induced polarization incorporating a second-order response (i.e.
P(t) ◦ E2(t)), for example in a non-centrosymmetric material (blue), and a third-order response
(green), for large driving fields

7.3 Nonlinear Plasmon Optics

In this section we will first discuss the nonlinear optical response of metallic nanos-
tructures, nonlinear resonant effects, and selection rules. We will then show how they
can provide a means of separating the complex interaction of dephasing processes,
for example from investigation of their relative phase, and also enable precise char-
acterization of electric fields and response functions.

Thus far we have been assuming that the optical polarization P of the metal is
linear with respect to the applied optical field, which applies for the case of a relatively
weak driving field. However, if the incident driving field is comparable to electric
fields within the medium a nonlinear response can result due to the deviation from
a perfect harmonic oscillator potential experienced by the charge carriers coupling
to the optical field. This anharmonic oscillator behavior is shown schematically in
Fig. 7.7 for a bound electron in a medium. In metals, the polarization perpendicular
to the surface is particularly important for second-order nonlinearities, since at the
surface the electrons will experience an additional surface asymmetric potential.

A small nonlinearity can be treated perturbatively, so that the polarization is
expressed as a power series expansion in the driving field:

P = ε0χ
(1) E + ε0χ

(2) E2 + ε0χ
(3) E3...., (7.26)

with χ (n) the susceptibility tensor describing the material and its resonances for
the n-th (n ∇ 2) order optical process. In the following we employ explicit tensor
notation due to the importance of anisotropy and symmetry considerations in studying
the nonlinear response. The electric field E in this description is the local electric
field experienced by atoms in the medium. The local field can be modified from the
incident driving field due to the polarization of the medium itself. This local field
correction and its importance for plasmonic antennas is discussed further below.
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Fig. 7.8 Summary of common nonlinear optical processes with corresponding energy level di-
agrams. Second-harmonic generation (SHG), sum-frequency generation (SFG), and difference-
frequency generation (DFG) are second-order processes. Third-harmonic generation (THG) is a
third order process, in which three fundamental photons combine to produce a 3ω photon. Coherent
anti-Stokes Raman scattering (CARS) is a resonant four-wave mixing process. The dashed lines
represent the off-resonant excitation of a real state |m〉, |n〉, at a different energy

Just as in the linear case, the induced optical polarization can equivalently be
described in terms of a current, but this approach is often less practical because there
are typically several nonlinear source terms that may be difficult to separate in this
treatment. Both basic harmonic generation wavemixing and more complex frequency
conversion processes follow from Eq. 7.26, with relative efficiencies depending on
the spectral and symmetry characteristics of the linear and nonlinear susceptibilities
of the material.

Several representative nonlinear optical processes are summarized in Fig. 7.8.
Metals typically have bulk inversion symmetry and therefore a vanishing χ (2), so
that all even-order nonlinear responses in the bulk will vanish in the so-called di-
pole approximation, which neglects weaker higher-order, non-local contributions to
the nonlinear response such as magnetic dipole and electric quarupole terms. The
second-order nonlinear processes in metals are therefore dominated by the optical-
surface interaction.9 Second-harmonic generation (SHG) is the simplest second-
order nonlinear process, where two photons with frequency ω combine to produce
a single photon at 2ω. The material response is described by the nonlinear sus-
ceptibility χ (2)(−2ω;ω,ω), which is a third rank tensor with symmetry reflecting
the crystal symmetry and dependent on all frequencies (ω, 2ω) in the nonlinear
process. More generally, the second-order induced polarization can radiate at any
frequency which is a linear combination of the frequencies of the incident waves
(see Fig. 7.9a), allowing sum-frequency generation (SFG) with the energy conserva-
tion condition �ω3 = �ω1 + �ω2, difference-frequency generation corresponding to

9 The term surface is defined here with respect to the actual atomic layer surface boundary, extending
over a region of only a few atomic layers in the surface normal direction, where electronic structure
is distinct from translationally invariant bulk and possibly modified by surface electronic states.
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Fig. 7.9 a Schematic of interactions with two input fields, ω1 and ω2, producing output fields
with different frequency, intensity, and emission direction for a planar surface. Both surface χs and
bulk χB induced polarizations occur, with the nonlinear laws of reflection and refraction governing
the momentum conservation of the in-plane wavevector. b Resonant (χR) and non-resonant (χNR)
contributions to the second-order polarization in the complex plane and the sum χTOT, which may
produce interference and asymmetric lineshapes depending on relative phase φ

�ω3 =| �ω1 −�ω2 |, and the degenerate case (ω = ω1 = ω2) of optical rectification
giving rise to a DC field with the condition 0 = �ω − �ω.

Third-harmonic generation (THG) produces a 3ω photon from three incident pho-
tons with frequencies ω, with a rank four susceptibility tensor χ (3)(−3ω;ω,ω,ω).
The general third-order process of four wave mixing (FWM) is based on interac-
tions of three photons, with frequencies ω1, ω2, and ω3 combining to produce an
output photon with frequency ω4, with χ (3)(−ω4;±ω1,±ω2,±ω3). Since these are
odd-order processes, they are permitted for all materials, including those with cen-
trosymmetric point groups. The nonlinear Kerr effect is also a third-order process,
but one with degenerate input and output frequencies, described by the susceptibility
χ (3)(−ω;ω,ω,−ω). Here the negative sign indicates that the process involves the
annihilation of a photon, instead of the simple additive combination seen in harmonic
generation. This process is based on a change in the index of refraction and absorption
of a material proportional to the incident intensity. Another type of four wave mixing
is Coherent anti-Stokes Raman Scattering (CARS), a resonant third order interaction
with ωCARS = ωpump+ωprobe−ωStokes and χ (3)(−ωCARS;ωpump, ωprobe,−ωStokes).
Usually the pump and probe frequencies are identical, and ωStokes is typically chosen
so the difference between the frequencies is resonant with a vibrational level of the
material Ωvib = ωpump − ωStokes. This is the coherent analog to incoherent Raman
scattering, and as a vibrational spectroscopy technique provides chemical specificity.

The efficient generation of coherent nonlinear optical signals requires both energy
conservation and phase-matching conditions, that is, momentum conservation be-
tween the nonlinear and fundamental k-vectors. In the bulk, this is achieved through
the linear dispersion and associated wavelength-dependence of the index of refrac-
tion n(ω). At the interface, it arises from the selection of the input and output k-vector
directions. For rough structures or particles on the order of or smaller than λ, the
loss of translational invariance leads to changes in the momentum conservation con-
ditions, giving rise to nonlinear light scattering and in certain situations allowing
for, e.g. separation of non-local bulk and local surface susceptibilities, as discussed
further below.

These nonlinear responses provide access to conduction electrons throughout the
energy continuum, which allows probing of interband and intraband transitions. The
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enhancement provided by both intrinsic material and extrinsic structural resonances
can also lead to a significant increase in the efficiency of nonlinear processes. A
discussion of plasmon-resonant metallic systems, where the nonlinear enhancement
scales with the order of the process, can be found in Sect. 7.3.4. The coherent nature
of the wavemixing processes leads to a strong dependence on the phase of the driving
field and material response, which provides additional information for characteriza-
tion and control. This is particularly useful for the study of the ultrafast dynamics
in complex metallic nanostructures, where nonlinear techniques provide more de-
grees of freedom to probe multiple resonances and their coupling than linear optics.
The multiple driving fields in nonlinear optics also enable probing of changes in the
complex dielectric function and therefore propagation characteristics of SPPs under
strong-pump illumination, an important consideration for active plasmonics.

7.3.1 Second-Order Nonlinear Optics

Here we will provide a more detailed discussion of the origins and theory associated
with the lowest, second-order nonlinear response. Although the symmetry consid-
erations associated with even-order responses are different from odd-order nonlin-
earities, much of what follows can be readily extended to third-order and higher
nonlinear processes.

Using Einstein summation notation, the second-order optical response can be
written as

P(2)
i (ω1 + ω2) = ε0χ

(2)
i jk (−ω1 − ω2;ω1, ω2)E j (ω1)Ek(ω2) (7.27)

with i, j, k denoting the Cartesian coordinates x, y, z. Within the classical theory of
nonlinear optics, an expression for the nonlinear susceptibility can be derived from
perturbation theory based on a driven, damped harmonic oscillator, analogous to the
linear case, with the addition of a quadratic term as a first order perturbation. This
approximation results in Lorentzian resonances at the fundamental and wavemixing
frequencies,

χ
(2)
i jk (−ω1 − ω2; ω1, ω2) (7.28)

= Ne3a

ε0m2
1

(ω2
0 − (ω1 + ω2)2 − 2i(ω1 + ω2)Γ )

1

(ω2
0 − ω2

1 − 2iω1Γ )(ω2
0 − ω2

2 − 2iω2Γ )

= ε2
0ma

N 2e3 χ(1)(ω1 + ω2)χ(1)(ω1)χ(1)(ω2) (7.29)

with resonance frequency ω0 (for a single oscillator), nonlinear parameter a and
number density of atoms N . This simple model provides an intuitive description of
the optical nonlinearity, for the case of weak absorption in the material.
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In the dipole approximation of the quantum mechanical description, by consider-
ing symmetry operations, the second-order susceptibility tensor can be written as a
sum of terms of the form [21, 22]

χ
(2)
i jk (−(ω1 + ω2);ω1, ω2) = Ne3

2ε0�2

∑
lmn

ρl

[ 〈l|ri |n〉〈n|r j |m〉〈m|rk |l〉
(Ωnl + ω1 + ω2)(Ωml − ω2)

+

〈l|ri |m〉〈m|rk |n〉〈n|r j |l〉
(Ωnl + ω1 + ω2)(Ωml − ω1)

. . .
]

(7.30)

This expression describes transitions from state |l〉 (not necessarily the ground
state), through two intermediate states |m〉 and |n〉, followed by the emission of a
photon with the remaining net energy difference, e.g. �(ω1 + ω2) when returning
to the initial state. ρl is the population of the initial state, 〈l|ri |n〉 is the transition
dipole moment operator in the density matrix formalism, and �Ωnl is the energy
difference for this transition. For driving fields with frequencies far off-resonance,
all components of χ (n) are real and additive, corresponding to almost-instantaneous
transitions involving “virtual” energy levels, as shown in Fig. 7.8. Close to resonance,
Ωnl = ωnl + iΓnl , with Γnl describing the line width of the transition, arising from
damping. Therefore, χ (n) is generally complex, with resonant (R) and nonresonant
(NR) contributions to the nonlinear response,

χ (n) = χ
(n)
R + χ

(n)
NR (7.31)

As shown in Fig. 7.9b, the SHG signal then arises from the sum of these complex
contributions. Since χ

(n)
R will have a strong frequency dependence, the interference

of the two terms will produce dispersive lineshapes and even destructive interference
depending on the relative phase.10 The resonances that lead to this behavior can
involve single or multiphoton processes, with different degrees of coupling [23].

Figure 7.10 shows possible resonant SHG interactions within the Au band struc-
ture, with a plasmon resonant process from the Fermi level and an electronic reso-
nance from the d-band.The mixing of the two fundamental ω photons is essentially
an instantaneous process if the intermediate |1〉 state is a virtual energy level, as
shown for the 2ω electronic resonance. If the intermediate state is resonant with an
eigenfrequency of the material, e.g. in the form of an extrinsic SPP resonance, it has
a finite lifetime and the SHG process can accordingly involve fundamental pulses
separated by a time interval, denoted τ .

10 These asymmetric lineshapes resemble those observed in the case of the quantum interaction of
two competing pathways connecting discrete and continuous energy levels, called Fano resonances.
However, since the interference of the different nonlinear contributions does not arise from quantum
interference, but rather from the classical interference of different linear and nonlinear, and resonant
and non-resonant polarizations, the use of the Fano lineshape terminology for describing asymmetric
linear or nonlinear lineshapes may only be seen as an analogy.
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Fig. 7.10 Schematic
representation of second-
harmonic generation (SHG)
in a three level system, super-
imposed on a band structure
diagram for Au. Enhancement
of the SHG response can occur
when either ω or 2ω corre-
sponds to an eigenfrequency
of the material. As an example,
resonant excitation can occur
via an intermediate extrinsic
SPP resonance at the 800 nm
fundamental frequency, or a
two-photon sp−d resonance
involving the d-bands
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7.3.2 SHG Response at Metal Surfaces

Since the discovery of nonlinear optics, the nonlinear response of metals has received
substantial attention. However, establishing and accurately modeling the microscopic
signal sources has been difficult. The nonlinear response does not follow simply from
the linear case and includes several contributions to the nonlinear polarization, which
are typically hard to separate. These contributions, and the sensitivity of SHG to
surface modifications, hampered efforts to quantify the magnitude of χ (2) in metals.

For centrosymmetric crystals, the lowest order, bulk dipole response is forbidden,
since χ(2) ≡ 0 is the only solution to satisfy the inversion operation. The second-
order response therefore originates from surfaces and interfaces where symmetry
is broken in the sample normal direction, and higher order bulk contributions. The
higher-order terms arise primarily from magnetic dipole and electric quadrupole
interactions. They are usually small compared to the dipolar response, yet as a bulk
response might overall be comparable to a pure surface dipole response. For a cubic
crystal, the bulk polarization from these sources can be expressed as an isotropic and
anisotropic term,

P B(2ω) ◦ γ (ω)∇(E · E) + ξ(ω)E∇ E. (7.32)

In the free-electron model the anisotropic second term above is zero, but can appear if
lattice effects are taken into account. The first description of SHG in metals therefore
treated SHG as generated by the isotropic bulk term within the skin depth of the
metal [24, 25]. However, this treatment neglects the broken inversion symmetry at
the metal-dielectric interface, which leads to the additional dipole-allowed surface
SHG.

The surface polarization arises due to the rapid change of the electric field at the
metal-air interface, which produces a surface second-order polarization perpendicu-
lar and parallel with respect to the surface. The normal component of the electric field
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at the surface varies over approximately the Thomas-Fermi screening length, which
leads to the spatial confinement of the induced nonlinear current to a subnanometer
region. Therefore, a classical electromagnetic description to model surface SHG fails
and a quantum mechanical treatment is necessary in order to accurately incorporate
the surface charge density and screening effects.

The nonlinear surface polarization is described by susceptibility tensor compo-
nents, with χ

(2)
zzz,s describing the surface normal current, which is expected to be

the largest contribution to surface SHG as it is the most sensitive to the structural
and electric field change across the interface. The other components for the in-plane
surface current are χ

(2)
xxz,s , or equivalently χ

(2)
yyz,s, χ

(2)
xzx,s , etc., and χ

(2)
zxx,s = χ

(2)
zyy,s ,

due to the symmetries of the tensor.
Rudnick and Stern [26] parametrized three contributions to SHG in terms of the

phenomenological constants a(ω) ◦ χ
(2)
∞,s, b(ω) ◦ χ

(2)
∗,s , and d(ω) ◦ χ

(2)
B . In the

Drude model, b(ω) = −1, d(ω) = 1, and a(ω) was initially assumed to be close
to 1. Several models for calculating the spatial distribution of the electron density
close to the surface and deriving a(ω) were developed, chiefly using hydrodynamic
arguments to derive the surface potential within a jellium framework, which treats
the metal surface as a homogeneous gas of interacting free electrons in a background
of uniform positive charge. These models provided an intuitive description of the
system, but underestimated the magnitude of the SHG by an order of magnitude
[27]. Subsequent models used density functional theory to describe the electron–
electron interactions at the surface, which incorporates the screening of the external
electric field [28]. While these models typically agree qualitatively with experimental
observations, particularly in the long wavelength limit, other effects can also become
significant and change the relative contributions of the different polarization terms.
Additional susceptibility components may also appear when the lattice is considered.
For example, close to resonances the bound electrons may contribute more strongly
to the nonlinear polarization, producing a bulk response larger than the surface, even
in centrosymmetric materials. Consistent with this, a strong enhancement in SHG
has been observed in noble metals close to the interband transition, in addition to the
usual off-resonant nonlinear signal [29, 30].

For noble metals, the k-dependence of the electronic structure is typically ne-
glected in modeling the SHG response. The high density of states and overlapping
d-bands allow for a continuum of transitions with different symmetries, as shown
in Fig. 7.10, producing broad SHG peaks. When the excitation frequency is such
that the band gap Eg is less than 2ω, the SHG response is generally dominated by
transitions where both the initial and the intermediate states are in the d-band. This
sensitivity of SHG to the d-band can provide spectroscopic material specificity.

The literature disagrees on quantitative measurements of the magnitude of the
SHG signal and its components, due to the high sensitivity of SHG to surface structure
and contamination. In particular for Ag and Al, accurate measurements require ultra
high vacuum to ensure clean surfaces. The second-harmonic responses from Ag(111)
and Au(111) surfaces, far off-resonant at �ω = 0.81 eV, were found to be dominated
by the surface normal susceptibility, as expected [31]. Significant contributions were
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also found for other susceptibility components, with their relative magnitude varying
with fundamental frequency. In this early work, the nonlinear response of Au was
measured to be χ

(2)
s∞∞∞ ∝ 2×10−8 m/V, approximately four times larger than that of

Ag, close to 1 eV. Later measurements on thin films found that Ag has the strongest
SHG intensity of the metals, with Au slightly smaller and Cu approximately 50 % of
the Ag response [32]. With careful angle and polarization-dependent measurement
enabling separation of the bulk and surface responses in the experiment, the χ

(2)
s∞∞∞

component was determined to be approximately 200 times larger than χ
(2)
B for Au,

and ∝100 χ
(2)
B in Ag, at a fundamental photon energy of 1.55 eV. Interestingly,

Al has an inherently high bulk nonlinear response, with χ
(2)
B values an order of

magnitude higher than Au and Ag. However, it also suffers from a short skin depth
and high losses in the visible and NIR, in addition to a tendency to oxidize, so is
generally not considered as suitable for plasmonic applications.These experiments
also demonstrated a wide variation in surface susceptibility values depending on
surface roughness and growth conditions of the thin films, an effect that is the subject
of Sect. 7.3.4. Hence, the development of both accurate quantitative experiments and
an accurate quantitative theory has remained difficult.

While the discussion to this point has been limited to the nonlinear response
of metal involving single particle excitations, the next section is concerned with
nonlinear interactions involving SPPs, where the surface-sensitivity of the second-
order response becomes particularly important for the enhancement of the nonlinear
signal.

7.3.3 Nonlinear Wavemixing with Surface Plasmons

The momentum mismatch between the incident and emitted light and in plane SPP
wavevectors as shown in Fig. 7.4 means that linear excitation of SPPs on planar
surfaces typically requires an effective momentum change of the incident field in
the form of a coupling element or increase in index of refraction, for example a
grating or Kretschmann prism, respectively. However, the phase-matching conditions
associated with the different wavevectors participating in a nonlinear wavemixing
process provide additional flexibility, allowing free-space launching of SPPs via the
generated nonlinear polarization, or SPPs as the source for the nonlinear output field,
or both. While even-order processes are intrinsically surface-confined, interactions
involving SPPs are also in practice limited to the near-surface region given by the skin-
depth, even for odd-order processes. Any of the participating wavemixing fields can
be an SPP, with a wavevector that is defined by the surface dispersion relation of the
specific SPP frequency. Figure 7.11 shows a set of different possible configurations.
The surface-parallel components of the free-space k-vectors ki = ωi n(ωi ) sin θi/c,
where θi is the angle with respect to the surface normal and n(ωi ) is the index
of refraction of the dielectric medium, can then be summed appropriately with the
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Fig. 7.11 Schematics for several examples of wavemixing processes involving SPPs. Launching
of SPPs through the use of a grating or a modification of the index of refraction can lead to
enhancement in the nonlinear response (a), with surface-parallel momentum conservation condition
k1(ω1) + 2πn

a0
= k2(ω2) + kSPP(ωSPP), for integer n and grating period a0. SPPs can also be

generated through appropriate phase matching conditions between several input waves (b), e.g.,
k1(ω1) − k2(ω2) = kSPP(ωSPP) for DFG. One or more of the free-space waves in a wavemixing
process can also be substituted by an SPP, e.g. k1(ω1) + k2(ω2) − kSPP(ωSPP) = k3(ω3) for FWM
(c), or kSPP(ωSPP) − kSPP(ωSPP) = k1,∗ = 0 (d)

SPP wavevectors to achieve energy and momentum conservation for the desired
wavemixing process.

Nonlinear SPP wavemixing can also provide enhanced efficiency of the nonlinear
response. The field amplitudes of SPP modes that drive the wavemixing process are
enhanced near the surface due to the spatial field confinement, thus enhancing the
nonlinear polarization generated. An example of this process is the enhancement of
SHG observed when an SPP is excited through prism coupling onto a silver film in
the Kretschmann geometry [33]. Similar effects have been seen in third-harmonic
generation (THG) with total internal reflection [34]. The plasmon-enhanced nonlin-
ear response can interfere with other sources of nonlinear polarization in the system.
Due to their different phase relationship with the driving field, this interference will
also depend on the incident k-vector.

Early in the development of nonlinear optics, four-wave mixing (FWM) was
proposed as a mechanism for launching surface waves such as exciton polaritons,
phonon polaritons [35] or SPPs [36], by tuning the angle of illumination to achieve
wavevector matching at the sample-air interface. The efficiency of this approach is
determined by the local field enhancement and nonlinearity of the metal. While the
nonlinearity of metals is high in general, the interaction volume is limited by the skin
depth. This leads to a low efficiency in generating SPPs by wavemixing, compared
to direct excitation of an SPP of the corresponding frequency. Another approach
to achieve SPP coupling via a nonlinear process is create a transient temperature
grating by interfering two incident waves on the surface. This is a incoherent pump
induced, rather than a coherent wavemixing process. The resulting thermal gradient
gives rise to a spatial variation in the index of refraction, and thus allows for launch-
ing SPPs. This process has a much higher efficiency than FWM with femtosecond
pulses, but a much long timescale, given by thermal diffusion [37]. In order to main-
tain the ultrafast timescale of wavemixing, higher efficiencies could be possible with
a second-order process such as DFG [38] rather than FWM. These and other combi-
nations of free space and propagating SPP waves (examples shown in Fig. 7.11) have
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Fig. 7.12 Areas of local
field enhancement on rough
metallic surfaces lead to large
enhancement in both the local
and the overall nonlinear
response, here for the example
of harmonic generation nω,
with n = 2, 3 etc

ω nω

χs
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been considered for second and third order wavemixing SPPs, and recently received
renewed attention [39].

SPPs can also act as one or more of the driving fields in a nonlinear optical process
[40–42] (Fig. 7.11b, c). For the right conditions, SPPs contribute in a phase-matched
fashion to the wavemixing process, e.g. SHG generation from two SPP fields [43].

7.3.4 Surface-Enhanced Nonlinear Processes

The sensitivity to symmetry-breaking of even-order nonlinear processes makes them
an effective tool for the study of, e.g., surface electronic and vibrational resonances
and their coupling. However, the nonlinear response is weak in general, and further
limited by the small volume of surface material involved in the nonlinear interaction.
Enhancement can arise from the localization and concentration of the optical fields
near a surface or at a nanostructure. Localized plasmon resonances in noble metal
nanoparticles, clusters, and rough metal surfaces can provide a further increase in
nonlinear optical effects, and substantially change the relative bulk to surface contri-
butions in a nonlinear response.11 These “hot spots” provide enhancement in linear
optical processes as well, but with regard to an aggregate bulk response are reduced,
since energy conservation conditions require that enhancement of the field is bal-
anced by lower local fields and thus reduced optical response in other regions. In
nonlinear processes, in contrast, in one sample location the total signal enhancement
can be much higher due to the nonlinear dependence of the response on the local
optical field. The breaking of translational symmetry and spatial redistribution of the
optical field is therefore beneficial to the higher order response (See Fig. 7.12).

The enhancement of an optical response is described phenomenologically in terms
of a local field enhancement factor L(ω), which modifies the driving electric field,
analogous to the Fresnel factors for planar interfaces in reflection or the bulk local
field correction factor discussed earlier, as

11 In random, fractal, or percolated media, a mixed mode between localized and propagating SPPs
is possible. The interference of this collective mode of the local excitation and multiple scattering
in the disordered media can give rise to Anderson localization for typically uncorrelated disorder
with associated nonlinear optical effects [44].
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Eloc(ω) = L(ω)E(ω). (7.33)

A local field factor needs to be considered for all optical fields contributing to the
nonlinear process, so that the total enhancement is the combination of all enhance-
ment factors incorporating the order and coherence of the nonlinear process.12

Raman scattering is an incoherent, linear optical process, but the enhancement in
the field is approximately proportional to L2(ω) since the fundamental and Stokes
shifted Raman signal have only a small frequency separation compared to the typical
spectral variation of L(ω) for the supporting metal, and will both be enhanced.13 This
effect has been exploited for surface-enhanced Raman scattering (SERS), where the
increase in the effective cross section by a rough metal film can provide single-
molecule sensitivity [46], and is also the basis of tip-enhanced Raman scattering
(TERS). In both cases, the additional sensitivity arises from the redistribution and
near-field localization of the field in the surface normal direction. A higher-order,
coherent process such as SHG also benefits from the lateral redistribution of the
field, with areas of high field enhancement increasing the signal nonlinearly. For
SHG, the enhancement in the polarization is given by

P(2ω) = L(2ω)χ (2)(−2ω;ω,ω)L2(ω)E2(ω) (7.34)

where L(ω) and L(2ω) are the local field factors at the fundamental and SHG
frequencies respectively. The total intensity enhancement is then ◦ L2(2ω)L4(ω).
Both fields in this case might not simultaneously be enhanced due to their spectral
separation, in which case either L(ω) or L(2ω) is typically approximately equal
to 1. The same arguments apply to higher-harmonic generation processes, with the
general field enhancement behavior

P(nω) = L(nω)χ (n)(−nω;ω,ω, ...)Ln(ω)En(ω). (7.35)

In a spatially distributed nanoparticle system, the regions of highest local field
enhancement for different wavemixing processes can be in different locations, de-
pending on the resonant frequency and mode behavior. Degenerate four wave mixing
in general displays higher enhancement on rough surfaces than third harmonic gen-
eration, due to more than one driving laser field being enhanced simultaneously. It
has also been observed that harmonic generation tends to show lower enhancement
than incoherent processes such as the nonlinear Kerr effect, since the coherence of
the process can produce destructive interference in random metallic systems [44].

12 Equivalently, the enhancement can be incorporated into a modification of the susceptibility
tensor, but this description may be less intuitive for the case of, for example, surface-enhanced
Raman scattering, where the susceptibility tensor is not the intrinsic metallic system but rather a
coupled metal-molecule system.
13 Because of symmetry considerations arising from the Raman tensor, this coupling of the incident
and radiative fields is not rigorously accurate. In reality, the relative orientation of the local field
and the molecular dipole or crystallographic orientation can lead to more complex enhancement
behavior. For more details, see, e.g., Ref. [45].
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The general principles of surface- and plasmon-enhanced nonlinear optical effects
are well understood. However, details in terms of the relative surface and bulk modifi-
cations to the susceptibility, the interband and intraband transitions, finite size effects
on band structure, plasmon mediated effects in the nanostructure, and interactions
with the substrate are not yet well understood. Furthermore, the spectral dependence
and magnitude of the field enhancement varies critically depending on the surface
morphology, which is difficult to model. Grating structures can be useful for the treat-
ment of surface-enhanced nonlinear processes, since they provide a model system
for rough surfaces. Experimentally, the enhancement of nonlinear optical effects has
been demonstrated on various samples, with roughness controlled to a certain extent
through film thickness and growth conditions [47], and SHG enhancement of 104 on
a roughened Ag surface was observed early on [48], in addition to surface-enhanced
higher order processes [49]. However, just as for a planar geometry, the surface and
bulk contributions to the SHG are difficult to separate, and both may be modified by
the roughness [50].

7.3.5 Nonlinear Light Scattering

One of the complications of surface-enhanced nonlinear interactions is that the
roughness can lead to extrinsic dephasing and depolarization. Similarly, nonlinear
processes in particle systems, e.g. in gas and liquid phase, where there is a substantial
spatial inhomogeneity in local fields and nonlinear susceptibilities, will be accom-
panied by scattering. For the small particle limit, where the particles can be treated
as dipole sources (i.e. 5–10 nm for visible light), nonlinear light scattering is known
as hyper-Rayleigh scattering, in analogy to Rayleigh scattering [11]. Some confu-
sion in terminology exists in the literature, but according to the strict definition, the
nonlinear response in particles larger than 10 nm arises from coherent effects, even
when the contributions from the particles add incoherently, and so hyper-Rayleigh
scattering can be a misleading term [51].

The change in momentum conservation rules in scattering processes compared
to bulk media produces new and additional symmetry selection rules, which are
described in the context of nonlinear Mie and Rayleigh scattering with an effective
surface susceptibility χ

(n)
s [52–54]. In particular, the lack of translational invariance

and k ◦ 1/r for a single nanoscopic system lifts the phase matching condition, so that
the projection of the nonlinear k-vectors to the far field is not restricted to a particular
direction. Of the different nonlinear interactions in individual nanoparticles, third-
order processes such as THG behave similarly to linear scattering, while second-
order processes such as SHG have additional sensitivity to the particle surface and
geometric details. Furthermore, the susceptibilities for nanoparticles can be very
strongly affected by grain size and crystallinity. Analogous to the linear case, if the
particles are large enough to allow for retardation effects over the particle diameter,
higher order multipolar contributions to the nonlinear polarization occur.



7 Ultrafast and Nonlinear Plasmon Dynamics 267

ωω

2ω

2ω

P(2)(2ω) P(2)(2ω)

P(2)(2ω)

2ω

loc

P
(2)(2ω)

nonloc

loc

loc

P(2) (2ω)
nonloc

(a) (b)

Fig. 7.13 Symmetry considerations for a sphere of centrosymmetric material (a) and a conical
tip (b). No second-order response appears in the exact forward or backscattering directions for the
sphere since the surface contributions are out of phase and interfere destructively, but a non-local
response can produce SHG in other directions. For the conical tip, the broken symmetry along the
tip axis allows both local dipolar forward- and back-scattering and non-local scattering

The case of SHG from a spherical nanoparticle of a centrosymmetric material
is particularly interesting for reasons of symmetry of the second-order nonlinear
response. Inversion symmetry is broken at the surface, but the usual linear dipole
mode aligned in the direction of the pump polarization, as is responsible for linear
Rayleigh scattering, will not produce SHG as the surface contributions are 180◦ out
of phase and thus cancel (Fig. 7.13a. Instead, a non-local nonlinear polarization in
the direction of the pump wavevector arises due to retardation in the phase across
the particle diameter [55], in addition to a possible higher-order bulk response. The
orientation of the dipole and bulk quadrupole sources is such that no SHG will radiate
in the exact forward and backward directions, but radiates in non-collinear directions
with spatial distribution determined by particle size.

A conical tip, such as those used in near-field optical experiments, while
semi-infinite, can also be considered within the context of nanoscale particles. It
possesses broken mirror symmetry along the tip axis (≈mm point group symme-
try). This leads to fully local dipole-allowed SHG polarization P(2)

loc (2ω) along the tip
axis [53]. This symmetry breaking produces different polarization selection rules for
SHG in nanoscopic metal tips than for surfaces or spherical particles. In particular it
is possible to distinguish the non-local bulk P(2)

nonloc(2ω) and local surface P(2)
loc (2ω)

SHG response, since these two contributions are perpendicular (Fig. 7.14) and pro-
duce correspondingly cross-polarized SHG. As discussed above, this separation of
local and non-local SHG contributions is typically difficult for planar surfaces due
to nonlinear laws of reflection, which limit emission to the direction defined by the
incident k-vector direction. The conical geometry therefore provides a model system
for characterizing nonlinear enhancement and scattering effects, since it is a single
element structure with well-defined symmetry and permits the separation of different
SHG responses.

The symmetry-breaking behavior of a Au conical tip with apex radius ∝20 nm is
demonstrated in Fig. 7.14, for sagittal illumination of the tip exciting a local, purely
dipolar surface nonlinear polarization P(2)

loc (2ω) oriented along the tip axis, lead-
ing to radiation of SHG in the forward direction. In addition, the non-local source
perpendicular to the tip axis can radiate in the 90◦ direction. This arises from retarda-
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Fig. 7.14 Geometry of SHG scattering from a conical nano-tip (a), with forward scattering allowed
for sagittal p-polarized illumination due to the broken symmetry along the tip axis (b). For 90◦
detection both a bulk non-local and dipolar response are possible (c). Input polarization dependence
for collinear SHG (b) from a nano-sphere reference (green) and nano-cone (blue). No SHG is
observed in this geometry for the sphere, but the cone demonstrates the expected dipolar response.
SHG in 90◦ sagittal illumination/detection geometry, for p and s polarized output (c), demonstrating
the separation of dipolar surface and bulk response

tion from spatially-distributed surface nonlinear polarizations and higher-order bulk
contributions. Experimental results are shown, first with no SHG observed for a nano-
sphere in the forward-scattering direction used as a reference (Fig. 7.14b, green). In
contrast, for the tip, SHG in this geometry is dominated by the local dipole-allowed
pin − pout contribution (blue), with the expected two-fold anisotropy, i.e. intensity
ISHG ◦ cos4(θ). Similar to a planar surface, the response is due to the strong χ

(2)
s,∞∞∞

tensor element. For the tip, the weak sin − pout response (data not shown) suggests
that the χ

(2)
s,∞∗∗ susceptibility component is negligible. With sagittal illumination and

90◦ detection for a tip (c), both the local dipolar pin − pout and non-local (distributed)
bulk pin − sout and sin − sout response appear.

These results provide a demonstration that the additional degrees of freedom that
arise from the combination of intrinsic material response and extrinsic nanoscale geo-
metric properties enables separation of bulk and surface SHG. The SHG properties
again depend sensitively on the morphology and local environment of the nanos-
tructure, but the symmetry selection rules derived above are generally applicable
to asymmetric nanostructure systems. For example, the presence of a substrate will
break symmetry and relax the polarization selection rules for metal particles, and the
tip in a near-field optical experiment will have a similar effect on a local scale. With
the capability to probe both surface and bulk properties on the nanoscale, the study
of plasmonic behavior with high specificity can be achieved.
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7.3.6 Nonlinear Optical Antennas

As discussed above, particles and rough surfaces can provide large field enhance-
ments, but with the increasing interest in plasmonic applications such as imaging,
sensing, cloaking, or harvesting, a need for controllable and reproducible linear and
nonlinear responses has developed. Recent advances in chemical synthetic meth-
ods allow the production of crystalline metal nanostructures with a wide range of
shapes and sizes with nanometer-scale structural control. Single-crystal nanoparti-
cles and nanowires often exhibit strong plasmonic resonances due to their low defect
density and well-defined shape. Additionally, lithographic techniques, focused ion
beam milling, and template stripping now provide a means to generate arrays of
nanoparticles and other more complex structures such as coupled nanowires and
bowtie antennas, which have a large field enhancement in the nanogap region. For
an antenna, the SHG polarization is again given by

P (2)(2ω) = χ (2)(−2ω;ω,ω)L2(ω)L(2ω)E2, (7.36)

where the nonlinear response is given by the material susceptibility. The local field
factor L now describes enhancements due to antenna resonances in addition to
localized plasmon resonances, and so depends sensitively on geometrical and en-
vironmental properties and the coupling of plasmonic modes.

Similar to radio-frequency antennas, antenna resonances for plasmonic antennas
such as rods occur when the length of the antenna is equivalent to an integer multiple
of half the wavelength. However, the wavelength is modified from the free-space
wavelength by the SPP dispersion on the surface of the metal [56]. The precise res-
onant behavior of the antenna depends sensitively on geometrical details such as
diameter, cross-section, and shape, as well as roughness. For such simple anten-
nas, the spectral dependence of the antenna resonances is often approximated by
Lorentzian lineshapes,

L(ω) ◦
∑

l

Al

ωl − ω + iΓl
, (7.37)

where ωl are the resonance frequencies, Γl is the damping of the antenna, and Al the
relative strength of the resonance.

The local field correction arising from optical antenna resonances can provide an
enhanced nonlinear response, up to several orders of magnitude, arising from the
enhancement of the linear electric field. However, the spectral dependence of the
local field enhancement can lead to a shift in the emission spectrum, as represented
in Fig. 7.15, and therefore also an apparent spectral shift in the nonlinear response.
The nonlinear response may also not be accurately predicted by the linear far-field re-
sponse, due to the different near-field spectral density of states distribution compared
to the far-field [57].

For non-degenerate wavemixing processes, coupled antennas can be designed
such that several input frequency components are simultaneously enhanced [58, 59].
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Fig. 7.15 Interaction of light with a rod antenna, showing the spectral shift in emission due to the lo-
cal field enhancement associated with antenna and plasmon resonances at incident and wavemixing
frequencies L(ω1), L(ω2), and L(Ω)

The localization and concentration provided by optical antennas can also be utilized
to couple to highly nonlinear media, such as GaAs, ZnO, or BaTiO3, to generate a
strong nonlinear response.

7.4 Femtosecond Time-Domain Measurement of Plasmon
Dynamics

In this section we resume the discussion on plasmon dynamics from above (7.2),
demonstrating the use of the nonlinear SPP response itself for the determination
of the dynamic response underlying a localized SPP excitation, and with that the
electron dynamics of the supporting metal. An SPP, as with any optical response, is
defined in terms of both amplitude and phase, whether in the spectral or temporal
domain. The characterization of SPP dynamics, however, is frequently incomplete,
with only amplitude but no phase information obtained, e.g., in incoherent dark
field scattering. The underlying dynamics inferred from these spectral measurements
therefore rely on model assumptions such as a Lorentzian lineshape from a harmonic
oscillator model with flat spectral phase, a transform limited driving laser pulse, or
constant relative phase of the response with respect to the non-resonant background.
In addition, in frequency space the fast initial dynamics of the plasmon evolution
are encoded in the spectral wings, where the signal level is low and thus sensitive
to background and noise. Consequently, the spectral wings are very susceptible to
possible constructive or destructive interference with the background. Conventional
techniques are therefore unsuitable for the study of complex, multi-resonance, or
coupled plasmonic systems.

In contrast to incoherent techniques such as dark field scattering, nonlinear optical
techniques such as harmonic generation provide access to full amplitude and phase
for optical waveform characterization, enabling the direct measurement of plasmon
dephasing time and other electron interaction and relaxation behavior. Access to the
ultrafast nonlinear response is therefore important for developing an understanding
of field enhancement and resonance effects, since a resonance with a plasmon ex-
citation in a system can enhance the linear and nonlinear response, but will also
lead to a prolonged dephasing time [60]. Ultrafast nonlinear measurements can ad-
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ditionally provide insight into more complicated effects such as the interaction of
the various resonance decay channels and interface relaxation time, and the effect
of spatial confinement on scattering. Measurements of the temporal dynamics of
plasmon resonances in the visible range are challenging, since the few-femtosecond
resolution necessary is comparable to the shortest possible pulse duration in the de-
sirable visible to near-IR local SPP resonance energy range. However, achieving the
required temporal resolution is not necessarily limited by the shortest pulse available,
but rather by the signal to noise ratio and precise characterization of the full optical
transient in amplitude and phase.

Plasmonic interactions can be probed with interferometric homodyne or hetero-
dyne techniques or electro-optic sampling to extract the response function defined
in Eq. 7.4. These techniques can resolve the ultrashort dynamics of the plasmon re-
sponse R(t) with exact reconstruction of the response function by deconvolution
from autocorrelation and cross-correlation measurements. Spectrally resolved non-
linear techniques can provide the simultaneous phase and amplitude information
needed for the unambiguous reconstruction of both the driving field and the resonant
polarization transient response, for example through a frequency resolved optical
gating (FROG)-based technique [61].

FROG allows the determination of a pulse amplitude and phase through mea-
surement of the self-gated pulse in the time-frequency domain. The most common
implementation of FROG is based on the SHG response arising from two pulses
interacting in a medium, given by (X (t) + X (t − τ))2, where X (t) is the field tran-
sient of the pulse and τ is the time delay between the two pulses. In a non-collinear
implementation, only the cross-term is detected, so that the FROG spectrogram cor-
responds to a spectrally-resolved intensity autocorrelation, i.e.,

S(2ω, τ) ◦
∣∣∣∣
∫ ≈

−≈
X (t)X (t − τ)e−iωt dt

∣∣∣∣
2

, (7.38)

For a nonlinear medium which is far off-resonant, where the response is essentially
instantaneous, the field transient X (t) is simply proportional to the electric field of
the driving laser pulse E(t), gated by the time-delayed pulse E(t −τ). For a material
close to resonance, the finite response time leads to an induced polarization transient,
so that X (t) = P(t), with free-induction decay behavior. From the spectrogram, the
full electric field or polarization transient information can be reconstructed using an
iterative algorithm. The resonant response function R(t) can be extracted through
deconvolution.

The spectrogram can be measured in a collinear geometry, producing additional
terms and a spectrally resolved interferometric autocorrelation or IFROG:

S(2ω, τ) ◦
∣∣∣∣
∫ ≈

−≈
(X (t) + X (t − τ))2e−iωt dt

∣∣∣∣
2

(7.39)
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Fig. 7.16 Modeled plasmon response function R(t) (a), with dephasing time T2 = 20 fs, and
resulting resonant polarization response P(t) subject to driving electric field E(t) (b). Incident
pulse duration τ0 = 10 fs, and ω0 = ωpl corresponding to 800 nm wavelength (details in text)

A model of the effects of a finite response function R(t) on the resulting induced
polarization P(t) transient in the time domain is shown in Fig. 7.16. The plasmonic
response is modeled as a damped harmonic oscillator in the time domain,

R(t) = Aeiωplt e−γ t (7.40)

where A gives the effective oscillator strength, ωpl is the plasmon resonant fre-
quency, here taken to be resonant with the laser pulse, and the linewidth is given by
γ = 1/T2 = 1

20 fs−1. A sech2 laser pulse with flat spectral phase is used to simu-
late the driving field E(t), with full width at half-maximum τ0 = 10 fs and carrier
frequency ω0 = ωpl corresponding to 800 nm center wavelength, i.e.,

Esim = E0sech
1.763t

τ0
eiω0t . (7.41)

The resulting polarization arising from the driving field demonstrates the increased
response time from relaxation of the damped harmonic oscillator model of the plas-
mon resonance, with its free-induction decay lasting past the end of the laser pulse.

A possible experimental geometry for measuring SPP dynamics in the time do-
main is shown in Fig. 7.17. A high quality, well-aligned parabolic mirror is used as
the focusing element in order to minimize dispersion and maintain short pulses and
a spatially well-defined Gaussian beam profile. Phase and amplitude of the driving
laser pulse are determined using an instantaneously responding reference medium.
The BBO acts as the non-resonant medium for pulse characterization, mounted inter-
changeably with the plasmonic system without further alignment. Results are shown
in Fig. 7.18a for BBO, and the corresponding IFROG for a resonant plasmon tip
response in b, with the characteristic spectrally narrowed and temporally broadened
plasmon excitation [62]. The tip, as a resonant medium, shows spectral narrowing
due to the temporal broadening from the finite response function, and a frequency
shift in the spectrogram due to the difference between the plasmon resonance and
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Fig. 7.17 Schematic of the experimental set-up for IFROG characterization of the plasmon dynam-
ics in a single nanoscopic plasmonic structure, here with a plasmonic conical tip as an example of a
localized SPP system (a). A Mach-Zehnder interferometer with special beamsplitter and parabolic
mirror are employed to minimize dispersion and provide diffraction-limited excitation. Inset SEM
image of a Au plasmonic tip. Power dependence of tip apex SHG, showing the expected quadratic
behavior (b)

laser carrier frequencies. Figure 7.18c, d show the electric field E(t) and polarization
P(t) amplitude and phase, reconstructed from a FROG retrieval algorithm, for the
time and frequency domains. Panels (d) and (f) are the plasmon response function
from deconvolution of P(t) and E(t), with comparison to the decay for a damped
Lorentzian fit as given in Eq. 7.40. From R(t) a dephasing time of 20 ± 5 fs can
be directly determined without model assumptions, while for a tip with plasmon
frequency not resonant within the bandwidth of the driving field, the tip response
is essentially instantaneous (data not shown). The deviations from a flat phase be-
havior indicate possible inhomogeneities arising from structural imperfections in the
nanoscale tip.

The value of T2 is in agreement with the low-energy limit and energy-independent
damping, i.e. T2 ∝ 2τD ∝ 20 fs for Au, as shown in Table 7.1. This corresponds to
the non-radiative limit for decay of the plasmon response in the Drude model. Note
that this value was directly extracted from the envelope of the reconstructed plasmon
response function (green curve, Fig. 7.18) without any model assumptions.

Other nonlinear processes can also provide the necessary nonlinear polarization
and pulse characterization, and may be required since SHG relies on a non-
centrosymmetric structure. However, THG for example cannot distinguish bulk,
surface, local and non-local effects and is therefore not ideal for extracting the pure
plasmonic response. In addition to FROG-based measurements, time-resolved two-
photon photoemission can also provide information on plasmonic dephasing. Here a
two-pulse cross correlation measurement is used to measure the photoemission cur-
rent from electrons excited above the vacuum level as a function of pump-probe delay,
providing phase information, sub-femtosecond time resolution, and sub-100 nm spa-
tial resolution in combination with photoemission electron microscopy (PEEM). As
an early example, Ag nanoparticles on a grating were studied to determine both mor-
phology and dynamics of the nanostructures, with dephasing times as short as 5 fs
measured [63].
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Fig. 7.18 Interferometric SHG FROG measurement of BBO (a) and a plasmon resonant Au tip
(b). Phase (dashed) and intensity (solid line) of E(t) (blue) and P(t) (red) (c), derived from a and
b. Corresponding Fourier transforms E(ω) (blue) and P(ω) in frequency domain (e). Response
function R(t) (d) and R(ω) (f) (green) from deconvolution of (c) and (e). Damped harmonic
oscillator model response function fit RL (t) and RL (ω) shown in black. Reprinted with permission
from Ref. [62]. Copyright 2010 American Chemical Society

7.5 Ultrafast Spatio-Temporal Control with Plasmonic Antennas

The capability of optical antennas to generate high spatial localization and enhance-
ment of optical fields is also important for characterization of nanoscale materials.
While most implementations of optical antennas rely on planar geometries, spatial
control of optical fields for nano-imaging can be realized using free-standing conical
tip geometries, such as those used in scanning probe applications and discussed in
Sect. 7.3.5 as individual nanoscopic nonlinear antennas.

The sensitivity and efficiency of optical antennas can be improved by reducing
the mode-mismatch between the exciting far-field waveform and the near-field ex-
citation, for example using wedges, grooves, or cascaded structures to achieve a
continuous transformation from the micro- to the nano-scale. Taking advantage of
the radius-dependent index of refraction experienced by SPP modes on a conical
waveguide such as a noble metal tip is one approach for achieving high localization
for background-free spectroscopy and imaging [64, 65]. This adiabatic nanofocus-
ing approach has the advantage that scattering losses due to structural discontinuities
and the decreasing SPP wavelength are minimized until the apex, where a nanoscale
optical emitter is efficiently generated.

Furthermore, the nanofocusing mechanism does not rely on a resonant response
and therefore is only weakly wavelength and phase dependent, unlike most optical
antenna concepts which rely on the spectrally-limited plasmonic response. A broad
bandwidth and thus short pulse delivery to the apex is possible. Other approaches
to achieve localization rely on the interference of plasmon modes in an arbitrary
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Fig. 7.19 SEM image of Au tip, illustrating grating coupling for SPP launching and nanofocusing
to ∝ 20 nm, followed by localized apex emission (a). Interferometric spectrogram of apex-emitted
SHG radiation (b) and corresponding spectral amplitude and phase (c) from reconstruction using
a FROG algorithm, showing a transform limited pulse with bandwidth corresponding to a 16 fs
pulse duration. Demonstration of deterministic pulse control at the tip-apex, with interferometric
spectrogram of transform limited pulse and pulse with 200 fs2 applied chirp (d). Corresponding
reconstructed spectral amplitude and phase (e), showing the close agreement between the applied
and extracted phase. After Ref. [67]. Copyright 2011 American Chemical Society

metallic structure [66]. This requires some combination of spatial, spectral, and
phase pulse shaping of the driving laser field, and often uses adaptive algorithms in
order to generate the desired nanofocus at a particular spatial location. However, the
necessary local interference relies on a specific phase relationship between modes
and therefore limits the spectral and temporal degrees of freedom available at the
nanofocus. In contrast, the adiabatic nanofocusing process retains essentially all
degrees of freedom to deterministically control the optical transient at the tip apex.

A demonstration of femtosecond-nanometer spatio-temporal control based on
plasmonic nanofocusing on a tip is shown in Fig. 7.19. Femtosecond SPPs are
launched onto an electrochemically etched Au tip using a grating structure formed
by focused ion beam milling to overcome the photon-SPP momentum mismatch (a).
The grating is spatially chirped for maximum coupling bandwidth. The SPPs then
propagate along the tip towards the apex experiencing an increasing effective index
of refraction, which leads to an increasing wavevector, decreasing group velocity,
and increasing spatial confinement, thereby concentrating the electric field into the
tip apex. Figure 7.19a shows the 20 nm spatial field localization at the tip apex. The
efficiency of the process is high enough that, combined with the symmetry-breaking
along the cone axis, SHG can be generated at the tip apex. This enables full charac-
terization of the electric field transient at the apex, for example through IFROG, as
discussed previously. Furthermore, frequency-domain pulse-shaping can be used
to compensate dispersion with a multiphoton intrapulse interference phase scan
(MIIPS) algorithm [68], and also to generate pulse pairs with controllable delay
for the IFROG measurements themselves. The resulting spectrogram for a few-
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femtosecond pulse at the apex is shown in Fig. 7.19b, with reconstructed amplitude
and phase (c) corresponding to a 16 fs transform limited pulse. Arbitrary waveform
generation and full deterministic control of the re-emitted apex radiation is possible
through feedback on the nonlinear response of the tip. This capability is demon-
strated here by applying a 200 fs2 chirp to one of the pulses at the apex, as shown in
Fig. 7.19 d) and e) with the reconstructed amplitude and phase characteristics from
cross-correlation FROG (XFROG).

The localized plasmon resonance for the tips in these experiments was red-shifted
relative to the laser bandwidth, so that the tips were non-resonant and had an almost
instantaneous response. A tip with a plasmon resonance close to the laser wavelength
would provide higher field enhancement, but with achievable minimum pulse dura-
tion now limited by the plasmon dephasing time to a few 10s of fs, rather than the
SPP coupling bandwidth. The adiabatic nanofocusing process is necessarily accom-
panied by a decrease in the SPP group velocity on approaching the apex of the tip
[69]. This SPP slow-down could provide a further increase in the nonlinear response
of the tip-apex.

The grating-coupled tips demonstrate how the combination of the ultrafast opti-
cal properties of metals and intrinsic and geometry-related SPP behavior allow for
spatio-temporal nano-imaging in a scanning probe configuration. Together with the
nonlinear optical response of the tips and associated symmetry selectivity, this opens
the door for deterministic few-femtosecond optical control on the nanoscale.

More generally, the design and optimization of optical antennas for nonlinear
applications requires the ability to accurately characterize field enhancement and
mode distribution properties within an antenna. Both electron-based techniques and
photon-based techniques have been used for antenna characterization. Conventional
far-field optical characterization can provide information about the interaction be-
tween an optical antenna and propagating light, such as the relationship between
device geometry and resonant frequency. While this can be applied over a broad
frequency range, it suffers from comparatively low spatial resolution, and the linear
response of an antenna does not necessarily predict the nonlinear response, due to,
for example, coupling between the driven plasmon and surrounding dielectric reso-
nances. SHG, two-photon photoluminescence, or FWM can provide slightly higher
spatial resolution and more accurate determination of nonlinear spectral properties,
but do not provide knowledge of the underlying resonant modes and their associated
spatial field distribution within an antenna. Electronic techniques, such as electron
energy loss spectroscopy (EELS), transmission electron microscopy (TEM), and
cathodoluminescence can facilitate the extraction of spatially detailed information,
with nanometer resolution of modes and plasmonic field enhancement.

In recent years, near-field optical techniques such as scattering-scanning near-
field optical microscopy (s-SNOM) have been utilized for high spatial resolution
mapping of linear and nonlinear antenna properties, offering information about the
local optical electric field magnitude and phase and interactions of modes in cou-
pled nano-optical plasmonic and optical antenna structures. With these techniques
it is possible to spatially and spectrally probe the microscopic electric field distribu-
tion, and correlate details of the field with geometrical features. Such measurements
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have demonstrated spectral shifts between near-field and far-field, and confirmed
that within nanoparticle geometries the nonlinear response remains sensitive to devi-
ations in shape and other defects. These techniques are applicable to various antenna
geometries and wavelengths, provide design criteria for more complex architectures
and modeling, and can facilitate impedance matching of optical antennas to quantum
systems [56].

The adiabatic focusing tips provide an avenue to extend ultrafast spectroscopic
imaging from its conventional far-field spatial resolution limit to the nanoscale. His-
torically, the development of femtosecond pulsed lasers has enabled the investigation
of ultrafast dynamics on the characteristic time scales of the elementary electronic
and vibrational excitations in matter, with direct and selective spectroscopic access
to the corresponding energy levels. The combination with spectral pulse shaping [70]
provides the additional capability to control the coherent evolution of these quantum
excitations (quantum coherent control), which allows steering of chemical reactions
or control of optical and electronic material properties [71].

It would be highly desirable to extend the spatial resolution to the nanoscale to
simultaneously access ultrafast dynamics on their associated natural length scales
of the elementary electronic, visible, and spin excitations. The potential use of plas-
monic properties to achieve this nanometer-femtosecond spatio-temporal control of
optical excitations for imaging and spectroscopy has attracted much interest. With
such a nano-optical technique, individual molecules, quantum dots, and plasmonic
structures, for example, could be investigated even in dense inhomogeneous me-
dia, in addition to spatial and non-local dynamics to probe transport, propagation,
and spatial coupling properties. The adiabatic focusing tips are one optical antenna
concept for overcoming the diffraction limit and providing the desired high spatial
field localization, with high bandwidth, and high off-resonant field enhancement thus
supporting even the shortest possible few-fs optical pulses.

Quantum dots

J-aggregates

Dye molecules

x
y

SPP

Grating tip
τ

nω, Δω...

feedback

Fig. 7.20 Implementation of nanofocused, background-free coherent control and interaction
dynamics experiments on single quantum emitter. Feedback for optimization is based on the lumi-
nescent or nonlinear response of the coupled tip-sample system
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A possible implementation of adiabatic nanofocusing for imaging and quantum
coherent control is shown in Fig. 7.20. Nanofocusing in combination with a pulse
shaper can be used for linear, nonlinear, and ultrafast imaging of individual quantum
systems or mesoscale variations in bulk and dense media. The ability to control
pulse shape and phase enables pump-probe techniques including collinear FWM
and 2D spectroscopy. With feedback on the nonlinear response nω,Δω, etc. of
the coupled tip-sample system, the extension to quantum coherent control of the
excitation pathways and evolution of the quantum system can also be realized.

7.6 Outlook

In spite of the importance of the nonlinear and ultrafast properties of metals in gen-
eral, and metal surfaces and nanostructures in particular, for the understanding of
phenomena such as enhancement and dephasing associated with plasmonic excita-
tions, considerably less work has focused on these aspects compared to linear and
continuous wave spectroscopies. Here we have attempted to summarize the fun-
damental properties of metals and their plasmonic excitations and their effect on
nonlinear behavior in order to provide a guide for future extensions of plasmonic
studies. Optimization and control of these properties will be important for increasing
sensitivity and efficiency in a wide variety of sensing and optical switching applica-
tions, chemical spectroscopy, nano-scale imaging, or coherent control on the single
quantum limit. Thus far little nanoscale imaging using a nonlinear response of a
material system has been demonstrated [72], though there has been interest in fur-
ther increasing the nonlinear response through engineered nanostructures with a bulk
nonlinear material at the tip, which in combination with field enhancement could pro-
vide high wave-mixing conversion efficiencies and provide access to the additional
spectroscopic and symmetry degrees of freedom enabled by nonlinear techniques.

In the ultrafast regime, recent work has demonstrated the control of mode coher-
ence in plasmonic systems [73], in spite of the extremely short plasmon dephasing
times. Control of coupled plasmonic-photonic modes, which have longer dephasing
times and are therefore easier to direct, has been demonstrated, as well as nonlinear
wavemixing in plasmonic-photonic waveguides [57]. Furthermore, taking advantage
of SPP properties such as nanofocusing provides one of the most promising routes to
achieving full spatio-temporal control of individual nanostructures and nanosystems.
This would enable the investigation of ultrafast dynamics on the characteristic time
scales of the elementary electronic and vibrational excitations in matter, and with
direct and selective spectroscopic access to the corresponding energy levels.

Plasmonic field enhancement has also been proposed as a means to achieve
the necessary peak intensities for high harmonic generation (HHG). However, the
nanoscopic interaction volume for plasmonic structures in comparison to conven-
tional intracavity HHG suggests that the HHG yield would be small [74]. Multiphoton
or high field fluorescence processes can however be effective below the ionization
threshold [75], in addition to electron emission [76]. Strong field gradients could
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be utilized for nanomanipulation and trapping [77]. Additionally, strong coupling
of quantum states to light can lead to qualitatively new nonlinear optics, beyond
the perturbative regime discussed here. Structures based on molecular, quantum-
dot, or quantum-wire exciton resonances coupled to plasmonic metal nanostructures
can be optimized to form hybrid modes with large optical nonlinearities as a re-
sult of the quantum interference of the exciton dipole oscillation and the plasmonic
modes, providing new quantum states and allowing new avenues for ultrafast control
[78]. Further improvements in design and control or plasmonic structures could also
provide access to non-local nonlinear effects.
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Chapter 8
Controlling Thermal Radiation
with Surface Waves

Philippe Ben-Abdallah, François Marquier and Jean-Jacques Greffet

Abstract The purpose of this chapter is to show that surface waves can be used to
tailor radiative heat transfer. The first part of the chapter deals with the modification of
radiative properties of surfaces. By taking advantage of surface waves, it is possible to
design both the angular and the spectral characteristics of the emissivity/absorptivity.
This paves the way to the design of smart incandescent IR sources with unprecedented
properties. The second part of the chapter deals with the radiative heat transfer at the
nanoscale. Here, the flux can be orders of magnitude larger than the flux given by
Stefan-Boltzmann law. Surface waves can be used to enhance this flux and also to
control its spectrum. Applications to heat flux modulators and thermophotovoltaics
devices are discussed.

Keywords Plasmon · Thermal radiation · Surface waves

8.1 Surface-Waves Assisted Thermal Emission

8.1.1 Introduction to Thermal Emission

8.1.1.1 Radiometric Point of View

In this section we briefly introduce the definitions used to deal with emitted flux in
the framework of radiometry. We then introduce an alternative point of view based
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on stochastic electrodynamics where thermal emission is considered to be a radiation
problem. This allows to introduce a simple picture of the thermal emission.

In radiometry, the power dQ emitted by an elementary opaque surface dS at
temperature T in a elementary frequency range dω around the circular frequency ω

in a solid angle dΩ around a direction u making an angle θ with the normal to the
surface is given by:

dQ(ω, θ) = I e
ω(T )dS cos θdωdΩ

where I e
ω(T ) is the specific intensity of the emitted radiation. As a body can only

radiate less than a blackbody, it is useful to express the specific intensity emitted by
a material as

I e
ω(T ) = E(ω, θ)IBB,ω(T )

where E(ω, θ) is the emissivity and IBB,ω(T ) is the specific intensity at thermody-
namic equilibrium (also known as blackbody specific intensity) given by:

IBB,ω(T ) = c

4π
× ω2

π2c3 × �ω

exp(�ω/kB T ) − 1
,

in which kB is Boltzmann’s and 2π� is Planck’s constant. The first term in the
previous equation relates the specific intensity to the energy per unit volume, the
second term is the density of states in vacuum and the third is the mean energy
per mode. In what follows, we will be interested in the physical meaning of the
emissivity and the different ways to engineer this quantity. Here, we note that the
emissivity is a real number in the interval [0, 1] that depends on frequency and angle.
It characterizes the ability of a material to produce thermal radiation. In radiometry, it
is introduced as a phenomenological quantity. Using energy conservation arguments,
it can be shown that it is related to the interface reflectivity [44].

8.1.1.2 Electrodynamic Point of View

The above formalism is a purely phenomenological description of the radiative fluxes.
It is interesting to try to develop an alternative point of view where thermal radiation
is viewed as an antenna problem. In classical electrodynamics, fields are radiated by
time-dependent currents [110]. With this point of view, thermal emission appears to
be the radiation of random dipoles induced by the thermal motion of charges in the
emitter. These charges can be electrons in metals or ions in iono-covalent materials.
Note that the mean value of these random currents is zero so that the mean value of
the radiated fields is also zero. However, the power carried by the field fluctuations is
not zero. The key quantity is therefore the current density fluctuation which is given
at thermodynamic equilibrium by the fluctuation-dissipation theorem [72].

∪ j f
n (r, ω) j f

m(r≈, ω≈)∼ = 2πωΘ(ω, T )i
[
ε∝

mn(ω)−εnm(ω)
]
δ(ω−ω≈)δ(r − r≈), (8.1)
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where i2 = −1, j f
n (r, ω) is a spatial component of the fluctuating current density

at the frequency ω. The subscripts n or m stand for the x , y or z component of the
vector. εnm(ω) is the dielectric tensor of the emitter and the function

Θ(ω, T ) = �ω

2
+ �ω

e�ω/(kB T ) − 1
(8.2)

is the mean energy of a harmonic oscillator in thermal equilibrium. In Eq. (8.1), the
delta-function δ(r − r≈) shows up because we have neglected spatial dispersion. The
second delta function δ(ω −ω≈) reflects the fact that we assume a stationary system.
Indeed, the fluctuation dissipation theorem is only valid in thermal equilibrium so
that by applying this theorem we assume that the medium containing the fluctuating
currents is in local thermal equilibrium at temperature T .

Computing the thermal emission by a body amounts to sum the contributions of
all the volume elements in the material. The electric and magnetic field are then given
by:

Ef(r, ω) = iωμ0

∫
V

dr≈≈GE(r, r≈≈, ω) · j f(r≈≈, ω), (8.3)

Hf(r, ω) = iωμ0

∫
V

dr≈≈GH(r, r≈≈, ω) · j f(r≈≈, ω), (8.4)

where the integrals are taken over the volume V which contains the fluctuating
source currents; GE and GH are the electric and magnetic Green tensors [117]. Note
in particular that each volume element can be characterized by a fluctuating dipole
p f such that −iωp f = j f(r≈≈, ω)dr≈≈. It follows that thermal radiation can be reduced
to the emission of a time-dependent dipole below an interface.

Let us consider the thermal emission in the upper half-space (z > 0) by a homo-
geneous material in the lower half-space (z < 0). With the electrodynamic point of
view, it appears that the field thermally emitted is due to random dipoles below the
interface. These dipoles radiate fields which decay upon propagation as the medium
is absorbing. Nonetheless, dipoles located close enough to the interface radiate fields
that can reach the interface. Then, these fields are either reflected or transmitted by
the interface. This suggests that the emissivity introduced in the phenomenological
description should be connected to the concept of transmission at an interface.

8.1.1.3 Kirchhoff’s Law: Electrodynamic and Radiometric Point of View

Let us consider radiation impinging from vacuum on an absorbing half-space. Energy
conservation of the incident beam imposes that the incident radiation is either
reflected or transmitted by the interface. The part transmitted by the interface enters
a thick absorbing medium so that it will be absorbed sooner or later. It follows that
absorptivity is equal to the interface transmissivity. In the previous paragraph, we
have pointed out the link between emissivity and interface transmissivity. In sum-
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mary, this simple qualitative discussion shows that emissivity and absorptivity are
two sides of the same coin: transmission by an interface. This discussion provides
some physical ideas justifying Kirchhoff’s law that states the equality between the
emissivity and the absorptivity. Here, we do not elaborate any further on the founda-
tions of Kirchhoff’s law. We only note that it is valid for directional monochromatic
polarized fields. A rigorous derivation of Kirchhoff’s law can be found in Ref. [44].
It is based on the definition of the specific intensity (the fundamental radiometric
quantity) in the framework of statistical electrodynamics (i.e. coherence theory). Let
us also point out that a generalized form of Kirchhoff’s law has been derived for
non isothermal sources. This generalized relation establishes a link between local
absorption rate and local emission rate. The local emission rate then depends on the
local temperature [48, 125].

Kirchhoff’s law is thus the corner stone of the modelling of thermal emission.
We emphasize that it establishes a connection between the emissivity that charac-
terizes the emission process by random currents with the absorptivity which can be
computed using a coherent incident wave. This is important from a practical point
of view as emissivity is a concept that belongs to radiometry and thermodynamics
whereas absorptivity or transmissivity belong to coherent optics. Kirchhoff’s law
establishes a link between the two worlds. In summary, designing a thermal emitter
with specific directional or spectral properties amounts to design an absorber with
the same properties. The latter can be done using standard electromagnetic tools.

When designing absorbers, it is useful to design structures that can excite res-
onantly surface waves. Indeed, it is well known that absorption can be drastically
modified when surface waves can be excited. It is the purpose of this section to review
the potential applications to control the design of thermal sources.

8.1.1.4 Characteristics of Usual Thermal Sources, Limitations and Prospects

Incandescent sources relying on thermal emission have been the most commonly
way of lighting with the tungsten filament bulb. Yet this type of radiation source
suffers from a number of limitations.

It is usually taken for granted that thermal emission is incoherent as opposed to
a laser which is coherent. More specifically, thermal radiation is usually temporally
incoherent because the emitted spectrum is very broad. This is basically because all
the available modes are thermally populated according to Bose-Einstein distribution.
As shown by the fluctuation-dissipation theorem, the spectrum of the random currents
is only limited by the absorption spectrum given by the imaginary part of the dielectric
constant. In what follows, we will see that the emission spectrum can be changed
dramatically by microstructuring the interface. Indeed, it is the absorptivity of the
interface that matters, not the intrinsic absorption spectrum of the material.

It is also usually taken for granted that thermal sources are spatially incoherent.
This amounts to say that they emit over many angles as opposed to a laser that can
emit in a well-defined direction (or over a small area that can be located at the focus of
a lens). This appears to be a reasonable assumption as the fluctuating current densities
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are delta correlated as shown by the fluctuation-dissipation theorem. However, when
these currents excite extended modes of the emitter such as a surface wave, a spatial
correlation can be built in the source. It follows that the source can become directional
as it was first demonstrated in Ref. [45].

Another basic property of thermal sources is the impossibility of modulating the
emitted flux at high frequencies. Indeed, the standard approach relies in modulating
the temperature. As cooling a source is a slow process, high speed modulation cannot
be obtained. Typical modulation frequencies for available IR sources are on the order
of tens of Hz. To go beyond this limitation, it has been proposed recently to modulate
the emissivity instead of modulating the temperature [46]. This modulation can be
performed without modifying the emitter temperature by using e.g. a phase material
change or modulating the doping of an active absorber. These approaches are no
longer limited by the cooling dynamics.

In summary, it is seen that many limitations of usual thermal sources such as
a poor directivity, a broad spectrum and a low intensity frequency modulation can
be overcome by using advanced concepts of nanophotonics. This paves the way
towards the design of smart IR incandescent sources. This is all the more important
as it is very difficult to produce efficient LEDs in the IR. This is due to a fundamental
limit based on the spontaneous photon emission rate that scales as the cube of the
frequency. When moving the wavelength from 1 to 10µm, the rate of spontaneous
emission is thus decreased by a factor of 1000. In what follows, we review several
experiments showing how emissivity can be modified by taking advantage of the
interplay between surface waves and surface microstructures.

8.1.1.5 Thermal Sources and Partial Coherence

A thermal source is often considered to be an incoherent source. The aim of this
section is to briefly review the basic concepts of coherence in order to clarify how
it is possible to design a partially coherent thermal source. Let us first remind what
is a blackbody source. We start by reminding that the term blackbody is sometimes
used to refer to the radiation at thermal equilibrium, sometimes used to refer to an
isothermal cavity that can be used to experimentally produce radiation approaching
the radiation field at thermodynamic equilibrium, and sometimes used to refer to a
perfectly absorbing surface which can absorb incident radiation at any wavelength
and from any direction and polarization. Only the last will be called blackbody
hereafter. In other words, we use the term blackbody to refer to a material with an
emissivity which is equal to 1 for any wavelength and angle.

The coherence properties of the electromagnetic field at thermodynamic
equilibrium are well known [43]. They are characterized by the correlation func-
tion ∪En(r, t)Em(r≈, t ≈)∼. Field correlations are often called second-order coherence.
Intensity correlations which are widely studied in quantum optics will not be consid-
ered here. It is customary to introduce spatial coherence and temporal coherence of
a given electromagnetic field. The spatial coherence is characterized by the field cor-
relation function at a given time ∪En(r, t)Em(r≈, t)∼ whereas the temporal coherence
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is characterized by the correlation function at the same point ∪En(r, t)Em(r, t ≈)∼ and
two different times.

The time-correlation functions contain information on the spectral content of the
fields. The Wiener-Khinchin theorem [43] shows that the Fourier transform of the
time correlation function is the spectral density of the field. Hence, at thermodynamic
equilibrium, we find the field correlation function:

∪En(r, t + τ)Em(r, t)∼ = δnm Re

[∫ ∞

0
4μ0

ω2

6πc

ω

exp(�ω/kB T ) − 1
exp(iωτ)

dω

2π

]
.

Here, we see that the broad spectrum entails a short correlation time. However,
by filtering the spectrum in order to reduce the bandwidth, it is possible to increase
the coherence time of a given source. Hence, designing temporally coherent sources
amounts to design spectrally narrow sources.

A similar property exists for spatial coherence in a plane. We introduce a plane
perpendicular to the propagation direction to analyse transverse spatial coherence.
When dealing with homogeneous random processes, the Fourier transform cannot be
defined for a function which is not square integrable. As usual, the spectral analysis
is done using the concept of power spectral density. For the sake of convergence of
the field Fourier transform, a new electric field EA(r//, ω) is defined to be equal to
the random field in a square of area A and null outside. The spatial power spectral
density is given by:

lim
A→∞

1

A
∪En,A(κ, ω)Em,A(−κ, ω)∼.

Using again Wiener-Khinchin theorem, the spatial correlation function is given
by [43]:

∪En(r//, ω)Em(r≈
//, ω)∼ =

∫
d2κ

4π2 lim
A→∞

1

A
∪En,A(κ, ω)Em,A(−κ, ω)∼ exp[iκ · (r≈

// − r//)].

It can be shown that the far-field intensity in a direction specified by κ is pro-
portional to ∪En,A(κ, ω)Em,A(−κ, ω)∼, so that it is seen that the directivity of the
source is directly related to the transverse correlation function by a Fourier transform.
Designing a transverse correlation function amounts to control the spatial spectrum
of the field at the source plane. Again, it is seen that spatial coherence can be seen
as a filtering issue in κ-space.

In summary, the coherence of thermal sources can be controlled by filtering the
directional and spectral emission properties. In what follows, we will show that by
taking advantage of surface-waves resonances, it is indeed possible to engineer these
properties.
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8.1.1.6 Partially Coherent Sources: Emissivity as a Filter

In this section, we introduce a simple picture of the partially coherent emission by a
single interface separating an opaque medium from vacuum. In order to derive this
simple picture, we use two simple arguments introduced above. First, we have seen
that the emissivity can be interpreted as the transmissivity of the interface. Second,
we have seen that at local thermodynamic equilibrium all the modes are populated
according to the Bose-Einstein distribution. In particular, radiation impinging on the
interface from the emitter side is characterized by the emitter temperature as the
body is in local thermodynamic equilibrium. Finally, we have seen that controlling
the coherence amounts to control the direction of emission for spatial coherence and
the emission spectrum for temporal coherence. Summarizing, we see that if we can
design the angular and spectral dependence of the interface transmissivity, we can
fully control the coherence of the thermally emitted field. For instance, a temporally
coherent source requires a transmission factor (i.e. emissivity) which is zero almost
everywhere and close to one in a narrow spectrum.

8.1.1.7 Early Results

A corner stone result is the first demonstration of total absorption by a shallow gold
grating due to the resonant excitation of a surface plasmon. It has been predicted by
D. Maystre and observed by Maystre and Hutley [81] in the 1970s. It is a remarkable
result as the reflectivity of this shallow grating is essentially either 1 (as one would
expect for a gold mirror) or zero (for a very limited range of frequencies and angle
corresponding to the excitation of the surface plasmon). Later on, Hesketh and his
group showed spectral measurements on doped-silicon deep gratings with varying
periods heated at 400 ◦C [51]. They showed that the behavior of the emission in
p-polarization depended strongly on the period, while in s-polarization the spectra
did not change significantly. Since then, it has been shown that this was related to the
surface plasmon thermally excited on doped silicon. In the late 1990s works were
conducted on doped-silicon V-grooved gratings showing antireflection properties in
p-polarization [5, 49]. In 1999, The first experiment on thermal emission by a metallic
lamellar grating has been performed by Kreiter and coworkers [62]. A gold grating
was heated at 700 ◦C and the angular emission at two wavelengths (710 and 810 nm)
was observed. They showed a purely p-polarized peak emission for well-defined
angles, attributed to surface plasmons.

Of particular relevance for thermal sources are surface phonon polaritons. Indeed,
surface plasmons of common metals are in the near UV so that they cannot be effec-
tively thermally excited close to the plasma frequency for achievable temperatures.
Of course, the part of the dispersion relation that lies close to the light line at lower
frequencies (see Fig. 8.1) can always be excited. By contrast, the surface phonon
polaritons exist in the so-called reststrahlen region where optical phonon exists, in the
infrared. This region exist between the so-called longitudinal optical frequency and
transverse optical frequency. The polaritons are coupled electromagnetic and vibra-
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Fig. 8.1 Sketch of the dispersion relation of a surface wave. kx is the x component of the wave
vector. The dotted line represents the light cone kx = k0 = ω/c. The gray shaded area corresponds
to the frequency range in which the surface waves exists (Re[ε(ω)] < −1). The asymptote appears
when |ε(ω) + 1| approaches 0

tion modes (i.e. half a photon and half a phonon) and can be thermally excited even
at ambient temperature. Considering the particular case of a flat interface between a
dielectric and vacuum, a surface wave can exist when the real part of the dielectric
constant ε(ω) is less than −1. The surface wave is characterized by its dispersion
relation seen on Fig. 8.1: the component kx of the wave vector parallel to the inter-
face is always larger than the wave vector in the surrounding medium, denoted by
k0, so that the wave is evanescent in the z-direction: the wave is confined close to the
surface.

In the early 1980s, Zhizhin and coworkers studied the thermal emission of materi-
als supporting surface phonons [129]. The surface waves were excited by heating the
film at 150 ◦C and then coupled to propagating waves using periodic inhomogeneities
on the surface. The emission spectra in p-polarization was changed with the direction
of observation. Between 2002 and 2004, angularly and spectrally resolved experi-
ments on SiC gratings were conducted and compared to numerical studies [45, 78], in
which the role of surface phonons has been clearly demonstrated. Similar numerical
and experimental studies have also been performed on materials supporting surface
plasmons as doped-silicon gratings [66, 77] as well as tungsten [65].

In the next sections, we will mainly study the thermal emission of lamellar grat-
ings. Figure 8.2 shows a typical grating characterized by its period, height and filling

Fig. 8.2 Scanning electron microscope image of a shallow lamellar grating of tungsten with period
a = 3µm, filling factor F = 50 %, and depth h = 0.125µm. This structure allows coupling surface
plasmons to propagating waves at wavelengths around 4µm as shown in Sect. 8.1.4
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factor. Thermal emission of lamellar gratings in the plane perpendicular to the lines
of the gratings is studied first. Section 8.1.5 shows then how the p-polarized surface
waves can be coupled to s-polarized propagating waves. The case of crossed gratings
will be also discussed.

8.1.2 Spatially-Coherent Thermal Emission: Surface-Phonons
Assisted Directional Thermal Emission

Surface waves and propagating waves are coupled here using a shallow periodic
structuration of the surface. More precisely, this structuration is a lamellar grating.
The x axis is chosen parallel to the mean surface and perpendicular to the lines of
the grating. The period of this grating is denoted by a. An incident wave is diffracted
by the structure in directions given by a phase matching condition: kdiffracted,x =
kincident,x + nG, where n is an integer and G = 2π/a is the grating vector modulus.
We consider thermally-excited surface waves, characterized by a frequency ω and
a wave vector kx = κsw. Figure 8.3 shows that phase matching conditions allow
coupling this surface wave to a diffracted propagating wave if kdiffracted,x = κsw+nG
is lower than k0 = ω/c.

Considering a given grating vector G (a given grating period a), two parts of the
dispersion relation can be coupled to propagating waves. The linear part, close to the
light cone, provides diffracted propagating waves with a well-defined wave vector
at a given frequency. Hence, it yields directional absorption or emission. The flat
asymptote of the dispersion relation corresponds to the condition ε(ω)+1 = 0. This
is easily seen from the dispersion relation κsw = k0

√
ε/(ε + 1). At the corresponding

frequency, the surface wave can be excited for any wavevector so that it yields
isotropic absorption or emission.

Fig. 8.3 Sketch of the dispersion relation of a surface wave. κsw is a surface-wave wave vector,
a is the grating period and G is the grating vector. ex is the unit vector along the x direction,
perpendicular to the lines of the grating. When κsw + nG is lower than k0, there is a coupling
between the surface wave and a propagating wave. Two cases are shown: n = 1 and n = −2
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We take here the example of a silicon carbide sample. Silicon carbide is a polar
material, which can support surface phonons in the range 10.5–12.5µm. It can be
described by the permittivity

ε1(ω) = ε2(ω) = ε∞
(

ω2
L − ω2 − iγω

ω2
T − ω2 − iγω

)
∈ ε(ω), (8.5)

with the longitudinal phonon frequency ωL = 1.827 × 1014 rad/s, the transversal
phonon frequency ωT = 1.495 × 1014 rad/s, the damping γ = 0.9 × 1012 rad/s and
ε∞ = 6.7.

A period a = 6.25µm is chosen to permit the whole dispersion relation to be
coupled to propagating waves. The filling factor of 50 % and the height h = 285 nm
have been optimized to have the better efficiency in the coupling at a wavelength
of 11.36µm. Figure 8.4 gives the calculated emissivity of this grating for three
directions of observation in p-polarization. It is shown that the emissivity reaches
unity at a wavelength of 11.36µm and in the direction 46◦, with respect to the
normal to the interface. When changing the direction of observation, the emissivity
peak moves. These peaks are directly related to the surface-wave dispersion relation.
A remarkable secondary peak appears around 10.9µm for directions 46◦ and 60◦,
which is due to the contribution of the asymptotic part of the dispersion relation.

The predicted behaviour is well reproduced experimentally as shown in Fig. 8.5.
Note that the peak emissivity is lower than in calculations. Besides, they appear
at slightly different wavelengths (red-shift of the peaks). It has been shown that
this effect is related to the temperature of the sample. Numerical simulations have
been made using tabulated dielectric constant of silicon carbide measured at ambi-
ent temperature, whereas the experiment has been performed around 770 K. If the
dielectric constant at 770 K is measured and used in the numerical simulations, a very
good agreement can be found between experiments and numerical calculations [78].
It was found that when increasing the temperature in the range 300–700 K, the main
effect is an increase of the parameter γ .

Fig. 8.4 Calculatedemissivity
spectra of a SiC lamellar
grating, whose features are
period: 6.25µm, filling factor:
50 % and height: 285 nm. Each
spectrum corresponds to a
given direction of observation
(30, 46 and 60◦)
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Fig. 8.5 Experimental
emissivity spectra of a SiC
lamellar grating, whose
features are period: 6.25µm,
filling factor: 50 % and height:
288 nm. Each spectrum corre-
sponds to a given direction of
observation (30, 46 and 60◦)

Fig. 8.6 Experimental
emissivity diagram of a sili-
con carbide grating character-
ized by its period: 6.25µm,
filling factor: 50 % and height:
288 nm at two different
wavelengths 11.36 and
11.89µm

At a given wavelength, the emission of the silicon carbide structure is very direc-
tional. Figure 8.6 shows the experimental emissivity diagram of the previously-
defined grating for two different wavelengths 11.36 and 11.89µm. It is seen that
the emission peaks are very narrow: the grating behaves like an antenna. This is
a clear signature of the spatial coherence of the source at these wavelengths. That
means that two distant dipole moments of the source are correlated, giving rise to
constructive interferences in specific directions. The surface wave is correlated in the
near field over distances of several wavelengths, corresponding to the decay length
of the surface wave along the interface. It is possible to show that this decay length
of the surface wave gives the spatial-coherence length of the source: two dipoles in
the structure are correlated over distances of the order of the propagation length of
the surface phonon. Such correlations have been studied in Ref. [21]. The near-field
temporal coherence has been studied in Ref. [112].

8.1.3 Surface-Phonons Assisted Isotropic Thermal Emission

Spatially-coherent thermal emission due to surface phonons has been shown in the
previous section. A periodic structuration of the surface has been used to couple
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Fig. 8.7 Sketch of the dispersion relation of a surface wave. κsw is a surface-wave wave vector,
a is the grating period and G is the grating vector. ex is the unit vector along the x direction,
perpendicular to the lines of the grating. When |κsw + nG| is lower than k0, there is a coupling
between the surface wave and a propagating wave. In this case, only the surface waves whose
frequency is close to the asymptote can be coupled to propagating waves

Fig. 8.8 Experimental emissivity diagram of a silicon carbide grating characterized by its period:
3µm, filling factor: 40 % and height: 350 nm at a 10.88µm wavelength

surface waves to the far field. When varying the period of the grating, the phase
matching condition will change, so that the direction of emission will change at a
given wavelength. This effect is however limited for smaller periods. Indeed, the
smaller the period, the greater the grating vector modulus G. Figure 8.7 shows the
surface-waves dispersion relation with a greater G. It is seen that the linear part of
the dispersion relation cannot be coupled to a wave lying in the light cone, but only
the asymptotic part. That means that for such a grating period, there is only one
wavelength at which the coupling between surface waves and propagating waves
occurs. At this wavelength, a large number of wave vectors fulfills the phase matching
conditions. Hence, we expect a surface-wave assisted isotropic thermal emission.

Using the same material as in the previous section, a grating can be numerically
optimized to obtain emissivity close to unity at the asymptote frequency. The period
has been chosen to be a = 3µm. The calculated filling factor and height of the lamel-
lar grating are respectively 40 % and 350 nm. A single peak appears in the emissivity
spectrum at a wavelength around 10.88µm. At this wavelength, the emissivity is
experimentally as high as 0.9. Figure 8.8 shows the experimental emissivity diagram
for this grating at this wavelength. In contrast with Fig. 8.6, the emission is almost
isotropic.



8 Controlling Thermal Radiation with Surface Waves 295

8.1.4 Surface-Plasmons Assisted Thermal Emission

Results have been seen in the previous sections on silicon carbide structures, showing
an efficient coupling between surface phonons and propagating waves. That leads to
non-usual thermal emission characteristics, in particular spatial coherence. Similar
results can be obtained using surface plasmons on metals instead of surface phonons
on polar materials. Kreiter and coworkers studied thermal emission of a gold grating.
Heating their sample at 700 ◦C, they observed narrow peaks of emission mediated by
surface plasmons at 710 and 810 nm. The full width at half maximum (FWHM) of the
peaks is of the order of 85 mrad. Dealing with thermal emission of metals, tungsten
appears as a good candidate. It is indeed widely used in thermal light applications
because of its high melting temperature. It is however not a very good emitter in the
infra red and works have been done to enhance its thermal emission [50]. Tungsten
does not support surfaces plasmons in the visible but in the near IR, there are modes
with very large propagation length. This may be surprising at first glance because
tungsten is a lossy metal. However, its dielectric constant is so large that the field
of the surface plasmon is mostly in the vacuum where there are no losses. Very
narrow peaks of emission are thus expected. A grating can be optimized to produce
highly directional sources. Figure 8.9 shows calculated and experimental emission
diagrams for a grating characterized by its period a = 3µm, filling factor F = 50 %,
and depth h = 125 nm. The experiment has been performed at a temperature of
300 ◦C. The peak at 4.53µm presents a FWHM of 15.7 mrad (0.9◦), which is only
twice the FWHM of a standard CO2 laser (typically 7 mrad). In order to reduce further
the angular width of the emission, it is necessary to use surface waves with longer
propagation lengths. Dahan et al. have designed a structure consisting of coupled
cavities with a longer propagation length [33]. An even larger coherence length of
10 mm has been obtained using a gold grating in the plasmonic bandgap edge [19].

Fig. 8.9 Calculated (left) and experimental (right) emissivity diagram for a tungsten grating char-
acterized by its period a = 3µm, filling factor F = 50 %, and depth h = 125 nm at two different
wavelength 4.07 and 4.53µm
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8.1.5 Polarization Effects: Coupling of s-Polarized Propagating
Waves and Surface Waves

Previous sections have been devoted to the study of the coupling between surface
waves and propagating waves. It is well known that surface plasmons or phonons
are p-polarized electromagnetic waves. It is thus tempting to think that propagating
waves excited by surface waves through the grating are also p-polarized. That is
true only in the emission plane perpendicular to the lines of the grating. Indeed,
when observing in another plane, it is possible to couple s-polarized propagating
waves to surface waves [79, 80]. Figure 8.10 presents the emissivity patterns of a
silicon carbide grating (a = 6.25µm, filling factor 50 % and height h = 285 nm)
as a function of the parallel components kx and ky of the emitted wave vector at a
wavelength λ = 11.36µm. The pattern is limited by k0 = ω/c. Figure 8.10a, b,
respectively in p- and s-polarization, shows the same circle-like pattern emissivity
corresponding to the phase matching condition ksw ± G.

It is seen however on Fig. 8.10b that the maximum emissivity is very low com-
paring to the maximum emissivity seen on Fig. 8.10a, which is very close to unity.
There is indeed a second condition in addition to the phase matching condition to
couple surface waves and propagating waves. It deals with the polarization of the
emitted wave. The emitted wave must have an electric field component along the
wave vector of the surface wave. This is the origin of emissivity variations along
the circles defined by the phase matching condition. Let us consider the case of
absorption of a plane incident wave by coupling to a surface wave through a grat-
ing. A surface wave propagating along the interface with a wave vector κsw has two
components of the electric field: one is parallel to κsw and the other is parallel to
the normal of the surface. It follows that the surface current density associated with
the surface plasmon in the material has a component parallel to κsw. An external
electric field can excite a surface wave provided that it has a component parallel to
κsw. A s-polarized propagating wave can fulfill these conditions as seen on Fig. 8.11.

(a) (b)

Fig. 8.10 Polar representation of the emissivity at λ = 11.36µm for the directional source (silicon
carbide grating with period: 6.25µm, filling factor: 50 % and height: 288 nm) in both p-polarization
(a) and s-polarization (b) (numerical simulations)



8 Controlling Thermal Radiation with Surface Waves 297

Fig. 8.11 Sketch of the phase matching and polarization condition in the case of a coupling between
an incident propagating wave and a surface wave. The wave vector of the surface wave κsw is not
colinear with the grating vector G. The order +1 is shown. The diffracted wave vector is not
colinear with the surface-wave wave vector. The incident wave is s-polarized: the electric field Es
has a component parallel to κsw, so that it can excite the surface wave

Conversely, a p-polarized surface wave can be coupled to a s-polarized emitted wave
in the far field.

In the case of surface-wave assisted isotropic emission using a small-period grat-
ing, the phase matching condition between surface waves and propagating waves
may be always fulfilled. The only condition is thus the polarization matching, as it
can be seen on Fig. 8.12 for the previously-defined lamellar silicon carbide grating
(period: 3µm, filling factor: 40 % and height: 350 nm). The emitted waves can be
s-polarized and the emissivity in this case could reach unity due to a very efficient
coupling. A detailed discussion of the polarization properties of thermal emission by
gratings can be found in Ref. [80].

So far, we have discussed periodic structures. However, it is possible to locally
modify the orientation of the grating. This results in a local modification of the polar-
ization of the emission. Experimental results have been reported in Refs. [30, 31].
The interplay between a surface wave propagating along a grating whose orientation
varies along the surface has been studied by the group of E. Hasman [32].

(a) (b)

Fig. 8.12 Polar representation of the emissivity at λ = 10.88µm for the quasi-isotropic source
(silicon carbide grating with period: 3µm, filling factor: 40 % and height: 350 nm) in both
p-polarization (a) and s-polarization (b) (numerical simulations)
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8.1.6 Crossed Gratings

In this section, we discuss the possibility of designing a directional source using
surface phonon polaritons. When using a single grating, it has been shown that
emission can be directional provided that the emission frequency lies in the region
where the dispersion relation is close to the light cone. However, light is emitted into
a cone and not along a single direction. It is possible to design a two-dimensional
grating in order to achieve vertical emission. Figure 8.13 displays the emission by
a grating both in s-polarization and p-polarization. It is seen that the p-polarized
emission is highly directional with an angular aperture of 2◦ [3].

8.1.7 Metamaterials with Controlled Emission Spectrum

The purpose of this section is to discuss the possibility of controlling the spectrum
of a thermal source using metamaterials. A review paper summarizes the state of the
art until 2009 [41]. While incandescent sources are often assumed to have a broad
spectrum, it turns out that many groups have reported sources with narrow emission
spectra. The basic strategy to design such a source is to start from a transparent or
reflecting material such that its emissivity is close to zero. The second step consists
in designing resonant absorbers. By controlling their spectrum, one can control the
structure emissivity. The structure is chosen to be subwavelength so that it behaves as
a metamaterial. Several results have been reported recently. A common approach is to
rely on the excitation of guided modes in metal-insulator-metal (MIM) systems. For
a thin insulator, it turns out that the effective index is large so that a subwavelength
resonator can be resonant for the guided mode. A theoretical analysis of these struc-

(a) (b)

Fig. 8.13 Polar representation of the emissivity at λ = 10.88µm for the quasi-isotropic source
(silicon carbide grating with period: 3µm, filling factor: 40 % and height: 350 nm) in both
p-polarization (a) and s-polarization (b) (numerical simulations)
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tures can be found in Ref. [128]. Several groups have reported absorbers based on this
idea [18, 20, 53, 74, 75]. In these systems, the absorption takes place predominantly
in the upper metallic layer. A slightly different system has been developed for ther-
mal emitters in the infrared [101]. Here, the insulator is silica and the device works
in the IR by taking advantage of dielectric losses in silica. It is important to stress
that although these systems are usually periodic arrays of absorbers, the periodicity
does not play a significant role. Instead, the systems can be viewed as a collection of
independent absorbers. The small interaction between scatterers can be understood
by noting that the velocity mismatch between a surface plasmon propagating along
the bare surface and the guided mode propagating in the structure is very large. A
similar system has been reported recently. It consists in a periodic array of graphene
disks deposited on a dielectric coated metal [119].

Based on the same general principle of absorption by subwavelength resonant
structures, it is possible to use the absorption resonance of thin slits in a bulk metal. By
controlling the slit width, it is possible to modify the effective index. The resonance
frequency is therefore fixed by the depth and the width of the slit. Again, these slits
are resonant absorbers. They can lead to total absorption. The resonances of these
systems have been studied by a number of authors [70, 93]. As these slits can be
periodically arranged with periods smaller than half a wavelength, these structures
do not diffract and behave as metamaterials.

Another type of periodic structures has been designed to generate a controlled
absorption. It can be described as a periodic array of rectangular slits in a thin
metallic film. The structure can be considered to be analogous to a LC resonant cavity
as discussed in Refs. [71, 124]. A similar structure with negative index properties
has been also studied for resonant absorption [6]. Other schemes based on patterning
metallic structures can also be used to control thermal emission [82, 111].

8.1.8 Multilayers and Photonic Crystals for Controlled Emission

In this section, we review tailoring emissivity using interferences. Although it is not
based on surface waves, it is useful to briefly quote these works. We start with simple
planar systems and we continue with photonic crystals. A simple approach is based
on using multilayered systems, the simplest possible structure being an absorbing
dielectric slab. The interferences lead to a non trivial angular and spectral dependence
of the emission for a silicon slab as discussed in Ref. [63]. For thermophotovoltaics
application, it is necessary to have a quasimonochromatic source in the near infrared.
Rephaeli and Fan [104] have proposed to use a tungsten slab covered by a stack of
Si/SiO2 layers that act as an interferential filter. This system has an emissivity with
low dependence on the angle and displays a peak at the desired frequency. As in
this spectral range, Si and SiO2 are transparent, emission is due to the tungsten and
the stack plays the role of a filter. Drevillon et al. were able to design a layer stack
emitting at a well-defined frequency over all angles [39] by using an optimization
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algorithm. It has also been shown how to design spatially coherent sources with
multilayered systems [10, 22, 69].

The potential of photonic crystals has been explored by many authors [24, 40, 42,
73, 100]. In Ref. [68] the authors take advantage of the fact that a surface wave exists
at the interface between a truncated photonic crystal and a homogeneous dielectric.
This surface wave is a leaky wave and exists in the photonic gap. It is thus possible to
design a monochromatic directional source. In Ref. [59], the authors take advantage
of a wave guided by a large refractive index dielectric layer on top of an absorbing
substrate. Here, the guided wave plays the role of the surface mode. By properly
designing a grating, it is possible to generate directional emission. A completely
different approach has been taken by Noda’s group [36]. Here, the photonic crystal
is essentially a transparent medium. Several tens of quantum wells are inserted in the
photonic crystal in order to produce an absorption band at a desired frequency. This
frequency can be adjusted by engineering the intersubband transition. The photonic
crystal is used to control the frequency and the direction of emission.

8.2 Radiative Heat Transfer at the Nanoscale

Two hot bodies (see Fig. 8.14) separated by a vacuum gap exchange heat through the
thermal electromagnetic fields radiated by local fluctuating currents. At a separation
distance larger than the Wien wavelength λT = c�/(kB T ) characteristic of the
Planck’s function, this energy exchange results exclusively from propagative waves
emitted by a body and absorbed by the other. The limit given by the famous Stefan-
Boltzmann’s law sets the maximum heat flux these media can exchange at long
separation distances (i.e. in far field). However, at subwavelength distances (i.e. in
the near-field regime) the situation changes radically as anticipated by Planck [98]
himself. It turns out that evanescent waves are the main contributors to heat transfer
through tunneling across the vacuum gap. This phenomenon was first discovered
experimentally by Cravalho et al. [29] while studying the radiative heat transfer
between metals at low temperatures. A complete theory has been developed by

Fig. 8.14 Two hot bodies
held at different temperatures
T1 and T2 and separated by
a vacuum gap of thickness d
exchange heat through both
radiative (i.e. propagative) and
non-radiative (i.e. evanescent)
photons
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Polder and van Hove a few years later [99]. The experimental observation at ambient
temperature remained difficult and some inconclusive results were reported [127].

A significant heat flux increase results from this tunneling. In presence of res-
onant surface modes such as surface polaritons, the radiative heat exchange can
even surpass by several orders of magnitude the Stefan-Boltzmann law as first pre-
dicted in Refs. [84, 85]. These results have been experimentally confirmed [52,
60, 87, 90, 107, 113] and have opened new possibilities for the development of
innovative technologies for nanoscale thermal management, near-field energy con-
version (thermophotovoltaic conversion devices [8, 37, 67, 86], heating assisted
data storage [23], plasmon assisted nanophotolithography [116]) or IR sensing and
spectroscopy [56]. In what follows we will first introduce an appropriate theoretical
framework to describe the radiative heat transfer between arbitrary media out of ther-
mal equilibrium. Next we will establish a link between this theory and the Landauer
theory of charge transport used in mesoscopic physics of electron transport. From
this new formulation we will then derive the fundamental limits for heat exchanges
both in far and near-field. Finally, we will present different practical applications
of the near-field heat transfer theory for innovative technologies for nanoscale ther-
mal management and near-field energy conversion. In this review, we focus on the
heat transfer between two parallel flat surfaces with local dielectric constants. The
effect of non-locality is discussed in Ref. [25], the effect of roughness is addressed
in Refs. [13, 47, 76]. Heat transfer between a nanoparticle and a surface is analyzed
in Refs. [14, 26, 35]. Two review papers have been recently published [38, 123].

8.2.1 Heat Flux Exchanged Between Two Planar Media

Equipped with the correlation function for the source currents in Eq. (8.1) and
the linear relations in Eqs. (8.3) and (8.4) we can now determine the correlation
functions of the electromagnetic fields between the bodies ∪Ẽ f

i (r, ω)Ẽ f
j (r

≈, ω≈)∼,
∪H̃ f

i (r, ω)H̃ f
j (r

≈, ω≈)∼, and ∪Ẽ f
i (r, ω)H̃ f

j (r
≈, ω≈)∼ in terms of Green’s functions and

the bodies temperatures. Hence, if we know the classical electromagnetic Green
functions GE and GH for a given geometry, we can evaluate the correlation functions
of the fields allowing for determining heat fluxes. Although some purely quantum
mechanical approaches exist [1, 55, 72], fluctuational electrodynamics has the advan-
tage of being conceptually simple while giving the correct results for the correlation
functions of the fields.

Now we want to determine the heat flux between two semi-infinite media (see
Fig. 8.14) which are at local thermal equilibrium and have the temperatures T1 and
T2. We assume that both media are separated by a vacuum gap of thickness d. In
order to determine the heat flux, we first consider T2 = 0, so that we consider only
fluctuating currents jf

1 in medium 1. The fluctuating fields Ef
1 and Hf

1 inside the
vacuum gap generated by the fluctuating sources in medium 1 can be expressed in
terms of the relations (8.3) and (8.4). From these expressions one can determine the
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mean Poynting vector in the z direction:

∪S1→2
z ∼ = ∪Ef

1 × Hf
1∼ · ez (8.6)

by means of the fluctuation dissipation theorem in Eq. (8.1). The resulting expression
contains the dyadic Green’s functionsGE(r, r≈≈, ω) andGH (r, r≈≈, ω) for that layered
geometry with source points r≈≈ inside medium 1 and observation points r inside the
vacuum gap. For the given layered geometry, the Green functions are well known
and can for example be found in [64]. For determining the net heat flux one has also
to consider the opposite case with T1 = 0 so that only fluctuating currents inside
medium 2 are taken into account. The expression for the transfered heat is given by

HF(T1, T2, a) =
∫

A
dA · ∪S1→2 − S2→1∼ =

∫
z=0

d2r≥∪S1→2
z − S2→1

z ∼, (8.7)

where r≥ = (x, y) and S1→2
z is given by (8.6) and the integration can be performed

over any surface A that completely separates the bodies. For convenience, (and with
no loss of generality) we took it as the plane z = 0. By using the Green dyadic
introduced in (8.3, 8.4), we can recast the integrand of the previous expression into

∪Sz∼ =
∫ ∞

0

dω

2π

[
Θ(ω, T1) − Θ(ω, T2)

]∪Sω∼, (8.8)

where [123]:

∪Sω∼ = 2 Re Tr
∫

dr≈≥
(
G(r, r≈)∂z∂

≈
zG

†(r, r≈) − ∂zG
†(r, r≈)∂ ≈

zG(r, r≈)
)∣∣∣∣

z≈=z=0

,

(8.9)
and Θ(ω, Ti ) was defined in (8.2).

The conclusion that we draw from Eqs. (8.7)–(8.9) is that, in order to evaluate the
heat transfer for a given geometry we have to determine the Green dyadic inside the
gap region. In most cases this is surely a formidable task, but for planar homogeneous
media, even if anisotropic, it is possible to simplify things enough so semi-analytic
expressions are obtainable. This is not to say that everything was made easy - in fact
even in this simplified case the calculations are fairly long [27, 120] or requires some
indirect arguments as in Ref. [97], so we shall just quote the final result for the Green
tensor

G(r, r≈) = i

2

∫
d2κ

eiκ ·(r≥−r≈≥)

kz0

[
D12

(
1eikz0(z−z≈) + R1eikz0(z+z≈)

)

+ D21

(
R2R1eikz0(z≈−z)e2ikz0d + R2e2ikz0de−ikz0(z+z≈)

)]
, (8.10)
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where Ri (i = 1, 2) are the 2 × 2 reflection matrices characterizing interfaces (to be
extensively discussed in the next section) and Di j are defined by

Di j = (1 − RiR j e
2ikz0d)−1. (8.11)

We now derive an explicit form of the energy transfer between two surfaces using
a scattering formalism that introduces reflection matrices between the bodies. Using
this formalism, we will recover the result derived by Polder and van Hove for the
particular case of two interfaces. We will then analyse in detail the maximum value
of the heat transfer [11]. Finally, we will establish a link with the Landauer theory
of charge transport commonly used in mesoscopic physics of electrons [12, 34].

When inserting Eq. (8.10) into the Poynting vector we find that [15]:

∪Sω∼ =
∫

d2κ

(2π)2 T (ω, κ, d), (8.12)

where

T (ω, k≥, d) =
{

Tr
[
(1 − R

†
2R2)D12(1 − R

†
1R1)D12

†], κ < ω/c

Tr
[
(R

†
2 − R2)D12(R1 − R

†
1)D12

†]e−2|kz0|d , κ > ω/c
(8.13)

where Tr stands for the two-dimensional trace. From the previous equation we see
that the whole problem is now reduced essentially to the calculation of the reflection
matrices defined as

R j =

 r s,s

j (ω, κ) r s,p
j (ω, κ)

rp,s
j (ω, κ) rp,p

j (ω, κ)


. (8.14)

where the r i,k
j denote the cross reflection coefficients at the interface of medium j

between the polarization i and k, respectively. In the particular case where both media
are isotropic r s,p

j = rp,s
j = 0 and the energy transmission coefficient T j (ω, κ, d)

reduces to the usual expression [99]

T j (ω, κ; d) =
{

(1 − |r1
j |2)(1 − |r2

j |2)/|D12
j |2, κ < ω/c

4Im(r1
j )Im(r2

j )e
−2|kz0|d/|D12

j |2, κ > ω/c
(8.15)

for j = {s,p} where r1
j and r2

j are the usual Fresnel coefficients

r i
s (ω, κ) = kz0 − kzi

kz0 + kzi
and r i

p(ω, κ) = εi (ω)kz0 − kzi

εi (ω)kz0 + kzi
(8.16)

for s- and p-polarized light, where kzi = √
εi (ω)ω2/c2 − κ2. We have also intro-

duced here the Fabry-Perot-like denominator D12, defined by ( j = {s,p})
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D12
j = (1 − r1

j r2
j e2ikz0d) (8.17)

which results from multiple reflections inside the separation gap. As shown by Pendry
[96], for any mode the energy transmission coefficientT j is always smaller than one.
The net heat flux inside the vacuum gap is given by the difference

Φ = ∪S1→2
z ∼ − ∪S2→1

z ∼. (8.18)

Note that the term describing vacuum fluctuations �ω/2 in Θ(ω, T ) does not
contribute to the flux Φ. A further discussion of this term can be found in Ref. [58].

For two arbitrary planar anisotropic media we find [99] by taking into account
both polarization states s and p

Φ =
∫ ∞

0

dω

2π
[Θ(ω, T1) − Θ(ω, T2)]

∑
j={s,p}

∫
d2κ

(2π)2 T j (ω, κ; d) (8.19)

The second integral of the energy transmission coefficient T j (ω, κ; d) is carried out
over all transverse wave vectors κ = (kx , ky) so that it includes propagating modes
as well as evanescent modes. The splitting into propagating and evanescent modes
stems from the fact that the electromagnetic waves inside the vacuum gap region are
plane waves of the form exp[i(kx x + ky y + kz0z) − iωt] with kz0 = √

ω2/c2 − κ2,
where c is the velocity of light in vacuum. kz0 is purely real for all lateral wave vectors
κ < ω/c whereas kz0 is purely imaginary for all κ > ω/c. The former modes are
propagating waves whereas the latter are evanescent modes.

8.2.2 A Mesoscopic Analysis of the Heat Transfer at the Nanoscale

8.2.2.1 Büttiker-Landauer Formula

The expression in Eq. (8.19) together with the energy transmission coefficient in
Eq. (8.15) is very general and allows finding the heat flux between two arbitrary planar
bodies kept at fixed temperatures T1 and T2 for any distance d. Now, we are going to
see that the heat flux transferred between two media can be discussed in the spirit of a
Büttiker-Landauer approach. The Büttiker-Landauer approach is used to analyse the
electron transport through nanowires in the mesoscopic regime. Mesoscopic physics
deals with physics of systems whose size is smaller than the coherence length and the
mean free path. Hence, electron transport through a nanowire cannot be viewed as a
random walk of a classical particle but rather as a ballistic transport. The electron need
to be described quantum mechanically using its wave function. Thus, the nanowire
is a waveguide with a finite number of modes connecting two electrons reservoirs at
different potentials. It can be shown that the intensity flowing through the nanowire
is proportional to the applied voltage. A quantum of conductance g0 = e2/h can be
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associated to each mode. The nanowire conductance is proportional to the number
of modes propagating through the nanowire weighted by a transmission factor.

We are now in a position to establish a link between the two systems as discussed
in Ref. [11]. The temperature plays the role of the voltage, the energy �ω plays the
role of the quantized charge e, the thermal flux Φ plays the role of the current density.
The electromagnetic modes propagating between the two half spaces play the role of
the modes of the nanowire. Each electromagnetic mode is characterized by (ω, κ).
In order to analyse Eq. (8.19) as a sum over modes, we start by writing the energy
exchanged during a time interval Δt through an area L2. It is given by

ΦΔt L2 =
∫ ∞

0

dω

(2π/Δt)
[Θ(ω, T1) − Θ(ω, T2)]

∑
j={s,p}

∫
d2κ

(2π/L)2 T j (ω, κ; d).

(8.20)
Now, we recognize the spatial mode spacing 2π/L in κ-space. Indeed, applying

periodic boundary conditions (also called Born von Karman conditions) to a system
with size L , we get exp(ikx L) = 1 so that kx = p2π/L where p is an integer.
Hence Ldkx/2π is the number of modes contained in dkx in an interval L . Similarly,
Δtdω/2π is the number of modes in dω in an interval Δt . Finally, it turns out that
dω
2π

d2κ
(2π)2 is the density of modes per unit area and per unit time. We are now in a

position of interpreting the Eq. (8.19) as a sum over modes. It has been shown in
Ref. [96] that for a gap separating two identical interfaces, the factor T j (ω, κ) can
be interpreted as a transmission factor and is always smaller than 1. This has been
generalized to the case of a gap separating two arbitrary interfaces in Ref. [11]. We
can thus obtain an estimate of the total number of channels per unit surface which
effectively participate to the transfer of energy at a given frequency by summing over
all channels with a weighting factor given by the transmission factor:

N (ω, d) =
∑

j={s,p}

∫
d2κ

(2π)2 T j (ω, κ, d). (8.21)

In order to identify a linear conductance for each channel ( j, κ), it is necessary
to linearize, assuming a weak temperature difference, Θ(ω, T1) − Θ(ω, T2) = ∂Θ

∂T
(T1 − T2). Assuming that a channel has a transmission factor independent of the
frequency, it is possible to find the thermal conductance g0 associated to this chan-
nel [95, 103]:

∫ ∞

0

dω

2π
[Θ(ω, T1) − Θ(ω, T2)] ∗ g0[T1 − T2], (8.22)

where
g0 =

∫ ∞

0

dω

2π

∂Θ

∂T
= π2k2

B T

3h
, (8.23)

is the quantum of thermal conductance [83]. We now analyse the linearized form of
the flux:
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Φ =
∑

j={s,p}

∫
d2κ

(2π)2

∫ ∞

0

dω

2π
T j (ω, κ, d)

∂Θ

∂T
[T1 − T2]. (8.24)

This equation shows that we can attribute to each electromagnetic mode ( j, κ)

a contribution to the conductance which is bounded by the quantum of thermal
conductance. It appears very clearly in this context that the enhancement of the flux
in the near field is due to the increase of the number of modes N (κ, d). We will clarify
this point in the following paragraph. Let us first establish a rigorous form of the
flux in the mesoscopic framework. To this end, we start with Eq. (8.24). Following
Ref. [12], we can introduce a mean transmission factor weighted by ∂Θ

∂T and averaged
over frequencies:

T j =
∫∞

0 du f (u)T j (u, κ; d)∫∞
0 du f (u)

(8.25)

with f (u) = u2eu/(eu − 1)2 and u = �ω/(kBT ). This mean transmission factor is
always smaller than 1. Using this quantity, we obtain a Landauer-like expression for
the heat flux as derived in Ref. [12]:

Φ = g0

(∑
j=s,p

∫
d2κ

(2π)2 T j

)
[T1 − T2]. (8.26)

This equation shows that the thermal conductance is a sum over all the modes
( j, κ). Each mode has a conductance which is given by the quantum of thermal
conductance g0 weighted by the transmission factor T j averaged over frequencies.

8.2.2.2 Fundamental Limits for the Heat Transfer

It follows from the linearized expression of heat flux (8.26) that two different strate-
gies can be followed to enhance the heat flux between two media. The first one
consists in increasing the number of modes ( j, κ) while the second one consists in
increasing their average transmission factor. Here, we will derive an estimate of the
upper value of the heat flux both in far-field and in near-field regimes. These limits
have been discussed in Refs. [9, 11, 12].

At large distances (ie. in far-field), only propagating waves are involved. We see
from Eq. (8.19) that the maximum heat flux corresponds to a situation where T = 1
for κ < ω/c. This transmission factor corresponds to perfectly absorbing media
also called blackbodies. For a semi-infinite body, this situation is realized, when the
Fresnel reflection factors are exactly zero for both polarizations. The heat flux can
then be computed from Eq. (8.19) yielding

ΦBB =
∫ ∞

0

[
Θ(ω, T1) − Θ(ω, T2)

]( ω2

c3π2

)
c

4
= σBB(T 4

1 − T 4
2 ), (8.27)
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which is the Stefan-Boltzmann law for the heat flux between two black bodies with
the Stefan constant σBB = 2π5k4

B/15h3c2 = 5.67 × 10−8 W m−2 K−4. This well-
known equation can be cast in a different form in the spirit of a Landauer approach.
By linearizing (T 4

1 − T 4
2 ) in the form 4T 3(T1 − T2) with T = (T1 + T2)/2, we find

ΦBB = g0
2π

5λ2
T

(T1 − T2). (8.28)

In other words, in the linearized regime, the usual Stefan-Boltzmann law is
described by the quantum of thermal conductance g0 times a number of modes
per unit area roughly given by 1

λ2
T

.

At close separation distance (i.e. in near-field) the modes located beyond the light
line (κ > ω/c) contribute to the energy transfer as well as the propagative modes.
According to Eq. (8.26), the conductance seems to diverge. In practice, obviously, this
is not the case. The transmission factor decays exponentially for wavevectors larger
than 1/d. It is thus the decay of the transmission factor that ensures the convergence
of the flux. Let us discuss this issue in more detail. When studying analytically the
upper value of the transmission factor, it can be shown that it is always smaller than
1 for arbitrary values of d. This factor of 1 certainly does not ensure convergence of
the integral as pointed out in Ref. [96]. We now discuss in more detail the physics
involved in this transmission factor. Upon inspection of Eq. (8.15), we see that the
transmission factor has an exponential decay term exp(−2κd) and a denominator
(1 − r1

j r2
j e2ikz0d). It turns out that high quality factor resonances characterized by a

zero of the denominator can compensate in theory arbitrary large damping factors. It
is thus not easy to derive mathematically an upper bound of the transmission factor.
However, we have to account for the fact that it is unphysical to assume that the
denominator can be arbitrarily small as a quality factor will always be limited by
losses and scattering losses in practice. It is thus clear that the exponential decay
exp(−2κd) cannot be compensated by a resonance for arbitrary large gap distances.
It is thus reasonable to introduce a cutoff spatial frequency kc on the order of the
inverse of the gap thickness as suggested by the damping term. We now provide an
estimate of the maximum conductance for a system with a gap d. Following Ref. [11],
we assume that the transmission factor is unity below kc and zero beyond kc. Based
on the previous qualitative discussion, we use a somewhat arbitrary cutoff kc = 2/d.
The number of modes is thus 2 × πk2

c /4π2 where a factor of 2 accounting for the
sum over the two polarisations has been included. We finally get the result:

Φmax = g0
k2

c

2π
(T1 − T2) = g0

2

πd2 (T1 − T2). (8.29)

This simple result provides a very simple explanation of the divergence of the
thermal conductance as 1/d2. It is a direct consequence of the increase of the number
of modes. When comparing this result with the previous result in far field, it is seen
that the increase of conductance when going into the near field is due to the increase
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in the number of modes. Our rough estimate shows that the ratio of the number
of modes is given by (λT /d)2. This yields a factor 4 × 104 for λT = 10µm and
d = 50 nm. Let us insist on the fact that we have assumed unit transmission factor
for all the modes below cutoff. In what follows, we discuss this issue and show that
in most cases, the transmission factors are much lower than 1.

We finally discuss the existence of a cutoff of fundamental nature. The macro-
scopic model of a dielectric constant does not include information on the microscopic
structure of the material. Yet, it is well known that for polar materials, there is a cut-
off value for the phonons spatial wave vectors given by π/a , where a is the lattice
constant. This is the limit of the first Brillouin zone. This sets an ultimate limit to the
heat flux and removes the 1/d2 divergence.

8.2.3 Heat Transfer Mediated by Photon Tunneling

8.2.3.1 Frustrated Modes

The first experiments demonstrating a flux larger than Stefan Boltzmann law were
analysed in Ref. [29]. In this paper, the increase of the flux was attributed to the
contribution of waves propagating in a dielectric but totally reflected at the interface.
As shown in Fig. 8.15a, these waves can be partially transmitted when the gap distance
d is smaller than the relevant wavelength which is given by λT = �c/(kBT ). This
phenomenon is called frustrated total reflection or photon tunnelling. Radiation can
therefore tunnel through the vacuum gap and hence contribute to the heat flux. Since
these modes are propagating inside the material but evanescent in the vacuum region,
they are defined by ω/c < κ < n≈(ω)ω/c (where n≈ is the real part of the refractive
index and ε = n2).

(a) ky

kxω/c

c/ωε

(b)

= c

= c

L

T

κ

κ

κ

ω ε

ωω

ω

ω

(c)

Fig. 8.15 Sketch of the frustrated modes in the real space (a), wave vector space (b) and the (ω, κ)

plane (c). The modes which can propagate inside the dielectric are on the left of the polariton lines
ω = cκ/

√
ε. The modes totally reflected are within the green region between the light line and the

polariton line
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We illustrate schematically in Fig. 8.15b the regions for which one can expect
frustrated modes. The discussion is performed using the real part of the index which
is a fair approximation when dealing with low lossy materials. From Fig. 8.15b it
is obvious that due to the frustrated internal reflection the number of contributing
modes for the heat flux increases, but is still limited to κ < n≈ω/c. This discussion
is valid for media with a real part of the refractive index and a small imaginary part
responsible for the emission and absorption. For polar materials such as SiC for
example, there is a frequency range in the IR where the dielectric permittivity can
have a negative real part between the longitudinal and the transverse frequencies ωL

and ωT . Note in Fig. 8.15c, that in the so-called reststrahlen region ωT < ω < ωL
no optical phonons can be excited. Within this frequency band the permittivity is
negative so that the material behaves effectively like a metal, i.e., the reflectivity is
close to one.

8.2.3.2 Surface Modes

Another kind of evanescent mode is responsible for the tremendous increase of the
heat flux at nanoscale, the so-called surface phonon polariton [61]. We now consider
two SiC interfaces across a gap with a gap distance d smaller than the attenuation

length of the surface mode i.e., 1/Im
(√

ω2/c2 − κ2
SPhP

)
where κSPhP is the surface

phonon polariton wavevector. In that case, the two surface modes are coupled. This
coupling removes the two-fold degeneracy and produces two branches. They can be
found by solving the equation [102]

[−Im(rp)
2 + Re(rp)

2 + 2iIm(rp)Re(rp)
]
e−2Im(kz0d) = 1. (8.30)

It is of upmost importance in this context to realize that when this condition is
satisfied, the denominator of the transmission factor approaches zero and therefore,
the transmission factor for these modes is almost 1. In other words, the enhancement
due to the resonance compensates the exponential decay across the gap. Hence,
entails that these modes have a large contribution to the heat transfer. These modes
are schematically illustrated in Fig. 8.16a. Figure 8.16b shows the dispersion relation
of the surface phonon polariton. Here, the key feature is the fact that the dispersion
relation becomes almost flat for very large values of the wavevector. This entails that
the number of modes becomes very large at the asymptote frequency. It is important
to clarify a technical point here. When plotting the dispersion relation, different
choices can be made. A usual choice consists in taking κ complex and ω real. This
choice leads to a dispersion relation where the flat asymptote has been replaced by
a backbending. This suggests (incorrectly) that the density of states is no longer
large in the presence of losses. It has been shown in [2] that when dealing with the
density of states, the relevant choice is real κ and complex ω. This choice leads to
a flat asymptote of the dispersion relation. This asymptote yields the divergence of
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Fig. 8.16 Sketch in the real space (a), wave vector space (b) and (ω, κ) plane (c) of surface polariton
modes (symmetric and antisymmetric). The first plot shows the exponential decay from the interface
of the field associated with a surface polariton. Note that the dispersion relation extends toward large
wavevectors

the local density of states in agreement with a direct calculation based on the Green
tensor [57]. The reader is referred to Ref. [2] for further details.

In what follows, we simply plot the energy transmission factor as it is used in our
formulas where both the circular frequency and the wavevector are real. We focus
on the frequency range of this mode. We consider a permittivity with absorption, or
γ →= 0. For small absorption, more precisely for Im(rp) ∞ Re(rp), the dispersion
relation for the coupled surface modes coincides with the resonance condition of the
energy transmission factor [96]

[−Im(rp)
2 + Re(rp)

2]e−2Im(kz0d) = 1. (8.31)

The energy transmission factor for evanescent waves in Eq. (8.15) is almost one
for the surface phonon polaritons as long as Im(rp) ∞ Re(rp). Nonetheless, for very
large wavevectors κ ≡ d−1 ≡ ω/c the energy transmission factor in Eq. (8.15)
is damped exponentially due to the exponential exp(−2Im(kz0)d) ∗ exp(−2κd).
Here, the exact damping of the energy transmission coefficient is determined by the
losses of the material [12]. Hence, all modes κ such that κ < 1/d contribute to the
heat flux. It follows from Fig. 8.16c that the area in κ space is proportional to d−2.
This contribution to the heat flux eventually results in a larger contribution than that
of the frustrated internal reflection modes.

To illustrate this, we discuss the energy transmission factor between two semi-
infinite SiC plates assuming that T1 = 300 K and T2 = 0 K so that λT = 7.6µm.
For this purpose we plot in Fig. 8.17 the energy transmission coefficient Tp(ω, κ; d)

in ω-κ space for distances (a) d = 5µm, (b) d = 500 nm and (c) d = 100 nm. In
Fig. 8.17a as expected, we observe that for a relatively large distance the transmission
factor is dominated by the propagating modes and is maximal for the Fabry-Perot
modes inside the gap. For a distance of 500 nm we can see in Fig 8.17b that the
surface modes and frustrated modes come into play.

The most important features are seen for 100 nm. First, it is seen that the energy
transmission factor equals one for all modes which can exist inside the bulk SiC (on
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(a) (b)

(c) (d)

Fig. 8.17 Transmission coefficient Tp(ω, κ; d) between two SiC plates for different distances in
ω-κ space. Note that (d) is the same as (c) but for a large κ range, showing that the number of
contributing modes for the coupled surface modes is much larger than for the frustrated modes. The
dashed lines are the phonon polariton lines for SiC. Here, u = �ω/(kBT ) is a rescaled frequency so
that for T = 300 K we have ω = u ×4.14×1013 rad/s: a d = 5µm, b d = 500 nm, c d = 100 nm,
d d = 100 nm

the left of the phonon polariton lines) and for the surface modes (see Fig. 8.17c).
Second, the number of modes is very large as seen by inspection of the wavevector
scale of Fig. 8.17d. A remarkable feature is that the transmission factor is very
large for all the wavevectors. This is because the resonant excitation of the surface
mode compensate the large decay factor exp(−2κd). Hence, since the number of
contributing modes is very large (see Fig. 8.17d), a very large heat flux is expected.
Note however that the transmission factor is only large for a well defined value of the
frequency. It is thus expected that the transmission factor averaged over frequencies
is much smaller.

This is indeed what is seen in Fig. 8.18. We show a plot of the mean transmission
coefficient T p for two SiC slabs when varying the distance. It can be seen that the
mean transmission coefficient for the surface modes is two orders of magnitude
smaller than 1. Nonetheless, the coupled surface modes give the dominant heat
transfer mechanism for small distances. This is due to the number of modes which
increases dramatically (Note that the abscissa scale is logarithmic).

The resulting spectral heat flux Φω is now plotted in Fig. 8.19a. It can be observed
that for very small distances the spectrum becomes quasi monochromatic around the
frequency of the surface mode resonance ωSPhP = 1.787 × 1014 rad/s which is
defined through the implicit relation Re[ε(ωSPhP)] = −1 and Im[ε(ωSPhP)] ∞ 1.
The distance dependence is shown in Fig. 8.19b where the flux Φ is normalized to
the heat flux between two black bodies ΦBB = 459.27 W m−2. The contributions are
divided into the propagating, the frustrated, and the surface phonon polariton part.
One can clearly see that the heat flux increases for distances smaller than the thermal
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Fig. 8.18 Mean transmission coefficient T p for two SiC slabs with varying distances d
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Fig. 8.19 a Spectral heat flux Φω between two SiC halfspaces at T1 = 300 K and T2 = 0 K for
different distances. b Total heat flux Φ over distance

wavelength λT = 7.6µm due to the frustrated modes and exceeds the black body
limit at d ∗ 3µm. For even smaller distances (d < 100 nm) the surface modes start
to dominate the heat flux completely and give a characteristic 1/d2 dependence, since
the number of contributing modes is for these modes proportional to 1/d2. Note, that
on the nanoscale at a distance of d = 10 nm the heat flux exceeds the black body
limit by a factor of 1000! Asymptotic closed forms solutions of these contributions
in different distance regimes can be found in Refs. [108, 109].

8.2.4 Beyond SPPs Coupling: Toward a Near-Field Analog of
Blackbody

A blackbody is well known to be an ideal emitter of thermal radiation. No real hot
body can radiate more energy. In this section, we analyse the possibility of achieving
a near-field blackbody. From the previous discussion, it follows that the radiative heat
flux is increased in the near field because the number of modes increases. We have
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Fig. 8.20 a Sketch of a
hyperbolic material con-
sisting of a periodical
array of nanowires embed-
ded in a host matrix.
b Hyperbolic dispersion
relation (isofrequency map-
ping) in such materials for a
fixed frequency
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also shown that in practice, the number of modes is proportional to 1/d2 because
the tunneling through the gap introduces a cutoff for the spatial wavevectors that is
proportional to 1/d. An important point is that in most cases, the frequency averaged
transmission factor is much smaller than 1. If surface waves such as surface phonon
polaritons exist, the transmission factor reaches the maximum value of 1 but only
for a very limited range of frequencies. In order to obtain the near-field analog of a
blackbody, transmission factors approaching 1 over a broad spectrum around λT are
needed. This may be obtained using metamaterials.

With today nanotechnology it is possible to manufacture artificial materials to
tailor the electromagnetic field. These artificial materials are generally structured
at the length scale or below the length scale of the correlation length of thermal
photons. Among these artificial media, a class of metamaterials called indefinite or
hyperbolic media [54, 115] has turned out to be a promising material for realizing a
perfect near-field emitter [17]. By approaching such two media, it is possible to have
an efficient heat transport through the gap [17].

To analyse this behavior let us consider the structure as depicted on Fig. 8.20a made
with a periodic array of SiC nanorods defined by a permittivity εi embedded within
a host matrix of permittivity εh . When the characteristic sizes of such a structure is
small enough compared with the thermal wavelength, this medium can be viewed as
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an effective uniaxial medium [16] described by the effective dielectric tensor

εeff =
⎛
⎝εxx 0 0

0 εyy 0
0 0 εzz

⎞
⎠ (8.32)

where the diagonal components are given by the Maxwell-Garnett relations [118])

εxx = εyy = εh
εi (ω)(1 + f ) + εh(1 − f )

εi (ω)(1 − f ) + εh(1 + f )
, (8.33)

εzz = εh(1 − f ) + εi (ω) f, (8.34)

where εxx and εyy are the optical responses parallel to the surface and εzz perpendicu-
lar to the surface, i.e., along the nanowires. Here f denotes the volume filling fraction
of the SiC wires. Since the optical axis of the considered material is perpendicular to
the surface, the s- and p-polarized modes decouple and we have only extraordinary
waves for p polarization [115]. The dispersion relation for extraordinary waves in
uniaxial materials can be stated as [54, 115]

k2
x + k2

y

εzz
+ k2

z

εxx
= ω2

c2 . (8.35)

Hyperbolic materials are now defined by the fact that they have a band of fre-
quencies where εxx and εzz have an opposite sign [115]. Hence, the dispersion rela-
tion defines a hyperboloid in the (κ, kz) plane instead of an ellipse as illustrated in
Fig. 8.20b. This means that in principle there is no upper bound for |κ|. In the fol-
lowing we will call such modes hyperbolic modes (HM). The HM are propagating
inside the hyperbolic material and for κ > ω/c evanescent in the gap, i.e., for small
distances d ∞ λth they are a special kind of frustrated internal reflection modes. As
for usual frustrated modes, we can expect a large mean transmission factor for the
HM up to κ ∗ 1/d if they exist in a broad frequency band. It follows that the heat
flux due to the HM scales for small distances like 1/d2 as the contribution of the
surface phonon polaritons.

In Fig. 8.21a we plot the transmission factor between two arrays of SiC nanowires
with a filling factor f = 0.1 and a separation distance d = 100 nm. In Fig. 8.21b we
show the real part of the parallel Re(ε≥) and the perpendicular Re(ε≤) components
of the dielectric tensor in a frequency range around the transversal and longitudinal
phonon frequency of SiC (ωT = 1.495 × 1014 rad/s and ωL = 1.827 × 1014 rad/s).
It clearly appears that the regions of high transmission indicated in the figures, corre-
sponds to frequencies where both media support frustrated hyperbolic modes (HM).
More importantly, it is seen in Fig. 8.21c that the heat flux due to HM can be larger
than the flux due to surface phonon polaritons between two SiC media at the same
distance. So far, the largest fluxes have been obtained with resonant surface phonon
polaritons [107, 113]. Hence, the use of metamaterials paves the way to a novel class
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(a)

(c)

(b)

Fig. 8.21 a Transmission coefficient Tp(ω, κ) between two SIC periodic arrays separated by a
distance d = 100 nm. b Real part of the parallel and orthogonal components of dielectric tensor. c
Normalized heat transfer coefficient for two hyperbolic materials with f = 0.1, 0.2, 0.3

of materials for heat transfer at the nanoscale. Their efficiency is based on a broad
range of frequencies where the transmission factor can be large. In practice, there
is a cutoff in κ and therefore for d. It is due to the validity of the homogenization
approximation. The order of magnitude of the cutoff is given by 1/a where a is the
average nanorod spacing.

8.2.5 Applications

8.2.5.1 Thermal Management with Anisotropic Media

A proper understanding of near-field heat transfer naturally gives rise to new ideas
on how to control the heat flux between closely separated structures, i.e., on thermal
management at the micro/nanoscale. Such a control can be achieved, for instance,
by thermal rectifiers [7, 89], thermal transistors [88] and thermal modulators [16,
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121] for thermal photons. Here we present heat-flux modulation based on actively
changing the relative orientation of electrically anisotropic materials while keeping
a fixed (small) distance between them.

With the explicit expressions for the reflection matrices, we can calculate the
transmission factor in (8.13) and therefore the heat transfer (8.8) with (8.12). In order
to have a concrete situation in mind, let us consider the situation depicted in Fig. 8.22.
Two grating structures are parallel with an arbitrary twist angle [16]. In the effective
medium approximation, those gratings may be described as anisotropic media with
different dielectric/conduction properties in y and x, z directions. Assuming a simple
Maxwell-Garnett model [118] for the respective permittivities, we get

εi
xx (ω) = εi

zz(ω) = εhi (ω)(1− fi )+ fi , εi
yy(ω) = εhi (ω)

(1 − fi ) + fiεhi (ω)
, (8.36)

where εhi is the permittivity of the i-th host medium, and fi is the filling factor of
the air inclusions in the i-th grating.

Substituting expressions (8.36) into (35)–(40) of Ref. [105] and then into (8.12)
we get the heat transfer between the two gratings in the EMA. In Fig. 8.23a we plot the
heat flux between two gold gratings as a function of the relative twist angle, for fixed
distances. The flux is dramatically reduced as the gratings are twisted, up to almost
80 % at φ = π/2 for distances as large as 1µm. Unfortunately there is no simple
physical picture that allows us to understand such effect, but it clearly indicates that
symmetric configurations transmit heat more efficiently that asymmetric ones. This
is further supported by Fig. 8.23b, where the heat flux between two SiC gratings
is shown. The reduction in the flux is less impressive in this case (although still
quite significant), but the upside is that here we have a more direct interpretation: for
SiC gratings the surface modes give an important contribution to the flux. Hence, a

Fig. 8.22 Two gratings at
different temperatures twisted
with respect to each other.
Reproduced with permission
from Ref. [16]. Copyright
[2011], American Institute of
Physics
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(a) (b)

Fig. 8.23 The heat flux ∪Sz∼(φ) between two: a Au and b SiC gratings, normalized by the flux
∪Sz∼(0◦) when the gratings are aligned. The angle φ measures the relative twisting between the
gratings, and the filling factor is fixed at f = 0.3

mismatch of the surface mode dispersion relations (for twisted structures) results in
a smaller transmission factor as observed.

Going back to the Au gratings, we see that the large suppression obtained by just
rotating the structures with respect to one another suggests that such a setup could
be used as a thermal modulator controlled by the twist angle: in the parallel position
there would be a heat flux (position “on”), in the orthogonal one there would not
(position “off”). Such thermal modulators can for example be interesting for fast heat
flux modulation and thermal management of nano-electromechanical devices [16].

8.2.5.2 Thermal Management with Phase Change Materials

More recently, it has been shown [121, 122] that the near-field heat transfer can be
modulated by orders of magnitude upon inducing a phase transition of the materi-
als. In this case, the optical properties of the materials may change so that a huge
modulation of heat transfer becomes possible.

Different phase change materials (PCM) materials have been considered such as
AIST [121] and VO2 [122]. VO2 has two distinct solid phases (see Fig. 8.24), one
amorphous and the other crystalline. The material can be switched from one phase
to the other in a sufficiently short time [126]. The switching typically goes through
the liquid phase as well, and can be summarized in a series of three steps [126]. First
we consider VO2 in the crystalline phase and heat it up quickly with an intense short
pulse. The subsequent cooling is thus also very fast and leads to a quenching process,
trapping the material in an amorphous state.

As seen in Fig. 8.24, a large radiative heat transfer contrast can be obtained through
an active modulation of VO2 state. Both phases lead to a contrast of almost 2 orders
of magnitude in the extreme near field. In order to understand the physics involved
in these mechanisms, we have plotted in Fig. 8.25 the transmission coefficient Tp

in the (ω, κ) plane of p-modes for both states at a separation distance d = 500 nm.
For insulating VO2 we see mainly a large magnitude of Tp in the region of coupled
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Fig. 8.24 Top: (Left) Real part of the dielectric permittivity of crystalline VO2 along the optical
axis (red curve) and in the plane orthogonal to the optical axis (blue curve). (Right) Real part of the
dielectric permittivity of amorphous (isotropic) VO2. Bottom: Heat transfer coef?cient at T = 300 K
between two parallel plates VO2-glass as a function of the gap width.

(a) (b)

Fig. 8.25 Left Transmission coefficient (p polarized) between two insulating VO2 surfaces. Right
Same for two metallic VO2 surfaces. Both graphs were obtained at a separation distance d = 500 nm

surface phonon polaritons. The mode coupling is rather efficient in this region and
responsible for a large heat transfer (Tp is close to one over a large κ range). There are
also discrete extraordinary surface modes at lower frequencies when ε≥ε≤ = 1 as well
as frustrated modes due to total internal reflection (propagating waves inside VO2
become evanescent within the gap). Such modes give a non-negligible contribution
to the heat transfer in the near field [15]. On the other hand, for metallic VO2 only
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a thin region around the κ = ω/c over a broad spectral range contributes to the
transfer. It corresponds to a spectral region where the real part of the permittivity is
negative. In summary, VO2 can change from a metallic emitter to a dielectric emitter
supporting surface phonon-polaritons.

The considerable difference in optical and electrical properties between the amor-
phous and crystalline states of some PCMs opens the door to several applications. For
example, it is possible to actively control the heat flux by switching the PCM. This
can be done as fast as 100 ns [126]. Note that not only the modulation is quick, but it
was also shown [121] that for certain distances the switching changes the heat flux
by one order of magnitude and that the cycle is fairly repeatable (107–1012 times),
making it a good candidate for possible applications in thermal management and for
designing thermal transistors.

8.2.5.3 Near-Field Energy Conversion

Thermophotovoltaic (TPV) devices [28] are energy conversion systems that generate
electric power directly from thermal radiation. The basic principle (see Fig. 8.26)
is similar to the usual photovoltaic conversion: illuminating a pn junction produces
a current. There is one difference: the sun is replaced by a thermal source. As the
temperature is obviously lower that the sun temperature, TPV devices operate in
the near-infrared and not in the visible range. The efficiency of a photovoltaic cell
is defined as the ratio η = Pel/Prad of the electric power Pel produced by the
photovoltaic cell and the net radiative power Prad exchanged between the hot source
and the p-n junction.

The photovoltaic efficiency of a single junction photovoltaic cell is limited by
the thermodynamic Shockley-Queisser limit [114] and is 30 % for a gap at 1.1µm
and a sun considered to be a blackbody at 6000 K. This limit is essentially due to
the mismatch between the broad spectrum of the sun and the narrow spectrum of
a single junction: photons with energy lower than the band gap cannot produce an

(a) (b)

Fig. 8.26 Principle of thermophotovoltaic energy conversion devices. a In far field, the photovoltaic
(PV) cell is located at a long distance (compared to the thermal wavelength) from a thermal source.
Only propagative photons reach the cell. A filter can be used to select the photons with an energy
matching the energy gap of the cell so that photons with different energies are recycled. b In near-
field TPV the cell is located at subwavelength distance from the source. Evanescent photons are the
main contributors to the radiative power transfered from the source to the cell
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electron-hole pair whereas photons with energies hν larger than the band gap Eg

produce electron with an excess energy hν − Eg which is lost when the electron
relaxes to the bottom of the conduction band. This limit can be overcome with
a monochromatic source if the emission frequency is slightly above with the gap
energy of the semiconductor. In this case η approaches unity. To achieve this goal,
it is necessary to design a filter that transmit the photons with the right energy and
recycles the other photons. However, such a system is efficient only if the recycling
process does not suffer from losses. In practice, the best efficiencies obtained are still
below 15 %.

In the near-field, the heat flux can be several orders of magnitude larger than that
of a black body, so that near-field TPV conversion [8, 67, 86, 92, 94] seems to be
a promising technology for production of electricity as it can enhance the current
generation per unit area. This may be of great interest for small portable generators.
In addition, the efficiency should benefit from near-field for two reasons. On one
hand, the near-field emitter can become spectrally selective, on the other hand, the
fill factor is increased when the current is increased.

Generally speaking, in (far or near-field) TPV devices, the maximal power which
can be extracted from the cell is given by [67]

Pel = Ffill IphVoc, (8.37)

where Iph is the photogeneration current (which corresponds to photons that are
effectively converted), Voc is the open-circuit voltage (which correspond to a van-
ishing current into the diode). The factor Ffill is called fill factor and depends on Iph
and on the saturation current I0 of the diode. When we assume that each absorbed
photon with an energy higher than the gap energy Eg produces an electron-hole pair,
the photogeneration current is [67]

Iph = e
∫ ∞

Eg/�

dω
Prad(ω)

�ω
. (8.38)

It immediately follows from this equation that an increase in the radiative power
exchanged between the source and the cell leads to an enhancement of the photo-
generation current. On the other hand, the fill factor is given by [67]

Ffill =
[

1 − 1

ln(Iph/I0)

][
1 − ln(ln(Iph/I0))

ln(Iph/I0)

]
, (8.39)

with the dark current [4]

I0 = e

(
n2

i Dh

NDτ
1/2
h

+ n2
i De

NAτ
1/2
e

)
. (8.40)

In Eq. (8.40), ni denotes the intrinsic carrier concentration, ND (NA) the donor
(acceptor) concentration, De (Dh) the diffusion constant of electrons (holes) and τe
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(a) (b)

Fig. 8.27 a Radiative power exchanged between a tungsten source at 2000 K and a GaSb cell at
300 K. b Photocurrent in the GaSb cell with respect to the separation distance z of the thermal source.
NA = ND = 10−17 cm−3; ni = 4.3 × 1012 cm−3. Physical properties are taken from Ref. [106]

Fig. 8.28 Electric
power generated by a
Tungsten-GaSb cell with
respect to the separation
distance cell-source (same
parameters as in Ref. [67])

m

and τh represent the electron-hole pair lifetime in the p-doped and n-doped domains
of the cell. In Fig. 8.27 we see that for a plane tungsten thermal source in front of a
GaSb cell (see [91] for optical properties) the radiative power exchanged increases
dramatically at subwavelength distances compared to what we observe in far field.
As a direct consequence, the photocurrent generated in the GaSb cell follows an
analog behavior.

Once the photocurrent and the dark current are known, the electric power [see
Eq. (8.37)] can be calculated using the open circuit voltage [67]

Voc = kBT

e
log

(
Ih

I0

)
. (8.41)

Figure 8.28 clearly shows that the near-field TPV device produces much more
electricity than a classical TPV conversion system. At a distance between the thermal
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source and the cell of z = 100 nm the production is approximately enhanced by a
factor of 5. At 10 nm this factor reaches a value of about 50 times the far-field value.
These results show that the near-field TPV conversion is a promising technology that
could offer new solutions for energy production.
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Abstract In this chapter, we review our work on the engineering of aperiodic order
for nanoplasmonics device applications. In particular, we discuss the optical response
of arrays of metallic nanoparticles with Fourier spectral features that interpolate in a
tunable fashion between periodic crystals and disordered random media, referred to
as Deterministic Aperiodic Nano Structures (DANS). These plasmonic structures,
conceived by designing spatial frequencies in aperiodic Fourier space, give rise to
characteristic scattering resonances and localized mode patterns enhancing the inten-
sity of optical near fields over planar surfaces and broad frequency spectra. Moreover,
the distinctive interplay between photonic diffraction and near field plasmonic local-
ization in DANS provides novel opportunities to manipulate light-matter interactions
on the nanoscale for device applications to optical biosensing, plasmon-enhanced
light sources, solar cells, nonlinear frequency generation, and singular optics.
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9.1 Introduction

Engineering aperiodic order in arrays of metallic nanostructures offers a great and
largely unexplored potential for tailoring electromagnetic interactions and enhanc-
ing the near field intensity and the optical cross sections (i.e, scattering, absorption,
nonlinear processes) of plasmonic media and metamaterials. Fascinating new sce-
narios emerge when combining aperiodic geometries with resonant nanoparticles
supporting surface oscillations of conduction electrons localized on the nanoscale,
known as Localized Surface Plasmons (LSPs).

Analogously to the coupling of atomic and molecular orbitals in solid state and
quantum chemistry, the LSPs resonances of individual nanoparticles resonantly cou-
ple by near-field (i.e., quasi-static) interactions enhancing the intensity of incident
electromagnetic fields over nanoscale spatial regions referred to as “electromagnetic
hot-spots”. Additionally, arrays of nanoparticles separated by distances comparable
or larger than the wavelength of light interact by radiative electromagnetic inter-
actions (i.e., diffractive coupling and multiple scattering), giving rise to collective
photonic modes largely tunable by the aperiodic array geometry.

Recently, roughened metal surfaces and random media have demonstrated
dramatic enhancement of the linear and non-linear optical properties of semicon-
ductor quantum dots and single molecules [1–3]. However, the technological appeal
of disordered systems remains very limited. Random structures, while in fact pro-
viding a convenient path to electromagnetic field localization and enhancement, lack
simple design rules for deterministic optimization. These difficulties have limited
the ability to conceive, manipulate, and engineer optical resonances and scattering
phenomena in deterministic nanoparticle systems that lack spatial periodicity.

In this chapter, we will review our research activities on the design, nanofabrica-
tion, and engineering applications of multi-scale nanoparticle arrays with a degree of
structural complexity that interpolates in a tunable fashion between disordered ran-
dom systems and regular periodic structures. We refer to this general class of artifi-
cial metal-dielectric materials as Deterministic Aperiodic Nano Structures (DANS).
In contrast to disordered random systems, DANS are generated by deterministic
algorithms rooted in computational geometry and crystallography [4–6], symbolic
dynamics [7–9], number theory [10–12], and can be fabricated using conventional
nano-lithographic or imprint techniques. Moreover, they are amenable to predic-
tive theories. Importantly, the Fourier diffraction spectra of DANS can be tailored
from purely discrete ones, such as for periodic and quasiperiodic crystals, to diffuse
spectra as for amorphous and random systems. Moreover, DANS can support mixed
diffraction spectra, and can additionally encode non-crystallographic point symme-
tries of arbitrary order (i.e., up to infinity-fold rotational symmetry) as well as more
abstract mathematical symmetries [13]. However, differently from well-investigated
fractal structures, DANS do not always exhibit scale-invariance symmetry (i.e., self-
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similarity in direct space), and are typically characterized by a broader density of
spatial frequencies in Fourier space.1

Deterministic aperiodic arrays of metal nanoparticles feature interparticle
separations that fluctuate from the nanoscale to distances comparable or larger than
the wavelength of light. As a result, they support a broad frequency spectrum of
“structural resonances”, or photonic–plasmonic coupled modes, which significantly
enhance the intensity of localized plasmon fields, as we will show later.

This book chapter is organized as follows: Sect. 9.2 introduces general aspects of
aperiodic order and the importance of aperiodic Fourier space for the manipulation of
plasmonic excitations. Section 9.3 focuses on the fabrication and device applications
of two-dimensional (2D) plasmonic DANS. Section 9.4 offers an outlook on complex
aperiodic nanoplasmonics and draws general conclusions.

9.2 Fundamentals of Deterministic Aperiodic Order

Aperiodic optical media generated by deterministic mathematical rules have recently
attracted significant attention in the optics and electronics communities due to their
simplicity of design, fabrication, and full compatibility with current materials deposi-
tion and device technologies [13–17]. Initial work, mostly confined to the theoretical
investigation of one-dimensional (1D) aperiodic systems [18–25], have succeeded
in stimulating broader experimental/theoretical studies on photonic and plasmonic
structures that leverage deterministic aperiodicity as a strategy to enable novel optical
devices and functionalities.

In what follows, we will introduce the conceptual framework of aperiodic order
for the manipulation of optical fields in complex nanoparticle arrays. Moreover, we
will discuss the relation between the topological order of DANS, determined by their
spectral measures (Fourier or diffraction spectra), and the general characteristics of
their optical spectra and plasmonic wave excitations (i.e., structure–property rela-
tions). This section will also serve as an introduction to the various types of array
geometries discussed in Sect. 9.3.

9.2.1 Periodic and Quasi-Periodic Order

Traditionally, optical media were simply classified as either periodic or non-periodic,
without the need of further distinctions. However, the word “non-periodic” encom-
passes a very broad range of different concepts that describe complex struc-
tures characterized by varying degrees of order and correlations, ranging from

1 However, inhomogeneous fractal structures (i.e., multi-fractals) described by a distribution of
scaling exponents can support a higher density of spatial frequencies compared to traditional mono-
fractals, similarly to DANS.
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quasiperiodic crystals to more disordered “amorphous” materials with diffuse dif-
fraction spectra. Moreover, structures featuring “mixed spectra”, containing both
discrete peaks and a diffuse background, also frequently occur in science and tech-
nology [13, 15]. Therefore, the rigid dichotomy between periodic and amorphous
structures is inadequate and needs to be surpassed. More rigorously, non-periodic
structures have been classified according to the nature of their Fourier and energy
spectra, which correspond to mathematical measures [8, 13]. In optics, these spec-
tral measures are often identified with the characteristics of diffraction patterns and
optical mode spectra (i.e., Local Density of States).

According to the Lebesgue’s decomposition theorem [26], any measure can be
uniquely decomposed in terms of three primitive spectral components (or into a mix-
ture of them), namely: pure-point (μP), singular continuous (μSC), and absolutely
continuous spectral components (μAC), with: μ = μP ∪ μSC ∪ μAC . Based on this
result, Maciá Barber [13, 15] recently proposed to classify different types of struc-
tures according to a matrix with nine entries, corresponding to all the combinations
of the three fundamental types of spectral measures describing their spatial Fourier
and energy spectra.

Random media are characterized by large structural fluctuations modeled by
continuous (i.e., constant) spatial Fourier spectra. However, their energy spectra
are ideally discrete (i.e., pure-point), since disorder-induced localized states appear
at discrete resonant frequencies where the electronic/optical transport comes to a
halt. On the other hand, the diffraction patterns of periodic structures contain well
defined and sharp (i.e., ε-like) peaks in their spatial Fourier spectra corresponding
to the presence of periodic long-range order. Therefore, the reciprocal Fourier space
of periodic and multi-periodic lattices is discrete (i.e., pure-point), with peaks (i.e.,
Bragg peaks) positioned at rational multiples of primitive reciprocal lattice vectors.
However, their energy or optical transmission spectra consist of continuous functions
describing the different energy bands.

In between these two extremes lies the extremely rich spectral domain of
deterministic aperiodic systems. It was recently realized that the presence of sharp
peaks in the diffraction spectra of materials does not necessarily imply structural
periodicity. In 1984, Dan Shechtman et al. [27] when studying the electron diffrac-
tion spectra from certain metallic alloys (Al6Mn), discovered sharp diffraction peaks
arranged with icosahedral point group symmetry, which cannot be reconciled with
structural periodicity [6, 27]. However, the sharpness of the measured diffraction
peaks, which indicates the coherence of the spatial interference patterns, turned out
to be comparable with the one of ordinary periodic crystals. Stimulated by these
findings, Levine and Steinhardt promptly formulated the notion of aperiodic crystals
or quasicrystals in a seminal paper titled [28]: “Quasicrystals: a new class of ordered
structures”. The geometry of aperiodic crystals was already anticipated in the semi-
nal work on aperiodic tilings by the mathematician Penrose, who discovered in 1974
the existence of two simple polygonal shapes (i.e., tilings) capable of exactly cover-
ing the infinite Euclidean plane without spatial periodicity [29]. In response to these
breakthrough discoveries, the International Union of Crystallography (IUCr) refor-
mulated the concept of crystal structures as “any solid having an essentially discrete
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diffraction diagram”, irrespective of spatial periodicity, thus shifting from direct to
the reciprocal Fourier space the defining aspect of a crystal structure [13]. According
to this new picture, the essential attribute of crystalline order, either periodic or qua-
siperiodic, is the presence of a discrete diffraction spectrum containing only isolated
Bragg peaks, namely a pure-point spectrum.

It has also been realized after the breakthrough discovery of quasi-crystals and
the fabrication of Fibonacci [22, 23] and Thue–Morse semiconductor heterostruc-
tures [30, 31], that physical systems can display singular-continuous energy spectra
featuring an infinite hierarchy of narrow gaps with vanishingly small widths (in the
limit of infinite-size systems), bridging a long standing gap between the theory of
spectral operators and condensed matter physics.

9.2.2 Aperiodic Order and Substitutions

We will now discuss how to manipulate aperiodic order beyond traditional qua-
sicrystals. In optics and electronics, a very efficient algorithmic approach to generate
aperiodic structures with controlled Fourier spectral properties is provided by sym-
bolic substitutions [7, 8, 13, 32]. Substitutions are an essential component of every
recursive symbolic dynamical system formally defined on a finite symbolic alpha-
bet G = (a, b, c, . . .). In physical realizations, each letter in the alphabet can be
associated to a different type of building block (e.g., metal nanoparticle, dielectric
layer, etc). A specific substitution rule λ then replaces each letter in the alphabet
by a finite word, starting from a given letter called an axiom or initiator. An ape-
riodic sequence is then obtained by iterating the substitution rule λ multiple times
to any desired order, producing a symbolic string of arbitrary length. For instance,
one-dimensional Fibonacci quasicrystal structures can be simply generated by the
iteration of the rule λF : a ≈ ab, b ≈ a with axiom a, as exemplified by the inflation
process: a ≈ ab ≈ aba ≈ abaab ≈ abaababa ≈ abaababaabaab ≈ . . .

A large number of substitution rules have been explored in the study of determin-
istic aperiodic optical systems [13, 16, 17], producing 1D structures with all three
primitive spectral measures, as shown in Fig. 9.1.

The diffraction spectrum of a Fibonacci quasicrystal is pure-point, featuring a
countable set of ε-like Bragg peaks at incommensurate intervals. More complex
structures displaying singular-continuous spectra2 can also be conveniently gen-
erated by the symbolic substitution approach [13]. In such media, individual Bragg
peaks are no longer separated by well-defined gaps, but cluster to form “broad bands”
in reciprocal space.

The chief example of a deterministic sequence with a singular-continuous dif-
fraction spectrum is the Thue–Morse sequence [8, 33], which is generated by the
substitution λTM : a ≈ ab, b ≈ ba. This binary sequence was first studied by

2 Singular-continuous structures support Fourier spectra can be covered by an ensemble of open
intervals with arbitrarily small total length.
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Fig. 9.1 Absolute value of the Fourier coefficients of a quasiperiodic (Fibonacci) structure, of an
aperiodic Thue–Morse structure with singular-continuous spectrum, and of an aperiodic Rudin–
Shapiro structure with absolutely continuous spectrum. From Ref. [32]

Prouhet in 1851, who applied it to number theory [34]. Thue in 1906 used it to found
the study of combinatorics on words. The sequence was successively brought to
worldwide attention by the differential topology work of Morse in 1921, who proved
that the complex trajectories of a dynamical system whose phase space has negative
curvature can be mapped into the Thue–Morse sequence [35]. Interestingly, pseudo-
random structures with Fourier spectra of constant amplitude (i.e., in the infinite-size
or thermodynamic limit) can also be generated deterministically by binary substi-
tutions. As a result, the eigenmodes of such systems (e.g., optical modes, plasmon
modes, etc) are expected to be more localized in space compared to the excitations
supported by structures with pure-point spectra.

The chief example of deterministic structures with absolutely continuous Fourier
spectrum is the Rudin–Shapiro sequence [8, 36, 37]. In a two-letter alphabet, the
RS sequence can simply be obtained by the substitution: aa ≈ aaab, ab ≈
aaba, ba ≈ bbab, bb ≈ bbba [38]. Rudin–Shapiro structures are expected to share
most of their physical properties with disordered random systems, including the pres-
ence of localized optical states (i.e., Anderson-like states). However, the abundance
of short-range correlations, whose main effect is to reduce the degree of disorder and
localization, favors the existence of resonant extended states in their energy spectra,
and significantly complicates the theoretical analysis of Rudin–Shapiro and other
deterministic structures with absolutely continuous Fourier spectra [38, 39]. The
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calculated Fourier spectra of one-dimensional Fibonacci, Thue–Morse, and Rudin–
Shapiro symbolic sequences are displayed in Fig. 9.1.

The substitution approach described above can be rigorously generalized to higher
dimensions using the theory of automatic sequences [40–42]. Alternatively, 2D quasi-
periodic Fibonacci arrays can be easily generated by alternating two complementary
Fibonacci substitution rules along the horizontal and the vertical directions [32].
This way, a square 2D Fibonacci matrix can be obtained. Extending this approach,
our group recently introduced 2D generalizations of Thue–Morse and Rudin–Shapiro
sequences for the design of planar metallic nanoparticle arrays of interest in nanoplas-
monics device technology [43].

Figure 9.2 shows the direct and reciprocal Fourier space of Fibonacci, Thue–
Morse and Rudin–Shapiro arrays of particles obtained using the 2D substitution
method [32]. We notice that, differently from periodic structures, a Brillouin zones
cannot be defined for aperiodic arrays (i.e., their diffraction diagrams are aperiodic).
As a result, when displaying the diffraction spectra of aperiodic systems, we restrict
the Fourier space vectors to spatial frequencies within the interval ±1/π, where π

is the minimum interparticle separation represented in the array.

Fig. 9.2 a Fibonacci array, L = 13.4 μm, generation 7. b Thue–Morse array, L = 12.6 μm,
generation 5. c Rudin–Shapiro array, L = 12.6 μm, generation 5. d Rudin–Shapiro reciprocal
space. e Thue–Morse reciprocal space. f Fibonacci reciprocal space. In all cases π = 400 nm is
the minimum center-to-center particle distance
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9.2.3 Plasmonic Chains: Collective Excitations and Energy Gaps

The advantage of the substitutional method is that relevant information on the nature
of the diffraction spectra of aperiodic sequences can be obtained from the knowl-
edge of the substitution matrix, whose elements indicate the number of times a
given letter appears in the components of the substitution rules (irrespective of the
order in which it occurs) [13]. This follows from the Bombieri–Taylor theorem,
which unveils a fundamental connection between the arithmetical nature of substitu-
tions and the presence/absence of Bragg peaks in the corresponding Fourier spectra
[44–48]. According to the Bombieri–Taylor theorem [49, 50], if the spectrum of the
substitution matrix S contains a so-called Pisot–Vijayvaraghavan (PV) number as an
eigenvalue, then the sequence is quasiperiodic,3 otherwise it is not.4 A very important
question in aperiodic systems research concerns the relation between their structural
properties/topological order and the energy spectra of their elementary excitations
and eigenmodes. Solving this difficult problem is of direct interest to aperiodic optics
and plasmonics, as it will enable the formulation of powerful structural-property rela-
tions for predictive device modeling and engineering.

A fundamental result in this direction in known as the gap-labeling theorem.
This theorem relates the positions of the diffraction Bragg peaks of substitutional
sequences with the locations of the gaps in the energy spectra of the elementary exci-
tations supported by the structures (e.g., plasmon modes) [44, 45, 51]. In general,
a tight-binding analysis of the energy spectra or the density of states of aperiodic
structures obtained by Pisot-type substitutions shows that both the position and the
width of the gaps can be “labeled” by the singularities of the Fourier transform
associated to the aperiodic sequence of scattering potentials (optical or electronic)
[44, 51]. This approach, first introduced for the 1D Schrödinger equation [52], has
also been applied to the optical wave equation in quasiperiodic and almost-periodic
structures [21, 51]. Recently, Dal Negro et al. [53] developed an efficient trans-
fer matrix approach, valid within the dipole approximation, for the calculation of
the resonant eigenfrequencies, oscillation eigenvectors and the integrated density of
states (IDS) of chains of metallic nanoparticles (i.e., dipolar chains) with Fibonacci,
Thue–Morse and Rudin–Shapiro aperiodic modulation [32, 53, 54].

Aperiodically modulated plasmonic chains are constructed by letting dA ∼ A and
dB ∼ B in the corresponding substitution rule, where dA = 25 nm and dB = 30 nm
are two minimum interparticle separations. With this identification, we can readily
map symbolic aperiodic sequences into chains of nanoparticles with deterministic
aperiodic order, as sketched in Fig. 9.3 for a Fibonacci chain of Ag nanoparticles.
This system can be modeled by considering the dynamical equation for an arbitrary
Hertzian dipole in the chain [32, 53, 55], and recasting it into a matrix that connects

3 This means that its spectrum can be expressed as a finite sum of weighted Dirac ε-functions,
corresponding to Bragg peaks that are indexed by integer numbers.
4 A PV number is a positive algebraic number larger than one and such that all of its conjugate
elements (i.e., the other solutions of its defining algebraic equation) have absolute value less than
one. For instance, the golden mean, satisfying the algebraic equation x2 −x−1 = 0 is a PV number.
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Fig. 9.3 Integrated density of states (IDS) for the (a) periodic and (b) quasiperiodic Fibonacci
chains showing longitudinal and transverse branches. Dispersion diagrams for (c) quasiperiodic
Fibonacci chain, transverse polarization; (d) quasiperiodic Fibonacci chain, longitudinal polariza-
tion. Adapted from Ref. [53]

the spectral oscillation amplitudes of neighboring dipoles in terms of unimodular
transfer matrices Tn : (

un+1
un

)
= Tn

(
un

un−1

)
(9.1)

where un is the Fourier transform of the oscillation amplitude of dipole n and the
matrix Tn can be expressed as Ref. [53]:

Tn =
(

λ2−λ2
0−i(ωeλ−ωRλ3/λ2

0)

αi γ
2
n

−1

1 0

)
(9.2)

In the expression above λ0 is the metal plasma frequency, ωe is the electronic
relaxation frequency, ωR is the relaxation frequency due to radiation into the far-field,
αi is a polarization-dependent term (α = 1 for transverse modes and α = −2 for
longitudinal) and γγ2

n ∝ 1/d3
n is the near-field coupling term, which is aperiodically

modulated because nearest neighbors of the nth dipole do not repeat regularly, but
follow a deterministic aperiodic sequence.

Therefore matrices Tn depend on frequency and on the geometrical arrangement
of the particles through the short-range dipole–dipole coupling [53], establishing
the connection with the aperiodic geometry. The displacement of the Nth dipole
with frequency λ and eigenvector uN (λ), can be easily calculated by cascading the
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individual transfer matrices:(
uN+1
uN

)
= TN TN−1TN−2 . . . T2T1

(
u1
u0

)
= Q

(
u1
u0

)
(9.3)

Imposing the fixed boundary condition u0 = uN+1 = 0, which describes an N-
particle chain, we finally obtain that the vibration frequencies of the plasmonic chain
satisfy the following eigenvalue equation:

Q11(λ) = 0 (9.4)

which can readily be solved numerically for an arbitrary aperiodic geometry to yield
the oscillation amplitudes of the dipole chain (i.e., the eigenvectors) and the oscilla-
tion frequencies (i.e., the eigenvalues) [32, 53].

In addition, Dal Negro et al. [32, 53] have shown, based on the eigenmode sta-
tistics, that it is possible to calculate the Integrated Density of States (IDS) and the
participation ratio of each dipolar eigenstate, which allows to quantify the degree of
spatial localization of the plasmonic modes. Based on this approach, we have com-
puted the pseudo-dispersion λ − k diagram of periodic and Fibonacci-modulated
plasmonic chains of finite size (i.e., 144 nanoparticles) corresponding to longitudi-
nal and transverse oscillation modes, and demonstrated the presence of large spectral
gaps in one-dimensional Fibonacci structures, as summarized in Fig. 9.3. We sub-
sequently extended this transfer matrix approach to the analysis of the spectral and
localization properties of dipolar modes in nanoparticle chains based on Thue–Morse
and Rudin–Shapiro aperiodic sequences [32]. We have shown that the aperiodic mod-
ulation of the particle positions leads to the formation of sub-wavelength plasmon
band-gaps in Fibonacci and Thue–Morse structures, while Rudin–Shapiro structures
are characterized by vanishingly small gaps and a singular density of states, akin
to random systems. In addition, we have demonstrated a characteristic power-law
scaling in the localization degree of the eigenstates of all the investigated determin-
istic aperiodic structures, which is a manifestation of the multifractal nature of their
density of states spectra.

A more general approach for the calculation of dipolar modes and energy spectra of
aperiodic arrays of metal nanoparticles with ellipsoidal shapes, which also includes
their electromagnetic coupling with external fields, was developed by Forestiere
et al. [54]. The equations governing the plasmon oscillations were formulated in
such a way as to highlight the role of the geometrical arrangement of the particles on
one side, the particles shape, the dielectric response, and the incoming field polariza-
tion on the other side, enabling the accurate design of aperiodic plasmonic devices
with controlled sub-wavelength gaps and spectral positions of localized states. The
work in Ref. [54] rigorously demonstrates that the spectral and localization proper-
ties of dipolar modes in aperiodic chains of resonant nanoparticles are determined
by the mathematical spectral properties of a symmetric, positive-definite operator
relating the electric field along the chain to the electric dipole moments, within the
electric quasi-static approximation. In addition, Forestiere et al. [54] showed that
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the spectrum of this operator, which is determined by the aperiodic geometry of the
arrays for a given shape of the nanoparticles, explains the spectral positions of the
plasmonic pseudo-band gaps in terms of the singularities of the aperiodic Fourier
spectra. This analysis therefore establishes the validity of the gap-labeling theo-
rem in the context of aperiodic nanoplasmonics. Therefore, the demonstration of
controllable plasmonic band-gaps and sub-wavelength localized plasmon fields in
finite-size chains of metal nanoparticles with aperiodic order suggests novel designs
for the implementation of plasmonic devices and functionalities.

9.2.4 Rotational Symmetry: Aperiodic Tilings and Vogel Spirals

One of the main features of aperiodic planar arrays is the ability to encode forbidden
rotational symmetries in their discrete or diffuse diffraction diagrams, displayed by
their Fourier spectra [6, 56]. It was recently discovered that aperiodic tilings can be
constructed with an arbitrary degree of rotational symmetry using a purely algebraic
approach [57]. In addition, deterministic tilings with full rotational symmetry up
to infinite order (i.e., circular symmetry) have been demonstrated [58] by a simple
procedure that iteratively decomposes a triangle into five congruent copies. The
resulting tiling, called Pinwheel tiling, has triangular elements (i.e., tiles) which
appear in infinitely many orientations and, in the limit of arrays with infinite-size,
the diffraction pattern displays continuous (“infinity-fold”) rotational symmetry.

Radin has shown that there are no discrete components in the Pinwheel diffraction
spectrum [58]. However, it is currently unknown if the spectrum is continuous or
singular continuous.

We recently engineered [59] Pinwheel arrays of resonant metallic nanoparticles
and reported on isotropic structural coloration of metal films using homogenized
Pinwheel patterns. In particular, following this approach we demonstrated bright
green coloration of Au films with greatly reduced angular sensitivity and enhanced
spatial uniformity of coloration compared to both periodic and random arrays [59].

In Fig. 9.4, we show three different types of deterministic aperiodic arrays of
particles with increasing degree of rotational symmetry in their diffraction spectra
(Fig. 9.4d–f). In particular, Fig. 9.4a shows a particle array with tenfold rotational
symmetry in the arrangement of its (interior) Bragg peaks. This array is obtained
by positioning particles at the vertices of a planar Penrose tiling. A Danzer particle
array [60] with sevenfold symmetry (Fig. 9.4b) and the Pinwheel array (Fig. 9.4c)
are also shown along with the corresponding diffraction spectra (Fig. 9.4d–f).

We can appreciate in Fig. 9.4 how by increasing the degrees of rotational sym-
metry the different spectra acquire a more diffuse spectral character. This behavior
is particularly evident in a broad class of finite-size deterministic aperiodic arrays,
known as Vogel’s spirals (Fig. 9.5), whose diffraction spectra do not posses any dis-
crete component and display almost continuous circular symmetry.

Vogel’s structures have been investigated by mathematicians, botanists, and
theoretical biologists [61] in relation to the outstanding geometrical problems of
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Fig. 9.4 a Penrose array, L = 11.9 μm, generation 12; b Danzer array, L = 26.6 μm; c Pinwheel
array, L = 16.1 μm; d Pinwheel reciprocal space; e Danzer reciprocal space; f Penrose reciprocal
space. In all cases π = 400 nm is the minimum center-to-center particle distance

phyllotaxis [62–64], which concerns the understanding of the spatial arrangement of
leaves, bracts and florets on plant stems.

Aperiodic Vogel spiral structures are rapidly emerging as a powerful nanophoton-
ics platform with distinctive optical properties of interest to a number of engineering
applications [65–68]. This fascinating class of deterministic aperiodic media possess
circularly symmetric scattering rings in Fourier space entirely controlled by simple
generation rules inducing a very rich structural complexity described by multi-fractal
geometry with a degree of local order in between amorphous and random systems
[65].

Our group recently demonstrated Vogel spiral arrays of metallic nanoparticles and
show that they give rise to polarization-insensitive, planar light diffraction across a
broad spectral range, referred to as circular light scattering [69]. This interesting
phenomenon originates from the circular symmetry of the reciprocal space of ape-
riodic spirals, and it can already be appreciated within standard Fourier optics (i.e.,
neglecting near-field interactions among neighboring particles). In fact, for radiation
of wavelength ∂ normally incident on a generic arrays of particles, to be diffracted
into the plane of the array its longitudinal wavevector component must vanish, i.e.,
kz = 0. This requirement is equivalent to the well-known Rayleigh cut-off condition
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Fig. 9.5 a Golden angle spiral array, L = 23.2 μm, divergence angle Δ ≈ 137.508; b ϕ -spiral
array, L = 34.9 μm, divergence angle Δ ≈ 50.973; c μ-spiral array, L = 23.2 μm, divergence angle
Δ ≈ 69.330; d Golden angle spiral reciprocal space where π is the average minimum center-to-
center particle distance (π = 308 nm); e ϕ -spiral reciprocal space where π is the average minimum
center-to-center particle distance (π = 403 nm); f μ-spiral reciprocal space where π is the average
minimum center-to-center particle distance (π = 201 nm)

that determines the propagation of the first diffractive order of a periodic grating on
its planar surface [70]. The Rayleigh condition depends on wavelength ∂ and on the
transverse spatial frequencies τx and τy of the diffracting element, according to:

kz = 2ϕ

√
(1/∂)2 − τ2

x − τ2
y = 0 (9.5)

Equation (9.5) is satisfied on a circle of radius 1/∂ in reciprocal space, and there-
fore structures with circularly-symmetric Fourier space satisfy the Rayleigh cut-
off condition strongly diffracting normal incident radiation into evanescent grating
modes. We say that the resonant condition expressed by Eq. 9.5 induces “planar
diffraction”. It is important to notice that, differently from periodic crystals and
quasicrystals with finite-order rotational symmetries, aperiodic spirals satisfy the
condition for planar diffraction over a range of wavelengths uniquely determined by
the number and the width of the scattering rings in their reciprocal space.
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This property is ideal to enhance light-matter coupling on planar substrates
[69], leading to thin-film solar cell enhancement [67], light emission enhancement
[66, 71], and enhanced second harmonic generation [68], as further discussed in
Sect. 9.3. Moreover, we recently discovered that Vogel spiral arrays of Au nanopar-
ticles support distinctive scattering resonances carrying orbital angular momentum
(OAM), potentially leading to novel applications in singular optics and cryptography
[69, 72, 73].

Vogel spiral arrays can be obtained in polar coordinates (r, θ) by the relations
[13, 74, 75]:

rn = a0
√

n
Δn = nγ

(9.6)

where n = 0, 1, 2, . . . is an integer index, a0 is a constant scaling factor, and γ is
an irrational number known as the divergence angle. This gives the constant angle
between successive particles in the spiral array. When γ ≈ 137.5086◦, it approx-
imates an irrational number known as the “golden angle”, we obtain the so-called
Fibonacci golden angle spiral (GA), shown in Fig. 9.5a. The golden angle γ is related
to the famous Fibonacci golden number ϕ = (1 + √

5)/2 ≈ 1.618 by the relation
γ = 360/ϕ2.

The structure of a GA spiral can be decomposed into clockwise and counterclock-
wise families of out-spiraling lines of particles, known as parastichies, which stretch
out from the center of the structures. Interestingly, the number of spiral arms in each
family of parastichies is given by consecutive Fibonacci numbers [74]. Moreover,
since the golden angle is an irrational number, the GA spiral lacks both translational
and rotational symmetry. Accordingly, its spatial Fourier spectrum does not exhibit
well-defined Bragg peaks, as for standard photonic crystals and quasicrystals, but
rather features a diffuse circular ring whose spectral position is determined by the
particles geometry (Fig. 9.5f). Interestingly, Vogel’s spirals with remarkably differ-
ent structural properties can be obtained by choosing only slightly different values
of divergence angle, thus providing the opportunity to control and explore distinc-
tively different degrees of aperiodic structural complexity. We show in Figs. 9.5b, c
two examples of Vogel spirals, known as ϕ and μ-spirals, obtained using the fol-
lowing divergence angles γϕ = 309.03◦ and γμ = 290.67◦, respectively. These
structures feature a rotationally symmetric Fourier space with remarkable structural
complexity, as demonstrated by Fig. 9.5d, e.

Recently, Dal Negro et al. [73] developed an analytical model that captured in
closed form solution the spectral properties of arbitrary Vogel spiral arrays. Within the
framework of scalar Fourier optics, we showed that the complex Fourier spectrum
(i.e., Fraunhofer diffraction pattern) of arbitrary Vogel spirals is described by the
analytical expression [73]:

E√(τr , τΔ ) = E0

N∑
n=1

e j2ϕ
√

na0τr cos(τΔ−nγ) (9.7)
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where the variables (τr, τθ) are Fourier conjugate of the direct-space cylindrical coor-
dinates (r, θ) used to represent the Vogel spiral density, γ is an irrational divergence
angle, a0 is a constant scaling factor, and N is the number of particles in the array
[73].

A distinctive property of Vogel spiral nanoparticle arrays is that, when illuminated
by optical beams, they give rise to scattered radiation carrying OAM [69, 73]. Modal
decomposition can be used to analyze a superposition state of OAM carrying modes
in the far field pattern and determine their relative contribution to the overall field
[66, 72, 76]. Decomposition into a basis set with helical phase fronts, is accomplished
through Fourier–Hankel decomposition (FHD) according to:

f (m, kr ) = 1

2ϕ

√∫
0

2ϕ∫
0

rdrdΔΘ(r, Δ)Jm(krr)eimΔ (9.8)

where Jm is the mth order Bessel function. In this decomposition, the mth order func-
tion carries OAM with azimuthal number m, accommodating positive and negative
integer values for m.

By analytically performing Fourier–Hankel Decomposition (FHD) analysis, Dal
Negro et al. [73] demonstrated that diffracted optical beams by Vogel spirals carry
OAM values arranged in aperiodic numerical sequences determined by the number-
theoretic properties of the irrational angle γ. In particular, wave diffraction by GA
arrays generates a Fibonacci sequence of OAM values in the Fraunhofer far field
region. More precisely, the OAM values transmitted in the far field region are directly
related to the rational approximations of the continued fraction expansion of the
irrational divergence angles of Vogel spirals [73].

It is important to realize that Vogel spiral arrays provide a very large spectrum of
OAM values relying uniquely on light scattering phenomena. In Fig. 9.6, we show
the calculated Fraunhofer far fields and the OAM azimuthal spectra of GA and
μ-spirals. Since we are primarily concerned with the azimuthal component f(m) of
OAM, we sum f (m, kr ) over radial the wavenumbers kr . Figures 9.6c, d demonstrate
the very rich structure of OAM peaks of the scattered radiation by Vogel spirals.
These peaks occur at azimuthal numbers (labeled in the figures) corresponding to
the denominators of the rational approximations of the irrational divergence angles
used to generate the spirals. The Fibonacci sequence of OAM values is coded in the
far field region of the radiation scattered by the GA spiral.

This fascinating property of Vogel spirals can be understood clearly by considering
the analytical solution of the FHD of the far field radiation pattern, which is given
by [73]:

f (m, kr ) =
N∑

n=1

A(kr )e
imnγ (9.9)

where A(kr )is a kr -dependent coefficient, which can be ignored since we are con-
cerned with the azimuthal dependence contained in f(m).
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Fig. 9.6 a, b Analytically calculated far field radiation patterns of GA and μ-spiral with 2,000
particles at a wavelength of 633 nm for structures with a0 = 14.5 μm. The far field radiation
patterns have been truncated with an angular aperture of 4◦ and 3◦, respectively. c, d Fourier–
Hankel transforms of far field scattered radiation by GA and μ-spiral, respectively, summed over
the radial wavenumber kr . The numbers in the figures indicate the azimuthal Bessel order of the
corresponding FHD peaks

We see from the result in Eq. 9.9 that when mγ is an integer, the N waves in the
equation will be exactly in phase to produce an OAM peak with azimuthal number
m. For an irrational angle γ, this condition will never be exactly satisfied. However,
any irrational γ can be approximated by an infinite continued expansion of rational
fractions, each approximately matching the integer condition for the mγ product.
Therefore, for spirals generated using an arbitrary irrational number γ, azimuthal
peaks of order m (i.e, Bessel order m) will appear in the FHD spectrum due to all the
denominators qn of the rational approximations (i.e., the convergents) of γ ≈ pn/qn ,
resulting in a sequence of discrete azimuthal peaks in the OAM of scattered light
simply determined by the aperiodic geometry.

Using phase delayed interferometric measurements, we have recently recovered
the complex electric field distribution of scattered radiation by Vogel spirals and
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demonstrated structured light carrying multiple values of OAM in the far field scatter-
ing region of arrays of metallic nanoparticles, in excellent agreement with analytical
calculations [77].

The unique features of Vogel spirals provide exciting new opportunities for the
engineering of OAM states using aperiodic nanostructures for a number of emerging
engineering applications in singular optics, secure communication, optical cryptog-
raphy, and optical sensing.

9.2.5 Aperiodic Order and Number Theory

Numerical sequences and geometric patterns with deterministic, though apparently
haphazard behavior, have been deeply investigated in discrete mathematics and infor-
mation theory [78, 79]. In particular, deterministic structures generated by number-
theoretic numerical sequences with flat-Fourier spectra have found numerous tech-
nological applications in different research areas ranging from the engineering of
acoustic diffusers to radar abatement (stealth surfaces), spread spectrum communi-
cation (jamming countermeasures, secure channel sharing), and the design of min-
imum redundancy antenna arrays (surveillance) in the RF regime [10]. However,
aperiodicity in number theory is still largely unexplored in the domain of optical
technologies.

Number theory is primarily concerned with the properties of integer numbers, but
encompasses a large spectrum of advanced techniques from virtually all branches
of mathematics [11, 12]. As a result, number theory provides numerous insights
and algorithmic approaches for the generation of different types of pseudo-random
systems, point sets, and aperiodic tilings with various degree of structural complexity
and Fourier spectral properties [10, 12].

Figure 9.7 shows representative examples of aperiodic particle arrays determin-
istically generated based on number-theoretic concepts in the real and complex
fields. In particular, we show a Gaussian prime array (Fig. 9.7a), a co-prime array
(Fig. 9.7b), and a Galois field array (Fig. 9.7c), along with the calculated Fourier
spectra (Fig. 9.7d–f).

Gaussian primes (GP) are Gaussian integers that are prime in the complex field,
and are defined by n+ im, where n and m are integers and i is the imaginary unit [10].
We notice that primes of the form 4k − 1 in the ring of conventional integer numbers
are still primes in the complex field, but 2 and primes of the form 4k+1 can be factored
in the complex field (e.g., 2 = (1 + i)(1 − i), 5 = (2 + i)(2 − i), etc.). Moreover, if
x is a Gaussian prime, the four numbers ±x,±i x are called the associates of x and
are also Gaussian primes. As a result, Gaussian primes are symmetric about the real
and imaginary axes.

By plotting the real and imaginary components of GP numbers as horizontal
and vertical coordinates, we can represent Gaussian primes geometrically in the
complex plane, and produce the highly symmetric pattern displayed in Fig. 9.7a.
However, despite the remarkable symmetry of the pattern, GP arrays are non-periodic.
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Fig. 9.7 a Array of Gaussian prime numbers, L = 19.4 μm. b Array of co-prime numbers, L =
11.4 μm. c Galois array, L = 12.8 μm. d Reciprocal space of the Galois array. e Reciprocal space
of the co-prime array. f Reciprocal space of Gaussian prime array. π = 400 nm is the minimum
center-to-center particle distance

Moreover, the presence a diffuse background along with well-defined peaks in the
Fourier space of GP arrays (Fig. 9.7f) suggests the singular continuous nature of
the spectrum. However, no rigorous mathematical results are known on the spectral
character of GP arrays. Interestingly, GP aperiodic arrays with different degree of
rotational symmetries can be obtained by considering primes defined by n + γm,
where γ is a complex algebraic root of unity. When considering the complex cube
root of unity, which is the solution of the algebraic equation 1 + γ + γ2 = 0, we
obtain the two-dimensional pattern of Eisenstein primes, which displays hexagonal
symmetry [10].

A co-prime array is shown in Fig. 9.7b. This array is obtained by positioning
nanoparticles in correspondence to pairs of co-prime integers in the two-dimensional
plane. We recall that two integers a and b are said to be co-prime (a∈b) if their greatest
common divisor GCD, denoted by (a,b), equals 1 (they have no common factors other
than 1). Figure 9.7e shows the Fourier spectrum of the co-prime array. We notice that
since the array is symmetric around the 45◦ diagonal, so is its Fourier spectrum.
Furthermore, since in Fig. 9.7e we plot the magnitude of the Fourier transform of
the array, an additional diagonal at −45◦ will appear as a symmetry axis. Compared
to the spectrum of the GP array shown in Fig. 9.7f, the co-prime array features a
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broader spectrum of spatial frequencies that are associated to several characteristic
length scales. Interestingly, several peaks appear in Fourier space related to the most
frequent distances between prime numbers [10, 80].

The discussion above makes us appreciate clearly the irreducible complexity that
often arises from the simple arithmetic properties of integer numbers. To this regard,
we notice that most number-theoretic functions (e.g., co-primality, discrete loga-
rithm, Euler’s ψ, Möbius function, Riemann’s zeta function, Dirichlet L-functions,
etc) display apparent random behavior despite the large number of symmetry prop-
erties, easily detected when constructing the corresponding geometrical arrays.
This aperiodic behavior, ubiquitous in number theory, is fundamentally related to
intractable arithmetic problems (e.g., distribution of prime numbers, factorization,
etc). The role of randomness in number theory has been deeply discussed in the
framework of Algorithmic Information Theory (AIT) [78, 79].

Pseudo-random particle arrays with constant Fourier spectra can be conveniently
designed based on the theory of finite Galois fields [10]. In abstract algebra, a field is
a set of elements with addition, subtraction, multiplication and division (except by 0)
operations that satisfy the usual commutative, associative, and distributive laws.

Galois fields, named after the French mathematician Évariste Galois, are fields
with a finite number of elements (i.e., finite order fields) and have found numerous
applications in physics, communication theory, error-correcting code, cryptography,
and even artistic design [10]. As a simple example, a residue system modulo a prime
p forms a finite field (i.e., a Galois field) of order p, which is indicated by GF(p).
Of particular importance are finite number fields of order equal to a prime power pm

(i.e., with pm elements), where p is a prime number and m is a positive integer. A
Galois field of order pm is usually denoted as GF(pm).

In particular, Galois sequences derived from GF(2m) have unique correlation
properties and possess flat Fourier spectra but, in contrast to other pseudo-random
binary sequences (i.e., Legendre sequences), are efficiently generated by a linear
recursion [10, 81–83]. Galois nanoparticle arrays can be constructed by generalizing
Galois recursions in two spatial dimensions as detailed in Refs. [10, 84]. Figure 9.7c
shows a calculated Galois particle array. The reciprocal Fourier space is shown in
Fig. 9.7d, and features a broad distribution of spatial frequencies without any well-
defined Bragg peak, similarly to the white spectrum of disordered random media.

Two-dimensional Galois arrays possess a high density of spatial frequencies,
theoretically a flat measure for infinite-size arrays. This property has been used to
improve the image resolution of X-ray sources in astronomy [10].

Aperiodic arrays of metal nanoparticles generated according to number-theoretic
functions have been explored only recently in the context of plasmonic scattering
and field localization for optical sensing device applications [80, 85, 86].

However, since number-theoretic methods mostly provide asymptotic results, their
applicability to finite-size aperiodic structures remain fundamentally limited, with
remarkable exceptions in cryptographic domains (e.g., pseudo-random generators,
optical cryptography).
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9.2.6 Hot Spot Engineering with Aperiodic Plasmon Arrays

In this section, we will discuss the distinctive features of local electromagnetic field
engineering using aperiodic arrays of metal nanoparticles. Let us first recall that
arbitrary arrays of resonant metallic nanostructures can resonantly couple at multi-
ple length scales due to near-field (i.e., quasi-static) interactions and radiative elec-
tromagnetic interactions (i.e., multiple scattering). Nanoplasmonics is mostly con-
cerned with the engineering of longitudinal near-fields around metallic nanostruc-
tures and near-field coupling between nanostructures in order to boost the intensity of
incident electromagnetic fields over nanoscale regions, known as “electromagnetic
hot spots” [87]. However, when the electromagnetic radiation is incident on multi-
particle arrays with separations comparable or larger than the wavelength of light,
nanoparticles additionally couple by radiative interactions and give rise to collec-
tive scattering resonances that are largely tunable by the array geometry. Therefore,
when engineering multi-particle arrays, long-range photonic–plasmonic coupling
effects must always be carefully accounted for. A simple example of “array driven”
photonic–plasmonic coupling is provided by the Fano-type resonances observed in
metal nanoparticle gratings [88–92]. Periodic gratings support a discrete spectrum of
narrow photonic resonances, known as diffractive or grating modes that when spec-
trally/spatially overlapped with the broader LSP modes of individual nanoparticles,
under appropriate excitation wavelengths and incidence angles, lead to more intense
hot spots and larger optical cross sections.

On the other hand, in aperiodic multi-particle arrays a large number of spa-
tial frequencies (wavenumbers) are available to match in-plane photonic scattering
processes, resulting in photonic–plasmonic coupling effects distributed over a larger
wavelength range [93]. Therefore, we can generally expect that aperiodic arrays fea-
turing a large density of spatial frequencies will result in a higher density of enhanced
hot spots over a broader frequency range compared to structures with more regular
geometry.

Consistently, roughened metal surfaces and random media, characterized by delta-
correlated white spectra, have demonstrated dramatic enhancement of hot spot inten-
sities for single molecule detection [94]. We have recently confirmed the qualitative
picture discussed above by coupled dipole and semi-analytical multiple scattering
calculations of near-fields and scattering spectra in deterministic aperiodic arrays
of varying structural complexity (i.e., Fourier spectral properties) [80, 93, 95]. It is
important to notice that the ability to engineer aperiodic structures with structural
complexity in between random and periodic media enables the optimization of hot
spots in complex photonic–plasmonic media, and can unveil distinctive engineering
design rules. This point is illustrated by Forestiere et al. [80], who systematically
investigated the near-field plasmonic behavior and far-field scattering response of Ag
nanoparticle arrays generated according to prime numbers distributions in two spa-
tial dimensions. Using rigorous coupled dipole analysis for dipolar nanoparticles,
this study demonstrates how the local intensity of plasmon fields can be strongly
enhanced over broad frequency spectra by engineering closely packed (i.e., large
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Fig. 9.8 a Maximum field enhancement versus the wavelength for an isolated Ag nanosphere
(50 nm radius) and for periodic, coprime, prime, and Ulam spiral aperiodic arrays of nanospheres
with 25 nm minimum interparticle separation. The arrays are exited by a circularly polarized plane
wave at normal incidence. b Values of maximum filed enhancement versus the spectral flatness
(SF)×filling fraction (FF) product for the different arrays indicated in the figure

particle filling fraction) arrays with large density of spatial frequencies, as shown
in Fig. 9.8a. The case of a single Ag nanosphere of 50 nm radius is also shown for
comparison. Figure 9.8b shows the maximum hot spot intensity, probed in the plane
of the arrays, for a number of aperiodic deterministic structures (named in the figure)
as a function of the product of the arrays filling fraction (FF) (or particles density)
and spectral flatness5 (SF). To better describe the influence of both the polariza-
tion states of the incident field, the arrays were excited by a circularly polarized
plane wave at normal incidence. It is to be noted that aperiodic arrays have been
found to perform better than closely packed periodic ones despite their substantially
lower filling fractions (i.e., particle density). Therefore, the computational results in
Fig. 9.8b demonstrate clearly that closely-packed aperiodic plasmonic arrays with a
large density of spatial frequency are necessary in order to enhance hot spots intensity
over a broader frequency range compared to optimized periodic and quasiperiodic
structures [80].

Another very important aspect of aperiodic plasmonic arrays relates to the frac-
tion of the total array area covered by strong plasmonic fields. In plasmonic sensing
technology, the understanding of the area density of enhanced fields on a planar chip
is of fundamental importance. In order to quantitatively understand this aspect, we
studied the fraction of the total area of the arrays covered by plasmonic enhanced
fields with values greater then a fixed threshold. This important feature is mathemat-
ically defined by the cumulative distribution of field enhancement (CDFE), which
we have introduced in Ref. [80].

5 The spectral flatness (SF) is a digital signal processing parameter that measures how spectrally
diffused a signal is. In the case of plasmonic structures, the arrays are considered as digitized 2D
spatial signals and the SF is calculated by dividing the geometric mean and the arithmetic mean of
their Fourier power spectra [80].
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Fig. 9.9 The color-maps show the cumulative distributions of field enhancement (CDFE) (logarith-
mic scale) versus wavelength (x-axis) and field-enhancement (y-axis) for (a) periodic (b) coprime
arrays. The arrays are excited by a circularly polarized plane wave at normal incidence

In Fig. 9.9a, b we show the CDFE calculated for a periodic and a co-prime array,
respectively. The CDFE function describes the fraction of the total area of the arrays
covered by plasmonic enhanced fields with values greater then a fixed value specified
in the vertical axis. Although the CDFE does not give any information about the
size of hot spot, it provides a quantitative measure of how the energy is spatially
distributed, at each wavelength, over the entire surface of the array. The results in
Fig. 9.9 demonstrate that aperiodic arrays with large spectral flatness and particle
filling fraction support enhanced field states that are spatially distributed over larger
array areas compared to periodic plasmonic structures, which is an important attribute
for the engineering of scattering-based plasmonic sensors (e.g., SERS substrates).

We want to emphasize again that the characteristic behavior of aperiodic nanoplas-
monic structures follows from the large number of supported photonic modes that
enhance the coupling, over a broad spectral range, to the subwavelength plasmon
modes of local particle clusters inhomogeneously distributed across the arrays.
Broadband hot spots intensity enhancement with aperiodic plasmonic structures is
therefore made possible by the long-range nature of the electromagnetic coupling
in multi-scale arrays of resonant nanoparticles with positional fluctuations. How-
ever, we should notice that aperiodic designs with dense Fourier spectra come at the
additional cost of a larger system’s size compared to narrow-band periodic or multi-
periodic structures, ultimately requiring engineering trade-offs between the intensity
enhancement, the resonant frequency bandwidth, and the total size of plasmonic
devices.

Another consequence of multi-scale electromagnetic coupling in aperiodic arrays
of metallic nanoparticles is the distinctive scaling of their hot spots intensity with the
total number of particles, which is a measure of the overall arrays dimension. This is
best illustrated by the analytical multiple scattering results in Fig. 9.10 that illustrate
the field intensity distribution and the maximum hot spots intensity, versus the number
of particles, for periodic square arrays of Au nanospheres (100 nm radius, 25 nm
separation) and Fibonacci, Thue–Morse, Rudin–Shapiro arrays (25 nm minimum
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Fig. 9.10 Generalized Mie Theory (GMT) calculations of electromagnetic field scattered by plas-
monic arrays of spherical Au nanoparticles arranged according to (a) a periodic array (b) a Rudin–
Shapiro array (c) a Fibonacci array. All the particles in the arrays have a radius of 100 nm and a
minimum separation of 25 nm. d Scaling of the calculated intensity enhancement for the different
arrays as a function of the number of particles

interparticle separation). All the structures are illuminated at normal incidence by
a plane wave at 785 nm. First, we can clearly appreciate from Fig. 9.10b, c that the
nanospheres in the aperiodic arrays are coupled by both the near-field interactions
responsible for hot spots formation and the multiple scattering of light occurring
in the plane of the array, activated by the characteristic “photonic length scales”
(i.e., lower spatial frequencies) of the aperiodic arrays. When scaling up the size of
the arrays by increasing the particles number, new configurations of local particle
clusters appear separated by wavelength-scale distances [96], thus increasing the
total number of spatial frequencies in the plane and enhancing the maximum hot
spots intensity in a size-dependent fashion.

The size dependent nature of the optical response of aperiodic systems is a well-
known manifestation of multiple scattering in the mesoscopic regime [97]. On the
other hand, since no photonic coupling occurs in subwavelength coupled periodic
arrays (Fig. 9.10a), more delocalized plasmonic modes are formed across the entire
periodic structure with reduced hot spot intensity. The lack of photonic-type coupling
in closely packed periodic arrays therefore prevents the onset of size-dependent
photonic–plasmonic resonances and enhancement effects, making the maximum hot
spot intensity insensitive to the overall array size, as demonstrated in Fig. 9.10d.
The distinctive size-dependence of the plasmonic near field response of aperiodic
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arrays has direct implications for device engineering, since in addition to the particles
composition/morphology and array geometry, the size of aperiodic arrays can be
tailored to enhance the near field hot spots intensity. In the next section, after a
discussion on the electron beam nanofabrication of DANS, we will introduce few
selected device applications.

9.3 Engineering Applications of Aperiodic Plasmon Arrays

From the discussions in the previous sections, it should be clear that manipulating
the interplay of coherent photonic scattering and near field plasmonic coupling in
aperiodic Fourier space offers novel opportunities to design electromagnetic hot spots
and to control light-matter coupling on the nanoscale for a number of engineering
device applications.

We will discuss in the next sections the nanofabrication of plasmonic DANS and
introduce some engineering device applications that leverage deterministic aperiod-
icity and metallic arrays of nanoparticles. The interested reader should consult the
reference section for more device applications and in-depth discussions of specific
structures.

9.3.1 Nanofabrication of Aperiodic Plasmon Arrays

In contrast to random media, DANS can be specifically tailored and fabricated using
conventional nanolithographic techniques such as electron beam lithography (EBL)
or Focused Ion Beam (FIB) milling followed by standard metal deposition and etch-
ing steps. Our group has recently developed a flexible process flow, as detailed below,
for the nanofabrication of arbitrary arrays of metal nanoparticles for nanoplasmonic
applications. In particular, we developed metallic nanoparticle arrays based on noble
metals, typically Au and Ag, on quartz substrates with a 10 nm layer Indium Tin
Oxide (ITO) to provide conduction. A 180-nm-thick layer of PMMA (PolyMethyl-
MethAcrylate) is then spin coated on top of the cleaned substrate. Subsequently, the
DANS patterns are defined using a Zeiss SUPRA 40VP SEM equipped with a Raith
Beam Blanker and NPGS for nanopatterning.

After developing the resist in a 1:3 solution of MIBK (Methyl IsoButyle Ketone)
and IPA (Isopropanol), a ≥30 nm thick Au/Ag film is deposited on the patterned
surface by electron-beam evaporation. Finally, a liftoff process is performed using
acetone, resulting in the definition of the targeted metal nanoparticle arrays. Within
the same general process flow, nano-perforated metal/dielectric films can also be
obtained using a Reactive Ion Etching (RIE) step immediately after EBL writing.
The concept of our process flow for the fabrication of both metallic nanoparticle
arrays and nano-hole patterns is summarized in Fig. 9.11.
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Fig. 9.11 Schematics of the fabrication process flow for the generation of aperiodic plasmonic
nanoparticle arrays (left) and nano-hole arrays (right). The SEM pictures show a Rudin–Shapiro
arrays of Au nanoparticles (left) and a Gaussian prime array of nano-holes in a quartz substrate.
The particle/hole radius is 100 nm and the minimum interparticle separation is 200 nm

Typical dimensions of each fabricated array are about 100 μm × 100 μm for
nanoparticles with a diameter of 200 nm, 30 nm tall and variable separations that can
range in between 25 and 400 nm, depending on the specific DANS geometry, device
applications, and nanolithographic setup.

As an example of fabricated DANS, we show in Fig. 9.12 the Scanning Elec-
tron Microscopy (SEM) pictures of arrays of Au nanoparticles arranged in periodic
(a), Fibonacci (b), Thue–Morse (c), and Ruden-Shapiro (d) geometry. The Au par-
ticles are cylindrical in shape and their height, as characterized by Atomic Force
Microscopy (AFM) and SEM, was found to be h = 30 nm. All the particles have a
circular diameter of d = 200 nm and a minimum interparticle separation a = 25 nm.
Notice however, the additional length scales present in the aperiodic structures, which
extend to scales comparable to the wavelength in the optical regime. DANS as shown
in Figs. 9.12 and 9.13 have been successfully applied to Surface Enhanced Raman
sensing technology, as it will be discussed in the following section.

To demonstrate the complete flexibility of the DANS fabrication process described
above, we additionally show in Fig. 9.13 Au nanoparticle arrays fabricated with
various types of deterministic aperiodic order on a Si substrate. These structures
are Pinwheel (a), Danzer (b), Coprime arrays (c) and the three most investigated
types of Vogel spirals (d–f). We can clearly appreciate from Figs. 9.12 and 9.13 the
overall quality of the nanofabricated arrays, which excellently match the abstract
geometrical patterns previously introduced in Sect. 9.2. However, current nanoscale
writing techniques, such as EBL, focused ion beam lithography (FIB), and scanning
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Fig. 9.12 SEM pictures of (a) Periodic, (b) Fibonacci, (c) Thue–Morse, (d) Rudin–Shapiro Au
nanoparticle array. The individual particle sizes are 200 nm, and the minimum interparticle separa-
tions in the arrays shown are 25 nm

Fig. 9.13 SEM pictures of (a) Peenwheel, (b) Danzer, (c) Coprime, (d) Rudin–Shapiro Au nanopar-
ticle array. The individual particle sizes are 200 nm, and the minimum interparticle separations in
the arrays shown are 50 nm
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probe microscopy (SPM), suffer from high operating costs and low throughput. On
the other hand, shadow-mask patterning techniques, such as stencil-based methods,
allow for the fabrication of plasmonic nanostructures but inherently suffer from edge
blurring and cannot produce plasmonic films perforated with nano-holes, which play
an important role in nanoplasmonics.

To solve these problems, we recently proposed and demonstrated a scalable and
cost-effective direct transfer nanofabrication technique that utilizes a hard mold mas-
ter and an inexpensive, commercially available flip-chip bonder, for the fabrication
of large-scale metallic nanoparticles and perforated metallic films (plasmonic nano-
hole arrays) directly atop silk fibroin films [98].

The process flow for the transfer imprint of plasmonic nano-dots and nano-holes,
begins with the fabrication of the reusable master molds. As an example, we discuss
in Fig. 9.14 the case of printing nano-hole arrays on a metal film. In the case of the
nano-dot transfer process, the desired geometry is fabricated into a Si mold consisting
of nanopillar arrays, while the nano-hole process requires a mold containing nano-
holes, as shown in Fig. 9.14a.

The fabrication of the nano-hole master proceeds via EBL writing with a 260-nm-
deep RIE step, using the PMMA as an etch mask. The remaining PMMA is removed
by hot acetone bath, resulting in the Si nano-hole master. The Si master is first treated
with a silanizing agent to reduce the adhesion of the Au to the Si surface. This surface
treatment enables a higher yield in pattern transfer of the Au to the silk film in the
subsequent steps. The process flow continues with the deposition of a 35nm-thick
e-beam evaporated gold (Au) film, as shown in Fig. 9.14b. The Au coated master is
now ready for transfer imprinting on the silk films. A commercial flip-chip bonder
(Smart Equipment Technology FC150) was employed to transfer imprint from the
fabricated master mold. The flip-chip bonder is used to align and bond one or more
chips onto a substrate using pressure and heat as shown in Fig. 9.14c. The transfer

Fig. 9.14 Process flow of transfer nanoimprint of plasmonic nano-hole arrays using reusable mas-
ters. a Nano-hole structures are defined in a Si master by EBL and RIE processing. b E-beam
evaporation of Au films to be transfered. c Transfer imprint utilizing commercial filp-chip bonder.
d Removal of master, leaving nanohole arrays on the silk film surface. e example of nanofabricated
plasmonic nanohole structures with aperiodic Vogel spiral geometry. Adapted from Ref. [98]
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imprint process begins by heating the Au covered master to 90 ◦C, when it is then
pressed onto the surface of the silk layer with a force of 50 kg (area of 16 mm2) for
5 min. During the imprinting, the plasmonic nanostructures bind to the surface of
silk layer. Upon completion of the bonding cycle, the master is removed, leaving the
Au embedded on the surface of the silk layer as shown in Fig. 9.14d for nano-dots
arrays. Nano-imprinted plasmonic hole arrays with Vogel spiral geometry are shown
as an example in Fig. 9.14e.

A similar process has been successfully developed to imprint arrays of metallic
nanoparticles atop polymer films. In this case, a Si mold consisting of nanopillar
arrays needs to be utilized. More details on these novel high throughput and scalable
fabrication processes can be found in Ref. [98]. These techniques enable the large-
scale replication of arbitrarily complex nanostructures with deep sub-wavelength
details down to 30 nm with a high throughput, as the mould is reusable. The inex-
pensive scalability of aperiodic nanoplasmonic structures over large areas is of great
importance for device engineering as it offers the opportunity to abate fabrication
costs and to develop aperiodic substrates into a mature technology. Some specific
device applications of aperiodic nanoplasmonic substrates will be discussed in the
next sections.

9.3.2 Applications to Surface Enhanced Raman Biosensing

Surface Enhanced Raman Scattering (SERS) spectroscopy is a well-established and
highly sensitive technique for investigating the specific vibrational response of a
variety of different analytes with fingerprinting accuracy. Recently, SERS spec-
troscopy has been successfully applied to label-free chemical and biological sensing
[99–101], where it has proven to be an excellent method for sensing DNA hybridiza-
tion [102], protein binding events [103], and even single molecules [104–107]. In
addition, it bears great promises for rapid identification of viruses and bacteria
[108–110], potentially enabling whole-organism fingerprinting. The dramatic enhance-
ment of the Raman scattering efficiency observed in SERS experiments is mainly
driven by the enhanced local electromagnetic fields in nanostructured metal surfaces
[111–113]. In fact, despite that SERS enhancement can also be affected by the spe-
cific electronic resonances of Raman-active molecules (i.e., electronic enhancement)
and by their direct contact with metal surfaces (i.e., chemical enhancement), the dom-
inant factor originates from a resonant effect between the incident and the scattered
radiation fields associated to the excitation of localized surface plasmon resonances.
In particular, the Raman enhancement factor scales roughly as the fourth power of
the local field [100, 111, 112]:

δSE RS ∝ ∣∣Eloc(λp)
∣∣2∣∣Eloc(λs)

∣∣2 (9.10)
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where Eloc(λp) is the local electromagnetic field at the pumping frequency and
Eloc(λs) is the local electromagnetic field at the scatted signal frequency. Because
of this distinctive scaling, in SERS applications it is very important to engineer strong
local fields at these two frequencies in order to obtain very high Raman enhancement
factors, enabling optical sensing of few or even single molecules.

Currently, the best approaches to generate efficient SERS substrates rely on ran-
dom roughening of metal surfaces by etching or by colloidal synthesis of nanoparti-
cles resulting in aggregates statistically described by fractal morphologies [1, 3, 114,
115]. The giant fluctuations of the local fields characteristic of self-similar (fractal)
structures leads to an efficient transfer of excitations towards progressively smaller
length scales of the aggregates where the electromagnetic enhancement reaches the
1012 level needed to observe single molecule SERS [1, 116, 117]. However, while
fractal aggregates and rough metal surfaces led to successful applications in sin-
gle molecule spectroscopy [101, 105, 106], reproducibility of results can vary from
sample to sample and engineering design rules are not easy to formulate. On the
other hand, these approaches clearly demonstrated the importance of the morphol-
ogy dependent “structural enhancement”, which is characteristic of multi-scale com-
plex systems where both electrodynamical interactions and electrostatic coupling
(lightning rod effect, quasi-static plasmon coupling) contribute to the overall SERS
enhancement.

In contrast to randomly roughened surfaces, it is possible to fabricate reproducible
metal nanostructures using Electron beam lithography (EBL) to be used as efficient
SERS substrates. Following the pioneering work of Wokaun et al. [118], it became
possible to obtain SERS signals from lithographically defined metal nanostructures
[119–123]. By using EBL, it is possible to fabricate uniform SERS substrates by
controlling not only the shapes but also the positions of each particle at the nanoscale.

The SERS enhancement achievable using periodic arrays of metal nanoparti-
cles can be further increased by reducing their inter-particle separations [122, 123].
However, the width of the inter-particle gaps achievable by EBL is limited to approx-
imately 20 nm, which is much larger than the inter-particle separations typically
obtained using random colloidal aggregates (1–5 nm). Therefore, in order to take
full advantage from structural enhancement effects in highly reproducible EBL-based
substrates, our group recently proposed to engineer the subtle interplay between dif-
fractive long-range and near-field coupling interactions in nanoparticles arrays with
complex, yet deterministic, morphologies [124, 125].

In particular, by developing DANS arrays of Au nanoparticles as a novel approach
for the design and implementation of “engineered roughness” in SERS substrates, we
demonstrated large values (≥107) of spatially averaged enhancement factors (i.e.,
defined over the entire excitation area) localized within 25 nm gaps using molecular
pMA (p-mercaptoaniline) monolayers. In our studies, we used pMA as the Raman
marker because of its ability to form reproducible saturation coverage on gold sur-
faces, which reduces the ambiguity associated with the experimental quantification
of the SERS enhancement. Moreover, we introduced novel multi-scale aperiodic
nanostructures, called “plasmonic nanogalaxies”, which yield reproducible SERS
enhancement (spatially averaged) values up to ≥108 [124]. These deterministic ape-
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riodic structures feature multiple length scales and produce cascade enhancement
effects similar to arrays of nano-lenses [116, 117], which significantly boost the
SERS enhancement values to almost single molecule sensitivity levels.

In our experimental analysis, Raman signal measurements were performed using
a Renishaw Raman microscope (RM2000, Renishaw, IL). A 50× (N.A. = 0.55)
objective was used to focus the laser beam on a nanostructured array and to collect
the scattering light from the sample surface using a backscattering configuration. The
SERS signal was typically acquired for 10 s using 785 nm laser wavelength at 1.7 mW
excitation power. The dimension of the laser spot is constant (2.5 μm × 25 μm)

ensuring that the SERS signal from the different arrays is comparable and unaffected
by size variation.

In Fig. 9.15 we summarize the SERS results obtained using the DANS arrays
of Au nanoparticles with different shapes (nano-cylinders and nano-triangles) and
aperiodic geometry. The experimentally measured SERS enhancement factors are
determined by the ratio of the Raman signal per molecule measured on the engi-
neered substrates and the reference Raman signal per molecule originating from a
pMA bulk crystal, as detailed elsewhere [124, 125]. The experimental results on pMa
molecular monolayers demonstrate large (≥107), morphology-dependent values of
average enhancement factors driven by the hot-spot formation in DANS arrays with
25 nm minimum separations (Figs. 9.15 and 9.16). Even larger values of enhance-
ment factors (≈108) were recently obtained by Gopinath and collaborators [124]
using plasmonic nano-galaxies. Aperiodic nano-galaxy structures are fabricated by
a combination of top-down EBL, which serves to define DANS arrays of nano-
cylinders with various geometries and bottom-up in-situ chemical Au reduction to
attach smaller nanoparticles (satellites) to the EBL-defined template (see Fig. 9.16a).
The dimensions and positions of the large nanoparticles are controlled precisely by
e-beam lithography. The size of the nano-satellites can be tuned by modification of

Fig. 9.15 SERS platforms based on deterministic aperiodic plasmonic arrays. Experimental SERS
spectra of pMA on lithographically defined arrays of (a) Fibonacci nano-triangles shown in the
SEM micrograph in the inset (b) scaling behavior of Raman enhancement factor calculated from
experimental data in periodic (dash blue) and Fibonacci (solid red) nanoparticle arrays. Circles,
triangles and stars correspond to the nanodisk, nanotriangles and nanogalaxy arrays, respectively
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Fig. 9.16 a nanodisks decorated by small Au spheres (termed plasmonic nanogalaxy) with an SEM
image of the device and a calculated electric field distribution shown in the inset. b–c SERS spectra
of bacteria (E-coli, shown in the SEM inset) and DNA molecules on plasmonic nanogalaxies. Au
particles are 200 nm in size and are separated by minimum interparticle gaps of 25 nm. d SERS
enhancement factors experimentally obtained for various aperiodic Au (green) and Ag (black)
nanocylinder arrays with 100 nm radius and minimum interparticle separation of 25 nm along with
Au (red) nanotriangle arrays with sides = 200 nm and interparticle separation of 25 nm and Fibonacci
Au nanogalaxy represented as blue

the in situ nanoparticle growth procedure. The data summarized in Fig. 9.15b and
Fig. 9.16d demonstrate that the selective attachment of smaller satellite nanoparticles
to pre-defined DANS leads to a dramatic increase of the SERS enhancement factors
by more than three orders of magnitudes, without significantly perturbing the parti-
cle separation scaling associated to the underlying deterministic aperiodic template.
We also note that the measured ≥108 spatially-averaged SERS enhancement factors
for Fibonacci nano-galaxy arrays should be considered a lower limit of the local
enhancement values since we have assumed that all the pMA molecules are equally
contributing to the measured SERS signal.

Additionally, due to the significant contribution of radiative coupling across the
DANS arrays, these field enhancement effects can additionally be controlled and
engineered by varying the geometry and the size of the aperiodic arrays. The funda-
mental role played by long-range diffractive coupling in aperiodic array geometry
is demonstrated by the data summarized in Fig. 9.16d for a number of DANS arrays
with Au and Ag nanoparticles of comparable sizes and average separations.
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Presently, we are optimizing deterministic aperiodic SERS substrates for real-time
detection and discrimination of different bacteria including Staphylococcus, E-Coli,
and bacillus serus [126]. A representative SERS spectrum obtained from E-Coli
bacteria is shown in Fig. 9.16b. The proposed SERS technology is also utilized for
the optical identification of different DNA nucleobases. Fig 9.16c demonstrates the
ability to detect, using aperiodic nanogalaxy substrates, SERS signal from 0.5 μM
solution of adenine using 0.8 mW radiation at 785 nm and integrating for 10 s.

The bacterial and molecular Raman spectra shown in Figs. 9.15 and 9.16 demon-
strate the potential and robustness of the DANS approach for real-time bio-chemical
sensing and identification using reproducible and engineerable SERS substrates that
leverage aperiodic order on a chip.

9.3.3 Applications to Colorimetric Optical Sensing

In current biosensing technology, two-dimensional periodic lattices, (i.e. 2D optical
gratings) provide a well-established approach for biochemical colorimetric detec-
tion, which can yield label-free sensing of various molecular analytes and protein
dynamics. Standard periodic grating biosensors provide a distinct change either in
the intensity of diffracted light or in the frequency of optical resonances in response
to variations in the refractive index of the surrounding environment. The physical
mechanism at the basis of these optical signatures is the well-known phenomenon of
Bragg scattering. While this process provides frequency selective responses that are
useful for colorimetric detection, the ability of light waves to interact with adsorbed
or chemically bound analytes present on the surface of these sensors is intrinsi-
cally limited. In fact, Bragg scattering is a first-order process in surface scattering
perturbation theory [127], and scattered photons easily escape from a periodic sur-
face within well-defined spectral bands and without prolonged interaction with the
sensing layer. On the other hand, eengineering elastic light scattering in planar ape-
riodic structures provides novel opportunities for bio-chemical sensing applications.
In particular, optical sensing platforms can be boosted by developing scattering ele-
ments that simultaneously provide high sensitivity to the environmental changes and
high spectral resolution, as both factors contribute to the improvement on the sensor
detection limit.

Detector sensitivity is conventionally defined as the magnitude of the wavelength
shift induced by the change of the ambient refractive index (measured in nm/RIU),
and can be improved by enhancing the light-matter interaction. In turn, the resolution
in measuring wavelength shifts inversely depends on the linewidth of the resonant
mode supported by the structure. It has recently been shown that aperiodic pho-
tonic structures provide the necessary balance between the resonant character of the
quasi-localized critical modes, which simultaneously feature high quality factors and
large field intensity over large sensing areas, resulting in largely improved sensitivity
over periodic grating sensors and even photonic crystals cavities due to their smaller
analyte-field overlap factors [128]. Building on these results, we have recently intro-
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duced a novel approach to label-free optical biosensing based on micro-spectroscopy
and spatial correlation analysis of structural color patterns excited by white light
illumination in DANS metal-dielectric surfaces [85, 86]. In contrast to traditional
photonic gratings or photonic crystals sensors (which efficiently trap light within
small-volumes), aperiodic scattering sensors sustain distinctive resonances localized
over larger surface areas. These structural resonances, known as critical modes, are
described by highly fluctuating field profiles (i.e., best described by multi-fractal
analysis) and have a dense spectrum, which result in efficient photon trapping and
surface interactions through higher-order multiple scattering processes. These fea-
tures thereby strongly enhance the sensitivity of DANS surfaces to small refractive
index changes. The complex spatial patterns of critical modes in these structures offer
the potential to engineer structural color sensing with spatially localized patterns at
multiple wavelengths. Under white light illumination, DANS surfaces feature struc-
tured multi-color colorimetric patterns which are a phase sensitive fingerprints of
their aperiodic geometries, known as colorimetric fingerprints.

When light is normally incident on aperiodic surfaces, distinct optical frequencies
(i.e., colors) localize in different areas (resolution limited) of the device and can read-
ily be observed in the object-plane or in the far-zone, as demonstrated in Fig. 9.17.
Adding a thin layer of analyte on top of aperiodic arrays shifts the resonance wave-
lengths of their optical modes leading to a spatial rearrangement of the localized
field intensity. This in turn triggers a global change in the colorimetric pattern of the
scattered radiation.

Fig. 9.17 SEM images of a aperiodic spiral array, b Fibonacci array, c Rudin–Shapiro array,
and d Gaussian prime array of Au nano-cylinders with radius r = 100 nm, height h = 30 nm,
and minimum interparticle separation d = 25 nm. Color figures in (b–e) are the corresponding
“colorimetric fingerprints” measured with dark-field microscopy under white light illumination
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Light scattering from nano-patterned deterministic aperiodic surfaces, which
occurs over a broad spectral-angular range, leads to the formation of colorimetric
fingerprints, in their near and far-field zones, which can be captured with conven-
tional dark-field microscopy, as demonstrated in Fig. 9.17. The distinctive colori-
metric fingerprints of aperiodic surfaces can be used as a transduction mechanism
for novel types of highly sensitive label-free multiplexed sensors [86]. In particular,
both the peak wavelength shifts (Fig. 9.18a, b) of the scattered radiation as well as the
environment-dependent spatial structure of the colorimetric fingerprints (Fig. 9.17b–
e) of aperiodic surfaces can be utilized to detect the presence of nanoscale protein
layers at the surface of DANS. The proposed approach is intrinsically more sen-
sitive to local refractive index modifications compared to traditional ones due to
the enhancement of small phase variations, which is typical of the multiple light
scattering regime.

Fig. 9.18 a Coating of different thicknesses of silk protein monolayers were characterized by
Atomic Force Microscopy (inset) and the colorimetric responses of the associated arrays were
measured spectrally. Coating of different thicknesses of silk protein monolayers were characterized
by Atomic Force Microscopy (inset) and the colorimetric responses of the associated arrays were
measured spectrally. b The sensitivity of the arrays is quantified by the spectral shift of the scattered
radiation peaks (PWS) per thickness variation of the protein layer. c The changes of patterns due
to different thicknesses of silk protein monolayers are quantified by the normalized ACF variances.
d 1D ACF profiles extracted from 2D normalized autocorrelation function along the x-axis of the
middle of the images. Adapted from Ref. [86]
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The spatial modifications of the structural color fingerprints induced by small
refractive index variations can be readily quantified using image autocorrelation
analysis performed on the scattered radiation [129], using polychromatic or single
wavelength modalities, as shown in Fig. 9.18 for silk protein monolayers deposited
on DANS surfaces. To construct the image autocorrelation function (ACF), the value
of the field intensity at point (x, y) in the array plane is compared with that at another
point (x∗, y∗) and mapped as a function of the distance between the two points. 1D
profiles through the 2D autocorrelation function of the intensity images in Fig. 9.18d.
The initial decay in the ACF reflects local short-range correlations in the aperiodic
structure, and any long-range periodicities in the intensity pattern give rise to periodic
oscillations in the ACF. To quantify the overall change in the colorimetric pattern
induced by the presence of thin molecule layers, we calculate the variance of the
fluctuations in the intensity distribution function, which can be found as the value
of the properly normalized discrete ACF in the limit of zero lateral displacements.
The proposed approach recently led to the demonstration of femto-molar detection
of silk proteins adsorbed on DANS [86].

The refractive index modifications induced by the analytes (silk protein) can be
detected by frequency shifts and a global structural color modification. Combining
Electron Beam Lithography (EBL), dark-field scattering micro-spectroscopy, auto-
correlation analysis and rigorous multiple scattering calculations based on the Gen-
eralized Mie Theory (GMT), Lee and collaborators [86] have engineered aperiodic
arrays of metal nano-particles on quartz substrates, and showed that the information
encoded in both the spectral and spatial distribution of structural resonances can be
simultaneously utilized for sensitive bio-detection on the nanoscale. The potential of
the proposed approach for rapid, label-free detection and recognition of biomolecular
analytes in the visible spectral range was experimentally demonstrated by the distinct
variation in the spectral and spatial colorimetric fingerprints in response to mono-
layer increments of protein layers sequentially deposited on the surface of aperiodic
arrays of nanoparticles.

Finally, we remark that this DANS-enabled detection technique can be conve-
niently integrated into microfludics channels for optical liquid sensing applications.
Our group is currently working to demonstrate full optofludics integration of spatial-
spectral colorimetric detectors for liquid sensing based on sensitive multiple light
scattering in DANS.

9.3.4 Applications to Light Emission Enhancement

Studies on the far-field and near-field optical behavior of two-dimensional Fibonacci-
based lattices fabricated by EBL have demonstrated the presence of strongly localized
plasmon modes whose exact location can be accurately predicted from purely struc-
tural considerations. In particular, Dallapiccola at al. [130], by performing near-field
optical measurements in collection mode and three dimensional Finite Difference
Time Domain (FDTD) simulations, showed that dimer coupling in a Fibonacci lat-
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tice results in a deterministic quasi-periodic sub-lattice of localized plasmon modes
which follow a Fibonacci sequence. In addition, stronger field enhancement was
experimentally observed in Fibonacci structures compared to periodic arrays [130],
demonstrating that quasiperiodic gold nanoparticle arrays can have a significant
impact for the design and fabrication of novel nanoplasmonic devices. The potential
of plasmonic DANS for the engineering of light emitting devices based on the silicon
technology has been recently demonstrated by studying quasi-periodic Fibonacci Au
nanoparticle arrays of varying interparticle separations fabricated on light emitting
Erbium-doped silicon nitride films (Er:SiNx ) by electron beam lithography [131].

A 3.6 times enhancement of the photoluminescence (PL) intensity accompanied
by a reduction of the Er3+ emission lifetime at 1.54 μm (see Fig. 9.19) has been
observed and explained by the coupling with the near-infrared structural resonances
of the Fibonacci structure. photonic–plasmonic hybrid modes were identified in
a comparative transmission experiment between periodic plasmonic gratings and
Fibonacci quasi-periodic structures by the spectral positions of their transmission
minima, for a large range of fabricated structures.

The scaling behavior of the emission enhancement in Fibonacci and periodic
gratings was discussed in relation to the modifications of the photonic LDOS at
the Er emission wavelength [131]. The strongly reduced frequency sensitivity of
the photonic–plasmonic scattering resonances in Fibonacci arrays prevented their
detuning from the Er emission wavelength. As a result, when decreasing the inter-
particle separation in the Fibonacci arrays, their emission intensity was found to
increase along with their emission rate, while an opposite behavior, indicative of
non-radiative losses, was observed in periodic gratings. The coupling of light emis-
sion to the distinctive scattering resonances of photonic–plasmonic coupled aperi-
odic arrays makes these systems particularly attractive for radiative rate engineering
applications where light extraction/enhancement is required over broad frequency
spectra.

The distinctive features of circular light scattering in plasmonic Vogel’s spirals,
introduced in Sect. 9.2.4, also provides an alternative approach for broadband light
emission enhancement in active thin films coupled to deterministic aperiodic struc-
tures. Our group has recently exploited planar light scattering for light emission
enhancement [66, 71] and demonstrated the role of the inhomogeneous distribution
of local spatial frequencies on the emission patter of Vogel’s spirals [69]. We pre-
pared a dye polymer solution by dissolving common laser dye molecules of DCM
(Exciton Inc.), in toluene.

The dilute solution was then mixed with Polymethylmethacrylate (PMMA), spun
onto samples and cured, resulting in 100 nm thick films of laser dye doped PMMA.
This particular laser dye has maximum absorption at 480 nm and an emission peak
at 640 nm, which overlaps the scattering resonances of the investigated γ2-spiral,
leading to broadband emission enhancement, shown in Fig. 9.20b. Moreover, we
demonstrate the ability to dramatically modify the angular emission of the sample
by imaging the fluorescence in transmission under for different excitation conditions.
In particular, the sample was pumped by positioning the laser spot at different loca-
tions onto the doped PMMA substrate at normal incidence (focused through a 10×
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Fig. 9.19 Demonstration of light emission enhancement from Erbium atoms coupled to deter-
ministic aperiodic plasmonic arrays of Au nanoparticles (200 nm diameters). a SEM picture of
quasiperiodic Fibonacci Au nanoparticle array fabricated atop a light emitting Er:SiNx substrates
of 80 nm thickness; b PL spectra excited at 488 nm through periodic and aperiodic nanoparticle
arrays with 50 nm min interparticle separations; c PL time decay of Er atoms through unpatterned
substrate (black) and Fibonacci arrays with varying interparticle separations indicated in the legend.
d Schematics of the experimental photoluminescence setup. Adapted From Ref. [131]

objective) with a laser diode at 480 nm and the emitted light was collected in trans-
mission configuration through the substrate using a lens of 100 mm focal length, and
imaged by a CCD camera. In order to capture only the emission patterns, the pump
laser light was blocked by a 514 nm high-pass filter. An identically prepared emit-
ting layer was also coated on unpatterned quartz for reference. Figure 9.20c shows
the CCD image of the fluorescence collected in transmission through the reference
sample (i.e., with no spiral pattern), which indicates that the fluorescence is spa-
tially confined to the pumped region in the absence of scattering structures. On the
other hand, when pumping the samples with the plasmonic arrays, the fluorescence
spreads laterally in the plane of the array and, when the sample is symmetrically
pumped through its center, a significant fracton of the fluorescence is emitted along
multiple directions due to the isotropic character of the Fourier space (i.e., circular
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Fig. 9.20 (a) Schematic cross-section of Au spiral nanoparticle array on a quartz substrate, coated
with DCM doped PMMA. Nanoparticles are cylindrical in shape with 200 nm diameter and 30 nm
in thickness with array diameter of 100 μm. (b) Photoluminescence spectra of doped polymer form
samples coupled to γ2-spiral arrays with varying average interparticle separations (310, 570, 900 nm
and un-coupled film for reference). CCD image of light emission from a DCM dye layer deposited
onto: (c) homogeneous quartz substrate (d) dye emission from scattered pump light by γ2-spiral
with beam centered on the array and (e) dye emission from scattered pump light by γ2-spiral with
beam ≥20 μm off center horizontally

light scattering). On the other hand, when the position of the laser pumping spot
is slightly misplaced from the centre of the sample (in the horizontal direction) by
approximately 25 μm, the angular distribution of the radiation changes dramatically
due to the very inhomogeneous distribution of local spatial frequencies associated
to the surface of aperiodic spirals with circularly-symmetric Fourier space [65, 69].

These results demonstrate the potential of aperiodic arrays with Vogel spiral geom-
etry to enhance and manipulate light emission in planar structures. While more work
is be required to fully leverage aperiodic spiral order for active optical devices, we
believe that our results motivate the development of novel optical devices that bene-
fit from polarization insensitive, enhanced light-matter coupling on planar surfaces,
such as plasmonic photodetectors and thin-film solar cells, which will be discussed
in Sect. 9.3.5 .
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9.3.5 Applications to Thin-Film Solar Cell Enhancement

The solar cell market is predominately based on crystalline silicon (c-Si) wafers with
absorbing layer thickness in between 100 and 300 μm to guarantee complete light
absorption and effective carrier collection. However, the increasing materials costs
related to the fabrication of highly pure c-Si and the ever-growing efficiency demands
of the solar industry have motivated novel approaches to increase light absorption
in cells with reduced active thickness. In particular, promising approaches consist in
the engineering of thin-films non-crystalline (amorphous or poly-crystalline Si) and
nanocrystalline Si (Si-ncs) structures [132, 133].

Amorphous and nanocrystalline materials can be fabricated with strongly reduced
thermal budgets, costs and with much larger volumes compared to traditional Si
wafers. However, their shorter diffusion lengths (limited by defects and grain bound-
aries) restrict the active cell thicknesses to approximately a few hundreds of nanome-
ters, severely decreasing the probability of photon absorption. This has recently
spurred the search for advanced photon recycling and light-trapping schemes capable
of increasing the optical paths of photons, and therefore the absorption probability, in
ultra-thin film Si solar cells (<200 nm-thick) [134–138]. Recent studies have shown
that metal nanostructures can lead to effective light trapping into thin-film solar cells
improving the overall efficiency due to the enhancement of optical cross sections
associated to the excitation of Localized Surface Plasmon modes (LSPs) [139–142].

One commonly utilized geometry consists of the fabrication of metal-dielectric
nanoparticles on the front/bottom surface of the absorbing cell structure. When the
nanoparticles shapes are correctly designed, incident light is preferentially scattered
into the thin-film absorbing Si layer over an increased angular range, effectively
enhancing the material absorption [143–146].

Plasmon-enhanced light absorption in thin-film Si solar cells has been demon-
strated using periodic arrays of gold (Au) or silver (Ag) nanoparticles, which give
rise to best enhancement in the spectral regions where evanescent diffraction grat-
ing orders spectrally overlap the broader LSP resonances characteristic of metallic
nanoparticles. However, polarization sensitivity and the narrow frequency range for
effective photonic–plasmonic coupling in periodic grating structures inherently limit
these approaches. In order to broaden the spectral region of enhancement, it is crucial
to engineer aperiodic nanoparticle arrays with a higher density of spatial frequen-
cies without resorting to uncontrollable random systems, which have only limited
engineering appeal. To overcome these limitations, recent studies have proposed
to utilize plasmonic arrays with aperiodic quasicrystal structures, such as Penrose
lattices, which exhibit non-crystallographic rotational symmetries [138, 147]. Such
arrays, by virtue of their higher degree of rotational symmetry as compared to tradi-
tional periodic structures, give rise to enhanced scattering along multiple directions
and over a broader wavelength range.

Our group has recently introduced plasmonic aperiodic spiral arrays as a viable
strategy to engineer wide-angle light scattering for broadband and polarization insen-
sitive absorption enhancement in thin-film Si solar cells [67].
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We have previously discussed that aperiodic Vogel spiral arrays feature nearly
continuous azimuthal symmetry in Fourier space and, when normally illuminated,
satisfy the Rayleigh condition for planar light scattering over broad and controllable
frequency bands, irrespective of the incident polarization of light [69]. A simple scalar
Fourier optics picture already suggests that polarization-insensitive large-angle scat-
tering of incident radiation can occur in GA spiral arrays at frequencies matching
the radial position of the scattering ring in reciprocal space [69]. This property is
ideal to engineer light trapping in thin-film Si solar cells. Following this approach,
we recently designed and fabricated GA arrays of Au nanoparticles atop ultra-thin
film (i.e., 50 nm-thick absorbing amorphous Si layer) Silicon On Insulator (SOI)
Schottky photodetector structure, sketched in Fig. 9.21a, and demonstrated experi-
mentally larger photocurrent enhancement in the 600–950 nm spectral range com-
pared to optimized nanoparticle gratings [67]. The relation between the spatial
Fourier spectrum of GA arrays of Au nanoparticles and the large angular distrib-
ution of scattered radiation in the forward scattering hemisphere has been rigorously
discussed by calculating the angular radiation diagrams within our recently devel-
oped formulation of the Coupled Dipole Approximation (CDA) for particles with
ellipsoidal shape [54].

This CDA approach is particularly suited to efficiently treat large-scale plasmonic
systems made of small and well separated nanoparticles, and it has been previously
validated against semi-analytical multiple scattering methods [95]. In our work, all
nanoparticles were modeled by oblate spheroids with 100 nm diameter and 30 nm
height. Moreover, the arrays are embedded in Si and normally excited by a linearly
polarized plane wave. The parameter of interest for the understanding of angular
scattering in complex plasmonic arrays is the differential scattering cross section,
which describes the angular distribution of electromagnetic power density scattered
at a given wavelength within a unit solid angle centered around an angular direction
(Δ,ϕ) per unit incident irradiance [59]. In the case of arrays composed of disper-
sive metal nanoparticles, the power scattered from a particular structure is in general
a function of both the geometrical parameters of the array and the wavelength of
the incident radiation. Full information on angular scattering is thus captured by
calculating the averaged differential scattering cross section, where the average is
performed on the azimuthal angle ϕ and the scattered intensity is normalized to the
maximum value (i.e., forward scattering peak). By plotting the azimuthally aver-
aged differential scattering cross section versus the inclination angle, we obtain the
radiation diagrams of the arrays. In Fig. 9.21b we show (plotted in dB scale) the
calculated radiation diagrams for the optimized GA arrays at three different wave-
lengths ∂B = 480 nm, ∂G = 550 nm and ∂R = 610 nm (i.e corresponding to the
blue, green, and red colors), respectively. Differently from the well-known case of
periodic structures, where the scattered radiation is preferentially redistributed along
the directions of coherent Bragg scattering, the radiation diagram of GA arrays is sig-
nificantly broadened at large angles (i.e. >30◦) for all the investigated wavelengths,
demonstrating broadband wide-angle scattering behavior.

By combining experimental absorption enhancement and photocurrent mea-
surements with CDA and full-vector 3D Finite Difference Time Domain (FDTD)
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Fig. 9.21 a Device cross-section of the SOI Schottky photo-detector with plasmonic arrays inte-
grated onto the absorbing surface. b Calculated radiation diagrams as a function of the inclination
angle for a GA spiral with N = 1,810 particles and for three different wavelengths, namely 480 nm
(Blue), 520 nm (Green), and 650 nm (Red). The GA spiral features an averaged minimum inter-
particle separation of 420 nm. c Integrated photocurrent enhancement ratio for GA spiral (red) and
periodic (black dashed) arrays of different center-to-center particle spacings. d Spiral array pho-
tocurrent with average center-to-center spacing of 425 nm (solid) and reference cell device without
the GA array (dashed). Adapted from Ref. [67]

simulations, we recently demonstrated [67] that broadband wide-angle scattering in
GA spiral arrays redirects a larger fraction of the incident radiation into the absorbing
Si substrate. Moreover, this effect increases the optical path of photons in the pho-
todetector, as well as enhancing the coupling to LSPs in the array plane. In Fig. 9.21d
we show the integrated photocurrent enhancement ratio, calculated by the ratio of
the integrated photocurrent spectrum of the device with and without the plasmonic
arrays. The ratios falling below the dotted line indicate devices with overall reduced
performance when compared against their neighboring empty reference cells. We see
in Fig. 9.21d that both GA spiral and periodic arrays exhibit an optimization trend
with respect to the interparticle spacing, yielding maximum integrated enhancements
of 8 and 31 % over reference cells, respectively. Fig. 9.21d show the measured pho-
tocurrent spectra for the best performing GA spiral photodetector. The dashed lines
are the reference photocurrent spectra measured on the unpatterned devices in the
nearest reference cells, respectively. The maximum photocurrent enhancement of
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approximately a factor of 3 is measured for the GA spiral at 950 nm. The increase in
photocurrent results from the interplay of plasmonic-photonic effects in GA spirals,
which contribute to the overall enhancement as follows: by providing better coupling
of incident radiation into the thin Si layer due to photonic wide-angle scattering; by
enhancing the intensity of the nanoparticle near-fields at the Si interface owing to
better LSP coupling in the plane of the array compared to periodic structures. A
detailed comparison with optimized periodic grating structures in discussed in Ref.
[67].

We observe finally that the experimentally measured 31 % integrated enhancement
for GA spiral arrays has been demonstrated with only 25 % of the active photodetector
device area covered by GA arrays (Fig 9.21d, inset). These results highlight the
potential for even greater enhancement for complete device area coverage using
GA spirals. Moreover, in the context of thin-films absorption enhancement, a large
class of deterministic aperiodic spiral arrays with divergence angles different from
the golden angle remains to be explored, promising additional flexibility due to the
presence of multiple scattering rings in Fourier space [65].

9.4 Outlook and Conclusions

While light transport and localization phenomena in periodic and random structures
have been investigated for decades, the study of deterministic aperiodic structures is
still in its infancy. Deterministic aperiodic optical structures defines a novel, fascinat-
ing, and highly interdisciplinary research field with deep ramifications in different
areas of mathematics and physical sciences, such as crystallography and computa-
tional geometry, dynamical systems, and number theory. Due to the unprecedented
flexibility in their Fourier space, which can be designed to span across all possible
spectral singularity measures, engineered aperiodic structures provide unprecedented
opportunities to manipulate light states, scattering and localization phenomena for
nanophotonics technologies.

In this chapter, we presented a comprehensive overview of our own work on the
conceptual foundation, design, nanofabrication, and selected device applications of
aperiodic arrays of metallic nanoparticles generated by algorithmic rules, referred
to as Deterministic Aperiodic Nano-Structures. Specifically, we discussed relevant
structure-property relations, hot spots engineering rules and near-field enhancement
in a large number of nanoplasmonic arrays of Au nanoparticles with aperiodic Fourier
space. Specific device applications were presented in relation to optical biosensing,
plasmon-enhanced light sources, and solar cells, demonstrating that the distinctive
interplay between photonic diffraction and near field plasmonic localization in DANS
provides novel opportunities to manipulate light-matter interactions on the nanoscale.
In addition, we reviewed the fascinating scattering properties of a novel plasmonic
platform based on the engineering of aperiodic Vogel’s spirals, which offer broadband
planar diffraction, light emission enhancement and the generation and manipulation
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of orbital angular momentum of light, potentially leading to novel applications in
secure communications and singular optics.

The computational and experimental results presented in this chapter demon-
strate the significance of aperiodic optics as a highly interdisciplinary field of opti-
cal engineering, and its potential for innovation in basic science and technological
applications. However, our achievements on the design, fabrication and engineering
of aperiodic optical nanostructures represent only a starting point for future work
in aperiodic optics and nanoplasmonics, particularly in relation to the following:
(a) nonlinear optical regime; (b) light-emitting and lasing structures; (c) theory of
inverse design of aperiodic structures.

Despite our initial demonstration of enhanced second harmonic generation in
plasmonic DANS [68], little is known on the solution of multiple light scattering
problems in the nonlinear optical regime, especially in relation to the enhancement
of localization and scattering phenomena (e.g., aperiodic discrete breathers). The
fundamental interplay between aperiodic order and optical nonlinearity still needs to
be investigated both theoretically and experimentally in photonic–plasmonic DANS,
potentially leading to the discovery of novel physical effects.

The great flexibility of aperiodic Fourier space for the engineering of light emit-
ting devices with tailored frequency and angular emission spectra also needs to be
systematically addressed with respect to the lasing regime, potentially leading to
novel concepts and discoveries in coherent generation from aperiodic environments.

Finally, we believe that more efficient numerical methods and specific approaches
for theoretical and computational research of aperiodic deterministic systems need to
be developed, especially in relation to the solution of inverse scattering problems in
aperiodic geometry. Advances in multi-scale computational science for large systems
with arbitrary Fourier spectral components are essential in order to properly optimize
device structures that fully leverage the opportunities of aperiodic Fourier space for
optical engineering applications.

To conclude, we believe that despite the many challenges still ahead, photonic–
plasmonic deterministic aperiodic structures have a unique potential to become the
platform of choice for the flexible manipulation of light-matter coupling on the
nanoscale, potentially resulting in significant advances to both fundamental sciences
and optical technology.
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Chapter 10
Waves on Subwalength Metallic Surfaces: A
Microscopic View Point

Philippe Lalanne and Haitao Liu

Abstract At a microscopic level, the electromagnetic properties of subwavelength
metallic surfaces are due to two kinds of elementary distinct waves, the surface
plasmon polaritons and the quasi-cylindrical waves. These waves are launched on the
metal surface by the scattering of the incident field on the subwavelength indentations,
and are subsequently scattered by adjacent indentations to ultimately form a complex
surface charge pattern that is responsible of various fascinating phenomena. We
review the fundamental properties that govern these waves and discuss their impacts
in the Wood anomaly of metallic gratings, a phenomenon historically attributed to
surface plasmon polaritons since the milestone work by U. Fano [10].

Keywords Wood anomalies · Surface plasmon · Extraordinary optical transmis-
sion · Theory of metallic grating · Quasi-cylindrical wave · Norton wave · Micro-
scopic model · Plasmonic surfaces

10.1 Introduction

In 1902, R.W. Wood observed that the spectrum of a continuous light source reflected
by a metallic surface etched by a periodic array of tiny grooves exhibits a rapid vari-
ation that occurs within a range of wavelengths not greater than the distance between
the sodium lines. Since then, grating anomalies have fascinated specialists of optics
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and physics, and nowadays with the progress of nanofabrication, metallic surfaces
patterned with subwavelength indentations are studied for a variety of interesting
properties, with applications ranging from sensing, new photonic and metamaterial
devices, to integrated circuits mixing photonics and electronics [9]. It is the purpose
of this chapter to examine the concepts, to elucidate the underlying physics and to
discuss recent results and current problems in relation with resonance of metallic
gratings. Particular emphasis will be placed on work carried out in the last decade,
in anticipating future directions and in assessing the relevance of the subject to other
areas of science.

Section 10.2 provides a historical background on the waves that are launched on a
conducting surface by a subwavelength indentation, recalling the pioneer works at the
beginning of last century by Marconi, Sommerfeld, Norton … in relation with long-
distance radio-wave communications. Note that the field radiated by a dipole source
in the vicinity of an interface has been considerably studied in the context of molecule
fluorescence and other optical processes, such as surface-enhance Raman scattering,
energy transfer … An interface may alter the way an excited molecule loses energy
through fluorescence in several ways. It may absorb part of the spontaneous decay,
and may alter both the radiative decay rate and the spatial distribution of the emitted
radiation. Such situations are completely out of the scope of the present survey. The
interested reader may refer to the review article [3] and to other reviews quoted there.

At optical frequency, the field scattered by subwavelength indentations on metal
surface has been first considered for understanding the spectacular Wood’s anom-
alies. Well before the establishment of modern theories of gratings (Floquet-Bloch
expansions, phenomenological models with the zeros and poles of scattering oper-
ators …) and before the discovery of surface plasmon polaritons (SPP) by Ritchie
[27], microscopic theories of metallic gratings considered the SPP launched by the
individual grating indentations as responsible for Wood anomalies. Section 10.3 sum-
marizes the Fano’s seminal ideas that, since 1941, have durably impacted the field
of periodic metallic surfaces.

Section 10.4 describes what is presently known on the waves launched on metal
surfaces by subwavelength indentations, which include the SPP mode and another
contribution called the quasi-cylindrical wave (quasi-CW). A good knowledge of the
properties of these waves is essential for understanding the rich physics of subwave-
length metallic surfaces. Particular emphasis is put on 1D indentations such as ridges
or grooves, 0D point defects such as holes being rapidly visited.

In Sects 10.5 and 10.6, we examine the scattering of SPPs and quasi-cylindrical
waves by tiny indentations, emphasizing cross-conversion processes that convert
quasi-CWs into SPPs and vice versa. Under the assumption that the indentations
have subwavelength dimensions, scattering coefficients for the SPPs, quasi-CWs,
and for a combination of theses waves can be consistently defined. The objective is
to settle the foundation of a “microscopic” treatment of the electromagnetic prop-
erties of metallic subwavelength surfaces, which is accurate and intuitive. For that,
the microscopic treatment should fit our current understanding and design recipes
that all rely on a wavy description, which assume that surface waves are first gen-
erated by some illuminated indentations, then propagate on the metal surface and
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interact with nearby indentations before being recovered as freely propagating light
or detected. Note the large gap existing between such an intuitive wavy picture
and state-of-the-art numerical tools (some are purely numerical like finite-element
and finite-difference methods, some are more physically oriented like modal- or
multipole-expansion methods …), that rarely consider the waves launched on the
surface and that never directly calculate how those waves are scattered by the sub-
wavelength indentations. The main physical ingredients of our understanding of
subwavelength surfaces (the launching, absorption, propagation and scattering of
surface waves) are only implicitly taken into account in standard modelisation by
matching the continuous electromagnetic field components at the interface.

Section 10.7 concludes the chapter.

10.2 Waves on Metal Surfaces: Historical Background

The field scattered by subwavelength indentations or emitted by subwavelength emit-
ters in the vicinity of interfaces has been of longstanding interest in electromagnetism.
In the 1900s, the rapid development of radio-wave technology prompted theoreti-
cal studies to explain why very long-distance (over-ocean transmission have been
achieved in 1907 by Marconi) transmission could be achieved with radio waves above
the earth. The solution is indeed linked to guiding by the ionosphere layers, but at
the beginning of the twentieth century, the explanation was thought to be due to the
nature of the surface waves launched on the flat earth by the emitting antennas acting
as a dipole. Sommerfeld was the first to determine the complete electromagnetic field
radiated by a subwavelength antenna (a 0D vertical dipole) at the interface between
two semi-infinite half spaces. He verified that his complicated solution [30] is com-
posed of a “direct contribution” and of a bounded Zenneck mode [37], the analogue
of the surface plasmon polariton (SPP) [25] for metals at optical frequencies, with an
exponential damping. On the other hand, the amplitude of the direct contribution does
not decay exponentially, but algebraically as 1/r2 at asymptotically long-distance
from the antenna [21–23]. The direct contribution, known as the Norton wave [2, 6],
was therefore believed to be responsible for long-distance radio transmission.

In nanophotonics, the field scattered on metallic surfaces by subwavelength
indentations is also essential, since it is responsible for the electromagnetic inter-
action between nearby indentations on the surfaces. Since the initial milestone inter-
pretation of Wood’s anomalies [35] by U. Fano [10] who introduced the concept of
bounded SPP modes, SPPs have been central in modern history of the research on
the optical properties of metallic surfaces, which have recently enabled researchers
to overcome the diffraction limit for applications in microscopy [31], nano-optical
tweezing [28], integrated optics [8] and lasers [38]. From a mathematical point of
view, the solution of this photonic problem is identical to that of the radio-wave
problem [14, 19]. However, there are also differences. We are mainly concerned
by short-distance (rather than long-distance) electromagnetic interactions, since the
distance between two neighboring indentations on subwavelength optical surfaces is
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of the order of λ and rarely exceeds 10λ. The second important difference concerns
the fact that the dipole orientation cannot be chosen in nanophotonics. For instance,
for a subwavelength 1D indentation under illumination of transverse-magnetic (TM)
polarization, two coherent equivalent electrical dipoles of different polarizations are
generally excited with different strengths.

Despite its importance for understanding the rich optics of subwavelength metal-
lic surfaces, the field scattered by subwavelength indentations on a metal surface has
been studied only recently. Lezec and his co-workers [11] were the first to recog-
nize the importance of a “direct” wave other than the SPP. This initial finding has
been followed by theoretical [5, 13, 20, 33] and experimental [1] works aiming at
determining the main characteristics of this wave. It turns out that for intermediate
distances of interest (x < 10λ), the direct wave is very different from the Norton
wave; it looks like a cylindrical wave.

10.3 Fano’s Microscopic Model of Wood Anomaly

In 1902, R.W. Wood, when observing the spectrum of a continuous light source
reflected by an optical metallic diffraction grating when the incident wave is polarized
with its magnetic vector parallel to the grooves (TM polarization), noticed a surprising
phenomenon: “I was astounded to find that under certain conditions, the drop from
maximum illumination to minimum, a drop certainly of from 10 to 1, occurred within
a range of wavelengths not greater than the distance between the sodium lines” [35].
Wood’s discovery drew immediately a considerable attention and the fascination of
many specialists of optics for the so-called Wood’s anomalies that never died.

By considering the metal as perfectly conducting and using a complicated math-
ematical derivation, Lord Rayleigh proposed the first explanation to the existence
of the anomalies [26]: an anomaly in a given spectrum occurs at a wavelength cor-
responding to the passing-off of a spectrum of higher order, in other words, at the
wavelength given by the grating equation for which a scattered wave emerges tan-
gentially to the grating surface. Considering the imprecise knowledge of the grat-
ing period in Wood’s experiment, the agreement between the grating equation and
Wood’s experimental results was considered as rather fair, and the Rayleigh conjec-
ture remained unquestioned during almost two decades. However, the conclusions
radically changed in 1936, with Strong’s study of Wood’s anomalies for various
metallic gratings having the same period [32]. Strong evidenced that the anomalies
occur at a wavelength systematically larger than that predicted by the grating equa-
tion.

To explain the red shift from the Rayleigh condition, U. Fano introduced a micro-
scopic model of Wood’s anomalies in his seminal article published in 1941 [10]
(40 years after Wood’s observation). Fano’s model is much less mathematically
involved than the theoretical work by Lord Rayleigh. It rather relied on a Huygens-
type very intuitive interpretation, and importantly, it suggested that a surface mode
with a parallel momentum greater than the free space momentum be involved in
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the energy transport between adjacent grooves. It is retrospectively interesting and
amazing to see how the surface wave, which is nothing else than the SPP of the flat
interface, is introduced in Fano’s model. U. Fano first considered the parallel prop-
agation constants of the modes of a glass plate sandwiched between a metal and a
vacuum and asks himself “Is there left any mode when the thickness of the glass layer
vanishes?”. By solving analytically the bi-interface problem, he showed that one and
only one bound mode (the SPP) exists in the limit of vanishingly small glass thick-
nesses for TM polarization, with a complex propagation constant whose real part is
always slightly larger than the modulus k0 of the wave-vector in a vacuum. He there-
fore made the ansatz that Wood’s anomaly originates from a collective resonance of
the subwavelength surface (see Fig. 10.1), in which the part of the wave scattered by
groove A excites the bound mode, travelling along the surface with a phase veloc-
ity smaller than the vacuum phase velocity, which gives a resonance whenever it
reaches the neighboring groove B in phase with the incident wave (phase-matching
condition). Denoting by kS P (surprisingly Fano does not give any analytical expres-
sion) the complex propagation constant of the surface wave and assuming that the
grooves are infinitely small and thus neglecting multiple scattering, the microscopic
interpretation by Fano leads to the following phase matching condition,

Re(kSP) = kx + 2ε/a, (10.1)

where the real part of the propagation constant is matched to the parallel wave vector
kx of the incident plane wave through a wave vector 2ε/a of the 1D reciprocal lat-
tice associated to the grating (a being the periodicity). In Rayleigh’s theory, because
perfect metals were considered, the wave on the perfectly-conducting surface prop-
agates exactly with the vacuum phase velocity, and this causes the phase velocity
difference that explains the red-shift for real metals.

Fig. 10.1 Fano’s microscopic model of Wood’s anomaly (from [10]). In Rayleigh’s interpretation
derived by considering the metal as a perfect conductor, resonance occurs whenever the part of the
wave that is scattered by groove A and that is traveling along the grating with the vacuum phase
velocity reaches the neighboring groove B in phase with the incident wave and with the waves
scattered by the grooves A∪, A". What Fano proposes to explain the red-shifted Wood anomaly
is to replace the free-space grazing wave of Rayleigh by a bounded mode with a smaller phase
velocity. This bounded mode is nothing else than the SPP of the flat metallic surface, which will be
discovered 16 years after by Ritchie [27]
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The big success of introducing a bounded SPP mode to convincingly explain the
experimental red shift is a milestone result, and since Fano’s work our understand-
ing of Wood’s anomalies is intimately linked to the resonant excitation of SPPs.
The last decade has proved that this vision is simplistic and that, although Fano’s
approach is remarkable in predicting the resonant wavelength, Rayleigh and Fano’s
interpretations should be actually “combined” to provide a quantitative analysis of
Wood’s anomalies.

10.4 Field Scattered on Metal Surfaces by Subwavelength
Indentations

The waves scattered on the surface of a metal film by a tiny indentation are at the
essence of the optical properties of metallic subwavelength surfaces. Provided that
the indention is small enough (in practice, dimensions should be smaller than λ /3),
it is convenient to consider asymptotically small indentations. For 1D indentations,
such as grooves or ridges like in Wood’s experiment, the equivalent sources are Dirac
line sources. When the polarization of the incident wave is parallel to the indenta-
tion, the field radiated on the surface is nearly zero. In that case often referred to as
TE polarization, the indentations are all independent and the field scattered by all
indentations is simply the superposition of the field scattered by every indentation.
This “trivial” case is not discussed hereafter. The TM polarization case is much more
interesting. Two coherent electric line sources, one being polarized perpendicular to
the surface and the second one being polarized parallel to the surface and perpendic-
ular to the indentation, have to be considered. This case is discussed in Sect. 10.4.1.
For 0D indentations such as holes, three dipole polarizations should be investigated.
The properties of the associated radiated fields will be qualitatively discussed in
Sect. 10.4.2.

10.4.1 The Quasi-Cylindrical Wave

The scattering of a 1D subwavelength indentation illuminated by a TM wave has been
the subject of intense research [1, 5, 7, 11, 13, 33] over the last decade. Hereafter we
simply summarize the main results, which are documented in a review article [14].

Fig. 10.2 Equivalence of a subwavelength indentation under TM illumination (a), to two electric
line sources (b)
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Referring to Fig. 10.2, a subwavelength indentation invariant along the y-axis
(the z-axis being perpendicular to the surface) and illuminated with a plane wave
polarized in the x-z plane (Fig. 10.2a), can be replaced by two electric line sources in
the dipolar approximation (Fig. 10.2b), one Jz being polarized perpendicularly to the
interface (along the z-axis) and the other one Jx parallel to the interface (along the
x-axis). Concerning the field scattered on the surface (this is the field that is respon-
sible for the electromagnetic interaction between the indentations on the surface),
three important properties are worth mentioning here.

Property 1: The field radiated on the surface by each individual line source can
be decomposed into a SPP mode and a quasi-cylindrical wave (quasi-CW), which
represents a “direct” contribution from the source.

At optical frequencies, the amplitude of the quasi-cylindrical wave is initially
damping as x−1/2 (just as a cylindrical wave) in the vicinity of the line source, then
is dropping at a faster rate for intermediate distances λ < x < 10 λ, before reaching
an asymptotic regime behavior with an x−3/2 damping rate at large propagation
distances.

Figure 10.3 illustrates the different contributions to the magnetic field radiated
on an air/gold (permittivities εd = 1 and εm = −46.8 + 3.5i) interface (z = 0)
by a line source vertically polarized. The results hold for gold at λ = 1 μm. The
dashed line is the SPP contribution, with an exponential damping exp[−I m(kS P )x],
and the solid curve is the “direct” wave contribution. At very large propagation
distances, the direct-wave decay rate asymptotically tends to 1/x3/2 and becomes

Fig. 10.3 Magnetic field radiated at λ = 1μm on an air/gold interface (z = 0) by a line source
Jz polarized vertically. The field is composed of a SPP (dashed curve) and of a quasi-CW (solid
curve). The latter takes two asymptotic forms. It is very intense and behaves as a cylindrical wave
(dotted blue line) with a 1/x1/2 decay rate at small propagation distances. At very long propagation
distances, it is very weak and decays as 1/x3/2. It is the analogue of the Norton wave (shown with
the dotted red line) discovered for radio communication
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the analogue of the Norton radio wave (shown with the dotted red line) at optical
frequencies. For subwavelength propagation distances (x < 2 λ), the direct wave
contribution dominates. It is very different from the Norton wave as it looks like
a cylindrical wave with a 1/x1/2 damping rate (dotted blue line). Consistently, the
direct wave contribution has been called a quasi-cylindrical wave (quasi-CW) in
the recent literature. The existence and importance of the quasi-cylindrical wave
at optical frequencies on metals has been first observed with a very elegant slit-
groove experiment [11], in which the groove acts as a line source and the slit as
a local detector of the field scattered by the groove. By systematically varying the
groove-slit separation-distance in a series of samples, the field pattern is recorded.
The experimental data, which were probably contaminated by an undesired adlayer
on the silver film, have been initially interpreted in a confusing manner as shown in
[1, 13], but they had the merit to unambiguously reveal the existence and importance
of a direct wave (different from the SPP) that is initially dominant for |x | < 2λ.

Property 2: As one moves from the visible to longer wavelengths, the SPP is less
attenuated, but it is also less and less efficiently excited, whereas the quasi-CWs are
equally excited at all energies.

Fig. 10.4 Magnetic field, H(x) = HSP(x)+ HCW(x), radiated by a vertically-polarized line source
Jz at an Ag/air interface (inset on the top) for wavelengths ranging from the visible to thermal infrared
[13]. The blue dashed curves correspond to |HSP| and the red-solid curves to |HCW|. Thin black
lines show a damping scaling as 1/x1/2. The calculations are performed for silver but similar results
have been obtained for gold. Note the logarithmic scales used in both the horizontal and vertical
axes, which are all identical for the sake of comparison. The frequency-dependent value of Ag
permittivity is taken from [24]
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Fig. 10.5 Illustration of property 3 for a gold/air interface at λ = 800 nm. Left The blue and red
curves represent the magnetic field of the quasi-cylindrical waves radiated on the surface by two
line sources polarized vertically and horizontally, respectively, with Jx = Jz = 1. The two quasi-
cylindrical waves seem completely different a priori. Right In reality, the two quasi-cylindrical
waves are almost identical in shape and only differ by a constant, as show by the new red curves
obtained for Jx ≈ 3i. The frequency-dependent Au permittivity takes value from [24]

This property is illustrated in Fig. 10.4 for different wavelengths. More precisely,
the figure represents the magnitude of the total magnetic field H(x, z = 0) radiated
on the interface (z = 0) by a z-polarized line source located at x = z = 0. The total
field results from the sum of two contributions, H(x) = HSP(x) + HCW(x), where HSP
(blue-dotted) and HCW (red-solid) represent the SPP and quasi-CW contributions,
respectively. We first note that the initial quasi-CW contribution at short distances
is nearly independent of the metal dielectric properties, whereas the initial SPP
contribution rapidly drops as the metal conductivity increases, |HSP| ∼ | εm |−1/2.
At visible wavelengths (λ = 0.633μm), the SPP contribution dominates even at
relatively short distances, the SPP and quasi-CW being actually equal for xc ≈ λ /6.
At thermal-infrared wavelengths (λ = 9μm), the quasi-CW is preponderant until
distances as large as 100λ. It can be shown that the initial crossing distance xc

below which the quasi-CW wave dominates increases with the metal conductivity,
xc ≈ λ | εm |/(2ε ε

3/2
d ) [14].

Property 3: The quasi-cylindrical waves radiated on the surface by each individual
line source, Jx or Jz although they differ in amplitude and phase, are almost identical
in shape.

Figure 10.5 illustrates the property. In the left graph, the magnetic fields of the
quasi-cylindical waves radiated by vertical (blue curve) and horizontal (red curve)
line sources (Jx = Jz = 1) are shown as a function of the distance x from the source.
The calculation is performed for a gold substrate at λ = 800 nm. In the right panel,
the source Jx has been optimized (Jx ≈ 3i ) so that its associated quasi-cylindrical
wave is similar to that generated by the vertical source. It turns out that, although a
slight difference remains, the two fields are almost superimposed. It can be shown
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that this difference becomes smaller and smaller as the metal conductivity increases
(or λ increases) [14].

This property has an important consequence if one neglects the small residual
difference. When a subwavelength indentation is illuminated by a TM polarized
light, the scattered field can be seen as the total field radiated by two line sources,
Jx and Jz, and the relative amplitudes of the line sources are arbitrary: they for
instance depend on the incident illumination (its angle of incidence for instance
if it is a plane wave), on the actual geometry of the indentation, on the dielectric
and metal permittivities… A priori two independent radiation problems should be
considered, but since the quasi-cylindrical waves associated to the two line source
polarizations are identical in shape, any arbitrary sub-indentation illuminated by any
incident electromagnetic field will launch a unique field (the quasi-cylindrical wave)
on a metallic surface, in addition to the SPP. Also note that the mixing ratio between
the SPP and the quasi-CW radiated by the two line sources are approximately the
same [14], and we finally conclude that this mixing ratio is fixed for the field scattered
by any sub-indentation.

10.4.2 SPP and Quasi-CW Launched by a Dipole Point-Source on
a Metal Surface (3D case)

The field radiated by point-source or sub-λ antennas in the vicinity of metallic sur-
faces has been of long-standing interest in classical electromagnetism. In particular
for long-distance radio propagation and for remote sensing, the problem was ana-
lyzed in detail by Sommerfeld [29, 30], Norton [21–23] and others for a half-space
conductor with a finite conductivity (the sea surface for instance). The conclusions
were that the radiated field can be calculated as an integral along a contour in the com-
plex plane and is composed of two contributions, the Zenneck mode (corresponding
to the pole, the analog of the SPP at visible frequencies) and a “direct” wave (corre-
sponding to branch integrals, the analog of the quasi-CW). In an intermediate region
and near the surface, the field is well approximated by that of the cylindrical Zenneck
mode; but then, as the distance increases further, the long-distance propagation is
mainly due to the direct wave that is often referred to as the Norton wave. The latter,
whose amplitude asymptotically decays as 1/r2, overcomes the Zenneck mode at
large distances because of the additional exponential damping factor exp(ikSPr) of
the Zenneck mode. These issues are discussed in great detail in the review article by
R.E. Collin [6] or in the book by Baños [2].

Hereafter we simply show an example for the sake of illustration. For a verti-
cal dipole, perpendicular to the interface, the in-plane component of the radiated
field is radially polarized and isotropic. The situation is more interesting for an in-
plane dipole (let us say parallel to the x-axis). Both the SPP and quasi-CW fields
on the surface are anisotropic. Figure 10.6 shows the radial electric fields radiated
by such a dipole. The SPP field is proportional to r−1/2exp(ikSPr) and its electric
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Fig. 10.6 Radial electric field radiated on an Au/air surface by a dipole point source polarized
parallel to the surface (along x-axis) for λ = 800 nm. The left panels show a surface map for the SPP
(top) and quasi-CW (bottom) fields. The same units are used in both plots. As the metal conductivity
increases, the perfect-conductor limit is reached and the quasi-cylindrical wave becomes a spherical
wave with a r−2exp(ik0r) behavior. In the right panel, the radial field (Ex) is plotted as a function
of x for y = 0. The blue dashed curve corresponds to the SPP mode and the red-solid curve to the
quasi-CW. The frequency-dependent value of Au permittivity is taken from [24]

vector is mainly perpendicular to the surface with a small in-plane component. Along
any direction (different from θ = ε/2) the in-plane SPP field tends to be radially
polarized, as Eθ/Er ≈ tan(θ)/r , where the subscript θ and r are used to denote the
orthoradial and radial components of the fields. The quasi-CW wave initially varies as
r−1exp(ik0r) at small distances from the dipole, then at longer distances, its electric
field amplitude decays algebraically with distance as r−2exp(ik0r), like the Norton
radio wave. The electric field of the quasi-CW points mainly along the direction
perpendicular to the interface, and its in-plane components satisfy Eθ/Er ≈ tan(θ).
However, for the vertical dipole the in-plane component of the quasi-CW field is
radially polarized and isotropic.

10.5 Fano-Like Model of the Extraordinary Optical
Transmission

The modes (SPP) and waves (the quasi-CW) scattered by individual subwavelength
scatterers are at the essence of the electromagnetic properties of subwavelength
metallic surfaces and in particular of subwavelength gratings. Every individual inden-
tation that is illuminated launches SPPs and quasi-CWs on the surface. The launched
fields further interact with the adjacent indentations, before being eventually radiated
back into free space.

The electromagnetic interaction on the surface may lead to a complicated mul-
tiple scattering process, in which for instance the launched quasi-cylindrical waves
may scatter and generate SPPs, or vice-versa. Before examining the multiple scatter-
ing process in details in Sect. 10.6, to simplify we will examine a simplified model,



390 P. Lalanne and H. Liu

assuming like Fano, that the electromagnetic interaction among the indentations
is only mediated by the SPPs of the flat interfaces between the indentations, the
quasi-CW contribution being neglected. There are two reasons for considering such
a pure-SPP model that only considers SPPs. First the model allows us to define the
SPP scattering coefficients for the individual indentations, and these scattering coef-
ficients are fundamental to understand the multiple scattering process (since the same
scattering coefficients apply to the quasi-CWs as well, as shown in Sect. 10.6). Sec-
ond, by comparing the predictions of the model with fully-vectorial computational
results, one may directly determine the role of SPP in the electromagnetic property
of subwavelength surfaces [16].

To illustrate our purpose, we consider the text-book case of the extraordinary
optical transmission (EOT). The EOT was first observed in the near infrared with
subwavelength hole arrays perforated in opaque gold and silver films [9], and is an
emblematic example in plasmonics that has sparked a huge amount of research trying
to apply the phenomenon and to unveil the underlying mechanisms, and especially
to unveil the role of SPPs in the transmission. The analysis is performed for a self-
supported membrane (thickness d) in air for the sake of simplicity (the upper and
lower grating interfaces are identical, see Fig. 10.7a).

At a microscopic level, the basic mechanism enabling the EOT is a coherent
diffraction by all the individual holes acting as elementary scatterers. However, it
is more convenient to consider isolated 1D arrays of holes (a periodic hole chain
with periodicity a in the y-direction, see the bottom panels in Fig. 10.7) perforated
in a metal substrate as the elementary scatterers. Provided that the hole separation
distance is subwavelength, the 1D hole chains act as 1D indentations, like in classical
metallic gratings.

The elementary SPP-scattering events used in a pure-SPP model of the EOT
are shown in Fig. 10.7b–d for classical diffraction geometries (the y-component ky
of the in-plane wave vector momentum is zero). Upon interaction with the chain,
the SPP modes are partly excited, transmitted, reflected or scattered into the chain
mode and into a continuum of outgoing plane waves. The interaction defines four
elementary SPP scattering coefficients. Two coefficients, see Fig. 10.7b, namely
the SPP modal reflection and transmission coefficients, ρSP and τSP, correspond to
in-plane scattering. The other two, αSP and βSP, correspond to the transformation of
the SPPs into aperture modes or radiation waves, and vice versa. They allow us to
link the local field on the surface to the far field that is transporting light away from
the metal film.

From these elementary SPP scattering coefficients, a coupled-mode model that
provides closed-form expressions for the transmittance and reflectance coefficients
of the fundamental supermode of the 2D hole array, tA and rA, is readily derived
[16]. For instance, the reflection coefficient rA of the fundamental supermode, a very
important physical quantity of the EOT phenomenon [18], can be written

rA = r + 2α2
SP

u−1 − (ρSP + τSP)
. (10.2)
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Fig. 10.7 Pure-SPP model of the EOT. a Self-supported geometry in air considered for the sake
of simplicity. The transmission coefficient of the membrane (from the incident plane wave to
the (0,0)th-order transmitted plane wave) is denoted by t0. Similarly we denote by tA and rA
the transmission and reflection coefficients of the fundamental supermode of the 2D hole array.
The membrane thickness is denoted by d. b–d SPP elementary scattering processes involved in the
EOT. They are all associated to a single 1D hole chain of infinite depth under illumination by b
the SPP mode, c the fundamental supermode of the hole chain, and d an incident TM-polarized
(magnetic vector along the chain direction) plane wave impinging at an oblique incidence defined by
its in-plane wave-vector component kx . The red and green arrows refer to the incident and scattered
modes, respectively. The processes in b–d define six independent elementary scattering coefficients,
ρSP (reflection coefficient of the SPP mode), τSP transmission coefficient of the SPP mode), αSP
(scattering coefficient from the SPP mode to the fundamental supermode and vice versa according
to the reciprocity theorem), β(kx ) (scattering coefficient from the SPP mode to the outgoing plane
wave with an in-plane wave-vector component kx and vice versa), t (kx ) (scattering coefficient from
the fundamental supermode to the plane wave and vice versa) and r (reflection coefficient of the
fundamental supermode)

In Eq. 10.2 that holds for normal incidence (kx = 0), u = exp(ikSPa) is the phase
delay accumulated by the SPP over a grating period and r is the reflection coefficient
of the fundamental mode of the hole chain, see Fig. 10.7c.

It is crucial to realize that the SPP scattering coefficients in Eq. 10.2 are not
related to the periodicity of the structure and that the coupled-mode model can be
applied to aperiodic structures as well [16]. Indeed, the essence of Eq. 10.2, and
in particular of the denominator that results from a geometric summation over all
chain contributions, is a multiple scattering process that involves the excitation of
SPP modes by the incident field and the further scatterings of the excited SPPs onto
the infinite set of periodically-spaced hole chains. The same denominator would be
obtained for the groove geometry in Fig. 10.1, and would explain the Wood anomaly
in Fano’s interpretation.
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Fig. 10.8 The role of SPPs in the EOT. Three spectral bands are covered, from visible to near-
infrared frequencies: a a = 0.68 μm, b a = 0.94 μm and c a = 2.92 μm, a being the grating pitch.
The red-solid curves represent fully-vectorial data of the EOT and the blue-dashes are predictions
obtained with the pure-SPP model. The black dash-dot curves (almost superimposed with the fully-
vectorial results) are obtained with a microscopic model that takes into account SPPs and quasi-CWs
(see Sect. 10.6.2). The data are obtained for a gold membrane in air perforated by a periodic array
of square holes illuminated by a normally incident plane wave. The hole side length is 0.28a (hole
filling fraction 8 %) and the membrane thickness is d = 0.21a

The question arises on how accurate is the pure-SPP model in predicting the EOT
phenomenon. The answer is provided in Fig. 10.8, which compares the pure-SPP
model predictions (blue dashed curves) with fully-vectorial computational results
(red solid curves). The comparison is performed for three spectral intervals, from
the visible (a = 0.68μm) to the near-infrared (a = 2.92μm). The SPP model quan-
titatively predicts all the salient features of the EOT, and especially the Fano-type
spectral profile with the antiresonance transmission dip followed by the resonance
peak. Importantly, there are also some discrepancies that are due to the model assump-
tion of a pure SPP electromagnetic interaction between the hole chains. As deduced
from Fig. 10.8, the SPPs account for only half of the total transmitted energy at peak
transmittance at visible frequencies, and only one fifth at longer wavelength in the
near-infrared. The reason comes from the presence of the quasi-CW, which becomes
more and more predominant as the wavelength increases, see Fig. 10.4.

This theoretical prediction has been recently confirmed experimentally by mea-
suring the transmissions of a set of metal hole arrays with varying hole densities.
More specifically, Beijnum and his coworkers have varied the size of the unit cell
along the x-axis, choosing ax = qa_(a = 450 nm) and ay = a, where q is an integer
ranging from 1 to 7 [4]. When the measured transmissions are rescaled to correct
for the reduced density of holes, all the arrays, q = 2 − 7, except the q = 1 array
exhibit almost identical transmission spectra. Remarkably, all those rescaled spectra
are reproduced with high accuracy by the pure-SPP model. In comparison, the q = 1
array differs by a two-fold increase of the scaled transmission peaks, a distinct effect
that is attributed to the impact of the short-range-interaction provided by the quasi-
CW.
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10.6 Generalized Microscopic Model with Surface Plasmon
Polaritons and Quasi-Cylindrical Waves

The pure-SPP microscopic model captures most of the important features of the
EOT at visible frequencies, but it is largely inaccurate at longer wavelengths. In this
Section, we keep on elaborating on an intuitive microscopic description of multiple
scattering phenomena occurring on metallic subwavelength surfaces. By incorpo-
rating the quasi-CW into the pure SPP model, we obtain a more accurate model
that provides quantitative predictions well above the visible wavelengths. In the first
Sect. 10.6.1, a key scattering process of surface waves, the cross conversion from
quasi-CWs to the SPPs is investigated. In the second Sect. 10.6.2, the quasi-CW con-
tribution is incorporated into the pure-SPP model, and a generalized wavy model,
similar to the pure-SPP model (actually it is much more accurate as shown by the
black dash-dot curves in Fig. 10.8), is presented.

10.6.1 Cross Conversion from Quasi-Cylindrical Wave to Surface
Plasmon Polariton

For a metal surface patterned with a set of 1D indentations under external illumination
by TM-polarized light, several scattering processes of surface waves may exist: the
SPP-to-SPP scattering that has been considered in the pure-SPP description, the
possible CW-to-SPP or SPP-to-CW cross conversions, and the CW-to-CW scattering.
The cross conversion between different surface waves plays a key role in the physical
multiple-scattering picture. Demonstration of its existence along with a quantitative
description of its scattering coefficient appear to be a heuristic step in incorporating
quasi-CWs to build up an accurate microscopic description of subwavelength metallic
surfaces.

The importance of the cross conversion has been demonstrated in [36], by con-
sidering a groove doublet and by calculating its SPP excitation efficiency on the
outer sides as a function of the groove separation-distance. The interpretation of
the computational results has led the authors to conclude that the SPP excitation
efficiency dependence on the separation distance cannot be explained if one does
not consider a CW-to-SPP cross conversion. Additionally, the authors have pro-
posed a method to directly extract, from the SPP excitation efficiency, the scattering
coefficients associated to the cross-conversion process and have argued and verified
that the cross-conversion scattering coefficients are simply related to SPP scattering
coefficients,

ρc ≈ ρSP, (10.3a)

τc ≈ τSP −1, (10.3b)

where τc and ρc are the cross-conversion coefficients from an incident CW to a
transmitted and a reflected SPP (Fig. 10.9a), and τSP and ρSP are the elastic transmis-
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Fig. 10.9 Mapping from the cross conversion to the SPP scattering for a slit. a Cross conversion
coefficients ρc and τc from an incident CW (red dotted arrow) to a reflected and a transmitted SPP
(green solid arrows). b SPP scattering coefficients ρSP and τSP from an incident SPP (red solid
arrow) to a reflected and a transmitted SPP (green solid arrows)

sion and reflection coefficients of the SPP (Fig. 10.9b). Equations 10.3a and 10.3b
originate from a map of the scattering of an incident CW to the scattering of an
incident SPP by a subwavelength indentation. Although the two incident fields are
different in nature, their distributions are similar within the subwavelength region of
the indentation, which yields an equality between the two scattered fields with the use
of the causality principle. Note that in Eq. 10.3b, τSP −1 represents the transmitted
SPP amplitude that is scattered by the indentation.

10.6.2 Multiple-Scattering Model with Surface Plasmon Polaritons
and Quasi-Cylindrical Waves

In addition to providing closed form expressions, the main force of the pure-SPP
model is to propose an intuitive and physical wavy description of the multiple scat-
tering processes involved at metallic subwavelength interfaces. In order to make the
model more accurate, one should introduce the quasi-CW into the pure-SPP for-
malism, and define scattering coefficients for quasi-CWs, including the CW-to-CW
scattering and the cross conversion as discussed in the Sect. 10.6.1.

To derive a generalized formalism, it is convenient to introduce the concept of
hybrid waves (HWs) [17]. For 1D subwavelength indentations, the generalized wavy
formalism relies on two main ingredients. The first ingredient is related to the overall
shape of the field scattered by subwavelength indentations on metallic surfaces.
This shape is always composed of a known mixing ratio of SPP and quasi-CW
waves at a given frequency, and the respective contributions are fixed, independently
of the excitation field and of the exact geometry of the indentation (provided that
the indentation is subwavelength, indeed). The property is illustrated in Fig. 10.10,
which shows the fields scattered on the metal interface for several subwavelength
indentations and for various incident illuminations. The fields are calculated with
a fully vectorial method and are normalized so that their amplitude are all equal
at a distance |x | = λ from the indentation. Remarkably, it is found that for every
frequency, all the scattered fields are identical, except for a proportionality factor.

This important property comes from the fact that under TM-polarized illumi-
nation, any 1D subwavelength indentation can be approximated by two coherent
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Fig. 10.10 Field scattered by a single 1D subwavelength indentation on a metallic surface under
TM-polarized illumination [17]. a–b Magnetic fields Hy scattered on the surface (at z = 0) for
λ = 0.97 and 3 μm. They are vertically shifted by 2 and normalized such that Hy(|x | = λ) = 1.
The black solid curves are data calculated with the fully vectorial method and the two red dashed
curves show the HW calculated as the radiation of a y-polarized magnetic line source on the
surface. The results are gathered for gold slits and ridges with widths 0.27λ and ridge height
0.27λ. From bottom to top, the illuminations are a plane wave, the fundamental slit TEM00 mode,
a HW generated by a magnetic line source located on the surface at x = − λ, and a SPP mode.
The dashed and solid arrows on the surface represent HWs and SPPs, respectively, the arrows in
the slit represent fundamental slit modes, and other arrows in free space represent plane waves. The
arrows denoting incident and scattered waves are in red and in green, respectively. This notation
of arrows is consistently used throughout the chapter

electric line sources, one with a polarization parallel to the surface and the other with
a polarization perpendicular, and that the radiations of these two sources are approx-
imately equal (they are strictly equal in the limit of large metal conductivity). This
has been shown in [14] by an analytical treatment. In particular, the scattered fields
are composed of a SPP and of a quasi-CW with a fixed mixing ratio, and thus this
mix forms a new wave with universal properties [we call a hybrid wave (HW) here-
after]. Note that the HW is nothing else than the Green function of a metal-dielectric
interface for a dipole line source on the interface. The only new point we stress here
is that the Green function is almost independent of the line source polarization (it is
“degenerate”).

Therefore, in the multiple scattering processes of any subwavelength metallic sur-
faces, SPPs and quasi-CWs only appear in a fixed proportion at a given frequency,
or in another word, only HWs exist on the surface. This property largely simplifies
the introduction of the quasi-CW into the pure-SPP model, since the four scatter-
ing processes, the SPP-to-SPP, CW-to-SPP, SPP-to-CW and CW-to-CW, may be
combined into a single HW-to-HW scattering process.

The second ingredient of the generalized wavy formalism is the definition of
scattering coefficients for HW. Although HWs are not normal modes (just like
quasi-CWs, they are not exponentially damped, they do not possess phase or group



396 P. Lalanne and H. Liu

Fig. 10.11 HW Scattering coefficients for a slit. a–b Scattering coefficients βHW kx ) or αHW corre-
sponding to HW excitations under illumination either by a TM-polarized incident plane wave with
an in-plane parallel wave vector kx or by the fundamental slit mode. c Reciprocal scattering coef-
ficients β∪

HW(k∪
x ) and α∪

HW under illumination by HWs, where k∪
x denotes in-plane parallel wave

vectors of scattered plane waves. d In-plane scattering coefficients τHW and ρHW that characterize
the transmission and the reflection of HWs by the slit

velocities …), it can be shown that it is possible to define scattering coefficients for
HWs, in the same way as scattering coefficients have been defined for the bound SPP
modes in Sect. 10.5 (see Fig. 10.7), and that the scattering coefficients are equal to
those of the SPP. For instance, if we refer to the HW scattering coefficients in Fig.
10.11 for a semi-infinite slit, all the HW scattering coefficients can be related to the
classical SPP scattering coefficients, and as shown in [17], we may write

βHW(kx) = βSP(kx ), αHW = αSP, (10.4a)

β∪
HW(k∪

x ) = β∪
SP(k∪

x ), α
∪
HW = α∪

SP, (10.4b)

ρHW = ρSP, τHW = τSP −1, (10.4c)

where the subscripts HW and SP refer to HW and SPP, respectively. Equa-
tions (10.4a–c) are remarkably simple and readily relate non-intuitive HW scattering
coefficients to much classical SPP coefficients that are routinely calculated with var-
ious numerical tools. Additionally, they allow us to preserve the intuitive picture of
a microscopic wave progression, and to explicitly analyze the macroscopic prop-
erties of metallic surface in terms of a multiple scattering process. The equalities
between the HW scattering coefficients and their associated SPP ones are justified
in [17]. Although the HW scattering coefficients may be directly extracted from the
calculated scattered field, this calculation cannot benefit from classical normal-mode
theory [34] since the HW is not a mode. Equations (10.4 a–c) render the calculations
of the HW scattering coefficients much simpler, since the coefficients can be obtained
directly from the scattering coefficients of SPPs, and therefore reciprocity arguments
(under proper normalization [17]) may be applied even if the HWs are not normal
modes.

From the elementary HW scattering coefficients, it is easy to derive a coupled-
wave model that provides closed-form expressions for the transmittance and
reflectance (thus absorbance) of subwavelength metallic surfaces. In [17], the model
has been tested for various geometries such as grooves and ridges, or mix of grooves
and ridges. In all cases, comparisons with fully vectorial computational results have
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revealed that the generalized formalism is highly accurate, even when the indentation
dimensions are as large as λ /3. Similar results have been reported in [12, 15] for
other geometries. The generalized formalism has also been successfully applied for
the EOT, see [17] for details. In the generalized formalism, the reflection coefficientrA
of the fundamental supermode of the hole array is given by

rA = r + 2α2
SP

(1/λHHW + 1) − (ρSP +τSP)
. (10.5)

Actually Eq. 10.5 is very similar to that obtained with the pure-SPP model, see
Eq. 10.2, except that the SPP phase-term u−1 is replaced by (1/λHHW + 1), where
λHHW is a lattice summation of the HW fields that is known analytically [17].
As shown with the black dash-dot curves in Fig. 10.8, the HW model accurately
predicts the EOT from visible to middle-infrared bands. Other computations have
shown that the reflectance and the absorbance are also predicted with a high accuracy.
It is important to realize that the HW model does not require additional computa-
tions, in comparison to the pure-SPP model. Importantly, it relies on the same SPP
scattering coefficients, which are therefore found to play a fundamental role in the
electromagnetic properties of subwavelength metallic surfaces.

10.7 Conclusion

Many optical phenomena related to subwavelength metallic surfaces, which are
observed with metallic nanostructures at visible frequencies, can be “reproduced” at
longer wavelengths by scaling the geometrical parameters. At an elementary level,
these phenomena are due to the electromagnetic fields that are scattered by the inden-
tations and that interact with the neighbor indentations. For visible wavelengths, the
analysis promotes an interaction mediated by surface-plasmon-polaritons (SPPs) and
supplemented at distances up to a few wavelengths by an additional scattered near-
field, the quasi-cylindrical wave (quasi-CW). At longer wavelength, because they
spread far away into the dielectric medium, the delocalized SPPs are marginally
excited by the indentations and the quasi-CWs are dominant (Sect. 10.4).

The two-wave picture represents a helpful microscopic view to comprehend the
rich physics of subwavelength metallic surfaces. The SPP and quasi-CW scattering
involves SPP-to-SPP and CW-to-CW scatterings, CW-to-SPP and SPP-to-CW cross
conversions, and scattering into radiation modes. All those scattering coefficients,
some of them being non trivial, are quantitatively equal to SPP-scattering coefficients
(Sect. 10.6). This places SPP scatterings at the root of the physics of subwavelength
metallic surfaces, even when quasi-CWs are dominantly excited like in the infrared.
The important fact that quasi-CWs and SPPs essentially scatter identically is at the
core of the concept of hybrid-waves (Sect. 10.6.2).
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After 100 years or more, research in the area of subwavelength metallic surfaces
and gratings continues unabated. This reflects the underlying importance of metal to
manipulate light. It is likely that this situation will continue. The use of interfaces
possessing complex subwavelength textures is really only beginning and the micro-
scopic point of view presented here may help to understand and to design the surfaces.
It is hoped that this review will stimulate new ideas and lead to new research.
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Chapter 11
Plasmonic Functionalities Based on Detuned
Electrical Dipoles

Anders Pors, Michael G. Nielsen and Sergey I. Bozhevolnyi

Abstract We introduce and demonstrate the concept of detuned electrical dipoles
(DED) that originates from the plasmonic realization of the dressed-state picture
of electromagnetically induced transparency in atomic physics. Numerically and
experimentally analyzing DED metamaterials consisting of unit cells with two and
three differently sized gold nanorods, we show the possibility of optical transparency
characterized by enhanced transmission, reduced group velocity and propagation
loss. The concept of DED is further applied to plasmonic sensing of the environment,
demonstrating unprecedented sensitivity to refractive index changes by the utilization
of scattering asymmetry. By the similar concept, DED metamaterials are designed
to function as nanometer-thin wave plates in reflection.

11.1 Introduction

In recent years there has been an explosive growth in research activities devoted
to investigating and designing new artificial materials, called metamaterials, with
strikingly new optical properties. Metamaterials are made of conventional (natural)
materials that are structured on a scale considerably smaller than the wavelength of
light used. Consequently, one can introduce effective material parameters reducing
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nanostructured heterogeneous (composite) materials to homogeneous metamaterials,
whose effective parameters exhibit new optical properties that can even be inaccessi-
ble with natural materials. An interesting application of metamaterial dispersion
engineering, is the imitation of electromagnetically induced transparency (EIT),
which has attracted much attention [1–5] due to the possibility of slowing light down,
enhancing nonlinear interactions and improving the sensitivity of metamaterial-
based nanosensors. Similarly, the classical realization of electromagnetically induced
absorption, which is the complementary phenomenon of EIT, has also received some
attention [6], though the less apparent usage within applications has limited the gen-
eral interest.

The phenomenon of EIT is based on the laser induced coherence of atomic states
leading to quantum interference between the excitation pathways controlling the
optical response, which is thereby modified exhibiting enhanced transmission [7, 8].
The strongly enhanced transmission within the absorption band results in strong dis-
persion and consequently in a significant reduction in the group velocity (see e.g. [8]
and references therein). Slowing down the propagation of light pulses enhances light-
matter interactions, allowing one, for example, to boost optical nonlinearities and to
tackle the tantalizing problem of an all-optical buffer [9].

The phenomenon of EIT can be considered in two alternative ways: as resulting
from the destructive interference between two pathways involving either the bare,
dipole-allowed and metastable states or, equivalently, the doublet of dressed states
(created by strong pump radiation) representing two closely spaced resonances de-
caying to the same continuum [7, 8]. While these two physical pictures are equivalent
when dealing with EIT in atomic systems, their realization with plasmonic nanos-
tructures, whose responses are determined by their configurations and not electro-
magnetically induced as in EIT, depends on the EIT mechanism that is imitated. The
first picture suggests employing radiative and subradiant (dark) plasmonic elements
that are strongly coupled by being closely placed and appropriately oriented [1–3, 5].
Note that the strong-coupling condition imposes rather stringent requirements on the
fabrication accuracy for the plasmonic structures to be operated at optical wave-
lengths [1]. Alternatively viewed, EIT is achieved due to the cancellation of opposite
contributions from two resonances, which are equally spaced but with opposite signs
of detuning from the probe frequency, due to the Fano-like interference of the decay
channels. Fundamentally, the dressed-state picture of EIT is equivalent to the case of
interference between two closely spaced lifetime broadened resonances decaying to
the same continuum [7]. The underlying physics of the cancellation of absorption in
EIT is also similar to that involved in the phenomenon of coherent population trap-
ping [8]. Metamaterials utilizing trapped-mode resonances and featuring the EIT-like
transmission spectra have been realized in the cm-wavelength range using fish-scale
patterns [2] and concentric ring resonators [10]. In both configurations, electrical cur-
rents induced (at the trapped-mode resonance frequency) in different parts of a unit
cell oscillate with opposite phases, resulting in scattering suppression and enhanced
transmission.

It should be emphasized that the EIT realization with plasmonic nanostructures is
fundamentally different from EIT in atomic systems with respect to the linewidths of
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resonances involved: while atomic resonances are lifetime broadened, the linewidth
of plasmonic resonances is determined not only by radiation damping but also by
absorption, i.e. by direct loss of photons. In this case, the EIT phenomenon manifests
itself as the scattering suppression, whereas the absorption (becoming progressively
more important and even dominant at optical frequencies) is mainly determined by
the fundamental material properties and is impossible to eliminate no matter which
EIT realization approach is chosen [11]. For this reason, one should not expect to
achieve complete transparency when dealing with plasmonic nanostructures, as also
seen from the reported simulations [1, 12] and experiments [5].

We investigate in detail the optical properties of periodic arrays of paired gold
nanorods having different lengths. Essentially, the nanorod pairs represent two or
three dipolar scatterers resonating at different frequencies, i.e. detuned electrical
dipoles (DED), whose detuning is simply determined by their difference in length.
We demonstrate that the transmission spectra exhibit windows of enhanced transmis-
sion surrounded on both sides by transmission minima, a phenomenon that we have
attributed to the effect of optical transparency that emulates the dressed-state picture
of EIT [13]. We consider this intriguing effect from different viewpoints in detail by
numerical simulations and experiments. Additionally, we also demonstrate that DED
arrays can advantageously be used for very sensitive monitoring of environmental
refractive index, i.e. for plasmonic sensing [14] and as ultrathin metamaterial wave
retarders in reflection [15].

11.2 Detuned Electrical Dipole Metamaterials: Optical
Transparency and Slow Light

The concepts of optical transparency and slow light with DEDs can be illustrated
by considering a metamaterial with the unit cell consisting of two nearly identical
and non-interacting electric dipolar scatterers, whose resonances are equally detuned
from the central frequency ε0 so that their dipole polarizabilities can be represented
as

λ1(2)(ε) = Aε2
0

(ε0 ± π)2 − ε2 − iω ε
, (11.1)

where π is the DED detuning frequency, ω is the damping factor and A character-
izes their strength [14]. This type of polarizabilities can readily be implemented in
plasmonics for optical frequencies, e.g. with metal nanoshells or nanorods whose
resonances can be adjusted by tuning the shell inner-to-outer radius ratio [16] or the
rod aspect ratio [17], respectively. In the effective medium theory (EMT) with the
unit cell being much smaller than the light wavelength (see, e.g., [18] and references
therein), the response of the unit cell is determined (irrespective of the dipole posi-
tions) by the sum of two polarizabilities, λ1 +λ2. For frequencies close to the central
frequency, α = ε − ε0 ∪ ε0, and weak detuning (ε0 ≈ π,ω ≈ α), the DED
response can then be expressed with the first-order approximation as [see Eq. (11.1)]
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λ1 + λ2 ∼ 2Aε0

[
α

2(4π2 − ω 2)

(4π2 + ω 2)2 + i
ω

4π2 + ω 2

]
, (11.2)

implying strong suppression of scattering, i.e. a regime of optical transparency, at
the central frequency ε0 (α = 0).

In the EMT framework [18], the effective dielectric susceptibility of metamaterials
consisting of DED pairs in vacuum (with sufficiently low concentrations N ) can be
approximated within the transparency window by that of non-interacting unit cells,

γe f f ∼ 1 + N (λ1 + λ2). (11.3)

We have recently shown [13], that the total polarizability expressed by Eq. (11.2)
is directly comparable with the susceptibility of an effective medium consisting of
plasmonic molecules, in which a radiative element is coupled with a subradiant (dark)
element (see Eq. (11.3) in [1]). One notices that both expressions are similar in form,
becoming quantitatively similar if 2π = ∂ and ω 2 ∼ΔaΔb, where ∂ is the coupling
between the two elements with their damping factors being Δa and Δb. Note that the
electrostatic limit for quality factors of localized plasmon resonances [19], which is
difficult to exceed [20], implies that the latter condition becomes progressively more
realistic for optical frequencies because of the dominance of absorption in extinction
of plasmonic nanostructures [21].

The aforementioned similarity has a deep physical meaning related to the equiv-
alence of the bare- and dressed-state pictures of the EIT [7, 8]. Mathematically,
transformation from the former to the latter occurs by the transition to another
(rotating) coordinate system, in which the interaction operator is diagonal. In clas-
sical optics, similar equivalence is found, for example, when considering the power
exchange between two waveguides in a directional coupler to be a result of the cou-
pling between two modes of individual waveguides or due to the interference of
two super-modes of a two-waveguide system [22]. In any case, splitting between
eigenvalues of super-modes is proportional to the coupling between two individual
oscillators (e.g. in our case: 2π = ∂), a feature that is found in many classical and
quantum mechanical systems. It is, however, important, from the viewpoint of EIT
realization with plasmonic nanostructures, that the strong-coupling condition with
its stringent fabrication requirements [1, 5] can be traded for the detuning condi-
tion requiring dipolar scatterers to resonate at different frequencies. The latter seems
more amenable to being implemented in practice.

Slowing light down within the transparency window is probably the most striking
effect associated with EIT [8]. Using the EMT approach described above [Eq. (11.3)]
and the condition NRe(λ1 +λ2) ∪ 1 (that can be satisfied near the central frequency
[Eq. 11.2]), the group index determining the light slowdown can be expressed as

ng ∼ 1 + εN

2

dRe(λ1 + λ2)

dε
. (11.4)
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An increase in the group index can thereby be traced to the dispersion of the real part
of cell polarizability, resulting in [see Eq. (11.2)]

d[Re(λ1 + λ2)]
dε

∣∣∣
ε0

∼ 4Aε0
4π2 − ω 2

(4π2 + ω 2)2 . (11.5)

It should be borne in mind that the group velocity is generally not a useful concept in
regions of anomalous dispersion [23] and that the above relation should therefore be
considered only for relatively large detuning: π > 0.5ω . In the case of normal dis-
persion at the probe frequency, one can show that the group refractive index exhibits a
broad maximum at πopt = ∝

0.75ω . A similar condition of the detuning to be close
to the broadening of two resonances is also found in the dressed-state picture of the
EIT for atomic media [7, 8]. Finally, the above condition [Eq. (11.5)] being obtained
in the approximation of non-interacting dipolar scatterers should be considered only
as an estimate of the optimum DED detuning, with a careful optimization yet to be
conducted for a given DED configuration designed to operate in a given frequency
range. In the following, we therefore study a realistic DED configuration consisting
of two differently-sized and weakly-interacting gold nanorod antennas numerically,
and address the intriguing phenomena of optical transparency and slow light.

11.2.1 The Two-Nanorod System

The DED concept deals, in principle, with any imaginable configuration that displays
scattering suppression in between the detuned resonances. In this section, however,
the concept will be further elucidated by considering the simplest DED configuration:
two detuned nanorods (Fig. 11.1a). At first, the optical properties of a single two-
nanorod configuration will be discussed with emphasis on the electric and magnetic
responses, followed by a discussion of two-nanorod metamaterials and its ability to
slow down light near the central frequency.

In the following we consider gold nanorods with cross-sections of w × w =
25 × 25 nm2, lengths (i) L1 and (ii) L2 = 150 nm, respectively, and a center-to-
center distance d. The surrounding medium is assumed to be glass with refractive
index 1.45. It should be emphasized that when d and L1 are not explicitly mentioned
in this section, the configuration is considered with nominal values d = 120 nm and
L1 = 125 nm. All modeling results presented throughout this chapter are conducted
with the finite-element method implemented in the commercial software Comsol
Multiphysics in which the dielectric function of gold is described by interpolation of
tabular values [25]. In the simulations, all corners of the nanorods are rounded with
a radius of 3 nm for numerical as well as physical reasons.

If a z-propagating x-polarized incident wave is considered, the individual nanorods
[(i) and (ii)] exhibit fundamental plasmonic resonances at ϕ ∼ 1065 nm and ϕ ∼
1190 nm, respectively (Fig. 11.1b). These resonances are related to standing waves
of short-range surface plasmon polaritons (SR-SPPs) [21] making it easy to control
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Fig. 11.1 a Sketch of the DED system consisting of two gold nanorods with square cross sections
w × w but different lengths. The separation between the nanorods is denoted d. The surrounding
medium is assumed to be glass with refractive index 1.45. b Scattering and extinction cross sections
for DED system with nominal values w = 25 nm, L1 = 125 nm and d = 120 nm. c The total electric
and magnetic dipole moments for the nominal DED configuration. d Extinction spectra for varying
separation d and length L1. In all calculations the incident wave is x-polarized and propagates along
the z-axis. Reproduced with permission from Ref. [24]. ©American Physical Society 2011

the resonance wavelengths as they scale to a good approximation linearly with the
length of the nanorod [26, 27]. It can be seen that the extinction is significantly
higher than the scattering implying that a significant fraction of the total loss in the
nanorods is due to absorption. This is a consequence of the small geometrical cross
section of the nanorods giving rise to a tightly bound SR-SPP mode with a high
propagation loss [28]. From the point of view of EIT this is an undesirable effect
as plasmonic EIT is only capable of suppressing scattering and not absorption [11].
For this more conceptual discussion, however, the choice of cross section is less
relevant; the light will still be slowed down, although with a propagation loss that
is higher than for larger cross sections. That said, the EIT effect is still evident
for the nominal DED configuration (Fig. 11.1b) clearly displaying the transparency
region at ϕ ∼ 1130 nm in which the out-of-phase (detuned) plasmonic currents in
the nanorods suppress the total electric dipole moment (|p| = |px |) and create a
magnetic dipole moment along the z-direction (Fig. 11.1c). The electric and magnetic
dipole moments are obtained by a multipole expansion of the induced current in the
nanorods [29]. Importantly, the generated magnetic dipole moment and the magnetic
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Fig. 11.2 Field plots of the eletric field enhancement for the nominal DED configuration with
x-polarized incident wave that propagates along the z-axis. The arrows depict the induced plasmonic
current at an representative time. The relative length of the arrows in the two nanorods represents
the ratio in the current magnitude

field of the incident wave (pointing along the y-axis) are orthogonal to each other,
which demonstrates that DED metamaterials consisting of two-nanorod unit cells
must have a bianisotropic response as it is the incident electric field that generates
the magnetic response. The presence of bianisotropy for the achiral DED structure
implies that a metasurface of DED metamaterial would possess optical activity for
oblique incident light; a property known a extrinsic chirality [30–32] that could be
used to, e.g., design ultrathin polarization rotators. For a detailed discussion of the
chirality parameter of the two-nanorod metamaterial, one should consult [24].

The underlying electrodynamics involved in the scattering suppression by the
DED structure was originated from the reduction in the total electric dipole
moment at the transparency wavelength (Fig. 11.1c). This fact is further illustrated
by the electric field distributions in the x-y plane cutting through the middle of
the nanorods calculated for different wavelengths (Fig. 11.2). It is seen that at the
wavelengths of 1065 and 1200 nm associated with the resonances of the individual
nanorods, electromagnetic excitations are almost exclusively located at the corre-
sponding nanorods (Fig. 11.2a and c). At the transparency wavelength of 1130 nm,
however, both nanorods are excited featuring oppositely induced plasmonic currents
(Fig. 11.2b). The total electric dipole moment is thereby greatly reduced, resulting
in suppression of scattering.

An important property of any nanostructure is the sensitivity to parameter varia-
tion due to the inevitable fabrication tolerances present in all techniques. Here, the
dependence of d and L1 on the extinction spectrum has been studied (Fig. 11.1d)
demonstrating that the coupling between the nanorods is weak as the extinction is
almost independent of the separation d ∈ [100; 140]nm. This is indeed the main
advantage of the DED configuration compared to the dipole-quadrupole antenna
approach that relies on strong coupling [1, 5], and a consequence of the relatively
large separation and detuning of the resonances. Similarly, the DED configuration
is rather robust with respect to variations in L1 ∈ [120; 130]nm. The extinction
spectra do show dependence on L1, but for all considered lengths the spectra possess
a transparency region within the broader extinction band.
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Physical Society 2011

If the direction of the incident wave is instead along the y-direction (still
x-polarized), the optical properties of the DED configuration are strongly influ-
enced whether the wave propagates in the ±y-directions (±y in Fig. 11.3). In accor-
dance with the reciprocity principle,the extinction is the same for both propagation
directions [coinciding curves in Fig. 11.3a] whereas the scattering, and consequently
the absorption, depends on the propagation direction within the extinction band. In
fact, at ϕ = 1130 nm the ratio of the scattered power for the two directions, i.e.,
τ

(−y)
sc /τ

(+y)
sc , is ∼3.5. The effect on the propagation direction is further elucidated

by a multipole expansion (keeping only the electric and magnetic dipoles) of the
induced plasmonic polarization current (Fig. 11.3b) clearly showing a stronger sup-
pression (creation) of the electric (magnetic) dipole for the +y-direction. The origin
of this effect is due to the phase change of the incident wave by kd (k being the wave
number) across the DED structure, which enhances the phase difference between the
plasmonic currents in the nanorods for the +y-direction, but in contrast reduces the
phase difference for the −y-direction.

The remaining part of this section will be devoted to two-nanorod metamaterials
for which the DED configuration constitutes the unit cell. The unit cell is chosen
to be cubic with side length Θ = 300 nm, and we will consider x-polarized light
propagating along the z-axis. If a light pulse propagates through a DED metamaterial
(or another dispersive medium), its group velocity will be slowed down by a factor
equivalent to the group refractive index ng , defined as

ng = n − ϕ
ψn

ψϕ
, (11.6)

where n is the real part of the effective refractive index, ñ = n + i∂ , and ϕ is the
vacuum wavelength. It should be stressed that the group refractive index is only a



11 Plasmonic Functionalities Based on Detuned Electrical Dipoles 409

well-defined quantity in regions of normal dispersion (ψn/ψϕ < 0) with relatively
small absorption [23].

Another important parameter that characterizes the DED metamaterial is the loss
associated with wave propagation through the medium. In the following we define
the loss per unit cell (in dB) as

Loss = −10log
[
exp(−2k0∂πz)

]
, (11.7)

where k0 is the vacuum wave number, and πz is the periodicity in the propagation
direction. In order to evaluate the group refractive index and the loss, we must calcu-
late the effective refractive index of the DED metamaterial. This is done by applying
the eigenvalue-based homogenization method in [24], which computes the effective
refractive index by calculating dispersion curves of Bloch modes in the DED meta-
material. The resulting refractive index is shown in Fig. 11.4(a), displaying strong
dispersion near the central frequency with a minimum in ∂ . The group refractive
index and the loss (per cell thickness) are then straightforwardly evaluated within
the region of normal dispersion (Fig. 11.4b), demonstrating a group index of ∼10
and loss of ∼2.5 dB per 300-nm-thick unit cell.

Another important metamaterial characteristic relevant for EIT is the bandwidth-
delay product (BDP) [9]. The BDP is a figure of merit for the ability of a structure
to simultaneously delay a propagating pulse effectively while maintaining a large
operation bandwidth. The delay time δ and the bandwidth αϕ are, in general, two
opposing quantities, which is why their product is a descriptive measure of the
performance. We define the transparency bandwidth as the increase in loss by 1
dB while the delay is defined as δ = L(ng − nd)/c, where c is the speed of light in
vacuum, L is the propagation length limited by the e−1-level, and nd is the refractive
index of the surrounding medium (nd = 1.45 in our case). Consequently, the BDP
may be calculated as
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Fig. 11.4 a Dispersion of the effective refractive index of the nominal DED system experienced
by a x-polarized and z-propagating incident wave and calculated using the eigenvalue-based
homogenization method. The unit cell size is 300 × 300 × 300 nm3. b The corresponding dis-
persion of the group refractive index and loss per unit cell for the same configuration as in a
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BDP = δα f = αϕL(ng − nd)

ϕ2 . (11.8)

For the two-nanorod configuration (Fig. 11.4) we obtained αϕ∼70 nm centered at the
wavelength ϕ ∼ 1150 nm and L ∼ 0.55µm, which results in BDP ∼ 0.25. It should
be noted that a comparison of the main characteristics of the two plasmonic EIT
realizations has been conducted in [13], demonstrating a fundamental equivalence
between the two approaches, even though they are very different with respect to the
fabrication tolerances required.

11.2.2 The Three-Nanorod System

The DED configuration considered above consists of two nanorods of different length
and, consequently, polarizabilities of different strength. At the same time, as follows
from the qualitative arguments in Sect. 11.2 [Eq. (11.2)], a prominent EIT effect
depends on the cancellation of at least the real part of the total polarizability of the unit
cell. This criteria might be easier to achieve by using two small nanorods resonating
at a shorter wavelength being placed on both sides of the large nanorod resonating at a
longer wavelength. The resulting structure is termed the three-nanorod configuration
(Fig. 11.5a), and the EIT characteristics of the corresponding metamaterial is the
subject of this section. The configuration is also included to illustrate the versatility
of the DED concept. The configuration under study is made of two smaller gold
nanorods of size 105 × 40 × 50 nm3 separated by a distance d = 100 nm to the
larger gold nanorod of size 150 × 60 × 50 nm3 (Fig. 11.5a). It should be noted
that, to balance the scattering strengths of the longer nanorod and the two shorter
nanorods, the latter was designed to be narrower. Also, the induced currents in the
three-nanorod configuration do not induce a magnetic dipole at the central frequency,
which suggests a relatively weak dependence of the transmission properties on the
angle of incidence [10].

The EIT-properties of the three-nanorod DED metamaterial will be considered
for x-polarized light propagating along the z-axis and a parallelepiped unit cell of
size 300×300×150 nm3. In contrast to the previous section, the effective refractive
index will be computed using the S-parameter method for which the retrieval pro-
cedure is based on transmission and reflection coefficients [33]. Figure 11.5b shows
transmission and reflection spectra calculated for one layer of unit cell, exhibiting
the EIT-like transmission spectra with window of transparency at ∼870 nm and a
quite strong reflection away from the central wavelength, at which it is strongly sup-
pressed. The fact that the reflection suppression is virtually complete at the central
wavelength while the transparency is not agrees well with our general consideration
of EIT realization with plasmonic nanostructures.

The transmission and reflection spectra calculated for three layers of unit cells
were used to determine the dispersion of the corresponding metamaterial effective
refractive index (Fig. 11.5c). Note the similarity of the dispersion of real and imag-
inary parts of the effective index to that obtained for the metamaterial using two
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Fig. 11.5 a Top-view sketch of the three-nanorod DED system with the height of the nanorods (i.e.,
the dimension along the z-axis) being 50 nm. The nanorods are surrounded by glass with refractive
index nd = 1.45. b Transmission and reflection spectra calculated for one layer of unit cell with size
300 × 300 × 150 nm3 for a x-polarized incident wave propagating along the z-axis. c Dispersion
of the effective refractive index for the system in a calculated directly from the transmission and
reflection by three layers of unit cells. d The corresponding dispersion of the group refractive index
and loss per unit cell derived from c. Adapted with permission from Ref. [13], DOI: 10.1088/1367-
2630/13/2/023034. ©Institute of Physics 2011

nanorods (Fig. 11.4a). The group refractive index and loss (per cell thickness) were
computed from the corresponding refractive index dispersion, limited to the wave-
length range of normal dispersion (Fig. 11.5d). The relevant metamaterial charac-
teristics for EIT can now be evaluated, yielding a group refractive index ng ∼ 8,
bandwidth of αϕ ∼ 70 nm centered at the wavelength ϕ ∼ 860 nm, and propagation
loss of 1 dB per 150-nm-thick unit cell resulting in a propagation length L ∼0.65µm.
Using these data, the BDP takes on the value ∼0.40 which is noticeably higher than
for the two-nanorod metamaterial, although the transparency region is at shorter
wavelengths. The main reason for this difference is related to two facts: (i) the larger
nanorod cross sections for the three-nanorod configuration imply that a larger part
of the extinction is related to scattering (less bound SR-SPP modes) compared to
the two-nanorod configuration, and (ii) the three-nanorod configuration is slightly
better at suppressing the scattering at the central wavelength. Finally, it is worth
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noting that both the two- and three-nanorod metamaterials show BDPs that are
favorably comparable to other EIT realizations using coupled split-ring resonators
[3] or waveguide-coupled plasmonic antennas [12].

11.2.3 Experimental Study of Detuned Electrical Dipole
Metamaterials

In this section we investigate the DED metamaterials comprised of two and three gold
nanorods experimentally. Specifically, the investigated samples consist of a silica
substrate with DEDs defined by electron-beam lithography (EBL) and fabricated by
lift-off of a 55 nm thick gold film, deposited by electron beam evaporation on top
of a 5 nm thick titanium adhesion layer. DED arrays comprised of two nanorods are
fabricated with a 300 nm period (Fig. 11.6a), whereas the DEDs comprised of three
nanorods are fabricated with a 400 nm period (Fig. 11.6d). Furthermore, in order to
ensure a nearly symmetric environment (phase matching) the sample is covered with
a ∼15µm thick layer of polymethyl methacrylate (PMMA) by spin coating.

In order to measure the transmission spectra (Fig. 11.6b and e), light from a broad
band halogen light source with a fiber output, whose (weakly divergent) radiation
is directed (at normal incidence) through a polarizer, is incident upon the sample
with the electric field aligned to the axes of the gold nanorods in the array. After
transmission through the sample the transmitted light is collected by an objective with
60x magnification and 0.85 numerical aperture, sent through an analyzer (parallel
to the polarizer) and finally collected by an optical fiber connected to a VIS/NIR
spectrometer. Reflection spectra (Fig. 11.6b and e) of the DED arrays are measured
in a similar manner, where the incident polarized light is focused onto the sample
with the aforementioned objective, collected by the same objective, sent through
the analyzer and collected by the fiber connected to the VIS/NIR spectrometer. The
transmission spectra are afterwards normalized by the transmission measured outside
the DED arrays whereas the reflection spectra are normalized using the reflection
measurements from a 300 nm thick gold sample and afterwards weighted with the
reflectivity calculated from tabular values of the gold optical constants [25].

Along with the experimental investigations, the transmission and reflection
spectra for one layer of DED unit cells, with dimensions similar to those in the
experiment, are simulated. In the simulation, the gold nanorods are embedded in
a lossless dielectric with refractive index nd = 1.5, i.e. in a homogeneous dielec-
tric with optical properties similar to those of PMMA. The choice of PMMA in the
simulations rather than silica (nd = 1.45) is due to the fact that in the experiment
the DEDs are situated on top of the silica and covered with PMMA. It is there-
fore expected that a larger part of the electric field of the plasmonic resonances are
concentrated at the high index side of the sample. The transmission and reflection
spectra (Fig. 11.6c and f), exhibit two resonances separated by a window of enhanced
transmission and, correspondingly, reduced reflection, i.e. EIT-like behavior due to
scattering suppression in between the resonances. In general, there is quite good
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Fig. 11.6 Representative SEM-images (scale bars: 300 nm) along with experimental and simulated
reflection and transmission spectra of the DED metamaterial consisting of unit-cells with a–c two
nanorods positioned with a period of 300 nm and e–f three nanorods positioned with a period of
400 nm. For the two nanorod metamaterial, the nanorod center-to-center distance is 110 nm, whereas
the widths and lengths are 55 and 85 nm, respectively, of the short nanorod and 55 and 140 nm,
respectively, of the long nanorod. For the three nanorod metamaterial, the nanorod center-to-center
distances are 110 nm, whereas the widths and lengths are 50 and 90 nm, respectively, of the two
short nanorods and 60 and 135 nm, respectively, of the long nanorod. Reproduced with permission
from Ref. [34], DOI: 10.1088/2040-8978/13/5/055106. ©Institute of Physics 2011

agreement between the experimental and simulated spectra in terms of the positions
of the resonance wavelengths. The strengths and widths, however, are smaller and
larger, respectively, in the experiment compared to the simulations. This is, however,
not unexpected since the DEDs in the realized metamaterial vary slightly due to the
incomplete reproducibility of EBL and lift-off technique which inevitably introduces
a variation in lengths and widths as well as rough edges in the nanorod ensemble
comprising the DED metamaterials. These structural variations manifest themselves
as inhomogeneous broadening and reduced resonance strengths in the spectra.

We have also investigated the DED metamaterial dispersions by estimating
the metamaterial complex refractive indexes ñ experimentally in the wavelength
range corresponding to the transparency windows. Our procedure for experimental
retrieval of ñ is based on diffraction [34] and, specifically, ñ is retrieved indirectly
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by minimizing a function β(n, ∂) which describes the error between the experimen-
tal and theoretical metamaterial transmission and metamaterial grating diffraction
efficiency, respectively. For a specific wavelength, the error function exhibits dis-
tinct minima (Fig. 11.7a) corresponding to solutions of n and ∂ , thereby enabling
experimental access to the DED metamaterial wavelength dispersions (Figs. 11.7b
and 11.7c). Comparison of the experimental and simulated real and imaginary parts
of the metamaterial refractive index of the DEDs comprised of two (Fig. 11.7b) and
three (Fig. 11.7c) nanorods reveals reasonably consistent trends regarding the wave-
length dispersion of the refractive index. However, there is in general a substantial
difference in the actual value of the real part. Nevertheless, this is not unexpected,
when taking into account the evident differences in resonance strengths and widths
in the experimental and simulated transmission and reflection spectra (Fig. 11.6), and

n

κ

1.6 1.7 1.8 1.9 2

0.1

0.2

0.3

0.4

0.5

0

0.5

1

1.5

2

(b)

(a)

(c)

Fig. 11.7 a Contour plot showing the error β(n, ∂) in the case of a DED metamaterial consisting
of three nanorods at the wavelength 770 nm, which is used for retrieval of n ∼ 1.84 and ∂ ∼ 0.34
corresponding to the minimum in β(n, ∂). b, c Experimental and simulated real (n) and imaginary
(∂) parts of the complex refractive index for the DED metamaterial consisting of b two nanorods and
c three nanorods. In the simulations and experiment, the metamaterial thickness is 150 nm, which
corresponds to 50 nm of gold embedded in 50 nm PMMA above and below the nanorod antennas.
Reproduced with permission from Ref. [34], DOI: 10.1088/2040-8978/13/5/055106. ©Institute of
Physics 2011



11 Plasmonic Functionalities Based on Detuned Electrical Dipoles 415

the fact that the refractive index is directly related to the amplitude and phase of the
transmitted and reflected fields [33]. Importantly, for the case of the DED metamate-
rial consisting of three nanorod antennas, n decreases in the experiment from ∼1.9 to
∼1.7 in the wavelength range ∼750 to 850 nm, thereby indicating normal dispersion
in the transparency window. The group refractive index, which is estimated from
the slope of the linear fit to n(ϕ), is, however, only ng = 3.6 in the experiment and
ng = 2.7 in the simulations, i.e. the light slow-down is quite moderate. The imag-
inary part ∂ is approximately two times larger in the experiment compared to the
simulated results, which is reasonable due to the surface scattering and grain bound-
ary effects leading to increased damping in the gold nanorod antennas compared to
bulk gold [35, 36].

11.3 Applications

Despite the fact that the DED concept follows naturally from the plasmonic realiza-
tion of the dressed state picture of EIT, featuring DED metamaterials with wavelength
regions of slow light and enhanced transmission, the concept shows broader applica-
bility. Based on DED configurations, we suggest in this section a new approach to
the design of a plasmonic sensor for refractive index sensing and a novel type of
ultrathin plasmonic quarter-wave plate.

11.3.1 Plasmonic Sensing

Recent developments have greatly improved the sensitivity of optical sensors that
are based on metal nanoparticles and the exploitation of their localized plasmon
resonances [37]. The resonance wavelenght is determined by the susceptibilities of
constituent materials as well as by the nanoparticle size and geometry. The former
feature provides the possibility of monitoring environmental changes by tracking
the resonance wavelength, whereas the latter allows one to adjust the LSPR position
across the visible and near-infrared spectral regions. The overall sensing performance
of a plasmonic nanostructure is typically characterized by the figure of merit (FOM)

FOM = s

πϕ
, (11.9)

where s = ψϕres/ψnd is the sensitivity (measured in nm/RIU) of the resonance
wavelength ϕres to changes in the environmental refractive index nd , and πϕ is the
resonance spectral width at half-maximum (FWHM) [38]. Both characteristics are
rather difficult to improve, especially for single nanoparticle configurations [37, 39].
For example, the resonance quality (Q) factor is problematic to increase over the
electrostatic limit imposed by the Ohmic losses in metals [19]. In fact, one can
reach this limit only with ultrasmall metal particles, whose scattering (radiation)
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losses are negligibly small with respect to the absorption losses. On the other hand,
environmental sensing relies on the detection of scattered light so that, for practical
purposes, nanoparticles have to be chosen large enough to obtain measurable signals.

In order to boost the FOM, alternative ways have been investigated to create sharp
spectral features that are sensitive to the surrounding medium. For example, one may
take advantage of diffractive coupling present in periodic arrays of nanoparticles
[40] or in complementary hole structures [41] when the period is on the order of the
wavelength. Especially at the onset of diffraction it is possible to excite the so-called
Rayleigh anomaly. The Rayleigh anomaly corresponds to light that is diffracted
parallel to the grating, and it appears in reflection and transmission measurements
as a sharp spectral feature that is sensitive to the surroundings. As a prominent
example, the coupling of SPPs and the Rayleigh anomaly in multiscale patterned
hole arrays in gold films demonstrates FOM as large as 23.3 [42]. The diffractive
coupling approach, however, does not allow for measuring local changes in nanoscale
volumes or for a high integration density of sensing devices.

A second approach that alleviates the above problems, yet with a high-Q res-
onance, involves interference between coupled nanostructures and the creation of
Fano resonances. The Fano resonance occurs due to the interference between radi-
ant and subradiant plasmonic modes resulting (typically) in asymmetric resonances
with narrow linewidths [43]. For this reason, a multitude of complex plasmonic
nanostructures exhibiting Fano resonances have been investigated in relation to plas-
monic sensing, though the FOM, generally, never exceeds 10 [5, 44, 45]. Note that
Fano resonances have also been advantageously exploited within biosensing [46].

Our approach still rely on DED configurations exhibiting an EIT-like response.
However, this time we take advantage of the scattering asymmetry present near the
central frequency [47]. The idea can be elaborated by considering scattering in ±y-
direction for two non-interacting point scatterers placed similarly to the nanorods
in (Fig. 11.1a) with their electric dipole moment along the x-axis. If each scatterer
is described by the polarizability in Eq. (11.1), it is straightforward to show that in
the limit of weak detuning (ε0 ≈ π) the mutual phase difference at the central
frequency is

πΦ(ε0) = η − 2 tan−1 [ω/(2π)] . (11.10)

The scattering asymmetry along the line connecting the scatterers (y-direction) can
then be maximized by requiring πΦ ± k0ndd = η(0) (k0 is the wavenumber in
vacuum), which implies complete scattering cancellation in one direction and con-
structive interference in the other. By satisfying the two equations one finds that the
separation d and frequency detuning π must be chosen as follows

d = ϕ

4nd
,π = ω

2
. (11.11)

Although these parameter choices can only be seen as a guide to a realistic optimal
configuration, they still underline the possibility of pronounced scattering asymme-
try along the y-direction for which the ratio can be used as a sensitive probe for
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environmental changes. Note that in a related study the scattering asymmetry of a
bimetallic DED configuration has been used as a nanoscale-sized directional color
router [48]

The above conceptual discussion has been cooperated further in [14] by consider-
ing two interacting ellipsoids with detuned resonance wavelengths in the point-dipole
limit. Here, we consider full-wave simulations of the two-nanorod configuration con-
sisting of nanorods of size (i) 120×50×50 nm3 and (ii) 135×40×40 nm3 separated
by a distance d = 85 nm. The nanorods are made of gold and embedded in glass
(nd = 1.45) with the x-polarized incident wave propagating along the z-axis [see
Fig. 11.1a]. The scattering cross sections reveal individual nanorod resonances with
the same scattering strength and a DED configuration showing an EIT-like behavior
with a minimum at ϕ = 941 nm (Fig. 11.8a). The expected strong scattering asym-
metry at this wavelength can be elucidated by studying the angular distribution of
the scattering (Fig. 11.8b). It is seen that even at the resonance of the short nanorod
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Fig. 11.8 a Scattering cross section of the individual nanorods of size (i) L1 = 120 ×50 ×50 nm3

and (ii) 135×40×40 nm3, respectively, and the DED configuration with d = 85 nm for x-polarized
incident wave propagating along the z-axis. b Normalized differential scattering cross section of
the DED configuration displayed in spherical coordinates for the wavelengths ϕ = 840 nm and
ϕ = 941 nm. The polar angle σ measured from the z-axis is represented by the radial distance,
whereas the azimuthal angle ρ (counted in the xy-plane from the x-axis) is displayed in the figure
plane with the x-axis being horizontal. c Spectra of cross sections of scattering into the directions
of constructive (τ+

sc ) and destructive (τ−
sc ) interference and their ratio calculated for x-polarized

incident wave with propagation along z-axis. The solid angle of integration is πσ = 22.5◦, and it
is indicated by dashed circles in b). d Sensitivity of the scattering ratio τ+

sc/τ
−
sc on the refractive

index of the surrounding medium
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(ϕ = 840 nm) one observes asymmetry in scattering due to interference between light
from the two detuned nanorods. However, at the central wavelength (ϕ = 941 nm)
the asymmetry is maximized with a vanishing amount of power scattered into the
−y-direction due to destructive interference.

For practical realization of environmental sensing, it is necessary to collect the
scattered light within a solid angle along the ±y-directions [see dashed circles in
Fig. 11.8b]. Figure 11.8c displays the amount of power scattered into a cone angle
of πσ = 22.5◦ in the +y-direction (τ+

sc), −y-direction (τ−
sc), and their ratio in the

neighborhood of the central wavelength. Clearly, the scattering ratio is an eminent
probe for environmental changes as it features a FWHM of ∼2 nm. At the same time,
the scattering ratio demonstrates a sensitivity of s ∼600 nm/RIU to the refractive
index of the surrounding medium (Fig. 11.8d), which results in a FOM as large as
∼300. Importantly, the configuration is quite robust towards fabrication tolerances.
As an example, if the separation d is changed to 90 nm the FWHM increases to
∼2.5 nm (not shown) which, of course, lowers the FOM but still keeps the value
remarkably high compared to conventional sensing techniques. It should be stressed
that it is possible to detect the scattered light from a single DED configuration. To
give an example, for the configuration in Fig. 11.8 (πσ = 22.5◦) illuminated with
the intensity of 1 mW/µm2, the scattered powers at the central wavelength would
amount to P+ ∼6.5µW and P− ∼2.3 nW that should be possible to reliably detect.

The scattered power available for the detection can be significantly increased if
the same idea is implemented using a periodic array of DED pairs. In this case, the
scattering directions with constructive and destructive interference can be chosen to
coincide with the directions of light diffraction into ±first orders. Considering non-
interacting point dipoles again, the corresponding retardation phase should, in this
case, be considered in the direction of light diffraction determined by the array period
Θy along the line connecting DED scatterers. The retardation phase k0ndd should
therefore be changed onto k0ndd sin σ1, where σ1 is the diffraction angle given by
the grating equation: sin σ1 = ϕ/(ndΘy). This modification results in the following
conditions required to extinguish one and maximize another diffraction order

d = Θy

4
,π = ω

2
, (11.12)

which are again strictly valid only for noninteracting scatterers. The periodicity in
the other direction, Θx , should be as small as possible to increase the density of DED
pairs but large enough so as to not result in the strong coupling between the neighbor
DED pairs. In contrast, Θy should be on the order of the wavelength so that the array
does not act as a metasurface with only zero-order diffraction.

The idea of using the ratio of scattering in the first diffraction orders as a
sensitive probe has been investigated experimentally as a proof-of-principle study.
In these experiments, we fabricated periodic (Θx = 400 nm and Θy = 750 nm)
arrays (50×50µm2) consisting of individual and double gold nanorods (of different
lengths) on a silica substrate using electron-beam lithography and lift-off applied to
a 50 nm thick gold film (Fig. 11.9a). Transmission spectra were measured using a
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(a)

(b) (c)

Fig. 11.9 a Representative SEM-image of the DED grating with Θx =400 nm and Θy=750 nm along
with b experimental and c simulated transmission spectra of individual nanorod arrays (blue and
red curves) and arrays with pairs of nanorods (black curves). The experimentally obtained spectra
of the array with pairs of nanorods were measured before and after deposition of a PMMA phase-
matching layer, whereas the simulated spectra was obtained with the nanorods embedded in glass.
The gold nanorods have 50 nm×50 nm cross sections and lengths 90 and 140 nm, respectively.
Adapted with permission from Ref. [14]. ©2011 American Chemical Society

broad band halogen light source with a fiber output whose (weakly divergent) radia-
tion was directed (at normal incidence) through a polarizer on the fabricated arrays
of nanorods aligned so that their axes were parallel to the light polarization. The
transmitted radiation was collected with an objective and fed into an optical fiber
connected to a spectrometer. The transmission spectra were measured before and
after depositing a thick (several micrometers) layer of PMMA. The latter was used
to form a homogeneous dielectric environment for gold nanorods. The transmission
spectra obtained with arrays of nanorod pairs before and after the deposition of the
PMMA layer feature local maxima located at ∼755 and ∼790 nm, respectively, each
being surrounded by two local minima (Fig. 11.9b). These maxima indicate the sup-
pression of scattering achieved at the wavelengths that are intermediate with respect
to the resonance wavelengths of individual nanorods. The effect of enhanced trans-
mission is especially pronounced and documented in detail for the arrays covered
with the PMMA layer: the transmission spectra obtained with the arrays of indi-
vidual short and long nanorods exhibit the effect of detuning in their resonances
located at wavelengths ∼720 nm and 860 nm, while the transmission spectrum of
the array consisting of pairs of corresponding nanorods (Fig. 11.9a) shows the effect
of increased transmission at the intermediate wavelength of ∼790 nm (Fig. 11.9b).
Note also a significant red shift in the transmission spectrum of the DED array after
the deposition of the PMMA layer (due to a change in the dielectric environment of
nanorods), as well as an improvement in the contrast. We have attempted to model
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the response of the fabricated arrays. Individual and double gold nanorods being
∼50× 50 nm2 in the cross section with the lengths of ∼90 nm and ∼125 nm and the
center-to-center distance of ∼130 nm were considered to be embedded in dielectric
with the refractive index of 1.45. Transmission spectra were then calculated using
their computed extinction cross sections and the corresponding size (400×750 nm2)
of unit cell (Fig. 11.9c). It is seen that the positions of local minima and maximum
in the transmission spectra correspond well to the experimental results (Fig. 11.9b),
albeit for a slightly shorter length of the long nanorod, but the contrast obtained in
simulations is much better than that achieved in the experiment. It should be borne in
mind that the use of divergent illumination and detection of focused radiation as well
as inhomogeneous broadening (due to fabrication-induced deviations of nanorod
dimensions in the fabricated arrays) could definitely contribute to smearing out the
spectral features in these preliminary experiments.

The fabricated DED array (Fig. 11.9a) covered with the PMMA layer was fur-
ther characterized in the setup for leakage-radiation microscopy (LRM) [49] using a
continuous-wave-operated tunable Ti:sapphire laser, whose radiation polarized par-
allel to the nanorod axes was slightly focused and directed at normal incidence on
the sample (Fig. 11.10a) with the incident light powers being on the level of a few
milliwatts. The ± first diffraction orders observed in the back focal plane of an LRM
objective exhibited strong asymmetry (Fig. 11.10b) in their wavelength-dependent
behavior as expected [cf. Fig. 11.8c]. Wavelength dependencies of the corresponding
diffraction efficiencies measured with a calibrated photodetector resulted in a very
sharp peak of their ratio at the wavelength of ∼785 nm with the FWHM of ∼20 nm
(Fig. 11.10c), a value which is significantly smaller than the FWHM of plasmonic
resonances for individual nanorods (Fig. 11.9b). Such a drastic narrowing of the sys-
tem response at resonance constitutes the main forte of the DED-based plasmonic
nanostructures. Since the sensitivity (nm/RIU) of plasmonic resonances is difficult to
appreciably increase, the FOM can radically be increased only by narrowing the res-
onance line width [37]. Note that the fabricated and characterized DED array was not
optimized with respect to the nanorod parameters and their separation, resulting in a
significantly smaller maximum ratio as compared to the model case (Fig. 11.8c). The
balance between the strengths, resonance positions, and spatial separation of indi-
vidual nanorods (that should also be related to the array periodicity) is quite delicate:
one should achieve the same scattering strength of interacting DED scatterers simul-
taneously while fulfilling the optimum conditions [Eq. (11.12)] in order to ensure
the highest ratio between the diffraction efficiencies. Still, the effect of destructive
interference of DED pairs is rather robust as demonstrated with our proof-of-principle
experiments (Fig. 11.10b and c). It should be mentioned that we characterized also
similar arrays of DED pairs with a smaller center-to-center separation (∼100 nm)
and found a similarly sharp system response with the maximum ratio (between
the diffraction efficiencies) of ∼40 and the FWHM of ∼30 nm. Finally, assuming
that the sensitivity of the fabricated array is on the same level as that obtained in
our simulations, i.e., ∼600 nm/RIU, one obtains the FOM of ∼30, a value which
exceeds the record one obtained with multiscale patterned hole arrays in gold films
fabricated by soft interference lithography [42].
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(a)

(c)

(b)

Fig. 11.10 a Experimental leakage-radiation microscopy configuration used to detect radiation
diffracted by the DED array shown in Fig. 11.9a after the deposition of the PMMA phase-matching
layer. The lens L denotes a high-numerical-aperture objective (N.A. = 1.25). The back focal plane
F of the objective represents the location of a Fourier-transformed image of the radiation emerging
from the sample. b Images taken in the Fourier plane F with the sample being illuminated at different
wavelengths. The left and right spots correspond to the ±first diffraction orders with the (brightest)
zeroth diffraction order being blocked to enhance the contrast of images. c Wavelength dependencies
of the corresponding diffraction efficiencies, Γ, together with their ratio. Reprinted with permission
from Ref. [14]. ©2011 American Chemical Society

11.3.2 Metamaterial Wave Retarders in Reflection

Materials exhibiting linear birefringence are of crucial importance in modern optics,
providing necessary control of the polarization state of light. For example, uniax-
ial crystalline materials (e.g., quartz) are characterized with two different refractive
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indexes that result in a phase difference between orthogonally polarized waves trav-
eling through the crystal, thereby permitting the construction of wave retarders, e.g.,
half- and quarter-wave plates. An alternative method for obtaining birefringence is
to introduce a periodic anisotropy in the (nonbirefringent) material so that transverse
electric and transverse magnetic waves experience different effective refractive in-
dexes. Their difference, πn, is known as form birefringence [50–52]. Generally, a
high πn is desired as it can lead to more compact optical components that can be used
in on-chip photonics [53]. Although difficult to achieve at optical wavelengths (typi-
cally, πn ∼0.1−0.2 [54]), it has recently been shown that the waveguide dispersion
of surface plasmon polaritons (SPPs) in gold nanoslits can be used to create giant
form birefringence πn ∼2.7 at ϕ = 632.8 nm [55], facilitating sub-wavelength-thin
wave plates. In a different approach [56], a subwavelength circular aperture in a gold
film surrounded by an elliptical grating was used to introduce a phase shift between
SPPs traveling along the ellipse axes, influencing the polarization of transmitted
light.

Based on our DED concept, we demonstrate theoretically and experimentally
a new method to construct a nanometer-thin quarter-wave plate that in contrast to
previous studies [55, 56] works in reflection mode. Also, the quarter-wave plate
relies on anisotropic detuned electric resonant scattering and not form birefringence
as in grating-based circular polarizers (see, e.g., [51, 57]). Furthermore, the proposed
nanostructures, constituting a unit cell in the metamaterial wave retarders, are not
related to the optically active extrinsic chiral metamaterials [30] as they only display
an electric response (no magnetic response), eliminating the possibility of extrinsic
chirality.

Our approach can be illustrated by considering two perpendicular noninteracting
electric dipolar scatterers centered at the origin of the coordinate system with electric
dipole moments in the x- and y-direction, respectively, and the observation region
being in the far field close to the z-axis (z ≈ x, y). Assuming that the resonances of
the noninteracting dipole scatterers are equally detuned from the central frequency
ε0, their dipole polarizabilities can be represented by Eq. (11.1), and for weak detun-
ing (ε0 ≈ π) their polarizability phase difference, πΦ, is equivalent to Eq. (11.10)
implying that for π = ω/2 the scattered light close to the z-axis will be circularly
polarized (πΦ = η/2). Consequently, a metamaterial consisting of subwavelength
noninteracting DED unit cells will work as a circular polarizer as the polarizabil-
ity of each cell, λ1 + λ2, adds coherently in this limit [58] [see Eq. (11.3)]. The
above condition for circular polarized light is strictly valid only for noninteracting
scatterers with the same strength and damping factor, but, as we will see below, the
simplified description is still valid as a guideline for more realistic cases due to very
weak dipole-dipole interaction for orthogonal dipoles [59]. Note that even though
we focus on the quarter-wave plate structure, the same idea can be used to construct
a wave plate with arbitrary retardation by adjusting the detuning π and/or slightly
displacing two scatterers along the propagation direction. Furthermore, based on a
similar concept, recent studies have shown that orthogonally oriented nanoslits of
different lengths in a metal surface, i.e. complementary structures to the perpendic-
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Fig. 11.11 a Sketch of nanocross system. b Scattering cross section at three angles Ω for L2 =
338 nm. c The phase difference between x- and y-component of scattered E-field along the −z-axis
in the far field at Ω = 45◦. d The amplitude ratio along −z-axis in the far-field as a function of angle
Ω for L2 = 338 nm and ϕ = 1520 nm. e–g: Color map shows the electric field enhancement while
the arrows depict the induced plasmonic current at an representative time. The relative length of
the arrows in the two nanorod arms represents the ratio in the current magnitude. a–c: Reproduced
with permission from Ref. [15]. ©The Optical Society Of America 2011

ular nanorod antennas, have proven to work as ultrathin waveplates at terahertz [60]
and visible frequencies [61–63].

Our approach is further demonstrated numerically with full three-dimensional
finite element calculations. In this study, we focus on two different DED config-
urations (Figs. 11.11a and 11.12a) in which both nanostructures are made of gold
and embedded in a surrounding medium with refractive index n = 1.45 (glass).
The first configuration (Fig. 11.11a) is a nanocross consisting of two perpendicular
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Fig. 11.12 a Sketch of nanobrick system. b Scattering cross section at three angles Ω for L2 =
140 nm. c Normalized experimental reflection spectra for seven dififferent values of Ω. The inset
shows an electric microscopy image of the fabricated 400 nm-period array consisting of ∼50 nm high
gold bricks with short and long axes of ∼100 nm and 150 nm, respectively. d Normalized reflection
from the array as a function of analyzer angle w.r.t. the long axis of the brick for ϕ = 780 nm.
The reflection in c and d was normalized using the reflectivity from a ∼300 nm-thick gold film
and weighted with the calculated reflectivity by using gold optical constants. Reproduced with
permission from Ref. [15]. ©The Optical Society Of America 2011

nanoantennas with the same cross section of 50×50 nm2 but of different length (i.e.,
orthogonal DEDs). Note that it is possible to excite individual plasmonic resonances
by choosing the angle of polarization, Ω, of the incident linearly polarized wave to
either Ω = 0◦ or Ω = 90◦ (Fig. 11.11b). For intermediate angles, both resonances
are excited, which allows us to construct a quarter-wave plate by properly choosing
the length of the nanoantennas (detuning) and Ω (influencing the relative strength
of DEDs). The right choice of length is illustrated in Fig. 11.11c for Ω = 45◦ when
the short axis is fixed at L1 = 260 nm and the long axis, L2, is slightly varied.
The figure depicts the phase difference between the y- and x-component of the scat-
tered electric field (Esc,y and Esc,x ) along the -z-axis in the far field showing that
for L2 = 338 nm the phase difference is ∼ η/2 at ϕ = 1520 nm. At this wave-
length, the minimum observed in the scattering cross section is related to plasmonic
currents induced in both nanoantennas (Fig. 11.11f), whereas the scattering cross
section maxima at wavelengths ϕ = 1370 nm and ϕ = 1640 nm are related to plas-
monic currents induced only in the vertical (Fig. 11.11e) and horizontal (Fig. 11.11g)
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nanoantenna, respectively. Interestingly, simulations show that the induced current
at ϕ = 1520 nm (Fig. 11.11f) makes a full rotation within one cycle; a property
related to scattered light with elliptical/circular polarization. In order to get circular
polarized light at ϕ ∼ 1520 nm, we should require |Esc,x | = |Esc,y | that can be
satisfied at Ω = 56◦ (Fig. 11.11d). Note that in the simplified case of Eq. (11.1), we
would expect circular polarization at Ω = 45◦, but a lower dipole strength of the
short nanoantenna requires Ω > 45◦. Also importantly, the configuration has the
wavelength range 1475–1560 nm where the phase difference variation is less than
2 %, implying a relatively broadband operation of the proposed wave plate.

As an example of versatility of our approach, we construct a quarter-wave plate
from a gold nanobrick of 50 nm thickness (Fig. 11.12a) exhibiting two orthogonal
plasmonic resonances [see the scattering cross section in Fig. 11.12b]. This time,
however, we choose the short axis to be L1 = 90 nm satisfying the criteria for a
quarter-wave plate at ϕ ∼ 770 nm when L2 = 140 nm and Ω = 52◦ (not shown).
The wavelength range in which the phase difference deviates with less than 2 % is
748–796 nm. For further details on the nanobrick configuration, we refer to [15].

Using electron-beam lithography and lift-off technique, a 400 nm-periodic (50 ×
50µm2) array of the nanobrick configuration has been fabricated on a silica substrate
[see inset in Fig. 11.12c] and subsequently covered with ∼15µm PMMA to create
(almost) homogeneous surroundings. Reflection spectra are measured using a broad-
band halogen light source with a fiber output whose radiation is directed through a
Glan-Thompson polarizer and focused onto the fabricated array by a x60-objective
(NA = 0.85). The reflected light is collected by the same objective and fed into an
optical fiber connected to a spectrometer. The reflection spectra (Fig. 11.12c) show
that for Ω = 0◦ and Ω = 90◦ the individual resonances along the brick long and
short axis, respectively, are being excited, whereas both resonances are excited when
using an intermediate Ω.

In order to verify experimentally that the reflected light from the fabricated array is
circularly polarized, Ω is fixed to an angle of 50◦ and the radiation from a Ti:sapphire
laser at 780 nm is focused onto the array with a x10-objective (NA = 0.25), col-
lected by the same objective and sent through an achromatic quarter-wave plate
(690–1200 nm) followed by a Glan-Thompson analyzer with varying analyzer angle
with respect to (w.r.t.) the long axis of the brick (Fig. 11.12d). If the reflected light
from the fabricated array is circularly polarized it must be converted into linearly
polarized light with an angle of 45◦ w.r.t. the fast axis (FA) of the quarter-wave plate.
When fixing the FA w.r.t. the long axis of the brick at 0◦ and 90◦, respectively, the
output of the Glan-Thompson analyzer reveals linear polarization at angles −45◦ and
45◦, respectively. Therefore, in this case, the criteria of equal strengths and a phase
difference of ∼ η/2 between the two resonances of the brick are approximately met,
and the reflected light is circularly polarized. Note that the minimum reflection is
∼5 % due to the presence of linearly polarized light reflected at the glass/PMMA
interface. On the other hand, when Ω = 0◦ or Ω = 90◦ and the FA is fixed at 45◦ w.r.t.
to the long axis of the brick, the individual resonances are excited, and the commer-
cial quarter-wave plate converts the reflected (linearly polarized) light into circularly
polarized light as evidenced by the analyzer output when varying the analyzer angle.
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Note that the reflection as a function of the analyzer angle is not perfectly flat when
Ω = 0◦ and Ω = 90◦ due to the commercial quarter-wave plate not providing a retar-
dance of exactly one quarter at 780 nm. That said, it is clear from the measurements
that the nanobrick metamaterial functions as a quarter-wave plate in reflection.

11.4 Conclusion

The concept of detuned electrical dipoles (DED) have emerged from the plasmonic
realization of the dressed-state picture of the electromagnetically induced trans-
parency (EIT) in atomic physics. The DED concept shows versatility in the sense
that it covers any plasmonic configuration consisting of two dipole resonances that
are oppositely detuned from the central frequency. Importantly, the detuning must
be weak so that the line shapes of the individual resonances overlap, hereby creating
scattering suppression at the central frequency. Furthermore, as the scattering sup-
pression also occurs in the limit of noninteracting resonators, DED configurations
display robustness with respect to mutual positioning of individual scatterers. A fact
that amounts in less stringent fabrication requirements compared to the other EIT
realization mimicking the bare-state picture.

By employing gold nanorod antennas as dipolar scatterers, we have demonstrated
that two- and three-nanorod configurations constituting a unit cell in a DED meta-
material exhibit enhanced transmission (i.e., optical transparency) at the central fre-
quency with the possibility of slowing down light. Specifically, the numerically stud-
ied two-nanorod system demonstrates slow down factors of ∼ 10 with propagation
loss of ∼ 2.5 dB per 300-nm-thick unit cell at the central wavelength ∼ 1150 nm,
whereas the three-nanorod system features a group refractive index of ∼ 8 with
loss ∼ 1 dB per 150-nm-thick cell at the central wavelength ∼ 860 nm. DED meta-
materials and their associated effective refractive indexes have also been studied
experimentally, showing consistent trends with simulations.

Although the DED concept was presented in relation to slow-light metamaterials,
it has proven a much larger applicability. Here, we demonstrated that the scattering
asymmetry along the line connecting the two nanorods at the central wavelength
can be advantageously exploited for plasmonic sensing of the environment, both
as an individual subwavelength-sized sensor and as a unit cell of a periodic array.
Simulations of a single two-nanorod configuration revealed that the ratio of the
scattering asymmetry produces spectral peaks at the central wavelength ϕ = 941 nm
with a FWHM of ∼2 nm and a sensitivity of ∼600 nm/RIU resulting in a record
high figure of merit (FOM) of ∼300. Experimental proof-of-principle studies of
lithographically fabricated gold nanorod arrays demonstrate FWHM of ∼20 nm, a
value which is significantly smaller than the FWHM of plasmonic resonances of
individual nanorods.

Finally, we showed that a metasurface with unit cells consisting of perpendicu-
lar dipolar scatterers can be designed to function as a nanometer-thin quarter-wave
plate in reflection, meaning that the reflected light is circularly polarized for a lin-
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early polarized incident wave. The quarter-wave plate functionality has been ver-
ified numerically for nanocross and nanobrick configurations in the near-infrared.
Additionally, a metasurface of nanobrick unit cells has been fabricated and optically
characterized, revealing quarter-wave plate behavior at ϕ∼780 nm.

Despite the already widespread work on and utilization of the DED concept, there
is still room for improvements and new applications. For example, the EIT-response
of DED metamaterials depends on a large number of parameters such as the fre-
quency detuning, the size and composition of the unit cell. For this reason, it is a
complicated task to find an optimal configuration. The word ‘optimal’ also depends
on the objective; in some cases a large group refractive index might be of more
importance than a large bandwidth-delay product. Similarly, the extrinsic chirality
present for two-nanorod metasurfaces (see Sect. 11.2.1) ought to be investigated in
more detail, possibly opening a new way to create ultrathin polarization rotators.
The sensing capabilities of the DED array can also be improved by a proper opti-
mization of the structural dimensions, which potentially could experimentally verify
FOM exceeding 100. Moreover, as indicated in Sect. 11.3.1, it should be possible
to reliably detect the light scattered from a single DED configuration, opening up
the possibility to detect environmental changes in nanometer-sized volumes with
unforeseen sensitivity. Likewise, we envision a considerable improvement in the
reflection strength of the DED quarter-wave plate [the current configuration shows a
reflection of ∼ 0.15, see Fig. 11.12c] by placing the nanobricks on a nanometer-thin
(∼ 20 nm) dielectric spacer pinned to a thin metal film. The overall thickness of the
structure would still be subwavelength, but the mirror-like properties of the metal
film ensures a predominant scattering in the reflection direction.
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Chapter 12
Plasmonics with a Twist: Taming Optical
Tornadoes on the Nanoscale

Svetlana V. Boriskina

Abstract This chapter discusses a hydrodynamics-inspired approach to trap and
manipulate light in plasmonic nanostructures, which is based on steering optical
powerflow around nano-obstacles. New insights into plasmonic nanofocusing mech-
anisms are obtained by invoking an analogy of the ‘photon fluid’ (PF). By proper
nanostructure design, PF kinetic energy can be locally increased via convective
acceleration and then converted into ‘pressure’ energy to generate localized areas of
high field intensity. In particular, trapped light can be molded into optical vortices–
tornado-like areas of circular motion of power flux–connected into transmission-like
sequences. In the electromagnetic theory terms, this approach is based on radiation-
less electromagnetic interference of evanescent fields rather than on interference of
propagating waves radiated by the dipoles induced in nanoparticles. The resulting
ability to manipulate optical powerflow well beyond the diffraction limit helps to
reduce dissipative losses, to increase the amount of energy accumulated within a
nanoscale volume, and to activate magnetic response in non-magnetic nanostruc-
tures. It also forms a basis for long-range on-chip energy transfer/routing as well as
for active nanoscale field modulation and switching.

Keywords Plasmon · Optical tornado · Light scattering

12.1 Introduction

Noble-metal nanostructures known for their unique ability to squeeze light into sub-
wavelength volumes enable a broad range of fascinating applications in optoelec-
tronics, biomedical research, energy harvesting and conversion [1–5]. Most of these
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applications–Raman and fluorescence sensing being the most widespread–make use
of the electric field enhancement and high local density of states provided by plas-
monic nanostructures to amplify weak molecular signals such as Rayleigh [6–8]
or Raman [9–13] scattering efficiency, absorption efficiency [14], fluorescence rate
[15–18], etc.

The electric field enhancement is a manifestation of the resonant excitation of
collective oscillations of free charge carriers in some materials (e.g., free electrons
in metals) by the external light sources or embedded emitters. In the language of
quantum mechanics, this process can be explained as the excitation of plasmons
(quanta of plasma oscillations). The collective dynamics of plasmons is driven by the
long-range correlations caused by Coulomb forces, and can be drastically modified
by engineering the boundaries of the spatial region filled by electron plasma. In
particular, bulk plasmons confined in thin metal films can couple with photons to
create surface plasmon-polariton (SPP) waves [22]. On the other hand, illumination-
induced collective response of plasmons confined in nanoparticles is manifested in
the excitation of quantized localized surface plasmon (LSP) modes with different
angular momenta [23].

Although being quantum in nature, many plasmonic effects can be well described
in the frame of the classical electromagnetic theory by using a semi-classical Drude-
Lorentz-Sommerfeld model to define the frequency-dependent permittivity of metals.
As a result, many fundamental principles and engineering solutions established in
the electromagnetic modeling of radio-frequency (RF) antennas, microwave trans-
mission lines, circuit elements, etc. can be applied to study and design plasmonic
nanostructures. These include the concepts of antenna resistance, directivity and
efficiency [24] and the principle of impedance matching [25, 26] just to name a few.
Overall, the striking analogies with RF and microwave engineering–which focus on
reversible interfacing of the propagating radiation with the fields localized inside
sub-wavelength-size components–cemented the use of the design framework that
treats plasmonic nanostructures as nanoscale analogs of RF antennas [17, 24, 27–
29] and waveguides [2, 26, 30–32]. Alternative yet closely-related formulations are
based on the treatment of plasmonic components as lumped circuit elements [33, 34]
and resonators for plasmons [35–37].

The concept of an optical antenna is a very straightforward and visual analogy to
describe a plasmonic nanoparticle, which can serve as both electromagnetic transmit-
ter and receiver capable of converting the incoming radiation into localized surface
plasmon modes, subsequently re-radiating it into the far-field, or modifying emis-
sion properties of embedded molecules. The oscillating dipole moments in individual
particles induced by external sources can in turn be treated as secondary sources of
electromagnetic radiation, i.e., dipole antennas (Fig. 12.1a). Dimer-gap nanoantenna
configuration, which provides larger radiation efficiency as well as higher spectral
tunability than an individual nanoparticle, can be constructed by analogy with a
classical radio-frequency radiator, the Hertzian dipole (Fig. 12.1b) [27, 38]. The
RF technology analogies so deeply penetrated the field of plasmonics research, that
the terms ‘noble-metal nanoparticle(s)’ and ‘optical nanoantenna(s)’ became almost
interchangeable. Furthermore, since the collective response of multi-particle struc-
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Fig. 12.1 Noble-metal nanoparticles as optical nanoantennas. a A single metal nanoparticle with
an oscillating electric dipole moment induced by an external light source serves as an analog to an
RF dipole antenna. The scale bars in SEM images here and in b are 50 nm (adapted with permission
from [19], c∪ACS). b Dimer-gap nanoantenna as an analog to a classical Hertzian dipole radio-
frequency radiator. c Ordered metal nanoparticle arrays (adapted with permission from: top left [20]
c∪AIP, bottom left [21] c∪NPG) as optical analogs to phased periodic antenna arrays and Yagi-Uda

antennas. The insets show schematics of the charge distribution and emission patterns of dipole
LSP modes of individual nanoparticles. Antennas images source wikimedia commons

tures is governed by the long-range interactions between individual dipoles (as long
as the interparticle spacing is large enough so that the contribution of higher order
resonances is negligible), various phased RF antenna array configurations have been
successfully replicated on the nanoscale (Fig. 12.1c) [20, 21, 39–42].

On the other hand, for closely-packed nanoparticle clusters–where short-range
interactions play the major role–a theoretical framework drawing analogies with
chemistry has been successfully used. Owing to the similarities between the prop-
erties of confined quantized plasmonic states in nanoparticles and confined elec-
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Fig. 12.2 Noble-metal nanoclusters as plasmonic molecules. a Splitting of the energy levels of LSP
resonances in the nanoparticle dimer (reproduced with permission from [43], c∪ACS). b Spatial
distributions of the electric fields of the bonding (often referred to as longitudinal) and anti-bonding
(often referred to as transverse) coupled-dipole modes. c Individual and coupled nanoparticle hep-
tamers as plasmonic analogs of aromatic chemical molecules (adapted with permission from [44]
c∪ACS)

tron states in atoms, the former can be dubbed ‘plasmonic atoms’. Just as atomic
wavefunctions added together produce molecular orbitals, in-phase and out-of-phase
overlaps of electromagnetic fields of LSP modes in plasmonic atoms result in the
splitting of their energy levels [43] (Fig. 12.2a) and hybridization into bonding and
anti-bonding modes of plasmonic molecules (shown in Fig. 12.2b for the lowest-
energy modes of a diatomic molecule—nanoparticle dimer). The in-phase overlap
combination (a bonding mode, Fig. 12.2b, left) produces a build-up of electromag-
netic energy density in the gap between the nanoparticles, while the out-of-phase
overlap results in the decrease in energy density down to a zero value in the gap
center for the anti-bonding mode (Fig. 12.2b, right). Also, in perfect analogy with
the molecular orbitals, the anti-bonding mode is higher in energy (has a shorter
wavelength), while bonding mode is lower in energy than the dipole mode of an
isolated plasmonic nanoparticle (see Fig. 12.2a [13]). More complex nature-inspired
plasmonic molecule structures–such as aromatic plasmonic molecules shown in Fig.
12.2c) have been proposed [44, 45], offering a natural extension to the concept of
plasmonic crystals and quasicrystals [46, 47]. It should also be noted that this chemi-
cal analogy has been previously exploited to study coupling of confined optical states
in ‘photonic molecules’ [48].

In this chapter, I discuss in detail an alternative approach to the plasmonic design
that does not cast the problem in the conventional terms of a sequence of scattering
events but treats it as continuous energy flow process. This approach draws inspira-
tion from hydrodynamics, which studies how the flow of fluids can be manipulated
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by obstacles strategically positioned in the flow path. Accordingly, the focus shifts
to the studies of the Poynting vector (which is a direct analog of a fluid flux) rather
than the electromagnetic field behavior under the influence of nanostructures. Many
interesting hydrodynamic effects can be engineered by a proper design of the obsta-
cles pattern, including convective acceleration or deceleration even in the case of
steady flow, formation of flow vortices–areas of spinning flow of fluid—as well
as flows collisions accompanied by the formation of ‘shock waves’. Electromag-
netic analogies of these effects can be invoked in the plasmonic design, offering
new insights into routing, re-circulation, and concentration of optical energy within
nanostructures. In particular, optical energy flow can be molded into optical vortices–
tornado-like areas of circular motion of energy flux–‘pinned’ to nanostructures (see
Fig. 12.3). In the following, I will demonstrate that unique optical effects can be
achieved by coupling multiple nanoscale vortices into complex structures resembling
multiple-gear transmissions. Furthermore, it will be revealed that some previously

Fig. 12.3 Hydrodynamical modeling of plasmonic nanostructures: nanoparticles as the obstacles
modifying the powerflow path. a An example of a photonic-plasmonic structure that molds optical
powerflow into coupled counter-rotating vortices (shown in (b), see [49] for details). c An example
of a complex trajectory of the fluid motion through the obstacle course, which features formation
of the areas of convective flow acceleration and flow vortices [50]
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observed strong light focusing effects can be attributed to nanostructure-induced
formation and manipulation of optical powerflow vortices. Finally, I will discuss
application of these new design principles to the development of multi-functional
phase-operated plasmonic machinery, including light-trapping and biosensing plat-
forms, SERS substrates, spectrally-tunable directional nanoantennas, strain sensors,
waveguides, and metamaterial building blocks.

12.2 Energy Transport and Dissipation in Plasmonic Materials

The time- and space evolution of the electromagnetic field vectors E and H can
be obtained by solving Maxwell equations with the problem-specific initial and/or
boundary conditions:

≈ · E = ε/λ

≈ · H = 0
≈ × E = −μ · πH/πt
≈ × H = J + λ · πE/πt

, (12.1)

However, it is “more physically satisfying and visually appealing–as well as peda-
gogically more effective” [23] to consider the evolution of the dc component of the
power density flux, which is given by the time-averaged Poynting vector S:

S = 1/2Re[E × H∼]. (12.2)

Eq. 12.1 has a form applicable in the case of an isotropic linear medium, with λ

and μ being permittivity and permeability, and ε and J—charge and current density,
respectively. The Poynting vector specifies the magnitude and direction of the energy
flow, and the integral of the power flux through a closed surface gives the rate of the
energy loss from the surrounded volume by leakage through its surface. Flow of the
electromagnetic energy through absorbing media (such as metals) is accompanied
by its irreversible dissipation, which represents a major bottleneck in the engineering
of high-efficiency plasmonic devices.

The energy carried by the electromagnetic wave through a dissipative medium
is stored partially in the electromagnetic field and partially in the excited charge
oscillations in the host medium. In the frame of the semi-classical Drude-Lorentz-
Sommerfeld approach, electromagnetic properties of materials with high concentra-
tion of free charge carriers that move against the background of positive ion cores can
be captured within the well-known expression for the Drude dielectric permittivity.
Assuming the excitation by a harmonic field with exp(−iωt) time dependence, the
Drude permittivity function derived from the equation of motion of carriers with
charge e, mass m, density n, and collision frequency α takes the following complex
form:

λ(ω) = λr (ω) + iλi (ω) = 1 − ω2
p

ω2 + α 2 + i
ω2

pα

ω(ω2 + α 2)
, (12.3)
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where ω is the light angular frequency, ωp = √
ne2/λ0m is the plasma frequency,

and the effects of interband transitions and quantum size effects for particles much
smaller than the carrier mean free path are neglected. Accordingly, the energy density
of a harmonic field propagating through a non-magnetic, dispersive and absorptive
medium characterized by the Drude permittivity can be written as [37, 51, 52]:

W = λ0/4 · (λr + 2ωλi/α ) · |E|2 + μ0/4 · |H|2 . (12.4)

The energy conservation law in this case reflects the rate of the energy change within
the metal volume V due to leakage across its surface γ as well as due to volume
dissipation:

−
∫
V

Ẇ dV =
∫
γ

Sdγ + 1

2

∫
V

ωλ0λi |E|2 dV . (12.5)

One rarely-discussed yet important consequence of Eqs. 12.4–12.5 is that while a
plasmonic nanostructure may provide light concentration in the volume below the
diffraction limit in the host medium, the effective mode volume–which accounts for
the portion of the electric field energy stored inside the metal–can in principle exceed
this limit [37]. Furthermore, the energy dissipation rate grows with the increase of
the imaginary part of permittivity, and also with the amount of energy stored in the
electric rather than magnetic field. Typically, for electromagnetic fields confined in
the vicinity of sub-wavelength plasmonic nanostructures, magnetic energy is just a
tiny portion of the electric energy. This results in the fast energy dissipation and low
degree of temporal coherence of localized SP modes [53]. Typical approaches to
alleviate or compensate for dissipation losses include loss compensation with gain
[4, 54, 55]–which however may require high pump rates and complicates local heat
management in sub-wavelength plasmonic components–and the search for new mate-
rials with high charge carriers mobility yet reduced dissipative losses [56–59]. In the
following, I will discuss an alternative approach to reducing the dissipative losses by
modifying the pattern of the nanoscale powerflow through plasmonic nanostructures.

12.3 How can a Particle Absorb more than the Light Incident
on it?

The above question was famously posed and answered by Craig Bohren [23] to
explain the physics of the strong energy concentration on metal nanoparticles by
studying the modification of the optical powerflow in the electromagnetic field due
to the presence of a single nanoparticle. The Poynting vector field lines—which
otherwise would have been parallel lines along the propagation direction of the plane
wave–become drastically distorted in the vicinity of the particle at the frequencies
corresponding to the real parts of the particle eigenmodes frequencies [23, 60, 61].
This effect is illustrated in Fig. 12.4a, which shows the optical powerflow behavior



438 S. V. Boriskina

Fig. 12.4 Optical powerflow underlying the dipole LSP resonance in the plane wave scattering
by a metal nanoparticle. Field lines of the Poynting vector in the E-plane around an aluminum
nanosphere illuminated by a plane wave at the frequency of its dipole LSP resonance (a) and away
from it (b) (adapted with permission from [23] c∪AIP ). The insets show the corresponding electric
field intensity distributions around the particle

at the wavelength of the dipole LSP mode in an aluminum nanosphere [23]. Far from
the sphere, the field lines are still parallel, but they strongly converge to the sphere
surface in close vicinity to the particle, increasing the effective particle cross-section,
as ‘seen’ by light. This ability of the particle to harvest light from the area much
larger that the particle cross-section translates into the strong field concentration on
the particle surface (see inset to Fig. 12.4a). It was initially assumed that away from
the LSP resonances, the Poynting vector field lines just bend around the particle,
resulting in the absence of the strong field enhancement off resonance (Fig. 12.4b).

In general, the ability of the particle to scatter and absorb light can be character-
ized by its scattering/absorption cross sections, or scattering/absorption efficiencies
(cross-sections normalized to the particle volume). For a nanosphere of radius a and
complex-valued permittivityλ immersed in air, these efficiencies can be found by
analytically solving the Maxwell equations in the quasi-static approximation, and
have the following form [23]:

Qabs ∝ 4

(
2∂a

Δ

)
Im

(
λ − 1

λ + 2

)
, Qsca ∝ 8

3

(
2∂a

Δ

)4 ∣∣∣∣λ − 1

λ + 2

∣∣∣∣
2

. (12.6)

Not surprisingly, both, the scattering and the absorption cross-sections grow with
increase of the sphere size (although the scattering efficiency clearly prevails for
larger particles), and their values resonantly peak at the frequency where λr = −2.
A somewhat less-expected result is that not only the scattering efficiency and local-
ized field intensity (see e.g. [62]) but also the absorption efficiency is inversely
proportional to the λi value at the resonant frequency.
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The most striking feature of the on-resonance powerflow pattern shown in
Fig. 12.4a is the reversal of the energy flow in the particle shadow area, with a portion
of energy entering the particle from behind. This powerflow reversal is driven by the
formation of a topological feature in the Poynting vector field—a saddle node. The
direction of the powerflow around the saddle node is highlighted with red arrows in
Fig. 12.4a. A presence of another saddle node inside the particle volume drives the
exchange of the electromagnetic energy between the E- and H-planes. As the energy
re-circulation occurs through the volume of the metal–where energy dissipation takes
place (12.5)–the LSP resonance is accompanied by high absorption losses. The saddle
nodes observed in Fig. 12.4a are the local topological features in the Poynting vector
field at which the intensity of the time-averaged Poynting vector is zero, and thus its
phase cannot be defined [63–67]. The powerflow lines around the saddle points are
hyperbolas (see Fig. 12.4a). It has previously been observed that the decrease of the
material dissipation losses results in even more complex picture of the powerflow
through the particle [61, 68]. This effect may explain the inverse dependence of the
absorption efficiency on the imaginary part of the dielectric function due to more
efficient light re-circulation through the metal volume.

The scattering efficiency as well as the intensity of the local electric field concen-
trated on the particle surface can be further enhanced by combining the individual
particles into ordered arrays and making use of the constructive interference of the
scattered partial fields. The scattering, absorption and emission spectra of such arrays
exhibit sharp resonant peaks [20, 41, 42, 46, 69–71] corresponding to the well-known
Rayleigh anomalies associated with the opening of new array diffraction orders. For
discrete values of array periods proportional to the wavelength of the incident field,
the dipoles induced in individual particles oscillate in phase, inducing coherent corre-
lations across the array. This collective effect – known as superradiance–was initially
predicted by Dicke for a system of two-level atoms [72] and results in the generation
of a signal proportional to the square of the number of dipoles in the directions of
their constructive interference.

A complex picture of energy flow through a periodic chain of gold nanoparti-
cles at the frequency of the chain superradiant collective mode resulting from the
spectral overlap of a particle dipole LSP resonance and a chain Rayleigh anomaly
is illustrated in Fig. 12.5b. It can be seen that–similarly to the case of individual
nanoparticles–the field lines strongly deflect towards particles, and the energy is re-
circulated through their metal volumes. Furthermore, formation of a collective mode
is associated with appearance of additional topological features around the particle
chain (the direction of powerflow around additional saddle nodes is indicated with
red arrows in Fig. 12.5b). The net result of this effect is a more efficient light trapping
and re-circulation through the particle chain, which increases its collective scatter-
ing, absorption, and field enhancement efficiency over that of a sum of efficiencies
of individual nanoparticles.
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Fig. 12.5 Energy flow underlying the Dicke superradience effect in a periodic nanoparticle array. a
Electric field intensity distribution in the E-plane of the periodic chain of Au nanoparticles separated
by distances close to the wavelength of the illuminating plane wave. b Powerflow pattern (small
arrows) and the spatial intensity map of the Poynting vector in the plane cutting through the centers
of the nanoparticles in the chain. The direction of the powerflow around the additional array-induced
saddle nodes is highlighted with red arrows

12.4 Nanoparticle-Generated Optical Tornadoes

Saddle nodes are not the only type of topological features that can emerge as a
result of the interference of several waves (or–in the alternative hydrodynamic
picture–collision of several flows). Perhaps the most intriguing flow features are flow
vortices—singular nodes of the Poynting vector (points in 2D and lines in 3D)—that
are the centers of circulating powerflow (i.e., the field lines surrounding a vortex are
circles) [63, 65, 73]. These optical analogs of whirlpools and tornadoes can be cre-
ated by superposition of three (or more) waves, e.g., plane waves, partially scattered
fields, pulses, or fields generated by point sources. Understanding the origins and
exploiting flow effects associated with these topological features have been proven
to be of high relevance for many branches of physics, including hydrodynamics,
acoustics, quantum physics, and singular optics [73, 74].

Formation of vortices is known to significantly affect the properties of superflu-
ids, superconductors, and optical components; however, without proper engineering
their effect can be detrimental. In particular, electromagnetic vortices form in the
interference field of the waves propagating through random, turbulent and chaotic
media and are manifested as dark points in the speckle fields. However, their pres-
ence causes trouble in the measurement and interpretation of scattered fields for
remote sensing applications. Formation of vortices in the interference field of light
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scattered by sub-wavelength slits can also be detrimental as it results in the phenom-
enon of the frustrated transmission [66]. Likewise, the motion of ‘Abrikosov vortices’
–nanoscale tubes of magnetic flux that form inside superconductors upon exposure
to magnetic fields–decreases the current-carrying capability of superconductors and
requires vortex immobilization ( or ‘pinning’) by the material artificial defects [75,
76]. To pin vortices effectively, in-depth understanding of the pinning strength of
individual defects as well as the collective effects of many defects interacting with
many vortices is required.

In a perfect analogy, developing a general design strategy of pinning optical vor-
tices to properly-designed plasmonic nanostructures would offer an unprecedented
degree of control over light trapping in sub-wavelength volumes and in dynami-
cal manipulation of nanoscale powerflow patterns. We already saw in the previous
sections that resonant scattering of light from noble-metal nanoparticles creates a
complex spatial distribution of the time-averaged Poynting vector in their near-field.
An even more interesting nanoscale powerflow features can be observed in at the fre-
quencies just around the LSP resonant frequency in the nanoparticle, as illustrated in
Figs. 12.6 and 12.7. Fig. 12.6a shows frequency spectra of the electric and magnetic

Fig. 12.6 Optical powerflow around a plasmonic nanoparticle: off-resonance effects. Wavelength
spectra of the electromagnetic field intensities (a) and the energy flow direction (b) around a 30 nm-
diameter Ag nanosphere in a wide spectral window enclosing the particle LSP resonance. The
particle is illuminated by a linearly-polarized plane wave propagating upwards along the z-axis.
The inset in (a) shows the spatial position of the field monitor in the E-plane (the H-plane monitor
is located at the same position in the H plane). The dots indicate the discrete wavelengths at which
the spatial distributions of the field intensity and powerflow patterns are calculated (see Fig. 12.7)
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Fig. 12.7 Optical powerflow (arrows) and E-field intensity patterns on a 30 nm-diam Ag sphere at
the frequencies around its dipole LSP resonance (positions 1–4 are marked in Fig. 12.6)

field intensities generated on the particle surface by a plane wave propagating along
the z-axis and linearly polarized along the x-axis. The intensity values are probed at
intersections of the particle equatorial plane with the E- and H-planes (see inset to
Fig. 12.6a). The excitation of the dipole LSP resonance in the nanoparticle is marked
by the pronounced peaks in the E-field intensity spectra (with the E-plane intensity
value being an order of magnitude higher). The magnetic field intensity probed in
the H-plane also features a weak resonant feature in the same frequency range.
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To reveal the direction and density of the optical power flux around the nanopar-
ticle on and off its LSP resonance, the frequency spectra of the z-component of
the Poynting vector (pointing in the direction of the plane wave propagation) are
plotted in Fig. 12.6b. The Poynting vector (12.2) is a 3D real-valued vector field,
which in the Cartesian coordinate system is defined by three orthogonal components:
S = {

Sx , Sy, Sz
}
. The plots in Fig. 12.6b show that the direction of the powerflow

around the particle changes abruptly from forward (characterized by positive Sz val-
ues) to backward (negative Sz) at the wavelength of the LSP resonance. The phase
change by ∂ at a resonance is a manifestation of the delay between the action of the
driving force and the oscillator response. It is a characteristic feature of any resonant
structure driven by the external field, including classical forced oscillators [77, 78].
However, the spatial distributions of the Poynting vector field around the particle on
and off resonance shown in Fig. 12.7 reveal an intricate picture of local powerflow.
In particular, a pair of saddle nodes can be observed in the on-resonance powerflow
pattern 2, while at the frequencies just around the LSP resonance, the powerflow
forms pairs of coupled counter-rotating vortices (patterns 1 and 3 in Fig. 12.7). Only
far away from the resonant frequency (pattern 4) the flow resembles the one discussed
by Bohren (compare to Fig. 12.4b). Hereafter, the arrows point into the direction of
the local powerflow, and the length of each arrow is proportional to the local value
of the Poynting vector amplitude.

First predicted theoretically several years ago [68, 81], the effect of formation of
optical whirlpools in individual nanoparticles initially did not attract a lot of attention
because it does not translate into efficient field enhancement (see Fig. 12.6a). How-
ever, the situation changes when the particles are deposited on a high-refractive-index
dielectric substrate as illustrated in Fig. 12.8 [79]. In particular, resonant illumination
of an Au particle by a focused laser beam may cause formation of coupled counter-
rotating vortices at the interface between the particle and the substrate (shown in
Fig. 12.8a). The strong light re-circulation through a nanoscale area underneath the

Fig. 12.8 Near-field nanopatterning with plasmonic particles. a Optical powerflow (arrows) and
the electric field intensity distribution (color) around a 100 nm-diameter Au nanosphere deposited
on a silicon substrate (reproduced with permission from [79], c∪Springer). b SEM image of the
nanohole fabricated by the particle-enhanced near-field under the laser illumination (reproduced
with permission from [80], c∪Elsevier)
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particle creates localized temperature gradient in the substrate material, and can be
used for efficient nanohole processing (Fig. 12.8b) [80].

12.5 Molding the River of Light in Vortex Nanogear
Transmissions

As shown in the previous sections, nanostructure-induced interference of the
evanescent-field components of the electromagnetic field may generate complex
spatial distributions of the time-averaged Poynting vector in the near-field region,
including creation of nanoscale vortices of optical powerflow. This mechanism of
light trapping offers a new way to efficiently focus and store light within nanoscale
volumes. However, it calls for more work to formulate rational strategies for vortex-
pinning nanostructures engineering and to predict new physical effects. It has long
been realized that variations of amplitude and phase of interacting propagating waves
can be used to create and control free-space vortex fields. Experimental techniques
for the free-space vortices generation include the use of “forked” holograms, lenses
and spiral phase plates as well as their recently proposed plasmonic analogs [82–84].
Complex vortex topologies such as loops and knots can be created by superposing
waves with correctly-weighted amplitudes and phases [85, 86]. A similar theoret-
ical framework for generation and manipulation of the powerflow vortices via the
interference of evanescent waves in plasmonic nanostructures is still under devel-
opment [49, 67, 87], and below I will review several successful realizations of the
vortex-pinning nanostructures.

The first example to be discussed is a celebrated silver nanolens design for effi-
cient light focusing in the gap between the particles arranged into a showman-like
structure (shown in Fig. 12.9a). This configuration was theoretically introduced over
a decade ago by Li, Stockman and Bergman [89], and has generated over 500
follow-up papers since publication. However, the origin of the observed phenom-
enon has not been understood until recently [67], and can be revealed through the
concept of coupled-vortex formation. To illustrate the underlying physical effects
of light focusing in the nanolens, in Fig. 12.9b the on-resonance optical power-
flow pattern is overlapped with the electric field intensity distribution. The struc-
ture is illuminated by a linearly-polarized plane wave (propagating from bottom
up in Fig. 12.9b). Figure 12.9b reveals a complex picture of powerflow through the
nanolens focal point, with the reversal of flow direction at the near-field intensity
resonance, which is caused by the formation of coupled counter-rotating vortices
inside the nanoparticles. The powerflow pattern in Fig. 12.9b resembles a multiple-
gear transmission (schematically illustrated in Fig. 12.9c), which is composed of
coupled vortex nanogears made of light and arranged into a linear sequence. To
reflect this analogy, the nanostructures engineered to couple counter-rotating optical
vortices into transmission-like sequences have been termed Vortex Nanogear Trans-
missions (VNTs) [67, 87]. As seen in Fig. 12.9b, light circulation through VNT drives
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Fig. 12.9 Silver nanolens as a vortex nanogear tansmission. a Schematic of a nanolens and an elec-
tric field intensity distribution generated by an incoming plane wave (reproduced with permission
from [88] c∪APS). b Optical powerflow pattern underlying the nanolens focusing mechanism. c
Schematic of the nanogear transmission generated in the nanolens. Power flux in each nanogear is
looped through nanoparticles (adapted with permission from [67] c∪RSC)

the increased backward powerflow through the inter-particle gaps, resulting in the
dramatic local field enhancement.

The nanolens in Fig. 12.9 re-circulates optical power through the volume of
nanoparticles, which results in the strong energy dissipation on every pass through the
metal. Accordingly, engineering VNTs capable of weaving the powerflow away from
the volume of metal nanoparticles would go long way in overcoming the problem of
high dissipative losses in plasmonics even without using gain compensation mecha-
nism. Physically, there are no restrictions on creating optical vortices outside of the
nanostructure. Vortices–as well as saddle nodes–are characterized by the zero energy
absorption (≈ · S(r) = 0) and thus can exist in the non-absorbing medium [63–67].
Indeed, various configurations of the VNTs capable of folding light into nanogears
threaded through the inter-particle gaps have been predicted theoretically [49, 67,
87] and subsequently realized experimentally [87]. One such design is shown in the
inset to Fig. 12.10a, and consists of a regular linear chain of identical Ag nanoparticle
dimers separated by sub-wavelength gaps [67, 87]. This VNT can generate localized
light intensity in the gap of the central dimer, which significantly exceeds that in a
stand-alone dimer (Fig. 12.10a).

Note that the reduced powerflow through the metal results in the significant nar-
rowing of the resonance linewidth, reflecting the increase of the quality (Q) factor
of the collective VNT mode over that of a single dimer LSP mode. The Q-factor is
inversely proportional to the energy loss rate of the mode. It can be interpreted as the
number of field oscillations that occur coherently, during which the mode is able to
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Fig. 12.10 Vortex nanogear transmission re-circulating optical energy outside of the nanoparticles
metal volume. a Wavelength spectrum of the electric field intensity enhancement in the center of a
chain of Ag nanosphere dimers of 50 nm sphere radii, 3 nm intra-dimer gaps and 10 nm inter-dimer
gaps in water, as shown in the inset. The corresponding spectrum of a single dimer is shown as
dashed line. The structures are illuminated by a plane wave with the electric field polarized along
the dimers axes. b Poynting vector intensity distribution and powerflow through the chain (plotted
in the plane cutting through the centers of the dimer gaps) at its resonant wavelength. c Schematic of
the VNT generated in the dimer chain. Power flux in each nanogear is looped between the particles
(adapted with permission from [67] c∪RSC)

sustain its phase and accumulate energy. Accordingly, local fields can be enhanced
by a factor of Q (as seen in Fig. 12.10a). Other important characteristics of the mode
interaction with its material environment also scale with Q, including spontaneous
and stimulated emission rates, absorption rates, and the strength of resonant Coulomb
interaction between distant charges [37, 90, 91].

Metal nanoparticle structures capable of pinning optical vortices and combining
them into nanogear transmissions can be easily fabricated by standard techniques
such as electron beam lithography [87, 92] or template-assisted self-assembly [13].
Furthermore, their spectral properties can be tuned in a wide frequency range by
varying the nanoparticle sizes as well as the separations between adjacent dimers
(see Fig. 12.11). In particular, the possibility of tuning the resonant frequency of
a linear VNT by stretching has the potential for developing mechanically- and
optofluidically-tunable devices. Note that the optical spectrum of a single nanodimer
can also be tuned by pulling the two nanoparticles away from each other by stretching
the substrate. However, the increase of the gap size has a severe detrimental effect
on the dimer near-field intensity. To the contrary, the spectra of linear VNTs can
be tuned by stretching the substrate in the direction along the VNT long axis (see
Fig. 12.11c, d). This deformation does not result in the increase of the intra-dimer
gaps (and for sufficient deformations can even shrink the gaps). This is reflected in
the very slight variations in the peak intensity for a significant (over 100 %) VNT
stretching (Fig. 12.11c).

Although the position of each optical vortex pinned to the nanostructure is sensi-
tive to changes in the structure geometry, vortices are structurally stable and typically
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Fig. 12.11 Rainbow trapping in spectrally-tunable VNTs. Red-shifting of the spectral features in
the scattering efficiency (a) and the localized electric field intensity (b) of the linear VNT shown in
the inset. Au nanoparticles radii are varied from 65–90 nm with 5 nm increment. (c) Tuning of the
VNT spectrum via the increase of the inter-dimer gaps, which amounts to ‘stretching’ the vortex
nanogears, as schematically illustrated in (d)

only continuously migrate upon small perturbations of field parameters [63, 65]. This
opens the way–exploited in the designs shown in Fig. 12.11–to continuously tune the
VNT characteristics in a controllable fashion by changing the nanostructure design.
On the other hand, large perturbations of the controllable external parameters (such
as e.g. wavelength of incident field) can be introduced to force vortices of opposite
sign either to approach and annihilate, or to nucleate as a pair. The above effects
form the basis for realizing active spatio-temporal control of powerflow and the field
intensity redistribution on the nanoscale, as illustrated in Fig. 12.12.

In particular, Fig. 12.12 shows a design of a ‘vortex nanogate’, in which opti-
cal powerflow though an Au nanodimer gap coupled to a dielectric microsphere (as
shown in Fig. 12.3a) can be dynamically switched on/off and even reversed by tun-
ing the frequency of the excitation [49]. As seen in Fig. 12.12a, under the resonant
excitation by the plane wave, pairs of coupled counter-rotating optical vortices form
both inside the microsphere and around the Au nanodimer gap. Their combined
effect yields enhanced backward powerflow through the dimer gap (Fig. 12.12a).
With the wavelength shift, the vortices migrate away from the nanodimer gap area,
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Fig. 12.12 Operation of the optoplasmonic vortex nanogate. a,c Poynting vector intensity maps and
the optical powerflow through the gap of a microsphere-coupled Au nanodimer at the frequencies
around the resonance of the structure shown in Fig. 12.3a. Spatial maps are shown in the plane
cutting through the dimer gap center. b,d Schematics of the vortex-operated nanogate in the ‘open
Down’ and ‘open Up’ positions (reproduced with permission from [49] c∪OSA). e Coupled vortices
forming behind a flying airplane (source [94]), with a vortex-driven downwash velocity profile
shown as the inset

while oppositely-rotating vortices form there and help to drive the enhanced for-
ward powerflow through the nanogate as shown in Fig. 12.12(c). Various arrange-
ments of vortex nanogear configurations corresponding to different regimes of the
nanogate operation (i.e., ‘open up’ or ‘open down’) are schematically visualized in
Figs. 12.12b, d. The proposed strategy of re-configuring powerflow through plas-
monic nanostructures opens the way to developing chip-integrated plasmonic and
optoplasmonic switching architectures, which is crucial for implementation of quan-
tum information nanocircuits. It should also be noted that vortex-driven enhanced or
blocked powerflow through sub-wavelength gaps was revealed [66] to be behind the
phenomenon of extraordinary transmission through nanohole arrays [93].

Overall, a rational design strategy based on creation and coupling of areas of cir-
culating powerflow offers a new level of control over tailoring optical properties of
plasmonic nanocircuits, possibly providing a better insight into their behavior than
traditional approaches based on antenna design concepts. Furthermore, owing to the
similarities between optical, hydrodynamic and superfluidic vortices, many concepts
can be directly borrowed or adapted from other branches of physics. In particular,
enhanced vortex-driven powerflow through the dimer gap shown in Figs. 12.12a,c
remarkably resembles a picture of coupled vortex flows that combine to provide a
downwash velocity profile behind a flying airplane (Fig. 12.12e). The fundamental
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mechanisms underlying this intuitive picture can be revealed by using the mathe-
matical isomorphism between the hydrodynamic equations and the electromagnetic
wave equations separated into phase and amplitude variables, as will be discussed in
the following section.

12.6 Hydrodynamics of Light Flow in Plasmonic
Nanostructures

Maxwell famously pointed out defending his theory of molecular vortices–which
aimed at explaining electromagnetic phenomena mechanically in terms of the inter-
acting vortices in the imaginary fluid ether–that "it is a good thing to have two ways
of looking at a subject and to admit that there are two ways of looking at it” [95]. It
has long been recognized that hydrodynamics offers an alternative way of looking at
electromagnetic waves propagation even in a very general case of dispersive, lossy
and nonlinear media [96–101]. For example, a nonlinear Schrödinger equation that
governs the amplitude of the wave trains propagating through nonlinear medium in
a paraxial approximation can be re-cast in a hydrodynamic form via the Madelung
transformation ϕ(r, t) = √

ε(r, t) exp {iτ(r, t)}:
πε
πΘ

+ ≈′(εv) = 0
πv
πΘ

+ (v · ≈′)v = − 1
ε
≈′

(
ε2

2

)
+ ≈′Q . (12.6)

Eqs. 12.6 have a well-known form of the Navier-Stokes equations of the fluid dynam-
ics for inviscid, compressible and irrotational flow, with the field intensity |ϕ |2
regarded as the ‘photon fluid’ (PF) density ε, and the phase gradient ≈′τ as the PF
velocity v. Note that to arrive to the familiar form of (12.6), the time is treated as the
third spatial coordinate: ≈′ = x̂π/πx + ŷπ/πy + t̂π/πt , and the space coordinate in
the propagation direction–as a generalized time coordinate Θ : π/πz ≡ π/πΘ . The first
equation in (12.6) has the same form as the continuity (mass conservation) equation
of the fluid dynamics. The right hand side of the momentum conservation equation
(second line in (12.6)), however, features not only the term analogous to the fluid
pressure but also a term Q = ≈′2√ε/2

√
ε known as ‘quantum pressure’, which has

no analog in hydrodynamics.
The availability of the hydrodynamic form (12.6) of the nonlinear Schrödinger

equation helps to draw parallels between the properties of lasers, superfluids and
superconductors. A similar, but rarely invoked analogy can be drawn between the
electromagnetic Maxwell equations and the hydrodynamics equations. In particu-
lar, the Helmholtz wave equation for a monochromatic plane wave propagating in
a piece-wise homogeneous linear nonmagnetic medium with complex permittivity
λ(r) = λr (r) + iλi (r) can be cast in a from similar to that of the Schrödinger
equation with the external potential V (r) = k2

0/2 (1 − λr (r)) (V (r) = 0 in
the free space) and the total energy E0 = k2

0/2 [78]. Subsequent application of the
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Madelung transformation E(r) = ∑3
m=1 êmUm(r) exp {i (τ(r) − ωt)} brings the

wave equation to the hydrodynamic form for the steady flow (πε/πt = 0) of ‘photon
fluid’ in the presence of sources and sinks ψ(r) = −k2

0λi (r) [67, 102]:

≈ (ε(r)v(r)) = ψ(r)ε(r)
(v(r) · ≈) v(r) = −≈ (V (r) + Q(r))

. (12.7)

Similarly to Eq. 12.6, here the intensity plays the role of a ‘photon fluid’ den-
sity ε(r) = U(r) · U(r), and the phase gradient–the role of the fluid velocity,
v = ≈τ(r). However, the local pressure term does not appear in the absence of
non-linearity, and the internal quantum potential has the following form: Q(r) =
1/(8ε(r))

∑3
m=1 (≈εm(r) · ≈εm(r)/εm(r)) − ≈2ε(r)/(4ε(r)), where εm(r) =

U 2
m(r). Accordingly, the optical flux defined by the Poynting vector transforms into

the analog of a fluid flux (the momentum density): S = 1/(2μ0ω) · ε(r)v(r). One
important difference between conventional fluids and the PF is that photon ‘mass’
can be created owing to the linear gain λi (r) < 0 and dissipated through material
losses λi (r) > 0. The ‘photon mass’ reduction due to dissipative losses results in the
decrease of the PF density (i.e., field intensity).

In the case of PF steady flow, the field patterns are constant in time, yet local
accelerations/decelerations of the flow can occur between different parts of the plas-
monic nanostructure, governed by the convective term (v(r) · ≈) v(r) in the momen-
tum conservation equation. This situation is analogous to e.g. local variations of the
velocity of the fluid flow passing through pipes of varying diameters. In the struc-
tures shown in Figs. 12.10–12.11, these local changes of flow rate are driven by
the formation of vortices, with each vortex line inducing a velocity field given by
the Biot-Savart formula [103] (compare to the vortex-driven airplane downwash
velocity profile shown as the inset of Fig. 12.12e). In particular, the tangential veloc-
ity of an optical vortex varies inversely with the distance from its center, and the
angular momentum is thus uniform everywhere throughout the vortex-induced cir-
culating flow.

A change in the fluid’s momentum can generate pressure, and this hydrody-
namic effect is utilized in hydraulic pumps and motors, which increase the fluid
kinetic energy (angular momentum) and then convert it into usable pressure energy.
Accordingly, the problem of wave scattering by the VNT in Fig. 12.10 can be cast
in new light by invoking the fluid dynamic analogy. Fig. 12.13 follows the evolution
of the PF velocity and density along the z-axis, which passes from the bottom up
through the gap of the VNT central dimer. At the VNT center, the flows generated
by adjacent counter-rotating vortices collide and form a ‘shock wave’ in the form
of a region of high PF density. In the situation depicted in Fig. 12.13, the PF gets
convectively accelerated by the potential forces and impacts onto the narrow inter-
particle gaps of the VNT dimers. The threading of the PF through the gaps leads to a
sudden change in the flow regime and results in the dramatic increase of the PF local
density driven by the conversion of the PF kinetic energy into pressure energy. In
effect, VNTs shown in Figs. 12.10–12.11 operate as plasmonic analogs of hydraulic
pumps that exploit the convective acceleration of the PF caused by its circulation
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Fig. 12.13 VNT as an analog of a hydraulic pump. Velocity and density of the ‘photon fluid’ along
the line parallel to the incident plane wave propagation direction and passing through the center of
the linear VNT in Fig. 2.10. The dash line corresponds to the constant fluid velocity in the absence of
the nanostructure. Formation of the ‘shock wave’ accompanied by the spatially-localized increase
of the fluid density in the central dimer gap is observed (reproduced with permission from [67]
c∪RSC)

through the vortices ‘pinned’ to the nanostructure to generate localized areas of high
PF density [67].

12.7 Applications of Plasmonically-Integrated Tornadoes

As demonstrated in the previous sections, nanostructure-generated fine features of the
electromagnetic energy flow–which may not be apparent from the near-field intensity
patterns–can, however, be controllably manipulated to tailor local properties of the
electromagnetic field. The logical next step is the conversion of these theoretical
insights into useful practical applications. It is expected that the new approach to
light trapping in nanoscale volumes by the generation of optical tornadoes pinned
to plasmonic nanostructures may lead to novel device solutions in light generation,
harvesting and processing. Here are some specific application areas where this new
plasmonic engineering concept offers advantages.

The most obvious advantages are envisioned in making use of the VNTs ability
to generate high field intensity for Raman and fluorescence spectroscopy. The first
surface-enhanced Raman sensing (SERS) platforms have already been successfully
fabricated by e-beam lithography on planar dielectric substrates (Fig. 12.14a, c). They
have been characterized by elastic scattering spectroscopy (Fig. 12.14b), and used to
detect Raman spectra of para-mercaptoaniline (pMA) molecules [87] (Fig. 12.14d).
To generate a multi-frequency response, different light trapping techniques can be
combined within a single platform [7, 49, 69, 104, 105], e.g., Dicke effect in a
periodic arrays and light re-circulation through VNTs [87]. Furthermore, it was

http://dx.doi.org/10.1007/978-94-007-7805-4_2
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Fig. 12.14 Elastic and inelastic scattering characterization of fabricated VNTs. a SEM image
of planar Au VNT structures fabricated by e-beam lithography on a quartz substrate (particle
diameters 139.2 nm, intra-dimer gaps 30.0 nm and inter-dimer gaps 46.4 nm). b Experimental dark-
field scattering spectrum of VNTs shown in a. c SEM image of a SERS platform that combines two
mechanisms of field enhancement–Dicke effect in a periodic array and light re-circulation through
VNTs. d Experimental SERS spectra of pMA on the platform shown in c (adapted with permission
from [87] c∪ACS)

theoretically predicted that embedding of dipole emitters in VNTs can result in the
manifold resonant enhancement of their radiative rates over those of emitters embed-
ded in the gaps of isolated dimers [67]. VNTs can also strongly modify the angular
distribution of light emitted by the embedded dipole. This offers opportunities for
surface-enhanced fluorescence microscopy and vortex-mediated radiative engineer-
ing [67].

As already discussed in previous sections, the new way to manipulate powerflow
by creating, moving and annihilating nanoscale optical vortices offers tremendous
opportunities for intensity switching and energy transfer in plasmonic nanocircuits.
Just as mechanical gears and hydrodynamic turbines form the basis of complex
machinery, vortex nanogears can be combined into complex reconfigurable networks
to enable dynamical light routing. One possible realization of a reconfigurable plas-
monic VNT with a footprint of √ 320 nm2 is shown in Fig. 12.15 [67]. It consists
of six Ag nanodimers arranged into a symmetrical ring-like structure and features
several resonances in its optical spectra. The vector fields of the powerflow evaluated
at two different resonant wavelengths show drastically different pictures of energy
circulation through the nanostructure (Fig. 12.15a, c). In particular, formation of a
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Fig. 12.15 Re-configurable looped nanogear transmission. a, c Poynting vector intensity distrib-
ution and powerflow pattern through the looped dimer chain shown in the inset at different wave-
lengths. The inset shows a schematic of a ring-like arrangement of Ag nanoparticle dimers of 50 nm
radii, 3 nm intra-dimer gaps, and 10 nm inter-dimer gaps in water. b, d Schematics of the coupled
and uncoupled VNTs generated by the structure at different resonant wavelengths. Power flux in
each nanogear is looped through the gaps between the particles (reproduced with permission from
[67] c∪RSC)

looped VNT composed of four coupled vortex nanogears is observed in Fig. 12.15c,
d. In contrast, when the same structure is illuminated by light of a slightly shifted
wavelength, it behaves as a pair of uncoupled two-gear transmissions, thus reversing
the powerflow direction as shown in Fig. 12.15b, d.

Another field that can benefit from the hydrodynamics-inspired high-Q plasmonic
components is bio(chemical) sensing. High Q-factors of surface plasmon modes
in VNTs translate into high spectral resolution of sensors. In particular, Fig. 12.16
demonstrates that novel bio(chemical) sensors based on the plasmonically-integrated
tornadoes may offer at least an order of magnitude improvement in the figure-of-
merit values as compared to current designs. In Fig. 12.16, the performance of the
VNT in Fig. 12.15 as a refractive index sensor is evaluated by using the standard
figure of merit: FoM = sensi tivi t y/linewidth [106, 107]. Sensor sensitivity is
defined as the resonance shift resulting from the ambient refractive index change:
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Fig. 12.16 Refractive index sensing with vortex nanogear transmissions. a Shift of the far-field
scattering efficiency spectrum of the looped VNT in Fig. 12.15 with the change of the refractive
index of the ambient medium. b The positions of the resonant peaks as a function of the refractive
index. The calculated values of the refractive index sensitivity (S) and the corresponding figure of
merit (FOM) are also shown

S [nm/RIU ] = δΔ/δn. The ’linewidth’ of an asymmetrical resonant feature is
measured as the wavelength difference between the resonant peak and the closest
neighboring dip [106]. The VNT scattering spectrum shows pronounced redshifts
with the refractive index increase (Fig. 12.16a). The linear regression slope for the
resonance shift plotted in Fig. 12.16b yields the sensitivity value 518 nm/RIU, on
par with those reported for other plasmonic nanosensors. However, owing to the
narrow linewidths of the resonant features, the resulting FoM value of 85 is almost
an order of magnitude larger than those predicted and measured in single particles
(from √1 to √5.5) [107, 108] and nanoclusters (up to √11) [106, 108]. Using low-
loss nanoshells [109] and optimizing VNT configurations could enable even higher
FoM values. Furthermore, the strong localized fields generated in VNTs provide
optical trapping potentials strong enough to capture low-index particles and bio-
logical macromolecules. This offers novel solutions for background-free sensing of
optically-trapped nano-objects, potentially reaching single-molecule sensitivity. It
should also be noted that the high sensitivity of the VNTs optical spectra to the sub-
strate stretching (Fig. 12.11c, d) makes them ideal candidates for nanoscale stress
and strain sensors.

The proposed approach also offers the promise of a broad impact on
nanoplasmonic-based renewable energy applications as it helps to eliminate the mis-
match between the electronic and photonic length scales in thin-film photovoltaic
devices. Most importantly, the expected increase of the efficiency and spectral band-
width of light absorption can be achieved with the simultaneous reduction of the
dissipative losses in metals. Light harvesting platforms based on folding optical
powerflow into nanoscale vortices may help to minimize the thickness of semicon-
ductor needed to absorb light completely and to amplify the signal via plasmonic
enhancement mechanism. They will also be compatible for integration with either



12 Plasmonics with a Twist: Taming Optical Tornadoes on the Nanoscale 455

Fig. 12.17 Magnetic effects in vortex nanogears transmissions. Electric (a) and magnetic (b) field
distributions in the plane of the VNT shown in Fig. 12.10 at the frequency of its collective mode
resonance. Schematics of the induced electric dipoles (c), oscillating displacement currents and
magnetic dipole moments (d)

silicon electronics or flexible substrates such as those based on organic and polymer
materials.

Finally, excitation of collective coupled-vortex resonances in VNTs is accompa-
nied by the generation of circulating displacement currents (Fig. 12.17). These cur-
rents, according to Maxwell’s equations (12.1), induce magnetic moments
(Fig. 12.17d) in the same way as circulating conducting currents in wire loops gen-
erate time-varying magnetic fields [33, 109, 110]. This effect can be clearly seen
in Fig. 12.17, where the electric and magnetic field distributions are shown in the
VNT plane. As schematically shown in Fig. 12.17d, antiphase magnetic moments
are generated in the adjacent loops of displacement current, and their mutual cou-
pling along the chain gives rise to an artificial “antiferromagnetic” behavior. We can
now conclude that, according to Eqs. (12.4,12.5) the observed reduction of dissipa-
tive losses in VNTs in comparison to conventional plasmonic designs is achieved
because (i) the electromagnetic energy is re-circulated outside of metal volume and
thus does not get converted in to the kinetic energy of electrons, and (ii) noticeable
portion of the energy is stored in the magnetic rather than electric field. Excitation of
magnetic plasmons has also been observed in fused heptamer plasmonic molecules
shown in Fig. 12.2c [44], however, in that case the energy is re-circulated through
the metal volume, which increases dissipative losses. We have also recently demon-
strated magnetic response in hybrid metal-dielectric vortex-pinning structures [111].
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Fig. 12.18 Design roadmap
for achieving high-Q modes
in sub-wavelength plasmonic
nanostructures composed of
100 nm silver nanoparticles

12.8 Conclusions and Outlook

A new hydrodynamics-inspired approach to plasmonic nanocircuit design is dis-
cussed. It helps to alleviate major setbacks to their practical applications, such as
high radiative and/or dissipative losses of noble-metal nanostructures in the visible
frequency range. In the frame of the new approach, basic building blocks of plas-
monic nanocircuits are designed to feature phase singularities in the optical near
fields. This results in the creation of areas of circulating electromagnetic energy
flow–optical vortices–at pre-defined positions. As the examples discussed in this
chapter demonstrate, the individual vortex-pinning building blocks may not exhibit
any interesting electromagnetic behavior (such as high field intensity or narrow fre-
quency linewidths). As such, they would have been discarded in the frame of the
traditional design approaches. However, tailored coupling of individual nanoscale
vortices into vortex nanogear transmissions may yield dramatic optical effects never
observed before. The data presented in Fig. 12.18 summarize the advantages offered
by the proposed rational design strategy. It offers a comparison between the optical
performance of several popular designs of plasmonic components, including a nan-
odimer, a heptamer plasmonic molecule, and a periodic nanoparticle chain with the
VNT structures shown in Figs. 12.10 and 12.14. For consistency, all the nanostruc-
tures in Fig. 12.18 are composed of identical 100 nm Ag nanoparticles and have the
same minimum inter-particle gaps of 3nm. Fig. 12.18 shows that rationally-designed
VNTs offer the way to achieve previously unattainable high-Q plasmonic modes
within sub-wavelength footprints.

The advantages of the new vortex-pinning plasmonic platforms for sensing and
spectroscopy having been demonstrated, other applications can be explored in the
future. These include renewable energy generation (i.e., photovoltaic and photo-
catalytic platforms), metamaterials design, and reconfigurable nonlinear plasmonic
nanocircuits [112, 113]. Another future exciting application for plasmonically-
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integrated nanoscale tornadoes is in optical trapping of small particles (viruses, bac-
teria, etc.) and guiding them through on-chip nanoscale ’conveyor belts’ [114]. The
insights into the underlying physical mechanisms and analogies with the well-studied
hydrodynamic effects are expected to help in developing additional design rules for
complex plasmonic nanocircuitries. The hydrodynamics analogy also paves the road
to using well-developed methods of computational fluid dynamics to facilitate sim-
ulation and optimization of plasmonic VNTs.
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Chapter 13
Spinoptics in Plasmonics

Erez Hasman and Vladimir Kleiner

Abstract We review our work on effects of spin-symmetry breaking in nanoscale
structures caused by spin-orbit interaction. The spin-based effects offer an unprece-
dented ability to control light and its polarization state in nanometer-scale optical
devices, thereby facilitating a variety of applications related to nano-photonics. The
polarization-dependent effects are considered as result of a geometric phase aris-
ing from the interaction of light with an anisotropic and inhomogeneous nanoscale
structure. The discussed phenomena inspire one to investigate other spin-based plas-
monic effects and to propose a new generation of optical elements for nano-photonic
applications, as a constituent of a new branch in optics—spinoptics.

Keywords Plasmon · Spin-orbit interaction · Spinoptics

13.1 Introduction

The interaction of light with metallic subwavelength structures exhibits various
anomalous effects such as extraordinary optical transmission [1] and beaming [2].
These effects have been elegantly explained by a mechanism involving the cou-
pling of light to collective surface-confined electronic oscillations known as surface
plasmon-polaritons (SPPs). Extensive research has been carried out in the field of
electromagnetic surface waves due to its technological potential and fundamental
implications. Additional exciting phenomena were studied such as unidirectional
plasmon coupling [3], plasmon focusing [4, 5], waveguiding and interferometry
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[6, 7], enhanced coherent thermal emission [8, 9], surface-enhanced Raman scatter-
ing [10], planar optical chirality [11, 12] and super-resolution [13, 14]. Apparently,
the handedness of the light’s polarization (optical spin up/down) may provide an addi-
tional degree of freedom in nanoscale photonics. The dynamics of spinning light was
recently investigated, and the effect of spin on the trajectories of polarized light beams
(spin-orbit coupling) was experimentally observed [15], with results that agree with
the predictions of Berry’s phase theory. In this chapter we examine the spin-orbit
coupling effects that appear when a wave carrying intrinsic angular momentum (spin)
interacts with a nanoscale structures which support SPP. The Berry’s phase is shown
to be a manifestation of the Coriolis effect in noninertial reference frame attached to
the wave. A variety of experiments demonstrate spin-dependent effects in the elec-
tromagnetic waves coupling via an anisotropic inhomogeneous nanostructure. In the
Sect. 13.2 we present and discuss the observation of spin-dependent surface-plasmon
phenomena in anisotropic nanostructures on metal surface. In the Sect. 13.3 we con-
sider plasmonic nanoapertures which exhibit a crucial role of an angular momentum
(AM) selection rule in a light-surface plasmon scattering process, which is accompa-
nied by a spin symmetry breaking effect due to spin-orbit interaction. Section 13.4 is
devoted to properties of plasmonic nanoapertures which demonstrate behavior that is
analogous to the Aharonov-Bohm effect. In Sect. 13.5 properties of the nanoapertures
as topological defects are considered in relation with potential spinoptical devices
having a spiral point spread function. An optical spin Hall effect in this system due to
spin-orbit coupling which can be observed in the far-field is then studied in detail in
Sect. 13.6. In the final Sect. 13.7 observation of an optical Rashba effect—spin degen-
eracy breaking due to spin-orbit interaction—in thermal radiation emitted from an
inhomogeneous anisotropic 2D lattice composed of coupled antennas is presented.
The spin split dispersion arises from the inversion symmetry violation in the lattice.

13.2 Spin-Based Plasmonic Effect in Nanoscale Structures

In this section we will describe a spin-dependent behavior of SPPs that was
experimentally found in the interaction of light with metallic anisotropic and
inhomogeneous nanoscale structures [16]. The anisotropic plasmonic structure under
consideration is produced on top of a thin metal film evaporated onto a glass plate
(Fig. 13.1a, b). The element consists of a spiral Bragg grating with a central defect,
surrounded by a coupling grating, both of which were etched to a depth of 50 nm by a
focused ion beam (FIB). The thickness of the metal (Au) was chosen to be 100 nm in
order to prevent any direct transmission of light. The grating provides coupling with
normally incident light at ε0 = 532 nm to a surface-plasmon wave, while the Bragg
grating with a central defect serves as a plasmonic microcavity for the surface wave.
Therefore, the actual coupler period and the Bragg period were chosen to be 0.5 and
0.25µm, respectively. The outer diameter of the structure of 10µm and the small
radius of the spiral cavity r0 = 1.32µm are consistent with the surface plasmon prop-
agation length [17] Lc ∪ 1/Im

(
kp

)
, which is about 3µm for gold at this wavelength.
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Fig. 13.1 Spin-dependent geometric phase in the spiral plasmonic structure. a The geometry of
the structure (side view) and the optical setup. The Quarter Wave Plate (QWP) was used to generate
a circularly polarized illumination, which was partially coupled to the SPP mode in the cavity—
Ez . b Scanning electron microscope (SEM) picture of the spiral plasmonic cavity. c, d Intensity
distribution in the cavity measured by a NSOM for |λ+≈ and |λ−≈ illumination, respectively. e, f
Calculated intensity in the cavity for |λ+≈ and |λ−≈ illumination. g, h Calculated phase in the
cavity for |λ+≈ and |λ−≈ illumination. Reprinted with permission from Ref. [16]. Copyright 2008
American Physical Society

The structure was illuminated by circularly polarized light which is denoted
henceforth with a spin state|λ±≈, where |λ+≈ = 2−1/2

(
1 −i

)T stands for right-

handed circularly polarized light and |λ−≈ = 2−1/2
(

1 i
)T for left-handed circu-

larly polarized light. Figure 13.1a demonstrates the intensity in the near-field of the
plasmonic cavity that was measured by a near-field scanning optical microscope
(NSOM) in a non-contact mode. The captured intensity distribution is presented
in Fig. 13.1c, d. The near-field intensity distribution which calculated by a finite
difference time domain (FDTD) algorithm is depicted in Fig. 13.1e, f. Surpris-
ingly, the measured as well as the calculated intensity distribution exhibits a strong
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dependence on the incident spin. An annular ring structure with a dark spot in the
center for |λ+≈ illumination and with a bright spot for |λ−≈ illumination indicates cou-
pling to different spiral plasmonic modes. The origin of the spin-dependent change
in the near-field intensity distributions lies in the phase of the excited plasmonic
mode. This phase has been verified by FDTD calculation (see Fig. 13.1g, h) and was
found to correspond to a spiral mode exp (ilπ), where π is the azimuthal angle, with
topological charge l = −2 for |λ+≈ and l = 0 for |λ−≈ illumination. The origin of the
spin-dependent phase could be elucidated by use of a simpler structure with full rota-
tional symmetry (see Fig. 13.2a). This structure consisted of concentric rings with
the same depth and pitch as before and a central circular microcavity (r0 = 1.2µm).
The eigenmodes of such a circular plasmonic cavity are given by,

4 μm

(a)

1 μm

(b) (c)Dark spot 

π

−π

0

1 μm

(d) (e)

Fig. 13.2 Plasmonic field distribution in the circular cavity. a SEM picture of the circular structure.
b Measured intensity distribution in the near-field for |λ+≈ illumination. An identical intensity
distribution was obtained for |λ−≈. c Calculated intensity distribution for |λ+≈. d, e Calculated Ez
field phase inside the cavity for |λ+≈ and |λ−≈ illumination, respectively. Reprinted with permission
from Ref. [16]. Copyright 2008 American Physical Society
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El,p (π, r) = E0 exp (ikzz) exp (ilπ) J l
(
kpr

)
ẑ, (13.1)

where kz is the wavenumber perpendicular to the surface direction, kp is the radial
wavenumber; π, r and z are the cylindrical coordinate set, l is the topological
charge and E0 is a constant. The notation J l stands for the l-order Bessel func-
tion of the first kind. The plasmonic in-plane wavenumber is given approximately by
kp ∼ k0

∝
ω/(1 + ω), where ω is the dielectric constant of the metal (Re (ω) < −1)

and k0 = 2α/ε0 is the wavenumber of the incident light. The wavenumber in the
z direction is expressed by k2

z + k2
p = k2

0 and consequently is purely imaginary
(kp > k0). Equation (13.1) represents an optical scalar vortex with a topological
charge, l, which is associated with the optical angular momentum of the mode and
corresponds to appropriate phase boundary conditions. The experimental near-field
intensity distribution presented in Fig. 13.2b indicates a non-zero topological charge,
which corresponds to a helical phase distribution for both |λ+≈ and |λ−≈ illumina-
tion. The FDTD calculation presented in Fig. 13.2d, e clear indicates that helicity of
the phase equals to l = −λ±, where λ+ = 1, (λ− = −1) stands for the spin state
|λ+≈ , (|λ−≈), respectively. This is evidence of a selective spin-dependent coupling to
a single cavity mode induced by the structure. The existence of a spin-dependent spi-
ral phase can be elucidated by analyzing the coupling mechanism between incident
light with a specific spin and a surface plasmon cavity mode.

In plasmonic systems, when a coupling structure is illuminated by an arbitrarily
polarized beam, the surface waves are excited via transverse magnetic (TM) polariza-
tion, corresponding to the magnetic field parallel to the grooves direction [17]. The
propagation direction of the resulting plasmonic surface wave is perpendicular to the
grooves whereas its polarization is linear in the vertical direction, Ez . If the direction
of the grating’s grooves varies azimuthally, the coupling of an incident plane wave
to a surface wave takes place within a space-variant local direction. This non-trivial
simultaneous manipulation in the space of polarizations and in the space of directions
one can describe using geometric representation upon the Majorana sphere [18, 19].
In this scheme, polarized light is characterized by two dots on a unit sphere in the
direction space (x, y, z), i.e., by two vectors, u and v, which point to these dots from
the origin. Their bisector unit vector, n, coincides with the propagation direction of
the wave, while its sign corresponds to the helicity of the polarization ellipse. For
pure circular polarizations the bisector can be denoted as λ±n. The projections of
the dots onto the plane perpendicular to n denote the two foci of the correspond-
ing polarization ellipse. The physical significance of this representation is that it
provides a method to evaluate a geometric Berry phase [20–22] for complex fields
whose polarization and direction have been modified.

Let us consider right-handed circularly polarized illumination |Eext ≈ = E0 |λ+≈
impinging upon the element depicted in Fig. 13.2a from the bottom. Here E0 is the
amplitude of the field, which can be taken as one for brevity purposes. The circularly
polarized incident beam, propagating along the z direction, can be depicted on the
Majorana sphere by vectors u and v, which coincide at the north pole (see Fig. 13.3).
The evanescent vertically polarized electric field that propagates on the metal surface
in a radial direction is consequently represented by a vector u′, which still points to the
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Fig. 13.3 Graphical representation of the geometric phase on the Majorana sphere. Geometric
phase induced by the interaction of light with an anisotropic inhomogeneous structure is equal to
half of the area enclosed by the two geodesics that correspond to different propagation directions,
kp of the excited SPPs (gray area). The variation of the propagation wavevector kp (π) along the
element is depicted in the small picture by blue arrows. Reprinted with permission from Ref. [16].
Copyright 2008 American Physical Society

north pole, and a vector v′ which now points to the south pole. The interaction of light
with a coupling grating whose local orientation is π can then be defined by a geodesic
arc connecting the north pole with the south pole that intersects the xy plane at angle
π (see Fig. 13.3). The Berry phase in our specific case is geometrically associated
with the area enclosed on the Majorana sphere by the paths of vectors u and vector v,
explicitly, γg = −(∂u + ∂v)/2. Since the vector u is static, the Berry phase between
the fields at two different azimuthal locations will be given simply as half of the area
between two corresponding geodesics, which yields γg = −π. In the opposite case,
when left-handed circularly polarized light is applied, i.e., |Eext ≈ = E0 |λ−≈, the
picture on the sphere will be reversed. The initial state will be denoted by vectors
u and v both pointing to the south pole, and the final state will be defined by u′
pointing to the south pole and v′ pointing to the north pole. In the second case, the
path traversed on the Majorana sphere is in the reverse direction, which corresponds
to the positive geometric phase, γg = π. The general case, therefore, can be given
by γg = −λ±π. Note that this phase results from the spin-orbit angular momentum
coupling due to the space-variant polarization state and directional manipulations
and is therefore geometric in nature. The appearance of the geometric phase in
our experiment resulted from the SPP excitation by a spatially rotated grating and
resembles the phase delay that arises when circularly polarized light is transmitted
through a rotated polarizer [21, 22]. This phase is linear with π and spirals around
the center of the structure, giving rise to a phase singularity with a topological charg
l = −λ±; these properties explain the results presented in Fig. 13.2.
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The intensity distributions in the cavity described above for incident spins λ+
and λ− are indistinguishable, as opposed to the experimental results obtained in the
spiral cavity (see Fig. 13.1). In the latter, in addition to the geometric phase of the
SPPs due to a polarization-dependent coupling, a dynamic phase arises as a result of
a space-variant path difference. This dynamic phase is induced by the grooves’ spiral
pitch. The overall phase in the spiral cavity is the sum of the geometric and dynamic
phases, γ = γg + γd and the total topological charge of the plasmonic vortex is
l = − (λ± + m), where m is the spiral pitch in the units of SPP wavelength. For the
specific case when m = 1, the microcavity mode obeys the form of J0

(
kpr

)
for

|λ−≈ and of exp (−i2π) J2
(
kpr

)
for |λ+≈. Consequently, for |λ−≈ illumination the

resultant field distribution possesses no phase singularity in the center, as opposed to
the |λ+≈ illumination case, which agrees with the experimental results presented in
Fig. 13.1. The formation of the geometric phase is, therefore, the origin of the spin-
dependent intensity distribution in the spiral cavity, and may lead to other spin-based
phenomena in plasmonic systems.

One of the possible implementations of the plasmonic geometric phase could be a
spin-dependent plasmonic focusing lens. Figure 13.4e presents an appropriate struc-
ture that consisted of a 150 nm-thick gold film with a hemi-circular coupling grating
with the inner radius of r0 = 1.64µm followed by a Bragg grating on the outer side.
In experiment the structure was illuminated from the bottom with |λ+≈ and |λ−≈ plane
waves and the intensity distribution was collected by the NSOM tip. The measured
intensity of the plasmonic wave is shown in Fig. 13.4a, b. The most interesting feature
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Fig. 13.4 Spin-dependent plasmonic lens based on a geometric phase. a, b The intensity dis-
tributions measured by a NSOM for |λ+≈, and |λ−≈ illumination, respectively. c The transverse
cross-sections of the measured intensity distributions in the focal plane of the lens for |λ+≈ (blue
squares) ,|λ−≈ (red circles) illumination, respectively. FDTD calculation is plotted for each polar-
ization (solid blue line—|λ+≈; dashed red line—|λ−≈). The cross-sections in c were measured along
the horizontal dashed lines depicted in a and b. d The intensity distribution measured by NSOM
for |λ+≈+|λ−≈ (linearly polarized) illumination. e The SEM picture of the element. Reprinted with
permission from Ref. [16]. Copyright 2008 American Physical Society



470 E. Hasman and V. Kleiner

in this intensity distribution is a spin-dependent transverse shift of the focus which
one can easily observe by comparing the cross-sections of the spots (Fig. 13.4c). This
shift can be regarded as a manifestation of the optical Magnus effect [23, 24] and the
optical spin Hall effect [25, 26] which arises in the system due to a spin-orbit coupling
producing a spiral geometric phase. The experimental results are supported by the
FDTD numerical simulation which are also depicted in the Fig. 13.4c. The focal shift
corresponds to the spin-dependent spiral phase modification due to the Berry phase

and can be estimated by Δx ≈ r0

∣∣∣k−1
p

∣∣∣∇ (λ±π) = λ±
∣∣∣k−1

p

∣∣∣, (Δx ≈ 160 nm).

The observed shift of the focal intensity distribution is about 200 nm which is in
good agreement with the above estimation as well as with the FDTD results (see
Fig. 13.4c). The slight deviation of the measured results from the simulation can be
attributed to the modified dispersion relation of the SPPs due to impurities caused by
the fabrication process. This geometric effect is exceptionally pronounced when lin-
early polarized light (the superposition of spin |λ+≈ and |λ−≈ beams) is incident upon
the structure. In this case, the focal spot is split in the lateral direction (see Fig. 13.4d)
and clearly reminds us the effect of spin-dependent electron beam splitting in the
classic Stern-Gerlach experiment [27, 28].

13.3 Optical Spin Symmetry Breaking in Nanoapertures

The dynamics of various physical systems, including optical systems, are substan-
tially characterized by their AM. The AM of an optical beam comprises the spin
component, associated with the handedness of the circular polarization, and the
orbital angular momentum (OAM), associated with a spiral phase front [29–32]. In
a paraxial beam with a spiral phase distribution γ ∪ lπ, the total AM per photon, in
units of � (normalized AM), was shown to be j = (λ + l), where λ = 1 stands for the
spin state |λ+≈ and λ = −1 stands for the spin state |λ−≈ [33]. In accordance with
fundamental physical principles, resonant excitation of an electromagnetic eigen-
mode requires that the exciting wave match the excited mode both with its linear
and angular momentum. This required matching imposes certain restrictions on the
excitation process—selection rules. Likely the simplest plasmonic nanoscale struc-
ture, which demonstrates these common rules is a nanoaperture in a thin metal film.
Let consider a matrix consisted of annular apertures surrounded by a shallow spiral
periodic corrugation. In the experiment [34] a structure with the inner and the outer
radii of the ring slit apertures of 250 and 350 nm, respectively, spiral corrugation
with a period of 500 nm and a pitch of 2 periods, and depth of 70 nm was milled by
a FIB into a 200 nm thick gold film evaporated onto a glass wafer (see Fig. 13.5b).
Transmission of circularly polarized light through the structure is strongly affected
by relationship between helicity of illuminating light and handedness of the spirals.
A picture of the transmitted light for the spin states |λ+≈ and |λ−≈, and for the linear
polarization 2−1/2 (|λ+≈ + |λ−≈)is presented in Fig. 13.5a. The experimental results
show that when the incident spin is opposite to the handedness of the spiral grating,
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Fig. 13.5 Spin-dependent transmission through annular nanoapertures. a light transmission mea-
sured from the element for |λ−≈, |λ+≈+ |λ−≈ and |λ+≈ illuminations. b SEM picture of the element
used in the experiment. Spiral corrugations are either left-handed or right-handed, depicted with
a counterclockwise or clockwise arrow, respectively. The magnified SEM pictures of a single ele-
ment and a coaxial nanoaperture are also presented. c spectral transmission enhancement for |λ−≈
(red line) and |λ+≈ (blue line). The spectrum was normalized by the transmission measured for
annular apertures without corrugations. Reprinted with permission from Ref. [34]. Copyright 2009
American Chemical Society

the intensity of the transmitted light is enhanced. Accordingly, the word “SPiN”
written with right-handed spirals is lit up when illuminated by |λ−≈ light. For |λ+≈
illumination, the contrast is reversed. A spectral transmission through a similarly
structured array of only right-handed spirals, normalized by transmission through
a annular aperture array with-out corrugations manifest a clearly observed resonant
peak for |λ−≈ illumination around 570 nm. The light transmission at the peak was
found to be enhanced by factor of 16 relative to an uncorrugated aperture array.
The spectral transmission of a |λ+≈ illumination does not exhibit any substantial
resonance.
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The excitation of electromagnetic eigenmodes inside a nanoaperture by surface
waves is constrained by the AM selection rule, which is given by

lSM = lG M , (13.2)

where lSM and lG M are the normalized OAM of the surface mode and guided mode
inside the annular structure, respectively. A conceptual scheme of the transmission
mechanism is depicted in Fig. 13.6. The annular nanoapertures can be designed to be a
single mode system; for example, as in this case possessing a single allowed excitation
for lG M = ±1. This is a useful advantage of the annular apertures. The spiral
corrugation couples the incident light into a plasmonic wave and induces a dynamic
spiral phase according to the spiral grating pitch, lS . In the described structure the
spiral corrugation adds to the surface mode a spiral phase with lS = 2. Experiment
shows that only lS = 2 provides spin-dependent transmission enhancement through
the apertures. The observed exceptional transmission enhancement indicates that
the eigenmode of the annular waveguide is properly excited by a surface mode.
The apparent difference between lG M = ±1 and the spiral charge lS = 2 of the
surface mode leads one to assume that another mechanism induced an additional
spin-dependent spiral phase that compensated the excess of AM on the left side
of the selection rule in Eq. (13.2). This phase modifies the complete OAM of the
surface mode to be lSM = λin + lS , (λin is the incident spin) which now perfectly
satisfies the AM selection rule of the system. Thus, the incident spin is converted
into the OAM, conserving the total AM of the system. The process by which an
intrinsic property of light is coupled to an extrinsic property of a plasmonic field
will be referred here to plasmonic spin-orbit interaction. This interaction occurs in
anisotropic and inhomogeneous structures and is manifested by a geometric Berry
phase arising in the system [15, 16, 35–37].

Fig. 13.6 The mechanism of
the nanoaperture’s excitation
controlled by the AM selection
rules. The incident beam
bears the intrinsic angular
momentum of λin . The excited
surface mode acquires the
orbital angular momentum of
lSM as a result of the plasmonic
spin-orbit interaction. The
guided mode with lG M is
excited only if the selection
rule is satisfied. Reprinted with
permission from Ref. [34].
Copyright 2009 American
Chemical Society

Surface mode

Guided mode

inσ

GMl

Incident beam

SMl



13 Spinoptics in Plasmonics 473

The above effect can be regarded as a spatial angular Doppler effect (ADE) [38].
In analogy with a temporal ADE, where an observer at a reference frame rotating
with a rate ∂t registers a spin-dependent temporal frequency shift [39], here a spatial
rotation of the periodic surface corrugation with a rate of ∂ϕ induces a spin-dependent
spatial frequency shift. Accordingly, the geometric phase arising from this spatial
frequency modulation can be easily calculated to be γg = −λin

∫
∂ϕ dϕ , where the

rotation of the grating is given by ∂ϕ = dτ/dϕ , the angle τ indicates the local
groove’s orientation, and ϕ stands for a spatial coordinate. In the structure presented
in Fig. 13.5b where ϕ = π, the geometric phase is simply given by the spin-dependent
spiral phase γg = −λinπ producing the required additional OAM for the surface
wave to satisfy the AM selection rule (Eq. (13.2)). Note that while polarization and
chirality effects in anisotropic inhomogeneous nanoscale structures were investigated
previously [40–43], the mechanism of spin-orbit interaction was not distinguished.

It is very helpful to compare the behavior of the spiral structure discussed above
with properties of the annular aperture fitted with in a circularly symmetric (achiral)
corrugation using incident beam with OAM . The circular symmetry of the coupling
corrugation does not induce a dynamic phase, which means that lS = 0. However,
due to the spin-orbit interaction, the incident spin induces a spiral Berry phase, and,
as before, is converted to the OAM component of the surface mode. The external
spiral phase modifies the complete OAM of the surface mode to be lSM = λin +
lext . Therefore, when the external OAM is zero, the resulting surface mode AM is
lSM = ± 1, in which case the selection rule is always satisfied and the transmission
of the element is undistinguished for distinct spin states. Moreover, providing an
external spiral phase of lext = 2, the AM of the surface mode will be either 1 or 3 for
an incident spin |λ−≈ or |λ+≈, respectively. For lext = −2 the surface mode AM will
be correspondingly, −3 for |λ−≈ and −1 for |λ+≈. As before, the best overlapping
of the surface mode and the guided mode is obtained for lSM = ±1; therefore, the
transmitted intensity will be strongly dependent upon the incident spin.

Figure 13.7b shows the measured transmissions of a laser light at wavelength
532 nm by use of a spatial light modulator (SLM) generating a beam with OAM
for various combinations of lext and λin . The transmission ratio of the two spin
states is shown to be approximately 3 which is close to the ratio measured with the
spiral corrugations. Thus, the suggested AM selection rule is verified for systems of
substantially different symmetry.

Additional understanding of the AM evolution in the enhanced resonant transmis-
sion can be obtained by analyzing the AM of the light scattered from the nanoaper-
ture. To do this, one should investigate the scattered light far behind the element.
The transverse electric field component of the guided mode [44] with lG M = 1, can
be described by the Jones vector EG M

r = (
Ex Ey

)T = E0 (r)
(

cos π sin π
)T

eiπ ,
where E0 (r) is the radial field dependence. Note that the guided mode in a circular
basis is given by EG M

r = 2−1/2 E0(r)[|λ−≈+ei2π |λ+≈]. This field distribution corre-
sponds to a vectorial vortex (see Fig. 13.8a) with a Pancharatnam topological charge
of 1, resulting in a total AM of j = 1. As was shown [45], such vectorial vortices are
unstable and collapse upon propagation. The guided mode can be verified by propa-
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Fig. 13.7 The removal of the spin-degeneracy in circular corrugation by use of externally induced
OAM. a Experimental setup. A laser beam is modulated by a spatial light modulator (SLM) to obtain
a spiral phase and then incident through a beam splitter (BS) onto a coaxial aperture with circular
corrugation. The transmitted light is captured in the image plane by the camera. The spiral phase
with lext = 2, the measured intensity distribution across the incident beam, and the SEM picture
of the element are presented in the figure. b Intensity distribution cross-sections captured by the
camera for different lext . The blue dashed lines correspond to |λ+≈ illumination and red solid lines
correspond to |λ−≈ illumination. The intensity is normalized by the transmission measured via a
annular aperture without the surrounding corrugation (the horizontal dimension is scaled according
to the optical magnification). Reprinted with permission from Ref. [34]. Copyright 2009 American
Chemical Society

gating it to the far-field and it was done in experiment (see Fig. 13.8b–e). As expected
from the far-field of EG M

r , a bright and a dark spot have been observed for the left and
right circular polarization components, respectively, with a good agreement between
calculation and measurement. Thus, the total AM of light in the system is conserved
also for the scattered light ( j = 1).
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Fig. 13.8 Far-field analysis of the light scattered from the element. a The Ez component distribution
of the guided mode and the instantaneous transverse vectorial field (Er ). b, c measured and d, e
calculated intensity distributions of the light scattered to the far-field, for light transmitted through
right-handed b, d and left-handed c, e circular polarizer. Reprinted with permission from Ref. [34].
Copyright 2009 American Chemical Society

13.4 Plasmonic Aharonov-Bohm Effect

As it was showed in previous section the rotation of the local anisotropy axis related
to the slit curvature entails correction of the momentum term in the wave equation,
which results in a spiral geometric phase. The geometric phase of the surface plas-
mons can be directly observed via the interference pattern in the near-field by means
of near-field scanning optical microscope (NSOM) [46]. The observed effect will be
analyzed using the analogy of the scattering of electrons from a topological defect
in the Aharonov-Bohm (AB) effect [47]. In order to observe the surface plasmon
interference in the near-field a structure onto glass substrate was chosen consisting
of thin (120 nm) gold film with annular aperture (inner and outer radii of the aperture
are 365 and 525 nm, respectively). The 320 nm-wide slit has been milled in the prox-
imity of the annular aperture to provide a reference wavefront for the interference
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Fig. 13.9 a SEM image of the investigated element. b A magnified SEM image of the circular
nanoslit. c Experimental set-up. The element is illuminated from the bottom by the laser beam
whose polarization was switched by a quarter-wave plate (QWP) to be λ = ±1. The near-field
intensity distribution was measured by the NSOM tip. Reprinted with permission from Ref. [46].
Copyright 2008 American Physical 2582 Society

measurement (see Fig. 13.9a, b). The structure was illuminated by a tunable laser and
excited surface plasmon wave was directly probed by the 150 nm aperture NSOM
tip. The measured fringe pattern for incident right- and left-handed circularly polar-
ized light (λ = ±1) at ε0 = 800 nm is presented in Fig. 13.10a, b. The resulting
pictures appear to be asymmetric in that an additional fringe emerge above or below
the coaxial aperture according to the incident spin (see fringe analysis in Fig. 13.10c,
d). It can be concluded that a plasmonic wave scattered by the cylindrical defect
acquires a phase front dislocation [46] analogous to the one obtained in a AB wave-
function [47–49]. A phase dislocation is a singular point of the field where the phase
is indeterminate; therefore the field amplitude must vanish there. Such a dislocation
is evidence of a spiral phase front obtained by the scattered surface plasmons. In
the experiment, the additional fringe appearing in the interference pattern indicates
that the topological charge of the spiral phase is ±1, depending on the incident spin;
therefore, the corresponding phase distribution is given by γ = −λπ, where π, is
the azimuthal angle (Fig. 13.9b). This phenomenon can be elucidated by considering
the effect of spin-orbit coupling.
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Fig. 13.10 Measured near-field intensity. a for λ = 1 polarization and b for λ = −1 polarization,
at ε = 800 nm. The observed fringe maxima are presented in c for λ = 1 and in d for λ = −1
states. The black circle in c and d represents the location of the annular nanoslit. The inset in b with
a dark spot in the center (marked with an arrow) is the measured intensity distribution inside the
circular slit. Reprinted with permission from Ref. [46]. Copyright 2008 American Physical Society

The coupling of light to non-radiative surface modes is achieved via momentum
modification by a surface defect, such as a nanoaperture [50, 51]. In particular, a
nanoslit introduces a momentum modification (matching) in perpendicular direction,
exciting a surface wave with a phase front parallel to the slit. Moreover, only TM
polarized incident waves (with an electric field perpendicular to the slit) can be
efficiently coupled by the slit to surface plasmons. This polarization selectivity in
SPP excitation implies highly anisotropic interaction. Due to the circular shape of the
annular slit, it is convenient to analyze the wave propagation in a rotating reference
frame attached to a local anisotropy axis [46, 52, 53]. For the observer moving
along a path with radius r the local structure (slit) orientation appears to be rotated
with the rate ∂ = dτ/dϕ = 1/r where τ (ϕ) is the slit orientation, and ϕ is the path
parameter (see Fig. 13.10b). The Helmholtz equation in a non-inertial reference frame
rotating with ∂(ϕ), is (∇2 + k2 − 2λ∂k)Eλ = 0, where Eλ = 2−1/2

(
Ex + iλ Ey

)
are the eigenvectors of circular polarizations. Note that a spin-dependent Coriolis
term appears in the corrected Helmholtz equation. This equation can be written as(∇2 + K 2

)
Eλ = 0, where K (Θ) ≈ k(Θ) − λ∂ is the generalized momentum [47,

48, 53]. A similar term also appears in the time-independent Schrödinger equation
in the presence of a vector potential. This spin-dependent wavevector modification
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is a manifestation of the optical spin-orbit interaction similar to the spin-Hall and
the Stern-Gerlach effects. The additional momentum leads to a geometric phase
accumulation of,

γg = −
∫

λ∂dϕ = −λτ. (13.3)

Accordingly, the phase of the scattered plasmonic wave will be continuous up to
the factor of 2α everywhere excluding the point r = 0, where the phase dislocation
appears. The phase in Eq. (13.3) is analogous to the phase arising in a AB wavefunc-
tion, ψ(r) [48, 49]. The latter effect appears when a beam of particles with charge
of q is scattered from an infinite impenetrable cylinder containing a magnetic flux
δ = ∮

A(r) · dr = ∫∫
B(r)dS, where A(r) is the vector potential and B(r) is the

magnetic field. The suitable vector potential is given by A(r) = (δ/2αr)ϕ̂, where
ϕ̂ is the unit vector in the azimuthal direction. The corresponding time-independent
Schröedinger equation is then given by, 1

2m (−i�∇ − qA(r))2 ψ(r) = �2k2

2m ψ(r),
where m is the particle’s mass and � is Plank’s constant. Note that the expression in
parentheses is the generalized momentum term. In the linear approximation in A, the

above equation can be written as,
(
∇2 + k2 − 2iq

�
A · ∇

)
ψ(r) = 0. The resulting

equation resembles the Helmholtz equation in the rotating frame, where the third
term in the parentheses stands for the Coriolis term. In our system, the momentum
correction term along the ϕ coordinate is (Δk)ϕ = λ/r , and is analogous to the qA
term in the AB effect. The main result of the AB experiment is a spiral phase γ = βπ

acquired by the particles scattered from the cylinder, where the topological charge
β = qδ/(2α�) is the magnetic flux parameter. The topological charge of the phase
obtained in our experiment can be found as, l = 1

2α

∮
(Δk)ϕ dϕ = λ . Therefore,

one can conclude that the intrinsic spin in our experiment corresponds to the flux
parameter β in the AB effect. Due to the non-zero topological charge (λ = ±1) a
singularity of the plasmonic field appears in the center of the defect, resulting in a
dark spot (see inset Fig. 13.10b). The vanishing electromagnetic field in the center
corresponds to the impenetrability of the cylinder proposed in the AB experiment.
Accordingly, the geometry of our system affects the resulting plasmonic phase front
in a similar way as a vector potential affects the electrons’ wavefunction. In contrast
to the original AB effect, here the topological charge of the plasmonic spiral phase
is spin-dependent, therefore it can be regarded as the intrinsic AB effect similar to
the Aharonov-Casher effect [54].

A peculiarity of the observed effect lies in its geometric nature. The spiral phase
of the plasmonic waves arises solely due to a rotation of the local anisotropy and is
not the result of an optical path difference. Therefore, the phase dislocation will be
independent of the wavelength or the size of the defect. This is confirmed experimen-
tally on several elements with apertures of different sizes. Figure 13.11a, b presents
the observed fringe patterns for circular slit with a diameter of 1.8µm and width of
320 nm illuminated with ε = 800 nm. Moreover, a FDTD simulation for the same
defect size, but for ε = 532 nm incident illumination is presented in Fig. 13.11(c, d).
In the measured as well as in the calculated near-field intensity distributions, same



13 Spinoptics in Plasmonics 479

2μm

1 μm

1= 1−=
(a)

2 μm

(c)

(e)

(b)

(d)

(f)

σσ

Fig. 13.11 a and b Measured intensity distribution of the SPPs scattered from a larger diameter
defect compared to Fig. 13.10 (see text for details) for λ = 1 and λ = −1 polarizations, respectively,
at ε = 800 nm. c and d The calculated interference intensity distribution for λ = 1 and λ = −1,
respectively, with the same defect as in a, now with ε = 532 nm. To guide the eye, the dashed
lines in a–d indicate one solid fringe and the arrows indicate the fringes appearing to the left of the
dashed line. e and f The calculated phase distributions of the SPPs scattered from the same circular
slit as in c and d. Reprinted with permission from Ref. [46]. Copyright 2008 American Physical
Society

spin-dependent phase dislocations are clearly observed. A phase distribution of the
scattered plasmonic field (without interfering with a reference wave) calculated by
FDTD for ε = 532 nm illumination is presented in the Fig. 13.11e, f. The topological
charge of the calculated spiral phase is equal to the incident spin and is not dependent
upon the incident wavelength or the defect size, emphasizing the geometric nature
of the observed effect. In the next section we will study the collective behavior of
the defects upon the surface plasmon supporting media.
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13.5 Spin-Dependent Plasmonics: Interfering
Topological Defects

The results of the previous section show that the electromagnetic field scattered from
subwavelength nanoaperture has an essential property of a topological defect (TD).
The TD is a singular spatial configuration of a vector field which cannot unwind
under continuous deformations [55]. Topological defects (TDs) are among the most
intriguing signatures of symmetry breaking in the laws of physics [54]. TDs have
attracted extensive attention in various realms such as condensed matter physics
[56–58], superfluidics [59], hydrodynamics [60], cosmology [61], liquid crystals
[62], and optics [63]. The optical TDs are termed vortices and they carry an OAM
of l� per photon manifested by the spiral phase lπ of the beam, where the integer
number l is the topological charge and π is the azimuthal angle. Observation of TDs
in plasmonic systems is possible via the spin-orbit interaction (SOI), which provides
a suitable mechanism to couple the optical spin to an OAM carried by the surface
plasmons (SPs). Moreover, a measurement of a wavefront phase dislocation due to
the scattering of SPs from a macro-wavelength TD was recently presented [64].

When a linearly polarized light illuminates a local scatterer, a typical dipolar
SP polariton emission pattern is observed, aligned with the incident polarization
direction [65, 66], and comprises a perpendicular dislocation line. The scattering of
the SP waves propagating away from the point scatterer is described as a source of
spherical (Huygens) wave [66], with α -phase retardation between the two sections
intersected by the dislocation line (Fig. 13.12c). In this section we consider a spin-
dependent plasmonics as result of scattering the circularly polarized wave from local
defect on surface maintaining SP [67]. We choose an annular nanoslit as a source for
a propagating plasmonic wavefront.

A FDTD simulation gives the near-field electromagnetic fields distribution for
annular nanoantenna (Fig. 13.12a, inset), illuminated with a circular polarization.
Figure 13.12a shows the horizontal cross sections of the electric field components.
In the vicinity of the slit, all the field components have comparable amplitudes, while
those components in the out-launching plasmonic wave decay in a different manner.
After propagation to a distance of half a plasmonic wavelength, the contribution of
the normal Ez component to the intensity distribution is an order of magnitude larger
than those of the Ex and Ey components. Hence, for multi-wavelength propagation
distances, the complex plasmonic wavefront launched from the nanoantenna mainly
contains the Ez signature. Figure 13.12b shows the spin-degenerated magnitude of
the electric field component Ez with zero-field amplitude in the origin. Moreover,
the phase of the Ez field is spiral and its helicity is spin-dependent (Fig. 13.12d, e),
resulting from the optical SOI. Due to the SOI, the excited SPs acquire an OAM
which is equal to the incident spin, resulting in a nanoscale TD: a plasmonic vortex
source.

We give below the analytical evaluation result for the Ez field launched from an
annular nanoantenna—infinitely thin circular slit with a radius r0, in a medium sup-
porting SPs. The selected shape of the nanoantenna as a circular nanoslit originates
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Fig. 13.12 Plasmonic vortex source. a Horizontal cross sections of the near-field electromagnetic
fields of the nanoantenna, normally illuminated with circularly polarized light, at a wavelength of
780 nm; the blue area corresponds to the width of the etched circular nanoslit. The inset shows a
SEM image of an annular nanoantenna with inner and outer radii of 75 and 125 nm, respectively,
upon a 200 nm thick Au film. b FDTD simulation of the Ez magnitude for λ±. c FDTD simulation
of the Ez phase for horizontally linear polarization. d, e FDTD simulations of the Ez phases for
λ±, respectively. The insets in panels b, d and e shows the corresponding analytical calculation.
Reprinted with permission from Ref. [67]. Copyright 2012 American Chemical Society

from the simple boundary conditions formulation. A one-dimensional nanoslit pro-
vides a momentum modification in the perpendicular direction, which is essential for
the coupling of light to non-radiative surface modes, thereby exciting a surface wave
with a phase front parallel to the slit. Moreover, only transverse magnetic polarized
incident waves with an electric field perpendicular to the slit are efficiently coupled
by the slit to SPs. If we consider a circularly polarized light as a rotating in time linear
polarization, the maximal coupling efficiency along a circular nanoslit follows the
local polarization selectivity of the one-dimensional slit [46]. The phase delay due
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to the varying polarization state results in a geometric phase, leading to a plasmonic
field Ez(r0, π) = exp(−iλπ), where λ is the incident spin. Two additional boundary
conditions are required: zero-field amplitude at the origin and at infinity, arising from
the spiral phase and a single point source, respectively.

The two-dimensional Helmholtz equation, with the SP wave vector ksp, is separa-
ble in polar coordinates (r, π), where r is the radius and π is the azimuthal angle. The
different boundary conditions for the internal and external regions dictate different
solutions for the in- and out-propagating plasmonic fields. The resulting solution of
the in- and out-propagating plasmonic fields are

Ez(r, π) =
{

J−λ (kspr)[J−λ (kspr0)]−1e−iλπ, in − wave
H−λ (kspr)[H−λ (kspr0)]−1e−iλπ, out − wave

Here, Jm and Hm are the mth-order of the Bessel and Hankel functions of the first
kind, respectively. The analytical results, presented in the insets of Fig. 13.12b, d, e,
confirm the scattering dynamics of the SPs from the localized vortex source obtained
by the FDTD simulations.

The described mechanism of spin degeneracy removal in a single nanoantenna
paves the way for consideration of spin-dependent plasmonic devices based on mul-
tiple plasmonic vortex sources. In conventional optics, the point spread function
(PSF) is given by the spherical wave h ∪ exp(ikr), and it links between the input
and output of a space-invariant system via the superposition (convolution) integral.
We herein propose the spin-orbit PSF—a spiral wavefront hλ ∪ exp(−iλπ)—where
the incident spin is a degree of freedom. Hence, for a system consisting of multiple
TD sources with an input g1, the system output g2 is spin-dependent and is described
by the convolution relation g2 (λ ) = g1 √ hλ . This concept encourages one to
demonstrate different configurations of sources arrangements to observe spinoptical
effects.

The experimental observation of multiple TD plasmonic field was completed on a
circular chain of nanoscale TDs, etched by FIB at a thin Au film deposited on a glass
substrate (Fig. 13.13a). The element was illuminated by a laser via a circular polar-
izer, and the excited SP wave was directly probed by the 150 nm aperture near-field
scanning optical microscopy (NSOM) tip. The measured spin-degenerated intensity
distribution is presented in Fig. 13.13b; the inset of Fig. 13.13a shows a horizontal
cross section of the measured intensity and analytically calculated interference pat-
tern of isolated TDs, at the center of the chain. A plasmonic interference pattern with
a dark spot in the center (Fig. 13.13b, inset) is observed for the distinct spin states;
such a singularity indicates a non-zero OAM, corresponding to a spiral phase. The
calculated phase distributions by the model for multiple plasmonic vortex sources
are presented in Fig. 13.13c, d and verified its spin-dependent helicity. Moreover,
this calculation provided the quantitative value of the OAM per photon, shown to be
equal to the incident optical spin; therefore, the superposition of vortex sources in a
circular symmetry results in an intensity-enhanced plasmonic vortex with a higher
total OAM. Note that if spherical waves from point sources are considered, a bright
spot at the center would be expected.
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Fig. 13.13 Circular plasmonic chain of TDs. a SEM image of the chain consisting of annular
nanoapertures arranged in a circular path with a radius of 8µm, and with a period of 760 nm. The
inset shows a horizontal cross section of the intensity at the center of the chain; the curve and the
squares represent the measured and analytically calculated intensities, respectively. b Measured
near-field intensity distribution for normally incident λ± at a wavelength of 780 nm; the inset
represents a magnification of the dark spot. c, d Analytical calculations of the phase distributions
of the plasmonic fields for λ±, respectively. Reprinted with permission from Ref. [67]. Copyright
2012 American Chemical Society

The total field of uncoupled plasmonic nanoantennas, separated by a distance
of the SP wavelength, is the coherent summation of all the elemental fields. The
absence of a collective coupling between TDs in the proposed plasmonic device
was verified by FDTD simulations of the same geometry with a random distribution
of nanoantennas; the similar spin-based effect observed in ordered and disordered
chains (not shown) is a signature for the non-collective behavior of the localized
modes in the near-field. The isolated nature of TDs in the near-field is the basis for
the multi-source consideration as the interference of vortex sources, and shows a
good agreement with the spin-dependent experimental results

Another interesting spin-dependent plasmonic device based on the interference of
TDs is a plasmonic focusing lens. A semicircular plasmonic chain consisted of annu-
lar nanoapertures with the previous parameters is shown in Fig. 13.14a. Figure 13.14c,
d presents the measured intensities of the focusing plasmonic waves for λ±, respec-
tively. A spin-dependent transverse shift of the focal spot is easily observed from the
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Fig. 13.14 Spin-dependent plasmonic focusing lens. a SEM image of the plasmonic lens consisting
of annular nanoapertures arranged in a semicircular path. b Transverse cross sections of the intensity
distributions in the focal plane; the blue and red curves (squares) represent the measured (analytically
calculated) intensities for λ±, respectively. c, d Measured near-field intensity distributions of the
plasmonic lens, at a wavelength of 780 nm for normally incident λ±, respectively. Reprinted with
permission from Ref. [67]. Copyright 2012 American Chemical Society

compared cross sections (Fig. 13.14b). The obtained focal shift is a manifestation
of the optical spin-Hall effect [15, 16, 35, 68], associated with the SOI, inducing
the plasmonic vortex sources. The relocation of the spot can be calculated using the
optical path condition with a spiral wavefront kspri −λπi = 2αm, where ri is the dis-
tance between the i th source and the shifted spot, πi is the corresponding azimuthal
angle, and m is an integer. Using this formalism, we estimate the spin-dependent
deflection by λ/ksp (∼120 nm), and it evidently supports the experimental results
as well as the analytical calculations (Fig. 13.14b). Moreover, the calculation of the
plasmonic fields reveals α -phase retardation between the spin-dependent focusing
waves. Hence, when the superposition of the spin states 2−1/2 (|λ+≈ + |λ−≈)—a hori-
zontal linear polarization—is illuminated, the focal spot splits in the lateral direction
[64, 35]; however, for the superposed excitation i2−1/2 (|λ+≈ − |λ−≈)—a vertical
linear polarization—the retardation is compensated, and as a result the plasmonic
wave homogeneously converges without a focal spot splitting [64].

In the next section we will introduce the optical spin-Hall effect induced by
nanoapertures chain which observed in the far-field [35].

13.6 Optical Spin-Hall Effect from Plasmonic Nanoapertures

In contrast to the results of the previous section here we consider collective interaction
[69] within periodic plasmonic chains, which play a crucial role in the recoupling of
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Fig. 13.15 Coupled localized plasmonic chains. a A plasmonic chain with isotropic unit cell and
rotating reference frame (u, v) which follows the path ϕ . b An anisotropy unit cell chain with a frame(
u′, v′) attached to the local anisotropy axis of the unit cell. The lab reference frame is indicated by

(x, y). Reprinted with permission from Ref. [35]. Copyright 2011 American Chemical Society

SPs to a propagating mode via the momentum-matching condition, as was recently
presented [35].

One can distinguish between two types of optical spin-Hall effect (OSHE) [35].
The locally isotropic optical spin-Hall effect (OSHE-LI) is regarded as the interaction
between the optical spin and the path ϕ of the plasmonic chain with an isotropic unit
cell (Fig. 13.15a). In contrast, the locally anisotropic optical spin-Hall effect (OSHE-
LA) occurs due to the interaction between the optical spin and the local anisotropy
of the unit cell, which is independent on the chain path (Fig. 13.15b). This resembles
two types of spin-Hall effects in electron 2D systems—intrinsic (due to Rashba
coupling) and extrinsic (due to the spin-orbit-dependent scattering of electrons from
impurities).

The OSHE-LI can be observed on a chain of scatterers whose local orientation
with respect to the selected x coordinate τ = tan−1 (dy/dx) varies linearly with x,
explicitly, τ (x) = αx/a where a is the period of the structure (Fig. 13.16b). This
demand leads to a chain with a route {x (ϕ) , y (ϕ)} given by the function

ϕ = (a/2α) ln

[(
1 + sin

αx

a

)/(
1 − sin

αx

a

)]
. (13.4)
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The transmission spectrum of the coupled plasmonic chain, immersed in an index-
matching oil to obtain symmetric configuration, bears a signature of two modes
centered at the wavelengths of 700 and 780 nm corresponding to transversal and
longitudinal polarization excitations [70], respectively (Fig. 13.16a).

Figure 13.16c shows the measured OSHE-LI observed from the chain
corresponding to Eq. (13.5). In experiment the structure was sandwiched between
circular polarizers and illuminated with a laser beam at a wavelength of 780 nm in
order to excite the longitudinal mode. The intensity distribution is measured in the
far-field, which corresponds to the momentum space.

Polarization analysis reveals that the scattering from the curved chain comprising
two components: ballistic and spin-flip. The ballistic component doesn’t experience
any diffraction and maintains the polarization state of the incident beam, while the
spin-flip component, with an opposite spin state, undergoes diffraction.

Spin-dependent beam deflection is observed in the experiment via orthogonal
circular polarizers, corresponds to a momentum shift of Δkx = −2λ α/a, where λ

is the incident spin state. The peculiarity of the observed effect lies in its geometric
nature. Light scattering by a system with spatially non-uniform anisotropy has a close
analogy with a scattering from a revolving medium [39], as was shown recently [38].
Hence, the scattering by the bent chain is most conveniently studied using a rotating
reference frame [52, 38] (u, v), which is attached to the axis of the local anisotropy
of the chain and follows the chain’s route ϕ (x, y) (Fig. 13.15a). This is accompanied
by spatial rotation of the frame with a rate ∂ϕ = dτ (ϕ)/dϕ , where τ (ϕ) is the
orientation angle. As a result, a spin-dependent momentum deviation Δkϕ = −2λ ∂ϕ

which corresponds to an additional phase of γ = ∫
Δkϕ dϕ = −2λτ , appears in the

spin-flip scattered component. The experimentally observed spin-Hall momentum
deviation concurs with the expected correction of Δkx = ∇x γ = −2λα/a. This
effect is regarded as the OSHE-LI.

When the chain unit cell is anisotropic itself, the local anisotropy is also allowed
to be arbitrarily oriented along the path. The reference frame attached to the unit
cell anisotropy is presented as the system

(
u′, v′) in Fig. 13.15b. It was previously

shown that plasmonic structures consisting of nanorods exhibit a high polarization
anisotropy that follows the orientation of the rods [71, 72]. An element consisting
of randomly arranged but similarly oriented rectangular apertures with dimensions
of 80×220 nm (Fig. 13.17a, top inset) demonstrates the localized mode resonance at
a wavelength of 730 nm by measuring the transmission spectrum with linear polar-
ization excitation parallel to its minor axis. High anisotropy is clearly observed
between the two orthogonal linear polarization excitations, which results from the
local anisotropy of the nanorod (Fig. 13.17a). A straight chain of subwavelength
nanorods with a period of 430 nm (Fig. 13.17a, bottom inset) gives a narrow resonant
line shape of the transmitted light in correspondence with the momentum matching
condition, when the structure is illuminated by a linear polarization parallel to the
nanorod’s minor axis (Fig. 13.17a). When the orientation of the nanorods is varied
linearly along the x-axis to obtain a spatial rotation rate of ∂ = dτ ′/dx = α/a
(Fig. 13.17b), the beam deflection of the spin-flip component corresponding to the
spin-Hall momentum deviation of Δkx = −2λ∂ arises (Fig. 13.17c). This beam
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Fig. 13.16 a Transmission spectra of the plasmonic chain consisting of coaxial nanoapertures with
inner/outer radii of 75/125 nm, with period of Φ = 470 nm and a length of 84.6µm. The blue and red
lines/arrows correspond to transversal and longitudinal polarization excitations, respectively. The
inset shows SEM image of the chain. b SEM image of a curved chain whose local orientation τ is
varied linearly along the x-axis with a rotation period of a = 9µm, and a structure length of 135µm.
c The spin-dependent momentum deviation for the OSHE-LI, at a wavelength of 780 nm. The red
and blue lines stand for incident right- and left-handed circularly polarized light, respectively
(λin = ±1). λout denotes the spin state of the scattered light. Reprinted with permission from Ref.
[35]. Copyright 2011 American Chemical Society
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Fig. 13.17 a Transmission spectra of randomly arranged identically oriented rectangular apertures
with dimensions of 80 × 220 nm in 86µm square array, and of a homogeneous chain with period
Φ = 430 nm, local orientation τ ′ = 45∈ and a length of 86µm. The red and blue lines/arrows
correspond to linear polarization excitations parallel and perpendicular to the nanorod’s minor axis,
respectively. The insets show SEM images of the structures described above. b SEM image of a
chain in which the nanorods’ orientation τ ′ varies linearly along the x-axis with a rotation period
of a = 3.44µm, and a structure length of 86µm. c The spin-dependent momentum deviation for
the OSHE-LA, at a wavelength of 730 nm. The red and blue lines stand for incident spin states
λin = ±1, respectively. Reprinted with permission from Ref. [35]. Copyright 2011 American
Chemical Society
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deflection is regarded as the OSHE-LA and it arises due to the rotation of the local
unit cell’s anisotropy rather than the chain path curvature.The described mechanism
paves the way for one to consider other path symmetries. According to Noether’s
theorem, for every symmetry in dynamical system there is a corresponding dynamical
conservation law [73].

When the structure symmetry, or more explicitly the chain path ϕ (x, y), is circular,
the corresponding conservation rule is for the angular momentum (AM). The AM of
an optical beam can have two components: an intrinsic component that is associated
with the handedness of the optical spin, and an extrinsic (orbital) component that is
associated with its spatial structure. In an optical paraxial beam with a spiral phase
distribution (γ = −lπ, where π is the azimuthal angle in polar coordinates, and the
integer number l is the topological charge), the total AM per photon, in units of �

(normalized AM), was shown to be j = λ + l [33]. Let’s consider circular chains
with a path parameter ϕ = roπ (ro is the chain radius) of annular apertures and
rotating nanorods with a rotation rate ∂ = m/ro, so the local anisotropy orientation
is τ ′ = mπ (m is an integer). The far-field intensity distributions of the scattered spin-
flip components are presented in Fig. 13.18a, b for annular apertures and rotating
nanorods with m = 2, respectively. A characteristic dark spot in the center is clearly
seen in the images which is a signature of orbital AM. Moreover, it is evident that the
radius of the dark spot for the nanorod chain of m = 2 is larger than the one for the
annular apertures, corresponding to a higher orbital AM. The observed OSHEs and
specifically the orbital AM obtained from circular chains are due to the collective
interaction of the localized modes within the periodic plasmonic chains. The role
of the interaction can be elucidated by comparing the spin-flip component of the
scattered light from a circular chain with random distribution of annular apertures.

2=l

mμ2

4=l

mμ2 mμ2

(a) (b) (c)

Fig. 13.18 The OSHE-LI and OSHE-LA for circular chains. The measured far-field intensity
distribution of the spin-flip component scattered from a circular chain of ordered (a) and disordered
(c) coaxial apertures at a wavelength of 780 nm, and rotating nanorods with m = 2 at a wavelength of
730 nm (b); bottom, SEM images of the chains with radii of ro = 5µm. The spin-Hall momentum
deviation is accompanied by a spiral phase-front with l = 2 and l = 4, for the OSHE-LI (a)
and OSHE-LA (b), respectively. Note that no spin-Hall momentum deviation is observed from the
disordered chain (c). Reprinted with permission from Ref. [35]. Copyright 2011 American Chemical
Society
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Fig. 13.19 Dislocation’s strength measurement. a SEM image of two separated identical chains
of nanorods rotated along a circular path with m = 1. b, c Magnified segments of SEM images of
circular chains with m = ±1, respectively. d, e Calculated interference patterns for a pair of identical
optical vortices with topological charges of l = ±2, respectively. f, g Measured interference patterns
of the spin-flip components for m = 1 (regions of interest), at a wavelength of 730 nm and incident
spin states λin = ±1, respectively. The additional fringes emerge above or below indicate the
two generic phase dislocations and the red guiding lines emphasize their locations. Reprinted with
permission from Ref. [35]. Copyright 2011 American Chemical Society

As evident from Fig. 13.18c a bright spot was obtained, indicating zero orbital AM in
a disordered plasmonic chain. The orbital AM of the spin-flip component scattered
from a circular chain is characterized by the strength of the dislocation and its helicity.
Phase dislocations are singular field points such that the phase obtains a 2α -fold jump
when making a closed loop around them. The dislocation’s strength is the number
of wave-fronts that end at the phase dislocation point. Its absolute value and sign
(helicity) can be measured simultaneously by the interference of two optical vortices
[74, 75]. For this purpose, one can use a system consisting of two separated identical
chains of nanorods rotated along a circular path with m = 1 (Fig. 13.19a, b). The
two chains, which behave as twin sources, give rise to intensity fringes, as shown in
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Fig. 13.19f, g. In the observed interference patterns of the spin-flip components, two
additional fringes emerge, indicating two phase dislocations (see the guiding lines
in Fig. 13.19f, g). When the incident spin state alters , the antisymmetric fork-like
picture is reversed. The experimental patterns with an incident spin of λ = ±1 are
similar to the calculated patterns resulting from the scalar interference of two identical
optical vortices with topological charges of l = ±2, respectively (Figs. 13.19d, e).
The spin-dependent fringe patterns of a similar element with m = −1 (Fig. 13.19c)
were also observed (not shown) to verify that the helicity of the phase dislocation
corresponds to the rotation handedness of the nanorods. Moreover, the interference
pattern of the ballistic component did not comprise a phase dislocation, indicating
zero orbital AM. Each of the phase dislocations of the spin-flip components predicted
by the calculated patterns (triple fork, see Figs. 13.19d, e), breaks in the experiment
into a pair of fundamental phase dislocations (double fork, see Figs. 13.19f, g). The
non-generic vortex collapse to generic vortices is in accordance with the prediction
in Ref. [76]; therefore, the topological charge of the beam in this experiment is
given by the number of the fundamental phase dislocations, resulting in l = ±2.
As the orbital AM is directly linked to the azimuthal momentum correction Δkπ

via l = − (1/2α)
∮

Δkπdϕ , the observed optical field with l = 2mλ provides the
evidence for a spin-Hall momentum deviation of Δkπ = −2mλ/ro. Since the unit
cell anisotropy of the chain for m = 1 follows its curvature (τ ′ = π), the OSHE-LA
in this case is equivalent to the OSHE-LI one. However, by m-fold rotation of the
nanorods’ orientation one can obtain m-fold magnification of the OSHE. Circular
chains of annular apertures and rotating nanorods with m = ±2 were analyzed using
the same interference method to experimentally demonstrate that the topological
charge of the spin-flip component equals l = 2λ and 2mλ for the OSHE-LI and
OSHE-LA, respectively.

Finally, the topological charge’s magnitude of the spin-flip component scattered
from the circular chains can be verified by an interference, which results from a
linear polarization projection of the ballistic and the spin-flip components [35]. For
this purpose it is enough to measure the intensity distribution immediately behind
the element via a linear polarizer. The interference patterns obtained by circular

(a) (b) (c) (d)

Fig. 13.20 Interference patterns resulting from linear polarization projections of the ballistic and
spin-flip components scattered from single circular chains of coaxial apertures (a, b), rotating
nanorods with m = 1 (c) and m = 2 (d). The arrows indicate the direction of the linear polarizer-
analyzer. The coaxial chain was illuminated at wavelengths of 780 and 700 nm to excite the longi-
tudinal (a) and transversal (b) plasmonic modes, respectively. The nanorod chain was illuminated
at 730 nm. Reprinted with permission from Ref. [35]. Copyright 2011 American Chemical Society
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chains of annular apertures and rotating nanorods with m = 1, 2 are visualized in
Fig. 13.20. Propeller-like images confirm the orbital AM of l, which is expected from
the obtained interference profile of 1 + cos (lπ), for the OSHE-LI and OSHE-LA.

13.7 Coupled Thermal Antenna Lattices and Rashba-like Spin
Degeneracy Violation

The spin state of elementary particles, atoms and molecules plays a key role in
fundamental effects in physics. An external magnetic field causes energy separation
of electrons (Zeeman effect) [77]. Spin-dependent momentum separation of charge
carriers can occur due to structural inversion asymmetry in a material as result of spin-
orbit interaction (Rashba and Dresselhaus effects) [78–80]. These two mechanisms
show distinct patterns of energy dispersion, see Fig. 13.21. The photonic analogy
of spin-orbit interaction is well known, wherein, the spin of the photons (helicity
state of circularly polarized light) plays the role of the spin of charge carriers. Spin-
dependent deflection of light was observed for propagation in gradient-index media
[15, 53, 68] and with the scattering of surface plasmon polaritons (SPPs) from
metallic nanostructures [34, 35, 46].

When light is emitted or scattered from a revolving medium, it exhibits a dispersion
splitting—angular Doppler effect (ADE)—which depends on the circular polariza-
tion handedness (the photon’s spin) [39]. The dispersion splitting is attributed to a
spin-dependent correction of the momentum term in the wave equation due to rotation
of the emitting medium. In this section we will describe a spin-dependent disper-
sion splitting of thermal radiation emitted from a structure whose local anisotropy
is rotated along selected x-axis. The observed effect is attributed to the dynamics of
the thermally excited surface wave propagating along the structure [81, 82].

For experiments the deepenings (“thermal antennas”) with the subwavelength
size of 1.2 × 4.8µm (Fig. 13.22a, right inset) were etched to a depth of 1µm on
a SiC substrate forming isolated thermal antenna and coupled thermal antenna

E
(c)(b)(a)

−σ

+σ −σ+σ

kx

E

kx kx

E

Fig. 13.21 Energy dispersion schemes of a spin-degenerated system, b energy splitting of the
dispersion associated with Zeeman effect, c spin-dependent shift of the dispersion in the momentum
space. Reprinted with permission from Ref. [82]. Copyright 2011 American Optical Society
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Fig. 13.22 a Spectral emission from the isolated thermal antenna, measured at τ = 6∈ (I) and
τ = 0∈ (II) [SEM image of the antenna, right inset], and for antenna array at τ = 0∈ (III) [SEM
image in c)]; red and blue curves correspond to polarization along the short axis and long axis of
the antenna, respectively, and the black for the total intensity. Left inset presents FDTD simulation
of the intensity distribution in vicinity of an isolated antenna at 883.7 cm−1, white square indicates
the location of the antenna. Black arrows point to the local resonances. b Calculated extinction
cross section of an isolated antenna attained for polarization along the short axis of the antenna.
Reprinted with permission from Ref. [82]. Copyright 2011 American Optical Society

array (Fig. 13.22c) with a period of Φ = 11.6µm. Two distinct resonances on
isolated antenna, attributable to the local modes at Θ1/2αc = 885.7 cm−1 and
Θ2/2αc = 944.7 cm−1, were observed at the temperature 773 K (Fig. 13.22a, curves
I and II). These parameters find good agreement with calculations by the modified
long wavelength approximation (MLWA) theory [83] resulting in Θ

(M LW A)
1 /2αc =

883.7 cm−1 and Θ
(M LW A)
2 /2αc = 946.1 cm−1 (Fig. 13.22b). Unlike the isolated

antenna, the thermal antenna array manifest an additional narrow resonance peak at
830 cm−1 , attributed to collective antennas excitation (see Fig. 13.22a, curve III).
The local resonances exhibit strong linear polarization along the direction of the
small axis of the antenna. The emission dispersion measurement showed that the
narrow spectral peak contains two propagating dispersive modes—a fast mode and
a slow mode, (Fig. 13.23a) and the polarization direction of the slow mode follows
the antennas’ orientation (Fig. 13.23b).

The polarization properties of the thermal antenna array dramatically and intrigu-
ingly change if orientation of antennas is gradually rotated along the x-axis. In
Fig. 13.24a the such antennas array with a distance along x-axis between neighboring
antennas of Φ = 11.6µm is presented. The antennas’ angle with respect to the x
direction, π(x) = (α/a)x , changes at a spatial rotation rate of ∂ = dπ(x)/dx =
α/a, where a is the distance along the x direction for a α rotation. Figure 13.24b
represents a spin-projected dispersion (in the kx momentum direction) for a lattice
with ∂ = 0.17(α/Φ) obtained by measuring the S3 component of the Stokes vectors,
which represents the circular polarization portion within the emitted light.
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In the measured dispersion of thermal radiation [82], the slow mode exhibits a
clear spin-controlled splitting in the momentum of the emitted waves. The degree
of splitting of these modes, 2Δk, grows linearly with ∂, so as Δk = λ∂,
(Fig. 13.24c, d). The observed effect of the spin symmetry breaking is due to a
spin-orbit interaction resulting from the dynamics of the surface waves propagat-
ing along the structure whose local anisotropy axis is rotated in space. The spin
symmetry breaking is caused by the absence of inversion symmetry (IS) in the sys-
tem. In general, time reversal symmetry (TRS) in a system results in energy relation
E(k, λ+) = E(−k, λ−). If the crystal lattice has inversion symmetry, i.e., the oper-
ation r ≥ −r does not change the lattice, one will obtain E(k, λ±) = E(−k, λ±).
Consequently, if both TRS and IS are present, the band structure should satisfy the
condition E(k, λ+) = E(k, λ−). One can see that the inhomogeneous antenna lattice
(Fig. 13.24a), has a broken inversion symmetry along the x direction, π(x) ∗= π(−x),
resulting in E(kx , λ+) ∗= E(kx , λ−). However, from the dispersion depicted in
Fig. 13.24b, it is evident that E(kx , λ+) = E(−kx , λ−). Therefore, while the system
has broken IS, it preserves TRS. Such behavior is similar to the Rashba spin split-
ting in electron bands of heterostructures which stems from inversion asymmetry in
the structure [79]. The momentum offset Δkin the Rashba effect is proportional to
the Rashba parameter βR , (Δk = m→βR/�

2, m→ representing the effective mass of
electrons), so in the observed photonic effect, the spatial rate of the lattices’ inhomo-
geneity, ∂, resembles m→βR/�

2. In the same manner, one can define a Rashba-like
energy, ER−L , (ER−L = �ΔΘR−L , see Fig. 13.24c) that is proportional to ∂2, in
accordance with approximately parabolic shape of the slow modes.

The peculiarity of the observed effect lies in its geometric nature. Surface waves
scattered to radiation by a structure with spatially non-uniform anisotropy has a close
analogy with emission from a revolving medium, as was recently shown [81]. Hence,
the emission is most conveniently studied using a rotating reference frame that is
attached to the axis of the local anisotropy of the antennas. The Helmholtz equation
in a non-inertial reference frame revolving with rate c∂ << Θ is
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Fig. 13.23 b Dispersion of thermal emission from the parallel antenna array (π = 60o); gray
scale—intensity, a.u. b Measured orientation angle of the polarization ellipse, ψ(∈), for the disper-
sion in a. Reprinted with permission from Ref. [82]. Copyright 2011 American Optical Society
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normalized by �/2αc. d Observed spin-controlled momentum displacement (circles), compared
with the predicted dependence (solid line). Reprinted with permission from Ref. [82]. Copyright
2011 American Optical Society

(∇2 + k2 + 2λ∂k)Eλ = 0, (13.5)

where Eλ are the eigenvectors of circular polarizations; note that 2λ∂k is the
Coriolis term. This equation similar to the Schrödinger equation (∇2 + k2 +
2m→βRλy(−i∇)/�

2)η(r) = 0 for the confined 1D Rashba system. The term
2m→βRλy(−i∇)/�

2 corresponds to the Coriolis term 2λ∂k, in accordance with
our interpretation that ∂ resembles m→βR/�

2. The Eq. (13.5) can be written as(∇2 + K 2
)

Eλ = 0, where K (Θ) ≈ k(Θ) + λ∂ is the generalized momentum,
and the dispersion relation then becomes Θ = Θ (kx + λ∂). Therefore, due to rota-
tion of the local anisotropy axis, the original dispersion of the homogeneous lattice
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is now split into two modes with opposite spin states, each shifted by Δk = λ∂

on the momentum axis. The corresponding generalized momentum is the manifesta-
tion of the spin-orbit interaction, which is responsible for effects such as the optical
spin-Hall, Magnus, and Coriolis effects, and the Berry phase shift.
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Chapter 14
Plasmonics and Super-Hydrophobicity: A New
Class of Nano-Bio-Devices

F. Gentile, M. L. Coluccio, A. Toma, A. Alabastri, R. Proietti Zaccaria, G. Das,
F. De Angelis, P. Candeloro, C. Liberale, G. Perozziello, L. Tirinato,
M. Leoncini and E. Di Fabrizio

Abstract Early detection of diseases has great importance in terms of success of
the disease treatment. In fact, it has a profound positive influence on the response
provided by the patient, leading to shorter and less invasive treatment regimes. We
consider here the Raman detection of low (atto-molar) concentrates of molecules
by applying nanofabrication techniques in the fabrication of plasmonic devices ful-
filling the requirement of superhydrophobicity. Plasmonic resonances will have the
effect of substantially increasing the local electric field around the fabricated nano-
device which, in turn, will positively affect the Raman signal. Similarly, the superhy-
drophobicity will play the crucial role in localizing the few molecules of the analyte
around the plasmonic device, therefore allowing their detection in a manner other-
wise impossible in diffusion-based devices. We will theoretically explain the concept
of superhydrophobicity by providing also a roadmap for defining the optimal super-
hydrophobic device, then we will introduce the fabrication process to realize such
a device and, finally, we will provide the Raman counting of a series of analytes
together with electromagnetic simulations illustrating the role of the electric field in
the formation of the Raman signal.
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14.1 Introduction

Plasmonics is a branch of Physics extremely promising for its applications in
electronics, chemistry, computer science, solar energy harvesting and biology. In
particular, it is dedicated to the investigation of confined electromagnetic waves
originating by the combination of free electrons with the light source. Besides noble
metals, artificial materials are at the basis of Plasmonics. This aspect strictly relates it
to Nanotechnology, a growing science aiming to investigate both the theoretical and
fabrication aspects of devices with dimensions in the nanometer range [1]. The strong
appeal of these systems is their capacity of fundamentally changing the way biomed-
ical sciences are practiced, in that they feature characteristic length scales that are of
the same order of magnitude of biological objects (from cells, as large as ten microns,
to bio molecules sizing few nanometers or less), and can accordingly interact with
these in a fashion that new physical/biological laws, strategies or possibilities emerge
[2]. Many are the examples where nanotechnology is applied to biology and include,
for instance, surfaces patterned with random, rather than periodic, micro- nano- fab-
ricated themes, to guide cells attachment and proliferation [3]; needles, holes or
micro- nano- based microfluid channels for transdermal drug administration, protein
sorting and cell analysis [4]; microstuctured, three dimensional scaffolds for tissue
engineering [5]; the nano particles toolbox for the smart delivery of drugs and imag-
ing [6, 7]; devices for molecular detection, identification and diagnostics. The latter
comprise a variety of different systems, including nanowires and nano-cantilevers,
microarrays [8], and nanoporous silicon surfaces, whereby the species of interest
can be selectively adsorbed and detected using MALDI TOF mass spectroscopy
techniques [9].
Early detection is particularly important in the case of cancer and other pathologies,
in that the early stages of disease are typically treated with the greatest probability of
success [10, 11]. Albeit the large variety of systems listed above, surface enhanced
Raman scattering (SERS) substrates are among the most promising in terms of sen-
sitivity, reproducibility and reliability [12]. These nano geometry based devices are
capable to detect biological moieties in the limits of very low abundance ranges, and
offer the most effective way for the diagnosis of few, or single, molecules.
SERS effects stem from the combination of subwavelength nanoscale features and
noble metals, and particularly from the excitation of localized surface plasmons at
the interface with a metallic surface, and thus they strongly depend upon the topology
of the active substrate. It is very well understood that certain regular geometries, with
a convenient design, induce giant electric fields, with an enhancement of up to 109

in the Raman signal. Recent advances in SERS technology produced, for instance,
periodic arrays of metallic nano dots [13]; adiabatic nanofocusing cones [14–20];
or groups of three hierarchical metallic hemi spheres, where the ratio between the
diameters or, equivalently, the distances of the spheres is chosen with high precision,
and these are called nano lenses [21]. Interestingly, randomly rough surfaces, with a
roughness in a nanometric scale, also exhibit superior sensing capabilities [22] but,
differently from regular geometries, they retain the advantages of short fabrication
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time and lower process costs. In 2008, Coluccio et al. [23] devised a SERS sensor
constituted by electroless grown random assemblies of silver nanograins, where
electroless growth is a process whereby metal ions are reduced and deposited as
metals upon a silicon surface. Metal grains are obtained with an average size as
small as few nanometers, with an overall shape and dimension that can be regulated
with an extremely high precision and reproducibility. Despite the extremely high
enhancement factors that are achievable in theory, devices like this suffer from a
practical and serious limitation, that is, the huge time that the species of interest
would take to reach and interact with the active sites of the substrate. In a solution at
rest and under the effect of diffusion solely, a bio molecule with a Brownian diffusion
coefficient D = 10−9m2/s, would take some 60 h to travel the distance of 1 cm, that
is the typical length side of the device. And thus the performance of conventional,
2d SERS substrates would be dramatically limited by the bottleneck of diffusion.
To overcome this limit we have performed the integration of nano-photonic devices,
such as the ones previously described, with super-hydrophobic surfaces (SHSs). By
doing so, novel multifunctional systems were obtained with high selectivity, reso-
lution, and very low detection limits. SHSs are artificial, micro- or nano- fabricated
surfaces, with a texture given by a regular array of cylindrical pillars. The top of
the pillars was conveniently modified to incorporate random assemblies of silver
nanograins (Fig. 14.1). In sight of a dramatically low friction coefficient, this inno-
vative family of devices offers realistic possibilities for the detection of extremely
low concentrated solutions of analytes, and this discloses terrific opportunities in

Fig. 14.1 The device features hierarchically different scales and, at each scale, different functions
are revealed. On a large scale the superhydrophobic substrate looks continuous, millimetric drops
are repelled and solutions can be easily manipulated (a, d). On a meso scale, that is micrometric,
micro pillars (b) permit the evaporation of the solution whereby the solute is concentrated into small
areas (b, e). On a nano scale, silver nano particles assemblies, conveniently positioned upon the
pillars (c), induce SERS effects and permit the identification analytes in the single molecule regime
(f). Published with permission from ACS Appl. Mat. Interf. 4, 3213 (2012)
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medicine. A mathematical description of SHSs was provided, on the basis of which
the devices could be designed and fabricated; extremely diluted biological solutions
were therefore analyzed, and Rhodamine molecules were detected in the very low
abundance range of 10−18 M.
The working principle is based on the use of small drops of de-ionized water, con-
taining the moieties at study, which have to be positioned upon the substrate and
there let to evaporate. In sight of a simple balance of forces, the line of contact at
the solid interface would recede with time, and thus the footprint of the drop would
also gradually reduce. When the drop gets sufficiently small, a transition to more
a stable state occurs, whereby the drop is firmly attached to the substrate, and the
scale-down of the area of contact is prevented. Thereupon, few molecules would be
accumulated into a very small region, assuring an increased density and, accordingly,
the attainment of the limits of detection (Fig. 14.1).

14.2 Super-Hydrophobicity: The Physical Model

Nature has endowed the leafs of some plants with the noticeable capability of
repelling water, and thus if a drop is positioned upon these, it would assume a shape
that resembles that of a sphere [24]. Conventionally we say that all the surfaces that
behave like these leaves are super hydrophobic. The most practical property of SHSs
is a reduced friction coefficient on account of which they can be used for a number
of different applications, including, on the medical side, the manipulation and con-
trol of diluted solutions of biological interest [25, 26]. SHSs typically feature two
distinguishing ingredients, that are (i) a quasi periodic hierarchical structure with
dimensions comprised in the micro to nano meter range (and thus the geometry), and
(ii) a superficial, chemical or physical, modification of the surface. Understanding
the mechanisms whereby the combination of these reduces wettability is essential
for the rational design of artificial SHSs, as those described later in the text. In the
following sections, the laws describing the wetting phenomena are briefly recapitu-
lated (I); why an hexagonal lattice of pillars would mimic natural SHSs better than
other configurations is explained (II); the dynamics of slowly evaporating droplets
and the influence of certain parameters on that is discussed (III); and, lastly, the
parameters describing the lattice above are optimized on the basis of a mathematical
criterion (IV).

14.2.1 The Physics of Drops and Surfaces

It is well known that the physics of micrometric or sub millimetric drops is correctly
governed by surface tension solely. The angle of contact ε at the solid/air/liquid
interface indicates the propensity of a droplet of whether wetting or not a surface.
Surfaces where ε > 150∪ are super-hydrophobic. Interestingly, perfectly flat sur-
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faces may have, via chemical modifications, a contact angle that is 120∪ at most
[27, 28]. Artificial super hydrophobic states are possible solely for surfaces that also
incorporate a regular pattern or texture [29]. Super hydrophobic states are very well
described by the models of Wenzel [30] and Cassie Baxter [31]. In 1936, Wenzel
explained the increased contact angle in terms of geometrical effects only and espe-
cially as a function of the solid roughness r (r is the real interfacial area over projected
area, and it is always larger than one),

cos εw = r cos ε (14.1)

and thus the effect of surface roughness is to amplify the wetting. Differently from
Wenzel, Cassie described super hydrophobicity on account of the pockets of air that
get trapped between the drop and the substrate

cos εc = −1 + λ (cos ε + 1) (14.2)

where φ is the fraction of solid in contact with the drop (and notice that φ is always
smaller than one). The less φ the larger the apparent contact angle. At the limit of
φ ≈ 0, the drop would paradoxically float in air. The Cassie model is intuitive
in that predicts that a drop upon a patterned surface develops a contact angle that is
proportional to the fraction of air in contact with the drop. In spite of the fact that they
do both induce hydrophobicity, these situations are very different from their adhesive
properties, in that Wenzel drops are strongly pinned. On the contrary, in the Cassie
state the drop sits mainly upon air, and this dramatically reduces the contact angle
hysteresis thus favouring the self cleaning properties of the surface. On comparing
Eq. 14.1 and 14.2, one can notice that a transition from Cassie to Wenzel occurs when

cos (ε) =
(

λ − 1

r − λ

)
(14.3)

Equation 14.3 claims that the Cassie state is assured provided that the contact angle
of the flat, unmodified material ε is sufficiently large; that is, larger than a certain,
non linear combination of the geometrical parameters of the substrate. In particular,
large φ ∼s prompt a non wetting behaviour of the substrate [29–32]. In other terms,
if the forest of posts or pillars is sufficiently dense on the surface, a Cassie state
is assured. Notice though that large φ would induce small contact angles, and thus
the choice for the best parameters in Eq. 14.3 is not trivial, and it is indeed a matter
of optimization. Equation 14.3 holds on average. Situations are widely reported in
literature where Cassie holds albeit φ is small, meaning that it is a metastable state.
Practically this means that, if positioned with sufficient care upon a surface, a drop
would not collapse even if it is supposed to, in that an energy barrier inhibits the
spontaneous transition of the droplet to the level of lower energy content [33, 34].
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14.2.2 Lattice Packings and SHSs

(Where it is introduced the mathematical representation of lattices. This is important
because SHSs may be artificially mimicked by a discrete subset of cylindrical micro
pillars, whose centers are placed in the plane as to recover a 2D lattice, as described
in the following sections of the text. In brief, here we translate the problem from
being expressed in terms of the sole φ, to a geometrical form.) A point lattice π, in a
bi-dimensional space, is a regularly spaced array of points. The mathematical form
of π is

π =
{

d∑
i=1

ai vi |ai ∝ Z

}
(14.4)

where d = 2 and {ν1, ν2} is a basis for R2. Every lattice in R2 is completely deter-
mined given the fundamental parallelotope, that is the region of the plane that would
reproduce the original lattice by simple translations. The fundamental parallelotope
is thus the elementary cell there from the whole space can be reconstructed. Its
volume is uniquely determined by π, and the square of this volume is called deter-
minant of the lattice [35]. Here, a representation of 2d lattices in a complex plane is
discussed. A lattice is defined by a pair of unit vector s, consider the first of these
with coordinates ν1 = (1, 0) or, in a complex notation, simply ν1 = 1. The position
of the second vector in the plane is thus sufficient for describing the whole lattice
geometry. The circumference in Fig. 14.2a describes all the configurations that are
isotropic, that is, the lengths in the ν1 and ν2 directions are the same. Thus, for
instance, a regular square pattern is the complex number ν2 = i = eiπ/2 (where
i is the imaginary unit, and the Euler formula has been used), while an hexagonal
lattice finds adequate formalisation in the number ν2 = eiπ/3. In the realm of this
structure, the multiplication of a lattice by another holds the meaning of a rotation,
and thus, for instance, eiπ/2 × eiπ = ei3π/2, and notice that ei3π/2 is still a square
lattice. Considering that, with [35], the area of the parallelotope may be written as
the determinant of the generator matrix M = [ν1, ν2], for the present configuration
it follows that

Ap
2 = det π = (det M)2 =

∣∣∣∣ v12
v21

v12
v22

∣∣∣∣
2

=
∣∣∣∣ 1
cos ω

0
sin ω

∣∣∣∣
2

= sin2 ω (14.5)

and thus the determinant of the lattice is the square of the imaginary part of ν2. The
consequence of this is that the diagram of Fig. 14.2a finds a direct interpretation, that
is, all the points that are equally distant from the real axis describe the same pattern.
For instance, eiα/3, ei2/3α , ei4/3α and ei5/3α are equivalent and all represent the
hexagonal lattice (Fig. 14.2b). This representation may be of some help in deriving
φ as a function of the architecture of the pillars. Consider an isotropic periodic array
of cylinders, the non dimensional diameter d of the cylinders, rescaled to the pitch,
is a number comprised between 0 and 1. The solid fraction φ may be accordingly
derived as α/22 d2/Ap = α/22 d2/ sin2 ω.
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Fig. 14.2 Lattice representation in the complex plane (a). The hexagonal lattice reveals, in the
plane, the largest coordination number n=6 (b). Contour plot of the solid fraction φ as a function of
the normalized pillars’ diameter d, and the angle ϕ that defines the lattice type (c). The augmented
ability of a drop to slide over a textured surface (φ < 1) with respect to a flat plane (φ = 1), as a
function of the equilibrium contact angle ε (d). Cartoon representing the evaporation process over
a textured surface (e). The non dimensional force γ that pushes the contact line inward during
evaporation, as a function of the non equilibrium contact angle εne, if γ > 1 sliding dominates over
pinning (f). Published with permission from ACS Appl. Mat. Interf. 4, 3213 (2012)

The contour plot in Fig. 14.2c reports φ as a function of d and ϕ, and the smaller d, or
the larger ϕ, the smaller φ. That is, small pillars, organized in non slanted geometries,
are super-hydrophobic. The area in white in the diagram recovers the combinations
of d and ϕ whereby the pillars would interfere and are, accordingly, impossible
geometries. Notice that φ varies with d to a much more extent than with ϕ, while it
is important choosing d with accuracy (using a mathematical criterion as explained
later in the text), hexagonal tilings are preferred (and have been used in this work) in
that they are optimal in the sense that solve the (i) densest packing and (ii) highest
kissing number problems in the plane [35]. The kissing number (or coordination
number) n is the number of circles, in 2 dimensions, which can touch an equivalent
circle without any intersections. It is important because large kissing numbers would
guarantee that the distances between a pivot pillar and the neighbouring is the same,
and thus the problem is highly symmetric. For an hexagonal lattice, n = 6.
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14.2.3 Vanishingly Small Friction Coefficients of SHSs
and Evaporation Dynamics

Consider a drop sitting upon a surface and experiencing an arbitrary equilibrium
contact angle ε . The radius r of the circumference at the solid liquid interface can be
written as [36]:

r =
(

4

∂

) 1
3

R sin ε, ∂ = (1 − cos ε)2 (2 + cos ε) (14.6)

The net adhesive force Fa acting along x may be therefore estimated [37–39], being

Fa =
∫ α

2

− α
2

Δlv (cos εr − cos εa) r cos ω dω = 2rΔlv (cos εr − cos εa) (14.7)

And thus the adhesion force Fa would depend upon the width of the contact line (2r),
the liquid-vapor surface tension (Δlv) and the term (cos εr−cos εa) that is proportional
to the contact angle hysteresis (CAH). Assume now to deposit the same drop upon a
micro textured, artificial surface. In revisiting Eq. 14.7, it should be considered that
(i) the radius r of the solid liquid contact is reduced due to the increased contact
angle and (ii) the CAH the drop senses is not unique in view of the composite,
heterogeneous surface it is placed upon (the CAH is maximum at the solid fraction,
zero otherwise). Relation (7) can be thus rewritten as

Fc
a = 2rc 〈Δlv (cos εr − cos εa)〉 = 2rcΔlv (cos εr − cos εa) λ (14.8)

where < | > is the spatial average taken on the surface of contact of the drop, and it
is here assumed that the radius of contact is large compared to the pillars’ dimension.
From this, it follows that tiling the surface increases hydrophobicity and dramatically
reduces adhesion. Equation 14.8 can be expanded, reading

Fc
a = 45/6 R Δlv

√
1 − (λ (cos ε + 1) − 1)2(

(1 + λ cos (1 + ε)) (2 − λ cos (1 + ε))2)1/3 (cos εr − cos εa) λ

(14.9)
The ratio ζ = FC

a (φ = 1)/FC
a (φ) gives a measure of the increased ability of a drop

to slip or slide over SHSs (Fig. 14.2d). ζ is a function of φ, and the less φ, the less
friction matters. A solid fraction of one percent (φ = 0.01) would induce adhesion
forces that are some 103 times less important than for a continuous surface. Also
notice that ζ decreases with the initial contact angle ε , albeit ζ is practically constant
for sufficiently large values of ε . Consider now a droplet positioned upon a SHS. The
solvent evaporates over time and thus the volume of the drop decreases. On account
of this, also the contact angle decreases. This fact unbalances the forces acting upon
the drop and would generate a radial pressure that tends to recall the contact line
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towards the center of the drop, thus recovering the initial equilibrium contact angle
εc (Fig. 14.2e). The total force along x that is generated is

Fp = 2rcΔlv (cos εne − cos εc) (14.10)

and accordingly the condition for depinning is Fp > Fc
a . If Fp ≤ Fc

a , the drop is stuck
on the surface. (This condition may be valid, strictly speaking, in close proximity of
εc) The ratio γ = Fp/Fc

a indexes the propensity of a drop to slide upon a surface.
When γ > 1 depinning dominate over friction, and thus the drop is recalled toward
its centre during evaporation. In Fig. 14.2f, γ is plotted against εne, that is the non
equilibrium contact angle as in Fig. 14.2e, at different φ ∼s. At the initial time, γ < 1,
and this means that the drop is sticky. As evaporation keeps on, εne decreases. The
depinning force augments with time, and so does γ . When γ is sufficiently large,
that is γ >> 1, the contact line of the drop would recede, and the contact angle
would again coincide with the expected equilibrium contact angle εc. Under these
conditions, γ = 0. The process would then starts over again with the repetition of
the same mechanism. Notice that the drop would experience a different story line on
changing φ. When φ is small, γ varies more rapidly with εne, and the condition for
radius downturn is met at earlier stages of evaporation. In any case, at each cycle,
the contact radius is reduced by a quantity that is the distance between two lines of
pillars. When r goes down below the critical radius of impalement, an irreversible
transition to Wenzel occurs, whereby the drop is stuck. For sufficiently high pillars
the minimum contact radius achievable is limited by energetic considerations being
[40–42]

rmin √ ϕ

cos ε
(14.11)

where ϕ is the distance between a spot and another.

14.2.4 Consideration for an Optimal Design

The models above predict that the contact angle is large, and thus the contact area is
limited, provided that the pillars are diluted or, equivalently, that φ is small (Eq. 14.2).
Unfortunately, the collateral effect of small φ is that a drop would collapse at the early
stage of evaporation (Eq. 14.11). In this case, the drop would stick on the surface and,
upon the continuance of evaporation, the solute would eventually redistribute as to
form a ring like structure along the water-solid line of contact, therefore being spread
over a large area, with no or few concentration effects. The coffee ring effect is very
well understood and it is attributed to a fixed contact line and to an outward flow
within the drop [43, 44]. Here, a criterion is discussed that would guarantee the best
trade off between sufficiently dense forests of pillars, that prevent the early collapse
of the drop and avoid the dispersion, and diluted structures, that instead assure large
contact angle.
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Let the surface be patterned as to reproduce a regular lattice described by d and ϕ,
where the significance of these symbols is given above. If d is fixed, then the system
would be determined given the sole ϕ. The aim here is to determine the optimal ϕ0

that would induce large εc still retaining the advantages of a small rmin . To do this,
we introduce the function τ as the sum of the two non dimensional contributions
τ1 and τ2, τ = τ1 + τ2.
τ1 accounts for the effects of the micro structure on the contact line. It is derived
from the radius of contact r as in Eq. 14.4, being τ1 = r/R.τ1 depends upon εc and
thus, through Eq. 14.2, φ. The smaller φ, the smaller τ1 (Fig. 14.3a).
τ2 instead accounts for the effects of the micro structure upon the smallest radius of
contact prior the drop collapse. It is derived by the minimum contact radius rmin as
in Eq. 14.9, being

τ2 = rmin

d
= ϕ

d cos ε
= 1

cos ε

1 − ∈
λ∈

λ
(14.12)

Differently from τ1, τ2 is inversely proportional to φ (Fig. 14.3a). While τ1 and
τ2 are monotonic, their sum is not. A value of φ, and accordingly ϕ, exists where
τ attains a minimum (Fig. 14.3a), and this would be the optimal gap for a fixed d.
The optimal values of ϕ were calculated for d ranging from 0 to 30μm. This region
of best design is represented in the diagram of Fig. 14.3b. In the same diagram, a
number of points is also reported. These represent evaporation experiments, where
an excess of Rhodamine in D.I. water (concentration 10−4 M) was used to verify
the concentration capabilities of different patterns. When the pillars are sufficiently
dense, the drop successfully slips upon the posts and the solute gets concentrated, in
accordance with the model. When the pillars are diluted, collapse occurs. This is a
remarkable result in that the concentration process of a solute over a micro patterned
substrate can be predicted and controlled with good accuracy. In general, d should
be small to consent a sufficiently large number of pillars to interact with the drop.

Fig. 14.3 The non dimensional function τ as a function of φ or, equivalently, ϕ. By minimizing τ,
the optimal gap is found for a fixed diameter (a). The stability region, in light gray in the diagram,
recovers all the combinations of optimal design, and this is confirmed by a number of different
experiments (b). Published with permission from ACS Appl. Mat. Interf. 4, 3213 (2012)
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14.3 Materials and Methods

Rhodamine R6G, myoglobin, ribonuclease B, lysozyme and sodium chloride was
purchased from Sigma. De-ionized (D.I.) water (Milli-Q Direct 3, Millipore) was
used for all experiments. All chemicals, unless mentioned otherwise, were of ana-
lytical grade and were used as received. Rhodamine6G is an organic compound and
is used extensively in biotechnology applications. It is a dye which can be observed
very clearly by fluorescence microscopy. Its absorption and emission wavelength are
530 and 556 nm, respectively.
Small drops (V< 10μl, R< 1.35mm) of D.I. water containing infinitesimal amounts
of analytes were gently posted upon the surfaces and the entire process of evapora-
tion followed over time. An automatic contact angle meter (KSV CAM 101, KSV
INSTRUMENTS LTD, Helsinki, Finland) was used at room temperature. Please
notice that the energy of adhesion Δ per unit area at the gas/water interface is
≥ 72.8mJ/m2 at 20∪C. The process enabled to concentrate very tiny amounts of
agents over micrometric areas. The evaporation processes were performed in a clean
room to reduce the presence of external contaminants and lasted approximately
30 min. The residual solute was observed using scanning electron microscope (SEM),
fluorescent microscopy and Raman spectroscopy techniques.

14.3.1 Fabrication of the Devices

Artificial super hydrophobic surfaces were fabricated. These are textures comprising
a periodic hexagonal lattice of cylindrical Si micro pillars with a certain diameter
and pitch. Nano-sized geometries appropriately positioned upon the pillars would
assure giant SERS enhancement. (100) silicon wafers (from Jocam, Milan, Italy)
were cleaned with acetone and isopropanol to remove possible contaminant and then
etched with a 4 % wet HF solution. The wafers were then rinsed with DI water and
dried with N2. Standard optical lithography techniques (Karl Suss Mask Aligner
MA 45, Suss MicroTec GA, Garching, Germany) were employed to dig regular
arrays of disks within a layer of positive resist (S1813, from Rohm and Haas) that
was spin-coated onto clean silicon wafers (Fig. 14.4a). Electroless deposition tech-
niques were employed to grow silver nanograins within the holes (Fig. 14.4b). Upon
removal of the residual resist with acetone, a Bosch Reactive Ion Etching (MESC
Multiplex ICP, STS, Imperial Park, Newport, UK) process was utilized whereby the
final structures were obtained in the form of cylindrical pillars with an aspect ratio
greater than 2 (Fig. 14.4c). The electroless grown Ag layer served as mask during
the RIE process, while its characteristic granular structure allowed for the enhance-
ment of the SERS signal. The substrates, as a whole, were then covered with a thin
(few nm) film of a Teflon like (C4F8) polymer to assure hydrophobicity (Fig. 14.4d).
The masks necessary for optical lithography were fabricated using standard Elec-
tron Beam Lithography (Crestec CABL-9000C Electron beam lithography system)
methods.
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Fig. 14.4 Fabrication process
of a super-hydrophobic sur-
face. The four main steps are
shown: a digging of disks
followed by spin-coating, b
electroless for growing grains
of Ag, c resist removal, d
Teflon layer deposition

The electroless deposition on a substrate is based on an autocatalytic or a chemi-
cal reduction of aqueous metal ions. This process consists of an electron exchange
between metal ions and a reducing agent. In this work, Si substrate was used itself
as reducing agent. A fluoridric acid (HF) solution containing silver nitrate (AgNO3)
was used, where Ag was reduced to metal form by the Si substrate oxidation. In
particular, the patterned silicon wafer was dipped in a 0.15 M HF solution containing
1 mM silver nitrate for 60 s at a constant temperature T = 313 K. After the growth
process the silicon wafer was rinsed with water and dried under nitrogen flux. The
driving force in this process is the difference between redox potentials of the two
half-reactions, which depends on the solution temperature, concentration and pH.
Consequently, these parameters influence the particle size and density.

14.3.2 Samples SEM Characterization

SEM images of the samples were captured using a Dual Beam (SEM-FIB)-FEI Nova
600 NanoLab system. During the acquisitions beam energies of 5 and 15 keV, and
corresponding electron currents of 0.98 pA and 0.14 nA, were used. In some cases,
the mode 2 configuration was used, whereby images can be magnified over 2500 k×
and ultra-high resolution may be achieved. In this modality the immersion lens was
switched on, and the TLD detector in Secondary Electron operation was used.

14.3.3 Samples AFM Characterization

An atomic force microscopy (Veeco MultiMode with NanoScope V controller) was
used for the measurements of the silver nanograin assemblies. The measurements
were performed in a dry environment in intermittent contact mode over a sampling
area of 6000×6000nm2. The room temperature was hold fixed for all the acquisitions.
Ultra-sharp Si probes (ACLA-SS, AppNano) with a nominal tip radius less than 5 nm
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were used for high resolution imaging. Multiple measurements were done in different
scan directions to prove the avoidance of artifacts. The images had a resolution of
1024 × 1024 points and were acquired at a scanning rate of 1 Hz. The images
obtained were processed with the WSxM© software, using either flattening or plane
fit according to the relief characteristics, with the minimal polynomial order needed.
Using conventional mathematical procedures implemented in Mathematica�, the
roughness and fractal dimension of the samples were derived.

14.3.4 Fluorescence Microscopy Characterization of Rhodamine
deposits.

Fluorescence microscopy measurements were performed using an inverted micro-
scope, with infinity-corrected optics (Nikon-ECLIPSE TE 2000-U). The microscope
objectives used were a Plan Fluor 40x and a Plan Apo 60x, with 0.75 and 0.95 numer-
ical apertures. For probe excitation a violet diode laser source emitting at 408 nm,
an Argon source emitting at 488 nm, Helium Neon laser source emitting at 543 nm
were used. A Nikon D-Eclipse C1 scanning head with three channels was utilized
for the measurements.

14.3.5 Raman Characterization of Rhodamine Deposits

Micro-probed Raman spectra were obtained using Renishaw inVia Raman micro-
scope at room temperature through 20x objective of a Leica microscope. The Raman
spectra were excited by the 514.0 nm line of an Ar+ laser in backscattering geome-
try. The laser power was 0.18 mW with an integration time of 20 s. Mapping Raman
measurements were carried out with the step size 19.50 μm and 34.60 μm in x and
y-axis direction, respectively.

14.4 Results

Several SEM micrographs of the SHSs were taken over different samples to assess
uniformity and reproducibility.
In Fig. 14.5a–b, silicon pillars are arrayed over large square areas sizing up to some
millimeters per side, with few or no defects in the structures which thus recover a
perfect hexagonal lattice. This would verify the fabrication process capability to attain
extreme control over the key characteristics of the micropillars such as shape and size,
at least on a large scale. On a smaller scale, as in Fig. 14.5c–d, the exposed top surface
of the pillars is wrapped by silver nanograin assemblies. The AFM image of Fig. 14.5e
shows the grains randomly distributed with an average grain size of about 50 nm and
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Fig. 14.5 Micro pillars are arrayed to form regular geometries over several hundreds of microns
(a, b). Larger zoom reveals silver nano aggregates at the nano scales (c, d). AFM image of the silver
nano grain assemblies (e) and characteristic power spectrum (f). Published with permission from
ACS Appl. Mat. Interf. 4, 3213 (2012)

a small standard deviation Sd = 20 nm. From this, using custom made algorithms, a
power spectrum can be deconvoluted and the average roughness Ra and the fractal
dimension Df consequently derived, being Ra ≥ 34 nm and Df ≥ 2.34. Notice that
the average grain size and roughness are consistent with a local enhancement of the
Raman signal in the order of 106 [45]. Interestingly, albeit in a number of different
works the influence of surface profile, and especially roughness, upon Raman signal
has been reported, no works have been focusing on the effect of more sophisticated
parameters such fractal dimension, that instead deserves to be investigated even
further.
These devices were verified against the deposition, concentration and detection of
few molecules of Rhodamine6G (R6G). R6G was used for the evaluation of the
devices in that its utilization in biotechnology applications is very well assessed; it
is a supplement to fluoresceins, as if offers longer wavelength emission maxima;
and it is conveniently and extensively used for standard and non standard labelling
essays. Solutions were prepared containing R6G molecules with a concentration as
low as 10−18 M. Evaporation processes of small drops of solution were followed
over time until an irreversible transition to a pinning state occurred. Few molecules
were conveniently enforced to be confined into a small area, at the limit upon a single
pillar.
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Fig. 14.6 SEM micrographs of the residual solute of R6G at magnifications ranging from 150× to
2500×. The initial footprint of the drop measures up to about 1.6 mm (d), and on average 1.2 mm
(a, g), while the solution, at the final stage of the process, sediments in a bounded region sizing
few tens of microns or less (b, e, h). The tilted images demonstrate that the solute was accumulated
entirely upon the pillars (c, f, i). Published with permission from ACS Appl. Mat. Interf. 4, 3213
(2012)

Figure 14.6 shows an array of SEM images of the residual solute of R6G at differ-
ent magnifications ranging from 150× to 2500×. The initial footprint of the drop
measures up to about 1.6 mm (Fig. 14.6d), and on average 1.2 mm (Fig. 14.6a, g),
while the solution, at the final stage of the process, sediments in a bounded region
sizing few tens of microns or less. Considering bidimensional scale effects solely,
the device is capable of concentrating a solution some (1200/40)2 ≥ 103 times.
More importantly, all the deposits are suspended upon the pillars (Fig. 14.5c, f, i),
the residual R6G is arranged in complex forms or agglomerates that wrap the pillars,
connecting them one to the other, without touching the bottom of the substrate.
Fluorescent images in Fig. 14.7 would prove that identification of the residue as R6G
is correct, and it is not instead constituted by debris or other refuses. The intensity
of fluorescence is directly proportional to the quantity of substance deposited upon



516 F. Gentile et al.

Fig. 14.7 SEM images of a Rhodamine deposit upon evaporation (a, b, d), and confocal
fluorescence fingerprint of the residue (c). Published with permission ACS Appl. Mat. Interf. 4,
3213 (2012)

the pillars, and thus in the central part of the substrate the amount of R6G is higher
and it diminishes as we move towards the sides. Notice the high degree of precision
whereby the intensity of the signal of fluorescence relates to the mass of the solute
distributed on the substrate.
Micro-Raman mapping measurements (Figs. 14.8 and 14.9) were performed to fur-
ther substantiate the method. While conventional Raman intensity is directly propor-
tional to the number of molecules probed, in the case of SERS, if the molecules are
not in close proximity of the nano-metallic substrate ensuring the enhancement of the
electric field, the resulting spectral amplitude would dramatically drop off, and thus,
the thicker the layer of Rhodamine, paradoxically the lower the signal. This would
explain why the intensity signals in some regions of the diagrams are not consistent
with SEM or fluorescence imaging. The mapping analysis was performed by refer-
ring the band centred at 1650cm−1. In the figures, mapping images in surface mode
are overlapped onto the scanning area and this would clearly highlight the variation
of intensity as a function of the position within the area of interest.
Fig. 14.8 shows SEM and Raman measurements for an initial concentration of 10−18

M and, in the present case, the Raman signal comes prevalently from the central region
of the deposit, as expected. Figure. 14.9 completes a sequence comprising SEM,
confocal fluorescence and Raman imaging of the excess of R6G upon evaporation.
Numerical simulations were also performed for three specific super-hydrophobic
surfaces: i) pillars showing a metallic rough top surface, iii) metallic cone with grating
coupler embedded in a super-hydrophobic surface and, finally, ii) matrix of metallic
dimers fabricated on pillars heads. These structures were indeed implemented inside
super-hydrophobic surfaces as shown by the SEM images in Fig. 14.10.
For all the three configurations the gold material was described through the Drude-
Lorentz model [46]. Convergence analysis of the results was conducted for all the
simulations. Fig. 14.11 illustrates the simulation results of a golden pillar with a top
average rough surface of 3 nm. It corresponds to the SEM image in Fig. 14.10a. In
particular, Fig. 14.11a shows the meshed structure. Sub-nanometer resolution was
chosen to describe the surface roughness.
Figure 14.11b is the field distribution ought to the local roughness when a source
wavelength of 633 nm impinges normally on the head of the pillar. The field enhance-
ment reaches a value of about 80 with respect to the source amplitude of 1V/m.
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Fig. 14.8 SEM images of a Rhodamine deposit upon evaporation (a, b), and Raman mapping
measurement of the residue (c, d). Initial concentration = 10−18 M. Published with permission
from ACS Appl. Mat. Interf. 4, 3213 (2012)

Figure 14.12 describes the numerical results when a golden cone with a coupling
grating is illuminated at different angles of incidence (see Fig. 14.10b). The source is a
linearly polarized wave with wavelength 633 nm while the geometrical characteristics
of the cone are: an height of 2.5μm, a radius of the base of 150 nm and a radius of
curvature at the apex of 5 nm. The periodicity of the grating is 359 nm while the
grove width is 180 nm. As expected, the grating improves the coupling between the
incoming radiation and the surface plasmon plaritons leading to a field at the apex
(5 nm off the apex) of the cone about 4 times higher than in case of no grating.
The last simulated device is a super-hydrophobic surface comprised of metallic pil-
lars having a matrix of metallic dimers antennas at their top face. In particular,
Fig. 14.13 shows the numerical results associated to the structure as in Fig. 14.10c.
Figure. 14.13a represents the mesh profile for a single dimer antenna. The chosen gap
was equal to 10 nm. Figure. 14.13b is the 3-dimensional field distribution on a single
structure when a matrix of dimers with periodicity around 600 nm in y direction and
800 nm in x direction was considered. The single gold antenna is 100 nm long (x
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Fig. 14.9 SEM image (a), confocal fluorescence fingerprint (b) and Raman mapping measurement
(c, d) of a Rhodamine deposit upon evaporation. Initial concentration = 10−18 M. Published with
permission from ACS Appl. Mat. Interf. 4, 3213 (2012)

Fig. 14.10 SEM images for three SHS configurations: a golden pillar showing a top rough surface,
b golden cone showing a coupling grating, c golden pillar with a matrix of dimers fabricated at its
top face

direction) , 60 nm wide (y direction) and 60 nm thick (z direction). Also in this case
the chosen source wavelength was 633 nm. The incoming field was directed along z
direction and linearly polarized along y direction (short axis of the dimer). The field
shows its maximum (around 20 V/m) at the edges of the antennas.
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Fig. 14.11 Numerical results of a golden pillar showing an average top roughness of 3 nm. a Mesh
resolution of the simulated structure. b Electric field distribution. The maximum field enhancement
is about 80

Fig. 14.12 Numerical results of a conical golden structure with grating coupler. a Scheme of the
device. b Electric field calculated 5 nm off the tip apex for two situations: grating and no grating.
The maximum value is found at about 30 incident angle when the grating is used. c and d electric
field distribution in proximity of the cone apex when no grating or grating is used, respectively. The
wavelength is 633 nm
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Fig. 14.13 Numerical results of a metal cylindrical structure with a matrix of dimers antennas at
its top. a Mesh resolution of a single dimer. The gap is 10 nm. b Electric field calculated on the
dimer. The wavelength is 633 nm with incident wave normal to the xy-plane and polarized along y
direction

14.5 Discussion

Treatment of cancer patients is greatly facilitated by detection of the cancer prior to
metastasis; nevertheless, the effective early detection of precancerous and neoplas-
tic lesions remains an elusive goal. Advanced clinical cancer imaging technologies,
including MRI (magnetic resonance imaging), PET (positron emission tomogra-
phy), C-T (computerized tomography) scans, or medical ultrasonography, do not
possess sufficient spatial resolution for early detection based on lesion anatomy
and are, besides, very expensive, and thus not accessible to large scale. An effec-
tive evaluation of malignancies may be instead addressed basing on their molecular
expression profiles. It is very well understood that blood contains a treasure trove
of biomarkers that could reflect the ongoing pathological state of tissues or organs.
Every cell in the body leaves a record of its physiological state in the products it
sheds to the blood, either as waste or as signals to neighbouring cells. This hidden
signature of diseases waits just to be decoded and revealed. In sight of this under-
standing, microbiologic, immunologic, and molecular analysis of tissue and cells
are becoming indispensable clinical platforms for rendering pathologic evaluation.
Collectively, these diagnostic modalities are critical for determining the appropriate
medical treatment. Conventional immunoassay methods, including enzyme-linked
immunosorbent assay (ELISA), fluorescence immunoassay, magnetic bead-based
electro chemi lumincence (ECL), chemiluminescence, liquid chromatograpy-mass
spectrometry (LC-MS) and immuno-polymerase chain reaction (PCR) assay allow
reliable protein detection. However, these approaches are yet to meet all require-
ments for point-of-care diagnosis which require the sensor to be rapid, operationally
simple, low cost and highly sensitive to address both levels of the biomarkers in
normal and cancer patient serum. In particular, the primary challenge that still waits
to be faced, is the severe dilution of the peptides of interest, being practically invis-
ible, at the early stages of diseases, to the majority of these technologies. And thus
blood serum is not yet used as a routinely screening procedure. To date, and rather
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surprisingly, surgical biopsy remains the ‘gold standard’ for the clinical assessment
of the pathologic basis of disease. The morphologic presentation of tissue specimens
continues to be the backbone of diagnostic pathology; stills, this practice inherently
suffers from being predominately a qualitative art. The quality of diagnoses is still
entrusted with the pathologist’s experience and knowledge.
The past decade has seen tremendous progress in the development of original strate-
gies, technologies, or both, that promise to overcome the limitations discussed above.
These include (i) the use of super-hydrophobicity for biological sample handling and
manipulation; (ii) the analysis of molecules, bio molecules or individual peptides
using mass spectrometry, Raman or other spectroscopies; (iii) micro and nano scale
devices with advanced sensing capabilities, and especially SERS devices. Although,
individually, the technologies above fostered important changes and progresses, the
latter were mostly limited to their specific, and often limited, fields of application.
The major advance, here, is that at least three different technologies are conveyed
into a single platform. From the combination of (i) to (iii) (and particularly from the
introduction of super hydrophobic devices), new properties and opportunities arise.
Biology does a lot with a little. Learning from nature, and inspired by the lotus
effect, we developed a new nanotechnology that, mimicking the morphology of the
lotus leaf, offer realistic possibilities to diagnosis tumours at their early stage. Our
bio-devices are hybrid systems that incorporate hierarchically features at the micro-
and nano- scales. On account of their multi scale nature, they permit to transporting
target molecules in extremely dilute solutions to nano plasmonic sensors, surpassing
the impractical timescales that these devices typically suffer from. In tests with
rhodamine molecules, we found that these devices provide concentration factor of
several orders of magnitude over a conventional, flat plasmonic substrate, and in
fact we could detect molecules in the dramatically low concentration range of 10−18

M. Beyond bare numbers, this scheme provides the capability of localization and
immobilization of molecules where and, possibly, when we want. And this is the
result of an unprecedented blend of physics and chemistry, for the fabrication of the
surfaces, and mathematics, for the correct design of these surfaces.
Still, certain problems remain unsolved, including how to bind the target bio-
molecules to the sensor surface, what factors determine the probability of binding, or
how to deplete the solution of interest from abundant, interfering proteins. A detailed
investigation of the droplet-collapsing process may provide clues to the first two
questions. The integration, optimization and assessment of high tech bio/chemical
procedures for separation from serum, purification, segmentation and enrichment of
individual biomarkers, using methods that involve, for example, SISCAPA (stable
isotope standards and capture by anti-peptide antibodies) procedures, or nano porous
silicon filters, would address the third node. Again, the correct integration of pio-
neering (nano) technologies and biological and proteomic methods would boost the
development of bio-sensors with exceptional sensibility and selectivity.
The single detection issue is a worthwhile aim in itself, nevertheless the introduction
of super hydrophobicity in life sciences opens up a number of different applications
and opportunities. Micro-drops provide environmental characteristics which are dif-
ficult to obtain otherwise. Using these conditions to investigate life processes affords
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opportunities for discovery and development of applications which enhance research
and the probability for pathfinding mechanisms in life processes. The physics of
drops, where gravity has minor effects, and interfacial forces dominate over volume,
affords a new window through which to observe life processes. It is a probe which
can reveal novel mechanisms that are fundamental to cell processes, disease process,
and the adaptation of living systems to changes in physical forces.
Moreover, SHSs provide an opportunity to better understand interfacial phenomena,
such as the wetting and spreading of immiscible liquids or the spreading of fluid
across a solid surface. Given the sizes of interest, which are small, wetting deter-
mines the configuration and location of fluid interfaces, thus greatly influencing, if
not dominating, the behavior of multiphase fluid systems. Phenomena, processes and
procedures that may be investigated in this context include cell culture, formation
and stability of nanoemulsions, transportation phenomena, self-organization phe-
nomena, advancement of analytical devices, protein crystal growth, formation and
organization.

14.6 Conclusion

On account of the intrinsic limitations of conventional bio photonic devices, a novel
procedure was conceived at the forefront of SERS and superhydrophobicity. Silicon
substrates were conveniently patterned to include regular lattices of micro pillars,
while the top of the pillars was further modified to incorporate silver nanograins
assemblies. On account of its micro structure the substrate is superhydrophobic,
while, on account of the silver grains, it reveals superior SERS capabilities. The
micro and nano scales were conveniently combined to yield a family of bio sensors
featuring new functions that can boost the detection of few molecules. The substrates
were correctly designed on the ground of mathematical models, therefore nanotech-
nologies were employed to fabricate these devices. Different tests with R6G solutions
showed that (i) a diluted solution can be largely concentrated, (ii) the solute can be
conveyed towards the active sites of the device with high precision and very short
times, (iii) few molecules can be detected and recognized. Using this pioneering
procedure, an access is provided to precious information that are otherwise inac-
cessible with conventional methods. The major application of this technology is the
early detection of cancers or other pathologies, in these regards further investigations
and the integration with assessed biological and proteomic methods are necessary.
Nevertheless, the door to a new frontier for the treatment of cancers is open up.
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Chapter 15
Cooperative Effects in Plasmonics

Vitaliy N. Pustovit and Tigran V. Shahbazyan

Abstract In this chapter, we present our results on cooperative effects in hybrid
plasmonic system involving a large number of fluorophores, e.g., dye molecules or
semiconductor quantum dots, situated near a plasmonic nanostructure, e.g., metal
nanoparticle. The optical properties of such complex systems are governed by the
plasmon-mediated coupling between the fluorophores that leads to drastic changes
in the system optical properties. Specifically, we consider in some detail two man-
ifestations of plasmon-assisted cooperative behavior near a spherical nanoparticle:
(a) superradiance by an ensemble of emitters and (b) cooperative energy transfer
from an ensemble of donors to an acceptor.

Keywords Plasmon · Superradiance · Cooperative effects · Energy transfer

15.1 Plasmon-Mediated Superradiance Near Metal
Nanostructures

15.1.1 Introduction

Superradiance of an ensemble of dipoles confined within a limited region in space
has been discovered in the pioneering work by Dicke [1]. The underlying physical
mechanism can be described as follows. Suppose that a large number, N , of dipoles
with frequency ω0 are confined in a volume with characteristic size L much smaller
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than the radiation wavelength λ0 = 2π/ω0. Then radiation of the ensemble is a
cooperative process in which the emission of a photon is accompanied by virtual
photon exchange between individual emitters. This near field radiative coupling
between the dipoles leads to formation of new system eigenstates, each comprised
of all individual dipoles. The eigenstates with angular momentum l = 1 that are
coupled to far field are superradiant, i.e., their radiative lifetimes are very short,
∪τ/N , where τ is radiative lifetime of an individual dipole; the remaining states are
subradiant with much longer decay times, ∪τ(λ0/L)2 ≈ τ .

Since the appearance of Dicke paper, cooperative effects based on Dicke radiative
coupling mechanism have been extensively studied in atomic and semiconductor
systems (see, e.g., reviews in Refs. [2–4]). Two different decay times corresponding
to superradiant and subradiant states were observed in a system of two laser-trapped
ions [5] and, more recently, in laterally arranged quantum dots with sizes randomly
distributed in a narrow interval [6]. In the later case, suparradiance takes place from an
ensemble of emitters with weak disorder in excitation energies [7, 8]. Other examples
of cooperative behavior analogous to the Dicke effect include, e.g., electron tunneling
through a system of quantum dots [9, 10] and spontaneous phonon emission by
coupled quantum dots [4, 11].

Recently, we have extended the Dicke effect to plasmonic systems comprised of N
dipoles located in the vicinity of a metal nanostructure, e.g., metal nanoparticle (NP),
supporting localized surface plasmon (SP) [12, 13]. In such systems, the dominant
coupling mechanism between dipoles is plasmonic rather than radiative, i.e., it is
based on virtual plasmon exchange (see Fig. 15.1). This plasmonic coupling leads to
formation of collective states, similar to Dicke superradiant states, which dominate
photon emission. Furthermore, the nanostructure acts as a hub that couples nearby
and remote dipoles with about equal strength and hence provides a more efficient
hybridization of dipoles as compared to radiative coupling. In general, since the
dipoles orientations in space are non-uniform, there are three superradiant states
with total angular momentum l = 1, each having radiative decay rate ∪NΓ r/3,
where Γ r is radiative decay rate of a single dipole near a nanostructure (i.e., with
plasmon enhancement) [12, 13].

(a) (b)

Fig. 15.1 Radiative coupling of emitters in free space (a), and plasmonic coupling of emitters near
a metal nanoparticle (b)
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The principal difference between plasmonic and usual (photonic) dipole coupling
stems from the presence of non-radiative energy transfer between the dipoles and
the nanostructure in the former case. Let us first outline its role for the case of
a single dipole near metal NP. When an excited emitter is located close to metal
surface, its energy can be transferred to optically inactive excitations in the metal
and eventually dissipated (Ohmic losses). This is described by the non-radiative
decay rate, Γ nr ∼ d−3, where d is the dipole–surface separation [14]. Note that very
close to metal surface (∪1 nm), this dependence changes to ∼d−4 due to surface-
assisted generation of electron–hole pairs out of the Fermi sea [15, 16], although the
non-local effects can change this behavior significantly [17]. As a result, the radiation
of a coupled dipole–NP system is governed by a competition between non-radiative
losses and plasmon enhancement [18] that determines system quantum efficiency,
Q = Γ r/Γ , where Γ = Γ r +Γ nr is the full decay rate. Indeed, the radiated energy
is W = (�kc/2)Q, k and c being wave vector and speed of light, and its distance
dependence follows that of Q. Namely, with decreasing d, the emission first increases
due to the plasmon enhancement, and then, at several nm from metal surface, it is
quenched due to the suppression of Q by non-radiative losses. Both enhancement and
quenching were observed in recent experiments on fluorescing molecules attached
to a metal NP [19–23], and, not too close to NP surface, the distance dependence of
single-molecule fluorescence [21, 22] was found in excellent agreement with single
dipole–NP models [24–27].

When radiation takes place from an ensemble of emitters near a metal nanos-
tructure, there are two distinct types of plasmon-induced couplings between the
emitters. The first is plasmon-enhanced radiative coupling, described by radiative
decay matrix Γ r

jk , where indexes j, k = 1, . . . , N refer to emitters, that is a straight-
forward extension of Dicke radiative coupling obtained by incorporating SP local
field. Correspondingly, the eigenstates of Γ r

jk are superradiant and subradiant states
characterized by the strength of their coupling to radiation field. In the ideal case of
“point sample,” i.e., kL ∝ 1, the subradiant decay rates are negligibly small and Γ r

jk
essentially has just three non-zero eigenvalues, corresponding to superradiant decay
rates, each scaling with N as ∪NΓ r/3 [12, 13].

The second coupling mechanism is non-radiative energy transfer between dipoles
that takes place in two steps: an excited dipole first transfers its energy to the plas-
mons in a nanostructure via its near field, and then this energy is transferred to
another dipole. This process involves plasmons with all angular momenta l, and it
is described by non-radiative decay matrix, Γ nr

jk . Importantly, due to plasmons with
angular momenta l > 1, the eigenstates of full decay matrix, Γ jk = Γ r

jk + Γ nr
jk , are

not superradiant and subradiant states, but their admixtures. Close to metal surface
where non-radiative processes are dominant, Γ nr

jk prevails over Γ r
jk , and no cooper-

ative behavior is expected. However, when dipoles are separated from the surface by
more than several nm, the coupling takes place primarily via dipole (l = 1) SP and
so superradiance remains intact.

This observation is confirmed by numerical calculation of eigenvalues of Γ jk , i.e.,
full decay rates of system eigenstates, for ensemble of N dipoles near a spherical
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NP [12, 13]. Namely, in a wide range of dipole–NP distances, three eigenvalues
corresponding to superradiant states are found to be well separated from the rest and
scaled with N according to ∪NΓ/3. Since the radiative decay rate of superradiant
states also scales as ∪NΓ r/3, their quantum efficiencies essentially coincide with
Q of single dipole–NP system. Therefore, in the cooperative regime, the ensemble
quantum efficiency, Qens , is thrice that of the single dipole–NP system,

Qens � 3Q (15.1)

regardless of the ensemble size. Thus, the total radiated energy of the ensemble,
Wens = (�kc/2)Qens , is reduced to just 3W . The remaining energy is trapped by
N − 3 subradiant states and eventually dissipated in the metal or radiated with a
much slower rate than that of a single emiter near NP. On the other hand, at several
nm from metal surface, cooperative behavior is destroyed by higher l plasmons, i.e.,
all system eigenstates have comparable quantum efficiencies so that Qens ∼ N .
Therefore, with increasing distance to surface, Qens , first exhibits a sharp rise with
its slope ∼ N , and then switches to a more slower 3Q dependence.

An obvious application of plasmon-mediated cooperative emission is related to
fluorescence of a large but uncertain number of molecules at some average distances
from metal nanostructure. For single-molecule case, fluorescence intensity variation
with distance was proposed to serve as nanoscopic ruler [28] owing to the excellent
agreement of measured distance dependences with single-dipole models [24–27]. In
the case of an ensemble, the ambiguities caused by fluctuations of molecules numbers
or their separations from the metal surface prevent, in general, the determination of
system characteristics from fluorescence variations. However, in cooperative regime,
these ambiguities are removed, and fluorescence intensity is essentially determined
by Eq. (15.1) with distance-averaged single-molecule quantum efficiency.

Indications of a crossover from regular to cooperative regime were reported in
Ref. [20] and, more recently, in Ref. [30]. Plasmon-mediated coupling between two
dipoles near plasmonic nanowaveguides was studied in Ref. [31]. Coherent emis-
sion of excitons in disordered semiconductors due to coupling to surface plasmon-
polaritons in metal films was reported in Ref. [32].

15.1.2 Plasmonic Coupling of Radiating Dipoles

We consider a system of N emitters, such as fluorescing molecules or quantum dots,
with dipole moments d j = d j e j , where d j and e j are magnitude and orientation,
respectively, located at positions r j near a metal NP with radius R. Throughout this
chapter, we assume that characteristic size of the system (NP + dipoles) is much
smaller than the radiation wavelength, |r j − rk | ≡ |r jk | ∝ λ0. We also assume that
emission events by individual molecules are uncorrelated, i.e., after excitation each
molecule relaxes through its own internal nonradiative transitions before emitting
a photon. Then the ensemble emission can be described within classical approach
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by treating the dipoles as identical Lorentz oscillators with random initial phases
driven by the common electric field. The frequency-dependent electric field, E(r, ω),
satisfies Maxwell’s equation

ε(r, ω)ω2

c2 E(r, ω) − ∇ × ∇ × E(r, ω) = −4π iω

c2 j(r, ω), (15.2)

where dielectric permittivity ε(r, ω) is that of the metal inside NP, ε(ω) for r < R,
and that of outside dielectric, ε0 for r > R. Here j(r, ω) is the Laplace transform of
dipole current,

j(r, ω) = −i

∞∫
0

eiωt j(t)dt, j(t) = q
∑

j

ḋ j (t)e jδ(r − r j ), (15.3)

where dipole displacements d j (t) are driven by the common electric field at dipoles’
positions (dot stands for time derivative)

d̈ j + ω2
0d j = q

m
E(r j , t) · e j (15.4)

with the initial conditions (at t = 0): d j = d0e j sin ϕ j , ḋ j = ω0d0e j cos ϕ j , and
E = 0. Hereafter, ω0, q, m, and ϕ j are oscillators’ excitation frequency, charge, mass,
and initial phase, respectively (ω0 = �/md2

0 ). Closed equations for d j (ω) can be
obtained by using Laplace transform of Eq. (15.4) with the above initial conditions
and eliminating E from Eqs. (15.2) and (15.4). Laplace transform of Eq. (15.2) has
the form

ε(r, ω)ω2

c2 E(r, ω) − ∇ × ∇ × E(r, ω) = 4πq

c2

∑
j

δ(r − r j )
[
iω0d0e j cos ϕ j

−ω2d j (ω)e j + ωd0e j sin ϕ j
]
.

(15.5)

At this time, it is convenient to introduce normalized displacements

v j (ω) = d j (ω)/d0 − i
(
ω0/ω

2
)

cos ϕ j − ω−1 sin ϕ j (15.6)

and the solution of Eq. (15.5) reads

E(r, ω) = 4πd0qω2

c2

∑
j

G(r, r j , ω) · e jv j , (15.7)
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where G(r, r√, ω) is the electric field Green diadic in the presence of NP. From
Eq. (15.4), for photon frequency close to dipoles frequency, ω ∈ ω0, we obtain a
coupled system of equations for normalized displacements,

∑
k

[
(ω0 − ω)δ jk + Σ jk

]
vk = −i

2
e−iϕ j , (15.8)

where Σ jk = Δ jk − i
2Γ jk is the complex self-energy matrix, given by

Σ jk(ω) = −2πq2ω0

mc2 e j · G(r j , rk;ω) · ek . (15.9)

The system Eq. (15.8) determines eigenstates of the ensemble of N dipoles in com-
mon radiation and plasmon field, while complex eigenvalues of the self-energy matrix
give eigenstates frequency shifts with respect to ω0 and their decay rates. In the
absence of NP, real and imaginary parts of the self-energy matrix are dipole-dipole
interaction and radiation coupling between dipoles j and k, given by (in lowest order
in kr jk)

Δ0
jk = 3Γ r

0

4(kr jk)3

[
(e j · ek) − 3(e j · r jk)(ek · r jk)

r2
jk

]
, Γ 0

jk = Γ r
0 e j · ek, (15.10)

where

Γ r
0 = 2kq2ω0

3mc2 = 2μ2k3

3�ε0
, (15.11)

is the radiative decay rate of a dipole in a dielectric medium, μ = qd0 is the dipole
moment, and k = ≥

ε0ω/c is the wave vector. The eigenstates of photonic decay
matrix Γ 0

jk are superradiant and subradiant states. In the case when all dipoles are
aligned, there is only one superradiant state that couples to radiation field with decay
rate NΓ r

0 , while for general dipole orientations there are three superradiant states
with angular momentum l = 1. Note that in the longwave approximation used here,
the decay rates of subradiant states vanish (“point sample”).

In the presence of metal nanostructure, the system eigenstates are determined by
the full Green diadic in self-energy matrix Eq. (15.9). In the case of spherical NP, the
longwave approximation for G(r j , rk;ω) can be easily found [25, 27]. The details
are given in the Appendix, and the result reads

Σ jk(ω) = Δ0
jk − 3Γ r

0

4k3

∑
l

αl T
(l)
jk − i

2
Γ r

0

[
(e j · ek) − α1

[
K (1)

jk + h.c.
] + |α1|2T (1)

jk

]
,

(15.12)
where

αl(ω) = R2l+1 [ε(ω) − ε0]

ε(ω) + (1 + 1/ l)ε0
(15.13)
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is NP l-pole polarizability. The matrices K (l)
jk and T (l)

jk are defined as

K (l)
jk = 4π

2l + 1

l∑
m=−l

[e j · ψlm(r j )][ek · χ∗
lm(rk)], (15.14)

T (l)
jk = 4π

2l + 1

l∑
m=−l

[e j · ψlm(r j )][ek · ψ∗
lm(rk)], (15.15)

where independent basis functions χlm and ψlm are given by

ψlm(r) = ∇
[

Ylm(r̂)
rl+1

]
, χlm(r) = ∇

[
rlYlm(r̂)

]
, (15.16)

and Ylm(r̂) are spherical harmonics. For l = 1, these matrices can be evaluated as

K (1)
jk = 1

r3
j

[
(e j · ek) − 3(e j · r̂ j )(r̂ j · ek)

]
, (15.17)

T (1)
jk = 1

r3
j r3

k

[
(e j · ek) − 3(e j · r̂ j )(ek · r̂ j ) (15.18)

− 3(e j · r̂k)(ek · r̂k) + 9(ek · r̂k)(e j · r̂ j )(r̂ j · r̂k)
]
,

where we have used identities

1∑
m=−1

ψ1m(rk)Y
∗
1m(r̂) = 3

4πr3
k

[
r̂ − 3r̂k(r̂ · r̂k)

]
,

1∑
m=−1

χ1m(rk)Y
∗
1m(r̂) = 3

4π
r̂. (15.19)

For dipoles oriented normally with respect to NP surface (e j = r̂ j ), we obtain

K (1)
jk = − 2

r3
j

(e j · ek), T (1)
jk = 4

r3
j r3

k

(e j · ek), (15.20)

and for parallel orientation (e j · r̂ j = 0), we similarly get

K (1)
jk = 1

r3
j

(e j · ek), T (1)
jk = 1

r3
j r3

k

(e j · ek). (15.21)

The decay matrix, Γ jk = −2ImΣ jk , can be decomposed into radiative and
nonradiative terms, Γ jk = Γ r

jk + Γ nr
jk , as follows
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Γ r
jk = Γ r

0

[
(e j · ek) − α√

1

[
K (1)

jk + h.c.
] + |α1|2T (1)

jk

]
,

Γ nr
jk = 3Γ r

0

2k3

∑
l

α√√
l T (l)

jk . (15.22)

The diagonal elements Γ r
j j and Γ nr

j j describe, respectively, plasmon-enhanced
radiative decay rate of an isolated dipole near a NP, and nonradiative transfer of its
energy to electronic excitations in metal. The non-diagonal elements of Γ r

jk describe
plasmon-enhanced radiative coupling that generalizes the Dicke coupling respon-
sible for cooperative emission by incorporating local field enhancement into near
field radiative coupling. On the other hand, the non-diagonal terms in Γ nr

jk describe
plasmon-mediated near field coupling between the dipoles. The latter coupling is
absent in the photonic Dicke effect, but it plays important role in the plasmonic
Dicke effect, as we will see below.

Since the numerical calculations below are carried for normal dipoles orientations,
we provide here the corresponding expressions for self-energy matrix Σ jk . The decay
matrix has the form

Γ r
jk = Γ r

0

[
1 + 2α√

1

(
1

r3
j

+ 1

r3
k

)
+ 4|α1|2

r3
j r3

k

]
cos γ jk,

Γ nr
jk = 3Γ r

0

2k3

∑
l

α√√
l (l + 1)2

rl+2
j r l+2

k

Pl(cos γ jk), (15.23)

where Pl is Legendre polynomial and γ jk is the angle between positions of dipoles j
and k measured from NP center (i.e., cos γ jk = e j · ek). The real part of self-energy
matrix has the form

Δ jk = Δ0
jk + Γ r

0

[
α√√

1

(
1

r3
j

+ 1

r3
k

)
cos γ jk − 3

4k3

∑
l

α√
l(l + 1)2

rl+2
j r l+2

k

Pl(cos γ jk)

]
,

(15.24)
where the second term describes NP-induced interactions. The latter in turn consists
of two terms, first coming from plasmon-enhanced radiative coupling and second
coming from non-radiative coupling.

Both NP-induced terms in Eq. (15.24) are weaker than their counterparts in Γ jk ,
while having same symmetry, and hence are not expected to significantly alter the
eigenstates. On the other hand, the dipole–dipole interaction term, Eq. (15.10), has
different symmetry and can become large for two dipoles in a close proximity to each
other. The effect of interactions on cooperative emission is studied in Sect. 15.2.4.
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15.1.3 Radiated Energy of an Ensemble of Dipoles
Near Nanoparticle

The radiated energy of an ensemble of dipoles in the unit frequency interval is
obtained by integrating the far field (r → ∞) spectral intensity over solid angle [33]

dW (ω)

dω
= cε0

4π2

∫
|E(r, ω)|2 r2dΩ, (15.25)

and then averaging the result over initial random phases of individual dipoles, ϕ j .
The electric field E(r, ω) is given by Eq. (15.7), where v j is the solution of Eq. (15.4).
Then the energy density takes the form

dW

dω
= 4r2ε0μ

2ω4
0

c3

∑
jk

∫
dΩv jv

∗
k

[
G(r, r j ) · e j

] · [
G∗(r, rk) · ek

]
. (15.26)

The Green dyadic consists of contributions from free space and scattered parts,
G(r, r j , ω) = G0(r, r j , ω) + Gs(r, r j , ω), and can be replaced by its far field
asymptotics (see Appendix),

Gμν(r, r j ) = eikr

4πr

[
δμν − 4π

3

∑
m

r̂μY1m(r̂)χν∗
1m(r j )

− 4π

3
α̃1r

∑
m

[∞μY1m(r̂)
]
ψν∗

1m(r j )
]
, (15.27)

where the first two terms come from the free space part, G0, and the last term comes
from the scattered part, Gs . The angular integral in Eq. (15.25) can be performed
using the relations Eq. (15.19). The free space contribution yields

4πr2
∫

dΩ
[
G0(r, r j ) · e j

] · [
G0∗(r, rk) · ek

] = 2

3
(e j · ek). (15.28)

The other integrals in the product Eq. (15.26) are evaluated using the relations

(
4πr

3

)2 ∑
mm√

[
ψ∗

1m(r j ) · e j
][

ψ1m√(rk) · ek
] ∫

dΩ

4π
∇Y1m(r̂) · ∇Y ∗

1m√(r̂) = 2

3
T (1)

jk ,

(15.29)
and

4πr

3

∑
m

∫
dΩ

4π

[
ek · ∇Y1m(r̂)

][
ψ∗

1m(r j ) · e j
] = 2

3
K (1)

jk , (15.30)
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yielding

∫
dΩ

4π

[
G(r, r j ) · e j

] · [
G∗(r, rk) · ek

]
(15.31)

= 1

(4πr)2

2

3

[
(e j · ek) − α1 K (1)

jk − α∗
1 K (1)

k j + |α1|2T (1)
jk

]
.

The energy density then takes the form

dW (ω)

dω
=

≥
ε0�ω0

π

∑
jk

v jv
∗
k A jk, (15.32)

where A jk = Γ r
0

[
(e j · ek) − α̃1 K (1)

jk − α̃∗
1 K (1)

k j + |α̃1|2T (1)
jk

]
. Matrix A jk is not

symmetrical, however only its symmetrical part, equal to Γ r
jk , contributes to the final

expression. The solution of Eq. (15.8) can be presented as

v j = − i

2

∑
k

[
1

ω0 − ω + Σ̂

]
jk

e−iϕk , (15.33)

and after averaging out over the initial random phases ϕ j , we finally obtain

dW (ω)

dω
= �kc

4π
Tr

[
1

ω − ω0 − Σ̂†
Γ̂ r 1

ω − ω0 − Σ̂

]
, (15.34)

where trace is taken over the indexes ( jk).

15.1.4 Discussion and Numerical Results

We consider a common situation when emitters, e.g., fluorescent molecules or
quantum dots, are attached to NP surface via flexible linkers. Typically, fluorophores
bound to linker molecules have certain orientation of their dipole moments with
respect to NP surface and, due to repulsive interactions, their angular positions are
ordered rather then random [20]. Therefore, we assume here that angular positions of
emitters coincide with the sites of spherical lattice, such as fullerenes. Specifically,
we perform our numerical simulations for C20, C60, and C80 configurations for
respective number N of dipoles; we also study the effect of deviations from ideal
lattice. We find that not too close to metal surface, the system eigenstates fall into
three groups, each dominated by a particular coupling mechanism: three superradiant
states dominated by plasmon-enhanced radiative coupling, one state dominated by
direct dipole–dipole interactions, and the rest dominated by non-radiative coupling
via NP. Importantly, superradiant states are not significantly affected by dipole-dipole
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interactions whose main effect is a large frequency shift of subradiant state with the
smallest decay rate.

Let us start with a single dipole located at r0 near a metal NP. In this case, the
self-energy is a complex number, Σ = Δ − i

2Γ , where Δ = Δ j j and Γ = Γ r +
Γ nr = Γ j j are single-dipole energy shift and decay rate, respectively. For normal
(s = ≡) and parallel (s = ≤) dipole orientations, using Eqs. (15.20) and (15.21),
these are given by [24]

Γ r = Γ r
0

∣∣∣∣∣1 + asα1

r3
0

∣∣∣∣∣
2

, Γ nr = 3Γ r
0

2k3

∑
l

b(l)
s α√√

l

r2l+4
0

,

Δ = Γ r
0

(
asα

√√
1

r3
0

− 3

4k3

∑
l

b(l)
s α√

l

r2l+4
0

)
, (15.35)

with a≡ = 2, b(l)
≡ = (l + 1)2 and a≤ = −1, b(l)

≤ = l(l + 1)/2. Note that both
terms in Δ are smaller than their counterparts Γ r and Γ nr due to plasmon pole in the
imaginary part of NP polarizability α√√

l . Radiated energy of single dipole–NP system,
obtained by frequency integration of Eq. (15.34), is given by

W = �kc

2

Γ r

Γ + Γ nr
0

= �kc

2
Q, (15.36)

where we included the intrinsic molecular relaxation rate, Γ nr
0 , into quantum

efficiency Q. For N uncoupled dipoles, i.e., for purely diagonalΣ jk = δ jk
(
Δ − i

2Γ
)
,

Eq. (15.34) decouples into sum of N independent terms, yielding Wens = N W .
In the presence of inter-dipole coupling, the system eigenstates, |J 〉, are those

of the self-energy matrix, Eq. (15.12). The corresponding eigenvalues are complex,
Σ̂ |J 〉 = (ΔJ − i

2ΓJ )|J 〉, where ΔJ is frequency shift of collective eigenstate |J 〉
relative to ω0 and ΓJ is its decay rate. The molecular relaxation can be accounted
for by adding to Σ jk a diagonal term, − i

2δ jkΓ
nr

0 . Then, after frequency integration
of Eq. (15.34), the ensemble radiated energy takes the form

Wens = �kc

2
Qens, Qens =

∑
J

Γ r
J

ΓJ + Γ nr
0

, (15.37)

where Γ r
J = ◦J |Γ̂ r |J 〉 is radiative decay rate of state |J 〉.

In the photonic Dicke effect, superradiant and subradiant states are eigenstates of
the radiative decay matrix Γ 0

jk obtained from the free space Green diadic. Similarly, in
the plasmonic Dicke effect, superradiant states are eigenstates of plasmon-enhanced
radiative decay matrix Γ r

jk . Let us illustrate the emergence of plasmon-mediated
superradiance for a simple case when all dipoles are at the same distance from NP
surface and are oriented normal or parallel to it. Then it is easy to see that the
corresponding decay matrix, Γ r

jk = Γ r e j · ek with Γ r given by Eq. (15.35), has just
three nonzero eigenvalues. Indeed, let us introduce new decay matrices as
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γ r
μν = NΓ r

3
Bμν, (15.38)

where

Bμν = 3

N

∑
j

eμ
j eν

j (15.39)

is 3 × 3 matrix in coordinate space with Tr B̂ = 3. It is easy to see that Tr
[
(Γ̂ r )n

] =
Tr

[
(γ̂ r )n

]
for any integer n, i.e., the N × N matrix Γ r

jk has only three non-zero
eigenvalues coinciding with those of matrix γ r

μν

Γ r
μ = NΓ r

3
λμ, (15.40)

where λμ ∪ 1 are eigenvalues of Bμν . Note that the decay rates of the remaining
N −3 subradiant states vanish in the long wave approximation used here; they acquire
finite values in the next order in (kr0)

2.
Let us turn to non-radiative coupling, described by matrix Γ nr

jk . Its diagonal ele-
ments, Γ nr

j j , describe nonradiative energy exchange between excited dipole and NP
plasmon modes with all angular momenta, as indicated by polarizabilities α√√

l in
Eq. (15.23). The non-diagonal elements of Γ nr

jk describe a process by which a plas-
mon nonradiatively excited in the NP by dipole k transfers its energy to another
dipole j . In general, due to high-l plasmons involved in nonradiative coupling, the
eigenstates of Γ nr

jk are different from those of plasmon-enhanced radiative coupling
Γ r

jk which contains only dipole (l = 1) plasmon mode. Therefore, the eigenstates of
full decay matrix Γ jk = Γ nr

jk + Γ nr
jk are not pure superradiant and subradiant states

but their admixtures. However, the high-l plasmon contribution to Γ nr
jk is significant

only at very small d [see, e.g., Eq. (15.23)] while for d larger than several nm Γ nr
jk

is dominated by the l = 1 term. In fact, in a wide range d, nonradiative coupling
between dipoles is mainly through the optically active dipole plasmon mode that
does not cause mixing between superradiant and subradiant states. Namely, it can
be easily seen from Eq. (15.23) that the eigenstates of the l = 1 term in Γ nr

jk are
the same as those of Γ r

jk so the corresponding eigenvalues are similarly given by
Γ nr

μ = (NΓ nr/3) λμ. Thus, the superradiant quantum efficiency

Qμ = Γ r
μ

Γμ + Γ nr
0

= Γ r

Γ + 3Γ nr
0 /Nλμ

(15.41)

only weakly depends on N . Therefore, the sum in Eq. (15.37) includes just three
terms, yielding
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Wens = �kc

2
Qens = �kc

2

3∑
μ=1

Γ r

Γ + 3Γ nr
0 /Nλμ

. (15.42)

For high-yield (small Γ nr
0 ) emitters, we obtain Eq. (15.1) and hence Wens ∈ 3W . In

contrast, the radiated power,

Pens = �kc

2

3∑
μ=1

QμΓ r
μ � N

(
�kc

2
QΓ r

)
= N P, (15.43)

scales with the ensemble size due to the shorter (by factor N/3) radiative lifetime of
superradiant states.

For low-yield emitters (large Γ nr
0 ), the relation Eq. (15.1) holds only approxi-

mately. However, it is evident from comparison of Eqs. (15.36) and (15.42) that here
the relative effect of internal relaxation is much weaker than for usual cooperative
emission. Numerical results for both high-yield and low-yield emitters are presented
below.

Let us now turn to the role of interactions between dipoles in the ensemble. Inter-
actions play critical role in cooperative emission since they introduce a disorder into
system energy spectrum by causing random shifts of individual dipole frequencies
[7, 8, 34]. In the conventional cooperative emission, the main disorder effect is to
split the narrow subradiant peak in the ensemble emission spectra [8]. In the pres-
ence of metal nanostructure, radiation of subradiant states is expected to be quenched
by much faster nonradiative losses in the metal. The crucial question is, however,
whether interactions between closely spaced individual dipoles can significantly alter
the structure of collective eigenstates. Below we present the results of our numerical
simulations of cooperative emission fully incorporating both direct and plasmon-
mediated interactions.

We consider an ensemble of N molecular dyes attached to an Ag spherical particle
with radius R = 20 nm via molecular linkers with approximately same length. The
system is embedded in aqueous solution with dielectric constant ε0 = 1.77, and
two types of dyes with quantum efficiencies q = 0.3 and q = 0.95 are used in
the calculations. A distinguishing feature of this system is a strong effect of inter-
actions on its geometry [20]. The flexible linker molecules hold the attached dyes
with certain orientation of their dipole moments, so that repulsive inter-molecule
interactions compel the dyes to form a spatially ordered structure on spherical sur-
face. In our simulations, the dyes with normal dipole orientations were located at
the sites of spherical lattice, specifically, fullerenes C20, C32, C60, and C80, and,
in some calculations, we included random deviations from the ideal lattice posi-
tions. The system eigenstates are found by numerical diagonalization of self-energy
matrix, Σ jk = Δ jk − i

2Γ jk , with its real and imaginary parts given by Eqs. (15.24)
and (15.23), respectively. Calculations were carried at the SP energy of 3.0 eV, the
size-dependent Landau damping was incorporated for all plasmon modes, and NP
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(a) (b) (c)

Fig. 15.2 Distribution of energy shifts for 20 dipoles in C20 configuration around Ag NP at several
distances to its surface

polarizabilities, Eq. (15.13), with angular momenta up to l = 30, were calculated
using the experimental bulk Ag complex dielectric function.

Figures 15.2 and 15.3 show distribution of real and imaginary parts of complex
eigenvalues of Σ jk for N = 20 molecules at the sites of C20 fullerene at three
different molecule-surface distances. The system spectrum represents several sets of
degenerate eigenvalues indicating a high degree of lattice symmetry. For all distances,

(a) (b) (c)

Fig. 15.3 Distribution of decay rates for 20 dipoles in C20 configuration around Ag NP at several
distances to its surface
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(a) (b) (c)

Fig. 15.4 Distribution of energy shifts for 20 dipoles in C20 configuration around Ag NP at several
average (with 10 % fluctuations) distances to its surface

the histograms show a single eigenvalue with a large positive energy shift (Fig. 15.2),
which corresponds to the direct dipole–dipole interaction between nearest-neighbor
molecules. On the other hand, there are three degenerate eigenvalues with the largest
decay rate, corresponding to predominantly superradiant states while the smaller
decay rates are those of predominantly subradiant states (Fig. 15.3). With increas-
ing distance, the mixing between superradiant and subradiant states decreases and,
for d = 30 nm, decay rates of all but three eigenstates nearly vanish; note that in
our approximation, pure subradiant states should have zero decay rate. Such behav-
ior is due to diminishing contribution of higher-l plasmons at larger distances (see
Eqs. (15.23) and (15.24)). Importantly, direct interactions between close molecules
result only in energy shift of subradiant states, without affecting superradiant states.
We therefore conclude that dipole–dipole interactions do not destroy cooperative
emission in plasmonic systems.

This main conclusion remains unchanged when fluctuations (up to 10 %) of mole-
cules positions in radial direction are included into simulations (Figs. 15.4 and 15.5).
The spatial disorder lifts lattice symmetry, so that superradiant states now have differ-
ent, however close, decay rates. Note that without interactions, i.e., when molecules
angular positions are completely random, the spread of superradiant decay rates is
considerably higher.

To elucidate the structure of collective states, we calculate the distance depen-
dencies of complex eigenvalues, ΔJ − i

2ΓJ , for C20, C60, and C80 configurations
of dyes, as shown in Figs. 15.6, 15.7, and 15.8, respectively. For C20 configuration
(Fig. 15.6), there are five sets of eigenvalues with three-, four-, four-, seven-, and
onefold degeneracies, in descending order of ΓJ magnitudes. Down to the distance
of d = 5 nm, the largest decay rates, corresponding to three predominantly superra-
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(a) (b) (c)

Fig. 15.5 Distribution of decay rates for 20 dipoles in C20 configuration around Ag NP at several
average (with 10 % fluctuations) distances to its surface

diant states, are well separated from the rest. The steep rise of ΓJ at small distances
is due to increasing contribution of high-l plasmon modes close to NP surface (see
Eqs. (15.23) and (15.24)). The interplay between various coupling mechanisms is
especially revealing when comparing the plots for ΔJ and ΓJ (curves for same
eigenvalue sets have similar patterns). By their d dependence, the eigenvalues fall
into three main groups. The superradiant states have the largest decay rate ΓJ for all
d and relatively small mainly positive frequency shift for d � R/2; these states are
dominated by plasmon-enhanced radiative coupling. The non-degenerate state with
large positive energy shift and smallest decay rate is dominated by direct nearest-
neighbor dipoles interaction; this state is least affected by the presence of NP and does
not participate in the emission. The third group of states with mostly negative ΔJ

and small ΓJ is dominated by nonradiative plasmon coupling. Closer to NP surface,
this coupling becomes dominant for all states due to high-l plasmons causing large
decay rates and negative energy shifts. Note that down to d � R/4, the admixture
between superradiant and subradiant modes is still relatively weak; below R/4, the
non-radiative coupling dominates the spectrum and the admixture is strong.

For larger ensembles, the eigenstates have similar structure, as illustrated in
Figs. 15.7 and 15.8 which show calculated eigenvalues for dipoles in C60 and C80
configurations, respectively. Importantly, even with decreasing distance between the
emitters in large ensembles, the dipole–dipole interactions still do not destroy coop-
erative emission. This can be understood from the following argument [8]. Mixing
of superradiant and subradiant states takes place if the interactions between them are
sufficiently strong. The latter requires that the electric field of a collective state is
strongly inhomogeneous in space since, e.g., subradiant states couple only weakly to
homogeneous field. On the other hand, such a field is comprised of individual fields
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(a)

(b)

Fig. 15.6 a Decay rates and b energy shifts versus distance for 20 dipoles in C20 configuration
around Ag NP. Each line corresponds to a system eigenstate and is similarly marked in both graphs.
The dash-dotted line corresponds to three degenerate superradiant states, the dashed line is the
darkest subradiant states dominated by dipole–dipole interactions, and solid lines correspond to the
rest of subradiant states

of all the constituent dipoles so the resulting field’s spatial fluctuations are weak if
no two dipoles approach too close to each other; i.e., deviations of nearest-neighbor
separations from their average, s̄ = L N−1/3, L being characteristic system size, are
small. However, if deviations from s̄ are large, i.e., two dipoles can be separated by
a much closer distance, s ∝ L N−1/3, thus causing a strong spatial field fluctuation,
then the eigenstates are no longer superradiant and subradiant states so that coop-
erative emission is destroyed. This argument was confirmed numerically here by
finding system eigenstates for both cases—dipoles on a spherical lattice with some
fluctuations (see Figs. 15.4 and 15.5), and a completely random angular distribution
with fixed dipole–NP distance with no minimal separation between two dipoles (not
shown). In the latter case, the absence of superradiant states was traced to configura-
tions with extremely close dipoles. Note, however, that with both radial and angular
distributions being random, these are rare events and for ensemble-averaged case
cooperative emission remains intact.
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(a)

(b)

Fig. 15.7 Same as in Fig. 15.6, but for 60 dipoles in C60 configuration

Another sharp contrast between plasmonic and photonic Dicke effects is the fate
of subradiant states. In the latter, the energy trapped in subradiant states is even-
tually radiated, albeit with a much slower rate, resulting in sharp spectral features
of emission spectrum [2, 3]. Instead, in plasmonic systems, the trapped energy is
dissipated in the NP and only a small fraction of total energy leaves the system via
superradiant states. Thus, the net effect of plasmonic Dicke effect is to drastically
reduce the emission as compared to same number of individual dipoles. Remarkably,
as the eigenvalues scale uniformly with N , the quantum efficiencies of superradiant
states are nearly independent of the ensemble size, leading to the simple relation
(15.1) that holds in the cooperative regime.

This is illustrated in Figs. 15.9 and 15.10, which show ensemble quantum efficien-
cies Qens (see Eq. (15.37)) for two types of dyes with quantum yields q = 0.95 and
0.3, respectively. Two regimes can be clearly distinguished in the distance depen-
dence of Qens : it first shows a sharp rise with its slope proportional to N (non-
cooperative regime) followed by a slower d dependence (cooperative regime). The
crossover between two regimes takes place at d � 5 nm due to diminished high-l
plasmons contribution to nonradiative coupling for larger distances. In the coopera-
tive regime, the precise behavior of Qens is affected by molecules’ quantum yield. For
high-q molecules, all Qens dependences collapse onto a single curve, Qens = 3Q,
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(a)

(b)

Fig. 15.8 Same as in Fig. 15.6, but for 80 dipoles in C80 configuration

Fig. 15.9 Fluorescence quan-
tum efficiency versus distance
for several ensembles of high-
yield emitters on spherical
lattices around AG NP
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Fig. 15.10 Fluorescence
quantum efficiency versus
distance for several ensembles
of low-yield emitters on
spherical lattices around AG
NP

while for low-q molecules, Qens shows a weak dependence on N . In both cases, this
behavior can be easily understood from Eq. (15.42). Indeed, for degenerate superra-
diant eigenvalues we have λμ = 1, and for large distances, as Γ → Γ r

0 , we obtain

Qens � 3

1 + 3(q−1 − 1)/N
, (15.44)

i.e., for large ensembles, the role of molecular quantum yield is diminished.

15.2 Resonance Energy Transfer Near Metal Nanostructures
Mediated by Surface Plasmons

15.2.1 Introduction

Efficient energy transfer at the nanoscale is one of the major goals in the rapidly
developing field of plasmonics. Fluorescence resonance energy transfer (FRET) [35,
36] between spatially separated donor and acceptor fluorophores, such as dye mole-
cules or semiconductor quantum dots (QD), underpins diverse phenomena in biol-
ogy, chemistry and physics. Among prominent example are photosynthesis, exciton
transfer in molecular aggregates, interaction between proteins [37, 38], and, more
recently, energy transfer between QDs and in QD–protein assemblies [39–41]. FRET
spectroscopy has been widely used, e.g., in studies of protein folding [42, 43], live
cell protein localization [44, 45], biosensing [46, 47], and light harvesting [48]. Dur-
ing past decade, significant advances were made in FRET enhancement and control
by placing molecules or QDs in microcavities [49–51] or near plasmonic materials
such as metal films and nanoparticles (NPs) [52–60]. While the Förster transfer is
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efficient only for relatively short distances ∪10 nm between a donor and an acceptor
[37], the plasmon-mediated energy transfer channels provided by NPs [29, 62–66],
metal films and waveguides [31, 65] or doped monolayer graphene [67] can lead to
a significant increase of FRET efficiency and range.

The efficiency of plasmon-mediated FRET between a donor and an acceptor
situated near a metal nanostructures is determined in a competition between the
plasmonic enhancement and the losses due to radiation and dissipation in metal.
Close to the metal surface, the dissipation largely prevails and only a fraction of
donor’s energy is transferred to the acceptor, while for intermediate distances the
transfer efficiency significantly exceeds Förster’s one [29, 62–66]. In a closely related
phenomenon of plasmon-enhanced fluorescence, quantum efficiency of a fluorophore
near a plasmonic nanostructure is determined by its distance to the metal surface,
d, and the measured fluorescence [20–23] shows that, with decreasing d, plasmonic
enhancement is replaced by quenching due to energy transfer to the metal [24, 25].
In a FRET configuration, an acceptor placed nearby will absorb some fraction of
excited donor fluorophore energy via three main channels: Förster channel due to
direct Coulomb interaction, non-radiative plasmon-mediated channel, and plasmon-
enhanced radiative channel, the latter being dominant for intermediate distances [66].
Note, however, that the enhancement of individual donor’s fluorescence will now
contribute to the losses in FRET which is thus determined by an intimate interplay
between transfer, radiation and dissipation channels [66].

Here we describe a highly efficient cooperative mechanism of energy transfer
from an ensemble of donors to acceptors near a plasmonic nanostructure that takes
advantage of the subtle balance between energy flow channels in the system. In a typi-
cal experimental setup, the energy transfer takes place from a large number of donors,
e.g., deposited on top of silica shell around gold or silver core, to acceptors attached
to NP surface via linker molecules. If the distance separating excited donors from
metal is not too small, so that dissipation is not the dominant channel, then donors’
coupling through NP plasmons gives rise to new system eigenstates—plasmonic
superradiant and subradiant states, which, in the presence of a NP, are considerably
more robust due to a strong plasmonic enhancement of radiative coupling [12, 13].
In this case, the energy transfer takes place from these collective states rather than
from many individual donors coupled to the NP. Although the energy stored in a
superradiant state is only a small fraction of the entire system energy, its large matrix
element with external electric fields, e.g., leads to a huge decay rate that scales with
the system size. In fact, in a similar manner, the large coupling of superradiant states
with the electric field of an acceptor spatially separated from donor layer ensures, as
we below demonstrate, a much more efficient plasmon-assisted FRET than from the
same number of individual donors.

On the other hand, the multitude of subradiant states which carry almost the
entire system energy are characterized by a much lower decay rate (radiative and
nonradiative) than individual donors coupled to a NP [12, 13]. This gives rise to
yet another plasmon-assisted FRET scenario that relies on the reduction of radiative
and dissipative losses that naturally occurs in cooperative regime. Indeed, as show
below, the FRET from plasmonic subradiant states is considerably larger than from
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individual donors and is comparable to FRET from superradiant states. These two
cooperative FRET mechanisms are easily distinguishable since they work in different
energy regions; the superadiant FRET is most efficient within the dipole (l = 1)
surface plasmon spectral band, while the subradiant states are formed due to plasmons
with higher angular momenta (l > 1), and so FRET takes place in higher energy
domain.

15.2.2 Energy Transfer from a Single Donor to an Acceptor
Near Plasmonic Nanostructure

We start by recalling the famous Förster’s formula for energy W F
ad transferred from

a donor to an acceptor [35–38]

W F
ad

Wd
= 9

8π

∫
dω

k4 fd(ω)σa(ω)
∣∣D0

ad

∣∣2
, (15.45)

where Wd is the donor’s radiated energy, fd(ω) is its spectral function, σa(ω) is
the acceptor’s absorption crosssection, D0

ad is the dipoles’ electromagnetic coupling
at distance rad and k is the wavevector of light. In the near field (krad ∝ 1), we
have D0

ad = qad/r3
ad (qad is the orientational factor) and FRET changes with dis-

tance as (rF/rad)6, where rF is Förster’s radius. In the far field (krad ≈ 1), FRET
is dominated by radiative coupling |D0

ad | ∼ k2/rad leading to weaker r−2
ad depen-

dence [38, 61]. Eq. (15.45) is derived from first-order transition probability under
the perturbation D0

ad .
For molecules near a plasmonic nanostructure, Eq. (15.45) must be modified. The

early model by Gersten and Nitzan [62, 63] and its extensions to planar and composite
systems [29, 64, 65] incorporate SP in the transition’s intermediate states, and thus
Eq. (15.45) still holds albeit with new coupling Dad which now includes plasmon-
mediated channels. This model, however, does not account consistently for neither
dissipation in metal nor plasmon-enhanced radiation channels and, as a result, yields
enormous (up to 105) FRET enhancement that contrasts sharply with the much more
modest (∪10) increase [53–56, 58–60] and even reduction [52, 57] of measured
RET rates.

Below we describe a unified model for FRET near metal nanostructures based
on the classical approach that accounts accurately for all energy flow channels in
the system [66]. We show that, in a wide parameter range, the dominant FRET
mechanism near a plasmonic nanostructure is plasmon-enhanced radiative transfer
(PERT) rather than nonradiative transfer. In the far field, a general formula for PERT
from remote donors to an acceptor near the metal surface is derived that extends
radiative FRET theory [38, 61] to plasmonic systems. In the near field, our numerical
calculations of FRET near Ag NP (see inset in Fig. 15.11) show that PERT is the
dominant mechanism here as well. Depending on system geometry, FRET can either
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(a)

(b)

Fig. 15.11 RET versus distance for R = 30 nm Ag NP is shown at θ = π/3 with (a) da = dd = d
and (b) da = 20 nm, dd = d using the full Eq. (15.61), the nonradiative (NR) channel only, Förster’s
transfer Eq. (15.45), and the Gersten–Nitzan (GN) model [62, 63]

be enhanced or reduced as compared to Förster’s transfer, consistent with experiment
[52–60].

We consider a donor and an acceptor near the surface of a metal NP (see inset
in Fig. 15.11) which are represented by pointlike dipoles located at r j with induced
moments p j (ω) = p j (ω)e j oriented along e j ( j = a, d). The dipoles are driven by
the common electric field,

p j (ω) = α j (ω)E(r j , ω) + δ jdp0
d(ω), (15.46)

where α j (ω) = α√
j (ω) + iα√√

j (ω) is complex polarizability assumed here isotropic,

p0
d(ω) = αd(ω)ed E0 is the donor’s initial dipole moment with some constant E0

depending on excitation, and δ jk is Kroniker’s symbol. The electric field E is, in
turn, the solution of Maxwell’s equation with dipole sources [33]:
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E(r, ω) = 4πω2

c2

∑
j

G(r, r j ;ω) · p j (ω), (15.47)

where G(r, r√;ω) is Maxwell’s equation Green’s dyadic, satisfying ∇ × ∇ × Ĝ −
ε(r, ω)(ω/c)2Ĝ = Î, and ε(r, ω) equals metal permittivity, ε(ω), inside the metal
region, and that of the outside medium, ε0, otherwise. The quantity of interest is
energy absorbed by the acceptor in the unit frequency interval,

dWad

dω
= −ω

π
Im

[
p∗

a(ω) · E(ra, ω)
] = ωα√√

a

π

∣∣∣∣ pa

αa

∣∣∣∣
2

, (15.48)

where we used E(ra, ω) = pa(ω)/αa(ω) from Eq. (15.46). A closed system for
p j (ω) is obtained by using Eq. (15.47) to eliminate the electric field from Eq. (15.46),

p j (ω) + α j

∑
k

D jk(ω)pk(ω) = δ jd p0
d(ω), (15.49)

where we introduce the frequency-dependent matrix

D jk(ω) = −4πω2

c2 e j · G(r j , rk;ω) · ek . (15.50)

Expressing pa from Eq. (15.49), we obtain

dWad

dω
= ωE2

0

π

|α̃d |2 α√√
a

|1 + αa Daa |2
∣∣∣D̃ad

∣∣∣2
, (15.51)

where D̃ad = Dad
[
1 − α̃d Dda α̃a Dad

]−1 is donor–acceptor coupling that includes
high-order transitions, and

α̃ j (ω) = α j (ω)

1 + D j j (ω)α j (ω)
(15.52)

is the molecule’s dressed polarizability satisfying the relation

α̃√√
j + D√√

j j |α̃ j |2 = α√√
j∣∣1 + D j jα j

∣∣2 , (15.53)

which expresses the energy balance between total extinction described by α̃√√
j , external

losses such as radiation and dissipation in metal encoded in D√√
j j (ω), and absorption

in the presence of environment (right-hand side).
To gain more insight, recover first Förster’s FRET from Eq. (15.51). For a high-

yield donor (α√√
d = 0), Eq. (15.53) yields the optical theorem α̃√√

d0 = 2
3 k3|α̃d0|2,
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where
α̃ j0 = α j

1 − i 2
3 k3α j

(15.54)

is polarizability in radiation field and we use free space expression for D0
j j = −i 2

3 k3.
The near field coupling is

D0
ad = [

ea · ed − 3(ea · r̂ad)(ed · r̂ad)
]
/r3

ad (15.55)

with r̂ = r/r , while αa D0
aa ∪ αak3 is negligible. The radiated energy of an isolated

donor can be derived in a similar manner as

Wd = E2
0

π

∫
dωωα̃√√

d0(ω). (15.56)

Using the optical theorem, Eq. (15.51) leads to Eq. (15.45) with

σa(ω) = 4π

3
kα√√

a (ω), fd(ω) = ωα̃√√
d0(ω)∫

dωωα̃√√
d0(ω)

, (15.57)

where the free space donor’s spectral function fd(ω) is integral-normalized to unity.
Turning to the general case, we note that for a high-yield donor, the energy balance

relation Eq. (15.53) implies the optical theorem in an absorptive environment,

α̃√√
d = −D√√

dd |α̃d |2 = 2

3
k3|α̃d |2 Γd

γ r
d

, (15.58)

where Γ j = −μ2
j D√√

j j is the molecule’s full decay rate [33] and γ r
j = 2

3 k3μ2
j is

its radiative decay rate (μ j is the dipole matrix element). Using this relation and
normalizing Eq. (15.51) to the radiated energy of an isolated donor (Eq. (15.56)), we
obtain

1

Wd

dWad

dω
= 9

8πk4

γ r
d

Γd(ω)
f̃d(ω)σ̃a(ω)

∣∣∣D̃da

∣∣∣2
, (15.59)

where

σ̄a = 4πk

3

α√√
a

|1 + αa Daa |2 , f̃d(ω) = ωα̃√√
d (ω)∫

dωωα̃√√
d0(ω)

(15.60)

are the acceptor’s absorption cross section and the donor’s spectral function modified
by the environment [compare to Eq. (15.57)]. Note that, in the presence of metal,
f̃d(ω) is no longer integral-normalized to unity. After frequency integration, we
finally obtain

Wad

Wd
= 9

8π

∫
dω

k4

γ r
d

Γd(ω)
f̃d(ω)σ̃a(ω)

∣∣∣D̃da(ω)

∣∣∣2
, (15.61)
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Equation (15.61) includes all relevant energy flow channels in the system. Interac-
tions of the molecules with the metal alter the positions and shapes of the optical
bands. While the coupling Dad is enhanced due to plasmon-mediated channels, the
factor γ r

d /Γd accounts for FRET quenching due to the donor’s energy transfer to
the metal followed by dissipation and radiation. The absence of this factor leads
to spuriously large FRET [29, 62–65]. Note that Eq. (15.61) was obtained for a
high-yield donor with no assumptions on molecules’ emission or absorption spec-
tral bands, which are usually broad and asymmetric due to vibrational and rotational
modes. Rigorous treatment of molecules’ internal relaxation processes would require
fully quantum-mechanical consideration which is beyond our scope. However, if we
assume Lorenzian lineshape for the donor’s effective polarizability α̃d(ω), which is
a reasonable approximation in most cases, then it is easy to show that Eq. (15.61) is
valid for low-yield donors as well upon replacing γ r

d with the free space fluorescence
rate γd .

To highlight the role of PERT in the far field FRET, consider energy transfer from
remote donors to an acceptor located near the metal surface. In this case, the donor’s
decay rate and spectral function are unaffected by metal and FRET is dominated by
the following process: A donor first radiatively excites a plasmon in the metal which
then nonradiatively transfers its energy to the acceptor. The coupling Dad can be
derived from Dyson’s equation for Green’s dyadic,

G(r, r√) = G0(r, r√) + k2ε̄

∫
dVmG0(r, rm) · G(rm, r√), (15.62)

where integration is restricted to metal region and ε̄(ω) = ε(ω)/ε0 − 1. For remote
donors, using the far field limit (kr ≈ 1 and kr √ ∝ 1) of the free Green’s dyadic

[33], G0(r, r√) = eikr

4πr (δμν − r̂μr̂ν), and averaging out over donors angular positions
and their dipoles’ orientations, we obtain PERT per donor

W r
ad

Wd
∈ 1

4πr2
ad

∫
dω fd(ω)σ̄a(ω)A(ω), (15.63)

where

A =
∣∣∣∣ea + k2ε̄

∫
dVmG(rm, ra) · ea

∣∣∣∣
2

(15.64)

is the plasmon enhancement factor for a metal nanostructure of general shape. If
the acceptor is located at distance ra from the center of a spherical NP, we get
A = A≡ cos2 φ + A≤ sin2 φ, where

A≡ =
∣∣∣∣1 + 2

α1

r3
a

∣∣∣∣
2

, A≤ =
∣∣∣∣1 − α1

r3
a

∣∣∣∣
2

(15.65)

are enhancement factors for normal and parallel dipole orientations[24], α1(ω) is the
NP dipole polarizability, and cos φ = r̂a · ea . Equation (15.63) extends the far field
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radiative FRET theory [38, 61] to plasmonic systems. In fact, the PERT mechanism
can dominate FRET even in the near field, as our numerical calculations below
demonstrate.

15.2.3 Numerical Results for Plasmon-Assisted Single-Donor
Energy Transfer Near Metal Nanoparticle

As an example, consider a donor and acceptor near spherical Ag NP in water with nor-
mal dipole orientations (see Fig. 15.1). The near field matrix D jk is readily obtained
from the Mie’s theory Green’s dyadic [25] as D jk = D0

jk + Dr
jk + Dnr

jk , where [13]

Dr
jk = − i

2

3
k3

[
1 + 2α1

(
1

r3
j

+ 1

r3
k

)
+ 4|α1|2

r3
j r3

k

]
(r̂ j · r̂k),

Dnr
jk = −

∑
l

αl(l + 1)2

rl+2
j r l+2

k

Pl(r̂ j · r̂k) (15.66)

are NP-induced radiative and nonradiative terms, αl = R2l+1 l(ε−ε0)
lε+(l+1)ε0

is NP polar-

izability, Pl(x) is a Legendre polynomial, D0
ad = (1+sin2 θ/2)/r3

ad , r̂a · r̂d = cos θ ,
and angular momenta up to l = 50 are included. Full decay rates are Γ j =
− (

3/2k3
)
γ r

j D√√
j j . We consider, for simplicity, a high-yield donor with a broad emis-

sion band due to the vibrational modes. Molecules optical bands are Lorentzians
of width 0.05 eV centered at 2.95 eV and 3.2 eV with maximal overlap at about
SP energy of 3.08 eV (see inset in Fig. 15.12a), σa(ω) was normalized to its total∫

dωσa(ω), and modified σ̄a , f̃d , and D̃ad were found using Eq. (15.66).
In Fig. 15.11, we plot Wad versus the molecule’s distance d from the R = 30

nm NP surface at θ = π/3 with equal da = dd = d and with changing dd = d
at fixed da . Three models—the full Eq. (15.61), its nonradiative part only, and the
Gersten–Nitzan model [62, 63]—are compared to Förster’s transfer Eq. (15.45).
For dd = da , Wad is about three times larger than W F

ad and rapidly decays with
d, while for d/R ∝ 1 it is quenched by metal. There is no enhancement if only
the nonradiative channel is included in Eq. (15.61). In contrast, the Gersten-Nitzan
model yields much greater enhancement (up to 105) for d/R ∝ 1 since it includes
no quenching effects. However, at fixed da and dd/R � 1, the full Wad is the largest
one (see Fig. 15.11b) due to the dominant role of the PERT mechanism, as discussed
above.

The interplay of different FRET contributions is shown in Fig. 15.12 featuring
spectral density Eq. (15.59) together with quenching factor γ r

d /Γd and coupling
|Dad |2 at fixed d. dWad/dω has a sharp plasmon peak which disappears if only the
nonradiative channel is included (see Fig. 15.12a). PERT channel reduces γ r

d /Γd

due to SP-enhanced radiation but it strongly enhances Dad (see Fig. 15.12b), the
net result being FRET increase, while in the nonradiative channel the enhancement
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(a)

(b)

Fig. 15.12 a Spectral function Eq. (15.59) and molecules’ optical bands relative to SP band α1/R3

(inset) are shown together with b quenching factor γ r
d /Γd and coupling |Dad |2 (inset) using full

and nonradiative (NR) models

and quenching effects nearly cancel out. Weak high-frequency oscillations are due
to high-l plasmons.

The relative rates of plasmon-assisted FRET and Förster’s transfer are highly
sensitive to the system’s geometry. RET is quenched if both molecules are close
to the NP surface (see Fig. 15.13a) but it becomes enhanced if donor–NP distance
increases (inset). For θ = π/3 RET is enhanced if dd � R (see Fig. 15.13b), but for
θ = π it is strongly enhanced for nearly all d (inset). In fact, NP acts as a hub that
couples equally well nearby and remote molecules with different θ while Förster’s
transfer drops for large rad . For smaller NP sizes, the role of PERT becomes less
pronounced yet remains dominant for larger donor-NP distances.
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(a)

(b)

Fig. 15.13 FRET versus distance for R = 20 nm Ag NP is shown a at θ = π/3 with da = dd and
da = 2 nm (inset) and b with da = 10 nm at θ = π/3 and θ = π (inset) using full, nonradiative
(NR), and Förster models

15.2.4 Cooperative Plasmon-Assisted Resonance Energy Transfer
from an Ensemble of Donor to an Acceptor

We now generalize the formalism developed in the previous section to the case of
N donors and an acceptor near the surface of a metal nanostructure and represented
as point-like dipoles located, respectively, at r j ( j = 1, . . . , N ) and ra with induced
moments p j (ω) = p j (ω)e j and pa(ω) = pa(ω)ea oriented along e j and ea . The
dipoles are driven by the common electric field,

pa(ω) = αa(ω)E(ra, ω), (15.67)

p j (ω) = α j (ω)E(r j , ω) + p0
j (ω),

where αa(ω) = α√
a(ω) + iα√√

a (ω) and α j (ω) = α√
j (ω) + iα√√

j (ω) are aceptor’s and

donors’ complex polarizabilities, p0
d(ω) = αd(ω)e j E0eiϕ j are donors initial dipole

moments with some constant E0 and random phases ϕ j . The electric field E is, in
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turn, the solution of Maxwell’s equation with dipole sources [33]

E(r, ω) = 4πω2

c2

∑
β

G(r, rβ;ω) · pβ(ω), (15.68)

where index β = (a, j) runs over all dipoles positions, G(r, r√;ω) is Maxwell’s
equation Green’s dyadic, satisfying ∇ × ∇ × Ĝ − ε(r, ω)(ω/c)2Ĝ = Î, and ε(r, ω)

equals metal permittivity, ε(ω), inside the metal region and that of outside medium,
ε0, otherwise. The quantity of interest is energy absorbed by the acceptor in unit
frequency interval,

dWad

dω
= −ω

π
Im

[
p∗

a(ω) · E(ra, ω)
] = ωα√√

a

π

∣∣∣∣ pa

αa

∣∣∣∣
2

, (15.69)

where we used E(ra, ω) = pa(ω)/αa(ω) from Eq. (15.67). A closed system for
p j (ω) is obtained by using Eq. (15.68) to eliminate the electric field from Eq. (15.67),

pa + αa Daa pa + αd

∑
j

Daj p j = 0, (15.70)

p j + αd D ja pa + αd

∑
k

D jk pk = p0
j ,

where we introduced frequency-dependent matrix

Dββ √(ω) = −4πω2

c2 eβ · G(rβ, rβ √ ;ω) · eβ √ . (15.71)

Expressing pa from Eq. (15.70),

pa = − αa

1 + αa D̃aa

∑
jk

Daj S jk p0
k , (15.72)

where
S−1

jk (ω) = δ jk + αd D jk(ω) (15.73)

and
D̃aa = Daa − αd

∑
jk

Daj S jk Dka . (15.74)

Averaging over random phases ϕ j , we obtain

dW

dω
= ωE2

0

π

|αd |2 α√√
a∣∣∣1 + αa D̃aa

∣∣∣2

∑
jkl

Daj S jk S†
kl D†

la . (15.75)
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The energy transfer to the acceptor takes place from system eigenstates rather than
from individual donors. The eigenstates are determined by diagonalizing the matrix
D jk . We define the eigenstates |J 〉 as D̂|J 〉 = DJ |J 〉, where the eigenvalues DJ can
be presented as

DJ = 2

3
k3 (ΔJ − iΓJ ) /γ r

d . (15.76)

Here ΔJ and ΓJ are, respectively, frequency shift and full decay rate in the presence
of metal and γ r

d = 2
3 k3μ2

d is donors free space radiative decay rate (μd is dipole
matrix element). We now introduce the acceptor coupling to the eigenstates,

Da J =
∑

j

Daj ◦ j |J 〉, (15.77)

where ◦ j |J 〉 stands for j th element of eigenvector J , and dressed acceptor and
eigenstates polarizabilities,

α̃J = αd

1 + DJ αd
, α̃a = αa

1 + Daaαa
, (15.78)

satisfying the relation

α̃√√
J + D√√

J |α̃J |2 = α√√
d

|1 + DJ αd |2 , (15.79)

which expresses energy balance of an eigenstate between total extinction described
by α̃√√

j , external losses such as radiation and dissipation in metal encoded in D√√
j j (ω),

and absorption in the presence of environment (r.h.s.). For high-yield donors
(α√√

d = 0), Eq. (15.79) implies the optical theorem in absorptive environment for
each system eigenstate,

α̃√√
J = −D√√

J |α̃J |2 = 2

3
k3|α̃J |2 ΓJ

γ r
d

. (15.80)

The radiated energy of an isolated donor, Wd , can be derived in a similar manner as

Wd = E2
0

π

∫
dωωα̃√√

d0(ω), (15.81)

where α̃d0 = αd
(
1 − i 2

3 k3αd
)−1

is donor’s polarizability in radiation field. Using
the optical theorem and normalizing Eq. (15.75) to Wd , we obtain

1

Wd

dWad

dω
= 9σ̃a(ω)

8πk4

∑
J

γ r
d

ΓJ (ω)

∣∣∣D̃a J

∣∣∣2
f̃ J (ω), (15.82)
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where

D̃a J = Da J

1 − α̃a
∑

J Da J α̃J DJa
(15.83)

is acceptor–eigenstate coupling that includes high-order transitions, and

σ̄a = 4πk

3

α√√
a

|1 + αa Daa |2 , f̃ J (ω) = ωα̃√√
J (ω)∫

dωωα̃√√
d0(ω)

(15.84)

are acceptor’s absorption crossection and eigenstates’s spectral function. Note that
the latter is not integral-normalized to unity.

Expression (15.82) generalizes the FRET from a single donor, Eq. (15.61), to
the case of an ensemble. The energy transfer now takes place from each system
eigenstate independently and the full transferred energy is obtained by summing
up over all eigenstates’ contributions. As we show below, in cooperative regime,
superradiant and subradiant eigenstates provide significantly more efficient transfer
than individual donors.

(a)

(b)

Fig. 15.14 FRET for N = 100 donors on top of spherical core-shell NP with Ag core radius
Rc = 20 nm and SiO2 shell thickness 5 nm (a) and 20 nm (b) with acceptor at d = 10 nm from NP
surface. Full calculations for two sets of donors and acceptors with their emission and absorption
bands tuned to dipole and high-l SP resonances are compared to independent donors approximation
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15.2.5 Numerical Results for Cooperative Energy Transfer

As an example, consider an ensemble of N donors randomly distributed on surface of
spherical core-shell NP of radius R submerged in water, with Ag core radius Rc and
Silica shell thickness L = R−Rc, and a single acceptor separated from the NP surface
by distance d (see inset in Fig. 15.14). We assume that the donors’ and acceptor’s
dipole orientations are all normal to the NP surface and their respective emission
and absorption bands are Lorentzians of width 0.1 eV centered at energies ωd and
ωa which we chose depending on particular FRET mechanism we wish to study (see
below). The dipole surface plasmon (SP) spectral band is centered at about 3.15 eV
and weakly depends on shell thickness, while energies of higher angular momenta
(l ∇ 2) SPs are distributed in the interval 3.75 and 4.0 eV. Note that high-l SPs with
energies above 4.0 eV are damped by electronic interband transitions in Ag.

The coupling matrix Dββ √ can be decomposed into free space and NP-induced
radiative and nonradiative parts, Dββ √ = D0

ββ √ + Dr
ββ √ + Dnr

ββ √ , which, in long-wave
limit and for normal dipole orientations (i.e., eβ = r̂β ), can be readily obtained from
Mie’s theory Green’s dyadic as [13]

D0
ββ √ =

[
1 + sin2 (

θββ √/2
)]

/r3
ββ √ ,

Dr
ββ √ = − i

2

3
k3

[
1 + 2α1

(
1

r3
β

+ 1

r3
β √

)
+ 4|α1|2

r3
βr3

β √

]
(r̂β · r̂β √),

Dnr
ββ √ = −

∑
l

αl(l + 1)2

rl+2
β rl+2

β √
Pl(r̂β · r̂β √), (15.85)

where αl is core-shell NP polarizability, Pl(x) is Legendre polynomial, r̂β is the unit
vector along radial direction pointing at βth molecule, and θββ √ is the angle between
βth and β √th molecules positions (r̂β · r̂β √ = cos θββ √ ). In all calculations, we used
experimental Ag dielectric function and included angular momenta up to lmax = 75.

We expect that in cooperative regime, the superradiant states are dominant at
energies near the dipole SP resonance, while subradiant states are best developed at
energies close to those of l = 2 and 3 SPs (note that, at a given distance, dipole–NP
interaction rapidly falls with increasing l). Accordingly, we use two sets of donors
and acceptors with energies tailored to interact with dipole SP and with high-l SPs.
For the first set, the donors’s energy is chosen to coincide with dipole SP resonance,
while for the second set we chose ωd = 3.85 eV; in both cases, acceptor’s energy is
redshifted from donor’s energy by ωd − ωa = 0.1 eV.

In Figs. 15.14 and 15.15 we plot calculated energy dependence of normalized
FRET, given by Eq. (15.82), for core-shell NP with Ag core radius Rc = 20 nm
and silica shell thickness in the range from 5 to 50 nm (i.e., overall NP radius R
between 25 and 70 nm). The acceptor distance to NP surface was set at d = 10 nm
and all curves were normalized per donor. Each panel shows dependencies for two
donor–acceptor sets which are compared to those of independent donors near NP,
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(a)

(b)

(c)

Fig. 15.15 FRET for N = 100 donors on top of spherical core-shell NP with Ag core radius
Rc = 20 nm and SiO2 shell thickness 30 nm (a), 40 nm (b), and 50 nm (c) with acceptor at d = 10
nm from NP surface. Full calculations for two sets of donors and acceptors with their emission and
absorption bands tuned to dipole and high-l SP resonances are compared to independent donors
approximation

i.e., without plasmon-induced coupling between them (this is achieved by setting to
zero nondiagonal matrix elements of Di j ).

For relatively thin shells (i.e., donors close to metal core), the independent donor
approximation substantially (by factor ∪ 10) overestimates FRET (see Fig. 15.14).
For the first donor–acceptor set (dipole SP region), the full calculation yields much
smaller fraction of transferred since it accounts for significant energy dissipation in
metal during multiple NP-induced transitions between the donors. The dissipation is
much stronger in the high-l SP energy range, and no significant transfer takes place
within the second donor–acceptor set.

With increasing shell thickness, as donors move away from the metal core, the
system transitions into cooperative regime [12, 13]. In the dipole SP region, the
transfer from superradiant state becomes increasingly larger than from individual



15 Cooperative Effects in Plasmonics 559

(a)

(b)

Fig. 15.16 FRET for N = 100 donors on top of spherical core-shell NP with Ag core radius
Rc = 30 nm and SiO2 shell thickness 5 nm (a) and 20 nm (b) with acceptor at d = 10 nm from NP
surface. Full calculations for two sets of donors and acceptors with their emission and absorption
bands tuned to dipole and high-l SP resonances are compared to independent donors approximation.

donors due to much stronger coupling of the supperadiant state to the acceptor (see
Fig. 15.15). At the same time, with reduced dissipation in metal, the energy trans-
fer assisted by high-l SPs sharply increases. Remarkably, cooperative FRET from
subradiant states mediated by high-l SPs significantly exceeds FRET from indepen-
dent donors and, for thicker shells, becomes comparable to FRET from superradiant
states. Here FRET amplification is due to much weaker dissipation of subradiant
states with energies lying in high-l SP region. In other words, the energy trapped in
subradiant states can be transferred out of the system (to the acceptor) to be utilized.

With increasing metal core radius, the plasmon-enhanced radiative coupling and
hence cooperative effects increase as well [12, 13], leading to stronger FRET ampli-
fication. This is illustrated in Figs. 15.16 and 15.17 where we show normalized FRET
for a larger system; Ag core radius Rc = 30 and shell thickness changing between
5 and 80 nm. For relatively thin shells 5 and 20 nm (see Fig. 15.16), the donors’
coupling through the NP results in a greater energy fraction that dissipates in the
metal as compared to independent donors and, therefore, in a smaller fraction of
energy transferred to the acceptor. With increasing shell thickness (see Fig. 15.17),
as the cooperative regime is established, the FRET from both superradiant and sub-
radiant states significantly exceeds FRET from independent donors. A larger metal
core leads to stronger cooperative amplification of FRET which now reaches factor
of 10 for the largest NP (see Fig. 15.17c). Importantly, the evolution of cooperative
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(a)

(b)

(c)

Fig. 15.17 FRET for N = 100 donors on top of spherical core-shell NP with Ag core radius
Rc = 30 nm and SiO2 shell thickness 40 nm (a), 60 nm (b), and 80 nm (c) with acceptor at d = 10 nm
from NP surface. Full calculations for two sets of donors and acceptors with their emission and
absorption bands tuned to dipole and high-l SP resonances are compared to independent donors
approximation.

FRET and of FRET from independent donors with increasing shell thickness show
opposite trends: the normalized cooperative FRET increases for thicker shells while
energy transfer from independent donors is reduced (see Fig. 15.17).
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Appendix

Here we collect relevant some formulas for the electric field Green dyadic in the
presence of metal NP. The Green dyadic satisfies Maxwell equation

∇ × ∇ × Ĝ − k2ε(r)Ĝ = Î, (15.86)

where ε(r) = ε(ω)θ(R − r) + ε0θ(r − R) is local dielectric function (θ(x) is the
step-function). The Green dyadic can be split into free space and Mie-scattered parts,
Gμν(r, r√) = G0

μν(r, r√) + Gs
μν(r, r√), where the free-space Green dyadic is

G0
μν(r − r√) =

(
δμν − ∞μ∞√

ν

k2

)
g(r − r√), (15.87)

with

g(r) = eikr

4πr
(15.88)

satisfying a scalar equation

(� + k2)g(r) = −δ(r). (15.89)

Consider first the free space part. Its near field expression can be obtained in the long
wave approximation, i.e. by expanding in kr ∝ 1. In the first order,

G0
μν(r) = 1

4πk2r3

[3rμrν

r2 − δμν

]
+ ik

6π
δμν. (15.90)

In the far field limit, i.e., kr ≈ 1 and kr √ ∝ 1, the free-space part can be expanded
via Bessel functions,

eik|r−r √|

4π |r − r √| = ik
∑
lm

jl(kr √)hl(kr)Ylm(r)Y ∗
lm(r √), (15.91)

which are approximated as

jl(kr √) = (kr √)l

(2l + 1)!! , hl(kr) = (−i)l+1 eikr

kr
, (15.92)

yielding
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G0
μν(r, r√) =

(
δμν − 1

k2 ∞μ∞√
ν

)eikr

r

[
1

4π

− ikr √

3

∑
m

Y1m(r̂)Y ∗
1m(r̂√)

]
. (15.93)

After differentiation, the far field asymptotics takes the form

G0
μν(r, r√) = eikr

4πr

[
δμν − 4π

3

∑
m

r̂μY1m(r̂)χν∗
1m(r√)

]
, (15.94)

where we introduced χ
μ
lm(r) = ∞μ[rlYlm(r̂) and ψ

μ
lm(r) = ∞μ[r−l−1Ylm(r̂)].

Now turn to the scattered part of the Green dyadic derived from solution of Mie
problem for electromagnetic wave scattered on single sphere,

Gs
μν(r, r√, k) = ik

∑
lm

[
al Nμ

lm(r)N ν
lm(r√)

+ bl Mμ
lm(r)Mν

lm(r√)
]
, (15.95)

where the first and second terms are electric and magnetic contributions and al and
bl are the Mie coefficients. In the long wave approximation, k R ∝ 1, the magnetic
contribution in Eq.(15.95) can be neglected as bl ∝ 1 [24–27]. The Mie coefficient
al has a form

al = ε0 jl(ρ0)[ρ jl(ρ)]√ − ε jl(ρ)[ρ0 jl(ρ0)]√
ε0hl(ρ0)[ρ jl(ρ)]√ − ε jl(ρ)[ρ0hl(ρ0)]√ (15.96)

where ρi = ki R, ki = ω
c
≥

εi , and i = (ε, ε0). For k R ∝ 1, it becomes

al = −isl α̃l k
2l+1, sl = l + 1

l(2l + 1)[(2l − 1)!!]2 , (15.97)

where
α̃l = αl

1 − islk2l+1αl
, (15.98)

is NP multipolar polarizability that accounts for plasmon radiative decay, and

αl = R2l+1 l(ε − ε0)

lε + (l + 1)ε0
, (15.99)

is the standard NP polarizability. The function Nlm(r) is given by

Nlm(r) = 1

k
≥

l(l + 1)
∇ × [

h(1)
l (kr)LYlm(r̂)

]
, (15.100)
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where L = −i(r × ∇) is angular momentum operator. Using the following identity,

∇ × [
h(1)

l (kr)LYlm(r̂)
]= irk2h(1)

l (kr)Ylm(r̂)

+ i∇[[krh(1)√
l (kr) + h(1)

l (kr)]Ylm(r̂)
]
, (15.101)

prime standing for derivative, and expanding h(1)
l (kr) = jl(kr) + inl(kr) in kr as

h(1)
l (kr) = (kr)l

(2l + 1)!! − i
(2l − 1)!!
(kr)l+1 , (15.102)

we obtain

Nlm(kr) = − 1

k
≥

sl(2l + 1)
∇[ϕl(kr)Ylm(r̂)], (15.103)

where

ϕl(kr) = 1

(kr)l+1 − isl(kr)l . (15.104)

Thus, for kr ∝ 1 and kr √ ∝ 1, the scattered part of the Green dyadic has the form

Gs
μν(r, r√, k) ∈ ik

∑
lm

[
al Nμ

lm(kr)N ν
lm(kr √)

]
(15.105)

∈
∑
lm

k2l α̃l

2l + 1
∞μ

[
ϕl(kr)Ylm(r̂)

]∞√
ν

[
ϕl(kr √)Y ∗

lm(r̂√)
]
.

This expression can be further simplified by substituting α̃l = ᾱl + islk2l+1|α̃l |2,
where ᾱl = αl |1 − islk2l+1αl |−2, and keeping the first two powers of k

Gs
μν(r, r√) = 1

k2

∑
lm

ᾱl

(2l + 1)
ψ

μ
lm(r)ψν∗

lm (r√)

− i
ks1

3

1∑
m=−1

[
α̃1

[
ψ

μ
1m(r)χν∗

1m(r√) + χ
μ
1m(r)ψν∗

1m(r√)
]

− |α̃1|2ψμ
1m(r)ψν∗

1m(r√)
]
, (15.106)

which, after adding the free-space part of the Green dyadic and neglecting plasmon
radiative decay, leads to Eq. (15.12).

For kr ≈ 1, with help of Eqs. (15.92), (15.100), and (15.101), we easily obtain

Nlm(r) = − (−i)l+1eikr

k
≥

l(l + 1)
∇Ylm(r̂), (15.107)
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and combining this expression with Eq. (15.103), we obtain the far field Green dyadic
(i.e., kr ≈ 1 and kr √ ∝ 1)

Gs
μν(r, r√) = − α̃1

3

1∑
m=−1

eikr [∞μY1m(r̂)
]
ψν∗

1m(r√), (15.108)

where we set l = 1.
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theory, 551
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482
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Förster’s transfer, 547, 551, 552
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Fourier–Hankel decomposition (FHD), 343
Fourier–Hankel transform, 344
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characterization, 273
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retrieval algorithm, 273

Fresnel coefficient, 303
Fresnel reflection factors, 6, 264, 306
Frustrated modes, 308–309, 310, 311, 312,
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G
Galois field array, 345
Gap-labeling theorem, 336
Gaussian beam profile, 272
Gaussian prime array, 345, 346, 353, 361
Gaussian primes (GP), 345
Gaussian pulse, 49
Generalized Mie theory (GMT), 141, 351,

363
Generation threshold, 69, 70, 72, 73, 76, 77
Gersten–Nitzan model, 551
Glan polarizer, 213
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Glan-Thompson polarizer, 425
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Gold nanospheres, 5, 60, 87, 114, 185, 187,
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Golden angle, 341, 342, 370
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Green function (Green’s function), 2, 22, 23,
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retarded, 22–24
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Green tensor, 285, 302, 310
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H
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Hankel function, 482
Heat transfer. See also Radiative heat trans-
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assisted thermal emission

fundamental limits for, 306–308
Helmholtz equation, 223, 224, 225, 449, 477,
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two-dimensional, 482
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High harmonic generation (HHG), 278
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Hole arrays, 397, 416

Al, 116
metal, 392
nano-hole arrays, 353, 355, 448
nano-imprinted plasmonic, 356
near-infrared with subwavelength, 390
2D, 390, 391

Hot spot engineering, 348–352
Hot spots, 16–18, 38, 39–40, 44, 56, 69,

80, 82, 87, 88, 114, 208, 264.330,
348, 349, 350, 351
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engineering, 370
inhomogeneous localization of SPs and,

18–22
local fields, examples of, 26–28
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retarded Green’s function, 22–24
SP modes, 24–26

Hybrid waveguide, 154, 155
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Hyper Raman scattering (HRS), 104
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Hyper-Rayleigh scattering (HRS), 216

I
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K
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See also Scanning near-field opti-
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efficiency, 319
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thin-film, 454
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ics and coherent control; Quan-
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Rotating wave approximation (RWA), 64
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Scattering-scanning near-field optical
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Second harmonic generation (SHG), 208–

209, 256
circular-difference (CD) response, 218

Shock waves, 172
Shockley-Queisser limit, 319



Index 575

Short-range surface plasmon polaritons (SR-
SPPs), 403

Silicon carbide, 292
Silicon plasmonic detectors (SPDs), 157–

163
Silicon plasmonic modulators (SPMs), 157–

158
Silicon plasmonics components

active devices, 156–163
motivation, 151
passive devices, 151–156

Silver aggregates, 119
Singular-continuous spectra, 333, 333n2
Small metal nanosphere, 192
Solar spectrum, enhancing, 132–133

dielectric core, metal shell particles, 138
metal composition, 133–135
other geometries, 139
polarization-dependent resonances in

anisotropic particles, 138–139
polarization-independent resonances,

135–137
shape, 135

Spasers, 55–56
bistable spasers, 75, 76–77
in CW mode, 69–70
equations of, 64–65
fundamentals, 56–58
latest progress in, 59–64
monostable spasers, 73–75
nanospasers, 61–64
as ultrafast quantum nanoamplifier, 72–
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492–496
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Super-hydrophobic surfaces (SHSs), 503
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ration dynamics, 508–510
Super-hydrophobicity, model

fabrication of devices, 511–512
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tion of Rhodamine deposits, 513
Raman characterization of Rhodamine

deposits, 513
samples AFM characterization, 512–513
samples SEM characterization, 512
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cylindrical waves, generalized
microscopic model, 393

cross conversion, 393–394
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