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Preface

This book aims to present an unified view of three different areas of ultra cold
matter, stressing its differences and similarities. We have also tried to reconcile
our two complementary and sometimes conflicting attitudes, related with the
research motivation and the pedagogical purpose. Most of the book is written
with a pedagogical intent, where priority is given to analytical derivations of the
main physical concepts and results, over detailed information about the published
research literature. Every chapter contains, nevertheless a short discussion on
selected experiments and theoretical work. A large number of books have been
published on Bose Einstein condensates, but we have approached this subject from
a different and somewhat unconventional perspective. Our aim is to suggest a new
approach to the problems involved with the production of ultra-cold atoms, Rydberg
plasmas and Bose condensates.

We were surprised, during the preparation of this work, with the strong similari-
ties that can be found in the collective processes that can take place in both classical
and quantum gases, in neutral gas atoms was well as in plasmas. We have therefore
explored the problems of collective modes in condensed and non-condensed cold
matter. By covering such different fields and such large areas of knowledge, we
could not be exhaustive and complete. We have nevertheless given, for each subject,
and whenever possible, references to recent review articles where the reader can find
a more detailed account of the literature.

We would like to thank our co-authors in this area, and the stimulating dis-
cussions we had with many researchers, with both theoretical an experimental
backgrounds. We specially want thank Robin Kaiser who gave us guidance in the
field of atom cooling and confinement, Robert Bingham and Charles Wang for
their fresh and innovative approach to quantum coherence, and Padma Shukla for
his inspiration in the approach of novel aspects of ultra-cold and strongly coupled
plasmas. We also would like to thank Thomas Pohl for very helpful discussions on
Rydberg atoms, and Jorge Loureiro for his precious contributions in the exploration
of new aspects of collective processes. We also thank Gert Brodin and Mattias
Marklund for their support on quantum vacuum problems, and Antonio Serbeto
and Gordon Robb for their occasional collaboration on condensates. Research being
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a collective process itself, our work results from the contributions of several and
sometimes anonymous people. We thank them all.

Lisbon, Portugal J.T. Mendonça
Aubiere Cedex, France Hugo Terças

Numa incerta hora fria
perguntei ao fantasma
que força nos prendia

Perguntas, Carlos Drummond de Andrade
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Chapter 1
Introduction

1.1 Three Phases of Ultra-cold Matter

The advent of laser cooling of atoms [1] led to the discovery of ultra-cold matter,
with temperatures well bellow the liquid Helium, which displays a variety of new
physical phenomena. It is the aim of this book to give an overview of this recent area
of science, with a discussion of its main results and an description of its theoretical
concepts and methods.

Ultra-cold matter can be considered in three distinct phases. First, we have the
ultra-cold gas, which can be created and confined in a magneto-optical trap (MOT).
Such a trap consists typically of three pairs of laser beams, slightly detuned with
respect to a given atomic transition frequency, and a pair of Helmholtz coils. Typical
temperatures are in the micro-Kelvin range, and the gas can be maintained in nearly
steady-state conditions inside the trap. This is a gas bubble of 108–1010 atoms,
with a nearly spherical shape and a diameter of few millimeters. Surprisingly, this
neutral atomic cloud behaves as a one-component plasma, because each atom in the
cloud scatters photons from the cooling laser beams, and these secondary photons
can push away the nearby atoms by radiation pressure. From such an exchange of
photons between nearby atoms results a repulsive force, which can be described by
an effective electric charge of the neutral atoms. This repulsive force competes with
an attractive force due to photon absorption: the atoms in the outer part of the cloud,
closer to the laser source, will experience a larger laser intensity, thus pushing them
towards the centre. This compressive force is a shadow type of force, which strongly
resembles the gravitational mechanism proposed by Le Sage [2] in the eighteenth
century, as alternative to Newton’s universal attraction. A similar kind of shadow
force is also known in dusty plasmas [3], as a mechanism of attraction between
charged dust particles. In usual experimental conditions, the repulsive force acting
on ultra-cold atoms dominates over the shadow force, and nearby atoms tend to
repel each other. From this repulsive effect it results a plasma-like behavior, similar
to that of non-neutral plasmas, which lead to a variety of collective processes, some
of which have already been observe experimentally.
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Second, we consider the Bose Einstein condensate (BEC), which results from
an evaporative cooling of the ultra-cold gas. This is achieved by switching-off the
laser cooling beams, which therefore cancels the long-range interaction between
atoms, and the latter now interact at a much shorter scale defined by the wave
scattering length as . Evaporation of the warm atoms in the cloud will leave just
the coolest atoms in place. The resulting temperature of the remaining atomic
cloud can then reach the nano-Kelvin domain, does allowing for the occurrence
of Bose Einstein condensation [4]. This state of ultra-cold matter also displays
very interesting and novel properties, which have been extensively explored both in
theory and experiments. It particular, BECs possess fluid-like properties which lead
to similar, but not identical, collective atomic processes that those of cold atomic
clouds in MOTs. The similarity and differences between the condensed and the
non-condensed phases of ultra-cold matter will be deeply discussed in this book.

Finally, we have the Rydberg plasmas, which can be formed by photo-ionization
of the ultra-cold gas [5]. They are usually called ultra-cold neutral plasmas in
the atomic physics community, which is redundant and misleading. Redundant,
because plasmas are usually in a state of charge neutrality, and only the exceptions
are explicitly called non-neutral. Misleading because the neutral atoms in the ultra-
cold (and non-ionized) gas already display a plasma-like behavior. The atomic gas
can therefore be seen as an exotic version of a non-neutral plasma, as noticed before.
For that reason, we have proposed to call Rydberg plasmas to the ionized phase of
ultra-cold matter, because they contain a large number of atoms excited in high
Rydberg states, as will also be shown in the present work. These ultra-cold plasmas
have typical electron temperatures of a few Kelvin, and ion temperatures in the
milli-Kelvin range. We notice that the traditional view of a plasma is that of a
hot ionized gas, with temperatures of the order or above an electron-Volt. These
Rydberg plasmas therefore extend the concept of plasma state to the domain of very
low temperatures, which in some sense is counterintuitive and opens the way for
new plasma phenomena. In the same way as the Bose Einstein condensates, this
new plasma state is a transient state, because the ionized plasma cloud tends to
expand and dissipate after a few milli-seconds. Comparatively, the condensates can
live much longer.

We therefore describe three distinct phases: the steady state ultra-cold gas in
MOTs, the transient Bose Einstein condensate, and the equally transient Rydberg
plasma. These three phases of ultra-cold matter will be reviewed here. We will
stress the similarities and fundamental differences between them, as well as the
similarities (sometimes unexpected) of their respective theoretical methods. From
our description of the ultra-cold matter, a global and coherent picture will hopefully
emerge of a new area of Physics, somewhere at the boundary of atomic physics,
condensed matter and plasma physics.
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1.2 Historical Perspective

Physics was always attracted by extremes, the infinitely small and the Planck scale,
the infinitely large and the size of the universe, the extremely hot matter and the
big-bang. The extremely cold matter, and the absolute zero of temperature, are our
present concern. We briefly review the history of the concepts and results to be
discussed in the present work.

By the middle of the nineteenth century, Lord Kelvin had clarified the concept
of temperature, and defined the absolute zero at �273:15 ıC, or 0ı Kelvin .K/, a
temperature at which, according to the Nernst principle, the entropy also vanishes.
At the beginning of the nineteenth century, an important step towards the absolute
zero was taken when Kamerlingh Onnes liquified Helium-4, at a temperature
of 4:2K and atmospheric pressure. This discovery boosted the search for new
properties of cold matter, such as superconductivity and superfluidity.

An important new ingredient was introduced by Bose in 1924 [6], when he
proposed his statistical distribution, valid for an ideal gas of photons, launching
the concept of boson, as a particle with zero or integer spin. His distribution was
generalized by Einstein [7] to particles with a finite mass, who first noticed that for
such particles a critical temperature Tc should exist, below which a fraction of the
gas would condense into a state of zero momentum. This phenomenon is now called
Bose-Einstein condensation. In a series of experiments performed by Kapitza [8]
and by Allen and Misiner [9] in 1938, superfluidity of Helium-4 was achieved, for
temperatures below 2:17K. This new state of matter was soon understood [10, 11]
as due to the occurrence of partial Bose-Einstein condensation. For many years,
superfluid Helium-4 remained as the paradigmatic example of a BEC. However, in
contrast with the Einstein paradigm, valid for an ideal gas, such a state was obtained
for strongly interacting particles.

Things dramatically changed with the discovery of laser cooling techniques,
which produced another spectacular boost in the search for the absolute zero. The
idea of using light to change the state of motion of material particles predates the
invention of the laser and goes back to the early nineteenth century. The experiments
of Lebedev [12], and Nichols and Hull [13] in 1901, and later of Frisch in 1933 [14],
on light pressure, are usually recognized as important precursors.

Laser cooling was first mentioned in the work of Hänsch and Schawlow [15] in
1975. Two years later, Ashkin [16] proposed a theoretical model for atom cooling
using a nearly resonant laser beam. The technique for cooling and trapping a large
number of atoms using magnetic traps and laser beams was developed during the
1980s of the last century, by Chu [17], Cohen-Tannoudji [18], Philips [19] and
others. Temperatures in the micro-Kelvin range became possible, which paved the
way for the condensation of alkaline vapors a decade later, in the line of Einstein’s
prediction.

Bose-Einstein condensation in vapors of alkaline atoms was first reported in
1995 [20, 21]. Using evaporative cooling of atomic gases contained in MOTs,
temperatures in the nano-Kelvin range are presently being achieved, thus allowing
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for condensation of a large variety of atomic gases, such as Rubidium, Sodium,
Lithium, Cesium, Yterbium, or Hydrogen. This new state of matter presents very
interesting new properties, which were explored both theoretical and experimentally
by an increasingly large scientific community, as stated in many review papers
[22, 23] and books [4, 24].

Unfortunately, BECs made of alkaline vapors possess a finite lifetime and can
hardly survive in steady state conditions, and attention has been also given in recent
years to the non-condensed steady state gas which is produced by laser cooling
alone. Collective behavior was first considered by Dalibard in 1988 [25], who
called the attention for a shadow force due to laser absorption in a magneto-optical
trap. Another important step was the discovery of an effective electric charge for
the neutral atoms [26]. This leads to an electrostatic type of interactions between
nearby atoms, which is revealed by the Coulomb-like explosions of the atomic cloud
when the magnetic confinement is switched off [27]. More recently, the existence of
hybrid phonons was predicted, which are the quasi-particles associated with a new
type of sound waves displaying a cut-off frequency [28]. This however has not yet
been confirmed experimentally. The first part of this book will be focused on the
collective properties of this non-condensed ultra-cold gas, which to our knowledge
have not yet been extensively reviewed in the literature.

Finally, spontaneous or photo-ionization of the ultra-cold gas, leads to the
creation of ultra-cold plasmas, which will be considered in the last part of this book.
This cold plasma state can be achieved by photo-ionizing a cold cloud in a MOT
[29], but it can also be achieved by spontaneous evolution on a gas of neutral atoms,
excited in Rydberg quantum states, into a plasma [30]. The plasma ions are strongly
coupled, with their Coulomb interactions well exceeding their kinetic energy. This
leads to de occurrence of new phenomena, similar in some respects to those of
a liquid metal [31]. The ultra-cold plasma also displays similarities with the highly
compressed plasma created by laser fusion experiments, although in a quite different
range of parameters.

1.3 Book Overview

Given the historical perspective, it is not surprising to adopt the present book
structure, where a couple of introductory chapters on laser cooling is followed by
three different groups of chapters, devoted to the three different phases of ultra-
cold matter. More specifically, Chaps. 2 and 3 will be described the physics of
laser cooling and magnetic trapping. In these chapters, we also introduce the wave
kinetic description, which will serve as a guideline for comparison between these
three phases. Such a description is based on the Wigner distribution, first proposed
in 1935 [32], and then explored in many areas of physics, including laser cooling
processes [33, 34]. Although other theoretical methods are also used and discussed,
the wave kinetic approach will be used as a leitmotiv throughout this book. This is
an useful tool for comparison between the three phases of ultra-cold matter, in their
semi-classical and quantum regimes.
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From Chaps. 4 to 6 we discuss the properties of the non-condensed ultra-cold
matter, with particular emphasis on the repulsive inter-atomic forces and the
resulting oscillations and collective processes. We discuss the effective charge of
neutral atoms, and the associated Coulomb type of potential of the neutral gas, as
well as their basic oscillation modes, such as the hybrid acoustic modes. We then
consider the equilibrium configurations, and the influence of plasma boundaries
on the internal mode structure. Finally, we discuss resonant wave-atom effects,
nonlinear mode coupling and wave scattering processes. Quasi-linear atom velocity
distributions are considered, and the influence of a turbulent spectrum of acoustic
oscillations on the temperature limit for laser cooling is established. Quantum
kinetic regimes and their quasi-classical limits are considered.

Chapters 7–12 deal with Bose-Einstein condensation, and the main properties of
the condensed phase. We first mention the basic ideas related with the condensation
phenomena, in homogeneous and trapped configurations. We then focus on the mean
field approximation, which can be described by the celebrated Gross-Pitaevskii
equation. This well-established theoretical approach is compared with the wave
kinetic description, which is exactly equivalent but can lead to a quasi-classical
formulation, more refined than the usual fluid approximation. Further advantages
of the Wigner-Moyal formalism will be discussed later. The elementary oscillations
of the condensate, and their linear and nonlinear properties will be considered.

Chapter 13 is devoted to atomic interferometers and to quantum coherence. This
implies both the single atom interferometers, as well as collective interferometers
based on BECs. Time interferometry will be discussed and compared with the
traditional spatial configurations. The questions associated with quantum decoher-
ence will be analyzed, given their basic importance for the understanding of the
quantum description of isolated systems, non-locality and entanglement. We also
give relevance to the detection of gravitational fields and the possible manifestation
of quantum space-time fluctuations at the atomic level. Such a manifestation can
be seen in the light of a brownian motion model, where the brownian particle is
replaced by a BEC and the microscopic fluctuations are due to the background
gravitational field.

Chapters 14–17 concern the state of ultra-cold plasmas. Plasma physics is a
vast and old area of science, and here we concentrate on problems specific to the
ultra-cold matter. This includes plasma formation and expansion, Rydberg atoms
and new dispersive wave properties. We also compare the plasmon and phonon
modes in a plasma with the hybrid phonons of the neutral gas, and with the
Bogoliubov oscillations of the condensates. Another interesting aspect is related
with the strong coupling of the plasma ions, eventually leading to the formation of
coulomb crystals.

Finally, in the concluding Chap. 18, we give an overview of the entire field and its
possible future developments. It should be noticed that the condensed phase of ultra-
cold matter is at present more developed than the other two, but interesting bridges
and comparisons can nevertheless be established between them. The emphasis of
this book will be on the physical understanding of the results, concepts and methods
of ultra-cold matter, with less concern for possible applications.
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et Belles-Lettres, Paris, France, 1782), p. 404
3. A.M. Ignatov, Plasma Phys. Rep. 22, 585 (1996)
4. C.J. Pethick, H. Smith, Bose-Einstein Condensation in Dilute Gases, 2nd edn. (Cambridge

University Press, Cambridge/New York, 2008)
5. T.C. Kilian, T. Pattard, T. Pohl, J.M. Rost, Ultracold neutral plasmas. Phys. Rep. 449, 77 (2007)
6. S.N. Bose, Z. Phys. 26, 178 (1924)
7. A. Einstein, Sitzunsber. Preuss. Akad. Wiss. Phys. Math. K1 22, 261 (1924); ibid. 23, 3 (1925)
8. P. Kapitza, Nature (London) 141, 74 (1938)
9. J.F. Allen, A.D. Misiner, Nature (London) 141, 75 (1938)

10. F. London, Phys. Rev. 54, 947 (1938)
11. N.N. Bogoliubov, J. Phys. (Moscow) 11, 23 (1947)
12. P. Lebedev, Ann. Phys. (Leipzig) 6, 433 (1901)
13. E.F. Nichols, G.F. Hull, Phys. Rev. 17, 26 (1903)
14. O.R. Frisch, Z. Phys. 86, 42 (1933)
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Atomic Clouds



Chapter 2
Laser Cooling

In this introductory chapter, we first consider the interaction of a two-level atom with
a monochromatic laser field, by reviewing the emission and absorption radiation
processes, as described by the semi-classical optical Bloch equations. We then
discuss the basic principles of laser cooling, using both the momentum and the
energy pictures. A simple expression for the laser cooling force is derived and
the concept of Doppler temperature limit, characterizing the laser cooling process,
is introduced. This is followed by a discussion of magnetic traps, with particular
emphasis on the Helmholtz and Ioffe configurations, and a description of the
magneto-optical trap.

With these basic ingredients in mind, we can then discuss the sub-Doppler
cooling processes, which can lead the atomic gas to temperatures well below the
Doppler temperature limit, and in particular, to Bose Einstein condensation. The
first of these sub-Doppler processes is the celebrated Sisyphus cooling, which makes
use of counter-propagating circularly polarized laser beams. The second is the
evaporative cooling, which is known for long time to work at macroscopic level,
but is also extremely efficient at cooling a confined atomic cloud, at the cost of
a severe reduction of the number of confined atoms. The chapter finishes with a
discussion of the sympathetic cooling, which can be used to cool down atomic and
molecular gases for which the principles of laser cooling cannot directly be applied.

2.1 Atom in the Laser Field

In order to understand the main properties of the atom-laser interaction, we first
consider the semi-classical approach, where we use a quantum description for a two-
level atom but describe radiation as a classical field. The full quantum description
of both atom and radiation is given in the Appendix. For a detailed account see, for
instance [1–3]. This semi-classical description allows us to understand the emission
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Optical, and Plasma Physics 70, DOI 10.1007/978-1-4614-5413-7 2,
© Springer Science+Business Media, LLC 2013
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and absorption mechanisms of light by atoms. However, spontaneous emission can
only be understood with the full quantum model, and its contribution is introduced
phenomenologically here.

The semi-classical Hamiltonian operator relevant to this problem has two
distinct parts

H D Ha CHint; (2.1)

whereHa is the unperturbed Hamiltonian of the atom, with the eigenvalue equation
Hajj i D Ej jj i. Here Ej are the energy values of the atomic quantum levels,
with the corresponding eigenstates jj i. We consider a simple two-level atom model,
where j D 1; 2. In Eq. (2.1), we have also used the interaction Hamiltonian Hint,
which describes the coupling between the atom and the laser field, as specified
below. In the absence of the laser field, i.e. Hint D 0, the atomic state vectors have
solutions of the form jj; ti D exp.�iEj t=„/jj i. When Hint ¤ 0, these atomic
states become coupled by the radiation field, and the atomic state vector will contain
a superposition of the two states, as described by

j .r; t/i D
X

jD1;2
Cj .t/ exp.�iEj t=„/jj i; (2.2)

where the coefficientsCj .t/ satisfy the normalization condition h .r; t/j .r; t/i D
jC1.t/j2 C jC2.t/j2 D 1. The quantities jCj .t/j2 give the probability for the atom
to be in the state j . In order to determine these probabilities, we consider the time
dependent Schrödinger equation

i„ @
@t

j i D .Ha CHint/j i: (2.3)

Using the superposition of states (2.2), we can derive from here the following two
evolution equations

i„@C1
@t

D C1H11 C C2H12e
�i!0t ; i„@C2

@t
D C1H21e

i!0t C C2H22 (2.4)

where we have introduced the transition frequency !0 D .E2�E1/=„, and used the
matrix elements of the interaction Hamiltonian operator,Hij D hi jHintjj i.

Before studying the solutions of Eq. (2.4), we need to discuss the explicit form
of these matrix elements. Let us consider the generic case where the two quantum
levels j1i and j2i are associated with the electron eigenstates in the atom. It is known
that, in the Coulomb gauge, the interaction Hamiltonian is given by

Hint D e

m
p � A.r; t/C e2

2m
A2.r; t/: (2.5)

where A.r; t/ is the vector potential associated with the radiation field. This
expression can be simplified in the following way. First, for a low intensity
radiation field, the quadratic term A2 can be neglected. Second, we can usually
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assume that the wavelength of the electromagnetic radiation is much larger than the
dimensions of the atom. This is the so-called dipole approximation, which allows us
to develop the vector potential A.r; t/ around the atom position r0 D 0, as follows:
A.r; t/ D A.t/ exp.ik � r/ ' A.t/. The interaction Hamiltonian is then reduced to
Hint D .e=m/p � A.t/. We can also write it as

Hint D �.p12j1ih2j C p21j2ih1j/E.t/; (2.6)

where E.t/ D �@A=@t , is the laser electric field, and we have introduced the electric
dipole moment of the atomic transition, as p12 D p�21 D �eh1j.r � e/j2i, where
e D E=jE j is the unit polarization vector. In the particular case of linear polarization
along the x-axis, we can simply write .r � e/ D x.

It can easily be realized that the off-diagonal terms of the interaction Hamiltonian
are H12 D H�21 D p12E.t/. We should also notice that the diagonal terms of this
Hamiltonian are equal to zero, because they contain factors of the form h1j2i D 0.
Replacing this in the evolution equations (2.4), and using an electric field of the
form E.t/ D E0 cos.!t/, where E is the amplitude an ! the laser frequency, we get

@C1

@t
D �i	Re

�i!0t cos.!t/C2;
@C2

@t
D �i	�Rei!0t cos.!t/C1; (2.7)

where the new quantity	R D p12E0=„ is called the Rabi frequency. The solutions
of these coupled equations are well known. First, we consider the case of an atom
which is initially in the lower energy level j1i, and is submitted to a low intensity
laser field. This means that coupling with the excited state j2i ia weak, and we can
take C1.t/ ' 1, leading to the simple solution

C2.t/ D 1

2
	�R

�
1 � ei.!0C!/t
.!0 C !/

C 1 � ei.!0�!/t
.!0 � !/

�
: (2.8)

The transition probability from the lower to the upper state is jC2.t/j2. For long
interaction times, the second term in this equation becomes dominant, and we can
approximately write

jC2.t/j2 ' j	Rj2
4

ˇ̌
ˇ̌1 � ei.!0�!/t

.!0 � !/
ˇ̌
ˇ̌
2

D j	Rj2 sin2Œ.!0 � !/t=2�
.!0 � !/2 : (2.9)

The neglection of the non-resonant term is known as the rotating wave approxima-
tion. The transition probability attains a maximum at resonance, when ! D !0,
with a value that evolves proportional to the square of time jC2.t/j2 D 1

4
j	Rj2t2.

A more general solution can be obtained in the rotating wave approximation, where
the coupled equations (2.7) reduce to

@C1

@t
D � i

2
	Re

�i�tC2;
@C2

@t
D � i

2
	�Rei�tC1; (2.10)
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where� D !0 � ! is the frequency detuning. Solving this we get

jC2.t/j2 D j	Rj2
	2

sin2
�
t

2
	

�
: (2.11)

This shows that the occupation of the energy levels oscillates with a frequency
	 D pj	Rj2 C�2. In the resonant case of ! D !0, or � D 0, we are reduced
to 	 D j	Rj. This shows that the Rabi frequency j	Rj is the natural frequency of
oscillation of the energy level occupation probability, at resonance. In this case,
the above expression reduces to jC2.t/j2�D0 D sin2 .j	Rjt=2/. This means that
the occupation probability attains its maximum value after multiples of the time
interval �t D �=2j	Rj. Noting that jC1.t/j2 C jC2.t/j2 D 1, we conclude that the
occupation probability oscillated between the two states of the atomic transition, and
that, on the average, its occupation is 1=2 for both states. These qualitative features
are confirmed by a full quantum description (see the Appendix).

Another important aspect of the atom laser interaction is the existence of an
energy shift of the lower energy level. This can be determined in the following way.
The use of Eq. (2.8) on the first of Eq. (2.7) leads to the following result

�
@C1

@t

�
D � i

4
j	Rj2

�
1

.!0 C !/
C 1

.!0 � !/

�
; (2.12)

where the simbol h�i represents here a time average taken over one cycle of the
radiation field. For non-resonant transitions ! ¤ !0, we can identify this quantity
with the average energy shift of the ground energy level,�E D i„hdC1=dti, which
leads to

�E D „j	Rj2 !0

.!20 � !2/
: (2.13)

If we take into account all the possible non-resonant radiative transitions, from
several energy levels jj i to the same ground state, we can generalize it to

�E D E20
X

j

jpj1j2!j1
.!2j � !2/

; (2.14)

where E0 is the amplitude of the laser electric field, !j1 D .Ej �E1/=„ the different
atomic transition frequencies and pj1 the corresponding electric dipole moments.
We should notice that, in the zero frequency limit, ! ! 0, this reduces to the well
known Stark shift due to a static electric field. For this reason, the energy shifts
described by Eqs. (2.13) or (2.14) are usually called the ac Stark effect.

It is sometimes useful to describe the Rabi oscillations in terms of the density
matrix operator, which can be defined as � D j ih j. For a two-level atom model,
such that j j D C1.t/j1i C C2.t/j2i, the diagonal matrix elements are

�11 D h1j�j1i D jC1.t/j2; �22 D h2j�j2i D jC2.t/j2 (2.15)
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and the off-diagonal terms

�12 D h1j�j2i D C1.t/C
�
2 .t/; �21 D ��12: (2.16)

We can see that the diagonal terms are real quantities and their sum equal to one,
�11 C �22 D 1. We can also see that, for a collection of identical N atoms per
unit volume, there will be a population of atoms in the lower state N1.t/, and a
population in the upper stateN2.t/, such �11 D N1.t/=N , and �22 D N2.t/=N . The
temporal evolution of the density matrix elements can be derived from the above
equations for the coefficients Cj .t/ and, in the rotating wave approximation, we get

d�11

dt
D �d�22

dt
D i

2
	�Re�i�t�12 � i

2
	Re

i�t�21 (2.17)

and
d�12

dt
D d��21

dt
D i	Re

i�t .�11 � �22/: (2.18)

These are known as the optical Bloch equations. The original Bloch equations,
which are formally identical, were derived to describe the spin states in a magnetic
field. The interest of this new formulation in terms of the density matrix elements
is that it can easily be extended to a mixed state, such that � D P

j pj j j ih j j,
where pj are the probabilities for the quantum system to be in a state j j i. For
initial conditions �11.0/ D 1 and �22.0/ D �12.0/ D 0, we get the solutions (2.11)
for �22.t/, and

�12.t/ D j	Rj2
	2

sin

�
	t

2

��
i	 cos

�
	t

2

�
�� sin

�
	t

2

��
e�i�t : (2.19)

Although spontaneous emission is not described in the frame of the present semi-
classical approach to the atom-laser interaction, we can include it by adding a
phenomenological term into the above evolution equations. Defining � as the
spontaneous decay rate of the upper energy level, the above Eqs. (2.17) and (2.18)
become

d�11

dt
D �d�22

dt
D ��11 C i

2
j	Rj . Q�12 � Q�21/ (2.20)

and
d Q�12
dt

D d Q��21
dt

D i j	Rj.�11 � �22/ � .�=2C i�/ Q�12; (2.21)

where we have used Q�12 D �12 exp.�i�t � i'/, where ' is the phase of the Rabi
frequency,	R D j	Rj exp.i'/. Steady state solutions of these equations will be an
important ingredient of the laser cooling precess, as discussed next.
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2.2 Laser Cooling Force

The process of atom cooling by laser radiation can be very easily understood with
the help of two complementary pictures: the energy and the momentum pictures,
which are illustrated in Fig. 2.1. The energy picture can be described in the following
way. Assume an atom with two internal energy states, with energies E1 and E2,
interacting with a slightly red-tuned radiation field with frequency ! < !0 �
.E2�E1/=„, and wave vector k. Resonant radiative transition from the lower to the
upper energy level, j1i ! j2i, can occur by photon absorption if the atom moves
with velocity v, such that the Doppler shifted photon frequency becomes equal the
transition frequency, .! � k � v/ D !0.

If then the upper energy level spontaneously decays, by photon emission in a
direction perpendicular to the atom velocity, the radiation field will gain an energy
of „jk � vj, and due to energy conservation, the atom will loose the same amount
of kinetic energy, given that it returns to the initial internal energy state j1i. If
the fluorescence lifetime of the upper state j2i is short, such a cycle of “photon
absorption followed by radiative decay” can repeat several times in a second, the
kinetic energy of the atom will reduce on the average and the atom will slow down,
leading to a significant gas cooling.

Let us now consider the more commonly used momentum picture, which
describes the same absorption-emission cycle from a different perspective. Due to
momentum conservation, when an atom emits one photon with frequency ! and
wavevector k, it acquires a momentum �„k, which is called the momentum recoil.
Inversely, when an atom absorbs a photon, it will absorb the photon momentum
„k � „kn, where n is the unit vector along the direction of k. If such an absorption

a b

Fig. 2.1 Basic absorption-emission cycle of atomic laser cooling: two complementary pictures.
(a) Energy picture, with a virtual energy level E2 � jk � vj ; (b) Momentum picture, with an
intermediate atom velocity v0 D v� „k=M
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is followed by spontaneous emission at the same frequency ! D k=c, the emitted
photon will propagate in an arbitrary direction defined by n0 D k0=k. As a result, in
the emission-absorption cycle the atom translational momentum is not conserved,
and it will receive a net momentum given by �p D „.k � k0/ D „!.n � n0/=c.
If such a cycle is repeated many times by the same atom, the momentum loss by
spontaneous emission will be averaged to zero and a net momentum gain will be
obtained. We can write the total momentum balance after r successive cycles of
absorption-emission processes, as

�P D r

0

@„k � „
rX

jD1
k0j

1

A: (2.22)

Taking the average for a large number r � 1, the last term averages to zero, and
we are reduced to h�Pi ' r„k. If r is the fluorescence rate, we can define the
ponderomotive force acting on the atom (the momentum variation per unit time) as

Fp D r„k: (2.23)

It is obvious that this fluorescence rate is determined by the product of the
spontaneous decay rate � with the upper energy level population of the atom, or
r D ��22. Let us go back to the evolution equations for the density matrix elements,
describing the radiation coupling between the two energy levels j1i and j2i, as given
by (2.20) and (2.21). In steady state, d=dt D 0, these equations yield

Q�22 D � i

2�
	R. Q�21 � Q�12/; Q�12 D �i 	R

2

2 Q�22 C 1

.i� � �=2/ D Q��21; (2.24)

with Q�ij standing for the steady-state values of the matrix elements �ij . Using this
result in Eq. (2.23), we can then write the ponderomotive force of the incident laser
beam on the atom as

Fp D „k� Q�22 D „k�
	2
R

2	2
R C 4�2 C �2

: (2.25)

This result is valid for an atom at rest in the laboratory frame, or if the atom is
moving, in the atom frame. We can now explicitly introduce the motion of the
atom in the expression of the ponderomotive force. As noticed before, due to
the Doppler effect, the laser photons are perceived as having a shifted frequency
!0 D ! � k � v. This introduces an additional detuning with respect to the transition
frequency !0. The resulting expression for the force acting on the moving atom will
then be

Fp D „k�
	2
R

4.�C k � v/2 C �2 C 2	2
R

: (2.26)
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For low intensities such that the radiative transition is not saturated, 	2
R � �2=2,

we can neglect the Rabi frequency in the denominator of the force. Using the
following approximation

1

4.�C k � v/2 C �2
' 1

.4�2 C �2/C 8.k � v/�
' 1

.4�2 C �2/

�
1 � 8�.k � v/

.4�2 C �2/

�
;

(2.27)

the force acting on the atom can be approximately determined by

Fp D F0 � Mˇk
2k2

k � v; (2.28)

whereM is the atomic mass, and

F0 D „k�
	2
R

.4�2 C �2/
; ˇ D „�k2 24	2

R�

M.�2 C �2=4/
: (2.29)

Let us consider the particularly interesting case when the atom moves in the
direction of the laser propagation, k k v. We are then reduced to

Fp D F0 � 1

2
ˇM v: (2.30)

We can then see that two different terms occur in the ponderomotive force Fp . The
first term, F0, is a constant radiation pressure term, which is independent of the atom
velocity. In contrast, the second term can be seen as a friction term which depends
on the atom velocity. It is positive for an atom moving in the opposite direction
with respect to the laser beam (the atom slows down), and negative for an atom
moving along the beam (the atom is pushed forward). If now the atom is located in
a region with two opposite laser beams, and moves along the laser beam axis, it will
experiment a total force in the k direction as given by

Fp D
�

F0 � ˇ

2
M v

�
�
�

F0 C ˇ

2
M v

�
D �ˇM v: (2.31)

This shows that, with two counter-propagating beams, the pressure term is zero
and the friction force is always negative, leading to a deceleration. The atom will
therefore slow down along that direction. If the same occurs for every atom in the
gas, the gas will then cool down. This is the laser cooling effect, which leads to
extremely low temperatures in the micro-Kelvin domain, as first observed in the
experiments with optical molasses by Chu and collaborators [4]. The term ‘molasse’
was coined because of the resemblance of the resulting viscous photon fluid to real
molasses.
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2.3 Doppler Limit

Let us now discuss the theoretical limits of this cooling process. These limits can
be discussed by using a statistical approach to the spontaneous emission. For that
purpose, we study the evolution of the atomic momentum distribution of the cold
gas, f .p; t/, in a one-dimensional description. This evolution is determined by a
Fokker-Planck equation of the form

@

@t
f .p; t/ D @

@p

�
A.p/CD.p/

@

@p

�
f .p; t/; (2.32)

where A.p/ and D.p/ are the friction and diffusion coefficients. A steady state
solution of this equation is given by

f .p/ D f0 exp

�
�
Z p

0

A.p0/
D.p0/

dp0
�
; (2.33)

We know that the friction coefficient is related to the averaged particle momentum
by d hpi=dt D �A.p/. Comparing with the results obtained in the previous section,
we can write the following relation

A.p/ D ˇM v D ˇp D 8„k2�� 	2
R

M.4�2 C �2//2
: (2.34)

Noting that, in typical experimental situations we have 	R � � � � , we can, for
the sake of magnitude estimates, use a much simpler expression,A.p/ � „k2p=M .
Turning now to the diffusion coefficient D.p/, we know that by definition, it is
given by

D.p/ D 1

2

h�pi2
�t

� 1

4
„2k2� (2.35)

The integration of the steady state solution (2.33) then leads to

Z p

0

A.p0/
D.p0/

dp0 '
Z p

0

„k2p0
M

4

„2k2� dp
0 D 2

M�
p2 (2.36)

We can then reduce the steady state distribution f .p/ to a Maxwell distribution
such that

f .p/ D f0 exp

�
� p2

2MTD

�
(2.37)

with the effective temperature (in energy units)

TD � „
2
�; (2.38)
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known as the Doppler temperature limit. We can see that this temperature is limited
by the natural life-time of the atomic transition. This result has a simple physical
meaning. We note that the spontaneous emission implies a time uncertainty of�t �
1=� . Therefore, according to the uncertainty principle, the energy uncertainty is of
order �E � „� which nearly coincides with (2.38). For a detailed discussion of
the Doppler limit see [5].

2.4 Magnetic Traps

Atoms can be confined by static magnetic fields, by oscillating fields and by laser
light. Confinement of neutral atoms in static magnetic traps is a well established
technique, first reported by Migdall et al. [6]. In recent years, this technique has
evolved into the fabrication of atomic chips at the micro-meter scale, using several
magnetic trap configurations [7]. It is well known that magnetic fields produce an
energy shift in the internal atomic levels. For inhomogeneous magnetic fields, this
leads to the occurrence of local energy minima where the atoms can be confined.
For an atom with a permanent magnetic moment 
, at rest in a static magnetic field
B, the energy shift can be defined as

�E.r/ D �
 � B.r/ D gJ
BmJ jB.r/j (2.39)

wheremJ is the projection of the total angular momentum J, gJ is the corresponding
Landé factor, and 
B D e„=2me is the Bohr magneton. A well known general
theorem prevents the occurrence of static magnetic field maxima in free space, in
the absence of currents. This means that only local minima can be created in the
experiments. For atomic states such that gJmJ > 0, this interaction allows to create
energy minima around which the atoms can be confined. If the atom is moving
with velocity v, it will perceive a time varying magnetic field, which can eventually
induce transitions between these magnetic states, thus allowing a trapped atom to
become untrapped. According to Eq. (2.39), the typical energy difference between
magnetic states is „!L, where !L D j
Bj=„ is the Larmor frequency. The time
scale for field variation in the atom rest frame is determined by dB=dt D v � rB .
If this time scale remains much larger than 1=!L the magnetic dipole of the atom
will have time to adapt to the slowly varying field, and the atom will stay in the same
magnetic state. Therefore, the existence of such an adiabatic regime will be defined
by the inequality

1

B

dB

dt
� !L: (2.40)

If, at some given position this inequality is not verified, transitions to other magnetic
states can take place, which means that magnetic confinement can fail. This is the
case, in particular for regions where the magnetic field amplitude, and the Larmor
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frequency, tend to zero. This is the reason why the magnetic minimum of a magnetic
trap cannot be zero. A non-zero minimum has to exist in other to fulfill the adiabatic
condition at the centre of the trap.

2.4.1 Multipolar Field Configuration

Simple magnetic configurations with a magnetic field minimum can be constructed,
using the basic elements of conducting currents, straight wires and coils. Let us
first consider the multipolar field configuration produced by a number n of linear
and parallel conductors, with the same current I flowing all of them in the same
direction. The conductors are assumed over an imaginary cylindrical surface with
radius a, and parallel to the axis of the cylinder, and can be described by the current
density J.r/ D Pn

jD1 I ezı.r � rj /, where rj is a polar vector with components
xj D a cos.2�j=n/ and yj D a sin.2�j=n/. The corresponding vector potential A
can be written as

A D �
0I
4�

ez lnR ; R2 D …n
jD1r2j D �

a2n C r2n � 2rnan cosn�
	

(2.41)

In the inner region, close to the cylindrical axis where r � a, the resulting magnetic
field B D r 	 A can be written in polar coordinates as

Br ' �n
0I
2�a


 r
a

�n�1
sin.n�/ ; B� ' �n
0I

2�a


 r
a

�n�1
cos.n�/ (2.42)

From here we conclude that the magnetic field tends to zero when we approach the
cylindrical axis, with a field strength varying with distance as

B D
q
B2
r C B2

� ' n

0I

2�a


 r
a

�n�1
: (2.43)

This result shows that B increases in the radial direction. In this sense it can be
considered a minimum B configuration. It is also possible to consider a similar
multipolar field produced by 2n parallel conductors, where alternatively the current
reverses its direction. This means that, we will have a current I along the z-axis,
for straight wires located on the same imaginary cylindrical surface at r D a and
� D 2�j=n, for j D 1; 2; : : : n, and a current �I for the remaining n wires located
at r D a and � D .2j C 1/�=n, for j D 1; 2; : : : n. The resulting vector potential
is now determined by

A D �
0I
4�

ez ln

�
R�
RC

�
; R2˙ D …n

jD1r2j D �
a2n C r2n ˙ 2rnan cosn�

	

(2.44)
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In the region close to the cylindrical axis, r � a, the magnetic field is approximately
given by twice the previous value in Eq. (2.43), which results from the fact that we
have twice as much wires. In this sense, there is no significant change for the field
near the axis, if we revert the current alternatively in half of them. We still get
a minimum field configuration. However, the same is not true for r � a where
significant field changes will occur.

2.4.2 Helmholtz Configuration

Another simple magnetic configuration is produced by two parallel coils, with radius
a, located at a distance 2l from each other, at z D ˙l . We consider the case where
the currents in the two coils are equal to I and flow in the same direction. The
resulting vector potential is purely poloidal, and determined by the expression

A� ' 
0Ia
2

.a2 C l2/3=2
r

�
1C 15

2

l2z2

.a2 C l2/2

�
: (2.45)

This field configuration now exhibits a minimum at z D 0, which in contrast with the
multipolar configuration is not zero. A closer analysis shows that this minimum only
exists for a < 2l . In the opposite case, the minimum is replaced by a maximum at
z D 0. The corresponding magnetic field close to the magnetic axis r � a is purely
axial, Br � 0 and B� � 0, with a minimum given by

jBzjmin ' 
0Ia
2

.a2 C l2/3=2
: (2.46)

On the other hand, the field will be maximum near the coils, at z D ˙l . Quite
often, we characterize the magnetic mirror by the ratio R D jBzjmax=jBzjmin. This
configuration is known as a simple magnetic mirror. It can easily be recognized that
the two configurations discussed above are in some sense complementary, because
near the origin, the field increases radially in the multipolar case, and axially in the
magnetic mirror.

2.4.3 Ioffe Configuration

A superposition of the two basic configurations was first proposed by Ioffe for
plasma confinement [8], and latter applied to neutral atoms [9]. This is called a
Ioffe trap and it is able to created a local minimum at the origin. The resulting field
can be described by

B.z; r/ D B0 C r2

2

�
B2
1

B0
� B2

�
C B2z

2; (2.47)
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Fig. 2.2 A magnetic trap
with Ioffe configuration. For
experimental purposes, two
compensation coils are used
to control the bias field B0

where B0;B1 and B2 are positive constants. The field is minimum on axis (z D 0)
if B2

1 > B0B2. The quantity B0 is usually referred as the bias field, and gives the
magnetic field minimum at the centre of the trap. Atoms with temperature T can be
trapped if 
JB0 � T . The trapping potential seen by an atom of mass M can then
be written as

V.r/ D 1

2
M!2z z2 C 1

2
!2r r

2; (2.48)

where !z and !r are the axial and radial oscillating frequencies, as determined by

!z D
s

j
j
�
B2
1

B0
� B2

�
=M ; !r D

p
j
jB2=M: (2.49)

The Ioffe trap configuration is topologically equivalent to a baseball coil, as
illustrated in Fig. 2.2, where the pinch and clip coils create the basic magnetic
configuration.

2.4.4 Anti-Helmholtz Configuration

One of the simplest ways to produce a magnetic minimum is to revert the currents
in the simple magnetic mirror. When the currents are equal in the coils, but flow in
opposite directions, the vector potential (2.45) is replaced by
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Fig. 2.3 Schematic representation trapping mechanism in one dimension MOT for a J D 0 !
J 0 D 1 transition in an atom

A� ' �A0rz ; A0 D 3
�

0Ia

2
	 l

.a2 C l2/5=2
: (2.50)

This is again valid for the region r � a. The corresponding magnetic field has
components B� D 0; Br D A0r and Bz D 2A0z. And the total field strength in the
vicinity of the origin is determined by

B.r/ D A0
p
r2 C 4z2: (2.51)

This field satisfies a minimum criterion, and increases in all directions, but with
a slope which is different for the axial and the radial directions. In the case
where a D l this is usually called the anti-Helmholtz configuration. An important
difference with respect to the Ioffe trap is that the magnetic field minimum here is
equal to zero, which increases the trap losses near the centre.

Let us finally consider a magneto-optical trap (MOT) which results from the
simultaneous use of laser cooling beams and a magnetic trapping, or from an atomic
physics perspective, a combination of Zeeman and Doppler shifts. The magnetic
configuration is basically made of two anti-Helmholtz coils as discussed above.

In order to describe the principle of a magneto-optical trap, we consider an
atom ground state, with total angular momentum J D 0, and an excited state with
angular quantum number J D 1, with three sub-levels mJ D 0;˙1. Two counter-
propagating laser beams are red-detuned with respect to the atomic transition, with
left and right circular polarizations 
˙. The inhomogeneous magnetic field created
by the two anti-Helmholtz coils is zero at the centre of the trap and increases
linearly, as shown in Fig. 2.3. The laser beam with polarization 
C (propagating
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along the negative z-direction in this figure) can couple the ground state to the
m D C1 excited state, due to the additional Doppler shift associated with atoms
moving outwards in the positive region z > 0. A similar process occurs with the
atoms moving outwards in the region z < 0, with transitions allowed to the state
m D �1 by the laser beam with polarization 
�. The net result is cooling and
radiative pressure pushing the atoms towards the centre of the trap, z D 0. Minimal
temperature is attained for a detuning of the order of� D .�=2/

p
1C I=Isat, where

� is the atomic transition line width, I is the laser intensity and Isat the saturation
intensity. In typical experimental conditions, we can choose I=Isat � 10 � 100,
which corresponds to � � .1 � 10/� . This is obviously much larger than the
requirement for attaining the Doppler limit temperature, and indeed temperatures
well below this limit are obtained. This is due to the existence of additional cooling
processes that can take place in a MOT, as those described next.

The magneto-optical trap was first experimentally used by Raab et al. [10]
and now became a common technique for the production and confinement of an
ultra-cold gas. In such a device, the laser and magnetic confinement forces
considered so far are complemented by collective forces, resulting from long range
atomic interactions, which will be discussed later in Chap. 4.

2.5 Sisyphus Cooling

The limitations of the Doppler cooling theory, based on the two-level atom
configuration, became rather evident as experiments performed with optical
molasses soon revealed that the temperatures were actually much lower than
the limit given in Sect. 2.3. This happens because two important ingredients were
ignored within the simple Doppler cooling theory: first, the intensity of the radiation
field produced by two counter-propagating lasers is inhomogeneous; second, real
atoms are not two-level systems; in fact, they have Zeeman sub-levels in the ground
state.1 The physics behind cooling in this configuration is, however, rather involved
[11], for which we draw some of the most important lines here.

Let us consider an atom interacting with two counter-propagating laser beams,
along the z axis, possessing the same frequency !0 but in orthogonal polarization
states, such that

E.r; t/ D E0
�
e1eik0�r C e2e�ik0�r

	
e�i!0t C c.c.; (2.52)

with .e1 � e2/ D 0, and .e1 � k0/ D .e2 � k0/ D 0. For instance, we can set k0 D k0ez

and e1 D ex and e2 D ey . This is equivalent to write

E.r; t/ D p
2E0e.r/eik0�r�i!0t C c.c.; (2.53)

1Actually, in the absence of magnetic fields, alkali atoms have degenerate ground states.



24 2 Laser Cooling

where e.r/ is a position dependent unit polarization vector, as defined by

e.r/ D 1p
2

�
e1 C e2e�2ik0�r

	
: (2.54)

This shows that the field polarization changes along the z-direction with a period
of �=k0 D �0=2, half the laser wavelength, alternating between linear and circular
polarization. Such an alternation can be shown more explicitly by introducing the
right and left circular polarization vectors, e˙ D .e1 ˙ ie2/=

p
2, in terms of which

the above expression becomes

e.r/ D 1

2
eC Œ1 � sin.2k0 � r/�C 1

2
e� Œ1C sin.2k0 � r/�C 1p

2
e2 cos.2k0 �r/: (2.55)

This shows that the intensity of the right and left circular polarization modes vary
in space as

I˙ / 1

2
Œ1� sin.2k0 � r/� : (2.56)

For a ground state with two degenerate magnetic quantum numbers mg D ˙1=2,
this can lead to an energy shift of the ground states g D ˙1=2, due to the existence
of these 
˙ polarization modes, of the form

�E˙ D �U0 Œ1� sin.2k0 � r/� ; with U0 D „	2
R�

�2 C 4�2
: (2.57)

An atom moving to the right (k0 positive direction) in the statemg D C1=2, will
be excited to the upper level by the 
C polarization mode, near the upper part of the
oscillating potential hill (see Fig. 2.4). It will then be optically pumped to the other
ground sub-level at the bottom of the well, by emitting a blue shifted photon. The
kinetic energy loss will therefore be of the order ofU0. This process will then repeat
itself, with more probability for an atom to climb the potential hill than to go down.

The lowest temperature limit is now given by the recoil energy associated with
the process of photon emission by a atom. This recoil energy is Erec D .„k/2=2M ,
where „k ' „!0=c is the photon momentum, and M the mass of the atom. The
resulting recoil temperature limit, Trec is given in energy units by

Trec � Erec D „2!20
2Mc2

: (2.58)

This value lies well below the Doppler limit, as observed in the experiments [12].
Additional cooling, leading to temperatures even lower than Trec can be achieved
with the evaporative cooling technique, which consists of extracting atoms in high
kinetic energy from the trap, as discussed next. In Table 2.1, we present some of its
values, together with other parameters, for the most important atomic isotopes used
in experiments.
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Fig. 2.4 (a) Schematic
representation of a simple
multi-level structure sensitive
to the light shifts induced by
the polarization gradient.
(b) Optical pumping
mechanism in an optical
potential with
position-dependent
polarization

Table 2.1 Comparison of relevant atomic parameters for the main cooling transitions
for the isotopes of elements used in laser cooling experiments. The data are taken from
Ref. [13]

Isotope Cooling transition �=2� (MHz) Is (mW/cm2) TD (
K) Trec (nK)
39K 42S1=2! 42P3=2 6.2 1.81 148 830
87Rb 52S1=2! 52P3=2 5.9 1.67 145 370
40Ca 41S0! 41P1 34.2 60 832 2,670
88Sr 41S0! 41P1 31.8 42.7 767 1,020

2.6 Evaporative Cooling

Evaporative cooling is perceived in everyday life. It results from the fact that
evaporation carries away the particles of a given body or system with the largest
kinetic energies. It was first proposed to cool trapped Hydrogen atoms by Hess in
1985 [14], and later used to cool alkali atoms [15]. An early authoritative review
was given in [16]. In order to produce evaporation, we need to corrode the borders
of the magnetic trap in order to produce a shallow potential. This can be made by
using radio-frequency fields. Given the magnetic field inhomogeneity, this field will
connect upper and lower Zeeman ground levels, producing a magnetic hole that
allows the atoms in the outer regions of the trap to escape. Evaporative cooling
became a basic technique to attain the critical temperature and to achieve Bose
Einstein condensation [17].

Let us briefly review the concepts of this cooling process, by assuming that an
atomic gas is trapped inside a given potential well U.r/. The temperature drops due
to loss of atoms, as characterized by the evaporation parameter ˛, defined as [16]
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˛ D d.lnT /

d.lnN/
; (2.59)

where T is the temperature and N the number of atoms. If evaporation is processed
at a constant rate, then the final temperature at some later instant t can be simply
determined by

T .t/ D T .0/

�
N.t/

N.0/

�˛
; (2.60)

where N.0/ and T .0/ are the initial values. We can assume a potential well with
a generic shape U.r/ / r�ı=3, where ı D 3=2 for a three dimensional harmonic
potential. Evaporation is controlled by limiting the depth U0 of the confining
potential. The kinetic energy of the escaping atoms is larger and of the order of
U0. In what concerns the trapped atoms, we can assume that they are approximately
described by a Boltzmann distribution, with an average energy ofUth D .ıC3=2/T .
Under these assumptions, it is then possible to establish a simple relation between
the evaporation parameter and the potential depth, as

˛ D U0 � Uth

Uth
D �

.ı C 3=2/
� 1; (2.61)

where we have used � D U0=T . We can see that, for � D 6 we have ˛ D 1

for a harmonic trap. A drop of temperature of 10�3 would then be achieved for
a fraction of 10�3 atoms remaining inside the trap after evaporation. This would
bridge the gap between the temperature range provided by laser cooling and the
critical temperature required for Bose Einstein condensation, as demonstrated
experimentally for alkaline atoms and for atomic Hydrogen.

Let us now consider the temporal evolution of the trapped atoms. The velocity of
atoms of critical kinetic energy equal toU0 � �T , is equal to

p
2U0=m D p

��Nv=2,
where Nv is the average velocity of the trapped atoms. For large values of �, the
fraction of atoms with energies larger than the threshold U0 is approximately given
by 2e��

p
�=� . From here we conclude that the rate of evaporation provided by

collisions is

dN

dt
D �N

�v
; �v D

p
2e�

�
�col; (2.62)

where �v is the evaporation time. We have also defined the elastic collision time
�col D 1=.

p
2n0
 Nv/, where n0 is the maximum density of atoms, 
 is the cross

section for elastic collisions, and
p
2Nv is the average relative velocity between two

colliding atoms. This expression for the atom evaporation rate is confirmed by a
more detailed analysis.

Because evaporative cooling is essentially a classical process, many classical
models have been proposed [15, 18–23]. Such a classical description is valid if
the temperature of the gas is much larger than the quantum level spacing of the
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atoms in the trap. In addition, the de Broglie wavelength has to be larger than
the mean interatomic distance, or n�3T � 1, where n is the atom density and
�T D „p2�=MT is the de Broglie wavelength of a thermal atom. Following
[23], let us assume a classical distribution function f .r;p/, normalized to the total
number of atoms in the trap, as

Z
dr
Z

dp
.2�„/3 f .r;p/ D N; (2.63)

where p is the atom momentum. The evolution of this distribution is described by
the Boltzmann equation

�
@

@t
C v � r C F � @

@p

�
f D C.r;p/; (2.64)

where v D p=M , and F D �rU.r/ is the classical force. For s-wave collisions,
which are those relevant for the trapped atoms, and are independent of energy, the
collision integral can be written in the form

C.r;p/ D 


Z
d	

2�

Z
dp

.2�„/3 .f1f2 � f 01 f 02 /�v; (2.65)

where �v D .p01 � p02/=2M is the relative velocity of two atoms before collision,

 is the atom collision cross-section, 	 specifies the direction of scattering, and
the usual notation for the Boltzmann collision integral is used [24]. This kinetic
description can be simplified by assuming that in the evaporation process, the
distribution function only depends on the particle energy, E . We can then use the
energy distribution function f .E/, such that

f .r;p/ D
Z
f .E/ı.W.r/�E/dE; (2.66)

whereW.r/ D U.r/Cp2=2M . Multiplying the kinetic equation (2.64) by the delta
function appearing in this relation, and integrating over r and p, we are reduced to
the equation

�.E/
@f .E/

@t
D C.E/; (2.67)

where we have defined

�.E/ D
Z
dr
Z

dp
.2�„/3 ı.W.r/� E/: (2.68)

This quantity can be interpreted as the energy density of the atomic states. The new
Boltzmann collision integral is now
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C.E/ D M


�2„3
Z
dE1

Z
dE2

Z
dE 01ı.E1 C E2 �E 01 �E/�.Emin/

�
f .E1/f .E2/� f .E 01/f .E/



; (2.69)

where Emin D min
˚
E1;E2;E

0
1

�
. Assuming that the atoms with energy above a

critical value U0 evaporate, we have f .E > U0/ D 0. In that case, it can be
shown that the kinetic equation (2.64) satisfies a truncated Boltzmann distribution
of the form

f .E/ D .n0�
3
T /e
�E=TH.U0 �E/; (2.70)

where H.x/ is the Heaviside step-function. This solution can now be replaced in
(2.66) yielding

f .r;p/ D .n0�
3
T /e
�W.r/=THŒU0 �W.r/�: (2.71)

It is obvious that T cannot be, strictly speaking, the temperature of the system,
because this is an open system which is not in thermal equilibrium, allowing for the
energetic particles to scape. However, we can still call it a ‘temperature’ in the broad
sense. Integration over momentum then leads to the density profile

n.r/ D n0e
�W.r/=T

"
Erf


p
�
�

� 2
r
�

�
e��

#
; (2.72)

where � D U0 � U.r/=T . Notice that this is different from the free density profile
and, in particular, the number of atoms at the centre of the trap is smaller than in the
absence of evaporation, n.0/ < n0.

Let us now consider the rate of change on the number of atoms remaining inside
the trap. Using the truncated distribution (2.71) to integrate over the trapped energies
E < U0, we obtain from the kinetic equation (2.67)

dN

dt
D �

Z 1

U0

�.E/
@f .E/

@t
dE D � M


�2„3
Z
dE1

Z
dE2

Z
dE 01 �.E 01/f .E1/f .E2/;

(2.73)

where the energiesE1,E2 andE 01 are upper bounded byU0. Noting that in this range
of integration the distribution functions are simple exponentials, we can easily get

dN

dt
D �n20
 Nve��Veff; (2.74)

where Nv D p
8T=�M , and Veff is an effective volume determined by

Veff D �3T
T

Z U0

0

�
.U0 � E � T /e�E=T C Te��



dE; (2.75)
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with � D U0=T . This is a more refined version of Eq. (2.62). We can also compute
the change of the mean kinetic energy per atom, reading

dW

dt
D �

Z 1

U0

dE�.E/E
@f .E/

@t
: (2.76)

Using a similar procedure as in (2.73), we then get

dW

dt
D dN

dt

�
U0 C

�
1� V 0eff

Veff

�
T

�
; (2.77)

where a new effective volume appears, as

V 0eff D �3T
T

Z U0

0

�
Te�E=T � .U0 � E � T /e��
 (2.78)

Finally, the temperature evolution can be determined by using the equation of state,
W D CT C
N , where C D .@W=@T /N is the heat capacity, and 
 D .@W=@N/T
is the chemical potential. This then leads to

dT

dt
D 1

C

�
U0 C

�
1 � V 0eff

Veff

�
T � 


�
dN

dt
: (2.79)

This represents a refinement of the scaling law (2.60).
The above description can be reformulated using a quantum description. Quan-

tum theories of evaporative cooling have been published over the years [25–29]. In
this case, the Boltzmann distribution is replaced by a Bose distribution, and a similar
procedure can lead to a truncated function of the form

f .r;p/ D H.A.r/� E/

Z�1 exp.E=T / � 1 ; (2.80)

with

A.r/ D U0 � U.r/ and Z.r/ D exp fŒ
 � U.r/�=T g ; (2.81)

where the effective potential can also be taken into account [29].

2.7 Sympathetic Cooling

The evaporative cooling technique can be applied to species that can be brought
down to low enough temperatures (typically, at the micro-Kelvin region) with laser
cooling. There are others, however, for which direct laser cooling is not possible
or simply ineffective (as it is the case of molecules, whose electronic structure is
too complicated). It is, however, possible to make use of inter-particle interactions
to induce cooling to other particles which cannot be directly laser cooled. This is
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the physical principle underlying the sympathetic cooling technique. For example,
atomic ions that can be directly laser cooled are used to cool nearby ions or atoms,
by way of their mutual Coulomb interaction. This includes most molecular ion
species, especially large organic molecules [30]. The cooling of neutral atoms
through sympathetic cooling was first demonstrated by Myatt et al. in 1997 [31].
Here, a technique with electric and magnetic fields was used, where atoms with spin
in one direction were more weakly confined than those with spin in the opposite
direction. The weakly confined atoms with a high kinetic energy were allowed to
escape faster, lowering the total kinetic energy, resulting in a cooling of the strongly
confined atoms.

A theoretical understanding of sympathetic cooling is quite simple to obtain after
the discussion presented in the previous section. Let us consider a gas ofN2 particles
with mass M2 as the target specie, i.e., the one to be sympathetic cooled, and a
‘buffer’ gas (which can be laser cooled) of N1 D N1.t/ particles of mass M1. The
total kinetic energy in an harmonic trap (ı D 3=2) is then given by Uth D 3.N1 C
N2/T . Consider now that the buffer gas is set to evaporate with an energy cutoff
U0 D �T . The corresponding variation in the energy is given by

dUth

dN1
D .�C �/T; (2.82)

where 0 
 � 
 1 is a parameter depending on the cutoff (the latter definition can be
found in reference [23] and depends on the experimental details of the evaporation
procedure). After rethermalization, the energy shift is determined by E C dE D
.N1CdN1CN2/.T CdT /. This corresponds to a temperature variation of the form

dT

T
D Q̨ dN1

N1 CN2
; (2.83)

where Q̨ D .� C �/=3 � 1 is the new evaporation parameter. Assuming a constant
cutoff �, we have

T D Tmin

�
N1 CN2

N2

� Q̨
; with Tmin D T .0/

�
N2

N1.0/

� Q̨
: (2.84)

As it immediately follows from Eq. (2.84), the minimum temperatureTmin is reached
when all the buffer atoms are evaporated (N1 D 0). Because we are mainly
interested in bringing the target specie down to quantum degeneracy, it is relevant
to consider the phase space density %j D 2:17Nj„!j =T [32], where j D 1; 2 and
!j are the trapping frequencies. Using the latter result, we can explicitly compute
the phase-space of both the buffer and target gas

%j D 2:17Nj

�„!2
T

�3 �
N1.0/

N1 CN2

�3 Q̨
: (2.85)
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a b

Fig. 2.5 Evolution of the phase-space density of both buffer (dashed line) and target (full line)
atoms. The red dashed line corresponds to the phase-space density necessary to occur Bose-
Einstein condensation (%BEC D 2:612). (a) Condensation of both species. (b) No condensation.
The parameters are discussed in the text and correspond to the experiment performed in Ref. [32]

After the evaporation of all the buffer atoms, we observe that the phase space
density for the target atoms reaches its maximum value

%max
2 D 2:17

N
.3 Q̨�1/
2

�
N1.0/

Q̨ „!2
T .0/

�3
; (2.86)

where we have assumed that no evaporation of the target atoms occur and therefore
N2 is constant. Also, the buffer phase-space density increases first to a maximum
value

%max
1 D %max

2

�
!1

!2

�3
.3 Q̨ � 1/.3 Q̨�1/

3 Q̨ .3 Q̨/ (2.87)

and then decreases to zero. Another important value corresponds to the point where
the phase-space density of the two species are equal

%1D2 D %max
2

"
1C

�
!1

!2

�3#�3 Q̨
: (2.88)

Notice that the relative positions between %max
1 , %max

2 and %1D2 can be modified
by changing the different evaporation parameters. In Fig. 2.5, the curves %1;2 in
Eq. (2.85) are depicted for the evaporation ofN1.0/ D 108 atoms to sympathetically
cool down N2 D 6:5 	 107 target atoms. For definiteness, we use the experimental
parameters of Ref. [32], with !2=!1 D 2, an initial temperature of T .0/ D 200�K
and 3 Q̨ � 1 > .!1=!2/

3 to assure that both the species can be condensed (i.e.,
%1;2 > %BEC D 2:612). The physical meaning of this critical value will be explained
in future chapters. If the mutual condensation condition 3 Q̨ � 1 > .!1=!2/

3 is
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Fig. 2.6 Four different scenarios illustrating the features of sympathetic cooling, obtained for
!2 D

p
2!1

satisfied, the buffer condenses first if %1;2 D 2:612, otherwise the target condenses
first. These previous conditions can be established as a function of the number of
target atoms N2. This allows us to define three critical numbers, Na

2 , Nb
2 and Nc

2 ,
for which %1D2, %max

1 and %max
2 simultaneously equal 2.612. In Fig. 2.6, we represent

the critical curves Na
2 =N

c
2 and Nb

2 =N
c
2 as a function of the cutoff �.

Another important property to be analyzed is the rate at which the cooling
process occurs. So far, we have assumed that both the buffer and target atoms
possess the same temperature (this is valid if the evaporation occurs slowly enough
so the system can continuously thermalize). Let us now define the temperature
average and difference between the two species, respectively given by�T D T1�T2
and NT D .T1 C T2/=2. Assuming that both specie obey a Maxwell-Boltzmann
distribution, it is possible to compute the energy exchange�Uth D �2��T , where
� is the number of interspecies collisions per unit time, which can be approximately
given by2

� ' N1N2

�2RxRyRz

12 Nv12; (2.89)

where Nv12 D p
kB.T1 C T2/=M and Rj D

q
.kB=M/.T1=!

2
1;j C T2=!

2
2;j /, with

j D x; y; z. Here, we have introduced the reduced mass

2For experimental reasons, � should be multiplied by a factor e��2=R2z , where� D g=!21;z�g=!22:z
represents the gravitational sag between the two clouds and Rz D

q
.kB=M/.T1=!

2
1;z C T2=!22;z/

is the vertical size of the clouds. Near condensation, however, the effect of the sag is negligible and
Eq. (2.89) holds. See Ref. [32] and references therein for further details.



References 33

M D 8.M1M2/
2

2.M1 CM2/3
: (2.90)

From this definition, we can easily write (for equal trapping frequencies,
! D !1 D !2)

1

�12
D 1

�T

d�T

dt
D N1 CN2

3T

!3
12M
2�2

: (2.91)

It is possible to verify that this result is similar to that obtained in for a single specie,
as discussed in the previous section. Noticing that we are here considering a trapped
gas, Eq. (2.62) should be modified by replacing n0 by .N1 CN2/=�ho, which would
simply yield [33] ��1col D �=3, where � D N!3
M=2�2T is the average collision
rate in a harmonic trap. There are species for which the collision frequencies 
 and

12 interspecies are very similar, as it is the case of 87Rb [34]. This implies that

1

�12
D 1

�col;1
C 1

�col;2
; (2.92)

which remarkably states that thermalization between two different species is faster
than thermalization of a single specie. And this is the key feature of sympathetic
cooling: if the evaporation ramp is applied to cooling of the buffer alone, interspecies
thermalization will remain efficient.

We stress that although we have considered the case of bosonic species for
definiteness, this fact does not limit the present discussion and the same theory can
be applied to the case of fermions. The only question that should be addressed in
the latter is the absence of condensation.
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Chapter 3
Wave Kinetic Approach

Here we give an introductory account of the wave kinetic theory. Its basic
ingredients are the Wigner function and its evolution equation. Historically it started
in 1932, when Wigner proposed his function as a way to represent the quantum
state of a particle in its classical phase space [1]. Later, in 1949, Moyal was
able to derive an exact evolution equation for the Wigner function, starting from
the Shrödinger equation [2]. In the classical limit, this evolution equation tends to
the classical single particle Liouville equation. With these two pieces of knowledge,
we are able today to build-up a consistent description of quantum particles in self
consistent mean-fields, which are very useful to describe many different processes
in quantum gases, namely, elementary excitations, collective processes and resonant
interactions, as shown through many different examples in this book. This wave
kinetic description has been abundantly used in the literature, and in particular for
laser cooling, as discussed in the reviews [3, 4].

In the present chapter we first describe the basic aspects of the Wigner-Moyal
procedure, including the concept of Weyl transformation. For a detailed review see
[5]. We then illustrate this procedure by studying the interaction of a singe atom
with radiation. The cases of two and three level atoms, and their relevance to laser
cooling, will be considered. Attention will also be given to the quasi-classical limit,
and to the links between quantum physics and the dynamical and statistical aspects
of classical physics.

3.1 Wigner-Moyal Procedure

Let us consider the phase space representation of a physical system. We know
that the state of a classical dynamical system can be represented by a point in
phase space and, if we are dealing with an ensemble of similar systems, by a
probability distribution in the same space. In contrast, a quantum system can never
be represented by a single point, even when we are not considering a statistical
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36 3 Wave Kinetic Approach

ensemble, because of the well known uncertainty relations. It would then be useful
to find a way to represent the quantum system in the classical phase space, in order to
understand the specificity of the quantum states, and the properties of their classical
limits. In what follows, we motivate the definition of an appropriate distribution
function able to reproduce the quantum features of a general physical system in
the phase-space, by defining the Wigner function and the corresponding kinetic
(or transport) equation.

3.1.1 Quasi-distributions

We known that the evolution of a quantum system is determined by the Schrodinger
equation

i„ @
@t
 D H ; H D � „2

2m
r2 C V.r; t/ (3.1)

where  �  .r; t/ is the wave function, and H is the Hamiltonian operator for a
particle of massm submitted to a potential V.r; t/. We also know that the probability
for finding the particle at a given position r, at a given time t , is determined by the
module square of the wave function P.r; t/ D j .r; t/j2. Similarly, the probability
for finding the particle with a velocity v, or a momentum p D mv at time t , is given
by the module square of the Fourier transform of this wave function P.p; t/ D
j .p; t/j2 where  .p; t/ is defined by

 .p; t/ D
Z
 .r; t/ exp.�ip � r=„/ dr: (3.2)

Normalization of the wave function guarantees the conservation of the total prob-
ability, in both the coordinate and the momentum representations of the quantum
states Z

P.r; t/dr D
Z
P.p; t/ dp D 1: (3.3)

The problem with such definitions of the quantum probability is that they cannot be
used to represent the quantum state in the classical phase space of the system .r;p/,
because they only depend on the coordinate r, or alternative on the momentum p,
but not on both variables simultaneously. A possible solution to this problem is the
introduction of a function of both variables, as defined by

W.r;p; t/ D
Z
 �.r C s=2; t/ �  .r � s=2; t/ exp.�ip � s=„/ d s: (3.4)

This is called the Wigner function. It is interesting to notice that this function con-
tains the information given by both probabilitiesP.r; t/ andP.p; t/. By integration,
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Fig. 3.1 Gaussian wave function  .x/, versus the corresponding Wigner function W.x; k/

we get the probability in the coordinate representation and a similar expression for
the probability in the momentum representation, as given by

P.r; t/ D
Z
W.r;p; t/ dp ; P.p; t/ D

Z
W.r;p; t/ dr: (3.5)

Apart from that, it contains all the information associated with the quantum
correlations. In particular, if we define an auto-correlation function of the wave
function as K.r1; r2; t/ D  .r1; t/ �  �.r2; t/, it can be shown that the function W
is nothing but the Fourier transformation of this auto-correlation, as determined by

W.r;p; t/ D
Z
K.r; s; t/ exp.�ip � s=„/ d s; (3.6)

where r D .r1 C r2/=2 and s D r1 � r2. This and other interesting properties
of the Wigner function will be demonstrated below. This function can then be
seen as a kind of probability of a quantum system in both the coordinate and
the momentum representations, and can therefore be represented in the classical
phase space. It then establishes a connection between the classical and quantum
formulations of dynamical and statistical physics.

However, this quantity cannot be strictly considered as a probability in the usual
sense, because it is not positive definite and it can eventually take negative values.
This occurs in regions of phase space where the state of the quantum system differs
significantly from any classical state, and gives a signature of the irreducible nature
of quantum physics. On the contrary, for quasi-classical states, its value becomes
positive and tends to the usual classical probability. For this reason it is usually
called a quasi-probability (Fig. 3.1).
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In order to examine the classical representation of a quantum system in a
more formal way, let us consider a pure state defined by the state vector j i. We
can also introduce two identity operators, defined in the space and momentum
representations, such that

Z
jrihrj dr D 1;

Z
jkihkj dk

.2�/3
D 1; (3.7)

where r is the position and p D „k the momentum operators. This allows us to write
the normalization condition for the state vector, h j i D 1, as

h j i D
Z

h jrihrj i dr D
Z

h jkihkj i dk
.2�/3

D 1: (3.8)

Using the wavefunction  .r; t/ D hrj i, or its Fourier transform  .k; t/ D hkj i,
this can also be written as

h j i D
Z
 �.r; t/ .r; t/ dr D

Z
 �.k; t/ .k; t/

dk
.2�/3

D 1: (3.9)

We can now introduce two additional identity operators in Eq. (3.8), and obtain the
expression

h j i D
Z

dk
.2�/3

Z
dr0

Z
dr00h jr0ihr0jkihkjr00ihr00j i D 1: (3.10)

Alternatively, we could also write

h j i D
Z
dr
Z

dk0

.2�/3

Z
dk00

.2�/3
h jk0ihk0jrihrjk00ihk00j i D 1: (3.11)

At this point, it is useful to introduce a well known result from elementary quantum
theory which states that

hrjki D hkjri� D exp.�ik � r/: (3.12)

This means that we can rewrite Eq. (3.10) as

h j i D
Z

dk
.2�/3

Z
dr0

Z
dr00h jr0ihr00j i expŒ�ik � .r0 � r00/� D 1: (3.13)

Similarly, from Eq. (3.11), we get

h j i D
Z
dr
Z

dk0

.2�/3

Z
dk00

.2�/3
h jk0ihk00j i expŒCir � .k0 � k00/� D 1: (3.14)
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Let us now make a transformation of the coordinates in Eq. (3.13), from .r0; r00/ to
the new coordinates .s; r/, as defined by

s D r00 � r0; r D 1

2
.r0 C r00/: (3.15)

We can also use new momentum coordinates in Eq. (3.14),

q D k00 � k0; k D 1

2
.r0 C r00/: (3.16)

As a result, we can transform both equations into the following expression for the
normalization condition

h j i D
Z

dk
.2�/3

Z
dr W.r;p; t/ D 1; (3.17)

where W.r;p; t/ is nothing but the Wigner function, defined now in terms of the
state vector of the quantum system, as

W.r;p; t/ D
Z

hr C s=2j ih jr � s=2i exp.ik � s/d s (3.18)

or alternatively, as

W.r;p; t/ D
Z

hk C q=2j ih jk � q=2i exp.�iq � r/
dq
.2�/3

: (3.19)

3.1.2 Weyl Transformation

Let us now consider the use of the Wigner function as a probability density,
allowing in particular to calculate the mean value of a given quantum operator OA. By
definition, we have h OAi D h j OAj i. We can follow a procedure similar to that used
above for the normalization condition. Introducing four different identity operators
in the form (3.7), we can write such a mean value as

h OAi D
Z

dk0

.2�/3

Z
dk00

.2�/3

Z
dr0

Z
dr00h jr0ihr0jk0ihk0j OAjk00ihk00jr00ihr00j i

(3.20)
or equivalently, as

h OAi D
Z

dk0

.2�/3

Z
dk00

.2�/3

Z
dr0

Z
dr00h jk0ihk0jr0ihr0j OAjr00ihr00jk00ihk00j i:

(3.21)
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Using the identity (3.12), we can also write Eq. (3.20) as

h OAi D
Z

dk0

.2�/3

Z
dk00

.2�/3

Z
dr0

Z
dr00h jr0ihr00j ihk0j OAjk00ie�ir0�k0Cir00�k00

(3.22)
Alternatively, we could transform Eq. (3.21) into

h OAi D
Z

dk0

.2�/3

Z
dk00

.2�/3

Z
dr0

Z
dr00h jk0ihk00j ihr0j OAjr00ieir0�k0�ir00�k00

:

(3.23)

On the other hand, it can be seen from the coordinate and momentum transforma-
tions (3.15) and (3.16) that the following relation is true

exp.�ir0 � k0 C ir00 � k00/ D exp.ik � s C ir � q/: (3.24)

This allows us to write, starting from any of the Eqs. (3.22) and (3.23), an expression
for the mean value in terms of the Wigner function, as

h OAi D
Z

dk
.2�/3

Z
dr a.r;k/ W.r;p; t/; (3.25)

where we have introduced a new function a.r;k/, defined by the following integral
over the momentum coordinate q, as

a.r;k/ D
Z

hk � q=2j OAjk C q=2i exp.iq � r/
dq
.2�/3

; (3.26)

or identically, by an integral over the space coordinate s, as

a.r;k/ D
Z

hr � s=2j OAjr C s=2i exp.�ik � s/d s: (3.27)

This quantity a.r;k/ is clearly a classical quantity, and is known as the Weyl
tranformation of the quantum operator OA. It can be seen as the classical counterpart
of the operator OA, in the same way as the Wigner function W is the classical
counterpart of the state vector j i.

It should be noticed that Eq. (3.26) determines the mean value of the quantum
operator h OAi D h j OAj i by using a classical averaging procedure, where W plays
the role of a classical probability distribution and the Weyl transformation a.r;k/
replaces the corresponding quantum operator. In the particular case where OA is just
the identity operator, Eq. (3.26) is reduced to the normalization condition (3.17).
Similarly, the Wigner function can be seen as the Weyl transformation of the identity
operator.
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3.1.3 Wave Kinetic Equation

It is possible to derive an evolution equation for the Wigner functionW.r;p; t/. We
can call it the wave kinetic equation. It is exactly equivalent to the Schrödinger
equation and carries the same amount of information. Moreover, if we take the
classical limit, the wave kinetic equation can be reduced to a Liouville equation,
thus establishing an interesting and useful link between Quantum Mechanics and
Classical Statistical Physics.

Our first step is to consider the auto-correlation function for the wave function,
defined above as K � K.r1; r2; t/ D  .r1; t/ �  �.r2; t/. This suggests us to
consider two arbitrary positions rj , for j D 1; 2, and write two identical versions
of the Schrödinger equation for these variables, as

i„ @
@t
 j D Hj j ; (3.28)

where we have used the notation  j �  .rj ; t/, and the Hamiltonian operator

Hj D � „2
2m

@2

@r2j
C V.rj ; t/: (3.29)

Multiplying the equation for j D 1 by  �2 and the complex conjugate of the
equation for j D 2 by  1, we obtain after subtraction

i„ @
@t
K D .H1 �H2/K; (3.30)

where we have assumed that the potential functionV.r; t/ is real. In order to proceed
further, let us introduced two new space variables r and s defined by

r D 1

2
.r1 C r2/; s D r1 � r2; (3.31)

or alternatively

r1 D .r C s=2/; r2 D .r � s=2/: (3.32)

This means that we have the differential operators

@

@r1
D 1

2

@

@r
C @

@s
;

@

@r2
D 1

2

@

@r
� @

@s
(3.33)

Replacing them in the evolution Eq. (3.30), we obtain

i„ @
@t
K D

�
� „2
2m

@

@r
� @
@s

C�V

�
K; (3.34)
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where we have used the auxiliary quantity

�V � .V1 � V2/ D V.r C s=2; t/� V.r � s=2; t/: (3.35)

At this point, it should be noticed that, for a given function V.x C �x/, we can
make a Taylor expansion around x, such that

V.x C�x/ D V.x/C
1X

nD1

.�x/n

nŠ

@n

@xn
V .x/: (3.36)

Using the series expansion of an exponential function, we can also rewrite this
equation in terms of an exponential operator, as

V.x C�x/ D exp

�
�x

@

@x

�
V.x/: (3.37)

A triple expansion in the coordinates will then lead to the following expression for
the potential functions Vj

Vj � V.r ˙ s=2; t/ D exp


˙ s
2

� r
�

(3.38)

where the plus and the minus signs pertain to j D 1 and j D 2 respectively. With
this result in mind, we can write the quantity�V in the compact form

�V D 2 sinh

�
1

2
s � r

�
; (3.39)

where the hyperbolic sine operator can be developed as

sinh ˛ D
1X

lD0

1

.2l C 1/Š
˛2lC1: (3.40)

This allow us to transform the evolution equation for the auto-correlation function
into

�
i„ @
@t

C „2
2m

@

@r
� @
@s

� 2 sinh

�
1

2
s � r

�
V

�
K D 0: (3.41)

At this point, it is useful to introduce the Fourier transformation of K , in the
variable s, as defined by

W � W.r;k; t/ D
Z
K exp.�ik � s/ d s: (3.42)
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Inversely, the Fourier integral given by

K.r; s; t/ D
Z
W exp.ik � s/

dk
.2�/3

: (3.43)

Replacing this in Eq. (3.41), we obtain

i„
�
@

@t
C „
m

k � @
@r

�
W D 2

1X

lD0

W

.2l C 1/Š


 s
2

� r
�2lC1

V: (3.44)

However, from the definition of W in (3.42), we can also write

@mW

@km
D .�is/mW: (3.45)

Using this result and the well known series expansion of the sine function

sinx D
1X

lD0
.�1/l x2lC1

.2l C 1/Š
; (3.46)

we finally get the evolution equation for the Wigner function, first derived by
Moyal [2], in the form

�
@

@t
C „
m

k � @
@r

�
W D 2

„W.sinƒ/V; (3.47)

whereƒ is a peculiar differential operator, which acts backwards onW and forward
on V , as defined by the following expression

ƒ D 1

2

�
@

@k

� 
�
�
@

@r

�!
: (3.48)

This equation is exactly equivalent to the Schrödinger equation from where we have
started. It can be called a wave kinetic equation, because it determines the evolution
of the quasi-probabilityW (and in that sense it is similar to the kinetic equations of
Classical Statistical Mechanics), but on the other hand it exactly describes the same
quantum properties as the wave function.

3.1.4 The Quasi-classical Limit

It is now interesting to consider an approximate expression of the wave kinetic
equation (3.48), valid in the quasi-classical limit. Before taking this limit, it should
be reminded that the wavevector k defines a quantum state with momentum p D „k.
The corresponding de Broglie wavelength is then � D 2�=k D p=h. If the potential
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V evolves very slowly, changing significantly only over a scale-length much larger
then �, we can neglect the higher order derivatives and take the approximation

sinƒ ' ƒ: (3.49)

In this case, the above kinetic equation reduces to the following expression

�
@

@t
C p
m

� r � rV � @
@p

�
W D 0: (3.50)

This simply corresponds to the total time derivative of the Wigner function

d

dt
W.r;p; t/ D 0; (3.51)

where the total time derivative operator can be explicitly written as

d

dt
� @

@t
C v � r C F � @

@p
: (3.52)

Here, v D p=m is the velocity of the particle and F D �rV is the total force
acting on the particle. This new kinetic equation is formally identical to the Liouville
equation, defined in the single particle phase space. This is also commonly called a
Vlasov equation. The classical limit of the Wigner function can then be identified
with the one-particle distribution function.

3.2 Center-of-Mass Equation

We can now illustrate the above Wigner-Moyal procedure with a few explicit
examples. Our previous discussion of laser cooling was mainly qualitative and
phenomenological. We are now in position to consider a more systematic description
of the atom-laser interaction, and of the resulting cooling process. This will allow us
to derive on a more solid basis some of the laser cooling properties discussed in the
previous chapter. Our description will be semi-classical, but it can also be extended
to a full quantum description.

The approach followed here is based on the concept of quantum quasi-
probability, as proposed by Wigner. This approach is strictly not necessary for
the understanding of basic single atom physics, and it can look at first sight as
unnecessary. However, it reveals to be very useful and appropriate when applied to
an interacting assembly of atoms, in particular to describe the elementary excitations
and collective processes in condensed and non-condensed atomic clouds, as shown
in later chapters. It is also very useful to explore the similarities between the
different phases of ultra-cold matter, from the non-condensed phase, to Bose-
Einstein condensates and to plasmas.
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The starting point of our present discussion will be the wave equation for
an isolated atom. The state of a moving atom can be generally represented by
a state vector j i D j�; ri, where r is the atom centre-of-mass position, and
� � .�1;�2; : : : �Z/, represents the set of electronic positions with respect to the
centre of mass, for a generic atom withZ electrons. We start with the non-relativistic
Schrödinger equation

i„ @
@t

j�; ri D H j�; ri; (3.53)

where the Hamiltonian operator contains three different terms

H � H.�; r; t/ D He.�/CH0.r/CH 0.�; r; t/: (3.54)

The first termHe.�/ determines the internal electronic states of the atom (described
in the Appendix). The second term represents the centre of mass energy operator, as
defined by

H0.�/ D P2

2M

@2

@r2
C V0.r/; (3.55)

whereM is the mass of the atom, P D �i„@=@r the centre of mass momentum, and
V0.r/ is a static confining potential. Finally, the third term in (3.53) represents the
interaction Hamiltonian, which couples the atom with the radiation field, and can be
written (within the dipole approximation) as

H 0.�; r; t/ D e

m
p � A; (3.56)

where e and m are the electron charge and mass, and p is the total electron
momentum, as defined by

p D
ZX

jD1
pj �

ZX

jD1

@

@�j
: (3.57)

In the dipole approximation, the radiation field does not depend on the internal
electron coordinates �j , and can be represented as

A � A.r; t/ D
Z

A exp.ik � r � i!kt/
dk
.2�/3

; (3.58)

and E D �@A=@t is the electric field. Here, the frequency !k � !.k/ is determined
by the photon dispersion relation. In vacuum, we simply have !.k/ D kc. This
radiation field could in principle be divided in two distinct parts, A D NACıA, where
the regular part NA represents the coherent radiation field, associated for instance
with the laser field, and ıA represents the electromagnetic noise which can be
present in the atomic confinement region. This incoherent radiation can also be used
to phenomenologically describe the quantum vacuum fluctuations, associated with
the spontaneous decay. For simplicity and consistency, this incoherent term will be
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ignored here, but its influence will be discussed when appropriate. In particular it
leads to a random force acting on the atom, which will be considered later.

We now assume that the internal electronic structure of the atom is independent
of its centre of mass motion. This allows us to use j�; ri D j�ijri. This is valid for
very different time scales governing the radiative transitions and the atomic motion,
as discussed below. We can then use the energy representation for the electronic
states, and in the spirit of perturbation theory, we write

j�i D
X

n

Cn.t/jni exp.�iEnt=„/; (3.59)

where En are the energy eigenvalues of the internal atomic states, jni the corre-
sponding state vectors (where n represents a set of adequate quantum numbers),
and the coefficients Cn.t/ obey the normalization condition

X

n

jCn.t/j2 D 1: (3.60)

In the absence of laser cooling, H 0 D 0, these coefficients would be constant.
Replacing this in the wave equation (3.53), noting that Hejni D Enjni, and using
the orthogonality condition hmjni D ımn, we can easily obtain

i„
�
@Cn

@t

�
jri C i„Cn @

@t
jri D CnH0jri C

X

l

H 0nlCl jri exp Œ�i.El �En/t=„� ;
(3.61)

with the interaction matrix elements

H 0n1 D hnjH 0j1i �
Z
 �n .�/H 0.�; r; t/ l .�/d�; (3.62)

where d� � …jd�j , and  n.�/ D h�jni are the electronic wavefunctions. Intro-
ducing the Bohr frequencies !nl D .En � El/=„, and defining new wavefunctions

‰n.r; t/ D Cn.t/jri; (3.63)

we finally obtain

i„ @
@t
‰n D H0‰n C

X

l

H 0nl‰l exp .i!nl t/ : (3.64)

This is the centre of mass wave equation, which is the starting point of our model.
Before concluding this section, we should notice that the interaction matrix elements
H 0nl can also be written in the form
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H 0nl � H 0nl .r; t/ D �i
Z
!kA.k/pnl exp.ik � r � i!kt/; (3.65)

where we have used the dipole matrix elements pnl of the appropriate radiative
transition.

3.3 Wave Kinetic Description of the Laser-Atom Interaction

We now show that the standard quantum mechanical description of atom radiation
interaction, as summarized in the previous section, is equivalent to a wave kinetic
description based on correlation functions for centre of mass states of motion.
In particular, Eq. (3.64) can be transformed into a wave kinetic equation of the
Wigner-Moyal type by introducing the correlation function K.r; s; t/ D hr C
s=2; t jr�s=2; ti. Taking its Fourier transformation, we arrive at the Wigner function
for the centre of mass motion

W.r;q; t/ D
Z
K.r; s; t/ exp.�iq � s/ d s: (3.66)

It is also useful to define a Wigner matrix, with elements

Wnl.r;q; t/ D �nl .t/W.r;q; t/; (3.67)

where �nl D hnj�jli are the density matrix elements for the internal atomic states.
For pure states, we simply have �nl D C �n .t/Cl.t/.

Following the Wigner-Moyal procedure described earlier in this chapter, we
can now derive an evolution equation for the matrix elements Wnl . Starting from
Eq. (3.64), and noting the definition of H0.r/, we obtain

�
@

@t
C v � @

@r

�
Wmn D � i„

Z
V0.k/�Wmne

ik�r dk
.2�/3

C (3.68)

i
X

l

Z
hml.k/�Wmle

ik�r�i�ml t dk
.2�/3

;

where V0.k0/ are the Fourier components of the external potential V0.r/, and we
have used the following quantities

hml .k/ D !

2„pnlA.k/; �ml D .!ml � !/: (3.69)

In Eq. (3.67), we have also defined the quantities

�Wmn D ŒWml.r;q � k=2; t/�Wml.r;q C k=2; t/� : (3.70)
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We should notice that, in this equation, the atomic wavevector q is simply related
to the centre-of-mass velocity v by q D M v=„, where M is the mass of the atom.
This equation can also be written in a more compact form as

�
@

@t
C V � @

@r

�
Wmn D

X

l

Z
Vml.k/�Wmle

ik�r dk
.2�/3

; (3.71)

where we have defined

Vml .k/ D � i„V0.k/ınl C ihml.k/ei�ml t : (3.72)

The first term in this expression represents the influence of the external potential
V0.r/, and the second term is due to the interaction with the radiation field A. From
here, we can derive an evolution equation for the Wigner functionW , as defined by
Eq. (3.66). Taking the sum of all the diagonal elements of (3.72), with m D n, and
noting that

P
n �nn D 1, we obtain

�
@

@t
Cv � @

@r

�
W D �if0.W /Ci

X

n;l

�nl

Z
hnl .k/�W exp Œik � rCi�nl .k/t �

dk
.2�/3

;

(3.73)

with the external force term defined in terms of the Wigner function

f0.W / D 1

„
Z
V0.k/�Weik�r

dk
.2�/3

: (3.74)

This corresponds to the wave kinetic equation for the centre-of-mass motion. It
includes an exact description of the energy and momentum exchange between the
atom and the radiation field. In particular it describes what is usually called the
recoil effect, which is a specific quantum effect. It should be noticed that such recoil
can occur not only due to the atom interaction with the radiation field, but also with
the low frequency acoustic modes, as will be shown in the following chapters.

Equation (3.73) can now be used to study laser cooling in different atomic
configurations. Notice however that this is not a closed equation for the quasi-
distribution W , because we need to determine the electronic matrix elements �nl
separately. This can be done by using a kind of Born-Oppenheimer approximation,
where the electronic states of the atom are assumed to be independent of the centre-
of-mass states, as discussed next.

3.4 Two-Level Atom

We first consider the case of a two-level atom in the presence of a single laser beam.
This simple model is sufficient to describe the relevant properties of laser cooling
if we ignore the Zeeman split of the atomic sub-levels. Therefore only two internal
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eigenstates with energies E1 and E2 are considered, with !21 D .E2 � E1/=„. The
laser field can be described by the following radiation spectrum

A.k/ D 1

2
A0.2�/

3 Œı.k � k0/C ı.k C k0/� ; (3.75)

The laser frequency !0 D k0=c is assumed to be nearly resonant with the atomic
transition between the two energy states, !0 ' !21. All the other energy levels can
be ignored. Replacing (3.75) in (3.73) we can easily get

�
@

@t
C v � @

@r

�
W D �if0.W /C g�W; (3.76)

where the coupling coefficient is given by the expression: g D i.h Q�21�h� Q�12/, with

h � h21 D !0

2„p21A0 ; Q�21 D �21 exp .ik � r C i�t/ (3.77)

and� � �21 D !21 �!0. Here we have used the rotating wave approximation, and
assumed � � !0. We can also write

g D i!0A0

2„ .p21 Q�21 � p12 Q�12/ D �!0A0„ =.p21 Q�21/; (3.78)

where we have used the properties Q�12 D Q��21 and p12 D p�21.
In order to calculate g we need to determine �21, which can be done by going

back to Eq. (3.69). On a fast time scale, much shorter than the characteristic time
for atom cooling, we can neglect the centre-of-mass motion and assume that W
is nearly constant. This is equivalent to the Born-Oppenheimer approximation. On
such a fast time scale, we can also neglect the influence of the confining potential,
and this equation reduces to

d

dt
�mn D i

X

l

Z
hml exp.ik � r C i�ml.k/t/

dk
.2�/3

: (3.79)

For simplicity we have used d=dt D @=@t C v � @=@r. In the present case
of a two-level atom in the presence of the field (3.75) this reduces to the well
known Bloch equations (2.20) and (2.21) of the previous chapter, with 	R D
!0A0p21=„ D 2h. The steady state solutions of such equations are well known,
and can be written as [6]

Q�21 D �1
2
	�R

Œ.�C k � v/� i�=2�

.�C k � v/2 C �2=4C j	Rj2=2 (3.80)

and

�22 D � i

2�

�
	R Q�21 �	�R Q�12

	
; (3.81)
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with the complex Rabi frequency 	R D E0p21=„, and the spontaneous decay time
1=� . This allows us to write the coupling coefficient as g D ��22, or in explicit form

g D �j	Rj2
4.�C k � v/2 C �2 C 2j	Rj2 : (3.82)

At this point, it is useful to introduce the saturation parameter s0 as

s0 D I

Is
D 2j	Rj2

�2
; I D �0

2
!20 jA0j2; (3.83)

where I is the laser intensity and Is the saturation intensity. The coupling constant
can then be rewritten as

g D �s0=2

1C s0 C 4.�C k � v/2=�2
: (3.84)

Replacing this result in Eq. (3.76), we can see that the evolution of W is now
determined for long times in a closed form.

3.5 Links with Dynamics and Statistics

3.5.1 Quasi-classical Limit

It is now useful to consider the wave kinetic equation in its quasi-classical limit,
where the momentum carried by an emitted or absorbed photon of momentum „k
can be considered negligible with respect to the momentum of the atom „q. In this
case, we can use the approximate expressions

W .˙/ ' W.r;q; t/˙ k
2

� @W
@q

C @

@q
� kk
4

� @
@q
W ˙ : : : (3.85)

From this, we may write

�W D �k � @W
@q

: (3.86)

We can see that no second derivative term of the form @2W=@q2 appears in the quasi-
classical limit. This means that no Fokker-Planck type of equation can be generated
here (as the effects of diffusion in the momentum space are not taken into account),
which has important physical consequences, as discussed next. Using this result in
the external force, we obtain

f0.W / D �1„rV0.r/ � @
@q
W: (3.87)
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We can then write the quasi-classical limit of the wave kinetic equation (3.76) as

�
@

@t
C v � @

@r
C F
M

� @
@v

�
W D 0; (3.88)

where the force (per unit mass) acting on the atom has two distinct terms, one
associated with the trapping potential V0, and the other one due to the laser field,
as defined by

F D �rV0.r/C g„k: (3.89)

The quasi-classical kinetic equation of the atom (3.88) clearly states the conser-
vation of the Wigner quasi-distribution W in the classical phase space .r; v/, in
accordance with the generic discussion of Sect. 3.1.4. This is a kinetic equation
of the single-particle Liouville or Vlasov type, which shows that, in this limit, W
behaves like a classical distribution. Furthermore, the classical trajectory of the atom
is determined by the characteristics of the kinetic equation, which are

dr
dt

D v;
dp
dt

D �rV0.r/C g„k: (3.90)

It is clear from Eqs. (3.89) and (3.90) that we recover here the exact result for
the ponderomotive and laser-cooling force term, FL, as established from more
conventional methods [7]. We have shown that our exact wave kinetic equation
retains the atom recoil effects, and that it allows us to recover in the quasi-classical
limit the familiar expressions for the laser force.

3.5.2 Momentum Diffusion and the Doppler Limit

At this point, we should consider the eventual influence of the electromagnetic noise
ıA, which was only mentioned earlier in Sect. 3.2, and neglected afterwards. This
noise, which could also include the vacuum field fluctuations, would eventually lead
to a random force term ıF, thus transforming the equation of motion (3.90) into a
Langevin equation. From there, it would then be possible to recover an equivalent
Fokker-Planck equation, which is not possible to derive directly from our semi-
classical approach as considered above. This stochastic force is defined by the
following properties

hıFi D 0 ; hıF.t/ � ıF.t 0/i D Dı.t � t 0/ (3.91)

where D is a diffusion coefficient, and h�i represents average over a statistical
ensemble. It is also known that the cooling force FL can be written, in the range
of low detuning and low atom velocities, as FL ' �Mˇv, as shown in the previous
chapter. We can then write the modified (Langevin) equation of motion as
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Fig. 3.2 Diagram of the theoretical approach followed in this chapter, with a link between the
main equations for the atom centre-of-mass motion

dp
dt

D F0 � ˇv C ıF: (3.92)

It is well known that this Langevin equation is equivalent to a Fokker-Planck
equation of the form

df

dt
D @

@v
�
�

A.v/C ND � @
@v

�
f; (3.93)

where f � f .r; v; t/ is the classical distribution of the centre of mass velocity
states, in fact the classical limit of the Wigner function W , with the friction and
diffusion coefficients defined by A D �ˇv, and

ND D 1

2

h�v2i
�t

N1 ' „2
4
k2� N1; (3.94)

where N1 is the unit matrix. Such a description can then be used to establish the
temperature limit TD as schematically discussed in the previous chapter.

The link between the different equations discussed in this chapter are illustrated
in Fig. 3.2. Starting from the Schrödinger equation for the moving atom, and using
a semi-classical coupling with the radiation field, as stated by (3.53), and (3.64) for
the atom centre-of-mass states, we have derived a quantum wave kinetic equation
for the Wigner function W , as stated by (3.73). This was then applied to the two-
level atom model, as described (3.76). We notice that the description still remains
fully quantum mechanical (as far as the atom is concerned), where the radiation field
is treated as a classical external field, but both the energy and momentum exchange
between the atom and the field are retained. This includes the atom recoil effects.



3.6 Lambda Configuration 53

We have then used a quasi-classical approach, by neglecting recoil effects, which
lead to the Vlasov kinetic equation (3.88). In this way, we have connected quantum
mechanics to statistical mechanics, where the state of the atom centre-of-mass
motion is represented in the classical single-particle phase-space .r;p/. One further
step is made by taking the characteristics of this kinetic equation, which are nothing
but the classical equations of motion. Finally, a stochastic force term associated with
spontaneous emission was introduced, leading to the Langevin equation (3.92) and
to its equivalent Fokker-Planck equation (3.93). An alternative approach, more exact
but also much heavier, would involve the full use of quantum theory along the whole
chain of derivations, from the wave equation for the atom in a quantized radiation
field, down to a Fokker-Planck equation. The connections with classical dynamics
and statistics would also become much less apparent.

3.6 Lambda Configuration

Let us return to the exact quantum wave kinetic description and consider other
examples of application, by generalizing the above two-level atom configuration.
A straightforward generalization can be made to the so called lambda configuration
(see Fig. 3.3). This corresponds to a three-level atom, with two allowed radiative
transitions.

We assume that two different laser beams are present, with frequencies !a '
!31 and !b ' !32, and further assume that the radiative coupling between the
two lower levels j1i and j2i is forbidden. In this ƒ configuration, the wave kinetic
equation (3.73) can be reduced to

d

dt
W D �if0.W /C ga�Wa C gb�Wb; (3.95)

where d=dt D @=@t C v � @=@r and

�Wj D �
W.r;q � kj =2; t/�W.r;q C kj =2; t/



(3.96)

Fig. 3.3 Lambda
configuration: this is a
three-level atom model with
two allowed radiative
transitions
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for j D a; b. This is a straightforward generalization of Eq. (3.76), where the
two coupling coeffients ga and gb depend on different density matrix elements,
according to

ga D �=.	a Q�31/; gb D �=.	b Q�32/ (3.97)

where 	a D !aAap31=„ and 	b D !bAbp32=„ are the Rabi frequencies
corresponding to the two radiative couplings, Aa and Ab the corresponding laser
field amplitudes. We also have defined the following density matrix elements

Q�31 D �31e
ika �rCi�at ; Q�32 D �32e

ikb �rCi�bt (3.98)

and the frequency detunings�a D !31 �!a and�b D !32 �!b , can have identical
or opposite signs. Now we need to find the pertinent expressions for the density
matrix elements �31 and �32. For that purpose, we go back to Eq. (3.79) and retain
the appropriate terms in the sum. The resulting equations are

d

dt
�33 D i

2

�
	a Q�31 �	�a Q�13

	C i

2

�
	b Q�32 �	�b Q�23

	 � ��33 (3.99)

and

d

dt
Q�31 D i

2
	�a .�33 � �11/ � Œ�a C i�a� Q�31 (3.100)

d

dt
Q�32 D i

2
	�b .�33 � �22/ � Œ�b C i�b� Q�32

where �a D 2�a and �b D 2�b are the spontaneous decay rates into the two lower
levels j1i and j2i, and � D �a C �b is the total decay rate of the upper energy
level. We have also used the simplifying notation ıj D .�j C kj � v/, for j D a; b.
These equations generalize the usual Bloch equations for a two-level atom. Let us
now consider the steady state solutions of Eq. (3.99). Putting Eqs. (3.99) and (3.97)
together, we simply get ��33 D ga C gb . Moreover, from Eq. (3.101), ant noticing
that for a three-level atom �11 C �22 D 1 � �33, we obtain

Q�31 D �	
�
a

4

.�a C i�a/

.�2
a C �2=4C j	aj2=2 ; Q�32 D �	

�
b

4

.�b C i�b/

.�2
b C �2=4C j	bj2=2:

(3.101)

This allows us to write the population of the upper energy level as

�33 D 1

�
.ga C gb/ D 1

2

X

jDa;b

j	j j2
4�2

j C �2 C 2j	j j2 (3.102)

from where we can easily extract the explicit expressions for ga and gb . It is now
useful to briefly discuss the quasi-classical limit for this configuration. In this limit,
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the wave kinetic equation (3.95) reduces again to (3.88), where the classical force
acting on the atom is now given by

F ' �rV0.r/C „.gaka C gbkb/: (3.103)

The radiation force associated with the two laser beams can be approximated by
using gjkj ' �ˇj v, where ˇj are the viscous coefficients associated with the
two laser beams j D a; b. We can see that the ƒ configuration can enhance or
decrease the cooling effect. Such a decrease occurs for instance when the two laser
beams have the same direction of propagation, but opposite frequency detuning
with respect to the two radiative transitions (i.e., one being blue- and the other red-
detuned). In this case, when jˇaj D jˇbj a complete inhibition of laser cooling is
observed, which corresponds to the manifestation of a dark state.

Theƒ configuration is also useful to describe the Raman cooling process, as first
demonstrated by Kasevich and Chu [8]. In this case, the two laser beams are slightly
red-detuned with respect with the two radiative transitions, and the two lower energy
states j1i and j2i are in fact Zeeman splitted sub-levels of the ground state. The
resulting recoil limit is now associated with the difference .ka � kb/, which is well
below the recoil limit valid for the Sisyphus cooling.

3.7 Two Coupled Radiative Transitions

Of particular interest is the case of a modified ƒ configuration, where we have two
coupled radiative transitions operating between two distinct pairs of atom energy
levels, j1; j i and j2; j i, with j D a; b (see Fig. 3.4). Such couple can be provided
by some unspecified process, such as atomic collisions or radiative pumping. This
last case is well adapted to study the Sisyphus cooling, as discussed below.

Going back to the generic wave kinetic equation (3.73), and considering the trace
of the relevant density matrix, we get

X

n

�nn D
X

jDa;b
�j D 1 ; �j D �1j;1j C �2j;2j ; (3.104)

Fig. 3.4 Two coupled
radiative transitions: this is a
four-level atom model, with
two radiative transitions,
which are coupled by some
unspecified (C) process, due
to collisions or to radiative
pumping



56 3 Wave Kinetic Approach

where �j are the partial traces or the populations involved in the two distinct
radiative processes. Accordingly, by introducing two distinct Wigner functions,
Wj D �jW , we can write two distinct kinetic equations similar to (3.76), with
source terms describing the coupling process, reading

�
@

@t
C v � @

@r

�
Wj D �if0.Wj /C gj�Wj C

�
@Wj

@t

�

s

; (3.105)

where gj and �Wj are defined in the same way as in the ƒ configuration, and the
source terms satisfy the conservation condition
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@t

�

s

: (3.106)

In order to simplify the discussion, let us focus on the quasi-classical limit, where
we can use the approximation

f0.Wj / D 1

„rV0.r/ � @
@q
Wj ; (3.107)

where „q is the momentum of the atomic centre of mass. In this case, (3.105)
reduces to �
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C Fj
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s

(3.108)

for j D a; b. The two equations written here are in fact coupled through the
conservation condition (3.106). The quantities Fj correspond to the classical forces
acting on the atom, as due to the two distinct laser beams. These equations can
alternatively be established in a phenomenological way [9]. By adding these two
equations, noting that .Wa CWb/ D W , and taking (3.106) into account, we get
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@r

�
W D 1

M
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Fa � @Wa

@v
C Fb � @Wb
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�
: (3.109)

For a number of interesting processes, such as Sisyphus cooling, we verify the
symmetric force condition Fa D �Fb � �F. In this case, we are reduced to
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C v � @
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�
W D F

M
� @
@v
ıW; (3.110)

where we have defined the difference ıW D Wa �Wb . On the other hand, by taking
the difference of the two equations (3.108), and assuming a symmetric force, we get
an evolution equation for the difference, as

�
@

@t
C v � @

@r

�
�W D F

M
� @W
@v

C
�
@�W

@t

�

s

: (3.111)
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This shows that, for a symmetric force, we can transform the coupled equations for
Wa and Wb , into a new pair of coupled equations for the total distribution W and
for the difference ıW . Let us now defined the characteristic times for the coupling
process, �ab and �ba, such that

�
@Wa

@t

�

s

D Wb

�ba
� Wa

�ab
: (3.112)

This shows that, in equilibrium, we should have Wa=Wb D �ab=�ba. This then
leads to

ıW D W
�ab � �ba
�ab C �ba

: (3.113)

Let us apply this description to the case of Sisyphus cooling, where coupling
between the two radiative cycles is due to a spatial dependence of the left and right
hand polarized laser fields. In this case we can replace the above expression by a
specific formula

ıW D W sin.2k � r/; (3.114)

where k is the wavenumber associated with the two counter-propagating laser beam
modes with the same frequency but orthogonal linear polarization, as discussed in
the previous chapter. Such a spatially modulated population difference is imposed by
optical pumping. Now, going back to Eq. (3.111), for nearly steady state conditions,
and assuming that the force term on the right hand side is negligible (which is not
obvious and should be verified a posteriori), we can write [9]

v � @
@r
ıW '

�
@ıW

@t

�

s

' ıW

�c
; (3.115)

where we have introduced the characteristic decay time �c , such that 1=�c D
1=�ab C 1=�ba. Inserting (3.114) on the left hand side, we get a rough estimate
of the population difference�W as

ıW ' 2W �c.v � k/ cos.2k � r/: (3.116)

Replacing this estimate in Eq. (3.110), we get a closed kinetic equation for the total
distributionW in the canonical form, which reads
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@t
C v � @

@r
C Feff

M
� @
@v

�
W D 0; (3.117)

where the effective force Feff acting on the atom is given by

Feff D 2F�c.v � k/ cos.2k � r/: (3.118)
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We known that in the Sisyphus configuration, F is the force due to the gradient of
the energy shift of the lower atom levels due to the laser field. This can be written as

F D r.�E/ D 2U0k cos.2k � r/; (3.119)

where the maximum energy shift U0 due to the ac Stark effect was calculated in the
previous chapter. This shows that the effective force is modulated in space as the
square of the standing wave field. By taking the average over a distance of �=k D
�=2, we obtain the expression

hFeffi ' �ˇeffv ; ˇeff D 2�ck
2U0; (3.120)

where ˇeff is the resulting effective viscosity coefficient which describes the
corresponding cooling process.

3.8 Influence of a Blue-Detuned Pump

The description of laser cooling associated with a two-level atom process can be
refined by introducing the following situation: (1) we have six red-detuned laser
cooling beams and, in addition, (2) we have one blue-detuned laser beam. This
configuration (see Fig. 3.5) is relevant to the excitation of Doppler instabilities [10,
11], and the production of phonon laser emission, to be discussed later.

Instead of Eq. (3.75), the electromagnetic wave field spectrum is now given by

A.k/ D .2�/3

2

X

n

An Œı.k � kn/C ı.k C kn/�C .2�/3

2
Ab Œı.k � knb/C ı.k C kb/� ;

(3.121)

where n represents the different laser red-detuned beams. In a standard laser
cooling configuration (as a magneto-optical trap), we have six laser cooling beams
with equal amplitude, and we can take An D A0, forming an orthogonal set of

Fig. 3.5 Two coupled
radiative transitions: this is a
four-level atom model, with
two radiative transitions,
which are coupled by some
unspecified (C) process, due
to collisions or to radiative
pumping
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wavevectors kn. Here we assume that !0 D knc 
 !21, whereas for the blue-tuned
beam we have the frequency !b D kbc � !21. The resulting wave kinetic
equation is

d

dt
W D �if0.W /C

X

n

gn�Wn C gb�Wb; (3.122)

where f0.W / and gn and gb keep the above definitions (with obvious changes).
It should be noted, in particular, that the relevant frequency shifts are now given by
�n � �0 D .!21 � !0/ < 0 and �b D .!21 � !b/ > 0.

In the absence of the blue-detuned beam, gb D 0 and Ab D 0, the atom can
attain some steady state equilibriumW0. In the presence of the blue-detuned pump,
such that jgbj � jgnj, we can use a perturbative approach by assuming a solution
of the formW D W0 C QW , such that

d

dt
QW D

X

n

gn� QWn C gb�W0b; (3.123)

where we have assumed that the perturbed distribution QW is of order jgb=gnj � 1,
and retained only the first order perturbative terms. Here, we have also used the
unperturbed quantity �W0b, as defined by

�W0b D ŒW0.r;q � kb=2; t/�W0.r;q C kb=2; t/� (3.124)

It is now useful to introduce the parallel distribution G.u/, after integration of W
over the directions perpendicular to that of the blue-detuned laser beam. We define

G.u/ D
Z
W.u; v?/dv? ; v D u

kb
jkbj C v?: (3.125)

This allows us to transform equation (3.123) into

d

dt
QG D

X

n

Z
gn.u; v?/� QWn.u; v?/dv? C gb�G0b: (3.126)

We should notice that the coupling strengths gn are, in general dependent of the
perpendicular velocity v?. This equation can be simplified by noting that the terms
containing gn tend to cool down the atom, and to reduce QG to zero. We can then
replace it by

d

dt
QG D �� QG C gb�G0b; (3.127)

where � is a phenomenological viscosity parameter of order jgnj. This equation has
an obvious meaning. The perturbed distribution QG is excited by the driving blue-
tune laser, as described by the term in jgbj, and is damped by the cooling laser
beams by decaying to zero on a time-scale of 1=�. For example, by choosing
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Fig. 3.6 Parallel distributions for blue-detuned excitation of a laser cooled atom: initial thermal
distribution G0 D G.t D 0/, and asymptotic equilibrium distribution Geq D G.t ! 1/, as a
function of the normalized parallel velocity z DMu=„kb

an equilibrium thermal distribution with temperature T , such that G0.u/ Dp
M=2�T exp.�M u2=2T /, such that

p
T=M < „kb=M , we get the simple

solution

QG.u/ D gb

�
G0.u � „kb=M/

�
1 � e��t 
 ; (3.128)

where gb > 0, which is a thermal distribution displaced by in the direction of the
blue-shifted laser beam. Such a displacement is due to the increase of momentum
due to absorption of photons in this direction. This solution shows a linear growth at
a rate gbG0, valid for short times t � 1=�, followed by a saturation on a time scale
of 1=�, when the cooling effect due to the red-shifted beams, and the excitation due
to the blue-shifted beam tend to an equilibrium, QG.1/ D gbG0.u � kb=M/=�. The
resulting two energy levels in velocity space is illustrated in Fig. 3.6.

However, it should be noticed that the above description, although suggestive,
is actually only experimentally relevant for sub-recoil cooled systems, for instance
Raman cooled, where the initial temperature of the atoms is lower than the blue-
tuned photon energy. Otherwise, the secondary atom beam distribution QG will not
be able to clearly emerge from the initial distributionG0.
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Chapter 4
Atomic Clouds

Here, we consider atom-atom interactions. In a cold gas, for atoms confined in a
magneto-optical trap, two types of interactions can be considered. First, we have
the close range atom-atom collisions. Second, we have the long range interactions
mediated by scattered photons. The atomic collisions play an important role in atom
detrapping, in the gas thermalization during evaporative cooling, in the plasma
ionization processes, and in the formation of Bose-Einstein condensates. Atom-
atom collisions at very low energies have specific properties which have be studied
by many authors (see for a review [1, 2]). After reviewing the basic properties of
atomic collisions in the low energy limit, we discuss the Feshbach resonances,
which result from the coupling with a discrete bound state. In the experiments, such
resonances can be controlled by externally applied magnetic fields, and allow to
control the atomic collision cross sections.

We then discuss the collective forces, mediated by secondary photons, resulting
from scattering by the atoms of the incident primary photons associated with the
laser cooling beams. These collective forces are therefore an intrinsic property of
the laser cooled gas. Of particular interest is the influence of such forces on the
atom density profile. We can distinguish two main types of density confinement
regimes. First, the temperature limited regime, with a Gaussian density profile,
which can be observed in clouds with a relatively small number of atoms, when
the collective forces are not relevant. Second, the multiple scattering regime, where
the atom density is nearly constant inside the cloud, and where the collective forces
are dominant. A simple, phenomenology description, as well as a more systematic
approach to these confinement regimes are given. Finally, we discuss the particularly
important case of the cloud expansion in the absence of magnetic confinement. This
is a Coulomb type of expansion, which results from the long range repulsive forces
associated with the atomic mean field.

J.T. Mendonça and H. Terças, Physics of Ultra-Cold Matter, Springer Series on Atomic,
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4.1 Atom-Atom Collisions

Here we start by reviewing the principles of collision theory, which is an essential
ingredient of the cold matter physics. It is well known that collisions between
two atoms with masses m1 and m2 can be described in the centre-of-mass frame
by the wave functions  .r; t/ of the relative particle with reduced mass mr D
m1m2=.m1Cm2/. If the interaction potential V.r1�r2/ � V.r/ is time independent,
we can look for stationary wave solutions of the form

 .r; t/ D  .r/ exp.�iEt=„/ ; E D p2=2mr; (4.1)

whereE is the energy of the particle and p D „k D mrv its momentum. In order to
determine  .r/, we need to solve the steady-state wave equation

�r2 C k2 C U.r/


 .r/ D 0; (4.2)

where U.r/ D 2mrV.r/=„2 is the reduced potential, to be specified later. The
scattering process can then be described by asymptotic solutions of this equation,
valid far away from the scattering region, of the form

 k.r/jr!1 ' eik�r C  scat.r/;  scat D 1

r
fk.�; �/e

ikrm; (4.3)

where have used spherical coordinates r � .r; �; �/. The first term in (4.3)
represents the incident particle state, and the quantities fk.�; �/ are called the
scattering amplitudes. The associated current density is defined by

J.r/ D <
�
 �k

� „
imr

�
r k

�
: (4.4)

At large distances (r ! 1), the components of this current along e� and e� become
negligible and we are left with a purely radial current, given by

J.r/ ' Jrer ; Jr D „k
mr

jfk.�; �/j2
r2

: (4.5)

This quantity is equal (or proportional) to the number of scattered particles crossing
the unit area per unit time. Therefore, the number of scattered particles which cross
the detecting area of a given detector, dS D r2d	, where d	 is the element of
solid angle, will be Jr2d	. The ratio of this number to the incident flux, given by
v D „k=mr , defines the differential cross-section, which reads

d
k

d	
D jfk.�; �/j2: (4.6)

Of particular interest is the case of scattering by a central potential, V.r/, where
the scattering amplitudes only depend on the scattering angle � , defined as the



4.1 Atom-Atom Collisions 65

angle between the incident and the scattered wave momenta. The � dependence in
Eq. (4.3) disappears, and the wavefunctions can be represent on a basis of Legendre
polynomials, Pl.cos �/, which form a complete set in the interval �1 < cos � < 1.
Such an expansion can be written as

 k.r/ D
1X

lD0
Rkl .r/Pl .cos �/: (4.7)

Each term in this series is called a partial wave, which is an eigenfunction of both
the L2 and Lz angular momentum operators, with eigenvalues l.l C 1/„2 and 1
respectively. In the usual spectroscopic notation the partial waves l D 0; 1; 2; 3; : : :

are called the s; p; d; f; : : : waves. Replacing this in the wave equation (4.2) we get
the radial equation

1

r2
d

dr

�
r2
dRkl

dr

�
C
�
k2 � U.r/� l.l C 1/

r2

�
Rkl D 0: (4.8)

Assuming that the interaction potentialU.r/ falls off more rapidly than 1=r2 at large
distances, we can write the general solution as

Rkl.r/ D Akljl .kr/C Bklnl .kr/; (4.9)

where the coefficients Akl and Bkl are independent of r , and were jl .�/ and nl .�/
are the spherical Bessel and Newmann functions defined by

jl .�/ D
r
�

2�
JlC1=2.�/ ; nl .�/ D �.�1/l

r
�

2�
J�l�1=2.�/; (4.10)

with J�.�/ denoting the ordinary �-th order Bessel function. Using the asymptotic
expressions for these functions for large distances r ! 1, we get approximate
solutions of the form

Rkl.r/ ' Ckl

kr
sin

�
kr � 1

2
l� C ıkl

�
; (4.11)

with amplitudes Ckl D
q
A2kl C B2

kl and phase shifts ıkl D �tan�1 .Bkl=Akl/.
These phase shifts in fact determine the strength of the scattered l-th partial wave
by the potential U.r/, and become zero in its absence, if U.r/ D 0.

Let us now relate the phase shifts with the scattering amplitudes fk.�/, and with
the scattering cross-section. This can be done by developing the incident plane wave
in Legendre polynomials. For large distances, r ! 1, this can be written as

eik�r D
1X

lD0
.2l C 1/

i l

kr
sin

�
kr � l�

2

�
Pl.cos �/: (4.12)
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Using Eqs. (4.3) and (4.7) we obtain, for each partial wave, the following relation

Rkl.r/ ' .2l C 1/
i l

kr
sin

�
kr � l�

2

�
C eikr

r
fkl ; (4.13)

where we have performed the developments

fk.�/ D
1X

lD0
fklPl.cos �/: (4.14)

Replacing Eq. (4.11) in (4.13), and equating the coefficients of exp.ikr/ and
exp.�ikr/ on both sides of the resulting expression, we get

ckl D .2l C 1/i leiıkl ; fkl D 1

2ik
.2l C 1/

�
e2iıkl � 1

	
: (4.15)

Inserting the latter in (4.16), we observe that the scattering amplitudes depend only
on the phase shifts ıkl , as explicitly stated by

fk.�/ D 1

k

1X

lD0
.2l C 1/eiıkl sin.ıkl /Pl .cos �/: (4.16)

Replacing this in Eq. (4.6), and integrating over the solid angle d	 D sin �d�d�,
we obtain the total cross section


k D
Z

jfk.�/j2d	 D 4�

k2

1X

lD0
.2l C 1/ sin2.ıkl/: (4.17)

It should be mentioned that, using � D 0 in Eq. (4.16), and noting that
Pl.� D 0/ D 1, we can also conclude that 
k D .4�=k/=Œfk.� D 0/�, a result
known as the optical theorem. In order to obtain explicit expressions for 
k as a
function of the scattering potential U.r/, we have to determine the phase shifts,
which can be done by using a Green’s function method, as discussed below.

We now focus on the concept of scattering length, and consider the particular case
of very low energies, such that k ! 0, which is relevant to the study of ultra-cold
atoms. We first notice that Eq. (4.17) is only useful if the series converge rapidly
for large l . This is particularly true for low energies, where only the first term of
the series, the so called s-wave scattering l D 0, becomes relevant. In this case,
Eq. (4.11) can be written as

Rk;lD0.r/ ' Ck0

kr
sin Œk.r � a/� ; (4.18)
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where a is the scattering length, as defined by

a D � lim
k!0

tan ık0
k

: (4.19)

It is obvious that the s-wave phase shift is equal to ık0 D �ka, and that, in the same
limit, the total cross section reduces to


k!0 D 4�

k2
ı2k0 D 4�a2: (4.20)

In order to compute ıkl , and in particular ık0 and a, for a given interaction potential
U.r/, we need to go back to the steady-state wave equation (4.2), which can be
written in a more convenient and equivalent form

�r2 C k2


 k.r/ D F.r/; F .r/ � U.r/ k.r/: (4.21)

The general solution of this equation can be written as

 k.r/ D  0k .r/C
Z
G.r; r0/F.r0/dr0; (4.22)

where  0k.r/ is a particular solution of the corresponding homogeneous equation,
and the Green’s function G.r; r0/ satisfies the equation

�r2 C k2


G.r; r0/ D ı.r � r0/: (4.23)

For our scattering problem, the adequate choice for the particular solution is that of
the incident plane wave  0k.r/ D exp.ik � r/. On the other hand, solving the Green’s
equation (4.23), we get

G.r; r0/ D �exp.ikjr � r0j/
4�jr � r0j : (4.24)

Replacing this in (4.22), we can then write the general solution of Eq. (4.21) as

 k.r/ D eik�r � 1

4�

Z
exp.ikjr � r0j/

jr � r0j U.r0/ k.r0/dr0: (4.25)

This is the integral equation for the scattering process, which is known as the
Lippmann-Schwinger equation. We should notice that, for large distances, (r ! 1,
r � r 0), we can use the approximation kjr � r0j ' kr � k0 � r0, where k0 is a vector
with module equal to k and the direction of r, or equivalently k D kr=r . In this
case, the above expression can be approximately written as

 k.r/ D eik�r � 1

4�

eikr

r

Z
eik

0 �r0

U.r0/ k.r0/dr0: (4.26)
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Comparing this expression with (4.3), we conclude that the scattering amplitude
fk.�; �/ is determined by

fk D � 1

4�
h 0k0 jU j ki � � mr

2�„2 Tk0;k ; (4.27)

where the transition matrix elements Tk0;k are defined as

Tk0;k D h 0k0 jV j ki D
Z
 0�k0 .r/V .r/ k.r/dr: (4.28)

In order to solve this integral, we can use the first Born approximation, by assuming
that  k.r/ '  0k.r/. The scattering amplitude is then reduced to

fk ' � mr

2�„2 T
0
k0;k ; T 0k0;k D

Z
e�ik0�rV.r/eik�rdr: (4.29)

If the two colliding atoms have equal mass m1 D m2 D M , we have mr D M=2

and, taking the low energy limit k ! 0, we simply obtain

fk ' � M

4�„2
Z
V.r/dr: (4.30)

Noticing that, in this limit, the total cross-section is 
0 D 4�jf0j2, and comparing
this with Eq. (4.20), we obtain the following expression for the scattering length

a D M

4�„2
Z
V.r/dr: (4.31)

We can see that the atomic collisions in the zero energy limit can adequately be
described by an effective interaction potential of the form Veff.r/ D V0ı.r/, such
that V0 D 4�„2a=M , or in explicit terms

Veff.r/ D 4�„2
M

aı.r/: (4.32)

As an illustrative example, let us take the particularly useful case of a potential
interaction of the form V.r/ D �˛=r6, for r > ra and V.r 
 ra/ D 1, where ˛
and ra are given constants. This is a repulsive potential at short distances r > ra,
and an attractive van der Waals potential 1=r6 at large distances. It can be shown
that, in this case, the scattering length is [3]

a D Cr0

�
1 � tan

�
� � 3�

8

��
; (4.33)
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Fig. 4.1 Fashbach resonance: two potential courses, one closed Vc.r/ and the other open V0.r/.
Twp atoms colliding at energy E ! 0 can excite an internal state Ec ' E

where C D �.3=2/=2
p
2�.5=4/ ' 0:478 is a constant, and r0 and � are

determined by

r0 D
�
M˛

„2
�1=4

; � D r20
2r2c

: (4.34)

This result shows that the scattering length a is of order r0. It also shows that a
can be positive (which corresponds to an effective repulsive interaction) or negative
(for an effective attractive interaction), depending on the value of the parameters �
and rc . Such a simple van der Waals model is very useful for low energy scattering
of alkali atoms.

4.2 Feshbach Resonances

Let us now focus our attention on resonant scattering processes, due to the
interaction of discrete bound states with the continuum of unbound states considered
above. This was first considered by Feshbach [4] in the context of nuclear physics
and by Fano [5] in atomic physics. It was later introduced in the context of ultra-cold
atom research [6], where they are called Feshbach resonances. A recent review is
given by Chin et al. [7]. Feshbach resonances are used to control the strength of the
atom-atom interactions, which has implications on the collision losses and well as
on the mean field of condensates.

These resonant processes can be illustrated with the help of two potential energy
curves (see Fig. 4.1), one open and the other closed, as described by V0.r/ and Vc.r/,
where r is the inter-atomic distance. The open channel is the entrance channel for
the atomic collisions, and the closed channel allows for the existence of bound
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molecular states. Two atoms colliding at very low energy, E ! 0, can excite a
bound state with energy Ec . Such a coupling can be tuned by an external magnetic
field B , and the resulting scattering length takes the form

a.b/ D a0

�
1 � �b

b � 1
�
; (4.35)

where b D B=B0 is the magnetic field strength normalized to the resonant value,
and �b is the resonance width. Here, a0 is the value of the scattering length
associated with the open channel V0.r D 1/, in the absence of coupling. Noting
that both a0 and�b can be positive or negative, we realize that the scattering length
can diverge to ˙1, at resonance.

Another interesting feature of Eq. (4.35) is observed for b D 1 C�b, when the
scattering length becomes equal to zero. At this point, the atom-atom interaction
disappears, and we obtain a non-interacting ideal gas, which has many interesting
applications in Bose-Einstein condensates and in atom interferometry. In practical
terms, such a situation arises when a.b/ becomes of the order or smaller than the
atom de Broglie wavelength.

An important simple example, for which exact analytical solutions for resonant
scattering are possible, is that of scattering by a spherical potential well. Discrete
bound states are observed for an attractive well, as defined by

U.r/ D �U0H.rc � r/; U0 > 0; (4.36)

whereH.x/ is the Heaviside function, such that H.x/ D 1 for x > 0, andH.x/ D
0 otherwise. The radial wave equation (4.8) takes now a slightly different form

1

r2
d

dr

�
r2
dR

dr

�
C
�
K2 � l.l C 1/

r2

�
R D 0; (4.37)

where K2 D k2 C U0 and we have used R � Rkl to simplify the notation. In the
external region r > rc , the quantity K2 is replaced by k2, and the solution takes a
form similar to (4.9), or

Re.r/ D B Œjl .Kr/� nl .kr/ tan ıl � : (4.38)

On the other hand, for the internal region r < rc , the solution can be written as

Ri.r/ D A0jl .Kr/; (4.39)

where A0 is a new constant of integration, and the term in nl .Kr/ is ruled out to
avoid diverge at r ! 0. These internal and external solutions are coupled at the
boundary r D rc by the two continuity relations

Ri.rc/ D Re and

�
dRi

dr

�

rDrc
D
�
dRe

dr

�

rDrc
: (4.40)
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By taking the ration of these two relations, we can eliminate the normalization
constants A0 and B , and use a single expression which allows us to determine the
phase shift ıl , which reads

�
1

Ri
dRi

dr

�

rDrc
D
�
1

Re
dRe

dr

�

rDrc
: (4.41)

Using the above solutions (4.38) and (4.39), we get

tan ıl D kj 0l .�e/jl .�i /�Kjl .�e/j 0l .�i /
kn0l .�e/nl .�i /�Knl.�e/n

0
l .�

i /
; (4.42)

where �e D krc and �i D Krc, and the derivatives are taken over the arguments,
as j 0l D djl.�/=d� and n0l D dnl.�/=d�. In the particular case of s-waves (l D 0),
the Bessel and van Neumann functions are given by j0.�/ D sin �=� and n0.�/ D
� cos�=�, and Eq. (4.42) consequently reduces to

tan ı0 D k tan.Krc/�K tan.krc/

K C k tan.krc/ tan.Krc/
: (4.43)

The corresponding cross-section for the s-wave can then be determined by


0 D 4�

k2
1

1C cot2 ı0
: (4.44)

For very low energies, such that k ! 0, we can use the expansion

k cot ı0 ' �1
a

C 1

2
r20k

2; (4.45)

where a us the scattering length, and r0 is the effective range of the interaction. In
this limit, we haveK ! p

U0, and the scattering length resulting from Eq. (4.44) is

a D rc

"
1 � tan

�
rc

p
U0
	

rc
p
U0

#
: (4.46)

For shallow potential wells, such that rc
p
U0 � 1, this quantity is finite and

negative. For increasing values of rc
p
U0 ! �=2, the scattering length diverges,

due to the coupling with the s-wave bound state. For even larger values of rc
p
U0,

divergence will occur periodically at .2nC 1/�=2, with n integer.
In general, for l ¤ 0, the cross-sections 
l will show a similar behavior, taking

the form


l D 4�

k2
.2l C 1/

1

1C cot2 ıl
; (4.47)
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thus generalizing the result in (4.44). These cross-sections attain their maximum
values when cot ıl ! 0. In particular, near the resonance, we can use the expression

cot ıl D ER � E

�.ER/=2
; (4.48)

where ER is the resonant energy at which ıl becomes multiple of �=2, and
�.ER/ determines the resonance width. Replacing this in (4.47), we obtain the
Breit-Wigner formula for resonant scattering. As we have seen, such a resonant
behavior results from the excitation of a bound state with a lifetime of the order of
�t ' „=�E D „�.ER/.

Let us now consider a more generic and formal description of resonant scattering.
We assume that there are two kinds of quantum states, the bound states j�i and a
continuum of unbound states jEi with energy E . We assume that these quantum
states are orthogonal and normalized, which implies that h�jEi D 0, and

h�j�i D 1; hE 0jEi D ı.E �E 0/: (4.49)

If H is the Hamiltonian of the system, then E� D h�jH j�i is the energy of the
bound state. Coupling between this bound state and the continuum is given by the
potential V.E/ D hEjH j�i. We further assume that

hE 0jH jEi D Eı.E � E 0/: (4.50)

Let us now introduce the state vector j Ei satisfying the eigenvalue equation

H j Ei D Ej Ei: (4.51)

We can represent this state vector as a linear combination of the orthonormal state
vectors j�i and jEi defined above, in the form

j Ei D a� j�i C
Z
bE0 jE 0idE 0; (4.52)

where a� and bE are the appropriate coefficients. Using Eq. (4.51), we can readily
obtain

h�jH j Ei D a�E; hE 0jH j Ei D bE0E: (4.53)

It is also obvious that, using the development (4.52), we can derive

h�jH j Ei D a�E� C
Z
bE0V �.E 0/dE 0: (4.54)

Similarly, we have

hE 0jH j Ei D a�V.E
0/C bE0E 0: (4.55)
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Now, if we compare these two equations with (4.53), we conclude that

a�E D a�E� C
Z
bE0V �.E 0/dE 0; (4.56)

and

.E �E 0/bE0 D a�V.E
0/: (4.57)

It is known from the theory of distributions that this last expression in equivalent to

bE0 D a�V.E
0/
�
P 1

E �E 0 CZ.E 0/ı.E �E 0/
�
; (4.58)

where P denotes the principal part, and Z.E 0/ is a given function of E 0, which
determines the contribution of the singularity at E D E 0. In order to determine
Z.E 0/, we replace (4.58) in Eq. (4.56). This allows us to eliminate a� , and to write

E D E� C P
Z jV.E 0/j2

E � E 0
dE 0 C jV.E/j2Z.E/: (4.59)

Now, introducing the auxiliary quantities,�.E/ and �.E/, defined as

�.E/ D P
Z

�.E/

E � E 0
dE 0 and �.E/ D jV.E/j2; (4.60)

we can finally write

Z.E/ D E �E� ��.E/
�.E/

: (4.61)

Let us now use this result to determine the scattering length. For this purpose, we
should notice that, at vary large distances, r ! 1, the unbounded wave functions
have the asymptotic behavior

jEi � sinŒkr C ı0.E/�; (4.62)

where ı0 is the s-wave phase shift in the absence of coupling with the bound state
j�i. On the other hand, we can also assume, at such large distances, where the bound
state is absent, Eq. (4.52) can be approximately written as

j Ei '
Z
bE0 jE 0idE 0: (4.63)

Now, using (4.58), and integrating over E 0, we obtain

j Ei ' a�V.E/ f�� cosŒkr C ı0.E/�CZ.E/ sinŒkr C ı0.E/�g : (4.64)
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This can be rearranged to yield

j Ei � sinŒkr C ı0.E/C ır.E/�; (4.65)

where the additional phase shift ır results from coupling with the bound state

ır .E/ D � tan�1
�

Z.E/
D � tan�1

��.E/

E �ER ; (4.66)

with ER D E� ��.E/. At this point, it should be noticed that, at very low energies,
such that E ! 0 and k ! 0, the definition of the scattering length allows us to
write .ka0/ ! � tan ı0 ' �ı0. In what concerns the additional phase shift ır , it can
be assumed to take a form similar to ı0 in this limit, such that ��.E/ ! .ka0/�0,
where a0 is the scattering length in the absence of coupling, and �0 is a constant.
Proceeding this way, we then compute the total scattering length, which simply
reads

a D a0

�
1 � �0

ER

�
: (4.67)

The importance of resonant scattering for the ultra-cold gas results from the
dependence of the resonant energy ER on external parameters, such as the static
magnetic field B . Let us assume that, for a particular value B D B0, we have
ER D 0. Then, by expanding the resonant energy around this value we get
ER D .B � B0/ı
, where ı
 is the difference between the magnetic moments
of the two colliding atoms 
1 and 
2, and the magnetic moment of the molecular
bound state j�i, such that ı
 D .
1 C 
2/ � 
� . This allows us to write the
scattering length as a function of the static magnetic field in the form of Eq. (4.35),
with �b D �0=B0ı
.

4.3 Collective Forces

Scattering effects associated with atom-atom collision processes dominate at short
distances, but collective atomic interactions mediated by photons become dominant
at scales larger than a given characteristic scale, called the Debye length, �D to be
defined below. In the remaining of this chapter we will be mainly concerned with
collective processes. We assume that the atomic cloud is sufficiently dense and cold,
such that the Debye length becomes much shorter than the size of the cloud (in order
to make the collective processes relevant) and the number of atoms inside the Debye
sphere is much larger than one (in order to justify the use of a mean field approach).
These two conditions are usually satisfied in current MOT experimental conditions,
and will be specified below.

When a gas of cold atoms is confined in a magneto-optical trap and is submitted
to the action of cooling laser beams, we can distinguish between two different kinds
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of forces acting on every single atom, F D F0 C Fcoll. The first term F0 is due to the
direct action of the laser cooling beams and the magnetic confinement field, and the
second term Fcoll is due to the collective interaction with all the other atoms.

Let us first consider the cooling force due to the three pairs of laser beams, as
already discussed in previous chapters. It can be written as

F0 D
6X

jD1
Fj ; Fj D „kj �	2

j

2	2
j C 4.�C kj � v/2 C �2

: (4.68)

We have seen that, in the limit of low atom velocities, such that jvj � j�=kj, the
resulting force can be written as

F0 D � N̨ � v; N̨ D
6X

jD1
N̨j ; (4.69)

where N̨ is the total friction tensor, and the partial friction tensors associated with
each laser beam are

N̨j D �M kjkj
2k2

ˇj ; ˇj D „k� 24	2
j�

M.�2 C �2=4/
: (4.70)

Here we have assumed that jkj j D k. For simplicity, we will consider that laser
beam intensities are identical (	2

j D 	2
R) further on.

If we now take into account the magnetic field force, due to the presence of a
magnetic trap configuration, we have to make the transformation � ! � � 
 � B,
where 
 is the magnetic moment of the atom, and B the magnetic field. For small
values of the Doppler and Zeeman effects, we can add an extra term to (4.69), and
write

F0 D � N̨ � v � N� � r; (4.71)

where N� is the spring constant tensor, with elements given by

�ij D �@F0i
@xj

; (4.72)

where the indices .i; j / now refer to the three spatial coordinates .x; y; z/. Let us
assume a typical MOT configuration, with the laser beams aligned with the axis,
ex , ey and ez, and the magnetic field coils along the z-axis. In the central region of
the trap, we have seen that B.r/ D A0

p
x2 C y2 C 4z2, with a constant A0. The

resulting magnetic force is then

FB D �„gJ
B @B
@r

D ��ixi ; (4.73)
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with

�x D �y D �z

2
D „gJ
BA0p

r2 C 4z2
: (4.74)

Comparing with (4.71), we conclude that

�ij D ki ıij : (4.75)

Let us now consider the collective force Fcoll, resulting from the presence of
the other atoms. This force results from the combined influence of two distinct
processes, and can be written as

Fcoll D FA C FR; (4.76)

where FA is a shadow force due to laser absorption, and FR is a repulsive force
resulting from the absorption of re-emitted photons. Let us examine them separately.

In order to understand the physical meaning of the shadow force, we first consider
a one-dimensional analysis. Let us then consider the two laser beams propagating
along the x-axis in opposite directions. Due to photon absorption, these two beams
vary in space as

I˙.x/ D I0 exp

�
�
L

Z x

˙1
n.x0/dx0

�
; (4.77)

where I0 is the initial laser intensity far away from the cloud, I0 D I˙.x ! �1/,
n.x/ is the density profile of the cloud, and 
L is the laser absorption cross-section,
which can be written as [8, 9]


L D 
0

1C I0=Is
; (4.78)

where I0=Is D 2	2
tot=�

2, with 	2
tot D 6	2

R, and 
0 is the laser absorption cross-
section at resonance


0 D 3�2

2�
D 6�c2

!2
: (4.79)

For low intensities, I0 � Is , and� D �=2, this leads to 
L D 2
0, as used in [10].
As we have seen, the laser forces resulting from each of the two counter-propagating
beams are proportional to the laser beam intensities and, for weak absorption such
that 
Ln0a � 1, where n0 us the maximum density and a the cloud radius, we can
approximately write them as

F˙.x/ ' ˙F0
�
1 � 
L

Z x

˙1
n.x0/dx0

�
: (4.80)

Adding these two forces, we get the total force along the x-axis due to laser
absorption. And, because this force is in the x-direction, we can write it in vectorial
form, as
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FA.x/ D .FC C F�/ex D �2F0
Lex

Z

�1
n.x0/dx0: (4.81)

Generalizing to three dimensions and taking the divergence, we can easily arrive at

r � FA.r/ D �2
2L
I0

c
n.r/; (4.82)

where we have used F0 D 
LI0=c. This result shows that FA is an attractive force,
which pushes the atoms towards the centre of the trap and therefore compresses the
atomic cloud. This shadow force, or laser absorption force, FA, was first discussed
by Dalibard [10]. It is clearly associated with the gradient of the incident laser
intensity due to laser absorption by the atomic cloud.

A different kind of collective force, which is due to the successive emission and
absorption of secondary photons, is the repulsive force FR. To properly describe its
physical origin, let us consider the processes of photon emission and absorption.
A given atom inside the trap will absorb and reemit photons at a rate 
LI . The
reemitted radiation IR will then fall off as 1=r2, where r is the distance from the
reemitting atom. This can be appropriately written as

IR.r/ D 
L
I.r0/

4�jr � r0j2 ; (4.83)

where r0 is the position of the absorbing atom. The force resulting from the
interaction of the scattered intensity IR with another atom at r will then be given by

FR.r/ D 
R
IR

c
D 
L
R

I.r0/
4�jr � r0j2 ; (4.84)

where 
R is the photon absorption cross-section [9]. This quantity differs from 
L
because the re-emitted light is different from the incident light. This is a difference
in both the frequency distribution and the polarization state between the primary
photons of the laser cooling beams and the secondary photons of the scattered
fluorescent light.

The 1=r2 law is identical to that of an electrostatic force, which allows us to write
for the total integrated force acting at a position r and resulting from the contribution
of all the atoms inside the cloud, as

FR.r/ D 
L
R
I

4�
c

Z
n.r0/

.r � r0/
jr � r0j3 dr0; (4.85)

where for simplicity the intensity of the incident light I ' I0 was assumed constant
inside the cloud. Corrections due to the absorption process discussed above would
lead to second order effects which can usually be neglected. In differential form,
this is equivalent to the expression
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r � FR.r/ D 
L
R
I

c
n.r/: (4.86)

In contrast to (4.82), this is a repulsive force which tends to push the atoms away
from each other. It means that the atoms repel each other, as if they were charge
particles. This collective force, FR, can be called a repulsive force, or a radiation
trapping force, and was first considered by Sesko et al. [11]. It describes atomic
repulsion, due to the radiation pressure of scattered photons on nearby atoms, and
can be determined by a Poisson type of equation. The existence of an equivalent
charge of the atoms will be discussed later. For the moment, let us note that the
collective force which results from the superposition of the shadow and the repulsive
forces is given by

r � F D Qn.r/ ; Q D .
R � 
L/
L I
c
; (4.87)

where we have dropped the suffix ‘coll’ in the force, for simplicity. In typical
experimental conditions, the repulsive forces largely dominate over the shadow
effect, and the quantity Q is positive [9, 12]. The physical implications of this
quantity will be discussed later.

In order to establish the value of the new quantity Q, we need to determine the
difference between the two cross-sections 
R and 
L. For that purpose, we first
notice that the re-emitted secondary photons have two distinct parts: (1) the elastic
Rayleigh scattering, with the same spectrum as the incident primary photons, and
(2) the inelastic fluorescent part, which shows a triplet, usually called the Mollow
triplet. This can be written as [13, 14]

IR D Iel C Iinel; Iel D IR

1C s
; (4.88)

where s D I=Is is the saturation parameter. We can see that the inelastic part grows
with the incident laser beam intensity. An estimate of 
R can then be made [15] by
noting that the absorption cross-section for the elastic part is the same as that for the
primary photons, 
L. We can then write


R D Iel

IR

L C Iinel

IR

inel; (4.89)

where 
inel is the absorption cross-section for the inelastic scattered spectrum. It is
usually larger than 
L, because the absorption coefficient in the presence of the
incident laser field is shifted towards the blue component of the Mollow triplet,
which is closer to the atomic resonance. Its value can be estimated by assuming that
it is equal to the usual absorption cross-section at resonance. We can write it as


inel D 
L
1C s

s C �2=.�2 C 4�2/
: (4.90)
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Replacing this in Eq. (4.89), and using (4.88), we finally get

.
R � 
L/ D s

1C s


L�
2

s.�2 C �2=4/C �2=4
: (4.91)

A more accurate expression can be found in [9]. The first experimental estimate
of this quantity was given in [12], as 
R ' 1:3
L. The above expressions for the
forces acting on the atomic clouds correspond to the simplest possible description
of the laser cloud interaction, and can be used as a first approximation to model the
fluid dynamics of the ultra-cold gas. We consider the basic oscillations of the gas
associated with such forces by inserting these forces in the fluid equations for the
ultra-cold gas, which can then be written as

@n

@t
C r � .nv/ D 0 ;

@v
@t

C v � rv D �rP
M

C F
M
; (4.92)

where n and v are the mean density and mean velocity of the gas, and P is the gas
pressure. The total force in this equation is the sum of the confining force and the
collective force, F D �rV0 C Fcoll, where V0 is the external confining potential,
and we have included the collective force Fcoll D FA C FR, as determined by the
Poisson equation (4.87). These equations can be applied to describe the equilibrium
states of the confined ultra-cold gas, as well the characteristic waves and oscillations
which can be excited in such medium.

We can also refine the dynamical description of the atomic cloud by using a wave
kinetic approach, similar to that used to describe the single atom cooling process.
In a gas, the atom suffers the influence of the collective forces due to the other atoms.
We can then write the corresponding wave kinetic equation by including the mean
field potential Veff associated with such forces, leading to a more detailed description
of the gas, where kinetic processes such as Landau damping, kinetic instabilities and
atom density correlations can be examine, as shown later.

4.4 Equilibrium Profiles

The description of the equilibrium properties of a cold atomic gas confined in
a MOT is a long standing problem, as a consequence of the complexity of the
optical processes. In particular, various density regimes of the non-condensed ultra-
cold gas confined in a MOT have been identified, as resulting from the variation
of the different trapping parameters, such as the number of atoms, the laser
intensity, frequency detuning, magnetic field gradient and etc. Here we first give
a phenomenological description of such regimes, along the lines of [8, 15]. We
then propose a more quantitative approach based on the collective forces described
above.
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4.4.1 Qualitative Discussion

(i) – Temperature limited regime

For low atomic densities, the interaction between atoms is weak, and we can
describe the gas as an ensemble of independent particles in the trap external fields,
which include both the laser cooling beams and the static magnetic field. This is
only valid when the characteristic scale of the collective interactions �D is much
smaller than the size of the atomic cloud, aT , as will be seen later. Anticipating the
definition of �D , we can then write

�2D � �0T

nq2eff

D T

nQ
� a2T ; (4.93)

where n is the atom density, T is the atom temperature in energy units, and qeff the
atom effective charge. Therefore, the low atomic density regime is valid for densities
below a given limit, as defined by

n < nlim � T

Qa2T
: (4.94)

We can see that, for a fixed temperature, this limit scales as a�2T . In order to be more
specific, we now have to determine the value of the cloud size, aT . In steady state,
the equipartition theorem states the equality of the kinetic and potential energies
inside the harmonic trap, such that

1

2
M v2i D 1

2
�ii r

2
i ; �ij D �@Fi

@rj
; (4.95)

where i; j D .x; y; z/ represent the three orthogonal components, �ij are the
elements of the string tensor, and Fi the components of the confining force. In the
central region of the quadrupole magnetic field of the trap, with the coil axis oriented
along the z-direction, we can define the trap string constant as

� � 2�x D 2�y D �z; (4.96)

and we can define the cloud size as

aT � ax=
p
2 D ay=

p
2 D az: (4.97)

Assuming that the atom temperature in steady state is isotropic, which can be
guaranteed by a low level of atom-atom collisions, we get from Eq. (4.95) the
following simple relation between the cloud size and the temperature

T

2
D 1

2
�a2T ! aT D

r
T

�
; (4.98)
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where, as we have seen before, the string constant � is proportional to the magnetic
field gradient, � / @B=@z. Using (4.94), we then get for the density limit of this low
density regime the value nlim D �=Q. This limit, below which the cloud behaves
as a collection of independent atoms, is therefore inversely proportional to the field
amplitude of the laser cooling beams, or nlim / 1=

p
I .

At thermal equilibrium, the Gaussian velocity distribution of the atoms inside the
cloud implies the existence of a Gaussian density profile, according to Eqs. (4.95)
and (4.98), which can be written as

n.r/ D n.0/ exp

�
� r2

2a2T

�
; n.0/ D N

2.
p
2�aT /

; (4.99)

where n.0/ is the peak atomic density at the cloud centre, and N is the total number
of atoms in the cloud. It is clear that, in this regime, the size aT is independent of
the total number of atoms, as stated by (4.98) and, because the temperature T is also
independent of N , the peak density n.0/ is proportional to N . This feature gives a
signature of the low density regime, which was identified by the experiments. Such
a regime has been observed for N 
 104 atoms.

(ii) – Multiple scattering regime

For a larger number of atoms, such that inequality (4.94) is reversed, the
collective forces are no longer negligible, and long range atom-atom interactions
mediated by multiple photon scattering have to be taken into account. In this new
regime, the trapping force is not balanced by the kinetic force as before, but by
the collective repulsive force which is dominant. By taking the divergence of the
trapping force ��r, and noting that r � r D 3, we get

r � �r D r � Fcoll D Qn; (4.100)

which shows the existence of an equilibrium density, n D n0, such that 3� D
Qn0, or

n0 D 3�

Q
D 3�c

I0

2
L.
R=
L � 1/

; (4.101)

where I0 is here the total light intensity associated with the six trapping laser beams.
This means that the atom density is nearly constant across the cloud, in contrast with
the Gaussian profile of the temperature limited regime.

On the other hand, this equilibrium density n0 is independent of the total number
of atomsN , which means that by increasing this number we will increase the cloud
size. This is actually an important experimental signature of the multiple scattering
regime. Assuming that the cloud is approximately spherical, we obtain for the cloud
size

aMS D
�
3

4�

N

n0

�1=3
D
�
NQ

4��c

�1=3
: (4.102)
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(iii) – Two-components regime

For even higher number of atomsN , a third regime is eventually attained, where
a dense core is surrounded by a low density halo of gas. The dense core can still
be described by the above multiple scattering regime, whereas the outside region is
weakly confined and can be described by a simple Gaussian model. Transition from
the outer to the inner region can be established by saying that the local atom density
n at some critical radius rc is equal to the limit density nlim defined by Eq. (4.94).
We therefore get a multiple scattering regime for r < rc , and a temperature limited
regime of r > rc .

An alternative definition of the transition radius rc can be given in terms of purely
atomic properties (see Ref. [8]), as the region where the Zeeman shift of the upper
energy levels becomes equal to the light sift of the lower energy level of the laser
cooling transition. This would lead to


Bbrc ' „	
2
R

�
! rc D „	2

R

�
Bb
; b � @B

@z
: (4.103)

These two definitions of rc are obviously not equivalent and, although the arguments
based on a mean field theory point strongly to the validity of the first definition, only
a careful experimental analysis will clarify the real nature of the transition region.

4.4.2 Quantitative Model

A more quantitative and unifying model of the equilibrium density profiles in a trap
can be established using the mean field perspective. Our starting point is given by
above fluid equations (4.92) for the atomic cloud, where both the kinetic pressure
and the collective force due to multiple scattering are taken into account. This is
particularly well adapted to the description of the first two regimes above, and
can be extended to account for the two-components regime, as discussed next.
Density equilibrium profiles can be derived from the fluid equations, by assuming
the hydrostatic conditions @=@t D 0 and v D 0. We are then reduced to

rP
n

D �rV0 C Fcoll: (4.104)

In order to proceed further, we need to assume an equation of state relating the gas
pressure P to the atom density n. For this purpose, we assume a generic polytropic
equation of state of the form P D C.T /n� , where C.T / is some unspecified
function of the temperature, and � is the usual polytropic exponent. Replacing this
in Eq. (4.104), and applying the divergence operator, we get

C.T /
�

.� � 1/r
2
�
n.��1/


 D �Mr2V0 CQn: (4.105)
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In what follows, we focus our attention on radially symmetric profiles, where the
trapping potential can be written as

V0.r/ D 1

2
M!20r

2; (4.106)

with !0 determining the restoring force of the harmonic trap. Writing the Laplacian
operator r2 in spherical coordinates, we can then reduce Eq. (4.105) to the following
form

C.T /
�

.� � 1/

1

r2
@

@r

�
r2
@

@r
n.��1/

�
CM!20 �Qn D 0: (4.107)

It is convenient to rewrite this equation using dimensionless variables, by introduc-
ing the new quantities

� D
�
n

n0

�.��1/
and � D r

R�
; (4.108)

where n0 is some equilibrium density to be specified later, and the radius R� is
chosen such that

R� D
�

P0

3n0M!
2
0

�1=2
; (4.109)

where P0 D C.T /n
�
0 . In terms of these new variables, the equilibrium profile

Eq. (4.107) can then be written in its final form, as

�

.� � 1/
1

�2
@

@�

�
�2
@

@�
�

�
� �2eff�

1=.��1/ C 1 D 0; (4.110)

where we have also used the auxiliary quantity �2eff D Qn0=3M!
2
0 . This quantity

can be seen as a normalized atomic effective charge, describing the effect of
collective atom interactions. The new Eq. (4.110) is very interesting as it closely
resembles the Lane-Emde equation, well known in astrophysics [16]. It is however
physically distinct, because it describes a repulsive interaction between the atoms in
the gas, and not attractive gravitational interactions.

In order to understand its meaning, it is now useful to discuss the solutions of
Eq. (4.110) in some simple but physically relevant situations, and to establish a link
with the above qualitative analysis of the density equilibrium regimes in a trap. We
first examine the case where the pressure effects are negligible, and we can use
� D 0. We then get a simple solution, �.�/ D 1=�2eff. This is equivalent to

�.�/ � n

n0
D 3M!20

Qn0
(4.111)
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and corresponds to the water-bag solution of the form

n.r/ D n0�
2
effH.a0 � r/; (4.112)

where the cloud size is such that n0�2effVol D N , where Vol is the volume of the
cloud. This leads to

a0 D
�
3

4�

N

n0�
2
eff

�1=3
: (4.113)

We can see that, by making the replacement n0�2eff ! n0, this coincides with
Eq. (4.101). This water-bag model therefore confirms on a more quantitative basis
the above result for the multiple scattering regime, when the exchange of photons
between atoms dominates over the kinetic pressure.

In the opposite case, where the cloud density is low and the collective effects are
negligible, we can take �2eff ' 0. The equilibrium profile Eq. (4.110) now reduces to

@

@�

�
�2
@

@�
�

�
C � � 1

�
�2 D 0: (4.114)

This has an obvious solution of the form

�.�/ D �0 � � � 1
6�

�2; (4.115)

where �0 is a constant. Taking, for convenience, this constant equal to one, we can
write the corresponding atom density profile as

n.r/ D n0

"
1 � � � 1

6�

�
r

R�

�2#1=.��1/
: (4.116)

This solution can appropriately describe the density profiles of a cloud in the
temperature limited regime. In particular, we should notice that, for � D 1 we
recover the Gaussian profile of Eq. (4.99).

A detailed numerical analysis shows that for increasing values of the parameter
�eff, the solutions of Eq. (4.110) show a smooth transition from the Gaussian to the
water-bag solution (see Fig. 4.2). This also suggests that a careful measurement of
the density profiles in the trap could give information on the equation of state of the
confined ultra-cold gas.

4.5 Coulomb Expansion

An interesting effect can be observed when, at some instant t D 0 the magnetic
confinement is switched off, thus leaving the atomic cloud free to expand, due to the
combined effect of the kinetic pressure and the repulsive collective forces. When the
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a b c

Fig. 4.2 Effect of the long-range interaction on the density profile for different polytropic
exponents. The black dashed line is the gaussian profile obtained for the isothermal case (�eff D 0

and � D 1) and is used here to normalize the numerical solutions. Thick lines are obtained for
� D 1 (black full line), � D 2 (blue dashed line), � D 3 (orange dotted line) and � D 4 (green
dash-dotted line). (a) �eff D 0. (b) �eff D 0:5. (c) �eff D 0:99

collective forces dominate this becomes a Coulomb type of expansion [9], similar to
that observed in laser irradiated plasmas [17,18]. In order to examine this situation,
we consider the fluid equations for the ultra-cold gas, which can be written as

@n

@t
C r � � D 0; (4.117)

dv
dt

D �rP
M

C F
M

� ˇv; (4.118)

where d=dt D @=@t C v � r, ˇ is the viscosity of the gas due to laser cooling, and
� D nv is the atom flux. The force F is the Coulomb type of force associated with
the atom effective charge, and determined by the equation r � F D Qn. On a time
scale much larger than the viscosity damping time 1=ˇ, we can consider d=dt ' 0,
and the momentum equation (4.118) provides the following steady state solution

v D F
ˇ

� rP
Mˇ

: (4.119)

Let us use the polytropic equation of state P D C.T /n� , as considered before. In
this case, we can write the corresponding atom flux as

� D nF
ˇ

�Drn; (4.120)

where we have introduced the diffusion coefficientD, as defined by

D D u2s
ˇ
; with u2s D �P

M
: (4.121)
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Replacing this in the continuity equation (4.117), we get

@n

@t
C 1

ˇ
r � .nF/ � r � .Drn/ D 0: (4.122)

This equation determines the slow time (in comparison to the single-atom relaxation
time 1=ˇ) evolution of the cloud density profile in the expansion phase. In order
to illustrate such an expansion, we consider the water-bag model for the density
profile, with an initial spherical cloud with radius r0 and uniform density n0. We
have seen that this water-bag model is adequate for the cloud equilibrium in the
multiple scattering regime. We then have, for t D 0, the density profile

n.r; t D 0/ D n0H.r0 � r/; n0 D 3N

4�r30
; (4.123)

where H.x/ is the Heaviside function, r is the radial coordinate, and N the total
number of atoms. We can see that the diffusion term is only non-zero at the
boundary, and can be ignored. We can then write the approximate evolution equation

@n

@t
C Qn2

ˇ
D 0; (4.124)

The latter can be easily integrated, leading to

n.t/ D n0

.1C t=�e/
; �e D ˇ

Qn0
; (4.125)

where �e is the characteristic expansion time. As a result, the cloud radius R.t/
increases with time, as determined by the condition n.t/ D 3N=4�R.t/3. The cloud
volume increases at the same rate as the density decreases, and we get the following
expansion law

R.t/ D r0

�
1C t

�e

�1=3
: (4.126)

Such a description is of course valid in the bulk of the cloud, but not at the boundary
r D r.t/, where diffusion effects can lead to additional expansion. However,
diffusive corrections are small as long as the repulsive force at the boundary remains
large as compared with the diffusive flux, as shown by Eq. (4.120), or

jFj � Dˇ

ˇ̌
ˇ̌rn
n

ˇ̌
ˇ̌ ' Dˇ

R.t/
: (4.127)

Let us now estimate the cooling effect associated with the cloud expansion. For a
spherically symmetric cloud, Eq. (4.120) predicts a radial velocity vr given by

vr D F

ˇ
� D

n

dn

dr
: (4.128)
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For the water-bag density profile, and neglecting diffusion effects at the cloud
boundary, we can write the radial velocity profile simply as

vr .r/ D F.r/

ˇ
D Qnr

3ˇ
; (4.129)

where the Gauss theorem was used. The maximum expansion velocity, attained at
the boundary, is given by

vr .r D R.t// D QnR.t/

3ˇ
D Q

ˇ

N

4�R.t/2
: (4.130)

Let us now define temperature of the expanding gas as T � M hv2i ' M vr .R/2.
This allows us to establish the temperature evolution law as

T .t/ D T0

.1C t=�e/4=3
: (4.131)

These simple expansion laws have been well verified by experiments [9]. Finally,
let us go back to Eq. (4.122) and consider the case where diffusion effects dominate
and condition (4.127) is reversed. Expansion is now determined by the diffusion
equation

@n

@t
� r � .Drn/ D 0: (4.132)

At this point, it should be noticed that the diffusion coefficient also depends on the
gas density n, as shown by Eq. (4.121), where P is determined by the polytropic
equation of state. We therefore have

r � .Drn/ D �D

n
jrnj2 CDr2n (4.133)

Let us assume a spherically symmetric problem, and assume an initial Gaussian
profile, as described by

n.r; t D 0/ D C0 exp

�
�r

2

r20

�
: (4.134)

We can then try a variational solution for t > 0 with the same Gaussian form, as
given by

n.r; t/ D C.t/ exp

�
� r2

R.t/2

�
; (4.135)

where the quantity C.t/ is determined by the normalization condition

N D
Z
n.r; t/dr ! C.t/ D 2N

R.t/
p
�
: (4.136)
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Inserting (4.135) in the diffusion equation (4.132), we can confirm that this is the
desired solution provided that

� D 1; R.t/ D
�
2

Z t

0

Ddt C r20

�1=2
: (4.137)

We notice that the restriction � D 1 is certainly adequate, because we have seen
that in this case the equation of state predicts a purely Gaussian profile for the low
density regime, as assumed in (4.135). Such a solution is therefore useful near the
boundaries of the expanding cloud, where the collective forces are week and the
diffusion process can therefore dominate.
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Chapter 5
Waves and Oscillations in Clouds

In the previous chapter, we have discussed the effects of the long-range interaction in
cold atomic traps and have demonstrated some of its implications on the equilibrium
features of the system. In the present chapter, we discuss some of the dynamical
effects associated with such Coulomb-like interactions. We will discuss the case
of two kind of oscillations: small and large scale oscillations. The first are related
with the elementary excitations that can take place in a homogenous system, while
the second refer to collective modes of a trapped system, occurring at wavelengths
comparable with the size of the system. Centre-of-mass oscillations, Tonks-Dattner
modes, breathing modes and surface modes are introduced. We then discuss the
nonlinear coupling between different modes in the atom cloud, with emphasis on
the coupling between the centre-of-mass oscillation and an hybrid acoustic wave.
We also show that the linear mode analysis can be extended to a large spectrum
of waves, leading to quasi-linear diffusion in the atom velocity space. Finally, the
interesting concept of a phonon laser, and its possible realization in a MOT is briefly
discussed.

5.1 Hybrid Sound

5.1.1 Fluid Description

We first assume oscillations that can be excited in the cold gas with a wavelength
much smaller that the size of the system (or the radius of the trap a). The medium
can therefore be assumed as infinite. We then assume that the equilibrium state of
the gas is perturbed by oscillations with frequency ! and wavevector k. In the sense
of linear response theory, we linearize the fluid and Poisson equations, by defining
perturbations around the equilibrium quantities

n D n0 C Qn; F D FT C ıFcoll; v D v0 C ıv: (5.1)
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Optical, and Plasma Physics 70, DOI 10.1007/978-1-4614-5413-7 5,
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Since the trapping force FT defines only the equilibrium quantities and plays no
role in the modes we are about to describe, we drop the subscript ‘coll’ for the
perturbation in the collective force ıFcoll in (5.1). To describe the dynamics of the
system, we make use of the fluid equations (4.92)

@n

@t
C r � .nv/ D 0 (5.2)

and
@v
@t

C ˛v C v � rv D �rP
M

C F
M
; (5.3)

together with the polytropic equation of state for the pressure P , which was also
considered in the previous chapter, P.n/ � n� . After linearizing the previous
equations, we may easily obtain

�
@

@t

�
˛ C @

@t

�
C !2p � u2Sr2

�
Qn D 0; (5.4)

where we have defined the effective plasma frequency !p D p
Qn0=M , and uS

can be identified with the sound speed

u2S D �
P0

Mn0
; (5.5)

and P0 is the equilibrium gas pressure. Assuming a space-time dependence of the
perturbations Qn and ıF of the form exp.ik � r � i!t/, with a complex frequency
! D !r C i!i , we obtain for the dispersion relation and for the corresponding
damping rate, the values

!2r D !2p C k2u2S C 3

4
˛2; !i D ˛

2
: (5.6)

In the limit of very low viscosity ˛ � !p , the later dispersion relation reduces to
!2 D !2p C k2u2S , see Fig. 5.1, which is formally identical to the dispersion relation
of electron plasma waves in ionized media (also known as Langmuir waves) but
where the electron thermal velocity vth D p

Te=me, (with Te and me representing
the electron temperature and mass, respectively) is replaced by the sound velocity
divided by a numerical factor uS=

p
3. Plasma waves will be discussed later, in the

this book.
The density wave mode described by Eq. (5.6) contains elements of both the

electron plasma waves and acoustic waves. It possesses a lower cut-off, given

by !r D
q
!2p C 3˛2=4, which is absent in the acoustic modes, but is typical

on an electron plasma wave. On the other hand, its phase velocity tends to
the sound velocity uS and becomes weakly dispersive as an acoustic wave. Its
corresponding quasi-particles can therefore be seen as hybrid entities, somewhere
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Fig. 5.1 Dispersion relation ! plotted against k�D. The red dashed line represents the acoustic
asymptotic behavior of the hybrid waves

between plasmons and phonons, and for this reason we can call then hybrid
phonons. These modes were first considered in [1].

5.1.2 Kinetic Approach

In a previous chapter we have shown that the wave equation describing the evolution
of an atom inside the trap can be transformed into a wave kinetic equation of
the Wigner-Moyal type, by introducing the correlation function K.r; s; t/ D hr C
s=2 j r � s=2i, where r is the center of mass the atom and jr; ti is the atomic state
vector describing its translational motion with respect to the laboratory frame. Here
we use again the Wigner function, which is the Fourier transform

W.r;q; t/ D
Z
K.r; ; s; t/ exp.�iq � s/ d s: (5.7)

and „q is the momentum of the atom. As we have previously seen, the quantity W
evolves according to an equation of the form

�
@

@t
C v � @

@r

�
W D �i

„
Z
V.k0/

�
W .�/ �W .C/
 eik0�r dk0

.2�/3
; (5.8)

If the atom is not isolated, but is located inside an atomic cloud confined in
a MOT, it suffers the influence of a mean field potential Vcoll.r/, which results
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from the exchange of scattered photons with the other atoms, This means that
here the quantity V.k0/ is the Fourier transform of the total potential V.r/ D
VT .r/ C Vcoll.r/. Again, as we want to focus on the atom density fluctuations
(elementary excitations) of the system, we neglect the trapping term VT . The goal
of the following calculations is to generalize the previous simple treatment, based
on the fluid equations, to the kinetic quantum domain. This allows us to include the
effects of phonon recoil, in formal analogy with what we have done in Chap. 3 for
the case of photon recoil.

The collective potential is determined by the local atomic density n.r/, as

r2Vcoll D �Qn � �Q
Z
W.r; v; t/dv; (5.9)

where we have considered the following normalization of the Wigner function
Z
dr
Z
dv W.r; v; t/ D

Z
n.r; t/dr D N: (5.10)

In this sense, Eq. (5.8) will describe the evolution of N identical atoms, assumed
as independent, except for the mean-field potential Vcoll which creates an effective
collective force associated with the exchange of photons between nearby atoms.
We now consider the linear evolution of atom density perturbations around some
equilibrium state defined byW0, as determined by the confining potential VT , and by
the equilibrium collective potential. We therefore assume perturbations of the atom
quasi-probability distributionW and of the collective potential Vcoll of the form

QW ; QVcoll / exp.ik � r � i!t/: (5.11)

Perturbative analysis of Eqs. (5.8) and (5.9) then lead to the following two
expressions

QVcoll D Q

k2

Z
QW dv ; QW D QVcoll

ŒW
.�/
0 �W

.C/
0 �

„.! � k � v/
; (5.12)

with the quantities

W
.˙/
0 D W0.v˙/ � W0.v ˙ „k=2M/: (5.13)

From these equations we can easily get the kinetic dispersion relation for density
perturbations, which reads [2]

1 � Q

„k2
Z
ŒW

.�/
0 �W .C/

0 �

.! � k � v/
dv D 0: (5.14)

Before discussing the properties of the dispersion relation in this exact form, it
is useful to consider its quasi-classical limit, where the momentum carried by
an emitted or absorbed phonon „k can be considered negligible with respect to
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the atomic translational momentum „q D M v. In this case, we can use the
approximation

W .˙/ ' W.r;q; t/˙ k
2

� @W
@q

C @

@q
� kk
4

� @
@q
W ˙ : : : ; (5.15)

which simply yields
�
W .�/ �W .C/
 D �k � @W

@q
: (5.16)

In the quasi-classical limit, the dispersion relation (5.16) reduces to [1]

1 � Q

Mk2

Z
k � @W0=@v
.! � k � v/

dv D 0: (5.17)

Going back to the exact dispersion relation (5.14), we can consider the important
case of a mono-energetic atomic beam, as determined by the equilibrium Wigner
function

W0.v/ D n0ı.v � v0/; (5.18)

which describes ultra-cold atoms in the T ! 0 limit, moving with velocity v0 with
respect to the laboratory frame. The result is the following

1 � Qn0

Mk2

�
1

.! � k � v�/
� 1

.! � k � vC/

�
D 0; (5.19)

where v˙ are defined by Eq. (5.13). Noting that .vC � v�/ D „k=M , and using the
effective plasma frequency !p D p

Qn0=M , we obtain

1 � !2p

.! � k � vC/.! � k � v�/
D 0: (5.20)

In the classical limit, we can use v˙ ' v0, this would reduce to the case of a Doppler
shifted plasmon oscillation: !2p D .! � k � v0/2. On the other hand, in the particular
case where the atoms are at rest, Eq. (5.20) leads to

!2 D !2p C „2
4

k4

M2
; (5.21)

which describes these same collective oscillations, but with a quantum dispersion
term.

Let us now consider a more realistic case by plugging the effects of the
temperature into the spectrum. We return to the general dispersion relation (5.17),
and assume an arbitrary equilibrium distribution W0.v/. It is useful to write this
equation in the form
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1C �.!;k/ D 0; (5.22)

where the atomic susceptibility is defined by

�.!;k/ D � Q

„k2
Z
ŒW

.�/
0 �W

.C/
0 �

.! � k � v/
dv: (5.23)

In what follows, we separate the velocity into its parallel and perpendicular
components in respect to the wave vector k, such that

v D u
k
k

C v?: (5.24)

We clearly see from Eq. (5.22) that there is a resonant velocity, u0 D !=k, such
that the atomic velocity moves in phase with the wave. We can also write the atomic
susceptibility in terms of the parallel velocities, as

�.!;k/ D � Q

„k3
Z
G.u/

"
1

u � u.�/0

� 1

u � u.C/0

#
du; (5.25)

where we have introduce the parallel quasi-distribution G.u/ D R
W0.u; v?/dv?,

and used the quantities u.˙/0 D u0 ˙ „k=2M . We should notice that the integral in
(5.25) can be divided into its principal part and its resonant contribution. This leads
to a complex susceptibility of the form

�.!;k/ D �r .!;k/C i�i .!;k/: (5.26)

We can easily solve the principal part of the integral, using the plausible assumption
that the root mean square deviation of the atom velocity is much smaller than the
phase velocity of the wave perturbation. This means that the main contribution to
the integral comes from regions where u � u0. Assuming an even functionG.u/ D
G.�u/, and noting that

n0 D
Z
G.u/du ; u2s D 1

n0

Z
G.u/u2du; (5.27)

where us can be identified with the sound speed, we arrive at the following result
for the real part of the dispersion relation

1 � Qn0

„k2
�

k � .v� � vC/
.! � k � v�/.! � k � vC/

��
1C k2

!2
u2s

�
D 0; (5.28)

which corresponds to
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Fig. 5.2 Dispersion relation, representing the dimensionless variables, frequency !=!P versus
wavenumber k�D. The dashed curve was obtained for the dimensionless quantum parameter H �
„2=4M2u2s�

2
D D 1. The dashed line was obtained for H D 0:1 and represents the quasi-classical

regime

!2 D !2p

�
1C k2

!2
u2s

�
C „2
4

k4

M2
: (5.29)

Assuming oscillations close to the effective plasma frequency, !2 ' !2p , the latter
expression yields the following dispersion relation

!2 D !2p
�
1C k2�2D

	C „2
4

k4

M2
: (5.30)

where we have used �2D D u2s=!
2
p . The quantity �D plays the role of a characteristic

length for the atom correlations inside the cloud. By analogy with a similar concept
in plasma physics, we can call it the atomic Debye length. This dispersion relation
generalizes our previous result on hybrid acoustic modes, by including a quantum
dispersion term. Apart from its cut-off frequency !p , it also strongly resembles the
dispersion relation of Bogoliubov oscillations in a Bose-Einstein condensate, as it
will be shown later. Neglecting the cut-off and the quantum dispersion terms, we
would get the dispersion relation for the usual acoustic waves in the gas, !2 D k2u2s
(Fig. 5.2).

Let us now turn to the imaginary part of the atomic susceptibility. By solving the
resonant contribution to the integral (5.25), we get

�i .!;k/ D �Q

„k3
�
G.�/.u0/�G.C/.u0/



: (5.31)
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This imaginary part implies the existence of a complex mode frequency ! D !r C
i� , where � is the damping (or growth) rate, for a given wavevector k. For j� j � !r
it is known that

� D � �i .!r ;k/
.@�r=@!/r

; (5.32)

where the derivative is taken at ! D !r . As a result, we obtain the expression for
the Landau damping of the hybrid acoustic modes, as determined by

� D ��Q„k3
ŒG.u0 � „k=2M/�G.u0 C „k=2M/�

.@�r=@!/r
: (5.33)

This result retains the exact atom recoil due to the emission or absorption of an
hybrid phonon. The resulting damping rate is due to the difference in population
for translational states distant by an amount of momentum „k. For an inversion of
population, i.e. G.�/ < G.C/, the system is dynamically unstable, as � > 0, and the
collective oscillations can start to grow out from of noise. This instability could lead
to the phonon laser effect with the coherent emission of hybrid phonons, a question
that we are discussing later.

To check the consistency of this result, we take the quasi-classical limit where
this momentum increment can be considered negligible and where we can approxi-
mately write

G.�/ �G.C/ ' �„k
M

�
@G

@u

�

!=k

: (5.34)

By taking the derivative in the denominator of (5.33) as �1=!, we can reduce this
expression to [1]

� D �

!

Q

Mk2

�
@G

@u

�

!=k

: (5.35)

We can then see that the quasi-classical limit of the atomic Landau damping
(or growth) rate is determined by the derivative of the parallel distribution G.u/,
a result that is similar to the electron or ion Landau damping, well known for
collective oscillations in classical plasma physics and discussed in later chapters
of this book.

5.2 Tonks-Dattner Modes

The hybrid mode discussed above is only meaningful in infinite and homogeneous
media. In physical terms, its dispersion relation can only be applied to waves that
propagate locally, with wavelength scales much smaller than the inhomogeneity
scale and the cloud dimensions. Let us now consider oscillations with a wavelength
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that is comparable with the size of the atomic cloud. In this case, we can no
longer neglect the boundary conditions. Going back to Eq. (5.4), we observe that
the density fluctuations obey the following Helmholtz equation

�r2 C k2.r/

 Qn D 0; (5.36)

where the space dependent wavenumber k.r/ is defined by

k2.r/ D Œ!2 � !2p.r/�=u2s : (5.37)

Before going into a more complex model, it is useful to consider the simple
one-dimensional problem [4]. In the case of a uniform slab of cold gas, we have a
constant plasma frequency !p , except at the boundaries x D 0 and x D L, where it
vanishes. Equation (5.36) then reduce to a simple one-dimensional equation

d2 Qn
dx2

C 1

u2s
Œ!2 � !2p.x/� Qn D 0: (5.38)

Taking the boundary conditions Qn.0/ D Qn.L/ D 0, we obtain the following
dispersion relation

!2� D !2p

"
1C

�
��
�D

L

�2#
; (5.39)

where � represents an integer number. This result illustrates the important role that
the Debye length plays in the dispersion of the modes: in the absence of temperature
(�D D 0), the only mode of the system would correspond to an effective plasmon
oscillation ! D !p . It is important to remind that �D corresponds to a natural
length above which collective effects should be expected. For instance, in a typical
experiment, we estimate a plasma frequency around!p=2� � 100Hz and a thermal
velocity of vth � 10 cm/s, which yields �D � vth=!P � 100�m. However, we
remark that there is no experimental evidence so far of any equation of state P.n/,
which may compromise the definition of the sound speed uS and consequently affect
the exact definition of �D , at least, if we stay in the frame of a fluid description.
However, in the present kinetic approach, no equation of state is necessary, and this
ambiguity is solved.

The relation (5.39) shows that the finiteness of the slab implies the existence
of a series of resonant modes with an integer number of half-wavelengths. The
cylindrical geometry was considered, for the plasma case, in a famous paper by
Parker, Nickel, Gould in 1964 [3], resulting as an explanation of the gallery of modes
considered previously by Tonks [4] and Dattner [5]. In what follows, we extend the
original derivation to a spherically symmetric clouds, which is more appropriate for
atomic clouds.

For this purpose, we consider a gas confined in a sphere of radius a with an
homogeneous profile, i.e. rn0.r/ D 0 for 0 
 r < a, for which analytical
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solutions can be found. As we have seen in the previous chapter, the assumption
of uniform density profile is valid in the multiple scattering regime. In that case, we
use solutions of the form

Qn.r/ D R.r/Y.�; �/; (5.40)

where .r; �; �/ are spherical coordinates. After separation of variables, we get the
usual spherical harmonics for the angular part of the density perturbation

Y.�; �/ D Pm
l .cos �/ exp.im�/; (5.41)

where Pm
l .cos �/ are the associated Legendre polynomials, l is a positive integer or

zero, and jmj < l . The radial equation resulting from (5.36) can be written as

d

dr

�
r2
dR

dr

�
C Œk2r2 � l.l C 1/�R D 0: (5.42)

By using a simple transformation of variables, x D kr , and S.kr/ D p
kr R.r/

this equation can be reduced to a Bessel equation

d2S

dx2
C 1

x

dS

dx
C
�
1 � .l C 1=2/2

x2

�
S D 0: (5.43)

The solutions with regular behavior at the origin x D 0 are therefore given by Bessel
functions of the first kind, JlC1=2.x/. From this we conclude that the Tonks-Dattner
modes in a spherical homogeneous cold atom cloud are determined by

Qn.r; t/ D
X

l;m

Qnl.t/JlC1=2.kr/p
kr

Pm
l .cos �/ exp.im�/; (5.44)

where Qnl .t/ have small amplitudes such that j Qnl j � n0. The mode frequencies can
be obtained by remarking that Qn should vanish at the border r D a. This implies that
the allowed values for k have to obey the condition k D z�;l=a, where z�;l represents
the �th zero of the Bessel function of order .l C 1=2/. We are then led to the mode
frequencies

!2�;l D !2P

(
1C

�
z�;l
�D

a

�2)
: (5.45)

Comparing with the rectangular case of Eq. (5.39) we see that the allowed eigen-
frequencies for a spherical cloud now depend on two quantum numbers � and
l . But, in contrast with the similar quantum mechanical solutions for hydrogen
like atoms, we have no hierarchical relation between these quantum numbers. The
normalized modes for the lowest order solutions are illustrated in Fig. 5.3. In a more
realistic description, the present rigid (Dirichlet) boundaries will eventually have to
be replaced by soft boundaries and a generic density profiles n0.r/must be assumed.
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Fig. 5.3 Normalized modes !2�;l =!
2
p plotted against the nodes r�;l =a of the radial solution for the

density perturbation Qn, for �D=a D 0:1 and 1 < � < 10. Blue squares (l D 0), red circles (l D 1),
violet stars (l D 2), yellow triangles (l D 3), green open circles (l D 4). The full line is plotted at
l D 0 and scales as 1=�2

5.3 Large Scale Oscillations

5.3.1 The Centre-of-Mass Oscillation

We now consider a different kind of oscillation, where the atomic cloud in a
magneto-optical trap can oscillate as a rigid body. In contrast with the Tonks-Dattner
resonances, there will be no density perturbations and the collective atomic velocity
will be uniform and independent of position. In order to consider such a kind of
oscillation we have to define the centre of mass position of the cloud, as

R.t/ D 1

N

Z

V

r n.r; t/dr; (5.46)

where N is the total number of atoms in the cloud. Using the fluid equations, (5.2)
and (5.3), and the Poisson-like Eq. (5.1), and neglecting the nonlinear terms, we
obtain the following harmonic oscillator equation

d2R
dt2

C !20R D 0; (5.47)
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where, for a spherically symmetric cloud, the oscillating frequency is determined by
the expression

!20 D Q

MR3

Z a

0

n.r/r2dr: (5.48)

In the case of a uniform density profile n.r/ D n0, this reduces to

!0 D !pp
3

�
r
Qn0

3M
: (5.49)

This frequency is commonly known as the Mie frequency. It characterizes the
oscillation of a spherical gas with respect to its equilibrium position, similar to that
of a plasma bubble. In the plasma case, the restoring force is due to the background
ions, as discussed later in this book. Here, for the cold neutral atom gas, this is
replaced by the magneto-optical trapping force. Due to the geometric factor ofp
3, this oscillation, which is also sometimes called the sloshing mode, cannot

be confused with the hybrid and Tonks-Dattner modes discussed above. From an
experimental point of view, it is possible in principle to distinguish between these
modes, by analyzing the temporal and spatial structure of the oscillations.

5.3.2 Normal Modes

Another family of modes can be defined by relaxing the imposition of a vanishing
density perturbation at the boundaries and including a more generic density profile.
A systematic study of the large scale oscillations of the atomic cloud can then be
made by linearizing the fluid equations for the ultra-cold gas, assuming a given
equilibrium density profile n0.r/. Using the polytropic equation of state, P D
C.T /n� , and assuming that the perturbed quantities oscillate in time as exp.�i!t/,
we then get

� !2 Qn � �C.T /

M
r � �n0.r/��1r Qn	 D 1

M
r � �n0.r/r QV 	 ; (5.50)

where the collective potential perturbation QV is determined by r2 QV D �Q Qn. We
now define an auxiliary quantity � such that,

Qn D 1

4�r2
d�

dr
(5.51)

which allows us to transform the potential equation into

d

dt
QV D � Q

4�r2
�: (5.52)
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Replacing in (5.50), we get the radial equation for the density perturbation, which
reads

� !2 d�
dr

� �P.0/

Mn.0/

d

dr

�
r2n0.r/

��1 d
dr

�
1

r2
d�

dr

��
C !2p

d

dr
Œn0.r/�� D 0; (5.53)

where n.0/ D n0.r D 0/, !2p D Qn.0/=M , and P0 D C.t/n.0/� . Introducing the
dimensionless variables � and � defined in Sect. 4.4.2, we then get

� !2 d�
d�

� �

2
!20

d

d�

�
�2�

d

d�

�
1

�2
d�

d�

��
C !2p

d

d�

�
�1=.��1/�

	 D 0: (5.54)

The solutions of this equation will depend on the particular equilibrium profile n0.r/
that we are assuming to perturb. In general, this involves the use of numerical
integration, as the equation (although linear) is non-polynomial. It is however
more interesting here to consider approximate solutions, valid in the two main trap
regimes, the temperature limited and the multiple scattering regime, for which some
analytical solutions may be constructed.

(i) Temperature limited regime

We have seen that, for a small number of particles in the trap (typicallyN < 104)
the effects of multiple scattering can be neglected. This means that we can use
!p D 0 in the above equations. Using the equilibrium profile given by Eq. (4.116),
we can reduce Eq. (5.54) to a simpler expression

� !2 Qn � �

2
!20

1

�2
d

d�

�
.1 � �2/�2 Qn
 D 0; (5.55)

where we have used a new variable � D 6�=.� � 1/�. The solution can be formally
represented in terms of hypergeometric functions. Here, instead, we use the ansatz

Qn D
X

jl

ajl �
2jCl ; (5.56)

where j and l are integers. Replacing this in Eq. (5.55), we can easily obtain a
recurrence relation between the different coefficients ajl which is found to converge,
provided that

!2 D !20
�
2j C l C �

�
2j 2 C 2jl C 1

	

: (5.57)

This result resembles the solutions obtained for the oscillations of a Bose-Einstein
condensate in a spherical harmonic trap, for � D 2, as discussed later. On the other
hand, for � D 0, we recover the result known for the free BEC in the collisionless
regime, ! D !0

p
2j C l . Pure surface modes (j D 0), which may eventually be

easier to detect experimentally, have the following frequencies
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!S D !0
p
j C �: (5.58)

On the other hand, breathing modes (l D 0) are also theoretically possible in small
traps, with frequencies given by

!B D !0
p
2j C �.1C 2j 2/: (5.59)

Because current experimental techniques are able to measure such frequencies with
a very high precision, these results could be very useful to determine the polytropic
exponent � and to confirm the assumed equation of state. In alternative, a kinetic
approach can be used, where no equation of state is required, but the calculations
become more involved. The breathing modes were discussed in a kinetic perspective
by Olivetti et al. [6].

Multiple Scattering Regime

In contrast with the previous case, where the density profile is nearly Gaussian,
in the multiple scattering regime we can use a water-bag model. In this case, one
readily obtains

.3!20 � !2/ Qn D 0; (5.60)

which corresponds to a breathing mode of a system with long range interactions,
characterized by the frequency

!B D !p D p
3!0: (5.61)

This result corresponds to an uncompressional monopole oscillation of the system at
the classical plasma frequency!p . It differs from the centre of mass oscillation con-
sidered above by a factor of

p
3. However, this solution is not unique. Manipulation

of the fluid equations also yields

r � ��.!/r QV in


; �.!/ D 1 � 3

!20
!2
; (5.62)

which holds in the interior of the atomic cloud, r < r0. Outside this region, for
r > r0, the collective force should be a constant, thus we have r2V out D 0. The
general solution of Eq. (5.62) is therefore given by

V in.r/ D
X

lm

almr
lY ml .�; '/; (5.63)

where Y ml .�; '/ are the spherical harmonics. Similarly, for the external potential,
we have
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V out.r/ D
X

lm

blmr
�.lC1/Y ml .�; '/: (5.64)

Imposing regular continuity conditions at the boundary r D r0, such that

V in.r0/ D V out.r0/;
d

dr
V in

ˇ̌
ˇ̌
rDr0

D d

dr
V out

ˇ̌
ˇ̌
rDr0

; (5.65)

we obtain the frequencies for the incompressible surface modes, as

!S D !0

s
3l

2l C 1
: (5.66)

A similar result can be obtained from the Mie scattering theory in the context
of surface plasmon-polaritons (see [12] for a review). We notice that for l D 1,
we recover the Mie oscillations discussed at the beginning of this Section. We
also notice that, for l > 1, the oscillations frequencies all stay below the plasma
frequency !p D p

3!0, and are independent of the size of the cloud r0, totally
differing from the Tonks-Dattner resonances.

5.4 Nonlinear Mode Coupling

In this section, we explore the possible existence of an instability process, due to the
coupling between collective oscillations (hybrid waves) and center-of-mass oscilla-
tions of the cloud gas in a MOT. As we will show, the centre-of-mass oscillation
(or the sloshing mode) can parametrically excite the hybrid acoustic waves [7].
Depending on the amplitude of the driving, the system can develop dynamical
instabilities. We then show how this mechanism can be useful to explain the
occurrence of giant oscillations in the system, as observed experimentally by
Labeyrie et al. [8].

Our starting point is given by the set of fluid equations, as previously stated. For
simplicity, we will use a water-bag model for the atomic density, where we assume
that the density is approximately constant inside the cloud radius, r < r0. In the low
intensity Doppler regime, the trapping pseudo-potential is approximately given by

U.r/ D 1

2�r2
; � D ˛

g
B

„k b0; (5.67)

where 
B is the Bohr magneton, g represents the Landé factor (g � 2 for the
electron), � is the spring constant, ˛ D ˛.ı; I=Is/ is the friction coefficient, Is
is the saturation intensity and b0 D jrBj represents the magnetic field gradient.
In order to establish the balance between trapping and collective (repulsive, for red
detuned MOTs) forces, the atomic density inside the cloud depends only on the
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Fig. 5.4 Dependence of the plasma frequency !p on the detuning ı, plotted at I=Is D 0:3

for different values of the magnetic field gradient. Solid line, b0 D 15G/cm, dashed line,
b0 D 0:8G/cm, dotted line, b0 D 0:4G/cm

MOT parameters, in such way that r � .Fcoll C FT / D 0, or equivalently

�

n0
D .
R � 
L/
LI0

c
; (5.68)

where FT D �rU . This condition establishes a relation between the plasma
frequency and the basic parameters of the MOT, !p D !p.ı; I=Is/ D p

�=M .
In Fig. 5.4, we represent the effective plasma frequency as a function of

detuning ı, for different values of the magnetic field gradient. For typical exper-
imental conditions of a 85Rb gas, operating at ı D �1:5� with a magnetic field
gradient b0 D 5G/cm and I=Is � 0:3, the corresponding plasma frequency is
!p=2� � 69Hz.

We linearize the fluid equations, by separating each relevant physical quantity
into its equilibrium and perturbation components, such that

n D n0 C n1 C n2; v D v1 C v2; Fcoll D F2: (5.69)

Here, the subscripts 1 and 2 label the center-of-mass and the collective variables,
respectively. We assume that center-of-mass dynamics is linear, which is valid for
moderate oscillation amplitudes. In such limit, the velocity v1 is simply described
by a harmonic oscillation

v1.t/ D u1 sin.!0t C �/; (5.70)

where !0 D !p=
p
3 represents the center-of-mass (sloshing) oscillation frequency,

as given by Eq. (5.66) with l D 1, � is an arbitrary phase, and u1 is the amplitude.
We keep it undefined for the sake of generality. Because we are only considering
small amplitude oscillations, the fluctuation n1 of the bulk density due to the motion
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of the center-of-mass can be neglected, and the following scaling n1 � n2 � n0
holds. Combining these approximations with the above fluid equations, and noticing
that n0@tr � v2 D !2pn2, one easily obtains

@2n2

@t2
C !2pn2 C

Cu1 � r
�
@n2

@t
sin.!0t C �/C n2!0 cos.!0t C �/

�
n2 D 0: (5.71)

The last term on the right-hand side describes the nonlinear coupling between the
center-of-mass and plasma (collective) oscillations. Assuming the separability of
the solution, such that n2.r; t/ D B2.r/A2.t/, the later equation yields

d2A2

d�2
C Œ� C 2� cos.2�/� A2 C � sin.2�/

dA2

d�
D 0; (5.72)

where we have defined dimensionless variables of time 2� D !0t C �, frequency
� D 4!2p=!

2
0 and amplitude perturbation � D 2u1 � r lnB2=!0. Equation (5.72)

describes the dynamics of a parametrically excited system, and belongs to the family
of Hill equations. It is formally similar to the Mathieu equation, which is well-
known in the literature for containing unstable solutions. By using the standard
Floquet theory, it is possible to verify that the solutions to Eq. (5.72) are of the form

A2;� .�/ D ei��P.�/; (5.73)

whereP.�/ D P1
nD1 cn exp.2in�/ represents a �-periodic function (corresponding

to 2�=!M in Eq. (5.71)) and � D �.�; �/ is the so called characteristic exponent [9].
Similarly, the solutionA2.�C�/ satisfies (5.72) wheneverA2.�/ does. The general
solution of the system can then be written as

A2.�/ D a1A2;� .�/C a2A2;� .��/; (5.74)

where a1 and a2 are constants. There is a infinite countable set of iso-� or
characteristic curves �n.�/ � an.�/ and �n � bn.�/, respectively yielding even
and odd solutions, in agreement with the expansion

A2.�/ D
X

n

ancen.�; �/

A2.�/ D
X

n

bnsen.�; �/; (5.75)

where ce.�; �/ and se.�; �/ respectively represent the elliptical cosine and sine
functions, resulting from the expansion of A2.�/ in powers of �. The functions
ce2n.�; �/ and se2nC1.�; �/ are �-periodic, while the functions ce2nC1.�; �/ and
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Fig. 5.5 Stability chart of Eq. (5.72) obtained numerically with a n D 5 Hill determinant. The
full lines represent �-period solutions and the dashed lines represent the 2�-period ones. The
shadowed areas correspond to stable (bounded) solutions. The dots represent the thresholds for
the observation of unstable, corresponding to � D 12

se2n.�; �/ are 2�-periodic. For � � 0, � is real when .�; �/ lies in the regions
between an.�/ and bnC1.�/ and all solutions are stable; � is complex in the regions
between an.�/ and bn.�/. In these regions all the solutions become infinite at least
once. The marginal curves an and bn separate the different regions of stability and
are solutions of the Hill determinant, which is related to the following matrix

�j;k.n/ D �
� C .� C 2in/2



ıj;k

C�
�
1 � i

2
.� C 2in/

�
ıj;kC1 C �

�
1C i

2
.� C 2in/

�
ıj;k�1; (5.76)

where ıj;k is the Kroenecker delta.
In Fig. 5.5 we represent the stability chart of Eq. (5.72), by computing the

characteristic polynomial of Eq. (5.76), for n D 5. As � ! 0, � ! n2.
The dynamics contained in Eq. (5.72) is sufficiently general and describes a

family of instabilities, which mechanism is based on the nonlinear coupling between
any periodic perturbation and a given collective mode. By considering the sloshing
mode, we immediately set the value � D 12 in Eq. (5.72). Correspondingly, the
instability is expected to occur for 3:17 < � < 3:91 and � > 4:90. To unfold the
parametric dependence in terms of experimentally relevant variables, we consider
the low saturation limit, where the friction coefficient is approximately given by

˛ D �16„k2L
	2

�2
�=�

.1C 4�2=�2/
2
; (5.77)
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where 	 D �
p
I=2Is is the two-level atom Rabi frequency. Inserting the later in

Eq. (5.68), it is possible to derive the threshold condition in the (�,b0)-plane, as

�
�

�

�2
D 16kLg
Bb

0

M

	2

�2
�=�

.1C 4�2=�2/
2
: (5.78)

For a fixed value of the magnetic field gradient b0, the oscillations are unstable
above a certain critical detuning ı1. Below that value, the oscillations remain stable
in the interval Œı1; ı2�, where ı2 is the marginal detuning separating a new stability
zone, below which the oscillations are unstable again. Finally, below the value ı3,
our model indicates that the oscillations are stable. In Fig. 5.6 we plot the marginal
curves ı1, ı2 and ı3 against the magnetic field gradient, obtained for a 85Rb MOT
operating at I=Is D 0:3, matching the experimental conditions of Ref. [8]. For a
coupling strength of �=2� D 223Hz, the present model qualitatively reproduces
the unstable threshold observed in the referred experiment, here represented by the
dots in Fig. 5.6.

These results, although valid only within the low intensity Doppler model, may
provide a more complete description for the so called self-sustained oscillations,
since we can theoretically predict the existence new regions of stability in the
(ı,b0) phase diagram. On the other hand, this fluid dynamical approach, allows the
description of different instability regimes, rooted in different driving mechanisms.
In particular, one could study the case of unstable steady waves, of the Tonks-
Dattner (TD) type [1], simply by replacing the frequency !0 by one of the
corresponding (TD) modes. This fact suggests that the actual phase diagram for self-
sustained oscillations may be more rich and complex than the present one, provided
that different mechanisms of instability occur in the same real experiment.

A short discussion of the validity range of the present model is in order. The
results considered here are only valid in the low-intensity Doppler regime, where
the dynamics of single atoms remains essentially linear. We should notice that for
large magnetic field gradients (b0 � 10G/cm), the matching between this theoretical
model and the experimental results is less evident, as shown by Fig. 5.6. This is a
clear manifestation of the deviation from the linear regime considered here. It is also
known that other instability mechanisms appear for high magnetic field gradients,
eventually related to stochastic diffusion of atoms in the MOT, but its description is
out of the range of this simple model.

5.5 Quasi-linear Diffusion

In the study of linear wave dispersion, we have previously assumed that a given
equilibrium functionW0.r; v/ remains constant along the process of wave propaga-
tion and damping. This is certainly valid on a time scale larger than the wave period
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Fig. 5.6 Phase diagram of the nonlinear coupling of center-of-mass and collective oscillations,
obtained for I D 0:3Is and for a stochastic perturbation of �=2� D 223Hz. The shadowed areas
are stable

1=!r , but is no longer valid for a much larger time scale (larger than 1=� ), due to
the energy exchange between the atoms and the wave modes.

In order to establish the long time evolution for W0 we can go back to the exact
wave kinetic equation (5.8) and retain the long time contribution of the nonlinear
terms on a long time scale. The slowly varying part of the wave kinetic equation can
then be written as
�
@

@t
C v � @

@r;

�
W0.v/ D 1

i„
Z

QVeff.�k/
� QW .v�;k/C QW .vC;k/


 dk
.2�/3

: (5.79)

Now, using Eq. (5.12), which relates the potential perturbations QVeff to the perturba-
tions of the distribution function QW , we obtain
�
@

@t
C v � @

@r;

�
W0.v/ D Q2

„2k4
Z j Qn.k/j2
i.! � k � v/

ŒW0.v � „k=M/ �W0.v C „k=M/�
dk
.2�/3

;

(5.80)

where we have used the density fluctuations Qn.k/ D k2 QVeff.k/=Q. This is a kinetic
equation of the Boltzmann type, associated with the inelastic collisions between
the atoms and the hybrid phonons of the density fluctuation spectrum. Emission
and absorption of one phonon will make the atom velocity to jump between v and
v ˙ „k=M , as it would be expected.

Now, let us consider the quasi-classical limit of this equation, where the atomic
recoil can be neglected. In this limit, the population difference in Eq. (5.80) is
replaced by a derivative, and we can write
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�
@

@t
C v � @

@r;

�
W0.v/ D 1

i„
Z

QVeff.�k/ı QW .k/ dk
.2�/3

; (5.81)

where

ı QW .k/ D �„k
M

� @
@v

QW .v;k/: (5.82)

In the same limit, we also have

QW .v;k/ D �
QVeff

M

k � @W0=@v
.! � k � v/

(5.83)

from where we get

ı QW .k/ D QVeff.k/
„k
M2

� @
@v

k
.! � k � v/

� @
@v
W0: (5.84)

Replacing this in Eq. (5.81) we finally obtain

�
@

@t
C v � @

@r;
� @

@v
� D.v/ � @

@v

�
W0.v/ D 0 (5.85)

with the diffusion tensor in the velocity space determined by

D D Q2

M2k4

Z j Qn.k/j2
i.! � k � v/

kk
dk
.2�/3

: (5.86)

We can now explore the spectral symmetries, well known from the quasi-linear
theory [10], by noting that j Qn.k/j2 D j Qn.�k/j2. Here we are assuming that,
for each mode of the density fluctuation spectrum, there is a complex frequency
! � !.k/ D !k C i�k, where !k is the real part of the mode frequency and �k is
the corresponding Landau damping. We also notice that !�k D !k. This allows us
to rearrange the terms inside the integral of Eq. (5.87), leading to the following new
expression for the diffusion tensor

D D Q2

M2k4

Z
j Qn.k/j2 �kkk

.! � k � v/2 C �2k

dk
.2�/3

: (5.87)

This new expression is physically more satisfactory, because it clearly states that
diffusion is a real process. Of particular interest is the case where Landau damping
is a very small quantity, and where we can use the limit

lim
�k!0

�k

.! � k � v/2 C �2k
D �ı.!k � k � v/; (5.88)

which allows one to rewrite the diffusion tensor in a much simpler form
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D D �
!2p

n0k4

Z
j Qn.k/j2 kk ı.!k � k � v/

dk
.2�/3

: (5.89)

The latter expression for D states that diffusion in velocity space is due to a
succession of resonant atom wave mode interactions. At a given time, a given mode
of the wave spectrum is in exact resonance with the atoms moving with velocity
v, as shown by the Dirac delta function. On a later time, the atom velocity will
change and resonance with a nearby mode will be established. The stronger the
wave component energy, the faster diffusion will occur. The existence of the density
fluctuation spectrum will then introduce a temperature limit for the laser cooling
process.

In order to estimate this temperature limit, we have to describe the competing
influence of the density fluctuations and the laser cooling force. Including the well
known expression for this force, the quasi-classical kinetic equation can be written,
in the form �

@

@t
C v � @

@r;

�
W0 D @

@v
�
�

A C D � @
@v

�
W0; (5.90)

where A is the friction coefficient associated with the cooling force, as given by

A D ˇv ; ˇ D 8„k2� �j	Rj2
M.4�2 C �2/2

; (5.91)

where, was usual, 	R is the Rabi frequency, � the spontaneous decay time, and �
the frequency detuning. This expression is valid for j!Rj2 � �2=2. Now, assuming
spherical symmetry in velocity space, a steady state solution for this equation can
be derived as

W0.v/ D W00 exp

�
�M v2

2Teff

�
; (5.92)

whereW00 is a constant, and the effective temperature Teff is determined by

Teff ' �2c2

„!2
!2p

n0k2

Z
j Qn.k/j2 dk

.2�/2
: (5.93)

This quantity establishes a new temperature limit for the laser cooling process,
which is conceptually different, and eventually larger, than the Doppler limit
associated with spontaneous emission.

5.6 Phaser, the Phonon Laser

The possibility to excite a Doppler instability of a single atom or ion trapped in
a harmonic potential, has been considered by several authors [11, 12]. This could
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be used as the basic mechanism for the creation of a phonon laser. In this section,
we show that it is possible to generalized the single trapped atom configuration to
the case of a large ensemble of atoms, thus enabling collective phonon excitations.
This would lead to the excitation of a phonon laser instability in the trap. Such
an effect would results from a negative Landau damping of the collective density
perturbations in the gas, leading to the coherent emission of phonons. It would
correspond to a collective oscillation, instead of a single particle effect. In that
respect, it would be closer to the paradigm of an optical laser, where the photon
modes correspond to internal vibrations of the optical cavity, thus making the name
phaser a natural denomination for such collective modes. The resulting acoustic
oscillations can the, in principle, be coupled to the outside world, by mechanical or
electromagnetic means, thus providing a source of coherent acoustic radiation.

The basic ingredient for the phonon laser in a MOT is provided by an inversion
of population in the atom velocity states. This can be produced, for instance, by a
pump laser beam, as discussed in Chap. 3, or by any other method. We use here
a simplified one-dimensional model, assuming v D u.k=k/ C v?, and integrating
over the perpendicular velocities with respect to the phonon wave vector k. Phonons
are described as perturbations of the mean field potential V.k/. We define the quasi-
distribution for the parallel velocities as G.u/ D R

W.u; v?/dv?. The evolution
equation for this parallel distribution can be written as

dG

dt
D Qg �G.kb/.�/ �G.kb/

.C/
C � ŒG0 �G� ; (5.94)

where Qg represents the pumping mechanism, which provides the inversion of
population and � is the viscosity associated with the laser cooling beams. We can
use the average value � D �.E0=„/Im.d21 Q�21/, where E0 is the average magnitude
(computed over the six cooling beams) of the incident electric field. The distribution
G0.u/ is that of the laser cooled gas, as obtained in the absence of the pumping
process. This last term in (5.94) describes depopulating of the high velocity states.

Three physical processes are assumed to occur in parallel, as described in
Fig. 5.7. First, the red-detuned laser cooling beams, will create a very low tempera-
ture quasi-distribution G0.u/, which provide the ground state. Second, some given
pumping process will excite high atomic velocity states. For clarity, we assume
pumping by a blue detuned laser with wave vector kb , exciting the atoms in the
velocity state u C „kb=M , due to the photon absorption. These high velocity states
can be seen as an atom beam, thus creating a population inversion in the centre-of-
mass states. Finally, a negative Landau damping of acoustic-like oscillations with
frequency ! and wavenumber k will result in the coherent emission of phonons.
Due to phonon emission, a third and intermediate velocity state will be populated.
The temporal evolution of the phonon field will be dictated by a complex frequency
! D !r C i.�k � �=2/.

We assume thatG.u/ D NG.u/C QG.u/, where NG.u/ is the equilibrium distribution,
and QG.u/ is the perturbation, which is assumed to evolve as exp.ik �r� i!t/. Notice
that NG.u/ reduces to G0.u/ in the absence of pumping. It is clear that we will have
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a

b

c

Fig. 5.7 Phonon laser scheme: (a) The gas is cooled down by red-detuned laser beams with
frequency !a and wavevector ka into a velocity distribution W0.v/; (b) the ultra-cold gas is
pumped, creating an inversion of population in velocity space; (c) Phonons with frequency ! and
wavevector k are coherently emitted by the atoms, which decay into a lower kinetic energy state
(The width of the distributions and the distance between the peaks are generic and provide only a
schematic perspective of the instability mechanism. See discussion in the text)

Fig. 5.8 Phonon laser scheme in the classical limit. The two upper levels are replaced by a region
of negative derivative, where inverse Landau damping will occur

an acoustic wave growth if the inverse Landau damping is positive �k > 0, and if it
is large enough to compensate for the wave losses, i.e. �k > �. We can then write
the threshold condition as

� NG.C/ � NG.�/

r
>
2�

�

„k3
Q!r

; (5.95)

It is important to noticed here that this instability also exists in the classical limit,
where we can develop NG.˙/ around NG.u/, as NG.˙/ ' NG.u/ ˙ .„k=M/.@ NG=@u/.
The threshold condition becomes
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@ NG
@u

!

r

>
2�

�

Mk2

Q!r
: (5.96)

The population inversion is now represented by the derivative of the atom distribu-
tion at the resonant velocity ur D !r=k. The resemblance with a three level laser
will be somewhat lost, but the physical principle stays the same. This is illustrated
in Fig. 5.8.

Defining the population difference �G D R
ŒG2.u/ � G1.u/�du, for the atoms

centered around the upper and intermediate parallel velocities u1 and u2, it is
possible to establish the evolution equation [13]

d

dt
�G D �jV.k; t/j2

„2 �G: (5.97)

On the other hand, the inverse Landau damping of the phonon mode will also
change and, as a consequence, the phonon square amplitude (energy) will evolve
according to

d

dt
jVk.t/j2 D

�
�Q!r

„k3 ıG � �
�

jVk.t/j2; (5.98)

where �k is the growth rate defined above. Introducing a new time variable, � , and
a new viscosity coefficient N�, such that � D .„k3=�Q!r/�G.0/t , and N� D .�=t/�,
we can rewrite these two equations as [13]

d z

d�
D �azy ;

dy

d�
D .z � N�/y; (5.99)

with z � �G=�G.0/, y � jVkj2 and a D .�Q!r=„3k3/. These coupled evolution
equations clearly exhibit the threshold condition z.0/ > 2 N�, already stated in
Eq. (5.95), and saturation for increasing values of time. This is illustrated in Fig. 5.9.
We can see that the population difference decreases along time, due to the increase
of the phonon coupling between the two velocity states around u1 and u2. As a
consequence, the growth rate slows down, leading asymptotically to saturation. The
resemblance with the usual optical laser is striking.

It is useful to consider the selection mechanisms for the phonon wave vector k.
First, we have spontaneous selection of the mode with largest growth rate. Another
mechanism is imposed to the finite size and boundary conditions of the atom cloud.
As we have seen, this leads to a discretization of the phonon mode spectrum, where
the discrete phonon modes with a well defined internal structure are associates with
the Tonks-Dattner resonances. Such modes are quantized inside the cloud, which
will work as a spherical acoustic cavity. The dominant phonon mode in a MOT will
then be due to the Tonks-Dattner resonance mode with the largest inverse Landau
damping.
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t

t tFig. 5.9 Saturation of the
laser instability, as described
by the quasi-linear equations.
Temporal evolution of the
normalized population
inversion in velocity space
z.�/ � �G.u; �/=�G.u; 0/
(dashed line), and the phonon
amplitude square
y.�/ � jVk.�/j2 (full line), as
a function of the time variable
� , for a D 1 and N� D 1=2.
For illustration purposes, we
take y.0/ D 0:001
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Chapter 6
Photons in the Ultra-cold Gas

In this chapter, we discuss the properties of laser beam propagation in the ultra-cold
gas, by focusing mainly our attention on the specific properties of this medium.
We first consider the linear and nonlinear dispersion properties of light. The novelty
here is that the laser beams used for atom cooling can couple to the low frequency
oscillations of the atomic cloud. In particular they can destabilize the hybrid sound
inside the gas, therefore generating small scale oscillations, which can be the seed
for turbulence in the medium. Under certain conditions, the laser beam can become
modulationaly unstable, and photon bubbles can eventually be formed.

The photon field associated with the laser cooling beams contains two distinct
parts. One is the coherent part due to the incident laser radiation, and can be
described by the usual electromagnetic wave equation. The other is an incoherent
part associated with secondary photon emission, due to multiple scattering inside
the gas, and can be described by a photon diffusion equation. For an optically
thick gas, the diffusive part dominates. The coupling of both the coherent and
the diffusion parts of the photon field with the gas are proportional to the atom
density. Therefore, a density perturbation will lead to a perturbation of the local
laser intensity, which can eventually become unstable. For the coherent part of the
electromagnetic radiation, such instabilities can take the form of filamentation and
amplitude modulation. For the diffusive part, the instability is nearly isotropic, a
local photon bubble can be formed.

Another interesting aspect of photon coupling with the collective atomic forces
is the formation of rotons. It is well known that rotons were introduced by Landau in
the frame of his theory of superfluidity. Here we discover that rotons can also occur
in a classical or non-superfluid gas, due to the correlations induced by multiple
photon scattering. Such collective photon-atom interactions lead to the appearance
of a roton minimum in the hybrid phonon dispersion curve, which is similar to
those occurring in a superfluid. Such roton dispersive features can be limited by
atomic Landau damping, and regions of undamped rotons will be revealed.

Finally, we discuss the collective Rayleigh scattering of an incident laser beam
by the density perturbations in the gas. The spectrum of density perturbations can

J.T. Mendonça and H. Terças, Physics of Ultra-Cold Matter, Springer Series on Atomic,
Optical, and Plasma Physics 70, DOI 10.1007/978-1-4614-5413-7 6,
© Springer Science+Business Media, LLC 2013
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be derived by using a test-particle method. The characteristic features of the
spectrum depend on the collective properties of the ultra-cold gas, and in particular,
they depend on the atomic Debye length. Observation of the scattered photon
spectrum can then be used as a diagnostic tool for the collective forces inside the
medium.

6.1 Optical Properties

Let us first review the basic optical properties in the gas. We consider an incident
laser beam propagating in the ultra-cold medium, as described by the wave equation
for the laser electric field E, as

�
r2 � 1

c2
@2

@t2

�
E D 
0

@2P
@t2

; (6.1)

where the polarization P can be divided in two parts, P D PL C PNL. The linear
part is determined by

PL.t/ D �0

Z 1

0

�.1/.�/E.t � �/d�; (6.2)

with �.1/ representing the linear optical susceptibility. Here we assume that the gas
is isotropic, otherwise this scalar function would have to be replaced by a tensor.
For the nonlinear part of the polarization, we can neglect the temporal dispersion,
and simply write

PN .t/ D �0�
.3/ jE.t/j2 E.t/; (6.3)

where �.3/ is the third-order susceptibility. Here we have assumed that the gas is
centro-symmetric, and therefore the second order susceptibility is zero, �.2/ D 0 [3].
This is certainly true inside the trap, where the static magnetic field of the trap is
nearly zero, and the inhomogeneity of the gas is negligible at the scale of the laser
wavelength.

Let us neglect nonlinear effects, and focus on the linear laser propagation. For a
given spectral component of the laser field, with frequency !, such that

.E;P/ D .E!;P!/ exp.ik � r � i!t/: (6.4)

The polarization amplitude can be simply related with the electric field amplitude
by the expression

P! D �0na�a.!/E!; (6.5)
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where na is the atom density, and �a.!/ is the single atom linear susceptibility.
Replacing this in Eq. (6.1), we get the linear photon dispersion relation

k2 D !2

c2
Œ1C na�a.!/� : (6.6)

In general, the linear susceptibility is complex, and we can write it as �a.!/ D
�0a.!/ C i�00a.!/. For a nearly resonant laser field with frequency ! ' !a,
where !a is the frequency of the atomic radiative transition, the real part of the
susceptibility �0a.!/ can be very small, which has two important consequences.
(1) The nonlinear susceptibility becomes comparable to the linear one, �.3/ � �.1/;
and (2) the resulting wave dispersion, being negligible, will facilitate the phase-
matching associated with nonlinear wave mixing.

On the other hand, for nearly resonant propagation, the wave losses associated
with the imaginary part �00a.!/ can be significant, leading to the transfer of energy
from the primary laser beam energy to secondary scattered light, propagating inco-
herently in other directions. We can then imagine a situation where such scattering
losses are dominant, and the incident coherent beam of photons is transformed into
an incoherent spectrum of diffused light. This case will be considered in Sect. 6.3.
It is known that the atomic susceptibility for laser interaction with a two-level atom
in steady state is given by [3]

�.!/ D 1

3
.�22 � �11/jp21j2�C i�=2

�2=4C s
; (6.7)

where �11 and �22 are the population probabilities of the internal energy levels, and
s D jEj2=jEsj2 is the saturation parameter, with jEsj2 D „2=4jp21j2. By developing
this expression as a power series in jEj2, we get

�.!/ D �.1/.!/C 3�.3/jEj2 C : : : (6.8)

This leads to well known linear and nonlinear optical properties. In particular, the
third order susceptibility, is responsible for the occurrence of four-wave mixing
processes, obeying the energy and momentum conservation rules

!1 C !2 D !3 C !4 ; k1 C k2 D k3 C k4; (6.9)

where !j and kj are the frequencies and wavenumbers of the interacting photons.
Four-wave mixing in a three-level � atomic configuration has been considered
in theory [2]. We should add that higher order effects have also been studied.
In particular, it has been noticed that the nonlinear effects associated with the fifth-
order susceptibility �.5/, and involving six-wave mixing, can be of the same order
as those associated with the �.3/ effects [4].
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6.2 Modulational Instability

Of particular interest are processes specific to the ultra-cold gas in a MOT, as those
directly involving the laser cooling beams. These processes can couple the temporal
variations of the atom density na, and the low frequency oscillations of the gas, with
the amplitude modulations of the beam. We first examine the case when multiple
scattering is negligible and the laser radiation is mainly associated with the incident
laser cooling beams. The opposite case where multiple scattering dominates will be
discussed in the next section.

Starting from the wave equation which describes the evolution of an incident
laser beam (6.1), and assuming a single frequency component such that Eqs. (6.4)
and (6.5) are valid, we can derive an envelope equation for the electric field
amplitude, of the form

�
@

@t
� v! � r

�
E! D �˛!E!

@na

@t
; (6.10)

where the photon group velocity v! , and the coupling parameter ˛! , are
determined by

v! D c2

!

k
Œ1C na�a.!/�

D !k
k2

(6.11)

and

˛! D �a.!/

Œ1C na�a.!/�
D !2

k2c2
�a.!/: (6.12)

Notice that the quantity ˛! is in general complex, such that

˛! D ˛0 C i˛00 D !2

k2c2

�
�0.!/C i�00!



: (6.13)

Let us now assume an equilibrium state characterized by E! D E0, and na D n0.
If this equilibrium is perturbed, we can then use E! D E0 C QE, and na D n0 C Qn,
where QE and Qn are the perturbations. Linearizing the envelope equation (6.10) with
respect to such perturbed quantities, we get

�
@

@t
C v! � r

�
QE D �˛!E0

@ Qn
@t
: (6.14)

On the other hand, we know from the mean field fluid theory that the atom density
na can be described by the fluid wave equation

�
@2

@t2
� u2sr2

�
na D �!2pna; (6.15)
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where us and !p are the sound velocity and the effective plasma frequency of the
ultra-cold gas. Linearizing this equation, we get

�
@2

@t2
C !2p0 � u2sr2

�
Qn D �ˇ �.E0 � QE�/C .E�0 � QE/
 ; (6.16)

where !2p0 is associated with the unperturbed density n0, and ˇa D �0.
R � 
L/


Ln
2
0=2 is the coupling coefficient, depending on the effective charge of the atom.

The quantities 
R and 
L are the atom radiation scattering and atom laser absorption
cross sections, as previously considered. In order to solve the two coupled equations
for the laser and the atom density perturbations, QE and Qn, (6.14) and (6.16), we
assume that they both evolve in space an time as exp.iq � r � i	t/. Noticing that
the term in jE0 � QE�j will not contribute to the same Fourier component and can be
ignored, we get a couple of algebraic equations relating the two perturbed quantities
QE and Qn, as

� i.	� v! � q/ QE D i	˛!E0 Qn ;


	2 � !2p0 � u2sq

2
�

Qn D ˇ.E�0 � QE/: (6.17)

From here we can easily get the dispersion relation for the laser and density
perturbations, as

.	 � v! � q/


	2 � !2p0 � u2sq

2
�

D �ˇ�	; (6.18)

where we have used � D ˛! jE0j2. Of particular interest is the case of perturbations
in a direction perpendicular to that of the incident laser beam, such that .v! � q/ D 0.
If unstable, these perturbations will lead to laser filamentation. In this case,
Eq. (6.18) reduces to

.	2 � !2s / D �ˇ� ; !2s � !2p0 C u2sq
2: (6.19)

In the absence of coupling ˇ D � D 0, this would reduce to the dispersion relation
of the hybrid acoustic modes, 	 D !s , as discussed in previous chapters. Noting
that the quantity � is complex, and using	 D 	r C i� , we can separately write the
real and imaginary parts of the above equation, as

	2
r D !2s C �2 � ˇ�0; � D � ˇ�

00

2	r

; (6.20)

where �0 and �00 are the real and imaginary parts of �. We can see that a filamentation
instability occurs for � > 0, or equivalently for ˇ�00 < 0. This implies, ˇ > 0,
which is the usual case, and �00.!/ < 0. This means that filamentation can only be
observed for a blue shifted laser beam, and not for the usual laser cooling beams.
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Let us now turn to the general case of perturbations propagating in arbitrary
directions, where .v! � q/ ¤ 0. Going back to the dispersion relation (6.18),
we assume a double resonant condition

v! � q D !s D 	 � ı; (6.21)

with jıj � !s . Retaining the dominant terms, we get

ı D ˙i
r
ˇ

2
�: (6.22)

We therefore have and instability with growth rate � � =.ı/ with

� D !p0p
2

h
�

02.!/C �
002.!/

i1=4
cos'; (6.23)

where 2' D tan�1.�00=�0/. For �0 � �00, we have ' � �=8. We can see that
instability can occur for the favorable situation of a double resonant condition (6.21),
with significant growth rates. Notice however, that we always have � � !p0, which
is compatible with the condition jıj � !s . When this condition brakes down,
we need to solve directly the dispersion relation (6.18).

This analysis shows that a modulational instability, with oscillating frequency
	 ' !s and .v! � q/ ¤ 0 satisfying the double resonance condition (6.21) can
occur for the incident laser cooling beams. In contrast, transverse filamentation
instabilities with .v! � q/ D 0 are unlikely to occur, because they would imply
the use of blue detuned incident radiation. On the other hand, the length scale of
the unstable modulations is determined by q ' !p0=c cos � , where � is the angle
between q and k. This implies that cos � � .us=c/, which is a very small quantity,
showing that a wide range of wavenumbers q can become unstable, with nearly
identical growth rates.

6.3 Photon Bubbles

In contrast with the previous section, we now discuss the case where photon multiple
scattering dominates over direct field propagation [10]. This is a relevant situation
for current MOT conditions, where the incident laser cooling beams are deflected
by multiple scattering, randomizing the photon propagation direction, and diffusion
effects become dominant. In order to describe this new situation we use the energy
transport equation for the photon field which, in a region where radiation sources
are absent, can be generally stated as

@

@t
I! C r � S! D ��!I!; (6.24)
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Here, �! describes photon absorption, and I! is the photon energy density
corresponding to the frequency !. This quantity can be defined as the spectral
energy density of the electromagnetic radiation W.!;k/, integrated over all the
possible directions of propagation, as

I! D
Z
W.!;k/ı.k � k!/ dk

.2�/3
; (6.25)

where k! is the solution of the photon dispersion equation, k2c2 D !2Œ1Cna�a.!/�.
In the following, such a solution is assumed, as it will not play any explicit role in
the calculations. If radiation is made isotropic by multiple scattering, the energy flux
is determined by a diffusive process, characterized by (see e.g. [7, 12])

S! D �DrI! ; �! D Dk2a; (6.26)

where ka is the inverse of the energy absorption length. The diffusion coefficient
is determined by D D l2=� , where the photon mean free path is l D 1=na
R,
where na is the atom number density, and 
L the laser atom scattering cross section.
The photon diffusion time � can be considered as nearly independent from the atom
density, as shown by cold atom experiments [9]. We therefore get D / n�2a .

On the other hand, the atom density na can be determined in the mean field
approximation by the fluid equations, which determine the atom density na and
mean velocity v. In the momentum equation it is useful to introduce a damping force
term, ��v, where � is the damping rate resulting from the viscosity of the gas. As we
have previously discussed, the collective force F, resulting from the exchange of
photons between nearby atoms is determined by a Poisson type of equation, r � F D
Qna. We notice that the charge parameter Q is proportional to the laser intensity
(see Eq. (4.87)), thus providing a coupling between the atom density na and the
photon intensity I! .

The diffusion equation (6.24), coupled with the fluid equations, can now
be studied, using a perturbation analysis. We assume that the equilibrium state
of the atomic density and radiation intensity is perturbed, as described by the
decomposition I! D I0 C QI , and na D n0 C Qn. The linearized photon transport
equation can be written as

�
@

@t
� r �D0r

�
QI D �g.r2I0 C rI0 � r / Qn � �0 QI ; (6.27)

where D0 D 1=n20

2
L� is the unperturbed diffusion coefficient, �0 D D0k

2
a , and

g D D0=2n0. Similarly, from the linearized fluid equations we obtain

�
@

@t

�
@

@t
C �

�
C !2p � u2sr2

�
Qn D �ˇ QI ; (6.28)
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where us is the sound speed, and !p is the effective plasma frequency, defined by
!2p D Qn0=M . Assuming that the gas of ultra-cold atoms follows an equation of
state of the form P / n

�a
a , where �a is the adiabatic constant, the sound speed will

be determined by us D �aP=M . We have also introduced the coupling coefficient
ˇ D !2pn0=I0.

In order to proceed with the stability analysis, we assume a space and time
dependence of the perturbed quantities of the form exp.iq � r � i	t/. Replacing
this in Eqs. (6.27) and (6.28), we arrive at the dispersion relation

.�i	CD0q
2 C �0/.	

2 C i!� � !2s / D �ˇ.� C ia/;	; (6.29)

where we have used the quantities � D gr2I0, a D g.q � rI0/, and !2s � !2p C
u2sq

2. Notice that, in the absence of coupling between the photons and the atomic
gas (ˇ D 0), this dispersion relation would describe two independent modes: (1) – a
purely decaying photon mode, such that	 D �i.D0q

2C�0/, where damping results
from both diffusion and absorption; and (2) – an oscillating fluid mode, determined
by	 D !s � i�, which is damped by viscosity. It is now interesting to consider the
modes resulting from the coupling between these two basic solutions of both photon
intensity and atom density.

Let us first examine oscillating perturbations with frequency of order !s . Using
	 D !s C ı, and assuming jıj � !s , we obtain solutions of the form

ı D �B
2

"
1˙

s

1 � 2i
�
�

B
C ˇ�

!sB2

� #
; (6.30)

where we have used B D !s C i.D0q
2C�0/. The choice of the positive sign would

lead to jıj � !s , thus violating our initial assumption. We therefore focus on the
solution with the negative sign. After expansion of the expression inside the square
rooth, we get

ı D � i
2
� � ˇ.� C ia/

2!2s

�
i C D0q

2

!s
C �0

!s

�
: (6.31)

This can be considered as the perturbed oscillating fluid mode. We can see that,
apart from a small correction in the real part of the frequency, we can have a growth
or damping rate, determined by the quantity � D =.ı/ D =.	/. We analyze
two distinct situations were � > 0 and instability becomes possible. One is the
case when the quantity a can be neglected. In explicit terms, this occurs when
the following inequality is satisfied

jq � rI0j � D0!
2
p

I0!s
q2r2I0: (6.32)
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In this case, instability will occur if the following two conditions are simultaneously
satisfied

ˇ� < 0 ;
jˇ�j
!2s

> �: (6.33)

The first condition implies that, for ˇ > 0 (or, equivalently, for 
R > 
L) we
should have r2I0 < 0. Notice that a positive ˇ corresponds to the most natural
experimental scenario in a MOT. But we could also have ˇ < 0, (or 
R < 
L),
which would then imply r2I0 > 0, for MOT conditions where the atom effective
charge would become imaginary. On the other hand, the second condition in (6.33)
determines the instability threshold, where the growth rate has to compensate for
the losses due to viscosity. In the absence of viscosity, or for conditions well above
the threshold, the growth rate attains its maximum value �max D jˇ�j=2!2s . This
will lead to the formation of photon bubbles, as discussed below.

Let us now consider the situation where a becomes the dominant term in (6.31)
and the inequality (6.32) is reversed. In this case, we can have mode instability
if q � rI0 < 0, and at the same time we verify

jq � rI0j gˇ
2!2s

�
D0q

2

!s
C �0

!s

�
> �: (6.34)

In contrast with the previous case specified by (6.33), where the instability was
isotropic, here the instability conditions will strongly dependent on the direction
of q, and the growth rate will maximize along the gradient of the photon intensity.

Let us now turn to purely damped (or growing) perturbations, with <.	/ ' 0.
This can now be considered as the perturbed photon decay mode. Assuming that
j	j2 � !2s , Eq. (6.29) leads to

� D
�
ˇ�

!2s
� .D0q

2 C �0/

�
: (6.35)

This shows that unstable modes can indeed exist, for ˇ� > 0. It should also be
noticed that these modes are nearly (but not exactly) purely growing modes, because
a residual value of the mode frequency still exists, <.	/ ' .aD0=2I0/. This
quantity goes to zero with a � q � rI0, and therefore vanishes in the spherically
symmetric case.

It is useful to compare these modes with the above oscillating modes. First, they
occur for opposite signs of the quantity ˇ�, the oscillating modes for a negative
sign, and the purely growing modes for a positive sign. The maximum growth rate
for the purely growing modes are two times larger than for the oscillating modes,
�max D ˇ�=!2s . On the other hand, the threshold conditions are different: (1) For
the oscillating modes, Eq. (6.33) shows that the instability is limited by the viscosity
of the atomic gas. (2) In contrast, for purely growing modes, Eq. (6.35) shows that
the instability is limited by photon diffusion and losses.
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Fig. 6.1 Schematic representation of spherical bubbles resulting from the unstable coupling of
laser light with the atom mean field

In this comparison we have ignored the mode (6.34), and assumed a negligible a,
when the instabilities can be seen as isotropic. In this situation, we can associate
such unstable modes with the formation of photon bubbles. In order to describe
more explicitly the formation of such bubbles, we replace the plane wave modes
by spherically symmetric perturbations described by . QI ; Qn/ / F.r/ exp.�i	t/,
where F.r/ satisfies the equation

r2F.r/ � 1

r2
@

@r

�
r2
@

@r

�
F.r/ D �q2F.r/; (6.36)

where q2 is a positive real quantity. Going back to the perturbed equations, but
ignoring the quantity a � q � rI0 which would brake the spherical symmetry,
we arrive again at the dispersion relation (6.29), but with a D 0. Therefore,
our previous analysis for the oscillating and purely growing modes remains valid
for such spherically symmetric perturbations. Equation (6.36) can be written as a
spherical Bessel function, with a well known non-singular solution, given by

F.r/ D
r

�

2qr
J1=2.qr/ D sin.qr/

qr
(6.37)

A superposition of such solutions is represented in Fig. 6.1, for illustration. Of
course, superposition is only valid for linear solutions. Nonlinear terms will give
rise to instability saturation. For purely growing modes, such the saturation level
can be easily estimated by replacing the equilibrium diffusion coefficient D0 by its
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perturbed value D0n
2
0=.n0 � j Qnj/2 in the threshold condition (6.35). Saturation will

then occur for

j Qnjsat ' n0

"
1 �

�
D0q

2

�max � �0

�1=2#
: (6.38)

Saturation can then be understood as a result of an increase of diffusion losses,
due to a local density depletion. As a consequence of the coupled dynamics, a local
decrease in the atomic number density Qn also leads to an increase of the local photon
intensity. Near the instability saturation, =.	/ � 0, and the static bubbles will
satisfy the following relation QI D �Qn=.D0q

2 C �0/. Therefore, the perturbations
QI and Qn have opposite signs.

Finally, it is useful to write the threshold conditions and growth rates in a more
explicit form, in terms of the typical time and scale lengths. Introducing the photon
intensity scale length L, such that L�2 � I�10 jr2I0j, we can write, threshold and
growth rate for purely growing bubbles as

L <
1p
2

!p

!s

1

.q2 C k2a/
1=2

; �max D 1

�

l2

L2
: (6.39)

Given that !p ' !s , and typically we have k2a � q2, we get the threshold condition
L < 1=ka, which can be easily satisfied. For instance, taking the experimental
conditions of Ref. [9], we have l ' 300�m, D ' 0:66m2/s, corresponding to
� ' 0:1�. Thus, even for large L � l , the maximum growth rate �max can be
much larger than 1 s�1. A similar analysis can be made for the oscillating bubbles,
and the result is

L <
!p

!s

lp
2��

; �max D 1

2�

l2

L2
: (6.40)

This can also be satisfied in current experimental conditions, but for a different sign
of ˇ�. The two threshold conditions are represented in Fig. 6.2.

6.4 Roton Instability

In the previous section, we have discussed the mechanism of photon bubble
formation, if the system is dominated by diffusive light. This is a consequence of
the coupled dynamics between the atoms and the photons. Although this coupling
is not strong enough to effectively form atomic polaritons, the combined dynamic
competition between the long-range and stochastic forces between the atoms (where
the later results from the ballistic behavior of the light) this atom + photon “soup”
can exhibit polariton-like features in the spectrum of the elementary excitations.
In what follows, we show that it may eventually result on the emergence of a roton
minimum.
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Fig. 6.2 Threshold curves for photon bubble formation in the ultra-cold gas: (a) Oscillating
bubbles, photon characteristic scale L=Ln , versus normalized wavenumber z D q=ka with
Ln D .!p=!s/=

p
2ka; (b) Purely growing bubbles, L=Ln versus z D p��, with normalization

factor Ln D .!p=!s/.l=
p
2/. Instability occurs below theses curves

We consider that the dynamics of cold atoms in MOTs is described by the Vlasov
equation and the collective force can be described by the Poisson equation

r � F.r; t/ D Q

Z
dvW.r; v; t/; (6.41)

whereW.r; v; t/ is the atom velocity distribution. To describe the dynamics of light
in optically thick traps, we make use of the photon diffusion equation (6.24)1

@I

@t
� r �DrI D 0; (6.42)

where the photon absorption term �a is neglected. The diffusion coefficient is again
determined by D D l2=� , which can be explicitly written in terms of the atom
distribution as

D.r; t/ D 1


2L�
2n2

D 1


2L�
2n20

�Z
W.r; v; t/dv

��2
: (6.43)

We now linearize the Vlasov and photon diffusion equation with respect to the
fluctuations, such that W D W0 C ıW , I D I0 C ıI and D D D0 C ıD,

1In this section, we have dropped the subscript ! for simplicity.
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and we obtain
�
@

@t
C v � r

�
ıW C 1

m
ıF � rvW0 D 0 (6.44)

@

@t
ıI �D0r2ıI � ıDr2I0 D 0 (6.45)

r � ıF D Q0n0
R
ıWdv CQ0n0

ıI

I0
; (6.46)

whereQ0 D 
L.
R � 
L/I0=c. Assuming periodic perturbations in space and time,
such that .ıf; ıI; ıD/ / exp.iq � r � i	t/, Eqs. (6.43) and (6.45) yield

ıI D ˇ

i	�D0q2

Z
dvıW; (6.47)

where

ˇ D 2r2I0

n30

2
L�

D 2r2I0

n0
D0 (6.48)

now represents the photon inhomogeneity parameter. Combining the latter results,
we can derive a kinetic dispersion relation of the form

1 D !2p

q2

�
1C !d

i	 �D0q2

�Z
1

vz �	=q
@W0

@va
dv; (6.49)

where we have considered propagation along the z-direction, q D qez, for
definiteness. Here, we have defined two typical frequencies of the system. The
first one is plasma frequency !p D p

Q0n0=M , and the second one is the photon
scattering rate, or simply the diffusion frequency

!d D ˇn0

I0
D 2r2I0

I0
D0: (6.50)

We notice that this frequency depends on the scale at which the diffusive processes
occur (micro-, meso- or macroscopic), as it depends upon the spatial scale L at
which the light intensity varies. We will discuss the macroscopic case below.

The integral in Eq. (6.49) can be evaluated using the Landau prescription,
according to which the full information about the initial conditions is cast if the
integration path is set to pass below the pole	 D vzq. We split the integral into two
parts, as discussed in Chap. 4. We can therefore write
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Z
1

vz �	=q

@W0

@vz
dv D P

Z
1

vz �	=q

@W0

@vz
dv

Ci�
�
@W0

@vz

�ˇ̌
ˇ̌
vzD	=k

dv;

(6.51)

where P stands for the Cauchy principal value. Assuming a phase speed vph D !=q

much greater than the width of the distribution, such that W0 and its derivatives get
small as vz gets large, we may expand the denominator in (6.51) which, together
with the relation

Z
1

vz �	=q
@W0

@vz
dv D

Z
W0

.vz �	=q/2 dv; (6.52)

simply yields

P
Z

1

vz �	=q

@W0

@vz
dv '

Z
W0

�
1C 3

q2v2z
	2

�
dvxdvydvz: (6.53)

Assuming the atomic equilibrium to be described by a Maxwell distribution

W0.v/ D 1

.2�vth/3=2
e�v2=2v2th ; (6.54)

with vth D p
T=m standing for the thermal speed, we obtain

1 D !2p

	2

��
1C u2sq

2

	2

��
1C !d

i	 �D0q2

��

Ci� !
2
p	

2

q2
@W0

@vz

ˇ̌
ˇ̌
vzD	=k

; (6.55)

where we have defined the sound atomic speed as us D p
3vth. Separating the

frequency into its real and imaginary parts, 	 D ! C i� , with � � !, we may
finally write

!2 D


!2p C u2sq

2
� 
1 � !dD0q

2

!2p CD2
0q

4

!
(6.56)

and

� D !d

2

!2p C u2sq
2

!2p CD2
0q

4
� 3p

8�

1

q3�3D
e�3=.2q2�2D/; (6.57)

This dispersion relation describes a quasi-polariton resulting from the coupling
between the hybrid phonons and the photons.
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Fig. 6.3 Illustration of the real (left panel) and imaginary (right panel) parts of the polariton
dispersion relation in the macroscopic regime for D0 D 2:0�2D!p . We can observe the emergence
of a roton minimum for !d D 1:9!p (full black line) and !d D 1:99!p . The rotons softens the

frequency to 	.qrot/ D 0 at the critical value !.c/d D 2:0!p . Roton instability is illustrated here
for 	 D 2:2!p . The short-wavelength oscillations corresponding to q�D > 1 are kinematically
damped. The usual plasma dispersion relation of hybrid phonons is presented here for comparison
(dashed gray line)

The diffusive description of light is the result of a macroscopic approximation
which is known to hold if absorption takes place at scales much larger than the
mean free path ` [12]. This is true provided the following hierarchy for the relevant
length scales

� � ` � a � L; (6.58)

where � is the light wavelength and a is the size of the system. According to typical
experimental conditions [9], the mean-free path is found to value ` � 300�m
and the diffusion coefficient D0 ' 0:66m2 s�1. Based on our previous estimates,
the effective plasma frequency and Debye length respectively value !p � 2� 	
100Hz and �D � 100�m. Therefore, provided the identification L D 2r2I0=I0
in (6.50) and using the inequalities in Eq. (6.58) with a � 1mm [9], the diffusive
approximation is valid provided that the diffusion and plasma frequencies are of
the same order, !d � !p . This is achieved if `d D p

D0=!p � 1 cm is of the same
order of the intensity variation lengthL, which may be possibly achieved for typical
experimental conditions.

In Fig. 6.3, it is shown that a roton minimum emerges in the dispersion relation
(6.56) in the diffusive regime. As the values of !d increase (i.e., for stronger
diffusion), the polariton frequency decreases (mode softening). At the critical value
!
.c/

d D 2!p , the mode softens towards zero, which is a clear manifestation of a roton

instability mechanism. For !d > !
.c/

d , the system enters a crystallization phase.
This mechanism has been recently discussed in the literature as it can lead to the
formation of supersolids [6]. An important remark is related to the Landau damping
at short wavelengths. Modes in the region q�D & 1 will undergo a kinematic
damping and cannot be observed. Fortunately, rotons are possible to be excited at
longer wavelengths (qrot�D < 1), thus avoiding the Landau damping mechanism.
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Fig. 6.4 Static structure
factor S.k/ depicted for
D0 D 2:0�2D!p . !d D 0

(gray dashed line),
!d D 1:9!p (black full line)
and !d D 1:99!p (black
dashed line). A pick emerges
in the static structure factor
around
krot D �D=`

2
d D 0:5��1
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Moreover, the onset of diffusion tends to decrease the damping rate (see Fig. 6.3).
This nourishes hope for rotons to be experimentally observable.

A remarkable feature of the polariton spectrum in (6.56) is that it exhibits a roton
minimum in a three dimensional system even in the absence of strong interactions.
It is clear that the present spectrum does not correspond to that of a superfluid, as the
mode is gapped at the origin. Here it is a consequence of the long-range interaction
between the cold atoms. Another important property of these classical rotons is that
they carry information about the long-range correlations of the system. From the
dissipation-fluctuation theorem [5], we know that the dynamic structure factor is
given by

S.q;	/ D .T q2=�	/Im �.q;	/�1; (6.59)

where �.q;	/ � 1 C �.q;	/ and �.q;	/ is the susceptibility. As a result, the
dispersion relation (6.55) is defined as the root of the function �.q;	/ � 1 C
�.q;	/. In the absence of hydrodynamic damping, the static structure factor, S.q/
is actually given by the classical expression [13]

S.q/ D ��1S.q;	/Re
i	

�.q;	/�1
D v2thq

2

	.q/2
: (6.60)

In Fig. 6.4, we illustrate the behavior of S.q/ for the same parameters of Fig. 6.3.
The static two-point correlation function

g.r/ D hn.r/n.0/i
hn.r/ihn.0/i D hn.r/n.r 0/i

n20
; (6.61)

can then be easily calculated provided the relation g.r/ D 1C F�1 ŒS.q/� 1� [1],
where F�1 represents the inverse Fourier transformation. After integrating out the
angular variables, we obtain
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Fig. 6.5 Two-point
correlation function g.r/
depicted for D0 D 2:0�2D!p .
!d D 0 (gray dashed line),
!d D 1:9!p (black full line)
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g.r/ D 1C 1

�2

Z 1

0

q sin.qr/

r
ŒS.q/� 1� : (6.62)

Computing the integral in the complex plane, we can immediately reconstruct
the correlation function. It is observed that the appearance of a minimum in
the excitation spectrum (6.56) is associated with the occurrence of long-range
correlation in the system. By inspection, one founds that the roton minimum occurs
at krot ' �D=`

2
d , which is exactly the period at which the correlation function

oscillates (see Fig. 6.5). This feature can be qualitatively understood in the context
of Percus-Yevick theory [11,14], where the correlation function is approximated by

g.r/PV ' 1C c0r
�1 cos.q0 C ı0/e

��0r ; (6.63)

where c0 is a constant and z0 D �0 C iq0 is the pole of the function S.q/ � 1.
We remark, however, that this theory was originally developed for hard-sphere
potentials, and therefore does not apply to systems with long-range interactions.
For that reason, we have not used it to compute g.r/ in (6.62).

6.5 Density Fluctuations

We now propose to study the spectrum of density fluctuations in magneto-optical
traps, by using collective laser scattering techniques. First, in this section, we
determine the scattered fields, and the expected average scattered power. Second,
in the next section, we determine the spectrum of density fluctuations, in the quasi-
classical limit. We make use of the test particle method, where the field and density
fluctuations associated with each atom is individually studied, by considering it as a
text particle [8]. We then characterize the main properties of the expected scattered
signal.
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As previously stated, in the classical approximation, a trapped alkali gas in a
MOT can be described by a kinetic Vlasov equation and the Poisson equation for
the mean field potential. They determine the evolution of the atomic distribution
function,W � W.r; v; t/ and the collective force F. The effects of trapping will be
ignored, as we are interested in fluctuations that occur on a very short scale, when
compared to the size of the system. We use the test particle method, by considering
a single atom, moving with speed v0 as the perturbation source. The presence of
such a test particle will induce perturbations in the gas distribution function QW , as
determined by the linearized kinetic equation

�
@

@t
C v � r

�
QW D �ıF

M
� @
@v
W0: (6.64)

Here, W0 D W � QW is the unperturbed (or the equilibrium) distribution
function. The collective force perturbation ıF, also induced by the test particle,
is determined by

r � ıF D Q

Z � QW C ı.r � r0/ı.v � v0/


dv: (6.65)

The test particle position is assumed given by r0 � r0.t/ D r0C v0t . Let us multiply
Eq. (6.65) by exp.�ik � r C i!t/ and perform integrations over both space and
time. Defining the Fourier components ıF!k and QW!k for the perturbed force and
distribution, respectively, we can easily obtain

ik � ıF!k D 2�Qı.! � k � v0/CQ

Z
QW!k.v/dv: (6.66)

Similarly, the Fourier transformation of Eq. (6.64) leads to

QW!k D � i

M

ıF!k � @W0=@v
.! � k � v/

: (6.67)

Replacing this in Eq. (6.66), and noting that the collective force is purely longitudi-
nal, in such a way that ıF!k D kıF!k=k, we can write

ıF!k D �i 2�Q
k2

ı.! � k � v0/
�.!;k/

k; (6.68)

where we have used the dielectric function of the atomic gas �.!;k/ D 1 C
�.!;k/, as previously stated. Replacing Eq. (6.68) in the expression of the perturbed
distribution, we then get

QW!k D �2�Q
Mk2

ı.! � k � v0/
�.!;k/

k � @W0=@v
.! � k � v/

: (6.69)
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After inverse Fourier transforming, we can compute the perturbed force due to the
test particle, as

ıF.r; t/ D �i 2Qk
k2

Z
expŒik � .r � r0 � v0t/�

�.k � v0;k/
dk
.2�/3

(6.70)

and the associated perturbation of the distribution function

QW .r; v; t/ D � Q

Mk2

Z
expŒik � .r � r0 � v0t/�

�.k � v0;k/
k � @W0=@v
k � .v0 � v/

dk
.2�/3

: (6.71)

Finally, the density perturbation created at a position r and instant t by a test particle
located at position r0 at t D 0 moving with velocity v0, can now be determined by

Qn.r; t/ D ı.r � r0/C
Z

QW .r; v; t/dv: (6.72)

At this point, it should be noticed that all the atoms in the gas can be considered
as possible test particles. This means that the total averaged perturbations can be
calculated by integrating the relevant quantities defined above over the equilibrium
distribution functionW0.r0; v0/. In particular, the averaged mean force perturbation
can be determined by

hıF.r; t/i D
Z
dr0

Z
dv0ıF.r; t/W0.v/: (6.73)

This quantity is a linear superposition of purely oscillating quantities, and it can
easily be found using Eq. (6.70) that it is identically zero, hıF.r; t/i � 0, while
the averaged quadratic mean force hjıF.r; t/j2i, on the other hand, generally is not.
It will be rather determined by

hjıF.r; t/j2i D Q2

V

Z
dr0

Z
dv0

Z
dk1
.2q�/3

k1
k21

expŒik1 � .r � r0 � v0t/�
�.k1 � v0;k1/

	
Z

dk2
.2q�/3

k2
k22

expŒik2 � .r � r0 � v0t/�
�.k2 � v0;k2/

: (6.74)

We next express the fluctuations inside the trap in terms of the statistical average
over all test particles in the system. Let us introduce W0.v/ D n0f0.v/, where the
new distribution function f0.v/ is the normalized distribution function, such that

Z
W0.v/dv D n0

Z
f0.v/dv D n0: (6.75)

Using Eqs. (6.71) and (6.72), it is possible to express the atom density fluctuations
due to a given test particle initially located at r.t D 0/ D r0 as
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n.r; t/ D ı.r � r0 � v0t/C
Z

QW .r; v; t/dv; (6.76)

which can be represented in a more suggestive fashion

n.r; t/ D
Z

dk
.2�/3

�
1 � !2p

Z
expŒik � .r � r0 � v0t/�

�.k � v0;k/
k � @W0=@v
k � .v0 � v/

�
: (6.77)

Here, we have introduced the definition of the plasma frequency for the neutral gas,
!2p D Qn0=M . Using the average, as in Eq. (6.73), we can then state the density
correlations as

hn.r1; t1/n.r2; t2/i D n0

Z
dr0

Z
dv0W0.v0/n.r1; t1/n.r2; t2/: (6.78)

More explicitly, this can be written in the following way

hn.r1; t1/n.r2; t2/i D n0

Z
dr0

Z
dv0W0.v0/

Z
dk1
.2�/3

ei'1

	
Z

dk2
.2�/3

ei'2g.k1; v0/g.k2; v0/; (6.79)

where we have introduced the new auxiliary quantities

'j D ikj � .rj � r0 � v0t/ (6.80)

and

g.kj ; v0/ D
"
1 � !2p

Z
kj � @W0=@v

k2j �.kj � v0;kj /kj � .v0 � v/

#
: (6.81)

Integration over the initial position for the generic test particle r0 leads to the
appearance of a delta function ı.k1 C k2/ which, in its turn, allows us to integrate
over k2. We then replace k1 by k, in order to simplify the notation. By noting that
the velocity v only appears in the parallel direction with respect to the wavevector
k, we can write

v D u
k
k

C v? (6.82)

and introducing the parallel distribution function

G0.u/ D
Z
W0.v/dv?; (6.83)

we can finally write

hn.r1; t1/n.r2; t2/i D n0

Z
du0G0.u0/

Z
dk
.2�/3

ei'jI.k; u0/j2; (6.84)
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where we have used the phase

' D ik � .r1 � r2/ � iku0.t1 � t2/ (6.85)

and the integral

I.k; u0/ D
�
1C !2p

Z
@G0=@u

k2�.ku0;k/.u0 � u/
du

�
: (6.86)

This is formally very similar to the results obtained for an electron-ion plasma [8].
The main difference relies on the fact that we only have one particle species here, the
neutral atoms, which suggests that the system can be regarded as a one-component
plasma. We can now use these results to determine the structure factor. Putting
equations (6.84)–(6.86) together, and successively integrating over r1, r2, t1, t2, k,
and u0, we finally obtain

S.k0; !0/ D G0.!
0=k0/
k0

jI.k0; !0/j2; (6.87)

where we have used

I.k0; !0/ D
�
1C !2p

Z
.@G0=@u/du

k
02�.k0; !0/.u � !0=k0/

�
: (6.88)

6.6 Collective Laser Scattering

The propagation of a laser pulse along the ultra-cold gas is governed by the wave
equation (6.1). relating E, the laser electric field, with the polarization field in the
gas, P, as determined by the general expression

P.r; t/ D �0

Z 1

0

….r; �/ � E.r; t � �/d�; (6.89)

where….r; t/ is the atomic susceptibility tensor. Using a temporal Fourier transfor-
mation, one obtains

P.r; !/ D �0….r; !/ � E.r; !/: (6.90)

Because we can neglect the anisotropies in the majority of the experiments, the
atomic susceptibility tensor … can be safely replaced by the linear susceptibility
function � which, for the two-level atom, is given by

�.r; !/ D n.r/�a.!/ ; �a.!/ D 	2
R

3�0„
�C i�

�2 C �2
: (6.91)
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Here, n.r/ is the number of atoms per unit volume, and 	R represents the Rabi
frequency. The local density can fluctuate in time, at frequencies much lower than
those of the radiation field frequency !, thus leading to the replacement of n.r/ by
n.r; t/ in the above expression for the susceptibility. The total radiation field E will
be determined by the sum of two parts, the incident laser field E0, and the scattered
field Es . For a real incident laser field, we can use

E0.r; t/ D 1

2
E0 exp.ik0 � r � i!0t/C c:c:; (6.92)

where the wave-vector k0 follows the dispersion relation k20 D .!20=c
2/ Œ1C �.!0/�,

with �.!0/ D n0�a.!0/, and n0 is the atomic mean density. On the other hand, the
scattered field can be generically written as

Es.r; t/ D
Z

Es.r; !/ exp.�i!t/d!
2�

(6.93)

and the field components can be determined by solving the corresponding wave
equation. This can be written as

�r2 C k2
	

Es.r; !/ D !2

2c2
E0eik0�rn.r; !0/C c.c.; (6.94)

where

n.r; !0/ D
Z
n.r; t/ei!

0 tdt (6.95)

and !0 D !�!0 is the frequency of the density fluctuations. In its turn, the scattered
wave number k will be determined by the same dispersion relation as that of the
incident wave, with k0 and !0 respectively replaced by k and !. The solution to
Eq. (6.94) can therefore be written as

Es.r; !/ D � i!2

2kc2
�a.!0/.e! � e0/E0eik�r

Z
dr
Z
dk0

.2�/3
n.k0; !0/ei.k0Ck0�k/�rCc.c.;

(6.96)

where we have used the unit polarization vectors for the incident and the scattered
fields, e0 D E0=E0 and e! D Es.!/=Es.!/. The integration in volume leads to the
appearance of a delta function ı.k0 C k0 � k/, and subsequent integration over k0
finally leads to

Es.r; !/ D �iAs exp.ik � r/C c.c.; (6.97)

where the amplitude of the scattered field is determined by

As.!/ D !2

2kc2
�a.!0/.e! � e0/E0n.!0;k0/ (6.98)
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with ! D !0 C !0 and k D k0 C k0. The relative scattered intensity along the
direction of k is therefore determined by the dynamical structure factor

S.k; !/ D jEs.k; !/j2
jE0j2 D i!4

4k2c4
j�a.!0/j2.e! � e0/2jn.k0; !0/j2: (6.99)

This quantity can easily be related with the density correlation function, by noting
that

jn.k0; !0/j2 D
Z
dr1dt1

Z
dr2dt2n.r1; t1/e�ik

0 �r1Ci!0t1 n.r2; t2/eik
0�r2�i!0t2 :

(6.100)

Performing an average in both space and time, the latter equation reads

hjn.k0; !0/j2i D lim
V;T!1

1

V T

Z
dr1dt1

	
Z
dr2dt2hn.r1; t1/n.r2; t2/ieik0�.r2�r1/e�i!0.t2�t1/: (6.101)

Equation (6.99) establishes the relation between the scattered signal and the
fluctuations inside the cloud, which contain the basic features of the laser cooled gas.
We should therefore proceed by understanding how to compute such fluctuations by
taking into account the microscopic distribution of the atomic states.

In order to illustrate the collective behavior of the scattered signal, we assume
that the atoms in the trap approximately follow a Maxwell-Boltzmann distribution

G0.v
0/ D 1p

�vth
e�v02=v2th ; (6.102)

where vth D p
2T=m represents the thermal velocity of the atoms. Defining the

scattering parameter ˛ D k0�D , where �D D vth=!P is the Debye length, the
dynamical structure factor can be explicitly given by

S.˛; !0/ D e�˛!0=!p

p
�˛

I.˛; !0=!p/; (6.103)

where ˛ D k0�D represents the scattering parameter, and I.˛; !0=!p/; is de-
termined by Eq. (6.88). The latter defines the nature of the scattering processes.
Moreover, for ˛ . 1, the scattering signal results from a coherent process, as the
system is essentially composed of interacting particles. It means that the Debye
length �D is larger or comparable to the perturbation wavelength 2�=k0 and
therefore the correlations between the atoms play an important role on the scattering
signal (correlated atoms). On the contrary, if ˛ � 1, the scattering is incoherent,
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Fig. 6.6 Dynamical structure factor S.˛; !0/ for different values of the scattering parameter ˛:
blue full line (˛ D 0:85), black dashed line (˛ D 1:0), and red full line (˛ D 5:0). Both coherent
and incoherent scattering processes are represented

and the Debye length is much smaller than the typical size of the perturbation
(uncorrelated atoms).

In Fig. 6.6, we have plotted the normalized structure factor in Eq. (6.103) for
three different values of ˛. We observe a strong resonance near !0 D !p for
the case of coherent scattering (˛ D 0:85 and ˛ D 1:0), while a very broad
spectrum is obtained for the case of incoherent scattering (˛ D 5:0). The physical
reason for such results are related with the interference mechanism occurring at
scattering: the excitation of collective perturbations of the atom density will result
on the constructive interference of the scattered signal around the natural frequency
characterizing the long-range order of the interaction, i.e., !p . On the contrary, if
uncorrelated, single-atoms fluctuations are excited in the systems, the interference
will be destructive and, therefore, no resonance is observed in the spectrum S.˛; !0/.
This could be used as an experimental method to study the collective processes in
a trap.
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Part II
The Physics of Bose-Einstein Condensates



Chapter 7
Bose Einstein Condensates

We now turn to the condensate phase of ultra-cold matter. It is known that
condensation in cold atomic clouds occurs when the cooling lasers are switched
off and for this reason the atom-atom interactions associated with an exchange of
scattered photons are no longer present. What remains is short range atom collisions,
which are responsible for the occurrence of a new type of mean field potential. Even
in a dilute gas, where the collision frequency is very low, this mean field potential is
very a important ingredient of the condensate physics, as shown in the next chapters.

We first start by reviewing the conditions for Bose Einstein condensation,
showing the differences between condensation of a uniform gas (which only occurs
in momentum space), and condensation of a trapped gas (which also occurs in real
space and leads to a density spike). This introduction is completed by a discussion
of the atom correlations.

We then consider the basic evolution equations for a condensate, starting
with the celebrated Gross Pitaevskii (GP) equation. This is in fact a nonlinear
Schrödinger equation, where the nonlinearity is due to the atomic mean field created
by collisions. From this equation we can derive quantum fluid equations, which
although approximate can be used to describe in a simple way, many important
properties of a condensate. We also introduce the wave kinetic formulation, which
is exactly equivalent to the GP equation but allows us to consider the condensate
properties in a different perspective. The wave kinetic equation for a condensate is
formally identical to that considered before for the non-condensed gas. The only
difference is the physical origin of the mean field potential. This difference and
similarity between the condensed and the non-condensed gas are very stimulating
conceptually, and one of the main characteristic features of the physics of ultra-cold
matter.

J.T. Mendonça and H. Terças, Physics of Ultra-Cold Matter, Springer Series on Atomic,
Optical, and Plasma Physics 70, DOI 10.1007/978-1-4614-5413-7 7,
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7.1 Uniform Gas

The condensation process of a boson gas in free space is well described in
many textbooks [1, 2], and we briefly review it here. This will be useful for
future comparison with the trapped case, to be considered next. Let us consider
an unconfined gas of noninteracting bosons. It is well known that, in the low
temperature limit, its behavior is very different from that of a fermion gas, because
its minimum energy state for T D 0 is zero. This happens because, in contrast
with fermions, all the bosons are can be simultaneously in a zero-energy state. The
quantum state of a bosonic atom in a given kinetic energy state �, is determined by
the operators

O �.r; t/ D
Z
 �p .r; t/ Oa�p

dp
.2�„/3 ;

O .r; t/ D
Z
 p.r; t/ Oap

dp
.2�„/3 ; (7.1)

where the wavefuntion  p.r; t/ is simply given by a plane wave

 p.r; t/ D exp.ip � r=„ � i�pt=„/; (7.2)

with �p D p2=2M , and the operator Oa� and Oa are the usual bosonic creation
an destruction operator, obeying the commutation relations Œ Oa�p; Oap0 � D ıp;p0 and

Œ Oa�p; Oa�p0 � D Œ Oap; Oap0 � D 0. We can also write h Oa�p Oap0i D ıp;p0hnpi, where, in thermal
equilibrium at a temperature T , the occupation number hnpi is determined by the
Bose Einstein distribution

hnpi D 1

Z�1 exp.ˇ�p/ � 1 ; Z D eˇ
; (7.3)

where ˇ D 1=kBT , (or simply 1=T , if we write T in energy units), 
 is the
chemical potential and Z is the fugacity. To discuss the features of an ideal Bose
gas it is necessary to have in mind that its chemical potential is always negative
(or eventually zero),
 
 0. The exact value of 
.T / can be obtained by integrating
the distribution (7.3) over all the possible energy states �p, noting that these energy
states are independent of the direction of the atom momentum p. This leads to the
total number of atoms in the volume V ,

N D 2�

�3T
V

Z 1

0

p
xdx

Z�1ex � 1 ; (7.4)

with x D ˇ�p, and �T D h .2�MT /�1=2. Using the derivative of an implicit
function, it can easily be shown that, for a Bose gas, we have .@
 @T / < 0. This
means that the chemical potential decreases (or its absolute value increases) when
the temperature increases. When we cool down a Bose gas, the chemical potential

 will increase until it reaches its maximum value 
 D 0, occurring at a critical
temperature T D Tc . It is possible to determine the value of Tc , by taking the
explicit dependence of �with respect to the temperature, and making
 D 0 in (7.4).
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The integral in this equation can be expressed in terms of the Gamma function� .z/,
and of the zeta Riemann function � .z/, as

Z 1

0

p
xdx

ex � 1
D �

�
3

2

�
�

�
3

2

�
D

p
�

2
2:612 ' 2:31: (7.5)

This leads to the explicit the value of the critical temperature T D Tc , for which the
chemical potential 
 becomes zero, as

Tc D 3:31
„2
M

�
N

V

�2=3
: (7.6)

Notice that this temperature grows with the atom density to the power of 2=3,
and decreases for increasing mass. Now, let us see what happens for temperatures
below critical value T < Tc . In this region we will always have 
 D 0,
because the chemical potential can only increase with temperature, and it cannot
become positive. In this case, Eq. (7.4) cannot remain valid, unless we replace
the total number of particles N by a the number of atoms with non-zero energy
N 0 � N.� > 0/, such that N D N 0 CN0, with

N 0

N
D
�
T

Tc

�3=2
;

N0

N
D
"
1 �

�
T

Tc

�3=2#
: (7.7)

In order to understand this result (Fig. 7.1) we should note that in the integral of
Eq. (7.4) the contribution from the atoms with zero-energy is not retained, because
of the factor

p
x. Therefore, the numberN 0 refers only to the positive energy states,

N 0 D N.� > 0/. We can then conclude that, for T < Tc , the number of particles
N0 in the zero-energy state � D 0, is N .� D 0/ � N0. This phenomenon of the
accumulation of particles in the lowest energy state � D 0 for temperatures below
Tc is the Bose Einstein condensation. It corresponds to a separation of the gas in
two distinct components: one with a population N 0 and positive energies, another
with a population N0 D N � N 0 at zero-energy (see Fig. 7.1). Note that for the
present unbounded uniform gas, condensation takes place in the energy (or in the
momentum) space, and not necessarily in the real configuration space. The situation
changes with trapped atoms, as discussed next.

7.2 Trapped Gas

Let us now consider a system ofN atoms trapped in a quadratic potential of the form

V.r/ D M

2

X

jDx;y;z
!2j r

2
j ; (7.8)
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Fig. 7.1 Bose condensation: number of particles in the zero energy state N0, in bold, and number
of atoms in positive energy states N 0, as a function of the temperature T , below the critical
temperature Tc

where rj D .x; y; z/, and !j are the respective oscillating frequencies. The Hamil-
tonian of the system is the sum of single particle Hamiltonians, with eigenvalues

�n D
X

j

�
nj C 1

2

�
„!j ; (7.9)

where n � .nx; ny; nz/, and nj are zero or positive integers. The quantum state of
the system is now represented by

O �.r; t/ D
X

n

 �n .r; t/ Oa�n ; O .r; t/ D
X

n

 n.r; t/ Oan; (7.10)

where the plane wave functions (7.2) of the unbounded system are now replaced by
functions of the form

 n.r; t/ D  .0/H.r/ exp.�i�nt=„/; (7.11)

with  .0/ representing a normalization constant and H.r/ are the solutions of the
harmonic oscillator in terms of the Hermite polynomials. In the extreme case of zero
temperature, the atoms are all in the lowest energy state n D 0, and we can write

 0.r; t/ D  .0/ exp

0

@�M
2„
X

j

!j r
2
j

1

A exp

0

@� i
2

X

j

!j t

1

A : (7.12)
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The density distribution inside the confining potential is now given by n.r/ D
N j 0.r; t/j2. For a spherical trap, such that !j D !0, we get

n.r/ D N

�
M!0

�„
�3=2

exp

�
�M„ !0r

2

�
; (7.13)

where r D p
x2 C y2 C z2. We can see that the size of the condensate is

independent of the number of atoms, and only depends on the frequency of the
trap, which is related to the harmonic oscillator length

a0 D
� „
M!0

�1=2
: (7.14)

This somewhat counterintuitive result is a consequence of neglecting the interac-
tions between the atoms, remaining valid for the ideal gas only. We will see later
that a dependence of the size of the condensed cloud with N will appear when such
interactions are taken into account.

It is now useful to compare this with the density profiles of a non-condensed, or
thermal, gas. If T � „!0, we can use the Boltzmann distribution to characterize
n.r/. In this case, the equilibrium density profile is given by

n.r/ / expŒ�ˇV.r/� D exp

�
�ˇM

2
!20r

2

�
; (7.15)

and the size if the cloud is now given by

aT D a0

s
T

„!0 > a0: (7.16)

The difference between the condensate and the thermal gas is illustrated in Fig. 7.2.
The occurrence of a sharp peak in the condensed cloud is a major characteristic
feature of Bose-Einstein condensation in atomic traps, and strongly contrasts with
the case of the unbounded medium considered before.

The case of an axially symmetric trap can be discussed in similar grounds. If we
define the axial and the radial variables as z and r? D p

x2 C y2, and define the
axial and radial frequencies as !z and !? D !x D !y , we obtain for the condensed
gas at zero temperature the density profile

n.r/ D �1=2

�3=2a3?
exp

�
� 1

2a2?

�
r2? C �z2

	�
(7.17)

where now the harmonic oscillator strength in the perpendicular direction is a? Dp„=M!?, and the parameter � D !z=!? characterizes the trap asymmetry. We
have a disk shaped trap for � > 1, and a cigar shaped one for � < 1.
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Fig. 7.2 Normalized density profile of a condensed (n0.x/) and a thermal gas (nth.x/) over a given
direction x, for a spherical trap. We have used T=„! D 4

Let us now consider the computation of the critical temperature in the case of a
trapped ideal Bose gas. According to the grand canonical distribution (7.3), we can
determine the total number of atoms in the trap as

N D
X

n

1

Z�1 exp.ˇ�n/� 1
: (7.18)

As before, we have to separate the number of atoms in the lowest energy state, N0,
from the atoms with are not in the condensate phase N 0 D N � N0. But now, in
contrast with the unbounded case, the chemical potential at the critical temperature
cannot be zero, but it has to be equal to the lowest energy state,
0 D .1=2/„Pj !j ,
or for a spherical trap, simply 
0 D .3=2/„!0. Replacing this value in (7.18), we
get for the trapped gas

N 0 D
X

n¤0

1

exp.ˇ�n/ � 1 '
Z 1

0

dn
exp.ˇ�n/ � 1 ; (7.19)

where dn � …jdnj D dnxdnydnz. The last integration is, indeed, an approx-
imation, which is valid when the successive energy states can be considered as a
continuum, or when the spacing between adjacent energy levels is much smaller
than the thermal energy of the cloud, or T � „!j . Integration can be easily
performed with auxiliary variables xj D ˇ„!j nj , and the result is
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N 0 D �.3/

�
T

„ N!
�3
; N! D .!x!y!z/

1=3: (7.20)

For a spherical trap we have N! D !0. By defining the critical temperature as that
corresponding to the case N 0 ! N , we get

T0 D „ N!
�
N

�.3/

�1=3
D 0:94„ N!N1=3: (7.21)

Replacing this in Eq. (7.20), we obtain, for T < T0, the number of condensed atoms

N0

N
D
"
1 �

�
T

T0

�3#
: (7.22)

which is clearly different from the homogeneous case of Eq. (7.7).

7.3 Atom Correlations

In order to complete the discussion of the previous section, let us now discuss
atom correlations, following the lines of Ref. [3]. We can use the atom field
operators (7.1), and define the first order atom correlation function as

G.1/.r1; t1I r2; t2/ D h O �.r1; t1/ O .r2; t2/i: (7.23)

This definition ofG.1/ is formally similar to that used for the photon field in quantum
optics [4]. By making r1 D r2 D r and t1 D t2 D t , this expression gives the atom
density of the cloud, as

n.r; t/ D G.1/.r; t I r; t/ D h O �.r; t/ O .r; t/i: (7.24)

Notice that, in thermal equilibrium, we can determined the atom density by

n.r/ D hrj O�jri D
X

n

 n.r/ �n hnni; (7.25)

where the sum is over all the atom energy states in the trap. The density operator
here is

O� D
X

n

j nih njhnni; (7.26)

where hnni can be described by a grand-canonical distribution as in Eq. (7.3) for the
uniform gas,

hnni D 1

Z�1 exp.ˇ�n/ � 1 : (7.27)
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The only difference is that here the sum is taken over an infinite set of discrete
energy states �n. It is clear that, in the zero temperature limit, T ! 0, where all the
atoms are in the ground state, we have

N0 D N D
Z
n.r/dr D 1

Z�1 exp.ˇ�0/� 1
; (7.28)

where �0 D .3=2/„ Q! is the lowest energy state, and Q! D P
j !j =3 is the

arithmetic mean of the trap frequencies. In this limit the chemical potential equals
this minimum energy,
 D �0, and Eq. (7.28) defines a maximum for the fugacityZ ,
given by

Zmax D N0

N0 C 1
exp.�ˇ�0/ ' exp.�ˇ�0/; (7.29)

where we assumed a large number of atoms N0 � 1. By a simple generalization
of Eq. (7.25), we can also define the first order correlation function in terms of the
density operator O�, as

G.1/.r1; r2/ D hr1j O�jr2i; (7.30)

where time dependence was ignored. It is now useful to give a more explicit form
to Eq. (7.30), which can be done by developing the expression (7.27) as

hnni D
1X

lD1
Z l exp.lˇ�n/: (7.31)

The latter simply yields

G.1/.r1; r2/ D
1X

lD1
Z lG.r1; r2; lˇ/; (7.32)

where the quantity

G.r1; r2; ˇ/ D
X

n

 �n .r2/ exp.�ˇ�n/ n.r1/ (7.33)

is sometimes called the finite-temperature Green function [5]. This quantity can be
evaluated by using the atom wave function in a harmonic trap, leading to

Gl .r1; r2/ D 1

.
p
� N
/3…j

1p
1 � exp.�2�j /

exp

"
�
�
r1j C r2j

2
j

�2
tan.�j =2/

�
�
r1j � r2j
2
j

�2
cotan.�j =2/

#
; (7.34)

where N
 D …j

2=3
j is the geometric mean trap size, and �j D ˇ„!j . Replacing this

in (7.32) and using r1 D r2, we get for the atomic density the profile
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n.r/ � G.1/.r1; r2/ D ��3T
X

l

Zl…j

s
2�j

1 � exp.�2�j / exp

"
�
�
rj


j

�2
tan.�j =2/

#
;

(7.35)

where we have rescaled the fugacity, in order for its maximum value to be one, by
introducingZ D Z exp.�3ˇ„ N!=2/. In the limit of hight temperatures, �j � 1, the
first term of the sum in this expression will dominate. In this limit, the atomic cloud
profile is given by a the Boltzmann distribution

n.r/ D Z

�3T
…j exp

"
� r2j

2
2j

#
D Z

�3T
expŒ�ˇV.r/�; (7.36)

where the size of the thermal cloud is 
j D vT =!j , with vT D p
T=M . The

maximum density of this cloud, at the center r D 0 is equal toZ=�3T . In the opposite
limit of zero temperature T ! 0, the above density profile reduces to the ground
state density

n0.r/ D Z

1 �Z j 0.r/j2: (7.37)

This result is only valid, of course, for the ideal gas. It will be shown later that
atom-atom interactions will lead to a different profile. In the intermediate case of
moderate temperatures, we can still use �j � 1 but retain all the terms in the sum
of Eq. (7.35). We now get

n.r/ D ��3T g3=2.x/ ; x D Z expŒ�ˇV.r/�; (7.38)

where g3=2.x/ is the polylogarithmic function of order 3=2, defined by

gu.x/ D
1X

lD1

xl

lu
: (7.39)

This represents a refinement of the semi-classical density profile discussed in the
previous section. By integrating the general expression (7.35) in space, we get the
total number of atoms in the trap. It simply provides

N D
1X

lD1

Zl

…j Œ1 � exp.�l�j /� : (7.40)

In the semi-classical approximation, this reduces to

N ' 1

N�3 g3.Z/: (7.41)
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From here, we can easily get the critical temperature and the number of condensed
atoms as given by the above Eqs. (7.21) and (7.22). If we retain the first order term
with respect to the small parameters �j we get

N ' 1

N�3
�
g3.Z/C 3

2
Q�g2.Z/

�
C Z

1 �Z
; (7.42)

where the last term was introduced in order to account for the contribution from the
ground state density. Now we can determine the critical fugacity. Disregarding size
effects, we get

Zc ' 1 � N�3=2�.2/�1=2: (7.43)

We see a small deviation with respect to the value 1, corresponding to Zmax. This
small correction will modify the critical temperature and, as a result, we get the
following condition for the onset of condensation

�3T n.0/ D �.3=2/C 2
p
2�.2/ ' 6:24: (7.44)

This result shows the contribution from the lower energy state which was neglected
in our previous estimate.

Let us now consider the second order correlation function. This can be defined
as

G.2/.r1; t1I r2; t2/ D h O �.r1; t1/ O �.r2; t2/ O .r2; t2/ O .r1; t1/i: (7.45)

It is known that for a multi-mode thermal gas, only the pairwise ordering operators
survive the statistical average over the grand canonical ensemble. In this case, we
have for first order correlation averages h Oa�p Oap0i D h Oa�p Oap0 iıp;p0 , and for the second
order correlation the average operator contributions take the form

h Oa�p Oa�p0 Oap” Oap0”i D h Oa�p Oap”ih Oa�p0 Oap0 iıp;p”ıp0;p0”: (7.46)

It immediately follows that, at thermal equilibrium, we must have

G.2/.r1; t1I r2; t2/ D n.r1; t1/n.r2; t2/C jG.1/.r1; t1I r2; t2/j2: (7.47)

For a finite degenerate gas, such as a cloud of atoms confined in a trap, this result
is no longer valid [6], and we have to introduced a correction [3, 7], by subtracting
the contribution from the ground state, h Oa�0 Oa0i2. For t1 D t2, and for the steady state
situation of a trapped gas of boson atoms in equilibrium, the corrected expression
for the second order correlation is then given by

G.2/.r1; r2/ D n.r1/n.r2/C jG.1/.r1; r2/j2 � n0.r1/n0.r2/; (7.48)

where we have defined n0.r/ as the density of atoms in the ground state, or
equivalently, the density of condensed atoms. It is also useful to consider the
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normalized correlation function, defined as

g.2/.r1; r2/ D G.2/.r1; r2/
n.r1/n.r2/

: (7.49)

The measurement of this quantity is very important to characterize the statistical
properties of the atoms. Being in a bosonic state, the condensed atoms should
demonstrate the expected bunching properties. By changing the internal atomic
state, and changing from a boson to a fermion gas, we can then observe the
suppression of the bunching phenomenon [8].

7.4 Mean Field Approximation

The mean field approximation for Bose-Einstein condensates can be described in
the following simple terms. The quantum state described by the operators (7.10)
can be decomposed into its condensed and fluctuating parts, as

O .r; t/ D ˆ.r; t/C ı O .r; t/; ˆ.r; t/ � h O .r; t/i; (7.50)

where the average part is a complex function, such that its module square corre-
sponds to the density of the condensate, n0.r; t/ D jˆ.r; t/j2, and can be treated as
a classical field. Because condensation corresponds to a very large number of atoms
N0 � 1 in the ground state, the average term in (7.50) grows with

p
N0=V , and the

fluctuating part can be considered negligible for very large N0 � 1.
The evolution equation for the condensate wave function ˆ.r; t/ can be derived

from the Heisenberg equation for the field operator O .r; t/, which is written in the
standard form as

@

@t
O .r; t/ D � i„

h O .r; t/; OH
i
; (7.51)

where the Hamiltonian operator of the system is

OH D
Z

O �.r; t/
�

p2

2M
C Vext.r; t/

�
O .r; t/dr C OHint: (7.52)

Here Vext.r; t/ a generic external potential, and the interaction term OHint accounts
for the atom-atom interactions which have been neglected until now in this chapter,
and takes the form

OHint D 1

2

Z
dr
Z
dr0 O �.r; t/ O �.r0; t/V .r � r0/ O .r; t/ O .r0; t/; (7.53)
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where V.r � r0/ is the interaction potential. In the T ! 0 limit, we can replace the
operator O .r; t/ by its averageˆ.r; t/, and we get

@

@t
ˆ.r; t/ D � i„

�
p2

2M
C Vext.r; t/C

Z
ˆ�.r0; t/V .r � r0/ˆ.r; t/dr0

�
ˆ.r; t/:

(7.54)
A further simplifying assumption can now be made, by noting that in a cold and
dilute gas, only low energy binary collisions are important. As seen before, these
collisions depend on a single parameter a, the s-wave scattering length, such that

V.r � r0/ D g ı.r � r0/ ; g D 4�„2 a
M
: (7.55)

We are finally led to

i„ @
@t
ˆ.r; t/ D Hˆ.r; t/ ; H �

�
�„2r2

2M
C Vext.r; t/C g jˆ.r; t/j2

�
: (7.56)

This is the Gross-Pitaevskii equation [9, 10], which very efficiently describes
many observed phenomena in Bose-Einstein condensates. Notice that its derivation
implied two successive approximations. First, the replacement of the exact atom
operator by a mean field ˆ.r; t/ and the neglect of fluctuations with respect to this
mean field. It is valid only for very large number of atoms in the condensed phase,
N0 � 1. Second, the use of a simplified interaction term, which is only valid for a
dilute gas, when the mean distance between particles is much larger than the s-wave
scattering length a. This can be stated as n0jaj3 � 1, where jaj3 is the scattering
volume. Notice that, for a dense medium, the neglect of fluctuations in the collision
integral can be questioned.

The GP equation is obviously of the form of a nonlinear Shrödinger equation,
where the nonlinear potential term results from binary collisions between atoms.
This equation is well known in many areas of Physics, from quantum physics
and nonlinear optics to fluid mechanics and plasma physics [11, 12], and its
mathematical properties are well understood. Here it is important to notice that the
s-wave scattering length can be positive, a > 0, for repulsive interactions between
atoms, and negative, a < 0, for attractive interactions. The equilibrium properties
of the condensate are very different in these two cases, as discussed later.

The Gross-Pitaevskii equation is strictly valid in the limit of zero temperature,
where all the atoms are in the ground state, but can be generalized to a finite
temperature gas. In this case we consider single atom wave functions  i , where
i D 0 represents the lower energy state, each of them occupied by ni atoms,
such that N D P

i Ni , where these wave functions are normalized to unity,R
 i.r/dr D 1. By minimizing the expectation value for the energy of the system,

we can derive the coupled equations [14], for the condensed phase
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i„@ 0
@t

D
�
V.r/C g.N0j 0j2 C 2N 0/ � „2

2M
r2

�
 0 (7.57)

and for the non condensed states

i„@ i
@t

D
�
V.r/C g.2N0j 0j2 C 2Nt/� „2

2M
r2

�
 i ; (7.58)

where the non condensed or thermal number of atoms is N 0 D N � N0. Notice
a factor of 2 appearing in the coupling terms. The condensed and thermal number
densities are

n0.r; t/ D N0j 0.r; t/j2 ; nT .r; t/ D
X

i¤0
Ni j i.r; t/j2: (7.59)

It has been noted [13] that the finite temperature Gross-Pitaevskii equations are not
completely consistent, due to the dependence of the effective potential on the
densities n0 and nT . The range of validity of this theory will discussed later and
the physics of the thermal cloud will be considered further on.

7.5 Thomas-Fermi Approximation

Let us now consider the equilibrium configurations, as predicted by the mean field
theory. This can be done by assuming that the condensate wave function is given by

ˆ.r; t/ D  .r/ exp.�i�0t=„/; (7.60)

where �0 is the ground state energy of the confined atoms. By replacing this in
the Gross-Pitaevskii equation (7.56), and noticing that �0 D 
 at T D 0, where

 D 
int > 0 the chemical potential for the interacting condensate, we obtain


  .r; t/ D
�
�„2r2

2M
C Vext.r/C g  .r/2

�
(7.61)

where the time independent wave function .r/was assumed real, and the confining
potential was assumed static. For the harmonic potential (7.8), and if the collision
term was neglected, g D 0, we would then get (apart from a normalization factor)
the ground state solution for the harmonic oscillator, in accordance with Eq. (7.12).
Here, we want to retain the contribution of the interaction term and to inquire
about its influence on the density profiles of the condensate. Multiplying the static
equation by  .r/ and integrating in volume, we get

N
 D Ekin C Epot C 2Eint; (7.62)



156 7 Bose Einstein Condensates

Fig. 7.3 Comparison
between the Thomas-Fermi
profile (dashed line) and the
numerical solution (full line)
of time-independent
Gross-Piatevskii
equation (7.61), obtained for

 D 10„!0 and
g D 9:5
=n.0/. The small
difference at the vicinity of
the Thomas-Fermi radius R is
of the order of few �

where the kinetic, potential and interaction energies are defined as

Ekin D „2
2M

Z ˇ̌
ˇr
p
n.r/

ˇ̌
ˇ
2

dr; Epot D
Z
n.r/Vext.r/dr; Eint D gN

2

Z
n.r/ddr:

(7.63)

It is obvious that the kinetic energy is of the order of Ekin � N„!0 � N=a20, where
a0 is the scale length defined by (7.14), and the interaction energy is of orderEint �
jajN2=a30. This means that we have the following scaling Eint=Ekin � N jaj=a0.
In the case of repulsive interactions, with a > 0, and for the interaction dominated
case where Na=a0 � 1, analytical solutions of the static equation (7.61) can be
found [15].

These solutions show that, changing this parameter only slightly changes the
profile at the border of the condensate, leaving the main profile invariant. In fact,
that quantum pressure associated withEkin, only becomes relevant at the border, and
can be neglected everywhere else. This suggests the neglect of the term in r2

p
n.r/

in Eq. (7.61), which directly gives the following density profile

n.r/ �  2.r/ D 1

g
Œ
 � Vext.r/� ; (7.64)

with n D 0 in the outside region where 
 becomes smaller than Vext.r/. This is
usually called the Thomas-Fermi approximation. By using the explicit form of the
harmonic potential, as given by Eq. (7.8), we can see that the density profile of the
condensate takes the form of an inverted parabola, as illustrated in Fig. 7.3.

The size of the condensate is therefore determined by the condition
 D Vext.R/.
For a spherical trap, this implies that 
 D M!20R

2=2. On the other hand, the
normalization condition for the density profile (7.64) allows us to relate the chemical
potential with the total number of condensed atoms N0 D N , leading to


 D 1

2
„!0

�
15Na

a0

�2=5
: (7.65)
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From these two relations we can then determine the external radius of the
condensate, as a function of the number of atoms, reading

R D a0

�
15Na

a0

�1=5
: (7.66)

If, instead of a spherical trap we had an axial trap, the radial and axial sizes of the
condensate,R? and Z, would be determined by


 D 1

2
M
�
!2?R2? C !2zZ

2
	
: (7.67)

It is now useful to compare these predictions with those derived previously for non-
interacting particles. The Thomas-Fermi density profile (7.64) predicts a density
at the centre of the trap nTF.0/ D 
=g. In contrast, the harmonic oscillator
solution (7.13) gives nho.0/ D N=.�3=2a30/. Using (7.65), we can then write the
ratio between there two values for the maximum density as

nTF .0/

nho.0/
D p

�
152=5

8

�
Na

a0

��3=5
: (7.68)

For typical experimental conditions, where the parameter Na=a0 is usually much
larger than one, this leads to a reduction of the density of the condensed cloud with
respect to that of a non-interacting gas. This effect can be significant even for a very
dilute gas.

The Thomas-Fermi approximation is very useful to describe the equilibrium
of the condensed cloud. But, as referred above, it breakes down near the critical
radius r D R, in a layer with dimensions of the order of d ' R.a0=R/

4=3.
The approximation will better hold in the region R � a0. In order to improve the
description of the density profile in this outer region of the cloud, we can linearize
the trapping potential around the critical radius, by using Vext.r/ D M!20R.r �R/,
and solve the corresponding Gross-Pitaevskii equation in this potential [14].

In the above discussion, we have only considered the equilibrium for a repulsive
interaction between atoms, a > 0. Let us now consider the opposite case of an
attractive interaction, with a < 0. In this case, the density profile of the condensate
can become unstable, above a given number of condensed atoms. This make the
experimental study of condensates in this regime much more difficult, but also leads
to very interesting new problems, because such a collapse for attractive forces can
be seen as the analogue of the gravitational collapse of a star. Such a collapse is
supposed to occur above a critical density N0 > Nc � a0=jaj. This can be seen, for
a spherical trap, by using a Gaussian ansatz of the form [15]

 .r/ D
�

N

w3a30�
3=2

�1=2
exp

�
� r2

2w2a20

�
; (7.69)
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Fig. 7.4 Variational
Thomas-Fermi energy
in (7.70) as a function of the
width of the cloud. Stable
(full line) and unstable
(dashed line) regimes are
observed as a function of the
condensed number of
particles N

where the dimensionless parameter w determines the width of the condensate in
units of a0. By using a variational approach and looking for the value of w which
minimizes the total energy of the condensate E , we get

E.w/ D N„!0
�
3

4

�
w2 C 1

w3

�
� N jaj

a0

1p
2�w3

�
: (7.70)

As we can see from the Fig. 7.4, for low values of N , this energy curve has a
minimum near 1, which shifts towards lower values and vanishes at w D 1=51=4,
for a critical density of Nca0=jaj. Above this density we expect collapse of the
condensate, due to the attractive forces which tend to accumulate the atoms near
the centre of the trap. At this point, we should notice that such a collapse could be
affected by several processes which are not retained in the above mean field model,
such as three-body collisions, inelastic collisions or quantum tunneling.

7.6 Fluid and Kinetic Formulations

7.6.1 Quantum Fluid Equations

We now discuss alternative formulations of the mean field theory of a condensate.
Starting from the GP equation, we first derive the quantum fluid equations for the
condensate. They can be very helpful in the discussion of the waves and oscillations
of the condensate, as shown in the next chapter. Let us introduce the Madelung
transformation [16], defined by

ˆ.r; t/ D p
n.r; t/ exp Œi'.r; t/� ; (7.71)

where n � n.r; t/ D j j2 is the density of the condensate, and '.r; t/ is a phase
function. The gradient of this function can be identified with the fluid momentum,
allowing us to define the fluid velocity by
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v D „
M

r'.r; t/: (7.72)

The space and time derivatives of (7.71), are

@ˆ

@t
D  

�
i
@'

@t
C 1

2n

@n

@t

�
(7.73)

and

rˆ D  

�
ir' C 1

2n
rn
�
: (7.74)

Replacing this in the GP equation (7.56), and equating to zero separately the real
and imaginary parts of the resulting expression, we get, from the imaginary part

@n

@t
C r � .nv/ D 0: (7.75)

This is nothing but the equation of conservation of mass for the condensate. On the
other hand, from the imaginary part, we obtain

@'

@t
D � „

2M

�
..r'/2 � 1

2n
r2nC 1

4n2
.rn/2

�
� 1

„ ŒVext C g n� : (7.76)

Multiplying this by .„=M/r , we can then obtain

@v
@t

C v � rv D � 1

M
r .Vext C gn/C „2

2M2
r
 

r 2pnp
n

!
(7.77)

This is the momentum conservation equation for the quantum fluid. Here we can
clearly identify a specific quantum potential, known as the Bohm potential, as
defined by

VB D � „2
2M2

r2
p
np
n
: (7.78)

which is a direct consequence of quantum non-locality. Such a definition allow us
to re-write the momentum equation in a more familiar form

@v
@t

C v � rv D � rP
Mn

� 1

M
r .Vext C VB/ (7.79)

where we have identified P with the pressure, as determined by

rP D nr .gn/ �! P D g

2
n2: (7.80)
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One final remark concerns the properties of the quantum fluid. Looking at the
definition of the fluid mean velocity, as given by Eq. (7.72), we can easily conclude
that

r 	 v D „
M

r 	 .r'/ D 0: (7.81)

which means that the condensate flow is irrotational, as long as the phase function
'.r; t/ stays non-singular. This has important physical consequences, as discussed
later in connection with the existence of vortices in rotating condensates.

7.6.2 Wave Kinetic Equation

We show now that a wave kinetic equation can be derived, which is exactly
equivalent to the GP equation, thus providing a different approach to the mean field
theory. We then show that this equation can be reduced to a kinetic equation of the
Vlasov type, if we take the quasi-classical limit. The quantum and quasi-classical
versions of the kinetic equation provide a very useful description of the kinetic
properties of the condensate, and in particular of the resonant interaction between
the atoms and the elementary excitations, leading to Landau damping. These effects
will be discussed in the next chapter.

We have seen that the condensate is described by a nonlinear Scrödinger equa-
tion, the GP equation (7.56). In order to built up our alternative kinetic approach we
follow the Wigner-Moyal procedure of Chap. 3. We first define the auto-correlation
function for the condensate wave function, K � ˆ.r1; t1/ˆ�.r2; t2/. As we have
seen, this can also be written asK.r; s/ D ˆ.rCs=2; tC�=2/ˆ�.r� s=2; t��=2/,
where two vector positions are r D .r1 C r2/=2 and s D r1 � r2, and the two time
variables are t D .t1 C t2/=2 and � D t1 � t2. We then take its double Fourier
transformation, by integrating over the fast (or short scale) variables s and � , as

W.!;kI r; t/ D
Z
d s
Z
d� K.r; s/ exp.�ik � s C i!�/: (7.82)

This is a straightforward extension of the formalism employed in Chap. 3 onto the
space-time domain, which becomes necessary here. Going back to the original GP
equation (7.56), we can then derive the exact evolution equation for the quasi-
distributionW.!;kI r; t/, in the following form

i„
�
@t C „

m
k � r

�
W D

Z
dq
.2�/3

Z
d	

2�
V.q; 	/ ŒW� �WC� exp.iq � r � i	t/:

(7.83)
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Here V.q; 	/ is the double Fourier transformation of the total potential V D Vext C
VNL, with VNL D gjˆ.r; t/j2,

V.r; t/ D
Z

dq
.2�/3

Z
d	

d2�
V.q; 	/ exp.iq � r � i	t/ (7.84)

and W˙ are determined in the usual way, W˙ � W.! ˙ 	=2;k ˙ q=2/. If we
consider a single Fourier component of the potential,

V.r; t/ D QV exp.iq � r � i	t/ � QV ei� ; (7.85)

we can write the evolution equation in the following simple form

�
@t C „

m
k � r

�
W D

QV
i„e

i� ŒW� �WC�: (7.86)

Moreover, in the case of a periodic potential of the form

V.r; t/ D QV cos.iq � r � i	t/ �
QV
2

�
ei� C e�i�

	
; (7.87)

we would get
�
@t C „

m
k � r

�
W D

QV
„ sin � ŒW� �WC�: (7.88)

These various forms of the wave kinetic equation are exactly equivalent to the initial
Gross-Pitaevskii equation, for different kinds of potentials, and can be used to solve
specific problems in BECs, in particular, their kinetic stability.
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Chapter 8
Elementary Excitations in BECs

We now discuss the elementary waves and oscillations that can take place in a Bose
Einstein condensate. We first deal with the elementary excitations as described
by the quantum fluid equations. This allows us to study the sound waves in the
condensate, sometimes also called Bogoliubov waves, as well as the global modes
of the condensed cloud. We then approach the study of kinetic effects, based
on the use of the wave kinetic equation. This will allow us to understand the
microscopical wave-atom interactions taking place inside the condensate, as well
as more refined processes such as the atomic Landau damping, fluid and kinetic
instabilities such as beam and modulational instabilities. We show that the sound
waves can become unstable, and determine the instability growth rates in both
the quantum and the quasi-classical regime. Two specific examples of unstable
oscillations are considered in detail. First, the two-stream instability, associated
with two counter-propagating condensate beams. Then, the wakefield excitation by
a moving condensate in a background thermal gas. Such instabilities can eventually
be the seed for the excitation of a broadband turbulent spectrum.

8.1 Sound Waves

Let us assume that the condensate is in some equilibrium state, with a density profile
n0.r/, and globally at rest v0 D 0. We address the problem of the elementary
excitations that can be excited when, for some reason, such an equilibrium is
perturbed. We then define the density as n D n0 C Qn, where it is assumed
that j Qnj � n0. Linearizing the fluid equations with respect to these infinitesimal
perturbations, and ignoring the external confinement potential Vext.r/, we obtain

@ Qn
@t

C r � .n0v/ D 0 ;
@v
@t

D � r QP
Mn0

� 1

M
r QVB: (8.1)
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Let us restrict our analysis to short wavelength perturbations, much shorter than
the scale length of the density variations of the equilibrium profile. This means, in
practice, that they are much shorter than the size of the condensate. In this case, we
can consider the gas as locally uniform, rn0 ' 0, and we can derive from these
equations a density wave equation, of the form

@2 Qn
@t2

� n0

M
r2
�
g QnC QVB

	 D 0: (8.2)

where the perturbation in the Bohm potential is determined by

QVB D � „2
4M

r2 Qn
n0

: (8.3)

Assuming that the perturbations evolve in space and time as exp.ik�r�i!t/we then
easily obtain the dispersion relation for waves with frequency ! and wavevector k,
of the form

!2 D c2s k
2 C „2k4

4M2
; (8.4)

where we have introduced the Bogoliubov sound speed, as

cs D
r
gn0

M
: (8.5)

This dispersion relation characterizes the propagation of sound waves in the
condensed gas. Two differences with respect with sound waves in ordinary classical
fluids are, first a different definition of the sound speed, and second a quantum
dispersive term proportional to k4. We notice that, for large wavelengths, it reduces
to the typical non-dispersive sound waves, such that ! ' csk. In contrast, for short
wavelengths, the quantum dispersive term becomes dominant, and we have

! � „k2
2M

; �k � „! � „2k2
2M

; (8.6)

where �k is the phonon quantum of energy. These expressions show that, in this
limit, phonons behave very much like free particles, with mass equal to the mass
of the individual condensed atoms, and momentum equal to „k. The dispersion
relation (8.4) is valid in the zero temperature limit, T D 0. It will be seen later in
this chapter that thermal effects will introduce an additional dispersive term.

In the above discussion we have implicitly assumed that g > 0, which
corresponds to atoms with repulsive interactions. The situation changes in the
presence of attractive interactions, such that g < 0. The sound speed (8.5) becomes
imaginary, and the dispersion relation (8.4) is transformed into

!2 D � n0
M

jgjk2 C „2k4
4M2

: (8.7)
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For a given critical wavenumber kc , the mode frequency reduces to zero, ! D 0, as
defined by

k2c D n0jgj4M„2 : (8.8)

For k < kc , the frequency is imaginary and the condensate becomes unstable to
longer wavelength perturbations. We can also see that, by increasing the density
n0, the critical number decreases as n�1=20 , which shortens the spectral range of
stable oscillations. Therefore, dense condensates with attractive interactions tend to
be more unstable, as confirmed by experiments.

8.2 Global Oscillations

The above discussion is valid for short wavelength or local oscillations associated
with phonon modes. Let us now consider global oscillations of the condensed cloud,
with a scale length of the order of the size of the BEC. These global modes were
first discussed by Stringari [1]. For that purpose, we go back to the fluid equations
of the condensed gas, which can be rewritten as

@n

@t
C r � .nv/ D 0 ;

@v
@t

C .v � r /v D � 1

M
r
; (8.9)

where we have introduced the chemical potential


 D V0.r/C gn � „2
2M

r2
p
np
n
: (8.10)

The equilibrium profile n D n0.r/ is determined by the condition @=@t D 0; v D 0,
and corresponds to

n0.r/ D 1

g
Œ
 � V0.r/� : (8.11)

Here we have neglected the contribution of the Bohm potential, therefore making
use of the Thomas-Fermi approximation described in the previous chapter. For
a spherical harmonic potential, such that V0.r/ D M!20r

2=2, we know that the
chemical potential 
 has to be equal to the trapping potential at the boundary of the
condensate, r D R, or 
 D V0.R/. This leads to the following parabolic profile

n0.r/ D 1

2
M!20

�
R2 � r2

	
: (8.12)

Let us now consider global oscillations around such an equilibrium density profile.
By using n D n0.r/ C Qn, and consistently neglecting VB , we get from (8.9) the
linearized equations
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@ Qn
@t

C r � .n0v/ D 0 ;
@v
@t

D � g

M
r Qn: (8.13)

From this we can easily get an equation for the perturbed density, as

@2 Qn
@t2

� g

M
r � .n0r Qn/ D 0: (8.14)

For harmonic oscillations at a frequency!, we can write Qn.r; t/ D Qn.r/ exp.�i!t/.
Using spherical coordinates r � .r; �; '/, and noting that the equilibrium density is
spherically symmetric and only depends on r , we obtain

Qn D � g

M!2

��
@n0

@r

�
@ Qn
@r

C r2 Qn
�
: (8.15)

Now, using the Thomas-Fermi equilibrium profile (8.11), this equation becomes

Qn D !20
!2

�
r
@ Qn
@r

� 1

2
.R2 � r2/r2 Qn

�
: (8.16)

It is now useful to write the Laplacian operator as

r2 D 1

r2
@

@r

�
r2
@

@r

�
� L2
r2
; (8.17)

with the angular operator

L2 D � 1

sin �

@

@�

�
sin �

@

@�

�
� 1

sin2 �

@2

@'2
: (8.18)

We know that this angular operator satisfies the eigenvalue equation

L2Ylm.�; '/ D l.l C 1/Ylm.�; '/; (8.19)

where l and m are integer and Ylm.�; '/ are spherical harmonics. We can therefore
try density perturbation solutions of the form

Qn.r/ � Qn.r; �; '/ D rlF .r/Ylm.�; '/; (8.20)

where F.r/ is a radial function to be determined. Replacing this in Eq. (8.16), and
using � D !2=!20 , we obtain the radial equation

.� � l/F D r
dF

dr
� 1

2
.R2 � r2/

�
2.l C 1/

1

r

dF

dr
C d2F

dr2

�
: (8.21)
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Introducing the new variable x D r2=R2, we can transform this into the
hypergeometric equation, which can be written in its canonical form as

x.1 � x/F 00.x/C Œc � .a C b C 1/x� F 0.x/ � abF.x/ D 0; (8.22)

where the parameters a; b and c, are determined by the relations

c D 1

2
.2l C 3/ ; a C b D c ; ab D �1

2
.� � l/: (8.23)

Solutions of this equation can be identified with the hypergeometric function

F.x/ � 2F1.a; b; cI x/ D
1X

nD0

.a/n.b/n

.c/n

xn

nŠ
; (8.24)

where the notation .a/n D .a C n � 1/Š=.a � 1/Š has been used. It is known that
the series in this expression is reduced to a simple polynomial if either a or b are
zero, or are equal to a negative integer. Let us then assume that a D �n, with
n D 0; 1; 2; : : : According to (8.23) this implies that b D nC l C3=2, and finally to
.�� l/ D n.2lC3/C2n2. Using the explicit expression of �, we therefore conclude
that the global mode frequencies are given by

! D !0
p
2n2 C n.2l C 3/C l : (8.25)

A particularly interesting family of modes corresponds to l D 0 and n ¤ 0. These
are purely radial modes, with no angular structure. They are called breathing modes,
with the frequency spectrum given by

! D !0
p
2n2 C 3n: (8.26)

Another interesting family of modes is defined by the conditions l ¤ 0 and n D 0,
the so called surface modes, which obey the following frequency spectrum

! D !0
p
l : (8.27)

Comparing with Eq. (8.21) we realize that these modes are such that .� � l/ D 0,
which means that the radial function F.r/ reduces to a constant. The mode structure
is then described by

Qn.r; �; '/ / rlYlm.�; '/: (8.28)

We can see that the amplitude of the oscillation increases for large r , and attains its
maximum at the boundary r D R. For this reason they are called surface modes.
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8.3 Kinetic Processes

We now turn to the wave kinetic description of elementary excitations, centering
our analysis on the short wavelength modes [2]. Our starting point will be given
by Eq. (7.85). Let us then consider a perturbation QV of the mean field potential,
and study its stability. If the confining potential V0 is static, this can only result
from a modulation of the density distribution of the condensate, such that QV .r; t/ D
g QI .r; t/ with

QI .r; t/ D
Z

QW .!;k; r; t/
dk
.2�/3

d!

2�
: (8.29)

Notice that ! and k refer here to the kinetic energy and momentum of the
condensed atoms. Linearizing the wave kinetic equation (7.85) with respect to these
perturbations, we get

.@t C v � r / QW D g

i„
QI .q; 	/ ŒW0� �W0C� exp.iq � r � i	t/; (8.30)

where v D dr=dt D „k=M , and W0˙ are the equilibrium values. Here, 	 and q
refer to the low frequency oscillations of the acoustic type. For perturbations with a
scale length 2�=q much shorter than the length of the confinement region, we can
again neglect the influence of the confining potential on the evolution along the axial
direction. We can focus our attention on the longitudinal perturbations propagating
along the z-axis, of the form QW .r; t/ D QW exp.iqz � i	t/. Fourier analysis of
Eq. (8.30) then leeds to

QW D g

„
QI ŒW0� �W0C�

.	 � qvz/
: (8.31)

Integrating over the spectrum of the condensate particles, k and !, and using of the
definition of QI , given by Eq. (8.29), then yields

1 � g

„
Z
d!

2�

Z
dk
.2�/3

W0.k � qez=2/�W0.k C qez=2/

.	 � qvz/
D 0: (8.32)

This expression can be simplified by noting that the kinetic energy of the atoms are
related with their momentum state, by the well known constraint, sometimes called
the quasi-particle approximation,

W.!;kI r; t/ D W.kI r; t/ ı.! � !k/; (8.33)

where!k D „k2=2M represents the atom kinetic energy. This allows us to integrate
over ! and obtain an equation depending only on the usual (reduced) Wigner
distribution W.kI r; t/. We can also neglect the influence of the perpendicular
motion, by further assuming that W.kI r; t/ D W.kzI r; t/ ı.k?/. Equation (8.32)
can then be reduced to a much simpler form
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1C g

„
Z
W0.kz/

�
1

.	C � qvz/
� 1

.	� � qvz/

�
dkz

2�
D 0; (8.34)

where we have used the following quantities

	˙ D 	˙ „q2
2M

: (8.35)

This expression resultes from the substitution of kz by kz ˙q=2, in the denominator,
and the use of the axial velocity vz D „k=M . Equation (8.34) is the kinetic
dispersion relation for low frequency oscillations of the condensate.

Let us consider first the simplest case of a condensate beam with no translational
temperature. We can use W0.kz/ D 2�W0ı.kz � k0/. Integration of Eq. (8.34)
leads to

1 � qW0

„
q2

.	 � qv0/2 � .„q2=2M/2
D 0; (8.36)

where v0 D „k0=M . This simple dispersion relation can also be written as

.	 � qv0/
2 D q2c2s C q4

„2
4M2

; (8.37)

where cs D p
gW0=m is the Bogoliubov sound speed. Apart from the obvious

change of notation, it coincides with Eq. (8.4), derived from the quantum fluid
equations, for a condensate at rest v0 D 0.

8.4 Landau Damping

Let us now consider a more general case where the kinetic effects are not neglected.
Going back to the dispersion relation (8.34), we note that we have to solve integrals
of the form

Z 1

�1
W0.z/

.z �	˙/d z D P
Z 1

�1
W0.z/

.z �	˙/d z C i�W0.z D 	˙/; (8.38)

where P represents the principal part of the integral, and the variable of integration
is z D qvz. The resulting kinetic dispersion equation can then be written in the
following general form, already used for the non-condensed gas

�.	; q/ � 1C �.	; q/ D 0; (8.39)

where �.	; q/ is the BEC susceptibility. Due to the decomposition (8.38) this
quantity is always complex, with � D �0 C i�00. The real part of this function is
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�0.	; q/ D g

„
M

2�q
P
Z
W0.z/

�
1

.z �	C/
� 1

.z �	�/

�
d z (8.40)

and the imaginary part

�00.	; q/ D � gM

2„2q ŒW0.z D 	C/�W0.z D 	�/� : (8.41)

For low translational temperatures, we can approximate Eq. (8.40) by writing

�0.	; q/ ' g

„
M

2�q
W0

�
1

	C
� 1

	�

�
; (8.42)

where W0 D R
W0.kz/dkz=2� . Equating to zero the quantity 1C �0, we are led to

the dispersion relation

1C gW0

M

q2

	2 � .„q2=2M/2
D 0; (8.43)

which corresponds to Eq. (8.37) with v0 D 0.
On the other hand, the term �00.	; q/ will lead to wave attenuation. In order to

study this wave attenuation we introduce 	 D 	r C i� , where wave damping is
determined by

� D � �00.	; q/
.@�0=@	/	D	r

: (8.44)

Performing the calculation, we obtain the following explicit expression for the
damping coefficient

� D g2W0

4„2
q

	
ŒW0.z D 	C/�W0.z D 	�/� ; (8.45)

where

W0.z D 	˙/ D W0.vz D 	˙=q/ D W0

�
vz D 	=q ˙ „q

2M

�
: (8.46)

Equation (8.45) describes the kinetic non-dissipation wave attenuation known as
Landau damping, and already discuss for the case of hybrid waves in the non-
condensed gas. We see that, if the lower translactional energy level „	� is more
populated than the higher energy one „	C, we will have � < 0 and wave
attenuation occurs. However, if there is inversion of population in the kinetic energy
states, such that

W0

�
	=q C „q

2M

�
> W0

�
	=q � „q

2M

�
; (8.47)

we will have wave growth, or wave instability.
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It should also be noticed that Eq. (8.45) takes a form similar to the Landau
damping coefficient associated with discrete transitions between two excited states
of the condensate, as directly derived from the GP equation [3]. In this caseW˙ will
be replaced by the thermal occupations numbers of the two discrete states. Here,
however, transitions induced by sound waves occur between two arbitrary states of
the translational continuum, associated with the axial motion of the bosons.

Let us then consider the case where the increment ıvz D „q=M , corresponding
to the absorption or emission of a phonon by a cold atom of the condensate is
negligible with respect to the sound speed cs . This is equivalent to take „q=M �
	=q, and corresponds to an infinitesimal atom recoil. In this case, we can develop
the Wigner distribution around the value vz D 	=q, as

W0

�
	˙ „q2

2M

�
' W0.	/˙ „q2

2M

�
@W0

@z

�

zD	
: (8.48)

Replacing this in the expression for the damping coefficient (8.45) leads to

� ' g2W0

4„2
q

	

„q2
M

�
@W0

@z

�

zD	
D g2W0

4„2
q2

	

�
@W0

@kz

�

res
; (8.49)

where the derivative is calculated at the resonant velocity defined by vz D „k=M .
Noting that q2 ' 	2c2s and using the definition of the Bogoliubov sound speed, we
can also write

� ' g	W0

4„2
�
@W0

@kz

�

res
: (8.50)

This quasi-classical expression for the condensate Landau damping was first derived
in reference [4]. Inversion of population will lead to wave excitation, as predicted
by Eqs. (8.45) and (8.50) for the quantum and classical regimes, in the same
way as described for the hybrid sound in the ultra-cold non-condensed gas. Such
an instability can eventually decay, due to nonlinear coupling, into other modes,
eventually generating a broad turbulent spectrum, similar to that observed in the
experiments [5]. A simple situation where instability can occur is that of two
counter-streaming condensates, as discussed next.

8.5 Dynamical Instabilities

In this section, we apply the quantum kinetic model to study the instability of
Bogoliubov waves in two counter-propagating BECs [6]. Such an instability is
similar to the two-stream instability in plasma physics [7–9]. In the two-stream
instability problem, the energy of the streams is transferred to the wave, increasing
its amplitude in time. We show that the quantum nature of the Bogoliubov waves
will decrease the instability growth rate and establishes restrictions to the unstable
modes.
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To address this problem, we go back to the kinetic dispersion relation (8.34).
In the case of a single condensate beam at T D 0 propagating along the axial
direction, the corresponding equilibrium distribution function is W0.kz/ D 2�n0ı

.kz �k0/, and Eq. (8.34) provides quantum Bogoliubov waves with the dispersion
relation .	 � qv0/2 D c2s q

2 C „2q4=4M2, as we have seen. Doppler shifted
Bogoliubov waves are stable, since 	 is real. Notice that the classical limit „ ! 0,
is obtained if the resonant phonon energy „!0 is much less than the beam kinetic
energy mv20, where !0 D csk0 is the frequency corresponding to a wave mode
number equal to the beam wave vector k0 D v0=„M . In practice, this limit is
achieved either if the beam is highly energetic (compared to the sound speed cs)
or if the BEC is dilute.

We now devote our attention to the case of two condensate beams, propa-
gating in opposite directions with the same velocity v0. This equilibrium con-
figuration can be theoretically represented by the Wigner function W0.v/ D
�n0 Œı.v � v0/C ı.v C v0/� and its dynamics of is now governed by the following
dispersion relation

1 � K2

2ˇ2

�
1

. Q	CK/2 �H2K4
C 1

. Q	 �K/2 �H2K4

�
D 0; (8.51)

where we defined the normalized quantities Q	 D 	=!0, K D qv0=!0 and
introduced two dimensionless parameters, H D „!0=mv20 and ˇ D v0=cS . The
parameterH is the dimensionless Planck constant „ and characterizes the influence
of the phonon recoil, measuring the importance of the quantum effects. Hence,
for H � 1, quantum effects are important, while for H � 1, the dynamics is
essentially classical. The quantity ˇ defines a sonic parameter, the Mach number at
T D 0. It indicates when the beam flow is either subsonic (ˇ < 1) or supersonic
(ˇ > 1). A similar definition of this parameter can be found in the case of finite
temperature systems, where the problem of the analog of Hawking radiation in
BEC is addressed [10]. Factorization of the above dispersion relation provides two
possible wave branches

Q	2 D 1

2ˇ2

n
K2 C 2ˇ2K2.1CH2K2/˙K2

p
1C 8ˇ2 C 16ˇ4H2K2/

o
; (8.52)

one of which . Q	2C/ is always positive and describes stable oscillations. However, the
solution Q	2� is not positive defined and negative solutions are found for the modes
K that verify the condition

1C 2ˇ2.1CH2K2/ 
 .1C 8ˇ2 C 16ˇ4H2K2/1=2: (8.53)

This condition defines two different unstable regions in the .K;H/ plan, as
illustrated in Fig. 8.1. The two-stream instability regions are distinguished by the
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Fig. 8.1 Stability diagram for the two-stream BEC. The shadowed are is unstable. The upper curve
corresponds toKH D 1. The dashed lower curve corresponds to the caseK D .ˇ2�1=H2ˇ2/1=2,
for ˇ D 1:01

Mach number ˇ: in the subsonic regime, ˇ < 1, all the modes satisfyingK 
 1=H

are unstable; in the supersonic regime, ˇ > 1, unstable modes are obtained for

�
.ˇ2 � 1/

H2ˇ2

�1=2

 K 
 1

H
: (8.54)

We split the frequency into its real and imaginary part, 	 D 	r C i� , and define
the dimensionless growth rate Q� D �=!0 D Im. Q	/. The stability of the oscillations
is determined in terms of the sign of Q�: if Q� < 0, the waves are damped and the
energy is transferred from the waves to the condensate; if Q� > 0, instability occurs.
Numerical inspection of Q�.K;H/ shows that the oscillations are always unstable,
for both supersonic and subsonic regimes.

The Mach number plays an important role in the nature of the instability. In the
subsonic regime, all wave modes K are unstable, up to the cut-off given by the
condition KH D 1. This means that every mode q is unstable until it reaches the
cut-off value qc D M v0=„, i.e., until the recoil phonon possesses the same energy
of the beam atoms. In that case, all the wave energy is transferred to the BEC, and
the instability vanishes.

In the supersonic regime, ˇ > 1, the picture changes. First, to become unstable,
the phonon must have a momentum higher than the resonant value qres D
��1McS=„, where � D Œ.v0=cS /2 � 1��1=2. It means that the phonon energy must
be resonant with that of the supersonic beam atoms, so energy can be transferred
from the BEC to the wave. The cut-off limit has the same meaning and has exactly
the same value of the subsonic regime.
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Fig. 8.2 Normalized wave growth rate Q� D Im. Q	/=!0 for different values of the parameters ˇ
andH . Blue lines (ˇ D 0:5), black lines (ˇ D 1:0) and red lines (ˇ D 1:5). Full lines (H D 0:5),
dashed lines (H D 1:0) and dotted lines (H D 1:5). The maximum growth rate, corresponding to
the most unstable mode, occurs for the lowest values of both ˇ and H

Generally speaking, an increase of H reduces the value of the cut-off mode qc

and the value of the maximum growth rate, associated with the most unstable mode.
In the deeply quantum limit, H ! 1, no instability is expected to occur and, in
particular, in the supersonic regime, we have qc � qres ! 0. This means that the
quantum effects tend to prevent instability. In the classical case H ! 0, we get
qres � qc ! 1. For a finite value of H , we find the behavior qres � qc ! 0, in
the infrasonic limit ˇ � 1, and qres � qc D M v0=„ in the ultrasonic limit ˇ � 1,
which shows that only the resonant mode becomes unstable for highly energetic
beams. We then observe that the Mach number does not enhances the instability, but
it rather changes the value of the resonant mode qres (Fig. 8.2).

The application of a quantum kinetic equation to address the problem of unstable
Bogoliubov waves in two counter-propagating elongated BECs revealed important
features of the system. First, phonon recoil processes play an important role in the
stability criteria of the two counter-streaming condensates. Second, the resonance
condition is different in the subsonic and supersonic limits. Finally, the quantum
recoil effects prevent the instability to occur, bringing the cut-off mode to zero, and
decreasing the value of the maximum growth rate.

8.6 Wakefields in Bose-Einstein Condensates

In what follows, we consider a different kind of instability, leading to the excitation
of a wakefield by BEC moving along a background thermal gas [11]. The non-
condensate gas will be described by fluid equations, as used in previous work on
trapped BE gas at finite temperature [12, 13]
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For the present purpose, we describe the dynamics of the condensate with the
kinetic equation (7.83) in the quasi-classical limit

�
@

@t
C v � r C F � @

@p

�
W.r;p; t/ D 0; (8.55)

where F D �r.V0 C VNL/ is the force acting on the BEC. Such a description
is very well suited for the present case as we are not interested in describing the
quantum features of the condensate itself, rather its interaction with the thermal
gas. In order to determine the density of the background thermal gas n.r; t/, we
can use the corresponding fluid equations, including an additional force term that
is associated with the presence of the condensate. These equations, derived by
Zaremba, Nikuni and Griffin (ZNG) [12], pretty much in the spirit of the two-fluid
model by Landau [14] and Khalatnikov [15], relate the velocity vn and the pressure
P of the thermal gas within the self-consistent Hartree-Fock approximation. They
can thus be coupled to the above kinetic equation describing the evolution of the
BEC. We can then assume that the relative motion of the condensate and the thermal
gas will produce density perturbations QN and Qn around their respective equilibrium
values N0 and n0. Similarly, we take the pressure as P D P0 C QP . The gas
background is assumed initially at rest, which means that the equilibrium value of
its velocity vn is equal to zero. The fluid equations for the non-condensate gas can
be written, in linearized form, as

@ Qn
@t

C r � .n0vn/ D 0;
@vn
@t

D � 1

Mn0
r QP C Fn; (8.56)

@ QP
@t

C 5

3
r � .P0vn/ D 2

3
vn � rP0; (8.57)

with the force per unti mass Fn defined as Fn D �.1=M/r ŒV0 C 2g. QnCN0 C QN/�.
In order to simplify the calculations and to concentrate on our main purpose here,
we neglect the gradients of n0, P0 and V0, which can easily be included in the
solutions and will not change their physical features. However, we will retain the
gradient of N0 for reasons that will become apparent in the following discussion.
We can then recognize that @ QP=@t D .5=3/.P0=n0/@ Qn=@t , and the above equations
can be reduced to the following wave equation for the density perturbations driven
by the condensate motion in the thermal background

�
@2

@t2
� u2sr2

�
Qn D 2n0

g

M
r2.N0 C QN/; (8.58)

where we have used the following expression for the sound speed us in the thermal
gas: u2s D 5P0=3Mn0 C 2gn=M . This is equivalent to Eq. (65) of reference [13],
if we neglect the condensate contribution. Such a contribution is here included in the
term containing QN , as it will become apparent below. Equation (8.58) is our basic
equation for the description of the wakefield phenomena.
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Let us first consider the case of a very short condensate beam moving with
velocity u0 D u0ex across the non-condensed background gas. In such conditions,
the gradient of N0 in Eq. (8.58) is larger then that of QN . We can then use QN D 0,
and we are left with a driving force of the acoustic oscillations that is determined
by r2N0. We retain the possible existence of a standing wave structure of the sound
waves in the perpendicular direction. The perpendicular part of the r2 operator will
then lead to the appearance of a cut-off frequency !0, which will be determined
by the transverse wave structure. In order to study the evolution of the perturbation
in the parallel direction, we can thus add a term !20 Qn to the left hand side of
Eq. (8.58), while replacing r2 by @2=@x2. Neglecting the distortion of the beam
envelope, on the time scale of the instability growth rate, we can also describe the
condensate beam by a function of the type N0.x � u0t/. The evolution Eq. (8.58)
will then be transformed into

�
@2

@�2
C .u20 � u2s /

@2

@�2
� 2u0us

@2

@�@�
C !20

�
Qn D 2n0

g

M

@2

@�2
N0.�/; (8.59)

where we have used a coordinate transformation from the variables .x; t/ to .�; �/,
such that � D x� u0t and � D t . The interest of this transformation is obvious. The
time variable � describes now the variations occurring in the frame of the moving
condensate. It is useful to take here the quasi-static approximation, @=@� ' 0.
This is appropriate to describe stationary wakefield solutions. In this approximation
Eq. (8.59) reduces to

@2 Qn
@�2

C k20 Qn D ˛0
@2N0.�/

@�2
; (8.60)

where we have introduced the characteristic wavenumber k0, defined by k20 D
!20=.u

2
0 � u2s /, and used the auxiliary quantity ˛0 D 2n0g=M.u20 � u2s /. Let us

now use the dimensionless space variable � D k0�. We get then the equation of
a driven harmonic oscillator with unit frequency .d 2=d�2 C 1/ Qn D f .�/, where the
driving force term is determined by f .�/ D ˛0@

2N0=@�
2. The particular solution

of this equation adequate to the wakefield problem (such that, at a given position x
no oscillations of the thermal gas can exist before arrival of the condensate) can be
written in the form

Qn.�/ D
Z �

1
f .�0/ sin.�� �0/d�0: (8.61)

Noting that df=d� D 0 for � ! 1, and integrating by parts twice, we can write
this particular solution in its final form

Qn.�/ D 2n0
g

m

1

.u20 � u2s /

�
N0.�/ �

Z �

1
N0.�

0/ sin.� � �0/d�0
�
: (8.62)
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a b

Fig. 8.3 Wakefield excitation: (a) Wakefield oscillation (bold curve) excited by a condensate beam
with a Gaussian shape N0.�/ D expŒ�.�=
/2� (thin curve), for 
 D 3; (b) Two cases of wakefield
excitation, for two different widths of the Gaussian beam, 
 D 4 (bold curve) and 
 D 1 (thin
curve)

This solution contains two terms with distinct physical meanings. The first one is
just a local perturbation of the background gas, occurring where the condensate
is located at a given time. The second term is much more interesting physically,
because it corresponds to an acoustic wake, left behind the condensate beam and
remaining long after its passage. See Fig. 8.3 for illustration. It can easily be realized
that this wakefield is in fact an acoustic wave propagating in the background gas
with a phase velocity equal to the translational velocity of the condensate beam.
So, by using the linear dispersion relation of the acoustic waves with frequency !
and parallel wavenumber k, as stated by !2 D !20 C k2u2s , we can determine the
frequency of the wake in the laboratory frame as ! D !0.u20 � u2s /

1=2=u0.
This shows that the wakefields can only be generated if the acoustic wave has

some transverse structure, which means !0 ¤ 0, and also if the condensate moves
faster than the sound speed, u0 > us . Otherwise, the frequency ! will be zero or
imaginary and the second term in the solution (8.62) will not exist. We also notice
that this solution will diverge when the resonant condition is attained, u0 ! us. This
means that, in this case, the system will be unstable to infinitesimal perturbations
and that, in the wakefield equation (6) we cannot neglect the perturbation of the
condensate QN anymore.

In order to discuss the stability of the condensate in these resonant conditions we
go back to Eq. (8.58) but neglect the driving term in N0, which was considered
before but is irrelevant for the present stability analysis. In fact, even in the
absence of a driving term, the system will eventually be unstable to infinitesimal
perturbations. In order to solve this equation we have to establish a relation of QN
with respect to Qn. This can be done by linearizing the kinetic equation (8.55) with
respect to the perturbations, which leads to

�
@

@t
C v � r

�
QW D gr . QN C 2 Qn/ � @W0

@p
: (8.63)

Here, W0 and QW are the equilibrium and the perturbation of the Wigner function
which, after integration in p give the quantitiesN0 and QN respectively. We then have
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two coupled equations for the three perturbed quantities Qn, QW and QN . If we assume
that these perturbations evolve in space and time as exp.ik � r � i!t/, we obtain

.!2 � u2sk
2/ Qn D 2n0

g

m
k2 QN

.! � k � v/ QW D �g. QN C 2 Qn/k � @W0

@p
: (8.64)

It can easily be seen that, by integration of this last equation over the momentum
space p, we obtain QN D �G. QNC2 Qn/, or QN D �2G=.1CG/ Qn, whereG represents
the integral

G D g

Z
k � @W0=@p

.! � k � p=M/

dp
.2�„/3 : (8.65)

This leads to the following kinetic dispersion relation of the system “condensate
coupled with the thermal gas background”

.!2 � u2sk
2/ D �4n0.g=m/k2G=.1CG/: (8.66)

On the left hand side of this equation we recognize the dispersion relation of the
sound waves in the thermal gas alone, ! D usk, and on the right hand side we have
the contribution of the condensate to these oscillations. This will lead to a change in
the sound speed and, more significantly, to an instability of the sound oscillations.
On the other hand, in the absence of a non-condensate phase, this kinetic approach
would lead to a simple description of Bogoliubov oscillations of the condensate,
where a kinetic Landau damping is included.

To simplify, we will limit our discussion to the case QN � 2 Qn, for which we can
neglectG in the denominator. For a nearly mono-kinetic condensate beam, such that
W0.p/ D .2�„/3N0ı.p � p0/, we can easily derive the dispersion relation for wave
propagating in the parallel direction. This dispersion relation takes the form

.!2 � u2sk
2/.! � ku0/

2 D 4n0

N0
.kcs/

4: (8.67)

Here, we have used the BEC beam velocity u0 D p0=M , and the Bogoliubov sound
speed in the condensate gas, as defined by cs D p

gN0=M .
Notice that, in the absence of coupling between the two types of gas, the above

expression will lead two separate dispersion relation, ! D kus for sound waves
in the thermal gas, and ! � ku0 D kcs , for Doppler shifted sound waves in the
condensate. The coupling between the two fluids, resulting from the expression of
G, will imply the occurrence of beam-like instabilities. To illustrate this important
question, let us consider the resonant condition us D u0. The instability growth rates
can be obtained from the previous dispersion relation by considering ! D !r C �,
with !r D ku0 D kus , which then leads to a growth rate � D =.�/ given by
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Fig. 8.4 Modulational instability of a condensate moving in a background non-condensate gas,
with a velocity equal to the sound speed of the non-condensate gas, u0 D us , as determined by
equations. Equation (8.63) for a transverse Gaussian density profile

� D p
3

�
n0

4N0

�1=3 �
cs

u0

�4=3
!r : (8.68)

Let us now compare this case of a cold condensate beam with that of a beam with a
small translational velocity spread around the mean value u0. Splitting the integral
ofG in its principal part and its singular part, we can establish the following kinetic
dispersion relation

.!2 � u2sk
2/ ' 4

n0

N0

.kcs/
4

!2
C i4�n0

g2k2

M

�
@I0

@p

�

res
; (8.69)

where the derivative is calculated at the resonant value of the momentum such
that p D !m=k, and we have used the axial beam distribution as determined
I0 D R

W0dp?=.2�„/2. Using ! D !r C i� we obtain !r ' kus . For a Gaussian
beam, of the form I0.p/ D I0 expŒ�.p � p0/

2=
2�, we will have a maximum
value for the growth rate given by �max D 2

p
2n0g

2k2e�1=2I0=
m!r . This kinetic
growth rate can be seen as a negative Landau damping of sound waves by a resonant
condensate beam. These two instability regimes (corresponding to a cold and a
warm beam) confirm the previous analysis of the wakefield excitation, where a
singularity occurring at the resonant conditions us D u0 suggested the possible
excitation of growing waves from infinitesimal perturbations. This is illustrated
in Fig. 8.4, where the modulational instability of a condensate with a transverse
Gaussian profile is represented.
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Chapter 9
Solitons

In this chapter, we discuss the main properties of the solitary structures in
Bose-Einstein condensates. As we are about to see, they occur as a natural
consequence of the description of the condensate, at the mean-field level, in terms of
the Gross-Pitaevskii equation, which is nonlinear in the condensate wave function
�. In general terms, a soliton is an “envelope”, very often being bell-shaped, which
propagates with very little dispersion. They usually arise as a unique solution of a
widespread class of nonlinear field equations, where the effects of the dispersion
balance with the nonlinearity of the system. According to the accepted historical
facts, the soliton phenomenon was first observed by by John Scott Russell, who
observed a solitary wave in the Union Canal in Scotland. He reproduced the
phenomenon in a wave tank and named it the “wave of translation” [1].

The first theoretical description of solitary waves was due to Kortweg and de
Vries back in the nineteenth-century [2], who derived an equation for the shallow-
water surface �.x; t/

@�

@t
C @3�

@x3
C 6�

@�

@x
D 0; (9.1)

which was originally obtained from the Navier-Stokes equation by applying the
so-called reductive perturbation method [3]. The latter is known under the name of
Kortweg-de Vries (KdV) equation and the corresponding solitary soliton is given by

�.x; t/ D 1

2
vsech2

�p
v

2
.x � vt C '/

�
; (9.2)

where v is the soliton (dimensionless) velocity and ' is an arbitrary phase. This
solution corresponds to a bump of density which propagates without deformation
and is often referred to as bright soliton (see Fig. 9.1).

In the case of Bose-Einstein condensates, solitary waves can also be excited.
However, the corresponding solution significantly differs from that of a bright
soliton in (9.2) and often corresponds to a ‘deep’ propagating along the background

J.T. Mendonça and H. Terças, Physics of Ultra-Cold Matter, Springer Series on Atomic,
Optical, and Plasma Physics 70, DOI 10.1007/978-1-4614-5413-7 9,
© Springer Science+Business Media, LLC 2013
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Fig. 9.1 Solitary
solution (9.2) propagating
from left to the right (v > 0)

density. For that reason, they are classified as dark solitons. In fact, dark solitons are
the most fundamental excitations of a very general nonlinear model, the nonlinear
Schrödinger equation (NSL), where the nonlinearity is associated to a defocusing
term. For that reason, they have been extensively studied, both theoretically
and experimentally, in a large variety of systems and can be found in different
physical forms, such as temporal pulses in optical fibers [4, 5], spatial structures in
waveguides [6], non-propagating kinks ins in parametrically-driven shallow fluids
[7], standing waves in mechanical systems [8] and dissipative nonlinear waves in
complex plasmas [9].

In the next sections, we present a summarized review of the mains aspects
of dark-solitons in Bose-Einstein condensates. We start with the one-dimensional
case and then enclose a short discussion on their dynamical properties in higher
dimensions. A detailed and comprehensive review on the main properties of dark-
solitons can be found in Ref. [10].

9.1 Effective One-Dimensional Gross-Pitaevskii Equation

First of all, it should be noticed that Bose-Einstein condensation of an ideal gas
can not occur in d 
 2, since the number of the particles in the excited states
(i.e. above the condensate) does not converge. However low-dimensions BECs are,
possible in trapped systems. As a consequence, the effective interaction must differ
from the three-dimensional case, where the later is characterized (at the mean-field
level) by the coupling strength g. Let us again consider the condensate confined in
a asymmetric harmonic trap

Vtrap.x; y; z/ D 1

2
M


!2xx

2 C !2yy
2 C !2z z2

�
; (9.3)

where!j (j D 1; 2; 3) represent the trap frequencies along the three directions. This
sets the characteristic length scales through the hamornic oscillatior lengths aj D
.„=M!j /1=2, thus generalizing the spherical case in Eq. (7.14). Another important
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length scale is associated with the so-called healing length, defined as � D
„=p2Mgn (whereN=V is the particle number density). The latter defines the scale
over which the condensate wavefunction “heals” over defects and is thus connected
with the width of the dark solitons.

As we can see through the Thomas-Fermi profile (7.64), it is clear that the shape
of the condensate is controlled by the relative value of the trap frequencies. For
example, the isotropic trap, !x D !y D !z � !0, corresponds to a spherical BEC,
while for the anisotropic case !? > !z, where!? D p

!2x C !2z , the condensates is
cigar-shaped. Such an elongated condensate is, in general, a three-dimensional (3D)
object, but can acquire an quasi- 1D character for strong transverse confinement,
!? � !z. This dimensionality 3D-1D crossover can be described by the following
dimensionless parameter [11]

d D �
Na

a?
; (9.4)

where � D !z=!? represents the aspect ratio of the trap. In particular, if d � 1, the
condensate may still be regarded as a 3D object and the corresponding ground-state
is given by the Thomas-Fermi profile

n?.r/ D n0

�
1 � r2

R2?

�
; nz.z/ D n0

�
1 � z2

L2

�
; (9.5)

whereR? D Œ2
=M!2?�1=2 andZ D Œ2
=M!2?�1=2 are the Thomas-Fermi lengths.
On the other hand, if d � 1, excited states along the transverse direction are no
longer energetically accessible and the system is effectively 1D. Finally, for d ' 1,
the BEC is in the crossover regime, for which some recent experimental activity has
been performed [12].

For very elongated, quasi-1D condensates (corresponding to d � 1), the wave
function can be factorized into its transverse and longitudinal components [13]

ˆ.rI t/ D '.r; t/ .z; t/: (9.6)

In that case, the transverse state can not be described in terms of a Thomas-Fermi
approximation, and rather corresponds to the Gaussian ground state of the harmonic
oscillator, such that the transverse radius equals the transverse oscillator length,
R? ' a?. On the other hand, the longitudinal component is described by the 1D
Gross-Pitaevskii equation

i„@ .z; t/
@t

D
�

� „2
2M

@2

@z2
C V.z/C g1Dj .z; t/j2

�
 .z; t/; (9.7)

where V.z/ D M!2z z2=2 and g1D is the renormalized interaction parameter

g1D D g

2�a?
D 2as„!?: (9.8)
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We should remark at this point that the factorization performed in (9.6) is very
restrictive. In general, there are deviations from the pure 1D-case and the factoriza-
tion must then correspond to an ‘effective’ decomposition, whereas the transversal
component of the condensate is also a function of z, i.e. ' D '.r; zI t/. Several
decomposition schemes can be found in the literature [14–16]. By means of
variational methods, the transverse wavefunction '.r; z; t/ can still be described by
a Gaussian ansatz, where the transverse radius R?.z/ is treated as a variational
quantity. These variational schemes usually lead to the following effective 1D
nonlinear Schrödinger (NLS) equation

i„@ .z; t/
@t

D
�

� „2
2M

@2

@z2
C V.z/C f

�j .z; t/j2

�
 .z; t/: (9.9)

The details about the functional dependence of the nonlinear function f Œn� are out
of the scope of the present discussion, but we remark that they strongly depend on
the variational scheme that is employed. In particular, following Ref. [15], where
the variation of the action functional is used, f Œn� is given by

f Œn� D g

2�a2?

np
1C 2nas

C „!?
2

�
1p

1C 2nas
C
p
1C 2nas

�
; (9.10)

and the respective NLS equation is known in the literature as the non-polynomial
Schödinger equation. If the method of Ref. [16] is considered instead, the latter
would simply reduce to f Œn� D „!?p

1C 4nas . It should be noticed, however, that
both expressions lead to the same result in the weakly-interacting limit nas � 1.
In that case, the description based on Eq. (9.7) again holds, as R? ! a?. Another
interesting case corresponds to the limiting situation of impenetrable bosons [17],
the so-called Tonks-Girardeau gas, where f Œn� D �2„2n2=2M .

9.2 One-Dimensional Dark and Grey Solitons

We now restrict the discussion to the solitary solutions of Eq. (9.7), which can
therefore be treated as one-dimensional solitons. In what follows, we consider the
case of a very elongated homogeneous BEC, so that V.z/ can be ignored. Let us
consider the case of a soliton traveling with speed v along the condensate. In that
case, we should parametrize it as follows

 .z; t/ D  .z/ei� D p
n0f .z � vt/e�i
t=„: (9.11)

Inserting the latter in Eq. (9.7), we obtain the following equation for f

� „2
2M

d2f

d�2
C gn0.1 � jf j2/f C i„v

df

d�
D 0; (9.12)
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where � D z � vt is the Euler variable and using the fact that homogeneous
background density (f D 1) imposes 
 D gn0. Separating f into its real and
imaginary parts, f .�/ D f1.�/Cif2.�/, with the real function f1 and f2 obeying the
normalization condition f 2

1 .˙1/C f 2
2 .˙1/ D 1, Eq. (9.12) may be rewritten as

f 001 C .1� f 2
1 � f 2

2 /f1 C p
2 f̌ 02 D 0; .1� f 2

1 � f 2
2 /f2 � p

2 f̌ 01 D 0; (9.13)

where differentiation was taken in order to Q� D �=� and ˇ D v=cs . Let us try a
solution for which the imaginary part is constant, such that f2 D f0. In that case,
the latter equations read

f 001 C .1 � f 2
1 � f 2

2 /f1 D 0 (9.14)

and

.1 � f 2
1 � f 2

0 /f0 D p
2 f̌ 01 : (9.15)

Multiplying equation (9.14) by f 01 and integrating, we obtain

2.f 01 /2 D .1 � f 2
1 � f 2

0 /
2; (9.16)

where the boundary condition f 2
1 C f 2

0 D 1 is used to rule out the integration
constant. We immediately notice that this result is consistent with Eq. (9.15) only if
f0 D ˇ. In that case, the solution to Eq. (9.16) is

f1. Q�/ D
p
1 � ˇ2 tanh

"p
1 � ˇ2 Q�p
2

#
: (9.17)

The traveling soliton solution can then be given in terms of the initial parameters

 .z; t/ D p
n0

"
i

v

cs
C
s

1 � v2

c2s
tanh

�
z � vtp
2�

�#
e�i
t=„; (9.18)

associated with the density profile

n.z; t/D .z; t/� .z; t/Dn0.f 2
1 Cf 2

0 /Dn0
�

u2

c2s
C
�
1�u2

c2s

�
tanh2

�
z�vtp
2˛

��
;

(9.19)

where ˛ D .1 � ˇ2/�1=2� represents the soliton width. A more compact and
convenient way of writing the soliton density is

nds D n0 � .n0 � nmin/sech2
�

z � vtp
2˛

�
; (9.20)
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Fig. 9.2 Dark (v D 0) and
grey (v D 0:3cs ) solitary
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where

nmin D n0
v2

c2s
: (9.21)

The later solution is known in the literature as a dark soliton. The reason for that
name is very evident: for v D 0, the minimum density (the ‘deep’ in the density)
reaches zero. So, the slowest the soliton, the deepest is the perturbation. This feature
is totally contrary to the case of bright solitons described by KdV equation (9.2), for
which the faster the speed, the highest is the perturbation ‘hill’. For consistency,
solutions to (9.7) in the intermediate regime 0 � v . cs are usually referred to
as grey solitons (see Fig. 9.2a)). The phase of the condensate corresponds to the
argument of the wavefunction,

'.z; t/ D arctan

�
f0

f1

�
: (9.22)

The total phase shift �' D '.C1/ � '.�1/ across the soliton is then given as

�' D arctan

 
ˇp
1 � ˇ2

!
�
"
� � arctan

 
ˇp
1 � ˇ2

!#
D �2arccos

�
v

cs

�
:

(9.23)
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For a dark soliton moving to the right (i.e. in the positive z direction), the phase
change is negative. The reason for that is because a dark soliton is accompanied by
a density depression and the fluid velocity associated to it,

uds D „
M

d'

d z
D v

�
1 � n0

nds

�
; (9.24)

is in the negative direction. The first experimental observations of dark solitons in
condensates were due to the National Institute of Standards and Technology (NIST)
[18] and to Hannover groups [19], where the solitons where produced with the so-
called phase-imprinting method. From Eq. (9.24) it is quite easy to understand how
the phase can be used to effectively control the dynamics of the condensate.

9.2.1 Energy of the Soliton

The energy of the soliton can be easily extracted from its definition in terms of the
wavefunction (9.18)

Eds D
Z 1

�1
d z

� „2
2M

d 

d z

d �

d z
C 1

2
g
�j j2 � n0

	2
�
; (9.25)

which is the result of taking the difference between the grand canonical energies
in the presence and in the absence of the soliton [20]. Using the fact thatR1
�1 dx cosh�4.x/ D 4=3, together with Eq. (9.20), we obtain

Eds D 4

3
n0„cs

�
1 � v2

s2

�3=2
: (9.26)

As we can see, the energy decreases with the velocity, which simply means that the
effective mass of the soliton is negative. In order to estimate it, we Taylor expand
the energy in terms of v=cs , such that

Eds ' 4

3
n0„cs � 2n0„cs 2n0„

cs
v2: (9.27)

Rewriting the latter asEds D E0�Mdsv2=2, we immediatly conclude that the soliton
effective mass is

Mds D �4n0„
cs

: (9.28)

On the other hand, the momentum carried by the soliton can be determined starting
from the canonical relationship v D @Eds=@Pc , which can be easily integrated to
yield
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Pc D
Z v

0

dv0

v0
@E

@v0
D �2„n0

"
v

cs

s

1 � v2

c2s
C arcsin

�
v

cs

�#
: (9.29)

For small values of v, Pc ' �4„n0v=cs , while for v � c, the latter results on

Pc ' „n0
"
4

3

�
1 � v2

c2s

�3=2
� �

#
D ��„n0 C Eds

cs
: (9.30)

We immediately notice that the canonical moment Pc , associated with the particle
character of the soliton, does not correspond with the ‘physical’ momentum P D
M
R
Jzd z related to the fluid current Jz D n0uds . In fact, from Eq. (9.24), it is easily

given by

P D �2„n0 v

cs

s

1� v2

c2s
D Pc C „n0 .� ��'/ : (9.31)

The difference between the two momentaPc and P is due to the fact that the soliton
exhibits unusual phase discontinuities at infinity, even if it can still be regarded as a
localized structure from the point of view of its density profile (see Ref. [21] for a
more detailed discussion on this issue).

9.3 The Inverse Scattering Transform

The dark soliton solution (9.18) can be derived by means of a powerful method
of the Inverse Scattering Transform (IST). This procedure consists in mapping the
Gross-Pitaevskii equation into an auxiliary eigenvalue problem. The IST method
is due to Zakharov and Shabat (ZS) [22] in an attempt of developing a spectral
representation (roughly speaking, defining a nonlinear Fourier transform) for a wide
class of integrable nonlinear equations.

Let us consider the time-independent Gross-Pitaevskii equation (9.7) for the
initial wave function  .z; 0/

�2 .z; 0/ D
�

� „2
2M

@2

@z2
C g1D j .z; 0/j2

�
 .z; 0/; (9.32)

where � is the eigenvalue associated with the soliton (i.e. the square of its energy).
Let us also consider an auxiliary function ‰ D .‰1;‰2/ compatible with (9.32)

OL‰ �

2
664

i
„p
2M

@

@z
p
g1D .z; 0/

p
g1D .z; 0/� �i „p

2M

@

@z

3
775

2

4
‰1

‰2

3

5 D �

2

4
‰1

‰2

3

5 ; (9.33)
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such that nontrivial solutions of ‰ can only exist if the GP equation holds. Since
the operator OL is self-adjoint, the ZS problem has a discrete set of real-valued
eigenvalues �j . It is not easy to obtain the spectrum of the ZS problem in general,
since exact analytical solutions to Eq. (9.33) are, in general, not available, regardless
its linearity. However, an important feature of the IST method is that it is very useful
to provide a class of solutions, if at least one of them is known. To illustrate that, let
us consider the “most” dark soliton solution

 .z; 0/ D p
n0 tanh

�
zp
2�

�
: (9.34)

In that case, Eq. (9.33) possesses exact analytical solutions, providing the following
eigenvalues [23]

�1 D 0; and �2j D ��2jC1 D „p
M�

vuut1 �
 
1 � j

21=4
p
n0�

!2
; (9.35)

and the corresponding soliton velocities are “darknesses” given by

vj D
r
2

M
�j ; n0 � nmin;j D n0

 
1 � v2j

c2s

!
: (9.36)

The number Ns of soliton pairs, propagating to the left and to the right of the dark
soliton (9.34), is immediately determined by the condition

Ns D
�qp

2n0�

�
; (9.37)

where Œ:� denotes the integer part. Notice that the total number of eigenvalues and,
thus, the total number of solitons, is 2Ns C 1 and depends on the soliton width,
which in the present case is

p
2�. The generation of multiple solitons has been

studied for a large number of initial configurations apart from Eq. (9.34), such as
box-like pulses, phase steps, etc. [24]. Generally, for initial solutions  .z; 0/ with
odd (even) symmetry, will produce an odd (even) number of solitons, a fact that was
experimentally verified in Ref. [25].

9.4 Interaction Between Two Dark Solitons

Another interesting aspect regarding the dynamics of solitons has to deal with their
interactions. To shed some light into this problem, we should consider the case of
two-interacting solitons.
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In the previous section, we have considered the spectral properties of the
dark-soliton solution (9.34). However, the IST method also describes the total
evolution  .z; t/. This is achieved within the second part of the method, known
as the spectral evolution problem, which consists on the study of trajectories of
the eigenvalues �j as time evolves [22] (and, consequently, also the wavefunction
 .z; t/, which we have seen to act as a time-dependent potential in the auxiliary
linear problem in the space spanned by ‰). In the asymptotic limit t ! ˙1,
the resulting solutions can describe the elastic collision between dark solitons,
since the multiple-soliton solutions can be written as a superpositon of individual
single-soliton solutions. In order to better understand the physical meaning of these
solutions, let us consider the two-soliton wave function  .z; t/, which takes the
following asymptotic form [10]

 1;2.z; t/ '  .z � v1t; z
C
1 /C  .z � v2t; z

C
2 /; for t ! C1; (9.38)

 1;2.z; t/ '  .z � v1t; z
�
1 /C  .z � v2t; z

�
2 /; for t ! �1; (9.39)

where zj̇ represents the soliton positions, before and after the collision. Although
the shape of each single solution is preserved, their phase apparently is not, and the
corresponding shifts read

�z1 D zC1 � z�1 D
p
2�

2
�1 ln

"
.ˇ1 � ˇ2/2 C �

��11 C ��12
	2

.ˇ1 � ˇ2/2 C �
��11 � ��12

	2

#
; (9.40)

�z2 D zC2 � z�2 D �
p
2�

2
�2 ln

"
.ˇ1 � ˇ2/2 C �

��11 C ��12
	2

.ˇ1 � ˇ2/2 C �
��11 � ��12

	2

#
; (9.41)

where we have used ˇj D vj =cs and

�j D 1q
1 � ˇ2j

; (9.42)

importing the usual notation employed in relativistic mechanics. In the special case
of two counter-propagating solitons with the same velocity, such that ˇ1 D �ˇ2 D
ˇ and �1 D �2 D � , the phase shift takes the simple form

�z D �p
2�� lnˇ: (9.43)

This shows that the shift on each soliton trajectory is in the same propagation
direction of each individual soliton, which means that they repel each other.
To study the dynamics of the solitons near the collision points, rather than its
asymptotic properties described in (9.38) and (9.39), we should refer to the full
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form of a two-soliton wavefunction. For the case of solitons with same speeds, but
propagating in opposite directions, the IST problem provides [26]

 .z; t/ D A.z; t/

B.z; t/
e�i
t=„; (9.44)

where

A.z; t/ D 2.n0 � 2nmin/ cosh

 s

1 � v2

c2s

p
2vt

�

!
� 2n0 v

cs
cosh

 s

1 � v2

c2s

p
2z

�

!

Ci sinh

 s

1 � v2

c2s

p
2vt

�

!
; (9.45)

B.z; t/ D 2
p
n0 cosh

 s

1 � v2

c2s

p
2vt

�

!
C 2

p
nmin cosh

 s

1 � v2

c2s

p
2z

�

!
:

(9.46)

To determine the soliton minima z0.t/, we make use of the fact that @zj .z; t/jzDz0 D
0, which provides the following condition

cosh

 p
2z0
��

!
D 1

ˇ
cosh

 p
2vt

��

!
� 2ˇ

cosh

p

2vt
��

� : (9.47)

From the latter, we can then compute the distance 2ız between the two solitons at
the collision time t D 0,

ız D
p
2�

2
�arccosh

�
1

ˇ
� 2ˇ

�
; (9.48)

which is valid for v < 0:5cs (ˇ < 0:5). For higher speeds, the two solitons cross each
other and therefore the present definition for the collision distance has no physical
meaning. In Fig. 9.3, we illustrate the dynamics for different values of the velocity v.
There are three different regimes: for v < 0:5cs , the solution do not cross each other,
inverting their motion; for the critical velocity v D 0:5cs , the solution collide and
overlap, but their motion is still reverted. Finally, for v > 0:5cs , the soliton kinetic
energy is enough for them to cross each other.

It is possible to show that the specific form of the solution (9.44) encodes the
information about the interaction properties. To extract such an information, let us
come back to the relative coordinate trajectory described by Eq. (9.47). Far away
from the collision point, the second term on the right-hand side can be neglected
and the distance between the solitons may be written as

ız.t/ ' 1

2
�ˇ�1cosh�1



2ˇ
p
1 � ˇ2t

�
: (9.49)
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Fig. 9.3 Collision dynamics of two identical dark solitons. The panels on the left correspond to
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Taking the derivative with respect to time, we obtain [10, 23]

dız

dt
D

sinh


2ˇ2

p
1 � ˇ2t

�

r
ˇ�1cosh2



2ˇ2

p
1 � ˇ2t

�
� 1

; (9.50)

which, at the collision instant t D 0, yields ız D 0. Thus, as the solitons approach
each other, their velocity (and, consequently, their depth) is increased (decreased)
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and becomes completely dark – or black – at the collision point. Afterwards, the
solitons are reflected by each other and start moving in opposite directions, with
asymptotic velocities given by dız=dt ' ˙v as t ! 1.

Moreover, by taking the second time derivative of Eq. (9.50), and making use of
Newton’s law in the form

d2ız

dt2
D �@Vint

@z
; (9.51)

we can derive the pseudo-potential (divided by the mass) associated with the
interaction between the two solitons

Vint.z/ D 1

2
c2s

1 � ˇ2

sinh2
�p

2
p
1�ˇ2z
�

� : (9.52)

Is is easy to conclude that Vint.z/ is indeed a repulsive potential, which is a clear
signature that dark solitons tend to repeal each other. If the separation between the
solitons is sufficiently large when compared to its core (i.e. z � �), the potential
takes the asymptotic form as Vint.z/ � exp.�2p2p1 � ˇ2z=�/ (see Ref. [27] for a
Lagrangian derivation). Due to the dependence on the soliton velocity v, Eq. (9.52)
describes a pseudo-potential, as it is non-conservative. In fact, it reduces to an
effective potential for the case of black soliton (v � 0), which reads

Veff.z/ D 1

2
c2s cosech2

 p
2z

�

!
: (9.53)

9.5 Bright Solitons

There is another sort of nonlinear excitations in Bose-Einstein condensates beyond
the dark soliton solution. For attractive interactions, g < 0, the soliton solutions
exhibits a maximum rather than a minimum, being therefore referred to as bright
solitons. Coming back to Eq. (9.16), the change in the sign g ! �jgj yields

2.f 01 /2 D .1C f 2
1 � f 2

0 /
2; (9.54)

to which the solution can be found to be like

f1 D asech.bx/; (9.55)

where a and b are given by

a2 D m


„2 ; b2 D 2


g
; (9.56)
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which is valid provided that


 D �1
2

jgjn0: (9.57)

The corresponding solitary solution, similar to (9.18), can be written as

 .z; t/ D p
n0 sech

�
z � vtp
2�

�
e�i
t=„; with � D „p

2mjgjn0
: (9.58)

Bright solitons differ from dark (or gray) solitons in many aspects. As it can be seen
directly from the solution, the soliton speed and amplitude are not connected, as it
is the case of the former. This simply means that the energy of the soliton is not
dispersive. Also, there is no phase shift as z ! ˙1, as it can be easily observed

�' D '.C1/� '.�1/ D 0: (9.59)

This result has important implications in what concerns the dynamics of bright
soliton trains [28].

9.6 Dark Solitons in Harmonic Traps

In the previous sections, we observe that dark solitons exhibits particle-like
behavior. It is, therefore, very instructive to understand how far we can go with
this “classical” description and understand what happens if we put a single soliton
in a trap. For the case of a harmonic trap, Kohn’s theorem assures that a particle
should oscillate at the trapping frequency !z. But does it hold, in general, for the
case of a soliton? The answer is no and it may be instructive to understand why.

Let us come back to Eq. 9.7 and incorporate the external potential V.z/ D
M!2z z2=2 as follows

i„@ .z; t/
@t

D
�

� „2
2M

@2

@z2
C V.z/C g1Dj .z; t/j2

�
 .z; t/: (9.60)

If the external potential varies slowly on the soliton scale, as it is the case of a
harmonic trap, one may assume that a perturbed soliton solution can be written in
the following manner

 .z; t/ D  s.z; t/C ı .z; t/; (9.61)

where  s.z; t/ is the soliton solution given by (9.18) and ı .z; t/ represents the
phonon radiation emitted by the soliton. It turns out that ı .z; t/ �  s.z; t/,
as radiation only takes place for strong perturbations. Therefore, the first order
approximation (also known as adiabatic approximation [29]) consists in neglecting
the emission of such sound waves. There are many techniques to describe the
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adiabatic dynamics of solitons, based on extensions of Hamiltonian and Lagrangian
methods originally constructed for a constant density profile. Here, we will employ
a perturbative approach to the Gross-Pitaevskii equation, by seeking a solution of
the form  .z; t/ D  .z; t/ s .z; t/

 .z; t/ D ‰.z/e�i
t=„; (9.62)

where ‰.z/ is the constant (real-valued) background governed by the time-
independent problem


‰ C „2
2M

@2

@z2
‰ � g‰3 D V.z/‰.z/: (9.63)

On the other hand, the dark soliton wave function reads

i„@ s
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@2
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@ s

@z

�
: (9.64)

For the case of a harmonic trap, which is smooth, the corresponding Thomas-Fermi

equilibrium profile is ‰.z/TF D p
.
 � V.z//g D

q
1 � r2=R2TF and both the

logarithmic and nonlinear terms can be treated as perturbations. Indeed, the right-
hand-side of Eq. (9.64) can be approximated as
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@ s

@z

�
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2

dV

d z

�
1C V C V 2 C : : :

	
; (9.65)

which allows us to write the approximate evolution equation for the soliton as

i„@ s
@t

C „2
2M

@2

@z2
 � g �j sj2 � 1	 s D Q Œ s; V � ; (9.66)

where the perturbation potential is given by

QŒ s; V � D �
1 � j sj2

	
 sV C 1
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d z

�
1C V C V 2

	
: (9.67)

In order to proceed further, we now postulate a variational solution inspired in
the homogeneous solution (9.18),

 s.z; t/ D p
n0 Œcos.�/ tanh.�/C i sin.�/� ; (9.68)

where sinŒ�.t/� D v.t/=cs.0/, cosŒ�.t/� D ��1.t/ and

�.t/ D cosŒ�.t/�
z � z0.t/p

2�
(9.69)



196 9 Solitons

0.0

0.2

0.4

0.6

0.8

1.0

n s
(z

)
−1.0 −0.5 0.0 0.5 1.0

z / x

Fig. 9.4 Illustration of the
dynamics of a dark soliton
performing slow oscillations
in a harmonic trap

are now time-dependent, but slowly varying, adiabatic parameters. The velocity of
the centroid is then simply given by

d z0
dt

D sin.�/: (9.70)

To properly determine the evolution of the phase angle �.t/, we make use of the
energy Eq. (9.25) and write

dEds

dt
D �4
 cos2.�/ sin.�/

d�

dt
: (9.71)

On the other hand, from Eq. (9.67), we can express the energy evolution as follows

dEds

dt
D �

Z C1

�1

�
QŒ s; V �@ 

�
s

@t
C Q�Œ s; V �@ s

@t

�
d z: (9.72)

Putting the latter results together, one can easily obtain

d�

dt
D 1

2 cos2 � sin�
Re

�Z C1

�1
QŒ s; v�@ 

�
s

@t
d z

�
: (9.73)

By Taylor expanding the trapping potential V.z/ around the soliton centroid z0.t/
and, assuming small oscillations around the center of the trap (see Fig. 9.4), such
that 
 D gn0.0/ � V , we can safely neglect the terms proportional to V and V 2

in Eq. (9.67), which in its turn yields

d�

dt
' �1

2
cos.�/

@V

@z

ˇ̌
ˇ̌
zDz0

: (9.74)

Using the same procedure as in the case of two-interacting solitons, we take the
black soliton approximation, cos.�/ � 1 to finally obtain
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d2z0
dt2

D � 1

2M

@V

@z0
: (9.75)

This result contains the remarkable feature that a soliton in an external potential
behaves (in the adiabatic approximation) as a point-like particle of effective mass
meff D 2M . Notice that this is not in contradiction with the previous statement
that a dark soliton has a negative mass (see Eq. (9.28)), which is only physically
meaningful within the wave description and is associated with its dispersion relation
(and not the dynamics of its centroid). This is a consequence of the vanishing
boundary conditions of the wave function (j sj ! 0 as z ! ˙1) due to
confinement, whereas in the homogeneous case the assympotic behaviour of the
wave function is j s j ! 1 as z ! ˙1. For the special case of the harmonic
potential, Eq. (9.75) describes an oscillatory motion at the frequency

!A D !zp
2
; (9.76)

which is known in the literature as the anomalous mode [30]. The reason for this
name can be better understood in the context of the Bogolyubov (or a similar linear)
analysis, which reveals the emergence of this mode, occurring below the Kohn mode
! D !z, only in the presence of topological excitations [31].

To establish the parallelism with the homogeneous case, we now compute the
total energy of the trapped soliton. Making use of the local density approximation,
which allows us to replace cs by its slowly-varying equivalent cs.z/ D p

gn0.z/=M ,
together with Eq. (9.67), we obtain

Eds D 4

3
„n0.0/cs.0/C 1

2
Mdsv

2 C 1

4
Mds!zz

2; (9.77)

where Mds D �4„n0.0/=cs.0/ is in agreement with the previous definition. Due
to the negative mass of the soliton,1 the application of an external potential indeed
decreases the energy of the soliton. Again, it is possible to observe that the particle-
like behaviour of the soliton is associated with an effective mass of meff D 2m,
which can be verified by calculation the ratio of the soliton massMds to the potential
energy, 4=!2z z2, which is twice as bigger as in the case of a trapped atomic particle.

9.7 The Soliton Gas

A natural question that may arise in the context of one-dimensional solitons is
related with the dynamics of a collection of dark solitons disposed in an array. Such
a configuration can be understood as a soliton lattice, or even as a soliton gas. It is

1Notice that we are now considering the soliton as a wave, described by the ansatz in (9.68)
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intuitive to predict that the fact of solitons carrying a negative mass, the dynamics
of such a system is not totally stable even if the effective potential is repulsive, as
we have previously stated.

To describe the dynamics of a dark soliton gas, we postulate that its phase-space
distribution f .x; v; t/ is governed by following kinetic equation

df

dt
� @f

@t
C v

@f

@x
C Pv@f

@x
D 0; (9.78)

where the collision integral is neglected assuming that only elastic processes are
involved in the system. The acceleration term can be defined by

Pv D �@U
@x
; (9.79)

where the potential is simply given in terms of the two-soliton effective poten-
tial (9.53)

U.x; t/ D
Z 1

�1
Veff.x � x0/n.x0; t/dx0 D

Z 1

�1

Z 1

�1
Veff.x � x0/f .x0; v; t/dx0dv:

(9.80)

Equation (9.78) generalizes the continuity equation presented in Ref. [32] by the
introduction of the soliton interaction potential. We now linearize the system around
its equilibrium, f D f0 C Qf , and rewrite the kinetic equation as follows

�
@

@t
C v

@

@x

�
Qf .x; v; t/ � @Veff

@x

Z 1

�1
@f0

@v
Qf dv D 0: (9.81)

After Fourier transforming, the latter equation can be rewritten as

1 D k QV .k/
Z 1

�1
1

! � vk

@f0

@v
dv D k2 QV .k/

Z 1

�1
f0.x; v/

.! � vk/2
dv; (9.82)

where QV .k/ is the Fourier transform of the effective potential. Let us now exemplify
with a special configuration. The most simple and straightforward one is to assume
that all the solitons are seated in the lowest energy configuration, which corresponds
then to the behavior of a boson gas

f0.x; t/ D N0ı.v/; (9.83)

where N0 is the one-dimensional soliton density. Inserting it in the dispersion
relation (9.82), we have

!2 D �1
4
N0�c

2
s k

2

�
2
p
2C �k�coth

�
�k�

2
p
2

��
: (9.84)
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Fig. 9.5 Real (full) and imaginary (dashed) parts of the dispersion relation of a dark soliton gas
with N0 D 0:15n0. The right panel illustrates the dependence of k� on ˛

We can immediately see that the equilibrium configuration (9.83) is unstable, as the
frequency only possesses purely imaginary roots. Fortunately, due to the peculiarity
of low-dimensional systems, such a configuration does not correspond, indeed, to
a physical one. In fact, it is known that the excitations in one-dimensional Bose
gases below the critical velocity cs follow a fermionic statistics. This important
remark was established in the famous Lieb-Liniger theory [33, 34] and it is also
considered in Ref. [35] in the context of excitations of a superfluid flow passing an
impurity. Actually, this result is quite easy to understand by simply looking at the
phase profiles in Fig. 9.3: by exchanging solitons, there is a overall phase shift of
˙� , which implies that the wave function of two solitons located at positions z1 and
z2 transforms as

 .z2; z1/ D e˙i� .z1; z2/ D � .z1; z2/; (9.85)

which is the signature of a fermionic statistics. Incorporating this fact, a new (and
more physical) equilibrium configuration can be written as

f0.z; v/ D N0

2vF
‚.vF � jvj/; (9.86)

where vF D „�N0=.2jMdsj/ is the one-dimensional Fermi velocity. In that case, the
dispersion relation reads [36]

!2 D v2F k
2 � ˛

4
c2s k

2

�
2
p
2C �k� coth

�
�k�

2
p
2

��
; (9.87)

where ˛ D N0� is the soliton concentration parameter. The latter result contains
very interesting features, which are illustrated in Fig. 9.5. For low values of ˛, the
system displays a stable oscillation up to a certain critical wavevector k� D k�.˛/.
For k > k�, the oscillations are unstable. The system becames totally unstable
for ˛ & 0:423. For that reason, we notice that Eq. (9.87) describes oscillations at
frequencies which are much lower than for typical Bogoliubov oscillations, which
can be verified by the following ratio
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D �

4
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n0�
� �

4
˛; (9.88)

using the fact that �n0 � 1. The reasoning for this dynamical behavior is quite
intuitive: because of the negative mass of the system, the interaction between
solitons in a gas is effectively attractive. This attraction is balanced by the Fermi
pressure, which can only overcome the collapse up to a certain critical density.

9.8 Solitons in Two Dimensions

Dark solitons can also be excited in Bose-Einstein condensates with dimensions
higher than one. For example, as we have seen, there is a smooth transition between
“effective” one- and three dimensional settings in cigar-shaped BECs, being the
latter the most common experimental situation to produce the quasi one-dimensional
solitons discussed in the previous sections. Furthermore, quasi-1D solitons may also
exist in disk-shaped BECs, which is achieved if !z � !?, therefore being a solution
of the following Gross-Pitaevskii

i„@ .x; y; t/
@t

D
�

� „2
2M

�
@2

@x2
C @2

@y2

�
C V.r/C g2D j .x; y; t/j2

�
 .x; y; t/;

(9.89)

where g2D D 2
p
2aaz is the effective 2D interaction strength and

V.r/ D 1

2
!?r2; r2 D x2 C y2; with az D „p

m!z
: (9.90)

In the homogeneous case (V.r/ D 0), and if we choose the direction of propagation
along the x�axis, the soliton solution is simply given by (9.18)

 s.x; t/ D p
n0

"
i

v

cs
C
s

1 � v2

c2s
tanh

�
x � vtp
2�

�#
e�i
t=„: (9.91)

In the case of a trapped system, the soliton corresponds to a dark “stripe” on top of
the Thomas-Fermi equilibrium, such that the total wave function is given by

 .r; t/ D ‰TF.r/ s.x; t/e
�i
„=t ; (9.92)

similarly to what was discussed for the one-dimensional case (see Eq. (9.62))
(Fig. 9.6).

An important question associated with the soliton solution (9.92) is related with
its dynamic stability. As it was first demonstrated in Ref. [37], the soliton undergoes



9.8 Solitons in Two Dimensions 201

Fig. 9.6 Snapshots of a rectilinear dark-soliton propagating in a two-dimensional BEC

Fig. 9.7 Dependence of the critical wavevector kc on the soliton speed

a modulation of the form ı � cos.ky/, where k is a function of its velocity v=cs .
Below the critical value kc given by

kc D 1

RTF

2

41 � v2

c2s
� 2C 2

s�
1 � v2

c2s

�2
C v2

c2s

3

5 ; (9.93)

the soliton becomes modulationally unstable and grows exponentially along the
transverse direction. This mechanism is known in the literature as “snaking insta-
bility”. Such an instability was extensively studied in the field of nonlinear optics
(see e.g. [38]) and was found to be in the root of the decay of the soliton into
vortex�anti-vortex pairs. Notice that the darker the soliton, the most stable it is
(see Fig. 9.7). In fact, when the snaking instability sets in, a plane ‘black’ soliton
decays into vortex pairs; on the other hand, unstable gray solitons may not decay
into vortices, but rather undergo long-lived oscillations associated with the emission
of sound waves [39].

It is, however, possible to prevent the transverse modulational instability of
dark solitons by using the finite-size of the system where it propagates. Such
a suppression can be found by means of a scale competition criterion [40]. In
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Fig. 9.8 Snapshots of a ring dark-soliton propagating in a two-dimensional BEC

particular, if the critical wavelength �c D 2�=kc is greater than the Thomas-
Fermi radius RTF, then the snaking instability will not occur. For example, for a
black soliton with v � 0, �c D 2�RTF . In that case, the above scale competition
argument,RTF < �c , implies that the use of a sufficiently strong confinement along
the transverse direction, such that

!? > !�? D
p
2

�
!z D' 0:45!z; (9.94)

can suppress the modulational instability. According to numerical simulations
performed by Kevredikis et al. [40], the actual critical trapping frequency is less
than the theoretically predicted in (9.94), namely !�? ' 0:31!z. The origin of
such a discrepancy stems form the fact that, for small BECs, the presence of a dark
soliton significantly changes the value of the chemical potential
, and the rescaling
factor is Q
 D 0:35
. Beyond the rectilinear dark soliton, two-dimensional systems
can support another kind of quasi-one1D dark solitons, called ring solitons (see
Fig. 9.8). An important feature of these objects is connected with the fact that they
do not exhibit snaking instability.
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Chapter 10
Quantum Field Theory of BECs

We now consider the Bogoliubov theory of a Bose Einstein condensate, which
describes the phonon field as a quantum field, and allows to study quantum field
phenomena at low energies, including vacuum fluctuations and phonon emission.
Mechanisms for phonon pair creation from vacuum are similar to those known
for photons in quantum electrodynamics, and will be discussed in this chapter.
They include: time refraction, the dynamical Casimir effect and Hawking radiation.
This last radiation process also allows us to discuss condensate analogues of a
gravitational field and the equivalent space-time metric.

10.1 Bogoliubov Theory

Our starting point is the mean field Hamiltonian, as defined in the GP equation,H .
The expectation value of this Hamiltonian gives the energy of the system, for a given
quantum state jˆi, as E D hˆjH jˆi, or in more explicit terms

E D
Z �

�ˆ�.r/ „2
2M

r2ˆ.r/C V0.r/jˆ.r/j2 C g

2
jˆ.r/j4

�
dr: (10.1)

In quantum field theory, the state vector jˆi is replaced by an operator O , and the
mean energy E by the new Hamiltonian operator OH , defined by

OH D
Z �

� O �.r/ „2
2M

r2 O .r/C V0.r/ O �.r/ O .r/C g

2
O �.r/2 O .r/2

�
dr: (10.2)

This is obtained from (10.1) by making the replacements jˆi ! O , and E ! OH .
By using a Fourier decomposition of the field operators O and O �, we can write

O .r/ D 1p
V

X

k

ake
ik�r D p

V

Z
ake

ik�r dk
.2�/3

; (10.3)
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where V is the volume of the system, and the operators ak can be defined by the
inverse transformation

ak D 1p
V

Z
O .r/e�ik�rdr: (10.4)

Let us restrict our discussion to the case of a free system, where the influence of the
external confining potential V0.r/ is assumed negligible. By replacing this Fourier
decomposition in Eq. (10.2), we obtain

OH D
X

k

„2k2
2M

a
�
kak C g

2V

X

k;k0 ;k00



a
�
ka

�

kCk00ak0�k00ak

�
: (10.5)

The operators ak and a�k are the destruction and creation operators of boson states
with momentum „k. We assume that they satisfy the bosonic commutation relations

h
ak; a

�

k0

i
D ıkk0 ; Œak; ak0 � D 0;

h
a
�
k; a

�

k0

i
D 0: (10.6)

We can define occupation number operators ONk D a
�
kak, as well as the total number

operator ON , such that

ON D
X

k

ONk D
X

k

a
�
kak: (10.7)

In the spirit of the Bogoliubov theory, we now assume that most of the atoms are in
the condensed state k D 0. This allows us to use the approximation

ON ' N0 C
X

k¤0
a
�
kak; (10.8)

where the first term is dominant andN0 is a c-number representing the total number
of condensed bosons. In the same spirit, we can use a similar approximation in the
last term of the operator (10.5), by writing
X

k;k0 ;k00



a
�
ka

�

kCk00ak0�k00ak

�
' a

�2
0 a

2
0 C

X

k¤0



a
�2
0 aka�k C a

�
ka

�
�ka

2
0 C 4a

�
0a0a

�
kak

�
:

(10.9)

Replacing the operators a�20 , a20 and a�0a0 by the c-numberN0, we get

X

k;k0 ;k00



a
�
ka

�

kCk00ak0�k00ak

�
' N0

2

4N0 C
X

k¤0



aka�k C a

�
ka

�
�k C 4a

�
kak

�
3

5 :

(10.10)

On the other hand, Eq. (10.8) allows us to use
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N2
0 C 2N0

X

k¤0
a
�
kak '

0

@N0 C
X

k¤0
a
�
kak

1

A
2

' N2; (10.11)

where N is the total number of particles in the system. Of course, these approxima-
tions are only valid for N0 ' N . Replacing this in Eq. (10.5), we obtain

OH D N

2
gn0 C

X

k¤0

n
.�k C gn0/a

�
kak C g

2
n0



a
�
ka

�
�k C aka�k

�o
(10.12)

where we have used the density of the condensed atoms n0 D N0=V , and the
free energy of the atoms �k D „2k2=2M . Let is now introduce the Bogoliubov
transformations

ak D ubk � vb��k ; a
�
�k D ub��k � vbk; (10.13)

where the coefficients u are v are assumed real, and will be specified later, and the
new operators bk and b��k satisfy bosonic commutation relations, similar to (10.6),
as defined by

h
bk; b

�

k0

i
D ıkk0 ; Œbk; bk0 � D 0 ;

h
b
�
k; b

�

k0

i
D 0: (10.14)

By inserting Eq. (10.13) in the commutation relations (10.6), we can conclude that
the coefficients u and v have to satisfy the following condition

u2 � v2 D 1: (10.15)

The inverse transformations can then be easily established, as

bk D uak C va��k ; b
�
�k D ua��k C vak: (10.16)

Replacing the Bogoliubov transformations (10.13) in Eq. (10.12), we obtain an
expression in terms of the new operators

OH D N

2
gn0 C

X

k¤0

n
b
�
kbk

�
�ku2 � �0uv


C b�kb
�
�k

�
�kv2 � �0uv




C


b
�
kb�k C b�kbk

� �
��kuv C 1

2
�0
�
u2 C v2

	��
:

(10.17)

Here we have used the auxiliary quantities �k D �kCgn0, and �0 D gn0. Let us now
choose the coefficients u and v such that the off-diagonal terms in this Hamiltonian
vanish, in order to diagonalize it. This implies that

�kuv D 1

2
�0
�
u2 C v2

	
: (10.18)
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Motivated by condition (10.15), we can now define a single transformation parame-
ter, s, such that

u D cosh s; v D sinh s: (10.19)

Replacing this in (10.18), we get an equation for s, as

�0
�
cosh2 s C sinh2 s

	 � 2�k sinh s cosh s D 0; (10.20)

from where we get the solution tanh 2s D �0=�k , or more explicitly

s D 1

2
tanh�1

�
gn0

�k C gn0

�
: (10.21)

This completely defines the Bogoliubov transformation. We can also determine the
quantities appearing in (10.17), such as

u2 D 1

2

�
�k

�
� 1

�
; u2 D 1

2

�
�k

�
� 1

�
; uv D 1

2

�0

�
(10.22)

with �2 D �2k � �20 . Noting that the coefficients in the summation of (10.17) are

independent of the direction of k, and therefore equal for the terms b�kbk and b��kb�k,
we can symmetrize the Hamiltonian and finally write

OH D N

2
gn0 C

X

k¤0
„!kb�kbk � 1

2

X

k¤0
Œ.�k C gn0/� „!k� (10.23)

where we have defined

„!k D p
�k .�k C 2gn0/: (10.24)

By using the explicit expression for �k and reminding the definition of the
Bogoliubov sound speed, cs D p

gn0=M , we rewrite this result as

!2k D c2s k
2 C „2k4

4M2
; (10.25)

which coincides with the dispersion relation for sound waves in a BEC previously
derived within the fluid description. The Hamiltonian operator OH , as given by
Eq. (10.23), is then made of the sum of the zero point energy of the condensate
E0, plus the energy associated with the spectrum of phonons, as

OH D E0 C
X

k¤0
„!kb�kbk: (10.26)



10.2 BEC Depletion 209

with

E0 D N

2
gn0 � 1

2

X

k¤0
Œ.�k C gn0/ � „!k� (10.27)

This equation explicitly states the contributions of both the condensed part, and of
the quantum vacuum fluctuations associated with higher level energy states.

10.2 BEC Depletion

Let us now consider the ground state energy in more detail. We first notice that
the summation over k in Eq. (10.27) diverges in the long wavelength limit. Let us
transform for commodity this summation into an integral, by using the auxiliary
variable x D p

�k=gn0. We then get

X

k¤0
Œ.�k C gn0/ � „!k� !

Z 1

0

�
1C z2 � z

p
z2 C 2 � 1

2z2

�
z2d z D � 8

15

p
2;

(10.28)
where the last term in the integrand was introduced to eliminate the unphysical
divergence. We then get, for the energy of the condensed phase, the following result

E0 D gN2

2V

"
1C 128

15

r
na2

�

#
; (10.29)

where we have used n0 ' n D N=V , and the definition of g D 4�„2a=M . This
is a well known result, which was first derived by Lee and Yang [1]. Notice that the
introduction of the correction term 1=z2 in the the integral of (10.28) is not a simple
mathematical trick. It indeed represents a correction (valid for finite momentum) to
the interaction potential g, which is only valid for zero momentum. The inclusion
of higher order corrections (see [2]) would lead to

E0 D gN2

2V

"
1C 128

15

r
na2

�
C 8

�
4�

3
� p

3

�
na3 ln

�
na3

	
#
: (10.30)

As we can see from the Hamiltonian operator (10.26), that the condensate state
vector j i can be represented in terms of the Fock states jnk1 ; nk2 ; : : : i, where
nkj are the phonon occupation numbers with momentum kj . Using the number

operators b�kbk, we have

b
�
kbk j: : : nk : : : i D nk j: : : nk : : : i: (10.31)
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The condensate ground state j 0 i � j0; 0; : : :i is the state where no phonons are
present, and satisfy the condition bk j 0 i D 0 for every k.

Let us now rewrite the particle number operator (10.8) in terms of the operators
b
�
k and bk, as determined by the Bogoliubov transformations (10.13). Noting that

the coefficients u and v depend on the value of k, we get

ON D N0 C
X

k¤0

h
v2k C �

u2k C v2k
	
b
�
kbk � ukvk



b
�
kb

�
�k C b�kbk

�i
; (10.32)

We can see that the last term in this expression is equal to zero, for eigenstates of
the Hamiltonian (10.26). This allows us to write, using the explicit expressions for
the coefficients uk and vk as given by equations (10.22), this operator can be written
as

ON D N0 C
X

k¤0
v2k C

X

k¤0

�kq
�2k � �20

b
�
kbk: (10.33)

This shows that, in the presence of phonon modes, the number of condensed
particles has to change, for a constant number of particles in the system. We then
have to make the change N0 ! N0 C ıN0, where the variation in the number of
condensed particles is given by

ıN0 D �
X

k¤0
v2k D �1

2

X

k¤0

0
B@

�kq
�2k � �20

� 1

1
CA : (10.34)

By transforming the sum into an integral, and solving the integral, we then get

N0 C ıN0 D N0

 
1 � 8

3

r
na3

�

!
: (10.35)

Such a reduction in the number of condensed atoms is called the condensate
depletion. This shows that, for a low density gas, such that .an3/ � 1, the
Bogoliubov theory which assumes that most of the atoms are in the condensed state
remains valid, which turns out to be the case for the majority of experiments with
alkaline atoms. However, with the use of Feshbach resonances, the value of the
scattering length a (consequently the interaction strength) can be increased, and
the condensate depletion becomes important. This is a signature that a mean-field
description of BECs is valid as long the interactions are not very strong.
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10.3 Phonon Pair Creation

10.3.1 Time Refraction

Due to its extremely low temperature, which implies a negligible thermal emission,
the condensate offers remarkable conditions for the study of quantum vacuum
processes. This was proposed recently, for detection of Hawking and Unruh
radiation, and the identification of horizon where particle emission of radiation, in
this case sound waves, could take place [3]. Here we consider a closely related
problem of quantum vacuum, that of time refraction of phonons in a condensate.

It is well known that three different processes of quantum vacuum can be
considered: time refraction, dynamical Casimir effect and Unruh radiation. They
all lead to the emission of particle pairs [4]. The concept of time refraction [5],
is an extension of the usual (space) refraction into the temporal domain. It was
first developed for photons in optical media, and then extended to plasmons. It is
associated to the temporal change of the optical properties of a dielectric medium.
This concept has both been explored in the classical and quantum domains. The
similarities between time refraction and the dynamical Casimir effect have also
been explored [4], where the empty cavity with a vibrating mirror was replaced by
a static cavity with a time dependent optical medium. The equivalence between the
two configurations was demonstrated, and, in the absence of losses, an exponential
growth of the photon number inside the cavity was predicted.

The dynamical Casimir effects is an instability of the electrodynamical vac-
uum, which has received considerable attention in recent years (see for a recent
review[6]). For an empty optical cavity with a vibrating mirror, with no losses, it
leads to the exponential growth of trapped photons, if the oscillating frequency of
the mirror is equal to twice the photon frequency. Its main interest is related with the
fact that it can occur for arbitrarily low photon energies, thus stimulating the hope
of observing quantum vacuum properties in small scale experiments.

In this section, we discuss first time refraction, and then the dynamical Casimir
effect, for phonon modes in Bose Einstein condensates. They both lead to the
emission of phonons propagating in opposite directions. For the present purpose,
we consider a condensate where the trapping potential is cylindrically symmetric,
as given by V.r/ D m.!2?r

2
? C !2z z2/=2, providing a strong confinement along the

transverse direction, !2? � !2z . This allows us to neglect, in a first step, the axial
confinement by assuming !2z ' 0.

We assume that some equilibrium state of the condensate has been achieved,
such that n D n0. By suddenly changing the transverse trapping frequency !?,
we change the equilibrium density on a very fast time scale. This means that we
can assume a time dependent quasi-equilibrium density n0.t/ D n0f .t/, where
jf .t/j ' 1. We then consider n D n0.t/ C Qn, where Qn describes a perturbation
propagating in the axial direction. Linearizing the quantum fluid equations, we can
easily derive an evolution equation for the density perturbations, which takes the
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form
�
@2

@t2
� cs.t/@

2

@z

�
Qn D �.t/

@ Qn
@t

� „2f .t/
4m2

@4

@z4
Qn; (10.36)

where we have defined

�.t/ D d ln f .t/

dt
; c2s D gn0

m
f .t/: (10.37)

Notice that in the absence of any temporal variation of the background density,
we set f .t/ D 1 and � D 0, and for wave solutions of the form Qn /
exp.�i!t C ikz/ we obtain the dispersion relation for sound waves in the
condensate !2 D c2s k

2 C .„2=4m2/k4. For very slow temporal changes, such that
� � 0 and the first term on the r.h.s. of Eq. (10.36) is negligible, we can try solutions
of the form

Qn.z; t/ D Ae˙ikz exp

�
�i
Z t

!.t 0/dt 0
�
; (10.38)

which are a WKB-like approximation. Replacing this in Eq. (10.36), we obtain the
time dependent dispersion relation

!2.t/ D c2s .t/k
2 C „2f .t/

4m2
k4: (10.39)

This shows that, in a region of uniform density larger than 2�=k, the temporal
change in the background medium will imply a frequency shift for the sound wave
propagating in the condensate. This is one of the main characteristic feature of time
refraction, well suited for experimental purposes.

We now consider the case where the term in �.t/ cannot be neglected. An exact
solution of Eq. (10.36) can still be found, where two distinct solutions Qnk and Qn�k ,
similar to (10.39), with the same axial wavenumber k, but propagating in opposite
directions will become coupled by the time variation of the medium, as shown next.

The sound speed cs determines the characteristic time for changes in the density
of a Bose Einstein condensate. For changes along the transverse direction, the time
scale for the mean density variations is of order R?=cs , where R? is the transverse
Thomas-Fermi radius of the condensate. This can be of the order or shorter than
the period of the phonon oscillations with frequency ! if the following condition
R?k 
 1 is satisfied. An alternative way, eventually more interesting, of changing
the mean density, is to act on the scattering length, by using a Feshbach resonance.

Let us start by considering a sudden change in the medium, which can be
assumed as instantaneous on the time scale of a phonon period 1=!. In order for
the fluid wave equation (10.36) to stay valid for all times, including the time of
discontinuity t D 0, the following continuity conditions have to be satisfied

Qn.z; t D 0C/ D Qn.z; t D 0�/ and Qv.z; t D 0C/ D Qv.z; t D 0�/: (10.40)
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Fig. 10.1 Time transmission T , and reflection R coefficients, as a function of the temporal
discontinuities of the atom density, represented by the ratio f0=f1

If, for t < 0, we had a single sound wave propagating along the condensate, as
described by

Qn.z; t < 0/ D A0 exp.ikz � i!0t/C c.c.; (10.41)

then, for t > 0, we will have

Qn.z; t 0/ D A1 exp.ikz � i!1t/C A01 exp.ikz C i!1t/C c.c. (10.42)

In these solutions, the phonon frequencies !0 and !1 have to obey the dispersion
relation (10.39), with f .t < 0/ D f0, and f .t > 0/ D f1, with the corresponding
sound velocities c2s;j D gn0fj =m, for j D 0; 1. The term in A01 has to be included
in the wave solution (10.42) in order to satisfy the continuity conditions (10.40).
Making use of these conditions, we can easily obtain a relation between the different
phonon amplitudes, such that

A0 D A1 C A01 ; ˛0A0 D ˛1.A1 � A01/; (10.43)

with ˛j D !j =n0fj k, for j D 0; 1. This allows us to calculate the reflected and
transmitted coefficients associates with a temporal discontinuity, as given by

T � A1

A0
D 1C ˛

2˛
; R � A01

A0
D � .1 � ˛/

2˛
; (10.44)

where we have used ˛ D ˛1=˛0 D .!1=!0/.f0=f1/. This shows that a temporal
discontinuity, not only leads to a frequency shift, as noticed before, but also leads
to the appearance of a counter-propagating phonon (as in ordinary reflection).
These two features are qualitatively analogous to those of a photon field [7]. The
results are illustrated in Fig. 10.1, where it is clearly shown that these temporal
coefficients are such that the sum jT j2 C jRj2 ¤ 1, and can be larger than one. This
results from the fact that time refraction conserves wave momentum, but not wave
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energy (in contrast with the usual refraction, which conserves wave energy but not
momentum). The additional energy is provided by the external source, responsible
for the temporal change in the condensate.

Let us finally consider the general case of an arbitrary temporal change in the
background density, as described by n.t/ D n0f .t/. This can be treated as a
succession of infinitesimal discontinuities of the kind just described. A more direct
method, leading to the same final result, is the following. We assume a solution of
the form

Qn.z; t/ D A.t/ expŒikz � i'.t/�C A0.t/ expŒikz C i'.t/�C c.c.; (10.45)

with the phase given by '.t/ D R t
!.t 0/dt 0. Replacing this in Eq. (10.36), and

equating the terms with the same space dependence, exp.ikz/, we get

dA0

dt
D �.t/A ;

dA

dt
D ��.t/A0; (10.46)

with

�.t/ D 1

2

�
1

!

d!

dt
� �.t/

�
expŒ�2i'.t/�: (10.47)

Here, we have assumed that the wave amplitudes vary slowly with respect with the
wave period, such that jdA=dt j � j!Aj, and jdA0=dt j � j!A0j. In the simple
but important case where initially a single wave mode is excited in the medium,
the effect of time refraction effect is not very strong. We can then assume that
jA0j � jAj for all times, and A.t/ ' const. This allows us to integrate the first
of equations (10.46), leading to

A0.t/ D R.t/A.t/; (10.48)

where the reflection coefficient is now given by

R.t/ ' 1 � 1

2

Z t

�.t 0/dt 0: (10.49)

This is actually very similar to the reflection coefficient R.z/ associated with the
usual (space) refraction, with the space variable z replaced by the temporal one t .
However, the physical meaning is clearly distinct, because there is no physical
boundary or discontinuity from where the initial phonon wave could be reflected,
if the medium is assumed as axially homogeneous. The above discussion is purely
classical, but it can easily be translated into the language of quantum field theory.
The corresponding phonon field operators will be introduced next.
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10.3.2 Dynamical Casimir Effect

We have seen above that, a given k phonon mode can be described by the oscillator
equation

�
d2

dt2
C !2.t/

�
Qn D �.t/

d Qn
dt
; (10.50)

where !.t/ is determined by the instantaneous dispersion relation (10.39). In the
absence of temporal perturbations of the condensate, �.t/ D 0, this oscillator can
be quantized in the usual way. And, generalizing this quantization to a time varying
medium, we can define the quantum operator

Qn.z; t/ D Ak.t/ expŒikz � i'.t/�C A
�

�k.t/ expŒikz C i'.t/�C h.c. (10.51)

This is formally identical to Eq. (10.45), where the amplitude A is replaced by Ak ,
the destruction operator corresponding to the phonon state k, and A0 by A��k , the
creation operator corresponding to the phonon state �k, which propagates in the
opposite direction. By following a procedure similar to that described above, we
can then get the coupled equations describing the temporal evolution of these two
operators

dA
�

�k
dt

D �.t/Ak;
dAk

dt
D ��.t/A��k: (10.52)

It is now useful to consider the perturbations of the phonon vacuum, induced by the
temporal changes in the condensate. For that purpose, we focus on the paradigmatic
case os a sinusoidal perturbation of the form

f .t/ D 1C � sin.	t/ and �.t/ ' �	 cos.	t/; (10.53)

where the amplitude of the modulation is assumed small � � 1. This allows us to
derive, to the lowest order in �,

�.t/ ' ��	
23

�
ei!Ct C ei!�t

	
; !˙ D 2!0 ˙	 (10.54)

where !0 satisfies the phonon dispersion relation for the unperturbed case � D 0.
It is important to notice that only the constant or the slowly varying part of �.t/
will contribute significantly to the evolution of the operators, as seen from the above
equations. The oscillating part will average to zero, It is then obvious that a strong
effect only occurs for a driving frequency such that 	 D 2!0. We then have

�.t/ D �0
�
1C e3i!0t

	
; with �0 D ��!0

4
: (10.55)

We can then approximate the relations in (10.52) by
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Fig. 10.2 Number of phonon
pair created from vacuum, (a)
for a sudden change in the
atom density, as described by
n.t/� n0 D
Œ1C tanh.2t � 1/�=2; (b) for
a sinusoidal perturbation such
that �0 D 1

dA
�

�k
dt

D �0Ak;
dAk

dt
D �0A

�

�k: (10.56)

The relevant solution is therefore given by

Ak.t/ D cosh.�0t/Ak.0/C sinh.�0t/A
�

�k.0/;

A
�

�k.t/ D cosh.�0t/A
�

�k.0/C sinh.�0t/Ak.0/: (10.57)

We can now calculate the mean number of phonons generated from vacuum
at time t . The result is

hNk.t/i � hA�k.t/Ak.t/i D sinh2.�0t/: (10.58)

The same number is generated for phonons propagating in the opposite direction, in
order to preserve the total momentum of vacuum, hN�k.t/i D hNk.t/i. We can see
that, for short times, we have a quadratic growth, hNk.t/i ' �20t

2, whereas for long
times, we observe an exponential growth, hNk.t/i ' exp.2j�0jt/. This instability of
the phonon vacuum will eventually be prevented due to a finite coherence time, or
finite life time, of the phonons inside the condensate, as discussed recently for the
case of photons [8]. The cases of a sudden change and a sinusoidal perturbation of
the condensate density are illustrated in Fig. 10.2.

The instability that we have just described is formally analogous to the dynamical
Casimir effect for the photon field inside an empty optical cavity with a modulated
length. Here, the photons were replaced by phonons, and the optical medium by
the Bose-Einstein condensate. The phonon version of time refraction in a Bose
Einstein condensate can be seen as an interesting alternative for the observation
of such vacuum processes.

But an oscillating length could also be conceived for a condensate. We known
that the Thomas-Fermi length L in the axial direction is determined by the trapping
potential, and the phonon wavenumber could be quantized due to these axial
boundary conditions, which were ignored above. Let us focus on some phonon
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mode with wavenumber k D kl � 2�l=L, where l is an integer. It is obvious that
a temporal variation of the axial length will introduce a shift in the mode frequency.
Assuming L.t/ D L0Œ1 � �.	t/�, we get, for � � 1,

!2.t/ D !20 Œ1C �0 sin.	t/� ; �0 D
�
2C „2k4l0

4m2!20

�
�; (10.59)

where kl0 D 2�l=L0, and !0 is the corresponding mode frequency. This is
similar to the situation considered before, where the length was fixed and only the
background density was assumed to change. Now we have �.t/ D 0, because the
density is assumed fixed, but the frequency shift will lead to a new value of the
parameter �.t/, which is now given by

�.t/ D 1

2
�0	 cos.	t/e�2i' : (10.60)

Phonon pair creation is also expected to occur here, as determined by Eq. (10.58),
with �0 replaced by �DC (standing for dynamical Casimir), which is the constant
part of this new quantity. A relation with the previous physical configuration
is very easy to establish and can be stated as �DC D 2j�0j�=�0. This shows
the equivalence, in terms of phonon vacuum properties, between the two distinct
physical configurations: (1) time refraction, characterized by a constant axial length
of the condensate L0, but a varying background density n.t/, as imposed by a time
variation of the transverse confining potential; (2) the dynamical Casimir effect,
associated with a variable length L.t/, in a constant density n0. The difference with
respect to the case of photon vacuum is that, in a Bose-Einstein condensate, these
two configurations can eventually coexist.

10.4 Acoustic Black Holes

Analogue models for general relativity provide specific and clear examples in which
effective space-time structures emerge from condensed-matter systems [9]. For low
levels of resolution, and under certain circumstances, one can appropriately describe
the physical properties of the system by means of a classical (or quantum) field
theory in a curved Lorentzian space-time. At higher resolution levels, however, it is
necessary to proceed to a full quantum theory [10]. Therefore, although analogue
models cannot be considered as complete models of quantum gravity (since they
do not lead to the Einstein equations in any regime or approximation), they provide
specific and tractable models that reproduce many aspects of the overall scenario
expected in the realm of real gravity (an extended discussion can be found in
Ref. [11]).

Here, we summarize the main properties of gravity-like configurations with
Bose-Einstein condensates, revealing the emergence of an effective acoustic metric.
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An interesting feature of these systems is that their theoretical description in terms
of the GP equation naturally contains some quantum features, which in their turn
are the result of the quantum coherence of the condensation phenomenon itself.

10.4.1 Hawking Radiation

According to Einstein’s general theory of relativity, the space-time is deformed in
the presence of massive objects, like a star or a planet, which are responsible for
the curvature of space-time. If the source of matter is dense enough, the space-time
metric can show a singularity, which is identified as a black hole. The black hole is
characterized by a radius, known as horizon, beyond which nothing (not even light)
can scape.

Classically, a black hole is indeed black, i.e. does not radiate. However, some
quantum features associated with the black hole suggest that it may not be the case.
Due to the amount of available gravitational energy, pairs of photons are formed,
as a consequence of electromagnetic fluctuations. At the horizon, some of those
photons are captured by the hole, while some of them can in fact scape. The latter
are responsible for the so-called Hawking radiation.

In order to illustrate the physics underlying the Hawking radiation mechanism,
we consider a spherically symmetric Schwarzchild metric (in astrophysical units
G D c D „ D 1) [12]

ds2 D g
�dx
dx� D �
�
1 � 2M

r

�
dt2 C

�
1 � 2M

r

��1
dr2 C r2d	2; (10.61)

whereM represents the mass of the black hole. The horizon is located at the distance
where the metric is singular, i.e. rhor D 2M . Electromagnetic fluctuations allow
photon pairs of energy ıE to be produced, which coexist for a short period of time
ıt D „=�E. If such a pair of photons is created at the black hole horizon, the
one with negative energy �E can cross the horizon within a time „=E without
recombining with that of positive energy and simply falls inside the hole. An
observer located inside the horizon measures the energy of an incoming photon
to be

E D E� �
�
2M

r
� 1

��1=2
pr ; (10.62)

where pr is the radial component of the photon four-momentum. On the other hand,
the other photon is allowed to scape to infinity. The energy of the photon at infinity
as measured by an observer freely falling toward the horizon can be shown to be
given by [15]

E D EC D „
4M

: (10.63)
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Accordingly, the black hole radiation spectrum is characteristic of a black body with
a temperature, in energy units, of

TH D „
8�M

: (10.64)

In what follows, we present the acoustic analogue of Hawking radiation in Bose
Einstein condensates. Because Hawking radiation has never been observed (either
in astrophysical or in other physical scenarios), experimental results on its acoustic
analogue in BEC would be of major importance.

10.4.2 Effective Metric in a Condensate

Let us consider the quantum hydrodynamical Eqs. (7.76) and (7.77) derived in
section (7.6). In many relevant situations, the quantum Bohm potential can be
neglected. The resulting equations then reduce to the continuity and momentum
equations for a classical fluid. In this case, and making use of the irrotationality
condition v D „r'=M , it is possible to derive the following equation for the
condensate phase

�
@

@t
C r � v

�
n0

c2s

�
@

@t
C �rv

�
' D r � .n0r'/: (10.65)

This equation can be compared wit the relativistic wave equation of the scalar field '

�' D 1p�g@

�p�gg
�@�'

	 D 0; (10.66)

where g
� represents the acoustic analogue of the Painlevé-Lemaitre metric

g
� D 1

n0cs

�
1 v
v v ˝ v � c2s 1

�
; (10.67)

with 1 representing the 3 	 3 unit matrix. This analogy was first proposed by
Unruh [13]. In this class of metrics, a singularity can occur, exactly where the flow
velocity equals the local sound velocity cs . Different number of configurations can
be imagined in the laboratory, where such a singularity could be observed. To better
understand the correspondence of this emergent geometry and a black hole, let us
consider the case of a one dimensional flow v D v0.x/ex . In the .1C1/�dimensional
plane, the metric (10.67) yields the following invariant interval

ds2 D 1

n0cs

"
�
�
1 � v0.x/2

c2s .x/

�
c2s d�

2 C
�
1 � v0.x/2

c2s .x/

��1
dx2

#
; (10.68)
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where we have rescaled the time variable � as

d�

dt
D v0
c2s � v20

dx: (10.69)

The case of a spherically symmetric flow with a ‘sink’ at the origin can be described
by a velocity field of the form v D �v0.r/er=r , which is associated with the
following metric [14]

ds2 D �


c2s � v0

r

�
dt2 � 2v0

r
drdt C dr2 C r2d�2; (10.70)

which is the .2 C 1/-dimensional analogue of the Schwarzchild metric in (10.61)
and, therefore, may be interpreted as the acoustic equivalent of a black hole. This
suggests that the region at which v0.x/ D cs.x/ can be regarded as the sonic
horizon.

10.4.3 Acoustic Hawking (Unruh) Radiation

Following the original argument put forward by Hawking to describe the radiation
of black holes, Unruh derived the equivalent temperature at which phonon pair
creation should occur at the acoustic horizon. This equivalence is based on the
definition of the acoustic analogue of surface gravity, as defined below. Although
the original derivation does not depend on the characteristics of the fluid, we will
see that the BECs dynamics contain special features that may allow for an easier
experimental observation. We restrict our discussion to the important case of static
metrics (associated to steady flows). This follows from the fact that the acoustic
surface gravity depends on the gradients of the fluid flow.

Let us consider the one-dimensional flow described by the metric in Eq. (10.67).
The interesting question to ask at this point is exactly what happens if we quantize
the phonon modes at the vicinity of the sonic horizon? To do that, we make use of
the following decomposition for the outgoing modes

' D
X

!

�
'!a! C '�!a�!ger

	
: (10.71)

Following Unruh’s derivation, the idea is to consider that far from the horizon, an
observer traveling with the fluid as it flows through the sonic horizon will perceive
the field ' as being essentially in the vacuum state. At the horizon, this corresponds
to black hole radiation at the temperature [13–15]

TH;eff D „
2�

1

2

@
�
v.x/2 � c.x/2


@x
D „�
2�
; (10.72)
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Fig. 10.3 de Laval nozzle
configuration

where � D j@.v � cs/=@xj represents the acoustic surface gravity. The derivation
can easily be extended to different geometries, by redefining the gravity surface in
terms of the normal On of the horizon

� D r .v � cs/ � On: (10.73)

One of the most interesting proposals for experimental observation of acoustic
horizons with condensates involves the de Laval nozzle configuration [10]. Consider
a BEC flowing through a nozzle of transverse section A.x/ in the x direction as
depicted in Fig. 10.3. Making use of the fluid equations for a stationary flow, it
can be easily shown that the superfluid acceleration a along the nozzle can be
expressed as

a D � v2c2s
c2s � v2

A0

A
; (10.74)

where A0.x/ is the section derivative. At the horizon, both A0 and c2s � v2 approach
zero. Therefore, applying l’Hôpital’s rule, we obtain the limit value

a D �c4A00=A
.c2/0 � 2aH

ˇ̌
ˇ̌
H

: (10.75)

The derivative of the square of the local sound speed can be easily related with the
event horizon as follows

.c2s /
0 � 1

M

d2n

dn2
n0 D � n

M

d2p

dn2
.Av/0

Av
D � nH

M

d2p

dn2

ˇ̌
ˇ̌
H

 
A0H
AH

C aH

c2s;H

!
: (10.76)

Further similar calculations allow to determine the acoustic gravity surface at the
horizon, which simply reads
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�H D c2s;Hp
2A

s

1C 1

M

n

2c2s

d 2p

dn2

ˇ̌
ˇ̌
H

q
A00H : (10.77)

Making use of the BEC equation of state, c2s D gn=M , we can easily determine the
acoustic Hawking temperature in Eq. (10.72), which yields

TH;eff D „cs;H

2�
p
AH

r
3A00H
4
: (10.78)

This simple result can also be given in terms of the phonon wavelength at which the
emission spectrum is peaked [11],

�peak D 4�2
p
AH

s
4

3A00H
: (10.79)

It is important to note, however, that A00H cannot be chosen as arbitrarily large, since
this would violate the quasi-one-dimensional approximation used in this derivation.
Without going into much detail (for which the reader is urged to check Ref. [11]),
the present analysis shows that the best realistic situation is achieved for a spectrum
peaked at �peak � p

AH . In fact, this is exactly why the acoustic version of
Hawking radiation is so difficult to observe, as the peak wavelength is of the order
of the typical physical dimensions of the system. For realistic BEC experiments, the
typical sound velocity is cS � 6mm/s. If the nozzle diameter is then chosen to value
AH � 1�m, and the flare-rate to be A00H � 1, then acoustic Hawking radiation is
expected to occur at

TH � 7 nK: (10.80)

Because TH is comparable (in magnitude) with the condensation temperature
(Tc � 90 nK), the de Laval nozzle configuration has gained much attention as a
possible stage to observe the phenomenon. More likely is the scenario envisaged
with the help of Feshbach resonances [16]. By increasing the scattering length up
to 100 times [17], the sound speed could be enhanced by a factor of 10 (notice that
cs � p

as , which would lead to TH � 70 nK).
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Chapter 11
Superfluidity

Superfluid is a fluid with an extremely low viscosity and high thermal conductivity.
The current description of superfluidity, first proposed by Tisza [1] soon after the
discovery of Helium-4 superfluidity, is based on the assumption that two different
fluids coexist. One is the superfluid, which corresponds to the condensed gas. The
other is the normal fluid, which in our current view is made of quasi-particle
excitations, or phonons.

We have seen that the condensed gas can be described by a wave kinetic equation,
which is equivalent to the Gross-Pitaevskii equation and is valid in the mean-field
approximation. We will show here that the gas of phonons can also be described by
a similar wave kinetic equation.

We then study the excitation of long wavelength perturbations in this mixture of
two fluids. The corresponding dispersion relation will be established. We also show
that these long wavelength perturbations can be Landau damped by phonons. The
chapter is completed with a discussion of the rotons, in the context of condensates.

11.1 Phonon Kinetics

Let us start from the fluid equations for the condensate. We have shown that, by
linearizing these equations with respect to density perturbations Qn D n� n0, where
n0 is the equilibrium density, and j Qnj � n0, we obtain a wave equation of the form

�
@2

@t2
� c2sr2 C „2

4M2
r4

�
Qn D 0: (11.1)

We have also seen that, in a uniform gas and for perturbations of the form
exp.ik � r � i!t/, we get the phonon dispersion relation !2 D c2s k

2 C .„2k4=4M2/,
where cs D p

gn0=M is the Bogoliubov sound speed. We now consider a more
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generic situation where the background density evolves in space and time as n0 !
n0 C n0.r; t/ and the resulting sound speed becomes

c2s .r; t/ D .g=M/Œn0 C n0.r; t/�: (11.2)

Here, the quantity n0.r; t/ is, for instance, associated with a long wavelength
perturbation in the medium, as considered later. In order to study the solution of
Eqs. (11.1) and (11.2), we use the generalized space-time Wigner-Moyal procedure
already discussed in previous chapters, and derive the corresponding wave kinetic
equation. This kinetic treatment of the phonon gas will revel a collective force
that acts back on the BEC. In other words, this will give a different perspective
of the interaction between the normal and superfluid fractions, thus representing an
alternative to both the two-fluid theory of Landau [2] and Khalatnikov [3] and the
kinetic ZNG theory [4].

In the same spirit of our previous derivations, we introduce the auto-correlation
function, as

K12 D Qn1 Qn�2 ; Qnj � Qn.rj ; tj / (11.3)

for j D .1; 2/, and use new space and time variables, s and � , such that

r1 D r C s ; t1 D t C �=2

r2 D r � s ; t2 D t � �=2 (11.4)

With the help of the wave equation (11.1), we can then derive an evolution equation
for the auto-correlation function, which reads

�
2
@2

@�@t
� .c21 � c22/r2

s � 2c2s .r � r2/C „2
M

r2
s .r � r s/

�
K12 D 0; (11.5)

where cj D cs.rj ; tj /, and r s � @2=@s2. At this point, we introduce the double
Fourier transformation of K12, in order to get the Wigner function for the phonon
field, as defined by

F.r; t I!;k/ D
Z
d s
Z
d�K12 exp.�ik � s � i!�/: (11.6)

Replacing this in Eq. (11.5), we can then obtain

i

�
@

@t
C vk � r

�
F D k2

2!

g

m

Z
dq
.2�/2

Z
d	

2�
n0.	;q/.�F / exp.�iq � r � i	t/:

(11.7)

Here, we have used the Fourier decomposition of the fluctuating part of the
background density, as given by

n0.r; t/ D
Z

dq
.2�/2

Z
d	

2�
n0.	;q/ exp.�iq � r � i	t/; (11.8)
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where the wavevectors q and frequencies 	 describe the slow evolution of this
background density. We have also used

.�F / � F.! �	=2;k � q=2/� F.! C	=2;k C q=2/: (11.9)

Finally, we have introduced the group velocity of the phonon modes, as defined by

vk � @!

@k
D
�
c2s C „2k2

2M

�
k
!
: (11.10)

It can easily be recognized that this wave kinetic description is formally very similar
to that used to study sound waves in the atomic clouds in magneto-optical traps, as
well as to that used to describe the condensate field itself. The main difference is
qualitative, due to the fact that we are using here a gas of quasi-particles, and not a
gas of real atoms.

Is should also be noticed that c2s is not a constant but a function of the background
gas, showing that the velocity of the phonon quasi-particles can also vary in space
and time. This results from assuming that the dispersion relation (11.2) is locally
valid, and that ! is always univocally determined by the phonon wavevector k. This
allows us to introduce a reduced Wigner function Fk.r; t/ in the spirit of the quasi-
particle approximation, as determined by

F.r; t I!;k/ D Fk.r; t/ı.! � !k/; (11.11)

where !k is mode frequency as determined by the phonon dispersion relation.
It is exactly this reduced Wigner function that we can identify with the phonon
occupation number in the quasi-classical limit. In order to consider such a limit, we
assume that jqj � jkj. This leads to

.�F / ' �q � @Fk
@k

: (11.12)

By replacing this in (11.10), we can then obtain a quasi-classical kinetic equation
for phonons, of the Vlasov type, reading

�
@

@t
C vk � r C fk � @

@k

�
Fk D 0 (11.13)

where we have defined the force acting on the phonons as

fk D � k2

2!k

g

M
rn0.r; t/: (11.14)

Notice that the phonon trajectories are determined by the characteristic equations of
the kinetic equation (11.13), which are
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dr
dt

D vk ;
dvk
dt

D �fk: (11.15)

So, in many respects, the phonon quasi-particles behave kinetic and dynamically as
real particles, because they are described by formally identical equations. Therefore,
the description of the superfluid medium as a mixture of two fluids can be made on
very similar grounds for both the condensed fraction and the fluctuations above it.
This will be discussed in what follows

11.2 Phonon Fluid Equations

A step further in the description of the quasi-particle excitations can be taken
by deriving the corresponding fluid equations. These equations are derived from
the kinetic equation (11.13), by computing the successive momenta of the group
velocity vk . In what concerns the zeroth momentum, integration of the first
term yields

@

@t

Z
Fk

dk
.2�/3

D @n�

dt
; (11.16)

where n� is the mean density of the phonon gas, as defined by

n�.r; t/ D
Z
Fk.r; t/

dk
.2�/3

: (11.17)

Integration of the second term in (11.13) leads to
Z

vkrFk dk
.2�/3

D r � .n�u/ �
Z
Fk.r � vk/

dk
.2�/3

; (11.18)

where we have defined the mean phonon velocity u as

u.r; t/ D 1

n�

Z
vkFk

dk
.2�/3

: (11.19)

Finally, integration of the third term provides
Z

fk � @Fk
@k

dk
.2�/3

D
Z
Fk.r � vk/

dk
.2�/3

: (11.20)

The sum of these three terms results on the continuity equation for the phonon gas

@n�

@t
C r � .n�u/ D 0: (11.21)

Similarly, the (linear) momentum conservation equation for the gas of quasi-
particles can be obtained by multiplying the kinetic equation (11.13) by vk , and
integrating over the wavevector space. The first term leads to
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Z
vk
@Fk

@t

dk
.2�/3

D @

@t
.n�u/ �

Z
@vk
@t
Fk

dk
.2�/3

: (11.22)

The contribution of the second term can be written as
Z

vkvk � rFk dk
.2�/3

D r � .n� hvkvki/ �
Z
Fkr � .vkvk/

dk
.2�/3

; (11.23)

where we have used the tensor

hvkvki D 1

n�

Z
.vkvk/Fk

dk
.2�/3

: (11.24)

We now introduce the concept of phonon pressure, P� , such that

hvkvki D uu C P�

n�
I; (11.25)

where I is the 3 	 3 identity matrix. Using (11.24), it can be easily shown that

P� D 1

3

Z
.vk � u/2Fk

dk
.2�/3

� n�

3
u2th; (11.26)

where uth is an effective thermal velocity for the phonon gas. Finally, the contribu-
tion from the third term in the phonon kinetic equation takes the form

Z
vk

�
fk � @Fk

@k

�
dk
.2�/3

: (11.27)

Adding these three contributions, we arrive at the momentum conservation for the
phonon gas, as

@u
@t

C u � ru D �rP�
n�

C F�; (11.28)

where F� is the mean force acting on the the phonons, as determined by

F� D 1

n�

Z
Fk

�
@vk
@t

C r � .vkvk/C @

@k
� .fkvk/

�
dk
.2�/3

: (11.29)

Similarly, we could also derive the energy conservation of the phonon gas, by
multiplying the kinetic equation (11.13) by .vkvk/ and integrating over the phonon
spectrum, i.e., by computing its second momentum.
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11.3 Slow Perturbations in the Superfluid

Let us now consider a perturbation in the phonon fluid, as described by the above
fluid equations. Let us assume n� D n�0 C Qn� , where n�0 is the unperturbed
phonon density, and the perturbation evolves as Qn� / exp.iq � r � i	t/. Linearizing
Eqs. (11.21) and (11.28) with respect to these perturbations, and neglecting for the
moment the mean force F� , we get

@2 Qn�
@t2

� 1

3
u2thr2 Qn� D 0; (11.30)

which leads to the dispersion relation

	2 D 1

3
u2thq

2: (11.31)

We can see from Eq. (11.26) that we usually have u2th ' c2s . This shows that
the phonon gas oscillations take the form of acoustic waves of a different kind,
associated with pure oscillations of the quasi-particle mean density, with a sound
speed which is 1=

p
3 smaller than that of the condensed gas. This is usually called

the second sound. It corresponds to oscillations of the phonon density only, where
the interactions with the condensed gas are not considered. In general, however, we
expect these oscillations in n� to be coupled with those of the condensed gas density
n. Such a coupling is provided by the microscopic force fk and by the corresponding
average force F� , as defined by (11.29). This force can be roughly estimated by
noting that !k ' csk and vk ' cs , if we account only the contributions in the long
wavelength (purely acoustic) limit. This allows us to write

@

@k
� fkvk ' � g

2M
rn; (11.32)

where n is the density of the condensed gas. On the other hand, for isotropic phonon
distributions Fk , the first term in (11.29) is zero and, neglecting nonlinear terms, we
obtain for the average force the expression

F� D � 1

n�0

g

2M
rn: (11.33)

Including this new contribution in the wave equation for the perturbations in the
phonon gas, we get

@2 Qn�
@t2

� 1

3
u2thr2 Qn� D g

2M
r2n0; (11.34)

where n0 is the perturbed condensed atom density. Assuming that Qn� and n0 are
related, and therefore n0 also behaves in space and time as exp.iq � r � i	t/, we
obtain the following relation between the two density perturbations
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�
	2 � c2s q2

	 Qn� D g

2M
q2n0: (11.35)

Let us now turn to the fluid equations of the condensed fraction. The coupling with
the phonon gas can be described by including nonlinear corrections to the density
wave equation (11.1). These nonlinearities are due to the slow ponderomotive effects
associated with the presence of phonons. In the homogeneous case, V0 D 0, the fluid
equations lead to

@2n

@t2
� 1

M
r � Œnr .VB C gn/� D r � Œn.v � rv/C r � .nv/v� : (11.36)

Let us then consider a slow perturbation of the condensed gas .n0; v0/ in the presence
of an arbitrary phonon spectrum. We can then use

n D n0 C n0 C nph ; v D v0 C vph; (11.37)

where

nph.r; t/ D
Z
nk exp.ik � r � i!kt/

dk
.2�/3

(11.38)

and

vph.r; t/ D 1

n0

Z
!kk
k2

nk exp.ik � r � i!kt/ dk
.2�/3

; (11.39)

with !k given in terms of the following dispersion relation

!2k D g

M
.n0 C n0/k2 C „2k4

4M2
: (11.40)

Notice that the quantity nph, which represents the atom density perturbation
associated with the phonon spectrum, should not be confuse with the quantity n� in-
troduced above, which is the number density of phonon quasi-particles. An explicit
relation between these two quantities will be establish below. Linearizing (11.36)
with respect to the slow perturbations, we get

�
@2

@t2
� gn0

M
r2 C „2

4M2
r4

�
n0 D n0r2jvphj2 C g

2M
r2jnphj2: (11.41)

Putting equations (11.38) and (11.39) together, we have

jnphj2 D
Z
nkn�k

dk
.2�/3

D
Z
Fk

dk
.2�/3

D n� (11.42)

and
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jvphj2 D
Z

vk � v�k
dk
.2�/3

D 1

n0

Z
!2k
k2
Fk

dk
.2�/3

� c20
n20
n�; (11.43)

where c0 is the average phase velocity of the phonon spectrum. Replacing this in
Eq. (11.41), we obtain

�
@2

@t2
� gn0

M
r2 C „2

4M2
r4

�
n0 D

�
c20
n0

C g

2M

�
r2n�: (11.44)

We can see that the density perturbations of the condensate are again coupled
with the phonon spectrum. Assuming as above that n� D n�0 C Qn� , we get for
perturbations evolving as exp.iq � r � i	t/ a new relation between n0 and Qn� , of
the form



	2 �	2

q

�
n0 D c21

n0
q2 Qn� (11.45)

where we have used

	2
q D c2s q

2 C „2q4
4M2

; c2s D gn0

M
(11.46)

and

c21 D c20 C 1

2
c2s : (11.47)

Replacing this in Eq. (11.35), we finally arrive at the dispersion relation for the slow
perturbations in the superfluid, as given by



	2 �	2

q

� �
	2 � c2s q

2
	 D g

2M

c21
n0
q4: (11.48)

This represents the combined oscillations of two different fluids, the condensed fluid
and the thermal fluid, where the later has been described in terms of phonon quasi-
particles. In the absence of the coupling provided by the quantity c21 , this dispersion
relation would brake down into two distinct dispersion relations, one (	2 D 	2

q)
valid for the condensed gas alone, and the other (	2 D u2thq

2=3) valid for the phonon
gas alone, in the absence of condensed atom oscillations.

11.4 Superfluid Currents

Let us now consider the evolution of the total fluid mass density, as defined by

� D M.n0 C nx/ � Mn; (11.49)
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where n0 is the density of the superfluid, and nx D n�n0, the density of the normal
fluid. It is plausible to assume that nx is proportional to the density of phonons,
because these quasi-particles represent the normal fraction of the medium. This
happens because we make no difference between quantum and thermal fluctuations
in the present formulation, so all the fluctuations above the condensate are treated as
phonon quasiparticles. We can then write, nx D ˛n� , where n� is the phonon mean
density and the constant of proportionality ˛ has to be determined. Now, by using
the two conservation equations for both the atoms and the phonons, we can easily
construct the total mass conservation equation, as

@�

@t
C r � J D 0 ; J D M.n0v C ˛n�u/; (11.50)

where v is the mean velocity of the condensed phase and J is the total mass current.
Using the definition of the mean phonon velocity u, we can write this current as

J D Mn0v CM˛

Z
vkFk

dk
.2�/3

: (11.51)

It is now important to compare this quantity with the total momentum transported
by the medium. By definition, we have

P D Mn0v CM

Z
„kFk

dk
.2�/3

; (11.52)

where „k is the single phonon momentum, and Fk the phonon distribution. On the
other hand, we know that the phonon group velocity is determined by Eq. (11.10),
allowing us to write

P D Mn0v C
Z
MkvkFk

dk
.2�/3

; (11.53)

where we have introduced the quantity

Mk D „!k
c2s C .„2k2=2M/

: (11.54)

The latter can be regarded as the phonon effective mass, which depends on the
momentum (mode) k of the phonon. Notice that phonons, just as photons in vacuum,
have no finite rest mass. In other words,Mk ! 0 for k ! 0 is in agreement with the
Goldstone theorem. Equating the expressions of J and P, as given by Eqs. (11.51)
and (11.52), we can determine the proportionality factor between thermal atoms and
phonons, reading

˛ � nx

n0
D u
n�u2

�
Z
Mk

M
vkFk

dk
.2�/3

: (11.55)

It is interesting to look at the limit of very small phonon wavenumbers, such that
the quantum dispersion (or the free-particle like behavior) term can be neglected. In
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such limit, we have

Mk ' „k
cs
; vk ' cs

k
k
: (11.56)

The current (11.51) reduces then to

J ' Mn0v CM˛cs

Z
k
k
Fk

dk
.2�/3

(11.57)

and the proportionality factor becomes

˛ ' „u
M u2

�
�

vk
cs

�
: (11.58)

Finally, we should notice that phonons can only be excited by atoms or by
macroscopic objects moving with a velocity vs larger than the phonon phase velocity
!k=k. As a result, for

vs <
!k

k
�
r
c2s C „2k2

4M2
; (11.59)

no phonons with wavenumber k are excited in the medium. Therefore, no phonons
at all will exist in the condensate, as long as its velocity with respect to some atom
or boundary or object is lower than the Bogoliubov sound speed, or

vs < cs D
r
gn0

M
: (11.60)

This is the well known Landau criterium for superfluidity.

11.5 Phonon Landau Damping

We can now refine the above description of long wavelength excitations in the
condensate, by using a kinetic description of the phonon gas. This can be done
by going back to Eq. (11.35) and calculate the quantity n0 with the help of the
phonon kinetic equation (11.13). By using Fk D F0.k/ C F 0k , such that F0.k/ is
the equilibrium phonon distribution, and n0 D R

F 0kdk=.2�/3 is the phonon density
perturbation, we have after linearization of the kinetic equation

F 0k D k2

2!k

gn�

M

�F0.k/
.	 � q � vk/

; (11.61)

where �F0.k/ D F0.k � q=2/ � F0.k C q=2/. Using this in Eq. (11.35), we can
then obtain a kinetic dispersion relation for the excitations in the superfluid, as
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	2 �	2

q

�
D g

2M

c21
n0
q2
Z
k2

!k

�F0.k/
.	 � q � vk/

dk
.2�/3

: (11.62)

This kinetic dispersion relation can also be written as



	2 �	2

q

�
D g

2M

c21
n0
q2
Z
F0.k/

"
k2C
!C

1

.	 � q � vC/
� k2�
!�

1

.	 � q � v�/

#
dk
.2�/3

;

(11.63)

where we have used k˙ D k ˙ q=2, !˙ D !k
˙

and v˙ D v.k˙/. It is useful
to compare this kinetic result with Eq. (11.48). We can see the appearance of a
resonance inside the integral, which leads to an imaginary part associated with
phonon Landau damping. This implies the existence of wave damping proportional
to the population difference in the phonon spectrum�F0.k/. It means that excitons
can be damped (or excited) due to resonant interaction with phonons. These kinetic
effects associated with resonant wave interactions with the phonon quasi-particles
are similar to those found in the resonant interactions between phonons, described
now as waves, interacting with atoms. On the other hand, atoms can also be
described on a shorter scale by a wave function. This shows that both atoms and
phonons can be described on a short length scale as waves and, on a much larger
length scale as particles or quasi-particles. Atoms are seen as particles by phonons,
and phonons are seen as particles by long wavelength excitations in the superfluid.

11.6 Roton Excitation

Rotons were first proposed by Landau [2], and stay as one of the main concepts in
superfluid theory. Originally, they have been connected with the existence of strong
interactions in the physical systems. Our recent view of rotons is that they are a
particular case of phonon quasi-particles, associated to the existence of a minimum
of the phonon dispersion curve, and their existence does not necessarily imply strong
interactions. The existence of this minimum in superfluids has been demonstrated
by molecular dynamic simulation models, and confirmed by experiments. Here we
show that it can also be demonstrated by analytical methods.

It is known that the relation between Bose-Einstein condensates and superfluids
is not (and has never been) obvious. This will be discussed in the next section.
In recent years it has been recognized that rotons can be excited in condensates,
in the presence of long range electric or magnetic dipole-dipole interactions
between the atoms. This can be achieved for instance in quasi-2D pancake shaped
condensates where the dipoles become aligned by an external static magnetic field
[5]. The case of a cigar shaped quasi-1D in a static field was also examined [6].
Here we show that rotons can eventually be excited in condensates for the case
dipole-dipole interactions. In order to establish this general analytical result, we use
the wave kinetic approach.
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11.6.1 Wave Kinetic Equation with Dipolar Interactions

Our starting point is the Gross-Pitaevskii equation in the presence of dipole-dipole
interactions, which can be written as

i„@‰
@t

D � „2
2M

r2‰ C .V0 C VNL/‰; (11.64)

where V0 � V0.r/ is the confining harmonic potential, and the nonlinear potential
VNL contains, apart from the usual interaction potential, an additional nonlocal term,
as given by

VNL.r; t/ D g j‰.r; t/j2 C
Z
Ud.r � r0/

ˇ̌
‰.r0; t/

ˇ̌2
dr0 (11.65)

where Ud.r � r0/ is the dipole-dipole interaction potential, to be specified later. We
have seen that, by applying the Wigner-Moyal procedure, we can derive a wave
kinetic equation equivalent to (11.64), of the generic form

i„
�
@

@t
C vq � r

�
W D

Z
V.k; t/�W exp.ik � r/

dk
.2�/3

; (11.66)

where vq D „q=M is the atom velocity, but where now the dipole interaction
potential is included. W.q; r; t/ is the usual Wigner function corresponding to
‰.r; t/, or more explicitly

W.q; r; t/ D
Z
‰�.r � s=2; t/‰.r C s=2; t/eiq�sd s: (11.67)

In Eq. (11.66), we have also used the standard notation

�W D W.q � k=2; r; t/�W.q C k=2; r; t/: (11.68)

We write these quantities explicitly, at the cost of being repetitive, because we want
to state the difference between the wave kinetic equation used before in this chapter,
and which concerns the phonon field, and the wave kinetic equation for the primary
gas, the gas of condensate atoms. Finally, the quantity V.k; t/ is the spatial Fourier
transformation of the total potential, which includes the dipole interactions. In order
to obtain an explicit expression for this quantity, we should notice that the atom
probability density is

j‰.r; t/j2 D
Z
W.q; r; t/

dq
.2�/3

: (11.69)

Replacing this in Eq. (11.65), we get
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VNL.r; t/ D g

Z
dk
.2�/3

�
W.q; r; t/C

Z
dr0Ud.r � r0/W.q; r0; t/

�
: (11.70)

Now, using the convolution theorem, we have

Z
Ud.r � r0/W.q; r0; t/dr0 D

Z
Ud.k/W.q;k; t/eik�r

dk
.2�/3

; (11.71)

where Ud.k/ is the Fourier component of the dipole-dipole interaction potential
Ud.r/. This means that the total potential can be written in the form

V.r; t/ � V0.r/C VNL.r; t/ D
Z
V.k; t/eik�r

dk
.2�/3

; (11.72)

where we have

V.k; t/ D V0.k/C Œg C Ud.k/� I.k; t/ ; I.k; t/ D
Z
W.q;k; t/

dq
.2�/3

: (11.73)

Here, the quantity I.k; t/ represents the Fourier component of the probability
density (11.69).

11.6.2 Dispersion Relation

Let us now consider the evolution of a perturbation QW with respect to some
equilibrium quasi-distribution W0. Linearizing the wave kinetic equation (11.66),
we get

i„
�
@

@t
C vq � r

�
QW D

Z
Œg C Ud.k/� I.k; t/V .k; t/�W0 exp.ik � r/

dk
.2�/3

;

(11.74)

where we have considered the homogeneous approximation, V0.r/ D 0, which is
valid for short wavelength perturbations, as it was already discussed. Let us now
assume a sinusoidal perturbation, such that

QW .q;k; t/ D QW .q;k/ exp.ik � r � i!t/: (11.75)

We then have QI .k; t/ D QI .k/ exp.�i!t/, and replacing in (11.74), we simply get

QW .q;q/ D
QI .k/
„ Œg C Ud.k/�

�W0

.! � k � vq/
: (11.76)

Integrating over q, one obtains the following dispersion relation
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1 � 1

„ Œg C Ud.k/�
Z

�W0

.! � k � vq/
dq
.2�/3

D 0: (11.77)

It is also useful to write it in a slightly different and more explicit way, as

1 � 1

„ Œg C Ud.k/�
Z
W0.q/

�
1

.!� � k � vq/
� 1

.!C � k � vq/

�
dq
.2�/3

D 0;

(11.78)

with

!˙ D ! ˙ „k2
2M

: (11.79)

Let us consider the zero temperature limit, which can be described by the unper-
turbed distributionW0.q/ D .2�/3n0ı.q � q0/, where n0 is the unperturbed density
of the condensate, which is allowed to move with a constant velocity v0 D „q0=M .
Replacing this in (11.78), we get

1 � „n0
M

Œg C Ud.k/� k2

.!�k � vq/2 � .„k2=2M/2
D 0; (11.80)

or, more explicitly,

.! � k � v0/2 D k2
h
c2s C n0

M
Ud.k/

i
C „2k4
4M2

: (11.81)

This generalizes our previous result for sound waves in a condensate, by including
a new term due to atomic dipole-dipole interactions. It should be noticed that these
interactions modify the usual sound speed cs , as discussed next.

11.6.3 Roton Instability

Let us now consider possible forms of the interaction potential Ud.k/. In principle,
significant dipole-dipole interactions can exist inside the condensate if we excite
some of the atoms in high Rydberg states, as recently proposed by Henkel et al. [7].
An useful model is provided by a potential of the form

Ud.r/ D C6

r6 CR60
; (11.82)

where C6 is an effective van der Waals coefficient, and R0 is the effective range of
the interaction. For such a case, we get

Ud.k/ D C6

Z
exp.ik � r/

r6 CR60
dr D 4�C6

Z 1

0

cos.kr/

r6 CR60
dr: (11.83)
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Fig. 11.1 Dispersion relation of Bogoliubov oscillations in a condensate, modified by the long
dipole-dipole interactions, (a) Ud as described by a C6 van der Waals potential; and (b) Ud D 0

for reference

It is now useful, for the sake of a qualitative and analytical discussion, to use the
approximation

Ud.k/ ' 4�C6

Z R0

0

cos.kr/dr D 	

4�
kC6 sin.kR0/: (11.84)

This shows a the existence of a maximum at k D �=2R0, and a negative minimum
at k D 3�=2R0. This is in good qualitative agreement with the molecular dynamical
simulations of [7], and can be used to illustrate the occurrence of a roton minimum.
By replacing (11.84) in the dispersion relation (11.81), and considering a condensate
at rest, v0 D 0, we obtain

!2 D k2c2s C „2k4
4M2

C kR0˛ sin.kR0/; (11.85)

with

˛ D n0

M

4�

R0
C6: (11.86)

In the particular case when k D k0 � 3�=2R0, this takes the form

!20 D k20c
2
s C „2k40

4M2
� kR0; (11.87)

where !0 � !.k0/. See Fig. 11.1 for an illustration.
We can see that a critical value of the parameter ˛ exists such that !0 D 0. This

corresponds to
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˛c D 3�

2R20

�
c2s C 9�2

24
„2

M 2R20

�
; (11.88)

For ˛ > ˛c , a roton instability at zero temperature can occur, such that <.!/ D 0.
We can also establish the same condition for a generic form of potential Ud.k/,
and not just for the simplified version (11.84) of the van der Waals potential. Going
back to the dispersion relation (11.81), and using v0 D 0, we can see that a roton
instability corresponding to !2 
 0 will occur for Ud.k/ < 0, and in addition

n0

M
jUd.k/j � c2s C „2k2

4M2
: (11.89)

When these two conditions are satisfied, roton excitation will become possible
in BEC with dipolar interactions. The influence of a finite temperature, and
the contribution of kinetic effects to the roton dispersion properties can also be
discussed using the general dispersion relation (11.77) or (11.78).
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Chapter 12
Rotating BECs

In this chapter we deal with the important vorticity problem in a condensate. We first
explain how quantum vortices can occur in a superfluid, and what is their expected
structure. These vortices can spontaneously form in a rotating condensate, and they
have tendency to nucleated and to form regular arrays, taking typically triangular
lattice shapes. These vortex lattices can oscillate, as first discussed by Tkatchenko.

After discussing the dispersion relation of the Tkatchenko modes, we consider
a less conventional type of wave modes, the Rossby waves, which are formally
analogous to those known in geophysics. This is done by deriving a generalized
form of Charney equation, valid for rotating condensates. Large nonlinear vortical
structures, are also shown to exist. We then propose a new type of dispersion rela-
tion, associated with Rossby-Tkatchenko modes, which tend to both the Tkatchenko
and the Rossby modes if we take appropriate limits. The chapter concludes with
a discuss of the coupling between a condensed gas and a photon beam carrying
orbital angular momentum, which can be used as a method to induce rotation on a
condensate.

12.1 Quantum Vortices

We have seen that the velocity field of the condensed gas can be defined as the
gradient of a phase function, as v D .„=M/r'. This shows that the condensate is
irrotational, r 	 v D 0, except when the phase is singular. Such a singularity can
occur at the centre of a quantum vortex, located at some position rv. If we integrate
the fluid velocity v along a closed contour C surrounding the singularity, we have
to satisfy

Z

C

v � dr D „
M

Z

C

d' D �� ; � D „
M
2�; (12.1)

J.T. Mendonça and H. Terças, Physics of Ultra-Cold Matter, Springer Series on Atomic,
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© Springer Science+Business Media, LLC 2013

241



242 12 Rotating BECs

where � is an integer and � is the quantum of circulation. Such a quantization rule
was first considered by Onsager [24], and then by Feynman [15]. This becomes
necessary to guarantee that the condensate wavefunction is a single valued function.
We can use the Stoke’s theorem to write the above circulation as

R r 	 v �dS D ��,
which implies a singular vorticity locates at the vortex centre, as determined by

r 	 v D ��ı.2/.r � rv/: (12.2)

Such an expression states the local break down of irrotationallity associated with a
vortex. Let us study the local structure of the vortex, by writing the wavefunction in
cylindrical coordinates r D .r; �; z/, as

ˆ.r; t/ D  .r; z; t/ exp.i��/; (12.3)

where the amplitude  .r; z; t/ is real. Replacing this wavefunction in the Gross-
Pitaevskii equation, we obtain

i„@ 
@t

D � „2
2M

�
1

r

@

@r

�
r
@ 

@r

�
C @2 

@z2
� 1

r2
�2 

�
C Vext.r/C g 3: (12.4)

We notice the appearance of the term proportional to l2, which results from the
rotational motion around the singularity. Obviously, this equation is valid for a
condensate with axial symmetry. Therefore rotation takes place around the z-axis.

Let us ignore the influence of the confining potential, Vext.r/ D 0. In this case,
the wave function amplitude  is independent of z, and we can take @=@z D 0. In
steady state, we can also use i„@ D 
 , where 
 is the chemical potential. The
above wave equation simplifies to


 D � „2
2M

�
1

r
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@r

�
r
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@r

�
� 1

r2
�2 

�
C g 3: (12.5)

It is now convenient to introduce dimensionless variables, � and �, such that

� D r

�
D r

„
p
2Mgn1 ; � D  

 1
; (12.6)

where � D „=p2Mgn1 is the healing length (or coherence length), and n1 D
 21 is the asymptotic value of the gas density, far away from the vortex centre. We
should also take the chemical potential equal to 
 D gn1, in order to satisfy the
wave equation at infinity. This allows us to rewrite Eq. (12.5) as

� D �1
�

@

@�

�
�
@�

@�

�
C l2�2�

�2
C �3: (12.7)

This equation can be solved numerically. But, for � D 1, a good approximate
solution is given by

�.�/ D �
p
2C �2

; (12.8)
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Fig. 12.1 The approximate vortex solution (12.8) is shown in normalized radial coordinates. The
size of the vortex is determined by the healing length �

which is illustrated in Fig. 12.1. This shows that, for long radial distances � � 1,
the condensate wavefunction tends monotonically to its asymptotic value  1 Dp

=g. In contrast, for short distances � � 1, the centrifugal force dominates and

 .r/ ' r , as it would correspond to a free particle with angular momentum l D 1,
turning around the z-axis. It then becomes clear that the vortex size is of the order
of the healing length �.

Vortex structures have been observed in rotating condensates, in both simulations
and experiments. The first experimental observation of vortices was reported in 1999
[21,22]. Depending on the value of the angular frequency	, the number of observed
vortices can change, from a single vortex to an array of several vortices, resembling
the Abrikosov vortex arrays in superconductors. Arrays of hundreds of vortices have
already been reported in condensates [1, 11]. For a review of rotating BECs, the
reader should refer to the reviews [6, 14]. The lattice array is typically triangular,
with a surface density given by

nv D M	

�„ D 1

�a2v
; (12.9)

where av is the distance between nearby vortices. The density nv is defined as the
number of vortices per unit area, in the plane perpendicular to the rotation axis.
Noticing that the circulation of the velocity field around a single vortex with � D 1

is equal to � D 2�„=M , as shown by (12.1), Eq. (12.9) shows that the coarse-
grained velocity field Nv, obtain by circulating over several vortices Nv D 	 	 r,
corresponds to r 	 Nv D 2	, which coincides with that of a rigid rotation at the
angular velocity 	. This means that, although the condensate is a superfluid, with
zero vorticity everywhere except in the immediate vicinity of a vortex, it acquires a
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Fig. 12.2 Formation of a vortex array, as shown by solving numerically the Gross-Pitaevskii
equation for a rotating BEC

diffused vorticity equal to that of a rigid body with the same angular velocity, where
the total vorticity is accommodated by the vortex lattice. Formation of a vortex array
can be seen by numerical integration of the GP equation, as shown in Fig. 12.2.

12.2 Vortex Nucleation

The quoted experiments in condensates confirmed the nucleation of quantized
vortices, which is a clear manifestation of their superfluid properties. Since then,
much effort has been made to understand the dynamics of the rotating BEC [19] and,
in particular, the mechanisms of vortex nucleation [18, 28]. Particular interesting
features of quantized vortices in Bose Einstein condensates of alkali atoms are
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related to the formation of vortex arrays, where singly quantized vortices typically
arrange in highly regular triangular lattices. Such a configuration is only possible
when a sufficient amount of angular momentum is effectively transferred to the
system, corresponding to a situation of rapid rotation. The acquired angular velocity
then tends to enlarge the rotating cloud and the centrifugal force is responsible for
the flattening of the density profile towards a two-dimensional configuration. In the
limit where the rotation frequency	 approaches the transverse trapping frequency
!?, the quadratic centrifugal and the harmonic trapping potentials cancel out and
the system is no longer bounded. The possibility of reaching high angular velocities
is therefore provided by the addition of anharmonic terms to the trapping potential,
making worthy the investigation of new equilibrium configurations with different
vortex states and new collective modes [13].

12.3 Tkachenko Modes

Let us now focus on the oscillations that can occur in a vortex lattice. This was first
discussed by Tkachenko [30], and then observed experimentally in liquid Helium-4
[3] and in condensates [11]. In order to describe such oscillations, we make use of
extended fluid equations where the contributions from the motion of the vortices
around their equilibrium positions are taken into account. These extended fluid
equations in the rotating frame can take the form [9]

@n

@t
C r � .nv/ D 0 ;

@v
@t

D � g

M
rn � 2	 	 v � Fel.s/

Mn
; (12.10)

where Fel.s/ is the so-called Magnus force, which is an elastic force due to the
deformation of the vortex lattice. It therefore depends on the displacement field
s � s.r/, describing the deviations of the lattice with respect to the equilibrium.
The components of this elastic force can be defined as the derivatives of a strain
tensor, 
jk , as given by Fel;j .s/ D @
jk.s/=@xk . In the momentum equations,
we have neglected the confining potential as well as the quantum Bohm term, but
retained the relevant forces, which are the Coriolis force and the nonlinear force.
The displacement field s can be related with the above fluid equations by using the
equation of conservation of the number of vortices. This can be written in the form
of a continuity equation

@nv

@t
C r � .nvPs/ D 0: (12.11)

Noting that the vortex density nv is proportional to 2	C r 	 v, we can transform
this equation into

@v
@t

D � g

M
rn � 2	 	 Ps: (12.12)
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By taking a perturbation with respect to the equilibrium density n D n0, and
assuming that the perturbations in n, v and Ps behave in space and time as exp.ik �
r? � i!t/, where r? refers to the xy-plane perpendicular to 	, we can then derive
a dispersion relation which has two solutions for !2, of the form

!2 D 4	2 C c2s k
2 ; !2 D c2T c

2
s k

4

4	2 C c2s k
2
; (12.13)

where cs D p
gn0=M is the Bogoliubov sound speed, and cT D p„	=4M is the

Tkachenko speed, characterizing the lattice vibrations. The first solution is just that
of the usual sound waves, ! D csk, modified by the fluid rotation. The second
solution, which depends on this new characteristic speed cT corresponds to the
Tkachenko modes. They can be observed as vibrations in the vortex lattice [12].

12.4 Rossby Waves

We now consider a different kind of fluid mode which can take place in a rotating
condensate, similar to the Rossby waves, well known in geophysics. These waves,
also called planetary waves, are recognized as the main pattern of long period
variability of the upper tropospheric winds [26]. These are responsible for the well
known cyclonic and anticyclonic systems that characterize the weather systems
in mid latitudes, and can be observed both in the upper troposphere and in the
oceans. These waves are due to the dependence of the Coriolis force with latitude,
which acts as a restoring force for the particles in the atmosphere. In a rotating
condensate, as we have seen, the Coriolis force parameter is given by twice the
angular rotation frequency,	. We show below that such waves are dispersive, with
a negative phase velocity, which means that they always propagate opposite to the
condensate rotation.

As we have also seen, in the presence of a large number of vortices it is possible
to define a coarse grained velocity, by averaging the velocity field over regions
containing many vortex lines. This is known as the diffused vorticity approach [12]
and corresponds to assuming a rigid-body rotation v D 	 	 r, where the angular
velocity is 	 D 	Oz with 	 D �„nv=M , where nv.r/ is the average vortex density
Therefore, the irrotationality condition r 	 v D 0 is replaced by r 	 v D 2	. In
that case, the macroscopic dynamics of the rotating fluid is provided by the fluid
equations in the rotating frame

@n

@t
C r � .nv/ D 0 (12.14)

�
@

@t
C v � r

�
v D �grn

m
� rV

m
C „2
2m2

r
�r2

p
np
n

�
� 2		 v; (12.15)
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where v � rv D r.v2/=2 � v 	 .	 	 v/. The usual hydrodynamic calculations
are based on the Thomas-Fermi approximation, which consists of neglecting the
quantum pressure proportional to „2. Here, however, we include this quantum term,
since we may be interested in Bogoliubov-like waves. Notice that this procedure
does not contradict the diffused vorticity approximation, since the quantum features
will be only included in the dynamics of the fluctuations and do not affect the
equilibrium configuration of the system. This allows one to cast quantum features
that may be relevant to describe the so-called quantum turbulence [20], where the
healing length sets a lower scale for the Kolmogorov cascade. Here, V.r; 	/ D
Vtrap.r/ � m	2r2=2, with r D .x2 C y2/1=2, stands for the effective trapping
potential, which reads

V.r; 	/ D „!?
2

��
1 � 	2

!2?

�
r2

a2ho
C ˇ

r4

a4ho

�
; (12.16)

with the characteristic harmonic oscillator length aho D p„=m!?, and the
dimensionless anharmonicity parameterˇ. The term 2		v in Eq. (12.15) represents
the Coriolis force, which acts as the restoring force for the oscillations considered
here. We consider perturbations around the equilibrium configuration, such that
n D n0 C ın and v D ıv. In that case, the system can be described by the following
set of perturbed equations

@

@t
ınC r � .n0ıv/ D 0 (12.17)
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@t
C ıv � r

�
ıv D �gmrın � 2	 	 ıv C „2

4m2
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r2ın

n1

!
; (12.18)

where n1 is the peak density. Here, we have considered the quantum pressure to be
important only for the fluctuations,

„2
4m2

r
 

r 2.n0 C ın/

n0

!
� „2
4m2

r
�r2ın

n1

�
; (12.19)

where the local density n0 is assumed to vary on a scale much longer than ın. The
rotational velocity field can be split into to parts, ıv � ıv0 C ıvp , where

ıv0 D 1

2	
Oz 	 S (12.20)

is the zeroth-order drift velocity, which results from taking d=dt D @=@tCıv�r D 0

in Eq. (12.18) and the vector S is defined as

S D �grınC „2
4m2

r
�r2ın

n1

�
: (12.21)
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The polarization velocity ıvp is the first-order correction to the drift velocity (12.21)
and satisfies the following equation

�
@

@t
C ıv0 � r

�
ıv0 D �2	 	 ıvp; (12.22)

which yields

ıvp D � 1

4	2

@S?
@t

� 1

8	3
.Oz 	 S/ � r?S; (12.23)

where S? D .Sx; Sy/ is the transverse component of S. The continuity equa-
tion (12.17) can be written in the following fashion

d

dt
lnnC r � ıvp D 0; (12.24)

where the material derivative can be approximated as d=dt � @=@t C ıv0 �
r . Using the fact that lnn � ln n0 C �, where � D ın=n1, and putting
equations (12.20), (12.23) and (12.24) together, one obtains

�
1 � r20r2

? C 1

2
r20 �

2r4
?
�
@�

@t
C 2	

˚
 ; � � r2 C lnn0

� D 0: (12.25)

This equation is formally similar and generalizes the Charney equation [10], also
referred in the literature as Charney-Hasegawa-Mima (CHM) equation, which is
widely used in the study of the dynamics of waves and turbulence in plasmas and in
the atmosphere. Here, r0 D cs=2	 represents the generalized Rossby radius and

 D r20� � r20 �2r2�=2: (12.26)

The operator fa; bg D r�1.@ra@�b�@rb@�a/ is simply the Poisson bracket in polar
coordinates and � represents the angular coordinate. Eq. (12.25) describes hydrody-
namic drift waves in a rapidly rotating Bose Einstein condensate and includes new
features relatively to the CHM equation. Namely, the terms proportional to �2 cast
the effects of the zero-point pressure, which are known to play no role in geophysics.
According to typical experimental conditions in condensates, we estimate the sound
speed to be cs � 1mm/s, 	 � !? � 2� 	 65Hz [7], a transverse harmonic
oscillator radius of aho � 1:7�m and a Rossby radius around r0 � 1:2�m. The
Rossby number, Ro, defines the ratio of the inertial to Coriolis forces

Ro D cs

Lf
; (12.27)

where L is a typical length of the system and f is the Coriolis parameter [10]. We
now show that a rotating BEC can sustain a new fluid mode corresponding to a drift-
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acoustic wave. For that purpose, we keep only the linear terms in Eq. (12.25), and
look for perturbations of the form � � ei.k�r�!t/. The respective dispersion relation
is then readily obtained and reads

! D �vRk�
1C �2k2=2

1C r20k
2.1C �2k2=2/

; (12.28)

where k� D .k � e� / is the polar (or zonal) component of the wave vector
k D .kx; ky/. The term vR D �2	r20@r lnn0 is the generalized Rossby (drift)
velocity. Because the equilibrium profile is generally smooth, we expect vR to
be small (as compared with the Bogoliubov speed cs), which suggests that these
waves appear as low frequency oscillations (compared to both !? and 	). The
dispersion relation (12.28) is similar to the expression for barotropic Rossby waves
in the atmosphere [26] and to the dispersion relation obtained for drift waves in
a magnetized plasma [16]. For long wavelengths r20 k

2 � 1 (and consequently
�2k2 � 1), Eq. (12.28) reduces to the zonal flow dispersion relation ! � �k�vR.
One of the remarkable features of the zonal, transverse acoustic, waves is that
of having negative zonal phase and group velocities, c.ph/� D c

.g/

� � �vR. It
means that they propagate always “westward” with respect to the rotation of the
condensate, which explains the negative values for the frequency in Eq. (12.28). For
short wave lengths, one obtains the dispersion relation for the (actual) Rossby waves
! � �vRk�=

�
r20k

2
	
, with phase and group velocities approximately given by

c
.ph/

� � � vR
r20k

2

c
.g/

� � vR
2k�=k � 1

r20 k
2

; (12.29)

In Fig. 12.3, we plot the dispersion relation (12.28) for different values of the healing
length �, using hvRi D 0:1cs , where hvRi is the mean Rossby velocity inside the
cloud. This procedure is similar to a local density approximation, which is valid for
sufficiently smooth equilibrium profiles.

Although a single Rossby wave of arbitrary amplitude is a solution of Eq. (12.28),
a superposition of waves, generally, is not. The nonlinear interaction between waves
leads to a mechanism of spectral energy transfer. To study the wave interaction prop-
erties, one decomposes the solution into its Fourier series, �k D P

k
Q�k exp.ik � r/

which, after plugging into Eq. (5.98), yields the following nonlinear equation

@ Q�k

@t
C i!k Q�k D

X

k1;k2

ƒk
k1;k2

Q�k1
Q�k2 ; (12.30)

where

ƒk
k1;k2 D 2r20

�
1C �2k21=2
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1C r20k

2
2 C r20 �

2k42=2
	

1C r20k
2 C r20 �

2k4=2
ı .k1 C k2 � k/ .k2 	 k1/ �	

(12.31)
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Fig. 12.3 Dispersion relation
of the Rossby waves in a
rapidly rotating BEC, for
vR D 0:1cs . It is clearly
shown that phase speed is
generally negative. The blue
full line corresponds to the
Thomas-Fermi case, � D 0.
The black dashed and red full
lines respectively correspond
to � D 0:7r0 and � D 1:3r0

is the nonlinear coupling operator, and !k is given by Eq. (12.28). Only waves that
satisfy the condition k1 C k2 D k interact nonlinearly with each other. The set
of the waves satisfying this condition is known in the literature as a resonant triad.
This resonance mechanism is able to transfer energy between different length scales,
being one of the sources of classical turbulence in plasmas and in the atmosphere
[16, 25]. Here, due to the existence of additional terms that properly account for
the quantum hydrodynamical features of the system, i.e., when large variations of
the density profile are present, Eq. (12.30) may be used to describe turbulence in
rotating Bose-Einstein condensates, opening a stage to explore the similarities and
differences between classical and quantum turbulence.

Another interesting feature of the Rossby waves in Bose Einstein condensates
is the possibility of finding localized structures, which may result, for example,
from the saturation of the triadic resonance mechanism mentioned above. Such
purely nonlinear solitary structures can be obtained from the stationary solutions
of Eq. 5.98, which readily yields

�
1C �2

2
r2?
�˚
�;r2?�

� � �2

2

˚
�;r4?�

� D 0: (12.32)

In the Thomas-Fermi limit, the latter expression simply reduces to f�;r2?�g D 0,
which is satisfied for a family of functions r2?� D F.�/, where F.�/ is an
arbitrary function of its argument. The different choices for F will lead to different
structures, which describe many physically relevant nonlinear stationary solutions.
For example, for the choice F.�/ / exp.�2�/, Stuart [29] showed that the so-
called “cat-eye” solution describes a vortex chain in a magnetized plasma sheet,
which has been observed experimentally in mixing layer experiments [8]. However,
in the present case, there are physical limitations that impose specific constraints
to the choice of the solutions. In particular, as discussed in [13], the equilibrium
profile associated with the potential in Eq. (12.16), which is given by n0.r/ D
n1.R2C � r2/.r2 � R2�/, where the peak density is n1 D ˇ„!?=2g, must vanish
at the Thomas-Fermi radii defined as follows
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a b

c d

Fig. 12.4 Nonlinear stationary solitary wave resulting from the saturation of the triad resonant
decay of Rossby waves, obtained for 	 D 2:4!? and ˇ D 1:6: (a) 
 D 0:2„!? and (c)

 D �0:2„!? . Plots (b) and (d) respectively compare the radial structures (full lines) of (a) and
(c) with the corresponding Thomas-Fermi equilibria (dashed lines) discussed in the text, obtained
for the same set of parameters

R2˙
a2ho

D 	2 � !2?
2ˇ!2?

˙
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�
	2 � !2?
2ˇ!2?

�2
C 2


ˇ„!? ; (12.33)

where 
 represents the chemical potential. For 
 > 0, the radius R� is purely
imaginary and the density vanishes at R D RC, while for 
 < 0 both R� and RC
are present. This reflects the transition occurring at 
 D 0, where a hole forms in the
centre of the condensate and the equilibrium profile assumes an annular shape. The
simplest nonlinear structure that verifies such constraints is obtained for F.�/ D
���, and the respective radial solution, for ` D 0, yields �.r/ D AJ0.�r/ C
BY0.�r/. The values of �, A and B are such that the solution vanishes at the radii
R˙. In Fig. 12.4, we plot two possible solitary structures in the overcritical rotation
regime 	 > !?, obtained for both 
 > 0 and 
 < 0. It is interesting to observe
that, even for the same set of parameters, the resulting solitary structures may differ
from the usual Thomas-Fermi equilibrium profiles discussed before.
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12.5 Rossby-Tkatchenko Modes

We have seen that a rotating condensate has at least two types of oscillating modes,
the Tkachenko modes and the Rossby modes. It is therefore legitimate to consider
the possible existence of a more general dispersion relation, which reduces to
the two distinct modes when we take appropriate limits. The search for such a
general result is not obvious and we propose here to solve the problem by using a
simple regression method. As a starting point of this methods we can start from the
dispersion relation for the Tkachenko modes, as determined by the second solution
in (12.13). It can be easily realized, by doing a regression Fourier analysis, that this
dispersion relation can be directly derived from the density wave equation

�
4	2 � c2sr2?

	 @2 Qn
@t2

C c2s c
2
Tr4? Qn D 0 (12.34)

where Qn is the perturbed fluid density. By assuming Qn / exp.ik � r? � i!t/ we
immediately recover (12.13). Similarly the linear dispersion relation for the Rossby
waves (12.28) can be rewritten, in the long wavelength limit �2k2 � 1, in the form

! D � 2	c2s ˇk

4	2 C c2s k
2
; (12.35)

where ˇ D @r ln n0. Again, a similar regression Fourier analysis will lead to the
wave equation

�
4	2 � c2sr2

?
	 @ Qn
@t

� 2	c2s ˇ
@ Qn
@�

D 0: (12.36)

It is important to notice the striking similarities between the two wave equa-
tions (12.34) and (12.36). This allows us to combine them into a single equation, as

�
4	2 � c2sr2?

	 @2 Qn
@t2

� 2	c2s ˇ
@2 Qn
@�@t

C c2s c
2
Tr4? Qn D 0: (12.37)

For a wave perturbation with frequency ! and wavenumber k, we obtain from here
the Rossby-Tkachenko dispersion relation, as

! D
�2	c2s ˇk� C

q
	2c4s ˇ

2k2� C c2s c
2
T k

4.4	2 C c2s k
2/

4	2 C c2s k
2

; (12.38)

Notice that when we neglect the effects of the lattice, cT ! 0, this reduces to the
Rossby modes (12.36). On the other hand, in the limit of a uniform condensate, such
that ˇ ! 0, we recover the Tkachenko modes. This generalized dispersion relation
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a b

Fig. 12.5 Dispersion relation for the Rossby-Tkachenko modes in a rotating vortex, for cT D
0:2cs . (a) Homogeneous case. for comparison we reprent the Rossby dispersion curve (dashed
line) and the Tkachenko dispersion curve (full line); (b) Trapped case: Eigen-frequencies obtained
for the compatible wavenumber k0 D 5:45=T? . From top to bottom, l D 5; l D 3 and l D 0

is represented in Fig. 12.5a, for k D k� , where a comparison is made with our two
previous dispersion curves. We can see that the Tkachenko term dominates for large
wavenumbers, and the Rossby terms for low wavenumbers.

Let us now discuss finite effects. As already mentioned, the inhomogeneity
imposed by the trap plays an important role in the experiments, and may be the
key to the detection of these Rossby-Tkachenko modes. We have seen that the
equilibrium condition in the harmonic trap can be described by a parabolic profile,
valid in the Thomas-Fermi approximation, as

n0.r/ D n.0/

�
1 � r2

R2?

�
; R? D

p
2cs.0/q
!2? �	2

; (12.39)

where R? is the size of the condensate under rotation, and cs.0/ the sound velocity
at the centre of the trap. The mode frequencies corresponding to such a profile can
be obtained by replacing the parameter ˇ in Eq. (12.38) by its mean value hˇi, taken
over the entire profile of the condensed cloud, as defined by

hˇi D 2

R2?

Z R?

0

1

n0.r/

dn0.r/

dr
rdr D �4.� � 1/

R?
(12.40)

On the other hand, the poloidal wavenumber k? is replaced by lk0, where l is the
mode “winding” number. In order to find the compatible wavenumber k0, we can
now use the following argument [9]. For slow rotations, such that 	 � !?, the
basic periodicity in the medium will be the vortex interspacing in the lattice, or

lim
	!0 !.k0/ D 8�p

3

cT

R?
; (12.41)
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which leads to the value k0 D 5:45=R?. Replacing this and (12.40) in the dispersion
relation, we can estimate the vibration of the lattice as a function of the rotation
frequency 	. The result is represented in Fig. 12.5b. As shown in this figure, the
difference between the original Tkachenko modes (l D 1) and the present Rossby-
Tkachenko modes is very small for the rotation rates	=!? � 0.85–0.99, as used in
the experiments [11]. A deviation from the Tkachenko modes will therefore become
more evident for l > 1 and 	=!? � 0.6–0.8.

12.6 Coupling with Photon OAM States

The excitation of rotating condensates can be made by using laser beams with orbital
angular momentum. Let us first briefly discuss the properties of the orbital angular
momentum for electromagnetic radiation and then consider the coupling with the
condensate. In classical physics, the angular momentum J of the electromagnetic
radiation is defined by [17]

J D �0

Z

vol
Œr 	 .E 	 B/� dr: (12.42)

This quantity can be split into two distinct terms,

J D
Z

Jk
dk
.2�/3

; Jk D �0

2

4
X

j

E�j;k .k 	 rk/ Aj;k C �E�k 	 Ak
	
3

5 ; (12.43)

where Jk is the angular momentum associated with each photon state of wavevector
k, and j D x; y; z represent the three components of the electric field E and
of the vector potential A. The last term in the expression of Jk represents the
polarization or photon spin, Sk, while the first term is the usually ignored orbital
angular momentum Lk. The corresponding quantum operators are

Sk D �i„a�kak
�
e�k 	 ek

	
; Lk D �i„

X

j

a
�
j;k .k 	 rk/ aj;k; (12.44)

where a�k and ak are the creation and destruction operators of the photon state k.
For photon propagation along a given direction z, we can introduce the unit vector
e˙ D .ex ˙ iey/=

p
2 and ez, allowing us to write the spin operator for the left

and right circular polarization states as S D ˙„a�aez, and for the longitudinal
polarization as S D 0. This last polarization state is absent in vacuum, or in a
neutral medium, but it exists in a metal or in a plasma, where it corresponds to a
longitudinal photon, or plasmon. We know that, in general, the eigenstates of the
photon angular momentum can be written as [5]

J 2Yjm D j.j C 1/Yjm ; (12.45)
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where the eigenfunctions Yjm can be expressed in terms of spherical harmonics.
But this is usually not very practical, because we usually think in terms of the
plane wave presentation of the photon field. The situation simplifies when we deal
with a laser beam, where the electromagnetic field can be represented in a basis of
orthogonal Laguerre-Gauss (LG) functions. It as recently been demonstrated that
each LG-mode corresponds to a well defined value of the axial orbital angular
momentum Lz D „l . This is the reason why the study of photon orbital angular
momentum became so popular in recent years [2]. This concept has been studied
both in theory and experiments in nonlinear and quantum optics. Its extension to
scalar quasi particles, such as plasmons and phonons has also been considered [23].
In the paraxial approximation, a laser beam with frequency ! can be written as a
superposition of LG-modes, in the form

E.r; t/ D
X

pl

Epl .r/ exp

�
�i!t C i

Z z

k.z0/d z0
�
; (12.46)

where ! D kc, and l and p are integers. In cylindrical variables r � .r; '; z/, the
modes Epl .r/ can be described by

Epl.r; '; z/ D CplX
jljLjljp .X/ exp.�X=2/eil'; (12.47)

with Cpl standing for a normalization factor and X D r2=w2.z/. Here, w represents

the laser beam waist, and Ljljp .X/ represent the modified Laguerre polynomials, as
defined by

Llp.X/ D exp.X/

p

dp

dXp

�
XlCp exp.�X/
 : (12.48)

By choosing the appropriate normalization factor, Cpl we obtain the orthogonality
condition

Z 1

0

rdr

Z 2�

0

d'E�plFp0l 0 D ıpp0ıl l 0 : (12.49)

Of particular interest is the field mode corresponding to p D 0; l D 1 mode, which
can be simply written

Epl .r; '; z/ D rp
�w20

exp

�
� r2

2w20

�
ei'; (12.50)

where the waist was assumed constant and equal to its focal value w0. Coupling of
this field with the atoms subsequent rotation of the condensate as been observed in
recent years [1, 4, 27].
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Chapter 13
Quantum Coherence

In this chapter, we explore the topic of matter wave interferometry and of quantum
coherence, which plays a central role in quantum theory and is also used for
many experimental applications. Atom interferometers are briefly discussed, and
decoherence processes are introduced. We then consider decoherence of atom
interference fringes, associated with quantum fluctuations of gravitational space-
time. In the frame of the quantum theory of gravitation, still under construction,
a fluctuating space-time foam should exist at the Planck space-time scale. Based
on recent theoretical models, we speculate on the possible observation of quantum
gravitational fluctuations, by using matter wave interferometry. Finally, the inter-
ference and tunneling of two condensates, confined in nearby potential wells, is
considered, and the condensate analogue of Josephson oscillations is described.

13.1 Atom Interferometry

Atom interferometers have been inspired in the optical interferometers, and in some
sense are based on the same configurations, although we can also find conceptual
differences such as those associated with the fact that we can more easily confine
atoms in a volume, than photons. Matter wave interferometry has been first proposed
for electrons [1] and neutrons [2]. Early proposals for atom interferometry date from
the mid 1980s. Both the history and the concepts have been reviewed in detail [3].
The advantage of atom interferometers with respect to their optical counterpart is
the much smaller value of the atom wavelength, typically 104 times smaller than
the wavelength of visible photons. Atom interferometers can be also used with a
very low momentum uncertainty, by using atom clouds in MOTs or Bose Einstein
condensates. The momentum uncertainty can be estimated by �p ' p

T=2M ,
where T is the temperature (in energy units). For instance, for Na atoms at a
temperature of T � 100�K, we have �p � 10„!=c, where ! is the frequency
of the cooling laser. For a condensate, with T � 10�8 K, we would have�p � 0:1.

J.T. Mendonça and H. Terças, Physics of Ultra-Cold Matter, Springer Series on Atomic,
Optical, and Plasma Physics 70, DOI 10.1007/978-1-4614-5413-7 13,
© Springer Science+Business Media, LLC 2013
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One of the basic elements of an atom interferometer is the light grating, which
is made of two counter-propagating optical beams. The atoms interacting with such
grating suffer a quantized diffraction. This possibility was first suggested by the
famous work of Kapitza and Dirac [4], who considered electron wave functions.
It was first demonstrated for atoms by Moskowitz et al. [5], and later applied
to condensates [6]. For a two-level atom, interacting with an optical grating with
detuning� D ! � !a, we have an effective optical potential of

V.r/ D „
2

	2
R.r/

.2�C i�/
; (13.1)

where 	 D pab � E=„ is the Rabi frequency and � the atomic decay rate. This
potential is proportional to the laser light intensity associated with the grating,
I.r/. In this expression, the real part is associated with the ac Stark effect, and the
imaginary part to spontaneous scattering. The simplest configuration that we can
imagine for a light grating corresponds to that of two laser beams with the same
frequency, forming a standing wave pattern with a periodicity given by the wave
vector kG D k1 C k2. This is usually called an optical lattice.

Several different regimes of atom diffraction can be found, depending on the size
of the light grating, and on the strength of the scattering potential V.r/. The relevant
scale length of the optical grating is the grating period d D �c=!. This has to
be compared with the de Broglie wavelength of the atom, �B . An optical lattice is
considered thick if the laser beams are larger than d2=�B . For a thin grating, we can
observe Kapitza-Dirac scattering. In what concerns the potential strength, we should
compare its maximum value, Vmax with the typical energy scale of the grating, EG ,
as given by

EG D „2k2G
2M

D 4„!rec; (13.2)

where „!rec is the recoil kinetic energy associated with the emission or absorption
of a photon from the standing wave lasers. For shallow optical lattices, such that
Vmax � EG , we can observe a typical Bragg diffraction. In contrast, for deep
optical lattices, we will have atom channeling. These different regimes are briefly
described next.

First, we consider a thin grating, where the Kapitza-Dirac scattering is taking
place. In this case, the atom interacts with light for a short time � . As a result of such
interaction, the atom is excited into different momentum states, which are multiples
of „kG . The probability for finding the atom in these diffracted states is given by

Pn D J 2n .	
2
R�=2�/; (13.3)

where n is integer, and Jn are the first order Bessel functions. This is valid for normal
incidence of the atom on the grating. This is also valid under the so-called Raman-
Nath approximation, which states that the transverse motion of the atom stays small
in comparison with its longitudinal motion. For a standing wave with a parabolic
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profile near the laser beam axis, this approximation is valid for small interaction
times � such that

� <
1

2

q
.	2

R C�2/1=2EG=„: (13.4)

If the interaction time is longer, the excitation of momentum states with large n is
suppressed by phase mixing.

In the opposite case of thick gratings, we have Bragg diffraction. In this case,
we need to consider the full matter wave propagation of the atom wave function
inside the periodic optical potential. Diffraction will then occur at a specific angle,
�B , defined by the well known Bragg’s formula

n�B D 2�

kG
sin �B: (13.5)

The probability for light scattering through the Bragg angle is determined by

P.�/ D sin2
�
	2
R

4�
�

�
: (13.6)

The temporal oscillations predicted by this expression have been experimentally
observed. For higher order n > 1 Bragg diffraction, the probabilities are given by

Pn.�/ D sin2
(
Œ.n � 1/Š�2

2.4n�3/
	2n
R �

n!.n�1/rec �

)
: (13.7)

This expression is valid for large detuning,� � n2!rec.
The Bragg diffraction regime described above is only valid for weak optical

potentials. In the case of a strong potential, such that Vmax > EG , the atoms become
trapped in the standing optical potential well, and can be guided through the optical
crystal without being diffracted. This effect has been observed in both charged
particle beams in material crystals and neutral atoms in optical lattices.

13.2 Time Interferometry

Many interesting effects arise in atomic interferometry when the system is
modulated in time. Contrary to the case of light, where all wavelengths propagate at
the same speed c, the vacuum itself constitute a dispersive medium for atoms when
time modulation is applied. Therefore, two matter wave components interfering at
.x; t/ may have propagated from the same x but originated from there at different
times t , if they have different velocity. Time-dependent boundary conditions
can cause matter wave diffraction phenomena in time that are similar to spatial
diffraction phenomena arising from spatially dependent boundary conditions.
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This is in close connection to the concepts of time refraction [7] and time diffraction,
which are associated to the temporal change of the optical properties of a dielectric
medium. A first description of time diffraction was due to Moshinsky [8], who
argued that temporal equivalent of Fresnel fringes can occur with matter waves
after opening a shutter. Similarly, an opening and closing of a shutter results in
a single slit diffraction in time; two successive openings makes a double slit; of
course, a periodic change in the opening of the slit produces a diffraction pattern in
time. As in the case of spatial diffraction, time diffraction can also exhibit both near-
field and far-field regimes. Moreover, depending on the duration of the interaction
(interference time), one may also observe Bragg and Raman-Nath regimes.

To illustrate some particular features of time interferometry with cold atoms,
we discuss the case of an interferometer that uses optical standing waves as phase
gratings operating in the time domain [9]. Let us consider that two electric pulses of
equal amplitude E and frequency ! propagate inside the cold atomic gas, initially
prepared with a velocity v0. The time-dependent Hamiltonian of the laser-atom
field is

H.x; t/ D p2

2M
C OVint.x; t/; (13.8)

where Vint.x; t/ D „	.t/ sin.kx/ and

	.t/ D .
E/2

8„2� (13.9)

is the Rabi frequency, 
 is the off-diagonal dipole matrix element and � D ! �
!a is the detuning with respect to the atomic transition. Immediately before the
interaction, the atom can be described by a plane wave

 .x; 0�/ D eik0x: (13.10)

For a short pulse of duration � , the kinetic term p2=2M can be neglected provided
that

�!rec �
p
!rec	.t/� � 1; (13.11)

which is equivalent to a temporal “thin grating” condition (or to the so called
Raman-Nath approximation [10]). Under this approximation, the wave function
takes the following form under the action of the Hamiltonian (13.8)

 .x; 0C/ D ei�1 sin.kx/Cik0x; (13.12)

where the pulse integral is given by

�1 D �
Z �

0

dt 	.t/: (13.13)
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In order to compute the temporal evolution of the wave function for t > 0C, we
Fourier expand the initial solution (13.12). Noting that each Fourier component is
associated with the eigenvalue „.nq C k0/

2=2m, one obtains

 .x; t/ D ei.k0x�!0t/
X

n

Jn.�1/e
ink.x�v0t/e�in2!rect ; (13.14)

where !0 D !rec.k0/ D „k20=2M . After one period, i.e. for t D T , a second
standing wave is applied, such that the resulting evolution is given by

 .x; t/ D ei.k0x�!0t/
X

n1;n2

Jn1.�1/Jn2.�2/ e
in1kv0T ei.n1Cn2/kŒx�v0.t�T /�	

	 e�in21!recT e�i.n1Cn2/2!rec.t�T /; (13.15)

The corresponding atomic density �.x; t/v0 D  �.x; t/ .x; t/ with initial velocity
v0 is therefore given by

�.x; t/ D
X

n1;m1;n2;m2

Jn1.�1/Jm1.�1/Jn2.�2/Jn2.�2/	

	 e�i.n1�m1/kv0T eiŒ.n1Cn2/�.m1Cm2/�kŒx�v0.t�T /�	
	 e�i.n21�m21/!recT e�i Œ.n1Cn2/2�.m1Cm2/2�!rec.t�T /: (13.16)

Because we have implicitly assumed that the wave vectors of the standing waves,
k1 and k2, have the same direction, we only retain the terms involving eikx such
that .n1 C n2/ � .m1 C m2/ D 1. Moreover, averaging the atomic density matrix
over an initial velocity distribution assuming that khuiT � 1, the only nontrivial
contributions to Eq. (13.16) occur in the vicinity of echo times tN D .N C 1/T .
Therefore, one only needs to cast the terms at times t D tN C �t , where �t is a
delay accounting for the velocity broadening and fulfills the following relation

�t D 1

khui � T: (13.17)

Finally, the Fourier transform of the density matrix, or simply the interference
signal, reads

Q�.k;�t/ D i.�1/NC1he�ikv0�t iJN Œ2�1 sin.!rec�t/�	
	 JNC1Œ2�2 sin.N!recT C !rec�t/�: (13.18)

Assuming that the atoms follow a Maxwellian velocity distribution

he�ikv0�t i D e�.khvi�t=2/2 ; (13.19)
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Fig. 13.1 Illustration of the interference signal (13.20) as function of the delay time for a time-
interferometry setup with 85Rb atoms cooled down to �150�K, and a period of T � 800�s.
Black, red and blue curves are respectively obtained for N D 1, 2 and 3 echos

and equal pulse durations, �1 D �2, together with the assumption of small recoils
!rec � khvi � 1=�t , we have

Q�.k; t/ ' .�t/N e�.qhvi�t=2/2JNC1 Œ2�2 sin.N!recT /� : (13.20)

In Fig. 13.1, we plot the expected signal for N D 1; 2 and 3. The parameters are
taken from Ref. [9] and correspond to an experiment made with 85Rb atoms.

13.3 Decoherence Processes

In be above discussion we have considered perfect interference processes, leading
to ideal interference fringes. How this well defined wave phenomenon can be
destroyed partial or totally by the environment is our concern here. Destruction
of quantum coherence is an important ingredient of quantum mechanics, because
without decoherence we could not even talk of single atom wave functions. It is
therefore useful to approach the decoherence processes as intrinsically associated
with any quantum measurement. Therefore, decoherence is a central piece of
quantum theory (see for a review [11]).

Young’s double-slit experiment provides the basis for quantum interferometry
and helps to identify the different decoherence processes that can lead to the
destruction of the interference patterns. The degree of decoherence depends on
the interaction between the atom and the environment surrounding the double-slit
system, therefore coupling the atom quantum states of motion (associated with
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Fig. 13.2 Young’s two-slit
experiment for matter waves,
with a path detector system

the different atom paths) with the quantum states of the environment. Here we
follow the approach proposed by Tan and Walls, which identifies the environment
with a “path detector” [12]. In order to discuss decoherence, we consider Young’s
experiment for atoms with mass M , to which we attach the path detector system,
allowing to determine which path was actually followed by the atom (see Fig. 13.2).
The atom propagates initially at z < 0, with momentum p D „kez. We assume
that the perturbations ık? introduced by the slits are small in comparison with the
initial momentum. The slits are located at positions x1 D d=2 and x2 D �d=2,
according to the usual Young’s configuration. We assume that the quantum state of
the atom after passing the slits is a superposition of position eigenvalues, and can be
written as

j 0i D 1p
2
.j 1i C j 2i/ (13.21)

where j 0i � j .t D 0/i, and t D 0 is the instant of the interaction with the
infinitesimally thin double-slit screen located at position z D 0. After moving into
the region between the slitted and the detection screens, the atom attains the screen
at z D L, where the detectors are located, with a final state vector determined by

j .t/i D U.t/ j 0i ; U.t/ D exp

�
� i„

p2

2M
t

�
: (13.22)

This allows us to write

j .t/i D 1p
2

Z 1

�1
Œ 1.x/C  2.x/� jxi dx; (13.23)

with

 j .x/ D hxjU.t/ ˇ̌ j
˛ D Cj exp

�
i
M

2„t .x � xj /2
�
; (13.24)
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where Cj are normalization factors. Here,
ˇ̌
 j .x/

ˇ̌2
can be regarded as the

probability for detection of the atom at position x on the final screen, if the atom
passed through the slit j D 1 or 2. Noting that the time of flight between the slitted
screen and the final screen is ML=pz, we can write

 j .x/ D Cj exp

�
i
k

2L
.x � xj /

2

�
: (13.25)

The total probability density to detect the atom at the position x is then given by the
square of the projection of (13.22) on the eigenstate jxi. In explicit terms, we have

jhxj .t/ij2 D 1

2

n
j 1.x/j2 C j 2.x/j2 C 2< �

 �1 .x/ 2.x/

o
: (13.26)

Using (13.25), we obtain

jhxj .t/ij2 D 1C cos

�
kd

L
x

�
; (13.27)

which describes the interference fringes, in the absence of decoherence. Let us now
include the effect of the background medium, represented by our path detector,
which is assumed initially in some pure quantum state jD0i. The passage of the
atom will eventually excite it to the states

ˇ̌
Dj

˛
, for j D 1 or 2, according to the

slit used by the atom path. The atom and the detector (the medium) will become
entangled and the total quantum probability for the total system is now given by

jhxj .t/ij2 D 1

2

n
j 1.x/j2 C j 2.x/j2 C 2< �

 �1 .x/ 2.x/ hD1jD2i

o
: (13.28)

We can see that, due to the presence of the path detector, the interference term is re-
duced by the factor hD1jD2i, introduced by the presence of a background medium,
the path detector system. In the limit of orthogonality, such that hD1jD2i D 0, the
fringes will simply disappear from the screen. This means that, in this case it will be
possible to determine which slit was used by the atom path, because the atom traces
its unequivocal mark in the detector system.

Let us now assume the the detector (or the environment) is described by a
continuum of states, such that

jDi D
Z

jˇidˇ: (13.29)

We then have, for each state jˇi, the probability to detect the atom at a position x
on the screen given by

jhxj .t/ij2ˇ D1

2

n
j 1.x/ hˇjD1ij2 C j 2.x/ hˇjD2ij2 C2<� �1 .x/ 2.x/ hD1jˇ ihˇjD2i


o
:

(13.30)
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By integrating this over all the possible states jˇi, we will recover Eq. (13.28)
for the total probability to find the atom at the position x. On the other hand, the
probability Pˇ , for the medium to be in a given state jˇi after the passage of the
atom, is given by

Pˇ �
Z

jhxj .t/ij2ˇ dx D 1

2



jhˇjD1ij2 C jhˇjD2ij2

�
: (13.31)

For each specific state of the path detector, we have a partial probability Pˇ.x/ D
jhxj .t/ij2ˇ to observe the atom at x. The visibility of the resulting fringes is
associated with the amplitude of the interference term in Eq. (13.30). Dividing this
amplitude by the probability to find the detector in this particular state, as given
by (13.31), we can define the parameter as

�ˇ D 2 jhD1jˇ ihˇjD2ij
jhˇ D1ij2 C jhˇjD2ij2

: (13.32)

This definition is a consequence of the conditional probability, P.xjˇ/ D
Pˇ.x/=Pˇ . The quantity �ˇ can be seen as the decoherence factor, associated
with the existence of interactions between the atom and the background medium,
that prevents the existence of ideal interference fringes as described by Eq. (13.27).
Decoherence or dephasing can be evaluated for a series of different interaction
processes between the atom and the environment, such as atom scattering from a
background gas, or photon scattering by an atom moving in a background radiation
spectrum. These two cases were analyzed by Uys et al. [13], where the decoherence
factor was defined as

�.d/ D
�Z

P.q/dq
��1 Z

P.q/ exp.�iq � d/dq; (13.33)

where P.q/ is the probability for a momentum change q of the atom, due to any of
these scattering processes, and d is the separation vector between the two arms of
the interferometer.

13.4 Gravitational Decoherence

We address here the fundamental question of quantum space-time fluctuations, and
their possible contributions to quantum decoherence. We expect the granulation of
the metric field to be observed on a time scale given by the Planck time, TP Dp„G=c5 ' 10�43 s, where G is Newton’s gravitational constant, or at the Planck
length LP D c�P ' 10�35 m. This is obviously impossible to observe, for any
conceivable experiment. However, we can use Einstein’s paradigm of the brownian
motion, and assume that microscopic fluctuations can be indirectly observed on a
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much larger macroscopic scale. In this way, the thermal fluctuations of the medium,
associated with random collisions of the unobserved atoms on a large brownian
particle, can change the character of its macroscopic motion, and therefore prove
although on an indirect way the existence of the atomic background.

Similarly, for the gravitational space-time, we can imagine a situation where
the brownian particle is replaced by a single atom, and the thermal fluctuations
are replaced by the metric fluctuations. The atomic wave function, and in particular
the measure of its coherence properties as observed by atom interferometers, can be
modified due to the existence of gravitational quantum fluctuations. This idea was
first advanced by Ellis et al. [14], who proposed the used of neutron interferometry.
Models for atom interferometry were proposed afterwards [15, 16]. In the absence
of a well established quantum theory of gravitation, we can base our estimations for
the gravitational decoherence on the assumption that the Minkowski metric tensor
�ab D diag.�1; 1; 1; 1/, is modified by the presence of a fluctuating scalar field A,
leading to a physical metric tensor of the form

g
� D .1C A/2�
�: (13.34)

This scalar field A, which can also be called a conformal field, is assumed to
described a broad spectrum of fluctuations which are due to the quantum nature
of space-time. The centre-of-mass motion of an atom with mass M in such a
background can be described by the relativistic wave equation

g
�r
r�� D
�
Mc

„
�2
�; (13.35)

where � is the Klein-Gordon wave function of the atom, and r
 is the covariant
derivative associated with the metric (13.34). This equation can be explicitly
written as

�
r2 � 1

c2
@2

@t2

�
� D .1C A/2

�
Mc

„
�2
� � 2@
 Œln.1C A/� @
�: (13.36)

The centre-of-mass motion of the atoms is usually non-relativistic, and we simplify
this result by assuming that p � cM , where p is the expectation value for the atom
momentum. Introducing a new wave function  such that

� D  exp

�
�i Mc

2

„ t

�
; (13.37)

we can derive a modified Schrödingier equation for the atom motion in the
background gravitational field, reading [17]

i„@ 
@t

D
�
� „2
2M

r2 C 3

2
A2
�
 : (13.38)
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We can see the appearance of a fluctuation potential term, which depends
quadratically on the conformal field fluctuations, A. We therefore have to discuss
the spectrum of these fluctuations. We can simply describe it as a superposition of
stochastic space-time fluctuations, thus considering the following properties for the
different spectral components

hA.k; t/i D 0;
˝
A.k; t/A.k0; t C �/

˛ D ı.k;k0/C.�/; (13.39)

whereC.�/ is the auto-correlation function, to be specified. It is related to the power
spectral density S.!/ by the well known relation

C.�/ D 1

.2�c/3

Z
!2S.!/ cos.!�/d!: (13.40)

This is in fact a space-time generalization of the usual Wiener-Khintchine theorem.
The atomic wavefunction decoherence will depend on the averaged quantity

˝
A2
˛
,

as shown by the quadratic term in the Hamiltonian of the equation Schrödinger
equation (13.38). This quantity will be determined by

˝
A2
˛ D

Z
S.k/

dk
.2�/3

; (13.41)

where ! D kc is used. This means that, in order to get an explicit value for the atom
decoherence we need to make a choice on the spectral function. A natural choice is
provided by an argument first considered in random electrodynamics [18], namely
that a function of the type S.!/ � 1=! is necessary to guarantee that the energy
spectrum of a massless field is Lorentz invariant. In the case of a conformal field,
we can use the expression

S.k/ D „G
2c2

1

!.k/
: (13.42)

This form has the appropriate dimensions, and is compatible with the energy density
resulting from the superposition of zero-point energy terms „!=2. Note that to
calculate the frequency integrals, we need to introduce a cut-off at !c D !P =�R,
where !P D 2�=TP is the Planck frequency. This is equivalent to assuming
that below a given length scale LR D �RLP , the probing particle (the atom) is
insensitive to the short wavelength fluctuations. This states the resolution of our
brownian particle to detect fluctuations. The correlation time of the conformal field
fluctuations can then be defined by the normalized integral over the frequency
spectrum, as

�R D �

	

Z !c

0

!4S2.!/d! ; 	 D
�Z !c

0

!2S.!/d!

�2
: (13.43)

With these considerations in mind, the atom decoherence can then be solved in terms
of the density matrix of the atom wave packet �.t/. The result takes the form [16,17]
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ˇ̌
ˇ̌ı�
�0

ˇ̌
ˇ̌ D 1

3

�
LP

LR

�3 �
M

MP

�2 �
T

TP

�
; (13.44)

where �0 � �rr0.0/ is the initial value of the off-diagonal elements of the density
matrix and ı� � �rr0.T / � �rr0.0/ is the difference observed after a dephasing time
T , where this time was assumed large with respect to the effective correlation time
�R ' �RTP . In order to see the eventual significance of this result, we consider a
simple but quite extreme case of matter wave interferometry, as that associated with
fullerene molecules, made of 70 carbon atoms, in order to increase the value of the
quantum particle M , and a dephasing time of T D 10�3 s, as those corresponding
to actually performed experiments [19]. In this case we can write

T ' 1040TP ; M � MC70 ' 10�17MP ;

ˇ̌
ˇ̌ı�
�0

ˇ̌
ˇ̌ ' 106

�3R
: (13.45)

This calculation could be used to estimate the scale length �R at which we can
probe the conformal field fluctuations, if we could identify a residual decoherence
not explained by any of the other possible decoherence mechanisms. For instance,
an observed coherence of ı�=�0 ' 0:01% would correspond to an observed scale
length of �R � 103.

Three different kinds of comments arise from this discussion. First, the possible
influence of the fluctuations of space-time is surprisingly close to the present
experimental conditions of matter wave interferometry; second, it will be very
difficult to isolate the different decoherence mechanisms that can be present in
a given experiment, although their dependence upon the different experimental
parameters could eventually help to identify some of them; the third comment
is related with the use of a conformal scalar field A to describe the space-time
fluctuations. We have neglected the zero-point fluctuations of the tensor field itself
g
� , which would also contribute to decoherence. It can be shown, based on general
arguments of conformal invariance [20], that the total gravitational Hamiltonian can
be written as a sum of two terms

H D
Z �HCF C HGW

	
d3x; (13.46)

where the Hamiltonian density HCF is associated with the conformal field, and the
second term HGW to the spin-2 gravitons, which are the elementary excitations
of the tensor field gab . The energy HGW

0 due to the zero-point fluctuations of the
graviton modes should exactly compensate the contribution of the conformal field
fluctuations, leading to the constraint [16]

HCF D �HGW
0 : (13.47)

This means that, for a given frequency !, a pair of gravitons with the same
zero-point energy „!=2, but in two orthogonal helicity states, should be canceled by



13.5 Josephson Tunneling of a Condensate 269

a conformal field quantum „!, thus maintaing the total zero state energy of gravity
as equal to zero. This is a very simple and powerful argument which could also be
used in other contexts. We can therefore conclude that the spin-2 fluctuations which
were neglected in the above model, contribute a the same level as the conformal
field fluctuations to the final decoherence in matter wave experiments.

A final remarks concerns the validity of the scalar-tensor model of gravity used
here and the very existence of a scalar field. It should be noticed that the existence
of scalar fields have not been confirmed by any direct astronomical observation. For
instance, retardation radio signal experiments by the Solar gravity imposed an upper
bound on the value of jAj < 10�3 [21]. More recently, general relativity tests made
with the Cassini spacecraft let to the result jAj < 10�5 [22].

On the other hand, and in contrast with this negative observational evidence,
many different theoretical arguments point to the possible existence of a scalar-
tensor theory of gravity, from unification and string theories to the origin of mass
and inflation. In a generic scalar-tensor metric theory, we can use a metric of the
form [23]

Qg
� D A2.�/g
�; (13.48)

where g
� is the Einstein metric and the conformal factor A.�/ is a real function of
the scalar field �. Coupling between the scalar field and matter is determined by the
quantity ˛.�/, defined by

˛.�/ � @a.�/

@�
; a.�/ D lnA.�/; (13.49)

The choice of a particular conformal metric (13.34) is thus compatible with this
general form. It can be shown that, if a significant scalar field existed in early stages
of the universe, these general scalar-tensor fields tend quite fast in time to a purely
relativistic metric [23], which is compatible with the absence of an observable scalar
field. On the other hand, even in the absence of a global scalar field, local excitation
of scalar fields and waves can become possible, due to non-stationary events such
as supernova oscillations and explosions [24].

13.5 Josephson Tunneling of a Condensate

Let us now consider the interaction between two distinct Bose Einstein condensates
and the associated coherence phenomena. It is useful to start with the case of
a condensate confined in a double potential well, as that defined by V.r/ D
V.r?/V .z/, where V.r?/ is the usual transverse harmonic potential, and the axial
potential V.z/ can be generically described by

V.z/ D �1
2

z2 C 1

4Š
�z4 � hz; (13.50)
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Fig. 13.3 Illustration of the
double well axial potential,
for 
 D � D 2, (a)
symmetric case, h D 0, and
(b) asymmetric case, h D 1

where 
; � and h are constants. See Fig. 13.3 for an illustration. Here we focus
on the symmetric case, corresponding to 
; � > 0 and h D 0. Inside this double
well, we have two possible atomic states j 1i and j 2i, corresponding to atoms
trapped in wells 1 and 2. Given the symmetry of the double well, these atomic states
have the same energy E0. We assume that the atoms can only occupy these ground
states, which is a valid assumption at very low temperatures. Calling a1 and a2
the operators that destroy these quantum states, we can describe the Hamiltonian
operator of the bosonic gas in the double well OH as [25]

OH D E0. ON1 C ON2/ � „
2
J


a
�
1a2 C a

�
2a1

�
CHint; (13.51)

where ONj D a
�
j aj are the number operators for the quantum states j D 1; 2, and the

parameter J determines the strength of the tunneling effect between the two wells.
We can see that the tunneling terms of OH create an atom state in a given potential
well and destroy an atom state in the other, thus satisfying the particle number
conservation. The last term in (13.51),Hint , represents the interaction between the
atoms inside each well, and can be written as

Hint D „
2
U
h ON1. ON1 � 1/C ON2. ON2 � 1/

i
; (13.52)

where the interaction constant is given by

U D U0

„
Z

j 1.r/j4 dr D U0

„
Z

j 1.r/j4 dr: (13.53)

In the absence of interactions, Hint D 0, the Hamiltonian (13.51) can simply be
written as

OH D E0. ONC C ON�/� „
2
J. ONC � ON�/; (13.54)
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where we have used the new operators

a˙ D 1p
2
.a1 ˙ a2/; (13.55)

and ON˙ D a
�

˙a˙ are the associated number operators. The eigenstates of this non-
interacting gas of bosons in the double potential well are determined by symmetric
and anti-symmetric state vectors

j ˙i D 1p
2
.j 1i ˙ j 2i/ ; (13.56)

with the corresponding eigenvalues

E˙ D E0 � „
2
J: (13.57)

The ground state of the system is therefore given by the symmetric state j Ci, and
the first excited state is j �i. At very low temperatures such that T � „J , the
system of N identical boson atoms will condensate in a state

j‰i D 1p
NŠ



a
�
C
�N j0i ; (13.58)

which corresponds to N atoms in the same symmetric state j Ci.
In the presence of atomic interactions, Hint ¤ 0, the generic situation is that of

a different mean number of atoms in the two wells, N1 ¤ N2, with N D N1 C
N2. We can describe the temporal evolution of the system by using the Heisenberg
representation, where the time-dependent operators aj satisfy the equations

da1

dt
D 1

i„ Œa1; H� ;
da2

dt
D 1

i„ Œa2; H� : (13.59)

Using Eq. (13.51) we can write the explicit form of these evolution equations as

da1

dt
D �i!0a1C i

2
Ja2�iU ON1a1 ; da2

dt
D �i!0a2C i

2
Ja1�iU ON2a2; (13.60)

with !0 D E0=„. If initially, at time t D 0, the mean number of atoms is different
N1 ¤ N2, the state of the system will be determined by a linear combination of
states j 1i and j 2i, as given by

jN1;N2; �i D �1 j 1i C �2e
i� j 2i ; (13.61)

where � is the relative phase, and �j are normalization factors defined as �j Dp
Nj=N , and satisfying �21 C �22 D 1. This allows us to define a phase state jN; �i

for the N bosons, by using a new creation operator defined by
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a
�

N1;N2;�
D �1a

�
1 C �2e

i�a
�
2: (13.62)

We can then write

jN; �i D 1p
NŠ



a
�

N1;N2;�

�N j0i ; (13.63)

or, in a more explicit and alternative form

jN; �i D
NX

N1D0;N2DN�N1

s
NŠ

N1ŠN2Š
�
N1
1 �

N2
2 e

iN2� jN1;N2i : (13.64)

This shows that the phase state jN; �i is a linear superposition of double Fock states
jN1;N2i, such that N1 C N2 D N . Such a phase state reveals the existence of
quantum correlations between the two parts of the condensate existing in a double
well confinement potential.

When the number of atoms in the condensed gas is large, N � 1, the operators
in the evolution equations (13.60) can be replaced by classical quantities. This
replacement can be formally justified by assuming that the state of the condensate is
described in terms of two coherent states j˛1i and j˛2i, such that aj

ˇ̌
˛j
˛ D ˛j

ˇ̌
˛j
˛

(see [25] for more detailed discussion). This means that we can replace the operators
aj in (13.60) by the complex numbers ˛j D p

Nj exp.i�j /, for j D 1; 2, where
we can choose �2 D �1 C � . We then get

d˛1

dt
D �i!0˛1C i

2
J˛2�iUN1˛1 ; d˛2

dt
D �i!0˛2C i

2
J˛1�iUN2˛2: (13.65)

Multiplying the first of these equations by ˛�1 , and the second one by ˛�2 , and
equating separately to zero their real and imaginary parts, we get from the imaginary
part

dN1

dt
D �J

p
N1N2 sin � ;

dN2

dt
D J

p
N1N2 sin �: (13.66)

On the other hand, the real part leads to two additional equations

d�1

dt
D J

2

s
N2

N1
cos � � !0 � UN1 (13.67)

d�2

dt
D J

2

s
N1

N2
cos � � !0 � UN2;

These equations show that, apart from the single atom potential frequency !0,
the phases evolve in time due to both quantum tunneling and atom interactions.
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Taking the difference between the two populations, n D N1 � N2 and the phase
difference between the two condensate parts, � D �1 � �2, we obtain the following
evolution equations

dn

dt
D �J

p
N2 � n2 sin �; (13.68)

and

d�

dt
D Jnp

N2 � n2 cos � C Un: (13.69)

It is important to notice that these two equations can be written in canonical form

dn

dt
D �@H

@�
;

d�

dt
D @H

@n
; (13.70)

whereH � H.n; �/ is the classical Hamiltonian defined by

H.n; �/ D �J
p
N2 � n2 cos � C 1

2
Un2; (13.71)

for the canonically conjugate pair of action-angle variables .n; �/. This is in fact
the Hamiltonian of a non-rigid pendulum, with a variable length proportional to the
quantity

p
N2 � n2, and angular momentum n.

Let us now discuss the physical meaning of these quasi-classical equations,
describing the evolution of the atom number difference between the two sides of
the double well, and the respective phase difference. First of all, we can define a
current of atoms flowing from the potential well 1 to the well 2, as

I D �dN1
dt

D dN2

dt
D �J

p
N1N2 sin �: (13.72)

We can see that this current is proportional to the quantum tunneling factor J , as
expected, but it also depends nonlinearly on the phase difference � between the
two condensed parts. Stationary states with no net current I D 0 correspond to the
two phase values � D 0 and � D � , which in fact are associated with the two
energy states j 1i and j 2i defined above. We can also see from (13.71) that the
lowest energy state is attained for n D 0, or N1 D N2. It is then useful to consider
how perturbations around these equilibria evolve in time. Assuming small deviations
from the equilibrium state n D 0 and � D 0, and expanding the Hamiltonian (13.71)
to the lowest order of these variables, we obtain the quadratic form

H.n; �/ D 1

2

�
U C J

N

�
n2 C 1

2
JN�2: (13.73)
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This local Hamiltonian describes a one-dimensional harmonic oscillator with
frequency

!J D
p
J.NU C J /: (13.74)

Such oscillations are formally similar to the Josephson oscillations associated with
the current between two superconductors separated by an insulator barrier. For a
non-interacting gas, with U D 0, or in the weakly interacting limit U � J=N ,
we get !J ' J , which coincides with the tunnel oscillating frequency of a single
atom in a double well. In the opposite case of strong atom interactions U � J=N ,
the oscillating frequency tends to the so-called plasma frequency, !J ' p

UJN ,
which in the case of Josephson junctions is associated with the Coulomb oscillations
between Cooper pairs. For negative interaction potential U < 0, corresponding
to attractive interactions, the frequency decreases with U and can even become
imaginary, leading to a collapse instability.
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Part III
The Physics of Ultracold Plasmas



Chapter 14
Ultra-cold Plasmas

Traditionally, the concept of plasma, is associated with a very hot gas. It is
sometimes considered that the basic four states of matter, solid, liquid, gas and
plasma, are the modern counterpart of the ancient elements: Earth, Water, Air and
Fire. So, the plasma state corresponds to the possible highest internal energy of the
medium, the star material being the most striking example. We can identify a plasma
with a medium containing a large fraction of free charged particles, which interact
between themselves by long range electromagnetic forces [1–3]. The Universe is
dominated by plasma. The solar corona is a very hot plasma with temperatures
around one million degrees Kelvin, from where a plasma flow called the solar
wind is emitted and propagates to very large distances, interacting with the Earth
magnetosphere. The Earth can be seen as a cold drop in the middle of a hot plasma
environment. In the last 50 years, plasma physics has been mainly driven by the
quest for a nuclear fusion reactor. It is known that fusion of light elements provides
the source of energy of the stars, and is the basis for the Hydrogen bomb, but its
use in a controlled and sustained way, for peaceful applications in electrical power
plants is still in the far horizon for mankind.

In recent years, this traditional view of a plasma as a very hot medium
dramatically changed when very cold plasmas were created by ionizing the ultra-
cold gas contained in a trap [4, 5], or even by ionizing a Bose-Einstein condensate
[6]. Electron temperatures in the range of 1–100 K, and ion temperatures of the
order or below 1 K could be achieved. This new area of plasma physics was recently
reviewed by Killian et al. [7]. In this first chapter devoted to ultra-cold plasmas,
we first examine the basic properties of the plasma medium and stress some of the
specific features of low temperature plasma creation and behavior. In subsequent
chapters we will analyze the plasma quasi-equilibrium and subsequent expansion,
and the basic properties of plasma waves.

J.T. Mendonça and H. Terças, Physics of Ultra-Cold Matter, Springer Series on Atomic,
Optical, and Plasma Physics 70, DOI 10.1007/978-1-4614-5413-7 14,
© Springer Science+Business Media, LLC 2013
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14.1 Different Plasma Regimes

An ionized gas usually contains ne electrons, ni ions and na neutral atoms (or
molecules) per unit volume. If the medium is electrically neutral, we should have
ne D Zni , where Ze is the charge of he ions. Such a medium can be characterized
by its degree of ionization fI , which is the fraction of ionized atoms, as defined by

fI D ni

ni C na
; (14.1)

It can obviously vary from a minimum of fI D 0 (neutral gas) to a maximum
of fI D 1 (fully ionized gas). Strictly speaking, the fully ionized gas is called a
plasma, a name first introduced in physics by Langmuir in 1928. But this name is
also frequently used for fI < 1. The ultra-cold plasmas are called ‘plasma’ in this
broad sense of the word.

In a weakly ionized plasma, the collision frequency between electrons and
neutrals, �ea, is larger than the electron-electron and the electron-ion collision
frequencies, �ee and �ei . These collision frequencies can generically be defined as

�ej D nj h
ej vei ; j D e; i; a; (14.2)

where ve is the electron velocity, nj the density of the various particle species j ,
and 
ej the collision cross-sections, usually a function of the electron velocity ve .
The average is taken over the electron velocity distribution.

The inequality �ea > �ee; �ei occurs when the degree of ionization is lower than
some critical value fI;c . For instance, in the case of Helium at a temperature of
1 eV ' 104 K, it is found fI;c ' 10�7 [8]. This counter-intuitive example shows
that interactions between charged particles can dominate over the interactions with
neutral atoms, even for very low ionization degrees, fI � 1. This is due to the fact
that long-range Coulomb interactions lead to much larger collision cross-sections
than the short-range electron-neutral interactions.

Another important plasma parameter is the coupling parameter � , which is the
ratio of potential to the kinetic energy of a given particle species ˛ D e; i (for
electrons or ions) in the plasma. It is defined by

�˛ D q2˛
4��0a˛T˛

; a˛ D
�

3

4�n˛

�1=3
; (14.3)

where qe D �e and qi D Ze are the electron and ion electric charges, and T˛
stands for the temperature of the species (in units of energy). Here we have also
introduced the Wigner-Seitz radius, a˛ , which corresponds to the mean separation
of two particles of the same species. For electron and ions, the coupling parameter
simply reads

�e D e2

31=3.4�/2=3�0

n
1=3
e

Te
; �i D Z2Te

Ti
�e: (14.4)
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For thermal equilibrium and single-ionized ions, we have �e D �i D � . Usually,
plasmas are produced with different ionic and electronic temperatures, and in the
particular case of ultra-cold plasmas, we usually have Te � Ti . This means that the
electrons can be weakly coupled (�e � 1), while the ions can be strongly coupled
(�i � 1). For large values of the ion coupling parameter �i > 1, the plasma starts to
behave as a liquid, and for larger values �i � 1, even Coulomb crystalization can
eventually occur.

At this point it is useful to introduce another useful plasma parameter, the Landau
distance, r˛. It is defined as the distance at which the electrostatic energy interaction
between two particles of the same species ˛ become equal to their thermal energy.
It simply relates with the coupling parameter as

r˛ D q2˛
4��0T˛

; �˛ D r˛

a˛
: (14.5)

If the Wigner-Seitz radius for a given particle species ˛, is smaller than the
corresponding Landau length, a˛ < r˛, the potential energy dominates over the
kinetic thermal energy, and these particles become strongly coupled.

Moreover, the plasma behaves as a classical fluid as long as its temperatures T˛
are larger than the corresponding Fermi temperatures TF˛. Assuming, for simplicity,
a plasma in thermal equilibrium (Te D Ti D T ), we can define a degeneracy
parameter, �, such that

� D TF

T
; TF D „2

2me

�
3�2

	2=3
n2=3e ; (14.6)

where TF is the Fermi temperature of the electron gas (equal to the Fermi energy
EF in energy units). It is useful to write this quantity in terms of the electron thermal
de Broglie wavelength �B , defined by

�B D „
mevth;e

; vth;e D p
T=me: (14.7)

The degeneracy parameter can then be written as

� D 1

2

�
3�2

	2=3 �
ne�

3
B

	2=3
: (14.8)

Quantum effects will therefore become important for � � 1. This relation can also
be written in terms of the electron Wigner-Seitz radius ae ,

� D 1

2

�
32�

4

�2=3 �
�B

ae

�2
: (14.9)
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This shows that quantum effects become important when the electron thermal de
Broglie wavelength becomes comparable to the inter-particle distance. In such case,
the wavefunctions of nearby electrons overlap, and quantum degeneracy cannot be
ignored.

In current experimental conditions for ultra-cold plasmas, we usually have
� � 1, allowing plasma to be described in the frame of classical physics. However,
in future experiments, density can eventually increase by a few orders of magnitude
leading to quantum plasma regimes. The discussion about quantum effects in
plasmas will be addressed in a later Chapter, for completeness.

14.2 Basic Plasma Properties

A local perturbation in the electron mean density will lead to oscillations in
the plasma medium. This can simply be described by using the hydrodynamics
equations, namely the electron continuity equation

@ne

@t
C r � .neve/ D 0 (14.10)

and the momentum conservation equation

�
@

@t
C ve � r

�
ve D e

me

rV; (14.11)

where the electrostatic potential V is determined by Poisson’s equation

r2V D � 1

�0

X

˛

n˛q˛ D e

�0
.ne �Zni/: (14.12)

In what follows, we assume that the ions are at rest due to their larger mass, mi �
me, and take the equilibrium ion density as ni0 D ne0=Z, where ne0 is the electron
equilibrium density, corresponding to a constant value of the potential. Taking the
electron density perturbation Qne D ne � ne0, which is assumed to oscillate at a
frequency !, as Qne / exp.�i!t/, we obtain the following linearized equations

Qne D ne0

i!
r � ve; ve D � e

i!me

rV; r2V D e

�0
Qne; (14.13)

which simply yield

 
1 � !2pe

!2

!
r2V D 0; !pe D

s
e2ne0

�0me

: (14.14)
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The quantity !pe corresponds to the electron plasma frequency. Equation (14.14)
simply shows that oscillations of the electron gas, such that r2V ¤ 0, can only exist
at the plasma frequency ! D !pe . The electron plasma period 2�=!pe provides the
characteristic time scale for the electron response to plasma perturbations.

The above discussion is valid for a homogeneous plasma medium. If we want to
consider center-of-mass oscillations of a finite plasma, for instance a cylinder or a
sphere, we first define the centre-of-mass position as

R.t/ D 1

Ne

Z

vol:
r ne.r; t/dr; Ne D

Z

vol:
ne.r; t/dr; (14.15)

where Ne is the total number of electrons in the plasma. From the above electron
fluid equations it is then possible to derive the centre of mass equation, of the form

d2R
dt2

� !2MR D 0; !M D A!pe; (14.16)

where the oscillating frequency is equal to !pe multiplied by a geometric factor A.
For a cylindrical plasma we have A D 1=

p
2, and for a sphere we have A D 1=

p
3.

This new oscillation frequency !M is usually called the Mie frequency. A similar
concept can be used in the case of ultra-cold atomic cloud, as shown in previous
Chapters.

Let us now discuss, in simple terms, the electron-ion correlations inside the
plasma. The medium is electrically neutral, and in equilibrium, the local neutrality
condition implies that ne0 D Zni0, yielding a vanishing net electric field. This
is of course valid on a large scale, because locally the electrons and ions interact
electrostatically, and local neutrality is lost at a microscopic scale. To illustrate
this statement, let us consider the local potential perturbation created by an ion,
located at the origin, r D 0. In its immediate vicinity, the electrostatic potential is
determined by Poisson’s equation (14.12), which we can rewrite as1

r2V D e

�0
Œne.r/ �Zni0� : (14.17)

Here, we have assumed that the electron density is disturbed only in the vicinity of
the ion, such that the average ion density remains constant. If the electron density
population is in equilibrium in the electrostatic potential created by the ion, we can
write

ne.r/ D ne0 exp.eV=Te/ ' ne0

�
1C eV

Te

�
; (14.18)

where we have assumed a weak potential eV � T , and taken ne0 D Zni0.
Replacing this in Eq. (14.17), we get

1To be consistent with the usual notation in plasma physics, we consider the temperature in units
of energy, by setting kB D 1 from now on.
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r2V D V

�2D
; �D D

s
�0Te

e2ne0
; (14.19)

where the quantity �D is the electron Debye length. Assuming spherical symmetry
for the potential created around the ion, we are reduced to the radial equation

d

dr

�
r2
dV

dr

�
D r2V

�2D
; (14.20)

which possesses the following general solution

V.r/ D 1

r

�
Ae�r=�D C Ber=�D

	
: (14.21)

Imposing the vanishing potential condition at infinity, V ! 0 as r ! 1, and the
unscreened Coulomb potential V ! Ze=.4��0r/ in the immediate vicinity of the
ion, r ! 0, we find A D Ze=4��0, and B D 0. From here, we simply get

V.r/ D Ze

4��0r
exp

�
� r

�D

�
: (14.22)

This takes the form of a Yukawa potential, with a finite interaction range determined
by the electron Debye length �D . Replacing this in Eq. (14.18), we obtain the
electron density profile around the ion

ne.r/ D ne0

�
1CZ

re

r
exp

�
� r

�D

��
; (14.23)

where re is the electron Landau distance, as defined by (14.5). This density profile
represents the electron cloud which exists in the immediate vicinity of any given
ion inside the plasma. For distances larger than the electron Debye length, r > �D ,
the cloud dissipates and the charge of the ion is completely neutralized, due to the
electron screening. We conclude that the plasma is a neutral medium when observed
on a scale larger than �D . This result also gives us information on the electron-ion
correlation length. Correlations are important only at short distances, r < �D . On
the other hand, the approximation used in (14.18) is only strictly valid for re � r .

We can also consider the ion-ion correlations, in a similar simple way by
introducing an ion density profile ni .r/, instead of considering a constant ion density
ni0 in the potential equation (14.17). For a Boltzmann ion equilibrium around the
ion located at r D 0, we can write

ni .r/ D ni0 exp.�ZeV=Ti/ ' ni0

�
1 �Z

eV

Ti

�
: (14.24)

Let us restrict our discussion to a plasma in thermal equilibrium Ti D Te D T .
Replacing this expression in (14.17), we obtain after integration a new expression,
which is formally identical to (14.22), but with �D replaced by a new screening
distance, �s , as defined by
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�2s D �0T

e2ne0 CZ2e2ni0
D �2D
1CZ

: (14.25)

The screening distance is slightly reduced with respect to our previous result, due
to ion screening. We notice that, for singly ionized ions, we get �s D �D=

p
2.

Replacing this new solution in Eqs. (14.18) and (14.24) we obtain the electron and
ion screening profiles

ne.r/ D ne0 Œ1C gei .r/� ; ni .r/ D ni0 Œ1C gii .r/� (14.26)

where we have introduced the electron-ion and the ion-ion correlation functions,
defined as

gei .r/ D Z
re

r
exp

�
� r

�s

�
; gi i .r/ D �Z2 re

r
exp

�
� r

�s

�
: (14.27)

Using the above results, we can easily establish the mean value of the electron-ion
interaction energy density, Uint, as

Uint D �1
2
.ne0 C ni0/

Ze2

4��0�s
: (14.28)

This quantity can then be compared with the thermal energy density inside the
plasma

Uth D 3

2
.ne0 C ni0/T: (14.29)

The ratio between these two quantities provides

jUintj
Uth

D Z

3

re

�s
D 1

32ND
; (14.30)

where ND D .4�=3/.ne0 C ni0/�
3
s is the total number of particles inside the

screening sphere, usually called the Debye sphere. When this number is large,
ND � 1, the interaction energy is negligible with respect to the thermal energy,
and the plasma can be seen as a perfect gas. In the opposite case, ND 
 1, particle
correlations become important, and the above simple fluid description of the electric
screening is no longer valid.

14.3 Ionization Processes

The main process leading to the formation of ultra-cold plasma is photoionization.
We first review this process, and then discuss other particular features of ultra-
cold plasmas. Photoionization of ultra-cold plasma is usually due to two-photon
transitions, where the first photon is provided by the laser cooling beam, exciting
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Fig. 14.1 Two-step
photoionization process,
using photons with energies
„!1 and „!2 . The second
photon energy exceeds by a
small amount �E the
ionization energy

the atoms from the ground to an intermediate energy level, and the second photon
is provided by a pulsed laser, exciting the atom up to the ionization continuum
(see Fig. 14.1). As an example, Ca atoms can be cooled and trapped in a MOT
using laser cooling beams at a wavelength of 423 nm, using transitions between the
1S0 and the 1P1 energy levels. A second transition, using photons at 390 nm, with
an energy slightly exceeding the ionization level by an amount of �E � 1:5 Te ,
creates Calcium ions CaC [9]. A similar scheme is used for Strontium in Ref. [4].

In steady-state, the laser cooling process populates the upper level with a
probability given by [10]

fb D 1

2

s0

1C s0 C .2�=�/2
; (14.31)

where s0 D I0=Isat is, as defined previously, the saturation parameter associated to
the cooling transition,� the frequency detuning and 1=� the natural lifetime of the
upper energy level jei. On the other hand, the ionization probability increases with
the total intensity I1 (integrated over time) of the second laser pulse, with frequency
!1. The final fraction of ionized atoms can be written as

fI D fb
�
1 � e�
I1

	
(14.32)

where 
 is the ionization cross-section divided by the photon energy „!1. Using
Eqs. (14.31) and (14.32), we can determine degree of ionization fI of an ultra-cold
plasma. In typical experimental conditions, this quantity can vary between 20 and
50%. But larger degrees of ionization can also be envisaged [11]. An important
aspect of photoionization is that it transfers part of the photon energy to the resulting
free electrons and ions. By using energy and momentum conservation for a single
photon absorption, we can write

„k1 D pe C pi ; „!1 D EI C .�e C �i /; (14.33)

where �˛ D p2˛=2mj are the single electron and ion kinetic energies, for ˛ D e; i .
Noting that the photon momentum „k1 is usually small in comparison with the free
electron momentum pe, we conclude that pi D �pe and, due to the large mass ratio
between electrons and ions, we get �i � �e . This allows us to write
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�e ' �E D .„!1 � EI / ; �i ' �e

�
me

mi

�
; (14.34)

where �E is the excess of photon energy, as shown in Fig. 14.1. This quantity can
vary between 1 and 103 K. This means that the ions will remain in the micro to the
milli-Kelvin domain, even after thermal rearrangement. We can then conclude that
the ultra-cold plasma created by the two-photon ionization process will be partly
ionized (fI < 1) and far from thermal equilibrium, Te � Ti .

Spontaneous ionization can also occur, starting from a gas of highly excited
Rydberg atoms. In this case, the photon energy of the second laser beam is red-
tuned with respect to the ionization energy, �E < 0 [5]. Ionization is provided
by collisions between Rydberg atoms, or alternatively, by photoionization due to
blackbody radiation photons, which provide the initial free electrons in the gas.
These initial free electrons can further increase the number of ionized atoms, by
inelastic scattering with the Rydberg population.

More traditional gaseous discharges can also be used to create ultra-cold plasmas.
For instance, by using supersonic expansion of molecular beams, we can produce
very dense plasmas with 1014 electrons per cm�3 [12]. With hot-filament discharges,
assisted by liquid Helium cooling, it is also possible to obtain plasma temperatures
in the range of 200K [13]. Afterglow discharges also allow to obtain Te � 4K [14].
On the other hand, one component plasmas confined in Penning traps are known
for very long time to create electrons with Te < 30K [15, 16], and ions with Ti <
100mK [17].

14.4 Single Particle Motion

In order to understand the properties of a magnetized plasma it is useful to start
with a discussion of single particle trajectories. Static and slowly varying magnetic
fields can be created by external currents, like the Helmoltz coils in a magneto-
optical trap, or by internal plasma currents. We first consider a static field B0. The
motion of a particle with electric charge q and mass m in this field is described in
the non-relativistic classical limit by the equation of motion

dv
dt

D s!c.v 	 b/ ; !c D jqjB0
m

; (14.35)

where !c is the cyclotron frequency, s is the sign of the charge, and b D B0=B0.
We can generically assume that the field is parallel the z-axis, b D ez. This equation
can be easily integrated, leading to

.vx C ivy/ D v? exp.is !ct/ ; vz D vk; (14.36)
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where vk and v? are two constants. Further integration gives the particle
trajectory, as

r.t/ D r0 C src
�
sin.s!ct/ex � cos.s!ct/ey


C vktez ; (14.37)

where r0 is the initial particle position and rc D v?=!c is the cyclotron or Larmor
radius. This is the well known helical trajectory, resulting from the superposition
of an uniform motion along the magnetic field, and a circular motion, the cyclotron
motion, around the magnetic field, with radius rc . The parallel motion is usually
called the guiding centre motion, because it corresponds to the motion of the centre
of the cyclotron orbit. A more precise description of the guiding centre motion in a
non-uniform field will be given below. Here it is useful to notice that the cyclotron
motion can be seen as an elementary coil, which produces a small magnetic dipolar
field. The magnetic moment of such a coil can be calculated as 
m D �r2c I , where
I is the elementary current. This leads to


m D ��?
B0
; �? D 1

2
mv2?; (14.38)

where �? is the energy of the cyclotron motion. We can see that the single particle
magnetic moment is opposite to the static magnetic field. If we now calculate the
cumulative result of all the elementary cyclotron motions in a plasma, we get the
macroscopic magnetization, M defined as

M D �Mb; M D 1

B0

X

˛De;i

1

2
m˛v2?: (14.39)

If we assume that, in thermal equilibrium the average energy for each particle
species is h�?i˛ D T˛ , we obtain an average plasma magnetization per unit volume
equal to M D .neTe C niTi /=B0, where ne and ni are the particle densities.
For a plasma in thermal equilibrium, Te D Ti D T and ne D ni D n, we get
M D 2nT=B0. Including the resulting magnetization current JM in the Ampere’s
law, we obtain

r 	 H D J C JM ; JM D r 	 M; (14.40)

where H D B0=
0. This means that the total magnetic field B inside the plasma can
be written as

B D B0 C 
0M D 
0H
.1C ˇ/

; ˇ D nT

.B2
0=2
0/

: (14.41)

This shows that the cyclotron motion of the charged particles reduces the magnetic
field B inside the plasma. In other words, the plasma is a diamagnetic medium. The
parameter ˇ is the ratio between the kinetic pressure and the magnetic pressure, and
plays an important role in plasma theory. Plasma diamagnetism is negligible as long
as ˇ � 1.
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Let us now consider a more general equation of motion, replacing (14.35) by

m
dv
dt

D F C s!c.v 	 b/ ; F D qE C Fg; (14.42)

where F is a constant force, which includes the electric force associated with a
static electric field E , and the gravitational force, Fg D mg. It is useful to split the
parallel and the perpendicular motion with respect to the magnetic field, by using
F D Fk C F? and v D vk C v?, which trivially reads

m
dvk
dt

D Fk ; m
dv?
dt

D F? C s!c.v? 	 b/: (14.43)

The first equation shows that the particle is uniformly accelerated along the
magnetic field under the influence of the parallel force Fk. In what concerns the
perpendicular equation, it can be reduced to the form of Eq. (14.35) by using the
identity .F? 	 b/ 	 b D �F?, which leads to

dv0

dt
D s !c.v0 	 b/ ; v0 D v? � vD; (14.44)

where vD is the particle drift velocity as defined by

vD D F? 	 B0
qB2

0

: (14.45)

If the static electric field is zero in the transverse plane, E?, and F? is the force of
gravity, or a similar force not depending on the particle charge, than the drift velocity
will depend on the sign of the charge. The electrons and ions will drift in opposite
directions and create a plasma current. If, on the contrary, the transverse force is
just the electrical force, F? D qE?, the resulting drift velocity is independent of
the charge, and both electrons and ions will move in the same direction. Instead of
an electric current, the electric drift will generate plasma convection.

We can then say that the motion of a charged particle in constant electric,
magnetic and gravitical forces is a superposition of three distinct kinds of motion.
One is the uniformly accelerated motion along the magnetic field lines, due to the
parallel force Fk. The second is a drift motion with velocity vD in a direction
perpendicular to both the magnetic and the transverse force F?. Finally, the third
is the cyclotron motion in the transverse plane, as described by the equation of
motion (14.44), with a rotating frequency equal to !c .

As we may observe from Eqs. (14.35) and (14.45), the cyclotron frequency is
directly proportional to B0, while the drift velocity is inversely proportional to B0.
This means that, for increasing magnetic fields, the rotation frequency increases
and the Larmor radius decreases, while the drift motion slows down. We can call
guiding-centre motion to the slow motion of the centre of rotation of the (fast)
cyclotron orbits. It is therefore interesting to consider the guiding-centre motion
in a more general class of electric and magnetic and gravitical fields, which are still
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Fig. 14.2 Coordinate system
for guiding centre motion of a
charged particle in a static
magnetic field B0.r/

constant in time but weakly varying in space. This means that, if L is the scale
of variation of the guiding-centre motion, then we can define a small parameter,
� � rc=L � 1.

Let us define the following coordinate system (see Fig. 14.2), where r is the
particle position, and R the position of its guiding-centre. We can write

r D R C s ; s D rc.cos � e1 C sin � e2/ (14.46)

where � D R
!cdt , and ej with j D 1; 2 are two orthogonal unit vectors in the

plane locally perpendicular to the magnetic field lines. We have ej � b D 0. We
can now develop the field B0.r/ and the force F.r/ D qE.r/ C Fg.r/, around the
position of the guiding-centre R, assuming that the displacement s associated with
the Larmor orbit is a perturbation. We can then use

B0.r/ D B0.R/C s � rB0.R/ ; F.r/ D F.R/C s � rF.R/: (14.47)

Replacing the latter in Eq. (14.42), we obtain

dv
dt

� d2R
dt2

C d2s
dt2

' 1

m
ŒF.R/C s � rF.R/�C q

m

�
dR
dt

C d s
dt

�
	 ŒB0.R/C .s � rB0.R/� :

(14.48)

Notice that for slowly varying fields, we have

d2s
dt2

D q

m

�
d s
dt

	 B0.R/
�
: (14.49)

We can establish an evolution equation for R by averaging (14.48) in time, over
a period of the cyclotron motion. Keeping in mind that such an averaging process
leads to

hsi ' 0 ;

�
dR
dt

�
' dR

dt
; (14.50)
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Eq. (14.48) can then be reduced to

d2R
dt2

D F.R/
m

C q

m

�
dR
dt

	 B0.R/C
�
d s
dt

	 s � rB0.R/
��
: (14.51)

After an explicit calculation of the time averaging over the cyclotron period, we can
rewrite the last term of Eq. (14.51) in a more appropriate form, leading to

d2R
dt2

D F.R/
m

C q

m

�
dR
dt

	 B0.R/� !c

2
r2crB0.R/

�
: (14.52)

This equation is sometimes written in terms of the elementary magnetic moment,

m D mv2?=2B0. Defining the guiding-centre velocity as u D dR=dt , we obtain

du
dt

D F.R/
m

C q

m
u 	 B0.R/� 
mrB0.R/: (14.53)

In order to understand the physical meaning of this equation, it is convenient to split
the parallel and the perpendicular motion with respect to B0. Defining the parallel
guiding-centre velocity as uk D u � b, and using a more explicit expression for the
parallel force as Fk D qEk Cmgk, we obtain

duk
dt

D q

m
Ek C gk � 
m @B0

@l
; (14.54)

where @=@l D b � r is the derivative taken along the magnetic field lines. The
transverse component of the guiding-centre velocity can be determined by taking
the external product of (14.53) with b. Noting that u? D �.u 	 b/ 	 b, we obtain

u? D 1

qB0

�
F �m

du
dt

� 
mrB0
�

	 b: (14.55)

This expression contains the different types of drift velocities. The first term
contains both the electric and the gravitical drift. The second term is an inertial
drift, and the third describes the magnetic drift due to the inhomogeneity of the
magnetic field. These drift motions have an important influence on the plasma
behavior and particle confinement in external fields. They also lead to different types
of instabilities, as it will be illustrated later.

14.5 Adiabatic Invariants

An important aspect of particle trajectories in non-uniform magnetic fields, as those
existing in magnetic traps, for example, is the existence of adiabatic invariants.
These quantities can be defined in the following way. If the particle motion is
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described by some generic Hamitonian H.qi ; pi ; t/, and if a given coordinate qk
is a cyclical variable, then an adiabatic invariant exists, and can be defined as

Jk D
Z

C

pkdqk D const:; (14.56)

where integration is taken over a close contour C . If the particle moves in a three-
dimensional space, it is possible to define a maximum of three adiabatic invariants.
We have seen before that the charged particle trajectories in a static magnetic field
B0 depend on a cyclical variable, which is the angle � describing the cyclotron
motion in the perpendicular plane. This means that we can define an adiabatic
invariant of the form

J� D
Z

C

p? � d l D
Z

C

p�dq� ; (14.57)

where integration is performed over a Larmor orbit, with q� � � . Noting that the
perpendicular particle momentum in a magnetic field is p? D mv? C qA, where
m and q are the particle mass and charge, and A is the vector potential associated
with the static magnetic field, we can rewrite the invariant (14.57) as the sum of
two distinct terms. More precisely, it is possible to related each of these terms to the
magnetic flux through the surface limited by the cyclotron orbit. After integration
over the cyclotron orbit, we obtain the following

m

Z

C

v? � d l D �2�qB0r2c ; q

Z

C

A � d l D q

Z

S

B0 � dS D �qB0r
2
L; (14.58)

where dS is surface element subtended by the cyclotron orbit. Replacing this in
Eq. (14.57), we concluded that the adiabatic invariant is given by

J� D
Z

B0 � dS D �r2c B0 (14.59)

This means that the total magnetic flux embraced by a cyclotron orbit is an adiabatic
invariant. Introducing the magnetic moment 
m defined above, we conclude that


m D q

2
!cr

2
c D E?

B0
/ J� ; (14.60)

where E? D mv2?=2 is the perpendicular kinetic energy of the particle. In other
words, the adiabatic invariant associated with the cyclotron motion is the magnetic
moment of the particle. It can easily be recognized, by a direct calculation, that

m stays constant even for a varying magnetic field B0, as long as the later time
variation is slow with respect to 1=!c . This slow variation can be characterized by
a small parameter �, such that

� D 2�

!c

1

B0

@B0

@t
� 1: (14.61)



14.5 Adiabatic Invariants 291

However, if the magnetic varies in time, an electric field E is induced, which changes
the transverse particle velocity. The resulting variation of the transverse energy of
the particle over a cyclotron period is given by

�E? D q

Z 2�=!c

0

E � v?dt D q

Z

C

E � d l: (14.62)

Using Stokes’ theorem and the Faraday equation, we get

�E? D q

Z

S

.r 	 E/ � S D �q
Z

S

@B0
@t

� dS ' �qr2c

ˇ̌
ˇ̌@B0
@t

ˇ̌
ˇ̌ : (14.63)

On the other hand, the magnetic field variation �B0, on a time scale of 2�=!c ,
is given by �B0 D .@B0=@t/.2�=!c/. We conclude that �E? D �B0
m. The
variation of the magnetic moment on the same time scale is then given by

�
m D E? C�E?
B0 C�B0

� 
m D O.�2/: (14.64)

We conclude that the magnetic moment is constant to the lowest order in �. The
existence of this adiabatic invariant was first notice by Alfvén in 1950, when he
studied the motion of a charged particle in a dipole magnetic field, which is a simple
model for the terrestrial magnetic field. This problem was first addressed by Stormer
at the beginning of the last century [1].

Let us now consider a second adiabatic invariant, now associated with the parallel
motion. The particle velocity along the magnetic field lines vk is related with the
total energy of the particle E through the expression

vk D ˙
r

v2 � 2

m

mB0 D ˙

r
2

m
.E � qV � 
mB0/; (14.65)

where V is the electrostatic potential. Let us assume that the amplitude of the
magnetic field is not uniform and varies with the position along the magnetic field
lines. We can then define a turning point,B0 D BM � mv2=2
m, where the parallel
velocity is zero, vk D 0. At this point the particle is reflected (vk changes its sign),
and the particle motion stays confined in the regions where B0 
 BM . This is the
confinement mechanism used in magnetic mirrors, which is a particular magnetic
configuration based on two parallel coils creating two symmetric magnetic field
maxima. On the other hand, when the particle approaches its reflection point and
its parallel energy goes down to zero, the perpendicular energy increases, due to an
increase of the Larmor radius, thus keeping the total energy constant.

The position where reflection takes place and B0 D BM depends on the particle
energy, as shown by the definition of BM . Let us define an angle ˛, characterizing
the direction of the particle velocity v, such that sin ˛ D v?=v. As a consequence,
the particle stays confined in a magnetic mirror if its velocity at the centre of the
trap (where B0 D Bmin is a minimum) satisfies the following inequality
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v2 
 2

m

mBM D v2?

Bmin
BM : (14.66)

The latter can also be written in terms of the angle ˛, as

sin2 ˛ � Bmin

BM
D 1

R ; (14.67)

where R > 1 is called the mirror ratio. There is then a critical angle ˛c , such that
R D 1= sin2 ˛c , defining the trapping condition. Particles with an angle larger than
critical, ˛ > ˛c will stay confined. The others can escape. This mechanism defines
a loss cone in phase space, corresponding to ˛ 
 ˛c where particles are absent.
The resulting distortion of the particle distribution function will then lead to plasma
instabilities.

Furthermore, in a magnetic mirror it is possible to observe a parallel oscillating
motion, between two symmetric turning points. The resulting periodic motion will
imply the existence of a new adiabatic invariant, defined as

Jk D
Z

C

pkds D const:; (14.68)

where ds is the element of length along the magnetic field lines. Using pk D mvkC
qAk and keeping in mind that no magnetic flux is involved in the periodic parallel
motion, we can simply write

Jk D m

Z

C

vkds D const: (14.69)

Let us assume that, for a given particle, the two symmetric turning points are situated
a distance L=2 apart. We can then write this expression as Jk D mL

˝
vk
˛ D const:,

where
˝
vk
˛

us the mean parallel velocity. If during the particle oscillation the
position of the maximum BM could change, due for instance to a displacement
of one of the external coils, then the distance L would decrease and the mean
velocity

˝
vk
˛

would increase, because the quantity Jk is conserved. We therefore
get an acceleration of the charged particle, known as Fermi acceleration [18]. The
existence of such an adiabatic invariant was assumed implicitly by Fermi, when
he proposed this mechanism for the acceleration of cosmic rays, but it was only
explicitly demonstrated by Northrop and Teller in 1960 [19].

Finally, let us consider a third adiabatic invariant related with the transverse
motion. We have seen in the previous section that magnetic field gradients lead to
a slow drift motion, such that the guiding centre of the particle changes its position
in the perpendicular plane, and the particle is displaced to adjacent magnetic field
lines while executing parallel oscillations. If the magnetic configuration is such that
the slow drift motion is also periodic, we can then define a third adiabatic invariant
associated with the perpendicular drift velocity u?, such that
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J? D m

Z

C

u? � d l C q

Z

S

B0 � dS D const: (14.70)

These two integrals can be approximately solved by assuming that the perpendicular
motion defines a circle of radius R. We then have

Z

C

u? � d l ' 2�Ru? ;
Z

S

B0 � dS ' �R2B0: (14.71)

We notice that the second term is much larger than the first. We can write

q�R2B0

2�mRu?
D !c

!D
� 1; (14.72)

where !D D u?=R is the angular frequency associated with the slow drift motion.
Neglecting the first term in (14.70), we can then say that the magnetic flux across
the periodic drift trajectory is an adiabatic invariant,

J? D q

Z

S

B0 � dS D const: (14.73)

As a result of our discussion on adiabatic invariants, we can represent the motion
of trapped particle orbits in many geometrical configurations as a superposition
of three distinct periodic orbits. The corresponding frequencies are the cyclotron
frequency !c D jqjB0=m, the parallel bouncing frequency !k D ˝

vk
˛
=L, and the

drift frequency !D D u?=R. It should be noticed that the adiabatic invariants can
eventually be destroyed by resonances between two of these orthogonal oscillations.
The nonlinear coupling between the different oscillation modes can lead to a
chaotic motion where the adiabatic invariants loose their meaning. This problem
was treated by Chirikov in 1960, when studying the nonlinear coupling between the
cyclotron and the parallel oscillation in a magnetic mirror [20]. Starting from the
particle equations of motion, he was able to derive a two-dimensional discrete map,
called the standard map, which can also be used to describe many other dynamical
processes, such as the motion of a particle in the field of an infinity of electrostatic
wave modes [21].

14.6 Plasma Equations

The description of both equilibrium and dynamical features of a plasma must be
established beyond the single-particle limit. In other words, to properly understand
and describe the properties of a plasma, especially its phenomenology, one must
inexorably consider the collective effects. There are two distinct ways of thoroughly
doing so, either by the use of kinetic equations or via a set of fluid equations.
In the former case, transport equations for the phase-space density f .r; v; t/ are
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established in order to retain the microscopic properties of the system. On the other
hand, the hydrodynamic description is obtained by taking the momenta (in terms
of the velocity field v) of the kinetic (or transport) equations, and therefore can
be regarded as a macroscopic description of the system, as the information in the
velocity coordinate is integrated. Depending on the specificity of the problems, both
descriptions can be employed. In what follows, we discuss the foundations of the
kinetic description of a plasma and then explain in detail how the hydrodynamic or
fluid model can be derived from it.

14.6.1 Klimontovitch Equation

Let us now focus on plasma kinetic description. Plasma is a globally neutral gas,
made of free electrons and ions. The main difference with respect to a neutral
gas is that charged particles can interact with each other over large distances.
Therefore, the usual concept of a close collision between two neutral particles
in a gas is replaced by collective interactions between all the charged particles
(electrons and ions) in a plasma. In order to study the collective behavior of such
a medium we can adapt the BBGKY approach or, in alternative, use a different
but equivalent approach provided by the Klimontovitch equation [2, 22]. Such an
alternative approach is considered here.

The dynamical state of each particle in a plasma is determined, at a given instant
of time t , by the value of its vector position R.t/ and velocity V.t/. The density
distribution of each particle in the six-dimensional single particle phase space .r; v/
can be determined by Dirac delta functions. So, we can write the microscopic
density fN˛ each particle species as

fN˛ .r; v; t/ D
NX̨

jD1
ıŒr � Rj .t/� ıŒv � Vj .t/�: (14.74)

Given the well-known properties of the Dirac delta function, it is obvious that the
integration of fN˛ in phase space .r; v/ gives exactly N˛. If we could determine the
exact trajectory of each and every particle in the plasma, by solving the individual
equations of motions, then fN˛ .r; v; t/ would contain all the possible information
about the kinetic state of the medium. Formally, this can be done by using the
equations of motion:

dRj

dt
D Vj ; m˛

dVj

dt
D Fm.Rj ; t/ (14.75)

with

Fm.Rj ; t/ D q˛
�Em.Rj ; t/C Vj 	 Bm.Rj ; t/



: (14.76)

Here, Em.Rj ; t/ and Bm.Rj ; t/ are the microscopic electric and magnetic fields
acting on the j -particle at time t . They are determined by Maxwell’s equations,
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r 	 Em D �@Bm
@t

; r � Em D �m

�0
(14.77)

r 	 Bm D 
0Jm C 1

c2
@Em
@t

; r � Bm D 0; (14.78)

where the charges and currents are consistently determined by the microscopic
density, as

�m D
X

˛

q˛

Z
fN˛ .r; v; t/dv ; Jm D

X

˛

q˛

Z
v fN˛ .r; v; t/dv: (14.79)

In order to obtain an evolution equation for the plasma medium, we calculate the
time derivative of the microscopic density fN˛ . Using the derivative of an implicit
function

d

dt
f Œg.t/� D dg

dt

df

dg
; (14.80)

we can write the time derivative of Eq. (14.74) in the form

@fN˛
@t

D
nX̨

jD1

�
dRj

dt
� @

@Rj

C dVj

dt
� @

@Vj

�
ıŒr � Rj .t/� ıŒv � Vj .t/�: (14.81)

Now, using the relation

@

@x
f .x � y/ D � @

@y
f .x � y/; (14.82)

we can rewrite Eq. (14.81) in the new form

@fN˛
@t

D �
nX̨

jD1

�
Vj � @

@r
C Fm.Rj ; t/

m˛

� @

@Vj

�
ıŒr � Rj .t/� ıŒv � Vj .t/�: (14.83)

This expression we can be simplified by using the following property of the Dirac
delta function x ı.x � y/ D y ı.x � y/. This allows us to replace Rj by r, and
Vj by v, inside the parenthesis of Eq. (14.83), and to move the differential operators
outside the sum. Using (14.74), we finally get

@fN˛
@t

C v � @fN˛
@r

C Fm.r; t/
m˛

� @fN˛
@v

D 0: (14.84)

This is the Klimontovitch equation for the plasma particle species ˛. It contains all
the information concerning the kinetic state of the medium and exactly describes
its evolution in space and time. In this sense, it is a complete equation, in the same
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way as the Liouville equation is complete but defined on a different phase space.
The main difference is that it describes the physical system in the single-particle six
dimensional phase space .r; v/, and not in the 6N˛ dimensional phase space of the
Liouville equation.

It can easily be recognized that Eq. (14.84) states the conservation of the
microscopic distribution density in the phase space .r; v/. The differential operator
acting on N˛.r; v; t/ is nothing but the total time derivative

d

dt
fN˛ .r; v; t/ D 0 ;

d

dt
� @

@t
C v � @

@r
C dv
dt

� @
@v
: (14.85)

This shows that the Klimontovitch equation is formally identical to the Liouville
equation, but uses a different microscopic distribution defined in a different phase
space.

14.6.2 Vlasov Equation

The Klimontovitch equation is exact, but of little practical use, because it is in
generality difficult, if not impossible, to solve. It is therefore useful to derive an
approximate kinetic equation, which can give a coarse-grain or average description
of the plasma behavior. Let us start by defining the mean value of the microscopic
density, identifying it with the one-particle distribution of a given particle species

f˛.r; v; t/ D hfN˛ .r; v; t/i : (14.86)

The averaging is made over a statistical ensemble. We can also define macroscopic
electric and magnetic field as the ensemble averages of the microscopic fields
Em and Bm. Designing by ıfN˛ , ıE and ıB the fluctuations with respect to such
ensemble averages, we can write

fN˛ .r; v; t/ D f˛.r; v; t/C ıfN˛ .r; v; t/; (14.87)

and similarly for the fields, Em D E C ıEm, and Bm D B C ıB. Replacing this
in the Klimontovitch equation (14.84), we can write an evolution equation for the
one-particle distribution function f˛, in the form

@f˛

@t
C v � @f˛

@r
C F
m˛

� @f˛
@v

D � q˛

m˛

�
.ıE C v 	 ıB/ � @

@v
ıfN˛

�
; (14.88)

where F D hFmi is the average force associated with the macroscopic field Em
and B. The left hand side of this equation is an average over products of functions
varying rapidly in space and time, and describes the effects of field fluctuations
associated with close particle collisions. It can be represented as .@f˛=@t/coll.
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Many approximate expressions have been used for this collision term, some of them
discussed later. The most drastic approximation is to neglect it completely, leading
to the famous Vlasov equation

@f˛

@t
C v � @f˛

@r
C F
m˛

� @f˛
@v

D 0: (14.89)

This equation is valid in the limit ƒ � 1, where the parameter ƒ D 4�n�2D is the
number of particles in the Debye sphere. In this limit, the collective interactions
between particles are much stronger than close binary collisions. The Vlasov
equation is a simple but very powerful equation, which can be used to explains
many important features of the kinetic plasma behavior. The collective particle
interactions are hidden inside the force term F, which is self-consistently determined
by Maxwell’s equations, with the macroscopic electric charge and current densities,
� and J determined by the one-particle distribution functions f˛, according to

� D
X

˛

q˛

Z
f˛.r; v; t/dv; J D

X

˛

q˛

Z
vf˛.r; v; t/dv: (14.90)

This shows that the third term in the Vlasov equation (14.89) is a nonlinear term
in f˛ . It should also be noticed that the Vlasov equation conserves the particle
distribution in the single particle phase space .r; v/, and can be written in the form

d

dt
f˛.r; v; t/ D 0; (14.91)

where d=dt is the total time derivative. This is formally analogous to both the
Klimontovitch and the Liouville equations, but with an obviously different meaning,
as it describes the evolution of the average distribution function in phase-space. It
should however be noticed that the Vlasov equation still conserves entropy. This can
be shown by starting from the definition of entropy S of the plasma, as

S˛ D �
X

˛

Z
f˛ lnf˛.r; v; t/drdv: (14.92)

The evolution of this quantity can then be written as

dS

dt
D �

X

˛

Z
.1C ln f˛/

@f˛

@t
drdv: (14.93)

Now, using the fact that f˛ is governed by Eq. (14.89), we conclude that

dS

dt
D 0: (14.94)
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This means that the plasma entropy is constant if the plasma is described by the
Vlasov equation. This is equivalent to say that the Vlasov equation conserves
information about the state of the system. This conservation property will be lost
if we introduce particle collisions. In that case, the entropy will increase. It is
also interesting to notice that Eq. (14.94) implies that the distribution functions are
always a positive quantities, as it should be for probability densities. If we had
f˛ < 0, the entropy S would become complex.

14.6.3 Kinetic Equations with Collisions

Binary collisions cannot always be ignored, and their effects can be included in the
plasma kinetic equation. The simplest way is to include on the right hand side of
Vlasov equation, a collision term of the form

�
@f˛

@t

�

coll
D ��˛.f˛ � f0˛/; (14.95)

where f0˛ is the equilibrium distribution, and �˛ is the mean collision frequency.
This contribution due to collisions can be understood in the following way. The term
��˛f˛ represents the number of particles of the species ˛ lost at a given element
of phase space volume, drdv, centered at .r; v/, due to binary collisions. The term
�˛f0˛ determines the number of particles entering this elementary volume due to
collisions taking place outside this volume. Equilibrium is attained when these two
terms exactly compensate each other. We can generalize Eq. (14.95), by including
all the possible collisions between particles of different species, as

�
@f˛

@t

�

coll
D �

X

ˇ˛

�˛ˇ.f˛ � f0˛/; (14.96)

where �˛ˇ are the various mean collision frequencies between particle species ˛
and ˇ.

A more sophisticated version of the collision term can be obtained by transform-
ing the plasma kinetic equation (14.88) into a Fokker-Planck equation,

�
@f˛

@t

�

coll
D @

@vi

�
�Aif˛ C 1

2

@

@vj
Bij f˛

�
; (14.97)

where the vector Ai and the tensor Bij , with i; j D .x; y; z/, represent the friction
and the diffusion coefficients in velocity space. This equation can be justified
by noticing that most of the binary collisions have large impact parameters, and
produce infinitesimal velocity deviations. This allows us to describe the collisional
processes in differential form. A simple way to estimate the coefficients Ai and Bij
is to consider conservation of the total number of particles, their total momentum
and their total energy. This means that
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Z �
@f˛

@t

�

coll
a.v/dv D 0; (14.98)

where a.v/ is equal to 1, v and v2. The first integral, corresponding to a.v/ D 1 is
automatically satisfied, if the distribution function f˛ tends to zero at infinity. The
other two integrals imply that

Ai D ��˛.vi � v0i /; Bij D 2�˛
T˛

m˛

ıij ; (14.99)

where v˛i are the components of the mean velocity v˛ of the population ˛. These
two expressions are exact for a Maxwellian velocity distribution with temperature
T˛, and can be used if f˛ is not too far from equilibrium. Such a procedure is
also known in the literature as the relaxation-time approximation and has been
extensively employed to describe the dynamics of both Fermi and Bose gases nearly
in equilibrium [23, 24]. Replacing these expressions in Eq. (14.97), we obtain the
following plasma kinetic equation

df˛

dt
D �˛

@

@v
�
�
.v � v˛/f˛ C T˛

m˛

@f˛

@v

�
: (14.100)

More elaborate forms of the plasma kinetic equation can also be derived from the
exact collision term defined in Eq. (14.88).

14.7 Fluid Equations

The plasma kinetic equation, even in the simplified Vlasov form, contains an
excessive amount of information for a large number of physical problems. It
is therefore useful to derive simpler evolution equations for the average plasma
quantities, such as the mean particle densities, mean velocities, pressures and
temperatures. These new equations are called hydrodynamic or fluid equations, as
we have done for the cold atomic gas or for the condensates.

When we multiply the Vlasov equation by successive powers of v and integrate
over the velocity space, we obtain an infinite series of equations. These equations
are called the momenta of the Vlasov equation. By truncating this infinite series of
equations, we obtain the simplified description of the plasma as a fluid medium,
based on the continuity and the momentum conservation equations for each species.

Let us then go back to the Vlasov equation (14.89) and integrate it over the
velocity space. Using the definition of the mean density of the particle species n˛ ,
we see that the first term simply leads to

Z
@

@t
f˛dv D @

@t
n˛; n˛ D

Z
f˛dv˛: (14.101)
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The calculation of the second term implies the use of the mean velocity v˛, which
allows us to write

Z
v � @
@r
f˛dv D r � .n˛v˛/; v˛ D 1

n˛

Z
vf˛.r; v; t/dv: (14.102)

The third term, in its turn, can be integrate by parts and, noticing that f˛ tends to
zero at infinity, we get

Z
F
m˛

� @
@v
f˛dv D � 1

m˛

Z

˛

�
@

@v
� F
�
dv D 0 (14.103)

Therefore, the contribution of the third term of the Vlasov equation is equal to zero
and, using Eqs. (14.101) and (14.102), we conclude that the first momentum of the
Vlasov equation is the continuity equation

@n˛

@t
C r � .n˛v˛/ D 0: (14.104)

Let us now consider the second momentum of the Vlasov equation, by multiply-
ing Eq. (14.89) by v and integrating over velocity. From the first term, we get

Z
v
@f˛

@t
dv D @

@t

Z
vf˛dv D @

@t
n˛v˛; (14.105)

and, from the second term

Z
vv � @f˛

@r
dv D r �

Z
vvf˛dv D r � n˛ hvvi (14.106)

where the tensor hvvi is defined by

hvvi D 1

n˛

Z
vvf˛dv: (14.107)

By integrating the third term by parts, we simply obtain the momentum equation

@

@t
n˛v˛ C @

@r
� n˛ hvvi D q˛

m˛

n˛ŒE C v 	 B�: (14.108)

In order to obtain a closed set of equations for the mean quantities, n˛ and v˛ , we
write the tensor hvvi in terms of these quantities. This could in principle be done
rigorously, by calculating the higher order momenta of the Vlasov equation. But
such a process would lead to a third order tensor hvvvi, and so on. We would have
an infinite sequence of coupled macroscopic equations. In order to avoid this infinite
chain, we can use an estimate of the second order tensor hvvi.
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For such an estimate, let us start with a simple and relatively trivial case,
corresponding to a cold plasma, T˛ D 0. In this extreme situation, the particle
distribution functions will reduce to a Dirac delta function, stating that the all the
particles of species ˛ have the same velocity, v˛. In that case, we have

f˛.r; v; t/ D n˛ı.v � v˛/; (14.109)

from which we thus get

hvvi D
Z

v v ı.v � v˛/dv D v˛v˛: (14.110)

Let us now consider another simple case, corresponding to an isotropic distribution
with zero mean velocity. In this case f˛ only depends on the absolute value of
the particle velocity, and not on its direction. The integrand in (14.107) is an odd
function of vi and vj , because of the isotropy of f˛ . When we integrate over vi or
vj , we get zero off-diagonal tensor components

˝
vivj

˛ D 0, for i ¤ j . In contrast,
for the diagonal terms, we simply have

˝
vivj

˛ D ˝
v2
˛
. When f˛ is Maxwellian, with

temperature T˛, this mean quadratic velocity is 3T˛=m˛. We can then say that, for
an isotropic particle velocity distribution hv vi D ˝

v2
˛
1, where 1 � ıij is the unit

tensor. The second term of the momentum equation (14.108) can then be written as

r � n˛ hvvi D r � 1n˛
˝
v2
˛ D r P˛

m˛

; (14.111)

where P˛ D n˛m˛

˝
v2
˛

is the pressure. Finally, let us consider a more general case,
where the fluid has a finite mean velocity v˛, but the distribution stays isotropic in
its own reference frame, where it is characterized by a temperature T˛. We can then
write v D v˛ C u, where u is isotropic. In the reference frame moving with the
particles, we can use the results of the previous case and write

hu ui D P˛

n˛m˛

1: (14.112)

We can then establish for the quadratic velocity tensor

hv vi D v˛v˛ C P˛

n˛m˛

1: (14.113)

Using the continuity equation (14.104), we may write

@

@r
� n˛ hv vi D

�
@n˛

@t
C n˛v˛ � r

�
v˛ C 1

m˛

rP˛ (14.114)

Replacing this in Eq. (14.108), we get

�
@

@t
C v˛ � r

�
v˛ C rP˛

n˛m˛

D q˛

m˛

.E C v˛ 	 B/: (14.115)
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As a final step, we need to write the pressure P˛ in terms of the quantities n˛ and
T˛, by using an equation of state. In quite general conditions, we can use

rP˛ D �˛T˛rn˛; (14.116)

where �˛ is the adiabatic constant. For a gas of particles with no internal degree of
freedom, it can be determined by the rule �˛ D 1C .2=D/, where D is the number
of dimensions contributing to the temperature variations. We can then finally write
the equation of momentum conservation in its most popular version

�
@

@t
C v˛ � r

�
v˛ C S2˛r ln n˛ D q˛

m˛

.E C v˛ 	 B/; (14.117)

where S˛ D .�˛T˛=m˛/
1=2 represents the thermal velocity. Equations (14.104)

and (14.117) form, together with Maxwell’s equations, a closed set of equations,
which describe the evolution of the mean densities, velocities and fields in a plasma.

If, instead of using the Vlasov equation as a starting point, we had used a more
complete kinetic equation with a collision term .@f˛=@t/coll, an additional term
would appear in the momentum equation (14.117), This term would take the generic
form

Z �
@f˛

@t

�

coll

v˛dv˛ D ��˛v˛; (14.118)

where �˛ is the dominant collision frequency. Elastic collisions of particles of the
species ˛ with the other species ˇ ¤ ˛ could be included in a similar way. On the
other hand, inelastic collisions due to ionization and recombination processes would
lead to a souce term in the continuity equation.
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Chapter 15
Physics of Rydberg Plasmas

In this chapter, we deal with the expansion and the quasi-equilibrium states of
an ultra-cold plasma. We have seen that ultra-cold plasmas can be produced
by photoionizing a small cloud of laser-cooled atoms confined in a magneto-
optical trap, and subsequently expands into the surrounding vacuum. Two different
situations are usually considered in the literature: (i) the ultra-cold atoms are firstly
laser excited into high Rydberg states and then the Rydberg gas spontaneously
evolves into a plasma; (ii) the ultra-cold atoms are directly ionized by the laser and
Rydberg atoms are formed by electron-ion recombination as the plasma expands.
In this case, a spherical cloud of cold atoms is photoionized using a laser pulse.
At first, some electrons promptly leave the plasma until sufficient space charge
builds up to trap low energy electrons. Since the electrons are generated with
a narrow band laser, they start with a non-thermal energy distribution, but they
are rapidly thermalized by electron-electron collisions. During the thermalization
process, some high energy electrons boil way, reducing the electron number and
temperature. After the electrons thermalize, the plasma as a whole expands [26].
The plasma expansion results from the electron thermal pressure, Pe D neTe, which
imprints a radial velocity to the ions. This expansion is faster than what would be
expected using a simple low temperature model, as a consequence of the electron-
ion recombination. Since the latter scales as T �9=2e , the observed faster expansion
results from the enhancement of electron-ion recombination at low temperatures.

Given the complexity of the physical processes underlying the plasma evolution,
we discuss only the main theoretical issues without digressing on a complete
and self-consistent description. We start by introducing the concept of ambipolar
diffusion, which is central for the understanding of plasma discharges, and can
be used to clarify the results of the non-collisional expansion models, which are
discussed next. We then consider the properties of strongly coupled ions, which can
exist in the ultra-cold plasma. We give special attention to the possible occurrence
of phase transitions.

We also discuss the quasi-equilibrium configurations and the influence of particle
correlations in the expansion process. We then consider the disorder induced

J.T. Mendonça and H. Terças, Physics of Ultra-Cold Matter, Springer Series on Atomic,
Optical, and Plasma Physics 70, DOI 10.1007/978-1-4614-5413-7 15,
© Springer Science+Business Media, LLC 2013

305



306 15 Physics of Rydberg Plasmas

heating mechanism which is an essential ingredient for the establishment of a
quasi-equilibrium ion temperature. Finally, we focus our attention on the main
properties of Rydberg atoms, which play an important role in ultra-cold plasma
physics. In particular, we discuss radiative cascades, Rydberg blockade and the
three-body recombination process.

15.1 Plasma Expansion in the Collisional Regime

15.1.1 Free Diffusion

The ultra-cold plasma is described by two fluid equations, for electrons and ions
.˛ D e; i/, which can be written as

@n˛

@t
C r � �˛ D 0;

@v˛
@t

C v � rv D q˛

m˛

E � rP˛
m˛n˛

� �˛v˛ (15.1)

with electric charges qe D �e and qi D Ze. For Rydberg plasmas, the multiplicity
of ionization is usuallyZ D 1. We have used the particle pressures P˛ , the collision
frequencies �˛ , and the particle fluxes �˛ D n˛v˛ . In the present discussion, we
have ignored any static magnetic field, and the electrostatic field E is determined by
Poisson’s equation

r � E D 1

�0

X

˛

q˛n˛: (15.2)

On a time scale much larger than the collision time, @=@t � �˛, we can approximate
the momentum equation in (15.1) by the steady-state relation

v˛ D q˛

m˛�˛
E � rP˛

m˛n˛�˛
: (15.3)

For weak electric fields, the pressure force dominates over the electric force, and
this relation reduces to

�˛ D �D˛rn˛ ; D˛ D S2˛
�˛
; (15.4)

where D˛ is the diffusion coefficient for the particle species ˛. If we adopt an
equation of state of the form P˛ D T˛n

�˛
˛ , where �˛ is the adiabatic constant, the

particle thermal velocities will be determined by S˛ D p
�˛T˛=m˛. The validity

of this equation of state, and the choice of an adequate value for �˛ can only be
elucidated by using a kinetic description. At this point, we should notice that

De

Di

D 2

Z

Te

Ti

mi

me

�i

�e
: (15.5)
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This shows that, even for large electron temperatures Te � Ti , we normally have a
much stronger electron diffusionDe � Di , as long as .�i=�e/.mi=me/ � .Te=Ti/.
This is certainly true for ultra-cold plasmas. Using Eq. (15.4) in the continuity
equation, we obtain a diffusion equation

@n˛

@t
� r � .D˛rn˛/ D 0: (15.6)

Assuming spherical symmetry, and using the fact that the spatial scale at which D˛

varies is much longer than the scale of variation of the density, this is reduced to

@n˛

@t
� D˛

r2
@

@r

�
r2
@n˛

@r

�
D 0: (15.7)

This spherical equation satisfies the well known Gaussian solution

n˛.r; t/ D N˛

.4�D˛t/3=2
exp

�
� r2

4D˛t

�
; (15.8)

where N˛ is the total number of particles in the expanding cloud, as defined by

N˛ D 4�

Z 1

0

n˛.r; t/r
2dr: (15.9)

The size of the cloud of each particles species, is determined by the mean square
distance

˝
r2
˛
˛

D 4�

N˛

Z 1

0

n˛.r; t/r
4dr D 6D˛t (15.10)

Assuming that the plasma is instantaneously created at time t D 0, in a region with
size a0, with a Gaussian density profile, the free evolution of each particle species
will then be determined by

n˛.r; t/ D N˛

Œ2�a2˛.t/�
3=2

exp

�
� r2

2a2˛.t/

�
; (15.11)

where the size of the cloud is determined by

a˛.t/ D
r
1

3
hr2i˛ D p

2D˛.t C t˛/ (15.12)

with a0 D p
2D˛t˛ . From this free expansion solution, we can conclude that, for

a realistic situation where we have De � Di , the electron cloud will duplicate
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its radius after a time t ' 3te,1 while the ion cloud will take a much longer time
t ' 3.De=Di/te to expand to a similar size. This means that, for t � te, we will
have a situation where most of the electrons would have left the ion cloud. However,
before that occurs, the assumption of a weak electric field, needed to justify the
free expansion solution will breake down, and a radial electric field due to charge
separation will take form, thus preventing the electrons to expand faster. These finite
field effects will give rise to the ambipolar diffusion, to be discussed next.

15.1.2 Ambipolar Diffusion Regime

Let us then go back to Eq. (15.3), where the electric field is now retained, and which
can be written as

�˛ D n˛
˛E �D˛rn˛; (15.13)

where 
˛ D q˛=m˛�˛ represent the species mobility. Using the above definition for
the diffusion coefficient D˛ , given in Eq. (15.4), we can state the famous Einstein
relation between diffusion and mobility, as


˛ D q˛

m˛S2˛
D˛: (15.14)

Let us now assume the ambipolar approximation, which results from the assumption
of absence of a net current in the plasmas, as stated by

J D
X

˛

q˛�˛ D e.Z�i � �e/ ' 0: (15.15)

Simplifying the notation, we write � � �e ' Z�i , using Eq. (15.13), and assuming
quasi-neutrality n � ne ' Zni , we get the following approximate relations

� D n
eE �Dern ' n
iE �Di;rn (15.16)

which allows us to write the electron flux as

� D �Drn; D D Di
e �De
i


e � 
i : (15.17)

The new quantityD is called the ambipolar diffusion coefficient. On the other hand,
the electric field is determined by

E D Di �De


e � 
i
rn
n
; (15.18)

1t˛ is the inverse of the species collision frequency, t˛ D ��1
e .
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Coming back to the electron continuity equation (15.6), and replacing the diffusion
coefficient by the ambipolar diffusion coefficient, we may write

@n

@t
� r � .Drn/ D 0: (15.19)

Given the assumption of quasi-neutrality, this equation describes the expansion of
both the electron and ion populations, which are tied by the ambipolar electric field
(15.18) and for that reason expand with the same diffusion coefficient D. Noticing
that De � Di and 
e � 
i , we immediately observe, from the definition of D in
Eq. (15.17), the following

D ' De


i


e
� De

me

mi

� Di : (15.20)

This shows that, due to the electrostatic field, the electrons will diffuse much slower
than in the free diffusion approximation, on a time scale determined by the ion
diffusion coefficient. The electron expansion is therefore significantly retarded by
the ambipolar field.

15.1.3 Recombination in Volume

Let us now assume that, during the diffusion process, significant recombination
occurs, leading to a reduction of the number of expanding charged particles. This
can be described by a quadratic loss term in the diffusion equation (15.19), which
becomes

@n

@t
D r � .Drn/ � ˛recn

2; (15.21)

where ˛rec is the recombination coefficient. The existence of this new term can
be justified by binary electron-ion reactions or by three body electron-electron-ion
processes, both leading to the formation of neutral atoms. As discussed later, the
three-body recombination can be the dominant process at low temperatures, which
in its turn is responsible for the formation of Rydberg atom states. Such a process is
very important for anti-matter research.

Equation (15.21) can be written in a more convenient form by noting that, for a
given radial density profile, such as the Gaussian profiles considered above, we can
use the relation

r � .D˛rn/ D ��n ; � � D

ƒ2
; (15.22)

where ƒ is a length scale characterizing the density profile (say, its radius). We can
then rewrite (15.21) in a much simpler form, as

@n

@t
D ��n � ˛recn

2: (15.23)
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This clearly states that the plasma density decreases during the expansion process,
not only because ambipolar diffusion is taking place, but also due to recombination.
Integrating, we obtain

f .t/ D f .0/ exp.��t/; f .t/ D n.t/

� C ˛recn.t/
: (15.24)

It should be noticed that, although we have assumed a constant density profile
characterized by the length scaleƒ, recombination always tends to change the initial
profile, because it is stronger in regions of high plasma density, as recombination
scales as n2.

15.2 Collisionless Plasma Expansion

Let us now consider the opposite regime where collisions are not relevant on the
time scale of plasma expansion, @=@t � �˛ . This regime has been considered by
several authors along the years, in particular those focusing on ultra-cold plasmas
[22, 26]. Here again, we assume that the ions control the expansion process, as in
the case of ambipolar diffusion, because the electrons remain tied to the ions by the
electrostatic field. We can still use a variational Gaussian profile for the ions, similar
to Eq. (15.11), but where collision dependent diffusion coefficients are not present,
reading

ni .r; t/ D Ni

�
ˇ.t/

�

�3=2
exp

��ˇ.t/r2	 ; (15.25)

where ˇ.t/ is the variational parameter describing the time evolution ion cloud
radiux, ai .t/, according to

ai .t/ D
r
1

3
hr2ii D 1p

2ˇ.t/
: (15.26)

This would reduce to the previously assumed ambipolar density profile, for ˇ.t/ D
1=4Dt , where D � Di . In order to determine ˇ.t/ we have to introduce
some simplifying assumptions concerning the role played by the electrons, and in
particular, the electron density profile. For that purpose, let us go back to the electron
fluid equations (15.1), with ˛ D e. Assuming a quasi-static equilibrium such that
d=dt ' 0, and neglecting collisions, �e ' 0, the electron momentum equation can
be reduced to

S2erne C ene

me

E ' 0: (15.27)

Introducing the electrostatic potential V , such that E D �rV , we obtain

rne
ne

' r
�
eV

meS2e

�
: (15.28)
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After integration, and making use of an isothermal equation of state for the electron,
�e D 1, the latter equation leads to the usual Boltzmann equilibrium. For a spherical
cloud, such an equilibrium takes the form

ne.r; t/ D ne0.t/ exp

�
eV.r; t/

Te.t/

�
; (15.29)

where we allow the electron temperature to evolve during expansion. Here we
choose V.r D 0; t/ D 0 and V.r > 0; t/ < 0, in order to describe an electron
density profile of the form ne.r > 0/ < ne0. If we insert this expression in
Poisson’s equation, we obtain a nonlinear equation for the potential. In order
to avoid solving this equation, we can write from (15.29) an expression for the
electrostatic potential, as

V.r; t/ D Te.t/

e
ln

�
ne.r; t/

ne0.t/

�
: (15.30)

We can then assume the quasi-neutrality condition, ne.r; t/ ' ni .r; t/, and use
Eq. (15.25) for the ion density profile to obtain

V.r; t/ D Te.t/

e
ˇ.t/r2 C C.t/ (15.31)

with

C.t/ D Te.t/

e
ln

(
Ni

ne0.t/

�
ˇ.t/

�

�3=2)
: (15.32)

The electrostatic field can then be determined by

E.r; t/ D �@V
@r

D 2
Te.t/

e
ˇ.t/r: (15.33)

We can now go back to the ion momentum equation and, assuming a very cold ion
population, such that Ti ' 0, we simply get

dvi
dt

D Ze

mi

E; (15.34)

where we have used the total time derivative d=dt D @=@t C vi � r . Using the field
solution (15.33), we can see that the ion acceleration increases with the radius r ,
suggesting the use of a expression of the form

vi .r; t/ D �.t/r; (15.35)
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where �.t/ satisfies the equation

d�

dt
C �2.t/ D 2

ZTe.t/

mi

ˇ.t/ (15.36)

This establishes a relation between the variational functions �.t/ and ˇ.t/. A second
relation can be obtained from the ion continuity equation, which in a spherical
geometry can be written as

@ni

@t
C 1

r2
@

@r

�
r2ni vi

	 D 0: (15.37)

Using Eq. (15.25) for ni , and (15.35) for vi , we obtain

dˇ

dt
D �2�.t/ˇ.t/; (15.38)

or, after integration

ˇ.t/ D ˇ.0/ exp

�
�2

Z t

0

�.t 0/dt 0
�
: (15.39)

In order to provide the lacking relation between the electron temperature Te.t/ with
the variational functions �.t/ and ˇ.t/, one makes use of the energy conservation
equation, which is stated as

X

˛De;i

�
3

2
T˛.t/C 1

2
m˛

˝
v2˛
˛� D const: (15.40)

By neglecting both the ion temperature (Ti ' 0) and the electron kinetic energy,
this reduces to

3

2
Te.0/ D 3

2
Te.t/C 1

2
mi

˝
v2i
˛
: (15.41)

Using Eqs. (15.35) and (15.26), we realize that

˝
v2i
˛ D �2.t/

˝
r2
˛
i

D 3

2

�2.t/

ˇ.t/
; (15.42)

which allows us to write

Te.0/ D Te.t/C 1

2
mi

�2.t/

ˇ.t/
: (15.43)

Taking the time derivative of the latter, we finally obtain

dTe

dt
D �1

2
mi

�
2�.t/

ˇ.t/

d�

dt
� �2.t/

ˇ2.t/

dˇ

dt

�
D �2Z�.t/Te.t/; (15.44)
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which, for Z D 1 leads to Te.t/=ˇ.t/ D const: A simple analytical solution for
Eqs. (15.36), (15.38) and (15.44) is provided by

Te.t/ D Te.0/

1C t2=�2exp

� ; (15.45)

to which correspond

ˇ.t/ D ˇ.0/

1C t2=�2exp

� ; �.t/ D t=�2exp

1C t2=�2exp

� ; (15.46)

where the constant �exp is the characteristic time for the ion expansion. This can be
estimated as

�exp ' ai .0/

us.0/
D
r

mi

Te.0/ˇ.0/
; (15.47)

where us.t/ D p
Te.t/=mi is the ion acoustic velocity, and ai .t/ ' 1=

p
ˇ.t/ is

the radius of ion cloud. As it can be seen from Eq. (15.43), us is the characteristic
velocity of the plasma expansion. In what concerns the ion temperature, which
was disregarded in the above discussion, we can assume that it follows the same
expansion law, allowing us to write

Ti .t/ D Ti.0/

1C t2=�2exp

� : (15.48)

The above results are typical of a plasma expansion into vacuum. An acceleration
linear in r , implies a velocity which is also linear in r , therefore preserving the
Gaussian spatial profile along the expansion process. Finally, we should notice that
this expansion will preserve the characteristic expansion velocity us D p

Te=mi ,
also valid for the ambipolar diffusion. The collisionless plasma predicts the main
properties of an expanding ultra-cold plasma, and is particularly adequate for
experimental verification.

15.3 Strongly Coupled Ions

15.3.1 Ion-Neutral Coupling

The above discussion is strictly valid for a fully ionized plasma. When neutral
atoms are presents, the ions tend to be strongly correlated with the neutrals, due to
recombination and ionization processes. Such coupling can be described by using
a kinetic approach, where the Vlasov equation for the ions is complemented by a
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ion-neutral coupling source term, as

�
@

@t
C v � r C eE

mi

� @
@v

�
fi D Si ; (15.49)

where E D �rV is the electrostatic field seen by the ions, fi � fi .r; v; t/ is the
ion distribution function, and Si is the source term, which can be defined as [6]

Si D
X

n

ŒKion.n/fa.n/ �Ktbr.n/fi � ; (15.50)

where Kion.n/ and Ktbr.n/ are the electron impact ionization and the three-body
recombination rate coefficients, which generally depend not only on the principal
quantum numbers n of the neutral atoms, with a distribution function fa.n/ �
fa.n; r; va; t/, but also on the electron density and temperature, ne and Te . The
evolution of the atom distribution function fa.n/ is, on the other hand, determined
by a similar kinetic equation, of the form

�
@

@t
C va � r

�
fa.n/ D Sa.n/; (15.51)

where the neutral atom source term Sa.n/ is determined by

Sa.n/ D
X

n0

�
Kbb.n

0; n/fa.n0/ �Kbb.n; n
0/fa.n/


CKtbr.n/fi �Kionfa.n/:

(15.52)

Here, Kbb.n; n
0/ are the rate coefficients for the bound-bound transitions between

neutral atomic states n and n0, due to electron impact collisions. Obviously, these
coefficients also depend on ne and Te. Assuming a Gaussian profile for the spherical
atomic cloud, we can use the following expression for the ion distribution function

fi .r; v; t/ D Ci

�
ˇ.t/

�

�3=2
exp

��ˇ.t/r2	 exp

�
� mi

2Ti.t/
.v � �.t/rer /

2

�
;

(15.53)

where Ci is an appropriate normalization constant. Integration over the ion veloc-
ities vi leads to the density profile (15.25). A similar expression is assumed to be
valid for the atom distribution functions fa.n/. This allows us to calculate the mean
square deviation and the mean square velocity, as

˝
r2
˛
i

D 1

Ni

Z
dr
Z
dvr2fi .r; v; t/ D 3

2ˇ.t/
(15.54)

and
˝
v2
˛
i

D 1

Ni

Z
dr
Z
dvv2fi .r; v; t/ D 3

�
Ti

mi

C �2.t/

2ˇ.t/

�
: (15.55)
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Putting the latter equations together, we obtain

d�

dt
D 2Niˇ.t/

Ni CNa

Te C Ti

mi

� �2.t/ ; dTi

dt
D �2�.t/Ti .t/; (15.56)

which generalizes Eqs. (15.36) and (15.44). On the other hand, integration over the
velocity space of the kinetic equation (15.51) leads to

@

@t
Na.n/ D

X

n0¤n

�
Rbb.n

0; n/Na.n0/� Rbb.n; n
0/Na.n/


CRtbr.n/Ni �KionNa.n/;

(15.57)

where Na.n/ are the populations of the different neutral atom states n, satisfyingP
n Na.n/ D Na, and the quantities Rbb , Rion and Rtbr are the density averaged

collision rates resulting from the integration of the quantities Kbb , Kion and Ktbr

over the ion density profile, as defined by the generic expression

R D 1

Ni

Z 1

0

ni .r/Kdr: (15.58)

Equation (15.57) determines the temporal evolution of the different neutral atom
states. Finally, the energy conservation equation (15.40) in the presence of neutrals
is replaced by a more complete expression taking into account the ion-atom
coupling, as

3

2
Ni

�
ŒTe.t/C Ti.t/�C mi�

2.t/

2ˇ.t/

�
�
X

n

Na.n/
Ry

n2
D const:; (15.59)

where Ry is the Rydberg constant. Equations (15.56) and (15.59) show that inelastic
collisions not only change the neutral atom populations Na.n/, and consequently
the ion populations Ni (or, in other words, the degree of ionization of the plasma
cloud), but they also influence the electron temperature Te . This is due to the fact
that in the three-body recombination process the free electron caries the excess of
energy resulting from it. Therefore, recombination tends to increase Te. The same
occurs for the Rydberg cascading due to electron-atom collisions. In contrast,Te will
decrease due to electron impact ionization and to the inverse Rydberg cascading.

Nevertheless, we should keep in mind that three-body recombination is extremely
sensitive to the electron temperature, scaling as T �9=3e . This means that the influence
of inelastic collisions will sharply decrease for increasing electron temperatures,
where the models of the previous section (where ion-atom correlations were
ignored) becomes more accurate.
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15.3.2 Ion-Ion Coupling

A different type of strong coupling occurs for high densities, in the absence of
neutral atoms, when the ion coupling parameter becomes non negligible, �i � 1,
and ion-ion correlations have to be taken into account. In this case the Vlasov
equation for the ions is replaced by

�
@

@t
C v � r C eE

mi

� @
@v

�
fi D Gii ; (15.60)

where the ion-ion coupling term is defined by

Gii D @

@v

Z
dr0

Z
dv0

�
@Vii

@r

�
gii .r; v; r0; v0; t/: (15.61)

Here, Vii stands for the two-particle interaction potential and gii represents the
two-particle correlation function. Following the strategy of the previous sections,
Eq. (15.56) easily leads to

d�

dt
D 2ˇ.t/

mi

�
Te.t/C Ti .t/C 1

3
Uii

�
� �2.t/ (15.62)

and
dTi
dt

D �2�.t/
�
Ti.t/C 1

3
Uii

�
� 2

3

@Uii

@t
; (15.63)

where we have included the total correlation energy, as defined by

Uii D 1

Ni

Z
ni .r; t/ui i .r/dr; (15.64)

with the single correlation energy given by

ui i .r/ D e2

8��0
ni .r/

Z
gii .y/
y

dy; y D .r0 � r/: (15.65)

It is plausible to assume that the total correlation energy tends to some quasi-
equilibrium value U eq

i i on a time scale of the order to 1=!pi , which is the typical
time scale for the ion population [3]. This equilibrium quantity can be estimated as

U
eq
i i D Ti�i

�
Qu C 1

2

a

�D

�
; (15.66)

where quantity Qu can be obtained from molecular dynamic simulations [7].
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15.3.3 Phase Transitions

In ultra-cold plasmas, the ions can be strongly coupled in the sense that their
average Coulomb interaction energy is much larger than the average kinetic energy,
or in other words, the ion coupling parameter can be quite large, �i � 1. This
leads to a significant change in the plasma behavior and in particular to phase
transitions. We now discuss the possible criteria for such phase transitions. We
consider here a classical approach, based on the one-component plasma model,
which was pioneered by Brush in [4] and reviewed by Ichimaru [13] (see also [7]).

We consider an ion gas immersed in a sea of neutralizing electrons. As a basic
element of such a medium, we can identify the ion sphere, which can be defined as
a sphere with radius equal to the Wigner-Seitz radius for the ions, ai and containing
the neutralizing electric charge that would exactly cancel a single ion charge Ze
located inside this volume, with charge density �e , as given by (see the Fig. 15.1a)

�e D � 3Ze

4�a3i
; ai D

�
3

4�ni

�1=3
: (15.67)

The total electrostatic energy contained in the ion sphere is Uis D Ui C Ue, where
Ui is the interaction energy between the ion and the negative charge centered at a
distance r from the ion, and Ue is the electrostatic energy of the negative charge
itself, as given by

Ui D q2i
ai

"
�3
2

C 1

2

�
r

ai

�2#
; Ue D 3

5

q2i
ai
: (15.68)

where we use q2i D .Ze/2=4��0. Using the definition of the ion coupling parameter
�i D q2i =aiTi , where Ti is written in energy units, we obtain for Uis the expression

Uis

Ti
D �i

"�
3

5
� 3

2

�
C 1

2

�
r

ai

�2#
� �0:9�i C 0:5�i

�
r

ai

�2
: (15.69)

The first term in these expressions gives the lowest possible energy value of the
ion sphere, corresponding to the equilibrium position r D 0. The second term,
proportional to r2, can be seen as the potential energy of an harmonic oscillator
centered at the ion position. Noting that, for thermal equilibrium, the mean energy
of the harmonic oscillator is equal to Ti=2 per degree of freedom, we conclude that
the mean value of the total electrostatic energy of the ion sphere will be given by

hUisi
Ti

D �0:9�i C 3

2
: (15.70)
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a bFig. 15.1 (a) Single ion
sphere, with radius ai ;
(b) two-ions sphere, with
radius 21=3ai

Let us now take a step forward and consider the interaction between nearby
ions. For that purpose, we introduce the correlation function between two ions,
g.r1; r2/, located at positions r1 and r2. Formally speaking, it can be defined as a
relation between the single-particle distribution function f1.r/ and the two-particle
distribution function f12.r1; r2/, as

f12.r1; r2/ D f1.r1/f1.r2/ Œ1C g.r1; r2/� : (15.71)

If the medium is homogeneous, it will only depend on the vector uniting the two
particles r D r1 � r2, and if the medium is also isotropic, it will only depend of its
distance r D jr1 � r2j. In the limit of weakly correlated ions, such that �i � 1, the
correlation function g.r/ can be determined by

g.r/ D �q
2
i

T

e�r=�D
r

; (15.72)

in accordance with the elementary calculations of Sect. 14.2. However, for strongly
correlated ions, �i � 1, the correlation function exhibits a weaker dependence on
the temperature, becoming mainly dependent of the plasma density. Such functional
dependence can be modeled by Ichimaru [13]

g.r/ D exp

�
�w.r/

Ti

�
� 1 ; w.r/ D q2i

r
� h.r/; (15.73)

where w.r/ is the mean potential energy, and h.r/ represents the deviations with
respect to the bare Coulomb interaction q2i =r . For this reason, we can call h.r/ the
screening potential. An estimate of the screening effect can easily be made for the
particular case of very short distances r � ai , in the following way.

Let us define a two-ion sphere, with a total electron charge of �2Ze, and a radius
given by 21=3ai (see Fig. 15.1b). The corresponding screening potential is then given
as the energy difference between the two-ion sphere and the potential of two separate
single ion spheres. Using (15.68), we can easily obtain

h.r/ D q2i
ai

"
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�
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�
r
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� q2i
ai
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�2#
: (15.74)
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On the other hand, for longer distances, r ' ai , we can evaluate h.r/ by numerical
methods, leading to the following result

h.r/ D q2i
ai

�
c0 � c1

�
r

ai

��
: (15.75)

This is valid for moderate coupling coefficients, such that 4 < �i < 160, and in the
range of distances 0:4 < .r=ai / < 1:8, with c0 D 1:25 and c1 D .c0=2/

2 D 0:39.
Based on these results for the ion-ion interaction potential, we can devise a body
centered cubic lattice model (bcc lattice), with cubic cells of half diagonal distance
d , such that, at r D d , the potential interaction vanishes and attains a minimum, as
given by the conditions

w.r D d/ D 0;

�
dw

dr

�

rDd
D 0: (15.76)

Replacing (15.75) in the expression of w.r/, and using these assumptions, we get

c0 D 2
ai

d
; c1 D


c0
2

�
; (15.77)

which are confirmed by the above mentioned numerical results.
Knowing the expression for g.r/, we can now define the excess internal energy

of the system as

Uexc

Ti
D niq

2
i

2Ti

Z
g.r/

r
dr: (15.78)

This is in fact the average potential energy associated with the Coulomb interactions,
or the correlation energy. For the weakly correlated case, �1 � 1, we can use
Eq. (15.72) and obtain

Uexc

Ti
D �

p
3

2
�
3=2
i : (15.79)

For the strongly correlated case, this quantity has been evaluated by particle
Monte-Carlo calculations. In the liquid phase, for moderate values of the coupling
parameter �1 � 1, we have [7, 29]

Uexc

NiTi
D a�i C b�

1=3
i C c; (15.80)

with the parameters estimated as a D �0:90, b D 0:59, c D �0:27, valid in the
range of 1 
 �i 
 160. One can recognize in the first term of this expression the
contribution of the single ion sphere, as estimated in (15.70).

A different expressions for Uexc can be found if, instead of assuming that the
ions form a liquid, we assume an bcc lattice. An expansion of Uexc in power series
of 1=�i , of the form

Uexc

NiTi
D a�1�i C a0 C a1

�i
C a2

�2i
; (15.81)
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with a�1 D �0:896, a0 D 1:5 and a1 D 2:5 	 103, and a2 D 10:84, valid in the
range 160 < �i < 300. In the first two terms of this expression we can recognize
the above results of Eq. (15.70), obtained with the simple ion sphere model.

We can determine the value of �i for which phase transition from liquid to solid
takes place, by computing the Helmoltz free energy F for these two phases. In a
normalized form, this can be defined as

f .�i / � F.�i /

NiTi
D
Z �i

0

Uexc

NiTi

d�

�
: (15.82)

Using (15.80), we get for the liquid phase

f .�i / D a�i C 3b�
1=3
i C .3C c/ ln�i � Œ1:15C aC 3b� ; (15.83)

while for the solid phase, using (15.81), we obtain

f .�i / D a�1�i C 9

2
ln�i � 1:89� 1;490

�2i
: (15.84)

The intersection between these two curves, (15.83) and (15.84), determines a critical
point at �m ' 170, where a liquid-solid phase transition due to the occurrence of
a Wigner crystallization will occur. Other similar values have been quoted in the
recent literature [7]. Let us finally discuss the total internal energy of the system, as
given by

U D 3

2
NiTi C Uexc (15.85)

and the corresponding ion pressure, as determined by

PiV D NiTi C 1

3
Uexc; (15.86)

where the first term corresponds to the ideal gas and the second accounts for the
excess of internal energy associated with the particle interactions.

In contrast with the liquid-solid phase, which occurs for a well defined value of
�i , the gas-liquid transition is usually considered to be a smooth transition, over
a quite broad band around �i � 1, where the correlation function slowly changes
its shape. A proposal for a more precise response was recently advanced [28]. The
starting point is the expression for the total internal plasma energy, including the
electron thermal energy and the electrostatic energy associated with deviations from
the total charge neutrality. This takes the form [11]

U D 3

2
.NiTi CNeTe/C 1

2

Z

V

� .r/dr � Uself; (15.87)
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where Ne and Te are the total number and temperature of the electrons, � and  .r/
are the charge density and electrostatic potential as determined by

r2 D � �

�0
; � D .Ze/

NiX

jD1
ı.r � rj / � ene: (15.88)

In Eq. (15.87), the term Uself represents the self-energy of the discrete set of ions,
which has to be subtracted from the electrostatic energy term. From here, an
equation of state for the ion pressure can be derived, which can be written as [28]

Pi D 1
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4C 1
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� 3

2
n2 C nT (15.89)

where n and T are normalized ion density and temperature, as defined by

n D 4�

3
ni�

3
D; T D Ti

�D

.Ze/2
: (15.90)

A critical point is attained if the following conditions are satisfied [5]

dP
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d 3P
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ˇ̌
ˇ̌
T

< 0: (15.91)

This can be satisfied for the critical values of n D nc � 6:66 and T D Tc � 6:65,
which correspond to the following values of the critical parameter: �i D �c � 0:3

and � D �c � 0:53. We can then say that, for super-critical ion temperaturesT >Tc ,
the ion fluid will behave as a gas and, for sub-critical temperatures T < Tc as
a liquid. This range of parameters is attained in current experiments on ultra-cold
plasmas.

15.4 Disorder Induced Heating

As we have seen, the ultra-cold plasma can be created in a short time scale by
photoionization of the atomic cloud. Initially, the ions are created with a very low
temperature, of the order of the temperature of the laser cooled atoms, Ti .0/ ' Ta.
This corresponds to a very high coupling parameter, typically �i � 100. It means
that the potential interaction energy between the ions is much larger than their
average kinetic energy. As a consequence, the ions will rapidly start to move, in
a disordered way, leading to the increase of the ion temperature on a time scale
of the order to the inverse of the ion plasma frequency !pi . Such a disordered
motion corresponds to transferring the excess of potential energy into kinetic energy,
leading to an increase of the effective ion temperature. This is the so called disorder
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induced heating [24]. On a latter stage of the plasma evolution, such that t � 1=!pi ,
the ions are characterized by a much smaller value of the ion coupling parameter,
of the order of unity �i ' 1 [15]. The final temperature can be estimated by
assuming equipartition at the asymptotic equilibrium state. A simple model for such
an equilibrium state will be described in the next Section. Assuming than that the
final kinetic and potential ion energies are nearly equal, we get for the final ion
temperature Tf the value of

Tf ' 2

3

.Ze/2

4��0ai
� 2

3

q2i
ai
: (15.92)

Of course, this disordered heating process would not occur if the ions were initially
created in a stable configuration, where every ion would be seated on a local
potential minimum.

In order to study this heating process, a molecular dynamic approach can be used,
where the equations of motion of the ions are solved numerically and the average
kinetic energy is used to determine the effective ion temperature. The ion equations
of motion can be established by using the total Hamiltonian of the system. Before
ionization, for t < 0, the centre-of-mass motion of the neutral atoms in the ultra-
cold cloud can be determined by the classical Hamiltonian

Ha D
NaX

jD1

p2j

2M
; (15.93)

where pj are the momenta of the neutral atoms with mass M . After ionization, for
t > 0, and assuming that most of the atoms are ionized Ni ' Na, the dynamical
state of the ion cloud is determined by the new Hamiltonian

Hi D
NiX

jD1

p2j

2mi

C
NiX

j<k

q2i
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exp
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2
jk

�2D

!
(15.94)

where mi ' M , and the Yukawa interaction between ions is assumed, with a
screening length given by �D . The ion equations of motion will therefore be

drj
dt

D mivj ; mi

dvj
dt

D �@Hi

@rj
� Fj ; (15.95)

which can be formally solved as

vj .t/ D 1

mi

Z t

0

Fj .t 0/dt 0: (15.96)

The effective ion temperature can then be defined as

Ti.t/ D mi

3Ni

NiX

jD1

D
v2j .t/

E
: (15.97)
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In the early stages of the heating process, the ion acceleration is nearly constant, and
the ion temperature can be determined by a temporal expansion

Ti.t/ ' Ti .0/C
�
t

�2

�2
C : : : ; (15.98)

were the constant �2 can be determined by

�2 D 3phF 2i ;
˝
F 2
˛ D
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Z t
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dt 00
˝
Fj .t 0/ � Fj .t 00/

˛
(15.99)

Numerical simulations [24] estimate this constant as a function of the parameter
� D ai =�D, as

�2 D 3

.33� 4� C 0:1�2/1=2
: (15.100)

Using appropriate units, and assuming that the initial ion temperature is negligible
Ti.0/ ' 0, we can describe the early stages of the disorder induced heating by the
expression

Ti .t/ '
�
q2i
ai

��
!pi t

�2

�2
: (15.101)

We can see that the initial acceleration decreases for a stronger screening parameter
�, as should be expected, and is confirmed by experiments. For longer times, we can
extrapolate these results and write
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q2i
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1 � exp
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2
pi t

2

2�22
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: (15.102)

This expression reduces to (15.101) for short times t � �2, and tends asymptotically
to the final temperature on a time scale of the order of 1=!pi . This is qualitatively
in agreement with the observations. In addition, a strongly damped oscillation on
the same time scale is also observed in the experiments. A consistent theoretical
model of the disorder induced heating is still missing. In particular, kinetic and fluid
plasma description could be envisaged, in alternative to the molecular dynamics
approach, and eventually lead to a more explicit analytical description of the ion
heating process.

15.5 Quasi-equilibrium States

Let us now discus the possible form of electrostatic equilibrium that can be
established in the ultra-cold plasma cloud, assuming for simplicity that we stay
in the weakly coupling regime, �i � 1, and neglecting the contributions coming
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from the ion-ion coupling. This is marginally valid for the quasi-equilibrium
conditions which follow the fast process of disorder-induced heating. The main aim
here is to show that significant electron trapping can occur, leading to a plasma
equilibrium profile which is very similar to the well-known Thomas-Fermi profile
for heavy atoms [16]. When the trapped electron population dominates over the
“free” electrons, the Rydberg plasma qualitatively looks like a giant atom, where
the ions play the role of a nucleus and the electrons compose the electronic cloud.

In the early stages of the plasma formation by photoionization, the ions are
approximately described by a gaussian profile, which, taking Z D 1, reads

r 2V D e

n0
.ne � ni / ; ni .r/ D n0e

�.r=a/2 ; (15.103)

where a is the size of the ion cloud. This ion profile will create a positive
electrostatic potential V > 0, such that an electron with velocity v, will have an
energy given by

Ee.r; v/ D 1

2
mev

2 � eV.r/: (15.104)

We immediately notice that this energy can be negative, leading to electron trapping
in the collective ion potential. Such trapping occurs for the slowest (or coldest)
electrons of the distribution, with velocities satisfying the condition v < vt , where
the trapping velocity is defined as

vt D
s
2e

me

jV j: (15.105)

Putting Eqs. (15.103)–(15.105) together, and defining � D ejV j=Te, we can write

r 2� D 1

�2D

�
ne

n0
� e�.r=a/2

�
; (15.106)

where �D D vthe=!pe , and !p D .e2n0=�0me/
1=2 is the electron plasma frequency

and vthe D p
T=me is the electron thermal velocity. The free electrons (or, more

precisely, the untrapped electrons with ve > vt ) follow the Boltzmann distribution
associated with the energy (15.104). In contrast, the trapped electrons approximately
follow an uniform distribution, since we assume that they cannot leave the trapping
radius R � a (at least during the early stages of the plasma evolution and before a
significant expansion takes place). As a consequence of these two different electron
populations, the electron density is now be determined as follows [18]
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D 4p
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�Z ut
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u2du C
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e�.u2��/u2du

�
; (15.107)
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where we have used the dimensionless velocity variable u D v=vth;e. Using
Eqs. (15.106) and (15.107), we can obtain a general expression for the electrostatic
potential that casts the effects of the electron trapping, as

r 2� D 1

�2D

�
4

3
p
�
�3=2 � f .�/� e�.r=a/2

�
; (15.108)

where the function f .�/ is defined as

f .�/ D e�
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Equation (15.108) is very difficult to solve in general. Fortunately, approximate
expressions can be provided in some limiting cases. First, for a weak trapping
potential. � � 1, we can use the approximation

f .�/ � 1 � 4
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15
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�
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and the potential equation becomes
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: (15.111)

More interesting for ultra-cold plasmas is the strong confinement case, � � 1,
where we have f .�/ � 0. The potential equation reduces to

r 2� D 1

�2D
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�
�3=2 � e�.r=a/2

�
: (15.112)

It should be noticed that, in this strong confinement regime, the potential equation
is very similar to that of the Thomas-Fermi potential obtained for heavy atoms.
The only difference is rooted in the fact that here the ions are not homogeneously
distributed, and therefore we have included the ion inhomogeneity.

In order to solve Eq. (15.112) numerically, we define the dimensionless variable
� D r=�D and the reduced potential D ��. Notice that  represents the potential
relative to the Coulomb potential �Coul � 1=�, such that  D 1 for an unscreened
plasma. Here, we restrict the discussion to a spherically symmetric plasma, such
that the Laplacian operator contains only the radial derivatives. Due to trapping,
the resulting potential significantly differs from the Coulomb case, as it can be
observed in Fig. 15.2. The corresponding electron profile is not Gaussian. Indeed,
the numerical simulations reveal that ne decays very quickly as a function of r , and
it turns out that most of the electrons are trapped inside the radiusR � a defined by
the width of the ion profile ni . Such results suggest that the ions can efficiently trap
a significant fraction of the electron population inside their cloud.
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ba

Fig. 15.2 (a) Thomas-Fermi potential obtained in the strong trap regime � � 1 for two different
ion gaussian profiles: a D �D , (dashed line) and a D 0:5�D (full line). (b) Ion (dashed lines)
and electron (full lines) profiles in the early stages of a Rydberg plasma: a D �D (black lines) and
a D 0:5�D (gray lines)

Because a fraction of the electron population is sufficiently cold to remain
trapped inside the ion cloud, the Boltzmann statistics does not hold generally.
Casting the effects of the electron trapping, we derived a nonlinear equation to
describe the potential which reduces to the case of a Thomas-Fermi potential
obtained in a different context to describe heavy atomic systems in the semi-classical
regime. This discussion shows that a more realistic description of the plasma
expansion process should include electron trapping effects, and use these Thomas-
Fermi density and potential profiles, instead of the Gaussian profiles considered in
the usual expansion models.

15.6 Rydberg Atoms

15.6.1 Basic Properties

Rydberg atoms are atoms in highly excited states, with one electron with a very large
principal quantum number, n � 1, very close to ionization. In such a configuration,
the core electrons provide an electronic shielding of the nucleus, in such a way that
the excited electron perceives an effective nuclear charge of Ce, like the electron in
the Hydrogen atom. The energy quantum levels of a Rydberg atom can therefore be
determined by an expression similar to that of Hydrogen, of the form [9]

En D � Ry

.n � ı/2
; Ry D 13:6 eV; (15.113)

where Ry is the Rydberg constant, and the quantity ı is the quantum defect. The
latter quantifies the energy correction associated with the fact that the orbits of the
outer electron are not circular. As a result, even for n � 1, this electron will pass
through the inner regions of the atom, which is occupied by the shielding electrons.
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This quantum defect depends on the angular momentum state of atom, and is larger
for strong deviations from a circular orbit. The extreme case corresponds to the s-
states, which have zero angular momentum, and for which we have ı � 5 � 7. For
instance, for Caesium, we have ı ' 5:1 for s-state, and ı ' 2:5 for the d -state.

The size of the Rydberg atoms is also very large with respect with atoms in their
ground level, or low n excited states. For instance, at n D 40, it can attain 200 nm,
more than 103 times larger than a ground state atom. Due to this large size, the
outer electron orbit becomes quasi-classical, and the old Bohr model of the atom
can efficiently be used. For a circular orbit of radius r , the shielded nucleus with
charge Ce will create an electrostatic force, which is balanced by the centrifugal
kinetic force of the outer electron motion, allowing us to write

e2

4��0

1

r2
D mev2

r
: (15.114)

Using the Bohr quantization for the electron orbital motion, we can write n„ D
mevr , where n is an integer. This allows us to calculate the value of the quantized
radial states r D rn, as a function of the principal quantum number n, as

rn D 4��0

e2
n2„2
me

: (15.115)

This shows that the orbit size scales as n2, and the geometric cross-section of
the atom as n4. For n D 1, we recover the value of the Bohr radius a0 D
4��0„4=e2me ' 0:529 A.

As an interesting example of application of this quasi-classical description, let us
consider the classical radiative cascade of Rydberg states [8]. This occurs when
a Rydberg atom is formed and then radiates down to lower excited states. We
consider a Rydberg atom initially in a state n � 1, in nearly circular orbit, to which
corresponds a high angular momentum, such that l ' n. From a classical point of
view, the instantaneous power radiated by an accelerated particle with charge e, and
velocity v, is given by the Larmor formula

Prad D e2

6��0c3

ˇ̌
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2

: (15.116)

Using this formula, we can determine the energy lost by an electron moving in
elliptic orbit around the nucleus, as given by [17]

Prad D .2jEj/3=2m1=2
e e5

c3L5

�
1 � 2jEjL2

e2me

�
; (15.117)

where E can be identified with the energy of the Rydberg atom, as given by
Eq. (15.113), and L D mev 	 r is the angular momentum. By noting that in a
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quantized orbit, L2 D „2l.l C 1/, and assuming l � 1, we can use L ' „l .
Neglecting the quantum defect for simplicity, we can rewrite the above equation in
terms of the atomic quantum numbers .n; l/, as

Pnl D .2Ry/
3=2m

1=2
e e5

n3c3„5l5
�
1 � 2Ry„2l2

n2e2me

�
: (15.118)

This energy radiation process will make the atom decay into a lower energy state,
which can be determined by the relation

Pnl D �d jEj
dt

D Ry

n3
dn

dt
: (15.119)

The temporal evolution of the quantum number of the atom is then determined by
the expression
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where �rad is the characteristic time for radiative decay. Going back to the classical
radiation theory, we know that the rate of change of the angular momentum of the
radiating charge is given by
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�
: (15.121)

From this we get, for the elliptic electron orbit around the nucleus a decay rate [17]

dL
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D �2e
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3c3L2
: (15.122)

Introducing Bohr quantization, we can then obtain the rate of change for the angular
momentum state, as

dl

dt
D �2

3

1

�radl2n3
: (15.123)

Comparing with Eq. (15.120), and taking the ratio between dn=dt and dl=dt ,
we get
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3n2
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: (15.124)

Solving the latter for n.l/, one finds

n2 D l2

1 � C0l3
; C0 D 1

l30

�
1 � l20

n20

�
; (15.125)
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a b

Fig. 15.3 Energy levels of two nearby atoms: if atom 1 is excited by a two-photon transition, from
the ground level jgi1 to the Rydberg state jni1, atom 2 located at a distance R will not be excited
into the same state by the same photon transitions, due to the energy shift �.R/

where the constantC0 is determined by the initial conditions, .n D n0; l D l0/. This
constant clearly depends on the initial angular momentum, and can vary between
C0 D 0, for l0 D n0, which would correspond to a circular electron orbit, to the
maximum value of C0 D 1, characterizing very elongated electron orbits, with l0 D
1 � n0. It is clear from this result that initial circular orbits decay along the diagonal
line n2 D l2 in the .l; n/ phase space, while orbits with l0 < n0, or C0 > 0,
decay along the line defined by (15.125), which therefore characterized the quantum
cascading of highly excited Rydberg atoms. This quasi-classical theory of radiative
decay, based on the simple Bohr quantization method, was shown to be accurate for
atomic quantum numbers as low as n � 10 and .l=n/ � 0:1 [8].

15.6.2 Rydberg Blockade

Rydberg atoms are characterized by having very strong interactions due to their
large dipolar electric moment. The interaction between two Rydberg atoms is
dominated by van der Waals forces at short distances, scaling as 1=R6, where
R is the interatomic distance. For long distances, dipole-dipole interactions are
dominant, and scale as 1=R3. For instance, the transition distance Rc between the
van der Waals short-range and the dipole-dipole long-range interactions is of the
order of 10�m, for a Rubidium atom excited up to the n D 100 Rydberg state.
At this critical distance, the interaction energy between such states is 1012 times
larger than that of a magnetic dipole-dipole interaction between two ground state
atoms [27]. As a consequence, energy shifts of the atomic levels induced by two
Rydberg atom interactions will be significant, as illustrated in the Fig. 15.3. This
means that, if one atom is excited into such a Rydberg state by some resonant photon
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transition, a second nearby atom cannot be excited by the same photon transitions,
because its Rydberg energy states were shifted due to the interaction with the first
atom. Experimental observation of such a blockade process was demonstrated up to
distances of 10�m for Rb atoms excited to the 79d5=2 level [31].

In order to understand this blockade mechanism, let us consider the dipole-dipole
interaction between two atoms, 1 and 2, located at positions r1 and r2. Assuming
that the interatomic distance R D jr1 � r2j is much larger than the atomic size, or
R � n2a0, where n is the principal quantum number of the Rydberg state and a0 is
the Bohr radius, we can write the interaction potential as

Vdd D e2

R3
.r1 � r2 � 3.r1 � R/.r2 � R// : (15.126)

The atoms are assumed excited at the same quantum level, represented by the
quantum numbers .nlj /, and therefore the asymptotic expression for the two-atom
state vector j 12i at long distances R ! 1 is simply given by

j 12i D j 1 2i D ˇ̌
 nlj nlj

˛
: (15.127)

In the absence of external fields, this state is .2j C 1/2 degenerate, where j
is the total electronic angular momentum. The dipole-dipole interaction induces
transitions to other two-atom states, where the angular momentum of each electron
is determined by the usual dipole selection rules .l1; l2 D l ˙ 1/ and .j1; j2 D
j ˙ 0; 1/. Although there is an infinite number of such states, the dipole-dipole
interaction is dominated by a small number of the closest two-atom states. For
instance, for Rubidium at zero temperature, the state

ˇ̌
60p1=2 60p3=2

˛
is mainly

coupled to the state
ˇ̌
60s1=2 61s1=2

˛
. This means that we can consider the long-range

interactions between two Rydberg atoms to be established between the channels
.nlj; nlj / and .n1l1j1; n2l2j2/, with an energy defect given by (in units of Ry)

ı D E.n1l1j1/C E.n2l2j2/ � 2E.nlj / .Ry/: (15.128)

If we represent the .nlj; nlj / state by the state vector j'i, and the .n1l1j1; n2l2j2/
state by j�i, the time-independent Schrödinger equation for the interaction can be
written as "

ı Vdd

V
�

dd 0

#� j�i
j'i

�
D �

� j�i
j'i

�
; (15.129)

where� is the expected energy shift. This leads to the two following expressions

V
�

dd j�i D � j'i ; Vdd j'i D .� � ı/ j�i ; (15.130)

from which the eigenvalue equation for j'i can be extracted as
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Hdd j'i D � j'i ; Hdd D V
�

ddVdd

.� � ı/
: (15.131)

As we can see from Eq. (15.126), the matrix elements of V �

ddVdd vary with distance
as 1=R6, corresponding to a van der Waals type of interaction, and we can expect
the corresponding eigenvalues to behave with distance as C2

3 =R
6, where C3 is the

appropriate coefficient. Solving the eigenvalue equation (15.131), we then get for
the � � �.R/, the expression

�.R/ D ı

2

2

41 � sı
s

1C 4C 2
3

ı2R6

3

5 ; (15.132)

sı is the sign of ı. This determines the frequency shifts due to dipole-dipole
interactions as a function of the distance between the two atoms, such that for large
enough distances (R ! 1) the two-atom eigenstates will reduce to the .nlj; nlj /
state. It is useful to define a critical distance Rc D p

C3.2=ı/
1=3 such that the

fraction inside the square root in this equation becomes equal to one, i.e. the distance
for which the van der Walls potential equals the energy defect. At large inter-atomic
distances such that R � Rc , the energy shift will behave as 1=R6, characteristic of
the van der Waals regime, while for short distancesR � Rc the dipole-dipole 1=R3

dependence will become dominant, a shown by the asymptotic expressions

�.R � Rc/ ' C2
3

ıR6
; �.R � Rc/ ' �sı C3

R3
: (15.133)

The 1=R3 term will therefore represent the largest possible interaction energy
between two non-overlapping Rydberg atoms. This scales typically as n11 [2, 33].

Let us now consider a cloud of N atoms with ground state jgi and Rydberg
states j�i, where g and � represent here the set of internal quantum numbers. And
let us assume that the previously considered blockade mechanism is so efficient that
only one atom, or at most two atoms, in the entire cloud can be excited in a Rydberg
state. This means that the atomic cloud can only be found among the following three
possible states: (i) the state j .g/i, corresponding to all the atoms in the ground
state, (ii) the state j k.�/i, where only the k-th atom is in the Rydberg state � , and
(iii) the state j kl.�/i where both the k-th and the l-th atoms are in the Rydberg
state. In the latter, the two Rydberg atoms will interact according to the eigenvalue
equation (15.131).

The interaction of such an atomic cloud with photons, assuming that they are
resonant with a given atomic transition onto the considered Rydberg energy state
j�i can be described in the following way. The photon coupling with the kth-atom
is described by the single atom Rabi frequency

	k D 2

„ h k.�/jHk j .g/i ; (15.134)
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where Hk is the Hamiltonian for electric dipole interactions. We can also define a
collective Rabi frequency associated with the cloud of N atoms as

	N D
sX

k

j	kj2 D 	
p
N; (15.135)

where 	 is the averaged single-atom Rabi frequency. The state vector of the cloud,
j i, can now be represented as a superposition of the three allowed states, in the
form of

j i D cg j .g/i C cs j si C
X

k<l

ckl j kl.�/i ; (15.136)

where cg , cs and ckl are appropriated coefficients, and the state vector j si is the
normalized singly excited state, as defined by

j si D 1

	

X

k

	k j k.�/i : (15.137)

Now, inserting this in the time-dependent Schrödinger equation, we can derive
the evolution equations for the atom populations, as determined by the following
generalized Bloch equations

i
dcg

dt
D 1

2
	�N cs

i
dcs

dt
D 1

2
	Ncg C 1

N
	�N

X

k<l

��klckl

i
dckl

dt
D �klckl C 1

N
	N�klcs; (15.138)

where we have used the matrix elements

�kl D 4

„2	2
h kl .�/jHkHl j .g/i : (15.139)

Let us then assume that we start with all the atoms in the ground state, j i D
j .g/i, and apply a pulse of photons with a duration such that 	N t D � (also
known as �-pulse). If the blockade effect is active, the doubly excited amplitudes
will always stay very small, and we can take the approximately constant value cs '
1. From here, we can easily integrate the last of the above Bloch equations, allowing
us to conclude that

ckl D �	N�kl

N�kl

cs : (15.140)
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The resulting probability for double Rydberg atom excitation inside the cloud is
then given by

P2 D
X

k<l

jckl j2 D j	N j2
N 2

X

k<l

j�kl j2
�2
kl

: (15.141)

This can be written in a more suggestive way by introducing the definition of a
mean blockade shift B , such that

1

B2
D 2

N.N � 1/
X

k<l

j�kl j2
�2
kl

; (15.142)

in terms of which the probability for double Rydberg excitation simply follows

P2 D N � 1

N

j	N j2
2B2

: (15.143)

We then arrive at the conclusion that, for a given collective Rabi frequency 	N ,
this probability is nearly independent of the number of atoms in the cloud, and only
depends on the mean blockade shift B . But, of course, the blockade mechanism can
only work if the interatomic distanceR is not too large, and it will vanish at infinity.
This means that there will be a domain of effective blockade inside the cloud. This
leads to the concept of a blockade sphere [30].

We can assume that, due to the blockade mechanism, in a large volume of atoms
with size Rdb only one Rydberg atom exists, prevents the other atoms in the ground
state to be excited into the same Rydberg state. Noting that the Nd atoms inside this
volume are identical and indiscernible, they can be seen as forming a single gigantic
atom, or a superatom [12, 32], which interacts with the photon radiation through
an effective Rabi frequency, which is enhanced by a factor of

p
Nb with respect to

the Rabi frequency of a single atom, as shown by Eq. (15.135). The blockade radius
can be estimated by comparing the collective Rabi frequency with the energy shift
associated with the dipole-dipole interaction [19], as

q
naR

3
db	 ' V.Rb/; (15.144)

where na is the atom density. For a van der Waals interaction as considered above,
the maximum possible density of Rydberg atoms that can be formed inside the
atomic cloud is given by

ndb � 1

R3db

/
�
na	

C2
3

�1=5
: (15.145)

This means that the fraction of excited Rydberg states will decrease with the atom
density na and increase with the radiation intensity I as

ndb

na
/ n�4=5a I 1=5: (15.146)
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Such a dependence can be used as an experimental signature of the formation of
superatoms due to the blockade mechanism.

15.7 Three-Body Recombination

Three-body collisions is the dominant recombination process for Rydberg atom
formation in the ultra-cold expanding plasma. Progress in this area has been mainly
driven by research on anti-matter. Several collaborations have been established
at CERN [15], aiming at the creation and confinement of anti-Hydrogen. In the
existing anti-matter devices, strong magnetic field are used in a Penning trap, to
confine the ultra-cold anti-matter plasma. The Penning trap is composed of an axial
magnetic field B0 D B0ez, and an electrostatic quadrupole field, E0 D �rV0.r/, as
described the potential energy

U0.r/ � qV0.r/ D 1

2
m!2

�
z2 � r2?

2

�
; (15.147)

where ! is the trap frequency. The charged particles with charge q and mass m
are confined inside the trap by following trajectories that can be described as a
superposition of three different oscillations: (i) the fast cyclotron motion, slightly
perturbed by the electrostatic field, with the characteristic frequency

!0c D !c

2

 
1C

s

1 � 2!
2

!2c

!
' !c

�
1 � !2

2!2c

�
; (15.148)

with !c D jqjB0=m; (ii) an oscillation along the z-axis, due to the electric
quadrupole axial confinement, at a frequency ! � !c ; and (iii) a very slow
magnetron rotation in the perpendicular plane, associated with the electric drift
velocity vE D E0 	 B0=B2

0 , with the characteristic angular frequency

!E�B D !c

2

 
1 �

s

1 � 2!
2

!2c

!
' !2

2!c
: (15.149)

We therefore have the angular frequency hierarchy, !c � ! � !E�B . See [20] for
more details. Cold Rydberg atoms created and confined in such an environment have
quite unique properties, which have been reviewed by Pohl et al. [25]. However,
they retain the characteristic temperature dependence T �9=2e for the three-body
recombination rate in the ultra-cold plasma, as will be explained next. The reason
for such a temperature scaling can easily be understood on the basis of the following
qualitative arguments. First, the typical electron separation distance b, for a given
kinetic energy Te (in energy units), is of the order of the electron Landau distance,
b � re which scales as 1=Te as shown before. Second, the electron-ion collision
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frequency for an impact parameter of the order of b is �ei ' nevth;eb
2. Third, the

probability for a second electron to be close to the colliding electron and to receive
an energy of Te is proportional to be number of atoms in the collision volume, or
neb

3. The three body recombination rate is therefore approximately given by the
product

Rtbr � �
nevtheb

2
	 �
neb

3
	 / T

1=2
e

T 5e
D T �9=2e : (15.150)

This strong dependence on the electron temperature is the most striking feature
of recombination in the ultra-cold plasma and determines the creation rate of the
Rydberg atom population.

The ultra-cold plasma can be assumed as strongly magnetized, because the
electron Larmor radius rce D vthe=!ce is much smaller than the electron Landau
distance, b � e2=Te, which is the mean inter-particle distance. This means that
the cyclotron frequency is very large as compared with the other characteristic
frequencies of the electron motion, allowing us to average over the cyclotron
motion in order to look at the electron guiding-centre motion, as discussed in the
previous chapter. For the Rydberg energy range of the atoms, which is slightly
lower than the atom ionization energyEI , but much larger than the electron thermal
energy Te � EI , the magnetized Rydberg atom can be seen as a guiding-centre
atom, where the electron guiding-centre moves along the magnetic field lines in
the Coulomb field of the ion, and also moves slowly in the perpendicular plane
around the ion due to the E 	 B0 drift. This means that the guiding-centre atom
is a kind of microscopic Penning trap, where the axial confinement os imposed
by the local ion Coulomb field E . The corresponding to a confinement frequency
is ! � vthe=b � p

e2=meb3, and the E 	 B0 drift motion leads to a magnetron
frequency of the order of !E�B � e=B0b

3. The inequality rLe � b implies the
frequency scaling !ce � ! � !E�B , similar to that of the Penning trap, but valid
at a microscopic scale.

The three body recombination rate is controlled by a kinetic bottleneck [21],
which occurs at a binding energy of a few times Te below the ionization energy
EI . In order to describe the physics in the proximity of this bottleneck, we can
use a variational approach [14], which can be formulated in the following way. We
assume that the two-electron distribution function f2.1; 2/ � f2.r1; v1; r2; v2/ is in
thermal equilibrium if electron 1 has a bound state with binding energy E1 above
some limitE , and is zero forE1 < E . When f2.1; 2/ D 0 a Rydberg state is formed.
On the other hand, electron 2 is always a free electron which is colliding with the
bound electron 1. This means that the interaction between passing (2) and bound
(1) electrons will produce a flux of electrons into the Rydberg states for which the
boundary E1 < E is crossed. The one-way rate for the Rydberg state formation,
R.E/, is determined by an integral over the electron collisions at the boundary E ,
as given in dimensionless form by

R.�/ D �
neb

3
	2
Z
dr1

Z
dr2

Z
dv2

ˇ̌
ˇ̌@�12
@z1

ˇ̌
ˇ̌ f2.1; 2/; (15.151)
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where � D E=Te and �12 D 1=jr1 � r2j, and where we use

f2.1; 2/ D 1

2�
exp .�1 C �2 � �12/ : (15.152)

The integration of Eq. (15.151) is performed in a domain where

�1 C �2 � �12 < �; (15.153)

which implies that the electron 1 can move from �1 D � down to a deeper binding
energy state, while electron 2 can escape to infinity. Such a restriction limits the
domain of integration over v2 to the domain v22=2 C �12 C �20 > 0, where
�20 D �1=jr2j represents the interaction between electron 2 and the ion, supposedly
located at r0 D 0. It is also necessary to consider an additional restriction to the
integration in (15.151), in order to avoid the diverges associated with Coulomb
collisions. We therefore introduce a cut-off at jr1�r2j � C=�, whereC is a constant.
The result is [10]

R.�/ 
 2

3
C.2�/3=2

�
neb

3
	2 exp.�/

�4
: (15.154)

This expression has a strong minimum at � D 4 with the value Rmin ' C.neb
3/2,

which defines the energy bottleneck and results from the competition between the
Boltzmann factor exp.�/ and the phase-space factor ��4. The variational theory
identifies this particle flux minimum with the recombination rate, or in other words,
with the rate of formation of Rydberg atoms. A Monte-Carlo numerical calculation
[10] shows that this recombination rate is quite insensitive the value of the constant
C , and leads to the value (in dimensional units) of

Rtbr ' 0:07n2eb
5vth;e: (15.155)

This value was obtained in the limit of an infinite magnetic field B0 ! 1, or
equivalently, for a negligible Larmor radius. This is an order of magnitude smaller
that the recombination rate in the absence of magnetic confinement, B0 ! 0, as
derived by [1] and [23].
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T. Pfau, Phys. Rev. A 80, 033422 (2009)
20. F.G. Major, V.N. Gheorghe, G. Werth, Charged Particle Traps (Springer, Berlin, 2005)
21. B. Makin, J.C. Keck, Phys. Rev. Lett. 11, 281 (1962)
22. G. Manfredi, A. Mola, M.R. Feix, Phys. Fluids B 5, 388 (1993)
23. P. Mansbach, J.C. Keck, Phys. Rev. 181, 275 (1969)
24. M.S. Murillo, Phys. Rev. Lett. 87, 115003 (2001)
25. T. Pohl, H.R. Sadeghpour, P. Schmelcher, Cold and ultracold Rydberg atoms in strong magnetic

fields. Phys. Rep 484, 181 (2009)
26. F. Robicheaux, J.D. Hanson, Phys. Plasmas 10, 2217 (2003)
27. M. Saffman, T.G. Walker, K. Mølmer, Quantum information with Rydberg atoms. Rev. Mod.

Phys. 82, 2313 (2010)
28. P.K. Shukla, K. Avinash, Phys. Rev. Lett. 107, 135002 (2011)
29. W.L. Slattery, G.D. Doolen, H.E. DeWitt, Phys. Rev. A 21, 2087 (1980)
30. D. Tong et al., Phys. Rev. Lett. 93, 063001 (2004)
31. E. Urban, T.A. Johnson, T. Henage, L. Isenhower, D.D. Yavuz, T.G. Walker, M. Saffman, Nat.

Phys. 5, 110 (2009)
32. V. Vuletic, Nat. Phys. 2, 801 (2006)
33. T.G. Walker, M. Saffman, Phys. Rev. A 77, 032723 (2008)



Chapter 16
Waves in Rydberg Plasmas

In this chapter we give an overview of the wave modes that can be excited in a
plasma, by focusing our attention on problems which can be directly relevant to
the area of ultra-cold Rydberg plasmas. This means that our presentation will be
biased, deviating from the usual presentation of the subject in standard plasma
physics books [1–3]. In particular, we give relevance to low frequency waves and to
electrostatic oscillations, which can be more relevant to the ultra-cold plasma.

We start by discussing the electrostatic waves in isotropic plasmas, in order to
compare them with the previously considered elementary excitations in the other
two phases of ultra-cold matter. In contrast with the previous cases, two distinct
modes can be considered here: electron plasma waves and ion acoustic waves. We
will see that the ion acoustic waves are formally similar, but physically distinct, to
both the hybrid sound of the non-condensed gas, and the Bogoliubov oscillations of
the condensates. We also study the ion acoustic waves in a background expanding
plasma, which have been recently observed experimentally. The electron plasma
waves, which are the high frequency counterpart of ion acoustic waves, will be
discussed first. Similarities with the hybrid sound will also be pointed out.

In order to complete our overview of wave theory, we also briefly discuss the
electromagnetic waves in isotropic plasmas. This is important for the understanding
of photon dynamics in such media. An element of originality with respect to the
usual plasmas can be found in Rydberg plasmas, due to the existence of a large
number of neutral atoms in highly excited states. The internal atomic states can
contribute to photon dispersion, leading to the occurrence of polariton modes, with
interesting dispersive properties. In particular, these modes can have very low group
velocities, which is a characteristic feature of slow light. The polariton modes are
only considered in the unmagnetized plasma case, but it is important to keep in mind
that strong enough electromagnetic pulses (giving place to ponderomotive forces
associated with these polariton modes) can eventually lead to the excitation of quasi-
static magnetic fields.

In this chapter, we also focus our attention to wave phenomena in inhomogeneous
plasmas. Recent experiments revealed the existence of electric drift instabilities [4],

J.T. Mendonça and H. Terças, Physics of Ultra-Cold Matter, Springer Series on Atomic,
Optical, and Plasma Physics 70, DOI 10.1007/978-1-4614-5413-7 16,
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which can be described with the help of a simple fluid model. We also study a
different kind of wave modes that are related with the existence of density gradients.
Noting that such gradients are always present in plasma experiments, this is an
universal type of wave which can easily become unstable and lead to an increase
of particle losses.

The chapter is then completed by a general formulation of wave dispersion in
cold magnetized plasmas. Several types of waves are discussed, paying particular
attention to the modes that can propagate along and across the static magnetic field.
For parallel propagation, the transverse wave modes have right and left hand circular
polarization, and display resonances associated with single particle cyclotron orbits.
For perpendicular propagation, the modes are linearly or elliptically polarized, and
display resonances associated with the collective particle response.

16.1 Isotropic Plasmas

We use fluid equations to describe the various types of waves that can propagate in
a plasma. For simplicity we first focus on the case of isotropic and infinite plasmas.
For high frequency electrostatic waves, the ions can be assumed at rest, by taking the
limit of an infinite ion mass mi ! 1. The plasma motion is then simply described
by the electron fluid equations

@ne

@t
C r � .neve/ D 0;

@

@t
ve C ve � rve C S2er lnne D � e

me

E : (16.1)

The electric field E is determined by Poisson’s equation

r � E D e

�0
.ni � ne/; (16.2)

where the ion density is assumed constant and equal to the equilibrium plasma
density, ni D n0. At equilibrium, we have ve D 0 and E D 0. We then assume
an infinitesimal perturbation, such that

ne D n0 C Qn exp.ik � r � i!t/; ve D Qv exp.ik � r � i!t/: (16.3)

Linearizing the electron fluid equations (16.1), we get

Qn D n0
k � v
!
; Qv D � ieE

me!.1 � S2e k2=!2/
: (16.4)

Inserting this in Eq. (16.2), we obtain

ik �
 
1 � !2pe

!2 � S2e k
2

!
E D 0; (16.5)
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where we have used the electron plasma frequency, !pe D p
e2n0=�0m. This

can obviously be written in the form ik � D D 0, where D D �0�.!;k/ E
is the displacement field vector, and �.!; k/ is the plasma dielectric function, as
determined by

�.!;k/ D 1 � !2pe

!2 � S2e k
2
: (16.6)

Poisson’s equation is only satisfied for �.!; k/ D 0. The dispersion relation for the
electron plasma waves is then given by

!2 D !2pe C 3k2v2the: (16.7)

Here, we have used S2e D 3v2the, where vthe D p
Te=me. This factor of 3 can be

justified by the kinetic approach, to be discussed later. Equation (16.7) describe
dispersive waves, where the phase and group velocities v� and vg depend on the
frequency and are related by

v�vg D 3v2the; (16.8)

where the following definitions were used

v� D !

k
; vg D @!

@k
: (16.9)

We can see that the dispersion properties of electron plasma waves are formally
analogous to those found in the first part of this book for the hybrid sound waves in a
laser-cooled atomic gas. The differences are in the definition of the cut-off frequency
!pe , and of the characteristic velocity vthe. In confined plasmas, the character of
the electron plasma waves also change in a similar way, originating Tonks-Dattner
modes similar to those already discussed in the first part of this book. In ultra-cold
plasmas, electron plasma waves have been first observed by [5], and Tonks-Dattner
modes were identified in [6].

Let us now retain the ion motion. The ion density is not a constant any more.
Using an approach similar to the previous one, but where the ion fluid equations are
also involved, we get for the perturbed quantities of electrons and ions (˛ D e; i )

Qn˛ D n0k � v˛
!

; v˛ D iq˛E
!m˛.1 � S2˛k2=!2/

; (16.10)

and arrive at two equations involving the electron and ion density perturbations
Qne D ne � n0 and Qni D ni � n0, as

.!2 � S2e k2/ Qne D en0

me

ik � E; .!2 � S2i k2/ Qni D �en0
mi

ik � E: (16.11)
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Using Poisson’s equation (16.2), we establish two coupled equations for Qne and Qni ,
in the form



!2 � S2e k

2 C !2pe

�
Qne D !2pe Qni ; and



!2 � S2i k2 C !2pi

�
Qni D !2pi Qne;

(16.12)
which then yield the following dispersion relation

!2pe

.!2 � S2e k
2 C !2pe/

D .!2 � S2i k2 C !2pi /

!2pi
: (16.13)

This equation has two solutions, one corresponding to the electron plasma waves
discussed above, and the other corresponding to much lower frequency waves,
called ion acoustic waves. Noting that S2i � S2e , due to the large mass difference
between electrons and ions, and considering the limit k2S2e � !2pe , we obtain for
the ion acoustic waves

! ' kvacq
1C k2�2D

; vac D
q
S2i C S2e .me=mi/ D

s
Te C 3Ti

mi

: (16.14)

The factors 1 and 3 multiplying the electron and ion temperatures can be again
justified within the kinetic plasma theory. We see that the ion acoustic waves are
non dispersive in the limit of long wavelengths, k2�2D � 1, with phase and group
velocities nearly equal to the ion sound velocity vac .

To complete our elementary discussion of plasma waves in isotropic media, let
us now consider the case of high-frequency electromagnetic waves. Here again, we
neglect the ion motion, and instead of Poisson’s equation we use the full set of
Maxwell’s equations. From these equations, we can derive the propagation equation
for the electric field, in the form

�
r2 � 1

c2
@2

@t2

�
E � r.r � E/ D 
0

@J
@t
; (16.15)

where J D �en0ve is the electron current. For perturbations evolving in space and
time as exp.ik � r � i!t/, and assuming transverse waves such that k � E D 0, this
can be transformed into

�
k2 � !2

c2

�
E D i!
0en0v: (16.16)

Noticing that n D 0 and v D �ieE=me!, we then derive the dispersion relation

!2 D !2pe C k2c2: (16.17)
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This shows that the transverse electromagnetic waves can only propagate in a
plasma with frequencies above the electron plasma frequency, which acts as a cut-
off frequency. These are dispersive waves, and their phase and group velocities are
related by

v� vg D c2: (16.18)

We should notice the similarity between these results and those for the electron
plasma wave, as shown in Eqs. (16.7) and (16.8). We can see that, apart from the
formal analogy, the electron thermal velocity is now replaced by the speed of light.

16.2 Polaritons and Slow Light

Let us consider electromagnetic wave propagation in a partially ionized plasma,
where the neutral atoms can eventually be excited in Rydberg states, very close to
ionization. We can start with the wave equation (16.15)

�
r 2 � 1

c2
@2

@t2

�
E D 
0

@2P
@t2

C 
0
@J
@t
; (16.19)

where we have now included the effect of the polarization P due to the presence
of neutral atoms. We know that, for transverse waves, the amplitude of density
perturbations is equal to zero. We then consider infinitesimal wave perturbations
with frequency ! and wavevector k, of the form

.ve;E ;P/ D .v;E!;P!/ exp .ik � r � i!t/ : (16.20)

From the electron equations of motion, we get

v D �i e
me

E!
.! C i�e/

: (16.21)

We retain the electron collision frequency �e because the case of very low
frequency electromagnetic waves can eventually be considered. We can also use
the constitutive relation

P! D na�a.!/E!; (16.22)

where na is the density of the neutral atoms, and �a.!/ is the atomic susceptibility.
From the above equations we can derive the dispersion relation

k2c2

!2
D �.!/ � 1C �e.!/CNa�a.!/; (16.23)
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where �.!/ is the dielectric function of the medium. The electron susceptibility of
the plasma is simply determined by

�e.!/ D �0e.!/C i�00e .!/; (16.24)

where the real and the imaginary parts are given by

�0e.!/ D � !2pe

.!2 C �2e /
; �00e .!/ D ��e

!
�0e.!/: (16.25)

In order to establish the atomic susceptibility �a.!/, we first notice that most of the
Rydberg states of the neutral atoms inside the ultra-cold partially ionized gas are
significantly populated. Neglecting the quantum defects, the atom energy levels can
be written as (see Eq. (15.113))

E� D �Ry
�2

; � � 1; (16.26)

where � represents the principal quantum number.1 The Rydberg energy spectrum
provides an infinite set of nearly resonant transitions which contribute to wave
dispersion. The dominant contribution to �a.!/ will come from the closest radiative
transition, such that „! ' E�C1 � E� . This can be approximately determined
by ! ' .2Ry=„�3/. Assuming a radiative transition between two quantum states
j� C 1i and j�i, and defining „!a � E�C1 �E� , we can write

�a.!/ D �0a.!/C i�00a.!/; (16.27)

where the real and the imaginary parts are

�0a.!/ D �fa
n0

!2pe�

.�2 C �2/
D; �00a.!/ D �

!
�0a.!/ (16.28)

with D D Œn
.�C1/
a � n

.�/
a � being the unperturbed population difference between

the two states, � is the natural linewidth of the transition, and � D .!a � !/

is the frequency detuning. We have also defined the oscillator strength fa D
.me=„/jh� C 1jrj�ij2. This is smaller by a factor of me=Ma, with respect to the
usual definition. It should be noticed that the population differenceD is nearly equal
to zero over a considerable part of the Rydberg energy spectrum, which tends to
become homogeneously populated by electron collisions or by the radiative cascade
discussed in the previous chapter.

We first neglect the imaginary part of both susceptibilities, �e.!/ and �a.!/,
which is valid in the limit �e � ! and � � �. Their influence will be discussed

1we conserve the symbol n to represent the particle density in this chapter.
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later. The dispersion relation for the electromagnetic waves in a Rydberg plasma is
then reduced to the simple expression [7]

!2 D k2c2 C !2pe

�
1C �a

!2

.!a � !/

�
; �a D fa

Na

n0
D (16.29)

where the quantity �a has the dimensions of time, and can be positive or negative,
according to the sign of the population difference D. We can see that the existence
of neutral Rydberg atoms introduces an additional term in the wave dispersion,
containing an atomic resonance at ! D !a. This qualitatively changes the properties
of the electromagnetic wave, which is now coupled with oscillations of the internal
atomic energy states. In that sense we can call it a polariton. In order to understand
the effect of the neutral atom contributions to the dispersion relation, let us consider
! D !0 C i!00, and assume the double resonance condition

!0 D !a D .!2pe C k2c2/1=2: (16.30)

Replacing this in (16.29), and assuming that the imaginary part of the frequency is
very small, j!00j � !0, we get

!00 D ˙!pe
p
�a!0=2: (16.31)

This shows that !00 can have real and positive values for �a > 0, which corresponds
to an inversion of population, or D > 0. The resonant electromagnetic wave with
frequency (16.29) can become unstable. Such an instability results from the transfer
of energy from the Rydberg atoms to the transverse coherent oscillations of the
plasma medium.

Another interesting aspect of the dispersion relation (16.29) is the modification
of the cut-off frequency. For �a D 0 such a cut-off is simply determined by !pe ,
which is the usual plasma result for a fully ionized plasma. However, for �a ¤ 0,
the cut-off is determined by the condition

�
X2 � 1	 .1 � Y / D ˛Y 2 ; ˛ D �b!a; (16.32)

where we have used the dimensionless quantities

X D !

!pe
; Y D !

!a
: (16.33)

We can see that, when Y ! 0, we get X D 1, which is the usual plasma cut-off.
And, for Y ! 1, we have a resonance X ! 1. Noting that X D Y.!a=!pe/, we
conclude that such a resonance can only be attained for !a � !pe . Furthermore,
there is no real cut-off for Y > 1, or ! > !a. The properties of the solution
X D X.Y / are illustrated in Fig. 16.1, for both positive and negative values of ˛.
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Fig. 16.1 Cut-off frequency
for electromagnetic waves
propagating in a Rydberg
plasma, for ˛ D˙0:5 or
�a D˙1=2!pe .
Dimensionless parameters
X D !=!pe and Y D !=!a
are used

We can see that wave propagation below the plasma cut-off X D 1 becomes
possible, due to the existence of Rydberg atoms.

Let us now retain the influence of the quantities �e and � . Going back to the
dispersion relation (16.23), we can write

kc

!
� N.!/ D

p
1C �e.!/CNa�a.!/: (16.34)

The refractive index is obviously complexN.!/ D N 0.!/CiN 00.!/, where the real
part is N 0.!/ ' p

1C �0.!/, for j�0.!/j � j�00.!/j, and the sign of the imaginary
part N 00.!/ is equal to the sign of �00.!/. It is therefore useful to represent the
quantities �0.!/ and �00.!/, which determine the wave dispersion and the wave
damping, respectively, and to compare them with the case of a purely neutral
medium. Here it is convenient to introduce the following variables z D �=� ,
a D !a=!pe , and

b D fa

n0

!2peD

�
; � D �e

!pe
; g D �

!pe
: (16.35)

The real part of the susceptibility can now be written in terms of these dimensionless
quantities as

�0.z/ D � bz

z2 C 1
� 1

.a � zg/2 C g2
; (16.36)

where the first term represents the contribution from the neutral atoms, and
the second term that of the free plasma electrons. Similarly, we have for the
imaginary part

�00.z/ D � b

z2 C 1
C �

.a � zg/3 C .a � zg/�2
: (16.37)

The quantity �0.z/ D 1C �0.z/ is represented in Fig. 16.2, for negative and positive
inversion of populations, b ˙ 1, respectively. Notice that wave propagation is
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a

b

Fig. 16.2 Dielectric function �0.z/ D 1 C �0.z/ are represented (in bold) as a function of the
wave frequency detuning z D �=� , for a D 1, g D � D 0:1, and (a) b D �1 and (b) b D 1.
For comparison, the curves of pure atomic dispersion corresponding to a non-ionized gas, are also
shown

forbidden when this quantity is negative. These curves show a significant deviation
with respect to the purely neutral gas. We can see the appearance of a plasma cut-off
for both cases, with a significant qualitative difference for the case of b D �1 (no
inversion of population).

Until now, we have assumed an infinitesimal wave amplitude, which allowed us
to neglect saturation effects. Let us now take a further step and consider the case of
a finite wave amplitude, such that a finite Rabi frequency 	 can be considered. In
this case, the polariton dispersion relation can be written as

!2 D k2c2 C !2p

�
!2

!2 C �2e
C �a

!2.! � !a/
�2 C	2 C .! � !a/2

�
: (16.38)

Under typical experimental conditions, the electron-atom collision frequency is in
the range of �e=2� � 100MHz. The typical plasma frequencies are !p=2� �
1GHz (for an electron density of n0 � 109 cm�3) and the atomic frequency!=2� �
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a b

c

Fig. 16.3 Polariton dispersion relation in a Rydberg plasma, obtained for !a D 6!p and a
inverted-population parameter �a D 0:5!�1

p . (a) 	 D 0, (b) 	 D 0:1!p and (c) 	 D 0:5!p . In
the above plots, the thin dashed line represents the usual electromagnetic wave dispersion relation
!2 D !2p C k2c2

10GHz (for � ranging from 40–50) both belong to the microwave range, which
allow us to safely neglect �e in the dispersion relation. We can also assume that � is
small compared to both !a and !p , finally writing the lossless light-electron-atom
polariton dispersion relation, accounting for quantum saturation in a simpler form

!2 � k2c2 C !2p

�
1C �a

!2.! � !a/
	2 C .! � !a/2

�
: (16.39)

The main qualitative features of this new polaritonic dispersion are summarized in
Fig. 16.3. First, we can see the presence of new branches in the wave dispersion.
Second, by allowing the atoms to be sensitive to the wave intensity (i.e., by setting
	 ¤ 0), we observe the emergence of a third dispersion branch, with frequencies
ranging between the values of the two main branches and eventually connecting
them. The interesting aspect of this new branch is that it describes waves with
very low group velocities, as compared with the speed of light, @!=@k � c.
This suggests that in Rydberg plasmas new slow-light phenomena can eventually
occur. Moreover, we observe that an increasing value of the Rabi frequency 	
tends to reduce the range of slow-light dispersion and eventually suppress it.
Indeed, for higher values of 	, the dispersion relation Eq. (5.98) approaches to
!2 � k2c2 C !2pŒ1 C �a!

2.! � !a/�, which shows suppression of the slow-light
band around ! � !a.
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We can then say that the electromagnetic coupling between light and the atoms
in a Rydberg plasma qualitatively changes the properties of wave dispersion. The
resulting polaritonic dispersion exhibits new branches and, in particular, suggests
that Rydberg plasmas can provide a stage to observe slow-light phenomena.

16.3 Ponderomotive Force

Let us now consider nonlinear corrections to the electromagnetic wave dispersion
relation associated with ponderomotive force effects. In order to understand these
effects, let us consider the electron momentum equation

dv
dt

D � e

me

ŒE C v 	 B�: (16.40)

To the lowest order of the wave field amplitude, we can neglect the Lorentz force,
because it is of order v=c with respect to the electric force. Assuming that the wave
field evolves in time as exp.�i!t/, we then have v D �i.e=me!/E . This allows us
to use for the Lorentz force the approximate expression

.v 	 B/ D � e

me!2
ŒE 	 .r 	 E/� : (16.41)

If we now use the vector identity a 	 .r 	 a/ D .1=2/ra2, and average over the
wave period in order to eliminate the terms oscillating at twice the wave frequency,
we get the ponderomotive force, as defined by

hFi D �1
2

�
e

me!

�2
r jE j2: (16.42)

This is the slowly varying part of the Lorentz force acting on a single plasma
electron. We can write, for the total force per unit volume, Fp D n0 hFi acting
on the plasma electron fluid, the following result

Fp D ��0
2

!2pe

!2
r jE j2: (16.43)

This shows that the ponderomotice force is proportional to the gradient of the
electromagnetic energy density. A more detailed analysis of the nonlinear plasma
response would reveal that the ponderomotive force actually contains two distinct
terms, F D FpsCFpt , where the first one is the stationary force described in (16.43)
and the second one is a non-stationary (temporal) force due to slow-time dependence
of the wave field envelope. The expressions for these two force terms can be written
as [8]

Fps D .N � 1/
�0

2
r jE0j2; Fpt D �0

2

k
!2
@Œ!2.N � 1/�

@!

@jE0j2
@t

: (16.44)
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where N � N.!/ is the plasma refractive index. Notice that, in a fully ionized
plasma (�a D 0), this non-stationary ponderomotive term is absent, Fpt D 0,
and the stationary term will be reduced to the more familiar expression (16.43).
The existence of the ponderomotive force leads to the occurrence of new plasma
phenomena, for example the excitation of quasi-static magnetic field. This effect
will be illustrated here. First of all, we notice that the low-frequency ponderomotive
force pushes the electrons locally, from out of the regions with a larger wave energy
density. This creates a slowly varying space charge electric field, as determined by

Es D 1

n0e
Fpf � �0.N1/

2n0e
r jE0j2 C �0

2n0e

k
!2
@Œ!2.N � 1/�

@!

@jE0j2
@t

: (16.45)

The induced slowly varying magnetic field Bs is then determined from Faraday’s
law, @Bs=@t D �r 	 Es , which, together with (16.45), leads to

Bs D � �0

2n0e!2
@Œ!2.N � 1/�

@!
r 	 �kjE0j2

	
: (16.46)

The magnitude of the magnetic field can then be written more explicitly as [9]

jBsj D ek�a.2!a � !/jE0j2
4meL!.! � !a/2 ; (16.47)

where L is scale length of the envelope amplitude variation jE0j2. This expression
reveals that the magnetic field strength is proportional to �a, which (as we have seen
earlier) depends on the atomic processes in Rydberg plasmas. Furthermore, there is
a resonant enhancement of the magnetic field when ! � !a. The resulting electron
cyclotron frequency !ce is

!ce D k�a!.2!a � !/v20
4L.! � !a/2

; (16.48)

where v0 D ejE0j=me! is the electron quiver velocity in the electromagnetic field.
The resonant character of this effect will be limited by the existence of a spontaneous
life-time of the transition radiation at the frequency !a. By assuming a finite value
of the spontaneous bandwidth � , we can transform equation (16.47) into

jBs j D eckˇ.2!a � !/.! � !a/jE0j2
4meL!Œ.! � !a/2 C �2�

; (16.49)

where the field singularity disappears, allowing us to estimate the maximum value
of the quasi-static magnetic field. This is illustrated in Fig. 16.4, where the dimen-
sionless quantity b D 4meL!jBsj=ek�ajE0j2 is represented as a function of the
relative frequency. This shows that magnetic fields can be generated spontaneously
in a Rydberg plasma by the ponderomotive force. This force, resulting from the
high-frequency electromagnetic wave, pushes the electrons locally away and creates
a slowly varying space charge electric field, and a quasi-static magnetic field. This
can eventually influence the expansion of the ultra-cold plasma bubbles.
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Fig. 16.4 Dimensionless magnetic field b, as a function of the relative wave frequency x D !=!a ,
for two different values of the natural bandwidth parameter g D �2=!2a , for g D 0:01 and g D
0:001 (bold)

16.4 Electron Drift Instability

Until now we have only considered wave phenomena in isotropic plasmas. The
variety of waves and instabilities in magnetized plasma is however much broader.
Here, we consider the case of a plasma with crossed static electric and magnetic
fields E0 and B0. As it has been discussed in the recent literature [10], this is
important as electron drift instabilities have been experimentally identified in the
context of ultra-cold plasma studies.

We have seen in a previous chapter that, in such a case, the plasma particles
acquire an electric drift velocity, which is independent of the sign of their charge,
vE D .E0 	 B0/=B2

0 . The resulting plasma convection can become unstable, even
in the absence of any density gradient. The influence of theses gradients will be
discussed in the next section, but we first consider, for the sake of clarity, that
the plasma is uniform, with an equilibrium density n0. In order to discuss such an
instability, we assume perturbed electron density and velocity, as ne D n0 C Qne , and
ve D vE C Qve. On the other hand, the ions can be assumed unmagnetized, which
is valid if the ion Larmor radius is larger than the characteristic scale of the plasma
medium. Let us then consider the ion fluid equations in the ultra-cold limit Ti ! 0.
We can therefore use

@ni

@t
C r � .nivi / D 0;

�
@

@t
C vi � r

�
vi D �erV

mi

; (16.50)

where V is the electrostatic potential. Linearizing and solving for a perturbation of
the form exp.ik � r � i!t/, we get

Qni D n0e QV
mi!2

k2: (16.51)



352 16 Waves in Rydberg Plasmas

Replacing this in the potential equation (16.2), we obtain

r2� D e Qne
�0

� !2pi

!2
k2�: (16.52)

We can now determine the electron density perturbation Qne , by using the linearized
electron fluid equations. From the continuity equation, we get

@ne

@t
C n0r � ve C vE � r Qne D 0; (16.53)

and, from the momentum equation
�
@

@t
C vE � r

�
Qve D e

me

r� � !ce.Qve 	 b/� r QPe
n0me

; (16.54)

where we have introduced the electron cyclotron frequency !ce D eB0=me, and
the unitary vector b D B0=B0. Here, QPe D QneTe represents the perturbed electron
pressure. For the assumed wave perturbation we can then easily get

Qne D n0
k � ve

.! � k � vE/
(16.55)

and

.! � k � vE/Qve D � ek
me

� � i!ce.Qve 	 b/ � Te

n0me

k Qne: (16.56)

In order to be more specific, we assume that the static magnetic field is defined along
the z-direction, and the static electric field in the x-direction, such that

E0 D E0ex; B0 D B0ez; vE D � E0
B0

ey: (16.57)

We also restrict our discussion to the case where the electrostatic perturbation
propagates along the electron drift motion. We therefore take k D key . In
such conditions, the above equations can be solved for the two electron velocity
components, as

Qvx D �i!ce Qvy
.! � kvE/

; (16.58)

and
"
1� .!2ce � v2th;ek

2/

.! � kvE/2

#
Qvy D ek

me

�

.! � kvE/
: (16.59)

Using Eqs. (16.55) and (16.52), we can derive the dispersion relation for the
electrostatic perturbations, as

 
1 � !2pi

!2

!
�
.! � kvE/

2 � .!2ce � k2v2th;e/

 D !2pe: (16.60)
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It is useful to consider this result for some particular cases, relevant to current
experiments in ultra-cold plasmas. We assume the cold plasma limit, where
k2v2the � !2ce . The dispersion relation now reduces to

 
1 � !2pi

!2

!
' !2pe

.! � kvE/2 � !2ce
: (16.61)

In the strong-drift limit, !2 � .kvE/2, the dispersion relation simpler reads

!2

!2pi
D .kvE/2 � !2ce

!2uh � .kvE/2
; (16.62)

where we have introduced the definition of the upper hybrid frequency, as !uh D
.!2pe C !2ce/

1=2. This expression shows that a purely growing mode exists, with
!2 < 0, in the following conditions

!2ce < .kvE/
2 < !2uh: (16.63)

The instability therefore occurs for wavenumbers of the order of k � !ce=vE .
This effect can eventually explain recent experimental results in ultra-cold plasmas,
where a radial electric field can provide the static field E0 during the plasma
expansion phase [10]. Similar effects have also been considered in other contexts,
such as the Hall thruster for space propulsion [11, 12].

16.5 Drift Waves at Plasma Gradients

In density gradient regions of a magnetized plasma, particle drift motion can take
place. This motion is usually associated with low frequency oscillations. These are
the so-called drift waves, which propagate across the magnetic field lines and can
be the source of important particle and energy de-confinement. In order to describe
such waves, we should also assume that the ions are cold, which allows us to neglect
their temperature (Ti ' 0). Using the electron fluid equations, we can see that an
equilibrium electron velocity v0 exists, resulting from the hydrostatic condition

e.v0 	 B0/C rPe
ne

D 0; (16.64)

where B0 is the static magnetic field, and Pe is the electron pressure. By introducing
the electron cyclotron frequency !ce D eB0=me, and using the simple equation of
state Pe D neTe (with Te written in energy units), we can rewrite this expression as

.v0 	 b/ D � Terne
neme!ce

: (16.65)
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Notice that the temperature is assumed constant and uniform, but a temperature gra-
dient term could also be included here. From Eq. (16.65) follows that the equilibrium
drift velocity is perpendicular to both the static magnetic field and the density (or
more generally pressure) gradient. For definiteness, we take b D ez and assume that
ne only depends on the x-coordinate, therefore getting

v0 D � Te

neme!ce

dne

dx
ey: (16.66)

We now assume perturbations around this equilibrium. They satisfy the linearized
fluid equations for the two particle species ˛ D .e; i/, for electrons and ions, where
we use n˛ D n0 C Qn˛ . For slow waves, we can assume that the electrons are
thermalized and attain the Boltzmann equilibrium in the wave potential V . This
means that we can write

ne D n0 exp

 
e QV
Te

!
' n0

 
1C e QV

Te

!
: (16.67)

Inserting the latter in Poisson’s equation (16.2), we obtain

r2 QV D e2 QV
�0Te

� e

�0
Qni : (16.68)

This has to be coupled with the ion fluid equations, which take the form

@ Qni
@t

C n0r � Qvi C .Qvi � ex/
dn0

dx
D 0; (16.69)

@Qvi
@t

D � e

mi

.r QV � Qvi 	 B0/:

Assuming a perturbation that evolves in the yz-plane, which is the plane that
contains both the static magnetic field and the drift velocity vectors, as exp.ik �
r � i!t/, with k D kyey C kzez, we can derive then the following relation between
the perturbed ion density and the electrostatic potential

Qni D
�

� ekz

mi!ci!

dn0

dx
C en0k

2
z

mi!2

�
QV : (16.70)

Introducing the drift velocity v0 defined in (16.66), and using the ion acoustic
velocity vac D p

Te=mi , this expression can be written as

Qni D n0

�
�v0kz

!
C v2ack

2
z

!2

�
e QV
Te
: (16.71)



16.6 Waves in Magnetized Cold Plasmas 355

Now, replacing this in the potential equation (16.68), we get

�.!;k/ k2 QV D 0; (16.72)

where k2 D k2y C k2z . The condition �.!;k/ D 0 is necessary to guarantee the

existence of an electrostatic potential perturbation Q� ¤ 0. This condition can be
explicitly written as

!2 D !2pi

v2ack
2

�
!2 � !.k � v0/ � k2z v2ac



: (16.73)

This is the dispersion relation for the low-frequency drift waves. In the long
wavelength limit, where !2pi=v2ac � k2, this can be simplified to give

!2 D !.k � v0/C v2ack
2
z : (16.74)

This looks very much like an ion acoustic wave modified by the electron drift
motion. When the waves are propagating along the magnetic field lines, and ky D 0

or .k�v0/ D 0, we get! D vackz, the ion acoustic mode. In contrast, when the waves
propagate across the magnetic field and kz D 0, we simply have ! D kyv0. This
means that the transverse phase velocity coincides with the electron drift velocity.

Drift waves were first considered by Rudakov and Sagdeev [13]. Their stability
and dispersion properties have been discussed for very long time in the plasma
physics literature, due to their relevance to both space plasmas and fusion research.
As a consequence of their universal character, they will probably also be relevant to
the new area of ultra-cold plasmas.

16.6 Waves in Magnetized Cold Plasmas

16.6.1 General Dispersion Relation

We now give a general overview of waves that can propagate in magnetized
cold plasmas. Here we mainly follow the approach of Ref. [3]. We restrict our
discussion to the case of homogeneous and cold plasmas, where particle collisions
are neglected. We start from Maxwell’s equations with the plasma charge and
current densities, � and J as defined by

� D
X

˛

q˛n˛; J D
X

˛

q˛n˛v˛; (16.75)
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where the mean densities and velocities n˛ and v˛ are determined by the fluid
equations of the different plasma species ˛ D .e; i/, where thermal effects are
neglected. We assume propagation of an infinitesimal wave perturbation in uniform
plasma, with equilibrium density n0 and confining magnetic field B0 D B0ez. We
can write n˛ D n0CQn˛ , and assume that the particle and field perturbations Qn˛; v˛;E
and B all evolve in time as exp.�i!t/. The linearized fluid equations can then be
written as

Qn˛ D �i n0
!

r � v˛; v˛ D �i q˛

!m˛

.E C v˛ 	 B0/ : (16.76)

This last equation can be solve as v˛ D NN
˛ �E , where NN
˛ is the mobility tensor. The
total current density will then take the form

J D NN
 � E; NN
 D n0
X

˛

q˛ NN
˛ (16.77)

where NN
 is the plasma conductivity tensor. From Maxwell’s equations we then get

r 	 .r 	 E/ D !2

c2
NN� � E ; NN� D NN1C i

!�0
NN
; (16.78)

where NN� is the plasma dielectric tensor, and NN1 is the unit matrix. This can be written
in explicit terms as

NN� D
2

4
�1 i�2 0

�i�2 �1 0

0 0 �3

3

5 ; (16.79)

where the different matrix elements are defined as follows

�1 D 1 �
X

˛

!2p˛

.!2 � !2c˛/
; �2 D

X

˛

s˛
!c˛

!

!2p˛

.!2 � !2c˛/
; �3 D 1 �

X

˛

!2p˛

!2
;

(16.80)

with s˛ being the sign of the particle charge q˛ , and the cyclotron frequencies
!c˛ D jq˛jB0=m˛ defined as positive quantities. For very high frequencies, such
that !2 � !ci ; !pi , we can neglect the ion terms in the dielectric tensor. If the
wave perturbation evolves as exp.ik � r/, the wave equation (16.78) reduces to an

expression of the form NND � E D 0, where

NND D NN1 � kk
k2

� !2

k2c2
NN�: (16.81)

Nontrivial solutions for the wave electric field E ¤ 0 can exist if the determinant of
NND is equal to zero. If we assume a coordinate system where the wavevector k is in

the Oxz plane, making an angle � with the static magnetic field, k � B0 D kB0 cos � ,
this determinant equation can be written in the form



16.6 Waves in Magnetized Cold Plasmas 357

AN4 � BN2 C C D 0; (16.82)

where N D kc=! is the refractive index, and

A D �1 sin2 � C �3 cos2 �; (16.83)

B D �
�21 � �22

	
sin2 � C �1�3

�
1C cos2 �

	
;

C D �3
�
�21 � �22

	
:

The solution to Eq. (16.82) is then given by

N2 D 1

2A.B ˙ D/; (16.84)

with

D D �
�21 � �22 � �1�3

	2
sin4 � C 4�22�

2
3 cos2 �: (16.85)

This shows that we have two distinct solutions for N2, or two distinct modes of
wave propagation. An alternative and eventually more suggestive way of writing

det NND D 0 is

tan2 � D � �3Œ.N
2 � �1/2 � �22�

.�1N 2 � �21 C �22/.N
2 � �3/

: (16.86)

Of particular relevance are the conditions for which the wave refractive index
becomes zero or infinite. We have a cut-off when N D 0, and a resonance when
N ! 1. Equation (16.82) shows that a cut-off occurs when C D 0, which
corresponds to one of the two independent conditions

�3 D 0; �1 ˙ �2 D 0: (16.87)

These conditions are independent of the angle of propagation � . On the other hand,
Eq. (16.84) shows that a resonance exists when A D 0. This, however, depends on
the propagation angle, as shown by the definition of A in Eq. (16.84), and takes
place for

tan2 � D ��3
�1
: (16.88)

Going back to Maxwell’s equations (16.78), we can easily realize that a cut-off
corresponds to the condition k 	 H D 0, which means that the displacement current
exactly compensates the convection current. On the other hand, at resonance (N !
1), the transverse electric field vanishes, E? D 0, in order to guarantee that k 	 E
remains finite. This means that the electric field of the wave is purely longitudinal
at resonance.



358 16 Waves in Rydberg Plasmas

Let us now comment on the wave polarization. Given the condition NND � E D 0,
the electric field components have to be proportional to the corresponding minor

determinants. Developing the determinant det NND D 0 with respect to the first line,
we obtain

Ey

Ex
D i�2

N 2 � �1
;

Ez

Ex
D N2 sin2 � � �3

N 2 sin � cos �
: (16.89)

In order to illustrate these generic results, we will discuss next the particular but
important cases of parallel and perpendicular wave propagation with respect to the
magnetic field lines.

16.6.2 Parallel Propagation

Let us first examine the case where the wave propagates along the magnetic field
lines, and the wavevector k is oriented along B0. This corresponds to � D 0. As can
be seen from Eq. (16.86), this can occur in three different situations. First, we can
have �3 D 0, defining the electrostatic oscillations. They can in fact be identified
with the long wavelength limit of electron plasma waves. This also implies that
D D 0, as shown by (16.85). On the other hand, for �3 ¤ 0, the condition of
parallel propagation is satisfied for two different values for N2, as shown by both
Eqs. (16.82) and (16.86), corresponding to N2

˙ D �1 ˙ �2. This can be explicitly
written as

N2˙ D 1 � !2p

.! � !ce/.! ˙ !ci /
; (16.90)

where we have used !2p D !2pe C !2pi . These are two transverse electromagnetic
waves with k˙ � E D 0, polarized in the plane perpendicular to B0. It can seen from
Eq. (16.89) that

Ey

Ex
D i�2

N 2˙ � �1
D ˙i: (16.91)

The plus sign, Ci , corresponds to the right-hand circular polarization, or R wave,
where the electric field turns in the same direction as the rotation of the electron
cyclotron orbits around the magnetic field lines. Similarly, the minus sign, �i ,
describes the L wave with left-hand circular polarization, where the electric field
turns with the positively charged ions. It is therefore not surprising to notice that
the R and L waves are resonant at the electron and ion cyclotron frequencies
respectively, withN˙ ! 1 for ! ! !ce; !ci . Around such resonances the transfer
of energy from the waves to the particles can be significant, a process used for
plasma heating in magnetic fusion devices.

In what concerns the cut-off frequencies, such that N D 0, and k D 0, we can
see directly from (16.90), or from the above general condition (16.87) that they are
attained for
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!2 � !.!ce � !ci / � .!2p C !ce!ci / D 0: (16.92)

Noting that !ci=!ce D me=mi � 1, we can define the two cut-off frequencies for
the R and the L mode (corresponding to the plus and minus signs) as

!R D 1

2


q
!2ce C 4!2p C !ce

�
; !L D !R � !ce: (16.93)

It is interesting to consider the limit of a weak magnetic field, such that !2p � !2ce .
These two cut-off frequencies reduce to !R ' !p C !ce=2 and !L ' !p � !ce=2.
Comparing this with the cut-off for the unmagnetized plasma, which is ! D !p , we
can see that the cut-off frequencies show a kind of Zeeman splitting, similar to that
of the atom energy levels in a magnetic field.

These R and L modes are sometimes known under different names, in different
regions of the frequency spectrum, because they have been explored by different
scientific communities. As an illustration, let us first consider the high frequency
regions, where !2 � !2pi ; !

2
ci . In this case, the refractive index (16.90) reduces to

N2˙ ' 1� !2p

!.! � !ce/
: (16.94)

An interesting intermediate region corresponds to !ce � ! � !ci . In this case, we
can write the dispersion relation for the R mode, corresponding to N2C � 1 in the
form

! ' k2c2
!ce

!2p
: (16.95)

This is the well known dispersion relation for the whistler modes, which can be
excited by lightening flares in the ionosphere, and are observed in the audio-
frequency region of the spectrum. The name is due to the fact that higher frequencies
have higher phase and group velocities, due to the dependence ! / k2, and they
arrive first at an observer located at low altitudes, when they propagate down to the
Earth along the terrestrial magnetic field lines.

Let us now consider the low frequency limit, such that !2 � !2pi ; !
2
ci . In this

case, the two modes, R and L, tend to a single mode with dispersion relation

N2 ' 1C !2p

!ce!ci
D 1C c2

v2A
; vA D B0p


0n0mi

; (16.96)

where vA is the Alfvén speed. This dispersion relation can also be written as

!2 D k2v2A
1C .vA=c/2

: (16.97)

These low frequency waves are called the Alfvén waves. For low magnetic fields
and high plasma densities, we can have vA � c. If we retain the lowest order
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corrections due to the ion cyclotron motion in (16.90), two distinct modes reappear,
with dispersion relations

!2 D k2˙v2A

�
1˙ !

!ci

�
: (16.98)

In that case, the R wave is called the compressional Alfvén wave, with fast phase
velocity, !=kC > vA, and the L wave is often associated to the shear Alfvén wave,
with slow phase velocity, !=k� < vA.

16.6.3 Perpendicular Propagation

Let us now consider propagation across the static magnetic field, such that k�B0 D 0,
or � D �=2. Going back to the general dispersion relation (16.82) and (16.86), we
obtain two new modes called the ordinary mode, N2 D N2

O , and the extraordinary
mode, N2 D N2

X , with

N2
O D �3 D 1 � !2p

!2
; N 2

X D �21 � �22
�1

: (16.99)

The ordinary mode (or O mode) is linearly polarized in the direction of the static
magnetic field, E D Eb, as can be seen from (16.89). The currents associated with
this electric field are not affected by the existence of static field B0, because the
particles can move freely along the magnetic field lines. This mode is a transverse
mode identical to that of a non-magnetized plasma, and has no electron density
perturbations Qn D 0.

In contrast, the extraordinary mode (or X mode) has polarization in the per-
pendicular xy-plane. This means that it has both transverse and longitudinal
components, as determined by

Ex

Ey
D i

�2

�1
; (16.100)

where, in general, we have �2 ¤ �1. We should notice that, at resonance,NX ! 1,
we have �1 ! 0, and the mode becomes linearly polarized along the propagation
direction, or, in other words, it behaves as an electrostatic mode. Near the cut-off,
N2
X D 0, defined by �1 D ˙�2 the X mode becomes circularly polarized. The

resonances for the X mode are defined by the condition �1 D 0. This determines two
resonance frequencies called the upper and lower hybrid resonances, as defined by

!uh D
q
!2p C !2ce ; !lh D

"
!ce!ci

.!2pi C !2ci /

!2pi C !pe!ce

#1=2
: (16.101)

In the limit of low plasma density, or strong magnetic field, such that !2pe � !ce!ci ,
this reduces to !uh ' !ce and !lh ' !ci . In the opposite limit of high density
and weak confining field, !2pe � !2ce , Eq. (16.101) become !uh ' !p and !lh '
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p
!ce!ci . The explicit expression for the refractive index of the X mode can be

written as

N2
X D .!2 � !2p � !ce!ci /

2 � .!ce � !ci /2!2
.!2 � !2ce/.!

2 � !2ci /� !2p.!
2 � !ce!ci /

(16.102)

In the very high frequency limit, !2 � !2ce; !
2
p , we have N2

X ' N2
O , and the two

modes can hardly differentiate. For weak magnetic fields and high frequencies such
that !2 > !2p � !2ci , we can write

N2
X ' N2

O � !2p!
2
ce

!4N 2
O

: (16.103)

This shows that, in the region mentioned above, we always haveNX < NO . Finally,
for very low frequencies such that !2 � !2ci ; !

2
pi , we obtain

N2
X ' 1C !2p

!ce!ci
D c2

v2A
: (16.104)

In this limit, the X mode becomes an Alvén wave.

16.7 Waves in Expanding Plasmas

We conclude this chapter by discussing two different aspects of ion acoustic wave
propagation in ultra-cold plasmas, which considerably differs from the usual plasma
wave phenomena. First we discuss the case of a non-stationary plasma. In ultra-cold
plasmas, the time scale for plasma bubble expansion is large compared with a typical
ion acoustic wave period, but short as compared with the time scale for acoustic
wave propagation inside the medium. As a result, the temporal evolution of the
background plasma parameters can influence the wave oscillations that are excited
in the medium. This finite size effect has been observed in recent experiments
by [14].

The excitation of ion acoustic waves in a non-stationary plasma, can be described
by the ion fluid equations for the ion number density ni and the ion fluid velocity v.
We have the ion continuity and momentum equations, respectively,

@ni

@t
C r � .nivi / D 0;

@v
@t

C .v � r /v D �Ze
mi

rV � v2thi

n
rn; (16.105)

where the ion thermal speed is vthi D p
Ti=mi , with the ion mass mi . As we have

previously seen, for low frequency waves, the electron density ne can be assumed
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at Boltzmann equilibrium in the wave potential V , at the temperature Te ¤ Ti .
This Boltzmann equilibrium remains valid as long as the phase velocity of the
ion acoustic waves is much smaller than the electron thermal velocity. Finally, the
electrostatic potential V is determined by Poisson’s equation

r 2V D e

�0
.ne �Zn/; ne D neq.t/ exp.eV=Te/; (16.106)

where neq.t/ is the equilibrium density. The plasma equilibrium, with n D n0=Z

and v D 0, is established on a very short timescale as compared with the long ion-
time scale. This allows the equilibrium ion plasma density and temperature to vary
on such a long time scale. This means that we can use a time-dependent equilibrium
density n0.t/ D n0f .t/, with jf .t/j ' 1. For simplicity, the temperatures are
assumed constant, but this assumption can easily be relaxed. We then consider
ni D n0.t/=ZC Qn. Linearizing equations (16.105), we obtain the evolution equation
for the ion density perturbation

�
@2

@t2
C !2pi .t/

�
1 � n0f .t/

Z

eV

Te

�
� v2th;ir 2

�
Qn D �.t/

�
@ Qn
@t

�
; (16.107)

where the quantity �.t/ and the ion plasma frequency !pi .t/ are defined by

�.t/ D d lnf .t/=dt; !2pi .t/ D Ze2n0f .t/

�0mi

: (16.108)

Equation (16.107) can be coupled with the linearized Poisson’s equation (viz.
eV=Te � 1), which can be written as

r2V D !2pi .t/
miV

ZTe
�Z

e Qn
�0
: (16.109)

For a slow temporal evolution of the plasma background, such that the source term
on the right-hand side of Eq. (16.107) is negligible, we can seek solutions of the form

Qn.r; t/ D Nke
˙ir�r exp

�
�i
Z t

!k.t
0/dt 0

�
; (16.110)

with a similar solution for the electrostatic potential V . Replacing Qn in Eqs. (16.107)
and (16.109), we can derive the dispersion relation for the ion acoustic waves in the
non-stationary plasma, as [15]

!k.t/
2 D k2v2th;i

�
1C ZTe

Ti

1

1C k2�2D.t/

�
; (16.111)
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where the time dependent electron Debye length is defined, �D.t/ Dh
ZTe=mi!

2
pi .t/

i1=2
. This shows that the wave frequency changes as a result of

the temporal changes in the background medium. Similar effects have been first
identified in sound waves propagating in neutral plasma [16, 17]. This is actually a
more general characteristic feature of waves propagating in time-varying media, and
was mainly studied in the context of electromagnetic radiation. Such a characteristic
feature, already identified for phonons in condensates, is sometimes called time-
refraction [18]. These frequency shifts are, however, less pronounced in the case
of ion acoustic waves, and can even be negligible for very long wavelengths
(k2�2D � 1), as long as the electron and ion temperature variations are ignored.
This situation strongly contrasts with the cases of the photons and plasmons, where
the frequency shift is directly associated with time variations of the plasma density
[19].

Let us now consider the case where the quantity �.t/ is not negligible. This
corresponds to a plasma bubble, expanding in the absence of any ionization process.
An exact solution of Eqs. (16.107)–(16.109) can be found, involving now two
distinct solutions Qnk and Qn�k , similar to (16.110), with the same axial wave vector
k but propagating in opposite directions. These two ion acoustic wave modes are
coupled in the time-varying plasma. It can be shown that the wave solution (16.110)
is replaced by a more adequate solution of the form

Qn.r; t/ D Nk.t/ expŒik � r � i'.t/�CN�k.t/ expŒik � r C i'.t/�C c.c.; (16.112)

with the phase given by '.t/ D R t
!k.t

0/dt 0 and !k.t/ is defined by the dispersion
relation (16.111). Replacing this in the wave equation, and retaining only the terms
with the same spatial dependence in exp.˙ik � r/, we obtain two coupled equations
for the counter-propagating wave amplitudesNk and N�k, as given by

dNk

dt
D �.t/N�k expŒ2i'.t/�;

dN�k
dt

D �.t/Nk expŒ�2i'.t/�; (16.113)

with

�.t/ D 1

2

�
1

!k

d!k

dt
� �.t/

�
D 1

2

d

dt
ln

�
!k

f

�
: (16.114)

Here we have assumed slowly varying amplitudes, such that jdNk=dt j � j!kNkj,
and jdN�k=dt j � j!kN�kj. These coupled equations can be easily solved, when
the reflected wave amplitude is small with respect to a given wave initially excited
in the medium, jN�kj � jNkj, and Nk.t/ ' const. In such limit, we may have

N�k.t/ D R.t/Nk.t/; R.t/ '
Z t

�.t 0/ expŒ�2i'.t 0/�dt 0; (16.115)

whereR.t/ is a temporal reflection coefficient. This is formally very similar to what
can be derived for the reflection coefficient R.z/ associated with the usual (space)
refraction [2,18], with the space variable z replaced by the temporal one t . However,
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the physical meaning is different, because there are no physical discontinuities from
where the initial wave could be reflected. Such a discussion runs in parallel with
that for the Casimir effect, as considered before in the frame of the quantum theory
of Bose Einstein condensates. An explicit expression for �.t/ is given by

�.t/ D �.t/

2

"
1

2

k2�D.t/
2

1C k2�D.t/2

 
1 � k2v2th;i

!2k

!
� 1

#
: (16.116)

We therefore conclude that any temporal change in the background plasma density
(or temperature) will lead to wave reflection, even for an infinite and homogeneous
plasma. This somewhat counter-intuitive result is impose by total momentum
conservation.

16.8 Waves in Strongly Coupled Plasmas

We have seen that, in ultra-cold plasmas, the thermal energy of the charged particles
(specially ions) can be smaller than the Coulomb interaction energy between nearest
neighbors, making them strongly coupled systems. It is then useful to examine the
properties of ion acoustic waves propagating in ultra-cold plasmas, when the ions
are strongly coupled. For our purposes, we can still use the Boltzmann law for
the electron density perturbation. In what concerns the ions, they can be described
by a modified ion momentum equation, which can be established by including a
phenomenological viscoelastic term, as [20]

dvi
dt

D � rPi
mini

C Ze

mi

E C
Z t

�1
dt 0

Z
dr0�i .r � r0; t � t 0/vi .r0; t 0/; (16.117)

where Pi is the ion pressure and �i is a non-local viscoelastic operator, describing
memory effects and short range correlations between the ions. This term will obvi-
ously increase with the ion coupling parameter �i . If we introduce an exponential
memory decay described by a relaxation time �m, and all the other features of a
viscosity operator, we can write the space-time Fourier components of this operator
as

�i .!;k/ D �k2 C ��k.k� /
mini .1 � i!�m/ ; (16.118)

where �� D .�=3 C �/. The bulk viscosity coefficient �, the shear viscosity �
and �m are introduced phenomenologically. Doing a regression Fourier analysis and
combining this with Eq. (16.117), we can get the modified ion momentum equation,
for one-dimensional propagation [21]

�
1C �m

@

@t

�"
@ QV
@t

C Ze

mi

.1 � R/
@V

@x
C �iTi

�i0

@ Qn
@x

#
D ��
�i0

@2v

@x2
; (16.119)
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Fig. 16.5 (a) Dispersion
relation of ion acoustic waves
in a strongly coupled plasma,
and (b) in the absence of ion
coupling

where for practical purposes we can choose

�m D �i

ni0Ti

�
1 � 
i C 4

15
U.�i /

��1
; 
i D 1

Ti

@Pi

@ni0
' 1C 0:33U.�i /C �i

9

@U.�i /

@�i
;

(16.120)

with �i D mini0 being the ion mass density, U.�i / the measure of the excess
internal ion energy, Qn and Qv the ion (number) density and ion velocity perturbations,
and �i the ion adiabatic index. We have also introduced R D e2=4kBTe�D �
.16ne0�

3
D/
�1 
 1. The term proportional to .1 � R/ in Eq. (16.119) accounts for

the polarization force arising from interactions between the thermal electrons and
strongly coupled ions in the ultra-cold plasma. Combining this with Poisson’s
equation (16.2) for the electrostatic potential, and using the electron Boltzmann law
such that Qne ' ne0e QV =Te, we obtain the propagation equation along the arbitrary
x-direction

�
1C �m

@

@t

�"
@2 Qn
@t2

� v2th;i
@2 Qn
@x2

� Zini0e

mi

.1 � R/
@2 QV
@x2

#
� ��
�i

@3ni1

@x2@t
D 0:

(16.121)

Assuming that Qni and QV are proportional to exp.�i!tCikx/, where! and k are the
frequency and the wave number, we obtain the dispersion relation for the modified
ion acoustic waves [21]

1C 1

k2�2D
� .1 � R/!2pi�

!2 � k2V 2
T i C i!k2��=�i .1 � i!�m/


 D 0: (16.122)

where !pi D .ni0Z
2
i e
2=�0mi/

1=2 is the ion plasma frequency. Equation (16.122)
reveals that the electrostatic force is weakened by the polarization force, leading to
a significant reduction of the ion plasma frequency in ultra-cold plasmas. In the limit
of j!j � ��1m , Eq. (16.122) reduces to
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!2 D k2��
�i �m

C k2V 2
T i C .1 � R/k2v2ac

.1C k2�2D/
; (16.123)

where vac D !pi�D � .ZiTe=mi/
1=2 is the ion sound speed. In the opposite limit,

such that j!j � ��1m , the modified ion acoustic wave is weakly damped due to the
viscoelastic effect in ultra-cold plasmas, at it should be expected. The wave damping
rate is determined from

! D �i k
2��
2�i

˙
�
�k

4�2�
4�2i

C k2V 2
thi C .1 �R/k2v2ac

.1C k2�2D/

�1=2
: (16.124)

This result shows that the ion-ion coupling can strongly modify the dispersion
properties of ion acoustic waves, as illustrated in Fig. 16.5. In particular, the wave
frequency is substantially reduced due to the polarization force, since R is typically
of order 1 in ultra-cold plasmas.
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Chapter 17
Kinetic Theory of Waves

We complete the wave description by extending it into three different directions.
They include wave kinetic phenomena, waves in quantum plasmas and waves in
turbulent plasmas. The discussion will be restricted to electrostatic waves, namely,
electron plasma waves and ion acoustic waves. Our main aim will be to stress the
analogy between the kinetic plasma effects, in particular, kinetic susceptibilities and
the electron and ion Landau damping, with those pertaining to the ultra-cold atoms
discussed in the first part of this book. Of particular interest is the propagation
window of undamped ion acoustic waves, which depends on both the electron
and ion Landau damping contributions, and depart from the single particle Landau
damping considered in Chap. 5.

We then extend the wave description to the case of quantum plasmas. Although
current plasma experiments remain distant from quantum plasma conditions, this
extension is useful for two kinds of reasons. One is that we cannot exclude
the possible experimental exploration of quantum plasma conditions in the long
term. This could be achieved by a considerable increase of the plasma density
and reduction of the electron temperature. Second, the quantum plasma regime is
conceptually very interesting, because it introduces quantum dispersion terms which
are formally identical to those already identified for waves propagating in the ultra-
cold neutral gas and in condensates.

The chapter ends with a classical but non-trivial description of ion acoustic
waves, where the plasma is prepared in a turbulent state, and not in the usual
steady state. Plasma turbulence is described as a superposition of plasmon modes,
where these modes are seen as quasi-particles, in the same way that we did for the
sound waves in a superfluid. In this sense the medium will be composed by two
different kinds of particles, the real plasma particles (electrons and ions) and the
plasmon quasi-particles. The model is then conceptually analogous to the model
of two fluids used to describe superfluidity, as shown in Chap. 11. The difference
here is that the long wavelength excitations are replaced by ion acoustic waves, and
the background (Bogoliubov) phonons are replaced by plasmons. The result of this
turbulent background is the modification of the wave dispersion properties and the
appearance of an effective sound velocity.

J.T. Mendonça and H. Terças, Physics of Ultra-Cold Matter, Springer Series on Atomic,
Optical, and Plasma Physics 70, DOI 10.1007/978-1-4614-5413-7 17,
© Springer Science+Business Media, LLC 2013
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17.1 Kinetic Dispersion Relation

We first follow the standard description of kinetic wave theory, which can be found
in many textbooks [1, 2]. Let us consider a collisionless plasma, described by the
Vlasov equation. And let us study the evolution of infinitesimal oscillations, in
a spatially uniform and isotropic plasma. We consider electrostatic oscillations,
not only for simplicity but also because the kinetic effects are not important for
transverse electromagnetic waves. The phase velocity of the electromagnetic waves
in unmagnetized plasmas is always larger than the velocity of light c, implying that
wave-particle interactions are not relevant. In the absence of magnetic fields, the
Vlasov equation for each particle species ˛ D e; i (for electrons or ions) can be
written as

@f˛

@t
C v � @f˛

@r
C q˛

m˛

E � @f˛
@v

D 0: (17.1)

As it is known, the electric field in this equation is self-consistently determined by
Maxwell’s equations or, for purely electrostatic waves, by Poisson’s equation

r � E D 1

�0

X

˛

q˛n0˛

Z
f˛.r; v; t/dv: (17.2)

We can see that the third term in the Vlasov equation is nonlinear, because the
electric field E depends on the distribution function f˛ . However, in the limit of
infinitesimal perturbations, we can linearize this term around the equilibrium, f˛ D
f0˛ , and E D 0. This can be done by considering a small deviation with respect to
equilibrium, f˛ D f0˛ C Qf˛ . Let us now consider a Fourier transformation in space
coordinates, as defined by

E.r; t/ D
Z

E.k; t/eik�r dk
.2�/3

; Qf˛.r; vt/ D
Z

Qf˛.k; v; t/eik�r dk
.2�/3

: (17.3)

For each Fourier component, the linearized Vlasov equation takes the form

@ Qf˛.k/
@t

C ik � v Qf˛.k/C q˛

m˛

E.k/ � @f0˛
@v

D 0: (17.4)

On the other hand, we can also replace the operator r by ik in Eq. (17.2). Let us
now turn to the temporal evolution and assume that, at t D 0 we have a given
perturbation described by

Qf˛.k; v; t D 0/ D g˛.k; v/: (17.5)

We want to determine the evolution of such a perturbation. In order to do that, we
add a source term representing the initial conditions to Eq. (17.4), and obtain

�
@

@t
C ik � v

�
Qf˛.k/C q˛

m˛

E.k/ � @f0˛
@v

D g˛.k/ı.t/: (17.6)
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In order to integrate this equation, we can use the temporal Laplace transformation,
as defined by

Qf .!/ D
Z 1

0

Qf .t/ei!tdt; (17.7)

where ! is a complex quantity with a positive imaginary part, in order to guarantee
that this integral exists. Multiplying equation (17.6) by exp.i!t/, and integrating in
time, we obtain

Qf˛.!/ D ig˛.v/
.! � k � v/

� q˛

m˛

iE.!/ � @f0˛=@v
.! � k � v/

: (17.8)

We immediately observe that the distribution perturbation has two distinct terms.
The first one depends on the initial conditions, and can be called the ballistic term,
and the second one depends on the equilibrium distribution function f0˛ . Replacing
this in the Laplace transformation of Poisson’s equation, we obtain

E.!;k/ D S.!;k/
�.!;k/

; �.!;k/ D 1C
X

˛

�˛.!;k/; (17.9)

where �.!;k/ is the plasma dielectric function, with the particle susceptibilities
defined by

�˛.!;k/ D !2p˛

k2

Z
.k � @f0˛=@v/
.! � k � v/

dv: (17.10)

The source term S.!;k/ is

S.!;k/ D 1

�0

X

˛

q˛n0˛

Z
g˛.v/dv
.! � k � v/

: (17.11)

If we then use the inverse Fourier and Laplace transformations, we arrive at the final
expression for the electric field

E.r; t/ D
Z

dk
.2�/3

k
k
eik�r

Z i
C1

i
�1
d!

2�

S.!;k/
�.!;k/

ei!t : (17.12)

This is the formal solution for the evolution of an electrostatic perturbation in a
plasma, starting from given initial conditions. In order to understand its physical
meaning, we need to write the quantities �.!;k/ and S.!;k/ more explicitly. We
start by noting that the integration over the velocity component perpendicular to the
wavevector k is trivial, and is not contributing to the singularity .! � k � v/ D 0.
We are then left with an integration over the parallel component, u D v � k=k.
From Eqs. (17.10) and (17.11), we can then write the particle susceptibilities and
the source term as

�˛.!;k/D�!
2
p˛

k2

Z
.dF0˛.u/=du/

.u�!=k/ du ; S.!;k/D� 1

�0k

X

˛

q˛n0˛

Z
G˛.u/du

.u�!=k/ ;

(17.13)
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where F0˛.u/ and G˛.u/ are one-dimensional distribution functions, defined by

F0˛.u/ D
Z
f0˛.v/ı.u�k�v=k/dv ; G˛.u/ D

Z
g˛.v/ı.u�k�v=k/dv: (17.14)

The integrals appearing in Eq. (17.13) have the generic form

I.u/ D
Z 1

�1
h.u/

.u � z/
du; (17.15)

where z D !=k with z D z0 C iz00 and z0 � jz00j, as a consequence of ! being
a complex variable. In the limit of an infinitesimal and negative imaginary part,
representing an eventual wave damping, we can write it as

I.u/ D lim
�!0

Z 1

�1
h.u/

.u � aC i�/
du: (17.16)

This integration is performed along the real axis in the complex u plane. By
analytically extending the domain of h.u/ to the complex plane, we see that there is
a pole at u D a � i�. When � ! 0, the pole goes into the integration path, which
has to be slightly distorted in the vicinity of the singularity, in order to avoid it. Such
a distorted path then leads to the following result

I.u/ D P
Z 1

�1
h.u/

.u � a/
du C i�h.a/ ; P

Z 1

�1
D lim

�!0

�Z a��

�1
C
Z 1

aC�

�
;

(17.17)

where the second term in I.u/ is the contribution of the pole, and P represents the
principal part of the integral. We can formally extend the above result to the case of
� < 0 and write the following expression, known as the Plemelj formula

lim
�!0

1

u � a˙ i�
D P 1

u � a � i�ı.u � a/: (17.18)

Such an expression has been previously used in this book. Applying this formula to
the expression for the particle susceptibilities (17.13), we obtain

�˛.!;k/ D �!
2
p˛

k2
P
Z
dF0˛.u/=du

.u � !=k/
du � i�

!2p˛

k2

�
dF0˛

du

�

uD!=k
: (17.19)

We simply observe that the plasma dielectric function (17.9) is a complex quantity

�.!;k/ D �r .!;k/C i�i .!;k/: (17.20)

Given a real wavevector k, the dispersion relation �.!;k/ D 0 will then lead to a
complex frequency ! D !r C i� . We assume that j� j � !r , for the above analysis
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to stay valid. This allows us to develop the dielectric function �.!;k/ around the
real value ! D !r , which leads to the following dispersion relation

�.!r ;k/C i�

�
@�

@!

�

!D!r
D 0: (17.21)

Equating separately to zero the real and the imaginary parts, we obtain the dispersion
relation which determines the wave frequency !r and the wave damping coefficient
� , for a given wavevector k, as given by

�r .!r ;k/ D 0; � D � �i .k; !r /
.@�r=@!/!r

D 0: (17.22)

17.2 Electron Plasma Waves

Let us first apply these results to electron plasma waves. Because of their high
frequency with respect to the ion plasma frequency, we can assume that the ions
have an infinite mass, mi ! 1, and ignore the ion motion. In this case, Eq. (17.22)
leads to

1 � !2pe

k2
P
Z
.dF0e.u/=du/

.u � !=k/ du D 0: (17.23)

A small damping coefficient, � � !r , implies a large phase velocity !=k, much
larger than the electron thermal velocity, as will become apparent in the following.
The dominant contribution to this integral is coming from the regions of low parallel
velocity u < !=k. We can therefore develop the denominator as

1

u � !=k ' � k
!

"
1C uk

!
�
�

uk

!

�2
C : : :

#
: (17.24)

By inserting the latter expansion in Eq. (17.23), and integrating by parts, we obtain

Z
.dF0e.u/=du/

.u � !=k/
du ' k2

!2

Z
F0e.u/

�
1C 2u C 3

u2k2

!2

�
: (17.25)

If the distribution F0e is normalized, and is an even function of the parallel
velocity u, such that

Z 1

�1
F0e.u/du D 1;

Z 1

�1
F0e.u/u du D 0; (17.26)

we can reduce the dispersion relation (17.23) to

1 � !2pe

!2

�
1C 3

k2

!2

Z
u2F0e.u/du

�
D 0: (17.27)
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Let us consider the specific case of a Maxwellian plasma with a given electron
temperature Te , as determined by the equilibrium distribution

F0e.u/ D 1p
2�vthe

exp

�
� u2

2v2the

�
; (17.28)

with v2the D Te=me. The integral in the above Eq. (17.27) will be equal to v2the, and
the dispersion relation for electron plasma waves will take the form

1 � !2pe

!2

�
1C 3

k2v2the

!2

�
D 0: (17.29)

Solving for !2, and assuming that k2v2the � !2pe , we can immediately recover the
result in Eq. (16.7)

!2 D !2pe C 3k2v2the: (17.30)

Let us now find an explicit expression for the wave damping � . Noting that
�
@�r

@!

�

!r

D 2!2pe

!3r
' 2

!pe
(17.31)

and replacing it in the above expression for � , we get

� D �!3pe

2k2

�
dF0e

du

�

uD!=k
: (17.32)

Using the Maxwellian distribution, and introducing the electron Debye length �D D
vthe=!pe , we finally obtain

� D �
r
�

8

!pe

.k�D/3
exp

�
� 1

2k2�2D

�
: (17.33)

This is the expression for the electron Landau damping for a plasma in thermal
equilibrium. The damping coefficient tends to zero in the limit of very large
wavelengths, or k ! 0. Wave damping increases rapidly with k, and becomes very
large for k�D � 1. For k�D D 0:5, we get � D 0:93!pe , and the electron plasma
waves are strongly damped. These waves can only propagate for wavelengths much
larger than the electron Debye length, or k�D � 1. We can then conclude that the
frequency of electron plasma waves are always nearly equal to !pe , otherwise they
will be strongly attenuated by electron Landau damping.

It has to be noticed that Landau damping is not associated with any dissipating
mechanism. It is a purely kinetic effect due to phase mixing: the electrons initially
oscillate in phase with the wave, but start to oscillate out of phase due to their
different velocities. As a consequence, the wave oscillations loose coherence and
amplitude, even if the total amount of energy transported by the electrostatic field
and by the oscillating particles stays constant. This is consistent with the fact
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that the Vlasov equation conserves entropy, as we have seen earlier in this book.
Equation (17.33) also shows that � can become positive, for parallel distribution
functions F0e.u/ with a positive derivative. This occurs for instance when an
electron beam interacts with a plasma. In this case, instead of damping, we have
a kinetic instability where electron plasma waves will grow spontaneously out of
noise.

17.3 Ion Acoustic Waves

A similar kinetic treatment can also be employed for ion acoustic waves. In this case,
both electron and ion Landau damping mechanisms are present, and the ion acoustic
waves can only exist for phase velocities between the electron and the ion thermal
velocities, vthe � .!=k/ � vthi. In this region, low frequency waves can exist with
negligible damping. Let us consider first the electron distribution, by assuming that
vthe � .!=k/, and retaining just its real part. This can be written, for an equilibrium
distribution, as

�e.!;k/ D �!
2
pe

k2
P @F0e=@u

.u � !=k/du ' �2!
2
pe

k2

Z
@F0e

@u2
du D 1

k2�2D
: (17.34)

On the other hand, for the ion susceptibility, we assume that .!=k/ � vthi, and for
an equilibrium Maxwellian distribution for the ions, we get

�i .!;k/ D �!
2
pi

k2
P @F0i =@u

.u � !=k/du ' �!
2
pi

k2
: (17.35)

This allows us to write the real part of the dielectric function for low frequency
waves approximately as

�r .!;k/ D 1C 1

k2�2D
� !2pi

!2
; (17.36)

and to determine the corresponding dispersion relation

!2 D v2ac
1C k2�2D

: (17.37)

Here, we have defined the ion acoustic velocity vac D p
ZTe=mi . On the other

hand, the imaginary part of the dielectric function is determined by

�i .!;k/ '
r
�

2

X

˛

!2p˛

k2
!

kv3th;ff
exp

 
� !2

2k2v2th;ff

!
; (17.38)
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from where we get the damping rate � valid in the range vthe � .!=k/ � vthi, as

� D �
r
�

8

!

.1C k2�2D/
3=2

(�
Zme

mi

�1=2
C
�
ZTe

Ti

�3=2
exp

�
� ZTe

2Ti.1C k2�2D/

�)

(17.39)

These waves, characterized by a real frequency ! and a damping rate � , as given
by the above Eqs. (17.37) and (17.39), are the ion acoustic waves, and as we have
seen before, they are non-dispersive in the limit of k2�2D � 1, where their phase
velocity nearly coincides with a ion acoustic velocity vac . In contrast, the electron
plasma waves exist in the same range of wavenumbers k2�2D � 1 with different
phase velocities but nearly the same frequency !pe . In the opposite limit of large
wavenumbers, k2�2D � 1 the ion acoustic waves will reduce to an ion oscillation
with ! ' !pi .

Moreover, the electron Landau damping in Eq. (17.39) is always a small effect, of
the order of !.me=mi/

1=2, due to the fact that the slope of the electron distribution
function at the Landau resonance! D ku is very small, even if a large population of
electrons exists in that region. In contrast, the ion Landau damping is only negligible
if we have Te � Ti , such that the ion acoustic velocity becomes much larger than
the ion thermal velocity, vac � vthi. The number of resonant ions at ! D ku
is then negligibly small. We conclude that the ion acoustic waves can only be
propagate as undamped modes if the electron temperature is much larger than the
ion temperature, which is the case for most ultra-cold plasmas.

17.4 Waves in Quantum Plasmas

Plasmas are usually considered in the classical regime, but quantum degeneracy
starts to play a role when the de Broglie wavelength of the thermal electrons, �B ,
becomes comparable with the inter-particle distance. Therefore, we have quantum
plasma effects when

ne�
3
B � 1 ; �B D „

mevthe
; (17.40)

where ne is the electron plasma density. On the other hand, quantum statistics
become important for electron temperatures below the Fermi temperature, Te 
 TF ,
where in energy units this coincides with the Fermi energy. When the quantum
parameter is larger than one, � D TF =Te � 1, the equilibrium electron distribution
is Fermi-Dirac, instead of Maxwell-Boltzmann. This means that the usual thermal
velocity vthe has to be replaced by the Fermi velocity vF , such that

vF D
�
2TF

me

�1=2
D „
me

�
3�2n

	1=3
: (17.41)
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The plasma scaling length is now determined by �F D vF =!p , instead of the
Debye length �D . Finally, in what concerns particle correlations, we can introduce
a quantum version of the coupling parameter, still defined as the ratio between
the interaction potential energy and the kinetic energy of the particles, given now by

�Q D 2

.3�2/2=3
e2me

�0„2n1=3e
'
�

1

ne�
3
F

�2=3
: (17.42)

This is similar to the classical definition, with �D replaced by �F . We can also write
it as

�Q '
�„!p
EF

�2
; (17.43)

which directly compares the energy of a single plasmon „!p with the Fermi energy.
A similar discussion can be established to the case of ions.

A vast literature already exists for waves in quantum plasmas in [3–6]. Here we
use a simple model, based on a coupled Schrödinger-Poisson system of equations.
These equations describe the evolution of the collective electron wavefunction
 .r; t/ in a self-consistent electrostatic potential V.r; t/, and can be written in
the form

i„@ 
@t

D � „2
2me

r 2 C �
Ueff.j j2/� eV



 ; (17.44)

and

r2V D e

�0

�j j2 � n0
	
; (17.45)

where j j2 D ne is the electron density, and n0 is the equilibrium plasma density.
The ions are assumed immobile, and provide the neutralizing charge background. As
for the effective potential Ueff.j j2/ � Ueff.ne/, we can relate it with the quantum
pressure P.n/, through the expression

Ueff.j j2/ D
Z n dP.n0/

dn0
dn0

n0
: (17.46)

By choosing a convenient equation of state, we can determine this effective
potential. For instance, if we consider electrons to behave as an ideal Fermi gas
at the zero temperature limit [3, 4], we can use

P.n/ D 1

5

mev2F
n

D „2
5me

�
3�2

	2=3
n2=3: (17.47)

We can now introduce the Wigner function associated with the electron wavefunc-
tion  .r; t/, as defined by

Fe.r; v; t/ D
Z
 �.r C s=2; t/ .r � s=2; t/ eimev�s=„d s: (17.48)
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By following the Wigner-Moyal procedure, we can then arrive from (17.44) at the
wave kinetic equation

�
@

@t
C v � r

�
Fe D � i„

Z
Vtot.k; t/�Feeik�r

dk
.2�/3

; (17.49)

where
�Fe D Fe.v � k=2me/� Fe.v C k=2me/; (17.50)

and Vtot.k; t/ are the space Fourier components of the total potential Vtot D Ueff.n/�
eV . In terms of the Wigner function (17.48), Poisson’s equation (17.45) can be
written as

r 2V D � e

�0

�
n0 �

Z
Fe.v/dv

�
: (17.51)

Now, assuming perturbations of the form exp.ik � r � i!t/, and using a linear
perturbation analysis, we arrive at a dispersion relation for the electron plasma
waves of the form

�Q.!;k/ � 1C �e.!;k/ D 0; (17.52)

where the electron susceptibility of the quantum plasma is now given by

�e.!;k/ D �me!
2
pe

k2

Z
F0e.v � k=2me/ � F0e.v C k=2me/

.! � k � v/
dv: (17.53)

The latter can be rewritten as

�e.!;k/ D �me!
2
pe

k2

Z
F0e.v/

�
1

.!C � k � v/
� 1

.!� � k � v/

�
dv; (17.54)

where we have used !˙ D ! ˙ „k2=2me. Rearranging terms we can finally write
the electron susceptibility as

�e.!;k/ D �!2pe
Z

F0e.v/
.! � k � v/2 � „2k4=m2

e

dv: (17.55)

Using a Fermi-Dirac equilibrium distribution, we can then obtain from here the
dispersion relation [4]

!2 D !2pe C k2v2F C „2k4
4m2

e

�
1C 4

3
k2�2F

�
: (17.56)

This generalizes our previous results for the electron plasma waves onto the
quantum regime. For weakly damped, long wavelength waves such that k2�2F � 1,
we can see from this new dispersion relation that it becomes formally identical to
the dispersion relation of hybrid phonons in a non-condensed laser-cooled neutral
gas. It also displays the quantum dispersion term in k4, common to the Bogoliubov
oscillations in a condensate.
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This quantum analysis can be generalized to take into account, not only low
frequency ion acoustic waves, but also an eventual degeneracy of the plasma ions
[7]. In this case, we can use collective wavefunctions,  ˛.r; t/, for both electrons
and ions, ˛ D e; i . In a normalized form, they can be determined by nonlinear
Schrödinger equations

i@t ˛ CA˛r 2 ˛ C .s˛V � j ˛jˇ/ ˛ D 0; (17.57)

whereA˛ D m˛e
2=2�0„2pn0, and the electrostatic potential V between the particle

species is determined from the Poisson equation

r 2V D j ej2 � j i j2: (17.58)

We have also used the charge sign s˛ , defined in such way that se D C1 and si D
�1, and assumed singly charged ions. The wave functions  ˛ are normalized byp
n0, the potential V by TF =e, time t is normalized by „=TF , and space r by the

Debye-Fermi radius �D D p
�0TF =e2n0. In Eq. (17.57), we have taken a particular

choice for the effective potentials, of the form j ˛jˇ where the exponent ˇ D 4=3,
can be used [3, 5]. A calculation similar to that used above for the electron plasma
waves, then leads to the following expressions for the amplitude perturbation of the
particle Wigner function F˛ as

QF˛ D � s˛
k2
.F0˛� � F0˛�/
.! � v � k/

. Qni � Qne/: (17.59)

After integration over the particle velocities v, we obtain a closed relation between
the electron and ion density perturbations, Qn˛ , as

k2 Qn˛ D �m˛s˛. Qni � Qne/I˛.!;k/ ; I˛.!;k/ D
Z
.F0˛� � F0˛C/
.! � v � k/

dv: (17.60)

From these equations we can derive the dispersion relation for electrostatic oscilla-
tions in a quantum plasma, which includes both the electron plasma waves and the
ion acoustic waves. For that purpose, we first rewrite equations (17.60) in matrix
form as �

.k2 � Ie/ Ie

Ii .k2 � Ii /
� � Qne

Qni
�

D 0: (17.61)

The existence of a non-trivial solution for the perturbations Qn˛ implies that the
determinant of their coefficients have to be zero, which means that

.k2 � Ie/.k
2 � Ii /� IeIi D 0: (17.62)

This is the dispersion relation for electrostatic waves in a quantum unmagnetized
plasma, where kinetic effects have been included. In particular, in the limit of
immobile ions, mi ! 1, and we recover the above results for electron plasma
waves in a quantum plasma.
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17.5 Sound Waves in a Turbulent Plasma

We conclude this chapter on wave kinetic theory with a discussion on wave prop-
agation in a classical turbulent plasma. More specifically, we study the evolution
of an ion acoustic wave, when it propagates in a plasma which is in a turbulent
state, due to the existence of an arbitrary plasmon spectrum. This means that the ion
acoustic wave will propagate in a medium with two different kinds of fluids. One
is the plasma itself, as a collection of free electrons and ions. The other is the fluid
of quasi-particles, associated with short wavelength turbulence, which is a gas of
plasmons.

The analogy with the theory of two fluids for superfluidity is striking. Such
similarities with the superfluid theory can become even more evident if we use
the Wigner-Moyal formulation, as illustrated next. We first start by deriving the
wave kinetic equation for the plasmon field, which is physically equivalent to
the wave equation for electron plasma waves. We then derive the dispersion relation
of ion acoustic waves in the presence of the gas of plasmons. Coupling between
these low frequency waves with plasmons is due to the existence of ponderomotive
forces. We finally show that ion acoustic waves can be Landau damped by quasi-
resonant plasmons. This is very similar to Landau damping of long wavelength
excitations in condensates due to quasi-resonant interactions with phonons. We also
show that the plasmon turbulence modifies the effective ion acoustic velocity.

17.5.1 Plasmon Kinetic Equation

Let us consider an isotropic and uniform plasma. As we have seen, the electron
plasma waves can be described in terms of the fluctuations in the electron density,
Qne.r; t/, which obey the following equation

�
r2 � 1

S2e

@2

@t2

�
Qne D !2p.r; t/

S2e
Qne; (17.63)

where, for the sake of generality, we have considered that the electron
plasma frequency is a slowly varying function of space and time, !2p.r; t/ D
.e2=�0me/n0e.r; t/ and Se D .3Te=me/

1=2 represents the electron thermal
velocity. The space and time variations of the electron plasma density originate
from the ion acoustic waves, as considered below. This definition of !2p.r; t/ is
established for generic space and time changes in the medium, but here we only
focus on the linear stages of ion acoustic instabilities, for which higher order
nonlinear effects such as plasmon trapping effects can be ignored. For a stationary
plasma, we have n0e.r; t/ D n0, and for electron plasma perturbations of the
form Qne.r; t/ / exp.ik � r � i!t/, Eq. (17.63) leads to the dispersion relation
!2 D !2p0 C k2S2e . However, in turbulent plasma conditions, specially if we
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need to describe a broad-band spectrum of electron plasma fluctuations, it is more
convenient to introduce a wave kinetic equation describing the field correlations.
In the same way as we did for the particle wavefunctions in Chaps. 3 and 11, we
introduce here the potential auto-correlation function

C.r; t I s; �/ D Qn�e .r � s=2; t/ Qne.r C s=2; t/; (17.64)

and define the Wigner function for the electrostatic perturbations as the space
Fourier transformation of the latter

F.k0I r; t/ D
Z
C.r; t I s; �/ exp.�ik0 � s/dds: (17.65)

Taking the inverse Fourier transformation, and setting s D 0, we obtain

j Qnej2 D
Z
F.k0I r; t/

dk0

.2�/3
: (17.66)

For convenience, we use here k0 for the high frequency part of the spectrum,
associated with the plasmon oscillations, and !0 for the corresponding frequencies.
The linear plasmon dispersion relation !0.k0/2 D k02S2e C !2p.r; t/ is assumed
to apply. The symbols k and !, will therefore be reserved to the low frequency
oscillations of the ion acoustic type. Starting from the wave equation (17.63), we
can derive an exact equation for the Wigner function, which reads

i!0
�
@

@t
C S2e k0

!0
� r
�
F D !2p0

n0

Z
n0e.k; t/ ŒF��FC� exp.ik�r/ dk

.2�/3
; (17.67)

where n0 is equilibrium plasma density, !p0 is the corresponding electron plasma
frequency, and ne0.k/ are the space Fourier components of the electron density
fluctuations, as determined by

n.r; t/ D
Z

ne0.k/ exp.ik � r � i!t/ dk
.2�/3

: (17.68)

The quantities F˙ are defined by F˙ D F.k0 ˙ k=2/. It is now useful to consider
the case in which a single ion acoustic mode is perturbing the background plasma
and modulates the plasma density. In such a case, the wave kinetic equation (17.67)
is reduced to

�
@

@t
C v0 � r

�
F D � i

!0
!2p0

n0
Qni .k/ ŒF� � FC� exp.ik � r � i!t/; (17.69)

where v0 D S2e k0=!0 is the plasmon group velocity. It should be noticed that, when
the length scale of the ion acoustic wave is much larger than that of the electron
plasma waves, and jkj � jk0j, the quantities F˙ can be approximated by

F˙ ' F.k0/˙ k
2

� @F
@k0

: (17.70)

In this limit, Eq. (17.69) is reduced to a kinetic equation of the Vlasov type [8].
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17.5.2 Ion Oscillations

We can now study the plasma stability with respect to ion acoustic perturbations,
in the presence of a broad plasmon turbulent spectrum. We start from the ion fluid
equations and assume that the electrons are in Boltzmann equilibrium in the slow
wave potential created by the ion oscillations. By using the standard perturbation
analysis, we can then derive a dispersion relation of the form [8, 9]

!2 D k2v2thi C k2v2ac
.1C k2�2De/

�
1 � Qne2

Z Qni
�
; (17.71)

where v2thi D Ti=mi , is the ion thermal velocity and v2ac D 3Te=mi is the ion
acoustic velocity. Here, we have retained second order corrections for the electron
density fluctuations, which contribute to the low frequency ion acoustic oscillations
and are due to the ponderomotive force terms. A simple nonlinear analysis shows
that these fluctuations are determined by

@2 Qne2
@t2

D 1

2n0
r 2

Z �
!0

k0

�2
F.k0/

dk0

.2�/3
: (17.72)

Assuming slow perturbations of the form exp.ik � r � i!t/, and using Eqs. (17.69)
and (17.72), we obtain

Qne2 D k2

2n0!2

Z �
!0

k0

�2
F.k0/

dk0

.2�/3
; QF D !2pe

!0.! � k0 � v0/
Qni .k/
n0

ŒF0� � F0C�:

(17.73)

We can then write the dispersion relation (17.71) in the form

!2 D k2v2th;i C k2v2ac
.1C k2�2De/

"
1 � !2p0k

2

2!2n20
I.k/

#
; (17.74)

where the integral is computed over the plasmon spectrum, viz.

I.k/ D
Z
!0ŒF0� � F0C�
k

02.! � k � v0/
dk0

.2�/3
: (17.75)

We can clearly see that this integral contains new Landau resonances, of the type
! D k � v0, corresponding to plasmons with a group velocity equal to the phase
velocity of the ion acoustic wave. This is a kind of wave quasi-particle resonance,
similar to that found in superfluid theory. It is also sometimes useful to introduce the
concept of plasmon number density N .k0/, which is the energy density of electron
plasma waves divided by the wave frequency !0. It is easy to relate it with the
Wigner function F.k0/, as

N .k0/ D e2

2!0�0k2
F.k0/: (17.76)
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To be exact, this expression should be divided by „, in order for N .k0/ to
have the correct units. Let us simply take „ D 1 in the remaining of the chapter.
Noticing that !0 ' !p0 for the entire plasmon spectrum (otherwise plasmons are
strongly damped), we can write (17.75) in terms of the quasi-particle number density
as

I.k/ D 2�0

e2
!2p0J.k/ ; J.k/ D 2	

Z N0.q/
.! � k � v0q/2 �	2

dq
.2�/3

; (17.77)

with

v0q D S2e
q
!p0

; 	 D S2e
2!p0

k2: (17.78)

For the sake of illustration, let us consider the simple case of a low temperature
plasmon beam (where temperature refers here to the dispersion of the plasmon
distribution around a given value of the plasmon momentum k00). We assume
the following mono-kinetic plasmon distribution N0.k0/ D .2�/3N0ı.k0 � k00/.
Remembering that .k0=!0/2 D v

02=S4e , Eq. (17.78) leads to a quite simple expres-
sion for the nonlinear term in the dispersion relation (17.74), which can now be
written as

!2 D k2v2thi C k2u2eff

.1C k2�2De/
; (17.79)

where we have defined

ueff.k/ D vac

"
1 � k4S2e

!2n0me

!2p0

.! � k � v00/2 �	2

#1=2
: (17.80)

In the absence of plasmons, F0 D 0, this dispersion relation would reduce to the
well known result for ion acoustic waves. The interesting thing about this result is
that it shows that the existence of a beam of plasmons with wavenumber k0 will lead
to a modified ion acoustic velocity, which depends on the phonon wavenumber k.
Usually we have !2 < 	2, or ueff > vac . This means that the occurrence of a rot
on minimum such as those found in superfluids or in ultra-cold atoms cannot occur
here. This states an important difference between the ion correlations introduced by
plasmons and the atom correlations previously considered for laser-cooled atoms,
or in condensed quantum fluids.
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Chapter 18
Conclusions

In this book we have covered a wide range of phenomena in ultra-cold matter,
and reviewed many of the peculiar problems associated with its three distinct
phases, atomic clouds, condensates and plasmas. This allowed us to reveal a
number of unexpected similarities between these three phases, associated with the
equilibrium configurations, the expansion processes, the elementary excitations and
the collective oscillations. Such similarities are due, in particular to the existence
of a mean field, which has different physical meanings in each of the phases, but
accounts for similar physical phenomena.

In non-condensed atomic clouds, the mean field is provided by an exchange of
photons between atoms, which is responsible for long range collective processes,
and behaves very much like an electrostatic field. In Bose Einstein condensates, the
mean field is produced by short range atomic collisions, but built on a long range
effective potential due to the existence of quantum coherence. Finally in Rydberg
plasmas, the mean field has an electromagnetic origin and is due to the long range
interactions between the charged particles in the medium. The bosons mediating
the long range interactions in a plasma are virtual photons, whereas for neutral
laser-cooled atoms we have real photons, associated with the multiple scattering
photon process. In the same spirit we could say that the long range interactions in a
condensate are mediated by virtual phonons.

We have successively examined the acoustic modes in these three phases of
ultra-cold matter: the hybrid sound waves in ultra-cold clouds of laser cooled
atoms, the Bogoliubov oscillations in Bose Einstein condensates, and the ion
acoustic waves in ultra-cold plasmas. We have noticed their similarities, in terms
of quantum dispersion and cut-off frequencies, and differences mainly related with
their characteristic velocities. We have also noticed that roton minima can eventually
occur in the sound dispersion relation. Classical rotons can exist in laser-cooled
gas, which are formally similar to (although physically different from) the quantum
rotons of superfluid matter. And we have seen that dipole-dipole atom interactions
can induced roton minima in condensates. We are aware that, according to the
dominant views, the roton phenomenon is strictly associated with quantum fluids.
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Our research on laser cooled atoms led us however to a much open view on the
notion of roton, by revealing the existence of similar sound dispersion effects in
non-condensed fluids.

We have also explored the analogies between the three phases of ultra-cold matter
in what concerns the quasi-equilibrium profiles and expansion mechanisms. We
have noticed that both condensates and Rydberg plasmas have similar Thomas-
Fermi equilibria, and that the global oscillations of both non-condensed and
condensed matter obey similar dispersion laws.

Finally we have insisted on the possible use of the same theoretical methods,
to deal with the physical description of these three phases. First, the Wigner-
Moyal procedure, which includes the definition of a quasi-probability distribution,
usually called the Wigner function, and the derivation of a wave kinetic equation
which describes the space time evolution of such a distribution. This procedure is
particularly useful to describe resonant wave-atom interactions, and in particular
atomic Landau damping. It is remarkable that the wave kinetic equations derived
by such method become so similar for the three phase of ultra-cold matter. On
the other hand, quantum field theory methods can equally well be applied to these
different phases, describing in similar terms the quantized elementary excitations of
the different kinds of mean fields.

What are the challenges of theoretical work in ultra-cold matter? First of all,
the extension of the description covered in this book to the cases of an ultra-
cold Fermi gas, and to ultra-cold molecules, two areas in very intense progress.
Second, a deeper understanding of quantum coherence, its possible application
to the observation of quantum gravity and the development of an improved
atomic interferometry. Third, the search for gaseous liquid phase transitions and
for crystallization in Rydberg plasmas, the understanding of photon instabilities
such as bubble formation in the non-condensed gas, and the extension of the
Bose Einstein condensation principle to solid matter. Finally, the exploration of
enhanced collective interactions, such as those taking place in dipolar gases, as
associated with electric and magnetic dipole-dipole interactions, and their impact
on the elementary excitations with particular emphasis on the search for new roton
instabilities. Progress is also foreseen in the quantum field description of collective
and cooperative phenomena in quantum gases and quantum plasmas. However, as
in any scientific branch of knowledge, the most exciting progress will certainly
come from some unexpected discovery, which will lead to a significant change of
paradigm.



Appendix

A.1 Atomic Structure

Manipulation of atoms and their cooling and confinement depend very much on
their internal properties. Here we review the basic features of the atomic structure.
For this purpose, we consider an atom with a nucleus of chargeZe, andN electrons,
where �e is the electron charge. The atomic structure is described by the time
independent Schrödinger equation

H j ai D Ej ai; (A.1)

where E us the energy of the atomic state j�ai, and H is the Hamiltonian of the
system. In the non-relativistic approximation,H can be written as

H D
NX

iD1

�
p2i
2m

� Zq2

ri

�
C

NX

i<jD1

q2

rij
; (A.2)

where m is the electron mass, pi the linear momentum of the electron i , ri
is its distance to the nucleus, assumed at the centre of the coordinates rij the
distance between the electrons i and j , and q2 D e2=4��0, where �0 is the
electric permittivity of the vacuum. In the r-representation, the wavevector j ai
is represented by a wave function  a.r1; r2; ; ; ; rN /, and the momentum operators
are pi D �i„@=@ri . Let us now define the total angular momentum of the atom by

L D
NX

iD1
li D

NX

iD1
ri 	 pi : (A.3)

It can easily be shown that, for any i and j , the following commutation relations are
satisfied

h
li ;p2j

i
D 0 ;

�
li ; 1=rj


 D 0 ;
�
li ; 1=rij


 D � �lj ; 1=rij


: (A.4)
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From this we conclude that the operator L commutes with the Hamiltonian (A.2), or
ŒH;L� D 0. As a result, the eigenstates ofH can also be eigenstates of the operators
L2 and Lz. The corresponding eigenvalues „2L.LC 1/ and „ML can then be use to
identify the eigenfunction or eigenvectors of H .

We also note that H is independent of the spin variables, allowing to write
ŒH;S� D 0, where S D P

i si is the total electron spin. Therefore, the eigenvalues
„S.S C 1/ and „MS cam also be use to identify the eigenstates of the Hamiltonian
of the atom. As a result, the eigenstates of H can be written as jS;MS;L;MLi.

At this point, relativistic corrections to Eq. (A.2) should be introduced. In particu-
lar, they are associated with spin-orbit interactions. The corresponding Hamiltonian
term, to be added to the above expression, is

Hso D
NX

iD1
ai .si � li /; (A.5)

where ai are appropriate constants, depending on li and si . Now, the operators L
and S do not commute with Hso, because the three components of li and si do
not commute with each other. Therefore, the eigenstates of the new Hamiltonian
Ha D H CHso cannot be characterized by the quantum numbers indicated above.
We need to define the total angular momentum J D L C S, which now commutes
with Ha, and the energy eigenstates can be labeled by the eigenvalues of J 2 and
MJ , as jJ;MJ i. The quantum number J is either an integer or a half-integer, in
the range jL � S j 
 J 
 L C S , and MJ is an integer or half-integer such that
�J < MJ < J .

The state representation in terms of J andMJ is valid as long as the total nuclear
momentum I is zero. When this is not true, we should define the total angular
momentum of the atom as F D I C J. The good quantum numbers now become F
andMF , following the same hierarchy of J andMJ , namely jJ �I j 
 F 
 J CI ,
and �F < MF < F .

Finally, it should be noticed that the nuclear perturbation is generally very small,
which means that J and MJ remain as good, although approximate, quantum
numbers. Similarly, the spin-orbit energy is also in general very small, so that L
and S also remain as good approximate quantum numbers. This allows us to use the
eigenstate notation jL; S; J;MJ i.

Exact solutions to the eigenvalue equations (A.1) and (A.2) are in general not
possible, due to the existence of the electron-electron interaction terms in rij , which
prevent the use of variable separation methods. An important approximation is
provided by the central field method, where it is assumed that each electron moves
inside the atom in the presence of an effective central potential, U.r/, which results
from the combined effect of the attraction from the nucleus and repulsion from the
other electrons. The HamiltonianH is then replaced by

H D H0 CH1 ; H0 D
NX

iD1

�
p2i
2m

� eU.ri /

�
; (A.6)
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where the dominant term, H0, describes the electron motion in the central field
describes by U.r/, and the perturbed part H1 is defined as

H1 D
NX

i<jD1

q2

rij
�

NX

iD1

�
Zq2

ri
� eU.ri /

�
(A.7)

representing the deviations (assumed small) from the central field model. It is clear
that, for an electron moving near the nucleus, the central potential will approach the
bare Coulomb potential of the nucleus,

lim
r!0U.r/ D Z

q2

er
: (A.8)

On the other hand, at large distances, it will tend to the Coulomb potential of the
nucleus but screened or dressed by the other .N � 1/ electrons, or, equivalently,

lim
r!1U.r/ D ŒZ � .N � 1/�

q2

er
: (A.9)

For intermediate distances, U.r/ will depend on the details of the electron distribu-
tion inside the atom, and it will be more difficult to model. But, for the ground state
and the first excited state, as well as for highly excited electron states, this central
simple central field model can be very useful. Approximate methods have been
developed to determine the central field potential U.r/ at intermediate distances,
such as the well known Thomas-Fermi and the Hartree-Fock models.

The advantage of the central field model is that the eigenstates of H0 can easily
be found, using separation of the different electron coordinates. As we can see from
Eq. (A.6), H0 takes the form of a sum of N identical Hamiltonians, H0 D P

i hi ,
each of them satisfying a reduced eigenvalue equation

hi j i i D �i j i i ; hi D p2i
2m

� eU.ri /; (A.10)

where j i i is the eigenvector of the electron i , with energy �i , and the total
eigenvector of the atom is j ai D j 1ij 2i : : : j N i.

We know that, for lower states, the eigenvalues of the individual h are labelled
by the two quantum numbers n and l , such that n D 1; 2; 3; : : : and jli D
0; 1; 2; : : : .n � 1/. The associated eigenvalues depend on five quantum numbers,
and we can write the individual electron eigenvalue equations (A.10) as

hjn; s;ms; l;mli D �nl jn; s;ms; l;mli: (A.11)

We can further decompose these eigenvalues as

jn; s;ms; l;mli D 1

r
Rnl .r/js;msijl; mli; (A.12)
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where js;msi is the electron spin state vector, and where we can use the spherical
harmonic representation

jl; mli D Ylml .�; '/ (A.13)

in spherical coordinates r � .r; �; '/. Finally, the radial function Rnl.r/ has to
satisfy the equation

d2

dr2
Rnl � l.l C 1/

r2
Rnl C 2m

„2 Œ�nl C eU.r/� D 0: (A.14)

It is known that, for the simple case of a Coulomb attractive potential, as in (A.8),
we get

�nl � �n D � Z2

2n2
˛2mc2; (A.15)

where ˛ D e2=„c ' 1=137 is the fine structure constant. As a result, the energy
levels of the total central field Hamiltonian,H0 can be written as

E0 D
X

nl

Nnl�nl ;
X

nl

Nnl D N; (A.16)

where Nnl is the number of electrons in the sub-shell .n; l/. Finally, the Pauli ex-
clusion principle implies the existence of an additional condition for this occupation
number, as Nnl 
 2.2lC 1/. From this we conclude that the numbersNnl define an
electron configuration of the atom, with reads as

.n1l1/
N1 .n2l2/

N2 : : : ; Nj � Nnj lj : (A.17)

Each individual electron energy state �nl has 2.2l C 1/ degenerate states, due to the
two possible values of the spin and to the .2l C 1/ values of ml D �l; : : : 0; : : : l .

The ground state of the atom is determined by distributing the Z electrons
over the different shells n D 1; 2; 3; : : :, usually labelled by the capital letters
.K;L;M;N; : : :/, whereas the sub-shells inside each of these shells, corresponding
to different values of l D 0; 1; 2; 3; : : : are usually designed by the symbols
.s; p; d; f; : : :/.

The first element, Hydrogen .Z D 1/, is in the ground state 1s, whereas Helium
.Z D 2/ is in the ground state 1s2, with the two electrons having opposite spin
states and fully occupying the first shell K . Some families of atoms are particularly
relevant to the cold atom physics. They are the noble gases, (He, Ne, Ar, Kr, Xe).
which have full shells and are chemically inert, and the alkaline metals, (Li, Na, K,
Rb, Cs), which have one single valence electron outside the last closed shell, and
therefore are chemically very reactive. Their ground state configurations and the
respective ionization potentials are given in the Table A.1.

Finally, additional information on the state of the atom is provided by the total
orbital and spin angular momentum. In the Russel-Saunders notation, we write the
atomic state as

2SC1LJ ; (A.18)

where L D 0; 1; 2; 3; : : : are represented by the letters (S, P, D, F, . . . ), S is the total
spin quantum number, and J is the total angular momentum quantum number.
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Table A.1 Ground state and first ionization energy of different atomic elements

Element Atomic number (Z) Ground state configuration Ionization energy (eV)

H 1 1s1 13.6
He 2 1s2 24.6
Li 3 (He) 2s1 5.4
Ne 10 (He) 2s2 2p6 21.6
Na 11 (Ne) 3s1 5.1
Ar 18 (Ne) 3s2 2p6 15.8
K 19 (Ar) 4s1 4.3
Kr 36 (Ar) 4s2 3d10 4p6 14.0
Rb 37 (Kr) 5s1 4.2
Xe 54 (Kr) 4d10 5s2 5p6 12.1
Cs 55 (Xe) 6s1 3.9
Yb 70 (Xe) 6s2 4f 14 6.3

A.2 Quantum Theory of Radiative Transitions

The interaction of the radiation field with an atom is well understood at both
classical and quantum levels [1, 2]. It can be described by an Hamiltonian operator
H which contains three distinct terms

H D Ha CHf CHint; (A.19)

where Ha is the Hamiltonian of the atom, Hf that of the radiation field, and Hint

describes the interaction between the atom and radiation. Let us consider the first
term. The atom Hamiltonian can be derived from the eigenvalue equation Hajii D
Ei jii, where jii is the atomic state vector associated with a given set of quantum
numbers represented by the letter i . By inserting the identity operator

P
j jj ihj j D

I in this equation, we obtain for the atom Hamiltonian

Ha D
X

i

Ei jiihi j D
X

i

Ei
i i ; (A.20)

where the atomic transition operator 
ij D jiihj j was used. For the simple but very
useful case of a two-level atom, this Hamiltonian can be reduced to the form

Ha D 1

2
„!
z (A.21)

using the notation 
z D .
22 � 
11/. If we restrict our discussion to the dipole
approximation, the interaction Hamiltonian is just given by Hint D er � E, where r
represents the position of the electrons inside the atom, and E the radiation electric
field. For a plane wave decomposition of the electromagnetic field, we have for each
photon mode with frequency !k and wavevector k, the electric field operator is

Ek D iCkek.ak � a
�

k/; (A.22)



390 Appendix

where ak and a�k are the time dependent destruction and creation operators, Ck Dp„!k=2�0V is a normalization factor, and ek is the unit polarization vector. The
interaction Hamiltonian can then be written as

Hint D i„
X

k

gk.
C C 
�/.ak � a�k/; (A.23)

with 
C � 
21 and 
� � 
12. and

gk D 1

„ .p12 � ek/Ck ; pij D �hi jerjj i: (A.24)

It can be seen that the operator 
� D j1ih2j takes an atom from its upper energy
level j2i, and brings it into the lower level j1i, whereas 
C produces the opposite
transition. By looking at Hint we can then identify four distinct processes. One,
described by the term 
Cak corresponds to the excitation of the atom and the
destruction of one photon. The term 
�a�k represents the opposite process. The term

�ak describes the de-excitation of the atom and the destruction of one photon,
resulting in an energy loss (for the total “atom + field” system) of 2„!. Similarly,
the forth tern, 
Ca�k corresponds to an energy gain of 2„!. Obviously, these two
last terms cannot satisfy energy conservation, and should be dropped. The neglect
of these two terms is called the rotating wave approximation. In this approximation,
the interaction Hamiltonian reduces to

Hint D i„
X

k

gk.
Cak � 
�a�k/: (A.25)

Finally, field Hamiltonian appearing in Eq. (A.19) is given by Hf DP
k „!k.a�kak C 1=2/. We can simplify even further the picture of the atom

radiation interaction by assuming that the two-levels atom interacts only with a
single field mode. We can then drop the sum over the field modes k and write the
total Hamiltonian as H D H0 CHint, where the unperturbed termH0 � Ha CHf

and the interaction term can be are given by

H0 D „!k
�
a�a C 1

2

�
C 1

2
„!
z ; Hint D i„g.
Ca � 
�a�/: (A.26)

The evolution of the quantum state of the coupled atom-radiation system, can be
described by a state vector j i, which evolves in time according to the Schrödinger
equation

i„ @
@t

j j D Hintj i (A.27)

and, in the spirit of the perturbation theory, can be represented as superposition of
two different states

j i D
X

n

.C1;nj1; ni C C2;nj2; ni/: (A.28)
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The state vectors jj; ni represent the system with a radiation field mode with n
photons, and the atom in two the energy state j D 1; 2. The coefficientsCj;n, which
characterize the probability of finding the system in a given state, will evolve in time
due to the atom-field interaction. At this point, it is useful to introduce the interaction
picture, which corresponds to the use of an unitary transformation described by

H 0 D U �.t/HintU.t/ ; U.t/ D exp

�
� i„H0t

�
: (A.29)

From this we can derive the new interaction Hamiltonian

H 0 D i„g �
Caei�!t C a�
�e�i�!t
	
; (A.30)

where �! D ! � !k is the detuning between the photon energy and the transition
energy between the two atomic states. Such a detuning will play an important role
in the laser cooling process, as shown later. Going back to the Schrödinger equation
and using the interaction representation, which allows us to replace Hint by its
transformedH 0, we obtain the evolution equations for the

@

@t
C2;n D �igp

nC 1ei�!tC1;nC1 ;
@

@t
C1;nC1 D ig

p
nC 1e�i�!tC2;n:

(A.31)
These equations are formally very similar to those obtained in the quasi-classical
theory, even if they display important qualitative differences. As we have seen,
they were obtained using the interaction picture, and are valid in the rotating wave
approximation.

Assuming that the atom is initially in the excited state j2i, we can writeC2;n.0/ �
Cn.0/ and C1;nC1.0/ D 0. The solutions for these particular initial conditions are
then given by

C2;n.t/ D Cn.0/

�
cos.	nt=2/� i�!

	n

sin.	nt=2/

�
ei�!t=2 (A.32)

and

C1;nC1.t/ D Cn.0/
2ig

p
nC 1

	n

sin.	nt=2/e
�i�!t=2; (A.33)

where we have used the oscillating frequency 	n D p
.�!/2 C 4g2.nC 1/. The

inversion of populationD.t/ D P
nŒjC2;n.t/j2�jC1;nC1.t/j2� can now be calculated

explicitly, with the result

D.t/ D
X

n

jCn.0/j2
�
.�!/2

	2
n

C 4g2.nC 1/

	2
n

cos.	nt/

�
; (A.34)
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where jCn.0/j2 is the probability to have an initial state with n photons. In the
particular case of absence of radiation at t D 0, we have jCn.0/j2 D ın0, and the
above expression predicts the existence of Rabi oscillations between the two energy
levels of the atom, at the frequency	0, even in the absence of any initial radiation.
This is a purely quantum vacuum effect, which results from spontaneous de-
excitation of the atom, and confirms the phenomenological arguments first advance
by Einstein. On the other hand, in the case of a finite amount of photons, such that
hni ¤ 0 at t D 0, Eq. (A.34) confirms the quasi-classical Rabi oscillations induced
by a nearly resonant radiation field. Moreover, it also predicts the occurrence of a
collapse of the Rabi oscillations, followed by a much later revival. These collapse-
revival features, which are not discussed here, result form the quantum character
of the radiation field, and are absent in the quasi-classical description where Rabi
oscillations were purely sinusoidal.

Let us now consider spontaneous emission. This is important for the laser cooling
process with results for a repeated excitation-fluorescence process, where the first
step is photon absorption, as described below, followed by spontaneous photon
emission, as described next. The spontaneous decay of an atom from the upper to the
lower energy level can take place over an infinite number of radiation field modes,
and not just one as considered above. As a result, the previous Rabi oscillations at
the frequency	0 will disappear and will be replaced by an irreversible process. The
interaction Hamiltonian for one atom in an infinity of radiation field modes can be
written, in the interaction picture, as

H 0 D „
X

k

˚
ig�k .r0/ake

i�!t C h.c:
�
: (A.35)

Here we have reintroduced the spatial dependence of the field, in order to account
for the possible orientations of the wavevectors k with respect to the atom, corre-
sponding to the same mode frequency!k D kc. We have gk.r0/ D gk exp.�ik � r0/
And the state vector for the system of the atom plus radiation can be written as

j .t/i D C2.t/ j2; n D 0i C
X

k

C1;k.t/ j1; n D 1ik; (A.36)

where only the vacuum field, corresponding to a number of photons n D 0, and
the single photon state n D 1 in any of the possible field modes k was retained.
Replacing this in the Schrödinger equation we obtain the evolution equations for
the coefficients

d

dt
C2 D �i

X

k

g�k .r0/ei�!tC1;k ;
d

dt
C1;k D igk.r0/e�i�!tC2: (A.37)

Integrating this last equation, and replacing the result in the first one, we can derive
the approximate result

C2.t/ D C2.0/ exp

�
��
2
t

�
; � D 1

��0

!3jp12j2
3�2„c3 : (A.38)
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We can therefore show that, due to the interaction with the infinity of photon
modes with the same resonant frequency, but different propagation directions, the
population of the upper atomic level j2i, determined by �22 D jC2.t/j2, will
decay exponentially as exp.��t/. Such a spontaneous decay occurs in the absence
of any incident photon beam. The energy initially contained in the excited atom
will be randomly transferred to an infinity of radiation field modes. This shows
that, if the atom is located in a cavity, where the number of spatial field modes
existing for frequencies close to the transition frequency! is reduced, we can inhibit
spontaneous emission and significantly increase the value of the decay time 1=� .

With this knowledge of the spontaneous decay, we can go back to the evolution
equations, and include the spontaneous decay time. It can then be shown that, in
the quasi-classical limit, the resulting evolution equations for the density matrix,
�ij D C �i Cj , are [1]

d

dt
�22 D ���22C i

2
	R.�21��12/ ; d

dt
�21 D �

�
i�C �

2

�
�21Ci	R�22� i

2
	R

(A.39)
where 	R is the appropriate Rabi frequency, and � D !21 � !k is the frequency
detuning. The relation between these quantities and the above frequency 	n can
easily be found. These equations we will be used to understand the laser cooling
process and to determine the laser force acting on the atoms.
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