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Preface

The fascinating properties of shape memory alloys have inspired engineers ever
since their discovery some 60 years ago. The reason for their attractiveness lies in
the fact that these materials combine both functional and structural properties.
They share their processing techniques with metals, can be cast or sintered into any
shape and they can be rolled, cut, milled and welded. They are progressively
ductile and are electrically and thermally conductive. Thus, their physical prop-
erties admit structural functionality. What makes them special is the fact that all
these properties strongly depend on temperature. One consequence of this
dependency yields the characteristic shape-memory effect: shape memory alloys
can recover processed reference configurations after significant plastic deforma-
tions simply upon a change of temperature, thus adding functional abilities to
structural elements. The epithet smart material was swiftly coined.

This work deals with a theoretical investigation of this class of alloys at the
atomic scale. Here, we are concerned with length and timescales some orders of
magnitudes below typical current engineering applications. One might object that
these scales were not within the realm of an engineering faculty, where the
majority of work deals with the design of useful technical applications. A 3-fold
reply might be given to this objection: based on the historical context, with regard
to the subjects contents and due to the need for interdisciplinary research work.

Historically, material sciences emerged at the intersection of engineering
demands and scholastic nature sciences. Even before the theory of the atomic
structure of matter was gradually formulated in the nineteenth century, natural
philosophers like Descartes speculated about a microscopic conception of matter.
However, techniques first needed to be developed before experimental evidence
was obtained.

Milestones in the development of the materials sciences were set by the
engineers, Osmond and Martens, who brilliantly advanced the microstructural
characterisation of steel. Since their days, all improvements in microscopy directly
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affected the understanding of materials; from light microscopy down to the atomic
level by transmission electron microscopy. However, microscopy today can still
not reveal how the observed structures evolve dynamically. Here, molecular
dynamics (MD) simulations may assist with regard to this: From first principles—
Newton’s Equations of Motion—we can dynamically simulate nucleation and
growth of microstructural forming processes in solids on a computer. Hence,
lattice transformations can be observed and analysed in situ rather than post
mortem. In MD, some macroscopic variables can be controlled (temperature,
applied load, etc.) during which the reaction of the test system is studied. Owing to
this similarity to ‘‘real-world’’ laboratory experiments, the term ‘‘MD simulations
experiments’’ is frequently used. Nota bene, even a method such as this has an
analogous precursor: In 1947, Bragg and Nye investigated bubble rafts on soap
suds as a dynamic model for domain structures and dislocations in close-packed
lattices. Their intuitive images soon became part of the textbook literature. The
bubble model also teaches us that a comprehensive model must not necessarily be
complicated if it only represents the fundamental physics correctly. In this case,
even simple models may contribute new insights into the subject matter under
investigation and widen the scientific horizon.

In general, applications currently demand miniaturised designs. This tendency
has, during the last two decades, already borne a new branch of engineering, the
so-called nanoscale technology. Here, applications are particularly restricted by
their weight and size, therefore a combination of the structural and functional
features make shape memory alloys attractive as actuators or propulsion elements.
Thin film applications processed, for example, by sputter deposition techniques,
truly range in nanoscale dimensions and thus, in principle, become accessible to
atomistic modelling. Also, atomistic methods can serve to determine local or
boundary conditions for continuum-scale models. The necessary mathematical

1644 1878 1947

Fig. 1 Approaches to the microstructure. 1644: Descartes speculates about the particulate
character of matter [1]. 1878: Martens draws micrographic images of etched steel [2]. 1947:
Bragg and Nye model close-packed lattices by bubble rafts on soap suds [3].
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techniques needed to bridge the gap between the atomic up to the continuum scale
have already been developed (coarse-graining methods) and have been applied to,
for example, cracktip simulations.

The last item concerns the need for interdisciplinary research work. Contem-
porary solid-state physics focuses on the subatomic structure of metals, hence
addressing length and timescales far below the atomic level. Here, for example,
ab-initio calculations based on quantum mechanics improve our understanding of
the energetic states which determine the cohesive forces between atoms in lattices.
With the increasing availability of computational resources, these methods quickly
became more popular and readily spawned a lively research community. In
principle, such methods can be used to derive the interaction potentials needed by
the MD method. Therefore, MD again represents a scale bridging technique which
is able to link subatomic modelling to the mesoscopic microstructural calculations
under consideration in materials sciences. It is prudent to maintain this link: in
order to further interdisciplinary research as well as to share results and discoveries
between the disciplines. From a broader perspective, this topic also addresses
didactic issues.

With this background in mind, the reader is now warmly welcome to share
some endeavours towards a better understanding of shape memory alloys on the
atomic level. The core of this work deals with a two-dimensional (2D) Lennard-
Jones model, which will be proven to represent a reliable model system for
martensite/austenite transformations. We present MD simulations of martensitic
phase transformations, studying post-transformation microstructures and motile
austenite-martensite interfaces. The material model exhibits full thermo-mechan-
ical coupling and is thus capable of related material behaviour such as pseudo-
plasticity/elasticity and the shape memory effect. Even in 2D, rich transformation
morphologies can be studied which exhibit striking similarities to real materials.

Among the observed phenomena, we discuss the nucleation and show the
propagation of motile transformation fronts, martensitic plate growth, the twinning
process, the formation/accommodation of martensitic domain structures, the
generation of transformation-related lattice defects and their influence on the
transformation processes. The evolution of defect structures is investigated by
means of simulations of cyclic transformation/reverse transformation processes.
During transformations, lattice defects are generated which affect subsequent
transformations and vary the potential energy landscape of the sample. Some of
the defects persist through the transformation, providing nucleation centres for
subsequent cycles. Such defects may provide a memory of previous structures, and
thereby may be the basis of a reversible shape memory effect.

Much effort was spent in describing the simulations as complete as possible
using words and figures. For technical reasons, some colour figures are converted
into greyscale in the printable version of this book. The respective colour figures
are available in the online version. In addition to these, we have attached videos
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which afford an intuitive understanding of the processes discussed. These videos
are available online at www.olli-kastner.de/pub/md.
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Chapter 1
Preparations

This chapter reviews the fundamental material properties of shape memory alloys
and thereby sets up the physical situation our modelling is referring to. Labora-
tory observations reveal scale-specific characteristics the modelling must reflect.
Therefore, shape memory alloys are a prime example of cross-scale modelling. We
briefly explain the respective modelling approaches to place the method of molecular
dynamics simulations into the scope of the scientific frame work.

1.1 An Introduction to Shape Memory Alloys

1.1.1 Thermo-Mechanical Phenomena

If a material has the ability to recover a large, remaining deformation by undergoing
a change in temperature, it is called a shape memory material. This behaviour is
observed for different materials, metallic as well as non-metallic. This work is con-
cerned with the memory effect in shape memory alloys (SMA). It was first observed
in Au47.5Cd by Chang and Read [1] in 1951. Subsequent to this, it was reported for
several other alloys, such as Ti–Ni (1963) [2, 3], In-Ti (1953) [4], Cu–Zn (1956) [5–7]
and Cu-Al-Ni (1957) [8]. Such alloys characteristically exhibit a strong-temperature
dependent stress/strain relation.

Figure 1.1 shows process diagrams which illustrate the thermo-mechanical prop-
erties of the specific SMA nickel-titanium. (a)–(c) shows three load–strain isotherms,
measured for the temperatures T1 < T2 < T3. All curves exhibit significant yielding
deformation if the sample is loaded beyond its yield point Pcrit. These points depend
on the temperature, Pcrit(T1) < Pcrit(T2) < Pcrit(T3). Upon unloading, the material’s
response differs, again depending on the temperature: at higher temperatures, T2 or
T3, the deformation recovers at almost constant recovery loads P ′

crit , while at lower
temperatures T1 no recovery is observed. Rather, the completely unloaded sample
exhibits the remaining deformation ε′. Below, as well as above the T-specific yield

O. Kastner, First Principles Modelling of Shape Memory Alloys, 1
Springer Series in Materials Science 163, DOI: 10.1007/978-3-642-28619-3_1,
© Springer-Verlag Berlin Heidelberg 2012
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Fig. 1.1 Macroscopic phenomena with SMA. a–c Three load–strain isotherms of a NiTi wire.
d The corresponding strain-temperature relation for load P = const. (Courtesy of Musolff [9]).
e Tensile cycling of a pristine NiTi specimen. f Thermal cycling in a DSC device, where phase
transformations are indicated by deviations from the base line signals. The upper array of curves
refers to austenite/martensite transformations during cooling and the lower one to reverse processes
during heating. (Courtesy of Wagner and Frenzel [10])

and recovery loads, the sample is elastic within certain ranges. The high temperature
load–strain response is called pseudo-elastic and that at low temperature is called
pseudo-plastic.

The strain–temperature diagram of Fig. 1.1d may be derived from a set of
load–strain isotherms by evaluation at a selected constant load. It is obtained from
the load–strain curves in (a)–(c) for the constant load P = const. indicated. The
strain–temperature diagram (d) may be used to explain the the shape memory effect
(SME): subject to the tensile load P , the sample is pseudo-plastically deformed at
low temperature T1 to the strain ε′. The sample recovers shape if heated beyond the
critical temperature T = A f in Fig. 1.1d. At high temperatures T3, the sample is only
slightly strained, corresponding to the applied load remaining constant during the
heating, and this strain may be further recovered elastically, if the sample is unload
at this temperature (not shown). This observation conveys the impression that the
alloy “remembered” its reference shape, thus suggesting the material’s name.

Unfortunately—from an engineer’s viewpoint—the process diagrams of SMAs
exhibit hysteresis. In general, the width of the hysteresis loops depend on the spe-
cific alloy under consideration and on the processing of the sample. Loading direction
also has an impact on the hysteresis behaviour, especially in single-crystalline sam-
ples. Some materials may exhibit vanishing hysteresis with Pcrit(T ) ≈ P ′

crit(T ).
However, the situation can become even worse: the material’s hysteresis appears to
depend on the history of the processes performed on it. Transformation loads and
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transformation temperatures change during cyclic mechanical or thermal loading.
This effect is augmented for pristine materials following casting/heat treatment, but
it also affects their long-term service properties. Material scientists subsume such
behaviour under the terminology functional fatigue [11–14] because of its detrimen-
tal effect on material reliability in technical applications. Figure 1.1 illustrates this
property during (e) mechanical cycling (20 load cycles) and (f) thermal cycling, as
observed with a NiTi sample.

1.1.2 Martensitic Transformations

The SME is based on a special class of solid-solid phase transformations called
martensitic transformations (MT). These occur in crystalline materials between two
fundamental lattice structures called austenite and martensite [15–18]. Austenite
forms highly symmetric unit cells which are stable at high temperature. During a
MT, the austenitic lattice undergoes a shear and or a shear/shuffle type of trans-
formation and forms martensite which has a lesser degree of symmetry. Variants
of martensite exist, basically because there are different deformation modes of the
austenitic lattice. Martensite is stable at low temperature, such that lattice transfor-
mations may be induced by lowering the temperature below certain transformation
temperatures (temperature induced MT). At high temperatures, where austenite is
stable, MT may be also induced by applying external loads.

The investigation of MT has a long tradition. It can be traced back to early obser-
vations in the 19th century of martensitic microstructures in steel—the eponym is
Adolf Martens — and has produced a vast literature. An internet inquiry yields a total
of 11,488 hits on the Boolean keyword combination (“martensitic transformation” or
“martensitic microstructure”) and “shape memory” for the period 1955-2008 [41].
Figure 1.2 depicts this research activity.1 Notwithstanding this, a final definition of
MT which is accepted by all scientists on the field is still overdue. Vivid discussions
on this topic are documented in the literature. As late as 1995, the International
Conference on Martensitic Transformations (ICOMAT) included a panel discussion,
where P.C. Clapp presented a review of past definitions under the provocative title
“How would we recognise a martensitic transformation if it bumped into us on a dark
& austy night?” His own “irreducible” conjecture was: “A martensitic transformation
involves a cooperative motion of atoms across an interface causing a shape change
and sound” [42]. The constituents of other definitions were

• MT is diffusion-less and entails a cooperative movement of atoms, leading to a
change in shape of the entire body,

• during MT, nearest atomic neighbours remain nearest neighbours,
• MT involves growth processes,
• MT exhibits undistorted, straight interfaces between the parent and the product

phase,

1 The diagram also nicely reveals an inflationary increase in publications in the internet age.
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Fig. 1.2 Research activity on shape memory alloys and martensitic transformations 1955–2008.
Internet database queries for publications with Boolean keyword combinations of (“martensitic
transformation” or “martensitic microstructure”) and “shape memory” in the title (grey, cut-off
above 200 hits/year). Additional filter settings with respect to specific materials, yield the coloured
columns. The labels [5...40] reference pioneering and most cited works. Note only 46 works match
a combinatorial query with respect to (“molecular dynamics” or “atomistic methods”).

• MT includes orientation relationships between principle directions of the lattices
involved.

Olson’s definition summarises most of these constituents and is generally accepted
today: MT is a shear dominant, lattice distortive, diffusion-less transformation occur-
ring by nucleation and growth [43].

1.1.3 Microstructures

A twinned microstructure is a characteristic of martensite. Twins are martensite vari-
ants which are crystallographically compatible along their interface and energetically
equivalent. The formation dynamics are complex and yield characteristic, twinned
domain structures. Figures 1.3, 1.4 and 1.5 show examples from the centimetre down
to the nano scale of lengths.

The martensitic morphology is distinctively recognised in copper based SMA.
Figure 1.3 shows observations with a CuNiAl single crystal. On the centimetre scale
(a,b), martensite forms wedge-shaped domains by nucleation and growth. If the sam-
ple is polished in the austenitic phase, the wedges produce tangible surface textures:
the flanks of the wedges in (b) are slightly tilted such that they protrude from the plane
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(a) (b) (c) (d)

Fig. 1.3 Martensite in a CuNiAl single crystal plate. a Temperature-induced wedge-shaped marten-
sitic domains. Centimetre-scale. b Low magnification (16.5×) of a single wedge (orange). c Four-
sided nucleus of compatible variants which belong to the same plate group. Magnification 100×.
d Regular stacks of twins. Magnification 200× [44]

by a small angle. The angle is not arbitrary, rather it is dictated by the crystallographic
compatibility condition between parent and product phases. Their interface, called
the habit plane, is macroscopically sharp and planar. Fiducial scratches, tagged on a
sample in the parent phase, remain piecewise linear in the product phase. A similar
compatibility relation holds between martensite twin variants. Compatible variants
form plate groups. Fig. 1.3 (c) shows a martensite nucleus that consists of four
variants belonging to the same plate group. Twinned structures are produced dur-
ing self-accommodation processes while martensite is formed. The product exhibits
a lamellar structure of regularly stacked, alternating twin variants. These can be
observed by optical microscopy at the sub-millimetre scale in Cu-based alloys, Fig.
1.3(d), but are also reflected on much smaller scales, see below.

Figure 1.4 illustrates how martensite wedges are macroscopically formed in a
CuNiAl single crystal, showing a series of snapshots obtained from a differential
image correlation (DIC) study. The material is the same as in Fig. 1.3. DIC traces
the evolution of surface deformations by means of a computer-aided analysis of
digital images taken continuesly during the process. For this purpose, the sample
needs to be coated with a tracer paint. Using stereographic projection, the method
yields all components of the transformation surface strains. Figure 1.4a shows the
MT nucleation at a singular point at the plate edge. It forms a wedge by a growth
process into the bulk material (b)–(c). Eventually, more nuclei appear at other loci
and grow, producing a diverse martensite structure (d). The final product (not shown)
is similar to the one of Fig. 1.3a.
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(a) (b) (c) (d)

Fig. 1.4 Four consecutive snapshots during a DIC observation of the nucleation and growth of
martensite wedges in an austenitic CuNiAl single crystal plate. Plate dimensions 50 × 25 × 3 mm.
Colours code the transformation strains εxx with respect to the austenitic reference configuration
(red/orange). Martensite plates exhibit almost homogeneous strains (purple). Note the significant
strain gradient field around the wedges. Ref. [45] with courtesy of Musolff for providing the sample
(Video available online)

Transmission electron microscopy (TEM) reveals the structure of martensite down
to the atomic length scale. Figure 1.5 presents images of various materials from the
micro- to the nanometric scale. NiTi (a, c) has a comparatively small-sized domain
structure. The two images in (a) and (c), show the characteristic twin lamella of
martensite in this alloy. In the case of (c), the martensitic self-accommodation process
has produced the typical herringbone structure within a small grain. The lamellar
morphology is more pronounced in (b) which depicts a TEM image of NiTiFe. The
use of high resolution (HR) TEM enables morphologies to be studied even down
to the atomic scale, Fig. 1.5d. Here, white dots locate the positions of individual
atoms in a NiAl lattice—or rather, the positions of atomic columns oriented in the
viewing direction. This image beautifully confirms that locally, MT produces homo-
geneous deformations within individual lamellae, where the lattice is regular. Thus,
the structure must have been produced by regimented atomic movements during the
transformation, which inspired the phrase military transformation. For this particular
example, the lamella widths range between 10 and 20 unit cells. Across the interfaces
of the adjacent lamellae, the strain field is discontinues.

1.1.4 Scales

Materials sciences experimentally and theoretically address the properties of materi-
als across a range of length- and times scales. The technical evolution of microscopy
and the coming of computational sciences have emphasised this general approach
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(a) (b)

(c) (d)

Fig. 1.5 TEM and HR-TEM images of martensite in various SMAs, micro- to nanometre length
scale. a NiTi, b NiTiFe (both images courtesy Ch. Somsen [46]). c NiTi [47]. d NiAl courtesy
D. Schryvers [48]

during the past decade. Shape memory alloy research may well be viewed as a prime
example of this. Macroscopic observables are temperature, load and strain. Experi-
ments exhibt a characteristic coupling of these quantities, effectively rationalised by
thermodynamics. On the other hand, microscopy unveils complex details of these lat-
tice transformationson at the atomic length scale: product lattices are constituted by
(locally homogeneous) transformation strains, governed by coherency constraints
to be met along planar phase interfaces. These constraints are met during acco-
modation processes, forming destinct microstructures. High-resolution transmission
electron microscopy is capable of resolving these with atomic detail post-mortem,
however, the formation dynamics remains experimentally unresolved at this scale
level. To understand the dynamics on the atomic scale, we are to rely on theoretical
approaches. Here, the micro scale variables are positions and velocities of discrete
atoms. These quantities are governed by equations of motion. Still, thermodynam-
ics rules stability, but in this case the stability criterion is determined by atomic
vibrations and interaction forces. The forces, however, cannot be measured directly.
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In this situation, the sub-atomic scale gains importance, as binding forces between
atoms are dependent of the distributions of charged sub-atomic particles, electrons
and protons.

Against the background of this complexity, it is easy to see that the physics of
shape memory alloys indeed poses a multi-scale problem. The significant time and
length scales may be roughly divided into the four categories sub-micro—micro-
meso-macro. Each scale employs characteristic times and lengths.

The sub-microscopic level concerns the electronic structure of atomic cores and
the related electron distributions. These are investigated by means of ab initio models
and quantum mechanics. On the microscopic level, atoms are considered as mass-
points in the mathematical sense. Based on semi-emperical interaction-functions
given, formations of lattice structures can be investigated by molecular dynamics sim-
ulations and, statically, by relaxation methods. Characteristic times and lengths are
the period of an atomic oscillation (≈ 1 fs) and a lattice constant (≈ 1 Å), respectively.
Processes accessible by these methods range up to nano seconds and micro metres.
The mesoscopic scale level is somewhat ambiguously positioned between micro and
macro and concerns characteristic microstructural entities having the capability of
influencing the macroscopic material properties as ensembles. Examples are marten-
site lamellae, precipitates, inclusions, dislocations, grains and domains. Mesoscopic
entities have characteristic lengths from nanometres up to micrometres. The charac-
teristic time may be defined with respect to the speed of sound. Mesoscale processes
are accessible by both atomistic and continuum methods (“micro-mechanics”), thus
opening up the opportunity of transferring information between these two modelling
techniques.

Above the mesoscopic level, matter is considered to be macroscopically con-
tinuous and the classical continuum theories of mechanics and thermodynamics are
applied. A typical numerical tool used for computing the continuum-level field equa-
tions is the finite element method (FEM).

While each scale incorporates complex theories and sophisticated mathematical
toolsets of own rank, additional challenges arise from the need of bridging infor-
mation between the scale, since different, scale-specific sets of variables are used.
For example, atomic interaction forces on the micro scale depend on charge distri-
butions resolved on the submicro-scale. These, however, are not represented on the
micro scale. Similarly, constitutive equations are required as function of the thermo-
mechanical field variables on the macro-scale, whereas the microscale concerns
velocities and positions of atoms. Bridging between the scales is a classical problem
and has been tackled since long. Cauchy, for example, derived the elasticity tensor of
a monatomic solid in 1890 based on assumptions on the atomic interactions. His work
has yielded restrictive relations on the number of independent elastic constants [49]
which, however, were later experimentally disproved. These Cauchy relations are
therefore today regarded as a negative test for the reliability of an atomic interaction
model.2 Another, most important classical scale-bridging method was contributed

2 Note in 1915, Born was able to prove the Cauchy relations do not apply in the case of nested,
many-species lattices owing to the contributions from interactions between the sublattices [50].
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within the framework of statistical thermodynamics by Maxwell and Boltzmann.
Boltzmann’s statistical interpretation of the entropy for an ideal gas was quickly
extrapolated to condensed matter; his approach still represents the only theoretical
method of rationalising entropy and all related thermodynamic quantities from first
principles. For this reason his famous formula S = k log W ranges among the most
important equations of all physics [51].

1.2 Crystallographic Theory

The crystallographic theory of martensite [15, 16, 18, 52–56] relies on two phenom-
enological macroscopic observations: First, austenite-martensite phase boundaries
appear as invariant habit planes, which are sharp, non-rotated and undistorted. Sec-
ond, linear fiducial scratches remain piecewise linear after the transformation. From
these two observations it can be concluded that, macroscopically, the deformation
gradient F may be expressed by

F = I + d ⊗ p (1.1)

(p—normal to the habit plane, d—arbitrary vector, I—identity matrix). Microscop-
ically, the deformation gradient can be represented by a combination of the Bain
transformation B(η1, η2, η3), simple shear P(s) and rotations R(α, β, γ ),

F = RPB. (1.2)

The Bain transformation incorporates changes in the lattice parameters (η1, η2, η3)
during the transformation. This is illustrated in Fig. 1.6. The lattice parameters can, in
principle, be measured by X-ray methods and thus are taken as given in this theory.
The shear is indicated by a scalar shear parameter s and the rotation by the three
Eulerian angles (α, β, γ ). Both shear and rotation are required to compatibly “fit”
the product to the parent along a habit plane.

Equations (1.1) and (1.2) establish a nine-dimensional algebraic system for deter-
mining the components of d and p; the rotations and the shear as functions of the
Bain parameters (|p| = 1 serves as implicit condition). This system is non-linear, thus
multiple solutions exist which indicate martensite variants. Among these variants,
not all pairings are compatible such that martensite twins form. Twins are formed by
pairs of compatible variants F and F̃ that obey the twinning condition

F − F̃ = a ⊗ m (1.3)

along their interface (m—normal to that interface, a—arbitrary vector). This condi-
tion holds if one of the two following conditions is satisfied: either the deformation
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(a) (b)

Fig. 1.6 Bain transformation of a body-centred-cubic (bcc) lattice. The cubic parent lattice (a) may
be alternatively described by primitive bcc unit cells (thin lines)or by face-centred-tetragonal (fct)
unit cells (bold lines). The Bain transformation stretches the fct lattice homogeneously along one
cell axis and compresses it along the other two, thus producing a deformed fct cell in the product
lattice (b), while the bcc parent cells deform into bct product cells. The Bain parameters (η1, η2, η3)
indicate the ratios of the fct unit cell edge lengths in the two structures. During this process, the
plane (011)bcc is slightly rotated so as to become the product plane (011)bct which is close-packed

vectors d and d̃ or the habit plane normals p and p̃ of the variant pair concerned are
parallel.3

Kinematic compatible martensites: d ‖ d̃ ∨ p ‖ p̃. (1.4)

To model the lamellar microstructure of martensite, energetic arguments were
introduced. The concept by James and Ball [57] follows the idea that the microstruc-
ture may be represented by a sequence of piecewise homogeneous deformations
yi (x) which obey the crystallographic conditions. The microstructure is determined
by minimising the total free energy F in a domain �,

F =
∫
�

f (F
(

yi
)
) dx + σ A(i) → min!, (1.5)

where the specific free energy f is represented by the elastic strain energy of the
sequence. The term σ A(i) represents the interface energy between martensitic vari-

3 Proof following I. Müller in three steps:

1. Suppose d‖d̃, that is d̃ = α d, where α is a real scalar. Hence F − F̃ = d ⊗ (p − αp̃) and we
conclude that the condition (1.3) holds for a = d and m = p − αp̃.

2. Suppose p‖p̃, that is p̃ = β p, where β is a real scalar. Hence F − F̃ = (d − βd̃)⊗ p and we
conclude that the condition (1.3) holds for a = d − βd̃ and m = p

3. Now suppose that the two vectors p and p̃ are not parallel, p ∦ p̃. Thus the normal vector m
may be represented as a linear combination of p and p̃, m = α p + β p̃, where α, β are real
scalars. It follows from (1.3) that d ⊗ p − d̃ ⊗ p̃ = a ⊗ (α p + β p̃), or, after re-arranging
(d − α a)⊗ p = (d̃ − β a)⊗ p̃. This condition implies the vectors d and d̃ must be parallel
in this case, since d = α a and d̃ = β a are the only choices which meet the condition (1.3).
With this result, we may now return to 1, which concludes the proof of the statement (1.4).
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ants and it scales proportionally with the number of interfaces. Without the interface
term, the variational Eq. (1.5) yields an unrealistic, infinitely fine microstructure,
while finite-sized microstructures are generated if the interface energy is taken into
consideration: The strain energy term in Eq. (1.5) delimits only a few interfaces while
the interface term represses many interfaces. Thus when both terms are present, their
effects mediated each other and they yield a finite-sized microstructure. A related
variational model considers smooth energy functions and the interface energies are
modelled as proportional to the square of the second derivative y′′(x) [58–64]. Yet
another related concept considers homogeneous phase mixtures and introduces phase
field variables controlled by a set of Langevin type equations [65, 66]. Here again,
strain gradients represent interface energies.

Kinetic aspects of phase transformations in solids were investigated separately by
continuum methods [67–69], however, such work focuses on the thermodynamics
of transformation shocks in one-dimensional settings whereby the microstructural
detail is lost.

1.3 Thermodynamics

1.3.1 Phase Stability Criterion

The stability of a physical system is a subject of thermodynamics. If a system is
exposed to non-equlibrium conditions, transport processes result which adjust the
system variables. Such processes are described by the thermodynamic field theory.
Continuum-scale field variables are defined, typically the fields of (partial) density,
the motion related variables (partial) velocity and strain and temperature. These
quantities must obey the local balance laws of (partial) mass, (partial) momentum
and energy in all regular material points, and their respective jump conditions at sin-
gular surfaces. These balance equations incorporate a range of additional physical
quantities called the “constitutive” equantions— caloric and thermal equations of
state, heat flux and diffusion flux, etc.—which must be determined as functions of
the field variables in order to constitute a closed mathematical system of equations.
Experiments reveal these functions exhibit material-specific depencies of the field
variables and their determination is subject of the thermodynamic materials theory.
Thermodynamics axiomatically sets up an important constraint on the constitutive
equantions, called the “entropy principle”. This principle is constituted by the entropy
balance, which represents an inequality: Entropy is not conserved during a thermo-
dynamic process, rather than it experiences production which is non-negative by any
experience [70].

Therefore, the entropy principle defines the “direction” of relaxation processes
into equilibrium states, which are characterised by the phase equilibrium, the mechan-
ical equilibrium and the thermal equilibrium. To see this we focus attention to the
integral balance equations of mass, energy and entropy which we specify for the
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Fig. 1.7 Sketch on the phase stability criterion. A uni-axially applied load P affects the current
length l(t) effecting work at a rate Pdl/dt across the control surface

situation of a specimen under axial tensile load, cf. Fig. 1.7, in order to derive and
investigate these thermodynamic equilibrium criteria. For details we refer to text-
books [71]; our presentation of the matter further benefits from the studies of [72–75].

The balance equations for mass, energy and entropy of the specimen under axial
tensile load of Fig. 1.7 read

dm

dt
= 0 → m M (t) = m − m A(t), (1.6)

d(U + K )

dt
= Q̇ +

∮

∂V (t)

ti j vi n j d A, (1.7)

dS

dt
≥ Q̇

T
. (1.8)

We consider a specimen of mass m which may decompose into generic phases
austenite (A) and martensite (M). The partial masses are m A and mM . The total mass
is conserved, Eq. (1.6)1, hence these partial masses are related, Eq. (1.6)2.

The energy balance (1.7) states the change of the total energy—the sum of the
internal energy U and the kinetic energy K —results from heat exchange Q̇ with the
ambience and from external working. Here we neglect working effected by body
forces like gravitation or external magnetic fields in order to focus on the effect
of tensional forces acting across the control surface ∂V (t). These are represented
by Cauchy stress ti j acting on surface elements d A at the local velocities vi These
surface elements are oriented by normal vectors n j .

The surface integral on the right-hand side of Eq. (1.7) may be simplified to a
tangible expression employing some assumptions: As of Fig. 1.7, tensions are only
acting across the surface segments to the left and right of the tensile specimen. To the
left, it is rigidly fixed and the surface velocities are locally zero, vi = 0. To the right-
hand side—the loading side—the velocity of the surface is vi = (dl(t)/dt, 0, 0) and
only axial tensions are applied, which are effected by a nominal force P(t). Here,
the surface has the size A(t) and the normal vector is ni = (1, 0, 0). Hence the axial
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surface stress component reads t11 = P(t)/A(t). In this simple situation the surface
integral in Eq. (1.7) reduces to

∮

∂V (t)

ti j vi n j d A =
∫

A(t)

⎛
⎝

dl(t)
dt
0
0

⎞
⎠

T ⎛
⎝

P(t)
A(t) 0 0
0 0 0
0 0 0

⎞
⎠
⎛
⎝ 1

0
0

⎞
⎠ dA = P(t)

dl

dt
. (1.9)

We consider slow processes, where the changes of the kinetic energy K may be
neglected. Further we assume the heat exchange Q̇ with the ambience occurs at a
homogeneous surface temperature T . The entropy S of the specimen according to Eq.
(1.8) then changes due to the heat exchanged at that temperature and by a—here not
further specified—entropy production rate, which is non-negative. By eliminating
the heat flux from Eqs. (1.7) and (1.8), and applying a Legendre Transformation, the
stability criterion is furnished:

d

dt
(U − T S − Pl) ≤ −S

dT

dt
− l

dP

dt
. (1.10)

This criterion states for fixed external load P and fixed surface temperature T , the
rate of the Gibbs free enthalpy G ≡ U − T S − Pl is negative such that it eventually
becomes minimal at equilibrium. This minimum-condition is a direct consequence
of the entropy inequality.

A few re-arrangements are useful. Conventionally, the absolute axial length l(t)
of the specimen is substituted by the strain ε = (l − l0)/l0, where l0(T0, P = 0)
denotes a reference length. In the framework of SMA, the reference state is typically
unloaded austenite at a reference temperature T0, where this phase is stable. In this
state the loading surface has the area A0 and ρ0 = m(l0/A0) denotes the mass density
in the reference state. The phase specific strains are εA and εM . These are defined
for austenite and martensite with l = lA and l = lM , respectively.

The Cauchy stress ti j in Eq. (1.7) refers to the current area A(t). Alternatively,
we may relate the applied forces P(t) to the reference area A0 and define the (first)
Piola–Kirchhoff stress component σ = P/A0.

Finally, we may introduce mass-specific quatities of energy and entropy, u = U/m
and s = S/m. The phase-specific equivalents of these quantities are uA,M = UA,M/

mA,M and sA,M = SA,M/mA,M, respectively. Empoying these definitions, the mass
specific total free enthalpy reads g = u − T s − σε/ρ0. The mass-specific free
enthalpies are defined as gA = uA − T sA − σεA/ρ0 for the austenite and gM =
uM − T sM − σεM/ρ0 for the martensite, respectively.

According to Eq. (1.10) has the total free enthaplpy a minimum at equilibrium.
Employing all the new quantities defined above, a global equilibrium state hence is
characterised by the condition

d

dt
(m AgA(T, σ )+ (m − m A)gM (T, σ )) = 0. (1.11)
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The mass balance (1.6)2 was evaluated to eliminate mM . Equation (1.11) therefore
depends on the three independent variables m A, T and σ , implying three necessary
conditions for global equilibrium:

(
∂g

∂m A

)
T,σ

= 0,

(
∂g

∂T

)
m A,σ

= 0,

(
∂g

∂σ

)
T,m A

= 0. (1.12)

These are the conditions for the phase equilibrium, the thermal equilibrium and the
mechanical equilibrium, respectively. Especially, Eq. (1.12)1 implies

(
u A − T sA − σεA

ρ0

)
|
E

=
(

uM − T sM − σεM

ρ0

)
|
E
. (1.13)

The index “E” reminds us this eqution refers to an equilibrium state.
The phase equilibrium condition (1.13) relates the phase transformation loadσ(T )

and the phase transformation temperature T (σ ). Their dependency is expressed by
the Clausius–Clapeyron equation:

dσ

dT
= ρ0

sA − sM

εM − εA
. (1.14)

This relation is directly obtained from Eq. (1.13) by resolving it σ and subsequent
derivation with respect to T .

Experiments reveal that under tensional loading, the transformation stress of
austenite/martensite transformations σ(T ) is always increasing with temperature. So
the right-hand side of Eq. (1.14) must be positive. The strain difference (εM − εA) in
the denominator on the right-hand side of this equation represents the transformation
strain and this quantity also is positive, since the strains refer to an austenitic reference
state. In order to meet the experimental observation, Eq. (1.14) therefore requires the
difference of the specific entropies (sA − sM ) must be positive too. Accordingly, the
specific entropy sA of austenite must be bigger than the specific entropy of martensite
sM . An atomistic explanation of this condition is given in Sect. 3.2.3.

There are two approaches to graphically evaluate the phase equilibrium condition
of Eq. (1.13). These are known as the “rule of equal areas” and the “rule of common
tangents”. To see this, we may re-write Eq. (1.10) assuming reversible conditions4

to yield the Gibbs Equation,

d(u − T s)

dt
= −s

dT

dt
+ σ

ρ0

dε

dt
. (1.15)

The combination of internal energy u and entropy s and the left-hand side of this
equation defines the mass-specific Helmholtz free energy f ≡ u − T s. We see from

4 In thermodynamics, a process is called reversible if the entropy production is zero. In this case the
entropy balance (1.8) turns into an equality. In nature no such processes exists, therefore the idea
of reversibility must be regarded as an idealisation.

http://dx.doi.org/10.1007/978-3-642-28619-3_3
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Eq. (1.15) that this free energy is depending on the variables T and ε. Therefore the
total differential d f (T .ε) reads

d f (T, ε)

dt
=
(
∂ f

∂T

)
ε

dT

dt
+
(
∂ f

∂ε

)
T

dε

dt
. (1.16)

Comparing the coefficients between Eqs. (1.15) and (1.16) we see that the stress
σ(T, ε) is fundamentally related to the free energy under isothermal conditions
through

σ(T, ε)

ρ0
=
(
∂ f

∂ε

)
T

or, with f ≡ u − T S :
σ(T, ε)

ρ0
=
(
∂u

∂ε

)
T

− T

(
∂s

∂ε

)
T
, (1.17)

Equation (1.17) may be easily extended to all components of the stress tensor, see
[76]. We see the stress has both an energetic and an entropic part, as indicated in Eq.
(1.17)2. Both parts are significant in SMA!

Figure 1.8 shows a generic (stress, strain) isotherm in subfigure (a) and the accord-
ing free energy function in subfigure (b). Note that the (stress,strain) isotherm in
(a) is non-monotonous, which corresponds to the non-convexity of the free energy
isotherm in (b), since the two graphs are related through Eq. (1.17)1. Instable branches
of these curves are dashed: the stress exhibits a negative slope in this region and the
free energy is concave. We may explain the “rule of equal areas” and the “rule of
common tangents” using these illustrations.

The “rule of equal areas” represents an interpretion of the phase equilibrium
condition (1.13) in the (σ, ε) space. Due to the non-monotonicity of the stress/strain
curve in Fig. 1.8a, the stable branches of the stress/strain curve overlap for some
stress range. The transformation stress has to be determined within this range. To see
this we may re-write Eq. (1.13) employing Eq. (1.17)1 and yield the expression

εM∫

εA

σ(T, ε̂) d ε̂ = σ(T )(εM − εA). (1.18)

This equation implies the graphical interpretation visualised in Fig. 1.8a:
The phase transformation stress is defined by that specific constant stress line

σ(T ) = const. which preserves equal sizes of the two areas
εM∫
εA

σ(T, ε̂) d ε̂ and

σ(T )(εM − εA). Or, equivalently, the grey-shaded areas indicated in that figure are
of equal size. The respective transformation stress σ(T ) line is called the “Maxwell
Line”. Below εA, the specimen is homogeniously austenitic and it is homogeniously
martensitic above εM . In these regions the material may be deformed elastically.
In the strain range between εA and εM , austenite-martensite transformations occur
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(a) (b)

Fig. 1.8 Schematic stress/strain (a) and free energy/strain (b) isotherms. The rule of “equal areas”
refers to (a) and the rule of “common tangents” to (b)

upon loading and martensite-austenite transformations occur upon unloading at the
same constant stress σ(T ). Along this stress line, the specimen decomposes into a
phase mixture of austenite and martenite such that the Maxwell Line is parametric
in the mass-fractions of the phases.

The “rule of common tangents” represents an interpretion of the phase equilibrium
condition (1.13) in the ( f, ε) space. It represents an alternative interpretation of this
condition. To see this, the phase equilibrium condition (1.13) and Eq. (1.17) are
combined so as to give the equality

f A − fM

εA − εM
= σ(T )

ρ0
=
(
∂ f

∂ε

)
ε=εA

=
(
∂ f

∂ε

)
ε=εM

. (1.19)

This equation implies a graphical interpretation in the (free energy, strain) diagram
of Fig. 1.8b: At phase equilibrium, the partial derivatives of the free energy at the
loci εA and εM are equal to both one another and to the transformation stress. This
situation may be visualised by a common tangent attached to the respective convex
branches of the free energy representing the two phases. The slope of this common
tangent determines the phase transformation stress σ(T )/ρ0. Again, below εA the
specimen is homogeneously austenitic and homogenously martensitic above εM .
Elastic deformation of the two homogeneous phases is indicated by variations of the
free energy within the respective convex wells of f (ε, T ). In between εA and εM ,
where the specimen decomposes into a phase mixture of austenite and martensite,
the free energy evolves along the common tangent indicated in Fig. 1.8b rather than
following the concave branch of the function f (ε, T ). Therefore, by decomposing
into a mixture, the specimen “avoids” the energy barrierer of the function f (ε, T )
in this strain range. The path along the common tangent, parametrically in the mass-
fractions of the phases, therefore is called a “convex hull” of the non-convex free
energy in the language of mathematics.
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(a) (b)

Fig. 1.9 Thermodynamic phase equilibrium criterion for the unloaded speciman. Sketches of the
specific free energies of austenite (A) and martensite (M). a A unique transformation temperature
as predicted by Eq. (1.10). No hysteresis! b Experimentally observed situation: Transformation
hysteresis between the two observed transformation temperatures TA→M and TM→A

We append an investigation of austenite/martenite transformations for the special
situation of zero load,σ(T ) = 0. In this case, the transformation is induced by change
of temperature and the equilibrium theory predicts the phase fransformation occurs
at the specific temperature TE = T (σ = 0). For this special case, the free enthalpies
gA and gM reduce to the free energies f A and fM and the phase equilibrium condition
of Eq. (1.13) becomes

(u A(T, σ = 0)− T sA(T, σ = 0)) |
E

= (uM (T, σ = 0)− T sM (T, σ = 0)) |
E
.

(1.20)
All quantities in this equation refer to a mechanically unloaded state. Therefore,
Eq. (1.20) may be used to calculate the phase transformation temperature TE .
An illustrative graphical interpretation of this situation can be given in the (free
energy, temperature)-diagram, see Fig. 1.9a. This diagram visualises the two func-
tions f A = u A − T sA and fM = uM − T sM of the unloaded specimen. Both are
monotone in temperature and intercept the ordinate at u0

A = u A(T = 0, σ = 0)
u0

M = uM (T = 0, σ = 0), the respective ground-state energies of the two phases.
The slopes of the two free energy functions are given by the entropies (−sA(T σ = 0))
and (−sM (T σ = 0)). These are (roughly) logarithmic functions of temperature but
contain phase specific constants responsable for the different slopes of f A(T ) and
fM (T ). The intersection of the two functions f A and fM determines the transforma-
tions temperature TE .

In the framework of the Clausius–Clapeyron Eq. (1.14) we have already mentioned
that phenomenologically, the specific entropy of austenite must be bigger than the one
of the martensite, sA > sM , therefore f A must be steeper than fM . In this siuation,
Eq. (1.20) requires the ground state energy u0

M of martenite must be smaller than
the ground state energy u0

A of austenite, u0
M < u0

A, to allow for temperature-induced
transformations, see Fig. 1.9a.
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Equation (1.20) suggests an interpretation of phase transformations between
austenite and martensite in a broader view. Phase transformations in general occur
as the result of two competing phase preferences, the ones of energy and of entropy
[75]. While seeking for equilibrium, a sample tends to minimise the energy while
it tends to maximise entropy at the same time. It turns out these quantities prefer
different phases: Martensite produces lattice structures which minimise the internal
energy, while the structure of austenite has comparably higher internal energy. This
is reflected by the groundstate energies of the two phases. Therefore, martensite is
the favourable phase from the energetic perspective. On the other hand, the austenite
allows for a bigger specific entropy, than the martensite. Hence, austenite is the pre-
ferred phase from the perspective of entropy. Consequently, the phase stability is the
result of a competition between the internal energy u and the entropy s, expressed by
the free energy f = u − T s. The temperature represents a weighting factor, which
determines the influence of entropy. At low temperatures, this influence is diminished,
hence allowing the specimen to follow the energetic phase preference. Accordingly,
martensite is stable. With increasing temperature, the entropic influence is gradually
augmented and eventuelly dominates. Therefore, austenite is stable at high T. At the
phase transformation temperature TE , energy and entropy are balanced. This mech-
anism is called “entropic phase stabilisation” of austenite. It represents a general
concept in thermodynamics [75]. In the framework of austenite/martensite transfor-
mations discussed in this book we will explain this mechanism on the background
of an atomistic model.

1.3.2 Nucleation and Hysteresis

The classical thermodynamic treatment of phase transformations in fluids is based
on the Gibbs equation and implies process reversibility. Phase stability is deter-
mined by the Gibbs free energy for homogeneous bulk matter, resulting in phase
diagrams which are hysteresis-free. The Maxwell line in Fig. 1.8 is identical for
austenite/martensite transformations as well as for the reverse process. Similarly,
a single phase transformation temperature TE is predicted for an unloaded sam-
ple, see Fig. 1.9a. No hysteresis, neither in stress, nor in temperature arises from
the thermodynamics theory presented so far. In contrast to this, hysteresis is well
observed in the laboratory for both settings. In tensile tests, austenite/martensite trans-
formations are observed at higher transformation stresses upon loading, than upon
unloading for the reverse processes. Similarly, two transformation temperatures are
detected for unloaded samples in DSC devicesbetween temperatures TM→A > TE

and TA→M < TE . The widths and shapes of the hystereses depend on the specific
alloy, the crystal structure, processing parameters or even specific tensile loading
directions. Also, hystereses appear to depend on the history of the processes per-
formed with the material: the transformation stresses and the transformation tem-
peratures change after cyclic mechanical or thermal loading. This effect is most
pronounced for virgin materials after casting/heat treatment, but also affects their
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service properties. Material scientists subsume such behaviour under the terminol-
ogy functional fatigue [11–14] because of its detrimental effect on material reliability
in technical applications.

Figure 1.9 (b) illustrates the situation of thermal hysteresis in the free energy/
temperature diagram. Two transformation temperatures TM→A > TE and TA→M < TE

are indicated along the abscissa. The two graphs in this figure represent the same
equilibrium free energies of austenite and martensite, as in the reversible case of Fig.
1.9a. At TM→A > and TA→M , the two graphs do not coincide but differ from one
another by � f A→M

B and � f M→A
B , respectively. These are interpreted as nucleation

barriers. This suggests that in order to model hysteresis—the effects of undercooling
and overheating with respect to TE —the thermodynamic theory must be enriched
by free energy nucleation barriers � fB .

According to the definition of the free energy such barriers consists of an energetic
part �u B and an entropic part T�sB in general,

� fB = �u B − T�sB . (1.21)

For specific materials, the contributions of the energy and entropy to the free energy
barrier may vary. In the classical nucleation theory of fluids, the free energy nucleation
barrier is represented by tensional interface energy raised to establish phase bound-
aries [77]. This ansatz yields hysteresis in condensation/evaporation processes of
fluids [78–80]. The classical work has motivated similar approaches for SMA. Here,
interface energies are attributed to lattice mismatch of the respective phases, hence
effecting potential strain energy along the interface. Solid–solid phase transforma-
tions are affected by local compatibility concerns and stress fields to either side of the
interface [16, 18]. Interfacial strain energies are strongly orientation-dependent and
affected by defects and dislocations. According to the classical crystallographic the-
ory [52], martensitic twinning provides a mechanism to produce a strain-free habit
plane on the macroscopic scale. On the microscopic length-scale however, some
degree of lattice mismatch is inevitable, causing strain fields and local disconnec-
tions at the interface [81]. On average, these microscopic effects produce a interface
energy and cause hysteretic phase diagrams. In turn, hysteresis should vanish in
rare situations where the parent and the product lattices match perfectly even on the
microscale. For example, if the second eigenvalue of the crystallographic transfor-
mation matrix, λ2, is equal to 1, the habit plane can be defined without a twinned
martensite [82]: Perfectly match between parent and product is expected. Experi-
mental studies seem to prove the relationship between λ2 ≈ 1 and small hysteresis
[83].

Experiments give evidence hysteresis and functional fatigue in SMA indeed
related to the microstructure developed during thermo-mechanical processes [86,
87]. The formation process has to account both for lattice mismatch between parent
and product as well as between product variants which gives rise to specific interface
energies. These interfere the transformation process by adding energetic nucleation
barriers. Nucleations typically occur at loci where some pre-existing interfaces offer
favourable conditions. They are influenced by stochastic fluctuations of the field vari-
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(a) (b)

Fig. 1.10 TEM micrograph of the same region in a NiTi specimen upon temperature-induced
martensitic transformation (a) and after the reverse transformation (b). The dark region in (a)
indicates a T-induced martensite wedge. The wedge leaves faint dislocation marks in (b) after
reverse transformation [84, 85] with courtesy of the authors

ables. Other experimental work reveals that the energetic situation at the interface
between austenite and martensite is augmented by additional microstructural defects
produced in both forward and reverse MT. The interaction of MT with any kind of
structural defects (free surfaces, anti-phase boundaries, stacking faults, interfaces and
precipitates) was intensely studied experimentally in recent years. An overview of the
complexity of the physical situation is provided in [88] and applications have been
made for CuZnAl [89] and AuCd [90]. The interactions of moving interfaces with
such defects were investigated in [91] and [92] for Cu based alloys. The effect of aging
on the temperature hysteresis in such alloys is documented in [93]. All these works
refer to a strong relationship between the evolution of microstructural morphologies
and the thermodynamic properties of the materials, indicating a history-dependence
of the phase diagrams. Figure 1.10 illustrates a particular suggestive example of this:
it shows the generation of a dislocative microstructure during forward and reverse
MT in a NiTi sample. (a) and (b) show two TEM images of the same region within
the sample during thermal forward MT in (a) and after completion of the reverse (b)
[84, 85]. Note the wedge-shaped martensite region in (a) leaves behind a distinct
dislocation footprint within the austenite matrix after reverse transformation feintly
visible in (b). Thus, the forward/reverse transformation process has changed the lat-
tice by adding new microstructural elements, dislocations in this case. Under cyclic
thermal loading such microstructure develops and becomes more pronounced, see
[94] for a study in Cu–Al–Mn. Sophisticated calorimetric studies unveil the influence
of the temperature rates selected in an experiment [95] on thermal hysteresis.

Continuum models generally simplify solid–solid interfaces as singular surfaces
(atomically sharp habit planes and twin boundaries) and assume phenomenological
models for the surface energy. Typically, two approaches are taken [64]: either the
interfaces are considered as singular surfaces with a localised surface energy [96],
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or the interface is considered as a steep but smooth transition zone and the interface
energy is modelled proportionally to the square of the strain gradient [58, 59].

Such nucleation barriers originate from mechanical effects and no entropic contri-
butions to the nucleation barrier are regarded in these theories explicitly. However, for
lattice tranformations such effect must be expected. By MD simulations of nucle-
ations events in 2D lattices we shall rationalise the nature of this entropic barrier
(pages 97 ff).

1.3.3 Dynamics of Atomic Assemblies

The method of molecular dynamics is rooted in the concepts of classical mechanics.
Here, the motions xα(t) of an assembly of α = 1, . . . , N atoms are calculated as
functions of time on the basis of Newton’s second law,

mα ẍα = fα (α = 1, . . . , N ). (1.22)

Atoms are mathematically considered as points with masses mα . The Equations of
Motion (1.22) represent a set of second-order differential equations. Their integration
therefore involves two constants of integration per atom to be determined from initial
conditions.

The forces fα have two additive contributions: internal forces f int
α and external

forces fext
α

fα = f int
α + fext

α . (1.23)

Internal forces arise from the atomic interactions, while external forces result from
external force fields, such as gravitation, electrical and magnetic fields and from
constraints acting on the surface of the assembly.

Internal and external forces may be represented as gradient fields of the internal
and external potential functions V int(xγ ) and V ext(xγ , t), respectively:

f int
α = −∇αV int(xγ ), (1.24)

fext
α = −∇αV ext(xγ , t). (1.25)

The internal potential V int is a material property and depends on the positions of all
γ = 1, . . . , N atoms. This quantity does not depend explicitly on time t but only
implicitly through the time dependency of the atomic positions. In contrast to this,
the external potential V ext may also depend explicitly on t , as required by the external
force fields.

The atomic velocities are obtained by differentiation of the motions with respect
to time, ẋα . The centre of mass x of the total assembly, the velocity of this mass
centre v and the excess atomic velocities cα are defined by
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x =
∑
α=1

mα

m
xα, (1.26)

v =
∑
α=1

mα

m
ẋα, (1.27)

cα = ẋα − v. (1.28)

Here, m =∑α mα is the total mass. Note that the N individual excess velocities cα
are not entirely independent of each other, since the relation

∑
α mαcα = 0 holds

true.
Regarding the Eqs. (1.23)–(1.26), summation of Newton’s second law (1.22) over

α yields Newton’s first law, the Momentum Equation,

mv =
N∑
α=1

fext
α . (1.29)

This equation states that the momentum of the mass centre (mv) is conserved in the
absence of external forces.

The energy equation for the atomic assembly is obtained by a scalar-multiplication
of Eq. (1.22) by ẋα and subsequently summing over N . The result may be rewritten
in the popular form by using Eqs. (1.24)–(1.28),

d

dt

(
m

2
v2 + V ext(xγ , t)+ V int(xγ )+

N∑
α=1

mα

2
c2
α

)
= ∂V ext

∂t
. (1.30)

Consequently, if the external potential V ext does not change with time, the quantity
within the parenthesis—the total energy E of the system—is conserved:

∂V ext

∂t
= 0 ⇒ m

2
v2 + V ext(xγ , t)+ V int(xγ )+

N∑
α=1

mα

2
c2
α = E = const.

(1.31)
The total energy E consists of three parts: the (macroscopic) kinetic energy K ,

which is related to the square of the velocity of the mass centre, the potential energy
of external force fields and the term underlined in Eq. (1.31). This term models the
internal energy U of the assembly. It originates from the atomic interaction potential
and from the kinetic excess energy.

We may also introduce the Lagrangian mechanics briefly since it is frequently
used in the MD-related literature. Lagrange’s approach is convenient in situations
where the atomic motions need to be represented in non-Cartesian coordinates, or if
special constraints need to be incorporated in the formulation. Lagrange considered
the equation
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n∑
α=1

(mα ẍα − fα) dxα = 0, (1.32)

which represents an alternative formulation of Newton’s equations of motion (1.22),
and applied a bijective variable transformation of the type

qk = qk(xα, t) (k = 1, . . . , 3 N ) ⇔ xα = xα(q1, . . . , q3N , t). (1.33)

In the case of an unconstrained system, i.e. a system not subject to any external
force field, an application of the transformation (1.33) in (1.32) yields a new set of
3 N differential equations which control the motions of the atoms. These are called
Lagrange’s equation of motion,

d

dt

(
∂L

∂q̇k

)
= ∂L

∂qk
. (1.34)

q̇k , as usual, denote the time-derivatives of the coordinates qk and L is called the
Langrangian, an energy function representing the difference of the kinetic energy
T (q̇k) and potential energy V int(qk) of the unconstrained system,

L = T (q̇k)− V int(qk). (1.35)

Lagrange’s and Newton’s equations of motion (1.22), (1.34) are identical if the
coordinates qk are represented in a Cartesian frame. In this case the Lagrangian
reads

L (xα, ẋα) =
N∑
α=1

mα

2
ẋ2
α − V int(xα). (1.36)

Up to this point, the model’s equations rest entirely on the axioms of Newton,
which represent first principles of physics. To calculate the atomic motions for a
specific material we need to define the potential V int as functions of the atomic
positions.

1.3.4 Statistical Thermodynamics

The macroscopic energy state of an N -atom assembly is entirely determined by the
atomic micro-states {xα(t), ẋα(t)}. This 6N -tuple indicates a phase of the assembly.
It may be represented by a point in the 6N -dimensional phase space, in which it moves
along a trajectory as a function of time. If the assembly is unconstrained, the energy
state is entirely determined by the initial phase {xα(t0), ẋα(t0)} at the initial time
t0 owing to Eq. (1.31). Thus, the trajectory of the unconstrained assembly is bound
to a hyperplane of the phase space determined by the initial energy E (t0), which is
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constant. Since we are dealing with a classical system, this trajectory represents a
continuous line, parametric in time. Along this line, ν observations of the assembly at
consecutive times (t1, . . . , tν) yield an ensemble of phases, all indicated by the same
total energy. Such an ensemble is called a “microcanonical” ensemble of phases.

A subset of S atoms of the N -atom assembly has the energyE S
(
x1, ẋ1, . . . ,

xS, ẋS
)
. This energy is variable, since the S atoms thermally interact with the N − S

residual atoms in the assembly. Thus, the residual assembly constitutes an environ-
ment of the subset. Among ν consecutive observations of the subset, we see the given
phases {x1, ẋ1, . . . , xS, ẋS} μ times. Therefore, if ν is big enough, the probability of
observing this phase is

P
(

x1, ẋ1, . . . , xS, ẋS
)

= μ
(
x1, ẋ1, . . . , xS, ẋS

)
ν

. (1.37)

By using the arguments of statistical thermodynamics, the probability of seeing the
subset in the phases {x1, ẋ1, . . . , xS, ẋS} can be expressed in terms of the energy of
the subset and T ,

P
(

x1, ẋ1, . . . , xS, ẋS
)

=
exp

(
−E S

(
x1···ẋs

)
kt

)

∑
x1

∑
ẋ1
. . .
∑
xS

∑
ẋS

exp
(
−E s(x1...ẋs)

kT

) . (1.38)

This is the “canonical” probability distribution. It is a function of the positions and
velocities of the particles belonging exclusively to the subset. The N − S residual
particles contribute only to the temperature of the subset, because the subset S of
N atoms shares the mean kinetic energy with the residual system of N − S atoms.
Therefore, the residual body may be interpreted as a heat bath, which provides a
constant temperature for the subset. The concept of microcanonical ensembles and
their related subsystems originates from Maxwell and his contemporary Boltzmann.
The factor 1/kT was identified by applying the concept to monatomic, ideal gases.

The concepts of Maxwell and Boltzmann were generalised by Gibbs from the
special situation of “subsets within larger systems” to generic ensembles of systems.
Instead of considering an ensemble of ν consecutive observations, Gibbs—in a leap
of imagination—suggested an ensemble of ν replicas of one system. These replicas
are supposed to “weakly interact” in order to allow them to exchange energy. The
total energy of this ensemble of replicas and the ensemble size ν are supposed to
be constant. Hence, all ν replicas collectively establish the energetic environment
for an individual ensemble member. This metaphorically replaces the overall atomic
assembly at constant energy considered by Maxwell and Boltzmann. Consequently,
the studied replicas may be of arbitrary size. The assumption that the time average
of a system’s observable equals the ensemble average of this observable in a system
of replicas is known as the ergodic hypothesis.
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We may abbreviate the energy states of an individual replica in Gibbs’ ensemble
by El and denote the number of replicas which are found to occupy this state by
μl . This energy state is a single and discrete state of 1, . . . ,M energy states which
are invariably available to the replica. Hence, the number series μl represents a
distribution of replicas over these energy states, such that

∑M
l=1 μl = ν. Gibbs

employed Boltzmann’s formula for the ensemble’s entropy, S = k log W with

W = ν!
M∏

l=1
μl !
, (1.39)

in order to calculate the equilibrium distribution of μl |E by maximising the entropy
subject to the constraints of constant energy E = ∑

μlEl and constant ν. This
procedure yields a canonical distribution of energy states:

Pl =
⎛
⎝
μl |

E

ν

⎞
⎠ =

exp
(
− El

kT

)
∑M

l=1 exp
(
− El

kT

) . (1.40)

The suffix “E” again indicates that the result refers to thermodynamic equilibrium.
Note the factor 1/kT enters Eq. (1.40) via the energy constraint during the maximi-
sation computation.

If we interpret El as a short form for the energy state E S(x1 · · · ẋS) of Maxwell’s
subset ensemble, the results of Eqs. (1.40) and (1.38) are identical, although they
have been derived differently. Gibbs’ result, however, is more general because it
applies to any ensemble at constant temperature regardless of how these isothermal
conditions are maintained. Equation (1.40) may be used to calculate the expectation
value of energy of an individual replica in the ensemble, 〈E 〉, and the expectation
value of entropy, 〈S 〉:

〈E 〉 = E
ν

|
E

= kT 2 ∂ log Z
∂T , (1.41)

〈S 〉 = S
ν

|
E

= 〈E 〉
T + k log Z . (1.42)

In these two equations, Z denotes an abbreviation for the denominator of (1.40),
called the canonical partition function.

We may now consider an N -atom ensemble at constant T , irrespective of how
this temperature is maintained. The partition function of such a system is given by

Z =
∑

x1,...,N

∑
ẋ1,...,N

exp

⎛
⎜⎜⎜⎝−

m
2 v2 + V int(xγ )+

N∑
α=1

mα

2 (ẋα − v)2

kT

⎞
⎟⎟⎟⎠ . (1.43)
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This function cannot, in general, be analytically calculated because the interaction
potential is a complicated function of the atomic positions. However, an analytical
result exists for crystals subject to two restrictive assumptions:

1. Einstein crystal: Atoms are considered to move independently of one another
within mean potential energy functions V int

α provided by their average environ-
ment,

V int =
N∑
α=1

V int
α (xα) (1.44)

2. Harmonic approximation: The atoms are considered as harmonic oscillators,
such that the mean potential energy of an individual atom may be represented
by a quadratic function:

V int
α (xα) = λα

2

(
xα − X0

α

)2 + e0
α. (1.45)

In Eq. (1.45), the λα denote the curvatures of the parabolic mean potential energies of
atoms vibrating about the ground-state positions X0

α . Note that the second assumption
excludes any anisotropy of the potential as well as thermal expansion. e0

α = V int
α (X0

α)

represents the ground-state energy at T → 0. Regarding these assumptions, Eq.
(1.43) can be analytically computed. For this purpose we approximate sums by
integrals and obtain

Z ≈ exp

(
−mv2

2kt

)
·

·
N∏
α=1

1

Y

∫ ∞

−∞
exp

(
−mα(ẋα − v)2 + λα

(
xα − X0

α

)2 + 2 e0
α

2kT

)
dx1 . . . dẋN

= exp

(
− mv2

2kT

)
exp

(
−

N∑
α=1

e0
α

kT

)
1

Y

N∏
α=1

(2πkT )3√
λαmα

3 . (1.46)

Y is a constant factor that attends to the correct discretisation of the phase space when
switching from the quantised to the continuous representation. With this result, the
expectation of the energy (1.41) reads

〈E 〉 = m

2
v2

︸︷︷︸
K

+ 3NkT +
n∑
α=1

e0
α

︸ ︷︷ ︸
U

. (1.47)

This energy consists of two parts, the kinetic energy K of the mass centre of the total
ensemble and the internal energy U . It is instructive to decompose U into the two
parts of Eq. (1.48), representing the expectation value of the kinetic excess energy
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〈E excess
kin 〉 =∑mα/2 c2

α , and the the expectation value of the internal potential energy
〈V int〉,

U = 3

2
NkT

︸ ︷︷ ︸
〈E excess

kin 〉

+
N∑
α=1

e0
α + 3

2
NkT

︸ ︷︷ ︸
〈V int〉

. (1.48)

We see at mean, the internal potential energy of a vibrating atom assembly is
T-dependent. Further, the temperature is proportional to the mean kinetic energy
of the excess velocities cα = ẋα − v, while the velocity of the mass centre v does
not contribute to temperature.

The expectation value of the equilibrium entropy S is given by

S = 〈S 〉 = 3

2
Nk log(kT )+ k

N∑
α=1

log

⎧⎨
⎩

4

3
π

√
3kT

λα

3
⎫⎬
⎭

+ 3Nk + k log

{
1

Y

N∏
α=1

(
2π2

3m
3
2
α

)}

︸ ︷︷ ︸
=C

(1.49)

This entropy is composed of three terms. The last term in Eq. (1.49) represents the
entropy constant denoted by C . The first term represents the usual caloric part which
is identical for monatomic ideal gases. The underlined term in Eq. (1.49) results
from the potential energy V int. This term needs to be interpreted: According to the
rules of statistics,

√
3kT /λα represents the mean amplitude (standard deviation)

of the atomic oscillations about the ground state positions at a given temperature
T . The magnitude of this amplitude is controlled by T and by the curvature λα
of the potential, see Eq. (1.45): At a given T , broader potentials (characterised by
“small” λ) allow larger amplitudes than narrower potentials (characterised by “large”
λ). Hence, the logarithm’s argument in the underlined term of Eq. (1.49) may be
geometrically interpreted as the spherical volume available to an atom corresponding
to this amplitude. It represents a measure of the atomic mobility in a quadratic
potential. The larger this volume, the more microstates an individual atom may
occupy in phase space and consequently, the higher the entropy. We shall return to
this discussion in Chap.3 when evaluating the entropies of austenitic and martensitic
lattices.

Finally, according to the harmonic potential model, the expectation of the free
energy F = U − T S, results from a combination of internal energy and entropy,

F = 3NkT +
N∑
α=1

e0
α− 3

2
NkT log(kT )−kT

N∑
α=1

log

⎧⎨
⎩

4

3
π

√
3kT

λα

3
⎫⎬
⎭−T C. (1.50)

http://dx.doi.org/10.1007/978-3-642-28619-3_3


28 1 Preparations

Fig. 1.11 Shrink-fit FEM simulation of a SMA bush onto a Hookean shaft during heating. The
bush is radially pre-strained in the martensite phase (low T) so as to become pseudo-plastically
deformed. Next, it is placed placed on the shaft and heated, thus triggering the SME. Contraction
fixes the bush and visibly affects the radial stress distribution shown. The figure shows an axial
cross-section of shaft and bush in the final state [97]

1.4 Engineering Models of SMA

For design studies of engineering applications it is often not necessary to model
the full microscopic complexity of SMA. Rather, models must be reliably capable
of the thermo-mechanical coupling: pseudo-plasticity, pseudo-elasticity, the shape
memory effect and latent heat effects. Other requirements include their practical use
in numerical algorithms such as FEM platforms, their numerical precision, robustness
and efficiency.

Models developed for this purpose may be roughly divided into three groups:
empirical models, plasticity models and energy-based models. Early empirical mod-
els use suitable ansatz functions, fitted to measurements in the state space. Such
models are, however, only reliable within their circumscribed boundaries. Models
are partly restricted to pseudo-elasticity [98–100]. More sophisticated models intro-
duce internal variables to incorporate one- or two-way effects [101]. Another group
of models are rooted in the classical theory of plasticity [102–105]. Physically more
sophisticated models are based on free-energy descriptions of the material [106–
109]. Temperature changes caused by latent transformation heats are an integral
part of the behaviour of shape memory alloys and inevitably couple the thermal
and the mechanical fields. This general behaviour is fully covered by the Müller–
Achenbach–Seelecke (MAS) model. First published in 1979 [110], the MAS model
has been explored and improved over the years. Important contributions were due to
Achenbach [111] and Seelecke [112, 113]. At the Department of Materials Science
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at the Ruhr-University Bochum, a research group is dealing with the implementation
of this model into the FEM platform ABAQUSTM. Originally, the MAS model is
restricted to uni-axial states of stress, which limits its application to cases where
only these stress states prevail, such as axial loading in wires and trusses, pure beam
bending, pure torsion and shrink-fit problems as well as thermally-induced processes
in absence of external loading. These problems have already been studied by FEM
[97, 114–117], see Fig. 1.11 for an example. To overcome this uni-axial limitation,
the model has been extended to arbitrary 3D stress/strain/temperature states [118,
119].
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Chapter 2
The Method of Molecular Dynamics Simulations

Molecular dynamics simulations are in principle the most versatile way of describing
solid–solid phase transitions: the crystal and interfacial structures emerge automat-
ically from the interatomic potential. So there is no need for implicit assumptions
about microscopic details and symmetry entailed in continuum methods. In partic-
ular, the thermodynamics emerges from the molecular dynamics rather than being
an input, so that all the fluctuations are incorporated properly [1]. In this chapter
we present, in a nutshell, the concept of the MD method and the numerical tech-
niques employed. We restrict ourselves to aspects essential for this work and refer
to textbooks on the literature for more extensive treatises, e.g. [2–4].

2.1 Interaction Models

The method of molecular dynamics (MD) simulations represents a numerical method
for solving classical many-body problems. Here, the term “classical” refers to the
underlying Newtonian mechanics presented in the previous chapter. Accordingly,
atoms are treated as mathematical points, endowed with mass but without spatial
extension. Especially, energy is considered to be a continuous quantity, deliberately
neglecting its quantifisation. This ansatz of course restricts physics to the time and
length scales to microscale orders of magnitude, where the quantisation is assumed
to be less significant. Energy quantisation becomes important on the sub-micro scale,
where it determines the structure of charge distributions in the electron shell of an
atom. Certainly, these distributions effect the interaction forces between the atoms.
However, the dynamical calculation of the subatomic charge distributions in paral-
lel with the atomic trajectories exceed contemporary computation resources. Such
sub-micro/micro scale approaches (known as ab-initio MD methods) represent the
scientific cutting edgde of theoretical physics.

The classical MD method avoids these restrictions by compromise: atomic inter-
actions are reduced to functions of mass-point trajectories, thus neglecting subatomic
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entities as variables. The functions employed may be derived from sub-micro knowl-
edge, or they may be chosen entirely on a phenomenological basis. These model func-
tions may be fitted to the physical properties of specific materials. Hence, depending
on the degree of model sophistication, MD simulation results may gradually approx-
imate physical processes from the micro- up to the mesoscale.

In the literature, MD simulations of martensitic transformations have been
reported since the 1980s, see Fig. 1.2 on p. 4. Early works by Clapp et al. [5, 6]
hinge on semi-empirical potentials, which were constructed on the basis of Morse
potentials. Using the pure Morse or Lennard–Jones potentials led these authors to
doubt the existence of metastable structures and they therefore modified a Morse
potential by adding oscillatory functions. The resulting potential exhibited several
minima, which instantaneously incorporated several possible stable lattice configu-
rations. Thermally induced transitions between cubic and triangular configurations
were simulated and interpreted as martensitic transformations.

The physics of metals and alloys can be modelled by the use of central pair
potentials qualitatively only. These potentials reduce the atomic interactions to pair-
wise interactions, being described by only very few parameters. To simulate more
complex crystal structures, and also to quantitatively appropriate more satisfactory
results, further sophisticated models were introduced. In 1989, Yu and Clapp [7]
made use of a semi-empirical potential, which was fitted to the physical properties
of Fe-Ni, to simulate martensitic growth processes in a 432-atom body.

In the 1990s, a new class of potentials based on the density functional theory
became prominent. A new type was derived by using the embedded-atom method
(EAM), which was originally developed by Daw and Baskes [8] at the beginning of
the 1980s. EAM potentials consist of two parts for repulsive interactions between
ionic atom cores and cohesive interactions due to the electrons. The proportions of
these two contributions can be assessed by ab initio calculations. EAM-type poten-
tials have been fitted to the properties of several materials and alloys and have been
widely used in MD simulations of martensitic transformations. We provide here an
incomplete list: Cheung et al. (1992, α-iron, [9]), Grujicic et al. (1995, FeNi, [10];
1996, TiV, [11] and [12]; 1997, FeNi, [13]), Shao et al. (1996, NiAl, [14]), Meyer
(1998, FeNi, NiAl, [15]), Zhang et al. (2000, NiAl, [16]), Kuznetsov et al. (2001, Zr,
[17]) Kadau (2001, FeNi and FeCu, [18]) and Mendelev/Ackland (2007, Zr, [19]).
Other works employ similar many-body potentials, like Finnis-Sinclair-type poten-
tials and its extensions. Like EAM potentials, these must be fitted to the properties of
specific materials. We mention the work of Ackland and Pinsook on zirconium (1998,
[20–22]). This brief overview shows that, if suitably constructed potential functions
are used, austenite–martensite phase transitions can be successfully simulated by
using the MD method. The phenomena being investigated cover a wide range of
aspects: the time evolution of the microstructure under martensitic transformation,
temperature- and tension-induced martensitic growth, the effects of dislocations and
crystal defects as well as the influence of surface effects on the nucleation process.

In this work, we shall choose the simplest possible MD model: the model employs
central pair potentials of the Lennard–Jones-type, thereby contradicting the popu-
lar opinion that these types of potentials are too primitive to use for simulating

http://dx.doi.org/10.1007/978-3-642-28619-3_1
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transitions in crystal lattices. Indeed, it was shown that this approach, although of
great conceptual simplicity, is capable of qualitatively covering all the important char-
acteristics of martensitic transformations [23–25]. Thus, such a model may help in
fundamentally understanding these processes. The model will be explained in detail
in Chap. 3. Similar models were successfully considered in the literature [26–28].

2.2 Numerics

2.2.1 Accuracy Issues

The fundamental model equations in MD simulations are Newton’s equations of
motion (1.22). Once an interaction model is chosen, the atomic trajectories are cal-
culated by solving a system of N -dimensional coupled, second order differential
equations. Two sets of initial conditions need to be provided, initial atomic positions
and velocities, which determine the initial potential and kinetic energies, respec-
tively. Analytical solutions to such many-body systems do not exist, we therefore
have to rely on numerical techniques. However, from mechanical and thermody-
namical considerations, we know some properties of the theoretically existing “true”
solution:

1. Energy conservation: according to Eq. (1.31), unless external force fields are
applied to the system, the total energy is constant.

2. Time reversibility: if at some time t > t0 the atomic velocities were reversed by
multiplying by (−1), then the trajectories are exactly retraced back to the initial
conditions.

3. Equilibrium: an unconstrained system will tend to establish an equilibrium state
corresponding to the set energy. At equilibrium, the velocity distributions of the
atoms are Maxwellian.

The numerical solution inevitably deviates from the true solution for two reasons:
first, because computers restrict the accuracy of the calculated numbers (hardware
accuracy) and second, because the numerical integration schemes used only approx-
imate the true solution at discrete time steps and within certain convergence limits
(software accuracy).

The hardware accuracy is related to the representation of numbers on a computer.
Real numbers x are represented by

x = ±m b±e, (2.1)

where m is the mantissa, b the base and e the exponent of the base. The sizes of
these quantities depend on the compiler that produces the executable binary code.
For example, many C-compilers will allocate 64 bits of memory to represent the real-
type “double”. Of these 64 bits, 53 bits are used to represent the mantissa, and the

http://dx.doi.org/10.1007/978-3-642-28619-3_3
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remaining bits for the sign and the exponent. The type “float” is only represented by
32 bits. The accuracy is defined as the smallest deviation from 1.0 that can be repre-
sented by the real number type which is chosen. This is determined by the mantissa. In
C, 64-bit “doubles” consequently have an accuracy of 2.2204460492503131×10−16.
This figure is defined by the IEEE standard for binary floating point arithmetic. Real
numbers consequently have to be rounded to this accuracy on a computer. In gen-
eral, the resulting inaccuracy a priori destroys absolute energy conservation (1) and
veridical time reversibility (2) of numerically calculated solutions.

Luckily, these issues do not disqualify the method, at least if we are willing to
compromise and accept approximate, numerical solutions as solutions of the math-
ematical problem in general. Physical reasons sustain us: MD simulations do not
precisely predict evolutions of systems as function of the initial data rather, at some
average on the atomic level. Exact solutions, however, are not required: in solids, for
example, atoms move in convex potential wells provided by their neighbours. These
wells force the atomic motions to fluctuate about mean lattice positions. While the
numerical method cannot exactly resolve the atomic trajectories within the energy
wells, we trust that the mean positions, numerically obtained, may represent the
physical positions. Time-reversal will not exactly retrace the trajectories, but the
initial mean positions and initial temperature conditions will be met. Thus in these
cases, we may accept the fact of numerical time-irreversibility. Some authors add the
remark that indeed nature also produces time-irreversibility on the atomic scale due
to Heisenberg’s Uncertainty Principle of quantum mechanics [2]. Such an argument
is, of course, beyond the scope of a classical theory. Here, we rely on the statistical
convergence of the atomic trajectories, although there is no mathematical proof for
any class of systems that is of interest to MD simulations. In their textbook, Frenkel
and Smit mischievously comment on this situation: “To close this discussion, let us
say that there is clearly still a corpse in the closet. We believe this corpse will not
return to haunt us, and we quickly close the closet door” [3] (p. 73).

Care, however, has to be taken with regard to the requirement of energy conserva-
tion (1), which represents an important criterion for choosing the integration scheme.
Sophisticated, higher order schemes tend to provide very good energy conservation
over short times, but often have the undesirable feature of an overall drift over long
periods. Schemes used for MD simulations, such as the Verlet algorithm explained
below, typically provide only moderate short-term energy conservation, but minimal
long-term drift [3]. In general, the quality of algorithms scales with the width of
the discrete time step. This width must be selected with regard to stability, energy
conservation and global simulation settings. For example, if a thermostat is applied,
the mean kinetic energy of the system is controlled by some additional algorithm
such that a slight “numerical energy dissipation” can be compensated.
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2.2.2 Integration Schemes

In MD simulations, codes typically employ the Verlet algorithm (coordinate or veloc-
ity formulation), or predictor–corrector schemes. We proceed by briefly introducing
these three techniques.

The atomic motions xα may be expanded forwards and backwards in time as a
Taylor series about the current time t :

xα(t +�t) = xα(t)+ ẋα(t)�t + 1

2
ẍα(t)�t2 + O(�t3),

xα(t −�t) = xα(t)− ẋα(t)�t + 1

2
ẍα(t)�t2 − O(�t3).

(2.2)

Adding these two equations, and eliminating the acceleration terms by using New-
ton’s equations (1.22), the scheme yields

xα(t +�t) = 2xα(t)− xα(t −�t)+ �t2

mα

fα + O(�t4). (2.3)

This is Verlet’s algorithm [29], which is an explicit recursive scheme for computing
the new atomic positions xα(t + �t) as a function of the current positions xα(t)
and the most recent positions xα(t − �t). �t is the time step. The accuracy of
Verlet’s algorithm is of the order (�t4), providing fair short-term energy conservation
and minimal long-term drift. It is fast because the interaction forces need only be
computed once per time increment. Another advantage is the algorithm requires little
extra memory which becomes important for larger ensembles. For all these reasons,
Verlet’s algorithm is our first-choice integration scheme.

Note that Verlet’s algorithm only deals with positions and does not explicitly
provide the atomic velocities. The velocities must be calculated independently, which
implies they are not computed exactly at the same time as the positions. The velocities
are calculated as ratios of the spatial and temporal increments,

ẋα(t) = xα(t +�t)− xα(t −�t)

2�t
. (2.4)

The Equations of Motion (1.22) represent a set of second-order differential equa-
tions. Their integration involves two constants of integration per atom. Commonly,
these are determined by the initial atomic positions xα(t = 0) and the initial atomic
velocities ẋα(t = 0). The former has to be selected with respect to the interaction
potentials and can be determined from static lattice relaxation, for example. The
inital set of atomic velocities may then be set with respect to Maxwellian velocity
distributions of the components. These two sets of initial conditions are employed
to compute the xα(t −�t) and xα(t) required to initiate Verlet’s recursive scheme.

Occasionally, the delay of the velocity computation is undesirable. To improve
this situation, the Verlet algorithm was modified [30]: we use Eq. (2.2)1, eliminate

http://dx.doi.org/10.1007/978-3-642-28619-3_1
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Fig. 2.1 Trajectory of the linear ODE ẍ = −x with x(t = 0) = 0 and ẋ(t = 0) = 1 in the phase
space (x, ẋ). The analytic solution represents a concentric circular trajectory with constant radius 1.
a Coordinate Verlet, b velocity Verlet, c predictor–corrector. An unrealistically large time step of
�t = 0.25 was used to augment the differences between the three schemes. In total 5,000 time
steps in total were calculated

the acceleration term by (1.22) and linearly expand the velocities. This produces a
scheme consisting of two parts which are computed recursively:

xα(t +�t) = xα(t)+ ẋα(t)�t + fα(xγ (t))
2m

�t2

ẋα (t +�t) = ẋα (t)+ fα(xγ (t +�t))+ fα(xγ (t))
2mα

(2.5)

This scheme is equivalent to Verlet’s algorithm, with which it shares its consummate
stability, but it yields positions and velocities at identical instants in time. Its draw-
back, however, is the fact that the interaction forces must be computed twice for each
single time increment of the trajectories, thus doubling the computational effort.

Another integration scheme, which also explicitly yields positions and velocities,
is based on the predictor–corrector method. This method splits the computation of
the phases {xα, ẋα} into two steps: in the predictor step, a preliminary solution is
calculated on the basis of current and recent phases. This predicted solution is then
used to adjust the interaction force in the subsequent corrector step. The method is
based on Taylor expansions of atomic motions and velocities, modified by weight
factors that reduce the error. This method comes in different flavours. The available
algorithms differ in their Taylor expansion orders, their weight functions and weight
coefficients. The example, the expression below represents a higher order algorithm
taken from [31]:

Predictor step:

xpre
α (t +�t) = xα(t)+ ẋα(t)�t + �t2

mα

(
19

24
f(xγ (t)− 10

24
f(xγ (t −�t))

+ 3

24
f(xγ (t − 2�t)

)
−�t5 19

180
xα(t)5,

The corrected equation reads:
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xα(t +�t) = xα(t)+ ẋα(t)�t + �t2

mα

(
3

24
f(xpre

γ (t +�t))

+10

24
f(xγ (t))− 1

24
f(xγ (t−�t))

)
−�t5 7

36
xα(t)5,

ẋα(t +�t) = xα(t +�t)− xα(t)
�t

+ �t

mα

(
7

24
f(xpre

γ (t +�t))

+ 6

24
f(xγ (t))− 1

24
f(xγ (t−�t))

)
−�t4 1

45
xα(t)5. (2.6)

In the long term, predictor–corrector methods are not as accurate as the Verlet
scheme, see Fig. 2.1 for a simple benchmark test with the three methods discussed.
Here, we recursively calculated the linear ODE ẍ = −x for 5,000 time steps, using
an artificially large time step of �t = 0.25 to augment the differences. The ana-
lytic solution is given by a unit circle about the origin in these phase diagrams.
The Verlet algorithm for the velocity formulation (2.5) nicely reproduces the ana-
lytical solution, Fig. 2.1b. The phase curve is circular and clearly coincides with
the solution. The tiny radial deviation from the unit circle is due to the large time
step chosen. In the coordinate formulation, Fig. 2.1a, the Verlet algorithm has the
same stability characteristic, however, the phase curve is slightly deformed into an
ellipse, since positions and velocities are calculated at slightly different times. The
predictor–corrector code, Fig. 2.1c, exhibits a significant drift in the phase diagram.
The trajectory spirals outwards about the origin, beginning with a radius of 1. Note
that in a real MD application, the time steps used are two to three orders of magnitude
smaller than the one used with this benchmarking example. In this case, even the
stability of the predictor–corrector method is sufficient, although using this scheme
without a thermostat is not recommended.

2.2.3 Non-Dimensionalisation

The physical time and length scales of atoms incorporate small numbers into the
computation of the atomic trajectories. For numerical reasons (and for convenience),
equations are non-dimensionalised by characteristic physical quantities, such that all
model quantities range in the order of one. For this purpose, the characteristic length
σ0, mass μ0 and time τ0 are used. In solids, an obvious choice for σ0 is the nearest-
neighbour distance between the atoms (ranging in the order of 1 Å (10−10 m)) and
forμ0, the atomic mass of an atom (ranging in the order of 10−26 kg for most metals).
However, an argument is required for the choice of the characteristic time τ0.

The MD method must be capable of resolving the fluctuating atomic motions
about their mean lattice sites restricted by the potential function V int. The amplitudes
of these fluctuation are small and, corresponding to the atomic motions, may be
idealised as harmonic oscillations within individual atomic potentials V int

α . We may
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then identify τ0 with the period of such harmonic oscillations which is given by

τ0 = 2π

√
μ0

λ
. (2.7)

λ denotes the curvature of the potential function V int
α in the harmonic limit, thus

relating τ0 to the potential.
σ0, μ0 and τ0 may be combined to give a characteristic energy ε0, used to non-

dimensionalise the potential energy,

ε0 = μ0

(
σ0

τ0

)2

. (2.8)

Alternative choices are possible. For example, one may choose ε0 independently
of τ0 and calculate the latter directly from Eq. (2.8). In this case, however, τ0 cannot be
interpreted as a characteristic period of the oscillation. It is also possible to choose ε0
and τ0 entirely independently of each other. In this case, the ratio of the characteristic
potential energy and the characteristic kinetic energy, denoted by 
,


 = ε0

μ0

(
σ0
τ0

)2 , (2.9)

deviates from the numerical value of one.
Using the characteristic quantities, the non-dimensionalised equations of motion

eventually read as

m̂α

d2x̂α
dt̂2

= −
∇̂α V̂ . (2.10)

with m̂α = mα/μ0, x̂α = xα/σ0, t̂ = t/τ0 and V̂ = V/ε0. ∇̂α denotes the gradient
with respect to the non-dimensionalised coordinates. In our simulations we shall
always deal with non-dimensionalised quantities but for simplicity, the hats (ˆ) will
be dropped.

2.2.4 Thermostats

It is often required to control the temperature of the simulated atomic assembly,
because the lattice transformations considered in this work incorporate latent heat
effects. This effect may interfere with the progressing transformation process and it
is therefore desirable to compensate for these effects in order to maintain a constant
temperature. This can be achieved by using numerical algorithms called thermostats.
Here, we briefly discuss three methods: the Nosé-Hoover thermostat, the Andersen
thermostat and the velocity scaling method.
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2.2.4.1 Nosé-Hoover Thermostat

Nosé [32, 33] considered a scaled time τ which is related to the physical time t by
the transformation

s = dτ

dt
. (2.11)

This transformation implies

ẋα = dxα
dt

= s
dxα
dτ

= s
·τ
xα. (2.12)

(Derivatives with respect to the scaled time τ are denoted by ·τ ). Employing
this transformation, Nosé introduces an extended Lagrangian, which—in Cartesian
coordinates—reads as

L Nosé =
N∑
α=1

mα

2
s2

( ·τ
xα

)2 − V int(xα)+ Q

2

(·τ
s
)2 − 3NkT log s. (2.13)

The first two terms on the right-hand side of this equation result from eliminating
the velocities in the Lagrangian of Equation (1.36) by (2.12). Q is a positive constant
interpreted as the mass of a virtual heat source which controls the temperature of

the atomic assembly. The term Q/2(
·τ
s )2 is accordingly interpreted as the “kinetic

energy” of this virtual mass, while (3NkT log s) represents its “potential energy”.
Nosé and Hoover were able to show that the Lagrangian (2.13) produces a canonical
equilibrium distribution at a temperature T in the phase space.

The extended Lagrangian of Equation (2.13) implies a new set of equations of
motion which reads as

mα
··τ
x α = − 1

s2 ∇αV int − 2

s

·τ
x α

·τ
s

Q
··τ
s = 1

s

(
N∑
α=1

mα

2
s2

( ·τ
x α

)2 − 3NkT

) (2.14)

This is the Nosé-Hover algorithm. It represents a second-order system of ODE for

xα and s as functions of the scaled time τ . Note that the velocities
·τ
xα and the

pseudo-velocity
·τ
s appear explicitly on the right-hand side, thus requiring velocity-

explicit integration schemes. A Nosé-Hoover thermostat is designed to control the
temperature and to also maintain the Maxwellian equilibrium distributions.

This latter aspect of “forced” equilibrium properties of the trajectories raises
a doubt about the applicability of this algorithm within the framework of non-
equilibrium processes. Our MD simulations are aimed to address such processes
since we intend to investigate the formation processes of microstructures in phase

http://dx.doi.org/10.1007/978-3-642-28619-3_1
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transformations as transients. Therefore, we shall not apply this method in our MD
simulations.

2.2.4.2 Andersen Thermostat

Another, more heuristic thermostat algorithm was provided by Andersen [34]. By
means of his approach, the atoms change velocities due to stochastic collisions with
photons emitted by a radiator at the set temperature. Technically, this is performed
by setting the velocities of randomly selected atoms, with respect to the Maxwellian
velocity distribution, at this temperature. A drawback of this method is that the veloc-
ities change suddenly and the trajectory in phase space is accordingly discontinuous.
Also, the Maxwellian velocity distribution allows for very large speeds. Such events
of course are rare, but once they occur, instabilities may result.

2.2.4.3 Velocity Scaling Thermostat

An even simpler, but efficient method is that of “velocity scaling and relaxation”.
It can be used with the coordinate-Verlet algorithm: during the computation of the
trajectories, the atomic displacements uα ,

uα = xα(t +�t)− xα(t), (2.15)

are frequently scaled by a factor q. The positions xα(t + �t) are then adjusted
according to the scaled displacements,

xscaled
α (t +�t) = xα(t)+ quα, (2.16)

which effectively scales the velocities according to Eq. (2.4). The magnitude of the
factor q may be controlled proportional to the deviation of the system temperature
from the desired set temperature,

q = 1 + kp(Tset − T ). (2.17)

kp is a (positive) control parameter. The system temperature is, as usual, calculated
from the kinetic excess energy in Eq. (1.48). kp has to be carefully adjusted such that
q varies only moderately about the value of 1 in the per-mill range.

Scaling events are frequently performed during the computation at intervals of
a few hundred time steps such that, during the intervening periods, the system is
allowed to relax into its natural state. Therefore, the method gently influences the
kinetic energy and thus no artificial situations are anticipated. An additional advan-
tage is that this method can be used with the Verlet algorithm in coordinate for-
mulation, thus emphasising its efficiency. For slow processes close to equilibrium,

http://dx.doi.org/10.1007/978-3-642-28619-3_1
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Fig. 2.2 Test of the “velocity scaling and relaxation” thermostat under tensile loading. Loading
affects the temperature of the assembly by means of mechanical energy dissipations such that
thermostats are required to maintain isothermal conditions. The diagram on the left shows an
arbitrary load/strain response of a small assembly subject to tensile loading. The bold line indicates
the trend. The system temperature is plotted onto the same diagram with respect to the right-hand
axis. The thermostat maintains the set temperature at an average of Tset = 275 K. The diagram on
the right depicts the velocity distribution. Time/ensemble averages (black bullets) coincide well
with the analytical Maxwellian at Tset (grey curve)

the method reproduces Maxwellian velocity distributions. This is demonstrated in
Fig. 2.2 showing an isothermal tensile test with a small crystallite [25].

2.2.5 Periodic Boundary Conditions

In the bulk of crystalline atomic assembly, an individual atom’s mean lattice position
conforms to the interactions with the atom’s neighbours located within its spherical
interaction range. In contrast to this, an individual surface atom only experiences
interactions from within the crystal since the interaction partners beyond the surface
are absent. In this situation, surface atoms are forced slightly towards the bulk solid.
Accordingly, the lattice parameters are slightly smaller compared to those in the bulk
positions and the affected atoms have slightly increased potential energies. This effect
is short ranged and decays over the distance of few unit cells. The difference between
the specific potential energies of bulk and surface atoms defines the surface energy.
It is clear that this quantity is more dominant in smaller assemblies than in larger.
Also, 3D assemblies are more affected than 2D assemblies, where the surface is
represented by a line rather than by a 2D entity. However, even in large assemblies,
where the fraction of the surface energy is reduced, they cannot be ignored since
they incorporate localised effects which are important for the nucleation of phase
transformations. This is experimentally well known and has already been illustrated
in Fig. 1.4 on p. 5. Thus, since surfaces represent such important objects in nature,
any attempt to artificially exclude them from simulations appears, at the first glance,
to be an absurd idea.

http://dx.doi.org/10.1007/978-3-642-28619-3_1
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Fig. 2.3 A 1D chain of 15 atoms at identical nearest-neighbour distances a. The atoms are uniformly
assigned to 3 segments of equal length L = 5a

Nevertheless despite this, there is reasonable justification to exclude surfaces: for
technical reasons (because the computational resources are limited) or to intentionally
suppress any surface reaction in order to focus on the bulk situation. The common
technique for excluding the surface is to apply periodic boundary conditions (PBC)
[35]. We explain the principle by considering a 1D chain of pairwise interacting
atoms, see Fig. 2.3.

The chain consists of 15 atoms which are uniformly assigned to three segments
of equal length L . The lattice parameter a of the chain is assumed to be constant
along the chain, such that L = 5a holds, and the atoms possess unit mass. We
further assume the atomic interactions are short ranged, with an interaction radius
of r = 2a say, such that only the nearest and next-nearest neighbours effectively
interact. Hence, the equations of motion for the atoms 6–10 in the middle segment 2
are expressed as

⎛
⎜⎜⎜⎜⎜⎝

ẍ6 = f (r6,4)+ f (r6,5)+ f (r6,7)+ f (r6,8)

ẍ7 = f (r7,5)+ f (r7,6)+ f (r7,8)+ f (r7,9)

ẍ8 = f (r8,6)+ f (r8,7)+ f (r8,9)+ f (r8,10)

ẍ9 = f (r9,7)+ f (r9,8)+ f (r9,10)+ f (r9,11)

ẍ10 = f (r10,8)+ f (r10,9)+ f (r10,11)+ f (r10,12)

⎞
⎟⎟⎟⎟⎟⎠

(2.18)

rα,β denotes the separation between two atoms α and β. The underlined terms on
the right-hand side indicate cross-segment interactions. Since the interactions are of
finite range, atoms 1–3 and 13–15 do not directly interact with the middle segment
atoms. Also, there are no direct interactions between the atoms at the front and the
rear of the second segment. Therefore, one might think of replacing the segments 1
and 3 by copies of segment 2, which are translated by ±L for this purpose. With this
idea, the underlined terms in Eq. (2.18) may be exclusively expressed in terms of
the positions of segment 2 atoms and L . Accordingly, the underlined terms are now
rewritten and Eq. (2.18) becomes

⎛
⎜⎜⎜⎜⎝

ẍ6 = f (L − r9,6)+ f (L − r10,6)+ f (r6,7)+ f (r6,8)

ẍ7 = f (L − r10,7)+ f (r7,6)+ f (r7,8)+ f (r7,9)

ẍ8 = f (r8,6)+ f (r8,7)+ f (r8,9)+ f (r8,10)

ẍ9 = f (r9,7)+ f (r9,8)+ f (r9,10)+ f (L − r9,6)

ẍ10 = f (r10,8)+ f (r10,9)+ f (L − r10,6)+ f (L − r10,7)

⎞
⎟⎟⎟⎟⎠ (2.19)
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This equation represents a closed system of ODE for calculating the motions of atoms
located in the second segment (provided that f is known and the initial conditions
are set). Similar to the original chain, the atoms of segment 2 are not affected by the
free “surface”, i.e. the ends of the chain. Note, the size of L needs to be chosen with
respect to the interaction range, L > r must hold. This method is easily extended
into all three spatial directions, where the segment is expanded into a 3D super-cell
placed in a simulation box of edge length L .

Care must be taken since, according to Eq. (2.19), the computed trajectories
depend on L . One consequence is restricted eigenmodes, thus restricting the physics
of the investigated assembly. Another complication arises from the fact that in real-
istic materials, the lattice parameter depends on temperature, a = a(T ), and thus
L = L(T ). Therefore during non-isothermal simulations, the size of the simulation
box must be adjusted according to a(T ). The situation can become even worse: if the
super-cell undergoes a lattice transformation, the size and shape of the simulation
box must be adjusted accordingly, otherwise anisotropic transformation stresses are
induced. Techniques providing these tasks have already been developed.

2.2.6 Parrinello–Rahman

The technique of simultaneously controlling the size and shape of the simulation
box is named after the work of Parrinello and Rahman [36, 37], who generalised
the earlier work of Andersen [34]. Andersen employed an extended Lagrangian
formulation for the derivation of a barystat.1

Up to this point, atomic positions and velocities were implicitly represented with
respect to the rectangular Cartesian coordinate (r.C.c.) system Ei . According to the
rules of tensor algebra, their vectors may alternatively be represented with respect
to the skew bases ei . This base system may be obtained from Ei by a linear transfor-
mation A,

e j = Ai
j Ei . (2.20)

Accordingly, the r.C.c. components xi transform into the coordinates zi in the skew
system by 2

xi = Ai
j z

j . (2.21)

1 We have already cited this article in the discussion of thermostats, but it was more influential in
regard to the extended Langrangian method used.
2 Notation: lower case Latin letters indicate 3D tensor components. Einstein’s summation convention
is adopted. In a skew system, two sets of coordinates exist, obtained by a perpendicular projection
to (covariant components) and by parallel projection along (contravariant components) the base
vectors. Contravariant components are indicated by raised (row, column) indices and covariant
components by lower (row, column) indices. The co- and contravariant skew bases e j and ei are
reciprocal, such that ei e j = δi

j holds true (with δi
j —Kronecker Delta). In normalised, orthogonal

bases systems, Ei = E j holds true and accordingly co- and contravariant tensor components are
identical.
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Parrinello and Rahman consider a time-dependent transformation, Ai
j = Ai

j (t),
such that the base system may be adjusted according to the current crystal structure.
The aim is to simultaneously determine the nine components of Ai

j (t) with the
computation of the trajectories. For this purpose, Parrinello and Rahman proposed
an extended Lagrangian of the form

L PR =
N∑
α=1

mα

2
gi j ż

i
α ż j
α − V int(Ai

j z
j
γ )+

W

2
Ȧi

j Ȧi
j − p det(A)− 1

2
gi j Si j . (2.22)

gi j = Ak
i Ak

j denotes the metric of the skew base system. W denotes a constant

with mass dimension. The term W/2 Ȧi
j Ȧi

j therefore may be vaguely interpreted

as a “kinetic energy” associated with the time changes of Ai
j (t). p represents a

superimposed isotropic pressure and Si j is related to the stresses σ i j through

Si j = ( Ã−1)ik(σ
kl − pδkl)( Ã−1)

j
l det( Ã). (2.23)

The tildes (˜) denote a reference configuration.
Equation (2.22) implies a new set of equations of motion, which read as

mαgik z̈k
α =

N∑
β=1,β �=α

∂V int

∂rβα

r i
βα

rβα
− mα ġik żk

α,

W Ai
j Äk

j =
N∑
α=1

Ai
m Ak

n żm
α żn

α−
N∑

α,β=1,β �=α

∂V int

∂rβα

r i
βαrk

βα

rβα
− p det(A) δik − Ai

m Ak
n Smn

(2.24)

rβα = (gi j (zi
β − zi

α)(z
j
β − z j

α))
1/2 are the atomic separations and r i

βα = Ai
k(z

k
β − zk

α)

denotes the distance vector pointing from atom α to atom β. Equations (2.24) may
be used to compute the trajectories of an N -atom ensemble subject to constant stress
conditions. Note that the atomic velocities explicitly appear on the right-hand side of
Eq. (2.24)1, thus demanding an integration scheme capable of simultaneously com-
puting the atomic positions and velocities. Equation (2.24)2 represents nine equations
for computing the components of the transformation matrix Ai

j (t).
Two critical remarks on this method are warranted. The first concerns the deriva-

tion of the extended Lagrangian (2.22) and the second, the idea of a “volumetric”
stress control implied by the method.

Regarding Ai
j = Ai

j (t), the atomic velocities in the skew system are obtained by
differentiating Eq. (2.21) with respect to t ,

ẋ i
α = Ai

j ż
j
α + Ȧi

j z
j
α. (2.25)
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The squares of the velocities therefore read

ẋ2
α = gi j ż

i
α ż j
α + Ȧk

i Ȧk
j z

i
αz j
α + 2 Ȧk

i Ak
j z

i
α ż j
α. (2.26)

Of the three terms on the right-hand side of this equation, only the first appears in the
extended Lagrangian of Equation (2.22), while the other two, which are underlined,
are dropped, raising concerns about the consistency of the Lagrangian thus derived.
While Andersen comments on a similar inconsistency in his work [34], Parrinello and
Rahman flatly note “whether such a Lagrangian is derivable from first principles is a
question of further study; its validity can be judged, as of now, by the [...] statistical
ensembles that it generates” [36].

The second remark concerns the “volumetric” nature of the stress control: by the
Parrinello and Rahman method, stress is controlled simultaneously at any location in
the crystal by a virtual body force with respect to statistical equilibrium conditions.
In contrast to this, in the laboratory, stress is only controlled on surfaces since inter-
nal stress states are not directly accessible. Thus, in an actual sample, mechanical
equilibrium is dynamically established by the propagation of stress waves which
may interact with the microstructure. It is not a priori clear, how such processes are
constrained in simulations employing the Parrinello and Rahman method.

Despite these critical remarks, the method appeared to produce encouraging
results for small super-cells under PBC and therefore quickly became popular at
a time of limited computational resources. Scientists justify its application a poste-
rior from the reasonableness of the results and ignore the absence of the justification.

2.2.7 Parallelisation

For technical reasons, the computer hardware limits both the size N of the ensemble
investigated and the simulated physical time period tsim. Limitations are due to both
hardware speed and data storage limits. The speed is primarily a function of the hard-
ware clock rate the central processing unit (CPU) of a computer is running at. This
rate is typically measured in floating-point operations per second (FLOP/s). Other
hardware parameters like memory management contribute to a minor extent to the
speed. Ensemble sizes are primarily limited by the amount of random access memory
(RAM) available on a system. Further, the capacity of the permanent data storage
system (hard drives) limits the total amount of data that can be recorded through the
entire simulation run. We may denote the significant hardware characteristic by the
hardware parameter array p.

A measure for the performance of a specific MD simulation program run on a given
hardware is the computer runtime needed to compute a single time step�t , denoted
by τCPU(�t,p, N ). Suppose that the program is executed on a single computer such
that p is fixed. Hence the total runtime needed to simulate an N -atom ensemble is
proportional to the total number of time steps tsim/�t ,
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τ tot
CPU,serial = tsim

�t
τCPU(�t,p, N ). (2.27)

Note that in this equation, two different time measures appear: the simulated time
period tsim has a microscale order of magnitude and it is discretised into time steps of
�t . This time has to be distinguished from the runtime τCPU the computer requires
to calculate the trajectories, which may even scale in weeks or months.

According to Eq. (2.27), the total runtime is related to the hardware parameters p,
the ensemble size N and the desired simulation time tsim on a single serial computer.
For technical and practical reasons, this runtime is obviously limited. Hence, for the
given available runtime τ tot

CPU on a selected machine, Eq. (2.27) relates the accessible
simulated time tsim to the ensemble size N .

The computational costs of the MD method basically result from the calculation
of the interaction forces fα which are functions of the atomic separation matrix rβα =
|xβ − xα| (α, β = 1...N ). The computational effort to calculate the total separation
matrix scales with N 2. Physics helps to reduce this effort: because the interaction
forces are short ranged in comparison to typical system sizes, the interaction force
fα of an individual atom is no longer a function of the full separation matrix, rather
of only those separations which fall below a specific interaction horizon and any
other interactions are neglected. In MD, this horizon is modelled by a cut-off radius
denoted by rc. Neighbourhood lists (sometimes called Verlet lists) are used to book-
keep the interaction partners of all atoms and these lists—frequently updated during
the simulation run to keep track of changing interactions—are used to compute the
forces. In solids, where atoms are merely immobile on the short and medium term,
typical update periods are 1,000–5,000 time steps. Only at update events is the total
separation matrix computed, meanwhile only separations between neighbourhood
atoms are computed. This method reduces the computational effort to scale with N
rather than N 2.

The concept of limited interaction horizons also suggests that the computational
effort be distributed over a grid of machines which perform the integrations in parallel.
For this purpose, the ensemble is spatially decomposed into domains as illustrated
in Fig. 2.4. These domains are computed in parallel on a computer grid that logically
represents the domain structure. Domain sizes are typically set larger than the cut-
off radius, thereby restricting inter-domain interactions to adjacent domains. These
interactions require data communication between the computation nodes of the grid.
Hence, new hardware and software components are introduced, which are needed to
maintain this data communication.

Since in a grid the individual computation nodes only have to integrate a subset
NS out of the N trajectories, the runtime needed for computing a single time step is
significantly reduced to τCPU(�t, NS) < τCPU(�t, N ). The drawback of this method
is the inter-domain data communication, which causes some delay τcomm(�t, NS)

in every single time step. Hence the total runtime needed to simulate the atomic
trajectories on a parallel computer is given by

τ tot
CPU,parallel = tsim

�t
(τCPU(�t, NS)+ τcomm(�t, NS)) , (2.28)



2.2 Numerics 51

Fig. 2.4 Parallel computation of a large ensemble on a (N × M) dimensional computation grid by
logical domain decomposition (2D sketch). The interaction radius rc determines how far interactions
may penetrate into adjacent domains (“halo-regions”)

(assuming that the computation grid consists of identical nodes). This Eq. (2.28)
states an optimisation problem for determining the domain size NS . To explain this
relation, we define the runtime speed-up σ achievable by means of parallelisation by
the ratio of Eqs. (2.27) and (2.28),

σ = τCPU(N )

τCPU(NS)+ τcomm(NS)
. (2.29)

As an illustration, we may evaluate this equation by using general assumptions:
τCPU(N ) and τCPU(NS) may be assumed to be proportional to N and NS = N/s,
respectively, where s is the number of computation nodes. The communication over-
head τcomm(NS) may be set proportional to s multiplied by the amount of data
to be communicated for a single domain. This amount depends of the number of
atoms affected by the cross-domain interactions, called the interaction “halo” of
adjecent domains in the jargon of parallel coding. The latter may be assumed to
scale with 3

√
N/s2. Hence we get σ = s/(1 + ps 3

√
s/N 2

), which has a maximum
at s = 33/4 N 1/4 p−3/4 (p represents the combined proportionality factors). If we
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Fig. 2.5 Flow chart of a generic MD simulations program

arbitrarily set p = 1 and N = 106, say, the maximum speedup is achieved at s ≈ 73
computation nodes. This is not a realistic figure, but it nicely illustrates the gen-
eral limits of code parallelisation. In reality, parallelisation has to additionally take
into account the computational resources available at a specific high-performance
computation (HPC) facility and the CPU quota allowances set by the facility’s
administration.

2.2.8 MD Simulation Computer Program

Figure 2.5 shows a flowchart of a generic MD simulation program used for the
investigation of martensitic transformations in this work. We use the Verlet algo-
rithm in its coordinate formulation, Eq. (2.3), to recursively compute, in parallel on a
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computation grid, the trajectories of crystalline atomic ensembles. The initial atomic
velocities are selected randomly with respect to the initial temperatures. For the rea-
sons pointed out above, we shall not employ methods based on extended Lagrangians.
Our thermostat uses the method of velocity scaling and relaxation. Since we shall not
employ PBC, we are able to avoid the otherwise mandatory use of the Parrinello and
Rahman method for controlling the size and shape of the simulation box. In simula-
tions where external loads need to be applied in order to simulate tensile tests, these
loads are always directly added to the force vectors of individual atoms as a function
of time. This simulates a tensile test under load control mode. In contrast, a tensile test
under displacement control mode is effectively modelled by collectively controlling
the positions of selected atoms located at surface layers as a function of time.

We use neighbourhood lists to reduce the computational effort per computation
node. These are updated within periods of 1,000–2,000 time steps. Fixed halo-regions
are considered for the inter-domain communication of the parallel computer grid.
The size of the halo-regions at every node is determined in the cubic crystal struc-
ture. Since atoms may slightly change their interaction neighbourhoods due to the
dislocation mechanism, the sizes of the halo-regions are conservatively chosen to be
larger than the cut-off radius.

In the course of the project, different computing facilities were employed. For the
purpose of code development and also for the investigation of small-size ensembles,
a parallel Linux Cluster was established at the Department of Materials Science
in Bochum. Here, a low-latency Infiniband network guaranteed fast communica-
tion between the processors. The code was ported to professional HPC facilities to
study larger problems. The facilities used are located at the University of Edinburgh
(HPCx, bluegene [38]) and at Germany’s National Research Centre in Jülich (JUMP
and JUROPA at NIC [39]). The parallel code was developed with consultative support
from the Edinburgh Parallel Computing Centre (EPCC). Here, the Message-Passing-
Interface (MPI) library is employed [40] to implement the inter-domain communica-
tion. MPI is highly flexible and is independent of specific platforms and thus nicely
supports code porting between the platforms used. The code was optimised by using
the VAMPIR-profiling software (Visualisation and Analysis of MPI Programs [41]).

The simulation results are frequently recorded during their computations. Since
the storage devices have limited space, it is necessary to reduce the amount of stored
data. For a preliminary investigation, it is sufficient to record a chosen set of primary
data (atomic phases and potential energy) at only selected time steps. The recording
frequency must be selected with respect to a timescale of the specific processes under
consideration.

2.3 Post-Processing

MD simulations produce immense amounts numerical data. Thus, the analysis of the
results is a distinct issue in its own right and requires another set of computational
post-processing tools. The analysis of the results is mainly based on visualisation.
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Fig. 2.6 Screenshot of the Crystal Viewer program written for the visualisation of lattice transfor-
mations and microstructures in crystals. The program analyses and visualises the simulated atomic
positions in different render modes (1, 2, 3) which can be interactively controlled. Here, the main
window shows a narrow [001] section through the centre of a 5.5 million atom crystal sphere during
an MT. The present crystal structure is visualised by unit cells coloured according to their potential
energies defined in the BCC phase. Martensite (white/red/orange) has lower potential energy than
austenite (blue), thus providing a visible colour contrast. Domain boundaries and the free surface
are accompanied by excess energies shifting the potential energy to a higher level (grey). The
colour contrast can be adjusted by means of the filter settings and different filter options may be
selected (4). The orientation of the section can be varied (5) or be viewed from different perspectives
(1, 6). Light settings may be adjusted to accentuate surface reliefs (7). Interesting local regions may
be marked interactively and the corresponding simulation data can then be exported for further
external analysis

The visualisation software must merge the data produced on the parallel compu-
tation facility and produce a comprehensive display output. Appropriate software
should be capable of distinguishing lattice- and microstructures, permit sectional
representations and enable the observer to isolate and magnify local effects. Owing
to these specific demands, it is advantageous to use a customised code. Furthermore,
algorithms are needed to relate the simulation data to the relevant field variables of
mechanics and thermodynamics.

Figure 2.6 shows a screenshot of the Crystal Viewer program developed to meet
the needs of data visualisation within the framework of this project. Written in C, the
program benefits from its streaming capabilities. The Open Graphics Library [42]
and the GLUI toolbox [43] were employed to implement the graphics core and to
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deal with interactive control elements, respectively. The lattice may be visualised
in either atom render mode (by points) or in unit cell render mode (by polygons).
Unit cells may be defined in the perfect BCC structure by means of the nearest and
next nearest neighbouring atoms located about individual central atoms of cubic unit
cells. Any render mode may use colour codes according to selected analysis settings:

• Potential energy analysis: atoms or cells located in identical crystal phases have
the same potential energy, while the potential energy differs between phases. This
may be used to distinguish the phases by colour codes. Potential energy analysis
also reveals lattice artefacts, dislocations, surface and interface energies.

• Temperature analysis: the evolution of lattice transformations is accompanied by
the release/absorption of latent heat, thus providing a temperature signal at the
locations of the travelling transformation fronts. This may be visualised by utilising
the temperature filter settings.

• Mesoscopic kinetic energy analysis: martensitic transformations are locally indi-
cated by regimented atomic motions (military transformation). These motions may
build up a kinetic energy on the mesoscopic length scale, which can be detected
in order to isolate transformation zones.

• Crystal structure: transformation modes of BCC unit cells may be used to iden-
tify martensite variants in 2D (Chap. 4). In 3D (Chap. 5), we employ the “Ball
Viewer”- algorithm by Ackland and Jones [44] to define and analyse local BCC,
FCC and HCP crystal structures. This algorithm is based on a combined evalua-
tion of the radial distribution functions and the angular distribution functions of
the direction cosines between nearest and next nearest neighbours of individual
atoms. It was slightly modified to utilise additional information on the interaction
neighbourhoods available from the MD code, improving the speed in large-scale
applications.
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Chapter 3
2D Model Material

In this chapter we present MD simulations of martensitic phase transformations
in 2D Lennard–Jones (L–J) crystals. A binary L–J potential is used to describe
a square-to-hexagonal transformation by shear-and-shuffle processes. The model
material is capable of the complex thermo-mechanical coupling present in SMA—
pseudo-plasticity, pseudo-elasticity and the shape memory effect [1, 2].

3.1 The Model Material

In a Lennard–Jones (L–J) crystal, atomic interactions only depend on the separations
rβα ≡ |xβ − xα| between atom pairs α and β according to the interaction potential

Φαβ = 4 εαβ

((
σαβ

rβα

)12

−
(
σαβ

rβα

)6
)
. (3.1)

L–J potentials therefore are called “pair potentials”. εαβ and σαβ are the pair inter-
action parameters. Their significance is indicated in Fig. 3.1: σ determines the root
while ε determines the depth of the potential well, thus setting its strength. The
minimum is located at rβα = 21/6σαβ . At smaller distances the potential behaves
repulsive and attractive beyond. For large separations, the interactions decay asymp-
totically to zero. Therefore, at rβα = 21/6σαβ , the interactions of a single (α, β) atom
pair vanish, providing a stable ground state separation of an isolated atom pair.

An individual atom α located in a lattice experiences a potential V α due to pair
interactions with all surrounding atoms

V α =
N∑

β=1,β �=α
Φαβ(rβα). (3.2)

O. Kastner, First Principles Modelling of Shape Memory Alloys, 59
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Fig. 3.1 (12,6) Lennard–
Jones potential as a function
of the separation rβα
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Fig. 3.2 In 2D, stable monatomic L–J crystals have hexagonal lattices; other structures are unstable

In a cohesive crystal, an individual atom α is symmetrically encompassed by inter-
action partners β. Accordingly, the superposition of pair-potentials potential Φαβ in
Eq. (3.2) effects V α is convex in regard to the co-ordinates xα of atom α and the near-
est neighbour distance slightly deviates from 21/6σαβ in general. The total internal
potential energy of an N -atomic assembly reads

V int = 1

2

N∑
α=1

V α, (3.3)

since the pair potentials are symmetric in α and β.
Monatomic L–J crystals do not exhibit lattice transformations, Fig. 3.2. In this sit-
uation, the lattice structure is determined by a single set of interactions parameters
(ε, σ ). In 2D, the solely stable structure is closed-packed hexagonal and any other
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Austen

(a) (b)

(c)

Fig. 3.3 Binary L–J lattices in 2D in the austenite (a) and the martensite (b). c Variants of
martensite arising due to opposite shear directions of an austenitic unit cell with respect to both
principle directions [01] and [10] and due to opposite shuffle directions of sub-lattices, respectively

structures are dynamically instable. Such model is too poor to represent lattice trans-
formations.

The situation changes if two atom species are taken into account. In a binary
model three potential functions are needed to model interactions A–A, B–B and
A–B interactions of the generic atom species A and B. A–A and B–B poten-
tials model bonds between the pure species while the A–B potential defines the
cross-species interaction. Hence there are six interaction parameters (εAA, σAA),
(εB B , σB B) and (εAB , σAB) to be selected. Here, the balance between pure- and
cross-species potentials determines the crystal structure of the binary lattice. Thus,
our 2D model material consists of two atomic species, A and B. Such model allows for
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Fig. 3.4 Potential energy landscape of the interstitial type-B atom within a type-A unit cell for
three different shearing events. The contour plot portrays the potential energy using various shades
of grey; from high values (white) to low values (black)

the crystal structures shown in Fig. 3.3. The model austenite, Fig. 3.3a, is represented
by nested square sub-lattices of A and B type. In the binary L–J system, the square
lattice can be stabilised by temperature if the cross-species (A,B) interactions are
properly adjusted. The model martensite, Fig. 3.3b, is produced by a shear/shuffle
transformation of the square lattice: square unit cells are sheared into diamonds,
accompanied by shuffle of the sub-lattices.

The energetic situation which determines this shuffle on the scale of a unit cell
is illustrated in Fig. 3.4, showing contour plots of the potential energy V α of an
individual B-atom within an A-type unit cell. In the square lattice the potential energy
exhibits a single minimum at the cell’s centre. Shearing provokes a bifurcation of
the energy landscape into two equivalent, lateral minima, which are separated by an
energy barrier. In the final state, the unit cell exhibits a rhombic shape consisting
of two equilateral triangles with local minima at their centres. The interstitial atom
selects one of these two minima, by shuffling from its former central position, where
it is then trapped by the energy barrier. Many type-B rhombi may be combined to
form a hexagonal type-B sub-lattice as shown in Fig. 3.3b. The shuffle direction is
not arbitrary, rather it is selected with respect to the shuffle of the nearest and next-
nearest A-atoms. Thus, this mechanism of shear and shuffle locally forms—within the
interaction range of atoms—a homogeneous product lattice which is characterised by
the same shear direction of unit cells and the same shuffle direction of the sub-lattices.

Since there are two shear and two shuffle directions possible in 2D, four variants of
martensite can be identified, see Fig. 3.3c. All of these four variants may nucleate on
the two principle axes of the austenitic lattice, thus making for a total of eight possible
variants with this 2D L–J model. Of these eight variants, congruent pairs exist,
which may nevertheless nucleate independently of each other at different places.
Note there is no group–subgroup relationship between our model martensite and
the austenite because the martensite develops a threefold symmetry. This leads to an
unusual situation where the crystal structure is preserved across a compatible-variant
boundary. Such twin boundaries have zero excess energy and can be located only by
reference to the parent austenite.
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It turns out that the lattice stability is dominated by the heterogeneous interaction
parameters εAB and σAB . Thus we may fix the interaction parameters of the pure
species (εAA, σAA) and (εB B , σB B) at

εAA = 1.2 ε0

εB B = 0.61 ε0

σAA = σB B = 2−1/6 σ0,

(3.4)

say. εAA > εB B means that A–A bounds are stronger than B–B bounds. For conve-
nience we use non-dimensionalised quantities and choose the values

σ0 = 10−10 m

μ0 = 58.0 × 10−27 kg

ε0 = 2.5 × 10−19 J

τ0 = 4.0 × 10−14 s

(3.5)

to eliminate length, energy, mass and time units from the model equations. The
natural unit of time τ0 = 4 × 10−14s represents the period of a harmonic oscillation
of an atom of mass μ0 about the minimum of the pair potential with parameters σ0
and ε0. With these characteristic quantities, Eq. (2.9) yields the proportionality factor
between the characteristic potential energy and the characteristic kinetic energy,
which is deviating from one,

� = ε0

μ0σ
2
0 /τ

2
0

≈ 0.69. (3.6)

The heterogeneous interaction parameters εAB and σAB are selected so as to allow
for lattice transformations in dynamical simulations. We shall rationalise the selection
of these parameters in the subsequent section, distinguishing between mechanical
and thermodynamical aspects of the lattice stability. The former refers to the ground
state of the atoms at T → 0 and thereby relates the lattice stability to the potential
energy only. The thermodynamic stability relies on the free energy, which reflects
the impact of potential energy and entropy.

We may note the choices taken in Eq. (3.4) are arbitrary and no attempt is made to
fit the pure species potentials to any real metal. Similar models was presented in [3]
and basic thermodynamic properties were investigated in [1]. Other similar models
have previously been applied, even in 3D [4–9], but there are serious difficulties
with finite size effects and, therefore, boundary conditions. In order to effectively
reduce finite size effects, we will concentrate on 2D. This makes it impossible to
directly relate our results to any specific material. For example, the lattice defects
obtained from the 2D simulations cannot be directly related to any 3D topological
defect. However, qualitative explanations of hysteresis and shape memory, as well
as continuum and crystallographic theory, can be equally well applied in 2D. It is
these more fundamental concepts that we intend to test.

http://dx.doi.org/10.1007/978-3-642-28619-3_2
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3.2 Infinite and Perfect Single Crystals

3.2.1 Harmonic Limit: Linearised Equations of Motion

The classical mechanical treatment of lattices refers to the relaxed ground state at
T → 0 and considers a harmonic analysis of the equations of motion [10–12]. We
may use this method in order to study the lattice stability as function of the hetero-
geneous interaction parameters εAB and σAB , while the homogeneous interaction
parameters are considered as given.

The ground state positions of atoms in the model austenite and martensite are
determined by relaxation of the potential energy as function of the single lattice
parameters R or r indicated in Fig. 3.3a and b, respectively. We denote the ground
state lattice sites by X0,α and define the displacements off these positions by uα(t) =
xα(t)− X0,α . The linearised equations of motion (1.22) hence read

mα üαi =
∑
β

Aαβi j uβj , (3.7)

where

Aαβi j =
(
∂2 V int

∂xαi ∂xβj

)

X0,γ

(3.8)

is a matrix set by the interaction parameters and the ground state positions.
The harmonic analysis employs Fourier transformations of the displacements in

time and space according to

uαi (t) = uαi (k j ) exp(ikl X0,α
l − iωt). (3.9)

ω denotes the frequency and kl the wave vector of a plane, harmonic wave mode
with the complex amplitude uαi . Using this ansatz, the linearised equations of motion
(3.7) furnish the following eigenvalue problem for the determination of the normal
wave modes,

N∑
β=1

(
Dαβ

i j (kl)− ω2δ
αβ
i j

)
uβj = 0, (3.10)

where Dαβ
i j (kl) = 1√

mαmβ
Aαβi j exp

(
i kl(X

0,β
l − X0,α

l )
)

denotes the dynamic matrix

and δαβi j = δi jδ
αβ is an extended Kronecker symbol with respect to space components

(i , j) and atom numbers (α,β). The lattice periodicity allows to reduce the eigenvalue
problem to the situation of two oscillating atoms which represent the Bloch basis of
austenite and martensite (Fig. 3.5), see [10]. In 2D, the eigenvalue problem hence
yields four independent eigenvalues ω2 as function of the wave vector kl . Since the
dynamic matrix is Hermitian, these eigenvalues are all real numbers. Their roots,

http://dx.doi.org/10.1007/978-3-642-28619-3_1
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Fig. 3.5 Bloch basis of austenite (a) and martensite (b). The (covariant) base vectors are
e1 = R(1, 0) and e2 = R(0, 1) for austenite and e1 = r(1, 0) and e2 = r/2(1,

√
3) for martensite.

The according reciprocal (contravariant) base vectors are e1 = 1/R(1, 0) and e2 = 1/R(0, 1) for
austenite and e1 = 1/r(1,−1/

√
3) and e2 = 1/r(0, 2/

√
3) for martensite, respectively. Compo-

nents of positions vectors refer to ei , components of wave vectors to ei

Fig. 3.6 “Phonon stability limits” of square and hexagonal L–J lattices in 2D as function of the
cross-species interaction parameters (εAB , σAB ). Other interaction parameters according to Eq. (3.4)

ω(kl), represent the dispersion relations. These are evaluated along selected direc-
tions of the wave vector kl . In the present case there are four dispersion relations,
representing two sets of branches called acoustic and optical. They are plotted for
austenite and martensite in Figs. 3.7 and 3.8 for a fixed value of the interaction para-
meter σAB = 0.6 σ0 and different values of εAB , respectively. Modes with negative
ω2 are mechanically unstable: here, the crystal can lower its energy by spontaneously
deforming according to these modes. We see in Figs. 3.7 and 3.8 that as a function
of increasing εAB we move from a regime of unstable austenite to one of unstable
martensite.

Studying the whole (εAB , σAB) parameter space reveals a region in which both
phases are mechanically stable. The result of such analysis is represented in the
stability map shown in Fig. 3.6. Inspection shows the stability limits of austenite and
martensite overlap, hence providing a distinct region in the parameter space where
either phase may exist, perhaps metastably, at zero temperature.
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Fig. 3.7 Dispersion relation ω(|k|) of stable austenite for εAB = 0.3 ε0 (left) and of unstable
austenite for εAB = 0.05 ε0 (right). The latter exhibits two unstable modes, one acoustic and one
optical one, indicated in red. The classical energy ∝ ω2(|k|) of these two modes (below diagram)
shows that the acoustic mode is unstable for all k, while the optical mode is only unstable near
the zone boundary. [10], [01] and [11] indicate the selected wave vectors in the Brillouin zone.
((σAB = 0.6 σ0, all remaining interaction parameters according to Eq. (3.4))

Fig. 3.8 Dispersion relationω(|k|) of stable martensite for εAB = 0.2 (right) and unstable marten-
site for εAB = 0.9 (left) and εAB = 0.75 (centre). [10] and [11] indicate two selected directions
in the Brillouin zone ([10] and [01] being identical). Soft modes (red) are found for high values
of εAB . The respective eigenvalues ω2(|k|) in [10] direction are shown in the diagrams included
below. ((σAB = 0.6 σ0, all remaining interaction parameters according to Eq. (3.4))

We have to recall the criterion of stable phonons is not fully equivalent to the
thermodynamic stability criterion: rather, it represents the mechanical lattice sta-
bility against spontaneous small deformations from a perfect lattice. To study the
thermodynamic phase stability at finite temperature, and thus produce a set of model
parameters which exhibits a martensitic transition, it is necessary to determine energy
and entropy independently. This is shown in the next subsection.
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3.2.2 Phase Stability of 2D Lattices

The free energy may be analytically calculated as function of the temperature from
the partition function regarding the two fundamental assumptions of Eqs. (1.44) and
(1.45), see Eq. (1.50) in Chap. 2. Here we adopt the result given by Eq. (1.50) to the
2D case and obtain the free energy of the model austenite and martensite per atom.
It reads

f(aust/mart) = e0,id
(aust/mart) + kT︸ ︷︷ ︸

u(aust/mart)

−T k

{
log T + log

2πkT

λaust/mart

}
︸ ︷︷ ︸

saust/mart

+ C(T ). (3.11)

The terms are arranged such that the contributions from the atom-specific internal
energy u and entropy s are emphasised. Here, e0,id

aust/mart = 1/2(e0,id
A + e0,id

B ) |aust/mart
denote the mean ground state energies of atoms in ideal, infinite and perfect lattices,
where any interfaces, defects and surfaces are absent. λaust/mart = √

λAλB |aust/mart
denote the mean curvatures of the respective parabolic potentials assumed for A and
B species. C(T ) denotes a constant which contains terms common to both phases.

The curvatures λA,B are determined from the according L–J potential energy
landscapes of single A- and B-type atoms in statically relaxed lattices. For illus-
tration, Fig. 3.9 visualises the equi-potential curves of a single B-type atom inside
austenitic and martensitic unit cells; the functions look similar for A-type atoms. The
anisotropic character of the potential energy in a L–J crystal is obvious. However, for
small amplitudes the approximation of this potential energy by parabolic functions
is justified. The respective curvatures λA,B are determined into the direction of the
steepest ascend of the A–B paths indicated in Fig. 3.9.

Both the ground state energies e0,id
aust/mart and the curvatures λaust/mart depend on

the L–J interaction parameters. Again we study the significance of the cross-species
interaction parameter εAB on the lattice stability and set σAB to

σAB = 0.60 σ0 (3.12)

for this purpose. And again, all the remaining interaction parameters are set accord-
ing to Eq. (3.4). The diagrams in Fig. 3.10 show the dependence of the ground
state energies e0,id

aust/mart (a) and the mean curvatures λaust/mart (b) on the single free

parameter εAB . We see that the ground state energies e0,id
aust/mart in (a) exhibit a signif-

icant dependency of εAB . For high εAB the austenite also has lower potential energy,
and so is always stable. For εAB < 0.237 martensite has lower potential energy, and
there will be a phase transition. The mean curvatures λaust and λmart, Fig. 3.10b, in
contrast exhibit negligible dependencies on εAB . We see that λmart > λaust holds for
any value εAB in the plotted interval and conclude the atoms move in softer poten-
tials in the austenite as compared to the martensite. Their ratio is approximately a
constant,

λmart/λaust ≈ 2.45. (3.13)

http://dx.doi.org/10.1007/978-3-642-28619-3_1
http://dx.doi.org/10.1007/978-3-642-28619-3_1
http://dx.doi.org/10.1007/978-3-642-28619-3_1
http://dx.doi.org/10.1007/978-3-642-28619-3_2
http://dx.doi.org/10.1007/978-3-642-28619-3_1
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Fig. 3.9 Potential energy of a B-type atom and parabolic approximation. a, b austenite, c, d
martensite. One-dimensional representations along the path 1-2 are provided in (b) and (d), where
solid lines refer to the anisotropic L–J potential energies and dashed lines to the fitted, parabolic
potentials used for the evaluation of the partition function. The situation is similar for A-type atoms

The thermodynamic phase transformation temperature is calculated from equili-
brating the free energies of austenite and martensite,

e0,id
aust − kT log

2πkT

λaust
= e0,id

mart − kT log
2πkT

λmart
. (3.14)

The resulting phase transformation temperature for transformations between the ideal
lattices is denoted by T id

E . It is given by the expression

T id
E = e0,id

aust − e0,id
mart

k log (λmart/λaust)
. (3.15)

The right-hand side of this equation depends on the one remaining independent
variable interaction parameter, εAB . Figure 3.11 depicts the dependence of T id

E on
this parameter. Inspections shows this quantity monotonically decreases with εAB

and has a root at εAB = 0.237 ε0, where the ground state energies of the two
phases are identical. Above εAB = 0.237 ε0, the material remains austenitic. Below
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Fig. 3.10 a Ground state energies e0,id
(aust,mart) = 1/2(e0,id

A + e0,id
B ) |aust/mart, b mean curvatures

λaust/mart = √
λAλB |(aust,mart) of statically relaxed (austenite, martensite) lattices versus the inter-

action parameter εAB . Other interaction parameters: εAA = 1.2ε0, εB B = 0.61 ε0, σAA = σB B =
0.89 σ0, σAB = 0.60 σ0

Fig. 3.11 Transformation temperature T id
E at the phase equilibrium of infinite and perfect austenite

and martensite lattices as a function of the interaction parameter εAB . Other interaction parameters:
εAA = 1.2ε0, εB B = 0.61 ε0, σAA = σB B = 0.89 σ0, σAB = 0.60 σ0

εAB = 0.237 ε0, martensite has a lower potential energy than the austenite and here
T-induced transformations can take place. Also indicated in Fig. 3.11 is the melt-
ing line of the infinite lattice, which is estimated on the basis of reference [13]. Its
intersection with the transformation temperature line at εAB ≈ 0.18 ε0 gives a lower
bound for the interaction parameter. Between these two limits, the transformation
temperature depends almost linearly on εAB , while the crystallographies of the model
austenite and martensite remain unaffected. MT processes may therefore be induced
by a change in the temperature at values of εAB within this range (temperature-
induced process) or alternatively, they can be induced by a variation of εAB at a fixed
temperature (energy-induced process).
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3.2.3 Entropic Stabilisation of Austenite

We have pointed out that the phase equilibrium is determined by balancing the com-
peting phase preferences of the potential energy and the entropy. Having approxi-
mately determined the free energies of the phases by statistical thermodynamics, we
are now able to interpret this mechanism from the statistical point of view.

According to Eq. (3.14), the energetic and the entropic phase preference is
expressed in terms of the potential ground state energies e0,id

aust/mart and the curva-
tures of the atomic potential λaust/mart, respectively. T-induced phase transformations
are possible if the ground state energy of martensite is more favourable than that of
austenite, e0,id

mart < e0,id
aust. We recall the effect of the potential curvature on entropy

which was discussed in the framework of statistical thermodynamics in Chap. 2. In
the 2D case, the interpretation of entropy is similar: here, the argument of the loga-
rithm (2πkT /λ) in Eqs. (3.11) and (3.14) may be interpreted as the mean area that an
individual atom may occupy at a thermal activation level determined by T . We have
seen that the model austenite provides a softer potential than the model martensite,
λmart > λaust. With reference to Eq. (3.13), the entropy difference thus reads

saust − smart = k log
λaust

λmart
= k log 2.45 (3.16)

Since λmart > λaust, the austenite has a higher entropy at identical temperatures.
Therefore, austenite is the entropically preferred phase. This result is in perfect
agreement with the requirement of the Clausius–Clapeyron Eq. (1.14) in Chap. 1.

It is possible to illustrate the atomic mobilities by MD simulations using the
original L–J potential. For this purpose, the spatial distributions of individual atoms
in austenite and martensite are measured, see Fig. 3.12. This Figure shows the atomic
positions for an individual unit cell in austenite (a) and martensite (b) detected by
a series of snapshots. The observed positions are visualised by clouds of dots about
the mean atomic lattice sites and may be statistically evaluated. Figure 3.12c shows
the respective distributions measured in this manner (indicated by dots in that sub-
figure). These may be nicely fitted by the canonical distributions regarding parabolic
potentials, i.e. distribution functions of the type exp

(−λ(x − X0)2/2kT
)
, indicated

by solid lines in Fig. 3.12c. Here, the curvature λ of the potential determines the shape
of the distribution. Accordingly, the broader distribution of the austenite (grey) is
affected by a softer curvature in comparison to the martensite (b). This observation
proves ex post facto the approximation of the atomic mean potential energies by
parabolae. In 2D, the standard deviation of this canonical distribution is

√
2kT /λ.

Hence, the terms 2πkT /λ in Eqs. (3.11) and (3.14) can be interpreted as circular
areas which the atoms may on average occupy while moving at a temperature T
within the parabolic potentials which have the curvatures λ. The larger these areas
are, the higher the entropy. We conclude that the larger specific entropy of austenite
results from a higher atomic mobilty in the lattice.

http://dx.doi.org/10.1007/978-3-642-28619-3_2
http://dx.doi.org/10.1007/978-3-642-28619-3_1
http://dx.doi.org/10.1007/978-3-642-28619-3_1
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(a) (b)

(c)

Fig. 3.12 Spatial distribution of atomic positions. a, b 10, 000 observations of an austenitic and a
martensitic unit cell. The mean shape of the cell is indicated by the drawn lines and the observed
atom positions are indicated by the clouds of dots. T ≈ .300 K. In austenite, the atoms move over
broader ranges than those in martensite. c Spatial probability distribution (1-component of position)
of the interstitial atom. Data points represent MD simulation measurements and the graphs represent
the canonical distribution functions. Black martensite. Grey austenite

3.3 Crystallographic Theory

We proceed to apply the crystallographic theory to the infinite (austenite, martensite)
single crystals in 2D. The compatibility condition of Eq. (1.1) leads to an invariant line
instead of an invariant plane. Therefore, the crystallographic equation reduces to

I + d ⊗ p = R(ϕ)B(η1, η2). (3.17)

http://dx.doi.org/10.1007/978-3-642-28619-3_1
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Fig. 3.13 Relaxed lattice parameters of austenite and martensite versus the interaction parame-
ter εAB . Other interaction parameters: εAA = 1.2ε0, εB B = 0.61ε0, σAA = σB B = 0.89σ0,
σAB = σB B = 0.60

The 2D Bain transformation B(η1, η2) is defined with respect to the coordinates
(E1,E2) which span the edges of a line-centred-square (Fig. 3.3a). Two sets of Bain
parameters can be identified, representing the two possible, fundamental shear direc-
tions, viz.

Set 1: η1 = 1√
2

r

R
, η2 =

√
3

2

r

R
. (3.18)

Set 2: η1 =
√

3

2

r

R
, η2 = 1√

2

r

R
. (3.19)

For each of these sets, Eq. (3.17) produces four analytical solutions for d, the unit
normal p and the rotation angle ϕ as functions of the Bain parameters η1 and η2, see
Table 3.1.

R and r denote the lattice parameters of austenite and martensite in the ground
state, as indicated in Fig. 3.3. Figure 3.13 shows their dependency on the interaction
parameter εAB . Here, we use the values R = 0.98 and r = 1.04, which correspond
to εAB = 0.2, and depict the eight solutions, according to the two sets of Bain
parameters from Eqs. (3.18) and (3.19), in Table 3.2. Exploiting the crystallographic
condition (1.3) now yields twin pairs. For example, solutions no. 1 and 4 of Table 3.2
may form twins, however, these pairs are trivial since they indicate simply rotations
by 180◦. More interesting are pairs between solutions 1 and 2 since these form
twins determined by opposite shear directions of their unit cells. From a strictly
crystallographic viewpoint, such pairs are incompatible since the respective habit
lines deviate by approx. 13◦, for example the solutions no. 3 and 5 of Table 3.2.

http://dx.doi.org/10.1007/978-3-642-28619-3_1
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Table 3.1 Four solutions for d, p and ϕ according to Eq. (3.17). χ =(
1 −

√
1+η1η2
η1+η2

)
/
(√
η1 − η2(η

2
2 − 1)

)
, ψ =

√
1−η2

2
η1+η2

, ω = 1+η1η2
η1+η2

No. d1 d2 p1 p2 ϕ

1 η2(η
2
2 − η2

1)χψ η1
√
η1 − η2ψ −(η1 + η2)χ −ψ/√η1 − η2 arccosω

2 η2(η
2
2 − η2

1)χψ −η1
√
η1 − η2ψ −(η1 + η2)χ ψ/

√
η1 − η2 − arccosω

3 −η2(η
2
2 − η2

1)χψ η1
√
η1 − η2ψ (η1 + η2)χ −ψ/√η1 − η2 − arccosω

4 −η2(η
2
2 − η2

1)χψ −η1
√
η1 − η2ψ (η1 + η2)χ ψ/

√
η1 − η2 arccosω

Table 3.2 Solutions of the 2D crystallographic Eq. (3.17) with respect to the two sets of Bain
parameters of Eqs. (3.18) and (3.19). R(T → 0) = 0.98 and r(T → 0) = 1.04. ϕ—relative lattice
rotation between martensite and austenite, γ—orientation of the habit line. Last column: Sketch of
the transformation. Grey austenitic squares are transformed into black martensitic rectangles. The
lattice rotations are ±15.5◦. The inclinations of the habit lines are approximately multiples of 45◦
with deviations of 13◦ between the sets

Set 1: η1 = 0.75, η2 = 1.30 Set 2: η1 = 1.293, η2 = 0.747

Solution
No.

ϕ[◦] γ [◦] Sketch Solution No. ϕ[◦] γ [◦] Sketch

1 15.5 141.5 5 15.5 231.5

2 -15.5 38.5 6 -15.5 308.5

3 -15.5 218.5 7 -15.5 128.5

4 15.5 321.5 8 15.5 51.5

However, this deviation is small and we shall later, how these pairs may dynamically
form twins in large crystals. Before these larger samples are investigated, we shall
focus attention on the thermodynamics of small, unconstraint crystallites.
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Fig. 3.14 The 41-atom crystal model considered in [1]. The finite size effect induces homogeneous
shear/shuffle transformations between five possible lattice structures: Austenite a, stable martensite
variants “m+" and “m−" and the metastable pre-martensites “pm±". The shearing is measured by
the diagonal strain ε = (l − l0)/ l0, where l0 is the diagonal length of the undeformed austenite at
a reference temperature (Video available online)

3.4 Thermo-Mechanical Properties

3.4.1 Individual Crystallites

So far, the properties of the model material were investigated by means of idealisa-
tions. Surfaces were neglected and atomic potentials were approximated by harmonic
potentials in order to derive analytical results, hence avoiding non-linearities. The
phase equilibrium was investigated by comparing thus calculated free energies of
austenite and martensite separately. In order to investigate the genuine anharmonic
model it is required to directly integrate Newton’s Equtions (1.22) by means of MD
simulations. In this section, we shall approach this method referring to a small assem-
bly of 41 atoms under free surface conditions. We shall firstly investigate the free
energy of an isolated crystallite before we proceed to investigate the properties of an
array of such crystallites (“chain”) exposed to thermo-mechanical testing. Employing
such setting we show the model is capable of complex thermo-mechanical properties
of SMA: pseudo-plasticity, pseudo-elasticity and the shape memory effect.

An individual test crystallite of 41 atoms is shown in Fig. 3.14. Owing to its
small size, the surface energy contributes to some extend to the potential energy of
the crystallite, which must be regarded when selecting the interaction parameters.
Therefore in this case, we have heuristically selected the parameters, see Table 3.3.
Note that these choices are not unique; other combinations of parameters may also
exist which lead to similar material behaviour. The non-dimensionalised time step is
set to �t = 1/100 τ0.

Owing to the small ensemble size, all atoms effectively interact with each other
in the crystallite, inducing homogeneous transformations between austenite and
selected martensite variants. Despite the surface, we may therefore interpret the
crystallite as a mesoscopic representative of a crystallographic layer that forms into
a single martensitic lamella. Therefore, out of the eight variants of martensite pos-
sible with the model material, only two homogenious variants are exhibited during
the simulations, distinguished by the shearing.

http://dx.doi.org/10.1007/978-3-642-28619-3_1
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Table 3.3 Choice of the interaction parameters for the 41-atom crystallite [1]

Interactions between A–A B–B A–B

εαβ 1.14 ε0 1.0 ε0 0.223 ε0

σαβ 0.9 σ0 0.865 σ0 0.6 σ0

Masses m A = 3.5μ0 m B = 1.0μ0

The crystallite was investigated by considering two types of tensile loading tests
referred to as displacement control and load control. In the former case, the length l
indicated in Fig. 3.14 is controlled by means of the positions of the diagonal’s corner
atoms, and their interactions with the free atoms determine the measured load signal
P . Under load control, the base atom is fixed and the top atom is vertically loaded by
the application of an external load P . The resulting diagonal length l of the crystal
is recorded. We use the strain ε = (l − l0)/ l0 to characterise the deformation, where
l0 denotes the size of unloaded austenite at a reference temperature of 300 K and
plot load/strain-curves. The dynamics of the small system causes high frequency
fluctuations in the recorded load/strain data. To facilitate a clearer representation of
the data, these fluctuations are filtered out by using low-pass filter techniques.

Typical load/strain-curves for low (100 K) and high temperatures (800 K) obtained
from such tensile tests are shown in Fig. 3.15. The strains εa = 0 and εm± ≈ ±0.22
indicate austenite and two martensitic twin variants, respectively.

Under displacement control (broken-line curves), the measured isotherms are dis-
tinct, non-monotonic functions. Both exhibit unstable branches indicated by negative
slopes. Under load control (solid lines), the unstable regions are avoided and phase
transformations occur, which are indicated by sudden strain bursts which occur at
specific critical loads. Hence monotonic load/strain-curves result during loading and
unloading, respectively.

At low temperature (100 K), austenite is unstable and the two martensitic variants
m± represent stable configurations of the small system. Figure 3.15a shows how
much load (tensile and compressive) is needed to mechanically induce a transition
from m− to m+ and back again. Note that this process is associated with a large
hysteresis.

In contrast to this, austenite is stable at high temperature (800 K). The slope of
the P(ε)-curve in Fig. 3.15b is positive for small strains of about εa = 0 and repre-
sents the shear modulus of the 2D austenite lattice. At the critical loads Pa↔m±

c (T )
indicated in Fig. 3.15b, austenite transforms to m+ and m− when loaded in tension
and compression, respectively. Note that under such loading conditions, the isolated
crystallite transforms reversibly back and forth in the load/strain-diagram without
hysteresis effects.

According to the thermodynamic stability condition of Eq. (1.10), the phase sta-
bility for an unloaded sample is determined by the minimum of the free energy. We
may calculate the free energy of the crystallite along the transition path by integrat-
ing the load/strain curve obtained in displacement control (broken lines in Fig. 3.15).

http://dx.doi.org/10.1007/978-3-642-28619-3_1
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Fig. 3.15 (Load, strain)-curves numerically measured in tensile tests with the 41-atom ensemble.
Displacement control: broken lines, load control: solid lines. a Low temperature (100 K). b High
temperature (800 K)
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Fig. 3.16 a Free energy of the 41-atom ensemble along the a↔ m± transition path for three
distinct temperatures, obtained from the measured load/strain data by integration. The constant of
integration F0(T ) is always subtracted. The slope tan γ of the common tangent determines the
transformation load Pa↔m±

c . b Transformation load Pa↔m+
c as a function of temperature

Three isotherms obtained in this manner are shown in Fig. 3.16a for the temperatures
100, 300 and 800 K. We see that the free energy curves are non-convex along the
transformation path, thus showing local minima at εa , εm± and additionally—only
for the 100 K isotherm—at εpm±. The latter indicates a pre-martensitic state which
is characterised by slight shearing of the square configuration illustrated in Fig. 3.14.

The absolute minima of these functions determine the stable configurations of
the unloaded ensemble. At low temperature (100 K), the martensitic variants pro-
vide minimal free energy at εm±. Therefore the two martensite variants are equally
stable at this temperature. From the 100 K isotherm, it is also obvious that the
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pre-martensitic configurations pm± are not stable because their respective potential
wells in Fig. 3.16a represent only local and not absolute minima.

For a temperature of ≈300 K, the free energy in Fig. 3.16a exhibits three minima
at approximately the same energy level. Thus we confirm that T = TE ≈ 300 K
represents the phase transition temperature of the unloaded ensemble. We denote
this transformation temperature of the unloaded sample by TE . For T > TE , the
absolute free energy minimum is located at εa , thus austenite is stable and any other
configuration is unstable. At this temperature, however, martensite may form if the
austenite is mechanically loaded (load-induced transformation). Two alternative for-
mulations for the phase stability criterion yield the transformation load as functions
of the temperature. These are known as the rule of “common-tangents” and the rule
of “equal-areas”; both are related to the Gibbs Equation (see Chap. 1). The small
crystllite obeys these rules.

We see that according to the “common-tangent rule”, the slope of the common
tangent at the free energy wells of austenite and one selected martensite variant deter-
mines the transformation load Pc(T ). One such tangent is indicated in Fig. 3.16a for
the transformation between a and m+ at 800 K. For this particular case, their slopes are
tan γ ≈ .0.3 which coincides well with the critical load detected under load control in
the load/strain diagram of Fig. 3.15b. In the latter diagram, the rule of “equal-areas”
may be evaluated. It refers to the two grey-shaded areas indicated above and below
the detected critical yield load. The “equal-area rule” states that at equilibrium, these
two areas must be equal in size. This is approximately true for the case discussed
here. Hence, the two alternative equilibrium conditions for the observed transforma-
tion load are consistently met. We may conclude that the observed transformation
load indeed represents the equilibrium phase transformation load between austenite
and martensite at this particular temperature. Figure 3.16b shows the temperature
dependency of the transformation load measured in this manner. We conclude that
the small, 41-atom crystallite represents a fully thermo-mechanically coupled system
and it obeys the equilibrium thermodynamics of macroscopic matter. Phenomeno-
logically the model material is capable of representing typical shape memory alloys
properties in a qualitative way.

3.4.2 Chains of Crystallites

3.4.2.1 Tensile Testing

From the thermodynamical investigation of an individual 41-atom crystallite we
know that the load/strain curves are temperature dependent, Fig. 3.15. We now con-
sider the macroscopic (collective) behaviour of many such crystallites in a 1281-
atomic “chain” ensemble formed by 32 crystals, see Fig. 3.17. The thermo-mechani-
cal behaviour of the chain is determined by the superposition of the individual crys-
tals’ load/strain functions. This procedure enables us to study the features of pseudo-
plasticity, pseudo-elasticity and the shape memory effect. Clearly, this approach

http://dx.doi.org/10.1007/978-3-642-28619-3_1
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Fig. 3.17 Thermo-mechanical processes with a chain of 32 diagonally linked crystals. Shared
corner atoms are restricted to horizontal motion. Ia, b: Martensitic twinning upon cooling at con-
stant length. IIa, b: Pseudo-plastic deformation during loading and unloading at low temperature
(de-twinning). IIb–IIIa: One-way shape memory effect: m+ → a transition induces deformation
recovery upon heating. IIIa–d: Pseudo-elastic yield and recovery of strain upon loading and unload-
ing at high temperature (Video available online)
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represents an idealisation and may be considered as a first step to bridge both the
atomic and the mesoscopic as well as the macroscopic properties of the MT. The
chain ensemble studied here is inspired by the works of Müller, Truskinovsky at al.
[14, 15]. These authors modelled elastic-plastic behaviour by considering bistable
snap springs as unit elements. In the chain model considered here, the snap springs
are metaphorically replaced by the tri-stable 41-atom crystallites.

The crystallites are linked diagonally and only interact across their corner atoms.
Consequently, long-distance interactions between atoms in adjacent crystals are not
considered and the inter-crystal interactions are reduced to points (“weak inter-crystal
interaction”). In addition to this, these corner atoms are restricted to axial movements
in order to prevent buckling.

A series of numerical tests have been carried out with the chain ensemble shown
in Fig. 3.17. Under displacement control, the corner atom at the very left of the chain
is anchored in place and the atom at the opposite end of the chain (reference atom) is
horizontally displaced. The force P is then measured as the interaction force which
is exerted by the chain on the reference atom. Under load control, an external axial
force P acts horizontally on the reference atom and the resulting chain length is
observed. To operate subject to equilibrium conditions, displacements or loads must
increase/decrease slowly. Appropriate length or load increments were heuristically
identified as�l = 0.003 and�P = 5×10−5, respectively. Between two load/strain
increments, 500 time steps are considered to allow for the model’s relaxation. The
temperature is controlled by the method of velocity scaling and relaxation, explained
in Chap. 2.

Due to the small size of our system, all recorded quantities exhibit significant,
high-frequency fluctuations superimposed on their macroscopic evolutions. In order
to monitor the tendencies of the macroscopic process variables, we average the
recorded data over small time intervals and then use a low-pass filter.

Figures 3.18, 3.19, 3.20 and 3.21 show process diagrams exhibiting thermo-
mechanical processes which are simulated using the chain. In particular, Figs. 3.18
and 3.19 show load/strain curves associated with low (Fig. 3.18) and high (Fig. 3.19)
temperature, respectively, and Figs. 3.20 and 3.21 depict strain/temperature curves
for different loading constraints. In Fig. 3.20, the strain/temperature subject to two
different constant loads are compared. Figure 3.21 shows a simulation of the shape
memory effect. Loads/displacements and temperature determine the thermodynamic
state of the chain in which individual crystals are either austenite (a) or martensite
(m+ or m−), Fig. 3.14. Thus, the internal state of the chain is characterised by the
phase fractions of austenite (Xa = Na/32) and martensite (Xm± = Nm±/32). In the
following, we discuss the details of the results.

3.4.2.2 Pseudo-Plasticity

Thermal martensite is formed below the phase transformation temperature TE , as
sketched by Fig. 3.17(Ia–Ib), during the cooling of an initially austenitic, unloaded
chain. In the weakly interacting chain, austenite–martensite transitions occur with

http://dx.doi.org/10.1007/978-3-642-28619-3_2
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Fig. 3.18 Tensile testing of
the chain with 32 crystals
under displacement control at
low temperature. T = 100 K
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Fig. 3.19 Tensile testing of
the chain with 32 crystals
under displacement control at
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the same probability for both martensite variants, therefore the product represents a
twinned chain at Xm± = 1/2. If the twinned chain is mechanically strained below
TE , Fig. 3.17(Ib), the number fraction of Xm+ for the favourably oriented marten-
site variant m+ increases. Figure 3.18 shows a load/strain diagram documenting the
response of a martensite chain to tensile straining at 100 K. The numerical experi-
ment starts at P = 0 and ε = 0. During straining, the m+ variant fraction increases
from 1/2 to 1 as the strain increases from 0 to 0.22. Sudden load drops can be clearly
recognised which represent martensite–martensite transitions from m− to m+ of
individual crystals. These can be logically explained as follows: Tensile straining
of the chain results in an increase in the measured reaction load exerted on the
reference atom. This load is macroscopically homogeneous along the chain, super-
posed by small local modulations in the vibrating system. While the overall chain
deforms under displacement control, individual crystals select their martensite vari-
ant under the influence of this modulated load. Transformations from m− to m+ are
triggered as the macroscopic load approaches the m− → m+ transition load. This
transition load can be taken from Fig. 3.15a as Pm−→m+

c ≈ 0.3. Under displacement
control of the chain, single transition events of individual crystallites induce sudden
relaxations in the measured load signal. Further straining of the chain results in a
new increase in load until one of the remaining m− crystallites reaches the criti-
cal load and consequently transforms. Eventually, as m− crystallites successively
transform into m+, a serrated shaped load-displacement curve is obtained in which
the local load peaks represent the critical transition load Pm−→m+

c of individual
martensite–martensite transitions at 100 K. This branch of the curve characterises
the de-twinning process of the chain. Since the twinned chain initially consists of 16
m+ and m− crystals each, a total of 16 m− → m+ transition events occur during
the tensile straining. It is easily envisaged that the serrations will decrease in intensity
with an increasing number of crystals in the chain such that the load-displacement
curve asymptotically approaches the grey envelope curve at infinity, indicated in
Fig. 3.18. Finally, all m− crystals have transformed and a sharp increase in the load
at ε = 0.2 indicates an elastic deformation of the chain consisting of m+ crystals.

On load reversal the m+ crystal chain elastically unloads. No variant tran-
sitions occur when the chain is fully unloaded, Fig. 3.17(IIb), because m+ and
m− variants are energetically equivalent with respect to their free energies, com-
pare to Fig. 3.16. Thus, unloading is associated with a large remaining strain which
is referred to as pseudo-plastic strain. The term pseudo-plasticity is often used to
emphasise the similarity between dislocation plasticity and the growth of favourably
oriented martensite variants. Both processes depend on critical stresses and accumu-
late large strains.

Strain controlled compression loading consequently triggers reverse transition
events which correspond to what we have elaborated for tensile loading. At a strain
ε ≈ 0.18 in Fig. 3.18, the critical load Pc ≈ −0.3 is exceeded, and thus the crys-
tals in the chain successively transform from m+ into m−. As described for the
tensile loading, this process is characterised by the serrated shape of the load/strain
branch, due to relaxation of the load accompanying single transitions events. Finally,
a full tension/compression straining cycle is obtained which is clearly represented
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by the grey envelope curve in Fig. 3.18. This is hysteretic owing to the mechanical
character of martensite–martensite transformations at low temperature as shown in
Fig. 3.15a.

3.4.2.3 Pseudo-Elasticity

We now consider the chain ensemble at temperatures of 400, 600 and 800 K where,
in the absence of an external load, austenite is stable. Displacement controlled strain-
ing now produces load/strain curves in which martensite forms on loading and fully
re-transforms on unloading, Fig. 3.17(IIIa–d). This represents a pseudo-elastic mate-
rial behaviour. In agreement with experimental data, the martensitic transformation
starts upon loading to critical loads at which the slope of the load/strain curve dras-
tically decreases. However, even in the absence of strain rate effects, our simulation
experiments do not yield a flat load plateau which may be related to the non-linear
character of the inter-crystalline forces. The temperature dependence of the chain’s
transformation load is determined by the critical load Pa↔m±

c (T )which is identified
with the individual 41-atom crystal, see Fig. 3.16b. However, while isolated crystals
undergo sudden jump-like forward/reverse transitions between austenite and marten-
site, a chain of crystals allows phase mixtures to be established and thus transforma-
tion strains can be accumulated. As the load/strain curves run through the plateau
region, the phase fraction Xm+ changes progressively from 0 to 1. On the other
hand, steep branches of the load/strain curves, indicated by Xm+ = 0 and Xm+ = 1
in Fig. 3.19, represent elastic loading of pure austenite and martensite, respectively.
Similar to the case of pseudo-plastic deformation at low temperature, austenite–
martensite transformations of individual crystals are accompanied by relaxations of
the load signal, resulting in serrations of the load/strain curves in the plateau region.
However, relaxation events are less pronounced in the pseudo-elastic case because
individual a→ m+ transitions yield smaller transformation strains than those of the
m− → m+ transitions.

Despite these serrations and other small-scale fluctuations, it is obvious from the
resulting load/strain curves in Fig. 3.19 that the loading/unloading curves show no
other deviations; most importantly, there is no hysteresis. The absence of hysteretic
effects in our MD simulations reflects the absence of internal interfaces since indi-
vidual chain crystals are limited to only weak interactions through individual points
rather than through interfaces.

3.4.2.4 Shape Memory Effect

In Fig. 3.20, we activate our chain at constant external loads of P = 0.1 and P = 0.2
and obtain characteristic strain/temperature curves. These loads affect the phase
transformations in single crystals according to Fig. 3.16b. Figure 3.20 shows this
behaviour for our chain of crystals where, upon heating and upon cooling, the con-
traction of the chain corresponds to a change of martensite phase fraction from 1 to
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0 and 0 to 1, respectively. Roughly, the cooling and heating branches again exhibit
no hysteresis. Note that, according to the load/temperature diagram of Fig. 3.16b, at
the higher load, the transition occurs at higher temperature.

The shape memory effect is modelled by the chain using a sequence of simulations
under temperature and under load control mode, Fig. 3.21. In the unloaded reference
state, the chain is fully austenitic as shown in Fig. 3.17(Ia). Upon cooling below
TE , individual crystals become unstable and transform randomly into m± to form a
twinned chain (➀ → ➁ in Fig. 3.21). Since the transformation strains caused by a→
m+ transitions are balanced by the transformation strains of the a→ m− transitions,
the total strain of the entire chain fluctuates about zero during this twinning process.
At a temperature of 100 K, the chain is fully twinned (➁ in Fig. 3.21) and exhibits a
configuration similar to that displayed in Fig. 3.17(Ib). We now switch to load control
and apply an increasing axial load at 100 K. Thus, pseudo-plastic deformation is
activated once the m− → m+ transition load is exceeded (➁ → ➂ in Fig. 3.21). At
position ➂ in Fig. 3.21, the chain is fully de-twinned and elastically loaded. Upon
unloading at 100 K, a remaining transformation strain of ≈22% results (➂ → ➃
in Fig. 3.21). This is illustrated in Fig. 3.17(IIb). Finally, this deformation can be
fully recovered by heating the unloaded chain above TE , (➃ → ➄ in Fig. 3.21).
At TE , the individual 41-atom crystal ensembles start to progressively re-transform
into austenite and the chain thus returns to its reference configuration. Thus MD
simulations of a chain of crystals can fully account for the characteristic features of
the shape memory effect.

3.4.2.5 Conclusions

The MD simulations show that binary L–J crystallites which are axially linked
together into a chain can be used to qualitatively model complex thermo-mechanical
material behaviour, even in a two-dimensional setting. The material model is capable
of logically systematising the phenomena of pseudo-plasticity, pseudo-elasticity and
the shape memory effect.

A small L–J crystal with only 41 atoms induces homogeneous transformation
strains in austenite/martensite transitions and consequently cannot be used to model
the shape memory effect associated with real microstructures. A first step towards
addressing shape memory effects in polycrystalline microstructures can be achieved
using the chain model where adjacent crystals interact through individual atomic
links. In this situation, interfacial energies are absent and the free energy landscapes
of the isolated crystals (Fig. 3.16) are preserved. The chain, consisting of appropriate
combinations of martensite and austenite crystals, represents a mixture of phases.
Complex material properties, such as pseudo-plasticity, pseudo-elasticity and the
shape memory effect, appear as collective responses to the phase mixture where
individual crystals adjust to the local thermodynamic conditions.

In this regard, the simulations using the chain imply two levels of statistical aver-
aging; microscopic and mesoscopic. Averaging on the atomistic level yields the free
energy which determines the fundamental phase stability of the individual crystals.
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Averaging on the mesoscopic level yields the load/strain/temperature function of the
entire chain. This function represents the collective response of the linked crystals
to the macroscopic loading conditions.

These two levels of averaging are usually separated. On the atomistic level, the
free energy functions are typically calculated by the methods of statistical mechanics.
On the other hand, mesoscopic models rely on phenomenological, multi-well energy
functions [14–19]. Our MD simulations give a simple example of how these two
levels of length-scale can be linked. The chain model shows that in the absence of
interfacial energy, austenite/martensite transformations are not hysteretic.

To incorporate hysteretic effects into the MD model, larger ensembles need to
be considered where microstructures can freely evolve. This situation is studied in
the sequel. However, before we proceed to explain the MD simulations in larger
finite samples, in the next section we briefly attend to the special case of infinite
single-crystalline lattices.
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Chapter 4
Lattice Transformations in 2D Crystals

In the following chapter we shall gradually extend the geometrical size of the model
assemblies in order to allow for microstructure evolutions during both thermal and
mechanical induced phase transformation processes. We shall explain how larger
test assemblies consisting of up to a quarter million atoms shall produce martensitic
domain structures and how these structures evolve during transformation/reverse
transformation cycles simulated with these assemblies. The conceptual restriction of
two spatial dimensions reallocates the computational resources in favour of the time
periods available for the simulations. This geometrical restriction also reduces the
model’s sensitivity in regard to surface effects such that free surface conditions may be
applied. Accordingly, the simulation algorithm may be kept comparatively lean and
transparent since the additional and cumbersome algorithms needed to artificially
exclude the surface—and to maintain the mandatory stress control involved—are
redundant [1–7].

4.1 Temperature-Induced Transformations

We exploit a collection of MD simulations which use finite-sized rectangular crystals
of variable size (10,000–250,000 atoms) and shape (strips, quads).

During these simulations, the initial configuration was always defined in the
austenitic phase (perfect square single crystals) and equilibrated to the free boundary
condition at high temperature. Thus prepared models were subsequently subjected
to cooling processes controlled by a thermostat. In this situation, the crystals experi-
ence temperature-induced transformations once a critical temperature is undergone,
initiating nucleation and growth processes. These processes are explained in detail
in this section.

The model parameters used in this study are documented in Table 4.1. The
computer model uses the algorithm outlined in the section presention the method
(p. 52), adjusted to the 2D setting. During the computations, we used the velocity
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Table 4.1 Model parameters used with simulations of temperature-induced martensitic transfor-
mations in larger rectangular model crystals

Interaction parameters

A–A interactions εA−A = 1.2 ε0

σA−A = 0.89 σ0

B–B interactions εB−B = 0.61 ε0

σB−B = 0.89 σ0

A–B interactions εA−B =
{

0.20 ε0 (strip-shaped assembly)

0.19 ε0 (quad-shaped assembly)

σA−B = 0.6 σ0

Other parameters
A mass mA = 1.0μ0

B mass mB = 1.0μ0

Time step �t = 0.01 τ0

Cutoff radius rc = 4.0 σ0

scaling algorithm to control the temperature. Domain decomposition was imple-
mented at cut-off radii of rc = 4.0 σ0 to distribute the computational effort over a
parallel computing grid.

4.1.1 Strip-Shaped Rectangles

The first MD simulation example represents a rectangular-shaped assembly of
32 × 288 = 9, 216 atoms (2.3 × 19 nm) with a free surface. Figure 4.1a shows
the initial shape of this strip at 400 K in the austenitic configuration, which was
stabilised prior to the simulation by means of a relaxation at this temperature. The
slight curving of the surface visible at the strip’s ends reflects the influence of the
surface tension. On stepwise quenching the strip at a steady rate (5 K/ps), martensite
nucleates at MS ≈ 150 K at the left end of the strip, from where the transfor-
mation evolves from left to right by a travelling transformation wave. During the
transformation, the temperature temporarily increases owing to the release of latent
heat; see the graph in Fig. 4.1b, prior to the thermostat compensating this effect. The
strip’s final configuration is depicted in Fig. 4.1c using a colour code to indicate the
microstructure.

The simulation resolves the evolution of MT in remarkable detail. Figure 4.1d–f
show snapshots of the strip’s central segment at the simulation times of 87.6, 88.4
and 89.6 ps, respectively. The mean axial phase speed of the transition front is ca.
2,000 m/s, which is approximately half of the speed of sound. Thus, sound waves
can propagate ahead of the transition front. An elastic precursor is observed in the
simulations, indicated by the green broken lines in Fig. 4.1d–f.
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(a) (b)

(c)

(d)

(e)

(f)

Fig. 4.1 MT in a strip-shaped assembly of 9,216 atoms. The simulation period involves 3 × 105

time steps or 120 ps on a physical time scale. a Initial configuration, showing atomic positions. c
Final configuration with four differently coloured variants. Note the imperfections in the transition
dynamics: a dislocation (imaged as a blue line, on the left) and the finite-energy, incoherent blue–
purple interface (red band). b Temperature versus time graphs (system temperature red line, set-
temperature green line). The transformation lasts for only approx. 10 ps; it is indicated by increasing
temperature due to the release of latent heat, which is later cooled by the thermostat. d–f Snapshots
of the central strip segment during the transformation. Red lines, blue broken lines and green broken
lines indicate a train of unit cells, the transformation zone and an elastic precursor, respectively.
Magnifications I and II show martensite/martensite (I) and austenite/martensite (II) interfaces (Video
available online)

The transformation front is not atomically sharp: it covers 2–3 unit cell widths
and, for this reason, a discrete habit line is not observed. Across this transforma-
tion zone the austenitic unit cells are smoothly curved into martensite such that the
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deformation gradient is continuous, see the magnification II in Fig. 4.1. Consequently,
the transformation zone may tolerate a slight lattice misfit and thereby allows for the
formation of twin variants which are not strictly compatible according to the crys-
tallographic compatibility condition of Eq. (1.3). In fact, variants from Table 3.2 that
are “almost” compatible, for example the variants 3 and 5, may be joined along their
diagonals which have identical lengths, as is shown in the magnification I in Fig. 4.1.
Hence these two variants can be combined such that the hexagonal symmetry of
the product phase across the interface is preserved. As a consequence of this, the
interfacial energy is zero. However to achieve this energetically favoured state, the
orientation of the transformation zone must rotate by approx. ±6.5◦.

Our simulations show that the transition zone may accomplish such slight rota-
tions. In the snapshot of Fig. 4.1e, its orientation is approx. 230◦, which corresponds
to the evolving formation of variant 5. The transformation process forms uniform,
mesoscopic regions of martensite which we refer to as crystallographic layers. The
layers formed by the two variants no. 3 and 5 are colour coded yellow and purple,
respectively, in Fig. 4.1c–f. The unit cells of the affected variants have different shear
directions but identical shuffle directions of their sublattices. Inspection of magnifi-
cation I in Fig. 4.1 shows that these two variants in fact form a hexagonal lattice such
that twin–twin interfaces possess zero interfacial energies; evidence of this is pro-
vided by a typical potential energy landscape plotted in Fig. 4.11a and also in Fig. 4.4.
Thus, in the 2D model, twin variants can be identified only from the deformation
history: they are indistinguishable from the perfect lattice in the bulk material.

4.1.2 Quad-Shaped Rectangles

The simulations using the strip raise concern about how the transformation process
is influenced by size and surface effects. In particular, stress in the bulk is relieved
by relaxation of the surface forming facets corresponding to each variant. To reduce
the surface effects, it is necessary to have a simulation geometry which is larger than
the typical size of martensite plates. Therefore, we conducted 2D simulations using
a 262,144-atomic quad ensemble with free surfaces shown in Fig. 4.2.

Similar to the case of the strip-shaped assembly, MT was induced by lowering
the temperature. Upon cooling towards the transition temperature, the austenitic lat-
tice shears slightly prior to MT, in order to form metastable pre-martensitic phases,
which are colour coded orange and pink in Fig. 4.2a–c. Upon quenching the austenite
below the critical transformation temperature, martensite typically nucleates at the
free surface line of the specimen where the nucleation barrier is locally lower than
that in the bulk, Fig. 4.3a. Two martensitic twin variants nucleate simultaneously
along a principal axis ([01] or [10] in 2D) by a folding of the parent phase. Two
independent nuclei are observed. Both grow axially on [01], and spread laterally.
This process brings about wedge-shaped martensite plates which are finely twinned;
see magnification area I in Fig. 4.2d. Each plate consists of compatible twin variants
which are characterised by alternating shear directions of their unit cells but exhibit

http://dx.doi.org/10.1007/978-3-642-28619-3_1
http://dx.doi.org/10.1007/978-3-642-28619-3_3


4.1 Temperature-Induced Transformations 91
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Fig. 4.2 MT in a 2D quad of 262,144 atoms. The quad has a free surface and temperature control
was used to induce MT. a–c Time resolved snapshots of the entire quad’s transformation process.
Preceding the transformation wave is the strained austenite which does not exhibit hexagonal sym-
metry. This “pre-martensite” tweed structure, which predisposes the transition to a particular variant,
is a strained austenite which does not exhibit hexagonal symmetry: atomic shuffles accompany the
strain. d Magnification area I shows the tip of the growing martensite plate. e Magnification area II
shows the nucleation of secondary plates (Video available online)

identical shuffle directions of the sublattices, forming the typical “herringbone pat-
tern”. When the martensitic wedges grow into the parent phase, strain fields are
induced in their vicinity which eventually induce secondary nucleations of marten-
site. An example is detailed in the enlargement of area II in Fig. 4.2e. Comparable
to the primary martensite plates, the secondary plates consist of compatible twin
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Fig. 4.3 Nucleation of martensite. a Nucleation sites are located at the free surface. The nucleation
begins by the parent phase folding along one crystallographic principal direction (here, [01] ) such
that a twin nucleus forms. The nucleus grows along the axis and spreads laterally by spontaneous
formation of finite-sized martensite laminates; compare with Fig. 4.2. b The laminates consist of
variants with opposite shear directions but identical shuffle directions of the sublattices. Owing to
the hexagonal variant symmetry, these can only be distinguished by their deformation history and
at the surface: they are indistinguishable in the bulk material, see oval area

variants. However, since the secondary plates nucleate on [10], no compatibility
exists with the primary plates that nucleated on [01]. Consequently, incoherent con-
tact zones are formed where the respective martensite plates come into contact. These
zones indicate martensitic domain boundaries; they are obvious in Fig. 4.2e.

Similar to the case of the strip, the plate’s growth process is represented by trav-
elling transformation zones where a regular microtwin pattern is instantaneously
formed. Once more, we observe that in 2D the twinned variants are perfectly com-
patible, which indicates that their interfacial energy is zero. Evidence is provided by
both Figs. 4.3b and 4.4, the latter depicting the potential energy field of fine-twinned
martensite domains. The enlargements of areas I and III show twinned domains
consisting of perfectly compatible variants with opposite shear directions and iden-
tical shuffle directions of the sublattices. Owing to the hexagonal symmetry of the
model martensite, the respective variants can only be distinguished by knowing the
transformation history of their unit cells, indicated by the narrow, solid lines in the
magnifications. Apart from this, the variants observed at I and III are indistinguish-
able and both have zero interfacial energy. This is confirmed by the potential energy
plot in (b). In the enlargement of area II, a line is visible along which a dislocation
moved producing plastic deformation. This locally changes the energy only at the
current position of the dislocation (green). Domain boundaries and lattice defects
are also clearly recognisable in the potential energy field. The enlargement of area
IV shows a triple junction.

The influence of the temperature level on the morphology of the martensite phase
is illustrated in Fig. 4.5. We show two configurations of the 262,144-atom rectan-
gle which were produced from identical nucleation situations but whose thermostats
were set at different temperatures (150 and 600 K). At the lower temperature, the
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(a) (b)

Fig. 4.4 Martensite twin-domains and the corresponding potential energy field. a Morphology
of the product phase obtained by temperature-induced MT. Enlargements of I–IV show detailed
close-ups (Video available online)

thermodynamic driving force is higher which enhances the nucleation of martensite.
For this reason, the product exhibits a slightly finer domain structure. A higher tem-
perature level reduces the thermodynamic driving force for nucleations and produces
a coarser domain structure. It also slows down the plate growth which, on average,
produces slightly finer martensite laminates. A layer statistics supporting this view
is presented in Fig. 4.5c.

Another example of MT in a slightly smaller quad-shaped ensemble is shown in
Fig. 4.6. Here, a 160,000-atom quad is investigated, which initially represents single
crystalline austenite. At a constant temperature of 200 K, martensitic nucleation ini-
tiates and primary nuclei are again formed at the surface. From here, the transforma-
tion proceeds into the bulk, forming the needle-like martensitic plates of compatible
twin variants discussed earlier. Figure 4.6a shows the product morphology, and (b)
the associated potential energy field. Again, martensitic domains consist of finely
twinned microstructures formed by compatible variants (see Fig. 3.3c). Once again,
the twins are perfectly compatible and do not exhibit twin/twin interfacial energies.
Location I in Fig. 4.6 shows the interface between variants having identical shear
directions but opposite shuffle directions of the sublattices (anti-phase boundary).

http://dx.doi.org/10.1007/978-3-642-28619-3_3
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Fig. 4.5 Influence of the quenching rate on the transformation morphology. a and b Show two
configurations of the 262,144-atom rectangle produced from identical nucleation situations but at
different set-temperatures of the thermostat. a Tset = 150 K, b Tset = 600 K. A higher temperature
affects a smaller thermodynamic driving force, thus the domain structure is slightly coarser while the
twin laminates are on average finer. c Shows the corresponding frequencies of the layer thicknesses
for both cases. (Colour online)

Such interfaces exhibit a substantial surplus of energy along the line where the shuf-
fle changes direction (Fig. 4.6b). Interfaces of this type are typically straight, as
indicated by the broken line in the magnification of location I. Location II in Fig. 4.6
shows the interface between the plates which nucleated on the two perpendicular
axes [01] and [10] of the austenitic lattice. Variants within each individual plate are
compatible, but different plates give rise to misfit at the boundary. The misfit pro-
duces strain energy, indicated in Fig. 4.6b, along boundaries which were dynamically
created where the growing plates came into contact. These boundaries may thus
assume an arbitrary shape. At some points along a domain boundary, the
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Fig. 4.6 Product of MT in an initial single crystal of a 160,000-atom quad. a Product morphology.
Twins are colour coded according to the magnification of location I. b Potential energy field.
Domain boundaries again possess higher surplus potential energies which significantly affect the
colour contrast. However within a single domain, the twin structure visible in a is not represented
in b (Video available online)

incompatibility gives rise to coordination defects. Location III in Fig. 4.6 shows
such a situation: the two arrows indicate deformed unit cells at (i) and a vacancy
at (ii).

We may conclude from these simulation results that MD simulations of MT in 2D
Lennard-Jones solids capture the basic transformation mechanisms using atomistic
resolutions. The sizes of our test ensemble (up to a quarter of a million atoms) appear
to be sufficient to model a domain structure and its energetic implications. Although
the model material is artificial, general ideas about MT should apply equally well to
our simulations. The simulations exhibit heterogeneous nucleations of martensitic
plates comprising of compatible twin variants. These plates grow as needles, with
the tip moving perpendicular to the habit plane. When martensitic plates encounter
one another, the variants are incompatible and the interfaces have high energy. All of
this is observed in real MT. The needle tips and the connecting boundaries between
the plates form point defects which may be identified as 2D analogues of vacancies
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Fig. 4.7 HR-TEM images of NiAl and simulated microstructure in a 2D Lennard-Jones crystal.
a HR-TEM image of martensitic morphology exhibiting various junctions between differently
oriented martensite variants. b Simulated morphology obtained by temperature-induced MT of a
large 2D test ensemble. Colours indicate 4 variants of martensite present in the model which may
nucleate on two perpendicular axes. c and d show close-ups of the HR-TEM micrograph and the
simulation result, respectively. HR-TEM images courtesy Schryvers [8]

or dislocations in 3D. The model exhibits variant diversity, as anticipated by the crys-
tallographic theory, and produces a rich transformation morphology, as observed in
real materials, e.g. NiAl: Fig. 4.7 shows a nanoscale HR-TEM image of martensitic
domains in this alloy. Martensite plates are formed by compatible twin variants. Plates
which nucleate independently (➀–➃) show incoherent, curved domain boundaries
which come into contact and generate dislocations. The domain structure yielded by
the 2D simulations looks remarkably realistic. Note that no effort was spent on para-
meterising the model with respect to a real material, thus the characteristic length
scales deviate by approximately one order of magnitude. The HR-TEM image in
subfigure (c) shows an irregular martensite-austenite boundary (broken white line).
The martensite exhibits a fine microstructure of parallel layers of twin variants (dot-
ted white lines) at thicknesses of up to a few dozen unit cell widths. Twins consist
of energetically equivalent and crystallographically compatible variants of marten-
site. Subfigure (d): Growing martensite-austenite boundary during the transformation
process that yields the morphology in (b).
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Fig. 4.8 MT in a substrate layer I. 65,536 atoms. Layer thickness approx. 90 Å. (8,4) Lennard-
Jones potential, interaction cut-off approx. 6 Å, total simulation time 4 ps. a–d Four instants during
MT. (Side-view intened, Colour online, Video available online)
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Fig. 4.9 MT in a substrate layer II. 61,440 atoms. Layer thickness approx. 70 Å. (12,6) Lennard-
Jones potential. Interaction cut-off approx. Å. a, b Two instants during MT. Simulation time 4 ps.
(Colour online, Video available online)

4.1.3 Substrate Layers

We briefly investigate the special situation of MT in a layer bound to some non-
transforming substrate. In this case, the substrate is modelled by fixing the atoms in
a surface layer such that they cannot transform into martensite during a temperature
change. In such a model, temperature-induced transformation processes evolve by
nucleation and growth is similar to the strip with free surfaces studied above, see
Figs. 4.8, 4.9, 4.10. Martensite may nucleate at the free corners of the ensemble
independently from where the transformation propagates along the substrate layer.
The three cases presented in these figures basically differ in the ensemble’s size.
We partly employed (8, 4) Lennard-Jones potential in order to study the effect of
the longer interaction ranges effected by this potential. For these cases, the cut-off
radius was accordingly adjusted to 6σ0. These modifications were applied in order to
investigate the interplay between the interaction range and the martensitic lamellae
structure produced during MT. It appears that this effect is of minor significance.
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Fig. 4.10 MT in a substrate layer III. 165,000 atoms. Layer thickness approx. 105 Å. (8,4) Lennard-
Jones potential. Interaction cut-off approx. 6 Å. a–c Three instants during MT. Total simulation
time 2 ns. (Colour online, Video available online)

The resulting morphologies do not visibly differ from those produced with (12, 6)
potentials.

In Fig. 4.8 the nucleations are stimulated such that the transformation waves prop-
agate simultaneously from both ends of the layer. (a): Preceding the MT, a tweed
pattern of pre-martensitic variants (orange and pink) is formed during cooling. (b):
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The transformation nucleates simultaneously at the free corners and grows towards
the mid-length forming twinned domains which extend through the thickness. A
finite twin structure is formed within the moving transformation zone, as observed
in the free strip. Once again, twins do not exhibit an interfacial-energy trace in the
potential energy field. (c): Eventually, the two domains come into contact. The cor-
responding accommodation process produces an intermediary grain located between
the two former grains. All domain boundaries produce distinct traces in the potential
energy plot caused by incoherencies.

Figure 4.9 depicts a similar process using a slightly thinner layer. The progress of
the transformation and the final morphology are similar to the former process. Again
we observe two domains coming into contact and forming a granular contact zone. In
Fig. 4.10, an even more extended ensemble was investigated. Here, the transformation
proceeds from right to left. With an extended layer, the substrate loses control over the
formation process, allowing inhomogeneous domains to form through the thickness.
The resulting morphology thus becomes more diverse and tends to those observed
in the simulations of bulky “quads” in Figs. 4.2, 4.3, 4.4, 4.5, 4.6, 4.7.

4.2 Transformation Dynamics and Microstructure

In 2D, twin variants are perfectly coherent without any misfit and consequently the
martensite interfaces are free of interface energy. Despite the lack of twin-boundary
energy, the model produces plausibly real microtwin structures. The microstructures
are produced before the transformation wave has reached the edge of a test ensemble,
and hence are due to a local rather than global energy minimisation.

In order to explain this, we define a small subset of NS = 54 atoms which uni-
formly transforms into single variant martensite in �ttrans ≈ 0.28 ps (700 time
steps). This small subset defines a region which undergoes coordinated transforma-
tion motion as the transformation front passes this subset. This means that this layer
can be reasonably treated as a single mesoscopic entity.

The total energy ES is the sum of the potential and the kinetic energy of the
subset’s atoms. We define the potential energy VS of the subset by

VS(t) = 1

2

NS∑
α=1

N∑
β=1,β �=α,rβα≤rc

�αβ(rβα(t)). (4.1)

Note this definition includes long-range interactions with the vicinity of the subset.
We apply the concept of separating mass centre velocities from the deviatoric

fluctuations introduced on page 22. Accordingly, we define the velocity vS of the
mass centre of the subset by
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vS =
NS∑
α=1

mα

mS
ẋα with mS =

NS∑
α=1

mα. (4.2)

This velocity produces mesoscopic kinetic energy KS of the subset, while the respec-
tive deviatoric fluctuations ẋα−vS contribute to the caloric energy NSkT ,

KS(t) = mS

2
v2

S(t) (4.3)

NSkT (t) =
NS∑
α=1

mα

2
(ẋα(t)− vS(t))

2 . (4.4)

Thus, the total energy of the subset may be represented as the sum of the internal
energy US = VS + NSkT and the mesoscopic kinetic energy of the centre of mass
KS . The energy balance for the subset reads

d

dt
(US + KS) = Q̇ + Ẇ . (4.5)

Q̇ and Ẇ represent the power of heating and the power of mechanical working
exchanged with the environment, respectively.

During the MT, the potential energy changes from the higher austenitic to the lower
martensitic level, see Fig. 4.11b. The potential energy is partly transformed into heat
NSkT and partly into kinetic energy KS . During�ttrans, the temperature level slightly
increases as a result of energy dissipation, but KS is nonzero as the transformation
wave passes. Integration of the energy balance (4.5) over �ttrans suggests that in the
local region only approx. 20% of the potential energy is transformed into heat. If
we assume the heat flux is negligible during the short transformation time �ttrans,
the majority of the released energy goes into work which is dissipated as heat over
a longer timescale.

This result may be interpreted from the viewpoint of momentum. The transforma-
tion of a single crystallographic layer produces a mesoscopic momentum which is
balanced by forces in the adjacent layers. The corresponding mechanical work—i.e.,
the flux of energy—can be identified from the energy balance as sketched above.

As a result of the hexagonal symmetry of the model martensite, microtwin inter-
faces have zero interfacial energy. This makes the model material convenient for
comparing with crystallographic and energy-minimisation theories. Our simulations
show that the martensite structure is rapidly formed in propagating transformation
zones which are subject to local rotations and are not atomically sharp. The finite
transformation zone allows variant rotation and the formation of crystallographically
incompatible twins.

The formation of martensite layers introduces momentum at the mesoscopic level,
which has to be locally compensated. It is the flux of this momentum—i.e.the local
transformation stresses—that induces counter directional movement of the adjacent
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(a) (b)

Fig. 4.11 Spatial and temporal energy graphs. a Mean potential energy along the path A–B across an
austenite–martensite interface. The fluctuations visible on either side of the transformation zone are
due to thermal and acoustic noise and do not, in general, coincide with interfaces. Most importantly,
microtwin interfaces have zero interfacial energy. b Energy–time graphs during the transformation
time of a subset of 54 atoms located in a crystallographic layer of martensite. Here, the initial and
final shape of the subset is sketched. The energy functions are plotted according to the Eqs. (4.1),
(4.3) and (4.4). (Colour online, Video available online)

layer, which in turn nucleates a variant twin. Hence, by means of a type of bidi-
rected domino effect, a microtwin patterned martensite plate can be formed. The
impact of the mesoscopic transformation kinetics on the martensitic morphology is
particularly augmented by the 2D Lennard-Jones model, but we could prove this
effect be present during MT in 3D models as well. Therefore, it may reasonably be
present in real materials too. In addition to this, 3D models and real materials exhibit
twin–twin interfacial energies which also contribute to the local energy balance. Our
simulations show, however, that the transformation kinetics indeed represent a fun-
damental mechanism for the formation of martensitic microstructure and must not
be neglected.

The microstructure is immediately created by the transformation kinetics, and then
fixed. It does not subsequently transform to minimise the energy of the entire system,
rather it is the result of local dynamics and compatibility conditions. Consequently,
the energetic condition determining the microstructure must also be a local condition.

4.3 Nucleation of Martensite

We have used the term “nucleation” in various places in this book in a deliberately
naive manner so far, referring to incidents of martensite formation within the parent
phase matrix. These incidents were judged by means of unit cell morphologies. We
have seen, in MD simulations, it is not required to stimulate nucleation events by
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Fig. 4.12 Sketch of two
different nucleation scenarios.
The dashed line illustrates the
free energy of a macroscopic
mass point as function of strain
in a slightly undercooled state
T < TE

“seeds”. Rather, nucleations are represented as specific solutions of the atomic trajec-
tories determined by the Equations of Motion in a regime of global lattice instability.
The model develops stable states similar to real materials: “natural” fluctuations of
temperature or strains probe the energy landscape and eventually detect favourable
loci where the transformation is initiated.

In unloaded samples nucleations are observed if the temperature is lowered below
the theoretically derived equilibrium temperature TE , as we have seen in the previous
sections. For several reasons, an undercooling below TE is always required: First,
because the transformation is related to quick, volumetric latent heat release which for
technical reasons cannot be compensated immediately by a thermostat, both in a
laboratory and in a computer experiment. So without undercooling, the self-heating
effect immediately inhibited the transformation. Second, because the free energy
exhibits a nucleation barrier which the lattice has to overcome. The nucleation barrier
� fB consists of an energetic barrier �u B and also an entropic barrier T�sB in
general, see Eq. (1.21) on p. 19. In lattices, nucleation barriers are often attributed to
strain energies effected by lattice misfit of adjacent phases. Such nucleation barrier
is entirely energetic and the entropic contribution is missing. However, for lattice
transformations an entropic barrier must be expected.

In Fig. 4.12 two scenarios are illustrated: If the internal energy is represented by
the dotted graph ū, then the free energy barrier � fB indicated has both an energetic
contribution �ū B and an entropic contribution −T�sB . In contrast, if the internal
energy is represented by the solid graph u, then the energetic barrier is missing—as
�u B = 0—and hence the free energy barrier is solely entropic in this case.

MD simulations help to understand the nature of the entropic nucleation barrier. To
see this we adjust the interaction parameters of our L-J model such that the energetic
nucleation barrier between the parent and product phases is missing and analyse
thermally stimulated nucleation events simulated with this specific model material.
The simulation results are presented in the following. These were elaborated as joint
work with Prof. R. Shneck, University of the Negev, Beer Sheva, Israel [9].

http://dx.doi.org/10.1007/978-3-642-28619-3_1
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Table 4.2 Model parameters
used with the nucleation
experiment

Interaction parameters

A–A interactions εA−A = 1.2 ε0

σA−A = 0.89 σ0

B–B interactions εB−B = 0.61 ε0

σB−B = 0.89 σ0

A–B interactions εA−B = 0.17 ε0

σA−B = 0.6 σ0

Other parameters
A mass mA = 1.0μ0

B mass mB = 1.0μ0

Time step �t = 0.0025 τ0

Cut-off radius rc = 3.5 σ0

4.3.1 Simulation Setup

The model crystal employed here consists of 38,016 atoms. The usual (12,6) L-J
model was used to define the atomic interactions. The interaction parameters are set
according to Table 4.2.

The initial lattice positions were defined with respect to the perfectly square
lattice and dynamically relaxed to free surface conditions at a temperature of 150 K
afterwards. The crystal is in an undercooled state at this target temperature according
to the selected parameters.—cf. Fig. 3.11 on p. 69—therefore uncontrolled lattice
transformations must be prevented during the preparative relaxation process. This
can be achieved employing a trick: we have seen that lattice transformations require
correlated atomic motions. Consequently, transformation events can be suppressed if
these correlations are disabled. Technically, discorrelations of the atomic trajectories
are effected by frequent randomisation of the atomic velocity vectors (preserving
the atomic speeds). Provided the randomisation frequency is selected properly, this
procedure allows for mechanical relaxations at the length scale of the crystal, while
nucleations are inhibited on the microscale.

At the target temperature, the lattice produced by this method is pre-martensitic.
Pre-martensite is represented by slightly sheared square unit cells as we have
explained earlier. Here we refer to it as the parent phase. Typically, pre-martensite
forms the tweed patterns observed prior to the martensitic transformation in earlier
simulations, cf. Fig. 4.2 or Fig. 4.9, for example. The velocity randomisation proce-
dure augments the natural tendency to reduce pre-martensite interfaces; therefore, the
relaxed test crystal is eventually single crystalline. In this configuration, the crystal is
fixed at two parallel surfaces, leaving the remaining two surfaces unconstrained, see
Fig. 4.13. The thermostat and the velocity randomisation algorithm are switched off.
With these preparations, martensitic nucleation events can be studied under mechan-
ically equilibrated conditions. The results are recorded at high temporal resolution,
employing a particularly short time step width of �t = 0.0025 τ0.

http://dx.doi.org/10.1007/978-3-642-28619-3_3
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Fig. 4.13 Initial configuration prepared for the nucleation computer experiment. A relaxed single
crystal is fixed on two sides in an undercooled state. Nucleations are allowed to evolve freely in
absence of any further numerical manipulation (thermostat, seeds). The principle lattice directions
are indicated by arrows

4.3.2 Simulation Result

We present the results of the computer experiment focusing attention to a time win-
dow of 10,000 time steps spanning the first two nucleation events observed in the
crystal. We refer to these as the “primary” and the “secondary” nucleation, respec-
tively. Figure 4.14 provides an overview of the process, showing four snapshots of
the total crystal at 10, 5060, 6700 and 10000 time steps. The progress is visualised
by four different representations, the morphology, the potential energy field, the tem-
perature field and the mesoscopic kinetic energy field, respectively. The progress of
these quantities is displayed by columns in Fig. 4.14. The morphology of the unit
cells (first column) is analysed with reference to the deformation of square unit cells,
defined in the parent phase. We employ the colour code depicted at the bottom to
indicate their phase affiliation as usual. The potential energy field, the temperature
and the mesoscopic kinetic energy are computed per atom by the MD program. In the
representations, unit cells are coloured with reference to bi-atomic average values
of these quantities. The atomic potential energy (second column) of an individual
atom relies on its interaction neighbourhood set by the cut-off radius rc. Neighbour-
hood atoms are enlisted in the Verlet list. The temperature (third column) and the
mesoscopic kinetic energy (last column) are computed employing the concept of
separating mean velocities from deviatoric fluctuations. This concept—introduced
on pp. 21, 22—has also been used in the last section to compute the “mesoscopic”
kinetic energy of a transforming subset of atoms. We have seen that transformation
events are indicated by locally homogeneous displacements of atoms, causing a slight
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Fig. 4.14 Nucleation experiment with a rectangular 38,016 atomic crystal. Snapshots of four
instants employing four representations each, the morphology, potential energy, temperature and
mesoscopic kinetic energy, respectively. (Side-view is intended, Video available online)
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drift of their common mass centres. Here we confine the argument in regard to the
atomic interaction neighbourhoods and define the velocities of their respective mass
centres by

vαS(t, xα) =
∑
β

rβα ≤ rc

mβ

mα
S

ẋβ with mα
S =

∑
β

rβα ≤ rc

mβ, (4.6)

where mα
S denote the masses of the interaction neighbourhoods of the individual

atomsα = 1...N . Technically, these quantities are computed on the basis of the Verlet
list which is maintained by the MD program for the calculation of the interaction
forces. Accordingly, the mesoscopic kinetic energy of any interaction neighbourhood
α = 1...N may be defined by

K α
S (t, xα) = mα

S

2

(
vαS(t)

)2
. (4.7)

This quantity represents a local measure for the homogeneity of atomic motions
at the mesoscale. The index α refers to the position of atom α, while K α

S is the
property of all atoms belonging to its neighbourhood on average. This field quantity
is visualised in the last column of Fig. 4.14. The temperature at the position of atom
α hence reads

T (t, xα) = 1

NS k

∑
β

rβα ≤ rc

mβ

2

(
ẋβ(t)− vαS(t)

)2
, (4.8)

where NS is the number of atoms located in the interaction neighbourhood. Temper-
ature refers to the velocity fluctuations about the mesoscopic velocities vαS .

The first row of Fig. 4.14—referring to 10 time steps—shows the total crystal
in the pre-martensitic parent phase. Its morphology is indicated by orange colour.
Two small strips of the pre-martensitic twin variant (pink colour at the arrow tips
of “I”) have formed. The potential energy field is homogeneous (green colour) with
faint energy marks indicating the interfaces of the twin variant strip at “I”. Respec-
tive signatures, however, are missing in the fields of temperature and mesoscopic
kinetic energy. In the temperature field, the gripping zones are reflected to the left-
and right-hand sides of the crystal, where the atoms are at rest. The second row of
Fig. 4.14—referring to 5,060 time steps—shows the instant of first visual appear-
ance of martensite at “II”. Towards this time, the twin strips at “I” evolved along the
principle lattice directions. The nucleus has a temperature signature, which indicates
release of latent heat, and also a mesoscopic kinetic energy signature, indicating a
localised martensitic transformation. The third row of Fig. 4.14—referring to 6,700
time steps—shows the instant of secondary nucleation at “III”. Towards this instant,
the primary nucleus has grown into a twin plate consisting of the two martensite
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variants indicated by green and blue colour. This plate exhibits lower potential energy
and elevated temperature owing to local release of latent heat during the ongoing
transformation. The mesoscopic kinetic energy exhibits signatures at the plate inter-
faces, where the transformation is active. The last row of Fig. 4.14—referring to
10,000 time steps—shows the secondary nucleus extended at “III” and the extended
primary nucleus extended. at “II”. The ongoing transformations exhibit clear sig-
natures in all four representations. Note to this time we first observe dark-blue the
potential energy “halos” about the growing martensite plates. These represent ele-
vated strain energy due to misfit between parent and product lattices.

4.3.3 Nucleation Centres

Figure 4.15 provides lattice enlargements of two areas containing the nucleations
observed with the computer experiment. We identify two subsets of 28 atoms each
representing the primary and the secondary nucleation centres, respectively, see
Fig. 4.16. The primary martensite plate nucleates by shear along [10], while the
secondary plate nucleates by shear along [01]. We denote the respective shear direc-
tions by si and the conjugate directions by s̄i , see Fig. 4.16c and d. Figure 4.18a
visualises the atomic displacements located in subsets 1 and 2 for 2,000 time steps
during the transformations. The displacements are represented by red-coloured line
strips indicating the traces of past atom positions. We see the transformations evolve
by lattice shear along invariant lines which are visualised by dashed lines. Atoms
located along these lines keep their positions. All other atoms are displaced pro-
portionally to their distances to the invariant lines. We see the primary nucleus is
attached to an invariant [10] line to its right. The subset atoms are gradually sheared
downwards. The secondary nucleus is intersected by an invariant [01] line. To the
left, atoms are sheared upwards and downwards to the right.

Figure 4.18b and c show the components of the atomic trajectories of the subset
atoms into the shear direction (b) and into the conjugate direction (c). These two
diagrams confirm the shear components incorporate more significant information,
than the conjugate direction. Hence we shall focus attention to the shear components.
The transformation is initiated by correlated motions of a group of atoms for a short
period of time. These correlations are required for finding and passing the transfor-
mation path which is connecting the two phases. We study the atomic trajectories in
detail to understand this event.

Figure 4.17 shows the potential energy of the three subsets as function of time.
Dropping potential energy curves indicate martensitic transformations; vertical
dashed lines indicate the onset instants: for subset 1 this occurs after ca. 4,000 time
steps and for subset 2 after ca. 6,000 time steps. Note that the progress of the potential
energies of subsets 1 and 2 do not exhibit any significant potential energy barrier! We
conclude the free energy nucleation barrier in fact is solely entropic in this material.

In the subsequent analysis we shall confine the information contained in the atomic
trajectories delivered by the MD simulation program. We gradually restrict the vibra-
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Fig. 4.15 Lattice representation of regions exhibiting nuceations. The parent phase is pre-
martensite, indicated by slightly sheared squares but missing sublattice shuffle. In contrast, marten-
site exhibits a clear and distinctive shearing and sublattice shuffling
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Fig. 4.16 Locations of the primary and secondary nucleation centre in the initial (a) and final
(b) configuration of the crystal. A third subset (not undergoing the transformation) is defined for
purpose of reference

tional modes by low-pass filtering and employ correlation methods for the sake of
clear and instructive representations. Similar methods are known in the framework
of nonlinear signal theories, see e.g. [10, 11].

4.3.4 Frequency Analysis

The frequency spectra of the vibrational atomic motions xα(t) are investigated using
discrete Fourier transformations. For this purpose, we transform the periodically
recorded trajectories into the frequency domain representation in the Fourier space.
The trajectories are recorded for T = 10,000 τ0 seconds, equally discretised into
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Fig. 4.17 Potential energies of the three subsets. Subset 1: Primary nucleation centre, subset 2:
secondary nucleation centre, reference subset 3. Lattice transformations are indicated by dropping
potential energies. There is no significant potential energy barrier visible with this model material.
The nucleation is hindered entropically

Fig. 4.18 Transformation kinematics of the primary and secondary nucleus. a Traces of atomic
displacements during 2,000 time steps. Invariant shear lines are marked by dashed lines. b Shear
direction components of motions, c conjugate direction components (Video available online)

v = 1,000 intervals of width �t = 10 τ0 seconds. We denote these discrete nodes
by xαI = xα(I�t) and calculate the spectral Fourier coefficients of atom α, denoted
by XαK ,
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XαK =
v−1∑
I=0

xαI exp (−ı ωI K ) (K = 0, 1, . . . , v − 1) = F (xαI ), (4.9)

where ωI = I 2π/v denotes the Ith discrete frequency of the Fourier spectrum. In
the present case, this spectrum is resolved by intervals of �ω = 0.157 THz. The
reverse transformation is given by

xαI = 1

v

v−1∑
K=0

XαK exp (ı ωK I ) (I = 0, 1, . . . , v − 1) = F−1(XαK ). (4.10)

(ωK = K 2π/v). It is possible to restrict the Fourier transformation (4.9) to a selected
time window (tend − tstart), chosen sufficiently large to represent the oscillatory prop-
erties of the trajectories. Such window, moved along the time axis, may be used
to screen the Fourier spectra as function of time, yielding time/frequency analy-
ses. Alternatively, the reverse Fourier transformation (4.10) may be restricted to
selected frequency ranges (ωend − ωstart), which effectively models the application
of frequency filters. In this case, the reverse transformation yields trajectories which
exhibit the properties of the selected frequency modes only. We shall use both meth-
ods in the subsequent discussion.

Low-pass frequency filtering is applied to the trajectories of atomic positions
and velocities in order to represent their tendencies. The zeroth frequencies—
representing the mean lattice sites—are always neglected in order to focus on the
vibrational properties of the low-frequency band ω2 . . . ω10. Figure 4.19 shows the
results for the primary nucleus and Fig. 4.20 for the secondary nucleus. In these
two figures the shear-direction components of positions and velocities are shown in
(a) and the conjugate components in (b). Squares of these quantities are plotted in
order to augment the differences. Both figures exhibit distinct signatures in the shear
directions, which are missing in the conjugate directions. We see within the selected
frequency range, the atomic trajectories group according to their relative position to
the invariant shear lines (Fig. 4.18a). The atom numbers indicated refer to their posi-
tions shown in Fig. 4.16 on p. 110. The onset of the transformations can be nicely
recognised. The low-passed velocity signals indicate transformation-related drifts
similar to the mesoscopic velocities of the interaction neighbourhoods discussed
above. During the transformation we observe accentuated amplitudes; the onset of
the transformations can be identified at the bases of these amplitudes, indicated by
vertical dashed lines in the figures. No significant signal is visible for the components
of the conjugate directions (b) except for some dispersion at the end of the graphs,
which is due to latent-heat-related thermal activity of the atoms.

Cross-correlation representations of the low-pass filtered trajectories of Figs. 4.19
and 4.20 may be used to identify and accentuate the degree of correlated motions
between the atoms. Here, we employ the correlation sum given in [11] as appropriate
correlation measure,
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Fig. 4.19 Low-passed atomic trajectories (top) and velocities (bottom) of the primary nucleus.
Frequency range ω2 . . . ω10. We plotted squares of these quantities in order to augment the details.
a Shear direction components, b conjugate direction components. (Colour online)

C (ε, t) = 1

N 2
S

∑
α,β

H
(
ε − ∣∣(xα(t)− xβ(t)).s

∣∣) . (4.11)

NS denotes the number of atoms in the respective subsets and H is the Heaviside
step function. The sum counts the number of position pairs which are spaced no more
than ε. Figure 4.21 shows the respective graphs for the two subsets as function of time
for given parameter ε = 0.01. The peaks indicate highly correlated atomic motions
during the transformations. Their bases indicate the onsets of the transformation
(vertical dashed lines). These define the instants of nucleation.

Next we investigate time/frequency representations of the atomic oscillations at
the nucleation centres. For this purpose, we focus attention to four selected atoms
located in the respective subsets 1, 2 and 3 and analyse the Fourier spectra during
three consecutive time windows each. The widths of these windows span v = 333
recorded time steps, see Figs. 4.22, 4.23, 4.24. In these figures, diagrams are arranged
so as to display the respective time windows by columns. The first row (a) shows
the shear-direction components of the atomic trajectories for frequencies above ω10,
representing the medium to high-frequency bands of the original data. These func-
tions incorporate correlated oscillation modes during the transformations, which for
the primary nucleus occur during 334–667 steps in Fig. 4.22 and for the secondary
nucleus during 668–1,000 steps in Fig. 4.23. We do not expect such correlation sig-
nature for the non-transforming reference subset 3 in Fig. 4.24.
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Fig. 4.20 Low-frequency range (ω2 . . . ω10) of positions (top) and velocities (bottom) of the sec-
ondary nucleus. Squares of these quantities are plotted in order to augment the details. a Shear
direction components, b conjugate direction components. (Colour online)

(a) (b)

Fig. 4.21 Correlation sums of atomic motions at the nucleation centres of the primary (a) and
the secondary (b) nucleation as calculated from Eq. (4.11). The peaks visible in the graphs indicate
highly correlated atomic motions during the transformations. The onsets base of these peaks indicate
the nucleations indicated by dashed lines. The plots are based on low-frequency filtered signals
(ω2 . . . ω10)

To detect correlated oscillation modes we employ a method similar to the auto-
correlation integral used in signal theory for extracting low-frequency signals from
high-frequency “noise”. The cross-correlation function used here reads
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(a)

(b)

(c)

Fig. 4.22 Time/frequency analysis of selected atoms located in the primary nucleus. Columns
indicate three subsequent time windows 1–333, 334–667 and 668–1,000 recorded time steps. Row
a Shear-direction component of the trajectories of four selected atoms (numbers 3, 4, 20 and 21
of subset 1, cf. Fig. 4.16 on p. 110). Unfiltered signals, corrected mean lattice positions. Row b
Four cross-correlation functions of the trajectories given in row a according to Eq. (4.12). Row c
Frequency domain representations of the cross-correlated signal shown in row b. (Colour online)

Rαβ(τ ) =
∫

t

xαi (t)x
β
j (t + τ) si s j dt. (4.12)

Note only shear-direction components (xαi si ) and (xβj s j ) of the trajectories are con-
sidered, which incorporate the transformation-related signatures, as we have seen
in Figs. 4.19 and 4.20. This integral in Eq. (4.12) correlates the trajectories of atom
α at time t to the trajectories of atom β at time t + τ . The results are shown for
selected atom pairs in the rows (b) of Figs. 4.22, 4.23, 4.24, referring to the respec-
tive time windows. Inspection of these graphs shows that the cross-correlation has
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(a)

(b)

(c)

Fig. 4.23 Time/frequency analysis of selected atoms located in the secondary nucleus. Columns
indicate three subsequent time windows 1–333, 334–667 and 668–1,000 recorded time steps. Row
a Shear-direction component of the trajectories of four selected atoms (numbers 15, 16, 26 and
27 of subset 1, cf. Fig. 4.16 on p. 110). Unfiltered signals, corrected mean lattice positions. Row b
Four cross-correlation functions of the trajectories given in row a according to Eq. (4.12). Row c
Frequency domain representations of the cross-correlated signal shown in row b. (Colour online)

eliminated high-frequency fluctuations in order to augment the medium-frequency
modes common the atom pair’s trajectories.

The last rows (c) of Figs. 4.22, 4.23, 4.24 show the frequency spectra of the cor-
related signal plotted in the rows in (b). We see that for time windows spanning the
transformation processes, the spectra exhibit significant, discrete amplitudes. This
observation confirms that the transformation events are accompanied by specific, cor-
related oscillation modes, indicated by these large amplitudes. These modes induce
the shear/shuffle motion of the atoms eventually producing martensite. Therefore,
these modes are called the “soft modes”. A soft mode is the property of a group
of atoms, rather than of a single atom. In the figures, the soft modes of the primary
nucleus (Fig. 4.22c, 334–667 steps) and the secondary nucleus (Fig. 4.23c, 334–1,000
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(a)

(b)

(c)

Fig. 4.24 Time/frequency analysis of selected atoms located in the reference subset 3. Columns
indicate three subsequent time windows 1–333, 334–667 and 668–1,000 recorded time steps. Row
a Shear-direction component of the trajectories of four selected atoms (numbers 5, 6, 20 and 23
of subset 3, cf. Fig. 4.16 on p. 110). Unfiltered signals, corrected mean lattice positions. Row b
Four cross-correlation functions of the trajectories given in row a according to Eq. (4.12). Row c
Frequency domain representations of the cross-correlated signal shown in row b. (Colour online)

steps) are indicated. Soft modes are missing in the reference subset 3 (Fig. 4.24c)
and also in the time windows of subset 1 and 2 before the nucleation events, where
the correlation of the atoms is too weak to induce a martensitic transformation. The
last time window of subset 1 ( Fig. 4.22c, 668–1,000 steps) indicates the dissipation
process of the correlated motions into random thermal vibrations at larger ampli-
tude after the transformation has finished locally. The atomic vibrations still exhibit
decaying amplitudes and the spectrum is widening, meaning higher frequency modes
are activated gradually during the dissipation process.

Figure 4.25 illustrates the normal mode spectra of the atoms in the subset 1 and
2 during the respective nucleation events by plotting the normal amplitude vectors
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at the positions of the respective atoms. In these Figures, thermal fluctuations are
represented by randomly directed arrow heads while the soft modes are indicated
by aligned vector bundles pointing into the direction of the transformation path.
Inspection shows these directions coincide with the shear/shuffle displacements of
the atoms. We see the soft modes are indicated by large amplitudes and by significant
correlation. Note that the normal mode bundles of type-A atoms (blue arrows) and
of type-B atoms (red arrows) are slightly deviating, reflecting the shuffling of the
respective sublattices during the transformation.

4.3.5 Phase Space Analysis

We have seen that the nucleation is indicated by local correlations of atomic tra-
jectories. These correlations bring about soft modes, which can be represented by
coherent, large-amplitude oscillation modes pointing into discrete directions, the
directions of the transformation paths. These paths connect the parent and product
configurations of the lattice. Different variants of martensite may be formed from
the parent lattice and accordingly, there are as many transformation paths. We pro-
ceed to explore the phase space properties of those paths selected by the two nuclei.
Because the phase space of the NS atomic subsets is 2 NS-dimensional, we have to
confine the information to scalar quantities in order to visualise it. We suggest to
employ the related potential and kinetic energies of the atoms for this purpose. We
confine this information with respect to the low-frequency band (ω2 . . . ω10) of the
shear-direction components of the atomic trajectories. Figures 4.26 and 4.27 show
the results for the two nuclei. The phase curves are parametric in time as indicated
in the diagrams. Since type-A and type-B atoms follow different energetic paths
according to the L-J interaction parameters chosen, it is useful to plot their respec-
tive phase curves into separate diagrams. We see the potential energy is lower in the
product phase for individual type-A atoms (a), while for individual type-B atoms
(b), the potential energy is lower in the parent phase. The respective mean values are
indicated by dashed lines. We see that the phase curves fluctuate about these mean
values. The fluctuations are always larger in the product phase reflecting enhanced
thermal activation due to release of the latent heat. The transformation is indicated by
branches of the phase curves which connect the respective mean lattice positions in
parent and product phase. For the primary nucleus, the respective branches fall into
the time interval of ca. 450–600 steps (cf. Fig. 4.26) and for the secondary nucleus
into the time interval of ca. 600–800 steps (cf. Fig. 4.27). Along these branches, the
kinetic energy is drastically increasing, indicating accelerations of the atoms dur-
ing the transformation. This energy is dissipated afterwards. During this transition
branches, the lattice potential energies drop (cf. Fig. 4.17 on p. 111). In order to get
this happening, the atomic trajectories must correlate in order to build up the soft
mode. In the phase space, this correlation is indicated by converging phase curves
within a narrow region indicated as “nucleation channels” in Figs. 4.26 and 4.27.
These channels represent the transformation paths in phase space. We see them more
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Fig. 4.25 Spectral analysis of the atomic motions in the primary (a) and the secondary (b) nucleus.
Arrows represent normal amplitude vectors. Soft modes are indicated by large amplitudes and
significant alignments of these vectors. Type A atoms: grey points, blue arrows; type B atoms:
black points, red arrows. Compare to Fig. 4.18 on p. 111

Fig. 4.26 Phase space representation of the primary nucleation process: kinetic energy versus
potential energy of the subset atoms. a Type-A atoms; b type-B atoms. The potential energies V α

are due to Eq. (3.2) and Eαkin = mα ẋ2
α/2, both are low-pass filtered

http://dx.doi.org/10.1007/978-3-642-28619-3_3
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Fig. 4.27 Phase space representation of the secondary nucleation process: kinetic energy versus
potential energy of the subset atoms. a Type-A atoms; b type-B atoms. The potential energies V α

are due to Eq. (3.2) and Eαkin = mα ẋ2
α/2, both are low-pass filtered. (Colour online)

distinct for the type-B atoms, cf. Figs. 4.26b and 4.27b, but they are also present for
the type-A atoms. Inspection of these two type-B diagrams shows these channels are
entered some time steps before the kinetic energy increases and the potential energy
decreases. This indicates the atomic trajectories are already correlated, before the
lattice transformation can be morphologically detected. We conclude that the corre-
lation of the atomic oscillations is a necessary condition and, in fact, is the defining
property of the nucleation process.

4.3.6 Entropic Nucleation Barrier

Based on a MD computer experiment we have investigated the nucleation processes
in the 2D model material. The test crystal was established carefully in an undercooled
and mechanically relaxed state. The interaction parameters were selected such that
at this state, no potential energy barrier is hindering the lattice transformation and
consequently the nucleation barrier is solely entropic by nature.

The nucleation processes evolve in absence of any exterior stimulation as “natural”
solutions of the equations of motion. Two nucleation events are spotted which appear
in temporal sequence, the first one close to the free surface of the crystal (primary
nucleus) and the second one in the bulk (secondary nucleus). Atomic subsets at the
nucleation centres are defined. Their trajectories are analysed in detail. We see that in
both cases, the nucleation is indicated by spontaneous correlations of the trajectories,
building up the soft modes. Soft modes therefore represent a collective property of

http://dx.doi.org/10.1007/978-3-642-28619-3_3
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the atoms at the nucleation centre. In the phase space, this process is indicated by
temporal convergence of the atomic phase curves into narrow nucleation channels.

We may interpret our findings in the framework of the probabilistic interpretation
of entropy. We have shown on p. 70 that the parent phase provides higher configura-
tional entropy and therefore, it is entropically preferred. At equilibrium it is possible
to harmonically approximate the atomic oscillations (Einstein crystal) and this holds
true for both phases, parent and product. This assumes the atomic trajectories are
completely uncorrelated such that each atom may explore its individual subvolume in
the phase space independently from the others. For the parent phase, this assumption
holds true as long as temperature is sufficiently high and the atoms are thermally
very active. In the high-T regime, thermal vibrations prevent atomic correlations on
the microscale and consequently the narrow nucleation channel in phase space is not
entered by a sufficiently large number of atoms at the same time. In an undercooled
regime, however, the thermal fluctuations are diminished. In this setting, the atomic
oscillations may gradually correlate to allow the atoms to test the potential energy
landscape collectively, eventually discovering the nucleation channel connecting the
phase space regions of parent and product lattice. Therefore, the entropic nature of
the nucleation barrier may be interpreted as the probability for a group of adjacent
atoms of finding the nucleation channel in the phase space. This must be regarded
as a rare event and therefore, the nucleation is hindered even in situations where the
potential energy does not effectively contribute to the nucleation barrier.

This explains why the crystal does not collapse spontaneously into martensite
after the simulation is started. Also, we understand why the nucleation is prefer-
ably observed at interfaces: In such places, the respective interface energy restricts
the atomic motions slightly such that parts of the phase space are inaccessible for
the atoms a priori. Therefore, finding the nucleation channel is more probable for a
group of atoms in these places, than in places where the atomic motions are unre-
stricted. Therefore, the probabilistic—entropic—nucleation barrier may be lowered
by constraints affected by interfaces.

4.4 Tensile Testing in the Pseudo-Elastic Regime

4.4.1 Simulation Procedure

The model material may be investigated by simulated tensile tests subject to load
and displacement control modes. We define two lateral gripping zones (sketched in
Fig. 4.28) at which external forces are applied as a function of time and measure the
resulting displacement of the gripping zones (load control mode). Alternatively, the
atoms located in these zones may be designated positions which change in time in
order to adjust the overall displacement. In this case, the average interaction forces
which all the remaining atoms exert on the gripped atoms are measured (displacement
control mode). No constraints are set with respect to the atoms located between the
gripping zones; these may freely adjust their trajectories to the mechanical conditions
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Fig. 4.28 Model set-up for numerical tensile tests

set by the grips and to the temperature, the latter being controlled by the method of
velocity scaling and relaxation explained on p. 42.

Sometimes it is advantageous to stabilise the gripping zones by setting the cross-
species interaction parameter εAB of the gripped atoms to a slightly higher value
compared to those of the free atoms; thus stabilising the austenite at the grips. Also,
we may restrict the translatory degree of freedom of the gripping zones. Under load
control, vertical motions of the gripping zone may be suppressed, hence modelling a
“horizontal sliding-bearing”. Under displacement control, we control the atom’s hor-
izontal positions in the gripping zone but vertical motions may be allowed in order to
reduce undesired bending moments that might build up during phase transformations
(“vertical sliding-bearing”).

Time- and length-scale issues place technical constraints for computer experi-
ments of tensile testing. Any small load increment affects the fully dynamic response
of the ensemble. The loading signal applied to the grips propagates as a stress wave
into the bulk at the speed of sound. In a complex oscillatory process, the signal is
dissipated and, after sufficient relaxation time, the atoms adjust their mean posi-
tions to the global constraints. Under adiabatic conditions, this process resulted in
an increase in temperature since part of the mechanical energy introduced into the
system by the grips is dissipated into heat. Isothermal conditions are maintained
by the applied thermostat, which removes the dissipated component of the induced
mechanical energy. An extensive investigation of the relaxation times as a function
of the system size were provided by Dreyer, Herrmann et al. [12–14] for 1D atomic
chains. For the 2D ensemble, we have to rely on heuristic analyses. In all cases,
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Table 4.3 Common simulation parameters for simulations of tensile tests
Interaction parameters

A–A interactions εA−A = 1.2 ε0

σA−A = 0.89 σ0

B–B interactions εB−B = 0.61 ε0

σB−B = 0.89 σ0

A–B interactions εA−B =
{

0.223 − 0.225 ε0 (bulk atoms)

0.35 ε0 (gripping zone)

σA−B = 0.6 σ0

Other parameters
A mass mA = 1.0μ0

B mass mB = 1.0μ0

Time step �t = 0.01 τ0

Cut-off radius rc = 4.0 σ0

Fig. 4.29 Schematic drawing of two reverse transformation mechanisms. (Colour online)

we use small loading increments and allow sufficient relaxation times, at constant
load, between two consecutive load increments in order to approximate quasi-static
conditions as best as possible.

The model material is investigated in both the pseudo-elastic regime at high tem-
perature and the pseudo-plastic regime at low temperature. The common model
parameters are given in Table 4.3. More case-specific parameters are provided in the
corresponding discussions below.

4.4.2 Load Control Mode

4.4.2.1 90,000-Atoms

We select the temperature of the thermostat to be 800 K in order to investigate
large crystals in the pseudo-elastic regime, where the assembly is austenitic in the
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Fig. 4.30 Loading–unloading–loading cycle in a pseudo-elastic 90,000-atom assembly. Load con-
trol mode. The framed areas at times t4 and t7 are detailed in Fig. 4.31 (Video available online)

unloaded state. The first sample studied is a 90,000-atom rectangular-shaped strip. It
is investigated subject to a cyclic tensile test under load control mode, see Fig. 4.30.
The diagram in Fig. 4.30 shows the evolution of the external load and the temperature
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(a) (b)

(c) (d)

Fig. 4.31 Microstructural details and potential energies. Load control mode. a, b Refer to the
framed area of Fig. 4.30(t4) and c, d to the framed area of Fig. 4.30(t7) (Video available online)

as function of time. Microstructural details are presented in Fig. 4.31. Below the
diagram of Fig. 4.30, ten snapshots of the bar assembly are shown, referring to the
times t1–t10 indicated in the diagram. We employ the same colour representation of
the morphology introduced earlier, where orange and pink represent two variants of
pre-martensite and yellow, blue, green and purple indicate the four generic variants
of martensite. As before, the unit cells are defined and mapped to the lattice in the
initial state where they form an ideal, nested square lattice. We refer to this state as
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the reference lattice. The colour coding of the martensite is due to an analysis of the
actual shapes of unit cells which are defined in the reference lattice.

Owing to the surface tension effects, the unloaded, austenitic strip exhibits a
slight bulging visible at t1. This strain and thermal activation causes the unit cells to
fluctuate about their square shapes, thus being identified with pre-martensite by the
colouring algorithm. The application of a small load causes all the unit cells (with the
exception of some near the grips) to shift into the favoured pre-martensite variant,
pink coloured at t2. Accordingly, the overall strip is slightly elongated. Upon further
loading, the MT load is reached at t3, when the first martensite nucleus is formed
at the strip’s mid-length on the lower surface. This nucleation event is immediately
followed by a second one on the upper surface. The two nuclei spread as needles
through the specimen and then proceed to grow laterally. These growth processes
allow a significant macroscopic lengthening of the strip and a temporary increase in
the temperature, owing to the release of latent heat, which is ultimately compensated
by the thermostat.

Figure 4.31a exhibits the microstructural details within the framed area, indicated
in t4, and Fig. 4.31b shows the corresponding potential energy field. Axial loading
favours the formation of the martensite variants shearing in the direction of the
load. Among the four generic martensite variants of Fig. 3.3c, two possibilities exist
having the same shear; these are coloured green and purple in Fig. 4.30, which are
distinguished by the shuffle directions of their sublattices. Both variants nucleate
spontaneously and form homogeneous martensite domains. The interface between
the domains is a single line of atoms, marked by red arrows in Fig. 4.31a. The inter-
face with the parent phase is indicated by a blue broken-dotted line in this figure. The
potential energy field in Fig. 4.31b shows that both the martensite/martensite and the
martensite/parent interfaces exhibit interfacial energies. The potential energy of the
martensite is lower than that of austenite, corresponding to the set interaction para-
meters. Again, the latter is not atomically sharp, rather it is represented by a narrow
(3–4 unit cells width) transformation zone where the lattice is smoothly bent from
one phase into the other. This observation coincides with the austenite/martensite
transformation zone observed in the temperature-induced MT simulations discussed
in Sect. 4.1 on p. 87 ff.

At t4, the loading is terminated and the strip is quickly unloaded. The load relax-
ation is accompanied by some further, momentary transformation processes (visible
at t6), after which the reverse transformation process starts (t5−7). The reverse trans-
formation is completed at time t7, when the strip has macroscopically returned to its
reference shape and the thermostat has completely compensated the thermal effects.
However, microscopically the lattice has changed.

Bhattacharya and co-workers [15] have pointed out that since the hexagonal lat-
tice does not lie in the Ericksen–Pitteri neighbourhood of the square, square-to-
hexagonal phase transformations incorporate two fundamental mechanisms for the
reverse transformation: reversible and reconstructive. These are sketched in Fig. 4.29.
In reversible transformations, nearest neighbouring atoms are maintained such that
reference austenite unit cells (black lines) maintain their shape during the reverse
transformation. In reconstructive transformations, the reference unit cells are dis-

http://dx.doi.org/10.1007/978-3-642-28619-3_3
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torted, as indicated by black lines in the lower of Fig. 4.29. However, the perfect
square lattice is locally reconstructed with the atoms having different neighbours
(red /grey lines). In the literature the terminology “lattice invariant shear” is some-
times used to describe the reconstructive retransformation. We avoid this terminology
here because the dislocations produce irreversible defects hence leaving a “varied”
lattice rather than an “invariant” one. The reconstruction produces point defects
which either glide to the surface, forming a kink, or pile up at obstacles in the bulk
material.

Both mechanisms are observed in our simulations, with a preference for the
reversible type. However, it is the reconstructive type that prohibits full microscopic
recovery to the reference lattice: reconstructive martensite/austenite (m/a) transfor-
mations involve lattice slip caused by dislocation movements. These dislocations
can be generated in the bulk during retransformation and they move along the prin-
cipal lattice directions towards the surface, at which they terminate. Along these slip
directions, the reference cells are degenerated: although there is no line defect in
reference to the original austenite, we can easily visualise the slip lines. Figure 4.31c
magnifies an area of the reversibly recovered bulk material containing a bundle of
slip lines. Along the slip lines, the square lattice is reconstructed (dotted red cells) but
the reference unit cells are degenerated (solid black cells). The slip lines terminate at
the surface where they generate kinks; this is particularly emphasised for the bundle
of slip lines visible in Fig. 4.30(t7). The dislocations which generated these slip lines
have produced a localised lattice defect with significant surplus potential energy in
Fig. 4.31d.

Since the algorithm used to produce the colour code in Fig. 4.30 is based on the
original shapes of the reference cells, the slip lines are misleadingly coloured as
martensite; however, the lattice is in fact square, as can be seen in the magnifications
of Fig. 4.31c and d.

The simulation experiment continues by repeatedly loading the strip, see
Fig. 4.30(t7−10). Upon reloading, new transformation processes preferentially nucle-
ate at the loci of the defects produced by the slip lines of the previous transformation
cycle, presumably because of local stress at those sites. For this reason, the evolution
of the second transformation significantly differs from the first because of pre-existing
nucleation sites produced by the reconstructive aspects of the m/a transformation.

4.4.2.2 262,144-Atoms

We present a second tensile test under load control mode in the pseudo-elastic regime,
using a larger assembly of 262,144 atoms, see Fig. 4.32. In the following discussion,
we refer to the times t1−4 indicated in the diagram of Fig. 4.32a. The model material
is the same as that used in the previous example.

With the 262,144-atom strip, the nucleation of martensite is observed at a nor-
malised load of 0.0325, which is kept constant between t1 and t3. In contrast to
the 90,000-atom strip, two crossing nuclei simultaneously appear forming an “X”
in the centre of the strip at t1. As with the smaller strip, the axial load induces the
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(a
)

(b
)

Fig. 4.32 Load-induced MT 262,144-atom strip. Load control mode. a Time evolutions of exter-
nally applied load and temperature. b Morphology at selected times. The two magnifications refer
to time t3. (Side-view intended, Video available online)

nucleation of horizontally sheared martensite variants (green and purple coloured),
which again form homogeneous domains. The nuclei grow laterally prior to one
of the two becoming unstable and retransforming while the other nucleus contin-
ues to grow (t2). This reorganisation forms the transformation morphology shown
in Fig. 4.32(t3). The reverse transformation is again dominated by the reversible
transformation type which is accompanied by occasional reconstructive transforma-
tions producing lattice defects. These defects have higher potential energy than the
surrounding parent phase and consequently they interfere with the ongoing trans-



4.4 Tensile Testing in the Pseudo-Elastic Regime 129

formation process. Eventually, the growth decays in a region around the defects at
the same normalised load of 0.0325. The magnification of the transformation region,
presented in Fig. 4.32, shows the morphology of this region: The martensite consists
of domains formed by the two variants at (1) and (2); it is penetrated by many previ-
ous dislocation slip lines (3). The potential energy field shows the domain structure
and emphasises the surplus energy caused by the lattice defects which are generated
by dislocations (blue spots). These may act as pinning sites for the transformation
front: to drive the transformation beyond this area, a significantly higher load (0.06)
is needed. Once the transformation zone has passed this region of defects, the MT
grows towards the strip’s ends without further obstacles (t3−4).

In the tensile test, the lattice defects produced show two different interactions
with subsequent transformations. First, they may serve as nucleation sites during
consecutive loading, and second, they may act as obstacles during the growth process.
We shall point out the consequences of these two generated lattice defects in the
following subsection.

4.4.3 Displacement Control Mode

Displacement control mode provides the opportunity for controlling the growth rate
of MT, whereas in load control mode, the transformation evolves freely once the
critical load is exceeded. Therefore, it is much easier to approximate equilibrium
conditions in simulations of tensile tests under displacement control. In this section
we discuss two consecutive load cycles with a strip-shaped 165,000-atom assembly.

The cross-species interaction parameter is εAB = 0.225 ε0 and the temperature
is set to 1,000 K so the assembly is decidedly within the pseudo-elastic regime. The
reference configuration is an austenitic rectangular single crystal (38.1 × 20.8 nm).
Two gripping zones are defined at each end of the assembly. In the potential energy
plots of Figs. 4.34 and 4.35, the gripping zones are indicated by zones of elevated
potential energy owing to the increased cross-species interaction parameter εAB

which is set to stabilise the grips. The left-hand grip is fixed and the opposite grip is
displaced horizontally; however, the atoms in this gripping zone may move vertically
to permit vertical transformation strains. Two consecutive loading/unloading cycles
are simulated, in which the initial configuration of the second cycle was provided by
the final configuration of the first.

In each load cycle, the strain is incremented by 2.62×10−6% in every 100th time
step, resulting in a comparatively slow global strain rate of 0.066/ns. The global
strain is increased by approximately 16 % during 6 million time steps and decreased
at the same rate. As an illustration of the computational effort: The simulation of
a single load cycle on 66 contemporary 2.6 GHz CPUs requires 140 hours or ca.
six days. With a workload of 2,500 atoms per node, a single time increment was
calculated in 0.042 seconds using this computer.

The global load/strain diagram for the two cycles is shown in Fig. 4.33. We use
red and blue colour codes to distinguish the first and the second load cycle, respec-
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Fig. 4.33 Tensile testing in
the pseudo-elastic regime in
displacement control mode.
165,000 atoms. Load/strain
diagram of two consecutive
load cycles. The indicated
numbers 1–3 refer to situations
shown in Figs. 4.34 and 4.35

tively. For each case, the indicated numbers 1–3 refer to situations depicted in the
illustrations of Figs. 4.34 and 4.35. We now proceed by discussing the details.

4.4.3.1 First Load Cycle

The simulation is initiated with a pristine single crystal configuration. An overall
extension of this sample provokes a reaction force in the assembly through inter-
actions between the free atoms and the gripped atoms. The slight extensions of the
assembly affect the elastic loading of the reference lattice. At a critical strain, the first
martensite nucleates. This instant is indicated by (1) in the grey load/strain curve of
Fig. 4.33. The nucleation is accompanied by a single vacancy produced by a dislo-
cation mechanism. This situation is detailed in the enlargement of Fig. 4.34(1). The
locus of the vacancy is indicated by (i) and its energy mark is faintly visible in the
potential energy plot. Along the dislocation line, visible in the morphology plot of
Fig. 4.34(1), two martensite variants grow, similar to MT under load control mode.
Once martensite has nucleated, the load signal of Fig. 4.33 drops significantly to the
level of the yield load which, in the present case, is approx. 0.1. Further extension
of the sample affects the growth of the martensite region by a shift of the habit
line—more precisely, of the transformation zone—to the right. The growth occurs
at almost constant load. Figure 4.34(2) depicts a single instant during this process.
The austenite/martensite transformation zone exhibits the characteristic interfacial
energy in the potential energy plot, which is already known from previous simu-
lations. Moreover, as observed under load control mode, the load direction selects
those martensite variants which offer a favourable shear direction. These are coloured
in green and purple in the morphology representation of Fig. 4.34. We observe that
these two variants are alternately produced along the habit line by an accumulation
process, which is not investigated here further. We see that the martensite–martensite
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interfaces involve distinct interface energies. Also, we note that these interfaces are
prone to produce lattice defects.

Subject to displacement reversal, the martensite transforms back into austenite.
In this case, the habit line moves back to where it was originally produced by the
loading. However, the corresponding recovery load level is lower than the yield load
in the load strain diagram of Fig. 4.33; on average, 1/3 of the yield load. Thus, the
unloading process gives rise to a distinct load/strain hysteresis. This behaviour is to be
contrasted with the tensile test using the pseudo-elastic chain assembly investigated
in Sect. 3.4.2 (shown in Fig. 3.19 on p. 80). This chain assembly did not exhibit
hysteresis. The most important difference between the chain and the present assembly
is that within the chain, all interface energies were artificially suppressed, while the
present tensile specimen, its microstructure and all the energetic effects involved
evolve freely. Therefore our conclusion in Sect. 3.4.2.5, which related hysteresis to
interface energy, can be retrospectively confirmed.

A small fraction of the material was plastically deformed by dislocative processes
during the loading/unloading process, producing a slight residual elongation of the
assembly. Upon complete displacement reversal, the assembly is therefore slightly
compressed. We have already pointed out (Fig. 4.31b) that the dislocation mechanism
degenerates unit cells by slip along the principle lattice axes. Accordingly, the unit
cells along these axes are misleadingly coloured as martensite by our colour algorithm
in Fig. 4.34(3).

Some of the lattice defects produced during the process remain stable in the lattice.
Owing to their higher potential energy, these defects show up as dark spots in the
potential energy plot of Fig. 4.34(3). The enlargement shows the locus of an extended
defect at (i). This defect and another, neighbouring defect (beyond the enlargement),
provide a special energetic situation that allows for some small region of remanent
martensite in the unloaded state, indicated by (ii) in the enlargement.

In sum, we see that a pristine sample exhibits a significant nucleation peak in
the load/strain diagram. The nucleation is associated with the production of vacan-
cies, and the transformation subsequently evolves by a moving transformation zone,
where martensite domains are produced and distinguished by the shuffle-direction
of sublattices. Both martensite/martensite and austenite/martensite interfaces involve
interface energy and remanent lattice defects are produced. The global load/strain
diagram is hysteretical.

4.4.3.2 Second Load Cycle

In the second load cycle, the simulation is initiated from the final configuration of the
first cycle. The global load/strain curve is depicted by the black colour in Fig. 4.33.
Black numbers 1–3 refer to situations shown in Fig. 4.35. The morphology of the
initial state is shown in Fig. 4.35(1) with respect to a redefined reference lattice
using next-neighbour analysis. Accordingly, the trace-lines of dislocations, mislead-
ingly coloured as martensite in Fig. 4.34(3), vanish. All unit cells not identified as

http://dx.doi.org/10.1007/978-3-642-28619-3_3
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Fig. 4.34 Tensile testing in the pseudo-elastic regime. Displacement control, first cycle with a
165,000-atom assembly. Labels 1–3 indicate the situations in the load/strain diagram of Fig. 4.33.
(Side-view intended)
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Fig. 4.35 Second load cycle. Labels 1–3 indicate the situations in the load/strain diagram of
Fig. 4.33. (Side-view intended, Colour online, Video available online)
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5-atomic square cells are ignored. These contain either defects, or represent remanent
martensite. In the morphology plots of Fig. 4.35, these are blanked out (white spots).

Figure 4.35(1) shows the instant at which the martensite nucleates during loading.
We observe a wedge-shaped nucleation occurring in the vicinity of a lattice defect,
marked by (ii) in the enlargement of Fig. 4.35(1). The shape of this nucleus is aug-
mented by broken lines. The respective nucleation load is smaller than that observed
with the pristine assembly, Fig. 4.33. We may thus conclude that the nucleation bar-
rier was reduced by the existing lattice defect. The nucleus quickly grows along the
[01] lattice axis and the measured load signal drops to a lower level in a similar way to
that observed in the first cycle. However, the transformation is obstructed in crossing
other defects in this area of the assembly such that the growth process is disrupted.
Similar to the 262,144-atom strip under load control discussed above, the internal
load must be increased by further extension of the sample in order for the trans-
formation to pass these obstacles. Consequently, the load/strain diagram exhibits a
secondary nucleation peak at (2). Figure 4.35(2) depicts the morphological and the
energetic situation. The enlargement shows in particular a band of austenite at (ii)
which is prevented from transforming by a barrier of defects located along the broken
line. Therefore, we see that defects may not only serve as nucleation spots but may
also cause local stress fields that inhibit an ongoing transformation.

Once the transformation zone has passed the defected area, the measured load
signal again drops to the yield load level which is slightly lower than that observed
during the first load cycle. Therefore, the second cycle exhibits the tendency towards
functional fatigue which is quantitatively similar to real materials [16].

As with the first load cycle, some amount of plastic deformation occurs dur-
ing the loading/unloading cycle. This effect is clearly visible at the surface after full
displacement reversal; see Fig. 4.35(3). Also, some small region of remanent marten-
site is indicated by the potential energy field at this time step.

To summarise, we conclude that the observed lattice defects generated by the load-
ing process affect local stress fields which may promote the formation of martensite
during nucleation. On the other hand, the defects may inhibit the growth process,
depending on the specific situation in the travelling transformation zone.

4.5 Tensile Testing in the Pseudo-Plastic Regime

In the pseudo-plastic regime, we expect to observe martensitic de twinning in simula-
tions of tensile experiments. Owing to the comparatively high martensite–martensite
transformation loads (see Fig. 3.15 on p. 76), such processes are accompanied by
significant plastic deformation, thus distinguishing pseudo-plastic (transformative)
processes from true plastic (dislocative) processes. Here, we continue by describ-
ing the simulation of such a tensile experiment under load control mode using a
160,000-atom quad.

The initial configuration used for the simulation is a poly-domain crystal produced
during a previous temperature-induced transformation process from an originally per-

http://dx.doi.org/10.1007/978-3-642-28619-3_3
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fect single crystal. The corresponding formation process was described in Sect. 4.1.2
and Fig. 4.6 on p. 95 shows the product used here as the initial configuration. The
cross-species interaction parameter is set to εAB = 0.225 ε0 and the temperature is
set to a low level of 300 K. We applied external loads to the atoms located in the
gripping zones acting in opposite directions at each end of the sample. The load was
increased by small increments of 5 × 10−4 in every 5,000th time step up to a nor-
malised maximum load of 0.1, resulting in a loading rate of 0.43N/s. In total, one
million time steps were calculated. The applied load eventually fractures the crystal.
Here we shall restrict our discussion to the aspects of (pseudo-)plasticity observed
prior the structural failure. The load/strain response is shown in Fig. 4.36a and the
subfigure (b) illustrates the process at the three time instants 0.0, 0.2 and 0.26 ns
indicated.

The fundamental difference of the present simulation with tensile tests in the
austenite is that the domain structure is initially present in the martensite. The
morphology of Fig. 4.6, which is used here as the initial configuration, exhibits a
granular structure of twinned martensite plates which grew along the two princi-
ple lattice axes [01] and [10]. The incompatibility between the martensite variants
involves incoherencies, indicated by distinct energy marks in the potential energy
plot. Particularly the energetic situation at the triple domain junctions may stabilise
remanent austenite, see Fig. 4.36(0 ns). In our tensile investigation of a small 2D
crystallite, we saw that the transformation path from one martensite variant to the
respective twin variant passes through the austenite; see Fig. 3.15 on p. 76. Therefore,
we expect the triple-junction region in the larger sample to be prone to nucleation of
the martensite–martensite transformation upon loading and focus our attention on it.
Figure 4.36 shows enlargements of this area for the three instants.

The reference state of Fig. 4.36(0 ns) shows the remanent austenite island located
in the triple domain junction at (i). The martensite domains are nicely twinned,
which is obvious from the colouring, and also depicted in the lattice representation
of Fig. 4.36(0 ns). The potential energy plot clearly exhibits the interfacial energy
located at the domain boundaries. The austenite island is represented by green shad-
ing, indicating a slightly higher potential energy than the surrounding martensite.

Subject to a horizontal load, the green and purple variants in Fig. 4.36 are
favourable and the yellow and blue variants are unfavourable. We have seen in
Sect. 4.1.2 that each domain consists of alternating variants having opposite shear
directions formed in the absence of loads. During loading, the unfavourable variants
are transformed into the favoured variants once the load exceeds a critical threshold.
This process proceeds via the intermediate formation of austenite. Figure 4.36(0.2
ns) shows an instant of this detwinning process. The process proceeds along moving
interfaces intersecting the lamellae by some angle ϕ ≈ 30◦ indicated in Fig. 4.36(0.2
ns). These interfaces are interpreted as a habit line. An individual habit line is indi-
cated by a broken line labelled “M/A” in Fig. 4.36(0.2ns). The produced phase is
immediately further transformed into a martensite variant favoured by the loading,
forming a successive habit line parallel to the first, labelled “A/M” in Fig. 4.36(0.2ns).
The distance between these two habit lines is small, approx. 10 lattice parameters in
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Fig. 4.36 Tensile loading in the pseudo-plastic regime. a Load/strain diagram. b Situations during
the loading process
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the present case. The intermediately formed phase and also the two habit lines are
nicely recognisable in the potential energy plot of Fig. 4.36(0.2ns).

Once this process has passed through a domain, the martensite consists (almost)
homogeneously of the variants favoured by the load. The initial domain structure is
somewhat dissolved, Fig. 4.36(0.26ns), because the misfit between adjacent domains
is reduced. The critical detwinning load is comparatively high, hence dislocations are
activated, giving rise to significant (true) plastic deformation in parts of the material.
In the lattice representation of Fig. 4.36(0.26ns), these parts are shaded by a pink
colour. The overall view in the upper images of Fig. 4.36b show the sample a short
time before structural failure. The plastic deformation is markedly augmented in the
corners, where the failure starts.

In Sect. 3.4.2 we have described a tensile loading process with a chain of crystal-
lites, see Fig. 3.18 on p. 80. The chain’s load/strain curve exhibits an abrupt transition
from the elastic into the transformed regime once the critical load is exceeded. In the
simulation explained here, this transition is smooth. One reason for the difference is
that in the chain, all crystallites are subject to the same load at an optimal angle and
they are only free to adjust to this load governed by the weak inter-crystal interac-
tion. In the quad assembly studied here, the martensite–martensite transformations,
in contrast, occur subject to restrictive geometrical constraints which are determined
by the domain structure, and the locally received loads are due to a complex stress
field caused by this microstructure.

To summarise, we may state that load-induced detwinning processes can be locally
resolved into domain structured martensite by the MD simulations. In this 2D model,
the transformation process involves intermediate austenite formation produced along
habit lines which cross the lamellar domains at an angle determined by the crystal-
lographic requirements. The model material is subjected to significant true plastic
deformation owing to the high level of the transformation load.

4.6 Transformation Cycles

4.6.1 Procedure

We now return to the temperature-induced transformation processes discussed in
Sect. 4.1 and investigate the reverse m/a process and transformation cycles. In the
Sect. 4.1 we have shown how MT evolves by nucleation and growth processes which
form herringbone-shaped martensite plates comprising of compatible twin variants.
Plates growing in perpendicular directions are incompatible, however, and distinct
domain boundaries are produced where such plates come into contact. The incom-
patibility of the plates produces lattice defects which we identify by atoms with
significantly higher potential energy than those within the martensite plates. Similar
processes were also observed during load-induced transformations.

http://dx.doi.org/10.1007/978-3-642-28619-3_3
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Here, we show under reverse transformation, these defects are partly eliminated
and partly remain in the lattice. Mobile defects may migrate to the surface where they
produce kinks, or they may pile up at obstacles, and similar effects were observed
during load cycles. In any case, the potential energy landscape of the reconstructed
austenite is irreversibly changed, and this change influences all the subsequent trans-
formation processes.

A series of MD simulation experiments concerning transformation cycles was
conducted to investigate this matter. Since austenite is stabilised entropically, the
characteristic relaxation time of the reverse process is significantly longer than in
its counterpart. Additionally, we have seen that the microstructure modulates the
potential energy landscape of the assembly, provoking energetic obstacles which
may delay an ongoing growth process. Both effects aggravate the assessment of phase
equilibrium states in our simulations because long observation times are required.

One method of dealing with this problem is to slightly vary the cross-species inter-
action parameter εAB so that the target phase becomes energetically more favourable.
From an orthodox point of view, this was an undesired “trick” since the interaction
parameters determine a specific material and consequently, changing the parameters,
results in changing the material. However, there is some theoretical justification for
it: We have derived, within a certain range, a linear relation between εAB and the
theoretical transformation temperature, see Fig. 3.11 (p. 69). This relation states that
variations of the transformation temperature are proportional to variations in εAB . In
addition to this, small variations of this interaction parameter do not affect the crys-
tallography of the material. Therefore, transformation processes may be induced by
temperature for fixed εAB . Alternatively, they may be induced by a slight variation
in the interaction parameter εAB at constant temperature. We refer to the latter as
energy-induced transformations. We have used both procedures in the investigation
presented in this section. In temperature-induced processes, we set εAB = 0.225 ε0
and vary the temperature within the interval of T = 200 . . . 1,500 K at rates of
2 K/fs (0.05 K/time-step). In energy-induced processes, the temperature was kept
constant at either 200 K (for austenite/martensite transitions) or at 1,200 K (for m/a
transitions) and the interaction parameter εAB then was varied at a rate of 6.25e−7
ε0/fs within an interval of εAB = 0.19 . . . 0.27 ε0.

We have conducted three transformation cycles, each consisting of five transfor-
mation/retransformation processes. Although starting from slightly different initial
conditions—the initial velocities were selected randomly with respect to the initial
temperature—all three cycles show the same morphological and energetic trends, so
the result can be regarded as reproducible. On the whole, the investigation discussed
in Sect. 4.6 involved a total of approx. 30 million time steps.

All simulations explained in this section refer to the 160,000-atom crystal investi-
gated in Sect. 4.1.2. The initial transformation process with this assembly was shown
in Fig. 4.6 on p. 95.

http://dx.doi.org/10.1007/978-3-642-28619-3_3
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4.6.2 Reverse Transformation of the 160,000-Atom Quad

We recall the two reverse transformation types introduced in Sect. 4.4, Fig. 4.29 (p.
123): reversible and reconstructive. Figure 4.37 illustrates that both mechanisms
also occur during thermally induced reverse transformations with the 160,000-atom
assembly. The top row of images in Fig. 4.37 depicts an austenitic nucleus at low T
situated at a triple martensitic domain junction. The interface between the martensite
variants contains defects visible at (ii) and these exhibit surplus potential energies
marked by the colour contrast in (c). The nucleus mainly consists of reversibly
transformed unit cells, but a localised point defect is also visible at (i).

The bottom row of images in Fig. 4.37 shows the same region after reverse m/a
transformation at high T. The majority of the unit cells transformed reversibly into
the austenite. Reconstructive transformations have occurred, e.g. in regions (iii) in
Fig. 4.37. Colours in 4.37b are assigned with respect to the deformation of the ref-
erence unit cells defined in the austenite, and hence include historical information.
Figure 4.37c shows that the ’reconstructed’ region is still perfectly austenitic with no
energy signature. Isolated energetic signatures are observed where the reconstructed
region ends (i) and at former boundary junctions of the martensite plates (ii). These
defects have both core energy and an associated strain field. For this reason, these
spots have increased the potential energy dispersed in a strain field.

Figure 4.38 shows the 160,000-atom quad after completion of the reverse trans-
formation. Frame (a) shows the morphology after redefinition of the reconstructed
square unit cells as austenite. Following this redefinition, some atoms no longer have
four nearest neighbours: these are shown as white spots in Fig. 4.38a. Inspection of
the lattice (c) and the potential energy field (b) shows that these spots mostly repre-
sent vacancies with increased potential energy shown in (d). Remote from the spots,
the potential energy fluctuates about the energy e0, id

(aust, mart) of the infinite lattice, as
indicated by broken lines in Fig. 4.38d.

4.6.3 Cyclic Transformation Processes

Hitherto, a single transformation/reverse transformation process has been consid-
ered. We now consider cyclic transformations whereby the final configuration of the
preceding transformation process is used as the initial configuration of the next cycle.
The first transformation cycle with the 160,000-atom quad is initiated from a pristine
austenite single crystal. The second cycle is initiated from the product of the first
cycle shown in Fig. 4.38.

Figure 4.39a–c shows the MT in progress during the second cycle. Similar to the
simulations of cyclic loading carried out in the pseudo-elastic regime, we observe
martensite nucleating at defects which were produced during the previous transfor-
mation cycle. These defects are located along the broken line indicated in Fig. 4.39
and were preserved during the reverse transformation. Nuclei grow on either side



140 4 Lattice Transformations in 2D Crystals

Fig. 4.37 Local detail of the reverse transformation in the 160,000-atom quad. Top row 100 K,
bottom row 1,500 K. Columns: a lattice, b unit cell morphologies, with colours determined from
the arrangement of the atoms which were nearest neighbours in the original austenite (c) potential
energy field. (Side-view intended, Video available online)
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Fig. 4.38 Product of the reverse transformation. a Morphology, b potential energy, c magnification
of defect region, d potential energy across defect along path 1–2. (Side-view intended, colour online,
video available online)

of this defect line, forming new, differently oriented martensite plates. Also, new
domain boundaries are formed where these new plates interact, indicated by (i) in
Fig. 4.39c.

Thus the defect structure present in the austenite influences the nucleation and
growth process of the subsequent martensite. This observation is confirmed by further
transformation cycles; see Fig. 4.40 for a tableau of morphologies obtained by five
subsequent forward/reverse transformation processes using the 160,000-atom quad.
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Fig. 4.39 Second transformation cycle: nucleation of martensite at T = 200 K, εAB = 0.22. The
broken line indicates the previously formed martensitic domain boundary

The domain character of the martensite is clearly visible in the morphological rep-
resentation and also by the surplus energy mark of the domain boundaries. Domains
are produced during the first MT. Upon reverse transformation, some defects are
eliminated, some migrate to the surface and still others remain immobile during
the reverse transformation and serve as nucleation sites for subsequent MT, hence
influencing the new domain structure. This mechanism accounts for an accumulation
of defects along lines and eventually imprints a domain structure into the austenite
which is reinforced by successive cycles.

The total potential energy of the specimen changes as defects accumulate.
Table 4.4 gives the results of three independent cycle series. Each cycle started from
a perfect, single crystalline quad. In two series, the transformations are induced by
slowly changing the interaction parameter εAB at constant temperatures; 200 and
1,200 K for the MT and its reverse transformation, respectively. The third series
was conducted completely in temperature control mode. To guarantee completion of
all the transformation processes, the mean potential energy was normally measured
for εAB = 0.25 . . . 0.27 and for εAB = 0.19 during the reverse transformations
and the converse process, respectively. Next, the energies were rescaled to a single,
intermediate value of εAB = 0.225 using the constant factors for ideal lattices from
Fig. 3.10a. Finally Eq. (1.48) on p. 27 is used to calculate the ground state energy. In
2D this equation reads

e0
(aust, mart) = V int

(aust, mart)(xγ (t))

N
− kT . (4.13)

http://dx.doi.org/10.1007/978-3-642-28619-3_3
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Fig. 4.40 Five cyclic martensitic/austenitic transformations. (Side-view intended)
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Table 4.4 Mean ground state energies measured in three cyclic transformation series with the
160,000-atom quad

AB interaction- e0
(aust, mart) #cycle

Series parameter I II II IV V

Austenite, × ε0

1 εAB = 0.27 −2.033 −2.031 −2.028 −2.020 −2.015
2 εAB = 0.27 −2.031 −2.025 −2.019 −2.024 −2.023
3 εAB = 0.25 −2.009 −1.999 −1.996 −1.997 −1.994

Trend εAB = 0.225 −1.969 −1.963 −1.959 −1.958 −1.955
Martensite, × ε0

1 εAB = 0.19 −1.970 −1.960 −1.964 −1.966 −1.962
2 εAB = 0.19 −1.959 −1.960 −1.964 −1.974 —
3 εAB = 0.19 −1.975 −1.976 −1.975 −1.977 −1.98

Trend εAB = 0.225 −1.972 −1.969 −1.971 −1.976 −1.973

Fig. 4.41 Mean atomic potential energies of the 160,000-atom quad as a function of the cycle
number calculated with εAB = 0.225. The difference between AI and e0,id

aust shows the contribution
from the surface. Solid red and blue curves: trend lines of austenite and martensite, respectively,
according to Table 4.4. Broken red and blue lines: ground state energies of the respective perfect
lattices

These specific energies are given in Table 4.4.
Each of the three cycle series produces a different defect morphology, but they

exhibit a similar energy trend (Table 4.4 and Fig. 4.41). The respective specific ground
state energies e0,id

(aust, mart) of the infinite and perfect lattices of Sect. 3.2 are also
included in Fig. 4.41 by the broken lines. These lines are lower because the MD
simulation data include the defects and surfaces excluded in Sect. 3.2. The mean
surplus energies due to defects and surfaces may hence be defined by

�e0
(aust, mart) = e0

(aust, mart) − e0,id
(aust, mart). (4.14)

http://dx.doi.org/10.1007/978-3-642-28619-3_3
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4.7 Hysteresis and Functional Fatigue

4.7.1 Thermodynamic Hysteresis

The results of Table 4.4 may be interpreted as the cause of hysteresis in the ther-
modynamic model. The guiding idea is that the surplus energies �e0

(aust, mart) shift
the phase equilibrium condition (3.14), while we ignore the entropic effect of the
lattice defects. For the transformation between imperfect structures, the ground state
energies in Eq. (3.14) are replaced by the estimated ground state energies of the
microstructured lattices, giving

T = e0
aust − e0

mart

kB ln
(
λmart
λaust

)
︸ ︷︷ ︸

Tid

+ �e0
aust −�e0

mart

kB ln
(
λmart
λaust

)
︸ ︷︷ ︸

�T

. (4.15)

Here, �T denotes the shift of the transformation temperature due to the defect
energies within the microstructure.

In the following, we consider a sequence of simulations where all transfor-
mations were entirely induced by temperature at a fixed interaction parameter
εAB = 0.225 ε0. For this case, the potential energies of the defective states are given in
Fig. 4.41, indicated by AI…V and MI…V for austenite and martensite, respectively.
In the pristine quad, the atoms have a mean potential energy of AI. Transformation
causes a reduction in potential energy to that of the defective martensite. The ther-
modynamic transformation temperature of that process, TAI→MI, can be calculated
from Eq. (4.15) as

TAI→MI = 59.8 K. (4.16)

The reverse transformation generates the defective austenite state AII, which has
a higher potential energy than the AI state. The reverse transformation temperature
is then higher TMI→AII

TMI→AII = 166.8 K. (4.17)

Hence, according to thermodynamics, the AI → MI → AII transformation cycle
of the model has a temperature hysteresis of 107 K. Note that in the first cycle,
the transformation temperature Tid of the infinite and perfect lattice is above both
TAI→MI and TMI→AII

Tid = 177.0 K. (4.18)

http://dx.doi.org/10.1007/978-3-642-28619-3_3
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Fig. 4.42 Transformation
temperatures of the 160,000-
atom quad as a function
of the cycle number. The
hysteresis-free transformation
temperature of infinite and
perfect lattices (Sect. 3.2.2) is
indicated by the broken line

4.7.2 Functional Fatigue

We need not stop here: going to the next MT of cycle II, the transformation tem-
perature TAII→MII depends on the potential energies of states AII and MII and the
subsequent reverse transformation by the states MII and AIII. Continuing to the last
cycle, the respective transformation temperatures of MT and the reverse transforma-
tion are plotted in Fig. 4.42. Inspection shows that during the first four cycles, both
transformation temperatures increase beyond the transformation temperature of the
infinite lattice Tid. The width of the hysteresis decreases during the first four cycles,
with some evidence of defect saturation by the fifth cycle. Both transformation tem-
peratures shift upward as a result of the evolution of the defect structure in austenite
and martensite.

The cycling was continued beyond the fifth cycle; however, the quad hardens and
begins to fracture: necking of the sample is already visible in the last cycle in Fig. 4.40.
We regard this as a finite-size effect of the 160,000-atom quad but larger calculations
would have to be compromised by shorter simulation times, i.e. unrealistically fast
cooling rates. In this regard, the chosen assembly size is a compromise.

4.7.3 Predicted and Observed Hysteresis

The hysteresis predicted in Fig. 4.42 is based on an integral energy balance of the
160,000-atom crystal. This implies the idea of a homogeneous "mean field" defect
energy. Figure 4.39 in Sect. 4.6.3 on the other hand has illustrated the impact of
defects on nucleation, which shows that local conditions are important. The question
is whether the local picture of the transformation evolution complies with the global
prediction?

The answer is “almost”. Figure 4.43 shows the evolution of the austenite fraction
of the 160,000-atom quad as function of temperature upon heating and cooling within

http://dx.doi.org/10.1007/978-3-642-28619-3_3
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Fig. 4.43 Temperature controlled transformation process of a defect-infected crystal,
austenite→martensite upon cooling and martensite→austenite at two distinct temperature rates.
For these simulations the cross-species interaction parameter εAB = 0.225 was set constant. Each
atom is designated as austenite, martensite or defective according to how well its local coordina-
tion matches the reference structures (Fig. 3.3). As a consequence, the defects reduce the maximum
austenite fraction below 100%. We associate the MA transition with the first appearance of austenite
("Austenite start")

the range 100...1,500 K. Cooling and heating processes were started from identical
austenitic and martensitic initial configurations, respectively. These were chosen
from previous second cycle simulations in order to provide defective lattices.

Two different cooling/heating rates were imposed, but the simulations show little
difference between the respective curves. Figure 4.43 shows that the AM transforma-
tion occurs quickly upon cooling below 500 K. The MA transformation is sluggish
in comparison and remains incomplete for the two chosen temperature rates. The
reason for these distinct transformation behaviours is that AM transformations are
driven by the potential energy while MA transformations are driven by the entropy.
Entropically controlled transformations involve stochastic processes on the atomic
scale and therefore exhibit comparatively long relaxation times.

If taken from the first appearance of the product phase (the so-called martensite
start and austenite start temperatures), the temperature hysteresis for this particular
transformation cycle is approx. 100 K. With this crystal, this hysteresis width appears
to be consistent with the prediction of Fig. 4.42; however, the predicted transforma-
tion start-temperatures do not match.

The simulations show that the transformation produces distinct microstructures
and generates lattice defects. These affect subsequent transformations and vary the
potential energy landscape of the sample. If the sample is cycled through a series
of forward/reverse transformations, the number of defects in each phase accumu-
lates. Defects act as nucleation sources for the transition. Moreover, the location of
the defects can be preserved through the cycling, providing a memory of previous
structures. Eventually, sufficient damage accumulates the material fractures.

We have identified two possible retransformation mechanisms, a reversible and
a reconstructive type. Reversible m/a transformations preserve reference unit cells,

http://dx.doi.org/10.1007/978-3-642-28619-3_3
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while the reconstructive type involve dislocation movements and plastic deformation.
Both types re-establish the square lattice structure. The simulations show that the
model material has a preference for the reversible m/a transformations. However, the
reconstructive type plays an important role because it generates lattice defects and
surface roughening. These prevent the lattice from returning to its pristine state. We
show that permanent damage accumulates from plate boundaries in the martensite,
which persists through cycling and causes functional fatigue. This damage suggests
a natural source of the “memory” and role of “training” in the reverse shape memory
effect, and a thermodynamic contribution to hysteresis.

Similar behaviour was also observed for load-induced MT processes in the pre-
vious section. In the pseudo-elastic regime, axial loading selects the production of
variants favoured by the load direction. Our 2D model provides two possible generic
variants which are distinguishable by the shuffle directions of sublattices. Owing to
these two possibilities, even load-induced MT produces domain structures during
nucleation-and-growth processes. In the pseudo-elastic regime, unloading provokes
reverse m/a transformations. Defects produced in a loading/unloading cycle can act
as nucleation sites for subsequent loading. The nucleation barrier in pseudo-elastic
load/strain curve is thereby lowered in subsequent cycles. In any case, the pseudo-
elastic load/strain curve is hysteretic.

Our thermodynamic theory, developed for thermal hysteresis, is based on the
expected defect state of the transformed material, and is broadly compatible with
the simulation results. The thermodynamically predicted transition temperature
increases with cycling, implying that the defect energy in the austenite increases
faster than that in the martensite. Experiments with SMA show that upon thermal
cycling, the transformation temperature may indeed increase, but the opposite effect
is also observed, depending on the transformation history. However, the nature of
the defects observed in 2D may bear little resemblance to those seen in 3D.

Our thermodynamic condition involves global energies, whereas the transforma-
tion is nucleated locally, typically at defects. Further study is required to define and
measure the local thermodynamic transformation conditions which are similar to
classical nucleation theory.

In conclusion, we have used MD to investigate some fundamental principles of
cycling m/a transitions. We show that permanent damage accumulates from plate
boundaries in the martensite, which persists through cycling and causes functional
fatigue. This damage suggests a natural source for the “memory” and role of “train-
ing” in the reverse shape memory effect, and a thermodynamic contribution to hys-
teresis.
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Chapter 5
Lattice Transformations in 3D Crystals

We discuss two simulation examples concerning transformations in 3D lattices,
intended as appendix to the investigations of the 2D case presented in the previ-
ous chapter. The two examples concern a 3D Lennard–Jones material and an EAM
model for zirconium. We follow this work’s paradigm of not artificially constraining
the model’s surfaces in order to allow the transformation to freely evolve; including
the resulting surface effects. Compared to the 2D case, a 3D model geometrically
augments the impact of these surfaces: Assuming square and cubic assemblies in 2D
and 3D with N2D and N3D atoms respectively, the fraction of surface atoms is approx-
imately 4

√
N2D/N2D in the 2D and 6 3

√
N3D

2
/N3D in the 3D case. These fractions

are equal for N3D = 27/8N 3/2
2D . Our 2D studies have revealed that with model sizes

of 105 atoms, surfaces may influence the nucleation, but not the microstructure’s for-
mation in the bulk material. Using the above calculation, this figure translates into a
3D model size with 108 atoms. A five million 3D crystal therefore is “small” in regard
to the surface influence, while in 2D, a quarter million atom crystal is “large”. Com-
putational resources limit our 3D models to sizes of a few million atoms, although
the impact of the surface is still tangible with such sizes.

5.1 3D Lennard–Jones Crystals

5.1.1 Model Material

In a 3D Lennard–Jones crystal, we may employ the same (12, 6) Lennard–Jones
potentials as with the 2D of Eq. (3.1) but with a different set of interaction parameters
εαβ and σαβ . We may adjust these order parameters with respect to the correspond-
ing nearest-neighbour separations in a B2 unit cell1 via the lattice parameter R

1 B2 denotes nested cubic sublattices of two atom species, where the species mutually provide the
interstitials for each other’s cubic cells, hence producing a heterogeneous bcc structure.
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Table 5.1 Model parameters used with the 3D Lennard–Jones model
Characteristic quantities

ε0 = 6.15 × 10−19 J
σ0 = 2.42 × 10−10 m
μ0 = 58.69 × 10−27 kg

Eq. (2.7) τ0 = 6.21 × 10−14 s
Eq. (2.9) � = 0.69

Interaction parameters
A–A interactions εAA = 1.0 ε0

σAA = 0.89 σ0

B–B interactions εBB = 1.14 ε0

σBB = 0.89 σ0

A–B interactions εAB = 0.42 ε0

σAB = 0.7365 σ0

Other parameters
B2 lattice parameter R = 0.96 σ0

A mass mA = 1.0μ0

B mass mB = 1.0μ0

Time step �t = 0.01 τ0

Cut-off radius rc = 3.0 σ0

(see Fig. 5.1) and set σAB ≈ 2− 1
6

√
3

2 R and σAA = σB B ≈ 2− 1
6 R. In this case, the

B2 structure can be stabilised provided that the remaining parameters εAA, εBB and
εAB are selected properly. Here, we arbitrarily select the pure-species parameters
εAA and εBB and heuristically adjust the cross-species parameter εAB. In the 2D
case we have rationalised the parameter identification using harmonic analysis and
thermodynamic considerations. These arguments are not developed for the 3D case
because they are based on the assumption of an infinite lattice, which is not appro-
priate for the 3D assemblies considered here. Table 5.1 provides the model settings
used. Note that the characteristic time is selected with respect to the harmonic period
of an atomic motion’s oscillation in the characteristic pair potential, see page 42.

Figure 5.1 shows lattice representations of the parent (a) and the product lattice
(b, d, e, f). The structures shown are taken from the simulations. During the transfor-
mation, the six square faces of the primitive B2 unit cells are deformed into diamonds
in the product; shown in Fig. 5.1b. The lattice parameter R of the B2 structure is
extended by ≈ 8% into r in the product structure by the transformation. (c) shows
the radial distribution function (RDF) of the product, where the three types of inter-
actions are distinguished. The RDF exhibits peaks at r√

2
(for A–B), r (for A–A and

B–B), 1.22 r (for A–B),
√

2 r (for A–A and B–B) and 1.55 r (for A–B), which indi-
cates a nested fcc lattice. In fact, lattice inspection confirms that each atom species
forms fcc unit cells, Fig. 5.1d. Accordingly, the stacking order of crystallographic
layers along [111]fcc is a-b-c for each species separately, see Fig. 5.1e.

http://dx.doi.org/10.1007/978-3-642-28619-3_2
http://dx.doi.org/10.1007/978-3-642-28619-3_2
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Fig. 5.1 3D Lennard–Jones model material. a B2 structure of the nested cubic sub-lattices with
the lattice parameter R. MT deforms individual B2 unit cells into the product shown in (b).
c Radial distribution function of the product. d Fcc unit cell isolated from the product lattice. e
The product lattice exhibits an a-b-c stacking order for each atomic species, characteristic of fcc
type of sublattices. f Perspective view showing the primitive unit cells. Simulation results are often
represented using such a cell rendering mode, where the colour is selected by an analysis algorithm

Figure 5.1b shows that six of the former eight type-A corner atoms of a primi-
tive B2 cell move symmetrically into positions on a spherical interaction shell of
distance r√

2
about a type-B interstitial atom. The remaining two B2 corner atoms

are shifted onto the next interaction shell. This shift breaks the symmetry of the
B2 lattice. In the cubic phase, these two atoms are located at opposite positions of
the B2 face diagonals, respectively. Hence, since 12 such pairs exist in the cubic
phase, the transformation may produce 12 product variants. The orientation of a spe-
cific variant may be clearly visualised by the direction of a line connecting this atom
pair, as indicated by the broken line in Fig. 5.1b. Such directions are also shown in (f).

5.1.2 Procedure

A spherical assembly of 5.5 million atoms (initial diameter approximately 40 nm)
was simulated in parallel on a 125 processor grid. The initial configuration was
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set up in the B2 phase using the lattice parameter R, listed in Table 5.1, as an initial
estimate determined by a static relaxation of an infinite lattice. Prior to the simulation,
the lattice was dynamically relaxed with respect to initial (high) temperature. The
parameters employed are listed in Table 5.1. MT was induced upon constant cooling
by means of a thermostat (velocity scaling method). The simulations were calculated
on the HPC facility “JUMP” located at the Research Centre in Jülich / Germany
(deployed in January 2010). JUMP consisted of 448 IBM Power6 processors with a
comparatively fast clock rate of 4.7 GHz. An Infiniband network was used for the
MPI communication and an additional 10 GB Ethernet for the I/O. In the simulations,
the workload was distributed over a 5 × 5 = 125 processor grid. A single time step
was calculated in τ tot

CPU,parallel(�t) = 1.12 s.

5.1.3 Results

Figure 5.2 depicts the progress of a simulated transformation process which uses
the cell rendering mode. Figure 5.2a shows a snapshot at an intermediate time step. To
provide a spatial representation, a composite of three planar sections along the main
axes are shown in one image. Figure 5.2b shows six instants during the transformation
as observed on the [111] section and Fig. 5.2c shows two views of the final product
on both the [001] and [111] sections. Different filter modes are employed to depict
the details: In both (a) and (b), the colours indicate the lattice structures hcp, fcc and
bcc corresponding to the encoding shown in (a). These representations were obtained
employing the Ball Viewer algorithm [1]. In (c), the colour visualises the potential
energy field within the range indicated.

The free surface forces the unit cells located at the surface to spontaneously trans-
form and produces product layers which are oriented along the main directions [110],
[010] and [001]. For a short time period, these orientations also determine the growth
directions from both sides before new nuclei are produced at the boundary between
the product and the B2 phase. These secondary nuclei have different orientations
and proceed into the bulk material forming wedge-shaped product regions. These
structures are clearly visible on the [001] and [010] planes in Fig. 5.2a. The mor-
phological analysis reveals that the wedges consist of fcc plates (green) which are
separated by planar, interfacial mono-layers of hcp (red). A plan view of one such
interfacial monolayer is visible in this figure on the [100] section image.

The wedge-shaped morphology of the secondary nuclei is also observed on the
[111] sections shown in Fig. 5.2b. Wedge-like growths advance both axially, along
the main direction of the wedge, and laterally forming a lamellar product structure.
The final morphology has a distinct domain structure, clearly visible in the potential
energy presentations of Fig. 5.2c. Domains consist of coplanar fcc lamellae, sepa-
rated by interfaces. Entire domains are separated by distinct energy marks, coloured
blue/grey in Fig. 5.2c: The domain interface energies are significantly higher than
the interpose energies of individual fcc lamellae.
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Fig. 5.2 MT in a sherical 5.5 million atom L–J crystal. a Overall view of three sections along
the main axes at an intermediate time step. The section slices have thicknesses of 2 unit cells.
b Transformation’s progress observed on the [111] section. c Potential energy of the product (final
state) on [001] and [111] (Video available online)

Figure 5.3 provides the energetic and morphological details of a wedge growth
process. Figure 5.3a shows its morphology on the [001] section after 8,000 computed
time steps. The enlargement shown in (b) confirms the lamellar character of fcc
product plates. Individual lamellae are separated by hcp interface layers.

The crystallographic orientation of the product is depicted in Fig. 5.3c. As dis-
cussed with Fig. 5.1b, we use the separation vector between the off-centre atoms of
the primitive unit cells as a measure of orientation. The solid lines visible in Fig. 5.3c
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Fig. 5.3 Detail study of the transformation dynamics on the mesoscale. [001] Section through
the sphere’s centre. a Overall view. b–f Enlargements of the indicated region with different filter
settings. a, b Crystal structure. c Orientation of martensite lamellae. d–f Energy and temperature
as labelled (Video available online)

are produced by bundles of such vectors. We see that within an individual fcc lamella,
the orientation is uniform. We conclude that such a lamella is produced by a single
variant. Stacks of lamellae exhibit variants with alternating orientations. Therefore,
this morphology has a striking similarity to martensitic twin structures observed in
real materials and, because of this observation, we interpret the simulated product
phase as twinned martensite.

This interpretation is confirmed by energetic arguments. Figure 5.3d shows the
potential energy field of a martensitic wedge. We see that individual fcc lamella are
energetically equivalent, since they exhibit the same potential energy. The colour-
coding reveals fcc has a slightly lower potential energy (red) than the hcp interface
layers (orange) separating the fcc twins. Therefore the product structure can be
recognised in the potential energy field. Note that this was not so in 2D L–J lattices,
where the martensite variants are perfectly compatible and therefore do not exhibit
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interface energy. The potential energy of the parent B2 phase is higher than that
of the martensite, thus making for clear signature in Fig. 5.3d. During the MT, the
potential energy difference between parent and product phase is released as latent
heat, hence increasing the temperature in the transformation zones, see Fig. 5.3e.
The red colour signifies the warmer spots. We see that these spots are located on
both sides of the pre-existing martensitic wedge, hence indicating zones of intense
transformation activity. The presence of this latent heat signal is another indicator
for an MT.

Figure 5.3f visualised the mesoscopic kinetic energy detected with the ongoing
transformation. The mesoscopic kinetic energy is defined here as the kinetic energy
of the mass centre of the interaction neighbourhoods of individual atoms according to
Eq. 4 in Chap. 4) on page 101. In the MD simulation, these neighbourhoods are natu-
rally defined by the chosen cut-off radius. In the present case, these neighbourhoods
contain subsets of approximately 250 atoms. These are regarded as mesoscopic enti-
ties. Under equilibrium conditions, their mass centres are at rest and, accordingly, the
kinetic energy of the mass centres are zero. We have seen with the 2D model that dur-
ing the formation of martensite, correlated atomic motions cause slight dynamic shift
of the mass centres, provoking increase of the mesoscopic kinetic energy locally (101
ff). Therefore, this field quantitiy provides another measure to spot ongoing transfor-
mation action, see Fig. 5.3f. Red colour signatures indicate indicate the transforma-
tion zones where the mesoscopic kinetic energy extends above some threshold value
owing to the ongoing MT. We see these zones are slightly extended into the parent
phase ahead of the transformation front, indicating gradual correlation of atomic
trajectories, required to induce the tranformation locally.

The binary Lennard–Jones material investigated here exhibits a martensitic trans-
formation between bcc austenite lattice and fcc martensite. The transformation
evolves by nucleation and growth from the surface into the bulk. During the trans-
formation, martensite plates are produced showing a lamellar twin structure. Twin
variants are separated by planar twin–twin interfaces which can be identified with
hcp monolayers, provoking twin–twin interface energy. Latent heat is released with
the transformation since the bcc phase has a higher potential energy than the prod-
uct. Thus, the transformation zones are locally heated and can be identified by the
temperature signal. The formation of an individual martensite lamella is due to a
short transient correlated motion of the atoms in that region. This motion increases
the mesoscopic kinetic energy which can be detected during the simulation and then
used to identify the transformation zones.

5.2 Zirconium Crystal

5.2.1 Model

Zirconium is a widely studied material on account of its importance in nuclear
reactors. It exhibits temperature-induced martensitic bcc/hcp transformations but

http://dx.doi.org/10.1007/978-3-642-28619-3_4
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Fig. 5.4 EAM model functions for zirconium [2]

no shape memory effect since loading induces plastic deformation rather than
de-twinning. Ackland has provided interaction potentials for this material and
investigated such processes by MD simulations [2–5]. Here, we adopt a recently
reported EAM potential and simulate T-induced transformation/reverse transforma-
tion processes in a 3.5 million atom sphere.

In the EAM, the total internal potential energy is given by

V int = V int
rep + V int

att , (5.1)

where V int
rep and V int

att denote the repulsive and the attractive energy contributions. The
former is represented by a repulsive pair potential V , whereas the latter is a many-
body potential that depends on the positions of all the atoms within the interaction
range,

V int
rep =

N−1∑
α=1

N∑
β=α+1

V (rαβ) (5.2)

V int
att =

N∑
α=1

F(ρα) with ρα =
∑

β=1,β �=α

(rαβ)

Here, F is the embedding function and ρα is the local electron density which causes
the cohesive interaction forces for individual atoms α in the lattice. It depends both
on the position of the ionic core of that atom, via another pair potential 
, and also
on the positions of the atoms in its neighbourhood. The functions V , F and 
 need
to be fitted to the thermo-mechanical properties of zirconium. The results used here
were reported in [2]. Figure 5.4 shows the curve’s trajectories for these functions.

EAM potentials are not capable of exactly satisfying the entire physical target
properties, therefore the fitted curve must be a compromise. The model parameters
used here are optimised with respect to the thermodynamic properties. The model
predicts that the bcc/hcp phase transformation temperature occurs at 1233 K. Above
this temperature, the model zirconium is in the bcc phase (A2 structure), which
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Table 5.2 Model parameters used with the zirconium model
Characteristic quantities

ε0 = 1.6022 × 10−19 J = 1 eV
σ0 = 10−10 m = 1 Å
μ0 = 91.224 × 10−27 kg

(Eq. (2.8)) τ0 = 7.55 × 10−14 s
(Eq. (2.9)) � = 1.0

Other parameters

A2 lattice parameter a =
{

3.562 σ0 (Groundstate)

3.814 σ0 (1, 300 K )

mass m = 1.0μ0

Time step �t = 0.01 τ0

Cut-off radius rc = 7.6 σ0

melts at 2109 K. The ground state lattice parameter of the model bcc is a=5.562 Å.
The bcc-hcp transition occurs via the Nishiyama-Wassermann mechanism, in which
the 〈110〉bcc direction becomes the 〈0001〉hcp direction. Since there are six non-
equivalent 〈110〉bcc directions, there are six possible orientations for the hcp lat-
tice, referred to as variants [4]. The transformation induces a volume change of
−0.8%. In the hexagonal phase, the ground state lattice parameters are a=5.22 Å
and c=5.215 Å. The ground state energies of bcc and hcp are quite close and only
differ by 0.03 eV per atom.

5.2.2 Simulation Procedure

A spherical assembly of 3.5 million atoms (initial diameter approximately 53 nm)
was simulated in parallel on 27 computation nodes. The model was set up in the
bcc phase using an initial lattice parameter of a = 3.8 Å which corresponded to
an initial temperature of 1,300 K. At this temperature, the model was dynamically
relaxed to the free surface before starting the actual simulation. To induce the trans-
formation, the temperature was linearly quenched during 10,000 time steps from
1,300 K to the level of 800 K, at which it was maintained constant by means of the
velocity-scaling method until the end of the simulation . A total of 70,000 time steps
were calculated to simulate the bcc→hcp transformation process. The final configu-
ration of this simulation was then used as the initial configuration for simulating of the
reverse hcp→bcc transformation process. In this case, the temperature was rapidly
increased from 800 K to the level of 1,300 K and maintained constant. The reverse
transformation process was once again simulated for 70,000 time steps. Within this
time, > 50% of the model material transformed back into bcc.

The simulations were calculated on the HPC facility “JUROPA-JSC” located
at the Research Centre in Jülich / Germany. JUROPA-JSC is a new Linux cluster

http://dx.doi.org/10.1007/978-3-642-28619-3_2
http://dx.doi.org/10.1007/978-3-642-28619-3_2
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consisting of 17,664 Intel Xeon cores with a (moderate) clock rate of 2.93 GHz.
During the simulations, the workload was distributed over 3 × 3 = 27 processors,
where a single time step required τ tot

CPU,parallel(�t) ≈ 5.4 s of computation time.

5.2.3 Results

Once the temperature is lowered below the model’s transformation temperature of
1,233 K, the transformation evolves in two stages. The first stage is characterised by
rapid hcp nucleation symmetrically along the sphere’s surface, Fig. 5.5 (after 5,000
time steps), from where it grows radially towards the sphere’s centre. This produces
a thickening hcp shell around a bcc core. Owing to the volume change accompa-
nying the transformation, increasing stresses are induced in both the core and the
shell. Eventually, these stresses initiate plastic deformation in parts of the shell,
thereby releasing the stress and breaking the sphere’s symmetry. This mechanical
relaxation process is accompanied by transformation reversal, leaving some rema-
nent hcp islands visible in Fig. 5.5a after 20,000 time steps. At this point, the second
transformation stage starts, indicated by asymmetrical growth: See the three snap-
shots taken after 25,000, 40,000 and 60,000 time steps. This process produces a
rich microstructure of hcp domains denoted by different orientations. BallViewer
determines the orientation of the hcp basal planes by the direction of the hexagonal
unit cells’ c-axis . In the [001] section of Fig. 5.5c, these directions are depicted by
bundles of black lines.

Our simulation confirms that bcc/hcp interfaces move along the {111}bcc direc-
tions [4]. Figure 5.6a provides a perspective representation. Three transparent
{111}bcc planes are indicated, which illustrate the location of three such bcc/hcp
interfaces visible along the three section slices shown. Two of the planes are oriented
by 〈111〉 and one by 〈111〉. Figures 5.6b, c show the energetic representations as
observed on the [001] section. Using sophisticated filter rules in the potential energy
plot of Fig. 5.6b, the small energetic difference between hcp and bcc may be exploited
to visualise the phase composition by colours. Figure 5.6c shows the mesoscopic
kinetic energy. Transformation zones can be visualised by the method, however, the
picture is not as clear as that using the Lennard–Jones crystal.

The hcp structure has a lower potential energy than that of bcc, but the latter can
be stabilised by entropy at elevated temperatures. Therefore, the reversal hcp/bcc
transformation can be simulated by a temperature increase, which is started after
70,000 time steps. The entropic stabilisation is governed by stochastic processes
which involve longer relaxation times than the bcc/hcp transformation. After 127,000
time steps, the crystal exhibits the morphology shown in Fig. 5.7a. Although the
reverse transformation is still not complete; approximately 50% of the material is
already bcc, the simulation had to be terminated for technical reasons. From the
result obtained so far, it is clear that the reverse process does not recover the initial
shape since some plasticdeformation occurred during the bcc/hcp MT. This deformed
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Fig. 5.5 MT in a 3.5 million zirconium sphere. EAM interactions. a Transformation development
observed on a [001] section through the sphere’s centre. b Potential energy distribution after 60,000
time steps. c Enlargement showing the domains’ crystallographic orientations using bold lines [1]
(Video available online)

the sphere into an asymmetric, potato-shaped assembly. The potential energy field in
Fig. 5.7b reveals high-energy spots within bcc regions (grey-coloured) which indicate
the existence of lattice artefacts.



162 5 Lattice Transformations in 3D Crystals

Fig. 5.6 Ongoing MT in a 3.5 million atom zirconium sphere after 30,000 time steps.
a Perspective view ([111] direction) of the first octant bound by three section slices along the main
axes. The bcc/hcp interface moves along {111}bcc directions; three such directions are indicated by
the transparent planes. b, c Energy representations on the [001] section. (Side-view intented, colour
online)

Fig. 5.7 T-induced reverse hcp/bcc transformation with the zirconium model after 127,000 time
steps. a Morphology. b Potential energy, as observed on [001]. (Side-view intented)
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5.3 Conclusions

Two different 3D interaction models were used to simulate MT in spherically shaped
crystals. The Lennard–Jones model exhibits a bcc/fcc transformation which, despite
its artificial character, shows all the characteristics of MT. We observed twinned,
plate-shaped structures formed along planar interfaces. Martensite variants can be
identified, which form coherent twins. Martensite plates nucleate in different crys-
tallographic directions and form domains. Where domains come into contact with
each other, incompatibilities produce distinct domain interfaces endowed with sig-
nificant excess energy. The zirconium model exhibits the material-specific bcc/hcp
transformations which also yield variants due to the differently oriented basal hcp
planes. Once again, we observe domain formations.

Approximately 12% of the atoms are affected by the free surface which signif-
icantly influences the nucleation process. These respective parts of the simulations
may therefore not be regarded as representative. The zirconium sphere even exhibits
an extreme mechanical reaction caused by the transformation stresses that occur in
the surface layer. Despite this, both simulation models show characteristic results in
their core regions once the surface reactions have elapsed.

To reduce the surface effect, 3D model sizes must be at least two orders of mag-
nitude larger than those investigated here. Larger model sizes could not be analysed
within the framework of this project due to the lack of computing resources. For
this reason, we have concentrated our investigates on the 2D model in the previous
chapter, where the surface effect is geometrically reduced by an order of magnitude.
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Chapter 6
Conclusions

The fascinating thermo-mechanical properties of shape memory alloys are deter-
mined by the structural phase transformations of their crystal lattice. These are func-
tions of temperature and loading states. The phase stability is controlled by thermo-
dynamics which states that a balance between energy and entropy decides the crystal
structure. The method of molecular dynamics simulations is capable of naturally
modelling this interplay. Here, the potential energy is set by the internal interaction
potential used to model the cohesive forces between the atoms in the lattice, while the
entropy, as well as temperature, enters the model dynamically as a statistical measure
of the atomic fluctuations. These fluctuations evolve freely within the bounds set by
the interaction potentials. The microstructures presented in this work all evolve as
a consequence of this interplay of “determinacy and random walk” [1]. Therefore,
our chosen method is not only based on the first principles of mechanics, but also
incorporates first principles of thermodynamics.

In this work, we have studied in great detail the structures produced by the model
system and how these evolve as a function of time in nucleation and growth processes.
From the mathematical point of view, these structures are regarded as solutions of
a system of coupled ordinary differential equations which are fully determined by
the initial conditions. The structures formed in the simulations are always similar on
the mesoscale, although the microscale details differ. The microstructures evolve “on
their own”, in a sense they are formed without any further assumptions or restrictions.
Hence, these structures represent a fundamental property of the modelled system and
are fully determined by the first principles of mechanics and thermodynamics. The
results show an amazing resemblance to laboratory experiments, even in a simplified
2D setting. We conclude that the MD simulations method must indeed correctly
incorporate these fundamental physical principles. The method therefore constitutes
an appropriate theoretical “laboratory” which can be employed for principle material
investigations.

Here, our paradigm was to preserve this natural model property as far as possible.
We therefore employed as little additional numerical ballast as possible. Restricted
to 2D, this paradigm can be realised. The 3D models studied here, however, turned

O. Kastner, First Principles Modelling of Shape Memory Alloys, 165
Springer Series in Materials Science 163, DOI: 10.1007/978-3-642-28619-3_6,
© Springer-Verlag Berlin Heidelberg 2012



166 6 Conclusions

out to be too small, such that surface effects dominated the processes. Nevertheless,
despite this, the 3D results hitherto obtained support, at least qualitatively, our 2D
findings.

We can investigate model materials, as presented in this work, using this theo-
retical laboratory by means of thermo-mechanical tests. The results of the model’s
equations can be analysed in detail on different length scales. On the mesoscale, we
observe evolutions of microstructures, can compare and assess these in regard to
the thermo-mechanical conditions set. All this is possible without loss of the atomic
detail: the method allows to reduce the observed processes down to the microscale
of individual atomic trajectories at any time. In the context of growing computa-
tional capabilities, the MD simulations method therefore represents a powerful and
comprehensive scientific tool.

Let us summarise the results. In 3D, we have studied bcc/fcc lattice transforma-
tions in artificial Lennard–Jones crystals and bcc/hcp transformations in a zirconium
crystal. Despite reasonable surface reactions, we observed typical MT in the bulk
material. The transformations evolve according to the material specificity, but MT
characteristic morphologies are produced. These are indicated by twinned domain
structures which are produced in travelling transformation zones indicated by both
temperature signatures due to the release of latent heat, as well as mesoscopic kinetic
energy signatures due to cooperative atomic rearrangements occurring during the
transformation. All these characteristics are preserved by the 2D model.

Using the 2D case as appropriate model system, we have shown that temperature-
dependent, non-convex free energy functions arise at the mesoscale from the atomic
interaction dynamics. The phase stability of small crystallites obeys the predictions
of the macroscopic equilibrium thermodynamics. If such elements are combined in
a chain, their collective load/strain responses model pseudo-elasticity and pseudo-
plasticity depending simply on the temperature level simulated. No modifications
of the interaction parameters are needed to model these two completely different
properties. Similarly, by combining thermo-mechanical processes with this chain, the
shape memory effect is modelled. In the chain, twin/twin interfaces were artificially
excluded and no domain boundaries occurred. In such a setting, the process diagrams
do not exhibit hysteresis.

Microstructures are entailed in extended crystals. Although restricted to 2D, the
model martensite bears variant diversity. Evaluation of the crystallographic compat-
ibility conditions proves the existence of both compatible twin variants as well as
incompatibilities between other variants. Twins are formed spontaneously in the trav-
elling transformation zones and these processes produce perfectly coherent marten-
site domains. In regard to the formation of a finite-sized twin structure, we have
pointed out the impact of the angular momentum produced during the formation of
individual lamellae on the mesoscale. Domain boundaries, on the other hand, occur
as the result of incompatibilities between the twin variants forming two adjacent
domains. These incompatibilities incorporate interfacial energy signatures and may
produce lattice defects.

In MD simulations, the nucleation processes of martensite are modelled as “nat-
ural” solutions of the equations of motion. Thermally induced nucleation events were
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studied with teh 2D model material in detail. Nucleation is indicated by spontaneous
correlations of the atomic trajectories, building up the soft modes. Soft modes there-
fore represent a collective property of the atoms at the nucleation centres. In the
phase space, this process is indicated by temporal convergence of the atomic phase
curves into narrow nucleation channels which connects parent and product struc-
tures. Therefore, the local correlation of atomic motions appears as a characteristic
property of the nucleation event.

During martensitic growth, point defects may be produced at domain bound-
aries but they may also be generated during reverse martensite/austenite transforma-
tions. In 2D, we have identified two fundamental reverse transformation mechanisms;
reversible and reconstructive. The latter incorporates vacancy production processes,
which are shifted through the lattice by the dislocation mechanism. They may pile up
at other immobile defects or migrate to the surface but they nevertheless irreversibly
change the global energetic situation of the sample. These irreversibilities are shown
to produce hysteresis and functional fatigue during cyclic transformation processes.
Such processes have not previously been considered in 3D simulations because they
involve time- and length scales not accessible by using contemporary computation
facilities. The result obtained here highlights important energetic contributions to
the microstructure regarding the thermodynamic phase stability condition. It shows
that it is possible to identify these contributions on the mesoscale for sufficiently
large crystals in 2D. Since computational resources are quickly growing, we are
optimistic that similar studies will soon be possible using 3D crystals. Such studies
may also reveal the interplay of dislocations and phase stability, which is not properly
modelled in the 2D case.

One fundamental observation in our simulations is the fact that all observed trans-
formations proceed by nucleation and growth processes. This is confirmed by lab-
oratory experiments on real materials. The morphologies are produced in the trans-
formation zones and subsequently barely change. We did not observe significant
ripening processes which could have changed a produced domain structure in the
2D model within the time scales studied; not even under external loading of such
morphologies. We conclude that the microstructure is primarily decided in these
transformation zones and is therefore determined by local rather than by global ther-
modynamic conditions. Therefore, whatever structure was produced during the MT,
it is unlikely that this structure represents a global energetic minimum. Consequently,
it may be viewed thermodynamically as a metastable structure, which is stabilised
by energy barriers produced by the microstructure.

MT proceeds as a travelling wave phenomenon. In continuum-scale theories,
travelling waves are modelled by hyperbolic equations. MT, in contrast, is mostly
modelled as a (pseudo-) stationary process, where rate equations are introduced
in order to relax the local phase composition according to the thermo-mechanical
boundary conditions set. Our results may help to introduce the physical origin of
the necessary inertial term needed to set up a hyperbolic model equation for a trans-
formation wave: During MT, inertia emerges on the mesoscopic length scale owing
to cooperative transformation motions of the atoms. This effect can be energetically
localised in MD simulations, whereas in laboratory experiments it gives rise to the
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characteristic transformation sound. The identification of this effect may be regarded
as an example of how MD simulations may aid and confine continuum-scale mod-
elling.

At some future date, material scientists will be able to theoretically design mate-
rials on a computer. It will be possible to predict the atomic properties of alloys
and their microstructural capacities in order to design their structural and functional
properties prior to experimental testing. Currently, the theoretical work aims mostly
at attempting to understand nature by means of properly modelling existing exper-
imental data. In doing this, it is sometimes advantageous to idealise the matter and
to consider simplified models in order to better understand the fundamental princi-
ples. In this situation, theory may occasionally identify a new physical aspect and
guide the experiments to its verification. This work was conceived and structured
within such a paradigm. On the other hand, reliable SMA model potentials for the
technically relevant alloys such as nickel-titanium or magnetic SMAs are currently
not available today. The aspect of modelling potentials therefore also establishes an
important issue for the scientific agenda. Future MD simulations modelling of real
SMAs rely on advances in modelling their potentials and also on the availability of
the requisite computational resources.
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