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Supervisor’s Foreword

The work described here started as part of Ksenia Guseva’s Ph.D. project on
systems biology of microorganisms, which aimed at describing the homeostasis
and metabolisms of bacteria, in particular E. coli. It developed into a study of
various mechanisms of self-organization which can take place on the cell mem-
brane. The path that was chosen borrowed heavily from Physics: our approach
consisted in the careful simplification of the rich original system, and the for-
mulation of an appropriate theoretical description, which enables the extraction of
the most fundamental properties of the system, which is not heavily influenced by
the neglected details. This approach not only resulted in the answer of important
biological questions, but also served as contribution to the larger field of complex
systems. To underline the significance of the analysis, we systematically provided
particular case studies and arrived at important conclusions for these specific
biological systems.

In bacteria the membrane has a very important role, since it controls the
movement of substances in and out of the cell. It is composed of many interacting
elements, which react to conditions external to the cell, and self-organize in order
to achieve a functional purpose. Besides this functional organization, these ele-
ments are composed of smaller subunits, which are produced in large numbers, and
undergo an intricate process of self-assembly. These two processes are the main
subject of this work, which focuses on protein oligomerization and spatial orga-
nization on the membrane surface.

The first part of the work deals with protein oligomerization, which is the
process of formation of protein complexes which are composed by several sub-
units. These are produced independently and must join together to become func-
tional. The mechanism of assembly is therefore the most important part of the
process. It usually occurs after the subunits are inserted in the membrane and
involves their diffusion rates and the interaction strength between them. At a first
approximation, this process can be mapped onto an aggregation-fragmentation
dynamics, which keeps track of the number of complexes of each possible size in
the system in time, according to a given mutual interaction. By imposing a limit on
the size of the complex formed—due to geometrical constraints—we obtain a



vi Supervisor’s Foreword

suitable model from which the efficiency of the assembly process can be inves-
tigated. From this analysis it was possible to conclude that there is an optimum
range of fragmentation rates that increases the efficiency. This range contains the
minimum fragmentation rate values that are able to influence the process in the
lifetime of the bacteria cell.

The second part focuses on how the function of proteins on the membrane
depends on their relative spatial organization. One of the most important types of
interactions between proteins is the force resulting from the deformation of the
elastic membrane. This force can reorganise the proteins on the membrane surface,
and directly influence their function, as in the case of some membrane channels,
which are activated by tension (called mechanosensitive). These channels change
their state if the global tension on the membrane changes, or if the local neigh-
bourhood is deformed, for instance, by the presence of another channel. Thus, the
spatial self-organization of these proteins will directly dictate their functional
response. We proposed a large-scale model of this process, which incorporates the
two possible states of the channels, and their mutual interaction. By analysing the
transition from the globally homogeneous and non-homogeneous states, as a
function of membrane tension and channel density, we were able to show that the
global behaviour is strikingly different from that of isolated channels, and the
spontaneous agglomeration leads to both lower activation thresholds and longer
response times.

The third and last part describes a particular case where the protein function is
directly connected to its assembly process: The proteins are formed to perform a
certain task and after it is completed, the complex fragments and the subunits are
released back into their free form. We illustrate this process with the formation of
large membrane pores in bacteria, which are present on the membrane for limited
time and then are disassociated. Several of those pores can be produced at the same
time. Therefore the formation of each one of the pores depends on the number of
free subunits on the membrane and consequently on the number of other pores that
are being formed at the same time. By describing the dynamics of formation and
fragmentation by a system of differential equations, we analysed the maximum
rate of pore formation depending on their size.

The analysis of the three processes considered in this work serve as very good
examples on how a simplifying approach can lead to very central conclusions.
By considering the most fundamental ingredients which regulate the behaviour of
a system of many interacting elements—and thereby disregarding a great deal of
details which would make the analysis intractable if taken simultaneously into
account—it is possible to identify the most interesting emerging properties.

Aberdeen, July 2011 Alessandro P. S. de Moura



Preface

In this work we analyse aspects of dynamics and organization of biological
membranes from a physical prospective. We provide an analysis of the process of
self-assembly and spatial organization of membrane proteins. We illustrate
the analysis by considering a channel activated by membrane tension called
mechanosensitive channels (MS), in E. coli and the twin arginine translocation
system (Tat).

We analyse the mechanism of formation of oligomeric protein complexes
formed by identical subunits. By derivation of a mathematical approach based on
Smoluchowski coagulation equation, we study the efficiency of the process of
complex formation, taking into account both irreversible aggregation, as well as
fragmentation. We find that a small fragmentation rate increases the efficiency of
the formation process, however if the fragmentation rate vanishes the irreversible
process is very inefficient.

Our second aim is to determine how the spatial organization can affect the
function of channels, which are regulated by elastic forces. We map these short-
range interactions into a discretized system, from which we obtain the spatial
distribution of the channels and its effect on the gating dynamics. We find that
organized channels activate at lower membrane tensions, but possess a delay in the
reaction time.

In the last part we determine how the formation of transient pores on the
membrane depends on the dynamics of its assembly process. We analyse the pores
formed by the Tat complex, which is responsible for protein transport through the
membrane. This system functions by polimerization in response to a signal
of transport demand from a protein in the cell cytoplasm. The direct correlation of
the size of the assembled pore and the size of the protein determines the speed of
the translocation process. Using a differential equation approach we obtain that the
flux of a given protein depends quadratically on its size.

Dr. Ksenia Guseva
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Chapter 1
Introduction

The attempt to establish fundamental laws which govern the large-scale behaviour
of living organisms is still an ongoing challenge being undertaken by the scientific
community. Although our qualitative knowledge and the amount of available data
are progressively increasing, there is still a perceived need for improved theoretical
and quantitative approaches. The identification of fundamental laws governing the
behaviour of atoms and molecules, which is the core of modern physics, followed
with the ambition to identify similar laws for living organisms. The usage of the atom-
molecular approach in treating living systems dates to a lecture given by Schrodinger
(which later became a book [1]), entitled “What is life? The physical aspects of a
living cell”. This work tackled many questions from life sciences which could be
answered directly from established physical laws. Schrodinger’s attempt to define life
as an aperiodic crystal was followed by several, more elaborate alternative definitions
of life. Although it is still not possible to define the fundamental characteristic that
distinguishes living organisms from other systems [2, 3], it is well accepted that
life is an emergent phenomenon, i.e. its global properties are a direct result of the
interactions of many simpler constituents, in a way which is not possible to derive
from the complete understanding of its constituents in isolation. This feature leads
to a non-reductionist approach in life sciences, which is reflected in the relatively
new fields of systems biology and synthetic biology (which has a more practical,
engineering-like focus). This general approach is also what characterizes the study
of “complex systems” in physics.

One of the most central topics in the understanding of emergence and self-
organisation in living organisms is the study of biological membranes [4]. The mem-
brane functions as a topological barrier defining the cell entity, and is also responsible
for a controlled exchange of substances with the environment. It is one of the most
common features, shared between almost all living organisms. The intricate organiza-
tion of biological membranes, which results in a precise execution of a series of vital
process, fascinates scientists of diverse fields. Its complex structure is the result of
the biochemical and biophysical activities of its constituents. The self-organisation
of the membrane can be divided in three levels: (1) The assembly of lipids into

K. Guseva, Formation and Cooperative Behaviour of Protein Complexes 1
on the Cell Membrane, Springer Theses, DOI: 10.1007/978-3-642-23988-5_1,
© Springer-Verlag Berlin Heidelberg 2012



2 1 Introduction

bilayers; (2) The assembly of polipeptides into protein complexes; (3) The forma-
tion of specialized membranes domains, composed of many mutually-interacting
protein complexes.

The self-organisation of lipids to form a bilayer is a vastly explored subject in the
field; however the other organisational levels are relatively recent subjects of research,
and they are the focus of this particular work. This analysis is of vital importance,
since most of the function exerted by the membrane is achieved through proteins,
which can constitute up to 75% of the total mass of the membrane. The main focus
of this work is to identify emerging behaviours of membrane proteins, which arise
of simple interactions among them. We focus on two different processes: (1) The
assembly of protein complexes; and (2) the cooperative organization of membrane
channels. We employ principles from statistical mechanics to construct theoretical
models which are capable of elucidating the most essential properties of the systems,
without introducing unnecessary complications.

This thesis is divided in three chapters. The first one describes the assembly of
homomeric protein complexes. These complexes are formed by identical subunits,
and are very common among living organisms [5]. These subunits spontaneously self-
organize during the formation of a complete complex, by means of free diffusion and
short-range attractive forces. Using a mean-field approach we describe the assembly
process by a master equation, based on the Schmoluchowski coagulation equation [6].
This allows for a dynamical description of the growth of subunit aggregates,
and for the identification of the most relevant properties which are responsible for the
production of aggregates of the complete size. Our main focus is the characterization
of the efficiency of the assembly process, as a function of the fragmentation rate and
final complex size. The strength of the interactions among the subunits defines the
fragmentation rate, which is a central parameter in our analysis. Our objective is to
identify possible ways biological organisms adapted to the need of fast formation of
a the required number of complexes.

In the second chapter we move to the cooperative behaviour of formed com-
plexes on the cell membrane. We investigate how spatial reorganization leads to an
interplay between individual responses and group behaviour of channels in reaction
to changes in the environment. As a case study, we consider a system of bacter-
ial mechanosensitive channels, which represents a minimalistic paradigm of func-
tional self-organisation of proteins on the membrane. These are special channels acti-
vated by membrane tension, which prevent bacteria death in a situation of osmotic
shock [7]. The channels are capable of changing their conformation from an open
to a closed state, according to the membrane deformation in their surroundings.
This property leads to an interaction between neighboring channels which can affect
their function. Based on a detailed study of the nature and strength of these elastic
interactions, we formulate a lattice-based coarse-grained model which is capable of
fully describing the emergent properties of the system. We focus on the formation of
self-organized protein clusters (high density regions), and their cooperative gating
response to osmotic shock. We outline fundamental differences between the cooper-
ative behaviour of clustered channels and isolated ones, and establish their relevance
to the physiology of the cell [8].
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In the third chapter we return to the assembly process on the membrane. However,
at this point we are interested in the dynamics of formation of transient pores that
allow protein translocation trough the membrane. We study the role of subunit aggre-
gation in the function of the Tat system [9]. The Tat system consists of subunits that
diffuse freely on the membrane and aggregate in response to a translocation request
signal, given by a protein inside the cell. The assembly consists in ring formation
by continuous monomer incorporation, which is always followed by a complete
dissociation and pore sealing. Using a system of differential equations we describe
the number of free subunits on the membrane and the number of assembled rings.
These quantities depend on the demand rate for protein transport. We analytically
obtain the relevant dynamical properties of the system, which relate the dynamics of
assembly to the flux of exported proteins through the membrane.

In all three chapters we focus on the relevant time scales. In the first and the
last part it is important to consider the time of bacteria replication, since complex
formation and protein transport are tightly linked to the cell growth. In both situations,
however, the speed of the process is limited not only by the availability of primary
resources but also by dynamical process itself. In the second chapter we also analyse
the response time of the channels to environmental changes. We observe that increase
in number of channels and consequent appearance of cooperative behaviour allow
a higher sensitivity to a lower range of tensions, but this comes at the expense of a
delayed response time of the whole system.
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Chapter 2
The Role of Fragmentation on the Formation of
Homomeric Protein Complexes

2.1 Introduction

The synthesis of larger structures by the assembly of several basic building blocks is
a general principle in biology. We can see this reflected in the fact that, for example,
many proteins are actually complexes formed from several subunits, which sponta-
neously organize and come together. In a more general way, we could define self-
assembly as a process by which ordered aggregates are formed, as a result of the
interplay of tightly tuned attractive and repulsive forces in a stochastic environ-
ment, with random thermal fluctuations. As such, self-assembly is a widely studied
phenomenon in the areas of chemistry, biology and physics [28]. There are many dif-
ferent examples of self-assembly systems, such as crystals, lipid bilayers and many
biological structures, such as the aforementioned example of proteins complexes.
In this chapter we elaborate a theory of protein assembly, using the Smoluchowski
coagulation equation as a simple model. The central objective is to determine the most
important parameters which affect the efficiency of the complex formation process.
We directly apply the concepts introduced to homomeric membrane complexes of
the bacteria E. coli.

In chemistry and biology the process of self-assembly is usually reversible and
characterized by weak interactions, such as hydrogen bonds. The formed structures
are often, therefore, in thermodynamic equilibrium. In this work we analyse the role
of reversibility on the formation of proteins complexes, focusing more specifically
on role exerted by fragmentation on the final aggregate.

This chapter is organized as follows. At first, in Sect. 2.2 we introduce the biolog-
ical system we will use as an example, which are the homomeric protein complexes.
In Sect.2.3 we provide a description of the theoretical tools that we employ in this
chapter. The important estimations in our study are the time scales of aggregation and
of fragmentation. In order to obtain these quantities we consider the relevant stochas-
tic processes, and analyse them using the first-passage time approach. We end the
literature review in Sect. 2.4 with an introduction on the Smoluchowski coagulation
equation, which is the mean-field approximation in the core of our theory. Then we

K. Guseva, Formation and Cooperative Behaviour of Protein Complexes 5
on the Cell Membrane, Springer Theses, DOI: 10.1007/978-3-642-23988-5_2,
© Springer-Verlag Berlin Heidelberg 2012
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turn in Sect.2.5.1 to the development of our approach which employs a truncated
form of the previously described Smoluchowski equation. We introduce the definition
of efficiency of the process, which is simply the ratio of subunits forming the com-
plete protein complex. Then we analyse the irreversible aggregation process, which
is highly inefficient when the goal is the formation of large complexes. We follow
by extensive studies of the system with fragmentation, which behaves very differ-
ently from the irreversible case, with significantly greater efficiency. We have found
that the minimisation of the fragmentation rate is a certain way to increase the effi-
ciency of the process, but it cannot vanish such that aggregation becomes irreversible.
Furthermore, the contextualisation of our findings for the proposed biological prob-
lem shows that the minimisation of the fragmentation rate is not always possible. For
the biological system, the total time available to the oligomerisation of proteins is
limited by the life time cycle, since a required number of protein complexes should
be ready to be transferred to the daughter cells. By imposing such a time constraint,
we find the existence of an optimum fragmentation rate, for which the final product
is formed with the highest possible efficiency. However for very large complexes,
the existence of this optimum fragmentation rate does not imply a large production
of final complexes. For this reason we speculate that for a biological system this can
consist in an additional evolutionary pressure to keep the complexes small, and to
tune the fragmentation rate to correspond to the optimum peaks in efficiency.

2.2 Homomeric Protein Complexes

The past few decades provided a large amount of knowledge about the structure of
many proteins. The construction of large data banks of such crystal structures, like
protein data bank (PDB)! or PISA? allowed comparative and evolutionary studies
[7, 11, 12, 19]. These analyses characterized a large number of proteins as being
composed by several distinct units combined into complexes. They are produced
as separate polypeptide chains and assembled into protein complexes as diverse as
enzymes, ion channels, receptors, chaperones and transcription factors. These com-
plexes can be either composed by identical subunits, called homo-oligomers (homo-
mers) or they can be formed by distinct interacting parts called hetero-oligomers [1].
As we have described in the Introduction of this chapter we are interested in the
process of self-assembly of the first type: the homomeric proteins.

Because these complexes are highly abundant in nature it is speculated that they
present evolutionary advantages. Possibly, the most important benefit is that the for-
mation of complexes permits the production of large structures without increasing
the genome size. Furthermore, additional advantages include the introduction of
an additional level of control, as they can be allosterically regulated; more relia-
bility in transcription, since shorter sequences are more likely to be error-free; the

' http://www.pdb.org

2 http://www.ebi.ac.uk/msd-srv/prot_int/pistart.html
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amplification of evolutionary pressures, since both deleterious and beneficial muta-
tions are more evident; the resistance of larger proteins to degradation and denatura-
tion; the ability to support more complex functions; and finally the larger binding-site
specificity of enzymes [1, 7].

The homomeric proteins are particularly abundant among protein complexes and
constitute 50—70% of the proteins with resolved quaternary structure® [12]. A large
fraction of 62% associate only in dimers and the number of proteins decreases expo-
nentially with the number of subunits (see Fig.2.1). Also it is easy to notice that
the number of complexes with odd number of subunits is much smaller than those
with an even number (see Fig.2.1). The preference for the formation of homomeric
complexes is due to a strong attraction between identical surfaces. A study from
Lukatsky et al. [15] demonstrated theoretically this fact. Their research analysed
the energy of interaction between surfaces with random patterns, and they showed
numerically that identical random surfaces have always an average minimum energy
shifted towards the lower energies, compared with distinct random surfaces.

Another important property of homomeric proteins is their symmetry [1]. Because
symmetry confers stability, the homomeric proteins are usually symmetric and have
predominantly: cyclical (C,),* dihedral (D,) or cubic symmetries [3]. The cyclic
symmetries involve only one type of interaction, and contain a single axis of rotational
symmetry, forming a ring of symmetrically arranged subunits (see Fig.2.2). Typi-
cally, they are involved in functions that require directionality or rotational motion.
They usually form tubes and can interact with membranes forming complexes such
as ion channels. On the other hand, protein complexes with dihedral symmetry have

3 The primary structure of a protein is its amino acid sequence. The secondary structure the
a-helices and B-sheets. The tertiary represents the chain fold. The quaternary structure is the assem-
bly of those folded polypeptide chains.

4 In this notation C represents the cyclical symmetry of the protein and n the number of subunits
that compose this protein. For example: Cg is a cyclic hexamer.
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Fig.2.2 Examples of the
two possible symmetries of
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subunits, showing two types
of interactions; and cyclic C5 ®
tetramer and pentamer C4 @ @

at least two distinct interactions, and they appear to have evolved from cyclic dimers
(see Fig.2.2). They require an even number of subunits, and are mostly cytoplasmic
proteins, therefore they can not be incorporated in polar biological membranes. The
dihedral complexes are by far more abundant than cyclical ones (it was estimated
that they are at least 10 times more abundant [12]). There are several recent works on
the constrains imposed by the symmetry on the evolution of protein complexes [11].
Here we highlight the work of Villar et al. [25], which focused on the role played
by the relative strengths of the two interactions in dihedral complexes. The authors
used a molecular dynamic approach and showed that there are advantages in the pro-
duction of assembled proteins using a two step process, which can explain why the
even number of subunits and the dihedral symmetries are more abundant in nature.
However, since membrane proteins have cylindrical symmetry, they could not have
evolved to tune the efficiency of their productions by the strategy described in [25].
As we mentioned previously the cyclic symmetry is predominant in the mem-
brane protein complexes. In the next subsections we show some examples of such
complexes for bacteria and describe their main properties, such as the interaction
strength between subunits and the diffusion coefficient on the cell membrane.

D4

2.2.1 Homomeric Membrane Proteins

The structure of all membrane proteins is constrained by the lipid bilayer. There
are over 200 unique structures of membrane proteins available in the PDB. The
understanding of their function is a challenge in the drug development field since
they are key components for signaling and cell growth control [26]. It has been
reported so far that essential structural themes for the membrane proteins are both
the a-helices and B-barrels. The first ones are predominant in cytoplasmic and cellular
components and the second ones on the outer membrane of bacteria, mitochondria
and chloroplasts [26].

Membrane homomeric proteins can be either channels, pores or receptors with
cyclical symmetry (C,). As examples we can name: bacterio-rhodopsin (C3),
AmtB—ammonia transporter E. coli (C3), potassium channels (C4), acetylcoline
receptors (Cs), FocA—formate transporter E. coli (Cs), MscL mechanosensitive
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Table2.1 Stability of the complexes estimated by PISA

PDB code Size of the complex H-bonds Salt-bridges BSA
AmtB 1U7G 3 subunits ~4 ~3 ~17 nm?
MscL. 20AR 5 subunits ~7 ~5 ~18 nm?
FocA 3KCU 5 subunits ~6 ~1 ~15nm?
MscS 20AU 7 subunits ~25 ~8 ~26 nm?

Fig.2.3 FocA and MscL channels have 5, and MscS has 7 identical subunits

channel of large conductance E. coli (Cs), MscS mechanosensitive channel of small
conductance E. coli (C7). In Table 2.1 we list some of the proteins from E. coli with
some of their important characteristics (they all play fundamental roles in the cell
survival®), for resolved crystal structures see Fig.2.3.

Since the aim of this work is to study dynamics and the efficiency of their assembly,
we will focus on the rate of diffusion and the interaction strength between subunits,
which are described in the following two subsections; these two concepts are the
ones we will need for modelling the dynamics of the assembly process later on.

2.2.2 Interactions Responsible for the Formation
of Quaternary Structures

The quaternary structure of proteins depends on the interactions among the subunits.
In general terms, we can summarize all the aspects of the stability of macromole-
cular complexes and their compatibility of assembly as follows: hydrogen bonds,
salt bridges, hydrophobic specificity, interface area; also it is important to take into
account the free energy of the complex formation and solvation energy gain. All
these aspects are treated in detail with different available software. In this work we
use the data available from PISA. Although we do not discuss all of them in detail,
in the next part we discuss the buried surface area concept followed by the analysis
of hydrogen bonds, which are fundamental for the stability of membrane proteins.

5 The mechanosensitive channels are described in detail in this chapter.
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2.2.2.1 Buried Surface Area

The specificity of recognition is estimated from the geometry and chemical properties
of the interfaces between subunits. One of the widely used parameters is the interface
area, which is the accessible surface area of the subunits that becomes inaccessible
to solvent due to protein—protein contacts. This is usually denominated as the buried
surface area (BSA) between the macromolecules [9]. It is usual to have the antigen—
antibody interaction as a reference measure, which is characterised to be in the range
of 12—20nm?. Many other protein—protein interfaces are also found to have BSA in
this range and have what is considered to be a standard interface area [5, 8].

The BSA is characterised by its topology and the number of hydrogen bonds
found on it. Early studies suggested that there is about one hydrogen bond per 2 nm?
of subunit interface [9]. As we explain in the next subsection, hydrogen bonds are
very important for protein stability.

2.2.2.2 Hydrogen Bonds

Hydrogen bonds are known to be one of the main interactions responsible for the
stabilization of the secondary structure of proteins and of the formation of protein
complexes. In non-polar environments such as biological membranes, these bonds
provide enough energy for the establishment of the protein conformation and its
tertiary interactions. They are widely considered to be an important force in the
membrane environment because of the low dielectric constant of membranes and
a lack of competition from water. Indeed, polar residue substitutions are the most
common disease-causing mutations in membrane proteins [4]. The strength of the
hydrogen bonds can be estimated from the structure of the protein. The strength of
the hydrogen bonds in the biological membranes is evaluated to be similar to the
strength in vacuum. For N-H. - - O this corresponds to ~12 kJ/mol. However for an
aqueous environment the hydrogen bond energy is lower, around ~6 kJ/mol.

Apart from the interactions which govern the formation of protein complexes,
it is necessary to understand how they diffuse on the membrane, if one is to model
their efficiency. In the following subsection we provide an estimation of the diffusion
coefficient of membrane proteins, based on the Saffman—Delbruck approach [22] and
the experimental results of Ramdurai et al. [20].

2.2.3 Diffusion Coefficient of Membrane Proteins

The remaining parameter relevant for the assembly of proteins on the membrane is
their diffusion coefficient. More specifically, it is necessary to relate the size of the
protein with its diffusion constant on the membrane surface. There are two models
used in the literature: in the first one the diffusion constant scales with 1/r, where r
is the radius of the protein; the second model (which is recently gaining credibility)
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Fig.2.4 On the left a protein of a radius r diffusing on a membrane of thickness A, and viscosity p.
The membrane is surrounded by a liquid of viscosity w’. On the right the diffusion coefficient in an
uncrowded membrane as a function of the protein radius according to the Saffman—Delbruck law

considers a logarithmic relation between these two quantities. The relation is given
by the Saffman—Delbruck equation [22],

kpT uh
D = 1 — , 2.1
4 uh (n(u’r) y) —

where kj, is the Boltzmann constant, 7 is the absolute temperature, / is the thickness
of the bilayer, p is viscosity of the membrane, p’ is viscosity of the outer liquid
and y is the Euler constant. This model was elaborated by Saffman and Delbruck in
1970 to describe the diffusion in highly anisotropic environments such as biological
membranes. The diffusion of membrane proteins in E. coli was finally analysed in
[20], and the results show the validity of the Saffman-Drubruck equation. In Fig.2.4
we show the prediction, according to this model, for the diffusion of the subunits of
mechanosensitive channels, as well as for the assembled functional channel.

2.3 The First Passage Time Processes: An Estimation
of the Aggregation Time Scale

It is possible to approach the random walk problem with two types of questions:
1. How far from the starting position x is a particle that moves by Brownian motion
after a time ¢?; 2. Starting from the position xo how long it takes for the particle to
arrive for the first time at a point x? The second question is very relevant in the context
of transport in disordered media, neuron firing, spread of diseases, target search
processes, and diffusion-limited reactions. Understanding the first time approach is
essential to derive the main theoretical tool which we use in this part, which is the
Smoluchowski theory of coagulation. We will start by giving a short introduction to
this topic applied to the problem in question. A very good review of first passage
time processes can also be found in Sidney Redner’s book [21].
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2.3.1 The First Passage Time on a Sphere

Since our objective is to describe the diffusion on a surface of a cell we need to
describe the first passage time process on a closed surface. We will solve the problem
for a particle in Brownian motion on a surface of a sphere of radius R. The particle
moves randomly, until it reaches a small absorbent cap, of radius r (r/ R~ sin(5/2)),
on the north pole of the sphere, in a mean time W. Considering x the particle position,
and an infinitesimal time step 8¢, the mean time is given by the recursion formula

Wx) = % ((W(x +dx) + 81) + (W (x — dx) + 61))), (2.2)

which can easily be rewritten as

Wx —06x) —2W(x) + W(x + 6x) = —26t. (2.3)

This turns to
DW"(x) = —1 24)
with D = z—ét This equation can be generalised to a Poisson equation for a

d-dimensional space,

DV2W(r) = —1, (2.5)

where V2 is the Laplace—Bertrami operator of the 2-sphere.® With this formalism is
possible to obtain the average first passage time on a domain with defined boundaries.
The problem, therefore, is reduced to a solution of the well-known Poisson equation
from electrostatics. Considering a description with spherical coordinates, this system
then can be simplified due to its symmetry, since Wis independent of the coordinate ¢,

V2W(9)—1 d2W+cot6dW _ 1 (2.6)
 R2\ 402 do ) ' ’

with the boundary conditions given by

aw
) _ o we)=o. 2.7)
dt
The solution of the equation is’
2R? sin6/2
W) = 28,502 2.8)
D sind/2

6 This operator corresponds to the Laplace operator on a curved surface.

7 The maximum time that it takes for the particle to find the cap corresponds to the starting point
2

0=m W) =L ().
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It is also possible to find the average time 7 for the particle to reach the absorbing
cap from any initial position on the sphere:

- . 2
_ S w©)sin®)ds  2R? m(R). (2.9)

T) = =

i Jy sin(6)d6 D r
With the theory developed in this section it is possible to estimate the time of

formation of the assemblies on the cell surface. It is important to point out that

the assembly time will be dependent on the size of the cell and on the diffusion

coefficient. The dependence on the radius of the particle, as given by the Saffman—

. . . . . ~ 1

Delbruck model of diffusion discussed previously, is T ~ In(R/ r)m. As such,

we have a complete approximation of the time scale of the rate of assembly on

a spherical surface, which we can use as a parameter in our Smoluchowski-based

approach, described in the following sections.

2.4 The Smoluchowski Coagulation Equation

Growth by aggregation is a common natural phenomena found in several different
fields, such as astrophysics, colloidal chemistry, polymer science, graph theory and
biology [13]. In all these areas, the main process can be described as a dynamics
in which complexes of diverse sizes diffuse in the system, and when they approach
each other they coalesce in complexes with larger size, which correspond to the sum
of the masses of the two originating parts,

A+ Ap = Apsn. (2.10)

The most studied process in the literature, which we describe in this section, is that
of unbounded aggregation, where the assembly process proceeds to form infinitely
large aggregates. Such situation applies well to systems such as aerosol and liquid
droplet coalescence. However, for the study of the assembly of homomeric proteins
we use a different approach, which will be described in detail in Sect.2.5, which
imposes an upper bound for the assembly dynamics. This bound for aggregation
convey properties to the system which are very distinct from the unbounded variant.

The time evolution of the coagulation process can be described with a master
equation approach, where the system is represented by an infinite set of differential
equations, which describe the evolution in time of the concentration of each complex
size. The main assumptions which need to be made are as follows [10],

1. The mean-field hypotheses. It is assumed that there are no spatial correlations of
the aggregation reactions, and the particles have a homogeneous distribution in
space. Although it is a very strong assumption it is proved to be valid for many
physical systems.

2. Binary collisions. The reactions happen only between pairs of bodies.
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3. Shape independence. The aggregation process does not depend on the shape of
the aggregate. However it can depend on the aggregate size.

This type of approach to describe the coagulation phenomena was first developed
by Marian Smoluchowski in 1917 [23], when he introduced the approach in its
continuous form, which can be written as

dl’lj 1 ! —
o =3 2 Kujmiminj—i = n; 3 Kijni @11

i=1 i=1
The members and parameters of these equations are the following:

1. j is the agglomerate size, or units of mass. We define a particle of unit mass as
a monomer. Therefore j represents the number of monomers inside a cluster and
is also denominated as a j-mer. The number of monomers can vary in the range
[0, oo].

2. nj is the concentration of particles with size j in the system. It varies in the range
[0, 1].

3. K;j is the rate of a specific reaction, called the agglomeration kernel and reflects
the main dynamical properties of the system. A common assumption is to have
symmetric reactions, K;; = K j;.

4. M is the total number of units of mass, i.e. monomers, present in the system.

M= Zini (1) (2.12)
i=0

Itis a conserved parameter during the process. Itis possible to verify from Eq.2.11
that 2 = 0.

This system was extensively studied for simple kernels such as: K;; = const.,
K;;j =ij, and K;; = i+ j. For most other kernels, an analytical solution has not yet
been found. For example, for the kernel representing the rate of collision for particles
moving in Brownian motion, with diffusion rates D,, and radius R, of a complex of
size u, which is given by K;; = (D; + D;)(R; + R;), a general analytical solution
has not yet been obtained.

It was shown that the important parameter for this system is not the initial con-
ditions, but only the total mass M. Therefore, it is usual to study the system starting
with the simple initial condition

nj(t=0)=M8j1 (2.13)

where the system starts only with monomers. The exact solution can be calculated for
simple kernels. For the constant kernel, Eq.2.11, using Eq.2.12 can be rewritten as

dn/ 1 it
— =5 > minji —njN(), (2.14)
i=1
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where N (1) = > ; n; and be solved by a recursive approach, leading to the solution

-1

N = T (2.15)

For both the sum and product kernels, an exact solution can be obtained by using
generating functions [10]. A very interesting alternative was developed recently by
Lushnikov [16], where the system is described as discrete states, with operators of
annihilation and creation which act on them. Another alternative is to consider a
combined system

Kij = %(i"jﬁ + j%i) (2.16)
where the properties can be analysed in terms of the coefficients o and g [17,27]. In
these systems there is the emergence of very interesting phenomena, such as gelation,
which is characterized by the condensation of a non zero fraction of the total mass
in a single cluster [10]. The system can be in one of two phases: the gel phase (large
cluster) and sol phase (small clusters that disappear with time).

2.4.1 System with Fragmentation

There are many ways to introduce fragmentation in the system, according to the
different dynamics that can be in the core of this process, such as random fracture,
shattering or homogeneous break-outs. In its simplest form, this process is commonly
approached as aggregation running backwards in time (compare with Eq.2.10) [10]:

Apin—> Apn+ Ay (2.17)

The system with aggregation and fragmentation can be represented as

dn; ’

7:A(n1,n2...)+/t Fi(ni,ny...), (2.18)
where A(ny, ny . ..) is the agglomeration part which can be represented as before by
a Smoluchowski coagulation equation. F;(n1, nz .. .) is the part that accounts for the
fragmentation, and its rate is given by a constant w’. The first work on coagulation—
fragmentation systems was done by Blatz et al. [2] and the fragmentation process
was considered as

o0
0
Fitni,ma.)==2LG =D+ > n (2.19)
i=j+1
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Fig.2.5 Mass (number of monomers) as a function of size of the cluster i for different fragmentation
rates w

A fragmentation of this type means that larger complexes have more ways to

fragment. Here we consider a rescaled version of the parameter p = %, such that

we have only one free parameter. The solution of this system is given by [2]
nj= ()71 = p)* ocelDInr (2.20)

where

2.21)

1
p:
1+ u/2+V/u2/4+u

An example for the mass distribution in this system is represented in Fig.2.5. We
can see that for a strong fragmentation rate, such as u = 0.01, the distribution is
concentrated in the range of smaller clusters. However for small fragmentation rate
(u = 0.0001), larger aggregates form and the mass is spread on a larger range of
aggregate sizes. The decay is always exponential, with exponent In p.

2.5 The Efficiency of Formation of Protein Complexes

In the following part we present a general theoretical approach for the assembly of
protein subunits into oligomeric complexes. Although little is known about the steps
of this process, the consensus is that the subunits after production are incorporated in
apparently non-correlated locations in the lipid bilayer. They diffuse and by chance
approach each other. The short range interactions promote their assembly, and linking
bonds between subparts are created. In the case of homomeric proteins, there is a
geometrical constrain for the coalescence process. The bounds between subunits are
specific, and they establish angles between monomers, which determine the shape
of the final structure. This works as a physical barrier for the assembly.
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Because we describe an aggregation process, we use the Smoluchowski
coagulation approach. As we described previously, the entire reaction dynamics is
defined by the coagulation kernel. This approach is equivalent, but largely simpler
computationally, to the average calculation of simulations based on individual parti-
cle trajectories. Therefore, we highlight that all the numerical solutions presented in
this chapter are only numerical solutions of the Smoluchowski coagulation equation.
The kernel that we use in the following sections is the constant kernel, which comes
from the assumption that every collision leads to an agglomeration event. Therefore,
the rate of coagulation reflects directly the dynamics of particle encounters on an
approximately spherical surface. As we explained in Sect. 2.3 the first passage time
on a sphere is proportional to the radius of the sphere and the diffusion coefficient.
The dependence on the radius of the particle, as obtained with the Saffman—Delbruck
model of diffusion discussed previously, is 7~1In(R/7) (} Gk Such a logarithmic
dependence on the complex size is very weak, especially if the size of the complexes
formed do not vary by many orders of magnitude. Therefore it is justifiable to use a
constant kernel as a first approximation, since it simplifies the analysis considerably.

We are interested in the situation where the complexes cannot exceed a maximum
size N, as is the case of many protein complexes. This will result in a truncated form
of the master equation of Eq.2.11, proposed by McLeod [18].

dn; 142 ey
7 = 3 2 Kejmiminj—i =nj 3 Kijni @22
i=1 i=1

This is the equation that we will employ in our further studies of protein complexes.
Equation2.11 is its formal limit for N — oo [14, 18] and for M < N. Equa-
tion2.22 has one and only one solution for each set of initial conditions, such that
n; > 0 (see [18]).

We are particularly interested in the calculation of the ratio of total monomers
which are incorporated into the complexes of maximum size. Our objective is to
analyse in which conditions this quantity reaches it largest possible value. To quantify
this ratio, we use the term efficiency, which has the following meaning throughout
this chapter.

Definition The efficiency E of formation of particles of maximum possible size N,
is the fraction of monomers (n,) belonging to complexes of size N in the steady
state:

E=nyN. (2.23)

We start with the irreversible process and follow with the addition of a fragmen-
tation. We analyse the steady state distribution of the particle sizes.



18 2 The Role of Fragmentation on the Formation of Homomeric Protein Complexes

2.5.1 Steady State Size Distribution with Irreversible Dynamics

In this section we analyse numerically the truncated Eq.2.22 with a constant kernel,

K;j = 1. We start the analysis with the study of the steady state (% = 0 for all j).

As we can see from the Eq.2.22 a general characteristic of the steady of the system

isthatalln; = 0 fori < % This fact is easy to prove by induction and it does

not depend on the initial conditions. On the other hand the values of n; for i > %

will all depend on the initial conditions, and any final distribution of n;, i > % is

possible. For example, trivially, a set of any initial conditions which has only n; > 0
(V i > %) will not evolve further in time and will be a fixed point. This is a direct
consequence of the size constraint that we impose on the system, since particles of
sizes larger then N can not be formed, i.e. a collision between two particles, for which
the summed mass exceeds N, does not lead to aggregation.

However we are interested in a specific set of initial condition, where only
monomers are present, because this is how we expect to find the protein subunits in
the beginning of our process. Therefore we start with mono-disperse initial condi-
tions, nj(t = 0) = 1§;1. Subunits assemble into complexes through the evolution of
time and the processes stops when subunits of small sizes (i < %) are completely
consumed (see Fig.2.6), since larger complexes with number of particles i > %
cannot coalesce. An example of a final size distribution can be seen in Fig.2.7. It is
possible to identify three regions in the distribution as follows, for convenience, we

assume that N is odd,

N
nj=0 forj< > (2.24)
N—j
dnj nj—i N . 2N
=i Zl m (S =) for T <j= (2.25)
N—j i<N/2
dn; nj_ 2N .
d_tj = E n; (% —nj) + Z ninj_; for = <J (2.26)
i= i=N—j+1

where

1 otherwise. (2.27)

5— {2 ifi <2j—N
The case for N even can be obtained by including the appropriate terms proportional
to N2/2. The two solutions should converge to each other for N > 1. The parti-
cles of size j < N/2 are always consumed, and for the larger sizes there are two
accumulation behaviours depending on how strong is the effect of the size constraint
imposed.
It is also possible to see the effect of the system truncation from the approach
introduced by Davies et al. [6]. It is possible to see the evolution in time of the
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Fig.2.6 Time evolution of the concentration of j-mers in an aggregation process with a truncation
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Fig.2.7 On the left the equilibrium distribution for N = 100 starting from monodisperse initial
conditions. in; the total mass of i-mers in the system as a function of particle size i. On the right is
the efficiency of the process as a function of truncation size N

process as a flux of mass (monomers) on a lattice with, in our case, N sites. The site r
represents the total mass of the particles of size r (rn;,). In this case we introduce J;-
which is the mass flux from the cluster at maximum size r to clusters of size larger
than r (see Fig.2.8).

r

=>
j=1

N-—r
> iKijcje (2.28)
r+1—j

i=
The variation of the mass of particles with size r is therefore

d(rcy)
dt’ =J_1—J, (2.29)

As we can see in Eq.2.28 the flux J, decreases as r approaches N. The flux of mass
is larger for smaller r and decrease progressively until the site N.

However, the most important thing is to see how this effect is reflected on the
efficiency of the process. The efficiency of the process decreases with the increase of
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Fig.2.8 We can also o J J
represent the system by a [ ) I-1 r
mass flux trough different o [ ) \ /> { J N
states of agglomeration using l. ‘ o N
the concept of a flux J,

r

the maximum size N, as can be seen in Fig. 2.7. With the increase of N the number of
the intermediate states N > i > %, in which a subunit can get trapped increases as
well. If the total mass of the system is spread through a larger number of intermediates,
not many complete complexes are formed at the end of the process.

As we can see, the efficiency of the process is constrained by the assembly dynam-
ics, more specifically by its irreversibility. An alternative therefore is to consider a
reversible process, which we do by the introduction of a fragmentation rate in the
next section.

2.5.2 Role of the Fragmentation

In this section we introduce a fragmentation rate p into the process. The system
therefore acquires reversible dynamics and in the steady state there is an equilibrium
between the assembly of the still incomplete complexes and the fragmentation. The
fragmented particles therefore function as a additional inflow of subunits into the
system. The dynamics of the system can be represented by Eq.2.18. However here
we use a truncated version of F;(ny,nz...)

dn; 1.2 N n; N
d_tj =3 ;Ki,jfininjfi —nj ; Kijni —p Ej(j -1 +i_§_1ni . (2.30)

Similarly to the case of the aggregation kernel, we adopt simple forms of the frag-
mentation rate. We consider two cases: open and closed chains. For open chains we
consider a constant fragmentation rate independent on the size of the complex. In
the second case we consider a constant fragmentation rate for all intermediate com-
plexes except for the last one, which is considered to be more stable. This reflects
the formation of circular chains of proteins, where the fragmentation of a complete
chain implies in breaking not only one, but two links.

2.5.2.1 Uniform Fragmentation Rate (Open Chain)
In this part we analyse the steady state solution of the system with uniform fragmen-

tation. It is possible to find the solution of the steady state, which is given by the
expression
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J

nj= 2.31)

wi=t

for j > 1, which can be verified by substitution in Eq.2.30. The remaining value
can be determined from the relation of conservation of monomers with time

(2.32)

We can see that the distribution depends strongly on the fragmentation rate p (see
Fig.2.9). In this case we also produce intermediates and the proportion of these
intermediates is related to . As the fragmentation rate increases, the predominant
size of intermediate complexes changes from the maximum size N to smaller values.
In order to obtain this dependence on 1 more precisely, we differentiate Eq.2.31 in
respect to wu,

dnj _ I’l{ dn1 ( ) (2 33)
dp /! ]du / '

On the other hand, the differentiation of Eq.2.31 gives us

dn ni ( M )
o - — ), (2.34)
du My (e, ny())

where

l

N i dM
Mi (i, n1 (1)) =Z 11 My m () = m = (2.35)

Using Eq.2.33 we obtain

dnj n; M
—L =1 - —). (2.36)
du My (e, ny)

The equation above shows us that ny(u) is a strictly decreasing function, since
NM > M, always holds, as can be seen in Fig.2.9. This equation also shows that
n is always an increasing function with u, since M < M;. However it is not as
easy to obtain the behaviour of other intermediates, n; with 1. We can calculate the
maximum of the function, in other words the value of x for which n; is the largest,
by solving the polynomial

(2.37)

N n
2= =
i=1 H

This analysis shows how different is the behaviour of the system with the introduction
of fragmentation. The efficiency of the process increases for © — 0, however at the
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Fig.2.11 The efficiency of formation of complexes of maximum size as a function of truncation size
N, for the system without the fragmentation rate (solid line) and for the system with fragmentation
(dashed line). There are a small increase in the efficiency of the process for small fragmentation
rate. However the efficiency still strongly decreases as we increase N equivalently to the case with

irreversible dynamics
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Fig.2.12 The n* is the size of particles present in larger concentration in the steady state distri-
bution of the system. The complete complex size is the most formed j-mer for a wide range of
w. The distribution approaches the non-truncated Smoluchowski coagulation equation for large
fragmentation rates

point i = 0 the system is again irreversible and the efficiency drops discontinuously
(see Figs.2.9, 2.10, 2.11).

The behaviour of the system changes in important ways as the value of y is varied:
For small values of p, the constraint of the maximum size will be the main factor
to determine the steady state distribution. However in a system with large values
of w, the constraint stops influencing the dynamics, since the fragmentation does
not permit the mass flow in the system to reach the maximum size. In this situation
the dynamics is identical to a traditional Smoluchowski coagulation with N = oco.
This fact is illustrated in Fig. 2.12, where it is shown the size n* of the particles that
dominates in the distribution of the mass of the steady state, n*n,« > jn; Vj, as of
function of w. For small values of u the predominant size is the maximum possible
size N. However as the u increases the fragmentation does not allow the mass flow to
distribute significantly further a certain j-mer (j < N). In this case the predominant
size that captures the larger number of monomers in the steady state is an intermediate
size. A similar message is shown in Fig.2.13, where the system is divided in two
regions, as a function of the parameters p and N: the black region represents the
system with the steady state mass belonging predominantly to particles of maximum
size (E > 0.5), and the white region it is the intermediate particles which dominate
(E <0.5).

We now turn to a relevant aspect of aggregation of protein complexes which is the
time necessary for their formation. We have obtained so far that smaller fragmentation
leads to higher efficiency. However, an aggregation process which relies on a very
small fragmentation rate will also tend to be very slow, and in some cases there will
be a limitation for the time of aggregation. Such a time limit is present, for example,
in a living organism which is expected to duplicate the number of all its arsenal of
proteins during a replication cycle. Therefore it is interesting to analyse the assembly
product after a given time, in a stage before the system achieves the steady state. The
simplest consequence of this limitation is that very small fragmentation rates will



24 2 The Role of Fragmentation on the Formation of Homomeric Protein Complexes

100 [

60 [

| | | | | |
0.000  0.002 0.004 0.006 0.008 0.010
v

Fig.2.13 In black the region of parameters (N-maximum of the size grow and p-fragmentation
rate) where the aggregates of maximum size N have the larger total mass, Nny > in; Vi # N

T u u T T
o N =5

107 1077 107 107 107 107 1077 107 107" 107
14 i

Fig.2.14 The efficiency E of the assembly process as a function of p different values of N for a
system in a transient state (points) and in the steady state (solid lines). On the left the iteration time
is equivalent to 1,000 sec and on the right to 10,000 sec

not have any effect. Our observation is that with this limitation there is an optimum
fragmentation rate (see Fig. 2.14), and that this optimum decreases with the maximum
complex size. For a E. coli bacteria the replication time is 20 min. The association
kernel can be estimated from the Eq.2.9 to be ~0.01s~!. Figure2.14 shows how
the efficiency of the assembly changes with the protein size for the estimated time.
From this estimation we see that very large complexes with this limitation can not
be formed efficiently, even if the fragmentation rate is very low.

2.5.2.2 Fragmentation Rate for Rings (Closed Chains)

In this part we consider a system where the complex of maximum size has a higher
stability then its intermediates. In this case the monomers assemble in to a circular
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Fig.2.15 Distribution of particle mass in; as a function of particle size i, for closed rings with
N = 50. On the left we show the final distribution for three fragmentation rates . On the right we
show how the efficiency of formation of i-mers changes with u, for different values of i

geometry that closes into a ring when the final size complex is achieved. All the
intermediate complexes will have a fragmentation rate ;.. However due to the circular
geometry, two links have to break in order to fragment a complex with maximum
size, and therefore the fragmentation rate for it will correspond to 2,

n N-1 .
Fininy..) === =1+ > nituny j#EN (2.38)
i=j+1
nn

Fy(ni.ny...) = —p=—(N = 1) (2.39)

Similarly to the case of open chains, we can find the steady state distribution. In the
case of n; > 0, the steady state solution is

J

n
nj= j{] l<j<N, (2.40)
"
n (2.41)
nN = —, .
uN

where ny can be determined from the relation of conservation of monomers with
time
N

N-1 . j

_ Jn ny

M= 21 e (2.42)
=

As we can see from the Fig.2.15 by the decrease in the fragmentation rate of the
complete complexes strongly favors their concentration, as expected. As for the
previous case we analyse the dependence of ny on .
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d}’lN anl\’—l dl’l] ni
— = N —_— - — (2.43)
du u du
Also differentiation of the conservation relation gives us:
N—-1 . j
d n d
< PO )+ NS~ (2.44)
du o wi= du
g [N jn{ - N-1 ]zn{—l dny ) " N—-1 n{—l 045)
du | &~ pi-1 | & pi-t \dp n w =it ‘
j=1 j=1 j=1
A substitution in Eq. 2.44 results in:
1 (S 2] N2V fdny om 1S nd
— > =+ — — —— )+ - =0 (2.46)
nm |\ = w 2z dp w =
j= j=
Defining M as:
M =3 e = S o oy
N = - , ,n = ——= .
1(, ny (e 2 i P 1(m, ny(p oy dm
We end up with the expression
d M—N
dny _mi (1 _ M= Nny) ”N))_ (2.48)
dp  n M
This expression shows that ny is always a decreasing function with w, since
d MN N
VLA ) (1 - ”N) <o. (2.49)
dup M

The efficiency of this process is higher (Fig.2.16) compared to the system with
an open chain (Fig.2.11), however it has also the same qualitative behaviour with
w — 0 (Fig.2.15). The formation of the complexes with the maximum size is still
predominant even for relatively large 1, compared to the open chain system.

As it possible to see from Fig.2.15, this system has two local maxima, one for
the particle of maximum size and another determined by the fragmentation rate.
A predominant fraction of the system’s mass often corresponds to the particles with
maximum size N, until the stage when it ceases to be affected by the truncation
completely. At this point the system behaves analogously to the system without
truncation (see Fig.2.17). This result is very similar to the case of an open chain
analysed before.
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Fig.2.16 The efficiency of formation of complexes of maximum size as a function of truncation size
N, for the system without the fragmentation rate (solid line) and for the system with fragmentation
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Fig.2.17 The n* is the size of particles present in larger concentration in the steady state distri-
bution of the system. The complete complex size is the most formed j-mer for a wide range of
. The distribution approaches the non-truncated Smoluchowski coagulation equation for large
fragmentation rates (dashed lines)

It is also possible to analyse this system for a time-limited dynamics, similarly
as done in the case for open chains. In this case the system is strongly robust to
strong fragmentation rates, however with the imposition of a time limit, lower values
of fragmentation also do not lead to higher efficiency, as can be seen in Fig.2.18.
It can be observed that there are optimum values of fragmentation, for which the
value of E is maximum. From Fig.2.18, we can see that the formation of large
complexes is strongly constrained by the time limitation. For a time of 1,000 sec,
most complexes cannot be formed with maximum efficiency, regardless of the value
of w. For a biological system, this can imply an extra evolutionary pressure to keep
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ent values of N for a system in a transient state after 1,000 sec (points) and in the steady state
(solid lines)

the complexes small, and to tune the fragmentation rate to correspond to the optimum
peaks in efficiency.

2.6 Discussion

In this chapter we analysed the formation of protein complexes on the cell membrane
with the use of a truncated form of the Smoluchowski coagulation equation. Our
aim was to understand the role of fragmentation on the efficiency of the process.
In the case of zero fragmentation rate, the irreversibility of the process leads to low
efficiency, because the steady state is characterized by a large amount of incomplete
intermediates that fail to achieve the maximum size. This is a consequence of the
fact that as the small particles are consumed, the growth of the particles of large
size is constrained. This effect gets stronger for larger complexes, due to the larger
number of intermediate states in which the complexes can be trapped before achieving
its final size. The introduction of fragmentation changes this behaviour, because it
allows the system to reverse the dynamics with a rate . The equilibrium between
aggregation and fragmentation results in several possible types of final distributions
depending on the parameter p. Some of these distributions are far more efficient than
the irreversible process alone. Furthermore we were able to prove that a dynamic
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with infinitesimally small but non-zero fragmentation (© — 0) is the most efficient,
independently on how large is the final size that is necessary.

The application of these results to the formation of homomeric protein complexes
suggests possible pressures to which their evolution was subjected: larger complexes
(those with a larger number of subunits) must have smaller fragmentation rates, which
implies more specific interactions between their subunits, to allow for an efficient
assembly process. This requires larger interaction surfaces and a larger number of
bonds between subunits. We compare the data presented in Table 2.1, where it is
possible to see how the number of hydrogen bonds and BSA increases with the
number of subunits that form the complete complex. As more protein structures
become available we suggest a systematic continuation of this comparative study.

A decrease of the fragmentation rate necessarily implies a longer time to achieve
equilibrium. Therefore the most efficient assembly processes would have to take a
longer time. For E. coli bacteria the replication time is of approximately 20 min.
During this time the bacteria doubles in size and the number of proteins received
by the two daughter cells should be identical to the original. Therefore there is an
upper bound for the available time for protein formation. For the aggregation kernel
equivalent to 0.01 s~ the fragmentation below ~107> s~! will not be relevant for
the process. This implies that each organism will have an upper bound for the larger
possible complex size that it can form efficiently, and that for each limited time of
formation and protein size there is an optimum fragmentation rate.

‘We propose as a possible continuation of this theoretical study the introduction of
distinct aggregation kernels and fragmentation rates. One of the possible alterations
is to introduce a diffusion rate which changes with the size of the complex and see
how that would alter the dynamics. Also a fragmentation rate that decreases with the
complex size or corresponds to certain empirical data would be of interest. Addition-
ally, as an application of the theory, one could investigate the pore forming toxins
of bacteria, which also consist of subunits that assemble on the infected membrane,
and form holes causing host cell leakage. Since “bacteria toxins are some of the most
potent poisons to man” [24], the understanding of their process of assembly can be
relevant for pharmaceutical applications.
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Chapter 3
Collective Response of Self-Organised
Clusters of Mechanosensitive Channels

3.1 Introduction

The spatial organization of cellular components can strongly influence the function of
biological systems. In this chapter we analyse the consequences of self-organization
on the function of channels sensitive to mechanical forces on the cell membrane.
These channels have properties that permit them to mutually interact, and enable
them to change from an individual to a cooperative behaviour. This characterizes
a type of emergent behaviour, where the global properties of the system do not
reflect directly the behaviour of its constituents. Emergence and self-organization
are widespread phenomena in nature, and are the hallmarks of the area of “complex
systems”, which spans diverse fields such as nonlinear dynamics, statistical mechan-
ics, network theory, and biology. In this chapter, we focus on an approach based on
statistical mechanics, where we map the system of interest to a simplified model,
of which an extensive analysis is possible, and which is capable of qualitatively
predicting important properties of the original system.

The cooperative behaviour of interacting proteins on the cell membrane is a very
current and important topic of investigation [1]. It is believed that many proteins
exert their function through global interaction with other proteins of the same type.
One paradigmatic example are the Mechanosensitive channels, which are sensitive
to mechanical stimuli. These channels are particularly sensitive to their local mem-
brane environment, and will change their conformation accordingly. Neighbouring
channels will therefore affect each other via membrane deformations, which, under
the right circumstances, may lead to a collective behaviour of several channels. The
behaviour of individual channels is well understood, in particular the mechanosen-
sitive channels of E. coli [2]. In these bacteria, their main role is to sense the tension
of the cytoplasmic membrane, and respond in case of osmotic stress. However these
types of channels are present across all realms of life, and are responsible for diverse
functions, such as volume regulation, locomotion, and sensory input and signalling.
In many of these organisms, mechanosensitive channels occur in very large numbers,
and their cooperative behaviour is still not well understood.

K. Guseva, Formation and Cooperative Behaviour of Protein Complexes 31
on the Cell Membrane, Springer Theses, DOI: 10.1007/978-3-642-23988-5_3,
© Springer-Verlag Berlin Heidelberg 2012
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The objective of this chapter is to construct a theory for the self-organization
and cooperative behaviour of mechanosensitive channels [3]. We employ a statis-
tical mechanics approach, and describe the system in a simplified manner, where
the channels can occupy positions in a discrete lattice, and their conformations are
described by spin variables. In this manner we are able to obtain the conditions nec-
essary for channel agglomeration and collective gating, as well as characterize some
dynamical features of the global behaviour. We find that the collective behaviour of
mechanosensitive channels is drastically different from that of isolated channels, in
many biologically relevant parameter regions, which has strong implications for the
functioning of the cell. One of our major findings is that channel clustering leads to
a lower threshold of channel activation, causing the clustered channels to open for
much lower membrane tensions. Furthermore, clustering leads to an increase in the
time it takes for the clustered channels to open in response to osmotic shock, which
can have drastic consequences for cell survival.

This chapter is organized as follows. In Sect.3.2 is a general introduction to the
field of mechanosensitive (MS) channels. We start it with a short description of the
two most well described mechanosensitive channels of bacteria: mechanosensitive
channels of large conductance (MscL) and mechanosensitive channels of small con-
ductance (MscS). In Sect.3.2.2, we follow with a short overview of MS channels
in eukaryotes. Section3.3 describes the experimental techniques used in the area.
We start with the patch clamp and the methodology developed by Kung et al. [4]
twenty years ago that made possible to obtain extremely large E. coli cells to be used
with the patch clamp approach. Then we describe the GFP method of labeling of
mechanosensitive channels which is used to relate the channel spatial localisation to
its activity.

Section3.6 is a detailed analysis of possible interactions between proteins on
the membrane surface. We start with a review of the three possible protein—protein
interactions: electric, entropic and elastic. We then focus on the last one, since it is
the most important type of force in the context of mechano-transduction. We then
quantify this type of interaction between MS of E. coli using their crystal structure.

In Sect. 3.8 we introduce the simplified model of channel aggregation which takes
into account the nearest—neighbor interactions on a two-dimensional discrete lattice,
and we obtain the conditions necessary for channel agglomeration, based on the
interaction strength and channel density. In Sect. 3.9 we map the gating dynamics of
interacting channels into an Ising-like model of interacting spins, with the presence of
a spatially-correlated field, which depends on the spatial distribution of the channels.

3.2 Mechanosensitive Channels

It is useful to classify ion channels in three major groups according to their gating
mechanism: the voltage-gated, the ligand (receptor)-gated and the mechanically-
gated. In this study we are particularly interested in the last group, which are called
MS and are found in the all three domains of life [5, 6]. Although they do not have
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the same evolutionary origin, they all are characterised by being able to respond to
mechanical stimuli. These stimuli can be intracellular (transmitted by the cytoskeletal
components), extracellular (caused by the perturbation of extracellular matrix) or
as simple as the variation of the tension of the cell membrane. Additionally, it is
important to note that some channels, although not gated directly by mechanical
perturbation, are modulated by it. Recent studies have been pointing to emerging
candidates that are sensitive to biophysical changes of the lipid bilayer that surrounds
them [7].

The most well characterised mechanosensitive channels are from the bacterium
E. coli. In prokaryotes these channels are gated exclusively by membrane
deformation and are often used as a paradigm in the study of the effect of mechanical
force across the membrane [2, 5, 8]. Since bacteria are easy to manipulate experimen-
tally, these channels have been extensively cloned and their 3D crystal structure has
been solved. In the following sections, we use this and other data available to develop
a theoretical approach to study how this type of channels can be affected by their
spatial surroundings. These channels locally deform the membrane in the process
of their gating, and simultaneously their gating is a consequence of the membrane
deformation [9]. Therefore the gating of a given channel will be a direct result of
the bilayer stretch (due to turgor pressure) or a reaction to other mechanosensitive
channels in its neighborhood. It is the final aim of this chapter to understand how
these membrane-mediated interaction may lead to a cooperative behaviour, and how
this alters the channel gating.

We follow with a more detailed description of the function and properties of these
channels in prokaryotes and eukaryotes.

3.2.1 Prokaryotic Mechanosensitive Channels

In prokaryotes the mechanosensitive channels have a vital function in osmotic reg-
ulation. It was noticed that bacteria can easily adapt to a wide range of osmolarities
and even survive strong osmotic shock [2, 6, 8]. For E. coli bacteria, a certain mem-
brane tension is necessary for growth and cell division. The usual pressure felt by the
membrane is in the range of 2—6 atm [2]. When E. coli is placed in a medium of low
osmolarity, water enters the cell. Strong water influx increases the pressure on cell
membrane and the cell rapidly increases in volume. The membrane turgor increases,
activating the mechanosensitive channels that feel the bilayer stretch. These channels
allow for the passage of water, together with its solutes, to quickly equilibrate the
osmotic levels of the cell with the environment (see Fig.3.1).

3.2.1.1 Mechanosensitive Channels of Large Conductance

Large mechanosensitive channels were first isolated from E. coli and are the most
well understood mechanosensitive channels. The reconstruction of the channel in
lyposomes and native membrane patches revealed most of its properties. However the
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Fig.3.1 Reaction to osmotic shock of E.coli. When immersed into low osmolarity medium the
water penetrates into the cell increasing its volume. With the rise of internal pressure the membrane
and the cell wall are stretched to the new size. The tensioned membrane exercises a force on the
channels that leads to their opening. The open Msc release internal solutes with water from the cell
and the pressure is relieved

Fig.3.2 Closed and open structure of MscL (from the crystal structure 20AR and trans-membrane
domain of the open structure simulated by Sukharev et al. [11]) viewed with PyMOL. TM
corresponds to the trans-membrane domain of the protein and CP is the cytoplasmic domain

first crystal structure was resolved for MscL of M. tuberculosis [10]. In this work the
channel was crystallised in its closed state, revealing a homomeric protein complex
composed by five subunits, see Fig. 3.2. The channel has most of its volume immersed
in the lipid bilayer (the trans-membrane domain) and has only a small part inside
the cytoplasm (the cytoplasmic domain). Each of the channel subunits possesses
two trans-membrane helices: TM1 forms the pore and TM2 is external and enters in
contact with lipids. The gating mechanism of the channels involves a rotation of those
helices. Therefore there are not many bonds linking these helices together, and they
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have some freedom to move without constraints [11]. MscL from M. tuberculosis
is homologue to MscL of E. coli and experiments suggest that they do function by
similar mechanisms. Therefore it was possible to use the obtained crystal structure
which served as a template to establish a model for the structure of MscL of E. coli.
Works by Sukharev et al. [11, 12] on molecular dynamics proposed also the open
state configuration structure. The diameter of the open pore was estimated in previous
experiments and established to be around 4 nm [13]. The channel conductivity was
measured to be around 3nS [14]. Which gives a water flux estimation through the
pore to be ~108molecules/s, which corresponds to 0.1% of the cell volume per
second. Furthermore a pore of this size is large enough to be able to transport small
proteins (of around 10kD). The loss of proteins can be lethal for the cell. Therefore
it is speculated that MscL is used only as a final resource to avoid cell death in the
conditions of osmotic stress. For this reason the channel gating tension of MscL is
much higher than other mechanosensitive channels of bacteria. The gating tension is
estimated to be 2.5 k, T /nm? [6, 15], which corresponds to a energy of activation of
~50 kJ/mol. To avoid unnecessary leakage, the channel should also be regulated to
close as fast as possible, once the desired osmolarity is restored. The number of MscL.
channels on the membrane was estimated to be ~5. In such small concentration they
can rarely interact, however in the vast majority of studies they are overexpressed or
inserted in to lyposomes in high concentrations.

3.2.1.2 Mechanosensitive Channels of Small Conductance

For reasons still not well understood, there is more than one type of mechanosensitive
channel in microorganisms [2]. In prokaryotes, another such channel is the MscS,
which it is very different structurally from MscL. A possible common ancestor of
both channels was suggested to be a type of channel from archae [6]. The crystal
structure of MscS in E. coli (see Fig.3.3) was solved by Bass and coworkers (in its
closed state) [16] and by Booth (in the open state) [17]. These works show the small
mechanosensitive channel as a homomeric protein composed by five subunits with
a pore size of ~1 nm. It has three trans-membrane helices and a large cytoplasmic
domain. The number of channels present in a prokaryotic cell was estimated to be
around 20. Homologues of MscS are present in several other microorganisms, and as
well as in all plants [7]. The gating threshold was established be ~1 &, T/nm2 [15].

3.2.2 Eukaryotic Mechanosensitive Channels

3.2.2.1 Mechanosensitive Channels in Animals

In animals there are many types of cells that are found to have some type of
mechanosensitive channel analogue. These channels have a different evolutionary
origin from MscL and MscS of prokaryotes, however they have very similar way
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of function [7]. The similarity lies on the influence of the membrane on the chan-
nel’s gating process, although their complete function normally involves a more
complex mechanism. For example, it can involve the cytoskeleton or even the extra-
cellular matrix. These channels can be adapted to very distinct and specific types of
functions [7, 8]. In sensory cells they are responsible for identifying mechanical
inputs such as sounds (hearing), and gravity (balance). They are also responsible for
the process of touch sensation, proprioception. Additionally they are important for
body homeostasis, such as in the case of blood pressure, and also morphogenesis and
cell migration. Examples of such channels are: TRP channel family, MEC and K> p.

3.2.2.2 Mechanosensitive Channels in Plants

Although there are no proteins that are evolutionarily related to bacterial MS in
animals, in plants the situation is different, and there are homologues to MscS chan-
nels which are evolutionarily linked to their bacterial counterparts [7]. Although they
were established to be sensitive to tension in the membrane, their function is not yet
characterised and can be only inferred from the bacterial analog. Plants do respond to
several mechanical stimuli and many works are still in progress to relate the activities
of MS to those responses [5]. Mechanosensitive channels play an important role in
the gravity sensation in plants. The growth in the appropriate direction is possible
as a response to a sensory system in the tip of the root and in the endodermis of
the stem [5]. Also mechanosensitive channels are important for osmotic regulation.
It was also proposed that MS channels can be responsible for the temperature
responses in plants, which activate different genes with changes in climate. The
mechanism proposed for activation involves properties of the channels that make
them sensible to membrane fluidity.

3.3 Experimental Techniques Employed in the Study
of Mechanosensitive Channels

The electrophysiological techniques are usually employed together with genetic and
biochemical methods in the study of mechanosensitive channels [2]. The channel
structure could be obtained as described previously for small and large mechanosen-
sitive prokaryotic channels. The identification of gene of these bacterial channels
allowed for their cloning and sequencing. It was also possible to obtain mutations
responsible for the gain-of-function and loss-of-function for the channels. These
studies permitted to understand better the gating mechanism.

Another subject of study has been the channel interaction with lipids. For this
purpose it was possible to use the fluorescence of Trp residues (a fluorophore),
which requires a mutation of the channel by the addition of Trp or Cys residues.
These studies allowed to determine the preference for lipid of mechanosensitive
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domain

Fig.3.3 Crystal structures of MscS in closed (leff) and open (right) conformations (PDB codes
20AU and 2VV5, viewed with PyMOL)

channels. For E. coli membrane in particular, it was found no evidence for a strong
lipid preference [18].

Another type of study analysed the lipid composition effect on the channels
response to osmotic stress [19]. They find strong evidence that changes in the lipid
environment does affect the gating. The variation of the membrane environment
composed by lipid hydrophobic chain from 16 to 20 carbons increases the gating
tension threshold of the channels.

In the following two sections we summarize the important aspects of the two main
techniques that we consider to be the core of the research necessary to validate our
model. The Sect.3.3.1 describes the mechanism to measure the tension sensitivity
of mechanosensitive channels and the Sect. 3.3.2 allows for channel visualisation on
the membrane.

3.3.1 Measurement of the Channel Gating
and Sensitivity to Tension

The patch clamp method uses a micro-pipette to record currents trough ion
channels. The imposition of a pressure differential across the bilayer drives ion
movement, which permits to record the changes between the open and the closed
states of the ion channel. This measurement can be used to establish the channel
sensitivity to pressure (and tension). Furthermore, examination of the step changes
in the ion current provides the channel opening time and conductance. Additionally,
this experiment allows to determine the ion selectivity.

However, the bacterial cells are too small to be analysed directly by patch-clamp
methods. The diameter of a E. coli cell is ~3 um when the patch clamp pipette
has a diameter of ~3—10 um. Therefore the first significant achievement in this
field was the development of methods to overcome this difficulty [6]. One tech-
nique made possible to fuse the native bacterial membrane with liposomes or even
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(a) (b)
+ cephalexin
(C) + Lysozyme (d)

+ EDTA

Fig.3.4 The preparation for the patch-clamp in bacteria. a the bacteria E. coli is smaller than the
patch-clamp pipette. b growing the bacteria with the presence of cephalexin, the cells division is
inhibited ¢ Lysozyme and EDTA digest the cell wall d the produced spheroplasts are large enough
to allow the patch-clamp measurements

to directly insert the purified channels in liposomes. Another type of essay devel-
oped by Martinac et al. [20] 20 years ago made possible to grow giant spheroplasts
from E. coli cells. The method involved the use of the antibiotic—Chephalexin, that
inhibits cell division. In the presence of this substance bacteria cells grow in snake-
like filaments and are unable to divide. After the growth their cell wall is digested
with lysozyme and EDTA producing spheres with radius ~5 um, called spheroplasts
(see Fig.3.4). These spheroplasts are then large enough to enable further studies [20].

3.3.2 Spatial Localization of Mechanosensitive Channels

To study functional localization, one needs to know how the protein is distributed on
the cell membrane. The usual and most extensively employed technique is to fuse
the protein gene with the gene of GFP (green fluorescent protein) and express it.
After expression the protein can be visualised by confocal microscopy. This method
was used to obtain the fusion protein MscL-GFP in bacteria by Norman et al. [21].
This study shows that channels are formed on the membrane, and compares them
with the wild type. Their main properties can be summarized as being very similar
to wild MscL, however with a slightly higher gating threshold. The visualisation
of MscL-GFP is the done using confocal microscopy. This study shows the spatial
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distribution of mechanosensitive channels on lyposomes and it is possible to see that
their spatial distribution is not homogeneous [21].

This summarizes the most important techniques that are necessary for the study
and determination of all the necessary parameters of our study. In the next section
we explain some of the results of the localization of mechanosensitive channels on
the membrane and describe some evidences for their agglomeration.

3.4 Evidences of Clustering of Mechanosensitive Channels

The interaction of mechanosensitive channels on the native membrane of E. coli could
not be observed. These channels are present in low densities (~5 per cell) and the
interactions should be very rare events. However the artificial environment created
when experimental studies are performed can favor the occurrence of interactions
if the number of channels is increased. In fact, in many of studies performed in
bacteria those channels are overexpressed. Also in some studies described previously
in Sect.3.3.2 there were observations of non-homogeneous distributions of large
mechanosensitive channels in lyposomes [21].

Although there is no direct evidence for cluster formation in native membranes of
bacteria, in eukaryotes it was observed for several distinct organisms. For example,
there are reports on the clustering of mechanosensitive channels in plants, where
special MscS-like proteins called MSL2 and MSL3 cluster on the poles of plastids
in the plant A. thaliana [5, 22]. The studies speculate that this distribution favors the
redistribution of the channels during the plastid fission. However our study suggests
that the function of the channel will also be altered by their group reaction behaviour.

Another reported case of channel aggregation is the clustering of mechanosen-
sitive channels such as MEC-4 and MEC-10 in C. elegans [23]. These channels
are responsible for the sense of touch in this organism and form equally spaced
domains in neurons [4]. This model of mechano-transduction is still not completely
understood and involves a complex of proteins associated to microtubules. However,
we speculate that the role of clustering and cooperative gating are also relevant in
this case.

3.5 Individual Channel Gating

As described previously, our objective is to study the effect of cooperative behav-
iour on the function of mechanosensitive channels. However, it is important first to
describe the function of an isolated channel.

Mechanosensitive channels switch conformations between an open and a closed
state as a response to the tension in the membrane, a process which is denominated
channel “gating” [2]. For a single channel, we can write the conformational energy
as a linear function of tension,
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AG = TAA — AGy, 3.1)

where AGy is the energy difference between the closed and open conformations
(50 kp To for MscL), in the absence of an externally applied membrane tension, and
AA is the difference in area of occupied by an open and a closed state (20 nm? for
MscL) [24]. From this expression for the energy, we can represent the probability
(Pp) to find a channel in the open state, according to the Boltzmann distribution,

P TAA-AGy
I—OP():e BT (3.2)

where kp is the Boltzmann constant, and 7T is the temperature [8]. According
to Eq.3.2, the channel should open with larger probability at the gating tension
70 = AGoAAQR.5kpTy /nm2 for MscL), and the transition should be more abrupt
for smaller temperature values.

Having described the isolated mechanosensitive channels and their function we
turn to the theory of lipid—protein and protein—protein interactions, in the next section.
We will see in the following sections that when the most relevant types of interactions
are considered, the process of channel gating becomes much more elaborate.

3.6 Interactions Between Membrane Inclusions

Since the development of the mosaic fluid model, the membrane is usually modelled
as a two-dimensional fluid consisting of lipids. Membrane inclusions (i.e. bodies
inserted in the lipid bilayer that are not lipids themselves, such as proteins or enzymes)
diffuse and rotate in this fluid. However, as we already pointed out before, this dif-
fusion dynamics is highly complex, and the diffusion coefficient depends on local
diverse compositions, due to the crowded environment on the membrane. In such an
environment, the mutual interaction among active membrane constituents plays an
important role in the determining of its effective “fluidity”, which is an important fac-
tor in many physiological processes. Therefore, it is necessary to modify the mosaic
fluid picture, by considering not only diffusion but also the interaction amongst inclu-
sions. In this part we give a summarized overview of the types of interactions which
are relevant in this context.

The interactions between membrane inclusions could be divided in two types:
Direct and indirect. Direct interactions arise due to the presence of an electric charge.
The indirect forces, on the other hand are more elaborate, and are mediated by
the membrane. They can either be elastic, resulting from the deformation of the
membrane, or entropic when they are due to thermal fluctuation of the membrane.
A summary of all relevant forces is shown in Table 3.1.
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Table3.1 The forces

Electrostatic Elastic Entropic
between membrane
inclusions. The electric force ~ Coulomb Elastic Casimir-like
is a direct force of short Repulsive Attractive/repulsive Repulsive
range. The forces mediated by ~ Short range Short range (thickness) Long range
the membrane can be further long range (midplane)
divided in entropic and elastic . exp(—r) ~ exp(—r) ~1/r

3.6.1 Direct Protein—Protein Interactions

Proteins will directly interact due to their electric field. The electric force between
two proteins is usually repulsive considering that proteins are on average equally
charged. The electrostatic field of a charge Q at a distance r is given by [25]

Q

E(r)= —.
) 4megr?

(3.3)
However, in an ionic solution there is an effect known as screening of electric charges.
This phenomenon can be described as a rearrangement of free ionic charges in the
solution which tends to neutralize the long-range electrostatic field. The theoretical
approach used by Debye and Huckel [25] explained the exponential decay of the
electric field in the ionic solution, which leads to a shielded electric field,

pe? r
E(r) = LJV kT (3.4)

4megr?

where kj, is the Boltzman constant, 7 is the temperature, € is the dielectric constant,
e is the unit charge and p is the density of charges in solution. Thus, electric forces
decay exponentially with the distance, and the range in which we could consider the
electric interaction as significant is given by the Debye length, which corresponds to

ADp = — (3.5)

[ .2

pe

= . 3.6
0 oy T (3.6)

For a physiologic solution (0.1 M), we have A p = 1 nm. However itis considered that
for small ions the electroneutrality holds for even smaller distances [26]. Therefore,
these forces are always short range, and can be considered as extremely weak for
proteins on the membrane.

where
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3.6.2 Membrane-Mediated Protein—Protein Interactions

Some of the interactions arise and propagate trough the membrane and depend strictly
on the bilayer properties. We can divide such interactions in two main types accord-
ingly to their origin: (1) entropic forces, which arise due to the thermal fluctuation
on the membrane, and leads to long range attractive forces; and (2) elastic forces,
which result from the elastic deformation of the lipids.

We follow by reviewing the entropic and elastic forces in detail. We focus on elas-
tic forces since they are the most relevant in the study of mechanosensitive channels.
We then describe the elastic theory approach used to determine the energy of inter-
acting channels in closed and open states.

3.6.2.1 Entropic Interactions

The entropic interactions appear as a consequence of membrane thermal fluctuations,
which occur in physiological temperatures. The spectrum of vibration of the mem-
brane depends on the distance between the proteins, and the free area between them.
To increase the entropy, the system tries to maximize the number of modes of those
fluctuations. This effect is the classical analog to the Casimir effect [27] in quantum
electrodynamics, which predicts an attraction between conducting plates mediated
by (quantum) fluctuations in the electromagnetic field. The resulting effect of these
fluctuations is an attractive potential between two objects at distance r, which decay
as 1/r* [28]. This constitutes a long-range interaction, which is proportional to kT
and scales with the square of the area A of the inclusions [29] as,

A2
V(r)~ 'y kpT. (3.7
r

It is important to emphasise that this force will not exist at short ranges because of
its stochastic origin. The membrane is not a continuous matter but is composed by
discrete lipids, and it is not possible to have such fluctuations distances of only few
lipids between proteins.! For this reason this type of force is not relevant in crowded
biological membranes, such as in the wild type E. coli. However this interaction can
be important in uncrowded membranes such as in liposomes. Furthermore, the ampli-
tude of this interaction is not very large. For instance, considering a mechanosensitive
channel of large conductance, which has an area of ~20 nm?, for distances larger
than 4 nm (~4 lipids) the interaction is already smaller than 1k, 7.

3.6.2.2 Elastic Interactions

When a protein is inserted in a lipid bilayer it disturbs the bilayer away from its
unperturbed, relaxed state. The usual approach to treat this type of system is to

1" The diameter of a single lipid is approximately 0.75 nm.
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Fig.3.5 Schematic representation of a thickness deformation. The important parameter is u(r),
that characterizes this deformation profile around the inclusion

consider the protein as a rigid inclusion and the surrounding membrane as an elastic
medium that deforms to accommodate it. The idea behind this is that the bilayer
matches its hydrophobic core with the hydrophobic part of the protein. The result is
an exponentially decaying perturbation around the inclusion.

There are two analytical approaches used to describe elastic forces on the
membrane: The Landau-de-Gennes theory and the Elastic theory [30]. Both methods
describe the system (bilayer and inclusion) through its free energy. The first method is
derived from works on liquid crystals and consists of a Landau form for the expansion
of the energy functional in the order parameter [31]. In this case the order parameter
is u(r), which is the difference between the size of the protein hydrophobic core
and the size of the lipid chain (see Fig.3.5). The second formulation is based on
a continuum approach of elastic theory that describes the deformation of the lipid
monolayers. In this method the inclusion is an additional constraint added through
the boundary conditions of the differential equation.

It is also common to use molecular dynamics simulation to describe the protein-
lipid interactions and deduce the energy involved in the accommodation of the integral
membrane proteins [32-34]. These simulations are performed on several scales,
using both fine-grained and coarse-grained approaches. They are very important
complement to the analytical studies because of the difficulties that still underlay the
experimental tests of the theory.

Here we will use the well-established mathematical theory that describes this
system based on the determination of the energetic cost related to the membrane
deformation. Although some works in the area include different additional terms
for the energy of membrane deformation [30], there are three main properties of
the membrane that give it the ability of storing energy upon an elastic deformation
[6, 24].

1. The Membrane has a specific equilibrium hydrophobic thickness. This yields
a resistance to hydrophobic mismatch of embedded proteins. The membrane
stretches or compresses to match the hidrophobic core of the protein to the
hidrophobic core of the lipids.

2. Bending stiffness of the membrane. The membrane tends to resist to changes in
angle between adjacent molecules. In other words, the membrane has a resistance
to curvature.

3. Preferred spacing between lipid molecules. The membrane is highly resistant to
volume changes. Therefore, if the protein extends the membrane vertically, it will
compress laterally. This resistance is proportional to the tension of the membrane.
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The protein inclusions can have very diverse shapes. The shape of the protein
is introduced as a boundary condition in the problem above [6]. The two most
commonly used shapes are conical and cylindrical. The conical shape bends the
membrane, due to its vertical asymmetry, and imposes what is called the midplane
deformation. On the other hand, proteins with cylindrical shape impose only a thick-
ness deformation. For mechanosensitive channels in bacteria, the trans-membrane
domain of MscL will account for a thickness deformation, and of MscS will account
for both thickness and midplane deformations.

In the next part we derive the calculation of the two types of elastic deformation
(thickness and midplane), and apply them to mechanosensitive channels of large
conductance of E. coli.

3.6.2.3 Interaction Energy Between Mechanosensitive Channels

The elastic theory approach is formulated as a variational principle for the free
energy functional G (u(r)) [30]. The first step is to formulate the terms which are
included in this functional. There are numerous works on the subject, which include
different possible degrees of freedom for the deformation of the membrane, and
account for different boundary conditions. Here we present the approach of Ursell
et al. in [24], which considers the hydrophobic mismatch (first term of Eq.3.8), the
membrane bending (second term of Eq.3.8) and the conservation of the volume of
lipid molecules (last term of Eq. 3.8):

_ Ko (u(r)\> K 2 5 u(r) 2

where the integration is taken on the two-dimensional membrane surface, and the
constants are the stretch modulus K,, the bending modulus «;, the spontaneous
curvature cg, the tension t and the lipid length dp. Here we use a trick to transform
the equation to a more convenient form by summing 72 times membrane area, which
is identically zero when calculated for differences in the free energy.

2
G /1 K, (L + 2 2+ P, (Pu 2 Q. (3.9)
=/ = — 4+ — K . .
2\ "\ T K, P\ 62 3y2

For G (u) represented as

9%u 9%u
G:/L(M,x,y,m,a—yz) (310)
we can proceed with the variational approach [35] to find u () that minimises G («).
oL 2K, n Tdy G.11)
_—= u .
u d? K,
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(3.13)
This results in a differential equation

K, T

Viu+ U+ —— =
Kpd3 Kakpdo

(3.14)

The solution of this differential equation with the necessary boundary conditions
gives the deformation profile of the membrane. The boundary conditions are deter-
mined by the dimensions of the inclusion, i.e. by the hydrophobic mismatch and
the slope at the protein interface. Consider r; the coordinates of the border of the
inclusion. It is necessary to specify the mismatch u(r;) between the lipid core and
the core of the protein bilayer and the slope Vu(r;) of the bilayer at the protein—lipid
interface. The slope will be zero for thickness deformation (Vu(r;) = 0), and will
correspond to the deformation angle for a midplane deformation (Vu(r;) = 6).

After the determining the deformation profile u’(r) it is necessary to obtain also
the energy of the deformation, which is given by Eq.3.8. The energy cost of the
inclusion is therefore

E(r)=G@/'(r). (3.15)

In the next part we solve numerically the equations derived with parameters of MscL.
to calculate the interaction force between the channels in different states.

3.6.2.4 Interaction Between MscL Channels

The MscL channel from E. coli deforms the membrane with a thickness deformation
(Fig.3.6). Using the Eq.3.14 and the parameters presented in Table3.2, we can
calculate numerically the deformation of the membrane around two channels, which
are placed at distance r between each other (Fig.3.7).

We have to consider the channels in the system in two possible states, open or
closed, since the parameters for both states are different (see Table 3.3). In Fig.3.12,
we can see the resulting interaction energies for two channels, as a function of the
distance between the channels. It shows that two channels in the same states (open—
open, closed—closed) attract each other, although with different intensities, with the
attraction between open channels being the strongest. On the other hand, the channels
in different states (open—closed) always repel each other.

Because of the non-linearity of elastic forces, it is not possible to infer the many-
body elastic interactions directly from pair-wise forces. However, it appears that
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Table 3.2 Membrane

properties for E. coli. The Parameters

parameters are the stretch K, 58 kT /nm?

modulus K, the bending Kb 14k, T

modulus kp, the tension 7, the ¢ 2.6kp T/nm2

lipid length dp and the do 1.75nm

temperature T T 300K

Table 3.3 Boundary

conditions for the large State 7o (nm) 4o (nm)

mechanosensitive channel Closed 2.5 0.15
Open 35 -0.5

the addition of individual pair-wise interactions is sufficient to describe the many-
body system with good precision. This can be seen in Fig. 3.8, where the result for
a system of three channels is compared with the composed energies of a system
of two channels. Since the differences are very small, this justifies our following
assumption that the many body interaction can be considered as juxtaposition of
individual pairwise potentials.

Using the knowledge obtained about the pair-wise interactions of mechanosen-
sitive channels, in the following section we formulate a coarse-grained model for
its collective behaviour, from which we can derive the consequences of cooperative
behaviour.

3.7 Model of the Cooperative Gating of the Mechanosensitive
Channels

As we have discussed in the previous sections, the most relevant forces governing
the behaviour of mechanosensitive channels are short-distance elastic interaction
mediated by the membrane. Using this information, in this section we develop a
model which describes the channel aggregation and the collective gating of aggre-
gated channels. Since the interactions are short range, and we are interested in the
collective behaviour of a large number of channels, we chose a discretized approach
for the development of the model, where individual channels are placed on a two-
dimensional square lattice, and interact only with the four nearest neighbors. Addi-
tionally, we divide the model in two parts (see Fig.3.9): first, we describe the spatial
distribution of these channels on the cell membrane in normal physiological condi-
tions, see Sect.3.8. At this point all the channels are found only in the closed state
and are allowed to move freely on the lattice, interacting by short range attractive
forces, as determined previously in Sect.3.2.6.4. Secondly, after obtaining the equi-
librium spatial configuration that these channels assume on the membrane, we depart
from the physiological conditions, and consider the channel gating, Sect.3.9. Since
the gating occurs in a much shorter time scale than the diffusion, we consider that
the channels are no longer allowed to move at this point. Each channel is allowed
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Fig.3.6 The mechanosensitive channels of large conductance stretch the lipids around when in the
closed state. In the open state however the channels compress the membrane bilayer
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Fig.3.7 The deformation profile # around two open channels (fop left), two closed channels (top
right) and an open and a closed channel (bottom)

to be in two possible configurations: open or closed, and their interaction energies
correspond to what was calculated in Sect.3.6.2.4.

3.8 Dynamics of Agglomeration

In this part we analyse the conditions for non-homogeneous distribution of
mechanosensitive channels in a single conformation. The channels are distributed
on a lattice, with periodic boundary conditions, which represents the cell surface.
At this stage we consider the conditions of the cell previous to the osmotic shock in
the optimum conditions of growth. In these conditions the membrane is subjected to a
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Fig.3.8 Interaction energy between three equidistant channels, as a function of the distance between
their centers, for different channel conformations. The dashed lines show the summed pair-wise
interactions of three isolated systems of only two channels
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Fig.3.9 The modelis divided in two parts: (1) the dynamics of agglomeration; and (2) the dynamics
of gating

very small net tension of 0.5 k, T [2] and all the channels are spread on the membrane
in the closed state. We assume that channels sitting on neighbouring sites interact
trough elastic forces. The interaction of neighbouring forces results in a decrease in
the global energy of the system. This can be described by the following Hamiltonian

H:-st,-s,-, (3.16)
(i)

where the sum is taken over neighboring sites, and J is the interaction strength
deduced from elastic interactions in the previous section, which is ~1.25 k,T. The
state s; represents the state of a lattice site (is —1 for an empty site or +1 for an
occupied site).
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This system corresponds to the well known lattice gas model [36, 37]. In the
next Sect.3.8.1 we describe the model and its main properties. We follow with the
consequences of this theory for the agglomeration of mechanosensitive channels on
the bacteria membrane.

3.8.1 The Lattice Gas Phase Diagram

The lattice gas is an Ising model with a conserved order parameter, given by the
density, p. A good introduction to the theory is given in [36]. The Hamiltonian
of the lattice gas i8S Hiaice = —€ (i) 0;0;. In this expression the parameter ¢
assumes values 0, 1 for an empty or occupied lattice respectively, and the energy
varies between 0 or —e for pairs of empty-occupied (empty-empty) or occupied-
occupied lattices. This is a simple form to represent a short range attraction, which
is exhibited by a decrease in the system’s energy for the configurations with larger
numbers of aggregated particles. The conserved parameter p defines a fixed number
of particles on the grid of size N,

Ze,- = pN. (3.17)

i

Under a simple variable transformation s; = 26; — 1 the Hjayice becomes an equivalent
of a Hamiltonian of the Ising model, where s; assumes values +1 for occupied and
—1 for an empty lattice. Under this transformation the conserved order parameter
can be rewritten as

M=Ys5i=N@2p-1), (3.18)

where the total magnetisation M is fixed, which decreases the number of configu-
rations that can be assumed by the spins, s;. From this expression we can write the
density p in terms of the magnetisation per spinm = M /N,

1
p=5+m). (3.19)

From the theory of the Ising model and from the Onsager solution [38] we know thatm
can assume two values below the critical temperature 7, (Curie temperature). Above
this temperature, however, the system is disordered and homogeneous. The Curie
temperature is, therefore, the point where the Ising model undergoes a phase transi-
tion and the system acquires a preferential orientation (spontaneous magnetization).
Together with the existence of the above constraint, the two possible magnetisation
values compel the system to have also two preferred local densities, which leads
to the existence of either a non-homogeneous or a homogeneous phase, depend-
ing on the interaction strength J (or the thermal fluctuation 7)), and on the particle
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Fig.3.10 Phase diagram of the lattice-gas model, as a function of the density p and the interaction
strength J. The system has two possible phases: homogeneous (white area) and non-homogeneous
(grey area). Snapshots of simulations of each phase are shown on the right

density p (see Fig.3.10). The system may segregate in two regions, each one with a
characteristic density [36]

o1 = %(1 + (1 — csch?(2B))F). (3.20)

This equation is a simple combination of the Eq. 3.19 and the Onsager solution [38].
When the density p is lower than p_ or higher than p4 the particle distribution
is homogeneous. However, if p_ < p < p4 the particles segregate in different
domains with different local densities: a low density (p_) region and a high density
(p4) region (see Fig.3.10).

The density p also gives the area of each region,

P+AL +p_A_=pA (3.21)

where, A is the area occupied by the high density (p4) region, and A_ is the area
occupied by the low density (p_) region and A is the total lattice area

Ay + A- = Al (3.22)

Depending on J and p the clusters in the high density region can be either compact
(for large J) or can be ramified (small J). In Fig. 3.11 we show how the clusters change
with the interaction strength J, by measuring the average number (k) of occupied
sites around a particle in the system. For J = 0.75k;,T the aggregates formed are
strongly ramified and (k) changes strongly with p (from O to 4). However in the case
of J = 1.25k,T the clusters are more compact and (k) is already large for small p
and changes from 3 to 4. In the following sections, where we analyse the influence
of the spatial distribution on the gating reaction of the channels, we will show that
the compact and ramified distributions have distinct properties.
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Fig.3.11 The average number of occupied neighboring sites (k) as a function of the particle density
p, for the lattice-gas model

3.8.2 Conditions for Mechanosensitive Channel Agglomeration

From Eq.3.20, and using that J ~1.25 k;,Tp (from Eq.3.8), we obtain that p_ =
1.7 x 1073 channels/site. Channel aggregation will only happen if p > p_. For a
wild type E. coli cell there are, on average, 5 MscL channels [2]. The membrane area
of this bacteria corresponds to ~6 x 10~12 12 [39]. Therefore the density of the
channels is p & 1.6 x 107> channels/site, which corresponds to the homogeneous
phase, without clustering.

However, there are two ways to induce the aggregation of mechanosensitive chan-
nels in E. coli. The first one is by changing the attraction between channels, by
introducing them in a different lipid environment. With the appropriate value for
the parameter J, the non-homogeneous phase could be realised (see Fig.3.10). The
other alternative is by a simple increase of the density of the channels. Thus, the two
parameters can be regulated independently.

We will see in the next sections that the gating of the channels depends highly on
their distribution on the lattice. In particular, we will see that the more compact are
the channels clusters formed, the larger will be the deviation of the collective gating
from the individual behaviour.

3.9 Dynamics of Gating

We turn now to the gating response of the channels, when the tension is changed
abruptly. This is the case, for example, if the osmolarity of the medium is suddenly
decreased. The most important consideration of our approach in this part is that the
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gating dynamics occurs in a different time scale than the diffusion rate. Therefore in
this part of the model, we consider the positions of the channels fixed in the lattice,
which correspond to an equilibrium spatial configuration obtained with the lattice
gas model of the previous section. We justify this assumption as follows

1. The gating time is of the order of microseconds. The gating response of channels
is of ~3 us, approximately microseconds [40]. On the other hand the free diffu-
sion is of the order of ~5nm?/us, and should be at least 10 times even smaller
for a crowded environment, such as a biological membrane [41]. Since the area
of a single channel is approximately 7(2.5)> ~ 20nm?, they can not diffuse
sufficiently during the gating event.

2. The channel cluster formation itself prevents channels from moving. Since the
interaction of closed channels is attractive, the diffusion rate will be even smaller
if the channels are close together. Even those channels on the border of the clusters
will have a decreased diffusion escape rate due to this attraction. In the parameter
region where the channels do not form clusters, this issue is not relevant since
they act independently.

3. We are interested in the first gating event. Regardless of the diffusion rate, the
assumption that the channels do not move significantly during the gating should
be universally valid in our results, since we are mostly interested in the time
before the first collective gating event. Until this point, the channels are all closed
and governed only by attractive forces. The moment most channels open, the
membrane tension changes very quickly, and there is no time for the channels to
form an equilibrium spatial conformation with channels in mixed open and closed
states.

In this section we are concerned with the following question: how does the spatial
clustering, as obtained by the lattice gas approximation, affects the gating response
to osmotic tension?

In the following, the channels can assume to possible states: open or closed. We
describe the state of each channel i by a variable o;, which can have the values +1 and
—1, corresponding to an open or a closed state, respectively. The state of the channel
will depend on the tension of the membrane and also on the state of its neighbors.
The new energy of the system can now be written as the sum of the non-interaction
energy of the individual channels and their interaction energy.

H = Hpon + Hint (3-23)
These energies can be obtained by solving Eq. 3.14, for a system of only one or two

channels, respectively, and considering all the different channel conformation states.
The non-interacting energy from the Eq.3.23 corresponds simply to

Hyon = h z Oi, (3.24)
i
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Fig.3.12 Interaction energy between two channels, as a function of the distance between their
centers, for different channel conformations. There is an attractive force between channels when
they are in the same state and a repulsive force otherwise [24]

where / is a global non-interaction field
h = (AGgae — TAA)/2, (3.25)

already described in the Sect.3.5. The solution of Eq.3.14 for a non-interacting
channel in the open and in the closed configurations results in the mechanical energy
necessary for the channel to gate correspondent to AGgae ~ 50 kj Tp. This is equiva-
lent to the value obtained experimentally [24]. The A A is the deformation area of the
protein, and t is the membrane tension, which changes according to the osmolarity
of the medium.

In an analogous fashion, we can obtain the energy levels for interacting channels.
The results were already presented in the Sect.3.6.2.4, see the Fig. 3.12, where two
channels in a similar state have a negative energy contribution and channels in distinct
states increase the energy of the system. To calculate the discrete energy levels for
our model we assume the following:

1. Since the channels are fixed, we simplify the energy profile of Fig.3.12 by
considering only discrete energy levels corresponding to the interaction at a dis-
tance of 67 nm between channels centers.

2. Although the interaction energy also depends on the tension, the dependency is
not very strong [24], and can therefore be neglected.

The energy levels obtained in this way are shown in Fig. 3.13. These energy levels
can be represented in a Hamiltonian form as follows

E P
Hine = —— ;;Uiaj -7 <Z;(Ui +0j), (3.26)
ij ij

considering E = 10k, Ty and P = 10k, Tp, which can be further rewritten as
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i i (i)

where k; is a local field, which is equal to how many occupied neighbors a single
channel has, and is thus given by the spatial distribution. As will be seen below the
system will behave differently depending on the density of the clusters formed.

In the next sections we explain the properties of this system in equilibrium and the
dynamics of escape from an initial metastable state, which we obtain from numerical
simulations. For that we employ the Metropolis-Hastings [42] algorithm, which at
each step chooses a random occupied lattice site i and flips its state from o; to —o;
with a probability given by

W(o; — —o;) = min[1, e 2Fi] (3.28)

with

AE;=o; [ Pki—2h+E > o;|. (3.29)
(i)

For the simulations we used a lattice of dimension 1000 x 1000, a total number
of 103-10° Monte-Carlo steps per site, and each measurement was obtained as an
average of 10 independent realizations.

3.9.1 Equilibrium Properties

To study the system in equilibrium, we have to start with the system in random initial
conditions, and evolve the system long enough until its macroscopic properties have
stabilized. The aim is to understand how the density on the membrane can affect
the gating of mechanosensitive channels. Because of the presence of a spatially
correlated field k; the spatial distribution will determine the peculiar properties of
this system.

We start with two simplest cases: p < p— and p = 1. In the first case all the
channels are non interacting on the lattice. In this situation the channels gate at the
tension 2.5 k;, T /nm?, as discussed in Sect. 3.5. The next trivial case is the lattice full
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of channels, each with four occupied neighbors. In this case the system transforms
in to a simple Ising model with an external field given by 4 4 2 P. In this case the
channels gate in a tension of 0.5k,T /nm?, which is significantly lower than the
gating threshold of independent channels (Fig.3.14).

Having examined the trivial cases we proceed our analysis to the intermediate
situation where p— < p < p4. In this case the process of diffusion described in
the first model makes the channels agglomerate in clusters of finite sizes with highly
irregular structures. Those structures introduce an anisotropy in the field element.
This anisotropy makes possible certain configurations where states —1 and +1 can
coexist in particular fractions. The ratio of channels in a particular state will not only
depend on the external field but also on the spatial distribution of channels on the
grid. The spatial distribution of the channels on the grid, as was seen in the previ-
ous section, depends on the interaction strength J (or the temperature 7). Inside the
non-homogeneous phase, the cluster compactness will vary gradually with J or p,
becoming either more ramified (for lower J or p) or more compact (for higher
J or p). In our analysis we will consider as examples J = 1.25 for a compact
cluster distribution and for J = 0.75 for ramified clusters.

InFigs.3.15 and 3.20 it can be seen the average channel conformation as a function
of the membrane tension both for the ramified (J = 0.75) and compact (J = 1.25)
configurations. We can observe several transition steps, from the situation with all
channels completely closed, to all channels completely open. Two easily identifiable
transitions correspond to the high-density regions (sites with k; = 4), and the low-
density regions (sites with k; = 0), for lower and higher tensions respectively. It is
also possible to notice some intermediate steps, which correspond to what we could
call the “border” of the clusters, i.e. sites with 4 > k; > 0. This means that channels
with larger number of neighbors tend to equilibrate in the open state, even for small
values of tension. As tension is increased, the channels gradually open, from the bulk
of the clusters to the “borders”.
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Fig.3.15 The average channel conformation (o) in equilibrium as a function of 7. On the right is
shown the gating probability Popen as a function of the tension 7. The particle spatial distribution
is given by the lattice gas with an interaction strength J = 0.75k,T

(a)

Fig.3.16 Spatial distribution of open and closed channels for J = 0.75k, T, p = 0.25. On the right
is the histogram of channels with a given number of occupied neighbors, for both open and closed
channels (red) and only open channels, for different values of 7. On the left are shown snapshots of
simulations of the system in equilibrium for a range of tensions t, with closed channels in black
and open in grey. a The initial state of the system before the tension is applied, (corresponds to the
red distribution in the histogram); b System in equilibrium for z = 0.5 k, T /nm? (grey distribution
in histogram); ¢ T = 1.5k, T /nm? (cyan distribution in histogram); d v = 2.5k, T/nm? (blue
distribution in histogram)

Now we examine with more detail the case of ramified clusters (J = 0.75) and
small density p = 0.25. In this case we have channels with low number of neighbors
in average (see the distribution in red in the Fig. 3.16). In this figure we also show the
spatial distribution of the open channels in equilibrium, for a series of tension values.
It shows how, with an increase of tension, the configuration of open channels move
from the “bulk” (large k;) to the “border” (low k;). In the case of a larger density
(p = 0.5), the average cluster size is larger (see Fig.3.17), which means there are
more sites in the bulk. Due to this fact, the transition to the open state involves a
smaller number of steps as the tension increases (Figs.3.18 and 3.19).
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Fig.3.17 Spatial distribution of open and closed channels for J = 0.75 kT, p = 0.5. On the right
is the histogram of channels with a given number of occupied neighbors, for both open and closed
channels (red) and only open channels, for different values of 7. On the left are shown snapshots
of simulations of the system in equilibrium for a range of tensions t, with closed channels in black
and open in grey. a The initial state of the system before the tension is applied, (corresponds to the
red distribution in the histogram); b System in equilibrium for t = 0.5 k;, T /nm? (grey distribution
in histogram); ¢ t = 1.5k,T/ nm? (cyan distribution in histogram); d © = 2.5k,T/ nm? (blue
distribution in histogram)
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Fig.3.18 Spatial distribution of open and closed channels for J = 1.25k;, T, p = 0.25. On the right
is the histogram of channels with a given number of occupied neighbors, for both open and closed
channels (red) and only open channels, for different values of t. On the left are shown snapshots of
simulations of the system in equilibrium for a range of tensions 7, with closed channels in black
and open in grey. a The initial state of the system before the tension is applied, (corresponds to the
red distribution in the histogram); b System in equilibrium for T = 0.5k, 7/nm? (grey distribution
in histogram); ¢ T = 1.5k, T /nm? (cyan distribution in histogram); d v = 2.5k, T/nm? (blue
distribution in histogram)

In the case of more compact clusters, obtained for higher values of the interaction
parameter (J = 1.25), the sites in the “bulk” dominate, and the transition for k; = 4
will be the only significant one (see Fig.3.20). Nevertheless, we note that for some
values of tension, it is still possible to observe coexistence of channels in both con-
formations.
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Fig.3.19 Spatial distribution of open and closed channels for J = 1.25k,T, p = 0.5. On the right
is the histogram of channels with a given number of occupied neighbors, for both open and closed
channels (red) and only open channels, for different values of 7. On the left are shown snapshots of
simulations of the system in equilibrium for a range of tensions t, with closed channels in black
and open in grey. a The initial state of the system before the tension is applied, (corresponds to the
red distribution in the histogram); b System in equilibrium for = 0.5 k, T/nm? (grey distribution
in histogram); ¢ T = 1.5k, T /nm? (cyan distribution in histogram); d v = 2.5k, T /nm? (blue
distribution in histogram)
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Fig.3.20 The average channel conformation (o) in equilibrium as a function of 7. On the right is
shown the gating probability Popen as a function of the tension z. The particle spatial distribution
is given by the lattice gas with an interaction strength J = 1.25k,T

The equilibrium configurations described in this section show how strongly the
channel interactions influence the collective gating of mechanosensitive channels.
However, we must emphasise that a more biologically realistic situation is not of
thermodynamic equilibrium, but instead a configuration shortly after the tension has
been abruptly raised, where all channels are initially in a closed state. This situation,
as will be explained in the following section, represents a metastable state, which
behaves as an equilibrium state form at short time scales, but is significantly different
from the true equilibrium states.
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3.9.2 Dynamics of Escape From the Metastable State

In physiological conditions the channels diffuse in a closed state on the membrane,
when they can agglomerate in clusters. If the tension of the membrane increases due
to osmotic shock the channels must first escape the configuration where they are all
closed. The transition to a global minimum of the free energy, where a macroscopic
fraction of the channels are in the open state, involves the system leaving a local
minimum of the free energy, where all channels are closed, and temporarily assuming
anti-aligned states with respect to their neighbours. States which correspond to alocal
minimum of the free energy are denominated metastable, since they retain some of
the properties of equilibrium states [31]. The system will eventually escape any
metastable state and reach equilibrium, at a global minimum of the free energy.
However this can take an arbitrarily long time, and in some cases the escape time can
be even comparable to the lifetime of the universe [43]. Therefore metastability is
characterised by the existence of significantly distinct time-scales: a short time scale,
where the system is in an apparent equilibrium state, and a larger time scale, where
the system experiences a transition to equilibrium. For our system we will need to
estimate this escape time, in order to determine the response of the bacterium to
osmotic shock. This escape time will depend on the interaction strength between the
channels and also on thermal fluctuations.

First we start with an extreme case of zero temperature. In this situation the time to
leave the metastable state will be infinite, unless the external field is strong enough.
We consider for simplicity the case of an entirely occupied lattice (p = 1). This
system is identical to the Ising model, and as expected we observe an hysteresis loop
for transitions —1 — 41 and I — —1 (see Fig.3.21). The presence of additional
field P, due to the asymmetries of the energy states, only makes this loop broader,
compared to the traditional Ising model. As the temperature increases from 0, this
loop narrows, approaching the equilibrium curve (see Fig.3.21). For the case of
lower densities, the system still preserves the hysteresis loop, although it will not be
symmetric (see Fig.3.21). Apart form the isolated channels that gate in the tension
2.5k, T /nm? we have a major transition to an open conformation at 3 k, 7 /nm? and
to a closed conformation at 1,7 /nm?. The loop is not as broad as in the case of
p = 1, because of the influence of the borders of the clusters.

In the next part we follow with the analysis of the importance of the thermal
fluctuations to escape from the metastable state.

3.9.3 The Transition From Closed to Open Conformations

Here we analyse a more realistic situation with the presence of thermal fluctuations.
Starting from the metastable state where all channels are closed, we evolve the system
for a specific time. First we evolve it for 103 Monte-Carlo steps per channel (the right
Figs.3.22 and 3.23). Then we follow with a longer time of 10° Monte-Carlo steps
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Fig.3.21 The gating probability Popen for 7 = 0, as a function of tension , for an initial condition
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and T > 0(O <> C). On the left we consider a full lattice p = 1, and on the right the spatial
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Fig.3.22 The average channel conformation (o) as a function of the tension t and density p, for
J = 0.75k, T, and an initial metastable configuration where all the channels are closed ((o) = —1).
The figure on the left shows the system after 10> Monte Carlo steps, and on the right after 10> Monte
Carlo steps

(the left Figs. 3.22 and 3.23). The transitions in both of these cases do not depend as
strongly on the form of the clusters (either ramified, with J = 0.75 or compact, with
J = 1.25), compared to the equilibrium case, as Figs.3.22 and 3.23 show. However
it is possible to observe that the system changes its properties for higher densities
of p 2 0.5 and p ~ 1, see Figs.3.22 and 3.23. The value of p = 0.5 appears to be
the turning point for two different types of transitions. Below this point the particles
are sparsely distributed and the cluster sizes are not constrained by the finite size of
the grid. Above this point the particles are dense enough so they percolate the grid
and in these cases the holes (empty lattices) are distributed in finite size aggregates
in the space full of particles. Therefore for p < 0.5 the global change to equilibrium
is induced by the cluster borders (channels with k; € {1, 2}), the transition therefore
occurs for the tensions above the gating threshold of isolated channels. However, for
p 2 0.5 the average cluster size is comparable to the system size, since a value of
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Fig.3.23 The average channel conformation (o) as a function of the tension 7 and density p, for
J = 1.25 kT, and an initial metastable configuration where all the channels are closed ((o) = —1).
The figure on the lef shows the system after 103 Monte Carlo steps, and on the right after 10° Monte
Carlo steps

p = 0.5 is exactly the percolation threshold where randomly placed channels already
lead to clusters spanning the whole system [36]. In this situation the cluster borders
are dominated by the bulk, which decrease the gating threshold and the transition is
strongly abrupt.

3.9.4 The Transition From Open to Closed Conformations

Here we examine the reverse situation of the previous section: we start with all the
channels in the open conformation and analyse the transition to the closed state.
This corresponds to the physical situation where the channels must close, after the
normalization of the membrane tension. In this case the cluster ramification has a very
strong effect, and can be seen in 24, comparing the ramified clusters (J = 0.75k,T)
on the left side and the compact clusters (J = 1.25k,T) on the right. For ramified
clusters the difference to the individual gating behaviour starts to appear only for
high density regions. However for dense clusters the channels stay open after the
normal osmolarity is restored.

In this case, similarly to the transition from closed to open state, we can notice a
strong difference between the channel’s reaction in high and low densities. Although
here the turning point is not that obvious as previously, we can speculate that the
percolation of the channels on the grid at p = 0.5 can change the gating dynamics.
Therefore the explanation of this behaviour is analogous to the previously described
metastable dynamics, where below the percolation point the channel’s closure is
triggered by the border of the cluster and above it the core of the clusters is large
enough to hold the channels in the open state.
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3.9.5 Classical Nucleation Theory and the Delay
of the Channel Response

In the previous sections we determined that the bacteria will survive the osmotic
shock even with its channels acting cooperatively. We observe that the channels do
open at a tension of 2.5k, 7T /nm, as desired, however with a delay, which is the
escape time of the initial metastable state. In this part we will calculate the delay
experienced using classical nucleation theory.

The problem which is addressed by the theory is the derivation of the lifetime of
the metastable state from the particle interactions, and the dynamics which drives
the escape process. The well established model in the literature to derive the escape
time is the droplet model. Central to this model is the concept of a droplet, which is
defined as a cluster of particles that have the same state, but are surrounded by others
in the opposite state. The droplet can grow or shrink depending on the contribution
of the droplet to the free energy. The interior of the droplet contributes to a decrease
of the free energy, and the border to an increase. There is a critical droplet size, which
represents a transitional barrier, which, when crossed, allows the system to leave the
metastable state. The key point of the model is the relation between the lifetime of
the metastable state T and the free energy of the critical droplet ., which is given as

(r) ~ efe/ BT (3.30)

The main objective is therefore to obtain this free energy. One approximate but very
simple calculation can be done for the Ising model, by assuming that 7 < J, where
h is the external field and J the interaction between particles. If we consider the
formation of a square droplet of size / x [ inside the metastable state, it has an energy

E(l) = 41J — hi>. (3.31)
Differentiating the equation we obtain the E (/) has a maximum for
lo=— (3.32)

which is the critical droplet size. Inserting this in Eq.3.31 we obtain the metastable

lifetime as
4%
(r) ~ eﬁ( - ) (3.33)

From this result we can estimate the time delay of the gating of mechanosensitive
channels for system with p = 1. Using the approximation just derived we estimate
the response time to be
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Fig.3.24 The average channel conformation (o) as a function of the tension 7 and density p, and
an initial metastable configuration where all the channels are closed ({(o) = +1), after 10> Monte
Carlo steps. The figure on the /eft shows the system with J = 0.75k,7T, and on the right with
J=125kT
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Fig.3.25 The average channel conformation (o) as a function of the tension v and density p,
for both the equilibrium states and the escape from the metastable states. The top row shows the
properties of a spatial configuration where dense clusters are formed (J = 1.25k,7). On the
bottom row are represented the properties of the system characterised by the formation of ramified
clusters (J = 0.75k,T). a, d System in equilibrium; b, e Escape form the initial metastable state
corresponding to all channels closed; ¢, f Escape from the metastable state corresponding to all
channels open

B2

2
(1) ~ TTCPh (3.34)

Monte-Carlo steps per channel (mcs/c). Assuming that each mcs/c corresponds to
the characteristic reaction time of a single channel, i.e., ~3 us, this gives us a gating
response of ~20ms (Fig.3.24).

We summarise the results obtained with our approach in Fig.3.25, where we
can see how the gating process changes for the case of the dense compact clusters
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compared to the ramified cluster spatial distribution. Also this figure shows how
different is the metastable gating dynamics to the gating of the equilibrium system.

3.10 Discussion

We have investigated the collective behaviour of mechanosensitive channels, by
considering their short-distance interactions and individual gating responses. We
elaborated an Ising-like model with a non-homogeneous spatial field. We analysed
with this model the effect of the channel density on the gating properties. We obtained
that properties of the system change strongly for different spatial distributions of
the channels. In particular, we observed that for equilibrium the channel clustering
would cause leaking in physiological tensions. Some of the channels in the core of
the clusters have a tendency to open for tensions as low as 0.5 k;, T /nm?.

In biologically relevant initial conditions where all channels are closed, the tran-
sition to the equilibrium state is extremely slow, leading to a response time to
osmotic shock which can be extremely long. Moreover, the reverse transition back
to the closed state is also very slow, and the channels remain open even for already
normalized conditions. From this we can speculate that the collective response of
mechanosensitive channels is largely detrimental for the cell survival, and it may be
a reason for the typically low concentration of such channels on the cell membrane.
However, if the function of the channels is not to regulate osmotic stress, such as the
other types of mechanosensitive channels in plants and animals, it could be the case
that clustering provides an additional degree of control to channel gating.

Here we would like to point out that the approach chosen in this chapter is not to
model the system in all detail, but instead to focus on generic features of this system.
Therefore we intentionally abdicate from making detailed quantitative predictions,
in favour of isolating the most fundamental properties which are responsible for the
most relevant aspects of the system. This allowed us to capture fundamental emergent
properties of the system, which can in principle be easily verified with the appropriate
experimental methods. We described some of necessary methods in Sect. 3.3 of this
chapter, page 36. The verification would involve methods for spatial localisation
together with a patch-clamp to measure the gating. For even more realistic results,
perhaps it would be more appropriate to extend the analysis to lattices with different
shapes. Such as for example an hexagonal lattice. Since the gating is influenced by
the spatial organization, it would be interesting to investigate the effects of more
detailed space geometries. Additionally, in our approach it was very important to
consider the gating process in a different time scale of the diffusion rate. However it
is possible to combine the two time scales, similar to what was done in the Blume—
Emery—Griffiths model [44], and consider both the diffusion and the conformation
change simultaneously.

Furthermore, although we focus on a specific bacterial channel, our approach
can be extrapolated to other channels that are affected by physical properties of
the membrane in a similar way. The observed properties are the direct result of
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the nature of the interacting forces, and should not be strongly affected by any
neglected secondary detail. For instance, for the mechanosensitive channels of small
conductance of E. coli our model could be used with only minor modifications. As
we described in Sect. 3.6.2.3, page 65, these channels not only deform the thickness
of the membrane, which results in a short-range attraction or repulsion, but also
exert a midplane deformation, generating a repulsive barrier for larger distances.
Also, it would be interesting to investigate the interaction between mechanosensitive
channels of large and small conductance together. These investigations would give
a more complete understanding of the osmotic response in bacteria.

It is also possible to extend this approach even further to proteins two (or
more) different active states. In the review [45] the authors list several membrane
proteins with available structural information, which have more then one conforma-
tion. Examples are proteins such as KcsA (1BLS, 1JQ2), NaK channel (2AHY, 3E86),
bacteriorhodopsin (1C8R, 1C8S) [45]. Additionally, the approach could in principle
be extended to other types of mechanosensitive channels such as the channels of
Eukaryotes, described in Sect.3.2.2, page 35.

Finally, the fact that this system can be mapped elegantly into an new class of spin
model—composed of an Ising model with a spatially-correlated local field, which
is a result of a lattice gas equilibrium configuration—serves as motivation to the
detailed study of this new class of model, and thus is also an important contribution
to the physics of biologically inspired systems.
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Chapter 4
Assembly and Fragmentation of Tat Pores

4.1 Introduction

In this chapter we will analyse how the cell deliberately uses aggregation to construct
temporary pores on the membrane. The transient character of these pores character-
izes the main feature in the assembly dynamics. We already analysed one form of
assembly process and the importance of fragmentation in the Chap. 1. However that
process was characterised by a fragmentation rate which is much slower then the
rate of assembly. In this chapter, we will analyse a process where the fragmentation
is very fast and only proceeds when the assembly achieves a certain limit. This type
of dynamics is the main property of the system responsible for a controlled export
of folded proteins out of the cell without damaging the cell membrane and avoiding
unnecessary loss of intracellular components: The transient pores are only present
for enough time to allow the transport of protein, and after the transport is completed
the pore is sealed.

We start with a short biological introduction describing the main characteristics of
the system in the Sect.4.2. We follow with a simple theory of single ring formation
on the membrane based on the first-passage time on a sphere, described in Chap. 2.
Section4.4.2 brings more complex aspects of the dynamics, where we construct a
theory of assembly and fragmentation of the rings of diverse sizes on the membrane.
The objective of the last part is, based on a theory for the assembly processes, to
establish how this dynamics influences the protein out-flux. Our main result is a
quadratic relation between protein size and the maximum rate of efflux.

4.2 Tat Protein Transport System

The protein transport across the lipid bilayer is vital for many organisms. In bacteria
and chloroplasts it has a very similar form and is performed by two specially adapted
translocases. The first one transports the proteins when they are still unfolded, and is
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called “Sec translocase”. The second one takes place when the proteins are already
folded, and it is called “twin arginine translocation system (Tat)”. Although the Tat
system is responsible for the transport of a smaller number of proteins, it is vital for
bacteria. It is involved in the transport of proteins responsible for energy metabolism,
formation of the cell envelope, biofilm formation, heavy metal resistance, nitrogen-
fixing symbiosis, and also bacterial pathogens [1]. The mechanisms in the core of
this process is also more complex since it has to allow passage of very big proteins
of various sizes in a very selective way without leaking other vital cell constituents.
This is done by the construction of transient pores, which is triggered by a signal
given by the system’s substrate proteins and it varies in size, according to the size of
the protein to be transported [1]. After the protein is transported the pore is sealed.

The Tat translocation system in E. coli is composed by three proteins: TatA, TatB
and TatC. All of them are membrane proteins and form dynamic complexes. The TatB
and TatC form the TatBC receptor complex that, after binding to the substrate protein,
engages the transport process, which involves the polymerization of TatA subunits
into pores for the protein transport. The size of the assembled pores are heterogeneous
and correspond to the diameter of the transported protein. The mechanism of the
protein translocation trough the pore is not well understood. However, the current
models consider the protomotive force being the main component that drives the
process [2].

Although it is understood that the TatA oligomerisation is the core of the transport
dynamics, there are still not many detailed studies of this process. However it is
generally accepted that it takes place according to the following steps:

1. Production of protein inside the cell. There are several proteins produced inside
the cell which are destined to be exported. For as long as they are produced
they diffuse and reach the membrane from the cytosol. They have an N-terminal
domain that signals a request for translocation.

2. Pore formation. The TatA subunits assemble forming a ring of the exact size
necessary for the transport of the protein (see Fig.4.1).

3. Protein translocation. After the pore ring is assembled, the protein is forced to
leave the cell.

4. Pore fragmentation. After the protein is transported trough the pore, the ring
subunits disassemble back to their free form.

Studies on the stochiometry of the Tat complexes show that they are composed on
average of 25 subunits [2]. Also in the same study there are estimations of a number
of ~100 free TatA molecules dispersed on the membrane, and on average 15 rings in
the process of assembly. In the next section we construct a theoretical model based
on the information described in this section. We start relating the assembly process
with the time of transport of a single protein. Then we follow with a theory that
relates the protein outflux and the dynamics of subunit assembly.
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Fig.4.1 The oligomerisation O
process of TatA rings ring of Tat subunits
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4.3 The Theory of TatA Assembly Process

In this part we elaborate a quantitative model for the process of pore assembly.
We assume the following conditions:

1.

We describe only the TatA oligomerisation. As we described previously, the Tat
system is composed by three proteins TatA, TatB and TatC. However, both TatB
and TatC are only important in the initiation step of the process, and the pore
assembly steps are only dependent on TatA. It has been noted that “the oligomeric
state of the TatA is the key to understand the translocation” [2]. Since we are
interested in the influence of the dynamics of aggregation on the transport process
our theoretical approach takes in to account only the TatA subunits.

TatA as a monomer. What we call TatA monomers are actually constituted by
four subunits aggregated into a small complex. However, since this is the way
these proteins are usually found on the membrane we, use this small complex as
a unit of mass.

Free diffusion. We consider that the TatA monomer diffuse freely on the mem-
brane. This is a type of mean-field approximation, where spatial correlations are
neglected.

TatA form rings. The TatA monomers diffuses until it finds the end of an existing
TatA ring, or a signal to initiate ring formation. Assuming the TatA’s have to
attach to the end of an existing ring, a TatA monomer must come within a certain
distance / of the TatA at the end of the ring to add to it, where [ is of the order of
the diameter of a TatA monomer. We assume that this process works as a perfect
trap for TatA, meaning that the monomers are always incorporated in to a ring, if
within the distance / around it. The rings grow only by single monomer assembly
and can not fuse with each other as in the process described in Chap. 2.

. Fragmentation. The formed aggregates can fragment back into monomers.

However the fragmentation only occurs for complexes after the translocation of
the protein is completed. Therefore, the monomers disassociate after the complex
reaches predefined sizes.
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Table4.1 Parameters for TatA and the bacteria cell used in the estimation of the rate of attachment
of new monomers to an initiated ring, according to Ref. [2]

Cell radius R ~10~°m
TatA subunit radius r ~10"%m
TatA diffusion coefficient D ~0.13 x 10712 m?/s

6. Time scale. We consider that the assembly of the subunits is the main process
defining the time scale of protein transport. In other words, we consider that the
time of protein transduction trough a formed pore, and the following time of pore
fragmentation are irrelevant when compared with the time of subunit assembly.

To calculate the average time for a single TatA monomer to be incorporated into
an initiated ring we use the first passage time approach explained previously in
Sect.2.3, Chap. 2, page 11. Assuming this process works as a perfect trap for TatA’s,
the average time (¢) it takes for a monomer starting from a random position on a
sphere of radius R to reach a ring is

t—2R21 R 4.1
()_7n(7). 4.1)

where D is the diffusion coefficient of a TatA monomer. The estimation of for the
diffusion of a TatA monomer is D~ 0.13 10712 m2/s [2, 3], see Table4.1. Using the
parameters from Table4.1 and Eq.4.1 we estimate (z) ~100 s.

4.3.1 The Assembly of a Single Ring

In this part we shortly describe the formation of a single ring of TatA subunits in
a pool of TatA monomers. We start with a system with a sea of free TatA subunits
diffusing freely, and a single ring initiating point. The number of free TatA subunits
n1 as a function of time can be described by

dni (1
m _ _m (4.2)
dt ()
Therefore the formation of a single channel of n subunits will be described by
n(t) = Niree(1 — ="/, (4.3)

where 7 is the number of particles assembled into a channel, and Nee = n1(t = 0)
is the initial number of free monomers on the membrane. Therefore we can estimate
the time ¢, of formation of a ring of size n as

tn = (1) In (&) (4.4)

Nfree — 1
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From this calculation we obtained that the time to form an average channel size of 25
monomers is around 30 s for an initial condition of Nfee = 100. An initial condition
with larger number of monomers decreases this time, see Fig.4.2.

In the real situation, however, there are many rings being formed and decomposed
on the membrane as long as the protein flux to the periplasm is in progress. Therefore
the next sections are dedicated to this dynamics.

4.4 Assembly of Multiple Rings

In this part we explain the complex dynamics of formation and sealing of the pores
on the membrane surface required for protein transport. We describe the system in
terms of two main parameters: the number of initiated but incomplete rings of final
size i on the membrane, N;, and the number of free monomers on the membrane, 7.

We can consider N; to be the number of proteins which require a ring of i TatA
monomers around them to be exported, and which have not been exported yet. They
all have incomplete TatA rings of various lengths around them. When a ring is
completed, one of the N; proteins disappears from the membrane and is exported
into the periplasm; this causes N; to decrease by 1. There is also an influx of ¢; size-i
proteins into the membrane coming from the cytoplasm. The dynamics of N; can be
described by

dN;
— = —ki(n, {N;} )Ni + ¢i. (4.5)

Here k; measures the fragmentation of i-sized proteins caused by ring completion.
Therefore, k; is not a constant, and we must determine it eventually in order to use

Eq.4.5.
The differential equations satisfied by the number of free monomers 7 is
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dn 1 .
Z:—(EZZN,‘)H—FZZZIQNI‘. (4.6)

The first term represents the loss of monomers to growing rings. The second term
comes from the fact that when a ring is completed, the protein is exported and the
monomers are released back to the pool of free monomers. A ring of size i fragments
into { monomers, hence the factor i in the sum.

Another important feature of this system is that the total number of monomers
must be conserved, since there is no additional production of TatA. This can be
represented by imposing an additional constraint

M:n(t)+KZiNi(t), (4.7)

where k represents the average number of monomers in a ring. We follow by the
analysis of the steady state properties of the system just described.

4.4.1 Translocation of Only One Type of Protein

We start with a slight simplification of the system which consists in the analysis of
the translocation of only one type of protein of size m. For this case, the system of
Eqgs.4.5, 4.6 and 4.7 can be written as a single differential equation for the number
of free monomers

dn n? Mn

dr (tykm  (t)xm +mfm. “4.8)

This differential equation has two fixed points for

n

M M2 —A(t) kmPpy, N M F /M? — 4 (1) km2¢,,

> - 4.9)

where both solutions are positive and satisfy n < M. The fixed point with the larger
number of monomers is the stable fixed point the other one is unstable (see Fig.4.3).
Thus, in a real system we would expect to find the situation with more free monomers
and less assembled complexes.

4.4.2 Translocation of Protein of Distinct Sizes

Assuming the system reaches a steady state, the total number of free TatA monomers
n and the number of initiated rings N; on the membrane are constant. This implies
that there should be a constant release of monomers into the pool as well as a constant
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Fig.4.3 The phase space
diagram of Eq.4.9, showing
the stable (circle) and
unstable (triangle) fixed
points of the system 0k E

dn
dt

M—+/ M2 —41Kpymm? M++/ M2 —4T Kby, m?2

2 2

monomer uptake to form the rings. We denominate the flux of monomers released
by ® which is equivalent to

o= Ziqﬁi = Zik,»Ni. (4.10)

1

In this model of TatA aggregation, each monomer can bind to any of the existing
rings around the proteins with equal probability. In the steady state, the number of
monomers released in 1s is equal to the number of monomers attaching to rings
during that time. So on average each protein is receiving &« monomers per second in
the steady state, with

=—, 4.11
@=5 4.11)

where N = >, N; is the total number of proteins on the membrane. One monomer
represents 1/i of aring of size i, so the rate of completion of a ring around a protein
of size i in steady state is

o ()
ki=—=—. 4.12
"7 i T iN (4.12)

Making % = 0in Eq.4.5, we get k; N; = ¢;. If we replace this expression into
Eq.4.12, we find

N N
_ N4 4.13
a7 : (4.13)

for any i, j.
Setting ‘di—’t’ = 0 in Eq.4.6 and using Eq.4.12, we find
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Nn = o (t), 4.14)
where we used D, ikiN; = D, ¢i = .

Using Eq.4.13, the term >, i N; in Eq.4.7 can be written as (N/®) >, i%¢; =
(N/®)W, where we define

w= " (4.15)

Equation 4.7 can then be rearranged as a relation between N and n:
N:(M—n)i. (4.16)
Wk
Using Eqgs. 4.14 and 4.16, we can get a closed equation for n:
D (1)

P
N=—"=M-n— = n*—Mn+«({)¥=0. 4.17)
n Wi

This is a quadratic equation for n, with two valid solutions:

_Mi\/M2—4/<(t)lIJ _M:F\/M2—4(t)/<\IJ
- 2 - m

(4.18)

n Ny,
Both solutions are positive, and both satisfy n < M. The steady state of only on type
of particle is in accordance with this solution (see Eq.4.9).

4.4.3 Condition for the Existence of a Steady State

From Eq.4.18, the steady state is only possible if
M? > 4 (1) . (4.19)

If this condition is violated, proteins are not exported as fast as they are produced,
and they will accumulate. So this relation establishes the maximum possible “export
rate” which the system can support. The saturation of the Tat translocase has been
observed in experiments. These experimental studies also show that it can be relieved
only by the overexpression of Tat complex components [4].

The maximum export rate is determined by W, which has interesting conse-
quences. For example, consider the simplest case of having just one protein size m.
Then the maximum export rate ¢, is, from Eq.4.19,

_ (MY 4.20
¢’"‘4;<(r>(%)‘ (4.20)
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For 100 monomers and a ring of size 20, the maximum transport rate ¢y, is 25/200,
or a little more that 1 transported molecule every 10s.

One important prediction is that the maximum rate of transport is inversely pro-
portional to the square of the ring size m. So the maximum rate of transport of a
protein which requires a ring of size 40 is four times smaller than that of a protein
with a ring of size 20. This can be explained intuitively by the fact that bigger rings
take longer because they simply require to be found by more monomers, and because
while they are being assembled, they sequester more TatA molecules from the free
pool, making them unavailable to help assembly of other proteins. These two com-
bined effects are responsible for the rate of transport decreasing faster than linearly
with protein size. Conversely, the maximum transport rate also increases with the
square of the number of monomers.

4.5 Discussion

We have analysed, in this chapter, how the dynamics of assembly and fragmentation
processes on the membrane influences the export of proteins through the membrane
by the Tat system. We proposed a description of the system by a set of differential
equations which describe the number of free subunits on the membrane and also the
number of assembled complexes. From this approach we derived the properties of
the system in the steady state. As expected, we observed that the translocation system
can be saturated by an excess of demand for transport, as found in experiments [4].
Furthermore we found that the relation between the protein flux and it size is
quadratic. In other words, an increase in the size of protein makes its transport
disproportionally more difficult.

This is still a work in progress and there are more complex properties to be studied
about the system. The work should proceed with the detailed analysis of the influ-
ence of stochasticity in this system. For this we should proceed with more extensive
numerical simulations. Also we propose the analysis of the simultaneous transport of
proteins of distinct sizes and how this influences the dynamics. Furthermore the the-
ory should be extended to contain the whole Tat components, including the receptor
TatBC. The receptor has a role in the control of the initiated polimerization, and its
limited number on the membrane surface can prevent the saturation of the process.
Additionally, the results should be tested with possible experiments. The bacteria
E. coli doubles the number of proteins in the periplasm using this translocation sys-
tem, during its life cycle of 20min. We also propose a quantitative study of the
transported proteins and the order in which they are exported to the periplasm. We
suggest that this order cannot be arbitrary, and should be controlled for an optimum
export rate.
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Chapter 5
Conclusion

In this work we studied the dynamics and spatial organization of proteins on
prokaryotic membranes. Using theoretical modeling, we show the importance of
protein interactions in processes ranging from the formation of protein complexes
to transport and homeostasis. We focus on the roles of mutual interactions in the
assembly of protein complexes, as well as in the spatial organization and the collec-
tive function of assembled complexes on the membrane.

The crystal structure of membrane proteins is particularly difficult to be deter-
mined due to the experimental difficulties of obtaining good crystals. However, here
we have shown that this information can be very important to understand the organisa-
tion of the membrane. Using this information as the core of our theoretical approach,
we were able to describe the consequences of protein interactions for the formation
of complexes as well as for the collective behaviour of complexes on the mem-
brane. Therefore, the crystal structure can reveal not only the specific function of an
isolated protein, but it also provides the necessary information to understand large
scale, emerging properties of proteins acting on the membrane.

In the first part of this work we analysed how the interactions among subunits
can affect the assembly of protein complexes on the membrane surface. We started
from the premise that organisms would try to avoid wastage, and analysed the effect
of the interaction strength in the efficiency of the assembly process. The mecha-
nism by which the interaction strength influences the efficiency is by resulting in
a fragmentation rate, which reverts the assembly of subunits. We found that lower
fragmentation leads to higher efficiency, however for a zero rate of fragmentation,
the process becomes again very inefficient. It is important to emphasize that the effi-
ciency achieved through less fragmentation comes at the cost of a slower assembly
process. For larger complexes, the optimization of the efficiency can easily lead to
assembly time scales which exceed the life cycle of the organism. Therefore, we
speculate that this imposes an upper bound on the maximum size of the complexes
which can be viably constructed. Also this time restriction results in an optimum
regime of fragmentation rate. This suggests that the fragmentation rate should be
subjected to evolutionary pressure to be tuned to maximize the final production.

K. Guseva, Formation and Cooperative Behaviour of Protein Complexes 79
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In the second part of this work, we analysed how membrane-mediated interac-
tions can affect the collective behaviour of assembled complexes on the membrane.
As a case study, we considered a special type of channel which opens according to
the membrane stretch, called a mechanosensitive channel. These channels are very
sensitive to membrane deformations in its surroundings, and can change their con-
formational state accordingly. This results in a mutual interaction among adjacent
channels, which depends on their conformations. By considering the nature and the
strength of these interactions, we constructed a coarse-grained model which cap-
tures the essential properties of many mechanosensitive channels on the membrane.
By analysing the equilibrium and dynamical properties of this system, we observed
the formation of clusters of aggregated channels, which behave radically different
than their isolated counterparts. These clustered channels exhibit a delayed activation
time, as well as a differentiated activation pattern, where channels in the interior of
the clusters activate at tensions which are lower than necessary for channels which
are at the boundaries. From this results, it was possible to explain why the concentra-
tion of such channels is very low in bacteria, since their cooperative behaviour—in
particular the resulting delay in activation—would be detrimental for cell survival.
However, for other types of mechanosensitive channels, such as those in eukaryotes,
this type of cooperative behaviour can be viewed as an additional form of control,
and thus be an important part of their function.

In the third, and last part of the work we analysed the mechanism by which cells
export proteins form their interior, through the formation of temporary pores on the
membrane that allow protein translocation. These pores are formed for a very short
period by independent subunit association and always have the exact size of the
transported protein. The transported proteins, on the other hand, can have different
sizes and need larger or smaller pores. Using differential equation approach, we
analytically obtained the properties of the steady state and the maximum export rate
as function of protein size and protein flux.

The systems analysed in this work serve as good examples of how the descrip-
tion of the essential properties of protein interactions can provide a fundamental
understanding of the emerging properties of collective protein behaviour. As more
information on the structure of other membrane proteins are revealed, we propose the
appropriate extension of our theoretical approaches for the study of their behaviour.
The progress of this type of analysis will allow for a broader understanding of the
collective functions of proteins, which could provide an additional insight on their
evolution.
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